AMERICAN RIVERS
NATURAL RESOURCES DEFENSE COUNCIL

together with Los Angeles Waterkeeper

Petition For A Determination
That Stormwater Discharges From
Commercial, Industrial, And Institutional Sites
Contribute To Water Quality Standards Violations
in Dominguez Channel and the Los Angeles/Long Beach
Inner Harbor (Los Angeles County, California)
And Require Clean Water Act Permits

September 17, 2015

Jared Blumenfeld, Regional Administrator
EPA Region 9
75 Hawthorne Street
Mail Code: ORA-1
San Francisco, CA 94105
Blumenfeld.Jared@epa.gov
Dear Regional Administrator Blumenfeld,

American Rivers, the Natural Resources Defense Council, and Los Angeles Waterkeeper hereby petition you, the Regional Administrator of U.S Environmental Protection Agency Region 9, for a determination that currently unpermitted stormwater discharges from privately-owned commercial, industrial, and institutional sites are contributing to violations of water quality standards in Dominguez Channel and the Los Angeles/Long Beach Inner Harbor (Los Angeles County, California), and therefore require National Pollutant Discharge Elimination System (NPDES) permits pursuant to Section 402(p) of the Clean Water Act.¹

Evidence summarized in this petition and included in the attached Exhibits shows that commercial, industrial, and institutional (CII) sites are unquestionably contributing to the Channel and Inner Harbor zinc and copper impairments because:

- CII sites occupy 36.6% of the land area that flows into Dominguez Channel and the Los Angeles/Long Beach Inner Harbor.
- 71.1% of this CII area is located within a half-mile of a receiving water.
- Modeled results indicate that, out of all urban stormwater sources, CII sites contribute at least 88% of zinc loadings and 84% of copper loadings in the watershed.
- CII sites likely cover 25.6% of the watershed with impervious surface.
- Studies of average pollutant loadings suggest that CII sites are alone contributing four times the pollutant loadings that the Harbor would receive from the entire watershed under natural conditions.

Under the current regulatory program, municipalities bear the brunt of legal requirements to address the impacts of stormwater runoff pollution. However, remediating the degradation caused by stormwater often requires managing the runoff from a greater proportion of the landscape than a municipality directly controls. As a result, it is essential for private properties to take part in watershed restoration efforts, helping to implement the stormwater controls that are needed to reduce pollution and achieve clean rivers and streams. Imposing permitting requirements on private sites through residual designation authority (RDA) would make those sites part of the solution to our national and regional stormwater problems and would represent a more equitable allocation of clean-up responsibilities.

Factual Background

The Dominguez Channel watershed drains an area of approximately 133 square miles in southwestern Los Angeles County, California, emptying into the Los Angeles/Long Beach Inner

Harbor and ultimately the Pacific Ocean. The official 12-digit Hydrologic Unit Code (HUC-12) designations of the two HUC-12 watersheds making up the Dominguez Channel drainage area are 180701060703 (San Pedro Bay) and 180701060701 (Long Beach Inner Harbor). The corresponding CalWater watershed delineations are 411.01, 411.02, 411.03 and 411.04. No other watersheds lie upstream of Dominguez Channel or flow into it. The watershed is bordered by the Santa Monica Bay watershed to the west, the Ballona Creek watershed to the north, and the Los Angeles River watershed to the east. The Dominguez Channel is a relatively linear system without major tributaries that flows among drainages and low hills through a heavily urbanized and industrialized area. The Los Angeles/Long Beach Harbor complex is one of the largest ports in the country by shipping activity and volume of goods transported. Los Angeles Harbor covers approximately 7,500 acres, while Long Beach harbor covers about 7,616 acres. Land cover data indicate that the Dominguez Channel watershed area is approximately 60% impervious, with certain subwatersheds exceeding 70% impervious. As discussed in more detail below, portions of the Dominguez Channel, its tributaries, and the Inner Harbor are impaired by metal (copper and zinc) pollution in stormwater runoff from the predominantly urban land use within the watershed.

Stormwater runoff from impervious areas harms water quality in Dominguez Channel and the Los Angeles/Long Beach Inner Harbor as well as throughout California, Region 9, and nationwide. As the EPA Office of Water acknowledged, “Stormwater runoff in urban and developing areas is one of the leading sources of water pollution in the United States.” The National Research Council (NRC) agrees: “Stormwater runoff has a deleterious impact on nearly all of the nation’s waters” – as does the U.S. Court of Appeals for the Ninth Circuit Court: “Stormwater runoff is one of the most significant sources of water pollution in the nation.”

In its preamble to the permitting regulations for stormwater sources in 1999, EPA explained the impacts of stormwater runoff in detail:

4 Id.
8 Environmental Defense Center v. EPA, 344 F.3d 832, 840 (9th Cir. 2003).
Storm water runoff from lands modified by human activities can harm surface water resources and, in turn, cause or contribute to an exceedance of water quality standards by changing natural hydrologic patterns, accelerating stream flows, destroying aquatic habitat, and elevating pollutant concentrations and loadings. Such runoff may contain or mobilize high levels of contaminants, such as sediment, suspended solids, nutrients (phosphorous and nitrogen), heavy metals and other toxic pollutants, pathogens, toxins, oxygen-demanding substances (organic material), and floatables. ... Individually and combined, these pollutants impair water quality, threatening designated beneficial uses and causing habitat alteration or destruction.9

These water quality impairments “result[] in an unhealthy environment for aquatic organisms, wildlife, and humans.”10

EPA accepts that stormwater runoff is a “contributor to water quality impairments across the country, particularly in developing and urbanized areas.”11 Stormwater causes these problems in large part due to the harmful contaminants that it carries into receiving waters. According to the NRC, “The chemical effects of stormwater runoff are pervasive and severe throughout the nation’s urban waterways, and they can extend far downstream of the urban source. ... A variety of studies have shown that stormwater runoff is a vector of pathogens with potential human health implications.”12

In particular, over 250 studies reveal that increases in impervious area associated with urban development are a “collection site for pollutants,”13 and generate greater quantities (and additional types) of contaminants. Urban development creates new pollution sources as population density increases and brings with it “proportionately higher levels of car emissions, maintenance wastes, pet waste, litter, pesticides, and household hazardous wastes, which may be washed into receiving waters by storm water.”14 These increases in pollutant loadings can result in immediate and long-term effects on the health of the water body and the organisms that live in it.15 The U.S. Geological Survey found that, in areas of increased urban development, local rivers and streams exhibited increased concentrations of contaminants such as nitrogen, chloride, insecticides, and polycyclic aromatic hydrocarbons (PAHs).16

10 Id.
12 National Research Council, supra note 7, at 26.
14 64 Fed. Reg. at 68,725.
16 Id. at 3.
The increased stormwater volume and pollutant loadings caused by urbanization, especially impervious cover, are closely connected with water body impairment. Contaminants, habitat destruction, and increasing streamflow flashiness resulting from urban development have been associated with the disruption of biological communities. The NRC states, "By almost any currently applied metric...the net result of human alteration of the landscape to date has resulted in a degradation of the conditions in downstream watercourses."[18]

A review of the lists of impaired waters states must compile in compliance with the Clean Water Act (CWA or the Act) reveals the deleterious effects of urbanization on water quality. Thousands of water bodies nationwide fail to meet standards established for stormwater-source pollutants such as pathogens, nutrients, sediments, and metals. Of those impaired water bodies, by 2000, stormwater runoff sources were "responsible for about 38,114 miles of impaired rivers and streams, 948,420 acres of impaired lakes, 2,742 square miles of impaired bays and estuaries, and 79,582 acres of impaired wetlands" – and the NRC considers these figures to be underestimates of actual impairments. Urban stormwater is listed as the "primary" source of impairment for 13 percent of all rivers, 18 percent of all lakes, and 32 percent of all estuaries, despite the fact that urban areas cover just 3 percent of U.S. land mass.

In California, urban runoff is a "leading source" of water body impairment. Stormwater and urban runoff are also the leading source of water pollution in the Los Angeles area.

Since the 1999 adoption of the Phase II stormwater rule, which established permitting requirements for small municipalities and construction sites, the scientific understanding of the correlation between impervious surfaces and water quality impairments has increased significantly. EPA recognizes the now-well-understood connection between high percentages of impervious cover in watersheds and pollutant loading-driven impairments (among many other deleterious effects). EPA commonly approves state-developed 303(d) lists identifying impaired waters afflicted by pollutants typically discharged from stormwater sources. Numerous peer reviewed scientific articles and publications document the connection between impervious cover and declines in water quality and stream health.

[17] Id. at 1.
[18] National Research Council, supra note 7, at 17.
[21] Id.
In recent years, EPA created the Causal Analysis/Diagnosis Decision Information System, or “CADDIS” Urbanization Module, “a website developed to help scientists and engineers in the Regions, States, and Tribes conduct causal assessments in aquatic systems.” Through this module EPA provides a comprehensive overview of the connection between impervious surfaces (and other facets of urbanization) and declines in water quality for use in causal assessment for specific stressors including pollutant categories. In the CADDIS Module, EPA reiterated that “Urbanization has been associated with numerous impairments of water and sediment quality,” including, but not limited to, increased nitrogen and phosphorus.

The National Stormwater Quality Database (NSQD), now in its fourth version, represents perhaps the greatest development in available data since adoption of the Phase II rule. This database enables the publication of numerous analyses corroborating prior understandings and providing new and very reliable characterizations of pollutant loading and concentrations from specific land use categories. Shaver et al. underscored the significance of the NSQD:

In the NSQD project, stormwater quality data and site descriptions are being collected and reviewed to describe the characteristics of national stormwater quality, to provide guidance for future sampling needs, and to enhance local stormwater management activities in areas having limited data. Over 10 years of monitoring data collected from more than 200 municipalities throughout the country have a great potential in characterizing the quality of stormwater runoff and comparing it against historical benchmarks. This project is creating a national database of stormwater monitoring data collected as part of the existing stormwater permit program, providing a scientific analysis of the data as well as recommendations for improving the quality and management value of future NPDES monitoring efforts (Pitt et al., 2004).

The authors of the first report on the NSQD concluded that the national dataset represented in the database is so robust that “general characterization” monitoring is no longer needed and can no longer be justified. Specifically, the authors stated:

28 Pitt et al., The National Stormwater Quality Database (NSQD, Version 1.1), supra note 26, at 33.
The excellent U.S. national coverage, along with the broad representation of land uses, seasons, and other factors, makes this information highly valuable for numerous basic stormwater management needs. Monitoring with no specific objective, except for general characterization in an area, is not likely to provide any additional value beyond the data and information contained in NSQD. After a sufficient amount of data has been collected by a Phase 1 community for representative land uses and other conditions, outfall characterization monitoring resources should be re-directed to other specific data collection and evaluation needs. Burton and Pitt (2001) provide much additional information on determining an adequate outfall monitoring program. Similarly, communities that have not initiated a stormwater monitoring program . . . may not require general characterization monitoring . . ., if they can identify a regional Phase I community that has compiled extensive monitoring data as part of their required NPDES stormwater permit. Obviously, there will be some situations that are not well represented in NSQD and additional characterization monitoring may be warranted. These situations will be identified in the final data analyses.29

In other words, available data are able to characterize stormwater pollutant concentrations and loading rates for purposes of regional or watershed analyses, such as residual designation. Indeed, in developing stormwater permit requirements, EPA has used literature reviews, including analyses of NSQD data, to conclude that discharges of urban runoff can be “reasonably assumed” to contain certain pollutants at predictable average concentrations.30

More recently, Version 3.1 of the NSQD has been compiled and improved through integration of various databases into one highly reliable dataset. 31 NSQD 3.1 provides a basis for assessing runoff sources nationally and includes detailed analysis of the expanded datasets within EPA designated “Rain Zones,” which reflect the differences in precipitation in various defined regions of the nation.

Just as EPA knows more today about pollutant concentrations and loadings from urban areas, the Agency knows much more about the connection between large areas of impervious cover and water quality impairments. As EPA acknowledges: “There is a direct relationship between the amount of impervious cover and the biological and physical condition of downstream receiving waters.”32 The fact that commercial, industrial and institutional facilities

29 Id.
with large areas of impervious cover contribute pollutants to receiving waters can no longer be reasonably refuted. Having acknowledged these now well-understood facts, EPA must, at long last, assist municipalities in addressing these pollutant sources by exercising its residual designation authority under the Clean Water Act to require those facilities to address their contribution to water quality violations.

Regulatory Framework

In order to achieve the Clean Water Act's fundamental goal of “restor[ing] and maintain[ing] the chemical, physical, and biological integrity of the Nation’s waters,” EPA and states that are delegated authority to administer the Act must establish minimum water quality standards. These standards define “the water quality goals of a water body, or portion thereof, by designating the use or uses to be made of the water and by setting criteria necessary to protect the uses.” California established, and EPA approved, water quality standards pursuant to this requirement.

In order to ensure that such water quality standards will be achieved, no person may discharge any pollutant into waters of the United States from a point source without a National Pollutant Discharge Elimination System (NPDES) permit. NPDES permits must impose water quality-based effluent limitations, in addition to any applicable technology-based effluent limitations, when necessary to meet water quality standards.

The Act defines “point source” as “any discernible, confined and discrete conveyance, including but not limited to any pipe, ditch, channel, tunnel, conduit...from which a pollutant is or may be discharged.” EPA’s Clean Water Act regulations further specify that “discharge of a pollutant” includes “additions of pollutants into waters of the United States from: surface runoff which is collected or channeled by man.” Consequently, although stormwater discharges are often characterized as “non-point” in nature, it is legally well settled that “[s]torm sewers are established point sources subject to NPDES permitting requirements.”

As EPA has stated, “For the purpose of [water quality] assessments, urban runoff was considered to be a diffuse source or nonpoint source pollution. From a legal standpoint, however, most urban runoff is...
discharged through conveyances such as separate storm sewers or other conveyances which are point sources under the CWA."

Despite the fact that stormwater runoff channeled through a conveyance is a point source subject to the Act's permitting requirements, EPA did not regulate stormwater through the NPDES program until Congress amended the statute in 1987 to explicitly require it and EPA promulgated its Phase I and II regulations in 1990 and 1999, respectively. As a result, the Clean Water Act now requires NPDES permits for discharges of industrial and municipal stormwater. While these are the only categories of stormwater discharges called out for regulation in the text of the statute, Congress also created a catch-all provision directing EPA to require NPDES permits for any stormwater discharge that the Administrator or the State director determines "contributes to a violation of a water quality standard or is a significant contributor of pollutants to waters of the United States."

This catch-all authority—known as EPA’s residual designation authority—is a critical tool to ensure that problematic discharges of stormwater do not go unregulated. In the preamble to its Phase II stormwater regulations, EPA described the need for this authority: "EPA believes...that individual instances of storm water discharge might warrant special regulatory attention, but do not fall neatly into a discrete, predetermined category. Today’s rule preserves the regulatory authority to subsequently address a source (or category of sources) of storm water discharges of concern on a localized or regional basis." Citizens may petition EPA for designation of stormwater sources for regulation under this authority. In recent years, often

43 See 33 U.S.C. § 1342(p). Congressional insistence that stormwater be regulated through the NPDES program is evident in the legislative history of the 1987 amendment, such as the following statement from Senator Durenberger during the floor debates:

The Federal Water Pollution Control Act of 1972 required all point sources, including storm water discharges, to apply for NPDES permits within 180 days of enactment. Despite this clear directive, E.P.A. has failed to require most storm water point sources to apply for permits which would control the pollutants in their discharge. The conference bill therefore includes provisions which address industrial, municipal, and other storm water point sources. I participated in the development of this provision because I believe it is critical for the Environmental Protection Agency to begin addressing this serious environmental problem.

47 National Pollutant Discharge Elimination System—Regulations for Revision of the Water Pollution Control Program Addressing Storm Water Discharges, 64 Fed. Reg. at 68,781.
48 40 C.F.R. § 122.26(f)(2).
acting in response to such petitions, EPA and delegated States have moved to exercise this residual designation authority on multiple occasions.49

Categories of sources designated under EPA’s residual designation authority may be geographically broad. The agency has stated that “the designation authority can be applied within different geographic areas to any single discharge (i.e., a specific facility), or category of discharges...The added term ‘within a geographic area’ allows ‘State-wide’ or ‘watershed-wide’ designation within the meaning of the terms.”50 The Ninth Circuit Court of Appeals and Supreme Court of Vermont have both found that the designation of broad regional categories of sources is a reasonable exercise of statutory authority.51

Once EPA has made a finding or determination that a category of discharges meets the statutory criterion of “contribut[ing] to a violation of a water quality standard,” it must designate that category for regulation, and those “operators shall be required to obtain a NPDES permit.”52 In other words, “the Agency’s residual designation authority is not optional.”53

EPA has not defined a threshold level of contribution to water quality standards violations that would suffice to make such a determination. However, the agency has advised delegated States that “it would be reasonable to require permits for discharges that contribute more than *de minimis* amounts of pollutants identified as the cause of impairment to a water body.”54 The Supreme Court of Vermont has recognized this analysis as a valid interpretation of the RDA threshold.55

50 National Pollutant Discharge Elimination System—Regulations for Revision of the Water Pollution Control Program Addressing Storm Water Discharges, 64 Fed. Reg. at 68,781.

51 *Environmental Defense Center*, 344 F.3d at 875-76; *In re Stormwater NPDES Petition*, 910 A.2d 824, 829-32 (Vt. 2006).

53 *In re Stormwater NPDES Petition*, 910 A.2d at 835-36.

54 Letter from G. Tracy Mehan III, EPA Assistant Administrator, to Elizabeth McLain, Secretary, Vermont Agency of Natural Resources 3 (Sept. 16, 2003).

55 *In re Stormwater NPDES Petition*, 910 A.2d at 836 n.6.
Once the Regional Administrator receives an RDA petition requesting that it exercise this authority, EPA must make a final decision on the petition within 90 days.56

\textbf{Analysis}

Discharges from impervious surfaces associated with privately-owned commercial, industrial, and institutional (collectively, "CII") sites57 (including rooftops and parking lots) are contributing to violations of water quality standards in the Dominguez Channel watershed. This petition demands that EPA exercise its mandatory residual designation authority to designate non-NPDES-permitted stormwater discharges from sites in these categories for regulation under the NPDES program. For purposes of this petition, “non-NPDES-permitted stormwater discharges” includes any stormwater discharge from a private property, or from a portion of a property, that is not subject to post-construction stormwater pollution control requirements under a NPDES permit. For example, where an industrial stormwater permit requires pollution controls only for stormwater discharges from the portions of an industrial site on which “industrial activity” takes place, stormwater discharges from the remaining portion of that industrial site are included in the term “non-NPDES-permitted stormwater discharges.” The term “non-NPDES-permitted stormwater discharges” includes stormwater discharges from properties (or portions thereof) that are within the geographic boundaries of a regulated municipal separate storm sewer system (MS4).

In 2013, several environmental organizations, including American Rivers and the Natural Resources Defense Council, petitioned EPA Regions 1, 3, and 9 for a determination that commercial, industrial, and institutional sites throughout those EPA regions were contributing to violations of water quality standards. (Those petitions are hereafter referred to as the “2013 Petitions.”) In responding to the 2013 Petitions, EPA considered three factors: (i) the likelihood of exposure of pollutants to precipitation at sites in the categories identified in the petition; (ii) the sufficiency of available data to evaluate the contribution of stormwater discharges to water quality impairment from the targeted categories of sites; and (iii) whether other federal, state, or local programs adequately address the known stormwater discharge contribution to a water quality standard violation. As discussed in more detail below, the petitioners do not concede that the third of these factors is a permissible factor for EPA to consider when deciding whether to exercise RDA. Nonetheless, because EPA established these as its review criteria in responding to the 2013 Petitions, this petition is structured to address each of those three criteria in turn.

56 40 C.F.R. § 122.26(f)(5).

57 For purposes of this petition, these CII land use categories are defined by the Southern California Association of Governments’ 2009 Los Angeles Countywide Zoning dataset. CII sites include the following Los Angeles zoning categories: Commercial and Services, Educational Institutions, Heavy Industrial, Industrial, LA/LB Harbor (this was attributed to the polygons labeled as Transportation in the harbor), Light Industrial, Mixed Commercial and Industrial, Mixed Urban, Other Commercial, Retail Stores and Commercial Services, and Wholesaling and Warehousing. Los Angeles County GIS Data Portal, 2009 Countywide Zoning, available at http://egis3.lacounty.gov/dataportal/2012/04/10/countywide zoning.
I. Stormwater Discharges from CII Sites Contain Copper and Zinc

Runoff from commercial, industrial, and institutional sites consistently contains high levels of copper and zinc (collectively referred to as "metals"). As EPA has noted, heavy metals, particularly copper and zinc, are by far the most prevalent priority pollutant constituents found in urban runoff, and these metals have the potential to cause acute or chronic toxic impacts for aquatic life. 58 EPA lists industry and automobiles as the primary sources of metals in urban runoff. 59 Metals like zinc and copper get into runoff from impervious areas that are trafficked by vehicles, such as driveways and parking lots, from vehicle wear, tire wear, motor oil, grease, and rust.60

Research demonstrates, and EPA has recognized, that commercial, industrial, and institutional land uses consistently discharge metals at expected, elevated concentrations (both generally as well as for specific runoff events) and have large annual per-acre pollutant loads. Relying on the NSQD and a literature review of other studies, including many discussed below, EPA has determined that "it can be reasonably assumed" that urban stormwater discharges, which include discharges from CII sites, contain metals at predicted average concentrations. 61 Further, EPA has recommended the use of pollutant loading and assessment models based on well-established pollutant loading levels associated with commercial, industrial, and institutional land uses.

In recent years, an EPA-sponsored stormwater practice performance analysis relied on "pollutant loading export rates . . . obtained from the Fundamentals of Urban Runoff Management: Technical and Institutional Issues (Shaver et al. 2007)...because they have been reported in several sources of stormwater management literature." 62 This analysis identified "typical" zinc loading export rates from different land uses. In turn, the Shaver et al. study referenced in that EPA-sponsored guidance cites EPA's own Handbook for Developing Watershed Plans to Restore and Protect Our Waters, states: "Many models utilize literature-based values for water-quality concentrations to estimate pollutant loads (US-EPA 2005)." 63 In the 2008 version of that handbook, EPA provides a specific recommendation with regard to "where to get export coefficients" for different land uses, including a reference to a 2004 data

59 Id.
61 EPA Region 1, New Hampshire MS4 Statement of Basis, supra note 30, at 2.
review by Jeff P. Lin, which "summarizes and reviews published export coefficient and event mean concentration (EMC) data for use in estimating pollutant loading into watersheds." Lin in turn confirms that numerous studies have been completed that document consistently high pollutant concentrations from commercial and industrial sources both on a per-year and per-acre basis. Burton and Pitt's *Stormwater Effects Handbook*, cited in Shaver et al., further documents that commercial, parking lot, and industrial land uses had consistently high copper levels in addition to the zinc levels cited in the EPA analysis. These long-accepted estimates of total annual loading underscore that commercial, industrial, and institutional land uses are large per-acre contributors of pollutants.

Analyses of the extensive dataset in the NSQD confirm that stormwater discharges from commercial, industrial, and institutional land uses consistently contain high loading levels of these impairment-causing pollutants. The NSQD, extensively referenced in Shaver et al. 2007, is very valuable because it builds on and corroborates prior datasets. This dataset is also important because analysis and comparison of both median and mean pollutant concentrations in the data across numerous pollutant parameters clearly demonstrates that commercial, industrial, and institutional land uses discharge elevated concentrations of zinc and copper (as well as other pollutants). These elevated concentrations are responsible in part for the high pollutant loadings from these land uses; the increased impervious cover on these types of sites generates greater runoff volumes, and loadings are the product of volume and pollutant concentration. Based on the Center for Watershed Protection's "Simple Method" for calculating pollutant loads, for unit-area loadings to a water body, essentially any medium- to high-intensity land use (like the uses subject to this petition) is likely to impose 10- to 20-fold increases in pollutant loadings. Higher average pollutant concentrations at commercial, industrial, and institutional sites increase pollutant load contributions even further.

The NSQD found median total copper concentrations of 17 µg/L at commercial areas and 22 µg/L at industrial sites (with no data available for institutional sites). The study also found median total zinc concentrations of 150 µg/L at commercial sites, 210 µg/L in industrial areas,

68 Shaver et al., *Fundamentals of Urban Runoff Management*, *supra* note 27, at 3-59; Pitt, *The National Stormwater Quality Database, Version 3.1*, *supra* note 31, at 1 ("Recently, version 3 of the NSQD was completed, and besides expanding to include additional stormwater NPDES MS4 permit holders, most of the older NURP data, and some of the International BMP database information was also added, along with data from some USGS research projects.").
and 305 µg/L in institutional areas. Recent analysis of Version 3.1 of the NSQD demonstrates elevated mean concentrations for total copper and total zinc as well. For total copper, in Rain Zone 6 (where Dominguez Channel and the Los Angeles/Long Beach Inner Harbor are located), the mean concentration at commercial sites was 21 µg/L and 78 µg/L at industrial sites. For total zinc, the mean concentration at commercial sites was 343 µg/L and 1720 µg/L at industrial sites. Analysis of this extensive database generally indicates that the subject land uses discharge elevated concentrations of copper and zinc.

EPA’s National Urban Runoff Program study found similar results: it found median copper concentrations at commercial sites were 29 µg/L, and median zinc concentrations at commercial sites were 226 µg/L. The USGS has found total recoverable zinc concentrations of 348 µg/L at commercial rooftops and 148 µg/L at commercial parking lots, and mean total recoverable copper of 23 µg/L at commercial rooftops and 25 µg/L at commercial parking lots.

In another study conducted in Southern California including the Dominguez Channel, industrial and commercial land uses were shown to have a mean event mean concentration (EMC) for copper of approximately 42 µg/L and 70 µg/L, respectively. For zinc, EMC in industrial and commercial land uses averaged 599 µg/L and 362 µg/L, respectively.
Table 1: Summary of Heavy Metal Concentrations Documented in CJ Site Runoff

<table>
<thead>
<tr>
<th>Study</th>
<th>Commercial Sites</th>
<th>Industrial Sites</th>
<th>Institutional Sites</th>
</tr>
</thead>
<tbody>
<tr>
<td>NSQD 1.1</td>
<td>Copper: 17 µg/L</td>
<td>Copper: 22 µg/L</td>
<td>Zinc: 305 µg/L</td>
</tr>
<tr>
<td></td>
<td>Zinc: 150 µg/L</td>
<td>Zinc: 210 µg/L</td>
<td></td>
</tr>
<tr>
<td>NSQD 3.1</td>
<td>Copper: 21 µg/L</td>
<td>Copper: 78 µg/L</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Zinc: 343 µg/L</td>
<td>Zinc: 1720 µg/L</td>
<td></td>
</tr>
<tr>
<td>National Urban Runoff Program</td>
<td>Copper: 29 µg/L</td>
<td>Zinc: 226 µg/L</td>
<td></td>
</tr>
<tr>
<td>USGS</td>
<td>Copper: 23 µg/L (rooftops), 25 µg/L (parking lots)</td>
<td>Zinc: 348 µg/L (rooftops), 148 µg/L (parking lots)</td>
<td></td>
</tr>
<tr>
<td>Tiefenthaler et al.</td>
<td>Copper: 70 µg/L</td>
<td>Copper: 42 µg/L</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Zinc: 362 µg/L</td>
<td>Zinc: 599 µg/L</td>
<td></td>
</tr>
</tbody>
</table>

Consistent with elevated concentrations in pollutant discharges, these land uses have been shown to generate large annual copper and zinc loadings as well. Shaver et al., based on data collected by Burton and Pitt, found that commercial areas typically discharge 0.4 pounds per acre per year (lbs/ac-yr) of copper and 2.1 lbs/ac-yr of zinc; parking lots discharge 0.06 lbs/ac-yr of copper and 0.8 lbs/ac-yr of zinc; industrial areas discharge 0.1 lbs/ac-yr of copper and 0.4 lbs/ac-yr of zinc; and shopping centers discharge 0.09 lbs/ac-yr of copper and 0.6 lbs/ac-yr of zinc. An earlier report recommended annual unit copper loads of 0.049 kilograms per hectare per year (kg/ha-yr) from commercial land use and 0.077 kg/ha-yr from industrial land use, compared to 0.007 kg/ha-yr from open (undeveloped) land. For zinc, the same study recommended annual unit loads of 0.63 kg/ha-yr from commercial land and 0.98 kg/ha-yr from industrial land, compared to 0.081 kg/ha-yr from undeveloped land.

Another study found median copper loadings of 2.1 kg/ha-yr from commercial sites, compared to 0.03 kg/ha-yr from undeveloped forests. A study of aggregate runoff from parking lots in a particular county found that copper loadings from these parking lots were 74 pounds and zinc loadings were 930 pounds, compared to loadings of 1.648 pounds of copper and zinc.

81 Id.
6.794 pounds of zinc before the land became parking lots. Yet another study found annual loadings of 0.30 lbs/ac-yr of zinc from parking lots, compared to a non-detectable amount of zinc in runoff from undeveloped meadows.

Table 2: Summary of Heavy Metal Loadings Documented at CII Sites

<table>
<thead>
<tr>
<th>Study</th>
<th>Commercial Sites</th>
<th>Industrial Sites</th>
<th>Open Space</th>
</tr>
</thead>
<tbody>
<tr>
<td>Shaver et al.</td>
<td>Copper: 0.4 lbs/ac-yr</td>
<td>Copper: 0.1 lbs/ac-yr</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Zinc: 2.1 lbs/ac-yr</td>
<td>Zinc: 0.4 lbs/ac-yr</td>
<td></td>
</tr>
<tr>
<td>Marsalek</td>
<td>Copper: 0.049 kg/ha-yr</td>
<td>Copper: 0.077 kg/ha-yr</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Zinc: 0.63 kg/ha-yr</td>
<td>Zinc: 0.98 kg/ha-yr</td>
<td></td>
</tr>
<tr>
<td>Horner</td>
<td>Copper: 2.1 kg/ha-yr</td>
<td>Copper: 0.007 kg/ha-yr</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Zinc: 0.081 kg/ha-yr</td>
<td></td>
</tr>
<tr>
<td>Schueler</td>
<td>Zinc: 0.30 lbs/ac-yr</td>
<td>Copper: 0.03 kg/ha-yr</td>
<td>Zinc: ND</td>
</tr>
<tr>
<td></td>
<td>(parking lots)</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

To summarize, the aggregate of stormwater pollution research consistently supports the irrefutable conclusion that CII land uses typically generate pollutant loadings that are many times greater than loadings from undeveloped land. According to EPA-accepted data, commercial sites can generate copper loadings that are 57 times greater than loadings generated by undeveloped open space such as parks; parking lots generate copper loadings 8.6 times greater; industrial sites generate copper loadings 11 times greater; and shopping centers generate copper loadings 12.9 times greater. Industrial sites can also generate zinc loadings that are 12 times greater than loadings generated by undeveloped open space. These results indicate that CII sites usually generate heavy metal loadings that are, conservatively, at least an order of magnitude greater than loadings from undeveloped land.

When this information was presented in the 2013 Petitions, EPA agreed that “impervious cover is a source of pollutants.” And for purposes of those petitions, EPA accepted “that many

85 Shaver et al., Fundamentals of Urban Runoff Management (2007), supra note 27, at 3-63; Burton and Pitt, Stormwater Effects Handbook, supra note 66, at Table 2.5; J. Marsalek, National Water Research Institute, Canada Centre for Inland Waters, Pollution Due to Urban Runoff: Unit Loads and Abatement Measures (1978), supra note 80, at Table 7, available at http://agrienvarchive.ca/download/PLUARG_pollution_urban_runoff.pdf. (Copper loadings of 0.40 kg/ha-yr at commercial sites are 57 times the loadings at open space sites (0.007 kg/ha-yr). Loadings of 0.06 kg/ha-yr at parking lots are 8.6 times the amount at open space sites. Loadings of 0.077 kg/ha-yr at industrial sites are 11 times the amount at open space sites. Loadings of 0.09 kg/ha-yr at shopping centers are 12.9 times the amount at open space sites.) (Note that Table 2.5 in Burton and Pitt does not distinguish between kg/ha-yr and lb/ac-yr, given that the difference between the two measures is less than 15%, and the accuracy of the values shown in the table cannot differentiate between such close values.)
86 Id. (Zinc loadings of 0.980 kg/ha-yr at industrial sites are 12.1 times the loadings of 0.081 at open space sites.)

CII sites have significant amounts of impervious surface, which are exposed to a variety of pollutants that can discharge during rain events." As such, "EPA agree[d] that it is reasonable to expect that the pollutants identified in the petition [including copper and zinc] may be exposed to precipitation at CII sites with impervious cover." Further, EPA noted that when the Agency was considering additional categories of stormwater discharges for potential permitting under the Phase II stormwater program, it considered NSQD data, indicating that the Agency considers the NSQD to be a reputable data source.

II. Stormwater Discharges from CII Sites Contribute to Water Quality Impairment in Dominguez Channel and the Los Angeles/Long Beach Inner Harbor

After copper and zinc are exposed to precipitation at CII sites, stormwater runoff carries those pollutants into the Dominguez Channel watershed’s water bodies, including the Los Angeles/Long Beach Inner Harbor, contributing to violations of water quality standards. According to California’s water quality assessments, portions of Dominguez Channel and the Los Angeles/Long Beach Inner Harbor are currently impaired by pollutants typically contained in runoff from CII sites. The TMDL for these water bodies attributes some of these impairments to stormwater and urban runoff, stating that “[t]he major pollutant sources of metals into Dominguez Channel...freshwaters are stormwater and urban runoff discharges.” GIS data confirm that a significant percentage of the watershed is occupied by CII sites and a significant portion of that CII land area is located within close proximity to the receiving water. Altogether, this information demonstrates that discharges from CII sites are contributing to violations of water quality standards in the Channel and Inner Harbor.

i. Prior EPA discussions of when a discharge “contributes to a violation of a water quality standard”

EPA has interpreted what it means for a discharge to “contribute to a violation of a water quality standard” in at least three contexts: in responding to the 2013 Petitions, in proposing to designate new MS4s in New Mexico, and in proposing modified conditions for MS4 permits in New Hampshire. (The petitioners do not concede that these interpretations are legally correct, but present them here to provide context for the factual support contained in this petition.)

In responding to the 2013 Petitions, EPA determined whether the discharges at issue contributed to water quality standard exceedances by evaluating two sources of information. First, EPA considered geographic information system (GIS) data. Regions 3 and 9 stated that it is important to use such data “to assess the location of the CII sites relative to the impaired

88 Id. at 6.
89 Id.
90 Id. at 5.
92 Dominguez Channel and LA/LB TMDL, supra note 2, at 57.
waters.” Region 3 performed a GIS analysis that focused on “highly impervious” (CII) sites located within a half-mile of an impaired stream. Second, EPA considered TMDL source assessments. Regions 3 and 9 stated, “The most relevant and readily available data to assess whether CII sites are contributing to particular WQS exceedances are Total Maximum Daily Load (TMDL) analyses.” According to Region 9, “[T]he source assessments that accompany the TMDLs provide useful insights into determining whether CII sites in particular, or alternatively, urban runoff more generally, is contributing to the impairments.” More generally, Regions 3 and 9 indicated that a “watershed-specific analysis” can be used “to identify which source or sources contribute to an exceedance of water quality standards.”

In proposing to designate new MS4s for NPDES permitting in New Mexico, Region 6 described how it determined whether the discharges at issue were contributing to water quality impairments. Because the discharges “contain pollutants for which the state of New Mexico has listed receiving waters as impaired,” Region 6 determined that “these discharges are at least contributing to the associated water quality impairments.” Region 6 additionally cited assessments by the state of New Mexico attributing the impairments to “urban-related causes.”

Finally, in proposing modified conditions for MS4 permits in New Hampshire, Region 1 performed a literature review and analysis of NSQD data to “reasonably assume” that stormwater discharges from urban areas contain certain pollutants at expected average concentrations. Region 1 went on to state:

When a waterbody is found to be impaired pursuant to Clean Water Act (CWA) Section 303(d) or 305(b) for a particular pollutant, or the receiving water is experiencing an excursion above water quality standards due to the presence of a particular pollutant, it indicates that the waterbody has no assimilative capacity for the pollutant in question. EPA reasonably assumes that urban stormwater discharges from urbanized areas in New England contain bacteria/pathogens, nutrients, chloride, sediments, metals, and oil and grease (hydrocarbons) and finds that MS4 discharges are likely causing or contributing to the excursion above water quality standards when the receiving waterbody impairment is caused by bacteria/pathogens, nutrients, chloride, metals, sediments or oil and grease (hydrocarbons). EPA has determined that it is appropriate to require additional controls on such discharges to protect water quality.

93 Region 9 Response, supra note 87, at 8.
95 Id. at 7; Region 9 Response, supra note 87, at 6.
96 Region 9 Response, supra note 87, at 7.
97 Region 3 Response, supra note 94, at 7; Region 9 Response, supra note 87, at 6.
99 Id. at 8.
100 EPA Region 1, New Hampshire MS4 Statement of Basis, supra note 30, at 2.
101 Id. at 2-3 (emphasis added).
This statement indicates that EPA accepts average pollutant concentration and loading data as evidence that a category of stormwater discharges is causing or contributing to violations of water quality standards, and that the agency considers such evidence sufficient to support the imposition of NPDES permit obligations on those stormwater sources.

ii. Dominguez Channel and the Los Angeles/Long Beach Inner Harbor are impaired for copper and zinc

Portions of Dominguez Channel and the Los Angeles/Long Beach Inner Harbor are currently failing to meet water quality standards for many pollutants, including metals. California’s 2010 Integrated Report (Clean Water Act Section 303(d) List / 305(b) Report) lists Dominguez Channel, certain tributaries, and the Los Angeles/Long Beach Inner Harbor (all within USGS HUC 18070104) as impaired for copper and zinc, among other pollutants.102 The zinc impairment in the Inner Harbor was originally identified in 1988, while its copper impairment was identified in 1998; Dominguez Channel’s metals impairments were identified in 1996.103 These impairments are included in California’s 2012 proposed Integrated Report (Clean Water Act Section 303(d) list / 305(b) report), indicating that all segments are still failing to meet water quality standards.104 As such, they are not suitable for their designated uses, which include primary and secondary recreation and fish, aquatic life, and wildlife uses.105

iii. Stormwater runoff from CII sites contributes to these impairments

EPA Region 9 and California’s State Water Resources Control Board (State Water Board) determined, in developing the TMDL for the Dominguez Channel and the Los Angeles/Long Beach Inner Harbor, that “the major pollutant sources of metals into Dominguez Channel...freshwaters are stormwater and urban runoff discharges.”106 With regard to the Dominguez Channel estuary and the Inner Harbor, the TMDL further found that “[s]tormwater runoff from manufacturing, military facilities, fish processing plants, wastewater treatment plants, oil production facilities, and shipbuilding or repair yards in both Ports discharged untreated or partially treated wastes into Harbor waters.”107 According to the State Water Board and EPA:

Briefly, there are two categories of pollutant sources to the waters of concern in these TMDLs [point and non-point sources]. . . . Point sources include stormwater and urban runoff. . . . Metals . . . are currently generated or deposited in the watersheds and are then washed into storm drains and channels that discharge to the Dominguez Channel and

103 Id.
105 Dominguez Channel and LA/LB TMDL, supra note 2, at 8.
106 Id. at 57.
107 Id.
greater Harbor waters. . . . Urban runoff and rainfall higher in the watersheds mobilize the particles, which are then washed into storm drains and channels that discharge to the Dominguez Channel and greater Harbor waters. 108

Further, the TMDL emphasizes that the Dominguez Channel watershed is "dominated by urban land uses such as residential, industrial, commercial and transportation Very little vacant and open space areas are present in the watershed." 109 Accordingly, the TMDL "acknowledge[s] that pollutant load reductions are required by watershed (stormwater) sources as well as existing bed sediments to attain the allowable loading capacity." 110

The TMDL does not discuss the extent to which particular land uses’ stormwater discharges contribute to the impairments in the Dominguez Channel and Inner Harbor, noting only that “urban” land uses occupy “as much as 85% of the land area” of the watershed, and that urban runoff is a major pollutant source of metals in the Dominguez Channel freshwaters. 111 However, as discussed above, runoff from CII sites consistently contains elevated levels of heavy metals, including zinc and copper.

A GIS analysis, attached as Exhibit A and summarized below, shows that a significant proportion of the Dominguez Channel watershed is occupied by CII land use, and that most of these CII areas are located in close proximity to the receiving water. Because CII sites generate much of the runoff flowing into Dominguez Channel and the Los Angeles/Long Beach Inner Harbor, these sites contribute to the documented exceedances of water quality standards in the Channel and Inner Harbor; to claim or act otherwise would be arbitrary and capricious.

The GIS analysis attached to this petition addresses land areas whose runoff flows downstream into the impaired segments of the Channel and Inner Harbor (either directly or by way of an unimpaired stream segment). The GIS analysis reveals that the Dominguez Channel watershed contains thirteen subwatersheds, all of which drain into Dominguez Channel, its tributaries, and/or the Los Angeles/Long Beach Inner Harbor. The watershed is composed of two hydrologic subunits that drain primarily via an extensive network of underground storm drains, with the northern subunit draining into the Dominguez Channel and the southern subunit draining directly into the Los Angeles/Long Beach Harbor. 112 The Dominguez Channel drains approximately 62 percent of the watershed before discharging to Los Angeles Harbor. 113 This petition addresses and seeks designation for CII sites within all of the thirteen contributing subwatersheds that drain into the impaired segments of Dominguez Channel and/or the Los

108 Id. at 41.
109 Id. at 5.
110 Id. at 97.
111 Id. at 5, 57. The TMDL also states that “[m]onitoring data from NPDES discharges and land use runoff coefficients were analyzed along with Channel stream flow rates to estimate the magnitude of metal loadings,” acknowledging the significance of land uses in determining contributions to metal levels. Id. at 57.
112 Id. at 5.
113 Id.
Angeles/Long Beach Inner Harbor.

In total, 36.6% of the land area in the watershed – more than a third of the total drainage area – is occupied by CII sites. The vast majority of the land within the watershed (99.9%) is located within two miles of a receiving water – either Dominguez Channel, the Los Angeles/Long Beach Inner Harbor, or a tributary stream. Of the watershed’s CII land area, 47.7% is within a quarter-mile of a receiving water, and 71.1% is within a half-mile. Since the TMDL has established that the metals impairments in the Channel and Inner Harbor are caused by stormwater runoff from land in the watershed, and this GIS analysis demonstrates that more than a third of that land is covered by CII sites, it is indisputable that stormwater discharges from CII sites are contributing to the impairments.

A modeled estimate of average annual pollutant loadings from the urban land uses in the watershed, attached as Exhibit B, confirms that CII sites are responsible for a significant portion of the urban stormwater heavy metal loadings to Dominguez Channel and the Inner Harbor. This modeling used an approach for calculating regional event mean concentrations (EMCs) using data from the National Stormwater Quality Database that is consistent with methods that EPA itself has used on other occasions, according to documents obtained via a Freedom of Information Act (FOIA) request. The modeling indicates that, out of all urban stormwater

114 28,501 acres out of 77,460 total acres in the watershed are CII land, totaling 36.6%. CII sites include the following 2009 Los Angeles County zoning categories: Commercial And Services, Educational Institutions, Heavy Industrial, Industrial, Los Angeles/Long Beach Harbor (this was attributed to the polygons labeled as Transportation in the harbor area), Light Industrial, Mixed Commercial And Industrial, Mixed Urban, Other Commercial, Retail Stores And Commercial Services, and Wholesaling And Warehousing (see footnote 57, supra). The GIS analysis does not distinguish between publicly and privately owned sites; this petition only seeks designation of the latter. However, publicly owned sites are likely to fall into the “Educational Institutions” land use category, which makes up 3,154 acres or 4.1% of the Dominguez Channel watershed (much of which is privately owned), so the inclusion of such sites does not significantly affect the analysis. The analysis in Exhibit A also presents information from the National Land Cover Database’s 2011 dataset, which generally corroborates the correlation between urbanized land use and impairment but does not break down land use information sufficiently to distinguish between CII and other land uses.

115 13,600 of 28,501 acres of CII land are within a quarter-mile of a receiving water, equaling 47.7%. 20,262 of 28,501 acres of CII land are within a half-mile of a receiving water, equaling 71.1%.

116 The acreage numbers for the Dominguez Channel watershed’s land uses that are presented in the modeling report (Exhibit B) differ slightly from those presented in the GIS report (Exhibit A). This is because the pollutant modeling in Exhibit B only includes pollutant loadings from urban stormwater sources; agricultural uses and undeveloped land were excluded from the analysis. However, because agricultural use occupies a tiny fraction (less than 0.1%) of the watershed, and per-acre loadings from undeveloped lands are relatively low compared to developed lands, this omission does not significantly affect the results. Indeed, the Dominguez Channel and LA/LB TMDL indicates that the vast majority of the Dominguez Channel’s pollution derives from urban stormwater sources. Additionally, the CII and non-CII acreage totals presented in Exhibit B differ from those in Exhibit A. This is because the GIS analysis in Exhibit A presents acreage numbers for each land use category as they appear in the LA County Zoning 2009 dataset, while the pollutant modeling in Exhibit B refines those land use categories into subcategories, corresponding to National Stormwater Quality Database land uses, in order to present a more accurate estimate of pollutant loadings. This process is explained in more detail in the memorandum accompanying Exhibit B.

117 For example, EPA Region I used the NSQD to calculate regional EMCs in developing a protocol for Phosphorus Control Plans as part of the Massachusetts small MS4 general permit. Memorandum from Mark Voorhees, EPA
sources, sites in CII land use categories contribute at least 84% of copper loadings and 88% of zinc loadings in the watershed. These percentages are disproportionately high compared to CII sites’ land area in the watershed, due to the fact that CII sites generate large per-acre pollutant loadings compared to other land uses, and confirm that the copper and zinc that CII sites generate are contributing to the Dominguez Channel and Inner Harbor’s impairments.

It is true that certain areas on industrial sites (the portion on which “industrial activity,” as defined by EPA regulations, is occurring) are already required to obtain NPDES permit coverage for industrial stormwater discharges, and are therefore excluded from the scope of this petition. As a result, the analysis presented herein overestimates, at least to some extent, the geographic area occupied by non-NPDES-permitted CII areas and the pollutant loadings generated by such areas. Information about the percentage of the total area on industrial sites that is subject to the NPDES permitting requirement for industrial stormwater discharges is not publicly available; therefore, it was not possible to subtract the NPDES-permitted areas of industrial sites from the attached analysis. However, it is certain that at least some portions of the industrial sites in the watershed are not required to obtain NPDES permits for post-construction stormwater runoff; along with commercial and institutional sites, those must be designated under EPA’s residual designation authority because of their ongoing contributions to the Dominguez Channel and Los Angeles/Long Beach Inner Harbor’s impairments.

In addition to the well-established pollutant loadings from CII sites, the high imperviousness of such sites further proves their contribution to water quality impairments. EPA has recognized that “the level of imperviousness in an area strongly correlates with the quality of the nearby receiving water.” In fact, many studies have shown that watershed imperviousness above 5-10% is significantly correlated with water quality degradation. Moreover, EPA has

Region 1, to Permit File for Draft Small Massachusetts MS4 General Permit, re: Annual Average Phosphorus Load Export Rates (PLERs) for Use in Fulfilling Phosphorus Load Reduction Requirements in EPA Region 1 Stormwater Permits (Apr. 22, 2014) (on file with petitioners).

118 EPA regulations require industrial stormwater permit coverage only for the portion of an industrial site where defined “industrial activity” takes place. 40 C.F.R. § 122.26(b)(14) (“The term [industrial activity] excludes areas located on plant lands separate from the plant’s industrial activities, such as office buildings and accompanying parking lots as long as the drainage from the excluded areas is not mixed with storm water drained from the above described areas.”). Therefore, impervious areas such as parking lots and rooftops, which typically are not the site of industrial activity but are important sources of urban stormwater pollution, typically are non-NPDES permitted on industrial sites.

119 Region 9 Response, supra note 87, at 6 (quoting 64 Fed. Reg. 68,722, 68,725 (Dec. 8, 1999)).

also recognized “that many CII sites have significant amounts of impervious surface, which are
exposed to a variety of pollutants that can discharge.” In fact, EPA concluded, based on
analysis of various research studies, that “CII sites often have 70% or greater area of
imperviousness associated with them.” Based on EPA’s 70% imperviousness estimate, CII
sites alone likely cover approximately 25.6% of the Dominguez Channel watershed with
impervious surface (70% of the 36.6% of the watershed occupied by CII land use) – well above
the 5-10% impairment-causing imperviousness threshold documented by decades of scientific
research. This fact corroborates the conclusion already established by average pollutant loading
data: CII sites in the Dominguez Channel watershed contribute to the copper and zinc
impairments in the Channel and Inner Harbor.

Aside from the pollutant contributions of CII sites relative to those of other land uses
currently present in the watershed, the contributions of such sites relative to the original natural
condition of the watershed also provide evidence that these sites are contributing to Dominguez
Channel and Inner Harbor’s impairments. As discussed above, CII sites typically generate
pollutant loadings that are at least an order of magnitude greater than loadings from undeveloped
land. As a result, based on this conservative estimate, CII sites in the Dominguez Channel
watershed area – which occupy nearly 37% of the watershed – are alone contributing four times
the loadings of metals that the Channel and Inner Harbor would be receiving from the entire
watershed under natural conditions. This massive pollutant increase compared to background
loadings is additional reason to conclude that CII sites have a significant impact on water quality
in Dominguez Channel and the Los Angeles/Long Beach Inner Harbor, causing them to become
degraded from their natural condition.

imperviousness’ adverse impacts on water quality, numerous studies document its water quality impacts with
evidence of stream impairment when watershed imperviousness approaches 10 percent.”); Karen Cappiella &
Kenneth Brown, Center for Watershed Protection, Impervious Cover and Land Use in the Chesapeake Bay
impervious-cover-and-land-use-in-the-chesapeake-bay-watershed (literature review “which summarizes 43 studies
including recent research that generally confirm the Impervious Cover Model by documenting the impacts of
stormwater on streams and receiving waters”); Marjorie Kaplan, NJ Dep’t of Envtl. Protection, & Mark Ayers,
USGS, Impervious Surface Cover Concepts and Thresholds (2000), available at
https://rucore.libraries.rutgers.edu/rutgers-lib/37001/pdf/1/ (“There is evidence in the scientific literature that there is
a link between impervious surface cover and stream ecosystem impairment, some researchers have suggested that
impairment begins to be significant at approximately 10-percent impervious surface cover...”). All of these
documents were included in the administrative record for EPA’s response to the 2013 Petitions.

121 Region 9 Response, supra note 87, at 6.
122 Id. at 7; see also EPA Region 3, Rationale for 70% Impervious Surface Indicator Used in the RDA Petition
Response (2014).
123 If a given land use generates pollutant loadings that are an order of magnitude (10 times) greater than loadings
from undeveloped land, then that land use, occupying 10% of a watershed, will generate the same amount of
pollution that the entire watershed (100%) would generate under natural conditions. In other words, replacing 10% of
an undeveloped watershed with the given land use will roughly double the watershed’s pollution loadings;
replacing 20% will roughly triple the loadings; and so forth.
III. No Ongoing Programs Are Adequately Addressing the Contributions of CII Site Discharges to the Dominguez Channel and Los Angeles/Long Beach Inner Harbor Impairments

As discussed above, the petitioners reject the premise that the existence of ongoing stormwater regulatory programs is a permissible factor for EPA to consider when deciding whether to exercise RDA. The Clean Water Act explicitly states that EPA must require a NPDES permit for any stormwater discharge that contributes to a violation of a water quality standard. Neither the statute nor EPA’s implementing regulations give the Agency the discretion to decline to designate a discharge for permitting based on other factors beyond the discharge’s contribution to impairment. Unless the stormwater discharge in question is already directly regulated by NPDES permit – i.e., the discharger is itself a permittee with legal obligations to reduce pollution – the existence of any other ongoing regulatory programs is legally irrelevant. The existence of other programs is also irrelevant from a practical perspective because those programs are not necessarily targeted toward achieving water quality standards in Dominguez Channel or the Los Angeles/Long Beach Inner Harbor. RDA is the most appropriate tool for attaining water quality standards in this watershed because it can be tailored to address the specific discharges from the categories of sites that are contributing to the watershed’s particular impairments. RDA is also a superior approach to other existing efforts because applying permitting requirements to all contributing sources would result in a more equitable distribution of responsibility. However, because EPA considered this factor in responding to the 2013 Petitions, the petitioners address it here, without in any way conceding that doing so is necessary or pertinent.

1. Municipal separate storm sewer system (MS4) permitting

The Dominguez Channel watershed is located within Los Angeles County, and is regulated by the state of California via two NPDES municipal separate storm sewer system (MS4) permits, one for Los Angeles County and one for the City of Long Beach. These

125 In its response to the 2013 Petitions, EPA noted that the U.S. Court of Appeals for the Ninth Circuit previously upheld EPA’s consideration of this factor when it decided which categories of stormwater discharges to regulate as part of the Phase II rule in 1999. However, that ruling does not justify the use of this factor in the RDA context; the considerations relevant to deciding whether to regulate a broad nationwide category of sites are not necessarily relevant to the residual designation of a discrete set of sites that are contributing to a known water body impairment.

126 Los Angeles Regional Water Quality Control Board/Los Angeles County MS4 Permit, NPDES Permit No. CAS004001 (as amended June 15, 2015), available at http://www.waterboards.ca.gov/losangeles/water_issues/programs/stormwater/municipal/la_ms4/2015/OrderR4-2012-0175-FinalOrdersamendedbyOrderWQ2015-0075.pdf (hereafter “Los Angeles County MS4 Permit”). The Los Angeles County Flood Control District, the County of Los Angeles, and 84 incorporated cities within the coastal watersheds of Los Angeles County, are co-permittees. Los Angeles Regional Water Quality Control Board, NPDES No. CAS004003, Waste Discharge Requirements for Municipal Separate Storm Sewer System Discharges from the City of Long Beach, available at http://www.waterboards.ca.gov/losangeles/water_issues/programs/stormwater/municipal/ms4_permits/long_beach/2
permits require the permittees, which include the Los Angeles County Flood Control District, the County of Los Angeles, and over 15 other jurisdictions that lie within the Dominguez Channel watershed, to take certain steps to manage the stormwater runoff that is discharged through their MS4s. However, for two principal reasons, the permits do not sufficiently control CII site discharges, nor are they an adequate substitute for direct NPDES regulation of private CII sites.

First, the permits impose no legal obligations on the owners of privately owned CII sites to take any steps whatsoever to reduce the amounts or concentrations of metals discharged from their properties. This is because the permittees are the county and its local municipalities, not private landowners.

Second, the permits' requirements do not obligate the county or other permittees to reduce pollution at all from private CII sites in the Dominguez Channel watershed. As an initial matter, we maintain that several provisions of the Los Angeles County MS4 Permit fail to meet the requirements of the federal Clean Water Act and California Porter Cologne Act, and therefore are inconsistent with both state and federal law. The Natural Resources Defense Council (NRDC) and other environmental groups have filed a petition, which is under review by the State Water Resources Control Board ("State Board") and demonstrates the ways in which the permit violates these legal requirements, some of which are detailed below.\(^{127}\)

In order to satisfy their obligations under the permits, the Dominguez Channel watershed jurisdictions are required to implement certain stormwater management measures described in the permits. These requirements do not compel any pollutant reductions from privately-owned CII sites.

- The permits require the permittees to apply performance criteria for stormwater management at new development and redevelopment.\(^{128}\) Those performance criteria are discussed in more detail below, but they do not require pollution reductions from the existing CII sites that already occupy a significant percentage of the Dominguez Channel watershed. The permits’ post-construction provisions also require the jurisdictions to adopt procedures to ensure the proper maintenance of stormwater management practices, but do not otherwise require practices to be used at existing developed sites if they are not already in place.\(^{129}\)

127 For a full explanation of how the permit violates the law, see Memorandum of Points and Authorities in Support of Petition of NRDC, Los Angeles Waterkeeper and Heal the Bay for Review of Action by the California Regional Water Quality Control Board, Los Angeles Region, in Adopting the Los Angeles County Municipal Separate Stormwater National Pollutant Discharge Elimination System (NPDES) Permit; Order No. R4-2012-0175; NPDES Permit No. CAS004001(Dec, 10, 2012) ("Environmental Groups' Petition"), SWRCB/OCC File No. A-2236(m).
128 Los Angeles County MS4 Permit at 100-116; Long Beach MS4 Permit at 61-73.
129 Los Angeles County MS4 Permit at 115-16; Long Beach MS4 Permit at 72-73.
• The permits’ construction site requirements apply only during the construction phase and do not require long-term stormwater controls at CII sites. Likewise, the permits’ “public agency activities” provisions do not contain requirements applicable to private CII discharges.

• Illicit discharge requirements relate to non-stormwater discharges to the watershed’s MS4s and therefore have no impact on stormwater discharges from CII sites.

• The public education components of the permits require the jurisdictions to provide information to private landowners that could theoretically cause them to reduce pollution from CII properties, but such reductions are neither required nor guaranteed, and the effectiveness of public outreach measures is generally unknown.

• The permits require the permittees to develop an “industrial/commercial facilities program” that is “designed to prevent illicit discharges into the MS4 and receiving waters, reduce industrial/commercial discharges of storm water to the maximum extent practicable, and prevent industrial/commercial discharges from the MS4 from causing or contributing to a violation of receiving water limitations.” However, the permit specifies only a few mandatory minimum components of such programs, such as maintaining an inventory of industrial and commercial sites, educating site owners about stormwater pollution, and ensuring that sites are complying with local ordinances.

• Finally, the permits require permittees to compile an inventory of retrofit opportunities at existing development. However, permittees are not actually required to implement or install any retrofits. They are required to “consider” the identified projects as high priorities in their stormwater management plans and as off-site mitigation locations, as well as to “consider” strategies like subsidies, stormwater fees, and mandatory retrofit requirements that could be used to implement retrofits on private property; none of these “considerations” are mandatory.

130 Los Angeles County MS4 Permit at 116-25; Long Beach MS4 Permit at 73-83.
131 Los Angeles County MS4 Permit at 125-40; Long Beach MS4 Permit at 83-97.
132 Los Angeles County MS4 Permit at 140-44; Long Beach MS4 Permit at 97-101.
133 Los Angeles County MS4 Permit at 89-91; Long Beach MS4 Permit at 53-55.
134 Los Angeles County MS4 Permit at 91-92; Long Beach MS4 Permit at 55-56.
135 Los Angeles County MS4 Permit at 92-96; Long Beach MS4 Permit at 55-60.
136 Los Angeles County MS4 Permit at 128-29; Long Beach MS4 Permit at 85-86.
137 Id.
Not only are these control measures inadequate to control runoff from existing CII sites, the permits’ water quality-based provisions also fail to ensure compliance with water quality standards in the Inner Harbor and Dominguez Channel. The permits contain numerous “safe harbors” from compliance with water quality standards. For example, under the permits, a permittee can develop a self-customized plan, known as a Watershed Management Program (WMP) or an Enhanced Watershed Management Program (EWMP), for managing stormwater discharges from its sewer systems. Under these plans, a permittee may select its own measures and practices for controlling urban runoff, and oftentimes, may simply propose to implement a type of project (without actually implementing the project) and thereby be deemed in compliance with meeting the permit’s water quality standards. Further, for some permittees, the types of projects proposed need not be related to stormwater capture for them benefit from the safe harbor; simply developing a WMP or EWMP is sufficient. The safe harbor from compliance with water quality standards afforded to permittees that elect to develop WMPs is particularly concerning because, unlike EWMPs, which require a watershed-based stormwater management approach as well as retention of the 85th percentile, 24-hour storm event “wherever feasible,” WMPs do not require the use of stormwater capture projects, nor do they require permittees to collaborate to determine a watershed-based approach for more effective stormwater management. In other words, permittees are under no independent obligation to comply with, or require non-permittee dischargers to comply with, water quality standards or attain wasteload allocations as long as they propose management measures as specified in the permits.

Additionally, the permits’ Watershed Management Program requires that for the minimum control measures related to the Industrial/Commercial Facilities Program, permittees “shall identify potential modifications that will address watershed priorities.” This requirement to merely identify potential modifications does not constitute a mandate that permittees eliminate CII sites’ contributions to water quality standard violations.

Permittees have developed draft plans for both WMPs and EWMPs, but these plans fall significantly short of complying with permit requirements. The draft WMPs and EWMPs do not ensure that discharges from the permittees’ MS4 systems do not cause or contribute to exceedances of Receiving Water Limitations, including applicable water quality standards, or TMDL limitations in the Los Angeles County MS4 Permit, and otherwise fail to meet permit requirements. In particular, the WMPs and EWMPs lack specificity with respect to the type,
location and timing of Best Management Practices for stormwater management. In April 2015, the Los Angeles Regional Water Quality Control Board (the “Regional Water Board”) approved deficient WMPs, and NRDC and other environmental organizations filed an administrative petition requesting that both the Regional Water Board and the California State Water Resources Control Board review the Regional Water Board’s decision to approve the draft WMPs. The Regional Board will consider the petition in September 2015.

In sum, nothing in either the Los Angeles County MS4 Permit or the Long Beach MS4 Permit requires permittees to reduce pollution whatsoever from existing, privately owned CII sites in the Dominguez Channel watershed or to comply with water quality standards in Dominguez Channel or the Inner Harbor.

ii. Local development regulations

Under the Los Angeles County MS4 Permit, permittees submitting a WMP or EWMP must either develop a Low Impact Development (LID) ordinance or demonstrate that such an ordinance is in place. All permittees must also implement a Planning and Land Development Program “to minimize the percentage of impervious surfaces on land developments by minimizing soil compaction during construction, designing projects to minimize the impervious area footprint, and employing [LID] design principles.” As part of this program, permittees must require certain types of development projects that are subject to permittee approval, including CII sites, to meet stormwater management performance criteria. Accordingly, Los Angeles, Long Beach, and other jurisdictions in the Dominguez Channel watershed have developed ordinances implementing these requirements.

The permit’s stormwater control requirements apply to new development and redevelopment projects over a certain size, with the size threshold varying based on the site’s land use. Sites subject to the requirement must retain on-site the runoff from the 0.75-inch, 24-hour rain event, or the 85th percentile, 24-hour rain event, whichever is greater. Under the City of Los Angeles ordinance, sites must meet this standard through infiltration, evapotranspiration, capture and use, or treatment with high-efficiency BMPs. However, the permit provides for exceptions due to “technical infeasibility,” which may result from conditions

145 Los Angeles County MS4 Permit at 56-57; Long Beach MS4 Permit at 43.
146 Los Angeles County MS4 Permit at 94-95; Long Beach MS4 Permit at 61.
148 Los Angeles County MS4 Permit at 98-100; Long Beach MS4 Permit at 61-62.
149 Los Angeles County MS4 Permit at 101; Long Beach MS4 Permit at 63-64.
150 Los Angeles LID Ordinance, supra note 147, at § 64.72(C)(4).
including high groundwater tables, brownfields, and impermeable soils. In cases of technical infeasibility, the permittee must make up the difference through on-site biofiltration or an off-site project within the same HUC-12 subwatershed.

While the LA County MS4 Permit does not grant permittees the discretion to waive LID requirements for projects (with the exception of specified alternative compliance mechanisms if technical infeasibility is demonstrated for onsite retention under conditions defined in the LA County MS4 Permit), the City of Los Angeles ordinance nevertheless authorizes the City to “grant waivers from the requirements of the Los Angeles Standard Urban Stormwater Mitigation Plan [which the LID ordinance modifies],” without specifying the details of the circumstances under which such waivers might be granted. The Regional Board criticized this feature during its review of the original draft LID ordinance, but the waiver provision nevertheless remains in place and appears to present a potential significant escape hatch from LID requirements.

Further, since the LID requirements only apply to new development and redevelopment, they fail to address the many existing CII sites in the Dominguez Channel watershed. Los Angeles County estimates that 93 percent of the land in the watershed is developed. Very little of this existing development was built to the current regulatory standard. The current City of Los Angeles ordinance was not adopted until 2011, with other watershed jurisdictions applying the MS4 permit’s standard in the past few years as well. Consequently, only a small percentage of existing developments in the watershed have been required to meet the current regulatory standard for development, and sites smaller than the applicable regulatory thresholds have never been subject to any stormwater control requirements at all. Moreover, even for CII sites in the watershed that have been or will be required to meet the current standard, the fact that they were or will be designed to manage the required volume does not guarantee that those sites will not contribute to the Dominguez Channel and Inner Harbor impairments. The development standard applies throughout Los Angeles County and thus was not selected based on whether it would prevent stormwater runoff from causing or contributing to water quality standard violations in the Dominguez Channel watershed specifically. As a result, there is no reason to believe that stormwater regulations in the watershed will adequately address the contribution of CII sites to the impairments in Dominguez Channel and the Inner Harbor.

151 Los Angeles County MS4 Permit at 101-02; Long Beach MS4 Permit at 64-65.
152 Los Angeles County MS4 Permit at 102-07; Long Beach MS4 Permit at 65-70.
iii. Voluntary local programs

In responding to the 2013 Petitions, EPA Region 9 stated that in addition to federal, state, and local stormwater laws, the agency would also take into account the presence of "[v]igorously implemented controls that might otherwise be ‘voluntary.’"\(^{156}\) However, no voluntary retrofit programs or other voluntary management measures could be identified in the Dominguez Channel watershed. Moreover, voluntary programs that, by definition, have no enforceability cannot possibly substitute for enforceable permit requirements under residual designation.

iv. Worsening water quality proves that existing programs are not sufficiently controlling runoff from CII sites

The Los Angeles County Department of Public Works maintains a water quality monitoring station in the Dominguez Channel, located in a concrete-lined, rectangular channel, above tidal influence, from which it collects data for both wet and dry weather, and whose hydrological characteristics "are representative of the entire DC WMA [Dominguez Channel Watershed Management Area] with respect to water quality constituent composition and concentrations."\(^{157}\) According to the station’s data reports, pollutant loadings have a "relatively wide range of variability," and that, while annual loads for zinc and copper did decrease between 2010 and 2011, the total calibrations for both copper and zinc increased over time from lows in 2010 to highs in 2012, including during the years after the adoption of the Dominguez Channel TMDL, the MS4 permits, and applicable development regulations.\(^{158}\) These pollutant trends indicate that existing programs are not sufficiently controlling runoff from pollution dischargers, including CII sites, in the watershed. Indeed, these results make sense given that no requirements currently exist for CII sites to reduce their discharges of metals. Exercising RDA to impose controls on CII sites is both necessary and prudent, and it would not duplicate any existing efforts or disrupt other programs.

Conclusion

In conclusion, the Clean Water Act places EPA under a non-discretionary duty to exercise residual designation authority over non-NPDES-permitted commercial, industrial, and institutional sites in the Dominguez Channel watershed. Dominguez Channel and the Los Angeles/Long Beach Inner Harbor are impaired because of heavy metal pollution commonly found in runoff from CII sites. All available evidence strongly indicates that CII sources contribute to violations of water quality standards in this watershed. No existing regulatory programs are adequately addressing these sources’ contribution to the impairment, and in fact have failed to improve water quality in the Channel and Inner Harbor. Fulfilling EPA’s statutory obligation and designating these sites for permitting will assist Los Angeles County permittees in

\(^{156}\) Region 9 Response, \textit{supra} note 87, at 4-5.
\(^{157}\) Dominguez Channel and LA/LB TMDL, \textit{supra} note 2, at 18; Dominguez Channel Enhanced Watershed Management Program ("Dominguez Channel EWMP") at 3-3.
\(^{158}\) Id. at 3-15,3-6 – 3-7.
achieving a fishable, swimmable waterway for the residents of the Dominguez Channel watershed.
Respectfully submitted,

AMERICAN RIVERS
NATURAL RESOURCES DEFENSE COUNCIL

Dated: September 17, 2015

By:

Gary Belan
1101 14th Street NW, Suite 1400
Washington, DC 20005
(202) 243-7027
gbelan@americanrivers.org
Senior Director, Clean Water Supply Program, American Rivers

Jeffrey Odefey
120 Union Street
Nevada City, CA 95959
(530) 478-0206
jodefey@americanrivers.org
Director, Clean Water Supply Program, American Rivers

Rebecca Hammer
Jon Devine
1152 15th Street NW, Suite 300
Washington, DC 20005
(202) 289-6868
rhammer@nrdc.org
jdevine@nrdc.org
Larry Levine
40 West 20th Street
New York, NY 10011
(212) 727-2700
llevine@nrdc.org

Attorneys for Natural Resources Defense Council
Johanna Dyer
1314 Second Street
Santa Monica, CA 90401
(310) 434-2300
ngarrison@nrdc.org

Karen Hobbs
20 N. Wacker Drive, Suite 1600
Chicago, IL 60606
(312) 663-9900
khobbs@nrdc.org

Policy Analysts for Natural Resources Defense Council

Together with:

LOS ANGELES WATERKEEPER

Bruce Reznik, Executive Director
120 Broadway
Santa Monica, CA 90401
(310) 394-6162
reznikbruce@gmail.com