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SI 1. Selenium Toxicity 

Selenium is an essential element for all animals, but the margin of safety is narrow 

between Se concentrations that are essential and those that are toxic, especially for 

wildlife (1).  The narrow window between essentiality and toxicity means there is little 

room for maneuverability in managing ecological risks from Se.  Small changes in 

exposure hold great potential for ecological damage.  The standardized toxicity tests 

traditionally used to establish the concentration at which Se elicits toxicity suggest the 

opposite, however.  Dissolved toxicity tests with Se suggest thresholds for ecological risk 

should be in the 100’s of µg/L (2,3).  Dietary toxicity tests (4) and field observations of 

adverse effects on birds (5) and fish (6) are documented in freshwater systems at 

dissolved concentrations as low as 2 – 5 µg/L.  The disparity between dissolved toxicity 

tests and field observation is the single greatest cause of the differences among 

jurisdictions in managing Se.   

Biogeochemical processes convert Se to concentrations at the base of the food 

web orders of magnitude greater than in water and passage of that Se through the food 

web is the source of Se exposure. Therefore, ecosystems will be badly damaged by 

dietary exposure before dissolved Se concentrations reach levels that themselves are 

dangerous to animals.  Dissolved toxicity tests cannot predict the concentration at which 

that damage will occur.   Similarly, the convention traditionally used to quantitatively 

link Se bioaccumulation by animals to Se in the environment is the Bioaccumulation 

Factor (BAF): the ratio of Se in animal tissue to dissolved Se concentrations.  BAFs for 

Se vary by orders of magnitude with concentration, transformation, environment, and 

species (7), making BAFs of little value in either explaining or predicting Se 

bioaccumulation into food webs.   

Dietary exposures show that, in birds, the first signs of toxicity include failure of 

the eggs to hatch and occurrence of deformities in young (5).    In fish, failure of eggs to 

hatch, deformities or damage in embryos, and teratogenesis are also early signs of 

toxicity (6).  These effects correlate with Se concentrations in the organism, with the 

strongest correlations occurring between concentrations in the egg and the onset of 

effects (5).  However, the concentration at which occurs the effect of Se on the ability of 

a species to produce viable young cannot be determined by acute or dissolved toxicity 



 

 

 

  

 
 

  

  

 

  

  

 

 

 

  

 

 

 

 

 

 

  

testing.  Reproductive toxicity also means that species-specific demographics will be 

especially important in determining risks to populations.   

Therefore, exposure via diet must be considered in order to evaluate risks from Se 

in nature.  This is the single greatest deviation from the conventional risk assessment 

paradigm.   
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