Water Quality Modeling in Arkansas

Arkansas Department of Environmental Quality Selena Medrano Ecologist

Topics

- Load Duration Curves
 - Why
 - How
 - Usefulness

LA-QUAL for Dissolved Oxygen

- Why
- How
- Usefulness

Load Duration Curves – Why?

- Straightforward
- Visual
- Target BMPs
- Long-term flow data

Load Duration Curves – How?

Figure K.2 Lead Load Duration Curve for Big Creek Reach 11140203-923

Load Duration Curves – Usefulness

Figure K.2 Lead Load Duration Curve for Big Creek Reach 11140203-923

Load Duration Curves – Usefulness

LA-QUAL for Dissolved Oxygen – Why?

- Includes relevant physical, chemical, and biological processes (hydraulics, ammonia nitrogen, CBOD, & temperature)
- Allows user specification of NPS loads as mass rather than flow + concentration

LA-QUAL for Dissolved Oxygen – How?

LA-QUAL Model for Beech Creek upstream of Lake Columbia Winter projection to meet 5.0 mg/L DO at temp of 22 C $\,$

INPUT/OUTPUT LOADING SUMMARY

	FLOW	DO	BOD1	BOD2	ORG-N	NH3-N	NO3-N	ORG-P	PO4-P	CHL A	PERIP	NCM
	m³/s	kg/d	kg/d	kg/d	kg/d	kg/d	kg/d	kg/d	kg/d			
HEADWATER FLOW	0.03200	13.88	0.00	10,11	0.00	0.43	0.00	0.00	0.00	0.00		0.00
INCREMENTAL INFLOW	0.06500	28.19	0.00	20.54	0.00	0.86	0.00	0.00	0.00	0.00		0.00
INCREMENTAL OUTFLOW	0.00000	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00		0.00
WASTELOADS	0.00000	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00		0.00
WITHDRAWLS	0.00000	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00		0.00
FLOW THRU LOWER BNDRY	-0.09700	-45.16	0.00	-26.84	0.00	-0.90	-1.21	0.00	0.00	0.00		0.00
DISPERSION THRU LOWER BNDRY		0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00		0.00
DISPERSION THRU HDWITR BNDRY		0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00		0.00
NON-FOINT INPUT		0.00	0.00	31.80	0.00			0.00				0.00
NATURAL REAERATION		413.42										
DAM REAERATION		0.00										
SOD BACKGROUND		-369.48										
BOD1 DECAY		0.00	0.00									
BOD1 SETTLING		0.00	0.00									
ANAEROBIC BOD1 DECAY			0.00									
BOD2 DECAY		-35.61		-35.61								
BOD2 SETTLING		0.00		0.00								
ANAEROBIC BOD2 DECAY				0.00								
BOD2 HYDROLYSIS			0.00	0.00								
ORG-N DECAY		0.00			0.00	0.00						
ORG-N SETTLING					0.00	0.00						
NH3-N DECAY (NITRIFICATION)		-5.25				-1.21	1.21					
NH3-N BACKGROUND SEDIMENT SOU	JRCE					0.81						
DENITRIFICATION			0.00				0.00					
ORG-P HYDROLYSIS								0.00	0.00			
ORG-P SETTLING								0.00	0.00			
PO4-P BACKGROUND SEDIMENT SOU	JRCE								0.00			
PHYTOPLANKTON GROWTH/PHOTOSYN	THESIS	0.00				0.00	0.00		0.00	0.00		
PHYTOPLANKTON RESPIRATION/EXC	RETION	0.00				0.00			0.00	0.00		
PHYTOPLANKTON SETTLING		0.00				0.00			0.00	0.00		
PHYTOPLANKTON DEATH			0.00	0.00	0.00			0.00		0.00		
PERIPHYTON GROWTH/PHOTOSYNTHE	SIS	0.00				0.00	0.00		0.00		0.00	
PERIPHYTON RESPIRATION/EXCRET	TION	0.00				0.00			0.00		0.00	
PERIPHYTON DEATH			0.00	0.00	0.00			0.00			0.00	
NCM DECAY		0.00										0.00
NCM SETTLING		0.00										0.00
TOTAL INPUTS	0.09700	455.48	0.00	62.45	0.00	2.10	1.21	0.00	0.00	0.00	0.00	0.00
TOTAL OUTPUTS	-0.09700	-455.51	0.00	-62.45	0.00	-2.11	-1.21	0.00	0.00	0.00	0.00	0.00
NET CONVERGENCE ERROR	0.00000	-0.02	0.00	0.00	0.00	-0.01	0.01	0.00	0.00	0.00	0.00	0.00

LA-QUAL for Dissolved Oxygen -**Usefulness**

WINTER TMDL CALCULATIONS FOR BEECH CREEK UPSTREAM OF LAKE COLUMBIA

stream length = stream width =

17.2 km 6.43 m

								Oxygen demand from benthic sources				
										Rate of	Load of	
								Rate of NH3	Rate of	O2 demand	O2 demand	Total
	Flow rate Conc's in model		Constituent loads		Oxygen demand		source in	O2 demand	w/ temp.	for entire	oxygen	
	in model	CBOD	NH3-N	CBOD	NH3-N	CBOD	NH3-N	model	at 20 C	correction	reach	demand
	<u>(m3/sec)</u>	(mg/L)	(mg/L)	(kg/day)	(kg/day)	(kg/day)	(kg/day)	(g/m2/day)	(g/m2/day)	(g/m2/day)	(kg/day)	(kg/day)
Headwater	0.03 2	3.657	0.154	10.11	0.426	10.11	1.84				\rightarrow	11.95
Incremental inflow	0.065	3.657	0.154	20.54	0.865	20.54	3.74				\longrightarrow	24.28
NPS loads (Data Type 19)				31.80		31.8					\longrightarrow	31.8
Sediment oxygen demand									2.915	3.306	365.66	365.66
Benthic NH3 source								0.0064	0.02771	0.02771	3.06 >	3.06
			-	•							Total =	436.75

Pros and Cons

Load Duration Curves

- Pros
 - Long-term flow data
 - Visual representation
 - Targets BMPs
 - Load can be calculated anywhere along flow regime
- Cons
 - Considers only parameter of concern and no interactions

LA-QUAL

• Pros

- Considers relevant physical, chemical, and biological processes
- Cons
 - Requires calibration
 - Occasionally, field data not available, must use published values
 - No visual representation

Questions

Selena Medrano Ecologist Arkansas Department of Environmental Quality (501) 682-0662 medrano@adeq.state.ar.us