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• Mercury in the Environment
• Fate and Transport Modeling
• The WASP Model
• Nyanza Superfund Site (Sudbury River, MA)
• Setting up WASP Model for the Sudbury River
• Final Model Results for Current Conditions
• Sensitivity and Uncertainty
• Remedial Alternative Modeling

Outline of PresentationOutline of Presentation
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Mercury in the EnvironmentMercury in the Environment
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Fate and Transport Environmental ModelingFate and Transport Environmental Modeling

• To effectively manage and reduce risks due to contamination, we must 
understand the processes that brought about those risks. 

• past and ongoing sources
• transport of chemicals
• changes in chemicals

• Process-based numerical models can be the most useful mathematical 
models for contaminated sediments.

from “Understanding the Use of Models in Predicting Risk Reduction of 
Proposed Remedial Actions at Superfund Sediment Sites. Draft 2009. 
Office of Superfund Remediation and Technology Innovation.
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• Mass Balance Model: 
– Applies Law of Conservation of Mass to analyze 

physical systems
• Law of Conservation of Mass

– Mass cannot be gained or destroyed 
– Account for any change by simply keeping track 

of all governing processes that change total mass
• Differential Mass Balance

– Generates differential equations to be solved to 
model the system

Basic Principles of Mass Balance ModelsBasic Principles of Mass Balance Models
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Control 
Volume 
Approach

z y

x

Three Dimensional Transport EquationThree Dimensional Transport Equation

Accumulation = Input – Output ± Reactions

= Qin Cin – Qout Cout ± rV
Δ(VC)
Δt
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General 
Conceptual Model

Site-Specific
Conceptual Model

Initial Screening
Mathematical Model

(usually simple)

Evolving Operational 
Mathematical Model 

(usually more complex)

Available Data

(Preliminary Data 
Collection)

Project Data 
Collection

Model evaluation,
Post-audit data

Iterative Model Development ProcessIterative Model Development Process
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Appropriate Level of ComplexityAppropriate Level of Complexity

• Proper model complexity is driven by:
• Complexity of the environmental system
• Complexity of pollutants of interest
• Management questions

• Consequences of an overly simple model
• Miss key processes and extrapolate inaccurately
• May not address relevant management questions
• May not be defensible
• Insufficient adaptability to changing management requirements

• Consequences for overly complex model
• More data collection
• Increased computational burden
• Increased uncertainty 
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WASP: WASP: 
Water Quality Analysis Simulation ProgramWater Quality Analysis Simulation Program

• Dynamic Differential Mass Balance Surface Water Model
• General Surface Water w/ Underlying Sediments

– Flexible network: 0D (lakes, ponds), 1D (lakes, streams), 2D  (rivers),
3D (large lakes, estuaries)

• Different Water Quality Problems
– Conventional Water Quality: DO, nutrients, eutrophication, algae, heat
– Toxicants: organics, pesticides, metals, Hg-specific module
– Solids balance (sands, fines, biotic solids, cobbles)
– Three chemicals (Hg(0), Hg(II), MeHg)

• Separation of Processes 
– Transport (Advection, Exchange/Dispersion, Solids)
– Kinetics (e.g., methylation, demethylation, oxidation, reduction)

• Simple hydrodynamic modeling approaches for water routing
– Dams and impoundments
– Tidal influence and reverse flows
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WASPWASPInputInput

BMDBMD
EutrophicationEutrophication

Conservative Conservative 
ToxicantToxicant

MOVEMMOVEM

StoredStored
DataData

Hydro    Hydro    

Model Preprocessor/Data Server

MercuryMercury

Binary Model Output

Graphical Post Processor

ModelsHydrodynamic
Interface

Exp
or

ted
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Messages

WASP Modeling FrameworkWASP Modeling Framework

CSV, ASCII Output

Organic Organic 
ToxicantsToxicants

HeatHeat

Binary Wasp Input File (wif)
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WASP TerminologyWASP Terminology

1 2 3 4 5 WASP Segments

Silts
Sands

Particulate Organic Matter
Hg(II)
Hg(0)
MeHg

State Variables
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outflowinflow

Modeling Solids in WASPModeling Solids in WASP

Sediment layers

water 
column

resuspension

sands

organic solids

burial

settling

cobbles

fines
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sediments

dispersionresuspension

burial

settling

outflowinflow

Hg(0) Hg(II)

MeHg

oxidation

atmospheric 
deposition

volatilization

reduction

photo- 
demethylation

methylation

Hg(II)                 MeHg

demethylation

partitioning to 
solids

complexation 
with DOC

photo-lysis

demethylation

methylation

Modeling Mercury in WASPModeling Mercury in WASP
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- Hg(II) Hg(II) MeHg

abiotic solids

organic solids

phytoplankton

- Hg(II)

DOC  dissolved organic carbon

DOC – Hg(II) 

- Hg(II)

MeHg -

MeHg -

MeHg -

DOCMeHg -

Ksand,Hg(II) Ksand,MeHg

Korg,Hg(II)

Kfines,Hg(II)

KDOC,Hg(II) KDOC,MeHg

Kfines,MeHg

Korg,MeHg

Modeling Partitioning in WASPModeling Partitioning in WASP
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Nyanza Superfund Site (Sudbury River, MA): Nyanza Superfund Site (Sudbury River, MA): 
1917 – 1978

Textile dyes manufacturing

Nyanza Company
• 1917 – 1978
• Textile dyes manufacturing
• Hg into adjacent wetlands 

and river
• 1991, US EPA excavated and 

capped site
• high [Hg] in water, sediments,

fish, birds, mammals
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Nyanza Extent of Mercury ConcentrationsNyanza Extent of Mercury Concentrations
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Parameter All Fish Largemouth 
Bass

ln(MeHgwater ) R = 0.623, p<0.001 R = 0.712, p<0.001

MeHgsed R = 0.332, p<0.001 R = 0.596, p<0.001

ln(HgTwater ) R = 0.227, p<0.01 R = 0.453, p<0.01

ln(HgTsed ) n.s.(p>0.05) n.s. (p>0.05)

Brumbaugh et al., 2001.

Correlation to Correlation to ln(Hgln(Hgfishfish /fish length)/fish length)
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• Mercury accumulates in sediments 
• Sediment mercury may act as a long-term source
• Mercury clean-up strategies target HgT, but 

exposure risk is from ingestion of MeHg in fish
• MeHg in fish tissue correlated with MeHg in water 

column, but poorly correlated with HgT in 
sediments or water column.

• Atmospheric deposition is an additional source to 
aquatic ecosystems

The ProblemThe Problem
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Nyanza WASP Model SetupNyanza WASP Model Setup

1. Delineation of Model System using WASP segments
2. Flow: Movement of water (Hydrology)
3. Solids: Sediment layers and Movement of solids
4. Boundary Conditions
5. Determination of Partitioning Coefficients
6. Mercury Cycle Rate Constants and Parameters
7. Mechanistic Evaluation of System
8. Comparison of Model Results to Observed
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1. WASP 1. WASP 
DelineationDelineation

The Sudbury River 
(Reaches 3 – 8) is first 
separated into 33 
WASP segments.
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Segment 5
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Segment 71

Segment 109

Segment 116

Segment 
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Segment 4
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Segment 70
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Segment 105
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to segment 7
upstream
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Surface Water

Surface Sediments

Subsurface 
Sediments
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Sediment
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Delineation of WASP Segmentation: Delineation of WASP Segmentation: 
Reach 3 (Reservoir 2)Reach 3 (Reservoir 2)

• Each reach is divided into a number 
of small pieces as WASP segments. 
• For each surface water segment, 
there are underlying sediment layers.
• Res 2 and 1 have 4 underlying 
sediment layers, the rest have 2.
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Segment 7

Segment 40

Segment 68

Segment 106

Segment 118

Segment 6

Segment 39

Segment 72

Segment 110

Segment 117
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to surface water segment 8upstream
boundary

Delineation of WASP Segmentation: Reach 4 (Reservoir 1)Delineation of WASP Segmentation: Reach 4 (Reservoir 1)
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Delineation of WASP Segmentation: Reach 5Delineation of WASP Segmentation: Reach 5
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• USGS Stream Gages are used to determine incoming 
flow (cubic meters per second) for upstream 
boundaries and incoming streams

• A 2 year period of flow was used and repeated to 
extend into the future

• Manning’s roughness coefficients and kinematic 
wave flow parameters were adjusted to calibrate flow 
and velocities

Flow: Movement of Water (Hydrology)Flow: Movement of Water (Hydrology)
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• Average measured total suspended solids used as 
incoming flow concentrations

• Initial sediment concentrations of solids were 
determined using observed fractions of sands, silts, 
and organic matter.

• With only water and solids in the model, system was 
run for 100 yrs until the sediment solids 
concentrations reached a pseudo-steady state

• Burial rates were compared to observed 

Solids: Sediment layers and Movement of solidsSolids: Sediment layers and Movement of solids
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• Dynamic erosion equations (Lick Equations) for 
settling and resuspension

• Base resuspension rate for bioturbation
• Lick Equations parameterized using observed data 

(based on ACoE 2001 sediment report)
• Results were compared and calibrated to match 

observed sediment compositions and burial rates
• Cobbles were added to WASP (non-erodable solids) 

to account for high level of scour in sediments after 
impoundments 

Solids: Sediment layers and Movement of solidsSolids: Sediment layers and Movement of solids
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Mercury Boundary ConcentrationsMercury Boundary Concentrations

• Mercury enters the Sudbury System via upstream inflow as well as 
from the historic contamination. 
• Wet deposition : 8 – 12 ug/m2/yr
• Dry deposition : 6 – 14 ug/m2/yr
• Approximately 20% of deposition reaches surface water (Rudd, 1995)
• MeHg (% of HgT): 1%  in winter, 2% in fall/spring, 4% summer

Date
Dry 

Deposition 
[ug/m3/yr]

Wet 
Deposition
[ug/m3/yr]

Total 
Deposition
[ug/m3/yr]

Hg(II) [ng/L] MeHg [ng/L]

9/23 10 10 20 3.76 0.08

12/23 6 8 14 2.74 0.028

3/20 10 10 20 3.76 0.08

6/20 14 8 22 4.68 0.208
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• Hg(II) and MeHg partition between different phases:
– Aqueous, DOC complexed, sorbed to solids

• Using observed fractions of filtered and unfiltered 
Hg(II) and MeHg, DOC and solids, partition 
coefficients were modeled

• Partition coefficients for each observation location 
was determined

• Log-mean for all locations was used

Determination of Partitioning CoefficientsDetermination of Partitioning Coefficients
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For Segment 2
Silts 1.78 mg/L
Particulate Organic Matter (POM) 0.48 mg/L

Dissolved Organic Carbon (DOC) 6.9 mg/L

Determination of Partitioning CoefficientsDetermination of Partitioning Coefficients

Unfiltered Hg(II) 4.6 ng/L

Unfiltered MeHg 0.29 ng/L

Filtered Hg(II) 2.4 ng/L

Filtered MeHg 0.22 ng/L

Fraction dissolved Hg(II) 0.53

Fraction dissolved MeHg 0.76

Hg(II) MeHg

Ksilt 1 x 106 2 x 105

KPOM 2 x 105 1 x 105

KDOC 4 x 105 5 x 105
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• Hg(II) and MeHg partition between different phases:
– Aqueous, DOC complexed, sorbed to solids

• Using observed fractions of filtered and unfiltered 
Hg(II) and MeHg, DOC and solids, partition 
coefficients were modeled

• Partition coefficients for each observation location 
was determined

• Log-mean for all locations was used

Mercury Cycle Rate Constants and ParametersMercury Cycle Rate Constants and Parameters
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Transformation Process 
(rate)

Reaction Water 
Column

Water: 
Deep 

Reservoir

Reservoir 
Sediments

Main 
River 

Sediments

GMNWR 
Sediments

Methylation (d-1)a,b Hg(II) MeHg 0a 0.0a 0.02b 0.02b 0.02b

Demethylation (d-1)b,c MeHg Hg(II) 0.04c 0.04c 0.5b 0.7b 0.25b

Methylation/ 
Demethylation 

(%MeHg)
0 25% 4% 3% 8%

Dark Oxidationd Hg(0) Hg(II) 1.6d 1.6d 0 0 0

Surface Photo- 
Oxidation (d-1)e Hg(0) Hg(II) 6e 0 0 0 0

Surface Photo- 
Reduction (d-1)f Hg(II) Hg(0) 14f 0 0 0 0

Surface Photo- 
Demethylation (d-1)g MeHg Hg(0) 0.2g 0 0 0 0

Mercury Cycle Rate Constants and ParametersMercury Cycle Rate Constants and Parameters
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Mercury Cycle Rate Constants and ParametersMercury Cycle Rate Constants and Parameters

Constant Value

Light Extinction Coefficient 1.05 per ma

Wavelength of maximum absorption for photo-lytic 
processes

420 nmb

Temperature correction factor for biotic processes 2c

Hg(0) Volatilization Option 4: O’Connor Method d

Hg(0) Atmospheric Concentration 1.6x10-9 g/m3 d

Hg(0) Henry’s Law Constant 0.01 atm-m3/moled

Hg(0) Volatilization Temperature Correction, θ 1.04d

Macro-Dispersive Exchange for Deep Reservoir 0.00162 cm2/s e

Pore Water Dispersion between sediment layers 6x10-6 cm2/s f

Pore Water Dispersion between sediment layer and surface 
water

5x10-5 cm2/s e,g
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Mechanistic Evaluation of SystemMechanistic Evaluation of System
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Mechanistic Evaluation of SystemMechanistic Evaluation of System

• Modeling of system greatly overpredicted all species 
of mercury (HgT, MeHg, filtered and unfiltered) in 
the 7 segments (3 reaches) where we had observed 
results

• Separated model into two parts:
– Background levels of mercury due to atmospheric 

deposition, incoming streams, watershed sources
– Nyanza-related mercury only 

• Research has suggested that new mercury and old 
mercury may behave differently (Hintelmann, 2002; 
Harris et al., 2007)
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Mechanistic Evaluation of SystemMechanistic Evaluation of System

• Separate the modeling into two
• Use higher partition coefficients (Kd ’s) for Nyanza case
• Add results of two cases 

1)Clean sediment case: 
Hg in inflow, no mercury in sediment

2)Contaminated sediment case: 
No Hg in inflow, historic mercury in sediment

• Model sensitivity of Methylation Rates 
(x1 and x2 kmeth )
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Mechanistic Evaluation of SystemMechanistic Evaluation of System

• Clean Sediment case 
uses original 
parameterization

• Contaminated 
Sediment case

Case Kd (silt) kmeth

Clean Case 1X 100%

A 100X 1%

B 200X 0.5%

C 100X 10%
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Mechanistic Evaluation of SystemMechanistic Evaluation of System

• Through mechanistic evaluation a final model was 
developed
– Model split into two cases and then added together
– Methylation rates kept the same for all regions except 

GMNWR, where methylation rates were doubled
– Partition coefficients for Nyanza case “old mercury” were set 

to 100x that of the background case “new mercury”
– 1% of sorbed old mercury was available for methylation
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Simulated Dissolved MeHg ConcentrationsSimulated Dissolved MeHg Concentrations
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Fish Tissue MeHg ConcentrationsFish Tissue MeHg Concentrations
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Comparison of Modeled vs. PredictedComparison of Modeled vs. Predicted
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• As with all computer models, there is a level of uncertainty 
attributable to:
– Values used as boundary conditions
– Repeated 2-year hydrological cycle
– Shape of the river over various reaches
– Rate constants (such as partition coefficients, methylation rate, 

sedimentation rate).
– Applicably of modeled results to non-modeled reaches

• Given this uncertainty, the modeling effort provides a 
reasonable basis to evaluate remedial alternatives  

Model UncertaintyModel Uncertainty
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Summary of Remedial AlternativesSummary of Remedial Alternatives
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Implementing Remedial Alternatives in WASP:Implementing Remedial Alternatives in WASP:
Enhanced Natural RecoveryEnhanced Natural Recovery

Enhanced Natural Recovery (Thin-layer Sand Capping)
A 6 inch layer of sand is laid on top of current top sediment layer. 
The added sand layer has no Hg and has is comprised of 100% sand

(0% silt, 0% organic matter, 0 Hg(II), 0 MeHg)

Surface Water

Surface Sediments

Subsurface 
Sediments 1

Subsurface 
Sediment 2

Bottom Sediment

Surface Water

Sand Cap

Original surface 
Sediments

Original Subsurface 
Sediment 1

Original  Subsurface 
Sediment 2
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Implementing Remedial Alternatives in WASP:Implementing Remedial Alternatives in WASP:
In SituIn Situ ContainmentContainment

AquaBlok® Capping (In Situ Containment)
A 6 inch layer of AquaBlok ® is laid on top of current top sediment layer. 
The added layer has no Hg and has is modeled as having a porosity of 0.62, 

and a concentration of 1.28x106 g/m3 as organic matter with no 
resuspension (0% silt, 0% sand, 0 Hg(II), 0 MeHg)

Surface Water

Surface Sediments

Subsurface 
Sediments 1

Subsurface 
Sediment 2

Bottom Sediment

Surface Water

AquaBlok® cap

Original surface 
Sediments

Original Subsurface 
Sediment 1

Original  Subsurface 
Sediment 2
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Implementing Remedial Alternatives in WASP:Implementing Remedial Alternatives in WASP:
DredgingDredging

Dredging: Removal of sediment layers, with release back to water column.
New Sediment layers modeled with same solids composition as bottom 

segment, with Hg(II) = 1 mg/kg, MeHg = 1 ug/kg. 
(except beneath segments 1, 6, 7, where Hg(II) = 3 mg/kg, MeHg = 2 ug/kg)

Dredging with Capping is a combination of previous methods.

Surface Water

Surface Sediments

Subsurface 
Sediments 1

Subsurface 
Sediment 2

Bottom Sediment

Surface Water

Deep Sediments

Deep Sediments

Deep Sediments

Deep Sediments
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Simulated Fish Tissue Concentrations in Reach 3Simulated Fish Tissue Concentrations in Reach 3
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Simulated Fish Tissue Concentrations in Reach 8Simulated Fish Tissue Concentrations in Reach 8
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Modeling Mercury Transport and Transformation along the 
Sudbury River, with Implications for Regulatory Action 
(2010) – EPA/ORD/NERL/ERD (Athens)

• Volume 1: Mercury Fate and Transport 
(describes the “Base Case” also referred to Alternative 3A 
or MNR)

• Volume 2: Evaluating the Effectiveness of Different Remedial 
Alternatives to Reduce Mercury Concentrations in Fish

Model ReportsModel Reports


	Simulating Mercury Transport and Transformation along the Sudbury River, MA
	Slide Number 2
	Slide Number 3
	Slide Number 4
	Slide Number 5
	Slide Number 6
	Slide Number 7
	Slide Number 8
	Slide Number 9
	Slide Number 10
	Slide Number 11
	Slide Number 12
	Slide Number 13
	Slide Number 14
	Slide Number 15
	Slide Number 16
	Slide Number 17
	Slide Number 18
	Slide Number 19
	Slide Number 20
	Slide Number 21
	Slide Number 22
	Slide Number 23
	Slide Number 24
	Slide Number 25
	Slide Number 26
	Slide Number 27
	Slide Number 28
	Slide Number 29
	Slide Number 30
	Slide Number 31
	Slide Number 32
	Slide Number 33
	Slide Number 34
	Slide Number 35
	Slide Number 36
	Slide Number 37
	Slide Number 38
	Slide Number 39
	Slide Number 40
	Slide Number 41
	Slide Number 42
	Slide Number 43
	Slide Number 44
	Slide Number 45
	Slide Number 46
	Slide Number 47
	Slide Number 48
	Slide Number 49
	Slide Number 50
	Slide Number 51

	barcodetext: SDMS DocID 466669
	barcode: *466669*


