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FOREWORD 


One of the greatest long-term threats to the viability of 
commercial and recreational fisheries is the continuing 
loss of marine, estuarine, and other aquatic habitats. 

Magnuson-Stevens Fishery Conservation and 
Management Act (October 11, 1996) 

The long-term viability of living marine resources 
depends on protection of their habitat. 

NMFS Strategic Plan for Fisheries 
Research (February 1998) 

The Magnuson-Stevens Fishery Conservation and 
Management Act (MSFCMA), which was reauthorized 
and amended by the Sustainable Fisheries Act (1996), 
requires the eight regional fishery management councils to 
describe and identify essential fish habitat (EFH) in their 
respective regions, to specify actions to conserve and 
enhance that EFH, and to minimize the adverse effects of 
fishing on EFH. Congress defined EFH as "those waters 
and substrate necessary to fish for spawning, breeding, 
feeding or growth to maturity." The MSFCMA requires 
NMFS to assist the regional fishery management councils 
in the implementation of EFH in their respective fishery 
management plans 

NMFS has taken a broad view of habitat as the area 
used by fish throughout their life cycle. Fish use habitat 
for spawning, feeding, nursery, migration, and shelter, but 
most habitats provide only a subset of these functions. 
Fish may change habitats with changes m life history 
stage, seasonal and geographic distributions, abundance, 
and interactions with other species. The type of habitat, 
as well as its attributes and functions, are important for 
sustaining the production of managed species. 

The Northeast Fisheries Science Center compiled the 
available information on the distribution, abundance, and 
habitat requirements for each of the species managed by 
the New England and Mid-Atlantic Fishery Management 
Councils. That information is presented in this series of 
30 EFH species reports (plus one consolidated methods 
report). The EFH species reports comprise a survey ofthe 
important literature as well as original analyses of fishery-

JAMES J. HOWARD MARINE SCIENCES LABORATORY 

HIGHLANDS, NEW JERSEY 

SEPTEMBER 1999 

independent data sets from NMFS and several coastal 
states. The species reports are also the source for the 
current EFH designations by the New England and Mid-
Atlantic Fishery Management Councils, and have 
understandably begun to be referred to as the "EFH source 
documents " 

NMFS provided guidance to the regional fishery 
management councils for identifying and describing EFH 
of their managed species. Consistent with this guidance, 
the species reports present information on current and 
historic stock sizes, geographic range, and the period and 
location of major life history stages. The habitats of 
managed species are described by the physical, chemical, 
and biological components of the ecosystem where the 
species occur. Information on the habitat requirements is 
provided for each life history stage, and it includes, where 
available, habitat and environmental variables that control 
or limit distribution, abundance, growth, reproduction, 
mortality, and productivity 

Identifying and describing EFH are the first steps in 
the process of protecting, conserving, and enhancing 
essential habitats of the managed species. Ultimately, 
NMFS, the regional fishery management councils, fishing 
participants, Federal and state agencies, and other 
organizations will have to cooperate to achieve the habitat 
goals established by the MSFCMA. 

A historical note: the EFH species reports effectively 
recommence a series of reports published by the NMFS 
Sandy Hook (New Jersey) Laboratory (now formally 
known as the James J. Howard Marine Sciences 
Laboratory) from 1977 to 1982. These reports, which 
were formally labeled as Sandy Hook Laboratory 
Technical Series Reports, but informally known as "Sandy 
Hook Bluebooks," summarized biological and fisheries 
data for 18 economically important species The fact that 
the bluebooks continue to be used two decades after their 
publication persuaded us to make their successors - the 30 
EFH source documents - available to the public through 
publication in the NOAA Technical Memorandum NMFS
NE series. 

JEFFREY N. CROSS, CHIEF 

ECOSYSTEMS PROCESSES DIVISION 

NORTHEAST FISHERIES SCIENCE CENTER 
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INTRODUCTION 

The winter flounder, Pseudopleuronectes 
americanus, a small-mouthed, right-eyed flounder (Figure 
1), is a valuable commercial and recreational species. It is 
distributed along the northwest Atlantic coast as far north 
as Labrador (Kendall 1909; Backus 1957) and as far south 
as North Carolina and Georgia (Hildebrand and Schroeder 
1928; Klein-MacPhee, in prep.). One ofthe more familiar 
fishes in the Gulf of Maine (Klein-MacPhee, in prep.), 
winter flounder are common on Georges Bank and in 
shelf waters as far south as Chesapeake Bay and are 
ubiquitous in inshore areas from Massachusetts to New 
Jersey. 

The species is managed as three separate stocks: the 
Gulf of Maine, southern New England and the Middle 
Atlantic, and Georges Bank (Brown and Gabriel 1998). 
However, there have been questions as to whether the 
population on Georges Bank, where fish tend to grow 
larger and have different menstic characteristics and 
movement patterns than those residing inshore (Lux et al 
1970; Howe and. Coates 1975; Pierce and Howe 1977), is 
in fact a separate species. It has been concluded that 
many of these differences could be attributed to 
temperature (Lux et al 1970) 

Except for the Georges Bank population, adult winter 
flounder migrate inshore in the fall and early winter and 
spawn in late winter and early spring throughout most of 
their range (Perlmutter 1947; Bigelow and Schroeder 
1953; Pearcy 1962; Dovel 1967; Scarlett 1991). In 
northern waters, spawning occurs somewhat later: April 
in Passamaquoddy Bay (Tyler 1971a) and May and June 
in Newfoundland (Kennedy and Steele 1971; Van 
Guelpen and Davis 1979). After spawning, adults 
typically leave inshore areas although some remain 
inshore year-round. 

This Essential Fish Habitat source document will 
focus on specific habitat requirements of the various life 
history stages of winter flounder as well as their historical 
and current geographical distributions. 

LIFE HISTORY 

The life history of winter flounder has been well 
studied (see Howell et al. 1992) and only a brief outline 
will be given here. Howell et al. (1992) also includes an 
excellent review of diseases and effects of pollutants. 
Further information on pollution effects is provided by 
Gould etal (1994). 

EGGS 

The eggs of winter flounder are demersal, adhesive, 
and stick together in clusters. They range in size from 
0.74-0.85 mm in diameter. Although Breder (1923) 

reported that winter flounder eggs develop a "small 
sphere similar to oil globules in pelagic ova" which 
disappears with further development, Martin and Drewry 
(1978) make no mention of this structure. It is possible 
that the structure reported by Breder (1923) was an 
artifact. Hatching occurs in 2 to 3 weeks, depending on 
temperature, and at sizes as small as 2.4 mm in the 
northwest Atlantic (Fahay 1983) and up to 3.0-3.5 mm in 
the Gulf of Maine (Bigelow and Schroeder 1953). 

LARVAE 

Larvae are initially planktomc but become 
increasingly bottom-onented as metamorphosis 
approaches. Settlement occurs at 9-13 mm standard length 
(SL) (Pearcy 1962; Witting 1995). Metamorphosis, when 
the left eye migrates to the right side of the body and the 
larvae become "flounder-like", begins around 5 to 6 
weeks after hatching, and is completed by the time the 
larvae are 8-9 mm in length at about 8 weeks after 
hatching (Bigelow and Schroeder 1953). Variation in age 
at metamorphosis is greater than for size (Chambers and 
Leggett 1987), with age variation influenced by 
temperature (Laurence 1975; see also Able and Fahay 
1998). 

JUVENILES 

Off southern New England, newly metamorphosed 
young-of-the-year (YOY) winter flounder take up 
residence in shallow water where they may grow to about 
100 mm within the first year (Bigelow and Schroeder 
1953). Growth rates in the Mystic River, Connecticut 
estuary averaged 0.28-0.35 mm per day m summer and 
fall with monthly mortality during the first year averaging 
31% and total mortality during larval (and juvenile stages) 
reaching over 99% (Pearcy 1962). Average density of 
settled juveniles in this system was higher than 1/m2 

(Pearcy 1962). 
Growth rates may be somewhat faster in more 

southern waters (Chesapeake Bay) where fish up to 110
180 mm are collected in late winter. In a southern New 
Jersey system, growth ranged from 0.23-0.47 mm per day 
(Witting 1995). In this system, settlement appeared to be 
localized in a small cove, with very high densities 
(averages reaching as high as 4.1 individuals/m ) (Witting 
1995). In several caging studies at other coastal New 
Jersey locations, growth rates ranged even higher (Sogard 
1992, 0.95 mm per day; Phelan et a l , in press, 0.68 mm 
per day) and settlement appeared more widespread (B A. 
Phelan, National Manne Fisheries Service, Highlands, NJ, 
unpublished data). Although juveniles presumably 
overwinter in the estuary (Bigelow and Schroeder 1953), 
large numbers are also found on the shelf (Phelan 1992) 
and outside southern New Jersey estuaries (Able and 

http:0.23-0.47
http:0.28-0.35
http:0.74-0.85
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Hagan 1995; Able and Fahay 1998). 

ADULTS 

Winter flounder may grow up to 58 cm total length 
(TL) and attain 15+ years of age. Growth vanes among 
geographical areas, with slower growth in the north than 
in the south Growth in the Gulf of Maine (k = 0.41, L°° 
= 39 8 cm for males, k = 0 27, L°° = 49.0 cm for females) 
was somewhat lower than on Georges Bank (k = 0.37, L<>= 
= 55 0 cm for males, k = 0.31, L°o = 63 0 for females) 
(see Mayo 1994). 

REPRODUCTION 

Winter flounder spawn from winter through spring, 
with peak spawning occurring during February and March 
in Massachusetts Bay and south of Cape Cod and 
somewhat later along the coast of Maine continuing into 
May (Bigelow and Schroeder 1953). Spawning occurs 
earlier (November to April) in the southern part of the 
range (Klein-MacPhee, in prep.) Major egg production 
occurs in New England waters before temperatures reach 
3.3°C with an upper limit of about 4 4-5.6°C in the inner 
parts ofthe Gulf of Maine (Bigelow and Schroeder 1953). 
Spawning can occur at depths of less than 5 m to more 
than 45 m on Georges Bank, and at salinities of 11 ppt 
inshore near Woods Hole to 31-33 ppt offshore. 

Winter flounder maturity comparisons are 
complicated by the complex stock structure of this species 
(O'Brien el al 1993). Based on the Northeast Fisheries 
Science Center (NEFSC) trawl surveys, the median length 
at maturity (L50) for male and female winter flounder 
from Georges Bank was 25 6 and 24.9 cm respectively; 
median age at maturity (A50) was 1 9 years for both males 
and females (O'Brien et al. 1993) For inshore stocks 
north of Cape Cod, values of L50 were 29.7 cm for 
females and 27 6 cm for males; for stocks south of Cape 
Cod, L50 was 27.6 cm for females and 29.0 cm for males. 
Median age at maturity was 3.5 years for females and 3.3 
years for males north of Cape Cod; 3.0 years for females 
and 3.3 years for males south of the Cape (O'Brien et al 
1993). 

Other studies report different values. In Long Island 
Sound, maturity occurred at 2 to 3 years and 20 to 25 cm 
(Perlmutter 1947); in Newfoundland, L50 was 25 cm for 
females, 21 cm for males, with ages for full maturity 
reaching 7 years for females and 6 years for males 
(Kennedy and Steele 1971) indicating that maturity was 
related to size, not age However, Beacham (1982) found 
that maturity of fish from the Scotian Shelf and southern 
Gulf of St. Lawrence was highly variable from year to 
year. Burton and Idler (1984) found a 2 to 3 year cycle in 
oocyte maturation and large numbers of non-reproductive 
individuals in any given year. Thus, interpretations of 

winter flounder maturity data should be treated cautiously 
(O'Brien et al 1993). 

Fecundity measurements indicate that in 
Newfoundland, 220-440 mm females produced from 
99,000 to over 2 million eggs (Kennedy and Steele 1971); 
in Rhode Island, 250-450 mm females produced from 
93,000 to over 1.3 million eggs (Saila 1962); and in 
coastal Massachusetts, 300-450 mm females produced 
from 435,000 to over 3.3 million eggs (Topp 1968). 

Recent laboratory studies have shown that when held 
at 4°C, winter flounder spawned over a two month period 
with females and males averaging 40 and 147 spawns, 
respectively (Stoner et al 1999). Spawning was 
concentrated between sunset and midnight, with the 
majority of spawning events involving more than one 
male, which potentially maximizes fertilization success. 

FOOD HABITS 

Pearcy (1962) investigated the food habits of winter 
flounder larvae from hatching through metamorphosis. A 
large percentage of the stomach contents were 
unidentifiable but nauplii, harpacticoids, calanoids, 
polychaetes, invertebrate eggs, and phytoplankton were 
all present. Food item preference changed with larval 
size: smaller larvae (3-6 mm) ate more invertebrate eggs 
and nauplii while larger larvae (6-8 mm) preferred 
polychaetes and copepods. Plant material was found in 
larval stomachs but usually with other food items and was 
probably incidentally ingested (Pearcy 1962). 

Pearcy (1962) found that copepods and harpacticoids 
were important foods for metamorphosing and recently 
metamorphosed winter flounder Amphipods and 
polychaetes gradually become more important for both 
YOY and yearling flounder (Pearcy 1962). Franz and 
Tanacredi (1992) found that the amphipod, Ampelisca 
abdita, made up the majority ofthe diet of young flounder 
in Jamaica Bay, New York Stehlik and Meise (in press) 
found clear ontogenetic patterns in diet, with calanoid 
copepods disappearing from the diet as fish grew > 50 
mm TL and an increase in the number of taxa in diet with 
growth. 

Winter flounder have been described as omnivorous 
or opportunistic feeders, consuming a wide variety of 
prey (see Figure 2). Polychaetes and crustaceans (mostly 
amphipods) generally make up the bulk of the diet 
(Hacunda 1981; Macdonald 1983; Steimle et al. 1993; 
Martell and McClelland 1994; Carlson et al. 1997). 
Linton (1921) examined the stomachs of 398 winter 
flounder ranging in size from 25-225 mm. Annelids and 
amphipods dominate the diet in almost all size classes 
(Linton 1921). Winter flounder may modify their diet 
based on availability of prey. They feed on bivalves 
(Medcoff and MacPhail 1952; Macdonald and Green 
1986, Stehlik and Meise, in press), capelm eggs (Kennedy 
and Steele 1971; Frank and Leggett 1983) and fish 



(Kennedy and Steele 1971). 
Adult winter flounder are sight feeders, using their 

dorsal fins to raise their heads off the bottom with eye 
turrets extended for a better view (Olla et al. 1969). Prey 
are then taken in a 10 to 15 cm lunge. (Olla et al. 1969). 
If no prey are spotted, the fish change location and 
resume the feeding posture. A fish might change location 
and direction four to five times a minute. These 
movements involve a combination of swimming and 
"shambling" (Kruuk 1963; Macdonald 1983) or literally 
crawling across the bottom on the tips of the fin rays 
Fish were able to maintain this feeding posture in currents 
exceeding 20 cm/sec by pushing the edges of the fins into 
the substrate (Olla et al. 1969) This same feeding 
method is used by young-of-the-year and juvenile 
flounder as well (J. Pereira, National Marine Fisheries 
Service, Milford, CT, unpublished observation). 
Increases in turbidity or current speed could interfere with 
feeding success. 

The importance of adequate light for feeding in 
flounder is demonstrated in a study by Able et al. (1999) 
and Duffy-Anderson and Able (1999). Young-of-the-year 
flounder held in cages underneath piers in the lower 
Hudson River lost weight when compared to fish caged in 
open areas between the piers. One of the contributing 
factors could have been an inability to feed due to lack of 
light (Able et al 1999; Duffy-Anderson and Able 1999). 
Macdonald (1983) noted that flounder were more 
attracted to moving rather than stationary prey and 
reemphasized the flounder's dependence on sight for 
feeding. Frame (1971) noted that the amount and 
duration of feeding behavior varied with light levels, 
being reduced on cloudy and winter days and increased 
on sunny days. Van Guelpen and Davis (1979) found that 
winter flounder moved out of shallow water during storm 
events to avoid turbulence. They noted that Gibson 
(1973) observed similar behavior in other flatfish species 
particularly for plaice, Pleuronectes platessa. It is 
possible that the suspended sediment caused by 
turbulence interferes with feeding. 

Field observations by Olla et al. (1969) show that 
adult winter flounder are inactive at night. Stomach 
samples taken from fish during the day almost always 
contained food while those taken before sunrise were 
almost always empty indicating that adult flounder do not 
feed at night (Olla et al 1969). However, fish in the 
laboratory were nocturnal during the reproductive season, 
only becoming active during the day during the post-
spawning periods under increasing temperature and 
photoperiod (Stoner et al. 1999). Young-of-the-year 
winter flounder are also more nocturnal during the 
summer (Manderson et ai , in review; B.A. Phelan, 
National Marine Fisheries Service, Highlands, NJ, 
unpublished observation). 

Winter flounder have been reported to cease feeding 
during the winter months (Kennedy and Steele 1971, Van 
Guelpen and Davis 1979; Martell and McClelland 1994). 
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Other authors simply report a reduction in feeding in the 
winter (Frame 1971; Levmgs 1974). Recent field studies 
in a New Jersey estuary before, during and after the 
spawning season indicated that females began feeding, 
primarily on siphons of the clam, Mya arenaria, and 
ampehscid amphipods earlier than males (Stoner et al 
1999). In the laboratory, males fed only after most 
spawning had ended (Stoner et al. 1999) 

Degradation or improvement of environmental 
conditions causing shifts in benthic invertebrate 
populations may also cause shifts in prey selection such 
as eating the pollution-tolerant annelid Capitella 
(Haedrich and Haednch 1974; Steimle et al. 1993) or 
eating the pollution-sensitive amphipod, Unciola irrorata, 
once environmental conditions have improved (Steimle et 
al. 1993). 

PREDATION 

Pearcy (1962) reported that the small medusae, 
Sarsia tubulosa, prey upon winter flounder larvae, and 
that all other potential predators of larvae were 
numerically unimportant when compared to Sarsia 
medusae. The predatory amphipod, Calliopius 
laeviusculus, was shown to prey upon larval winter 
flounder in the laboratory (Williams and Brown 1992). 
Klein-MacPhee et al. (1993) suggests the mud anemone, 
Ceriantheopsis americana, as a potential predator on 
winter flounder larvae. Pepin et al. (1987) reported that 
Atlantic mackerel, Scomber scombrus, selectively prey on 
larval fish between 3 and 10 mm in length. Mackerel 
would co-occur with winter flounder larvae in early 
spring. Since winter flounder are 3.5 mm in length at 
hatch they are certainly vulnerable to predation by 
mackerel. 

Howe et al. (1976) found that injured juvenile winter 
flounder were more common when large numbers of 
"snapper" bluefish, Pomatomus saltatrix, were present in 
their study area, suggesting that young bluefish are an 
important predator on young winter flounder Gulls and 
cormorants were also suggested as important predators 
(Howe et al. 1976). Witting and Able (1995) have 
documented in the laboratory the ability of the sevenspine 
bay shrimp, Crangon septemspinosa, to prey on YOY 
winter flounder ranging in length from newly settled, 10 
mm individuals to those up to 20 mm long. Juvenile 
winter flounder, particularly as they get larger, are 
probably also preyed upon by the same predators that 
prey on adults. Summer flounder, Paralicthys dentatus, 
sea robins {Prionotus evolans), and wmdowpane 
{Scophthalmus aquosus) also prey on YOY and juvenile 
winter flounder (Poole 1964; Richards et al 1979; 
Manderson et al. 1999, in review). As many as 12 winter 
flounder have been found in a single searobm stomach 
(P.E. Clark, National Marine Fisheries Service, Milford, 
CT, unpublished observation) 
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Adult winter flounder are preyed upon by a wide 
variety of predators including striped bass {Morone 
saxatilis), bluefish, spiny dogfish {Squalus acanthias), 
goosefish {Lophius americanus), oyster toadfish {Opsanus 
tau), and sea raven {Hemitnpterus americanus), (Lux and 
Mahoney 1972; Azarovitz 1982). Cormorants, blue 
herons, seals, and ospreys have also been cited as 
predators (Pearcy 1962; Tyler 1971b) Payne and Selzer 
(1989) found that seals ate 5 different species of flounder 
including winter flounder, but that the flounder group as a 
whole made up only 10 % ofthe diet 

MIGRATION 

With the exception of the Georges Bank population, 
adult winter flounder migrate inshore in the fall and early 
winter and spawn in late winter and early spring. 
Following spawning, adults typically leave inshore areas 
when water temperatures exceed 15°C (McCracken 1963; 
Howe and Coates 1975); however, these movements may 
not be totally controlled by temperature Winter flounder 
may remain inshore year-round if temperatures remain at 
15°C or lower and if enough food is available (Kennedy 
and Steele 1971) In the more northern latitudes, they 
may be driven out by turbulence or ice formation (Van 
Guelpen and Davis 1979). 

Powell (1989) reviewed tagging studies of winter 
flounder conducted by Perlmutter (1947), Saila (1961, 
1962), McCracken (1963), Poole (1969), Howe and 
Coates (1975), Van Guelpen and Davis (1979), Danila 
and Kenmsh (1982), Scarlett (1983), Weber and Zawacki 
(1983), Northeast Utilities Service Company (1984), and 
Weber (1984), and compared them to his own studies in 
Rhode Island. He concluded that, with the exception of 
Georges Bank, there were two distinctive patterns of 
movement. While all studies showed a winter 
congregation on inshore, shoal spawning grounds and 
summer dispersal to deeper cooler waters, the extent and 
the timing of these movements varied with location. 
Winter flounder distributions in NEFSC bottom trawl 
surveys (Figure 3), Massachusetts inshore trawl surveys 
(Figure 4), and Hudson-Rantan trawl surveys (Figure 5) 
confirm this general pattern of movement. 

Howe and Coates (1975) tagged fish during the 
winter and early spring while they were concentrated near 
spawning grounds in areas both north and south of Cape 
Cod and on Georges Bank. Fish tagged north of Cape 
Cod tended to make shorter post-spawn migrations 
(average distance traveled from tagging location = 14.3 
km or less) probably because of the close proximity of 
cooler bottom temperatures (Howe and Coates 1975). 
Studies conducted even further to the north in Nova 
Scotia (McCracken 1963) and Newfoundland (Van 
Guelpen and Davis 1979) also showed short onshore-
offshore migrations associated with spawning. Most fish 
tagged on Georges Bank tended to stay on the Bank and 

there was very little exchange (less than 1% in either 
direction) with fish on Nantucket Shoals (Howe and 
Coates 1975). Fish tagged south of Cape Cod migrated 
farther than their counterparts north of the Cape (average 
distance traveled up to 61.2 km). Mixing was minimal; 
only nine fish (0.66% of the tag recoveries) tagged north 
of the Cape were recovered south and east of the 
peninsula and only 61 fish (2.50% of recovered tags) 
tagged south of Cape Cod were recaptured to the north 
Tag returns in the fall showed return of fish to inshore, 
shoal areas when water temperatures had reached 15°C 
(Howe and Coates 1975). 

Studies conducted further south in Connecticut 
(Northeast Utilities Service Company 1984), New York 
(Poole 1969; Weber and Zawacki 1983; Weber 1984), 
and New Jersey (Damla and Kenmsh 1982; Scarlett 1983) 
also showed longer onshore-offshore migrations. Powell 
(1989) also noted that in the tagging studies south of Cape 
Cod, all post-spawn, summer migrations were to the east, 
i.e., offshore. This adult migration is shown by seasonal 
trawl survey catches, especially off New Jersey and 
southern New England (Figures 3 and 4) as well as by 
more recent studies. For example, Pereira et al. (1994) 
found that some fish move as far as 113 km to the east 
during the post-spawn period. Phelan (1992) tagged fish 
in the New York Bight area and recovered one fish from 
Nantucket, a distance of 328 km from the tagging site 
Timing of these spawning and post-spawning movements 
varied along the coast, occumng earlier farther south and 
later farther north. 

There are exceptions to these general patterns, and 
migrations may also be related to food availaihty 
Kennedy and Steele (1971) reported that winter flounder 
left Long Pond, Canada and were found in Conception 
Bay, Canada even though water temperatures in both 
locations were around 11°C. They attribute the exodus to 
a lack of food in Long Pond. Van Guelpen and Davis 
(1979) reported emigration from the study area in July 
even though water temperatures remained within the 
winter flounder's acceptable range. They believe this was 
a feeding migration similar to that reported by Kennedy 
and Steele (1971). When winter flounder disappeared 
from study areas again in August, they were found in 
nearby Horse Cove where they had been feeding heavily 
on capelm eggs (Van Guelpen and Davis 1979). Feeding 
migrations by winter flounder have also been documented 
by Tyler (1971b) who found that adult winter flounder 
move into the intertidal zone on the high tide to feed. It 
would seem that if water temperatures are not limiting 
over a wide area, winter flounder will move in response to 
availability of food Howe and Coates (1975), who noted 
similar movements in the Cape Cod area, doubt that these 
movements are solely in response to availability of food 
Howe et al. 1976 and studies m Rantan Bay (Figure 5) 
provide evidence that some adult fish may remain inshore 
throughout the summer. 



STOCK STRUCTURE 

This species is currently managed as three stocks 
(one north of Cape Cod, one south of the Cape and the 
third on Georges Bank) which were first differentiated 
based on differences in fin ray counts and movement 
patterns (Lux et al. 1970; Howe and Coates 1975; Pierce 
and Howe 1977). The Georges Bank stock not only 
differed in fin ray count, but has a much higher growth 
rate (Lux 1973). Some researchers feel that three "stock 
complexes", are being managed and that there may be one 
or more stocks in Canadian waters, based on differences 
in age at maturity (Kennedy and Steele 1971) and 
migratory habits (Van Guelpen and Davis 1979). Other 
stocks may exist north of the Massachusetts border along 
the coast of New Hampshire and Maine. 

HABITAT CHARACTERISTICS 

A summary of the habitat characteristics of the 
various life history stages of winter flounder is provided 
in Table 1. 

EGGS 

Collection of winter flounder eggs from the wild is 
difficult because of their adhesive and demersal nature. It 
is these same characteristics, however, that make them 
valuable in pinpointing spawning grounds. With the 
exception of Georges Bank and Nantucket Shoals, winter 
flounder eggs are generally collected from very shallow 
waters (less than about 5 m), at water temperatures of 
10°C or less, and salinities ranging from 10 to 30 ppt. 
These shallow water, nearshore habitats are of critical 
importance because they are most likely to be impacted 
by human activities. The type of substrate where eggs are 
found vanes, having been reported as sand, muddy sand, 
mud and gravel, although sand seems to be the most 
common. Vegetation may or may not be a factor. 
Spawning areas also occur where hydrodynamics function 
to keep the hatched larvae from being dispersed (Pearcy 
1962; Crawford and Carey 1985; Monteleone 1992). This 
is true even on Georges Bank where different water 
masses function to keep larvae on the Bank (Backus and 
Bourne 1987). 

Scott (1929) collected winter flounder eggs near St. 
Andrews, New Brunswick, with a plankton net in one foot 
of water along the flats on mud bottom. Surface 
temperatures in the area ranged from 9.25-10.0°C, but 
bottom temperatures to which the eggs were exposed 
were probably lower. 

Pearcy (1962) working in the Mystic River, 
Connecticut, began his sampling in February when water 
temperatures were around 2-5°C. Specific gravity of 
seawater where eggs were collected was reported to be 
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1.01-1.024 (corresponding roughly to a salinity range of 
10 to 25 ppt) at 5°C. Crawford and Carey (1985) 
collected winter flounder eggs using a benthic sled in 
Point Judith Pond, Rhode Island The greatest 
concentration of eggs was found in the vicinity of a tidally 
submerged gravel bar with eggs clumped on the gravel 
substrate or attached to fronds of algae. Crawford and 
Carey (1985) began their sampling only after water 
temperatures had reached 3°C. It has also been reported 
that winter flounder eggs collected by divers were 
attached to vegetation (Anonymous 1972). Scarlett and 
Allen (1989) found that winter flounder eggs constituted 
the vast majority of all the eggs found in collections made 
in the Manasquan River in New Jersey in February and 
March of 1985. Eggs were found at salinities ranging 
from 14 to 32 ppt, temperatures of 0.9 to 10°C, and depths 
of 2-4.5 m. In a subsequent study, Scarlett (1991) used an 
epibenthic sled for sampling winter flounder eggs in the 
Shrewsbury and Navesink rivers in New Jersey to identify 
spawning areas He collected eggs in water temperatures 
ranging from 4 to 7.5°C, at salinities of 14 to 22 ppt, and 
at depths of 2 to 4 m. 

More recently, Monteleone (1992) collected winter 
flounder eggs in a plankton net towed horizontally just 
under the surface of the water in a relatively shallow 
(average depth 1.3 m) The turbulence caused by the 
sampling gear was probably responsible for these 
demersal eggs finding their way into the net. Like Scott 
(1929), Monteleone (1992) reported a surface water 
temperature of 9.1°C during the collection of winter 
flounder eggs. 

Hughes (in prep.) used a benthic sled to collect 
winter flounder eggs in Point Judith and Nimgret coastal 
salt ponds in Rhode Island in the vicinity of the North 
Cape oil spill. Samples were taken in March. Depths in 
the sample areas ranged from 1 to 3 m Lee et al. (1997) 
measured temperature and salinity near Hughes (in prep.) 
sample sites at various times between 1985 and 1994. 
Samples taken in March of vanous years showed a mean 
temperature of 6±1.94°C and a mean salinity of 23±8.01 
ppt. 

Temperature and depth measurements taken in 
conjunction with the plankton samplings conducted by the 
NEFSC Marine Resources Monitoring, Assessment and 
Prediction (MARMAP) program on Georges Bank 
showed that the eggs were collected at water temperatures 
between 3 and 8°C and at depths of 90 m or less (Figure 
6). These results confirmed the report by Bigelow and 
Schroeder (1953) that winter flounder spawn on sandy 
bottom, often in water as shallow as one to three fathoms 
but as deep as 25 to 40 fathoms (13-22 m) on Georges 
Bank and, most probably, on Nantucket Shoals. 

While evidence from eggs collected in the field 
provides information about the conditions under which 
winter flounder prefer to spawn, laboratory studies 
provide information about how winter flounder eggs 
might fare in marginal environments. One parameter 
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typically studied in the laboratory is the number of days 
required for hatching. Time to hatch is controlled by 
temperature. Human activities could change ambient 
temperatures directly by discharge of heated cooling 
water or indirectly by changing the hydrodynamics and 
therefore, the water turnover rate of an area 

Scott (1929) collected winter flounder eggs in the 
field, and in the laboratory determined the number of days 
for all the eggs to hatch or die, as well as hatching 
success. He found that 4-5°C produced the best hatch 
success, averaging 73% The average time for all the 
eggs to hatch or die was 26 days At 0°C, only 50% ofthe 
eggs had hatched or died m an average of 21 days and the 
hatch success was poor, averaging only about 9%. 
Williams (1975) reported an average of 38.6 days to hatch 
or die for eggs held at 0°C. Williams (1975) also reported 
an average hatch time of 21 5 days for eggs held at 3.5°C, 
very close to the value reported by Scott (1929) for eggs 
held at 4-5°C. Eggs held at 12 to 17°C hatched sooner 
(mean 18 days), but the percent hatch only averaged about 
52%o. An earlier, similar study by Bnce (1898) found that 
eggs hatched m 17-18 days at 3°C Neither Bnce (1898) 
nor Scott (1929) determined the developmental stage of 
the field-collected embryos when they were brought into 
the laboratory or what percent were even fertilized. This 
may explain some of the vanability apparent in the 
reported time to hatch in these studies. 

Rogers (1976) tested the effects of various 
combinations of temperature (3-15°C) and salinity (0.5 to 
45 ppt) on the viability and incubation times of winter 
flounder embryos and she concluded that winter flounder 
embryos are euryhalme and hatch at salinities of 5 to 40 
ppt. Salinity extremes tended to induce abnormal 
development, however, and the best survival occurred 
between 10 and 30 ppt. She concluded that optimal 
conditions for winter flounder embryo development and 
survival appear to be 15 to 35 ppt salinity at 3°C and 15 to 
25 ppt for temperatures above 3°C. These results agree 
well with the results of Williams (1975), who reported a 
minimum mortality range of 0 to 10°C and an upper lethal 
limit of 15°C. 

Rogers (1976) also found that incubation times (days 
for 50% ofthe embryos to hatch) were inversely related to 
temperature: 19 to 31 days at 3°C and 10 ppt salinity, and 
5 to 10 days at 14°C, regardless of salinity tested. 
Buckley (1982) also reported similar results, noting that 
the time required for 50% hatch of embryos held in the 
laboratory was 8 days at 10°C and 23 days at 2°C. 
Increased mortality was noted in developing embryos 
held at 2°C. These results agreed more closely with the 
statements of Bigelow and Schroeder (1953), who report 
that hatching occurred in 12-15 days at a temperature of 
2 8 to 3.3°C. 

This inverse relationship between incubation time 
and temperature may provide a mechanism for the 
phenomenon observed by Frank and Leggett (1983) 
They found that several species of fish which laid 

demersal eggs (capelm, sea snail, radiated shanny, and 
winter flounder) seemed to time their hatching to the 
advent of favorable environmental conditions. Hatching 
occurs simultaneous to the onset of onshore winds which 
cause the replacement of cooler, predator-laden, food-
poor, up-wellmg waters with warmer, predator-poor, 
food-nch, surface water over the shallow spawning areas. 
The synchronous hatching is thought to have the effect of 
swamping predators and enhancing survival of winter 
flounder because the capelin are so much more numerous 
than the other species Crawford and Carey (1985) 
described a similar phenomenon when they reported that a 
mid-February pulse of warm weather seemed to stimulate 
winter flounder spawning in Point Judith Pond, Rhode 
Island 

LARVAE 

Pearcy (1962) concluded that because winter 
flounder spawn in coves and inlets and the young stages 
are non-dispersive, breeding and nursery grounds would 
be close together. This view had been previously 
expressed by Perlmutter (1947) Thus, larvae (and later 
juveniles) may offer an important clue to the location of 
spawning grounds, and are the link between spawning 
grounds and nursery areas. Data from the NEFSC 
MARMAP ichthyoplankton surveys show that, with the 
exception of Georges Bank and Nantucket Shoals, most 
winter flounder larvae are found inshore and that 
spawning progresses from the southern end of its range 
northward (see Geographical Distribution below) 

Pearcy (1962) collected winter flounder larvae from 
the Mystic River, Connecticut. Comparing the number of 
larvae in surface tows to those collected by bottom tows 
he found that the bottom tows contained the majority of 
the larvae. He also knew from laboratory observations 
that winter flounder larvae are negatively buoyant and 
sink when they stop swimming. His hydrographic survey 
of the estuary revealed that in the surface waters the net 
movement over a tidal cycle was seaward while in the 
bottom waters it was landward. The natural tendency of 
the larvae to sink would explain why most were caught 
near the bottom and would also function to retain the 
larvae within the estuary rather than get washed out in the 
surface waters In fact, he calculated that only about 3% 
of the larval population was dispersed seaward per tidal 
cycle. 

Crawford and Carey (1985) believe that spawning 
areas and nursery areas are close together, after locating 
both eggs and larvae in Point Judith Pond in Rhode 
Island They concluded that winter flounder larvae could 
have been retained in the estuary by the mechanism 
proposed by Pearcy (1962) but that the hydrodynamics of 
the area also played a role. They further suggested that 
winter flounder, when they spawn, take advantage of the 
hydrodynamic charactenstics of small, narrow estuanes 



that restnct water flow in order to help retain the larvae in 
suitable nursery areas. Monteleone (1992) noted the 
highest concentrations of winter flounder larvae in Great 
South Bay, New York at stations with low current speeds 
and turnover rates. 

Winter flounder larvae were collected in the higher 
salinity regions of Miramichi Bay (New Brunswick, 
Canada) in early to mid-June where bottom salinities 
ranged from 6 to 26 ppt, and temperatures ranged from 
12.5 to 20.5°C (Locke and Courtenay 1995). Scarlett 
(1991) collected winter flounder larvae in the Navesink 
and Shrewsbury Rivers in New Jersey from February 
through April where bottom salinities ranged from 10 to 
22 ppt, bottom temperatures ranged from 2 to 19.5°C and 
depths ranged from 2 to 6 m. Pearcy (1962) found that 
winter flounder larvae were common in the upper Mystic 
River Estuary from May to June when temperatures 
ranged from 3 to 15°C. Average bottom salinities for the 
upper estuary ranged from 18 to 22 ppt. Scarlett and 
Allen (1989) collected winter flounder larvae in the 
Manasquan River in New Jersey at salinities ranging from 
4 to 30 ppt and temperatures ranging from 0.9 to 15°C. 
NEFSC MARMAP surveys collected larvae from March 
through July, and in September (Figure 7). Most were 
caught at temperatures of 6-10°C (those caught in 
September were at 18°C) and depths of 10-70 m. 

Winter flounder larvae are surprisingly tolerant of 
short-term temperature shock. In laboratory studies, 
Itzkowitz and Schubel (1983) found that mortality in five-
day-old winter flounder larvae was minimal when the 
temperature was increased from the acclimation 
temperature of 5 to 27°C (a change in temperature of 
22°C) so long as the duration was kept to less than 32 
minutes. At longer durations, mortality increased rapidly. 
Similar results were obtained for changes in temperature 
of 24°C if duration was 16 minutes or less. At changes m 
temperature > 28°C mortality was virtually total and 
immediate (Itzkowitz and Schubel 1983). 

YOUNG-OF-THE-YEAR, YEARLINGS 
AND JUVENILES 

Winter flounder less than one year old (or young-of
the-year, YOY) are treated separately here because their 
habitat requirements are so different from that of the 
larger juveniles (fish 1 year old or more). Yearling is a 
term used for fish which are between one and two years 
of age, their behavior being transitional between YOY 
and older juveniles. 

Winter flounder spend their first year in very shallow 
inshore waters. Although temperature tolerance of YOY 
is higher than for yearlings or adults, Pearcy (1962) 
concluded that temperatures of 30°C might be too high. 
He found that an area that had produced fish previously 
failed to do so when the temperature reached 30°C, but 
that the fish returned when temperatures were lower. This 
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upper limit is in agreement with studies by Huntsman and 
Sparks (1924) and Battle (1926) who also noted higher 
lethal temperatures for smaller flounder than for larger 
ones, and with McCracken (1963) who determined an 
upper incipient lethal temperature of 27°C. Pearcy (1962) 
reported a minimum lethal temperature between -1.5 and 
1.0°C. Juvenile winter flounder captured in offshore areas 
by NEFSC bottom trawl surveys were found at 
temperatures well outside of these lethal limits. The 
majority of juveniles were at 4-7°C in the spring and 11
15°C in autumn (Figure 8). 

Laboratory studies by Casterlin and Reynolds (1982) 
on yearling flounder indicated that flounder selected 
temperatures in the range of 8-27°C, with a mode of 
18.5°C. They also noted that in the laboratory, these fish 
were more active at night. 

Young-of-the-year flounder also tolerate lower 
salinities (5 ppt) than do yearling flounder (10 ppt) 
(Reynolds and Thomson 1974). Pearcy (1962) reported 
that the minimum salinity tolerance varied between 1 and 
5 ppt for flounder as small as 7-10 mm. Bigelow and 
Schroeder (1953) reported that winter flounder are 
commonly found in salinities ranging from 35 ppt to 
water that was fresh enough to drink. They were 
probably including all life history stages in that statement. 

Ziskowski et al. (1991) investigated low dissolved 
oxygen tolerance and behavior of yearling winter flounder 
in the laboratory. Mortality occurred when flounder were 
exposed to 1.1 to 1.5 mg/l dissolved oxygen. Flounder 
were able to withstand an 8-hr exposure to dissolved 
oxygen levels in the 1.2 to 1.4 mg/l range. Low oxygen 
tolerance is not without a price, however. Bejda et al. 
(1992) found that growth of juvenile winter flounder was 
significantly reduced when dissolved oxygen levels were 
maintained at 2 2 mg/l or varied diumally between 2.5 
and 6.4 mg/l for periods of up to 11 weeks. 

Pearcy (1962) conducted tag-recapture studies that 
indicate a relatively stable population of juvenile winter 
flounder within the Mystic River estuary over the summer 
and much lower numbers of juveniles beyond the mouth. 
Other investigations confirm that YOY winter flounder 
remain in the nearshore zone and migrate very little 
dunng their first summer (McCracken 1963; Saucerman 
1990; Saucerman and Deegan 1991). In winter however, 
Pearcy (1962) found that catches increased outside ofthe 
estuary while densities within the estuary dropped, 
implying an outward winter migration. Warfel and 
Memman (1944) made similar observations. Richards 
(1963) found increased numbers of juveniles in offshore 
locations in the winter. Laboratory experiments by 
McCracken (1963) and Pearcy (1962) showed that YOY 
winter flounder were less photonegative than yearling 
flounder. Pearcy (1962) further showed that YOY winter 
flounder became more photonegative in the winter. Thus 
it seems that photoresponse and temperature preferences 
drive the YOY flounder from the shallows in the late fall 
and early winter of their first year and keep older 
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juveniles in deeper, cooler water much ofthe year. 
Several investigators have reported that the highest 

densities of newly settled winter flounder are found on 
muddy substrates (Saucerman 1990; Howell and Molnar 
1995; O'Connor 1997; Phelan et al, in prep). 
Paradoxically, Saucerman (1990) also found that growth 
rates were slowest in these areas. She attributed this 
difference to increased competition for food caused by the 
high density of fish and possibly the detrimental effects of 
low oxygen levels later in the summer. Both Saucerman 
(1990) and O'Connor (1997) felt that smaller juveniles 
prefer finer sediments to bury into as was suggested by 
Gibson and Robb (1992) for the European flounder, 
Pleuronectes platessa In laboratory experiments, young
of-the-year winter flounder < 40 mm SL consistently 
preferred fine-grained sediments (Phelan et al , in prep.) 

Since winter flounder metamorphose at a smaller size 
than other flatfishes (Bigelow and Schroeder 1953), it 
seems unlikely that a newly metamorphosed, 8 to 9 mm 
long flounder actively seeks out these soft muddy areas. 
It is more likely that they are simply deposited there by 
currents. Howell and Molnar (1995) reported that the 
highest catches of YOY winter flounder occurred on 
muddy substrates or muddy substrates covered by leaf 
litter or bivalve beds. 

Witting (1995) and Able and Fahay (1998) have 
shown that specific areas, i e, small coves inside Little 
Egg Inlet in New Jersey, by virtue of location, proximity 
to currents or other factors, may serve as critical habitat, 
supporting high densities of recently settled individuals. 
What these areas have in common is that they are 
depositional areas probably with low current speeds. We 
have already seen that spawning winter flounder take 
advantage of areas of appropriate hydrodynamics and 
current speeds to insure that larvae are retained in the 
nursery areas Perlmutter (1947) and Pearcy (1962) both 
concluded that because eggs and larvae are non-dispersive 
that the nursery grounds will be close to the spawning 
grounds In a sense, it is the spawning adults that choose 
the habitat for YOY winter flounder. Recent studies by 
Pereira et al. (1994) and Curran et al. (1996) support this 
idea. 

Sogard and Able (1991) and Sogard (1992) found 
that YOY winter flounder in Great Bay-Little Egg Harbor 
in New Jersey were more abundant on unvegetated 
substrates Their ability to bury in the sediment and 
change color to match it frees them from dependence on 
vegetation for refuge from predators. In this system. Able 
and Fahay (1998) indicate that juveniles larger than 25 
mm are found in a variety of habitats types, regardless of 
sediment and structure. These habitats include 
macroalgae (Able et al. 1989), marsh creeks (Rountree 
and Able 1992) and to a lesser extent eelgrass (Goldberg 
et al , in prep.). Recent comparisons of habitat-specific 
patterns of abundance and distribution of YOY winter 
flounder in this system, as well in the Hudson-Rantan 
estuary and Long Island Sound, support the conclusion 

that habitat utilization by YOY winter flounder is not 
consistent across habitat types and is highly variable 
among systems and from year to year (Goldberg et al , in 
prep). 

The shallow inshore areas where YOY flounder 
spend their first 5 or 6 months of life are susceptible to 
anthropogenic impacts. Bnggs and O'Connor (1971) 
compared the abundance of 40 different species of fish 
collected from undisturbed areas with natural vegetation 
with those collected where dredge spoil material (mostly 
sand) had been deposited. Species diversity was 
consistently higher over the undisturbed bottoms. Most 
species, including winter flounder, preferred the 
undisturbed bottom. 

There have been a few attempts to relate juvenile 
habitat area to winter flounder production. Saila et al. 
(1965) calculated the theoretical biomass of juveniles 
needed to support the adult fishery. His studies led him to 
conclude that about 30% of the equilibrium yield weight 
is present in juveniles at 5 months of age and that efforts 
to enhance the fishery would be better aimed at culture 
and release of juveniles rather than larvae (Saila et al. 
1965). 

Howe et al (1976) used tagging methodologies to 
investigate the contribution of the Waquoit Bay-Eel Pond 
spawning/nursery areas to the offshore trawl fishery. This 
fishery includes NMFS statistical subareas number 538 
(southern Massachusetts), 521 (west side of South 
Channel), and 526 (Nantucket Shoals and Lightship 
Grounds) By accounting for natural mortality and 
calculating the number of new recruits emigrating from 
these nursery areas and becoming available to the 
offshore fishery, they were able to calculate that Waquoit 
Bay-Eel Pond contributed 0.16% of the recruitment 
required to maintain an equilibrium catch. 

ADULTS 

Laboratory experiments by Reynolds (1977) 
established a preferred habitat temperature for adult 
winter flounder of 13.5°C. This concurs with the findings 
of McCracken (1963) who concluded, based on a review 
of field studies of winter flounder distribution and water 
temperatures, that adults have a preferred temperature 
range of 12-15°C. Results from several experimental 
trawl surveys tend to agree with these results. NEFSC 
trawl surveys captured adults at temperatures of 4-6°C in 
spring and 10-15°C in the fall (Figure 8). In the inshore 
waters of Massachusetts, adults were captured at 5-13°C 
in spring and 9-13°C in the fall (Figure 9). In the 
Hudson-Rantan estuary, most adults were captured at 4
12°C (Figure 10). 

In contrast, Olla et al. (1969) observed actively 
feeding winter flounder where bottom temperatures 
always exceeded 17.2°C. They found active feeding at 
temperatures up to 22.2°C; but at 23°C feeding ceased and 



the flounder buried themselves in the substrate, where 
temperatures 5 or 6 cm below the surface of the sediment 
were 19.8 to 20°C. They concluded that winter flounder 
escape short-term thermal stress by burying in the cooler 
sediments. Although this research seems to be at odds 
with the findings of McCracken (1963) and Reynolds 
(1977), Olla et al (1969) did not report the size of the 
flounder they observed at these high temperatures In 
another part of the study these authors reported stomach 
contents of fish ranging in size from 15 to 36 cm. If the 
fish observed during the high temperature period were 
toward the smaller end of the range reported for the 
feeding portion of their study (i.e., closer to the 15 cm end 
of the range of fish studied), that would likely make them 
yearlings. Reynolds (1977) determined that yearlings 
prefer a temperature of 18 5°C and may be able to tolerate 
these higher temperatures. Larger fish may have left the 
area because many have a lower temperature tolerance 
than smaller fish (McCracken 1963). 

Acclimation is another important factor in 
determining temperature tolerance. Laboratory 
manipulation of acclimation temperature from 4 to 23°C 
increased the cntical thermal maximum from 26 to 32°C 
(Everich and, Gonzalez 1977). If the temperature increase 
was gradual enough, acclimation could have occurred in 
the fish studied by Olla et al. (1969), thereby resulting in 
a higher temperature tolerance. 

Pearcy (1962) reported that catches of adults in the 
upper estuary of the Mystic River, Connecticut, increased 
in February, peaked in March, and continued to be 
relatively high into April. Bottom temperatures dunng 
this period range from 1-10°C. He reported that peak 
spawning occurred when temperatures were between 2 
and 5°C. Kennedy and Steele (1971) reported that peak 
spawning of winter flounder in Long Pond, Conception 
Bay, Canada occurred in May and early June. Water 
temperatures in May when the bulk of the spawning 
occurred were 8°C (Kennedy and Steele 1971). Van 
Guelpen and Davis (1979) reported that peak spawning in 
Conception Bay occurred in June in 1979 when water 
temperatures were 6°C. 

McCracken (1963) found that winter flounder 
survived in salinities as low as 15 ppt, confirming earlier 
work done by Sumner (1907) Although Bigelow and 
Schroeder (1953) reported that winter flounder commonly 
live in areas where salinities are so low that the water was 
fresh enough to drink to areas where salinity was 35 ppt, 
McCracken (1963) found that winter flounder died in 72 
to 96 hours when exposed to salinities of 8 ppt. It is 
difficult to assess the significance of these studies by 
McCracken (1963) since he did not always make it clear 
what size fish he used in these experiments. Bigelow and 
Schroeder (1953) probably are including all age groups in 
the salinity range that they cite and salinity tolerance is 
known to be age dependent Adults captured in the 
Hudson-Rantan estuary were found at salinities as low as 
15 ppt, although most were found at > 22 ppt (Figure 10). 
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Since adult winter flounder prefer to live in cooler 
waters, they do not often encounter low oxygen events 
However, these do occur from time to time in response to 
high nutrient loading. Howell and Simpson (1994) 
described the distribution and abundance of finfish and 
lobsters in Long Island Sound in relation to near-bottom 
dissolved oxygen levels. Winter flounder abundance was 
significantly lower when dissolved oxygen was below 2.0 
to 2.9 mg/l. Also significant was the decline in mean 
length of winter flounder as dissolved oxygen levels 
declined. Since the catch included fish ranging in size 
from 7 to 35 cm, it is probable that the decline in size of 
fish results from larger fish leaving the area before 
smaller fish which are more tolerant of low dissolved 
oxygen conditions (see above) Howell and Simpson 
(1994) also raised the possibility that the mean length 
difference was caused by slower growth rates caused by 
low dissolved oxygen (Bejda et al 1992). This may be 
possible if low oxygen events are of long duration or 
periodic in nature. 

With the exception of Georges Bank and Nantucket 
Shoals (see Figure 3), mature winter flounder are found in 
very shallow waters during the spawning season 
Bigelow and Schroeder (1953) reported that winter 
flounder spawn on sandy bottom, often in water as shoal 
as one to three fathoms but as deep as 25 to 40 fathoms on 
Georges Bank. Kennedy and Steele (1971), working in 
Conception Bay, Newfoundland found that winter 
flounder spawn in May and June on sandy bottoms at 
depths less than 6 m McCracken (1963) reported that 
spawning in Passamaquoddy Bay, New Brunswick 
occurred at depths of 0 to 9 m. Pearcy (1962) reported 
that winter flounder spawn in the Mystic River, 
Connecticut at depths of 5 m or less. 

After spawning, adults may remain in the spawning 
areas before moving to deeper waters when water 
temperatures reach 15°C (McCracken 1963). Kennedy 
and Steele (1971) found them at depths of 7-10 m in the 
post-spawning period. McCracken (1963) found that 
winter flounder remained in Passamaquoddy Bay after 
spawning, but in deeper water (around 20 m). Trawl 
surveys conducted by NEFSC show the bulk of the adult 
catch occurred in water 25 m or less in the spring (during 
and just after spawning) and 25 m or deeper in the fall 
(prior to spawning) (Figure 8). The Massachusetts survey 
shows similar results (Figure 9). Post-spawning 
migrations of winter flounder along the New Jersey coast 
appear to be limited by the 40 m contour (Danila and 
Kenmsh 1982; Scarlett 1983). Migration of flounder 
from shoal areas south and east of Cape Cod appears to be 
limited by the 55 m contour (Howe and Coates 1975). 

Laboratory experiments by McCracken (1963) 
demonstrated that adult winter flounder are less sensitive 
to light than YOY and juvenile winter flounder Small 
flounder (6-9 cm) tended to be photophihc while 
intermediate fish (12-18 cm) were photophobic Large 
fish (28-33 cm) responded negatively to bright lights but 
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not to lower levels of illumination. Casterlin and 
Reynolds (1982) showed that the locomotor activity 
patterns of sixteen 12 to 13 cm flounder they examined in 
the laboratory were decidedly nocturnal. The spatial 
distribution of flounder observed in the field (YOY in the 
nearshore zone, older juveniles further offshore) may in 
part be due to these differences. 

GEOGRAPHICAL DISTRIBUTION 

Winter flounder are distributed from the Strait of 
Belle Isle, off northwest Newfoundland, to Cape Charles, 
Virginia (Figure 11). The area of highest abundance is 
the Gulf of St. Lawrence, off New Brunswick and 
northern Nova Scotia 

EGGS AND LARVAE 

The geographical distribution of winter flounder eggs 
and larvae matches that reported for the adults. Eggs and 
larvae have been collected from Canadian waters (Scott 
1929; Locke and Courtenay 1995) to Chesapeake Bay 
(Dovel 1967). Govoni (1973) studied the icthyoplankton 
communities of the Acushnet and Westport Rivers in 
Massachusetts and found winter flounder larvae in his 
collections. Collection of winter flounder eggs in benthic 
sled samples show that coastal salt ponds in Rhode Island 
play host to much of the spawning activity in Rhode 
Island waters (Crawford and Carey 1985; Hughes, in 
prep.). The Pettaquamscut River and Narragansett Bay 
also support winter flounder spawning (Anonymous 1972; 
Bourne and Govoni 1988). 

Collection of eggs and larvae by Pearcy (1962) and 
Monteleone (1992) confirm that the waters of Connecticut 
and Great South Bay, New York also serve as spawning 
areas for winter flounder. Winter flounder were the most 
common larva collected by Croker (1965) in the Sandy 
Hook estuary in New Jersey. The Navesink, the 
Shrewsbury, (Scarlett 1991), and the Manasquan rivers 
(Scarlett and Allen 1989) in New Jersey all harbor winter 
flounder larvae dunng the spawning season. Both the 
Indian River and Rehoboth Bay in Delaware also serve as 
spawning areas for winter flounder (Daiber et al 1976). 

Eggs and larvae of winter flounder have been 
reported from several areas (the Magothy and Patuxent 
Rivers and the upper bay near the Susquehanna River) at 
the northern end of Chesapeake Bay (Dovel 1967, 1971) 
It seems unlikely, at first, to find winter flounder 
spawning so far south, in Chesapeake Bay. However, 
Chesapeake Bay runs almost north and south, and the 
Magothy River is located at the same latitude as the 
important spawning areas mentioned above in Delaware 
Bay, the Indian River and Rehoboth bays located a short 
distance to the east. 

Winter flounder eggs and larvae have also been 

collected in standard plankton tows utilizing bongo nets 
by the NEFSC MARMAP survey (Figures 12 and 13). In 
some cases this was probably due to the nets accidentally 
hitting the bottom, but this explanation is not sufficient to 
explain the large numbers of eggs collected on Georges 
Bank and Nantucket Shoals. The large numbers of eggs 
collected on Georges Bank are probably due to the unique 
hydrodynamic conditions found there. The water mass on 
central Georges Bank is characterized by lack of 
stratification at any time of year due to good vertical 
mixing (Backus and Bourne 1987). These same forces 
probably lift demersal eggs up into the water column and 
make them available to sampling by bongo net. 

YOUNG-OF-THE-YEAR AND JUVENILES 

Young winter flounder are ubiquitous along the east 
coast of the United States from Canada (McCracken 
1963) to Virginia's eastern shore where Richards and 
Castagna (1970) found that of seventy species collected, 
winter flounder was the tenth most numerous. Saco Bay 
in Maine has young winter flounder (Casterlin and 
Reynolds 1982) and there was a hatchery for winter 
flounder for many years in Boothbay (Bigelow and 
Schroeder 1953). Massachusetts (Pierce and Howe 1977; 
Heck et al. 1989; Saucerman 1990), Rhode Island (Saila 
et al 1965; Oviatt and Nixon 1977) and Connecticut 
(Pearcy 1962; Richards 1963; Howell and Simpson 1994; 
Carlson et al. 1997; Gottschall et al., in review) are all 
home to young winter flounder. Briggs and O'Connor 
(1971) documented the presence of young winter flounder 
on the south shore of Long Island, New York, while Franz 
and Tanacredi (1992) described the food habits of young 
winter flounder in Jamaica Bay, New York. Juvenile 
winter flounder are a year-round resident of the New 
York Bight (Figure 5). Juveniles are common in the 
inshore waters of New Jersey (Rountree and Able 1992; 
Sogard 1992) and Delaware (Daiber et al. 1976). 
Offshore, the presence of winter flounder juveniles has 
been demonstrated by numerous surveys conducted by the 
Northeast Fisheries Science Center (Figure 3). 

ADULTS 

Winter flounder have been captured as far north as 
Ungava Bay in Labrador (Kendall 1909) and as far south 
as Georgia (Hildebrand and Schroeder 1928). In bottom-
trawl surveys conducted by the NEFSC, winter flounder 
adults and juveniles are common on Georges Bank and in 
shelf waters as far south as the mouth of Chesapeake Bay 
during all seasons (Figure 3). Inshore trawl surveys in 
Massachusetts (Figure 4), Rhode Island (Saila 1961, 
Jeffries and Terceiro 1985) and Long Island Sound 
(Simpson et al. 1994) show them to be ubiquitous in those 
areas as well. Winter flounder are also common in the 
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lower reaches of the Hudson River (Boyce Thompson 
Institute for Plant Research, Estuarine Study Group 1977; 
Able et al. 1999) and the New York Bight/Hudson-
Raritan estuary (Phelan 1992; Figure 5). They also use 
other protected bays and coastal ponds along the New 
Jersey coast (Tatham et al. 1984). 

STATUS OF THE STOCKS 

HISTORICAL PERSPECTIVE 

Commercial fisheries for winter flounder flourished 
prior to 1980, even in the southern end of the range. 
Winter flounder was one of the dominant species in the 
Indian River and Rehoboth Bays in Delaware in the 
1960's, but catches have since declined (Daiber et al 
1976). The commercial landings of winter flounder in 
1970 in Delaware totaled only 2,300 pounds, but a 
moderate sport fishing effort persisted at that time 
especially in Indian River Bay (Daiber et al. 1976). 
Hildebrand and Schroeder (1928) reported the existence 
of a winter commercial fishery for winter flounder in 
Chesapeake Bay in the 1920s; it was the principal fish 
caught in fyke nets in the winter (Hildebrand and 
Schroeder 1928). The bulk of the landings were in 
Maryland, and the rest in Virginia. The Maryland 
landings would seem to support the statement made by 
Hildebrand and Schroeder (1928) that winter flounder are 
more common in Maryland waters than in the lower 
(more southern) areas of Chesapeake Bay. Although 
Hildebrand and Schroeder (1928) reported the presence of 
winter flounder as far south as Georgia, they also note 
that they were not taken in commercial numbers south of 
Chesapeake Bay. Commercial landings of winter 
flounder peaked in the 1980s throughout its range (Brown 
and Gabriel 1998) and have since declined. 

CURRENT STATUS OF THE STOCKS 

Winter flounder are currently managed as three 
stocks, Gulf of Maine, southern New England-Middle 
Atlantic, and Georges Bank (Brown and Gabriel 1998). 
Both the Gulf of Maine Stock and the southern New 
England-Middle Atlantic stocks are considered over
exploited. Although there is some evidence that stock 
rebuilding has begun on Georges Bank, stock levels 
remain well below the historic average (Brown and 
Gabnel 1998). 

Biomass in the Gulf of Maine stock declined from 
19,600 mt in 1979 to a low of 6,000 mt in 1991 (Brown 
and Gabriel 1998) (Figure 14). The current biomass 
estimate for 1997 stands at 8,900 mt less than half of the 
1979 value (Brown and Gabriel 1998). In the southern 
New England-Middle Atlantic stock, stock biomass 
declined from 39,000 mt in 1981 to a record low of 8,500 

mt m 1992 (Brown and Gabriel 1998; Figure 14). 
Contributions from strong year classes in 1992 and 1994 
have rebuilt the stock biomass to 18,000 mt in 1996 but 
the stock remains overexploited (Brown and Gabriel 
1998). The NEFSC autumn bottom trawl survey biomass 
index declined from the mid-1970's until 1991 when it 
reached a record low of 0.14 kg per tow (Brown and 
Gabriel 1998; Figure 14). Although it has increased 
somewhat since then (1.76 kg per tow in 1996) it remains 
significantly below former levels (Brown and Gabriel 
1998). 

RESEARCH NEEDS 

Although we know more about winter flounder than 
many other species, there are many more questions 
waiting to be answered. The driving forces behind winter 
flounder movements are still poorly understood. 
Temperature certainly plays a role, but does not explain 
all movements. The role of light intensity, food 
availability, and predators needs further attention. 

Although we speak about spawning habitat and 
juvenile habitat as if they are separate things it is clear 
that they must be linked somehow. If spawning habitat is 
lost through man's activities, is the adjacent juvenile 
habitat lost as well for lack of juveniles to fill it? 
Pinpointing and mapping of habitats through the use of 
GIS technology on a large scale and over different 
ontogenetic stages will help us to maintain a more holistic 
outlook on habitat 

The utilization of shallow bays and estuanes by 
winter flounder for spawning and nursery areas has been 
well documented. Less well studied is the utilization of 
nearby coastal waters. Lux and Kelly (1982) found 
winter flounder eggs at 13 coastal stations and 3 offshore 
stations and larvae at 17 coastal stations and 7 offshore 
stations between Provincetown to Cape Ann. A similar 
study by Howe (1973) also collected winter flounder eggs 
and larvae. Both studies generally collected relatively low 
densities of eggs and larvae but Howe (1973) showed that 
larval densities were highest at the mouths of estuaries. 
These collections probably represent eggs and larvae 
washed out of the estuaries by tidal flushing. Subsequent 
beam trawling in these areas failed to collect substantial 
numbers of YOY flounder indicating a low survival rate. 

In contrast, Marine Research, Inc. (1986) reported 
good growth in winter flounder larvae that had been 
washed out of the Plymouth Harbor-Duxbury Bay 
estuary. Epibenthic sled collections of winter flounder 
eggs outside the estuary along the coast showed that 
spawning occurred there as well. The relative 
contribution of this coastal spawning to winter flounder 
recruitment needs further study. 

The different components of these "stock complexes" 
need to be better described and their habitat preferences 
and needs documented. An attempt was made in 1980 to 
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separate stocks using eye lens proteins (Schenck and Saila 
1982) but this effort only covered a small area near the 
Millstone Point area. The study showed that even in this 
small area there was a significant mixing of different 
stocks. A more comprehensive effort, spanning the entire 
range of the species needs to be done utilizing more 
modem techniques such as mitochondrial DNA 
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Table 1. Summary of life history and habitat parameters for winter flounder, Pseudopleuronectes americanus. 

Life Stage Temperature Salinity Dissolved Oxygen 

Eggs1 

Larvae2 

YOY3 

Juveniles 4 

Adults 5 

Spawning initiated at 

about 3°C, 

highest percent hatch 

at 3-5°C; 

18°C lethal. 


No feeding or 

metamorphosis at 2°C, 

hatch from 1-12°C, 

larvae most abundant at 2
15°C. 


Found at 2-29.4°C; 

Laboratory study suggests 

preferred temperature is 

19.5°C, 

30°C may be lethal. 


Commonly found at 10
25°C dunng summer and 

fall. 


0.6-23°C, 

12-15°C suggested as 

preferred; 

upper incipient lethal limit 

is 27°C. 


Found from 10-32 ppt; 
salinity has little effect on 
survival or hatch. 

Found at 3.2-30 ppt; higher 
on Georges Bank. 

Found at 23-33 ppt; 
5 ppt suggested by 
laboratory study as lower 
avoidance salinity. 

Collected 19-21 ppt, 
10 ppt suggested as lower 
avoidance level. 

Found at 15-33 ppt. 

Found at 11.1-14 2 mg/l 

Found at 10 0-16 1 mg/l. 

Constant 2.2 mg/l or dmmal vanation 
from 2 6-6.4 mg/l adversely affects 
growth. 

Lower dissolved oxygen associated with 
lower mean length of catch suggesting 
avoidance by larger fish or reduced 
growth 

' Breder 1923, Scott 1929, Bigelow and Schroeder 1953, Pearcy 1962, Williams 1975, Rogers 1976, Buckley 1982, Crawford and Carey 1985, Scarlett 
and Allen 1989, Monteleone 1992 

2 Bigelow and Schroeder 1953, Pearcy 1962, Dovel 1967, 1971, Buckley 1982, Frank and Leggett 1983, Scarlett and Allen 1989, Monteleone 1992 
3 Pearcy 1962, Richards and Castagna 1970, Bnggs and O'Connor 1971, Oviatt and Nixon 1977, Pierce and Howe 1977, Reynolds and Casterlin 1985, 

Heck et al 1989, Bejda et al 1992, Rountree and Able 1992 
4 Pearcy 1962, Oviatt and Nixon 1977, Casterlin and Reynolds 1982, Reynolds and Casterlin 1985, Carlson et al 1997 
5 Breder 1923, McCracken 1963, Olla et al 1969, Richards and Castagna 1970, Haednch and Haednch 1974, Howe and Coates 1975, Tyler and Dunn 

1976, Oviatt and Nixon 1977, Van Guelpen and Davis 1979, Jeffries and Terceiro 1985, Reynolds and Casterlin 1985, Howell and Simpson 1994, 
Carlson et al 1997 
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Table 1. cont'd. 

Life Stage Depth Substrate 

Eggs1 
Found at 0.3-4.5 m (inshore), 
90 m or less on Georges 
Bank. 

Mud to sand or 
gravel. 

Larvae2 
1-4 5 m inshore. Fine sand, gravel. 

YOY3 
0.5-12 m inshore. Mud to sand with 

shell or leaf litter. 

Juveniles 4 
Peak abundance of flounder 
less than 200 mm occurs in 
18-27 m of water in Long 
Island Sound in April and 
May In Canadian waters, 
juveniles were most 
abundant at 11 -18 m 
Less than 100 m offshore. 

Equally abundant on 
mud or sand shell. 

Adults 5 
Most 1 -30 m inshore, 
shallowest during spawning, 
less than 100 m offshore. 

Mud, sand, cobble, 
rocks, boulders. 

Vegetation Currents 

Diatom mats, 
drifting macroalgae. 

Hydrodynamics 
work to retain larvae 
in nursery areas. 

Ulva, eelgrass and 
unvegetated adjacent 
areas. 

1 Scott 1929; Bigelow and Schroeder 1953, Pearcy 1962, Anonymous 1972, Crawford and Carey 1985, Scarlett and Allen 1989, Monteleone 1992 
2 Pearcy 1962, Frank and Leggett 1983, Crawford and Carey 1985, Scarlett and Allen 1989, Monteleone 1992 
3 Bnggs and O'Connor 1971, Heck et al 1989, Saucerman 1990, Sogard 1992, Howell and Molnar 1995, Gottschall et al , in review 
4 McCracken 1963, Richards 1963 
5 Breder 1923, Mansueti 1962, McCracken 1963, Olla et al 1969, Kennedy and Steele 1971, Van Guelpen and Davis 1979, Macdonald and Green 1986, 

Steimle et al 1993 
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Table 1 cont'd. 

Life Stage 

Eggs1 

Larvae2 

YOY3 

Juveniles 4 

Adults 5 

Predators 

Mackerel, 
Sarsia tubulosa 

Crangon sp., 
summer flounder, 
striped searobin 
(Pnonotus evolans) 

Cormorants, 
snapper bluefish, 
gulls 

Goosefish, 
spiny dogfish, 
sea ravens, 
stnped bass, 
seals, 
sculpms 

Prey 

Nauplii, 
invertebrate eggs, 
protozoans, 
polychaetes 

Amphipods, 
copepods, 
polychaetes, 
bivalve siphons 

Sand dollars, 
bivalve siphons, 
polychaetes, 
amphipods, 
Crangon sp. 

Amphipods, 
polychaetes, 
bivalves or siphons, 
capelm eggs, 
crustaceans 

Migration 

Limited; 

deeper for first winter. 


Movement to deeper waters as size 

increases. 


Inshore in fall, 

offshore in spnng, long post-spawn 

migrations in some fish. 


2 Pearcy 1962, Dovel 1971, Frank and Leggett 1983 
3 Linton 1921, Poole 1964, Saucerman 1990, Saucerman and Deegan 1991, Witting and Able 1993, Howell and Molnar 1995, Witting and Able 1995, 
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Figure 1. The winter flounder, Pseudopleuronectes americanus (Walbaum) (from Goode 1884). 
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Cenanthidae 3 9% 
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Animal Remains 13 3% Tnchobranchus glacia 6 7% Ampharetjdae 6 6% 
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Polychaeta 6 7% Maldamdae 7 0% 

Lumbrineris tragi lis 6 7% Ampharetjdae 7 4% 
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HydrozoaS 1% Aeginma longicomis 6 3% 

Byblis senrata 5 7% 
Leptochemjs pmguis 9 9% Pontogeneia inermis 9 2% Leptocheirus pmguis 8 5% 

Maldamdae 6 2% Aeginma longicorms 6 5% Anthozoa 8 6% 

Figure 2. Abundance (percent occurrence of 10 most common prey items) ofthe major prey items of winter flounder, by 
size class, collected during NEFSC bottom trawl surveys from 1973-1980 and 1981-1990. The category "animal 
remains" refers to unidentifiable animal matter. Methods for sampling, processing, and analysis of samples differed 
between the time periods [see Reid et al (1999) for details]. 
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b) 1981-1990 
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Amphipoda 10 0% 

Figure 2. cont'd 
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Winter Flounder 


NMFS Trawl Surveys 

Spring 1968-97 

Juveniles (<27cm) 


Figure 3. Distribution and abundance of juvenile and adult winter flounder collected during NEFSC bottom trawl 
surveys during all seasons from 1963-1997. Densities are represented by dot size in spring and fall plots, while only 
presence and absence are represented in winter and summer plots [see Reid et al. (1999) for details]. 
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Figure 3. cont'd. 
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Figure 4. Distribution and abundance of juvenile and adult winter flounder in Massachusetts coastal waters collected 
during the spring and autumn Massachusetts trawl surveys, 1978-1996 [see Reid et al. (1999) for details]. 
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Juveniles (<28 cm) Juveniles (<28 cm) 


Winter Flounder Winter Flounder 
Hudson-Rantan Estuary Hudson-Rantan Estuary 

Summer 1992 - 1996 Fall 1992- 1996 
Juveniles (<28 cm) Juveniles (<28 cm) 

Figure 5. Distribution and abundance of juvenile and adult winter flounder collected in the Hudson-Rantan estuary, 
based on Hudson-Raritan trawl surveys during winter (January-March), spring (April and June), summer (July-August), 
and fall (October-December) from January 1992 to June 1997 [see Reid et al. (1999) for details]. 
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Figure 5. cont'd 
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Winter Flounder Eggs 
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Figure 6. Abundance of winter flounder eggs relative to water column temperature (to a maximum of 200 m) and 
bottom depth from NEFSC MARMAP ichthyoplanktdn surveys, February to June, 1978-1987 (all years combined. 
Open bars represent the proportion of all stations surveyed, while solid bars represent the proportion ofthe sum of all 
standardized catches (number/10 m2) 
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Winter Flounder Larvae 
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Figure 7. Abundance of winter flounder larvae relative to water column temperature (to a maximum of 200 m) and 
bottom depth from NEFSC MARMAP ichthyoplankton surveys, March to September, 1977-1987 (all years combined. 
Open bars represent the proportion of all stations surveyed, while solid bars represent the proportion ofthe sum of all 
standardized catches (number/10 m2). 
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Figure 8. Abundance of juvenile and adult winter flounder relative to bottom water temperature and depth based on 
spring and autumn NEFSC bottom trawl surveys Open bars represent the proportion of all stations surveyed, while 
solid bars represent the proportion ofthe sum of all standardized catches (number/10 m2). 
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Figure 9. Abundance of juvenile and adult winter flounder relative to bottom water temperature and depth based on 
Massachusetts inshore bottom trawl surveys (spring and autumn 1978-1996, all years combined) Open bars represent 
the proportion of all stations surveyed, while solid bars represent the proportion ofthe sum of all standardized catches 
(number/10 m2). 
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Figure 10. Abundance of juvenile and adult winter flounder relative to bottom water temperature, dissolved oxygen, 
depth, and salinity from Hudson-Rantan estuary trawl surveys (January 1992 - June 1997, all years combined). 
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Figure 11. Distribution and abundance of winter flounder from Newfoundland to Cape Hatteras based on research trawl 
surveys conducted by Canada (DFO) and the United States (NMFS) from 1975-1994 (http//www-orca.nos.noaa gov/ 
projects/ecnasap/ecnasaptablel html). 



Page 35 

Winter Flounder 

Eggs 


M A R M A P Ichlhyoplankton Surveys 


61-cm Bongo Net , 0 505-mm mesh 


February , 1978 to 1987 


Number of tows » 459, with eggs = 3 


E e e s / 1 0 m  ' 

• None 

• l t o < 1  0 

• 10 to 34 

76 75 74 73 72 71 70 69 68 67 66 65 76 73 74 73 72 71 70 69 68 67 66 65 

Winter Flounder 
Eggs 

M A R M A  P Ichlhyoplankton Surveys 

61-cm Bong  o Net , 0 505 -m m mes  h 

Apri l , 1978 to 1987 

Number of tows •= 1020, with eggs = 71 

Eees/lOm2 

* None 

• I to <10 

• 10to<100 

• 100 to 124 

76 75 74 73 72 71 70 69 68 67 66 65 76 75 74 73 72 71 70 69 68 67 66 65 

Figure 12. Distribution and abundance of winter flounder eggs collected during NEFSC MARMAP ichlhyoplankton 
surveys from February to June, 1978-1987 [see Reid et al. (1999) for details]. 
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Figure 13. Distribution and abundance of winter flounder larvae collected during NEFSC MARMAP ichthyoplankton 
surveys from March to July, and September, 1977-1987 [see Reid et al. (1999) for details]. 
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Figure 13. cont'd 
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Figure 14. Commercial landings and survey indices (from the NEFSC bottom trawl surveys) for winter flounder stocks 
from Georges Bank, the Gulf of Maine, and southern New England-Middle Atlantic Bight. 
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