Demonstration of Opti-Tool: Buzzards Bay Watershed Case Study

Prepared for:

United States Environmental Protection Agency – Region 1

5 Post Office Square

Boston, MA 02109

Prepared by:

Tetra Tech, Inc.

10306 Eaton Place

Fairfax, VA 22030

December 30, 2016

Abstract

Managing nutrients in stormwater continues to be a high priority for Environmental Protection Agency (EPA) Region 1 and many of the New England states. Retrofitting existing development with stormwater controls to adequately reduce nutrient loadings presents both technical and economic challenges that require a comprehensive planning process. A watershed-scale, decision support system that is based on cost optimization is needed to developing the most cost effective program to achieve needed load reductions to be in compliance with permit requirements based on TMDLs or other watershed goals.

Consequently, EPA Region 1 has developed a spreadsheet-based Stormwater Management Optimization Tool (Opti-Tool) to assist stormwater managers in developing technically sound and economically feasible management plans to address stormwater impacts and reduce excessive nutrient loadings. Opti-Tool consists of a Microsoft-Excel platform and external EPA SUSTAIN BMP process and optimization modules. The user interacts with the Excel platform for data input, and can direct Excel to call the SUSTAIN module to estimate BMP performance and provide optimization at a given assessment point in the watershed.

The user-friendly Opti-Tool provides the ability to evaluate options for determining the best mix of structural BMPs in a particular geographic area to achieve quantitative water resource goals. The tool incorporates long-term runoff responses (Hydrologic Response Unit [HRU] timeseries) for regional climate conditions that are calibrated to regionally representative stormwater data and annual average load export rates from 9 major land uses. The tool includes regionally representative BMP cost functions and regionally calibrated BMP performance parameters for four pollutants, including total phosphorus (TP) and total nitrogen (TN), in order to calculate long-term cumulative load reductions for a variety of structural controls. Structural controls simulated by the tool include low impact development (LID) and green infrastructure (GI) practices, such as infiltration systems, bio-filtration, and gravel wetlands.

This document demonstrates the Opti-Tool's capabilities through a case study in a pilot watershed in southern New England. The selected pilot watershed (758 acres in size) is located in the Town of Fairhaven, MA, and drains to the Buzzards Bay Estuary. This Buzzards Bay case study had three primary objectives:

- 1. Develop a boundary condition using the calibrated SWMM model developed for Opti-Tool and using the local hourly precipitation and daily temperature data to represent sitespecific loading and climate conditions.
- 2. Evaluate the trade-offs in cost and management performance between design standard criteria and an aggregated BMP optimization approach at the watershed scale, using the planning level mode in Opti-Tool.
- 3. Estimate the additional benefits of developing a cost and water quality performance curve (cost-effectiveness curve) for a more detailed spatial optimization approach at the land use level in the study watershed, using the implementation level mode in Opti-Tool.

This case study documents the various steps taken in developing this application to demonstrate three primary objectives.

The first objective demonstrates the development of the HRU timeseries for each land use category using the precipitation and temperature data collected at the New Bedford Airport gage. The Opti-Tool installation package includes calibrated HRU-SWMM models and step-by-step instructions through a HRU utility tool to apply the HRU-SWMM models using the local climate data. The HRU utility tool is used to reformat the SWMM model output timeseries into the format required for use with Opti-Tool in this case study.

The second objective evaluates two design scenarios to identify the BMP storage volume needed to meet a given design criterion (e.g., sized to hold 1 inch and 0.25 inch of runoff from the contributing impervious cover). Design storage capacities for holding 1 inch and 0.25 inches of runoff depth from 217.4 acres of impervious drainage yielded nitrogen load reductions of 44.8% and 29.9%, respectively, with associated BMP cost estimates of \$18.25 million (\$7,970/lb. N reduced) and \$4.56 million (\$1,190/lb. N reduced, respectively. In terms of evaluating the scenarios on a cost per pound of nitrogen reduced, the smaller design storage capacity is significantly more cost efficient. The optimized solution within the Planning Level Analysis to target the 29.9% TN load reduction, comprises a mixture of 3 BMP categories of different sizes for a cost of \$4.31 million (a saving of \$250,000).

The third objective develops a cost-effectiveness curve, which provides decision makers the opportunity to pick the most cost-effective solution for achieving reduction targets. An optimized solution for 29.9% TN load reduction target in the Implementation Level Analysis provides a more detailed mixture of 20 different BMP sizes for a total cost of \$2.55 million and shows a \$1.75 million saving over the optimized solution in the Planning Level Analysis.

The results of this case study provide quantitative technical guidance to support the watershedbased MS4 permit. The planning level mode is applied to look at the "bigger picture" of available management opportunities in the study area, while the more detailed Implementation Level Analysis mode demonstrates the power of optimization using more detailed information and analysis, culminating in the development of a cost-effectiveness curve showing a wide range of TN annual load reduction solutions and associated costs.

Table of Contents

1.	Inti	roduction	
2.	Dat	a Review	
2.1.	1. GIS Data		
2.2.	Clir	nate Data	
2.3.	Stor	mwater Quality Data	
3.	Dev	relop Management Categories	
4.	Est	ablish Baseline Conditions	
5.	Setu	ap Opti-Tool	
5.1.	Plar	nning Level Analysis	
5.1.	1.	Management Objective	
5.1.	2.	Optimization Target	
5.1.	3.	Watershed Information	
5.1.	4.	BMP Information	
5.1.	5.	Run Design Scenario – BMP Storage Capacity	
5.1.	6.	Run Optimize Scenario – BMP Storage Capacity	
5.2.	Imp	lementation Level Analysis	
5.2.	1.	Load Watershed Map (Optional)	
5.2.	2.	Watershed Information	
5.2.	3.	Land Use Information	
5.2.	4.	Pollutant Definition	
5.2.	5.	Add Subwatersheds/Junctions	
5.2.	6.	Add BMPs	
5.2.	2.7. Optimization Setup		
5.2.	8.	Create Input File and Run	
5.2.	9.	View Results	
6.	Sun	nmary of Case Study Results	
Ref	eren	ces	
Арр	pend	ix A. BMP design parameters used in the case study	
	Appendix B. Method for determining stormwater control design volume (DSV) (i.e., capacity) using long-term cumulative performance curves		

Acronyms and Abbreviations

BMP	Best Management Practice
CE-Curve	Cost Effectiveness Curve
DEM	Digital Elevation Model
DSV	Design Storage Volume
EPA	United States Environmental Protection Agency
GI	Green Infrastructure
GIS	Geographic Information System
HRU	Hydrologic Response Unit
HSG	Hydrologic Soil Group
in.	Inches
ISR	Internal Storage Reservoir
lb	Pounds
LID	Low Impact Development
MA	Massachusetts
MS	Microsoft
MS4	Municipal Separate Storm Sewer System
NCDC	National Climatic Data Center
NEP	Buzzards Bay National Estuary Program
NH	New Hampshire
NOAA	National Oceanic and Atmospheric Administration
NPDES	National Pollutant Discharge Elimination System
O&M	Operation and Maintenance
Opti-Tool	Stormwater Management Optimization Tool
PET	Potential Evapotranspiration
SUSTAIN	System for Urban Stormwater Treatment and Analysis Integration
SW	Stormwater
SWMM	Storm Water Management Model
TIC	Total Impervious Cover
TMDL	Total Maximum Daily Load
TN	Total Nitrogen
TP	Total Phosphorus
TSS	Total Suspended Solids
Zn	Zinc

1. Introduction

Stormwater (SW) is a leading cause of poor water quality. Controlling and treating discharges of SW runoff involve reducing pollutant loads of nutrients, sediments and metals commonly found in SW runoff, as well as addressing excessive volumes of runoff that cause flooding.

Managing stormwater runoff, especially from highly developed urban areas, and designing SW controls can be technically difficult and costly. To address these issues, EPA Region 1 has developed the **Opti-Tool**, a spreadsheet-based stormwater best management practices optimization tool with two different design levels for use by municipal SW managers and their consultants. The tool supports development of technically sound, robust, and optimized cost-effective SW management plans, which are capable of demonstrating accountable progress and compliance with stormwater (MS4) permit requirements.

The user-friendly Opti-Tool provides the ability to evaluate options for determining the best mix of structural BMPs in a particular geographic area to achieve quantitative water resource goals. The tool incorporates long-term runoff responses (Hydrologic Response Unit [HRU] timeseries) for regional climate conditions that are calibrated to regionally representative stormwater data and annual average load export rates from 9 major land uses. The tool includes regionally representative BMP cost functions and regionally calibrated BMP performance parameters for four pollutants, including total phosphorus (TP) and total nitrogen (TN), in order to calculate long-term cumulative load reductions for a variety of structural controls. Structural controls simulated by the tool include low impact development (LID) and green infrastructure (GI) practices, such as infiltration systems, bio-filtration, and gravel wetlands.

The *Planning Level Analysis* in Opti-Tool provides an easy and quick way for managers and decision makers to develop and evaluate management scenarios for applying BMPs at the watershed-scale and determining simplified watershed-scale optimized solutions that identify the best mix of BMPs and associated design capacities to achieve a specified reduction pollutant target for the least cost. The MS Excel Solver quickly searches hundreds of possible BMP sizing combinations through the lookup function using the BMP performance curves developed for EPA Region 1. It must be noted that the land use specific annual loading rates and BMP specific performance curves have been calibrated to be representative of the New England Region. Opti-Tool can be readily adapted to represent site-specific loading and climate conditions at specific locations of interest both within and outside of the New England Region.

The *Implementation Level Analysis* in Opti-Tool provides stormwater engineers/professionals with a more detailed and flexible analysis tool to determine the best mix of structural BMPs for achieving watershed management goals and maximizing other ancillary environmental benefits, while also minimizing BMP costs. The resulting cost-effectiveness curve provides decision makers the opportunity to pick among the most cost-effective solutions for achieving a range of reduction targets. The watershed managers can also use this curve to identify the estimated costs associated with varying load reduction goals.

In order to illustrate a roadmap toward watershed management planning designed to meet watershed management goals including MS4 permit load requirements, EPA supported this case study in a pilot watershed in southern New England. The selected pilot watershed (758 acres in size) is located in the Town of Fairhaven, MA, and drains to the Buzzards Bay Estuary, see Figure 1. The Buzzards Bay Stormwater Collaborative program has a goal of identifying stormwater discharges that are contributing to shellfish bed closures and other pollutant impairments, including nitrogen, which is the nutrient that usually limits the growth of algae in estuarine and marine waters.

In this case study, the management objective of reducing stormwater nitrogen loads from the study area's watershed was used to demonstrate the functionality of the tool in both the Planning Level and Implementation Level Analysis modes. The planning level mode was applied to look at the "bigger picture" of available management opportunities in the study area, while the more detailed Implementation Level Analysis mode demonstrated the power of optimization using more detailed information and analysis, culminating in the development of a cost-effectiveness curve showing a wide range of TN annual load reduction solutions and associated costs.

This case study also demonstrates the development of the HRU timeseries for each land use category using local precipitation and temperature data representative of the study area. The Opti-Tool installation package includes calibrated HRU-SWMM models and step-by-step instructions through a HRU utility tool to apply the HRU-SWMM models using the local climate data. The HRU utility tool also reformats the SWMM model output timeseries into the format required for use with Opti-Tool.

This document includes 6 chapters starting with this *Introduction*, and followed by 2. *Data Review*, 3. *Develop Management Categories*, 4. *Establish Baseline Conditions*, 5. *Setup Opti-Tool*, and the 6. *Summary of Case Study Results*. This document also provides step-by-step instructions for setting up the Opti-Tool for both the *Planning Level Analysis* and *Implementation Level Analysis*.

Figure 1. Selected pilot watershed location in the Town of Fairhaven, MA

2. Data Review

The data collection effort was carried out in collaboration with the Buzzards Bay National Estuary Program (NEP) and EPA Region 1. The following datasets were collected and reviewed for this case study.

2.1. GIS Data

The NEP provided the watershed boundaries, MA GIS land use coverage, impervious cover, Digital Elevation Model (DEM) for ground slopes, hydrologic soil group (HSG), depth to bedrock, and depth to groundwater.

The land use layer, from Massachusetts GIS, was classified into 10 land use category groups based on the land use mapping scheme used in Massachusetts MS4 (Municipal Separate Storm Sewer System) permit, see Table 1. The land use area distribution was estimated within the selected pilot watershed, see Table 2.

Figure 2 shows the spatial distribution of the land use categories in the study area. Forest is the dominant land cover (23%) followed by high density residential (20%), medium density residential (18%), commercial (15%), and open land (14%). There was no highway land use category within the study area.

Table 1. Cross-walk between Mass GIS Land Use Category and Land Use Category groups used	
in MA MS4 Permit.	

Mass GIS Land Use LU_CODE	Description	Land Use Category group used in MA MS4 Permit
1	Crop Land	Agriculture
2	Pasture (active)	Agriculture
3	Forest	Forest
4	Wetland	Forest
5	Mining	Industrial
6	Open Land includes inactive pasture	Open land
7	Participation Recreation	Open land
8	spectator recreation	Open land
9	Water Based Recreation	Open land
10	Multi-Family Residential	High Density Residential
11	High Density Residential	High Density Residential
12	Medium Density Residential	Medium Density Residential
13	Low Density Residential	Low Density Residential
14	Saltwater Wetland	Water
15	Commercial	Commercial
16	Industrial	Industrial

Mass GIS Land Use LU_CODE	Description	Land Use Category group used in MA MS4 Permit
17	Urban Open	Open land
18	Transportation	Highway
19	Waste Disposal	Industrial
20	Water	Water
23	cranberry bog	Agriculture
24	Powerline	Open land
25	Saltwater Sandy Beach	Open land
26	Golf Course	Agriculture
29	Marina	Commercial
31	Urban Public	Commercial
34	Cemetery	Open land
35	Orchard	Forest
36	Nursery	Agriculture
37	Forested Wetland	Forest
38	Very Low Density residential	Low Density Residential
39	Junkyards	Industrial
40	Brushland/Successional	Forest

Table 2. Land use area distribution in the selected pilot watershed

Land Use Category Group	Area (acres)
Forest	174.07
High Density Residential	149.70
Medium Density Residential	137.64
Commercial	113.37
Open Land	108.71
Low Density Residential	22.69
Industrial	22.57
Agriculture	22.37
Water	7.30
Highway	0.00
Total	758.42

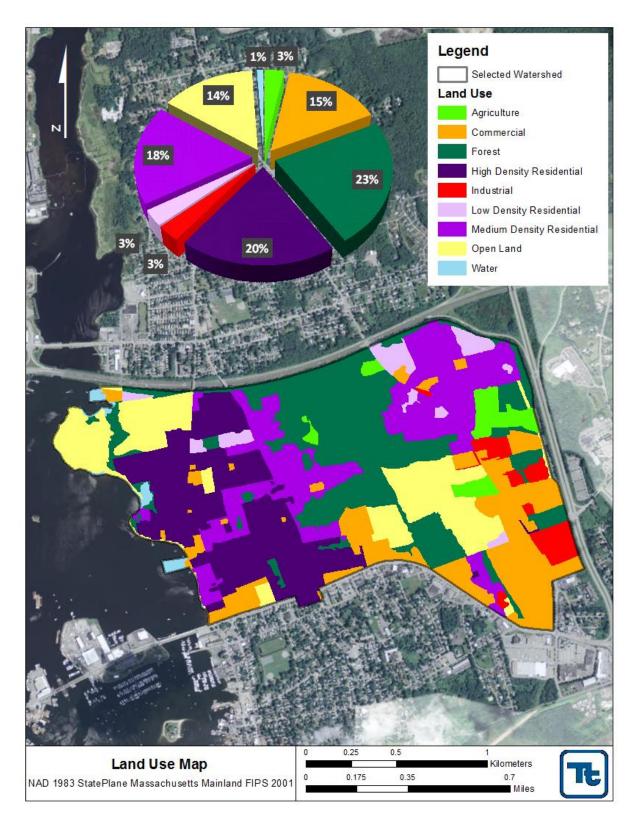


Figure 2. Land use distribution in the selected pilot watershed

The study watershed area of 758 acres is comprised of 217 acres or 29% of total impervious cover (TIC). Table 3 shows the TIC area distribution by land use category and Figure 3 shows the spatial distribution of TIC footprint in the study area. The commercial land use category has the highest TIC footprint (38% of TIC area in the watershed), followed by high density residential (27%), and medium density residential (17%) areas and consequently, are the dominant stormwater runoff and pollutant source areas in the watershed.

Land Use Category Group	Impervious Area (acres)
Commercial	83.40
High Density Residential	58.39
Medium Density Residential	36.22
Open Land	13.71
Industrial	13.57
Forest	4.45
Low Density Residential	4.15
Agriculture	3.51
Highway	0.00
Water	0.00
Total	217.40

Table 3. Total Impervious Cover (TIC) area distribution by land use category in the selected pilot watershed

Since the provided soil layer was missing the hydrologic soil group (HSG) information for some of the developed footprints in the study area, the project team collectively decided to classify such areas as HSG-D type with the assumption of urbanized compact soil type. The soil area distribution comprises 71 acres of HSG-B (9%), 405 acres of HSG-C (54%), and 282 acres of HSG-D (37%) in the selected pilot watershed, see Table 4. There was no HSG-A soil type in the study area. The soil layer shows that HSG-C is dominant in the study area, see Figure 4.

Table 4. Hydrologic Soil Group area distribution in the selected pilot watershed

Hydrologic Soil Group	Area (acres)
HSG-A	0.00
HSG-B	71.03
HSG-C	405.25
HSG-D	282.12

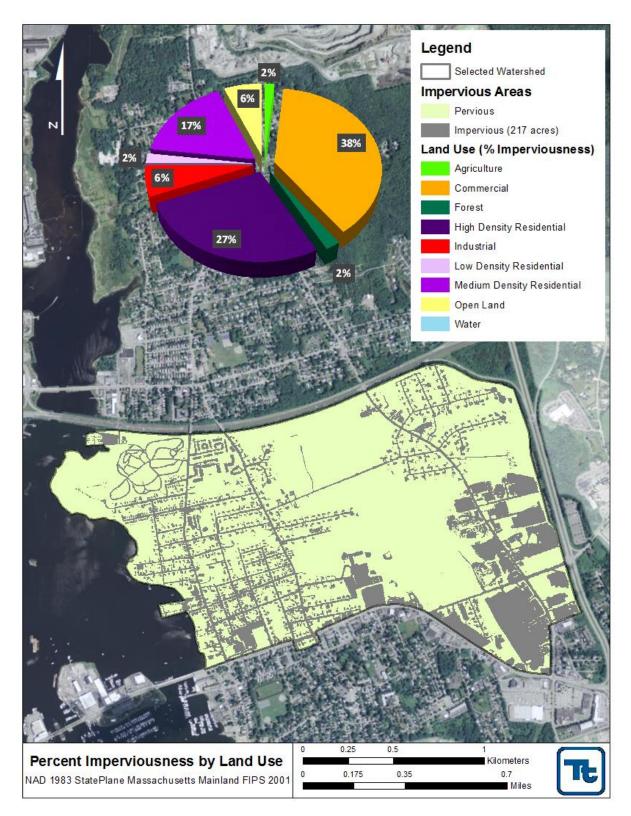


Figure 3. Impervious area distribution by land use in the selected pilot watershed

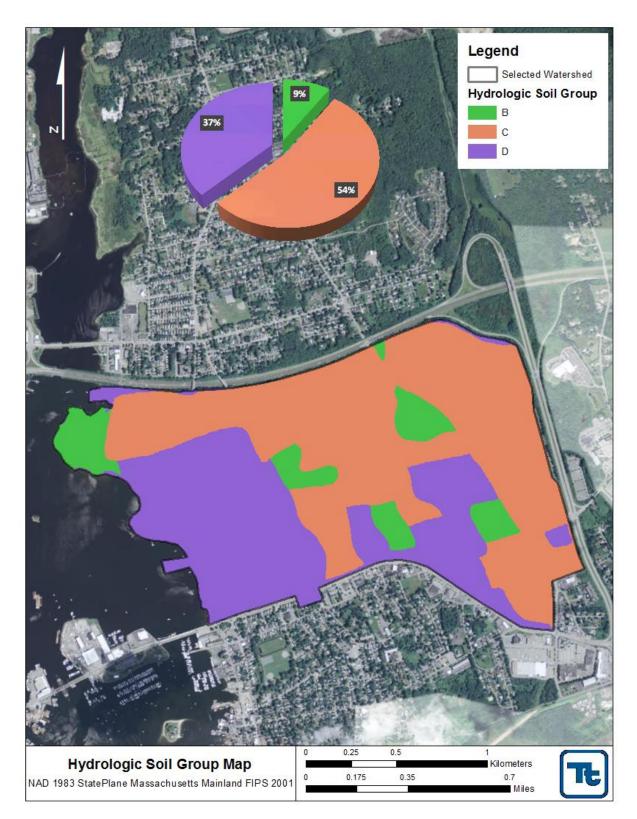


Figure 4. Hydrologic Soil Group (HSG) area distribution in the selected pilot watershed

2.2. Climate Data

The project team evaluated the local available weather data (provided by the Buzzards Bay NEP) and the national dataset (downloaded from NOAA website) for the quality and completeness of the records for the latest 10 years (2006 - 2015) at the New Bedford Airport location. Significant data gaps (missing records) were found in the local dataset as shown in Table 5. The NOAA dataset was found nearly complete as shown in Table 6. The hourly precipitation and daily minimum and maximum temperature data from National Climate Data Center were also selected for this case study. The selected data were further refined by filling the missing records and performing quality checks.

Year	Total Precipitation (in./yr)	Percent Missing (%)
2006	52.15	13.30%
2007	35.04	27.00%
2008	57.85	24.00%
2009	51.12	28.00%
2010	45.39	21.00%
2011	50.90	06.00%
2012	35.32	10.00%
2013	35.52	22.00%
2014	29.31	43.00%
2015	21.62	36.00%

Table 5. The annual precipitation and percent missing data summary for the local gage (KEWB) at New Bedford Airport location (Utah Climate Center Datasets)

Table 6. The annual precipitation and percent missing data summary for the NOAA gage(94726) at New Bedford Airport location (National Climate Data Center)

Year	Total Precipitation (in./yr)	Percent Missing (%)
2006	53.36	0.01%
2007	42.89	0.01%
2008	59.46	0.00%
2009	57.54	0.01%
2010	47.57	0.00%
2011	53.50	0.00%
2012	37.63	0.02%
2013	44.88	0.00%
2014	50.20	1.68%
2015	40.29	0.00%

The selected precipitation data were further summarized to look at the annual average and monthly average precipitation values. The results were compared with the NCDC gage at Logan Airport to check if the default data available in Opti-Tool would be appropriate to use for this case study. The storm separation analysis was also performed using 6 hour as minimum interevent time and percentile rankings were determined for different storm sizes at New Bedford and Logan Airport locations, see Table 7.

Figure 5 below shows 48.76 inches of annual average precipitation for New Bedford Airport which is approximately 10% higher than the 43.35 inch of annual average precipitation at the Logan Airport gage. Figure 6 shows monthly precipitation comparison between these two gages.

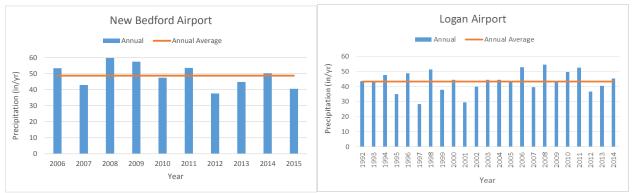


Figure 5. Annual precipitation comparison between New Bedford and Logan Airport gages

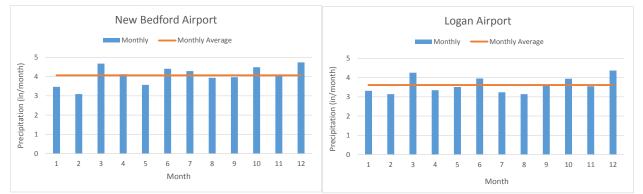


Figure 6. Monthly precipitation comparison between New Bedford and Logan Airport gages

Table 7 below shows the storm size distribution looks pretty similar at both locations.

Storm Size (in.)	Percentile Value at New Bedford Airport Gage	Percentile Value at Logan Airport Gage
0.25	64%	59%
0.50	78%	74%
0.75	84%	84%
1.00	88%	89%

Table 7. The storm size distribution comparison between New Bedford and Logan Airport gages

Storm Size (in.)	Percentile Value at New Bedford Airport Gage	Percentile Value at Logan Airport Gage
1.50	94%	95%
2.00	97%	97%
3.00	99%	99%

The daily minimum and maximum air temperature data are used in SWMM model to estimate the daily potential evapotranspiration (PET). Figure 7 and Figure 8 below show the annual average temperature and monthly average temperature comparisons at New Bedford and Logan Airport locations. The plots show that both locations have very similar patterns of daily air temperatures.

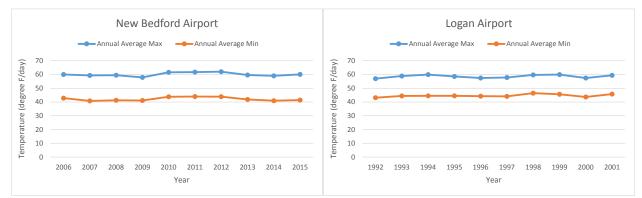


Figure 7. Annual average temperature comparison at New Bedford and Logan Airport locations

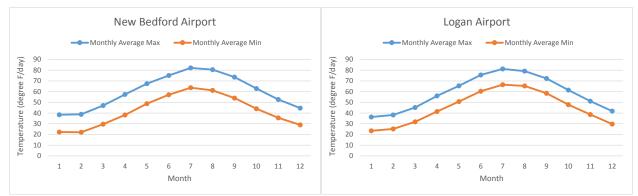


Figure 8. Monthly average temperature comparison at New Bedford and Logan Airport locations

2.3. Stormwater Quality Data

At the time of developing the case study, the Buzzards Bay Stormwater Collaboration was in the process of collecting and analyzing stormwater quality data collected for the region that encompasses the case study watershed. Consequently, the results of that data analysis were not available for consideration during the development of this case study. Therefore, the default stormwater quality information provided in the Opti-Tool was used for the case study.

The default stormwater quality data represented in Opti-Tool are considered to be generally representative of stormwater quality in the New England region. However, a user may adjust the quality represented in Opti-Tool by applying a pollutant load adjustment factor to each land use specific annual pollutant load export rates under "Watershed Information" section of planning level analysis. Similarly, a unit conversion factor for each pollutant can be applied to adjust the hourly quality in the HRU timeseries proportionally in the implementation level analysis mode.

It is worth noting that if local climate data are used with the provided HRU-SWMM models to develop localized HRU timeseries, as they were in this case study (described below in Chapter 4), then the stormwater quality simulated will be different than the default timeseries provided with Opti-Tool. Localized HRU timeseries will represent the local patterns of precipitation including dry periods between storm events when pollutants accumulate on impervious surfaces. Therefore, the localized timeseries will represent some of the key climate-related processes (e.g., build-up and wash-off of pollutants) that influence stormwater quality in an area.

3. Develop Management Categories

A GIS spatial data analysis was performed to identify potential storm water control technologies that would be technically feasible based on available GIS spatial data layers of land characteristics. Ground slope was derived from the Digital Elevation Model (DEM). Management categories were selected based on overlaying data layers associated with the following factors:

- Impervious cover;
- MS4 land use categories
- Ground slope;
- Hydrologic soil group;
- Depth to ground water; and
- Depth to bedrock.

For this case study, management categories were only considered for areas with pervious cover based on the suitability of site conditions for BMPs to treat stormwater runoff from impervious cover and reduce nitrogen loads, see Table 8 below.

The management categories option using the impervious cover could also be considered in future analysis which includes; eliminating the paved surfaces and restoring the underlying high infiltration pervious soil, installing subsurface infiltration facilities, and green street programs. These practices are costly as compared to the structural practices on the pervious cover but could be beneficial where opportunity space is limited and in terms of treating the direct source areas such as green streets practices (porous pavements and bioretention cells within road right-of-ways) adapted in southern California to reduce Zinc load, required under metal TMDL.

Condition	Depth to Water Table (ft)	Depth to Bedrock (ft)	Ground Slope (%)	HSG	BMP Type in Opti-Tool	Management Category	
1		< 2.5	<= 15	A/B/C/D	Enhanced Bio-filtration (with ISR)	Shallow filtration-A/B/C/D	
2			> 15			Less likely for onsite BMP	
3		2.5 ~ 6.5	<= 15	A/B/C	Bioretention with no underdrain	Infiltration-A/B/C	
4	> 6.5			D	Enhanced Bio-filtration (with ISR)	Bio-filtration w/ ISR	
5			> 15			Less likely for onsite BMP	
6				А	Surface	Infiltration-high-A	
7			1.5	В	Infiltration	Infiltration-high-B	
8		> 6.5	<= 15	С	Basin	Infiltration-high-C	
9	l			D	Gravel Wetland	Bio-filtration w ISR or Gravel Wetland system	
10			> 15			Less likely for onsite BMP	
11		< 2.5	<= 15	A/B/C/D	Enhanced Bio-filtration (with ISR)	Shallow filtration-A/B/C/D	
12			> 15			Less likely for onsite BMP	
13	2.5 ~ 6.5	2.5 ~ 6.5	5	<= 15	A/B/C	Bioretention with no underdrain	Infiltration-A/B/C
14			2.5 ~ 6.5	D	Enhanced Bioretention (with ISR)	Bio-filtration -D	
15			> 15			Less likely for onsite BMP	
16		> 6.5	<= 15	A/B/C	Bioretention with no underdrain	Infiltration-A/B/C	

Table 8. Management categories defined on the basis of site conditions.

Condition	Depth to Water Table (ft)	Depth to Bedrock (ft)	Ground Slope (%)	HSG	BMP Type in Opti-Tool	Management Category
17				D	Gravel Wetland	Bio-filtration-D or Gravel wetland
18			> 15			Less likely for onsite BMP
19	< 2.5		<= 15	A/B/C/D	Enhanced Bio-filtration (with ISR)	Shallow filtration-A/B/C/D
20			> 15			Less likely for onsite BMP

Based on the GIS data analysis using the criteria shown in Table 8 above, three management categories were identified as potential BMP opportunities in the study area (known to be highly effective at reducing nitrogen loads) and are shown in Table 9 below.

Table 9. Potential management categories identified in the study area.

Management Category	BMP Type Available in Opti-Tool
High Infiltration on B soil	Infiltration Basin (e.g., rain gardens)
Shallow Filtration on C/D soil	Enhanced Bio-filtration with internal storage reservoir (ISR)
Bio-filtration on D soil	Gravel Wetland

Distribution of the potential BMP opportunity area (BMP footprints) was estimated by land use category group and is summarized in Table 10 below. Note that this distribution represents the maximum footprints available in the selected watershed, and these numbers are purely based on GIS spatial data analysis, and do not necessarily represent the actual opportunity areas. For this case study, *no field verification was performed* and maximum opportunity areas were set to limit the BMP footprints needed to capture up to 1 inch of runoff from the impervious drainage areas. The total impervious areas by land use group shown in Table 3 above were proportionally distributed to the BMP drainage areas based on the available percentage of opportunity area of that specific BMP type by land use type as determined through the Management Category analysis. For example, if the opportunity area of Enhanced Bio-filtration with ISR is 20% of the total available opportunity area in commercial land, then 20% of the impervious area in the commercial land were treated by Enhanced Bio-filtration located in commercial land.

	e
category group in the selected pilot watershed	

Land Use Category Group	Enhanced Bio- filtration (acre)	Gravel Wetland (acre)	Infiltration Basin (acre)
Agriculture	0.00	0.00	2.04
Commercial	13.00	0.83	9.91

Land Use Category Group	Enhanced Bio- filtration (acre)	Gravel Wetland (acre)	Infiltration Basin (acre)	
Forest	0.00	2.53	18.19	
High Density Residential	12.41	0.18	62.23	
Highway	0.00	0.00	0.00	
Industrial	6.05	0.00	1.49	
Low Density Residential	9.64	1.72	3.98	
Medium Density Residential	48.87	15.43	18.12	
Open Land	20.53	24.96	17.02	
Water	0.00	0.00	0.00	
Totals	110.10	45.65	132.98	

Almost 90 percent of the storms are less than or equal to 1-inch depth in the study watershed, see Table 7 above. Therefore, a runoff depth from impervious cover of 1-inch was selected as a design criterion for limiting the maximum BMP storage capacity and maximum BMP footprint area needed. Table 11 shows the BMP area distribution (footprints) by land use category group required to treat 1-inch of runoff from the impervious land cover. Table 12 shows the impervious drainage areas by land use group and BMP type. Figure 9 shows the spatial extent of maximum BMP opportunity areas available in the study watershed.

Land Use Category Group	Enhanced Bio- filtration (acre)	Gravel Wetland (acre)	Infiltration Basin (acre)
Agriculture	0.00	0.00	0.09
Commercial	1.67	0.12	0.91
Forest	0.00	0.02	0.10
High Density Residential	0.35	0.01	1.26
Highway	0.00	0.00	0.00
Industrial	0.40	0.00	0.07
Low Density Residential	0.10	0.02	0.03
Medium Density Residential	0.78	0.28	0.21
Open Land	0.16	0.23	0.10
Water	0.00	0.00	0.00

Table 11. BMP area (footprints) distribution by land use category group required to treat 1 inch of runoff from the impervious surface

Land Use Category Group	Enhanced Bio- filtration (acre)	Gravel Wetland (acre)	Infiltration Basin (acre)	
Agriculture	0.00	0.00	3.51	
Commercial	45.66	2.92	34.82	
Forest	0.00	0.54	3.90	

Land Use Category Group	Enhanced Bio- filtration (acre)	Gravel Wetland (acre)	Infiltration Basin (acre)
High Density Residential	9.69	0.14	48.56
Highway	0.00	0.00	0.00
Industrial	10.89	0.00	2.68
Low Density Residential	2.61	0.47	1.08
Medium Density Residential	21.48	6.78	7.96
Open Land	4.50	5.47	3.73
Water	0.00	0.00	0.00

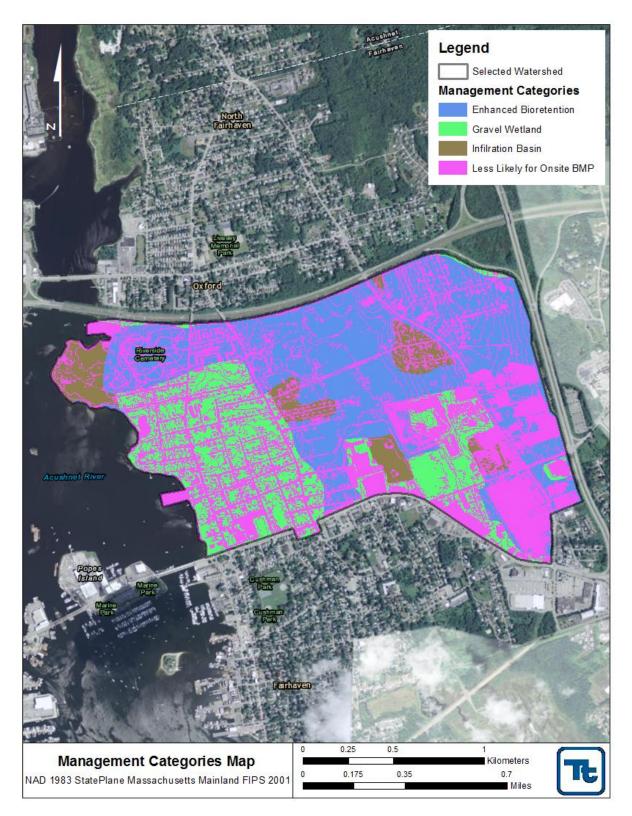


Figure 9. GIS-based Management Categories map (BMP opportunity areas)

4. Establish Baseline Conditions

One of the most import steps in stormwater management planning is establishing the baseline conditions. All management scenarios developed using the Opti-Tool estimate the load reductions based on the baseline loading in the study watershed. The climate data are the main drivers for generating stormwater runoff and transporting pollutants from impervious and pervious areas within a watershed. The Opti-Tool provides the rainfall-runoff response timeseries of hourly surface runoff volumes and concentrations for TN, TP, zinc (Zn), and solids (TSS) based on hydrologic and water quality modeling using the Storm Water Management Model (SWMM) and climatic data from the Logan Airport station for the land use categories identified in Table 2 (except for water). As discussed under data review (section 2.1), the spatial landscape was classified into ten major land use category groups. Those land use groups encompassed stormwater and non-point sources in the watershed.

As part of developing the BMP performance curves for EPA Region 1 (see *https://www3.epa.gov/region1/npdes/stormwater/assets/pdfs/BMP-Performance-Analysis-Report.pdf*), precipitation data analyses were conducted using long-term precipitation data from 10 locations located across the New England Region. Based on the results of this analysis, it was determined that precipitation patterns, in terms of the distributions of storm events by depth and inter-event dry periods, are very similar throughout the New England region. These precipitation characteristics are the primary factors that determine both stormwater quality and overall cumulative performances of BMPs. Because of the similarity in precipitation patterns across New England, EPA generally considers the default HRU timeseries provided with Opti-Tool to be reasonably representative of precipitation conditions in many areas of New England, especially when being used for conducting management analyses that focus on achieving relative percent (%) pollutant load reductions from the study area. In other words, use of the default Opti-Tool loading information should yield meaningful results about the management opportunities needed for achieving percent reductions.

Based on the climate data review (section 2.2), the summary tables show generally similar weather patterns between the Logan Airport gage (default in Opti-Tool) and the New Bedford Airport gage in terms of annual/monthly total precipitation, the storm depth distribution, and the annual/monthly average air temperature. It is expected that the slightly higher annual rainfall of 10% at the New Bedford gage would result in similarly higher annual stormwater nitrogen loads from the various land use groups than in the Boston area. For the case study watershed, New Bedford Airport gage was chosen for the precipitation and temperature data to develop HRU timeseries to better estimate overall annual stormwater nitrogen loads from the watershed area, as well as for demonstrating how to use local climatic data in an Opti-Tool analysis

The Opti-Tool installation package provides Hydrologic Response Unit (HRU)-SWMM models configured for a unit land-area (1 acre) for each of the land use categories (impervious cover and pervious cover), to develop rainfall-runoff response, using the Logan Airport climate data. The user needs to change the file paths for the precipitation and temperature data files in the SWMM model input file, see Figure 10. The installation package also includes a utility tool that converts the SWMM model output timeseries (i.e., hourly flow and pollutant concentrations) into the required format for the Opti-Tool. The utility tool provides the step-by-step instructions on

downloading the local climate data, updating the provided SWMM models to use the local climate data, and to post process the SWMM-HRU timeseries output into the format required for the Opti-Tool, see Figure 11 and Figure 12. The utility tool also summarizes the HRU timeseries data and generates summary table for the annual flow rate and pollutant loading rate by land use categories used in the Opti-Tool, see Figure 13.

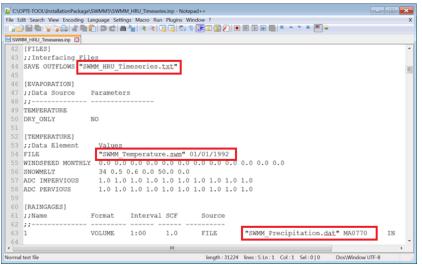


Figure 10. HRU-SWMM model input file.

x 🗐 📙	5 - ⊘	SWMM2Opti_HRU_Tool.xlsm - Excel	? 🗹 _ 🗆 🗙
FILE	HOME INSERT PA	GE LAYOUT FORMULAS DATA REVIEW VIEW DEVELOPER	Alvi, Khalid 🗸 🔍
	A B C	D E F G H I J K L	M N O P Q R S
1 2 3 4		SWMM 2 OPTI HRU TOOL	
5 6 7 C	<u>)verview</u>		
10 11 12 13 14 S	nit (HRU) time serie ir temperatures) for	he process of developing Opti-Tool compatible Hydrole is using long-term climate data (hourly precipitation an locations other than Boston MA with the existing calib phosphorus, total nitrogen, total suspended solids and	ad daily max/min prated HRU Developed for
15 16 to	o this HRU Tool is th	e SWMM output HRU time series based on the local cli	imatic data. The USEPA Region 1 - New England 5 Post Office Square, Boston, MA 02109
17 18 19	utput of this HRU To	ool is HRU time series in the proper format needed to r	run the Opti-Tool. Last Updated: 11/11/2016
20 21 22	suggested analysis	sequence is presented below :	
23 24	Step	Description	Worksheet Name
25 26	1	Download and Process Weather Data	Weather Data
27 28	2	Modify and Run SWMM-HRU Model	SWMM-HRU Timeseries
29	3	Format SWMM Output for OPTI-Tool	OPTI-HRU Timeseries
30 31 32	4	Summarize Average Annual Flow and Load	Summary Table
33 34 35 Ea	ach worksheet has o	letailed instructions on how to proceed with that step.	. This tool can be used to calibrate the long-
36 37	erm HRU timeseries	to match the local land use specific long-term average	annual loading rate. The summary table
38 W	orksheet shows the	simulated long-term average loading rates. The user c	can follow Step 2 to modify the SWMM
39 40 m	nodel and through it	erative process between Step 2, Step 3, and Step 4 the	e desired land loading rates can be
41 42 ac	chieved.		
	Readme Weath	er Data SWMM-HRU Timeseries OPTI-HRU Timeseries Summa	ary Table 🕂 : 🖣
READY			Ⅲ □ □ − −−−− + 80%

Figure 11. Instruction page (Readme tab) for the SWMM2OPTI HRU tool.

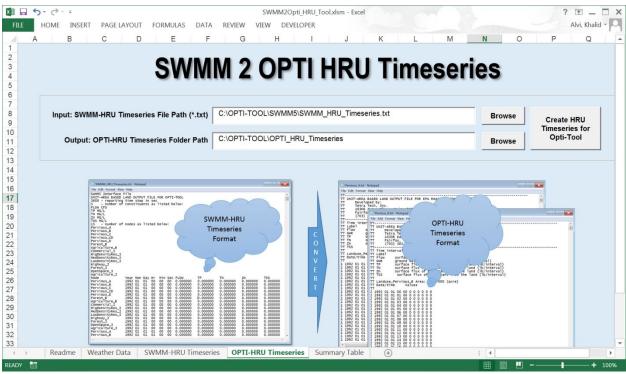


Figure 12. Main interface (Opti-HRU timeseries tab) for the SWMM2OPTI HRU tool

FILE HOME INSERT	PAGE LAYOUT FORMULA	S DATA REVIEW	VIEW DEVELOPER					Alvi, Khalid 👻
24	\cdot : $\times \checkmark f_x$							
A	В	С	D	E	F	G	Н	
		Average An	nual Summa	ry Table				
	FLOW (in/year)	TP (lb/year)	TN (lb/year)	Zn (lb/year)	TSS (lb/year)			
Pervious_A	1.23	3 0.09	0.84	0.02	22.96			
Pervious_B	4.42	2 0.25	2.47	0.05	66.23			
Pervious_C	8.78	3 0.36	4.01	0.08	103.22			
Pervious_CD	11.27	7 0.48	4.82	. 0.10	124.62			
Pervious_D	14.58	3 0.56	5.52	. 0.11	142.81			
Forest_B	4.42	2 0.25	1.17	0.10	66.23			
Agriculture_B	4.42	2 1.00	5.69	0.05	66.23			
Commercial_I	45.49	9 1.86	15.92	1.68	460.07			
HigDensityRes_I	45.49	9 2.45	14.90	0.86	535.12			
MedDensityRes_I	45.49	2.03	14.90	0.86	535.12			
LowDensityRes_I	45.49	9 1.55	14.90	0.86	535.12			
Highway_I	45.49	9 1.44	10.81	2.15	1804.39			
Forest_I	45.49	9 1.55	12.02	0.86	787.80			
OpenSpace_I	45.49	9 1.55	12.02	. 1.21	787.80			
Agriculture_I	45.49	9 1.55	12.02	0.86	787.80			
→ Readme W	Veather Data SWMM-HR	U Timeseries OPTI-	HRU Timeseries Su	mmary Table (+		: •		

Figure 13. Summary table for land use specific annual average loading rates derived from the long term HRU timeseries

5. Setup Opti-Tool

The only required inputs for Opti-Tool are: (1) Land use area distribution within the study area to estimate the existing loads; and (2) Drainage areas by land use tributary to the selected BMPs to estimate the load reductions. The following default dataset in the Opti-Tool should be updated to the site specific condition if the rainfall pattern and/or BMP cost information is notably different than the New England Region.

- HRU land use timeseries (hourly flow and pollutant loading from one acre of pervious or impervious land);
- Annual pollutant load export rates as determined by HRU development
- BMP cost information

The optimization scheme uses the existing loading as the baseline to estimate the benefits in terms of load reduction due to different BMP combinations selected under each optimized scenario, and compares the cost per load reduced among the scenarios to identify the most cost-effective solution. There are two levels of analysis available in Opti-Tool that can be used independently or in a sequential and coordinated manner: (1) Planning Level Analysis; and (2) Implementation Level Analysis. The Planning Level Analysis is intended to guide the user in identifying the "big picture" SW management opportunities that may exist in the study area, and which may be further evaluated in the more detailed Implementation Level Analysis mode. The Implementation Level Analysis in Opti-Tool provides the capability to incorporate much greater detail into the analysis including representation of spatially distributed watershed characteristics, flow routing and BMP designs. This level of analysis is designed to help stormwater engineers determine the best mix of structural BMPs to provide the greatest benefit for achieving watershed management goals while minimizing the BMP costs. Figure 14 shows the comparison between the planning level and implementation level analyses.

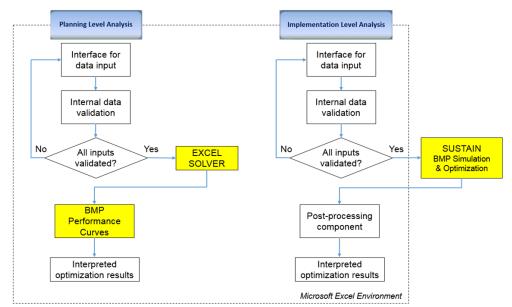


Figure 14. Flow chart comparison of Planning Level and Implementation Level analysis

The tool has built-in checks for the user input data and prompts the user to enter a valid data in case of missing or invalid entry. Figure 15 shows the main interface of the tool for selecting either Planning Level Analysis option or Implementation Level Analysis option.

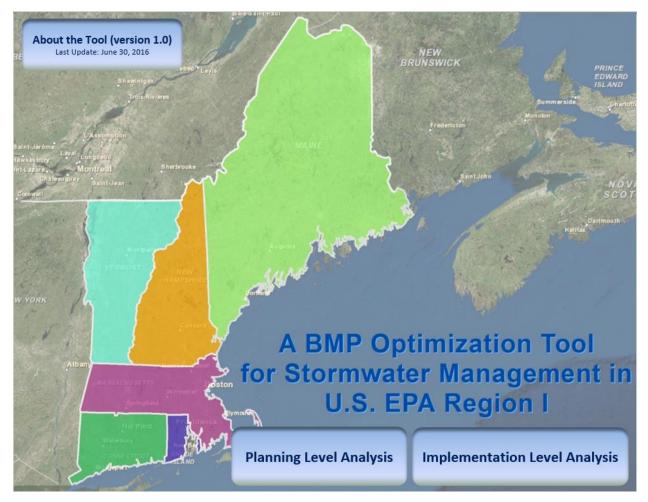


Figure 15. The Opti-Tool Home page

In this case study, an aggregate BMP approach at the watershed scale was used in which one BMP for each Management Category, previously deemed suitable for BMP implementation, was applied to estimate the load reductions from treating stormwater runoff from impervious cover from the different stormwater and non-point sources (land uses). A total of 20 BMPs comprised of 3 different types were selected to treat runoff from impervious cover from 8 land use categories (see Table 9).

5.1. Planning Level Analysis

The purpose of the Planning Level Analysis is to quickly evaluate multiple design scenarios with minimum data requirements, and compare them without running the continuous BMP simulation mode in the more detailed Implementation Level Analysis mode. Two design scenarios were evaluated to identify overall BMP storage volumes for specified design sizing criteria and the

corresponding pollutant load reductions. BMPs were sized to hold 1 inch and 0.25 inch of runoff from the contributing impervious cover. Analyzing large and small design capacities in this first step was intended to help inform the user on a range of relative costs (\$) and maximum load reductions (%) achievable for given design BMP capacities in the case study watershed. Next, an optimized scenario was developed to identify the best combination of BMP and associated capacities needed at the watershed scale to meet a given numeric load reduction target (%TN removal from the entire study area).

The Planning Level Analysis option uses the annual pollutant loading rate by land use category to estimate the baseline loads, a unit volume cost to estimate the BMP total cost, BMP performance curves (e.g., relationship between BMP size and associated TN load reduction) to estimate the load reduction and MS Excel Solver to run the optimization within Excel. By default the annual loading rates, BMP unit volume cost, and BMP performance curves are populated using the region-specific data provided in the Opti-Tool, and are not automatically recalculated if local climatic data are used to develop local HRU timeseries described above. Special attention should be given before using the Planning Level Analysis to make sure that default data are representative to your study area. In this case study, local precipitation data were used from New Bedford Airport station to develop the HRU timeseries, as described above. Consequently, localized annual pollutant loading rates were estimated from this process, and have been used in this case study to replace the default land loading rates provided in the Opti-Tool (*PL Lookup worksheet*, hidden by default).

The following steps are performed by selecting Planning Level Analysis (Figure 15) on Home screen in Opti-Tool. Building a project requires the user to select a pollutant type from the pulldown list, provide a target load reduction percentage, select an optimization target, enter watershed land use area, and enter BMP drainage area. The user is only required to fill in yellow highlighted cells shown in Figure 16.

1. Management Objective								
Select Pollutant Type ->	elect Pollutant Type -> TN Total BMP Cost (\$)							
Enter Target Load Reduction (%) ->	0.0%	Total Pollutant Load Reduction (%)	0.0%					
2. Optimization Target								
Select an option ->	Select an option -> BMP Storage Total BMP Storage Capacity (gal)							
3. Watershed Information								
Enter Land Use Area ->	Total Impervious Area (ac)	0.0						
4. BMP Information								
Enter Drainage Area ->	Click Here	Total Treated Impervious Area (ac)	0.0					

Figure 16. Planning Level Analysis form

Each step of the process is detailed in the sections below.

5.1.1. Management Objective

Select TN from the available pollutant type options and enter the target load reduction percentage ranging from 0-100%.

For this case study, a TN load reduction target of 29.9 % was selected to demonstrate the optimization analysis operations in both the Planning Level and Implementation Level Analysis modes. This target was selected based on some initial Planning Level Analysis mode results that evaluated nitrogen load reductions from the study area associated with user specified BMP design storage capacities (e.g., all BMPs are designed to hold 0.25 inches runoff depth from impervious cover).

5.1.2. Optimization Target

Select BMP Storage Capacity as the optimization target. The optimization targets are based on the two approaches of the Planning Level Analysis tool. The first option, BMP Storage Capacity, provides the optimal BMP storage capacity by evaluating the most cost-effective changes in water quality benefits as the BMP/LID sizes are changed. The second option, BMP Drainage Area, determines how much impervious area would require treatment to get the target load reduction. It is important to understand that for any given design storage volume; the optimized drainage area might not be the most cost-effective solution. In order to find the most cost-effective combination of the structural BMPs, the BMP Storage Capacity option should be evaluated.

5.1.3. Watershed Information

The *Click Here* link for Watershed Information navigates the user to a table for the user to provide the total land use area distribution within the entire drainage area to the assessment point. Table 13 shows the land use area distribution within the study area to be represented in Opti-Tool. Note: The total of 751.1 acres in Table 13 differs from the total of 758.4 in Table 2 because of 7.3 acres of water within the case study watershed. The user is responsible for filling in only the yellow highlighted cells. The selection of land use type is limited to the number of land use types available in the new MA/US EPA Region 1 MS4 permit, and includes both impervious and pervious areas. The user must break down the land use areas into pervious or impervious cover. For example, Agriculture land uses are represented as the impervious fraction and the pervious fractions are lumped together as one category called Developed Pervious which is further divided into 5 groups based on the underlying hydrologic soil group as shown in Table 13.

Landuse Type	Impervious/Pervious	Total Area (ac)
Agriculture Impervious	Impervious	3.51
Forest Impervious	Impervious	4.45
Highway Impervious	Impervious	0
Industrial Impervious	Impervious	13.57
Commercial Impervious	Impervious	83.4
High Density Residential Impervious	Impervious	58.39
Medium Density Residential Impervious	Impervious	36.22
Low Density Residential Impervious	Impervious	4.15
Open Land Impervious	Impervious	13.71
Agriculture Pervious	Pervious	18.86
Forest Pervious	Pervious	169.62
Developed Pervious A	Pervious	0
Developed Pervious B	Pervious	52.19
Developed Pervious C	Pervious	142.23
Developed Pervious C/D	Pervious	0
Developed Pervious D	Pervious	150.81
	TOTAL Area (ac)	751.11

Table 13. Watershed Information - Land Use Area

5.1.4. BMP Information

The *Click Here* link for BMP Information navigates to a table for the user to provide the BMP drainage area for single or multiple land use types. The user must provide the infiltration rate for infiltration system BMPs (infiltration chamber, infiltration trench, and infiltration basin) based on the underlying soil type. The user is responsible for filling in only the yellow highlighted cells. The BMP representation in the Planning Level Analysis is at the watershed scale, so all units of the same BMP type are lumped together. Table 14 shows the total impervious drainage area to three BMP types selected in this case study.

Table 14. BMP Information - Drainage Area

Landuse Type	Impervious/ Pervious	Biofiltration with ISR (ac)	Bioretention (ac)	Dry Pond (ac)	Grass Swale* (ac)	Gravel Wetland (ac)	Infiltration Basin (ac)	Infiltration Chambers* (ac)	Infiltration		Sand Filter (ac)	Wet Pond (ac)	Total (ac)
Agriculture Impervious	Impervious	0.00	0.00	0.00	0.00	3.51	0.00	0.00	0.00	0.00	0.00	0.00	3.51
Forest Impervious	Impervious	0.00	0.00	0.00	0.00	3.90	0.54	0.00	0.00	0.00	0.00	0.00	4.44
Highway Impervious	Impervious	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
Industrial Impervious	Impervious	10.89	0.00	0.00	0.00	2.68	0.00	0.00	0.00	0.00	0.00	0.00	13.57
Commercial Impervious	Impervious	45.66	0.00	0.00	0.00	34.82	2.92	0.00	0.00	0.00	0.00	0.00	83.40
High Density Residential Impervious	Impervious	9.69	0.00	0.00	0.00	48.56	0.14	0.00	0.00	0.00	0.00	0.00	58.39
Medium Density Residential Impervious	Impervious	21.48	0.00	0.00	0.00	7.96	6.78	0.00	0.00	0.00	0.00	0.00	36.22
Low Density Residential Impervious	Impervious	2.60	0.00	0.00	0.00	1.08	0.47	0.00	0.00	0.00	0.00	0.00	4.15
Open Land Impervious	Impervious	4.50	0.00	0.00	0.00	3.73	5.47	0.00	0.00	0.00	0.00	0.00	13.70
т	OTAL Area (ac)	94.82	0.00	0.00	0.00	106.24	16.32	0.00	0.00	0.00	0.00	0.00	217.38
				Select BM	P Infiltration R	ate (in/hr) ->	0.52	0.52	0.52				
Note:Only fill in the yellow highlighted ce	lls.												
* Place holder for future option (not imp	emented)												

5.1.5. Run Design Scenario – BMP Storage Capacity

The Run Single Scenario analysis estimates the BMP storage capacity needed for any given runoff treatment depth from the BMP impervious drainage areas. For example, select Run Single Scenario and then provide a runoff depth of 1 inch, see Figure 17 below. As discussed previously, a design storage capacity of 1 inch depth of runoff would provide complete treatment to approximately 90% of storm events in the local area. The Opti-tool calculates the BMP

storage capacity (ft³), BMP cost (\$), treated impervious area (ac), annual operation and maintenance hours (hr), and pollutant load reduction (lbs) based on the given runoff depth.

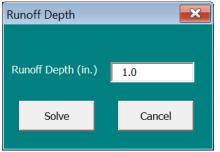


Figure 17. Run Single Scenario – Runoff Depth

Figure 18 shows that to meet a design storage capacity of holding 1 inch of runoff depth from 217.4 acres of impervious drainage, the total BMP cost will be \$18.25 million with an associated total nitrogen load reduction of 44.8% (~2,300 lbs. N). Note that the BMP cost is assumed for a new development in this analysis but for developed landscapes, a scaling factor of 2 or 3 should be used to reflect the increased cost due to the technical challenges of retrofitting controls. Also, BMP sizes are strictly based on the design depth and are *not optimized*.

		ement Objective							
Select Pollutant Type -> TN Total BMP Cost (\$) \$18,257,18									
nter Target Load Reduction (%) ->	44.8%								
	2. Optin	nization Target							
	BMP Storage		F 002 700						
Select an option ->	Capacity	Total BMP Storage Capacity (gal)	5,902,799						
	3. Waters	hed Information							
Enter Land Use Area -> Click Here Total Impervious Area (ac)									
	4. BM	P Information							
Enter Drainage Area ->	Click Here	Total Treated Impervious Area (ac)	217.4						

5. Optimal Solution									
ВМР Туре	Design Storage Capacity (ft ³)	BMP Cost (\$)		Treated Impervious Area (ac)	O&M (hr/yr)	Load Reduction (lbs)	Treated Runoff Depth (in)		
Biofiltration with ISR	344,197	\$	10,745,818	94.82	-	1,078.31	1.00		
Bioretention	-	\$	-	-	-	-	-		
Dry Pond	-	\$	-	-	-	-	-		
Grass Swale*	-	\$	-	-	-	-	-		
Gravel Wetland	385,651	\$	6,772,035	106.24	2,305	985.05	1.00		
Infiltration Basin	59,242	\$	739,335	16.32	-	226.50	1.00		
Infiltration Chambers*	-	\$	-	-	-	-	-		
Infiltration Trench	-	\$	-	-	-	-	-		
Porous Pavement*	-	\$	-	-	-	-	-		
Sand Filter	-	\$	-	-	-	-	-		
Wet Pond	-	\$	-	-	-	-	-		

Note:Only fill in the yellow highlighted cells. * Place holder for future option (not implemented)

Figure 18. Design Scenario Solution – Runoff depth of 1 inch

The user might consider using a smaller design capacity as an additional alternative management objective to better understand the potential range in relative costs and nitrogen load reductions in the watershed area. Also, consideration of small design capacities for retrofitting BMPs into developed landscapes will increase the technical feasibility to implement BMPs in the watershed and will generally be more cost effective in terms of the cost per pound of pollutant load reduced.

For the case study watershed, an alternative design storage capacity of 0.25 inches of runoff depth from impervious cover was selected as an additional alternative management objective to be evaluated. This storage capacity was selected because it is significantly smaller than the1 inch design capacity evaluated and it would provide significant treatment of runoff from the watershed, as 64% of the storms are less than or equal to 0.25-inch depth, see Table 7. Now, for the management objective for BMPs to hold 0.25 inch of runoff depth from 217.4 acres of impervious drainage, the total BMP cost would be \$4.56 million with an associated total nitrogen load reduction of 29.9% (~3,800 lbs. N), see Figure 19. Note that by reducing the load reduction from 44.8% to 29.9%, the cost dropped from \$18.25 million (\$7,970/lb. N reduced) to \$4.56 million (\$1,190/lb. N reduced). The differential cost would be \$13.69 million (\$ 6,780 /lb. N reduced) for reducing additional 15% of TN load.

	1. Ma	anageme	nt Object	tive					
Select Pollutant Type ->	Select Pollutant Type -> TN Total BMP Cost (\$)								
Enter Target Load Reduction (%)	-> 0.0%	<mark>6</mark>	Total Pollutant	Load Reduct	ion (%)	\$4,564,297 29.9%			
	2. 0	Optimizat	ion Targ	et					
Select an option -> BMP Storage Capacity Total BMP Storage Capacity (gal) 1,475,700									
	3. Wa	atershed	Informat	ion					
Enter Land Use Area ->	Enter Land Use Area -> Click Here				ac)	217.4			
4. BMP Information Enter Drainage Area -> Click Here Total Treated Impervious Area (ac) 217.4									
	5	5. Optimal	Solution						
ВМР Туре	Design Storage Capacity (ft ³)	BMP Cost (\$)	Treated Impervious Area (ac)	O&M (hr/yr)	Load Reduction (lbs)	Treated Runofi Depth (in)			
iofiltration with ISR	86,049	\$ 2,686,454	94.82	-	681.23	0.3			
ioretention	-	\$-	-	-	-	-			
Dry Pond	-	\$ -	-	-	-	-			
irass Swale* iravel Wetland	-	\$ - \$ 1.693.009	-	-	-	-			
nfiltration Basin	96,413 14,810	\$ 1,693,009 \$ 184,834	106.24 16.32	2,305	671.26 177.88	0.			
nitration Basin	14,810	\$ 104,034 \$ -		-		0.			
nfiltration Trench	-	\$ -	-	-	-	-			
Porous Pavement*	-	\$ -	-	-	-				

Note:Only fill in the yellow highlighted cells. * Place holder for future option (not implemented)

Sand Filter

Wet Pond

Figure 10 Decign Sceneric Solution Punoff d

Figure 19. Design Scenario Solution – Runoff depth of 0.25 inch

- \$

- \$

These analysis results indicate the value of having a flexible stormwater management program that allows for the optimized sizing of controls based on watershed conditions to treat runoff from existing impervious surfaces. Another use of setting the design storage capacity to a set value could be to evaluate costs and pollutant reductions associated with the development of local ordinances or by-laws that would require post construction stormwater management for new development and/or re-development within a municipality or watershed.

5.1.6. Run Optimize Scenario – BMP Storage Capacity

The design scenario does *not* consider the BMP *size* optimization for a minimum cost. *An* optimized scenario identifies the best combination of different BMPs with optimized storage capacities needed at the watershed scale to meet the given numeric load reduction target with minimum cost. To demonstrate optimization scenario a management objective of 29.9% TN load reduction was used. Select Run Optimize Scenario, and then after providing the maximum run time (30 sec by default), select Solve. A message box will appear prompting the user to select to continue or stop the optimization iterations. The optimization algorithm in MS Excel Solver searches different combination of BMP sizes and identifies the most cost-effective mixture of BMP types and sizes that meet the numeric load reduction, see Figure 20 and, in this specific design scenario, prefers infiltration practices to treat 0.4 inch treatment depth, gravel wetland to treat 0.28 inch treatment depth, and enhanced bioretention to treat 0.2 inch treatment depth. Note that this optimization solution shows a \$250,000 savings compared to using the set design capacity depth of 0.25 inch for all three BMP types, illustrated above.

	1. Ma	ana	gemei	nt Object	ive			
Select Pollutant Type -> TN					\$4,312,764			
Enter Target Load Reduction (%) -> 29.9%			-	Fotal Pollutant I	.oad Reduct	ion (%)	29.9%	
	,							
	2. 0)pti	mizat	ion Targe	et			
Select an option -> BMP Sto Capaci				Total BMP Stor	age Capacit	y (gal)	1,488,109	
	3. Wa	ater	shed	Informat	ion			
Enter Land Use Area ->	Click H	ere		Total Imper	vious Area (ac)	217.4	
	4.	BN	1P Info	ormation				
Enter Drainage Area ->	Click H	ere		Total Treated In	pervious A	·ea (ac)	217.4	
	5	5. O	ptimal	Solution				
ВМР Туре	Design Storage Capacity (ft ³)	BM	P Cost (\$)	Treated Impervious Area (ac)	O&M (hr/yr)	Load Reduction (lbs)	Treated Runoff Depth (in)	
Biofiltration with ISR	68,811	\$	2,148,275	94.82	-	626.43	0.20	
Bioretention	-	\$	-	-	-	-	-	
Dry Pond	-	\$	-	-	-	-	-	
Grass Swale*	-	\$		-	-	-	-	
Gravel Wetland	106,415	\$	1,868,644	106.24	2,305	698.04	0.28	
Infiltration Basin	23,706	\$	295,845	16.32	-	203.63	0.40	
Infiltration Chambers*	-	\$	-	-	-	-	-	
Infiltration Trench	-	\$		-	-	-	-	
Porous Pavement*	-	\$	-	-	-	-	-	
Sand Filter	-	\$	-	-	-	-	-	
Wet Pond		\$						

Note:Only fill in the yellow highlighted cells. * Place holder for future option (not implemented)

Figure 20. Optimized Scenario Solution – Runoff depth of 0.25 inch

5.2. Implementation Level Analysis

The benefits of optimization have been proven through several case studies (Shoemaker, et. al., 2013, 2012, 2009) including a study on the Charles River watershed, which demonstrates that applying optimization techniques to identify the best mix of stormwater control technologies and design capacities is an essential step towards developing the most cost effective program to achieve needed load reductions (Tetra Tech, Inc. 2009). The Planning Level Analysis allows the user to optimize one aggregate BMP by each management category at watershed scale. In comparison, Implementation Level Analysis allows the user to model distributed BMPs (model every possible BMP footprint in the study area), or use an aggregated BMP approach (to model one aggregate BMP by each management category at the watershed level or catchment level, or land use level, or even at the combination of catchment and land use level). Note: Increasing the number of BMPs included in analysis will also significantly increase the Opti-Tool simulation time needed to get the optimal solution, as the number of possible combination of those BMPs grows exponentially, and can reach into trillions of possibilities. Although, considering more BMPs in the Opti-Tool spatial optimization process can identify more cost-effective scenarios (i.e., potential cost savings) the longer run time will eventually become a limiting factor in reaching the optimal solution.

For demonstrative purposes in this case study, a simple representation was used in which BMPs were selected at the land use level, and one aggregate BMP was selected for each management category by land use type in the study area. This resulted in the selection of 20 BMPs for the study area. The outcome of this analysis is the cost-effectiveness curve showing a range of optimal solutions for varying TN load reduction targets ranging from approximately 15% to just over 40% (see Figure 35 below).

Each step of the process is detailed in the sections below.

From the Home screen (Figure 15), begin by selecting Implementation Level Analysis.

5.2.1. Load Watershed Map (Optional)

From the left menu, select the Load Watershed Map (optional) button. On the Open form, select the watershed map (jpeg format) and click Open. The watershed map will appear within the BMP & Stream Network Sketch Design box, see Figure 21. The scroll bar under the Load Watershed Map (optional) button changes the transparency of the watershed map. Once the next step is activated, the option to load a watershed map or change the transparency will become disabled. The watershed map is a background image that helps in creating a BMP network in the study area and has no role in the model setup process.

Figure 21. The Opti-Tool Background Map screen

5.2.2.Watershed Information

From the left menu, select the *Watershed Information* button. The watershed characteristics are used to provide input for the *Key Information* form.

For Buzzards Bay pilot watershed; there were20 selected BMPs, the land uses were grouped into 9 major land use types. The 9 major land use categories were further broken down into 13 land uses based on pervious or imperious and hydrologic soil group.

On the *Key Information* form, enter 1 for the number of subbasins, 20 for the number of BMPs, and 13 for the number of land uses. Click *Default Pollutant Values* to populate 4 (by default, TP, TN, Zn, and TSS) for the number of pollutants, see Figure 22. A message box will appear explaining default pollutant information, Click *Ok*. Click *Save*. Once the next step is activated, the option to edit *Watershed Information* will become disabled.

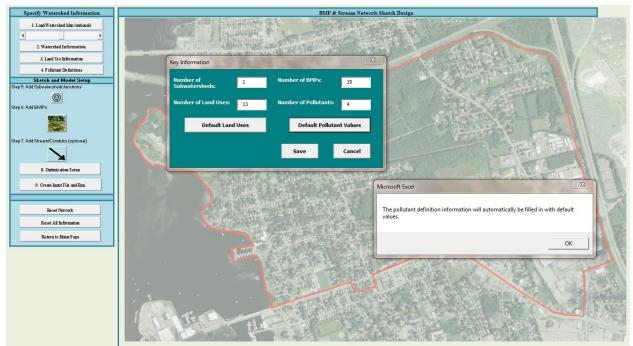


Figure 22. The Opti-Tool Key Information form

5.2.3.Land Use Information

From the left menu, click the *Land Use Information* button to activate *Add Land Use Definition* form, see Figure 23. Define land use categories. The number of land use IDs are determined by the number of land uses defined in Section 5.2.2. On the *Add Land Use Definition* form, select the land use IDs and enter associated information as shown in Table 15.

Do not use special characters or spaces in the Land Use Definitions. The use of an underscore ("_") is acceptable. Click *Save*. Save must be selected after inputting each individual land use information. Click *Close*. Once the next step is activated, the option to edit *Land Use Information* will become disabled.

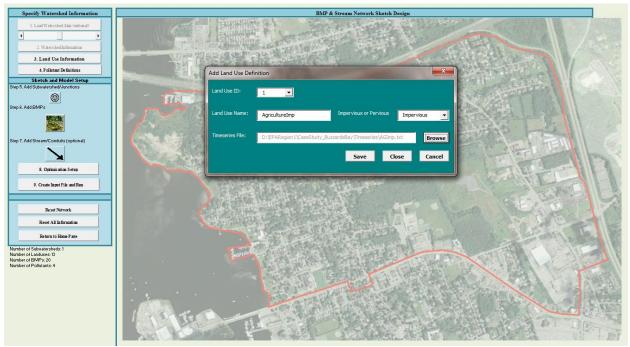


Figure 23. Defining land use categories

Table 15.	HRU time	series	assignment

Land Use ID	Land Use Name	Impervious or Pervious	HRU Time Series File
1	AGImp	Impervious	AGImp.txt
2	AGPervB	Pervious	AgPervBSoil.txt
3	COMImp	Impervious	ComImp.txt
4	FORImp	Impervious	FORImp.txt
5	FORPervB	Pervious	ForPervBSoil.txt
6	HDRImp	Impervious	HDRImp.txt
7	INDImp	Impervious	ComImp.txt
8	LDRImp	Impervious	LDRImp.txt
9	MDRImp	Impervious	MDRImp.txt
10	OPNImp	Impervious	OPNImp.txt
11	PervB	Pervious	PervBSoil.txt
12	PervC	Pervious	PervCSoil.txt
13	PervD	Pervious	PervDSoil.txt

5.2.4.Pollutant Definition

From the left menu, click the *Pollutant Definitions* button to begin entering the pollutant definitions. Each pollutant must have a Pollutant ID, Pollutant Name, and a Pollutant Multiplier. The multiplier is a unit conversion factor. Opti-Tool assumes all pollutants in the time series are defined in lb/hr. Use the multiplier for unit conversion if the pollutant loads are not in pounds. The number of pollutant IDs are determined by the number of pollutants defined in Section 5.2.2.

Notice that all pollutants should already be defined because of selecting *Default Pollutant Values* during the *Watershed Information* step, see Figure 22. Do not use special characters or spaces in the Pollutant Definitions. The use of an underscore ("_") is acceptable. Click *Save*. Click *Close*. Once the next step is activated, the option to edit *Pollutant Definitions* will become disabled.

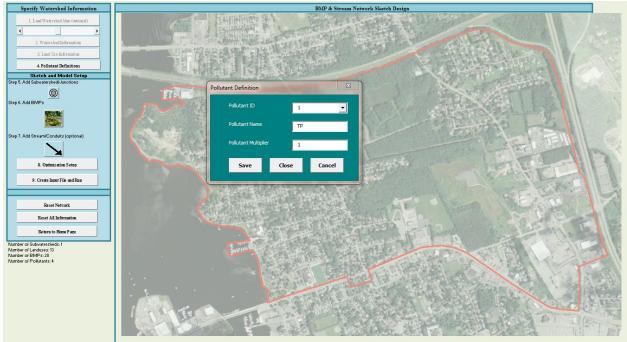


Figure 24. Define pollutant factors

5.2.5.Add Subwatersheds/Junctions

From the left menu, click the button to create a new subwatershed. *Junction1* will appear within *BMP & Stream Network Sketch Design*. Move *Junction1* to the outlet point of the watershed (not required, for schematic purpose only). Click *Junction1* within the *BMP & Stream Network Sketch Design* to add junction information, see Figure 25. Each land use defined in the Land Use Information step will appear in the *Land Use Distribution* list box. The downstream junction is the outlet, and the total drainage area is 751.11 acres for this case study. Each land use type defined in Section 5.2.3 is shown in the *Land Use Distribution* list box. Enter the land use area as shown in Table 16. The watershed must have a Junction ID, Downstream Junction, and Total Drainage Area (acres). The sum of the Land Use Area (acres) must equal the Total Drainage Area (acres). Click *Save*. Click *Close*.

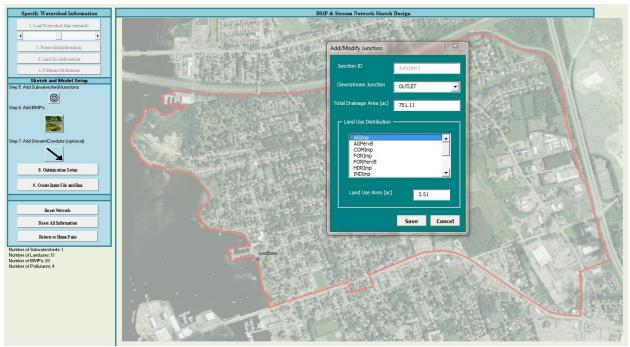


Figure 25. Define junctions and associated land use distribution

Land Use ID	Land Use Name	Area (acre)
1	AGImp	3.51
2	AGPervB	18.86
3	COMImp	83.40
4	FORImp	4.45
5	FORPervB	169.62
6	HDRImp	58.39
7	INDImp	13.57
8	LDRImp	4.15
9	MDRImp	36.22
10	OPNImp	13.71
11	PervB	52.19
12	PervC	142.23
13	PervD	150.81

Table 16. Land use distribution for Junction1

5.2.6.Add BMPs

From the left menu, click the button to create a new BMP. A message will appear asking; "Have all the subwatersheds/junctions been defined?" click *Yes*. BMP1 will appear within *BMP & Stream Network Sketch Design*. Click *BMP1* within the *BMP & Stream Network Sketch Design* to add BMP information, see Figure 26. A BMP should be added for each land use and BMP type combination, twenty in total for this case study.

Specify Watershed Information		Best Management Practices	2
1. Load Watershed Max (ontional) . Watershed Information		BMP Dimensions Substrate Properties Water Quality Parameters and Cost Function	- Subvatershed Information
3. Land Us e Information	A DIRE WERE AN ARRIVED AND A DIRECTORY	BMP Name BMP 1	BMP Location Junction 1 Default Parameters
4. P olintant De finitions		BMP1	Downstream Junction or Junction1
Sketch and Model Setup Step 5. Add Subwatershed/Junctions	and the second second	BMP Type ENHANCEDBIORETENTION	Specify BMP Drainage Area
Step 6. Add EMPs	BMP1		
Skep 6. Add EMP's		Basin Dimensions BMP Length (ft.) 1453.79 Decision Variable	- Exit Type (Discharge Coefficient)
Step 7. Add Stream/Conduits (optional)	CANADA A CAR HERE	BMP Width (ft.) 50	© 1.0 C 0.61 C 0.5
	And the second s	- Surface Storage Configuration	Weir Configuration
8. Optimization Setup		a liter will be	C Rectangular Weir
9. Create Input File and Run		Lines Derthau	P TOLOU STOR P THURSDAY TO
			Weir Height (ft) 0.33
Reset Network		D suite	Crest Width (B, ft) 30
Reset All Information		Du Dudice	30
Return to Home Page		Sintyreed?	
Number of Landuses: 13 Number of BMPs: 20	Sunctions		Save
Number of Pollutants: 4		Orifice Height (h, ft) Orifice Diameter (in)	Jure
		0	Cancel
	1 states and the second		

Figure 26. Define BMP surface dimensions

Defining a BMP starts on the BMP Dimensions tab, then add the BMP dimensions and BMP drainage impervious area from the corresponding land use type as shown in Table 11 and Table 12. Define the BMP length as a decision variable by clicking on the Decision Variable button in the Basin Dimensions box, and filling in the information as shown in **Appendix A**, dependent on the BMP type and land use. (In this case study, the BMPs were sized to hold a maximum of one inches of impervious runoff.) The decision variable increments (ft) are 100 times smaller than the maximum length (ft), see Figure 27. The BMP default parameters will automatically be populated based on the BMP type, and are provided in **Appendix A** based on the BMP type.

Decision Variable				
Consider as decision variable				
Minimum (ft)	0			
Maximum (ft)	1453.79			
Increments (ft)	14.5379			
Save	Cancel			

Figure 27. Define BMP length as decision variable

Click on the *Specify BMP Drainage Area* button, see Figure 28. Each land use type defined in Section 5.2.3 is shown in the *Land Use Distribution* list box. The BMP land use drainage area and land use distribution are based on the grouping of the HRU land use data. Enter the land use area dependent on the BMP type and land use combination. Click *Save*.

Total Subwatershed Area (ac) 751.11 Land Use Distribution	Specify BMP Dr	ainage Area		×
AgImp:3.51 (ac) ▲ AGPerv8:18.86 (ac) ▲ ComImp:83.4 (ac) ■ ForImp:4.45 (ac) ■ ForPerv8:169.62 (ac) ■ HDRImp:58.39 (ac) ■ IndImp:13.57 (ac) ■ UDRImp:4.15 (ac) ■ MDRImp:36.22 (ac) ■ OPNImp:13.71 (ac) ■ Perv8:52.19 (ac) ■	Total Subwate	ershed Area (ac)	751.11	
AGPervB:18.86 (ac) ComImp:83.4 (ac) ForImp:4.45 (ac) ForPervB:169.62 (ac) HDRImp:58.39 (ac) IndImp:13.57 (ac) LDRImp:4.15 (ac) MDRImp:36.22 (ac) OPNImp:13.71 (ac) PervB:52.19 (ac) ▼	Land Use [Distribution ———		
ForImp:4.45 (ac) ForParv8:169.62 (ac) HDRImp:58.39 (ac) IndImp:13.57 (ac) LDRImp:4.15 (ac) MDRImp:36.22 (ac) OPNImp:13.71 (ac) Perv8:52.19 (ac)	AGPerv	B:18.86 (ac)		
ForPervB:169.62 (ac) HDRImp:58.39 (ac) IndImp:13.57 (ac) LDRImp:4.15 (ac) MDRImp:36.22 (ac) OPNImp:13.71 (ac) PervB:52.19 (ac)	P			
IndImp:13.57 (ac) LDRImp:4.15 (ac) MDRImp:36.22 (ac) OPNImp:13.71 (ac) PervB:52.19 (ac) ▼	ForPerv	B:169.62 (ac)		
LDRImp:4.15 (ac) MDRImp:36.22 (ac) OPNImp:13.71 (ac) PervB:52.19 (ac)				
OPNImp:13.71 (ac) PervB:52.19 (ac) ▼	LDRImp	o:4.15 (ac)		
PervB:52.19 (ac)				
BMP Drainage Area (ac)				-
BMP Drainage Area (ac)				
45.00	BMP Draina	ge Area (ac)	45.66	
Save	s	avo	Cancol	
Calicer		uve	Cancer	

Figure 28. Define BMP drainage area

Click on the *Substrate Properties* tab, see Figure 29. The information on the tab will already be complete, according to the BMP type.

Best Management Practices	
BMP Dimensions Substrate Properties Water Quality Parameters and Cost Fu	unction
veg. parameter (A)	Default Parameters
soil porosity	
soil f _c	
void fraction	background f _e
Sol Properties	Underdrain Properties
DS - Depth of Sol (ft) 2 Sol Porosity (0-1) 0.45	Image: Condiser Underdrain Structure? Update Eff. Depth DU - Storage Depth (ft) 2.5
Vegetative Parameter A 0.6	Media Void Fraction (0-1) 0.42 FC - Background Infiltration 0
FC - Soil Infiltration (in/hr) 4,5	(in/hr)
If underdrain is off, then the FC - Sol Infiltration (in/hr) is the FC - Background Infiltration (in/hr).	Save
	Cancel

Figure 29. Define BMP substrate properties

Next, click on the *Water Quality Parameters and Cost Function* tab, see Figure 30. The decay rates and underdrain removal rates will be populated based on BMP type.

Best Management Practices BMP Dimensions Substrate Properties Water Quality Parameters and Cost Function Cost Function Structure Cost = Storage Volume Cost * Storage Volume	Default Parameters
Cost Parameters Storage Volume Cost (\$/ft^3) 15.61 Cost Function Adjustment BMP Development Type NEW BMP IN UNDEVELOPED AREA Cost Adjustment Factor Annual Maintence Hours* NOT ASSESSED *Note: Initial costs based on cost of maintenance per year per acre of IC treated. Please refer to Methodology Memo forDeveloping Cost Estimates for Opti-Tool, January 19, 2016.	
TP TP TN ZN TSS Decay Rate (1 / hr) 0.093 0.173 Default Pollutants	Save Cancel

Figure 30. Define BMP water quality parameters and cost function

Note: Decay rates are specified with units of hr⁻¹ and apply to pollutants in the water column. Underdrain removal rates are specified as a percentage and apply only to pollutants flowing out of the underdrain once it has filled.

Repeat Section 5.2.6 to create the remaining 19 BMPs on the watershed sketch page as shown in Figure 31.

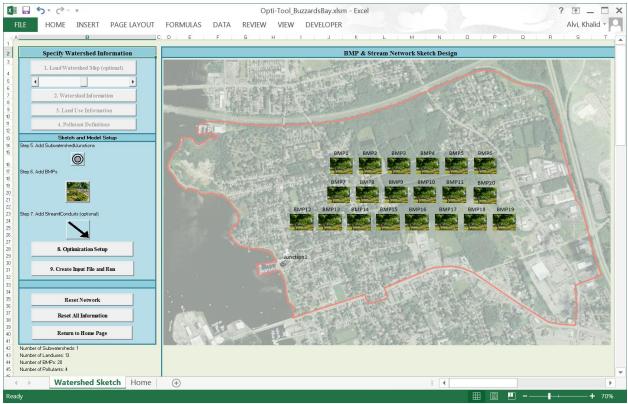


Figure 31. Watershed Sketch screen

5.2.7.Optimization Setup

From the left menu, click the *Optimization Setup* button to begin defining the optimization objective, see Figure 32. Define the *Cost-Effectiveness Curve* as the *Assessment Method*. The cost-effectiveness curve method provides the means to visualize the full spectrum of trade-offs between cost and the evaluation factor (e.g., annual average load reduction). Click *Save*.

Management Objectives		×		
Assessment Method	Cost-Eff	fectiveness Curve		
Assessment Point Location (BMP or Junction)	OUTLET			
Evaluation Factor				
Evaluation Factor	TN	•		
Туре	Annual Average	Load 🗨		
Factor Value 1	-99			
Factor Value 2	-99			
Notes: Factor Value 1 = if FactorType = MAC: Maximum # of days if FactorType = FEF: Threshold (cfs) all other FactorType : -99 Factor Value 2 = if FactorType = FEF: Minimum inter -exceedance time (hr) : if = 0 then daily average flow exceeding frequency : if = 1 then daily average flow exceeding frequency : otherwise minimum inter -exceedance time for simulation interval all other FactorType : -99				
	Save	Cancel		

Figure 32. Define management objectives

Next, the *Optimization Settings* form will appear, complete the form as shown in Figure 33. The options allow the user to set a maximum number of runs, and a cost improvement required of each successive solution to continue the optimization. Click *OK*.

Optimization Settings				
	Optimization Stop Criteria			
	Max Number of Runs 10000			
	Stop Delta (\$)			
OK Cancel				

Figure 33. Define the optimization stop criteria

5.2.8.Create Input File and Run

From the left menu, click the *Create Input File and Run* button. (For this case study, the simulation start date and simulation end date were selected based on the Opti-Tool land use time series.) The pre-development land use options are the land uses defined in Section 5.2.3. The selected pre-development land use will be used to run an alternative baseline scenario. The input file path, output folder path, and SUSTAIN executable file path should not contain any special characters or spaces, the use of an underscore ("_") is acceptable. After simulation time period, pre-development land use, input file path, output folder path, and SUSTAIN executables path are all filled in, click Create Input File, see Figure 34. After the input file is successfully created, click *Run Simulation*.

. Time Period		2. Select a Pre-Development Land Use	
Simulation Start Date (01/01/1992)	01/01/2006	The selected land use will be used to run an alternative baseline scenario.	•
Simulation End Date (12/31/2014)	12/31/2015	,	_
3. Create Simulation Input File		r 4. Run Simulation	
Ithe watershed information (including BMPs) will be comp	iled into the SUSTAIN input file	SUSTAIN model executable	
d BMP optimization results will be written into the output fo	older.		
nput File Path		C:\Opti-Tool\SUSTAIN\SUSTAINOPT.exe	Browse
C:\Opti-Too\SUSTAIN.inp	Browse		Due Ofendation
Output Folder Path			Run Simulation
C:\Opti-Tool\SUSTAIN	Browse		
	Create Input File	Return to Sketch Page Vie	w Results

Figure 34. Create SUSTAIN model input file and run SUSTAIN model

5.2.9. View Results

After the simulation is complete, click the *View Results* button. The cost-effectiveness curve plots the solutions from the model simulation. The curve is an interactive plot showing the target solution (red triangle) and all the iterations performed during the optimization process. The grey dots on the curve are the inferior solutions and the blue diamonds on the front form the cost-effectiveness curve for a wide range of load reduction targets, see Figure 35. Based on the value in *Target Reduction (%)* box, Opti-Tool searches for the closest solution, and provides the information on the selected BMPs under that target solution (BMP ID, BMP type, surface area, storage depth, treated impervious area, runoff depth, annual maintenance hours, and BMP cost).

Figure 35 shows that it would cost \$2.55 million to meet a 29.9% TN load reduction. The optimized solution prioritize the most cost-effective BMPs over the others and shows large size for the infiltration practices as compared to gravel wetland and enhanced bioretention, see Table 17. By increasing 10% to the TN load reduction target the cost would increase to \$6.63 million (Figure 35) with the differential cost increase of \$4.08 million.

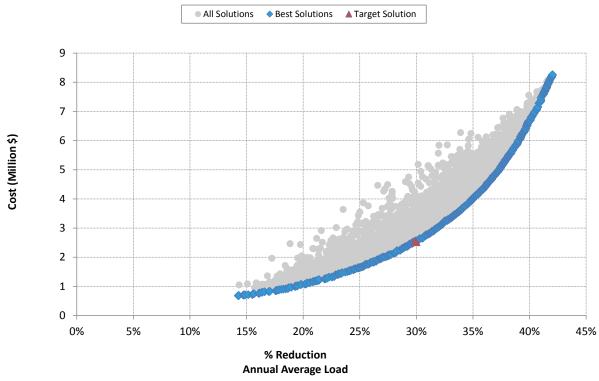


Figure 35. Cost-effectiveness curve results for 29.9% TN load reduction

Table 17 provides a breakdown of the *Solution Total Cost (Million \$)* for each listed BMP. (Note: A value of zero for *BMP Area* indicates the BMP was not required for the selected solution, although it may be used for other solutions).

Table 17	Outine al	a a lusti a m	fam 20 00/	TNI	ma duration
	Opumai	solution	101 29.9%	1 IN 10au	reduction

		Solution Total	Solution Reduction					
	Target Reduction (%)	Cost (Million \$)	(%)					
	29.9%	2.55	29.94%					
			BMP Storage Depth	System Storage	Treated Impervious Area		Annual Maintenance	
BMP ID	ВМР Туре	BMP Area (ft^2)	(ft)	Capacity(ft^3)	(ac)	Runoff Depth (in)	(hours)	Cost (\$)
BMP1	ENHANCEDBIORETENTION	16718.59	2.28	38118.37	45.66	0.23	NOT ASSESSED	595,027.82
BMP2	ENHANCEDBIORETENTION	2947.04	2.28	6719.24	10.89	0.17	NOT ASSESSED	104,887.33
BMP3	ENHANCEDBIORETENTION	3393.50	2.28	7737.18	9.69	0.22	NOT ASSESSED	120,777.38
BMP4	ENHANCEDBIORETENTION	9916.41	2.28	22609.40	21.48	0.29	NOT ASSESSED	352,932.79
BMP5	ENHANCEDBIORETENTION	1909.23	2.28	4353.04	2.61	0.46	NOT ASSESSED	67,951.02
BMP6	ENHANCEDBIORETENTION	1720.20	2.28	3922.06	4.50	0.24	NOT ASSESSED	61,223.29
BMP7	INFILTRATIONBASIN	4350.10	2.00	8701.94	2.92	0.82	NOT ASSESSED	54,300.11
BMP8	INFILTRATIONBASIN	4674.00	2.00	9349.87	6.78	0.38	NOT ASSESSED	58,343.19
BMP9	INFILTRATIONBASIN	364.00	2.00	728.14	0.47	0.43	NOT ASSESSED	4,543.57
BMP10	INFILTRATIONBASIN	649.44	2.00	1299.14	0.54	0.66	NOT ASSESSED	8,106.63
BMP11	INFILTRATIONBASIN	4965.75	2.00	9933.49	5.47	0.50	NOT ASSESSED	61,984.95
BMP12	SUBSURFACEGRAVELWETLAND	13035.00	3.27	42598.38	34.82	0.34	755.594	374,013.78
BMP13	SUBSURFACEGRAVELWETLAND	1003.70	3.27	3280.08	2.68	0.34	58.156	28,799.06
BMP14	SUBSURFACEGRAVELWETLAND	13771.75	3.27	45006.08	48.56	0.26	1053.752	395,153.37
BMP15	SUBSURFACEGRAVELWETLAND	4245.75	3.27	13875.09	7.96	0.48	172.732	121,823.33
BMP16	SUBSURFACEGRAVELWETLAND	231.80	3.27	757.52	1.08	0.19	23.436	6,651.05
BMP17	SUBSURFACEGRAVELWETLAND	995.88	3.27	3254.52	3.51	0.26	76.167	28,574.68
BMP18	SUBSURFACEGRAVELWETLAND	1549.98	3.27	5065.32	3.90	0.36	84.63	44,473.49
BMP19	SUBSURFACEGRAVELWETLAND	1947.64	3.27	6364.89	3.73	0.47	80.941	55,883.71
BMP20	INFILTRATIONBASIN	200.00	2.00	400.08	0.14	0.79	NOT ASSESSED	2,496.50

6. Summary of Case Study Results

Opti-Tool is designed to provide a flexible and yet consistent platform for local decision-makers and stormwater practitioners, so they can develop and implement technically sound and robust nutrient management plans, capable of demonstrating accountable progress and compliance with permit requirements based on TMDLs or other watershed goals. These include stormwater impacts and excessive nutrient loadings.

The Planning Level Analysis in Opti-Tool provides an easy way for the managers and decision makers to quickly evaluate the management opportunities in the watershed area of interest using a specific design capacity for BMPs fora simplified watershed-scale optimized solution to achieving a specific reduction target at the lowest cost. The MS Excel Solver quickly searches hundreds of possible BMP sizing combinations through the lookup function using the BMP performance curves. It must be noted that the default land use-specific annual loading rates and BMP-specific performance curves are calibrated to the New England Region in Opti-Tool. Special attention should be paid when using the default data for any other geographic location where the climate conditions are different than this region.

The Implementation Level Analysis in Opti-Tool helps stormwater engineers determine the best mix of structural BMPS to provide the greatest benefit for achieving watershed management goals, while minimizing the BMP costs. The cost-effectiveness curve provides decision makers the opportunity to pick the most cost-effective solution for achieving reduction targets. The watershed managers can also use this curve to identify the required cost associated with interim load reduction goals.

This Buzzards Bay case study demonstrates that Opti-Tool can be readily adapted to represent site-specific loading and climate conditions for a specific study area of interest. The companion utility tool (provided with the Opti-Tool), SWMM 2 OPTI HRU Tool, provides the step-by-step instructions to the user and guides the user from the climate data download step to the final reformatting of the HRU timeseries required for the Opti-Tool Implementation Level Analysis mode.

This case study also demonstrates that Planning Level Analysis can provide both: (1) the "big picture" in terms of maximum possible load reductions based on the possible extent of the management practices and the treatment of runoff from impervious cover in the study area; and (2) optimization of the selected BMPs at the watershed scale.

In the Planning Level Analysis mode, the case study evaluates two design scenarios to identify the BMP storage volume needed to meet a given design criterion (e.g., sized to hold 1 inch and 0.25 inch of runoff from the contributing impervious cover). Analyzing small and large design capacities in this first step is intended to help inform the user on a range of relative costs (\$) and maximum load reductions (%) achievable for given design BMP capacities in the case study watershed. An optimized scenario was also run to identify the best combination of BMP and design capacities needed at the watershed scale to meet the given numeric load reduction target (%TN removal from the entire study area). Design storage capacities for holding 1 inch and 0.25 inches of runoff depth from 217.4 acres of impervious drainage yielded nitrogen load reductions of 44.8% and 29.9%, respectively, with associated BMP cost estimates of \$18.25 million (\$7,970/lb. N reduced) and \$4.56 million (\$1,190/lb. N reduced, respectively. In terms of evaluating the scenarios on a cost per pound of nitrogen reduced, the smaller design storage capacity is significantly more cost efficient. The optimized solution within the Planning Level Analysis to target the 29.9% TN load reduction, comprises a mixture of 3 BMP categories of different sizes for a cost of \$4.31 million (a saving of \$250,000).

The analytical strength and flexibility of the Opti-Tool lies in the Implementation Level Analysis where the optimization focus can be set at the watershed scale, at catchment level, land use level, and a combination of catchment and land use level. The finer resolution will allow the optimization engine to search through a large domain of possible combinations of BMP mixtures and to find the most cost-effective solution within the given matrix of decision variables.

An optimized solution for 29.9% TN load reduction target in the Implementation Level Analysis provides a more detailed mixture of 20 different BMP sizes for a total cost of \$2.55 million and shows a \$1.75 million saving over the optimized solution in the Planning Level Analysis. Also, any inferior solution (grey dot symbols in Figure 35) (potentially chosen by human judgement) would be much more costly as compared to the cost-effective solution (blue diamond symbols in Figure 35) for the same load reduction target.

References

Shoemaker, L., J. Riverson, K. Alvi, J. X. Zhen, R. Murphy, B. Wood. 2013. *Stormwater Management for TMDLs in an Arid Climate: A Case Study Application of SUSTAIN in Albuquerque, New Mexico*. EPA/600/R-13/004. U.S. Environmental Protection Agency, Water Supply and Water Resources Division, National Risk Management Research Laboratory, Cincinnati, OH.

Shoemaker, L., J. Riverson, K. Alvi, J. X. Zhen, and R. Murphy. 2012. *Report on Enhanced Framework (SUSTAIN) and Field Applications to Placement of BMPs in Urban Watersheds*. EPA/600/R-11/144. U.S. Environmental Protection Agency, Washington, DC.

Shoemaker, L., J. Riverson, K. Alvi, J. X. Zhen, S. Paul, and T. Rafi. 2009. *SUSTAIN—A Framework for Placement of Best Management Practices in Urban Watersheds to Protect Water Quality*. EPA/600/R-09/095. U.S. Environmental Protection Agency, Washington, DC.

Tetra Tech, Inc. 2009. *Optimal Stormwater Management Plan Alternatives: A Demonstration Project in Three Upper Charles River Communities*. Prepared for: U.S. EPA Region 1 and Massachusetts Department of Environmental Protection, Boston, MA. Prepared by: Tetra Tech, Inc. Fairfax, VA.

	BMP Maximum Length (ft)				
Land Use Category	Enhanced Bioretention	Infiltration Basin	Subsurface Gravel Wetland		
Commercial	1453.79	106.10	790.00		
Industrial	346.71	0.00	60.83		
High Density Residential	308.50	4.97	1101.74		
Medium Density Residential	683.89	246.23	180.67		
Low Density Residential	83.01	16.93	24.40		
Agriculture	0.00	0.00	79.67		
Forest	0.00	19.68	88.57		
Open Land	143.35	198.63	84.68		

Appendix A. BMP design parameters used in the case study

General Information	ВМР Туре	Enhanced Bioretention	Infiltration Basin	Subsurface Gravel Wetland	
Subbasin	BMP Location	Junction1	Junction1	Junction1	
Information	Downstream Junction or BMP	lunction lu		Junction1	
Basin	BMP Length (ft)	See Appendix A	See Appendix A	See Appendix A	
Dimensions	BMP Width (ft)	50	50	50	
Exit Type	Exit Type (Discharge Coefficient)	1.0	1.0	1.0	
Surface	Orifice Height (ft)	0	0	0	
Storage Configuration	Orifice Diameter (in)	0	0	0	

General Information	BMP Type	Enhanced Bioretention	Infiltration Basin	Subsurface Gravel Wetland
	Rectangular or Triangular Weir	Rectangular	Rectangular	Rectangular
Weir Configuration	Weir Height (ft)/Ponding Depth (ft)	0.33	2	2.2
	Crest Width (ft)/Draining time (hr)	30	30	6
	Depth of Soil (ft)	2	0.001	0.67
Soil	Soil Porosity (0-1)	0.45	0.4	0.4
Properties	Vegetative Parameter A	0.6	0.9	0.9
	Soil Infiltration (in/hr)	4.5	0.52	3.3
	Consider Underdrain Structure?	Yes/ Check	No/ Uncheck	Yes/ Check
Underdrain	Storage Depth (ft)	2.5	0	2
Properties	Media Void Fraction (0-1)	0.42	0	0.4
	Background Infiltration (in/hr)	0	0	0
Cost Parameters	Storage Volume ("Ost (\$/ff")		6.24	8.78
Cost	BMP Development Type	New BMP in Undeveloped Area	New BMP in Undeveloped Area	New BMP in Undeveloped Area
Function Adjustment	Cost Adjustment Factor	1	1	1
-	Annual Maintenance Hours	Not Assessed	Not Assessed	21.7
Decay Rates TN (1/hr)		0.11	0.42	0.13
Underdrain Removal Rates	Removal TN (%,0-1)		0	0.22

Stormwater Control Type	Description	Applicable Structural Stormwater Control Performance Curve	Equation for calculating Design Storage Capacity for Estimating Cumulative Reductions using Performances Curves
Infiltration Trench	Provides temporary storage of runoff using the void spaces within the soil/sand/gravel mixture that is used to backfill the trench for subsequent infiltration into the surrounding sub-soils.	Infiltration Trench (6 infiltration rates: 0.17, 0.27, 0.52, 1.02, 2.41 and 8.27 inches per hour)	DSV = void space volumes of gravel and sand layersDSV = (L x W x Dstone x nstone) + (L x W x Dsand x nsand)
Subsurface Infiltration	Provides temporary storage of runoff using the combination of storage structures (e.g., galleys, chambers, pipes, etc.) and void spaces within the soil/sand/gravel mixture that is used to backfill the system for subsequent infiltration into the surrounding sub-soils.	Infiltration Trench (6 infiltration rates: 0.17, 0.27, 0.52, 1.02, 2.41 and 8.27 inches per hour)	$DSV = Water storage volume of storage units and void spacevolumes of backfill materials. Example for subsurface galleysbackfilled with washed stone:DSV = (L \ x \ W \ x \ D)_{galley} + (L \ x \ W \ x \ D_{stone} \ x \ n_{stone})$
Surface Infiltration	Provides temporary storage of runoff through surface ponding storage structures (e.g., basin or swale) for subsequent infiltration into the underlying soils.	Infiltration Basin (6 infiltration rates: 0.17, 0.27, 0.52, 1.02, 2.41 and 8.27 inches per hour)	$ \begin{array}{l} DSV = \text{Water volume of storage structure before bypass.} \\ Example for linear trapezoidal vegetated swale \\ DSV = (L x ((W_{bottom}+W_{top@Dmax})/2) x D) \end{array} $
Rain Garden/Bio- retention (no underdrains)	Provides temporary storage of runoff through surface ponding and possibly void spaces within the soil/sand/gravel mixture that is used to filter runoff prior to infiltration into underlying soils.	Infiltration Basin (6 infiltration rates: 0.17, 0.27, 0.52, 1.02, 2.41 and 8.27 inches per hour)	DSV = Ponding water storage volume and void space volumes of soil filter media. Example for raingarden: $DSV = (A_{pond} \times D_{pond}) + (A_{soil} \times D_{soil} \times n_{soil} m_x)$
Tree Filter (no underdrain)	Provides temporary storage of runoff through surface ponding and void spaces within the soil/sand/gravel mixture that is used to filter runoff prior to infiltration into underlying soils.	Infiltration Trench (6 infiltration rates: 0.17, 0.27, 0.52, 1.02, 2.41 and 8.27 inches per hour)	DSV = Ponding water storage volume and void space volumes of soil filter media. DSV = (L x W x D _{ponding}) + (L x W x D _{soil} x n _{soil mix})
Bio-Filtration (w/underdrain)	Provides temporary storage of runoff for filtering through an engineered soil media. The storage capacity includes void spaces in the filter media and temporary ponding at the surface. After runoff has passed through the filter media it is collected by an under-drain pipe for discharge. Manufactured or packaged bio-filter systems such as tree box filters may be suitable for using the bio-filtration performance results.	Bio-filtration	DSV = Ponding water storage volume and void space volume of soil filter media. Example of a linear biofilter: $DSV = (L \ x \ W \ x \ D_{ponding}) + (L \ x \ W \ x \ D_{soil} \ x \ n_{soil})$
Enhanced Bio- filtration w/ Internal Storage Reservoir (ISR) (no infiltration)	Based on design by the UNH Stormwater Center (UNHSC). Provides temporary storage of runoff for filtering through an engineered soil media, augmented for enhanced phosphorus removal, followed by detention and denitrification in a subsurface internal storage reservoir (ISR) comprised of gravel. An elevated outlet control at the top of the ISR is designed to provide a retention time of at least 24 hours in the system to allow for sufficient time for denitrification and nitrogen reduction to occur prior to discharge. The design storage capacity for using the cumulative performance curves is comprised of void spaces in the filter media, temporary ponding at the surface of the practice and the void spaces in the gravel ISR.	Enhanced Bio-filtration w/ISR	$\begin{split} DSV &= \text{Ponding water storage volume and void space volume} \\ \text{of soil filter media and gravel ISR.} \\ DSV &= (A_{bed} \ x \ D_{ponding}) + (A_{bed} \ x \ D_{soil} \ x \ n_{soil}) + (A_{ISR} \ x \ D_{gravel} \ x \\ D_{gravel}) \end{split}$
Gravel Wetland	Provides temporary surface ponding storage of runoff in a vegetated wetland cell that is eventually routed to an underlying saturated gravel internal storage reservoir (ISR) for nitrogen treatment. Outflow is controlled by an elevated orifice that has its invert elevation equal to the top of the ISR layer and provides a retention time of at least 24 hours.	Gravel Wetland	DSV = pretreatment volume + ponding volume + void space volume of gravel ISR. DSV = (A pretreatment x DpreTreatment) + (A wetland x Dponding) + (AISR x Dgravel x ngravel)
Porous Pavement with subsurface infiltration	Provides filtering of runoff through a filter course and temporary storage of runoff within the void spaces of a subsurface gravel reservoir prior to infiltration into subsoils.	Infiltration Trench (6 infiltration rates: 0.17, 0.27, 0.52, 1.02, 2.41 and 8.27 inches per hour)	$DSV = void space volumes of gravel layerDSV = (L \ x \ W \ x \ D_{stone} \ x \ n_{stone})$
Porous pavement w/ impermeable underliner w/underdrain	Provides filtering of runoff through a filter course and temporary storage of runoff within the void spaces prior to discharge by way of an underdrain.	Porous Pavement	Depth of Filter Course = D_{FC}
Sand Filter w/underdrain	Provides filtering of runoff through a sand filter course and temporary storage of runoff through surface ponding and within void spaces of the sand and washed stone layers prior to discharge by way of an underdrain.	Sand Filter	$DSV = pretreatment volume + ponding volume + void spacevolume of sand and washed stone layers.DSV = (A_{pretreatment} x D_{preTreatment}) + (A_{bed} x D_{ponding}) + (A_{bed} x D_{sand} x n_{sand}) + (A_{bed} x D_{stone} x n_{stone})$
Wet Pond	Provides treatment of runoff through routing through permanent pool.	Wet Pond	DSV= Permanent pool volume prior to high flow bypass DSV=Apond x Dpond (does not include pretreatment volume)
Extended Dry Detention Basin	Provides temporary detention storage for the design storage volume to drain in 24 hours through multiple out let controls.	Dry Pond	DSV= Ponding volume prior to high flow bypass DSV=Apond x Dpond (does not include pretreatment volume)
Dry Water Quality Swale/Grass Swale	Based on MA design standards. Provides temporary surface ponding storage of runoff in an open vegetated channel through permeable check dams. Treatment is provided by filtering of runoff by vegetation and check dams and infiltration into subsurface soils.	Water Quality Grass swale	DSV = Volume of swale at full design depth DSV=L _{swale} x A _{swale} x D _{ponding swale}

Appendix B. Method for determining stormwater control design volume (DSV) (i.e., capacity) using long-term cumulative performance curves