

NPDES RGP APPLICATION - TEMPORARY CONSTRUCTION
DEWATERING
MIT WEST LOT
269 TO 301 VASSAR STREET
CAMBRIDGE, MASSACHUSETTS

by Haley & Aldrich, Inc. Boston, Massachusetts

for Environmental Protection Agency (EPA) Region 1 Boston, Massachusetts

File No. 134487-004 November 2021

HALEY & ALDRICH, INC. 465 Medford St. Suite 2200 Boston, MA 02129 617.886.7400

12 November 2021 File No. 134487-004

Environmental Protection Agency (EPA) Region 1 5 Post Office Square, Suite 100 Mall Code, OEP06-4 Boston, Massachusetts 02109

Attention: Shauna Little

Subject: NPDES RGP Application - Temporary Construction Dewatering

MIT West Lot

269 to 301 Vassar Street Cambridge, Massachusetts

Ladies and Gentlemen:

On behalf of our client, Massachusetts Institute of Technology (MIT), Haley & Aldrich, Inc. (Haley & Aldrich, Inc.) is submitting this application to request authorization under the National Pollutant Discharge Elimination System (NPDES), Remediation General Permit (RGP) for off-site discharge of temporary construction dewatering effluent during construction activities planned at the MIT West Lot (herein referred to as the "Site") at 269 to 301 Vassar Street located in Cambridge, Massachusetts. A copy of the Notice of Intent (NOI) is included in Appendix A.

EXISTING SITE CONDITIONS

The Site is a nearly rectangular shaped parcel, approximately 82,500 square feet (sq ft) in size, located between Vassar Street and the adjacent Massachusetts Bay Transportation Authority (MBTA) rail line (former Grand Junction Railroad) as shown on Figures 1 and 2. Except for the southwest portion of the Site which is currently occupied by a one to two story brick building housing the MIT Police offices, the remaining portions are paved surface parking. The MIT Police building, constructed in 1915, is approximately 17,476 sq ft in area. The topography of the Site is generally flat, and site grades generally range between elevation (El.) 20 to El. 22 Cambridge City Base (CCB) Datum¹.

SITE HISTORY

The Site is located within the former Charles River mudflats. The Charles River Embankment was constructed across the mudflats between 1883 and 1900 to reclaim tidal land and the Site was filled

¹ Elevations in this report are in feet and referenced to Cambridge City Base (CCB) Datum, which is 10.84 ft below the National Geodetic Datum of 1929 (NGVD).

between 1890 and 1910 to support road-oriented commerce and industrialization of this portion of Cambridge (known as Cambridgeport).

Past usages of the Site were determined through a review of Sanborn Fire Insurance Maps. Sanborn maps for the Site, dated 1900, 1934, 1986, and 1990 indicated the following information based on features depicted on the maps:

- The 1900 Sanborn Map of the subject Site depicts the site as unoccupied land along Vassar Street.
- The 1934, the Sanborn Map depicts a Motor Freight Terminal along the railroad tracks on the
 western end of the Site; located across from Fort Washington. At the eastern end of the Site is a
 U.S. Radiator Corporation Warehouse. The area of the Site between the terminal and
 warehouse remained unoccupied.
- The 1950 Sanborn Map depicts the Site as occupied by a series of warehouses, and a manufacturing facility.
- The 1986 through 2003 Sanborn Maps indicate that the warehouses at the eastern ends of the Site had been demolished and the area was being utilized for parking. The western end of the Site is depicted with two buildings). Based on historic records, the building located at 301 Vassar Street was reportedly remodeled in 2005 for the MIT Police Department.

PROPOSED CONSTRUCTION

The Site is The West Lot Graduate Student Housing project; proposed to include construction of two residential buildings with a total gross floor space of approximately 261,000 sq ft that includes student housing, dedicated common space, and retail space. Each residential building is proposed to have a portion of the building be constructed to five to eight stories and the other portion of the building up to ten stories. Around the buildings and to maintain connection to Fort Washington Park, the Site will be finished with landscape improvements. The ground level finished floor elevations are anticipated to be generally at existing ground surface elevation. No basement levels are planned. The existing MIT police station building will be demolished prior to construction.

REGULATORY STATUS

There are four Release Tracking Numbers (RTNs) associated with the subject property as summarized below. Limits of these Disposal Sites and RTNs which are applicable to this submittal are shown on Figure 2.

Release Tracking Number 3-19155

RTN 3-19155 was assigned to the 229 Vassar Street property, which includes the easternmost portion of the Site. A chemical testing program was conducted at the property associated with site development with the current residence hall (Simmons Hall) in 1999 which identified petroleum hydrocarbons, trichloroethylene, polycyclic aromatic hydrocarbons (PAHs), and metals (arsenic, barium, chromium, and

lead) in historic urban fill and underlying organic soils at concentrations exceeding the applicable Massachusetts Contingency Plan (MCP) RCS-1 Reportable Concentrations. Contaminants identified in soil were attributed to previous site filling. Groundwater was not found to be impacted. A Release Notification Form (RNF) was submitted to the Massachusetts Department of Environmental Protection (MassDEP) on 7 January 2000 to notify of the 120-day reporting condition and MassDEP assigned RTN 3-19155 to the Site.

Release Abatement Measure (RAM) activities were undertaken to remove excavated soil during construction of Simmons Hall and associated utility installations. Approximately 14,584 cubic yards (cu yd) of contaminated soil was excavated and transported offsite. Excavation for the building basement removed the fill and organic deposits within the limits of the building footprint, however, urban fill remains present in the portion of the Site not occupied by the building (and within the limits of the subject Site). A Method 3 Risk Characterization was conducted following completion of RAM activities which indicated that an Activity and Use Limitation (AUL) was necessary to maintain a condition of No Significant Risk. As such a Class A-3 Response Action Outcome (RAO), which included the implementation of an AUL, was submitted to MassDEP for RTN 3-19155 in October 2004.

The AUL includes provisions to prevent disturbance of potentially impacted soils remaining at the Site. Specifically, the AUL prohibits the use of soils for cultivation of fruits and vegetables for human consumption, and construction and occupation of a building within the AUL as a residence, elementary or secondary school, nursery, daycare, active recreational area and/or any other such use at which a child's presence is likely.

Release Tracking Numbers 3-19125 and 3-20017

Subsurface petroleum staining of soil and odors were encountered at a depth of 6 to 10 feet (ft) below ground surface (bgs) during the removal of two (2) underground storage tanks (USTs) at 289 Vassar Street (within the Site, see Figure 2) in August 1999. MassDEP was notified of the release in December 1999 and assigned RTN 3-19125 to the release. Subsequent test pit explorations, soil sampling and chemical testing conducted by McPhail Associates, Inc. beneath the floor slab of the former building identified elevated concentrations of lead, petroleum hydrocarbons, and naphthalene in Fill material located at depths above that of the former USTs. Therefore, these impacts were determined to not be associated with RTN 3-19125 and MassDEP assigned RTN 3-20017 to the release on 3 October 2000. An MCP Phase I Report and Tier Classification Report was submitted to MassDEP on 5 January 2001, at which time RTNs 3-19125 and 3-20017 were linked and the Site was classified as a Tier II Disposal Site. RAM activities were conducted at 289 Vassar Street which resulted in removal of a portion of the Fill soils that were present beneath the former building floor slab.

Both releases were closed in December 2004 with a Class A-3 RAO, dated November 2004, which included the implementation of an AUL at 289 Vassar Street. The AUL limited future uses by precluding the following: use of soils for cultivation of fruits or vegetables for human consumption; construction and occupation of a building within the AUL area as a residence, elementary or secondary school, nursery, daycare, active recreational area and/or any other such use at which a child's presence is likely; and subsurface activities associated with utility work or future construction which may result in the

disturbance, excavation, relocation or removal of contaminated soil below El. 19 (approximately 2 ft below paved parking lot surface) unless activities are conducted certain obligations set forth in the AUL.

Haley & Aldrich subsequently conducted a Method 3 Risk Characterization using historical data included in the November 2004 RAO and representative of current site conditions. The results of which indicated that an AUL is not necessary to maintain a condition of No Significant Risk at 289 Vassar Street. As such, a Revised Permanent Solution Statement was submitted to MassDEP for RTNs 3-19125 and 3-20017 on 25 June 2020 and an AUL Termination was filed with the Middlesex County South Registry District of the Land Court on 22 June 2020.

Release Tracking Number 3-37131

In preparation for development, subsurface investigations conducted in 2021 at the Site by Haley & Aldrich identified levels of total petroleum hydrocarbons (TPH), PAHs, and metals in historic urban Fill soil and limited underlying Organic Deposits exceeding applicable MCP RCS-1 Reportable Concentrations. The contaminants are attributed to historic urban fill and not a point source release and are typical in this area of Cambridge. MIT submitted a Release Notification Form (BWSC103) to MassDEP for the reportable concentrations detected in soil as a 120-day release notification on 3 November 2021. MassDEP subsequently assigned RTN 3-37131 to the release.

RECEIVING WATER INFORMATION

On 15 October 2021, Haley & Aldrich collected a receiving water sample from the outfall location into the Charles River and submitted to a MassDEP-certified laboratory, Alpha Analytical, Inc. of Westborough, Massachusetts (Alpha), for NPDES receiving water (freshwater) parameters, including total metals, ammonia, pH, and hardness. Analytical results are summarized in Table I. The laboratory data report is enclosed in Appendix B.

The seven-day-ten-year flow (7Q10) of the receiving water was established using the U.S. Geological Survey (USGS) StreamStats program and confirmed by MassDEP on 12 November 2021. We have additionally confirmed with MassDEP that the dilution factor for the receiving water is 75.1. The StreamStats report, Dilution Factor calculations, and confirmation from MassDEP are included in Appendix C.

Copies of the "EnterData" and "Freshwater" tabs from the excel file provided as an additional resource by EPA are included in Appendix C and will be transmitted electronically with the NOI. The effluent limitations are included for reference in Table I.

SOURCE WATER INFORMATION

On 15 October 2021, one groundwater sample was collected from observation well GP-2(OW) to evaluate groundwater (source water) quality with respect to the NPDES RGP dewatering effluent criteria. Refer to Figure 3 for observation well location.

The groundwater sample was submitted to Alpha for chemical analysis of 2017 NPDES RGP parameters including volatile organic compounds (VOCs), semi-volatile organic compounds (SVOCs), PAHs, total metals, total petroleum hydrocarbons, ethanol, pesticides, polychlorinated biphenyls (PCBs), total suspended solids, chloride, total cyanide, total phenols, ammonia, and total residual chlorine.

The data are compared to the applicable MCP Reportable Concentration RCGW-2 criteria and the site-specific 2017 NPDES RGP Freshwater Effluent Limits as determined in the Technology Based Effluent Limits (TBEL) calculations. The source water quality data are summarized in Table I. Laboratory data reports are included in Appendix B.

As part of site characterization, a groundwater sample was collected at the Site in February 2020 from observation well WL-2. The sample was submitted to Alpha for analysis of VOCs, SVOCs, total Resource Conservation and Recovery Act (RCRA) 8 metals, EPH carbon ranges, and VPH carbon ranges. These data are also summarized in Table I with laboratory data reports included in Appendix B.

DISCHARGE INFORMATION

During construction of the buildings, it will be necessary to perform temporary construction dewatering to control surface water runoff from precipitation, groundwater seepage, and construction-generated water to enable construction in-the-dry. Construction and construction dewatering is currently anticipated to being in February 2022 and is anticipated to be required for up to 12 months. On average, we estimate effluent discharge rates of about 50 to 100 gallons per minute (gpm) or less, with occasional peak flows of approximately 150 gpm during significant precipitation events. Temporary dewatering will be conducted from sumps located in excavations.

Construction dewatering under this RGP will include piping and discharging to storm drains located near the Site that ultimately discharge to the Charles River through Outfall D11OF0010. The proposed discharge locations, route, and outfall are shown on Figure 4.

DEWATERING TREATMENT SYSTEM INFORMATION

An effluent treatment system will be designed and implemented by the site contractor(s) to meet the applicable 2017 RGP Discharge Effluent Criteria. Prior to discharge, collected water will be routed through a sedimentation tank and bag filters with pH control, at a minimum, to remove suspended solids and undissolved chemical constituents and adjust the pH to within the limits established by the permit. The proposed treatment system schematic is provided on Figure 5. A Notice of Change (NOC) will be submitted to EPA if additional treatment components need to be mobilized at the Site. The site Contractor has not yet submitted their construction dewatering submittal, which will include details of the proposed dewatering system along with Safety Data Sheets (SDSs) and fact sheets for possible chemical additives (if needed to adjust pH or reduce suspended sediments). A Best Management Practices Plan (BMPP), which outlines the proposed discharge operations covered under the RGP, will be available at the Site and is not being submitted with this NOI.

DETERMINATION OF ENDANGERED SPECIES ACT ELIGIBILITY

According to the guidelines outlined in Appendix I of the 2017 NPDES RGP, a preliminary determination for the action area associated with this project was established using the U.S. Fish and Wildlife Service (FWS) Information, Planning, and Conservation (IPAC) online system; a copy of the determination is attached in Appendix D. Based on the results of the determination, the project and action area are considered to meet FWS Criterion A because no listed species or critical habitat are present within the project action area. Additionally, a MassDEP Phase 1 Site Assessment Map is included in Appendix D, which confirms that no critical habitats are present at the Site.

DOCUMENTATION OF NATIONAL HISTORIC PRESERVATION ACT REQUIREMENTS

Based on a review of the resources provided by the U.S. National Register of Historic Places and a review of the Massachusetts Cultural Resource Information System (MACRIS), no historic properties are within the Site. The Site is nearby the Charles River Basin Historic District (property ID 78000436) and Fort Washington (property ID 73000284), but discharge and discharge-related activities are not considered to have the potential to affect to the above historic area/property. The project site meets Criterion A. Documentation is included in Appendix E.

Note that the Metropolitan Supply Company Warehouse was identified on the MACRIS as MHC# CAM.362 and CAM.363, addressed at 277-287 Vassar Street and 289-293 Vassar Street. Further review indicates the MACRIS listings for the Metropolitan Supply Company Warehouse are in fact located west of the Site, along Vassar Street, at the corner of Massachusetts Avenue and not within the Site limits.

SUPPLEMENTAL INFORMATION

Permits for Temporary construction dewatering will also be required from the City of Cambridge. The contractor will submit the City of Cambridge permit concurrently with this application. A copy of the permit application is included in Appendix F.

Owner and operation information are provided below for reference:

Owner:

Massachusetts Institute of Technology 77 Massachusetts Avenue, 10-370 Cambridge, MA 02139 Attn: Louis DiBerardinis

Operator:

John Moriarty & Associates 3 Church Street Winchester, MA 01890 Attn: Josh Snyder

CLOSING

Thank you very much for your consideration. Please feel free to contact us should you wish to discuss the information contained herein or if you need additional information.

Sincerely yours,

HALEY & ALDRICH, INC.

Shay Gerald Engineer Corinne M. McKenzie Project Manager

Joel S. Mooney, P.E. (MA), LSP Principal | Senior Vice President

Enclosures:

Table I – Summary of Water Quality Data

Figure 1 – Project Locus

Figure 2 – Site Plan

Figure 3 – Site and Subsurface Exploration Location Plan

Figure 4 – Proposed Discharge Route

Figure 5 – Proposed Treatment System Schematic

Appendix A – Notice of Intent (NOI)

Appendix B – Laboratory Data Reports

Appendix C – Effluent Limitations Documentation

Appendix D – Endangered Species Act Assessment

Appendix E – National Historic Preservation Act Review

Appendix F – Cambridge Dewatering Permit Application

\haleyaldrich.com\share\CF\Projects\134487\Environmental\NPDES\NPDES NOI\NPDES\Text\2021-1112-HAI-MIT West Lot-NPDES RGP-F.docx

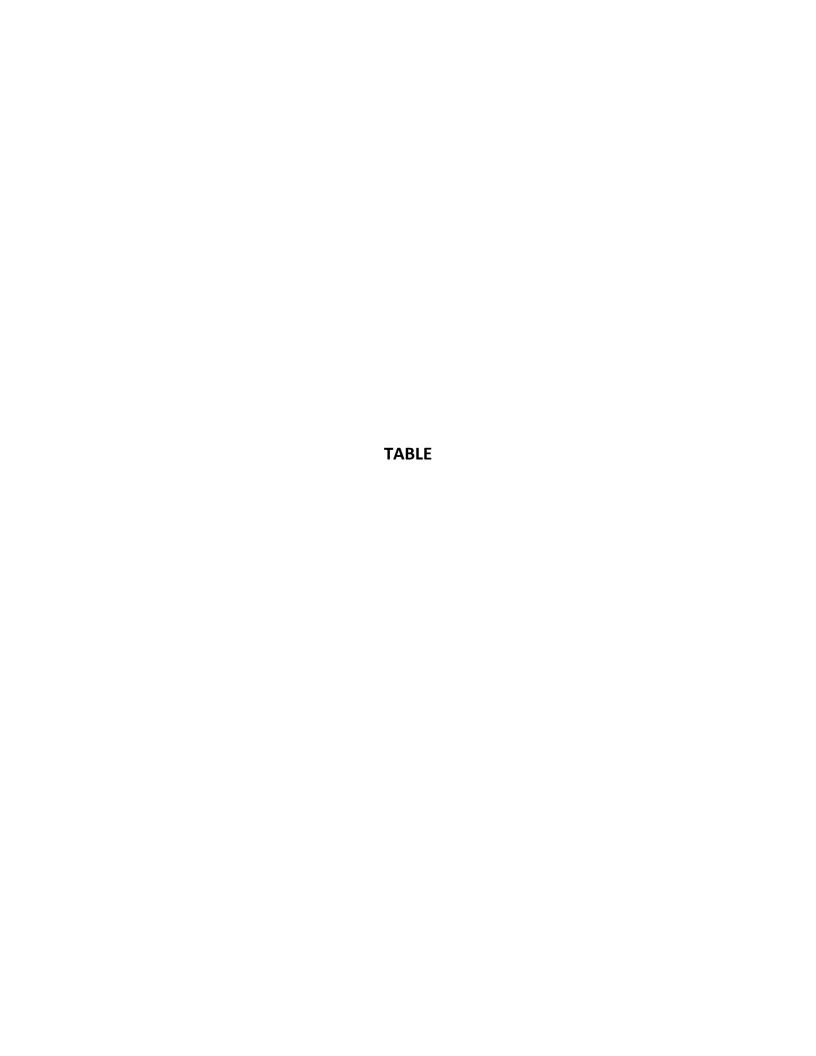


TABLE I SUMMARY OF WATER QUALITY DATA MIT WEST LOT CAMBRIDGE, MA FILE NO. 134487

FILE NO. 134487							
	mple Location ocation Name		Action Lev	el MCP	WL-2 WL-2	GP-2(OW) GP-2(OW)	Receiving Water - Charles Rive MIT WEST LOT-RW
	Sample Name	MA RGP Freshwater	MA RGP Freshwater	Reportable	WL-2_20200210	GP-2(OW)-2021-1015	MIT WEST LOT-RW-2021-1015
	Sample Date	WQBELs	TBELs	Concentration RCGW-2	02/10/2020	10/15/2021 L2156742-01	10/15/2021
	Lab Sample ID	2017	2017	2014	L2005972-01	L2158218-01	L2156742-02
Volatile Organic Compounds (ug/L)		NA	NA	10	ND (1)		
1,1,1,2-Tetrachloroethane 1,1,1-Trichloroethane		NA 200	NA 200	4000	ND (1) ND (1)	ND (2)	- -
1,1,2,2-Tetrachloroethane 1,1,2-Trichloroethane		NA 5	NA 5	9 900	ND (1) ND (1)	- ND (1.5)	-
1,1-Dichloroethane		70	70	2000	ND (1) ND (1)	ND (1.5) ND (1.5)	-
1,1-Dichloroethene		3.2	3.2	80	ND (1)	ND (1)	-
1,1-Dichloropropene 1,2,3-Trichlorobenzene		NA NA	NA NA	NA NA	ND (2) ND (2)	-	-
1,2,3-Trichloropropane		NA	NA	10000	ND (2)	ND (0.03)	-
1,2,4-Trichlorobenzene 1,2,4-Trimethylbenzene		NA NA	NA NA	200 100000	ND (2) ND (2)	-	-
1,2-Dibromo-3-chloropropane (DBCP)		NA	NA	NA	ND (2)	ND (0.01)	-
1,2-Dibromoethane (Ethylene Dibromide) 1,2-Dichlorobenzene		0.05 600	0.05 600	2 2000	ND (2) ND (1)	ND (0.01) ND (5)	-
1,2-Dichloroethane		5	5	5	ND (1)	ND (1.5)	-
1,2-Dichloroethene (total) 1,2-Dichloropropane		NA NA	NA NA	100 3	ND (1) ND (1)	- -	-
1,3,5-Trimethylbenzene		NA	NA	1000	ND (2)	-	-
1,3-Dichlorobenzene 1,3-Dichloropropane		320 NA	320 NA	6000 NA	ND (1) ND (2)	ND (5) -	-
1,3-Dichloropropene		NA	NA	10	ND (0.4)	-	-
1,4-Dichlorobenzene 1,4-Dioxane		5 200	5 200	60 6000	ND (1)	ND (5)	-
2,2-Dichloropropane		NA	NA	NA	ND (250) ND (2)	- -	- -
2-Butanone (Methyl Ethyl Ketone)		NA	NA	50000	ND (5)	-	-
2-Chlorotoluene 2-Hexanone		NA NA	NA NA	NA 10000	ND (2) ND (5)	-	-
2-Phenylbutane (sec-Butylbenzene)		NA	NA	NA	ND (2)	-	-
1-Chlorotoluene 1-Methyl-2-Pentanone (Methyl Isobutyl Keto	one)	NA NA	NA NA	NA 50000	ND (2) ND (5)	- -	- -
Acetone	•	7970	7970	50000	ND (5)	ND (10)	-
Benzene Bromobenzene		5 NA	5 NA	1000 NA	ND (0.5) ND (2)	ND (1) -	- -
Bromodichloromethane		NA	NA	6	ND (1)	-	-
Bromoform Bromomethane (Methyl Bromide)		NA NA	NA NA	700 7	ND (2) ND (2)	- -	- -
Carbon disulfide		NA NA	NA NA	10000	ND (2) ND (2)	- -	-
Carbon tetrachloride Chlorobenzene		1.6 NA	4.4 NA	2 200	ND (1) ND (1)	ND (1)	-
Chlorobromomethane		NA NA	NA NA	NA	ND (1) ND (2)	- -	- -
Chloroethane		NA	NA	10000	ND (2)	-	-
Chloroform (Trichloromethane) Chloromethane (Methyl Chloride)		NA NA	NA NA	50 10000	ND (1) ND (2)	-	-
cis-1,2-Dichloroethene		70	70	20	ND (1)	ND (1)	-
cis-1,3-Dichloropropene Cymene (p-Isopropyltoluene)		NA NA	NA NA	5 10000	ND (0.4) ND (2)	-	- -
Dibromochloromethane		NA	NA	20	ND (1)	-	-
Dibromomethane Dichlorodifluoromethane (CFC-12)		NA NA	NA NA	50000 100000	ND (2) ND (2)	- -	-
Diisopropyl ether (DIPE)		NA	NA	NA	ND (2)	-	-
Ethyl Ether Ethylbenzene		NA 100	NA 100	NA 5000	ND (2) ND (1)	- ND (1)	-
Hexachlorobutadiene		NA	NA NA	50	ND (0.6)	-	- -
sopropylbenzene (Cumene)		NA 100	NA 100	100000 NA	ND (2)	- ND (2)	-
m,p-Xylenes Methyl Tert Butyl Ether (MTBE)		20	70	5000	ND (2) ND (2)	ND (2) ND (10)	- -
Methylene chloride		4.6	4.6	2000	ND (2)	ND (1)	=
Naphthalene n-Butylbenzene		20 NA	20 NA	700 NA	ND (2) ND (2)	- -	- -
n-Propylbenzene		NA 100	NA 100	10000	ND (2)	- ND (1)	-
o-Xylene Styrene		100 NA	100 NA	NA 100	ND (1) ND (1)	ND (1) -	-
Tert-Amyl Methyl Ether (TAME)		90	90	NA	ND (2)	ND (20)	-
Tert-Butyl Alcohol (tert-Butanol) Tert-Butyl Ethyl Ether (ETBE)		120 NA	120 NA	NA NA	- ND (2)	ND (100) -	-
tert-Butylbenzene		NA	NA	10000	ND (2)	-	-
Fetrachloroethene Fetrahydrofuran		3.3 NA	5 NA	50 50000	ND (1) ND (2)	ND (1)	-
Foluene		100	100	40000	ND (1)	ND (1)	-
rans-1,2-Dichloroethene rans-1,3-Dichloropropene		NA NA	NA NA	80 5	ND (1) ND (0.4)	-	- -
Frichloroethene		5	5	5	ND (1)	ND (1)	- -
Trichlorofluoromethane (CFC-11)		NA 2	NA 2	100000	ND (2)	- ND (1)	-
Vinyl chloride Kylene (total)		100	100	2 3000	ND (1) ND (1)	ND (1) ND (1)	- -
Volatile Organic Compounds SIM (ug/L) 1,4-Dioxane		200	200	6000	_	ND (5)	
Semi-Volatile Organic Compounds (ug/L)		200	200	0000	-	ND (5)	
1,2,4-Trichlorobenzene 1,2-Dichlorobenzene		NA 600	NA 600	200 2000	ND (5) ND (2)	- -	- -
1,3-Dichlorobenzene		320	320	6000	ND (2) ND (2)	- -	-
1,4-Dichlorobenzene		5	5	60	ND (2)	-	-
2,2'-oxybis(1-Chloropropane) 2,4,5-Trichlorophenol		NA NA	NA NA	100 3000	ND (2) ND (5)	- -	- -
2,4,6-Trichlorophenol		NA	NA	500	ND (5)	-	-
2,4-Dichlorophenol 2,4-Dimethylphenol		NA NA	NA NA	2000 40000	ND (5) ND (5)	-	-
2,4-Dinitrophenol		NA	NA	20000	ND (20)	-	-
2,4-Dinitrotoluene 2,6-Dinitrotoluene		NA NA	NA NA	20000 10000	ND (5) ND (5)	- -	- -
2-Chlorophenol		NA	NA	7000	ND (2)	-	-
2-Methylphenol (o-Cresol) 2-Nitrophenol		NA NA	NA NA	50000 10000	ND (5) ND (10)	- -	- -
3&4-Methylphenol		NA	NA	NA	ND (5)	- -	- -
3,3'-Dichlorobenzidine 1-Bromophenyl phenyl ether		NA NA	NA NA	2000 10000	ND (5) ND (2)	- -	- -
I-Bromopnenyi pnenyi etner I-Chloroaniline		NA NA	NA NA	300	ND (2) ND (5)	- -	- -
1-Nitrophenol		NA	NA	10000	ND (10)	-	-
Acetophenone Aniline		NA NA	NA NA	100 100000	ND (5) ND (2)	- -	- -
Azobenzene		NA	NA	NA	ND (2)	-	-
ois(2-Chloroethoxy)methane ois(2-Chloroethyl)ether		NA NA	NA NA	50000 30	ND (5) ND (2)	- -	- -
ois(2-Ethylhexyl)phthalate		2.2	190	50000	ND (3)	ND (2.2)	-
Butyl benzylphthalate Dibenzofuran		NA NA	190 NA	10000 10000	ND (5) ND (2)	ND (5) -	- -
Diethyl phthalate		NA NA	190	9000	ND (2) ND (5)	ND (5)	-
		NA	190	50000	ND (5) ND (5)	ND (5) ND (5)	-
Dimethyl phthalate		A I A	100				
		NA NA	190 190	5000 100000	ND (5)	ND (5)	- -
Dimethyl phthalate Di-n-butylphthalate							- - -

TABLE I SUMMARY OF WATER QUALITY DATA MIT WEST LOT CAMBRIDGE, MA FILE NO. 134487

FILE NO. 13446/						
Sample Location	ı	Action Lev		WL-2	GP-2(OW)	Receiving Water - Charles River
Location Name	MA RGP	MA RGP	MCP	WL-2	GP-2(OW)	MIT WEST LOT-RW
Sample Name	Freshwater	Freshwater	Reportable	WL-2_20200210	GP-2(OW)-2021-1015	MIT WEST LOT-RW-2021-1015
Sample Date	WQBELs	TBELs	Concentration	02/10/2020	10/15/2021	10/15/2021
	2017	2017	RCGW-2		L2156742-01	
Lab Sample IE			2014	L2005972-01	L2158218-01	L2156742-02
Semi-Volatile Organic Compounds (SIM) (ug/L)						
2-Chloronaphthalene	NA	NA	100000	ND (0.2)	-	-
2-Methylnaphthalene	NA	NA	2000	ND (0.1)	=	-
Acenaphthene	100	100	6000	ND (0.1)	ND (0.1)	-
Acenaphthylene	100	100	40	ND (0.1)	ND (0.1)	-
Anthracene	100	100	30	ND (0.1)	ND (0.1)	-
Benzo(a)anthracene	0.0038	1	1000	ND (0.1)	ND (0.1)	-
Benzo(a)pyrene	0.0038	1	500	ND (0.1)	ND (0.1)	-
Benzo(b)fluoranthene	0.0038	1	400	ND (0.1)	ND (0.1)	-
Benzo(g,h,i)perylene	100	100	20	ND (0.1)	ND (0.1)	-
Benzo(k)fluoranthene	0.0038	1	100	ND (0.1)	ND (0.1)	-
Chrysene	0.0038	1	70	ND (0.1)	ND (0.1)	-
Dibenz(a,h)anthracene	0.0038	1	40	ND (0.1)	ND (0.1)	-
Fluoranthene	100	100	200	ND (0.1)	ND (0.1)	-
Fluorene	100	100	40	ND (0.1)	ND (0.1)	-
Hexachlorobenzene	NA	NA	1	ND (0.8)	-	-
Hexachlorobutadiene	NA	NA	50	ND (0.5)	-	-
Hexachloroethane	NA	NA	100	ND (0.8)	-	-
Indeno(1,2,3-cd)pyrene	0.0038	1	100	ND (0.1)	ND (0.1)	-
Naphthalene	20	20	700	ND (0.1)	ND (0.1)	-
Pentachlorophenol	1	1	200	ND (0.8)	ND (1)	-
Phenanthrene	100	100	10000	ND (0.1)	ND (0.1)	-
Pyrene	100	100	20	ND (0.1)	ND (0.1)	-
Total Petroleum Hydrocarbons (mg/L)						
Ethanol	NA	NA	10	-	ND (20)	-
Petroleum hydrocarbons	5	5	5	-	ND (3.6)	-
EPH (ug/L)						
C11-C22 Aromatic Hydrocarbons, Adjusted	NA	NA	5000	ND (100)	_	_
C19-C36 Aliphatic Hydrocarbons	NA	NA	50000	ND (100)	-	-
C9-C18 Aliphatic Hydrocarbons	NA	NA	5000	ND (100)	=	-
Inorganic Compounds (mg/L)						
Chromium VI (Hexavalent), Dissolved	0.011	0.222	0.3		ND (0.01)	ND (0.01)
*	0.011 0.64	0.323	0.3	-	ND (0.01)	ND (0.01)
Antimony, Total	0.64	0.206 0.104	8 0.9	ND (0.005)	ND (0.004) 0.00652	ND (0.004) ND (0.001)
Arsenic, Total	NA	0.104 NA	50	0.112	0.00632	ND (0.001)
Barium, Total Cadmium, Total	0.00025	0.0102	0.004	ND (0.004)	ND (0.0002)	ND (0.0002)
Chromium, Total	0.00023 NA	0.0102 NA	0.3	ND (0.004) ND (0.01)	0.0069	ND (0.0002) ND (0.001)
Copper, Total	0.009	0.242	100	ND (0.01)	0.00804	0.00265
Hardness, Total	NA	NA	NA NA	_	533	52.4
Iron, Total	1	5	NA NA	_	8.55	0.669
Lead, Total	0.0025	0.16	0.01	ND (0.01)	0.00198	0.00532
Mercury, Total	0.0023	0.000739	0.02	ND (0.002)	ND (0.0002)	ND (0.0002)
Nickel, Total	0.00077	1.45	0.02	- (0.0002)	0.00512	ND (0.0002)
Selenium, Total	0.005	0.2358	0.1	ND (0.01)	ND (0.005)	ND (0.002)
Silver, Total	0.0032	0.0351	0.007	ND (0.01)	ND (0.0004)	ND (0.0004)
Zinc, Total	0.12	0.42	0.9	- (5.007)	0.02971	0.02321
	1					
Other	l	ļ "			2.52	0.422
Ammonia, Total (mg/L)	NA NA	NA	NA NA	-	3.52	0.129
Chloride, Total (mg/L)	NA 0.011	NA 0.2	NA NA	-	1730	-
Chlorine, residual, Total (mg/L)	0.011	0.2	NA 0.03	-	ND (0.02)	-
Cyanide, Total (mg/L)	0.0052	178	0.03	-	ND (0.005)	-
Total Phenols (mg/L)	0.3	1.08	NA NA	_	ND (0.03)	-
Total Suspended Solids (TSS) (mg/L)	30 NA	30 NA	NA NA	_	<mark>97</mark> 6.8	- 7.1
oH (lab), Total (pH units)	NA	NA	NA	-	0.0	7.1
Pesticides and PCBs (ug/L)		1				
Aroclor-1016 (PCB-1016)	6.40E-05	6.40E-05	5	-	ND (0.25)	-
Aroclor-1221 (PCB-1221)	6.40E-05	6.40E-05	5		ND (0.25)	-
Aroclor-1232 (PCB-1232)	6.40E-05	6.40E-05	5	-	ND (0.25)	-
Aroclor-1242 (PCB-1242)	6.40E-05	6.40E-05	5	-	ND (0.25)	-
Aroclor-1248 (PCB-1248)	6.40E-05	6.40E-05	5	-	ND (0.25)	-
Aroclor-1254 (PCB-1254)	6.40E-05	6.40E-05	5	-	ND (0.25)	-
	6.40E-05	6.40E-05	5	-	ND (0.2)	-
Aroclor-1260 (PCB-1260)	0.402 03					
	0.402 03					
VPH (ug/L)	NA	NA	3000	ND (100)	-	-
Aroclor-1260 (PCB-1260) VPH (ug/L) CS-C8 Aliphatic Hydrocarbons, Adjusted C9-C10 Aromatic Hydrocarbons		NA NA	3000 4000	ND (100) ND (100)	- -	- -

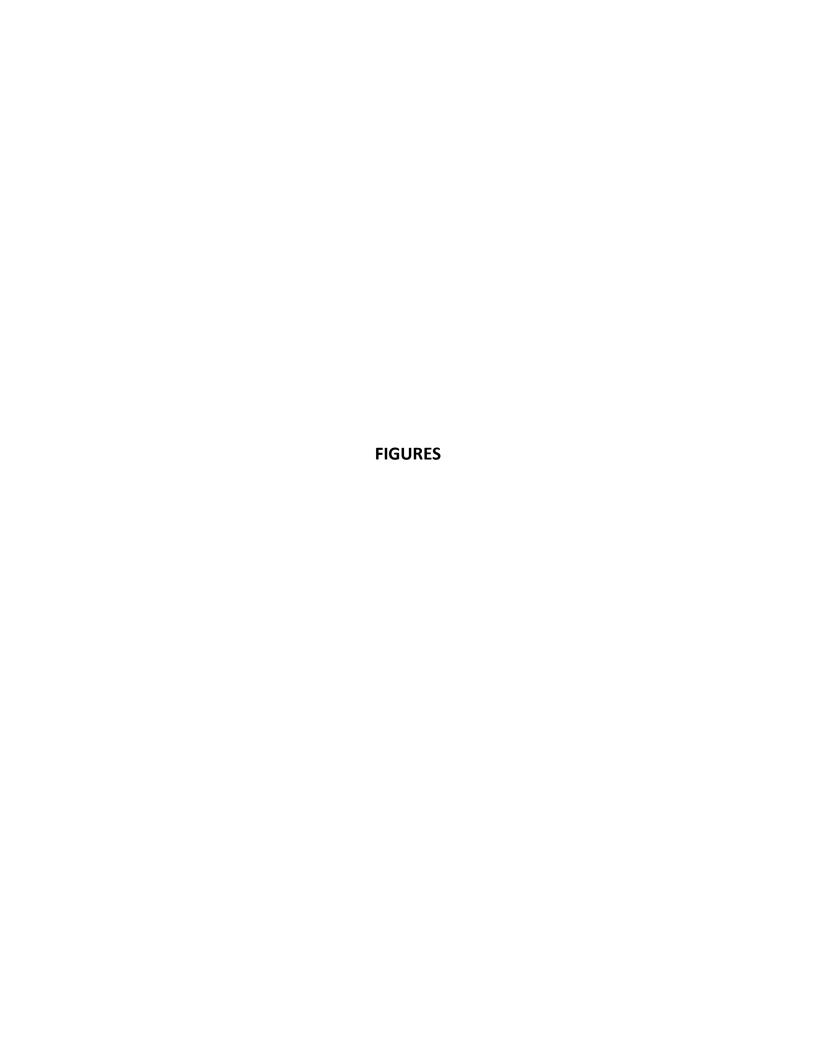
ABBREVIATIONS AND NOTES:

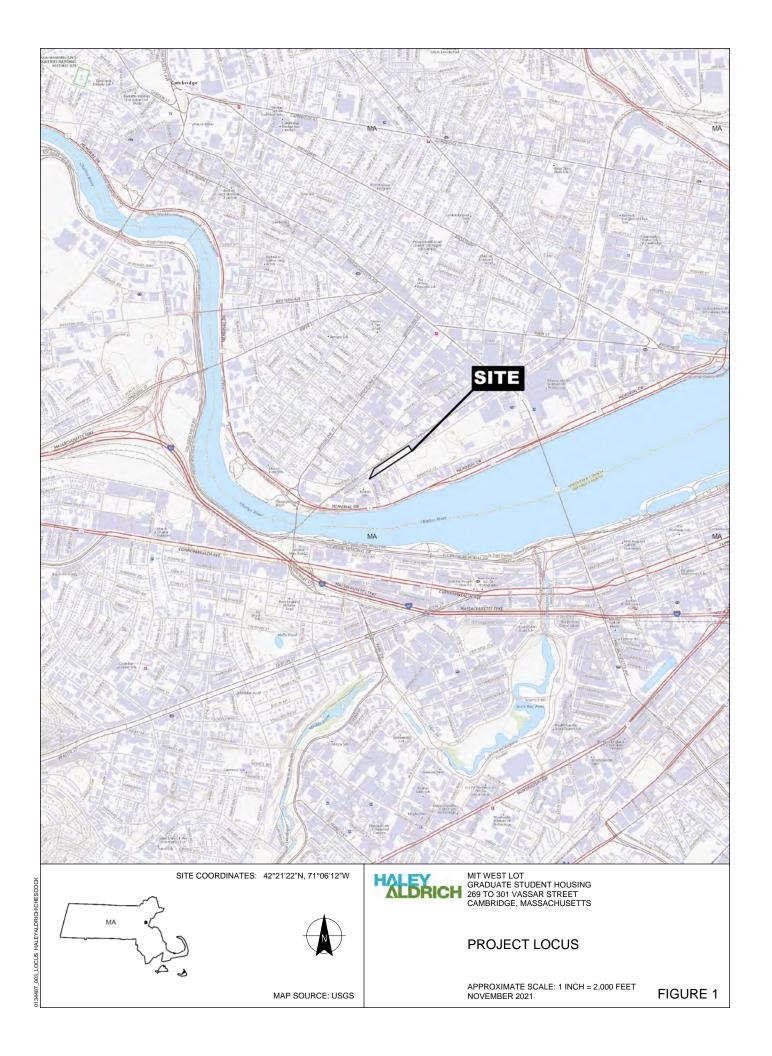
mg/L: milligrams per liter μg/L: micrograms per liter

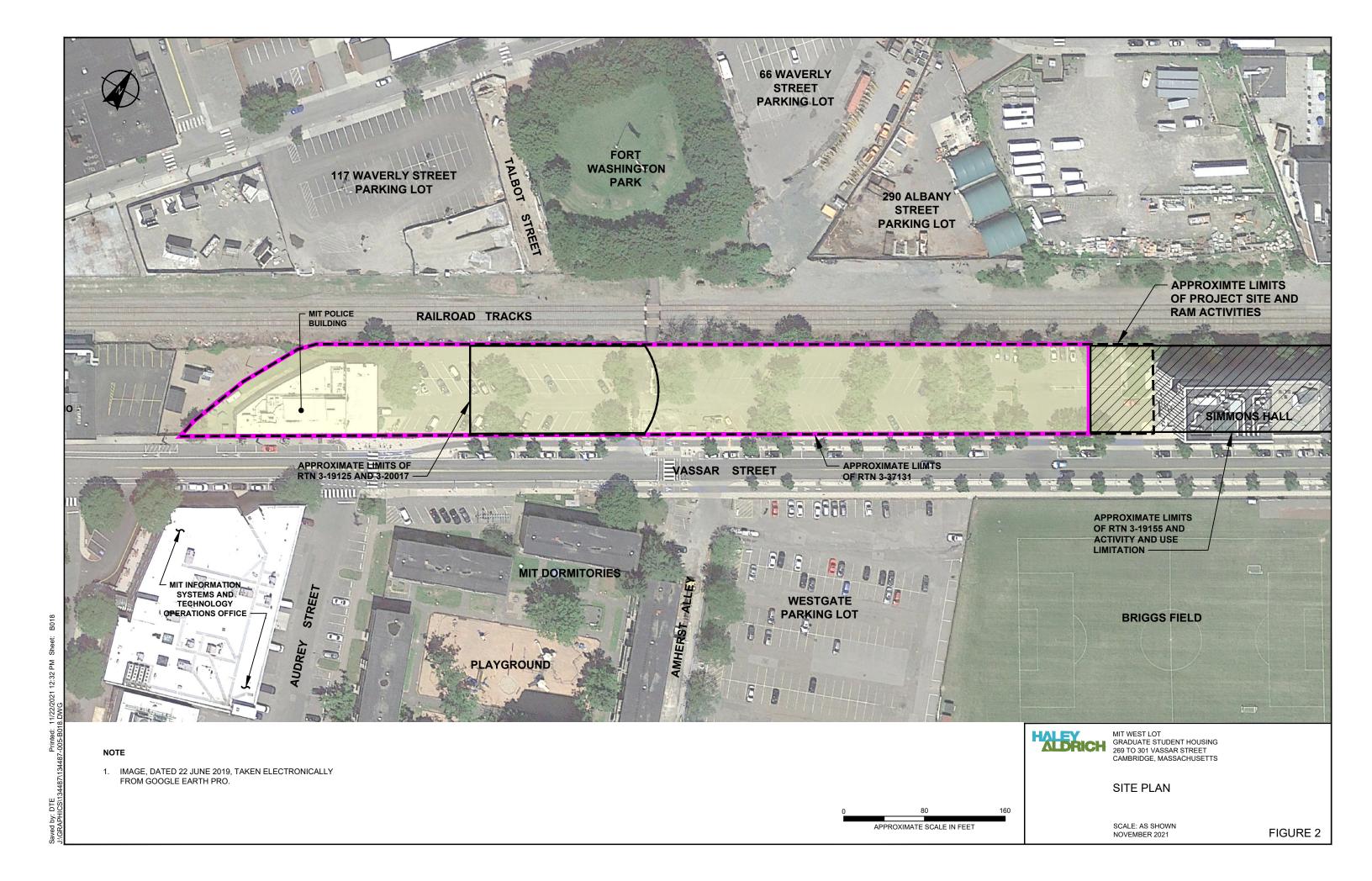
MCP: 310 CMR 40.0000 Massachusetts Contingency Plan effective

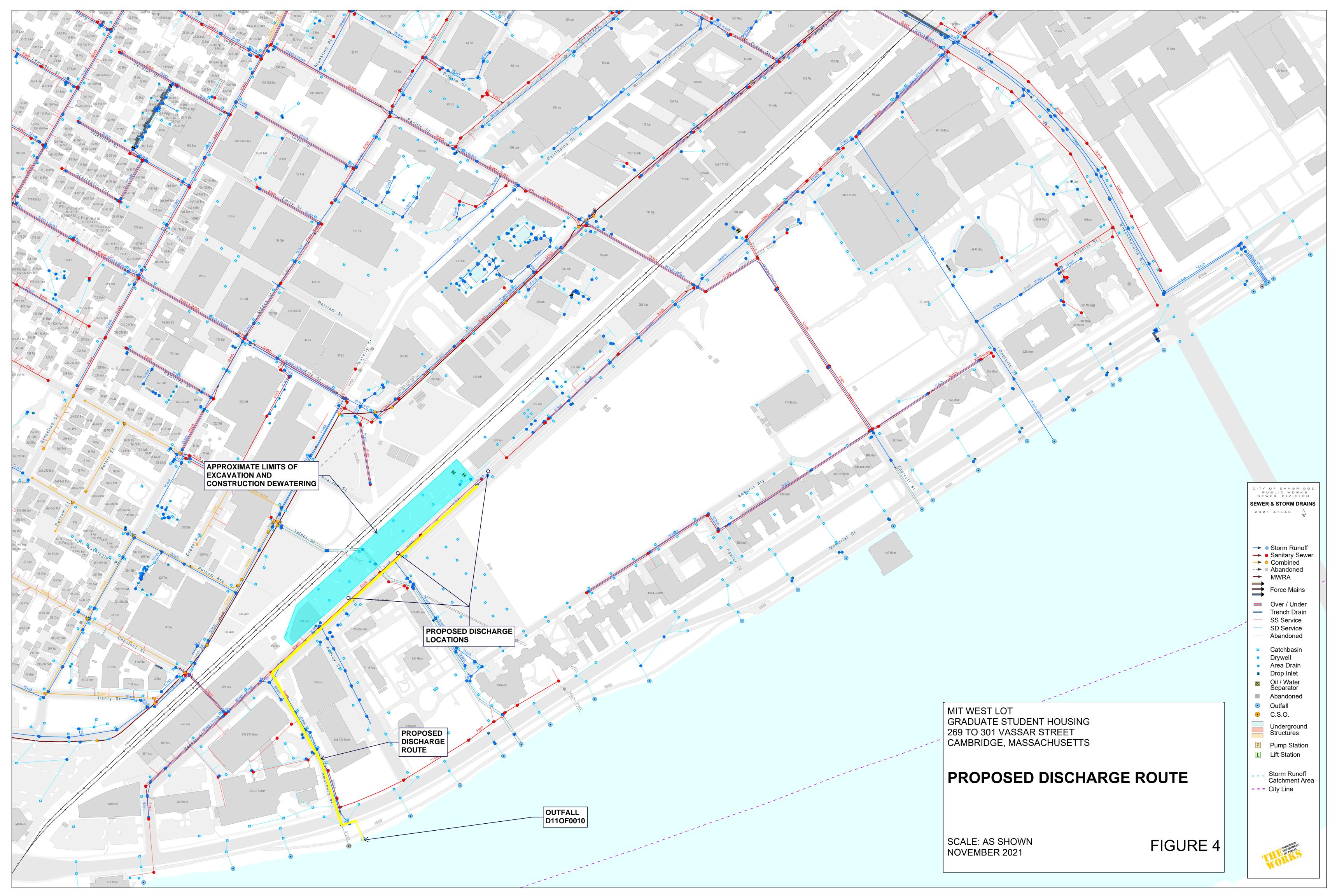
25 April 2014; revisions 23 May 2014.

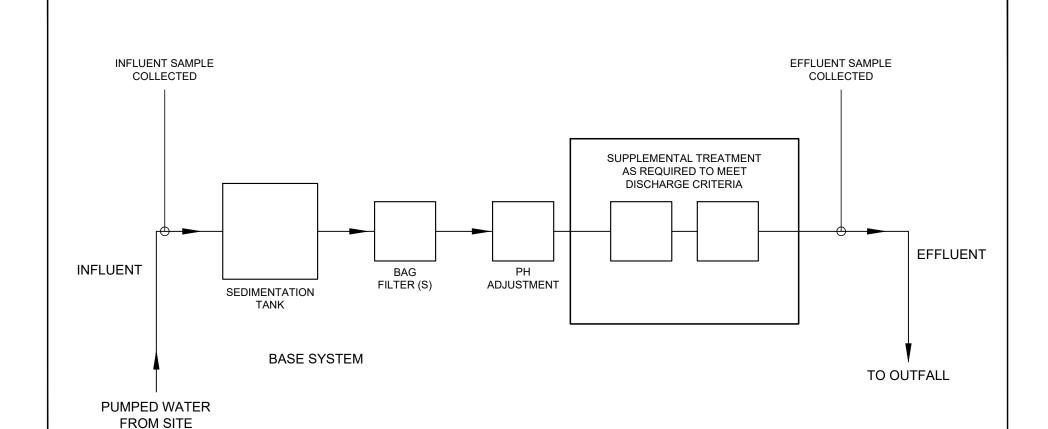
NA: Not Applicable


ND (2.5): Not detected, number in parentheses is the laboratory


detection limit RC: MCP Reportable Concentration


- Analytes detected in at least one sample are reported herein.


For a complete list of Analytes see the laboratory data sheets.


- Bold values indicate an exceedance of the RCGW-2 or WQBEL/TBEL criteria.

LEGEND

NOTE

1. DETAILS OF TREATMENT SYSTEM MAY VARY FROM SYSTEM INDICATED ABOVE. SPECIFIC MEANS AND METHODS OF TREATMENT TO BE SELECTED BY CONTRACTOR. WATER WILL BE TREATED TO MEET REQUIRED EFFLUENT STANDARDS.

MIT WEST LOT GRADUATE STUDENT HOUSING 269 TO 301 VASSAR STREET CAMBRIDGE, MASSACHUSETTS

PROPOSED TREATMENT SYSTEM SCHEMATIC

SCALE: AS SHOWN **NOVEMBER 2021**

FIGURE 5

APPENDIX A

Notice of Intent (NOI)

II. Suggested Format for the Remediation General Permit Notice of Intent (NOI)

A. General site information:

1. Name of site:	Site address: 269 to 301 Vassar Street						
Massachusetts Institute of Technology West Lot	Street: Vassar Street						
	City: Cambridge		State: MA	^{Zip:} 02139			
Site owner Massachusetts Institute of Technology	Contact Person: Louis DiBerardinis						
Wassachusetts institute of Technology	Telephone: 617-253-9389	Email:					
	Mailing address: 265 Massachusetts Avenue, N5	2-496					
	Street:						
Owner is (check one): ☐ Federal ☐ State/Tribal ■ Private Other; if so, specify: Institution	City: Cambridge		State: MA	Zip: 02139			
3. Site operator, if different than owner	Contact Person: Josh Snyder						
John Moriarty & Associates	Telephone: 781-729-3900	Email: jsny	snyder@gm-a.com				
	Mailing address:						
	Street: 3 Church Street						
	City: Winchester		State: MA	Zip: 01890			
4. NPDES permit number assigned by EPA:	5. Other regulatory program(s) that apply to the site (check all that apply):						
Not applicable	■ MA Chapter 21e; list RTN(s):	□ CERCL	·A				
NINDES : 'C' (3-19125,3-20017,3-19155, and 3-37131	☐ UIC Program					
NPDES permit is (check all that apply: ■ RGP □ DGP □ CGP □ MSCP □ Individual NPDES permit □ Otherwifes a greatify	☐ NH Groundwater Management Permit or Groundwater Release Detection Permit:	□ POTW	Pretreatment	-			
☐ MSGP ☐ Individual NPDES permit ☐ Other; if so, specify:	Groundwater Release Detection I crimit.	☐ CWA Section 404					

B. Receiving water information:							
1. Name of receiving water(s):	Waterbody identification of receiving water(s):	Classi	ification of receiving water(s):				
Charles River	r MA72-38 Class B						
Receiving water is (check any that apply): □ Outstanding	Resource Water □ Ocean Sanctuary □ territorial sea □	Wild and Scenic	River				
2. Has the operator attached a location map in accordance of Are sensitive receptors present near the site? (check one): If yes, specify:] No					
3. Indicate if the receiving water(s) is listed in the State's In pollutants indicated. Also, indicate if a final TMDL is avail 4.6 of the RGP. The Lower Charles River is in the 2016 M	lable for any of the indicated pollutants. For more information	nation, contact th	ne appropriate State as noted in Part				
4. Indicate the seven day-ten-year low flow (7Q10) of the r Appendix V for sites located in Massachusetts and Append		actions in	24.7 cfs				
5. Indicate the requested dilution factor for the calculation of water quality-based effluent limitations (WQBELs) determined in accordance with the instructions in Appendix V for sites in Massachusetts and Appendix VI for sites in New Hampshire.							
6. Has the operator received confirmation from the appropriate yes, indicate date confirmation received: TBD 7. Has the operator attached a summary of receiving water							
(check one): ■ Yes □ No			т				
C. Source water information:							
1. Source water(s) is (check any that apply):							

1. Source water(s) is (check any that apply):			
■ Contaminated groundwater	☐ Contaminated surface water	☐ The receiving water	☐ Potable water; if so, indicate municipality or origin:
Has the operator attached a summary of influent sampling results as required in Part 4.2 of the RGP	Has the operator attached a summary of influent sampling results as required in Part 4.2 of the	☐ A surface water other	
in accordance with the instruction in Appendix VIII? (check one):	RGP in accordance with the instruction in Appendix VIII? (check one):	than the receiving water; if so, indicate waterbody:	☐ Other; if so, specify:
■ Yes □ No	□ Yes □ No		

2. Source water contaminants:	
a. For source waters that are contaminated groundwater or contaminated surface water, indicate are any contaminants present that are not included in	b. For a source water that is a surface water other than the receiving water, potable water or other, indicate any contaminants present at the maximum concentration in accordance
•	with the instructions in Appendix VIII? (check one): Yes No
the RGP? (check one): ☐ Yes ■ No If yes, indicate the contaminant(s) and the maximum concentration present in accordance with the instructions in	with the instructions in Appendix VIII? (check one): 1 Yes No
Appendix VIII.	
3. Has the source water been previously chlorinated or otherwise contains resid	dual chlorine? (check one): ☐ Yes ■ No
D. Discharge information	
1. The discharge(s) is a(n) (check any that apply): ☐ Existing discharge ■ New	v discharge □ New source
	-
Outfall(s):	Outfall location(s): (Latitude, Longitude)
Charles River (MA72-36) Outfall Location No. D11OF0010	42.35288, -71.10510
Discharges enter the receiving water(s) via (check any that apply): \Box Direct dis-	scharge to the receiving water □ Indirect discharge, if so, specify:
☐ A private storm sewer system ■ A municipal storm sewer system	
If the discharge enters the receiving water via a private or municipal storm sew	ver system:
Has notification been provided to the owner of this system? (check one): ■ Ye	es 🗆 No
Has the operator has received permission from the owner to use such system for obtaining permission:	or discharges? (check one): ■ Yes □ No, if so, explain, with an estimated timeframe for
Has the operator attached a summary of any additional requirements the owner	of this system has specified? (check one): ☐ Yes ■ No
Provide the expected start and end dates of discharge(s) (month/year):	
Januar	y 2022 to January 2024
Indicate if the discharge is expected to occur over a duration of: \Box less than 12	2 months ■ 12 months or more □ is an emergency discharge
Has the operator attached a site plan in accordance with the instructions in D, a	above? (check one): ■ Yes □ No

2. Activity Category: (check all that apply)	3. Contamination Type Category: (check all that apply)				
	a. If Activity Categ	ory I or II: (check all that apply)			
	 □ A. Inorganics □ B. Non-Halogenated Volatile Organic □ C. Halogenated Volatile Organic Cor □ D. Non-Halogenated Semi-Volatile Organic □ E. Halogenated Semi-Volatile Organic □ F. Fuels Parameters 	Compounds e Organic Compounds			
 □ I – Petroleum-Related Site Remediation □ II – Non-Petroleum-Related Site Remediation 	b. If Activity Category III, IV, V, VI, VII or VIII: (check either G or H)				
■ III – Contaminated Site Dewatering□ IV – Dewatering of Pipelines and Tanks	■ G. Sites with Known Contamination	☐ H. Sites with Unknown Contamination			
 □ V – Aquifer Pump Testing □ VI – Well Development/Rehabilitation □ VII – Collection Structure Dewatering/Remediation 	c. If Category III-G, IV-G, V-G, VI-G, VII-G or VIII-G: (check all that apply)				
□ VIII – Dredge-Related Dewatering	 ■ A. Inorganics ■ B. Non-Halogenated Volatile Organic Compounds ■ C. Halogenated Volatile Organic Compounds ■ D. Non-Halogenated Semi-Volatile Organic Compounds ■ E. Halogenated Semi-Volatile Organic Compounds ■ F. Fuels Parameters 	d. If Category III-H, IV-H, V-H, VI-H, VII-H or VIII-H Contamination Type Categories A through F apply			

4. Influent and Effluent Characteristics

	Known	Known		Tost	.	In	fluent	Effluent L	imitations
Parameter	or believed absent	or believed present	# of samples	Test method (#)	Detection limit (µg/l)	Daily maximum (µg/l)	Daily average (µg/l)	TBEL	WQBEI
A. Inorganics									
Ammonia		~	1	121,4500N	75	3520	3520	Report mg/L	
Chloride		~	1	44,300.0	25000	1730000	1730000	Report μg/l	
Total Residual Chlorine	V		1	121,4500C	20	< 20	< 20	0.2 mg/L	826
Total Suspended Solids		~	1	121,2540D	5000	97000	97000	30 mg/L	
Antimony	~		1	3,200.8	4	< 4	< 4	206 μg/L	48047
Arsenic		~	2	3,200.8	1	6.52	6.52	104 μg/L	751
Cadmium	~		2	3,200.8	0.2	< 0.2	< 0.2	10.2 μg/L	13.7087
Chromium III		V	2	3,200.8	10	6.9	6.9	323 μg/L	4188.2
Chromium VI	~		1	1,7196A	1	< 10	< 10	323 μg/L	858.4
Copper		V	1	3,200.8	1	8.04	8.04	242 μg/L	248.6
Iron		V	1	19,200.7	50	8550	8550	5,000 μg/L	25519
Lead		~	2	3,200.8	1	1.98	1.98	160 μg/L	1.62
Mercury	~		2	3,245.1	0.2	< 0.2	< 0.2	0.739 μg/L	68.01
Nickel		~	1	3,200.8	2	5.12	5.12	1,450 μg/L	2498.9
Selenium	~		2	3,200.8	5	< 5	< 5	235.8 μg/L	375.4
Silver	~		2	3,200.8	0.4	< 0.4	< 0.4	35.1 μg/L	114.0
Zinc		~	1	3,200.8	10	29.71	29.71	420 μg/L	4016.8
Cyanide	~		1	121,4500C	5	< 5	< 5	178 mg/L	390.4
B. Non-Halogenated VOC			1-			1			370.4
Total BTEX	· ·		1	128,624.1		<l< td=""><td><l< td=""><td>100 μg/L</td><td></td></l<></td></l<>	<l< td=""><td>100 μg/L</td><td></td></l<>	100 μg/L	
Benzene	· ·		1	128,624.1	1	< 1	< 1	5.0 μg/L	
1,4 Dioxane	~		1	128,624.1-		< 5	< 5	200 μg/L	
Acetone	~		1	128,624.1	10	< 10	< 10	7.97 mg/L	
Phenol	V		1	4,420.1	30	< 30	< 30	$1,080 \mu g/L$	22522

	Known	Known				In	fluent	Effluent Li	mitations
Parameter	or believed absent	or believed present	# of samples	Test method (#)	Detection limit (µg/l)	Daily maximum (µg/l)	Daily average (µg/l)	TBEL	WQBEL
C. Halogenated VOCs									
Carbon Tetrachloride	~		1	128,624.1	1	< 1	< 1	4.4 μg/L	120.1
1,2 Dichlorobenzene	~		1	128,624.1	5	< 5	< 5	600 μg/L	
1,3 Dichlorobenzene	~		1	128,624.1	5	< 5	< 5	320 μg/L	
1,4 Dichlorobenzene	~		1	128,624.1	5	< 5	< 5	5.0 μg/L	
Total dichlorobenzene	~		1	128,624.1	5	<5	<5	763 μg/L in NH	
1,1 Dichloroethane	~		1	128,624.1	1.5	< 1.5	< 1.5	70 μg/L	
1,2 Dichloroethane	~		1	128,624.1	1.5	< 1.5	< 1.5	5.0 μg/L	
1,1 Dichloroethylene	~		1	128,624.1	1	< 1	< 1	3.2 μg/L	
Ethylene Dibromide	~		1	14,504.1	0.01	< 0.01	< 0.01	0.05 μg/L	
Methylene Chloride	~		1	128,624.1	1	< 1	< 1	4.6 μg/L	
1,1,1 Trichloroethane	~		1	128,624.1	2	< 2	< 2	200 μg/L	
1,1,2 Trichloroethane	~		1	128,624.1	1.5	< 1.5	< 1.5	5.0 μg/L	
Trichloroethylene	~		1	128,624.1	1	< 1	< 1	5.0 μg/L	
Tetrachloroethylene	~		1	128,624.1	1	< 1	< 1	5.0 μg/L	247.7
cis-1,2 Dichloroethylene	~		1	128,624.1	1	< 1	< 1	70 μg/L	
Vinyl Chloride	~		1	128,624.1	1	< 1	< 1	2.0 μg/L	
D. Non-Halogenated SVOC	Cs.								
Total Phthalates	· ·		1	129, 625.1	5	<5	<5	190 μg/L	
Diethylhexyl phthalate	~		1	129,625.1	2.2	< 2.2	<2.2	101 μg/L	165.2
Total Group I PAHs	~		1	129,625.1	0.1	< 0.1	< 0.1	1.0 μg/L	
Benzo(a)anthracene	~		1	129,625.1-	0.1	< 0.1	< 0.1	, , ,	0.2853
Benzo(a)pyrene	~		1	129,625.1-	0.1	< 0.1	< 0,1	1	0.2853
Benzo(b)fluoranthene	~		1	129,625.1-	0.1	< 0.1	< 0.1		0.2853
Benzo(k)fluoranthene	~		1	129,625.1-	0.1	< 0.1	< 0.1	As Total PAHs	0.2853
Chrysene	~		1	129,625.1-	0.1	< 0.1	< 0.1	1	0.2853
Dibenzo(a,h)anthracene	~		1		0.1	< 0.1	< 0.1	1	0.2853
Indeno(1,2,3-cd)pyrene	~		1	129,625.1-	0.1	< 0.1	< 0.1	1	0.2853

	Known	Known				In	fluent	Effluent Li	mitations
Parameter	or believed absent	or believed present	# of samples	Test method (#)	Detection limit (µg/l)	Daily maximum (µg/l)	Daily average (µg/l)	TBEL	WQBEL
Total Group II PAHs	·		1	129,625.1	0.1	<0.1	<0.1	100 μg/L	
Naphthalene	~		1	129,625.1-	0.1	< 0.1	< 0.1	20 μg/L	
E. Halogenated SVOCs									
Total PCBs	·		1	127,608.3	0.25	< 0.25	< 0.25	0.000064 μg/L	
Pentachlorophenol	~		1	129,625.1-	1	< 1	< 1	1.0 μg/L	
F. Fuels Parameters									
Total Petroleum Hydrocarbons	~		1	140,1664B	3600	< 3600	< 3600	5.0 mg/L	
Ethanol	~		1	600,1617A	20000	< 20000	< 2000	Report mg/L	
Methyl-tert-Butyl Ether	~		1	128,624.1	10	< 10	< 10	70 μg/L	1501
tert-Butyl Alcohol	~		1	128,624.1	100	< 100	< 100	120 μg/L in MA 40 μg/L in NH	
tert-Amyl Methyl Ether	~		1	128,624.1	20	< 20	< 20	90 μg/L in MA 140 μg/L in NH	
Other (i.e., pH, temperature Hardness	re, hardness,	salinity, LC	S ₅₀ , addition	nal pollutan	ts present);	if so, specify: 533000	533000		
pH		~	1	1,9040C	NA	6.8	6.5		
* 0									
* See attached table for additional compounds									
detected in soil.									
detected in soil.									

E. Treatment system information

1. Indicate the type(s) of treatment that will be applied to effluent prior to discharge: (check all that apply)	
□ Adsorption/Absorption □ Advanced Oxidation Processes □ Air Stripping □ Granulated Activated Carbon ("GAC")/Liquid Phase Carbon Adsorption	
☐ Ion Exchange ☐ Precipitation/Coagulation/Flocculation ■ Separation/Filtration ■ Other; if so, specify:	
pH adjustment, other treatment as required to meet effluent limitations .	
2. Provide a written description of all treatment system(s) or processes that will be applied to the effluent prior to discharge.	
Prior to discharge, collected water is routed through a sedimentation tank and bag filters to remove suspended solids and undissolved chemical constituents. Additional treinclude pH adjustment, as needed to meet necessary effluent limits established by permit.	eatment will
Identify each major treatment component (check any that apply):	
■ Fractionation tanks□ Equalization tank □ Oil/water separator □ Mechanical filter □ Media filter	
☐ Chemical feed tank ☐ Air stripping unit ■ Bag filter ■ Other; if so, specify: pH adjustment	
Indicate if either of the following will occur (check any that apply):	
☐ Chlorination ☐ De-chlorination	
3. Provide the design flow capacity in gallons per minute (gpm) of the most limiting component.	
Indicate the most limiting component:	150 GPM
Is use of a flow meter feasible? (check one): ■ Yes □ No, if so, provide justification:	
Provide the proposed maximum effluent flow in gpm.	150 GPM
Provide the average effluent flow in gpm.	50 GPM
If Activity Category IV applies, indicate the estimated total volume of water that will be discharged:	NA
4. Has the operator attached a schematic of flow in accordance with the instructions in E, above? (check one): ■ Yes □ No	

F. Chemical and additive information

1. Indicate the type(s) of chemical or additive that will be applied to effluent prior to discharge or that may otherwise be present in the discharge(s): (check all that apply)
□ Algaecides/biocides □ Antifoams □ Coagulants □ Corrosion/scale inhibitors □ Disinfectants □ Flocculants □ Neutralizing agents □ Oxidants □ Oxygen □
scavengers pH conditioners DBioremedial agents, including microbes DChlorine or chemicals containing chlorine DChlor; if so, specify: The site contractor has not yet submitted their construction dewatering submittal which will include details of the proposed treatment system along with Safety Data Sheets (SDSs).
2. Provide the following information for each chemical/additive, using attachments, if necessary:
a. Product name, chemical formula, and manufacturer of the chemical/additive; b. Purpose or use of the chemical/additive or remedial agent; c. Material Safety Data Sheet (MSDS) and Chemical Abstracts Service (CAS) Registry number for each chemical/additive; d. The frequency (hourly, daily, etc.), duration (hours, days), quantity (maximum and average), and method of application for the chemical/additive; e. Any material compatibility risks for storage and/or use including the control measures used to minimize such risks; and f. If available, the vendor's reported aquatic toxicity (NOAEL and/or LC50 in percent for aquatic organism(s)).
3. Has the operator attached an explanation which demonstrates that the addition of such chemicals/additives may be authorized under this general permit in accordance
with the instructions in F, above? (check one): \blacksquare Yes \square No; if no, has the operator attached data that demonstrates each of the 126 priority pollutants in CWA Section 307(a) and 40 CFR Part 423.15(j)(1) are non-detect in discharges with the addition of the proposed chemical/additive?
(check one): ☐ Yes ☐ No
G. Endangered Species Act eligibility determination
1. Indicate under which criterion the discharge(s) is eligible for coverage under this general permit:
■ FWS Criterion A: No endangered or threatened species or critical habitat are in proximity to the discharges or related activities or come in contact with the "action area".
□ FWS Criterion B : Formal or informal consultation with the FWS under section 7 of the ESA resulted in either a no jeopardy opinion (formal consultation) or a written concurrence by FWS on a finding that the discharges and related activities are "not likely to adversely affect" listed species or critical habitat
(informal consultation). Has the operator completed consultation with FWS? (check one): ☐ Yes ☐ No; if no, is consultation underway? (check one): ☐
Yes □ No
□ FWS Criterion C: Using the best scientific and commercial data available, the effect of the discharges and related activities on listed species and critical habitat have been evaluated. Based on those evaluations, a determination is made by EPA, or by the operator and affirmed by EPA, that the discharges and related activities will have "no effect" on any federally threatened or endangered listed species or designated critical habitat under the jurisdiction of the
FWS. This determination was made by: (check one) \square the operator \square EPA \square Other; if so, specify:

□ NMFS Criterion: A determination made by EPA is affirmed by the operator that the discharges and related activities will have "no effect" or are "not likely to adversely affect" any federally threatened or endangered listed species or critical habitat under the jurisdiction of NMFS and will not result in any take of
listed species. Has the operator previously completed consultation with NMFS? (check one): ☐ Yes ☐ No
2. Has the operator attached supporting documentation of ESA eligibility in accordance with the instructions in Appendix I, and G, above? (check one): Yes No
Does the supporting documentation include any written concurrence or finding provided by the Services? (check one): ☐ Yes ■ No; if yes, attach.
H. National Historic Preservation Act eligibility determination
1. Indicate under which criterion the discharge(s) is eligible for coverage under this general permit:
■ Criterion A: No historic properties are present. The discharges and discharge-related activities (e.g., BMPs) do not have the potential to cause effects on historic properties.
☐ Criterion B: Historic properties are present. Discharges and discharge related activities do not have the potential to cause effects on historic properties.
☐ Criterion C : Historic properties are present. The discharges and discharge-related activities have the potential to have an effect or will have an adverse effect on historic properties.
2. Has the operator attached supporting documentation of NHPA eligibility in accordance with the instructions in H, above? (check one): ■ Yes □ No
Does the supporting documentation include any written agreement with the State Historic Preservation Officer (SHPO), Tribal Historic Preservation Officer (TPHO), or
other tribal representative that outlines measures the operator will carry out to mitigate or prevent any adverse effects on historic properties? (check one): Yes No
I. Supplemental information
Describe any supplemental information being provided with the NOI. Include attachments if required or otherwise necessary. Refer to attached Haley & Aldrich, Inc. letter.
Refer to attached francy & Francis, inc. retter.
Has the operator attached data, including any laboratory case narrative and chain of custody used to support the application? (check one): ■ Yes □ No
Has the operator attached the certification requirement for the Best Management Practices Plan (BMPP)? (check one): ■ Yes □ No

J. Certification requirement

I certify under penalty of law that this document and all attachments were prepared under my direction or supervision in a that qualified personnel properly gathered and evaluated the information submitted. Based on my inquiry of the person or persons directly responsible for gathering the information, the information submitted is, to the best of my knowledge and be no personal knowledge that the information submitted is other than true, accurate, and complete. I am aware that there are information, including the possibility of fine and imprisonment for knowing violations.	persons who manage t elief, true, accurate, ar	he system, or those nd complete. I have		
A BMPP meeting the requirements of this general permit will be imple BMPP certification statement: discharge and available for review at the site.	emented upon ini	tiation of		
Notification provided to the appropriate State, including a copy of this NOI, if required.	Check one: Yes ■	No □		
Notification provided to the municipality in which the discharge is located, including a copy of this NOI, if requested.	Check one: Yes ■	No □		
Notification provided to the owner of a private or municipal storm sewer system, if such system is used for site discharges, including a copy of this NOI, if requested.	Check one: Yes ■	No □ NA □		
Permission obtained from the owner of a private or municipal storm sewer system, if such system is used for site discharges. If yes, attach additional conditions. If no, attach explanation and timeframe for obtaining permission.	Check one: Yes ■	No □ NA □		
Notification provided to the owner/operator of the area associated with activities covered by an additional discharge permit(s). Additional discharge permit is (check one): □ RGP □ DGP □ CGP □ MSGP □ Individual NPDES permit □ Other; if so, specify:	Check one: Yes □	No □ NA ■		
Signature: Louis Di Berardinis Dat	e: 11/18/2021			
Print Name and Title: Louis DiBerardinis, Director EHS Office, MIT				

J. Certification requirement

I certify under penalty of law that this document and all attachments were prepared under my direction or supervision in a that qualified personnel properly gathered and evaluated the information submitted. Based on my inquiry of the person or persons directly responsible for gathering the information, the information submitted is, to the best of my knowledge and be no personal knowledge that the information submitted is other than true, accurate, and complete. I am aware that there are information, including the possibility of fine and imprisonment for knowing violations.	persons who manage the system, or those belief, true, accurate, and complete. I have				
A BMPP meeting the requirements of this general permit will be implemented upon initiation of BMPP certification statement: discharge and available for review at the site.					
Notification provided to the appropriate State, including a copy of this NOI, if required.	Check one: Yes ■ No □				
Notification provided to the municipality in which the discharge is located, including a copy of this NOI, if requested.	Check one: Yes ■ No □				
Notification provided to the owner of a private or municipal storm sewer system, if such system is used for site	Check one: Yes ■ No □ NA □				
discharges, including a copy of this NOI, if requested. Permission obtained from the owner of a private or municipal storm sewer system, if such system is used for site discharges. If yes, attach additional conditions. If no, attach explanation and timeframe for obtaining permission.	Check one: Yes ■ No □ NA □				
Notification provided to the owner/operator of the area associated with activities covered by an additional discharge					
$permit(s). \ Additional \ discharge \ permit \ is \ (check \ one): \ \square \ RGP \ \square \ DGP \ \square \ CGP \ \square \ MSGP \ \square \ Individual \ NPDES \ permit$	Check one: Yes □ No □ NA ■				
☐ Other; if so, specify:					
Signature: Da	nte: 11 21 2021				
Print Name and Title: Josh Snyder, John Moriarty & Associates	ι				

PARAMETERS DETECTED IN SOIL

Inorganics Antimony Arsenic* Barium

Beryllium Cadmium Chromium* Lead* Mercury

Nickel*
Selenium
Silver
Vanadium
Zinc*

Non-Halogenated VOCs

1,2,4-Trimethylbenzene 1,3,5-Trimethylbenzene

2-Butanone (Methyl Ethyl Ketone) 2-Phenylbutane (sec-Butylbenzene)

Acetone

Carbon disulfide

Isopropylbenzene (Cumene)

Naphthalene n-Butylbenzene n-Propylbenzene tert-Butylbenzene

Toluene Xylene (total) **Halogenated VOCs**

Tetrachloroethene

Non-Halogenated SVOCs

2,4-Dimethylphenol 2-Methylnaphthalene 3&4-Methylphenol Acenaphthene Acenaphthylene

Anthracene

Benzo(a)anthracene Benzo(a)pyrene Benzo(b)fluoranthene Benzo(g,h,i)perylene Benzo(k)fluoranthene

Chrysene

Dibenz(a,h)anthracene

Dibenzofuran Fluoranthene Fluorene

Indeno(1,2,3-cd)pyrene

Naphthalene Phenanthrene Pyrene

Halogenated SVOCs

PCBs

Fuel Parameters

Petroleum hydrocarbons

^{*}Compound also detected in groundwater

APPENDIX B

Laboratory Data Reports

ANALYTICAL REPORT

Lab Number: L2156742

Client: Haley & Aldrich, Inc.

465 Medford Street, Suite 2200 Charlestown, MA 02129-1400

ATTN: Scott Goldkamp
Phone: (617) 886-7458
Project Name: MIT WEST LOT

Project Number: 134487-005

Report Date: 10/22/21

The original project report/data package is held by Alpha Analytical. This report/data package is paginated and should be reproduced only in its entirety. Alpha Analytical holds no responsibility for results and/or data that are not consistent with the original.

Certifications & Approvals: MA (M-MA086), NH NELAP (2064), CT (PH-0574), IL (200077), ME (MA00086), MD (348), NJ (MA935), NY (11148), NC (25700/666), PA (68-03671), RI (LAO00065), TX (T104704476), VT (VT-0935), VA (460195), USDA (Permit #P330-17-00196).

Eight Walkup Drive, Westborough, MA 01581-1019 508-898-9220 (Fax) 508-898-9193 800-624-9220 - www.alphalab.com

Project Name: MIT WEST LOT **Project Number:** 134487-005

Lab Number: L2156742 **Report Date:** 10/22/21

Alpha Sample ID	Client ID	Matrix	Sample Location	Collection Date/Time	Receive Date
L2156742-01	GP-2(OW)-2021-1015	WATER	CAMBRIDGE, MA	10/15/21 10:40	10/15/21
L2156742-02	MIT WEST LOT-RW-2021- 1015	WATER	CAMBRIDGE, MA	10/15/21 12:40	10/15/21

Serial No:10222118:06

Project Name:MIT WEST LOTLab Number:L2156742Project Number:134487-005Report Date:10/22/21

Case Narrative

The samples were received in accordance with the Chain of Custody and no significant deviations were encountered during the preparation or analysis unless otherwise noted. Sample Receipt, Container Information, and the Chain of Custody are located at the back of the report.

Results contained within this report relate only to the samples submitted under this Alpha Lab Number and meet NELAP requirements for all NELAP accredited parameters unless otherwise noted in the following narrative. The data presented in this report is organized by parameter (i.e. VOC, SVOC, etc.). Sample specific Quality Control data (i.e. Surrogate Spike Recovery) is reported at the end of the target analyte list for each individual sample, followed by the Laboratory Batch Quality Control at the end of each parameter. Tentatively Identified Compounds (TICs), if requested, are reported for compounds identified to be present and are not part of the method/program Target Compound List, even if only a subset of the TCL are being reported. If a sample was re-analyzed or re-extracted due to a required quality control corrective action and if both sets of data are reported, the Laboratory ID of the re-analysis or re-extraction is designated with an "R" or "RE", respectively.

When multiple Batch Quality Control elements are reported (e.g. more than one LCS), the associated samples for each element are noted in the grey shaded header line of each data table. Any Laboratory Batch, Sample Specific % recovery or RPD value that is outside the listed Acceptance Criteria is bolded in the report. In reference to questions H (CAM) or 4 (RCP) when "NO" is checked, the performance criteria for CAM and RCP methods allow for some quality control failures to occur and still be within method compliance. In these instances, the specific failure is not narrated but noted in the associated QC Outlier Summary Report, located directly after the Case Narrative. QC information is also incorporated in the Data Usability Assessment table (Format 11) of our Data Merger tool, where it can be reviewed in conjunction with the sample result, associated regulatory criteria and any associated data usability implications.

Soil/sediments, solids and tissues are reported on a dry weight basis unless otherwise noted. Definitions of all data qualifiers and acronyms used in this report are provided in the Glossary located at the back of the report.

HOLD POLICY - For samples submitted on hold, Alpha's policy is to hold samples (with the exception of Air canisters) free of charge for 21 calendar days from the date the project is completed. After 21 calendar days, we will dispose of all samples submitted including those put on hold unless you have contacted your Alpha Project Manager and made arrangements for Alpha to continue to hold the samples. Air canisters will be disposed after 3 business days from the date the project is completed.

Please contact Project Management at 800-624-9220 with any questions.						

Serial_No:10222118:06

Project Name:MIT WEST LOTLab Number:L2156742Project Number:134487-005Report Date:10/22/21

Case Narrative (continued)

Report Submission

The analysis of Ethanol was subcontracted. A copy of the laboratory report is included as an addendum.

Please note: This data is only available in PDF format and is not available on Data Merger.

Volatile Organics by Method 624

The WG1560332-3 LCS recoveries, associated with L2156742-01, is above the acceptance criteria for ethylbenzene (145%), 1,2-dichlorobenzene (140%), 1,3-dichlorobenzene (140%), and 1,4-dichlorobenzene (145%); however, the associated sample is non-detect to the RL for these target analytes. The results of the original analysis are reported.

Volatile Organics by SIM

L2156742-01, WG1560335-4, and WG1560335-3: The surrogate recovery for 4-bromofluorobenzene (30%, 30%, and 29%, respectively) is outside the acceptance criteria; however, this surrogate is not associated with the reported target compound. Therefore, re-analysis was not required.

WG1560335-3: One or more of the internal standard recoveries is outside the acceptance criteria; however, the internal standard is within criteria for the target compound; therefore, the results are reported.

Microextractables

The WG1559921-2 LCS recovery for 1,2-dibromoethane (74%), associated with L2156742-01, is outside Alpha's acceptance criteria, but within the acceptance criteria specified in the method.

I, the undersigned, attest under the pains and penalties of perjury that, to the best of my knowledge and belief and based upon my personal inquiry of those responsible for providing the information contained in this analytical report, such information is accurate and complete. This certificate of analysis is not complete unless this page accompanies any and all pages of this report.

Skar Kelly Stenstrom

Authorized Signature:

Title: Technical Director/Representative

ALPHA

Date: 10/22/21

ORGANICS

VOLATILES

L2156742

10/15/21 10:40

Project Name: MIT WEST LOT

Project Number: 134487-005

SAMPLE RESULTS

Report Date: 10/22/21

Lab Number:

Date Collected:

Lab ID: L2156742-01

Client ID: GP-2(OW)-2021-1015 Sample Location: CAMBRIDGE, MA

Date Received: 10/15/21 Field Prep: None

Sample Depth:

Matrix: Water Analytical Method: 128,624.1 Analytical Date: 10/18/21 12:14

Analyst: MKS

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
Volatile Organics by GC/MS - Westborou	gh Lab					
Methylene chloride	ND		ug/l	1.0		1
1,1-Dichloroethane	ND		ug/l	1.5		1
Carbon tetrachloride	ND		ug/l	1.0		1
1,1,2-Trichloroethane	ND		ug/l	1.5		1
Tetrachloroethene	ND		ug/l	1.0		1
1,2-Dichloroethane	ND		ug/l	1.5		1
1,1,1-Trichloroethane	ND		ug/l	2.0		1
Benzene	ND		ug/l	1.0		1
Toluene	ND		ug/l	1.0		1
Ethylbenzene	ND		ug/l	1.0		1
Vinyl chloride	ND		ug/l	1.0		1
1,1-Dichloroethene	ND		ug/l	1.0		1
cis-1,2-Dichloroethene	ND		ug/l	1.0		1
Trichloroethene	ND		ug/l	1.0		1
1,2-Dichlorobenzene	ND		ug/l	5.0		1
1,3-Dichlorobenzene	ND		ug/l	5.0		1
1,4-Dichlorobenzene	ND		ug/l	5.0		1
p/m-Xylene	ND		ug/l	2.0		1
o-xylene	ND		ug/l	1.0		1
Xylenes, Total	ND		ug/l	1.0		1
Acetone	ND		ug/l	10		1
Methyl tert butyl ether	ND		ug/l	10		1
Tert-Butyl Alcohol	ND		ug/l	100		1
Tertiary-Amyl Methyl Ether	ND		ug/l	20		1

Project Name: MIT WEST LOT Lab Number: L2156742

Project Number: 134487-005 **Report Date:** 10/22/21

SAMPLE RESULTS

Lab ID: L2156742-01 Date Collected: 10/15/21 10:40

Client ID: GP-2(OW)-2021-1015 Date Received: 10/15/21 Sample Location: CAMBRIDGE, MA Field Prep: None

Sample Depth:

Parameter Result Qualifier Units RL MDL Dilution Factor

Volatile Organics by GC/MS - Westborough Lab

Surrogate	% Recovery	Qualifier	Acceptance Criteria	
Pentafluorobenzene	84		60-140	
Fluorobenzene	99		60-140	
4-Bromofluorobenzene	111		60-140	

Project Name: MIT WEST LOT Lab Number: L2156742

Project Number: 134487-005 **Report Date:** 10/22/21

SAMPLE RESULTS

Lab ID: L2156742-01 Date Collected: 10/15/21 10:40

Client ID: GP-2(OW)-2021-1015 Date Received: 10/15/21 Sample Location: CAMBRIDGE, MA Field Prep: None

Sample Depth:

Matrix: Water

Analytical Method: 128,624.1-SIM Analytical Date: 10/18/21 12:14

Analyst: MKS

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
Volatile Organics by GC/MS-S	IM - Westborough Lab					
1,4-Dioxane	ND		ug/l	5.0		1
Surrogate			% Recovery	Qualifier		ptance iteria
Fluorobenzene			103		6	60-140
4-Bromofluorobenzene			30	Q	6	60-140

Project Name: MIT WEST LOT Lab Number: L2156742

Project Number: 134487-005 **Report Date:** 10/22/21

SAMPLE RESULTS

Lab ID: L2156742-01 Date Collected: 10/15/21 10:40

Client ID: GP-2(OW)-2021-1015 Date Received: 10/15/21 Sample Location: CAMBRIDGE, MA Field Prep: None

Sample Depth:

Analytical Date:

Matrix: Water Extraction Method: EPA 504.1
Analytical Method: 14,504.1 Extraction Date: 10/18/21 11:35

Analyst: GT

10/18/21 20:42

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	Column	
Microextractables by GC - Westborough Lab								
1,2-Dibromoethane	ND		ug/l	0.010		1	Α	
1,2-Dibromo-3-chloropropane	ND		ug/l	0.010		1	Α	
1,2,3-Trichloropropane	ND		ug/l	0.030		1	Α	

Project Name: MIT WEST LOT Lab Number: L2156742

Project Number: 134487-005 **Report Date:** 10/22/21

Method Blank Analysis Batch Quality Control

Analytical Method: 14,504.1 Extraction Method: EPA 504.1

Analytical Date: 10/18/21 19:52 Extraction Date: 10/18/21 11:35

Analyst: GT

Parameter	Result	Qualifier	Units	RL	MDL	
Microextractables by GC - Westb	orough Lab fo	r sample(s)): 01	Batch: WG155	9921-1	
1,2-Dibromoethane	ND		ug/l	0.010		Α
1,2-Dibromo-3-chloropropane	ND		ug/l	0.010		А
1,2,3-Trichloropropane	ND		ug/l	0.030		Α

Project Name: MIT WEST LOT Lab Number: L2156742

Project Number: 134487-005 **Report Date:** 10/22/21

Method Blank Analysis Batch Quality Control

Analytical Method: 128,624.1 Analytical Date: 10/18/21 10:27

Analyst: MKS

Parameter	Result	Qualifier Units	RL	MDL
Volatile Organics by GC/MS - Wes	stborough Lab	for sample(s): 01	Batch:	WG1560332-4
Methylene chloride	ND	ug/l	1.0	
1,1-Dichloroethane	ND	ug/l	1.5	
Carbon tetrachloride	ND	ug/l	1.0	
1,1,2-Trichloroethane	ND	ug/l	1.5	
Tetrachloroethene	ND	ug/l	1.0	
1,2-Dichloroethane	ND	ug/l	1.5	
1,1,1-Trichloroethane	ND	ug/l	2.0	
Benzene	ND	ug/l	1.0	
Toluene	ND	ug/l	1.0	
Ethylbenzene	ND	ug/l	1.0	
Vinyl chloride	ND	ug/l	1.0	
1,1-Dichloroethene	ND	ug/l	1.0	
cis-1,2-Dichloroethene	ND	ug/l	1.0	
Trichloroethene	ND	ug/l	1.0	
1,2-Dichlorobenzene	ND	ug/l	5.0	
1,3-Dichlorobenzene	ND	ug/l	5.0	
1,4-Dichlorobenzene	ND	ug/l	5.0	
p/m-Xylene	ND	ug/l	2.0	
o-xylene	ND	ug/l	1.0	
Xylenes, Total	ND	ug/l	1.0	
Acetone	ND	ug/l	10	
Methyl tert butyl ether	ND	ug/l	10	
Tert-Butyl Alcohol	ND	ug/l	100	
Tertiary-Amyl Methyl Ether	ND	ug/l	20	

Project Name: MIT WEST LOT Lab Number: L2156742

Project Number: 134487-005 **Report Date:** 10/22/21

Method Blank Analysis
Batch Quality Control

Analytical Method: 128,624.1 Analytical Date: 10/18/21 10:27

Analyst: MKS

Parameter Result Qualifier Units RL MDL

Volatile Organics by GC/MS - Westborough Lab for sample(s): 01 Batch: WG1560332-4

		Acceptance			
Surrogate	%Recovery	Qualifier	Criteria		
Pentafluorobenzene	85		60-140		
Fluorobenzene	99		60-140		
4-Bromofluorobenzene	113		60-140		

Project Name: MIT WEST LOT Lab Number: L2156742

Project Number: 134487-005 **Report Date:** 10/22/21

Method Blank Analysis Batch Quality Control

Analytical Method: 128,624.1-SIM Analytical Date: 10/18/21 10:27

Analyst: MKS

Parameter	Result	Qualifier	Units		RL	MDL	
Volatile Organics by GC/MS-SIM -	Westborough	Lab for s	ample(s):	01	Batch:	WG1560335-4	
1,4-Dioxane	ND		ug/l		5.0		

		Acceptance			
Surrogate	%Recovery	Qualifier	Criteria		
Fluorobenzene	104		60-140		
4-Bromofluorobenzene	30	Q	60-140		

Project Name: MIT WEST LOT

Project Number: 134487-005

Lab Number:

L2156742

Report Date:

10/22/21

Parameter	LCS %Recovery	Qual	LCSD %Recovery	Qual	%Recovery Limits	RPD	Qual	RPD Limits	Column
Microextractables by GC - Westborough Lab	Associated sar	nple(s): 01	Batch: WG1559	921-2					
1,2-Dibromoethane	74	Q	-		80-120	-			Α
1,2-Dibromo-3-chloropropane	90		-		80-120	-			Α
1,2,3-Trichloropropane	89		-		80-120	-			Α

Project Name: MIT WEST LOT

Project Number: 134487-005

Lab Number: L2156742

Report Date: 10/22/21

Parameter	LCS %Recovery	Qual	LCSD %Recovery	Qual	%Recovery Limits	RPD	Qual	RPD Limits
Volatile Organics by GC/MS - Westborough	Lab Associated	sample(s): (01 Batch: WG1	560332-3				
Methylene chloride	90		-		60-140	-		28
1,1-Dichloroethane	85		-		50-150	-		49
Carbon tetrachloride	80		-		70-130	-		41
1,1,2-Trichloroethane	100		-		70-130	-		45
Tetrachloroethene	95		-		70-130	-		39
1,2-Dichloroethane	80		-		70-130	-		49
1,1,1-Trichloroethane	85		-		70-130	-		36
Benzene	115		-		65-135	-		61
Toluene	115		-		70-130	-		41
Ethylbenzene	145	Q	-		60-140	-		63
Vinyl chloride	75		-		5-195	-		66
1,1-Dichloroethene	100		-		50-150	-		32
cis-1,2-Dichloroethene	105		-		60-140	-		30
Trichloroethene	110		-		65-135	-		48
1,2-Dichlorobenzene	140	Q	-		65-135	-		57
1,3-Dichlorobenzene	140	Q	-		70-130	-		43
1,4-Dichlorobenzene	145	Q	-		65-135	-		57
p/m-Xylene	140		-		60-140	-		30
o-xylene	130		-		60-140	-		30
Acetone	90		-		40-160	-		30
Methyl tert butyl ether	90		-		60-140	-		30
Tert-Butyl Alcohol	100		-		60-140	-		30
Tertiary-Amyl Methyl Ether	90		-		60-140	-		30

Project Name: MIT WEST LOT

Lab Number:

L2156742

Project Number: 134487-005

Report Date:

10/22/21

	LCS		LCSD		%Recovery			RPD
Parameter	%Recoverv	Qual	%Recovery	Qual	Limits	RPD	Qual	Limits

Volatile Organics by GC/MS - Westborough Lab Associated sample(s): 01 Batch: WG1560332-3

Surrogate	LCS %Recovery Qual	LCSD %Recovery	Qual	Acceptance Criteria
Pentafluorobenzene	90			60-140
Fluorobenzene	104			60-140
4-Bromofluorobenzene	113			60-140

Project Name: MIT WEST LOT

Lab Number:

L2156742

Project Number: 134487-005

Report Date:

10/22/21

Parameter	LCS %Recovery	Qual	LCSD %Recovery	Qual	%Recovery Limits	RPD	Qual	RPD Limits	
Volatile Organics by GC/MS-SIM - Westboro	ugh Lab Associat	ed sample(s)	: 01 Batch:	WG1560335	-3				
1,4-Dioxane	128		-		60-140	-		20	

Surrogate	LCS %Recovery	Qual	LCSD %Recovery	Qual	Acceptance Criteria
Fluorobenzene 4-Bromofluorobenzene	107 29	Q			60-140 60-140

Matrix Spike Analysis Batch Quality Control

Project Name: MIT WEST LOT
Project Number: 134487-005

Lab Number:

L2156742

Report Date:

10/22/21

Parameter	Native Sample	MS Added	MS Found %	MS Recovery	Qual	MSD Found	MSD %Recovery	Recovery Qual Limits	r RPD	RPD Qual Limits	<u>Colum</u> n
Microextractables by GC -	· Westborough Lab	Associat	ed sample(s): 01	QC Batch	ID: WG1	559921-3	QC Sample:	L2155982-03 Cli	ient ID: I	MS Sample	
1,2-Dibromoethane	ND	0.249	0.195	78	Q	-	-	80-120	-	20	Α
1,2-Dibromo-3-chloropropane	ND	0.249	0.316	127	Q	-	-	80-120	-	20	Α
1,2,3-Trichloropropane	ND	0.249	0.278	112		-	-	80-120	-	20	Α

SEMIVOLATILES

Project Name: MIT WEST LOT Lab Number: L2156742

Project Number: 134487-005 **Report Date:** 10/22/21

SAMPLE RESULTS

Lab ID: L2156742-01 Date Collected: 10/15/21 10:40

Client ID: GP-2(OW)-2021-1015 Date Received: 10/15/21 Sample Location: CAMBRIDGE, MA Field Prep: None

Sample Depth:

Analytical Date:

Matrix: Water Extraction Method: EPA 625.1
Analytical Method: 129,625.1 Extraction Date: 10/18/21 01:09

Analyst: SZ

10/19/21 16:35

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	
Semivolatile Organics by GC/MS - We	stborough Lab						
Bis(2-ethylhexyl)phthalate	ND		ug/l	2.20		1	
Butyl benzyl phthalate	ND		ug/l	5.00		1	
Di-n-butylphthalate	ND		ug/l	5.00		1	
Di-n-octylphthalate	ND		ug/l	5.00		1	
Diethyl phthalate	ND		ug/l	5.00		1	
Dimethyl phthalate	ND		ua/l	5.00		1	

Surrogate	% Recovery	Qualifier	Acceptance Criteria
Nitrobenzene-d5	65		42-122
2-Fluorobiphenyl	68		46-121
4-Terphenyl-d14	82		47-138

Project Name: Lab Number: MIT WEST LOT L2156742

Project Number: Report Date: 134487-005 10/22/21

SAMPLE RESULTS

Lab ID: L2156742-01 Date Collected: 10/15/21 10:40

Client ID: Date Received: 10/15/21 GP-2(OW)-2021-1015 Sample Location: CAMBRIDGE, MA Field Prep: None

Sample Depth:

Extraction Method: EPA 625.1 Matrix: Water

Extraction Date: 10/18/21 01:14 Analytical Method: 129,625.1-SIM Analytical Date:

Analyst: RP

10/19/21 01:39

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	
Semivolatile Organics by GC/MS-S	SIM - Westborough La	ab					
Acenaphthene	ND		ug/l	0.100		1	
Fluoranthene	ND		ug/l	0.100		1	
Naphthalene	ND		ug/l	0.100		1	
Benzo(a)anthracene	ND		ug/l	0.100		1	
Benzo(a)pyrene	ND		ug/l	0.100		1	
Benzo(b)fluoranthene	ND		ug/l	0.100		1	
Benzo(k)fluoranthene	ND		ug/l	0.100		1	
Chrysene	ND		ug/l	0.100		1	
Acenaphthylene	ND		ug/l	0.100		1	
Anthracene	ND		ug/l	0.100		1	
Benzo(ghi)perylene	ND		ug/l	0.100		1	
Fluorene	ND		ug/l	0.100		1	
Phenanthrene	ND		ug/l	0.100		1	
Dibenzo(a,h)anthracene	ND		ug/l	0.100		1	
Indeno(1,2,3-cd)pyrene	ND		ug/l	0.100		1	
Pyrene	ND		ug/l	0.100		1	
Pentachlorophenol	ND		ug/l	1.00		1	

Surrogate	% Recovery	Acceptance Qualifier Criteria
2-Fluorophenol	55	25-87
Phenol-d6	44	16-65
Nitrobenzene-d5	90	42-122
2-Fluorobiphenyl	78	46-121
2,4,6-Tribromophenol	125	45-128
4-Terphenyl-d14	84	47-138

Project Name: MIT WEST LOT Lab Number: L2156742

Project Number: 134487-005 **Report Date:** 10/22/21

Method Blank Analysis Batch Quality Control

 Analytical Method:
 129,625.1
 Extraction Method:
 EPA 625.1

 Analytical Date:
 10/18/21 14:57
 Extraction Date:
 10/18/21 01:09

Analyst: SZ

Parameter	Result	Qualifier Units	RL	MDL
Semivolatile Organics by GC/M	S - Westborough	Lab for sample(s):	01 Batch:	WG1559760-1
Bis(2-ethylhexyl)phthalate	ND	ug/l	2.20	
Butyl benzyl phthalate	ND	ug/l	5.00	
Di-n-butylphthalate	ND	ug/l	5.00	
Di-n-octylphthalate	ND	ug/l	5.00	
Diethyl phthalate	ND	ug/l	5.00	
Dimethyl phthalate	ND	ug/l	5.00	

		Acceptance	
Surrogate	%Recovery	Qualifier Criteria	
Nitrobenzene-d5	95	42-122	
2-Fluorobiphenyl	96	46-121	
4-Terphenyl-d14	100	47-138	

Project Name: MIT WEST LOT Lab Number: L2156742

Project Number: 134487-005 **Report Date:** 10/22/21

Method Blank Analysis Batch Quality Control

Analytical Method: 129,625.1-SIM Extraction Method: EPA 625.1
Analytical Date: 10/19/21 00:17 Extraction Date: 10/18/21 01:14

Analyst: DV

Result	Qualifier	Units	RL	MDL	
M - Westboi	ough Lab	for sampl	e(s): 01	Batch: WG15597	762-1
ND		ug/l	0.100		
ND		ug/l	0.100		
ND		ug/l	0.100		
ND		ug/l	0.100		
ND		ug/l	0.100		
ND		ug/l	0.100		
ND		ug/l	0.100		
ND		ug/l	0.100		
ND		ug/l	0.100		
ND		ug/l	0.100		
ND		ug/l	0.100		
ND		ug/l	0.100		
ND		ug/l	0.100		
ND		ug/l	0.100		
ND		ug/l	0.100		
ND		ug/l	0.100		
ND		ug/l	1.00		
	M - Westbor	M - Westborough Lab ND ND ND ND ND ND ND ND ND N	ND	ND	ND

Surrogate	%Recovery	Acceptance Qualifier Criteria
2-Fluorophenol	58	25-87
Phenol-d6	46	16-65
Nitrobenzene-d5	89	42-122
2-Fluorobiphenyl	78	46-121
2,4,6-Tribromophenol	108	45-128
4-Terphenyl-d14	83	47-138

Project Name: MIT WEST LOT

Project Number:

134487-005

Lab Number:

L2156742

Report Date:

10/22/21

Parameter	LCS %Recovery	Qual	LCSD %Recovery	Qual	%Recovery Limits	RPD	Qual	RPD Limits	
Semivolatile Organics by GC/MS - Westborou	gh Lab Associa	ated sample(s)	: 01 Batch:	WG1559760	0-3				
Bis(2-ethylhexyl)phthalate	97		-		29-137	-		82	
Butyl benzyl phthalate	104		-		1-140	-		60	
Di-n-butylphthalate	101		-		8-120	-		47	
Di-n-octylphthalate	100		-		19-132	-		69	
Diethyl phthalate	96		-		1-120	-		100	
Dimethyl phthalate	98		-		1-120	-		183	

Surrogate	LCS %Recovery Qual	LCSD %Recovery Qual	Acceptance Criteria
Nitrobenzene-d5	91		42-122
2-Fluorobiphenyl	96		46-121
4-Terphenyl-d14	105		47-138

Project Name: MIT WEST LOT

Project Number: 134487-005

Lab Number: L2156742

Report Date: 10/22/21

arameter	LCS %Recovery Qua	LCSD %Recovery	%Recovery Qual Limits	RPD	RPD Qual Limits
semivolatile Organics by GC/MS-SIM - Wes	stborough Lab Associate	ed sample(s): 01 Batch	: WG1559762-2		
Acenaphthene	79	-	60-132	-	30
Fluoranthene	87	-	43-121	-	30
Naphthalene	77	-	36-120	-	30
Benzo(a)anthracene	81	-	42-133	-	30
Benzo(a)pyrene	85	-	32-148	-	30
Benzo(b)fluoranthene	90	-	42-140	-	30
Benzo(k)fluoranthene	79	-	25-146	-	30
Chrysene	80	-	44-140	-	30
Acenaphthylene	84	-	54-126	-	30
Anthracene	83	-	43-120	-	30
Benzo(ghi)perylene	84	-	1-195	-	30
Fluorene	84	-	70-120	-	30
Phenanthrene	78	-	65-120	-	30
Dibenzo(a,h)anthracene	88	-	1-200	-	30
Indeno(1,2,3-cd)pyrene	93	-	1-151	-	30
Pyrene	87	-	70-120	-	30
Pentachlorophenol	56	-	38-152	-	30

Project Name: MIT WEST LOT

Lab Number:

L2156742

Project Number: 134487-005

Report Date:

10/22/21

LCS LCSD %Recovery RPD Parameter %Recovery Qual %Recovery Qual Limits RPD Qual Limits

Semivolatile Organics by GC/MS-SIM - Westborough Lab Associated sample(s): 01 Batch: WG1559762-2

Surrogate	LCS %Recovery Qual	LCSD %Recovery Qual	Acceptance Criteria
2-Fluorophenol	55		25-87
Phenol-d6	44		16-65
Nitrobenzene-d5	80		42-122
2-Fluorobiphenyl	70		46-121
2,4,6-Tribromophenol	100		45-128
4-Terphenyl-d14	73		47-138

PCBS

Project Name: MIT WEST LOT Lab Number: L2156742

Project Number: 134487-005 **Report Date:** 10/22/21

SAMPLE RESULTS

Lab ID: Date Collected: 10/15/21 10:40

Client ID: GP-2(OW)-2021-1015 Date Received: 10/15/21 Sample Location: CAMBRIDGE, MA Field Prep: None

Sample Depth:

Matrix: Water Extraction Method: EPA 608.3
Analytical Method: 127,608.3
Analytical Date: 10/21/21 09:28
Extraction Date: 10/20/21 20:35
Cleanup Method: EPA 3665A

Analyst: JM Cleanup Date: 10/21/21

Cleanup Method: EPA 3660B Cleanup Date: 10/21/21

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	Column
Polychlorinated Biphenyls by	GC - Westborough Lab						
Aroclor 1016	ND		ug/l	0.250		1	Α
Aroclor 1221	ND		ug/l	0.250		1	Α
Aroclor 1232	ND		ug/l	0.250		1	Α
Aroclor 1242	ND		ug/l	0.250		1	Α
Aroclor 1248	ND		ug/l	0.250		1	А
Aroclor 1254	ND		ug/l	0.250		1	А
Aroclor 1260	ND		ug/l	0.200		1	Α

		Acceptance							
Surrogate	% Recovery	Qualifier	Criteria	Column					
2,4,5,6-Tetrachloro-m-xylene	64		37-123	В					
Decachlorobiphenyl	62		38-114	В					
2,4,5,6-Tetrachloro-m-xylene	66		37-123	Α					
Decachlorobiphenyl	74		38-114	Α					

Project Name: MIT WEST LOT Lab Number: L2156742

Project Number: 134487-005 **Report Date:** 10/22/21

Method Blank Analysis Batch Quality Control

Analytical Method: 127,608.3 Analytical Date: 10/21/21 08:05

Analyst: JM

Extraction Method: EPA 608.3
Extraction Date: 10/20/21 20:35
Cleanup Method: EPA 3665A
Cleanup Date: 10/21/21
Cleanup Method: EPA 3660B
Cleanup Date: 10/21/21

Parameter	Result	Qualifier	Units	RL	MDL	Column
Polychlorinated Biphenyls by GC - V	Vestborough	Lab for s	ample(s):	01 Batch:	WG1561184	-1
Aroclor 1016	ND		ug/l	0.250		Α
Aroclor 1221	ND		ug/l	0.250		Α
Aroclor 1232	ND		ug/l	0.250		Α
Aroclor 1242	ND		ug/l	0.250		Α
Aroclor 1248	ND		ug/l	0.250		Α
Aroclor 1254	ND		ug/l	0.250		Α
Aroclor 1260	ND		ug/l	0.200		Α

		Acceptance			
Surrogate	%Recovery Qual	ifier Criteria	Column		
2,4,5,6-Tetrachloro-m-xylene	66	37-123	В		
Decachlorobiphenyl	52	38-114	В		
2,4,5,6-Tetrachloro-m-xylene	73	37-123	Α		
Decachlorobiphenyl	66	38-114	Α		

Project Name: MIT WEST LOT

Lab Number:

L2156742

Project Number: 134487-005

Report Date:

10/22/21

	LCS		LCSD		%Recovery			RPD	
Parameter	%Recovery	Qual	%Recovery	Qual	Limits	RPD	Qual	Limits	Column
Polychlorinated Biphenyls by GC - Westbo	orough Lab Associa	ated sample(s)	: 01 Batch:	WG1561184-	-2				
Aroclor 1016	62		-		50-140	-		36	Α
Aroclor 1260	62		-		8-140	-		38	А

Surrogate	LCS %Recovery Qual	LCSD I %Recovery Qual	Acceptance Criteria Column
2,4,5,6-Tetrachloro-m-xylene	49		37-123 B
Decachlorobiphenyl	45		38-114 B
2,4,5,6-Tetrachloro-m-xylene	52		37-123 A
Decachlorobiphenyl	57		38-114 A

METALS

10/15/21 10:40

Date Collected:

Project Name:MIT WEST LOTLab Number:L2156742Project Number:134487-005Report Date:10/22/21

SAMPLE RESULTS

Lab ID: L2156742-01

Client ID: GP-2(OW)-2021-1015 Date Received: 10/15/21 Sample Location: CAMBRIDGE, MA Field Prep: None

Sample Depth:

Matrix: Water

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	Date Prepared	Date Analyzed	Prep Method	Analytical Method	Analyst
Total Hardness b	y SM 2340E	3 - Mansfiel	ld Lab								
Hardness	533		mg/l	0.660	NA	1	10/21/21 09:2	5 10/21/21 14:1	8 EPA 3005A	19,200.7	SV

10/15/21 12:40

Date Collected:

Project Name:MIT WEST LOTLab Number:L2156742Project Number:134487-005Report Date:10/22/21

SAMPLE RESULTS

Lab ID: L2156742-02

Client ID: MIT WEST LOT-RW-2021-1015 Date Received: 10/15/21 Sample Location: CAMBRIDGE, MA Field Prep: Not Specified

Sample Depth:

Matrix: Water

Method Method	Analyst
EPA 3005A 3,200.8	WP
EPA 3005A 19,200.7	SV
EPA 3005A 3,200.8	WP
EPA 245.1 3,245.1	AC
EPA 3005A 3,200.8	WP
EPA 3005A 19,200.7	SV
	PA 3005A 3,200.8 PA 3005A 19,200.7 PA 3005A 3,200.8 PA 245.1 3,245.1 PA 3005A 3,200.8

Project Name: MIT WEST LOT Project Number: 134487-005

Lab Number: L2156742 **Report Date:**

10/22/21

Method Blank Analysis Batch Quality Control

Parameter	Result Qualifier	Units	RL	MDL	Dilution Factor	Date Prepared	Date Analyzed	Analytical Method	Analyst
Total Metals - Mans	field Lab for sample(s):	02 Batc	h: WG15	61392-	·1				
Antimony, Total	ND	mg/l	0.00400		1	10/21/21 09:25	10/21/21 16:20	3,200.8	WP
Arsenic, Total	ND	mg/l	0.00100		1	10/21/21 09:25	10/21/21 16:20	3,200.8	WP
Cadmium, Total	ND	mg/l	0.00020		1	10/21/21 09:25	10/21/21 16:20	3,200.8	WP
Chromium, Total	ND	mg/l	0.00100		1	10/21/21 09:25	10/21/21 16:20	3,200.8	WP
Copper, Total	ND	mg/l	0.00100		1	10/21/21 09:25	10/21/21 16:20	3,200.8	WP
Lead, Total	ND	mg/l	0.00100		1	10/21/21 09:25	10/21/21 16:20	3,200.8	WP
Nickel, Total	ND	mg/l	0.00200		1	10/21/21 09:25	10/21/21 16:20	3,200.8	WP
Selenium, Total	ND	mg/l	0.00500		1	10/21/21 09:25	10/21/21 16:20	3,200.8	WP
Silver, Total	ND	mg/l	0.00040		1	10/21/21 09:25	10/21/21 16:20	3,200.8	WP
Zinc, Total	ND	mg/l	0.01000		1	10/21/21 09:25	10/21/21 16:20	3,200.8	WP

Prep Information

Digestion Method: EPA 3005A

Parameter	Result Qualifier	Units	RL	MDL	Dilution Factor	Date Prepared	Date Analyzed	Analytical Method	Analyst
Total Metals - Mansfie	ld Lab for sample(s):	01-02 E	Batch: Wo	G15613	93-1				
Iron, Total	ND	mg/l	0.050		1	10/21/21 09:25	10/21/21 13:18	19,200.7	SV

Prep Information

Digestion Method: EPA 3005A

Parameter	Result Qualifie	Units	RL	MDL	Dilution Factor	Date Prepared	Date Analyzed	Analytical Method	Analyst
Total Hardness by S	SM 2340B - Mansfield L	ab for sam	ple(s):	01-02 B	atch: WG1	561393-1			
Hardness	ND	mg/l	0.660	NA	1	10/21/21 09:25	10/21/21 13:18	19,200.7	sv

Prep Information

Digestion Method: EPA 3005A

L2156742

Project Name: Lab Number: MIT WEST LOT Project Number: 134487-005

Report Date: 10/22/21

Method Blank Analysis Batch Quality Control

Parameter	Result Qualifier	Units	RL	MDL	Dilution Factor	Date Prepared	Date Analyzed	Analytica Method	
Total Metals - Mansfield	Lab for sample(s):	02 Batcl	h: WG15	561394-	-1				
Mercury, Total	ND	mg/l	0.00020		1	10/21/21 10:10	10/21/21 12:58	3,245.1	AC

Prep Information

Digestion Method: EPA 245.1

Project Name: MIT WEST LOT

Project Number: 134487-005

Lab Number: L2156742

Report Date: 10/22/21

Parameter	LCS %Recovery	LCSD Qual %Recovery	%Recovery Qual Limits	RPD	Qual	RPD Limits
Total Metals - Mansfield Lab Associated sample	e(s): 02 Batch: '	WG1561392-2				
Antimony, Total	92	-	85-115	-		
Arsenic, Total	106	-	85-115	-		
Cadmium, Total	100	-	85-115	-		
Chromium, Total	99	-	85-115	-		
Copper, Total	103	•	85-115	-		
Lead, Total	104	•	85-115	-		
Nickel, Total	98	-	85-115	-		
Selenium, Total	102	-	85-115	-		
Silver, Total	101	-	85-115	-		
Zinc, Total	98	-	85-115	-		
Total Metals - Mansfield Lab Associated sample	e(s): 01-02 Bato	ch: WG1561393-2				
Iron, Total	97	-	85-115	-		
Total Hardness by SM 2340B - Mansfield Lab A	ssociated sample	e(s): 01-02 Batch: WG156	1393-2			
Hardness	97	-	85-115	-		
Total Metals - Mansfield Lab Associated sample	e(s): 02 Batch: '	WG1561394-2				
Mercury, Total	94	-	85-115	-		

Matrix Spike Analysis Batch Quality Control

Project Name: MIT WEST LOT **Project Number:** 134487-005

Lab Number:

L2156742

Report Date:

10/22/21

arameter	Native Sample	MS Added	MS Found	MS %Recovery	Qua	MSD I Found	MSD %Recovery	Reco Qual Lim	•	Qual	RPD Limits
Total Metals - Mansfield Lab	Associated sam	ple(s): 02	QC Batch I	D: WG156139	2-3	QC Sample	: L2156734-01	Client ID: I	MS Sample		
Antimony, Total	ND	0.5	0.5951	119		-	-	70-1	30 -		20
Arsenic, Total	0.00492	0.12	0.1355	109		-	-	70-1	30 -		20
Cadmium, Total	ND	0.053	0.05333	101		-	-	70-1	30 -		20
Chromium, Total	0.00171	0.2	0.1986	98		-	-	70-1	30 -		20
Copper, Total	0.00196	0.25	0.2466	98		-	-	70-1	30 -		20
Lead, Total	ND	0.53	0.5045	95		-	-	70-1	30 -		20
Nickel, Total	ND	0.5	0.4845	97		-	-	70-1	30 -		20
Selenium, Total	ND	0.12	0.1237	103		-	-	70-1	30 -		20
Silver, Total	ND	0.05	0.04983	100		-	-	70-1	30 -		20
Zinc, Total	0.01359	0.5	0.5051	98		-	-	70-1	30 -		20
Total Metals - Mansfield Lab	Associated sam	nple(s): 01-0)2 QC Bate	ch ID: WG156	1393-	3 QC Sam	ple: L2156734-	-01 Client IE	D: MS Sam	ple	
Iron, Total	2.96	1	3.77	81		-	-	75-1	25 -		20
Γotal Hardness by SM 2340Ε	B - Mansfield La	b Associate	ed sample(s)	01-02 QC E	Batch	ID: WG1561	393-3 QC Sa	ample: L2156	734-01 CI	ient ID:	MS Sample
Hardness	441	66.2	483	63	Q	-	-	75-1	25 -		20
Total Metals - Mansfield Lab	Associated sam	nple(s): 02	QC Batch I	D: WG156139	4-3	QC Sample	: L2156734-02	Client ID: N	MS Sample		
Mercury, Total	ND	0.005	0.00469	94		-	-	70-1	30 -		20

Lab Duplicate Analysis Batch Quality Control

Project Name: MIT WEST LOT **Project Number:** 134487-005

Lab Number: L2156742 10/22/21

Report Date:

Parameter	Native Sample [Ouplicate Sample	Units	RPD	Qual	RPD Limits
otal Metals - Mansfield Lab Associated sample(s): 02	QC Batch ID: WG1561392	2-4 QC Sample: I	_2156734-01(Client ID: D	UP Sample	
Antimony, Total	ND	ND	mg/l	NC		20
Arsenic, Total	0.00492	0.00455	mg/l	8		20
Cadmium, Total	ND	ND	mg/l	NC		20
Chromium, Total	0.00171	0.00173	mg/l	1		20
Copper, Total	0.00196	0.00194	mg/l	1		20
Lead, Total	ND	ND	mg/l	NC		20
Nickel, Total	ND	ND	mg/l	NC		20
Selenium, Total	ND	ND	mg/l	NC		20
Silver, Total	ND	ND	mg/l	NC		20
Zinc, Total	0.01359	0.01304	mg/l	4		20
otal Metals - Mansfield Lab Associated sample(s): 01-	02 QC Batch ID: WG1561	393-4 QC Sample	e: L2156734-0	1 Client ID:	: DUP Samp	ole
Iron, Total	2.96	2.90	mg/l	2		20
otal Metals - Mansfield Lab Associated sample(s): 02	QC Batch ID: WG1561394	I-4 QC Sample: I	_2156734-02(Client ID: D	UP Sample	
Mercury, Total	ND	ND	mg/l	NC		20

INORGANICS & MISCELLANEOUS

10/15/21 10:40

Date Collected:

Project Name:MIT WEST LOTLab Number:L2156742Project Number:134487-005Report Date:10/22/21

SAMPLE RESULTS

Lab ID: L2156742-01

Client ID: GP-2(OW)-2021-1015 Date Received: 10/15/21 Sample Location: CAMBRIDGE, MA Field Prep: None

Sample Depth:

Matrix: Water

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	Date Prepared	Date Analyzed	Analytical Method	Analyst
General Chemistry - We	stborough La	b								
Solids, Total Suspended	97.		mg/l	5.0	NA	1	-	10/20/21 14:00	121,2540D	AC
Cyanide, Total	ND		mg/l	0.005		1	10/21/21 11:00	10/22/21 11:54	121,4500CN-CE	JO
Chlorine, Total Residual	ND		mg/l	0.02		1	-	10/16/21 05:22	121,4500CL-D	KA
pH (H)	6.8		SU	-	NA	1	-	10/18/21 17:40	1,9040C	AS
Nitrogen, Ammonia	3.52		mg/l	0.075		1	10/19/21 08:00	10/19/21 21:18	121,4500NH3-BH	H AT
TPH, SGT-HEM	ND		mg/l	3.60		.9	10/20/21 17:15	10/20/21 18:00	140,1664B	TL
Phenolics, Total	ND		mg/l	0.030		1	10/19/21 07:19	10/19/21 11:18	4,420.1	KP
Chromium, Hexavalent	ND		mg/l	0.010		1	10/16/21 00:39	10/16/21 00:43	1,7196A	VA
Anions by Ion Chromato	graphy - Wes	tborough	Lab							
Chloride	1730		mg/l	25.0		50	-	10/20/21 20:38	44,300.0	SH

Project Name: MIT WEST LOT Lab Number: L2156742

Project Number: 134487-005 **Report Date:** 10/22/21

SAMPLE RESULTS

Lab ID: L2156742-02 Date Collected: 10/15/21 12:40

Client ID: MIT WEST LOT-RW-2021-1015 Date Received: 10/15/21 Sample Location: CAMBRIDGE, MA Field Prep: Not Specified

Sample Depth:

Matrix: Water

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	Date Prepared	Date Analyzed	Analytical Method	Analyst
General Chemistry - We	estborough Lab									
pH (H)	7.1		SU	-	NA	1	-	10/18/21 17:40	1,9040C	AS
Nitrogen, Ammonia	0.129		mg/l	0.075		1	10/19/21 08:00	10/19/21 21:19	121,4500NH3-BH	l AT
Chromium, Hexavalent	ND		mg/l	0.010		1	10/16/21 00:39	10/16/21 00:44	1,7196A	VA

L2156742

Project Name: MIT WEST LOT
Project Number: 134487-005

.005 Report Dat

Report Date: 10/22/21

Lab Number:

Method Blank Analysis Batch Quality Control

Parameter	Result Qualif	ier Units	RL	MDL	Dilution Factor	Date Prepared	Date Analyzed	Analytical Method	Analyst		
General Chemistry -	Westborough Lab for	sample(s): 01-	02 Bat	ch: W	G1559397-1						
Chromium, Hexavalent	ND	mg/l	0.010		1	10/16/21 00:39	10/16/21 00:42	1,7196A	VA		
General Chemistry -	Westborough Lab for	sample(s): 01	Batch:	WG15	559428-1						
Chlorine, Total Residual	ND	mg/l	0.02		1	-	10/16/21 05:22	121,4500CL-D	KA		
General Chemistry -	Westborough Lab for	sample(s): 01	Batch:	WG15	60259-1						
Phenolics, Total	ND	mg/l	0.030		1	10/19/21 07:19	10/19/21 11:04	4,420.1	KP		
General Chemistry - Westborough Lab for sample(s): 01-02 Batch: WG1560316-1											
Nitrogen, Ammonia	ND	mg/l	0.075		1	10/19/21 08:00	10/19/21 21:13	121,4500NH3-BI	H AT		
General Chemistry -	Westborough Lab for	sample(s): 01	Batch:	WG15	61048-1						
Solids, Total Suspended	ND	mg/l	5.0	NA	1	-	10/20/21 14:00	121,2540D	AC		
General Chemistry -	Westborough Lab for	sample(s): 01	Batch:	WG15	61054-1						
TPH, SGT-HEM	ND	mg/l	4.00		1	10/20/21 17:15	10/20/21 18:00	140,1664B	TL		
Anions by Ion Chrom	atography - Westboro	ugh Lab for sar	mple(s):	01 B	atch: WG1	561195-1					
Chloride	ND	mg/l	0.500		1	-	10/20/21 16:38	44,300.0	SH		
General Chemistry -	Westborough Lab for	sample(s): 01	Batch:	WG15	61413-1						
Cyanide, Total	ND	mg/l	0.005		1	10/21/21 11:00	10/22/21 11:31	121,4500CN-CE	. JO		

Lab Control Sample Analysis Batch Quality Control

Project Name: MIT WEST LOT

Project Number: 134487-005

Lab Number: L2156742

Report Date: 10/22/21

Parameter	LCS %Recovery Qu	LCSD al %Recovery	%Recovery Qual Limits	RPD	Qual RPD Limits
General Chemistry - Westborough Lab	Associated sample(s): 01-	-02 Batch: WG15593	397-2		
Chromium, Hexavalent	104	-	85-115	-	20
General Chemistry - Westborough Lab	Associated sample(s): 01	Batch: WG1559428	-2		
Chlorine, Total Residual	104	-	90-110	-	
General Chemistry - Westborough Lab	Associated sample(s): 01-	-02 Batch: WG15601	105-1		
рН	101	-	99-101	-	5
General Chemistry - Westborough Lab	Associated sample(s): 01	Batch: WG1560259	-2		
Phenolics, Total	104	-	70-130	-	
General Chemistry - Westborough Lab	Associated sample(s): 01-	-02 Batch: WG15603	316-2		
Nitrogen, Ammonia	96	-	80-120	-	20
General Chemistry - Westborough Lab	Associated sample(s): 01	Batch: WG1561048	-2		
Solids, Total Suspended	98	-	80-120	-	
General Chemistry - Westborough Lab	Associated sample(s): 01	Batch: WG1561054	-2		
ТРН	72	-	64-132	-	34

Lab Control Sample Analysis Batch Quality Control

Project Name: MIT WEST LOT

Project Number: 134487-005

Lab Number:

L2156742

Report Date:

10/22/21

Parameter	LCS %Recovery	LCSD %Recovery	%Recovery Limits	RPD	RPD Limits
Anions by Ion Chromatography - Wes	stborough Lab Associated sam	ple(s): 01 Batch: WG15	661195-2		
Chloride	98	-	90-110	-	
General Chemistry - Westborough La	ab Associated sample(s): 01	Batch: WG1561413-2			
Cyanide, Total	92	-	90-110	-	

Matrix Spike Analysis Batch Quality Control

Project Name: MIT WEST LOT **Project Number:** 134487-005

Lab Number:

L2156742

Report Date:

10/22/21

Parameter	Native Sample	MS Added	MS Found	MS %Recovery	MSD Qual Found	MSD %Recovery Q	Recovery ual Limits RP[RPD O Qual Limits
General Chemistry - Westbo RW-2021-1015	rough Lab Assoc	ated samp	ole(s): 01-02	2 QC Batch I	D: WG1559397-4	QC Sample: L2*	156742-02 Client ID	: MIT WEST LOT-
Chromium, Hexavalent	ND	0.1	0.103	103	-	-	85-115 -	20
General Chemistry - Westbo	rough Lab Associ	ated samp	le(s): 01	QC Batch ID: \	WG1559428-4	QC Sample: L2156	565-02 Client ID: M	1S Sample
Chlorine, Total Residual	ND	0.25	0.26	104	-	-	80-120 -	20
General Chemistry - Westbo	rough Lab Associ	ated samp	le(s): 01	QC Batch ID: \	WG1560259-4	QC Sample: L2154	256-02 Client ID: M	1S Sample
Phenolics, Total	ND	0.4	0.31	78	-	-	70-130 -	20
General Chemistry - Westbo	rough Lab Associ	ated samp	le(s): 01-0	2 QC Batch I	D: WG1560316-4	QC Sample: L2	153475-96 Client ID	: MS Sample
Nitrogen, Ammonia	0.358	4	4.12	94		-	80-120 -	20
General Chemistry - Westbo	rough Lab Associ	ated samp	le(s): 01	QC Batch ID: \	WG1561054-4	QC Sample: L2153	475-107 Client ID:	MS Sample
TPH	ND	19.4	5.83	30	Q -	-	64-132 -	34
Anions by Ion Chromatograp Sample	hy - Westborougl	n Lab Asso	ciated sam	nple(s): 01 Q	C Batch ID: WG1	561195-3 QC Sa	mple: L2155091-01	Client ID: MS
Chloride	16.6	4	20.2	88	Q -	-	90-110 -	18
General Chemistry - Westbo	rough Lab Associ	ated samp	le(s): 01	QC Batch ID: \	WG1561413-3	QC Sample: L2157	128-01 Client ID: M	1S Sample
Cyanide, Total	0.007	0.2	0.211	102	-	-	90-110 -	30

Lab Duplicate Analysis Batch Quality Control

Project Name: MIT WEST LOT **Project Number:** 134487-005

Lab Number: L2156742 10/22/21

Report Date:

Parameter	Native Sam	ple Duplicate Sam	ple Units	RPD	Qual RPD Limits
General Chemistry - Westborough Lab Asso 1015	ciated sample(s): 01-02	QC Batch ID: WG1559397	-3 QC Sample: L2	2156742-01	Client ID: GP-2(OW)-2021-
Chromium, Hexavalent	ND	ND	mg/l	NC	20
General Chemistry - Westborough Lab Asso	ciated sample(s): 01 Q0	C Batch ID: WG1559428-3	QC Sample: L215	6565-01 Clie	ent ID: DUP Sample
Chlorine, Total Residual	ND	ND	mg/l	NC	20
General Chemistry - Westborough Lab Asso	ciated sample(s): 01-02	QC Batch ID: WG1560105	-2 QC Sample: L2	2155939-01	Client ID: DUP Sample
рН	7.4	7.4	SU	0	5
General Chemistry - Westborough Lab Asso	ciated sample(s): 01 Q0	C Batch ID: WG1560259-3	QC Sample: L215	4256-02 Clie	ent ID: DUP Sample
Phenolics, Total	ND	ND	mg/l	NC	20
General Chemistry - Westborough Lab Asso	ciated sample(s): 01-02	QC Batch ID: WG1560316	-3 QC Sample: L2	2153475-96	Client ID: DUP Sample
Nitrogen, Ammonia	0.358	0.430	mg/l	18	20
General Chemistry - Westborough Lab Asso	ciated sample(s): 01 Q0	C Batch ID: WG1561048-3	QC Sample: L215	6739-01 Clie	ent ID: DUP Sample
Solids, Total Suspended	4400	3700	mg/l	17	29
General Chemistry - Westborough Lab Asso	ciated sample(s): 01 Q0	C Batch ID: WG1561054-3	QC Sample: L215	3475-106 CI	ient ID: DUP Sample
TPH	ND	ND	mg/l	NC	34
Anions by Ion Chromatography - Westboroug Sample	h Lab Associated sample	e(s): 01 QC Batch ID: WG	1561195-4 QC Sa	ample: L2155	5091-01 Client ID: DUP
Chloride	16.6	16.7	mg/l	1	18

Lab Duplicate Analysis

Batch Quality Control

Lab Number:

L2156742

Report Date:

10/22/21

Parameter	Native Sample	Duplicate Samp	ole Units	RPD	RPD Limits
General Chemistry - Westborough Lab Associated sa	mple(s): 01 QC Batch ID	: WG1561413-4	QC Sample: L2157	130-01 Cli	ent ID: DUP Sample
Cyanide, Total	0.007	0.006	mg/l	15	30

Project Name:

Project Number: 134487-005

MIT WEST LOT

Serial_No:10222118:06 *Lab Number:* L2156742

Project Name: MIT WEST LOT
Project Number: 134487-005

Report Date: 10/22/21

Sample Receipt and Container Information

Were project specific reporting limits specified?

YES

Cooler Information

Cooler Custody Seal

B Absent

Container Information			Initial	Final	Temp			Frozen	
Container ID	Container Type	Cooler		pН	deg C	Pres	Seal	Date/Time	Analysis(*)
L2156742-01A	Vial Na2S2O3 preserved	В	NA		2.2	Υ	Absent		624.1-SIM-RGP(7)
L2156742-01B	Vial Na2S2O3 preserved	В	NA		2.2	Υ	Absent		624.1-SIM-RGP(7)
L2156742-01C	Vial Na2S2O3 preserved	В	NA		2.2	Υ	Absent		624.1-SIM-RGP(7)
L2156742-01D	Vial Na2S2O3 preserved	В	NA		2.2	Υ	Absent		624.1-RGP(7)
L2156742-01E	Vial Na2S2O3 preserved	В	NA		2.2	Υ	Absent		624.1-RGP(7)
L2156742-01F	Vial Na2S2O3 preserved	В	NA		2.2	Υ	Absent		624.1-RGP(7)
L2156742-01G	Vial Na2S2O3 preserved	В	NA		2.2	Υ	Absent		504(14)
L2156742-01H	Vial Na2S2O3 preserved	В	NA		2.2	Υ	Absent		504(14)
L2156742-01I	Vial unpreserved	В	NA		2.2	Υ	Absent		SUB-ETHANOL(14)
L2156742-01J	Vial unpreserved	В	NA		2.2	Υ	Absent		SUB-ETHANOL(14)
L2156742-01K	Vial unpreserved	В	NA		2.2	Υ	Absent		SUB-ETHANOL(14)
L2156742-01L	Plastic 250ml unpreserved	В	7	7	2.2	Υ	Absent		-
L2156742-01M	Plastic 250ml HNO3 preserved	В	<2	<2	2.2	Υ	Absent		HARDU(180)
L2156742-01N	Plastic 250ml NaOH preserved	В	>12	>12	2.2	Υ	Absent		TCN-4500(14)
L2156742-01O	Plastic 500ml H2SO4 preserved	В	<2	<2	2.2	Υ	Absent		NH3-4500(28)
L2156742-01P	Plastic 950ml unpreserved	В	7	7	2.2	Υ	Absent		HEXCR-7196(1),CL-300(28),PH-9040(1),TRC-4500(1)
L2156742-01Q	Plastic 950ml unpreserved	В	7	7	2.2	Υ	Absent		TSS-2540(7)
L2156742-01R	Amber 950ml H2SO4 preserved	В	<2	<2	2.2	Υ	Absent		TPHENOL-420(28)
L2156742-01S	Amber 1000ml Na2S2O3	В	7	7	2.2	Υ	Absent		PCB-608.3(365)
L2156742-01T	Amber 1000ml Na2S2O3	В	7	7	2.2	Υ	Absent		PCB-608.3(365)
L2156742-01U	Amber 1000ml Na2S2O3	В	7	7	2.2	Υ	Absent		625.1-RGP(7)
L2156742-01V	Amber 1000ml Na2S2O3	В	7	7	2.2	Υ	Absent		625.1-RGP(7)
L2156742-01W	Amber 1000ml Na2S2O3	В	7	7	2.2	Υ	Absent		625.1-SIM-RGP(7)

Lab Number: L2156742

Report Date: 10/22/21

Project Name: MIT WEST LOTProject Number: 134487-005

Container Info	rmation		Initial	Final	Temp			Frozen	
Container ID	Container Type	Cooler	pН	рН	deg C	Pres	Seal	Date/Time	Analysis(*)
L2156742-01X	Amber 1000ml Na2S2O3	В	7	7	2.2	Υ	Absent		625.1-SIM-RGP(7)
L2156742-01X1	Plastic 120ml HNO3 preserved Filtrates	В	<2	<2	2.2	Υ	Absent		HOLD-METAL-DISSOLVED(180)
L2156742-01Y	Amber 1000ml HCl preserved	В	NA		2.2	Υ	Absent		TPH-1664(28)
L2156742-01Z	Amber 1000ml HCl preserved	В	NA		2.2	Υ	Absent		TPH-1664(28)
L2156742-02A	Plastic 250ml unpreserved	В	7	7	2.2	Υ	Absent		HEXCR-7196(1),PH-9040(1)
L2156742-02B	Plastic 250ml HNO3 preserved	В	<2	<2	2.2	Y	Absent		CD-2008T(180),NI-2008T(180),ZN- 2008T(180),HARDU(180),CU-2008T(180),FE- UI(180),SE-2008T(180),AG-2008T(180),AS- 2008T(180),HG-U(28),CR-2008T(180),PB- 2008T(180),SB-2008T(180)
L2156742-02C	Plastic 500ml H2SO4 preserved	В	<2	<2	2.2	Υ	Absent		NH3-4500(28)

Project Name:MIT WEST LOTLab Number:L2156742Project Number:134487-005Report Date:10/22/21

GLOSSARY

Acronyms

LOD

LOQ

MS

RL

SRM

DL - Detection Limit: This value represents the level to which target analyte concentrations are reported as estimated values, when those target analyte concentrations are quantified below the limit of quantitation (LOQ). The DL includes any adjustments from dilutions, concentrations or moisture content, where applicable. (DoD report formats only.)

EDL - Estimated Detection Limit: This value represents the level to which target analyte concentrations are reported as estimated values, when those target analyte concentrations are quantified below the reporting limit (RL). The EDL includes any adjustments from dilutions, concentrations or mosture content, where applicable. The use of EDLs is specific to the analysis

of PAHs using Solid-Phase Microextraction (SPME).

EMPC - Estimated Maximum Possible Concentration: The concentration that results from the signal present at the retention time of an analyte when the ions meet all of the identification criteria except the ion abundance ratio criteria. An EMPC is a worst-case estimate of the concentration.

EPA - Environmental Protection Agency

LCS - Laboratory Control Sample: A sample matrix, free from the analytes of interest, spiked with verified known amounts of analytes or a material containing known and verified amounts of analytes.

LCSD - Laboratory Control Sample Duplicate: Refer to LCS.

LFB - Laboratory Fortified Blank: A sample matrix, free from the analytes of interest, spiked with verified known amounts of analytes or a material containing known and verified amounts of analytes.

 Limit of Detection: This value represents the level to which a target analyte can reliably be detected for a specific analyte in a specific matrix by a specific method. The LOD includes any adjustments from dilutions, concentrations or moisture content, where applicable. (DoD report formats only.)

 Limit of Quantitation: The value at which an instrument can accurately measure an analyte at a specific concentration. The LOQ includes any adjustments from dilutions, concentrations or moisture content, where applicable. (DoD report formats only.)

Limit of Quantitation: The value at which an instrument can accurately measure an analyte at a specific concentration. The LOQ includes any adjustments from dilutions, concentrations or moisture content, where applicable. (DoD report formats only.)

MDL - Method Detection Limit: This value represents the level to which target analyte concentrations are reported as estimated values, when those target analyte concentrations are quantified below the reporting limit (RL). The MDL includes any adjustments from dilutions, concentrations or moisture content, where applicable.

 Matrix Spike Sample: A sample prepared by adding a known mass of target analyte to a specified amount of matrix sample for which an independent estimate of target analyte concentration is available. For Method 332.0, the spike recovery is calculated using the native concentration, including estimated values.

MSD - Matrix Spike Sample Duplicate: Refer to MS.

NA - Not Applicable.

NC - Not Calculated: Term is utilized when one or more of the results utilized in the calculation are non-detect at the parameter's reporting unit.

NDPA/DPA - N-Nitrosodiphenylamine/Diphenylamine.

NI - Not Ignitable.

NP - Non-Plastic: Term is utilized for the analysis of Atterberg Limits in soil.

NR - No Results: Term is utilized when 'No Target Compounds Requested' is reported for the analysis of Volatile or Semivolatile Organic TIC only requests.

Reporting Limit: The value at which an instrument can accurately measure an analyte at a specific concentration. The RL includes any adjustments from dilutions, concentrations or moisture content, where applicable.

RPD - Relative Percent Difference: The results from matrix and/or matrix spike duplicates are primarily designed to assess the precision of analytical results in a given matrix and are expressed as relative percent difference (RPD). Values which are less than five times the reporting limit for any individual parameter are evaluated by utilizing the absolute difference between the values; although the RPD value will be provided in the report.

- Standard Reference Material: A reference sample of a known or certified value that is of the same or similar matrix as the

associated field samples.

STLP - Semi-dynamic Tank Leaching Procedure per EPA Method 1315.

TEF - Toxic Equivalency Factors: The values assigned to each dioxin and furan to evaluate their toxicity relative to 2,3,7,8-TCDD.

TEQ - Toxic Equivalent: The measure of a sample's toxicity derived by multiplying each dioxin and furan by its corresponding TEF and then summing the resulting values.

TIC - Tentatively Identified Compound: A compound that has been identified to be present and is not part of the target compound list (TCI) for the method and/or program. All TICs are qualitatively identified and reported as estimated concentrations.

list (TCL) for the method and/or program. All TICs are qualitatively identified and reported as estimated concentrations.

Report Format: Data Usability Report

Project Name:MIT WEST LOTLab Number:L2156742Project Number:134487-005Report Date:10/22/21

Footnotes

 The reference for this analyte should be considered modified since this analyte is absent from the target analyte list of the original method.

Terms

1

Analytical Method: Both the document from which the method originates and the analytical reference method. (Example: EPA 8260B is shown as 1,8260B.) The codes for the reference method documents are provided in the References section of the Addendum.

Difference: With respect to Total Oxidizable Precursor (TOP) Assay analysis, the difference is defined as the Post-Treatment value minus the Pre-Treatment value.

Final pH: As it pertains to Sample Receipt & Container Information section of the report, Final pH reflects pH of container determined after adjustment at the laboratory, if applicable. If no adjustment required, value reflects Initial pH.

Frozen Date/Time: With respect to Volatile Organics in soil, Frozen Date/Time reflects the date/time at which associated Reagent Water-preserved vials were initially frozen. Note: If frozen date/time is beyond 48 hours from sample collection, value will be reflected in 'bold'.

Initial pH: As it pertains to Sample Receipt & Container Information section of the report, Initial pH reflects pH of container determined upon receipt, if applicable.

PAH Total: With respect to Alkylated PAH analyses, the 'PAHs, Total' result is defined as the summation of results for all or a subset of the following compounds: Naphthalene, C1-C4 Naphthalenes, 2-Methylnaphthalene, 1-Methylnaphthalene, Biphenyl, Acenaphthylene, Acenaphthene, Fluorene, C1-C3 Fluorenes, Phenanthrene, C1-C4 Phenanthrenes/Anthracenes, Anthracene, Fluoranthene, Pyrene, C1-C4 Fluoranthenes/Pyrenes, Benz(a)anthracene, Chrysene, C1-C4 Chrysenes, Benzo(b)fluoranthene, Benzo(j)+(k)fluoranthene, Benzo(e)pyrene, Benzo(a)pyrene, Perylene, Indeno(1,2,3-cd)pyrene, Dibenz(ah)+(ac)anthracene, Benzo(g,h,i)perylene. If a 'Total' result is requested, the results of its individual components will also be reported.

PFAS Total: With respect to PFAS analyses, the 'PFAS, Total (5)' result is defined as the summation of results for: PFHpA, PFHxS, PFOA, PFNA and PFOS. In addition, the 'PFAS, Total (6)' result is defined as the summation of results for: PFHpA, PFHxS, PFOA, PFNA, PFDA and PFOS. For MassDEP DW compliance analysis only, the 'PFAS, Total (6)' result is defined as the summation of results at or above the RL. Note: If a 'Total' result is requested, the results of its individual components will also be reported.

The target compound Chlordane (CAS No. 57-74-9) is reported for GC ECD analyses. Per EPA, this compound "refers to a mixture of chlordane isomers, other chlorinated hydrocarbons and numerous other components." (Reference: USEPA Toxicological Review of Chlordane, In Support of Summary Information on the Integrated Risk Information System (IRIS), December 1997.)

Total: With respect to Organic analyses, a 'Total' result is defined as the summation of results for individual isomers or Aroclors. If a 'Total' result is requested, the results of its individual components will also be reported. This is applicable to 'Total' results for methods 8260, 8081 and 8082.

Data Qualifiers

- A Spectra identified as "Aldol Condensates" are byproducts of the extraction/concentration procedures when acetone is introduced in the process.
- The analyte was detected above the reporting limit in the associated method blank. Flag only applies to associated field samples that have detectable concentrations of the analyte at less than ten times (10x) the concentration found in the blank. For MCP-related projects, flag only applies to associated field samples that have detectable concentrations of the analyte at less than ten times (10x) the concentrations of the analyte at less than ten times (10x) the concentrations of the analyte was detectable concentrations of the analyte at less than ten times (10x) the concentration found in the blank AND the analyte was detected above one-half the reporting limit (or above the reporting limit for common lab contaminants) in the associated method blank. For NJ-Air-related projects, flag only applies to associated field samples that have detectable concentrations of the analyte above the reporting limit. For NJ-related projects (excluding Air), flag only applies to associated field samples that have detectable concentrations of the analyte, which was detected above the reporting limit in the associated method blank or above five times the reporting limit for common lab contaminants (Phthalates, Acetone, Methylene Chloride, 2-Butanone).
- Co-elution: The target analyte co-elutes with a known lab standard (i.e. surrogate, internal standards, etc.) for co-extracted analyses.
- Concentration of analyte was quantified from diluted analysis. Flag only applies to field samples that have detectable concentrations of the analyte.
- E Concentration of analyte exceeds the range of the calibration curve and/or linear range of the instrument.
- F The ratio of quantifier ion response to qualifier ion response falls outside of the laboratory criteria. Results are considered to be an estimated maximum concentration.
- G The concentration may be biased high due to matrix interferences (i.e, co-elution) with non-target compound(s). The result should be considered estimated.
- H The analysis of pH was performed beyond the regulatory-required holding time of 15 minutes from the time of sample collection.
- I The lower value for the two columns has been reported due to obvious interference.
- J Estimated value. This represents an estimated concentration for Tentatively Identified Compounds (TICs).
- M Reporting Limit (RL) exceeds the MCP CAM Reporting Limit for this analyte.
- **ND** Not detected at the reporting limit (RL) for the sample.
- NJ Presumptive evidence of compound. This represents an estimated concentration for Tentatively Identified Compounds (TICs), where

Report Format: Data Usability Report

Project Name:MIT WEST LOTLab Number:L2156742Project Number:134487-005Report Date:10/22/21

Data Qualifiers

the identification is based on a mass spectral library search.

- P The RPD between the results for the two columns exceeds the method-specified criteria.
- Q The quality control sample exceeds the associated acceptance criteria. For DOD-related projects, LCS and/or Continuing Calibration Standard exceedences are also qualified on all associated sample results. Note: This flag is not applicable for matrix spike recoveries when the sample concentration is greater than 4x the spike added or for batch duplicate RPD when the sample concentrations are less than 5x the RL. (Metals only.)
- **R** Analytical results are from sample re-analysis.
- **RE** Analytical results are from sample re-extraction.
- S Analytical results are from modified screening analysis.
- The surrogate associated with this target analyte has a recovery outside the QC acceptance limits. (Applicable to MassDEP DW Compliance samples only.)
- Z The batch matrix spike and/or duplicate associated with this target analyte has a recovery/RPD outside the QC acceptance limits. (Applicable to MassDEP DW Compliance samples only.)

Report Format: Data Usability Report

Project Name:MIT WEST LOTLab Number:L2156742Project Number:134487-005Report Date:10/22/21

REFERENCES

- Test Methods for Evaluating Solid Waste: Physical/Chemical Methods. EPA SW-846. Third Edition. Updates I VI, 2018.
- Methods for the Determination of Metals in Environmental Samples, Supplement I. EPA/600/R-94/111. May 1994.
- 4 Methods for Chemical Analysis of Water and Wastes. EPA 600/4-79-020. Revised March 1983.
- Methods for the Determination of Organic Compounds in Finished Drinking Water and Raw Source Water. EPA/600/4-88/039, Revised July 1991.
- 19 Inductively Coupled Plasma Atomic Emission Spectrometric Method for Trace Element Analysis of Water and Wastes. Appendix C, Part 136, 40 CFR (Code of Federal Regulations). July 1, 1999 edition.
- Methods for the Determination of Inorganic Substances in Environmental Samples, EPA/600/R-93/100, August 1993.
- 121 Standard Methods for the Examination of Water and Wastewater. APHA-AWWA-WEF. Standard Methods Online.
- Method 608.3: Organochlorine Pesticides and PCBs by GC/HSD, EPA 821-R-16-009, December 2016.
- 128 Method 624.1: Purgeables by GC/MS, EPA 821-R-16-008, December 2016.
- Method 625.1: Base/Neutrals and Acids by GC/MS, EPA 821-R-16-007, December 2016.
- Method 1664,Revision B: N-Hexane Extractable Material (HEM; Oil & Grease) and Silica Gel Treated N-Hexane Extractable Material (SGT-HEM; Non-polar Material) by Extraction and Gravimetry, EPA-821-R-10-001, February 2010.

LIMITATION OF LIABILITIES

Alpha Analytical performs services with reasonable care and diligence normal to the analytical testing laboratory industry. In the event of an error, the sole and exclusive responsibility of Alpha Analytical shall be to re-perform the work at it's own expense. In no event shall Alpha Analytical be held liable for any incidental, consequential or special damages, including but not limited to, damages in any way connected with the use of, interpretation of, information or analysis provided by Alpha Analytical.

We strongly urge our clients to comply with EPA protocol regarding sample volume, preservation, cooling, containers, sampling procedures, holding time and splitting of samples in the field.

Alpha Analytical, Inc. Facility: Company-wide

Department: Quality Assurance

Title: Certificate/Approval Program Summary

Serial_No:10222118:06

ID No.:17873 Revision 19

Published Date: 4/2/2021 1:14:23 PM

Page 1 of 1

Certification Information

The following analytes are not included in our Primary NELAP Scope of Accreditation:

Westborough Facility

EPA 624/624.1: m/p-xylene, o-xylene, Naphthalene

EPA 625/625.1: alpha-Terpineol

EPA 8260C/8260D: NPW: 1,2,4,5-Tetramethylbenzene; 4-Ethyltoluene, Azobenzene; SCM: Iodomethane (methyl iodide), 1,2,4,5-Tetramethylbenzene;

EPA 8270D/8270E: NPW: Dimethylnaphthalene,1,4-Diphenylhydrazine, alpha-Terpineol; SCM: Dimethylnaphthalene,1,4-Diphenylhydrazine.

SM4500: NPW: Amenable Cyanide; SCM: Total Phosphorus, TKN, NO2, NO3.

Mansfield Facility

SM 2540D: TSS

EPA 8082A: NPW: PCB: 1, 5, 31, 87,101, 110, 141, 151, 153, 180, 183, 187.

EPA TO-15: Halothane, 2,4,4-Trimethyl-2-pentene, 2,4,4-Trimethyl-1-pentene, Thiophene, 2-Methylthiophene,

3-Methylthiophene, 2-Ethylthiophene, 1,2,3-Trimethylbenzene, Indan, Indene, 1,2,4,5-Tetramethylbenzene, Benzothiophene, 1-Methylnaphthalene.

Biological Tissue Matrix: EPA 3050B

The following analytes are included in our Massachusetts DEP Scope of Accreditation

Westborough Facility:

Drinking Water

EPA 300.0: Chloride, Nitrate-N, Fluoride, Sulfate; EPA 353.2: Nitrate-N, Nitrite-N; SM4500NO3-F: Nitrate-N, Nitrite-N; SM4500F-C, SM4500CN-CE,

EPA 180.1, SM2130B, SM4500CI-D, SM2320B, SM2540C, SM4500H-B, SM4500NO2-B

EPA 332: Perchlorate; EPA 524.2: THMs and VOCs; EPA 504.1: EDB, DBCP.

Microbiology: SM9215B; SM9223-P/A, SM9223B-Colilert-QT,SM9222D.

Non-Potable Water

SM4500H,B, EPA 120.1, SM2510B, SM2540C, SM2320B, SM4500CL-E, SM4500F-BC, SM4500NH3-BH: Ammonia-N and Kjeldahl-N, EPA 350.1: Ammonia-N, LACHAT 10-107-06-1-B: Ammonia-N, EPA 351.1, SM4500NO3-F, EPA 353.2: Nitrate-N, SM4500P-E, SM4500P-B, E, SM4500SO4-E, SM5220D, EPA 410.4, SM5210B, SM5310C, SM4500CL-D, EPA 1664, EPA 420.1, SM4500-CN-CE, SM2540D, EPA 300: Chloride, Sulfate, Nitrate. EPA 624.1: Volatile Halocarbons & Aromatics,

EPA 608.3: Chlordane, Toxaphene, Aldrin, alpha-BHC, beta-BHC, gamma-BHC, delta-BHC, Dieldrin, DDD, DDE, DDT, Endosulfan II, Endosulfan II, Endosulfan sulfate, Endrin, Endrin Aldehyde, Heptachlor, Heptachlor Epoxide, PCBs

EPA 625.1: SVOC (Acid/Base/Neutral Extractables), EPA 600/4-81-045: PCB-Oil.

Microbiology: SM9223B-Colilert-QT; Enterolert-QT, SM9221E, EPA 1600, EPA 1603, SM9222D.

Mansfield Facility:

Drinking Water

EPA 200.7: Al, Ba, Cd, Cr, Cu, Fe, Mn, Ni, Na, Ag, Ca, Zn. EPA 200.8: Al, Sb, As, Ba, Be, Cd, Cr, Cu, Pb, Mn, Ni, Se, Ag, TL, Zn. EPA 245.1 Hg. EPA 522, EPA 537.1.

Non-Potable Water

EPA 200.7: Al, Sb, As, Be, Cd, Ca, Cr, Co, Cu, Fe, Pb, Mg, Mn, Mo, Ni, K, Se, Ag, Na, Sr, TL, Ti, V, Zn.

EPA 200.8: Al, Sb, As, Be, Cd, Cr, Cu, Fe, Pb, Mn, Ni, K, Se, Ag, Na, TL, Zn.

EPA 245.1 Hg

SM2340B

Page 55 of 67

For a complete listing of analytes and methods, please contact your Alpha Project Manager.

Document Type: Form

ДІРНА	CHAIN OF CUSTODY	Service Centers Brewer, ME 04412 Portsm 07430 Albany, NY 12206 Tonewanda, NY 14150 Holms	outh, NH 03801 M	ahwah, NJ	Page			1)ate in	Rec'	d	ok	5	21	15	ALPHA JOB # 1216742
	01581 Mansfield, MA 02048	Project Information						Delive	rable	s	_	_	_			Billing Information
8 Walkup Dr. TEL: 508-898-9220		Project Name:		MITV	VEST LOT				Emai			D	Fax			☐ Same as Client Info
FAX: 508-898-9193	FAX: 508-822-3288	Project Location:			RIDGE, M.			0	EQui	S (1 F	ile)			IS (4)	File)	PO#
H&A Information		Project #			487-005			-	Othe							
The second second second	Operating Partnership, LF		roject#) □		10. 200			Regu	atory	Requ	ireme	nts (P	rogra	m/Crit	eria)	Disposal Site Information
	Medford Street, Suite 2200			GOLDKAN	AP, C. MCI	KENZIE		MA	2017	NPDES	RGP					Please identify below location of
Boston, MA 02129		ALPHAQuote #:														applicable disposal facilities.
H&A Phone: 617-	-886-7380	Turn-Around Time					- 3									Disposal Facility:
H&A Fax: 617-	-886-7680	Standar	Ð	Due Date	8			1								I NJ II NY
H&A Email: cmc	kenzie, sgoldkamp	Rush (only if pre approved: # of Days: 5 Day Note: Select State from menu & identify						criteria	1.	2 Other:						
These samples have	been previously analyzed	by Alpha 🗆	Alpha 🗇						LYS	S					J 1	Sample Filtration
	fic requirements/commer for 2017 NPDES RGP app			methods an	d minimun	n detection	levels	.1 & 624.1- M	5.1 & 625.1- M	TRC 4500, TCN	4. PCBs 608, EDB 504, TPHENOL, TPH 1664	Ammania (NH3), Cr. Hardness, pH	Ethanol	NPDES RGP Metals	8. NPDES RGP Metals ab Filtered) (ON HOLD)	□ Lab to do Preservation □ Lab to do
ALPHA Lab ID		257 m	Calle	ection	Sample	Sampler		OCs 624	824 824 830 830		CBs 608	. Amman	10	7. Total NPDE Metals	PDES H	A SECTION AND ADDRESS OF THE PARTY OF THE PA
(Lab Use Only)	53	imple ID	Date	Time	Matrix	Initials	Depth		C)	65	4 F	F. Hex		~	8. N	Sample Specific Comments
56740-01	GP-2(OW)-2021-101	5	10/15/2021	1040	AQ	MSP	-	X	X	X	x	x	x	x	x	1. 1,4-Dioxane by 624.1-SIM 2
-02	MIT WEST LOT-RW		10/15/2021	1240	AQ	MSP	-					x		×		7. NPDES RGP Metals
				1.05-1-												includes: Ag, As, Cd, Cr, Tri C
																Cu, Ni, Pb, Sb, Se, Zn, Fe, Hg
																B, Lab Filtered NPDES RGP
					1										-	Metals (ON HOLD)
															-	
								191								
									tii						100	
Preservative Code: A = None B = HCl C = HNO ₃ D = H ₂ SO ₄ E = NaOH	Container Code P = Plastic A = Amber Glass V = Vial G = Glass B = Bacteria Cup	Westboro: Certification Mansfield: Certificati	Sea State State			ntainer Ty				11						Please print clearly, legibly and completely, Samples can not be logg in and turnaround time clock will not start until any ambiguities are resolve Alpha Analytical's services under this Chain of Custody shall be performed in
F = MeOH	C = Cube O = Other	Relinquished	By:	Date	Time ,		Re	ceived	Ву:				Date	e/Time	9	accordance with terms and conditions within Blanket Service Agreement# 2019
G = NaHSO ₄ H = Na ₂ S ₂ O ₃	E = Encore	master vew		16/15/2	1336	000	40	11	20	do	1	10%	1/2	1 13	40	22-Alpha Analytical by and between Hal
K/E = Zn Ac/NaOH O = Other	D = BOD Bottle	Darado	and I	10/15/2	1700	9	Mint	The same		Word.	ME	pil	5/01	3	100	& Aldrich, Inc., its subsidiaries and affiliates and Alpha Analytical.
	v 3 (1/7/2019)			10101	10 100					_		1		-		

ALPI	HA	Į.	Subcontr ek Lab, Inc. 145 Horsehoe ollinsville, IL 6	ract Chain of Custo	ody	Alpha Job Number						
WHENGER OF	ICAL	Čć	ollinsville, IL 6	2234-7425		L2156742						
	Client Information		Project I	nformation	Regulatory Reg	quirements/Report Limits						
Client: Alpha A Address: Eight V Westbo	Analytical Labs Valkup Drive prough, MA 01581-1019	Project Locatio Project Manage Turnare		ght verables Information	State/Federal Program:							
Phone: 508.43 Email: senrigh	9.5176 it@alphalab.com		Due Date: Deliverables:									
		Project Specif	fic Requiren	nents and/or Report I	Requirements							
	Reference following Alpha Job			£ L2156742	Report to include Method Blan	nk, LCS/LCSD:						
Additional Com	ments: Send all results/reports	to subreports@alphala	ab.com									
Lab ID	Client ID	Collection Date/Time	Sample Matrix	Ar	nalysis	Batch QC						
	GP-2(OW)-2021-1015	10-15-21 10:40	WATER	Ethanol by EPA 1671 Revis	sion A							
	Relinquishe	ed By:		Date/Time:	Received By:	Date/Time:						
		4		10(18)21								
orm No: AL_sub	ococ											

Illinois

Kansas

Louisiana

Louisiana

Oklahoma

http://www.teklabinc.com/

100226

E-10374

05002

05003

9978

October 22, 2021

Scott Enright Alpha Analytical 145 Flanders Road Westborough, MA 01581 TEL: (508) 439-5176

FAX:

RE: L2156742 **WorkOrder:** 21101070

Dear Scott Enright:

TEKLAB, INC received 1 sample on 10/19/2021 10:36:00 AM for the analysis presented in the following report.

Samples are analyzed on an as received basis unless otherwise requested and documented. The sample results contained in this report relate only to the requested analytes of interest as directed on the chain of custody. NELAP accredited fields of testing are indicated by the letters NELAP under the Certification column. Unless otherwise documented within this report, Teklab Inc. analyzes samples utilizing the most current methods in compliance with 40CFR. All tests are performed in the Collinsville, IL laboratory unless otherwise noted in the Case Narrative.

All quality control criteria applicable to the test methods employed for this project have been satisfactorily met and are in accordance with NELAP except where noted. The following report shall not be reproduced, except in full, without the written approval of Teklab, Inc.

If you have any questions regarding these tests results, please feel free to call.

Sincerely,

Elizabeth A. Hurley

Elizabeth a Hurley

Project Manager

(618)344-1004 ex 33

ehurley@teklabinc.com

Report Contents

http://www.teklabinc.com/

Client: Alpha Analytical Work Order: 21101070
Client Project: L2156742 Report Date: 22-Oct-21

This reporting package includes the following:

Cover Letter	1
Report Contents	2
Definitions	3
Case Narrative	5
Accreditations	6
Laboratory Results	7
Quality Control Results	8
Receiving Check List	9
Chain of Custody	Appended

Definitions

http://www.teklabinc.com/

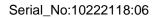
Client: Alpha Analytical Work Order: 21101070

Client Project: L2156742 Report Date: 22-Oct-21

Abbr Definition

- * Analytes on report marked with an asterisk are not NELAP accredited
- CCV Continuing calibration verification is a check of a standard to determine the state of calibration of an instrument between recalibration.
- CRQL A Client Requested Quantitation Limit is a reporting limit that varies according to customer request. The CRQL may not be less than the MDL.
 - DF Dilution factor is the dilution performed during analysis only and does not take into account any dilutions made during sample preparation. The reported result is final and includes all dilution factors.
 - DNI Did not ignite
- DUP Laboratory duplicate is a replicate aliquot prepared under the same laboratory conditions and independently analyzed to obtain a measure of precision.
- ICV Initial calibration verification is a check of a standard to determine the state of calibration of an instrument before sample analysis is initiated.
- IDPH IL Dept. of Public Health
- LCS Laboratory control sample is a sample matrix, free from the analytes of interest, spiked with verified known amounts of analytes and analyzed exactly like a sample to establish intra-laboratory or analyst specific precision and bias or to assess the performance of all or a portion of the measurement system.
- LCSD Laboratory control sample duplicate is a replicate laboratory control sample that is prepared and analyzed in order to determine the precision of the approved test method. The acceptable recovery range is listed in the QC Package (provided upon request).
- MBLK Method blank is a sample of a matrix similar to the batch of associated sample (when available) that is free from the analytes of interest and is processed simultaneously with and under the same conditions as samples through all steps of the analytical procedures, and in which no target analytes or interferences should present at concentrations that impact the analytical results for sample analyses.
- MDL "The method detection limit is defined as the minimum measured concentration of a substance that can be reported with 99% confidence that the measured concentration is distinguishable from method blank results."
- MS Matrix spike is an aliquot of matrix fortified (spiked) with known quantities of specific analytes that is subjected to the entire analytical procedures in order to determine the effect of the matrix on an approved test method's recovery system. The acceptable recovery range is listed in the QC Package (provided upon request).
- MSD Matrix spike duplicate means a replicate matrix spike that is prepared and analyzed in order to determine the precision of the approved test method. The acceptable recovery range is listed in the QC Package (provided upon request).
- MW Molecular weight
- NC Data is not acceptable for compliance purposes
- ND Not Detected at the Reporting Limit
- NELAP NELAP Accredited
 - PQL Practical quantitation limit means the lowest level that can be reliably achieved within specified limits of precision and accuracy during routine laboratory operation conditions.
 - RL The reporting limit the lowest level that the data is displayed in the final report. The reporting limit may vary according to customer request or sample dilution. The reporting limit may not be less than the MDL.
 - RPD Relative percent difference is a calculated difference between two recoveries (ie. MS/MSD). The acceptable recovery limit is listed in the QC Package (provided upon request).
 - SPK The spike is a known mass of target analyte added to a blank sample or sub-sample; used to determine recovery deficiency or for other quality control purposes.
 - Surr Surrogates are compounds which are similar to the analytes of interest in chemical composition and behavior in the analytical process, but which are not normally found in environmental samples.
 - TIC Tentatively identified compound: Analytes tentatively identified in the sample by using a library search. Only results not in the calibration standard will be reported as tentatively identified compounds. Results for tentatively identified compounds that are not present in the calibration standard, but are assigned a specific chemical name based upon the library search, are calculated using total peak areas from reconstructed ion chromatograms and a response factor of one. The nearest Internal Standard is used for the calculation. The results of any TICs must be considered estimated, and are flagged with a "T". If the estimated result is above the calibration range it is flagged "ET"
- TNTC Too numerous to count (> 200 CFU)

Definitions


http://www.teklabinc.com/

Client: Alpha Analytical Work Order: 21101070
Client Project: L2156742 Report Date: 22-Oct-21

Qualifiers

- # Unknown hydrocarbon
- C RL shown is a Client Requested Quantitation Limit
- H Holding times exceeded
- J Analyte detected below quantitation limits
- ND Not Detected at the Reporting Limit
 - S Spike Recovery outside recovery limits
 - X Value exceeds Maximum Contaminant Level

- B Analyte detected in associated Method Blank
- E Value above quantitation range
- I Associated internal standard was outside method criteria
- M Manual Integration used to determine area response
- R RPD outside accepted recovery limits
- T TIC(Tentatively identified compound)

Case Narrative

http://www.teklabinc.com/

Work Order: 21101070

Report Date: 22-Oct-21

Cooler Receipt Temp: 1.8 °C

Client Project: L2156742

Client: Alpha Analytical

Locations

	Collinsville		Springfield	Kansas City			
Address	5445 Horseshoe Lake Road	Address	3920 Pintail Dr	Address	8421 Nieman Road		
	Collinsville, IL 62234-7425		Springfield, IL 62711-9415		Lenexa, KS 66214		
Phone	(618) 344-1004	Phone	(217) 698-1004	Phone	(913) 541-1998		
Fax	(618) 344-1005	Fax	(217) 698-1005	Fax	(913) 541-1998		
Email	jhriley@teklabinc.com	Email	KKlostermann@teklabinc.com	Email	jhriley@teklabinc.com		
	Collinsville Air		Chicago				
Address	5445 Horseshoe Lake Road	Address	1319 Butterfield Rd.				
	Collinsville, IL 62234-7425		Downers Grove, IL 60515				
Phone	(618) 344-1004	Phone	(630) 324-6855				
Fax	(618) 344-1005	Fax					
Email	EHurley@teklabinc.com	Email	arenner@teklabinc.com				

Accreditations

http://www.teklabinc.com/

Client: Alpha Analytical Work Order: 21101070

Client Project: L2156742 Report Date: 22-Oct-21

State	Dept	Cert #	NELAP	Exp Date	Lab	
Illinois	IEPA	100226	NELAP	1/31/2022	Collinsville	
Kansas	KDHE	E-10374	NELAP	4/30/2022	Collinsville	
Louisiana	LDEQ	05002	NELAP	6/30/2022	Collinsville	
Louisiana	LDEQ	05003	NELAP	6/30/2022	Collinsville	
Oklahoma	ODEQ	9978	NELAP	8/31/2022	Collinsville	
Arkansas	ADEQ	88-0966		3/14/2022	Collinsville	
Illinois	IDPH	17584		5/31/2021	Collinsville	
Kentucky	UST	0073		1/31/2022	Collinsville	
Missouri	MDNR	00930		5/31/2021	Collinsville	
Missouri	MDNR	930		1/31/2022	Collinsville	

Laboratory Results

http://www.teklabinc.com/

Client: Alpha Analytical Work Order: 21101070

Client Project: L2156742 Report Date: 22-Oct-21

Lab ID: 21101070-001 Client Sample ID: GP-2(OW)-2021-1015

Matrix: AQUEOUS Collection Date: 10/15/2021 10:40

Analyses	Certification	RL Qual	Result	Units	DF	Date Analyzed Batch
EPA 600 1671A, PHARN	MACEUTICAL MANUFACTUR	ING INDUSTRY N	ION-PURGEA	BLE VOLA	TILE ORGA	NICS
Ethanol	*	20	ND	mg/L	1	10/20/2021 12:27 R301539

Quality Control Results

http://www.teklabinc.com/

Client: Alpha Analytical Work Order: 21101070
Client Project: L2156742 Report Date: 22-Oct-21

EPA 600 1671A, PHAR	MACEL	JTICAL M	ANUF	ACTURING	INDUSTR	Y NON-PURC	SEABLE VOI	ATILE	OR		
Batch R301539 Sam	рТуре:	MBLK		Units mg/L							
SampID: MBLK-102021											Date
Analyses		Cert	RL	Qual	Result	Spike	SPK Ref Val	%REC	Low Limit	High Limit	Analyzed
Ethanol		*	20		ND						10/20/2021
Batch R301539 Sam	рТуре:	LCS		Units mg/L							
SampID: LCS-102021											Date
Analyses		Cert	RL	Oual	Result	Spike	SPK Ref Val	%REC	Low Limit	High Limit	Analyzed
Ethanol		*	20	Q oraz	270	250.0	0	109.3	70	132	10/20/2021
Batch R301539 Sam	рТуре:	MS		Units mg/L							
SamplD: 21100919-002AM	MS			_							Date
Analyses		Cert	RL	Qual	Result	Spike	SPK Ref Val	%REC	Low Limit	High Limit	Analyzed
Ethanol		*	20	Q war	270	250.0	0	106.6	70	132	10/20/2021
Littario			20		2.0	200.0	Ü	100.0	7.0	102	10/20/2021
Batch R301539 Sam	рТуре:	MSD		Units mg/L					RPD Lir	nit: 30	
SamplD: 21100919-002AN	MSD			•							Date
Analyses		Cert	RL	Qual	Result	Spike	SPK Ref Val	%REC	RPD Ref V	al %RPD	Analyzed
Ethanol		*	20	Quai	260	250.0	0	104.1	266.5	2.40	10/20/2021

Receiving Check List

http://www.teklabinc.com/

Client: Alpha Analytical Work Order: 21101070 Client Project: L2156742 Report Date: 22-Oct-21 Carrier: UPS Received By: MEK Elizabeth a thurley Completed by: Marin L. Darling II Reviewed by: On: 19-Oct-21 19-Oct-21 Marvin L. Darling Elizabeth A. Hurley Extra pages included 0 Pages to follow: Chain of custody Shipping container/cooler in good condition? Yes No 🗔 Not Present Temp °C 1.8 Type of thermal preservation? Ice 🗹 Blue Ice None Dry Ice Chain of custody present? **~** No 🗌 Yes Chain of custody signed when relinquished and received? **~** Yes No L **~** Chain of custody agrees with sample labels? No 🗀 Yes **~** Samples in proper container/bottle? Yes No 🗀 **V** Sample containers intact? Yes No No Sufficient sample volume for indicated test? Yes **~** No \square All samples received within holding time? Yes NA 🗸 Field Lab \square Reported field parameters measured: Yes 🗹 No 🗌 Container/Temp Blank temperature in compliance? When thermal preservation is required, samples are compliant with a temperature between 0.1°C - 6.0°C, or when samples are received on ice the same day as collected. Yes 🗸 Water - at least one vial per sample has zero headspace? No 🗀 No VOA vials No TOX containers Water - TOX containers have zero headspace? Yes No _ Yes 🗹 No 🗌 Water - pH acceptable upon receipt? NA 🗸 NPDES/CWA TCN interferences checked/treated in the field? Yes No 🗀

Any No responses must be detailed below or on the COC.

Subcontract Chain of Custody

Tek Lab, Inc. 5445 Horsehoe Lake Road Collinsville, IL 62234-7425

Alpha Job Number L2156742

World Class Chemistry							
Client I	nformation		Project Inf	formation	Regul	atory Requiremen	ts/Report Limits
Client: Alpha Analytic Address: Eight Walkup Westborough,	cal Labs Drive . MA 01581-1019	Project Location: N Project Manager: S Turnaroun		nt erables Information	State/Federa	ŭ	
Phorie: 508.439.5176 Email: senright@alpl	nalab.com	Due Date: Deliverables:					
		Project Specific F	Requireme	ents and/or Report R	equirements		
Refere	ence following Alpha Job Nun	nber on final report/de	eliverables:	L2156742	Report to include N	ethod Blank, LCS/L0	CSD:
Additional Comments:	Send all results/reports to su	ubreports@alphalab.o	com				
Lab ID	Client ID	Collection Date/Time	Sample Matrix	Ana	alysis		Batch QC
21101070-001	GP-2(OW)-2021-1015	10-15-21 10:40	WATER	Ethanol by EPA 1671 Revision	on A		
					1.8°C HS in 2	LTG3 of 3 und	> 19-21
	Relinquished B	у:		Date/Time:	Received By:		Date/Time:
				16[18[2]	TYlang 7	(mp(UPS)	10/19/21 1036
orm No: AL_subcoc	200000000000000000000000000000000000000						

ANALYTICAL REPORT

Lab Number: L2158218

Client: Haley & Aldrich, Inc.

465 Medford Street, Suite 2200 Charlestown, MA 02129-1400

ATTN: Scott Goldkamp
Phone: (617) 886-7458
Project Name: MIT WEST LOT

Project Number: 134487-005 Report Date: 10/26/21

The original project report/data package is held by Alpha Analytical. This report/data package is paginated and should be reproduced only in its entirety. Alpha Analytical holds no responsibility for results and/or data that are not consistent with the original.

Certifications & Approvals: MA (M-MA086), NH NELAP (2064), CT (PH-0574), IL (200077), ME (MA00086), MD (348), NJ (MA935), NY (11148), NC (25700/666), PA (68-03671), RI (LAO00065), TX (T104704476), VT (VT-0935), VA (460195), USDA (Permit #P330-17-00196).

Eight Walkup Drive, Westborough, MA 01581-1019 508-898-9220 (Fax) 508-898-9193 800-624-9220 - www.alphalab.com

Project Name: MIT WEST LOT **Project Number:** 134487-005

Lab Number: L2158218 **Report Date:** 10/26/21

Alpha Sample ID Client ID Matrix Sample Location Collection Date/Time Receive Date

L2158218-01 GP-2(OW)-2021-1015 WATER CAMBRIDGE, MA 10/15/21 10:40 10/15/21

Serial No:10262115:29

Project Name:MIT WEST LOTLab Number:L2158218Project Number:134487-005Report Date:10/26/21

Case Narrative

The samples were received in accordance with the Chain of Custody and no significant deviations were encountered during the preparation or analysis unless otherwise noted. Sample Receipt, Container Information, and the Chain of Custody are located at the back of the report.

Results contained within this report relate only to the samples submitted under this Alpha Lab Number and meet NELAP requirements for all NELAP accredited parameters unless otherwise noted in the following narrative. The data presented in this report is organized by parameter (i.e. VOC, SVOC, etc.). Sample specific Quality Control data (i.e. Surrogate Spike Recovery) is reported at the end of the target analyte list for each individual sample, followed by the Laboratory Batch Quality Control at the end of each parameter. Tentatively Identified Compounds (TICs), if requested, are reported for compounds identified to be present and are not part of the method/program Target Compound List, even if only a subset of the TCL are being reported. If a sample was re-analyzed or re-extracted due to a required quality control corrective action and if both sets of data are reported, the Laboratory ID of the re-analysis or re-extraction is designated with an "R" or "RE", respectively.

When multiple Batch Quality Control elements are reported (e.g. more than one LCS), the associated samples for each element are noted in the grey shaded header line of each data table. Any Laboratory Batch, Sample Specific % recovery or RPD value that is outside the listed Acceptance Criteria is bolded in the report. In reference to questions H (CAM) or 4 (RCP) when "NO" is checked, the performance criteria for CAM and RCP methods allow for some quality control failures to occur and still be within method compliance. In these instances, the specific failure is not narrated but noted in the associated QC Outlier Summary Report, located directly after the Case Narrative. QC information is also incorporated in the Data Usability Assessment table (Format 11) of our Data Merger tool, where it can be reviewed in conjunction with the sample result, associated regulatory criteria and any associated data usability implications.

Soil/sediments, solids and tissues are reported on a dry weight basis unless otherwise noted. Definitions of all data qualifiers and acronyms used in this report are provided in the Glossary located at the back of the report.

HOLD POLICY - For samples submitted on hold, Alpha's policy is to hold samples (with the exception of Air canisters) free of charge for 21 calendar days from the date the project is completed. After 21 calendar days, we will dispose of all samples submitted including those put on hold unless you have contacted your Alpha Project Manager and made arrangements for Alpha to continue to hold the samples. Air canisters will be disposed after 3 business days from the date the project is completed.

ricase somast i rojest Management at 600 024 02	220 With drift questions.	

Please contact Project Management at 800-624-9220 with any questions

I, the undersigned, attest under the pains and penalties of perjury that, to the best of my knowledge and belief and based upon my personal inquiry of those responsible for providing the information contained in this analytical report, such information is accurate and complete. This certificate of analysis is not complete unless this page accompanies any and all pages of this report.

Authorized Signature:

Title: Technical Director/Representative Date: 10/26/21

Melissa Sturgis Melissa Sturgis

ALPHA

METALS

Serial_No:10262115:29

10/15/21 10:40

Date Collected:

Project Name:MIT WEST LOTLab Number:L2158218Project Number:134487-005Report Date:10/26/21

SAMPLE RESULTS

Lab ID: L2158218-01

Client ID: GP-2(OW)-2021-1015 Date Received: 10/15/21 Sample Location: CAMBRIDGE, MA Field Prep: Not Specified

Sample Depth:

Matrix: Water

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	Date Prepared	Date Analyzed	Prep Method	Analytical Method	Analyst
Total Metals - Mans	field Lab										
Antimony, Total	ND		mg/l	0.00400		1	10/25/21 19:00	10/26/21 12:59	EPA 3005A	3,200.8	PS
Arsenic, Total	0.00652		mg/l	0.00100		1	10/25/21 19:00	10/26/21 12:59	EPA 3005A	3,200.8	PS
Cadmium, Total	ND		mg/l	0.00020		1	10/25/21 19:00	10/26/21 12:59	EPA 3005A	3,200.8	PS
Chromium, Total	0.00690		mg/l	0.00100		1	10/25/21 19:00	10/26/21 12:59	EPA 3005A	3,200.8	PS
Copper, Total	0.00804		mg/l	0.00100		1	10/25/21 19:00	10/26/21 12:59	EPA 3005A	3,200.8	PS
Iron, Total	8.55		mg/l	0.050		1	10/25/21 19:00	10/26/21 09:41	EPA 3005A	19,200.7	SV
Lead, Total	0.00198		mg/l	0.00100		1	10/25/21 19:00	10/26/21 12:59	EPA 3005A	3,200.8	PS
Mercury, Total	ND		mg/l	0.00020		1	10/25/21 21:40	10/26/21 08:57	EPA 245.1	3,245.1	AC
Nickel, Total	0.00512		mg/l	0.00200		1	10/25/21 19:00	10/26/21 12:59	EPA 3005A	3,200.8	PS
Selenium, Total	ND		mg/l	0.00500		1	10/25/21 19:00	10/26/21 12:59	EPA 3005A	3,200.8	PS
Silver, Total	ND		mg/l	0.00040		1	10/25/21 19:00	10/26/21 12:59	EPA 3005A	3,200.8	PS
Zinc, Total	0.02971		mg/l	0.01000		1	10/25/21 19:00	10/26/21 12:59	EPA 3005A	3,200.8	PS

Serial_No:10262115:29

Project Name: MIT WEST LOT
Project Number: 134487-005

Lab Number: L2158218 **Report Date:** 10/26/21

Method Blank Analysis Batch Quality Control

Parameter	Result Qualifier	Units	RL	MDL	Dilution Factor	Date Prepared	Date Analyzed	Analytical Method	Analyst
Total Metals - Manst	field Lab for sample(s):	01 Batc	h: WG15	62839	-1				
Antimony, Total	ND	mg/l	0.00400		1	10/25/21 19:00	10/26/21 12:10	3,200.8	PS
Arsenic, Total	ND	mg/l	0.00100		1	10/25/21 19:00	10/26/21 12:10	3,200.8	PS
Cadmium, Total	ND	mg/l	0.00020		1	10/25/21 19:00	10/26/21 12:10	3,200.8	PS
Chromium, Total	ND	mg/l	0.00100		1	10/25/21 19:00	10/26/21 12:10	3,200.8	PS
Copper, Total	ND	mg/l	0.00100		1	10/25/21 19:00	10/26/21 12:10	3,200.8	PS
Lead, Total	ND	mg/l	0.00100		1	10/25/21 19:00	10/26/21 12:10	3,200.8	PS
Nickel, Total	ND	mg/l	0.00200		1	10/25/21 19:00	10/26/21 12:10	3,200.8	PS
Selenium, Total	ND	mg/l	0.00500		1	10/25/21 19:00	10/26/21 12:10	3,200.8	PS
Silver, Total	ND	mg/l	0.00040		1	10/25/21 19:00	10/26/21 12:10	3,200.8	PS
Zinc, Total	ND	mg/l	0.01000		1	10/25/21 19:00	10/26/21 12:10	3,200.8	PS

Prep Information

Digestion Method: EPA 3005A

Parameter	Result Qualifier	Units	RL	MDL	Dilution Factor	Date Prepared	Date Analyzed	Analytical Method	
Total Metals - Mansfield	d Lab for sample(s):	01 Batch	: WG1	562840-	1				
Iron, Total	ND	mg/l	0.050		1	10/25/21 19:00	10/26/21 09:29	19,200.7	SV

Prep Information

Digestion Method: EPA 3005A

Parameter	Result Qualifier	Units	RL	MDL	Dilution Factor	Date Prepared	Date Analyzed	Analytica Method	l Analyst
Total Metals - Mans	sfield Lab for sample(s):	01 Batc	h: WG15	562850-	-1				
Mercury, Total	ND	mg/l	0.00020		1	10/25/21 21:40	10/26/21 07:54	3,245.1	AC

Prep Information

Digestion Method: EPA 245.1

Lab Control Sample Analysis Batch Quality Control

Project Name: MIT WEST LOT

Project Number: 134487-005

Lab Number: L2158218

Report Date: 10/26/21

Parameter	LCS %Recovery	LCSD Qual %Recovery	%Recovery Qual Limits	RPD	Qual	RPD Limits
Total Metals - Mansfield Lab Associated sample	e(s): 01 Batch: \	WG1562839-2				
Antimony, Total	85	-	85-115	-		
Arsenic, Total	98	-	85-115	-		
Cadmium, Total	99	-	85-115	-		
Chromium, Total	102	-	85-115	-		
Copper, Total	100	-	85-115	-		
Lead, Total	97	-	85-115	-		
Nickel, Total	97	-	85-115	-		
Selenium, Total	101	-	85-115	-		
Silver, Total	100	-	85-115	-		
Zinc, Total	98	-	85-115	-		
Total Metals - Mansfield Lab Associated samp	e(s): 01 Batch: '	WG1562840-2				
Iron, Total	105	-	85-115	-		
Total Metals - Mansfield Lab Associated sample	e(s): 01 Batch: '	WG1562850-2				
Mercury, Total	98	-	85-115	-		

Matrix Spike Analysis Batch Quality Control

Project Name: MIT WEST LOT **Project Number:** 134487-005

Lab Number:

L2158218

Report Date:

10/26/21

arameter	Native Sample	MS Added	MS Found	MS %Recovery	Qua	MSD al Found	MSD %Recovery	Reco ^r Qual Lim	•	Qual	RPD Limits
Total Metals - Mansfield Lab Associated sample(s): 01			QC Batch ID: WG1562839-3		9-3	QC Sample: L2157975-01		Client ID: MS Sample			
Antimony, Total	ND	0.5	0.5358	107		-	-	70-1	30 -		20
Arsenic, Total	0.00353	0.12	0.1246	101		-	-	70-1	30 -		20
Cadmium, Total	ND	0.053	0.05337	101		-	-	70-1	30 -		20
Chromium, Total	ND	0.2	0.2058	103		-	-	70-1	30 -		20
Copper, Total	ND	0.25	0.2622	105		-	-	70-1	30 -		20
Lead, Total	ND	0.53	0.5340	101		-	-	70-1	30 -		20
Nickel, Total	ND	0.5	0.4977	100		-	-	70-1	30 -		20
Selenium, Total	ND	0.12	0.1218	102		-	-	70-1	30 -		20
Silver, Total	ND	0.05	0.05067	101		-	-	70-1	30 -		20
Zinc, Total	0.01362	0.5	0.5289	103		-	-	70-1	30 -		20
otal Metals - Mansfield Lab Associated sample(s): 01			QC Batch ID: WG1562839-5			QC Sample	: L2157975-02	Client ID: MS Sample			
Antimony, Total	ND	0.5	0.4464	89		-	-	70-1	30 -		20
Arsenic, Total	ND	0.12	0.1210	101		-	-	70-1	30 -		20
Cadmium, Total	ND	0.053	0.05589	105		-	-	70-1	30 -		20
Chromium, Total	ND	0.2	0.2123	106		-	-	70-1	30 -		20
Copper, Total	0.00281	0.25	0.2582	102		-	-	70-1	30 -		20
Lead, Total	ND	0.53	0.5434	102		-	-	70-1	30 -		20
Nickel, Total	ND	0.5	0.4986	100		-	-	70-1	30 -		20
Selenium, Total	ND	0.12	0.1214	101		-	-	70-1	30 -		20
Silver, Total	ND	0.05	0.05230	105		-	-	70-1	30 -		20
Zinc, Total	0.03590	0.5	0.5804	109		-	-	70-1	30 -		20

Matrix Spike Analysis Batch Quality Control

Project Name: MIT WEST LOT **Project Number:** 134487-005

Lab Number:

L2158218

Report Date:

10/26/21

Parameter	Native Sample	MS Added	MS Found	MS %Recovery	MSD Found	MSD %Recovery	Recovery Limits	RPD	RPD Limits
Total Metals - Mansfield Lab	Associated sam	ple(s): 01	QC Batch	ID: WG1562840-3	QC Sample	: L2157975-01	Client ID: MS Sa	ımple	
Iron, Total	7.76	1	8.60	84	-	-	75-125	-	20
Total Metals - Mansfield Lab	Associated sam	ple(s): 01	QC Batch	ID: WG1562850-3	QC Sample	: L2157051-01	Client ID: MS Sa	ımple	
Mercury, Total	ND	0.005	0.00466	93	-	-	70-130	-	20

Lab Duplicate Analysis Batch Quality Control

Project Name: MIT WEST LOT
Project Number: 134487-005

Lab Number: L2158218

Report Date: 10/26/21

Parameter	Native Sample	Duplicate Sample	Units	RPD	Qual	RPD Limits
Total Metals - Mansfield Lab Associated sample(s): 01	QC Batch ID: WG156283	39-4 QC Sample:	L2157975-01	Client ID: D	UP Sample	
Antimony, Total	ND	ND	mg/l	NC		20
Arsenic, Total	0.00353	0.00355	mg/l	1		20
Cadmium, Total	ND	ND	mg/l	NC		20
Chromium, Total	ND	ND	mg/l	NC		20
Copper, Total	ND	ND	mg/l	NC		20
Lead, Total	ND	ND	mg/l	NC		20
Nickel, Total	ND	ND	mg/l	NC		20
Selenium, Total	ND	ND	mg/l	NC		20
Silver, Total	ND	ND	mg/l	NC		20
Zinc, Total	0.01362	0.01303	mg/l	4		20

Lab Duplicate Analysis Batch Quality Control

Project Name: MIT WEST LOT
Project Number: 134487-005

Lab Number:

L2158218

Report Date: 10/26/21

Parameter	Native Sample D	uplicate Sample	Units	RPD	RPD Limits
Total Metals - Mansfield Lab Associated sample(s): 01	QC Batch ID: WG1562839	-6 QC Sample:	L2157975-02	Client ID:	DUP Sample
Antimony, Total	ND	ND	mg/l	NC	20
Arsenic, Total	ND	ND	mg/l	NC	20
Cadmium, Total	ND	ND	mg/l	NC	20
Chromium, Total	ND	ND	mg/l	NC	20
Copper, Total	0.00281	0.00273	mg/l	3	20
Lead, Total	ND	ND	mg/l	NC	20
Nickel, Total	ND	ND	mg/l	NC	20
Selenium, Total	ND	ND	mg/l	NC	20
Silver, Total	ND	ND	mg/l	NC	20
Zinc, Total	0.03590	0.03508	mg/l	2	20
otal Metals - Mansfield Lab Associated sample(s): 01	QC Batch ID: WG1562840	-4 QC Sample:	L2157975-01	Client ID:	DUP Sample
Iron, Total	7.76	7.63	mg/l	2	20
otal Metals - Mansfield Lab Associated sample(s): 01	QC Batch ID: WG1562850	-4 QC Sample:	L2157051-01	Client ID:	DUP Sample
Mercury, Total	ND	ND	mg/l	NC	20

Lab Number: L2158218

Report Date: 10/26/21

Sample Receipt and Container Information

Were project specific reporting limits specified?

MIT WEST LOT

YES

Cooler Information

Project Name:

Custody Seal Cooler

В Absent

Project Number: 134487-005

Container Information			Initial	Final	Temp			Frozen			
Container ID	Container Type	Cooler	pН	рН	deg C	Pres	Seal	Date/Time	Analysis(*)		
L2158218-01A	Plastic 250ml HNO3 preserved	В	<2	<2	2.2	Υ	Absent		CD-2008T(180),NI-2008T(180),ZN- 2008T(180),CU-2008T(180),FE-UI(180),AS- 2008T(180),HG-U(28),SE-2008T(180),AG- 2008T(180),CR-2008T(180),PB-2008T(180),SB- 2008T(180)		

Project Name: Lab Number: MIT WEST LOT L2158218 **Project Number:** 134487-005 **Report Date:** 10/26/21

GLOSSARY

Acronyms

EDL

EPA

LOQ

MS

DL - Detection Limit: This value represents the level to which target analyte concentrations are reported as estimated values, when those target analyte concentrations are quantified below the limit of quantitation (LOQ). The DL includes any adjustments from dilutions, concentrations or moisture content, where applicable. (DoD report formats only.)

- Estimated Detection Limit: This value represents the level to which target analyte concentrations are reported as estimated values, when those target analyte concentrations are quantified below the reporting limit (RL). The EDL includes any adjustments from dilutions, concentrations or moisture content, where applicable. The use of EDLs is specific to the analysis

of PAHs using Solid-Phase Microextraction (SPME).

EMPC - Estimated Maximum Possible Concentration: The concentration that results from the signal present at the retention time of an analyte when the ions meet all of the identification criteria except the ion abundance ratio criteria. An EMPC is a worst-case

estimate of the concentration.

LCS - Laboratory Control Sample: A sample matrix, free from the analytes of interest, spiked with verified known amounts of

analytes or a material containing known and verified amounts of analytes.

LCSD Laboratory Control Sample Duplicate: Refer to LCS.

Environmental Protection Agency.

LFB - Laboratory Fortified Blank: A sample matrix, free from the analytes of interest, spiked with verified known amounts of analytes or a material containing known and verified amounts of analytes.

LOD - Limit of Detection: This value represents the level to which a target analyte can reliably be detected for a specific analyte in a specific matrix by a specific method. The LOD includes any adjustments from dilutions, concentrations or moisture content, where applicable. (DoD report formats only.)

> - Limit of Quantitation: The value at which an instrument can accurately measure an analyte at a specific concentration. The LOQ includes any adjustments from dilutions, concentrations or moisture content, where applicable. (DoD report formats

> Limit of Quantitation: The value at which an instrument can accurately measure an analyte at a specific concentration. The LOQ includes any adjustments from dilutions, concentrations or moisture content, where applicable. (DoD report formats

MDI - Method Detection Limit: This value represents the level to which target analyte concentrations are reported as estimated values, when those target analyte concentrations are quantified below the reporting limit (RL). The MDL includes any adjustments from dilutions, concentrations or moisture content, where applicable.

> - Matrix Spike Sample: A sample prepared by adding a known mass of target analyte to a specified amount of matrix sample for which an independent estimate of target analyte concentration is available. For Method 332.0, the spike recovery is calculated using the native concentration, including estimated values.

MSD - Matrix Spike Sample Duplicate: Refer to MS.

NA - Not Applicable.

NC - Not Calculated: Term is utilized when one or more of the results utilized in the calculation are non-detect at the parameter's

reporting unit.

NDPA/DPA - N-Nitrosodiphenylamine/Diphenylamine.

NI - Not Ignitable.

NP - Non-Plastic: Term is utilized for the analysis of Atterberg Limits in soil.

NR - No Results: Term is utilized when 'No Target Compounds Requested' is reported for the analysis of Volatile or Semivolatile

Organic TIC only requests.

RL - Reporting Limit: The value at which an instrument can accurately measure an analyte at a specific concentration. The RL

includes any adjustments from dilutions, concentrations or moisture content, where applicable.

RPD - Relative Percent Difference: The results from matrix and/or matrix spike duplicates are primarily designed to assess the precision of analytical results in a given matrix and are expressed as relative percent difference (RPD). Values which are less than five times the reporting limit for any individual parameter are evaluated by utilizing the absolute difference between the

values; although the RPD value will be provided in the report.

SRM - Standard Reference Material: A reference sample of a known or certified value that is of the same or similar matrix as the

associated field samples.

STLP - Semi-dynamic Tank Leaching Procedure per EPA Method 1315.

TEF - Toxic Equivalency Factors: The values assigned to each dioxin and furan to evaluate their toxicity relative to 2,3,7,8-TCDD.

TEO - Toxic Equivalent: The measure of a sample's toxicity derived by multiplying each dioxin and furan by its corresponding TEF

and then summing the resulting values.

TIC - Tentatively Identified Compound: A compound that has been identified to be present and is not part of the target compound list (TCL) for the method and/or program. All TICs are qualitatively identified and reported as estimated concentrations.

Report Format: Data Usability Report

Project Name:MIT WEST LOTLab Number:L2158218Project Number:134487-005Report Date:10/26/21

Footnotes

1 - The reference for this analyte should be considered modified since this analyte is absent from the target analyte list of the original method.

Terms

Analytical Method: Both the document from which the method originates and the analytical reference method. (Example: EPA 8260B is shown as 1,8260B.) The codes for the reference method documents are provided in the References section of the Addendum.

Difference: With respect to Total Oxidizable Precursor (TOP) Assay analysis, the difference is defined as the Post-Treatment value minus the Pre-Treatment value.

Final pH: As it pertains to Sample Receipt & Container Information section of the report, Final pH reflects pH of container determined after adjustment at the laboratory, if applicable. If no adjustment required, value reflects Initial pH.

Frozen Date/Time: With respect to Volatile Organics in soil, Frozen Date/Time reflects the date/time at which associated Reagent Water-preserved vials were initially frozen. Note: If frozen date/time is beyond 48 hours from sample collection, value will be reflected in 'bold'.

Initial pH: As it pertains to Sample Receipt & Container Information section of the report, Initial pH reflects pH of container determined upon receipt, if applicable.

PAH Total: With respect to Alkylated PAH analyses, the 'PAHs, Total' result is defined as the summation of results for all or a subset of the following compounds: Naphthalene, C1-C4 Naphthalenes, 2-Methylnaphthalene, 1-Methylnaphthalene, Biphenyl, Acenaphthylene, Acenaphthene, Fluorene, C1-C3 Fluorenes, Phenanthrene, C1-C4 Phenanthrenes/Anthracenes, Anthracene, Fluoranthene, Pyrene, C1-C4 Fluoranthenes/Pyrenes, Benz(a)anthracene, Chrysene, C1-C4 Chrysenes, Benzo(b)fluoranthene, Benzo(j)+(k)fluoranthene, Benzo(e)pyrene, Benzo(a)pyrene, Perylene, Indeno(1,2,3-cd)pyrene, Dibenz(ah)+(ac)anthracene, Benzo(g,h,i)perylene. If a 'Total' result is requested, the results of its individual components will also be reported.

PFAS Total: With respect to PFAS analyses, the 'PFAS, Total (5)' result is defined as the summation of results for: PFHpA, PFHxS, PFOA, PFNA and PFOS. In addition, the 'PFAS, Total (6)' result is defined as the summation of results for: PFHpA, PFHxS, PFOA, PFNA, PFDA and PFOS. For MassDEP DW compliance analysis only, the 'PFAS, Total (6)' result is defined as the summation of results at or above the RL. Note: If a 'Total' result is requested, the results of its individual components will also be reported.

The target compound Chlordane (CAS No. 57-74-9) is reported for GC ECD analyses. Per EPA, this compound "refers to a mixture of chlordane isomers, other chlorinated hydrocarbons and numerous other components." (Reference: USEPA Toxicological Review of Chlordane, In Support of Summary Information on the Integrated Risk Information System (IRIS), December 1997.)

Total: With respect to Organic analyses, a 'Total' result is defined as the summation of results for individual isomers or Aroclors. If a 'Total' result is requested, the results of its individual components will also be reported. This is applicable to 'Total' results for methods 8260, 8081 and 8082.

Data Qualifiers

- A Spectra identified as "Aldol Condensates" are byproducts of the extraction/concentration procedures when acetone is introduced in the process.
- The analyte was detected above the reporting limit in the associated method blank. Flag only applies to associated field samples that have detectable concentrations of the analyte at less than ten times (10x) the concentration found in the blank. For MCP-related projects, flag only applies to associated field samples that have detectable concentrations of the analyte at less than ten times (10x) the concentrations of the analyte at less than ten times (10x) the concentrations of the analyte was detectable concentrations of the analyte at less than ten times (10x) the concentration found in the blank AND the analyte was detected above one-half the reporting limit (or above the reporting limit for common lab contaminants) in the associated method blank. For NJ-Air-related projects, flag only applies to associated field samples that have detectable concentrations of the analyte above the reporting limit. For NJ-related projects (excluding Air), flag only applies to associated field samples that have detectable concentrations of the analyte, which was detected above the reporting limit in the associated method blank or above five times the reporting limit for common lab contaminants (Phthalates, Acetone, Methylene Chloride, 2-Butanone).
- Co-elution: The target analyte co-elutes with a known lab standard (i.e. surrogate, internal standards, etc.) for co-extracted analyses.
- Concentration of analyte was quantified from diluted analysis. Flag only applies to field samples that have detectable concentrations of the analyte.
- E Concentration of analyte exceeds the range of the calibration curve and/or linear range of the instrument.
- F The ratio of quantifier ion response to qualifier ion response falls outside of the laboratory criteria. Results are considered to be an estimated maximum concentration.
- G The concentration may be biased high due to matrix interferences (i.e, co-elution) with non-target compound(s). The result should be considered estimated.
- H The analysis of pH was performed beyond the regulatory-required holding time of 15 minutes from the time of sample collection.
- I The lower value for the two columns has been reported due to obvious interference.
- J Estimated value. This represents an estimated concentration for Tentatively Identified Compounds (TICs).
- M Reporting Limit (RL) exceeds the MCP CAM Reporting Limit for this analyte.
- **ND** Not detected at the reporting limit (RL) for the sample.
- NJ Presumptive evidence of compound. This represents an estimated concentration for Tentatively Identified Compounds (TICs), where

Report Format: Data Usability Report

Project Name:MIT WEST LOTLab Number:L2158218Project Number:134487-005Report Date:10/26/21

Data Qualifiers

the identification is based on a mass spectral library search.

- P The RPD between the results for the two columns exceeds the method-specified criteria.
- Q The quality control sample exceeds the associated acceptance criteria. For DOD-related projects, LCS and/or Continuing Calibration Standard exceedences are also qualified on all associated sample results. Note: This flag is not applicable for matrix spike recoveries when the sample concentration is greater than 4x the spike added or for batch duplicate RPD when the sample concentrations are less than 5x the RL. (Metals only.)
- **R** Analytical results are from sample re-analysis.
- **RE** Analytical results are from sample re-extraction.
- S Analytical results are from modified screening analysis.
- The surrogate associated with this target analyte has a recovery outside the QC acceptance limits. (Applicable to MassDEP DW Compliance samples only.)
- The batch matrix spike and/or duplicate associated with this target analyte has a recovery/RPD outside the QC acceptance limits.
 (Applicable to MassDEP DW Compliance samples only.)

Report Format: Data Usability Report

Project Name:MIT WEST LOTLab Number:L2158218Project Number:134487-005Report Date:10/26/21

REFERENCES

Methods for the Determination of Metals in Environmental Samples, Supplement I. EPA/600/R-94/111. May 1994.

Inductively Coupled Plasma Atomic Emission Spectrometric Method for Trace Element Analysis of Water and Wastes. Appendix C, Part 136, 40 CFR (Code of Federal Regulations). July 1, 1999 edition.

LIMITATION OF LIABILITIES

Alpha Analytical performs services with reasonable care and diligence normal to the analytical testing laboratory industry. In the event of an error, the sole and exclusive responsibility of Alpha Analytical shall be to re-perform the work at it's own expense. In no event shall Alpha Analytical be held liable for any incidental, consequential or special damages, including but not limited to, damages in any way connected with the use of, interpretation of, information or analysis provided by Alpha Analytical.

We strongly urge our clients to comply with EPA protocol regarding sample volume, preservation, cooling, containers, sampling procedures, holding time and splitting of samples in the field.

Alpha Analytical, Inc. Facility: Company-wide

Department: Quality Assurance

Title: Certificate/Approval Program Summary

Serial_No:10262115:29

ID No.:17873 Revision 19

Published Date: 4/2/2021 1:14:23 PM

Page 1 of 1

Certification Information

The following analytes are not included in our Primary NELAP Scope of Accreditation:

Westborough Facility

EPA 624/624.1: m/p-xylene, o-xylene, Naphthalene

EPA 625/625.1: alpha-Terpineol

EPA 8260C/8260D: NPW: 1,2,4,5-Tetramethylbenzene; 4-Ethyltoluene, Azobenzene; SCM: Iodomethane (methyl iodide), 1,2,4,5-Tetramethylbenzene;

EPA 8270D/8270E: NPW: Dimethylnaphthalene,1,4-Diphenylhydrazine, alpha-Terpineol; SCM: Dimethylnaphthalene,1,4-Diphenylhydrazine.

SM4500: NPW: Amenable Cyanide; SCM: Total Phosphorus, TKN, NO2, NO3.

Mansfield Facility

SM 2540D: TSS

EPA 8082A: NPW: PCB: 1, 5, 31, 87,101, 110, 141, 151, 153, 180, 183, 187.

EPA TO-15: Halothane, 2,4,4-Trimethyl-2-pentene, 2,4,4-Trimethyl-1-pentene, Thiophene, 2-Methylthiophene,

3-Methylthiophene, 2-Ethylthiophene, 1,2,3-Trimethylbenzene, Indan, Indene, 1,2,4,5-Tetramethylbenzene, Benzothiophene, 1-Methylnaphthalene.

Biological Tissue Matrix: EPA 3050B

The following analytes are included in our Massachusetts DEP Scope of Accreditation

Westborough Facility:

Drinking Water

EPA 300.0: Chloride, Nitrate-N, Fluoride, Sulfate; EPA 353.2: Nitrate-N, Nitrite-N; SM4500NO3-F: Nitrate-N, Nitrite-N; SM4500F-C, SM4500CN-CE,

EPA 180.1, SM2130B, SM4500CI-D, SM2320B, SM2540C, SM4500H-B, SM4500NO2-B

EPA 332: Perchlorate; EPA 524.2: THMs and VOCs; EPA 504.1: EDB, DBCP.

Microbiology: SM9215B; SM9223-P/A, SM9223B-Colilert-QT,SM9222D.

Non-Potable Water

SM4500H,B, EPA 120.1, SM2510B, SM2540C, SM2320B, SM4500CL-E, SM4500F-BC, SM4500NH3-BH: Ammonia-N and Kjeldahl-N, EPA 350.1: Ammonia-N, LACHAT 10-107-06-1-B: Ammonia-N, EPA 351.1, SM4500NO3-F, EPA 353.2: Nitrate-N, SM4500P-E, SM4500P-B, E, SM4500SO4-E, SM5220D, EPA 410.4, SM5210B, SM5310C, SM4500CL-D, EPA 1664, EPA 420.1, SM4500-CN-CE, SM2540D, EPA 300: Chloride, Sulfate, Nitrate. EPA 624.1: Volatile Halocarbons & Aromatics,

EPA 608.3: Chlordane, Toxaphene, Aldrin, alpha-BHC, beta-BHC, gamma-BHC, delta-BHC, Dieldrin, DDD, DDE, DDT, Endosulfan II, Endosulfan II, Endosulfan sulfate, Endrin, Endrin Aldehyde, Heptachlor, Heptachlor Epoxide, PCBs

EPA 625.1: SVOC (Acid/Base/Neutral Extractables), EPA 600/4-81-045: PCB-Oil.

Microbiology: SM9223B-Colilert-QT; Enterolert-QT, SM9221E, EPA 1600, EPA 1603, SM9222D.

Mansfield Facility:

Drinking Water

EPA 200.7: Al, Ba, Cd, Cr, Cu, Fe, Mn, Ni, Na, Ag, Ca, Zn. EPA 200.8: Al, Sb, As, Ba, Be, Cd, Cr, Cu, Pb, Mn, Ni, Se, Ag, TL, Zn. EPA 245.1 Hg. EPA 522, EPA 537.1.

Non-Potable Water

EPA 200.7: Al, Sb, As, Be, Cd, Ca, Cr, Co, Cu, Fe, Pb, Mg, Mn, Mo, Ni, K, Se, Ag, Na, Sr, TL, Ti, V, Zn.

EPA 200.8: Al, Sb, As, Be, Cd, Cr, Cu, Fe, Pb, Mn, Ni, K, Se, Ag, Na, TL, Zn.

EPA 245.1 Hg

SM2340B

For a complete listing of analytes and methods, please contact your Alpha Project Manager.

Pre-Qualtrax Document ID: 08-113 Document Type: Form

Westborough, MA 0158 B Walkup Dr.	CHAIN OF CUSTODY Mansiletd, MA 02048 320 Forbes Blvd	Service Centers Brewor, ME 04412 Postsmi 07430 Albany, NY 12205 Tonawanda, NY 14150 Holme Project Information	outh, NH 03801 M	tahwah, NJ	Page				Date in I		L	olu	5/	21		ALPHA Job # 12156712 Billing Information
TBL: 508-898-9220	TEL: 508-822-9300	Project Name:		MIT	VEST LOT			13	Emai	1		D	Fax			Same as Client Info
FAX: 508:898:9193	FAX; 506-822-3288	Project Location:			RIDGE, M			0	EQui	S (1 F	ile)	13	EQu	IS (4 I	File)	PO#
H&A Information		Project #			487-005			4	Other					13.		
H&A Client: ACC C	peraling Partnership, LP	(Use Project name as P	roject #)					Regu	ilatory	Requ	reme	nts (P	rogra	m/Crit	eria)	Disposal Site Information
	edford Street, Suite 2200			. GOLDKAN	AP. C. MC	KENZIE		MA	2017	NPDES	RGP					Please identify below location of
Boston, MA 02129		ALPHAQuote #:						1				1				applicable disposal facilities.
H&A Phone: 617-88	6-7380	Turn-Around Time				-5.		ĺ								Disposal Facility:
H&A Fax: 617-88	6-7680	Standard	ga .	Due Date	e.			1								NA D NA
H&A Email: cmcke	nzie, sgoldkamp	Rush (antyil pre approved		# of Days				Note: Select State from menu & identify criter a.					L	Other:		
These samples have be	en previously analyzed	by Alpha O						ANALYSIS				Sample Filtration				
		lication; please follow app as required by EPA		methods an	d minimun	n detection	n levels	SIM SIM	SVOCs 625.1 & 525.1 SIM	3. TSS 2540, TRC 4500. CI 300, TCN	L	ia (NH dness	6. Ethanol	7. Total NPDES RGP Metals	NPDES RGP Metals Filtered) ON HOLD	□ Lab to do Preservation ② Lab to do
ALPHA Lab ID			Colle	ection	Sample	Sampler	1	1. VOCS 624 SIN 2. SVOCs 625 3. TSS 2540, Cl 300, 4. PCBs 608, TPHENOL, 7 5. Ammoniii 6. Etha 6. Etha		P P	NPDE Filter					
(Lab Use Only)	Sa	mpte IO	Date	Time	Matrix	Initials	Depth	-	S	E.	4. P	L I		7	8. J	Sample Specific Comments
56710-01	GP-2(OW)-2021-101	5	10/15/2021	1040	AQ	MSP	-	×	x	X	X	X	X	ХX	×	1. 1,4-Dioxane by 624.1-SIM
-62-	MIT WEST LOT-RW	2021-1015	10/15/2021	1240	AQ	MSP	-					×_		х		1. 1,4-Dioxane by 624.1-SIM 7. NPDES RGP Metals
												1		İ	1	includes: Ag, As, Cd, Cr, Tri C
						1										Cu, Ni, Pb, Sb, Se, Zn, Fe, Hr
																8. Lab Filtered NPDES RGP
	T.						İ	İ								Metals (ON HOLD)
							-	_					_	-	-	
				-		-	-						-	+		
A None P = Plastic			Aanslield: Certilication No: MA015			ntainer Ty									Please print clearly, legibly and completely. Samples can not be logge in and turnaround time clock will not start until any ambiguities are resolved. Alpha Analyticars services under this Chain of Custody shall be performed in	
= MeOH	C = Cube	Relinquished	By	Date	Time .	1	Ro	celved	But			1	Date	e/Time		accordance with terms and conditions within Blacket Service Agreement# 2019
a = NaHSO,	O = Other E = Encare	Inakin Vella		10/15/2		00	لم. ة الم			1.	-	10/	5/2		C.	22-Alpha Analytical by and between Hate
$H = Na_2S_2O_3$ $G/E = Z_1 Ac/NaOH$ $O = O_1her$	D = 80D Battle	03-016			1700	9	unit	. /		1.1. A	AL.	10/	15/0	1	42	& Aldnett, Inc., its subsidiaries and atfiliates and Alpha Analytical,
		FINA	-	10112191	10.10	-	4			1		LU/	1110	10	1-	4

APPENDIX C

Effluent Limitations Documentation

StreamStats Report

Region ID: MA

Workspace ID: MA20211026135029934000

Clicked Point (Latitude, Longitude): 42.35288, -71.10510

Time: 2021-10-26 09:50:54 -0400

Basin Characteristics								
Parameter Code	Parameter Description	Value	Unit					
DRNAREA	Area that drains to a point on a stream	283	square miles					
BSLDEM250	Mean basin slope computed from 1:250K DEM	2.329	percent					
DRFTPERSTR	Area of stratified drift per unit of stream length	0.23	square mile per mile					
MAREGION	Region of Massachusetts 0 for Eastern 1 for Western	0	dimensionless					

Low-Flow Statistics Parameters [Statewide Low Flow WRIR00 4135]

Parameter Code	Parameter Name	Value	Units	Min Limit	Max Limit
DRNAREA	Drainage Area	283	square miles	1.61	149
BSLDEM250	Mean Basin Slope from 250K DEM	2.329	percent	0.32	24.6
DRFTPERSTR	Stratified Drift per Stream Length	0.23	square mile per mile	0	1.29
MAREGION	Massachusetts Region	0	dimensionless	0	1

Low-Flow Statistics Disclaimers [Statewide Low Flow WRIR00 4135]

One or more of the parameters is outside the suggested range. Estimates were extrapolated with unknown errors

Low-Flow Statistics Flow Report [Statewide Low Flow WRIR00 4135]

Statistic	Value	Unit
7 Day 2 Year Low Flow	49.6	ft^3/s
7 Day 10 Year Low Flow	24.7	ft^3/s

Low-Flow Statistics Citations

Ries, K.G., III,2000, Methods for estimating low-flow statistics for Massachusetts streams: U.S. Geological Survey Water Resources Investigations Report 00-4135, 81 p. (http://pubs.usgs.gov/wri/wri004135/)

USGS Data Disclaimer: Unless otherwise stated, all data, metadata and related materials are considered to satisfy the quality standards relative to the purpose for which the data were collected. Although these data and associated metadata have been reviewed for accuracy and completeness and approved for release by the U.S. Geological Survey (USGS), no warranty expressed or implied is made regarding the display or utility of the data for other purposes, nor on all computer systems, nor shall the act of distribution constitute any such warranty.

USGS Software Disclaimer: This software has been approved for release by the U.S. Geological Survey (USGS). Although the software has been subjected to rigorous review, the USGS reserves the right to update the software as needed pursuant to further analysis and review. No warranty, expressed or implied, is made by the USGS or the U.S. Government as to the functionality of the software and related material nor shall the fact of release constitute any such warranty. Furthermore, the software is released on condition that neither the USGS nor the U.S. Government shall be held liable for any damages resulting from its authorized or unauthorized use.

USGS Product Names Disclaimer: Any use of trade, firm, or product names is for descriptive purposes only and does not imply endorsement by the U.S. Government.

Application Version: 4.6.2

StreamStats Services Version: 1.2.22

NSS Services Version: 2.1.2

HALEY & ALDRIC	CH, INC.			CALC	JLATIONS		FILE NO.	134487-004	_	
CLIENT PROJECT SUBJECT	MIT MIT West Lot (269 to Dilution Factor Calcul		Street)			1	SHEET DATE COMPUTED BY	1 26-Oct-21 SMG	of	1
PURPOSE:	Calculate Dilution Fac	ctor (DF) for _l	project based on 7 Day	10 Year	(7Q10) Low Flow valu	ies.				
APPROACH:	Calculate DF based or MGD.	n EPA formul	a $(Q_S + Q_D)/Q_D$, where	Q _s is 7Q	10 in million gallons p	er day (MGD) and Q_D is disch	arge flow in		
ASSUMPTIONS:	1. 7Q10 is 24.7 cfs (fr 2. A conversion of 7.4 3. A discharge flowra	18 is used to	convert cubic feet to g	allons						
CALCULATIONS:										
Q _s =	24.7 ft ³	X	7.48 gallons ft ³	х	<u>86,400 sec</u> day	Х	<u>1 MG</u> 1,000,000 gallons			
Q _s =	= 16	5.0 MGD								
Discharge Flowr	ate (Q _D)									
Q _D =	<u>150 gallons</u> min	X	<u>1,440 min</u> day	Х	<u>1 MG</u> 1,000,000 gallons					
Q _D =	= 0.216 MGD									
Dilution Factor ($\Omega_c + \Omega_p$	= <u>16.</u>	0 MGD + 0.216 MGD 0.216 MGD	=	75.1					
CONCLUSION	The dilution factor fo flowrate.	r this project	is calculated to be 75.	1 based	on the provided 7Q10) low flo	ow value and discharg	e		

Enter number values in green boxes below

Enter values in the units specified

 \downarrow 16 Q_R = Enter upstream flow in **MGD**0.216 Q_P = Enter discharge flow in **MGD**0 Downstream 7Q10

Enter a dilution factor, if other than zero

Enter values in the units specified

↓
 533 C_d = Enter influent hardness in mg/L CaCO₃
 52.4 C_s = Enter receiving water hardness in mg/L CaCO₃

Enter receiving water concentrations in the units specified

pH in Standard Units 7.1 Temperature in °C 0 0.129 Ammonia in mg/L Hardness in **mg/L** CaCO₃ 52.4 Salinity in **ppt** Antimony in µg/L 0 Arsenic in µg/L Cadmium in µg/L Chromium III in µg/L 0 0 Chromium VI in µg/L 2.65 Copper in **µg/L** Iron in **µg/L** 669 Lead in **µg/L** 5.32 Mercury in **μg/L** Nickel in **μg/L** Selenium in µg/L 0 Silver in **µg/L** 0 Zinc in µg/L 23.21

Enter **influent** concentrations in the units specified

TRC in µg/L 0 3.52 Ammonia in **mg/L** Antimony in µg/L Arsenic in μg/L 6.52 Cadmium in µg/L Chromium III in µg/L Chromium VI in µg/L 0 Copper in µg/L 8.04 Iron in µg/L 8550 Lead in µg/L 1.98 0 Mercury in **μg/L** Nickel in μg/L 5.12 Selenium in µg/L 0 Silver in µg/L 0 Zinc in **µg/L** 29.71 Cyanide in **µg/L** 0 Phenol in **µg/L** Carbon Tetrachloride in µg/L 0 Tetrachloroethylene in μg/L Total Phthalates in µg/L 0 0 Diethylhexylphthalate in μg/L Benzo(a)anthracene in $\mu g/L$ 0 Benzo(a)pyrene in µg/L 0 Benzo(b)fluoranthene in µg/L 0 Benzo(k)fluoranthene in **µg/L** 0 Chrysene in µg/L 0 Dibenzo(a,h)anthracene in µg/L 0 Indeno(1,2,3-cd)pyrene in μg/L 0

Methyl-tert butyl ether in **μg/L**

Notes:

Freshwater: Q_R equal to the 7Q10; enter alternate Q_R if approved by the State; enter 0 if no dilution factor approved Saltwater (estuarine and marine): enter Q_R if approved by the State; enter 0 if no entry Discharge flow is equal to the design flow or 1 MGD, whichever is less Only if approved by State as the entry for Q_R ; leave 0 if no entry

Saltwater (estuarine and marine): only if approved by the State Leave 0 if no entry

Freshwater only

pH, temperature, and ammonia required for all discharges
Hardness required for freshwater
Salinity required for saltwater (estuarine and marine)
Metals required for all discharges if present and if dilution factor is > 1
Enter 0 if non-detect or testing not required

if >1 sample, enter maximum if >10 samples, may enter 95th percentile

Enter 0 if non-detect or testing not required

Dilution Factor 75.1

Dilution Factor	75.1					
A. Inorganics	TBEL applies if	bolded	WQBEL applies i	f bolded	Compliance Level applies if shown	
Ammonia	Report	mg/L			11	
Chloride	Report	μg/L				
Total Residual Chlorine	0.2	mg/L	826	μg/L		μg/L
Total Suspended Solids	30	_		μg/L		μg/L
Antimony		mg/L	48047	/T		
•	206	μg/L		μg/L		
Arsenic	104	μg/L	751	μg/L		
Cadmium	10.2	μg/L	13.7087	μg/L		
Chromium III	323	μg/L	4188.2	μg/L		
Chromium VI	323	μg/L	858.4	μg/L		
Copper	242	$\mu g/L$	248.6	$\mu g/L$		
Iron	5000	$\mu g/L$	25519	$\mu g/L$		
Lead	160	$\mu g/L$	1.62	$\mu g/L$		
Mercury	0.739	μg/L	68.01	μg/L		
Nickel	1450	μg/L	2498.9	μg/L		
Selenium	235.8	μg/L	375.4	μg/L		
Silver	35.1	μg/L	114.0	μg/L		
Zinc	420	μg/L	4016.8	μg/L		
Cyanide	178	μg/L mg/L	390.4	μg/L μg/L		μg/L
B. Non-Halogenated VOCs	170	mg/L	370.4	μg/L		μg/L
Total BTEX	100	μg/L				
Benzene	5.0	μg/L				
1,4 Dioxane	200	μ g/L				
Acetone	7970	μg/L		/*		
Phenol C. Halagaratad VOCa	1,080	μg/L	22522	μg/L		
C. Halogenated VOCs Carbon Tetrachloride	4.4	μg/L	120.1	μg/L		
1,2 Dichlorobenzene	600	μg/L μg/L		μg·L		
1,3 Dichlorobenzene	320	μg/L				
1,4 Dichlorobenzene	5.0	$\mu g/L$				
Total dichlorobenzene		μg/L				
1,1 Dichloroethane	70 5.0	μg/L				
1,2 Dichloroethane1,1 Dichloroethylene	5.0 3.2	μg/L μg/L				
Ethylene Dibromide	0.05	μg/L μg/L				
Methylene Chloride	4.6	μg/L				
1,1,1 Trichloroethane	200	μg/L				
1,1,2 Trichloroethane	5.0	μg/L				
Trichloroethylene	5.0	μg/L		/T		
Tetrachloroethylene cis-1,2 Dichloroethylene	5.0 70	μg/L μg/L	247.7	μg/L		
Vinyl Chloride	2.0	μg/L μg/L				
D. Non-Halogenated SVOCs	2.0	μ _β L				
Total Phthalates	190	μ g/L		$\mu g/L$		
Diethylhexyl phthalate	101	μ g/L	165.2	$\mu g/L$		
Total Group I Polycyclic	1.0	/Т				
Aromatic Hydrocarbons Benzo(a)anthracene	1.0 1.0	μg/L μg/L	0.2853	ug/I		ug/I
Benzo(a)pyrene	1.0	μg/L μg/L	0.2853	μg/L μg/L		μg/L μg/L
Benzo(b)fluoranthene	1.0	μg/L	0.2853	μg/L		μg/L
Benzo(k)fluoranthene	1.0	μg/L	0.2853	μg/L		μg/L
Chrysene	1.0	$\mu g/L$	0.2853	$\mu g/L$		μ g/L
Dibenzo(a,h)anthracene	1.0	μg/L	0.2853	μg/L		μg/L
Indeno(1,2,3-cd)pyrene	1.0	μg/L	0.2853	μg/L		μg/L
Total Group II Polycyclic Aromatic Hydrocarbons	100	μg/L				
Naphthalene	20	μg/L μg/L				
E. Halogenated SVOCs		10				
Total Polychlorinated Biphenyls	0.000064	$\mu g/L$			0.5	$\mu g/L$
Pentachlorophenol	1.0	$\mu g/L$				
F. Fuels Parameters	7 0	/=				
Total Petroleum Hydrocarbons Ethanol	5.0 Report	mg/L				
Methyl-tert-Butyl Ether	Report 70	mg/L μg/L	1501	μg/L		
tert-Butyl Alcohol	120	μg/L μg/L		MB L		
tert-Amyl Methyl Ether	90	μg/L μg/L				

McKenzie, Corinne

From: Ruan, Xiaodan (DEP) <xiaodan.ruan@state.ma.us>

Sent: Friday, November 12, 2021 1:50 PM

To: McKenzie, Corinne

Cc: Vakalopoulos, Catherine (DEP)

Subject: RE: 7Q10 + Dilution Factor for NPDES NOI - MIT West Lot Project

CAUTION: External Email

Hi Corinne,

I can confirm that the 7Q10 of 24.7 cfs and a dilution factor of 75.1 are correct for the proposed discharge for the project at 277 to 301 Vassar Street, Cambridge, MA, with a design flow of 150 gpm.

Here is water quality information in assisting you in filling out the NOI:

Waterbody and ID: Charles River (MA72-38) within Charles River Watershed

Classification: B (CSO)

Outstanding Resource Water?: no

State's most recent Integrated List is located here: https://www.epa.gov/sites/production/files/2020-

01/documents/2016-ma-303d-list-report.pdf,

search for "MA72-38" to see the causes of impairments.

TMDLs: There are two TMDLs (pathogens and nutrients) for this segment

Also, if this is not a *current* MCP site, then in addition to submitting the NOI to EPA, you need to apply with MassDEP and submit a \$500 fee (unless fee exempt, e.g., municipality) through ePLACE. The instructions are located on this page: https://www.mass.gov/how-to/wm-15-npdes-general-permit-notice-of-intent. Technical assistant information is available on the ePLACE application webpage.

Please let me know if you have any questions.

Thanks, Xiaodan

Xiaodan Ruan
Environmental Engineer
Massachusetts Department of Environmental Protection
One Winter Street, Boston, MA 02108
(857)-256-4172
xiaodan.ruan@mass.gov

From: McKenzie, Corinne < < CMcKenzie@HaleyAldrich.com >

Sent: Monday, November 1, 2021 8:26 AM

To: Vakalopoulos, Catherine (DEP) < catherine.vakalopoulos@mass.gov>

Cc: Gerald, Shay <SGerald@haleyaldrich.com>

Subject: 7Q10 + Dilution Factor for NPDES NOI - MIT West Lot Project

CAUTION: This email originated from a sender outside of the Commonwealth of Massachusetts mail system. Do not click on links or open attachments unless you recognize the sender and know the content is safe.

Hi Cathy,

As required in Appendix V of the 2017 NPDES RGP, I have attached to this email our StreamStats report detailing the 7 Day 10 Year (7Q10) low flow value for our project (listed below) along with the dilution factor calculations for your review and confirmation.

Project:

MIT West Lot 277 to 301 Vassar Street Cambridge, MA

Discharge:

Charles River via stormwater system outfall. See attached discharge route.

Design System Flow: 150 gallons per minute (0.216 MGD)

7 Day 10 Year Low Flow value (from attached StreamStats Report) = 24.7 cfs or 16.0 MGD

Dilution Factor (from attached calculations) = 75.1

Can you please confirm if these values are appropriate for use for our project?

Thank you

Corinne McKenzie

Project Manager

Haley & Aldrich, Inc.

465 Medford Street | Suite 2200 Boston, MA 02129

T: 617-886-7380 C: 857-207-9861

www.haleyaldrich.com

APPENDIX D

Endangered Species Act Assessment

FEDERALLY LISTED ENDANGERED AND THREATENED SPECIES IN MASSACHUSETTS

COUNTY	SPECIES	FEDERAL STATUS	GENERAL LOCATION/HABITAT	TOWNS
	Piping Plover	Threatened	Coastal Beaches	All Towns
	Roseate Tern	Endangered	Coastal beaches and the Atlantic Ocean	All Towns
	Northeastern beach tiger beetle		Coastal Beaches	Chatham
Barnstable	Sandplain gerardia	Endangered	Open areas with sandy soils.	Sandwich and Falmouth.
	Northern Red- bellied Cooter	Endangered	Inland Ponds and Rivers	Bourne (north of the Cape Cod Canal)
	Red Knot ¹	Threatened	Coastal Beaches and Rocky Shores, sand and mud flats	Coastal Towns
	Northern Long- eared Bat	Threatened Final 4(d) Rule	Winter- mines and caves, Summer – wide variety of forested habitats	Statewide
	Bog Turtle	Threatened	Wetlands	Egremont and Sheffield
Berkshire	Northern Long- eared Bat	Threatened Final 4(d) Rule	Winter- mines and caves, Summer – wide variety of forested habitats	Statewide
	Piping Plover	Threatened	Coastal Beaches	Fairhaven, Dartmouth, Westport
	Roseate Tern	Endangered	Coastal beaches and the Atlantic Ocean	Fairhaven, New Bedford, Dartmouth, Westport
Bristol	Northern Red- bellied Cooter	Endangered	Inland Ponds and Rivers	Taunton
	Red Knot ¹	Threatened	Coastal Beaches and Rocky Shores, sand and mud flats	Coastal Towns
	Northern Long- eared Bat	Threatened Final 4(d) Rule	Winter- mines and caves, Summer – wide variety of forested habitats	Statewide
	Roseate Tern	Endangered	Coastal beaches and the Atlantic Ocean	All Towns
	Piping Plover	Threatened	Coastal Beaches	All Towns
	Northeastern beach tiger beetle	Threatened	Coastal Beaches	Aquinnah and Chilmark
Dukes	Dukes Sandplain gerardia		Open areas with sandy soils.	West Tisbury
	Red Knot ¹	Threatened	Coastal Beaches and Rocky Shores, sand and mud flats	Coastal Towns
	Northern Long- eared Bat	Threatened Final 4(d) Rule	Winter- mines and caves, Summer – wide variety of forested habitats	Statewide

FEDERALLY LISTED ENDANGERED AND THREATENED SPECIES IN MASSACHUSETTS

COUNTY	SPECIES	FEDERAL STATUS	GENERAL LOCATION/HABITAT	TOWNS		
	Small whorled Pogonia	Threatened	Forests with somewhat poorly drained soils and/or a seasonally high water table	Gloucester, Essex and Manchester		
Essex	Piping Plover	Threatened	Coastal Beaches	Gloucester, Essex, Ipswich, Rowley, Revere, Newbury, Newburyport and Salisbury		
	Red Knot ¹	Threatened	Coastal Beaches and Rocky Shores, sand and mud flats	Coastal Towns		
	Northern Long- eared Bat	Threatened Final 4(d) Rule	Winter- mines and caves, Summer – wide variety of forested habitats	Statewide		
	Northeastern bulrush	Endangered	Wetlands	Montague, Warwick		
Franklin	Dwarf wedgemussel	Endangered	Mill River	Whately		
	Northern Long- eared Bat	Threatened Final 4(d) Rule	Winter- mines and caves, Summer – wide variety of forested habitats	Statewide		
	Small whorled Pogonia	Threatened	Forests with somewhat poorly drained soils and/or a seasonally high water table	Hadley		
	Puritan tiger beetle	Threatened	Sandy beaches along the Connecticut River	Northampton and Hadley		
Hampshire	Hampshire Dwarf wedgemussel		Endangered Rivers and Streams		Rivers and Streams.	Hatfield, Amherst and Northampton
	Northern Long- eared Bat	Threatened Final 4(d) Rule	Winter- mines and caves, Summer – wide variety of forested habitats	Statewide		
	Small whorled Pogonia	Threatened	Forests with somewhat poorly drained soils and/or a seasonally high water table	Southwick		
Hampden	Northern Long- eared Bat	Threatened Final 4(d) Rule	Winter- mines and caves, Summer – wide variety of forested habitats	Statewide		
	Small whorled Pogonia	Threatened	Forests with somewhat poorly drained soils and/or a seasonally high water table	Groton		
Middlesex	Northern Long- eared Bat	Threatened Final 4(d) Rule	Winter- mines and caves, Summer – wide variety of forested habitats	Statewide		
	Piping Plover	Threatened	Coastal Beaches	Nantucket		
	Roseate Tern	Endangered	Coastal beaches and the Atlantic Ocean	Nantucket		
Nantucket	American burying beetle	Endangered	Upland grassy meadows	Nantucket		
	Red Knot ¹	Threatened	Coastal Beaches and Rocky Shores, sand and mud flats	Coastal Towns		
	Northern Long- eared Bat	Threatened Final 4(d) Rule	Winter- mines and caves, Summer – wide variety of forested habitats	Statewide		

FEDERALLY LISTED ENDANGERED AND THREATENED SPECIES IN MASSACHUSETTS

COUNTY	SPECIES	FEDERAL STATUS	GENERAL LOCATION/HABITAT	TOWNS
	Piping Plover	Threatened	Coastal Beaches	Scituate, Marshfield, Duxbury, Plymouth, Wareham and Mattapoisett
	Northern Red- bellied Cooter	Endangered	Inland Ponds and Rivers	Kingston, Middleborough, Carver, Plymouth, Bourne, Wareham, Halifax, and Pembroke
Plymouth	Roseate Tern	Endangered	Coastal beaches and the Atlantic Ocean	Plymouth, Marion, Wareham, and Mattapoisett.
	Red Knot ¹	Threatened	Coastal Beaches and Rocky Shores, sand and mud flats	Coastal Towns
	Northern Long- eared Bat	Threatened Final 4(d) Rule	Winter- mines and caves, Summer – wide variety of forested habitats	Statewide
	Piping Plover	Threatened	Coastal Beaches	Revere, Winthrop
Suffolk	Red Knot ¹	Threatened	Coastal Beaches and Rocky Shores, sand and mud flats	Coastal Towns
	Northern Long- eared Bat	Threatened Final 4(d) Rule	Winter- mines and caves, Summer – wide variety of forested habitats	Statewide
	Small whorled Pogonia	Threatened	Forests with somewhat poorly drained soils and/or a seasonally high water table	Leominster
Worcester	Vorcester Northern Long- Threatened Final 4(d) Winter- mines and ca		Winter- mines and caves, Summer – wide variety of forested habitats	Statewide

¹Migratory only, scattered along the coast in small numbers

⁻Eastern cougar and gray wolf are considered extirpated in Massachusetts.

⁻Endangered gray wolves are not known to be present in Massachusetts, but dispersing individuals from source populations in Canada may occur statewide.

⁻Critical habitat for the Northern Red-bellied Cooter is present in Plymouth County.

United States Department of the Interior

FISH AND WILDLIFE SERVICE

New England Ecological Services Field Office 70 Commercial Street, Suite 300 Concord, NH 03301-5094 Phone: (603) 223-2541 Fax: (603) 223-0104

http://www.fws.gov/newengland

In Reply Refer To: October 22, 2021

Consultation Code: 05E1NE00-2022-SLI-0292

Event Code: 05E1NE00-2022-E-00946

Project Name: MIT West Lot

Subject: List of threatened and endangered species that may occur in your proposed project

location or may be affected by your proposed project

To Whom It May Concern:

The enclosed species list identifies threatened, endangered, proposed and candidate species, as well as proposed and final designated critical habitat, that may occur within the boundary of your proposed project and/or may be affected by your proposed project. The species list fulfills the requirements of the U.S. Fish and Wildlife Service (Service) under section 7(c) of the Endangered Species Act (Act) of 1973, as amended (16 U.S.C. 1531 *et seq.*).

New information based on updated surveys, changes in the abundance and distribution of species, changed habitat conditions, or other factors could change this list. Please feel free to contact us if you need more current information or assistance regarding the potential impacts to federally proposed, listed, and candidate species and federally designated and proposed critical habitat. Please note that under 50 CFR 402.12(e) of the regulations implementing section 7 of the Act, the accuracy of this species list should be verified after 90 days. This verification can be completed formally or informally as desired. The Service recommends that verification be completed by visiting the ECOS-IPaC website at regular intervals during project planning and implementation for updates to species lists and information. An updated list may be requested through the ECOS-IPaC system by completing the same process used to receive the enclosed list.

The purpose of the Act is to provide a means whereby threatened and endangered species and the ecosystems upon which they depend may be conserved. Under sections 7(a)(1) and 7(a)(2) of the Act and its implementing regulations (50 CFR 402 *et seq.*), Federal agencies are required to utilize their authorities to carry out programs for the conservation of threatened and endangered species and to determine whether projects may affect threatened and endangered species and/or designated critical habitat.

A Biological Assessment is required for construction projects (or other undertakings having similar physical impacts) that are major Federal actions significantly affecting the quality of the human environment as defined in the National Environmental Policy Act (42 U.S.C. 4332(2) (c)). For projects other than major construction activities, the Service suggests that a biological evaluation similar to a Biological Assessment be prepared to determine whether the project may affect listed or proposed species and/or designated or proposed critical habitat. Recommended contents of a Biological Assessment are described at 50 CFR 402.12.

If a Federal agency determines, based on the Biological Assessment or biological evaluation, that listed species and/or designated critical habitat may be affected by the proposed project, the agency is required to consult with the Service pursuant to 50 CFR 402. In addition, the Service recommends that candidate species, proposed species and proposed critical habitat be addressed within the consultation. More information on the regulations and procedures for section 7 consultation, including the role of permit or license applicants, can be found in the "Endangered Species Consultation Handbook" at:

http://www.fws.gov/endangered/esa-library/pdf/TOC-GLOS.PDF

Please be aware that bald and golden eagles are protected under the Bald and Golden Eagle Protection Act (16 U.S.C. 668 *et seq.*), and projects affecting these species may require development of an eagle conservation plan

(http://www.fws.gov/windenergy/eagle_guidance.html). Additionally, wind energy projects should follow the wind energy guidelines (http://www.fws.gov/windenergy/) for minimizing impacts to migratory birds and bats.

Guidance for minimizing impacts to migratory birds for projects including communications towers (e.g., cellular, digital television, radio, and emergency broadcast) can be found at: http://www.fws.gov/migratorybirds/CurrentBirdIssues/Hazards/towers/towers.htm; http://www.towerkill.com; and http://www.fws.gov/migratorybirds/CurrentBirdIssues/Hazards/towers/comtow.html.

We appreciate your concern for threatened and endangered species. The Service encourages Federal agencies to include conservation of threatened and endangered species into their project planning to further the purposes of the Act. Please include the Consultation Tracking Number in the header of this letter with any request for consultation or correspondence about your project that you submit to our office.

Attachment(s):

Official Species List

Official Species List

This list is provided pursuant to Section 7 of the Endangered Species Act, and fulfills the requirement for Federal agencies to "request of the Secretary of the Interior information whether any species which is listed or proposed to be listed may be present in the area of a proposed action".

This species list is provided by:

New England Ecological Services Field Office 70 Commercial Street, Suite 300 Concord, NH 03301-5094 (603) 223-2541

Project Summary

Consultation Code: 05E1NE00-2022-SLI-0292

Event Code: Some(05E1NE00-2022-E-00946)

Project Name: MIT West Lot
Project Type: DEVELOPMENT

Project Description: The project site is an approximately 67,000 sf parcel located between

Vassar Street and the adjacent CSX rail line. This area will be developed

into residential for the students at MIT.

Project Location:

Approximate location of the project can be viewed in Google Maps: https://www.google.com/maps/@42.357137699999996,-71.10140078910169,14z

Counties: Middlesex County, Massachusetts

Endangered Species Act Species

There is a total of 1 threatened, endangered, or candidate species on this species list.

Species on this list should be considered in an effects analysis for your project and could include species that exist in another geographic area. For example, certain fish may appear on the species list because a project could affect downstream species.

IPaC does not display listed species or critical habitats under the sole jurisdiction of NOAA Fisheries¹, as USFWS does not have the authority to speak on behalf of NOAA and the Department of Commerce.

See the "Critical habitats" section below for those critical habitats that lie wholly or partially within your project area under this office's jurisdiction. Please contact the designated FWS office if you have questions.

1. <u>NOAA Fisheries</u>, also known as the National Marine Fisheries Service (NMFS), is an office of the National Oceanic and Atmospheric Administration within the Department of Commerce.

Insects

NAME STATUS

Monarch Butterfly *Danaus plexippus*

Candidate

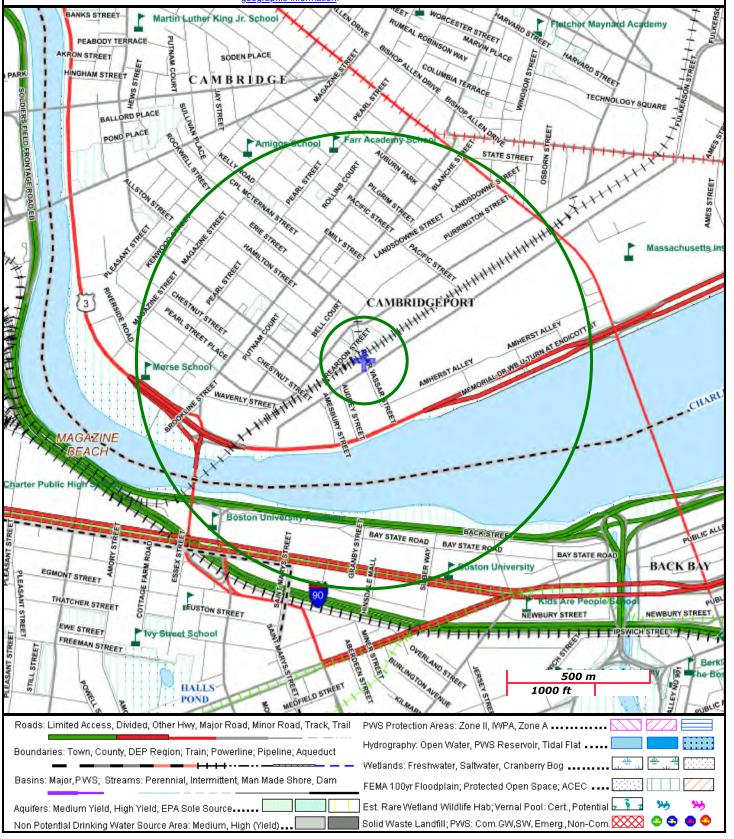
No critical habitat has been designated for this species. Species profile: https://ecos.fws.gov/ecp/species/9743

Critical habitats

THERE ARE NO CRITICAL HABITATS WITHIN YOUR PROJECT AREA UNDER THIS OFFICE'S JURISDICTION.

MassDEP - Bureau of Waste Site Cleanup

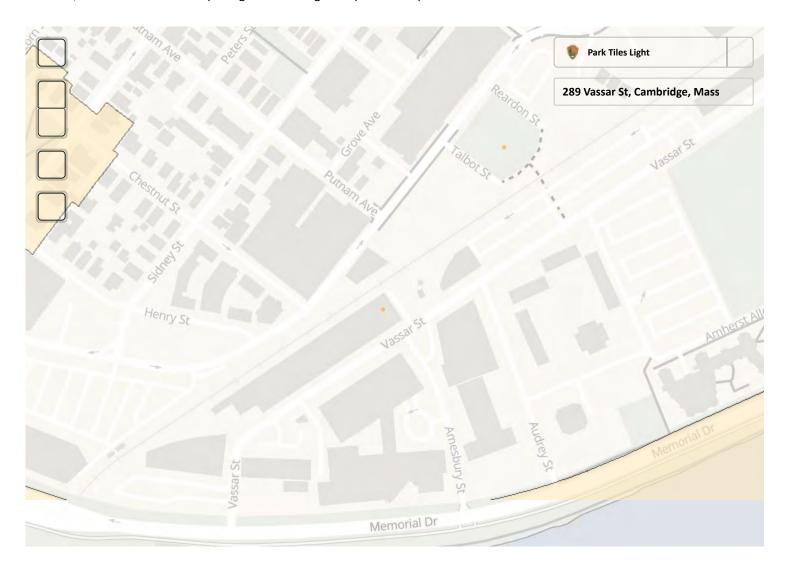
Phase 1 Site Assessment Map: 500 feet & 0.5 Mile Radii


Site Information: MIT WEST LOT 277 TO 301 VASSAR STREET CAMBRIDGE, MA

NAD83 UTM Meters: 4691476mN , 326776mE (Zone: 19) November 2, 2021

The information shown is the best available at the date of printing. However, it may be incomplete. The responsible party and LSP are ultimately responsible for ascertaining the true conditions surrounding the site. Metadata for data layers shown on this map can be found at: be found at:

https://www.mass.gov/orgs/massgis-bureau-of-


APPENDIX E

National Historic Preservation Act Review

Na onal Register of Histori...

Na onal Park Service U.S. Department of the Interior

Public, non-restricted data depic ng Na onal Register spa al data proce...

Massachusetts Cultural Resource Information System MACRIS

MHC Home | MACRIS Home

For more information about this page and how to use it, click here.

Inventory No: CAM.362

Historic Name: Metropolitan Supply Company Warehouse

Common Name:

Address: 277-287 Vassar St

City/Town: Cambridge

Village/Neighborhood: Cambridgeport; Cambridgeport, South

Local No: 61-12;D

Year Constructed: 1939

Arabitaatural Style/a).

Architect(s):

Architectural Style(s): Not researched

Use(s): Warehouse

Significance: Architecture; Commerce

Area(s): CAM.D: Fort Washington Historic District

Designation(s): Local Historic District (03/08/1982)

Building Material(s):

Digital Photo Not Yet Available

There is no form for this resource. Information can be found on the <u>CAM.D</u> form and/or the appropriate area forms listed below.

New Search

Previous

MHC Home

MACRIS Home

Massachusetts Cultural Resource Information System

MHC Home | MACRIS Home

For more information about this page and how to use it, click here.

Inventory No: CAM.363

Historic Name: Metropolitan Supply Company Warehouse

Common Name:

Address: 289-293 Vassar St

City/Town: Cambridge

Village/Neighborhood: Cambridgeport; Cambridgeport, South

61-11;D **Local No:** 1939

Year Constructed: Architect(s):

Architectural Style(s): Not researched

Use(s): Warehouse

Significance: Architecture; Commerce

Area(s): CAM.D: Fort Washington Historic District

Local Historic District (03/08/1982) **Designation(s):**

Building Material(s):

Digital Photo Not Yet Available

There is no form for this resource. Information can be found on the **CAM.D** form and/or the appropriate area forms listed below.

New Search Previous MHC Home **MACRIS Home**

Massachusetts Cultural Resource Information System

Scanned Record Cover Page

Inventory No: CAM.D

Historic Name: Fort Washington Historic District

Common Name:

Address:

Available

Digital Photo Not Yet

City/Town: Cambridge

Village/Neighborhood: Cambridgeport; Cambridgeport, South

Local No: 11

Year Constructed:

Architect(s):

Architectural Style(s):

Use(s): Fort or Base; Military Other; Other Commercial; Other

Recreational

Significance: Archaeology, Historic; Architecture; Commerce; Military;

Recreation

Area(s):

Designation(s): Local Historic District (03/08/1982)

Building Materials(s):

The Massachusetts Historical Commission (MHC) has converted this paper record to digital format as part of ongoing projects to scan records of the Inventory of Historic Assets of the Commonwealth and National Register of Historic Places nominations for Massachusetts. Efforts are ongoing and not all inventory or National Register records related to this resource may be available in digital format at this time.

The MACRIS database and scanned files are highly dynamic; new information is added daily and both database records and related scanned files may be updated as new information is incorporated into MHC files. Users should note that there may be a considerable lag time between the receipt of new or updated records by MHC and the appearance of related information in MACRIS. Users should also note that not all source materials for the MACRIS database are made available as scanned images. Users may consult the records, files and maps available in MHC's public research area at its offices at the State Archives Building, 220 Morrissey Boulevard, Boston, open M-F, 9-5.

Users of this digital material acknowledge that they have read and understood the MACRIS Information and Disclaimer (http://mhc-macris.net/macrisdisclaimer.htm)

Data available via the MACRIS web interface, and associated scanned files are for information purposes only. THE ACT OF CHECKING THIS DATABASE AND ASSOCIATED SCANNED FILES DOES NOT SUBSTITUTE FOR COMPLIANCE WITH APPLICABLE LOCAL, STATE OR FEDERAL LAWS AND REGULATIONS. IF YOU ARE REPRESENTING A DEVELOPER AND/OR A PROPOSED PROJECT THAT WILL REQUIRE A PERMIT, LICENSE OR FUNDING FROM ANY STATE OR FEDERAL AGENCY YOU MUST SUBMIT A PROJECT NOTIFICATION FORM TO MHC FOR MHC'S REVIEW AND COMMENT. You can obtain a copy of a PNF through the MHC web site (www.sec.state.ma.us/mhc) under the subject heading "MHC Forms."

Commonwealth of Massachusetts
Massachusetts Historical Commission
220 Morrissey Boulevard, Boston, Massachusetts 02125
www.sec.state.ma.us/mhc

This file was accessed on: Wednesday, November 3, 2021 at 8:13: PM

FORM A - AREA AND SITE SURVEY MASSACHUSETTS HISTORICAL COMMISSION Office of the Secretary, State House, Boston

6. Please comment on the Historical or Architectural importance of this area:

FORT WASHINGTON IS THE LAST RELIC OF REVOLUTIONARY WAR FORTIFICATIONS IN CAMBRIDGE, BUILT AS A HALF-MOON BATTERY IN 1775 ON ORDERS OF GEORGE WASHINGTON, THE FORT PLAYED IT'S ROLE ALONG WITH OTHER DEFENSES IN THE SIEGE OF BOSTON. THE LAND WAS DEEDED TO THE CITY AS A PARK BY THE DANA FAMILY IN 1857, AT WHICH TIME THE HANDSOME CAST- IRON FENCE AND THE THREE CANNON WERE ADDED. DESPITE PHYSICAL DETERIORATION AND INHOSPITABLE SURROUNDINGS, THE SITE ITSELF REMAINS INTACT, IMPORTANT NOT ONLY FOR ITS ASSOCIATIONS WITH. THE REVOLUTION AND FOR THE ARTISTIC, QUALITIES OF ITS FENCE, BUT ALSO AS AN EARLY EXAMPLE OF HISTORIC PRESERVATION THROUGH BUT ALSO AS AN THE DEDICATION

1 1. Town CAMBRIDGE

1 2. Name of area or section

FORT WASHINGTON

3. General Date or Period /775 +

4. Is the area uniform? ITSELF 15 In style YES UNIFORM, BUT THE In condition YES SURRQUINDING WAREHOUSE In type of ownership 1=5 AREA 15 MOST In use (Explain) YES INCOMPATIBLE (PUBLIC PARK)

5. Is area potentially threatened?

By Zoning No

By Roads VES INNER BELT

By Developers VES

ENCROACHMENTS OF ST. JOHNSBURY TRUCKING CO.)

By Deterioration /ES

Draw a general map of the area involved. Please indicate in red any known historic sites on which individual reports are contemplated on Form B. Indicate street boundaries of area and any route numbers.

REARDON

Recorder E, PEARSON & R. RETTIGE

FOR CAMBRIDGE HISTORICAL COMMISSION

(Name of Organization)

NOTE: Recorder should obtain written permission from Commission or sponsoring organization before using this form.

APPENDIX F

Cambridge Dewatering Permit Application

PERMIT TO DEWATER

Location:	MIT West Lot - 269 to 301 Vassar Street	Temporary	\checkmark
Owner:	Massachusetts Institute of Technology	Permanent	
Contractor:	John Moriarty & Associates		
The property owner,	Massachusetts Institute of Technology	agrees to hold harmless and	

indemnify the City of Cambridge for any liability on the part of the City directly or indirectly arising out of the dewatering operation.

The issuance of this permit is based in part in the submission packet of the applicant with documentation as follows:

Haley & Aldrich, Inc. Report on "NPDES RGP Application for Temporary Construction Dewatering, MIT West Lot, 269 to 301 Vassar Street, Cambridge, Massachusetts", dated 12 November 2021.

In addition, the application has been reviewed by the City under third party agreement as documented in the following reports:

All activities conducted in conjunction with the issuance of this permit must be in accordance with the provisions of the aforementioned reports. Any deviations in conditions must be reported to and approved by the Commissioner of Public Works.

This permit is in addition to any other street permit issued by the Department in connection with any street excavation or obstruction; and all conditions as specified in the Discharge Permit for Dewatering.

For the entire period of time the groundwater is being discharged to a storm drain, the property owner shall provide copies of each Discharge Monitoring Report Form submitted to the EPA, pursuant to the owner's discharge permit.

If in the future the EPA requires the City of Cambridge to bring existing stormwater drainage into compliance with EPA quality standards, as a condition to the continuation of discharge of that stormwater (also including groundwater) into an EPA regulated system into which the MIT (property owner) drains, the owner will agree to maintain its water discharge with such EPA water quality standards.

The property owner and contractor shall at all times meet the conditions specified in the requisite legal agreement/affidavits.

All groundwater pumped from the work shall be disposed of without damage to pavements, other surfaces or property.

Where material or debris has washed or flowed into or has been placed in existing gutters, drains, pipes or structures, such material or debris shall be entirely removed and satisfactorily disposed of by the

Contractor during the progress of work as directed by the Public Works Department.

Any flooding or damage of property and possessions caused by siltation of existing gutters, pipes or structures shall be the responsibility of the Contractor.

Provisions shall be made to insure that no material, water or solid, will freeze on any pavement or in any location which will cause inconvenience or hazard to the general public.

Upon completion of the work, existing gutters, drains, pipes and structures shall be (bucket) cleaned and material disposed of satisfactorily prior to release by the Public Works Department.

Any permit issued by the City of Cambridge shall be revoked upon transfer of any ownership interest unless and until subsequent owner(s) or parties of interest agree to the foregoing terms.

This permit shall remain in effect for one year and shall be renewable thereafter at the agreement of the parties.

The following special conditions as set forth below are part of the permit.

	Mill are ?
City Manager	Property Manager: Corporate Entity President, General Partner or Trustee Trustee with Instrument of Authority 11,30,21
Date	Date A BR
City Solicitor	Contractor
Date	Date
Commissioner of Public	Contractor
Date	Date
CC: Engineering Supervisor of Sewer Maintenance Superintendent of Streets Commissioner of Inspectional Ser	