

# NPDES RGP APPLICATION TEMPORARY CONSTRUCTION DEWATERING PROPOSED LABORATORY BUILDINGS 2 EAST AND 2 WEST HARVARD ENTERPRISE RESEARCH CAMPUS (ERC) – PHASE A 100 WESTERN AVENUE ALLSTON, MASSACHUSETTS

by Haley & Aldrich, Inc. Boston, Massachusetts

for U.S. Environmental Protection Agency (EPA) Region 1 Boston, Massachusetts







HALEY & ALDRICH, INC. 465 Medford St. Suite 2200 Boston, MA 02129 617.886.7400

14 February 2022 File No. 134042-011

VIA EMAIL: NPDES.Generalpermits@epa.gov U.S. Environmental Protection Agency (EPA) Region 1 5 Post Office Square, Suite 100 Mail Code OEP06-4 Boston, Massachusetts 02109

Attention: Shauna Little

Subject: NPDES RGP Application – Temporary Construction Dewatering Buildings 2 East and 2 West Harvard Enterprise Research Campus (ERC) – Phase A 100 Western Avenue Allston, Massachusetts

Ladies and Gentlemen:

On behalf of our client, Allston Phase A Lab/Office Owner, LLC, acting by and through Breakthrough Development, L.L.C. (the "Owner"), Haley & Aldrich, Inc. (Haley & Aldrich) is submitting this application to request authorization under the National Pollutant Discharge Elimination System (NPDES) Remediation General Permit (RGP) for off-site discharge of temporary construction dewatering during construction activities at the proposed Buildings 2 East and 2 West ("the site") of the Phase A Harvard Enterprise Research Campus (ERC) project located at 100 Western Avenue in Allston, Massachusetts, as shown on Figure 1, Project Locus. A copy of the Notice of Intent (NOI) is included in Appendix A.

#### **GENERAL SITE DESCRIPTION**

The site is an approximately 1.7-acre portion of the undeveloped 6-acre Phase A ERC parcel (Figures 1 and 2). The Phase A ERC parcel is subdivided into four areas including the site to the south, the Treehouse Conference Center to the northeast, a Greenway in the center, and residential buildings and a hotel with underground parking to the northwest.

According to the latest design progress information, the Buildings 2 East and 2 West project consists of construction of a nine-story laboratory building (Building 2 East [2E]) and a seven-story laboratory building (Building 2 West [2W]), which will be joined by a central connector and share a common/ continuous ground floor. A one-level basement for underground parking and other building support space will extend across the entire site footprint (approximately 73,000 square feet [sq ft]) and is identified as the South Garage.

The Phase A project site has historically been occupied by various commercial and industrial operations, including a glue factory, paint and varnish companies, a naphtha cleaner, a dry cleaner, coal sheds, and railroad operations. The Phase A area is within the limits of a Massachusetts Department of Environmental Protection (MassDEP) Disposal Site identified by Release Tracking Number (RTN) 3-29441 (the Disposal Site) for contamination associated with historical fill and operations including chlorinated volatile organic compounds (CVOCs), semi-volatile organic compounds (SVOCs), petroleum, pesticides, polychlorinated biphenyls (PCBs), methane, and metals in soil and CVOCs and dissolved-phase petroleum in groundwater. In 2015, additional investigations identified debris with potential asbestos-containing material (PACM) in fill soils at the Disposal Site.

Various remedial actions were performed at the Disposal Site under the Massachusetts Contingency Plan (MCP; 310 CMR 40.0000) including electric resistance heating (ERH), directed groundwater recirculation (DGR), underground storage tank (UST) removal, soil excavation, placement of protective cover materials, and implementation of an Activity and Use Limitation (AUL). The Disposal Site achieved regulatory closure with a Permanent Solution with Conditions in June 2020.

Based on existing Disposal Site conditions, and the regulatory compliance status of RTN 3-29441, soil and groundwater sampling will be performed under a Release Abatement Measure (RAM) in accordance with the MCP (310 CMR 40.0000). The RAM Plan for the project will be prepared and submitted to MassDEP by the Owner's Licensed Site Professional (LSP) prior to construction and concurrently with a Non-Traditional Work Plan (NTWP) for management of debris with PACM in fill soils.

#### **RECEIVING WATER INFORMATION**

The receiving water for the site is the Charles River located approximately 800 feet east of the site. On 22 October 2021, Haley & Aldrich collected one receiving water sample upstream from three proposed outfall locations including SDO01, SDO041, and the Charles River Chamber Outfall. The sample was submitted to a MassDEP-certified laboratory, Alpha Analytical Laboratory of Westborough, Massachusetts (Alpha), for analysis of NPDES receiving water (freshwater) parameters, including hardness, ammonia, and total metals. Field parameters, including pH and temperature, were collected from the surface water sample at the time of sampling. Testing results are provided in Table I. Receiving water temperature is also noted on the effluent limitations input calculation page in Appendix B. The laboratory data report is provided in Appendix C.

The Charles River is identified by Waterbody ID MA72-36 and is a Class B receiving water. The sevenday-ten-year flow (7Q10) of the receiving water was established using the U.S. Geological Survey (USGS) StreamStats program and was confirmed by MassDEP on 7 December 2021. We have additionally confirmed with MassDEP that the dilution factor for the receiving waters is 74.6. The StreamStats Report, dilution factor calculations, and confirmation from MassDEP are included in Appendix B.

Copies of the "EnterData" and "Freshwater" tabs from the excel file provided as an additional resource by EPA are included in Appendix B and will be transmitted electronically with the NOI. The effluent limitations are included for reference in Table I.



#### **SOURCE WATER INFORMATION**

On 22 September 2021, one groundwater sample was collected from monitoring well TB21-I12(OW) to evaluate groundwater (source water) quality. The monitoring well location is within the limits of the proposed South garage excavation and is shown on Figure 2.

The groundwater sample was submitted to Alpha for analysis of constituents consistent with requirements for a NPDES RGP. The groundwater sample was analyzed for one or more of the following parameters: total petroleum hydrocarbons (TPH), volatile organic compounds (VOCs), SVOCs, PCBs, total metals, and waste characteristics. Field parameters, including pH and temperature, were collected at the time of groundwater sampling.

The data were compared to the applicable 2014 MCP Reportable Groundwater Concentrations (RCGW-2) criteria and the site-specific 2017 NPDES RGP Freshwater Effluent Limits as determined in the Water Quality-based Effluent Limitations (WQBEL) calculations. The source water quality data are summarized in Table I. Laboratory data reports are included in Appendix C.

#### **DISCHARGE INFORMATION**

Water from construction dewatering activities will be discharged into storm drains via temporary pipes within the limits of the project site. The storm drain locations and three proposed discharge routes are shown on Figure 3. On average, we estimate effluent discharge rates of 100 gallons per minute (gpm) or less, with occasional peak flows of approximately 150 gpm during significant precipitation events. Temporary dewatering will be conducted from sumps located in the excavations.

#### **DEWATERING TREATMENT SYSTEM INFORMATION**

An effluent treatment system will be designed and implemented by site contractor(s) to meet the applicable 2017 RGP Discharge Effluent Criteria. Prior to discharge, collected water will be routed through a fractionation tank and bag filters (5-micron bag filters are anticipated to be required by the MassDEP-approved NTWP), to remove suspended solids and undissolved chemical constituents. The proposed treatment system schematic is provided on Figure 4. Additional treatment may include a chemically aided settling agent, ion exchange, granulated activated carbon (GAC), and/or pH adjustment.

A Best Management Practices Plan (BMPP), which outlines the proposed discharge operations covered under the RGP, will be available at the site and is not being submitted with this NOI.

#### **CHEMICAL TREATMENT AND ADDITIVES**

To meet the 2017 NPDES RGP Site-Specific Effluent Criteria, additional treatment including a chemicallyaided settling system, ion exchange, GAC, and/or pH adjustment may also be added to the treatment system. Product information for potential treatment systems and additives, including Safety Data Sheets (SDSs), associated hazards, and manufacturer and proper system operation, are provided in Appendix D.



If required, pH adjustment will be conducted using sulfuric acid or sodium hydroxide that will be dosed to reduce or increase pH using a metered system. Potential product information, including chemical formula, SDS, Chemical Abstracts Service (CAS) registry number, manufacturer, associated hazards, toxicological and ecological information, and manufacturer information, including dosing and metering, are provided in Appendix D.

The sulfuric acid or sodium hydroxide will be stored in 55-gallon drums with secondary containment systems in place; a summary of control measures for proper handling and spill prevention is provided in Appendix D. The addition of sulfuric acid or sodium hydroxide to control pH is a standard treatment for temporary construction dewatering; it is not expected to exceed applicable permit limitations and water quality standards or alter conditions in the receiving water. No additional testing is considered necessary for use of this product or to demonstrate that use of this product will not adversely affect the receiving water.

The pH will be automatically and continuously monitored, and additive introduced only as needed. The specific dosing will be based on the pH of the influent water, but at their maximum, the concentrations for sodium hydroxide or sulfuric acid would be 220 parts per million (ppm or milligrams per liter [mg/L]) based on the calculations provided below:

- Worst-case scenario: pumping at 150 gpm and using 48 gallons of sodium hydroxide or sulfuric acid per day (based on a 2 gallon/hour metering rate)
- 150 gpm = 216,000 gallons/day
- Sodium Hydroxide or Sulfuric Acid use (one day) = 48 gallons/day
- 48 gallons/216,000 gallons = 2.22 x 10<sup>-4</sup> gal
- 2.22 x 10<sup>-4</sup> gal \* 100% = 0.022%
- 1% = 10,000 ppm; therefore, 0.022% \* 10,000 ppm = 220 ppm (mg/L)

The  $EC_{50}$  for sodium hydroxide for fish is 340.7-469.2 mg/L (ppm), and the  $EC_{50}$  for sulfuric acid for fish is 500 mg/L (ppm) as listed on the provided SDSs. Even at a worst-case scenario, the addition of sodium hydroxide or sulfuric acid is less than the  $EC_{50}$ .

If necessary, a chemical-aided settling system may be added to one or more of the treatment systems. The system would allow for the application of coagulant and non-ionic dry polymer. The product information for the proposed coagulant and dry polymer, including product name, manufacturer, purpose and use, associated hazards and risks, reported aquatic toxicity ( $LC_{50}$ ), and proper handling and storage measures, is included in the attached SDSs in Appendix D. The coagulant and dry polymer is considered a typical treatment for temporary construction dewatering; addition of these compounds is not expected to add pollutants in concentrations which exceed permit effluent limitations or applicable water quality standards or alter conditions in receiving water. No additional testing is considered to be necessary for use of these products or to demonstrate that use of these products will not adversely affect the receiving water.

The dosing concentration for both the coagulant and dry polymer typically ranges from 25 to 50 ppm. The actual dosing concentration is based on visual observations in the field and will be adjusted and



calibrated by the operator during startup of the additional components to achieve the appropriate setpoint for the system. Dosing is continuous at the set concentration while the system is running.

It is important to note that although the dosing concentration is 25 to 50 ppm, the anticipated concentration in the carryover (post-bag filter) is in the parts per trillion (ppt) range (about 6 orders of magnitude less than the dosing concentration). This is because nearly all the applied chemical becomes incorporated in the sludge and is removed from the waste stream as a solid from the chemical settling tank and as part of typical system operations and maintenance.

#### DETERMINATION OF ENDANGERED SPECIES ACT ELIGIBILITY

According to the guidelines outlined in Appendix I of the 2017 NPDES RGP, a preliminary determination for the action area associated with this project was established using the U.S. Fish and Wildlife Service (USFWS) Information, Planning, and Conservation (IPAC) online system; a copy of the determination is attached in Appendix E. Based on the results of the determination, the project and action area are considered to meet USFWS Criterion A, as no listed species or critical habitat has been established to be present within the project action area. Additionally, a MassDEP Phase 1 Site Assessment Map is included in Appendix E, which confirms that no critical habitats are present at the site.

#### DOCUMENTATION OF NATIONAL HISTORIC PRESERVATION ACT REQUIREMENTS

Based on a review of the resources provided by the U.S. National Register of Historic Places and a review of the Massachusetts Cultural Resource Information System (MACRIS), no historic properties have been identified at the site, and discharges and discharge-related activities are not considered to have the potential to affect historic properties. The discharge is considered to meet Criterion A. Documentation is included in Appendix F.

#### **ETHANOL DISCUSSION**

The groundwater samples were tested for ethanol because of a history of petroleum storage and use in the Phase A project area. In addition, detections of petroleum compounds during recent investigations and testing indicate that petroleum products potentially containing ethanol were used in historic industrial operations, stored, or released at the site. Ethanol testing results are provided in Table I. Ethanol was not detected in groundwater samples above laboratory reporting limits.

#### SUPPLEMENTAL INFORMATION

Permits for temporary construction dewatering will also be required from the Boston Water and Sewer Commission (BWSC), Department of Conservation and Recreation (DCR), and the Massachusetts Department of Transportation (MassDOT). The MassDOT and DCR permit applications are being submitted electronically and concurrently with this NOI. Once issued, a copy of the NPDES RGP Authorization will be provided to BWSC to support the dewatering permit application.



Owner and operator information are provided below for reference:

#### **Owner:**

**Operator**:

Allston Phase A Lab/Office Owner, LLC c/o Breakthrough Development, LLC 125 High Street, Second Floor Studio Boston, MA 02110 Attn: Eric Stadelmann Turner Construction Company Two Seaport Lane Boston, MA 02210 Attn: Gregory Eitas

## **CLOSING**

Thank you very much for your consideration. Please feel free to contact us should you wish to discuss the information contained herein or if you need additional information.

Sincerely yours, HALEY & ALDRICH, INC.

Christ D. Romero Geologist

Joel S. Mooney, P.E. (MA), LSP Principal | Senior Vice President

Enclosures:

Table I - Summary of Water Quality Data

Figure 1 – Project Locus

Figure 2 – Proposed Buildings 2 East, 2 West, and South Garage Site & Subsurface Exploration Plan

Figure 3 – Proposed Dewatering Discharge Routes

Figure 4 – Proposed Treatment System Schematic

Appendix A – Notice of Intent (NOI)

Appendix B – Effluent Limitations Documentation

Appendix C – Laboratory Data Reports

Appendix D – Treatment System Information

Appendix E – Endangered Species Act Assessment

Appendix F - National Historic Preservation Act Review

c: Breakthrough Development, LLC; Attn: Eric Stadelmann Breakthrough Development, LLC; Attn: Tim Stoll

\\haleyaldrich.com\share\CF\Projects\134042\Phase A\5. Deliverables\NPDES RGP Applications\Building 2 East, 2 West\Text\2022-0214-ERC-RGP NOI Letter Report-F .docx



HBallontyne

Heather A. Ballantyne, P.G. (NH), LSP Senior Project Manager

TABLE

#### TABLE I SUMMARY OF GROUNDWATER QUALITY DATA TISHMAN - ENTERPRISE RESEARCH CAMPUS

ALLSTON, MASSACHUSETTS

|                                              | Compariso   | n Criteria        | INFLUENT            | EFFLUENT                       |
|----------------------------------------------|-------------|-------------------|---------------------|--------------------------------|
| Location Name                                |             | <b>2017 NPDES</b> | TB21_I12(OW)        | FRESH WATER REC                |
| Sample Name                                  |             | RGP               | TB21  12(OW) 092221 | FRESH WATER RECEIVING 20211022 |
| Sample Date                                  | MassDEP MCP | Site-Specific     | 09/22/2021          | 10/22/2021                     |
| I ob Somple ID                               | RCGW-2 2014 | Effluent          | 12151268 01         | 13159159 01                    |
|                                              |             | Citatio           | 12151500-01         | L2138138-01                    |
| Sample Type                                  |             | Criteria          | WATER               | WATER                          |
|                                              |             |                   |                     |                                |
| Volatile Organic Compounds (µg/L)            |             |                   |                     |                                |
| 1,1,1-Trichloroethane                        | 4000        | 200               | ND (2)              | -                              |
| 1,1,2-Trichloroethane                        | 900         | 5                 | ND (1.5)            | -                              |
| 1,1-Dichloroethane                           | 2000        | 70                | ND (1.5)            | -                              |
| 1,1-Dichloroethene                           | 80          | 3.2               | ND (1)              | -                              |
| 1,2-Dichlorobenzene                          | 2000        | 600               | ND (5)              | -                              |
| 1.2-Dichloroethane                           | 5           | 5                 | ND (1.5)            | -                              |
| 1 3-Dichlorohenzene                          | 6000        | 320               | ND (5)              | -                              |
| 1.4 Dichlorobenzene                          | 60          | 520               | ND (5)              |                                |
| Antenno                                      | 50000       | 7070              | ND (3)              | _                              |
| Acetone                                      | 50000       | /9/0              | ND (10)             | -                              |
| Benzene                                      | 1000        | 5                 | ND (1)              | -                              |
| Carbon tetrachloride                         | 2           | 4.4               | ND (1)              | -                              |
| Cis-1,2-Dichloroethene                       | 20          | 70                | ND (1)              | -                              |
| Ethylbenzene                                 | 5000        | 100               | ND (1)              | -                              |
| Methyl Tert Butyl Ether (MTBE)               | 5000        | 70                | ND (10)             | -                              |
| Methylene chloride (Dichloromethane)         | 2000        | 4.6               | ND (1)              | -                              |
| O-Xvlene                                     | NA          | 100               | ND (1)              | _                              |
| M P-Xylenes                                  | NA          | 100               | ND (2)              | _                              |
| Test Duty Alechel (test Duterel)             | NA<br>NA    | 100               | ND (2)              | -                              |
|                                              | INA         | 120               | ND (100)            | -                              |
| Tert-Amyl Methyl Ether (TAME)                | NA          | 90                | ND (20)             | -                              |
| Tetrachloroethene                            | 50          | 5                 | ND (1)              | -                              |
| Toluene                                      | 40000       | 100               | ND (1)              | -                              |
| Trichloroethene                              | 5           | 5                 | ND (1)              | -                              |
| Vinyl chloride                               | 2           | 2                 | ND (1)              | -                              |
| Xvlene (total)                               | 3000        | 100               | ND (1)              | -                              |
| Total BTEX                                   | NA          | 100               | ND                  |                                |
| SUM of Volatile Organic Compounds            | ND          | NA                | ND                  |                                |
|                                              | ND          | 1073              | ND                  |                                |
| Valatila Organia Compounda SIM (ug/L)        |             |                   |                     |                                |
| Volatile Organic Compounds Silvi (μg/L)      | 6000        | 200               |                     |                                |
| 1,4-Dioxane                                  | 6000        | 200               | ND (5)              |                                |
|                                              |             |                   |                     |                                |
| Semi-Volatile Organic Compounds (µg/L)       |             |                   |                     |                                |
| Bis(2-Ethylhexyl)phthalate                   | 50000       | 101               | ND (2.2)            | -                              |
| Butyl benzylphthalate                        | 10000       | 190               | ND (5)              | -                              |
| Di-n-butylphthalate                          | 5000        | 190               | ND (5)              | -                              |
| Di-n-octyl phthalate                         | 100000      | 190               | ND (5)              | -                              |
| Diethyl phthalate                            | 9000        | 190               | ND (5)              | -                              |
| Dimethyl obthalate                           | 50000       | 190               | ND (5)              | -                              |
|                                              | ND          | 190               | ND ND               |                                |
| Deptochlorenhenel                            | 200         | 150               | ND (1)              |                                |
| Pentachiorophenoi                            | 200         | 1                 |                     | -                              |
| Phenol                                       | NA          | 1080              | ND (30)             | -                              |
| SUM of Semivolatile Organic Compounds        | NA          | NA                | ND                  | -                              |
|                                              |             |                   |                     |                                |
| Semi-Volatile Organic Compounds (SIM) (µg/L) |             |                   |                     |                                |
| Acenaphthene                                 | 6000        | 100               | 1.68                | -                              |
| Acenaphthylene                               | 40          | 100               | ND (0.1)            | -                              |
| Anthracene                                   | 30          | 100               | ND (0.1)            | -                              |
| Benzo(a)anthracene                           | 1000        | 1                 | ND (0.1)            | -                              |
| Benzo(a)nyrene                               | 500         | 1                 | ND (0.1)            | -                              |
| Benzo(b)fluoranthene                         | 400         | 1                 | ND (0.1)            |                                |
|                                              | 400         | 100               | ND (0.1)            | _                              |
| Benzo(g,n,i)perviene                         | 20          | 100               | ND (0.1)            | -                              |
| Benzo(k)iluorantnene                         | 100         | 1                 | ND (0.1)            | -                              |
| Chrysene                                     | 70          | 1                 | ND (0.1)            | -                              |
| Dibenz(a,h)anthracene                        | 40          | 1                 | ND (0.1)            | -                              |
| Fluoranthene                                 | 200         | 100               | ND (0.1)            | -                              |
| Fluorene                                     | 40          | 100               | 0.743               | -                              |
| Indeno(1,2,3-cd)pyrene                       | 100         | 1                 | ND (0.1)            | -                              |
| Naphthalene                                  | 700         | 20                | ND (0.1)            | -                              |
| Phenanthrene                                 | 10000       | 100               | ND (0 1)            | _                              |
| Pyrene                                       | 20          | 100               | ND (0.1)            | _                              |
| SLIM of Group LBAHs                          | 20          | 100               |                     | -                              |
|                                              | INA<br>NA   | 100               |                     | -                              |
|                                              | INA         | 100               | 2.423               | -                              |
| ISUM of Semivolatile Organic Compounds (SIM) | NA          | NA                | ND                  | -                              |

#### TABLE I SUMMARY OF GROUNDWATER QUALITY DATA TISHMAN - ENTERPRISE RESEARCH CAMPUS

ALLSTON, MASSACHUSETTS

|                                        | Comparison Criteria |                   | INFLUENT            | EFFLUENT                       |  |
|----------------------------------------|---------------------|-------------------|---------------------|--------------------------------|--|
| Location Name                          |                     | <b>2017 NPDES</b> | TB21 I12(OW)        | FRESH WATER REC                |  |
| Sample Name                            |                     | RGP               | TB21 112(OW) 092221 | FRESH WATER RECEIVING 20211022 |  |
| Sample Date                            | MassDEP MCP         | Site-Specific     | 09/22/2021          | 10/22/2021                     |  |
| Lab Sample ID                          | RCGW-2 2014         | Effluent          | L2151368-01         | L2158158-01                    |  |
| Sample Type                            |                     | Criteria          | WATER               | WATER                          |  |
|                                        |                     |                   |                     |                                |  |
| Total Petroleum Hydrocarbons (μg/L)    |                     |                   |                     |                                |  |
| TPH, SGT-HEM                           | 5000                | 5000              | ND (4000)           | -                              |  |
|                                        |                     |                   |                     |                                |  |
| Total Metals (ug/l)                    |                     |                   |                     |                                |  |
| Antimony, Iotal                        | 8000                | 206               | ND (4)              | ND (4)                         |  |
| Arsenic, Iotal                         | 900                 | 10#               | 4.19                | 1                              |  |
| Cadmium, Total                         | 4                   | 10.2              | ND (0.2)            | ND (0.2)                       |  |
| Chromium, Total                        | 300                 | NA                | ND (2)              | 1.08                           |  |
| Copper, Total                          | 100000              | 242               | ND (2)              | 2.89                           |  |
| Iron, Total                            | NA                  | 1000#             | 2970                | 943                            |  |
| Lead, Total                            | 10                  | 160               | ND (1)              | 3.47                           |  |
| Mercury, Total                         | 20                  | 0.739             | ND (0.2)            | ND (0.2)                       |  |
| Nickel, Total                          | 200                 | 1450              | ND (4)              | ND (2)                         |  |
| Selenium, Total                        | 100                 | 235.8             | ND (5)              | ND (5)                         |  |
| Silver, Total                          | 7                   | 35.1              | ND (0.4)            | ND (0.4)                       |  |
| Zinc, Total                            | 900                 | 302.6#            | 23.41               | 17                             |  |
|                                        |                     |                   |                     |                                |  |
| Polychlorinated Biphenyls (µg/l)       |                     |                   |                     |                                |  |
| Aroclor-1016 (PCB-1016)                | 5                   | 6.40E-05          | ND (0.25)           | -                              |  |
| Aroclor-1221 (PCB-1221)                | 5                   | 6.40E-05          | ND (0.25)           | -                              |  |
| Aroclor-1232 (PCB-1232)                | 5                   | 6.40E-05          | ND (0.25)           | -                              |  |
| Aroclor-1242 (PCB-1242)                | 5                   | 6.40E-05          | ND (0.25)           | -                              |  |
| Aroclor-1248 (PCB-1248)                | 5                   | 6.40E-05          | ND (0.25)           | -                              |  |
| Aroclor-1254 (PCB-1254)                | 5                   | 6.40E-05          | ND (0.25)           | -                              |  |
| Aroclor-1260 (PCB-1260)                | 5                   | 6.40E-05          | ND (0.2)            | -                              |  |
| Total PCBs                             | 5                   | 0.5               | ND                  |                                |  |
|                                        |                     |                   |                     |                                |  |
| Microextractables (µg/l)               | 2                   | 0.05              | ND (0.01)           |                                |  |
|                                        | 2                   | 0.05              | ND (0.01)           | -                              |  |
| General Chemistry (µg/I)               |                     |                   |                     |                                |  |
| Chloride, Total (µg/L)                 | NA                  | NA                | 334000              | -                              |  |
| Chlorine, residual, Total (ug/L)       | NA                  | 200               | ND (20)             | -                              |  |
| Chromium VI (Hexavalent), Dissolved    | 300                 | 323               | ND (10)             | ND (10)                        |  |
| Chromium III (Trivalent), Total (ug/L) | 600                 | 323               | ND (10)             | ND (10)                        |  |
| Cvanide, Total (ug/L)                  | 30                  | 178000            | ND (5)              |                                |  |
| Ethanol                                | NA                  | NA                | ND (20000)          | -                              |  |
| Hardness, Total (ug/L)                 | NA                  | NA                | 391000              | 63500                          |  |
| Ammonia, Total (ug/L)                  | NA                  | NA                | 6200                | 112                            |  |
| рН                                     | NA                  | NA                | 6.74*               | 7.4*                           |  |
| Temperature (°C)                       | NS                  | NA                | 15.2*               | 5.5*                           |  |
| Total Suspended Solids (TSS) (μg/L)    | NA                  | 30000             | 6400                | -                              |  |

Notes and Abbreviations:

1. -: Not Analyzed

2. \* Measured in the field at the time of sampling.

°C = degrees Celsius

4. μg/L: micrograms per liter

5. ND (2.5): Not detected, number in parentheses is the laboratory reporting limit

6. # WQBEL assumed based on impaired status of receiving water and previous RGP Authorization effluent limits for projects in the immediate site area.

7. Bold indicates exceedance of site-specific effluent limits.

**FIGURES** 





#### NOTES

- 1 EXISING CONDITIONS SURVEY TAKEN FROM AN ELECTRONIC FILE TITLED "EXISTING CONDITIONS SURVEY, ERC PHASE 1 SURVEY BOSTON MASSACHUSETTS PREPARED FOR HARVARD UNIVERISTY" DATED 1 JUNE 2020 AND TRANSMITTED BY TISHMAN ON 11 JUNE 2021.
- 2. LOT AND LEASE LINES TAKEN FROM AN ELECTRONIC FILE TITLED "30900176-1\_ERC- UTILITY\_UPDATE\_GF OVERLAY, DWG" PROVIDED BY UTILE ON 10 NOVEMBER 2021.
- 3. PROPOSED BUILDING FOOTPRINTS TAKEN FROM AN ELECTRONIC FILE TITLED, "01 GF PLAN (BINDED).DWG" PROVIDED BY UTILE ON 10 NOVEMBER 2021.
- 4. ROOF FOOTPRINTS TAKEN FROM AN ELECTRONIC FILE TITLED, "03 ROOF PLAN (BINDED).DWG" PROVIDED BY UTILE ON 10 NOVEMBER 2021

B024







**APPENDIX A** 

Notice of Intent (NOI)

# II. Suggested Format for the Remediation General Permit Notice of Intent (NOI)

# A. General site information:

| 1. Name of site:                                                                     | Site address:                                         |                   |            |      |  |  |  |
|--------------------------------------------------------------------------------------|-------------------------------------------------------|-------------------|------------|------|--|--|--|
|                                                                                      | Street:                                               |                   |            |      |  |  |  |
|                                                                                      | City:                                                 |                   | State:     | Zip: |  |  |  |
| 2. Site owner                                                                        | Contact Person:                                       |                   |            |      |  |  |  |
|                                                                                      | Telephone:                                            |                   |            |      |  |  |  |
|                                                                                      | Mailing address:                                      |                   |            |      |  |  |  |
|                                                                                      | Street:                                               |                   |            |      |  |  |  |
| Owner is (check one): □ Federal □ State/Tribal □ Private<br>□ Other; if so, specify: | City:                                                 |                   | State:     | Zip: |  |  |  |
| 3. Site operator, if different than owner                                            | Contact Person:                                       |                   |            |      |  |  |  |
|                                                                                      | Telephone:                                            | Email:            |            |      |  |  |  |
|                                                                                      | Mailing address:                                      |                   |            |      |  |  |  |
|                                                                                      | Street:                                               |                   |            |      |  |  |  |
|                                                                                      | City:                                                 | State:            | Zip:       |      |  |  |  |
| 4. NPDES permit number assigned by EPA:                                              | 5. Other regulatory program(s) that apply to the site | (check all th     | at apply): |      |  |  |  |
|                                                                                      | □ MA Chapter 21e; list RTN(s):                        | □ CERCI           | LA         |      |  |  |  |
| NPDES permit is (check all that apply: $\Box$ RGP $\Box$ DGP $\Box$ CGP              | □ NH Groundwater Management Permit or                 | $\Box$ UIC Pr     | ogram      |      |  |  |  |
| $\square$ MSGP $\square$ Individual NPDES permit $\square$ Other; if so, specify:    | Groundwater Release Detection Permit:                 | POTW Pretreatment |            |      |  |  |  |
|                                                                                      |                                                       |                   |            |      |  |  |  |

# **B.** Receiving water information:

| 1. Name of receiving water(s):                                                                                                                                                                                                                                                                                                                                       | Waterbody identification of receiving water(s):                   | Classification of receiving water(s): |  |  |  |  |  |  |  |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------|---------------------------------------|--|--|--|--|--|--|--|
| Receiving water is (check any that apply):  Outstanding Resource Water  Ocean Sanctuary  territorial sea  Wild and Scenic River                                                                                                                                                                                                                                      |                                                                   |                                       |  |  |  |  |  |  |  |
| 2. Has the operator attached a location map in accordance                                                                                                                                                                                                                                                                                                            | with the instructions in B, above? (check one): $\Box$ Yes $\Box$ | No                                    |  |  |  |  |  |  |  |
| Are sensitive receptors present near the site? (check one): $\Box$ Yes $\Box$ No If yes, specify:                                                                                                                                                                                                                                                                    |                                                                   |                                       |  |  |  |  |  |  |  |
| 3. Indicate if the receiving water(s) is listed in the State's Integrated List of Waters (i.e., CWA Section 303(d)). Include which designated uses are impaired, and any pollutants indicated. Also, indicate if a final TMDL is available for any of the indicated pollutants. For more information, contact the appropriate State as noted in Part 4.6 of the RGP. |                                                                   |                                       |  |  |  |  |  |  |  |
| 4. Indicate the seven day-ten-year low flow (7Q10) of the receiving water determined in accordance with the instructions in Appendix V for sites located in Massachusetts and Appendix VI for sites located in New Hampshire.                                                                                                                                        |                                                                   |                                       |  |  |  |  |  |  |  |
| 5. Indicate the requested dilution factor for the calculation of water quality-based effluent limitations (WQBELs) determined in accordance with the instructions in Appendix V for sites in Massachusetts and Appendix VI for sites in New Hampshire.                                                                                                               |                                                                   |                                       |  |  |  |  |  |  |  |
| 6. Has the operator received confirmation from the appropriate State for the 7Q10and dilution factor indicated? (check one):  Yes  No If yes, indicate date confirmation received:                                                                                                                                                                                   |                                                                   |                                       |  |  |  |  |  |  |  |
| 7. Has the operator attached a summary of receiving water sampling results as required in Part 4.2 of the RGP in accordance with the instruction in Appendix VIII? (check one): $\Box$ Yes $\Box$ No                                                                                                                                                                 |                                                                   |                                       |  |  |  |  |  |  |  |

# C. Source water information:

| 1. Source water(s) is (check any that apply):                                                          |                                                                                                 |                              |                                                          |  |  |  |  |  |  |
|--------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------|------------------------------|----------------------------------------------------------|--|--|--|--|--|--|
| □ Contaminated groundwater                                                                             | □ Contaminated surface water                                                                    | □ The receiving water        | □ Potable water; if so, indicate municipality or origin: |  |  |  |  |  |  |
| Has the operator attached a summary of influent<br>sampling results as required in Part 4.2 of the RGP | Has the operator attached a summary of influent sampling results as required in Part 4.2 of the | $\Box$ A surface water other |                                                          |  |  |  |  |  |  |
| in accordance with the instruction in Appendix VIII? (check one):                                      | RGP in accordance with the instruction in<br>Appendix VIII? (check one):                        |                              | □ Other; if so, specify:                                 |  |  |  |  |  |  |
| $\Box$ Yes $\Box$ No                                                                                   | □ Yes □ No                                                                                      |                              |                                                          |  |  |  |  |  |  |

| 2. Source water contaminants:                                                                                                                                              |                                                                                                                                                                                       |  |  |  |  |  |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|--|--|
| a. For source waters that are contaminated groundwater or contaminated surface water, indicate are any contaminants present that are not included in                       | b. For a source water that is a surface water other than the receiving water, potable water<br>or other, indicate any contaminants present at the maximum concentration in accordance |  |  |  |  |  |
| the RGP? (check one): $\Box$ Yes $\Box$ No If yes, indicate the contaminant(s) and the maximum concentration present in accordance with the instructions in Appendix VIII. | with the instructions in Appendix VIII? (check one): $\Box$ Yes $\Box$ No                                                                                                             |  |  |  |  |  |
| 3. Has the source water been previously chlorinated or otherwise contains residual chlorine? (check one):  Yes  No                                                         |                                                                                                                                                                                       |  |  |  |  |  |

# D. Discharge information

| 1. The discharge(s) is $a(n)$ (check any that apply): $\Box$ Existing discharge $\Box$ New discharge $\Box$ New source                                  |                                                                                            |  |  |  |  |  |
|---------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------|--|--|--|--|--|
| Outfall(s):                                                                                                                                             | Outfall location(s): (Latitude, Longitude)                                                 |  |  |  |  |  |
|                                                                                                                                                         |                                                                                            |  |  |  |  |  |
|                                                                                                                                                         |                                                                                            |  |  |  |  |  |
|                                                                                                                                                         |                                                                                            |  |  |  |  |  |
| Discharges enter the receiving water(s) via (check any that apply):  Direct discharges                                                                  | ge to the receiving water $\Box$ Indirect discharge, if so, specify:                       |  |  |  |  |  |
|                                                                                                                                                         |                                                                                            |  |  |  |  |  |
| $\Box$ A private storm sewer system $\Box$ A municipal storm sewer system                                                                               |                                                                                            |  |  |  |  |  |
| If the discharge enters the receiving water via a private or municipal storm sewer sys                                                                  | otem:                                                                                      |  |  |  |  |  |
| Has notification been provided to the owner of this system? (check one): $\Box$ Yes $\Box$ N                                                            | Ňo                                                                                         |  |  |  |  |  |
| Has the operator has received permission from the owner to use such system for disc<br>obtaining permission:                                            | harges? (check one): $\Box$ Yes $\Box$ No, if so, explain, with an estimated timeframe for |  |  |  |  |  |
| Has the operator attached a summary of any additional requirements the owner of this system has specified? (check one):  Yes  No                        |                                                                                            |  |  |  |  |  |
| Provide the expected start and end dates of discharge(s) (month/year):                                                                                  |                                                                                            |  |  |  |  |  |
|                                                                                                                                                         |                                                                                            |  |  |  |  |  |
| Indicate if the discharge is expected to occur over a duration of: $\Box$ less than 12 months $\Box$ 12 months or more $\Box$ is an emergency discharge |                                                                                            |  |  |  |  |  |
| Has the operator attached a site plan in accordance with the instructions in D, above? (check one):  Yes  No                                            |                                                                                            |  |  |  |  |  |
|                                                                                                                                                         |                                                                                            |  |  |  |  |  |

| 2. Activity Category: (check all that apply)                                                                                                                                                                | 3. Contamination Type Category: (check all that apply)                                                                                                                                                                                                                                                       |                                                                                                              |  |  |  |  |  |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------|--|--|--|--|--|
|                                                                                                                                                                                                             | a. If Activity Category I or II: (check all that apply)                                                                                                                                                                                                                                                      |                                                                                                              |  |  |  |  |  |
| <ul> <li>I – Petroleum-Related Site Remediation</li> <li>II – Non-Petroleum-Related Site Remediation</li> <li>III – Contaminated Site Dewatering</li> <li>IV – Dewatering of Pipelines and Tanks</li> </ul> | <ul> <li>A. Inorganics</li> <li>B. Non-Halogenated Volatile Organic Compounds</li> <li>C. Halogenated Volatile Organic Compounds</li> <li>D. Non-Halogenated Semi-Volatile Organic Compounds</li> <li>E. Halogenated Semi-Volatile Organic Compounds</li> <li>F. Fuels Parameters</li> </ul>                 |                                                                                                              |  |  |  |  |  |
|                                                                                                                                                                                                             | b. If Activity Category III, IV, V, VI, VII or VIII: (check either G or H)                                                                                                                                                                                                                                   |                                                                                                              |  |  |  |  |  |
|                                                                                                                                                                                                             | □ G. Sites with Known<br>Contamination                                                                                                                                                                                                                                                                       | □ H. Sites with Unknown Contamination                                                                        |  |  |  |  |  |
| <ul> <li>V – Aquifer Pump Testing</li> <li>VI – Well Development/Rehabilitation</li> <li>VII – Collection Structure Dewatering/Remediation</li> </ul>                                                       | c. If Category III-G, IV-G, V-G, VI-G, VII-G or VIII-G: (check all that apply)                                                                                                                                                                                                                               |                                                                                                              |  |  |  |  |  |
| □ VIII – Dredge-Related Dewatering                                                                                                                                                                          | <ul> <li>A. Inorganics</li> <li>B. Non-Halogenated Volatile<br/>Organic Compounds</li> <li>C. Halogenated Volatile Organic<br/>Compounds</li> <li>D. Non-Halogenated Semi-Volatile<br/>Organic Compounds</li> <li>E. Halogenated Semi-Volatile<br/>Organic Compounds</li> <li>F. Fuels Parameters</li> </ul> | d. If Category III-H, IV-H, V-H, VI-H, VII-H or<br>VIII-H Contamination Type Categories A through<br>F apply |  |  |  |  |  |

4. Influent and Effluent Characteristics

|                         | Known                    | Known                     |                 |                       |                              | Influent                   |                            | Effluent Limitations |       |
|-------------------------|--------------------------|---------------------------|-----------------|-----------------------|------------------------------|----------------------------|----------------------------|----------------------|-------|
| Parameter               | or<br>believed<br>absent | or<br>believed<br>present | # of<br>samples | Test<br>method<br>(#) | Detection<br>limit<br>(µg/l) | Daily<br>maximum<br>(µg/l) | Daily<br>average<br>(µg/l) | TBEL                 | WQBEL |
| A. Inorganics           |                          |                           |                 |                       |                              |                            |                            |                      |       |
| Ammonia                 |                          |                           |                 |                       |                              |                            |                            | Report mg/L          |       |
| Chloride                |                          |                           |                 |                       |                              |                            |                            | Report µg/l          |       |
| Total Residual Chlorine |                          |                           |                 |                       |                              |                            |                            | 0.2 mg/L             |       |
| Total Suspended Solids  |                          |                           |                 |                       |                              |                            |                            | 30 mg/L              |       |
| Antimony                |                          |                           |                 |                       |                              |                            |                            | 206 µg/L             |       |
| Arsenic                 |                          |                           |                 |                       |                              |                            |                            | 104 µg/L             |       |
| Cadmium                 |                          |                           |                 |                       |                              |                            |                            | 10.2 µg/L            |       |
| Chromium III            |                          |                           |                 |                       |                              |                            |                            | 323 µg/L             |       |
| Chromium VI             |                          |                           |                 |                       |                              |                            |                            | 323 µg/L             |       |
| Copper                  |                          |                           |                 |                       |                              |                            |                            | 242 µg/L             |       |
| Iron                    |                          |                           |                 |                       |                              |                            |                            | 5,000 μg/L           |       |
| Lead                    |                          |                           |                 |                       |                              |                            |                            | 160 µg/L             |       |
| Mercury                 |                          |                           |                 |                       |                              |                            |                            | 0.739 μg/L           |       |
| Nickel                  |                          |                           |                 |                       |                              |                            |                            | 1,450 µg/L           |       |
| Selenium                |                          |                           |                 |                       |                              |                            |                            | 235.8 µg/L           |       |
| Silver                  |                          |                           |                 |                       |                              |                            |                            | 35.1 μg/L            |       |
| Zinc                    |                          |                           |                 |                       |                              |                            |                            | 420 µg/L             |       |
| Cyanide                 |                          |                           |                 |                       |                              |                            |                            | 178 mg/L             |       |
| B. Non-Halogenated VOCs |                          |                           |                 |                       |                              |                            |                            |                      |       |
| Total BTEX              |                          |                           |                 |                       |                              |                            |                            | 100 µg/L             |       |
| Benzene                 |                          |                           |                 |                       |                              |                            |                            | 5.0 µg/L             |       |
| 1,4 Dioxane             |                          |                           |                 |                       |                              |                            |                            | 200 µg/L             |       |
| Acetone                 |                          |                           |                 |                       |                              |                            |                            | 7.97 mg/L            |       |
| Phenol                  |                          |                           |                 |                       |                              |                            |                            | 1,080 µg/L           |       |

\*WQBEL assumed based on impaired status of receiving water and previous RGP Authorization effluent limits for projects in the immediate site area.

|                          | Known                    | Known                     |                 |                       |                              | Influent                   |                            | Effluent Limitations |       |
|--------------------------|--------------------------|---------------------------|-----------------|-----------------------|------------------------------|----------------------------|----------------------------|----------------------|-------|
| Parameter                | or<br>believed<br>absent | or<br>believed<br>present | # of<br>samples | Test<br>method<br>(#) | Detection<br>limit<br>(µg/l) | Daily<br>maximum<br>(µg/l) | Daily<br>average<br>(µg/l) | TBEL                 | WQBEL |
| C. Halogenated VOCs      |                          |                           |                 |                       |                              |                            |                            |                      |       |
| Carbon Tetrachloride     |                          |                           |                 |                       |                              |                            |                            | 4.4 μg/L             |       |
| 1,2 Dichlorobenzene      |                          |                           |                 |                       |                              |                            |                            | 600 µg/L             |       |
| 1,3 Dichlorobenzene      |                          |                           |                 |                       |                              |                            |                            | 320 µg/L             |       |
| 1,4 Dichlorobenzene      |                          |                           |                 |                       |                              |                            |                            | 5.0 µg/L             |       |
| Total dichlorobenzene    |                          |                           |                 |                       |                              |                            |                            | 763 µg/L in NH       |       |
| 1,1 Dichloroethane       |                          |                           |                 |                       |                              |                            |                            | 70 µg/L              |       |
| 1,2 Dichloroethane       |                          |                           |                 |                       |                              |                            |                            | 5.0 µg/L             |       |
| 1,1 Dichloroethylene     |                          |                           |                 |                       |                              |                            |                            | 3.2 µg/L             |       |
| Ethylene Dibromide       |                          |                           |                 |                       |                              |                            |                            | 0.05 µg/L            |       |
| Methylene Chloride       |                          |                           |                 |                       |                              |                            |                            | 4.6 µg/L             |       |
| 1,1,1 Trichloroethane    |                          |                           |                 |                       |                              |                            |                            | 200 µg/L             |       |
| 1,1,2 Trichloroethane    |                          |                           |                 |                       |                              |                            |                            | 5.0 µg/L             |       |
| Trichloroethylene        |                          |                           |                 |                       |                              |                            |                            | 5.0 µg/L             |       |
| Tetrachloroethylene      |                          |                           |                 |                       |                              |                            |                            | 5.0 µg/L             |       |
| cis-1,2 Dichloroethylene |                          |                           |                 |                       |                              |                            |                            | 70 µg/L              |       |
| Vinyl Chloride           |                          |                           |                 |                       |                              |                            |                            | 2.0 µg/L             |       |
| D. Non-Halogenated SVOC  | s                        |                           |                 | 1                     |                              |                            |                            |                      |       |
| Total Phthalates         |                          |                           |                 |                       |                              |                            |                            | 190 µg/L             |       |
| Diethylhexyl phthalate   |                          |                           |                 |                       |                              |                            |                            | 101 µg/L             |       |
| Total Group I PAHs       |                          |                           |                 |                       |                              |                            |                            | 1.0 µg/L             |       |
| Benzo(a)anthracene       |                          |                           |                 |                       |                              |                            |                            |                      |       |
| Benzo(a)pyrene           |                          |                           |                 |                       |                              |                            |                            |                      |       |
| Benzo(b)fluoranthene     |                          |                           |                 |                       |                              |                            |                            |                      |       |
| Benzo(k)fluoranthene     |                          |                           |                 |                       |                              |                            |                            | As Total PAHs        |       |
| Chrysene                 |                          |                           |                 |                       |                              |                            |                            |                      |       |
| Dibenzo(a,h)anthracene   |                          |                           |                 |                       |                              |                            |                            |                      |       |
| Indeno(1,2,3-cd)pyrene   |                          |                           |                 |                       |                              |                            |                            |                      |       |

|                                 | Known                    | Known                     |                 |                       |                              | Inf                        | luent                      | <b>Effluent Limitations</b>     |       |
|---------------------------------|--------------------------|---------------------------|-----------------|-----------------------|------------------------------|----------------------------|----------------------------|---------------------------------|-------|
| Parameter                       | or<br>believed<br>absent | or<br>believed<br>present | # of<br>samples | Test<br>method<br>(#) | Detection<br>limit<br>(µg/l) | Daily<br>maximum<br>(µg/l) | Daily<br>average<br>(µg/l) | TBEL                            | WQBEL |
| Total Group II PAHs             |                          |                           |                 |                       |                              |                            |                            | 100 µg/L                        |       |
| Naphthalene                     |                          |                           |                 |                       |                              |                            |                            | 20 µg/L                         |       |
| E. Halogenated SVOCs            |                          |                           |                 |                       |                              |                            |                            |                                 |       |
| Total PCBs                      |                          |                           |                 |                       |                              |                            |                            | 0.000064 µg/L                   |       |
| Pentachlorophenol               |                          |                           |                 |                       |                              |                            |                            | 1.0 µg/L                        |       |
| F. Fuels Parameters             |                          |                           |                 |                       |                              |                            |                            |                                 |       |
| Total Petroleum<br>Hydrocarbons |                          |                           |                 |                       |                              |                            |                            | 5.0 mg/L                        |       |
| Ethanol                         |                          |                           |                 |                       |                              |                            |                            | Report mg/L                     |       |
| Methyl-tert-Butyl Ether         |                          |                           |                 |                       |                              |                            |                            | 70 µg/L                         |       |
| tert-Butyl Alcohol              |                          |                           |                 |                       |                              |                            |                            | 120 μg/L in MA<br>40 μg/L in NH |       |
| tert-Amyl Methyl Ether          |                          |                           |                 |                       |                              |                            |                            | 90 μg/L in MA<br>140 μg/L in NH |       |
| Other (i.e., pH, temperature    | e, hardness,             | salinity, LC              | 50, addition    | al pollutan           | ts present);                 | if so, specify:            |                            |                                 |       |
|                                 |                          |                           |                 |                       |                              |                            |                            |                                 |       |
|                                 |                          |                           |                 |                       |                              |                            |                            |                                 |       |
|                                 |                          |                           |                 |                       |                              |                            |                            |                                 |       |
|                                 |                          |                           |                 |                       |                              |                            |                            |                                 |       |
|                                 |                          |                           |                 |                       |                              |                            |                            |                                 |       |
|                                 |                          |                           |                 |                       |                              |                            |                            |                                 |       |
|                                 |                          |                           |                 |                       |                              |                            |                            |                                 |       |
|                                 |                          |                           |                 |                       |                              |                            |                            |                                 |       |
|                                 |                          |                           |                 |                       |                              |                            |                            |                                 |       |
|                                 |                          |                           |                 |                       |                              |                            |                            |                                 |       |
|                                 |                          |                           |                 |                       |                              |                            |                            |                                 |       |
|                                 |                          |                           |                 |                       |                              |                            |                            |                                 |       |
|                                 |                          |                           |                 |                       |                              |                            |                            |                                 |       |

#### LIST OF COMPOUNDS DETECTED IN SOIL AT THE SITE

#### Asbestos

**Volatile Organic Compounds** 1,2,4-Trimethylbenzene 1,3,5-Trimethylbenzene 2-Butanone (Methyl Ethyl Ketone) 2-Phenylbutane (sec-Butylbenzene) Acetone Benzene Carbon disulfide Chlorobenzene Chloroform cis-1,2-Dichloroethene Ethylbenzene Ethyl Ether Isopropylbenzene Naphthalene n-butylbenzene n-propylbenzene Tetrahydrofuran Toluene trans-1,2-Dichloroethene Trichloroethene Vinyl chloride Xvlene (total) **Semi-Volatile Organic Compounds** 2,4-Dimethylphenol 2-Methylnaphthalene 2-Methylphenol 3&4-Methylphenol Acenaphthene Acenaphthylene Anthracene Benzo(a)anthracene Benzo(a)pyrene

Benzo(b)fluoranthene Semi-Volatile Organic Compounds (cont.) Benzo(g,h,i)perylene Benzo(k)fluoranthene bis(2-Ethylhexyl)phthalate Chrysene Dibenz(a,h)anthracene Dibenzofuran Dimethyl phthalate Fluoranthene Fluorene Indeno(1,2,3-cd)pyrene Naphthalene Phenanthrene Phenol Pyrene Extractable Petroleum Hydrocarbons (EPH) C11-C22 Aromatics C19-C36 Aliphatics **C9-C18** Aliphatics Volatile Petroleum Hydrocarbons (VPH) C5-C8 Aliphatics **C9-C10** Aromatics C9-C12 Aliphatics **Total Petroleum Hydrocarbons** Petroleum hydrocarbons **Inorganic Compounds** Arsenic Barium Beryllium Cadmium Chromium Cyanide Lead

Mercurv **Inorganic Compounds (cont.)** Nickel Selenium Silver Vanadium Zinc **TCLP Inorganic Compounds** Barium Cadmium Lead Mercury **TCLP Semi-Volatile Organic Compounds** 3&4-Methylphenol Pyridine **TCLP Volatile Organic Compounds** 2-Butanone (Methyl Ethyl Ketone) Trichloroethene **PCBs** Aroclor-1242 (PCB-1242) Aroclor-1248 (PCB-1248) Aroclor-1254 (PCB-1254) Aroclor-1260 (PCB-1260) Aroclor-1268 (PCB-1268) Pesticides 4,4-DDD 4,4-DDE 4,4-DDT Chlordane Dieldrin Hexachlorobenzene

## E. Treatment system information

1. Indicate the type(s) of treatment that will be applied to effluent prior to discharge: (check all that apply)

 $\Box$  Adsorption/Absorption  $\Box$  Advanced Oxidation Processes  $\Box$  Air Stripping  $\Box$  Granulated Activated Carbon ("GAC")/Liquid Phase Carbon Adsorption  $\Box$  Ion Exchange  $\Box$  Precipitation/Coagulation/Flocculation  $\Box$  Separation/Filtration  $\Box$  Other; if so, specify:

2. Provide a written description of all treatment system(s) or processes that will be applied to the effluent prior to discharge.

Identify each major treatment component (check any that apply):

 $\Box$  Fractionation tanks $\Box$  Equalization tank  $\Box$  Oil/water separator  $\Box$  Mechanical filter  $\Box$  Media filter

 $\Box$  Chemical feed tank  $\Box$  Air stripping unit  $\Box$  Bag filter  $\Box$  Other; if so, specify:

Indicate if either of the following will occur (check any that apply):

 $\Box$  Chlorination  $\Box$  De-chlorination

3. Provide the **design flow capacity** in gallons per minute (gpm) of the most limiting component.

Indicate the most limiting component:

Is use of a flow meter feasible? (check one):  $\Box$  Yes  $\Box$  No, if so, provide justification:

Provide the proposed maximum effluent flow in gpm.

Provide the average effluent flow in gpm.

If Activity Category IV applies, indicate the estimated total volume of water that will be discharged:

4. Has the operator attached a schematic of flow in accordance with the instructions in E, above? (check one):  $\Box$  Yes  $\Box$  No

# F. Chemical and additive information

1. Indicate the type(s) of chemical or additive that will be applied to effluent prior to discharge or that may otherwise be present in the discharge(s): (check all that apply)

□ Algaecides/biocides □ Antifoams □ Coagulants □ Corrosion/scale inhibitors □ Disinfectants □ Flocculants □ Neutralizing agents □ Oxidants □ Oxygen □

scavengers  $\Box$  pH conditioners  $\Box$  Bioremedial agents, including microbes  $\Box$  Chlorine or chemicals containing chlorine  $\Box$  Other; if so, specify:

2. Provide the following information for each chemical/additive, using attachments, if necessary:

a. Product name, chemical formula, and manufacturer of the chemical/additive;

b. Purpose or use of the chemical/additive or remedial agent;

c. Material Safety Data Sheet (MSDS) and Chemical Abstracts Service (CAS) Registry number for each chemical/additive;

d. The frequency (hourly, daily, etc.), duration (hours, days), quantity (maximum and average), and method of application for the chemical/additive;

e. Any material compatibility risks for storage and/or use including the control measures used to minimize such risks; and

f. If available, the vendor's reported aquatic toxicity (NOAEL and/or LC50 in percent for aquatic organism(s)).

3. Has the operator attached an explanation which demonstrates that the addition of such chemicals/additives may be authorized under this general permit in accordance with the instructions in F, above? (check one):  $\Box$  Yes  $\Box$  No; if no, has the operator attached data that demonstrates each of the 126 priority pollutants in CWA Section 307(a) and 40 CFR Part 423.15(j)(1) are non-detect in discharges with the addition of the proposed chemical/additive?

(check one):  $\Box$  Yes  $\Box$  No

# G. Endangered Species Act eligibility determination

1. Indicate under which criterion the discharge(s) is eligible for coverage under this general permit:

- □ FWS Criterion A: No endangered or threatened species or critical habitat are in proximity to the discharges or related activities or come in contact with the "action area".
- □ FWS Criterion B: Formal or informal consultation with the FWS under section 7 of the ESA resulted in either a no jeopardy opinion (formal consultation) or a written concurrence by FWS on a finding that the discharges and related activities are "not likely to adversely affect" listed species or critical habitat (informal consultation). Has the operator completed consultation with FWS? (check one): □ Yes □ No; if no, is consultation underway? (check one): □ Yes □ No; if no, is consultation underway? (check one): □

 $Yes \ \square \ No$ 

□ **FWS Criterion C**: Using the best scientific and commercial data available, the effect of the discharges and related activities on listed species and critical habitat have been evaluated. Based on those evaluations, a determination is made by EPA, or by the operator and affirmed by EPA, that the discharges and related activities will have "no effect" on any federally threatened or endangered listed species or designated critical habitat under the jurisdiction of the EWS. This determination was made by: (check one) □ the operator □ EPA □ Other; if so specify:

FWS. This determination was made by: (check one)  $\Box$  the operator  $\Box$  EPA  $\Box$  Other; if so, specify:

□ NMFS Criterion: A determination made by EPA is affirmed by the operator that the discharges and related activities will have "no effect" or are "not likely to adversely affect" any federally threatened or endangered listed species or critical habitat under the jurisdiction of NMFS and will not result in any take of listed species. Has the operator previously completed consultation with NMFS? (check one): □ Yes □ No

2. Has the operator attached supporting documentation of ESA eligibility in accordance with the instructions in Appendix I, and G, above? (check one): 🗆 Yes 🗆 No

Does the supporting documentation include any written concurrence or finding provided by the Services? (check one):  $\Box$  Yes  $\Box$  No; if yes, attach.

#### H. National Historic Preservation Act eligibility determination

1. Indicate under which criterion the discharge(s) is eligible for coverage under this general permit:

- □ Criterion A: No historic properties are present. The discharges and discharge-related activities (e.g., BMPs) do not have the potential to cause effects on historic properties.
- Criterion B: Historic properties are present. Discharges and discharge related activities do not have the potential to cause effects on historic properties.
- Criterion C: Historic properties are present. The discharges and discharge-related activities have the potential to have an effect or will have an adverse effect on historic properties.

2. Has the operator attached supporting documentation of NHPA eligibility in accordance with the instructions in H, above? (check one): 🗆 Yes 🗆 No

Does the supporting documentation include any written agreement with the State Historic Preservation Officer (SHPO), Tribal Historic Preservation Officer (TPHO), or other tribal representative that outlines measures the operator will carry out to mitigate or prevent any adverse effects on historic properties? (check one):  $\Box$  Yes  $\Box$  No

#### I. Supplemental information

Describe any supplemental information being provided with the NOI. Include attachments if required or otherwise necessary.

Has the operator attached data, including any laboratory case narrative and chain of custody used to support the application? (check one):  $\Box$  Yes  $\Box$  No Has the operator attached the certification requirement for the Best Management Practices Plan (BMPP)? (check one):  $\Box$  Yes  $\Box$  No

## J. Certification requirement

I certify under penalty of law that this document and all attachments were prepared under my direction or supervision in accordance with a system designed to assure that qualified personnel properly gathered and evaluated the information submitted. Based on my inquiry of the person or persons who manage the system, or those persons directly responsible for gathering the information, the information submitted is, to the best of my knowledge and belief, true, accurate, and complete. I have no personal knowledge that the information submitted is other than true, accurate, and complete. I am aware that there are significant penalties for submitting false information, including the possibility of fine and imprisonment for knowing violations.

BMPP certification statement:

| Notification provided to the appropriate State, including a copy of this NOI, if required.                                                                                                                                              | Check one: Yes □      | No 🗆      |  |  |  |  |  |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------|-----------|--|--|--|--|--|
| Notification provided to the municipality in which the discharge is located, including a copy of this NOI, if requested.                                                                                                                | Check one: Yes □      | No 🗆      |  |  |  |  |  |
| Notification provided to the owner of a private or municipal storm sewer system, if such system is used for site                                                                                                                        | Check one: Yes $\Box$ | No 🗆 NA 🗆 |  |  |  |  |  |
| discharges, including a copy of this NOI, if requested.                                                                                                                                                                                 |                       |           |  |  |  |  |  |
| Permission obtained from the owner of a private or municipal storm sewer system, it such system is used for site<br>discharges. If yes, attach additional conditions. If no, attach explanation and timeframe for obtaining permission. | Check one: Yes □      | No 🗆 NA 🗆 |  |  |  |  |  |
| Notification provided to the owner/operator of the area associated with activities covered by an additional discharge                                                                                                                   |                       |           |  |  |  |  |  |
| permit(s). Additional discharge permit is (check one): $\Box$ RGP $\Box$ DGP $\Box$ CGP $\Box$ MSGP $\Box$ Individual NPDES permit                                                                                                      | Check one: Yes $\Box$ | No 🗆 NA 🗆 |  |  |  |  |  |
| □ Other; if so specify:                                                                                                                                                                                                                 |                       |           |  |  |  |  |  |
| Signature: Dat                                                                                                                                                                                                                          | e: 1/19/2022          |           |  |  |  |  |  |
| Print Name and Title: Gregory Eitas                                                                                                                                                                                                     |                       |           |  |  |  |  |  |

**APPENDIX B** 

**Effluent Limitations Documentation** 

# **StreamStats Report**

 Region ID:
 MA

 Workspace ID:
 MA20211207185519702000

 Clicked Point (Latitude, Longitude):
 42.36444, -71.11703

 Time:
 2021-12-07 13:55:39 -0500



| Basin Characteristics |                                                        |       |                         |  |  |  |  |
|-----------------------|--------------------------------------------------------|-------|-------------------------|--|--|--|--|
| Parameter<br>Code     | Parameter Description                                  | Value | Unit                    |  |  |  |  |
| DRNAREA               | Area that drains to a point on a stream                | 282   | square miles            |  |  |  |  |
| BSLDEM250             | Mean basin slope computed from 1:250K DEM              | 2.334 | percent                 |  |  |  |  |
| DRFTPERSTR            | Area of stratified drift per unit of stream length     | 0.23  | square mile per<br>mile |  |  |  |  |
| MAREGION              | Region of Massachusetts 0 for Eastern 1 for<br>Western | 0     | dimensionless           |  |  |  |  |

Low-Flow Statistics Parameters [Statewide Low Flow WRIR00 4135]

| Parameter<br>Code | Parameter Name                        | Value | Units                   | Min<br>Limit | Max<br>Limit |
|-------------------|---------------------------------------|-------|-------------------------|--------------|--------------|
| DRNAREA           | Drainage Area                         | 282   | square miles            | 1.61         | 149          |
| BSLDEM250         | Mean Basin Slope from 250K<br>DEM     | 2.334 | percent                 | 0.32         | 24.6         |
| DRFTPERSTR        | Stratified Drift per Stream<br>Length | 0.23  | square mile per<br>mile | 0            | 1.29         |
| MAREGION          | Massachusetts Region                  | 0     | dimensionless           | 0            | 1            |

Low-Flow Statistics Disclaimers [Statewide Low Flow WRIR00 4135]

One or more of the parameters is outside the suggested range. Estimates were extrapolated with unknown errors

Low-Flow Statistics Flow Report [Statewide Low Flow WRIR00 4135]

| Statistic              | Value | Unit   |
|------------------------|-------|--------|
| 7 Day 2 Year Low Flow  | 49.4  | ft^3/s |
| 7 Day 10 Year Low Flow | 24.6  | ft^3/s |

Low-Flow Statistics Citations

Ries, K.G., III,2000, Methods for estimating low-flow statistics for Massachusetts streams: U.S. Geological Survey Water Resources Investigations Report 00-4135, 81 p. (http://pubs.usgs.gov/wri/wri004135/)

USGS Data Disclaimer: Unless otherwise stated, all data, metadata and related materials are considered to satisfy the quality standards relative to the purpose for which the data were collected. Although these data and associated metadata have been reviewed for accuracy and completeness and approved for release by the U.S. Geological Survey (USGS), no warranty expressed or implied is made regarding the display or utility of the data for other purposes, nor on all computer systems, nor shall the act of distribution constitute any such warranty.

USGS Software Disclaimer: This software has been approved for release by the U.S. Geological Survey (USGS). Although the software has been subjected to rigorous review, the USGS reserves the right to update the software as needed pursuant to further analysis and review. No warranty, expressed or implied, is made by the USGS or the U.S. Government as to the functionality of the software and related material nor shall the fact of release constitute any such warranty. Furthermore, the software is released on condition that neither the USGS nor the U.S. Government shall be held liable for any damages resulting from its authorized or unauthorized use.

USGS Product Names Disclaimer: Any use of trade, firm, or product names is for descriptive purposes only and does not imply endorsement by the U.S. Government.

Application Version: 4.6.2 StreamStats Services Version: 1.2.22 NSS Services Version: 2.1.2

| HALEY & ALDRIC                   | CH, INC.                                                                                                                                                                               |                       |                                        | CALCU      | LATIONS                          | FILE NO.        |                             | 134042-002     |    |   |
|----------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------|----------------------------------------|------------|----------------------------------|-----------------|-----------------------------|----------------|----|---|
| CLIENT                           | Tishman Speyer LLC<br>Harvard Enterprise Reseau                                                                                                                                        | rch                   |                                        |            |                                  | SHEET<br>DATE   |                             | 1<br>30-Nov-21 | of | 1 |
| PROJECT<br>SUBJECT               | Campus - Phase 1A<br>Dilution Factor Calculation                                                                                                                                       | ns                    |                                        |            |                                  | COMPUT          | ED BY                       | CDR            |    |   |
| PURPOSE:                         | Calculate Dilution Factor (DF) for project based on 7 Day 10 Year (7Q10) Low Flow values.                                                                                              |                       |                                        |            |                                  |                 |                             |                |    |   |
| APPROACH:                        | Calculate DF based on EPA formula $(Q_s + Q_p)/Q_p$ , where $Q_s$ is 7Q10 in million gallons per day (MGD) and $Q_p$ is discharge flow in MGD.                                         |                       |                                        |            |                                  |                 |                             |                |    |   |
| ASSUMPTIONS:                     | <ol> <li>7Q10 is 24.3 cfs (from StreamStats 4.0)</li> <li>A conversion of 7.48 is used to convert cubic feet to gallons</li> <li>A discharge flowrate of 150 gpm is assumed</li> </ol> |                       |                                        |            |                                  |                 |                             |                |    |   |
| CALCULATIONS:<br>7Q10 Low Flow N | Value (Q <sub>s</sub> )                                                                                                                                                                |                       |                                        |            |                                  |                 |                             |                |    |   |
| Q <sub>s</sub> =                 | = <u>24.6 ft<sup>3</sup></u><br>sec                                                                                                                                                    | Х                     | <u>7.48 gallons</u><br>ft <sup>3</sup> | х          | <u>86,400 sec</u><br>day         | X<br>1,000      | <u>1 MG</u><br>,000 gallons |                |    |   |
| Q <sub>s</sub> =                 | =                                                                                                                                                                                      | 15.9 MGD              |                                        |            |                                  |                 |                             |                |    |   |
| Discharge Flowro                 | Discharge Flowrate (Q <sub>D</sub> )                                                                                                                                                   |                       |                                        |            |                                  |                 |                             |                |    |   |
| Q <sub>D</sub> =                 | <u>150 gallons</u><br>min                                                                                                                                                              | Х                     | <u>1,440 min</u><br>day                | х          | <u>1 MG</u><br>1,000,000 gallons |                 |                             |                |    |   |
| Q <sub>D</sub> =                 | = 0.216 MGD                                                                                                                                                                            |                       |                                        |            |                                  |                 |                             |                |    |   |
| Dilution Factor (I               | DF)                                                                                                                                                                                    |                       |                                        |            |                                  |                 |                             |                |    |   |
| DF =                             | <u> </u>                                                                                                                                                                               | = 15.9                | <u>MGD + 0.216 MGD</u><br>0.216 MGD    | =          | 74.6                             |                 |                             |                |    |   |
| CONCLUSION                       | The dilution factor for this                                                                                                                                                           | s project is calculat | ed to be 74.6 based c                  | on the pro | ovided 7Q10 low flow             | value and disch | arge flowrate               |                |    |   |

#### **I. Dilution Factor Calculation Method**

#### A. 7Q10

Refer to Appendix V for determining critical low flow; must be approved by State before use in calculations.

#### **B. Dilution Factor** Calculated as follows:

 $Df = \frac{Q_{R} + Q_{P}}{Q_{P}}$  $Q_{R} = 7Q10 \text{ in MGD}$  $Q_{P} = \text{Discharge flow, in MGD}$ 

#### **II. Effluent Limitation Calculation Method**

#### A. Calculate Water Quality Criterion:

Step 1. Downstream hardness, calculated as follows:

$$\begin{split} C_r &= \underbrace{Q_d C_d + Q_s C_s}{Q_r} \\ C_r &= Downstream hardness in mg/L \\ Q_d &= Discharge flow in MGD \\ C_d &= Discharge hardness in mg/L \\ Q_s &= Upstream flow (7Q10) in MGD \\ C_s &= Upstream (receiving water) hardness in mg/L \\ Q_r &= Downstream receiving water flow in MGD \end{split}$$

Step 2. Total recoverable water quality criteria for hardness-dependent metals, calculated as follows:

Total Recoverable Criteria =  $\exp \{m_c [ln(h)] + b_c\}$   $m_c = Pollutant$ -specific coefficient ( $m_a$  for silver)  $b_c = Pollutant$ -specific coefficient ( $b_a$  for silver) ln = Natural logarithmh = Hardness calculated in Step 1

Step 3. Total recoverable water quality criteria for non-hardness-dependent metals, calculated as follows:

WQC in  $\mu g/L = \frac{\text{dissolved WQC in } \mu g/L}{\text{dissolved to total recoverable factor}}$ 

#### **B.** Calculate WQBEL:

Step 1. WQBEL calculated as follows for parameter sampled in and detected in the receiving water:

$$C_{d} = \underline{Q_{r} C_{r} - Q_{s}C_{s}}$$

$$Q_{d}$$

$$C_{r} = \text{Water quality criterion in } \mu g/L$$

 $Q_d = Discharge flow in MGD$ 

 $C_d = WQBEL \text{ in } \mu g/L$ 

- $Q_s = Upstream$  flow (7Q10) in MGD
- $C_s$  = Ustream (receiving water) concentration in  $\mu g/L$
- $Q_r$  = Downstream receiving water flow in MGD

Step 2. WQBEL calculated as follows for parameter not sampled in or not detected in receiving water:

 $C_d = (Q_r/Q_d) \times C_r$ 

 $C_r$  = Water quality criterion in  $\mu$ g/L

 $Q_d = Discharge flow in MGD$ 

 $Q_r$  = Downstream receiving water flow in MGD

#### C. Determine if a WQBEL applies:

Step 1. For parameter sampled in and detected in receiving water, downstream concentrations calculated as follows:

$$\mathbf{C}_{\mathrm{r}} = \underline{\mathbf{Q}_{\mathrm{d}}\mathbf{C}_{\mathrm{d}}} + \underline{\mathbf{Q}_{\mathrm{s}}\mathbf{C}_{\mathrm{s}}}$$

 $C_r$  = Downstream concentration in  $\mu$ g/L

 $Q_d$  = Discharge flow in MGD

 $C_d = Influent concentration in \mu g/L$ 

 $Q_s = Upstream$  flow (7Q10) in MGD

 $C_s = Upstream$  (receiving water) concentration in  $\mu g/L$ 

 $Q_r$  = Downstream receiving water flow in MGD

The WQBEL applies if:

1) the projected downstream concentration calculated in accordance with Step 1, above, and the discharge concentration of a parameter are greater than the WQC calculated for that parameter in accordance with II.A, above

#### AND

2) the WQBEL determined for that parameter in accordance with II.B, above, is less than the TBEL in Part 2.1.1 of the RGP for that parameter. Otherwise, the TBEL in Part 2.1.1 of the RGP for that parameter applies.

Step 2. For a parameter not sampled in or not detected in receiving water, the WQBEL applies if:

1) the discharge concentration of a parameter is greater than the WQBEL determined for that parameter in accordance with II.A or II.B, above;

AND

2) the WQBEL determined for that parameter in accordance with II.A or II.B, above is less than the TBEL in Part 2.1.1 of the RGP for that parameter. Otherwise, the TBEL in

Part 2.1.1 of the RGP for that parameter applies.
#### Enter number values in green boxes below

Enter values in the units specified  $\checkmark$ 15.9

 $Q_R$  = Enter upstream flow in **MGD**  $Q_P =$  Enter discharge flow in **MGD** 0.216 Downstream 7Q10 0

Enter a dilution factor, if other than zero



 $\downarrow$ 

Enter values in the units specified

 $C_d$  = Enter influent hardness in **mg/L** CaCO<sub>3</sub> 391  $C_s = Enter receiving water hardness in mg/L CaCO_3$ 63.5

Freshwater only

Enter receiving water concentrations in the units specified

| 7.4       pH in Standard Units         5.5       Temperature in °C |   |
|--------------------------------------------------------------------|---|
| 5.5 Temperature in <sup>o</sup> C                                  |   |
|                                                                    |   |
| 0.112 Ammonia in <b>mg/L</b>                                       |   |
| 63.5 Hardness in <b>mg/L</b> CaCO                                  | 3 |
| 0 Salinity in <b>ppt</b>                                           |   |
| 0 Antimony in μg/L                                                 |   |
| 1 Arsenic in μg/L                                                  |   |
| 0 Cadmium in μg/L                                                  |   |
| 0 Chromium III in μg/L                                             |   |
| 0 Chromium VI in μg/L                                              |   |
| 2.89 Copper in μg/L                                                |   |
| 943 Iron in μg/L                                                   |   |
| 3.47 Lead in μg/L                                                  |   |
| 0 Mercury in μg/L                                                  |   |
| 0 Nickel in μg/L                                                   |   |
| 0 Selenium in μg/L                                                 |   |
| 0 Silver in μg/L                                                   |   |
| 17 Zinc in μg/L                                                    |   |

Enter influent concentrations in the units specified

 $\downarrow$ TRC in µg/L 0 6.2 Ammonia in mg/L Antimony in µg/L 0 4.19 Arsenic in µg/L 0 Cadmium in µg/L Chromium III in µg/L 0 0 Chromium VI in µg/L 0 Copper in µg/L 2970 Iron in µg/L Lead in µg/L 0 Mercury in µg/L 0 Nickel in µg/L 2.16 Selenium in µg/L 0 0 Silver in µg/L Zinc in µg/L 23.41 Cyanide in µg/L 0 0 Phenol in µg/L Carbon Tetrachloride in µg/L 0 0 Tetrachloroethylene in  $\mu g/L$ Total Phthalates in µg/L 0 Diethylhexylphthalate in  $\mu g/L$ 0 0 Benzo(a)anthracene in  $\mu g/L$ Benzo(a)pyrene in µg/L 0 0 Benzo(b)fluoranthene in  $\mu g/L$ 0 Benzo(k)fluoranthene in  $\mu g/L$ 0 Chrysene in µg/L 0 Dibenzo(a,h)anthracene in  $\mu g/L$  if >1 sample, enter maximum if >10 samples, may enter 95th percentile Enter 0 if non-detect or testing not required

#### Notes:

Freshwater:  $Q_R$  equal to the 7Q10; enter alternate  $Q_R$  if approved by the State; enter 0 if no dilution factor approved Saltwater (estuarine and marine): enter Q<sub>R</sub> if approved by the State; enter 0 if no entry Discharge flow is equal to the design flow or 1 MGD, whichever is less Only if approved by State as the entry for  $Q_R$ ; leave 0 if no entry

Saltwater (estuarine and marine): only if approved by the State Leave 0 if no entry

pH, temperature, and ammonia required for all discharges Hardness required for freshwater Salinity required for saltwater (estuarine and marine) Metals required for all discharges if present and if dilution factor is > 1 Enter 0 if non-detect or testing not required



| Dilution Factor                   | 74.6            |                   |                    |                |                                      |      |               |
|-----------------------------------|-----------------|-------------------|--------------------|----------------|--------------------------------------|------|---------------|
| A. Inorganics                     | TBEL applies if | bolded            | WQBEL applies if   | bolded         | Compliance Level<br>applies if shown |      |               |
| Ammonia                           | Report          | mg/L              |                    |                |                                      |      |               |
| Chloride                          | Report          | ша/I              |                    |                |                                      |      |               |
| Total Residual Chlorine           | 0.2             | μg/L<br>mg/I      | 821                | ug/I           |                                      | μα/I |               |
| Total Suspended Solids            | 20              | mg/L              | 821                | µg/L           |                                      | μg/L |               |
|                                   | 30              | mg/L              |                    | 4              |                                      |      |               |
| Antimony                          | 206             | μg/L              | Char               | μg/L           |                                      |      |               |
| Arsenic                           | 104             | μg/L              | ( <sup>673</sup> ) | μg/L           |                                      |      | — *10 ug/L    |
| Cadmium                           | 10.2            | μg/L              | 0.2031             | μg/L           |                                      |      |               |
| Chromium III                      | 323             | μg/L              | 4682.2             | μg/L           |                                      |      |               |
| Chromium VI                       | 323             | μg/L              | 853.1              | μg/L           |                                      |      |               |
| Copper                            | 242             | μg/L              | 287.3              | μg/L           |                                      |      |               |
| Iron                              | 5000            | μg/L              | <b>y</b> 5196 )    | μg/L           |                                      |      | — *1000 ug/L  |
| Lead                              | 160             | μg/L              | 1.94               | μg/L           |                                      |      |               |
| Mercury                           | 0.739           | н <i>ө</i> /Г.    | 67.59              | н <i>э</i> /Г. |                                      |      |               |
| Nickel                            | 1450            | н <del>о</del> /Г | 2804.6             | на/I           |                                      |      |               |
| Selenium                          | 235.8           | μg/I              | 373.1              | μ <u>α</u> /Ι  |                                      |      |               |
| Silver                            | 255.0           | µg/L              | -145.0             | µg/L           |                                      |      |               |
| 7                                 | 35.1            | µg/L              | (197 d)            | µg/L           |                                      |      |               |
|                                   | 420             | μg/L              | ()187.4            | μg/L           |                                      |      | — *302.6 ug/L |
| Cyanide                           | 178             | mg/L              | 388.0              | μg/L           |                                      | μg/L |               |
| B. Non-Halogenated VOUs           | 100             |                   |                    |                |                                      |      |               |
| I OTAL BIEA                       | 5.0             | µg/L              |                    |                |                                      |      |               |
| 1 4 Diovane                       | 5.0<br>200      | µg/L              |                    |                |                                      |      |               |
| Acetone                           | 200             | μg/L<br>μg/I      |                    |                |                                      |      |               |
| Phenol                            | 1.080           | μg/L<br>μg/L      | 22383              | ug/L           |                                      |      |               |
| C. Halogenated VOCs               | 1,000           | r8-2              | 22000              | r6 2           |                                      |      |               |
| Carbon Tetrachloride              | 4.4             | ug/L              | 119.4              | ug/L           |                                      |      |               |
| 1,2 Dichlorobenzene               | 600             | μg/L              |                    | 10             |                                      |      |               |
| 1,3 Dichlorobenzene               | 320             | μg/L              |                    |                |                                      |      |               |
| 1,4 Dichlorobenzene               | 5.0             | μg/L              |                    |                |                                      |      |               |
| Total dichlorobenzene             |                 | μg/L              |                    |                |                                      |      |               |
| 1,1 Dichloroethane                | 70              | μg/L              |                    |                |                                      |      |               |
| 1,2 Dichloroethane                | 5.0             | μg/L              |                    |                |                                      |      |               |
| 1,1 Dichloroethylene              | 3.2             | μg/L              |                    |                |                                      |      |               |
| Ethylene Dibromide                | 0.05            | μg/L              |                    |                |                                      |      |               |
| Methylene Chloride                | 4.6             | μg/L              |                    |                |                                      |      |               |
| 1,1,1 Trichloroethane             | 200             | μg/L              |                    |                |                                      |      |               |
| Trichloroethylene                 | 5.0             | μg/L<br>μg/I      |                    |                |                                      |      |               |
| Tetrachloroethylene               | 5.0             | μg/L<br>μg/L      | 246.2              | μσ/Γ           |                                      |      |               |
| cis-1.2 Dichloroethylene          | 70              | μg/L              |                    | μBE            |                                      |      |               |
| Vinyl Chloride                    | 2.0             | μg/L              |                    |                |                                      |      |               |
| D. Non-Halogenated SVOCs          |                 | 10                |                    |                |                                      |      |               |
| Total Phthalates                  | 190             | μσ/Γ              |                    | цø/L           |                                      |      |               |
| Diethylhexyl phthalate            | 101             | μg/L              | 164.1              | μg/L           |                                      |      |               |
| Total Group I Polycyclic Aromatic |                 | r.o               |                    | r.9.2          |                                      |      |               |
| Hydrocarbons                      | 1.0             | μg/L              |                    |                |                                      |      |               |
| Benzo(a)anthracene                | 1.0             | μg/L              | 0.2835             | μg/L           |                                      | μg/L |               |
| Benzo(a)pyrene                    | 1.0             | μg/L              | 0.2835             | μg/L           |                                      | μg/L |               |
| Benzo(b)fluoranthene              | 1.0             | μg/L              | 0.2835             | μg/L           |                                      | μg/L |               |
| Benzo(k)fluoranthene              | 1.0             | $\mu g/L$         | 0.2835             | μg/L           |                                      | μg/L |               |
| Chrysene                          | 1.0             | μg/L              | 0.2835             | μg/L           |                                      | μg/L |               |
| Dibenzo(a,h)anthracene            | 1.0             | μg/L              | 0.2835             | μg/L           |                                      | μg/L |               |
| Indeno(1,2,3-cd)pyrene            | 1.0             | μg/L              | 0.2835             | μg/L           |                                      | μg/L |               |
| I otal Group II Polycyclic        | 100             | /T                |                    |                |                                      |      |               |
| Nonhthalana                       | 100             | μg/L              |                    |                |                                      |      |               |
| E. Halogenated SVOCs              | 20              | μg/L              |                    |                |                                      |      |               |
| Total Polychlorinated Biphenvls   |                 |                   |                    |                |                                      |      |               |
| , <u>,</u> , ,                    | 0.000064        | μg/L              |                    |                | 0.5                                  | μg/L |               |

\*WQBEL assumed based on impaired status of receiving water and previous RGP Authorization effluent limits for projects in the immediate site area.

| Pentachlorophenol            | 1.0    | μg/L |      |      |
|------------------------------|--------|------|------|------|
| F. Fuels Parameters          |        |      |      |      |
| Total Petroleum Hydrocarbons | 5.0    | mg/L |      |      |
| Ethanol                      | Report | mg/L |      |      |
| Methyl-tert-Butyl Ether      | 70     | μg/L | 1492 | μg/L |
| tert-Butyl Alcohol           | 120    | μg/L |      |      |
| tert-Amyl Methyl Ether       | 90     | μg/L |      |      |

### **Romero, Christ**

| From:    | Ruan, Xiaodan (DEP) <xiaodan.ruan@state.ma.us></xiaodan.ruan@state.ma.us> |
|----------|---------------------------------------------------------------------------|
| Sent:    | Tuesday, December 7, 2021 6:14 PM                                         |
| То:      | Romero, Christ                                                            |
| Cc:      | Joyce, Liza; Ballantyne, Heather; Vakalopoulos, Catherine (DEP)           |
| Subject: | RE: 7Q10 + Dilution Factor for NPDES NOI                                  |

#### **CAUTION: External Email**

Hi Christ,

I can confirm that the 7Q10 of 24.6 cfs is correct for the receiving water. You indicated in the email below that the 150 gpm is the peak flow. Could you confirm if the 150 gpm is the design flow - the maximum flow rate that the treatment system would allow? Because the dilution factor should be calculated based on the worst-case scenario. If the 150 gpm is the design flow, then your dilution factor of 74.6 is correct for the project at 100 Western Ave, Boston MA.

Here is water quality information in assisting you in filling out the NOI:

Waterbody and ID: Charles River (MA72-36) within Charles River Watershed Classification: B (CSO) Outstanding Resource Water?: no State's most recent Integrated List is located here: <u>https://www.epa.gov/sites/production/files/2020-01/documents/2016-ma-303d-list-report.pdf</u>, search for "MA72-36" to see the causes of impairments. TMDLs: There are two TMDLs (pathogens and nutrients) for this segment

Also, if this is not a *current* MCP site, then in addition to submitting the NOI to EPA, you need to apply with MassDEP and submit a \$500 fee (unless fee exempt, e.g., municipality) through ePLACE. The instructions are located on this page: <u>https://www.mass.gov/how-to/wm-15-npdes-general-permit-notice-of-intent</u>. Technical assistant information is available on the ePLACE application webpage.

Please let me know if you have any other questions.

Sincerely, Xiaodan

Xiaodan Ruan Environmental Engineer Massachusetts Department of Environmental Protection One Winter Street, Boston, MA 02108 (857)-256-4172 <u>xiaodan.ruan@mass.gov</u>

From: Vakalopoulos, Catherine (DEP) <catherine.vakalopoulos@mass.gov>
Sent: Tuesday, December 7, 2021 1:52 PM
To: Ruan, Xiaodan (DEP) <xiaodan.ruan@mass.gov>; CRomero@haleyaldrich.com
Cc: Joyce, Liza <EJoyce@haleyaldrich.com>; HBallantyne@haleyaldrich.com
Subject: Fw: 7Q10 + Dilution Factor for NPDES NOI

### Hi Christ, I'm behind with other things and so I've cc'd Xiaodan who can help you with this. Cathy

Cathy Vakalopoulos Massachusetts Department of Environmental Protection 1 Winter St., Boston, MA 02108, 617-348-4026 Please consider the environment before printing this e-mail

From: Romero, Christ <<u>CRomero@haleyaldrich.com</u>>
Sent: Monday, December 6, 2021 3:07 PM
To: Vakalopoulos, Catherine (DEP) <<u>catherine.vakalopoulos@mass.gov</u>>
Cc: Joyce, Liza <<u>EJoyce@haleyaldrich.com</u>>; Ballantyne, Heather <<u>HBallantyne@haleyaldrich.com</u>>;
Subject: 7Q10 + Dilution Factor for NPDES NOI

CAUTION: This email originated from a sender outside of the Commonwealth of Massachusetts mail system. Do not click on links or open attachments unless you recognize the sender and know the content is safe.

Hi Cathy,

I am working on a NPDES NOI for a site that's part of the Harvard Research Campus. For your review, I have attached the StreamStats report with the 7Q10 low flow value and the dilution factor calculations. The peak discharge flowrate is 150 GPM, which was used in the calculation. Can you confirm that my calculations are appropriate for the project?

Project: 100 Western Ave, Boston MA

Thank you, **Christ D. Romero** Geologist

Haley & Aldrich, Inc. 465 Medford Street | Suite 2200 Charlestown, MA 02129

T: 617-997-6327 www.haleyaldrich.com **APPENDIX C** 

Laboratory Data Reports



### ANALYTICAL REPORT

| Lab Number:                                         | L2151368                                                                              |
|-----------------------------------------------------|---------------------------------------------------------------------------------------|
| Client:                                             | Haley & Aldrich, Inc.<br>465 Medford Street, Suite 2200<br>Charlestown, MA 02129-1400 |
| ATTN:<br>Phone:<br>Project Name:<br>Project Number: | Heather Scranton<br>(617) 886-7400<br>HARVARD ENTERPRISE BLDGS 2<br>134042-003        |
| Report Date:                                        | 10/04/21                                                                              |
|                                                     |                                                                                       |

The original project report/data package is held by Alpha Analytical. This report/data package is paginated and should be reproduced only in its entirety. Alpha Analytical holds no responsibility for results and/or data that are not consistent with the original.

Certifications & Approvals: MA (M-MA086), NH NELAP (2064), CT (PH-0574), IL (200077), ME (MA00086), MD (348), NJ (MA935), NY (11148), NC (25700/666), PA (68-03671), RI (LAO00065), TX (T104704476), VT (VT-0935), VA (460195), USDA (Permit #P330-17-00196).

Eight Walkup Drive, Westborough, MA 01581-1019 508-898-9220 (Fax) 508-898-9193 800-624-9220 - www.alphalab.com



Serial\_No:10042110:33

Project Name:HARVARD ENTERPRISE BLDGS 2Project Number:134042-003

 Lab Number:
 L2151368

 Report Date:
 10/04/21

| Alpha<br>Sample ID | Client ID           | Matrix | Sample<br>Location | Collection<br>Date/Time | Receive Date |
|--------------------|---------------------|--------|--------------------|-------------------------|--------------|
| L2151368-01        | TB21_I12(OW)_092221 | WATER  | ALLSTON, MA        | 09/22/21 12:20          | 09/22/21     |



# Project Name:HARVARD ENTERPRISE BLDGS 2Project Number:134042-003

 Lab Number:
 L2151368

 Report Date:
 10/04/21

#### **Case Narrative**

The samples were received in accordance with the Chain of Custody and no significant deviations were encountered during the preparation or analysis unless otherwise noted. Sample Receipt, Container Information, and the Chain of Custody are located at the back of the report.

Results contained within this report relate only to the samples submitted under this Alpha Lab Number and meet NELAP requirements for all NELAP accredited parameters unless otherwise noted in the following narrative. The data presented in this report is organized by parameter (i.e. VOC, SVOC, etc.). Sample specific Quality Control data (i.e. Surrogate Spike Recovery) is reported at the end of the target analyte list for each individual sample, followed by the Laboratory Batch Quality Control at the end of each parameter. Tentatively Identified Compounds (TICs), if requested, are reported for compounds identified to be present and are not part of the method/program Target Compound List, even if only a subset of the TCL are being reported. If a sample was re-analyzed or re-extracted due to a required quality control corrective action and if both sets of data are reported, the Laboratory ID of the re-analysis or re-extraction is designated with an "R" or "RE", respectively.

When multiple Batch Quality Control elements are reported (e.g. more than one LCS), the associated samples for each element are noted in the grey shaded header line of each data table. Any Laboratory Batch, Sample Specific % recovery or RPD value that is outside the listed Acceptance Criteria is bolded in the report. In reference to questions H (CAM) or 4 (RCP) when "NO" is checked, the performance criteria for CAM and RCP methods allow for some quality control failures to occur and still be within method compliance. In these instances, the specific failure is not narrated but noted in the associated QC Outlier Summary Report, located directly after the Case Narrative. QC information is also incorporated in the Data Usability Assessment table (Format 11) of our Data Merger tool, where it can be reviewed in conjunction with the sample result, associated regulatory criteria and any associated data usability implications.

Soil/sediments, solids and tissues are reported on a dry weight basis unless otherwise noted. Definitions of all data qualifiers and acronyms used in this report are provided in the Glossary located at the back of the report.

HOLD POLICY - For samples submitted on hold, Alpha's policy is to hold samples (with the exception of Air canisters) free of charge for 21 calendar days from the date the project is completed. After 21 calendar days, we will dispose of all samples submitted including those put on hold unless you have contacted your Alpha Project Manager and made arrangements for Alpha to continue to hold the samples. Air canisters will be disposed after 3 business days from the date the project is completed.

Please contact Project Management at 800-624-9220 with any questions.



Project Name:HARVARD ENTERPRISE BLDGS 2Project Number:134042-003

 Lab Number:
 L2151368

 Report Date:
 10/04/21

**Case Narrative (continued)** 

#### **Report Submission**

October 04, 2021: This final report includes the results of all requested analyses. September 29, 2021: This is a preliminary report.

The analysis of Ethanol was subcontracted. A copy of the laboratory report is included as an addendum. Please note: This data is only available in PDF format and is not available on Data Merger.

#### Volatile Organics by Method 624

The WG1551670-3 LCS recoveries, associated with L2151368-01, are above the acceptance criteria for methylene chloride (170%), ethylbenzene (155%), 1,2-dichlorobenzene (155%), 1,3-dichlorobenzene (150%), 1,4-dichlorobenzene (150%) and p/m-xylene (142%); however, the associated sample is non-detect to the RL for these target analytes. The results of the original analysis are reported.

#### Volatile Organics by SIM

The WG1551729-3 LCS recovery, associated with L2151368-01, is above the acceptance criteria for 1,4dioxane (144%); however, the associated sample is non-detect to the RL for this target analyte. The results of the original analysis are reported.

#### Chlorine, Total Residual

The WG1549756-4 MS recovery, performed on L2151368-01, is outside the acceptance criteria for chlorine, total residual (72%); however, the associated LCS recovery is within criteria. No further action was taken.

I, the undersigned, attest under the pains and penalties of perjury that, to the best of my knowledge and belief and based upon my personal inquiry of those responsible for providing the information contained in this analytical report, such information is accurate and complete. This certificate of analysis is not complete unless this page accompanies any and all pages of this report.

Authorized Signature:

Curlen Walker Cristin Walker

Title: Technical Director/Representative

Date: 10/04/21



# ORGANICS



# VOLATILES



|                    |                            | Serial_No       | 0:10042110:33  |
|--------------------|----------------------------|-----------------|----------------|
| Project Name:      | HARVARD ENTERPRISE BLDGS 2 | Lab Number:     | L2151368       |
| Project Number:    | 134042-003                 | Report Date:    | 10/04/21       |
|                    | SAMPLE RESULTS             |                 |                |
| Lab ID:            | L2151368-01                | Date Collected: | 09/22/21 12:20 |
| Client ID:         | TB21_I12(OW)_092221        | Date Received:  | 09/22/21       |
| Sample Location:   | ALLSTON, MA                | Field Prep:     | Not Specified  |
| Sample Depth:      |                            |                 |                |
| Matrix:            | Water                      |                 |                |
| Analytical Method: | 128,624.1                  |                 |                |
| Analytical Date:   | 09/26/21 04:21             |                 |                |
| Analyst:           | ТАВ                        |                 |                |

| Parameter                       | Result                                       | Qualifier | Units | RL  | MDL | Dilution Factor |  |  |  |
|---------------------------------|----------------------------------------------|-----------|-------|-----|-----|-----------------|--|--|--|
| Volatile Organics by GC/MS - We | Volatile Organics by GC/MS - Westborough Lab |           |       |     |     |                 |  |  |  |
| Methylene chloride              | ND                                           |           | ug/l  | 1.0 |     | 1               |  |  |  |
| 1,1-Dichloroethane              | ND                                           |           | ug/l  | 1.5 |     | 1               |  |  |  |
| Carbon tetrachloride            | ND                                           |           | ug/l  | 1.0 |     | 1               |  |  |  |
| 1,1,2-Trichloroethane           | ND                                           |           | ug/l  | 1.5 |     | 1               |  |  |  |
| Tetrachloroethene               | ND                                           |           | ug/l  | 1.0 |     | 1               |  |  |  |
| 1,2-Dichloroethane              | ND                                           |           | ug/l  | 1.5 |     | 1               |  |  |  |
| 1,1,1-Trichloroethane           | ND                                           |           | ug/l  | 2.0 |     | 1               |  |  |  |
| Benzene                         | ND                                           |           | ug/l  | 1.0 |     | 1               |  |  |  |
| Toluene                         | ND                                           |           | ug/l  | 1.0 |     | 1               |  |  |  |
| Ethylbenzene                    | ND                                           |           | ug/l  | 1.0 |     | 1               |  |  |  |
| Vinyl chloride                  | ND                                           |           | ug/l  | 1.0 |     | 1               |  |  |  |
| 1,1-Dichloroethene              | ND                                           |           | ug/l  | 1.0 |     | 1               |  |  |  |
| cis-1,2-Dichloroethene          | ND                                           |           | ug/l  | 1.0 |     | 1               |  |  |  |
| Trichloroethene                 | ND                                           |           | ug/l  | 1.0 |     | 1               |  |  |  |
| 1,2-Dichlorobenzene             | ND                                           |           | ug/l  | 5.0 |     | 1               |  |  |  |
| 1,3-Dichlorobenzene             | ND                                           |           | ug/l  | 5.0 |     | 1               |  |  |  |
| 1,4-Dichlorobenzene             | ND                                           |           | ug/l  | 5.0 |     | 1               |  |  |  |
| p/m-Xylene                      | ND                                           |           | ug/l  | 2.0 |     | 1               |  |  |  |
| o-xylene                        | ND                                           |           | ug/l  | 1.0 |     | 1               |  |  |  |
| Xylenes, Total                  | ND                                           |           | ug/l  | 1.0 |     | 1               |  |  |  |
| Acetone                         | ND                                           |           | ug/l  | 10  |     | 1               |  |  |  |
| Methyl tert butyl ether         | ND                                           |           | ug/l  | 10  |     | 1               |  |  |  |
| Tert-Butyl Alcohol              | ND                                           |           | ug/l  | 100 |     | 1               |  |  |  |
| Tertiary-Amyl Methyl Ether      | ND                                           |           | ug/l  | 20  |     | 1               |  |  |  |
|                                 |                                              |           |       |     |     |                 |  |  |  |



|                     |                         |         |           |            | Se         | erial_No | 0:10042110:33        |  |
|---------------------|-------------------------|---------|-----------|------------|------------|----------|----------------------|--|
| Project Name:       | HARVARD ENTERPRIS       | E BLDGS | 2         |            | Lab Num    | ber:     | L2151368             |  |
| Project Number:     | 134042-003              |         |           |            | Report D   | ate:     | 10/04/21             |  |
|                     |                         | SAMP    |           | S          |            |          |                      |  |
| Lab ID:             | L2151368-01             |         |           |            | Date Colle | cted:    | 09/22/21 12:20       |  |
| Client ID:          | TB21_I12(OW)_092221     |         |           |            | Date Rece  | ived:    | 09/22/21             |  |
| Sample Location:    | ALLSTON, MA             |         |           |            | Field Prep | :        | Not Specified        |  |
| Sample Depth:       |                         |         |           |            |            |          |                      |  |
| Parameter           |                         | Result  | Qualifier | Units      | RL         | MDL      | Dilution Factor      |  |
| Volatile Organics b | y GC/MS - Westborough L | ab      |           |            |            |          |                      |  |
| Surrogate           |                         |         |           | % Recovery | Qualifier  | Acc      | ceptance<br>Criteria |  |

84

95

118



60-140

60-140

60-140

Pentafluorobenzene

4-Bromofluorobenzene

Fluorobenzene

|                                           |                                                   |                | Serial_No                                        | :10042110:33                                |
|-------------------------------------------|---------------------------------------------------|----------------|--------------------------------------------------|---------------------------------------------|
| Project Name:                             | HARVARD ENTERPRISE B                              | LDGS 2         | Lab Number:                                      | L2151368                                    |
| Project Number:                           | 134042-003                                        | 134042-003     |                                                  | 10/04/21                                    |
|                                           |                                                   | SAMPLE RESULTS |                                                  |                                             |
| Lab ID:<br>Client ID:<br>Sample Location: | L2151368-01<br>TB21_I12(OW)_092221<br>ALLSTON, MA |                | Date Collected:<br>Date Received:<br>Field Prep: | 09/22/21 12:20<br>09/22/21<br>Not Specified |
| Sample Depth:                             |                                                   |                |                                                  |                                             |
| Matrix:                                   | Water                                             |                |                                                  |                                             |
| Analytical Method:                        | 128,624.1-SIM                                     |                |                                                  |                                             |
| Analytical Date:                          | 09/26/21 04:21                                    |                |                                                  |                                             |

| Parameter                                        | Result | Qualifier | Units      | RL        | MDL      | <b>Dilution Factor</b> |  |
|--------------------------------------------------|--------|-----------|------------|-----------|----------|------------------------|--|
| Volatile Organics by GC/MS-SIM - Westborough Lab |        |           |            |           |          |                        |  |
| 1,4-Dioxane                                      | ND     |           | ug/l       | 5.0       |          | 1                      |  |
| Surrogate                                        |        |           | % Recovery | Qualifier | Acc<br>C | eptance<br>riteria     |  |
| Fluorobenzene                                    |        |           | 97         |           |          | 60-140                 |  |



Analyst:

GΤ

|                    |                            | Serial_No:         | 10042110:33    |
|--------------------|----------------------------|--------------------|----------------|
| Project Name:      | HARVARD ENTERPRISE BLDGS 2 | Lab Number:        | L2151368       |
| Project Number:    | 134042-003                 | Report Date:       | 10/04/21       |
|                    | SAMPLE RESULTS             |                    |                |
| Lab ID:            | L2151368-01                | Date Collected:    | 09/22/21 12:20 |
| Client ID:         | TB21_I12(OW)_092221        | Date Received:     | 09/22/21       |
| Sample Location:   | ALLSTON, MA                | Field Prep:        | Not Specified  |
| Sample Depth:      |                            |                    |                |
| Matrix:            | Water                      | Extraction Method: | EPA 8011       |
| Analytical Method: | 14,504.1                   | Extraction Date:   | 09/23/21 09:44 |
| Analytical Date:   | 09/23/21 11:46             |                    |                |
| Analyst:           | AMM                        |                    |                |
|                    |                            |                    |                |
|                    |                            |                    |                |
|                    |                            |                    |                |
|                    |                            |                    |                |

| Parameter                                 | Result Qualifier |  | Units | RL    | MDL | <b>Dilution Factor</b> | Column |
|-------------------------------------------|------------------|--|-------|-------|-----|------------------------|--------|
| Microextractables by GC - Westborough Lab |                  |  |       |       |     |                        |        |
| 1,2-Dibromoethane                         | ND               |  | ug/l  | 0.010 |     | 1                      | A      |



| Project Name:                          | HARVARD ENTERPRISE BLDGS 2                     | Lab Number:                            | L2151368                   |
|----------------------------------------|------------------------------------------------|----------------------------------------|----------------------------|
| Project Number:                        | 134042-003                                     | Report Date:                           | 10/04/21                   |
|                                        | Method Blank Analysis<br>Batch Quality Control |                                        |                            |
| Analytical Method:<br>Analytical Date: | 14,504.1<br>09/23/21 10:37                     | Extraction Method:<br>Extraction Date: | EPA 8011<br>09/23/21 09:44 |

| Parameter                    | Result           | Qualifier   | Units | RL           | MDL    |   |
|------------------------------|------------------|-------------|-------|--------------|--------|---|
| Microextractables by GC - We | stborough Lab fo | r sample(s) | : 01  | Batch: WG154 | 9870-1 |   |
| 1,2-Dibromoethane            | ND               |             | ug/l  | 0.010        |        | А |



Analyst:

AMM

Project Name: HARVARD ENTERPRISE BLDGS 2

Project Number: 134042-003

Lab Number: L2151368 **Report Date:** 10/04/21

# Method Blank Analysis Batch Quality Control

Analytical Method: 128,624.1 Analytical Date: 09/26/21 00:20 Analyst: TAB

| Parameter               | Result                  | Qualifier Units | RL        | MDL         |
|-------------------------|-------------------------|-----------------|-----------|-------------|
| /olatile Organics by    | GC/MS - Westborough Lab | for sample(s):  | 01 Batch: | WG1551670-4 |
| Methylene chloride      | ND                      | ug/l            | 1.0       |             |
| 1,1-Dichloroethane      | ND                      | ug/l            | 1.5       |             |
| Carbon tetrachloride    | ND                      | ug/l            | 1.0       |             |
| 1,1,2-Trichloroethane   | ND                      | ug/l            | 1.5       |             |
| Tetrachloroethene       | ND                      | ug/l            | 1.0       |             |
| 1,2-Dichloroethane      | ND                      | ug/l            | 1.5       |             |
| 1,1,1-Trichloroethane   | ND                      | ug/l            | 2.0       |             |
| Benzene                 | ND                      | ug/l            | 1.0       |             |
| Toluene                 | ND                      | ug/l            | 1.0       |             |
| Ethylbenzene            | ND                      | ug/l            | 1.0       |             |
| Vinyl chloride          | ND                      | ug/l            | 1.0       |             |
| 1,1-Dichloroethene      | ND                      | ug/l            | 1.0       |             |
| cis-1,2-Dichloroethene  | ND                      | ug/l            | 1.0       |             |
| Trichloroethene         | ND                      | ug/l            | 1.0       |             |
| 1,2-Dichlorobenzene     | ND                      | ug/l            | 5.0       |             |
| 1,3-Dichlorobenzene     | ND                      | ug/l            | 5.0       |             |
| 1,4-Dichlorobenzene     | ND                      | ug/l            | 5.0       |             |
| p/m-Xylene              | ND                      | ug/l            | 2.0       |             |
| o-xylene                | ND                      | ug/l            | 1.0       |             |
| Xylenes, Total          | ND                      | ug/l            | 1.0       |             |
| Acetone                 | ND                      | ug/l            | 10        |             |
| Methyl tert butyl ether | ND                      | ug/l            | 10        |             |
| Tert-Butyl Alcohol      | ND                      | ug/l            | 100       |             |
| Tertiary-Amyl Methyl Et | ther ND                 | ug/l            | 20        |             |
|                         |                         |                 |           |             |



L2151368

10/04/21

Lab Number:

**Report Date:** 

Project Name: HARVARD ENTERPRISE BLDGS 2

Project Number: 134042-003

### Method Blank Analysis Batch Quality Control

Analytical Method:128,624.1Analytical Date:09/26/21 00:20Analyst:TAB

| Parameter                         | Result     | Qualifier   | Units    | RL     | MDL         |  |
|-----------------------------------|------------|-------------|----------|--------|-------------|--|
| Volatile Organics by GC/MS - West | borough La | b for sampl | e(s): 01 | Batch: | WG1551670-4 |  |

| Surrogate            | %Recovery | A<br>Qualifier | cceptance<br>Criteria |
|----------------------|-----------|----------------|-----------------------|
| Pentafluorobenzene   | 86        |                | 60-140                |
| Fluorobenzene        | 97        |                | 60-140                |
| 4-Bromofluorobenzene | 117       |                | 60-140                |



L2151368

10/04/21

Lab Number:

**Report Date:** 

Project Name: HARVARD ENTERPRISE BLDGS 2

Project Number: 134042-003

### Method Blank Analysis Batch Quality Control

Analytical Method:128,624.1-SIMAnalytical Date:09/26/21 00:20Analyst:GT

| Parameter                     | Result           | Qualifier | Units      | RL     | М         | DL                     |  |
|-------------------------------|------------------|-----------|------------|--------|-----------|------------------------|--|
| Volatile Organics by GC/MS-SI | IM - Westborough | h Lab for | sample(s): | 01 Bat | ch: WG1   | 551729-4               |  |
| 1,4-Dioxane                   | ND               |           | ug/l       | 5.0    |           | -                      |  |
| Surrogate                     |                  |           | %Re        | covery | Qualifier | Acceptance<br>Criteria |  |
| Fluorobenzene                 |                  |           | g          | 9      |           | 60-140                 |  |

## Lab Control Sample Analysis

| Project Name:        | HARVARD ENTER        | HARVARD ENTERPRISE BLDGS 2 |             |               |        | Batch Quality Control |      |                      | L2151368 |        |
|----------------------|----------------------|----------------------------|-------------|---------------|--------|-----------------------|------|----------------------|----------|--------|
| Project Number:      | 134042-003           | 34042-003                  |             |               |        |                       | Repo | eport Date: 10/04/21 |          |        |
|                      |                      | LCS                        |             | LCSD          |        | %Recovery             |      |                      | RPD      |        |
| Parameter            |                      | %Recovery                  | Qual        | %Recovery     | Qual   | Limits                | RPD  | Qual                 | Limits   | Column |
| Microextractables by | GC - Westborough Lat | Associated sam             | nple(s): 01 | Batch: WG1549 | 9870-2 |                       |      |                      |          |        |

| 1,2-Dibromoethane | 113 | - | 80-120 | - | А |
|-------------------|-----|---|--------|---|---|
|                   |     |   |        |   |   |



HARVARD ENTERPRISE BLDGS 2

**Project Name:** 

| <b>-</b>                                   | LCS            | <b>•</b> • | LCSD          | <b>o</b> 1 | %Recovery |     | <b>•</b> • | RPD    |  |
|--------------------------------------------|----------------|------------|---------------|------------|-----------|-----|------------|--------|--|
| Parameter                                  | %Recovery      | Qual       | %Recovery     | Qual       | Limits    | RPD | Qual       | Limits |  |
| Volatile Organics by GC/MS - Westborough I | _ab Associated | sample(s): | 01 Batch: WG1 | 551670-3   |           |     |            |        |  |
| Methylene chloride                         | 170            | Q          | -             |            | 60-140    | -   |            | 28     |  |
| 1,1-Dichloroethane                         | 95             |            | -             |            | 50-150    | -   |            | 49     |  |
| Carbon tetrachloride                       | 95             |            | -             |            | 70-130    | -   |            | 41     |  |
| 1,1,2-Trichloroethane                      | 110            |            | -             |            | 70-130    | -   |            | 45     |  |
| Tetrachloroethene                          | 105            |            | -             |            | 70-130    | -   |            | 39     |  |
| 1,2-Dichloroethane                         | 95             |            | -             |            | 70-130    | -   |            | 49     |  |
| 1,1,1-Trichloroethane                      | 95             |            | -             |            | 70-130    | -   |            | 36     |  |
| Benzene                                    | 115            |            | -             |            | 65-135    | -   |            | 61     |  |
| Toluene                                    | 120            |            | -             |            | 70-130    | -   |            | 41     |  |
| Ethylbenzene                               | 155            | Q          | -             |            | 60-140    | -   |            | 63     |  |
| Vinyl chloride                             | 85             |            | -             |            | 5-195     | -   |            | 66     |  |
| 1,1-Dichloroethene                         | 110            |            | -             |            | 50-150    | -   |            | 32     |  |
| cis-1,2-Dichloroethene                     | 110            |            | -             |            | 60-140    | -   |            | 30     |  |
| Trichloroethene                            | 115            |            | -             |            | 65-135    | -   |            | 48     |  |
| 1,2-Dichlorobenzene                        | 155            | Q          | -             |            | 65-135    | -   |            | 57     |  |
| 1,3-Dichlorobenzene                        | 150            | Q          | -             |            | 70-130    | -   |            | 43     |  |
| 1,4-Dichlorobenzene                        | 150            | Q          | -             |            | 65-135    | -   |            | 57     |  |
| p/m-Xylene                                 | 142            | Q          | -             |            | 60-140    | -   |            | 30     |  |
| o-xylene                                   | 130            |            | -             |            | 60-140    | -   |            | 30     |  |
| Acetone                                    | 92             |            | -             |            | 40-160    | -   |            | 30     |  |
| Methyl tert butyl ether                    | 100            |            | -             |            | 60-140    | -   |            | 30     |  |
| Tert-Butyl Alcohol                         | 110            |            | -             |            | 60-140    | -   |            | 30     |  |
| Tertiary-Amyl Methyl Ether                 | 100            |            | -             |            | 60-140    | -   |            | 30     |  |
|                                            |                | -          |               |            |           |     |            |        |  |



# Lab Control Sample Analysis

| Project Name:   | HARVARD ENTERPRISE BLDGS 2 | Batch Quality Control | Lab Number:  | L2151368 |
|-----------------|----------------------------|-----------------------|--------------|----------|
| Project Number: | 134042-003                 |                       | Report Date: | 10/04/21 |
|                 |                            |                       |              |          |

|                                             | LCS             |           |    | LCSD         |         | %Recovery |     |      | RPD    |
|---------------------------------------------|-----------------|-----------|----|--------------|---------|-----------|-----|------|--------|
| Parameter                                   | %Recovery       | Qual      |    | %Recovery    | Qual    | Limits    | RPD | Qual | Limits |
|                                             |                 |           |    |              |         |           |     |      |        |
| Volatile Organics by GC/MS - Westborough La | b Associated sa | ample(s): | 01 | Batch: WG158 | 51670-3 |           |     |      |        |

| Surrogate            | LCS<br>%Recovery Qual | LCSD<br>%Recovery Qual | Acceptance<br>Criteria |
|----------------------|-----------------------|------------------------|------------------------|
| Pentafluorobenzene   | 93                    |                        | 60-140                 |
| Fluorobenzene        | 99                    |                        | 60-140                 |
| 4-Bromofluorobenzene | 113                   |                        | 60-140                 |



# Lab Control Sample Analysis

| Project Name:   | HARVARD ENTERPRISE BLDGS 2 | Batch Quality Control | Lab Number:  | L2151368 |
|-----------------|----------------------------|-----------------------|--------------|----------|
| Project Number: | 134042-003                 |                       | Report Date: | 10/04/21 |
|                 |                            |                       |              |          |

|                                    | LCS                     |              | LCSD         |           | %Recovery |     |      | RPD    |  |
|------------------------------------|-------------------------|--------------|--------------|-----------|-----------|-----|------|--------|--|
| Parameter                          | %Recovery               | Qual         | %Recovery    | Qual      | Limits    | RPD | Qual | Limits |  |
|                                    |                         |              |              |           |           |     |      |        |  |
| Volatile Organics by GC/MS-SIM - W | estborough Lab Associat | ed sample(s) | ): 01 Batch: | WG1551729 | 9-3       |     |      |        |  |
|                                    |                         |              |              |           |           |     |      |        |  |
| 1,4-Dioxane                        | 144                     | Q            | -            |           | 60-140    | -   |      | 20     |  |

| Surrogate     | LCS<br>%Recovery | Qual | LCSD<br>%Recovery | Qual | Acceptance<br>Criteria |
|---------------|------------------|------|-------------------|------|------------------------|
| Fluorobenzene | 103              |      |                   |      | 60-140                 |



## Matrix Spike Analysis

| Project Name:   | HARVARD ENTERPRISE BLDGS 2 | Batch Quality Control | Lab Number:  | L2151368 |
|-----------------|----------------------------|-----------------------|--------------|----------|
| Project Number: | 134042-003                 |                       | Report Date: | 10/04/21 |
|                 |                            |                       |              |          |

|                              | Native         | MS        | MS              | MS         |         | MSD      | MSD        | R        | ecovery  | /         |          | RPD    |               |
|------------------------------|----------------|-----------|-----------------|------------|---------|----------|------------|----------|----------|-----------|----------|--------|---------------|
| Parameter                    | Sample         | Added     | Found 9         | %Recovery  | Qual    | Found    | %Recovery  | Qual     | Limits   | RPD       | Qual     | Limits | <u>Column</u> |
| Microextractables by GC - We | estborough Lab | Associate | d sample(s): 0' | 1 QC Batch | ID: WG1 | 549870-3 | QC Sample: | L2150704 | 1-02 Cli | ent ID: N | /IS Samp | ole    |               |
| 1,2-Dibromoethane            | ND             | 0.248     | 0.189           | 76         | Q       | -        | -          |          | 80-120   | -         |          | 20     | А             |
| 1,2-Dibromo-3-chloropropane  | ND             | 0.248     | 0.228           | 92         |         | -        | -          |          | 80-120   | -         |          | 20     | A             |
| 1,2,3-Trichloropropane       | ND             | 0.248     | 0.274           | 110        |         | -        | -          |          | 80-120   | -         |          | 20     | А             |



# SEMIVOLATILES



|                                                                                |                                                   | Serial_No:                                       | 10042110:33                                 |
|--------------------------------------------------------------------------------|---------------------------------------------------|--------------------------------------------------|---------------------------------------------|
| Project Name:                                                                  | HARVARD ENTERPRISE BLDGS 2                        | Lab Number:                                      | L2151368                                    |
| Project Number:                                                                | 134042-003                                        | Report Date:                                     | 10/04/21                                    |
|                                                                                | SAMPLE RESULTS                                    |                                                  |                                             |
| Lab ID:<br>Client ID:<br>Sample Location:                                      | L2151368-01<br>TB21_I12(OW)_092221<br>ALLSTON, MA | Date Collected:<br>Date Received:<br>Field Prep: | 09/22/21 12:20<br>09/22/21<br>Not Specified |
| Sample Depth:<br>Matrix:<br>Analytical Method:<br>Analytical Date:<br>Analyst: | Water<br>129,625.1<br>09/27/21 17:07<br>WR        | Extraction Method:<br>Extraction Date:           | EPA 625.1<br>09/25/21 17:00                 |

| Parameter                                        | Result | Qualifier | Units | RL   | MDL | Dilution Factor |
|--------------------------------------------------|--------|-----------|-------|------|-----|-----------------|
| Semivolatile Organics by GC/MS - Westborough Lab |        |           |       |      |     |                 |
| Bis(2-ethylhexyl)phthalate                       | ND     |           | ug/l  | 2.20 |     | 1               |
| Butyl benzyl phthalate                           | ND     |           | ug/l  | 5.00 |     | 1               |
| Di-n-butylphthalate                              | ND     |           | ug/l  | 5.00 |     | 1               |
| Di-n-octylphthalate                              | ND     |           | ug/l  | 5.00 |     | 1               |
| Diethyl phthalate                                | ND     |           | ug/l  | 5.00 |     | 1               |
| Dimethyl phthalate                               | ND     |           | ug/l  | 5.00 |     | 1               |

| Surrogate        | % Recovery | Acceptance<br>Qualifier Criteria |  |
|------------------|------------|----------------------------------|--|
| Nitrobenzene-d5  | 57         | 42-122                           |  |
| 2-Fluorobiphenyl | 58         | 46-121                           |  |
| 4-Terphenyl-d14  | 62         | 47-138                           |  |



|                    |                            | Serial_No:        | :10042110:33   |
|--------------------|----------------------------|-------------------|----------------|
| Project Name:      | HARVARD ENTERPRISE BLDGS 2 | Lab Number:       | L2151368       |
| Project Number:    | 134042-003                 | Report Date:      | 10/04/21       |
|                    | SAMPLE RES                 | ULTS              |                |
| Lab ID:            | L2151368-01                | Date Collected:   | 09/22/21 12:20 |
| Client ID:         | TB21_I12(OW)_092221        | Date Received:    | 09/22/21       |
| Sample Location:   | ALLSTON, MA                | Field Prep:       | Not Specified  |
| Sample Depth:      |                            |                   |                |
| Matrix:            | Water                      | Extraction Method | : EPA 625.1    |
| Analytical Method: | 129,625.1-SIM              | Extraction Date:  | 09/25/21 17:01 |
| Analytical Date:   | 09/28/21 11:13             |                   |                |
| Analyst:           | RP                         |                   |                |
|                    |                            |                   |                |

| Parameter                                            | Result | Qualifier | Units | RL    | MDL | Dilution Factor |  |  |  |
|------------------------------------------------------|--------|-----------|-------|-------|-----|-----------------|--|--|--|
| Semivolatile Organics by GC/MS-SIM - Westborough Lab |        |           |       |       |     |                 |  |  |  |
| Acenaphthene                                         | 1.68   |           | ug/l  | 0.100 |     | 1               |  |  |  |
| Fluoranthene                                         | ND     |           | ug/l  | 0.100 |     | 1               |  |  |  |
| Naphthalene                                          | ND     |           | ug/l  | 0.100 |     | 1               |  |  |  |
| Benzo(a)anthracene                                   | ND     |           | ug/l  | 0.100 |     | 1               |  |  |  |
| Benzo(a)pyrene                                       | ND     |           | ug/l  | 0.100 |     | 1               |  |  |  |
| Benzo(b)fluoranthene                                 | ND     |           | ug/l  | 0.100 |     | 1               |  |  |  |
| Benzo(k)fluoranthene                                 | ND     |           | ug/l  | 0.100 |     | 1               |  |  |  |
| Chrysene                                             | ND     |           | ug/l  | 0.100 |     | 1               |  |  |  |
| Acenaphthylene                                       | ND     |           | ug/l  | 0.100 |     | 1               |  |  |  |
| Anthracene                                           | ND     |           | ug/l  | 0.100 |     | 1               |  |  |  |
| Benzo(ghi)perylene                                   | ND     |           | ug/l  | 0.100 |     | 1               |  |  |  |
| Fluorene                                             | 0.743  |           | ug/l  | 0.100 |     | 1               |  |  |  |
| Phenanthrene                                         | ND     |           | ug/l  | 0.100 |     | 1               |  |  |  |
| Dibenzo(a,h)anthracene                               | ND     |           | ug/l  | 0.100 |     | 1               |  |  |  |
| Indeno(1,2,3-cd)pyrene                               | ND     |           | ug/l  | 0.100 |     | 1               |  |  |  |
| Pyrene                                               | ND     |           | ug/l  | 0.100 |     | 1               |  |  |  |
| Pentachlorophenol                                    | ND     |           | ug/l  | 1.00  |     | 1               |  |  |  |
|                                                      |        |           |       |       |     |                 |  |  |  |

| Surrogate            | % Recovery | Acceptance<br>Qualifier Criteria |  |
|----------------------|------------|----------------------------------|--|
| 2-Fluorophenol       | 32         | 25-87                            |  |
| Phenol-d6            | 25         | 16-65                            |  |
| Nitrobenzene-d5      | 60         | 42-122                           |  |
| 2-Fluorobiphenyl     | 67         | 46-121                           |  |
| 2,4,6-Tribromophenol | 89         | 45-128                           |  |
| 4-Terphenyl-d14      | 73         | 47-138                           |  |



| Project Name:         | HARVARD ENTERPRISE BLDGS 2 | Lab Number:  | L2151368 |  |  |  |
|-----------------------|----------------------------|--------------|----------|--|--|--|
| Project Number:       | 134042-003                 | Report Date: | 10/04/21 |  |  |  |
| Method Blank Analysis |                            |              |          |  |  |  |

#### Method Blank Analysis Batch Quality Control

| Analytical Method: | 129,625.1      | Extraction Method: | EPA 625.1      |
|--------------------|----------------|--------------------|----------------|
| Analytical Date:   | 09/27/21 13:17 | Extraction Date:   | 09/25/21 17:00 |
| Analyst:           | SZ             |                    |                |

| Parameter                          | Result      | Qualifier  | Units     | RL        | MDL         |  |
|------------------------------------|-------------|------------|-----------|-----------|-------------|--|
| Semivolatile Organics by GC/MS - V | Vestborough | Lab for sa | ample(s): | 01 Batch: | WG1550855-1 |  |
| Bis(2-ethylhexyl)phthalate         | ND          |            | ug/l      | 2.20      |             |  |
| Butyl benzyl phthalate             | ND          |            | ug/l      | 5.00      |             |  |
| Di-n-butylphthalate                | ND          |            | ug/l      | 5.00      |             |  |
| Di-n-octylphthalate                | ND          |            | ug/l      | 5.00      |             |  |
| Diethyl phthalate                  | ND          |            | ug/l      | 5.00      |             |  |
| Dimethyl phthalate                 | ND          |            | ug/l      | 5.00      |             |  |

| %Recovery | Qualifier                   | Criteria                                   |                                                                                                                                                |  |
|-----------|-----------------------------|--------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------|--|
|           |                             |                                            |                                                                                                                                                |  |
| 68        |                             | 42-122                                     |                                                                                                                                                |  |
| 68        |                             | 46-121                                     |                                                                                                                                                |  |
| 78        |                             | 47-138                                     |                                                                                                                                                |  |
|           | %Recovery<br>68<br>68<br>78 | A<br>%Recovery Qualifier<br>68<br>68<br>78 | %Recovery         Qualifier         Acceptance<br>Criteria           68         42-122           68         46-121           78         47-138 |  |



L2151368

10/04/21

Lab Number:

**Report Date:** 

| Project Name: | HARVARD ENTERPRISE BLDGS 2 |
|---------------|----------------------------|
|               |                            |

**Project Number:** 134042-003

### Method Blank Analysis Batch Quality Control

Analytical Method:129,625.1-SIMExtraction Method:EPA 625.1Analytical Date:09/26/21 13:14Extraction Date:09/25/21 17:01Analyst:JJWJJWStraction Date:09/25/21 17:01

| Parameter                        | Result         | Qualifier L | Jnits       | RL    | MDL                |
|----------------------------------|----------------|-------------|-------------|-------|--------------------|
| Semivolatile Organics by GC/MS-S | SIM - Westbord | ough Lab fo | r sample(s) | : 01  | Batch: WG1550856-1 |
| Acenaphthene                     | ND             |             | ug/l        | 0.100 |                    |
| Fluoranthene                     | ND             |             | ug/l        | 0.100 |                    |
| Naphthalene                      | ND             |             | ug/l        | 0.100 |                    |
| Benzo(a)anthracene               | ND             |             | ug/l        | 0.100 |                    |
| Benzo(a)pyrene                   | ND             |             | ug/l        | 0.100 |                    |
| Benzo(b)fluoranthene             | ND             |             | ug/l        | 0.100 |                    |
| Benzo(k)fluoranthene             | ND             |             | ug/l        | 0.100 |                    |
| Chrysene                         | ND             |             | ug/l        | 0.100 |                    |
| Acenaphthylene                   | ND             |             | ug/l        | 0.100 |                    |
| Anthracene                       | ND             |             | ug/l        | 0.100 |                    |
| Benzo(ghi)perylene               | ND             |             | ug/l        | 0.100 |                    |
| Fluorene                         | ND             |             | ug/l        | 0.100 |                    |
| Phenanthrene                     | ND             |             | ug/l        | 0.100 |                    |
| Dibenzo(a,h)anthracene           | ND             |             | ug/l        | 0.100 |                    |
| Indeno(1,2,3-cd)pyrene           | ND             |             | ug/l        | 0.100 |                    |
| Pyrene                           | ND             |             | ug/l        | 0.100 |                    |
| Pentachlorophenol                | ND             |             | ug/l        | 1.00  |                    |

| Surrogate            | %Recovery | Acceptance<br>Qualifier Criteria |
|----------------------|-----------|----------------------------------|
| 2-Fluorophenol       | 41        | 25-87                            |
| Phenol-d6            | 29        | 16-65                            |
| Nitrobenzene-d5      | 74        | 42-122                           |
| 2-Fluorobiphenyl     | 73        | 46-121                           |
| 2,4,6-Tribromophenol | 79        | 45-128                           |
| 4-Terphenyl-d14      | 88        | 47-138                           |



Project Name: HARVARD ENTERPRISE BLDGS 2

**Project Number:** 134042-003

 Lab Number:
 L2151368

 Report Date:
 10/04/21

|                                            | LCS            |                | LCSD        |            | %Recovery |     |      | RPD    |  |
|--------------------------------------------|----------------|----------------|-------------|------------|-----------|-----|------|--------|--|
| Parameter                                  | %Recovery      | Qual           | %Recovery   | Qual       | Limits    | RPD | Qual | Limits |  |
| Semivolatile Organics by GC/MS - Westborou | ugh Lab Associ | ated sample(s) | : 01 Batch: | WG1550855- | -2        |     |      |        |  |
| Bis(2-ethylhexyl)phthalate                 | 77             |                | -           |            | 29-137    | -   |      | 82     |  |
| Butyl benzyl phthalate                     | 80             |                | -           |            | 1-140     | -   |      | 60     |  |
| Di-n-butylphthalate                        | 82             |                | -           |            | 8-120     | -   |      | 47     |  |
| Di-n-octylphthalate                        | 78             |                | -           |            | 19-132    | -   |      | 69     |  |
| Diethyl phthalate                          | 79             |                | -           |            | 1-120     | -   |      | 100    |  |
| Dimethyl phthalate                         | 81             |                | -           |            | 1-120     | -   |      | 183    |  |

| Surrogate        | LCS<br>%Recovery Qual | LCSD<br>%Recovery | Qual | Acceptance<br>Criteria |
|------------------|-----------------------|-------------------|------|------------------------|
| Nitrobenzene-d5  | 76                    |                   |      | 42-122                 |
| 2-Fluorobiphenyl | 71                    |                   |      | 46-121                 |
| 4-Terphenyl-d14  | 75                    |                   |      | 47-138                 |



**Project Name:** HARVARD ENTERPRISE BLDGS 2

Project Number: 134042-003

| Deveryoter                           | LCS<br>% Bacavary  | Qual         | LCSD<br>% Pocovorv | Qual    | %Recovery | 000 | Qual | RPD<br>Limito |  |
|--------------------------------------|--------------------|--------------|--------------------|---------|-----------|-----|------|---------------|--|
| Parameter                            | %Recovery          | Quai         | %Recovery          | Quai    | Limits    | RPD | Quai | Limits        |  |
| Semivolatile Organics by GC/MS-SIM - | Westborough Lab As | sociated sam | ole(s): 01 Batc    | h: WG15 | 50856-2   |     |      |               |  |
| Acenaphthene                         | 87                 |              | -                  |         | 60-132    | -   |      | 30            |  |
| Fluoranthene                         | 101                |              | -                  |         | 43-121    | -   |      | 30            |  |
| Naphthalene                          | 84                 |              | -                  |         | 36-120    | -   |      | 30            |  |
| Benzo(a)anthracene                   | 96                 |              | -                  |         | 42-133    | -   |      | 30            |  |
| Benzo(a)pyrene                       | 102                |              | -                  |         | 32-148    | -   |      | 30            |  |
| Benzo(b)fluoranthene                 | 101                |              | -                  |         | 42-140    | -   |      | 30            |  |
| Benzo(k)fluoranthene                 | 101                |              | -                  |         | 25-146    | -   |      | 30            |  |
| Chrysene                             | 90                 |              | -                  |         | 44-140    | -   |      | 30            |  |
| Acenaphthylene                       | 96                 |              | -                  |         | 54-126    | -   |      | 30            |  |
| Anthracene                           | 96                 |              | -                  |         | 43-120    | -   |      | 30            |  |
| Benzo(ghi)perylene                   | 100                |              | -                  |         | 1-195     | -   |      | 30            |  |
| Fluorene                             | 93                 |              | -                  |         | 70-120    | -   |      | 30            |  |
| Phenanthrene                         | 90                 |              | -                  |         | 65-120    | -   |      | 30            |  |
| Dibenzo(a,h)anthracene               | 108                |              | -                  |         | 1-200     | -   |      | 30            |  |
| Indeno(1,2,3-cd)pyrene               | 102                |              | -                  |         | 1-151     | -   |      | 30            |  |
| Pyrene                               | 102                |              | -                  |         | 70-120    | -   |      | 30            |  |
| Pentachlorophenol                    | 75                 |              | -                  |         | 38-152    | -   |      | 30            |  |



Project Name: HARVARD ENTERPRISE BLDGS 2

**Project Number:** 134042-003

 Lab Number:
 L2151368

 Report Date:
 10/04/21

|                                           | LCS             |              | LCSD             |         | %Recovery |     |      | RPD    |  |
|-------------------------------------------|-----------------|--------------|------------------|---------|-----------|-----|------|--------|--|
| Parameter                                 | %Recovery       | Qual         | %Recovery        | Qual    | Limits    | RPD | Qual | Limits |  |
|                                           |                 |              |                  |         |           |     |      |        |  |
| Semivolatile Organics by GC/MS-SIM - West | tborough Lab As | sociated sar | mple(s): 01 Batc | h: WG15 | 50856-2   |     |      |        |  |

| Surrogate            | LCS<br>%Recovery Qual | LCSD<br>%Recovery Qual | Acceptance<br>Criteria |
|----------------------|-----------------------|------------------------|------------------------|
| 2-Fluorophenol       | 51                    |                        | 25-87                  |
| Phenol-d6            | 37                    |                        | 16-65                  |
| Nitrobenzene-d5      | 89                    |                        | 42-122                 |
| 2-Fluorobiphenyl     | 84                    |                        | 46-121                 |
| 2,4,6-Tribromophenol | 98                    |                        | 45-128                 |
| 4-Terphenyl-d14      | 97                    |                        | 47-138                 |



# PCBS



|                                                                                |                                            |            | Serial_No:10042110:33                                                                                          |                                                                               |  |
|--------------------------------------------------------------------------------|--------------------------------------------|------------|----------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------|--|
| Project Name:                                                                  | HARVARD ENTERPRISE BLDGS                   | 2          | Lab Number:                                                                                                    | L2151368                                                                      |  |
| Project Number:                                                                | 134042-003                                 |            | Report Date:                                                                                                   | 10/04/21                                                                      |  |
|                                                                                | SAMP                                       | LE RESULTS |                                                                                                                |                                                                               |  |
| Lab ID:                                                                        | L2151368-01                                |            | Date Collected:                                                                                                | 09/22/21 12:20                                                                |  |
| Client ID:                                                                     | TB21_I12(OW)_092221                        |            | Date Received:                                                                                                 | 09/22/21                                                                      |  |
| Sample Location:                                                               | ALLSTON, MA                                |            | Field Prep:                                                                                                    | Not Specified                                                                 |  |
| Sample Depth:<br>Matrix:<br>Analytical Method:<br>Analytical Date:<br>Analyst: | Water<br>127,608.3<br>09/26/21 18:59<br>AD |            | Extraction Method:<br>Extraction Date:<br>Cleanup Method:<br>Cleanup Date:<br>Cleanup Method:<br>Cleanup Date: | EPA 608.3<br>09/25/21 13:18<br>EPA 3665A<br>09/26/21<br>EPA 3660B<br>09/26/21 |  |

| Parameter                                         | Result | Qualifier | Units | RL    | MDL | <b>Dilution Factor</b> | Column |
|---------------------------------------------------|--------|-----------|-------|-------|-----|------------------------|--------|
| Polychlorinated Biphenyls by GC - Westborough Lab |        |           |       |       |     |                        |        |
| Aroclor 1016                                      | ND     |           | ug/l  | 0.250 |     | 1                      | A      |
| Aroclor 1221                                      | ND     |           | ug/l  | 0.250 |     | 1                      | А      |
| Aroclor 1232                                      | ND     |           | ug/l  | 0.250 |     | 1                      | А      |
| Aroclor 1242                                      | ND     |           | ug/l  | 0.250 |     | 1                      | А      |
| Aroclor 1248                                      | ND     |           | ug/l  | 0.250 |     | 1                      | А      |
| Aroclor 1254                                      | ND     |           | ug/l  | 0.250 |     | 1                      | А      |
| Aroclor 1260                                      | ND     |           | ug/l  | 0.200 |     | 1                      | А      |

| Surrogate                    | % Recovery | Qualifier | Acceptance<br>Criteria | Column |
|------------------------------|------------|-----------|------------------------|--------|
| 2,4,5,6-Tetrachloro-m-xylene | 68         |           | 37-123                 | В      |
| Decachlorobiphenyl           | 69         |           | 38-114                 | В      |
| 2,4,5,6-Tetrachloro-m-xylene | 69         |           | 37-123                 | А      |
| Decachlorobiphenyl           | 75         |           | 38-114                 | А      |



L2151368 10/04/21

| Project Name:   | HARVARD ENTERPRISE BLDGS 2 | Lab Number:  |
|-----------------|----------------------------|--------------|
| Project Number: | 134042-003                 | Report Date: |

### Method Blank Analysis Batch Quality Control

Analytical Method: Analytical Date: Analyst:

127,608.3 09/26/21 18:03 AD Extraction Method:EPA 608.3Extraction Date:09/25/21 13:18Cleanup Method:EPA 3665ACleanup Date:09/26/21Cleanup Method:EPA 3660BCleanup Date:09/26/21

| Parameter                           | Result      | Qualifier   | Units     | RL     | MDL           | Column |
|-------------------------------------|-------------|-------------|-----------|--------|---------------|--------|
| Polychlorinated Biphenyls by GC - V | Vestborough | h Lab for s | ample(s): | 01 Bat | ch: WG1550829 | 9-1    |
| Aroclor 1016                        | ND          |             | ug/l      | 0.250  |               | А      |
| Aroclor 1221                        | ND          |             | ug/l      | 0.250  |               | A      |
| Aroclor 1232                        | ND          |             | ug/l      | 0.250  |               | А      |
| Aroclor 1242                        | ND          |             | ug/l      | 0.250  |               | А      |
| Aroclor 1248                        | ND          |             | ug/l      | 0.250  |               | А      |
| Aroclor 1254                        | ND          |             | ug/l      | 0.250  |               | А      |
| Aroclor 1260                        | ND          |             | ug/l      | 0.200  |               | А      |

|                              | Acceptance |           |          |        |  |  |  |
|------------------------------|------------|-----------|----------|--------|--|--|--|
| Surrogate                    | %Recovery  | Qualifier | Criteria | Column |  |  |  |
|                              |            |           |          |        |  |  |  |
| 2,4,5,6-Tetrachloro-m-xylene | 81         |           | 37-123   | В      |  |  |  |
| Decachlorobiphenyl           | 73         |           | 38-114   | В      |  |  |  |
| 2,4,5,6-Tetrachloro-m-xylene | 81         |           | 37-123   | А      |  |  |  |
| Decachlorobiphenyl           | 82         |           | 38-114   | А      |  |  |  |
|                              |            |           |          |        |  |  |  |


# Lab Control Sample Analysis Batch Quality Control

Project Name: HARVARD ENTERPRISE BLDGS 2

**Project Number:** 134042-003

 Lab Number:
 L2151368

 Report Date:
 10/04/21

|                                             | LCS             |                 | LCSD      |             | %Recovery |     |      | RPD    |        |
|---------------------------------------------|-----------------|-----------------|-----------|-------------|-----------|-----|------|--------|--------|
| Parameter                                   | %Recovery       | Qual            | %Recovery | Qual        | Limits    | RPD | Qual | Limits | Column |
| Polychlorinated Biphenyls by GC - Westborou | igh Lab Associa | ited sample(s): | 01 Batch: | WG1550829-2 | 2         |     |      |        |        |
| Aroclor 1016                                | 81              |                 | -         |             | 50-140    | -   |      | 36     | А      |
| Aroclor 1260                                | 83              |                 | -         |             | 8-140     | -   |      | 38     | A      |

|                              | LCS       |      | LCSD      |      | Acceptance |        |  |
|------------------------------|-----------|------|-----------|------|------------|--------|--|
| Surrogate                    | %Recovery | Qual | %Recovery | Qual | Criteria   | Column |  |
| 2,4,5,6-Tetrachloro-m-xylene | 74        |      |           |      | 37-123     | В      |  |
| Decachlorobiphenyl           | 70        |      |           |      | 38-114     | В      |  |
| 2,4,5,6-Tetrachloro-m-xylene | 75        |      |           |      | 37-123     | A      |  |
| Decachlorobiphenyl           | 78        |      |           |      | 38-114     | А      |  |



# METALS



Serial\_No:10042110:33

L2151368

10/04/21

09/22/21

09/22/21 12:20

Not Specified

Lab Number:

Report Date:

Date Collected:

Date Received:

Field Prep:

| Project Name: | HARVARD ENTERPRISE BLDGS 2 |
|---------------|----------------------------|
|---------------|----------------------------|

Project Number: 134042-003

SAMPLE RESULTS

Lab ID: L2151368-01 Client ID: TB21\_I12(OW)\_092221 Sample Location: ALLSTON, MA

Sample Depth:

| Matrix:           | Water        |            |        |         |     |                    |                  |                  |                |                      |         |
|-------------------|--------------|------------|--------|---------|-----|--------------------|------------------|------------------|----------------|----------------------|---------|
| Parameter         | Result       | Qualifier  | Units  | RL      | MDL | Dilution<br>Factor | Date<br>Prepared | Date<br>Analyzed | Prep<br>Method | Analytical<br>Method | Analyst |
| Total Metals - Ma | ansfield Lab |            |        |         |     |                    |                  |                  |                |                      |         |
| Antimony, Total   | ND           |            | mg/l   | 0.00800 |     | 1                  | 09/23/21 11:56   | 09/23/21 18:13   | EPA 3005A      | 3,200.8              | CD      |
| Arsenic, Total    | 0.00419      |            | mg/l   | 0.00200 |     | 1                  | 09/23/21 11:56   | 09/23/21 18:13   | EPA 3005A      | 3,200.8              | CD      |
| Cadmium, Total    | ND           |            | mg/l   | 0.00040 |     | 1                  | 09/23/21 11:56   | 09/23/21 18:13   | EPA 3005A      | 3,200.8              | CD      |
| Chromium, Total   | ND           |            | mg/l   | 0.00200 |     | 1                  | 09/23/21 11:56   | 09/23/21 18:13   | EPA 3005A      | 3,200.8              | CD      |
| Copper, Total     | ND           |            | mg/l   | 0.00200 |     | 1                  | 09/23/21 11:56   | 09/23/21 18:13   | EPA 3005A      | 3,200.8              | CD      |
| Iron, Total       | 2.97         |            | mg/l   | 0.050   |     | 1                  | 09/23/21 11:56   | 09/24/21 11:47   | EPA 3005A      | 19,200.7             | MP      |
| Lead, Total       | ND           |            | mg/l   | 0.00200 |     | 1                  | 09/23/21 11:56   | 09/23/21 18:13   | EPA 3005A      | 3,200.8              | CD      |
| Mercury, Total    | ND           |            | mg/l   | 0.00020 |     | 1                  | 09/23/21 12:53   | 09/23/21 16:33   | EPA 245.1      | 3,245.1              | OU      |
| Nickel, Total     | ND           |            | mg/l   | 0.00400 |     | 1                  | 09/23/21 11:56   | 09/23/21 18:13   | EPA 3005A      | 3,200.8              | CD      |
| Selenium, Total   | ND           |            | mg/l   | 0.01000 |     | 1                  | 09/23/21 11:56   | 09/23/21 18:13   | EPA 3005A      | 3,200.8              | CD      |
| Silver, Total     | ND           |            | mg/l   | 0.00080 |     | 1                  | 09/23/21 11:56   | 09/23/21 18:13   | EPA 3005A      | 3,200.8              | CD      |
| Zinc, Total       | 0.02341      |            | mg/l   | 0.02000 |     | 1                  | 09/23/21 11:56   | 09/23/21 18:13   | EPA 3005A      | 3,200.8              | CD      |
| Total Hardness b  | oy SM 2340B  | - Mansfiel | ld Lab |         |     |                    |                  |                  |                |                      |         |
| Hardness          | 391          |            | mg/l   | 0.660   | NA  | 1                  | 09/23/21 11:56   | 09/24/21 11:47   | EPA 3005A      | 19,200.7             | MP      |
|                   |              |            |        |         |     |                    |                  |                  |                |                      |         |

## General Chemistry - Mansfield Lab

| Chromium, Trivalent | ND | mg/l | 0.010 | <br>1 | 09/23/21 18:13 | NA | 107,- |  |
|---------------------|----|------|-------|-------|----------------|----|-------|--|



Project Name:HARVARD ENTERPRISE BLDGS 2Project Number:134042-003

 Lab Number:
 L2151368

 Report Date:
 10/04/21

# Method Blank Analysis Batch Quality Control

| Parameter                | Result Quali   | fier U   | nits   | RL       | MDL     | Dilution<br>Factor | Date<br>Prepared | Date<br>Analyzed | Analytical<br>Method | Analyst |
|--------------------------|----------------|----------|--------|----------|---------|--------------------|------------------|------------------|----------------------|---------|
| Total Metals - Mansfield | Lab for sample | e(s): 01 | Batch: | WG15     | 549903- | 1                  |                  |                  |                      |         |
| Iron, Total              | ND             | 1        | mg/l   | 0.050    |         | 1                  | 09/23/21 11:56   | 09/24/21 08:40   | 19,200.7             | MP      |
|                          |                |          | Р      | rep Info | ormatio | 'n                 |                  |                  |                      |         |

Digestion Method: EPA 3005A

| Parameter            | Result Qualifier      | Units     | RL       | MDL     | Dilution<br>Factor | Date<br>Prepared | Date<br>Analyzed | Analytical<br>Method | Analyst |
|----------------------|-----------------------|-----------|----------|---------|--------------------|------------------|------------------|----------------------|---------|
| Total Hardness by SM | 2340B - Mansfield Lat | o for sam | nple(s): | 01 Bate | ch: WG154          | 49903-1          |                  |                      |         |
| Hardness             | ND                    | mg/l      | 0.660    | NA      | 1                  | 09/23/21 11:56   | 09/24/21 08:40   | 19,200.7             | MP      |

# Prep Information

Digestion Method: EPA 3005A

| Parameter                | Result Qualifier   | Units   | RL      | MDL     | Dilution<br>Factor | Date<br>Prepared | Date<br>Analyzed | Analytical<br>Method | Analyst |
|--------------------------|--------------------|---------|---------|---------|--------------------|------------------|------------------|----------------------|---------|
| Total Metals - Mansfield | Lab for sample(s): | 01 Batc | h: WG15 | 649905- | 1                  |                  |                  |                      |         |
| Antimony, Total          | ND                 | mg/l    | 0.00800 |         | 1                  | 09/23/21 11:56   | 09/23/21 18:46   | 3,200.8              | CD      |
| Arsenic, Total           | ND                 | mg/l    | 0.00200 |         | 1                  | 09/23/21 11:56   | 09/23/21 18:46   | 3,200.8              | CD      |
| Cadmium, Total           | ND                 | mg/l    | 0.00040 |         | 1                  | 09/23/21 11:56   | 09/23/21 18:46   | 3,200.8              | CD      |
| Chromium, Total          | ND                 | mg/l    | 0.00200 |         | 1                  | 09/23/21 11:56   | 09/23/21 18:46   | 3,200.8              | CD      |
| Copper, Total            | ND                 | mg/l    | 0.00200 |         | 1                  | 09/23/21 11:56   | 09/23/21 18:46   | 3,200.8              | CD      |
| Lead, Total              | ND                 | mg/l    | 0.00200 |         | 1                  | 09/23/21 11:56   | 09/23/21 18:46   | 3,200.8              | CD      |
| Nickel, Total            | ND                 | mg/l    | 0.00400 |         | 1                  | 09/23/21 11:56   | 09/23/21 18:46   | 3,200.8              | CD      |
| Selenium, Total          | ND                 | mg/l    | 0.01000 |         | 1                  | 09/23/21 11:56   | 09/23/21 18:46   | 3,200.8              | CD      |
| Silver, Total            | ND                 | mg/l    | 0.00080 |         | 1                  | 09/23/21 11:56   | 09/23/21 18:46   | 3,200.8              | CD      |
| Zinc, Total              | ND                 | mg/l    | 0.02000 |         | 1                  | 09/23/21 11:56   | 09/23/21 18:46   | 3,200.8              | CD      |

## **Prep Information**

Digestion Method: EPA 3005A



Project Name:HARVARD ENTERPRISE BLDGS 2Project Number:134042-003

 Lab Number:
 L2151368

 Report Date:
 10/04/21

# Method Blank Analysis Batch Quality Control

| Parameter                | Result Qualifier     | Units    | RL      | MDL    | Dilution<br>Factor | Date<br>Prepared | Date<br>Analyzed | Analytical<br>Method | Analyst |
|--------------------------|----------------------|----------|---------|--------|--------------------|------------------|------------------|----------------------|---------|
| Total Metals - Mansfield | Lab for sample(s): 0 | 01 Batch | n: WG15 | 49921- | 1                  |                  |                  |                      |         |
| Mercury, Total           | ND                   | mg/l     | 0.00020 |        | 1                  | 09/23/21 12:53   | 09/23/21 16:03   | 3,245.1              | OU      |
|                          |                      |          |         |        |                    |                  |                  |                      |         |

# **Prep Information**

Digestion Method: EPA 245.1



# Lab Control Sample Analysis Batch Quality Control

Project Name: HARVARD ENTERPRISE BLDGS 2

**Project Number:** 134042-003

 Lab Number:
 L2151368

 Report Date:
 10/04/21

| Parameter                                   | LCS<br>%Recovery  | Qual     | LCSD<br>%Recovery | Qual | %Recovery<br>Limits | RPD | Qual | RPD Limits |
|---------------------------------------------|-------------------|----------|-------------------|------|---------------------|-----|------|------------|
| otal Metals - Mansfield Lab Associated samp | ble(s): 01 Batch: | WG15499  | 903-2             |      |                     |     |      |            |
| Iron, Total                                 | 100               |          | -                 |      | 85-115              | -   |      |            |
| otal Hardness by SM 2340B - Mansfield Lab   | Associated sampl  | e(s): 01 | Batch: WG154990   | 3-2  |                     |     |      |            |
| Hardness                                    | 100               |          | -                 |      | 85-115              | -   |      |            |
| otal Metals - Mansfield Lab Associated samp | ble(s): 01 Batch: | WG15499  | 905-2             |      |                     |     |      |            |
| Antimony, Total                             | 87                |          | -                 |      | 85-115              | -   |      |            |
| Arsenic, Total                              | 102               |          | -                 |      | 85-115              | -   |      |            |
| Cadmium, Total                              | 97                |          | -                 |      | 85-115              | -   |      |            |
| Chromium, Total                             | 106               |          | -                 |      | 85-115              | -   |      |            |
| Copper, Total                               | 104               |          | -                 |      | 85-115              | -   |      |            |
| Lead, Total                                 | 97                |          | -                 |      | 85-115              | -   |      |            |
| Nickel, Total                               | 98                |          | -                 |      | 85-115              | -   |      |            |
| Selenium, Total                             | 103               |          | -                 |      | 85-115              | -   |      |            |
| Silver, Total                               | 101               |          | -                 |      | 85-115              | -   |      |            |
| Zinc, Total                                 | 104               |          | -                 |      | 85-115              | -   |      |            |

## Total Metals - Mansfield Lab Associated sample(s): 01 Batch: WG1549921-2

|  | Mercury, Total | 106 | - | 85-115 | - |
|--|----------------|-----|---|--------|---|
|--|----------------|-----|---|--------|---|



# Matrix Spike Analysis

| Project Name:<br>Project Number: | HARVARD ENTE<br>134042-003 | RPRISE BLI  | DGS 2       |                 |      |              | Lab Nu<br>Report |      | Lab Number<br>Report Date | lumber:<br>rt Date: |      | 1368<br>I/21  |
|----------------------------------|----------------------------|-------------|-------------|-----------------|------|--------------|------------------|------|---------------------------|---------------------|------|---------------|
| Parameter                        | Native<br>Sample           | MS<br>Added | MS<br>Found | MS<br>%Recovery | Qual | MSD<br>Found | MSD<br>%Recovery | Qual | Recovery<br>Limits        | RPD                 | Qual | RPD<br>Limits |

| Total Metals - Mansfield Lab | Associated sam    | ole(s): 01 | QC Batch ID:                 | WG1549903-3   | QC Sample: L2  | 2151366-01 | Client ID: MS S | Sample    |             |
|------------------------------|-------------------|------------|------------------------------|---------------|----------------|------------|-----------------|-----------|-------------|
| Iron, Total                  | ND                | 1          | 1.02                         | 102           | -              | -          | 75-125          | -         | 20          |
| Total Hardness by SM 2340    | B - Mansfield Lab | Associate  | ed sample(s): 0 <sup>-</sup> | 1 QC Batch II | D: WG1549903-3 | QC Samp    | le: L2151366-01 | Client ID | : MS Sample |
| Hardness                     | 28.6              | 66.2       | 92.8                         | 97            | -              | -          | 75-125          | -         | 20          |
| Fotal Metals - Mansfield Lab | o Associated sam  | ole(s): 01 | QC Batch ID:                 | WG1549905-3   | QC Sample: L2  | 2151366-01 | Client ID: MS S | Sample    |             |
| Antimony, Total              | ND                | 1          | 0.9208                       | 92            | -              | -          | 70-130          | -         | 20          |
| Arsenic, Total               | 0.00336           | 0.24       | 0.2448                       | 100           | -              | -          | 70-130          | -         | 20          |
| Cadmium, Total               | ND                | 0.106      | 0.1040                       | 98            | -              | -          | 70-130          | -         | 20          |
| Chromium, Total              | ND                | 0.4        | 0.4129                       | 103           | -              | -          | 70-130          | -         | 20          |
| Copper, Total                | 0.00408           | 0.5        | 0.5095                       | 101           | -              | -          | 70-130          | -         | 20          |
| Lead, Total                  | ND                | 1.06       | 1.024                        | 97            | -              | -          | 70-130          | -         | 20          |
| Nickel, Total                | ND                | 1          | 0.9568                       | 96            | -              | -          | 70-130          | -         | 20          |
| Selenium, Total              | ND                | 0.24       | 0.2499                       | 104           | -              | -          | 70-130          | -         | 20          |
| Silver, Total                | ND                | 0.1        | 0.09913                      | 99            | -              | -          | 70-130          | -         | 20          |
| Zinc, Total                  | ND                | 1          | 1.050                        | 105           | -              | -          | 70-130          | -         | 20          |
| Fotal Metals - Mansfield Lab | o Associated sam  | ole(s): 01 | QC Batch ID:                 | WG1549921-3   | QC Sample: L2  | 2151366-02 | Client ID: MS S | Sample    |             |
| Mercury, Total               | ND                | 0.005      | 0.00524                      | 105           | -              | -          | 70-130          | -         | 20          |



# Lab Duplicate Analysis Batch Quality Control

Project Name: HARVARD ENTERPRISE BLDGS 2 **Project Number:** 134042-003

Lab Number: Report Date:

L2151368 10/04/21

| Parameter                                             | Native Sample Dup        | licate Sample | Units      | RPD          | Qual       | RPD Limits |
|-------------------------------------------------------|--------------------------|---------------|------------|--------------|------------|------------|
| Total Metals - Mansfield Lab Associated sample(s): 01 | QC Batch ID: WG1549903-4 | QC Sample: L2 | 2151366-01 | Client ID: D | OUP Sample |            |
| Iron, Total                                           | ND                       | ND            | mg/l       | NC           |            | 20         |
| Total Metals - Mansfield Lab Associated sample(s): 01 | QC Batch ID: WG1549905-4 | QC Sample: L2 | 2151366-01 | Client ID: D | OUP Sample |            |
| Antimony, Total                                       | ND                       | ND            | mg/l       | NC           |            | 20         |
| Arsenic, Total                                        | 0.00336                  | 0.00352       | mg/l       | 5            |            | 20         |
| Cadmium, Total                                        | ND                       | ND            | mg/l       | NC           |            | 20         |
| Chromium, Total                                       | ND                       | ND            | mg/l       | NC           |            | 20         |
| Copper, Total                                         | 0.00408                  | 0.00405       | mg/l       | 1            |            | 20         |
| Lead, Total                                           | ND                       | ND            | mg/l       | NC           |            | 20         |
| Nickel, Total                                         | ND                       | ND            | mg/l       | NC           |            | 20         |
| Selenium, Total                                       | ND                       | ND            | mg/l       | NC           |            | 20         |
| Silver, Total                                         | ND                       | ND            | mg/l       | NC           |            | 20         |
| Zinc, Total                                           | ND                       | ND            | mg/l       | NC           |            | 20         |
| Total Metals - Mansfield Lab Associated sample(s): 01 | QC Batch ID: WG1549921-4 | QC Sample: L2 | 2151366-02 | Client ID: D | OUP Sample |            |
| Mercury, Total                                        | ND                       | ND            | mg/l       | NC           |            | 20         |



# INORGANICS & MISCELLANEOUS



Serial\_No:10042110:33

L2151368

10/04/21

Lab Number:

**Report Date:** 

| Project Name: HARVARD ENTERPRISE BLDGS 2 | 2 |
|------------------------------------------|---|
|------------------------------------------|---|

Project Number: 134042-003

SAMPLE RESULTS

| Lab ID:          | L2151368-01         | Date Collected: | 09/22/21 12:20 |
|------------------|---------------------|-----------------|----------------|
| Client ID:       | TB21_I12(OW)_092221 | Date Received:  | 09/22/21       |
| Sample Location: | ALLSTON, MA         | Field Prep:     | Not Specified  |

Sample Depth: Matrix:

Water

| Parameter                | Result       | Qualifier | Units | RL    | MDL | Dilution<br>Factor | Date<br>Prepared | Date<br>Analyzed | Analytical<br>Method | Analyst |
|--------------------------|--------------|-----------|-------|-------|-----|--------------------|------------------|------------------|----------------------|---------|
| General Chemistry - Wes  | stborough La | b         |       |       |     |                    |                  |                  |                      |         |
| Solids, Total Suspended  | 6.4          |           | mg/l  | 5.0   | NA  | 1                  | -                | 09/27/21 13:45   | 121,2540D            | AC      |
| Cyanide, Total           | ND           |           | mg/l  | 0.005 |     | 1                  | 09/28/21 14:30   | 09/28/21 17:27   | 121,4500CN-CE        | CR      |
| Chlorine, Total Residual | ND           |           | mg/l  | 0.02  |     | 1                  | -                | 09/23/21 06:50   | 121,4500CL-D         | MR      |
| Nitrogen, Ammonia        | 6.20         |           | mg/l  | 0.075 |     | 1                  | 09/27/21 08:00   | 09/28/21 18:40   | 121,4500NH3-BH       | AT      |
| TPH, SGT-HEM             | ND           |           | mg/l  | 4.00  |     | 1                  | 09/28/21 16:15   | 09/28/21 16:45   | 140,1664B            | TL      |
| Phenolics, Total         | ND           |           | mg/l  | 0.030 |     | 1                  | 09/24/21 07:06   | 09/24/21 12:41   | 4,420.1              | KP      |
| Chromium, Hexavalent     | ND           |           | mg/l  | 0.010 |     | 1                  | 09/23/21 09:15   | 09/23/21 09:51   | 1,7196A              | KP      |
| Anions by Ion Chromatog  | graphy - Wes | tborough  | Lab   |       |     |                    |                  |                  |                      |         |
| Chloride                 | 334.         |           | mg/l  | 12.5  |     | 25                 | -                | 09/26/21 15:37   | 44,300.0             | SH      |



Project Name:HARVARD ENTERPRISE BLDGS 2Project Number:134042-003

 Lab Number:
 L2151368

 Report Date:
 10/04/21

# Method Blank Analysis Batch Quality Control

| Parameter                | Result Qua     | alifier | Units       | RL       | MDL  | Dilution<br>Factor | Date<br>Prepared | Date<br>Analyzed | Analytical<br>Method | Analyst |
|--------------------------|----------------|---------|-------------|----------|------|--------------------|------------------|------------------|----------------------|---------|
| General Chemistry - Wes  | tborough Lab f | for sam | ple(s): 01  | Batch:   | WG15 | 49756-1            |                  |                  |                      |         |
| Chlorine, Total Residual | ND             |         | mg/l        | 0.02     |      | 1                  | -                | 09/23/21 06:50   | 121,4500CL-D         | MR      |
| General Chemistry - Wes  | tborough Lab f | for sam | ple(s): 01  | Batch:   | WG15 | 49891-1            |                  |                  |                      |         |
| Chromium, Hexavalent     | ND             |         | mg/l        | 0.010    |      | 1                  | 09/23/21 09:15   | 09/23/21 09:50   | 1,7196A              | KP      |
| General Chemistry - Wes  | tborough Lab f | for sam | ple(s): 01  | Batch:   | WG15 | 50272-1            |                  |                  |                      |         |
| Phenolics, Total         | ND             |         | mg/l        | 0.030    |      | 1                  | 09/24/21 07:06   | 09/24/21 12:39   | 4,420.1              | KP      |
| Anions by Ion Chromatog  | raphy - Westbo | orough  | Lab for sar | mple(s): | 01 B | atch: WG1          | 551015-1         |                  |                      |         |
| Chloride                 | ND             |         | mg/l        | 0.500    |      | 1                  | -                | 09/26/21 12:20   | 44,300.0             | SH      |
| General Chemistry - Wes  | tborough Lab f | for sam | ple(s): 01  | Batch:   | WG15 | 51100-1            |                  |                  |                      |         |
| Nitrogen, Ammonia        | ND             |         | mg/l        | 0.075    |      | 1                  | 09/27/21 08:00   | 09/28/21 18:23   | 121,4500NH3-B        | H AT    |
| General Chemistry - Wes  | tborough Lab f | for sam | ple(s): 01  | Batch:   | WG15 | 51236-1            |                  |                  |                      |         |
| Solids, Total Suspended  | ND             |         | mg/l        | 5.0      | NA   | 1                  | -                | 09/27/21 13:45   | 121,2540D            | AC      |
| General Chemistry - Wes  | tborough Lab f | for sam | ple(s): 01  | Batch:   | WG15 | 51839-1            |                  |                  |                      |         |
| TPH, SGT-HEM             | ND             |         | mg/l        | 4.00     |      | 1                  | 09/28/21 16:15   | 09/28/21 16:45   | 140,1664B            | TL      |
| General Chemistry - Wes  | tborough Lab f | for sam | ple(s): 01  | Batch:   | WG15 | 51867-1            |                  |                  |                      |         |
| Cyanide, Total           | ND             |         | mg/l        | 0.005    |      | 1                  | 09/28/21 14:30   | 09/28/21 16:55   | 121,4500CN-CE        | E CR    |



# Lab Control Sample Analysis Batch Quality Control

Project Name: HARVARD ENTERPRISE BLDGS 2

**Project Number:** 134042-003

 Lab Number:
 L2151368

 Report Date:
 10/04/21

| Parameter                                  | LCS<br>%Recoverv | Qual    | LCSD<br>%Recoverv  | %<br>Qual   | Recovery | RPD | Qual | RPD Limits |  |
|--------------------------------------------|------------------|---------|--------------------|-------------|----------|-----|------|------------|--|
| Caparal Chamietry Weatherough Lab Acces    | istad sampla(a): |         | otob: \//C1E407E6  | <u>ຈ</u>    |          |     | Quai |            |  |
| General Chemistry - Westborough Lab Assoc  | iateu sampie(s). |         | alch. WG1549756    | -2          |          |     |      |            |  |
| Chlorine, Total Residual                   | 104              |         | -                  |             | 90-110   | -   |      |            |  |
| General Chemistry - Westborough Lab Assoc  | iated sample(s): | 01 Ba   | atch: WG1549891    | -2          |          |     |      |            |  |
| Chromium, Hexavalent                       | 104              |         | -                  |             | 85-115   | -   |      | 20         |  |
| General Chemistry - Westborough Lab Assoc  | iated sample(s): | 01 Ba   | atch: WG1550272    | -2          |          |     |      |            |  |
| Phenolics, Total                           | 120              |         | -                  |             | 70-130   | -   |      |            |  |
| Anions by Ion Chromatography - Westborough | Lab Associate    | d sampl | le(s): 01 Batch: \ | WG1551015-2 |          |     |      |            |  |
| Chloride                                   | 99               |         | -                  |             | 90-110   | -   |      |            |  |
| General Chemistry - Westborough Lab Assoc  | iated sample(s): | 01 Ba   | atch: WG1551100    | -2          |          |     |      |            |  |
| Nitrogen, Ammonia                          | 106              |         | -                  |             | 80-120   | -   |      | 20         |  |
| General Chemistry - Westborough Lab Assoc  | iated sample(s): | 01 Ba   | atch: WG1551236    | -2          |          |     |      |            |  |
| Solids, Total Suspended                    | 96               |         | -                  |             | 80-120   | -   |      |            |  |
| General Chemistry - Westborough Lab Assoc  | iated sample(s): | 01 Ba   | atch: WG1551839    | -2          |          |     |      |            |  |
| ТРН                                        | 84               |         | -                  |             | 64-132   | -   |      | 34         |  |



**RPD** Limits

RPD

-

90-110

# Lab Control Sample Analysis

| Project Name:   | HARVARD ENTERPR | ISE BLDGS 2      | Batch Quality C   | Lab Number:         | L2151368     |            |  |
|-----------------|-----------------|------------------|-------------------|---------------------|--------------|------------|--|
| Project Number: | 134042-003      |                  |                   |                     | Report Date: | 10/04/21   |  |
| arameter        |                 | LCS<br>%Recovery | LCSD<br>%Recovery | %Recovery<br>Limits | RPD          | RPD Limits |  |

%Recovery

Batch: WG1551867-2

-

%Recovery

91

General Chemistry - Westborough Lab Associated sample(s): 01

| ALPHA     |   |
|-----------|---|
| ANALYTICA | - |

Parameter

Cyanide, Total

90-110

# Matrix Spike Analysis

| Project Name:<br>Project Number:              | HARVARD ENTI<br>134042-003 | ERPRISE BLI  | DGS 2       | Ba              | atch Quality Co   | ntrol            | Lab<br>Repo  | Number<br>ort Date: | :   | L215 <sup>-</sup><br>10/04 | 1368<br>I/21  |
|-----------------------------------------------|----------------------------|--------------|-------------|-----------------|-------------------|------------------|--------------|---------------------|-----|----------------------------|---------------|
| Parameter                                     | Native<br>Sample           | MS<br>Added  | MS<br>Found | MS<br>%Recovery | MSD<br>Qual Found | MSD<br>%Recovery | Re<br>Qual L | covery<br>.imits    | RPD | Qual                       | RPD<br>Limits |
| General Chemistry - We<br>TB21_I12(OW)_092221 | estborough Lab As          | sociated sam | ple(s): 01  | QC Batch ID:    | WG1549756-4       | QC Sample: L21   | 151368-01    | Client I            | D:  |                            |               |
| Chlorine, Total Residual                      | ND                         | 0.25         | 0.18        | 72              | Q -               | -                | 8            | 30-120              | -   |                            | 20            |
| General Chemistry - We<br>TB21_I12(OW)_092221 | estborough Lab As          | sociated sam | ple(s): 01  | QC Batch ID:    | WG1549891-4       | QC Sample: L21   | 51368-01     | Client I            | D:  |                            |               |
| Chromium, Hexavalent                          | ND                         | 0.1          | 0.103       | 103             | · ·               | -                | ٤            | 35-115              | -   |                            | 20            |

General Chemistry - Westborough Lab Associated sample(s): 01 QC Batch ID: WG1550272-4 QC Sample: L2151526-02 Client ID: MS Sample

 Phenolics, Total
 ND
 0.4
 0.38
 95
 70-130
 20

Anions by Ion Chromatography - Westborough Lab Associated sample(s): 01 QC Batch ID: WG1551015-3 QC Sample: L2149816-03 Client ID: MS Sample

Q

General Chemistry - Westborough Lab Associated sample(s): 01 QC Batch ID: WG1551100-4 QC Sample: L2150437-01 Client ID: MS Sample

79

 Nitrogen, Ammonia
 0.085
 4
 7.77
 192
 Q
 80-120
 20

 General Chemistry - Westborough Lab Associated sample(s): 01
 QC Batch ID: WG1551839-4
 QC Sample: L2151360-01
 Client ID: MS Sample

 TPH
 ND
 20
 16.0
 80
 64-132
 34

 General Chemistry - Westborough Lab Associated sample(s): 01
 QC Batch ID: WG1551867-4
 QC Sample: L2150795-02
 Client ID: MS Sample

 Cyanide, Total
 ND
 0.2
 0.196
 98
 90-110
 30



18

Chloride

20.0

4

23.2

| Project Name:<br>Project Number:              | HARVARD EI<br>134042-003 | NTERPRISE BLDGS 2     |       | Lab           | Duplicate A<br>Batch Quality C | Analysis<br>ontrol |              | Lab Numb<br>Report Dat | er: L215<br>te: 10/04 | 1368<br>I/21 |
|-----------------------------------------------|--------------------------|-----------------------|-------|---------------|--------------------------------|--------------------|--------------|------------------------|-----------------------|--------------|
| Parameter                                     |                          | Nati                  | ve S  | ample         | Duplicate Sam                  | ple Unit           | s RPD        | Qual                   | RPD Limits            | <u>i</u>     |
| General Chemistry - We<br>TB21_I12(OW)_092221 | stborough Lab            | Associated sample(s): | 01    | QC Batch ID:  | WG1549756-3                    | QC Sample:         | L2151368-01  | Client ID:             |                       |              |
| Chlorine, Total Residual                      |                          |                       | ND    |               | ND                             | mg/                | NC           |                        | 20                    |              |
| General Chemistry - We<br>TB21_I12(OW)_092221 | stborough Lab            | Associated sample(s): | 01    | QC Batch ID:  | WG1549891-3                    | QC Sample:         | L2151368-01  | Client ID:             |                       |              |
| Chromium, Hexavalent                          |                          |                       | ND    |               | ND                             | mg/                | NC           |                        | 20                    |              |
| General Chemistry - We                        | stborough Lab            | Associated sample(s): | 01    | QC Batch ID:  | WG1550272-3                    | QC Sample:         | L2151526-02  | Client ID: D           | OUP Sample            |              |
| Phenolics, Total                              |                          |                       | ND    |               | ND                             | mg/                | NC           |                        | 20                    |              |
| Anions by Ion Chromato<br>Sample              | graphy - Westb           | orough Lab Associated | d sam | nple(s): 01 Q | C Batch ID: WG                 | 1551015-4 (        | QC Sample: L | 2149816-03             | Client ID: DUF        | D            |
| Chloride                                      |                          |                       | 20.0  | )             | 20.0                           | mg/                | 0            |                        | 18                    |              |
| General Chemistry - We                        | stborough Lab            | Associated sample(s): | 01    | QC Batch ID:  | WG1551100-3                    | QC Sample:         | L2150437-01  | Client ID: D           | OUP Sample            |              |
| Nitrogen, Ammonia                             |                          |                       | 0.08  | 5             | 0.203                          | mg/                | 81           | Q                      | 20                    |              |
| General Chemistry - We                        | stborough Lab            | Associated sample(s): | 01    | QC Batch ID:  | WG1551236-3                    | QC Sample:         | L2151210-01  | Client ID: D           | OUP Sample            |              |
| Solids, Total Suspended                       |                          |                       | 400   |               | 400                            | mg/                | 0            |                        | 29                    |              |
| General Chemistry - We                        | stborough Lab            | Associated sample(s): | 01    | QC Batch ID:  | WG1551839-3                    | QC Sample:         | L2150812-04  | Client ID:             | OUP Sample            |              |
| TPH                                           |                          |                       | ND    |               | ND                             | mg/                | NC           |                        | 34                    |              |
| General Chemistry - We                        | stborough Lab            | Associated sample(s): | 01    | QC Batch ID:  | WG1551867-3                    | QC Sample:         | L2150795-02  | Client ID: D           | OUP Sample            |              |
| Cyanide, Total                                |                          |                       | ND    |               | ND                             | mg/                | NC           |                        | 30                    |              |



#### Project Name: HARVARD ENTERPRISE BLDGS 2 **Project Number:** 134042-003

# Serial\_No:10042110:33 Lab Number: L2151368 Report Date: 10/04/21

## Sample Receipt and Container Information

Were project specific reporting limits specified?

YES

## **Cooler Information**

| Cooler | Custody Seal |  |  |  |  |
|--------|--------------|--|--|--|--|
| С      | Absent       |  |  |  |  |

## Container Information

| С  | ontainer Info | rmation                       |        | Initial | Final | Temp  |      |        | Frozen    |                                                                                                                                                                                            |
|----|---------------|-------------------------------|--------|---------|-------|-------|------|--------|-----------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| С  | ontainer ID   | Container Type                | Cooler | рН      | pН    | deg C | Pres | Seal   | Date/Time | Analysis(*)                                                                                                                                                                                |
| L2 | 151368-01A    | Vial Na2S2O3 preserved        | С      | NA      |       | 2.4   | Y    | Absent |           | 624.1-RGP(7),624.1-SIM-RGP(7)                                                                                                                                                              |
| L2 | 151368-01B    | Vial Na2S2O3 preserved        | С      | NA      |       | 2.4   | Y    | Absent |           | 624.1-RGP(7),624.1-SIM-RGP(7)                                                                                                                                                              |
| L2 | 151368-01C    | Vial Na2S2O3 preserved        | С      | NA      |       | 2.4   | Y    | Absent |           | 624.1-RGP(7),624.1-SIM-RGP(7)                                                                                                                                                              |
| L2 | 151368-01D    | Vial Na2S2O3 preserved        | С      | NA      |       | 2.4   | Y    | Absent |           | 504(14)                                                                                                                                                                                    |
| L2 | 151368-01E    | Vial Na2S2O3 preserved        | С      | NA      |       | 2.4   | Y    | Absent |           | 504(14)                                                                                                                                                                                    |
| L2 | 151368-01F    | Vial unpreserved              | С      | NA      |       | 2.4   | Y    | Absent |           | SUB-ETHANOL(14)                                                                                                                                                                            |
| L2 | 151368-01G    | Vial unpreserved              | С      | NA      |       | 2.4   | Y    | Absent |           | SUB-ETHANOL(14)                                                                                                                                                                            |
| L2 | 151368-01H    | Vial unpreserved              | С      | NA      |       | 2.4   | Y    | Absent |           | SUB-ETHANOL(14)                                                                                                                                                                            |
| L2 | 151368-011    | Plastic 250ml HNO3 preserved  | С      | <2      | <2    | 2.4   | Y    | Absent |           | HOLD-METAL-DISSOLVED(180)                                                                                                                                                                  |
| L2 | 151368-01J    | Plastic 250ml HNO3 preserved  | С      | <2      | <2    | 2.4   | Y    | Absent |           | CD-2008T(180),NI-2008T(180),ZN-<br>2008T(180),FE-UI(180),HARDU(180),CU-<br>2008T(180),SE-2008T(180),HG-U(28),AG-<br>2008T(180),AS-2008T(180),SB-2008T(180),PB-<br>2008T(180),CR-2008T(180) |
| L2 | 151368-01K    | Plastic 250ml NaOH preserved  | С      | >12     | >12   | 2.4   | Y    | Absent |           | TCN-4500(14)                                                                                                                                                                               |
| L2 | 151368-01L    | Plastic 500ml H2SO4 preserved | С      | <2      | <2    | 2.4   | Y    | Absent |           | NH3-4500(28)                                                                                                                                                                               |
| L2 | 151368-01M    | Plastic 950ml unpreserved     | С      | 7       | 7     | 2.4   | Y    | Absent |           | HEXCR-7196(1),CL-300(28),TRC-4500(1)                                                                                                                                                       |
| L2 | 151368-01N    | Plastic 950ml unpreserved     | С      | 7       | 7     | 2.4   | Y    | Absent |           | TSS-2540(7)                                                                                                                                                                                |
| L2 | 151368-010    | Amber 950ml H2SO4 preserved   | С      | <2      | <2    | 2.4   | Y    | Absent |           | TPHENOL-420(28)                                                                                                                                                                            |
| L2 | 151368-01P    | Amber 1000ml Na2S2O3          | С      | 7       | 7     | 2.4   | Y    | Absent |           | PCB-608.3(365)                                                                                                                                                                             |
| L2 | 151368-01Q    | Amber 1000ml Na2S2O3          | С      | 7       | 7     | 2.4   | Y    | Absent |           | PCB-608.3(365)                                                                                                                                                                             |
| L2 | 151368-01R    | Amber 1000ml Na2S2O3          | С      | 7       | 7     | 2.4   | Y    | Absent |           | 625.1-RGP(7)                                                                                                                                                                               |
| L2 | 151368-01S    | Amber 1000ml Na2S2O3          | С      | 7       | 7     | 2.4   | Y    | Absent |           | 625.1-RGP(7)                                                                                                                                                                               |
| L2 | 151368-01T    | Amber 1000ml Na2S2O3          | С      | 7       | 7     | 2.4   | Y    | Absent |           | 625.1-SIM-RGP(7)                                                                                                                                                                           |
| L2 | 151368-01U    | Amber 1000ml Na2S2O3          | С      | 7       | 7     | 2.4   | Y    | Absent |           | 625.1-SIM-RGP(7)                                                                                                                                                                           |



# Project Name:HARVARD ENTERPRISE BLDGS 2Project Number:134042-003

| Container Info | rmation                    |        | Initial | Final | Temp  |      |        | Frozen    |              |
|----------------|----------------------------|--------|---------|-------|-------|------|--------|-----------|--------------|
| Container ID   | Container Type             | Cooler | pН      | рН    | deg C | Pres | Seal   | Date/Time | Analysis(*)  |
| L2151368-01V   | Amber 1000ml HCl preserved | С      | NA      |       | 2.4   | Y    | Absent |           | TPH-1664(28) |
| L2151368-01W   | Amber 1000ml HCl preserved | С      | NA      |       | 2.4   | Y    | Absent |           | TPH-1664(28) |





# Project Name: HARVARD ENTERPRISE BLDGS 2

Project Number: 134042-003

# Lab Number: L2151368

# Report Date: 10/04/21

## GLOSSARY

## Acronyms

| DL       | - Detection Limit: This value represents the level to which target analyte concentrations are reported as estimated values, when those target analyte concentrations are quantified below the limit of quantitation (LOQ). The DL includes any adjustments from dilutions, concentrations or moisture content, where applicable. (DoD report formats only.)                                                                                               |
|----------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| EDL      | - Estimated Detection Limit: This value represents the level to which target analyte concentrations are reported as estimated values, when those target analyte concentrations are quantified below the reporting limit (RL). The EDL includes any adjustments from dilutions, concentrations or moisture content, where applicable. The use of EDLs is specific to the analysis of PAHs using Solid-Phase Microextraction (SPME).                        |
| EMPC     | - Estimated Maximum Possible Concentration: The concentration that results from the signal present at the retention time of an analyte when the ions meet all of the identification criteria except the ion abundance ratio criteria. An EMPC is a worst-case estimate of the concentration.                                                                                                                                                              |
| EPA      | - Environmental Protection Agency.                                                                                                                                                                                                                                                                                                                                                                                                                        |
| LCS      | - Laboratory Control Sample: A sample matrix, free from the analytes of interest, spiked with verified known amounts of analytes or a material containing known and verified amounts of analytes.                                                                                                                                                                                                                                                         |
| LCSD     | - Laboratory Control Sample Duplicate: Refer to LCS.                                                                                                                                                                                                                                                                                                                                                                                                      |
| LFB      | - Laboratory Fortified Blank: A sample matrix, free from the analytes of interest, spiked with verified known amounts of analytes or a material containing known and verified amounts of analytes.                                                                                                                                                                                                                                                        |
| LOD      | - Limit of Detection: This value represents the level to which a target analyte can reliably be detected for a specific analyte in a specific matrix by a specific method. The LOD includes any adjustments from dilutions, concentrations or moisture content, where applicable. (DoD report formats only.)                                                                                                                                              |
| LOQ      | - Limit of Quantitation: The value at which an instrument can accurately measure an analyte at a specific concentration. The LOQ includes any adjustments from dilutions, concentrations or moisture content, where applicable. (DoD report formats only.)                                                                                                                                                                                                |
|          | Limit of Quantitation: The value at which an instrument can accurately measure an analyte at a specific concentration. The LOQ includes any adjustments from dilutions, concentrations or moisture content, where applicable. (DoD report formats only.)                                                                                                                                                                                                  |
| MDL      | - Method Detection Limit: This value represents the level to which target analyte concentrations are reported as estimated values, when those target analyte concentrations are quantified below the reporting limit (RL). The MDL includes any adjustments from dilutions, concentrations or moisture content, where applicable.                                                                                                                         |
| MS       | - Matrix Spike Sample: A sample prepared by adding a known mass of target analyte to a specified amount of matrix sample for which an independent estimate of target analyte concentration is available. For Method 332.0, the spike recovery is calculated using the native concentration, including estimated values.                                                                                                                                   |
| MSD      | - Matrix Spike Sample Duplicate: Refer to MS.                                                                                                                                                                                                                                                                                                                                                                                                             |
| NA       | - Not Applicable.                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| NC       | - Not Calculated: Term is utilized when one or more of the results utilized in the calculation are non-detect at the parameter's reporting unit.                                                                                                                                                                                                                                                                                                          |
| NDPA/DPA | - N-Nitrosodiphenylamine/Diphenylamine.                                                                                                                                                                                                                                                                                                                                                                                                                   |
| NI       | - Not Ignitable.                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| NP       | - Non-Plastic: Term is utilized for the analysis of Atterberg Limits in soil.                                                                                                                                                                                                                                                                                                                                                                             |
| NR       | - No Results: Term is utilized when 'No Target Compounds Requested' is reported for the analysis of Volatile or Semivolatile Organic TIC only requests.                                                                                                                                                                                                                                                                                                   |
| RL       | - Reporting Limit: The value at which an instrument can accurately measure an analyte at a specific concentration. The RL includes any adjustments from dilutions, concentrations or moisture content, where applicable.                                                                                                                                                                                                                                  |
| RPD      | - Relative Percent Difference: The results from matrix and/or matrix spike duplicates are primarily designed to assess the precision of analytical results in a given matrix and are expressed as relative percent difference (RPD). Values which are less than five times the reporting limit for any individual parameter are evaluated by utilizing the absolute difference between the values; although the RPD value will be provided in the report. |
| SRM      | - Standard Reference Material: A reference sample of a known or certified value that is of the same or similar matrix as the associated field samples.                                                                                                                                                                                                                                                                                                    |
| STLP     | - Semi-dynamic Tank Leaching Procedure per EPA Method 1315.                                                                                                                                                                                                                                                                                                                                                                                               |
| TEF      | - Toxic Equivalency Factors: The values assigned to each dioxin and furan to evaluate their toxicity relative to 2,3,7,8-TCDD.                                                                                                                                                                                                                                                                                                                            |
| TEQ      | - Toxic Equivalent: The measure of a sample's toxicity derived by multiplying each dioxin and furan by its corresponding TEF and then summing the resulting values.                                                                                                                                                                                                                                                                                       |
| TIC      | - Tentatively Identified Compound: A compound that has been identified to be present and is not part of the target compound list (TCL) for the method and/or program. All TICs are qualitatively identified and reported as estimated concentrations.                                                                                                                                                                                                     |

Report Format: Data Usability Report



#### **Project Name:** HARVARD ENTERPRISE BLDGS 2

**Project Number:** 134042-003

#### Lab Number: L2151368

**Report Date:** 10/04/21

#### Footnotes

1

- The reference for this analyte should be considered modified since this analyte is absent from the target analyte list of the original method.

#### Terms

Analytical Method: Both the document from which the method originates and the analytical reference method. (Example: EPA 8260B is shown as 1,8260B.) The codes for the reference method documents are provided in the References section of the Addendum.

Difference: With respect to Total Oxidizable Precursor (TOP) Assay analysis, the difference is defined as the Post-Treatment value minus the Pre-Treatment value.

Final pH: As it pertains to Sample Receipt & Container Information section of the report, Final pH reflects pH of container determined after adjustment at the laboratory, if applicable. If no adjustment required, value reflects Initial pH.

Frozen Date/Time: With respect to Volatile Organics in soil, Frozen Date/Time reflects the date/time at which associated Reagent Waterpreserved vials were initially frozen. Note: If frozen date/time is beyond 48 hours from sample collection, value will be reflected in 'bold'. Initial pH: As it pertains to Sample Receipt & Container Information section of the report, Initial pH reflects pH of container determined upon receipt, if applicable.

PAH Total: With respect to Alkylated PAH analyses, the 'PAHs, Total' result is defined as the summation of results for all or a subset of the following compounds: Naphthalene, C1-C4 Naphthalenes, 2-Methylnaphthalene, 1-Methylnaphthalene, Biphenyl, Acenaphthylene, Acenaphthene, Fluorene, C1-C3 Fluorenes, Phenanthrene, C1-C4 Phenanthrenes/Anthracenes, Anthracene, Fluoranthene, Pyrene, C1-C4 Fluoranthenes/Pyrenes, Benz(a)anthracene, Chrysene, C1-C4 Chrysenes, Benzo(b)fluoranthene, Benzo(j)+(k)fluoranthene, Benzo(e)pyrene, Benzo(a)pyrene, Perylene, Indeno(1,2,3-cd)pyrene, Dibenz(ah)+(ac)anthracene, Benzo(g,h,i)perylene. If a 'Total' result is requested, the results of its individual components will also be reported.

PFAS Total: With respect to PFAS analyses, the 'PFAS, Total (5)' result is defined as the summation of results for: PFHpA, PFHxS, PFOA, PFNA and PFOS. In addition, the 'PFAS, Total (6)' result is defined as the summation of results for: PFHpA, PFHxS, PFOA, PFNA, PFDA and PFOS. For MassDEP DW compliance analysis only, the 'PFAS, Total (6)' result is defined as the summation of results at or above the RL. Note: If a 'Total' result is requested, the results of its individual components will also be reported.

The target compound Chlordane (CAS No. 57-74-9) is reported for GC ECD analyses. Per EPA, this compound "refers to a mixture of chlordane isomers, other chlorinated hydrocarbons and numerous other components." (Reference: USEPA Toxicological Review of Chlordane, In Support of Summary Information on the Integrated Risk Information System (IRIS), December 1997.)

Total: With respect to Organic analyses, a 'Total' result is defined as the summation of results for individual isomers or Aroclors. If a 'Total' result is requested, the results of its individual components will also be reported. This is applicable to 'Total' results for methods 8260, 8081 and 8082.

#### Data Qualifiers

- A - Spectra identified as "Aldol Condensates" are byproducts of the extraction/concentration procedures when acetone is introduced in the process.
- B - The analyte was detected above the reporting limit in the associated method blank. Flag only applies to associated field samples that have detectable concentrations of the analyte at less than ten times (10x) the concentration found in the blank. For MCP-related projects, flag only applies to associated field samples that have detectable concentrations of the analyte at less than ten times (10x) the concentration found in the blank. For DOD-related projects, flag only applies to associated field samples that have detectable concentrations of the analyte at less than ten times (10x) the concentration found in the blank AND the analyte was detected above one-half the reporting limit (or above the reporting limit for common lab contaminants) in the associated method blank. For NJ-Air-related projects, flag only applies to associated field samples that have detectable concentrations of the analyte above the reporting limit. For NJ-related projects (excluding Air), flag only applies to associated field samples that have detectable concentrations of the analyte, which was detected above the reporting limit in the associated method blank or above five times the reporting limit for common lab contaminants (Phthalates, Acetone, Methylene Chloride, 2-Butanone).
- С - Co-elution: The target analyte co-elutes with a known lab standard (i.e. surrogate, internal standards, etc.) for co-extracted analyses.
- D - Concentration of analyte was quantified from diluted analysis. Flag only applies to field samples that have detectable concentrations of the analyte.
- Е - Concentration of analyte exceeds the range of the calibration curve and/or linear range of the instrument.
- F - The ratio of quantifier ion response to qualifier ion response falls outside of the laboratory criteria. Results are considered to be an estimated maximum concentration.
- G - The concentration may be biased high due to matrix interferences (i.e, co-elution) with non-target compound(s). The result should be considered estimated.
- н - The analysis of pH was performed beyond the regulatory-required holding time of 15 minutes from the time of sample collection.
- I - The lower value for the two columns has been reported due to obvious interference.
- J - Estimated value. This represents an estimated concentration for Tentatively Identified Compounds (TICs).
- Μ - Reporting Limit (RL) exceeds the MCP CAM Reporting Limit for this analyte.
- ND - Not detected at the reporting limit (RL) for the sample.
- NJ - Presumptive evidence of compound. This represents an estimated concentration for Tentatively Identified Compounds (TICs), where

Report Format: Data Usability Report



## Serial\_No:10042110:33

# Project Name: HARVARD ENTERPRISE BLDGS 2

Project Number: 134042-003

Lab Number: L2151368

## **Report Date:** 10/04/21

#### Data Qualifiers

the identification is based on a mass spectral library search.

- P The RPD between the results for the two columns exceeds the method-specified criteria.
- Q The quality control sample exceeds the associated acceptance criteria. For DOD-related projects, LCS and/or Continuing Calibration Standard exceedences are also qualified on all associated sample results. Note: This flag is not applicable for matrix spike recoveries when the sample concentration is greater than 4x the spike added or for batch duplicate RPD when the sample concentrations are less than 5x the RL. (Metals only.)
- **R** Analytical results are from sample re-analysis.
- **RE** Analytical results are from sample re-extraction.
- **S** Analytical results are from modified screening analysis.
- V The surrogate associated with this target analyte has a recovery outside the QC acceptance limits. (Applicable to MassDEP DW Compliance samples only.)
- Z The batch matrix spike and/or duplicate associated with this target analyte has a recovery/RPD outside the QC acceptance limits. (Applicable to MassDEP DW Compliance samples only.)

Report Format: Data Usability Report



 Lab Number:
 L2151368

 Report Date:
 10/04/21

### REFERENCES

- 1 Test Methods for Evaluating Solid Waste: Physical/Chemical Methods. EPA SW-846. Third Edition. Updates I - VI, 2018.
- 3 Methods for the Determination of Metals in Environmental Samples, Supplement I. EPA/600/R-94/111. May 1994.
- 4 Methods for Chemical Analysis of Water and Wastes. EPA 600/4-79-020. Revised March 1983.
- 14 Methods for the Determination of Organic Compounds in Finished Drinking Water and Raw Source Water. EPA/600/4-88/039, Revised July 1991.
- 19 Inductively Coupled Plasma Atomic Emission Spectrometric Method for Trace Element Analysis of Water and Wastes. Appendix C, Part 136, 40 CFR (Code of Federal Regulations). July 1, 1999 edition.
- 44 Methods for the Determination of Inorganic Substances in Environmental Samples, EPA/600/R-93/100, August 1993.
- 107 Alpha Analytical In-house calculation method.
- 121 Standard Methods for the Examination of Water and Wastewater. APHA-AWWA-WEF. Standard Methods Online.
- 127 Method 608.3: Organochlorine Pesticides and PCBs by GC/HSD, EPA 821-R-16-009, December 2016.
- 128 Method 624.1: Purgeables by GC/MS, EPA 821-R-16-008, December 2016.
- 129 Method 625.1: Base/Neutrals and Acids by GC/MS, EPA 821-R-16-007, December 2016.
- 140 Method 1664, Revision B: N-Hexane Extractable Material (HEM; Oil & Grease) and Silica Gel Treated N-Hexane Extractable Material (SGT-HEM; Non-polar Material) by Extraction and Gravimetry, EPA-821-R-10-001, February 2010.

## LIMITATION OF LIABILITIES

Alpha Analytical performs services with reasonable care and diligence normal to the analytical testing laboratory industry. In the event of an error, the sole and exclusive responsibility of Alpha Analytical shall be to re-perform the work at it's own expense. In no event shall Alpha Analytical be held liable for any incidental, consequential or special damages, including but not limited to, damages in any way connected with the use of, interpretation of, information or analysis provided by Alpha Analytical.

We strongly urge our clients to comply with EPA protocol regarding sample volume, preservation, cooling, containers, sampling procedures, holding time and splitting of samples in the field.



# **Certification Information**

#### The following analytes are not included in our Primary NELAP Scope of Accreditation:

#### Westborough Facility

EPA 624/624.1: m/p-xylene, o-xylene, Naphthalene

EPA 625/625.1: alpha-Terpineol

EPA 8260C/8260D: <u>NPW</u>: 1,2,4,5-Tetramethylbenzene; 4-Ethyltoluene, Azobenzene; <u>SCM</u>: Iodomethane (methyl iodide), 1,2,4,5-Tetramethylbenzene; 4-Ethyltoluene.

**EPA 8270D/8270E:** <u>NPW:</u> Dimethylnaphthalene,1,4-Diphenylhydrazine, alpha-Terpineol; <u>SCM</u>: Dimethylnaphthalene,1,4-Diphenylhydrazine. **SM4500**: <u>NPW</u>: Amenable Cyanide; <u>SCM</u>: Total Phosphorus, TKN, NO2, NO3.

#### Mansfield Facility

SM 2540D: TSS

EPA 8082A: <u>NPW</u>: PCB: 1, 5, 31, 87,101, 110, 141, 151, 153, 180, 183, 187. EPA TO-15: Halothane, 2,4,4-Trimethyl-2-pentene, 2,4,4-Trimethyl-1-pentene, Thiophene, 2-Methylthiophene, 3-Methylthiophene, 2-Ethylthiophene, 1,2,3-Trimethylbenzene, Indan, Indene, 1,2,4,5-Tetramethylbenzene, Benzothiophene, 1-Methylnaphthalene. Biological Tissue Matrix: EPA 3050B

#### The following analytes are included in our Massachusetts DEP Scope of Accreditation

#### Westborough Facility:

#### **Drinking Water**

EPA 300.0: Chloride, Nitrate-N, Fluoride, Sulfate; EPA 353.2: Nitrate-N, Nitrite-N; SM4500NO3-F: Nitrate-N, Nitrite-N; SM4500F-C, SM4500CN-CE, EPA 180.1, SM2130B, SM4500CI-D, SM2320B, SM2540C, SM4500H-B, SM4500NO2-B EPA 332: Perchlorate; EPA 524.2: THMs and VOCs; EPA 504.1: EDB, DBCP. Microbiology: SM9215B; SM9223-P/A, SM9223B-Colilert-QT,SM9222D.

#### Non-Potable Water

SM4500H,B, EPA 120.1, SM2510B, SM2540C, SM2320B, SM4500CL-E, SM4500F-BC, SM4500NH3-BH: Ammonia-N and Kjeldahl-N, EPA 350.1: Ammonia-N, LACHAT 10-107-06-1-B: Ammonia-N, EPA 351.1, SM4500NO3-F, EPA 353.2: Nitrate-N, SM4500P-E, SM4500P-B, E, SM4500SO4-E, SM5220D, EPA 410.4, SM5210B, SM5310C, SM4500CL-D, EPA 1664, EPA 420.1, SM4500-CN-CE, SM2540D, EPA 300: Chloride, Sulfate, Nitrate. EPA 624.1: Volatile Halocarbons & Aromatics, EPA 608.3: Chlordane Toxaphene Aldrin alpha-BHC beta-BHC gamma-BHC delta-BHC Dieldrin DDD DDE DDT Endosulfan I Endosulfan II

**EPA 608.3**: Chlordane, Toxaphene, Aldrin, alpha-BHC, beta-BHC, gamma-BHC, delta-BHC, Dieldrin, DDD, DDE, DDT, Endosulfan I, Endosulfan II, Endosulfan sulfate, Endrin, Endrin Aldehyde, Heptachlor, Heptachlor Epoxide, PCBs **EPA 625.1**: SVOC (Acid/Base/Neutral Extractables), **EPA 600/4-81-045**: PCB-Oil.

Microbiology: SM9223B-Colilert-QT; Enterolert-QT, SM9221E, EPA 1600, EPA 1603, SM9222D.

#### Mansfield Facility:

#### **Drinking Water**

EPA 200.7: Al, Ba, Cd, Cr, Cu, Fe, Mn, Ni, Na, Ag, Ca, Zn. EPA 200.8: Al, Sb, As, Ba, Be, Cd, Cr, Cu, Pb, Mn, Ni, Se, Ag, TL, Zn. EPA 245.1 Hg. EPA 522, EPA 537.1.

#### Non-Potable Water

**EPA 200.7:** Al, Sb, As, Be, Cd, Ca, Cr, Co, Cu, Fe, Pb, Mg, Mn, Mo, Ni, K, Se, Ag, Na, Sr, TL, Ti, V, Zn. **EPA 200.8:** Al, Sb, As, Be, Cd, Cr, Cu, Fe, Pb, Mn, Ni, K, Se, Ag, Na, TL, Zn. **EPA 245.1** Hg. **SM2340B** 

For a complete listing of analytes and methods, please contact your Alpha Project Manager.

| 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | OUAN OF                                | Service Centers        |               | 00001 00 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Page      | • 1          | 120   |          | - new    |        |           |            | 172     | 1           |                |          | 125    |    |            |     | 197               |     |                                                                               |                           |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------|------------------------|---------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------|--------------|-------|----------|----------|--------|-----------|------------|---------|-------------|----------------|----------|--------|----|------------|-----|-------------------|-----|-------------------------------------------------------------------------------|---------------------------|
| Διρήλ                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | CUSTODY                                | NJ 07430 Albany, NY    | 12205         | CASE OF THE PROPERTY OF THE PR | a         | f 1          |       | Date     | Rec'     | ď      |           | a          | 10      | 71          | 1              | 11       |        |    |            |     |                   |     | ALPHA Job #                                                                   | 1.1.7                     |
| and the second s | COSTODI                                | Tonawanda, NY 14150    | Holmes, PA 19 | 042                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |           |              |       |          | Lau      |        |           | 1          | 11      | JU          | 11             | 1        | -      |    | -          |     | 145               |     | 12151368                                                                      | 12.27                     |
| Westborough, MA 01561<br>8 Walkup Dr.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Manafield, MA 02048<br>320 Forbes Blvd | Project Information    |               | SURA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |           |              | Deli  | verabl   | es       |        |           |            |         |             |                |          |        |    |            |     |                   |     | Billing Information                                                           |                           |
| TEL: 508-898-9220<br>FAX: 508-898-9193                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | TEL: 508-822-9300<br>FAX: 508-822-3288 | Project Name:          | Harvard En    | Merprise Res                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | earch Cam | pus Bldis    | 2     | Ema      | iil .    |        |           | Fax        |         |             |                |          |        |    |            |     |                   |     | Same as Client Info                                                           | 0 - C                     |
| P Massanana a Jew                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                        | Project Location:      | Allston, Ma   | ssachusetts                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |           | 5            | 1     | EQu      | IS (1    | File)  |           | EQuis      | 6 (4 Fi | ile)        |                |          |        |    |            |     |                   |     | POR                                                                           |                           |
| H&A Information                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | No. of the American                    | Project #              | 134042-00     | 3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |           |              |       | Othe     | er;      |        |           |            |         |             |                |          |        |    |            |     |                   |     |                                                                               |                           |
| H&A Client: Tishman                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Speyer ERC Developer                   | (Use Project name      | as Projec     | •                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |           |              | Reg   | ulator   | y Req    | uireme | ents (Pri | ogram/0    | Onteri  | a)          |                |          |        |    |            |     |                   |     | Disposal Site Information                                                     |                           |
| H&A Address: 465 Med                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | ford Street                            | Project Manager:       | H. Scrantor   | n                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |           |              | EPA   | NPD      | ES RG    | iP     |           |            |         |             | _              |          |        |    |            |     |                   |     | Please identify below location of an                                          | pplicable                 |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                        | ALPHAQuote #:          |               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |           |              |       |          |          |        |           |            |         |             |                |          |        |    |            |     |                   |     | disposal facilities.                                                          |                           |
| H&A Phone: 617-886                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | -7440                                  | Turn-Around Time       |               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |           |              |       |          |          |        |           |            |         |             |                |          |        |    |            |     |                   |     | Disposal Facility:                                                            |                           |
| H&A Fax: mplour                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | rde,                                   | Standard               | X             | Due Date                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | :         |              | ٦.    |          |          |        |           |            |         |             |                |          |        |    |            |     |                   |     | NJ NY                                                                         |                           |
| H&A Email: kalepic                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | fis@haleyaldrich.co                    | (only if pre approved) |               | # of Days                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | : 5       |              | Note  | : Seleci | t State  | from m | nenu & id | entily cri | teria.  |             |                |          |        |    |            |     |                   |     | Other:                                                                        |                           |
| These samples have been previously analyzed by Alpha                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                        |                        |               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | ANA       | LYSI         | S     |          |          |        |           |            |         |             |                |          |        |    |            |     | Sample Filtration |     |                                                                               |                           |
| Other project specific                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | requirements/commen                    | nts:                   |               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |           |              | 8     |          |          | 1      | - Ba      | ti         | 1       | ata .       |                |          | 2      |    | 20         |     |                   |     | ¥ Done                                                                        | 0                         |
| *13. Dissolved Metals                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | ON HOLD (Field Filtered                | 0                      |               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |           |              | 15    |          |          |        | lica      | ival       | 2       | FIGP I      | . 8            |          | 10     |    | Cd.C       |     | 12                |     | Lab to do                                                                     | - ÷                       |
| Analyze using the EP                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | A 2017 RGP Approved                    | Testing Methods        |               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |           |              | E E   | 5        | 8        |        | de _      | E          | A       | -West       | SIM            | 8        | Sa2    | E. | P.N.       | 55  | 684               | 808 | Preservation                                                                  | 14                        |
| Please specify Metals                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | or TAL.                                |                        |               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |           |              | 10    | han      | N-AS     | 504    | tho of    | 8 in       | No.     | 5, 1-5      | 0 4            | 13       | 10 SD  | E. | Is-A       | rdu | Ŧ                 | 8   | Lab to do                                                                     | 8                         |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                        |                        |               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |           |              | ŝ     | E        | 12       | *      | 10 en     | 25         | 품       | 1/62        | 12.70<br>olice | 0        | otal I | A  | Meta       | Ť.  | H I               | ň.  | (Please Specify below)                                                        | 1                         |
| ALPHALADID                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                        |                        | Coll          | lection                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Samolo    | Complete     | 18    | 347      | (n)      |        | 17        | NX ~       | E       | 825.<br>Inn | a .            | -        | = 5    | 12 | N.Pt       | 2   | 15                | ಿಕ್ | 1.125/12/2012/12/2012/04                                                      | i i i                     |
| (Lab Use Only)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Sampl                                  | e ID                   | Date          | Time                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Matrix    | Initials     | E     |          |          |        | 8         | 뿦          | 180     | 0.          | 10             |          | 50.0   |    | 00.<br>00. |     |                   |     | Samola Spacific Commants                                                      | -                         |
| -1264-1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | T221 - 712/00                          | ) mr.a.al              | cala.         | 17.20                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 40        | 11           |       |          |          | -      | 10        | -UD        |         | 1           |                |          |        |    |            |     |                   | 1   | Disease MOLD No. 12 seal size                                                 | 07                        |
| 1208-01                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 1001-112004                            | 9) 24660               | 01/20         | 10.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Mu        | AC           | 1     | -        | <u>^</u> | 1 ^    | <u>^</u>  | ×          | ×       | ×           | ×              | ×        | -      | A. |            | *   | ×                 | ~   | Please HULD No. 13 analysis                                                   | 125                       |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                        |                        |               | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |           |              | +     | +        | -        | +      | -         | 1          | 1       | +-          | +              | +        | -      | -  |            |     | -                 | +   |                                                                               | +                         |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                        |                        | <u> </u>      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | -         |              | +     | +        | -        | +      | -         | -          | +       | -           | +              | +        | -      | -  | $\vdash$   |     | -                 | -   |                                                                               | +                         |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                        |                        |               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | -         |              | +     | +        | -        | +      |           | -          | -       | -           | +              | -        | -      | -  |            | -   | -                 | +   |                                                                               | +                         |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                        |                        |               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | -         |              | +     | +-       | -        | +      | +         | -          | -       | -           | +              | -        | -      | -  |            | -   | -                 | ⊢   |                                                                               | +                         |
| -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                        |                        |               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | -         |              | +-    | +        | -        | -      | <u> </u>  | <u> </u>   | -       | +           | +              |          | -      |    |            | -   | -                 |     |                                                                               | +                         |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                        |                        |               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | -         |              | -     | +        | -        | -      |           | -          | -       | -           | -              |          | -      | -  |            |     | <u> </u>          |     |                                                                               |                           |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                        |                        | -             | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | -         |              | -     | +        | -        |        | -         |            | -       |             | -              | -        | -      |    |            |     |                   | -   |                                                                               | +                         |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                        |                        | -             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | -         | -            | -     | -        | -        | -      | -         | -          | -       | -           | -              | -        | -      |    |            |     | -                 | -   |                                                                               | -                         |
| Preservative Code:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Container Code                         |                        |               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | -         | -            | +     | +        | -        | -      | -         | -          | -       | -           | +              | -        | -      |    |            |     | -                 | +   | Please print clearly, legibly and                                             | completely                |
| A = None                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | P = Plastic                            | Westboro: Certifica    | sion No: MA   | 935                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Cor       | ntainer Type | 6     | 1        |          |        |           |            |         |             | 1              |          |        |    |            |     |                   |     | Samples can not be logged in an                                               | nd                        |
| B = HGI<br>C = HNO                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | A = Amber Glass<br>V = Vial            | Mansfield: Certifica   | tion No: MA   | 015                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |           | 10:20        | -     | +        | -        | -      | <u> </u>  | -          | _       | -           | -              | -        | -      | -  |            | _   | -                 | -   | turnaround time clock will not st                                             | tart until                |
| D = H <sub>2</sub> SO <sub>4</sub>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | G = Glass                              |                        |               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 7         | reservative  |       | I .      |          | 1      |           |            |         |             | 1              | I 1      |        |    |            |     |                   |     | Analytical's services under this Ch                                           | ain of                    |
| E = NaOH                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | B = Bacteria Cup<br>C = Cuba           | 1                      |               | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | -         |              | 1     | 1        | _        |        | <u> </u>  |            |         |             |                |          | _      |    |            |     |                   |     | Custody shall be performed in accr<br>with terms and conditions within B      | ordance<br>fankel         |
| G = NaHSO4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | O = Other                              | Relinquisto            | d By:         | Date                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Time      |              | Recei | ived B   | ¥.       |        | -         |            |         | ,           |                | Date/    | lime   | _  |            | -   |                   |     | Service Agreement# 2015-18-Alpt                                               | ha Analytical             |
| H = Na <sub>2</sub> S <sub>2</sub> O <sub>2</sub>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | E = Encore<br>D = BOD Bottle           | unop                   | no            | 09/22/                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 21/       | 11           | 2     | 10       | n        | ~      | -PI       | m          | AK      | 2           | 9              | 100      | 101    |    | 64         | 0   |                   |     | by and between Haley & Aldrich, In<br>subsidiaries and affiliates and Aldrich | hc., its<br>ha Analytical |
| O = Other                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                        | inter                  | n_            | 9/00/21                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 1880      | 0h           | NE    | sl       | on       | OIN    | in        | Un         | r       | 91          | 20             | 17       | 1      | 15 | 5          | 5   |                   |     |                                                                               | In Contraction            |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                        |                        |               | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |           | . <u> </u>   |       | <u> </u> | _        | - 10   | 1         | 0          | 8       | 8           | _              | <u> </u> | 55     | 2  |            | _   | _                 |     | 1                                                                             |                           |
| Document ID: 20455 Rev 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 1 (1/28/2016)                          |                        |               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |           |              |       |          |          |        |           |            |         |             |                |          |        |    |            |     |                   |     |                                                                               |                           |

|                                               |                                                                       | Te<br>54<br>Co                                | Subcontra<br>k Lab, Inc.<br>45 Horsehoe<br>Illinsville, IL 62 | act Chain of Custoc<br>Lake Road<br>2234-7425 | ły                                     | Alpha Jol<br>L2151368    | o Number   |
|-----------------------------------------------|-----------------------------------------------------------------------|-----------------------------------------------|---------------------------------------------------------------|-----------------------------------------------|----------------------------------------|--------------------------|------------|
| C                                             | lient Information                                                     |                                               | Project In                                                    | formation                                     | Regulator                              | ry Requirements/Report L | imits      |
| Client: Alpha A<br>Address: Eight W<br>Westbo | Analytical Labs<br>/alkup Drive<br>rough, MA 01581-1019<br>9 5010     | Project Location<br>Project Manage<br>Turnarc | n: MA<br>er: Melissa Gu<br>ound & Deliv                       | ulli<br>verables Information                  | State/Federal Pro<br>Regulatory Criter | ogram:<br>ria:           |            |
| Email: mgulli@                                | alphalab.com                                                          | Deliverables                                  |                                                               |                                               |                                        |                          | The lot in |
|                                               |                                                                       | Project Specif                                | ic Requirem                                                   | ents and/or Report Re                         | equirements                            |                          |            |
| Additional Com                                | Reference following Alpha Job N<br>ments: Send all results/reports to | lumber on final repor                         | t/deliverables<br>ab.com                                      | : L2151368                                    | Report to include Metho                | od Blank, LCS/LCSD:      |            |
| Lab ID                                        | Client ID                                                             | Collection<br>Date/Time                       | Sample                                                        | Anal                                          | lucie                                  |                          | Batch      |
|                                               | TB21_I12(OW)_092221                                                   | 09-22-21 12:20                                | WATER                                                         | Ethanol by EPA 1671 Revisio                   | n A                                    |                          |            |
|                                               | Relinquished                                                          | і Ву:                                         |                                                               | Date/Time:                                    | Received By:                           | Date/Time:               |            |
|                                               | 0-                                                                    | )                                             |                                                               | 9/23/21                                       |                                        |                          |            |
|                                               |                                                                       |                                               |                                                               |                                               |                                        |                          |            |
| Form No: AL_su                                | bcoc                                                                  |                                               |                                                               |                                               |                                        |                          |            |

http://www.teklabinc.com/

| Sentember 30, 2021    |           |         |
|-----------------------|-----------|---------|
| September 50, 2021    | Illinois  | 100226  |
| Melissa Gulli         | Kansas    | E-10374 |
| Alpha Analytical      | Louisiana | 05002   |
| 145 Flanders Road     | Louisiana | 05003   |
| Westborough, MA 01581 | Oklahoma  | 9978    |
| TEL: (603) 319-5010   |           |         |
| FAX:                  |           |         |

**RE:** L2151368

## WorkOrder: 21091451

Dear Melissa Gulli:

TEKLAB, INC received 1 sample on 9/24/2021 9:49:00 AM for the analysis presented in the following report.

Samples are analyzed on an as received basis unless otherwise requested and documented. The sample results contained in this report relate only to the requested analytes of interest as directed on the chain of custody. NELAP accredited fields of testing are indicated by the letters NELAP under the Certification column. Unless otherwise documented within this report, Teklab Inc. analyzes samples utilizing the most current methods in compliance with 40CFR. All tests are performed in the Collinsville, IL laboratory unless otherwise noted in the Case Narrative.

All quality control criteria applicable to the test methods employed for this project have been satisfactorily met and are in accordance with NELAP except where noted. The following report shall not be reproduced, except in full, without the written approval of Teklab, Inc.

If you have any questions regarding these tests results, please feel free to call.

Sincerely,

Marvin L. Darling Project Manager (618)344-1004 ex 41 mdarling@teklabinc.com

# **Report Contents**

|                          | http://www.teklabinc.com/ |
|--------------------------|---------------------------|
| Client: Alpha Analytical | Work Order: 21091451      |
| Client Project: L2151368 | Report Date: 30-Sep-21    |

# This reporting package includes the following:

| Cover Letter            | 1        |
|-------------------------|----------|
| Report Contents         | 2        |
| Definitions             | 3        |
| Case Narrative          | 5        |
| Accreditations          | 6        |
| Laboratory Results      | 7        |
| Quality Control Results | 8        |
| Receiving Check List    | 9        |
| Chain of Custody        | Appended |

# Definitions

http://www.teklabinc.com/

| Client: /      | Alpha Analytical | Work Order:         | 21091451  |
|----------------|------------------|---------------------|-----------|
| lient Project: | L2151368         | <b>Report Date:</b> | 30-Sep-21 |
|                |                  |                     |           |

### **Abbr Definition**

- \* Analytes on report marked with an asterisk are not NELAP accredited
- CCV Continuing calibration verification is a check of a standard to determine the state of calibration of an instrument between recalibration.
- CRQL A Client Requested Quantitation Limit is a reporting limit that varies according to customer request. The CRQL may not be less than the MDL.
- DF Dilution factor is the dilution performed during analysis only and does not take into account any dilutions made during sample preparation. The reported result is final and includes all dilution factors.
- DNI Did not ignite
- DUP Laboratory duplicate is a replicate aliquot prepared under the same laboratory conditions and independently analyzed to obtain a measure of precision.
- ICV Initial calibration verification is a check of a standard to determine the state of calibration of an instrument before sample analysis is initiated.
- IDPH IL Dept. of Public Health
- LCS Laboratory control sample is a sample matrix, free from the analytes of interest, spiked with verified known amounts of analytes and analyzed exactly like a sample to establish intra-laboratory or analyst specific precision and bias or to assess the performance of all or a portion of the measurement system.
- LCSD Laboratory control sample duplicate is a replicate laboratory control sample that is prepared and analyzed in order to determine the precision of the approved test method. The acceptable recovery range is listed in the QC Package (provided upon request).
- MBLK Method blank is a sample of a matrix similar to the batch of associated sample (when available) that is free from the analytes of interest and is processed simultaneously with and under the same conditions as samples through all steps of the analytical procedures, and in which no target analytes or interferences should present at concentrations that impact the analytical results for sample analyses.
- MDL "The method detection limit is defined as the minimum measured concentration of a substance that can be reported with 99% confidence that the measured concentration is distinguishable from method blank results."
- MS Matrix spike is an aliquot of matrix fortified (spiked) with known quantities of specific analytes that is subjected to the entire analytical procedures in order to determine the effect of the matrix on an approved test method's recovery system. The acceptable recovery range is listed in the QC Package (provided upon request).
- MSD Matrix spike duplicate means a replicate matrix spike that is prepared and analyzed in order to determine the precision of the approved test method. The acceptable recovery range is listed in the QC Package (provided upon request).
- MW Molecular weight
- NC Data is not acceptable for compliance purposes
- ND Not Detected at the Reporting Limit
- NELAP NELAP Accredited
  - PQL Practical quantitation limit means the lowest level that can be reliably achieved within specified limits of precision and accuracy during routine laboratory operation conditions.
  - RL The reporting limit the lowest level that the data is displayed in the final report. The reporting limit may vary according to customer request or sample dilution. The reporting limit may not be less than the MDL.
  - RPD Relative percent difference is a calculated difference between two recoveries (ie. MS/MSD). The acceptable recovery limit is listed in the QC Package (provided upon request).
  - SPK The spike is a known mass of target analyte added to a blank sample or sub-sample; used to determine recovery deficiency or for other quality control purposes.
  - Surr Surrogates are compounds which are similar to the analytes of interest in chemical composition and behavior in the analytical process, but which are not normally found in environmental samples.
  - TIC Tentatively identified compound: Analytes tentatively identified in the sample by using a library search. Only results not in the calibration standard will be reported as tentatively identified compounds. Results for tentatively identified compounds that are not present in the calibration standard, but are assigned a specific chemical name based upon the library search, are calculated using total peak areas from reconstructed ion chromatograms and a response factor of one. The nearest Internal Standard is used for the calculation. The results of any TICs must be considered estimated, and are flagged with a "T". If the estimated result is above the calibration range it is flagged "ET"
- TNTC Too numerous to count ( > 200 CFU )

# **Definitions**

## http://www.teklabinc.com/

| Client:                | Alpha Analytical |    | Work Order: 21091451                        |
|------------------------|------------------|----|---------------------------------------------|
| <b>Client Project:</b> | L2151368         |    | Report Date: 30-Sep-21                      |
|                        | Qualifiers       |    |                                             |
| #- Unkn                | own hydrocarbon  | В- | Analyte detected in associated Method Blank |

C - RL shown is a Client Requested Quantitation Limit

H - Holding times exceeded

J - Analyte detected below quantitation limits

ND - Not Detected at the Reporting Limit

S - Spike Recovery outside recovery limits

X - Value exceeds Maximum Contaminant Level

E - Value above quantitation range

I - Associated internal standard was outside method criteria

M - Manual Integration used to determine area response

R - RPD outside accepted recovery limits

T - TIC(Tentatively identified compound)

# **Case Narrative**

Client: Alpha Analytical Client Project: L2151368

# Cooler Receipt Temp: 1.0 °C

http://www.teklabinc.com/

Work Order: 21091451 Report Date: 30-Sep-21

|         |                             |         | Locations                  |         |                       |  |
|---------|-----------------------------|---------|----------------------------|---------|-----------------------|--|
|         | Collinsville                |         | Springfield                |         | Kansas City           |  |
| Address | 5445 Horseshoe Lake Road    | Address | 3920 Pintail Dr            | Address | 8421 Nieman Road      |  |
|         | Collinsville, IL 62234-7425 |         | Springfield, IL 62711-9415 |         | Lenexa, KS 66214      |  |
| Phone   | (618) 344-1004              | Phone   | (217) 698-1004             | Phone   | (913) 541-1998        |  |
| Fax     | (618) 344-1005              | Fax     | (217) 698-1005             | Fax     | (913) 541-1998        |  |
| Email   | jhriley@teklabinc.com       | Email   | KKlostermann@teklabinc.com | Email   | jhriley@teklabinc.com |  |
|         | Collinsville Air            |         | Chicago                    |         |                       |  |
| Address | 5445 Horseshoe Lake Road    | Address | 1319 Butterfield Rd.       |         |                       |  |
|         | Collinsville, IL 62234-7425 |         | Downers Grove, IL 60515    |         |                       |  |
| Phone   | (618) 344-1004              | Phone   | (630) 324-6855             |         |                       |  |
| Fax     | (618) 344-1005              | Fax     |                            |         |                       |  |
| Email   | EHurley@teklabinc.com       | Email   | arenner@teklabinc.com      |         |                       |  |

# Accreditations

## http://www.teklabinc.com/

# Client: Alpha Analytical

# Client Project: L2151368

# Work Order: 21091451 Report Date: 30-Sep-21

| State     | Dept | Cert #  | NELAP | Exp Date  | Lab          |
|-----------|------|---------|-------|-----------|--------------|
| Illinois  | IEPA | 100226  | NELAP | 1/31/2022 | Collinsville |
| Kansas    | KDHE | E-10374 | NELAP | 4/30/2022 | Collinsville |
| Louisiana | LDEQ | 05002   | NELAP | 6/30/2022 | Collinsville |
| Louisiana | LDEQ | 05003   | NELAP | 6/30/2022 | Collinsville |
| Oklahoma  | ODEQ | 9978    | NELAP | 8/31/2022 | Collinsville |
| Arkansas  | ADEQ | 88-0966 |       | 3/14/2022 | Collinsville |
| Illinois  | IDPH | 17584   |       | 5/31/2021 | Collinsville |
| Kentucky  | UST  | 0073    |       | 1/31/2022 | Collinsville |
| Missouri  | MDNR | 00930   |       | 5/31/2021 | Collinsville |
| Missouri  | MDNR | 930     |       | 1/31/2022 | Collinsville |

| La | boratory | Resu | lts |
|----|----------|------|-----|
|    |          |      |     |

|                                                                                      |               |                                           |      |                      |       | <u>htt</u> | p://www.teklabinc.com/   |
|--------------------------------------------------------------------------------------|---------------|-------------------------------------------|------|----------------------|-------|------------|--------------------------|
| Client: Alpha                                                                        | Analytical    |                                           |      | Work Order: 21091451 |       |            |                          |
| Client Project: L21513                                                               | 368           | Report Date: 30-Sep-21                    |      |                      |       |            |                          |
| Lab ID: 210914                                                                       | 451-001       | O01 Client Sample ID: TB21_I12(OW)_092221 |      |                      |       |            |                          |
| Matrix: AQUEC                                                                        | DUS           | Collection Date: 09/22/2021 12:20         |      |                      |       |            |                          |
| Analyses                                                                             | Certification | RL                                        | Qual | Result               | Units | DF         | Date Analyzed Batch      |
| EPA 600 1671A, PHARMACEUTICAL MANUFACTURING INDUSTRY NON-PURGEABLE VOLATILE ORGANICS |               |                                           |      |                      |       |            |                          |
| Ethanol                                                                              | *             | 20                                        |      | ND                   | mg/L  | 1          | 09/29/2021 13:44 R299681 |

# **Quality Control Results**

# http://www.teklabinc.com/

Client: Alpha Analytical

Work Order: 21091451

Client Project: L2151368

Report Date: 30-Sep-21

| EPA 600 1671A, PHARMACEUTICAL MANUFACTURING INDUSTRY NON-PURGEABLE VOLATILE OR |          |      |    |                   |        |       |             |       |            |               |            |
|--------------------------------------------------------------------------------|----------|------|----|-------------------|--------|-------|-------------|-------|------------|---------------|------------|
| Batch R299681 Sa                                                               | ampType: | MBLK |    | Units <b>mg/L</b> |        |       |             |       |            |               |            |
| SampID: MBLK-092921                                                            | 1        |      |    |                   |        |       |             |       |            |               | Date       |
| Analyses                                                                       |          | Cert | RL | Qual              | Result | Spike | SPK Ref Val | %REC  | Low Limit  | High Limit    | Analyzed   |
| Ethanol                                                                        |          | *    | 20 |                   | ND     |       |             |       |            |               | 09/29/2021 |
|                                                                                |          |      |    |                   |        |       |             |       |            |               |            |
| Batch R299681 Sa                                                               | ampType: | LCS  |    | Units <b>mg/L</b> |        |       |             |       |            |               |            |
| SampID: LCS-092921                                                             |          |      |    |                   |        |       |             |       |            |               | Date       |
| Analyses                                                                       |          | Cert | RL | Qual              | Result | Spike | SPK Ref Val | %REC  | Low Limit  | High Limit    | Analyzed   |
| Ethanol                                                                        |          | *    | 20 |                   | 250    | 250.0 | 0           | 99.3  | 70         | 132           | 09/29/2021 |
|                                                                                |          |      |    |                   |        |       |             |       |            |               |            |
| Batch R299681 Sa                                                               | ampType: | MS   |    | Units <b>mg/L</b> |        |       |             |       |            |               |            |
| SampID: 21091662-007                                                           | 1AMS     |      |    |                   |        |       |             |       |            |               | Date       |
| Analyses                                                                       |          | Cert | RL | Qual              | Result | Spike | SPK Ref Val | %REC  | Low Limit  | High Limit    | Analyzed   |
| Ethanol                                                                        |          | *    | 20 |                   | 260    | 250.0 | 0           | 102.1 | 70         | 132           | 09/29/2021 |
|                                                                                |          |      |    |                   |        |       |             |       |            |               |            |
| Batch R299681 Sa                                                               | ampType: | MSD  |    | Units mg/L        |        |       |             |       | RPD Lin    | nit <b>30</b> |            |
| SampID: 21091662-007                                                           | 1AMSD    |      |    |                   |        |       |             |       |            |               | Date       |
| Analyses                                                                       |          | Cert | RL | Qual              | Result | Spike | SPK Ref Val | %REC  | RPD Ref Va | al %RPD       | Analyzed   |
| Ethanol                                                                        |          | *    | 20 |                   | 250    | 250.0 | 0           | 98.7  | 255.1      | 3.30          | 09/29/2021 |
|                                                                                |          |      |    |                   |        |       |             |       |            |               |            |

# **Receiving Check List**

http://www.teklabinc.com/

| Client: Alpha Analytical                                                                                                | Work Order: 21091451                      |              |                     |                    |
|-------------------------------------------------------------------------------------------------------------------------|-------------------------------------------|--------------|---------------------|--------------------|
| Client Project: L2151368                                                                                                | Report Date: 30-Sep-21                    |              |                     |                    |
|                                                                                                                         |                                           |              |                     |                    |
| Carrier: FedEx                                                                                                          | Receiv                                    | ved By: PW   | R                   |                    |
| Completed by:                                                                                                           | Revi                                      | ewed by:     |                     |                    |
| On:                                                                                                                     | 0                                         | n:           |                     |                    |
| 24-Sep-21                                                                                                               | 24-Se                                     | ep-21        |                     |                    |
| Mary E. Kemp                                                                                                            |                                           |              | Elizabeth A. Hurley |                    |
| Pages to follow: Chain of custody 1                                                                                     | Extra pages included                      | 1 0          |                     |                    |
| Shipping container/cooler in good condition?                                                                            | Yes 🗸                                     | No 🗌         | Not Present         | Temp °C <b>1.0</b> |
| Type of thermal preservation?                                                                                           | None                                      | Ice 🗹        | Blue Ice            | Drv Ice            |
| Chain of custody present?                                                                                               | Yes 🔽                                     | No 🗌         |                     |                    |
| Chain of custody signed when relinquished and received?                                                                 | Yes 🗹                                     | No 🗌         |                     |                    |
| Chain of custody agrees with sample labels?                                                                             | Yes 🗹                                     | No 🗌         |                     |                    |
| Samples in proper container/bottle?                                                                                     | Yes 🗹                                     | No 🗌         |                     |                    |
| Sample containers intact?                                                                                               | Yes 🗹                                     | No 🗌         |                     |                    |
| Sufficient sample volume for indicated test?                                                                            | Yes 🗹                                     | No 🗌         |                     |                    |
| All samples received within holding time?                                                                               | Yes 🗹                                     | No 🗌         |                     |                    |
| Reported field parameters measured:                                                                                     | Field                                     | Lab          | NA 🗹                |                    |
| Container/Temp Blank temperature in compliance?                                                                         | Yes 🗹                                     | No 🗌         |                     |                    |
| When thermal preservation is required, samples are complian 0.1°C - 6.0°C, or when samples are received on ice the same | t with a temperature<br>day as collected. | between      |                     |                    |
| Water – at least one vial per sample has zero headspace?                                                                | Yes 🗹                                     | No           | No VOA vials 🗌      |                    |
| Water - TOX containers have zero headspace?                                                                             | Yes 🗌                                     | No 🗌         | No TOX containers 🗹 |                    |
| Water - pH acceptable upon receipt?                                                                                     | Yes 🗹                                     | No 🗌         | NA 🗌                |                    |
| NPDES/CWA TCN interferences checked/treated in the field?                                                               | Yes 🗌                                     | No 🗌         | NA 🔽                |                    |
| Any No responses m                                                                                                      | ust be detailed belo                      | ow or on the | COC.                |                    |
| i                                                                                                                       |                                           |              |                     |                    |

|                                            |                                       |                                       |              |                       | -                                      |                        | <u> </u>             | <u> </u>                                        |  |
|--------------------------------------------|---------------------------------------|---------------------------------------|--------------|-----------------------|----------------------------------------|------------------------|----------------------|-------------------------------------------------|--|
|                                            |                                       | 5                                     | Subcontra    | act Chain of Cu       | stody                                  |                        |                      |                                                 |  |
|                                            | Tek<br>544                            | Lab, Inc.<br>5 Horsehoe I             | Lake Road    |                       | Alpha Job Num                          |                        |                      |                                                 |  |
| ANALYTICA                                  | Čolli                                 | insville, IL 62                       | 234-7425     |                       |                                        | L2151368               |                      |                                                 |  |
| World Class Chemistry                      |                                       |                                       |              |                       |                                        |                        | 1,                   |                                                 |  |
| Client                                     | Information                           |                                       | Project In   | formation             | f                                      | Regulatory Regul       | irements/Report L    | imits                                           |  |
| Client: Alpha Analyti                      | ical Labs                             | Project Location:                     | MA           |                       | State/F                                | State/Federal Program: |                      |                                                 |  |
| Address: Eight Walkup<br>Westborough       | ) Drive<br>), MA 01581-1019           | Project Manager                       | : Melissa Gu |                       | Regula                                 | Regulatory Criteria:   |                      |                                                 |  |
| _                                          |                                       | Turnaround & Deliverables Information |              |                       |                                        |                        |                      |                                                 |  |
| Phone: 603.319.5010<br>Email: mgulli@alpha | 0<br>alab.com                         | Due Date:<br>Deliverables:            |              |                       |                                        |                        |                      |                                                 |  |
|                                            |                                       | Droject Specific                      | Deguirens    | anto anal (an Dana    | at Daminut                             |                        |                      |                                                 |  |
|                                            | · · · · · · · · · · · · · · · · · · · | Project Specific                      | . Requirem   | ents and/or kepo      | rt Requirements                        |                        |                      |                                                 |  |
| Refer                                      | ence following Alpha Job Nu           | imber on final report/                | deliverables | : L2151368            | Report to incl                         | ude Method Blank,      | LCS/LCSD:            |                                                 |  |
| Additional Comments                        | : Send all results/reports to :       | subreports@alphalat                   | o.com        |                       |                                        |                        |                      |                                                 |  |
|                                            |                                       |                                       |              |                       |                                        |                        |                      |                                                 |  |
|                                            |                                       |                                       |              |                       |                                        |                        |                      | terenere en |  |
| Lab ID                                     | Client ID                             | Date/Time                             | Matrix       |                       | Analysis                               |                        |                      | Batch<br>QC                                     |  |
| 21091451-001                               | TB21_I12(OW)_092221                   | 09-22-21 12:20                        | WATER        | Ethanol by EPA 1671 F | evision A                              |                        |                      |                                                 |  |
|                                            |                                       |                                       |              |                       |                                        |                        |                      |                                                 |  |
|                                            |                                       |                                       |              |                       |                                        |                        |                      |                                                 |  |
|                                            |                                       |                                       |              |                       |                                        |                        |                      |                                                 |  |
|                                            |                                       |                                       |              |                       |                                        |                        |                      |                                                 |  |
|                                            |                                       |                                       |              |                       |                                        |                        |                      |                                                 |  |
|                                            |                                       |                                       |              |                       |                                        |                        |                      |                                                 |  |
|                                            |                                       |                                       |              |                       |                                        |                        |                      |                                                 |  |
|                                            |                                       |                                       |              |                       |                                        |                        |                      |                                                 |  |
|                                            |                                       |                                       |              |                       |                                        |                        |                      |                                                 |  |
|                                            |                                       |                                       |              |                       |                                        |                        |                      |                                                 |  |
|                                            |                                       |                                       |              |                       |                                        |                        |                      |                                                 |  |
|                                            |                                       |                                       |              |                       |                                        |                        |                      |                                                 |  |
|                                            | Relinquished                          | By:                                   | <u> </u>     | Date/Time:            | Bacerta                                | A Bye                  | Data /Time           |                                                 |  |
|                                            |                                       | <u> </u>                              |              | 9/10/01               |                                        | LAR IE                 | and Glait bi         | naua                                            |  |
|                                            | - Comp                                | )                                     |              |                       | <i>[]</i> /~~~                         | FILOS VED              | <u>er 1 -1/24/21</u> | 0 141                                           |  |
|                                            |                                       | ·····                                 |              |                       | · · · · · · · · · · · · · · · · · · ·  |                        |                      |                                                 |  |
| Form No: AL_subcoc                         |                                       |                                       |              |                       |                                        |                        |                      | ·                                               |  |
| temp: 1.0°C                                | LT6'3 ill                             |                                       |              |                       | ······································ |                        |                      | <i></i>                                         |  |
| QUS FU ar                                  | 74171                                 |                                       |              |                       |                                        |                        |                      |                                                 |  |
|                                            | U U                                   |                                       |              |                       |                                        |                        |                      |                                                 |  |



## ANALYTICAL REPORT

| Lab Number:                     | L2158158                                                                              |
|---------------------------------|---------------------------------------------------------------------------------------|
| Client:                         | Haley & Aldrich, Inc.<br>465 Medford Street, Suite 2200<br>Charlestown, MA 02129-1400 |
| ATTN:<br>Phone:                 | Heather Scranton<br>(617) 886-7400                                                    |
| Project Name:                   | HARVARD ENTERPRISE RESEARCH                                                           |
| Project Number:<br>Report Date: | 134042-003<br>10/28/21                                                                |
|                                 |                                                                                       |

The original project report/data package is held by Alpha Analytical. This report/data package is paginated and should be reproduced only in its entirety. Alpha Analytical holds no responsibility for results and/or data that are not consistent with the original.

Certifications & Approvals: MA (M-MA086), NH NELAP (2064), CT (PH-0574), IL (200077), ME (MA00086), MD (348), NJ (MA935), NY (11148), NC (25700/666), PA (68-03671), RI (LAO00065), TX (T104704476), VT (VT-0935), VA (460195), USDA (Permit #P330-17-00196).

Eight Walkup Drive, Westborough, MA 01581-1019 508-898-9220 (Fax) 508-898-9193 800-624-9220 - www.alphalab.com



Serial\_No:10282120:03

Project Name:HARVARD ENTERPRISE RESEARCHProject Number:134042-003

 Lab Number:
 L2158158

 Report Date:
 10/28/21

| Alpha<br>Sample ID | Client ID                         | Matrix | Sample<br>Location | Collection<br>Date/Time | Receive Date |
|--------------------|-----------------------------------|--------|--------------------|-------------------------|--------------|
| L2158158-01        | FRESH WATER<br>RECEIVING_20211022 | WATER  | ALLSTON, MA        | 10/22/21 13:45          | 10/22/21     |


# Project Name:HARVARD ENTERPRISE RESEARCHProject Number:134042-003

 Lab Number:
 L2158158

 Report Date:
 10/28/21

## **Case Narrative**

The samples were received in accordance with the Chain of Custody and no significant deviations were encountered during the preparation or analysis unless otherwise noted. Sample Receipt, Container Information, and the Chain of Custody are located at the back of the report.

Results contained within this report relate only to the samples submitted under this Alpha Lab Number and meet NELAP requirements for all NELAP accredited parameters unless otherwise noted in the following narrative. The data presented in this report is organized by parameter (i.e. VOC, SVOC, etc.). Sample specific Quality Control data (i.e. Surrogate Spike Recovery) is reported at the end of the target analyte list for each individual sample, followed by the Laboratory Batch Quality Control at the end of each parameter. Tentatively Identified Compounds (TICs), if requested, are reported for compounds identified to be present and are not part of the method/program Target Compound List, even if only a subset of the TCL are being reported. If a sample was re-analyzed or re-extracted due to a required quality control corrective action and if both sets of data are reported, the Laboratory ID of the re-analysis or re-extraction is designated with an "R" or "RE", respectively.

When multiple Batch Quality Control elements are reported (e.g. more than one LCS), the associated samples for each element are noted in the grey shaded header line of each data table. Any Laboratory Batch, Sample Specific % recovery or RPD value that is outside the listed Acceptance Criteria is bolded in the report. In reference to questions H (CAM) or 4 (RCP) when "NO" is checked, the performance criteria for CAM and RCP methods allow for some quality control failures to occur and still be within method compliance. In these instances, the specific failure is not narrated but noted in the associated QC Outlier Summary Report, located directly after the Case Narrative. QC information is also incorporated in the Data Usability Assessment table (Format 11) of our Data Merger tool, where it can be reviewed in conjunction with the sample result, associated regulatory criteria and any associated data usability implications.

Soil/sediments, solids and tissues are reported on a dry weight basis unless otherwise noted. Definitions of all data qualifiers and acronyms used in this report are provided in the Glossary located at the back of the report.

HOLD POLICY - For samples submitted on hold, Alpha's policy is to hold samples (with the exception of Air canisters) free of charge for 21 calendar days from the date the project is completed. After 21 calendar days, we will dispose of all samples submitted including those put on hold unless you have contacted your Alpha Project Manager and made arrangements for Alpha to continue to hold the samples. Air canisters will be disposed after 3 business days from the date the project is completed.

Please contact Project Management at 800-624-9220 with any questions.

I, the undersigned, attest under the pains and penalties of perjury that, to the best of my knowledge and belief and based upon my personal inquiry of those responsible for providing the information contained in this analytical report, such information is accurate and complete. This certificate of analysis is not complete unless this page accompanies any and all pages of this report.

609 Standow Kelly Stenstrom

Authorized Signature:

Title: Technical Director/Representative

Date: 10/28/21



# **METALS**



Serial\_No:10282120:03

| Project Name:    | HARVARD ENTERPRISE RESEARCH    | Lab Number:     | L2158158       |
|------------------|--------------------------------|-----------------|----------------|
| Project Number:  | 134042-003                     | Report Date:    | 10/28/21       |
|                  | SAMPLE RESULTS                 |                 |                |
| Lab ID:          | L2158158-01                    | Date Collected: | 10/22/21 13:45 |
| Client ID:       | FRESH WATER RECEIVING_20211022 | Date Received:  | 10/22/21       |
| Sample Location: | ALLSTON, MA                    | Field Prep:     | Not Specified  |

## Sample Depth:

Matrix:

Water

| Parameter            | Result    | Qualifier   | Units | RL      | MDL | Dilution<br>Factor | Date<br>Prepared | Date<br>Analyzed | Prep<br>Method | Analytical<br>Method | Analyst |
|----------------------|-----------|-------------|-------|---------|-----|--------------------|------------------|------------------|----------------|----------------------|---------|
| Total Metals - Manst | field Lab |             |       |         |     |                    |                  |                  |                |                      |         |
| Antimony, Total      | ND        |             | mg/l  | 0.00400 |     | 1                  | 10/27/21 15:40   | 10/28/21 13:45   | EPA 3005A      | 3,200.8              | PS      |
| Arsenic, Total       | 0.00100   |             | mg/l  | 0.00100 |     | 1                  | 10/27/21 15:40   | 10/28/21 13:45   | EPA 3005A      | 3,200.8              | PS      |
| Cadmium, Total       | ND        |             | mg/l  | 0.00020 |     | 1                  | 10/27/21 15:40   | 10/28/21 13:45   | EPA 3005A      | 3,200.8              | PS      |
| Chromium, Total      | 0.00108   |             | mg/l  | 0.00100 |     | 1                  | 10/27/21 15:40   | 10/28/21 13:45   | EPA 3005A      | 3,200.8              | PS      |
| Copper, Total        | 0.00289   |             | mg/l  | 0.00100 |     | 1                  | 10/27/21 15:40   | 10/28/21 13:45   | EPA 3005A      | 3,200.8              | PS      |
| Iron, Total          | 0.943     |             | mg/l  | 0.050   |     | 1                  | 10/27/21 15:40   | 10/28/21 12:32   | EPA 3005A      | 19,200.7             | GD      |
| Lead, Total          | 0.00347   |             | mg/l  | 0.00100 |     | 1                  | 10/27/21 15:40   | 10/28/21 13:45   | EPA 3005A      | 3,200.8              | PS      |
| Mercury, Total       | ND        |             | mg/l  | 0.00020 |     | 1                  | 10/27/21 17:22   | 10/28/21 07:44   | EPA 245.1      | 3,245.1              | AC      |
| Nickel, Total        | ND        |             | mg/l  | 0.00200 |     | 1                  | 10/27/21 15:40   | 10/28/21 13:45   | EPA 3005A      | 3,200.8              | PS      |
| Selenium, Total      | ND        |             | mg/l  | 0.00500 |     | 1                  | 10/27/21 15:40   | 10/28/21 13:45   | EPA 3005A      | 3,200.8              | PS      |
| Silver, Total        | ND        |             | mg/l  | 0.00040 |     | 1                  | 10/27/21 15:40   | 10/28/21 13:45   | EPA 3005A      | 3,200.8              | PS      |
| Zinc, Total          | 0.01700   |             | mg/l  | 0.01000 |     | 1                  | 10/27/21 15:40   | 10/28/21 13:45   | EPA 3005A      | 3,200.8              | PS      |
| Total Hardness by S  | M 2340B   | - Mansfield | l Lab |         |     |                    |                  |                  |                |                      |         |
| Hardness             | 63.5      |             | mg/l  | 0.660   | NA  | 1                  | 10/27/21 15:40   | 10/28/21 12:32   | EPA 3005A      | 19,200.7             | GD      |

| General Chemistry   | - Mansfield Lab |      |       |       |                |    |       |  |
|---------------------|-----------------|------|-------|-------|----------------|----|-------|--|
| Chromium, Trivalent | ND              | mg/l | 0.010 | <br>1 | 10/28/21 13:45 | NA | 107,- |  |



Project Name:HARVARD ENTERPRISE RESEARCHProject Number:134042-003

 Lab Number:
 L2158158

 Report Date:
 10/28/21

## Method Blank Analysis Batch Quality Control

| Parameter                | Result Qualifier     | Units     | RL    | MDL    | Dilution<br>Factor | Date<br>Prepared | Date<br>Analyzed | Analytical<br>Method | Analyst |
|--------------------------|----------------------|-----------|-------|--------|--------------------|------------------|------------------|----------------------|---------|
| Total Metals - Mansfield | Lab for sample(s): ( | 01 Batch: | WG15  | 63235- | 1                  |                  |                  |                      |         |
| Iron, Total              | ND                   | mg/l      | 0.050 |        | 1                  | 10/27/21 15:40   | 10/27/21 21:08   | 19,200.7             | SV      |
| Prep Information         |                      |           |       |        |                    |                  |                  |                      |         |

Digestion Method: EPA 3005A

| Parameter            | Result Qualifier        | Units     | RL       | MDL     | Dilution<br>Factor | Date<br>Prepared | Date<br>Analyzed | Analytical<br>Method | Analyst |
|----------------------|-------------------------|-----------|----------|---------|--------------------|------------------|------------------|----------------------|---------|
| Total Hardness by SM | 1 2340B - Mansfield Lal | o for sam | nple(s): | 01 Bate | ch: WG15           | 63235-1          |                  |                      |         |
| Hardness             | ND                      | mg/l      | 0.660    | NA      | 1                  | 10/27/21 15:40   | 10/27/21 21:08   | 19,200.7             | SV      |

| Prep Information |  |
|------------------|--|
|------------------|--|

Digestion Method: EPA 3005A

| Parameter                | Result Qualifier   | Units   | RL      | MDL     | Dilution<br>Factor | Date<br>Prepared | Date<br>Analyzed | Analytical<br>Method | Analyst |
|--------------------------|--------------------|---------|---------|---------|--------------------|------------------|------------------|----------------------|---------|
| Total Metals - Mansfield | Lab for sample(s): | 01 Batc | h: WG15 | 563239- | 1                  |                  |                  |                      |         |
| Antimony, Total          | ND                 | mg/l    | 0.00400 |         | 1                  | 10/27/21 15:40   | 10/28/21 11:27   | 3,200.8              | PS      |
| Arsenic, Total           | ND                 | mg/l    | 0.00100 |         | 1                  | 10/27/21 15:40   | 10/28/21 11:27   | 3,200.8              | PS      |
| Cadmium, Total           | ND                 | mg/l    | 0.00020 |         | 1                  | 10/27/21 15:40   | 10/28/21 11:27   | 3,200.8              | PS      |
| Chromium, Total          | ND                 | mg/l    | 0.00100 |         | 1                  | 10/27/21 15:40   | 10/28/21 11:27   | 3,200.8              | PS      |
| Copper, Total            | ND                 | mg/l    | 0.00100 |         | 1                  | 10/27/21 15:40   | 10/28/21 11:27   | 3,200.8              | PS      |
| Lead, Total              | ND                 | mg/l    | 0.00100 |         | 1                  | 10/27/21 15:40   | 10/28/21 11:27   | 3,200.8              | PS      |
| Nickel, Total            | ND                 | mg/l    | 0.00200 |         | 1                  | 10/27/21 15:40   | 10/28/21 11:27   | 3,200.8              | PS      |
| Selenium, Total          | ND                 | mg/l    | 0.00500 |         | 1                  | 10/27/21 15:40   | 10/28/21 11:27   | 3,200.8              | PS      |
| Silver, Total            | ND                 | mg/l    | 0.00040 |         | 1                  | 10/27/21 15:40   | 10/28/21 11:27   | 3,200.8              | PS      |
| Zinc, Total              | ND                 | mg/l    | 0.01000 |         | 1                  | 10/27/21 15:40   | 10/28/21 11:27   | 3,200.8              | PS      |

## **Prep Information**

Digestion Method: EPA 3005A



Project Name:HARVARD ENTERPRISE RESEARCHProject Number:134042-003

 Lab Number:
 L2158158

 Report Date:
 10/28/21

## Method Blank Analysis Batch Quality Control

| Parameter                | Result Qualifier     | Units    | RL      | MDL    | Dilution<br>Factor | Date<br>Prepared | Date<br>Analyzed | Analytical<br>Method | Analyst |
|--------------------------|----------------------|----------|---------|--------|--------------------|------------------|------------------|----------------------|---------|
| Total Metals - Mansfield | Lab for sample(s): ( | 01 Batch | n: WG15 | 63240- | 1                  |                  |                  |                      |         |
| Mercury, Total           | ND                   | mg/l     | 0.00020 |        | 1                  | 10/27/21 17:22   | 10/28/21 06:13   | 3,245.1              | AC      |
|                          |                      |          |         |        |                    |                  |                  |                      |         |

## **Prep Information**

Digestion Method: EPA 245.1



# Lab Control Sample Analysis

| Project Name:   | HARVARD ENTERPRISE RESEARCH | Batch Quality Control | Lab Number:  | L2158158 |
|-----------------|-----------------------------|-----------------------|--------------|----------|
| Project Number: | 134042-003                  |                       | Report Date: | 10/28/21 |

| Parameter                                      | LCS<br>%Recovery | Qual        | LCSD<br>%Recovery | Qual | %Recovery<br>Limits | RPD | Qual | RPD Limits |
|------------------------------------------------|------------------|-------------|-------------------|------|---------------------|-----|------|------------|
| Total Metals - Mansfield Lab Associated sample | e(s): 01 Batch:  | WG156323    | 35-2              |      |                     |     |      |            |
| Iron, Total                                    | 94               |             | -                 |      | 85-115              | -   |      |            |
| Total Hardness by SM 2340B - Mansfield Lab A   | ssociated sampl  | le(s): 01 l | Batch: WG156323   | 35-2 |                     |     |      |            |
| Hardness                                       | 99               |             | -                 |      | 85-115              | -   |      |            |
| Total Metals - Mansfield Lab Associated sample | e(s): 01 Batch:  | WG156323    | 39-2              |      |                     |     |      |            |
| Antimony, Total                                | 89               |             | -                 |      | 85-115              | -   |      |            |
| Arsenic, Total                                 | 96               |             | -                 |      | 85-115              | -   |      |            |
| Cadmium, Total                                 | 95               |             | -                 |      | 85-115              | -   |      |            |
| Chromium, Total                                | 94               |             | -                 |      | 85-115              | -   |      |            |
| Copper, Total                                  | 93               |             | -                 |      | 85-115              | -   |      |            |
| Lead, Total                                    | 93               |             | -                 |      | 85-115              | -   |      |            |
| Nickel, Total                                  | 91               |             | -                 |      | 85-115              | -   |      |            |
| Selenium, Total                                | 94               |             | -                 |      | 85-115              | -   |      |            |
| Silver, Total                                  | 96               |             | -                 |      | 85-115              | -   |      |            |
| Zinc, Total                                    | 91               |             | -                 |      | 85-115              | -   |      |            |
| Total Metals - Mansfield Lab Associated sample | e(s): 01 Batch:  | WG156324    | 10-2              |      |                     |     |      |            |
| Mercury, Total                                 | 98               |             | _                 |      | 85-115              | -   |      |            |



# Matrix Spike Analysis Batch Quality Control

Project Name: HARVARD ENTERPRISE RESEARCH

**Project Number:** 134042-003 Lab Number: L2158158 Report Date: 10/28/21

| Parameter                              | Native<br>Sample  | MS<br>Added          | MS<br>Found % | MS<br>%Recovery | Qual     | MSD<br>Found | MSD<br>%Recovery | Recovery<br>Qual Limits | /<br>RPD Q   | RPD<br>ual Limits |
|----------------------------------------|-------------------|----------------------|---------------|-----------------|----------|--------------|------------------|-------------------------|--------------|-------------------|
| Total Metals - Mansfield Lat           | b Associated san  | np <b>l</b> e(s): 01 | QC Batch ID   | ): WG156323     | 5-3 WG   | 61563235-4   | QC Sample        | : L2157394-01           | Client ID: N | /IS Sample        |
| Iron, Total                            | 55.3              | 1                    | 56.6          | 130             | Q        | 56.1         | 80               | 75-125                  | 1            | 20                |
| Total Hardness by SM 2340<br>MS Sample | )B - Mansfield La | b Associate          | ed sample(s): | 01 QC Bate      | ch ID: W | G1563235-3   | 3 WG156323       | 5-4 QC Sample           | : L2157394   | -01 Client ID:    |
| Hardness                               | 376               | 66.2                 | 441           | 98              |          | 430          | 82               | 75-125                  | 3            | 20                |
| Total Metals - Mansfield Lat           | b Associated san  | nple(s): 01          | QC Batch ID   | ): WG156323     | 5-7 Q    | C Sample: L  | _2158009-01      | Client ID: MS           | Sample       |                   |
| Iron, Total                            | 5.00              | 1                    | 6.08          | 108             |          | -            | -                | 75-125                  | -            | 20                |
| Total Hardness by SM 2340              | )B - Mansfield La | b Associate          | ed sample(s): | 01 QC Bate      | h ID: W  | G1563235-7   | Z QC Sam         | ole: L2158009-01        | Client ID:   | MS Sample         |
| Hardness                               | 70.6              | 66.2                 | 138           | 102             |          | -            | -                | 75-125                  | -            | 20                |
| Total Metals - Mansfield Lat           | b Associated san  | np <b>l</b> e(s): 01 | QC Batch ID   | ): WG156323     | 9-3 WG   | 61563239-4   | QC Sample        | : L2157394-01           | Client ID: N | IS Sample         |
| Antimony, Total                        | ND                | 0.5                  | 0.6041        | 121             |          | 0.5415       | 108              | 70-130                  | 11           | 20                |
| Arsenic, Total                         | ND                | 0.12                 | 0.1250        | 104             |          | 0.1313       | 109              | 70-130                  | 5            | 20                |
| Cadmium, Total                         | 0.00451           | 0.053                | 0.05910       | 103             |          | 0.06166      | 108              | 70-130                  | 4            | 20                |
| Chromium, Total                        | 0.0025            | 0.2                  | 0.2025        | 100             |          | 0.2122       | 105              | 70-130                  | 5            | 20                |
| Copper, Total                          | 0.04212           | 0.25                 | 0.2963        | 102             |          | 0.3068       | 106              | 70-130                  | 3            | 20                |
| Lead, Total                            | 0.00713           | 0.53                 | 0.5255        | 98              |          | 0.5477       | 102              | 70-130                  | 4            | 20                |
| Nickel, Total                          | 0.2033            | 0.5                  | 0.7154        | 102             |          | 0.7471       | 109              | 70-130                  | 4            | 20                |
| Selenium, Total                        | ND                | 0.12                 | 0.1241        | 103             |          | 0.1311       | 109              | 70-130                  | 5            | 20                |
| Silver, Total                          | ND                | 0.05                 | 0.05090       | 102             |          | 0.05335      | 107              | 70-130                  | 5            | 20                |
| Zinc, Total                            | 0.6008            | 0.5                  | 1.152         | 110             |          | 1.179        | 116              | 70-130                  | 2            | 20                |



70-130

-

-

\_

| Project Name:<br>Project Number: | Matrix Spike Analysis         Batch Quality Control         HARVARD ENTERPRISE RESEARCH         134042-003 |             |             |                 |              |                  |                  |            | L2158158<br>10/28/21 |  |
|----------------------------------|------------------------------------------------------------------------------------------------------------|-------------|-------------|-----------------|--------------|------------------|------------------|------------|----------------------|--|
| Parameter                        | Native<br>Sample                                                                                           | MS<br>Added | MS<br>Found | MS<br>%Recovery | MSD<br>Found | MSD<br>%Recovery | Recove<br>Limits | ry<br>RPD  | RPD<br>Limits        |  |
| Total Metals - Mansfield         | l Lab Associated san                                                                                       | nple(s): 01 | QC Batch    | ID: WG1563240-3 | WG1563240-4  | QC Sample:       | L2157394-01      | Client ID: | MS Sample            |  |
| Mercury, Total                   | ND                                                                                                         | 0.005       | 0.00461     | 92              | 0.00475      | 95               | 70-130           | 3          | 20                   |  |
| Total Metals - Mansfield         | Lab Associated san                                                                                         | 10 :(s): 01 | QC Batch    | ID: WG1563240-5 | QC Sample:   | L2158009-02      | Client ID: MS    | Sample     |                      |  |

93



20

Mercury, Total

ND

0.005

0.00464

| Project Name:<br>Project Number: | HARVARD ENTERPRISE RE<br>134042-003 | SEARCH         | Lab Dup<br>Batch | licate Ana<br>Quality Conti | alysis<br><sup>rol</sup> |            | Lab Number:<br>Report Date: | L2158158<br>10/28/21 |
|----------------------------------|-------------------------------------|----------------|------------------|-----------------------------|--------------------------|------------|-----------------------------|----------------------|
| Parameter                        |                                     | Native Sample  | Dupl             | icate Sample                | Units                    | RPD        | Qual                        | RPD Limits           |
| Total Metals - Mansfield         | Lab Associated sample(s): 01        | QC Batch ID: V | VG1563235-8      | QC Sample:                  | L2158009-01              | Client ID: | DUP Sample                  |                      |
| Iron, Total                      |                                     | 5.00           |                  | 4.87                        | mg/l                     | 3          |                             | 20                   |
| Total Metals - Mansfield         | Lab Associated sample(s): 01        | QC Batch ID: V | VG1563240-6      | QC Sample:                  | L2158009-02              | Client ID: | DUP Sample                  |                      |
| Mercury, Total                   |                                     | ND             |                  | ND                          | mg/l                     | NC         |                             | 20                   |



# INORGANICS & MISCELLANEOUS



| Serial No: | 10282120:03 |
|------------|-------------|
|------------|-------------|

|                                           |                                      |                    |         |          |       |                    | -                           |                                |                                             |         |
|-------------------------------------------|--------------------------------------|--------------------|---------|----------|-------|--------------------|-----------------------------|--------------------------------|---------------------------------------------|---------|
| Project Name:<br>Project Number:          | HARVARD I<br>134042-003              | ENTERPI            | RISE RE | SEARCH   |       |                    | Lab Nı<br>Repor             | umber: <sub>l</sub><br>t Date: | _2158158<br>10/28/21                        |         |
|                                           |                                      |                    |         | SAMPLE   | RESUL | тs                 |                             |                                |                                             |         |
| Lab ID:<br>Client ID:<br>Sample Location: | L2158158-0<br>FRESH WA<br>ALLSTON, I | 1<br>TER REC<br>MA | EIVING  | _2021102 | 2     |                    | Date C<br>Date R<br>Field P | collected:                     | 10/22/21 13:45<br>10/22/21<br>Not Specified |         |
| Sample Depth:<br>Matrix:<br>Parameter     | Water<br>Result                      | Qualifier          | Units   | RL       | MDL   | Dilution<br>Factor | Date<br>Prepared            | Date<br>Analyzed               | Analytical<br>Method                        | Analyst |
| General Chemistry - We                    | stborough Lat                        | )                  |         |          |       |                    |                             |                                |                                             |         |
| рН (Н)                                    | 7.4                                  |                    | SU      | -        | NA    | 1                  | -                           | 10/25/21 17:44                 | 121,4500H+-B                                | AS      |
| Nitrogen, Ammonia                         | 0.112                                |                    | mg/l    | 0.075    |       | 1                  | 10/23/21 11:45              | 10/25/21 20:42                 | 2 121,4500NH3-BH                            | I AT    |
| Chromium, Hexavalent                      | ND                                   |                    | mg/l    | 0.010    |       | 1                  | 10/23/21 06:05              | 10/23/21 06:13                 | 3 1,7196A                                   | VA      |



Project Name:HARVARD ENTERPRISE RESEARCHProject Number:134042-003

 Lab Number:
 L2158158

 Report Date:
 10/28/21

## Method Blank Analysis Batch Quality Control

| Parameter            | Result Q          | ualifier | Units      | RL     | MDL  | Dilution<br>Factor | Date<br>Prepared | Date<br>Analyzed | Analytical<br>Method | Analyst |
|----------------------|-------------------|----------|------------|--------|------|--------------------|------------------|------------------|----------------------|---------|
| General Chemistry    | - Westborough Lab | for sam  | ple(s): 01 | Batch: | WG15 | 62222-1            |                  |                  |                      |         |
| Chromium, Hexavalent | ND                |          | mg/l       | 0.010  |      | 1                  | 10/23/21 06:05   | 10/23/21 06:11   | 1,7196A              | VA      |
| General Chemistry    | - Westborough Lab | for sam  | ple(s): 01 | Batch: | WG15 | 62254-1            |                  |                  |                      |         |
| Nitrogen, Ammonia    | ND                |          | mg/l       | 0.075  |      | 1                  | 10/23/21 11:45   | 10/25/21 20:22   | 121,4500NH3-I        | ВН АТ   |



# Lab Control Sample Analysis

| Project Name:   | HARVARD ENTERPRISE RESEARCH | Batch Quality Control | Lab Number:  | L2158158 |
|-----------------|-----------------------------|-----------------------|--------------|----------|
| Project Number: | 134042-003                  |                       | Report Date: | 10/28/21 |

| Parameter                           | LCS<br>%Recovery Qua     | LCSD<br>al %Recovery Qua | %Recovery<br>I Limits | RPD | Qual RPD Limits |  |
|-------------------------------------|--------------------------|--------------------------|-----------------------|-----|-----------------|--|
| General Chemistry - Westborough Lab | Associated sample(s): 01 | Batch: WG1562222-2       |                       |     |                 |  |
| Chromium, Hexavalent                | 108                      | -                        | 85-115                | -   | 20              |  |
| General Chemistry - Westborough Lab | Associated sample(s): 01 | Batch: WG1562254-2       |                       |     |                 |  |
| Nitrogen, Ammonia                   | 88                       | -                        | 80-120                | -   | 20              |  |
| General Chemistry - Westborough Lab | Associated sample(s): 01 | Batch: WG1562899-1       |                       |     |                 |  |
| рН                                  | 100                      | -                        | 99-101                | -   | 5               |  |



| Project Name:<br>Project Number:             | HARVARD ENTE<br>134042-003 | RPRISE RES  | SEARCH      | Mat<br>Ba       | rix Spike Ana<br>atch Quality Cor | alysis<br>ntrol  | Lab Number:<br>Report Date: | : L215{<br>10/28 | L2158158<br>10/28/21 |  |
|----------------------------------------------|----------------------------|-------------|-------------|-----------------|-----------------------------------|------------------|-----------------------------|------------------|----------------------|--|
| Parameter                                    | Native<br>Sample           | MS<br>Added | MS<br>Found | MS<br>%Recovery | MSD<br>Qual Found                 | MSD<br>%Recovery | Recovery<br>Qual Limits     | RPD Qual         | RPD<br>Limits        |  |
| General Chemistry - We<br>RECEIVING_20211022 | estborough Lab Asso        | ciated samp | le(s): 01   | QC Batch ID: \  | NG1562222-4                       | QC Sample: L21   | 58158-01 Client I           | D: FRESH W       | VATER                |  |
| Chromium, Hexavalent                         | ND                         | 0.1         | 0.102       | 102             | -                                 | -                | 85-115                      | -                | 20                   |  |
| General Chemistry - We                       | estborough Lab Asso        | ciated samp | le(s): 01   | QC Batch ID: \  | NG1562254-4                       | QC Sample: L21   | 58155-01 Client I           | D: MS Samp       | le                   |  |
| Nitrogen, Ammonia                            | 0.115                      | 4           | 3.43        | 83              | -                                 | -                | 80-120                      | -                | 20                   |  |



| Project Name:<br>Project Number:              | HARVARD ENTERPRISE RESEARCH<br>134042-003 |                    |          |              | Duplicate A<br>Batch Quality Co | Analysis<br>ontrol |             | Lab Num<br>Report Da | ber: L<br>ate: 1 | 2158158<br>0/28/21 |
|-----------------------------------------------|-------------------------------------------|--------------------|----------|--------------|---------------------------------|--------------------|-------------|----------------------|------------------|--------------------|
| Parameter                                     |                                           | ١                  | Native S | ample        | Duplicate Sam                   | ple Units          | s RPD       | Qual                 | RPD Lii          | mits               |
| General Chemistry - Wes<br>RECEIVING_20211022 | stborough Lab                             | Associated sample( | (s): 01  | QC Batch ID: | WG1562222-3                     | QC Sample:         | L2158158-01 | Client ID:           | FRESH WA         | TER                |
| Chromium, Hexavalent                          |                                           |                    | ND       |              | ND                              | mg/l               | NC          |                      | 20               | )                  |
| General Chemistry - Wes                       | stborough Lab                             | Associated sample( | (s): 01  | QC Batch ID: | WG1562254-3                     | QC Sample:         | L2158155-01 | Client ID:           | DUP Sample       | 9                  |
| Nitrogen, Ammonia                             |                                           |                    | 0.11     | 5            | 0.111                           | mg/l               | 4           |                      | 20               | )                  |
| General Chemistry - Wes                       | stborough Lab                             | Associated sample( | (s): 01  | QC Batch ID: | WG1562899-2                     | QC Sample:         | L2157916-01 | Client ID:           | DUP Sample       | 9                  |
| рН                                            |                                           |                    | 6.8      |              | 6.7                             | SU                 | 1           |                      | 5                |                    |



## Sample Receipt and Container Information

YES

Were project specific reporting limits specified?

## **Cooler Information**

| Cooler | Custody Seal |
|--------|--------------|
| A      | Absent       |

| Container Information |                               | Initial | Final | Temp |       |      | Frozen |           |                                                                                                                                                                                            |  |
|-----------------------|-------------------------------|---------|-------|------|-------|------|--------|-----------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|
| Container ID          | Container Type                | Cooler  | рН    | pН   | deg C | Pres | Seal   | Date/Time | Analysis(*)                                                                                                                                                                                |  |
| L2158158-01A          | Plastic 250ml unpreserved     | А       | 7     | 7    | 5.5   | Y    | Absent |           | HEXCR-7196(1),PH-4500(.01)                                                                                                                                                                 |  |
| L2158158-01B          | Plastic 250ml HNO3 preserved  | A       | <2    | <2   | 5.5   | Y    | Absent |           | CD-2008T(180),NI-2008T(180),ZN-<br>2008T(180),CU-2008T(180),HARDU(180),FE-<br>UI(180),HG-U(28),SE-2008T(180),AG-<br>2008T(180),AS-2008T(180),PB-2008T(180),CR-<br>2008T(180),SB-2008T(180) |  |
| L2158158-01C          | Plastic 500ml H2SO4 preserved | А       | <2    | <2   | 5.5   | Y    | Absent |           | NH3-4500(28)                                                                                                                                                                               |  |



## Project Name: HARVARD ENTERPRISE RESEARCH

**Project Number:** 134042-003

## Lab Number: L2158158

## **Report Date:** 10/28/21

## GLOSSARY

| Acronyms |                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
|----------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| DL       | - Detection Limit: This value represents the level to which target analyte concentrations are reported as estimated values, when those target analyte concentrations are quantified below the limit of quantitation (LOQ). The DL includes any adjustments from dilutions, concentrations or moisture content, where applicable. (DoD report formats only.)                                                                                               |
| EDL      | - Estimated Detection Limit: This value represents the level to which target analyte concentrations are reported as estimated values, when those target analyte concentrations are quantified below the reporting limit (RL). The EDL includes any adjustments from dilutions, concentrations or moisture content, where applicable. The use of EDLs is specific to the analysis of PAHs using Solid-Phase Microextraction (SPME).                        |
| EMPC     | - Estimated Maximum Possible Concentration: The concentration that results from the signal present at the retention time of an analyte when the ions meet all of the identification criteria except the ion abundance ratio criteria. An EMPC is a worst-case estimate of the concentration.                                                                                                                                                              |
| EPA      | - Environmental Protection Agency.                                                                                                                                                                                                                                                                                                                                                                                                                        |
| LCS      | - Laboratory Control Sample: A sample matrix, free from the analytes of interest, spiked with verified known amounts of analytes or a material containing known and verified amounts of analytes.                                                                                                                                                                                                                                                         |
| LCSD     | - Laboratory Control Sample Duplicate: Refer to LCS.                                                                                                                                                                                                                                                                                                                                                                                                      |
| LFB      | - Laboratory Fortified Blank: A sample matrix, free from the analytes of interest, spiked with verified known amounts of analytes or a material containing known and verified amounts of analytes.                                                                                                                                                                                                                                                        |
| LOD      | - Limit of Detection: This value represents the level to which a target analyte can reliably be detected for a specific analyte in a specific matrix by a specific method. The LOD includes any adjustments from dilutions, concentrations or moisture content, where applicable. (DoD report formats only.)                                                                                                                                              |
| LOQ      | - Limit of Quantitation: The value at which an instrument can accurately measure an analyte at a specific concentration. The LOQ includes any adjustments from dilutions, concentrations or moisture content, where applicable. (DoD report formats only.)                                                                                                                                                                                                |
|          | Limit of Quantitation: The value at which an instrument can accurately measure an analyte at a specific concentration. The LOQ includes any adjustments from dilutions, concentrations or moisture content, where applicable. (DoD report formats only.)                                                                                                                                                                                                  |
| MDL      | - Method Detection Limit: This value represents the level to which target analyte concentrations are reported as estimated values, when those target analyte concentrations are quantified below the reporting limit (RL). The MDL includes any adjustments from dilutions, concentrations or moisture content, where applicable.                                                                                                                         |
| MS       | - Matrix Spike Sample: A sample prepared by adding a known mass of target analyte to a specified amount of matrix sample for which an independent estimate of target analyte concentration is available. For Method 332.0, the spike recovery is calculated using the native concentration, including estimated values.                                                                                                                                   |
| MSD      | - Matrix Spike Sample Duplicate: Refer to MS.                                                                                                                                                                                                                                                                                                                                                                                                             |
| NC       | - Not Applicable.                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| INC.     | - Not Calculated: Term is utilized when one or more of the results utilized in the calculation are non-detect at the parameter's reporting unit.                                                                                                                                                                                                                                                                                                          |
| NDPA/DPA | - N-Nitrosodiphenylamine/Diphenylamine.                                                                                                                                                                                                                                                                                                                                                                                                                   |
| NI       | - Not Ignitable.                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| NP       | - Non-Plastic: Term is utilized for the analysis of Atterberg Limits in soil.                                                                                                                                                                                                                                                                                                                                                                             |
| NR       | - No Results: Term is utilized when 'No Target Compounds Requested' is reported for the analysis of Volatile or Semivolatile Organic TIC only requests.                                                                                                                                                                                                                                                                                                   |
| RL       | - Reporting Limit: The value at which an instrument can accurately measure an analyte at a specific concentration. The RL includes any adjustments from dilutions, concentrations or moisture content, where applicable.                                                                                                                                                                                                                                  |
| RPD      | - Relative Percent Difference: The results from matrix and/or matrix spike duplicates are primarily designed to assess the precision of analytical results in a given matrix and are expressed as relative percent difference (RPD). Values which are less than five times the reporting limit for any individual parameter are evaluated by utilizing the absolute difference between the values; although the RPD value will be provided in the report. |
| SRM      | - Standard Reference Material: A reference sample of a known or certified value that is of the same or similar matrix as the associated field samples.                                                                                                                                                                                                                                                                                                    |
| STLP     | - Semi-dynamic Tank Leaching Procedure per EPA Method 1315.                                                                                                                                                                                                                                                                                                                                                                                               |
| TEF      | - Toxic Equivalency Factors: The values assigned to each dioxin and furan to evaluate their toxicity relative to 2,3,7,8-TCDD.                                                                                                                                                                                                                                                                                                                            |
| TEQ      | - Toxic Equivalent: The measure of a sample's toxicity derived by multiplying each dioxin and furan by its corresponding TEF and then summing the resulting values.                                                                                                                                                                                                                                                                                       |
| TIC      | - Tentatively Identified Compound: A compound that has been identified to be present and is not part of the target compound list (TCL) for the method and/or program. All TICs are qualitatively identified and reported as estimated concentrations.                                                                                                                                                                                                     |

Report Format: Data Usability Report



#### **Project Name:** HARVARD ENTERPRISE RESEARCH

**Project Number:** 134042-003 Lab Number: L2158158 **Report Date:** 10/28/21

#### Footnotes

1

- The reference for this analyte should be considered modified since this analyte is absent from the target analyte list of the original method.

#### Terms

Analytical Method: Both the document from which the method originates and the analytical reference method. (Example: EPA 8260B is shown as 1,8260B.) The codes for the reference method documents are provided in the References section of the Addendum.

Difference: With respect to Total Oxidizable Precursor (TOP) Assay analysis, the difference is defined as the Post-Treatment value minus the Pre-Treatment value.

Final pH: As it pertains to Sample Receipt & Container Information section of the report, Final pH reflects pH of container determined after adjustment at the laboratory, if applicable. If no adjustment required, value reflects Initial pH.

Frozen Date/Time: With respect to Volatile Organics in soil, Frozen Date/Time reflects the date/time at which associated Reagent Waterpreserved vials were initially frozen. Note: If frozen date/time is beyond 48 hours from sample collection, value will be reflected in 'bold'. Initial pH: As it pertains to Sample Receipt & Container Information section of the report, Initial pH reflects pH of container determined upon receipt, if applicable.

PAH Total: With respect to Alkylated PAH analyses, the 'PAHs, Total' result is defined as the summation of results for all or a subset of the following compounds: Naphthalene, C1-C4 Naphthalenes, 2-Methylnaphthalene, 1-Methylnaphthalene, Biphenyl, Acenaphthylene, Acenaphthene, Fluorene, C1-C3 Fluorenes, Phenanthrene, C1-C4 Phenanthrenes/Anthracenes, Anthracene, Fluoranthene, Pyrene, C1-C4 Fluoranthenes/Pyrenes, Benzo(a)anthracene, Chrysene, C1-C4 Chrysenes, Benzo(b)fluoranthene, Benzo(j)+(k)fluoranthene, Benzo(e)pyrene, Benzo(a)pyrene, Perylene, Indeno(1,2,3-cd)pyrene, Dibenz(ah)+(ac)anthracene, Benzo(g,h,i)perylene. If a 'Total' result is requested, the results of its individual components will also be reported.

PFAS Total: With respect to PFAS analyses, the 'PFAS, Total (5)' result is defined as the summation of results for: PFHpA, PFHxS, PFOA, PFNA and PFOS. In addition, the 'PFAS, Total (6)' result is defined as the summation of results for: PFHpA, PFHxS, PFOA, PFNA, PFDA and PFOS. For MassDEP DW compliance analysis only, the 'PFAS, Total (6)' result is defined as the summation of results at or above the RL. Note: If a 'Total' result is requested, the results of its individual components will also be reported.

The target compound Chlordane (CAS No. 57-74-9) is reported for GC ECD analyses. Per EPA, this compound "refers to a mixture of chlordane isomers, other chlorinated hydrocarbons and numerous other components." (Reference: USEPA Toxicological Review of Chlordane, In Support of Summary Information on the Integrated Risk Information System (IRIS), December 1997.)

Total: With respect to Organic analyses, a 'Total' result is defined as the summation of results for individual isomers or Aroclors. If a 'Total' result is requested, the results of its individual components will also be reported. This is applicable to 'Total' results for methods 8260, 8081 and 8082.

#### Data Qualifiers

- A - Spectra identified as "Aldol Condensates" are byproducts of the extraction/concentration procedures when acetone is introduced in the process
- В - The analyte was detected above the reporting limit in the associated method blank. Flag only applies to associated field samples that have detectable concentrations of the analyte at less than ten times (10x) the concentration found in the blank. For MCP-related projects, flag only applies to associated field samples that have detectable concentrations of the analyte at less than ten times (10x) the concentration found in the blank. For DOD-related projects, flag only applies to associated field samples that have detectable concentrations of the analyte at less than ten times (10x) the concentration found in the blank AND the analyte was detected above one-half the reporting limit (or above the reporting limit for common lab contaminants) in the associated method blank. For NJ-Air-related projects, flag only applies to associated field samples that have detectable concentrations of the analyte above the reporting limit. For NJ-related projects (excluding Air), flag only applies to associated field samples that have detectable concentrations of the analyte, which was detected above the reporting limit in the associated method blank or above five times the reporting limit for common lab contaminants (Phthalates, Acetone, Methylene Chloride, 2-Butanone).
- C - Co-elution: The target analyte co-elutes with a known lab standard (i.e. surrogate, internal standards, etc.) for co-extracted analyses.
- D - Concentration of analyte was quantified from diluted analysis. Flag only applies to field samples that have detectable concentrations of the analyte.
- Е - Concentration of analyte exceeds the range of the calibration curve and/or linear range of the instrument.
- F - The ratio of quantifier ion response to qualifier ion response falls outside of the laboratory criteria. Results are considered to be an estimated maximum concentration.
- G - The concentration may be biased high due to matrix interferences (i.e, co-elution) with non-target compound(s). The result should be considered estimated.
- H - The analysis of pH was performed beyond the regulatory-required holding time of 15 minutes from the time of sample collection.
- I - The lower value for the two columns has been reported due to obvious interference.
- J - Estimated value. This represents an estimated concentration for Tentatively Identified Compounds (TICs).
- Μ - Reporting Limit (RL) exceeds the MCP CAM Reporting Limit for this analyte.
- ND - Not detected at the reporting limit (RL) for the sample.
- NJ - Presumptive evidence of compound. This represents an estimated concentration for Tentatively Identified Compounds (TICs), where

Report Format: Data Usability Report



## Serial\_No:10282120:03

## Project Name: HARVARD ENTERPRISE RESEARCH

Project Number: 134042-003

Lab Number: L2158158

## **Report Date:** 10/28/21

#### Data Qualifiers

the identification is based on a mass spectral library search.

- P The RPD between the results for the two columns exceeds the method-specified criteria.
- **Q** The quality control sample exceeds the associated acceptance criteria. For DOD-related projects, LCS and/or Continuing Calibration Standard exceedences are also qualified on all associated sample results. Note: This flag is not applicable for matrix spike recoveries when the sample concentration is greater than 4x the spike added or for batch duplicate RPD when the sample concentrations are less than 5x the RL. (Metals only.)
- **R** Analytical results are from sample re-analysis.
- **RE** Analytical results are from sample re-extraction.
- **S** Analytical results are from modified screening analysis.
- V The surrogate associated with this target analyte has a recovery outside the QC acceptance limits. (Applicable to MassDEP DW Compliance samples only.)
- Z The batch matrix spike and/or duplicate associated with this target analyte has a recovery/RPD outside the QC acceptance limits. (Applicable to MassDEP DW Compliance samples only.)

Report Format: Data Usability Report



 Lab Number:
 L2158158

 Report Date:
 10/28/21

## REFERENCES

- 1 Test Methods for Evaluating Solid Waste: Physical/Chemical Methods. EPA SW-846. Third Edition. Updates I - VI, 2018.
- 3 Methods for the Determination of Metals in Environmental Samples, Supplement I. EPA/600/R-94/111. May 1994.
- 19 Inductively Coupled Plasma Atomic Emission Spectrometric Method for Trace Element Analysis of Water and Wastes. Appendix C, Part 136, 40 CFR (Code of Federal Regulations). July 1, 1999 edition.
- 107 Alpha Analytical In-house calculation method.
- 121 Standard Methods for the Examination of Water and Wastewater. APHA-AWWA-WEF. Standard Methods Online.

## LIMITATION OF LIABILITIES

Alpha Analytical performs services with reasonable care and diligence normal to the analytical testing laboratory industry. In the event of an error, the sole and exclusive responsibility of Alpha Analytical shall be to re-perform the work at it's own expense. In no event shall Alpha Analytical be held liable for any incidental, consequential or special damages, including but not limited to, damages in any way connected with the use of, interpretation of, information or analysis provided by Alpha Analytical.

We strongly urge our clients to comply with EPA protocol regarding sample volume, preservation, cooling, containers, sampling procedures, holding time and splitting of samples in the field.



## **Certification Information**

#### The following analytes are not included in our Primary NELAP Scope of Accreditation:

#### Westborough Facility

EPA 624/624.1: m/p-xylene, o-xylene, Naphthalene

EPA 625/625.1: alpha-Terpineol

EPA 8260C/8260D: <u>NPW</u>: 1,2,4,5-Tetramethylbenzene; 4-Ethyltoluene, Azobenzene; <u>SCM</u>: Iodomethane (methyl iodide), 1,2,4,5-Tetramethylbenzene; 4-Ethyltoluene.

**EPA 8270D/8270E:** <u>NPW:</u> Dimethylnaphthalene,1,4-Diphenylhydrazine, alpha-Terpineol; <u>SCM</u>: Dimethylnaphthalene,1,4-Diphenylhydrazine. **SM4500**: <u>NPW</u>: Amenable Cyanide; <u>SCM</u>: Total Phosphorus, TKN, NO2, NO3.

#### Mansfield Facility

SM 2540D: TSS EPA 8082A: <u>NPW</u>: PCB: 1, 5, 31, 87,101, 110, 141, 151, 153, 180, 183, 187. EPA TO-15: Halothane, 2,4,4-Trimethyl-2-pentene, 2,4,4-Trimethyl-1-pentene, Thiophene, 2-Methylthiophene, 3-Methylthiophene, 2-Ethylthiophene, 1,2,3-Trimethylbenzene, Indan, Indene, 1,2,4,5-Tetramethylbenzene, Benzothiophene, 1-Methylnaphthalene. Biological Tissue Matrix: EPA 3050B

#### The following analytes are included in our Massachusetts DEP Scope of Accreditation

#### Westborough Facility:

Drinking Water

EPA 300.0: Chloride, Nitrate-N, Fluoride, Sulfate; EPA 353.2: Nitrate-N, Nitrite-N; SM4500NO3-F: Nitrate-N, Nitrite-N; SM4500F-C, SM4500CN-CE, EPA 180.1, SM2130B, SM4500CI-D, SM2320B, SM2540C, SM4500H-B, SM4500NO2-B EPA 332: Perchlorate; EPA 524.2: THMs and VOCs; EPA 504.1: EDB, DBCP. Microbiology: SM9215B; SM9223-P/A, SM9223B-Colilert-QT,SM9222D.

#### Non-Potable Water

SM4500H,B, EPA 120.1, SM2510B, SM2540C, SM2320B, SM4500CL-E, SM4500F-BC, SM4500NH3-BH: Ammonia-N and Kjeldahl-N, EPA 350.1: Ammonia-N, LACHAT 10-107-06-1-B: Ammonia-N, EPA 351.1, SM4500NO3-F, EPA 353.2: Nitrate-N, SM4500P-E, SM4500P-B, E, SM4500SO4-E, SM5220D, EPA 410.4, SM5210B, SM5310C, SM4500CL-D, EPA 1664, EPA 420.1, SM4500-CN-CE, SM2540D, EPA 300: Chloride, Sulfate, Nitrate. EPA 624.1: Volatile Halocarbons & Aromatics, EPA 608.3: Chlordane, Toxaphene, Aldrin, alpha-BHC, beta-BHC, gamma-BHC, delta-BHC, Dieldrin, DDD, DDE, DDT, Endosulfan I, Endosulfan II,

EPA 608.3: Chlordane, Toxaphene, Aldrin, alpha-BHC, beta-BHC, gamma-BHC, delta-BHC, Dieldrin, DDD, DDE, DDT, Endosulfan I, Endosulfan II, Endosulfan sulfate, Endrin, Endrin Aldehyde, Heptachlor, Heptachlor Epoxide, PCBs EPA 625.1: SVOC (Acid/Base/Neutral Extractables), EPA 600/4-81-045: PCB-Oil. Microbiology: SM9223B-Colilert-QT; Enterolert-QT, SM9221E, EPA 1600, EPA 1603, SM9222D.

#### Mansfield Facility:

Drinking Water

EPA 200.7: Al, Ba, Cd, Cr, Cu, Fe, Mn, Ni, Na, Ag, Ca, Zn. EPA 200.8: Al, Sb, As, Ba, Be, Cd, Cr, Cu, Pb, Mn, Ni, Se, Ag, TL, Zn. EPA 245.1 Hg. EPA 522, EPA 537.1.

#### Non-Potable Water

**EPA 200.7:** Al, Sb, As, Be, Cd, Ca, Cr, Co, Cu, Fe, Pb, Mg, Mn, Mo, Ni, K, Se, Ag, Na, Sr, TL, Ti, V, Zn. **EPA 200.8:** Al, Sb, As, Be, Cd, Cr, Cu, Fe, Pb, Mn, Ni, K, Se, Ag, Na, TL, Zn. **EPA 245.1** Hg. **SM2340B** 

For a complete listing of analytes and methods, please contact your Alpha Project Manager.

| Westborough, MA 01581<br>8 Walkup Dr.<br>TEL: 508-898-9220<br>FAX: 508-898-9193<br>TDSHMAN SPEYER E                                         | CHAIN OF<br>CUSTODY<br>Mansfield, MA 02048<br>320 Forbes Blvd<br>TEL: 508-822-9300<br>FAX: 508-822-9300<br>FAX: 508-822-9300<br>FAX: 508-822-9308 | Service Centors<br>Brewer, ME 04412 Portamo<br>07430 Albany, NY 12205<br>Tonawanda, NY 14150 Holmes<br>Project Information<br>Project Name: Haward &<br>Project Location: Allsha<br>Project # | uth, NH 03801 Mu<br>, PA 18043<br>Into prise le<br>M, MA<br>242 - 007 | shwah, NJ<br>Scarch Otta<br>ASBARTA | Page<br>of                     | (an pr      | 1<br> <br>-1 |            | Date F<br>in L<br>erables<br>Email<br>EQuIS<br>Other: | Rec'd<br>ab | l ( U<br>le) | 221<br>  Fai<br>  EQ | X<br>tuls (4 File) | ALPHA Job #<br>LV/S8/58<br>Billing Information<br>Same as Client Info<br>PO #                                                                                                                                                                                          |                                                   |
|---------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------|-------------------------------------|--------------------------------|-------------|--------------|------------|-------------------------------------------------------|-------------|--------------|----------------------|--------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------|
| H&A Client: Related                                                                                                                         | Beal                                                                                                                                              | (Use Project name as Pro                                                                                                                                                                      | oject #)                                                              |                                     | 0,013-10451                    |             |              | Regul      | atory F                                               | Requir      | remen        | ts (Progra           | am/Criteria)       | Disposal Site Information                                                                                                                                                                                                                                              |                                                   |
| H&A Address: 465 Med                                                                                                                        | ford Street, Suite 2200                                                                                                                           | Project Manager:                                                                                                                                                                              | Hisca                                                                 | nton too                            | Vanzier                        |             |              |            |                                                       |             |              | and the second       |                    | Please identify below location of                                                                                                                                                                                                                                      |                                                   |
| Boston, MA 02129                                                                                                                            |                                                                                                                                                   | ALPHAQuote #:                                                                                                                                                                                 |                                                                       |                                     |                                |             |              | 1          |                                                       |             |              |                      |                    | applicable disposal facilities.                                                                                                                                                                                                                                        |                                                   |
| H&A Phone: 617-886-                                                                                                                         | 7472                                                                                                                                              | Turn-Around Time                                                                                                                                                                              |                                                                       | OT LAND                             |                                |             | 120          |            |                                                       |             |              |                      |                    | Disposal Facility:                                                                                                                                                                                                                                                     |                                                   |
| H&A FaxM Plourde, KAter                                                                                                                     | redise halevalehch.co                                                                                                                             | Standard                                                                                                                                                                                      | 2                                                                     | Due Date                            | r:                             |             |              | 1          |                                                       |             |              |                      |                    | VN L INY                                                                                                                                                                                                                                                               |                                                   |
| H&A Email: -Rstedder                                                                                                                        | ci@haloyaldich.com                                                                                                                                | Rush (only if pre approved)                                                                                                                                                                   | 11                                                                    | # of Days                           | c                              |             |              | Note: S    | Select S                                              | tate fr     | om mer       | nu & identi          | fy criteria.       | Other:                                                                                                                                                                                                                                                                 |                                                   |
| These samples have bee                                                                                                                      | n previously analyzed                                                                                                                             | by Alpha                                                                                                                                                                                      |                                                                       |                                     |                                |             |              | ANA        | LYSIS                                                 | 1           |              |                      |                    | Sample Filtration                                                                                                                                                                                                                                                      | T                                                 |
| D&Z). Ag, An, As<br>Please specify Metals o                                                                                                 | , cd,cr,cv, Ni, Pi<br>At                                                                                                                          | HUNGGOOD ON TOLE I GO<br>S. S. S. S. E.N. ; Hay , Fo<br>nalyze vsing EPA                                                                                                                      | 2017 RG                                                               | enales<br><sup>0</sup> Appov        | ed Tegii                       | y llet      | hds          | mend NHB-4 | Metals +                                              | S           | dness        | 0H                   |                    | Lab to do<br>Preservation<br>Lab to do<br>(Please Specify below)                                                                                                                                                                                                       | a I Bott                                          |
| ALPHA Lab ID                                                                                                                                | Sa                                                                                                                                                | imple ID                                                                                                                                                                                      | Colle                                                                 | ction                               | Sample                         | Sampler     | Depth        | É          | TorA                                                  | Ŧ           | 1 13         | hi                   |                    |                                                                                                                                                                                                                                                                        | 1                                                 |
| (Lab Use Oilly)                                                                                                                             | E 1 11 1000                                                                                                                                       |                                                                                                                                                                                               | Date                                                                  | Time                                | Maunx                          | initials    |              | ~          | N                                                     | M           | 5            | ~                    |                    | Sample Specific Comments                                                                                                                                                                                                                                               | 8                                                 |
| 5 81081                                                                                                                                     | Fresh water p                                                                                                                                     | eceiving_2021/022                                                                                                                                                                             | 1912/2025                                                             | 1945                                | \$\$\$\$\$4 <del>[7]</del>     |             |              |            | <i>}</i>                                              |             |              |                      |                    | PH 62.9°F                                                                                                                                                                                                                                                              | 5                                                 |
|                                                                                                                                             |                                                                                                                                                   |                                                                                                                                                                                               |                                                                       |                                     |                                |             |              |            |                                                       |             |              |                      |                    |                                                                                                                                                                                                                                                                        |                                                   |
| Preservative Code:<br>A = None<br>B = HCl<br>C = HNO <sub>3</sub><br>D = $H_2SO_4$<br>E = NaOH<br>E = MaOH                                  | Container Code<br>P = Plastic<br>A = Amber Glass<br>V = Vial<br>G = Glass<br>B = Bacteria Cup<br>C = Cube                                         | Westboro: Certification N<br>Mansfield: Certification N                                                                                                                                       | o: MA935<br>o: MA015                                                  |                                     | Cor                            | itainer Typ | pe<br>e      | P.<br>D    | С                                                     | A           | 10           | ><br>A               |                    | Please print clearly, legibly and<br>completely. Samples can not be ly<br>in and turnaround time clock will<br>start until any ambiguilles are res<br>Alpha Analytical's services under th<br>Chain of Custody shall be performe<br>accordance with terms and conditio | logged<br>I not<br>solved,<br>his<br>ed in<br>ons |
| G = NaHSO <sub>4</sub><br>H = Na <sub>2</sub> S <sub>2</sub> O <sub>3</sub><br>K/E = Zn Ac/NaOH<br>O = Other<br>Document ID: 20455 Rev 3 (1 | 0 = Other<br>E = Encore<br>D = BOD Bottle                                                                                                         | Relinguisitéd t                                                                                                                                                                               | teerto                                                                | Date/<br>10/22/2012                 | Time<br>2//630<br>/ <b>910</b> | Tes.        | Ma           | ceived     | By:<br>A<br>J?                                        | A1          | 19/          | alu<br>LL            | 1630<br>1860       | within Blanket Service Agreement#<br>22-Alpha Analytical by and between<br>& Aldrich, Inc., its subsidiaries and<br>affiliates and Alpha Analytical.                                                                                                                   | 2019-<br>n Haley                                  |

**APPENDIX D** 

**Treatment System Information** 

# sc200<sup>™</sup> UNIVERSAL CONTROLLER

## **Applications**

- Drinking Water
- Wastewater
- Industrial Water
- Power



# One Controller for the Broadest Range of Sensors.

Choose from 30 digital and analog sensor families for up to 17 different parameters.

## **Maximum Versatility**

The sc200 controller allows the use of digital and analog sensors, either alone or in combination, to provide compatibility with Hach's broad range of sensors, eliminating the need for dedicated, parameter-specific controllers.

## **Ease of Use and Confidence in Results**

Large, high-resolution, transreflective display provides optimal viewing resolution in any lighting condition. Guided calibration procedures in 19 languages minimize complexity and reduce operator error. Password-protected SD card reader offers a simple solution for data download and transfer. Visual warning system provides critical alerts.

## **Wide Variety of Communication Options**

Utilize two to five analog outputs to transmit primary and secondary values for each sensor, or integrate Hach sensors and analyzers into MODBUS RS232/RS485, Profibus® DP, and HART networks.



Password protected SD card reader offers a simple solution for data download and transfer, and sc200 and digital sensor configuration file duplication and backup.



# **Controller Comparison**







|                          | Previous I                                                | Models                                           |                                                                        |                                                                                                                                                                                                       |  |
|--------------------------|-----------------------------------------------------------|--------------------------------------------------|------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|
| Features                 | sc100™ Controller                                         | GLI53 Controller                                 | sc200™ Controller                                                      | Benefits                                                                                                                                                                                              |  |
| Display                  | 64 x 128 pixels<br>33 x 66 mm<br>(1.3 x 2.6 in.)          | 64 x 128 pixels<br>33 x 66 mm<br>(1.3 x 2.6 in.) | 160 x 240 pixels<br>48 x 68 mm<br>(1.89 x 2.67 in.)<br>Transreflective | <ul> <li>Improved user interface—<br/>50% bigger</li> <li>Easier to read in daylight<br/>and sunlight</li> </ul>                                                                                      |  |
| Data<br>Management       | irDA Port/PDA<br>Service Cable                            | N/A                                              | SD Card<br>Service Cable                                               | <ul> <li>Simplifies data transfer</li> <li>Standardized accessories/<br/>max compatibility</li> </ul>                                                                                                 |  |
| Sensor Inputs            | 2 Max<br>Direct Digital<br>Analog via<br>External Gateway | 2 Max<br>Analog<br>Depending on<br>Parameter     | 2 Max<br>Digital and/or Analog<br>with Sensor Card                     | <ul><li>Simplifies analog sensor<br/>connections</li><li>Works with analog and<br/>digital sensors</li></ul>                                                                                          |  |
| Analog Inputs            | N/A                                                       | N/A                                              | 1 Analog Input Signal<br>Analog 4-20mA Card                            | <ul> <li>Enables non-sc analyzer<br/>monitoring</li> <li>Accepts mA signals from<br/>other analyzers for local<br/>display</li> <li>Consolidates analog mA<br/>signals to a digital output</li> </ul> |  |
| 4-20 mA Outputs          | 2 Standard                                                | 2 Standard                                       | 2 Standard<br>Optional 3 Additional                                    | <ul> <li>Total of five (5) 4-20 mA<br/>outputs allows multiple mA<br/>outputs per sensor input</li> </ul>                                                                                             |  |
| Digital<br>Communication | MODBUS RS232/RS485<br>Profibus DP V1.0                    | HART                                             | MODBUS RS232/RS485<br>Profibus DP V1.0<br>HART 7.2                     | Unprecedented combination<br>of sensor breadth and digital<br>communication options                                                                                                                   |  |

# Choose from Hach's Broad Range of Digital and Analog Sensors

| Parameter               | Sensor                                                    | Digital or Analog |
|-------------------------|-----------------------------------------------------------|-------------------|
| Ammonia                 | AMTAX™ sc, NH4D sc, AISE sc, AN-ISE sc                    |                   |
| Chlorine                | CLF10 sc, CLT10 sc, 9184 sc                               |                   |
| Chlorine Dioxide        | 9185 sc                                                   |                   |
| Conductivity            | GLI 3400 Contacting, GLI 3700 Inductive                   | $\bigtriangleup$  |
| Dissolved Oxygen        | LDO® Model 2, 5740 sc                                     |                   |
| Dissolved Oxygen        | 5500                                                      | $\bigtriangleup$  |
| Flow                    | U53, F53 Sensors                                          | $\bigtriangleup$  |
| Nitrate                 | NITRATAX™ sc, NO3D sc, NISE sc, AN-ISE sc                 |                   |
| Oil in Water            | FP360 sc                                                  |                   |
| Organics                | UVAS sc                                                   |                   |
| Ozone                   | 9187 sc                                                   |                   |
| pH/ORP                  | pHD                                                       |                   |
| pH/ORP                  | pHD, pH Combination, LCP                                  | $\bigtriangleup$  |
| Phosphate               | PHOSPHAX™ sc                                              |                   |
| Sludge Level            | SONATAX™ sc                                               |                   |
| Suspended Solids        | SOLITAX™ sc, TSS sc                                       |                   |
| Turbidity               | 1720E, FT660 sc, SS7 sc, ULTRATURB sc, SOLITAX sc, TSS sc |                   |
| Ultra Pure Conductivity | 8310, 8311, 8312, 8315, 8316, 8317 Contacting             | $\bigtriangleup$  |
| Ultra Pure pH/ORP       | 8362                                                      | $\bigtriangleup$  |

 $\blacksquare$  = Digital  $\triangle$  = Analog

Connect up to two of any of the sensors listed above, in any combination, to meet your application needs. The diagrams below demonstrate the potential configurations. Operation of analog sensors requires the controller to be equipped with the appropriate sensor module. Contact Hach Technical Support for help with selecting the appropriate module. 2 Channel Configurations 1 Channel Configurations



## sc200<sup>™</sup> Universal Controller

## Specifications\*

| Dimensions (H x W x<br>D)        | 5.7 in x 5.7 in x 7.1 in<br>(144 mm x 144 mm x 181 mm)                                                                                                                        |
|----------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Display                          | Graphic dot matrix LCD with LE<br>backlighting, transreflective                                                                                                               |
| Display Size                     | 1.9 x 2.7 in. (48 mm x 68 mm)                                                                                                                                                 |
| <b>Display Resolution</b>        | 240 x 160 pixels                                                                                                                                                              |
| Weight                           | 3.75 lbs. (1.70 kg)                                                                                                                                                           |
| Power Requirements<br>(Voltage)  | 100 - 240 V AC, 24 V DC                                                                                                                                                       |
| Power Requirements<br>(Hz)       | 50/60 Hz                                                                                                                                                                      |
| Operating<br>Temperature Range   | -20 to 60 °C , 0 to 95% RH<br>non-condensing                                                                                                                                  |
| Analog Outputs                   | Two (Five with optional expansion module) to isolated current outputs, max 550 $\Omega$ , Accuracy $\pm$ 0.1% of FS (20mA) at 25 °C, $\pm$ 0.5% of FS over -20 °C to 60 range |
|                                  | Operational Mode: measurement or calculated value                                                                                                                             |
| Analog Output<br>Functional Mode | Linear, Logarithmic, Bi-linear, Pl                                                                                                                                            |
| Security Levels                  | 2 password-protected levels                                                                                                                                                   |
| Mounting<br>Configurations       | Wall, pole, and panel mounting                                                                                                                                                |
| Enclosure Rating                 | NEMA 4X/IP66                                                                                                                                                                  |
| Conduit Openings                 | 1/2 in NPT Conduit                                                                                                                                                            |
| Relay: Operational<br>Mode       | Primary or secondary<br>measurement, calculated value<br>(dual channel only) or timer                                                                                         |

| 1 in<br>m x 181 mm)                                                                     | Relay Functions             |
|-----------------------------------------------------------------------------------------|-----------------------------|
| CLCD with LED                                                                           |                             |
| m x 68 mm)                                                                              | Relays                      |
|                                                                                         | Communication               |
| 4 V DC                                                                                  | Memory Backup<br>Electrical |
| 95% RH                                                                                  | Certifications              |
| onal expansion<br>d current<br>$\Omega$ , Accuracy:<br>hA) at 25 °C,<br>-20 °C to 60 °C |                             |
| e measurement                                                                           |                             |
| c, Bi-linear, PID                                                                       |                             |
| cted levels                                                                             |                             |
| nel mounting                                                                            |                             |
| uit.                                                                                    |                             |
| ant (                                                                                   |                             |

| Scheduler (Timer), Alarm, Feeder<br>Control, Event Control, Pulse Width<br>Modulation, Frequency Control,<br>and Warning |
|--------------------------------------------------------------------------------------------------------------------------|
| Four electromechanical SPDT<br>(Form C) contacts, 1200 W, 5 A                                                            |

MODBUS RS232/RS485, PROFIBUS DPV1, or HART 7.2 optional

Flash memory

EMC

CE compliant for conducted and radiated emissions:

- CISPR 11 (Class A limits)

- EMC Immunity EN 61326-1 (Industrial limits)

Safety

cETLus safety mark for:

- General Locations per ANSI/UL 61010-1 & CAN/CSA C22.2. No. 61010-1
- Hazardous Location Class I, Division 2, Groups A,B,C & D
   (Zone 2, Group IIC) per FM 3600 / FM 3611 & CSA C22.2 No. 213
   M1987 with approved options and appropriately rated Class I, Division 2 or Zone 2 sensors

cULus safety mark

- General Locations per UL 61010-1 & CAN/CSA C22.2. No. 61010-1

\*Subject to change without notice.

4

## **Dimensions**



5

## **Ordering Information**

## sc200 for Hach Digital and Analog Sensors

| LXV404.99.00552 | sc200 controller, 2 channels, digital                     |
|-----------------|-----------------------------------------------------------|
| LXV404.99.00502 | sc200 controller, 1 channel, digital                      |
| LXV404.99.00102 | sc200 controller, 1 channel, pH/DO                        |
| LXV404.99.00202 | sc200 controller, 1 channel, Conductivity                 |
| LXV404.99.01552 | sc200 controller, 2 channels, digital, Modbus RS232/RS485 |
| LXV404.99.00112 | sc200 controller, 2 channel, pH/DO                        |

Note: Other Sensor combinations are available. Please contact Hach Technical Support or your Hach representative.

Note: Communication options (MODBUS, Profibus DPV1, and HART) are available. Please contact Hach Technical Support or your Hach representative.

## sc200 for Ultrapure Sensors

| 9500.99.00602 | sc200 controller, 1 channel, ultrapure conductivity |
|---------------|-----------------------------------------------------|
| 9500.99.00702 | sc200 controller, 1 channel, ultrapure pH           |
| 9500.99.00662 | sc200 controller, 2 channel, ultrapure conductivity |
| 9500.99.00772 | sc200 controller, 2 channel, ultrapure pH           |

## **Sensor and Communication Modules**

| 9012900 | Analog pH/ORP and DO module for GLI Sensors              |
|---------|----------------------------------------------------------|
| 9013000 | Analog Conductivity module for GLI Sensors               |
| 9012700 | Flow module                                              |
| 9012800 | 4-20 mA Input Module                                     |
| 9525700 | Analog pH/ORP Module for Polymetron Sensors              |
| 9525800 | Analog Conductivity Module for Polymetron Sensors        |
| 9013200 | Modbus 232/485 Module                                    |
| 9173900 | Profibus DP Module                                       |
| 9328100 | HART Module                                              |
| 9334600 | 4-20 mA Output Module (Provides 3 additional mA Outputs) |

## Accessories

| 9220600 | sc200 Weather and Sun Shield with UV Protection Screen |
|---------|--------------------------------------------------------|
| 8809200 | sc200 UV Protection Screen                             |
| 9218200 | SD card reader (USB) for connection to PC              |
| 9218100 | 4 GB SD card                                           |







## HACH COMPANY World Headquarters: Loveland, Colorado USA

United States: Outside United States: **hach.com**  800-227-4224 tel970-669-2932 fax970-669-3050 tel970-461-3939 fax

orders@hach.com int@hach.com

LIT2665 Rev 7 K13 Printed in U.S.A. ©Hach Company, 2013. All rights reserved. In the interest of improving and updating its equipment, Hach Company reserves the right to alter specifications to equipment at any time.





# 3/4-inch Combination pH and ORP Sensor Kits



Use the Digital Gateway to make any Hach analog combination pH or ORP sensor compatible with the Hach sc1000 Controller.

## Features and Benefits

#### Low Price—High Performance

These combination sensors are designed for specialty applications for immersion or in-line mounting. The reference cell features a double-junction design for extended service life, and a built-in solution ground. The body is molded from chemically-resistant Ryton<sup>®</sup> or PVDF, and the reference junction is coaxial porous PTFE. All sensors are rated 0 to 105°C up to 100 psig, and have integral 4.5 m (15 ft.) cables with tinned leads. The PC-series (for pH) and RC-series (for ORP) combination sensors are ideal for measuring mild and aggressive media.

#### **Special Electrode Configurations**

Sensors with rugged dome electrodes, "easy-to-clean" flat glass electrodes, and even HF (hydrofluoric acid) resistant glass electrodes are available for a wide variety of process solutions.

## **Temperature Compensation Element Option**

The PC-series combination pH sensors are available with or without a Pt 1000 ohm RTD temperature element. The RC-series combination ORP sensors are supplied without a temperature element.

## Versatile Mounting Styles

Sensors are available in three mounting styles—convertible, insertion, and sanitary. Please turn to page 3 for more information.

Digital combination pH and ORP sensors are available

in convertible, insertion, and sanitary mounting

styles. Choose from rugged dome electrodes or "easy-to-clean" flat glass electrodes.

## Full-Featured "Plug and Play" Hach sc Digital Controllers

There are no complicated wiring or set up procedures with any Hach sc controller. Just plug in any combination of Hach digital sensors and it's ready to use it's "plug and play."

**One or multiple sensors**—The sc controller family allows you to receive data from up to eight Hach digital sensors in any combination using a single controller.

**Communications**—Multiple alarm/control schemes are available using the relays and PID control outputs. Available communications include analog 4-20 mA, digital MODBUS<sup>®</sup> (RS485 and RS232) or Profibus DP protocols. (Other digital protocols are available. Contact your Hach representative for details.)

**Data logger**—A built-in data logger collects measurement data, calibration, verification points, and alarm history.

DW



DW = drinking water WW = wastewater municipal PW = pure water / power IW = industrial water E = environmental C = collections FB = food and beverage

## Specifications\*

Most pH applications fall in the 2.5-12.5 pH range. General purpose pH glass electrodes perform well in this range. Some industrial applications require accurate measurements and control at pH values below 2 or above 12. Consult Hach Technical Support for details on these applications.

### **Combination pH Sensors**

Measuring Range 0 to 14 pH

Accuracy Less than 0.1 pH under reference conditions

*Temperature Range* 0 to 105°C (32 to 221°F)

*Flow Rate* 0 to 2 m/s (0 to 6.6 ft./s); non-abrasive

Pressure Range 0 to 6.9 bar at 100°C (0 to 100 psig at 212°F)

#### Signal Transmission Distance

100 m (328 ft.) when used with the Hach Digital Gateway and a Hach sc Digital Controller.

1000 m (3280 ft.) when used with the Hach Digital Gateway, Termination Box, and a Hach sc Digital Controller.

#### Sensor Cable

Integral coaxial cable (plus two conductors for temperature compensator option); 4.5 m (15 ft.) long

#### Wetted Materials

*Convertible style:* Ryton<sup>®</sup> body (glass filled)

*Insertion style:* PVDF body (Kynar<sup>®</sup>)

Sanitary style: 316 stainless steel sleeved PVDF body

Common materials for all sensor styles include PTFE double junction, glass process electrode, and Viton $^{\textcircled{B}}$  O-rings

#### Warranty

90 days

## **Combination ORP Sensors**

*Measuring Range* -2000 to +2000 millivolts

Accuracy Limited to calibration solution accuracy (± 20 mV)

*Temperature Range* 0 to 105°C (32 to 221°F)

*Flow Rate* 0 to 2 m/s (0 to 6.6 ft./s); non-abrasive

#### Pressure Range

0 to 6.9 bar at 100°C (0 to 100 psig at 212°F)

#### Signal Transmission Distance

100 m (328 ft.) when used with the Hach Digital Gateway and a Hach sc Digital Controller.

1000 m (3280 ft.) when used with the Hach Digital Gateway, Termination Box, and a Hach sc Digital Controller.

#### Sensor Cable

Integral coaxial cable; 4.5 m (15 ft.) long; terminated with stripped and tinned wires

## Wetted Materials

Convertible style: Ryton<sup>®</sup> body (glass filled)

Insertion style: PVDF body (Kynar<sup>®</sup>)

Common materials for all sensor styles include PTFE double junction, glass with platinum process electrode, and  $\mathsf{Viton}^{\texttt{B}}$  Orings

#### Warranty

90 days

\*Specifications subject to change without notice.

Ryton<sup>®</sup> is a registered trademark of Phillips 66 Co.; Viton<sup>®</sup> is a registered trademark of E.I. DuPont de Nemours + Co.; Kynar<sup>®</sup> is a registered trademark of Pennwalt Corp.

## **Engineering Specifications**

- 1. The pH sensor shall be available in convertible, insertion or sanitary styles. The ORP sensor shall be available in only convertible or insertion styles.
- 2. The convertible style sensor shall have a Ryton<sup>®</sup> body. The insertion style sensor shall have a PVDF body. The sanitary style sensor shall have a 316 stainless steel sleeved PVDF body. Common materials for all sensor styles shall include a PTFE double junction, and Viton<sup>®</sup> O-rings. The pH sensor shall have a glass pH electrode. The ORP sensor shall have a platinum ORP electrode.
- 3. The convertible style pH sensor shall be available with or without a built-in Pt 1000 ohm RTD temperature element. Insertion and sanitary style pH sensors shall have a built-in Pt 1000 ohm RTD temperature element. Convertible and insertion style ORP sensors shall not have a built-in temperature element.
- 4. The sensor shall communicate via MODBUS<sup>®</sup> RS-485 to a Hach sc Digital Controller.
- 5. The sensor shall be Hach Company Model PC sc or PC-series for pH measurement or Model PC sc or RC-series for ORP measurement.

## Dimensions

#### **Convertible Style Sensor**

The convertible style sensor has a Ryton<sup>®</sup> body that features 3/4-inch NPT threads on both ends. The sensor can be directly mounted into a standard 3/4-inch pipe tee for flow-through mounting or fastened onto the end of a pipe for immersion mounting. The convertible style sensor enables inventory consolidation, thereby reducing associated costs. Mounting tees and immersion mounting hardware are offered in a variety of materials to suit application requirements.

#### **Insertion Style Sensor**

Insertion style sensors feature a longer, non-threaded PVDF body with two Viton<sup>®</sup> O-rings, providing a seal when used with the optional Hach insertion mount hardware assembly. This ball valve hardware enables sensor insertion and retraction from a pipe or vessel without having to stop the process flow.

### **Sanitary Style Sensor**

The sanitary style sensor, offered for pH measurement, has a 316 stainless steel-sleeved PVDF body with a 2-inch flange. The sensor mates to a standard 2-inch Tri-Clover fitting. The optional Hach sanitary mounting hardware includes a standard 2-inch sanitary tee, sanitary clamp, and Viton<sup>®</sup> sanitary gasket.



Convertible Style with Flat Electrode



## Dimensions continued

## Insertion Style with Dome Electrode and Built-In Protector



## Sanitary Style



## Digital PC sc and RC sc 3/4-inch Combination pH/ORP Sensors

All PC sc and RC sc 3/4-inch combination sensors come complete with an integral 4.5 m (15 ft.) sensor cable, Digital Gateway, and 1 m (3.3 ft.) digital extension cable.

| Product Number | <u>Measurement</u> | <u>Sensor Style</u> | <u>Body Material</u> | Electrode Type                | <u>Temp. Comp.</u> |
|----------------|--------------------|---------------------|----------------------|-------------------------------|--------------------|
| DPC1R1N        | рН                 | Convertible         | Ryton                | General purpose glass         | None               |
| DPC1R1A        | рН                 | Convertible         | Ryton                | General purpose glass         | Pt 1000 ohm RTD    |
| DPC1R2N        | рН                 | Convertible         | Ryton                | Flat glass, general purpose   | None               |
| DPC1R2A        | рН                 | Convertible         | Ryton                | Flat glass, general purpose   | Pt 1000 ohm RTD    |
| DPC1R3A        | рН                 | Convertible         | Ryton                | HF-resistant glass (see Note) | Pt 1000 ohm RTD    |
| DPC2K1A        | рН                 | Insertion           | PVDF                 | General purpose glass         | Pt 1000 ohm RTD    |
| DPC2K2A        | рН                 | Insertion           | PVDF                 | Flat Glass                    | Pt 1000 ohm RTD    |
| DPC3K2A        | рН                 | Sanitary            | 316 SS/PVDF          | General purpose glass         | Pt 1000 ohm RTD    |
| DRC1R5N        | ORP                | Convertible         | Ryton                | Platinum                      | None               |
| DRC2K5N        | ORP                | Insertion           | PVDF                 | Platinum                      | None               |

## NOTE

The HF (hydrofluoric acid) resistant glass electrode reduces the HF dissolution of the complete glass surface to extend the lifetime of the electrode in acid fluoride solutions. The electrode will last longer than conventional glass pH electrodes. How much longer depends on the HF concentration and temperature of the solution.

## **Replacement Digital Gateway**

6120600 Use the Digital Gateway to connect analog PC and RC sensors to a Hach sc Digital Controller.

## **Ordering Information** continued

#### Analog PC and RC 3/4-inch Combination pH/ORP Sensors

All PC and RC 3/4-inch combination sensors come with an integral 4.5 m (15 ft.) standard length sensor cable.

| <u>Product Number</u> | <u>Measurement</u> | <u>Sensor Style</u> | <u>Body Material</u> | <u>Electrode Type</u>       | <u>Temp. Comp.</u> |
|-----------------------|--------------------|---------------------|----------------------|-----------------------------|--------------------|
| PC1R1N                | pН                 | Convertible         | Ryton                | General purpose glass       | None               |
| PC1R1A                | рН                 | Convertible         | Ryton                | General purpose glass       | Pt 1000 ohm RTD    |
| PC1R2N                | рН                 | Convertible         | Ryton                | Flat glass, general purpose | None               |
| PC1R2A                | рН                 | Convertible         | Ryton                | Flat glass, general purpose | Pt 1000 ohm RTD    |
| PC1R3A                | рН                 | Convertible         | Ryton                | HF-resistant glass          | Pt 1000 ohm RTD    |
| PC2K1A                | рН                 | Insertion           | PVDF                 | General purpose glass       | Pt 1000 ohm RTD    |
| PC2K2A                | pН                 | Insertion           | PVDF                 | Flat Glass                  | Pt 1000 ohm RTD    |
| PC3K2A                | pН                 | Sanitary            | 316 SS/PVDF          | General purpose glass       | Pt 1000 ohm RTD    |
| RC1R5N                | ORP                | Convertible         | Ryton                | Platinum                    | None               |
| RC2K5N                | ORP                | Insertion           | PVDF                 | Platinum                    | None               |

#### Accessories for Digital and Analog 3/4-inch combination pH/ORP Sensors

#### Cables

Digital cables are used only with digital sensors or gateways when connecting to a Hach sc Digital Controller.

| 6122400 | Digital | Extension | Cable, | 1 m | (3.3 | ft) |
|---------|---------|-----------|--------|-----|------|-----|
|---------|---------|-----------|--------|-----|------|-----|

5796000 Digital Extension Cable, 7.7 m (25 ft)

5796100 Digital Extension Cable, 15 m (50 ft)

5796200 Digital Extension Cable, 31 m (100 ft)

Analog cables are used only with analog sensors, junction box, and controller.

**1W1100** Analog Interconnect Cable (order per foot)

#### **Digital Termination Box**

Used with digital extension cables when the desired cable length between the digital sensor/digital gateway and the Hach sc Digital Controller is between 100 m (328 ft) and 1000 m (3280 ft).

5867000 Digital Termination Box

#### Analog Junction Box

Used with analog interconnect cable when the desired cable length between analog sensor and analog controller is greater than the standard length of sensor cable. Each junction box includes terminal strip and gasket.

| 60A2053 | Junction Box. | Surface-mount. | aluminum | (includes | mounting | hardware |
|---------|---------------|----------------|----------|-----------|----------|----------|
|         |               | -              |          | •         |          |          |

**60A9944** Junction Box, Pipe-mount, PVC, for 1/2-inch diameter pipe (includes mounting hardware)

60G2052 Junction Box, Pipe-mount, PVC, for 1-inch diameter pipe (includes mounting hardware)

76A4010-001 Junction Box, NEMA 4X (no mounting hardware included)

## Ordering Information continued



1. Sanitary Mounting

2. Immersion Mounting

3. Flow-through Mounting

4. Insertion Mounting

### Mounting Hardware for PC sc and RC sc Combination Sensors

#### Sanitary Mount Hardware

| 2-inch Sanitary Tee          |
|------------------------------|
| 2-inch Sanitary Clamp        |
| 2-inch Sanitary Viton Gasket |
|                              |

#### Immersion Mount Hardware

Each immersion hardware includes a 1/2-inch diameter x 4 foot long pipe,  $1/2 \times 3/4$ -inch NPT coupling, and plastic pipe-mount junction box with terminal strip. **MH432G** CPVC Pipe

#### Flow-through Mount Hardware

Each tee is a standard 3/4-inch tee with 3/4-inch NPT threads on all three openings.

| MH313N3NZ | 316 SS Tee |
|-----------|------------|
| MH333N3NZ | CPVC Tee   |
| MH373N3NZ | PVC Tee    |

#### Insertion Mount Hardware

The insertion hardware includes a 1-1/2 inch ball valve, 1-1/2 inch NPT close nipple for process connection, sensor connection tube, stainless steel extension pipe, and stainless steel compression fitting with washer and lock nut. **MH116M3MZ** 316 SS Hardware
# To complete your pH and ORP measurement system, choose from these Hach controllers...

### Model sc200 Controller

### (see Lit. #2665)

The sc200 controller platform can be configured to operate either 2 Digital Sensor Inputs, or 1 or 2 Analog Sensor Inputs, or a combination of Digital and Analog Sensor Inputs. Customers may choose their communication options from a variety of offerings ranging from MODBUS RTU to Profibus DPV1.



### sc200 for Hach Digital Sensors

LXV404.99.00552sc200 controller, 2 channel, digitalLXV404.99.00502sc200 controller, 1 channel, digitalLXV404.99.00542sc200 controller, 2 channel, digital & mA inputSc200 controller, 2 channel, digital & pH/DOLXV404.99.00522LXV404.99.00532Sc200 controller, 2 channel, digital & Conductivitysc200 controller, 2 channel, digital & Flow

### sc200 for Hach Analog Sensors

LXV404.99.00102sc200 controller, 1 channel, pH/DOLXV404.99.00112sc200 controller, 2 channel, pH/DOLXV404.99.00202sc200 controller, 1 channel, ConductivityLXV404.99.00212sc200 controller, 2 channel, ConductivityLXV404.99.00302sc200 controller, 2 channel, pH/DO & ConductivityLXV404.99.00302sc200 controller, 2 channel, FlowLXV404.99.00312sc200 controller, 2 channel, FlowLXV404.99.00312sc200 controller, 2 channel, FlowLXV404.99.00322sc200 controller, 2 ch

or your Hach representative. Note: Communication options (MODBUS and Profibus DPV1) are available.

### Model sc1000 Controller

### (see Lit. #2403)

Each sc1000 Probe Module provides power to the system and can accept up to 8 digital sensors/expansion boards. Probe Modules can be networked together to accommodate up to 32 digital sensors/expansion boards attached to the same network.

| LXV402.99.00002 | sc1000 Display Module                              |
|-----------------|----------------------------------------------------|
| LXV400.99.1R572 | sc1000 Probe Module, 4 sensors,                    |
|                 | 4 mA Out, 4 mA In, 4 Relays,                       |
|                 | 110-230V                                           |
| LXV400.99.1B572 | sc1000 Probe Module, 4 sensors,                    |
|                 | 4 mA Out, 4 mA In, 4 Relays, RS-485                |
|                 | (MODBUS), 110-230V                                 |
| LXV400.99.1F572 | sc1000 Probe Module, 4 sensors,                    |
|                 | 4 mA Out, 4 mA In, 4 Relays, PROFIBUS DP, 110-230V |
| LXV400.99.1R582 | sc1000 Probe Module, 6 sensors,                    |
|                 | 4 mA Out, 4 mA In, 4 Relavs, 110-230V              |

At Hach, it's about learning from our customers and providing the right answers. It's more than ensuring the quality of water—it's about ensuring the quality of life. When it comes to the things that touch our lives...

Keep it pure. Make it simple. Be right.

For current price information, technical support, and ordering assistance, contact the Hach office or distributor serving your area.

In the United States, contact:

HACH COMPANY World Headquarters P.O. Box 389 Loveland, Colorado 80539-0389 U.S.A. Telephone: 800-227-4224 Fax: 970-669-2932 E-mail: orders@hach.com **www.hach.com** 

U.S. exporters and customers in Canada, Latin America, sub-Saharan Africa, Asia, and Australia/New Zealand, contact:

HACH COMPANY World Headquarters P.O. Box 389 Loveland, Colorado 80539-0389 U.S.A. Telephone: 970-669-3050 Fax: 970-461-3939 E-mail: intl@hach.com **www.hach.com** 

In Europe, the Middle East, and Mediterranean Africa, contact:

HACH LANGE GmbH Willstätterstraße 11 D-40549 Düsseldorf GERMANY Tel: +49 (0) 211 5288-0 Fax: +49 (0) 211 5288-143 E-mail: info@hach-lange.de **www.hach-lange.com** 







Stock a SpillTech® OverPack with sorbents for emergency spill response, or use it as a salvage drum to ship damaged containers or hazardous waste.

- DOT-Approved for Salvage: All SpillTech® OverPacks are DOT-approved and X-rated for use as salvage drums. Helps companies conform to federal regulations when shipping damaged or leaking containers of hazardous materials, or absorbents contaminated with hazardous substances.
- Perfect for Spill Kits: Stores sorbent products (not included) for easy access as needed for spill control. Saves time when quick response is necessary.
- Sturdy Construction: 100% polyethylene OverPack resists chemicals, rust and corrosion for years of use. Integrated handles make them easy to lift, move or carry with standard material handling equipment. Twist-on, double-wall lid with closed-cell gasket provides sealed, secure closure to prevent leaks and protect contents from moisture, dirt and damage. Durable to withstand rough handling.
- Customized for You: We can customize a Spill Kit to your exact specifications, including the container, its contents and accessories, with no upcharge! Contact your local Distributor for details.

### **A95OVER Specifications**

| Dimensions:   | ext. dia. 32" x 41.5" H       |  |
|---------------|-------------------------------|--|
| Shipping      | 31.75" W x 41.5" L x 31.75" H |  |
| Dimensions:   |                               |  |
| Sold as:      | 1 per package                 |  |
| Color:        | Yellow                        |  |
| Composition:  | Polyethylene                  |  |
| Weight:       | 48 lbs.                       |  |
| # per Pallet: | 3                             |  |
| Incinerable:  | No                            |  |
| UN RATING:    | 1H2/X295/S                    |  |
| Ship Class:   | 250                           |  |
|               |                               |  |

### **Metric Equivalent Specifications**

| Dimensions: | ext. dia. 81.3cm x 105.4cm H    |
|-------------|---------------------------------|
| Shipping    | 80.6cm W x 105.4cm L x 80.6cm H |
| Dimensions: |                                 |
| Weight:     | 21.8 kg                         |



Online: spilltech.com Phone: 1-800-228-3877 (N.Am.) 1-770-475-3877 (Other) Fax: 1-800-872-3764 (N.Am.) 1-770-410-1812 (Other) Email: sales@spilltech.com

# **A95OVER Technical Information**

### Warnings & Restrictions:

There are no known warnings and restrictions for this product.

### **Regulations and Compliance:**

49 CFR 173.3(c)(1) - If a container of hazardous waste is damaged or leaking, it can be placed in a compatible salvage drum that meets UN criteria for shipping

49 CFR 173.12(b)(2)(iv) - When labpacking, "Inner packagings...must be surrounded by a chemically compatible absorbent material in sufficient quantity to absorb the total liquid contents."

49 CFR 173.12(b) - A container used for labpacking must be "a UN 1A2 or UN 1B2 metal drum, a UN 1D plywood drum, a UN 1G fiber drum or a UN 1H2 plastic drum tested and marked at least for the Packing Group III performance level for liquids or solids."

### **Technical Documents:**

(Available at spilltech.com) Product Data Sheet (PDS) Chemical Compatibility (CCG)





Fax: 1-800-872-3764 (N.Am.) 1-770-410-1812 (Other) Email: sales@spilltech.com



# SAFETY DATA SHEET

| Creation Date 12-Nov-2010                                                                                                                        | Revision Date 24-May-2017                           | Revision Number 5                       |
|--------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------|-----------------------------------------|
|                                                                                                                                                  | 1. Identification                                   |                                         |
| Product Name Sulfuric Acid (Certified ACS Plus)                                                                                                  |                                                     |                                         |
| Cat No. : A300-212; A300-225LB; A300-500; A300-612GAL; A300-700LB<br>A300C212; A300C212EA; A300P500; A300S212; A300S212EA<br>A300S500; A300SI212 |                                                     | I2GAL; A300-700LB;<br>S212; A300S212EA; |
| Synonyms                                                                                                                                         | Hydrogen sulfate; Vitriol brown oil; Oil of vitriol |                                         |
| ecommended UseLaboratory chemicals.Ises advised againstNot for food, drug, pesticide or biocidal product use                                     |                                                     |                                         |
| Details of the supplier of the sa                                                                                                                | ifety data sheet                                    |                                         |
| <u>Company</u><br>Fisher Scientific<br>One Reagent Lane                                                                                          |                                                     |                                         |

Fair Lawn, NJ 07410 Tel: (201) 796-7100

### **Emergency Telephone Number** CHEMTREC®, Inside the USA: 800-424-9300

CHEMTREC®, Outside the USA: 001-703-527-3887

# 2. Hazard(s) identification

### Classification

This chemical is considered hazardous by the 2012 OSHA Hazard Communication Standard (29 CFR 1910.1200)

Skin Corrosion/irritation Serious Eye Damage/Eye Irritation Specific target organ toxicity (single exposure) Target Organs - Respiratory system.

Category 1 A Category 1 Category 3

Label Elements

Signal Word Danger

### **Hazard Statements**

Causes severe skin burns and eye damage May cause respiratory irritation



### **Precautionary Statements** Prevention Do not breathe dust/fume/gas/mist/vapors/spray Wear protective gloves/protective clothing/eye protection/face protection Wash face, hands and any exposed skin thoroughly after handling Use only outdoors or in a well-ventilated area Response Immediately call a POISON CENTER or doctor/physician Inhalation IF INHALED: Remove victim to fresh air and keep at rest in a position comfortable for breathing Skin IF ON SKIN (or hair): Take off immediately all contaminated clothing. Rinse skin with water/shower Wash contaminated clothing before reuse Eves IF IN EYES: Rinse cautiously with water for several minutes. Remove contact lenses, if present and easy to do. Continue rinsing Ingestion IF SWALLOWED: Rinse mouth. DO NOT induce vomiting Storage Store locked up Store in a well-ventilated place. Keep container tightly closed Disposal Dispose of contents/container to an approved waste disposal plant Hazards not otherwise classified (HNOC)

WARNING! This product contains a chemical known in the State of California to cause cancer. **Unknown Acute Toxicity** 

# 3. Composition / information on ingredients

| Component     | CAS-No    | Weight % |
|---------------|-----------|----------|
| Sulfuric acid | 7664-93-9 | 90 - 98  |
| Water         | 7732-18-5 | 2 - 10   |

|                                 | 4. First-aid measures                                                                                                                                                                                                                                                                                                          |
|---------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| General Advice                  | Show this safety data sheet to the doctor in attendance. Immediate medical attention is required.                                                                                                                                                                                                                              |
| Eye Contact                     | Rinse immediately with plenty of water, also under the eyelids, for at least 15 minutes.<br>Immediate medical attention is required.                                                                                                                                                                                           |
| Skin Contact                    | Wash off immediately with plenty of water for at least 15 minutes. Remove and wash contaminated clothing before re-use. Call a physician immediately.                                                                                                                                                                          |
| Inhalation                      | If not breathing, give artificial respiration. Remove from exposure, lie down. Do not use mouth-to-mouth method if victim ingested or inhaled the substance; give artificial respiration with the aid of a pocket mask equipped with a one-way valve or other proper respiratory medical device. Call a physician immediately. |
| Ingestion                       | Do not induce vomiting. Clean mouth with water. Never give anything by mouth to an unconscious person. Call a physician immediately.                                                                                                                                                                                           |
| Most important symptoms/effects | Causes burns by all exposure routes. Product is a corrosive material. Use of gastric lavage or emesis is contraindicated. Possible perforation of stomach or esophagus should be investigated: Ingestion causes severe swelling, severe damage to the delicate tissue and danger of perforation                                |

### Notes to Physician

Treat symptomatically

| 5. Fire-fighting measures                    |                                                       |  |
|----------------------------------------------|-------------------------------------------------------|--|
| Suitable Extinguishing Media                 | CO 2, dry chemical, dry sand, alcohol-resistant foam. |  |
| Unsuitable Extinguishing Media               | DO NOT USE WATER                                      |  |
| Flash Point<br>Method -                      | Not applicable<br>No information available            |  |
| Autoignition Temperature<br>Explosion Limits | No information available                              |  |
| Upper                                        | No data available                                     |  |
| Sensitivity to Mechanical Impa               | ct No information available                           |  |
| Sensitivity to Static Discharge              | No information available                              |  |

### **Specific Hazards Arising from the Chemical**

Thermal decomposition can lead to release of irritating gases and vapors. The product causes burns of eyes, skin and mucous membranes.

**Hazardous Combustion Products** 

Sulfur oxides Hydrogen

### **Protective Equipment and Precautions for Firefighters**

As in any fire, wear self-contained breathing apparatus pressure-demand, MSHA/NIOSH (approved or equivalent) and full protective gear. Thermal decomposition can lead to release of irritating gases and vapors.

| NFPA<br>Health<br>3 | Flammability<br>0 | Instability<br>2 | Physical hazards<br>W |
|---------------------|-------------------|------------------|-----------------------|
|                     | 6 Accidental rel  | assa massuras    |                       |

|                                                                                                 | 0. Accidental release measures                              |
|-------------------------------------------------------------------------------------------------|-------------------------------------------------------------|
| Personal Precautions Ensure adequate ventilation. Use personal protective equipment. Evacuate p |                                                             |
|                                                                                                 | safe areas. Keep people away from and upwind of spill/leak. |
| Environmental Precautions                                                                       | Should not be released into the environment.                |

Methods for Containment and Clean Soak up with inert absorbent material. Keep in suitable, closed containers for disposal. Up

|          | 7. Handling and storage                                                                                                                                                   |
|----------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Handling | Wear personal protective equipment. Do not get in eyes, on skin, or on clothing. Use only under a chemical fume hood. Do not breathe vapors or spray mist. Do not ingest. |
| Storage  | Keep containers tightly closed in a dry, cool and well-ventilated place. Keep away from water. Corrosives area.                                                           |

### 8. Exposure controls / personal protection

### Exposure Guidelines

| Component     | ACGIH TLV                  | OSHA PEL                           | NIOSH IDLH                 | Mexico OEL (TWA)         |
|---------------|----------------------------|------------------------------------|----------------------------|--------------------------|
| Sulfuric acid | TWA: 0.2 mg/m <sup>3</sup> | (Vacated) TWA: 1 mg/m <sup>3</sup> | IDLH: 15 mg/m <sup>3</sup> | TWA: 1 mg/m <sup>3</sup> |
|               |                            | TWA: 1 mg/m <sup>3</sup>           | TWA: 1 mg/m <sup>3</sup>   |                          |

### Legend

ACGIH - American Conference of Governmental Industrial Hygienists

OSHA - Occupational Safety and Health Administration

NIOSH IDLH: The National Institute for Occupational Safety and Health Immediately Dangerous to Life or Health

| Engineering Measures          | Use only under a chemical fume hood. Ensure adequate ventilation, especially in confined areas. Ensure that eyewash stations and safety showers are close to the workstation location.                                                            |
|-------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Personal Protective Equipment |                                                                                                                                                                                                                                                   |
| Eye/face Protection           | Wear appropriate protective eyeglasses or chemical safety goggles as described by OSHA's eye and face protection regulations in 29 CFR 1910.133 or European Standard EN166.                                                                       |
| Skin and body protection      | Long sleeved clothing.                                                                                                                                                                                                                            |
| Respiratory Protection        | Follow the OSHA respirator regulations found in 29 CFR 1910.134 or European Standard EN 149. Use a NIOSH/MSHA or European Standard EN 149 approved respirator if exposure limits are exceeded or if irritation or other symptoms are experienced. |
| Hygiene Measures              | Handle in accordance with good industrial hygiene and safety practice.                                                                                                                                                                            |

# 9. Physical and chemical properties

| · · · · · · · · · · · · · · · · · · ·  |                               |  |  |
|----------------------------------------|-------------------------------|--|--|
| Physical State                         | Liquid                        |  |  |
| Appearance                             | Clear, Colorless to brown     |  |  |
| Odor                                   | Odorless                      |  |  |
| Odor Threshold                         | No information available      |  |  |
| pH                                     | 0.3 (1N)                      |  |  |
| Melting Point/Range                    | 10 °C / 50 °F                 |  |  |
| Boiling Point/Range                    | 290 - 338 °C / 554 - 640.4 °F |  |  |
| Flash Point                            | Not applicable                |  |  |
| Evaporation Rate                       | Slower than ether             |  |  |
| Flammability (solid,gas)               | Not applicable                |  |  |
| Flammability or explosive limits       |                               |  |  |
| Upper                                  | No data available             |  |  |
| Lower                                  | No data available             |  |  |
| Vapor Pressure                         | < 0.001 mmHg @ 20 °C          |  |  |
| Vapor Density                          | 3.38 (Air = 1.0)              |  |  |
| Specific Gravity                       | 1.84                          |  |  |
| Solubility                             | Soluble in water              |  |  |
| Partition coefficient; n-octanol/water | No data available             |  |  |
| Autoignition Temperature               | No information available      |  |  |
| Decomposition Temperature              | 340°C                         |  |  |
| Viscosity                              | No information available      |  |  |
| Molecular Formula                      | H2SO4                         |  |  |
| Molecular Weight                       | 98.08                         |  |  |
|                                        |                               |  |  |

# 10. Stability and reactivity

| Reactive Hazard                                          | Yes                                                                                        |  |  |
|----------------------------------------------------------|--------------------------------------------------------------------------------------------|--|--|
| Stability                                                | Reacts violently with water. Hygroscopic.                                                  |  |  |
| Conditions to Avoid                                      | Incompatible products. Excess heat. Exposure to moist air or water.                        |  |  |
| Incompatible Materials                                   | Water, Organic materials, Strong acids, Strong bases, Metals, Alcohols, Cyanides, Sulfides |  |  |
| Hazardous Decomposition Products Sulfur oxides, Hydrogen |                                                                                            |  |  |
| Hazardous Polymerization                                 | Hazardous polymerization does not occur.                                                   |  |  |

### **Hazardous Reactions**

None under normal processing.

### 11. Toxicological information

### **Acute Toxicity**

| Product Information                                                                                                                                          | 1               | Deced on ATE date                                             | the election                                                                                               | n aritaria ara nat m                                               | ot ATE : 2000 mg                            | *//ca                                   |  |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------|---------------------------------------------------------------|------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------|---------------------------------------------|-----------------------------------------|--|
| Oral LD50 Based on ATE data, the cla                                                                                                                         |                 |                                                               |                                                                                                            | n criteria are not m                                               | let. ATE > $2000 \text{ mg}$                | ј/к <u>g</u> .                          |  |
| Dermai LD50                                                                                                                                                  |                 | Based on ATE data                                             | a, the classificatio                                                                                       | n criteria are not m                                               | let. ATE > 2000 mg                          | ј/кд.                                   |  |
| vapor LC50                                                                                                                                                   |                 | Based on ATE data                                             | a, the classificatio                                                                                       | n criteria are not m                                               | let. ATE > 20 mg/l.                         |                                         |  |
| Component Informa                                                                                                                                            | tion            |                                                               |                                                                                                            |                                                                    |                                             |                                         |  |
| Componen                                                                                                                                                     | t               | LD50 Oral                                                     |                                                                                                            | LD50 Dermal                                                        | LC50                                        | Inhalation                              |  |
| Sulfuric aci                                                                                                                                                 | d               | 2140 mg/kg (Rat)                                              |                                                                                                            | Not listed                                                         | LC50 = 510                                  | mg/m³(Rat)2 h                           |  |
| Water                                                                                                                                                        |                 | -                                                             |                                                                                                            | Not listed                                                         | No                                          | ot listed                               |  |
| Toxicologically Syn<br>Products                                                                                                                              | ergistic        | No information avai                                           | ilable                                                                                                     |                                                                    |                                             |                                         |  |
| Delayed and immed                                                                                                                                            | iate effects as | well as chronic effec                                         | ts from short ar                                                                                           | nd long-term expo                                                  | sure                                        |                                         |  |
| Irritation                                                                                                                                                   |                 | Causes severe bur                                             | ns by all exposure                                                                                         | e routes                                                           |                                             |                                         |  |
| Sensitization                                                                                                                                                |                 | No information avail                                          | ilable                                                                                                     |                                                                    |                                             |                                         |  |
| Carcinogenicity                                                                                                                                              |                 | The table below inc<br>Exposure to strong                     | licates whether ea<br>inorganic mists c                                                                    | ach agency has lis<br>containing sulfuric a                        | ted any ingredient<br>acid may cause car    | as a carcinogen.<br>ncer by inhalation. |  |
| Component                                                                                                                                                    | CAS-No          | IARC                                                          | NTP                                                                                                        | ACGIH                                                              | OSHA                                        | Mexico                                  |  |
| Sulfuric acid                                                                                                                                                | 7664-93-9       | Group 1                                                       | Known                                                                                                      | A2                                                                 | Х                                           | A2                                      |  |
| Water                                                                                                                                                        | 7732-18-5       | Not listed                                                    | Not listed                                                                                                 | Not listed                                                         | Not listed                                  | Not listed                              |  |
| IARC: (International Agency for Research on Cancer)<br>IARC: (International Agency for Research on Cancer)<br>Group 1 - Carcinogeni<br>Group 2A - Probably C |                 |                                                               |                                                                                                            | rnational Agency for<br>Carcinogenic to Huma<br>Probably Carcinoge | Research on Cancer,<br>ans<br>nic to Humans | )                                       |  |
| NTP: (National Toxicity Program)                                                                                                                             |                 |                                                               | Group 2B - Possibly Carcinogenic to Humans<br>NTP: (National Toxicity Program)<br>Known - Known Carcinogen |                                                                    |                                             |                                         |  |
|                                                                                                                                                              |                 | Reasonably Anticipated - Reasonably Anticipated to be a Human |                                                                                                            |                                                                    |                                             |                                         |  |

Carcinogen

A1 - Known Human Carcinogen A2 - Suspected Human Carcinogen

A3 - Animal Carcinogen ACGIH: (American Conference of Governmental Industrial Hygienists)

ACGIH: (American Conference of Governmental Industrial Hygienists)

Maxica Occupational Exposure Limits Carcinogons

| Mexico - Occupational Exposure Limits - Carcinogens |                                                                                       | Mexico - Occupational Exposure Limits - Carcinogens<br>A1 - Confirmed Human Carcinogen<br>A2 - Suspected Human Carcinogen<br>A3 - Confirmed Animal Carcinogen<br>A4 - Not Classifiable as a Human Carcinogen<br>A5 - Not Suspected as a Human Carcinogen |
|-----------------------------------------------------|---------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Mutagenic Effects                                   | No information available                                                              | Ao Not Suspected as a Human Satemogen                                                                                                                                                                                                                    |
| Reproductive Effects                                | No information available.                                                             |                                                                                                                                                                                                                                                          |
| Developmental Effects                               | No information available.                                                             |                                                                                                                                                                                                                                                          |
| Teratogenicity                                      | No information available.                                                             |                                                                                                                                                                                                                                                          |
| STOT - single exposure<br>STOT - repeated exposure  | Respiratory system<br>None known                                                      |                                                                                                                                                                                                                                                          |
| Aspiration hazard                                   | No information available                                                              |                                                                                                                                                                                                                                                          |
| Symptoms / effects,both acute and delayed           | Product is a corrosive ma<br>Possible perforation of sto<br>severe swelling, severe d | terial. Use of gastric lavage or emesis is contraindicated.<br>omach or esophagus should be investigated: Ingestion causes<br>amage to the delicate tissue and danger of perforation                                                                     |

**Endocrine Disruptor Information** 

No information available

**Other Adverse Effects** 

The toxicological properties have not been fully investigated.

### 12. Ecological information

### Ecotoxicity

This product contains the following substance(s) which are hazardous for the environment. .

| Component                                                                                                                                                                                                                                                                      | Freshwater Algae                                        | Freshwater Fish                                     | Microtox | Water Flea                                                                           |  |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------|-----------------------------------------------------|----------|--------------------------------------------------------------------------------------|--|
| Sulfuric acid                                                                                                                                                                                                                                                                  | -                                                       | LC50: > 500 mg/L, 96h static<br>(Brachydanio rerio) | -        | EC50: 29 mg/L/24h                                                                    |  |
| Persistence and Degradability No information available                                                                                                                                                                                                                         |                                                         |                                                     |          |                                                                                      |  |
| Bioaccumulation/ Accun                                                                                                                                                                                                                                                         | Bioaccumulation/ Accumulation No information available. |                                                     |          |                                                                                      |  |
| Mobility                                                                                                                                                                                                                                                                       | Iobility No information available.                      |                                                     |          |                                                                                      |  |
|                                                                                                                                                                                                                                                                                | 13. Di                                                  | sposal considera                                    | ations   |                                                                                      |  |
| Waste Disposal Methods         Chemical waste generators must determine whether a discarded chemical is class hazardous waste. Chemical waste generators must also consult local, regional, a national hazardous waste regulations to ensure complete and accurate classificat |                                                         |                                                     |          | d chemical is classified as a<br>lt local, regional, and<br>accurate classification. |  |

| 14. Transport information |                            |  |  |  |
|---------------------------|----------------------------|--|--|--|
| DOT                       |                            |  |  |  |
| UN-No                     | UN1830                     |  |  |  |
| Proper Shipping Name      | Sulfuric acid              |  |  |  |
| Hazard Class              | 8                          |  |  |  |
| Packing Group             | П                          |  |  |  |
| TDG                       |                            |  |  |  |
| UN-No                     | UN1830                     |  |  |  |
| Proper Shipping Name      | SULFURIC ACID              |  |  |  |
| Hazard Class              | 8                          |  |  |  |
| Packing Group             | П                          |  |  |  |
| ΙΑΤΑ                      |                            |  |  |  |
| UN-No                     | UN1830                     |  |  |  |
| Proper Shipping Name      | SULFURIC ACID              |  |  |  |
| Hazard Class              | 8                          |  |  |  |
| Packing Group             | П                          |  |  |  |
| IMDG/IMO                  |                            |  |  |  |
| UN-No                     | UN1830                     |  |  |  |
| Proper Shipping Name      | SULFURIC ACID              |  |  |  |
| Hazard Class              | 8                          |  |  |  |
| Packing Group             | П                          |  |  |  |
|                           | 15. Regulatory information |  |  |  |

All of the components in the product are on the following Inventory lists: X = listed

### **International Inventories**

| Component     | TSCA | DSL | NDSL | EINECS    | ELINCS | NLP | PICCS | ENCS | AICS | IECSC | KECL |
|---------------|------|-----|------|-----------|--------|-----|-------|------|------|-------|------|
| Sulfuric acid | Х    | Х   | -    | 231-639-5 | -      |     | Х     | Х    | Х    | Х     | Х    |
| Water         | Х    | Х   | -    | 231-791-2 | -      |     | Х     | -    | Х    | Х     | Х    |

Legend: X - Listed

E - Indicates a substance that is the subject of a Section 5(e) Consent order under TSCA. F - Indicates a substance that is the subject of a Section 5(f) Rule under TSCA.

N - Indicates a polymeric substance containing no free-radical initiator in its inventory name but is considered to cover the designated polymer made with any free-radical initiator regardless of the amount used.

P - Indicates a commenced PMN substance

R - Indicates a substance that is the subject of a Section 6 risk management rule under TSCA.

S - Indicates a substance that is identified in a proposed or final Significant New Use Rule

T - Indicates a substance that is the subject of a Section 4 test rule under TSCA.

XU - Indicates a substance exempt from reporting under the Inventory Update Rule, i.e. Partial Updating of the TSCA Inventory Data Base Production and Site Reports (40 CFR 710(B).

Y1 - Indicates an exempt polymer that has a number-average molecular weight of 1,000 or greater.

Y2 - Indicates an exempt polymer that is a polyester and is made only from reactants included in a specified list of low concern reactants that comprises one of the eligibility criteria for the exemption rule.

### U.S. Federal Regulations

| TSCA 12(b) | Not applicable |
|------------|----------------|
| · · ·      |                |

### SARA 313

| Component     | CAS-No    | Weight % | SARA 313 - Threshold<br>Values % |
|---------------|-----------|----------|----------------------------------|
| Sulfuric acid | 7664-93-9 | 90 - 98  | 1.0                              |

SARA 311/312 Hazard Categories

| Acute Health Hazard               | Yes |
|-----------------------------------|-----|
| Chronic Health Hazard             | Yes |
| Fire Hazard                       | No  |
| Sudden Release of Pressure Hazard | No  |
| Reactive Hazard                   | Yes |
|                                   |     |

### **CWA (Clean Water Act)**

| Component     | CWA - Hazardous<br>Substances | CWA - Reportable<br>Quantities | CWA - Toxic Pollutants | CWA - Priority Pollutants |
|---------------|-------------------------------|--------------------------------|------------------------|---------------------------|
| Sulfuric acid | X                             | 1000 lb                        | -                      | -                         |

Clean Air Act

Not applicable

**OSHA** Occupational Safety and Health Administration Not applicable

### CERCLA

This material, as supplied, contains one or more substances regulated as a hazardous substance under the Comprehensive Environmental Response Compensation and Liability Act (CERCLA) (40 CFR 302)

| Component                                 | Hazardous Substances RQs                 | CERCLA EHS RQs |
|-------------------------------------------|------------------------------------------|----------------|
| Sulfuric acid                             | 1000 lb                                  | 1000 lb        |
| Collifornia Droppolition CE This are duet | anataina tha fallouing proposition CC ob | amiaala        |

| California Proposition 65 | This product contains the following proposition 65 chemicals |
|---------------------------|--------------------------------------------------------------|
|                           | ····· [·······························                       |

| Component                   | CAS-No    | California Prop. 65 | Prop 65 NSRL | Category   |
|-----------------------------|-----------|---------------------|--------------|------------|
| Sulfuric acid               | 7664-93-9 | Carcinogen          | -            | Carcinogen |
| LLO Otata District to Kasas |           |                     |              |            |

### U.S. State Right-to-Know Regulations

| Component     | Massachusetts | New Jersey | Pennsylvania | Illinois | Rhode Island |
|---------------|---------------|------------|--------------|----------|--------------|
| Sulfuric acid | Х             | Х          | Х            | Х        | Х            |
| Water         | -             | -          | Х            | -        | -            |

### U.S. Department of Transportation

| Reportable Quantity (RQ):   | Υ |
|-----------------------------|---|
| DOT Marine Pollutant        | Ν |
| DOT Severe Marine Pollutant | Ν |

### **U.S. Department of Homeland Security**

This product does not contain any DHS chemicals.

### Other International Regulations

| М | exico | <b>-</b> C | Grade |  |
|---|-------|------------|-------|--|
|   | CAIU  |            | Olade |  |

No information available

|                                                                  | 16. Other information                                                              |
|------------------------------------------------------------------|------------------------------------------------------------------------------------|
| Prepared By                                                      | Regulatory Affairs<br>Thermo Fisher Scientific<br>Email: EMSDS.RA@thermofisher.com |
| Creation Date<br>Revision Date<br>Print Date<br>Revision Summary | 12-Nov-2010<br>24-May-2017<br>24-May-2017<br>SDS sections updated. 2.              |

Disclaimer

The information provided in this Safety Data Sheet is correct to the best of our knowledge, information and belief at the date of its publication. The information given is designed only as a guidance for safe handling, use, processing, storage, transportation, disposal and release and is not to be considered a warranty or quality specification. The information relates only to the specific material designated and may not be valid for such material used in combination with any other materials or in any process, unless specified in the text

# End of SDS



The Pulsatron Series A Plus offers manual function controls over stroke length and stroke rate as standard with the option to select external pace for automatic control.

Ten distinct models are available, having pressure capabilities to 250 PSIG (17 BAR) @ 12 GPD (1.9 lph), and flow capacities to 58 GPD (9.1 lph) @ 100 PSIG (7.0 BAR), with a standard turndown ratio of 100:1, and optional ratio of 1000:1. Metering performance is reproducible to within ± 3% of maximum capacity.

### Features

- Manual Control by on-line adjustable stroke rate and • stroke length.
- Highly Reliable timing circuit. •
- Circuit Protection against voltage and current upsets. .
- Solenoid Protection by thermal overload with auto-reset. •
- Water Resistant, for outdoor and indoor applications. •
- Internally Dampened To Reduce Noise. •
- Guided Ball Check Valve Systems, to reduce back flow • and enhance outstanding priming characteristics
- Few Moving Parts and Wall Mountable. •
- Safe & Easy Priming with durable leak-free bleed valve assembly (standard).
- Optional Control: External pace with auto/manual • selection.

# Controls



**Manual Stroke Rate** 

**Manual Stroke Length** 

**External Pacing - Optional** 

**External Pace With Stop -Optional (125 SPM only)** 

| Controls Options                        |                           |                                        |  |  |  |
|-----------------------------------------|---------------------------|----------------------------------------|--|--|--|
| Feature                                 | Standard<br>Configuration | Optional<br>Configuration <sup>1</sup> |  |  |  |
| External Pacing                         | -                         | Auto / Manual Selection 2              |  |  |  |
| External Pace w/ Stop<br>(125 SPM only) | -                         | Auto / Manual Selection <sup>2</sup>   |  |  |  |
| Manual Stroke Rate                      | 10:1 Ratio                | 100:1 Ratio                            |  |  |  |
| Manual Stroke Length                    | 10:1 Ratio                | 10:1 Ratio                             |  |  |  |
| Total Turndown Ratio                    | 100:1 Ratio               | 1000:1 Ratio                           |  |  |  |

**).** (II) **C E** 

Note 2: Not available on 1000:1 turndown pumps.

1. Tested and Certified by WQA against NSE/ANSI 61 & 372



### 1. PVDF and Degassing Head Pumps See www.wga.org for certification parameters

# **Operating Benefits**

- Reliable metering performance.
- Rated "hot" for continuous duty.
- High viscosity capability.
- Leak-free, sealless, liquid end.



# Aftermarket

Dampeners

- **KOPkits**
- Gauges
- Tanks
- **Pre-Engineered Systems**
- **Process Controllers** (MicroVision) **Pressure Relief Valves**



# SAtron<sup>®</sup> Series A Plus **Electronic Metering Pumps**

# SAtron<sup>®</sup> Series A Plus **Specifications and Model Selection**

|                                 | MODEL                                                                                                             |               | LBC2     | LB02     | LBC3      | LB03     | LB04    | LB64     | LBC4              | LBS2     | LBS3        | LBS4    |
|---------------------------------|-------------------------------------------------------------------------------------------------------------------|---------------|----------|----------|-----------|----------|---------|----------|-------------------|----------|-------------|---------|
| Capacity                        |                                                                                                                   | GPH           | 0.25     | 0.25     | 0.42      | 0.50     | 1.00    | 1.25     | 2.00              | 0.50     | 1.38        | 2.42    |
| nominal                         |                                                                                                                   | GPD           | 6        | 6        | 10        | 12       | 24      | 30       | 48                | 12       | 33          | 58      |
| (max.)                          |                                                                                                                   | LPH           | 0.9      | 0.9      | 1.6       | 1.9      | 3.8     | 4.7      | 7.6               | 1.9      | 5.2         | 9.14    |
| Pressure <sup>3</sup><br>(max.) | GFPP, PVDF, 316SS<br>or PVC (W code)<br>w/TFE Seats)<br>PVC (V code) Viton or<br>CSPE Seats / Degas<br>Liquid End | PSIG<br>(Bar) | 250 (17) | 150 (10) | 250 (17)  | 150 (10) | 100 (7) | 100 (7)  | 50 (3.3)          | 250 (17) | 150 (10)    | 100 (7) |
| Connections:                    |                                                                                                                   | Tubing        |          |          | 1/4" ID X | 3/8" OD  |         |          | 3/8" ID X 1/2" OD | 1/4      | ID X 3/8" ( | DD      |
|                                 |                                                                                                                   | Piping        |          |          |           |          | 1       | /4" FNPT |                   |          |             |         |
| Strokes/Minute                  |                                                                                                                   | SPM           |          | 125      |           |          |         |          | /                 | 250      |             |         |

Note 3: Pumps with rated pressure above 150 PSI will be de-rated to 150 PSI Max. when selecting certain valve options, see Price Book for de

# **Engineering Data**

| Pump Head Materials Available:     | GFPPL                           |
|------------------------------------|---------------------------------|
|                                    | PVC                             |
|                                    | PVDF                            |
|                                    | 316 SS                          |
| Diaphragm:                         | PTFE-faced CSPE-backed          |
| Check Valves Materials Available:  |                                 |
| Seats/O-Rings:                     | PTFE                            |
|                                    | CSPE                            |
|                                    | Viton                           |
| Balls:                             | Ceramic                         |
|                                    | PTFE                            |
|                                    | 316 SS                          |
|                                    | Alloy C                         |
| Fittings Materials Available:      | GFPPL                           |
|                                    | PVC                             |
|                                    | PVDF                            |
| Bleed Valve:                       | Same as fitting and check valve |
|                                    | selected, except 316SS          |
| Injection Valve & Foot Valve Assy: | Same as fitting and check valve |
|                                    | selected                        |
| Tubing:                            | Clear PVC                       |
|                                    | White PF                        |

Important: Material Code - GFPPL=Glass-filled Polypropylene, PVC=Polyvinyl Chloride, PE=Polyethylene, PVDF=Polyvinylidene Fluoride, CSPE=Generic formulation of Hypalon, a registered trademark of E.I. DuPont Company. Viton is a registered trademark of E.I. DuPont Company. PVC wetted end recommended for sodium hypochlorite.

# Dimensions

| Series A PLUS Dimensions (inches) |     |     |     |     |     |                    |  |
|-----------------------------------|-----|-----|-----|-----|-----|--------------------|--|
| Model No.                         | A   | в   | с   | D   | E   | Shipping<br>Weight |  |
| LB02 / S2                         | 5.0 | 9.6 | 9.5 | 6.5 | 8.2 | 10                 |  |
| LBC2                              | 5.0 | 9.9 | 9.5 | 6.5 | 8.5 | 10                 |  |
| LBC3                              | 5.0 | 9.9 | 9.5 | 6.5 | 8.5 | 10                 |  |
| LB03 / S3                         | 5.0 | 9.9 | 9.5 | 6.5 | 8.5 | 10                 |  |
| LB04 /S4                          | 5.0 | 9.9 | 9.5 | 6.5 | 8.5 | 10                 |  |
| LB64                              | 5.0 | 9,9 | 9.5 | 6.5 | 8.5 | 10                 |  |
| LBC4                              | 5.0 | 9.9 | 9.5 | 6.5 | 8.5 | 10                 |  |

NOTE: Inches X 2.54 = cm

# \*PULSAFEEDER

01 Airport Road Punta Gorda, FL 33982 Phone: +1(941) 575-3800 Fax: +1(941) 575-4085

# **Engineering Data**

**Reproducibility:** Viscosity Max CPS: Stroke Frequency Max SPM: Stroke Frequency Turn-Down Ratio: 10:1 /100:1 by Model Stroke Length Turn-Down Ratio: **Power Input:** 

Average Current Draw: @ 115 VAC; Amps: @ 230 VAC; Amps: **Peak Input Power:** Average Input Power @ Max SPM:

### +/- 3% at maximum capacity 1000 CPS 125 / 250 by Model 10:1 115 VAC/50-60 HZ/1 ph 230 VAC/50-60 HZ/1 ph

0.6 Amps 0.3 Amps 130 Watts 50 Watts

# **Custom Engineered Designs** – **Pre-Engineered Systems**



### **Pre-Engineered Systems**

Pulsafeeder's Pre-Engineered Systems are designed to provide complete chemical feed solutions for all electronic metering applications. From stand alone simplex pH control applications to full-featured, redundant sodium hypochlorite disinfection metering, these rugged fabricated assemblies offer turnkey simplicity and industrial-grade durability. The UV-stabilized, high-grade HDPE frame offers maximum chemical compatibility and structural rigidity. Each system is factory assembled and hydrostatically tested prior to shipment.



www.pulsatron.com



### An ISO 9001 Certified Company

EMP025 A17





# **Applied Polymer Systems**

519 Industrial Drive, Woodstock, GA 30189

www.siltstop.com Phone: 678-494-5998 Toll-free: 866-200-9868 Fax: 678-494-5298

# **APS 700 Series Floc Logs**<sup>®</sup> Polyacrylamide Sediment and Turbidity Control Applicator Logs

**APS 700 Series Floc Logs** are a group of soil-specific tailored log-blocks that contain blends of water treatment components and polyacrylamide co-polymer for water clarification. They reduce and prevent fine particles and colloidal clays from suspension in stormwater. There are several types of Floc Logs designed to treat most water and soil types. Contact Applied Polymer Systems, Inc. or your local distributor for free testing and site-specific application information.

# Primary Applications

- Mine tailings and waste pile ditches
- Stormwater drainage from construction and building sites
- Road and highway construction runoff ditches
- Ditch and treatment system placement for all forms of highly turbid waters (less than 4% solids)
- Dredging operations as a flocculent

# Features and Benefits

- Removes solubilized soils and clay from water
- Prevents colloidal solutions in water within ditch systems
- Binds cationic metals within water, reducing solubilization
- Binds pesticides and fertilizers within runoff water
- Reduces operational and cleanup costs
- Reduces environmental risks and helps meet compliance

# **Specifications / Compliances**

- ANSI/NSF Standard 60 Drinking water treatment chemical additives
- 48h or 96h Acute Toxicity Tests (D. magna or O. mykiss)
- 7 Day Chronic Toxicity Tests (P. promealas or C. dubia

# **Packaging**

APS 700 Series Floc Logs are packaged in boxes of four (4)

# **Technical Information**

Appearance - semi-solid block Biodegradable internal coconut skeleton Percent Moisture - 40% maximum pH 0.5% Solution - 6-8 Shelf Life – up to 5 years when stored out of UV rays



# **Applied Polymer Systems**

519 Industrial Drive, Woodstock, GA 30189 <u>www.siltstop.com</u> Phone: 678-494-5998 Toll-free: 866-200-9868 Fax: 678-494-5298

# **Placement**

Floc Logs are designed for placement within ditches averaging three feet wide by two feet deep. Floc log placement is based on gallon per minute flow rates. Note: actual GPM or dosage will vary based on site criteria and soil/water testing.

# **Directions for Use**

# (Water and Floc Log Mixing is Very Important!)

APS 700 Series Floc Logs should be placed within the upper quarter to half of a *stabilized* ditch system or as close as possible to active earth moving activities. Floc Logs have built in ropes with attachment loops which can be looped over stakes to ensure they remain where placed. Mixing is key! If the flow rate is too slow, adding sand bags, cinder blocks, etc., can create the turbulence required for proper mixing. Floc Logs are designed to treat dirty water, not liquid mud; when the water contains heavy solids (exceeding 4%), it will be necessary to create a sediment or grit pit to let the heavy solids settle before treating the water.

Floc Logs must not be placed in areas where heavy erosion would result in the Floc Logs becoming buried. Where there is heavy sedimentation, maintenance will be required.

APS 700 Series Floc Logs can easily be moved to different locations as site conditions change. Water quality will be improved with the addition of a dispersion field or soft armor covered ditch checks below the Floc Log(s) to collect flocculated particulate. Construction of mixing weirs may be required in areas where short ditch lines, swelling clays, heavy particle concentrations, or steep slopes may be encountered.

# Cleanup:

Latex or rubber gloves are recommended for handling during usage. Use soap and water to wash hands after handling.

# **Precautions / Limitations**

- APS 700 Series Floc Logs are extremely slippery when wet.
- Clean up spills quickly. Do not use water unless necessary as extremely slippery conditions will result and if water is necessary, use pressure washer.
- APS Floc Log will remain viable for up to 5 years when stored out of UV rays.
- APS 700 Series Floc Logs have been specifically tailored to specific water and soil types and samples must be tested. Testing is necessary and is free.
- For product information, treatment system design assistance, or performance issues, contact Applied Polymer Systems.



89 Crawford Street Leominster, Massachusetts 01453 Tel: 774.450.7177 Fax: 888.835.0617 www.lrt-llc.net

# HPAF SERIES FILTERS MODEL HPAF-2000

The HPAF-2000 filter is a media filter vessel designed to treat liquid streams. While the typical design application is a activated carbon adsorbtion unit, the filter can easily accommodate many medias. Some applications include:

- Dissolved Organic Removal (Activated Carbon)
- Suspended Solids Removal (Sand Filter)
- Dissolved Minerals (Softener Resin)
- Oil and Grease Removal (Organo-Clays)
- Dissolved and Precipitated Metals Removal
- Special Organics (Resin/Carbon Blend)
- · Catalytic Reactor (Chlorine and Peroxide Removal)
- Bio-Remediation Contactor Unit







| HPAF-2000 SPECIFICATIONS               |             |                                     |                               |  |  |  |  |
|----------------------------------------|-------------|-------------------------------------|-------------------------------|--|--|--|--|
| Overall Height                         | 8'6"        | Vessel/Internal Piping<br>Materials | CS (SA-36) / SCH<br>40 PVC    |  |  |  |  |
| Diameter                               | 48"         | Internal Coating                    | Polyamide Epoxy<br>Resin      |  |  |  |  |
| Inlet / Outlet (FNPT)                  | 3"          | External Coating                    | Epoxy Mastic                  |  |  |  |  |
| Drain / Vent (FNPT)                    | 3/4" / 1/2" | Maximum Pressure /<br>Temp          | 75 PSIG / 140º F              |  |  |  |  |
| GAC Fill (lbs)                         | 2,000       | Cross Sectional Bed<br>Area         | 12.5 FT <sup>2</sup>          |  |  |  |  |
| Shipping / Operational<br>Weight (lbs) | 3,020/6,775 | Bed Depth/Volume                    | 5.5 FT / 68.7 FT <sup>3</sup> |  |  |  |  |

### Safety Data Sheet

according to 29CFR1910/1200 and GHS Rev. 3

Page 1 of 7

Effective date : 03.02.2015

### **Charcoal, Activated Carbon**

### SECTION 1 : Identification of the substance/mixture and of the supplier

Product name :

**Charcoal, Activated Carbon** 

Manufacturer/Supplier Trade name:

Manufacturer/Supplier Article number: S25246

Recommended uses of the product and uses restrictions on use:

### Manufacturer Details:

AquaPhoenix Scientific 9 Barnhart Drive, Hanover, PA 17331

### Supplier Details:

**Fisher Science Education** 15 Jet View Drive, Rochester, NY 14624

### Emergency telephone number:

Fisher Science Education Emergency Telephone No.: 800-535-5053

### **SECTION 2 : Hazards identification**

### Classification of the substance or mixture:



Flammable Flammable solids, category 1

Eye Irrit. 2 STOT SE 3 Hazards Not Otherwise Classified - Combustible Dust Flam. Sol. 2

### Signal word : Danger

### Hazard statements:

Flammable solid Causes serious eye irritation May cause respiratory irritation **Precautionary statements:** If medical advice is needed, have product container or label at hand Keep out of reach of children Read label before use Keep away from heat/sparks/open flames/hot surfaces. No smoking Ground/bond container and receiving equipment Use explosion-proof electrical/ventilating/light/equipment Avoid breathing dust/fume/gas/mist/vapours/spray Wash skin thoroughly after handling Use only outdoors or in a well-ventilated area

# Safety Data Sheet

according to 29CFR1910/1200 and GHS Rev. 3

Effective date : 03.02.2015

### **Charcoal, Activated Carbon**

Wear protective gloves/protective clothing/eye protection/face protection Do not eat, drink or smoke when using this product IF INHALED: Remove victim to fresh air and keep at rest in a position comfortable for breathing In case of fire: Use agents recommended in section 5 for extinction If eye irritation persists get medical advice/attention IF IN EYES: Rinse cautiously with water for several minutes. Remove contact lenses if present and easy to do. Continue rinsing Store locked up Store in a well ventilated place. Keep container tightly closed

Dispose of contents and container to an approved waste disposal plant

### Combustible Dust Hazard: :

May form combustible dust concentrations in air (during processing).

### **Other Non-GHS Classification**:



### **SECTION 3 : Composition/information on ingredients**

| Ingredients:  |        |                           |
|---------------|--------|---------------------------|
| CAS 7440-44-0 | Carbon | 100 %                     |
|               |        | Percentages are by weight |

### SECTION 4 : First aid measures

### **Description of first aid measures**

**After inhalation:** Loosen clothing as necessary and position individual in a comfortable position. Move exposed to fresh air. Give artificial respiration if necessary. If breathing is difficult give oxygen. Get medical assistance if cough or other symptoms appear.

**After skin contact:** Rinse/flush exposed skin gently using soap and water for 15-20 minutes.Seek medical advice if discomfort or irritation persists.

**After eye contact:** Protect unexposed eye. Rinse/flush exposed eye(s) gently using water for 15-20 minutes. Remove contact lens(es) if able to do so during rinsing. Seek medical attention if irritation persists or if

according to 29CFR1910/1200 and GHS Rev. 3

**Effective date** : 03.02.2015

### **Charcoal, Activated Carbon**

### concerned.

**After swallowing:** Rinse mouth thoroughly. Do not induce vomiting. Have exposed individual drink sips of water. Seek medical attention if irritation, discomfort or vomiting persists.

### Most important symptoms and effects, both acute and delayed:

Irritation, Nausea, Headache, Shortness of breath.;

### Indication of any immediate medical attention and special treatment needed:

If seeking medical attention, provide SDS document to physician. Physician should treat symptomatically.

### SECTION 5 : Firefighting measures

### **Extinguishing media**

**Suitable extinguishing agents:** Use appropriate fire suppression agents for adjacent combustible materials or sources of ignition. Use water, dry chemical, chemical foam, carbon dioxide, or alcohol-resistant foam.

For safety reasons unsuitable extinguishing agents: None identified.

### Special hazards arising from the substance or mixture:

Combustion products may include carbon oxides or other toxic vapors. Thermal decomposition can lead to release of irritating gases and vapors.

### Advice for firefighters:

**Protective equipment:** Use NIOSH-approved respiratory protection/breathing apparatus.

**Additional information (precautions):** Move product containers away from fire or keep cool with water spray as a protective measure, where feasible.Use spark-proof tools and explosion-proof equipment.Avoid generating dust; fine dust dispersed in air in sufficient concentrations, and in the presence of an ignition source is a potential dust explosion hazard.Avoid inhaling gases, fumes, dust, mist, vapor, and aerosols.Avoid contact with skin, eyes, and clothing.

### **SECTION 6 : Accidental release measures**

### Personal precautions, protective equipment and emergency procedures:

Wear protective equipment. Use spark-proof tools and explosion-proof equipment. Ensure that air-handling systems are operational. Ensure adequate ventilation.

### **Environmental precautions:**

Prevent from reaching drains, sewer or waterway. Collect contaminated soil for characterization per Section 13. Should not be released into environment.

### Methods and material for containment and cleaning up:

Keep in suitable closed containers for disposal.Wear protective eyeware, gloves, and clothing. Refer to Section 8.Always obey local regulations.Avoid dispersal of dust in the air (i.e., clearing dust surfaces with compressed air). Collect solids in powder form using vacuum with (HEPA filter). Evacuate personnel to safe areas.

### **Reference to other sections:**

### SECTION 7 : Handling and storage

### Precautions for safe handling:

Minimize dust generation and accumulation. Follow good hygiene procedures when handling chemical materials. Refer to Section 8.Do not eat, drink, smoke, or use personal products when handling chemical substances. Avoid contact with eyes, skin, and clothing.

### Conditions for safe storage, including any incompatibilities:

Store away from incompatible materials.Protect from freezing and physical damage.Keep away from food and beverages.Provide ventilation for containers. Avoid storage near extreme heat, ignition sources or open flame.

Safety Data Sheet according to 29CFR1910/1200 and GHS Rev. 3

Effective date : 03.02.2015

### **Charcoal, Activated Carbon**

Store in cool, dry conditions in well sealed containers. Store with like hazards

| SECTION 8 : Exposure controls/personal protection |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |  |  |
|---------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|
|                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |  |  |
| Control Parameters:                               | , , OSHA PEL TWA (Total Dust) 15 mg/m3 (50 mppcf*)<br>, , ACGIH TLV TWA (inhalable particles) 10 mg/m3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |  |  |
| Appropriate Engineering controls:                 | Emergency eye wash fountains and safety showers should be available in<br>the immediate vicinity of use/handling.Provide exhaust ventilation or<br>other engineering controls to keep the airborne concentrations of vapor<br>or dusts (total/respirable) below the applicable workplace exposure limits<br>(Occupational Exposure Limits-OELs) indicated above.Ensure that dust-<br>handling systems (such as exhaust ducts, dust collectors, vessels, and<br>processing equipment) are designed in a manner to prevent the escape<br>of dust into the work area (i.e., there is no leakage from the equipment). |  |  |
| Respiratory protection:                           | When necessary use NIOSH approved breathing equipment.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |  |  |
| Protection of skin:                               | Select glove material impermeable and resistant to the substance.Select<br>glove material based on rates of diffusion and degradation.Dispose of<br>contaminated gloves after use in accordance with applicable laws and<br>good laboratory practices.Wear protective clothing.                                                                                                                                                                                                                                                                                                                                   |  |  |
| Eye protection:                                   | Wear equipment for eye protection tested and approved under<br>appropriate government standards such as NIOSH (US) or EN<br>166(EU).Safety glasses or goggles are appropriate eye protection.                                                                                                                                                                                                                                                                                                                                                                                                                     |  |  |
| General hygienic measures:                        | Perform routine housekeeping.Wash hands before breaks and at the end<br>of work.Avoid contact with skin, eyes, and clothing.Before wearing wash<br>contaminated clothing.                                                                                                                                                                                                                                                                                                                                                                                                                                         |  |  |

### SECTION 9 : Physical and chemical properties

| Appearance (physical state,color): | Black solid                      | Explosion limit lower:<br>Explosion limit upper: | Not Determined<br>Not Determined |
|------------------------------------|----------------------------------|--------------------------------------------------|----------------------------------|
| Odor:                              | Odorless                         | Vapor pressure:                                  | 1 mm Hg @ 3586C                  |
| Odor threshold:                    | Not Determined                   | Vapor density:                                   | Not Determined                   |
| pH-value:                          | 6.0 - 9.0                        | Relative density:                                | 1.8 - 2.1                        |
| Melting/Freezing point:            | 3652 - 3697°C / 6606 -<br>6687°F | Solubilities:                                    | Insoluble in water.              |
| Boiling point/Boiling<br>range:    | Decomposes                       | Partition coefficient (n-<br>octanol/water):     | Not Determined                   |
| Flash point (closed<br>cup):       | Not Determined                   | Auto/Self-ignition<br>temperature:               | Not Determined                   |
| Evaporation rate:                  | Not Determined                   | Decomposition<br>temperature:                    | 1 mm Hg @ 3586C                  |

# Safety Data Sheet

according to 29CFR1910/1200 and GHS Rev. 3

**Effective date** : 03.02.2015

Page 5 of 7

### Charcoal, Activated Carbon

| Flammability<br>(solid,gaseous): | Not Determined | Viscosity: | a. Kinematic:Not<br>Determined<br>b. Dynamic: Not<br>Determined |
|----------------------------------|----------------|------------|-----------------------------------------------------------------|
| Density: Not Determined          |                |            |                                                                 |

### SECTION 10 : Stability and reactivity

Reactivity: Nonreactive under normal conditions.

Chemical stability: Stable under normal conditions.

Possible hazardous reactions: None under normal processing

Conditions to avoid: Incompatible Materials. Ignition sources, dust generation, moisture, excess heat.

**Incompatible materials:**May react vigorously or violently when mixed with strong oxidizing agents such as chlorates, bromates and nitrates, especially when heated. Incompatible with chlorinated paraffins, Lead oxide, manganese oxide, iron oxide, liquid oxygen, oils, and moisture.

Hazardous decomposition products:Oxides of carbon.

### SECTION 11 : Toxicological information

| Acute Toxicity:                                                           |                         |                            |  |  |
|---------------------------------------------------------------------------|-------------------------|----------------------------|--|--|
| Oral: Effect level > 8000 mg/kg bw                                        |                         | LD50 rat                   |  |  |
| Inhalation: Effect level > 4.6 mg/m <sup>3</sup> air Exp. duration 4<br>h |                         | rat                        |  |  |
| Chronic Toxicity: No                                                      | additional information. |                            |  |  |
| Corrosion Irritation: No additional information.                          |                         |                            |  |  |
| Sensitization:                                                            |                         | No additional information. |  |  |
| Single Target Organ (STOT):                                               |                         | No additional information. |  |  |
| Numerical Measures:                                                       |                         | No additional information. |  |  |
| Carcinogenicity:                                                          |                         | No additional information. |  |  |
| Mutagenicity:                                                             |                         | No additional information. |  |  |
| Reproductive Toxicity:                                                    |                         | No additional information. |  |  |

### **SECTION 12 : Ecological information**

Ecotoxicity

Brachydanio rerio (new name: Danio rerio) Duration 96 h Endpoint LC0 : Effect conc. 1000 mg/L Daphnia magna 24 h Endpoint EC100: Effect conc. 10000 mg/L

Persistence and degradability: Bioaccumulative potential: Mobility in soil: Other adverse effects:

SECTION 13 : Disposal considerations

# Safety Data Sheet

according to 29CFR1910/1200 and GHS Rev. 3

Effective date : 03.02.2015

### **Charcoal, Activated Carbon**

### Waste disposal recommendations:

Contact a licensed professional waste disposal service to dispose of this material.Dispose of empty containers as unused product.Product or containers must not be disposed with household garbage.It is the responsibility of the waste generator to properly characterize all waste materials according to applicable regulatory entities (US 40CFR262.11).Chemical waste generators must determine whether a discarded chemical is classified as a hazardous waste. Chemical waste generators must also consult local, regional, and national hazardous waste regulations. Ensure complete and accurate classification.

### **SECTION 14 : Transport information**

### **UN-Number**

1362

UN proper shipping name

**Carbon Activated** 

### Transport hazard class(es)



Packing group:||| Environmental hazard: Transport in bulk: Special precautions for user:

### **SECTION 15 : Regulatory information**

### **United States (USA)**

### SARA Section 311/312 (Specific toxic chemical listings):

Fire

### SARA Section 313 (Specific toxic chemical listings):

None of the ingredients is listed

### RCRA (hazardous waste code):

None of the ingredients is listed

### TSCA (Toxic Substances Control Act):

All ingredients are listed.

### CERCLA (Comprehensive Environmental Response, Compensation, and Liability Act):

None of the ingredients is listed

### Proposition 65 (California):

### Chemicals known to cause cancer:

None of the ingredients is listed

### Chemicals known to cause reproductive toxicity for females:

None of the ingredients is listed

### Chemicals known to cause reproductive toxicity for males:

None of the ingredients is listed

### Chemicals known to cause developmental toxicity:

None of the ingredients is listed

Effective date : 03.02.2015

### **Charcoal, Activated Carbon**

### Canada

### Canadian Domestic Substances List (DSL):

All ingredients are listed.

### Canadian NPRI Ingredient Disclosure list (limit 0.1%):

None of the ingredients is listed

### Canadian NPRI Ingredient Disclosure list (limit 1%):

None of the ingredients is listed

### **SECTION 16 : Other information**

This product has been classified in accordance with hazard criteria of the Controlled Products Regulations and the SDS contains all the information required by the Controlled Products Regulations.Note:. The responsibility to provide a safe workplace remains with the user.The user should consider the health hazards and safety information contained herein as a guide and should take those precautions required in an individual operation to instruct employees and develop work practice procedures for a safe work environment.The information contained herein is, to the best of our knowledge and belief, accurate.However, since the conditions of handling and use are beyond our control, we make no guarantee of results, and assume no liability for damages incurred by the use of this material.It is the responsibility of the user to comply with all applicable laws and regulations applicable to this material.

### GHS Full Text Phrases:

### Abbreviations and acronyms:

IMDG: International Maritime Code for Dangerous Goods PNEC: Predicted No-Effect Concentration (REACH) CFR: Code of Federal Regulations (USA) SARA: Superfund Amendments and Reauthorization Act (USA) RCRA: Resource Conservation and Recovery Act (USA) TSCA: Toxic Substances Control Act (USA) NPRI: National Pollutant Release Inventory (Canada) DOT: US Department of Transportation IATA: International Air Transport Association GHS: Globally Harmonized System of Classification and Labelling of Chemicals ACGIH: American Conference of Governmental Industrial Hygienists CAS: Chemical Abstracts Service (division of the American Chemical Society) NFPA: National Fire Protection Association (USA) HMIS: Hazardous Materials Identification System (USA) WHMIS: Workplace Hazardous Materials Information System (Canada) DNEL: Derived No-Effect Level (REACH)

**Effective date** : 03.02.2015 **Last updated** : 03.19.2015





**RESINTECH CGS** is a high purity, light colored, high capacity, gel type sulfonated polystyrene cation resin supplied in the sodium form as moist, tough uniform spherical beads. *ResinTech CGS* specifically is intended for use in all water softening applications, including beverages, potable water and water used for food processing. It's high capacity and high DVB content provide long life and good chlorine resistance in all potable water applications. (It is also available as a dark colored product *ResiNTech CGS-BL* with identical properties.)

### **FEATURES & BENEFITS**

- COMPLIES WITH FDA REGULATIONS FOR POTABLE WATER APPLICATIONS Conforms to paragraph 21CFR173.25 of the Food Additives Regulations of the F.D.A.\*
- EXCELLENT REGENERATION EFFICIENCY
   Virtually the same operating capacity as premium grade ResinTech CG8-BL
- NSF/ANSI-61 VALIDATED



**UNIFORM PARTICLE SIZE** 16 to plus 50 mesh range; gives a LOWER PRESSURE DROP while maintaining SUPERIOR KINETICS.

- SUPERIOR PHYSICAL STABILITY
   90% plus sphericity and high crush strengths together with a very uniform particle size provide greater resistance to bead breakage while maintaining low pressure drops.
- LOW COLOR THROW

\*For potable water applications, the resin must be properly pre-treated, usually by multiple exhaustion and regeneration cycles, to insure compliance with extractable levels.

# HYDRAULIC PROPERTIES



**PRESSURE DROP** - The graph above shows the expected pressure loss per foot of bed depth as a function of flow rate, at various temperatures.



**BACKWASH** - After each cycle the resin bed should be backwashed at a rate that expands the bed 50 to 75 percent. This will remove any foreign matter and reclassify the bed. The graph above shows the expansion characteristics of *RESINTECH CGS* in the sodium form.

# **RESINTECH® CGS**

### **PHYSICAL PROPERTIES**

| Polymer Structure        |
|--------------------------|
| Functional Group         |
| Ionic Form, as shipped   |
| Physical Form            |
| Screen Size Distribution |
| +16 mesh (U.S. Std)      |
| -50 mesh (U.S. Std)      |
| pH Range                 |
| Sphericity               |
| Uniformity Coefficient   |
| Water Retention          |
| Sodium Form              |
| Solubility               |
| Shipping Weight          |
| Sodium Form              |
| Total Capacity           |
| Sodium Form              |

Styrene Crosslinked with DVB R-(SO<sub>3</sub>)<sup>-</sup>M<sup>+</sup> Sodium Tough, Spherical Beads 16 to 50 < 5 percent < 1 percent 0 to 14 90+ percent Approx. 1.6 48 to 54 percent Insoluble

48 lbs./cu.ft.

1.8 meq/ml min

## **OPERATING CAPACITY**

### Sodium Chloride (NaCl) Regeneration

The sodium cycle operating capacity of *ResinTech CGS* for hardness removal at various regeneration levels with an influent calcium/magnesium ratio of 2/1 and a hardness level of 500 ppm, as  $CaCO_3$ , is shown in the following table:

| Pounds<br>NaOH/cu.ft. | Capacity<br>Kilograins/cu.ft. |
|-----------------------|-------------------------------|
| 5                     | 20.0                          |
| 7.5                   | 25.4                          |
| 10                    | 29.0                          |
| 15                    | 33.0                          |

### Potassium Chloride (KCI) Regeneration

The potassium cycle operating capacity of *ResinTech CGS* for hardness removal at various regeneration levels with an influent calcium/magnesium ratio of 2/1 and a hardness level of 500 ppm, as  $CaCO_3$ , is shown in the following table:

### SUGGESTED OPERATING CONDITIONS

| Maximum Temperature      |
|--------------------------|
| Sodium Form              |
| Minimum Bed Depth        |
| Backwash Rate            |
| Regenerant (NaCl or KCl) |
| Concentration            |
| Flow Rate                |
| Contact Time             |
| Level                    |
| Displacement Rate        |
| Volume                   |
| Fast Rinse Rate          |
| Volume                   |
| Service Flow Rate        |

250<sup>0</sup> F 24 inches 50 to 75% Bed Expansion

10 to 15 percent 0.5 to 1.5 gpm/cu.ft. > 20 minutes 4 to 15 pounds/cu.ft. Same as Regen Flow Rate 10 to 15 gallons/cu.ft. Same as Service Flow Rate 35 to 60 gallons/cu.ft. 2 to 10 gpm/cu.ft.

| Pounds<br>NaOH/cu.ft. | Capacity<br>Kilograins/cu.ft. |
|-----------------------|-------------------------------|
| 5                     | 16.6                          |
| 7.5                   | 21.8                          |
| 10                    | 26.6                          |
| 15                    | 31.2                          |

### **APPLICATIONS**

### Softening

*RESINTECH CGS* is ideally suited for industrial, commercial, or residential softening applications where free chlorine is not present because of its high capacity, uniform particle size and good physical stability.

\*CAUTION:DO NOT MIX ION EXCHANGE RESIN WITH STRONG OXIDIZING AGENTS. Nitric acid and other strong oxidizing agents can cause explosive reactions when mixed with organic materials, such as ion exchange resins.

Material Safety Data Sheets (MSDS) are available for all ResinTech Inc.products. To obtain a copy, contact your local ResinTech sales representative or our corporate headquarters. They contain important health and safety information. That information may be needed to protect your employees and customers from any known health and safety hazards associated with our products. We recommend that you secure and study the pertinent MSDS for our products and any other products being used These suggestions and data are based on information we believe to be reliable. They are offered in good faith. However we do not make any guarantee or warranty. We caution against using these products in an unsafe manner or in violation of any patents; further we assume no liability for the consequences of any such actions.

**RESINTECH** is a registered trademark <sup>®</sup> of RESINTECH INC





### ANION EXCHANGE RESIN TYPE ONE GEL CI OR OH FORM

**RESINTECH SBG1** is a high capacity, shock resistant, gelular, Type 1, strongly basic anion exchange resin supplied in the chloride or hydroxide form as moist, tough, uniform, spherical beads. *RESINTECH SBG1* is intended for use in all types of deionization systems and chemical processing applications. It is similar to *RESINTECH SBG1P* but has a higher volumetric capacity and exhibits lower TOC leach rates. This makes it the better performer in single use applications such as in cartridge deionization and when high levels of regeneration are used such as in polishing mixed beds. On the other hand, *RESINTECH SBG1P* is more resistant to organic fouling and gives higher operating capacities at low regeneration levels such as those used in make up demineralizers.

### **FEATURES & BENEFITS**

• **COMPLIES WITH FDA REGULATIONS FOR POTABLE WATER APPLICATIONS.** Conforms to paragraph 21CFR173.125 of the Food Additives Regulations of the F.D.A.\*

### HIGH TOTAL CAPACITY

Provides longer run lengths in single use applications or where high levels of regeneration are used such as in mixed bed polishers, cartridge demineralizers.

### UNIFORM PARTICLE SIZE

16 to plus 50 mesh range; gives a LOWER PRESSURE DROP while maintaining SUPERIOR KINETICS.

SUPERIOR PHYSICAL STABILITY

### LOWER TOC LEACH RATE

Makes it ideal for polishing mixed beds in wafer washing and other high purity water polishing applications.

\*For potable water applications, the resin must be properly pre-treated, usually by multiple exhaustion and regeneration cycles, to ensure compliance with extractable levels.

# HYDRAULIC PROPERTIES



### PRESSURE DROP

The graph above shows the expected pressure loss per foot of bed depth as a function of flow rate, at various temperatures.



### BACKWASH

After each cycle the resin bed should be backwashed at a rate that expands the bed 50 to 75 percent. This will remove any foreign matter and reclassify the bed. The graph above shows the expansion characteristics of *ResinTech SBG1* in the sodium form.

# **RESINTECH® SBG1**

### **PHYSICAL PROPERTIES**

**Polymer Structure Functional Group** Ionic Form, as shipped Physical Form Screen Size Distribution +16 mesh (U.S. Std) -50 mesh (U.S. Std) pH Range Sphericity **Uniformity Coefficient** Water Retention Chloride Form Hydroxide Form Solubility Approximate Shipping Weight CI Form **OH Form** Swelling CI- to OH-**Total Capacity** CI Form OH Form

Styrene Crosslinked with DVB R-N-(CH<sub>3</sub>)<sub>3</sub>+CI-Chloride or Hydroxide Tough, Spherical Beads 16 to 50 < 5 percent < 1 percent 0 to14 > 93 percent Approx. 1.6 43 to 50 percent Approx. 53 to 60 percent Insoluble 44 lbs/cu.ft. 41 lbs/cu.ft 18 to 25 percent

1.45 meq/ml min 1.15 meq/ml min

### SUGGESTED OPERATING CONDITIONS

| Maximum Continuous Temperature |                                |
|--------------------------------|--------------------------------|
| Hydroxide Form                 | 140°F                          |
| alt Form                       | 170°F                          |
| Minimum Bed Depth              | 24 inches                      |
| Backwash Rate                  | 50 to 75 percent Bed Expansion |
| Regenerant Concentration*      | 2 to 6 percent                 |
| Regenerant Flow Rate           | 0.25 to 1.0 gpm/cu.ft.         |
| Regenerant Contact Time        | At least 40 Minutes            |
| Regenerant Level               | 4 to 10 pounds/cu.ft.          |
| Displacement Rinse Rate        | Same as Regenerant Flow Rate   |
| Displacement Rinse Volume      | 10 to 15 gals/cu.ft.           |
| Fast Rinse Rate                | Same as Service Flow Rate      |
| Fast Rinse Volume              | 35 to 60 gals/cu.ft.           |
| Service Flow Rates             |                                |
| Polishing Mixed Beds           | 3 to 15 gpm/cu.ft.             |
| Non-Polishing Apps.            | 2 to 4 gpm/cu.ft.              |

### **OPERATING CAPACITY**

The operating capacity of *RESINTECH SBG1* for a variety of acids at various regeneration levels when treating an influent with a concentration 500 ppm, expressed as  $CaCO_3$  is shown in the following table:

| Pounds               | Capacity Kilograms per cubic foot |           |            |           |
|----------------------|-----------------------------------|-----------|------------|-----------|
| NaOH/ft <sup>3</sup> | HCI                               | $H_2SO_4$ | $H_2SiO_3$ | $H_2CO_3$ |
| 4                    | 11.3                              | 14.0      | 14.7       | 18.6      |
| 6                    | 12.8                              | 16.3      | 17.3       | 19.8      |
| 8                    | 14.3                              | 13.3      | 19.5       | 21.6      |
| 10                   | 15.5                              | 20.0      | 22.2       | 22.2      |

### **APPLICATIONS**

**DEMINERALIZATION** – *RESINTECH SBG1* is highly recommended for use in mixed bed demineralizers, wherever complete ion removal; superior physical and osmotic stability and low TOC leachables are required such as in wafer fabrication and other ultrapure applications.

*RESINTECH SBG1* has high total capacity and low swelling on regeneration and provides maximum operating capacity in cartridge deionization applications. It is ideal for single use applications such as precious metal recovery, radwaste disposal and purification of toxic waste streams.

Highly crosslinked Type 1, styrenic anion exchangers have greater thermal and oxidation resistance than other types of strong base resins. They can be operated and regenerated at higher temperatures. The combination of lower porosity, high total capacity and Type 1 functionality make *RESINTECH SBG1* the resin of choice when water temperatures exceed  $85^{O}F$  and where the combination of carbon dioxide, borate and silica exceed 40% of the total anions.

*RESINTECH SBG1P* and *RESINTECH SBG1* are quite similar; the difference between them is the degree of porosity. *RESINTECH SBG1P* has greater porosity that gives it faster kinetics, and greater ability to reversibly sorb slow moving ions such as Naturally occurring Organic Matter (NOM). At lower regeneration levels and where chlorides make up a substantial portion of the anion load, or where the removal and elution of naturally occurring organics is of concern *RESINTECH SBG1P*, SBACR or SBG2 should be considered. At the higher regeneration levels used in mixed bed polishers *RESINTECH SBG1* provides higher capacity, and the lowest possible TOC leach rates.

\*CAUTION:DO NOT MIX ION EXCHANGE RESIN WITH STRONG OXIDIZING AGENTS. Nitric acid and other strong oxidizing agents can cause explosive reactions when mixed with organic materials, such as ion exchange resins.

Material Safety Data Sheets (MSDS) are available for all ResinTech Inc.products. To obtain a copy,contact your local ResinTech sales representative or our corporate headquarters. They contain important health and safety information. That information may be needed to protect your employees and customers from any known health and safety hazards associated with our products. We recommend that you secure and study the pertinent MSDS for our products and any other products being used These suggestions and data are based on information we believe to be reliable. They are offered in good faith. However we do not make any guarantee or warranty. We caution against using these products in an unsafe manner or in violation of any patents; further we assume no liability for the consequences of any such actions.

**RESINTECH** is a registered trademark <sup>®</sup> of RESINTECH INC



# Safety Data Sheet Product Names: SBG1, SBG1-HP, SBG1-UPS, SBG1-C, SBG1-F, SBMP1, SBMP1-UPS, GP-SBA, SBG1P, SBG1P-UPS

(Type I Strong Base Anion Exchange Resin Chloride Form) Effective date 31 March 2015

| Se | Section 1: Identification |                                                                                                     |  |
|----|---------------------------|-----------------------------------------------------------------------------------------------------|--|
| 1a | Product Names             | ResinTech SBG1, SBG1-HP, SBG1-UPS, SBG1-C,<br>SBG1-F, SBMP1, SBMP1-UPS, GP-SBA, SBG1P,<br>SBG1P-UPS |  |
| 1b | Common Name               | Type I Strong base anion resin in the chloride form.                                                |  |
| 1c | Intended use              | All general purpose anion exchanges for general use including salt form and demineralization.       |  |
| 1d | Manufacturer<br>Address   | ResinTech, Inc.<br>160 Cooper Road,<br>West Berlin, NJ 08091 USA                                    |  |
|    | Phone<br>Email            | 856-768-9600<br>ixresin@resintech.com                                                               |  |

### **Section 2: Hazard Identification**

2a Hazard classification

### Not hazardous or dangerous

| Product Hazard Rating | Scale          |
|-----------------------|----------------|
| Health = 0            | 0 = Negligible |
| Fire = 1              | 1 = Slight     |
| Reactivity = 0        | 2 = Moderate   |
| Special – N/A         | 3 = High       |
|                       | 4 = Extreme    |

White, yellow, or orange colored solid beads 2b Product description approximately 0.6 mm diameter with little or no odor. Safety glasses and gloves recommended. 2c Precautions for use Slipping hazard if spilled. Will cause eye irritation. 2c Potential health effects Will cause skin skin irritation. Ingestion is not likely to pose a health risk. **Environmental effects** 2d This product may alter the pH of any water that contacts it.

Section 2A: Hazard classification UN OSHA globally harmonized system



# WARNING

(contains ion exchange resin)

H320: Causes eye irritation

### **Precautionary Statements**

P264: Wash hands thoroughly after handling.
P280: Wear protective gloves/protective clothing/eye protection/face protection
P305+351+338: IF IN EYES: Rinse cautiously with water for several minutes. Remove contact lenses if present and easy to do – continue rinsing.
P333+313: If skin irritation or a rash occurs: Get medical advice/attention.
P337+313: If eye irritation persists get medical advice/attention.
P403+233: Store in a well-ventilated place. Keep container tightly closed.
P411: Store at temperatures not exceeding 50 °C/ 122 °F.

Please refer to the safety data sheet for additional information regarding this product

ResinTech, Inc. 160 Cooper Road West Berlin, NJ 08091-9234 856 768-9600 Ixresin@resintech.com

# Section 3: Composition/ Information on Ingredients

| 3a | Chemical name                                                                                                                       | Trimethylamine functionalized chloromethylated copolymer of polystyrene in the chloride form.                                                  |
|----|-------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------|
| 3b | Ingredients<br>Trimethylamine functionalized<br>Chloromethlyated copolymer of<br>Styrene and divinylbenzene in the<br>Chloride form | CAS# 60177-39-1 (35 - 65%)                                                                                                                     |
|    | Water                                                                                                                               | CAS# 7732-18-5 (35 – 65%)                                                                                                                      |
| Se | ection 4: First Aid Measures                                                                                                        |                                                                                                                                                |
| 4a | Inhalation                                                                                                                          | No adverse effects expected- normal use of product does not produce odors or vapors.                                                           |
| 4b | Skin                                                                                                                                | Wash with soap and water- seek medical attention if a rash develops.                                                                           |
| 4c | Eye contact                                                                                                                         | Wash immediately with water-seek attention if discomfort continues.                                                                            |
| 4d | Ingestion                                                                                                                           | No adverse effects expected for small amounts, larger<br>amounts can cause stomach irritation. Seek medical<br>attention if discomfort occurs. |
| Se | ection 5: Fire Fighting Measures                                                                                                    |                                                                                                                                                |
| 5a | Flammability                                                                                                                        | NEPA Fire rating = $1$                                                                                                                         |

|    | 1 ion main and may       |                                                                                                                                                 |
|----|--------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------|
| 5b | Extinguishing media      | Water, CO2, foam, dry powder.                                                                                                                   |
| 5c | Fire fighting Procedures | Follow general fire fighting procedures indicated in the work place. Seek medical attention if discomfort continues.                            |
| 5d | Protective Equipment     | MSHA/NIOSH approved self-contained breathing gear, full protective clothing.                                                                    |
| 5e | Combustion Products      | Carbon oxides and other toxic gasses and vapors.                                                                                                |
| 5f | Unusual Hazards          | Product is not combustible until moisture is removed.<br>Resin begins to burn at approximately 230° C. Auto<br>ignition can occur above 500° C. |

# Section 6: Accidental Release Measures

| 6a | Personal Precautions           | Keep people away, spilled resin can be a slipping hazard, wear gloves and safety glasses to minimize skin or eye contact.                                                                                                                                                                                                    |
|----|--------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 6b | Incompatible Chemicals         | Strong oxidants can create risk of combustion products similar to burning, exposure to strong bases can cause a rapid temperature increase.                                                                                                                                                                                  |
| 6c | Environmental Precautions      | Keep out of public sewers and waterways.                                                                                                                                                                                                                                                                                     |
| 6d | Containment Materials          | Use plastic or paper containers, unlined metal containers not recommended.                                                                                                                                                                                                                                                   |
| 6e | Methods of Clean-up            | Sweep up material and transfer to containers.                                                                                                                                                                                                                                                                                |
| Se | ection 7: Handling and Storage |                                                                                                                                                                                                                                                                                                                              |
| 7a | Handling                       | Avoid prolonged skin contact. Keep resin moist and avoid allowing resin to completely dry.                                                                                                                                                                                                                                   |
| 7b | Storage                        | Store in a cool dry place (0° to 45° C) in the original shipping container. This product is thermally sensitive and will have reduced shelf life if subjected to extended periods of time at temperatures exceeding 50° C. Although freezing does not usually damage ion exchange resins, avoid repeated freeze thaw cycles. |
| 7c | TSCA considerations            | Ion exchange resins should be listed on the TSCA<br>Inventory in compliance with State and Federal<br>Regulations.                                                                                                                                                                                                           |

# Section 8: Exposure Controls/Personal Protection

| 8a | OSHA exposure limits                                                                          | None noted.                                                                                                                              |
|----|-----------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------|
| 8b | Engineering Controls                                                                          | Provide adequate ventilation.                                                                                                            |
| 8c | Personal Protection Measures<br>Eye Protection<br>Respiratory Protection<br>Protective Gloves | Safety glasses or goggles.<br>Not required for normal use.<br>Not required for limited exposure but recommended<br>for extended contact. |

# **Section 9: Physical and Chemical Properties**

| Appearance                              | Amber, yellow, or red beads approx. 0.6 mm diameter. |
|-----------------------------------------|------------------------------------------------------|
| Flammability or explosive limits        | Flammable above 500° C                               |
| Odor                                    | Little or no odor                                    |
| Physical State                          | Solid                                                |
| Vapor pressure                          | Not available                                        |
| Odor threshold                          | Not available                                        |
| Vapor density                           | Not available                                        |
| рН                                      | Near neutral (6 to 8 typical)                        |
| Relative density                        | Approx 710 grams/Liter                               |
| Melting point/freezing point            | Does not melt, freezes at approx. 0 C                |
| Solubility                              | Insoluble in water and most solvents                 |
| Boiling point                           | Does not boil                                        |
| Flash point                             | Approx 500° C                                        |
| Evaporation rate                        | Does not evaporate                                   |
| Partition Coefficient (n-octonol/water) | Not applicable                                       |
| Auto-ignition temperature               | Approx 500° C                                        |
| Decomposition temperature               | Above 230° C                                         |
| Viscosity                               | Not applicable                                       |
|                                         |                                                      |

# Section 10: Stability and Reactivity

| 10a | Stability                | Stable under normal conditions.                                                                                                                       |
|-----|--------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------|
| 10b | Conditions to Avoid      | Heat, exposure to strong oxidants.                                                                                                                    |
| 10c | Hazardous by-products    | Trimethylamine, charred polystyrene, aromatic acids<br>and hydrocarbons, organic amines, nitrogen oxides,<br>carbon oxides, chlorinated hydrocarbons. |
| 10d | Incompatible materials   | Strong oxidizing agents, e.g. nitric acid (such as $HNO_3$ )                                                                                          |
| 10e | Hazardous Polymerization | Does not occur                                                                                                                                        |

# Section 11: Toxicological Information

| 11a | Likely Routes of Exposure                                       | Oral, skin or eye contact.                                                                                                                                                                                    |
|-----|-----------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 11b | Effects of exposure<br>Delayed<br>Immediate (acute)<br>Chronic  | None known.<br>None known.<br>None known.                                                                                                                                                                     |
| 11c | Toxicity Measures<br>Skin Adsorption<br>Ingestion<br>Inhalation | Unlikely, some transfer of acidity is possible.<br>Oral toxicity believed to be low but no LD50 has<br>been established.<br>Unknown, vapors are very unlikely due to physical<br>properties (insoluble solid) |
| 11d | Toxicity Symptoms<br>Skin Adsorption<br>Ingestion<br>Inhalation | Mild Rash.<br>Indigestion or general malaise.<br>Unknown.                                                                                                                                                     |
| 11e | Carcinogenicity                                                 | None known                                                                                                                                                                                                    |
| See | ction 12: Ecological information                                |                                                                                                                                                                                                               |
| 12a | Eco toxicity                                                    | Not acutely harmful to plant or animal life.                                                                                                                                                                  |
| 12b | Mobility                                                        | Insoluble, acidity or causticity may escape if wet.                                                                                                                                                           |
| 12c | Biodegradability                                                | Not biodegradable.                                                                                                                                                                                            |
| 12d | Bioaccumulation                                                 | Insignificant.                                                                                                                                                                                                |
| 12e | Other adverse effects                                           | Not Harmful to the environment.                                                                                                                                                                               |
| Sec | ction 13: Disposal Considerations                               |                                                                                                                                                                                                               |
| 13a | General considerations                                          | Material is non-hazardous. However, unused material can cause a pH change when wetted.                                                                                                                        |
| 13b | Disposal Containers                                             | Most plastic and paper containers are suitable. Avoid use of unlined metal containers.                                                                                                                        |
| 13c | Disposal methods                                                | No specific method necessary.                                                                                                                                                                                 |

13d Sewage Disposal

Not recommended.

**APPENDIX E** 

**Endangered Species Act Assessment** 

# IPaC resource list

This report is an automatically generated list of species and other resources such as critical habitat (collectively referred to as *trust resources*) under the U.S. Fish and Wildlife Service's (USFWS) jurisdiction that are known or expected to be on or near the project area referenced below. The list may also include trust resources that occur outside of the project area, but that could potentially be directly or indirectly affected by activities in the project area. However, determining the likelihood and extent of effects a project may have on trust resources typically requires gathering additional site-specific (e.g., vegetation/species surveys) and project-specific (e.g., magnitude and timing of proposed activities) information.

Below is a summary of the project information you provided and contact information for the USFWS office(s) with jurisdiction in the defined project area. Please read the introduction to each section that follows (Endangered Species, Migratory Birds, USFWS Facilities, and NWI Wetlands) for additional information applicable to the trust resources addressed in that section.

# <image>

# Local office

New England Ecological Services Field Office

(603) 223-2541
(603) 223-0104

70 Commercial Street, Suite 300 Concord, NH 03301-5094

http://www.fws.gov/newengland
# Endangered species

# This resource list is for informational purposes only and does not constitute an analysis of project level impacts.

The primary information used to generate this list is the known or expected range of each species. Additional areas of influence (AOI) for species are also considered. An AOI includes areas outside of the species range if the species could be indirectly affected by activities in that area (e.g., placing a dam upstream of a fish population even if that fish does not occur at the dam site, may indirectly impact the species by reducing or eliminating water flow downstream). Because species can move, and site conditions can change, the species on this list are not guaranteed to be found on or near the project area. To fully determine any potential effects to species, additional site-specific and project-specific information is often required.

Section 7 of the Endangered Species Act **requires** Federal agencies to "request of the Secretary information whether any species which is listed or proposed to be listed may be present in the area of such proposed action" for any project that is conducted, permitted, funded, or licensed by any Federal agency. A letter from the local office and a species list which fulfills this requirement can **only** be obtained by requesting an official species list from either the Regulatory Review section in IPaC (see directions below) or from the local field office directly.

For project evaluations that require USFWS concurrence/review, please return to the IPaC website and request an official species list by doing the following:

- 1. Draw the project location and click CONTINUE.
- 2. Click DEFINE PROJECT.
- 3. Log in (if directed to do so).
- 4. Provide a name and description for your project.
- 5. Click REQUEST SPECIES LIST.

Listed species<sup>1</sup> and their critical habitats are managed by the <u>Ecological Services Program</u> of the U.S. Fish and Wildlife Service (USFWS) and the fisheries division of the National Oceanic and Atmospheric Administration (NOAA Fisheries<sup>2</sup>).

Species and critical habitats under the sole responsibility of NOAA Fisheries are **not** shown on this list. Please contact <u>NOAA Fisheries</u> for <u>species under their jurisdiction</u>.

- 1. Species listed under the <u>Endangered Species Act</u> are threatened or endangered; IPaC also shows species that are candidates, or proposed, for listing. See the <u>listing status page</u> for more information. IPaC only shows species that are regulated by USFWS (see FAQ).
- 2. <u>NOAA Fisheries</u>, also known as the National Marine Fisheries Service (NMFS), is an office of the National Oceanic and Atmospheric Administration within the Department of Commerce.

The following species are potentially affected by activities in this location:

## Insects

NAME

Monarch Butterfly Danaus plexippus Wherever found No critical habitat has been designated for this species. <u>https://ecos.fws.gov/ecp/species/9743</u>

## **Critical** habitats

Potential effects to critical habitat(s) in this location must be analyzed along with the endangered species themselves.

THERE ARE NO CRITICAL HABITATS AT THIS LOCATION.

# Migratory birds

Certain birds are protected under the Migratory Bird Treaty Act<sup>1</sup> and the Bald and Golden Eagle Protection Act<sup>2</sup>.

Any person or organization who plans or conducts activities that may result in impacts to migratory birds, eagles, and their habitats should follow appropriate regulations and consider implementing appropriate conservation measures, as described <u>below</u>.

- 1. The <u>Migratory Birds Treaty Act</u> of 1918.
- 2. The Bald and Golden Eagle Protection Act of 1940.

Additional information can be found using the following links:

- Birds of Conservation Concern <a href="http://www.fws.gov/birds/management/managed-species/birds-of-conservation-concern.php">http://www.fws.gov/birds/management/managed-species/birds-of-conservation-concern.php</a>
- Measures for avoiding and minimizing impacts to birds <u>http://www.fws.gov/birds/management/project-assessment-tools-and-guidance/</u> <u>conservation-measures.php</u>
- Nationwide conservation measures for birds <u>http://www.fws.gov/migratorybirds/pdf/management/nationwidestandardconservationmeasures.pdf</u>

The birds listed below are birds of particular concern either because they occur on the <u>USFWS Birds</u> <u>of Conservation Concern</u> (BCC) list or warrant special attention in your project location. To learn more about the levels of concern for birds on your list and how this list is generated, see the FAQ <u>below</u>. This is not a list of every bird you may find in this location, nor a guarantee that every bird on this list will be found in your project area. To see exact locations of where birders and the general public have sighted birds in and around your project area, visit the <u>E-bird data mapping tool</u> (Tip: enter your location, desired date range and a species on your list). For projects that occur off the Atlantic Coast, additional maps and models detailing the relative occurrence and abundance of bird species on your list are available. Links to additional information about Atlantic Coast birds, and other important information about your migratory bird list, including how to properly interpret and use your migratory bird report, can be found <u>below</u>.

For guidance on when to schedule activities or implement avoidance and minimization measures to reduce impacts to migratory birds on your list, click on the PROBABILITY OF PRESENCE SUMMARY at the top of your list to see when these birds are most likely to be present and breeding in your project area.

BREEDING SEASON (IF A

NAME

|                                                                                                                                                                                                                                                                                                              | BREEDING SEASON IS INDICATED<br>FOR A BIRD ON YOUR LIST, THE<br>BIRD MAY BREED IN YOUR<br>PROJECT AREA SOMETIME WITHIN<br>THE TIMEFRAME SPECIFIED,<br>WHICH IS A VERY LIBERAL<br>ESTIMATE OF THE DATES INSIDE<br>WHICH THE BIRD BREEDS<br>ACROSS ITS ENTIRE RANGE.<br>"BREEDS ELSEWHERE" INDICATES<br>THAT THE BIRD DOES NOT LIKELY<br>BREED IN YOUR PROJECT AREA.) |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Bald Eagle Haliaeetus leucocephalus<br>This is not a Bird of Conservation Concern (BCC) in this area, but<br>warrants attention because of the Eagle Act or for potential<br>susceptibilities in offshore areas from certain types of development<br>or activities.<br>https://ecos.fws.gov/ecp/species/1626 | Breeds Oct 15 to Aug 31                                                                                                                                                                                                                                                                                                                                             |
| Black-billed Cuckoo Coccyzus erythropthalmus<br>This is a Bird of Conservation Concern (BCC) throughout its range in<br>the continental USA and Alaska.<br><u>https://ecos.fws.gov/ecp/species/9399</u>                                                                                                      | Breeds May 15 to Oct 10                                                                                                                                                                                                                                                                                                                                             |
| Blue-winged Warbler Vermivora pinus<br>This is a Bird of Conservation Concern (BCC) only in particular Bird<br>Conservation Regions (BCRs) in the continental USA                                                                                                                                            | Breeds May 1 to Jun 30                                                                                                                                                                                                                                                                                                                                              |
| <b>Bobolink</b> Dolichonyx oryzivorus<br>This is a Bird of Conservation Concern (BCC) throughout its range in<br>the continental USA and Alaska.                                                                                                                                                             | Breeds May 20 to Jul 31                                                                                                                                                                                                                                                                                                                                             |
| <b>Canada Warbler</b> Cardellina canadensis<br>This is a Bird of Conservation Concern (BCC) throughout its range in<br>the continental USA and Alaska.                                                                                                                                                       | Breeds May 20 to Aug 10                                                                                                                                                                                                                                                                                                                                             |
| Cerulean Warbler Dendroica cerulea<br>This is a Bird of Conservation Concern (BCC) throughout its range in<br>the continental USA and Alaska.<br>https://ecos.fws.gov/ecp/species/2974                                                                                                                       | Breeds Apr 29 to Jul 20                                                                                                                                                                                                                                                                                                                                             |

| Kentucky Warbler Oporornis formosus<br>This is a Bird of Conservation Concern (BCC) throughout its range in<br>the continental USA and Alaska.                                               | Breeds Apr 20 to Aug 20 |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------|
| Lesser Yellowlegs Tringa flavipes<br>This is a Bird of Conservation Concern (BCC) throughout its range in<br>the continental USA and Alaska.<br><u>https://ecos.fws.gov/ecp/species/9679</u> | Breeds elsewhere        |
| <b>Prairie Warbler</b> Dendroica discolor<br>This is a Bird of Conservation Concern (BCC) throughout its range in<br>the continental USA and Alaska.                                         | Breeds May 1 to Jul 31  |
| <b>Prothonotary Warbler</b> Protonotaria citrea<br>This is a Bird of Conservation Concern (BCC) throughout its range in<br>the continental USA and Alaska.                                   | Breeds Apr 1 to Jul 31  |
| Red-headed Woodpecker Melanerpes erythrocephalus<br>This is a Bird of Conservation Concern (BCC) throughout its range in<br>the continental USA and Alaska.                                  | Breeds May 10 to Sep 10 |
| Rusty Blackbird Euphagus carolinus<br>This is a Bird of Conservation Concern (BCC) only in particular Bird<br>Conservation Regions (BCRs) in the continental USA                             | Breeds elsewhere        |
| Wood Thrush Hylocichla mustelina<br>This is a Bird of Conservation Concern (BCC) throughout its range in<br>the continental USA and Alaska.                                                  | Breeds May 10 to Aug 31 |

# Probability of Presence Summary

The graphs below provide our best understanding of when birds of concern are most likely to be present in your project area. This information can be used to tailor and schedule your project activities to avoid or minimize impacts to birds. Please make sure you read and understand the FAQ "Proper Interpretation and Use of Your Migratory Bird Report" before using or attempting to interpret this report.

#### Probability of Presence (

Each green bar represents the bird's relative probability of presence in the 10km grid cell(s) your project overlaps during a particular week of the year. (A year is represented as 12 4-week months.) A taller bar indicates a higher probability of species presence. The survey effort (see below) can be used to establish a level of confidence in the presence score. One can have higher confidence in the presence score if the corresponding survey effort is also high.

How is the probability of presence score calculated? The calculation is done in three steps:

- 1. The probability of presence for each week is calculated as the number of survey events in the week where the species was detected divided by the total number of survey events for that week. For example, if in week 12 there were 20 survey events and the Spotted Towhee was found in 5 of them, the probability of presence of the Spotted Towhee in week 12 is 0.25.
- 2. To properly present the pattern of presence across the year, the relative probability of presence is calculated. This is the probability of presence divided by the maximum probability of presence across all weeks. For example, imagine the probability of presence in week 20 for the Spotted Towhee is 0.05, and that the probability of presence at week 12 (0.25) is the maximum of any week of the year. The relative probability of presence on week 12 is 0.25/0.25 = 1; at week 20 it is 0.05/0.25 = 0.2.
- 3. The relative probability of presence calculated in the previous step undergoes a statistical conversion so that all possible values fall between 0 and 10, inclusive. This is the probability of presence score.

To see a bar's probability of presence score, simply hover your mouse cursor over the bar.

#### Breeding Season (=)

Yellow bars denote a very liberal estimate of the time-frame inside which the bird breeds across its entire range. If there are no yellow bars shown for a bird, it does not breed in your project area.

#### Survey Effort ()

Vertical black lines superimposed on probability of presence bars indicate the number of surveys performed for that species in the 10km grid cell(s) your project area overlaps. The number of surveys is expressed as a range, for example, 33 to 64 surveys.

To see a bar's survey effort range, simply hover your mouse cursor over the bar.

#### No Data (–)

A week is marked as having no data if there were no survey events for that week.

#### Survey Timeframe

Surveys from only the last 10 years are used in order to ensure delivery of currently relevant information. The exception to this is areas off the Atlantic coast, where bird returns are based on all years of available data, since data in these areas is currently much more sparse.

| NV                                                     |      |      |              | 🔳 proba | bility of                                                                    | presence      | e 📒 bre | eding se     | ason | survey e              | effort -     | - no data |
|--------------------------------------------------------|------|------|--------------|---------|------------------------------------------------------------------------------|---------------|---------|--------------|------|-----------------------|--------------|-----------|
| SPECIES                                                | JAN  | FEB  | MAR          | APR     | MAY                                                                          | JUN           | JUL     | AUG          | SEP  | OCT                   | NOV          | DEC       |
| Bald Eagle<br>Non-BCC<br>Vulnerable (This is           | ŧŧŧŧ | 1111 | <b>ŧ</b> ŧŧł | ╋╋╂╂    | <del></del><br>+<br>+<br>+<br>+<br>+<br>+<br>+<br>+<br>+<br>+<br>+<br>+<br>+ | ŧ <u></u> †∔∔ | ŦŦŦŦ    | <b>+</b> +++ | ++++ | + <b>{</b> ∔ <b>}</b> | <b>∔</b> ≢‡} | ┼┿┿╪      |
| Conservation<br>Concern (BCC) in                       |      |      |              |         |                                                                              |               |         |              |      |                       |              |           |
| this area, but<br>warrants attention<br>because of the |      |      |              |         |                                                                              |               |         |              |      |                       |              |           |
| Eagle Act or for potential                             |      |      |              |         |                                                                              |               |         |              |      |                       |              |           |
| susceptibilities in<br>offshore areas                  |      |      |              |         |                                                                              |               |         |              |      |                       |              |           |
| of development or<br>activities.)                      |      |      |              |         |                                                                              |               |         |              |      |                       |              |           |
|                                                        |      |      |              |         |                                                                              |               |         |              |      |                       |              |           |

| Black-billed<br>Cuckoo<br>BCC Rangewide<br>(CON) (This is a<br>Bird of<br>Conservation<br>Concern (BCC)<br>throughout its<br>range in the<br>continental USA<br>and Alaska.)          | ++++ ++++ | ++++ +++  | +++++              | +++             | ŧŧŧŧ ŧŧŧŧ               | <mark>╫╫</mark> ┼┼ ┼┼┼┼ | ++++   |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------|-----------|--------------------|-----------------|-------------------------|-------------------------|--------|
| Blue-winged<br>Warbler<br>BCC - BCR (This is a<br>Bird of<br>Conservation<br>Concern (BCC) only<br>in particular Bird<br>Conservation<br>Regions (BCRs) in<br>the continental<br>USA) | ++++ ++++ | ++++ +++# | <b>***</b>         | <b>₩₩₩</b>      | ++++ ++++               |                         | ,<br>М |
| Bobolink<br>BCC Rangewide<br>(CON) (This is a<br>Bird of<br>Conservation<br>Concern (BCC)<br>throughout its<br>range in the<br>continental USA<br>and Alaska.)                        | ++++ ++++ | ++++ ++++ | $\frac{1111}{200}$ | NS              | <del>1+1+</del> ++++    | <b>**†</b> † ++++       | ++++   |
| Canada Warbler<br>BCC Rangewide<br>(CON) (This is a<br>Bird of<br>Conservation<br>Concern (BCC)<br>throughout its<br>range in the<br>continental USA<br>and Alaska.)                  |           | ***       | ┿╪ <u>╫╫</u><br>╫  | +++ ++++        | <mark>┼┼</mark> ┼╪╶╪╪┼┼ | ++++ ++++               | ++++   |
| Cerulean Warbler<br>BCC Rangewide<br>(CON) (This is a<br>Bird of<br>Conservation<br>Concern (BCC)<br>throughout its<br>range in the<br>continental USA<br>and Alaska.)                | ++++ ++++ | ++++ +++  | ₩<br>₩<br>₩        | <b>┼┼┼</b> ┼┼┼┼ | ++++ +++                | ++++ ++++               | ++++   |

| Kentucky Warbler<br>BCC Rangewide<br>(CON) (This is a<br>Bird of<br>Conservation<br>Concern (BCC)<br>throughout its<br>range in the<br>continental USA<br>and Alaska.)         | ++++ -       | ++++               | ++++ | ┼┼╂╂ | <b>₩</b> ₩₩ | <u>+</u> +++ | ++++    | <b>+++</b> + | ++++             | ++++  | ++++ | ++++                 |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------|--------------------|------|------|-------------|--------------|---------|--------------|------------------|-------|------|----------------------|
| Lesser Yellowlegs<br>BCC Rangewide<br>(CON) (This is a<br>Bird of<br>Conservation<br>Concern (BCC)<br>throughout its<br>range in the<br>continental USA<br>and Alaska.)        | ++++ -       | ++++               | ++++ | ++++ | +++++       | ++++         | +++#    | +#+#         | ++++             | +++++ | ++++ | нн<br>Н              |
| Prairie Warbler<br>BCC Rangewide<br>(CON) (This is a<br>Bird of<br>Conservation<br>Concern (BCC)<br>throughout its<br>range in the<br>continental USA<br>and Alaska.)          | ++++ -       | ++++               | ++++ | +++# | ••••        | 1111<br>N    | ""<br>S | ++++<br>\\   | ++++             | 4.I.Y | ++++ | ++++                 |
| Prothonotary<br>Warbler<br>BCC Rangewide<br>(CON) (This is a<br>Bird of<br>Conservation<br>Concern (BCC)<br>throughout its<br>range in the<br>continental USA<br>and Alaska.)  | +++++<br>< < | ++++<br><- C       | ×    | HN   | ₩.          | ++++         | ++++    | ++++         | ++++             | ++++  | ++++ | ++++                 |
| Red-headed<br>Woodpecker<br>BCC Rangewide<br>(CON) (This is a<br>Bird of<br>Conservation<br>Concern (BCC)<br>throughout its<br>range in the<br>continental USA<br>and Alaska.) | ***          | ₩ <del>1</del> +++ | ++++ | ++++ | ┼╫╫         | ++++         | ŦŦŦŦ    | ++++         | <del> </del>  ++ | ++++  | ++++ | <b>+</b> ∔ <b>##</b> |

| Rusty Blackbird<br>BCC - BCR (This is a | ++++ | ++++ | ┼┿┼┿ | ┼╪╪┼ | <b>●</b> ┼┼┼ | ++++ | ++++    | ++++     | ++++ | ┿╪╪┼ | <b>##</b> + <b>#</b>                                     | ++++                                                                |
|-----------------------------------------|------|------|------|------|--------------|------|---------|----------|------|------|----------------------------------------------------------|---------------------------------------------------------------------|
| Bird of                                 |      |      |      |      |              |      |         |          |      |      |                                                          |                                                                     |
| Conservation                            |      |      |      |      |              |      |         |          |      |      |                                                          |                                                                     |
| Concern (BCC) only                      |      |      |      |      |              |      |         |          |      |      |                                                          |                                                                     |
| in particular Bird                      |      |      |      |      |              |      |         |          |      |      |                                                          |                                                                     |
| Conservation                            |      |      |      |      |              |      |         |          |      |      |                                                          |                                                                     |
| Regions (BCRs) in                       |      |      |      |      |              |      |         |          |      |      |                                                          |                                                                     |
| the continental                         |      |      |      |      |              |      |         |          |      |      |                                                          |                                                                     |
| USA)                                    |      |      |      |      |              |      |         |          |      |      |                                                          |                                                                     |
| SPECIES                                 | JAN  | FEB  | MAR  | APR  | MAY          | JUN  | JUL     | AUG      | SEP  | OCT  | NOV                                                      | DEC                                                                 |
| Wood Thrush                             |      |      |      |      |              |      |         | <b>1</b> | ⊥╈╈┼ |      | $\downarrow \downarrow \downarrow \downarrow \downarrow$ | $\downarrow \downarrow \downarrow \downarrow \downarrow \downarrow$ |
| BCC Rangewide                           |      |      |      |      | ╇╉╋╇         | 1111 | 1 1 1 1 | 1 1 1 1  | ITTI | ТІІІ |                                                          |                                                                     |
| (CON) (This is a                        |      |      |      |      |              |      |         |          |      |      |                                                          |                                                                     |
| Bird of                                 |      |      |      |      |              |      |         |          |      |      |                                                          |                                                                     |
| Conservation                            |      |      |      |      |              |      |         |          |      |      |                                                          |                                                                     |
| Concern (BCC)                           |      |      |      |      |              |      |         |          |      |      |                                                          | 10                                                                  |
| throughout its                          |      |      |      |      |              |      |         |          |      |      | ~                                                        | 1-1                                                                 |
| range in the                            |      |      |      |      |              |      |         |          |      |      |                                                          | 11                                                                  |
| continental USA                         |      |      |      |      |              |      |         |          |      | 1    | 11                                                       |                                                                     |
| and Alaska.)                            |      |      |      |      |              |      |         |          | 1    | 17   | 1-                                                       |                                                                     |

#### Tell me more about conservation measures I can implement to avoid or minimize impacts to migratory birds.

<u>Nationwide Conservation Measures</u> describes measures that can help avoid and minimize impacts to all birds at any location year round. Implementation of these measures is particularly important when birds are most likely to occur in the project area. When birds may be breeding in the area, identifying the locations of any active nests and avoiding their destruction is a very helpful impact minimization measure. To see when birds are most likely to occur and be breeding in your project area, view the Probability of Presence Summary. <u>Additional measures</u> or <u>permits</u> may be advisable depending on the type of activity you are conducting and the type of infrastructure or bird species present on your project site.

#### What does IPaC use to generate the migratory birds potentially occurring in my specified location?

The Migratory Bird Resource List is comprised of USFWS <u>Birds of Conservation Concern (BCC)</u> and other species that may warrant special attention in your project location.

The migratory bird list generated for your project is derived from data provided by the <u>Avian Knowledge Network</u> (<u>AKN</u>). The AKN data is based on a growing collection of <u>survey</u>, <u>banding</u>, <u>and citizen science datasets</u> and is queried and filtered to return a list of those birds reported as occurring in the 10km grid cell(s) which your project intersects, and that have been identified as warranting special attention because they are a BCC species in that area, an eagle (<u>Eagle Act</u> requirements may apply), or a species that has a particular vulnerability to offshore activities or development.

Again, the Migratory Bird Resource list includes only a subset of birds that may occur in your project area. It is not representative of all birds that may occur in your project area. To get a list of all birds potentially present in your project area, please visit the <u>AKN Phenology Tool</u>.

## What does IPaC use to generate the probability of presence graphs for the migratory birds potentially occurring in my specified location?

The probability of presence graphs associated with your migratory bird list are based on data provided by the <u>Avian Knowledge Network (AKN)</u>. This data is derived from a growing collection of <u>survey</u>, <u>banding</u>, <u>and citizen</u> <u>science datasets</u>.

Probability of presence data is continuously being updated as new and better information becomes available. To learn more about how the probability of presence graphs are produced and how to interpret them, go the Probability of Presence Summary and then click on the "Tell me about these graphs" link.

#### How do I know if a bird is breeding, wintering, migrating or present year-round in my project area?

To see what part of a particular bird's range your project area falls within (i.e. breeding, wintering, migrating or year-round), you may refer to the following resources: <u>The Cornell Lab of Ornithology All About Birds Bird Guide</u>, or (if you are unsuccessful in locating the bird of interest there), the <u>Cornell Lab of Ornithology Neotropical Birds</u> <u>guide</u>. If a bird on your migratory bird species list has a breeding season associated with it, if that bird does occur in your project area, there may be nests present at some point within the timeframe specified. If "Breeds elsewhere" is indicated, then the bird likely does not breed in your project area.

#### What are the levels of concern for migratory birds?

Migratory birds delivered through IPaC fall into the following distinct categories of concern:

- 1. "BCC Rangewide" birds are <u>Birds of Conservation Concern</u> (BCC) that are of concern throughout their range anywhere within the USA (including Hawaii, the Pacific Islands, Puerto Rico, and the Virgin Islands);
- 2. "BCC BCR" birds are BCCs that are of concern only in particular Bird Conservation Regions (BCRs) in the continental USA; and
- 3. "Non-BCC Vulnerable" birds are not BCC species in your project area, but appear on your list either because of the <u>Eagle Act</u> requirements (for eagles) or (for non-eagles) potential susceptibilities in offshore areas from certain types of development or activities (e.g. offshore energy development or longline fishing).

Although it is important to try to avoid and minimize impacts to all birds, efforts should be made, in particular, to avoid and minimize impacts to the birds on this list, especially eagles and BCC species of rangewide concern. For more information on conservation measures you can implement to help avoid and minimize migratory bird impacts and requirements for eagles, please see the FAQs for these topics.

#### Details about birds that are potentially affected by offshore projects

For additional details about the relative occurrence and abundance of both individual bird species and groups of bird species within your project area off the Atlantic Coast, please visit the <u>Northeast Ocean Data Portal</u>. The Portal also offers data and information about other taxa besides birds that may be helpful to you in your project review. Alternately, you may download the bird model results files underlying the portal maps through the <u>NOAA NCCOS</u> <u>Integrative Statistical Modeling and Predictive Mapping of Marine Bird Distributions and Abundance on the Atlantic Outer Continental Shelf</u> project webpage.

Bird tracking data can also provide additional details about occurrence and habitat use throughout the year, including migration. Models relying on survey data may not include this information. For additional information on marine bird tracking data, see the <u>Diving Bird Study</u> and the <u>nanotag studies</u> or contact <u>Caleb Spiegel</u> or <u>Pam</u> <u>Loring</u>.

#### What if I have eagles on my list?

If your project has the potential to disturb or kill eagles, you may need to <u>obtain a permit</u> to avoid violating the Eagle Act should such impacts occur.

#### Proper Interpretation and Use of Your Migratory Bird Report

The migratory bird list generated is not a list of all birds in your project area, only a subset of birds of priority concern. To learn more about how your list is generated, and see options for identifying what other birds may be in your project area, please see the FAQ "What does IPaC use to generate the migratory birds potentially occurring in my specified location". Please be aware this report provides the "probability of presence" of birds within the 10

km grid cell(s) that overlap your project; not your exact project footprint. On the graphs provided, please also look carefully at the survey effort (indicated by the black vertical bar) and for the existence of the "no data" indicator (a red horizontal bar). A high survey effort is the key component. If the survey effort is high, then the probability of presence score can be viewed as more dependable. In contrast, a low survey effort bar or no data bar means a lack of data and, therefore, a lack of certainty about presence of the species. This list is not perfect; it is simply a starting point for identifying what birds of concern have the potential to be in your project area, when they might be there, and if they might be breeding (which means nests might be present). The list helps you know what to look for to confirm presence, and helps guide you in knowing when to implement conservation measures to avoid or minimize potential impacts from your project activities, should presence be confirmed. To learn more about conservation measures I can implement to avoid or minimize impacts to migratory birds" at the bottom of your migratory bird trust resources page.

## Facilities

## National Wildlife Refuge lands

Any activity proposed on lands managed by the <u>National Wildlife Refuge</u> system must undergo a 'Compatibility Determination' conducted by the Refuge. Please contact the individual Refuges to discuss any questions or concerns.

THERE ARE NO REFUGE LANDS AT THIS LOCATION.

### **Fish hatcheries**

THERE ARE NO FISH HATCHERIES AT THIS LOCATION.

# Wetlands in the National Wetlands Inventory

Impacts to <u>NWI wetlands</u> and other aquatic habitats may be subject to regulation under Section 404 of the Clean Water Act, or other State/Federal statutes.

For more information please contact the Regulatory Program of the local <u>U.S. Army Corps of</u> <u>Engineers District</u>.

THERE ARE NO KNOWN WETLANDS AT THIS LOCATION.

#### Data limitations

The Service's objective of mapping wetlands and deepwater habitats is to produce reconnaissance level information on the location, type and size of these resources. The maps are prepared from the analysis of high altitude imagery. Wetlands are identified based on vegetation, visible hydrology and geography. A margin of error is inherent in the use of imagery; thus, detailed on-the-ground inspection of any particular site may result in revision of the wetland boundaries or classification established through image analysis.

The accuracy of image interpretation depends on the quality of the imagery, the experience of the image analysts, the amount and quality of the collateral data and the amount of ground truth verification work conducted. Metadata should be consulted to determine the date of the source imagery used and any mapping problems.

Wetlands or other mapped features may have changed since the date of the imagery or field work. There may be occasional differences in polygon boundaries or classifications between the information depicted on the map and the actual conditions on site.

#### Data exclusions

Certain wetland habitats are excluded from the National mapping program because of the limitations of aerial imagery as the primary data source used to detect wetlands. These habitats include seagrasses or submerged aquatic vegetation that are found in the intertidal and subtidal zones of estuaries and nearshore coastal waters. Some deepwater reef communities (coral or tuberficid worm reefs) have also been excluded from the inventory. These habitats, because of their depth, go undetected by aerial imagery.

#### Data precautions

Federal, state, and local regulatory agencies with jurisdiction over wetlands may define and describe wetlands in a different manner than that used in this inventory. There is no attempt, in either the design or products of this inventory, to define the limits of proprietary jurisdiction of any Federal, state, or local government or to establish the geographical scope of the regulatory programs of government agencies. Persons intending to engage in activities involving modifications within or adjacent to wetland areas should seek the advice of appropriate federal, state, or local agencies concerning specified agency regulatory programs and proprietary jurisdictions that may affect such activities.

TEORCO



## FEDERALLY LISTED ENDANGERED AND THREATENED SPECIES IN MASSACHUSETTS

| COUNTY     | SPECIES                            | FEDERAL<br>STATUS                | GENERAL LOCATION/HABITAT                                               | TOWNS                                          |  |
|------------|------------------------------------|----------------------------------|------------------------------------------------------------------------|------------------------------------------------|--|
|            | Piping Plover                      | Threatened                       | Coastal Beaches                                                        | All Towns                                      |  |
|            | Roseate Tern                       | Endangered                       | Coastal beaches and the Atlantic Ocean                                 | All Towns                                      |  |
|            | Northeastern beach<br>tiger beetle | Threatened                       | Coastal Beaches                                                        | Chatham                                        |  |
| Barnstable | Sandplain gerardia                 | Endangered                       | Open areas with sandy soils.                                           | Sandwich and Falmouth.                         |  |
|            | Northern Red-<br>bellied Cooter    | Endangered                       | Inland Ponds and Rivers                                                | Bourne (north of the Cape Cod Canal)           |  |
|            | Red Knot <sup>1</sup>              | Threatened                       | Coastal Beaches and Rocky Shores, sand<br>and mud flats                | Coastal Towns                                  |  |
|            | Northern Long-<br>eared Bat        | Threatened<br>Final 4(d)<br>Rule | Winter- mines and caves, Summer – wide<br>variety of forested habitats | Statewide                                      |  |
|            | Bog Turtle                         | Threatened                       | Wetlands                                                               | Egremont and Sheffield                         |  |
| Berkshire  | Northern Long-<br>eared Bat        | Threatened<br>Final 4(d)<br>Rule | Winter- mines and caves, Summer – wide<br>variety of forested habitats | Statewide                                      |  |
|            | Piping Plover                      | Threatened                       | Coastal Beaches                                                        | Fairhaven, Dartmouth, Westport                 |  |
|            | Roseate Tern                       | Endangered                       | Coastal beaches and the Atlantic Ocean                                 | Fairhaven, New Bedford, Dartmouth,<br>Westport |  |
| Bristol    | Northern Red-<br>bellied Cooter    | Endangered                       | Inland Ponds and Rivers                                                | Taunton                                        |  |
|            | Red Knot <sup>1</sup>              | Threatened                       | Coastal Beaches and Rocky Shores, sand<br>and mud flats                | Coastal Towns                                  |  |
|            | Northern Long-<br>eared Bat        | Threatened<br>Final 4(d)<br>Rule | Winter- mines and caves, Summer – wide<br>variety of forested habitats | Statewide                                      |  |
|            | Roseate Tern                       | Endangered                       | Coastal beaches and the Atlantic Ocean                                 | All Towns                                      |  |
|            | Piping Plover                      | Threatened                       | Coastal Beaches                                                        | All Towns                                      |  |
|            | Northeastern beach<br>tiger beetle | Threatened                       | Coastal Beaches                                                        | Aquinnah and Chilmark                          |  |
| Dukes      | Sandplain gerardia                 | Endangered                       | Open areas with sandy soils.                                           | West Tisbury                                   |  |
|            | Red Knot <sup>1</sup>              | Threatened                       | Coastal Beaches and Rocky Shores, sand<br>and mud flats                | Coastal Towns                                  |  |
|            | Northern Long-<br>eared Bat        | Threatened<br>Final 4(d)<br>Rule | Winter- mines and caves, Summer – wide<br>variety of forested habitats | Statewide                                      |  |

#### FEDERALLY LISTED ENDANGERED AND THREATENED SPECIES IN MASSACHUSETTS

| COUNTY    | SPECIES                     | FEDERAL<br>STATUS                | GENERAL LOCATION/HABITAT                                                        | TOWNS                                                                                |
|-----------|-----------------------------|----------------------------------|---------------------------------------------------------------------------------|--------------------------------------------------------------------------------------|
|           | Small whorled<br>Pogonia    | Threatened                       | Forests with somewhat poorly drained soils and/or a seasonally high water table | Gloucester, Essex and Manchester                                                     |
| Essex     | Piping Plover               | Threatened                       | Coastal Beaches                                                                 | Gloucester, Essex, Ipswich, Rowley,<br>Revere, Newbury, Newburyport and<br>Salisbury |
|           | Red Knot <sup>1</sup>       | Threatened                       | Coastal Beaches and Rocky Shores, sand<br>and mud flats                         | Coastal Towns                                                                        |
|           | Northern Long-<br>eared Bat | Threatened<br>Final 4(d)<br>Rule | Winter- mines and caves, Summer – wide variety of forested habitats             | Statewide                                                                            |
|           | Northeastern<br>bulrush     | Endangered                       | Wetlands                                                                        | Montague, Warwick                                                                    |
| Franklin  | Dwarf<br>wedgemussel        | Endangered                       | Mill River                                                                      | Whately                                                                              |
|           | Northern Long-<br>eared Bat | Threatened<br>Final 4(d)<br>Rule | Winter- mines and caves, Summer – wide<br>variety of forested habitats          | Statewide                                                                            |
|           | Small whorled<br>Pogonia    | Threatened                       | Forests with somewhat poorly drained soils and/or a seasonally high water table | Hadley                                                                               |
| Hampshire | Puritan tiger beetle        | Threatened                       | Sandy beaches along the Connecticut<br>River                                    | Northampton and Hadley                                                               |
|           | Dwarf<br>wedgemussel        | Endangered                       | Rivers and Streams.                                                             | Hatfield, Amherst and Northampton                                                    |
|           | Northern Long-<br>eared Bat | Threatened<br>Final 4(d)<br>Rule | Winter- mines and caves, Summer – wide<br>variety of forested habitats          | Statewide                                                                            |
|           | Small whorled<br>Pogonia    | Threatened                       | Forests with somewhat poorly drained soils and/or a seasonally high water table | Southwick                                                                            |
| Hampden   | Northern Long-<br>eared Bat | Threatened<br>Final 4(d)<br>Rule | Winter- mines and caves, Summer – wide<br>variety of forested habitats          | Statewide                                                                            |
|           | Small whorled<br>Pogonia    | Threatened                       | Forests with somewhat poorly drained soils and/or a seasonally high water table | Groton                                                                               |
| Middlesex | Northern Long-<br>eared Bat | Threatened<br>Final 4(d)<br>Rule | Winter- mines and caves, Summer – wide<br>variety of forested habitats          | Statewide                                                                            |
|           | Piping Plover               | Threatened                       | Coastal Beaches                                                                 | Nantucket                                                                            |
|           | Roseate Tern                | Endangered                       | Coastal beaches and the Atlantic Ocean                                          | Nantucket                                                                            |
| Nantucket | American burying beetle     | Endangered                       | Upland grassy meadows                                                           | Nantucket                                                                            |
|           | Red Knot <sup>1</sup>       | Threatened                       | Coastal Beaches and Rocky Shores, sand<br>and mud flats                         | Coastal Towns                                                                        |
|           | Northern Long-<br>eared Bat | Threatened<br>Final 4(d)<br>Rule | Winter- mines and caves, Summer – wide variety of forested habitats             | Statewide                                                                            |

#### FEDERALLY LISTED ENDANGERED AND THREATENED SPECIES IN MASSACHUSETTS

| COUNTY    | SPECIES                         | FEDERAL<br>STATUS                | GENERAL LOCATION/HABITAT                                                        | TOWNS                                                                                   |  |
|-----------|---------------------------------|----------------------------------|---------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------|--|
|           | Piping Plover                   | Threatened                       | Coastal Beaches                                                                 | Scituate, Marshfield, Duxbury, Plymouth,<br>Wareham and Mattapoisett                    |  |
|           | Northern Red-<br>bellied Cooter | Endangered                       | Inland Ponds and Rivers                                                         | Kingston, Middleborough, Carver,<br>Plymouth, Bourne, Wareham, Halifax,<br>and Pembroke |  |
| Plymouth  | Roseate Tern                    | Endangered                       | Coastal beaches and the Atlantic Ocean                                          | Plymouth, Marion, Wareham, and<br>Mattapoisett.                                         |  |
|           | Red Knot <sup>1</sup>           | Threatened                       | Coastal Beaches and Rocky Shores, sand<br>and mud flats                         | Coastal Towns                                                                           |  |
|           | Northern Long-<br>eared Bat     | Threatened<br>Final 4(d)<br>Rule | Winter- mines and caves, Summer – wide<br>variety of forested habitats          | Statewide                                                                               |  |
|           | Piping Plover                   | Threatened                       | Coastal Beaches                                                                 | Revere, Winthrop                                                                        |  |
| Suffolk   | Red Knot <sup>1</sup>           | Threatened                       | Coastal Beaches and Rocky Shores, sand<br>and mud flats                         | Coastal Towns                                                                           |  |
|           | Northern Long-<br>eared Bat     | Threatened<br>Final 4(d)<br>Rule | Winter- mines and caves, Summer – wide<br>variety of forested habitats          | Statewide                                                                               |  |
|           | Small whorled<br>Pogonia        | Threatened                       | Forests with somewhat poorly drained soils and/or a seasonally high water table | Leominster                                                                              |  |
| Worcester | Northern Long-<br>eared Bat     | Threatened<br>Final 4(d)<br>Rule | Winter- mines and caves, Summer – wide<br>variety of forested habitats          | Statewide                                                                               |  |

<sup>1</sup>Migratory only, scattered along the coast in small numbers

-Eastern cougar and gray wolf are considered extirpated in Massachusetts.

-Endangered gray wolves are not known to be present in Massachusetts, but dispersing individuals from source populations in Canada may occur statewide.

-Critical habitat for the Northern Red-bellied Cooter is present in Plymouth County.



**APPENDIX F** 

National Historic Preservation Act Review

## National Register of Historic Places

National Park Service U.S. Department of the Interior

Public, non-restricted data depicting National Register spatial data processed by the Cultural Resources GIS facility. ...



Home (https://www.nps.gov) Frequently Asked Questions (https://www.nps.gov/faqs.htm) Website Policies (https://www.nps.gov/aboutus/website-policies.htm)

# Massachusetts Cultural Resource Information System

#### **MACRIS Search Results**

Search Criteria: Town(s): Boston; Place: Allston; Resource Type(s): Area, Building, Burial Ground, Object, Structure;

| BOS.CA     Charles River Basin Historic District     Boston       BOS.JL     Harvard Business School     Boston       BOS.JM     Saint Anthony's Area     Boston       BOS.KM     Harvard Avenue Historic District     Boston       BOS.KN     Harvard Avenue Historic District     Boston       BOS.KN     Adamson Street, 1-87     Boston       BOS.KQ     Aldie Street, 1-75     Boston       BOS.KX     Ashford Street, 5-69     Boston       BOS.LB     Franklin Street, 5-1168     Boston       BOS.LC     Gardner Street, 4-93     Boston       BOS.LQ     Raymond Street, 1-98     Boston       BOS.LQ     Kanthony of Padua Roman Catholic Church     Boston       Complex     Boston     Seston                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Inv. No. | Property Name                                                    | Street           | Town   | Year   |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------|------------------------------------------------------------------|------------------|--------|--------|
| BOS.JL     Harvard Business School     Boston       BOS.M     Sait Anthony's Area     Boston       BOS.KM     Harvard Avenue Historic District     Boston       BOS.KN     Adamson Street, 1-87     Boston       BOS.KN     Adamson Street, 1-87     Boston       BOS.KN     Aldie Street, 1-75     Boston       BOS.KN     Aldrie Street, 5-69     Boston       BOS.LC     Gardner Street, 5-1168     Boston       BOS.LC     Gardner Street, 5-90     Boston       BOS.LC     Gardner Street, 5-168     Boston       BOS.LC     Gardner Street, 5-168     Boston       BOS.LC     Gardner Street, 5-90     Boston       BOS.LC     Gardner Street, 5-90     Boston       BOS.LC     Gardner Street, 5-168     Boston       BOS.LC     Gardner Street, 5-90     Boston       BOS.LC     Marond Street, 1-98     Boston       BOS.LC     Marond Street, 5-90     Boston       BOS.LQ     Namond Street, 1-98     Boston       BOS.LQ     Namond Street, 1-98     Boston       BOS.LY     Charles River Reservation Speedway - Upper Sasin Headquarters     Boston                                                                                                                                                                                                                                                                                                                                                                                                                                                          | BOS.CA   | Charles River Basin Historic District                            |                  | Boston |        |
| BOS.JM   Saint Anthony's Area   Boston     BOS.M   Hano Street Area   Boston     BOS.K   Harvard Avenue Historic District   Boston     BOS.K   Adamson Street, 1-87   Boston     BOS.K2   Alcie Street, 1-75   Boston     BOS.K3   Ashford Street, 5-69   Boston     BOS.K4   Ashford Street, 5-69   Boston     BOS.K5   Franklin Street, 5-168   Boston     BOS.L6   Gardner Street, 4-98   Boston     BOS.L7   Holton Street, 7-60 and Everett Street, 205   Boston     BOS.L7   Holton Street, 1-98   Boston     BOS.L9   Algomond Street, 1-98   Boston     BOS.L9   Algomond Street, 1-98   Boston     BOS.L0   Nation Congregational Church   Boston     BOS.L0   Vestord Street, 3-10   Boston     BOS.L0   Nation Congregational Church   Boston     BOS.V1   Charles River Reservation Speedway - Upper Somplace   Boston     BOS.A0   Charles River Reservation Speedway - Upper Somplace   Boston     BOS.A02   Charles River Reservation Speedway - Upper Somplace   Boston     BOS.A03   Lemanianal Harvester New England Branch   Boston     BOS.A07   Lemanianal Harvester New England Branch   Boston <                                                                                                                                                                                                                                                                                                                                                                                                    | BOS.JL   | Harvard Business School                                          |                  | Boston |        |
| BOS.KM     Hano Street Area     Boston       BOS.KN     Havard Avenue Historic District     Boston       BOS.KN     Havard Avenue Historic District     Boston       BOS.KN     Adamson Street, 1-87     Boston       BOS.KN     Addie Street, 1-75     Boston       BOS.KN     Ahol Street, 5-69     Boston       BOS.LR     Fanklin Street, 5-1168     Boston       BOS.LD     Fanklin Street, 5-1168     Boston       BOS.LQ     Fanklin Street, 7-60 and Evenett Street, 205     Boston       BOS.LQ     Raymond Street, 1-98     Boston       BOS.LQ     Naymond Street, 3-10     Boston       BOS.LQ     Nation Congregational Church     Boston       BOS.VL     Malson Congregational Church     Boston       BOS.VL     Nation Congregational Church     Boston       BOS.VL     Charles River Reservation Parkways     Boston       BOS.VL     Charles River Reservation Speedway - Upper Servert     Boston       BOS.AQ     Charles River Reservation Speedway - Upper Servert     Boston       BOS.AQ     International Harvester New England Branch     Boston       BOS.A07     Interaciquarters     Boston                                                                                                                                                                                                                                                                                                                                                                                                 | BOS.JM   | Saint Anthony's Area                                             |                  | Boston |        |
| BOS.KN   Harvard Avenue Historic District   Boston     BOS.KP   Adamson Street, 1-87   Boston     BOS.KO   Aldre Street, 1-75   Boston     BOS.KX   Ashford Street, 5-69   Boston     BOS.LS   Franklin Street, 5-1168   Boston     BOS.LC   Gardner Street, 4-38   Boston     BOS.LC   Gardner Street, 4-98   Boston     BOS.LC   Holton Street, 1-98   Boston     BOS.LQ   Raymond Street, 1-98   Boston     BOS.LQ   Raymond Street, 3-10   Boston     BOS.LQ   Raymond Street, 3-10   Boston     BOS.LQ   Raymond Street, 3-10   Boston     BOS.LQ   Strent Street Stree | BOS.KM   | Hano Street Area                                                 |                  | Boston |        |
| BOS.KP     Adamson Street, 1-87     Boston       BOS.KQ     Aldie Street, 1-75     Boston       BOS.KS     Ashford Street, 5-69     Boston       BOS.KS     Ashford Street, 5-69     Boston       BOS.KS     Frankin Street, 5-1168     Boston       BOS.LC     Gardner Street, 4-98     Boston       BOS.LQ     Holton Street, 7-60 and Everett Street, 205     Boston       BOS.LQ     Raymond Street, 1-98     Boston       BOS.LQ     Westford Street, 3-10     Boston       BOS.LQ     Raymond Street, 1-98     Boston       BOS.LQ     Allson Congregational Church     Boston       BOS.VL     St. Anthony of Padua Roman Catholic Church     Boston       BOS.ZQ     Charles River Reservation Speedway - Upper     Boston       BOS.AC     Charles River Reservation Speedway - Upper     Boston       BOS.ADJ     International                                                                                                                                                                                                                                                                                                                                                                                                                             | BOS.KN   | Harvard Avenue Historic District                                 |                  | Boston |        |
| BOS.KQ     Aldie Street, 1-75     Boston       BOS.KS     Ashford Street, 5-69     Boston       BOS.LT     Athol Street, 7-11     Boston       BOS.LS     Fanklin Street, 51-168     Boston       BOS.LG     Gardner Street, 4-98     Boston       BOS.LG     Kardnor Street, 1-96     Boston       BOS.LQ     Raymod Street, 1-98     Boston       BOS.LQ     Vestford Street, 3-10     Boston       BOS.VL     Vestford Street, 3-10     Boston       BOS.VL     Stanthony of Padua Roman Catholic Church     Boston       BOS.VL     Charles River Reservation Parkways     Boston       BOS.VL     Charles River Reservation Parkways     Boston       BOS.ADJ     International Harvester New England Branch Headquarters     Boston       BOS.ADJ     International Harvester New England Branch Headquarters     Boston       BOS.ADJ     International Harvester New England Branch Headquarters     Boston     c 1846       BOS.8078     Fanctional Harvester New England Branch Headquarters     Boston     c 1846       BOS.8074     Fantional Harvester New England Branch 12-14 Adamson St     Boston     c 1846       BOS.8074     Fantional Harves                                                                                                                                                                                                                                                                                                                                                          | BOS.KP   | Adamson Street, 1-87                                             |                  | Boston |        |
| BOS.KS     Ashford Street, 5-69     Boston       BOS.KT     Athol Street, 4-71     Boston       BOS.LS     Franklin Street, 51-168     Boston       BOS.LC     Gardner Street, 4-98     Boston       BOS.LC     Hoton Street, 7-60 and Everett Street, 205     Boston       BOS.LQ     Raymond Street, 1-98     Boston       BOS.LQ     Nestford Street, 3-10     Boston       BOS.VH     Athon Congregational Church     Boston       BOS.VH     St. Anthony of Padua Roman Catholic Church     Boston       BOS.VH     Charles River Reservation Parkways     Boston       BOS.AC     Charles River Reservation Speedway - Upper     Boston       BOS.AC     Charles River Reservation Speedway - Upper     Boston       BOS.ADJ     International Harvester New England Branch     Boston       BOS.8073     International Harvester New England Branch     Boston     c 1846       BOS.8074     International Harvester New England Branch     Boston     c 1846       BOS.8075     International Harvester New England Branch     Boston     c 1846       BOS.8076     International Harvester New England Branch     Boston     c 1846       BOS.8071                                                                                                                                                                                                                                                                                                                                                                | BOS.KQ   | Aldie Street, 1-75                                               |                  | Boston |        |
| BOS.KT     Athol Street, 4-71     Boston       BOS.LB     Franklin Street, 51-168     Boston       BOS.LC     Gardner Street, 4-98     Boston       BOS.LF     Holton Street, 7-60 and Everett Street, 205     Boston       BOS.LQ     Raymond Street, 1-98     Boston       BOS.LQ     Westford Street, 3-10     Boston       BOS.LQ     Malton Congregational Church     Boston       BOS.VL     Allston Congregational Church     Boston       BOS.VL     Schnthony of Padua Roman Catholic Church     Boston       BOS.VL     Charles River Reservation Parkways     Boston       BOS.AC     Charles River Reservation Speedway - Upper     Boston       BOS.AAC     Charles River Reservation Speedway - Upper     Boston       BOS.ADJ     International Harvester New England Branch     Boston       BOS.8073     Leadquarters     Boston     c 1846       BOS.8074     Soston     C 1846     c 1846       BOS.8075     Leadquarters     Boston     c 1846       BOS.8074     Leadquarters     Boston     c 1846       BOS.8074     Soston     c 1846     c 1846       BOS.8075     <                                                                                                                                                                                                                                                                                                                                                                                                                              | BOS.KS   | Ashford Street, 5-69                                             |                  | Boston |        |
| BOS.LB     Franklin Street, 51-168     Boston       BOS.LC     Gardner Street, 4-98     Boston       BOS.LF     Holton Street, 7-60 and Everett Street, 205     Boston       BOS.LQ     Raymond Street, 1-98     Boston       BOS.LQ     Kaymond Street, 3-10     Boston       BOS.VLM     Mestford Street, 3-10     Boston       BOS.VLM     St. Anthony of Padua Roman Catholic Church     Boston       BOS.YK     Charles River Reservation Parkways     Boston       BOS.ZQ     Charles River Reservation Speedway - Upper Sasin Headquarters     Boston       BOS.AAC     Charles River Reservation Speedway - Upper Sasin Headquarters     Boston       BOS.AADJ     International Harvester New England Branch Headquarters     Boston       BOS.8074     Lemantional Harvester New England Branch Headquarters     Boston     c 1846       BOS.8075     Lemantional Harvester New England Branch 12-14 Adamson St     Boston     c 1846       BOS.8076     Lemantional Harvester New England Branch 12-14 Adamson St     Boston     c 1846       BOS.8075     Lemantional Harvester New England Branch 12-14 Adamson St     Boston     c 1846       BOS.8074     Lemantional Harvester New England Branch 12-14 Adamson St     Boston<                                                                                                                                                                                                                                                                             | BOS.KT   | Athol Street, 4-71                                               |                  | Boston |        |
| BOS.LC     Gardner Street, 4-98     Boston       BOS.LF     Holton Street, 7-60 and Everett Street, 205     Boston       BOS.LQ     Raymond Street, 1-98     Boston       BOS.LU     Westford Street, 3-10     Boston       BOS.SG     Allston Congregational Church     Boston       BOS.VH     St. Anthony of Padua Roman Catholic Church<br>Complex     Boston       BOS.YK     Charles River Reservation Parkways     Boston       BOS.ZQ     Charles River Reservation Speedway - Upper<br>Basin Headquarters     Boston       BOS.AAC     Charles River Reservation Speedway - Upper<br>Basin Headquarters     Boston       BOS.AAC     Charles River Reservation Speedway - Upper<br>Basin Headquarters     Boston       BOS.AAC     Charles River Reservation Speedway - Upper<br>Basin Headquarters     Boston       BOS.AAC     Charles River Reservation Speedway - Upper<br>Basin Headquarters     Boston       BOS.AAC     Charles River Reservation Speedway - Upper<br>Basin Headquarters     Boston       BOS.AAC     Charles River Reservation Speedway - Upper<br>Basin Headquarters     Boston       BOS.AAC     Charles River Reservation Speedway - Upper<br>Basin Headquarters     Boston     c 1846       BOS.8073     Iteratin Adamson St     Boston     c 1846                                                                                                                                                                                                                                    | BOS.LB   | Franklin Street, 51-168                                          |                  | Boston |        |
| BOS.LF     Holton Street, 7-60 and Everett Street, 205     Boston       BOS.LQ     Raymond Street, 1-98     Boston       BOS.LU     Westford Street, 3-10     Boston       BOS.SG     Allston Congregational Church     Boston       BOS.VH     St. Anthony of Padua Roman Catholic Church Complex     Boston       BOS.YK     Charles River Reservation Parkways     Boston       BOS.XQ     Charles River Reservation Speedway - Upper Basin Headquarters     Boston       BOS.AAC     Charles River Reservation Speedway - Upper Basin Headquarters     Boston       BOS.ADJ     International Harvester New England Branch Headquarters     Boston       BOS.8073     Soston     C 1846       BOS.8074     Foston     C 1846       BOS.8075     Foston     Soston     c 1846       BOS.8076     T_2 Adamson St     Boston     c 1846                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | BOS.LC   | Gardner Street, 4-98                                             |                  | Boston |        |
| BOS.LQ     Raymond Street, 1-98     Boston       BOS.LU     Westford Street, 3-10     Boston       BOS.SG     Allston Congregational Church     Boston       BOS.VH     St. Anthony of Padua Roman Catholic Church<br>Complex     Boston       BOS.YK     Charles River Reservation Parkways     Boston       BOS.ZQ     Charles River Reservation Speedway - Upper<br>Basin Headquarters     Boston       BOS.AAC     Charles River Reservation Speedway - Upper<br>Basin Headquarters     Boston       BOS.ADJ     International Harvester New England Branch<br>Headquarters     Boston       BOS.8073     International Harvester New England Branch<br>Headquarters     Boston       BOS.8074     International Harvester New England Branch<br>Headquarters     Boston       BOS.8075     International Harvester New England Branch<br>Headquarters     Boston     c 1846       BOS.8074     International Harvester New England Branch<br>Headquarters     Boston     c 1846       BOS.8075     International Harvester New England Branch<br>Headquarters     Boston     c 1846       BOS.8075     International Harvester New England Branch<br>Headquarters     Boston     c 1846       BOS.8075     International Harvester New England Branch<br>Headquarters     Boston     c 1846 <tr< td=""><td>BOS.LF</td><td>Holton Street, 7-60 and Everett Street, 205</td><td></td><td>Boston</td><td></td></tr<>                                                                                                     | BOS.LF   | Holton Street, 7-60 and Everett Street, 205                      |                  | Boston |        |
| BOS.LU     Westford Street, 3-10     Boston       BOS.SG     Allston Congregational Church     Boston       BOS.VH     St. Anthony of Padua Roman Catholic Church Complex     Boston       BOS.YK     Charles River Reservation Parkways     Boston       BOS.ZQ     Charles River Reservation Speedway - Upper Basin Headquarters     Boston       BOS.AAC     Charles River Reservation Speedway - Upper Basin Headquarters     Boston       BOS.ADJ     International Harvester New England Branch Headquarters     Boston       BOS.8073     International Harvester New England Branch Headquarters     Boston       BOS.8074     Ston     C 1846       BOS.8075     International Harvester New England Branch Headquarters     Boston     C 1846       BOS.8074     International Harvester New England Branch Headquarters     Boston     C 1846       BOS.8075     International Harvester New England Branch Headquarters     Boston     C 1846       BOS.8075     International Harvester New England Branch Headquarters     Boston     C 1846       BOS.8075     International Harvester New England Branch Headquarters     Boston     C 1846       BOS.8075     International Harvester New England Branch Headquarters     Boston     C 1846                                                                                                                                                                                                                                                               | BOS.LQ   | Raymond Street, 1-98                                             |                  | Boston |        |
| BOS.SG     Allston Congregational Church     Boston       BOS.VH     St. Anthony of Padua Roman Catholic Church     Boston       BOS.YK     Charles River Reservation Parkways     Boston       BOS.ZQ     Charles River Reservation Speedway - Upper<br>Basin Headquarters     Boston       BOS.AAC     Charles River Reservation Speedway - Upper<br>Basin Headquarters     Boston       BOS.AAC     Charles River Reservation Speedway - Upper<br>Basin Headquarters     Boston       BOS.AAC     International Harvester New England Branch<br>Headquarters     Boston       BOS.8073     8-10 Adamson St     Boston       BOS.8074     5.10 Adamson St     Boston       BOS.8075     16-18 Adamson St     Boston       BOS.8075     72 Adamson St     Boston                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | BOS.LU   | Westford Street, 3-10                                            |                  | Boston |        |
| BOS.VH     St. Anthony of Padua Roman Catholic Church<br>Complex     Boston       BOS.YK     Charles River Reservation Parkways     Boston       BOS.ZQ     Charles River Reservation Speedway - Upper<br>Basin Headquarters     Boston       BOS.AAC     Charles River Reservation Speedway - Upper<br>Basin Headquarters     Boston       BOS.AAC     Charles River Reservation Speedway - Upper<br>Basin Headquarters     Boston       BOS.AAC     International Harvester New England Branch<br>Headquarters     Boston       BOS.8073     \$10 Adamson St     Boston       BOS.8074     \$20 Ston     \$214 Adamson St       BOS.8075     \$610 Adamson St     Boston     \$1846       BOS.8075     \$610 Adamson St     Boston     \$1846       BOS.8075     \$2 Adamson St     Boston     \$1846       BOS.8075     \$2 Adamson St     Boston     \$1846       BOS.8072     \$2 Adamson St     Boston     \$1846                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | BOS.SG   | Allston Congregational Church                                    |                  | Boston |        |
| BOS.YKCharles River Reservation ParkwaysBostonBOS.ZQCharles River Reservation Speedway - Upper<br>Basin HeadquartersBostonBOS.AACCharles River Reservation Speedway - Upper<br>Basin HeadquartersBostonBOS.ADJInternational Harvester New England Branch<br>HeadquartersBostonBOS.8073\$-10 Adamson StBostonBOS.8074\$-12-14 Adamson StBostonBOS.8075\$-16-18 Adamson StBostonBOS.807272 Adamson StBoston                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | BOS.VH   | St. Anthony of Padua Roman Catholic Church<br>Complex            |                  | Boston |        |
| BOS.ZQCharles River Reservation Speedway - Upper<br>Basin HeadquartersBostonBOS.AACCharles River Reservation Speedway - Upper<br>Basin HeadquartersBostonBOS.ADJInternational Harvester New England Branch<br>HeadquartersBostonBOS.8073\$-10 Adamson StBostonBOS.8074\$-12.14 Adamson StBostonBOS.8075\$-16.18 Adamson StBostonBOS.8072\$-2 Adamson StBostonBOS.8073\$-2 Adamson StBostonBOS.8074\$-2 Adamson StBostonBOS.8075\$-2 Adamson StBostonBOS.8074\$-2 Adamson StBostonBOS.8075\$-2 Adamson StBostonBOS.8074\$-2 Adamson StBoston                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | BOS.YK   | Charles River Reservation Parkways                               |                  | Boston |        |
| BOS.AACCharles River Reservation Speedway - Upper<br>Basin HeadquartersBostonBOS.ADJInternational Harvester New England Branch<br>HeadquartersBostonBOS.8073\$-10 Adamson StBostonBOS.8074\$-12-14 Adamson StBostonBOS.8075\$-12-14 Adamson StBostonBOS.8075\$-16-18 Adamson StBostonBOS.8072\$-22 Adamson StBoston                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | BOS.ZQ   | Charles River Reservation Speedway - Upper<br>Basin Headquarters |                  | Boston |        |
| BOS.ADJInternational Harvester New England Branch<br>HeadquartersBostonBOS.80738-10 Adamson StBostonc 1846BOS.807412-14 Adamson StBostonc 1846BOS.807516-18 Adamson StBostonc 1846BOS.807272 Adamson StBostonc 1846                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | BOS.AAC  | Charles River Reservation Speedway - Upper<br>Basin Headquarters |                  | Boston |        |
| BOS.80738-10 Adamson StBostonc 1846BOS.807412-14 Adamson StBostonc 1846BOS.807516-18 Adamson StBostonc 1846BOS.807272 Adamson StBostonC 1846                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | BOS.ADJ  | International Harvester New England Branch<br>Headquarters       |                  | Boston |        |
| BOS.807412-14 Adamson StBostonc 1846BOS.807516-18 Adamson StBostonc 1846BOS.807272 Adamson StBostonC 1846                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | BOS.8073 |                                                                  | 8-10 Adamson St  | Boston | c 1846 |
| BOS.8075       16-18 Adamson St       Boston       c 1846         BOS.8072       72 Adamson St       Boston       c                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | BOS.8074 |                                                                  | 12-14 Adamson St | Boston | c 1846 |
| BOS.8072 72 Adamson St Boston                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | BOS.8075 |                                                                  | 16-18 Adamson St | Boston | c 1846 |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | BOS.8072 |                                                                  | 72 Adamson St    | Boston |        |

| Inv. No.  | Property Name                                        | Street               | Town   | Year   |
|-----------|------------------------------------------------------|----------------------|--------|--------|
| BOS.8079  | Rice, Jennie Double House                            | 22-24 Aldie St       | Boston | 1895   |
| BOS.8076  |                                                      | 42-44 Aldie St       | Boston | 1895   |
| BOS.8077  |                                                      | 50 Aldie St          | Boston | 1895   |
| BOS.8078  |                                                      | 62 Aldie St          | Boston | 1895   |
| BOS.8392  | Spinney, David F. Two-Family House                   | 73-75 Aldie St       | Boston | r 1895 |
| BOS.8085  |                                                      | 24 Ashford St        | Boston |        |
| BOS.8086  |                                                      | 26 Ashford St        | Boston |        |
| BOS.8087  |                                                      | 28 Ashford St        | Boston |        |
| BOS.8089  | Russell, Fred A. House                               | 44 Ashford St        | Boston | 1899   |
| BOS.8088  |                                                      | 53-55 Ashford St     | Boston | 1909   |
| BOS.8090  | Gage, Roscoe W. House                                | 65 Ashford St        | Boston | c 1892 |
| BOS.15429 | Electric Storage Battery Co Whitehall Co. Bldg       | 120 Ashford St       | Boston | 1925   |
| BOS.8093  | Cushing, S. B. Double House                          | 15-17 Athol St       | Boston | c 1875 |
| BOS.8091  |                                                      | 27 Athol St          | Boston |        |
| BOS.18662 | Gardner, Thomas Public School                        | 30 Athol St          | Boston | 1904   |
| BOS.8390  | Davenport, Samuel N. House                           | 33 Athol St          | Boston | c 1870 |
| BOS.8391  | Davenport, Samuel N. House                           | 35 Athol St          | Boston | c 1870 |
| BOS.8092  |                                                      | 46 Athol St          | Boston |        |
| BOS.8389  | Cose House                                           | 69-71 Athol St       | Boston | r 1895 |
| BOS.8393  | Davenport, John F. House                             | 70 Athol St          | Boston | c 1895 |
| BOS.9550  | Claflin, Sleeper and Rich Halls Courtyard            | 275 Babcock St       | Boston | r 1965 |
| BOS.15427 | Boston Buick Company Garage                          | 278 Babcock St       | Boston | 1919   |
| BOS.15428 | Pittsburgh Plate Glass Company Glass<br>Warehouse    | 300-316 Babcock St   | Boston | 1926   |
| BOS.8108  | Roddy Hall                                           | 60 Birmingham Pkwy   | Boston | 1898   |
| BOS.9333  | Anderson, Larz Bridge                                | Boylston St          | Boston | 1915   |
| BOS.9480  | Brighton Avenue Streetlamps                          | Brighton Ave         | Boston | r 1995 |
| BOS.13220 | Lincoln Block                                        | 101 Brighton Ave     | Boston | 1902   |
| BOS.13221 | Lincoln Block                                        | 103-109 Brighton Ave | Boston | 1902   |
| BOS.13222 | Lincoln Block                                        | 113 Brighton Ave     | Boston | 1902   |
| BOS.13224 | Allston Auto Exchange - Allston Auto Body<br>Repairs | 116-118 Brighton Ave | Boston | 1925   |
| BOS.13223 |                                                      | 117-125 Brighton Ave | Boston | 1914   |
| BOS.13225 | Allston Garage                                       | 122-124 Brighton Ave | Boston | c 1914 |
| BOS.13226 |                                                      | 127-129 Brighton Ave | Boston | 1915   |
| BOS.13227 |                                                      | 128 Brighton Ave     | Boston | r 1980 |
| BOS.8742  | Frost, E. Willard Commercial Block                   | 130-140 Brighton Ave | Boston | 1913   |
| BOS.13228 |                                                      | 131-137 Brighton Ave | Boston | 1915   |

| lnv. No.  | Property Name                                         | Street                     | Town   | Year   |
|-----------|-------------------------------------------------------|----------------------------|--------|--------|
| BOS.13229 |                                                       | 139-143 Brighton Ave       | Boston | c 1913 |
| BOS.8743  | Prindiville Building                                  | 143-155 Brighton Ave       | Boston | c 1913 |
| BOS.13230 | Parkvale Garage                                       | 154-162 Brighton Ave       | Boston | c 1920 |
| BOS.13231 |                                                       | 164-174 Brighton Ave       | Boston | c 1920 |
| BOS.9327  | B. U. Bridge - Cottage Farm Bridge                    | Brookline St               | Boston | 1927   |
| BOS.15426 | Noyes Buick Company Service Station                   | 25 Buick St                | Boston | 1928   |
| BOS.13213 |                                                       | Cambridge St               | Boston | r 1965 |
| BOS.8111  | Allen Building                                        | 334-354 Cambridge St       | Boston | 1895   |
| BOS.13211 |                                                       | 358-362 Cambridge St       | Boston | r 1950 |
| BOS.13212 |                                                       | 372 Cambridge St           | Boston | 1935   |
| BOS.8113  | Chester, W. R. Block                                  | 373-391 Cambridge St       | Boston | c 1876 |
| BOS.8744  |                                                       | 382-386 Cambridge St       | Boston | 1911   |
| BOS.8745  | English, John House                                   | 390 Cambridge St           | Boston | c 1870 |
| BOS.9332  | Weeks, John Wingate Foot Bridge                       | Charles River              | Boston | 1927   |
| BOS.8123  | Williams, Peter House                                 | 67 Chester St              | Boston | c 1896 |
| BOS.9549  | Boston University School of Law Courtyard             | 765 Commonwealth Ave       | Boston | r 1965 |
| BOS.15425 | Boston University School of Law                       | 765 Commonwealth Ave       | Boston | 1962   |
| BOS.15424 | Boston University Law Library                         | 767 Commonwealth Ave       | Boston | 1964   |
| BOS.9548  | Boston University - Mugar Library Courtyard           | 771 Commonwealth Ave       | Boston | r 1965 |
| BOS.15423 | Boston University - Mugar Memorial Library            | 771 Commonwealth Ave       | Boston | 1966   |
| BOS.15422 | Boston University - Sherman, George Student<br>Union  | 775 Commonwealth Ave       | Boston | 1963   |
| BOS.15421 | Shell Oil Company Building                            | 785 Commonwealth Ave       | Boston | 1931   |
| BOS.8069  | Noyes, H. K. Buick Company                            | 855-861 Commonwealth Ave   | Boston | 1920   |
| BOS.15420 | Rand-Avery Supply Company - Pinkham Press<br>Building | 871 Commonwealth Ave       | Boston | 1924   |
| BOS.15419 | Youth's Companion Printing Plant                      | 881 Commonwealth Ave       | Boston | 1915   |
| BOS.8068  | Commonwealth Armory                                   | 925 Commonwealth Ave       | Boston | 1914   |
| BOS.15418 | Holland System Motor Company Building                 | 949 Commonwealth Ave       | Boston | 1916   |
| BOS.15417 | New England Velie Auto Company Building               | 983-985 Commonwealth Ave   | Boston | 1919   |
| BOS.15416 | Ford Auto Showroom and Service Station                | 1019-1023 Commonwealth Ave | Boston | 1917   |
| BOS.15415 |                                                       | 1106-1110 Commonwealth Ave | Boston | 1915   |
| BOS.8143  |                                                       | 19 Everett St              | Boston | r 1840 |
| BOS.8234  |                                                       | 205 Everett St             | Boston |        |
| BOS.8385  | Wright, Jonathan B Hammond, Leander House             | 233-235 Everett St         | Boston | r 1830 |
| BOS.13214 |                                                       | 4-12 Farrington Ave        | Boston | 1912   |
| BOS.8746  | Longfellow Building                                   | 4-8 Franklin St            | Boston | c 1880 |
| BOS.8154  | Allston Hall Block                                    | 10-14 Franklin St          | Boston | 1890   |

| Inv. No.  | Property Name                                  | Street              | Town   | Year   |
|-----------|------------------------------------------------|---------------------|--------|--------|
| BOS.8112  | Allston Depot                                  | 15 Franklin St      | Boston | 1887   |
| BOS.8159  |                                                | 69 Franklin St      | Boston |        |
| BOS.8160  | Hill, George A. Row House                      | 73 Franklin St      | Boston | 1887   |
| BOS.8155  |                                                | 74-76 Franklin St   | Boston |        |
| BOS.8161  | Hill, George A. Row House                      | 75 Franklin St      | Boston | 1887   |
| BOS.8162  | Hill, George A. Row House                      | 77 Franklin St      | Boston | 1887   |
| BOS.8163  | Hill, George A. Row House                      | 79 Franklin St      | Boston | 1887   |
| BOS.8164  | Hill, George A. Row House                      | 81 Franklin St      | Boston | 1887   |
| BOS.8156  | Tucker, Moses D. Worker Housing                | 122 Franklin St     | Boston |        |
| BOS.8157  | Tucker, Moses D. Worker Housing                | 124 Franklin St     | Boston |        |
| BOS.8158  | Tucker, Moses D. Worker Housing                | 126 Franklin St     | Boston |        |
| BOS.8165  | Tucker, Moses D. House                         | 134 Franklin St     | Boston | c 1875 |
| BOS.8166  | Mead, John H. Row House                        | 150-152 Franklin St | Boston | 1889   |
| BOS.8168  | Mead, John H. Row House                        | 154-156 Franklin St | Boston | 1889   |
| BOS.8170  | Mead, John H. Row House                        | 158-160 Franklin St | Boston | 1889   |
| BOS.8172  | Mead, John H. Row House                        | 162-164 Franklin St | Boston | 1889   |
| BOS.8174  | Mead, John H. Row House                        | 166-168 Franklin St | Boston | 1889   |
| BOS.8184  | Braves Baseball Field Office and Entrance Gate | 10-20 Gaffney St    | Boston | 1915   |
| BOS.8747  | Jenkins Apartment                              | 4-8 Gardner St      | Boston | 1912   |
| BOS.13215 |                                                | 9 Gardner St        | Boston | c 1913 |
| BOS.8180  | Whitney, Rev. Frederic Augustus House          | 12 Gardner St       | Boston | r 1850 |
| BOS.13216 |                                                | 15 Gardner St       | Boston | 1915   |
| BOS.8181  | Winter, Royal Double House                     | 38-40 Gardner St    | Boston | c 1881 |
| BOS.8178  |                                                | 41 Gardner St       | Boston |        |
| BOS.8179  |                                                | 53 Gardner St       | Boston |        |
| BOS.8176  |                                                | 65 Gardner St       | Boston |        |
| BOS.8177  |                                                | 71 Gardner St       | Boston |        |
| BOS.8182  | Ivanhoe Court Apartments                       | 72 Gardner St       | Boston | 1905   |
| BOS.8183  | Norton, Charles W. House                       | 73 Gardner St       | Boston | c 1885 |
| BOS.13217 | Ideal Garage                                   | 6 Glenville Ter     | Boston | c 1914 |
| BOS.13218 | Edison Company Garage                          | 9 Glenville Ter     | Boston | c 1920 |
| BOS.13219 | Glenville Garage                               | 10 Glenville Ter    | Boston | c 1918 |
| BOS.8191  | Hano, Samuel Company Worker Housing            | 1-3 Hano St         | Boston | 1885   |
| BOS.8206  | Hano, Samuel Company Worker Housing            | 2-4 Hano St         | Boston | 1885   |
| BOS.8192  | Hano, Samuel Company Worker Housing            | 5-7 Hano St         | Boston | 1885   |
| BOS.8207  | Hano, Samuel Company Worker Housing            | 6-8 Hano St         | Boston | 1885   |
| BOS.8193  | Hano, Samuel Company Worker Housing            | 9-11 Hano St        | Boston | 1885   |
| BOS.8194  | Hano, Samuel Company Worker Housing            | 13-15 Hano St       | Boston | 1885   |
|           |                                                |                     | _      |        |

Page 4 of 9

| Inv. No.  | Property Name                       | Street               | Town   | Year   |
|-----------|-------------------------------------|----------------------|--------|--------|
| BOS.8208  | Hano, Samuel Company Worker Housing | 14-16 Hano St        | Boston | 1885   |
| BOS.8195  | Hano, Samuel Company Worker Housing | 17-19 Hano St        | Boston | 1885   |
| BOS.8209  | Hano, Samuel Company Worker Housing | 18-20 Hano St        | Boston | 1885   |
| BOS.8196  | Hano, Samuel Company Worker Housing | 21-23 Hano St        | Boston | 1885   |
| BOS.8210  | Hano, Samuel Company Worker Housing | 22-24 Hano St        | Boston | 1885   |
| BOS.8197  | Hano, Samuel Company Worker Housing | 25-27 Hano St        | Boston | 1885   |
| BOS.8211  | Hano, Samuel Company Worker Housing | 26-28 Hano St        | Boston | 1885   |
| BOS.8198  | Hano, Samuel Company Worker Housing | 29-31 Hano St        | Boston | 1885   |
| BOS.8212  | Hano, Samuel Company Worker Housing | 30-32 Hano St        | Boston | 1885   |
| BOS.8199  | Hano, Samuel Company Worker Housing | 33-35 Hano St        | Boston | 1885   |
| BOS.8213  | Hano, Samuel Company Worker Housing | 34-36 Hano St        | Boston | 1885   |
| BOS.8200  | Hano, Samuel Company Worker Housing | 37-39 Hano St        | Boston | 1885   |
| BOS.8214  | Hano, Samuel Company Worker Housing | 38-40 Hano St        | Boston | 1885   |
| BOS.8201  | Hano, Samuel Company Worker Housing | 41-43 Hano St        | Boston | 1885   |
| BOS.8215  | Hano, Samuel Company Worker Housing | 42-44 Hano St        | Boston | 1885   |
| BOS.8202  | Hano, Samuel Company Worker Housing | 45-47 Hano St        | Boston | 1885   |
| BOS.8216  | Hano, Samuel Company Worker Housing | 46-48 Hano St        | Boston | 1885   |
| BOS.8203  | Hano, Samuel Company Worker Housing | 49-51 Hano St        | Boston | 1885   |
| BOS.8217  | Hano, Samuel Company Worker Housing | 50-52 Hano St        | Boston | 1885   |
| BOS.8204  | Hano, Samuel Company Worker Housing | 53-55 Hano St        | Boston | 1885   |
| BOS.8218  | Hano, Samuel Company Worker Housing | 54-56 Hano St        | Boston | 1885   |
| BOS.8205  | Hano, Samuel Company Worker Housing | 57-59 Hano St        | Boston | 1885   |
| BOS.8219  | Hano, Samuel Company Worker Housing | 58-60 Hano St        | Boston | 1885   |
| BOS.8220  | Hano, Samuel Company Worker Housing | 62-64 Hano St        | Boston | 1885   |
| BOS.8221  | Hano, Samuel Company Worker Housing | 66-68 Hano St        | Boston | 1885   |
| BOS.8222  | Hano, Samuel Company Worker Housing | 70-72 Hano St        | Boston | 1885   |
| BOS.15414 | Braves Baseball Field - Pavilion A  | 32 Harry Agganis Way | Boston | 1915   |
| BOS.9481  | Harvard Avenue Road Network         | Harvard Ave          | Boston |        |
| BOS.8748  | Wilson Block                        | 4-8 Harvard Ave      | Boston | c 1908 |
| BOS.8749  |                                     | 11-17 Harvard Ave    | Boston | c 1918 |
| BOS.8223  | Harvard Avenue Fire Station         | 16 Harvard Ave       | Boston | 1891   |
| BOS.8750  |                                     | 20-24 Harvard Ave    | Boston | c 1910 |
| BOS.8751  |                                     | 25-27 Harvard Ave    | Boston | r 1965 |
| BOS.13232 |                                     | 31 Harvard Ave       | Boston | r 1950 |
| BOS.8752  |                                     | 32-34 Harvard Ave    | Boston | c 1928 |
| BOS.8753  | U. S. Post Office - Allston Branch  | 39 Harvard Ave       | Boston | r 1975 |
| BOS.8754  |                                     | 44-58 Harvard Ave    | Boston | 1912   |
| BOS.8224  | Whitehead, R. F. Block              | 51-63 Harvard Ave    | Boston | 1913   |
|           |                                     |                      |        |        |

Page 5 of 9

| Inv. No.  | Property Name                                         | Street              | Town   | Year   |
|-----------|-------------------------------------------------------|---------------------|--------|--------|
| BOS.8755  | Allston Methodist Episcopal Church                    | 62 Harvard Ave      | Boston | 1877   |
| BOS.13233 | Shorey - Bassett House                                | 66-68 Harvard Ave   | Boston | c 1883 |
| BOS.8756  |                                                       | 67-73 Harvard Ave   | Boston | 1905   |
| BOS.8757  | Bacon and Barret Apartment                            | 74-84 Harvard Ave   | Boston | 1912   |
| BOS.8758  |                                                       | 75-87 Harvard Ave   | Boston | c 1920 |
| BOS.8772  |                                                       | 5 Harvard Ter       | Boston | r 1910 |
| BOS.8773  |                                                       | 7 Harvard Ter       | Boston | r 1910 |
| BOS.8771  |                                                       | 8-16 Harvard Ter    | Boston | 1912   |
| BOS.8774  |                                                       | 9 Harvard Ter       | Boston | r 1910 |
| BOS.8775  |                                                       | 11 Harvard Ter      | Boston | r 1910 |
| BOS.8776  |                                                       | 15 Harvard Ter      | Boston | c 1910 |
| BOS.8777  |                                                       | 17 Harvard Ter      | Boston | c 1910 |
| BOS.8232  | Ganzheimer, A. Double House                           | 20-22 Highgate St   | Boston | r 1880 |
| BOS.8235  | Stinson, John D. House                                | 8 Holton St         | Boston | 1889   |
| BOS.8236  | Stinson, John D. Barn                                 | 8R Holton St        | Boston | 1889   |
| BOS.8233  |                                                       | 12 Holton St        | Boston | r 1890 |
| BOS.8237  | Davenport, Jonathan House                             | 21 Holton St        | Boston | c 1875 |
| BOS.8238  | Saint Anthony of Padua Roman Catholic Church          | 37 Holton St        | Boston | 1894   |
| BOS.8388  | Saint Anthony of Padua Roman Catholic Rectory         | 43 Holton St        | Boston | 1896   |
| BOS.8387  | Saint Anthony of Padua Roman Catholic School          | 57 Holton St        | Boston | 1915   |
| BOS.8386  | Saint Anthony of Padua Roman Catholic Convent         | 69 Holton St        | Boston | c 1930 |
| BOS.9608  | Charles River Reservation - Leo Birmingham<br>Parkway | Leo Birmingham Pkwy | Boston | 1936   |
| BOS.9609  | Charles River Reservation - Birmingham Pkwy<br>Marker | Leo Birmingham Pkwy | Boston | r 1920 |
| BOS.13241 | Allen Building                                        | 1 Linden St         | Boston | 1895   |
| BOS.13242 | Allen Building                                        | 3 Linden St         | Boston | 1895   |
| BOS.13243 | Allen Building                                        | 5 Linden St         | Boston | 1895   |
| BOS.13244 | Allen Building                                        | 7 Linden St         | Boston | 1895   |
| BOS.13245 | Allen Building                                        | 9 Linden St         | Boston | 1895   |
| BOS.13236 |                                                       | 11 Linden St        | Boston | 1897   |
| BOS.13237 |                                                       | 11A Linden St       | Boston | 1897   |
| BOS.13238 |                                                       | 15 Linden St        | Boston | 1897   |
| BOS.13239 |                                                       | 15A Linden St       | Boston | 1897   |
| BOS.8065  | Storrow, James J. School                              | 20 Lothrop St       | Boston | 1926   |
| BOS.9607  | Charles River Reservation - Nonantum Road             | Nonantum Rd         | Boston | 1910   |
| BOS.9610  | Charles River Reservation - North Beacon Street       | North Beacon St     | Boston | r 1920 |
| BOS.9611  | North Beacon Street Bridge over Charles River         | North Beacon St     | Boston | r 1920 |

| Inv. No.     | Property Name                                                                       | Street               | Town   | Year        |
|--------------|-------------------------------------------------------------------------------------|----------------------|--------|-------------|
| BOS.8283     |                                                                                     | 19 North Beacon St   | Boston | r 1810      |
| BOS.17085    | International Harvester New England Branch<br>Headquarters and Motor Truck Showroom | 61 North Beacon St   | Boston | 1925        |
| BOS.17086    | Charles River Saab Parts Storage                                                    | 61 North Beacon St   | Boston | 1995        |
| BOS.17087    | International Harvester New England Branch<br>Headquarters - Service Station        | 67 North Beacon St   | Boston | 1924        |
| BOS.5952     | Englewood Diner                                                                     | 69 North Beacon St   | Boston | r 1935      |
| BOS.17088    | International Harvester New England Branch<br>Headquarters - Truck Storage Facility | 69 North Beacon St   | Boston | 1925        |
| BOS.8375     | Harvard University - Blodgett Pool                                                  | North Harvard St     | Boston | 1978        |
| BOS.9313     | Harvard University Athletic Facility Fence                                          | North Harvard St     | Boston | c 1897      |
| BOS.8286     | Harvard Stadium                                                                     | 60 North Harvard St  | Boston | 1903        |
| BOS.8285     | Harvard University - Carey Cage                                                     | 65 North Harvard St  | Boston | 1897        |
| BOS.8067     | Hill Memorial Baptist Church                                                        | 279 North Harvard St | Boston | 1903        |
| BOS.14293    | Allston Congregational Church Parsonage                                             | 31-41 Quint Ave      | Boston | 1891        |
| BOS.8297     | Allston Congregational Church                                                       | 41 Quint Ave         | Boston | 1891        |
| BOS.8298     |                                                                                     | 31 Raymond St        | Boston |             |
| BOS.8299     |                                                                                     | 33 Raymond St        | Boston |             |
| BOS.8381     | Rice, Edmund House                                                                  | 34 Raymond St        | Boston | c 1870      |
| BOS.8303     | McDermott, Patrick Double House                                                     | 43-45 Raymond St     | Boston | c 1875      |
| BOS.8300     |                                                                                     | 80-82 Raymond St     | Boston |             |
| BOS.8301     |                                                                                     | 84-86 Raymond St     | Boston |             |
| BOS.8302     |                                                                                     | 88-90 Raymond St     | Boston |             |
| BOS.9330     | River Street Bridge                                                                 | River St             | Boston | 1926        |
| BOS.8305     | Vanerin, John House                                                                 | 57-59 Royal St       | Boston | 1905        |
| BOS.8306     | Sanford, H. I. House                                                                | 9 Sawyer Ter         | Boston | 1914        |
| BOS.8310     | Sinclair, Thomas House                                                              | 1 Sinclair Rd        | Boston | r 1835      |
| BOS.8311     | Tracy, Jedediah House                                                               | 2 Sinclair Rd        | Boston | r 1833      |
| BOS.9314     | Harvard University Athletic Facility Fence                                          | Solders Field Rd     | Boston | c 1897      |
| BOS.8350     | Harvard Business School - Kresge Hall                                               | Soldiers Field Rd    | Boston | 1953        |
| BOS.8351     | Harvard Business School - Teele Hall                                                | Soldiers Field Rd    | Boston | c 1968      |
| BOS.8352     | Harvard Business School - Burden Hall                                               | Soldiers Field Rd    | Boston | c 1969      |
| BOS.8353     | Harvard Business School - Cumnock Hall                                              | Soldiers Field Rd    | Boston | 1969        |
| BOS.8354     | Soldiers Field Park Apartments                                                      | Soldiers Field Rd    | Boston | c 1974      |
| BOS.8355     | Harvard Business School - Shadd Gymnasium                                           | Soldiers Field Rd    | Boston | c 1990      |
| BOS.8356     | Harvard Business School Chapel                                                      | Soldiers Field Rd    | Boston | c 1990      |
| BOS.8357     | Harvard Business School Dean's Residence                                            | Soldiers Field Rd    | Boston | 1929        |
| BOS.8358     | Harvard Business School - Humphrey Hall                                             | Soldiers Field Rd    | Boston | 1926        |
| BOS.8359     | Harvard Business School - McCullough Hall                                           | Soldiers Field Rd    | Boston | 1926        |
| Friday Dagan | abor 17 2021                                                                        |                      |        | Dogo Z of O |

Page 7 of 9

| Inv. No.  | Property Name                                        | Street                      | Town   | Year   |
|-----------|------------------------------------------------------|-----------------------------|--------|--------|
| BOS.8360  | Harvard Business School - Glass Hall                 | Soldiers Field Rd           | Boston | 1926   |
| BOS.8361  | Harvard Business School - Mellon Hall                | Soldiers Field Rd           | Boston | 1926   |
| BOS.8362  | Harvard Business School - Dillon Hall                | Soldiers Field Rd           | Boston | 1926   |
| BOS.8363  | Harvard Business School - Chase Hall                 | Soldiers Field Rd           | Boston | 1926   |
| BOS.8364  | Harvard Business School Students Club                | Soldiers Field Rd           | Boston | 1926   |
| BOS.8365  | Harvard Business School - Aldrich Hall               | Soldiers Field Rd           | Boston | 1953   |
| BOS.8366  | Harvard Business School - Baker Library              | Soldiers Field Rd           | Boston | 1927   |
| BOS.8367  | Harvard Business School - Hamilton Hall              | Soldiers Field Rd           | Boston | 1926   |
| BOS.8368  | Harvard Business School Faculty Club                 | Soldiers Field Rd           | Boston | 1926   |
| BOS.8369  | Harvard Business School - Gallatin Hall              | Soldiers Field Rd           | Boston | 1926   |
| BOS.8370  | Harvard Business School - Fowler Hall                | Soldiers Field Rd           | Boston | 1926   |
| BOS.8371  | Harvard Business School - Morgan Hall                | Soldiers Field Rd           | Boston | 1927   |
| BOS.8372  | Harvard Business School - Loeb Hall                  | Soldiers Field Rd           | Boston | 1926   |
| BOS.8373  | Harvard Business School - Morris Hall                | Soldiers Field Rd           | Boston | 1926   |
| BOS.8374  | Harvard Business School - Sherman Hall               | Soldiers Field Rd           | Boston | 1926   |
| BOS.8376  | Harvard University - Briggs Cage                     | Soldiers Field Rd           | Boston | 1926   |
| BOS.8377  | Harvard University - Dillon Field House              | Soldiers Field Rd           | Boston | 1929   |
| BOS.8378  | Harvard University - Dixon, Palmer Tennis Courts     | Soldiers Field Rd           | Boston | r 1965 |
| BOS.8379  | Harvard University - Bright Hockey Center            | Soldiers Field Rd           | Boston | r 1950 |
| BOS.8380  | Harvard University Gordon Track and Tennis<br>Center | Soldiers Field Rd           | Boston | r 1950 |
| BOS.9602  | Charles River Reservation - Soldiers Field Road      | Soldiers Field Rd           | Boston | 1899   |
| BOS.9603  | Soldiers Field Road Planted Median                   | Soldiers Field Rd           | Boston | r 1920 |
| BOS.9605  | Soldiers Field Underpass at Western Avenue           | Soldiers Field Rd           | Boston | c 1954 |
| BOS.9606  | Soldiers Field Road - North Beacon Street Oval       | Soldiers Field Rd           | Boston | c 1958 |
| BOS.8312  | Harvard University - Newell Boat House               | 801-805 Soldiers Field Rd   | Boston | 1900   |
| BOS.8063  | Institute of Contemporary Art                        | 1175 Soldiers Field Rd      | Boston | 1959   |
| BOS.8064  | Charles River Speedway Superintendent's<br>Residence | 1420-1440 Soldiers Field Rd | Boston | 1899   |
| BOS.9731  | Charles River Speedway Courtyard                     | 1420-1440 Soldiers Field Rd | Boston | 1899   |
| BOS.15893 | Charles River Speedway Headquarters and Stable       | 1420-1440 Soldiers Field Rd | Boston | 1899   |
| BOS.15894 | Metropolitan District Commission Police Station      | 1420-1440 Soldiers Field Rd | Boston | 1904   |
| BOS.15895 | Charles River Speedway - South Shed                  | 1420-1440 Soldiers Field Rd | Boston | 1899   |
| BOS.15896 | Charles River Speedway - East Shed                   | 1420-1440 Soldiers Field Rd | Boston | 1899   |
| BOS.15897 | Charles River Speedway Garage                        | 1420-1440 Soldiers Field Rd | Boston | c 1940 |
| BOS.15898 | Charles River Speedway Maintenance Garage            | 1420-1440 Soldiers Field Rd | Boston | c 1940 |
| BOS.9334  | Eliot Bridge                                         | Soldier's Field Rd          | Boston | 1950   |
| BOS.9335  | Soldier's Field Road                                 | Soldier's Field Rd          | Boston | 1895   |

Page 8 of 9

| Inv. No.  | Property Name                                     | Street          | Town   | Year   |
|-----------|---------------------------------------------------|-----------------|--------|--------|
| BOS.9604  | Charles River Reservation - Telford Street Bridge | Telford St      | Boston | r 1965 |
| BOS.8066  | Barrett, David L. Elementary School               | 25 Travis St    | Boston | 1933   |
| BOS.8321  | Longefellow, Henry W. House                       | 4 Wadsworth St  | Boston | r 1895 |
| BOS.9331  | Western Avenue Bridge                             | Western Ave     | Boston | 1924   |
| BOS.8342  | Ted's Diner                                       | 270 Western Ave | Boston | 1953   |
| BOS.8343  | Sewall and Day Cordage Company                    | 342 Western Ave | Boston | c 1885 |
| BOS.8344  | Engine House #34                                  | 444 Western Ave | Boston | 1887   |
| BOS.8345  | Stanley Service Station                           | 500 Western Ave | Boston | 1938   |
| BOS.8382  | Moore, J. Albert - Reid, Maria House              | 3 Westford St   | Boston | c 1870 |
| BOS.8346  |                                                   | 4 Westford St   | Boston | r 1880 |
| BOS.8383  | Moore, J. Albert House                            | 7 Westford St   | Boston | c 1870 |
| BOS.8347  |                                                   | 8 Westford St   | Boston | r 1880 |
| BOS.8384  | Moore, J. Albert House                            | 9 Westford St   | Boston | c 1870 |
| BOS.8348  |                                                   | 10 Westford St  | Boston | r 1880 |
| BOS.13240 | Wilton, The                                       | 7 Wilton St     | Boston | 1890   |