

NPDES RGP APPLICATION FOR TEMPORARY CONSTRUCTION DEWATERING BUNKER HILL COMMUNITY COLLEGE PROPOSED ACADEMIC STUDENT SUCCESS BUILDING 250 RUTHERFORD AVENUE BOSTON, MASSACHUSETTS

by Haley & Aldrich, Inc. Boston, Massachusetts

for Environmental Protection Agency (EPA) Region 1 Boston, Massachusetts

HALEY & ALDRICH, INC. 465 Medford St. Suite 2200 Boston, MA 02129 617.886.7400

9 February 2022 File No. 135301-003

Environmental Protection Agency (EPA) Region 1 5 Post Office Square, Suite 100 Mail Code OEP06-4 Boston, Massachusetts 02109

Attention: Shauna Little

Subject: NPDES RGP Application for Temporary Construction Dewatering Bunker Hill Community College Proposed Academic Student Success Building 250 Rutherford Avenue Boston, Massachusetts

Dear Shauna Little:

On behalf of our client, Bunker Hill Community College (BHCC), Haley & Aldrich, Inc. (Haley & Aldrich) is submitting this application to request authorization under the National Pollutant Discharge Elimination System (NPDES) Remediation General Permit (RGP) for off-site discharge of temporary construction dewatering effluent during construction activities at the proposed BHCC Academic Student Success Building at 250 New Rutherford Ave (the site) in Boston Massachusetts as shown on Figure 1. A copy of the Notice of Intent (NOI) is included in Appendix A.

GENERAL SITE DESCRIPTION

The proposed 15,400 square-foot (sq ft) Academic Student Success Building will be constructed adjacent to existing Buildings B, C, and D on the BHCC campus as shown on Figure 2. The proposed building will be three stories with a slab-on-grade foundation. Proposed finished first floor slab elevations are planned to match existing, adjacent buildings at El. 24 (Boston City Base [BCB]).

Historical maps and Sanborn Fire Insurance Maps (Appendix B) indicate the BHCC campus was occupied by the Charlestown State Prison from 1805 to 1955. The prison was demolished between 1955 and 1964, and the BHCC campus buildings were constructed in 1973.

In December 20202, subsurface explorations were performed at the site. Concentrations of polycyclic aromatic hydrocarbons (PAHs) were detected in a soil sample collected in test boring HA20-6(OW) from a depth of 0 to 4 feet (ft; Figure 2) at concentrations above Massachusetts Contingency Plan (MCP; 310 CMR 40.0000) RCS-1 Reportable Concentrations. This exceedance constitutes a 120-day reporting condition pursuant to 310 CMR 40.0315(2). However, the presence of PAHs is likely attributable to ash, cinders, and coal observed in urban fill during drilling, and is therefore exempt from reporting in

accordance with 310 CMR 40. 0317(9). Although the site is exempt from reporting under the MCP, it is our opinion that the presence of PAHs and urban fill at the site meets the definition of a site of known contamination under the RGP.

RECEIVING WATER INFORMATION

On 7 December 2021, Haley & Aldrich collected a receiving water sample from the Millers River under US Highway 1 as shown on Figure 3. The surface water sample was collected and submitted to Alpha Analytical, Inc. of Westborough, Massachusetts (Alpha) for chemical analysis of total metals, ammonia, and hardness. Field parameters, including pH and temperature, were collected from the surface water sample at the time of sampling. The results are summarized in Table I. Receiving water temperature is also noted on the effluent limitations input calculation page in Appendix C. The laboratory data report is provided in Appendix C.

The seven-day-ten-year flow (7Q10) of the receiving water was established using the U.S. Geological Survey (USGS) StreamStats program and confirmed by the Massachusetts Department of Environmental Protection (MassDEP) on 17 December 2021. The StreamStats report, Dilution Factor calculations, and MassDEP confirmation of the 7Q10 and Dilution Factor are included in Appendix C. The StreamStats Report, dilution factor calculations, and confirmation from MassDEP are included in Appendix D.

Copies of the "EnterData" and "FreshwaterResults" tabs from the excel file provided as an additional resource by the Environmental Protection Agency (EPA) are included in Appendix D and will be transmitted electronically with the NOI. The calculated effluent limitations are included for reference in Table I.

SOURCE WATER INFORMATION

To evaluate groundwater (source water) quality at the site, a groundwater samples was collected from observation well HA20-6(OW) on 21 October 2021. The well is located within a planned infiltration system adjacent to the building, as shown on Figure 2. Monitoring wells within the building footprint did not have a sufficient volume of water to collect a groundwater sample.

The groundwater samples were submitted to Alpha for chemical analysis of 2017 NPDES RGP parameters including volatile organic compounds (VOCs), semivolatile organic compounds (SVOCs) including PAHs, total metals, total petroleum hydrocarbons (TPH), pesticides, polychlorinated biphenyls (PCBs), total suspended solids, chloride, total cyanide, total phenols, ammonia, and total residual chlorine. Field parameters, including pH and temperature, were collected at the time of groundwater sampling.

The source water quality data are summarized in Table I. Laboratory data reports are included in Appendix C.

Ethanol Discussion

The groundwater samples were not tested for ethanol because site history and the results of recent investigations and testing does not suggest that ethanol or petroleum products containing ethanol were used, stored, or released at the site.

DISCHARGE INFORMATION

Water from construction dewatering activities will be discharged into storm drains via temporary pipes located along the southern limits of the site. The storm drain locations and proposed discharge routes are shown on Figure 3. We anticipate effluent discharge rates to be about 50 gallons per minute (gpm) or less, with occasional peak flows of about 150 gpm during significant precipitation events. The temporary dewatering will be conducted with sump pumps placed in excavations.

DEWATERING TREATMENT SYSTEM INFORMATION

An effluent treatment system will be designed and implemented by site contractor(s) to meet the applicable 2017 RGP Discharge Effluent Criteria. Prior to discharge, collected water will be routed through a sedimentation tank and bag filters to remove suspended solids and undissolved chemical constituents. The proposed treatment system schematic is provided on Figure 4. Additional treatment may include granulated activated carbon (GAC), a chemical-aided settling agent, ion exchange, and/or pH adjustment.

TREATMENT CHEMICALS AND ADDITIVES INFORMATION

To meet the 2017 NPDES RGP Site-Specific Effluent Criteria, additional treatment including GAC, a chemically aided settling system, ion exchange, and/or pH adjustment may be added to the treatment system. Product information for potential treatment systems and additives, including Safety Data Sheets (SDSs), associated hazards, and manufacturer and proper system operation, are provided in Appendix E.

If required, pH adjustment will be conducted using sulfuric acid or sodium hydroxide that will be dosed to reduce or increase pH using a metered system. Potential product information, including chemical formula, SDS, Chemical Abstracts Service (CAS) registry number, manufacturer, and associated hazards, toxicological and ecological information, and manufacturer information, including dosing and metering, are provided in Appendix E.

The sulfuric acid or sodium hydroxide will be stored in 55-gallon drums with secondary containment systems in place; a summary of control measures for proper handling and spill prevention is provided in Appendix E. The addition of sulfuric acid or sodium hydroxide to control pH is a standard treatment for temporary construction dewatering: it is not expected to exceed applicable permit limitations and water quality standards or alter conditions in the receiving water. No additional testing is considered necessary for use of this product or to demonstrate that use of this product will not adversely affect the receiving water.

The pH will be automatically and continuously monitored, and additive added only as needed. The specific dosing will be based on the pH of the influent water, but at their maximum, the concentrations for sodium hydroxide or sulfuric acid would be 220 parts per million (ppm or milligrams per liter [mg/L]) based on the calculations provided below:

- Worst case scenario: pumping at 150 gpm and using 48 gallons of sodium hydroxide or sulfuric acid per day (based on a 2 gallon/hour metering rate)
- 150 gpm = 216,000 gallons/day
- Sodium Hydroxide or Sulfuric Acid use (one day) = 48 gallons/day
- 48 gallons/216,000 gallons = 2.22 x 10⁻⁴ gal
- 2.22 x 10⁻⁴ gal * 100% = 0.022%
- 1% = 10,000 ppm, therefore; 0.022% * 10,000 ppm = 220 ppm (mg/L)

The EC_{50} for sodium hydroxide for fish is 340.7-469.2 mg/L (ppm), and the EC_{50} for sulfuric acid for fish is 500 mg/L (ppm) as listed on the provided SDSs. Even at a worst-case scenario, the addition of sodium hydroxide or sulfuric acid is less than the EC_{50} .

If necessary, a chemical-aided settling system may be added to one or more of the treatment systems. The system would allow for the application of coagulant and non-ionic dry polymer. The product information for the proposed coagulant and dry polymer, including product name, manufacturer, purpose, and use, associated hazards and risks, reported aquatic toxicity (LC₅₀), and proper handling and storage measures, is included in the attached SDSs in Appendix H. The coagulant and dry polymer is considered a typical treatment for temporary construction dewatering; addition of these compounds is not expected to add pollutants in concentrations which exceed permit effluent limitations or applicable water quality standards or alter conditions in receiving water. No additional testing is considered to be necessary for use of these products or to demonstrate that use of these products will not adversely affect the receiving water.

The dosing concentration for both the coagulant and dry polymer typically ranges from 25 to 50 ppm. The actual dosing concentration is based on visual observations in the field and will be adjusted and calibrated by the operator during startup of the additional components to achieve the appropriate setpoint for the system. Dosing is continuous at the set concentration while the system is running.

It is important to note that although the dosing concentration is 25 to 50 ppm, the detected concentration in the carryover (post-bag filter) is in the parts per trillion (ppt) range (about 6 orders of magnitude less than the dosing concentration). This is because nearly all the applied chemical becomes incorporated in the sludge and is removed from the waste stream as a solid from the weir tank and as part of typical system operations and maintenance.

DETERMINATION OF ENDANGERED SPECIES ACT ELIGIBILITY

According to the guidelines outlined in Appendix I of the 2017 NPDES RGP, a preliminary determination for the action area associated with this project was established using the U.S. Fish and Wildlife Service (FWS) Information, Planning, and Conservation (IPAC) online system; a copy of the determination is attached in Appendix F. Based on the results of the determination, the project and action area are

considered to meet FWS Criterion A because no listed species or critical habitat are present within the project action area. Additionally, a MassDEP Phase 1 Site Assessment Map is included in Appendix F, which confirms that no critical habitats are present at the site.

DOCUMENTATION OF NATIONAL HISTORIC PRESERVATION ACT REQUIREMENTS

Based on a review of the resources provided by the U.S. National Register of Historic Places and a review of the Massachusetts Cultural Resource Information System (MACRIS), no historic properties have been identified at the site, and discharge and discharge-related activities are not considered to affect historic properties. The discharge meets Criterion A. Documentation is included in Appendix G.

SUPPLEMENTAL INFORMATION

Permits for temporary construction dewatering will also be required from the Massachusetts Department of Transportation (MassDOT) and the Boston Water and Sewer Commission (BWSC). The MassDOT permit application will be submitted electronically and concurrently with this NOI. Once issued, a copy of the NPDES RGP Authorization will be provided to BWSC to support the dewatering permit application.

Owner and operation information are provided below for reference:

Owner:

Bunker Hill Community College 250 Rutherford Ave, Boston, MA 02129 Boston, Massachusetts 02129 Attn: Gary Bigelow **Operator:**

Bond Building Construction 10 Cabot Road, Suite 300 Medford, Massachusetts 02155 Attn: Pam Bailey

CLOSING

Thank you very much for your consideration. Please feel free to contact us should you wish to discuss the information contained herein or if you need additional information.

Sincerely yours, HALEY & ALDRICH, INC.

Shay Gerald Engineer

Enclosures:

Ballontyne

Heather A. Ballantyne, P.G. (NH), LSP Senior Project Manager

Table I – Summary of Water Quality Data Figure 1 – Project Locus Figure 2 – Site and Subsurface Exploration Location Plan Figure 3 – Proposed Dewatering Discharge Route

> Figure 4 –Proposed Treatment System Schematic Appendix A – Notice of Intent (NOI) Appendix B – Sanborn Maps Appendix C - Laboratory Data Reports Appendix D –Discharge Calculations Appendix E –Treatment System Information Appendix F – Endangered Species Act Appendix G - National Historic Preservation Act Review

\\haleyaldrich.com\share\CF\Projects\135301\003 - RGP Application and Compliance\Dewatering\NPDES\NPDES NOI\Text\2022-0209-BHCC-NPDES RGP_F.docx

TABLES

TABLE I SUMMARY OF WATER QUALITY DATA BHCC-NEW ACADEMIC BUILDING BOSTON, MASSACHUSETTS FILE NO. 135301

FILE NO. 135301		1	Action				
	Location Name		Action	2017 NPDES RGP	IVICE	HA20-6(OW)	HA21-MR
	Sample Name	Massachusetts RGP	Massachusetts RGP	Site-Specific	Reportable	HA20-6(OW)-20211021	HA21-MR-2021120
	Sample Date	Freshwater WQBEL	TQBEL	Effluent	Concentration	10/21/2021	12/07/2021
	Lab Sample ID	2017	2017	Criteria	RCGW-2	L2157842-01	L2167180-01
	Lab Sample ID			ententa	2014	L2137842-01	12107180-01
Volatile Organic Compounds (ug/L)							
1,1,1-Trichloroethane		200	200		4000	ND (2)	-
1,1,2-Trichloroethane		5	5		900	ND (1.5)	-
1,1-Dichloroethane		70	70		2000	ND (1.5)	-
1,1-Dichloroethene		3.2	3.2		80	ND (1)	-
1,2-Dibromoethane (Ethylene Dibromide)		0.05	0.05		2	ND (0.01)	-
1,2-Dichlorobenzene		600	600		2000	ND (5)	-
1,2-Dichloroethane		5	5		5	ND (1.5)	-
1,3-Dichlorobenzene		320	320		6000	ND (5)	-
1,4-Dichlorobenzene		5	5		60	ND (5)	-
Acetone		7970	7970		50000	ND (10)	_
Benzene		5	5		1000	ND (10)	_
Carbon tetrachloride		1.6	4.4		2	ND (1)	
							-
cis-1,2-Dichloroethene		70	70		20	ND (1)	-
Ethylbenzene		100	100		5000	ND (1)	-
m,p-Xylenes		100	100		NA	ND (2)	-
Methyl Tert Butyl Ether (MTBE)		20	70		5000	ND (10)	-
Methylene chloride (Dichloromethane)		4.6	4.6		2000	ND (1)	-
o-Xylene		100	100		NA	ND (1)	-
Fert-Amyl Methyl Ether (TAME)		90	90		NA	ND (20)	-
Tert-Butyl Alcohol (tert-Butanol)		120	120		NA	ND (100)	-
Tetrachloroethene		3.3	5		50	ND (100) ND (1)	_
							-
Toluene		100	100		40000	ND (1)	-
Trichloroethene		5	5		5	ND (1)	-
Vinyl chloride		2	2		2	ND (1)	-
Xylene (total)		100	100		3000	ND (1)	-
Volatile Organic Compounds SIM (ug/L)							
1,4-Dioxane		200	200		6000	ND (5)	_
		200	200		0000	ND (3)	
Semi-Volatile Organic Compounds (ug/L)							
bis(2-Ethylhexyl)phthalate		2.2	190		50000	ND (2.2)	-
Butyl benzylphthalate		NA	190		10000	ND (5)	-
Diethyl phthalate		NA	190		9000	ND (5)	-
Dimethyl phthalate		NA	190		50000	ND (5)	_
		NA	190		5000		-
Di-n-butylphthalate						ND (5)	-
Di-n-octyl phthalate		NA	190		100000	ND (5)	-
Semi-Volatile Organic Compounds (SIM)	(ug/L)						
Acenaphthene		100	100		6000	ND (0.1)	-
Acenaphthylene		100	100		40	ND (0.1)	_
Anthracene		100	100		30		
						ND (0.1)	-
Benzo(a)anthracene		0.0038	1		1000	0.113	-
Benzo(a)pyrene		0.0038	1		500	ND (0.1)	-
Benzo(b)fluoranthene		0.0038	1		400	0.108	-
Benzo(g,h,i)perylene		100	100		20	ND (0.1)	-
Benzo(k)fluoranthene		0.0038	1		100	ND (0.1)	-
Chrysene		0.0038	1		70	0.118	-
Dibenz(a,h)anthracene		0.0038	1		40	ND (0.1)	-
Fluoranthene		100	100		200	0.236	_
Fluorene		100	100		40		
						ND (0.1)	-
Indeno(1,2,3-cd)pyrene		0.0038	1		100	ND (0.1)	-
Naphthalene		20	20		700	ND (0.1)	-
Pentachlorophenol		1	1		200	ND (1)	-
Phenanthrene		100	100		10000	0.143	-
Pyrene		100	100		20	0.211	-
Fotal Petroleum Hydrocarbons (ug/L)						<u></u>	
Petroleum hydrocarbons (ug/L)		5000	5000		5000	ND (4000)	-
		5000	5000		5000	140 (4000)	-
norganic Compounds (ug/L)							
Chromium VI (Hexavalent), Dissolved		11	323		300	ND (50)	-
Antimony, Total		640	206		8000	5	ND (4)
Arsenic, Total		10	104		900	ND (1)	ND (1)
Cadmium, Total		0.25	10.2		4	ND (0.2)	ND (0.2)
Chromium, Total		NA	NA		300	ND (0.2)	ND (0.2)
		9	242		100000	1.29	8.14
Copper, Total							
Hardness, Total		NA	NA		NA	506000	189000
ron, Total		1000	5000		NA	2060	2280
.ead, Total		2.5	160		10	1.53	3.43
Mercury, Total		0.77	0.739		20	ND (0.2)	ND (0.2)
Nickel, Total		52	1450		200	ND (2)	2.62
Selenium, Total		5	235.8		100	ND (5)	ND (5)
Silver, Total		3.2	35.1		7	ND (0.4)	ND (0.4)
Zinc, Total		120	420		900	11.22	49.35
		120	420	ļ	500	11.22	43.33
Other							
oH (lab), Total (pH units)		NA	NA		NA	-	7.3
Salinity, Total (SU)		NA	NA		NA		ND (2)
Ammonia, Total (ug/L)		NA	NA		NA	925	624
Chloride, Total (ug/L)		NA	NA		NA	165000	-
							-
Chlorine, residual, Total (ug/L)		11	200		NA	ND (20)	-
Chromium III (Trivalent), Total (ug/L)		74	323		600	ND (50)	-
Cyanide, Total (ug/L)		5.2	178000		30	ND (5)	-

Cyanide, Total (ug/L)	5.2	178000	30	ND (5)	-
Total Phenols (ug/L)	300	1080	NA	ND (30)	-
Total Suspended Solids (TSS) (ug/L)	30000	30000	NA	14000	-
Pesticides and PCBs (ug/L)					
Aroclor-1016 (PCB-1016)	6.40E-05	6.40E-05	5	ND (0.25)	-
Aroclor-1221 (PCB-1221)	6.40E-05	6.40E-05	5	ND (0.25)	-
Aroclor-1232 (PCB-1232)	6.40E-05	6.40E-05	5	ND (0.25)	-
Aroclor-1242 (PCB-1242)	6.40E-05	6.40E-05	5	ND (0.25)	-
Aroclor-1248 (PCB-1248)	6.40E-05	6.40E-05	5	ND (0.25)	-
Aroclor-1254 (PCB-1254)	6.40E-05	6.40E-05	5	ND (0.25)	-
Aroclor-1260 (PCB-1260)	6.40E-05	6.40E-05	5	ND (0.2)	-

ABBREVIATIONS AND NOTES:

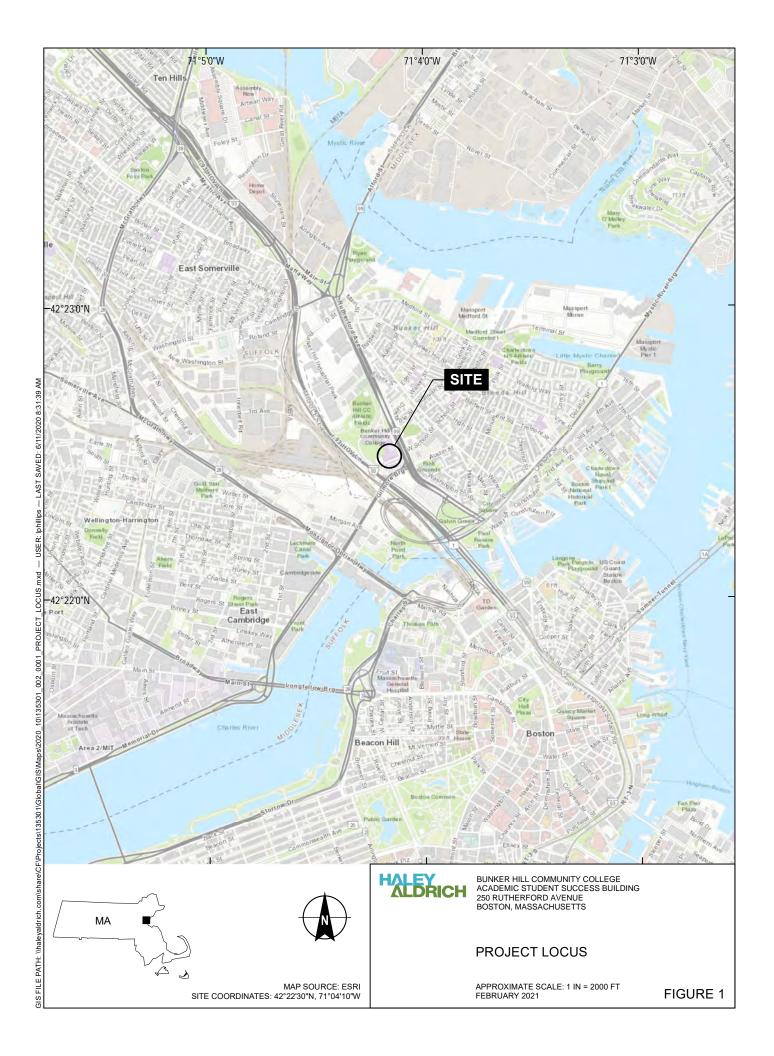
 $\mu\text{g/L:}\xspace$ micrograms per liter

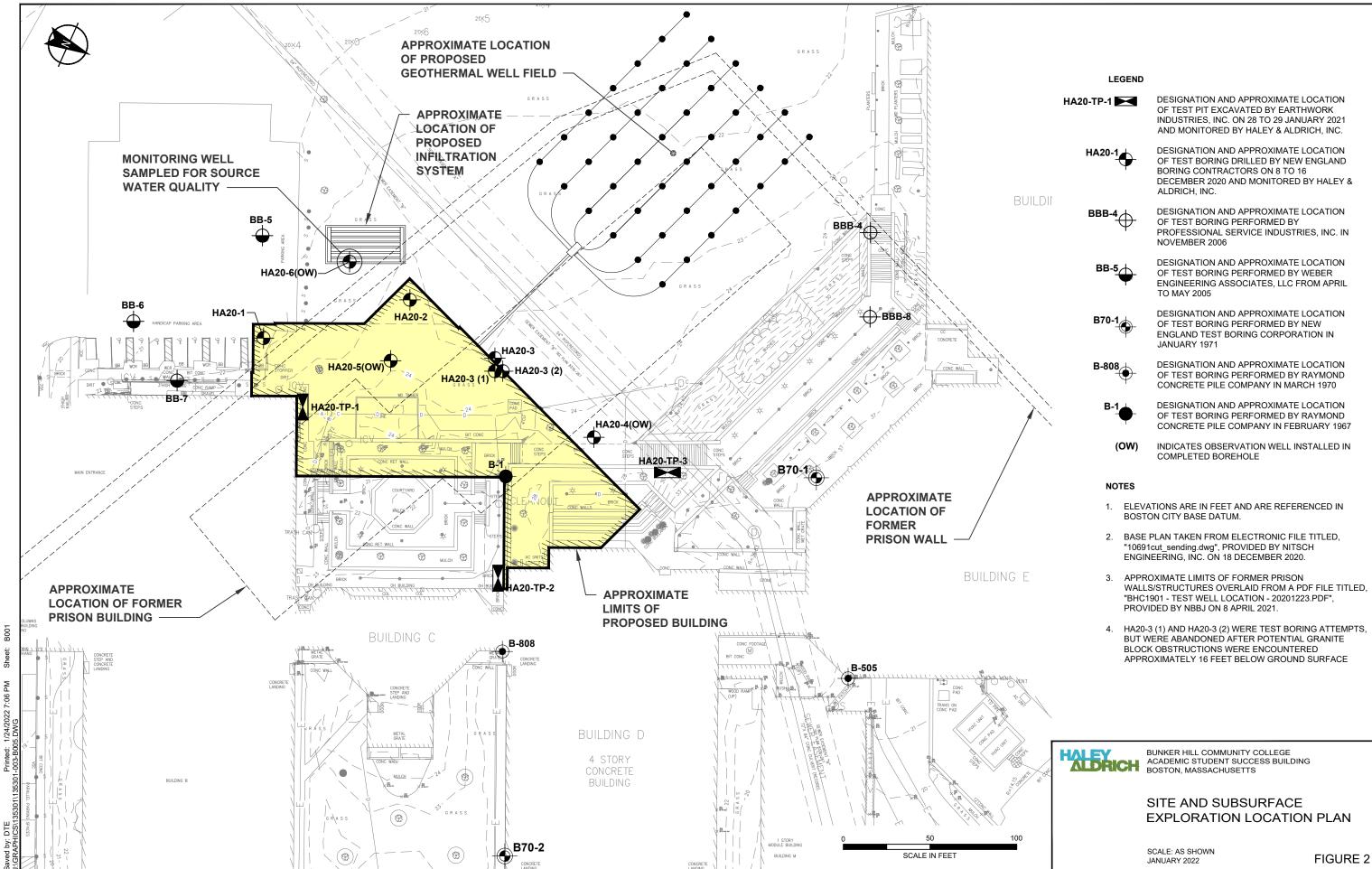
-: Not Analyzed

bgs: below ground surface

NA: Not Applicable

ND (2.5): Not detected, number in parentheses is the laboratory reporting limit

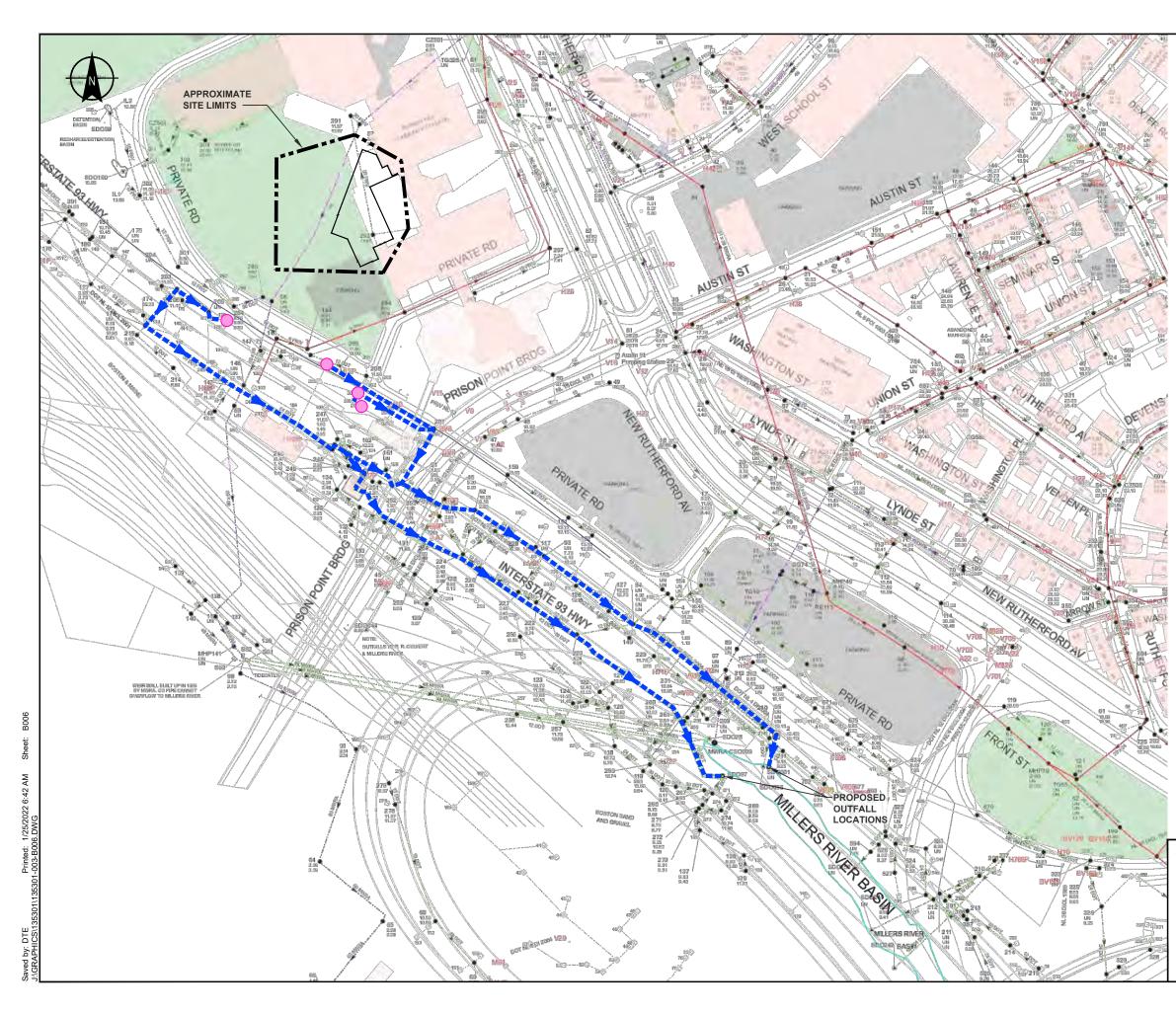

- Analytes detected in at least one sample are reported herein. For a complete list of analytes see the laboratory data sheets.


- For test methods used, see the laboratory data sheets.

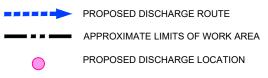
- Bold values indicate an exceedance of the RGP or RCGW-2 criteria.

- Groundwater samples analyzed for dissolved metals were filtered in the field with a 0.45 micrometer filter.

FIGURES

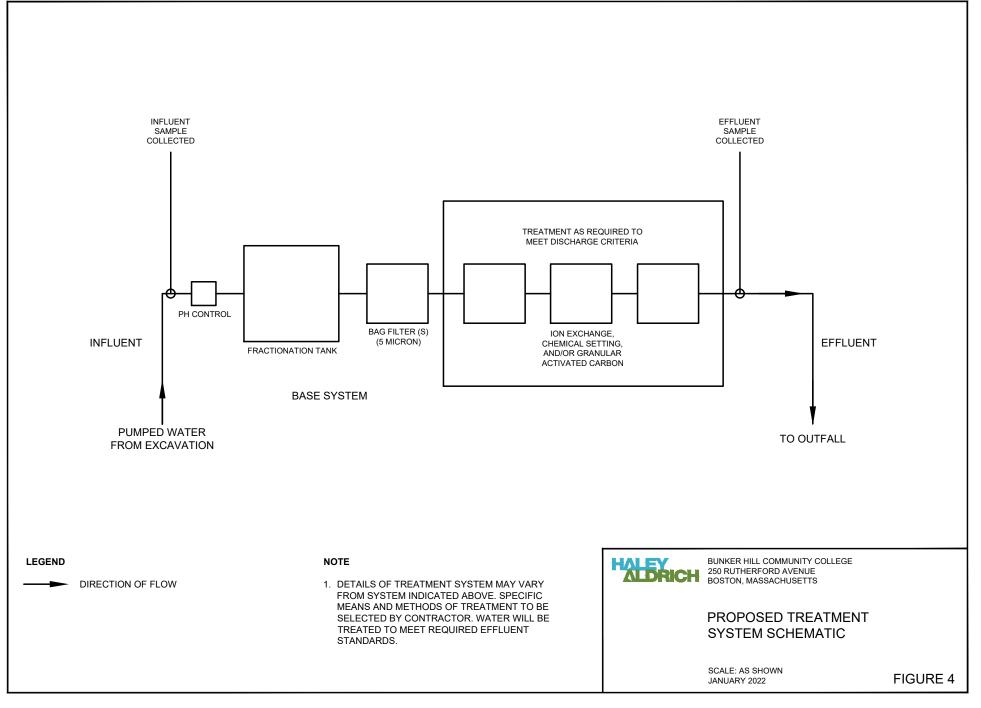


	EC	iΕ		۱.
L	EG		NL	,


2202113	
HA20-TP-1	DESIGNATION AND APPROXIMATE LOCATION OF TEST PIT EXCAVATED BY EARTHWORK INDUSTRIES, INC. ON 28 TO 29 JANUARY 2021 AND MONITORED BY HALEY & ALDRICH, INC.
HA20-1	DESIGNATION AND APPROXIMATE LOCATION OF TEST BORING DRILLED BY NEW ENGLAND BORING CONTRACTORS ON 8 TO 16 DECEMBER 2020 AND MONITORED BY HALEY & ALDRICH, INC.
	DESIGNATION AND APPROXIMATE LOCATION OF TEST BORING PERFORMED BY PROFESSIONAL SERVICE INDUSTRIES, INC. IN NOVEMBER 2006
BB-5	DESIGNATION AND APPROXIMATE LOCATION OF TEST BORING PERFORMED BY WEBER ENGINEERING ASSOCIATES, LLC FROM APRIL TO MAY 2005
B70-1	DESIGNATION AND APPROXIMATE LOCATION OF TEST BORING PERFORMED BY NEW ENGLAND TEST BORING CORPORATION IN JANUARY 1971
B-808	DESIGNATION AND APPROXIMATE LOCATION OF TEST BORING PERFORMED BY RAYMOND CONCRETE PILE COMPANY IN MARCH 1970
B-1	DESIGNATION AND APPROXIMATE LOCATION OF TEST BORING PERFORMED BY RAYMOND CONCRETE PILE COMPANY IN FEBRUARY 1967
(OW)	INDICATES OBSERVATION WELL INSTALLED IN COMPLETED BOREHOLE
NOTES	

- WALLS/STRUCTURES OVERLAID FROM A PDF FILE TITLED,

FIGURE 2


LEGEND

NOTES

 BASE PLAN TAKEN FROM A DRAWING PREPARED BY BOSTON WATER AND SEWER COMMISSION, PRINTED 4 NOVEMBER 2021.

0	200 A	400 ■
ALDRICH	BUNKER HILL COMMUNITY COLLEGE ACADEMIC STUDENT SUCCESS BUILDI BOSTON, MASSACHUSETTS	NG
	PROPOSED DEWATERII DISCHARGE ROUTE	NG
	SCALE: AS SHOWN JANUARY 2022	FIGURE 3

APPENDIX A

Notice of Intent (NOI)

II. Suggested Format for the Remediation General Permit Notice of Intent (NOI)

A. General site information:

1. Name of site: BHCC-Academic Student Success Building	Site address: 250 Rutherford Avenue, Boston Massachusetts 02129 Street: Rutherford Avenue City: Boston State: MA Zip: 0212				
2. Site owner Bunker Hill Community College	Contact Person: Gary Bigelow Telephone: 617-936-1985 Mailing address: 250 New Rutherford Ave, Bosto	gelow@bho	cc.edu		
Owner is (check one): □ Federal □ State/Tribal □ Private □ Other; if so, specify:	Street: 250 Rutherford Ave City: Boston	State: MA	Zip:02129		
3. Site operator, if different than owner BOND Building Construction, Inc	Contact Person: Pam Bailey Telephone: 617-394-6347 Email: pbailey@bond-building. Mailing address: 10 Cabot Road, Suite 300 Street:				
4. NPDES permit number assigned by EPA: Not Applicable	City: Medford 5. Other regulatory program(s) that apply to the site	(check all th □ CERCI		Zip: 02155	
NPDES permit is (check all that apply: ■ RGP □ DGP □ CGP □ MSGP □ Individual NPDES permit □ Other; if so, specify:	NH Groundwater Management Permit or Groundwater Release Detection Permit:		ogram Pretreatmen Section 404	t	

٦

B. Receiving water information:

1. Name of receiving water(s):	Waterbody identification of receiving water(s):	Classificat	tion of receiving water(s):				
Millers River	MA72-31	Class B					
Receiving water is (check any that apply): Outstanding	Resource Water 🗆 Ocean Sanctuary 🗆 territorial sea 🗆	Wild and Scenic Rive	er				
2. Has the operator attached a location map in accordance	with the instructions in B, above? (check one):	⊐ No					
Are sensitive receptors present near the site? (check one): □ Yes ■ No If yes, specify:							
	3. Indicate if the receiving water(s) is listed in the State's Integrated List of Waters (i.e., CWA Section 303(d)). Include which designated uses are impaired, and any pollutants indicated. Also, indicate if a final TMDL is available for any of the indicated pollutants. For more information, contact the appropriate State as noted in Part 4.6 of the RGP. Bottom Deposits, Debris, Habitat Assessment, Trash, Flocculant Masses, Metals, Oil and Grease, Petroleum Hydrocarbons, Polychlorinated Biphenyles (PCBs), Polycyclic Aromatic Hydrocarbons (PAHs) (Aquatic Ecosystems), Sum/Foam, Sedimentation/Siltation, Turbidity. No TMDL Available.						
4. Indicate the seven day-ten-year low flow (7Q10) of the Appendix V for sites located in Massachusetts and Append		uctions in 19	9.2				
5. Indicate the requested dilution factor for the calculation of water quality-based effluent limitations (WQBELs) determined in accordance with the instructions in Appendix V for sites in Massachusetts and Appendix VI for sites in New Hampshire.							
6. Has the operator received confirmation from the appropriate State for the 7Q10and dilution factor indicated? (check one): ■ Yes □ No If yes, indicate date confirmation received: ^{12/17/2021}							
7. Has the operator attached a summary of receiving water	sampling results as required in Part 4.2 of the RGP in a	ccordance with the ins	struction in Appendix VIII?				
(check one): ■ Yes □ No							

C. Source water information:

1. Source water(s) is (check any that apply):			
Contaminated groundwater	□ Contaminated surface water	□ The receiving water	□ Potable water; if so, indicate municipality or origin:
Has the operator attached a summary of influent sampling results as required in Part 4.2 of the RGP	Has the operator attached a summary of influent sampling results as required in Part 4.2 of the	\Box A surface water other	
in accordance with the instruction in Appendix VIII? (check one):	RGP in accordance with the instruction in Appendix VIII? (check one):	than the receiving water; if so, indicate waterbody:	□ Other; if so, specify:
■ Yes □ No	\Box Yes \Box No		

2. Source water contaminants: PAHs and Iron less than RCGW-2	
a. For source waters that are contaminated groundwater or contaminated surface water, indicate are any contaminants present that are not included in	b. For a source water that is a surface water other than the receiving water, potable water or other, indicate any contaminants present at the maximum concentration in accordance
the RGP? (check one): \Box Yes \blacksquare No If yes, indicate the contaminant(s) and the maximum concentration present in accordance with the instructions in Appendix VIII.	with the instructions in Appendix VIII? (check one): \Box Yes \Box No
3. Has the source water been previously chlorinated or otherwise contains resid	lual chlorine? (check one): □ Yes ■ No

D. Discharge information

1. The discharge(s) is $a(n)$ (check any that apply): \blacksquare Existing discharge \Box New disc	charge \square New source
Outfall(s): SDO001	Outfall location(s): (Latitude, Longitude) 42°22'14.2"N 71°03'55.7"W
SDO97	42°22'13.5"N 71°03'56.8"W
Discharges enter the receiving water(s) via (check any that apply):	ge to the receiving water 🗆 Indirect discharge, if so, specify:
Miller's River via MassDOT Storm drains	
■ A private storm sewer system □ A municipal storm sewer system If the discharge enters the receiving water via a private or municipal storm sewer system	vstem:
Has notification been provided to the owner of this system? (check one): \blacksquare Yes \Box	No
Has the operator has received permission from the owner to use such system for dis obtaining permission: MassDOT applications are being submitted concurrent	charges? (check one): \Box Yes \blacksquare No, if so, explain, with an estimated timeframe for y with this NOI
Has the operator attached a summary of any additional requirements the owner of t	his system has specified? (check one): \blacksquare Yes \Box No
Provide the expected start and end dates of discharge(s) (month/year): June 2022	to January 2023
Indicate if the discharge is expected to occur over a duration of: \Box less than 12 mo	nths \blacksquare 12 months or more \Box is an emergency discharge
Has the operator attached a site plan in accordance with the instructions in D, above	e? (check one): ■ Yes □ No

2. Activity Category: (check all that apply)	3. Contamination Type Category: (check	c all that apply)				
	a. If Activity Category I or II: (check all that apply)					
 I – Petroleum-Related Site Remediation II – Non-Petroleum-Related Site Remediation III – Contaminated Site Dewatering IV – Dewatering of Pipelines and Tanks V – Aquifer Pump Testing VI – Well Development/Rehabilitation VII – Collection Structure Dewatering/Remediation 	 A. Inorganics B. Non-Halogenated Volatile Organic Compounds C. Halogenated Volatile Organic Compounds D. Non-Halogenated Semi-Volatile Organic Compounds E. Halogenated Semi-Volatile Organic Compounds F. Fuels Parameters 					
	b. If Activity Category III, IV, V, VI, VII or VIII: (check either G or H)					
	■ G. Sites with Known Contamination	□ H. Sites with Unknown Contamination				
	c. If Category III-G, IV-G, V-G, VI-G, VII-G or VIII-G: (check all that apply)					
□ VIII – Dredge-Related Dewatering	A. Inorganics					
	□ B. Non-Halogenated Volatile Organic Compounds	d. If Category III-H, IV-H, V-H, VI-H, VII-H or				
	□ C. Halogenated Volatile Organic Compounds	VIII-H Contamination Type Categories A through F apply				
	 D. Non-Halogenated Semi-Volatile Organic Compounds 					
	□ E. Halogenated Semi-Volatile Organic Compounds					
	□ F. Fuels Parameters					

4. Influent and Effluent Characteristics

	Known	Known				Influent		Effluent Limitations	
Parameter 01 belie	or believed absent	or believed present	# of samples	Test method (#)	Detection limit (µg/l)	Daily maximum (µg/l)	Daily average (µg/l)	TBEL	WQBEL
A. Inorganics									
Ammonia		1	1	4500NH-+	75	925	925	Report mg/L	
Chloride		1	1	44,300.0	5000	165000	165000	Report µg/l	
Total Residual Chlorine	~		1	4500CL-D	20	< 20	< 20	0.2 mg/L	NA
Total Suspended Solids		~	1	2540D	5000	14000	14000	30 mg/L	
Antimony		1	1	3,200.8	4	5	5	206 µg/L	NA
Arsenic	✓		1	3,200.8	1	< 1	< 1	104 µg/L	NA
Cadmium	~		1	3,200.8	0.2	< 0.2	< 0.2	10.2 µg/L	NA
Chromium III	1		1	3,200.8	1	< 50	< 50	323 µg/L	NA
Chromium VI	1		1	107,-	50	< 50 +	< 50	323 μg/L	NA
Copper		~	1	3,200.8	1	1.29	1.29	242 μg/L	NA
Iron		1	1	19,200.7	50	2060	2060	5,000 μg/L	1000 ug/L
Lead		~	1	3,200.8	1	1.53	1.53	160 μg/L	NA
Mercury	1		1	3,245.1	0.2	< 0.2	< 0.2	0.739 μg/L	NA
Nickel	1		1	3,200.8	0.2	< 2	< 2	1,450 μg/L	NA
Selenium	1		1	3,200.8	5	< 5	< 5	235.8 μg/L	NA
Silver	1		1	3,200.8	0.4	< 0.4	< 0.4	35.1 μg/L	NA
Zinc		1	1	3,200.8	10	11.22	11.22	420 μg/L	NA
Cyanide		1	1	4500CN-(+	5	< 5	< 5	178 mg/L	NA
B. Non-Halogenated VOC	s								
Total BTEX			1				-	100 µg/L	
Benzene	✓		1	128,624.1	1.0	< 1	< 1	5.0 µg/L	
1,4 Dioxane	✓		1	128,624.1+	5.0	< 5	< 5	200 µg/L	
Acetone	×		1	128,624.1	10	< 10	< 10	7.97 mg/L	
Phenol	1		1	4,420.1	30	< 30	< 30	1,080 µg/L	NA

Parameter	Known	Known		s Test method (#)	Detection limit (µg/l)	Influent		Effluent Limitations	
	or believed absent	or believed present	# of samples			Daily maximum (µg/l)	Daily average (µg/l)	TBEL	WQBEL
C. Halogenated VOCs									
Carbon Tetrachloride	1		1	128,624.1	1.0	< 1	< 1	4.4 μg/L	NA
1,2 Dichlorobenzene	1		1	128,624.1	5.0	< 5	< 5	600 μg/L	
1,3 Dichlorobenzene	1		1	128,624.1	5.0	< 5	< 5	320 µg/L	
1,4 Dichlorobenzene	1		1	128,624.1	5.0	< 5	< 5	5.0 μg/L	
Total dichlorobenzene			1				_	763 µg/L in NH	
1,1 Dichloroethane	~		1	128,624.1	1.5	< 1.5	< 1.5	70 µg/L	
1,2 Dichloroethane	~		1	128,624.1	1.5	< 1.5	< 1.5	5.0 µg/L	
1,1 Dichloroethylene	1		1	128,624.1	1.0	< 1	< 1	3.2 μg/L	
Ethylene Dibromide	1		1			< 0.01	0.01	0.05 µg/L	
Methylene Chloride	1		1	128,624.1	1.0	< 1	< 1	4.6 µg/L	
1,1,1 Trichloroethane	1		1	128,624.1	2.0	< 2	< 2	200 µg/L	
1,1,2 Trichloroethane	1		1	128,624.1	1.5	< 1.5	< 1.5	5.0 µg/L	
Trichloroethylene	1		1	128,624.1	1.0	< 1	< 1	5.0 μg/L	
Tetrachloroethylene	1		1	128,624.1	1.0	< 1	< 1	5.0 µg/L	NA
cis-1,2 Dichloroethylene	1		1	128,624.1	1.0	< 1	< 1	70 µg/L	
Vinyl Chloride	1		1	128,624.1	1.0	< 1	< 1	2.0 µg/L	
D. Non-Halogenated SVO	Cs								
Total Phthalates			1				_	190 µg/L	NA
Diethylhexyl phthalate			1	129,625.1	5.0	< 5	< 5	101 µg/L	NA
Total Group I PAHs			1				_	1.0 µg/L	
Benzo(a)anthracene		1	1	129,625.1+	0.100	0.113	0.113		NA
Benzo(a)pyrene	1		1	129,625.1+	0.100	< 0.1	< 0.1	As Total PAHs NA NA	
Benzo(b)fluoranthene		1	1	129,625.1+	0.100	0.108	0.108		
Benzo(k)fluoranthene	1		1	129,625.1+	0.100	< 0.1	< 0.1		
Chrysene	1	✓	1			0.118	0.118		
Dibenzo(a,h)anthracene	1		1	129,625.1+	0.100	< 0.1	< 0.1		NA
Indeno(1,2,3-cd)pyrene	1		1	129,625.1+		< 0.1	< 0.1		NA

Parameter	or or believed belie	Known	or # of elieved samples	Test method (#)	Detection limit (µg/l)	Influent		Effluent Limitations	
						Daily maximum (µg/l)	Daily average (µg/l)	TBEL	WQBEL
Total Group II PAHs			1					100 µg/L	
Naphthalene	✓		1	129,625.1+	0.100	< 0.1	< 0.1	20 µg/L	
E. Halogenated SVOCs									
Total PCBs			1					0.000064 µg/L	
Pentachlorophenol	✓		1	129,625.1+	1.00	< 1	< 1	1.0 µg/L	
F. Fuels Parameters									
Total Petroleum Hydrocarbons	1		1			< 4000	< 4000	5.0 mg/L	
Ethanol			1					Report mg/L	
Methyl-tert-Butyl Ether			1	128,624.1	10	< 10	< 10	70 µg/L	NA
tert-Butyl Alcohol	1		1	128,624.1	100	< 100	< 100	120 μg/L in MA 40 μg/L in NH	
tert-Amyl Methyl Ether	1		1	128,624.1	20	< 20	< 20	90 μg/L in MA 140 μg/L in NH	
Other (i.e., pH, temperatur	re, hardness,	salinity, LC	C50, addition	nal pollutar Field	nts present);	if so, specify: 7.3	7.3	1	
Hardeness		1	1	Field	NA	10.22	10.22		
Temperature		1	1			10.22	10.22		
See next nage									

LIST OF COMPOUNDS DETECTED IN SOIL AT THE SITE

Volatile Organic Compounds

Acetone Ethylbenzene Naphthalene Xylene (total)

Semi-Volatile Organic Compounds

Acenaphthene Anthracene Benzo(a)anthracene Benzo(a)pyrene Benzo(b)fluoranthene Benzo(g,h,i)perylene Benzo(k)fluoranthene Chrysene Dibenz(a,h)anthracene Dibenzofuran Dimethyl phthalate Fluoranthene Fluorene Indeno(1,2,3-cd)pyrene Naphthalene Phenanthrene Pyrene

Total Petroleum Hydrocarbons

Petroleum hydrocarbons

Inorganic Compounds Arsenic Barium Cadmium Chromium Lead Mercury Nickel Vanadium Zinc

E. Treatment system information

1. Indicate the type(s) of treatment that will be applied to effluent prior to discharge: (check all that apply)				
□ Adsorption/Absorption □ Advanced Oxidation Processes □ Air Stripping □ Granulated Activated Carbon ("GAC")/Liquid Phase Carbon Adsor	ption			
□ Ion Exchange □ Precipitation/Coagulation/Flocculation ■ Separation/Filtration □ Other; if so, specify:				
Granular Activated Carbon (GAC), Coagulant, Ion Exchange and/or pH adjustment to meet necessary effluent limits.				
2. Provide a written description of all treatment system(s) or processes that will be applied to the effluent prior to discharge. Prior to discharge, collected water will be routed through a sedimentation tank and bag filters to remove suspended solids and undissolved chemical constituents, as Additional treatment may be include granular activated carbon (GAC) Coagulant, Ion Exchange and/or pH adjustment.	shown in Figure 4.			
Identify each major treatment component (check any that apply):				
🗏 Fractionation tanks 🗆 Equalization tank 🗆 Oil/water separator 🗆 Mechanical filter 🗆 Media filter				
□ Chemical feed tank □ Air stripping unit ■ Bag filter ■ Other; if so, specify: Granular activated carbon (GAC), coagulant, Ion Exchange and/or pH adjus meet necessary effluent limits	stment mat be added to			
Indicate if either of the following will occur (check any that apply):				
□ Chlorination □ De-chlorination				
3. Provide the design flow capacity in gallons per minute (gpm) of the most limiting component. Indicate the most limiting component: Flowmeter	150 gpm			
Is use of a flow meter feasible? (check one): ■ Yes □ No, if so, provide justification:	96			
Provide the proposed maximum effluent flow in gpm.	150 gpm			
Provide the average effluent flow in gpm.	50 gpm			
If Activity Category IV applies, indicate the estimated total volume of water that will be discharged:	NA			
4. Has the operator attached a schematic of flow in accordance with the instructions in E, above? (check one): ■ Yes □ No				

F. Chemical and additive information

1. Indicate the type(s) of chemical or additive that will be applied to effluent prior to discharge or that may otherwise be present in the discharge(s): (check all that apply)

□ Algaecides/biocides □ Antifoams □ Coagulants □ Corrosion/scale inhibitors □ Disinfectants □ Flocculants □ Neutralizing agents □ Oxidants □ Oxygen □

scavengers \Box pH conditioners \Box Bioremedial agents, including microbes \Box Chlorine or chemicals containing chlorine \blacksquare Other; if so, specify: pH or iron treatment conditioners (coagulant) may be added to the treatment system if necessary to meet effuent limits.

2. Provide the following information for each chemical/additive, using attachments, if necessary:

Refer to attached Haley & Aldrich, Inc. Letter

a. Product name, chemical formula, and manufacturer of the chemical/additive;

b. Purpose or use of the chemical/additive or remedial agent;

c. Material Safety Data Sheet (MSDS) and Chemical Abstracts Service (CAS) Registry number for each chemical/additive;

d. The frequency (hourly, daily, etc.), duration (hours, days), quantity (maximum and average), and method of application for the chemical/additive;

e. Any material compatibility risks for storage and/or use including the control measures used to minimize such risks; and

f. If available, the vendor's reported aquatic toxicity (NOAEL and/or LC50 in percent for aquatic organism(s)).

3. Has the operator attached an explanation which demonstrates that the addition of such chemicals/additives may be authorized under this general permit in accordance

with the instructions in F, above? (check one): \blacksquare Yes \Box No; if no, has the operator attached data that demonstrates each of the 126 priority pollutants in CWA Section 307(a) and 40 CFR Part 423.15(j)(1) are non-detect in discharges with the addition of the proposed chemical/additive?

(check one): \Box Yes \Box No

G. Endangered Species Act eligibility determination

1. Indicate under which criterion the discharge(s) is eligible for coverage under this general permit:

FWS Criterion A: No endangered or threatened species or critical habitat are in proximity to the discharges or related activities or come in contact with the "action area".

□ FWS Criterion B: Formal or informal consultation with the FWS under section 7 of the ESA resulted in either a no jeopardy opinion (formal consultation) or a written concurrence by FWS on a finding that the discharges and related activities are "not likely to adversely affect" listed species or critical habitat (informal consultation). Has the operator completed consultation with FWS? (check one): □ Yes □ No; if no, is consultation underway? (check one): □

Yes □ No

□ **FWS Criterion C**: Using the best scientific and commercial data available, the effect of the discharges and related activities on listed species and critical habitat have been evaluated. Based on those evaluations, a determination is made by EPA, or by the operator and affirmed by EPA, that the discharges and related activities will have "no effect" on any federally threatened or endangered listed species or designated critical habitat under the jurisdiction of the

FWS. This determination was made by: (check one) \Box the operator \Box EPA \Box Other; if so, specify:

□ NMFS Criterion: A determination made by EPA is affirmed by the operator that the discharges and related activities will have "no effect" or are "not likely to adversely affect" any federally threatened or endangered listed species or critical habitat under the jurisdiction of NMFS and will not result in any take of listed species. Has the operator previously completed consultation with NMFS? (check one): □ Yes □ No

2. Has the operator attached supporting documentation of ESA eligibility in accordance with the instructions in Appendix I, and G, above? (check one): 🔳 Yes 🗆 No

Does the supporting documentation include any written concurrence or finding provided by the Services? (check one):
Yes
No; if yes, attach.

H. National Historic Preservation Act eligibility determination

1. Indicate under which criterion the discharge(s) is eligible for coverage under this general permit:

- Criterion A: No historic properties are present. The discharges and discharge-related activities (e.g., BMPs) do not have the potential to cause effects on historic properties.
- Criterion B: Historic properties are present. Discharges and discharge related activities do not have the potential to cause effects on historic properties.
- Criterion C: Historic properties are present. The discharges and discharge-related activities have the potential to have an effect or will have an adverse effect on historic properties.

2. Has the operator attached supporting documentation of NHPA eligibility in accordance with the instructions in H, above? (check one): 🗏 Yes 🗆 No

Does the supporting documentation include any written agreement with the State Historic Preservation Officer (SHPO), Tribal Historic Preservation Officer (TPHO), or other tribal representative that outlines measures the operator will carry out to mitigate or prevent any adverse effects on historic properties? (check one):

I. Supplemental information

Describe any supplemental information being provided with the NOI. Include attachments if required or otherwise necessary. Refer to attached Haley & Aldrich, Inc. letter

Has the operator attached data, including any laboratory case narrative and chain of custody used to support the application? (check one): \blacksquare Yes \Box No Has the operator attached the certification requirement for the Best Management Practices Plan (BMPP)? (check one): \blacksquare Yes \Box No

J. Certification requirement

I certify under penalty of law that this document and all attachments were prepared under my direction or supervision in accordance with a system designed to assure that qualified personnel properly gathered and evaluated the information submitted. Based on my inquiry of the person or persons who manage the system, or those persons directly responsible for gathering the information, the information submitted is, to the best of my knowledge and belief, true, accurate, and complete. I have no personal knowledge that the information submitted is other than true, accurate, and complete. I am aware that there are significant penalties for submitting false information, including the possibility of fine and imprisonment for knowing violations.

A BMPP meeting the requirements of this general permit will be implemented at the site.

BMPP certification statement:

Notification provided to the appropriate State, including a copy of this NOI, if required.	Check one: Yes □ No ■				
Notification provided to the municipality in which the discharge is located, including a copy of this NOI, if reque	sted. Check one: Yes 🔳 No 🗆				
Notification provided to the owner of a private or municipal storm sewer system, if such system is used for site discharges, including a copy of this NOI, if requested. Permission obtained from the owner of a private or municipal storm sewer system, if such system is used for site	Check one: Yes ■ No □ NA □ A MassDOT permit is being submitted concurrently with this NOI.				
discharges. If yes, attach additional conditions. If no, attach explanation and timeframe for obtaining permission.	Check one: Yes □ No ■ NA □				
Notification provided to the owner/operator of the area associated with activities covered by an additional dischar permit(s). Additional discharge permit is (check one): \Box RGP \Box DGP \Box CGP \Box MSGP \Box Individual NPDES \Box Other; if so, specify:	e e e e e e e e e e e e e e e e e e e				
Signature: Pamela Bailey DN: C=US, E=pbailey@bond-building.com, O="BOND Building Construction, Inc.", CN=Pamela Bailey Date: 2022.02.03 14:39:12-05'00'	Date: February 3, 2022				
Print Name and Title: Pamela Bailey, Senior Project Manager					

APPENDIX B

Sanborn Maps

250 Rutherford Avenue 250 Rutherford Avenue Charlestown, MA 02129

Inquiry Number: 6281701.3 November 30, 2020

Certified Sanborn® Map Report

6 Armstrong Road, 4th floor Shelton, CT 06484 Toll Free: 800.352.0050 www.edrnet.com

11/30/20Site Name:Client Name:250 Rutherford AvenueHaley & Aldrich, Inc.250 Rutherford Avenue465 Medford StreetCharlestown, MA 02129Boston, MA 02129EDR Inquiry # 6281701.3Contact: Nathan Sherwood

The Sanborn Library has been searched by EDR and maps covering the target property location as provided by Haley & Aldrich, Inc. were identified for the years listed below. The Sanborn Library is the largest, most complete collection of fire insurance maps. The collection includes maps from Sanborn, Bromley, Perris & Browne, Hopkins, Barlow, and others. Only Environmental Data Resources Inc. (EDR) is authorized to grant rights for commercial reproduction of maps by the Sanborn Library LLC, the copyright holder for the collection. Results can be authenticated by visiting www.edrnet.com/sanborn.

The Sanborn Library is continually enhanced with newly identified map archives. This report accesses all maps in the collection as of the day this report was generated.

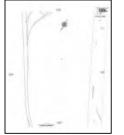
Certified Sanbo	orn Results:	
Certification #	6725-4EF8-99F3	
PO #	P135301-002	
Project	Bunker Hill Community College	
Maps Provided:		SEAL OF AUTOMAL
2002	1964	Sanborn® Library search results
1998	1950	Certification #: 6725-4EF8-99F3
1996	1927	The Sanborn Library includes more than 1.2 million fire insurance maps from Sanborn, Bromley, Perris &
1995	1900	Browne, Hopkins, Barlow and others which track
1994	1888	historical property usage in approximately 12,000 American cities and towns. Collections searched:
1993		
1990		Library of Congress
1989		University Publications of America
		EDR Private Collection
		The Sanborn Library LLC Since 1866™

Limited Permission To Make Copies

Haley & Aldrich, Inc. (the client) is permitted to make up to FIVE photocopies of this Sanborn Map transmittal and each fire insurance map accompanying this report solely for the limited use of its customer. No one other than the client is authorized to make copies. Upon request made directly to an EDR Account Executive, the client may be permitted to make a limited number of additional photocopies. This permission is conditioned upon compliance by the client, its customer and their agents with EDR's copyright policy; a copy of which is available upon request.

Disclaimer - Copyright and Trademark Notice

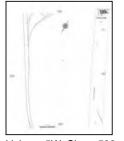
This Report contains certain information obtained from a variety of public and other sources reasonably available to Environmental Data Resources, Inc. It cannot be concluded from this Report that coverage information for the target and surrounding properties does not exist from other sources. NO WARRANTY EXPRESSED OR IMPLIED, IS MADE WHATSOEVER IN CONNECTION WITH THIS REPORT. ENVIRONMENTAL DATA RESOURCES, INC. SPECIFICALLY DISCLAIMS THE MAKING OF ANY SUCH WARRANTIES, INCLUDING WITHOUT LIMITATION, MERCHANTABILITY OR FITNESS FOR A PARTICULAR USE OR PURPOSE. ALL RISK IS ASSUMED BY THE USER. IN NO EVENT SHALL ENVIRONMENTAL DATA RESOURCES, INC. BE LIABLE TO ANYONE, WHETHER ARISING OUT OF ERRORS OR OMISSIONS, NEGLIGENCE, ACCIDENT OR ANY OTHER CAUSE, FOR ANY LOSS OF DAMAGE, INCLUDING, WITHOUT LIMITATION, SPECIAL, INCIDENTAL, CONSEQUENTIAL, OR EXEMPLARY DAMAGES. ANY LIABILITY ON THE PART OF ENVIRONMENTAL DATA RESOURCES, INC. IS STRICTLY LIMITED TO A REFUND OF THE AMOUNT PAID FOR THIS REPORT. Purchaser accepts this Report "AS IS". Any analyses, estimates, ratings, environmental risk levels or risk codes provided in this Report are provided for illustrative purposes only, and are not intended to provide, nor should they be interpreted as providing any facts regarding, or prediction or forecast of, any environmental risk for any property. Only a Phase I Environmental Site Assessment performed by an environmental professional can provide information regarding the environmental risk for any property. Additionally, the information provide in this Report is not to be construed as legal advice.


Copyright 2020 by Environmental Data Resources, Inc. All rights reserved. Reproduction in any media or format, in whole or in part, of any report or map of Environmental Data Resources, Inc., or its affiliates, is prohibited without prior written permission.

EDR and its logos (including Sanborn and Sanborn Map) are trademarks of Environmental Data Resources, Inc. or its affiliates. All other trademarks used herein are the property of their respective owners.

This Certified Sanborn Map Report is based upon the following Sanborn Fire Insurance map sheets.

2002 Source Sheets


Volume 5W, Sheet 599d 2002

Volume 5W, Sheet 599e 2002

Volume 5W, Sheet 599c 2002

1998 Source Sheets

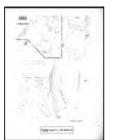
Volume 5W, Sheet 599d 1998

Volume 5W, Sheet 599e 1998

Volume 5W, Sheet 599c 1998

Volume 5W, Sheet 599c 1996

Volume 5W, Sheet 599d 1996



Volume 5W, Sheet 599e 1996

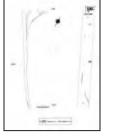
Volume 5W, Sheet 599c 1995

Volume 5W, Sheet 599d 1995

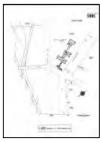
Volume 5W, Sheet 599e 1995

This Certified Sanborn Map Report is based upon the following Sanborn Fire Insurance map sheets.

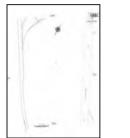
1994 Source Sheets

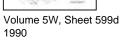

Volume 5W, Sheet 599d 1994

t 599d Volume 5W, Sheet 599e 1994


1994

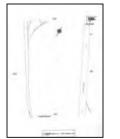
1993 Source Sheets


Volume 5W, Sheet 599d 1993


Volume 5W, Sheet 599e 1993

Volume 5W, Sheet 599c 1993

1990 Source Sheets



Volume 5W, Sheet 599c 1990

Volume 5W, Sheet 599e 1990

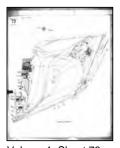
Volume 5W, Sheet 599c 1989

Volume 5W, Sheet 599d 1989

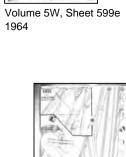
Volume 5W, Sheet 599e 1989

This Certified Sanborn Map Report is based upon the following Sanborn Fire Insurance map sheets.

1964 Source Sheets



1964


Volume 5W, Sheet 599c 1964

1950 Source Sheets

Volume 5, Sheet 599c 1950

Volume 5, Sheet 599d 1950

Volume 5, Sheet 599e 1950

Volume 1, Sheet 73 1950

1927 Source Sheets

Volume 5, Sheet 599e 1927

Volume 5, Sheet 599c 1927

Volume 5, Sheet 599d 1927

Volume 5, Sheet 79 1900

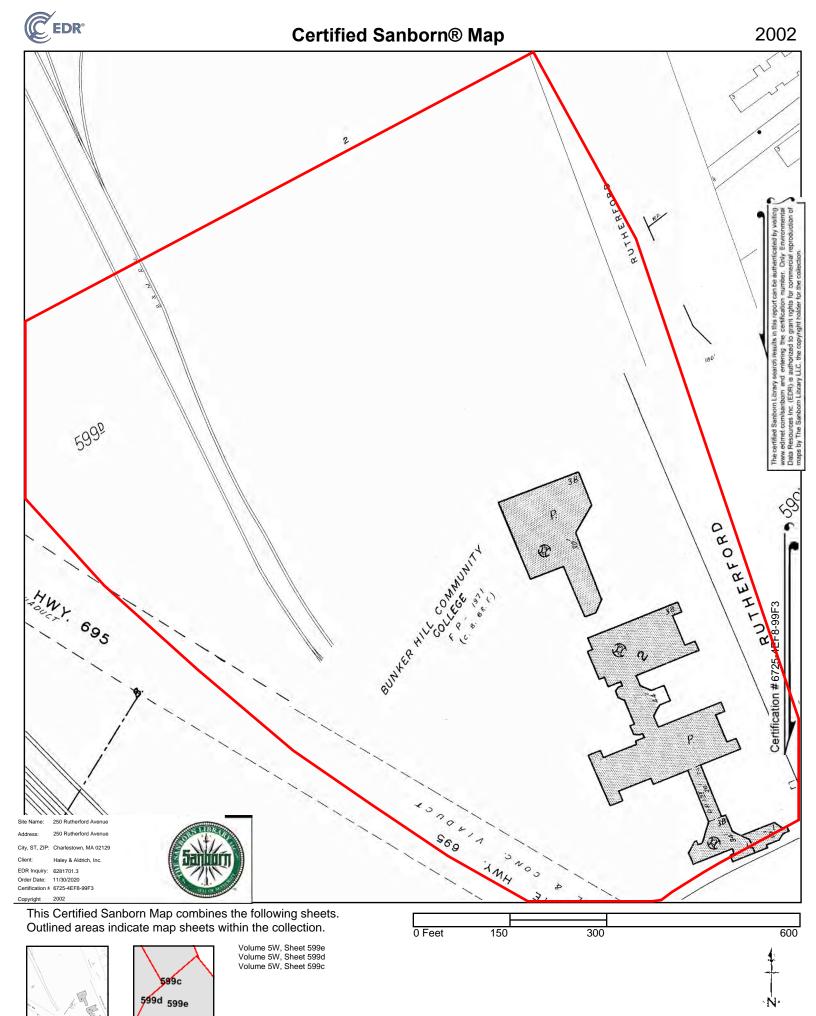
Volume 5, Sheet 80 1900

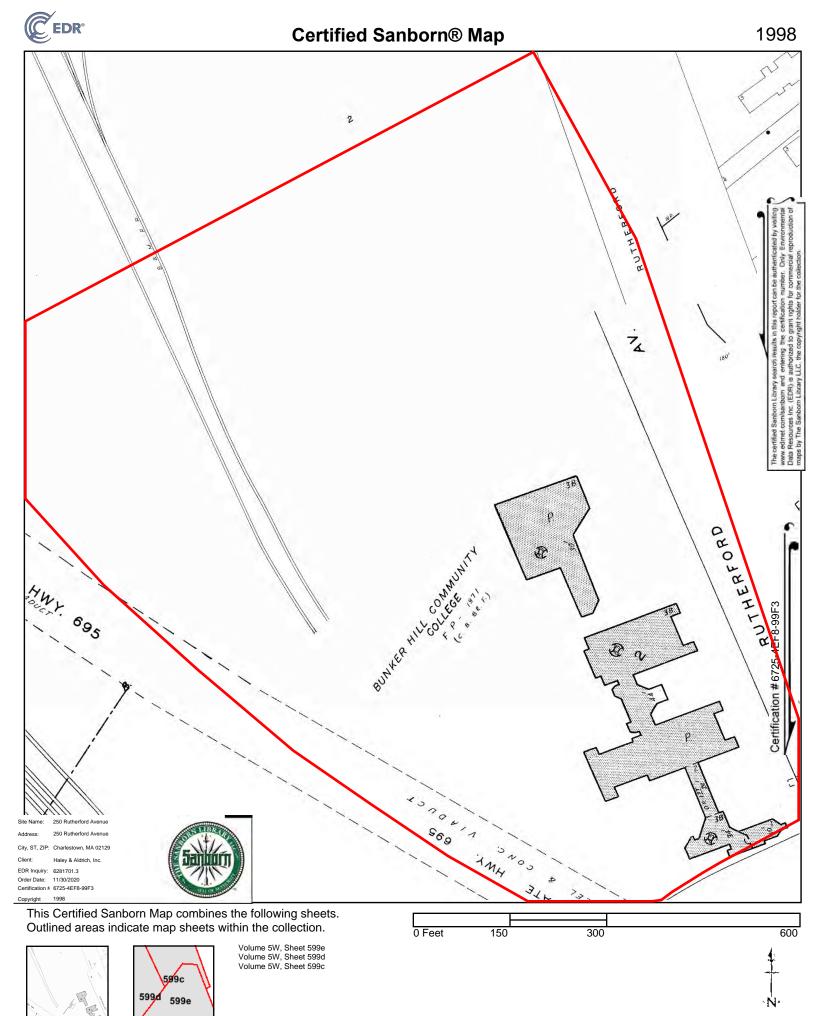
Volume 5, Sheet 82 1900

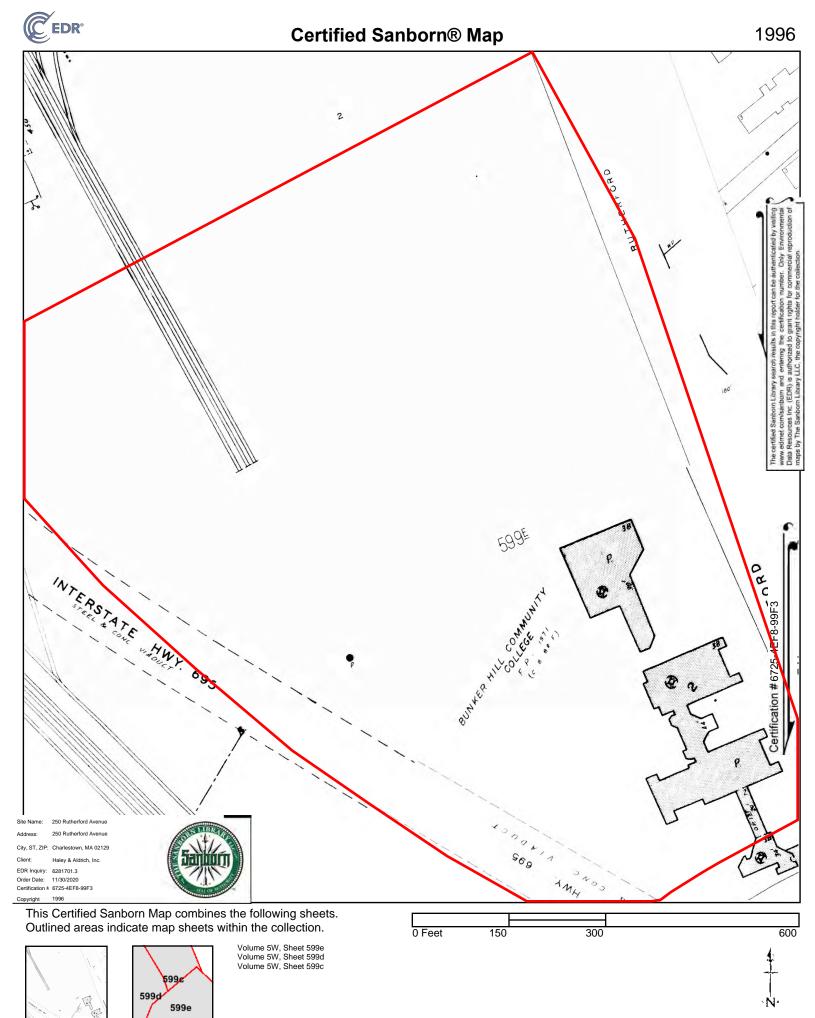
Volume 5, Sheet 99 1900

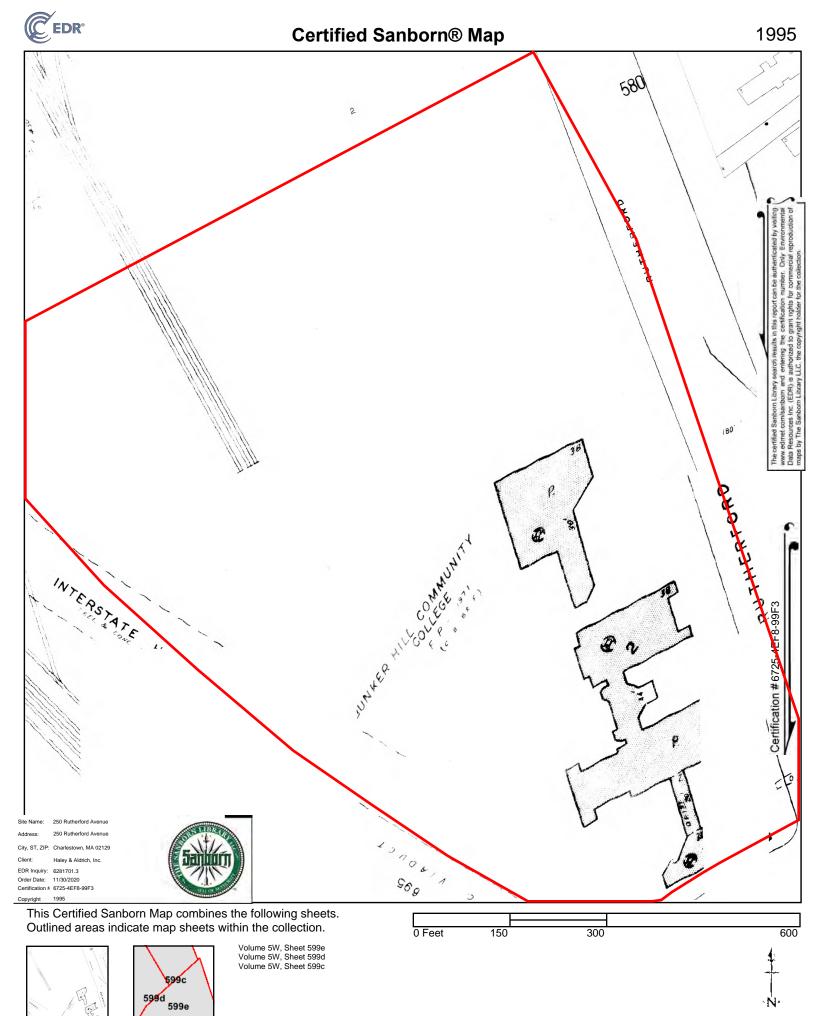
This Certified Sanborn Map Report is based upon the following Sanborn Fire Insurance map sheets.

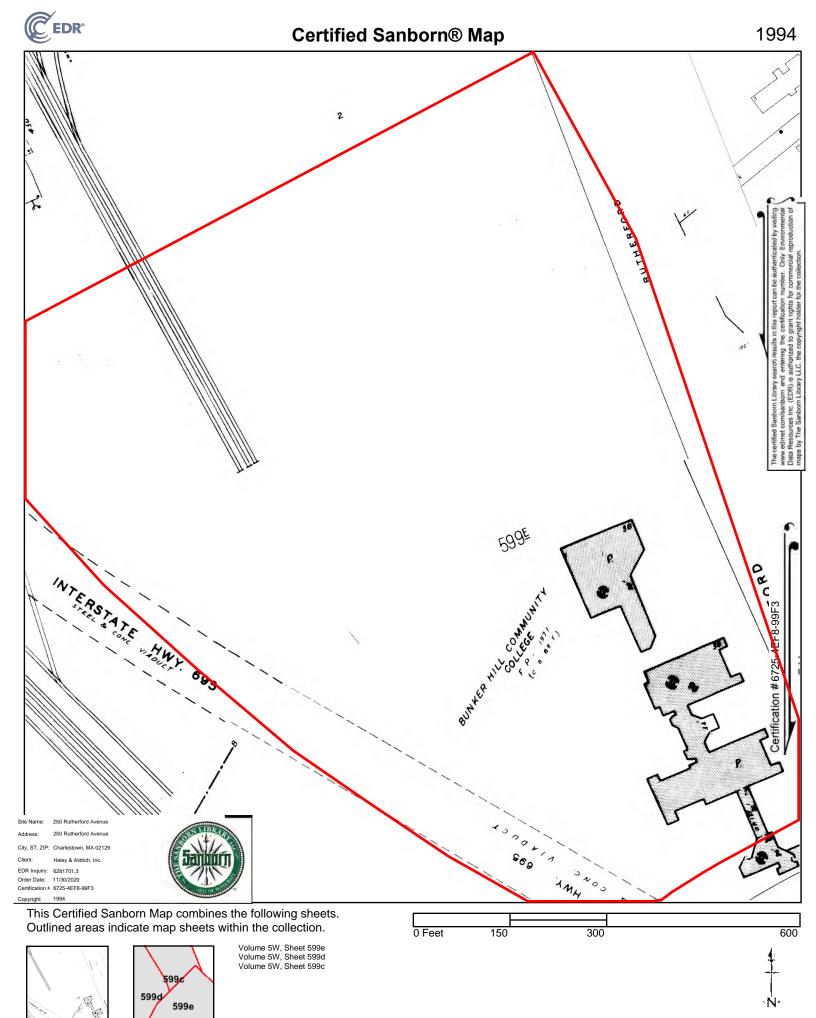
Volume 5, Sheet 171 1888

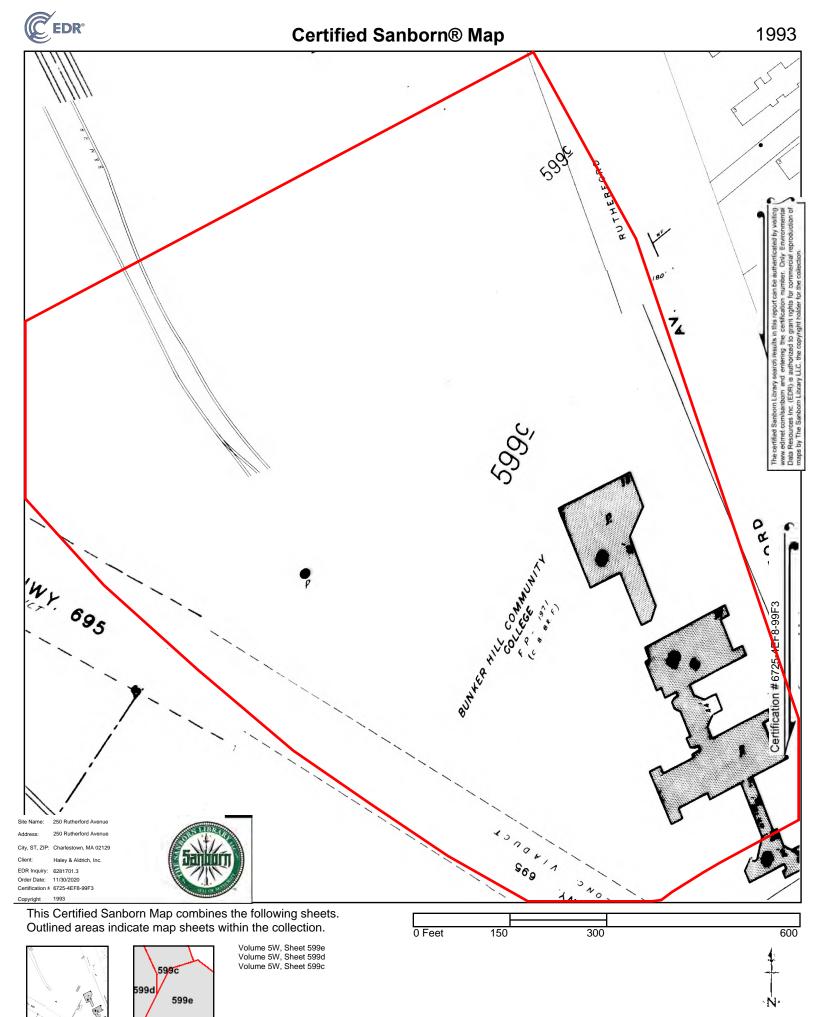

Volume 5, Sheet 170 1888

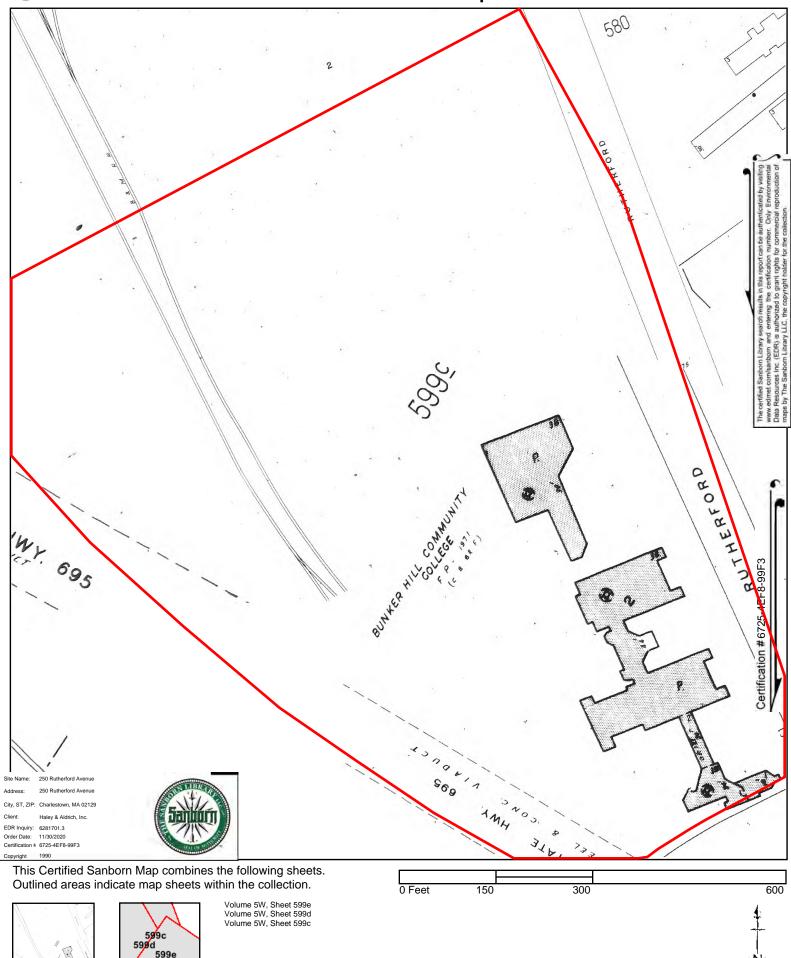


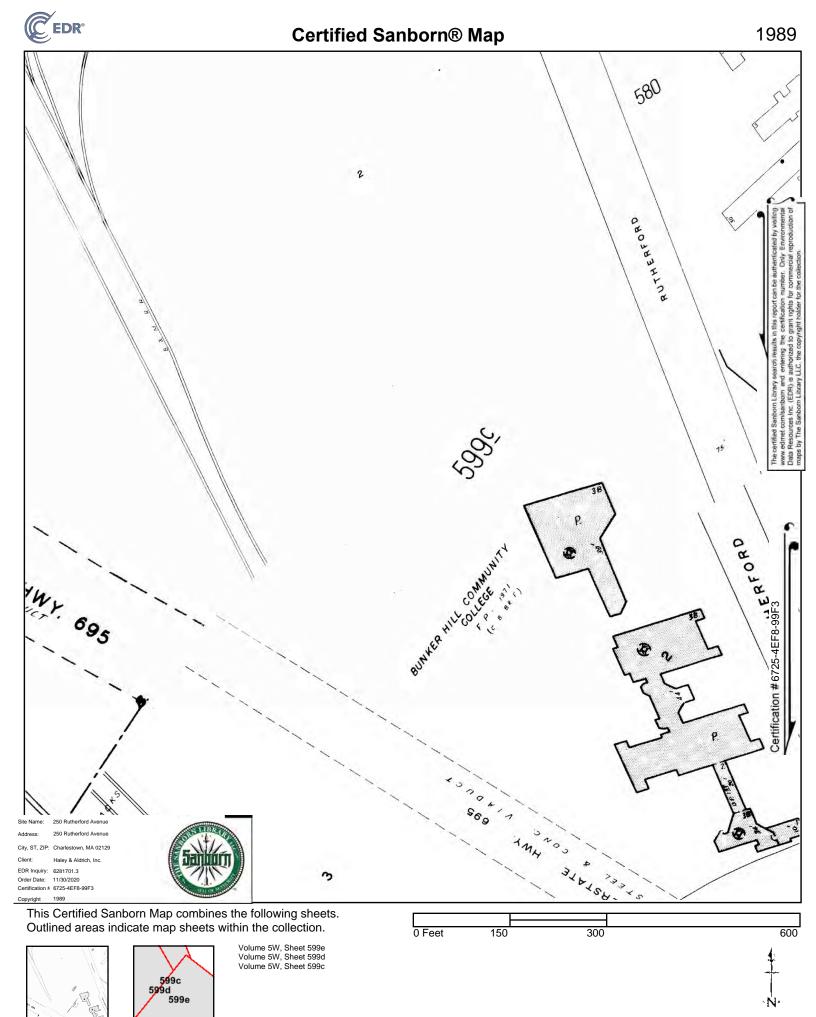

Volume 5, Sheet 171 1888

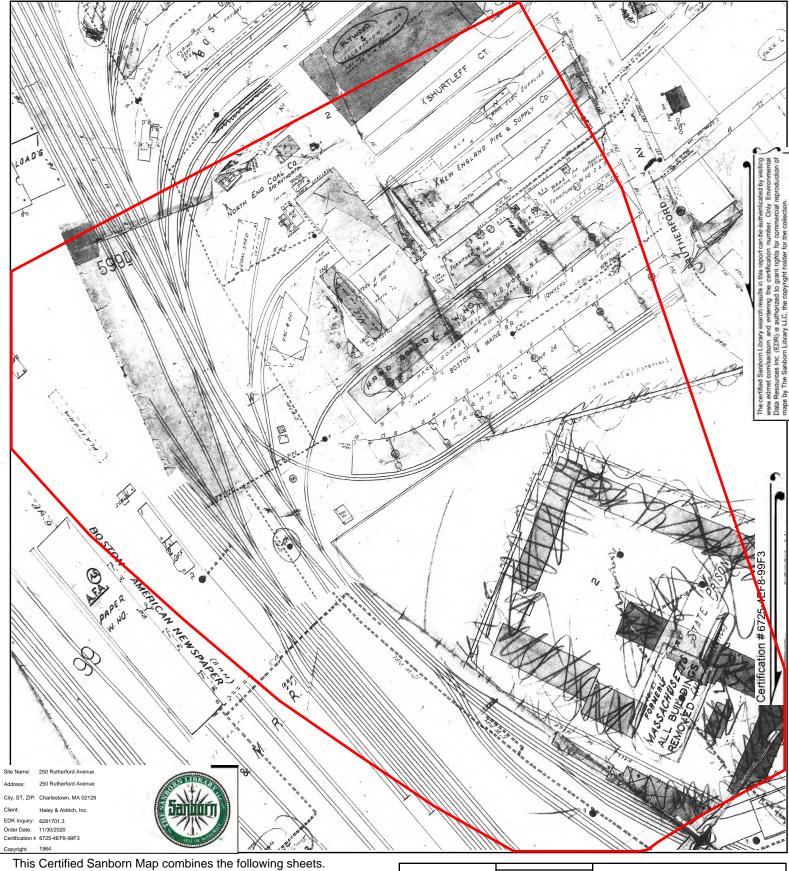


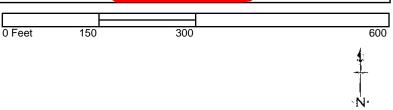

Volume 5, Sheet 178 1888



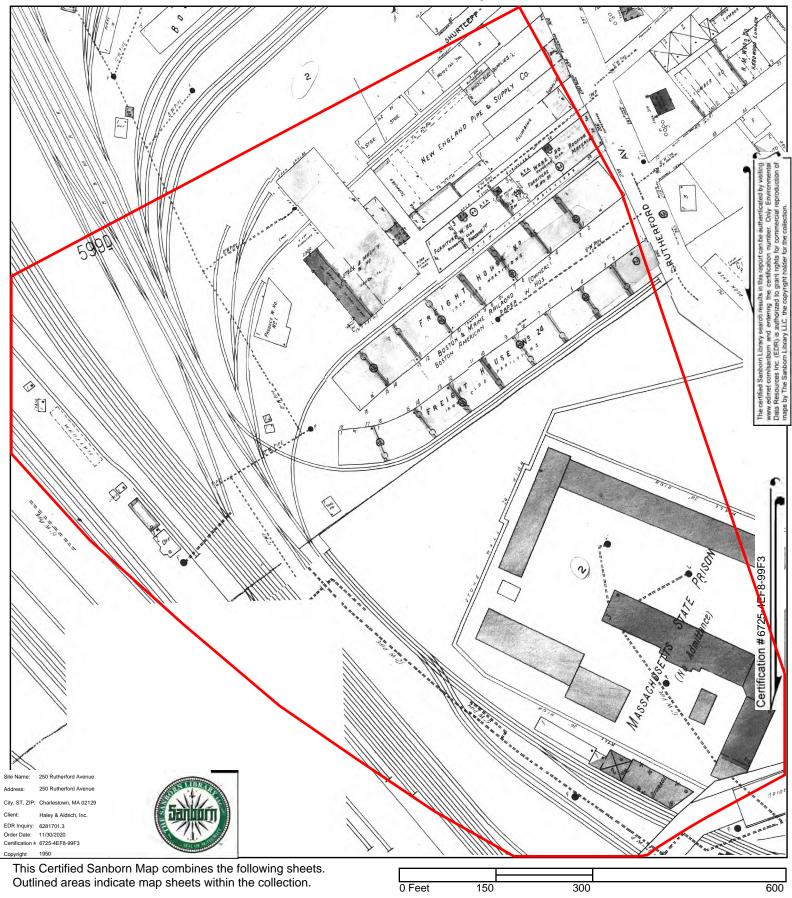






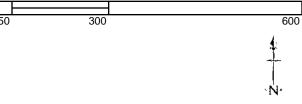


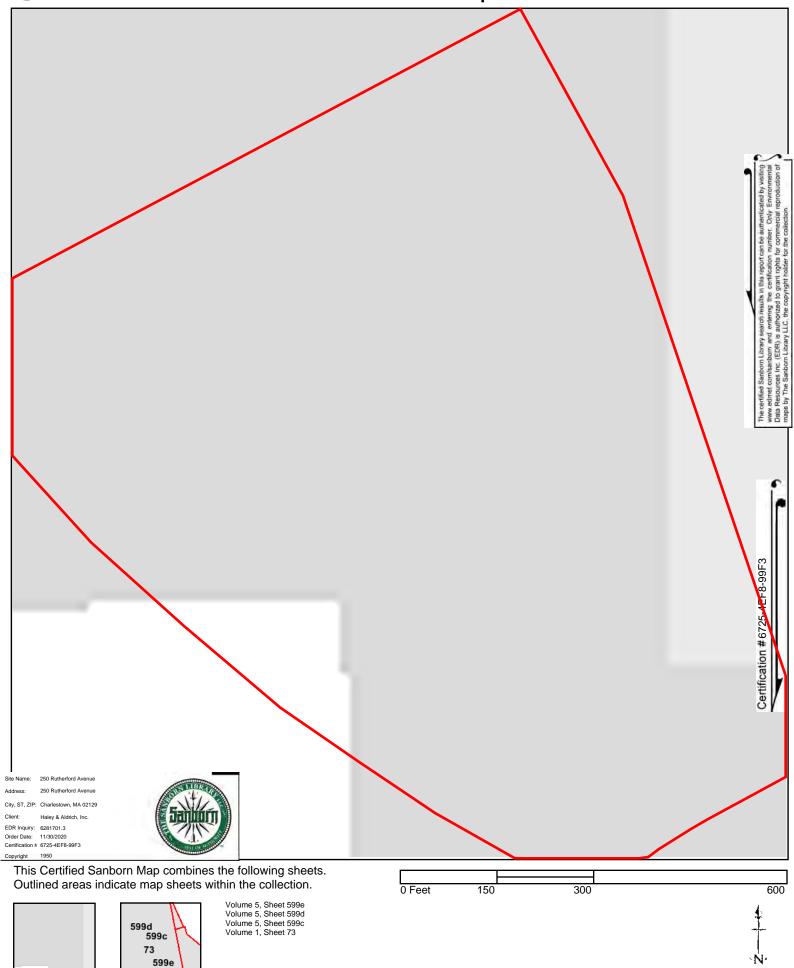
Outlined areas indicate map sheets within the collection.

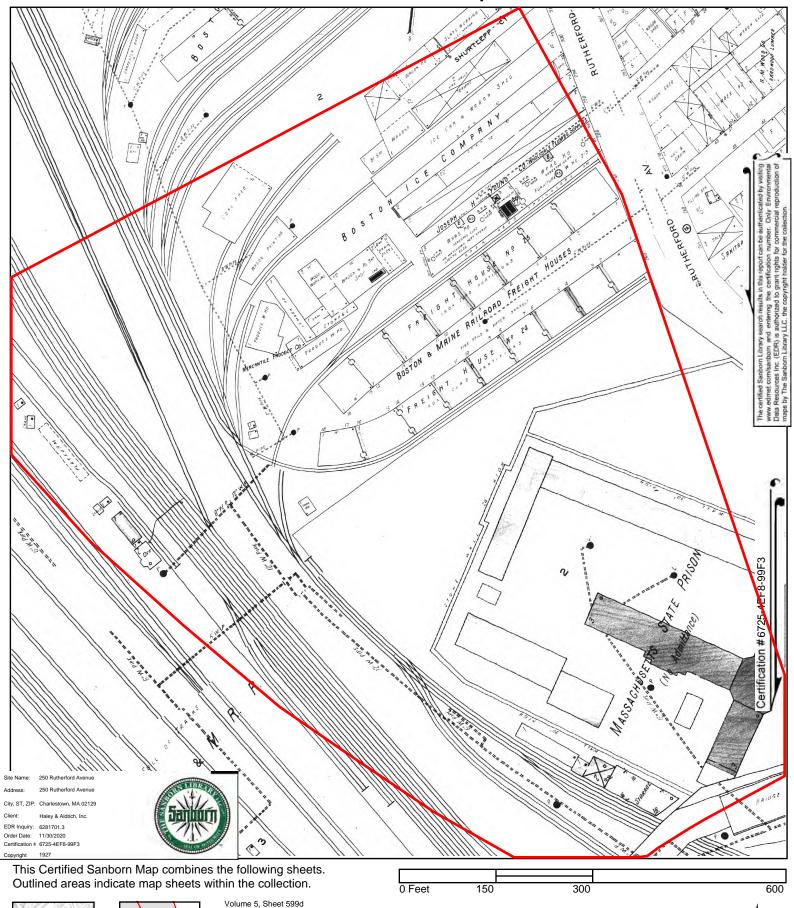


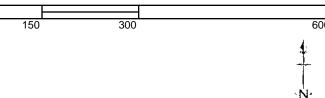
Volume 5W, Sheet 599e Volume 5W, Sheet 599d Volume 5W, Sheet 599c

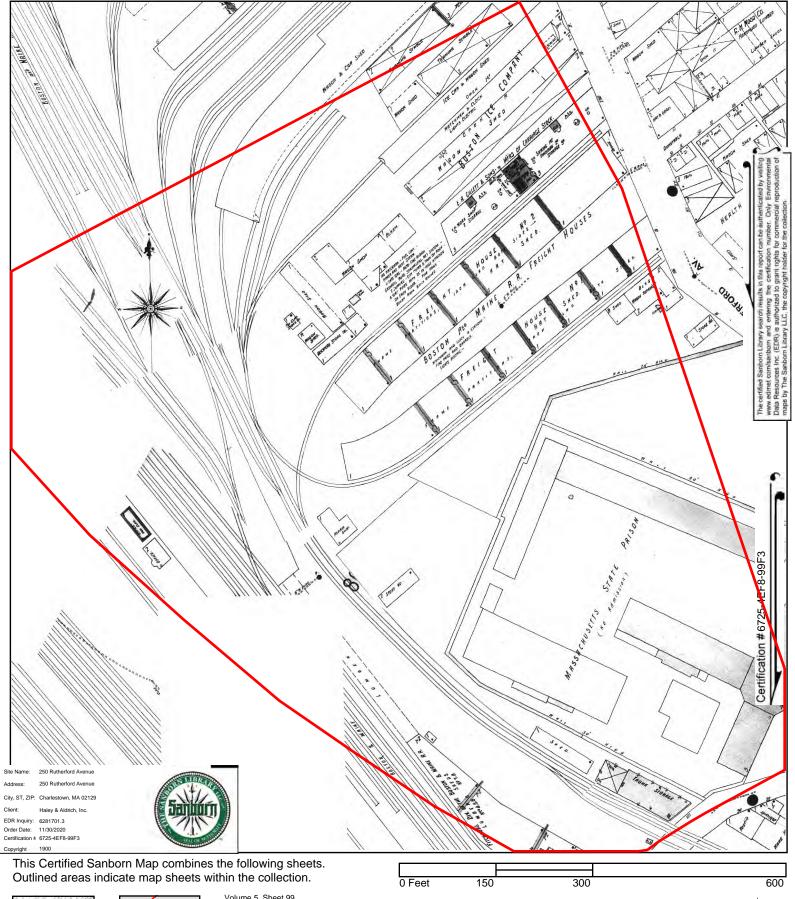
1964

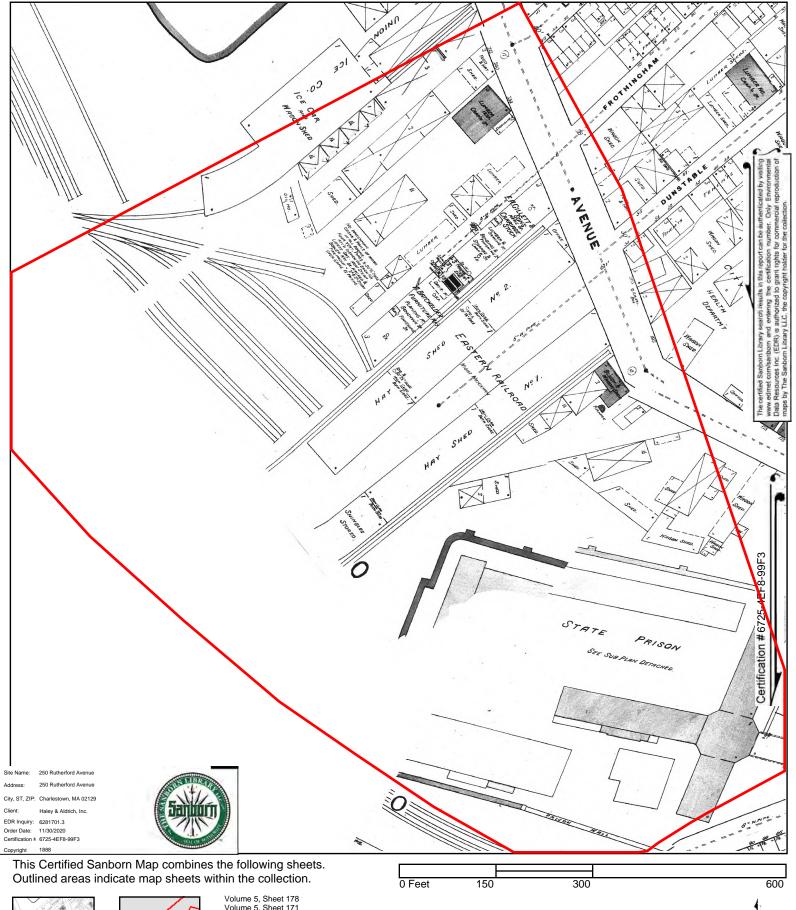












Volume 5, Sheet 99 Volume 5, Sheet 82 Volume 5, Sheet 80 Volume 5, Sheet 79

Volume 5, Sheet 178 Volume 5, Sheet 171 Volume 5, Sheet 170 Volume 5, Sheet 171 **APPENDIX C**

Laboratory Data Reports

ANALYTICAL REPORT

Lab Number:	L2157842
Client:	Haley & Aldrich, Inc. 465 Medford Street, Suite 2200 Charlestown, MA 02129-1400
ATTN:	Heather Ballantyne
Phone:	(617) 886-3061
Project Name:	BHCC-NEW ACADEMIC BUILDING
Project Number:	135301-003
Report Date:	11/02/21

The original project report/data package is held by Alpha Analytical. This report/data package is paginated and should be reproduced only in its entirety. Alpha Analytical holds no responsibility for results and/or data that are not consistent with the original.

Certifications & Approvals: MA (M-MA086), NH NELAP (2064), CT (PH-0574), IL (200077), ME (MA00086), MD (348), NJ (MA935), NY (11148), NC (25700/666), PA (68-03671), RI (LAO00065), TX (T104704476), VT (VT-0935), VA (460195), USDA (Permit #P330-17-00196).

Eight Walkup Drive, Westborough, MA 01581-1019 508-898-9220 (Fax) 508-898-9193 800-624-9220 - www.alphalab.com

Serial	No:11022118:47
--------	----------------

Project Name:	BHCC-NEW ACADEMIC BUILDING
Project Number:	135301-003

 Lab Number:
 L2157842

 Report Date:
 11/02/21

Alpha Sample ID	Client ID	Matrix	Sample Location	Collection Date/Time	Receive Date
L2157842-01	HA20-6(OW)	WATER	BHCC, CHARLSTOWN, MA	10/21/21 13:35	10/21/21

Project Name: BHCC-NEW ACADEMIC BUILDING Project Number: 135301-003

 Lab Number:
 L2157842

 Report Date:
 11/02/21

Case Narrative

The samples were received in accordance with the Chain of Custody and no significant deviations were encountered during the preparation or analysis unless otherwise noted. Sample Receipt, Container Information, and the Chain of Custody are located at the back of the report.

Results contained within this report relate only to the samples submitted under this Alpha Lab Number and meet NELAP requirements for all NELAP accredited parameters unless otherwise noted in the following narrative. The data presented in this report is organized by parameter (i.e. VOC, SVOC, etc.). Sample specific Quality Control data (i.e. Surrogate Spike Recovery) is reported at the end of the target analyte list for each individual sample, followed by the Laboratory Batch Quality Control at the end of each parameter. Tentatively Identified Compounds (TICs), if requested, are reported for compounds identified to be present and are not part of the method/program Target Compound List, even if only a subset of the TCL are being reported. If a sample was re-analyzed or re-extracted due to a required quality control corrective action and if both sets of data are reported, the Laboratory ID of the re-analysis or re-extraction is designated with an "R" or "RE", respectively.

When multiple Batch Quality Control elements are reported (e.g. more than one LCS), the associated samples for each element are noted in the grey shaded header line of each data table. Any Laboratory Batch, Sample Specific % recovery or RPD value that is outside the listed Acceptance Criteria is bolded in the report. In reference to questions H (CAM) or 4 (RCP) when "NO" is checked, the performance criteria for CAM and RCP methods allow for some quality control failures to occur and still be within method compliance. In these instances, the specific failure is not narrated but noted in the associated QC Outlier Summary Report, located directly after the Case Narrative. QC information is also incorporated in the Data Usability Assessment table (Format 11) of our Data Merger tool, where it can be reviewed in conjunction with the sample result, associated regulatory criteria and any associated data usability implications.

Soil/sediments, solids and tissues are reported on a dry weight basis unless otherwise noted. Definitions of all data qualifiers and acronyms used in this report are provided in the Glossary located at the back of the report.

HOLD POLICY - For samples submitted on hold, Alpha's policy is to hold samples (with the exception of Air canisters) free of charge for 21 calendar days from the date the project is completed. After 21 calendar days, we will dispose of all samples submitted including those put on hold unless you have contacted your Alpha Project Manager and made arrangements for Alpha to continue to hold the samples. Air canisters will be disposed after 3 business days from the date the project is completed.

Please contact Project Management at 800-624-9220 with any questions.

Project Name: BHCC-NEW ACADEMIC BUILDING Project Number: 135301-003
 Lab Number:
 L2157842

 Report Date:
 11/02/21

Case Narrative (continued)

Report Submission

November 02, 2021: This final report includes the results of all requested analyses. October 27, 2021: This is a preliminary report.

The analysis of Ethanol was subcontracted. A copy of the laboratory report is included as an addendum. Please note: This data is only available in PDF format and is not available on Data Merger.

Hexavalent Chromium

L2157842-01: The sample has an elevated detection limit due to the dilution required by the sample matrix.

I, the undersigned, attest under the pains and penalties of perjury that, to the best of my knowledge and belief and based upon my personal inquiry of those responsible for providing the information contained in this analytical report, such information is accurate and complete. This certificate of analysis is not complete unless this page accompanies any and all pages of this report.

Authorized Signature:

Jufani Morrissey - Tiffani Morrissey

Title: Technical Director/Representative

Date: 11/02/21

ORGANICS

VOLATILES

		Serial_No	o:11022118:47
Project Name:	BHCC-NEW ACADEMIC BUILDING	Lab Number:	L2157842
Project Number:	135301-003	Report Date:	11/02/21
	SAMPLE RESULTS		
Lab ID: Client ID: Sample Location:	L2157842-01 HA20-6(OW) BHCC, CHARLSTOWN, MA	Date Collected: Date Received: Field Prep:	10/21/21 13:35 10/21/21 Refer to COC
Sample Depth: Matrix: Analytical Method: Analytical Date: Analyst:	Water 128,624.1 10/22/21 09:50 KJD		

Parameter	Result	Qualifier Units	RL	MDL	Dilution Factor
Volatile Organics by GC/MS - We	estborough Lab				
Methylene chloride	ND	ug/l	1.0		1
1,1-Dichloroethane	ND	ug/l	1.5		1
Carbon tetrachloride	ND	ug/l	1.0		1
1,1,2-Trichloroethane	ND	ug/l	1.5		1
Tetrachloroethene	ND	ug/l	1.0		1
1,2-Dichloroethane	ND	ug/l	1.5		1
1,1,1-Trichloroethane	ND	ug/l	2.0		1
Benzene	ND	ug/l	1.0		1
Toluene	ND	ug/l	1.0		1
Ethylbenzene	ND	ug/l	1.0		1
Vinyl chloride	ND	ug/l	1.0		1
1,1-Dichloroethene	ND	ug/l	1.0		1
cis-1,2-Dichloroethene	ND	ug/l	1.0		1
Trichloroethene	ND	ug/l	1.0		1
1,2-Dichlorobenzene	ND	ug/l	5.0		1
1,3-Dichlorobenzene	ND	ug/l	5.0		1
1,4-Dichlorobenzene	ND	ug/l	5.0		1
p/m-Xylene	ND	ug/l	2.0		1
o-xylene	ND	ug/l	1.0		1
Xylenes, Total	ND	ug/l	1.0		1
Acetone	ND	ug/l	10		1
Methyl tert butyl ether	ND	ug/l	10		1
Tert-Butyl Alcohol	ND	ug/l	100		1
Tertiary-Amyl Methyl Ether	ND	ug/l	20		1

					Serial_No:11022118:47			
Project Name:	BHCC-NEW ACADEMIC E		G		Lab Num	ber:	L2157842	
Project Number:	135301-003				Report D	ate:	11/02/21	
		SAMP	LE RESULT	S				
Lab ID:	L2157842-01				Date Collec	cted:	10/21/21 13:35	
Client ID:	HA20-6(OW)				Date Recei	ved:	10/21/21	
Sample Location:	BHCC, CHARLSTOWN, I	MA			Field Prep:		Refer to COC	
Sample Depth:								
Parameter	I	Result	Qualifier	Units	RL	MDL	Dilution Factor	
Volatile Organics b	oy GC/MS - Westborough Lat	C						
Surrogate				% Recoverv	Qualifier		ceptance Criteria	

% Recovery	Qualifier	Criteria	
107		60-140	
111		60-140	
96		60-140	
	107 111	107 111	% Recovery Qualifier Criteria 107 60-140 111 60-140

		Serial_No:11022118:4			
Project Name:	BHCC-NEW ACADEMIC BUILDING	Lab Number:	L2157842		
Project Number:	135301-003	Report Date:	11/02/21		
	SAMPLE RESULTS				
Lab ID:	L2157842-01	Date Collected:	10/21/21 13:35		
Client ID:	HA20-6(OW)	Date Received:	10/21/21		
Sample Location:	BHCC, CHARLSTOWN, MA	Field Prep:	Refer to COC		
Sample Depth:					
Matrix:	Water				
Analytical Method:	128,624.1-SIM				

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
Volatile Organics by GC/MS-SIM - West	borough Lab					
,4-Dioxane	ND		ug/l	5.0		1
Surrogate			% Recovery	Qualifier		eptance iteria
Fluorobenzene			109		6	60-140
4-Bromofluorobenzene			85		6	60-140

Analytical Date: Analyst:

10/22/21 20:41

GΤ

		Serial_No	p:11022118:47
Project Name:	BHCC-NEW ACADEMIC BUILDING	Lab Number:	L2157842
Project Number:	135301-003	Report Date:	11/02/21
	SAMPLE RESULTS		
Lab ID:	L2157842-01	Date Collected:	10/21/21 13:35
Client ID:	HA20-6(OW)	Date Received:	10/21/21
Sample Location:	BHCC, CHARLSTOWN, MA	Field Prep:	Refer to COC
Sample Depth: Matrix: Analytical Method: Analytical Date: Analyst:	Water 14,504.1 10/26/21 15:05 AMM	Extraction Method Extraction Date:	d: EPA 504.1 10/26/21 12:15

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	Column
Microextractables by GC - Westborough Lab							
1,2-Dibromoethane	ND		ug/l	0.010		1	А

Project Name: BHCC-NEW ACADEMIC BUILDING

Project Number: 135301-003

 Lab Number:
 L2157842

 Report Date:
 11/02/21

Method Blank Analysis Batch Quality Control

Analytical Method:128,624.1Analytical Date:10/22/21 04:59Analyst:TAB

arameter	Result	Qualifier Units	RL	MDL
olatile Organics by GC/MS - V	Vestborough Lab	for sample(s): 01	Batch:	WG1562462-4
Methylene chloride	ND	ug/l	1.0	
1,1-Dichloroethane	ND	ug/l	1.5	-
Carbon tetrachloride	ND	ug/l	1.0	
1,1,2-Trichloroethane	ND	ug/l	1.5	
Tetrachloroethene	ND	ug/l	1.0	
1,2-Dichloroethane	ND	ug/l	1.5	
1,1,1-Trichloroethane	ND	ug/l	2.0	
Benzene	ND	ug/l	1.0	
Toluene	ND	ug/l	1.0	
Ethylbenzene	ND	ug/l	1.0	
Vinyl chloride	ND	ug/l	1.0	
1,1-Dichloroethene	ND	ug/l	1.0	
cis-1,2-Dichloroethene	ND	ug/l	1.0	
Trichloroethene	ND	ug/l	1.0	
1,2-Dichlorobenzene	ND	ug/l	5.0	
1,3-Dichlorobenzene	ND	ug/l	5.0	
1,4-Dichlorobenzene	ND	ug/l	5.0	
p/m-Xylene	ND	ug/l	2.0	
o-xylene	ND	ug/l	1.0	
Xylenes, Total	ND	ug/l	1.0	
Acetone	ND	ug/l	10	
Methyl tert butyl ether	ND	ug/l	10	
Tert-Butyl Alcohol	ND	ug/l	100	
Tertiary-Amyl Methyl Ether	ND	ug/l	20	-

Project Name:	BHCC-NEW ACADEMIC BUILDING	L
Project Number:	135301-003	R

Lab Number:	L2157842
Report Date:	11/02/21

Method Blank Analysis Batch Quality Control

Analytical Method:128,624.1Analytical Date:10/22/21 04:59Analyst:TAB

Parameter	Result	Qualifier	Units	RL	MDL	
Volatile Organics by GC/MS -	Westborough La	b for sampl	le(s): 01	Batch:	WG1562462-4	

		Acceptance		
Surrogate	%Recovery	Qualifier Criteria		
Pentafluorobenzene	101	60-140		
Fluorobenzene	111	60-140		
4-Bromofluorobenzene	99	60-140		

Project Name:	BHCC-NEW ACADEMIC BUILDING
Project Number:	135301-003

Lab Number:	L2157842
Report Date:	11/02/21

Method Blank Analysis Batch Quality Control

Analytical Method:128,624.1-SIMAnalytical Date:10/22/21 15:36Analyst:GT

Parameter	Result	Qualifier	Units		RL	MDL	
Volatile Organics by GC/MS-SIM -	Westborough	Lab for s	ample(s):	01	Batch:	WG1562666-4	
1,4-Dioxane	ND		ug/l		5.0		

Surrogate	%Recovery	Acceptance Criteria
Fluorobenzene	106	60-140
4-Bromofluorobenzene	89	60-140

Project Name:	BHCC-NEW ACADEMIC BUILDING	Lab Number:	L2157842
Project Number:	135301-003	Report Date:	11/02/21
	Method Blank Analysis Batch Quality Control		
Analytical Method: Analytical Date: Analyst:	14,504.1 10/26/21 13:25 AMM	Extraction Method: Extraction Date:	EPA 504.1 10/26/21 12:15

Parameter	Result	Qualifier	Units	RL	MDL	
Microextractables by GC - V	Westborough Lab fo	or sample(s)): 01	Batch: WG156	63178-1	
1,2-Dibromoethane	ND		ug/l	0.010		А

Batch Quality Control

Project Name: BHCC-NEW ACADEMIC BUILDING

Project Number: 135301-003

Lab Number: L2157842 Report Date: 11/02/21

LCSD LCS %Recovery RPD %Recovery RPD %Recovery Limits Limits Parameter Qual Qual Qual Volatile Organics by GC/MS - Westborough Lab Associated sample(s): 01 Batch: WG1562462-3 Methylene chloride 110 60-140 28 _ -120 1,1-Dichloroethane 50-150 49 --Carbon tetrachloride 130 70-130 41 --100 70-130 45 1,1,2-Trichloroethane --105 70-130 39 Tetrachloroethene --1.2-Dichloroethane 125 70-130 49 --125 70-130 36 1.1.1-Trichloroethane --Benzene 130 65-135 61 --Toluene 120 70-130 41 --Ethylbenzene 120 60-140 63 --66 Vinyl chloride 105 5-195 --32 1,1-Dichloroethene 110 50-150 -cis-1,2-Dichloroethene 115 60-140 30 --65-135 48 Trichloroethene 115 --1,2-Dichlorobenzene 105 65-135 57 --1,3-Dichlorobenzene 105 70-130 43 --57 1,4-Dichlorobenzene 110 65-135 -p/m-Xylene 60-140 30 110 --60-140 30 o-xylene 110 --Acetone 108 40-160 30 --Methyl tert butyl ether 105 60-140 30 _ -Tert-Butyl Alcohol 30 110 60-140 --125 Tertiary-Amyl Methyl Ether 60-140 30 --

Project Name:	BHCC-NEW ACADEMIC BUILDING	Batch Quality Control	Lab Number:	L2157842
Project Number:	135301-003		Report Date:	11/02/21

Parameter	LCS %Recovery	Qual	LCSD %Recovery	Qual	%Recovery Limits	RPD	Qual	RPD Limits	
Volatile Organics by GC/MS - Westborough I	_ab Associated	sample(s):	01 Batch: WG1	562462-3					

Surrogate	LCS %Recovery Qual	LCSD %Recovery Qua	Acceptance I Criteria
Pentafluorobenzene	103		60-140
Fluorobenzene	109		60-140
4-Bromofluorobenzene	97		60-140

Project Name:	BHCC-NEW ACADEMIC BUILDING	Batch Quality Control	Lab Number:	L2157842
Project Number:	135301-003		Report Date:	11/02/21

Parameter	LCS %Recovery	Qual	-	SD covery	Qual	%Recovery Limits	RPD	Qual	RPD Limits	
Volatile Organics by GC/MS-SIM - Westboro	ugh Lab Associat	ed sample(s):	01	Batch:	WG1562666-3	3				
1,4-Dioxane	112			-		60-140	-		20	

Surrogate	LCS	LCSD	Acceptance
	%Recovery Qual	%Recovery Qual	Criteria
Fluorobenzene	106		60-140
4-Bromofluorobenzene	91		60-140

Project Name:	BHCC-NEW ACADEMIC BUILDING Batch Quality Control						Lab Number:		L2157842	
Project Number:	135301-003						Repo	ort Date:	11/02/2	1
		LCS		LCSD		%Recovery			RPD	
Parameter		%Recovery	Qual	%Recovery	Qual	Limits	RPD	Qual	Limits	Column

1,2-Dibromoethane	96	-	80-120	-	А

Matrix Spike Analysis

				Ba	tch Quality Contro	ol			
Project Name:	BHCC-NEW AG	CADEMIC B	UILDING	24			Lab Number:	L2157842	
Project Number:	135301-003						Report Date:	11/02/21	
	Nativo	MS	MS	MS	MSD	MSD	Pacavary	PPD	

Parameter	Native Sample	MS Added	MS Found	MS %Recovery	Qual	MSD Found	MSD %Recovery	l Qual	Recovery Limits	RPD	Qual	RPD Limits	<u>Colum</u> n
Microextractables by GC - V	Vestborough Lab	Associate	d sample(s): 0	01 QC Batch	ID: WG15	63178-3	QC Sample: I	_215744	7-02 Clie	ent ID:	MS Samp	ole	
1,2-Dibromoethane	ND	0.249	0.225	90		-	-		80-120	-		20	А
1,2-Dibromo-3-chloropropane	ND	0.249	0.200	80		-	-		80-120	-		20	А
1,2,3-Trichloropropane	ND	0.249	0.209	84		-	-		80-120	-		20	А

SEMIVOLATILES

		Serial_No	0:11022118:47
Project Name:	BHCC-NEW ACADEMIC BUILDING	Lab Number:	L2157842
Project Number:	135301-003	Report Date:	11/02/21
	SAMPLE RESULTS		
Lab ID:	L2157842-01	Date Collected:	10/21/21 13:35
Client ID:	HA20-6(OW)	Date Received:	10/21/21
Sample Location:	BHCC, CHARLSTOWN, MA	Field Prep:	Refer to COC
Sample Depth:			
Matrix:	Water	Extraction Method	l: EPA 625.1
Analytical Method: Analytical Date: Analyst:	129,625.1 10/25/21 10:50 SZ	Extraction Date:	10/24/21 04:50

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor			
Semivolatile Organics by GC/MS - Westborough Lab									
Bis(2-ethylhexyl)phthalate	ND		ug/l	2.20		1			
Butyl benzyl phthalate	ND		ug/l	5.00		1			
Di-n-butylphthalate	ND		ug/l	5.00		1			
Di-n-octylphthalate	ND		ug/l	5.00		1			
Diethyl phthalate	ND		ug/l	5.00		1			
Dimethyl phthalate	ND		ug/l	5.00		1			

Surrogate	% Recovery	Acceptance Qualifier Criteria	
Nitrobenzene-d5	83	42-122	
2-Fluorobiphenyl	84	46-121	
4-Terphenyl-d14	91	47-138	

		Serial_No	Serial_No:11022118:47					
Project Name:	BHCC-NEW ACADEMIC BUILDING	Lab Number:	L2157842					
Project Number:	135301-003	Report Date:	11/02/21					
SAMPLE RESULTS								
Lab ID:	L2157842-01	Date Collected:	10/21/21 13:35					
Client ID:	HA20-6(OW)	Date Received:	10/21/21					
Sample Location:	BHCC, CHARLSTOWN, MA	Field Prep:	Refer to COC					
Sample Depth:								
Matrix:	Water	Extraction Method	Extraction Method: EPA 625.1					
Analytical Method:	129,625.1-SIM	Extraction Date:	10/24/21 04:54					
Analytical Date:	10/27/21 15:20							
Analyst:	WLL							

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor		
Semivolatile Organics by GC/MS-SIM - Westborough Lab								
Acenaphthene	ND			0.100		1		
Fluoranthene	0.236		ug/l	0.100		1		
Naphthalene	0.230 ND		ug/l	0.100		1		
	0.113		ug/l	0.100		1		
Benzo(a)anthracene	ND		ug/l	0.100		1		
Benzo(a)pyrene	0.108		ug/l	0.100		1		
Benzo(b)fluoranthene	0.108 ND		ug/l	0.100		1		
Benzo(k)fluoranthene Chrysene	0.118		ug/l	0.100		1		
	ND		ug/l	0.100		1		
Acenaphthylene Anthracene	ND		ug/l	0.100		1		
			ug/l					
Benzo(ghi)perylene	ND ND		ug/l	0.100		1		
Fluorene			ug/l	0.100				
Phenanthrene	0.143		ug/l	0.100		1		
Dibenzo(a,h)anthracene	ND		ug/l	0.100		1		
Indeno(1,2,3-cd)pyrene	ND		ug/l	0.100		1		
Pyrene	0.211		ug/l	0.100		1		
Pentachlorophenol	ND		ug/l	1.00		1		

Surrogate	% Recovery	Acceptance Qualifier Criteria	
2-Fluorophenol	60	25-87	
Phenol-d6	47	16-65	
Nitrobenzene-d5	91	42-122	
2-Fluorobiphenyl	78	46-121	
2,4,6-Tribromophenol	101	45-128	
4-Terphenyl-d14	77	47-138	

Project Name:	BHCC-NEW ACADEMIC BUILDING	Lab Number:	L2157842		
Project Number:	135301-003	Report Date:	11/02/21		
Method Blank Analysis					

Method Blank Analysis Batch Quality Control

Analytical Method:	129,625.1	Extraction Method:	EPA 625.1
Analytical Date:	10/25/21 09:19	Extraction Date:	10/24/21 04:50
Analyst:	SZ		

Parameter	Result	Qualifier Units	RL	MDL	
Semivolatile Organics by GC/MS - \	Vestborough	Lab for sample(s)	: 01 Batch:	WG1562387-1	
Bis(2-ethylhexyl)phthalate	ND	ug/l	2.20		
Butyl benzyl phthalate	ND	ug/l	5.00		
Di-n-butylphthalate	ND	ug/l	5.00		
Di-n-octylphthalate	ND	ug/l	5.00		
Diethyl phthalate	ND	ug/l	5.00		
Dimethyl phthalate	ND	ug/l	5.00		

		A	Acceptance
Surrogate	%Recovery	Qualifier	Criteria
Nitrobenzene-d5	74		42-122
2-Fluorobiphenyl	74		46-121
4-Terphenyl-d14	80		47-138

Project Name:	BHCC-NEW ACADEMIC BUILDING	Lab Number:	L2157842		
Project Number:	135301-003	Report Date:	11/02/21		
Method Blank Analysis					

Method Blank Analysis Batch Quality Control

Analytical Method:	129,625.1-SIM	Extraction Method:	EPA 625.1
Analytical Date:	10/24/21 21:45	Extraction Date:	10/24/21 04:54
Analyst:	DV		

arameter	Result	Qualifier	Units	RL	MDL
emivolatile Organics by GC/	MS-SIM - Westbo	rough Lab	for sample	e(s): 01	Batch: WG1562388-1
Acenaphthene	ND		ug/l	0.100	
Fluoranthene	ND		ug/l	0.100	
Naphthalene	ND		ug/l	0.100	
Benzo(a)anthracene	ND		ug/l	0.100	
Benzo(a)pyrene	ND		ug/l	0.100	
Benzo(b)fluoranthene	ND		ug/l	0.100	
Benzo(k)fluoranthene	ND		ug/l	0.100	
Chrysene	ND		ug/l	0.100	
Acenaphthylene	ND		ug/l	0.100	
Anthracene	ND		ug/l	0.100	
Benzo(ghi)perylene	ND		ug/l	0.100	
Fluorene	ND		ug/l	0.100	
Phenanthrene	ND		ug/l	0.100	
Dibenzo(a,h)anthracene	ND		ug/l	0.100	
Indeno(1,2,3-cd)pyrene	ND		ug/l	0.100	
Pyrene	ND		ug/l	0.100	
Pentachlorophenol	ND		ug/l	1.00	

Surrogato	%Recovery Qua	Acceptance alifier Criteria
Surrogate	%Recovery Qua	
2-Fluorophenol	61	25-87
Phenol-d6	50	16-65
Nitrobenzene-d5	91	42-122
2-Fluorobiphenyl	76	46-121
2,4,6-Tribromophenol	91	45-128
4-Terphenyl-d14	77	47-138

Lab Control Sample Analysis Batch Quality Control

EW ACADEMIC BUILDING

Project Name: BHCC-NEW ACADEMIC BUILDING

Project Number: 135301-003

 Lab Number:
 L2157842

 Report Date:
 11/02/21

LCS LCSD %Recovery RPD %Recovery Parameter %Recovery Qual Limits RPD Qual Limits Qual Semivolatile Organics by GC/MS - Westborough Lab Associated sample(s): 01 Batch: WG1562387-2 110 Bis(2-ethylhexyl)phthalate 29-137 82 --Butyl benzyl phthalate 90 1-140 60 _ -Di-n-butylphthalate 8-120 98 47 --Di-n-octylphthalate 105 19-132 69 --Diethyl phthalate 92 1-120 100 --Dimethyl phthalate 1-120 96 183 --

Surrogate	LCS %Recovery Qual	LCSD %Recovery	Qual	Acceptance Criteria
Nitrobenzene-d5	85			42-122
2-Fluorobiphenyl	85			46-121
4-Terphenyl-d14	91			47-138

Lab Control Sample Analysis

Batch Quality Control

Project Number: 135301-003

 Lab Number:
 L2157842

 Report Date:
 11/02/21

LCSD LCS %Recovery RPD %Recovery %Recovery Limits RPD Limits Qual Qual Parameter Qual Semivolatile Organics by GC/MS-SIM - Westborough Lab Associated sample(s): 01 Batch: WG1562388-2 Acenaphthene 80 60-132 30 --Fluoranthene 93 43-121 30 --Naphthalene 75 36-120 30 --Benzo(a)anthracene 95 42-133 30 --Benzo(a)pyrene 94 32-148 30 --Benzo(b)fluoranthene 42-140 30 96 --Benzo(k)fluoranthene 96 25-146 30 --30 Chrysene 86 44-140 --Acenaphthylene 83 54-126 30 --87 43-120 30 Anthracene --90 30 Benzo(ghi)perylene 1-195 --Fluorene 30 86 70-120 --30 Phenanthrene 83 65-120 --Dibenzo(a,h)anthracene 92 1-200 30 --30 Indeno(1,2,3-cd)pyrene 93 1-151 --30 Pyrene 92 70-120 _ -Pentachlorophenol 93 38-152 30 --

Lab Control Sample Analysis Batch Quality Control

Project Name: BHCC-NEW ACADEMIC BUILDING

Project Number: 135301-003

 Lab Number:
 L2157842

 Report Date:
 11/02/21

	LCS		LCSD		%Recovery			RPD	
Parameter	%Recovery	Qual	%Recovery	Qual	Limits	RPD	Qual	Limits	
Semivolatile Organics by GC/MS-SIM - Westborough Lab Associated sample(s); 01 Batch: WG1562388-2									

Surrogate	LCS %Recovery Qual	LCSD %Recovery	Acceptance Qual Criteria	
2-Fluorophenol	58		25-87	
Phenol-d6	47		16-65	
Nitrobenzene-d5	84		42-122	
2-Fluorobiphenyl	69		46-121	
2,4,6-Tribromophenol	100		45-128	
4-Terphenyl-d14	79		47-138	

PCBS

		Serial_No	:11022118:47
Project Name:	BHCC-NEW ACADEMIC BUILDING	Lab Number:	L2157842
Project Number:	135301-003	Report Date:	11/02/21
	SAMPLE RESULTS		
Lab ID:	L2157842-01	Date Collected:	10/21/21 13:35
Client ID:	HA20-6(OW)	Date Received:	10/21/21
Sample Location:	BHCC, CHARLSTOWN, MA	Field Prep:	Refer to COC
Sample Depth:			
Matrix:	Water	Extraction Method	I: EPA 608.3
Analytical Method:	127,608.3	Extraction Date:	10/24/21 00:38
Analytical Date:	10/25/21 01:12	Cleanup Method:	EPA 3665A
Analyst:	JM	Cleanup Date:	10/24/21
,	•	Cleanup Method:	EPA 3660B
		Cleanup Date:	10/24/21

Result	Qualifier	Units	RL	MDL	Dilution Factor	Column				
Polychlorinated Biphenyls by GC - Westborough Lab										
ND		ug/l	0.250		1	A				
ND		ug/l	0.250		1	А				
ND		ug/l	0.250		1	А				
ND		ug/l	0.250		1	А				
ND		ug/l	0.250		1	А				
ND		ug/l	0.250		1	А				
ND		ug/l	0.200		1	А				
	stborough Lab ND ND ND ND ND ND ND	stborough Lab ND ND ND ND ND ND ND ND	ND ug/l ND ug/l	ND ug/l 0.250 ND ug/l 0.250	ND ug/l 0.250 ND ug/l 0.250	ND ug/l 0.250 1 ND ug/l 0.250 1				

Surrogate	% Recovery	Qualifier	Acceptance Criteria	Column
2,4,5,6-Tetrachloro-m-xylene	67		37-123	В
Decachlorobiphenyl	63		38-114	В
2,4,5,6-Tetrachloro-m-xylene	70		37-123	А
Decachlorobiphenyl	76		38-114	А

Project Name:	BHCC-NEW ACADEMIC BUILDING	Lab Number:	L2157842
Project Number:	135301-003	Report Date:	11/02/21
	Mothod Plank Analysis		

Method Blank Analysis Batch Quality Control

Analytical Method:	
Analytical Date:	
Analyst:	

127,608.3 10/25/21 00:07 JM Extraction Method:EPA 608.3Extraction Date:10/24/21 00:38Cleanup Method:EPA 3665ACleanup Date:10/24/21Cleanup Method:EPA 3660BCleanup Date:10/24/21

Parameter	Result	Qualifier	Units	RL		MDL	Column
Polychlorinated Biphenyls by GC	- Westborough	Lab for s	ample(s):	01 B	atch:	WG1562367-	·1
Aroclor 1016	ND		ug/l	0.250	C		А
Aroclor 1221	ND		ug/l	0.250	C		А
Aroclor 1232	ND		ug/l	0.250	C		А
Aroclor 1242	ND		ug/l	0.250	C		А
Aroclor 1248	ND		ug/l	0.250	C		А
Aroclor 1254	ND		ug/l	0.250	C		А
Aroclor 1260	ND		ug/l	0.200	C		А

		Acceptance			
Surrogate	%Recovery	Qualifier	Criteria	Column	
				_	
2,4,5,6-Tetrachloro-m-xylene	64		37-123	В	
Decachlorobiphenyl	71		38-114	В	
2,4,5,6-Tetrachloro-m-xylene	67		37-123	А	
Decachlorobiphenyl	86		38-114	А	

Lab Control Sample Analysis Batch Quality Control

Project Name: BHCC-NEW ACADEMIC BUILDING

Project Number: 135301-003

 Lab Number:
 L2157842

 Report Date:
 11/02/21

	LCS		LCSD		%Recovery		RPD		
Parameter	%Recovery	Qual	%Recovery	Qual	Limits	RPD	Qual	Limits	Column
Polychlorinated Biphenyls by GC - Wes	tborough Lab Associa	ted sample(s)	: 01 Batch:	WG1562367	<i>-</i> 2				
Aroclor 1016	76		-		50-140	-		36	A
Aroclor 1260	81		-		8-140	-		38	А

	LCS		LCSD		Acceptance	
Surrogate	%Recovery	Qual	%Recovery	Qual	Criteria	Column
2,4,5,6-Tetrachloro-m-xylene	55				37-123	В
Decachlorobiphenyl	70				38-114	В
2,4,5,6-Tetrachloro-m-xylene	59				37-123	A
Decachlorobiphenyl	85				38-114	A

METALS

Serial_No:11022118:47

Project Name:	BHCC-NEW ACADEMIC BUILDING	Lab Number:	L2157842
Project Number:	135301-003	Report Date:	11/02/21
	SAMPLE RESULTS		
Lab ID:	L2157842-01	Date Collected:	10/21/21 13:35
Client ID:	HA20-6(OW)	Date Received:	10/21/21
Sample Location:	BHCC, CHARLSTOWN, MA	Field Prep:	Refer to COC

Sample Depth:

Matrix:

Water

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	Date Prepared	Date Analyzed	Prep Method	Analytical Method	Analyst
Total Metals - Mans	sfield Lab										
Antimony, Total	0.00500		mg/l	0.00400		1	10/25/21 09:10	10/25/21 18:34	EPA 3005A	3,200.8	PS
Arsenic, Total	ND		mg/l	0.00100		1	10/25/21 09:10	10/25/21 18:34	EPA 3005A	3,200.8	PS
Cadmium, Total	ND		mg/l	0.00020		1	10/25/21 09:10	10/25/21 18:34	EPA 3005A	3,200.8	PS
Chromium, Total	ND		mg/l	0.00100		1	10/25/21 09:10	10/25/21 18:34	EPA 3005A	3,200.8	PS
Copper, Total	0.00129		mg/l	0.00100		1	10/25/21 09:10	10/25/21 18:34	EPA 3005A	3,200.8	PS
Iron, Total	2.06		mg/l	0.050		1	10/25/21 09:10	10/25/21 16:42	EPA 3005A	19,200.7	GD
Lead, Total	0.00153		mg/l	0.00100		1	10/25/21 09:10	10/25/21 18:34	EPA 3005A	3,200.8	PS
Mercury, Total	ND		mg/l	0.00020		1	10/25/21 13:50	10/25/21 21:07	EPA 245.1	3,245.1	AC
Nickel, Total	ND		mg/l	0.00200		1	10/25/21 09:10	10/25/21 18:34	EPA 3005A	3,200.8	PS
Selenium, Total	ND		mg/l	0.00500		1	10/25/21 09:10	10/25/21 18:34	EPA 3005A	3,200.8	PS
Silver, Total	ND		mg/l	0.00040		1	10/25/21 09:10	10/25/21 18:34	EPA 3005A	3,200.8	PS
Zinc, Total	0.01122		mg/l	0.01000		1	10/25/21 09:10	10/25/21 18:34	EPA 3005A	3,200.8	PS
Total Hardness by	SM 2340E	- Mansfiel	d Lab								
Hardness	506		mg/l	0.660	NA	1	10/25/21 09:10	10/25/21 16:42	EPA 3005A	19,200.7	GD

General Chemistry - Mansfield Lab

Chromium, Trivalent	ND	ma/l	0.050	 1	10/25/21 18:34	NA	107
		1110/1	0.000	1	10/23/21 10.34		101,

Project Name:BHCC-NEW ACADEMIC BUILDINGProject Number:135301-003

 Lab Number:
 L2157842

 Report Date:
 11/02/21

Method Blank Analysis Batch Quality Control

Parameter	Result Qualifier	Units	RL	MDL	Dilution Factor	Date Prepared	Date Analyzed	Analytical Method	
Total Metals - Mansfie	eld Lab for sample(s):	01 Batch	n: WG1	562138-	1				
Iron, Total	ND	mg/l	0.050		1	10/25/21 09:10	10/25/21 14:12	2 19,200.7	GD
Prep Information									

Digestion Method: EPA 3005A

Parameter	Result Qualifier	Units	RL	MDL	Dilution Factor	Date Prepared	Date Analyzed	Analytical Method	
Total Hardness by SM	I 2340B - Mansfield Lal	o for sam	ple(s): C	01 Bate	ch: WG156	2138-1			
Hardness	ND	mg/l	0.660	NA	1	10/25/21 09:10	10/25/21 14:12	19,200.7	GD

Prep Information

Digestion Method: EPA 3005A

Parameter	Result Qualifier	Units	RL	MDL	Dilution Factor	Date Prepared	Date Analyzed	Analytical Method	Analyst
Total Metals - Mansf	ield Lab for sample(s):	01 Batc	h: WG15	62141-	·1				
Antimony, Total	ND	mg/l	0.00400		1	10/25/21 09:10	10/25/21 15:50	3,200.8	PS
Arsenic, Total	ND	mg/l	0.00100		1	10/25/21 09:10	10/25/21 15:50	3,200.8	PS
Cadmium, Total	ND	mg/l	0.00020		1	10/25/21 09:10	10/25/21 15:50	3,200.8	PS
Chromium, Total	ND	mg/l	0.00100		1	10/25/21 09:10	10/25/21 15:50	3,200.8	PS
Copper, Total	ND	mg/l	0.00100		1	10/25/21 09:10	10/25/21 15:50	3,200.8	PS
Lead, Total	ND	mg/l	0.00100		1	10/25/21 09:10	10/25/21 15:50	3,200.8	PS
Nickel, Total	ND	mg/l	0.00200		1	10/25/21 09:10	10/25/21 15:50	3,200.8	PS
Selenium, Total	ND	mg/l	0.00500		1	10/25/21 09:10	10/25/21 15:50	3,200.8	PS
Silver, Total	ND	mg/l	0.00040		1	10/25/21 09:10	10/25/21 15:50	3,200.8	PS
Zinc, Total	ND	mg/l	0.01000		1	10/25/21 09:10	10/25/21 15:50	3,200.8	PS

Prep Information

Digestion Method: EPA 3005A

Project Name:BHCC-NEW ACADEMIC BUILDINGProject Number:135301-003

 Lab Number:
 L2157842

 Report Date:
 11/02/21

Method Blank Analysis Batch Quality Control

Parameter	Result Qualifier	Units	RL	MDL	Dilution Factor	Date Prepared	Date Analyzed	Analytica Method	
Total Metals - Mansfi	eld Lab for sample(s):	01 Batc	h: WG15	562144	-1				
Mercury, Total	ND	mg/l	0.00020		1	10/25/21 13:50	10/25/21 19:25	3,245.1	AC

Prep Information

Digestion Method: EPA 245.1

Lab Control Sample Analysis Batch Quality Control

Project Name: BHCC-NEW ACADEMIC BUILDING

Project Number: 135301-003

 Lab Number:
 L2157842

 Report Date:
 11/02/21

Parameter	LCS %Recovery	Qual	LCSD %Recovery	Qual	%Recovery Limits	RPD	Qual	RPD Limits	
Total Metals - Mansfield Lab Associated sample	(s): 01 Batch:	WG1562′	138-2						
Iron, Total	104		-		85-115	-			
Total Hardness by SM 2340B - Mansfield Lab A	ssociated sampl	e(s): 01	Batch: WG156213	8-2					
Hardness	100		-		85-115	-			
Total Metals - Mansfield Lab Associated sample	(s): 01 Batch:	WG1562′	141-2						
Antimony, Total	86		-		85-115	-			
Arsenic, Total	99		-		85-115	-			
Cadmium, Total	95		-		85-115	-			
Chromium, Total	98		-		85-115	-			
Copper, Total	96		-		85-115	-			
Lead, Total	90		-		85-115	-			
Nickel, Total	93		-		85-115	-			
Selenium, Total	99		-		85-115	-			
Silver, Total	98		-		85-115	-			
Zinc, Total	94		-		85-115	-			

Total Metals - Mansfield Lab Associated sample(s): 01 Batch: WG1562144-2

Mercury, Total	99	-	85-115	-	

Matrix Spike Analysis

Project Name:	BHCC-NEW ACADEMIC BUILDING	Batch Quality Control	Lab Number:	L2157842
Project Number:	135301-003		Report Date:	11/02/21

arameter	Native Sample	MS Added	MS Found %	MS %Recovery	MSD Qual Found	MSD %Recovery	Recovery Qual Limits	RPD Q	RPD ual Limits
otal Metals - Mansfield L	ab Associated sam	nple(s): 01	QC Batch ID	: WG1562138	-3 QC Samp	le: L2157586-01	Client ID: MS S	ample	
Iron, Total	ND	1	1.08	108	-	-	75-125	-	20
otal Hardness by SM 23	40B - Mansfield La	b Associate	ed sample(s):	01 QC Batch	ID: WG15621	38-3 QC Samp	ole: L2157586-01	Client ID:	MS Sample
Hardness	85.8	66.2	150	97	-	-	75-125	-	20
otal Metals - Mansfield L	ab Associated sam	nple(s): 01	QC Batch ID	: WG1562138	-7 QC Samp	le: L2157586-02	Client ID: MS S	ample	
Iron, Total	0.157	1	1.20	104	-	-	75-125	-	20
otal Hardness by SM 23	40B - Mansfield La	b Associate	ed sample(s):	01 QC Batch	ID: WG15621	38-7 QC Samp	ole: L2157586-02	Client ID:	MS Sample
Hardness	85.5	66.2	152	100	-	-	75-125	-	20
otal Metals - Mansfield L	ab Associated sam	nple(s): 01	QC Batch ID	: WG1562141	-3 QC Samp	le: L2157586-01	Client ID: MS S	ample	
Antimony, Total	ND	0.5	0.4833	97	-	-	70-130	-	20
Arsenic, Total	ND	0.12	0.1255	104	-	-	70-130	-	20
Cadmium, Total	0.00180	0.053	0.05407	99	-	-	70-130	-	20
Chromium, Total	ND	0.2	0.2039	102	-	-	70-130	-	20
Copper, Total	0.02494	0.25	0.2827	103	-	-	70-130	-	20
Lead, Total	ND	0.53	0.5192	98	-	-	70-130	-	20
Nickel, Total	0.04696	0.5	0.5232	95	-	-	70-130	-	20
Selenium, Total	ND	0.12	0.1288	107	-	-	70-130	-	20
Silver, Total	ND	0.05	0.05000	100	-	-	70-130	-	20
Zinc, Total	0.1487	0.5	0.6400	98			70-130		20

Matrix Spike Analysis Batch Quality Control

Project Name: BHCC-NEW ACADEMIC BUILDING

Project Number: 135301-003 Lab Number: L2157842

Report Date:

11/02/21

arameter	Native Sample	MS Added	MS Found	MS %Recovery	MSD Found	MSD %Recovery	Recovery Limits	RPD	RPD Limits
otal Metals - Mansfield L	ab Associated sam	ple(s): 01	QC Batch II	D: WG1562141-5	QC Sample:	L2157586-02	Client ID: MS Sa	mple	
Antimony, Total	ND	0.5	0.4672	93	-	-	70-130	-	20
Arsenic, Total	ND	0.12	0.1218	102	-	-	70-130	-	20
Cadmium, Total	0.00183	0.053	0.05525	101	-	-	70-130	-	20
Chromium, Total	ND	0.2	0.2049	102	-	-	70-130	-	20
Copper, Total	0.02469	0.25	0.2846	104	-	-	70-130	-	20
Lead, Total	ND	0.53	0.5254	99	-	-	70-130	-	20
Nickel, Total	0.04751	0.5	0.5374	98	-	-	70-130	-	20
Selenium, Total	ND	0.12	0.1250	104	-	-	70-130	-	20
Silver, Total	ND	0.05	0.05066	101	-	-	70-130	-	20
Zinc, Total	0.1462	0.5	0.6907	109	-	-	70-130	-	20
otal Metals - Mansfield L	ab Associated sam	ple(s): 01	QC Batch I	D: WG1562144-3	QC Sample:	L2157853-01	Client ID: MS Sa	mple	
Mercury, Total	0.00025	0.005	0.00503	96	-	-	70-130	-	20
otal Metals - Mansfield L	ab Associated sam	ple(s): 01	QC Batch I	D: WG1562144-5	QC Sample:	L2157853-02	Client ID: MS Sa	mple	
Mercury, Total	ND	0.005	0.00483	97	-	-	70-130	-	20

Lab Duplicate Analysis Batch Quality Control

Project Name: BHCC-NEW ACADEMIC BUILDING Project Number: 135301-003

Lab Number: Report Date:

L2157842 11/02/21

arameter	Native Sample	Duplicate Sample	Units	RPD	Qual	RPD Limits
otal Metals - Mansfield Lab Associated sample(s): 01	QC Batch ID: WG1562	2138-4 QC Sample: L2	2157586-01 (Client ID: DU	JP Sample	
Iron, Total	ND	0.053	mg/l	NC		20
otal Hardness by SM 2340B - Mansfield Lab Associat	ed sample(s): 01 QC Ba	atch ID: WG1562138-4	QC Sample	: L2157586	01 Client ID	: DUP Sample
Hardness	85.8	85.6	mg/l	0		20
otal Metals - Mansfield Lab Associated sample(s): 01	QC Batch ID: WG1562	2138-8 QC Sample: L2	2157586-02	Client ID: DU	JP Sample	
Iron, Total	0.157	0.164	mg/l	4		20
otal Hardness by SM 2340B - Mansfield Lab Associat	ed sample(s): 01 QC Ba	atch ID: WG1562138-8	QC Sample	: L2157586	-02 Client ID	: DUP Sample
Hardness	85.5	84.9	mg/l	1		20
otal Metals - Mansfield Lab Associated sample(s): 01	QC Batch ID: WG1562	2141-4 QC Sample: L2	2157586-01 (Client ID: DU	JP Sample	
Antimony, Total	ND	ND	mg/l	NC		20
Arsenic, Total	ND	ND	mg/l	NC		20
Cadmium, Total	0.00180	0.00180	mg/l	0		20
Copper, Total	0.02494	0.02534	mg/l	2		20
Lead, Total	ND	ND	mg/l	NC		20
Nickel, Total	0.04696	0.04712	mg/l	0		20
Selenium, Total	ND	ND	mg/l	NC		20
Silver, Total	ND	ND	mg/l	NC		20
Zinc, Total	0.1487	0.1491	mg/l	0		20

Lab Duplicate Analysis Batch Quality Control

Project Name: BHCC-NEW ACADEMIC BUILDING **Project Number:** 135301-003

Lab Number:

L2157842 11/02/21 Report Date:

Native Sample **Duplicate Sample** Units RPD **RPD Limits** Parameter Total Metals - Mansfield Lab Associated sample(s): 01 QC Batch ID: WG1562141-6 QC Sample: L2157586-02 Client ID: DUP Sample Antimony, Total ND ND mg/l NC 20 Arsenic, Total ND ND mg/l NC 20 Cadmium, Total 0.00183 0.00179 mg/l 2 20 Copper, Total 0.02469 0.02498 mg/l 1 20 Lead, Total ND ND mg/l NC 20 Nickel, Total 0.04751 0.04680 mg/l 2 20 Selenium, Total ND ND mg/l NC 20 Silver, Total ND ND mg/l NC 20 Zinc, Total 0.1462 0.1478 mg/l 1 20 Total Metals - Mansfield Lab Associated sample(s): 01 QC Batch ID: WG1562144-4 QC Sample: L2157853-01 Client ID: DUP Sample 20 Mercury, Total 0.00025 0.00024 mg/l 4 Total Metals - Mansfield Lab Associated sample(s): 01 QC Batch ID: WG1562144-6 QC Sample: L2157853-02 Client ID: DUP Sample Mercury, Total ND ND NC 20 mg/l

INORGANICS & MISCELLANEOUS

Serial_No:11022118:47

Project Name:	BHCC-NEW ACADEMIC BUILDING	Lab Number:	L2157842
Project Number:	135301-003	Report Date:	11/02/21

SAMPLE RESULTS

Lab ID:	L2157842-01	Date Collected:	10/21/21 13:35
Client ID:	HA20-6(OW)	Date Received:	10/21/21
Sample Location:	BHCC, CHARLSTOWN, MA	Field Prep:	Refer to COC

Sample Depth: Matrix:

Water

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	Date Prepared	Date Analyzed	Analytical Method	Analyst
General Chemistry - We	stborough Lal)								
Solids, Total Suspended	14.		mg/l	5.0	NA	1	-	10/26/21 15:00	121,2540D	AC
Cyanide, Total	ND		mg/l	0.005		1	10/25/21 12:00	10/25/21 17:09	121,4500CN-CE	JO
Chlorine, Total Residual	ND		mg/l	0.02		1	-	10/21/21 23:10	121,4500CL-D	AS
Nitrogen, Ammonia	0.925		mg/l	0.075		1	10/26/21 00:30	10/26/21 20:24	121,4500NH3-BH	AT
TPH, SGT-HEM	ND		mg/l	4.00		1	10/26/21 19:15	10/26/21 20:00	140,1664B	TL
Phenolics, Total	ND		mg/l	0.030		1	10/25/21 15:55	10/27/21 10:33	4,420.1	KP
Chromium, Hexavalent	ND		mg/l	0.050		5	10/22/21 04:56	10/22/21 05:04	1,7196A	V
Anions by Ion Chromato	graphy - Wes	borough	Lab							
Chloride	165.		mg/l	5.00		10	-	10/25/21 23:51	44,300.0	SH

Project Name:BHCC-NEW ACADEMIC BUILDINGProject Number:135301-003

 Lab Number:
 L2157842

 Report Date:
 11/02/21

Method Blank Analysis Batch Quality Control

Parameter	Result Quali	fier Units	RL	MDL	Dilution Factor	Date Prepared	Date Analyzed	Analytical Method	Analyst
General Chemistry -	Westborough Lab for	sample(s): 01	Batch:	WG15	561740-1				
Chlorine, Total Residual	ND	mg/l	0.02		1	-	10/21/21 23:10	121,4500CL-D	AS
General Chemistry -	Westborough Lab for	sample(s): 01	Batch:	WG15	561778-1				
Chromium, Hexavalent	ND	mg/l	0.010		1	10/22/21 04:56	10/22/21 05:01	1,7196A	V
General Chemistry -	Westborough Lab for	sample(s): 01	Batch:	WG15	562584-1				
Cyanide, Total	ND	mg/l	0.005		1	10/25/21 12:00	10/25/21 16:50	121,4500CN-CE	JO
General Chemistry -	Westborough Lab for	sample(s): 01	Batch:	WG15	562844-1				
Phenolics, Total	ND	mg/l	0.030		1	10/25/21 15:55	10/27/21 10:29	4,420.1	KP
General Chemistry -	Westborough Lab for	sample(s): 01	Batch:	WG15	562944-1				
Nitrogen, Ammonia	ND	mg/l	0.075		1	10/26/21 00:30	10/26/21 20:10	121,4500NH3-Bł	H AT
Anions by Ion Chrom	atography - Westboro	ugh Lab for sar	mple(s):	01 B	atch: WG1	562966-1			
Chloride	ND	mg/l	0.500		1	-	10/25/21 16:37	44,300.0	SH
General Chemistry -	Westborough Lab for	sample(s): 01	Batch:	WG15	563341-1				
Solids, Total Suspended	ND	mg/l	5.0	NA	1	-	10/26/21 15:00	121,2540D	AC
General Chemistry -	Westborough Lab for	sample(s): 01	Batch:	WG15	563360-1				
TPH, SGT-HEM	ND	mg/l	4.00		1	10/26/21 19:15	10/26/21 20:00	140,1664B	TL

Lab Control Sample Analysis Batch Quality Control

Project Name: BHCC-NEW ACADEMIC BUILDING

Project Number: 135301-003

 Lab Number:
 L2157842

 Report Date:
 11/02/21

Parameter	LCS %Recovery	LCSI Qual %Recov		%Recovery Limits	RPD	Qual	RPD Limits
General Chemistry - Westborough Lab	Associated sample(s):	01 Batch: WG15	61740-2				
Chlorine, Total Residual	104	-		90-110	-		
General Chemistry - Westborough Lab	Associated sample(s):	01 Batch: WG15	61778-2				
Chromium, Hexavalent	110	-		85-115	-		20
General Chemistry - Westborough Lab	Associated sample(s):	01 Batch: WG15	62584-2				
Cyanide, Total	102	-		90-110	-		
General Chemistry - Westborough Lab	Associated sample(s):	01 Batch: WG15	62844-2				
Phenolics, Total	101	-		70-130	-		
General Chemistry - Westborough Lab	Associated sample(s):	01 Batch: WG15	62944-2				
Nitrogen, Ammonia	110	-		80-120	-		20
Anions by Ion Chromatography - Westbo	prough Lab Associated	d sample(s): 01 E	atch: WG15629	966-2			
Chloride	98	-		90-110	-		
General Chemistry - Westborough Lab	Associated sample(s):	01 Batch: WG15	63341-2				
Solids, Total Suspended	107	-		80-120	-		

Lab Control Sample Analysis

BHCC-NEW ACADEMIC BUILDING	Batch Quality Control	Lab Number:	L2157842
135301-003		Report Date:	11/02/21
		BHCC-NEW ACADEMIC BUILDING Batch Quality Control	BHCC-NEW ACADEMIC BUILDING Batch Quality Control Lab Number:

Parameter	LCS %Recovery	LCSD %Recovery	%Recovery Limits	RPD	RPD Limits
General Chemistry - Westborough Lab	Associated sample(s): 01	Batch: WG1563360-2			
ТРН	86	-	64-132	-	34

Matrix Spike Analysis Batch Quality Control

Project Name:	BHCC-NEW ACADEMIC BUILDING	
---------------	----------------------------	--

Project Number: 135301-003

 Lab Number:
 L2157842

 Report Date:
 11/02/21

Parameter	Native Sample	MS Added	MS Found	MS %Recovery	MSD Qual Foun		Recovery Qual Limits	RPD Qua	RPD Limits
General Chemistry - Westbor	ough Lab Assoc	ciated samp	ole(s): 01	QC Batch ID: V	VG1561740-4	QC Sample: L215	57842-01 Client	ID: HA20-6(OW)
Chlorine, Total Residual	ND	0.25	0.29	116	-	-	80-120	-	20
General Chemistry - Westbor	ough Lab Assoc	ciated samp	ole(s): 01	QC Batch ID: V	VG1561778-4	QC Sample: L215	57842-01 Client	ID: HA20-6(OW)
Chromium, Hexavalent	ND	0.5	0.512	102	-	-	85-115	-	20
General Chemistry - Westbor	ough Lab Assoc	ciated samp	ole(s): 01	QC Batch ID: V	VG1562584-4	QC Sample: L215	56470-01 Client	ID: MS Sam	ple
Cyanide, Total	0.013	0.2	0.011	0	Q -	-	90-110	-	30
General Chemistry - Westbor	ough Lab Assoc	ciated samp	ole(s): 01	QC Batch ID: V	VG1562844-4	QC Sample: L215	57842-01 Client	ID: HA20-6(OW)
Phenolics, Total	ND	0.4	0.35	89	-	-	70-130	-	20
General Chemistry - Westbor	ough Lab Assoc	ciated samp	ole(s): 01	QC Batch ID: V	VG1562944-4	QC Sample: L215	57080-02 Client	ID: MS Sam	ple
Nitrogen, Ammonia	1.06	4	4.62	89	-	-	80-120	-	20
Anions by Ion Chromatograph 6(OW)	ny - Westboroug	h Lab Asso	ociated sar	nple(s): 01 QC	C Batch ID: WO	31562966-3 QC S	Sample: L2157842	2-01 Client	ID: HA20-
Chloride	165	40	201	90	-	-	90-110	-	18
General Chemistry - Westbor	ough Lab Assoc	ciated samp	ole(s): 01	QC Batch ID: V	VG1563360-4	QC Sample: L215	53475-141 Clien	t ID: MS Sa	mple
TPH	ND	20.8	17.0	82	-	-	64-132	-	34

Lab Duplicate Analysis Batch Quality Control

Project Name: BHCC-NEW ACADEMIC BUILDING Project Number: 135301-003

Lab Number: Report Date:

L2157842 11/02/21

Parameter	Nativ	ve Sample [Duplicate Sam	nple Unit	s RPD	Qual	RPD Limits
General Chemistry - Westborough Lab	Associated sample(s):	01	QC Batch ID:	WG1561740-3	QC Sample:	L2157842-01	Client ID:	HA20-6(OW)
Chlorine, Total Residual		ND		ND	mg/	NC		20
General Chemistry - Westborough Lab	Associated sample(s):	01	QC Batch ID:	WG1561778-3	QC Sample:	L2157842-01	Client ID:	HA20-6(OW)
Chromium, Hexavalent		ND		ND	mg/	NC		20
General Chemistry - Westborough Lab	Associated sample(s):	01	QC Batch ID:	WG1562584-3	QC Sample:	L2156470-02	Client ID:	DUP Sample
Cyanide, Total		0.01	7	0.011	mg/	42	Q	30
General Chemistry - Westborough Lab	Associated sample(s):	01	QC Batch ID:	WG1562844-3	QC Sample:	L2157842-01	Client ID:	HA20-6(OW)
Phenolics, Total		ND		ND	mg/	NC		20
General Chemistry - Westborough Lab	Associated sample(s):	01	QC Batch ID:	WG1562944-3	QC Sample:	L2157080-02	Client ID:	DUP Sample
Nitrogen, Ammonia		1.06	3	1.13	mg/	6		20
Anions by Ion Chromatography - Westb 6(OW)	orough Lab Associated	sam	nple(s): 01 Q	C Batch ID: WG	1562966-4 (QC Sample: L	2157842-0	1 Client ID: HA20-
Chloride		165	i	168	mg/	2		18
General Chemistry - Westborough Lab	Associated sample(s):	01	QC Batch ID:	WG1563341-3	QC Sample:	L2157372-02	Client ID:	DUP Sample
Solids, Total Suspended		480		510	mg/	6		29
General Chemistry - Westborough Lab	Associated sample(s):	01	QC Batch ID:	WG1563360-3	QC Sample:	L2153475-140) Client ID	: DUP Sample
TPH		ND		ND	mg/	NC		34

Sample Receipt and Container Information

YES

Were project specific reporting limits specified?

Cooler Information

Cooler	Custody Seal
D	Absent
F	Absent

Container Information

Container Information		rmation		Initial	Final	Temp			Frozen				
	Container ID	Container Type	Cooler	pН	pН		Pres	Seal	Date/Time	Analysis(*)			
	L2157842-01A	Vial Na2S2O3 preserved	D	NA		3.0	Y	Absent		624.1-SIM-RGP(7)			
	L2157842-01B	Vial Na2S2O3 preserved	D	NA		3.0	Y	Absent		624.1-SIM-RGP(7)			
	L2157842-01C	Vial Na2S2O3 preserved	D	NA		3.0	Y	Absent		624.1-SIM-RGP(7)			
	L2157842-01D	Vial Na2S2O3 preserved	D	NA		3.0	Y	Absent		624.1-RGP(7)			
	L2157842-01E	Vial Na2S2O3 preserved	D	NA		3.0	Y	Absent		624.1-RGP(7)			
	L2157842-01F	Vial Na2S2O3 preserved	D	NA		3.0	Y	Absent		624.1-RGP(7)			
	L2157842-01G	Vial Na2S2O3 preserved	D	NA		3.0	Y	Absent		504(14)			
	L2157842-01H	Vial Na2S2O3 preserved	D	NA		3.0	Y	Absent		504(14)			
	L2157842-01I	Vial unpreserved	D	NA		3.0	Y	Absent		SUB-ETHANOL(14)			
	L2157842-01J	Vial unpreserved	D	NA		3.0	Y	Absent		SUB-ETHANOL(14)			
	L2157842-01K	Vial unpreserved	D	NA		3.0	Y	Absent		SUB-ETHANOL(14)			
	L2157842-01L	Plastic 250ml HNO3 preserved	D	<2	<2	3.0	Y	Absent		HOLD-METAL-DISSOLVED(180)			
	L2157842-01M	Plastic 250ml HNO3 preserved	D	<2	<2	3.0	Y	Absent		CD-2008T(180),NI-2008T(180),ZN- 2008T(180),FE-UI(180),CU- 2008T(180),HARDU(180),AG-2008T(180),HG- U(28),SE-2008T(180),AS-2008T(180),CR- 2008T(180),SB-2008T(180),PB-2008T(180)			
	L2157842-01N	Plastic 250ml NaOH preserved	D	>12	>12	3.0	Y	Absent		TCN-4500(14)			
	L2157842-01O	Plastic 250ml NaOH preserved	D	>12	>12	3.0	Y	Absent		TCN-4500(14)			
	L2157842-01P	Plastic 500ml H2SO4 preserved	D	<2	<2	3.0	Y	Absent		NH3-4500(28)			
	L2157842-01Q	Plastic 950ml unpreserved	D	7	7	3.0	Y	Absent		HOLD-WETCHEM(),CL-300(28),HEXCR- 7196(1),TRC-4500(1)			
	L2157842-01R	Plastic 950ml unpreserved	D	7	7	3.0	Y	Absent		TSS-2540(7)			
	L2157842-01S	Amber 950ml H2SO4 preserved	D	<2	<2	3.0	Y	Absent		TPHENOL-420(28)			
	L2157842-01T	Amber 1000ml Na2S2O3	F	7	7	2.1	Y	Absent		PCB-608.3(365)			

Project Name: BHCC-NEW ACADEMIC BUILDINGProject Number: 135301-003

Container Info	rmation		Initial	Final	Temp			Frozen	
Container ID	Container Type	Cooler	рН	pН	deg C	Pres	Seal	Date/Time	Analysis(*)
L2157842-01U	Amber 1000ml Na2S2O3	F	7	7	2.1	Y	Absent		PCB-608.3(365)
L2157842-01V	Amber 1000ml Na2S2O3	F	7	7	2.1	Y	Absent		625.1-RGP(7)
L2157842-01W	Amber 1000ml Na2S2O3	F	7	7	2.1	Y	Absent		625.1-RGP(7)
L2157842-01X	Amber 1000ml Na2S2O3	F	7	7	2.1	Y	Absent		625.1-SIM-RGP(7)
L2157842-01Y	Amber 1000ml Na2S2O3	F	7	7	2.1	Y	Absent		625.1-SIM-RGP(7)
L2157842-01Z	Amber 1000ml HCI preserved	D	NA		3.0	Y	Absent		TPH-1664(28)
L2157842-01Z1	Amber 1000ml HCI preserved	D	NA		3.0	Y	Absent		TPH-1664(28)

Project Name: BHCC-NEW ACADEMIC BUILDING

Project Number: 135301-003

Lab Number: L2157842

Report Date: 11/02/21

GLOSSARY

Acronyms

,,	
DL	- Detection Limit: This value represents the level to which target analyte concentrations are reported as estimated values, when those target analyte concentrations are quantified below the limit of quantitation (LOQ). The DL includes any adjustments from dilutions, concentrations or moisture content, where applicable. (DoD report formats only.)
EDL	- Estimated Detection Limit: This value represents the level to which target analyte concentrations are reported as estimated values, when those target analyte concentrations are quantified below the reporting limit (RL). The EDL includes any adjustments from dilutions, concentrations or moisture content, where applicable. The use of EDLs is specific to the analysis of PAHs using Solid-Phase Microextraction (SPME).
EMPC	- Estimated Maximum Possible Concentration: The concentration that results from the signal present at the retention time of an analyte when the ions meet all of the identification criteria except the ion abundance ratio criteria. An EMPC is a worst-case estimate of the concentration.
EPA	- Environmental Protection Agency.
LCS	 Laboratory Control Sample: A sample matrix, free from the analytes of interest, spiked with verified known amounts of analytes or a material containing known and verified amounts of analytes.
LCSD	- Laboratory Control Sample Duplicate: Refer to LCS.
LFB	- Laboratory Fortified Blank: A sample matrix, free from the analytes of interest, spiked with verified known amounts of analytes or a material containing known and verified amounts of analytes.
LOD	- Limit of Detection: This value represents the level to which a target analyte can reliably be detected for a specific analyte in a specific matrix by a specific method. The LOD includes any adjustments from dilutions, concentrations or moisture content, where applicable. (DoD report formats only.)
LOQ	- Limit of Quantitation: The value at which an instrument can accurately measure an analyte at a specific concentration. The LOQ includes any adjustments from dilutions, concentrations or moisture content, where applicable. (DoD report formats only.)
	Limit of Quantitation: The value at which an instrument can accurately measure an analyte at a specific concentration. The LOQ includes any adjustments from dilutions, concentrations or moisture content, where applicable. (DoD report formats only.)
MDL	- Method Detection Limit: This value represents the level to which target analyte concentrations are reported as estimated values, when those target analyte concentrations are quantified below the reporting limit (RL). The MDL includes any adjustments from dilutions, concentrations or moisture content, where applicable.
MS	- Matrix Spike Sample: A sample prepared by adding a known mass of target analyte to a specified amount of matrix sample for which an independent estimate of target analyte concentration is available. For Method 332.0, the spike recovery is calculated using the native concentration, including estimated values.
MSD	- Matrix Spike Sample Duplicate: Refer to MS.
NA	- Not Applicable.
NC	- Not Calculated: Term is utilized when one or more of the results utilized in the calculation are non-detect at the parameter's reporting unit.
NDPA/DPA	- N-Nitrosodiphenylamine/Diphenylamine.
NI	- Not Ignitable.
NP	- Non-Plastic: Term is utilized for the analysis of Atterberg Limits in soil.
NR	- No Results: Term is utilized when 'No Target Compounds Requested' is reported for the analysis of Volatile or Semivolatile Organic TIC only requests.
RL	- Reporting Limit: The value at which an instrument can accurately measure an analyte at a specific concentration. The RL includes any adjustments from dilutions, concentrations or moisture content, where applicable.
RPD	- Relative Percent Difference: The results from matrix and/or matrix spike duplicates are primarily designed to assess the precision of analytical results in a given matrix and are expressed as relative percent difference (RPD). Values which are less than five times the reporting limit for any individual parameter are evaluated by utilizing the absolute difference between the values; although the RPD value will be provided in the report.
SRM	- Standard Reference Material: A reference sample of a known or certified value that is of the same or similar matrix as the associated field samples.
STLP	- Semi-dynamic Tank Leaching Procedure per EPA Method 1315.
TEF	- Toxic Equivalency Factors: The values assigned to each dioxin and furan to evaluate their toxicity relative to 2,3,7,8-TCDD.
TEQ	- Toxic Equivalent: The measure of a sample's toxicity derived by multiplying each dioxin and furan by its corresponding TEF and then summing the resulting values.
TIC	- Tentatively Identified Compound: A compound that has been identified to be present and is not part of the target compound list (TCL) for the method and/or program. All TICs are qualitatively identified and reported as estimated concentrations.

Report Format: Data Usability Report

Project Name: BHCC-NEW ACADEMIC BUILDING

Project Number: 135301-003

Lab Number: L2157842

Report Date: 11/02/21

Footnotes

1

- The reference for this analyte should be considered modified since this analyte is absent from the target analyte list of the original method.

Terms

Analytical Method: Both the document from which the method originates and the analytical reference method. (Example: EPA 8260B is shown as 1,8260B.) The codes for the reference method documents are provided in the References section of the Addendum.

Difference: With respect to Total Oxidizable Precursor (TOP) Assay analysis, the difference is defined as the Post-Treatment value minus the Pre-Treatment value.

Final pH: As it pertains to Sample Receipt & Container Information section of the report, Final pH reflects pH of container determined after adjustment at the laboratory, if applicable. If no adjustment required, value reflects Initial pH.

Frozen Date/Time: With respect to Volatile Organics in soil, Frozen Date/Time reflects the date/time at which associated Reagent Waterpreserved vials were initially frozen. Note: If frozen date/time is beyond 48 hours from sample collection, value will be reflected in 'bold'. Initial pH: As it pertains to Sample Receipt & Container Information section of the report, Initial pH reflects pH of container determined upon receipt, if applicable.

PAH Total: With respect to Alkylated PAH analyses, the 'PAHs, Total' result is defined as the summation of results for all or a subset of the following compounds: Naphthalene, C1-C4 Naphthalenes, 2-Methylnaphthalene, 1-Methylnaphthalene, Biphenyl, Acenaphthylene, Acenaphthene, Fluorene, C1-C3 Fluorenes, Phenanthrene, C1-C4 Phenanthrenes/Anthracenes, Anthracene, Fluoranthene, Pyrene, C1-C4 Fluoranthenes/Pyrenes, Benz(a)anthracene, Chrysene, C1-C4 Chrysenes, Benzo(b)fluoranthene, Benzo(j)+(k)fluoranthene, Benzo(e)pyrene, Benzo(a)pyrene, Perylene, Indeno(1,2,3-cd)pyrene, Dibenz(ah)+(ac)anthracene, Benzo(g,h,i)perylene. If a 'Total' result is requested, the results of its individual components will also be reported.

PFAS Total: With respect to PFAS analyses, the 'PFAS, Total (5)' result is defined as the summation of results for: PFHpA, PFHxS, PFOA, PFNA and PFOS. In addition, the 'PFAS, Total (6)' result is defined as the summation of results for: PFHpA, PFHxS, PFOA, PFNA, PFDA and PFOS. For MassDEP DW compliance analysis only, the 'PFAS, Total (6)' result is defined as the summation of results at or above the RL. Note: If a 'Total' result is requested, the results of its individual components will also be reported.

The target compound Chlordane (CAS No. 57-74-9) is reported for GC ECD analyses. Per EPA, this compound "refers to a mixture of chlordane isomers, other chlorinated hydrocarbons and numerous other components." (Reference: USEPA Toxicological Review of Chlordane, In Support of Summary Information on the Integrated Risk Information System (IRIS), December 1997.)

Total: With respect to Organic analyses, a 'Total' result is defined as the summation of results for individual isomers or Aroclors. If a 'Total' result is requested, the results of its individual components will also be reported. This is applicable to 'Total' results for methods 8260, 8081 and 8082.

Data Qualifiers

- A - Spectra identified as "Aldol Condensates" are byproducts of the extraction/concentration procedures when acetone is introduced in the process.
- B - The analyte was detected above the reporting limit in the associated method blank. Flag only applies to associated field samples that have detectable concentrations of the analyte at less than ten times (10x) the concentration found in the blank. For MCP-related projects, flag only applies to associated field samples that have detectable concentrations of the analyte at less than ten times (10x) the concentration found in the blank. For DOD-related projects, flag only applies to associated field samples that have detectable concentrations of the analyte at less than ten times (10x) the concentration found in the blank AND the analyte was detected above one-half the reporting limit (or above the reporting limit for common lab contaminants) in the associated method blank. For NJ-Air-related projects, flag only applies to associated field samples that have detectable concentrations of the analyte above the reporting limit. For NJ-related projects (excluding Air), flag only applies to associated field samples that have detectable concentrations of the analyte, which was detected above the reporting limit in the associated method blank or above five times the reporting limit for common lab contaminants (Phthalates, Acetone, Methylene Chloride, 2-Butanone).
- С - Co-elution: The target analyte co-elutes with a known lab standard (i.e. surrogate, internal standards, etc.) for co-extracted analyses.
- D - Concentration of analyte was quantified from diluted analysis. Flag only applies to field samples that have detectable concentrations of the analyte.
- Е - Concentration of analyte exceeds the range of the calibration curve and/or linear range of the instrument.
- F - The ratio of quantifier ion response to qualifier ion response falls outside of the laboratory criteria. Results are considered to be an estimated maximum concentration.
- G - The concentration may be biased high due to matrix interferences (i.e, co-elution) with non-target compound(s). The result should be considered estimated.
- н - The analysis of pH was performed beyond the regulatory-required holding time of 15 minutes from the time of sample collection.
- I - The lower value for the two columns has been reported due to obvious interference.
- J - Estimated value. This represents an estimated concentration for Tentatively Identified Compounds (TICs).
- Μ - Reporting Limit (RL) exceeds the MCP CAM Reporting Limit for this analyte.
- ND - Not detected at the reporting limit (RL) for the sample.
- NJ - Presumptive evidence of compound. This represents an estimated concentration for Tentatively Identified Compounds (TICs), where

Report Format: Data Usability Report

Serial_No:11022118:47

Project Name: BHCC-NEW ACADEMIC BUILDING

Project Number: 135301-003

Lab Number: L2157842

Report Date: 11/02/21

Data Qualifiers

the identification is based on a mass spectral library search.

- P The RPD between the results for the two columns exceeds the method-specified criteria.
- Q The quality control sample exceeds the associated acceptance criteria. For DOD-related projects, LCS and/or Continuing Calibration Standard exceedences are also qualified on all associated sample results. Note: This flag is not applicable for matrix spike recoveries when the sample concentration is greater than 4x the spike added or for batch duplicate RPD when the sample concentrations are less than 5x the RL. (Metals only.)
- **R** Analytical results are from sample re-analysis.
- **RE** Analytical results are from sample re-extraction.
- **S** Analytical results are from modified screening analysis.
- V The surrogate associated with this target analyte has a recovery outside the QC acceptance limits. (Applicable to MassDEP DW Compliance samples only.)
- Z The batch matrix spike and/or duplicate associated with this target analyte has a recovery/RPD outside the QC acceptance limits. (Applicable to MassDEP DW Compliance samples only.)

Report Format: Data Usability Report

 Lab Number:
 L2157842

 Report Date:
 11/02/21

REFERENCES

- 1 Test Methods for Evaluating Solid Waste: Physical/Chemical Methods. EPA SW-846. Third Edition. Updates I - VI, 2018.
- 3 Methods for the Determination of Metals in Environmental Samples, Supplement I. EPA/600/R-94/111. May 1994.
- 4 Methods for Chemical Analysis of Water and Wastes. EPA 600/4-79-020. Revised March 1983.
- 14 Methods for the Determination of Organic Compounds in Finished Drinking Water and Raw Source Water. EPA/600/4-88/039, Revised July 1991.
- 19 Inductively Coupled Plasma Atomic Emission Spectrometric Method for Trace Element Analysis of Water and Wastes. Appendix C, Part 136, 40 CFR (Code of Federal Regulations). July 1, 1999 edition.
- 44 Methods for the Determination of Inorganic Substances in Environmental Samples, EPA/600/R-93/100, August 1993.
- 107 Alpha Analytical In-house calculation method.
- 121 Standard Methods for the Examination of Water and Wastewater. APHA-AWWA-WEF. Standard Methods Online.
- 127 Method 608.3: Organochlorine Pesticides and PCBs by GC/HSD, EPA 821-R-16-009, December 2016.
- 128 Method 624.1: Purgeables by GC/MS, EPA 821-R-16-008, December 2016.
- 129 Method 625.1: Base/Neutrals and Acids by GC/MS, EPA 821-R-16-007, December 2016.
- 140 Method 1664, Revision B: N-Hexane Extractable Material (HEM; Oil & Grease) and Silica Gel Treated N-Hexane Extractable Material (SGT-HEM; Non-polar Material) by Extraction and Gravimetry, EPA-821-R-10-001, February 2010.

LIMITATION OF LIABILITIES

Alpha Analytical performs services with reasonable care and diligence normal to the analytical testing laboratory industry. In the event of an error, the sole and exclusive responsibility of Alpha Analytical shall be to re-perform the work at it's own expense. In no event shall Alpha Analytical be held liable for any incidental, consequential or special damages, including but not limited to, damages in any way connected with the use of, interpretation of, information or analysis provided by Alpha Analytical.

We strongly urge our clients to comply with EPA protocol regarding sample volume, preservation, cooling, containers, sampling procedures, holding time and splitting of samples in the field.

Certification Information

The following analytes are not included in our Primary NELAP Scope of Accreditation:

Westborough Facility

EPA 624/624.1: m/p-xylene, o-xylene, Naphthalene

EPA 625/625.1: alpha-Terpineol

EPA 8260C/8260D: <u>NPW</u>: 1,2,4,5-Tetramethylbenzene; 4-Ethyltoluene, Azobenzene; <u>SCM</u>: Iodomethane (methyl iodide), 1,2,4,5-Tetramethylbenzene; 4-Ethyltoluene.

EPA 8270D/8270E: <u>NPW:</u> Dimethylnaphthalene,1,4-Diphenylhydrazine, alpha-Terpineol; <u>SCM</u>: Dimethylnaphthalene,1,4-Diphenylhydrazine. **SM4500**: <u>NPW</u>: Amenable Cyanide; <u>SCM</u>: Total Phosphorus, TKN, NO2, NO3.

Mansfield Facility

SM 2540D: TSS

EPA 8082A: <u>NPW</u>: PCB: 1, 5, 31, 87,101, 110, 141, 151, 153, 180, 183, 187. EPA TO-15: Halothane, 2,4,4-Trimethyl-2-pentene, 2,4,4-Trimethyl-1-pentene, Thiophene, 2-Methylthiophene, 3-Methylthiophene, 2-Ethylthiophene, 1,2,3-Trimethylbenzene, Indan, Indene, 1,2,4,5-Tetramethylbenzene, Benzothiophene, 1-Methylnaphthalene. Biological Tissue Matrix: EPA 3050B

The following analytes are included in our Massachusetts DEP Scope of Accreditation

Westborough Facility:

Drinking Water

EPA 300.0: Chloride, Nitrate-N, Fluoride, Sulfate; EPA 353.2: Nitrate-N, Nitrite-N; SM4500NO3-F: Nitrate-N, Nitrite-N; SM4500F-C, SM4500CN-CE, EPA 180.1, SM2130B, SM4500CI-D, SM2320B, SM2540C, SM4500H-B, SM4500NO2-B EPA 332: Perchlorate; EPA 524.2: THMs and VOCs; EPA 504.1: EDB, DBCP. Microbiology: SM9215B; SM9223-P/A, SM9223B-Colilert-QT,SM9222D.

Non-Potable Water

SM4500H,B, EPA 120.1, SM2510B, SM2540C, SM2320B, SM4500CL-E, SM4500F-BC, SM4500NH3-BH: Ammonia-N and Kjeldahl-N, EPA 350.1: Ammonia-N, LACHAT 10-107-06-1-B: Ammonia-N, EPA 351.1, SM4500NO3-F, EPA 353.2: Nitrate-N, SM4500P-E, SM4500P-B, E, SM4500SO4-E, SM5220D, EPA 410.4, SM5210B, SM5310C, SM4500CL-D, EPA 1664, EPA 420.1, SM4500-CN-CE, SM2540D, EPA 300: Chloride, Sulfate, Nitrate. EPA 624.1: Volatile Halocarbons & Aromatics, EPA 608.3: Chlordane Toxanbene Aldrin alpha-BHC, beta-BHC, gamma-BHC, delta-BHC, Dieldrin DDD, DDE, DDT, Endosulfan I, Endosulfan II

EPA 608.3: Chlordane, Toxaphene, Aldrin, alpha-BHC, beta-BHC, gamma-BHC, delta-BHC, Dieldrin, DDD, DDE, DDT, Endosulfan I, Endosulfan II, Endosulfan sulfate, Endrin, Endrin Aldehyde, Heptachlor, Heptachlor Epoxide, PCBs **EPA 625.1**: SVOC (Acid/Base/Neutral Extractables), **EPA 600/4-81-045**: PCB-Oil.

Microbiology: SM9223B-Colilert-QT; Enterolert-QT, SM9221E, EPA 1600, EPA 1603, SM9222D.

Mansfield Facility:

Drinking Water

EPA 200.7: Al, Ba, Cd, Cr, Cu, Fe, Mn, Ni, Na, Ag, Ca, Zn. EPA 200.8: Al, Sb, As, Ba, Be, Cd, Cr, Cu, Pb, Mn, Ni, Se, Ag, TL, Zn. EPA 245.1 Hg. EPA 522, EPA 537.1.

Non-Potable Water

EPA 200.7: Al, Sb, As, Be, Cd, Ca, Cr, Co, Cu, Fe, Pb, Mg, Mn, Mo, Ni, K, Se, Ag, Na, Sr, TL, Ti, V, Zn. **EPA 200.8:** Al, Sb, As, Be, Cd, Cr, Cu, Fe, Pb, Mn, Ni, K, Se, Ag, Na, TL, Zn. **EPA 245.1** Hg. **SM2340B**

For a complete listing of analytes and methods, please contact your Alpha Project Manager.

	CUSTODT Tonzeanda, NY 14160 Holmes, PA 19043						and the second second	e Rec n Lab	'd			١	0	2	1/2	1					1	0	CALPHA 200 5784	2		
Westborough, MA 01581 8 Walkup Dr.	Mansfield, MA 020- 320 Forbes Blvd		-				[]el	4orabie	alı:					-	-	-	-	-	-	-	-	-		eaing Information		
TEL: 508-898-9220 FAX: 508-895-9193	TEL: 508-822-830 FAX: 508-822-328	Diplant Name:	BHCC-New	Academic Bu	long		E	Ema	ail .			Fax		_									-	Same as Client Info	1.0.0	
HAX SOMERING	have some some starte		BHCC, Chart	astown, MA			12	EQU	IS (1 F	ile)		EQU	S (4 Fi	e)									1.1	PO#		
HEA Information		Project #	135301-003] Othe	er:																	
H&A Client: DCAMM	BHCC	(Use Project name a	is Projectin				Reg	pulatory	r teoqui	ientent	Is IProp	ani/Cn	teria)											Dispesal Site Information		
H&A Address 465 Med	tlord St	Project Manager.	H Ballantyne				X	NPD	ES RPO	1								-			-	-		Please identify below location of applica	ible disposal	
Boston	MA 0212-1400	ALPHAQuote #:																						facilies.		
H&A Phone: 617-686-	-7400	Tum-Around Time																						Disposal Facility:		
H&A Fax: H&A Email: hballar	ntyne@haleyald	Standard rich.) (only If pre approved)		Due Date # of Days			New	e Salad	stain b	rom me	ciu & Ideo	willy critis	uda.											NU DINY Other:		
These samples have b	een previouely analy.	zed by Alpha C					AN	ALYSIS	s											1	1		-	Semple Filtration	1.	
Other project specific							1	T	T	1	0	12	1	1		1	1	N		4	2		1.11	0		
3. HOLD PACN & ACN Please sample per EP	A Approved 2017 F	ived Metals ON HOLD (FI	eid Filtenid)				-2540	4500	4500 N & ACN	504	SIM for VOC pxarte	0.6. Trivaler	NOL-120	8. 625.1 TCL (including Detromezvicethalate)	ICL-SIM	-300	s - Ag, Aa, Cd Sa Za Fe Hg	Melads - Ag. 9 Photo Shi Shi T	monia	tardness	100 (5000	boolit	PCB-606	Done Lab to do Preservation Lab to do		
Please specify Metals	or TAL		_			-	1, TSS-	2. TRC-4500	3. TCN-4500 HOLD PACK & ACK	8 ¥	624 1/ 624,1 StM f	HEXCR-3500 & Triv Chromum	7. TPHENOL-420	625.1 TCL	625.11	10. CL-300	Total Metals Cu Ni Pb.Sb.	Dissolved Dd.Cr.Cu.7	13. Am	14. Total Hardnes		101	17. PC	(Piesse Specify below)	l.	
ALPHA Leb ID	05. 5	ample ID		ection	Sample Sampler's Matrix Initials				1 2		624		-	8 0	00		FOU	12 12			€ n				_	1.30
							_	-	-	-	uý.	ø		-	-	-	1	\$		-		-	_	Sample Specific Comments	6	的之子
57642-01	(Leb Use Only) 045 sample 10 Dete Time 57842-01 4000 HAZO-6(0W) 021172 1335		AQ	JES	×	x	×	×	×	X	×	X	×	X	x	x	x	x >			×	Temp-(S,9 pH- (g. 5)		24		
																						_				
Preservative Code: A = None B = HCl	Container Code P = Plastic A = Amber Glass	Westboro: Certifical Mansfield: Certificat				Container Type	p	p	P	v	v	p	A	A	A	p	P	P	ρ	p			A	Please print clearly, legibly and com Samples can not be logged in and to Uma clock will not start until any am	urnaround	
C = HNO, V = Viel D = H ₂ SO, G = Glass E = NaOH B = Bacteria Cup F = MeCH 0 = Cube G = NaHSO, D = Other H = Na ₂ S ₀ D, E = Encore KE = Zn AceNaCH D = BDD Bottle O = Other		7011 162	Preservelive	Rapi	in	E		H A	C A			H 4/1	× 0 24		C.	0	c	4 E	3	с H	Une clock wind war down down down with resolved. Alpha Analytica's services Chain of Cusiody shall be performed is with terms and conditions within Blann Agreement? 2015-18-Ahabita Analytica between Halay & Aldrich, Inc., Its subs affiliates and Alpha Analytical.	under this n accordance el Service by and				
Document ID: 20455 Rev	1 (1/28/2016)																									

ANALYTICAL		Subcontract Chain of Custody Tek Lab, Inc. 5445 Horsehoe Lake Road Collinsville, IL 62234-7425			Y	Alpha Job Number L2157842
Carlos I	Client Information		Project In	nformation	Regulatory Re	quirements/Report Limits
Client: Alpha Analytical Labs Address: Eight Walkup Drive Westborough, MA 01581-1019 Phone: 603.319.5010 Email: mgulli@alphalab.com		Project Location: MA Project Manager: Melissa Gulli Turnaround & Deliverables Information Due Date: Deliverables:			State/Federal Program: Regulatory Criteria:	
		Project Specif	fic Requirem	ents and/or Report Re	quirements	
Additional Com	ments: Send all results/reports	to subreports@alphal Collection Date/Time	ab.com Sample Matrix	1		Batch
	HA20-6(OW)	10-21-21 13:35	WATER	Analy Ethanol by EPA 1671 Revision		Batch QC
orm No: AL_sul	Relinquish			Date/Time: 10/25/21	Received By:	Date/Time:

November 02, 2021

Melissa Gulli Alpha Analytical 145 Flanders Road Westborough, MA 01581 TEL: (603) 319-5010 FAX:

RE: L2157842

WorkOrder: 21101525

Dear Melissa Gulli:

TEKLAB, INC received 1 sample on 10/26/2021 9:45:00 AM for the analysis presented in the following report.

Samples are analyzed on an as received basis unless otherwise requested and documented. The sample results contained in this report relate only to the requested analytes of interest as directed on the chain of custody. NELAP accredited fields of testing are indicated by the letters NELAP under the Certification column. Unless otherwise documented within this report, Teklab Inc. analyzes samples utilizing the most current methods in compliance with 40CFR. All tests are performed in the Collinsville, IL laboratory unless otherwise noted in the Case Narrative.

All quality control criteria applicable to the test methods employed for this project have been satisfactorily met and are in accordance with NELAP except where noted. The following report shall not be reproduced, except in full, without the written approval of Teklab, Inc.

If you have any questions regarding these tests results, please feel free to call.

Sincerely,

Elizabeth & Hurley

Elizabeth A. Hurley Project Manager (618)344-1004 ex 33 ehurley@teklabinc.com

Report Contents

http://www.teklabinc.com/

Client: Alpha Analytical

Client Project: L2157842

Work Order: 21101525 Report Date: 02-Nov-21

This reporting package includes the following:

Cover Letter	1
Report Contents	2
Definitions	3
Case Narrative	5
Accreditations	6
Laboratory Results	7
Quality Control Results	8
Receiving Check List	9
Chain of Custody	Appended

Definitions

Client: Alpha Analytical

Client Project: L2157842

Abbr Definition

- * Analytes on report marked with an asterisk are not NELAP accredited
- CCV Continuing calibration verification is a check of a standard to determine the state of calibration of an instrument between recalibration.
- CRQL A Client Requested Quantitation Limit is a reporting limit that varies according to customer request. The CRQL may not be less than the MDL.
- DF Dilution factor is the dilution performed during analysis only and does not take into account any dilutions made during sample preparation. The reported result is final and includes all dilution factors.
- DNI Did not ignite
- DUP Laboratory duplicate is a replicate aliquot prepared under the same laboratory conditions and independently analyzed to obtain a measure of precision.
- ICV Initial calibration verification is a check of a standard to determine the state of calibration of an instrument before sample analysis is initiated.
- IDPH IL Dept. of Public Health
- LCS Laboratory control sample is a sample matrix, free from the analytes of interest, spiked with verified known amounts of analytes and analyzed exactly like a sample to establish intra-laboratory or analyst specific precision and bias or to assess the performance of all or a portion of the measurement system.
- LCSD Laboratory control sample duplicate is a replicate laboratory control sample that is prepared and analyzed in order to determine the precision of the approved test method. The acceptable recovery range is listed in the QC Package (provided upon request).
- MBLK Method blank is a sample of a matrix similar to the batch of associated sample (when available) that is free from the analytes of interest and is processed simultaneously with and under the same conditions as samples through all steps of the analytical procedures, and in which no target analytes or interferences should present at concentrations that impact the analytical results for sample analyses.
- MDL "The method detection limit is defined as the minimum measured concentration of a substance that can be reported with 99% confidence that the measured concentration is distinguishable from method blank results."
- MS Matrix spike is an aliquot of matrix fortified (spiked) with known quantities of specific analytes that is subjected to the entire analytical procedures in order to determine the effect of the matrix on an approved test method's recovery system. The acceptable recovery range is listed in the QC Package (provided upon request).
- MSD Matrix spike duplicate means a replicate matrix spike that is prepared and analyzed in order to determine the precision of the approved test method. The acceptable recovery range is listed in the QC Package (provided upon request).
- MW Molecular weight
- NC Data is not acceptable for compliance purposes
- ND Not Detected at the Reporting Limit
- NELAP NELAP Accredited
 - PQL Practical quantitation limit means the lowest level that can be reliably achieved within specified limits of precision and accuracy during routine laboratory operation conditions.
 - RL The reporting limit the lowest level that the data is displayed in the final report. The reporting limit may vary according to customer request or sample dilution. The reporting limit may not be less than the MDL.
 - RPD Relative percent difference is a calculated difference between two recoveries (ie. MS/MSD). The acceptable recovery limit is listed in the QC Package (provided upon request).
 - SPK The spike is a known mass of target analyte added to a blank sample or sub-sample; used to determine recovery deficiency or for other quality control purposes.
 - Surr Surrogates are compounds which are similar to the analytes of interest in chemical composition and behavior in the analytical process, but which are not normally found in environmental samples.
 - TIC Tentatively identified compound: Analytes tentatively identified in the sample by using a library search. Only results not in the calibration standard will be reported as tentatively identified compounds. Results for tentatively identified compounds that are not present in the calibration standard, but are assigned a specific chemical name based upon the library search, are calculated using total peak areas from reconstructed ion chromatograms and a response factor of one. The nearest Internal Standard is used for the calculation. The results of any TICs must be considered estimated, and are flagged with a "T". If the estimated result is above the calibration range it is flagged "ET"
- TNTC Too numerous to count (> 200 CFU)

http://www.teklabinc.com/

Work Order: 21101525 Report Date: 02-Nov-21

Definitions

Qualifiers

http://www.teklabinc.com/

Work Order: 21101525 Report Date: 02-Nov-21

Client: Alpha Analytical

Client Project: L2157842

- Unknown hydrocarbon

- C RL shown is a Client Requested Quantitation Limit
- H Holding times exceeded
- J Analyte detected below quantitation limits
- ND Not Detected at the Reporting Limit
 - S Spike Recovery outside recovery limits
 - X Value exceeds Maximum Contaminant Level

- B Analyte detected in associated Method Blank
- E Value above quantitation range
- I Associated internal standard was outside method criteria
- M Manual Integration used to determine area response
- R RPD outside accepted recovery limits
- T TIC(Tentatively identified compound)

Case Narrative

http://www.teklabinc.com/

Client: Alpha Analytical

Client Project: L2157842

Cooler Receipt Temp: 2.0 °C

Work Order: 21101525 Report Date: 02-Nov-21

			Locations			
Collinsville			Springfield	Kansas City		
Address	5445 Horseshoe Lake Road	Address	3920 Pintail Dr	Address	8421 Nieman Road	
	Collinsville, IL 62234-7425		Springfield, IL 62711-9415		Lenexa, KS 66214	
Phone	(618) 344-1004	Phone	(217) 698-1004	Phone	(913) 541-1998	
Fax	(618) 344-1005	Fax	(217) 698-1005	Fax	(913) 541-1998	
Email	jhriley@teklabinc.com	Email	KKlostermann@teklabinc.com	Email	jhriley@teklabinc.com	
	Collinsville Air		Chicago			
Address	5445 Horseshoe Lake Road	Address	1319 Butterfield Rd.			
	Collinsville, IL 62234-7425		Downers Grove, IL 60515			
Phone	(618) 344-1004	Phone	(630) 324-6855			
Fax	(618) 344-1005	Fax				
Email	EHurley@teklabinc.com	Email	arenner@teklabinc.com			

Accreditations

http://www.teklabinc.com/

Work Order: 21101525

Report Date: 02-Nov-21

Client: Alpha Analytical

Client Project: L2157842

State	Dept	Cert #	NELAP	Exp Date	Lab
Illinois	IEPA	100226	NELAP	1/31/2022	Collinsville
Kansas	KDHE	E-10374	NELAP	4/30/2022	Collinsville
Louisiana	LDEQ	05002	NELAP	6/30/2022	Collinsville
Louisiana	LDEQ	05003	NELAP	6/30/2022	Collinsville
Oklahoma	ODEQ	9978	NELAP	8/31/2022	Collinsville
Arkansas	ADEQ	88-0966		3/14/2022	Collinsville
Illinois	IDPH	17584		5/31/2021	Collinsville
Kentucky	UST	0073		1/31/2022	Collinsville
Missouri	MDNR	00930		5/31/2021	Collinsville
Missouri	MDNR	930		1/31/2022	Collinsville

Laboratory Results

Environmental Laboratory						<u>ht</u>	tp://www.teklabinc.com/		
Client: Alpha Analy	Work Order: 21101525								
Client Project: L2157842			Report Date: 02-Nov-21						
Lab ID: 21101525-001				Client Sample ID: HA20-6(OW)					
Matrix: AQUEOUS	rix: AQUEOUS Collection Date: 10/21/2021 13:35						.3:35		
Analyses	Certification	RL	Qual	Result	Units	DF	Date Analyzed Batch		
EPA 600 1671A, PHARMACEUTICAL MANUFACTURING INDUSTRY NON-PURGEABLE VOLATILE ORGANICS									
Ethanol	*	20		ND	mg/L	1	11/02/2021 11:23 R302070		

Quality Control Results

http://www.teklabinc.com/

Client: Alpha Analytical

Client Project: L2157842

Work Order: 21101525

Report Date: 02-Nov-21

EPA 600 1671A, PHARMACEUTICAL MANUFACTURING INDUSTRY NON-PURGEABLE VOLATILE OR										
· · · · · · · · · · · · · · · · · · ·	e: MBLK		Units mg/L							
SampID: MBLK-110221										Date
Analyses	Cert	RL	Qual	Result	Spike	SPK Ref Val	%REC	Low Limit	High Limit	Analyzed
Ethanol	*	20		ND						11/02/2021
Batch R302070 SampTyp	e: LCS		Units mg/L							
SampID: LCS-110221										Date
Analyses	Cert	RL	Qual	Result	Spike	SPK Ref Val	%REC	Low Limit	High Limit	Analyzed
Ethanol	*	20		240	250.0	0	97.2	70	132	11/02/2021
Batch R302070 SampTyp SampID: 21101525-001AMS	e: MS		Units mg/L							Date
Analyses	Cert	RL	Qual	Result	Spike	SPK Ref Val	%REC	Low Limit	High Limit	Analyzed
Ethanol	*	20		230	250.0	0	91.1	70	132	11/02/2021
Batch R302070 SampTyp	e: MSD		Units mg/L					RPD Lin	nit: 30	
SampID: 21101525-001AMSD										Date
Analyses	Cert	RL	Qual	Result	Spike	SPK Ref Val	%REC	RPD Ref Va	al %RPD	Analyzed
Ethanol	*	20		260	250.0	0	103.7	227.8	12.91	11/02/2021

Receiving Check List

http://www.teklabinc.com/

Client: Alpha Analytical

Client Project: L2157842

Work Order: 21101525 Report Date: 02-Nov-21

Carrier: UPS	R	eceived By: ML[D					
Completed by: Mary E. Kemp On: 26-Oct-21 Mary E. Kemp		6-Oct-21	Elizabeth A. Hurley	Hurley				
Pages to follow: Chain of custody 1	Extra pages inclu	ided 0						
Shipping container/cooler in good condition?	Yes 🖌	No	Not Present	Temp °C	2.0			
Type of thermal preservation?	None	Ice 🗹	Blue Ice	Dry Ice				
Chain of custody present?	Yes 🗸	No						
Chain of custody signed when relinquished and received?	Yes 🖌	No						
Chain of custody agrees with sample labels?	Yes 🖌	No						
Samples in proper container/bottle?	Yes 🖌	No						
Sample containers intact?	Yes 🖌	No						
Sufficient sample volume for indicated test?	Yes 🖌	No 🗌						
All samples received within holding time?	Yes 🖌	No 🗌						
Reported field parameters measured:	Field	Lab	NA	\checkmark				
Container/Temp Blank temperature in compliance?	Yes 🗹	No 🗌						
When thermal preservation is required, samples are compliant with a temperature between 0.1° C - 6.0° C, or when samples are received on ice the same day as collected.								
Water - at least one vial per sample has zero headspace?	Yes 🖌	No	No VOA vials					
Water - TOX containers have zero headspace?	Yes	No	No TOX containers	\checkmark				
Water - pH acceptable upon receipt?	Yes 🔽	No 🗌	NA					
NPDES/CWA TCN interferences checked/treated in the field?	Yes	No 🗌	NA	\checkmark				
Any No responses must be detailed below or on the COC.								

Serial_	_No:11022118:47
2	1101525

			Subcontra	act Chain of Custody			
ANALY YONG CIRE CHOMENIA		Tel 544 Col	(Lab, Inc. 15 Horsehoe L linsville, IL 62	.ake Road 234-7425		Alpha Job L2157842	Number
Client I	nformation		Project In	formation	Regulatory Requirem	ents/Report Lir	nits
Client: Alpha Analytic Address: Eight Walkup Westborough,	cal Labs Drive MA 01581-1019	Project Location Project Manage	ı: MA r: Melissa Gu	Di	State/Federal Program: Regulatory Criteria:		
Phone: 603.319.5010 Due Email: mgulli@alphalab.com Deliver				erables Information			
		Project Specifi	c Requirem	ents and/or Report Require	ements		
Refere	ence following Alpha Job Nu	mber on final report	/deliverables:	L2157842 Rep	ort to include Method Blank, LCS	S/LCSD:	
Additional Comments:	Send all results/reports to s	subreports@alphala	b.com				
							KEREKEL ()
Lab ID	Client ID	Collection Date/Time	Sample Matrix	Analysis			Batch QC
21101525 -001	HA20-6(OW)	10-21-21 13:35	WATER	Ethanol by EPA 1671 Revision A			
			· ·	e	2.0°C LTS 7, ØHS DR 10-26-	3 71	
	Relinquished	By:		Date/Time:	Received By:	Date/Time:	
		\sim		10/25/21	maning & Darling I (ups) 10/26/21	0945
Form No: AL_subcoc		· · · · · · · · · · · · · · · · · · ·					
	<u>I</u>	······································		- .			~

ANALYTICAL REPORT

Lab Number:	L2167180
Client:	Haley & Aldrich, Inc.
	465 Medford Street, Suite 2200 Charlestown, MA 02129-1400
ATTN:	Heather Ballantyne
Phone:	(617) 886-3061
Project Name:	BHCC-NEW ACADEMIC BUILDING
Project Number:	135301-003
Report Date:	12/13/21

The original project report/data package is held by Alpha Analytical. This report/data package is paginated and should be reproduced only in its entirety. Alpha Analytical holds no responsibility for results and/or data that are not consistent with the original.

Certifications & Approvals: MA (M-MA086), NH NELAP (2064), CT (PH-0574), IL (200077), ME (MA00086), MD (348), NJ (MA935), NY (11148), NC (25700/666), PA (68-03671), RI (LAO00065), TX (T104704476), VT (VT-0935), VA (460195), USDA (Permit #P330-17-00196).

Eight Walkup Drive, Westborough, MA 01581-1019 508-898-9220 (Fax) 508-898-9193 800-624-9220 - www.alphalab.com

Project Name:	BHCC-NEW ACADEMIC BUILDING
Project Number:	135301-003

 Lab Number:
 L2167180

 Report Date:
 12/13/21

Alpha Sample ID	Client ID	Matrix	Sample Location	Collection Date/Time	Receive Date
L2167180-01	HA21-MR	WATER	BHCC, CHARLESTOWN, MA	12/07/21 11:14	12/07/21

Project Name: BHCC-NEW ACADEMIC BUILDING **Project Number:** 135301-003

Lab Number: L2167180 **Report Date:** 12/13/21

Case Narrative

The samples were received in accordance with the Chain of Custody and no significant deviations were encountered during the preparation or analysis unless otherwise noted. Sample Receipt, Container Information, and the Chain of Custody are located at the back of the report.

Results contained within this report relate only to the samples submitted under this Alpha Lab Number and meet NELAP requirements for all NELAP accredited parameters unless otherwise noted in the following narrative. The data presented in this report is organized by parameter (i.e. VOC, SVOC, etc.). Sample specific Quality Control data (i.e. Surrogate Spike Recovery) is reported at the end of the target analyte list for each individual sample, followed by the Laboratory Batch Quality Control at the end of each parameter. Tentatively Identified Compounds (TICs), if requested, are reported for compounds identified to be present and are not part of the method/program Target Compound List, even if only a subset of the TCL are being reported. If a sample was re-analyzed or re-extracted due to a required quality control corrective action and if both sets of data are reported, the Laboratory ID of the re-analysis or re-extraction is designated with an "R" or "RE", respectively.

When multiple Batch Quality Control elements are reported (e.g. more than one LCS), the associated samples for each element are noted in the grey shaded header line of each data table. Any Laboratory Batch, Sample Specific % recovery or RPD value that is outside the listed Acceptance Criteria is bolded in the report. In reference to questions H (CAM) or 4 (RCP) when "NO" is checked, the performance criteria for CAM and RCP methods allow for some quality control failures to occur and still be within method compliance. In these instances, the specific failure is not narrated but noted in the associated QC Outlier Summary Report, located directly after the Case Narrative. QC information is also incorporated in the Data Usability Assessment table (Format 11) of our Data Merger tool, where it can be reviewed in conjunction with the sample result, associated regulatory criteria and any associated data usability implications.

Soil/sediments, solids and tissues are reported on a dry weight basis unless otherwise noted. Definitions of all data qualifiers and acronyms used in this report are provided in the Glossary located at the back of the report.

HOLD POLICY - For samples submitted on hold, Alpha's policy is to hold samples (with the exception of Air canisters) free of charge for 21 calendar days from the date the project is completed. After 21 calendar days, we will dispose of all samples submitted including those put on hold unless you have contacted your Alpha Project Manager and made arrangements for Alpha to continue to hold the samples. Air canisters will be disposed after 3 business days from the date the project is completed.

Please contact Project Management at 800-624-9220 with any questions.

I, the undersigned, attest under the pains and penalties of perjury that, to the best of my knowledge and belief and based upon my personal inquiry of those responsible for providing the information contained in this analytical report, such information is accurate and complete. This certificate of analysis is not complete unless this page accompanies any and all pages of this report.

Authorized Signature:

Sebastian Corbin

Title: Technical Director/Representative

Date: 12/13/21

METALS

Serial_No:12132116:48

Project Name:	BHCC-NEW ACADEMIC BUILDING	Lab Number:	L2167180				
Project Number:	135301-003	Report Date:	12/13/21				
SAMPLE RESULTS							
Lab ID:	L2167180-01	Date Collected:	12/07/21 11:14				
Client ID:	HA21-MR	Date Received:	12/07/21				
Sample Location:	BHCC, CHARLESTOWN, MA	Field Prep:	None				

Sample Depth:

Matrix:

Water

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	Date Prepared	Date Analyzed	Prep Method	Analytical Method	Analyst
Total Metals - Mar	nsfield Lab										
Antimony, Total	ND		mg/l	0.00400		1	12/08/21 14:58	12/09/21 01:04	EPA 3005A	3,200.8	CD
Arsenic, Total	ND		mg/l	0.00100		1	12/08/21 14:58	12/09/21 01:04	EPA 3005A	3,200.8	CD
Cadmium, Total	ND		mg/l	0.00020		1	12/08/21 14:58	12/09/21 01:04	EPA 3005A	3,200.8	CD
Chromium, Total	ND		mg/l	0.00100		1	12/08/21 14:58	12/09/21 01:04	EPA 3005A	3,200.8	CD
Copper, Total	0.00814		mg/l	0.00100		1	12/08/21 14:58	12/09/21 01:04	EPA 3005A	3,200.8	CD
Iron, Total	2.28		mg/l	0.050		1	12/08/21 14:58	12/10/21 14:32	EPA 3005A	19,200.7	SV
Lead, Total	0.00343		mg/l	0.00100		1	12/08/21 14:58	12/09/21 01:04	EPA 3005A	3,200.8	CD
Mercury, Total	ND		mg/l	0.00020		1	12/08/21 15:06	12/09/21 11:47	EPA 245.1	3,245.1	AC
Nickel, Total	0.00262		mg/l	0.00200		1	12/08/21 14:58	12/09/21 01:04	EPA 3005A	3,200.8	CD
Selenium, Total	ND		mg/l	0.00500		1	12/08/21 14:58	12/09/21 01:04	EPA 3005A	3,200.8	CD
Silver, Total	ND		mg/l	0.00040		1	12/08/21 14:58	12/09/21 01:04	EPA 3005A	3,200.8	CD
Zinc, Total	0.04935		mg/l	0.01000		1	12/08/21 14:58	12/09/21 01:04	EPA 3005A	3,200.8	CD
Total Hardness by	/ SM 2340B	- Mansfie	ld Lab								
Hardness	189		mg/l	0.660	NA	1	12/08/21 14:58	12/10/21 14:32	EPA 3005A	19,200.7	SV

Project Name:BHCC-NEW ACADEMIC BUILDINGProject Number:135301-003

 Lab Number:
 L2167180

 Report Date:
 12/13/21

Method Blank Analysis Batch Quality Control

Parameter	Result Qualifier	Units	RL	MDL	Dilution Factor	Date Prepared	Date Analyzed	Analytical Method	
Total Metals - Mansfie	eld Lab for sample(s):	01 Batch	n: WG1	580688-	1				
Iron, Total	ND	mg/l	0.050		1	12/08/21 14:58	12/10/21 13:32	2 19,200.7	SV
		I	Prep Inf	ormatic	on				

Digestion Method: EPA 3005A

Parameter	Result Qualifier	Units	RL	MDL	Dilution Factor	Date Prepared	Date Analyzed	Analytical Method	Analyst
Total Hardness by SM	2340B - Mansfield La	b for sam	ple(s): 0	1 Bato	h: WG158	0688-1			
Hardness	ND	mg/l	0.660	NA	1	12/08/21 14:58	12/10/21 13:32	19,200.7	SV

Prep Information

Digestion Method: EPA 3005A

Parameter	Result Qualifier	Units	RL	MDL	Dilution Factor	Date Prepared	Date Analyzed	Analytica Method	Analyst
Total Metals - Mansf	ield Lab for sample(s):	01 Batc	h: WG15	80693-	·1				
Antimony, Total	ND	mg/l	0.00400		1	12/08/21 14:58	12/09/21 00:12	3,200.8	CD
Arsenic, Total	ND	mg/l	0.00100		1	12/08/21 14:58	12/09/21 00:12	3,200.8	CD
Cadmium, Total	ND	mg/l	0.00020		1	12/08/21 14:58	12/09/21 00:12	3,200.8	CD
Chromium, Total	ND	mg/l	0.00100		1	12/08/21 14:58	12/09/21 00:12	3,200.8	CD
Copper, Total	ND	mg/l	0.00100		1	12/08/21 14:58	12/09/21 00:12	3,200.8	CD
Lead, Total	ND	mg/l	0.00100		1	12/08/21 14:58	12/09/21 00:12	3,200.8	CD
Nickel, Total	ND	mg/l	0.00200		1	12/08/21 14:58	12/09/21 00:12	3,200.8	CD
Selenium, Total	ND	mg/l	0.00500		1	12/08/21 14:58	12/09/21 00:12	3,200.8	CD
Silver, Total	ND	mg/l	0.00040		1	12/08/21 14:58	12/09/21 00:12	3,200.8	CD
Zinc, Total	ND	mg/l	0.01000		1	12/08/21 14:58	12/09/21 00:12	3,200.8	CD

Prep Information

Digestion Method: EPA 3005A

Project Name:BHCC-NEW ACADEMIC BUILDINGProject Number:135301-003

 Lab Number:
 L2167180

 Report Date:
 12/13/21

Method Blank Analysis Batch Quality Control

Parameter	Result Qualifier	Units	RL	MDL	Dilution Factor	Date Prepared	Date Analyzed	Analytica Method	
Total Metals - Mansfi	eld Lab for sample(s):	01 Batc	h: WG15	580696-	1				
Mercury, Total	ND	mg/l	0.00020		1	12/08/21 15:06	12/09/21 10:37	3,245.1	AC

Prep Information

Digestion Method: EPA 245.1

Lab Control Sample Analysis Batch Quality Control

Project Name: BHCC-NEW ACADEMIC BUILDING

Project Number: 135301-003

 Lab Number:
 L2167180

 Report Date:
 12/13/21

Parameter	LCS %Recovery	Qual	LCSD %Recovery	Qual	%Recovery Limits	RPD	Qual	RPD Limits	
Total Metals - Mansfield Lab Associated sample	e(s): 01 Batch:	WG1580	688-2						
Iron, Total	98		-		85-115	-			
Total Hardness by SM 2340B - Mansfield Lab	Associated samp	le(s): 01	Batch: WG158068	8-2					
Hardness	101		-		85-115	-			
Total Metals - Mansfield Lab Associated sample	e(s): 01 Batch:	WG1580	693-2						
Antimony, Total	86		-		85-115	-			
Arsenic, Total	95		-		85-115	-			
Cadmium, Total	97		-		85-115	-			
Chromium, Total	97		-		85-115	-			
Copper, Total	97		-		85-115	-			
Lead, Total	94		-		85-115	-			
Nickel, Total	96		-		85-115	-			
Selenium, Total	98		-		85-115	-			
Silver, Total	97		-		85-115	-			
Zinc, Total	94		-		85-115	-			

Total Metals - Mansfield Lab Associated sample(s): 01 Batch: WG1580696-2

Mercury, Total	91	-	85-115	-	

Matrix Spike Analysis

Project Name:	BHCC-NEW ACADEMIC BUILDING	Batch Quality Control	Lab Number:	L2167180
Project Number:	135301-003		Report Date:	12/13/21

arameter	Native Sample	MS Added	MS Found	MS %Recovery	Qua	MSD Found	MSD %Recovery	Recovery Qual Limits		RPD ual Limits
otal Metals - Mansfield	Lab Associated sam	nple(s): 01	QC Batch	D: WG158068	8-3	QC Sample: L	2167174-01	Client ID: MS S	ample	
Iron, Total	16.9	1	17.7	80		-	-	75-125	-	20
otal Hardness by SM 23	340B - Mansfield La	b Associate	ed sample(s)	: 01 QC Bato	h ID: ۱	NG1580688-3	QC Samp	le: L2167174-01	Client ID:	MS Sample
Hardness	575	66.2	634	89				75-125		20
otal Metals - Mansfield	Lab Associated sam	nple(s): 01	QC Batch	D: WG158068	8-7	QC Sample: L	.2167174-02	Client ID: MS S	ample	
Iron, Total	0.186	1	1.16	97		-	-	75-125	-	20
otal Hardness by SM 23	340B - Mansfield La	b Associate	ed sample(s)	: 01 QC Bate	h ID: ۱	NG1580688-7	QC Samp	le: L2167174-02	Client ID:	MS Sample
Hardness	644	66.2	710	100		-	-	75-125	-	20
otal Metals - Mansfield	Lab Associated sam	nple(s): 01	QC Batch	D: WG158069	3-3	QC Sample: L	.2167174-01	Client ID: MS S	ample	
Antimony, Total	ND	0.5	0.3964	79		-	-	70-130	-	20
Arsenic, Total	0.00122	0.12	0.1128	93		-	-	70-130	-	20
Cadmium, Total	ND	0.053	0.05056	95		-	-	70-130	-	20
Chromium, Total	0.02004	0.2	0.2033	92		-	-	70-130	-	20
Copper, Total	0.01869	0.25	0.2400	88		-	-	70-130	-	20
Lead, Total	0.01043	0.53	0.5019	93		-	-	70-130	-	20
Nickel, Total	0.01803	0.5	0.4578	88		-	-	70-130	-	20
Selenium, Total	ND	0.12	0.1118	93		-	-	70-130	-	20
Silver, Total	ND	0.05	0.04714	94		-	-	70-130	-	20
Zinc, Total	0.04812	0.5	0.4946	89				70-130		20

Matrix Spike Analysis Batch Quality Control

Project Name: BHCC-NEW ACADEMIC BUILDING

Project Number: 135301-003

Lab Number: L2167180

Report Date: 12/13/21

arameter	Native Sample	MS Added	MS Found	MS %Recovery	MSD Found	MSD %Recovery	Recovery Limits	RPD	RPD Limits
Total Metals - Mansfield	Lab Associated sam	nple(s): 01	QC Batch I	D: WG1580693-5	QC Sample:	L2167174-02	Client ID: MS Sa	mple	
Antimony, Total	ND	0.5	0.4820	96	-	-	70-130	-	20
Arsenic, Total	0.00102	0.12	0.1181	98	-	-	70-130	-	20
Cadmium, Total	ND	0.053	0.05058	95	-	-	70-130	-	20
Chromium, Total	ND	0.2	0.1813	91	-	-	70-130	-	20
Copper, Total	0.00548	0.25	0.2298	90	-	-	70-130	-	20
Lead, Total	ND	0.53	0.4876	92	-	-	70-130	-	20
Nickel, Total	0.00757	0.5	0.4483	88	-	-	70-130	-	20
Selenium, Total	ND	0.12	0.1062	88	-	-	70-130	-	20
Silver, Total	ND	0.05	0.04634	93	-	-	70-130	-	20
Zinc, Total	0.01680	0.5	0.4609	89	-	-	70-130	-	20
otal Metals - Mansfield	Lab Associated sam	nple(s): 01	QC Batch I	D: WG1580696-3	QC Sample:	L2167182-01	Client ID: MS Sa	mple	
Mercury, Total	ND	0.005	0.00460	92	-	-	70-130	-	20
otal Metals - Mansfield	Lab Associated sam	nple(s): 01	QC Batch I	D: WG1580696-5	QC Sample:	L2167182-02	Client ID: MS Sa	mple	
Mercury, Total	0.00034	0.005	0.00490	91	-	-	70-130	-	20

Lab Duplicate Analysis Batch Quality Control

Project Name: BHCC-NEW ACADEMIC BUILDING Project Number: 135301-003

Lab Number: Report Date:

L2167180 12/13/21

Parameter	Native Sample Du	olicate Sample	Units	RPD	Qual	RPD Limits
Total Metals - Mansfield Lab Associated sample(s): 01	QC Batch ID: WG1580688-4	QC Sample:	L2167174-01	Client ID:	DUP Sample	
Iron, Total	16.9	17.0	mg/l	1		20
Total Metals - Mansfield Lab Associated sample(s): 01	QC Batch ID: WG1580688-8	QC Sample:	L2167174-02	Client ID:	DUP Sample	
Iron, Total	0.186	0.180	mg/l	3		20
Total Metals - Mansfield Lab Associated sample(s): 01	QC Batch ID: WG1580693-4	QC Sample:	L2167174-01	Client ID:	DUP Sample	
Antimony, Total	ND	ND	mg/l	NC		20
Arsenic, Total	0.00122	0.00166	mg/l	31	Q	20
Cadmium, Total	ND	ND	mg/l	NC		20
Chromium, Total	0.02004	0.02300	mg/l	14		20
Copper, Total	0.01869	0.01964	mg/l	5		20
Lead, Total	0.01043	0.01093	mg/l	5		20
Nickel, Total	0.01803	0.01946	mg/l	8		20
Silver, Total	ND	ND	mg/l	NC		20
Zinc, Total	0.04812	0.05282	mg/l	9		20
Total Metals - Mansfield Lab Associated sample(s): 01	QC Batch ID: WG1580693-4	QC Sample:	L2167174-01	Client ID:	DUP Sample	
Selenium, Total	ND	ND	mg/l	NC		20

Lab Duplicate Analysis Batch Quality Control

Project Name: BHCC-NEW ACADEMIC BUILDING Project Number: 135301-003 Lab Number: Report Date:

te: L2167180

Native Sample Duplicate Sample RPD **RPD Limits** Parameter Units Total Metals - Mansfield Lab Associated sample(s): 01 QC Batch ID: WG1580693-6 QC Sample: L2167174-02 Client ID: DUP Sample Antimony, Total ND ND mg/l NC 20 Cadmium, Total ND ND mg/l NC 20 Chromium, Total ND ND mg/l NC 20 Copper, Total 0.00548 0.00525 mg/l 4 20 Lead, Total ND ND mg/l NC 20 Nickel, Total 0.00757 0.00733 mg/l 3 20 Silver, Total ND ND mg/l NC 20 Zinc, Total 0.01680 0.01664 mg/l 1 20 QC Sample: L2167174-02 Client ID: DUP Sample Total Metals - Mansfield Lab Associated sample(s): 01 QC Batch ID: WG1580693-6 0.00102 0.00113 10 20 Arsenic, Total mg/l ND ND NC 20 Selenium, Total mg/l QC Sample: L2167182-01 Client ID: DUP Sample Total Metals - Mansfield Lab Associated sample(s): 01 QC Batch ID: WG1580696-4 ND ND NC 20 Mercury, Total mg/l Total Metals - Mansfield Lab Associated sample(s): 01 QC Batch ID: WG1580696-6 QC Sample: L2167182-02 Client ID: DUP Sample Mercury, Total 0.00042 20 0.00034 mg/l 20

INORGANICS & MISCELLANEOUS

Serial No:12132116:48

Project Name:	BHCC-NEW ACADEMIC BUILDING	Lab Number:	L2167180
Project Number:	135301-003	Report Date:	12/13/21
	SAMPLE RESULTS		
Lab ID:	L2167180-01	Date Collected:	12/07/21 11:14
Client ID:	HA21-MR	Date Received:	12/07/21
Sample Location:	BHCC, CHARLESTOWN, MA	Field Prep:	None
Sample Depth: Matrix:	Water		

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	Date Prepared	Date Analyzed	Analytical Method	Analyst
General Chemistry - V	Vestborough Lal	C								
SALINITY	ND		SU	2.0		1	-	12/08/21 18:32	121,2520B	AS
рН (Н)	7.3		SU	-	NA	1	-	12/08/21 04:14	121,4500H+-B	KA
Nitrogen, Ammonia	0.624		mg/l	0.075		1	12/09/21 15:40	12/10/21 19:40	121,4500NH3-BH	H AT

Project Name:BHCC-NEW ACADEMIC BUILDINGProject Number:135301-003

 Lab Number:
 L2167180

 Report Date:
 12/13/21

Method Blank Analysis Batch Quality Control

Parameter	Result Qua	lifier Units	RL	MDL	Dilution Factor	Date Prepared	Date Analyzed	Analytical Method	Analyst
General Chemistry -	Westborough Lab for	or sample(s): C	1 Batch:	WG15	581160-1				
Nitrogen, Ammonia	ND	mg/l	0.075		1	12/09/21 15:40	12/10/21 19:27	121,4500NH3-B	H AT

Lab Control Sample Analysis Batch Quality Control

Project Name: BHCC-NEW ACADEMIC BUILDING

Project Number: 135301-003

 Lab Number:
 L2167180

 Report Date:
 12/13/21

Parameter	LCS %Recovery Qu	LCSD al %Recovery	Qual	%Recovery Limits	RPD	Qual	RPD Limits
General Chemistry - Westborough Lab	Associated sample(s): 01	Batch: WG1580449-1					
рН	100	-		99-101	-		5
General Chemistry - Westborough Lab	Associated sample(s): 01	Batch: WG1580859-1					
SALINITY	101	-			-		
General Chemistry - Westborough Lab	Associated sample(s): 01	Batch: WG1581160-2	2				
Nitrogen, Ammonia	94	-		80-120	-		20

		Matrix Spike Analysis Batch Quality Control		
Project Name:	BHCC-NEW ACADEMIC BUILDING	Baton Quality Control	Lab Number:	L2167180
Project Number:	135301-003		Report Date:	12/13/21

Parameter	Native Sample	MS Added	MS Found	MS %Recovery	MSD Qual Found	MSD %Recovery Qu	Recovery Ial Limits RPD	RPD Qual Limits
General Chemistry - Westborou	gh Lab Asso	ciated samp	le(s): 01	QC Batch ID: V	VG1581160-4	QC Sample: L2167	174-02 Client ID: M	S Sample
Nitrogen, Ammonia	4.26	4	8.03	94	-	-	80-120 -	20

Project Name: Project Numbe		ACADEMIC BUILDING			Duplicate A Batch Quality C			Lab Nun Report D		L2167180 12/13/21
Parameter		Nativ	ve Sa	ample	Duplicate Sam	ple Unit	s RPD) Qua	I RPD	Limits
General Chemistry -	Westborough Lab	Associated sample(s):	01	QC Batch ID:	WG1580449-2	QC Sample:	L2166929-01	Client ID:	DUP Sar	nple
рН			7.2		7.1	SU	1			5
General Chemistry -	Westborough Lab	Associated sample(s):	01	QC Batch ID:	WG1580859-2	QC Sample:	L2167180-01	Client ID:	HA21-MI	R
SALINITY			ND		ND	SU	NC			
General Chemistry -	Westborough Lab	Associated sample(s):	01	QC Batch ID:	WG1581160-3	QC Sample:	L2167174-02	Client ID:	DUP Sar	nple
Nitrogen, Ammonia			4.26	3	4.38	mg/l	3			20

Sample Receipt and Container Information

YES

Were project specific reporting limits specified?

Cooler Information

Cooler	Custody Seal
E	Absent

Container Info	ormation		Initial	Final	Temp			Frozen	
Container ID	Container Type	Cooler		pН	deg C	Pres	Seal	Date/Time	Analysis(*)
L2167180-01A	Plastic 120ml unpreserved split	Е	7	7	4.1	Y	Absent		-
L2167180-01B	Plastic 250ml HNO3 preserved	E	<2	<2	4.1	Y	Absent		CD-2008T(180),NI-2008T(180),ZN- 2008T(180),FE-UI(180),HARDU(180),CU- 2008T(180),AS-2008T(180),SE-2008T(180),AG- 2008T(180),HG-U(28),SB-2008T(180),CR- 2008T(180),PB-2008T(180)
L2167180-01C	Plastic 500ml unpreserved	E	7	7	4.1	Y	Absent		SALINITY(28),PH-4500(.01)
L2167180-01D	Plastic 500ml H2SO4 preserved	Е	<2	<2	4.1	Y	Absent		NH3-4500(28)
L2167180-01X	Plastic 120ml HNO3 preserved Filtrates	Е	NA		4.1	Y	Absent		HOLD-METAL-DISSOLVED(180)

Project Name: BHCC-NEW ACADEMIC BUILDING

Project Number: 135301-003

Lab Number: L2167180

Report Date: 12/13/21

GLOSSARY

Acronyms

DL	 Detection Limit: This value represents the level to which target analyte concentrations are reported as estimated values, when those target analyte concentrations are quantified below the limit of quantitation (LOQ). The DL includes any adjustments from dilutions, concentrations or moisture content, where applicable. (DoD report formats only.)
EDL	- Estimated Detection Limit: This value represents the level to which target analyte concentrations are reported as estimated values, when those target analyte concentrations are quantified below the reporting limit (RL). The EDL includes any adjustments from dilutions, concentrations or moisture content, where applicable. The use of EDLs is specific to the analysis of PAHs using Solid-Phase Microextraction (SPME).
EMPC	- Estimated Maximum Possible Concentration: The concentration that results from the signal present at the retention time of an analyte when the ions meet all of the identification criteria except the ion abundance ratio criteria. An EMPC is a worst-case estimate of the concentration.
EPA	- Environmental Protection Agency.
LCS	- Laboratory Control Sample: A sample matrix, free from the analytes of interest, spiked with verified known amounts of analytes or a material containing known and verified amounts of analytes.
LCSD	- Laboratory Control Sample Duplicate: Refer to LCS.
LFB	- Laboratory Fortified Blank: A sample matrix, free from the analytes of interest, spiked with verified known amounts of analytes or a material containing known and verified amounts of analytes.
LOD	- Limit of Detection: This value represents the level to which a target analyte can reliably be detected for a specific analyte in a specific matrix by a specific method. The LOD includes any adjustments from dilutions, concentrations or moisture content, where applicable. (DoD report formats only.)
LOQ	- Limit of Quantitation: The value at which an instrument can accurately measure an analyte at a specific concentration. The LOQ includes any adjustments from dilutions, concentrations or moisture content, where applicable. (DoD report formats only.)
	Limit of Quantitation: The value at which an instrument can accurately measure an analyte at a specific concentration. The LOQ includes any adjustments from dilutions, concentrations or moisture content, where applicable. (DoD report formats only.)
MDL	- Method Detection Limit: This value represents the level to which target analyte concentrations are reported as estimated values, when those target analyte concentrations are quantified below the reporting limit (RL). The MDL includes any adjustments from dilutions, concentrations or moisture content, where applicable.
MS	 Matrix Spike Sample: A sample prepared by adding a known mass of target analyte to a specified amount of matrix sample for which an independent estimate of target analyte concentration is available. For Method 332.0, the spike recovery is calculated using the native concentration, including estimated values.
MSD	- Matrix Spike Sample Duplicate: Refer to MS.
NA	- Not Applicable.
NC	- Not Calculated: Term is utilized when one or more of the results utilized in the calculation are non-detect at the parameter's reporting unit.
NDPA/DPA	- N-Nitrosodiphenylamine/Diphenylamine.
NI	- Not Ignitable.
NP	- Non-Plastic: Term is utilized for the analysis of Atterberg Limits in soil.
NR	- No Results: Term is utilized when 'No Target Compounds Requested' is reported for the analysis of Volatile or Semivolatile Organic TIC only requests.
RL	- Reporting Limit: The value at which an instrument can accurately measure an analyte at a specific concentration. The RL includes any adjustments from dilutions, concentrations or moisture content, where applicable.
RPD	- Relative Percent Difference: The results from matrix and/or matrix spike duplicates are primarily designed to assess the precision of analytical results in a given matrix and are expressed as relative percent difference (RPD). Values which are less than five times the reporting limit for any individual parameter are evaluated by utilizing the absolute difference between the values; although the RPD value will be provided in the report.
SRM	- Standard Reference Material: A reference sample of a known or certified value that is of the same or similar matrix as the associated field samples.
STLP	- Semi-dynamic Tank Leaching Procedure per EPA Method 1315.
TEF	- Toxic Equivalency Factors: The values assigned to each dioxin and furan to evaluate their toxicity relative to 2,3,7,8-TCDD.
TEQ	- Toxic Equivalent: The measure of a sample's toxicity derived by multiplying each dioxin and furan by its corresponding TEF and then summing the resulting values.
TIC	- Tentatively Identified Compound: A compound that has been identified to be present and is not part of the target compound list (TCL) for the method and/or program. All TICs are qualitatively identified and reported as estimated concentrations.

Report Format: Data Usability Report

Project Name: BHCC-NEW ACADEMIC BUILDING

Project Number: 135301-003 Lab Number: L2167180

Report Date: 12/13/21

Footnotes

1

- The reference for this analyte should be considered modified since this analyte is absent from the target analyte list of the original method.

Terms

Analytical Method: Both the document from which the method originates and the analytical reference method. (Example: EPA 8260B is shown as 1,8260B.) The codes for the reference method documents are provided in the References section of the Addendum.

Difference: With respect to Total Oxidizable Precursor (TOP) Assay analysis, the difference is defined as the Post-Treatment value minus the Pre-Treatment value.

Final pH: As it pertains to Sample Receipt & Container Information section of the report, Final pH reflects pH of container determined after adjustment at the laboratory, if applicable. If no adjustment required, value reflects Initial pH.

Frozen Date/Time: With respect to Volatile Organics in soil, Frozen Date/Time reflects the date/time at which associated Reagent Waterpreserved vials were initially frozen. Note: If frozen date/time is beyond 48 hours from sample collection, value will be reflected in 'bold'. Initial pH: As it pertains to Sample Receipt & Container Information section of the report, Initial pH reflects pH of container determined upon receipt, if applicable.

PAH Total: With respect to Alkylated PAH analyses, the 'PAHs, Total' result is defined as the summation of results for all or a subset of the following compounds: Naphthalene, C1-C4 Naphthalenes, 2-Methylnaphthalene, 1-Methylnaphthalene, Biphenyl, Acenaphthylene, Acenaphthene, Fluorene, C1-C3 Fluorenes, Phenanthrene, C1-C4 Phenanthrenes/Anthracenes, Anthracene, Fluoranthene, Pyrene, C1-C4 Fluoranthenes/Pyrenes, Benz(a)anthracene, Chrysene, C1-C4 Chrysenes, Benzo(b)fluoranthene, Benzo(j)+(k)fluoranthene, Benzo(e)pyrene, Benzo(a)pyrene, Perylene, Indeno(1,2,3-cd)pyrene, Dibenz(ah)+(ac)anthracene, Benzo(g,h,i)perylene. If a 'Total' result is requested, the results of its individual components will also be reported.

PFAS Total: With respect to PFAS analyses, the 'PFAS, Total (5)' result is defined as the summation of results for: PFHpA, PFHxS, PFOA, PFNA and PFOS. In addition, the 'PFAS, Total (6)' result is defined as the summation of results for: PFHpA, PFHxS, PFOA, PFNA, PFDA and PFOS. For MassDEP DW compliance analysis only, the 'PFAS, Total (6)' result is defined as the summation of results at or above the RL. Note: If a 'Total' result is requested, the results of its individual components will also be reported.

The target compound Chlordane (CAS No. 57-74-9) is reported for GC ECD analyses. Per EPA, this compound "refers to a mixture of chlordane isomers, other chlorinated hydrocarbons and numerous other components." (Reference: USEPA Toxicological Review of Chlordane, In Support of Summary Information on the Integrated Risk Information System (IRIS), December 1997.)

Total: With respect to Organic analyses, a 'Total' result is defined as the summation of results for individual isomers or Aroclors. If a 'Total' result is requested, the results of its individual components will also be reported. This is applicable to 'Total' results for methods 8260, 8081 and 8082.

Data Qualifiers

- A - Spectra identified as "Aldol Condensates" are byproducts of the extraction/concentration procedures when acetone is introduced in the process.
- B - The analyte was detected above the reporting limit in the associated method blank. Flag only applies to associated field samples that have detectable concentrations of the analyte at less than ten times (10x) the concentration found in the blank. For MCP-related projects, flag only applies to associated field samples that have detectable concentrations of the analyte at less than ten times (10x) the concentration found in the blank. For DOD-related projects, flag only applies to associated field samples that have detectable concentrations of the analyte at less than ten times (10x) the concentration found in the blank AND the analyte was detected above one-half the reporting limit (or above the reporting limit for common lab contaminants) in the associated method blank. For NJ-Air-related projects, flag only applies to associated field samples that have detectable concentrations of the analyte above the reporting limit. For NJ-related projects (excluding Air), flag only applies to associated field samples that have detectable concentrations of the analyte, which was detected above the reporting limit in the associated method blank or above five times the reporting limit for common lab contaminants (Phthalates, Acetone, Methylene Chloride, 2-Butanone).
- С - Co-elution: The target analyte co-elutes with a known lab standard (i.e. surrogate, internal standards, etc.) for co-extracted analyses.
- D - Concentration of analyte was quantified from diluted analysis. Flag only applies to field samples that have detectable concentrations of the analyte.
- Е - Concentration of analyte exceeds the range of the calibration curve and/or linear range of the instrument.
- F - The ratio of quantifier ion response to qualifier ion response falls outside of the laboratory criteria. Results are considered to be an estimated maximum concentration.
- G - The concentration may be biased high due to matrix interferences (i.e, co-elution) with non-target compound(s). The result should be considered estimated.
- н - The analysis of pH was performed beyond the regulatory-required holding time of 15 minutes from the time of sample collection.
- I - The lower value for the two columns has been reported due to obvious interference.
- J - Estimated value. This represents an estimated concentration for Tentatively Identified Compounds (TICs).
- Μ - Reporting Limit (RL) exceeds the MCP CAM Reporting Limit for this analyte.
- ND - Not detected at the reporting limit (RL) for the sample.
- NJ - Presumptive evidence of compound. This represents an estimated concentration for Tentatively Identified Compounds (TICs), where

Report Format: Data Usability Report

Serial_No:12132116:48

Project Name: BHCC-NEW ACADEMIC BUILDING

Project Number: 135301-003

Lab Number: L2167180

Report Date: 12/13/21

Data Qualifiers

the identification is based on a mass spectral library search.

- P The RPD between the results for the two columns exceeds the method-specified criteria.
- Q The quality control sample exceeds the associated acceptance criteria. For DOD-related projects, LCS and/or Continuing Calibration Standard exceedences are also qualified on all associated sample results. Note: This flag is not applicable for matrix spike recoveries when the sample concentration is greater than 4x the spike added or for batch duplicate RPD when the sample concentrations are less than 5x the RL. (Metals only.)
- **R** Analytical results are from sample re-analysis.
- **RE** Analytical results are from sample re-extraction.
- **S** Analytical results are from modified screening analysis.
- V The surrogate associated with this target analyte has a recovery outside the QC acceptance limits. (Applicable to MassDEP DW Compliance samples only.)
- Z The batch matrix spike and/or duplicate associated with this target analyte has a recovery/RPD outside the QC acceptance limits. (Applicable to MassDEP DW Compliance samples only.)

Report Format: Data Usability Report

 Lab Number:
 L2167180

 Report Date:
 12/13/21

REFERENCES

- 3 Methods for the Determination of Metals in Environmental Samples, Supplement I. EPA/600/R-94/111. May 1994.
- 19 Inductively Coupled Plasma Atomic Emission Spectrometric Method for Trace Element Analysis of Water and Wastes. Appendix C, Part 136, 40 CFR (Code of Federal Regulations). July 1, 1999 edition.
- 121 Standard Methods for the Examination of Water and Wastewater. APHA-AWWA-WEF. Standard Methods Online.

LIMITATION OF LIABILITIES

Alpha Analytical performs services with reasonable care and diligence normal to the analytical testing laboratory industry. In the event of an error, the sole and exclusive responsibility of Alpha Analytical shall be to re-perform the work at it's own expense. In no event shall Alpha Analytical be held liable for any incidental, consequential or special damages, including but not limited to, damages in any way connected with the use of, interpretation of, information or analysis provided by Alpha Analytical.

We strongly urge our clients to comply with EPA protocol regarding sample volume, preservation, cooling, containers, sampling procedures, holding time and splitting of samples in the field.

Certification Information

The following analytes are not included in our Primary NELAP Scope of Accreditation:

Westborough Facility

EPA 624/624.1: m/p-xylene, o-xylene, Naphthalene

EPA 625/625.1: alpha-Terpineol

EPA 8260C/8260D: <u>NPW</u>: 1,2,4,5-Tetramethylbenzene; 4-Ethyltoluene, Azobenzene; <u>SCM</u>: Iodomethane (methyl iodide), 1,2,4,5-Tetramethylbenzene; 4-Ethyltoluene.

EPA 8270D/8270E: <u>NPW:</u> Dimethylnaphthalene,1,4-Diphenylhydrazine, alpha-Terpineol; <u>SCM</u>: Dimethylnaphthalene,1,4-Diphenylhydrazine. **SM4500**: <u>NPW</u>: Amenable Cyanide; <u>SCM</u>: Total Phosphorus, TKN, NO2, NO3.

Mansfield Facility

SM 2540D: TSS

EPA 8082A: <u>NPW</u>: PCB: 1, 5, 31, 87,101, 110, 141, 151, 153, 180, 183, 187. EPA TO-15: Halothane, 2,4,4-Trimethyl-2-pentene, 2,4,4-Trimethyl-1-pentene, Thiophene, 2-Methylthiophene, 3-Methylthiophene, 2-Ethylthiophene, 1,2,3-Trimethylbenzene, Indan, Indene, 1,2,4,5-Tetramethylbenzene, Benzothiophene, 1-Methylnaphthalene. Biological Tissue Matrix: EPA 3050B

The following analytes are included in our Massachusetts DEP Scope of Accreditation

Westborough Facility:

Drinking Water

EPA 300.0: Chloride, Nitrate-N, Fluoride, Sulfate; EPA 353.2: Nitrate-N, Nitrite-N; SM4500NO3-F: Nitrate-N, Nitrite-N; SM4500F-C, SM4500CN-CE, EPA 180.1, SM2130B, SM4500CI-D, SM2320B, SM2540C, SM4500H-B, SM4500NO2-B EPA 332: Perchlorate; EPA 524.2: THMs and VOCs; EPA 504.1: EDB, DBCP. Microbiology: SM9215B; SM9223-P/A, SM9223B-Colilert-QT,SM9222D.

Non-Potable Water

SM4500H,B, EPA 120.1, SM2510B, SM2540C, SM2320B, SM4500CL-E, SM4500F-BC, SM4500NH3-BH: Ammonia-N and Kjeldahl-N, EPA 350.1: Ammonia-N, LACHAT 10-107-06-1-B: Ammonia-N, EPA 351.1, SM4500NO3-F, EPA 353.2: Nitrate-N, SM4500P-E, SM4500P-B, E, SM4500SO4-E, SM5220D, EPA 410.4, SM5210B, SM5310C, SM4500CL-D, EPA 1664, EPA 420.1, SM4500-CN-CE, SM2540D, EPA 300: Chloride, Sulfate, Nitrate. EPA 624.1: Volatile Halocarbons & Aromatics, EPA 608.3: Chlordane Toxaphene Aldrin alpha-BHC beta-BHC gamma-BHC delta-BHC Dieldrin DDD DDE DDT Endosulfan I Endosulfan II

EPA 608.3: Chlordane, Toxaphene, Aldrin, alpha-BHC, beta-BHC, gamma-BHC, delta-BHC, Dieldrin, DDD, DDE, DDT, Endosulfan I, Endosulfan II, Endosulfan sulfate, Endrin, Endrin Aldehyde, Heptachlor, Heptachlor Epoxide, PCBs **EPA 625.1**: SVOC (Acid/Base/Neutral Extractables), **EPA 600/4-81-045**: PCB-Oil.

Microbiology: SM9223B-Colilert-QT; Enterolert-QT, SM9221E, EPA 1600, EPA 1603, SM9222D.

Mansfield Facility:

Drinking Water

EPA 200.7: Al, Ba, Cd, Cr, Cu, Fe, Mn, Ni, Na, Ag, Ca, Zn. EPA 200.8: Al, Sb, As, Ba, Be, Cd, Cr, Cu, Pb, Mn, Ni, Se, Ag, TL, Zn. EPA 245.1 Hg. EPA 522, EPA 537.1.

Non-Potable Water

EPA 200.7: Al, Sb, As, Be, Cd, Ca, Cr, Co, Cu, Fe, Pb, Mg, Mn, Mo, Ni, K, Se, Ag, Na, Sr, TL, Ti, V, Zn. **EPA 200.8:** Al, Sb, As, Be, Cd, Cr, Cu, Fe, Pb, Mn, Ni, K, Se, Ag, Na, TL, Zn. **EPA 245.1** Hg. **SM2340B**

For a complete listing of analytes and methods, please contact your Alpha Project Manager.

	CHAIN OF CUSTODY	Setvice Centers Brewer, ME 04412 Parlamor NJ 07430 Albany, NY 12206 Tenawanda, NY 14150 Hotmaa		Page		Date Rec'd In Lab	t	2	2	2	l	L2167180
Wselborough, MA 01581	Manuticit, MA 02048 320 Foties Mind	Project Information	1000			Delverables				Billing Information		
# Walkup Dr. TEL. 506-898-8220	TEL: 508-822-8300 FAX: 518-822-3288	Project Name: BHCC	C- New Academic B	uilding		E Emial				Same as Cliant Wo		
FAX: 608-898-9183		Project Location: BHC	EQUS (1 FI	D (0			POR					
H&A Information		Project # 13530	01-003			D Other:						a second s
H&A Client: DCAMI	M-BHCC	(Use Project name as Pro	Regulatory Req	utemen	ts (Pro	gram/C	ntima	1	Disposal Site Information			
H&A Address 465 Me	adlard St	Project Manager: H Bal	MA				Please identify below location of applicable					
Bosto	n, MA 0212-1400	ALPHAQuote #.							disposal fazililios.			
H&A Phone: 617-88	6-7400	Tum-Around Time								Dispessal Facility:		
H&A Fax:		Standard 🗹								C NI D NY		
H&A Email: h0/Him	yne@haleyaldrich.com, Saerald@haleyaldrich.kom, Nitherweait@haleyaldrich.com	(cnly if pre approved)	# of Days	E		Note: Select State	from un	ing & iq	entity cri	luis.		C Other:
		E ANALYSIS		Sample Filtration								
12. Dissolved Metals	ic requirements/comments: ION HOLD (Field Filtered) I for 2017 NPDES RGP application; please follow approved lesting meth	ods and minimum detectio	on levels as require	ed by EPA.		Kiua	is - Ag. As. Cd. b.Ss.Zn.Fe.Hg	Menale - Ag. M.Pb Sb.Se TLZ	monia	CORLIN		Done Lab to do Preservation Lab to do
1		Collection Sample Sampler's			r.	3. Total Meta Cr.Cu.N.Pb.S	Dissolved Cd Cr Cv 5. Am		in the local data	e	(Please Specify below)	
ALPHA Lab ID (Lab Use Only)	Sample ID	D	Date Time		Sampler's Initials	1	3.1					Sample Specific Comments
67180-01	HK21-MB	12/	er 11:12	SW	56	X	K	×	X	1	X	Temp-504 pH 7 4 3
esorvative Code: Container Cpde = None P = Plastic = HOD A = Amber Glass = HNO, V = VM = HySO, G = Glass = NaOH B = Bacteria Gup = NaOH C = Oute		Westboro: Certification No Mansfield: Certification No Pelinquished By:	MAD15	Container T) Preserval Date/Time		elved By:						Please print clearly, legibly and completely. Samples can not be logged in and turnaround time clock will not start until any ambiguities are reached. Alpha Analytica's services under this Chain of Custody shall be performed in accordance with turns and conditions within Blanket Service Agreement' 2015-14-Alpha Analytical by and
1 = NaHSO ₄ H = Na ₂ S ₂ O ₂ VE = Zn Ac/NaOH O = Other	O = Other E = Encre D = BOO Bottle	MAY GUA LO INI MAY-SA 12/2	121 16:30	12:04	Min.		-A	AL	12	12	11613-	between Haley & Aldrich, Inc., its substitiaries and affiliates and Alpha Analysical
Document ID: 20455 Rev	1 (1/28/2016)	1 your shines	144	5.75	1	Alle	-2	X	12	171	8117:4	5
			_		/		- 1	\rightarrow	-	-		

APPENDIX D

Discharge Calculations

StreamStats Report

Region ID: MA Workspace ID: MA20211210164040368000 Clicked Point (Latitude, Longitude): 42.36933, -71.06418 Time: 2021-12-10 11:41:05 -0500 repperen Andover Lowell Gloucester Lunenburg Tewksbury Athol Groton North Reading 128 Gardner Westford Wilmington 202 Fitchburg Peabody 495 Acton Leominster Harvard . Reading • Wakefield Salem Bedfowbburn* Maynard, Concord den/Lynn Lexingto Princeton reville 190 Clinton Sudbury Wal hame Massachusetts Oakham Holden Winthrop Bay 290 Marlborough Boston Newto Paxton Shrewsbury, Northborough rookfield Framinghan Needhan Quincy Leicester Worcester Westborough re Spencere Dedham Weymouth North Scituate Auburn Grafton Medfiel orwood rookfield Norwell Scituate Canton Randolph Millbury Northbridge Appedal Norfolk Sharon B 90 HolbrookRockland Oxford Bellingram in Sharon Abington Hanson Marshi Brock ton North Pembroke Charlton Marshfield Whitinsville East Douglas Je forough Easton 24 Pro Duxbury Webster East Bridgewater Kingston Woonsocket . brd Norton, Bridgewater Halifax Plymouth Plympton Pascoag Smithfield Attleboro* ord 44 igs Putnam* • Taunton Pawtucket Greenville Providence Repoteth Carver Jerimoth Hill

Basin Characteristics									
Parameter Code	Parameter Description	Value	Unit						
DRNAREA	Area that drains to a point on a stream	313	square miles						
BSLDEM250	Mean basin slope computed from 1:250K DEM	2.314	percent						
DRFTPERSTR	Area of stratified drift per unit of stream length	0.25	square mile per mile						
MAREGION	Region of Massachusetts 0 for Eastern 1 for Western	0	dimensionless						
ELEV	Mean Basin Elevation	189	feet						
LC06STOR	Percentage of water bodies and wetlands determined from the NLCD 2006	12.2	percent						

Low-Flow Statistics Parameters [Statewide Low Flow WRIR00 4135]

Parameter Code	Parameter Name	Value	Units	Min Limit	Max Limit
DRNAREA	Drainage Area	313	square miles	1.61	149
BSLDEM250	Mean Basin Slope from 250K DEM	2.314	percent	0.32	24.6
DRFTPERSTR	Stratified Drift per Stream Length	0.25	square mile per mile	0	1.29
MAREGION	Massachusetts Region	0	dimensionless	0	1

Low-Flow Statistics Disclaimers [Statewide Low Flow WRIR00 4135]

One or more of the parameters is outside the suggested range. Estimates were extrapolated with unknown errors

Low-Flow Statistics Flow Report [Statewide Low Flow WRIR00 4135]

Statistic	Value	Unit
7 Day 2 Year Low Flow	58.3	ft^3/s
7 Day 10 Year Low Flow	29.7	ft^3/s

Low-Flow Statistics Citations

Ries, K.G., III,2000, Methods for estimating low-flow statistics for Massachusetts streams: U.S. Geological Survey Water Resources Investigations Report 00-4135, 81 p. (http://pubs.usgs.gov/wri/wri004135/)

Peak-Flow Statistics Parameters [Peak Statewide 2016 5156]								
Parameter Code	Parameter Name	Value	Units	Min Limit	Max Limit			
DRNAREA	Drainage Area	313	square miles	0.16	512			
ELEV	Mean Basin Elevation	189	feet	80.6	1948			
LC06STOR	Percent Storage from NLCD2006	12.2	percent	0	32.3			

Peak-Flow Statistics Flow Report [Peak Statewide 2016 5156]

PII: Prediction Interval-Lower, Plu: Prediction Interval-Upper, ASEp: Average Standard Error of Prediction, SE: Standard Error (other -- see report)

Statistic	Value	Unit	PII	Plu	ASEp
50-percent AEP flood	3350	ft^3/s	1710	6560	42.3
20-percent AEP flood	5230	ft^3/s	2630	10400	43.4
10-percent AEP flood	6640	ft^3/s	3270	13500	44.7
4-percent AEP flood	8640	ft^3/s	4110	18200	47.1
2-percent AEP flood	10300	ft^3/s	4750	22300	49.4
1-percent AEP flood	11900	ft^3/s	5320	26600	51.8
0.5-percent AEP flood	13800	ft^3/s	5990	31800	54.1
0.2-percent AEP flood	16300	ft^3/s	6750	39300	57.6

Peak-Flow Statistics Citations

Zarriello, P.J.,2017, Magnitude of flood flows at selected annual exceedance probabilities for streams in Massachusetts: U.S. Geological Survey Scientific Investigations Report 2016-5156, 99 p. (https://dx.doi.org/10.3133/sir20165156)

USGS Data Disclaimer: Unless otherwise stated, all data, metadata and related materials are considered to satisfy the quality standards relative to the purpose for which the data were collected. Although these data and associated metadata have been reviewed for accuracy and completeness and approved for release by the U.S. Geological Survey (USGS), no warranty expressed or implied is made regarding the display or utility of the data for other purposes, nor on all computer systems, nor shall the act of distribution constitute any such warranty.

USGS Software Disclaimer: This software has been approved for release by the U.S. Geological Survey (USGS). Although the software has been subjected to rigorous review, the USGS reserves the right to update the software as needed pursuant to further analysis and review. No warranty, expressed or implied, is made by the USGS or the U.S. Government as to the functionality of the software and related material nor shall the fact of release constitute any such warranty. Furthermore, the software is released on condition that neither the USGS nor the U.S. Government shall be held liable for any damages resulting from its authorized or unauthorized use.

USGS Product Names Disclaimer: Any use of trade, firm, or product names is for descriptive purposes only and does not imply endorsement by the U.S. Government.

Application Version: 4.6.2 StreamStats Services Version: 1.2.22 NSS Services Version: 2.1.2

HALEY & ALDRIC	H, INC.			CALCI	JLATIONS		LE NO.	135301-003		
CLIENT PROJECT SUBJECT	DCAMM-BHCC BHCC-New Academ Dilution Factor Calc					D	HEET ATE OMPUTED BY	1 9-Dec-21 SMG	of	1
PURPOSE:	Calculate Dilution F	actor (DF) for p	project based on 7 Day	10 Year	(7Q10) Low Flow valu	Jes.				
APPROACH:	Calculate DF based MGD.	on EPA formul	a $(Q_S + Q_D)/Q_D$, where	Q _s is 7Q	10 in million gallons p	oer day (N	1GD) and Q _D is dis	scharge flow in		
ASSUMPTIONS:	 7Q10 is 29.7 cfs A conversion of 7 A discharge flow 	7.48 is used to	convert cubic feet to g	allons						
CALCULATIONS: 7Q10 Low Flow \	Value (Q _s)									
Q _s =	<u>29.7 ft³</u> sec	х	<u>7.48 gallons</u> ft ³	Х	<u>86,400 sec</u> day	х	<u>1 MG</u> 1,000,000 gallor	15		
Q _s =		19.2 MGD								
Discharge Flowro	ate (Q_D)									
Q _D =	<u>150 gallons</u> min	х	<u>1,440 min</u> day	х	<u>1 MG</u> 1,000,000 gallons					
Q _D =	0.216 MGD									
Dilution Factor (I DF =	$O_{c} + O_{D}$	= 19.	<u>2 MGD + 0.216 MGD</u> 0.216 MGD	=	89.9					
CONCLUSION	The dilution factor	for this project	is calculated to be 89.	9 based	on the provided 7Q10) low flov	v value and discha	arge		
	flowrate.							-		

\\haleyaldrich.com\share\CF\Projects\135301\003 - RGP Application and Compliance\Dewatering\NPDES\NPDES NOI\Appendix C - Discharge Cals\2021-1101-HAI-BHCC- New Academic Building-Dilution Factor Calculations.xlsx 12/14/2021

Enter number values in green boxes below

Enter values in the units specified \downarrow 19.2 Q_R = Enter upstream flow in **MGD**

 $Q_P = Enter discharge flow in MGD$ 0.216 Downstream 7Q10

Enter a dilution factor, if other than zero

0

Enter values in the units specified

 \downarrow $C_d = Enter influent hardness in mg/L CaCO_3$ 506 $C_s = Enter receiving water hardness in mg/L CaCO_3$ 189

Freshwater only

Hardness required for freshwater

Enter receiving water concentrations in the units specified

 7.3 pH in Standard Units 10.22 Temperature in °C 0.624 Ammonia in mg/L 189 Hardness in mg/L CaCO₃ 0 Salinity in ppt 0 Antimony in µg/L 0 Arsenic in µg/L 0 Cadmium in µg/L 0 Chromium III in µg/L 0 Chromium VI in µg/L 280 Iron in µg/L 3.43 Lead in µg/L 3.43 Lead in µg/L 0 Mercury in µg/L 2.62 Nickel in µg/L 0 Silver in µg/L 40.35 Zinc in µg/L 	\downarrow	_
0.624 Ammonia in mg/L 189 Hardness in mg/L CaCO ₃ 0 Salinity in ppt 0 Antimony in µg/L 0 Antimony in µg/L 0 Arsenic in µg/L 0 Cadmium in µg/L 0 Chromium III in µg/L 0 Chromium VI in µg/L 14 Copper in µg/L 15.14 Copper in µg/L 16.14 Lead in µg/L 17.15 Mercury in µg/L 18.14 Copper in µg/L 19.14 Lead in µg/L 10 Mercury in µg/L 10 Selenium in µg/L 10 Selenium in µg/L 10 Silver in µg/L	7.3	pH in Standard Units
189Hardness in mg/L CaCO30Salinity in ppt0Antimony in µg/L0Arsenic in µg/L0Cadmium in µg/L0Chromium III in µg/L0Chromium VI in µg/L8.14Copper in µg/L2280Iron in µg/L3.43Lead in µg/L0Mercury in µg/L2.62Nickel in µg/L0Selenium in µg/L0Silver in µg/L	10.22	Temperature in ^o C
 0 Salinity in ppt 0 Antimony in µg/L 0 Arsenic in µg/L 0 Cadmium in µg/L 0 Chromium III in µg/L 0 Chromium VI in µg/L 8.14 Copper in µg/L 2280 Iron in µg/L 3.43 Lead in µg/L 0 Mercury in µg/L 2.62 Nickel in µg/L 0 Selenium in µg/L 0 Silver in µg/L 	0.624	Ammonia in mg/L
0 Antimony in μg/L 0 Arsenic in μg/L 0 Cadmium in μg/L 0 Cadmium in μg/L 0 Chromium III in μg/L 0 Chromium VI in μg/L 8.14 Copper in μg/L 2280 Iron in μg/L 3.43 Lead in μg/L 0 Mercury in μg/L 2.62 Nickel in μg/L 0 Selenium in μg/L 0 Silver in μg/L	189	Hardness in mg/L CaCO ₃
0 Arsenic in μg/L 0 Cadmium in μg/L 0 Chromium III in μg/L 0 Chromium VI in μg/L 0 Chromium VI in μg/L 8.14 Copper in μg/L 2280 Iron in μg/L 3.43 Lead in μg/L 0 Mercury in μg/L 2.62 Nickel in μg/L 0 Selenium in μg/L 0 Silver in μg/L	0	Salinity in ppt
0Cadmium in µg/L0Chromium III in µg/L0Chromium VI in µg/L0Chromium VI in µg/L8.14Copper in µg/L2280Iron in µg/L3.43Lead in µg/L0Mercury in µg/L2.62Nickel in µg/L0Selenium in µg/L0Silver in µg/L	0	Antimony in μg/L
0 Chromium III in µg/L 0 Chromium VI in µg/L 8.14 Copper in µg/L 2280 Iron in µg/L 3.43 Lead in µg/L 0 Mercury in µg/L 2.62 Nickel in µg/L 0 Selenium in µg/L 0 Silver in µg/L	0	Arsenic in µg/L
0 Chromium VI in μg/L 8.14 Copper in μg/L 2280 Iron in μg/L 3.43 Lead in μg/L 0 Mercury in μg/L 2.62 Nickel in μg/L 0 Selenium in μg/L 0 Silver in μg/L	0	Cadmium in µg/L
8.14 Copper in μg/L 2280 Iron in μg/L 3.43 Lead in μg/L 0 Mercury in μg/L 2.62 Nickel in μg/L 0 Selenium in μg/L 0 Silver in μg/L	0	Chromium III in µg/L
2280 Iron in µg/L 3.43 Lead in µg/L 0 Mercury in µg/L 2.62 Nickel in µg/L 0 Selenium in µg/L 0 Silver in µg/L	0	Chromium VI in µg/L
3.43 Lead in μg/L 0 Mercury in μg/L 2.62 Nickel in μg/L 0 Selenium in μg/L 0 Silver in μg/L	8.14	Copper in µg/L
0 Mercury in μg/L 2.62 Nickel in μg/L 0 Selenium in μg/L 0 Silver in μg/L	2280	Iron in µg/L
2.62Nickel in μg/L0Selenium in μg/L0Silver in μg/L	3.43	Lead in µg/L
0 Selenium in µg/L 0 Silver in µg/L	0	Mercury in µg/L
0 Silver in μg/L	2.62	Nickel in μg/L
18	0	Selenium in µg/L
40.25 Zinc in ug/L	0	Silver in µg/L
49.55 Zine in µg/L	49.35	Zinc in µg/L

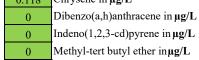
Enter influent concentrations in the units specified

 \downarrow TRC in µg/L 0 925 Ammonia in mg/L Antimony in µg/L 0 0 Arsenic in µg/L 0 Cadmium in µg/L Chromium III in µg/L 0 Chromium VI in $\mu g/L$ 0 1.29 Copper in µg/L 2060 Iron in μg/L 1.53 Lead in $\mu g/L$ Mercury in µg/L 0 Nickel in µg/L 0 Selenium in $\mu g/L$ 0 Silver in µg/L 0 11.22 Zinc in µg/L 0 Cyanide in µg/L Phenol in µg/L 0 0 Carbon Tetrachloride in $\mu g/L$ Tetrachloroethylene inµg/L 0 0 Total Phthalates in µg/L 0 Diethylhexylphthalate inµg/L 0 Benzo(a)anthracene in $\mu g/L$ 0.113 Benzo(a)pyrene in µg/L 0.108 Benzo(b)fluoranthene in µg/L Benzo(k)fluoranthene in $\mu g/L$ 0 0.118 Chrysene in µg/L

if >1 sample, enter maximum if >10 samples, may enter 95th percentile Enter 0 if non-detect or testing not required

Notes:

Freshwater: Q_R equal to the 7Q10; enter alternate Q_R if approved by the State; enter 0 if no dilution factor approved Saltwater (estuarine and marine): enter Q_R if approved by the State; enter 0 if no entry Discharge flow is equal to the design flow or 1 MGD, whichever is less Only if approved by State as the entry for Q_k; leave 0 if no entry


Saltwater (estuarine and marine): only if approved by the State Leave 0 if no entry

pH, temperature, and ammonia required for all discharges

Metals required for all discharges if present and if dilution factor is > 1

Salinity required for saltwater (estuarine and marine)

Enter 0 if non-detect or testing not required

Dilution Factor	89.9					
A. Inorganics	TBEL applies if	bolded	WQBEL applies i	f bolded	Compliance Level applies if shown	
Ammonia	Report	mg/L				
Chloride	Report	μg/L				
Total Residual Chlorine	0.2	mg/L	989	μg/L		μg/L
Total Suspended Solids	30	mg/L mg/L		μg/L		μg/L
Antimony		-	57529	/T		
•	206	μg/L	899	μg/L		
Arsenic	104	μg/L		μg/L		
Cadmium	10.2	μg/L	39.5230	μg/L		
Chromium III	323	μg/L	13246.7	μg/L		
Chromium VI	323	μg/L	1027.8	μg/L		
Copper	242	μg/L	744.1	μg/L		
Iron	5000	μg/L	1000	μg/L		
Lead	160	μg/L	353.54	μg/L		
Mercury	0.739	μg/L	81.43	μg/L		
Nickel	1450	μg/L	7928.2	μg/L		
Selenium	235.8	μg/L	449.4	μg/L		
Silver			1049.6			
Zinc	35.1	μg/L		μg/L		
	420	μg/L	14375.0	μg/L		
Cyanide	178	mg/L	467.4	μg/L		μg/L
B. Non-Halogenated VOCs Total BTEX	100	μg/L				
Benzene	5.0	μg/L μg/L				
1,4 Dioxane	200	μg/L				
Acetone	7970	μg/L				
Phenol	1,080	μg/L	26967	μg/L		
C. Halogenated VOCs		/T	142.0	/T		
Carbon Tetrachloride 1,2 Dichlorobenzene	4.4 600	μg/L ug/I	143.8	μg/L		
1,3 Dichlorobenzene	320	μg/L μg/L				
1,4 Dichlorobenzene	5.0	μg/L				
Total dichlorobenzene		μg/L				
1,1 Dichloroethane	70	μg/L				
1,2 Dichloroethane	5.0	μg/L				
1,1 Dichloroethylene	3.2 0.05	μg/L ug/I				
Ethylene Dibromide Methylene Chloride	4.6	μg/L μg/L				
1,1,1 Trichloroethane	200	μg/L				
1,1,2 Trichloroethane	5.0	μg/L				
Trichloroethylene	5.0	μg/L				
Tetrachloroethylene	5.0	μg/L	296.6	μg/L		
cis-1,2 Dichloroethylene	70	μg/L				
Vinyl Chloride D. Non-Halogenated SVOCs	2.0	μg/L				
Total Phthalates	190	μg/L		μg/L		
Diethylhexyl phthalate	101	μg/L	197.8	μg/L		
Total Group I Polycyclic						
Aromatic Hydrocarbons	1.0	μg/L		17		(T
Benzo(a)anthracene	1.0	μg/L	0.3416	μg/L		μg/L
Benzo(a)pyrene Benzo(b)fluoranthene	1.0 1.0	μg/L μg/L	0.3416 0.3416	μg/L μg/L		μg/L μg/L
Benzo(k)fluoranthene	1.0	μg/L μg/L	0.3416	μg/L		μg/L μg/L
Chrysene	1.0	μg/L	0.3416	μg/L		μg/L
Dibenzo(a,h)anthracene	1.0	μg/L	0.3416	μg/L		μg/L
Indeno(1,2,3-cd)pyrene	1.0	μg/L	0.3416	μg/L		μg/L
Total Group II Polycyclic	100					
Aromatic Hydrocarbons Naphthalene	100 20	μg/L μg/L				
E. Halogenated SVOCs	20	46, D				
Total Polychlorinated Biphenyls	0.000064	μg/L			0.5	μg/L
Pentachlorophenol	1.0	μg/L				
F. Fuels Parameters						
Total Petroleum Hydrocarbons	5.0 Demost	mg/L				
Ethanol Methyl-tert-Butyl Ether	Report 70	mg/L μg/L	1798	μg/L		
tert-Butyl Alcohol	120	μg/L μg/L		μg/L		
tert-Amyl Methyl Ether	90	μg/L μg/L				
,, - -		r. 6' - 2				

Gerald, Shay

From:	Gerald, Shay
Sent:	Friday, December 17, 2021 8:09 AM
То:	Ruan, Xiaodan (DEP)
Cc:	Ballantyne, Heather; Sherwood, Nathan
Subject:	RE: 7Q10 + Dilution Factor for NPDES NOI - BHCC- New Academia Building Project

Good Morning Xiaodan, I just wanted to confirm that we should assume a dilution factor of zero (0) for the application?

Thank you, Shay Gerald

From: Ruan, Xiaodan (DEP) <xiaodan.ruan@state.ma.us>
Sent: Wednesday, December 15, 2021 2:59 PM
To: Gerald, Shay <SGerald@haleyaldrich.com>
Cc: Ballantyne, Heather <HBallantyne@haleyaldrich.com>; Sherwood, Nathan <NSherwood@haleyaldrich.com>; Vakalopoulos, Catherine (DEP) <catherine.vakalopoulos@state.ma.us>
Subject: RE: 7Q10 + Dilution Factor for NPDES NOI - BHCC- New Academia Building Project

CAUTION: External Email

Hi Shay,

The direct receiving water Millers River is stormwater dominant, and since 7Q10 looks at low flow conditions, we can't calculate a dilution factor. We have not granted dilution for discharges to the Millers River in the past, so there is no dilution allowed for the proposed discharge from the project at 50 New Rutherford Ave, Boston, 02129.

Here is water quality information in assisting you in filling out the NOI:

Waterbody and ID: Unnamed tributary (locally known as Millers River, MA72-31) within Charles River Watershed Classification: B Outstanding Resource Water?: no State's most recent Integrated List is located here: <u>https://www.epa.gov/sites/production/files/2020-01/documents/2016-ma-303d-list-report.pdf</u>, search for "MA72-31" to see the causes of impairments. TMDLs: There is no TMDL for this segment

Also, if this is not a *current* MCP site, then in addition to submitting the NOI to EPA, you need to apply with MassDEP and submit a \$500 fee (unless fee exempt, e.g., municipality). As you might already know that MassDEP has started using ePLACE, an online application submittal process where you will set up a user ID and be able to submit NOIs for various projects and pay by credit card. The instructions are located on this page: <u>https://www.mass.gov/how-to/wm-15-npdes-general-permit-notice-of-intent</u>. Technical assistant information for using the ePLACE is available on the ePLACE application webpage.

Please let me know if you have any questions.

Thanks, Xiaodan Xiaodan Ruan Environmental Engineer Massachusetts Department of Environmental Protection One Winter Street, Boston, MA 02108 (857)-256-4172 xiaodan.ruan@mass.gov

From: Vakalopoulos, Catherine (DEP) <<u>catherine.vakalopoulos@mass.gov</u>>
Sent: Wednesday, December 15, 2021 12:03 PM
To: Ruan, Xiaodan (DEP) <<u>xiaodan.ruan@mass.gov</u>>
Cc: <u>SGerald@haleyaldrich.com</u>; Ballantyne, Heather <<u>HBallantyne@haleyaldrich.com</u>>; <u>NSherwood@haleyaldrich.com</u>
Subject: Fw: 7Q10 + Dilution Factor for NPDES NOI - BHCC- New Academia Building Project

Hi Xiaodan, Are you able to work on this? Cathy

Cathy Vakalopoulos Massachusetts Department of Environmental Protection 1 Winter St., Boston, MA 02108, 617-348-4026 Please consider the environment before printing this e-mail

From: Gerald, Shay <<u>SGerald@haleyaldrich.com</u>>
Sent: Wednesday, December 15, 2021 10:28 AM
To: Vakalopoulos, Catherine (DEP) <<u>catherine.vakalopoulos@mass.gov</u>>
Cc: Ballantyne, Heather <<u>HBallantyne@haleyaldrich.com</u>>; Sherwood, Nathan <<u>NSherwood@haleyaldrich.com</u>>; Subject: 7Q10 + Dilution Factor for NPDES NOI - BHCC- New Academia Building Project

CAUTION: This email originated from a sender outside of the Commonwealth of Massachusetts mail system. Do not click on links or open attachments unless you recognize the sender and know the content is safe.

Hi Cathy,

As required in Appendix V of the 2017 NPDES RGP, I have attached to this email our StreamStats report detailing the 7 Day 10 Year (7Q10) low flow value for our project (listed below) along with the dilution factor calculations for your review and confirmation.

Project: BHCC - New Academia Building 50 New Rutherford Ave Boston, 02129

Discharge: Millers River via stormwater system outfall. See attached discharge route. Design System Flow: 150 gallons per minute (0.216 MGD) 7 Day 10 Year Low Flow value (from attached StreamStats Report) = 29.7 cfs or 19.2 MGD

Dilution Factor (from attached calculations) = 89.9

Can you please confirm if these values are appropriate for use for our project?

Thank you, Shay

Shay Gerald Engineer

Haley & Aldrich, Inc. 465 Medford St| Suite 2200 Boston, MA 02129-1400

Office: (617) 886-7522 Mobile: (857) 248-7708 APPENDIX E

Treatment System Information

sc200[™] UNIVERSAL CONTROLLER

Applications

- Drinking Water
- Wastewater
- Industrial Water
- Power

One Controller for the Broadest Range of Sensors.

Choose from 30 digital and analog sensor families for up to 17 different parameters.

Maximum Versatility

The sc200 controller allows the use of digital and analog sensors, either alone or in combination, to provide compatibility with Hach's broad range of sensors, eliminating the need for dedicated, parameter-specific controllers.

Ease of Use and Confidence in Results

Large, high-resolution, transreflective display provides optimal viewing resolution in any lighting condition. Guided calibration procedures in 19 languages minimize complexity and reduce operator error. Password-protected SD card reader offers a simple solution for data download and transfer. Visual warning system provides critical alerts.

Wide Variety of Communication Options

Utilize two to five analog outputs to transmit primary and secondary values for each sensor, or integrate Hach sensors and analyzers into MODBUS RS232/RS485, Profibus® DP, and HART networks.

Password protected SD card reader offers a simple solution for data download and transfer, and sc200 and digital sensor configuration file duplication and backup.

Controller Comparison

	Previous I	Vodels		
Features	sc100™ Controller	GLI53 Controller	sc200™ Controller	Benefits
Display	64 x 128 pixels 33 x 66 mm (1.3 x 2.6 in.)	64 x 128 pixels 33 x 66 mm (1.3 x 2.6 in.)	160 x 240 pixels 48 x 68 mm (1.89 x 2.67 in.) Transreflective	 Improved user interface— 50% bigger Easier to read in daylight and sunlight
Data Management	irDA Port/PDA Service Cable	N/A	SD Card Service Cable	 Simplifies data transfer Standardized accessories/ max compatibility
Sensor Inputs	2 Max Direct Digital Analog via External Gateway	2 Max Analog Depending on Parameter	2 Max Digital and/or Analog with Sensor Card	Simplifies analog sensor connectionsWorks with analog and digital sensors
Analog Inputs	N/A	N/A	1 Analog Input Signal Analog 4-20mA Card	 Enables non-sc analyzer monitoring Accepts mA signals from other analyzers for local display Consolidates analog mA signals to a digital output
4-20 mA Outputs	2 Standard	2 Standard	2 Standard Optional 3 Additional	 Total of five (5) 4-20 mA outputs allows multiple mA outputs per sensor input
Digital Communication	MODBUS RS232/RS485 Profibus DP V1.0	HART	MODBUS RS232/RS485 Profibus DP V1.0 HART 7.2	Unprecedented combination of sensor breadth and digital communication options

Choose from Hach's Broad Range of Digital and Analog Sensors

Parameter	Sensor	Digital or Analog
Ammonia	AMTAX™ sc, NH4D sc, AISE sc, AN-ISE sc	
Chlorine	CLF10 sc, CLT10 sc, 9184 sc	
Chlorine Dioxide	9185 sc	
Conductivity	GLI 3400 Contacting, GLI 3700 Inductive	\bigtriangleup
Dissolved Oxygen	LDO® Model 2, 5740 sc	
Dissolved Oxygen	5500	\bigtriangleup
Flow	U53, F53 Sensors	\bigtriangleup
Nitrate	NITRATAX™ sc, NO3D sc, NISE sc, AN-ISE sc	
Oil in Water	FP360 sc	
Organics	UVAS sc	
Ozone	9187 sc	
pH/ORP	pHD	
pH/ORP	pHD, pH Combination, LCP	\bigtriangleup
Phosphate	PHOSPHAX™ sc	
Sludge Level	SONATAX™ sc	
Suspended Solids	SOLITAX™ sc, TSS sc	
Turbidity	1720E, FT660 sc, SS7 sc, ULTRATURB sc, SOLITAX sc, TSS sc	
Ultra Pure Conductivity	8310, 8311, 8312, 8315, 8316, 8317 Contacting	\bigtriangleup
Ultra Pure pH/ORP	8362	\bigtriangleup

 \blacksquare = Digital \triangle = Analog

Connect up to two of any of the sensors listed above, in any combination, to meet your application needs. The diagrams below demonstrate the potential configurations. Operation of analog sensors requires the controller to be equipped with the appropriate sensor module. Contact Hach Technical Support for help with selecting the appropriate module. 2 Channel Configurations 1 Channel Configurations

sc200[™] Universal Controller

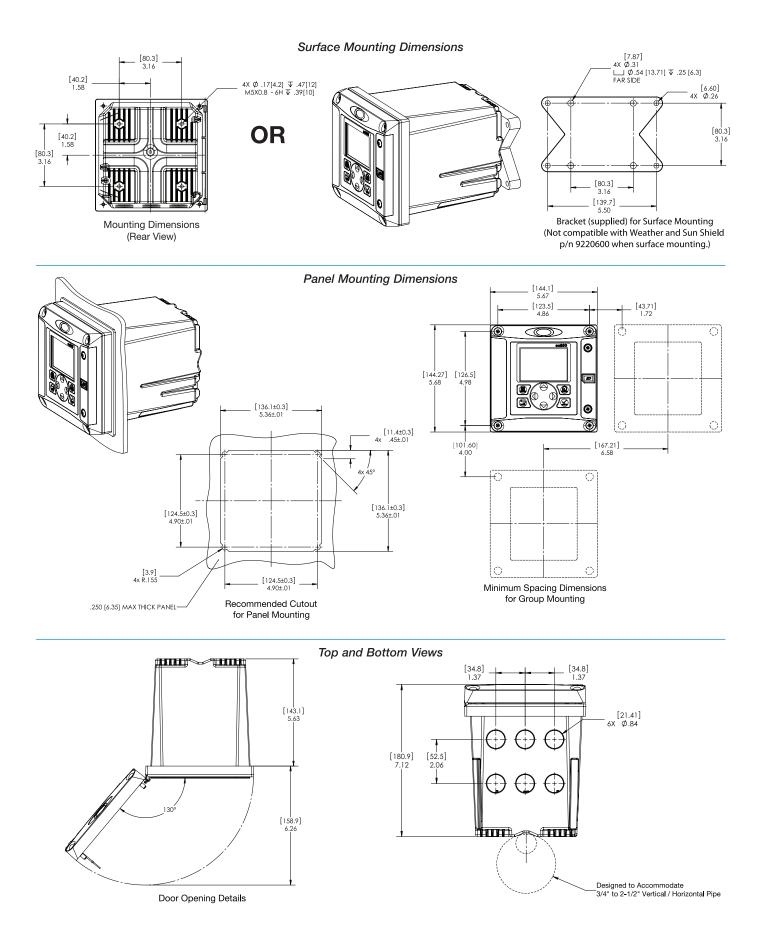
Specifications*

Dimensions (H x W x D)	5.7 in x 5.7 in x 7.1 in (144 mm x 144 mm x 181 mm)
Display	Graphic dot matrix LCD with LE backlighting, transreflective
Display Size	1.9 x 2.7 in. (48 mm x 68 mm)
Display Resolution	240 x 160 pixels
Weight	3.75 lbs. (1.70 kg)
Power Requirements (Voltage)	100 - 240 V AC, 24 V DC
Power Requirements (Hz)	50/60 Hz
Operating Temperature Range	-20 to 60 °C , 0 to 95% RH non-condensing
Analog Outputs	Two (Five with optional expansion module) to isolated current outputs, max 550 Ω , Accuracy: $\pm 0.1\%$ of FS (20mA) at 25 °C, $\pm 0.5\%$ of FS over -20 °C to 60 range
	Operational Mode: measuremen or calculated value
Analog Output Functional Mode	Linear, Logarithmic, Bi-linear, PI
Security Levels	2 password-protected levels
Mounting Configurations	Wall, pole, and panel mounting
Enclosure Rating	NEMA 4X/IP66
Conduit Openings	1/2 in NPT Conduit
Relay: Operational Mode	Primary or secondary measurement, calculated value (dual channel only) or timer

x 5.7 in x 7.1 in nm x 144 mm x 181 mm)	Relay Functions
ic dot matrix LCD with LED ghting, transreflective	
2.7 in. (48 mm x 68 mm)	Relays
160 pixels	Communication
os. (1.70 kg)	Communication
240 V AC, 24 V DC	
	Memory Backup
Hz	Electrical Certifications
60 °C , 0 to 95% RH ondensing	
ive with optional expansion e) to isolated current s, max 550 Ω , Accuracy: 6 of FS (20mA) at 25 °C, 6 of FS over -20 °C to 60 °C	
tional Mode: measurement culated value	
, Logarithmic, Bi-linear, PID	
sword-protected levels	
oole, and panel mounting	

Relay Functions	Scheduler (Timer), Alarm, Feeder Control, Event Control, Pulse Width Modulation, Frequency Control, and Warning
Relays	Four electromechanical SPDT (Form C) contacts, 1200 W, 5 A
Communication	MODBUS RS232/RS485, PROFIBUS DPV1, or HART 7.2 optional
Memory Backup	Flash memory
Electrical	EMC
Certifications	CE compliant for conducted and radiated emissions:
	- CISPR 11 (Class A limits)
	- EMC Immunity EN 61326-1 (Industrial limits)
	Safety
	cETLus safety mark for:
	- General Locations per ANSI/UL 61010-1 & CAN/CSA C22.2. No. 61010-1
	- Hazardous Location Class I, Division 2, Groups A,B,C & D (Zone 2, Group IIC) per FM 3600 / FM 3611 & CSA C22.2 No. 213

M1987 with approved options and appropriately rated Class I, Division 2 or Zone 2 sensors


cULus safety mark

- General Locations per UL 61010-1 & CAN/CSA C22.2. No. 61010-1

*Subject to change without notice.

4

Dimensions

5

Ordering Information

sc200 for Hach Digital and Analog Sensors

LXV404.99.00552	sc200 controller, 2 channels, digital
LXV404.99.00502	sc200 controller, 1 channel, digital
LXV404.99.00102	sc200 controller, 1 channel, pH/DO
LXV404.99.00202	sc200 controller, 1 channel, Conductivity
LXV404.99.01552	sc200 controller, 2 channels, digital, Modbus RS232/RS485
LXV404.99.00112	sc200 controller, 2 channel, pH/DO

Note: Other Sensor combinations are available. Please contact Hach Technical Support or your Hach representative.

Note: Communication options (MODBUS, Profibus DPV1, and HART) are available. Please contact Hach Technical Support or your Hach representative.

sc200 for Ultrapure Sensors

9500.99.00602	sc200 controller, 1 channel, ultrapure conductivity
9500.99.00702	sc200 controller, 1 channel, ultrapure pH
9500.99.00662	sc200 controller, 2 channel, ultrapure conductivity
9500.99.00772	sc200 controller, 2 channel, ultrapure pH

Sensor and Communication Modules

9012900	Analog pH/ORP and DO module for GLI Sensors
9013000	Analog Conductivity module for GLI Sensors
9012700	Flow module
9012800	4-20 mA Input Module
9525700	Analog pH/ORP Module for Polymetron Sensors
9525800	Analog Conductivity Module for Polymetron Sensors
9013200	Modbus 232/485 Module
9173900	Profibus DP Module
9328100	HART Module
9334600	4-20 mA Output Module (Provides 3 additional mA Outputs)

Accessories

9220600	sc200 Weather and Sun Shield with UV Protection Screen
8809200	sc200 UV Protection Screen
9218200	SD card reader (USB) for connection to PC
9218100	4 GB SD card

HACH COMPANY World Headquarters: Loveland, Colorado USA

United States: Outside United States: **hach.com** 800-227-4224 tel970-669-2932 fax970-669-3050 tel970-461-3939 fax

orders@hach.com int@hach.com

LIT2665 Rev 7 K13 Printed in U.S.A. ©Hach Company, 2013. All rights reserved. In the interest of improving and updating its equipment, Hach Company reserves the right to alter specifications to equipment at any time.

3/4-inch Combination pH and ORP Sensor Kits

Use the Digital Gateway to make any Hach analog combination pH or ORP sensor compatible with the Hach sc1000 Controller.

Features and Benefits

Low Price—High Performance

These combination sensors are designed for specialty applications for immersion or in-line mounting. The reference cell features a double-junction design for extended service life, and a built-in solution ground. The body is molded from chemically-resistant Ryton[®] or PVDF, and the reference junction is coaxial porous PTFE. All sensors are rated 0 to 105°C up to 100 psig, and have integral 4.5 m (15 ft.) cables with tinned leads. The PC-series (for pH) and RC-series (for ORP) combination sensors are ideal for measuring mild and aggressive media.

Special Electrode Configurations

Sensors with rugged dome electrodes, "easy-to-clean" flat glass electrodes, and even HF (hydrofluoric acid) resistant glass electrodes are available for a wide variety of process solutions.

Temperature Compensation Element Option

The PC-series combination pH sensors are available with or without a Pt 1000 ohm RTD temperature element. The RC-series combination ORP sensors are supplied without a temperature element.

Versatile Mounting Styles

Sensors are available in three mounting styles—convertible, insertion, and sanitary. Please turn to page 3 for more information.

Digital combination pH and ORP sensors are available

in convertible, insertion, and sanitary mounting

styles. Choose from rugged dome electrodes or "easy-to-clean" flat glass electrodes.

Full-Featured "Plug and Play" Hach sc Digital Controllers

There are no complicated wiring or set up procedures with any Hach sc controller. Just plug in any combination of Hach digital sensors and it's ready to use it's "plug and play."

One or multiple sensors—The sc controller family allows you to receive data from up to eight Hach digital sensors in any combination using a single controller.

Communications—Multiple alarm/control schemes are available using the relays and PID control outputs. Available communications include analog 4-20 mA, digital MODBUS[®] (RS485 and RS232) or Profibus DP protocols. (Other digital protocols are available. Contact your Hach representative for details.)

Data logger—A built-in data logger collects measurement data, calibration, verification points, and alarm history.

DW

DW = drinking water WW = wastewater municipal PW = pure water / power IW = industrial water E = environmental C = collections FB = food and beverage

Specifications*

Most pH applications fall in the 2.5-12.5 pH range. General purpose pH glass electrodes perform well in this range. Some industrial applications require accurate measurements and control at pH values below 2 or above 12. Consult Hach Technical Support for details on these applications.

Combination pH Sensors

Measuring Range 0 to 14 pH

Accuracy Less than 0.1 pH under reference conditions

Temperature Range 0 to 105°C (32 to 221°F)

Flow Rate 0 to 2 m/s (0 to 6.6 ft./s); non-abrasive

Pressure Range 0 to 6.9 bar at 100°C (0 to 100 psig at 212°F)

Signal Transmission Distance

100 m (328 ft.) when used with the Hach Digital Gateway and a Hach sc Digital Controller.

1000 m (3280 ft.) when used with the Hach Digital Gateway, Termination Box, and a Hach sc Digital Controller.

Sensor Cable

Integral coaxial cable (plus two conductors for temperature compensator option); 4.5 m (15 ft.) long

Wetted Materials

Convertible style: Ryton[®] body (glass filled)

Insertion style: PVDF body (Kynar[®])

Sanitary style: 316 stainless steel sleeved PVDF body

Common materials for all sensor styles include PTFE double junction, glass process electrode, and Viton $^{\textcircled{B}}$ O-rings

Warranty

90 days

Combination ORP Sensors

Measuring Range -2000 to +2000 millivolts

Accuracy Limited to calibration solution accuracy (± 20 mV)

Temperature Range 0 to 105°C (32 to 221°F)

Flow Rate 0 to 2 m/s (0 to 6.6 ft./s); non-abrasive

Pressure Range

0 to 6.9 bar at 100°C (0 to 100 psig at 212°F)

Signal Transmission Distance

100 m (328 ft.) when used with the Hach Digital Gateway and a Hach sc Digital Controller.

1000 m (3280 ft.) when used with the Hach Digital Gateway, Termination Box, and a Hach sc Digital Controller.

Sensor Cable

Integral coaxial cable; 4.5 m (15 ft.) long; terminated with stripped and tinned wires

Wetted Materials

Convertible style: Ryton[®] body (glass filled)

Insertion style: PVDF body (Kynar[®])

Common materials for all sensor styles include PTFE double junction, glass with platinum process electrode, and $\mathsf{Viton}^{\texttt{B}}$ Orings

Warranty

90 days

*Specifications subject to change without notice.

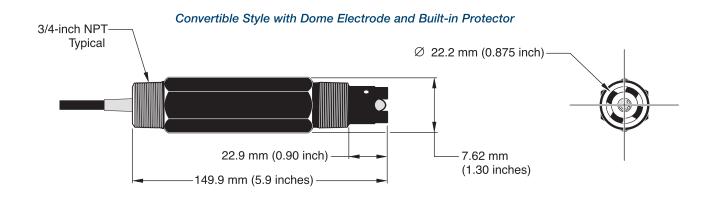
Ryton[®] is a registered trademark of Phillips 66 Co.; Viton[®] is a registered trademark of E.I. DuPont de Nemours + Co.; Kynar[®] is a registered trademark of Pennwalt Corp.

Engineering Specifications

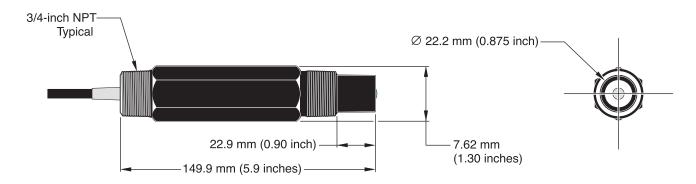
- 1. The pH sensor shall be available in convertible, insertion or sanitary styles. The ORP sensor shall be available in only convertible or insertion styles.
- 2. The convertible style sensor shall have a Ryton[®] body. The insertion style sensor shall have a PVDF body. The sanitary style sensor shall have a 316 stainless steel sleeved PVDF body. Common materials for all sensor styles shall include a PTFE double junction, and Viton[®] O-rings. The pH sensor shall have a glass pH electrode. The ORP sensor shall have a platinum ORP electrode.
- 3. The convertible style pH sensor shall be available with or without a built-in Pt 1000 ohm RTD temperature element. Insertion and sanitary style pH sensors shall have a built-in Pt 1000 ohm RTD temperature element. Convertible and insertion style ORP sensors shall not have a built-in temperature element.
- 4. The sensor shall communicate via MODBUS[®] RS-485 to a Hach sc Digital Controller.
- 5. The sensor shall be Hach Company Model PC sc or PC-series for pH measurement or Model PC sc or RC-series for ORP measurement.

Dimensions

Convertible Style Sensor

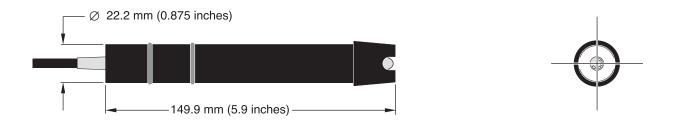

The convertible style sensor has a Ryton[®] body that features 3/4-inch NPT threads on both ends. The sensor can be directly mounted into a standard 3/4-inch pipe tee for flow-through mounting or fastened onto the end of a pipe for immersion mounting. The convertible style sensor enables inventory consolidation, thereby reducing associated costs. Mounting tees and immersion mounting hardware are offered in a variety of materials to suit application requirements.

Insertion Style Sensor

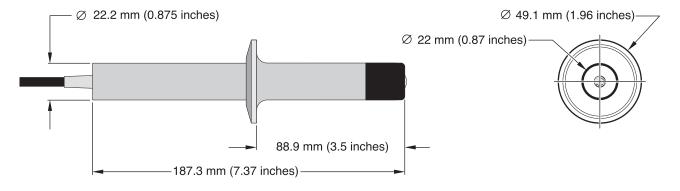

Insertion style sensors feature a longer, non-threaded PVDF body with two Viton[®] O-rings, providing a seal when used with the optional Hach insertion mount hardware assembly. This ball valve hardware enables sensor insertion and retraction from a pipe or vessel without having to stop the process flow.

Sanitary Style Sensor

The sanitary style sensor, offered for pH measurement, has a 316 stainless steel-sleeved PVDF body with a 2-inch flange. The sensor mates to a standard 2-inch Tri-Clover fitting. The optional Hach sanitary mounting hardware includes a standard 2-inch sanitary tee, sanitary clamp, and Viton[®] sanitary gasket.



Convertible Style with Flat Electrode



Dimensions continued

Insertion Style with Dome Electrode and Built-In Protector

Sanitary Style

Digital PC sc and RC sc 3/4-inch Combination pH/ORP Sensors

All PC sc and RC sc 3/4-inch combination sensors come complete with an integral 4.5 m (15 ft.) sensor cable, Digital Gateway, and 1 m (3.3 ft.) digital extension cable.

<u>Product Number</u>	<u>Measurement</u>	<u>Sensor Style</u>	<u>Body Material</u>	Electrode Type	<u>Temp. Comp.</u>
DPC1R1N	рН	Convertible	Ryton	General purpose glass	None
DPC1R1A	рН	Convertible	Ryton	General purpose glass	Pt 1000 ohm RTD
DPC1R2N	рН	Convertible	Ryton	Flat glass, general purpose	None
DPC1R2A	рН	Convertible	Ryton	Flat glass, general purpose	Pt 1000 ohm RTD
DPC1R3A	рН	Convertible	Ryton	HF-resistant glass (see Note)	Pt 1000 ohm RTD
DPC2K1A	рН	Insertion	PVDF	General purpose glass	Pt 1000 ohm RTD
DPC2K2A	рН	Insertion	PVDF	Flat Glass	Pt 1000 ohm RTD
DPC3K2A	рН	Sanitary	316 SS/PVDF	General purpose glass	Pt 1000 ohm RTD
DRC1R5N	ORP	Convertible	Ryton	Platinum	None
DRC2K5N	ORP	Insertion	PVDF	Platinum	None

NOTE

The HF (hydrofluoric acid) resistant glass electrode reduces the HF dissolution of the complete glass surface to extend the lifetime of the electrode in acid fluoride solutions. The electrode will last longer than conventional glass pH electrodes. How much longer depends on the HF concentration and temperature of the solution.

Replacement Digital Gateway

6120600 Use the Digital Gateway to connect analog PC and RC sensors to a Hach sc Digital Controller.

Ordering Information continued

Analog PC and RC 3/4-inch Combination pH/ORP Sensors

All PC and RC 3/4-inch combination sensors come with an integral 4.5 m (15 ft.) standard length sensor cable.

<u>Product Number</u>	<u>Measurement</u>	<u>Sensor Style</u>	<u>Body Material</u>	Electrode Type	<u>Temp. Comp.</u>
PC1R1N	рН	Convertible	Ryton	General purpose glass	None
PC1R1A	рН	Convertible	Ryton	General purpose glass	Pt 1000 ohm RTD
PC1R2N	рН	Convertible	Ryton	Flat glass, general purpose	None
PC1R2A	рН	Convertible	Ryton	Flat glass, general purpose	Pt 1000 ohm RTD
PC1R3A	рН	Convertible	Ryton	HF-resistant glass	Pt 1000 ohm RTD
PC2K1A	рН	Insertion	PVDF	General purpose glass	Pt 1000 ohm RTD
PC2K2A	рН	Insertion	PVDF	Flat Glass	Pt 1000 ohm RTD
PC3K2A	рН	Sanitary	316 SS/PVDF	General purpose glass	Pt 1000 ohm RTD
RC1R5N	ORP	Convertible	Ryton	Platinum	None
RC2K5N	ORP	Insertion	PVDF	Platinum	None

Accessories for Digital and Analog 3/4-inch combination pH/ORP Sensors

Cables

Digital cables are used only with digital sensors or gateways when connecting to a Hach sc Digital Controller.

6122400	Digital	Extension	Cable, 1	m	(3.3 ft)

5796000 Digital Extension Cable, 7.7 m (25 ft)

5796100 Digital Extension Cable, 15 m (50 ft)

5796200 Digital Extension Cable, 31 m (100 ft)

Analog cables are used only with analog sensors, junction box, and controller.

1W1100 Analog Interconnect Cable (order per foot)

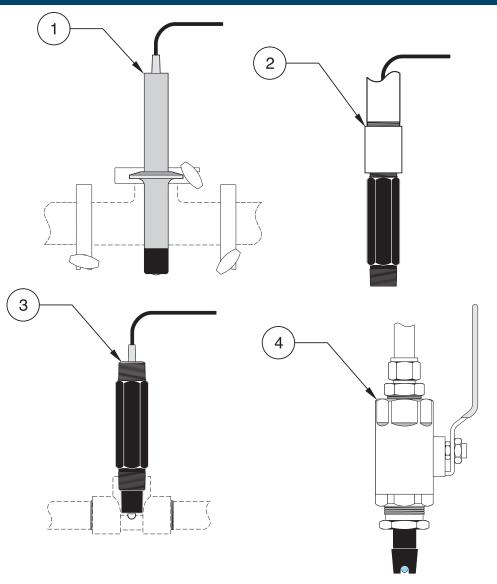
Digital Termination Box

Used with digital extension cables when the desired cable length between the digital sensor/digital gateway and the Hach sc Digital Controller is between 100 m (328 ft) and 1000 m (3280 ft).

5867000 Digital Termination Box

Analog Junction Box

Used with analog interconnect cable when the desired cable length between analog sensor and analog controller is greater than the standard length of sensor cable. Each junction box includes terminal strip and gasket.


60A2053	Junction Box,	Surface-mount,	aluminum	(includes	mounting	hardware)
---------	---------------	----------------	----------	-----------	----------	-----------

60A9944 Junction Box, Pipe-mount, PVC, for 1/2-inch diameter pipe (includes mounting hardware)

60G2052 Junction Box, Pipe-mount, PVC, for 1-inch diameter pipe (includes mounting hardware)

76A4010-001 Junction Box, NEMA 4X (no mounting hardware included)

Ordering Information continued

1. Sanitary Mounting

2. Immersion Mounting

3. Flow-through Mounting

4. Insertion Mounting

Mounting Hardware for PC sc and RC sc Combination Sensors

Sanitary Mount Hardware

9H1310	2-inch Sanitary Tee
9H1132	2-inch Sanitary Clamp
9H1384	2-inch Sanitary Viton Gasket

Immersion Mount Hardware

Each immersion hardware includes a 1/2-inch diameter x 4 foot long pipe, 1/2 x 3/4-inch NPT coupling, and plastic pipe-mount junction box with terminal strip. MH432G CPVC Pipe

Flow-through Mount Hardware

Each tee is a standard 3/4-inch tee with 3/4-inch NPT threads on all three openings.

MH313N3NZ	316 SS Tee
MH333N3NZ	CPVC Tee
MH373N3NZ	PVC Tee

Insertion Mount Hardware

The insertion hardware includes a 1-1/2 inch ball valve, 1-1/2 inch NPT close nipple for process connection, sensor connection tube, stainless steel extension pipe, and stainless steel compression fitting with washer and lock nut. MH116M3MZ 316 SS Hardware

To complete your pH and ORP measurement system, choose from these Hach controllers...

Model sc200 Controller

(see Lit. #2665)

The sc200 controller platform can be configured to operate either 2 Digital Sensor Inputs, or 1 or 2 Analog Sensor Inputs, or a combination of Digital and Analog Sensor Inputs. Customers may choose their communication options from a variety of offerings ranging from MODBUS RTU to Profibus DPV1.

sc200 for Hach Digital Sensors

LXV404.99.00552sc200 controller, 2 channel, digitalLXV404.99.00502sc200 controller, 1 channel, digitalLXV404.99.00542sc200 controller, 2 channel, digital & mA inputSc200 controller, 2 channel, digital & pH/DOLXV404.99.00522LXV404.99.00532Sc200 controller, 2 channel, digital & Conductivitysc200 controller, 2 channel, digital & Flow

sc200 for Hach Analog Sensors

LXV404.99.00102sc200 controller, 1 channel, pH/DOLXV404.99.00112sc200 controller, 2 channel, pH/DOLXV404.99.00202sc200 controller, 1 channel, ConductivityLXV404.99.00212sc200 controller, 2 channel, ConductivityLXV404.99.00302sc200 controller, 2 channel, pH/DO & ConductivityLXV404.99.00302sc200 controller, 2 channel, FlowLXV404.99.00312sc200 controller, 2 channel, FlowLXV404.99.00312sc200 controller, 2 channel, FlowLXV404.99.00322sc200 controller, 2 ch

or your Hach representative. Note: Communication options (MODBUS and Profibus DPV1) are available.

Model sc1000 Controller

(see Lit. #2403)

Each sc1000 Probe Module provides power to the system and can accept up to 8 digital sensors/expansion boards. Probe Modules can be networked together to accommodate up to 32 digital sensors/expansion boards attached to the same network.

LXV402.99.00002	sc1000 Display Module
LXV400.99.1R572	sc1000 Probe Module, 4 sensors,
	4 mA Out, 4 mA In, 4 Relays,
	110-230V
LXV400.99.1B572	sc1000 Probe Module, 4 sensors,
	4 mA Out, 4 mA In, 4 Relays, RS-485
	(MODBUS), 110-230V
LXV400.99.1F572	sc1000 Probe Module, 4 sensors,
	4 mA Out, 4 mA In, 4 Relays, PROFIBUS DP, 110-230V
LXV400.99.1R582	sc1000 Probe Module, 6 sensors,
	4 mA Out, 4 mA In, 4 Relays, 110-230V

At Hach, it's about learning from our customers and providing the right answers. It's more than ensuring the quality of water—it's about ensuring the quality of life. When it comes to the things that touch our lives...

Keep it pure. Make it simple. Be right.

For current price information, technical support, and ordering assistance, contact the Hach office or distributor serving your area.

In the United States, contact:

HACH COMPANY World Headquarters P.O. Box 389 Loveland, Colorado 80539-0389 U.S.A. Telephone: 800-227-4224 Fax: 970-669-2932 E-mail: orders@hach.com **www.hach.com**

U.S. exporters and customers in Canada, Latin America, sub-Saharan Africa, Asia, and Australia/New Zealand, contact:

HACH COMPANY World Headquarters P.O. Box 389 Loveland, Colorado 80539-0389 U.S.A. Telephone: 970-669-3050 Fax: 970-461-3939 E-mail: intl@hach.com **www.hach.com**

In Europe, the Middle East, and Mediterranean Africa, contact:

HACH LANGE GmbH Willstätterstraße 11 D-40549 Düsseldorf GERMANY Tel: +49 (0) 211 5288-0 Fax: +49 (0) 211 5288-143 E-mail: info@hach-lange.de **www.hach-lange.com**

95-Gallon OverPack Salvage Drum #A95OVER - 32" dia x 41.5", 1 each/package

Stock a SpillTech® OverPack with sorbents for emergency spill response, or use it as a salvage drum to ship damaged containers or hazardous waste.

- DOT-Approved for Salvage: All SpillTech® OverPacks are DOT-approved and X-rated for use as salvage drums. Helps companies conform to federal regulations when shipping damaged or leaking containers of hazardous materials, or absorbents contaminated with hazardous substances.
- Perfect for Spill Kits: Stores sorbent products (not included) for easy access as needed for spill control. Saves time when quick response is necessary.
- Sturdy Construction: 100% polyethylene OverPack resists chemicals, rust and corrosion for years of use. Integrated handles make them easy to lift, move or carry with standard material handling equipment. Twist-on, double-wall lid with closed-cell gasket provides sealed, secure closure to prevent leaks and protect contents from moisture, dirt and damage. Durable to withstand rough handling.
- Customized for You: We can customize a Spill Kit to your exact specifications, including the container, its contents and accessories, with no upcharge! Contact your local Distributor for details.

A95OVER Specifications

Dimensions:	ext. dia. 32" x 41.5" H
Shipping	31.75" W x 41.5" L x 31.75" H
Dimensions:	
Sold as:	1 per package
Color:	Yellow
Composition:	Polyethylene
Weight:	48 lbs.
# per Pallet:	3
Incinerable:	No
UN RATING:	1H2/X295/S
Ship Class:	250

Metric Equivalent Specifications

Dimensions:	ext. dia. 81.3cm x 105.4cm H
Shipping	80.6cm W x 105.4cm L x 80.6cm H
Dimensions:	
Weight:	21.8 kg

Online: spilltech.com Phone: 1-800-228-3877 (N.Am.) 1-770-475-3877 (Other) Fax: 1-800-872-3764 (N.Am.) 1-770-410-1812 (Other) Email: sales@spilltech.com

A95OVER Technical Information

Warnings & Restrictions:

There are no known warnings and restrictions for this product.

Regulations and Compliance:

49 CFR 173.3(c)(1) - If a container of hazardous waste is damaged or leaking, it can be placed in a compatible salvage drum that meets UN criteria for shipping

49 CFR 173.12(b)(2)(iv) - When labpacking, "Inner packagings...must be surrounded by a chemically compatible absorbent material in sufficient quantity to absorb the total liquid contents."

49 CFR 173.12(b) - A container used for labpacking must be "a UN 1A2 or UN 1B2 metal drum, a UN 1D plywood drum, a UN 1G fiber drum or a UN 1H2 plastic drum tested and marked at least for the Packing Group III performance level for liquids or solids."

Technical Documents:

(Available at spilltech.com) Product Data Sheet (PDS) Chemical Compatibility (CCG)

Email: sales@spilltech.com

SAFETY DATA SHEET

Creation Date 12-Nov-2010	Revision Date 24-May-2017	Revision Number 5		
	1. Identification			
Product Name	Sulfuric Acid (Certified ACS Plus)			
Cat No. :	A300-212; A300-225LB; A300-500; A300-612G A300C212; A300C212EA; A300P500; A300S2 ⁻ A300S500; A300SI212			
Synonyms	Hydrogen sulfate; Vitriol brown oil; Oil of vitriol			
Recommended Use Uses advised against	Laboratory chemicals. Not for food, drug, pesticide or biocidal product use			
Details of the supplier of the safety data sheet				
<u>Company</u> Fisher Scientific One Reagent Lane Fair Lawn, NJ 07410				

Tel: (201) 796-7100 Emergency Telephone Number CHEMTREC®, Inside the USA: 800-424-9300

CHEMTREC®, Outside the USA: 001-703-527-3887

2. Hazard(s) identification

Classification

This chemical is considered hazardous by the 2012 OSHA Hazard Communication Standard (29 CFR 1910.1200)

Skin Corrosion/irritation Serious Eye Damage/Eye Irritation Specific target organ toxicity (single exposure) Target Organs - Respiratory system. Category 1 A Category 1 Category 3

Label Elements

Signal Word Danger

Hazard Statements

Causes severe skin burns and eye damage May cause respiratory irritation

Precautionary Statements Prevention Do not breathe dust/fume/gas/mist/vapors/spray Wear protective gloves/protective clothing/eye protection/face protection Wash face, hands and any exposed skin thoroughly after handling Use only outdoors or in a well-ventilated area Response Immediately call a POISON CENTER or doctor/physician Inhalation IF INHALED: Remove victim to fresh air and keep at rest in a position comfortable for breathing Skin IF ON SKIN (or hair): Take off immediately all contaminated clothing. Rinse skin with water/shower Wash contaminated clothing before reuse Eves IF IN EYES: Rinse cautiously with water for several minutes. Remove contact lenses, if present and easy to do. Continue rinsing Ingestion IF SWALLOWED: Rinse mouth. DO NOT induce vomiting Storage Store locked up Store in a well-ventilated place. Keep container tightly closed Disposal Dispose of contents/container to an approved waste disposal plant Hazards not otherwise classified (HNOC)

WARNING! This product contains a chemical known in the State of California to cause cancer. **Unknown Acute Toxicity**

3. Composition / information on ingredients

Component	CAS-No	Weight %
Sulfuric acid	7664-93-9	90 - 98
Water	7732-18-5	2 - 10

4. First-aid measures		
General Advice	Show this safety data sheet to the doctor in attendance. Immediate medical attention is required.	
Eye Contact	Rinse immediately with plenty of water, also under the eyelids, for at least 15 minutes. Immediate medical attention is required.	
Skin Contact	Wash off immediately with plenty of water for at least 15 minutes. Remove and wash contaminated clothing before re-use. Call a physician immediately.	
Inhalation	If not breathing, give artificial respiration. Remove from exposure, lie down. Do not use mouth-to-mouth method if victim ingested or inhaled the substance; give artificial respiration with the aid of a pocket mask equipped with a one-way valve or other proper respiratory medical device. Call a physician immediately.	
Ingestion	Do not induce vomiting. Clean mouth with water. Never give anything by mouth to an unconscious person. Call a physician immediately.	
Most important symptoms/effects	Causes burns by all exposure routes. Product is a corrosive material. Use of gastric lavage or emesis is contraindicated. Possible perforation of stomach or esophagus should be investigated: Ingestion causes severe swelling, severe damage to the delicate tissue and danger of perforation	

Notes to Physician

Treat symptomatically

5. Fire-fighting measures		
Suitable Extinguishing Media	CO 2, dry chemical, dry sand, alcohol-resistant foam.	
Unsuitable Extinguishing Media	DO NOT USE WATER	
Flash Point Method -	Not applicable No information available	
Autoignition Temperature Explosion Limits	No information available	
Upper	No data available	
Lower	No data available	
Sensitivity to Mechanical Impac	ct No information available	
Sensitivity to Static Discharge	No information available	

Specific Hazards Arising from the Chemical

Thermal decomposition can lead to release of irritating gases and vapors. The product causes burns of eyes, skin and mucous membranes.

Hazardous Combustion Products

Sulfur oxides Hydrogen

Protective Equipment and Precautions for Firefighters

As in any fire, wear self-contained breathing apparatus pressure-demand, MSHA/NIOSH (approved or equivalent) and full protective gear. Thermal decomposition can lead to release of irritating gases and vapors.

NFPA			
Health	Flammability	Instability	Physical hazards
3	0	2	W

	6. Accidental release measures
Personal Precautions	Ensure adequate ventilation. Use personal protective equipment. Evacuate personnel to safe areas. Keep people away from and upwind of spill/leak.
Environmental Precautions	Should not be released into the environment.

Methods for Containment and Clean Soak up with inert absorbent material. Keep in suitable, closed containers for disposal. Up

	7. Handling and storage
Handling	Wear personal protective equipment. Do not get in eyes, on skin, or on clothing. Use only under a chemical fume hood. Do not breathe vapors or spray mist. Do not ingest.
Storage	Keep containers tightly closed in a dry, cool and well-ventilated place. Keep away from water. Corrosives area.

8. Exposure controls / personal protection

Exposure Guidelines

Component	ACGIH TLV	OSHA PEL	NIOSH IDLH	Mexico OEL (TWA)
Sulfuric acid	TWA: 0.2 mg/m ³	(Vacated) TWA: 1 mg/m ³	IDLH: 15 mg/m ³	TWA: 1 mg/m ³
	_	TWA: 1 mg/m ³	TWA: 1 mg/m ³	-

Legend

ACGIH - American Conference of Governmental Industrial Hygienists

OSHA - Occupational Safety and Health Administration

NIOSH IDLH: The National Institute for Occupational Safety and Health Immediately Dangerous to Life or Health

Engineering Measures	Use only under a chemical fume hood. Ensure adequate ventilation, especially in confined areas. Ensure that eyewash stations and safety showers are close to the workstation location.
Personal Protective Equipment	
Eye/face Protection	Wear appropriate protective eyeglasses or chemical safety goggles as described by OSHA's eye and face protection regulations in 29 CFR 1910.133 or European Standard EN166.
Skin and body protection	Long sleeved clothing.
Respiratory Protection	Follow the OSHA respirator regulations found in 29 CFR 1910.134 or European Standard EN 149. Use a NIOSH/MSHA or European Standard EN 149 approved respirator if exposure limits are exceeded or if irritation or other symptoms are experienced.
Hygiene Measures	Handle in accordance with good industrial hygiene and safety practice.

9. Physical and chemical properties

Physical State	Liquid
Appearance	Clear, Colorless to brown
Odor	Odorless
Odor Threshold	No information available
рН	0.3 (1N)
Melting Point/Range	10 °C / 50 °F
Boiling Point/Range	290 - 338 °C / 554 - 640.4 °F
Flash Point	Not applicable
Evaporation Rate	Slower than ether
Flammability (solid,gas)	Not applicable
Flammability or explosive limits	
Upper	No data available
Lower	No data available
Vapor Pressure	< 0.001 mmHg @ 20 °C
Vapor Density	3.38 (Air = 1.0)
Specific Gravity	1.84
Solubility	Soluble in water
Partition coefficient; n-octanol/water	No data available
Autoignition Temperature	No information available
Decomposition Temperature	340°C
Viscosity	No information available
Molecular Formula	H2SO4
Molecular Weight	98.08

10. Stability and reactivity

Reactive Hazard	Yes	
Stability	Reacts violently with water. Hygroscopic.	
Conditions to Avoid	Incompatible products. Excess heat. Exposure to moist air or water.	
Incompatible Materials	Water, Organic materials, Strong acids, Strong bases, Metals, Alcohols, Cyanides, Sulfides	
Hazardous Decomposition Products Sulfur oxides, Hydrogen		
Hazardous Polymerization	Hazardous polymerization does not occur.	

Hazardous Reactions

None under normal processing.

11. Toxicological information

Acute Toxicity

Acute Toxicity						
Product Information	n					
Oral LD50		Based on ATE data, the classification criteria are not met. ATE > 2000 mg/kg.				
Dermal LD50		Based on ATE dat	a, the classification	n criteria are not m	et. ATE > 2000 mg	/kg.
Vapor LC50		Based on ATE dat	a, the classification	n criteria are not m	et. ATE > 20 mg/l.	·
Component Informa	ation				· ·	
Componer		LD50 Oral		LD50 Dermal	LC50 I	nhalation
Sulfuric ac	d	2140 mg/kg (Rat))	Not listed	LC50 = 510 n	ng/m³(Rat)2 h
Water		-		Not listed	Not	t listed
Toxicologically Syr	nergistic	No information ava	ailable			
Products	-					
Delayed and immed	liate effects as	well as chronic effe	cts from short an	d long-term expo	sure	
Irritation		Causes severe burns by all exposure routes				
Sensitization		No information available				
Canalmannahaltur		The table below in	diaataa whathar a	ah aganay haa liat	ad any ingradiant a	
Carcinogenicity					ed any ingredient a	
		Exposure to strong	g inorganic mists c	ontaining suituric a	cid may cause can	cer by innalation.
Component	CAS-No	IARC	NTP	ACGIH	OSHA	Mexico
Sulfuric acid	7664-93-9	Group 1	Known	A2	Х	A2
Water	7732-18-5	Not listed	Not listed	Not listed	Not listed	Not listed
IARC: (Internation	nal Agency for Re	esearch on Cancer)	IARC: (Inter	national Agency for I	Research on Cancer)	
	Group 1 - Carcinogenic to Humans					
			Group 2A -	Probably Carcinoger	nic to Humans	
			Group 2B -	Possibly Carcinogen	ic to Humans	

NTP: (National Toxicity Program) Known - Known Carcinogen

A1 - Known Human Carcinogen A2 - Suspected Human Carcinogen

Reasonably Anticipated - Reasonably Anticipated to be a Human Carcinogen

Mexico - Occupational Exposure Limits - Carcinogens

A3 - Animal Carcinogen ACGIH: (American Conference of Governmental Industrial Hygienists)

NTP: (National Toxicity Program)

ACGIH: (American Conference of Governmental Industrial Hygienists)

Mexico - Occupational Exposure Limits - Carcinogens

	A1 - Confirmed Human Carcinogen A2 - Suspected Human Carcinogen A3 - Confirmed Animal Carcinogen A4 - Not Classifiable as a Human Carcinogen A5 - Not Suspected as a Human Carcinogen	
Mutagenic Effects	No information available	
Reproductive Effects	No information available.	
Developmental Effects	No information available.	
Teratogenicity	No information available.	
STOT - single exposure STOT - repeated exposure	Respiratory system None known	
Aspiration hazard	No information available	
Symptoms / effects,both acute and delayed	Product is a corrosive material. Use of gastric lavage or emesis is contraindicated. Possible perforation of stomach or esophagus should be investigated: Ingestion causes severe swelling, severe damage to the delicate tissue and danger of perforation	

Endocrine Disruptor Information

No information available

Other Adverse Effects

The toxicological properties have not been fully investigated.

12. Ecological information

Ecotoxicity

This product contains the following substance(s) which are hazardous for the environment. .

Component	Freshwater Algae	Freshwater Fish	Microtox	Water Flea		
Sulfuric acid	-	LC50: > 500 mg/L, 96h static - EC50: 29 (Brachydanio rerio)				
Persistence and Degradability No inform		ion available				
Bioaccumulation/ Accumulation No in		No information available.				
Mobility	No informat	ion available.				
	13. D	isposal considerat	tions			
Waste Disposal Methods	hazardous	aste generators must determin waste. Chemical waste gener zardous waste regulations to e	ators must also consu	lt local, regional, and		

14. Transport information						
DOT						
UN-No	UN1830					
Proper Shipping Name	Sulfuric acid					
Hazard Class	8					
Packing Group	II III					
TDG						
UN-No	UN1830					
Proper Shipping Name	SULFURIC ACID					
Hazard Class	8					
Packing Group	11					
UN-No	UN1830					
Proper Shipping Name	SULFURIC ACID					
Hazard Class	8					
Packing Group	11					
IMDG/IMO						
UN-No	UN1830					
Proper Shipping Name	SULFURIC ACID					
Hazard Class	8					
Packing Group						
15. Regulatory information						

All of the components in the product are on the following Inventory lists: X = listed

International Inventories

Component	TSCA	DSL	NDSL	EINECS	ELINCS	NLP	PICCS	ENCS	AICS	IECSC	KECL
Sulfuric acid	Х	Х	-	231-639-5	-		Х	Х	Х	Х	Х
Water	Х	Х	-	231-791-2	-		Х	-	Х	Х	Х

Legend: X - Listed

E - Indicates a substance that is the subject of a Section 5(e) Consent order under TSCA. F - Indicates a substance that is the subject of a Section 5(f) Rule under TSCA.

N - Indicates a polymeric substance containing no free-radical initiator in its inventory name but is considered to cover the designated polymer made with any free-radical initiator regardless of the amount used.

P - Indicates a commenced PMN substance

R - Indicates a substance that is the subject of a Section 6 risk management rule under TSCA.

S - Indicates a substance that is identified in a proposed or final Significant New Use Rule

T - Indicates a substance that is the subject of a Section 4 test rule under TSCA.

XU - Indicates a substance exempt from reporting under the Inventory Update Rule, i.e. Partial Updating of the TSCA Inventory Data Base Production and Site Reports (40 CFR 710(B).

Y1 - Indicates an exempt polymer that has a number-average molecular weight of 1,000 or greater.

Y2 - Indicates an exempt polymer that is a polyester and is made only from reactants included in a specified list of low concern reactants that comprises one of the eligibility criteria for the exemption rule.

U.S. Federal Regulations

SARA 313

Component	CAS-No	Weight %	SARA 313 - Threshold Values %
Sulfuric acid	7664-93-9	90 - 98	1.0

SARA 311/312 Hazard Categories

Acute Health Hazard	Yes
Chronic Health Hazard	Yes
Fire Hazard	No
Sudden Release of Pressure Hazard	No
Reactive Hazard	Yes

CWA (Clean Water Act)

Component	CWA - Hazardous Substances	CWA - Reportable Quantities	CWA - Toxic Pollutants	CWA - Priority Pollutants
Sulfuric acid	X	1000 lb	-	-

Clean Air Act

Not applicable

OSHA Occupational Safety and Health Administration Not applicable

CERCLA

This material, as supplied, contains one or more substances regulated as a hazardous substance under the Comprehensive Environmental Response Compensation and Liability Act (CERCLA) (40 CFR 302)

Component	Hazardous Substances RQs	CERCLA EHS RQs
Sulfuric acid	1000 lb	1000 lb
Colifornia Dronosition CE	This product contains the following proposition CF	hamiaala

California Proposition 65	This product contains the following proposition 65 chemicals
	····· [·······························

Component	CAS-No	California Prop. 65	Prop 65 NSRL	Category
Sulfuric acid	7664-93-9	Carcinogen	-	Carcinogen
ILC. Clote District to Know	-			

U.S. State Right-to-Know Regulations

Component	Massachusetts	New Jersey	Pennsylvania	Illinois	Rhode Island
Sulfuric acid	Х	Х	Х	Х	Х
Water	-	-	X	-	-

U.S. Department of Transportation

Reportable Quantity (RQ):	Y
DOT Marine Pollutant	Ν
DOT Severe Marine Pollutant	Ν

U.S. Department of Homeland Security

This product does not contain any DHS chemicals.

Other International Regulations

Mexico	-	Grade

No information available

	16. Other information
Prepared By	Regulatory Affairs Thermo Fisher Scientific Email: EMSDS.RA@thermofisher.com
Creation Date Revision Date Print Date Revision Summary	12-Nov-2010 24-May-2017 24-May-2017 SDS sections updated. 2.

Disclaimer

The information provided in this Safety Data Sheet is correct to the best of our knowledge, information and belief at the date of its publication. The information given is designed only as a guidance for safe handling, use, processing, storage, transportation, disposal and release and is not to be considered a warranty or quality specification. The information relates only to the specific material designated and may not be valid for such material used in combination with any other materials or in any process, unless specified in the text

End of SDS

The Pulsatron Series A Plus offers manual function controls over stroke length and stroke rate as standard with the option to select external pace for automatic control.

Ten distinct models are available, having pressure capabilities to 250 PSIG (17 BAR) @ 12 GPD (1.9 lph), and flow capacities to 58 GPD (9.1 lph) @ 100 PSIG (7.0 BAR), with a standard turndown ratio of 100:1, and optional ratio of 1000:1. Metering performance is reproducible to within \pm 3% of maximum capacity.

Features

- Manual Control by on-line adjustable stroke rate and stroke length.
- Highly Reliable timing circuit.
- Circuit Protection against voltage and current upsets.
- Solenoid Protection by thermal overload with auto-reset.
- Water Resistant, for outdoor and indoor applications.
- Internally Dampened To Reduce Noise.
- Guided Ball Check Valve Systems, to reduce back flow and enhance outstanding priming characteristics.
- Few Moving Parts and Wall Mountable.
- Safe & Easy Priming with durable leak-free bleed valve assembly (standard).
- Optional Control: External pace with auto/manual selection.

Controls

Manual Stroke Rate

Manual Stroke Length

External Pacing - Optional

External Pace With Stop -Optional (125 SPM only)

Controls Options						
Feature	Standard Configuration	Optional Configuration ¹				
External Pacing	-	Auto / Manual Selection 2				
External Pace w/ Stop (125 SPM only)	1	Auto / Manual Selection ²				
Manual Stroke Rate	10:1 Ratio	100:1 Ratio				
Manual Stroke Length	10:1 Ratio	10:1 Ratio				
Total Turndown Ratio	100.1 Ratio	1000:1 Ratio				

Note 2: Not available on 1000:1 turndown pumps.

1. Tested and Certified by WQA against NSF/ANSI 61 & 372

1. PVDF and Degassing Head Pumps See www.wga.org for certification parameters

Operating Benefits

- Reliable metering performance.
- Rated "hot" for continuous duty.
- High viscosity capability.
- Leak-free, sealless, liquid end.

Aftermarket

- KOPkits
- Gauges Dampeners
- Tanks
- Pre-Engineered Systems
- Dampeners Process Controllers Pressure Relief Valves (MicroVision)

PULSAfron[®] Series A Plus Electronic Metering Pumps

SAtron[®] Series A Plus **Specifications and Model Selection**

MODEL			LBC2	LB02	LBC3	LB03	LB04	LB64	LBC4	LBS2	LBS3	LBS4
Capacity		GPH	0.25	0.25	0.42	0.50	1.00	1.25	2.00	0.50	1.38	2.42
nominal		GPD	6	6	10	12	24	30	48	12	33	58
(max.)		LPH	0.9	0.9	1.6	1.9	3.8	4.7	7.6	1.9	5.2	9.14
Pressure ¹ (max .)	GFPP, PVDF 316SS or PVC (W code) w/TFE Seats) PVC (V code) Viton or CSPE Seats / Degas Liquid End	PSIG (Bar)	250 (17)	150 (10)	250 (17)	150 (10)	100 (7)	100 (7)	50 (3.3)	250 (17)	150 (10)	100 (7)
Connections:		Tubing	1/4" ID X 3/8" OD 3/8" ID X 1/2" OD							1/4" ID X 3/8" OD		
		Piping	1/4" FNPT									
Strokes/Minute		SPM	125							1	250	

Note 3: Pumps with rated pressure above 150 PSI will be de-rated to 150 PSI Max. when selecting certain valve options, see Price Bool

Engineering Data

Pump Head Materials Available:	GFPPL PVC PVDF
	316 SS
Diaphragm:	PTFE-faced CSPE-backed
Check Valves Materials Available:	
Seats/O-Rings:	PTFE
	CSPE
	Viton
Balls:	Ceramic
	PTFE
	316 SS
	Alloy C
Fittings Materials Available:	GEPPI
Tittings Materials Available.	PVC
	PVDF
Bleed Valve:	Same as fitting and check valve
	selected, except 316SS
Injection Valve & Foot Valve Assy:	Same as fitting and check valve
	selected
Tubing:	Clear PVC
	White PE

Important: Material Code - GFPPL=Glass-filled Polypropylene, PVC=Polyvinyl Chloride, PE=Polyethylene, PVDF=Polyvinylidene Fluoride, CSPE=Generic formulation of Hypalon, a registered trademark of E.I. DuPont Company. Viton is a registered trademark of E.I. DuPont Company. PVC wetted end recommended for sodium hypochlorite.

Engineering Data

Reproducibility: Viscosity Max CPS: Stroke Frequency Max SPM: Stroke Frequency Turn-Down Ratio: 10:1 /100:1 by Model Stroke Length Turn-Down Ratio: **Power Input:**

Average Current Draw: @ 115 VAC; Amps: @ 230 VAC; Amps: Peak Input Power: Average Input Power @ Max SPM:

+/- 3% at maximum capacity 1000 CPS 125 / 250 by Model 10:1 115 VAC/50-60 HZ/1 ph 230 VAC/50-60 HZ/1 ph

0.6 Amps 0.3 Amps 130 Watts 50 Watts

Custom Engineered Designs – **Pre-Engineered Systems**

Pre-Engineered Systems

Pulsafeeder's Pre-Engineered Systems are designed to provide complete chemical feed solutions for all electronic metering applications. From stand alone simplex pH control applications to full-featured, redundant sodium hypochlorite disinfection metering, these rugged fabricated assemblies offer turnkey simplicity and industrial-grade durability. The UV-stabilized, high-grade HDPE frame offers maximum chemical compatibility and structural rigidity. Each system is factory assembled and hydrostatically tested prior to shipment.

Dimensions

	Serie	s A PLU	S Dime	nsions	(inches)		
Model No.	A	в	с	D	E	Shipping Weight	
LB02 / S2	5.0	9.6	9.5	6.5	8.2	10	
LBC2	5.0	9.9	9.5	6.5	8.5	10	
LBC3	50	9.9	9.5	6.5	8.5	10	
LB03 / S3	5.0	9.9	9.5	6.5	8.5	10	
LB04 /S4	5.0	9.9	9.5	6.5	8.5	10	
LB64	5.0	9.9	9.5	6.5	8.5	10	
LBC4	5.0	9.9	9.5	6.5	8.5	10	

NOTE Inches X 2.54 = cm

01 Airport Road Punta Gorda, FL 33982 Phone: +1(941) 575-3800 Fax: +1(941) 575-4085


BLEED VALVE

An ISO 9001 Certified Company

EMP025 A17

Applied Polymer Systems

519 Industrial Drive, Woodstock, GA 30189 www.siltstop.com Phone: 678-494-5998

Toll-free: 866-200-9868 Fax: 678-494-5298

APS 700 Series Floc Logs[®] Polyacrylamide Sediment and Turbidity Control Applicator Logs

APS 700 Series Floc Logs are a group of soil-specific tailored log-blocks that contain blends of water treatment components and polyacrylamide co-polymer for water clarification. They reduce and prevent fine particles and colloidal clays from suspension in stormwater. There are several types of Floc Logs designed to treat most water and soil types. Contact Applied Polymer Systems, Inc. or your local distributor for free testing and site-specific application information.

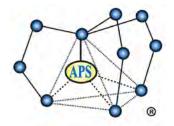
Primary Applications

- Mine tailings and waste pile ditches
- Stormwater drainage from construction and building sites
- Road and highway construction runoff ditches
- Ditch and treatment system placement for all forms of highly turbid waters (less than 4% solids)
- Dredging operations as a flocculent

Features and Benefits

- Removes solubilized soils and clay from water
- Prevents colloidal solutions in water within ditch systems
- Binds cationic metals within water, reducing solubilization
- Binds pesticides and fertilizers within runoff water
- Reduces operational and cleanup costs
- Reduces environmental risks and helps meet compliance

Specifications / Compliances


- ANSI/NSF Standard 60 Drinking water treatment chemical additives
- 48h or 96h Acute Toxicity Tests (D. magna or O. mykiss)
- 7 Day Chronic Toxicity Tests (P. promealas or C. dubia

Packaging

APS 700 Series Floc Logs are packaged in boxes of four (4)

Technical Information

Appearance - semi-solid block Biodegradable internal coconut skeleton Percent Moisture - 40% maximum pH 0.5% Solution - 6-8 Shelf Life – up to 5 years when stored out of UV rays

Applied Polymer Systems

519 Industrial Drive, Woodstock, GA 30189 <u>www.siltstop.com</u> Phone: 678-494-5998 Toll-free: 866-200-9868 Fax: 678-494-5298

Placement

Floc Logs are designed for placement within ditches averaging three feet wide by two feet deep. Floc log placement is based on gallon per minute flow rates. Note: actual GPM or dosage will vary based on site criteria and soil/water testing.

Directions for Use

(Water and Floc Log Mixing is Very Important!)

APS 700 Series Floc Logs should be placed within the upper quarter to half of a *stabilized* ditch system or as close as possible to active earth moving activities. Floc Logs have built in ropes with attachment loops which can be looped over stakes to ensure they remain where placed. Mixing is key! If the flow rate is too slow, adding sand bags, cinder blocks, etc., can create the turbulence required for proper mixing. Floc Logs are designed to treat dirty water, not liquid mud; when the water contains heavy solids (exceeding 4%), it will be necessary to create a sediment or grit pit to let the heavy solids settle before treating the water.

Floc Logs must not be placed in areas where heavy erosion would result in the Floc Logs becoming buried. Where there is heavy sedimentation, maintenance will be required.

APS 700 Series Floc Logs can easily be moved to different locations as site conditions change. Water quality will be improved with the addition of a dispersion field or soft armor covered ditch checks below the Floc Log(s) to collect flocculated particulate. Construction of mixing weirs may be required in areas where short ditch lines, swelling clays, heavy particle concentrations, or steep slopes may be encountered.

Cleanup:

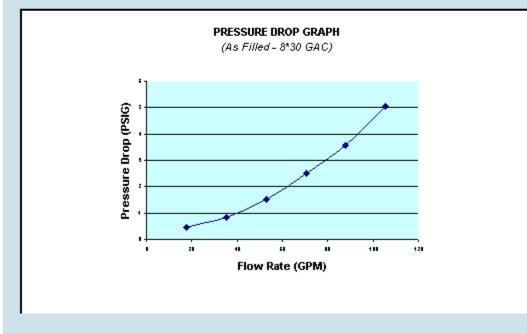
Latex or rubber gloves are recommended for handling during usage. Use soap and water to wash hands after handling.

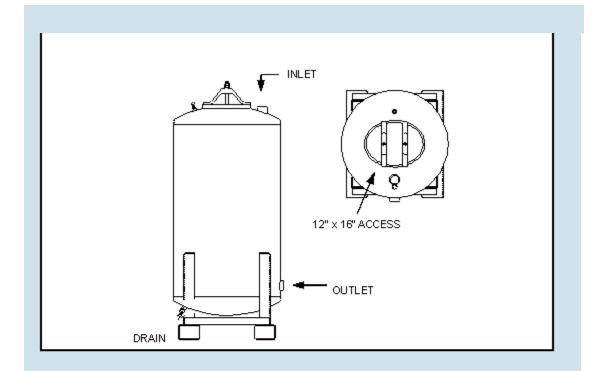
Precautions / Limitations

- APS 700 Series Floc Logs are extremely slippery when wet.
- Clean up spills quickly. Do not use water unless necessary as extremely slippery conditions will result and if water is necessary, use pressure washer.
- APS Floc Log will remain viable for up to 5 years when stored out of UV rays.
- APS 700 Series Floc Logs have been specifically tailored to specific water and soil types and samples must be tested. Testing is necessary and is free.
- For product information, treatment system design assistance, or performance issues, contact Applied Polymer Systems.

89 Crawford Street Leominster, Massachusetts 01453 Tel: 774.450.7177 Fax: 888.835.0617 www.lrt-llc.net

Picture


Not


Available

HPAF SERIES FILTERS MODEL HPAF-2000

The HPAF-2000 filter is a media filter vessel designed to treat liquid streams. While the typical design application is a activated carbon adsorbtion unit, the filter can easily accommodate many medias. Some applications include:

- Dissolved Organic Removal (Activated Carbon)
- Suspended Solids Removal (Sand Filter)
- Dissolved Minerals (Softener Resin)
- Oil and Grease Removal (Organo-Clays)
- Dissolved and Precipitated Metals Removal
- Special Organics (Resin/Carbon Blend)
- · Catalytic Reactor (Chlorine and Peroxide Removal)
- Bio-Remediation Contactor Unit

HPAF-2000 SPECIFICATIONS			
Overall Height	8'6"	Vessel/Internal Piping Materials	CS (SA-36) / SCH 40 PVC
Diameter	48"	Internal Coating	Polyamide Epoxy Resin
Inlet / Outlet (FNPT)	3"	External Coating	Epoxy Mastic
Drain / Vent (FNPT)	3/4" / 1/2"	Maximum Pressure / Temp	75 PSIG / 140º F
GAC Fill (lbs)	2,000	Cross Sectional Bed Area	12.5 FT ²
Shipping / Operational Weight (lbs)	3,020/6,775	Bed Depth/Volume	5.5 FT / 68.7 FT ³

Safety Data Sheet

according to 29CFR1910/1200 and GHS Rev. 3

Page 1 of 7

Effective date : 03.02.2015

Charcoal, Activated Carbon

SECTION 1 : Identification of the substance/mixture and of the supplier

Product name :

Charcoal, Activated Carbon

Manufacturer/Supplier Trade name:

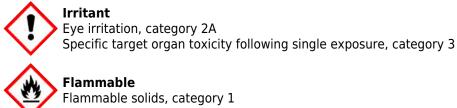
Manufacturer/Supplier Article number: S25246

Recommended uses of the product and uses restrictions on use:

Manufacturer Details:

AquaPhoenix Scientific 9 Barnhart Drive, Hanover, PA 17331

Supplier Details:


Fisher Science Education 15 Jet View Drive, Rochester, NY 14624

Emergency telephone number:

Fisher Science Education Emergency Telephone No.: 800-535-5053

SECTION 2 : Hazards identification

Classification of the substance or mixture:

Flammable Flammable solids, category 1

Eye Irrit. 2 STOT SE 3 Hazards Not Otherwise Classified - Combustible Dust Flam. Sol. 2

Signal word : Danger

Hazard statements:

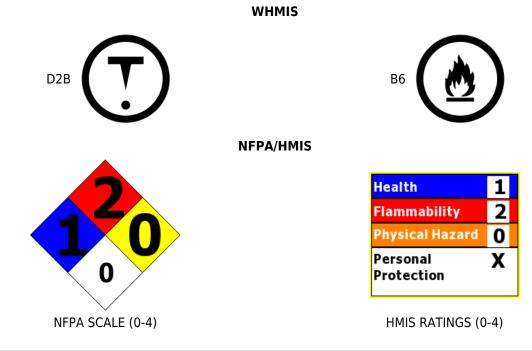
Flammable solid Causes serious eye irritation May cause respiratory irritation **Precautionary statements:** If medical advice is needed, have product container or label at hand Keep out of reach of children Read label before use Keep away from heat/sparks/open flames/hot surfaces. No smoking Ground/bond container and receiving equipment Use explosion-proof electrical/ventilating/light/equipment Avoid breathing dust/fume/gas/mist/vapours/spray Wash skin thoroughly after handling Use only outdoors or in a well-ventilated area

Safety Data Sheet

according to 29CFR1910/1200 and GHS Rev. 3

Effective date : 03.02.2015

Charcoal, Activated Carbon


Wear protective gloves/protective clothing/eye protection/face protection Do not eat, drink or smoke when using this product IF INHALED: Remove victim to fresh air and keep at rest in a position comfortable for breathing In case of fire: Use agents recommended in section 5 for extinction If eye irritation persists get medical advice/attention IF IN EYES: Rinse cautiously with water for several minutes. Remove contact lenses if present and easy to do. Continue rinsing Store locked up Store in a well ventilated place. Keep container tightly closed

Dispose of contents and container to an approved waste disposal plant

Combustible Dust Hazard: :

May form combustible dust concentrations in air (during processing).

Other Non-GHS Classification:

SECTION 3 : Composition/information on ingredients

Ingredients:			
CAS 7440-44-0	Carbon	100 %	
Percentages are by weight			

SECTION 4 : First aid measures

Description of first aid measures

After inhalation: Loosen clothing as necessary and position individual in a comfortable position. Move exposed to fresh air. Give artificial respiration if necessary. If breathing is difficult give oxygen. Get medical assistance if cough or other symptoms appear.

After skin contact: Rinse/flush exposed skin gently using soap and water for 15-20 minutes.Seek medical advice if discomfort or irritation persists.

After eye contact: Protect unexposed eye. Rinse/flush exposed eye(s) gently using water for 15-20 minutes. Remove contact lens(es) if able to do so during rinsing. Seek medical attention if irritation persists or if

according to 29CFR1910/1200 and GHS Rev. 3

Effective date : 03.02.2015

Charcoal, Activated Carbon

concerned.

After swallowing: Rinse mouth thoroughly. Do not induce vomiting. Have exposed individual drink sips of water. Seek medical attention if irritation, discomfort or vomiting persists.

Most important symptoms and effects, both acute and delayed:

Irritation, Nausea, Headache, Shortness of breath.;

Indication of any immediate medical attention and special treatment needed:

If seeking medical attention, provide SDS document to physician. Physician should treat symptomatically.

SECTION 5 : Firefighting measures

Extinguishing media

Suitable extinguishing agents: Use appropriate fire suppression agents for adjacent combustible materials or sources of ignition. Use water, dry chemical, chemical foam, carbon dioxide, or alcohol-resistant foam.

For safety reasons unsuitable extinguishing agents: None identified.

Special hazards arising from the substance or mixture:

Combustion products may include carbon oxides or other toxic vapors. Thermal decomposition can lead to release of irritating gases and vapors.

Advice for firefighters:

Protective equipment: Use NIOSH-approved respiratory protection/breathing apparatus.

Additional information (precautions): Move product containers away from fire or keep cool with water spray as a protective measure, where feasible.Use spark-proof tools and explosion-proof equipment.Avoid generating dust; fine dust dispersed in air in sufficient concentrations, and in the presence of an ignition source is a potential dust explosion hazard.Avoid inhaling gases, fumes, dust, mist, vapor, and aerosols.Avoid contact with skin, eyes, and clothing.

SECTION 6 : Accidental release measures

Personal precautions, protective equipment and emergency procedures:

Wear protective equipment. Use spark-proof tools and explosion-proof equipment. Ensure that air-handling systems are operational. Ensure adequate ventilation.

Environmental precautions:

Prevent from reaching drains, sewer or waterway. Collect contaminated soil for characterization per Section 13. Should not be released into environment.

Methods and material for containment and cleaning up:

Keep in suitable closed containers for disposal.Wear protective eyeware, gloves, and clothing. Refer to Section 8.Always obey local regulations.Avoid dispersal of dust in the air (i.e., clearing dust surfaces with compressed air). Collect solids in powder form using vacuum with (HEPA filter). Evacuate personnel to safe areas.

Reference to other sections:

SECTION 7 : Handling and storage

Precautions for safe handling:

Minimize dust generation and accumulation. Follow good hygiene procedures when handling chemical materials. Refer to Section 8.Do not eat, drink, smoke, or use personal products when handling chemical substances. Avoid contact with eyes, skin, and clothing.

Conditions for safe storage, including any incompatibilities:

Store away from incompatible materials.Protect from freezing and physical damage.Keep away from food and beverages.Provide ventilation for containers. Avoid storage near extreme heat, ignition sources or open flame.

Safety Data Sheet according to 29CFR1910/1200 and GHS Rev. 3

Effective date : 03.02.2015

Charcoal, Activated Carbon

Store in cool, dry conditions in well sealed containers. Store with like hazards

SECTION 8 : Exposure controls/personal protection		
Control Parameters:	, , OSHA PEL TWA (Total Dust) 15 mg/m3 (50 mppcf*) , , ACGIH TLV TWA (inhalable particles) 10 mg/m3	
Appropriate Engineering controls:	Emergency eye wash fountains and safety showers should be available in the immediate vicinity of use/handling.Provide exhaust ventilation or other engineering controls to keep the airborne concentrations of vapor or dusts (total/respirable) below the applicable workplace exposure limits (Occupational Exposure Limits-OELs) indicated above.Ensure that dust- handling systems (such as exhaust ducts, dust collectors, vessels, and processing equipment) are designed in a manner to prevent the escape of dust into the work area (i.e., there is no leakage from the equipment).	
Respiratory protection:	When necessary use NIOSH approved breathing equipment.	
Protection of skin:	Select glove material impermeable and resistant to the substance.Select glove material based on rates of diffusion and degradation.Dispose of contaminated gloves after use in accordance with applicable laws and good laboratory practices.Wear protective clothing.	
Eye protection:	Wear equipment for eye protection tested and approved under appropriate government standards such as NIOSH (US) or EN 166(EU).Safety glasses or goggles are appropriate eye protection.	
General hygienic measures:	Perform routine housekeeping.Wash hands before breaks and at the end of work.Avoid contact with skin, eyes, and clothing.Before wearing wash contaminated clothing.	

SECTION 9 : Physical and chemical properties

Appearance (physical state,color):	Black solid	Explosion limit lower: Explosion limit upper:	Not Determined Not Determined
Odor:	Odorless	Vapor pressure:	1 mm Hg @ 3586C
Odor threshold:	Not Determined	Vapor density:	Not Determined
pH-value:	6.0 - 9.0	Relative density:	1.8 - 2.1
Melting/Freezing point:	3652 - 3697°C / 6606 - 6687°F	Solubilities:	Insoluble in water.
Boiling point/Boiling range:	Decomposes	Partition coefficient (n- octanol/water):	Not Determined
Flash point (closed cup):	Not Determined	Auto/Self-ignition temperature:	Not Determined
Evaporation rate:	Not Determined	Decomposition temperature:	1 mm Hg @ 3586C

Safety Data Sheet

according to 29CFR1910/1200 and GHS Rev. 3

Effective date : 03.02.2015

Page 5 of 7

Charcoal, Activated Carbon

Flammability (solid,gaseous):	Not Determined	Viscosity:	a. Kinematic:Not Determined b. Dynamic: Not Determined
Density: Not Determined			

SECTION 10 : Stability and reactivity

Reactivity: Nonreactive under normal conditions.

Chemical stability: Stable under normal conditions.

Possible hazardous reactions: None under normal processing

Conditions to avoid: Incompatible Materials. Ignition sources, dust generation, moisture, excess heat.

Incompatible materials:May react vigorously or violently when mixed with strong oxidizing agents such as chlorates, bromates and nitrates, especially when heated. Incompatible with chlorinated paraffins, Lead oxide, manganese oxide, iron oxide, liquid oxygen, oils, and moisture.

Hazardous decomposition products:Oxides of carbon.

SECTION 11 : Toxicological information

Acute Toxicity:					
Oral: Effect level > 8000 mg/kg bw		LD50 rat			
Inhalation: Effect level > 4.6 mg/m ³ air Exp. duration 4 h		rat			
Chronic Toxicity: No	Chronic Toxicity: No additional information.				
Corrosion Irritation	Corrosion Irritation: No additional information.				
Sensitization:		No additional information.			
Single Target Organ (STOT):		No additional information.			
Numerical Measures:		No additional information.			
Carcinogenicity:		No additional information.			
Mutagenicity:		No additional information.			
Reproductive Toxicity:		No additional information.			

SECTION 12 : Ecological information

Ecotoxicity

Brachydanio rerio (new name: Danio rerio) Duration 96 h Endpoint LC0 : Effect conc. 1000 mg/L Daphnia magna 24 h Endpoint EC100: Effect conc. 10000 mg/L

Persistence and degradability: Bioaccumulative potential: Mobility in soil: Other adverse effects:

SECTION 13 : Disposal considerations

Safety Data Sheet

according to 29CFR1910/1200 and GHS Rev. 3

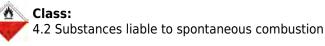
Effective date : 03.02.2015

Charcoal, Activated Carbon

Waste disposal recommendations:

Contact a licensed professional waste disposal service to dispose of this material.Dispose of empty containers as unused product.Product or containers must not be disposed with household garbage.It is the responsibility of the waste generator to properly characterize all waste materials according to applicable regulatory entities (US 40CFR262.11).Chemical waste generators must determine whether a discarded chemical is classified as a hazardous waste. Chemical waste generators must also consult local, regional, and national hazardous waste regulations. Ensure complete and accurate classification.

SECTION 14 : Transport information


UN-Number

1362

UN proper shipping name

Carbon Activated

Transport hazard class(es)

Packing group:||| Environmental hazard: Transport in bulk: Special precautions for user:

SECTION 15 : Regulatory information

United States (USA)

SARA Section 311/312 (Specific toxic chemical listings):

Fire

SARA Section 313 (Specific toxic chemical listings):

None of the ingredients is listed

RCRA (hazardous waste code):

None of the ingredients is listed

TSCA (Toxic Substances Control Act):

All ingredients are listed.

CERCLA (Comprehensive Environmental Response, Compensation, and Liability Act):

None of the ingredients is listed

Proposition 65 (California):

Chemicals known to cause cancer:

None of the ingredients is listed

Chemicals known to cause reproductive toxicity for females:

None of the ingredients is listed

Chemicals known to cause reproductive toxicity for males:

None of the ingredients is listed

Chemicals known to cause developmental toxicity:

None of the ingredients is listed

Effective date : 03.02.2015

Charcoal, Activated Carbon

Canada

Canadian Domestic Substances List (DSL):

All ingredients are listed.

Canadian NPRI Ingredient Disclosure list (limit 0.1%):

None of the ingredients is listed

Canadian NPRI Ingredient Disclosure list (limit 1%):

None of the ingredients is listed

SECTION 16 : Other information

This product has been classified in accordance with hazard criteria of the Controlled Products Regulations and the SDS contains all the information required by the Controlled Products Regulations.Note:. The responsibility to provide a safe workplace remains with the user.The user should consider the health hazards and safety information contained herein as a guide and should take those precautions required in an individual operation to instruct employees and develop work practice procedures for a safe work environment.The information contained herein is, to the best of our knowledge and belief, accurate.However, since the conditions of handling and use are beyond our control, we make no guarantee of results, and assume no liability for damages incurred by the use of this material.It is the responsibility of the user to comply with all applicable laws and regulations applicable to this material.

GHS Full Text Phrases:

Abbreviations and acronyms:

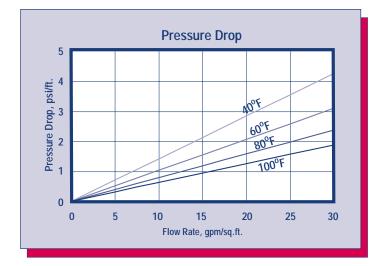
IMDG: International Maritime Code for Dangerous Goods PNEC: Predicted No-Effect Concentration (REACH) CFR: Code of Federal Regulations (USA) SARA: Superfund Amendments and Reauthorization Act (USA) RCRA: Resource Conservation and Recovery Act (USA) TSCA: Toxic Substances Control Act (USA) NPRI: National Pollutant Release Inventory (Canada) DOT: US Department of Transportation IATA: International Air Transport Association GHS: Globally Harmonized System of Classification and Labelling of Chemicals ACGIH: American Conference of Governmental Industrial Hygienists CAS: Chemical Abstracts Service (division of the American Chemical Society) NFPA: National Fire Protection Association (USA) HMIS: Hazardous Materials Identification System (USA) WHMIS: Workplace Hazardous Materials Information System (Canada) DNEL: Derived No-Effect Level (REACH)

Effective date : 03.02.2015 **Last updated** : 03.19.2015

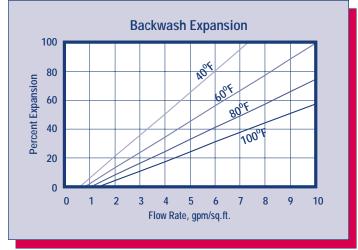
RESINTECH CGS is a high purity, light colored, high capacity, gel type sulfonated polystyrene cation resin supplied in the sodium form as moist, tough uniform spherical beads. *ResinTech CGS* specifically is intended for use in all water softening applications, including beverages, potable water and water used for food processing. It's high capacity and high DVB content provide long life and good chlorine resistance in all potable water applications. (It is also available as a dark colored product *ResinTech CGS-BL* with identical properties.)

FEATURES & BENEFITS

- COMPLIES WITH FDA REGULATIONS FOR POTABLE WATER APPLICATIONS Conforms to paragraph 21CFR173.25 of the Food Additives Regulations of the F.D.A.*
- EXCELLENT REGENERATION EFFICIENCY
 Virtually the same operating capacity as premium grade ResinTech CG8-BL
- NSF/ANSI-61 VALIDATED



UNIFORM PARTICLE SIZE 16 to plus 50 mesh range; gives a LOWER PRESSURE DROP while maintaining SUPERIOR KINETICS.


- SUPERIOR PHYSICAL STABILITY
 90% plus sphericity and high crush strengths together with a very uniform particle size provide greater resistance to bead breakage while maintaining low pressure drops.
- LOW COLOR THROW

*For potable water applications, the resin must be properly pre-treated, usually by multiple exhaustion and regeneration cycles, to insure compliance with extractable levels.

HYDRAULIC PROPERTIES

PRESSURE DROP - The graph above shows the expected pressure loss per foot of bed depth as a function of flow rate, at various temperatures.

BACKWASH - After each cycle the resin bed should be backwashed at a rate that expands the bed 50 to 75 percent. This will remove any foreign matter and reclassify the bed. The graph above shows the expansion characteristics of *RESINTECH CGS* in the sodium form.

RESINTECH® CGS

PHYSICAL PROPERTIES

Polymer Structure
Functional Group
Ionic Form, as shipped
Physical Form
Screen Size Distribution
+16 mesh (U.S. Std)
-50 mesh (U.S. Std)
pH Range
Sphericity
Uniformity Coefficient
Water Retention
Sodium Form
Solubility
Shipping Weight
Sodium Form
Total Capacity
Sodium Form

Styrene Crosslinked with DVB R-(SO₃)⁻M⁺ Sodium Tough, Spherical Beads 16 to 50 < 5 percent < 1 percent 0 to 14 90+ percent Approx. 1.6 48 to 54 percent Insoluble

48 lbs./cu.ft.

1.8 meq/ml min

OPERATING CAPACITY

Sodium Chloride (NaCl) Regeneration

The sodium cycle operating capacity of *ResinTech CGS* for hardness removal at various regeneration levels with an influent calcium/magnesium ratio of 2/1 and a hardness level of 500 ppm, as $CaCO_3$, is shown in the following table:

Pounds NaOH/cu.ft.	Capacity Kilograins/cu.ft.
5	20.0
7.5	25.4
10	29.0
15	33.0

Potassium Chloride (KCI) Regeneration

The potassium cycle operating capacity of *ResinTech CGS* for hardness removal at various regeneration levels with an influent calcium/magnesium ratio of 2/1 and a hardness level of 500 ppm, as $CaCO_3$, is shown in the following table:

SUGGESTED OPERATING CONDITIONS

250⁰ F 24 inches 50 to 75% Bed Expansion

10 to 15 percent 0.5 to 1.5 gpm/cu.ft. > 20 minutes 4 to 15 pounds/cu.ft. Same as Regen Flow Rate 10 to 15 gallons/cu.ft. Same as Service Flow Rate 35 to 60 gallons/cu.ft. 2 to 10 gpm/cu.ft.

Pounds NaOH/cu.ft.	Capacity Kilograins/cu.ft.
5	16.6
7.5	21.8
10	26.6
15	31.2

APPLICATIONS

Softening

RESINTECH CGS is ideally suited for industrial, commercial, or residential softening applications where free chlorine is not present because of its high capacity, uniform particle size and good physical stability.

*CAUTION:DO NOT MIX ION EXCHANGE RESIN WITH STRONG OXIDIZING AGENTS. Nitric acid and other strong oxidizing agents can cause explosive reactions when mixed with organic materials, such as ion exchange resins.

Material Safety Data Sheets (MSDS) are available for all ResinTech Inc.products. To obtain a copy, contact your local ResinTech sales representative or our corporate headquarters. They contain important health and safety information. That information may be needed to protect your employees and customers from any known health and safety hazards associated with our products. We recommend that you secure and study the pertinent MSDS for our products and any other products being used These suggestions and data are based on information we believe to be reliable. They are offered in good faith. However we do not make any guarantee or warranty. We caution against using these products in an unsafe manner or in violation of any patents; further we assume no liability for the consequences of any such actions.

RESINTECH is a registered trademark [®] of RESINTECH INC

ANION EXCHANGE RESIN TYPE ONE GEL CI OR OH FORM

RESINTECH SBG1 is a high capacity, shock resistant, gelular, Type 1, strongly basic anion exchange resin supplied in the chloride or hydroxide form as moist, tough, uniform, spherical beads. *RESINTECH SBG1* is intended for use in all types of deionization systems and chemical processing applications. It is similar to *RESINTECH SBG1P* but has a higher volumetric capacity and exhibits lower TOC leach rates. This makes it the better performer in single use applications such as in cartridge deionization and when high levels of regeneration are used such as in polishing mixed beds. On the other hand, *RESINTECH SBG1P* is more resistant to organic fouling and gives higher operating capacities at low regeneration levels such as those used in make up demineralizers.

FEATURES & BENEFITS

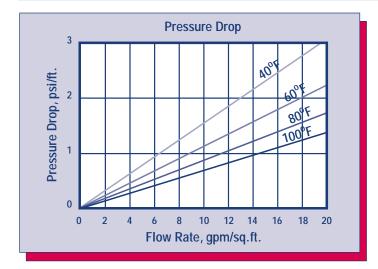
• **COMPLIES WITH FDA REGULATIONS FOR POTABLE WATER APPLICATIONS.** Conforms to paragraph 21CFR173.125 of the Food Additives Regulations of the F.D.A.*

HIGH TOTAL CAPACITY

Provides longer run lengths in single use applications or where high levels of regeneration are used such as in mixed bed polishers, cartridge demineralizers.

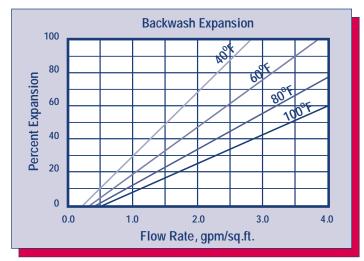
• UNIFORM PARTICLE SIZE

16 to plus 50 mesh range; gives a LOWER PRESSURE DROP while maintaining SUPERIOR KINETICS.


SUPERIOR PHYSICAL STABILITY

LOWER TOC LEACH RATE

Makes it ideal for polishing mixed beds in wafer washing and other high purity water polishing applications.


*For potable water applications, the resin must be properly pre-treated, usually by multiple exhaustion and regeneration cycles, to ensure compliance with extractable levels.

HYDRAULIC PROPERTIES

PRESSURE DROP

The graph above shows the expected pressure loss per foot of bed depth as a function of flow rate, at various temperatures.

BACKWASH

After each cycle the resin bed should be backwashed at a rate that expands the bed 50 to 75 percent. This will remove any foreign matter and reclassify the bed. The graph above shows the expansion characteristics of *ResinTech SBG1* in the sodium form.

RESINTECH® SBG1

PHYSICAL PROPERTIES

Polymer Structure Functional Group Ionic Form, as shipped Physical Form Screen Size Distribution +16 mesh (U.S. Std) -50 mesh (U.S. Std) pH Range Sphericity **Uniformity Coefficient** Water Retention Chloride Form Hydroxide Form Solubility Approximate Shipping Weight CI Form **OH Form** Swelling CI- to OH-**Total Capacity** CI Form OH Form

Styrene Crosslinked with DVB R-N-(CH₃)₃+CI-Chloride or Hydroxide Tough, Spherical Beads 16 to 50 < 5 percent < 1 percent 0 to14 > 93 percent Approx. 1.6 43 to 50 percent Approx. 53 to 60 percent Insoluble 44 lbs/cu.ft. 41 lbs/cu.ft 18 to 25 percent

1.45 meq/ml min 1.15 meq/ml min

SUGGESTED OPERATING CONDITIONS

Maximum Continuous Temperature	
Hydroxide Form	140°F
alt Form	170°F
Minimum Bed Depth	24 inches
Backwash Rate	50 to 75 percent Bed Expansion
Regenerant Concentration*	2 to 6 percent
Regenerant Flow Rate	0.25 to 1.0 gpm/cu.ft.
Regenerant Contact Time	At least 40 Minutes
Regenerant Level	4 to 10 pounds/cu.ft.
Displacement Rinse Rate	Same as Regenerant Flow Rate
Displacement Rinse Volume	10 to 15 gals/cu.ft.
Fast Rinse Rate	Same as Service Flow Rate
Fast Rinse Volume	35 to 60 gals/cu.ft.
Service Flow Rates	
Polishing Mixed Beds	3 to 15 gpm/cu.ft.
Non-Polishing Apps.	2 to 4 gpm/cu.ft.

OPERATING CAPACITY

The operating capacity of *RESINTECH SBG1* for a variety of acids at various regeneration levels when treating an influent with a concentration 500 ppm, expressed as $CaCO_3$ is shown in the following table:

Pounds	Capacity Kilograms per cubic foot			
NaOH/ft ³	HCI	H_2SO_4	H_2SiO_3	H_2CO_3
4	11.3	14.0	14.7	18.6
6	12.8	16.3	17.3	19.8
8	14.3	13.3	19.5	21.6
10	15.5	20.0	22.2	22.2

APPLICATIONS

DEMINERALIZATION – *RESINTECH SBG1* is highly recommended for use in mixed bed demineralizers, wherever complete ion removal; superior physical and osmotic stability and low TOC leachables are required such as in wafer fabrication and other ultrapure applications.

RESINTECH SBG1 has high total capacity and low swelling on regeneration and provides maximum operating capacity in cartridge deionization applications. It is ideal for single use applications such as precious metal recovery, radwaste disposal and purification of toxic waste streams.

Highly crosslinked Type 1, styrenic anion exchangers have greater thermal and oxidation resistance than other types of strong base resins. They can be operated and regenerated at higher temperatures. The combination of lower porosity, high total capacity and Type 1 functionality make *RESINTECH SBG1* the resin of choice when water temperatures exceed $85^{O}F$ and where the combination of carbon dioxide, borate and silica exceed 40% of the total anions.

RESINTECH SBG1P and *RESINTECH SBG1* are quite similar; the difference between them is the degree of porosity. *RESINTECH SBG1P* has greater porosity that gives it faster kinetics, and greater ability to reversibly sorb slow moving ions such as Naturally occurring Organic Matter (NOM). At lower regeneration levels and where chlorides make up a substantial portion of the anion load, or where the removal and elution of naturally occurring organics is of concern *RESINTECH SBG1P*, SBACR or SBG2 should be considered. At the higher regeneration levels used in mixed bed polishers *RESINTECH SBG1* provides higher capacity, and the lowest possible TOC leach rates.

*CAUTION:DO NOT MIX ION EXCHANGE RESIN WITH STRONG OXIDIZING AGENTS. Nitric acid and other strong oxidizing agents can cause explosive reactions when mixed with organic materials, such as ion exchange resins.

Material Safety Data Sheets (MSDS) are available for all ResinTech Inc.products. To obtain a copy,contact your local ResinTech sales representative or our corporate headquarters. They contain important health and safety information. That information may be needed to protect your employees and customers from any known health and safety hazards associated with our products. We recommend that you secure and study the pertinent MSDS for our products and any other products being used These suggestions and data are based on information we believe to be reliable. They are offered in good faith. However we do not make any guarantee or warranty. We caution against using these products in an unsafe manner or in violation of any patents; further we assume no liability for the consequences of any such actions.

RESINTECH is a registered trademark [®] of RESINTECH INC

Safety Data Sheet Product Names: SBG1, SBG1-HP, SBG1-UPS, SBG1-C, SBG1-F, SBMP1, SBMP1-UPS, GP-SBA, SBG1P, SBG1P-UPS

(Type I Strong Base Anion Exchange Resin Chloride Form) Effective date 31 March 2015

Se	Section 1: Identification			
1a	Product Names	ResinTech SBG1, SBG1-HP, SBG1-UPS, SBG1-C, SBG1-F, SBMP1, SBMP1-UPS, GP-SBA, SBG1P, SBG1P-UPS		
1b	Common Name	Type I Strong base anion resin in the chloride form.		
1c	Intended use	All general purpose anion exchanges for general use including salt form and demineralization.		
1d	Manufacturer Address	ResinTech, Inc. 160 Cooper Road, West Berlin, NJ 08091 USA		
	Phone Email	856-768-9600 ixresin@resintech.com		

Section 2: Hazard Identification

2a Hazard classification

Not hazardous or dangerous

Product Hazard Rating	Scale
Health = 0	0 = Negligible
Fire = 1	1 = Slight
Reactivity = 0	2 = Moderate
Special – N/A	3 = High
	4 = Extreme

White, yellow, or orange colored solid beads 2b **Product description** approximately 0.6 mm diameter with little or no odor. Safety glasses and gloves recommended. 2c Precautions for use Slipping hazard if spilled. Will cause eye irritation. 2c Potential health effects Will cause skin skin irritation. Ingestion is not likely to pose a health risk. **Environmental effects** 2d This product may alter the pH of any water that contacts it.

Section 2A: Hazard classification UN OSHA globally harmonized system

WARNING

(contains ion exchange resin)

H320: Causes eye irritation

Precautionary Statements

P264: Wash hands thoroughly after handling.
P280: Wear protective gloves/protective clothing/eye protection/face protection
P305+351+338: IF IN EYES: Rinse cautiously with water for several minutes. Remove contact lenses if present and easy to do – continue rinsing.
P333+313: If skin irritation or a rash occurs: Get medical advice/attention.
P337+313: If eye irritation persists get medical advice/attention.
P403+233: Store in a well-ventilated place. Keep container tightly closed.
P411: Store at temperatures not exceeding 50 °C/ 122 °F.

Please refer to the safety data sheet for additional information regarding this product

ResinTech, Inc. 160 Cooper Road West Berlin, NJ 08091-9234 856 768-9600 Ixresin@resintech.com

Section 3: Composition/ Information on Ingredients

3a	Chemical name	Trimethylamine functionalized chloromethylated copolymer of polystyrene in the chloride form.		
3b	Ingredients Trimethylamine functionalized Chloromethlyated copolymer of Styrene and divinylbenzene in the Chloride form	CAS# 60177-39-1 (35 - 65%)		
	Water	CAS# 7732-18-5 (35 – 65%)		
Se	ection 4: First Aid Measures			
4a	Inhalation	No adverse effects expected- normal use of product does not produce odors or vapors.		
4b	Skin	Wash with soap and water- seek medical attention if a rash develops.		
4c	Eye contact	Wash immediately with water-seek attention if discomfort continues.		
4d	Ingestion	No adverse effects expected for small amounts, larger amounts can cause stomach irritation. Seek medical attention if discomfort occurs.		
Se	Section 5: Fire Fighting Measures			
52	Flammability	NEPA Fire rating = 1		

 5b Extinguishing media 5c Fire fighting Procedures 5c Fire fighting Procedures 5d Protective Equipment 5e Combustion Products 5f Unusual Hazards Water, CO2, foam, dry powder. Follow general fire fighting procedures indicated in work place. Seek medical attention if discomfort continues. Follow general fire fighting procedures indicated in work place. Seek medical attention if discomfort continues. Follow general fire fighting procedures indicated in work place. Seek medical attention if discomfort continues. Follow general fire fighting procedures indicated in work place. Seek medical attention if discomfort continues. Follow general fire fighting procedures indicated in work place. Seek medical attention if discomfort continues. Follow general fire fighting procedures indicated in work place. Seek medical attention if discomfort continues. Follow general fire fighting procedures indicated in work place. Seek medical attention if discomfort continues. Follow general fire fighting procedures indicated in work place. Seek medical attention if discomfort continues. Follow general fire fighting procedures indicated in work place. Seek medical attention if discomfort continues. Follow general fire fighting procedures indicated in work place. Seek medical attention if discomfort continues. Follow general fire fighting procedures indicated in work place. Seek medical attention if discomfort continues. Follow general fire fighting procedures indicated in work place. Seek medical attention if discomfort continues. Follow general fire fighting procedures indicated in the seek medical attention if discomfort continues. Follow general fire fighting procedures indicated in the seek medical attention if discomfort continues. 		
SolutionSolutio		
5eCombustion ProductsCarbon oxides and other toxic gasses and vapors.		
	g	
5f Unusual Hazards Product is not combustible until moisture is remove	rs.	
Resin begins to burn at approximately 230° C. Auto ignition can occur above 500° C.		

Section 6: Accidental Release Measures

6a	Personal Precautions	Keep people away, spilled resin can be a slipping hazard, wear gloves and safety glasses to minimize skin or eye contact.
6b	Incompatible Chemicals	Strong oxidants can create risk of combustion products similar to burning, exposure to strong bases can cause a rapid temperature increase.
6c	Environmental Precautions	Keep out of public sewers and waterways.
6d	Containment Materials	Use plastic or paper containers, unlined metal containers not recommended.
6e	Methods of Clean-up	Sweep up material and transfer to containers.
Se	ection 7: Handling and Storage	
7a	Handling	Avoid prolonged skin contact. Keep resin moist and avoid allowing resin to completely dry.
7b	Storage	Store in a cool dry place (0° to 45° C) in the original shipping container. This product is thermally sensitive and will have reduced shelf life if subjected to extended periods of time at temperatures exceeding 50° C. Although freezing does not usually damage ion exchange resins, avoid repeated freeze thaw cycles.
7c	TSCA considerations	Ion exchange resins should be listed on the TSCA Inventory in compliance with State and Federal Regulations.

Section 8: Exposure Controls/Personal Protection

8a	OSHA exposure limits	None noted.
8b	Engineering Controls	Provide adequate ventilation.
8c	Personal Protection Measures Eye Protection Respiratory Protection Protective Gloves	Safety glasses or goggles. Not required for normal use. Not required for limited exposure but recommended for extended contact.

Section 9: Physical and Chemical Properties

Appearance	Amber, yellow, or red beads approx. 0.6 mm diameter.
Flammability or explosive limits	Flammable above 500° C
Odor	Little or no odor
Physical State	Solid
Vapor pressure	Not available
Odor threshold	Not available
Vapor density	Not available
рН	Near neutral (6 to 8 typical)
Relative density	Approx 710 grams/Liter
Melting point/freezing point	Does not melt, freezes at approx. 0 C
Solubility	Insoluble in water and most solvents
Boiling point	Does not boil
Flash point	Approx 500° C
Evaporation rate	Does not evaporate
Partition Coefficient (n-octonol/water)	Not applicable
Auto-ignition temperature	Approx 500° C
Decomposition temperature	Above 230° C
Viscosity	Not applicable

Section 10: Stability and Reactivity

10a Stability	Stable under normal conditions.
10b Conditions to Avoid	Heat, exposure to strong oxidants.
10c Hazardous by-products	Trimethylamine, charred polystyrene, aromatic acids and hydrocarbons, organic amines, nitrogen oxides, carbon oxides, chlorinated hydrocarbons.
10d Incompatible materials	Strong oxidizing agents, e.g. nitric acid (such as HNO_3)
10e Hazardous Polymerization	Does not occur

Section 11: Toxicological Information

11a Likely Poutes of Exposure	Oral skin or ove contact
11a Likely Routes of Exposure	Oral, skin or eye contact.
11b Effects of exposure Delayed Immediate (acute) Chronic	None known. None known. None known.
11c Toxicity Measures Skin Adsorption Ingestion Inhalation	Unlikely, some transfer of acidity is possible. Oral toxicity believed to be low but no LD50 has been established. Unknown, vapors are very unlikely due to physical
	properties (insoluble solid).
11d Toxicity Symptoms Skin Adsorption Ingestion Inhalation	Mild Rash. Indigestion or general malaise. Unknown.
11e Carcinogenicity	None known
Section 12: Ecological information	
L	
12a Eco toxicity	Not acutely harmful to plant or animal life.
12a Eco toxicity 12b Mobility	Not acutely harmful to plant or animal life. Insoluble, acidity or causticity may escape if wet.
·	
12b Mobility	Insoluble, acidity or causticity may escape if wet.
12b Mobility 12c Biodegradability	Insoluble, acidity or causticity may escape if wet. Not biodegradable.
12b Mobility12c Biodegradability12d Bioaccumulation	Insoluble, acidity or causticity may escape if wet. Not biodegradable. Insignificant.
 12b Mobility 12c Biodegradability 12d Bioaccumulation 12e Other adverse effects 	Insoluble, acidity or causticity may escape if wet. Not biodegradable. Insignificant.
 12b Mobility 12c Biodegradability 12d Bioaccumulation 12e Other adverse effects Section 13: Disposal Considerations 	Insoluble, acidity or causticity may escape if wet. Not biodegradable. Insignificant. Not Harmful to the environment. Material is non-hazardous. However, unused material

13d Sewage Disposal

Not recommended.

APPENDIX F

Endangered Species Act

United States Department of the Interior

FISH AND WILDLIFE SERVICE New England Ecological Services Field Office 70 Commercial Street, Suite 300 Concord, NH 03301-5094 Phone: (603) 223-2541 Fax: (603) 223-0104 http://www.fws.gov/newengland

In Reply Refer To: Consultation Code: 05E1NE00-2022-SLI-0735 Event Code: 05E1NE00-2022-E-02613 Project Name: BHCC Project December 07, 2021

Subject: List of threatened and endangered species that may occur in your proposed project location or may be affected by your proposed project

To Whom It May Concern:

The enclosed species list identifies threatened, endangered, proposed and candidate species, as well as proposed and final designated critical habitat, that may occur within the boundary of your proposed project and/or may be affected by your proposed project. The species list fulfills the requirements of the U.S. Fish and Wildlife Service (Service) under section 7(c) of the Endangered Species Act (Act) of 1973, as amended (16 U.S.C. 1531 *et seq.*).

New information based on updated surveys, changes in the abundance and distribution of species, changed habitat conditions, or other factors could change this list. Please feel free to contact us if you need more current information or assistance regarding the potential impacts to federally proposed, listed, and candidate species and federally designated and proposed critical habitat. Please note that under 50 CFR 402.12(e) of the regulations implementing section 7 of the Act, the accuracy of this species list should be verified after 90 days. This verification can be completed formally or informally as desired. The Service recommends that verification be completed by visiting the ECOS-IPaC website at regular intervals during project planning and implementation for updates to species lists and information. An updated list may be requested through the ECOS-IPaC system by completing the same process used to receive the enclosed list.

The purpose of the Act is to provide a means whereby threatened and endangered species and the ecosystems upon which they depend may be conserved. Under sections 7(a)(1) and 7(a)(2) of the Act and its implementing regulations (50 CFR 402 *et seq.*), Federal agencies are required to utilize their authorities to carry out programs for the conservation of threatened and endangered species and to determine whether projects may affect threatened and endangered species and/or designated critical habitat.

A Biological Assessment is required for construction projects (or other undertakings having similar physical impacts) that are major Federal actions significantly affecting the quality of the human environment as defined in the National Environmental Policy Act (42 U.S.C. 4332(2) (c)). For projects other than major construction activities, the Service suggests that a biological evaluation similar to a Biological Assessment be prepared to determine whether the project may affect listed or proposed species and/or designated or proposed critical habitat. Recommended contents of a Biological Assessment are described at 50 CFR 402.12.

If a Federal agency determines, based on the Biological Assessment or biological evaluation, that listed species and/or designated critical habitat may be affected by the proposed project, the agency is required to consult with the Service pursuant to 50 CFR 402. In addition, the Service recommends that candidate species, proposed species and proposed critical habitat be addressed within the consultation. More information on the regulations and procedures for section 7 consultation, including the role of permit or license applicants, can be found in the "Endangered Species Consultation Handbook" at:

http://www.fws.gov/endangered/esa-library/pdf/TOC-GLOS.PDF

Please be aware that bald and golden eagles are protected under the Bald and Golden Eagle Protection Act (16 U.S.C. 668 *et seq*.), and projects affecting these species may require development of an eagle conservation plan

(http://www.fws.gov/windenergy/eagle_guidance.html). Additionally, wind energy projects should follow the wind energy guidelines (http://www.fws.gov/windenergy/) for minimizing impacts to migratory birds and bats.

Guidance for minimizing impacts to migratory birds for projects including communications towers (e.g., cellular, digital television, radio, and emergency broadcast) can be found at: http://www.fws.gov/migratorybirds/CurrentBirdIssues/Hazards/towers/towers.htm; http://www.towerkill.com; and ht www.fws.gov/migratorybirds/CurrentBirdIssues/Hazards/towers/comtow.html.

http://

We appreciate your concern for threatened and endangered species. The Service encourages Federal agencies to include conservation of threatened and endangered species into their project planning to further the purposes of the Act. Please include the Consultation Tracking Number in the header of this letter with any request for consultation or correspondence about your project that you submit to our office.

Attachment(s):

Official Species List

Official Species List

This list is provided pursuant to Section 7 of the Endangered Species Act, and fulfills the requirement for Federal agencies to "request of the Secretary of the Interior information whether any species which is listed or proposed to be listed may be present in the area of a proposed action".

This species list is provided by:

New England Ecological Services Field Office

70 Commercial Street, Suite 300 Concord, NH 03301-5094 (603) 223-2541

Project Summary

Consultation Code:05E1NE00-2022-SLI-0735Event Code:Some(05E1NE00-2022-E-02613)Project Name:BHCC ProjectProject Type:DEVELOPMENTProject Description:Dewatering PermitProject Location:Formation (Construction)

Approximate location of the project can be viewed in Google Maps: <u>https://www.google.com/maps/@42.3745604,-71.06963187626364,14z</u>

Counties: Suffolk County, Massachusetts

Endangered Species Act Species

There is a total of 1 threatened, endangered, or candidate species on this species list.

Species on this list should be considered in an effects analysis for your project and could include species that exist in another geographic area. For example, certain fish may appear on the species list because a project could affect downstream species.

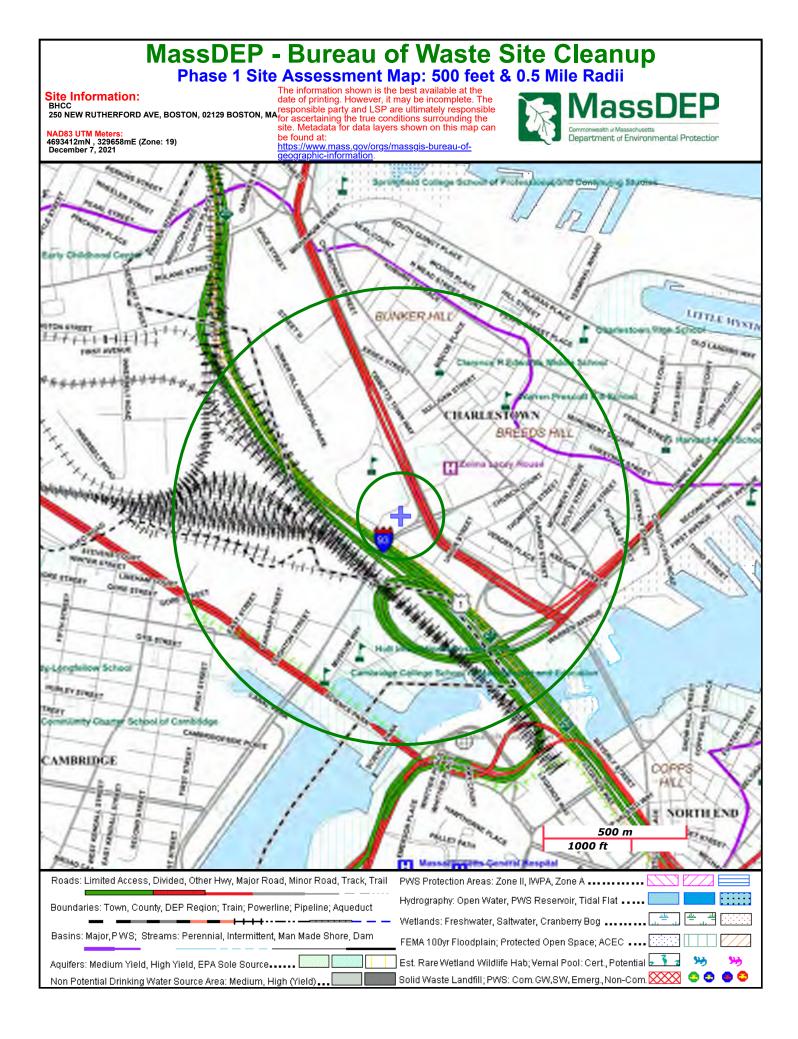
IPaC does not display listed species or critical habitats under the sole jurisdiction of NOAA Fisheries¹, as USFWS does not have the authority to speak on behalf of NOAA and the Department of Commerce.

See the "Critical habitats" section below for those critical habitats that lie wholly or partially within your project area under this office's jurisdiction. Please contact the designated FWS office if you have questions.

1. <u>NOAA Fisheries</u>, also known as the National Marine Fisheries Service (NMFS), is an office of the National Oceanic and Atmospheric Administration within the Department of Commerce.

Insects

NAME


STATUS

Candidate

Monarch Butterfly *Danaus plexippus* No critical habitat has been designated for this species. Species profile: <u>https://ecos.fws.gov/ecp/species/9743</u>

Critical habitats

THERE ARE NO CRITICAL HABITATS WITHIN YOUR PROJECT AREA UNDER THIS OFFICE'S JURISDICTION.


APPENDIX G

National Historic Preservation Act Review

Na onal Register of Histori...

Na onal Park Service U.S. Department of the Interior

Public, non-restricted data depic ng Na onal Register spa al data proce...

Home (h ps://www.nps.gov) Frequently Asked Ques ons (h ps://www.nps.gov/faqs.htm)

Massachusetts Cultural Resource Information System

MACRIS Search Results

Search Criteria: Town(s): Boston; Place: Charlestown West; Resource Type(s): Area, Building, Burial Ground, Object, Structure;

Inv. No.	Property Name	Street	Town	Year
BOS.CE	2-22 Hill Street - 1-5 Mystic Place		Boston	
BOS.CG	Crystal Place		Boston	
BOS.CH	Saint Francis de Sales Roman Catholic Church		Boston	
BOS.CJ	Belmont Street Area		Boston	
BOS.CK	1-8 Avon Place		Boston	
BOS.RL	Charlestown B and M Railroad Industrial Area		Boston	
BOS.RM	Charlestown Mystic River Industrial Area		Boston	
BOS.RX	Charlestown Heights		Boston	
BOS.TB	Middlesex Canal Historic and Archaeological District		Boston	
BOS.ZU	Terminal Storage Warehouse District		Boston	
BOS.AAV	Bolton Place, 3-15		Boston	
BOS.AAW	Essex Street, 4-21		Boston	
BOS.AAY	Russell Street, 19-35		Boston	
3OS.4224	Dyar, Smith House	5 Albion Pl	Boston	r 1835
3OS.4223	Clark, Aaron - Varney, Enos House	20 Albion Pl	Boston	c 1840
3OS.4225	Johnson, George House	23 Albion Pl	Boston	c 1845
3OS.9052	Alford Street Bridge - Malden Bridge	Alford St	Boston	1966
3OS.13985	Sullivan Square T Station	Alford St	Boston	
3OS.13984		32 Alford St	Boston	c 1950
3OS.4226	Burbank, Silas and Son Varnish Factory	62 Alford St	Boston	c 1880
3OS.4227	Charlestown Sewerage Pumping Station	171 Alford St	Boston	1895
3OS.4228	Littlefield, Ivory House	13 Allston St	Boston	c 1848
3OS.4229	Littlefield, Ivory House	15 Allston St	Boston	c 1848
3OS.12858	ACME Rubber Company	Arlington Ave	Boston	r 1935
3OS.13982		20 Arlington Ave	Boston	c 1960
3OS.4230	Charlestown Gas Company Gasometer Building	21 Arlington Ave	Boston	c 1853

Friday, January 21, 2022

Page 1 of 11

Inv. No.	Property Name	Street	Town	Year
BOS.4233	Boston Elevated Railway Carpentry Mill	21 Arlington Ave	Boston	r 1885
BOS.13980		90 Arlington Ave	Boston	c 1890
BOS.13979		96 Arlington Ave	Boston	c 1947
BOS.4232		21 Arlington St	Boston	c 1900
BOS.4240	Wellington, Charles W. House	1 Auburn St	Boston	1857
BOS.4241	Wellington, Charles W. House	3 Auburn St	Boston	1857
BOS.4242	Wellington, Charles W. House	5 Auburn St	Boston	c 1860
BOS.4243	Wellington, Charles W. House	7 Auburn St	Boston	c 1860
BOS.4234	Bridge, Abel E. Row House	8 Auburn St	Boston	c 1868
BOS.4244	Wellington, Charles W. House	9 Auburn St	Boston	c 1860
BOS.4235	Bridge, Abel E. Row House	10 Auburn St	Boston	c 1868
BOS.4245	Wellington, Charles W. House	11 Auburn St	Boston	c 1860
BOS.4236	Bridge, Abel E. Row House	12 Auburn St	Boston	c 1868
BOS.4246	Wellington, Charles W. House	13 Auburn St	Boston	c 1860
BOS.4237	Bridge, Abel E. Row House	14 Auburn St	Boston	c 1868
BOS.4247	Wellington, Charles W. House	15 Auburn St	Boston	c 1860
BOS.4238	Bridge, Abel E. Row House	16 Auburn St	Boston	c 1868
BOS.4248	Wellington, Charles W. House	17 Auburn St	Boston	1861
BOS.4249	Wellington, Charles W. House	19 Auburn St	Boston	1861
BOS.4239	Hall, Moses B. House	20 Auburn St	Boston	1843
BOS.4250	Wellington, Charles W. House	21 Auburn St	Boston	1861
BOS.4277	Hill, Joseph W. House	41 Baldwin St	Boston	c 1870
BOS.4278	Hill, Joseph W. House	43 Baldwin St	Boston	c 1870
BOS.4279	Hill, Joseph W. House	45 Baldwin St	Boston	c 1870
BOS.4258	Taylor, Dolphin D. House	46 Baldwin St	Boston	c 1856
BOS.4280	Hill, Joseph W. House	47 Baldwin St	Boston	c 1870
BOS.4259	Taylor, Dolphin D. House	48 Baldwin St	Boston	c 1856
BOS.4281	Hill, Joseph W. House	49 Baldwin St	Boston	c 1870
BOS.4260	Taylor, Dolphin D. House	50 Baldwin St	Boston	c 1856
BOS.4282	Hill, Joseph W. House	51 Baldwin St	Boston	c 1870
BOS.4261	Taylor, Dolphin D. House	52 Baldwin St	Boston	c 1856
BOS.4283	Hill, Joseph W. House	53 Baldwin St	Boston	c 1870
BOS.4262	Taylor, Dolphin D. House	54 Baldwin St	Boston	c 1856
BOS.4284	Hill, Joseph W. House	55 Baldwin St	Boston	c 1870
BOS.4263	Taylor, Dolphin D. House	56 Baldwin St	Boston	c 1856
BOS.4285	Hill, Joseph W. House	57 Baldwin St	Boston	c 1870
BOS.4264	Taylor, Dolphin D. House	58 Baldwin St	Boston	c 1856
BOS.4286	Hill, Joseph W. House	59 Baldwin St	Boston	c 1870
Friday, Januai	y 21, 2022			Page 2 of 11

Inv. No.	Property Name	Street	Town	Year
BOS.4265	Taylor, Dolphin D. House	60 Baldwin St	Boston	c 1856
BOS.4287	Hill, Joseph W. House	61 Baldwin St	Boston	c 1870
BOS.4288	Hill, Joseph W. House	63 Baldwin St	Boston	c 1870
BOS.4289	Hill, Joseph W. House	65 Baldwin St	Boston	c 1870
BOS.4290	Rice, Peter G. House	67 Baldwin St	Boston	1898
BOS.5038	Bunker Hill School	68 Baldwin St	Boston	1866
BOS.4291	Rice, Peter G. House	69 Baldwin St	Boston	1898
BOS.4292	Rice, Peter G. House	71 Baldwin St	Boston	1898
BOS.4293	Baldwin, George R. Double House	84 Baldwin St	Boston	c 1850
BOS.4294	Baldwin, George R. Double House	86 Baldwin St	Boston	c 1850
BOS.4266	Bradford, Jeremiah B. House	88 Baldwin St	Boston	1849
BOS.4267	Bradford, Jeremiah B. House	90 Baldwin St	Boston	1849
BOS.4295	Cooper, James Double House	91 Baldwin St	Boston	c 1848
BOS.4268	Bradford, Jeremiah B. House	92 Baldwin St	Boston	1849
BOS.4296	Cooper, James Double House	93 Baldwin St	Boston	c 1848
BOS.4269	Bradford, Jeremiah B. House	94 Baldwin St	Boston	1849
BOS.4297	Stimpson, Jeremiah House	95 Baldwin St	Boston	c 1855
BOS.4270	Bradford, Jeremiah B. House	96 Baldwin St	Boston	1849
BOS.4298	Sandford, William W Mayers, Hartford House	97 Baldwin St	Boston	c 1849
BOS.4299	Sandford, William W Mayers, Hartford House	99 Baldwin St	Boston	c 1849
BOS.4300	Page, Benjamin Town House	101 Baldwin St	Boston	c 1849
BOS.4301	Page, Benjamin Town House	103 Baldwin St	Boston	c 1849
BOS.4271	Cheever, John House	104 Baldwin St	Boston	c 1869
BOS.4302	Page, Benjamin Town House	105 Baldwin St	Boston	1849
BOS.4272	Cheever, John House	106 Baldwin St	Boston	c 1869
BOS.4303	Page, Benjamin Town House	107 Baldwin St	Boston	c 1849
BOS.4273	Cheever, John House	108 Baldwin St	Boston	c 1869
BOS.4304	Page, Benjamin Town House	109 Baldwin St	Boston	c 1849
BOS.4274	Cheever, John House	110 Baldwin St	Boston	c 1869
BOS.4305	Page, Benjamin Town House	111 Baldwin St	Boston	c 1849
BOS.4275	Cheever, John House	112 Baldwin St	Boston	c 1869
BOS.4306	Page, Benjamin Town House	113 Baldwin St	Boston	c 1849
BOS.4276	Cheever, John House	114 Baldwin St	Boston	c 1869
BOS.4307	Page, Benjamin Town House	115 Baldwin St	Boston	c 1849
BOS.4308	Page, Benjamin Town House	117 Baldwin St	Boston	c 1849
BOS.4318	Whittier, Isaac Double House	92-94 Bartlett St	Boston	c 1848
BOS.4319	Stone, Phineas J. Double House	112-114 Bartlett St	Boston	c 1842
BOS.12859	Boston Edison Building	Beacham St	Boston	r 1850
Friday, Januar	y 21, 2022			Page 3 of 11

Page 3 of 11

Inv. No.	Property Name	Street	Town	Year
BOS.4320	Blaban, Nathaniel House	1 Blaban Pl	Boston	c 1845
BOS.4321	Blaban, Nathaniel House	2 Blaban Pl	Boston	c 1845
BOS.4322	Blaban, Nathaniel House	3 Blaban Pl	Boston	c 1845
BOS.4323	Weston, David B Mason, Rufus House	3 Bolton Pl	Boston	1861
BOS.4324	Weston, David B Mason, Rufus House	4 Bolton Pl	Boston	1861
BOS.4325	Weston, David B Mason, Rufus House	5 Bolton Pl	Boston	1861
BOS.4326	Weston, David B Mason, Rufus House	6 Bolton Pl	Boston	1861
BOS.4327	Weston, David B Mason, Rufus House	7 Bolton Pl	Boston	1861
BOS.4328	Weston, David B Mason, Rufus House	8 Bolton Pl	Boston	1861
BOS.4329	Weston, David B Mason, Rufus House	9 Bolton Pl	Boston	1861
BOS.4330	Weston, David B Mason, Rufus House	11 Bolton Pl	Boston	1861
BOS.4331	Weston, David B Mason, Rufus House	13 Bolton Pl	Boston	1861
BOS.4332	Weston, David B Mason, Rufus House	15 Bolton Pl	Boston	1861
BOS.4333	Pruden, Israel R. House	6 Brighton St	Boston	1848
BOS.4335	Pruden, Israel R. House	6 Brighton St	Boston	c 1846
BOS.4337	Williams, Gilbert House	17 Brighton St	Boston	c 1869
BOS.4338	Williams, Gilbert House	19 Brighton St	Boston	c 1869
BOS.4334	Bancroft, Henry House	28 Brighton St	Boston	c 1847
BOS.4339	Lamprey, Frank House	33 Brighton St	Boston	c 1877
BOS.4336	Davidson Rubber Company - Davidson Syringe Company	50 Brighton St	Boston	1868
BOS.4350		238-240 Bunker Hill St	Boston	r 1805
BOS.4368	Stone, Jasper House	249 Bunker Hill St	Boston	c 1849
BOS.4369	Stone, Jasper House	251 Bunker Hill St	Boston	c 1849
BOS.4354	Hager, James House	252 Bunker Hill St	Boston	c 1854
BOS.4355	Adams, Simeon P. House	276 Bunker Hill St	Boston	c 1855
BOS.4356	Seavey, William House	278 Bunker Hill St	Boston	c 1855
BOS.4357	Brown, James House	280 Bunker Hill St	Boston	c 1855
BOS.4358	Page, Benjamin House	284 Bunker Hill St	Boston	c 1855
BOS.4360	Page, Benjamin - Huntly, Russell House	285 Bunker Hill St	Boston	1850
BOS.4359	Page, Benjamin House	286 Bunker Hill St	Boston	c 1855
BOS.4361	Page, Benjamin - Huntly, Russell House	287 Bunker Hill St	Boston	1850
BOS.4362	Page, Benjamin - Huntly, Russell House	289 Bunker Hill St	Boston	1850
BOS.4363	Kelly, Hugh House	291 Bunker Hill St	Boston	c 1865
BOS.4364	Kelly, Hugh House	293 Bunker Hill St	Boston	c 1865
BOS.4365	Kelly, Hugh House	295 Bunker Hill St	Boston	c 1865
BOS.4341	Saint Francis de Sales Roman Catholic Rectory	303 Bunker Hill St	Boston	1881
BOS.4340	Saint Francis de Sales Roman Catholic Church	315 Bunker Hill St	Boston	c 1859

Page 4 of 11

Inv. No.	Property Name	Street	Town	Year
BOS.4343	Saint Francis de Sales Roman Catholic Convent	325 Bunker Hill St	Boston	1901
BOS.4342	Saint Francis de Sales Roman Catholic School	340 Bunker Hill St	Boston	1894
BOS.9048	Charlestown Heights - Doherty Playground	349 Bunker Hill St	Boston	1891
BOS.4366	Charlestown Armory	380 Bunker Hill St	Boston	r 1910
BOS.4367	Boston Engine Company No. 32	442 Bunker Hill St	Boston	1883
BOS.4428	Williams, Horatio House	23 Caldwell St	Boston	c 1892
BOS.4370	Tweed, Benjamin F. Primary School	Cambridge St	Boston	1891
BOS.12847	Graphic Arts Finishers Building	32 Cambridge St	Boston	r 1950
BOS.12848	Puritan Garage	128 Cambridge St	Boston	c 1920
BOS.4430	Page, Benjamin House	1 Coral Pl	Boston	1847
BOS.4431	Page, Benjamin House	2 Coral Pl	Boston	1847
BOS.4432	Page, Benjamin House	3 Coral Pl	Boston	1847
BOS.12849	Boston and Maine Railroad Roundhouse	D St	Boston	r 1900
BOS.13981		10 Dorrance St	Boston	c 1950
BOS.4466	Phipps, Benjamin House	7 Eden St	Boston	r 1845
BOS.4467	Frothingham, James K. House	9 Eden St	Boston	c 1854
BOS.4468	Frothingham, James K. House	11 Eden St	Boston	c 1854
BOS.4469	Frothingham, James K. House	13 Eden St	Boston	c 1854
BOS.4470	Frothingham, James K. House	15 Eden St	Boston	c 1854
BOS.4491		4 Essex St	Boston	r 1850
BOS.4492		6 Essex St	Boston	r 1850
BOS.4493		8 Essex St	Boston	r 1850
BOS.4494		10 Essex St	Boston	r 1850
BOS.4495		12 Essex St	Boston	r 1850
BOS.4496	Standish, Lemuel M Woodbury, Charles House	17 Essex St	Boston	r 1850
BOS.4497	Standish, Lemuel M Woodbury, Charles House	19 Essex St	Boston	r 1850
BOS.4498	Standish, Lemuel M Woodbury, Charles House	21 Essex St	Boston	r 1850
BOS.4499	Weston and Mason House	1 Forest Pl	Boston	1859
BOS.4500	Weston and Mason House	2 Forest Pl	Boston	1859
BOS.4501	Weston and Mason House	3 Forest Pl	Boston	1859
BOS.4502	Weston and Mason House	4 Forest Pl	Boston	1859
BOS.4503	Weston and Mason House	5 Forest PI	Boston	1859
BOS.4504	Weston and Mason House	6 Forest PI	Boston	1859
BOS.4231	Charlestown Gas Company Machine Shop and Purifying House	17-19 George St	Boston	c 1900
BOS.4568	Clapp, Frederick W. House	86 High St	Boston	1871
BOS.4569	Clapp, Frederick W. House	88 High St	Boston	1871
BOS.4570	Clapp, Frederick W. House	90 High St	Boston	1871

Inv. No.	Property Name	Street	Town	Year
BOS.4571	Clapp, Frederick W. House	92 High St	Boston	1871
BOS.4572	Clapp, Frederick W. House	94 High St	Boston	1871
BOS.4573	Clapp, Frederick W. House	96 High St	Boston	1871
BOS.4574	Clapp, Frederick W. House	98 High St	Boston	1871
BOS.4575		100 High St	Boston	r 1820
BOS.4576	Hotel Salem	105-107 High St	Boston	c 1881
BOS.4577		108 High St	Boston	r 1830
BOS.4578	Donovan, Patrick J. House	114 High St	Boston	1886
BOS.4579	Donovan, Patrick J. House	116 High St	Boston	1886
BOS.4580	Donovan, Patrick J. House	118 High St	Boston	1886
BOS.4581	Pratt, Caleb Double House	132 High St	Boston	1834
BOS.4582	Doane, Thomas House	1 Holden Row	Boston	r 1880
BOS.4583	Doane, Thomas House	2 Holden Row	Boston	r 1880
BOS.4584	Doane, Thomas House	3 Holden Row	Boston	r 1880
BOS.4585	Doane, Thomas House	4 Holden Row	Boston	r 1880
BOS.4586	Doane, Thomas House	5 Holden Row	Boston	r 1880
BOS.4587	Doane, Thomas House	6 Holden Row	Boston	r 1880
BOS.4588	Doane, Thomas House	7 Holden Row	Boston	r 1880
BOS.4599		61-63 Lawrence St	Boston	r 1845
BOS.4601		65-67 Lawrence St	Boston	r 1845
BOS.4597	Burrell, John H Hall, Milton Jr. Double House	73-75 Lawrence St	Boston	c 1845
BOS.4638	Richard, Giles - Bolter, James House	231 Main St	Boston	r 1800
BOS.4639		250-252 Main St	Boston	c 1855
BOS.4640		254-256 Main St	Boston	c 1845
BOS.4641	O'Brien, T. A. Building	258-262 Main St	Boston	1891
BOS.4645	Long, William B Phipps, Solomon G. Block	265-271 Main St	Boston	1856
BOS.4646	Perkins, John House	315 Main St	Boston	c 1851
BOS.4652	Weston and Mason House	360 Main St	Boston	1855
BOS.4653	Weston and Mason House	362 Main St	Boston	1855
BOS.4654	Weston and Mason House	364 Main St	Boston	1855
BOS.4655	Weston and Mason House	366 Main St	Boston	1855
BOS.4656	Weston and Mason House	368 Main St	Boston	1855
BOS.4647	Middlesex Canal Worker Housing	372 Main St	Boston	
BOS.4657	Middlesex Canal Company Double House	374-376 Main St	Boston	r 1835
BOS.4650	Middlesex Canal Worker Housing	378 Main St	Boston	
BOS.4651	Middlesex Canal Worker Housing	380 Main St	Boston	
BOS.4658		397 Main St	Boston	1859
BOS.4659		399 Main St	Boston	1859
Friday, Janua	ary 21, 2022			Page 6 of 11

Page 6 of 11

Inv. No.	Property Name	Street	Town	Year
BOS.4660	Bridge, Abel E. Town House	401 Main St	Boston	1865
BOS.4661	Bridge, Abel E. Town House	403 Main St	Boston	1865
BOS.4662	Bridge, Abel E. Town House	405 Main St	Boston	1865
BOS.4663	Noble, Edward T. Town House	407 Main St	Boston	r 1880
BOS.4664		417 Main St	Boston	c 1871
BOS.4665		419 Main St	Boston	c 1871
BOS.4666	Lord, John B. House	421 Main St	Boston	c 1871
BOS.4667	Hovey, Sarah Double House	443 Main St	Boston	c 1859
BOS.4668	Hovey, Sarah Double House	445 Main St	Boston	c 1859
BOS.4611	Schraffts, William F. and Sons Candy Factory	529 Main St	Boston	c 1925
BOS.12860	Schrafft, William F. and Sons Factory Power House	529 Main St	Boston	1925
BOS.4669	Cauley Hall - Cauley, John H. Commercial Block	540 Main St	Boston	r 1900
BOS.4670	Sullivan Square Garage	635 Main St	Boston	1920
BOS.4671	Middlesex Canal District Double House	651-653 Main St	Boston	c 1840
BOS.4673	Weston, David B. and Mason, Rufus Double House	2-4 Mason Ct	Boston	c 1859
BOS.4674	Foster, Ruth Rose House	38 Mead St	Boston	1840
BOS.4675	Trowbridge, Almarin House	39 Mead St	Boston	c 1845
BOS.4676	Greenleaf, Thomas House	1 Mead Street Ct	Boston	c 1845
BOS.4677	Greenleaf, Thomas House	2 Mead Street Ct	Boston	c 1845
BOS.4678	Greenleaf, Thomas House	3 Mead Street Ct	Boston	c 1845
BOS.4679	Greenleaf, Thomas House	4 Mead Street Ct	Boston	c 1845
BOS.805	Saint Francis de Sales Roman Catholic Burial Groun	Medford St	Boston	c 1830
BOS.9441	Charlestown Heights - Promenade	Medford St	Boston	1932
BOS.9442	Charlestown Heights - Fountain	Medford St	Boston	1892
BOS.9443	Charlestown Heights - D. A. R. Monument	Medford St	Boston	1926
BOS.9444	Charlestown Heights - Path System	Medford St	Boston	1892
BOS.9445	Charlestown Heights - Granite Steps	Medford St	Boston	1893
BOS.9446	Charlestown Heights - Puddingstone Cheek Walls	Medford St	Boston	1893
BOS.9447	Charlestown Heights - Overlook Terrace	Medford St	Boston	1893
BOS.9448	Charlestown Heights - Granite Retaining Wall	Medford St	Boston	1892
BOS.9449	Charlestown Heights - Perimeter Retaining Wall	Medford St	Boston	1892
BOS.9450	Charlestown Heights - Swimming Pool	Medford St	Boston	1945
BOS.9451	Charlestown Heights - Diving Pool	Medford St	Boston	1948
BOS.9452	Charlestown Heights - Bleachers	Medford St	Boston	1947
BOS.9453	Charlestown Heights - Shelter	Medford St	Boston	1968

Inv. No.	Property Name	Street	Town	Year
BOS.9454	Charlestown Heights - Tot Lot	Medford St	Boston	1972
BOS.9455	Charlestown Heights - Basketball Courts	Medford St	Boston	1975
BOS.9456	Charlestown Heights - Splash Pool	Medford St	Boston	1995
BOS.9457	Charlestown Heights - Swings	Medford St	Boston	1972
BOS.13032	Charlestown Heights - Bath House	Medford St	Boston	1947
BOS.13033	Charlestown Heights - Pump House	Medford St	Boston	1947
BOS.4680	Wiggins Lumber Terminal Complex - Building #3	267-281 Medford St	Boston	1918
BOS.9424	Blue Circle Cement Company Cement Silos	285 Medford St	Boston	c 1980
BOS.12861	Revere Sugar Refinery	333 Medford St	Boston	1918
BOS.4682	Webb, Robert and Company Black Lead Works	412 Medford St	Boston	c 1885
BOS.9423	Amstar - Domino Sugar Plant Sweet Dome	425 Medford St	Boston	1960
BOS.12862	American Sugar - Amstar Domino Sugar Plant	425 Medford St	Boston	1960
BOS.12863	Amstar - Domino Sugar Plant Power House	425 Medford St	Boston	1960
BOS.4684	U. S. Baking Company Complex	465 Medford St	Boston	c 1890
BOS.12864	Brockway-Smith Warehouse and Factory	465 Medford St	Boston	1924
BOS.12865	Howes, S. M. Company Foundry	511 Medford St	Boston	c 1926
BOS.4683	Wemyss Brothers Furniture Company Building	523 Medford St	Boston	1870
BOS.9729	Middlesex Canal	Middlesex Canal	Boston	c 1802
BOS.4778	Richards, David House	3 Mystic St	Boston	c 1856
BOS.4780		4 Mystic St	Boston	1854
BOS.4779	Richards, David House	5 Mystic St	Boston	c 1856
BOS.4781		6 Mystic St	Boston	1854
BOS.4782		8 Mystic St	Boston	1854
BOS.4783		10 Mystic St	Boston	1854
BOS.4784		11 Mystic St	Boston	c 1855
BOS.4785	Kelly, Hugh and Peter J. House	26 Mystic St	Boston	c 1868
BOS.4786	Kelly, Hugh and Peter J. House	28 Mystic St	Boston	c 1868
BOS.4787	Kelly, Hugh and Peter J. House	30 Mystic St	Boston	c 1868
BOS.4788	Kelly, Hugh and Peter J. House	32 Mystic St	Boston	c 1868
BOS.4802	Pierce, John House	33 Mystic St	Boston	1869
BOS.4789	Kelly, Hugh and Peter J. House	34 Mystic St	Boston	c 1868
BOS.4803	Hatch, George W. House	35 Mystic St	Boston	1869
BOS.4790	Kelly, Hugh and Peter J. House	36 Mystic St	Boston	c 1868
BOS.4791	Kelly, Hugh and Peter J. House	38-40 Mystic St	Boston	c 1868
BOS.4792	Kelly, Hugh and Peter J. House	42 Mystic St	Boston	c 1868
BOS.4793	Kelly, Hugh and Peter J. House	44 Mystic St	Boston	c 1868
BOS.4794	Kelly, Hugh and Peter J. House	46 Mystic St	Boston	c 1868
BOS.4795	Kelly, Hugh and Peter J. House	48 Mystic St	Boston	c 1868
Friday, Januar	y 21, 2022			Page 8 of 11

Inv. No.	Property Name	Street	Town	Year
BOS.4804		50 Mystic St	Boston	
BOS.4797	Kelly, Hugh and Peter J. House	52 Mystic St	Boston	c 1868
BOS.4798	Kelly, Hugh and Peter J. House	54 Mystic St	Boston	c 1868
BOS.4799	Kelly, Hugh and Peter J. House	56 Mystic St	Boston	c 1868
BOS.4800	Kelly, Hugh and Peter J. House	58 Mystic St	Boston	c 1868
BOS.4801	Kelly, Hugh and Peter J. House	60 Mystic St	Boston	c 1868
BOS.4805	Gilman, John F. House	23 Oak St	Boston	c 1865
BOS.4806	Gilman, John F. House	25 Oak St	Boston	c 1865
BOS.4807	Carr, Samuel House	31 Oak St	Boston	1840
BOS.4828	Towne, Orr N. House	3 Parker St	Boston	c 1844
BOS.13959	Pruden, Israel R. Double House	32 Parker St	Boston	r 1860
BOS.4833	Pratt, Caleb House	32 Pearl St	Boston	c 1843
BOS.4834	Pratt, Caleb House	34 Pearl St	Boston	c 1843
BOS.4835	Pratt, Caleb House	36 Pearl St	Boston	c 1843
BOS.4836		55 Pearl St	Boston	
BOS.4837	Littlefield, Ivory Double House	62-64 Pearl St	Boston	c 1844
BOS.4840	Pierce, Charles Double House	63-65 Pearl St	Boston	c 1844
BOS.4838		68-70 Pearl St	Boston	c 1844
BOS.4839		72-74 Pearl St	Boston	c 1844
BOS.4841	Williams, Gilbert House	79 Pearl St	Boston	c 1856
BOS.4842	Williams, Sheldon Double House	89-91 Pearl St	Boston	c 1845
BOS.4429	Page, Benjamin House	92 Pearl St	Boston	1847
BOS.4829	Page, Benjamin House	1 Pearl Street Pl	Boston	c 1846
BOS.4830	Page, Benjamin House	2 Pearl Street Pl	Boston	c 1846
BOS.4831	Page, Benjamin House	3 Pearl Street Pl	Boston	c 1846
BOS.4832	Page, Benjamin House	4 Pearl Street Pl	Boston	c 1846
BOS.4844	Lawrence, Edward A Parker, Benjamin House	71-71B Perkins St	Boston	c 1871
BOS.807	Phipps Street Burying Ground	Phipps St	Boston	1630
BOS.4866	Crosby Steam Gage and Valve Company Factory	24 Roland St	Boston	1888
BOS.4867	Puritan Brewery - Commercial Brewery	40 Roland St	Boston	1898
BOS.12850	Wirth's Bottling Co Hanover Bottling Co.	52 Roland St	Boston	c 1908
BOS.12851	Hood, H. P. Ice Cream Company	56 Roland St	Boston	1917
BOS.944	Tobin Bridge	Rt 1	Boston	1950
BOS.4868	Page, Enoch House	5 Russell St	Boston	1841
BOS.4869	Weston, David B Mason, Rufus House	19 Russell St	Boston	1857
BOS.4878	Caldwell, John B. Double House	20-22 Russell St	Boston	1845
BOS.4870	Weston, David B Mason, Rufus House	21 Russell St	Boston	1857

Inv. No.	Property Name	Street	Town	Year
BOS.4871	Weston, David B Mason, Rufus House	23 Russell St	Boston	1857
BOS.4879	Williams, Gilbert House	24 Russell St	Boston	1859
BOS.4872	Weston, David B Mason, Rufus House	25 Russell St	Boston	1857
BOS.4880	Williams, Gilbert House	26 Russell St	Boston	1859
BOS.4873	Weston, David B Mason, Rufus House	27 Russell St	Boston	1857
BOS.4881	Williams, Gilbert House	28 Russell St	Boston	1859
BOS.4874	Weston, David B Mason, Rufus House	29 Russell St	Boston	1857
BOS.4882	Williams, Gilbert House	30 Russell St	Boston	1859
BOS.4875	Weston, David B Mason, Rufus House	31 Russell St	Boston	1857
BOS.4883	Williams, Gilbert House	32 Russell St	Boston	1859
BOS.4876	Weston, David B Mason, Rufus House	33 Russell St	Boston	1857
BOS.4877	Weston, David B Mason, Rufus House	35 Russell St	Boston	1857
BOS.4884	Emery, James Double House	58-60 Russell St	Boston	c 1837
BOS.4886	Monroe, George S. House	115 Russell St	Boston	c 1859
BOS.12852	Rosev Dairy	420-438 Rutherford Ave	Boston	r 1950
BOS.13986		480 Rutherford Ave	Boston	c 1953
BOS.13987		480 Rutherford Ave	Boston	c 1950
BOS.12853	Hood, H. P. and Sons Milk Company	500 Rutherford Ave	Boston	1928
BOS.12854	Hood, H. P. and Sons Power Station	500 Rutherford Ave	Boston	1928
BOS.12855	Sawyer, Henry Printers	586 Rutherford Ave	Boston	r 1900
BOS.4888		2-4 Salem St	Boston	r 1795
BOS.4893	Osgood, Thomas House	8 Salem St	Boston	c 1799
BOS.4887	Rice, Capt. Thomas House	2 Salem Street Ave	Boston	c 1826
BOS.4889	Rand, James H. House	3 Salem Street Ave	Boston	1869
BOS.4890	Rand, James H. House	4 Salem Street Ave	Boston	1869
BOS.4891	Rand, James H. House	5 Salem Street Ave	Boston	1869
BOS.4892	Malloon, Joseph W. House	6 Salem Street Ave	Boston	c 1869
BOS.4894		39 School St	Boston	r 1895
BOS.4896	Osgood and Hart Iron Foundry	3 Sherman St	Boston	r 1870
BOS.12857	Fraser and Malloy Associates Building	Spice St	Boston	r 1935
BOS.4908	D'Este, Julian Brass Finishing Company and Foundry	6 Spice St	Boston	r 1895
BOS.12856	Wright, Henry E. and Son Milk Can Factory	24-26 Spice St	Boston	c 1890
BOS.4910	Bray, Joseph E. House	18 Sullivan St	Boston	1865
BOS.4911	Bray, Joseph E. House	20 Sullivan St	Boston	1865
BOS.4912	Bray, Joseph E. House	22 Sullivan St	Boston	1865
BOS.4913	Bray, Joseph E. House	24 Sullivan St	Boston	1865
BOS.4914	Bray, Joseph E. House	26 Sullivan St	Boston	1865

Inv. No.	Property Name	Street	Town	Year
BOS.4915	Harrington, Thaddeus House	42 Sullivan St	Boston	r 1810
BOS.4916	Kidney, James W. House	52 Sullivan St	Boston	c 1863
BOS.4917	Caldwell, John B. Double House	57-59 Sullivan St	Boston	1845
BOS.4316	Baldwin, J. Thomas House	73 Sullivan St	Boston	c 1876
BOS.12866	Wiggins Lumber Terminal Complex - Building #2	40 Terminal St	Boston	c 1910
BOS.4681	Wiggins Lumber Terminal Complex - Building #1	50 Terminal St	Boston	c 1910
BOS.4950	Green, Mary Ann House	5 Walker St	Boston	c 1851
BOS.4951	Green, Mary Ann House	7 Walker St	Boston	c 1851
BOS.4317	Green, Mary Ann House	9 Walker St	Boston	c 1851
BOS.4952	Green, Mary Ann House	11 Walker St	Boston	c 1851
BOS.4953	Edwards, Clarence R. Jr. Public High School	28 Walker St	Boston	1931
BOS.4954	Pratt, Caleb House	31 Walker St	Boston	1847
BOS.4955	Pratt, Caleb House	33 Walker St	Boston	1847
BOS.4956	Pratt, Caleb House	35 Walker St	Boston	1847
BOS.4957	Stone, John - Page, Susan Double House	1-2 Wall St	Boston	r 1850
BOS.4958	Hitchings, Nathaniel House	3 Wall St	Boston	c 1846
BOS.4959	Jordan, George W. House	4 Wall St	Boston	c 1846
BOS.4960	Mason, David B Mason, Rufus House	7 Wall St	Boston	1857
BOS.4961	Mason, David B Mason, Rufus House	9 Wall St	Boston	1857
BOS.4962	Mason, David B Mason, Rufus House	11 Wall St	Boston	1857
BOS.4963	Mason, David B Mason, Rufus House	13 Wall St	Boston	1857
BOS.4964	Mason, David B Mason, Rufus House	15 Wall St	Boston	1857
BOS.4965	Mason, David B Mason, Rufus House	17 Wall St	Boston	1857
BOS.4966	Mason, David B Mason, Rufus House	19 Wall St	Boston	1857
BOS.13983		27 West St	Boston	c 1935