

HALEY & ALDRICH, INC. 465 Medford Street, Suite 2200 Boston, MA 02129 (617) 886.7400

31 March 2022 File No. 0201602-000

U.S. Environmental Protection Agency Office of Ecosystem Protection 5 Post Office Square, Suite 100 (OEP06-01) Boston, Massachusetts 02109-3912

Attention: Shauna Little, EPA/OEP RGP Coordinator

Subject: NPDES RGP NOI Application

Temporary Construction Dewatering 155 North Beacon Street Development

Brighton, Massachusetts

Ladies and Gentlemen:

Haley & Aldrich, Inc. (Haley & Aldrich) has prepared this submission to facilitate off-site discharge of temporary construction dewatering effluent planned in support of the proposed 155 North Beacon Street development located in Brighton, Massachusetts. Refer to Figure 1 for a Project Locus. On behalf of the project owner, IQHQ-155 Beacon, LLC, and the Operator/General Contractor, Consigli Construction Company, Inc., and in accordance with the 2017 National Pollutant Discharge Elimination System (NPDES) Remediation General Permit (RGP) in Massachusetts, MAG910000, Haley & Aldrich submits this Notice of Intent (NOI) and the applicable documentation as required by the U.S. Environmental Protection Agency (EPA) for discharge of temporary construction site dewatering effluent under the NPDES RGP.

We anticipate temporary construction dewatering will be conducted, as necessary, to facilitate below-grade construction in-the-dry. As defined in Table 1 of the NPDES RGP, the Activity Category is III.G (Contaminated Site Dewatering, Sites with Known Contamination). A copy of the completed NOI form is enclosed as Appendix A.

EXISTING SITE CONDITIONS

The subject site is located at 155 North Beacon Street in Brighton, Massachusetts. The site is bordered by a parking garage to the north, Life Street to the east, North Beacon Street to the south, and the WGBH radio station building followed by Market Street to the west; refer to Figure 2. The site is currently occupied by a two-story office and warehouse building with no below-grade space, as well as two (2) at-grade parking lots and an automotive garage. The existing building is assumed to be supported on spread footings bearing in the naturally deposited glacial soils underlying the site.

U.S. Environmental Protection Agency 31 March 2022 Page 2

Site grades range from approximately El. 42 to El. 46¹, with an average of about El. 45, and gently slope upwards across the site from east to west. Numerous subsurface utilities exist beneath Life Street and North Beacon Street, including storm drain, sanitary sewer, water, electric and telecommunications and are shown on Figure 2.

PROPOSED CONSTRUCTION

Our current understanding of the proposed development is based the most recent Design Development drawing set for the project, dated 25 March 2022, as well as on-going project team coordination meetings. The construction is planned to include the redevelopment of the approximately 3.12-acre site located at 155 North Beacon Street. The existing structures and parking lots at the site will be demolished and three (3) 6- to 8-story buildings are planned to be constructed. A contiguous parking garage is planned to be constructed below the three (3) buildings and have two (2) levels of below-grade parking. The lowest level slab is planned at about 29 ft below adjacent site grades, corresponding to approximately El. 17.

Excavation to construct the proposed below-grade space and building foundations is anticipated to be required to a depth of about 31 ft below ground surface (bgs), corresponding to about El. 15. Construction within the limits of the existing building will require removal of buried structures and foundations of the building that currently occupy the site.

A steel-reinforced, load-bearing concrete diaphragm wall (slurry wall) is planned to provide groundwater cut-off and temporary excavation support as well as serve as the permanent perimeter foundation wall. Column loads will be supported on load bearing elements (LBEs) bearing in the glacial soils underlying the site.

SITE HISTORY

The subject site was developed as early as 1884 with a building labeled "Albany House", a shed and a dwelling while the rest of the property remained undeveloped. A private roadway leading to a stock yard was present bisecting the site to the west. Property to the north of the site was utilized as cattle sheds. By 1898, only the building labeled "Albany House" remained and the cattle sheds were no longer present to the north of the property. In 1925, the subject site began operating as the "Emerson and Norris Co. Cast Stone" and contained a stone shed, a storage room and office. By 1950, the cast stone facility was no longer in operation and a building encompassing a majority of the site was constructed with a section of the building along North Beacon Street labeled "factory" and a machine shop located in the northwest corner. This building was used as a bakers and soda fountain supplier. In 1959, an addition to the main building was constructed in the northwest portion of the site and was utilized as a private garage and then as late as 2010, was used as an automotive repair garage until the present. Previous reports indicate the site was utilized as a wholesale liquor warehouse beginning in the early 1980s. The building remained relatively unchanged through the present and is currently occupied by various commercial tenants and an automotive repair garage.

¹ Elevations reported herein are in feet and reference the Boston City Base (BCB) Datum.

ENVIRONMENTAL CONDITIONS AND REGULATORY BACKGROUND

Results of recent soil samples collected for the purposes of soil precharacterization prior to off-site removal of excess soil and groundwater samples collected to characterize site groundwater conditions indicate that soil and groundwater contain compounds at concentrations above the applicable RCS-1 Reportable Concentrations for soil and RCGW-2 Reportable Concentrations for groundwater, respectively, under the Massachusetts Contingency Plan (MCP), 310 CMR 40.0000. A summary of the soil and groundwater quality data is provided below:

- Concentrations of semi-volatile organic compounds (SVOCs), primarily polycyclic aromatic
 hydrocarbons (PAHs), including 2-methylnaphthalene, acenaphthylene, benzo(a)anthracene,
 benzo(a)pyrene, benzo(b)fluoranthene, biphenyl, dibenzo(a,h)anthracene, indeno(1,2,3cd)pyrene and phenanthrene were detected in several soil samples above the Massachusetts
 Contingency Plan (MCP) RCS-1 Reportable Concentrations for soil.
- Lead was detected in one soil sample (HA22-C10_0.5-5) at concentrations above the MCP RCS-1 Reportable Concentrations for soil.
- Zinc was detected in one soil sample (HA21-B4_0-5) at concentrations above the MCP RCS-1 Reportable Concentrations for soil.
- Concentrations of volatile organic compounds (VOCs) including Trichloroethene (TCE), cis-1,2-Dichloroethene (cis-1,2-DCE) and Vinyl chloride were detected in one groundwater sample, HA21-B6(OW)_20220202, above the MCP RCGW-2 Reportable Concentrations for groundwater.

Based on soil analytical results, the Site is a Massachusetts Department of Environmental Protection (MassDEP) Disposal Site. A Release Notification Form (RNF) will be prepared and submitted to MassDEP by April 2022, and a Release Tracking Number (RTN) will be assigned to the site.

TEMPORARY CONSTRUCTION DEWATERING NOTICE OF INTENT (NOI)

A total of four (4) groundwater samples were collected from site observation wells during the period from 1 to 3 February 2022 and submitted to Alpha Analytical (Alpha) of Westborough, Massachusetts to support the subject NPDES RGP NOI application. The locations of the observation wells are shown on Figure 2. The groundwater samples were submitted for chemical analysis of one or more of the following parameters: VOCs, SVOCs, total petroleum hydrocarbons (TPH), Total NPDES RGP Metals, hexavalent and trivalent chromium, polychlorinated biphenyls (PCBs), ammonia, pH, total hardness, Total Suspended Solids (TSS), Total Phenols, Total Chloride, Total Residual Chlorine (TRC) and Cyanide.

Measurements of temperature were obtained in the field on the sampling dates indicated above. Refer to Table I for a summary of the groundwater analytical data. The results indicated concentrations of tetrachloroethene (PCE), TCE, cis-1,2-DCE and Vinyl chloride were present in groundwater above NPDES RGP Effluent Limitations.

When excavations to construct proposed foundations and other site improvements extend beneath site groundwater levels, dewatering will be necessary to control groundwater, seepage, precipitation, surface water runoff, and construction-generated water to enable below-grade construction activities in-the-dry. Construction dewatering effluent that will be discharged off-site will be managed under the NPDES RGP. We estimate effluent discharge rates of a maximum of 100 gallons per minute (gpm). The

U.S. Environmental Protection Agency 31 March 2022 Page 4

estimated duration of temporary construction dewatering is anticipated to be approximately two years, starting in October 2022 and continuing through approximately October 2024. Alternatively, and when feasible, the project may use on-site recharge to manage dewatering effluent.

Temporary construction dewatering will be conducted from sumps located within excavations. Prior to discharge, collected water will be routed through a baffled sedimentation tank and bag filters to remove suspended solids and undissolved constituents, including metals, to within the limits established by the permit. Total flow will be measured with a flow meter/totalizer. Additional treatment will include granular activated carbon (GAC) to remove chlorinated solvents to within the NPDES RGP Effluent Limitations. If necessary to meet the Effluent Limitations, supplemental pre-treatment may include oil/water separators, pH control to adjust the pH to within the limits established by the permit, and/or other components as required; refer to Figure 4 for a schematic of the proposed treatment system as understood at this time.

Discharge of dewatering effluent will be to the storm drain operated by the Boston Water and Sewer Commission (BWSC) beneath the streets surrounding the property, after which the effluent will discharge at outfall SDO 037 to the Charles River. The proposed discharge route and outfall location are shown on Figure 3. Appendix B includes a copy of the BWSC Dewatering Discharge Permit Application.

RECEIVING WATER QUALITY INFORMATION

On 3 February 2022, Haley & Aldrich also collected a receiving water sample from the Charles River at outfall SDO 037 using a disposable polyethylene bailer. The surface water sample was submitted to Alpha for chemical analysis of pH, ammonia, total hardness and Total NPDES RGP Metals. Measurements of temperature were obtained in the field on the sampling date indicated. The results of the receiving water quality data are included in Table I.

Results were used to calculate the site Water Quality Based Effluent Limitations (WQBELs). It is our understanding that since the receiving water is a freshwater body, salinity does not need to be analyzed on either the effluent water or receiving water.

EFFLUENT CRITERIA AND DILUTION FACTOR DETERMINATION

The EPA-suggested WQBEL Calculation spreadsheet was used to calculate the Effluent Limitations for the site. Groundwater and receiving water data were input, and the resulting criteria were tabulated in the attached Table I. As requested by EPA, the Microsoft Excel spreadsheet for the WQBEL calculations will be submitted to the EPA via email for their review upon submission of this NOI. Copies of the "EnterData" and "FreshwaterResults" tabs from the Microsoft Excel file are included in Appendix C.

The Seven Day Ten Year (7Q10) low flow of the Charles River at the outfall location was determined to be 24.3 cubic feet per second (cfs), corresponding to 15.7 million gallons per day (MGD), using the U.S. Geological Survey (USGS) StreamStats program. We are in the process of confirming the 7Q10 low flow and corresponding dilution factor for the project of 110.0 with MassDEP. The StreamStats Report and dilution factor calculations are included in Appendix C.

DETERMINATION OF ENDANGERED SPECIES ACT ELIGIBILITY

In accordance with the Endangered Species Act (ESA) guidelines outlined in Appendix I of the 2017 NPDES RGP, a preliminary determination for the action area associated with this project was established using the U.S. Fish and Wildlife Service (FWS) Information, Planning, and Conservation (IPaC) online system; a copy of the determination is attached in Appendix D. Based on the results of the determination, the project and action area are considered to meet FWS Criterion A as no listed species or critical habitat have been established to be present within the project action area. One candidate species, the Monarch Butterfly, was listed within the project area but no critical habitats have been established. Additionally, a MassDEP Phase 1 Site Assessment Map is included in Appendix D which confirms that no critical habitats are present at the subject site.

DOCUMENTATION OF NATIONAL HISTORIC PRESERVATION ACT ELIGIBILITY

Based on a review of the resources provided by the U.S. National Register of Historic Places and a review of the Massachusetts Cultural Resource Information System (MACRIS), no historic properties have been established to be present at the project site, and discharges and discharge-related activities are not considered to have the potential to affect historic properties. The discharge is considered to meet Criterion A. Documentation is included in Appendix E.

Note that the Charles River Reservation Parkways (Property ID 05001530) is located approximately 0.3 miles to the north of the project site and is part of the Boston Historic District, the limits of which are shown on the National Register of Historic Places map included in Appendix E.

OWNER AND OPERATOR INFORMATION

Owner:

IQHQ-155 Beacon, LLC
One Boston Place
201 Washington Street, Suite 3920
Boston, Massachusetts 02108

Attn: William Ashton

Title: Director of Development

Operator:

Consigli Construction Company, Inc. 313 Congress Street Boston, Massachusetts 02210 Attn: Thomas Ciampa

Title: Superintendent

An earthwork subcontractor (Site Contractor) will be hired by the Operator/General Contractor to conduct the site work, including dewatering activities. Haley & Aldrich will be on-site to monitor the Contractors' site work on behalf of the Owner and will conduct sampling and testing of the dewatering system influent and effluent in accordance with the NPDES RGP compliance requirements.

APPENDICES

The completed "Suggested Format for the Remediation General Permit Notice of Intent (NOI)" form is enclosed in Appendix A. Appendix B provides a copy of the BWSC Dewatering Discharge Permit Application. Appendix C includes tabs from the WQBEL calculation spreadsheet and dilution factor calculations and documentation. Appendices D and E include the Endangered Species Act documentation and National Register of Historic Places and Massachusetts Historical Commission

U.S. Environmental Protection Agency 31 March 2022 Page 6

documentation, respectively. The groundwater and receiving water laboratory data reports are provided in Appendix F.

The Site Contractor has not yet submitted their construction dewatering submittal, which will include details of the proposed dewatering system along with Safety Data Sheets (SDSs) and fact sheets for possible chemical additives (if needed to adjust pH or reduce suspended sediments). If required, this information will be submitted to the EPA using a Notice of Change (NOC). A Best Management Practices Plan (BMPP), which outlines the proposed discharge operations covered under the RGP, will be available at the site.

CLOSING

Thank you for considering this NPDES RGP NOI. Please feel free to contact the undersigned should you require additional information or have questions.

Sincerely yours,

HALEY & ALDRICH, INC.

Kyle Block, LSP

Senior Project Manager

Jennifer L. Sweet, P.E. (MA), LSP

ex west

Senior Associate | Program Manager

Attachments:

Table I – Summary of Water Quality Data

Figure 1 – Project Locus

Figure 2 – Site and Subsurface Exploration Location Plan

Figure 3– BWSC Proposed Discharge Route and Location

Figure 4 – Proposed Treatment System Schematic

Appendix A – Remediation General Permit Notice of Intent

Appendix B – BWSC Dewatering Discharge Permit Application

Appendix C – Effluent Limitations and Dilution Factor Calculations

Appendix D – Endangered Species Act Documentation

Appendix E – National Register of Historic Places and Massachusetts

Historical Commission Documentation

Appendix F – Laboratory Data Reports

c: IQHQ-155 Beacon, LLC; Attn: William Ashton

Consigli Construction Company, Inc.; Attn: Thomas Ciampa, Aaron Shwom Boston Water and Sewer Commission; Attn: Jodi Dobay, Francis McLaughlin Massachusetts Department of Environmental Protection; Attn: Catherine Coniaris

\haleyaldrich.com\share\CF\Projects\0201602\NPDES RGP\Application\Text\2022-0331-HAI-155 N Beacon-NPDES RGP Application-F.docx

TABLE I

SUMMENT OF WATER QUALITY DATA
155 NORTH BEACON STREET
BRIGHTON, MASSACHUSETTS
FILE NO. 0201602-000

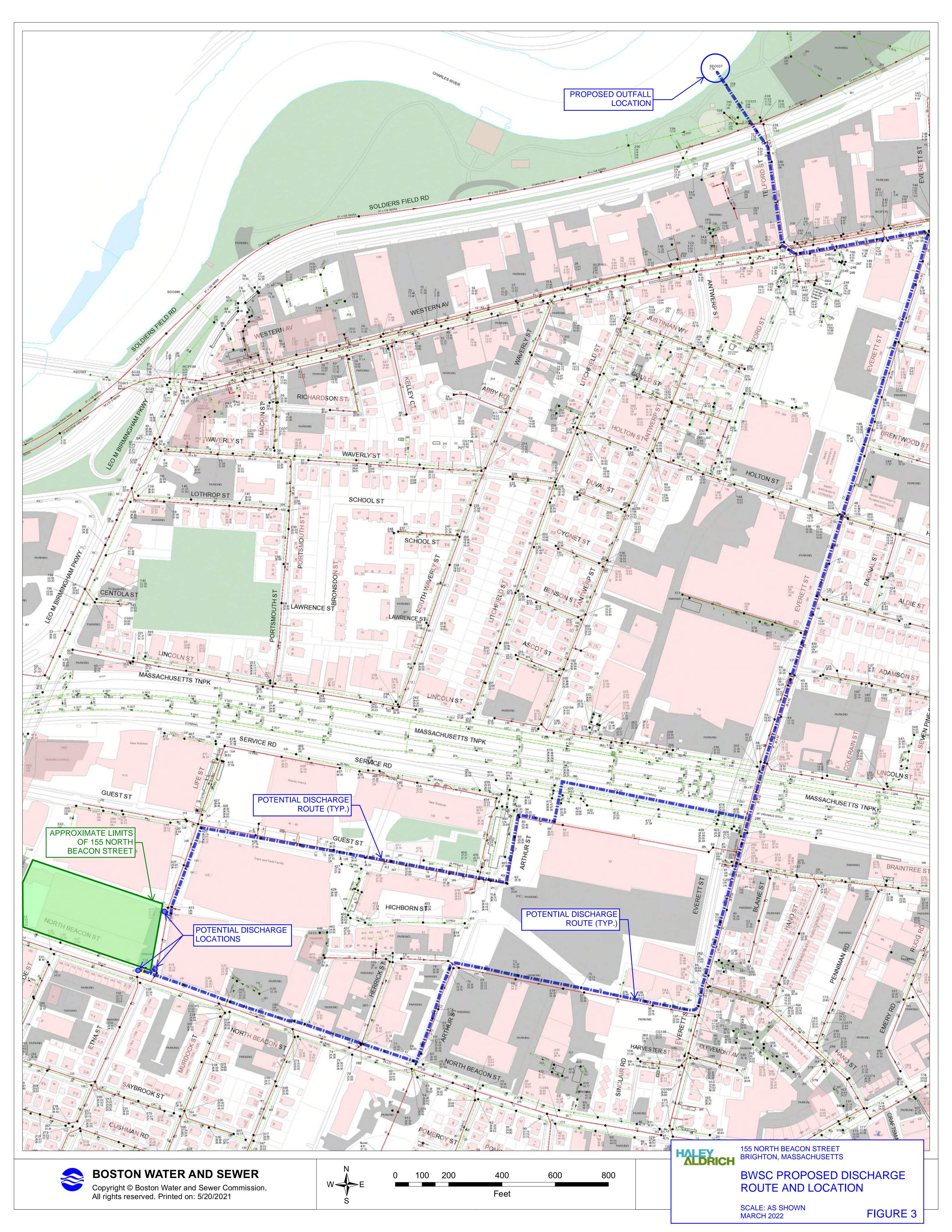
	Action	Level						
Location Name			HA21-B1(OW)	HA21-B1(OW)	HA21-B6(OW)	HA21-B6A(OW)	HA21-B9(OW)	Charles River SDO 037
Sample Name	2017	2014 MassDEP MCP	HA21-B1(OW)_20220201 02/01/2022	HA21-B1(OW)_20220202 02/02/2022	HA21-B6(OW)_20220202 02/02/2022	HA21-B6A(OW)_20220201 02/01/2022	HA21-B9(OW)_20220203	RECEIVING WATER-20220203 02/03/2022
Sample Date Lab Sample ID	NPDES RGP	RCGW-2	L2205323-01	L2205601-01	L2205601-02	L2205320-01	02/03/2022 L2205987-01	L2205983-01
Well Screen Interval (ft, BCB) (Note 5)	Effluent Limitations	Reportable	35.7 to 25.7	35.7 to 25.7	3.5 to -6.5	37.5 to 27.5	37.0 to 27.0	NA
Groundwater Elevation (ft, BCB) (Note 6) Sample Type		Concentrations	31.0 Groundwater	31.0 Groundwater	31.3 Groundwater	34.0 Groundwater	31.0 Groundwater	NA Receiving Water
Volatile Organic Compounds (ug/L)			Groundwater	Groundwater	Groundwater	Groundwater	Groundwater	Receiving water
1,1,1-Trichloroethane	200	4000	ND (2)	-	ND (2)	ND (1)	ND (1)	-
1,1,2-Trichloroethane	5	900	ND (1.5)	-	ND (1.5)	ND (1)	ND (1)	-
1,1-Dichloroethane 1,1-Dichloroethene	70 3.2	2000 80	ND (1.5) ND (1)	-	ND (1.5) 1.1	ND (1) ND (1)	ND (1) ND (1)	-
1,2-Dibromoethane (Ethylene Dibromide)	0.05	2	ND (0.01)	-	ND (0.01)	ND (2)	ND (2)	-
1,2-Dichlorobenzene	600	2000	ND (5)	-	ND (5)	ND (1)	ND (1)	-
1,2-Dichloroethane 1,3-Dichlorobenzene	5 320	5 6000	ND (1.5) ND (5)	-	ND (1.5) ND (5)	ND (1) ND (1)	ND (1) ND (1)	-
1,4-Dichlorobenzene	5	60	ND (5)	-	ND (5)	ND (1)	ND (1)	-
1,4-Dioxane	200	6000	-	-	-	ND (250)	ND (250)	-
Acetone Benzene	7970 5	50000 1000	ND (10) ND (1)	-	ND (10) ND (1)	ND (5) ND (0.5)	7.5 ND (0.5)	-
Carbon tetrachloride	4.4	2	ND (1)	-	ND (1)	ND (1)	ND (1)	-
cis-1,2-Dichloroethene	70	20	ND (1)	-	82	ND (1)	ND (1)	-
Ethylbenzene m,p-Xylenes	NA NA	5000 3000	ND (1) ND (2)	-	ND (1) ND (2)	ND (1) ND (2)	ND (1) ND (2)	-
Methyl Tert Butyl Ether (MTBE)	70	5000	ND (10)	-	ND (10)	ND (2)	ND (2)	-
Methylene chloride (Dichloromethane) Naphthalene	4.6 20	2000 700	ND (1)	-	ND (1)	ND (2)	ND (2) ND (2)	-
o-Xylene	NA NA	3000	ND (1)	-	ND (1)	ND (2) ND (1)	ND (2) ND (1)	-
Tert-Amyl Methyl Ether (TAME)	90	NA	ND (20)	-	ND (20)	ND (2)	ND (2)	-
Tert-Butyl Alcohol (tert-Butanol) Tetrachloroethene	120 5	NA 50	ND (100) ND (1)	-	ND (100) 11	- ND (1)	- ND (1)	-
Toluene	NA NA	40000	ND (1)	-	ND (1)	ND (1)	ND (1)	-
Trichloroethene	5	5	ND (1)	-	52	ND (1)	ND (1)	-
Vinyl chloride Xylene (total)	2 NA	2 3000	ND (1) ND (1)	-	18 ND (1)	ND (1) ND (1)	ND (1) ND (1)	-
Total BTEX	100	NA NA	ND (1)	-	ND (1)	ND (1)	ND (1)	-
Volatile Organic Compounds (SIM) (ug/L)								
1,4-Dioxane	200	6000	ND (5)	-	ND (5)	-	-	-
Semi-Volatile Organic Compounds (ug/L)								
1,2-Dichlorobenzene 1,3-Dichlorobenzene	600 320	2000 6000	-	-	-	ND (2) ND (2)	ND (2) ND (2)	
1,4-Dichlorobenzene	5	60	-	-	-	ND (2)	ND (2)	-
bis(2-Ethylhexyl)phthalate (Diethylhexyl phthalate)	101	50000	ND (2.2)	-	ND (2.2)	ND (3)	ND (3)	-
Butyl benzylphthalate Diethyl phthalate	NA NA	10000 9000	ND (5) ND (5)	-	ND (5) ND (5)	ND (5) ND (5)	ND (5) ND (5)	-
Dimethyl phthalate	NA NA	50000	ND (5)	-	ND (5)	ND (5)	ND (5)	-
Di-n-butylphthalate	NA	5000	ND (5)	-	ND (5)	ND (5)	ND (5)	-
Di-n-octyl phthalate Total Phthalates	NA 190	100000 NA	ND (5) ND	-	ND (5) ND	ND (5) ND	ND (5) ND	-
Phenol	300	2000	-	-	-	ND (5)	ND (5)	-
Semi-Volatile Organic Compounds (SIM) (ug/L)								
Acenaphthene	NA	6000	ND (0.1)	-	ND (0.1)	ND (0.1)	ND (0.1)	-
Acenaphthylene Anthracene	NA NA	40 30	ND (0.1) ND (0.1)	-	ND (0.1) ND (0.1)	ND (0.1) ND (0.1)	ND (0.1) ND (0.1)	-
Benzo(a)anthracene	1	1000	ND (0.1)	-	ND (0.1)	ND (0.1)	ND (0.1)	-
Benzo(a)pyrene	1	500	ND (0.1)	-	ND (0.1)	ND (0.1)	ND (0.1)	-
Benzo(b)fluoranthene Benzo(g,h,i)perylene	1 NA	400 20	ND (0.1) ND (0.1)	-	ND (0.1) ND (0.1)	ND (0.1) ND (0.1)	ND (0.1) ND (0.1)	-
Benzo(k)fluoranthene	1	100	ND (0.1)	-	ND (0.1)	ND (0.1)	ND (0.1)	-
Chrysene	1	70	ND (0.1)	-	ND (0.1)	ND (0.1)	ND (0.1)	-
Dibenz(a,h)anthracene Fluoranthene	1 NA	40 200	ND (0.1) ND (0.1)	-	ND (0.1) ND (0.1)	ND (0.1) ND (0.1)	ND (0.1) ND (0.1)	-
Fluorene	NA	40	ND (0.1)	-	ND (0.1)	ND (0.1)	ND (0.1)	-
Indeno(1,2,3-cd)pyrene	1	100	ND (0.1)	-	ND (0.1)	ND (0.1)	ND (0.1)	-
Naphthalene Pentachlorophenol	20 1	700 200	ND (0.1) ND (1)	-	ND (0.1) ND (1)	ND (0.1) ND (0.8)	ND (0.1) ND (0.8)	-
Phenanthrene	NA	10000	ND (0.1)	-	ND (0.1)	ND (0.1)	ND (0.1)	-
Pyrene Total Group I Belycyclic Arematic Hydrocarbons	NA 1	20	ND (0.1)	-	ND (0.1)	ND (0.1)	ND (0.1)	-
Total Group I Polycyclic Aromatic Hydrocarbons Total Group II Polycyclic Aromatic Hydrocarbons	100	NA NA	ND ND	-	ND ND	ND ND	ND ND	-
Ethanol (ug/L)	Report	NA	ND (0.02)	-	ND (0.02)	-	-	_
Total Petroleum Hydrocarbons (ug/L)	5000	5000	-	ND (4000)	ND (4000)	-	-	-
EPH (ug/L)								
C11-C22 Aromatic Hydrocarbons, Adjusted	NA NA	5000	-	-	-	ND (100)	ND (100)	-
C19-C36 Aliphatic Hydrocarbons C9-C18 Aliphatic Hydrocarbons	NA NA	50000 5000	-		-	ND (100) ND (100)	ND (100) ND (100)	-
		2.000				\/	,===,	
VPH (ug/L) C5-C8 Aliphatic Hydrocarbons, Adjusted	NA	3000	_	_	_	ND (100)	ND (100)	
C9-C10 Aromatic Hydrocarbons	NA NA	4000	-	-	-	ND (100) ND (100)	ND (100) ND (100)	-
C9-C12 Aliphatic Hydrocarbons, Adjusted	NA	5000	-	-	-	ND (100)	ND (100)	-
Metals (ug/L)								
Antimony, Total Arsenic, Total	206 104	8000 900	ND (4) ND (1)	-	ND (4) 3.8	-	-	ND (40) ND (10)
Cadmium, Total	10.2	4	ND (0.2)	-	ND (0.2)	-	-	ND (10) ND (2)
Chromium, Total	NA 222	300	1.47	-	ND (1)	-	-	ND (10)
Chromium III (Trivalent), Total Chromium VI (Hexavalent), Total	323 323	600 300	ND (10) ND (10)	-	ND (10) ND (10)	-	-	ND (10) ND (10)
Copper, Total	242	100000	ND (1)	-	ND (2)	-	-	33.74
Iron, Total	5000	NA 10	256 ND (1)	-	238 ND (1)	-	-	6260
Lead, Total Mercury, Total	160 0.739	10 20	ND (1) ND (0.2)	-	ND (1) ND (0.4)	-		32.49 ND (1)
Nickel, Total	1450	200	3.98	-	ND (2)	-	-	ND (20)
Selenium, Total	235.8 35.1	100 7	ND (5)	-	ND (5)	-	-	ND (50)
Silver, Total Zinc, Total	35.1 420	7 900	0.59 ND (10)		ND (0.4) 10.17			ND (4) 172.7
Polychlorinated Biphenyls (ug/L)								
Aroclor-1016 (PCB-1016)	NA	5	ND (0.25)	-	ND (0.25)	-	-	-
Aroclor-1221 (PCB-1221)	NA NA	5	ND (0.25)	-	ND (0.25)	-	-	-
Aroclor-1232 (PCB-1232) Aroclor-1242 (PCB-1242)	NA NA	5 5	ND (0.25) ND (0.25)	-	ND (0.25) ND (0.25)	-	-	-
Aroclor-1248 (PCB-1248)	NA	5	ND (0.25)	-	ND (0.25)	-	-	-
Aroclor-1254 (PCB-1254)	NA	5	ND (0.25)	-	ND (0.25)	-	-	-
Aroclor-1260 (PCB-1260) SUM of Polychlorinated Biphenyls	NA 0.000064	5 5	ND (0.2) ND	-	ND (0.2) ND	-	-	-
Other	0.00004	<u> </u>	.10		.,,,,			
pH (SU)	6.5 to 8.3	NA	6.7	-	7.6	-	-	6.8
Ammonia, Total (ug/L)	Report	NA	402	-	135	-	-	1280
Chloride, Total (ug/L) Residual Chlorine, Total (ug/L)	Report 200	NA NA	2090000 ND (20)	-	199000 ND (20)	-	-	-
Hardness, Total (ug/L)	NA	NA NA	1380000	-	240000	-	-	115000
Cyanide, Total (ug/L)	178000	30	ND (5)	-	ND (5)	-	-	-
Total Phenols (ug/L) Total Suspended Solids (TSS) (ug/L)	1080 30000	NA NA	ND (30) ND (5000)	-	ND (30) 7300	-	-	-
Temperature (°C) (Note 7)	28.33	NA NA	9.6	9.6	12.4	10.0	13.3	5.9

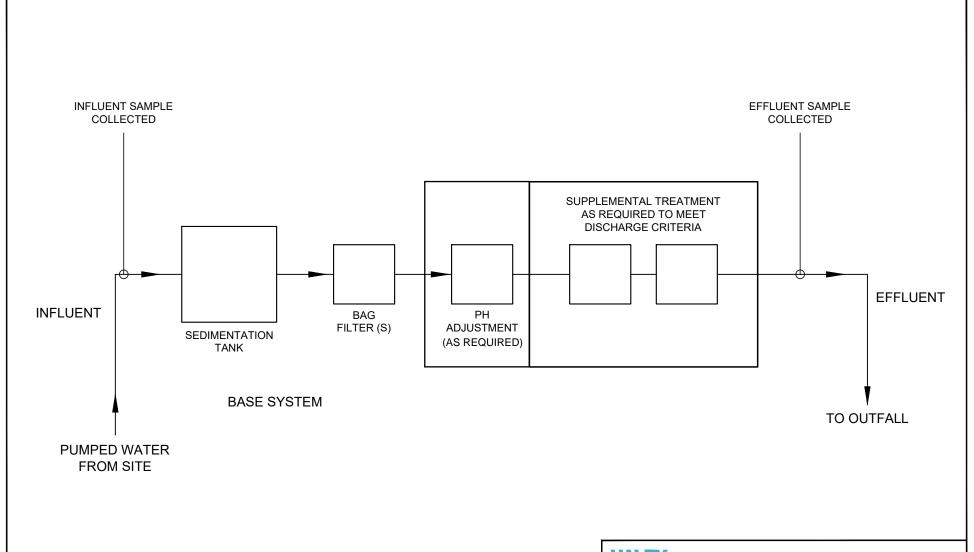
ABBREVIATIONS AND NOTES: μg/L: micrograms per liter -: Not Analyzed

RGP: Remediation General Permit

MassDEP: Massachusetts Department of Environmental Protection

 $MCP:\ 310\ CMR\ 40.0000\ Massachusetts\ Contingency\ Plan\ effective\ 25\ April\ 2014; revisions\ 23\ May\ 2014$ NA: Not Applicable


ND (2.5): Not detected, number in parentheses is the laboratory reporting limit NPDES: National Pollutant Discharge Elimination System


^{1.} For test methods used, see the laboratory data reports.

For test methods used, see the laboratory data reports.
 This table includes only those Volatile Organic Compounds and Semi-Volatile Organic Compounds detected and/or included in Table 2 of the NPDES RGP. For a complete list of analytes, refer to the laboratory data reports.
 Bold values indicate an exceedance of the applicable NPDES RGP Effluent Limitations, determined in accordance with the procedures outlined in the EPA-suggested Water Quality Based Effluent Limitation (WQBEL) Calculation spreadsheet.

^{4.} Bold ND values indicate the laboratory reporting limit exceeds the applicable NPDES RGP Effluent Limitation.
5. Elevations are in feet and refer to the Boston City Base (BCB) Datum.
6. Groundwater elevations measured in the field on the sample dates indicated.
7. Receiving water and groundwater temperature measured in the field on the sample dates indicated.

LEGEND

NOTE

 DETAILS OF TREATMENT SYSTEM MAY VARY FROM SYSTEM INDICATED ABOVE. SPECIFIC MEANS AND METHODS OF TREATMENT TO BE SELECTED BY CONTRACTOR. WATER WILL BE TREATED TO MEET REQUIRED EFFLUENT STANDARDS.

155 NORTH BEACON STREET BRIGHTON, MASSACHUSETTS

PROPOSED TREATMENT SYSTEM SCHEMATIC

SCALE: NONE MARCH 2022

FIGURE 4

APPENDIX A

Remediation General Permit Notice of Intent

II. Suggested Format for the Remediation General Permit Notice of Intent (NOI)

A. General site information:

1. Name of site:	Site address: 155 North Beacon Street						
155 North Beacon Street	Street:						
	City: Boston		State: MA	^{Zip:} 02135			
2. Site owner IQHQ-155 Beacon, LLC	Contact Person: William Ashton						
TRITIC TOO BOUGGII, EEO	Telephone:617-314-7951	Email:was	shton@iqhq	reit.com			
	Mailing address: One Boston Place 201 Washington Street, Suite 3920 Street:						
Owner is (check one): □ Federal □ State/Tribal ■ Private □ Other; if so, specify:	City: Boston		State: MA	Zip: 02108			
3. Site operator, if different than owner	Contact Person: Thomas Ciampa						
Consigli Construction Company, Inc.	Telephone: 508-686-0462	ampa@con	npa@consigli.com				
	Mailing address:						
	Street: 313 Congress Street						
	City: Boston		State: MA	Zip: 02210			
4. NPDES permit number assigned by EPA: N/A	5. Other regulatory program(s) that apply to the site (check all that apply):						
	■ MA Chapter 21e; list RTN(s):	□ CERCL	LΑ				
NPDES permit is (check all that apply: ■ RGP □ DGP □ CGP	TBD	☐ UIC Program					
☐ MSGP ☐ Individual NPDES permit ☐ Other; if so, specify:	☐ NH Groundwater Management Permit or Groundwater Release Detection Permit:	□ POTW	Pretreatment	Ī.			
□ MSOT □ Individual NTDES permit □ Other, it so, specify:	Stoura valor resease Detection I crimit.	☐ CWA Section 404					

D	D	4	• •	4.
в.	Receiving	water	infor	mation:

b. Receiving water information:		,						
1. Name of receiving water(s):	Waterbody identification of receiving water(s):	Classification of receiving water						
Charles River	MA72-36	В						
Receiving water is (check any that apply): □ Outstanding Resource Water □ Ocean Sanctuary □ territorial sea □ Wild and Scenic River								
2. Has the operator attached a location map in accordance Are sensitive receptors present near the site? (check one): If yes, specify:		No						
3. Indicate if the receiving water(s) is listed in the State's Integrated List of Waters (i.e., CWA Section 303(d)). Include which designated uses are impaired, and any pollutants indicated. Also, indicate if a final TMDL is available for any of the indicated pollutants. For more information, contact the appropriate State as noted in Part 4.6 of the RGP. Lower Charles River on 2018/2020 MA Integrated List of Waters, all uses impaired, TMDLs: 32371 and 33826								
4. Indicate the seven day-ten-year low flow (7Q10) of the Appendix V for sites located in Massachusetts and Append		ctions in	15.7 MGD					
5. Indicate the requested dilution factor for the calculation of water quality-based effluent limitations (WQBELs) determined in accordance with the instructions in Appendix V for sites in Massachusetts and Appendix VI for sites in New Hampshire. 110.0								
6. Has the operator received confirmation from the appropriate State for the 7Q10and dilution factor indicated? (check one): ☐ Yes ■ No If yes, indicate date confirmation received: In the process of confirming the 7Q10 and Dilution Factor with MassDEP; will forward confirmation to EPA when received								
7. Has the operator attached a summary of receiving water	sampling results as required in Part 4.2 of the RGP in ac	cordance with th	e instruction in Appendix VIII?					
(check one): ■ Yes □ No								
C. Source water information:								

1. Source water(s) is (check any that apply):			
■ Contaminated groundwater	☐ Contaminated surface water	☐ The receiving water	☐ Potable water; if so, indicate municipality or origin:
Has the operator attached a summary of influent sampling results as required in Part 4.2 of the RGP	Has the operator attached a summary of influent sampling results as required in Part 4.2 of the	☐ A surface water other	
in accordance with the instruction in Appendix VIII? (check one):	RGP in accordance with the instruction in Appendix VIII? (check one):	than the receiving water; if so, indicate waterbody:	■ Other; if so, specify:
■ Yes □ No	☐ Yes ■ No		Seepage, precipitation, surface water runoff

2. Source water contaminants: PCE, TCE, cis-1,2-DCE and Vinyl Chloride	above Effluent Limitations; see Table I for additional compounds detected
a. For source waters that are contaminated groundwater or contaminated surface water, indicate are any contaminants present that are not included in the RGP? (check one): ☐ Yes ■ No If yes, indicate the contaminant(s) and	b. For a source water that is a surface water other than the receiving water, potable water or other, indicate any contaminants present at the maximum concentration in accordance with the instructions in Appendix VIII? (check one): □ Yes □ No
the maximum concentration present in accordance with the instructions in Appendix VIII.	with the histactions in Appendix viii. (check one).
3. Has the source water been previously chlorinated or otherwise contains resid	lual chlorine? (check one): □ Yes ■ No
D. Discharge information	
1.The discharge(s) is a(n) (check any that apply): □ Existing discharge ■ New	v discharge □ New source
Outfall(s): SDO 037 to Charles River	Outfall location(s): (Latitude, Longitude) 42.3646778, -71.138383
Discharges enter the receiving water(s) via (check any that apply): □ Direct discharges enter the receiving water(s) via (check any that apply): □ Direct discharges enter the receiving water(s) via (check any that apply): □ Direct discharges enter the receiving water(s) via (check any that apply): □ Direct discharges enter the receiving water(s) via (check any that apply): □ Direct discharges enter the receiving water(s) via (check any that apply): □ Direct discharges enter the receiving water(s) via (check any that apply): □ Direct discharges enter the receiving water(s) via (check any that apply): □ Direct discharges enter the receiving water(s) via (check any that apply): □ Direct discharges enter the receiving water(s) via (check any that apply): □ Direct discharges enter the receiving water(s) via (check any that apply): □ Direct discharges enter the receiving water(s) via (check any that apply): □ Direct discharges enter the receiving water the receiving water (s) via (check any that apply): □ Direct discharges enter the receiving water (s) via (check any that apply): □ Direct discharges enter the receiving water (s) via (check any that apply): □ Direct discharges enter the receiving water (s) via (check any that apply): □ Direct discharges enter the receiving water (s) via (check any that apply): □ Direct discharges enter the receiving water (s) via (check any that apply): □ Direct discharges enter the receiving water (s) via (check any that apply): □ Direct discharges enter the receiving water (s) via (check any that apply): □ Direct discharges enter the receiving water (s) via (check any that apply): □ Direct discharges enter the receiving water (s) via (check any that apply): □ Direct discharges enter the receiving water (s) via (check any that apply): □ Direct discharges enter (s) via (check any that apply): □ Direct discharges enter (s) via (check any that apply): □ Direct discharges enter (s) via (check any that apply): □ Direct discharges enter (s) via (check any that apply): □ Direct discharges	
Storm drain system located adjacent to site, operated by Boston Water A private storm sewer system A municipal storm sewer system	and Sewer Commission
If the discharge enters the receiving water via a private or municipal storm sew	ver system:
Has notification been provided to the owner of this system? (check one): ■ Ye	es 🗆 No
Has the operator has received permission from the owner to use such system for obtaining permission: BWSC Dewatering Discharge Permit Application S	or discharges? (check one): ☐ Yes ■ No, if so, explain, with an estimated timeframe for ubmitted Concurrently with this NOI
Has the operator attached a summary of any additional requirements the owner	· · · · · · · · · · · · · · · · · · ·
Provide the expected start and end dates of discharge(s) (month/year): 10/1/20	22 to 10/1/2024
Indicate if the discharge is expected to occur over a duration of: ☐ less than 1:	2 months ■ 12 months or more □ is an emergency discharge
Has the operator attached a site plan in accordance with the instructions in D, a	above? (check one): ■ Yes □ No

2. Activity Category: (check all that apply)	3. Contamination Type Category: (check all that apply)				
	a. If Activity Category I or II: (check all that apply)				
	 □ A. Inorganics □ B. Non-Halogenated Volatile Organi □ C. Halogenated Volatile Organic Cor □ D. Non-Halogenated Semi-Volatile Organi □ E. Halogenated Semi-Volatile Organi □ F. Fuels Parameters 	ompounds Organic Compounds			
□ I – Petroleum-Related Site Remediation□ II – Non-Petroleum-Related Site Remediation	b. If Activity Category III, IV, V, VI, VII or VIII: (check either G or H)				
■ III – Contaminated Site Dewatering□ IV – Dewatering of Pipelines and Tanks	■ G. Sites with Known Contamination	☐ H. Sites with Unknown Contamination			
 □ V – Aquifer Pump Testing □ VI – Well Development/Rehabilitation □ VII – Collection Structure Dewatering/Remediation 	c. If Category III-G, IV-G, V-G, VI-G, VII-G or VIII-G: (check all that apply)				
□ VIII – Dredge-Related Dewatering	■ A. Inorganics ■ B. Non-Halogenated Volatile Organic Compounds ■ C. Halogenated Volatile Organic Compounds * ■ D. Non-Halogenated Semi-Volatile Organic Compounds * ■ E. Halogenated Semi-Volatile Organic Compounds * ■ F. Fuels Parameters	d. If Category III-H, IV-H, V-H, VI-H, VII-H or VIII-H Contamination Type Categories A through F apply			

^{*} COMPOUNDS DETECTED IN SOIL ONLY

4. Influent and Effluent Characteristics

	Known	Known		_		In	fluent	Effluent Limitations	
Parameter	or believed absent	or believed present	# of samples	Test method (#)	Detection limit (µg/l)	Daily maximum (µg/l)	Daily average (µg/l)	TBEL	WQBEL
A. Inorganics									
Ammonia		✓	2	121,4500N	75	402	268.5	Report mg/L	
Chloride		✓	2	44,300.0	50000	2090000	1144500	Report μg/l	
Total Residual Chlorine	✓		2	121,4500C	20	<20	<20	0.2 mg/L	
Total Suspended Solids		✓	2	121,2540D	1	7300	7300	30 mg/L	
Antimony	✓		2	3200.8	4	<4	<4	206 μg/L	
Arsenic		✓	2	3200.8	1	3.8	3.8	104 μg/L	
Cadmium	✓		2	3200.8	0.2	<0.2	<0.2	10.2 μg/L	
Chromium III	✓		2	3200.8	10	<10	<10	323 μg/L	
Chromium VI	✓		2	1,7196A	10	<10	<10	323 μg/L	
Copper	✓		2	3200.8	1	<1	<1	242 μg/L	
Iron		✓	2	19,200.7	50	256	247	5,000 μg/L	
Lead	✓		2	3200.8	1	<1	<1	160 μg/L	
Mercury	✓		2	3,245.1	0.2	< 0.2	<0.2	0.739 μg/L	
Nickel		✓	2	3200.8	2	3.98	3.98	1,450 μg/L	
Selenium	✓		2	3200.8	5	<5	<5	235.8 μg/L	
Silver		✓	2	3200.8	0.4	0.59	0.59	35.1 μg/L	
Zinc		✓	2	3200.8	10	10.17	10.17	420 μg/L	
Cyanide	✓		2	121,4500C	5	<5	<5	178 mg/L	
B. Non-Halogenated VOC	s								
Total BTEX	✓		4	128,624.1	1	<1	<1	100 μg/L	
Benzene	✓		4	128,624.1	1	<1	<1	5.0 μg/L	
1,4 Dioxane	✓		4	128,624.1	5	<5	<5	200 μg/L	
Acetone		✓	4	128,624.1	5	7.5	7.5	7.97 mg/L	
Phenol	✓		4	4,420.1	30	<30	<30	1,080 μg/L	

	Known	Known		Test method (#)	Detection limit (µg/l)	In	fluent	Effluent Limitations	
Parameter	or believed absent	or believed present	# of samples			Daily maximum (µg/l)	Daily average (µg/l)	TBEL	WQBEL
C. Halogenated VOCs									
Carbon Tetrachloride	✓		4	128,624.1	1	<1	<1	4.4 μg/L	
1,2 Dichlorobenzene	✓		4	128,624.1	5	<5	<5	600 μg/L	
1,3 Dichlorobenzene	✓		4	128,624.1	5	<5	<5	320 μg/L	
1,4 Dichlorobenzene	1		4	128,624.1	5	<5	<5	5.0 μg/L	
Total dichlorobenzene	✓		4	128,624.1	5	<5	<5	763 μg/L in NH	
1,1 Dichloroethane	✓		4	128,624.1	1.5	<1.5	<1.5	70 μg/L	
1,2 Dichloroethane	✓		4	128,624.1	1.5	<1.5	<1.5	5.0 μg/L	
1,1 Dichloroethylene		✓	4	128,624.1	1	1.1	1.1	3.2 μg/L	
Ethylene Dibromide	✓		4	14,504.1	0.01	< 0.01	< 0.01	0.05 μg/L	
Methylene Chloride	✓		4	128,624.1	1	<1	<1	4.6 μg/L	
1,1,1 Trichloroethane	✓		4	128,624.1	2	<2	<2	200 μg/L	
1,1,2 Trichloroethane	✓		4	128,624.1	1.5	<1.5	<1.5	5.0 μg/L	
Trichloroethylene		✓	4	128,624.1	1	50	52.	5.0 μg/L	
Tetrachloroethylene		✓	4	128.624.1	1	11	11	5.0 μg/L	
cis-1,2 Dichloroethylene		✓	4	128,624.1	1	82	82	70 μg/L	
Vinyl Chloride		✓	4	128,624.1	1	18	18	2.0 μg/L	
D. Non-Halogenated SVO	Cs								
Total Phthalates	✓		4	129, 625.1	2.2	<2.2	<2.2	190 μg/L	
Diethylhexyl phthalate	✓		4	129, 625.1	2.2	<2.2	<2.2	101 μg/L	
Total Group I PAHs	✓		4	129, 625.1	0.1	<0.1	<0.1	1.0 μg/L	
Benzo(a)anthracene	✓		4	129, 625.1	0.1	<0.1	<0.1		
Benzo(a)pyrene	✓		4	129, 625.1	0.1	<0.1	<0.1] [
Benzo(b)fluoranthene	✓		4	129, 625.1	0.1	<0.1	<0.1] [
Benzo(k)fluoranthene	✓		4	129, 625.1	0.1	<0.1	<0.1	As Total PAHs	
Chrysene	✓		4	129, 625.1	0.1	<0.1	<0.1	1	
Dibenzo(a,h)anthracene	✓		4	129, 625.1	0.1	<0.1	<0.1	1	
Indeno(1,2,3-cd)pyrene	✓		4	129, 625.1	0.1	<0.1	<0.1	1	

	Known	Known				In	fluent	Effluent Lin	nitations
Parameter	or believed absent	or believed present	# of samples	Test method (#)	Detection limit (µg/l)	Daily maximum (µg/l)	Daily average (µg/l)	TBEL	WQBEL
Total Group II PAHs	✓		4	129, 625.1	0.1	<0.1	<0.1	100 μg/L	
Naphthalene	✓		4	129, 625.1	0.1	<0.1	<0.1	20 μg/L	
E. Halogenated SVOCs									
Total PCBs	✓		2	127,608.3	0.2	<0.2	<0.2	0.000064 μg/L	
Pentachlorophenol	✓		4	129,625.1-	1	<1	<1	1.0 μg/L	
F. Fuels Parameters Total Petroleum								5.0 (7	
Hydrocarbons	✓		2	140,1664B	4000	<4000	<4000	5.0 mg/L	
Ethanol	✓		2	600,1617A	20000	<20000	<20000	Report mg/L	
Methyl-tert-Butyl Ether	✓		4	128,624.1	10	<10	<10	70 μg/L	
tert-Butyl Alcohol	✓		2	128,624.1	100	<100	<100	120 μg/L in MA 40 μg/L in NH	
tert-Amyl Methyl Ether	✓		4	128,624.1	20	<20	<20	90 μg/L in MA 140 μg/L in NH	
Other (i.e., pH, temperatur	e, hardness,	salinity, LC	T '	1 *	1	T .	1	1	
Hardness		✓	2	19,200.7	660	1380000 7.6	810000		
pH (SU) Temperature (°C)		√	2.	121.4500 FIELD	NA NA	13.3	7.15		
Temperature (°C)		•	2	FIELD	NA	13.3	11.3		
*See attached table for									
additional compounds									
detected in soil									

Compounds Detected in Soil:

A. Inorganics

Antimony
Arsenic*
Barium
Beryllium
Cadmium
Chromium
Lead

Lead, TCLP Mercury Nickel* Vanadium Zinc* **B. Non-Halogenated VOCs**

Acetone*
Ethylbenzene
p-Isopropyltoluene
Naphthalene
Toluene
Xylenes (total)

C. Halogenated VOCs

1,1-Dichloroethane
1,1-Dichloroethene*
cis-1,2-Dichloroethene*
Tetrachloroethene*
Trichloroethene*
Vinyl chloride*

D. Non-Halogenated SVOCs

2-Methylnaphthalene Acenaphthene

Acenaphthylene

Anthracene

Benzo(a)anthracene

Benzo(a)pyrene

Benzo(b)fluoranthene Benzo(g,h,i)perylene Benzo(k)fluoranthene

Biphenyl

Butyl benzyl phthalate

Chrysene

Dibenz(a,h)anthracene

Dibenzofuran Fluoranthene

Fluorene

Indeno(1,2,3-cd)pyrene

Naphthalene Phenanthrene

Pyrene

E. Halogenated SVOCs

PCBs Aroclor-1254

F. Fuels Parameters

Total Petroleum Hydrocarbons

^{*}Compound also detected in groundwater

E. Treatment system information

1. Indicate the type(s) of treatment that will be applied to effluent prior to discharge: (check all that apply)							
☐ Adsorption/Absorption ☐ Advanced Oxidation Processes ☐ Air Stripping ■ Granulated Activated Carbon ("GAC")/Liquid Phase Carbon Adsorption							
☐ Ion Exchange ☐ Precipitation/Coagulation/Flocculation ■ Separation/Filtration ■ Other; if so, specify:							
pH adjustment and/or other treatment as required to meet effluent limitations							
2. Provide a written description of all treatment system(s) or processes that will be applied to the effluent prior to discharge.							
Prior to discharge, collected water is routed through a sedimentation tank and bag filters to remove suspended solids and undissolved chemical constituents, including met will be measured with a flow meter/totalizer. Additional treatment will include Granular Activated Carbon (GAC) to remove chlorinated solvents to within effluent limital Supplemental treatment may be required to meeting effluent limitations and may include oil/water separators, pH control and/or other components as necessary.	als. Total flow tions.						
Identify each major treatment component (check any that apply):							
■ Fractionation tanks□ Equalization tank □ Oil/water separator □ Mechanical filter □ Media filter							
☐ Chemical feed tank ☐ Air stripping unit ■ Bag filter ■ Other; if so, specify: Granular Activated Carbon (GAC)							
Indicate if either of the following will occur (check any that apply):							
☐ Chlorination ☐ De-chlorination							
3. Provide the design flow capacity in gallons per minute (gpm) of the most limiting component.							
Indicate the most limiting component: Bag filters	100 GPM						
Is use of a flow meter feasible? (check one): ■ Yes □ No, if so, provide justification:							
Provide the proposed maximum effluent flow in gpm.	100 GPM						
Provide the average effluent flow in gpm.	25 GPM						
If Activity Category IV applies, indicate the estimated total volume of water that will be discharged:	NA						
4. Has the operator attached a schematic of flow in accordance with the instructions in E, above? (check one): ■ Yes □ No							

F. Chemical and additive information

1 Chamber and addition million
1. Indicate the type(s) of chemical or additive that will be applied to effluent prior to discharge or that may otherwise be present in the discharge(s): (check all that apply)
□ Algaecides/biocides □ Antifoams □ Coagulants □ Corrosion/scale inhibitors □ Disinfectants □ Flocculants □ Neutralizing agents □ Oxidants □ Oxygen □
scavengers \square pH conditioners \square Bioremedial agents, including microbes \square Chlorine or chemicals containing chlorine \blacksquare Other; if so, specify: The site contractor has not yet submitted their construction dewatering submittal which will include details of the proposed treatment system along with Safety Data Sheets (SDSs).
2. Provide the following information for each chemical/additive, using attachments, if necessary:
a. Product name, chemical formula, and manufacturer of the chemical/additive; b. Purpose or use of the chemical/additive or remedial agent; c. Material Safety Data Sheet (MSDS) and Chemical Abstracts Service (CAS) Registry number for each chemical/additive; d. The frequency (hourly, daily, etc.), duration (hours, days), quantity (maximum and average), and method of application for the chemical/additive; e. Any material compatibility risks for storage and/or use including the control measures used to minimize such risks; and f. If available, the vendor's reported aquatic toxicity (NOAEL and/or LC50 in percent for aquatic organism(s)).
3. Has the operator attached an explanation which demonstrates that the addition of such chemicals/additives may be authorized under this general permit in accordance
with the instructions in F, above? (check one): ☐ Yes ■ No; if no, has the operator attached data that demonstrates each of the 126 priority pollutants in CWA Section 307(a) and 40 CFR Part 423.15(j)(1) are non-detect in discharges with the addition of the proposed chemical/additive?
(check one): ☐ Yes ■ No
G. Endangered Species Act eligibility determination
1. Indicate under which criterion the discharge(s) is eligible for coverage under this general permit:
■ FWS Criterion A: No endangered or threatened species or critical habitat are in proximity to the discharges or related activities or come in contact with the "action area".
□ FWS Criterion B : Formal or informal consultation with the FWS under section 7 of the ESA resulted in either a no jeopardy opinion (formal consultation) or a written concurrence by FWS on a finding that the discharges and related activities are "not likely to adversely affect" listed species or critical habitat
(informal consultation). Has the operator completed consultation with FWS? (check one): ☐ Yes ☐ No; if no, is consultation underway? (check one): ☐
Yes □ No
FWS Criterion C: Using the best scientific and commercial data available, the effect of the discharges and related activities on listed species and critical habitat have been evaluated. Based on those evaluations, a determination is made by EPA, or by the operator and affirmed by EPA, that the discharges and related activities will have "no effect" on any federally threatened or endangered listed species or designated critical habitat under the jurisdiction of the
FWS. This determination was made by: (check one) □ the operator □ EPA □ Other; if so, specify:

□ NMFS Criterion: A determination made by EPA is affirmed by the operator that the discharges and related activities will have "no effect" or are "not likely to adversely affect" any federally threatened or endangered listed species or critical habitat under the jurisdiction of NMFS and will not result in any take of
listed species. Has the operator previously completed consultation with NMFS? (check one): □ Yes □ No
2. Has the operator attached supporting documentation of ESA eligibility in accordance with the instructions in Appendix I, and G, above? (check one): Yes No
Does the supporting documentation include any written concurrence or finding provided by the Services? (check one): Yes No; if yes, attach.
H. National Historic Preservation Act eligibility determination
1. Indicate under which criterion the discharge(s) is eligible for coverage under this general permit:
■ Criterion A: No historic properties are present. The discharges and discharge-related activities (e.g., BMPs) do not have the potential to cause effects on historic properties.
☐ Criterion B: Historic properties are present. Discharges and discharge related activities do not have the potential to cause effects on historic properties.
☐ Criterion C : Historic properties are present. The discharges and discharge-related activities have the potential to have an effect or will have an adverse effect on historic properties.
2. Has the operator attached supporting documentation of NHPA eligibility in accordance with the instructions in H, above? (check one): ■ Yes □ No
Does the supporting documentation include any written agreement with the State Historic Preservation Officer (SHPO), Tribal Historic Preservation Officer (TPHO), or
other tribal representative that outlines measures the operator will carry out to mitigate or prevent any adverse effects on historic properties? (check one): Yes No
I. Supplemental information
Describe any supplemental information being provided with the NOI. Include attachments if required or otherwise necessary.
Refer to attached Haley & Aldrich, Inc. letter.
Has the operator attached data, including any laboratory case narrative and chain of custody used to support the application? (check one): ■ Yes □ No
Has the operator attached the certification requirement for the Best Management Practices Plan (BMPP)? (check one): ■ Yes □ No

J. Certification requirement

I certify under penalty of law that this document and all attachments were prepared under my direction or supervision in that qualified personnel properly gathered and evaluated the information submitted. Based on my inquiry of the person of persons directly responsible for gathering the information, the information submitted is, to the best of my knowledge and no personal knowledge that the information submitted is other than true, accurate, and complete. I am aware that there a information, including the possibility of fine and imprisonment for knowing violations.	r persons who manage the syste belief, true, accurate, and comp	m, or those plete. I have
A BMPP meeting the requirements of this general permit will be imp BMPP certification statement: discharge and available for review at the site.	lemented upon initiation	of
Notification provided to the appropriate State, including a copy of this NOI, if required.	Check one: Yes ■ No □	
Notification provided to the municipality in which the discharge is located, including a copy of this NOI, if requested.	Check one: Yes ■ No □	
Notification provided to the owner of a private or municipal storm sewer system, if such system is used for site discharges, including a copy of this NOI, if requested. Permission obtained from the owner of a private or municipal storm sewer system, if such system is used for site	Check one: Yes ■ No □	NA □
discharges. If yes, attach additional conditions. If no, attach explanation and timeframe for obtaining permission.	Check one: Yes □ No ■	NA □
Notification provided to the owner/operator of the area associated with activities covered by an additional discharge		
$permit(s). \ Additional \ discharge \ permit \ is \ (check \ one): \ \Box \ RGP \ \Box \ DGP \ \Box \ CGP \ \Box \ MSGP \ \ \Box \ Individual \ NPDES \ permit$	Check one: Yes □ No □	NA ■
☐ Other; if so, specify:		
Signature: David Surette DN: C=US, E=dsurette@iqhqreit.com, O=IQHQ, OU_Development, CN=David Surette PResson: 1 have revealed this document Date: 2022,03.31 12:12:07-04'00'	ate: 3/31/2022	
Print Name and Title: William Ashton, Director of Development		

J. Certification requirement

	I certify under penalty of law that this document and all attachments were prepared under my direction or supervision in act that qualified personnel properly gathered and evaluated the information submitted. Based on my inquiry of the person or persons directly responsible for gathering the information, the information submitted is, to the best of my knowledge and be no personal knowledge that the information submitted is other than true, accurate, and complete. I am aware that there are information, including the possibility of fine and imprisonment for knowing violations.	persons who manage the system, or those elief, true, accurate, and complete. I have
	A BMPP meeting the requirements of this general permit will be imple BMPP certification statement: discharge and available for review at the site.	mented upon initiation of
	Notification provided to the appropriate State, including a copy of this NOI, if required.	Check one: Yes ■ No □
	Notification provided to the municipality in which the discharge is located, including a copy of this NOI, if requested.	Check one: Yes ■ No □
	Notification provided to the owner of a private or municipal storm sewer system, if such system is used for site discharges, including a copy of this NOI, if requested. Permission obtained from the owner of a private or municipal storm sewer system, if such system is used for site	Check one: Yes ■ No □ NA □
	discharges. If yes, attach additional conditions. If no, attach explanation and timeframe for obtaining permission.	Check one: Yes □ No ■ NA □
	Notification provided to the owner/operator of the area associated with activities covered by an additional discharge permit(s). Additional discharge permit is (check one): □ RGP □ DGP □ CGP □ MSGP □ Individual NPDES permit □ Other; if so, specify:	Check one: Yes □ No □ NA ■
Sign	nature: Date	: 3/31/22
Prin	I HOMAS CIAMPA, SUPERINTENDENT	

APPENDIX B

BWSC Dewatering Discharge Permit Application

Haley & Aldrich, Inc. 465 Medford St. Suite 2200 Boston, MA 02129 617.886.7400

31 March 2022 File No. 0201602-000

Boston Water and Sewer Commission Engineering Customer Services 980 Harrison Avenue Boston, Massachusetts 02119

Attention: Jodi Dobay

Subject: Request for Approval of Temporary Construction Dewatering

155 North Beacon Street Brighton, Massachusetts

Ladies and Gentlemen:

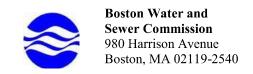
On behalf of our client, IQHQ-155 Beacon, LLC, this letter submits the Boston Water and Sewer Commission (BWSC) Dewatering Discharge Permit Application in support of the proposed development located at 155 North Beacon Street in Brighton, Massachusetts.

Dewatering is necessary to enable below-grade construction in-the-dry and is anticipated to begin in October 2022 and continue for approximately two years. Prior to discharge, collected water will be routed through at minimum a sedimentation tank and bag filters to remove suspended solids and undissolved constituents, including metals. Other pre-treatment may be conducted as necessary to comply with National Pollutant Discharge Elimination System (NPDES) Remediation General Permit (RGP) Effluent Limitations. The proposed dewatering discharge route and BWSC outfall location are shown on Figure 3 of the submitted NPDES RGP Notice of Intent (NOI), attached for reference and currently under review by the U.S. Environmental Protection Agency (EPA) under the NPDES RGP.

If you have any questions, please feel free to contact the undersigned at 617-886-7400.

Sincerely yours,

HALEY & ALDRICH, INC.


Kyle Block, LSP Senior Project Manager Jennifer L. Sweet, P.E. (MA), LSP Senior Associate | Program Manager

lex west

Attachments:

BWSC Dewatering Discharge Permit Application Copy of NPDES RGP NOI Application

\haleyaldrich.com\share\CF\Projects\0201602\NPDES RGP\Application\Appendix B - BWSC Permit App\2022-0331-HAI-155 N Beacon-BWSC Letter-F.docx

DEWATERING DISCHARGE PERMIT APPLICATION

OWNER / AUTHORIZED APPLICANT PROVIDE INFORMATION HERE:

Company Name: Consigli Construction	n Company, Inc.	Address: 313 Congress Stre	et, Boston, MA 02210
Phone Number: (508) 686-0462		Fax number:	
Contact person name: Thomas Cian	пра -	Title: Superintendent	
Cell number: (508) 686-0462		Email address: Tciampa@co	nsigli.com
Permit Request (check one): 🗹 New	Application □ F	Permit Extension Other	Specify):
Owner's Information (if different from Owner of property being dewatered: Owner's mailing address: 201 Wash	om above): IQHQ-155 Beacon	ı, LLC	Phone number: (617) 314-7951
Location of Discharge & Proposed			
Street number and name: 155 North	h Beacon Street	Neighborhoo	d Brighton/Allston
Discharge is to a: ☐ Sanitary Sewer Describe Proposed Pre-Treatment Syn BWSC Outfall No. SDO 037 Temporary Discharges (Provide Anti ☐ Groundwater Remediation ☐ Utility/Manhole Pumping ☐ Accumulated Surface Water Permanent Discharges ☐ Foundation Drainage	Receiving	ttached letter prepared by Ha	/01/2022 _To 10/01/2024 Solution Excavation Trench Excavation
☐ Accumulated Surface Water ☐ Non-contact/Uncontaminated Process	<u> </u>	Non-contact/Uncontaminated Co Other;	oling
number, size, make and start reading. No. 2. If discharging to a sanitary or combined s. 3. If discharging to a separate storm drain, a as other relevant information. 4. Dewatering Drainage Permit will be deni Submit Completed Application to: B. E. 90 A. E.	ote. All discharges to the sewer, attach a copy of Nattach a copy of EPA's Nattach and Sewer and Sewer	ccation of the point of discharge (i.e. to e Commission's sewer system will be MWRA's Sewer Use Discharge perm NPDES Permit or NOI application, or ant fails to obtain the necessary permit Commission cryices oston, MA 02119 rring Customer Service g Fax: 617-989-7716	he sewer pipe or catch basin). Include meter type, meter assessed current sewer charges. it or application. NPDES Permit exclusion letter for the discharge, as well as from MWRA or EPA.
Signature of Authorized Representative for	Property Owner:	avid Surette Digitally signed by David Surette 2N Gulf, E-digurette@flapred.com. 3N Gulf, E-digurette@flapred.com. 3N Gulf, E-digurette@flapred.com. 3N Gulf, E-digurette@flapred.com. 3N Gulf, E-digurette 3N Gulf, E-dig	Date: 3/31/2022

APPENDIX C

Effluent Limitations and Dilution Factor Calculations

HALEY & ALDRIC	CH, INC.			CALC	JLATIONS	FILE NO.	0201602-000	
CLIENT PROJECT SUBJECT	IQHQ-155 Beacon, LL 155 North Beacon St Dilution Factor Calcu	reet				SHEET DATE COMPUTED BY CHECKED BY	1 of 28-Mar-22 TLC JMT	1
PURPOSE:	Calculate Dilution Fac	ctor (DF) for p	project based on 7 Day	10 Year	(7Q10) Low Flow value	es.		
APPROACH:	Calculate DF based o in MGD.	n EPA formul	a (Q_S + Q_D)/ Q_D , where (Q _s is 7Q1	LO in million gallons pe	r day (MGD) and Q _D is desi _l	gn discharge flow	
ASSUMPTIONS:	1. 7Q10 is 24.3 cfs (fr 2. A conversion of 7.4 3. A design discharge	48 is used to	convert cubic feet to ga	llons				
CALCULATIONS: 7Q10 Low Flow N								
Q _S =	= 24.3 ft ³ sec	Х	7.48 gallons ft ³	Х	<u>86,400 sec</u> day	X <u>1 MG</u> 1,000,000 gallon	s	
Q _s =	= 15.70	MGD						
Design Discharg	e Flow Rate (Q_D)							
Q _D =	100 gallons min	x	<u>1,440 min</u> day	Х	<u>1 MG</u> 1,000,000 gallons			
$Q_D =$	0.144	MGD						
Dilution Factor ($\Omega_c + \Omega_c$	= <u>15.</u>	70 MGD + 0.144 MGD 0.144 MGD	=	110.0			
Dilution Factor (DF) = <u>Qs + Qn</u> = QD	<u> </u>	0.144 MGD) low flow value and design		

Enter number values in green boxes below

Enter values in the units specified

Enter a dilution factor, if other than zero

Enter values in the units specified

1380	C_d = Enter influent hardness in mg/L CaCO ₃
115	C _s = Enter receiving water hardness in mg/L CaCO ₃

Enter receiving water concentrations in the units specified

	_
6.8	pH in Standard Units
5.9	Temperature in °C
1.28	Ammonia in mg/L
115	Hardness in mg/L CaCO ₃
0	Salinity in ppt
0	Antimony in μg/L
0	Arsenic in μg/L
0	Cadmium in µg/L
0	Chromium III in μg/L
0	Chromium VI in μg/L
33.74	Copper in µg/L
6260	Iron in μg/L
32.49	Lead in μg/L
0	Mercury in μg/L
0	Nickel in μg/L
0	Selenium in μg/L
0	Silver in μg/L
172.7	Zinc in μg/L

Enter influent concentrations in the units specified

- V	
0	TRC in μg/L
0.402	Ammonia in mg/L
0	Antimony in μg/L
3.8	Arsenic in µg/L
0	Cadmium in µg/L
0	Chromium III in µg/L
1.47	Chromium VI in μg/L
0	Copper in µg/L
256	Iron in μg/L
0	Lead in μg/L
0	Mercury in μg/L
3.98	Nickel in μg/L
0	Selenium in μg/L
0.59	Silver in μg/L
10.17	Zinc in μg/L
0	Cyanide in µg/L
0	Phenol in μg/L
0	Carbon Tetrachloride in µg/L
11	Tetrachloroethylene in μg/L
0	Total Phthalates in µg/L
0	Diethylhexylphthalate in μg/L
0	Benzo(a)anthracene in μg/L
0	Benzo(a)pyrene in µg/L
0	Benzo(b)fluoranthene in μg/L
0	Benzo(k)fluoranthene in μg/L
0	Chrysene in µg/L
0	Dibenzo(a,h)anthracene in μg/L
0	Indeno(1,2,3-cd)pyrene in μg/L
0	Methyl-tert butyl ether in $\mu g/L$

Notes:

Freshwater: Q_R equal to the 7Q10; enter alternate Q_R if approved by the State; enter 0 if no dilution factor approved Saltwater (estuarine and marine): enter Q_R if approved by the State; enter 0 if no entry Discharge flow is equal to the design flow or 1 MGD, whichever is less Only if approved by State as the entry for Q_R ; leave 0 if no entry

Saltwater (estuarine and marine): only if approved by the State Leave 0 if no entry

Freshwater only

if >1 sample, enter maximum if >10 samples, may enter 95th percentile Enter 0 if non-detect or testing not required Dilution Factor 110.0

Dilution Factor	110.0				Compliance Level	
A. Inorganics	TBEL applies if	bolded	WQBEL applies i	f bolded	applies if shown	
Ammonia	Report	mg/L			••	
Chloride	Report	μg/L				
Total Residual Chlorine	0.2	mg/L	1210	μg/L		μg/L
Total Suspended Solids	30	mg/L		rs 2		r6 2
Antimony	206	μg/L	70418	μg/L		
Arsenic	104		1100			
Cadmium		μg/L	35.4404	μg/L		
Chromium III	10.2	μg/L	11495.1	μg/L		
Chromium VI	323	μg/L		μg/L		
	323	μg/L	1258.1	μg/L		
Copper	242	μg/L	11.4	μg/L		
Iron	5000	μg/L	1000	μg/L		
Lead	160	$\mu g/L$	4.29	μg/L		
Mercury	0.739	μg/L	99.67	μg/L		
Nickel	1450	$\mu g/L$	7002.1	μg/L		
Selenium	235.8	$\mu g/L$	550.1	μg/L		
Silver	35.1	$\mu g/L$	623.9	μg/L		
Zinc	420	μg/L	146.2	μg/L		
Cyanide	178	mg/L	572.1	μg/L		μg/L
B. Non-Halogenated VOCs		Ü				
Total BTEX	100	$\mu g/L$				
Benzene	5.0	μg/L				
1,4 Dioxane	200	μg/L				
Acetone Phenol	7970 1,080	μg/L	33008	ua/I		
C. Halogenated VOCs	1,000	μg/L	33008	μg/L		
Carbon Tetrachloride	4.4	μg/L	176.0	μg/L		
1,2 Dichlorobenzene	600	μg/L				
1,3 Dichlorobenzene	320	$\mu g/L$				
1,4 Dichlorobenzene	5.0	μg/L				
Total dichlorobenzene	70	μg/L				
1,1 Dichloroethane1,2 Dichloroethane	70 5.0	μg/L μg/L				
1,1 Dichloroethylene	3.2	μg/L μg/L				
Ethylene Dibromide	0.05	μg/L				
Methylene Chloride	4.6	μg/L				
1,1,1 Trichloroethane	200	$\mu g/L$				
1,1,2 Trichloroethane	5.0	μg/L				
Trichloroethylene	5.0	μg/L	262.1	/Т		
Tetrachloroethylene cis-1,2 Dichloroethylene	5.0 70	μg/L μg/L	363.1	μg/L		
Vinyl Chloride	2.0	μg/L μg/L				
•		1.5				
D. Non-Halogenated SVOCs						
Total Phthalates	190	μg/L		μg/L		
Diethylhexyl phthalate	101	μg/L	242.1	μg/L		
Total Group I Polycyclic Aromatic Hydrocarbons	1.0	μg/L				
Benzo(a)anthracene	1.0	μg/L μg/L	0.4181	μg/L		μg/L
Benzo(a)pyrene	1.0	μg/L	0.4181	μg/L		μg/L
Benzo(b)fluoranthene	1.0	μg/L	0.4181	μg/L		μg/L
Benzo(k)fluoranthene	1.0	$\mu g/L$	0.4181	$\mu g/L$		$\mu g/L$
Chrysene	1.0	μg/L	0.4181	μg/L		μg/L
Dibenzo(a,h)anthracene	1.0	μg/L	0.4181	μg/L		μg/L
Indeno(1,2,3-cd)pyrene Total Group II Polycyclic	1.0	μg/L	0.4181	μg/L		μg/L
Aromatic Hydrocarbons	100	μg/L				
Naphthalene	20	μg/L μg/L				
E. Halogenated SVOCs						
Total Polychlorinated Biphenyls	0.000064	μg/L			0.5	μg/L
Pentachlorophenol	1.0	μg/L				
F. Fuels Parameters						
Total Petroleum Hydrocarbons	5.0	mg/L				
Ethanol Mathyal tout Dutyal Ethan	Report	mg/L	2201	,/T		
Methyl-tert-Butyl Ether tert-Butyl Alcohol	70 120	μg/L μg/L	2201	μg/L		
tert-Amyl Methyl Ether	90	μg/L μg/L	 			
		r6/ L				

StreamStats Report

Region ID: MA

Workspace ID: MA20220323145450723000

Clicked Point (Latitude, Longitude): 42.36538, -71.13847

Time: 2022-03-23 10:55:11 -0400

Basin Characteristics					
Parameter Code	Parameter Description	Value	Unit		
DRNAREA	Area that drains to a point on a stream	279	square miles		
ELEV	Mean Basin Elevation	202	feet		
LC06STOR	Percentage of water bodies and wetlands determined from the NLCD 2006	13.21	percent		
BSLDEM250	Mean basin slope computed from 1:250K DEM	2.342	percent		
DRFTPERSTR	Area of stratified drift per unit of stream length	0.23	square mile per mile		
MAREGION	Region of Massachusetts 0 for Eastern 1 for Western	0	dimensionless		

Peak-Flow Statistics Parameters [Peak Statewide 2016 5156]

Parameter Code	Parameter Name	Value Units	Min Limit	Max Limit
DRNAREA	Drainage Area	279 square miles	0.16	512
ELEV	Mean Basin Elevation	202 feet	80.6	1948
LC06STOR	Percent Storage from NLCD2006	13.21 percent	0	32.3

Peak-Flow Statistics Flow Report [Peak Statewide 2016 5156]

PII: Prediction Interval-Lower, Plu: Prediction Interval-Upper, ASEp: Average Standard Error of Prediction, SE: Standard Error (other -- see report)

Statistic	Value	Unit	PII	Plu	ASEp
50-percent AEP flood	2990	ft^3/s	1530	5850	42.3
20-percent AEP flood	4680	ft^3/s	2360	9280	43.4
10-percent AEP flood	5950	ft^3/s	2930	12100	44.7
4-percent AEP flood	7750	ft^3/s	3690	16300	47.1
2-percent AEP flood	9220	ft^3/s	4260	20000	49.4
1-percent AEP flood	10700	ft^3/s	4790	23900	51.8
0.5-percent AEP flood	12400	ft^3/s	5390	28500	54.1
0.2-percent AEP flood	14700	ft^3/s	6100	35400	57.6

Peak-Flow Statistics Citations

Zarriello, P.J.,2017, Magnitude of flood flows at selected annual exceedance probabilities for streams in Massachusetts: U.S. Geological Survey Scientific Investigations Report 2016-5156, 99 p. (https://dx.doi.org/10.3133/sir20165156)

Low-Flow Statistics Parameters [Statewide Low Flow WRIR00 4135]

Parameter Code	Parameter Name	Value	Units	Min Limit	Max Limit
DRNAREA	Drainage Area	279	square miles	1.61	149

Parameter Code	Parameter Name	Value	Units	Min Limit	Max Limit
BSLDEM250	Mean Basin Slope from 250K DEM	2.342	percent	0.32	24.6
DRFTPERSTR	Stratified Drift per Stream Length	0.23	square mile per mile	0	1.29
MAREGION	Massachusetts Region	0	dimensionless	0	1

Low-Flow Statistics Disclaimers [Statewide Low Flow WRIR00 4135]

One or more of the parameters is outside the suggested range. Estimates were extrapolated with unknown errors

Low-Flow Statistics Flow Report [Statewide Low Flow WRIR00 4135]

Statistic	Value	Unit
7 Day 2 Year Low Flow	48.9	ft^3/s
7 Day 10 Year Low Flow	24.3	ft^3/s

Low-Flow Statistics Citations

Ries, K.G., III,2000, Methods for estimating low-flow statistics for Massachusetts streams: U.S. Geological Survey Water Resources Investigations Report 00-4135, 81 p. (http://pubs.usgs.gov/wri/wri004135/)

USGS Data Disclaimer: Unless otherwise stated, all data, metadata and related materials are considered to satisfy the quality standards relative to the purpose for which the data were collected. Although these data and associated metadata have been reviewed for accuracy and completeness and approved for release by the U.S. Geological Survey (USGS), no warranty expressed or implied is made regarding the display or utility of the data for other purposes, nor on all computer systems, nor shall the act of distribution constitute any such warranty.

USGS Software Disclaimer: This software has been approved for release by the U.S. Geological Survey (USGS). Although the software has been subjected to rigorous review, the USGS reserves the right to update the software as needed pursuant to further analysis and review. No warranty, expressed or implied, is made by the USGS or the U.S. Government as to the functionality of the software and related material nor shall the fact of release constitute any such warranty. Furthermore, the software is released on condition that neither the USGS nor the U.S. Government shall be held liable for any damages resulting from its authorized or unauthorized use.

USGS Product Names Disclaimer: Any use of trade, firm, or product names is for descriptive purposes only and does not imply endorsement by the U.S. Government.

Application Version: 4.7.0

StreamStats Services Version: 1.2.22

NSS Services Version: 2.1.2

APPENDIX D

Endangered Species Act Documentation

United States Department of the Interior

FISH AND WILDLIFE SERVICE

New England Ecological Services Field Office 70 Commercial Street, Suite 300 Concord, NH 03301-5094 Phone: (603) 223-2541 Fax: (603) 223-0104

http://www.fws.gov/newengland

In Reply Refer To: March 23, 2022

Project Code: 2022-0023028

Project Name: 155 North Beacon St.

Subject: List of threatened and endangered species that may occur in your proposed project

location or may be affected by your proposed project

To Whom It May Concern:

Please review this letter each time you request an Official Species List, we will continue to update it with additional information and links to websites may change.

About Official Species Lists

The purpose of the Act is to provide a means whereby threatened and endangered species and the ecosystems upon which they depend may be conserved. Federal and non-Federal project proponents have responsibilities under the Act to consider effects on listed species.

The enclosed species list identifies threatened, endangered, proposed, and candidate species, as well as proposed and final designated critical habitat, that may occur within the boundary of your proposed project and/or may be affected by your proposed project. The species list fulfills the requirements of the U.S. Fish and Wildlife Service (Service) under section 7(c) of the Endangered Species Act (Act) of 1973, as amended (16 U.S.C. 1531 et seq.).

New information based on updated surveys, changes in the abundance and distribution of species, changed habitat conditions, or other factors could change this list. Please note that under 50 CFR 402.12(e) of the regulations implementing section 7 of the Act, the accuracy of this species list should be verified after 90 days. The Service recommends that verification be completed by visiting the ECOS-IPaC website at regular intervals during project planning and implementation for updates to species lists and information. An updated list may be requested by returning to an existing project's page in IPaC.

Endangered Species Act Project Review

Please visit the "New England Field Office Endangered Species Project Review and Consultation" website for step-by-step instructions on how to consider effects on listed

species and prepare and submit a project review package if necessary:

https://www.fws.gov/newengland/endangeredspecies/project-review/index.html

NOTE Please <u>do not</u> use the **Consultation Package Builder** tool in IPaC except in specific situations following coordination with our office. Please follow the project review guidance on our website instead and reference your **Project Code** in all correspondence.

Additional Info About Section 7 of the Act

Under section 7(a)(2) of the Act and its implementing regulations (50 CFR 402 et seq.), Federal agencies are required to determine whether projects may affect threatened and endangered species and/or designated critical habitat. If a Federal agency, or its non-Federal representative, determines that listed species and/or designated critical habitat may be affected by the proposed project, the agency is required to consult with the Service pursuant to 50 CFR 402. In addition, the Federal agency also may need to consider proposed species and proposed critical habitat in the consultation. 50 CFR 402.14(c)(1) specifies the information required for consultation under the Act regardless of the format of the evaluation. More information on the regulations and procedures for section 7 consultation, including the role of permit or license applicants, can be found in the "Endangered Species Consultation Handbook" at:

http://www.fws.gov/endangered/esa-library/pdf/TOC-GLOS.PDF

In addition to consultation requirements under Section 7(a)(2) of the ESA, please note that under sections 7(a)(1) of the Act and its implementing regulations (50 CFR 402 et seq.), Federal agencies are required to utilize their authorities to carry out programs for the conservation of threatened and endangered species. Please contact NEFO if you would like more information.

Candidate species that appear on the enclosed species list have no current protections under the ESA. The species' occurrence on an official species list does not convey a requirement to consider impacts to this species as you would a proposed, threatened, or endangered species. The ESA does not provide for interagency consultations on candidate species under section 7, however, the Service recommends that all project proponents incorporate measures into projects to benefit candidate species and their habitats wherever possible.

Migratory Birds

In addition to responsibilities to protect threatened and endangered species under the Endangered Species Act (ESA), there are additional responsibilities under the Migratory Bird Treaty Act (MBTA) and the Bald and Golden Eagle Protection Act (BGEPA) to protect native birds from project-related impacts. Any activity, intentional or unintentional, resulting in take of migratory birds, including eagles, is prohibited unless otherwise permitted by the U.S. Fish and Wildlife Service (50 C.F.R. Sec. 10.12 and 16 U.S.C. Sec. 668(a)). For more information regarding these Acts see:

https://www.fws.gov/birds/policies-and-regulations.php

Please feel free to contact us at **newengland@fws.gov** with your **Project Code** in the subject line if you need more information or assistance regarding the potential impacts to federally proposed, listed, and candidate species and federally designated and proposed critical habitat.

Attachment(s): Official Species List

Attachment(s):

• Official Species List

Official Species List

This list is provided pursuant to Section 7 of the Endangered Species Act, and fulfills the requirement for Federal agencies to "request of the Secretary of the Interior information whether any species which is listed or proposed to be listed may be present in the area of a proposed action".

This species list is provided by:

New England Ecological Services Field Office 70 Commercial Street, Suite 300 Concord, NH 03301-5094 (603) 223-2541

Project Summary

Project Code: 2022-0023028

Event Code: None

Project Name: 155 North Beacon St.
Project Type: Mixed-Use Construction
Project Description: 155 North Beacon St.

Project Location:

Approximate location of the project can be viewed in Google Maps: https://www.google.com/maps/@42.3560961,-71.1472282953623,14z

Counties: Suffolk County, Massachusetts

Endangered Species Act Species

There is a total of 1 threatened, endangered, or candidate species on this species list.

Species on this list should be considered in an effects analysis for your project and could include species that exist in another geographic area. For example, certain fish may appear on the species list because a project could affect downstream species.

IPaC does not display listed species or critical habitats under the sole jurisdiction of NOAA Fisheries¹, as USFWS does not have the authority to speak on behalf of NOAA and the Department of Commerce.

See the "Critical habitats" section below for those critical habitats that lie wholly or partially within your project area under this office's jurisdiction. Please contact the designated FWS office if you have questions.

1. <u>NOAA Fisheries</u>, also known as the National Marine Fisheries Service (NMFS), is an office of the National Oceanic and Atmospheric Administration within the Department of Commerce.

Insects

NAME

Monarch Butterfly Danaus plexippus

Candidate

No critical habitat has been designated for this species. Species profile: https://ecos.fws.gov/ecp/species/9743

Critical habitats

THERE ARE NO CRITICAL HABITATS WITHIN YOUR PROJECT AREA UNDER THIS OFFICE'S JURISDICTION.

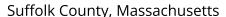
IPaC User Contact Information

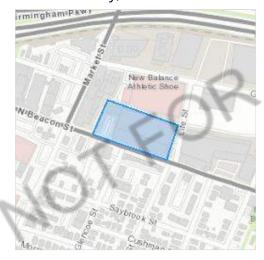
Agency: Haley & Aldrich Name: Taylor Cairns

Address: 465 Medford Street, Suite 2200

City: Boston State: MA Zip: 02129

Email taylc3692@gmail.com


Phone: 6179813038


IPaC resource list

This report is an automatically generated list of species and other resources such as critical habitat (collectively referred to as *trust resources*) under the U.S. Fish and Wildlife Service's (USFWS) jurisdiction that are known or expected to be on or near the project area referenced below. The list may also include trust resources that occur outside of the project area, but that could potentially be directly or indirectly affected by activities in the project area. However, determining the likelihood and extent of effects a project may have on trust resources typically requires gathering additional site-specific (e.g., vegetation/species surveys) and project-specific (e.g., magnitude and timing of proposed activities) information.

Below is a summary of the project information you provided and contact information for the USFWS office(s) with jurisdiction in the defined project area. Please read the introduction to each section that follows (Endangered Species, Migratory Birds, USFWS Facilities, and NWI Wetlands) for additional information applicable to the trust resources addressed in that section.

Location

Local office

New England Ecological Services Field Office

(603) 223-2541

(603) 223-0104

70 Commercial Street, Suite 300 Concord, NH 03301-5094

http://www.fws.gov/newengland

Endangered species

This resource list is for informational purposes only and does not constitute an analysis of project level impacts.

The primary information used to generate this list is the known or expected range of each species. Additional areas of influence (AOI) for species are also considered. An AOI includes areas outside of the species range if the species could be indirectly affected by activities in that area (e.g., placing a dam upstream of a fish population even if that fish does not occur at the dam site, may indirectly impact the species by reducing or eliminating water flow downstream). Because species can move, and site conditions can change, the species on this list are not guaranteed to be found on or near the project area. To fully determine any potential effects to species, additional site-specific and project-specific information is often required.

Section 7 of the Endangered Species Act **requires** Federal agencies to "request of the Secretary information whether any species which is listed or proposed to be listed may be present in the area of such proposed action" for any project that is conducted, permitted, funded, or licensed by any Federal agency. A letter from the local office and a species list which fulfills this requirement can **only** be obtained by requesting an official species list from either the Regulatory Review section in IPaC (see directions below) or from the local field office directly.

For project evaluations that require USFWS concurrence/review, please return to the IPaC website and request an official species list by doing the following:

- 1. Draw the project location and click CONTINUE.
- 2. Click DEFINE PROJECT.
- 3. Log in (if directed to do so).
- 4. Provide a name and description for your project.
- 5. Click REQUEST SPECIES LIST.

Listed species¹ and their critical habitats are managed by the <u>Ecological Services Program</u> of the U.S. Fish and Wildlife Service (USFWS) and the fisheries division of the National Oceanic and Atmospheric Administration (NOAA Fisheries²).

Species and critical habitats under the sole responsibility of NOAA Fisheries are **not** shown on this list. Please contact <u>NOAA Fisheries</u> for <u>species under their jurisdiction</u>.

- 1. Species listed under the <u>Endangered Species Act</u> are threatened or endangered; IPaC also shows species that are candidates, or proposed, for listing. See the <u>listing status page</u> for more information. IPaC only shows species that are regulated by USFWS (see FAQ).
- 2. <u>NOAA Fisheries</u>, also known as the National Marine Fisheries Service (NMFS), is an office of the National Oceanic and Atmospheric Administration within the Department of Commerce.

The following species are potentially affected by activities in this location:

Insects

NAME STATUS

Monarch Butterfly Danaus plexippus

Candidate

Wherever found

No critical habitat has been designated for this species.

https://ecos.fws.gov/ecp/species/9743

Critical habitats

Potential effects to critical habitat(s) in this location must be analyzed along with the endangered species themselves.

THERE ARE NO CRITICAL HABITATS AT THIS LOCATION.

Migratory birds

Certain birds are protected under the Migratory Bird Treaty Act 1 and the Bald and Golden Eagle Protection Act 2 .

Any person or organization who plans or conducts activities that may result in impacts to migratory birds, eagles, and their habitats should follow appropriate regulations and consider implementing appropriate conservation measures, as described <u>below</u>.

- 1. The Migratory Birds Treaty Act of 1918.
- 2. The Bald and Golden Eagle Protection Act of 1940.

Additional information can be found using the following links:

- Birds of Conservation Concern http://www.fws.gov/birds/management/managed-species/birds-of-conservation-concern.php
- Measures for avoiding and minimizing impacts to birds
 http://www.fws.gov/birds/management/project-assessment-tools-and-guidance/conservation-measures.php
- Nationwide conservation measures for birds http://www.fws.gov/migratorybirds/pdf/management/nationwidestandardconservationmeasures.pdf

The birds listed below are birds of particular concern either because they occur on the <u>USFWS Birds of Conservation Concern</u> (BCC) list or warrant special attention in your project location. To learn more about the levels of concern for birds on your list and how this list is generated, see the FAQ <u>below</u>. This is not a list of every bird you may find in this location, nor a guarantee that every bird on this list will be found in your project area. To see exact locations of where birders and the general public have sighted birds in and around your project area, visit the <u>E-bird data mapping tool</u> (Tip: enter your location, desired date range and a species on your list). For projects that occur off the Atlantic Coast, additional maps and models detailing the relative occurrence and abundance of bird

species on your list are available. Links to additional information about Atlantic Coast birds, and other important information about your migratory bird list, including how to properly interpret and use your migratory bird report, can be found <u>below</u>.

For guidance on when to schedule activities or implement avoidance and minimization measures to reduce impacts to migratory birds on your list, click on the PROBABILITY OF PRESENCE SUMMARY at the top of your list to see when these birds are most likely to be present and breeding in your project area.

NAME

BREEDING SEASON (IF A
BREEDING SEASON IS INDICATED
FOR A BIRD ON YOUR LIST, THE
BIRD MAY BREED IN YOUR
PROJECT AREA SOMETIME WITHIN
THE TIMEFRAME SPECIFIED,
WHICH IS A VERY LIBERAL
ESTIMATE OF THE DATES INSIDE
WHICH THE BIRD BREEDS
ACROSS ITS ENTIRE RANGE.
"BREEDS ELSEWHERE" INDICATES
THAT THE BIRD DOES NOT LIKELY
BREED IN YOUR PROJECT AREA.)

Bald Eagle Haliaeetus leucocephalus

This is not a Bird of Conservation Concern (BCC) in this area, but warrants attention because of the Eagle Act or for potential susceptibilities in offshore areas from certain types of development or activities.

https://ecos.fws.gov/ecp/species/1626

Breeds Oct 15 to Aug 31

Black-billed Cuckoo Coccyzus erythropthalmus

This is a Bird of Conservation Concern (BCC) throughout its range in the continental USA and Alaska.

https://ecos.fws.gov/ecp/species/9399

Breeds May 15 to Oct 10

Blue-winged Warbler Vermivora pinus

This is a Bird of Conservation Concern (BCC) only in particular Bird Conservation Regions (BCRs) in the continental USA

Breeds May 1 to Jun 30

Bobolink Dolichonyx oryzivorus

This is a Bird of Conservation Concern (BCC) throughout its range in the continental USA and Alaska.

Breeds May 20 to Jul 31

Canada Warbler Cardellina canadensis

This is a Bird of Conservation Concern (BCC) throughout its range in the continental USA and Alaska.

Breeds May 20 to Aug 10

Cerulean Warbler Dendroica cerulea

This is a Bird of Conservation Concern (BCC) throughout its range in the continental USA and Alaska.

https://ecos.fws.gov/ecp/species/2974

Kentucky Warbler Oporornis formosus

This is a Bird of Conservation Concern (BCC) throughout its range in the continental USA and Alaska.

Breeds Apr 20 to Aug 20

Breeds Apr 29 to Jul 20

Lesser Yellowlegs Tringa flavipes

This is a Bird of Conservation Concern (BCC) throughout its range in the continental USA and Alaska.

https://ecos.fws.gov/ecp/species/9679

Breeds elsewhere

Prairie Warbler Dendroica discolor

This is a Bird of Conservation Concern (BCC) throughout its range in the continental USA and Alaska.

Breeds May 1 to Jul 31

Prothonotary Warbler Protonotaria citrea

This is a Bird of Conservation Concern (BCC) throughout its range in the continental USA and Alaska.

Breeds Apr 1 to Jul 31

Red-headed Woodpecker Melanerpes erythrocephalus

This is a Bird of Conservation Concern (BCC) throughout its range in the continental USA and Alaska.

Breeds May 10 to Sep 10

Rusty Blackbird Euphagus carolinus

This is a Bird of Conservation Concern (BCC) only in particular Bird Conservation Regions (BCRs) in the continental USA

Breeds elsewhere

Wood Thrush Hylocichla mustelina

This is a Bird of Conservation Concern (BCC) throughout its range in the continental USA and Alaska.

Breeds May 10 to Aug 31

Probability of Presence Summary

The graphs below provide our best understanding of when birds of concern are most likely to be present in your project area. This information can be used to tailor and schedule your project activities to avoid or minimize impacts to birds. Please make sure you read and understand the FAQ "Proper Interpretation and Use of Your Migratory Bird Report" before using or attempting to interpret this report.

Probability of Presence (■)

Each green bar represents the bird's relative probability of presence in the 10km grid cell(s) your project overlaps during a particular week of the year. (A year is represented as 12 4-week months.) A taller bar indicates a higher probability of species presence. The survey effort (see below) can be used to establish a level of confidence in the presence score. One can have higher confidence in the presence score if the corresponding survey effort is also high.

How is the probability of presence score calculated? The calculation is done in three steps:

- 1. The probability of presence for each week is calculated as the number of survey events in the week where the species was detected divided by the total number of survey events for that week. For example, if in week 12 there were 20 survey events and the Spotted Towhee was found in 5 of them, the probability of presence of the Spotted Towhee in week 12 is 0.25.
- 2. To properly present the pattern of presence across the year, the relative probability of presence is calculated. This is the probability of presence divided by the maximum probability of presence across all weeks. For example, imagine the probability of presence in week 20 for the Spotted Towhee is 0.05, and that the probability of presence at week 12 (0.25) is the maximum of any week of the year. The relative probability of presence on week 12 is 0.25/0.25 = 1; at week 20 it is 0.05/0.25 = 0.2.
- 3. The relative probability of presence calculated in the previous step undergoes a statistical conversion so that all possible values fall between 0 and 10, inclusive. This is the probability of presence score.

To see a bar's probability of presence score, simply hover your mouse cursor over the bar.

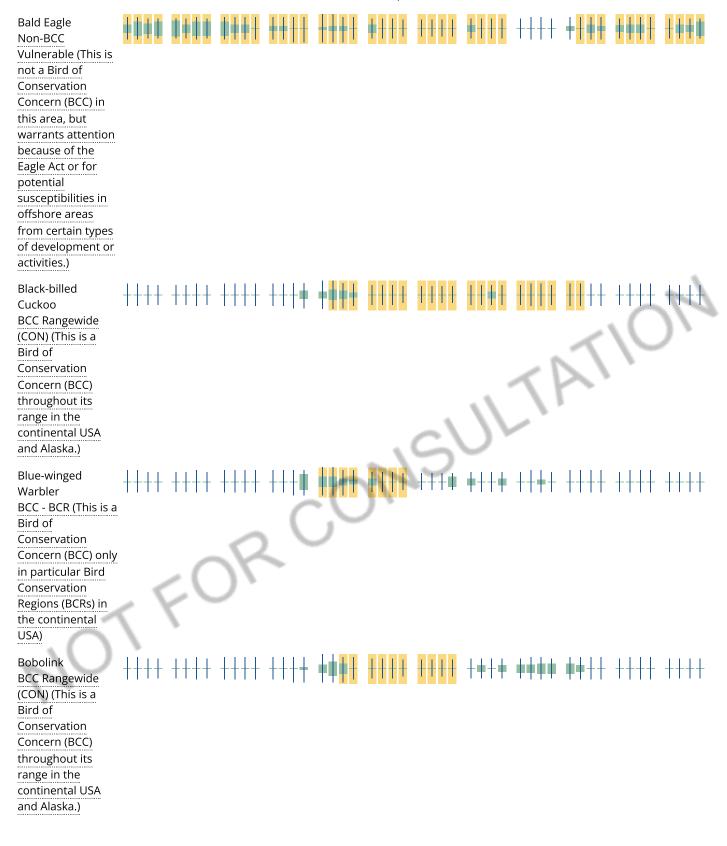
Breeding Season (

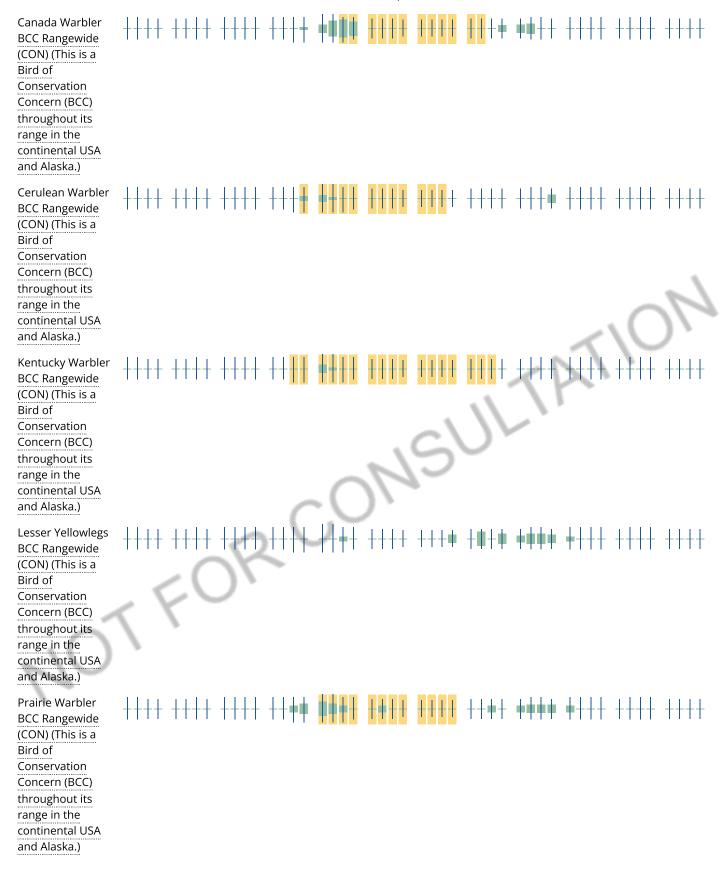
Yellow bars denote a very liberal estimate of the time-frame inside which the bird breeds across its entire range. If there are no yellow bars shown for a bird, it does not breed in your project area.

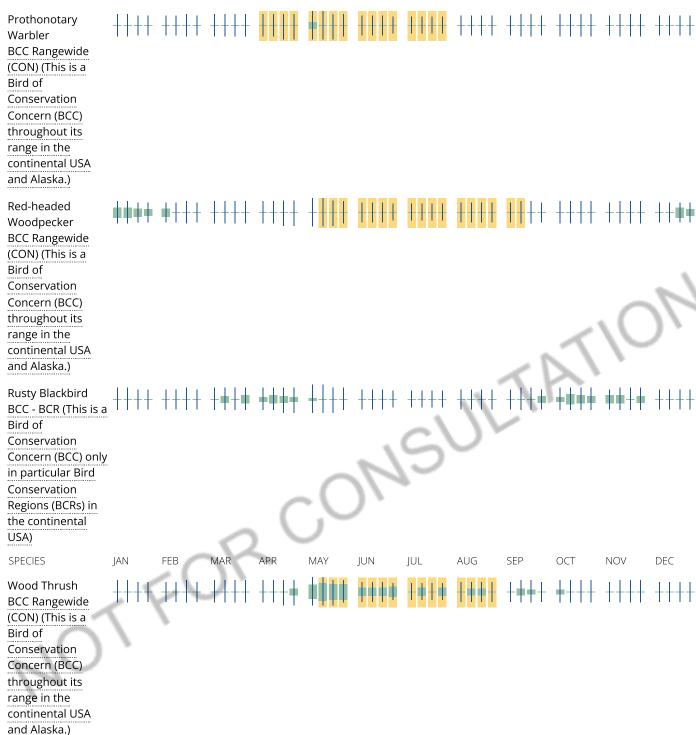
Survey Effort (1)

Vertical black lines superimposed on probability of presence bars indicate the number of surveys performed for that species in the 10km grid cell(s) your project area overlaps. The number of surveys is expressed as a range, for example, 33 to 64 surveys.

To see a bar's survey effort range, simply hover your mouse cursor over the bar.


No Data (-)


A week is marked as having no data if there were no survey events for that week.


Survey Timeframe

Surveys from only the last 10 years are used in order to ensure delivery of currently relevant information. The exception to this is areas off the Atlantic coast, where bird returns are based on all years of available data, since data in these areas is currently much more sparse.

Tell me more about conservation measures I can implement to avoid or minimize impacts to migratory birds.

Nationwide Conservation Measures describes measures that can help avoid and minimize impacts to all birds at any location year round. Implementation of these measures is particularly important when birds are most likely to occur in the project area. When birds may be breeding in the area, identifying the locations of any active nests and avoiding their destruction is a very helpful impact minimization measure. To see when birds are most likely to occur and be breeding in your project area, view the Probability of Presence Summary. Additional measures or permits may be advisable depending on the type of activity you are conducting and the type of infrastructure or bird species present on your project site.

What does IPaC use to generate the migratory birds potentially occurring in my specified location?

The Migratory Bird Resource List is comprised of USFWS <u>Birds of Conservation Concern (BCC)</u> and other species that may warrant special attention in your project location.

The migratory bird list generated for your project is derived from data provided by the <u>Avian Knowledge Network (AKN)</u>. The AKN data is based on a growing collection of <u>survey, banding, and citizen science datasets</u> and is queried and filtered to return a list of those birds reported as occurring in the 10km grid cell(s) which your project intersects, and that have been identified as warranting special attention because they are a BCC species in that area, an eagle (<u>Eagle Act</u> requirements may apply), or a species that has a particular vulnerability to offshore activities or development.

Again, the Migratory Bird Resource list includes only a subset of birds that may occur in your project area. It is not representative of all birds that may occur in your project area. To get a list of all birds potentially present in your project area, please visit the AKN Phenology Tool.

What does IPaC use to generate the probability of presence graphs for the migratory birds potentially occurring in my specified location?

The probability of presence graphs associated with your migratory bird list are based on data provided by the <u>Avian Knowledge Network (AKN)</u>. This data is derived from a growing collection of <u>survey, banding, and citizen</u> science datasets.

Probability of presence data is continuously being updated as new and better information becomes available. To learn more about how the probability of presence graphs are produced and how to interpret them, go the Probability of Presence Summary and then click on the "Tell me about these graphs" link.

How do I know if a bird is breeding, wintering, migrating or present year-round in my project area?

To see what part of a particular bird's range your project area falls within (i.e. breeding, wintering, migrating or year-round), you may refer to the following resources: The Cornell Lab of Ornithology All About Birds Bird Guide, or (if you are unsuccessful in locating the bird of interest there), the Cornell Lab of Ornithology Neotropical Birds guide. If a bird on your migratory bird species list has a breeding season associated with it, if that bird does occur in your project area, there may be nests present at some point within the timeframe specified. If "Breeds elsewhere" is indicated, then the bird likely does not breed in your project area.

What are the levels of concern for migratory birds?

Migratory birds delivered through IPaC fall into the following distinct categories of concern:

- 1. "BCC Rangewide" birds are <u>Birds of Conservation Concern</u> (BCC) that are of concern throughout their range anywhere within the USA (including Hawaii, the Pacific Islands, Puerto Rico, and the Virgin Islands);
- 2. "BCC BCR" birds are BCCs that are of concern only in particular Bird Conservation Regions (BCRs) in the continental USA; and
- 3. "Non-BCC Vulnerable" birds are not BCC species in your project area, but appear on your list either because of the <u>Eagle Act</u> requirements (for eagles) or (for non-eagles) potential susceptibilities in offshore areas from certain types of development or activities (e.g. offshore energy development or longline fishing).

Although it is important to try to avoid and minimize impacts to all birds, efforts should be made, in particular, to avoid and minimize impacts to the birds on this list, especially eagles and BCC species of rangewide concern. For more information on conservation measures you can implement to help avoid and minimize migratory bird impacts and requirements for eagles, please see the FAQs for these topics.

Details about birds that are potentially affected by offshore projects

For additional details about the relative occurrence and abundance of both individual bird species and groups of bird species within your project area off the Atlantic Coast, please visit the Northeast Ocean Data Portal. The Portal also offers data and information about other taxa besides birds that may be helpful to you in your project review. Alternately, you may download the bird model results files underlying the portal maps through the NOAA NCCOS Integrative Statistical Modeling and Predictive Mapping of Marine Bird Distributions and Abundance on the Atlantic Outer Continental Shelf project webpage.

Bird tracking data can also provide additional details about occurrence and habitat use throughout the year, including migration. Models relying on survey data may not include this information. For additional information on marine bird tracking data, see the <u>Diving Bird Study</u> and the <u>nanotag studies</u> or contact <u>Caleb Spiegel</u> or <u>Pam Loring</u>.

What if I have eagles on my list?

If your project has the potential to disturb or kill eagles, you may need to <u>obtain a permit</u> to avoid violating the Eagle Act should such impacts occur.

Proper Interpretation and Use of Your Migratory Bird Report

The migratory bird list generated is not a list of all birds in your project area, only a subset of birds of priority concern. To learn more about how your list is generated, and see options for identifying what other birds may be in your project area, please see the FAQ "What does IPaC use to generate the migratory birds potentially occurring in my specified location". Please be aware this report provides the "probability of presence" of birds within the 10 km grid cell(s) that overlap your project; not your exact project footprint. On the graphs provided, please also look carefully at the survey effort (indicated by the black vertical bar) and for the existence of the "no data" indicator (a red horizontal bar). A high survey effort is the key component. If the survey effort is high, then the probability of presence score can be viewed as more dependable. In contrast, a low survey effort bar or no data bar means a lack of data and, therefore, a lack of certainty about presence of the species. This list is not perfect; it is simply a starting point for identifying what birds of concern have the potential to be in your project area, when they might be there, and if they might be breeding (which means nests might be present). The list helps you know what to look for to confirm presence, and helps guide you in knowing when to implement conservation measures to avoid or minimize potential impacts from your project activities, should presence be confirmed. To learn more about conservation measures, visit the FAQ "Tell me about conservation measures I can implement to avoid or minimize impacts to migratory birds" at the bottom of your migratory bird trust resources page.

Facilities

Wildlife refuges and fish hatcheries

REFUGE AND FISH HATCHERY INFORMATION IS NOT AVAILABLE AT THIS TIME

Wetlands in the National Wetlands Inventory

Impacts to <u>NWI wetlands</u> and other aquatic habitats may be subject to regulation under Section 404 of the Clean Water Act, or other State/Federal statutes.

For more information please contact the Regulatory Program of the local <u>U.S. Army Corps of Engineers District</u>.

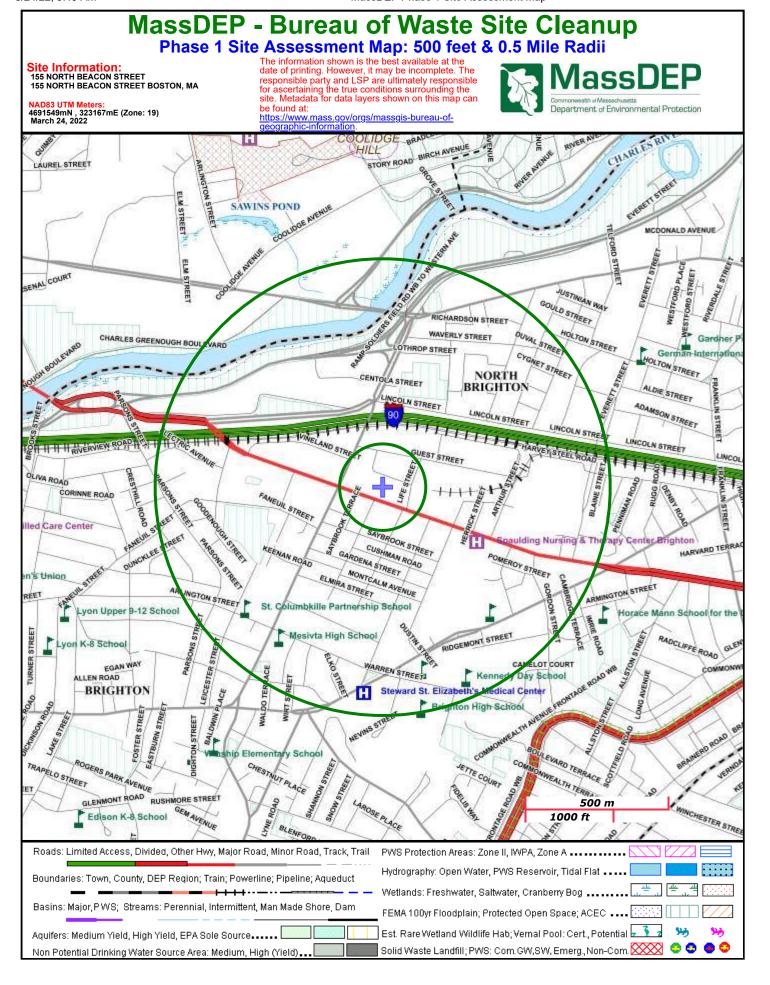
WETI AND INFORMATION IS NOT AVAILABLE AT THIS TIME

This can happen when the National Wetlands Inventory (NWI) map service is unavailable, or for very large projects that intersect many wetland areas. Try again, or visit the <u>NWI map</u> to view wetlands at this location.

Data limitations

The Service's objective of mapping wetlands and deepwater habitats is to produce reconnaissance level information on the location, type and size of these resources. The maps are prepared from the analysis of high altitude imagery. Wetlands are identified based on vegetation, visible hydrology and geography. A margin of error is inherent in the use of imagery; thus, detailed on-the-ground inspection of any particular site may result in revision of the wetland boundaries or classification established through image analysis.

The accuracy of image interpretation depends on the quality of the imagery, the experience of the image analysts, the amount and quality of the collateral data and the amount of ground truth verification work conducted. Metadata should be consulted to determine the date of the source imagery used and any mapping problems.


Wetlands or other mapped features may have changed since the date of the imagery or field work. There may be occasional differences in polygon boundaries or classifications between the information depicted on the map and the actual conditions on site.

Data exclusions

Certain wetland habitats are excluded from the National mapping program because of the limitations of aerial imagery as the primary data source used to detect wetlands. These habitats include seagrasses or submerged aquatic vegetation that are found in the intertidal and subtidal zones of estuaries and nearshore coastal waters. Some deepwater reef communities (coral or tuberficid worm reefs) have also been excluded from the inventory. These habitats, because of their depth, go undetected by aerial imagery.

Data precautions

Federal, state, and local regulatory agencies with jurisdiction over wetlands may define and describe wetlands in a different manner than that used in this inventory. There is no attempt, in either the design or products of this inventory, to define the limits of proprietary jurisdiction of any Federal, state, or local government or to establish the geographical scope of the regulatory programs of government agencies. Persons intending to engage in activities involving modifications within or adjacent to wetland areas should seek the advice of appropriate federal, state, or local agencies concerning specified agency regulatory programs and proprietary jurisdictions that may affect such activities.

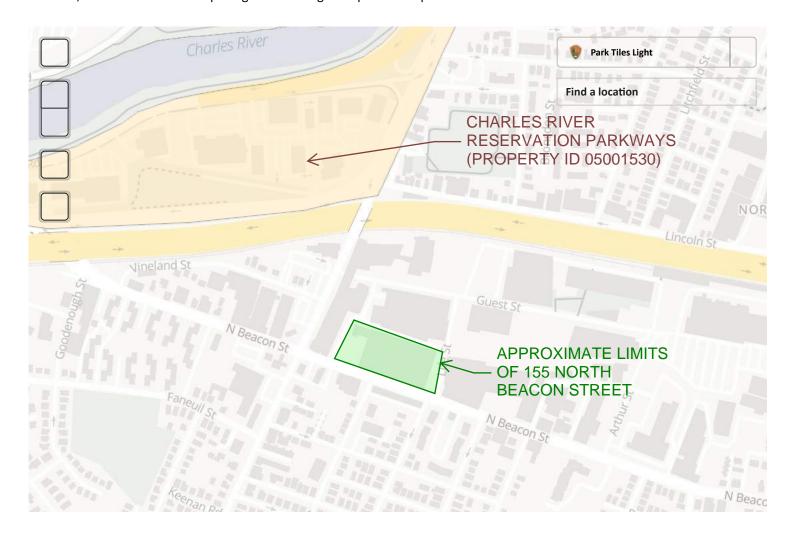
APPENDIX E

National Register of Historic Places and Massachusetts Historical Commission Documentation

Massachusetts Cultural Resource Information System MACRIS

MACRIS Search Results

Search Date: 3/23/2022


Search Criteria: Town(s): Boston; Street Name: north beacon;

Inv. No.	Property Name	Street	Town	Year	Designations
BOS.ADJ	International Harvester New England Branch Headquarters		Boston		
BOS.9607	Charles River Reservation - Nonantum Road	Nonantum Rd	Boston	1910	NRDIS; NRMPS;
BOS.9610	Charles River Reservation - North Beacon Street	North Beacon St	Boston	R 1920	NRDIS; NRMPS;
BOS.9611	North Beacon Street Bridge over Charles River	North Beacon St	Boston	R 1920	NRDIS; NRMPS;
BOS.8283		19 North Beacon St	Boston	R 1810	
BOS.17086	Charles River Saab Parts Storage	61 North Beacon St	Boston	1995	
BOS.17085	International Harvester New England Branch Headquarters and Motor Truck Showroom	61 North Beacon St	Boston	1925	
BOS.8679		62 North Beacon St	Boston	R 1890	
BOS.17087	International Harvester New England Branch Headquarters - Service Station	67 North Beacon St	Boston	1924	
BOS.5952	Englewood Diner	69 North Beacon St	Boston	R 1935	NRDOE;
BOS.17088	International Harvester New England Branch Headquarters - Truck Storage Facility	69 North Beacon St	Boston	1925	
BOS.8680	Baldwin, Henry House	78 North Beacon St	Boston	R 1895	
BOS.9621	Dunkin' Donuts Sign	214 North Beacon St	Boston	1957	
BOS.8284	Pig 'N' Whistle Diner	226 North Beacon St	Boston	1938	
BOS.9602	Charles River Reservation - Soldiers Field Road	Soldiers Field Rd	Boston	1899	NRDIS; NRMPS;
BOS.9606	Soldiers Field Road - North Beacon Street Oval	Soldiers Field Rd	Boston	C 1958	NRDIS; NRMPS;
BOS.9603	Soldiers Field Road Planted Median	Soldiers Field Rd	Boston	R 1920	NRDIS; NRMPS;

National Register of Histori...

National Park Service U.S. Department of the Interior

Public, non-restricted data depicting National Register spatial data proce...

:Map (https://www.openstreetmap.org/copyright) contributors | Cultural Resources GIS, National Park Service | Geocoding by Esri

| Website Policies (https://www.nps.gov/aboutus/website-policies.htm) | Contact Us (https://www.nps.gov/contacts.htm)

APPENDIX F

Laboratory Data Reports

ANALYTICAL REPORT

Lab Number: L2205320

Client: Haley & Aldrich, Inc.

465 Medford Street, Suite 2200 Charlestown, MA 02129-1400

ATTN: Kyle Block Phone: (617) 886-7440

Project Name: 155 NORTH BEACON STREET

Project Number: 0201602-000

Report Date: 02/08/22

The original project report/data package is held by Alpha Analytical. This report/data package is paginated and should be reproduced only in its entirety. Alpha Analytical holds no responsibility for results and/or data that are not consistent with the original.

Certifications & Approvals: MA (M-MA086), NH NELAP (2064), CT (PH-0574), IL (200077), ME (MA00086), MD (348), NJ (MA935), NY (11148), NC (25700/666), PA (68-03671), RI (LAO00065), TX (T104704476), VT (VT-0935), VA (460195), USDA (Permit #P330-17-00196).

Eight Walkup Drive, Westborough, MA 01581-1019 508-898-9220 (Fax) 508-898-9193 800-624-9220 - www.alphalab.com

Serial_No:02082215:21

Project Name: 155 NORTH BEACON STREET

Project Number: 0201602-000

Lab Number:

L2205320

Report Date:

02/08/22

Alpha Sample ID			Sample Location	Collection Date/Time	Receive Date
L2205320-01	HA21-B6A(OW)_20220201	WATER	BOSTON, MA	02/01/22 13:00	02/01/22

Project Name: 155 NORTH BEACON STREET Lab Number: L2205320

Project Number: 0201602-000 **Report Date:** 02/08/22

MADEP MCP Response Action Analytical Report Certification

This form provides certifications for all samples performed by MCP methods. Please refer to the Sample Results and Container Information sections of this report for specification of MCP methods used for each analysis. The following questions pertain only to MCP Analytical Methods.

An af	firmative response to questions A through F is required for "Presumptive Certainty" status	
A	Were all samples received in a condition consistent with those described on the Chain-of-Custody, properly preserved (including temperature) in the field or laboratory, and prepared/analyzed within method holding times?	YES
В	Were the analytical method(s) and all associated QC requirements specified in the selected CAM protocol(s) followed?	YES
С	Were all required corrective actions and analytical response actions specified in the selected CAM protocol(s) implemented for all identified performance standard non-conformances?	YES
D	Does the laboratory report comply with all the reporting requirements specified in CAM VII A, "Quality Assurance and Quality Control Guidelines for the Acquisition and Reporting of Analytical Data?"	YES
E a.	VPH, EPH, and APH Methods only: Was each method conducted without significant modification(s)? (Refer to the individual method(s) for a list of significant modifications).	YES
E b.	APH and TO-15 Methods only: Was the complete analyte list reported for each method?	N/A
F	Were all applicable CAM protocol QC and performance standard non-conformances identified and evaluated in a laboratory narrative (including all "No" responses to Questions A through E)?	YES

A response to questions G, H and I is required for "Presumptive Certainty" status							
G	Were the reporting limits at or below all CAM reporting limits specified in the selected CAM protocol(s)?	YES					
Н	Were all QC performance standards specified in the CAM protocol(s) achieved?	NO					
ı	Were results reported for the complete analyte list specified in the selected CAM protocol(s)?	NO					

For any questions answered "No", please refer to the case narrative section on the following page(s).

Please note that sample matrix information is located in the Sample Results section of this report.

Project Name: 155 NORTH BEACON STREET Lab Number: L2205320
Project Number: 0201602-000 Report Date: 02/08/22

Case Narrative

The samples were received in accordance with the Chain of Custody and no significant deviations were encountered during the preparation or analysis unless otherwise noted. Sample Receipt, Container Information, and the Chain of Custody are located at the back of the report.

Results contained within this report relate only to the samples submitted under this Alpha Lab Number and meet NELAP requirements for all NELAP accredited parameters unless otherwise noted in the following narrative. The data presented in this report is organized by parameter (i.e. VOC, SVOC, etc.). Sample specific Quality Control data (i.e. Surrogate Spike Recovery) is reported at the end of the target analyte list for each individual sample, followed by the Laboratory Batch Quality Control at the end of each parameter. Tentatively Identified Compounds (TICs), if requested, are reported for compounds identified to be present and are not part of the method/program Target Compound List, even if only a subset of the TCL are being reported. If a sample was re-analyzed or re-extracted due to a required quality control corrective action and if both sets of data are reported, the Laboratory ID of the re-analysis or re-extraction is designated with an "R" or "RE", respectively.

When multiple Batch Quality Control elements are reported (e.g. more than one LCS), the associated samples for each element are noted in the grey shaded header line of each data table. Any Laboratory Batch, Sample Specific % recovery or RPD value that is outside the listed Acceptance Criteria is bolded in the report. In reference to questions H (CAM) or 4 (RCP) when "NO" is checked, the performance criteria for CAM and RCP methods allow for some quality control failures to occur and still be within method compliance. In these instances, the specific failure is not narrated but noted in the associated QC Outlier Summary Report, located directly after the Case Narrative. QC information is also incorporated in the Data Usability Assessment table (Format 11) of our Data Merger tool, where it can be reviewed in conjunction with the sample result, associated regulatory criteria and any associated data usability implications.

Soil/sediments, solids and tissues are reported on a dry weight basis unless otherwise noted. Definitions of all data qualifiers and acronyms used in this report are provided in the Glossary located at the back of the report.

HOLD POLICY - For samples submitted on hold, Alpha's policy is to hold samples (with the exception of Air canisters) free of charge for 21 calendar days from the date the project is completed. After 21 calendar days, we will dispose of all samples submitted including those put on hold unless you have contacted your Alpha Project Manager and made arrangements for Alpha to continue to hold the samples. Air canisters will be disposed after 3 business days from the date the project is completed.

Please contact Project Management at 800-624-9220 with any questions.	

Serial_No:02082215:21

Project Name:155 NORTH BEACON STREETLab Number:L2205320Project Number:0201602-000Report Date:02/08/22

Case Narrative (continued)

MCP Related Narratives

Volatile Organics

In reference to question H:

L2205320-01: Initial Calibration did not meet:

Lowest Calibration Standard Minimum Response Factor: 1,4-dioxane (0.0025)

Average Response Factor: 1,4-dioxane

L2205320-01: The associated continuing calibration standard is outside the acceptance criteria for several compounds; however, it is within overall method allowances. Associated results are considered to be biased high if the %D is negative and biased low if the %D is positive. A copy of the continuing calibration standard is included as an addendum to this report.

Semivolatile Organics by SIM

L2205320-01, WG1601866-1, WG1601866-2, and WG1601866-3: The initial calibration utilized a quadratic fit for Pentachlorophenol and Benzo(a)anthracene.

VPH

In reference to question I:

All samples were analyzed for a subset of MCP analytes per client request.

EPH

In reference to question I:

All samples were analyzed for a subset of MCP analytes per client request.

I, the undersigned, attest under the pains and penalties of perjury that, to the best of my knowledge and belief and based upon my personal inquiry of those responsible for providing the information contained in this analytical report, such information is accurate and complete. This certificate of analysis is not complete unless this page accompanies any and all pages of this report.

Authorized Signature:

Sebastian Corbin

Title: Technical Director/Representative

ALPHA

Date: 02/08/22

QC OUTLIER SUMMARY REPORT

Project Name: 155 NORTH BEACON STREET

Lab Number:

L2205320

Project Number: 0201602-000

Report Date:

02/08/22

					Recovery/RPD QC		Associated	Data Quality
Method	Client ID (Native ID)	Lab ID	Parameter	QC Type	(%)	(%)	Samples	Assessment
MCP Volatil	le Organics - Westborough Lab							
8260D	Batch QC	WG1601035-3	Acetone	LCS	150 70)-130	01	potential high bias
8260D	Batch QC	WG1601035-4	Acetone	LCSD	160 70)-130	01	potential high bias
MCP Semiv	volatile Organics - Westborough Lab							
8270E	Batch QC	WG1601865-3	3,3'-Dichlorobenzidine	LCSD	31	20	01	non-directional bias
8270E	Batch QC	WG1601865-3	Aniline	LCSD	18 40)-140	01	potential low bias
8270E	Batch QC	WG1601865-3	Aniline	LCSD	94	20	01	non-directional bias
8270E	Batch QC	WG1601865-3	4-Chloroaniline	LCSD	23	20	01	non-directional bias
8270E	Batch QC	WG1601865-3	2,4-Dimethylphenol	LCSD	43	20	01	non-directional bias
MCP Semivolatile Organics by SIM - Westborough Lab								
8270E-SIM	Batch QC	WG1601866-3	Hexachlorobutadiene	LCSD	23	20	01	non-directional bias
8270E-SIM	Batch QC	WG1601866-3	Hexachloroethane	LCSD	23	20	01	non-directional bias

ORGANICS

VOLATILES

Serial_No:02082215:21

L2205320

Project Name: 155 NORTH BEACON STREET

Project Number: 0201602-000

Report Date: 02/08/22

Lab Number:

SAMPLE RESULTS

Lab ID: L2205320-01 Date Collected: 02/01/22 13:00

Client ID: HA21-B6A(OW)_20220201 Date Received: 02/01/22 Sample Location: BOSTON, MA Field Prep: Not Specified

Sample Depth:

Matrix: Water
Analytical Method: 141,8260D
Analytical Date: 02/03/22 06:08

Analyst: MM

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
MCP Volatile Organics - Westborough Lab						
Methylene chloride	ND		ug/l	2.0		1
1,1-Dichloroethane	ND		ug/l	1.0		1
Chloroform	ND		ug/l	1.0		1
Carbon tetrachloride	ND		ug/l	1.0		1
1,2-Dichloropropane	ND		ug/l	1.0		1
Dibromochloromethane	ND		ug/l	1.0		1
1,1,2-Trichloroethane	ND		ug/l	1.0		1
Tetrachloroethene	ND		ug/l	1.0		1
Chlorobenzene	ND		ug/l	1.0		1
Trichlorofluoromethane	ND		ug/l	2.0		1
1,2-Dichloroethane	ND		ug/l	1.0		1
1,1,1-Trichloroethane	ND		ug/l	1.0		1
Bromodichloromethane	ND		ug/l	1.0		1
trans-1,3-Dichloropropene	ND		ug/l	0.40		1
cis-1,3-Dichloropropene	ND		ug/l	0.40		1
1,3-Dichloropropene, Total	ND		ug/l	0.40		1
1,1-Dichloropropene	ND		ug/l	2.0		1
Bromoform	ND		ug/l	2.0		1
1,1,2,2-Tetrachloroethane	ND		ug/l	1.0		1
Benzene	ND		ug/l	0.50		1
Toluene	ND		ug/l	1.0		1
Ethylbenzene	ND		ug/l	1.0		1
Chloromethane	ND		ug/l	2.0		1
Bromomethane	ND		ug/l	2.0		1
Vinyl chloride	ND		ug/l	1.0		1
Chloroethane	ND		ug/l	2.0		1
1,1-Dichloroethene	ND		ug/l	1.0		1
trans-1,2-Dichloroethene	ND		ug/l	1.0		1

L2205320

02/08/22

Project Name: 155 NORTH BEACON STREET

HA21-B6A(OW)_20220201

Project Number: 0201602-000

L2205320-01

BOSTON, MA

SAMPLE RESULTS

Date Collected: 02/01/22 13:00

Date Received: 02/01/22

Lab Number:

Report Date:

Field Prep: Not Specified

Sample Depth:

Sample Location:

Lab ID:

Client ID:

Parameter	Result	Qualifier Units	RL	MDL	Dilution Factor
MCP Volatile Organics - Westboro	ugh Lab				
Trichloroethene	ND	ug/l	1.0		1
1,2-Dichlorobenzene	ND	ug/l	1.0		1
1,3-Dichlorobenzene	ND	ug/l	1.0		1
1,4-Dichlorobenzene	ND	ug/l	1.0		1
Methyl tert butyl ether	ND	ug/l	2.0		1
p/m-Xylene	ND	ug/l	2.0		1
o-Xylene	ND	ug/l	1.0		1
Xylenes, Total	ND	ug/l	1.0		1
cis-1,2-Dichloroethene	ND	ug/l	1.0		1
1,2-Dichloroethene, Total	ND	ug/l	1.0		1
Dibromomethane	ND	ug/l	2.0		1
1,2,3-Trichloropropane	ND	ug/l	2.0		1
Styrene	ND	ug/l	1.0		1
Dichlorodifluoromethane	ND	ug/l	2.0		1
Acetone	ND	ug/l	5.0		1
Carbon disulfide	ND	ug/l	2.0		1
Methyl ethyl ketone	ND	ug/l	5.0		1
Methyl isobutyl ketone	ND	ug/l	5.0		1
2-Hexanone	ND	ug/l	5.0		1
Bromochloromethane	ND	ug/l	2.0		1
Tetrahydrofuran	ND	ug/l	2.0		1
2,2-Dichloropropane	ND	ug/l	2.0		1
1,2-Dibromoethane	ND	ug/l	2.0		1
1,3-Dichloropropane	ND	ug/l	2.0		1
1,1,1,2-Tetrachloroethane	ND	ug/l	1.0		1
Bromobenzene	ND	ug/l	2.0		1
n-Butylbenzene	ND	ug/l	2.0		1
sec-Butylbenzene	ND	ug/l	2.0		1
tert-Butylbenzene	ND	ug/l	2.0		1
o-Chlorotoluene	ND	ug/l	2.0		1
p-Chlorotoluene	ND	ug/l	2.0		1
1,2-Dibromo-3-chloropropane	ND	ug/l	2.0		1
Hexachlorobutadiene	ND	ug/l	0.60		1
Isopropylbenzene	ND	ug/l	2.0		1
p-Isopropyltoluene	ND	ug/l	2.0		1
Naphthalene	ND	ug/l	2.0		1
n-Propylbenzene	ND	ug/l	2.0		1

02/08/22

Project Name: Lab Number: 155 NORTH BEACON STREET L2205320

Project Number: Report Date: 0201602-000

SAMPLE RESULTS

Lab ID: L2205320-01 Date Collected: 02/01/22 13:00

HA21-B6A(OW)_20220201 Client ID: Date Received: 02/01/22 Field Prep: Not Specified

Sample Location: BOSTON, MA

Sample Depth:

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	
MCP Volatile Organics - Westborough L	₋ab						
1,2,3-Trichlorobenzene	ND		ug/l	2.0		1	
1,2,4-Trichlorobenzene	ND		ug/l	2.0		1	
1,3,5-Trimethylbenzene	ND		ug/l	2.0		1	
1,2,4-Trimethylbenzene	ND		ug/l	2.0		1	
Diethyl ether	ND		ug/l	2.0		1	
Diisopropyl Ether	ND		ug/l	2.0		1	
Ethyl-Tert-Butyl-Ether	ND		ug/l	2.0		1	
Tertiary-Amyl Methyl Ether	ND		ug/l	2.0		1	
1,4-Dioxane	ND		ug/l	250		1	

Surrogate	% Recovery	Acceptance Qualifier Criteria	
1,2-Dichloroethane-d4	103	70-130	
Toluene-d8	93	70-130	
4-Bromofluorobenzene	97	70-130	
Dibromofluoromethane	113	70-130	

Project Name: 155 NORTH BEACON STREET **Lab Number:** L2205320

Project Number: 0201602-000 **Report Date:** 02/08/22

Method Blank Analysis Batch Quality Control

Analytical Method: 141,8260D Analytical Date: 02/03/22 04:47

Analyst: MM

Parameter	Result	Qualifier	Units	3	RL	MDL	
MCP Volatile Organics	- Westborough Lab for	sample(s):	01	Batch:	WG1	601035-5	
Methylene chloride	ND		ug/l		2.0		
1,1-Dichloroethane	ND		ug/l		1.0		
Chloroform	ND		ug/l		1.0		
Carbon tetrachloride	ND		ug/l		1.0		
1,2-Dichloropropane	ND		ug/l		1.0		
Dibromochloromethane	ND		ug/l		1.0		
1,1,2-Trichloroethane	ND		ug/l		1.0		
Tetrachloroethene	ND		ug/l		1.0		
Chlorobenzene	ND		ug/l		1.0		
Trichlorofluoromethane	ND		ug/l		2.0		
1,2-Dichloroethane	ND		ug/l		1.0		
1,1,1-Trichloroethane	ND		ug/l		1.0		
Bromodichloromethane	ND		ug/l		1.0		
trans-1,3-Dichloropropene	ND		ug/l		0.40		
cis-1,3-Dichloropropene	ND		ug/l		0.40		
1,3-Dichloropropene, Total	l ND		ug/l		0.40		
1,1-Dichloropropene	ND		ug/l		2.0		
Bromoform	ND		ug/l		2.0		
1,1,2,2-Tetrachloroethane	ND		ug/l		1.0		
Benzene	ND		ug/l		0.50		
Toluene	ND		ug/l		1.0		
Ethylbenzene	ND		ug/l		1.0		
Chloromethane	ND		ug/l		2.0		
Bromomethane	ND		ug/l		2.0		
Vinyl chloride	ND		ug/l		1.0		
Chloroethane	ND		ug/l		2.0		
1,1-Dichloroethene	ND		ug/l		1.0		
trans-1,2-Dichloroethene	ND		ug/l		1.0		
Trichloroethene	ND		ug/l		1.0		

Project Name: 155 NORTH BEACON STREET **Lab Number:** L2205320

Project Number: 0201602-000 **Report Date:** 02/08/22

Method Blank Analysis Batch Quality Control

Analytical Method: 141,8260D Analytical Date: 02/03/22 04:47

Analyst: MM

arameter	Result	Qualifier Uni	ts	RL	MDL	
ICP Volatile Organics	- Westborough Lab for	sample(s): 01	Batch:	WG160	1035-5	
1,2-Dichlorobenzene	ND	ug	ı/I	1.0		
1,3-Dichlorobenzene	ND	ug	ı/l	1.0		
1,4-Dichlorobenzene	ND	ug	ı/l	1.0		
Methyl tert butyl ether	ND	ug	ı/l	2.0		
p/m-Xylene	ND	ug	ı/l	2.0		
o-Xylene	ND	ug	ı/l	1.0		
Xylenes, Total	ND	ug	ı/l	1.0		
cis-1,2-Dichloroethene	ND	ug	ı/l	1.0		
1,2-Dichloroethene, Total	ND	ug	ı/l	1.0		
Dibromomethane	ND	ug	ı/l	2.0		
1,2,3-Trichloropropane	ND	ug	ı/l	2.0		
Styrene	ND	ug	ı/l	1.0		
Dichlorodifluoromethane	ND	ug	ı/l	2.0		
Acetone	ND	ug	ı/l	5.0		
Carbon disulfide	ND	ug	ı/l	2.0		
Methyl ethyl ketone	ND	ug	ı/l	5.0		
Methyl isobutyl ketone	ND	ug	ı/l	5.0		
2-Hexanone	ND	ug	ı/l	5.0		
Bromochloromethane	ND	ug	ı/l	2.0		
Tetrahydrofuran	ND	ug	ı/l	2.0		
2,2-Dichloropropane	ND	ug	ı/l	2.0		
1,2-Dibromoethane	ND	ug	ı/l	2.0		
1,3-Dichloropropane	ND	ug	ı/l	2.0		
1,1,1,2-Tetrachloroethane	ND	ug	ı/l	1.0		
Bromobenzene	ND	ug	ı/l	2.0		
n-Butylbenzene	ND	ug	ı/I	2.0		
sec-Butylbenzene	ND	ug	ı/I	2.0		
tert-Butylbenzene	ND	ug	ı/I	2.0		
o-Chlorotoluene	ND	ug	ı/l	2.0		

L2205320

Lab Number:

Project Name: 155 NORTH BEACON STREET

Project Number: 0201602-000 **Report Date:** 02/08/22

Method Blank Analysis Batch Quality Control

Batch Quality Control

141,8260D

02/03/22 04:47

Analyst: MM

Analytical Method:

Analytical Date:

Parameter	Result	Qualifier	Unit	s	RL	MDL
MCP Volatile Organics - Westboro	ugh Lab for s	sample(s):	01	Batch:	WG16	601035-5
p-Chlorotoluene	ND		ug	/	2.0	
1,2-Dibromo-3-chloropropane	ND		ug	/I	2.0	
Hexachlorobutadiene	ND		ug	/ I	0.60	
Isopropylbenzene	ND		ug	1	2.0	
p-Isopropyltoluene	ND		ug	1	2.0	
Naphthalene	ND		ug	/1	2.0	
n-Propylbenzene	ND		ug	/ I	2.0	
1,2,3-Trichlorobenzene	ND		ug	/ I	2.0	
1,2,4-Trichlorobenzene	ND		ug	/ I	2.0	
1,3,5-Trimethylbenzene	ND		ug	/ I	2.0	
1,2,4-Trimethylbenzene	ND		ug	/ I	2.0	
Diethyl ether	ND		ug	/ I	2.0	
Diisopropyl Ether	ND		ug	/ I	2.0	
Ethyl-Tert-Butyl-Ether	ND		ug	1	2.0	
Tertiary-Amyl Methyl Ether	ND		ug	1	2.0	
1,4-Dioxane	ND		ug	1	250	

		Į.	Acceptance	
Surrogate	%Recovery	Qualifier	Criteria	
1,2-Dichloroethane-d4	98		70-130	
Toluene-d8	95		70-130	
4-Bromofluorobenzene	98		70-130	
Dibromofluoromethane	116		70-130	

Project Name: 155 NORTH BEACON STREET

Project Number: 0201602-000

Lab Number: L2205320

Parameter	LCS %Recovery	Qual	LCSD %Recovery	Qual	%Recovery Limits	RPD	RPD Qual Limits	
MCP Volatile Organics - Westborough Lab	Associated samp	ole(s): 01	Batch: WG160103	35-3 WG16	601035-4			
Methylene chloride	100		98		70-130	2	20	
1,1-Dichloroethane	100		98		70-130	2	20	
Chloroform	97		94		70-130	3	20	
Carbon tetrachloride	100		96		70-130	4	20	
1,2-Dichloropropane	98		95		70-130	3	20	
Dibromochloromethane	85		85		70-130	0	20	
1,1,2-Trichloroethane	88		88		70-130	0	20	
Tetrachloroethene	97		95		70-130	2	20	
Chlorobenzene	92		90		70-130	2	20	
Trichlorofluoromethane	100		98		70-130	2	20	
1,2-Dichloroethane	88		87		70-130	1	20	
1,1,1-Trichloroethane	100		95		70-130	5	20	
Bromodichloromethane	92		92		70-130	0	20	
trans-1,3-Dichloropropene	86		86		70-130	0	20	
cis-1,3-Dichloropropene	94		92		70-130	2	20	
1,1-Dichloropropene	100		100		70-130	0	20	
Bromoform	77		79		70-130	3	20	
1,1,2,2-Tetrachloroethane	82		82		70-130	0	20	
Benzene	100		98		70-130	2	20	
Toluene	94		92		70-130	2	20	
Ethylbenzene	94		92		70-130	2	20	
Chloromethane	100		100		70-130	0	20	
Bromomethane	89		86		70-130	3	20	

Project Name: 155 NORTH BEACON STREET

Project Number: 0201602-000

Lab Number: L2205320

Vinyl chloride	Associated samp	ole(s): 01	Batch: WG160103	35-3 WC1			
•	100			55-5 VVG1	601035-4		
			95		70-130	5	20
Chloroethane	95		93		70-130	2	20
1,1-Dichloroethene	100		100		70-130	0	20
trans-1,2-Dichloroethene	100		98		70-130	2	20
Trichloroethene	100		98		70-130	2	20
1,2-Dichlorobenzene	85		88		70-130	3	20
1,3-Dichlorobenzene	88		88		70-130	0	20
1,4-Dichlorobenzene	85		87		70-130	2	20
Methyl tert butyl ether	88		88		70-130	0	20
p/m-Xylene	90		90		70-130	0	20
o-Xylene	90		90		70-130	0	20
cis-1,2-Dichloroethene	100		98		70-130	2	20
Dibromomethane	88		86		70-130	2	20
1,2,3-Trichloropropane	78		79		70-130	1	20
Styrene	90		90		70-130	0	20
Dichlorodifluoromethane	90		85		70-130	6	20
Acetone	150	Q	160	Q	70-130	6	20
Carbon disulfide	110		100		70-130	10	20
Methyl ethyl ketone	110		110		70-130	0	20
Methyl isobutyl ketone	81		80		70-130	1	20
2-Hexanone	87		89		70-130	2	20
Bromochloromethane	96		96		70-130	0	20
Tetrahydrofuran	96		93		70-130	3	20

Project Name: 155 NORTH BEACON STREET

Project Number: 0201602-000

Lab Number: L2205320

Parameter	LCS %Recovery	Qual	LCSD %Recovery	Qual	%Recovery Limits	RPD	RPD Qual Limits	
MCP Volatile Organics - Westborough Lab	Associated samp	ole(s): 01	Batch: WG160103	35-3 WG160	01035-4			
2,2-Dichloropropane	97		93		70-130	4	20	
1,2-Dibromoethane	87		87		70-130	0	20	
1,3-Dichloropropane	90		90		70-130	0	20	
1,1,1,2-Tetrachloroethane	86		86		70-130	0	20	
Bromobenzene	84		85		70-130	1	20	
n-Butylbenzene	93		92		70-130	1	20	
sec-Butylbenzene	94		93		70-130	1	20	
tert-Butylbenzene	91		91		70-130	0	20	
o-Chlorotoluene	88		88		70-130	0	20	
p-Chlorotoluene	87		87		70-130	0	20	
1,2-Dibromo-3-chloropropane	82		82		70-130	0	20	
Hexachlorobutadiene	100		110		70-130	10	20	
Isopropylbenzene	91		90		70-130	1	20	
p-Isopropyltoluene	94		93		70-130	1	20	
Naphthalene	88		88		70-130	0	20	
n-Propylbenzene	92		91		70-130	1	20	
1,2,3-Trichlorobenzene	92		95		70-130	3	20	
1,2,4-Trichlorobenzene	92		93		70-130	1	20	
1,3,5-Trimethylbenzene	89		88		70-130	1	20	
1,2,4-Trimethylbenzene	87		87		70-130	0	20	
Diethyl ether	96		91		70-130	5	20	
Diisopropyl Ether	96		94		70-130	2	20	
Ethyl-Tert-Butyl-Ether	90		88		70-130	2	20	

Project Name: 155 NORTH BEACON STREET

Project Number: 0201602-000

Lab Number:

L2205320

Report Date:

02/08/22

Parameter	LCS %Recovery	Qual	LCSD %Recovery	Qual	%Recovery Limits	RPD	Qual	RPD Limits
MCP Volatile Organics - Westborough Lab Associated sample(s): 01 Batch: WG1601035-3 WG1601035-4								
Tertiary-Amyl Methyl Ether	85		84		70-130	1		20
1,4-Dioxane	112		102		70-130	9		20

Surrogate	LCS %Recovery Qua	LCSD al %Recovery Qual	Acceptance Criteria
1,2-Dichloroethane-d4	90	87	70-130
Toluene-d8	97	97	70-130
4-Bromofluorobenzene	97	98	70-130
Dibromofluoromethane	102	97	70-130

SEMIVOLATILES

L2205320

02/08/22

Project Name: 155 NORTH BEACON STREET

02/07/22 11:21

Project Number: 0201602-000

SAMPLE RESULTS

Date Collected: 02/01/22 13:00

Lab Number:

Report Date:

Lab ID: L2205320-01 Date Received: Client ID: HA21-B6A(OW)_20220201 02/01/22

Sample Location: BOSTON, MA Field Prep: Not Specified

Sample Depth:

Analytical Date:

Extraction Method: EPA 3510C Matrix: Water **Extraction Date:** 02/06/22 07:22 Analytical Method: 141,8270E

Analyst: WR

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
MCP Semivolatile Organics - Westbo	rough Lab					
1,2,4-Trichlorobenzene	ND		ug/l	5.0		1
Bis(2-chloroethyl)ether	ND		ug/l	2.0		1
1,2-Dichlorobenzene	ND		ug/l	2.0		1
1,3-Dichlorobenzene	ND		ug/l	2.0		1
1,4-Dichlorobenzene	ND		ug/l	2.0		1
3,3'-Dichlorobenzidine	ND		ug/l	5.0		1
2,4-Dinitrotoluene	ND		ug/l	5.0		1
2,6-Dinitrotoluene	ND		ug/l	5.0		1
Azobenzene	ND		ug/l	2.0		1
4-Bromophenyl phenyl ether	ND		ug/l	2.0		1
Bis(2-chloroisopropyl)ether	ND		ug/l	2.0		1
Bis(2-chloroethoxy)methane	ND		ug/l	5.0		1
Isophorone	ND		ug/l	5.0		1
Nitrobenzene	ND		ug/l	2.0		1
Bis(2-ethylhexyl)phthalate	ND		ug/l	3.0		1
Butyl benzyl phthalate	ND		ug/l	5.0		1
Di-n-butylphthalate	ND		ug/l	5.0		1
Di-n-octylphthalate	ND		ug/l	5.0		1
Diethyl phthalate	ND		ug/l	5.0		1
Dimethyl phthalate	ND		ug/l	5.0		1
Biphenyl	ND		ug/l	0.73		1
Aniline	ND		ug/l	2.0		1
4-Chloroaniline	ND		ug/l	5.0		1
Dibenzofuran	ND		ug/l	2.0		1
Acetophenone	ND		ug/l	5.0		1
2,4,6-Trichlorophenol	ND		ug/l	5.0		1
2-Chlorophenol	ND		ug/l	2.0		1
2,4-Dichlorophenol	ND		ug/l	5.0		1

02/08/22

Project Name: Lab Number: 155 NORTH BEACON STREET L2205320

Project Number: 0201602-000

SAMPLE RESULTS

Date Collected: 02/01/22 13:00

Report Date:

Lab ID: L2205320-01

HA21-B6A(OW)_20220201 Client ID: Date Received: 02/01/22 Sample Location: Field Prep: Not Specified BOSTON, MA

Sample Depth:

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	
MCP Semivolatile Organics - Westl	oorough Lab						
2,4-Dimethylphenol	ND		ug/l	5.0		1	
2-Nitrophenol	ND		ug/l	10		1	
4-Nitrophenol	ND		ug/l	10		1	
2,4-Dinitrophenol	ND		ug/l	20		1	
Phenol	ND		ug/l	5.0		1	
2-Methylphenol	ND		ug/l	5.0		1	
3-Methylphenol/4-Methylphenol	ND		ug/l	5.0		1	
2,4,5-Trichlorophenol	ND		ug/l	5.0		1	

Surrogate	% Recovery	Acceptance Qualifier Criteria	
2-Fluorophenol	84	15-110	
Phenol-d6	68	15-110	
Nitrobenzene-d5	93	30-130	
2-Fluorobiphenyl	80	30-130	
2,4,6-Tribromophenol	90	15-110	
4-Terphenyl-d14	102	30-130	

Project Name: Lab Number: 155 NORTH BEACON STREET L2205320

Project Number: Report Date: 0201602-000 02/08/22

02/06/22 15:52

SAMPLE RESULTS

Lab ID: L2205320-01 Date Collected: 02/01/22 13:00

Date Received: Client ID: HA21-B6A(OW)_20220201 02/01/22 Sample Location: BOSTON, MA Field Prep: Not Specified

Sample Depth:

Extraction Method: EPA 3510C Matrix: Water

Extraction Date: 02/06/22 07:24 Analytical Method: 141,8270E-SIM Analytical Date:

Analyst: JJW

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	
MCP Semivolatile Organics by SIM - Wes	tborough Lab						
Acenaphthene	ND		ug/l	0.10		1	
2-Chloronaphthalene	ND		ug/l	0.20		1	
Fluoranthene	ND		ug/l	0.10		1	
Hexachlorobutadiene	ND		ug/l	0.50		1	
Naphthalene	ND		ug/l	0.10		1	_
Benzo(a)anthracene	ND		ug/l	0.10		1	
Benzo(a)pyrene	ND		ug/l	0.10		1	
Benzo(b)fluoranthene	ND		ug/l	0.10		1	
Benzo(k)fluoranthene	ND		ug/l	0.10		1	
Chrysene	ND		ug/l	0.10		1	
Acenaphthylene	ND		ug/l	0.10		1	
Anthracene	ND		ug/l	0.10		1	
Benzo(ghi)perylene	ND		ug/l	0.10		1	
Fluorene	ND		ug/l	0.10		1	
Phenanthrene	ND		ug/l	0.10		1	
Dibenzo(a,h)anthracene	ND		ug/l	0.10		1	
Indeno(1,2,3-cd)pyrene	ND		ug/l	0.10		1	
Pyrene	ND		ug/l	0.10		1	
2-Methylnaphthalene	ND		ug/l	0.10		1	
Pentachlorophenol	ND		ug/l	0.80		1	
Hexachlorobenzene	ND		ug/l	0.80		1	
Hexachloroethane	ND		ug/l	0.80		1	

Project Name: Lab Number: 155 NORTH BEACON STREET L2205320

Project Number: 0201602-000 **Report Date:** 02/08/22

SAMPLE RESULTS

Lab ID: L2205320-01 Date Collected: 02/01/22 13:00

Date Received: Client ID: HA21-B6A(OW)_20220201 02/01/22 Sample Location: Field Prep: BOSTON, MA Not Specified

Sample Depth:

Result Qualifier Units RL MDL **Dilution Factor** Parameter

MCP Semivolatile Organics by SIM - Westborough Lab

Surrogate	% Recovery	Acceptance Qualifier Criteria
2-Fluorophenol	76	15-110
Phenol-d6	64	15-110
Nitrobenzene-d5	94	30-130
2-Fluorobiphenyl	92	30-130
2,4,6-Tribromophenol	105	15-110
4-Terphenyl-d14	98	30-130

L2205320

Lab Number:

Project Name: 155 NORTH BEACON STREET

Project Number: 0201602-000 **Report Date:** 02/08/22

Method Blank Analysis Batch Quality Control

Analytical Method: 141,8270E Analytical Date: 02/07/22 08:20

Analyst: WR

Extraction Method: EPA 3510C Extraction Date: 02/06/22 07:22

arameter	Result	Qualifier Unit	s RL	. MDL
CP Semivolatile Organics	- Westborough Lab	for sample(s):	01 Batch:	WG1601865-1
Acenaphthene	ND	ug	/I 2.0	
1,2,4-Trichlorobenzene	ND	ug	/I 5.0)
Hexachlorobenzene	ND	ug	/I 2.0	
Bis(2-chloroethyl)ether	ND	ug	/I 2.0)
2-Chloronaphthalene	ND	ug	/I 2.0	
1,2-Dichlorobenzene	ND	ug	/I 2.0	
1,3-Dichlorobenzene	ND	ug	/I 2.0	
1,4-Dichlorobenzene	ND	ug	/I 2.0	
3,3'-Dichlorobenzidine	ND	ug	/I 5.0	
2,4-Dinitrotoluene	ND	ug	/I 5.0	
2,6-Dinitrotoluene	ND	ug	/I 5.0	
Azobenzene	ND	ug	/I 2.0	·
Fluoranthene	ND	ug	/I 2.0	·
4-Bromophenyl phenyl ether	ND	ug	/I 2.0	
Bis(2-chloroisopropyl)ether	ND	ug	/l 2.0	
Bis(2-chloroethoxy)methane	ND	ug	/I 5.0	
Hexachlorobutadiene	ND	ug	/I 2.0	
Hexachloroethane	ND	ug	/I 2.0)
Isophorone	ND	ug	/I 5.0)
Naphthalene	ND	ug	/I 2.0	
Nitrobenzene	ND	ug	/I 2.0	
Bis(2-ethylhexyl)phthalate	ND	ug	/I 3.0	
Butyl benzyl phthalate	ND	ug	/I 5.0	
Di-n-butylphthalate	ND	ug	/I 5.0)
Di-n-octylphthalate	ND	ug	/I 5.0	
Diethyl phthalate	ND	ug	/I 5.0	
Dimethyl phthalate	ND	ug	/I 5.0)
Benzo(a)anthracene	ND	ug	/I 2.0)
Benzo(a)pyrene	ND	ug,	/I 2.0	

L2205320

Lab Number:

Project Name: 155 NORTH BEACON STREET

141,8270E

02/07/22 08:20

Project Number: Report Date: 0201602-000 02/08/22

Method Blank Analysis Batch Quality Control

Analyst: WR

Analytical Method:

Analytical Date:

Extraction Method: EPA 3510C 02/06/22 07:22 **Extraction Date:**

Parameter	Result	Qualifier Unit	ts RL	MDL
MCP Semivolatile Organics	- Westborough Lab	for sample(s):	01 Batch:	WG1601865-1
Benzo(b)fluoranthene	ND	ug	/l 2.0	
Benzo(k)fluoranthene	ND	ug	/I 2.0	
Chrysene	ND	ug	/l 2.0	
Acenaphthylene	ND	ug	/l 2.0	
Anthracene	ND	ug	/l 2.0	
Benzo(ghi)perylene	ND	ug	/l 2.0	
Fluorene	ND	ug	/l 2.0	
Phenanthrene	ND	ug	/l 2.0	
Dibenzo(a,h)anthracene	ND	ug	/l 2.0	
Indeno(1,2,3-cd)pyrene	ND	ug	/l 2.0	
Pyrene	ND	ug	/l 2.0	
Biphenyl	ND	ug	/I 0.73	
Aniline	ND	ug	/l 2.0	
4-Chloroaniline	ND	ug	/I 5.0	
Dibenzofuran	ND	ug	/l 2.0	
2-Methylnaphthalene	ND	ug	/l 2.0	
Acetophenone	ND	ug	/I 5.0	
2,4,6-Trichlorophenol	ND	ug	/I 5.0	
2-Chlorophenol	ND	ug	/I 2.0	
2,4-Dichlorophenol	ND	ug	/I 5.0	
2,4-Dimethylphenol	ND	ug	/I 5.0	
2-Nitrophenol	ND	ug	/I 10	
4-Nitrophenol	ND	ug	/I 10	
2,4-Dinitrophenol	ND	ug	/l 20	
Pentachlorophenol	ND	ug	/I 10	
Phenol	ND	ug	/I 5.0	
2-Methylphenol	ND	ug	/I 5.0	
3-Methylphenol/4-Methylphenol	ND	ug	/I 5.0	
2,4,5-Trichlorophenol	ND	ug	/I 5.0	

Project Name: 155 NORTH BEACON STREET **Lab Number:** L2205320

Project Number: 0201602-000 **Report Date:** 02/08/22

Method Blank Analysis Batch Quality Control

Analytical Method: 141,8270E Extraction Method: EPA 3510C
Analytical Date: 02/07/22 08:20 Extraction Date: 02/06/22 07:22

Analyst: WR

Parameter Result Qualifier Units RL MDL

MCP Semivolatile Organics - Westborough Lab for sample(s): 01 Batch: WG1601865-1

		Acceptance
Surrogate	%Recovery Quali	fier Criteria
2-Fluorophenol	61	15-110
Phenol-d6	48	15-110
Nitrobenzene-d5	79	30-130
2-Fluorobiphenyl	67	30-130
2,4,6-Tribromophenol	64	15-110
4-Terphenyl-d14	92	30-130

L2205320

Lab Number:

Project Name: 155 NORTH BEACON STREET

Project Number: 0201602-000 **Report Date:** 02/08/22

Method Blank Analysis
Batch Quality Control

Analytical Method: 141,8270E-SIM Extraction Method: EPA 3510C
Analytical Date: 02/06/22 15:33 Extraction Date: 02/06/22 07:24

Analyst: JJW

Parameter	Result	Qualifier	Units	RL	MDL
MCP Semivolatile Organics by SIM	- Westboro	ugh Lab fo	r sample(s):	01 Batch	: WG1601866-1
Acenaphthene	ND		ug/l	0.10	
2-Chloronaphthalene	ND		ug/l	0.20	
Fluoranthene	ND		ug/l	0.10	
Hexachlorobutadiene	ND		ug/l	0.50	
Naphthalene	ND		ug/l	0.10	
Benzo(a)anthracene	ND		ug/l	0.10	
Benzo(a)pyrene	ND		ug/l	0.10	
Benzo(b)fluoranthene	ND		ug/l	0.10	
Benzo(k)fluoranthene	ND		ug/l	0.10	
Chrysene	ND		ug/l	0.10	
Acenaphthylene	ND		ug/l	0.10	
Anthracene	ND		ug/l	0.10	
Benzo(ghi)perylene	ND		ug/l	0.10	
Fluorene	ND		ug/l	0.10	
Phenanthrene	ND		ug/l	0.10	
Dibenzo(a,h)anthracene	ND		ug/l	0.10	
Indeno(1,2,3-cd)pyrene	ND		ug/l	0.10	
Pyrene	ND		ug/l	0.10	
2-Methylnaphthalene	ND		ug/l	0.10	
Pentachlorophenol	ND		ug/l	0.80	
Hexachlorobenzene	ND		ug/l	0.80	
Hexachloroethane	ND		ug/l	0.80	

Project Name: 155 NORTH BEACON STREET **Lab Number:** L2205320

Project Number: 0201602-000 **Report Date:** 02/08/22

Method Blank Analysis Batch Quality Control

Analytical Method: 141,8270E-SIM Extraction Method: EPA 3510C
Analytical Date: 02/06/22 15:33 Extraction Date: 02/06/22 07:24

Analyst: JJW

Parameter Result Qualifier Units RL MDL

MCP Semivolatile Organics by SIM - Westborough Lab for sample(s): 01 Batch: WG1601866-1

Surrogate 2-Fluorophenol Phenol-d6 Nitrobenzene-d5 2-Fluorobiphenyl		Acceptance
Surrogate	%Recovery Qualifi	er Criteria
2-Fluorophenol	57	15-110
Phenol-d6	46	15-110
Nitrobenzene-d5	77	30-130
2-Fluorobiphenyl	74	30-130
2,4,6-Tribromophenol	75	15-110
4-Terphenyl-d14	87	30-130

Project Name: 155 NORTH BEACON STREET

Project Number: 0201602-000

Lab Number: L2205320

arameter	LCS %Recovery	Qual	LCSD %Recovery	Qual	%Recovery Limits	RPD	Qual	RPD Limits
MCP Semivolatile Organics - Westborough La	ab Associated	sample(s): 01	Batch: WG16	01865-2	WG1601865-3			
Acenaphthene	83		92		40-140	10		20
1,2,4-Trichlorobenzene	74		78		40-140	5		20
Hexachlorobenzene	90		89		40-140	1		20
Bis(2-chloroethyl)ether	88		88		40-140	0		20
2-Chloronaphthalene	81		82		40-140	1		20
1,2-Dichlorobenzene	82		80		40-140	2		20
1,3-Dichlorobenzene	71		71		40-140	0		20
1,4-Dichlorobenzene	72		74		40-140	3		20
3,3'-Dichlorobenzidine	67		49		40-140	31	Q	20
2,4-Dinitrotoluene	88		89		40-140	1		20
2,6-Dinitrotoluene	76		76		40-140	0		20
Azobenzene	100		104		40-140	4		20
Fluoranthene	90		92		40-140	2		20
4-Bromophenyl phenyl ether	92		83		40-140	10		20
Bis(2-chloroisopropyl)ether	83		81		40-140	2		20
Bis(2-chloroethoxy)methane	91		86		40-140	6		20
Hexachlorobutadiene	79		75		40-140	5		20
Hexachloroethane	78		76		40-140	3		20
Isophorone	88		84		40-140	5		20
Naphthalene	84		86		40-140	2		20
Nitrobenzene	97		91		40-140	6		20
Bis(2-ethylhexyl)phthalate	97		93		40-140	4		20
Butyl benzyl phthalate	96		97		40-140	1		20

Project Name: 155 NORTH BEACON STREET

Project Number: 0201602-000

Lab Number: L2205320

Parameter	LCS %Recovery	Qual	LCSD %Recovery	Qual	%Recovery Limits	RPD	Qual	RPD Limits	
MCP Semivolatile Organics - Westborough L	ab Associated	sample(s): 01	Batch: WG16	01865-2	WG1601865-3				
Di-n-butylphthalate	94		97		40-140	3		20	
Di-n-octylphthalate	95		92		40-140	3		20	
Diethyl phthalate	93		95		40-140	2		20	
Dimethyl phthalate	80		84		40-140	5		20	
Benzo(a)anthracene	92		92		40-140	0		20	
Benzo(a)pyrene	90		89		40-140	1		20	
Benzo(b)fluoranthene	94		97		40-140	3		20	
Benzo(k)fluoranthene	97		91		40-140	6		20	
Chrysene	90		90		40-140	0		20	
Acenaphthylene	78		83		40-140	6		20	
Anthracene	93		95		40-140	2		20	
Benzo(ghi)perylene	103		100		40-140	3		20	
Fluorene	93		93		40-140	0		20	
Phenanthrene	89		93		40-140	4		20	
Dibenzo(a,h)anthracene	99		102		40-140	3		20	
Indeno(1,2,3-cd)pyrene	101		101		40-140	0		20	
Pyrene	90		94		40-140	4		20	
Biphenyl	85		88		40-140	3		20	
Aniline	50		18	Q	40-140	94	Q	20	
4-Chloroaniline	101		80		40-140	23	Q	20	
Dibenzofuran	92		88		40-140	4		20	
2-Methylnaphthalene	82		83		40-140	1		20	
Acetophenone	91		97		40-140	6		20	

Project Name: 155 NORTH BEACON STREET

Project Number: 0201602-000

Lab Number: L2205320

arameter	LCS %Recovery	Qual	LCSD %Recove		%Recovery Limits	RPD	Qual	RPD Limits	
ICP Semivolatile Organics - Westbor	ough Lab Associated s	ample(s): 0	1 Batch:	WG1601865-2	WG1601865-3				
2,4,6-Trichlorophenol	87		88		30-130	1		20	
2-Chlorophenol	94		92		30-130	2		20	
2,4-Dichlorophenol	94		90		30-130	4		20	
2,4-Dimethylphenol	96		62		30-130	43	Q	20	
2-Nitrophenol	87		85		30-130	2		20	
4-Nitrophenol	97		99		30-130	2		20	
2,4-Dinitrophenol	75		79		30-130	5		20	
Pentachlorophenol	91		85		30-130	7		20	
Phenol	74		69		30-130	7		20	
2-Methylphenol	95		94		30-130	1		20	
3-Methylphenol/4-Methylphenol	102		96		30-130	6		20	
2,4,5-Trichlorophenol	88		86		30-130	2		20	

	LCS	LCSD	Acceptance
Surrogate	%Recovery Qual	%Recovery Qual	Criteria
2-Fluorophenol	81	79	15-110
Phenol-d6	69	65	15-110
Nitrobenzene-d5	85	86	30-130
2-Fluorobiphenyl	75	77	30-130
2,4,6-Tribromophenol	91	91	15-110
4-Terphenyl-d14	92	90	30-130

Project Name: 155 NORTH BEACON STREET

Project Number: 0201602-000

Lab Number: L2205320

arameter	LCS %Recovery	LCSD Qual %Recovery	%Recovery Qual Limits	RPD	Qual	RPD Limits
CP Semivolatile Organics by SIM - Westbo	rough Lab Asso	ociated sample(s): 01 Batch	WG1601866-2 WG1601866	6-3		
Acenaphthene	76	87	40-140	13		20
2-Chloronaphthalene	76	88	40-140	15		20
Fluoranthene	81	87	40-140	7		20
Hexachlorobutadiene	62	78	40-140	23	Q	20
Naphthalene	70	83	40-140	17		20
Benzo(a)anthracene	80	87	40-140	8		20
Benzo(a)pyrene	73	79	40-140	8		20
Benzo(b)fluoranthene	86	92	40-140	7		20
Benzo(k)fluoranthene	79	83	40-140	5		20
Chrysene	75	79	40-140	5		20
Acenaphthylene	74	87	40-140	16		20
Anthracene	78	86	40-140	10		20
Benzo(ghi)perylene	76	83	40-140	9		20
Fluorene	81	90	40-140	11		20
Phenanthrene	76	82	40-140	8		20
Dibenzo(a,h)anthracene	82	90	40-140	9		20
Indeno(1,2,3-cd)pyrene	74	82	40-140	10		20
Pyrene	80	88	40-140	10		20
2-Methylnaphthalene	74	88	40-140	17		20
Pentachlorophenol	94	112	30-130	17		20
Hexachlorobenzene	75	84	40-140	11		20
Hexachloroethane	57	72	40-140	23	Q	20

Project Name: 155 NORTH BEACON STREET

Lab Number:

L2205320

Project Number: 0201602-000

Report Date:

02/08/22

	LCS		LCSD		%Recovery			RPD
Parameter	%Recovery	Qual	%Recovery	Qual	Limits	RPD	Qual	Limits

MCP Semivolatile Organics by SIM - Westborough Lab Associated sample(s): 01 Batch: WG1601866-2 WG1601866-3

Surrogate	LCS %Recovery Qual	LCSD %Recovery Qual	Acceptance Criteria
2-Fluorophenol	60	70	15-110
Phenol-d6	51	60	15-110
Nitrobenzene-d5	75	88	30-130
2-Fluorobiphenyl	72	84	30-130
2,4,6-Tribromophenol	81	91	15-110
4-Terphenyl-d14	84	88	30-130

PETROLEUM HYDROCARBONS

Project Name: Lab Number: 155 NORTH BEACON STREET L2205320

Project Number: 0201602-000 **Report Date:** 02/08/22

SAMPLE RESULTS

Lab ID: L2205320-01 Date Collected: 02/01/22 13:00

Client ID: HA21-B6A(OW)_20220201 Date Received: 02/01/22 Field Prep: Not Specified

Sample Location: BOSTON, MA

Sample Depth:

Matrix: Water

Analytical Method: 131, VPH-18-2.1 Analytical Date: 02/03/22 05:36

Analyst: **BAD**

Restek, RTX-502.2, Trap: EST, Carbopack B/Carboxen 1000&1001 Analytical Column:

105m, 0.53ID, 3um

Quality Control Information

Condition of sample received: Satisfactory

Aqueous Preservative: Laboratory Provided Preserved

Container Received on Ice

Sample Temperature upon receipt:

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
Volatile Petroleum Hydrocarbons - \	Westborough Lab					
C5-C8 Aliphatics	ND		ug/l	100		1
C9-C12 Aliphatics	ND		ug/l	100		1
C9-C10 Aromatics	ND		ug/l	100		1
C5-C8 Aliphatics, Adjusted	ND		ug/l	100		1
C9-C12 Aliphatics, Adjusted	ND		ug/l	100		1

Surrogate	% Recovery	Qualifier	Acceptance Criteria	
2,5-Dibromotoluene-PID	76		70-130	
2,5-Dibromotoluene-FID	81		70-130	

02/01/22 13:00

Date Collected:

Project Name: 155 NORTH BEACON STREET Lab Number: L2205320

Project Number: 0201602-000 **Report Date:** 02/08/22

SAMPLE RESULTS

Lab ID: L2205320-01

Client ID: HA21-B6A(OW)_20220201 Date Received: 02/01/22

Sample Location: BOSTON, MA Field Prep: Not Specified

Sample Depth:

Matrix: Water Extraction Method: EPA 3510C

 Analytical Method:
 135,EPH-19-2.1
 Extraction Date:
 02/06/22 07:49

 Analytical Date:
 02/07/22 17:50
 Cleanup Method1:
 EPH-19-2.1

Analyst: MEO Cleanup Date1: 02/07/22

Quality Control Information

Condition of sample received: Satisfactory

Aqueous Preservative: Laboratory Provided Preserved

Sample Temperature upon receipt: Container Received on Ice

Sample Extraction method: Extracted Per the Method

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor			
Extractable Petroleum Hydrocarbons - Westborough Lab									
C9-C18 Aliphatics	ND		ug/l	100		1			
C19-C36 Aliphatics	ND		ug/l	100		1			
C11-C22 Aromatics	ND		ug/l	100		1			
C11-C22 Aromatics, Adjusted	ND		ug/l	100		1			

	Acceptance						
Surrogate	% Recovery	Qualifier	Criteria				
Chloro-Octadecane	67		40-140				
o-Terphenyl	67		40-140				
2-Fluorobiphenyl	120		40-140				
2-Bromonaphthalene	119		40-140				

Project Name: 155 NORTH BEACON STREET **Lab Number:** L2205320

Project Number: 0201602-000 **Report Date:** 02/08/22

Method Blank Analysis Batch Quality Control

Analytical Method: 131,VPH-18-2.1 Analytical Date: 02/02/22 18:08

Analyst: BAD

Parameter	Result Q	ualifier Units	RL	MDL
Volatile Petroleum Hydrocarbons -	Westborough L	ab for sample(s):	01 Batch:	WG1601146-4
C5-C8 Aliphatics	ND	ug/l	100	
C9-C12 Aliphatics	ND	ug/l	100	
C9-C10 Aromatics	ND	ug/l	100	
C5-C8 Aliphatics, Adjusted	ND	ug/l	100	
C9-C12 Aliphatics, Adjusted	ND	ug/l	100	

	Acceptance					
Surrogate	%Recovery Qualifie	er Criteria				
2,5-Dibromotoluene-PID	84	70-130				
2,5-Dibromotoluene-FID	87	70-130				

L2205320

Project Name: 155 NORTH BEACON STREET Lab Number:

Project Number: 0201602-000 **Report Date:** 02/08/22

Method Blank Analysis Batch Quality Control

Analytical Method: 135,EPH-19-2.1 Analytical Date: 02/07/22 17:25

Analyst: MEO

Extraction Method: EPA 3510C
Extraction Date: 02/06/22 07:49
Cleanup Method: EPH-19-2.1
Cleanup Date: 02/07/22

Parameter	Result	Qualifier	Units	RL	MDL
Extractable Petroleum Hydrocarbons	s - Westbore	ough Lab f	or sample(s):	01	Batch: WG1601874-1
C9-C18 Aliphatics	ND		ug/l	100	
C19-C36 Aliphatics	ND		ug/l	100	
C11-C22 Aromatics	ND		ug/l	100	
C11-C22 Aromatics, Adjusted	ND		ug/l	100	

		Acceptance	
Surrogate	%Recovery Qualifie	r Criteria	
Chloro-Octadecane	77	40-140	
o-Terphenyl	53	40-140	
2-Fluorobiphenyl	83	40-140	
2-Bromonaphthalene	82	40-140	

Project Name: 155 NORTH BEACON STREET

Project Number: 0201602-000

Lab Number: L2205320

Parameter	LCS %Recovery	Qual	LCSD %Recovery	Qual	%Recovery Limits	RPD	Qual	RPD Limits
/olatile Petroleum Hydrocarbons - Westbord	ough Lab Assoc	iated sample(s)	: 01 Batch:	WG1601146-2	2 WG1601146-3			
C5-C8 Aliphatics	105		104		70-130	1		25
C9-C12 Aliphatics	111		110		70-130	1		25
C9-C10 Aromatics	102		101		70-130	1		25
Benzene	103		103		70-130	0		25
Toluene	103		103		70-130	0		25
Ethylbenzene	105		105		70-130	0		25
p/m-Xylene	105		105		70-130	0		25
o-Xylene	105		105		70-130	0		25
Methyl tert butyl ether	107		108		70-130	1		25
Naphthalene	105		106		70-130	1		25
1,2,4-Trimethylbenzene	102		101		70-130	1		25
Pentane	98		97		70-130	1		25
2-Methylpentane	107		106		70-130	1		25
2,2,4-Trimethylpentane	109		108		70-130	1		25
n-Nonane	112		111		30-130	1		25
n-Decane	110		109		70-130	1		25
n-Butylcyclohexane	111		110		70-130	1		25

Surrogate	LCS %Recovery Qua	LCSD I %Recovery 0	Acceptance Qual Criteria
2,5-Dibromotoluene-PID	105	103	70-130
2,5-Dibromotoluene-FID	108	105	70-130

Project Name: 155 NORTH BEACON STREET

Project Number: 0201602-000

Lab Number: L2205320

Parameter	LCS %Recovery	Qual	LCSD %Recovery	%Reco Qual Limi	-	RPD Qual Limits	;
Extractable Petroleum Hydrocarbons - Westh	oorough Lab As	sociated sample	e(s): 01 Batch	n: WG1601874-2	WG1601874-3		
C9-C18 Aliphatics	64		57	40-14	40 12	25	
C19-C36 Aliphatics	88		83	40-14	40 6	25	
C11-C22 Aromatics	64		69	40-14	40 8	25	
Naphthalene	55		58	40-14	40 5	25	
2-Methylnaphthalene	57		61	40-14	40 7	25	
Acenaphthylene	56		61	40-14	40 9	25	
Acenaphthene	60		65	40-14	40 8	25	
Fluorene	57		62	40-14	40 8	25	
Phenanthrene	60		64	40-14	40 6	25	
Anthracene	58		62	40-14	40 7	25	
Fluoranthene	62		66	40-14	40 6	25	
Pyrene	62		66	40-14	40 6	25	
Benzo(a)anthracene	63		67	40-14	40 6	25	
Chrysene	60		65	40-14	40 8	25	
Benzo(b)fluoranthene	61		65	40-14	40 6	25	
Benzo(k)fluoranthene	59		64	40-14	40 8	25	
Benzo(a)pyrene	61		66	40-14	40 8	25	
Indeno(1,2,3-cd)Pyrene	56		62	40-14	40 10	25	
Dibenzo(a,h)anthracene	58		64	40-14	40 10	25	
Benzo(ghi)perylene	56		63	40-14	40 12	25	

Project Name: 155 NORTH BEACON STREET

Lab Number:

L2205320

Project Number: 0201602-000

Report Date:

02/08/22

	LCS		LCSD		%Recovery			RPD		
Parameter	%Recovery	Qual	%Recovery	Qual	Limits	RPD	Qual	Limits		

Extractable Petroleum Hydrocarbons - Westborough Lab Associated sample(s): 01 Batch: WG1601874-2 WG1601874-3

Surrogate	LCS %Recovery Qua	LCSD Il %Recovery Qu	Acceptance ual Criteria
Chloro-Octadecane	78	71	40-140
o-Terphenyl	56	59	40-140
2-Fluorobiphenyl	71	94	40-140
2-Bromonaphthalene	70	92	40-140
% Naphthalene Breakthrough	0	0	
% 2-Methylnaphthalene Breakthrough	0	0	

155 NORTH BEACON STREET L2205320

Project Number: 0201602-000 **Report Date:** 02/08/22

Sample Receipt and Container Information

Were project specific reporting limits specified?

Cooler Information

Project Name:

Cooler Custody Seal

A Absent

Container Information			Initial	Final	Temp			Frozen			
Container ID	Container Type	Cooler	рН	рН	deg C	Pres	Seal	Date/Time	Analysis(*)		
L2205320-01A	Vial HCl preserved	Α	NA		3.0	Υ	Absent		MCP-8260-21(14)		
L2205320-01B	Vial HCl preserved	Α	NA		3.0	Υ	Absent		MCP-8260-21(14)		
L2205320-01C	Vial HCl preserved	Α	NA		3.0	Υ	Absent		MCP-8260-21(14)		
L2205320-01D	Vial HCl preserved	Α	NA		3.0	Υ	Absent		VPH-18(14)		
L2205320-01E	Vial HCl preserved	Α	NA		3.0	Υ	Absent		VPH-18(14)		
L2205320-01F	Vial HCl preserved	Α	NA		3.0	Υ	Absent		VPH-18(14)		
L2205320-01G	Amber 250ml unpreserved	Α	7	7	3.0	Υ	Absent		MCP-8270SIM-21-LVI(7),MCP-8270-21-LVI(7)		
L2205320-01H	Amber 250ml unpreserved	Α	7	7	3.0	Υ	Absent		MCP-8270SIM-21-LVI(7),MCP-8270-21-LVI(7)		
L2205320-01I	Amber 1000ml HCI preserved	Α	<2	<2	3.0	Υ	Absent		EPH-20(14)		
L2205320-01J	Amber 1000ml HCl preserved	Α	<2	<2	3.0	Υ	Absent		EPH-20(14)		

Project Name:155 NORTH BEACON STREETLab Number:L2205320Project Number:0201602-000Report Date:02/08/22

GLOSSARY

Acronyms

LOQ

MS

DL - Detection Limit: This value represents the level to which target analyte concentrations are reported as estimated values, when those target analyte concentrations are quantified below the limit of quantitation (LOQ). The DL includes any adjustments from dilutions, concentrations or moisture content, where applicable (DoD report formats only)

from dilutions, concentrations or moisture content, where applicable. (DoD report formats only.)

EDL - Estimated Detection Limit: This value represents the level to which target analyte concentrations are reported as estimated values, when those target analyte concentrations are quantified below the reporting limit (RL). The EDL includes any adjustments from dilutions, concentrations or moisture content, where applicable. The use of EDLs is specific to the analysis of PAHs using Solid-Phase Microextraction (SPME).

of I Aris using Sond-I hase Microextraction (SI ME).

EMPC - Estimated Maximum Possible Concentration: The concentration that results from the signal present at the retention time of an analyte when the ions meet all of the identification criteria except the ion abundance ratio criteria. An EMPC is a worst-case estimate of the concentration.

EPA - Environmental Protection Agency

LCS - Laboratory Control Sample: A sample matrix, free from the analytes of interest, spiked with verified known amounts of analytes or a material containing known and verified amounts of analytes.

LCSD - Laboratory Control Sample Duplicate: Refer to LCS.

LFB - Laboratory Fortified Blank: A sample matrix, free from the analytes of interest, spiked with verified known amounts of analytes or a material containing known and verified amounts of analytes.

LOD - Limit of Detection: This value represents the level to which a target analyte can reliably be detected for a specific analyte in a specific matrix by a specific method. The LOD includes any adjustments from dilutions, concentrations or moisture content, where applicable. (DoD report formats only.)

- Limit of Quantitation: The value at which an instrument can accurately measure an analyte at a specific concentration. The LOQ includes any adjustments from dilutions, concentrations or moisture content, where applicable. (DoD report formats only.)

Limit of Quantitation: The value at which an instrument can accurately measure an analyte at a specific concentration. The LOQ includes any adjustments from dilutions, concentrations or moisture content, where applicable. (DoD report formats only.)

MDL - Method Detection Limit: This value represents the level to which target analyte concentrations are reported as estimated values, when those target analyte concentrations are quantified below the reporting limit (RL). The MDL includes any adjustments from dilutions, concentrations or moisture content, where applicable.

 Matrix Spike Sample: A sample prepared by adding a known mass of target analyte to a specified amount of matrix sample for which an independent estimate of target analyte concentration is available. For Method 332.0, the spike recovery is calculated using the native concentration, including estimated values.

MSD - Matrix Spike Sample Duplicate: Refer to MS.

NA - Not Applicable.

NC - Not Calculated: Term is utilized when one or more of the results utilized in the calculation are non-detect at the parameter's reporting unit.

NDPA/DPA - N-Nitrosodiphenylamine/Diphenylamine.

NI - Not Ignitable.

NP - Non-Plastic: Term is utilized for the analysis of Atterberg Limits in soil.

NR - No Results: Term is utilized when 'No Target Compounds Requested' is reported for the analysis of Volatile or Semivolatile

Organic TIC only requests.

RL - Reporting Limit: The value at which an instrument can accurately measure an analyte at a specific concentration. The RL

includes any adjustments from dilutions, concentrations or moisture content, where applicable.

RPD - Relative Percent Difference: The results from matrix and/or matrix spike duplicates are primarily designed to assess the precision of analytical results in a given matrix and are expressed as relative percent difference (RPD). Values which are less than five times the reporting limit for any individual parameter are evaluated by utilizing the absolute difference between the values; although the RPD value will be provided in the report.

- Standard Reference Material: A reference sample of a known or certified value that is of the same or similar matrix as the

associated field samples.

STLP - Semi-dynamic Tank Leaching Procedure per EPA Method 1315.

TEF - Toxic Equivalency Factors: The values assigned to each dioxin and furan to evaluate their toxicity relative to 2,3,7,8-TCDD.

TEQ - Toxic Equivalent: The measure of a sample's toxicity derived by multiplying each dioxin and furan by its corresponding TEF and then summing the resulting values.

TIC - Tentatively Identified Compound: A compound that has been identified to be present and is not part of the target compound list (TCL) for the method and/or program. All TICs are qualitatively identified and reported as estimated concentrations.

Report Format: Data Usability Report

SRM

Project Name:155 NORTH BEACON STREETLab Number:L2205320Project Number:0201602-000Report Date:02/08/22

Footnotes

 The reference for this analyte should be considered modified since this analyte is absent from the target analyte list of the original method.

Terms

1

Analytical Method: Both the document from which the method originates and the analytical reference method. (Example: EPA 8260B is shown as 1,8260B.) The codes for the reference method documents are provided in the References section of the Addendum.

Difference: With respect to Total Oxidizable Precursor (TOP) Assay analysis, the difference is defined as the Post-Treatment value minus the Pre-Treatment value.

Final pH: As it pertains to Sample Receipt & Container Information section of the report, Final pH reflects pH of container determined after adjustment at the laboratory, if applicable. If no adjustment required, value reflects Initial pH.

Frozen Date/Time: With respect to Volatile Organics in soil, Frozen Date/Time reflects the date/time at which associated Reagent Water-preserved vials were initially frozen. Note: If frozen date/time is beyond 48 hours from sample collection, value will be reflected in 'bold'.

Initial pH: As it pertains to Sample Receipt & Container Information section of the report, Initial pH reflects pH of container determined upon receipt, if applicable.

PAH Total: With respect to Alkylated PAH analyses, the 'PAHs, Total' result is defined as the summation of results for all or a subset of the following compounds: Naphthalene, C1-C4 Naphthalenes, 2-Methylnaphthalene, 1-Methylnaphthalene, Biphenyl, Acenaphthylene, Acenaphthene, Fluorene, C1-C3 Fluorenes, Phenanthrene, C1-C4 Phenanthrenes/Anthracenes, Anthracene, Fluoranthene, Pyrene, C1-C4 Fluoranthenes/Pyrenes, Benz(a)anthracene, Chrysene, C1-C4 Chrysenes, Benzo(b)fluoranthene, Benzo(j)+(k)fluoranthene, Benzo(e)pyrene, Benzo(a)pyrene, Perylene, Indeno(1,2,3-cd)pyrene, Dibenz(ah)+(ac)anthracene, Benzo(g,h,i)perylene. If a 'Total' result is requested, the results of its individual components will also be reported.

PFAS Total: With respect to PFAS analyses, the 'PFAS, Total (5)' result is defined as the summation of results for: PFHpA, PFHxS, PFOA, PFNA and PFOS. In addition, the 'PFAS, Total (6)' result is defined as the summation of results for: PFHpA, PFHxS, PFOA, PFNA, PFDA and PFOS. For MassDEP DW compliance analysis only, the 'PFAS, Total (6)' result is defined as the summation of results at or above the RL. Note: If a 'Total' result is requested, the results of its individual components will also be reported.

The target compound Chlordane (CAS No. 57-74-9) is reported for GC ECD analyses. Per EPA, this compound "refers to a mixture of chlordane isomers, other chlorinated hydrocarbons and numerous other components." (Reference: USEPA Toxicological Review of Chlordane, In Support of Summary Information on the Integrated Risk Information System (IRIS), December 1997.)

Total: With respect to Organic analyses, a 'Total' result is defined as the summation of results for individual isomers or Aroclors. If a 'Total' result is requested, the results of its individual components will also be reported. This is applicable to 'Total' results for methods 8260, 8081 and 8082.

Data Qualifiers

- A Spectra identified as "Aldol Condensates" are byproducts of the extraction/concentration procedures when acetone is introduced in the process.
- The analyte was detected above the reporting limit in the associated method blank. Flag only applies to associated field samples that have detectable concentrations of the analyte at less than ten times (10x) the concentration found in the blank. For MCP-related projects, flag only applies to associated field samples that have detectable concentrations of the analyte at less than ten times (10x) the concentrations of the analyte at less than ten times (10x) the concentrations of the analyte was detectable concentrations of the analyte at less than ten times (10x) the concentration found in the blank AND the analyte was detected above one-half the reporting limit (or above the reporting limit for common lab contaminants) in the associated method blank. For NJ-Air-related projects, flag only applies to associated field samples that have detectable concentrations of the analyte above the reporting limit. For NJ-related projects (excluding Air), flag only applies to associated field samples that have detectable concentrations of the analyte, which was detected above the reporting limit in the associated method blank or above five times the reporting limit for common lab contaminants (Phthalates, Acetone, Methylene Chloride, 2-Butanone).
- Co-elution: The target analyte co-elutes with a known lab standard (i.e. surrogate, internal standards, etc.) for co-extracted analyses.
- Concentration of analyte was quantified from diluted analysis. Flag only applies to field samples that have detectable concentrations of the analyte.
- E Concentration of analyte exceeds the range of the calibration curve and/or linear range of the instrument.
- F The ratio of quantifier ion response to qualifier ion response falls outside of the laboratory criteria. Results are considered to be an estimated maximum concentration.
- G The concentration may be biased high due to matrix interferences (i.e, co-elution) with non-target compound(s). The result should be considered estimated.
- H The analysis of pH was performed beyond the regulatory-required holding time of 15 minutes from the time of sample collection.
- I The lower value for the two columns has been reported due to obvious interference.
- J Estimated value. This represents an estimated concentration for Tentatively Identified Compounds (TICs).
- M Reporting Limit (RL) exceeds the MCP CAM Reporting Limit for this analyte.
- **ND** Not detected at the reporting limit (RL) for the sample.
- NJ Presumptive evidence of compound. This represents an estimated concentration for Tentatively Identified Compounds (TICs), where

Report Format: Data Usability Report

Project Name:155 NORTH BEACON STREETLab Number:L2205320Project Number:0201602-000Report Date:02/08/22

Data Qualifiers

the identification is based on a mass spectral library search.

- P The RPD between the results for the two columns exceeds the method-specified criteria.
- Q The quality control sample exceeds the associated acceptance criteria. For DOD-related projects, LCS and/or Continuing Calibration Standard exceedences are also qualified on all associated sample results. Note: This flag is not applicable for matrix spike recoveries when the sample concentration is greater than 4x the spike added or for batch duplicate RPD when the sample concentrations are less than 5x the RL. (Metals only.)
- **R** Analytical results are from sample re-analysis.
- **RE** Analytical results are from sample re-extraction.
- S Analytical results are from modified screening analysis.
- The surrogate associated with this target analyte has a recovery outside the QC acceptance limits. (Applicable to MassDEP DW Compliance samples only.)
- Z The batch matrix spike and/or duplicate associated with this target analyte has a recovery/RPD outside the QC acceptance limits. (Applicable to MassDEP DW Compliance samples only.)

Report Format: Data Usability Report

Project Name:155 NORTH BEACON STREETLab Number:L2205320Project Number:0201602-000Report Date:02/08/22

REFERENCES

- Method for the Determination of Volatile Petroleum Hydrocarbons (VPH), MassDEP, February 2018, Revision 2.1 with QC Requirements & Performance Standards for the Analysis of VPH under the Massachusetts Contingency Plan, WSC-CAM-IVA, June 1, 2018.
- Method for the Determination of Extractable Petroleum Hydrocarbons (EPH), MassDEP, December 2019, Revision 2.1 with QC Requirements & Performance Standards for the Analysis of EPH under the Massachusetts Contingency Plan, WSC-CAM-IVB, March 1, 2020.
- 141 EPA Test Methods (SW-846) with QC Requirements & Performance Standards for the Analysis of EPA SW-846 Methods under the Massachusetts Contingency Plan, WSC-CAM-IIA and IIB, November 2021.

LIMITATION OF LIABILITIES

Alpha Analytical performs services with reasonable care and diligence normal to the analytical testing laboratory industry. In the event of an error, the sole and exclusive responsibility of Alpha Analytical shall be to re-perform the work at it's own expense. In no event shall Alpha Analytical be held liable for any incidental, consequential or special damages, including but not limited to, damages in any way connected with the use of, interpretation of, information or analysis provided by Alpha Analytical.

We strongly urge our clients to comply with EPA protocol regarding sample volume, preservation, cooling, containers, sampling procedures, holding time and splitting of samples in the field.

Serial_No:02082215:21

Alpha Analytical, Inc.
Facility: Company-wide
Department: Quality Assurance

Department: Quality Assurance

Title: Certificate/Approval Program Summary

ID No.:17873

Page 1 of 1

Revision 19 Published Date: 4/2/2021 1:14:23 PM

Certification Information

The following analytes are not included in our Primary NELAP Scope of Accreditation:

Westborough Facility

EPA 624/624.1: m/p-xylene, o-xylene, Naphthalene

EPA 625/625.1: alpha-Terpineol

EPA 8260C/8260D: NPW: 1,2,4,5-Tetramethylbenzene; 4-Ethyltoluene, Azobenzene; SCM: lodomethane (methyl iodide), 1,2,4,5-Tetramethylbenzene; 4-Ethyltoluene, Azobenzene; 1-Ethyltoluene, Azobenzene; 1-Ethy

EPA 8270D/8270E: NPW: Dimethylnaphthalene,1,4-Diphenylhydrazine, alpha-Terpineol; SCM: Dimethylnaphthalene,1,4-Diphenylhydrazine.

SM4500: NPW: Amenable Cyanide; SCM: Total Phosphorus, TKN, NO2, NO3.

Mansfield Facility

SM 2540D: TSS

EPA 8082A: NPW: PCB: 1, 5, 31, 87,101, 110, 141, 151, 153, 180, 183, 187.

EPA TO-15: Halothane, 2,4,4-Trimethyl-2-pentene, 2,4,4-Trimethyl-1-pentene, Thiophene, 2-Methylthiophene,

3-Methylthiophene, 2-Ethylthiophene, 1,2,3-Trimethylbenzene, Indan, Indene, 1,2,4,5-Tetramethylbenzene, Benzothiophene, 1-Methylnaphthalene.

Biological Tissue Matrix: EPA 3050B

The following analytes are included in our Massachusetts DEP Scope of Accreditation

Westborough Facility:

Drinking Water

EPA 300.0: Chloride, Nitrate-N, Fluoride, Sulfate; EPA 353.2: Nitrate-N, Nitrite-N; SM4500NO3-F: Nitrate-N, Nitrite-N; SM4500F-C, SM4500CN-CE,

EPA 180.1, SM2130B, SM4500CI-D, SM2320B, SM2540C, SM4500H-B, SM4500NO2-B

EPA 332: Perchlorate; EPA 524.2: THMs and VOCs; EPA 504.1: EDB, DBCP.

Microbiology: SM9215B; SM9223-P/A, SM9223B-Colilert-QT,SM9222D.

Non-Potable Water

SM4500H,B, EPA 120.1, SM2510B, SM2540C, SM2320B, SM4500CL-E, SM4500F-BC, SM4500NH3-BH: Ammonia-N and Kjeldahl-N, EPA 350.1: Ammonia-N, LACHAT 10-107-06-1-B: Ammonia-N, EPA 351.1, SM4500NO3-F, EPA 353.2: Nitrate-N, SM4500P-E, SM4500P-B, E, SM4500SO4-E, SM5220D, EPA 410.4, SM5210B, SM5310C, SM4500CL-D, EPA 1664, EPA 420.1, SM4500-CN-CE, SM2540D, EPA 300: Chloride, Sulfate, Nitrate. EPA 624.1: Volatile Halocarbons & Aromatics.

EPA 608.3: Chlordane, Toxaphene, Aldrin, alpha-BHC, beta-BHC, gamma-BHC, delta-BHC, Dieldrin, DDD, DDE, DDT, Endosulfan II, Endosulfan III, Endosulfan sulfate, Endrin, Endrin Aldehyde, Heptachlor, Heptachlor Epoxide, PCBs

EPA 625.1: SVOC (Acid/Base/Neutral Extractables), EPA 600/4-81-045: PCB-Oil.

Microbiology: SM9223B-Colilert-QT; Enterolert-QT, SM9221E, EPA 1600, EPA 1603, SM9222D.

Mansfield Facility:

Drinking Water

EPA 200.7: Al, Ba, Cd, Cr, Cu, Fe, Mn, Ni, Na, Ag, Ca, Zn. **EPA 200.8:** Al, Sb, As, Ba, Be, Cd, Cr, Cu, Pb, Mn, Ni, Se, Ag, TL, Zn. **EPA 245.1** Hg. **EPA 522, EPA 537.1.**

Non-Potable Water

EPA 200.7: Al, Sb, As, Be, Cd, Ca, Cr, Co, Cu, Fe, Pb, Mg, Mn, Mo, Ni, K, Se, Ag, Na, Sr, TL, Ti, V, Zn.

EPA 200.8: Al, Sb, As, Be, Cd, Cr, Cu, Fe, Pb, Mn, Ni, K, Se, Ag, Na, TL, Zn.

EPA 245.1 Hg

SM2340B

For a complete listing of analytes and methods, please contact your Alpha Project Manager.

Document Type: Form Pre-Qualtrax Document ID: 08-113

Дирна	CHAIN OF CUSTODY	Service Centers Brows, ME 64412 Portame 07430 Alberty, NY 1228 Tensewanda, NY 14160 Holme	uch, 104 00801 Main s, FX 18043	web, NJ	Page (of	1			Date Rec'd 2/1/22		WENT 05320					
Westborough, MA 91691 8 Westerp Cr. TEL 508-898-9220 FAX: 508-898-9193	SameReds, WA 93949 202 Forbess Blvd TEL: 908-902-9000 FAX: 908-902-3298	Project Information Project Name: Project Location:			Beacon S	ia.		□ Email □ Fax □ EQuiS (1 File) □ EQuiS (4 File)			(4 File)	Same as Client Info				
H&A Information		Project #		02016	602-000			☐ Other:								
H&A Client: IQHQ, Inc	ć.	(Use Project name as Pro	oject #)					Regulatory Requirements (Program/Criteria)				s (P109	Criberia)	Disposal Site Information		
H&A Address: 495 Med	ford Street, Suite 2200	Project Manager:	oject Manager: K. Block				MA	20141	WCS.					Please identify below location of		
Boston, MA 02129		ALPHAQuote #:	HAQuote #:								- 1				applicable disposal facilities.	
H&A Phone: 617.680.2	2293	Turn Around Time		Sec.		111	1.3				- 1				Disposal Facility:	
H&A Fax: H&A Email: JThibeuit	, TCaims, KBlock	Standard Rush (only if pre approved)		Due Date: # of Days:	5 Day			Note: Salect State from menu & identify criteria.				w & ide	teria.	D NU D NY		
These samples have been		w Aloha 🗆						ANALYSIS				Sample Filtration				
Other project specific re Samples submitted for 20 Please specify Metals or	17 NPOES RGP applic		wed testing met	hods and r	minimum o	ielection la	evels as	1. VOCs	2. SVDCs	d VPH ranges only					☐ Done ☐ Lab to do Preservation ☑ Lab to do (Please Specify below)	
ALPHA Lab ID (Lab Use Only)	Sa	rnple ID	Collect		Sample Matrix	Sampler	Depth	E Hand		1	Sample Specific Comments					
	11 A 2 L 2/ A	In A rear litera	2/1/22	Time	AU	SR	-		×	X	\rightarrow	\rightarrow	\rightarrow	_		
05320-01	HAGE DOM	(OW) _Z0220201	211100	120	1100	217		Î.	×	Ŷ.			#	_		
									_				7	+		
n - r docan	Container Code P = Plastic A = Amber Glass V = Val G = Glass B = Bacteria Cup	Vestboro: Certification No: MAS35 Mansfield: Certification No: MAS35 Preservative		rification No: MA015		cation No: MA015		completely. Samples can a in and turnaround time clo start until any ambiguities resolved. Alpha Analyticals		Please print clearly, legibly and completely. Semples can not be logg in and tumeround time clock will no start until any ambiguities are yearlest. Alpha Ansylice's services under this Chair of Custody shall be						
E = NaOH F = MeOH G = NaHSO, H = Ma,S,O, KE = Za AsNaOH O = Other	C = Cube O = Other E = Encorre D = BOD Bottle	Periodo AA	ful :	Date/ 2 1 2 z 2 1 2 z 2 2 z = 1 z	1530	WC		The second		Ja T	27	2/1	22 7	163	performed in accordance with larms an conditions within Stantast Service	

Method Blank Summary Form 4 **Volatiles**

Client : Haley & Aldrich, Inc. Lab Number : L2205320 Project Name : 155 NORTH BEACON STREET Project Number

Lab Sample ID : WG1601035-5

Instrument ID : JACK1 Matrix : WATER

: 0201602-000 Lab File ID : J220203A04

Analysis Date : 02/03/22 04:47

Client Sample No.	Lab Sample ID	Analysis Date	
WG1601035-3LCS	WG1601035-3	02/03/22 03:54	
WG1601035-4LCSD	WG1601035-4	02/03/22 04:21	
HA21-B6A(OW)_20220201	L2205320-01	02/03/22 06:08	

Calibration Verification Summary Form 7 Volatiles

Client : Haley & Aldrich, Inc.

: 155 NORTH BEACON STREET

Instrument ID : JACK1 Lab File ID : J220203A02 Sample No : WG1601035-2

Channel:

Project Name

Lab Number : L2205320
Project Number : 0201602-000
Calibration Date : 02/03/22 03:54

Compound	Ave. RRF	RRF	Min RRF	%D	Max %D	Area%	Dev(mi
Fluorobenzene	1	1	-	0	20	107	0
Dichlorodifluoromethane	0.632	0.566	-	10.4	20	90	0
Chloromethane	0.625	0.66	-	-5.6	20	100	0
Vinyl chloride	0.577	0.59	-	-2.3	20	95	0
Bromomethane	0.288	0.258	-	10.4	20	99	0
Chloroethane	0.354	0.338	-	4.5	20	90	0
Trichlorofluoromethane	0.815	0.852	-	-4.5	20	102	0
Ethyl ether	0.309	0.296	-	4.2	20	96	0
1,1-Dichloroethene	0.476	0.5	-	-5	20	105	01
Carbon disulfide	1.296	1.405	-	-8.4	20	105	01
Freon-113	0.486	0.523	-	-7.6	20	107	01
Methylene chloride	0.559	0.57	-	-2	20	102	0
Acetone	0.159	0.238	-	-49.7*	20	152	0
trans-1,2-Dichloroethene	0.523	0.532	-	-1.7	20	101	0
Methyl acetate	0.425	0.382	-	10.1	20	92	0
Methyl tert-butyl ether	1.549	1.365	-	11.9	20	91	01
tert-Butyl alcohol	0.047	0.035	-	25.5*	20	80	0
Diisopropyl ether	1.9	1.823	-	4.1	20	97	0
1,1-Dichloroethane	1.033	1.054	-	-2	20	99	01
Halothane	0.416	0.425	-	-2.2	20	103	0
Acrylonitrile	0.193	0.188	-	2.6	20	98	01
Ethyl tert-butyl ether	1.685	1.525	-	9.5	20	95	01
Vinyl acetate	1.519	1.265	-	16.7	20	84	01
cis-1,2-Dichloroethene	0.59	0.6	-	-1.7	20	101	0
2,2-Dichloropropane	0.864	0.835	-	3.4	20	98	02
Bromochloromethane	0.282	0.271	-	3.9	20	96	01
Cyclohexane	0.938	1.025	-	-9.3	20	111	01
Chloroform	0.984	0.954	-	3	20	93	0
Ethyl acetate	0.634	0.521	-	17.8	20	87	0
Carbon tetrachloride	0.755	0.755	-	0	20	101	01
Tetrahydrofuran	0.195	0.187	-	4.1	20	101	01
Dibromofluoromethane	0.268	0.274	-	-2.2	20	109	01
1,1,1-Trichloroethane	0.853	0.853	-	0	20	99	01
2-Butanone	0.259	0.282	-	-8.9	20	109	01
1,1-Dichloropropene	0.723	0.751	-	-3.9	20	104	01
Benzene	2.114	2.13	-	-0.8	20	102	01
tert-Amyl methyl ether	1.48	1.255	-	15.2	20	89	01
1,2-Dichloroethane-d4	0.354	0.318	<u> </u>	10.2	20	97	01
1,2-Dichloroethane	0.777	0.687	<u>-</u>	11.6	20	89	01
Methyl cyclohexane	0.777	0.988	<u> </u>	-1	20	112	0
Trichloroethene	0.543	0.555	<u> </u>	-2.2	20	101	01
Dibromomethane	0.358	0.313		12.6	20	92	01
1,2-Dichloropropane	0.358	0.313	-	1.7	20	97	02

^{*} Value outside of QC limits.

Calibration Verification Summary Form 7 Volatiles

Client : Haley & Aldrich, Inc.

Project Name : 155 NORTH BEACON STREET

Instrument ID : JACK1 Lab File ID : J220203A02 Sample No : WG1601035-2

Channel:

Lab Number : L2205320
Project Number : 0201602-000
Calibration Date : 02/03/22 03:54

Compound Chloroothyl vinyl other	Ave. RRF	RRF	Min RRF	%D	Max %D	Area%	Dev(mi
2-Chloroethyl vinyl ether Bromodichloromethane	0.287	0.278 0.727	-	3.1 8	20	101 93	01
1,4-Dioxane	0.00252	0.00281*	-	-11.5	20	118	02
cis-1,3-Dichloropropene	0.925	0.874	-	5.5	20	94	0
Chlorobenzene-d5	1	1	-	0	20	110	01
Toluene-d8	1.243	1.21	-	2.7	20	107	02
Toluene	1.623	1.532	-	5.6	20	100	01
4-Methyl-2-pentanone	0.251	0.204	-	18.7	20	88	0
Tetrachloroethene	0.725	0.701	-	3.3	20	106	0
trans-1,3-Dichloropropene	1.003	0.864	-	13.9	20	91	01
Ethyl methacrylate	0.89	0.707	-	20.6*	20	83	0
1,1,2-Trichloroethane	0.473	0.416	-	12.1	20	93	0
Chlorodibromomethane	0.696	0.59	-	15.2	20	94	01
1,3-Dichloropropane	0.979	0.886	-	9.5	20	98	0
1,2-Dibromoethane	0.596	0.518	-	13.1	20	95	02
2-Hexanone	0.526	0.458	-	12.9	20	91	0
Chlorobenzene	1.895	1.745	-	7.9	20	99	01
Ethylbenzene	3.216	3.011	-	6.4	20	98	0
1,1,1,2-Tetrachloroethane	0.678	0.582	-	14.2	20	96	01
p/m Xylene	1.28	1.189	-	7.1	20	100	01
o Xylene	1.252	1.119	-	10.6	20	95	01
Styrene	2.143	1.94	-	9.5	20	97	01
1,4-Dichlorobenzene-d4	1	1	-	0	20	117	0
Bromoform	0.838	0.644	-	23.2*	20	94	01
Isopropylbenzene	6.16	5.605	-	9	20	101	0
4-Bromofluorobenzene	0.905	0.875	-	3.3	20	108	01
Bromobenzene	1.551	1.302	-	16.1	20	97	01
n-Propylbenzene	7.242	6.658	-	8.1	20	102	0
1,4-Dichlorobutane	2.039	1.63	-	20.1*	20	92	0
1,1,2,2-Tetrachloroethane	1.342	1.101	-	18	20	94	0
4-Ethyltoluene	5.954	5.395	-	9.4	20	101	01
2-Chlorotoluene	4.879	4.311	-	11.6	20	98	0
1,3,5-Trimethylbenzene	5.007	4.438	-	11.4	20	100	0
1,2,3-Trichloropropane	1.169	0.919	-	21.4*	20	93	01
trans-1,4-Dichloro-2-buten	0.501	0.322	-	35.7*	20	75	0
4-Chlorotoluene	4.485	3.918	-	12.6	20	98	0
tert-Butylbenzene	4.409	4.011		9	20	102	0
1,2,4-Trimethylbenzene	4.994	4.341	-	13.1	20	99	01
sec-Butylbenzene	6.573	6.153		6.4	20	105	0
<u> </u>	5.554	5.208	-	6.2	20	105	0
p-Isopropyltoluene		2.587		11.8	20	100	0
1,3-Dichlorobenzene	2.932		-				
1,4-Dichlorobenzene	2.926	2.492	-	14.8	20	98	0
p-Diethylbenzene	3.258	2.991	-	8.2	20	104	0

^{*} Value outside of QC limits.

Calibration Verification Summary Form 7 Volatiles

Client : Haley & Aldrich, Inc. Lab Number : L2205320
Project Name : 155 NORTH BEACON STREET Project Number : 0201602-000
Instrument ID : JACK1 Calibration Date : 02/03/22 03:54

 Lab File ID
 : J220203A02
 Init. Calib. Date(s)
 : 01/13/22
 01/13/22

 Sample No
 : WG1601035-2
 Init. Calib. Times
 : 04:34
 09:19

Channel :

Compound	Ave. RRF	RRF	Min RRF	%D	Max %D	Area%	Dev(min)
n-Butylbenzene	4.692	4.351	-	7.3	20	105	0
1,2-Dichlorobenzene	2.728	2.327	-	14.7	20	97	0
1,2,4,5-Tetramethylbenzene	4.839	4.18	-	13.6	20	100	0
1,2-Dibromo-3-chloropropan	0.258	0.211	-	18.2	20	97	01
1,3,5-Trichlorobenzene	1.931	1.792	-	7.2	20	106	0
Hexachlorobutadiene	0.69	0.729	-	-5.7	20	122	0
1,2,4-Trichlorobenzene	1.62	1.483	-	8.5	20	103	0
Naphthalene	4.489	3.936	-	12.3	20	102	0
1,2,3-Trichlorobenzene	1.441	1.334	-	7.4	20	104	0

^{*} Value outside of QC limits.

ANALYTICAL REPORT

Lab Number: L2205323

Client: Haley & Aldrich, Inc.

465 Medford Street, Suite 2200 Charlestown, MA 02129-1400

ATTN: Kyle Block Phone: (617) 886-7440

Project Name: 155 NORTH BEACON STREET

Project Number: 0201602-000

Report Date: 02/09/22

The original project report/data package is held by Alpha Analytical. This report/data package is paginated and should be reproduced only in its entirety. Alpha Analytical holds no responsibility for results and/or data that are not consistent with the original.

Certifications & Approvals: MA (M-MA086), NH NELAP (2064), CT (PH-0574), IL (200077), ME (MA00086), MD (348), NJ (MA935), NY (11148), NC (25700/666), PA (68-03671), RI (LAO00065), TX (T104704476), VT (VT-0935), VA (460195), USDA (Permit #P330-17-00196).

Eight Walkup Drive, Westborough, MA 01581-1019 508-898-9220 (Fax) 508-898-9193 800-624-9220 - www.alphalab.com

Project Name: 155 NORTH BEACON STREET

Project Number: 0201602-000

Lab Number:

L2205323

Report Date:

Alpha Sample ID	Client ID	Matrix	Sample Location	Collection Date/Time	Receive Date
L2205323-01	HA21-B1(OW)_20220201	WATER	BOSTON, MA	02/01/22 14:30	02/01/22

Project Name:155 NORTH BEACON STREETLab Number:L2205323Project Number:0201602-000Report Date:02/09/22

Case Narrative

The samples were received in accordance with the Chain of Custody and no significant deviations were encountered during the preparation or analysis unless otherwise noted. Sample Receipt, Container Information, and the Chain of Custody are located at the back of the report.

Results contained within this report relate only to the samples submitted under this Alpha Lab Number and meet NELAP requirements for all NELAP accredited parameters unless otherwise noted in the following narrative. The data presented in this report is organized by parameter (i.e. VOC, SVOC, etc.). Sample specific Quality Control data (i.e. Surrogate Spike Recovery) is reported at the end of the target analyte list for each individual sample, followed by the Laboratory Batch Quality Control at the end of each parameter. Tentatively Identified Compounds (TICs), if requested, are reported for compounds identified to be present and are not part of the method/program Target Compound List, even if only a subset of the TCL are being reported. If a sample was re-analyzed or re-extracted due to a required quality control corrective action and if both sets of data are reported, the Laboratory ID of the re-analysis or re-extraction is designated with an "R" or "RE", respectively.

When multiple Batch Quality Control elements are reported (e.g. more than one LCS), the associated samples for each element are noted in the grey shaded header line of each data table. Any Laboratory Batch, Sample Specific % recovery or RPD value that is outside the listed Acceptance Criteria is bolded in the report. In reference to questions H (CAM) or 4 (RCP) when "NO" is checked, the performance criteria for CAM and RCP methods allow for some quality control failures to occur and still be within method compliance. In these instances, the specific failure is not narrated but noted in the associated QC Outlier Summary Report, located directly after the Case Narrative. QC information is also incorporated in the Data Usability Assessment table (Format 11) of our Data Merger tool, where it can be reviewed in conjunction with the sample result, associated regulatory criteria and any associated data usability implications.

Soil/sediments, solids and tissues are reported on a dry weight basis unless otherwise noted. Definitions of all data qualifiers and acronyms used in this report are provided in the Glossary located at the back of the report.

HOLD POLICY - For samples submitted on hold, Alpha's policy is to hold samples (with the exception of Air canisters) free of charge for 21 calendar days from the date the project is completed. After 21 calendar days, we will dispose of all samples submitted including those put on hold unless you have contacted your Alpha Project Manager and made arrangements for Alpha to continue to hold the samples. Air canisters will be disposed after 3 business days from the date the project is completed.

Please contact Project Management at 800-624-9220 with any questions.								

Project Name:155 NORTH BEACON STREETLab Number:L2205323Project Number:0201602-000Report Date:02/09/22

Case Narrative (continued)

Report Submission

February 09, 2022: This final report includes the results of all requested analyses.

February 08, 2022: This is a preliminary report.

The analysis of Ethanol was subcontracted. A copy of the laboratory report is included as an addendum.

Please note: This data is only available in PDF format and is not available on Data Merger.

Total Metals

The WG1600637-4 Laboratory Duplicate RPD for iron (23%), performed on L2205323-01, is outside the acceptance criteria. The elevated RPD has been attributed to the non-homogeneous nature of the native sample.

I, the undersigned, attest under the pains and penalties of perjury that, to the best of my knowledge and belief and based upon my personal inquiry of those responsible for providing the information contained in this analytical report, such information is accurate and complete. This certificate of analysis is not complete unless this page accompanies any and all pages of this report.

Authorized Signature:

Title: Technical Director/Representative Date: 02/09/22

Melissa Sturgis Melissa Sturgis

ORGANICS

VOLATILES

L2205323

Project Name: 155 NORTH BEACON STREET

L2205323-01

BOSTON, MA

HA21-B1(OW)_20220201

Project Number: 0201602-000

SAMPLE RESULTS

Date Collected: 02/01/22 14:30

Lab Number:

Report Date: 02/09/22

Date Received: 02/01/22 Field Prep: Refer to COC

Sample Depth:

Sample Location:

Lab ID:

Client ID:

Matrix: Water Analytical Method: 128,624.1 Analytical Date: 02/02/22 10:16

Analyst: GT

Parameter	Result	Qualifier Units	RL	MDL	Dilution Factor					
Volatile Organics by GC/MS - Wes	Volatile Organics by GC/MS - Westborough Lab									
Methylene chloride	ND	ug/l	1.0		1					
1,1-Dichloroethane	ND	ug/l	1.5		1					
Carbon tetrachloride	ND	ug/l	1.0		1					
1,1,2-Trichloroethane	ND	ug/l	1.5		1					
Tetrachloroethene	ND	ug/l	1.0		1					
1,2-Dichloroethane	ND	ug/l	1.5		1					
1,1,1-Trichloroethane	ND	ug/l	2.0		1					
Benzene	ND	ug/l	1.0		1					
Toluene	ND	ug/l	1.0		1					
Ethylbenzene	ND	ug/l	1.0		1					
Vinyl chloride	ND	ug/l	1.0		1					
1,1-Dichloroethene	ND	ug/l	1.0		1					
cis-1,2-Dichloroethene	ND	ug/l	1.0		1					
Trichloroethene	ND	ug/l	1.0		1					
1,2-Dichlorobenzene	ND	ug/l	5.0		1					
1,3-Dichlorobenzene	ND	ug/l	5.0		1					
1,4-Dichlorobenzene	ND	ug/l	5.0		1					
p/m-Xylene	ND	ug/l	2.0		1					
o-xylene	ND	ug/l	1.0		1					
Xylenes, Total	ND	ug/l	1.0		1					
Acetone	ND	ug/l	10		1					
Methyl tert butyl ether	ND	ug/l	10		1					
Tert-Butyl Alcohol	ND	ug/l	100		1					
Tertiary-Amyl Methyl Ether	ND	ug/l	20		1					

Project Name: Lab Number: 155 NORTH BEACON STREET L2205323

Project Number: Report Date: 0201602-000 02/09/22

SAMPLE RESULTS

Lab ID: Date Collected: L2205323-01 02/01/22 14:30

Date Received: Client ID: HA21-B1(OW)_20220201 02/01/22 Sample Location: Field Prep: BOSTON, MA Refer to COC

Sample Depth:

Parameter Result Qualifier Units RL MDL **Dilution Factor**

Volatile Organics by GC/MS - Westborough Lab

Surrogate	% Recovery	Qualifier	Acceptance Criteria	
Pentafluorobenzene	100		60-140	
Fluorobenzene	94		60-140	
4-Bromofluorobenzene	107		60-140	

60-140

02/01/22 14:30

Project Name: 155 NORTH BEACON STREET

Project Number: 0201602-000

SAMPLE RESULTS

L2205323

Report Date: 02/09/22

Lab Number:

Date Collected:

Lab ID: L2205323-01

Client ID: HA21-B1(OW)_20220201

Sample Location: BOSTON, MA Date Received: 02/01/22 Field Prep: Refer to COC

Sample Depth:

Matrix: Water

Analytical Method: 128,624.1-SIM Analytical Date: 02/02/22 10:16

Analyst: GT

4-Bromofluorobenzene

Parameter	Result	Qualifier Units	RL	MDL	Dilution Factor
Volatile Organics by GC/MS-SI	์ - Westborough Lab				
1,4-Dioxane	ND	ug/l	5.0		1
Surrogate		% Recovery	Qualifier		eptance riteria
Fluorobenzene		99			60-140

98

02/01/22 14:30

Project Name: 155 NORTH BEACON STREET L2205323

Project Number: 0201602-000 **Report Date:** 02/09/22

SAMPLE RESULTS

Lab ID: L2205323-01 Date Collected:

Client ID: HA21-B1(OW)_20220201 Date Received: 02/01/22

Sample Location: BOSTON, MA Field Prep: Refer to COC

Sample Depth:

Matrix: Water Extraction Method: EPA 504.1
Analytical Method: 14,504.1 Extraction Date: 02/03/22 16:10

Analytical Date: 02/03/22 17:28

Analyst: AMM

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	Column
Microextractables by GC - Westborough Lab							
1,2-Dibromoethane	ND		ug/l	0.010		1	Α

L2205323

Project Name: 155 NORTH BEACON STREET Lab Number:

Project Number: 0201602-000 **Report Date:** 02/09/22

Method Blank Analysis Batch Quality Control

Analytical Method: 128,624.1 Analytical Date: 02/02/22 05:15

Analyst: GT

Parameter	Result	Qualifier Units	RL	MDL
Volatile Organics by GC/MS - Wes	tborough Lab	for sample(s): 01	Batch:	WG1600666-4
Methylene chloride	ND	ug/l	1.0	
1,1-Dichloroethane	ND	ug/l	1.5	
Carbon tetrachloride	ND	ug/l	1.0	
1,1,2-Trichloroethane	ND	ug/l	1.5	
Tetrachloroethene	ND	ug/l	1.0	
1,2-Dichloroethane	ND	ug/l	1.5	
1,1,1-Trichloroethane	ND	ug/l	2.0	
Benzene	ND	ug/l	1.0	
Toluene	ND	ug/l	1.0	
Ethylbenzene	ND	ug/l	1.0	
Vinyl chloride	ND	ug/l	1.0	
1,1-Dichloroethene	ND	ug/l	1.0	
cis-1,2-Dichloroethene	ND	ug/l	1.0	
Trichloroethene	ND	ug/l	1.0	
1,2-Dichlorobenzene	ND	ug/l	5.0	
1,3-Dichlorobenzene	ND	ug/l	5.0	
1,4-Dichlorobenzene	ND	ug/l	5.0	
p/m-Xylene	ND	ug/l	2.0	
o-xylene	ND	ug/l	1.0	
Xylenes, Total	ND	ug/l	1.0	
Acetone	ND	ug/l	10	
Methyl tert butyl ether	ND	ug/l	10	
Tert-Butyl Alcohol	ND	ug/l	100	
Tertiary-Amyl Methyl Ether	ND	ug/l	20	

Project Name: 155 NORTH BEACON STREET **Lab Number:** L2205323

Project Number: 0201602-000 **Report Date:** 02/09/22

Method Blank Analysis
Batch Quality Control

Analytical Method: 128,624.1 Analytical Date: 02/02/22 05:15

Analyst: GT

Parameter Result Qualifier Units RL MDL

Volatile Organics by GC/MS - Westborough Lab for sample(s): 01 Batch: WG1600666-4

		Acceptance
Surrogate	%Recovery Qualifi	er Criteria
Pentafluorobenzene	102	60-140
Fluorobenzene	93	60-140
4-Bromofluorobenzene	115	60-140

Project Name: 155 NORTH BEACON STREET **Lab Number:** L2205323

Project Number: 0201602-000 **Report Date:** 02/09/22

Method Blank Analysis Batch Quality Control

Analytical Method: 128,624.1-SIM Analytical Date: 02/02/22 05:15

Analyst: GT

Parameter	Result	Qualifier	Units		RL	MDL	
Volatile Organics by GC/MS-SIM -	Westborough	Lab for sa	ample(s):	01	Batch:	WG1600676-4	
1,4-Dioxane	ND		ug/l		5.0		

		Acceptance	
Surrogate	%Recovery	Qualifier Criteria	
Fluorobenzene	101	60-140	
4-Bromofluorobenzene	106	60-140	

Project Name: 155 NORTH BEACON STREET L2205323

Project Number: 0201602-000 **Report Date:** 02/09/22

Method Blank Analysis Batch Quality Control

Analytical Method: 14,504.1 Extraction Method: EPA 504.1

Analytical Date: 02/03/22 16:56 Extraction Date: 02/03/22 16:10

Analyst: AMM

Parameter	Result	Qualifier	Units	RL	MDL	
Microextractables by GC - Westbord	ough Lab for	sample(s)	: 01	Batch: W	/G1601234-1	
1,2-Dibromoethane	ND		ug/l	0.010)	А

Project Name: 155 NORTH BEACON STREET

Project Number: 0201602-000

Lab Number: L2205323

Report Date: 02/09/22

arameter	LCS %Recovery	Qual	LCSD %Recovery	Qual	%Recovery Limits	RPD	Qual	RPD Limits
platile Organics by GC/MS - Westborough	Lab Associated	sample(s): 0	1 Batch: WG1	600666-3				
Methylene chloride	95		-		60-140	-		28
1,1-Dichloroethane	90		-		50-150	-		49
Carbon tetrachloride	110		-		70-130	-		41
1,1,2-Trichloroethane	105		-		70-130	-		45
Tetrachloroethene	120		-		70-130	-		39
1,2-Dichloroethane	105		-		70-130	-		49
1,1,1-Trichloroethane	115		-		70-130	-		36
Benzene	100		-		65-135	-		61
Toluene	110		-		70-130	-		41
Ethylbenzene	130		-		60-140	-		63
Vinyl chloride	80		-		5-195	-		66
1,1-Dichloroethene	100		-		50-150	-		32
cis-1,2-Dichloroethene	95		-		60-140	-		30
Trichloroethene	105		-		65-135	-		48
1,2-Dichlorobenzene	130		-		65-135	-		57
1,3-Dichlorobenzene	125		-		70-130	-		43
1,4-Dichlorobenzene	135		-		65-135	-		57
p/m-Xylene	122		-		60-140	-		30
o-xylene	115		-		60-140	-		30
Acetone	72		-		40-160	-		30
Methyl tert butyl ether	85		-		60-140	-		30
Tert-Butyl Alcohol	82		-		60-140	-		30
Tertiary-Amyl Methyl Ether	80		-		60-140	-		30

155 NORTH BEACON STREET

Batch Quality Cont

Lab Number: L2205323

Project Number: 0201602-000 Report Date:

eport Date: 02/09/22

	LCS		LCSD		%Recovery			RPD
Parameter	%Recovery	Qual	%Recovery	Qual	Limits	RPD	Qual	Limits

Volatile Organics by GC/MS - Westborough Lab Associated sample(s): 01 Batch: WG1600666-3

Surrogate	LCS %Recovery Qual	LCSD %Recovery	Acceptance Qual Criteria	
Pentafluorobenzene	103		60-140	
Fluorobenzene	98		60-140	
4-Bromofluorobenzene	114		60-140	

Project Name:

Lab Number:

L2205323

Project Number:

Project Name:

155 NORTH BEACON STREET 0201602-000

Report Date:

Parameter	LCS %Recovery	Qual	LCSD %Recovery	Qual	%Recovery Limits	RPD	Qual	RPD Limits	
Volatile Organics by GC/MS-SIM - Westboro	ugh Lab Associa	ted sample(s)	: 01 Batch:	WG1600676	3-3				
1,4-Dioxane	112		-		60-140	-		20	

Surrogate	LCS %Recovery G	LCSD Qual %Recovery	Qual	Acceptance Criteria
Fluorobenzene 4-Bromofluorobenzene	105 101			60-140 60-140

Project Name: 155 NORTH BEACON STREET

Lab Number:

L2205323

Project Number: 0201602-000

Report Date:

Parameter	LCS %Recovery	Qual	LCSD %Recovery	Qual	%Recovery Limits	RPD	Qual	RPD Limits	Column
Microextractables by GC - Westborough Lab	Associated sam	nple(s): 01	Batch: WG1601	1234-2					
1,2-Dibromoethane	85		-		80-120	-			Α

Matrix Spike Analysis Batch Quality Control

Project Name: 155 NORTH BEACON STREET

Project Number: 0201602-000

Lab Number:

L2205323

Report Date:

Parameter	Native Sample	MS Added	MS Found %	MS Recovery	Qual	MSD Found	MSD %Recovery	Recovery Limits	RPD	Qual	RPD Limits	Column
Microextractables by GC -			ed sample(s): 01	,			QC Sample:			//S Samp		Column
1,2-Dibromoethane	ND	0.248	0.210	85		-		80-120	-	•	20	Α
1,2-Dibromo-3-chloropropane	ND	0.248	0.220	89		-	-	80-120	-		20	Α
1,2,3-Trichloropropane	ND	0.248	0.242	98		-	-	80-120	-		20	Α

SEMIVOLATILES

Project Name: Lab Number: 155 NORTH BEACON STREET L2205323

Project Number: Report Date: 0201602-000 02/09/22

SAMPLE RESULTS

Lab ID: L2205323-01 Date Collected: 02/01/22 14:30

Date Received: Client ID: HA21-B1(OW)_20220201 02/01/22 Sample Location: BOSTON, MA Field Prep: Refer to COC

Sample Depth:

Extraction Method: EPA 625.1 Matrix: Water **Extraction Date:** 02/05/22 21:51 Analytical Method: 129,625.1

Analytical Date: 02/07/22 00:40

Analyst: WR

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
Semivolatile Organics by GC/MS -	Westborough Lab					
Bis(2-ethylhexyl)phthalate	ND		ug/l	2.20		1
Butyl benzyl phthalate	ND		ug/l	5.00		1
Di-n-butylphthalate	ND		ug/l	5.00		1
Di-n-octylphthalate	ND		ug/l	5.00		1
Diethyl phthalate	ND		ug/l	5.00		1
Dimethyl phthalate	ND		ug/l	5.00		1

Surrogate	% Recovery	Qualifier	Acceptance Criteria	
Nitrobenzene-d5	79		42-122	
2-Fluorobiphenyl	79		46-121	
4-Terphenyl-d14	82		47-138	

Project Name: 155 NORTH BEACON STREET Lab Number: L2205323

Project Number: 0201602-000 **Report Date:** 02/09/22

SAMPLE RESULTS

Lab ID: L2205323-01 Date Collected: 02/01/22 14:30

Client ID: HA21-B1(OW)_20220201 Date Received: 02/01/22 Sample Location: BOSTON, MA Field Prep: Refer to COC

Sample Depth:

Matrix: Water Extraction Method: EPA 625.1

Analytical Method: 129,625.1-SIM Extraction Date: 02/05/22 21:55
Analytical Date: 02/06/22 14:36

Analyst: JJW

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	
Semivolatile Organics by GC/MS-	-SIM - Westborough La	ab					
Acenaphthene	ND		ug/l	0.100		1	
Fluoranthene	ND		ug/l	0.100		1	
Naphthalene	ND		ug/l	0.100		1	
Benzo(a)anthracene	ND		ug/l	0.100		1	
Benzo(a)pyrene	ND		ug/l	0.100		1	
Benzo(b)fluoranthene	ND		ug/l	0.100		1	
Benzo(k)fluoranthene	ND		ug/l	0.100		1	
Chrysene	ND		ug/l	0.100		1	
Acenaphthylene	ND		ug/l	0.100		1	
Anthracene	ND		ug/l	0.100		1	
Benzo(ghi)perylene	ND		ug/l	0.100		1	
Fluorene	ND		ug/l	0.100		1	
Phenanthrene	ND		ug/l	0.100		1	
Dibenzo(a,h)anthracene	ND		ug/l	0.100		1	
Indeno(1,2,3-cd)pyrene	ND		ug/l	0.100		1	
Pyrene	ND		ug/l	0.100		1	
Pentachlorophenol	ND		ug/l	1.00		1	

Surrogate	% Recovery	Acceptance Qualifier Criteria
2-Fluorophenol	56	25-87
Phenol-d6	38	16-65
Nitrobenzene-d5	85	42-122
2-Fluorobiphenyl	74	46-121
2,4,6-Tribromophenol	101	45-128
4-Terphenyl-d14	86	47-138

L2205323

Project Name: 155 NORTH BEACON STREET Lab Number:

Project Number: 0201602-000 **Report Date:** 02/09/22

Method Blank Analysis Batch Quality Control

Analytical Method: 129,625.1 Analytical Date: 02/06/22 23:54

Analyst: WR

Extraction Method: EPA 625.1 Extraction Date: 02/05/22 21:51

Parameter	Result	Qualifier	Units	RL	MDL	
Semivolatile Organics by GC/MS - V	Vestborough	Lab for s	ample(s):	01 Batch:	WG1601836-1	
Bis(2-ethylhexyl)phthalate	ND		ug/l	2.20		
Butyl benzyl phthalate	ND		ug/l	5.00		
Di-n-butylphthalate	ND		ug/l	5.00		
Di-n-octylphthalate	ND		ug/l	5.00		
Diethyl phthalate	ND		ug/l	5.00		
Dimethyl phthalate	ND		ug/l	5.00		

	Acceptanc				
Surrogate	%Recovery	Qualifier Criteria			
Nitrobenzene-d5	69	42-122			
2-Fluorobiphenyl	70	46-121			
4-Terphenyl-d14	69	47-138			

L2205323

Lab Number:

Project Name: 155 NORTH BEACON STREET

Project Number: 0201602-000 **Report Date:** 02/09/22

Method Blank Analysis Batch Quality Control

·

129,625.1-SIM

02/06/22 14:20

Analyst: JJW

Analytical Method:

Analytical Date:

Extraction Method: EPA 625.1 Extraction Date: 02/05/22 21:55

arameter	Result	Qualifier	Units	RL	MDL	•
emivolatile Organics by GC/MS	-SIM - Westbo	rough Lab	for sample	e(s): 01	Batch: W	G1601837-1
Acenaphthene	ND		ug/l	0.100		
Fluoranthene	ND		ug/l	0.100		
Naphthalene	ND		ug/l	0.100		
Benzo(a)anthracene	ND		ug/l	0.100		
Benzo(a)pyrene	ND		ug/l	0.100		
Benzo(b)fluoranthene	ND		ug/l	0.100		
Benzo(k)fluoranthene	ND		ug/l	0.100		
Chrysene	ND		ug/l	0.100		
Acenaphthylene	ND		ug/l	0.100		
Anthracene	ND		ug/l	0.100		
Benzo(ghi)perylene	ND		ug/l	0.100		
Fluorene	ND		ug/l	0.100		
Phenanthrene	ND		ug/l	0.100		
Dibenzo(a,h)anthracene	ND		ug/l	0.100		
Indeno(1,2,3-cd)pyrene	ND		ug/l	0.100		
Pyrene	ND		ug/l	0.100		
Pentachlorophenol	ND		ug/l	1.00		

%Recovery		Acceptance Criteria	
60		25-87	
41		16-65	
90		42-122	
78		46-121	
99		45-128	
81		47-138	
	60 41 90 78 99	%Recovery Qualifier 60 41 90 78 99	%Recovery Qualifier Criteria 60 25-87 41 16-65 90 42-122 78 46-121 99 45-128

Project Name: 155 NORTH BEACON STREET

Project Number: 0201602-000

Lab Number: L2205323

Report Date: 02/09/22

Parameter	LCS %Recovery	Qual	LCSD %Recovery	Qual	%Recovery Limits	RPD	Qual	RPD Limits	
Semivolatile Organics by GC/MS - Westborou	ıgh Lab Associa	ted sample(s)	: 01 Batch:	WG1601836	6-2				
Bis(2-ethylhexyl)phthalate	109		-		29-137	-		82	
Butyl benzyl phthalate	101		-		1-140	-		60	
Di-n-butylphthalate	99		-		8-120	-		47	
Di-n-octylphthalate	106		-		19-132	-		69	
Diethyl phthalate	95		-		1-120	-		100	
Dimethyl phthalate	96		-		1-120	-		183	

Surrogate	LCS %Recovery Qual	LCSD %Recovery Qual	Acceptance Criteria	
Nitrobenzene-d5	93		42-122	
2-Fluorobiphenyl	90		46-121	
4-Terphenyl-d14	91		47-138	

Project Name: 155 NORTH BEACON STREET

Project Number: 0201602-000

Lab Number: L2205323

Report Date: 02/09/22

arameter	LCS %Recovery Qu	LCSD al %Recovery (%Recovery Qual Limits	RPD	RPD Qual Limits
Semivolatile Organics by GC/MS-SIM - Wes	stborough Lab Associat	ed sample(s): 01 Batch:	WG1601837-2		
Acenaphthene	79	-	60-132	-	30
Fluoranthene	90	-	43-121	-	30
Naphthalene	77	-	36-120	-	30
Benzo(a)anthracene	97	-	42-133	-	30
Benzo(a)pyrene	95	-	32-148	-	30
Benzo(b)fluoranthene	95	-	42-140	-	30
Benzo(k)fluoranthene	92	-	25-146	-	30
Chrysene	81	-	44-140	-	30
Acenaphthylene	88	-	54-126	-	30
Anthracene	85	-	43-120	-	30
Benzo(ghi)perylene	94	-	1-195	-	30
Fluorene	85	-	70-120	-	30
Phenanthrene	79	-	65-120	-	30
Dibenzo(a,h)anthracene	104	-	1-200	-	30
Indeno(1,2,3-cd)pyrene	100	-	1-151	-	30
Pyrene	90	-	70-120	-	30
Pentachlorophenol	90	•	38-152	-	30

Project Name: 155 NORTH BEACON STREET

Lab Number:

L2205323

Project Number: 0201602-000

Report Date:

02/09/22

	LCS		LCSD		%Recovery			RPD
Parameter	%Recovery	Qual	%Recovery	Qual	Limits	RPD	Qual	Limits

Semivolatile Organics by GC/MS-SIM - Westborough Lab Associated sample(s): 01 Batch: WG1601837-2

Surrogate	LCS %Recovery Qual %R	LCSD ecovery Qual	Acceptance Criteria
2-Fluorophenol	61		25-87
Phenol-d6	43		16-65
Nitrobenzene-d5	89		42-122
2-Fluorobiphenyl	79		46-121
2,4,6-Tribromophenol	105		45-128
4-Terphenyl-d14	89		47-138

PCBS

Project Name:155 NORTH BEACON STREETLab Number:L2205323

Project Number: 0201602-000 **Report Date:** 02/09/22

SAMPLE RESULTS

Lab ID: L2205323-01 Date Collected: 02/01/22 14:30

Client ID: HA21-B1(OW)_20220201 Date Received: 02/01/22 Sample Location: BOSTON, MA Field Prep: Refer to COC

Sample Depth:

Matrix: Water Extraction Method: EPA 608.3
Analytical Method: 127,608.3
Analytical Date: 02/07/22 10:12
EPA 608.3
Extraction Date: 02/06/22 07:30
Cleanup Method: EPA 3665A

Analyst: AWS Cleanup Date: 02/06/22

Cleanup Method: EPA 3660B Cleanup Date: 02/07/22

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	Column
Polychlorinated Biphenyls by	GC - Westborough Lab						
Aroclor 1016	ND		ug/l	0.250		1	Α
Aroclor 1221	ND		ug/l	0.250		1	Α
Aroclor 1232	ND		ug/l	0.250		1	А
Aroclor 1242	ND		ug/l	0.250		1	Α
Aroclor 1248	ND		ug/l	0.250		1	Α
Aroclor 1254	ND		ug/l	0.250		1	Α
Aroclor 1260	ND		ua/l	0.200		1	Α

			Acceptance	
Surrogate	% Recovery	Qualifier	Criteria	Column
2,4,5,6-Tetrachloro-m-xylene	70		37-123	В
Decachlorobiphenyl	80		38-114	В
2,4,5,6-Tetrachloro-m-xylene	67		37-123	Α
Decachlorobiphenyl	75		38-114	Α

L2205323

Project Name: 155 NORTH BEACON STREET Lab Number:

Project Number: 0201602-000 **Report Date:** 02/09/22

Method Blank Analysis
Batch Quality Control

Analytical Method: 127,608.3 Analytical Date: 02/06/22 11:03

Analyst: JAW

Extraction Method: EPA 608.3
Extraction Date: 02/05/22 07:50
Cleanup Method: EPA 3665A
Cleanup Date: 02/05/22
Cleanup Method: EPA 3660B
Cleanup Date: 02/05/22

Parameter	Result	Qualifier	Units	RL	MDL	Column
Polychlorinated Biphenyls by GC - V	Vestborough	Lab for s	ample(s):	01 Batch:	WG1601748	-1
Aroclor 1016	ND		ug/l	0.250		А
Aroclor 1221	ND		ug/l	0.250		Α
Aroclor 1232	ND		ug/l	0.250		А
Aroclor 1242	ND		ug/l	0.250		Α
Aroclor 1248	ND		ug/l	0.250		Α
Aroclor 1254	ND		ug/l	0.250		Α
Aroclor 1260	ND		ug/l	0.200		Α

		Acceptance	e
Surrogate	%Recovery Qualifie	r Criteria	Column
2.4.5.6. Totrochloro m. vulono	40	37-123	Б
2,4,5,6-Tetrachloro-m-xylene	48	37-123	В
Decachlorobiphenyl	71	38-114	В
2,4,5,6-Tetrachloro-m-xylene	47	37-123	Α
Decachlorobiphenyl	66	38-114	Α

Lab Control Sample Analysis Batch Quality Control

155 NORTH BEACON STREET **Project Name:**

Lab Number: L2205323

Project Number: 0201602-000 Report Date:

02/09/22

	LCS		LCSD		%Recovery			RPD	
Parameter	%Recovery	Qual	%Recovery	Qual	Limits	RPD	Qual	Limits	Column
Polychlorinated Biphenyls by GC - Westbor	ough Lab Associa	ited sample(s)	: 01 Batch:	WG1601748-	2				
Aroclor 1016	88		-		50-140	-		36	Α
Aroclor 1260	93		-		8-140	-		38	Α

Surrogate	LCS %Recovery Qual	LCSD %Recovery Qual	Acceptance Criteria Columi
2,4,5,6-Tetrachloro-m-xylene	58		37-123 B
Decachlorobiphenyl	79		38-114 B
2,4,5,6-Tetrachloro-m-xylene	58		37-123 A
Decachlorobiphenyl	73		38-114 A

METALS

02/01/22 14:30

Date Collected:

Project Name: Lab Number: 155 NORTH BEACON STREET L2205323 Report Date: 02/09/22

Project Number: 0201602-000

SAMPLE RESULTS

Lab ID: L2205323-01

Client ID: HA21-B1(OW)_20220201 Date Received: 02/01/22 Sample Location: BOSTON, MA Field Prep: Refer to COC

Sample Depth:

Matrix: Water

Davamatav	Result	Qualifier	Units	D.	MDL	Dilution Factor	Date Prepared	Date Analyzed	Prep Method	Analytical Method	Amalust
Parameter	Result	Quaimer	Units	RL	MDL		Порагоа	7			Analyst
Total Metals - Man	sfield Lab										
Antimony, Total	ND		mg/l	0.00400		1	02/02/22 16:10	6 02/02/22 20:51	EPA 3005A	3,200.8	SV
Arsenic, Total	ND		mg/l	0.00100		1	02/02/22 16:10	6 02/02/22 20:51	EPA 3005A	3,200.8	SV
Cadmium, Total	ND		mg/l	0.00020		1	02/02/22 16:10	6 02/02/22 20:51	EPA 3005A	3,200.8	SV
Chromium, Total	0.00147		mg/l	0.00100		1	02/02/22 16:10	6 02/02/22 20:51	EPA 3005A	3,200.8	SV
Copper, Total	ND		mg/l	0.00100		1	02/02/22 16:10	6 02/02/22 20:51	EPA 3005A	3,200.8	SV
Iron, Total	0.256		mg/l	0.050		1	02/02/22 16:10	6 02/02/22 23:38	EPA 3005A	19,200.7	DL
Lead, Total	ND		mg/l	0.00100		1	02/02/22 16:10	6 02/02/22 20:51	EPA 3005A	3,200.8	SV
Mercury, Total	ND		mg/l	0.00020		1	02/02/22 17:1	7 02/04/22 10:17	EPA 245.1	3,245.1	ZK
Nickel, Total	0.00398		mg/l	0.00200		1	02/02/22 16:10	6 02/02/22 20:51	EPA 3005A	3,200.8	SV
Selenium, Total	ND		mg/l	0.00500		1	02/02/22 16:10	6 02/02/22 20:51	EPA 3005A	3,200.8	SV
Silver, Total	0.00059		mg/l	0.00040		1	02/02/22 16:10	6 02/02/22 20:51	EPA 3005A	3,200.8	SV
Zinc, Total	ND		mg/l	0.01000		1	02/02/22 16:10	6 02/02/22 20:51	EPA 3005A	3,200.8	SV
Total Hardness by	SM 2340E	s - Mansfield	d Lab								
Hardness	1380		mg/l	0.660	NA	1	02/02/22 16:10	6 02/02/22 23:38	EPA 3005A	19,200.7	DL
General Chemistry	- Mansfiel	dlah									
,		a Lab									
Chromium, Trivalent	ND		mg/l	0.010		1		02/02/22 20:51	NA	107,-	

Project Name: 155 NORTH BEACON STREET

Project Number: 0201602-000

Lab Number:

L2205323

Report Date: 02/09/22

Method Blank Analysis Batch Quality Control

Parameter	Result Qualifier	Units	RL	MDL	Dilution Factor	Date Prepared		Analytica Method	
Total Metals - Ma	ansfield Lab for sample(s):	01 Batch	n: WG1	600637-	1				
Iron, Total	ND	mg/l	0.050		1	02/02/22 16:16	02/02/22 23:13	19,200.7	DL

Prep Information

Digestion Method: EPA 3005A

Parameter	Result Qualifier	Units	RL	MDL	Dilution Factor	Date Prepared	Date Analyzed	Analytical Method	Analyst
Total Hardness by SM 2	2340B - Mansfield La	b for sam	ple(s): 0	1 Bato	h: WG160	0637-1			
Hardness	ND	mg/l	0.660	NA	1	02/02/22 16:16	02/02/22 23:13	19,200.7	DL

Prep Information

Digestion Method: EPA 3005A

Parameter	Result Qualifier	Units	RL	MDL	Dilution Factor	Date Prepared	Date Analyzed	Analytical Method	Analyst
Total Metals - Mans	sfield Lab for sample(s):	01 Bato	h: WG16	00638	·1				
Antimony, Total	ND	mg/l	0.00400		1	02/02/22 16:16	02/02/22 20:24	3,200.8	SV
Arsenic, Total	ND	mg/l	0.00100		1	02/02/22 16:16	02/02/22 20:24	3,200.8	SV
Cadmium, Total	ND	mg/l	0.00020		1	02/02/22 16:16	02/02/22 20:24	3,200.8	SV
Chromium, Total	ND	mg/l	0.00100		1	02/02/22 16:16	02/02/22 20:24	3,200.8	SV
Copper, Total	ND	mg/l	0.00100		1	02/02/22 16:16	02/02/22 20:24	3,200.8	SV
Lead, Total	ND	mg/l	0.00100		1	02/02/22 16:16	02/02/22 20:24	3,200.8	SV
Nickel, Total	ND	mg/l	0.00200		1	02/02/22 16:16	02/02/22 20:24	3,200.8	SV
Selenium, Total	ND	mg/l	0.00500		1	02/02/22 16:16	02/02/22 20:24	3,200.8	SV
Silver, Total	ND	mg/l	0.00040		1	02/02/22 16:16	02/02/22 20:24	3,200.8	SV
Zinc, Total	ND	mg/l	0.01000		1	02/02/22 16:16	02/02/22 20:24	3,200.8	SV

Prep Information

Digestion Method: EPA 3005A

Project Name: 155 NORTH BEACON STREET

Lab Number: **Report Date:**

L2205323

Project Number: 0201602-000

02/09/22

Method Blank Analysis Batch Quality Control

Parameter	Result Qualifier	Units	RL	MDL	Dilution Factor	Date Prepared		Analytical Method	
Total Metals - Mansfie	eld Lab for sample(s):	01 Batc	h: WG16	600639-	1				
Mercury, Total	ND	mg/l	0.00020		1	02/02/22 17:17	02/04/22 09:57	3,245.1	ZK

Prep Information

Digestion Method: EPA 245.1

Lab Control Sample Analysis Batch Quality Control

Project Name: 155 NORTH BEACON STREET

Project Number: 0201602-000

Lab Number: L2205323

Report Date: 02/09/22

Parameter	LCS %Recovery	LCSD Qual %Recovery	%Reco Qual Limit		Qual	RPD Limits
Total Metals - Mansfield Lab Associated sample	e(s): 01 Batch: W	G1600637-2				
Iron, Total	97	-	85-118	5 -		
Total Hardness by SM 2340B - Mansfield Lab A	Associated sample(s): 01 Batch: WG16006	37-2			
Hardness	102	-	85-115	5 -		
otal Metals - Mansfield Lab Associated sample	e(s): 01 Batch: W	G1600638-2				
Antimony, Total	85	-	85-115	5 -		
Arsenic, Total	99	-	85-115	-		
Cadmium, Total	97	-	85-115	-		
Chromium, Total	92	-	85-115	· -		
Copper, Total	94	-	85-115	· -		
Lead, Total	94	-	85-115	· -		
Nickel, Total	89	-	85-115	· -		
Selenium, Total	102	-	85-115	5 -		
Silver, Total	100	-	85-115	5 -		
Zinc, Total	95	-	85-115	5 -		
Fotal Metals - Mansfield Lab Associated sample	e(s): 01 Batch: W	'G1600639-2				
Mercury, Total	103	-	85-115	· -		

Matrix Spike Analysis Batch Quality Control

Project Name: 155 NORTH BEACON STREET

Project Number: 0201602-000

Lab Number: L2205323

Report Date: 02/09/22

arameter	Native Sample	MS Added	MS Found	MS %Recovery (MSD Qual Found	MSD %Recovery	Recovery Qual Limits	RPD Qua	RPD al Limits
Total Metals - Mansfield Lab	Associated sam	ple(s): 01	QC Batch ID): WG1600637-	3 QC Sam	ole: L2205323-01	Client ID: HA21	-B1(OW)_20	220201
Iron, Total	0.256	1	1.13	87	-	-	75-125	-	20
Total Hardness by SM 2340 31(OW)_20220201	B - Mansfield Lab	Associate	ed sample(s):	01 QC Batch	ID: WG16006	37-3 QC Samp	ble: L2205323-01	Client ID: I	HA21-
Hardness	1380	66.2	1450	106	-	-	75-125	-	20
Гotal Metals - Mansfield Lab	o Associated sam	ple(s): 01	QC Batch ID): WG1600638-	3 QC Sam	ole: L2205323-01	Client ID: HA21	-B1(OW)_20	220201
Antimony, Total	ND	0.5	0.5381	108	-	-	70-130	-	20
Arsenic, Total	ND	0.12	0.1225	102	-	-	70-130	-	20
Cadmium, Total	ND	0.053	0.05123	97	-	-	70-130	-	20
Chromium, Total	0.00147	0.2	0.1812	90	-	-	70-130	-	20
Copper, Total	ND	0.25	0.2280	91	-	-	70-130	-	20
Lead, Total	ND	0.53	0.5122	97	-	-	70-130	-	20
Nickel, Total	0.00398	0.5	0.4345	86	-	-	70-130	-	20
Selenium, Total	ND	0.12	0.1196	100	-	-	70-130	-	20
Silver, Total	0.00059	0.05	0.05046	100	-	-	70-130	-	20
Zinc, Total	ND	0.5	0.4631	93	-	-	70-130	-	20
otal Metals - Mansfield Lab	Associated sam	ple(s): 01	QC Batch ID): WG1600639-	3 QC Sam	ole: L2205252-01	Client ID: MS S	ample	
Mercury, Total	ND	0.005	0.00493	99	-	-	70-130	-	20

Lab Duplicate Analysis Batch Quality Control

Project Name: 155 NORTH BEACON STREET

Project Number: 0201602-000

Lab Number:

L2205323

Report Date:

02/09/22

Parameter		Native Sample	Dupl	icate Sample	Units	RPD	Qual	RPD Limits
Total Metals - Mansfield Lab Ass	sociated sample(s): 01	QC Batch ID: W	G1600637-4	QC Sample:	L2205323-01	Client ID:	HA21-B1(OW)	_20220201
Iron, Total		0.256		0.203	mg/l	23	Q	20
Total Hardness by SM 2340B - M B1(OW)_20220201	lansfield Lab Associate	d sample(s): 01	QC Batch ID:	WG1600637	-4 QC Sampl	e: L22053	323-01 Client II	D: HA21-
Hardness		1380		1360	mg/l	1		20
Total Metals - Mansfield Lab Ass	sociated sample(s): 01	QC Batch ID: W	G1600638-4	QC Sample:	L2205323-01	Client ID:	HA21-B1(OW)	_20220201
Antimony, Total		ND		ND	mg/l	NC		20
Arsenic, Total		ND		ND	mg/l	NC		20
Cadmium, Total		ND		ND	mg/l	NC		20
Chromium, Total		0.00147		0.00142	mg/l	4		20
Copper, Total		ND		ND	mg/l	NC		20
Lead, Total		ND		ND	mg/l	NC		20
Nickel, Total		0.00398		0.00368	mg/l	8		20
Selenium, Total		ND		ND	mg/l	NC		20
Silver, Total		0.00059		0.00058	mg/l	1		20
Zinc, Total		ND		ND	mg/l	NC		20
Total Metals - Mansfield Lab Ass	sociated sample(s): 01	QC Batch ID: W	G1600639-4	QC Sample:	L2205252-01	Client ID:	DUP Sample	
Mercury, Total		ND		ND	mg/l	NC		20

INORGANICS & MISCELLANEOUS

Project Name: 155 NORTH BEACON STREET Lab Number: L2205323

SAMPLE RESULTS

Lab ID: L2205323-01 Date Collected: 02/01/22 14:30

Client ID: HA21-B1(OW)_20220201 Date Received: 02/01/22 Sample Location: BOSTON, MA Field Prep: Refer to COC

Sample Depth:

Matrix: Water

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	Date Prepared	Date Analyzed	Analytical Method	Analyst
General Chemistry - Wes	stborough Lab									
Solids, Total Suspended	ND		mg/l	5.0	NA	1	-	02/02/22 19:00	121,2540D	MD
Cyanide, Total	ND		mg/l	0.005		1	02/02/22 04:50	02/02/22 10:39	121,4500CN-CE	CS
Chlorine, Total Residual	ND		mg/l	0.02		1	-	02/01/22 21:58	121,4500CL-D	AS
pH (H)	6.7		SU	-	NA	1	-	02/01/22 22:30	121,4500H+-B	AS
Nitrogen, Ammonia	0.402		mg/l	0.075		1	02/02/22 10:35	02/02/22 21:20	121,4500NH3-BH	H AT
Phenolics, Total	ND		mg/l	0.030		1	02/04/22 06:47	02/04/22 11:54	4,420.1	KP
Chromium, Hexavalent	ND		mg/l	0.010		1	02/01/22 21:00	02/01/22 21:41	1,7196A	AS
Anions by Ion Chromatog	graphy - West	borough	Lab							
Chloride	2090		mg/l	50.0		100	-	02/02/22 22:07	44,300.0	AT

L2205323

02/09/22

Lab Number:

Report Date:

Project Name: 155 NORTH BEACON STREET

Project Number: 0201602-000

Method Blank Analysis Batch Quality Control

Parameter	Result Qu	ualifier	Units	RL	MDL	Dilution Factor	Date Prepared	Date Analyzed	Analytical Method	Analyst
General Chemistry - V	Westborough Lab	for sam	ple(s): 01	Batch:	WG16	00395-1				
Chromium, Hexavalent	ND		mg/l	0.010		1	02/01/22 21:00	02/01/22 21:40	1,7196A	AS
General Chemistry - V	Westborough Lab	for sam	ple(s): 01	Batch:	WG16	00396-1				
Chlorine, Total Residual	ND		mg/l	0.02		1	-	02/01/22 21:58	121,4500CL-D	AS
General Chemistry - V	Westborough Lab	for sam	ple(s): 01	Batch:	WG16	00446-1				
Cyanide, Total	ND		mg/l	0.005		1	02/02/22 04:50	02/02/22 10:07	121,4500CN-CE	E CS
General Chemistry - V	Westborough Lab	for sam	ple(s): 01	Batch:	WG16	00532-1				
Nitrogen, Ammonia	ND		mg/l	0.075		1	02/02/22 10:35	02/02/22 20:47	121,4500NH3-BI	H AT
General Chemistry - V	Westborough Lab	for sam	ple(s): 01	Batch:	WG16	00759-1				
Solids, Total Suspended	ND		mg/l	5.0	NA	1	-	02/02/22 19:00	121,2540D	MD
Anions by Ion Chrom	atography - Westb	orough	Lab for sar	nple(s):	01 B	atch: WG1	600857-1			
Chloride	ND		mg/l	0.500		1	-	02/02/22 17:44	44,300.0	AT
General Chemistry - V	Westborough Lab	for sam	ple(s): 01	Batch:	WG16	01417-1				
Phenolics, Total	ND		mg/l	0.030		1	02/04/22 06:47	02/04/22 11:51	4,420.1	KP

Lab Control Sample Analysis Batch Quality Control

Project Name: 155 NORTH BEACON STREET

Project Number: 0201602-000

Lab Number:

L2205323

Report Date:

02/09/22

Parameter	LCS %Recovery Qu	LCSD al %Recovery Qual	%Recovery Limits	RPD	Qual	RPD Limits
General Chemistry - Westborough Lab	Associated sample(s): 01	Batch: WG1600395-2				
Chromium, Hexavalent	104	-	85-115	-		20
General Chemistry - Westborough Lab	Associated sample(s): 01	Batch: WG1600396-2				
Chlorine, Total Residual	100	-	90-110	-		
General Chemistry - Westborough Lab	Associated sample(s): 01	Batch: WG1600411-1				
рН	100	-	99-101	-		5
General Chemistry - Westborough Lab	Associated sample(s): 01	Batch: WG1600446-2				
Cyanide, Total	99	-	90-110	-		
General Chemistry - Westborough Lab	Associated sample(s): 01	Batch: WG1600532-2				
Nitrogen, Ammonia	107	-	80-120	-		20
General Chemistry - Westborough Lab	Associated sample(s): 01	Batch: WG1600759-2				
Solids, Total Suspended	97	-	80-120	-		
Anions by Ion Chromatography - Westb	orough Lab Associated sa	ample(s): 01 Batch: WG1600	857-2			
Chloride	104	-	90-110	-		

Lab Control Sample Analysis Batch Quality Control

155 NORTH BEACON STREET **Project Name:**

Project Number: 0201602-000 Lab Number:

L2205323

Report Date:

02/09/22

Parameter	LCS %Recovery	LCSD %Recovery	%Recovery Limits	RPD	RPD Limits
General Chemistry - Westborough Lab	Associated sample(s): 01	Batch: WG1601417-2			
Phenolics, Total	91	-	70-130	-	

Matrix Spike Analysis Batch Quality Control

Project Name: 155 NORTH BEACON STREET

Project Number: 0201602-000

Lab Number: L2205323

Report Date: 02/09/22

Parameter	Native Sample	MS Added	MS Found	MS %Recovery	MSD Qual Found	MSD %Recovery Qu	Recovery al Limits	RPD Qual	RPD Limits
General Chemistry - Westboroเ B1(OW)_20220201	ugh Lab Assoc	iated samp	ole(s): 01	QC Batch ID: V	WG1600395-4	QC Sample: L22053	23-01 Client I	D: HA21-	
Chromium, Hexavalent	ND	0.1	0.104	104	-	-	85-115	-	20
General Chemistry - Westborou B1(OW)_20220201	ugh Lab Assoc	iated samp	le(s): 01	QC Batch ID: V	WG1600396-4	QC Sample: L22053	23-01 Client I	D: HA21-	
Chlorine, Total Residual	ND	0.25	0.27	108	-	-	80-120	-	20
General Chemistry - Westborou	ugh Lab Assoc	iated samp	ole(s): 01	QC Batch ID: V	WG1600446-4	QC Sample: L22050	67-02 Client I	D: MS Samp	le
Cyanide, Total	ND	0.2	0.198	99	-	-	90-110	-	30
General Chemistry - Westborou	ugh Lab Assoc	iated samp	ole(s): 01	QC Batch ID: V	WG1600532-4	QC Sample: L22051	58-02 Client I	D: MS Samp	le
Nitrogen, Ammonia	1.68	4	5.58	98	-	-	80-120	-	20
Anions by Ion Chromatography Sample	- Westboroug	h Lab Asso	ociated san	nple(s): 01 Q0	C Batch ID: WG1	600857-3 QC San	nple: L2204258-	09 Client IE): MS
Chloride	161	100	260	99	-	-	90-110	-	18
General Chemistry - Westboroเ B1(OW)_20220201	ugh Lab Assoc	iated samp	ole(s): 01	QC Batch ID: V	WG1601417-4	QC Sample: L22053	23-01 Client I	D: HA21-	
Phenolics, Total	ND	0.4	0.37	92	-	-	70-130	-	20

Lab Duplicate Analysis Batch Quality Control

Project Name: 155 NORTH BEACON STREET

Project Number: 0201602-000

Lab Number:

L2205323

Report Date:

ate: 02/09/22

Parameter	Native Sample	Duplicate Sam	ple Units	RPD	Qual	RPD Limits
General Chemistry - Westborough Lab Assoc B1(OW)_20220201	iated sample(s): 01 QC Batch ID:	WG1600395-3	QC Sample: L22053	23-01	Client ID:	HA21-
Chromium, Hexavalent	ND	ND	mg/l	NC		20
General Chemistry - Westborough Lab Assoc B1(OW)_20220201	iated sample(s): 01 QC Batch ID:	WG1600396-3	QC Sample: L22053	23-01	Client ID:	HA21-
Chlorine, Total Residual	ND	ND	mg/l	NC		20
General Chemistry - Westborough Lab Assoc B1(OW)_20220201	iated sample(s): 01 QC Batch ID:	WG1600411-2	QC Sample: L22053	23-01	Client ID:	HA21-
pH (H)	6.7	6.6	SU	2		5
General Chemistry - Westborough Lab Assoc	iated sample(s): 01 QC Batch ID:	WG1600446-3	QC Sample: L22050	67-01	Client ID:	DUP Sample
Cyanide, Total	ND	ND	mg/l	NC		30
General Chemistry - Westborough Lab Assoc	iated sample(s): 01 QC Batch ID:	WG1600532-3	QC Sample: L22051	58-02	Client ID:	DUP Sample
Nitrogen, Ammonia	1.68	1.84	mg/l	9		20
General Chemistry - Westborough Lab Assoc	iated sample(s): 01 QC Batch ID:	WG1600759-3	QC Sample: L22048	13-01	Client ID:	DUP Sample
Solids, Total Suspended	140	140	mg/l	0		29
Anions by Ion Chromatography - Westborough Sample	n Lab Associated sample(s): 01 C	C Batch ID: WG1	1600857-4 QC Sam	ple: L2	2204258-09	O Client ID: DUP
Chloride	161	161	mg/l	0		18
General Chemistry - Westborough Lab Assoc B1(OW)_20220201	iated sample(s): 01 QC Batch ID:	WG1601417-3	QC Sample: L22053	23-01	Client ID:	HA21-
Phenolics, Total	ND	ND	mg/l	NC		20

Project Name: 155 NORTH BEACON STREET

Project Number: 0201602-000

Lab Number: L2205323 **Report Date:** 02/09/22

Sample Receipt and Container Information

Were project specific reporting limits specified?

YES

Cooler Information

Custody Seal Cooler

Α Absent

Container Info	iner Information		Initial	Final	Temp			Frozen	
Container ID	Container Type	Cooler	pН	pН	deg C	Pres	Seal	Date/Time	Analysis(*)
L2205323-01A	Vial Na2S2O3 preserved	Α	NA		3.0	Υ	Absent		624.1-SIM-RGP(7)
L2205323-01B	Vial Na2S2O3 preserved	Α	NA		3.0	Υ	Absent		624.1-SIM-RGP(7)
L2205323-01C	Vial Na2S2O3 preserved	Α	NA		3.0	Υ	Absent		624.1-SIM-RGP(7)
L2205323-01D	Vial Na2S2O3 preserved	Α	NA		3.0	Υ	Absent		624.1-RGP(7)
L2205323-01E	Vial Na2S2O3 preserved	Α	NA		3.0	Υ	Absent		624.1-RGP(7)
L2205323-01F	Vial Na2S2O3 preserved	Α	NA		3.0	Υ	Absent		624.1-RGP(7)
L2205323-01G	Vial Na2S2O3 preserved	Α	NA		3.0	Υ	Absent		504(14)
L2205323-01H	Vial Na2S2O3 preserved	Α	NA		3.0	Υ	Absent		504(14)
L2205323-01I	Vial unpreserved	Α	NA		3.0	Υ	Absent		SUB-ETHANOL(14)
L2205323-01J	Vial unpreserved	Α	NA		3.0	Υ	Absent		SUB-ETHANOL(14)
L2205323-01K	Vial unpreserved	Α	NA		3.0	Υ	Absent		SUB-ETHANOL(14)
L2205323-01L	Plastic 250ml HNO3 preserved	A	<2	<2	3.0	Y	Absent		AG-2008S(180),FE-RI(180),CR- 2008S(180),HOLD-METAL- DISSOLVED(180),AS-2008S(180),PB- 2008S(180),ZN-2008S(180),NI-2008S(180),SE- 2008S(180),CU-2008S(180),SB- 2008S(180),CD-2008S(180),HG-R(28)
L2205323-01M	Plastic 250ml HNO3 preserved	A	<2	<2	3.0	Y	Absent		CD-2008T(180),NI-2008T(180),ZN- 2008T(180),HARDU(180),FE-UI(180),CU- 2008T(180),SE-2008T(180),AS- 2008T(180),HG-U(28),AG-2008T(180),SB- 2008T(180),CR-2008T(180),PB-2008T(180)
L2205323-01N	Plastic 250ml NaOH preserved	Α	>12	>12	3.0	Υ	Absent		TCN-4500(14)
L2205323-01O	Plastic 500ml H2SO4 preserved	Α	<2	<2	3.0	Υ	Absent		NH3-4500(28)
L2205323-01P	Plastic 950ml unpreserved	Α	7	7	3.0	Y	Absent		CL-300(28),HEXCR-7196(1),TRC-4500(1),PH-4500(.01)
L2205323-01Q	Plastic 950ml unpreserved	Α	7	7	3.0	Υ	Absent		TSS-2540(7)
L2205323-01R	Amber 950ml H2SO4 preserved	Α	<2	<2	3.0	Υ	Absent		TPHENOL-420(28)

Lab Number: L2205323

Report Date: 02/09/22

Project Number: 0201602-000

155 NORTH BEACON STREET

Project Name:

Container Info	ormation		Initial	Final	Temp			Frozen	
Container ID	Container Type	Cooler	pН	рН	deg C	Pres	Seal	Date/Time	Analysis(*)
L2205323-01S	Amber 1000ml Na2S2O3	А	7	7	3.0	Υ	Absent		PCB-608.3(365)
L2205323-01T	Amber 1000ml Na2S2O3	Α	7	7	3.0	Υ	Absent		PCB-608.3(365)
L2205323-01U	Amber 1000ml Na2S2O3	Α	7	7	3.0	Υ	Absent		625.1-RGP(7)
L2205323-01V	Amber 1000ml Na2S2O3	Α	7	7	3.0	Υ	Absent		625.1-SIM-RGP(7)

Project Name: Lab Number: 155 NORTH BEACON STREET L2205323 0201602-000 **Report Date: Project Number:** 02/09/22

GLOSSARY

Acronyms

LOQ

MS

RPD

DL - Detection Limit: This value represents the level to which target analyte concentrations are reported as estimated values, when those target analyte concentrations are quantified below the limit of quantitation (LOQ). The DL includes any adjustments

from dilutions, concentrations or moisture content, where applicable. (DoD report formats only.)

EDL - Estimated Detection Limit: This value represents the level to which target analyte concentrations are reported as estimated values, when those target analyte concentrations are quantified below the reporting limit (RL). The EDL includes any adjustments from dilutions, concentrations or moisture content, where applicable. The use of EDLs is specific to the analysis of PAHs using Solid-Phase Microextraction (SPME).

EMPC - Estimated Maximum Possible Concentration: The concentration that results from the signal present at the retention time of an analyte when the ions meet all of the identification criteria except the ion abundance ratio criteria. An EMPC is a worst-case estimate of the concentration.

EPA Environmental Protection Agency.

LCS - Laboratory Control Sample: A sample matrix, free from the analytes of interest, spiked with verified known amounts of analytes or a material containing known and verified amounts of analytes.

LCSD Laboratory Control Sample Duplicate: Refer to LCS.

LFB - Laboratory Fortified Blank: A sample matrix, free from the analytes of interest, spiked with verified known amounts of analytes or a material containing known and verified amounts of analytes.

LOD - Limit of Detection: This value represents the level to which a target analyte can reliably be detected for a specific analyte in a specific matrix by a specific method. The LOD includes any adjustments from dilutions, concentrations or moisture content, where applicable. (DoD report formats only.)

- Limit of Quantitation: The value at which an instrument can accurately measure an analyte at a specific concentration. The LOQ includes any adjustments from dilutions, concentrations or moisture content, where applicable. (DoD report formats

Limit of Quantitation: The value at which an instrument can accurately measure an analyte at a specific concentration. The LOQ includes any adjustments from dilutions, concentrations or moisture content, where applicable. (DoD report formats

MDI - Method Detection Limit: This value represents the level to which target analyte concentrations are reported as estimated values, when those target analyte concentrations are quantified below the reporting limit (RL). The MDL includes any adjustments from dilutions, concentrations or moisture content, where applicable.

- Matrix Spike Sample: A sample prepared by adding a known mass of target analyte to a specified amount of matrix sample for which an independent estimate of target analyte concentration is available. For Method 332.0, the spike recovery is calculated using the native concentration, including estimated values.

MSD - Matrix Spike Sample Duplicate: Refer to MS.

NA - Not Applicable.

NC - Not Calculated: Term is utilized when one or more of the results utilized in the calculation are non-detect at the parameter's reporting unit.

NDPA/DPA - N-Nitrosodiphenylamine/Diphenylamine.

NI - Not Ignitable.

NP - Non-Plastic: Term is utilized for the analysis of Atterberg Limits in soil.

- No Results: Term is utilized when 'No Target Compounds Requested' is reported for the analysis of Volatile or Semivolatile NR Organic TIC only requests.

RL - Reporting Limit: The value at which an instrument can accurately measure an analyte at a specific concentration. The RL includes any adjustments from dilutions, concentrations or moisture content, where applicable.

- Relative Percent Difference: The results from matrix and/or matrix spike duplicates are primarily designed to assess the precision of analytical results in a given matrix and are expressed as relative percent difference (RPD). Values which are less than five times the reporting limit for any individual parameter are evaluated by utilizing the absolute difference between the values; although the RPD value will be provided in the report.

SRM - Standard Reference Material: A reference sample of a known or certified value that is of the same or similar matrix as the associated field samples.

STLP - Semi-dynamic Tank Leaching Procedure per EPA Method 1315.

TEF - Toxic Equivalency Factors: The values assigned to each dioxin and furan to evaluate their toxicity relative to 2,3,7,8-TCDD.

TEO - Toxic Equivalent: The measure of a sample's toxicity derived by multiplying each dioxin and furan by its corresponding TEF and then summing the resulting values.

TIC - Tentatively Identified Compound: A compound that has been identified to be present and is not part of the target compound list (TCL) for the method and/or program. All TICs are qualitatively identified and reported as estimated concentrations.

Report Format: Data Usability Report

Project Name:155 NORTH BEACON STREETLab Number:L2205323Project Number:0201602-000Report Date:02/09/22

Footnotes

1 - The reference for this analyte should be considered modified since this analyte is absent from the target analyte list of the original method.

Terms

Analytical Method: Both the document from which the method originates and the analytical reference method. (Example: EPA 8260B is shown as 1,8260B.) The codes for the reference method documents are provided in the References section of the Addendum.

Difference: With respect to Total Oxidizable Precursor (TOP) Assay analysis, the difference is defined as the Post-Treatment value minus the Pre-Treatment value.

Final pH: As it pertains to Sample Receipt & Container Information section of the report, Final pH reflects pH of container determined after adjustment at the laboratory, if applicable. If no adjustment required, value reflects Initial pH.

Frozen Date/Time: With respect to Volatile Organics in soil, Frozen Date/Time reflects the date/time at which associated Reagent Water-preserved vials were initially frozen. Note: If frozen date/time is beyond 48 hours from sample collection, value will be reflected in 'bold'.

Initial pH: As it pertains to Sample Receipt & Container Information section of the report, Initial pH reflects pH of container determined upon receipt, if applicable.

PAH Total: With respect to Alkylated PAH analyses, the 'PAHs, Total' result is defined as the summation of results for all or a subset of the following compounds: Naphthalene, C1-C4 Naphthalenes, 2-Methylnaphthalene, 1-Methylnaphthalene, Biphenyl, Acenaphthylene, Acenaphthene, Fluorene, C1-C3 Fluorenes, Phenanthrene, C1-C4 Phenanthrenes/Anthracenes, Anthracene, Fluoranthene, Pyrene, C1-C4 Fluoranthenes/Pyrenes, Benz(a)anthracene, Chrysene, C1-C4 Chrysenes, Benzo(b)fluoranthene, Benzo(j)+(k)fluoranthene, Benzo(e)pyrene, Benzo(a)pyrene, Perylene, Indeno(1,2,3-cd)pyrene, Dibenz(ah)+(ac)anthracene, Benzo(g,h,i)perylene. If a 'Total' result is requested, the results of its individual components will also be reported.

PFAS Total: With respect to PFAS analyses, the 'PFAS, Total (5)' result is defined as the summation of results for: PFHpA, PFHxS, PFOA, PFNA and PFOS. In addition, the 'PFAS, Total (6)' result is defined as the summation of results for: PFHpA, PFHxS, PFOA, PFNA, PFDA and PFOS. For MassDEP DW compliance analysis only, the 'PFAS, Total (6)' result is defined as the summation of results at or above the RL. Note: If a 'Total' result is requested, the results of its individual components will also be reported.

The target compound Chlordane (CAS No. 57-74-9) is reported for GC ECD analyses. Per EPA,this compound "refers to a mixture of chlordane isomers, other chlorinated hydrocarbons and numerous other components." (Reference: USEPA Toxicological Review of Chlordane, In Support of Summary Information on the Integrated Risk Information System (IRIS), December 1997.)

Total: With respect to Organic analyses, a 'Total' result is defined as the summation of results for individual isomers or Aroclors. If a 'Total' result is requested, the results of its individual components will also be reported. This is applicable to 'Total' results for methods 8260, 8081 and 8082.

Data Qualifiers

- A Spectra identified as "Aldol Condensates" are byproducts of the extraction/concentration procedures when acetone is introduced in the process.
- The analyte was detected above the reporting limit in the associated method blank. Flag only applies to associated field samples that have detectable concentrations of the analyte at less than ten times (10x) the concentration found in the blank. For MCP-related projects, flag only applies to associated field samples that have detectable concentrations of the analyte at less than ten times (10x) the concentrations of the analyte at less than ten times (10x) the concentrations of the analyte was detectable concentrations of the analyte at less than ten times (10x) the concentration found in the blank AND the analyte was detected above one-half the reporting limit (or above the reporting limit for common lab contaminants) in the associated method blank. For NJ-Air-related projects, flag only applies to associated field samples that have detectable concentrations of the analyte above the reporting limit. For NJ-related projects (excluding Air), flag only applies to associated field samples that have detectable concentrations of the analyte, which was detected above the reporting limit in the associated method blank or above five times the reporting limit for common lab contaminants (Phthalates, Acetone, Methylene Chloride, 2-Butanone).
- Co-elution: The target analyte co-elutes with a known lab standard (i.e. surrogate, internal standards, etc.) for co-extracted analyses.
- Concentration of analyte was quantified from diluted analysis. Flag only applies to field samples that have detectable concentrations of the analyte.
- E Concentration of analyte exceeds the range of the calibration curve and/or linear range of the instrument.
- F The ratio of quantifier ion response to qualifier ion response falls outside of the laboratory criteria. Results are considered to be an estimated maximum concentration.
- G The concentration may be biased high due to matrix interferences (i.e, co-elution) with non-target compound(s). The result should be considered estimated.
- H The analysis of pH was performed beyond the regulatory-required holding time of 15 minutes from the time of sample collection.
- I The lower value for the two columns has been reported due to obvious interference.
- J Estimated value. This represents an estimated concentration for Tentatively Identified Compounds (TICs).
- M Reporting Limit (RL) exceeds the MCP CAM Reporting Limit for this analyte.
- **ND** Not detected at the reporting limit (RL) for the sample.
- NJ Presumptive evidence of compound. This represents an estimated concentration for Tentatively Identified Compounds (TICs), where

Report Format: Data Usability Report

Project Name:155 NORTH BEACON STREETLab Number:L2205323Project Number:0201602-000Report Date:02/09/22

Data Qualifiers

the identification is based on a mass spectral library search.

- P The RPD between the results for the two columns exceeds the method-specified criteria.
- Q The quality control sample exceeds the associated acceptance criteria. For DOD-related projects, LCS and/or Continuing Calibration Standard exceedences are also qualified on all associated sample results. Note: This flag is not applicable for matrix spike recoveries when the sample concentration is greater than 4x the spike added or for batch duplicate RPD when the sample concentrations are less than 5x the RL. (Metals only.)
- **R** Analytical results are from sample re-analysis.
- **RE** Analytical results are from sample re-extraction.
- S Analytical results are from modified screening analysis.
- The surrogate associated with this target analyte has a recovery outside the QC acceptance limits. (Applicable to MassDEP DW Compliance samples only.)
- Z The batch matrix spike and/or duplicate associated with this target analyte has a recovery/RPD outside the QC acceptance limits. (Applicable to MassDEP DW Compliance samples only.)

Report Format: Data Usability Report

Project Name:155 NORTH BEACON STREETLab Number:L2205323Project Number:0201602-000Report Date:02/09/22

REFERENCES

- 1 Test Methods for Evaluating Solid Waste: Physical/Chemical Methods. EPA SW-846. Third Edition. Updates I VI, 2018.
- Methods for the Determination of Metals in Environmental Samples, Supplement I. EPA/600/R-94/111. May 1994.
- 4 Methods for Chemical Analysis of Water and Wastes. EPA 600/4-79-020. Revised March 1983.
- Methods for the Determination of Organic Compounds in Finished Drinking Water and Raw Source Water. EPA/600/4-88/039, Revised July 1991.
- 19 Inductively Coupled Plasma Atomic Emission Spectrometric Method for Trace Element Analysis of Water and Wastes. Appendix C, Part 136, 40 CFR (Code of Federal Regulations). July 1, 1999 edition.
- Methods for the Determination of Inorganic Substances in Environmental Samples, EPA/600/R-93/100, August 1993.
- 107 Alpha Analytical In-house calculation method.
- 121 Standard Methods for the Examination of Water and Wastewater. APHA-AWWA-WEF. Standard Methods Online.
- Method 608.3: Organochlorine Pesticides and PCBs by GC/HSD, EPA 821-R-16-009, December 2016.
- 128 Method 624.1: Purgeables by GC/MS, EPA 821-R-16-008, December 2016.
- Method 625.1: Base/Neutrals and Acids by GC/MS, EPA 821-R-16-007, December 2016.

LIMITATION OF LIABILITIES

Alpha Analytical performs services with reasonable care and diligence normal to the analytical testing laboratory industry. In the event of an error, the sole and exclusive responsibility of Alpha Analytical shall be to re-perform the work at it's own expense. In no event shall Alpha Analytical be held liable for any incidental, consequential or special damages, including but not limited to, damages in any way connected with the use of, interpretation of, information or analysis provided by Alpha Analytical.

We strongly urge our clients to comply with EPA protocol regarding sample volume, preservation, cooling, containers, sampling procedures, holding time and splitting of samples in the field.

Alpha Analytical, Inc. Facility: Company-wide

Department: Quality Assurance

Title: Certificate/Approval Program Summary

ID No.:17873 Revision 19

Published Date: 4/2/2021 1:14:23 PM

Page 1 of 1

Certification Information

The following analytes are not included in our Primary NELAP Scope of Accreditation:

Westborough Facility

EPA 624/624.1: m/p-xylene, o-xylene, Naphthalene

EPA 625/625.1: alpha-Terpineol

EPA 8260C/8260D: NPW: 1,2,4,5-Tetramethylbenzene; 4-Ethyltoluene, Azobenzene; SCM: Iodomethane (methyl iodide), 1,2,4,5-Tetramethylbenzene;

EPA 8270D/8270E: NPW: Dimethylnaphthalene,1,4-Diphenylhydrazine, alpha-Terpineol; SCM: Dimethylnaphthalene,1,4-Diphenylhydrazine.

SM4500: NPW: Amenable Cyanide; SCM: Total Phosphorus, TKN, NO2, NO3.

Mansfield Facility

SM 2540D: TSS

EPA 8082A: NPW: PCB: 1, 5, 31, 87,101, 110, 141, 151, 153, 180, 183, 187.

EPA TO-15: Halothane, 2,4,4-Trimethyl-2-pentene, 2,4,4-Trimethyl-1-pentene, Thiophene, 2-Methylthiophene,

3-Methylthiophene, 2-Ethylthiophene, 1,2,3-Trimethylbenzene, Indan, Indene, 1,2,4,5-Tetramethylbenzene, Benzothiophene, 1-Methylnaphthalene.

Biological Tissue Matrix: EPA 3050B

The following analytes are included in our Massachusetts DEP Scope of Accreditation

Westborough Facility:

Drinking Water

EPA 300.0: Chloride, Nitrate-N, Fluoride, Sulfate; EPA 353.2: Nitrate-N, Nitrite-N; SM4500NO3-F: Nitrate-N, Nitrite-N; SM4500F-C, SM4500CN-CE,

EPA 180.1, SM2130B, SM4500CI-D, SM2320B, SM2540C, SM4500H-B, SM4500NO2-B

EPA 332: Perchlorate; EPA 524.2: THMs and VOCs; EPA 504.1: EDB, DBCP.

Microbiology: SM9215B; SM9223-P/A, SM9223B-Colilert-QT,SM9222D.

Non-Potable Water

SM4500H,B, EPA 120.1, SM2510B, SM2540C, SM2320B, SM4500CL-E, SM4500F-BC, SM4500NH3-BH: Ammonia-N and Kjeldahl-N, EPA 350.1: Ammonia-N, LACHAT 10-107-06-1-B: Ammonia-N, EPA 351.1, SM4500NO3-F, EPA 353.2: Nitrate-N, SM4500P-E, SM4500P-B, E, SM4500SO4-E, SM5220D, EPA 410.4, SM5210B, SM5310C, SM4500CL-D, EPA 1664, EPA 420.1, SM4500-CN-CE, SM2540D, EPA 300: Chloride, Sulfate, Nitrate. EPA 624.1: Volatile Halocarbons & Aromatics,

EPA 608.3: Chlordane, Toxaphene, Aldrin, alpha-BHC, beta-BHC, gamma-BHC, delta-BHC, Dieldrin, DDD, DDE, DDT, Endosulfan II, Endosulfan II, Endosulfan sulfate, Endrin, Endrin Aldehyde, Heptachlor, Heptachlor Epoxide, PCBs

EPA 625.1: SVOC (Acid/Base/Neutral Extractables), EPA 600/4-81-045: PCB-Oil.

Microbiology: SM9223B-Colilert-QT; Enterolert-QT, SM9221E, EPA 1600, EPA 1603, SM9222D.

Mansfield Facility:

Drinking Water

EPA 200.7: Al, Ba, Cd, Cr, Cu, Fe, Mn, Ni, Na, Ag, Ca, Zn. EPA 200.8: Al, Sb, As, Ba, Be, Cd, Cr, Cu, Pb, Mn, Ni, Se, Ag, TL, Zn. EPA 245.1 Hg. EPA 522, EPA 537.1.

Non-Potable Water

EPA 200.7: Al, Sb, As, Be, Cd, Ca, Cr, Co, Cu, Fe, Pb, Mg, Mn, Mo, Ni, K, Se, Ag, Na, Sr, TL, Ti, V, Zn.

EPA 200.8: Al, Sb, As, Be, Cd, Cr, Cu, Fe, Pb, Mn, Ni, K, Se, Ag, Na, TL, Zn.

EPA 245.1 Hg

SM2340B

For a complete listing of analytes and methods, please contact your Alpha Project Manager.

Pre-Qualtrax Document ID: 08-113 Document Type: Form

ALPHA Material Dr.	CHAIN OF CUSTODY	Service Centers Brawer, ME 64412 Fortemouth, NH 68801 Walnush, NJ CTKIC Abany, NY 12206 Tonawanda, NY 14160 Holmes, PA 19043 PERSONNAL PROPERTY AND ADDRESS OF THE PROPERTY AND ADDRESS OF THE PERSONNAL PROPERTY ADDRESS OF THE PERSONNAL PR				_	200	Date in I		21	uh	ız		To the last	ALPHA 3008 LTZ 05323		
TEL: 508-898-8229	TEL: 608-622-9000	Project Name:		155 North	Beacon :	St		☑ Email ☐ Fax						Same as Client Info			
FAX: 808-808-0103	FAX: 508-602-0086	Project Location:		Bos	lon, MA				EQui	S (1 F	lle)	3	DOU	8 (4 F	ite)	POS	
HSA Information		Project #		0201	602-000			☐ Other:									
H&A Client: IQHQ, Ir	ne.	(Use Project name as Pr	roject#) 🖸				Regulatory Requirements (Program/Criteria)						da)	Disposal Bite Information			
H&A Address: 465 Mad	ford Street, Suite 2200	Project Manager:		K.	Block			MA, 2017 NPDES RCP						Please identify below location of			
Boston, MA 02129		ALPHAQuote #:														applicable disposal facilities.	
H&A Phone: 617,680	2293	Tym Around Time	-	-111				1								Disposal Facility:	
H&A Fax:		Standard Due Date:						1									
HSA Email: JThibau	t, TCaims, KBlock	Rush (only if pre approved	6C)	# of Days:	5 Day			Note:	Select	State 1	on no	enu & k	sentity	orberia	i.	Other:	
These samples have been	en previously analyzed t	by Alpha 🗆						AN	ALYSI	s						Sample Filtration	
Other project specific requiremental comments: Samples submitted for 2017 NPDES RGP application; please follow approved testing methor required by EPA. Please specify Metals or YAL. No has local how Slow into hung g					TPI+	detection is	200	SM SM	38 625.1 & 625.1- SM	3,8	a 606, EDB 504, NOL, \$58,000	5. Ammonia (NHS), dex Cr. Hardness, pH	6. Ethanol	T. Total NPDES RGP Metals	NPOES RGP Metals Field Fillered) / ON	Done Lab to do Preservation Lab to do	
	110~ 66	The Nation In	Colle	_	,	1	-	8	K	880	POB		-	2	13.3		
(Lab Use Only)	Sa	imple ID	Date	Time	Sample Matrix	Sampler Initials	Depth	2	2. SVOCs	4	\$ P	40 분		H-	00	Sample Specific Comments	
05313-01	HA21- B1(OW)	20.000.00	21122	1430	AQ	50°		16-	v		х	×	X-	90	ж.	1, 1,4-Dioxane by 624.1-58M 22	
03707-01	H0211	, will out	214-2	-170	AQ.	214						×	·	x-	×	5. Sub Ethanol	
	Receiving Water				100			-				×		×		7. NPDES RGP Metals	
	Historying Histor				rea		_					-		-		includes: Ag. As. Cd. Cr. Tri C	
			_				_	-		-	-	-				Cu. Ni. Pb. Sb. Se. Zn. Fe. Hg	
						2		-				-				5: Field Filtered NPDES RGP	
														E	E	Metals (ON HOLD)	
	Contribution Code											E		E		Please print stearly, legibly and	
Presentative Code: A = None B = HCl C = HeVO ₃ D = H ₂ SO ₄ E = NaCH F = NaCH S = NaHSO ₄ H = Na ₂ S ₂ O ₃ K/E = Ze AuNaOH O = Other	Container Code P = Plastic A = Amber Glass V = Visi G = Glass S = Basteria Cup C = Cube O = Other E = Encore D = BOO Bottle	Reinquished	Relinquished By:		P	ntainer Ty	8.	20	16	d	1	2/1/2	2	/C	30	completely, Samples can not be logged in and tenseround time clock will not start until any emblguilles are resolved. Alphe Analytica's services water this Chain of Custody shall be performed in accordance with limms and conditions within Elevisia.	

				act Chain of Custo	dy	[Note to be well	
ALPI		54	k Lab, Inc. 45 Horsehoe linsville, IL 6	Lake Road		Alpha Job Number	
ANALYJ MINESONE							
	lient Information	The state of the s	Project In	formation	Regulatory Req	uirements/Report Limits	
Client: Alpha . Address: Eight V Westbo	Analytical Labs Valkup Drive orough, MA 01581-1019	Project Location Project Manage Turnsro		erables Information	State/Federal Program: Regulatory Criteria: RC		
Phone: 603.31 Email: mgulis	9.5010 Falphelab.com	Due Date Deliverables					
The same		Project Specif	ic Requirem	ents and/or Report R	equirements		
	Reference following Alpha Job I	Number on final repor	t/deliverables	L2205323	Report to include Method Blan	nk, LCS/LCSD:	
Additional Com	ments: Send all results/reports to	o subreports@alphal.	ab.com				
Lab ID	Client ID	Collection Sample Analysis Analysis					
	HA21-B1(OW)_20228201	G2-01-22 14:30	WATER	Ethenel by EPA 1671 Revision	on A		
form No: AL_su	Relinquisbe	d By:		Date/Time: 2]a]ag.	Received By:	Date/Time:	

http://www.teklabinc.com/

100226

E-10374

05002

05003

9978

Illinois

Kansas

Louisiana

Louisiana

Oklahoma

February 09, 2022

Melissa Gulli Alpha Analytical 145 Flanders Road Westborough, MA 01581

TEL: (603) 319-5010

FAX:

RE: L2205323 **WorkOrder:** 22020199

Dear Melissa Gulli:

TEKLAB, INC received 1 sample on 2/4/2022 9:24:00 AM for the analysis presented in the following report.

Samples are analyzed on an as received basis unless otherwise requested and documented. The sample results contained in this report relate only to the requested analytes of interest as directed on the chain of custody. NELAP accredited fields of testing are indicated by the letters NELAP under the Certification column. Unless otherwise documented within this report, Teklab Inc. analyzes samples utilizing the most current methods in compliance with 40CFR. All tests are performed in the Collinsville, IL laboratory unless otherwise noted in the Case Narrative.

All quality control criteria applicable to the test methods employed for this project have been satisfactorily met and are in accordance with NELAP except where noted. The following report shall not be reproduced, except in full, without the written approval of Teklab, Inc.

If you have any questions regarding these tests results, please feel free to call.

Sincerely,

Marvin L. Darling

Project Manager (618)344-1004 ex 41

mdarling@teklabinc.com

Mowin L. Darling I

Report Contents

http://www.teklabinc.com/

Client: Alpha Analytical Work Order: 22020199
Client Project: L2205323 Report Date: 09-Feb-22

This reporting package includes the following:

Cover Letter	1
Report Contents	2
Definitions	3
Case Narrative	5
Accreditations	6
Laboratory Results	7
Quality Control Results	8
Receiving Check List	9
Chain of Custody	Appended

Definitions

http://www.teklabinc.com/

Report Date: 09-Feb-22

Client: Alpha Analytical Work Order: 22020199

Client Project: L2205323

Abbr Definition

- * Analytes on report marked with an asterisk are not NELAP accredited
- CCV Continuing calibration verification is a check of a standard to determine the state of calibration of an instrument between recalibration.
- CRQL A Client Requested Quantitation Limit is a reporting limit that varies according to customer request. The CRQL may not be less than the MDL.
 - DF Dilution factor is the dilution performed during analysis only and does not take into account any dilutions made during sample preparation. The reported result is final and includes all dilution factors.
 - DNI Did not ignite
- DUP Laboratory duplicate is a replicate aliquot prepared under the same laboratory conditions and independently analyzed to obtain a measure of precision.
- ICV Initial calibration verification is a check of a standard to determine the state of calibration of an instrument before sample analysis is initiated.
- IDPH IL Dept. of Public Health
- LCS Laboratory control sample is a sample matrix, free from the analytes of interest, spiked with verified known amounts of analytes and analyzed exactly like a sample to establish intra-laboratory or analyst specific precision and bias or to assess the performance of all or a portion of the measurement system.
- LCSD Laboratory control sample duplicate is a replicate laboratory control sample that is prepared and analyzed in order to determine the precision of the approved test method. The acceptable recovery range is listed in the QC Package (provided upon request).
- MBLK Method blank is a sample of a matrix similar to the batch of associated sample (when available) that is free from the analytes of interest and is processed simultaneously with and under the same conditions as samples through all steps of the analytical procedures, and in which no target analytes or interferences should present at concentrations that impact the analytical results for sample analyses.
- MDL "The method detection limit is defined as the minimum measured concentration of a substance that can be reported with 99% confidence that the measured concentration is distinguishable from method blank results."
- MS Matrix spike is an aliquot of matrix fortified (spiked) with known quantities of specific analytes that is subjected to the entire analytical procedures in order to determine the effect of the matrix on an approved test method's recovery system. The acceptable recovery range is listed in the QC Package (provided upon request).
- MSD Matrix spike duplicate means a replicate matrix spike that is prepared and analyzed in order to determine the precision of the approved test method. The acceptable recovery range is listed in the QC Package (provided upon request).
- MW Molecular weight
- NC Data is not acceptable for compliance purposes
- ND Not Detected at the Reporting Limit
- NELAP NELAP Accredited
 - PQL Practical quantitation limit means the lowest level that can be reliably achieved within specified limits of precision and accuracy during routine laboratory operation conditions.
 - RL The reporting limit the lowest level that the data is displayed in the final report. The reporting limit may vary according to customer request or sample dilution. The reporting limit may not be less than the MDL.
 - RPD Relative percent difference is a calculated difference between two recoveries (ie. MS/MSD). The acceptable recovery limit is listed in the QC Package (provided upon request).
 - SPK The spike is a known mass of target analyte added to a blank sample or sub-sample; used to determine recovery deficiency or for other quality control purposes.
 - Surr Surrogates are compounds which are similar to the analytes of interest in chemical composition and behavior in the analytical process, but which are not normally found in environmental samples.
 - TIC Tentatively identified compound: Analytes tentatively identified in the sample by using a library search. Only results not in the calibration standard will be reported as tentatively identified compounds. Results for tentatively identified compounds that are not present in the calibration standard, but are assigned a specific chemical name based upon the library search, are calculated using total peak areas from reconstructed ion chromatograms and a response factor of one. The nearest Internal Standard is used for the calculation. The results of any TICs must be considered estimated, and are flagged with a "T". If the estimated result is above the calibration range it is flagged "ET"
- TNTC Too numerous to count (> 200 CFU)

Definitions

http://www.teklabinc.com/

Client: Alpha Analytical Work Order: 22020199
Client Project: L2205323 Report Date: 09-Feb-22

Qualifiers

- # Unknown hydrocarbon
- C RL shown is a Client Requested Quantitation Limit
- H Holding times exceeded
- J Analyte detected below quantitation limits
- ND Not Detected at the Reporting Limit
 - S Spike Recovery outside recovery limits
 - X Value exceeds Maximum Contaminant Level

- B Analyte detected in associated Method Blank
- E Value above quantitation range
- I Associated internal standard was outside method criteria
- M Manual Integration used to determine area response
- R RPD outside accepted recovery limits
- T TIC(Tentatively identified compound)

Case Narrative

http://www.teklabinc.com/

Work Order: 22020199

Report Date: 09-Feb-22

Client: Alpha Analytical
Client Project: L2205323

Cooler Receipt Temp: 1.8 °C

Locations

	Collinsville		Springfield	Kansas City				
Address	5445 Horseshoe Lake Road	Address	3920 Pintail Dr	Address	8421 Nieman Road			
	Collinsville, IL 62234-7425		Springfield, IL 62711-9415		Lenexa, KS 66214			
Phone	(618) 344-1004	Phone	(217) 698-1004	Phone	(913) 541-1998			
Fax	(618) 344-1005	Fax	(217) 698-1005	Fax	(913) 541-1998			
Email	jhriley@teklabinc.com	Email	KKlostermann@teklabinc.com	Email	jhriley@teklabinc.com			
	Collinsville Air		Chicago					
Address	5445 Horseshoe Lake Road	Address	1319 Butterfield Rd.					
	Collinsville, IL 62234-7425		Downers Grove, IL 60515					
Phone	(618) 344-1004	Phone	(630) 324-6855					
Fax	(618) 344-1005	Fax						
Email	EHurley@teklabinc.com	Email	arenner@teklabinc.com					

Accreditations

http://www.teklabinc.com/

Client: Alpha Analytical Work Order: 22020199

Client Project: L2205323 Report Date: 09-Feb-22

State	Dept	Cert #	NELAP	Exp Date	Lab
Illinois	IEPA	100226	NELAP	1/31/2023	Collinsville
Kansas	KDHE	E-10374	NELAP	4/30/2022	Collinsville
Louisiana	LDEQ	05002	NELAP	6/30/2022	Collinsville
Louisiana	LDEQ	05003	NELAP	6/30/2022	Collinsville
Oklahoma	ODEQ	9978	NELAP	8/31/2022	Collinsville
Arkansas	ADEQ	88-0966		3/14/2022	Collinsville
Illinois	IDPH	17584		5/31/2023	Collinsville
Kentucky	UST	0073		1/31/2023	Collinsville
Missouri	MDNR	00930		5/31/2023	Collinsville
Missouri	MDNR	930		1/31/2025	Collinsville

Laboratory Results

http://www.teklabinc.com/

Client: Alpha Analytical Work Order: 22020199

Client Project: L2205323 Report Date: 09-Feb-22

Lab ID: 22020199-001 Client Sample ID: HA21-B1(OW)_20220201

Matrix: AQUEOUS Collection Date: 02/01/2022 14:30

Analyse	s Certification	RL Qual	Result	Units	DF	Date Analyzed Batch		
EPA 600 1671A, PHARMACEUTICAL MANUFACTURING INDUSTRY NON-PURGEABLE VOLATILE ORGANICS								
Ethanol	*	20	ND	mg/L	1	02/04/2022 15:14 R306736		

Quality Control Results

http://www.teklabinc.com/

Client: Alpha Analytical Work Order: 22020199
Client Project: L2205323 Report Date: 09-Feb-22

HARMACEL	JTICAL M.	ANUF	ACTURING	INDUSTRY I	NON-PURG	EABLE VOI	ATILE (OR		
SampType:	MBLK		Units mg/L							
422										Date
	Cert	RL	Qual	Result	Spike	SPK Ref Val	%REC	Low Limit	High Limit	Analyzed
	*	20		ND						02/04/2022
SampType:	LCS		Units mg/L							
22										Date
	Cert	RL	Qual	Result	Spike	SPK Ref Val	%REC	Low Limit	High Limit	Analyzed
	*	20		290	250.0	0	115.8	70	132	02/04/2022
SampType:	MS		Units mg/L							
002AMS										Date
	Cert	RL	Qual	Result	Spike	SPK Ref Val	%REC	Low Limit	High Limit	Analyzed
	*	20		300	250.0	0	118.8	70	132	02/04/2022
SampType:	MSD		Units mg/L					RPD Lir	nit: 30	
002AMSD										Date
	Cont	DI	Ouel	Result	Spika	SPK Ref Val	%REC	RPD Ref V	al %RPD	Analyzed
	Cert	KL	Quai	ixcsuit	Spike	Of Ittitol val	70.120	=	ai /oi (i D	
	SampType: 422 SampType: 22 SampType: 002AMS	SampType: MBLK 422 Cert * SampType: LCS 22 Cert * SampType: MS 002AMS Cert * SampType: MSD 002AMSD	SampType: MBLK 422 Cert RL	SampType: MBLK Units mg/L 422 Cert RL Qual * 20 Units mg/L 22 Cert RL Qual * 20 Vnits mg/L * 20 Units mg/L SampType: MS Units mg/L * 20 Vnits mg/L SampType: MSD Units mg/L	SampType: MBLK	SampType: MBLK	SampType: MBLK	SampType: MBLK	Cert RL Qual Result Spike SPK Ref Val %REC Low Limit	SampType: MBLK Units mg/L 422 Cert RL Qual Result Spike SPK Ref Val %REC Low Limit High Limit * 20 ND ND ND NB Low Limit High Limit SampType: Cert RL Qual Result Spike SPK Ref Val %REC Low Limit High Limit * 20 290 250.0 0 115.8 70 132 SampType: MS Units mg/L Spike SPK Ref Val %REC Low Limit High Limit * 20 250.0 0 115.8 70 132 SampType: MSD Units mg/L Spike SPK Ref Val %REC Low Limit High Limit * 20 300 250.0 0 118.8 70 132 SampType: MSD Units mg/L RPD Limit: 30 RPD Limit: 30

Receiving Check List

http://www.teklabinc.com/

Client Project: L2205323

Client Project: L2205323

Report Date: 09-Feb-22

Carrier: UPS

Completed by: On: On: O4-Feb-22

Patrick Riley

Received By: PWR

Reviewed by: Elizabeth A. Hurley

Elizabeth A. Hurley

Pages to follow: Chain of custody 1	Extra pages included	0									
Shipping container/cooler in good condition?	Yes 🗸	No 🗌	Not Present	Temp °C	1.8						
Type of thermal preservation?	None	Ice 🗹	Blue Ice	Dry Ice							
Chain of custody present?	Yes 🗸	No 🗌									
Chain of custody signed when relinquished and received?	Yes 🗸	No 🗌									
Chain of custody agrees with sample labels?	Yes 🗸	No 🗌									
Samples in proper container/bottle?	Yes 🗸	No 🗌									
Sample containers intact?	Yes 🗸	No 🗌									
Sufficient sample volume for indicated test?	Yes 🗸	No 🗌									
All samples received within holding time?	Yes 🗸	No 🗌									
Reported field parameters measured:	Field	Lab \square	NA 🗸								
Container/Temp Blank temperature in compliance?	Yes 🗸	No 🗌									
When thermal preservation is required, samples are complian 0.1°C - 6.0°C, or when samples are received on ice the same	•	between									
Water – at least one vial per sample has zero headspace?	Yes 🗹	No	No VOA vials								
Water - TOX containers have zero headspace?	Yes	No 🗌	No TOX containers								
Water - pH acceptable upon receipt?	Yes 🗸	No 🗌	NA \square								
NPDES/CWA TCN interferences checked/treated in the field?	Yes	No \square	NA 🗹								
Any No responses must be detailed below or on the COC.											

Subcontract Chain of Custody

Tek Lab, Inc.

Alpha Job Number

ANALYATICA AVEIGEORE GROOMS	Ĺ	54- Co	45 Horsehoe I Ilinsville, IL 62	Lake Road 1234-7425	L2205323					
Client	Information		Project In	formation	Regu	Regulatory Requirements/Report Limits				
Client: Alpha Analy Address: Eight Walku Westboroug	tical Labs p Drive h, MA 01581-1019	Project Location Project Manage			Pegulatory	State/Federal Program: Regulatory Criteria: RCS-1-19				
Phone: 603.319.501 Email: mgulli@alph		Turnaro Due Date Deliverables	 :	erables Informati	on .					
		Project Specif	ic Requirem	ents and/or Repo	rt Requirements			ė.		
Refe	rence following Alpha Job N	umber on final repor	t/deliverables	: L2205323	Report to include	Method Blank, LCS	/LCSD:	····		
Additional Comment	s: Send all results/reports to	•	ab.com				······································			
Lab ID	Client ID	Collection Date/Time	Sample Matrix	-	Analysis			Batch QC		
22 020144 - 00 1	HA21-B1(OW)_20220201	02-01-22 14:30	WATER	Ethanof by EPA 1671 f		T63 PR 2/4/17				
	Relinquishec	By:		Date/Time:	Received B	1: 11	Date/Time:			
Form No: AL subco	c -			alalaa			2/4/20	<u> </u>		

ANALYTICAL REPORT

Lab Number: L2205601

Client: Haley & Aldrich, Inc.

465 Medford Street, Suite 2200 Charlestown, MA 02129-1400

ATTN: Kyle Block Phone: (617) 886-7440

Project Name: 155 NORTH BEACON STREET

Project Number: 0201602-000

Report Date: 02/14/22

The original project report/data package is held by Alpha Analytical. This report/data package is paginated and should be reproduced only in its entirety. Alpha Analytical holds no responsibility for results and/or data that are not consistent with the original.

Certifications & Approvals: MA (M-MA086), NH NELAP (2064), CT (PH-0574), IL (200077), ME (MA00086), MD (348), NJ (MA935), NY (11148), NC (25700/666), PA (68-03671), RI (LAO00065), TX (T104704476), VT (VT-0935), VA (460195), USDA (Permit #P330-17-00196).

Eight Walkup Drive, Westborough, MA 01581-1019 508-898-9220 (Fax) 508-898-9193 800-624-9220 - www.alphalab.com

Project Name: 155 NORTH BEACON STREET

Project Number: 0201602-000 Lab Number: L2205601 Report Date:

02/14/22

Alpha Sample ID	Client ID	Matrix	Sample Location	Collection Date/Time	Receive Date
L2205601-01	HA21-B1(OW)_20220202	WATER	BOSTON, MA	02/02/22 10:30	02/02/22
L2205601-02	HA21-B6(OW) 20220202	WATER	BOSTON, MA	02/02/22 14:00	02/02/22

Project Name: 155 NORTH BEACON STREET Lab Number: L2205601
Project Number: 0201602-000 Report Date: 02/14/22

Case Narrative

The samples were received in accordance with the Chain of Custody and no significant deviations were encountered during the preparation or analysis unless otherwise noted. Sample Receipt, Container Information, and the Chain of Custody are located at the back of the report.

Results contained within this report relate only to the samples submitted under this Alpha Lab Number and meet NELAP requirements for all NELAP accredited parameters unless otherwise noted in the following narrative. The data presented in this report is organized by parameter (i.e. VOC, SVOC, etc.). Sample specific Quality Control data (i.e. Surrogate Spike Recovery) is reported at the end of the target analyte list for each individual sample, followed by the Laboratory Batch Quality Control at the end of each parameter. Tentatively Identified Compounds (TICs), if requested, are reported for compounds identified to be present and are not part of the method/program Target Compound List, even if only a subset of the TCL are being reported. If a sample was re-analyzed or re-extracted due to a required quality control corrective action and if both sets of data are reported, the Laboratory ID of the re-analysis or re-extraction is designated with an "R" or "RE", respectively.

When multiple Batch Quality Control elements are reported (e.g. more than one LCS), the associated samples for each element are noted in the grey shaded header line of each data table. Any Laboratory Batch, Sample Specific % recovery or RPD value that is outside the listed Acceptance Criteria is bolded in the report. In reference to questions H (CAM) or 4 (RCP) when "NO" is checked, the performance criteria for CAM and RCP methods allow for some quality control failures to occur and still be within method compliance. In these instances, the specific failure is not narrated but noted in the associated QC Outlier Summary Report, located directly after the Case Narrative. QC information is also incorporated in the Data Usability Assessment table (Format 11) of our Data Merger tool, where it can be reviewed in conjunction with the sample result, associated regulatory criteria and any associated data usability implications.

Soil/sediments, solids and tissues are reported on a dry weight basis unless otherwise noted. Definitions of all data qualifiers and acronyms used in this report are provided in the Glossary located at the back of the report.

HOLD POLICY - For samples submitted on hold, Alpha's policy is to hold samples (with the exception of Air canisters) free of charge for 21 calendar days from the date the project is completed. After 21 calendar days, we will dispose of all samples submitted including those put on hold unless you have contacted your Alpha Project Manager and made arrangements for Alpha to continue to hold the samples. Air canisters will be disposed after 3 business days from the date the project is completed.

Please contact Project Management at 800-624-9220 with any questions.	

Project Name: 155 NORTH BEACON STREET Lab Number: L2205601
Project Number: 0201602-000 Report Date: 02/14/22

Case Narrative (continued)

Report Submission

February 14, 2022: This final report includes the results of all requested analyses.

February 09, 2022: This is a preliminary report.

The analysis of Ethanol was subcontracted. A copy of the laboratory report is included as an addendum.

Please note: This data is only available in PDF format and is not available on Data Merger.

Sample Receipt

The analyses performed were specified by the client.

Total Mercury

L2205601-02: The sample has an elevated detection limit for mercury due to the dilution required by the limited sample volume available for analysis.

Chlorine, Total Residual

The WG1600858-4 MS recovery, performed on L2205601-02, is outside the acceptance criteria for chlorine, total residual (0%); however, the associated LCS recovery is within criteria. No further action was taken.

I, the undersigned, attest under the pains and penalties of perjury that, to the best of my knowledge and belief and based upon my personal inquiry of those responsible for providing the information contained in this analytical report, such information is accurate and complete. This certificate of analysis is not complete unless this page accompanies any and all pages of this report.

Authorized Signature:

Title: Technical Director/Representative Date: 02/14/22

Custen Halker Cristin Walker

ALPHA

ORGANICS

VOLATILES

L2205601

02/14/22

02/02/22 14:00

Project Name: 155 NORTH BEACON STREET

Project Number: 0201602-000

SAMPLE RESULTS

Lab ID: L2205601-02

Client ID: HA21-B6(OW)_20220202

Sample Location: BOSTON, MA

Date Received: 02/02/22
Field Prep: Refer to COC

Lab Number:

Report Date:

Date Collected:

Sample Depth:

Matrix: Water
Analytical Method: 128,624.1
Analytical Date: 02/03/22 07:11

Analyst: MKS

Parameter	Result	Qualifier Units	RL	MDL	Dilution Factor
Volatile Organics by GC/MS - Wes	stborough Lab				
Methylene chloride	ND	ug/l	1.0		1
1,1-Dichloroethane	ND	ug/l	1.5		1
Carbon tetrachloride	ND	ug/l	1.0		1
1,1,2-Trichloroethane	ND	ug/l	1.5		1
Tetrachloroethene	11	ug/l	1.0		1
1,2-Dichloroethane	ND	ug/l	1.5		1
1,1,1-Trichloroethane	ND	ug/l	2.0		1
Benzene	ND	ug/l	1.0		1
Toluene	ND	ug/l	1.0		1
Ethylbenzene	ND	ug/l	1.0		1
Vinyl chloride	18	ug/l	1.0		1
1,1-Dichloroethene	1.1	ug/l	1.0		1
cis-1,2-Dichloroethene	82	ug/l	1.0		1
Trichloroethene	52	ug/l	1.0		1
1,2-Dichlorobenzene	ND	ug/l	5.0		1
1,3-Dichlorobenzene	ND	ug/l	5.0		1
1,4-Dichlorobenzene	ND	ug/l	5.0		1
p/m-Xylene	ND	ug/l	2.0		1
o-xylene	ND	ug/l	1.0		1
Xylenes, Total	ND	ug/l	1.0		1
Acetone	ND	ug/l	10		1
Methyl tert butyl ether	ND	ug/l	10		1
Tert-Butyl Alcohol	ND	ug/l	100		1
Tertiary-Amyl Methyl Ether	ND	ug/l	20		1

Project Name: 155 NORTH BEACON STREET L2205601

Project Number: 0201602-000 **Report Date:** 02/14/22

SAMPLE RESULTS

Lab ID: L2205601-02 Date Collected: 02/02/22 14:00

Client ID: HA21-B6(OW)_20220202 Date Received: 02/02/22 Sample Location: BOSTON, MA Field Prep: Refer to COC

Sample Depth:

Parameter Result Qualifier Units RL MDL Dilution Factor

Volatile Organics by GC/MS - Westborough Lab

Surrogate	% Recovery	Qualifier	Acceptance Criteria	
Pentafluorobenzene	97		60-140	
Fluorobenzene	91		60-140	
4-Bromofluorobenzene	115		60-140	

Project Name: 155 NORTH BEACON STREET

Project Number: 0201602-000

SAMPLE RESULTS

L2205601

Report Date: 02/14/22

Lab Number:

Lab ID: L2205601-02 Date Collected: 02/02/22 14:00

Client ID: Date Received: 02/02/22 HA21-B6(OW)_20220202 Field Prep: Sample Location: BOSTON, MA Refer to COC

Sample Depth:

Matrix: Water

Analytical Method: 128,624.1-SIM Analytical Date: 02/03/22 07:11

Analyst: MKS

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
Volatile Organics by GC/MS-S	SIM - Westborough Lab					
1,4-Dioxane	ND		ug/l	5.0		1
Surrogate			% Recovery	Qualifier		eptance riteria
Fluorobenzene			98			60-140
4-Bromofluorobenzene			107		(60-140

Lab Number: **Project Name:** 155 NORTH BEACON STREET L2205601

Project Number: Report Date: 0201602-000 02/14/22

SAMPLE RESULTS

Lab ID: L2205601-02 Date Collected: 02/02/22 14:00

Date Received: Client ID: HA21-B6(OW)_20220202 02/02/22 Sample Location: BOSTON, MA Field Prep: Refer to COC

Sample Depth:

Extraction Method: EPA 504.1 Matrix: Water **Extraction Date:** 02/03/22 16:10

Analytical Method: 14,504.1 Analytical Date: 02/03/22 17:35

Analyst: AMM

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	Column
Microextractables by GC - Westborough Lab							
1,2-Dibromoethane	ND		ug/l	0.010		1	Α

Project Name: 155 NORTH BEACON STREET **Lab Number:** L2205601

Project Number: 0201602-000 **Report Date:** 02/14/22

Method Blank Analysis Batch Quality Control

Analytical Method: 128,624.1 Analytical Date: 02/03/22 05:30

Analyst: MKS

Parameter	Result	Qualifier Units	RL.	MDL
Volatile Organics by GC/MS - Westl	oorough Lab	for sample(s):	02 Batch:	WG1601125-4
Methylene chloride	ND	ug/l	1.0	
1,1-Dichloroethane	ND	ug/l		
Carbon tetrachloride	ND	ug/l	1.0	
1,1,2-Trichloroethane	ND	ug/l	1.5	
Tetrachloroethene	ND	ug/l	1.0	
1,2-Dichloroethane	ND	ug/l	1.5	
1,1,1-Trichloroethane	ND	ug/l	2.0	
Benzene	ND	ug/l	1.0	
Toluene	ND	ug/l	1.0	
Ethylbenzene	ND	ug/l	1.0	
Vinyl chloride	ND	ug/l	1.0	
1,1-Dichloroethene	ND	ug/l	1.0	
cis-1,2-Dichloroethene	ND	ug/l	1.0	
Trichloroethene	ND	ug/l	1.0	
1,2-Dichlorobenzene	ND	ug/l	5.0	
1,3-Dichlorobenzene	ND	ug/l	5.0	
1,4-Dichlorobenzene	ND	ug/l	5.0	
p/m-Xylene	ND	ug/l	2.0	
o-xylene	ND	ug/l	1.0	
Xylenes, Total	ND	ug/l	1.0	
Acetone	ND	ug/l	10	
Methyl tert butyl ether	ND	ug/l	10	
Tert-Butyl Alcohol	ND	ug/l	100	
Tertiary-Amyl Methyl Ether	ND	ug/l	20	

Project Name: 155 NORTH BEACON STREET Lab Number: L2205601

Project Number: 0201602-000 **Report Date:** 02/14/22

Method Blank Analysis
Batch Quality Control

Analytical Method: 128,624.1 Analytical Date: 02/03/22 05:30

Analyst: MKS

Parameter Result Qualifier Units RL MDL

Volatile Organics by GC/MS - Westborough Lab for sample(s): 02 Batch: WG1601125-4

		Acceptance			
Surrogate	%Recovery (Qualifier Criteria			
Pentafluorobenzene	100	60-140			
Fluorobenzene	92	60-140			
4-Bromofluorobenzene	116	60-140			

Project Name: 155 NORTH BEACON STREET L2205601

Project Number: 0201602-000 **Report Date:** 02/14/22

Method Blank Analysis Batch Quality Control

Analytical Method: 128,624.1-SIM Analytical Date: 02/03/22 05:30

Analyst: MKS

Parameter	Result	Qualifier	Units		RL	MDL	
Volatile Organics by GC/MS-SIM -	Westborough	Lab for s	ample(s):	02	Batch:	WG1601128-4	
1,4-Dioxane	ND		ug/l		5.0		

		Acceptance			
Surrogate	%Recovery (Qualifier Criteria			
Fluorobenzene	98	60-140			
4-Bromofluorobenzene	105	60-140			

Project Name: 155 NORTH BEACON STREET Lab Number: L2205601

Project Number: 0201602-000 **Report Date:** 02/14/22

Method Blank Analysis Batch Quality Control

Analytical Method: 14,504.1 Extraction Method: EPA 504.1

Analytical Date: 02/03/22 16:56 Extraction Date: 02/03/22 16:10

Analyst: AMM

Parameter	Result	Qualifier	Units	RL	MDL	
Microextractables by GC - Westbord	ough Lab for	sample(s):	02	Batch: We	G1601234-1	
1,2-Dibromoethane	ND		ug/l	0.010		А

Project Name: 155 NORTH BEACON STREET

Project Number: 0201602-000

Lab Number: L2205601

Report Date: 02/14/22

arameter	LCS %Recovery	LCSD Qual %Recovery	%Recovery Qual Limits	RPD	RPD Qual Limits
platile Organics by GC/MS - Westboroug	h Lab Associated	sample(s): 02 Batch: WG	1601125-3		
Methylene chloride	95	-	60-140	-	28
1,1-Dichloroethane	90	-	50-150	-	49
Carbon tetrachloride	110	-	70-130	-	41
1,1,2-Trichloroethane	110	-	70-130	-	45
Tetrachloroethene	120	-	70-130	-	39
1,2-Dichloroethane	105	-	70-130	-	49
1,1,1-Trichloroethane	110	-	70-130	-	36
Benzene	105	-	65-135	-	61
Toluene	115	-	70-130	-	41
Ethylbenzene	130	-	60-140	-	63
Vinyl chloride	75	-	5-195	-	66
1,1-Dichloroethene	95	-	50-150	-	32
cis-1,2-Dichloroethene	95	-	60-140	-	30
Trichloroethene	105	-	65-135	-	48
1,2-Dichlorobenzene	130	-	65-135	-	57
1,3-Dichlorobenzene	130	-	70-130	-	43
1,4-Dichlorobenzene	135	-	65-135	-	57
p/m-Xylene	122	-	60-140	-	30
o-xylene	115	-	60-140	-	30
Acetone	76	-	40-160	-	30
Methyl tert butyl ether	85	-	60-140	-	30
Tert-Butyl Alcohol	82	-	60-140	-	30
Tertiary-Amyl Methyl Ether	80		60-140	-	30

155 NORTH BEACON STREET

Lab Number:

L2205601

Project Number: 0201602-000

Project Name:

Report Date:

02/14/22

LCS LCSD %Recovery RPD Parameter %Recovery Qual %Recovery Qual Limits RPD Qual Limits

Volatile Organics by GC/MS - Westborough Lab Associated sample(s): 02 Batch: WG1601125-3

Surrogate	LCS %Recovery Qual	LCSD %Recovery Qu	Acceptance nal Criteria
Pentafluorobenzene	103		60-140
Fluorobenzene	97		60-140
4-Bromofluorobenzene	112		60-140

155 NORTH BEACON STREET

Batch Quality C

Lab Number: L2205601

Project Number: 0201602-000

Project Name:

Report Date: 02/14/22

Parameter	LCS %Recovery	Qual	LCSD %Recovery	Qual	%Recovery Limits	RPD	Qual	RPD Limits	
Volatile Organics by GC/MS-SIM - Westboroo	ugh Lab Associat	ed sample(s)	: 02 Batch:	WG1601128-3	3				_
1,4-Dioxane	126		-		60-140	-		20	

Surrogate	LCS %Recovery Qua	LCSD al %Recovery	Qual	Acceptance Criteria
Fluorobenzene 4-Bromofluorobenzene	106 101			60-140 60-140

155 NORTH BEACON STREET **Project Name:**

Lab Number: L2205601

Project Number: 0201602-000 Report Date:

02/14/22

Parameter	LCS %Recovery	Qual	LCSD %Recovery	Qual	%Recovery Limits	RPD	Qual	RPD Limits	Column
Microextractables by GC - Westborough Lab	Associated sam	nple(s): 02	Batch: WG160	1234-2					
1,2-Dibromoethane	85		-		80-120	-			Α

Matrix Spike Analysis Batch Quality Control

Project Name: 155 NORTH BEACON STREET

Project Number: 0201602-000

Lab Number:

L2205601

Report Date:

02/14/22

Parameter	Native Sample	MS Added	MS Found %	MS Recovery	Qual	MSD Found	MSD %Recovery	Qual	Recovery Limits	RPD	Qual	RPD Limits	<u>Colum</u> n
Microextractables by GC	- Westborough Lab	Associat	ted sample(s): 02	QC Batch	ID: WG16	601234-3	QC Sample:	L220522	20-01 Clie	nt ID: N	MS Sam	ple	
1,2-Dibromoethane	ND	0.248	0.210	85		-	-		80-120	-		20	Α
1,2-Dibromo-3-chloropropane	ND	0.248	0.220	89		-	-		80-120	-		20	Α
1,2,3-Trichloropropane	ND	0.248	0.242	98		-	-		80-120	-		20	Α

SEMIVOLATILES

Project Name: 155 NORTH BEACON STREET Lab Number: L2205601

Project Number: 0201602-000 **Report Date:** 02/14/22

SAMPLE RESULTS

Lab ID: L2205601-02 Date Collected: 02/02/22 14:00

Client ID: HA21-B6(OW)_20220202 Date Received: 02/02/22 Sample Location: BOSTON, MA Field Prep: Refer to COC

Sample Depth:

Matrix: Water Extraction Method: EPA 625.1
Analytical Method: 129,625.1 Extraction Date: 02/05/22 21:51

Analytical Date: 02/07/22 01:02

Analyst: WR

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	
Semivolatile Organics by GC/MS - West	borough Lab						
Bis(2-ethylhexyl)phthalate	ND		ug/l	2.20		1	
Butyl benzyl phthalate	ND		ug/l	5.00		1	
Di-n-butylphthalate	ND		ug/l	5.00		1	
Di-n-octylphthalate	ND		ug/l	5.00		1	
Diethyl phthalate	ND		ug/l	5.00		1	
Dimethyl phthalate	ND		ug/l	5.00		1	

Surrogate	% Recovery	Acceptance Qualifier Criteria	
Nitrobenzene-d5	90	42-122	
2-Fluorobiphenyl	89	46-121	
4-Terphenyl-d14	93	47-138	

Project Name: Lab Number: 155 NORTH BEACON STREET L2205601

Report Date: **Project Number:** 0201602-000 02/14/22

SAMPLE RESULTS

Lab ID: L2205601-02 Date Collected: 02/02/22 14:00

Date Received: Client ID: HA21-B6(OW)_20220202 02/02/22 Sample Location: Field Prep: BOSTON, MA Refer to COC

Sample Depth:

Extraction Method: EPA 625.1 Matrix: Water

Extraction Date: 02/05/22 21:55 Analytical Method: 129,625.1-SIM Analytical Date: 02/06/22 14:52

Analyst: JJW

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
Semivolatile Organics by GC/M	S-SIM - Westborough Lal	b				
Acenaphthene	ND		ug/l	0.100		1
Fluoranthene	ND		ug/l	0.100		1
Naphthalene	ND		ug/l	0.100		1
Benzo(a)anthracene	ND		ug/l	0.100		1
Benzo(a)pyrene	ND		ug/l	0.100		1
Benzo(b)fluoranthene	ND		ug/l	0.100		1
Benzo(k)fluoranthene	ND		ug/l	0.100		1
Chrysene	ND		ug/l	0.100		1
Acenaphthylene	ND		ug/l	0.100		1
Anthracene	ND		ug/l	0.100		1
Benzo(ghi)perylene	ND		ug/l	0.100		1
Fluorene	ND		ug/l	0.100		1
Phenanthrene	ND		ug/l	0.100		1
Dibenzo(a,h)anthracene	ND		ug/l	0.100		1
Indeno(1,2,3-cd)pyrene	ND		ug/l	0.100		1
Pyrene	ND		ug/l	0.100		1
Pentachlorophenol	ND		ug/l	1.00		1

Surrogate	% Recovery	Acceptance Qualifier Criteria	
2-Fluorophenol	59	25-87	
Phenol-d6	40	16-65	
Nitrobenzene-d5	91	42-122	
2-Fluorobiphenyl	80	46-121	
2,4,6-Tribromophenol	109	45-128	
4-Terphenyl-d14	90	47-138	

L2205601

Lab Number:

Project Name: 155 NORTH BEACON STREET

Project Number: 0201602-000 **Report Date:** 02/14/22

Method Blank Analysis Batch Quality Control

Analytical Method: 129,625.1 Extraction Method: EPA 625.1
Analytical Date: 02/06/22 23:54 Extraction Date: 02/05/22 21:51

Analyst: WR

Parameter	Result	Qualifier Units	RL	MDL
Semivolatile Organics by GC/M	1S - Westborough	Lab for sample(s):	02 Batch:	WG1601836-1
Bis(2-ethylhexyl)phthalate	ND	ug/l	2.20	
Butyl benzyl phthalate	ND	ug/l	5.00	
Di-n-butylphthalate	ND	ug/l	5.00	
Di-n-octylphthalate	ND	ug/l	5.00	
Diethyl phthalate	ND	ug/l	5.00	
Dimethyl phthalate	ND	ug/l	5.00	

		Acceptance			
Surrogate	%Recovery	Qualifier Criteria			
Nitrobenzene-d5	69	42-122			
2-Fluorobiphenyl	70	46-121			
4-Terphenyl-d14	69	47-138			

L2205601

02/05/22 21:55

Lab Number:

Extraction Date:

Project Name: 155 NORTH BEACON STREET

02/06/22 14:20

Project Number: 0201602-000 **Report Date:** 02/14/22

Method Blank Analysis Batch Quality Control

Analytical Method: 129,625.1-SIM Extraction Method: EPA 625.1

Analyst: JJW

Analytical Date:

Parameter	Result	Qualifier	Units	RL	N	IDL
Semivolatile Organics by GC/MS-S	SIM - Westbo	rough Lab	for sample	e(s): 02	Batch:	WG1601837-1
Acenaphthene	ND		ug/l	0.100		
Fluoranthene	ND		ug/l	0.100		
Naphthalene	ND		ug/l	0.100		
Benzo(a)anthracene	ND		ug/l	0.100		
Benzo(a)pyrene	ND		ug/l	0.100		
Benzo(b)fluoranthene	ND		ug/l	0.100		
Benzo(k)fluoranthene	ND		ug/l	0.100		
Chrysene	ND		ug/l	0.100		
Acenaphthylene	ND		ug/l	0.100		
Anthracene	ND		ug/l	0.100		
Benzo(ghi)perylene	ND		ug/l	0.100		
Fluorene	ND		ug/l	0.100		
Phenanthrene	ND		ug/l	0.100		
Dibenzo(a,h)anthracene	ND		ug/l	0.100		
Indeno(1,2,3-cd)pyrene	ND		ug/l	0.100		
Pyrene	ND		ug/l	0.100		
Pentachlorophenol	ND		ug/l	1.00		

%Recovery		Acceptance Criteria	
60		25-87	
41		16-65	
90		42-122	
78		46-121	
99		45-128	
81		47-138	
	60 41 90 78 99	%Recovery Qualifier 60 41 90 78 99	%Recovery Qualifier Criteria 60 25-87 41 16-65 90 42-122 78 46-121 99 45-128

Project Name: 155 NORTH BEACON STREET

Project Number: 0201602-000

Lab Number: L2205601

Report Date: 02/14/22

Parameter	LCS %Recovery	Qual	LCSD %Recovery	Qual	%Recovery Limits	RPD	Qual	RPD Limits	
Semivolatile Organics by GC/MS - West	borough Lab Associat	ed sample(s)	: 02 Batch:	WG160183	6-2				
Bis(2-ethylhexyl)phthalate	109		-		29-137	-		82	
Butyl benzyl phthalate	101		-		1-140	-		60	
Di-n-butylphthalate	99		-		8-120	-		47	
Di-n-octylphthalate	106		-		19-132	-		69	
Diethyl phthalate	95		-		1-120	-		100	
Dimethyl phthalate	96		-		1-120	-		183	

Surrogate	LCS %Recovery Qual	LCSD %Recovery Qual	Acceptance Criteria
Nitrobenzene-d5	93		42-122
2-Fluorobiphenyl	90		46-121
4-Terphenyl-d14	91		47-138

Project Name: 155 NORTH BEACON STREET

Project Number: 0201602-000

Lab Number: L2205601

Report Date: 02/14/22

arameter	LCS %Recovery C	LCSD Qual %Recovery	%Recovery Qual Limits	RPD	RPD Qual Limits
Semivolatile Organics by GC/MS-SIM - We	estborough Lab Assoc	ated sample(s): 02 Batc	h: WG1601837-2		
Acenaphthene	79	-	60-132	-	30
Fluoranthene	90	-	43-121	-	30
Naphthalene	77	-	36-120	-	30
Benzo(a)anthracene	97	-	42-133	-	30
Benzo(a)pyrene	95	-	32-148	-	30
Benzo(b)fluoranthene	95	-	42-140	-	30
Benzo(k)fluoranthene	92	-	25-146	-	30
Chrysene	81	-	44-140	-	30
Acenaphthylene	88	-	54-126	-	30
Anthracene	85	-	43-120	-	30
Benzo(ghi)perylene	94	-	1-195	-	30
Fluorene	85	-	70-120	-	30
Phenanthrene	79	-	65-120	-	30
Dibenzo(a,h)anthracene	104	-	1-200	-	30
Indeno(1,2,3-cd)pyrene	100	-	1-151	-	30
Pyrene	90	-	70-120	-	30
Pentachlorophenol	90	-	38-152	-	30

Project Name: 155 NORTH BEACON STREET

Lab Number:

L2205601

Project Number: 0201602-000

Report Date:

02/14/22

LCS LCSD %Recovery RPD
Parameter %Recovery Qual %Recovery Qual Limits RPD Qual Limits

Semivolatile Organics by GC/MS-SIM - Westborough Lab Associated sample(s): 02 Batch: WG1601837-2

Surrogate		LCSD covery Qual	Acceptance Criteria
2-Fluorophenol	61		25-87
Phenol-d6	43		16-65
Nitrobenzene-d5	89		42-122
2-Fluorobiphenyl	79		46-121
2,4,6-Tribromophenol	105		45-128
4-Terphenyl-d14	89		47-138

PCBS

Project Name:155 NORTH BEACON STREETLab Number:L2205601

Project Number: 0201602-000 **Report Date:** 02/14/22

SAMPLE RESULTS

Lab ID: L2205601-02 Date Collected: 02/02/22 14:00

Client ID: HA21-B6(OW)_20220202 Date Received: 02/02/22 Sample Location: BOSTON, MA Field Prep: Refer to COC

Sample Depth:

Matrix: Water Extraction Method: EPA 608.3
Analytical Method: 127,608.3 Extraction Date: 02/08/22 08:38
Analytical Date: 02/09/22 02:08 Cleanup Method: EPA 3665A

Analyst: AWS Cleanup Date: 02/08/22

Cleanup Method: EPA 3660B Cleanup Date: 02/08/22

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	Column
Polychlorinated Biphenyls by	GC - Westborough Lab						
Aroclor 1016	ND		ug/l	0.250		1	Α
Aroclor 1221	ND		ug/l	0.250		1	Α
Aroclor 1232	ND		ug/l	0.250		1	Α
Aroclor 1242	ND		ug/l	0.250		1	Α
Aroclor 1248	ND		ug/l	0.250		1	Α
Aroclor 1254	ND		ug/l	0.250		1	Α
Aroclor 1260	ND		ua/l	0.200		1	Α

Surrogate	% Recovery	Qualifier	Acceptance Criteria	Column
2,4,5,6-Tetrachloro-m-xylene	77		37-123	В
Decachlorobiphenyl	86		38-114	В
2,4,5,6-Tetrachloro-m-xylene	70		37-123	Α
Decachlorobiphenyl	76		38-114	Α

L2205601

Lab Number:

Project Name: 155 NORTH BEACON STREET

Project Number: 0201602-000 **Report Date:** 02/14/22

Method Blank Analysis
Batch Quality Control

Analytical Method: 127,608.3 Analytical Date: 02/09/22 02:27

Analyst: AWS

Extraction Method: EPA 608.3
Extraction Date: 02/08/22 08:38
Cleanup Method: EPA 3665A
Cleanup Date: 02/08/22
Cleanup Method: EPA 3660B
Cleanup Date: 02/08/22

Parameter	Result	Qualifier	alifier Units		RL	MDL	Column
Polychlorinated Biphenyls by GC -	Westborough	Lab for s	ample(s):	02	Batch:	WG1602527-	-1
Aroclor 1016	ND		ug/l	0.2	250		Α
Aroclor 1221	ND		ug/l	0.2	250		Α
Aroclor 1232	ND		ug/l	0.2	250		Α
Aroclor 1242	ND		ug/l	0.2	250		Α
Aroclor 1248	ND		ug/l	0.2	250		Α
Aroclor 1254	ND		ug/l	0.2	250		Α
Aroclor 1260	ND		ug/l	0.2	200		Α

		Acceptance			
Surrogate	%Recovery Qualific	er Criteria	Column		
2,4,5,6-Tetrachloro-m-xylene	63	37-123	В		
Decachlorobiphenyl	73	38-114	В		
2,4,5,6-Tetrachloro-m-xylene	63	37-123	A		
Decachlorobiphenyl	68	38-114	Α		

155 NORTH BEACON STREET **Project Name:**

Lab Number: L2205601

Project Number: 0201602-000 Report Date: 02/14/22

	LCS		LCSD		%Recovery			RPD	
Parameter	%Recovery	Qual	%Recovery	Qual	Limits	RPD	Qual	Limits	Column
Polychlorinated Biphenyls by GC - Westk	oorough Lab Associa	ited sample(s)	: 02 Batch:	WG1602527	'- 2				
Aroclor 1016	85		-		50-140	-		36	Α
Aroclor 1260	86		-		8-140	-		38	Α

Surrogate	LCS %Recovery Qual	LCSD %Recovery Qual	Acceptance Criteria Colu	ımn
2,4,5,6-Tetrachloro-m-xylene	75		37-123 B	
Decachlorobiphenyl	87		38-114 B	
2,4,5,6-Tetrachloro-m-xylene	76		37-123 A	
Decachlorobiphenyl	81		38-114 A	

METALS

02/02/22 14:00

Date Collected:

Project Name: 155 NORTH BEACON STREET Lab Number: L2205601

SAMPLE RESULTS

Lab ID: L2205601-02

Client ID: HA21-B6(OW)_20220202 Date Received: 02/02/22

Sample Location: BOSTON, MA Field Prep: Refer to COC

Sample Depth:

Matrix: Water

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	Date Prepared	Date Analyzed	Prep Method	Analytical Method	Analyst
	Nooun						<u> </u>	<u> </u>			Analyst
Total Metals - Mans	sfield Lab										
Antimony, Total	ND		mg/l	0.00400		1	02/06/22 13:0	9 02/07/22 09:27	EPA 3005A	3,200.8	SV
Arsenic, Total	0.00380		mg/l	0.00100		1	02/06/22 13:0	9 02/07/22 09:27	EPA 3005A	3,200.8	SV
Cadmium, Total	ND		mg/l	0.00020		1	02/06/22 13:0	9 02/07/22 09:27	EPA 3005A	3,200.8	SV
Chromium, Total	ND		mg/l	0.00100		1	02/06/22 13:0	9 02/07/22 09:27	EPA 3005A	3,200.8	SV
Copper, Total	ND		mg/l	0.00200		1	02/06/22 13:0	9 02/07/22 09:27	EPA 3005A	3,200.8	SV
Iron, Total	0.238		mg/l	0.050		1	02/06/22 13:0	9 02/06/22 20:12	EPA 3005A	19,200.7	DL
Lead, Total	ND		mg/l	0.00100		1	02/06/22 13:0	9 02/07/22 09:27	EPA 3005A	3,200.8	SV
Mercury, Total	ND		mg/l	0.00040		1	02/08/22 07:2	6 02/08/22 10:09	EPA 245.1	3,245.1	AC
Nickel, Total	ND		mg/l	0.00200		1	02/06/22 13:0	9 02/07/22 09:27	EPA 3005A	3,200.8	SV
Selenium, Total	ND		mg/l	0.00500		1	02/06/22 13:0	9 02/07/22 09:27	EPA 3005A	3,200.8	SV
Silver, Total	ND		mg/l	0.00040		1	02/06/22 13:0	9 02/07/22 09:27	EPA 3005A	3,200.8	SV
Zinc, Total	0.01017		mg/l	0.01000		1	02/06/22 13:0	9 02/07/22 09:27	EPA 3005A	3,200.8	SV
Total Hardness by	SM 2340E	3 - Mansfiel	d Lab								
Hardness	240		mg/l	0.660	NA	1	02/06/22 13:0	9 02/07/22 12:37	EPA 3005A	19,200.7	GD
General Chemistry	- Mansfiel	d Lab									
Chromium, Trivalent	ND		mg/l	0.010		1		02/07/22 09:27	NA	107,-	

Project Name: 155 NORTH BEACON STREET

Project Number: 0201602-000

Lab Number:

L2205601

Report Date: 02/14/22

Method Blank Analysis Batch Quality Control

Parameter	Result Qualifier	Units	RL	MDL	Dilution Factor	Date Prepared		Analytical Method	
Total Metals - Mansfie	ld Lab for sample(s):	02 Batch	n: WG16	601945-	1				
Iron, Total	ND	mg/l	0.050		1	02/06/22 13:09	02/06/22 19:05	19,200.7	DL

Prep Information

Digestion Method: EPA 3005A

Parameter	Result Qualifier	Units	RL	MDL	Dilution Factor	Date Prepared	Date Analyzed	Analytical Method	Analyst
Total Hardness by SM 2	340B - Mansfield La	o for sam	ple(s): 0	2 Bato	h: WG160	1945-1			
Hardness	ND	mg/l	0.660	NA	1	02/06/22 13:09	02/07/22 12:28	19,200.7	GD

Prep Information

Digestion Method: EPA 3005A

Parameter	Result Qualifier	Units	RL	MDL	Dilution Factor	Date Prepared	Date Analyzed	Analytical Method	Analyst
Total Metals - Mans	sfield Lab for sample(s):	02 Bato	h: WG16	01947	·1				
Antimony, Total	ND	mg/l	0.00400		1	02/06/22 13:09	02/07/22 08:35	3,200.8	SV
Arsenic, Total	ND	mg/l	0.00100		1	02/06/22 13:09	02/07/22 08:35	3,200.8	SV
Cadmium, Total	ND	mg/l	0.00020		1	02/06/22 13:09	02/07/22 08:35	3,200.8	SV
Chromium, Total	ND	mg/l	0.00100		1	02/06/22 13:09	02/07/22 08:35	3,200.8	SV
Copper, Total	ND	mg/l	0.00200		1	02/06/22 13:09	02/07/22 08:35	3,200.8	SV
Lead, Total	ND	mg/l	0.00100		1	02/06/22 13:09	02/07/22 08:35	3,200.8	SV
Nickel, Total	ND	mg/l	0.00200		1	02/06/22 13:09	02/07/22 08:35	3,200.8	SV
Selenium, Total	ND	mg/l	0.00500		1	02/06/22 13:09	02/07/22 08:35	3,200.8	SV
Silver, Total	ND	mg/l	0.00040		1	02/06/22 13:09	02/07/22 08:35	3,200.8	SV
Zinc, Total	ND	mg/l	0.01000		1	02/06/22 13:09	02/07/22 08:35	3,200.8	SV

Prep Information

Digestion Method: EPA 3005A

Project Name: 155 NORTH BEACON STREET

Project Number: 0201602-000

Lab Number:

L2205601

Report Date: 02/14/22

Method Blank Analysis Batch Quality Control

Parameter	Result Qualifier	Units	RL	MDL	Dilution Factor	Date Prepared	Date Analyzed	Analytica Method	
Total Metals - Mansfield	d Lab for sample(s):	02 Batcl	h: WG16	02468-	1				
Mercury, Total	ND	mg/l	0.00020		1	02/08/22 07:26	02/08/22 10:03	3,245.1	AC

Prep Information

Digestion Method: EPA 245.1

Project Name: 155 NORTH BEACON STREET

Project Number: 0201602-000

Lab Number: L2205601

Report Date: 02/14/22

Parameter	LCS %Recovery	LCS Qual %Reco		%Recovery Limits	RPD	Qual	RPD Limits
Total Metals - Mansfield Lab Associated sample	e(s): 02 Batch:	WG1601945-2					
Iron, Total	100	-		85-115	-		
Total Hardness by SM 2340B - Mansfield Lab A	Associated sampl	e(s): 02 Batch: WG	1601945-2				
Hardness	103	-		85-115	-		
Total Metals - Mansfield Lab Associated sample	e(s): 02 Batch:	WG1601947-2					
Antimony, Total	91	-		85-115	-		
Arsenic, Total	100	-		85-115	-		
Cadmium, Total	96	-		85-115	-		
Chromium, Total	97	-		85-115	-		
Copper, Total	95	-		85-115	-		
Lead, Total	97	-		85-115	-		
Nickel, Total	98	-		85-115	-		
Selenium, Total	99	-		85-115	-		
Silver, Total	101	-		85-115	-		
Zinc, Total	97	-		85-115	-		
Fotal Metals - Mansfield Lab Associated sample	e(s): 02 Batch:	WG1602468-2					
Mercury, Total	99	-		85-115	-		

L2205601

Matrix Spike Analysis Batch Quality Control

Project Name: 155 NORTH BEACON STREET

Project Number: 0201602-000

Lab Number:

Report Date: 02/14/22

arameter	Native Sample	MS Added	MS Found	MS %Recovery	Qual	MSD Found	MSD %Recovery	Recover Qual Limits	•	RPD Qual Limits
Total Metals - Mansfield La	b Associated sam	nple(s): 02	QC Batch ID): WG1601945-	-3	QC Sample:	L2205978-02	Client ID: MS	Sample	
Iron, Total	8.21	1	9.06	85		-	-	75-125	-	20
Total Hardness by SM 2340	0B - Mansfield Lal	b Associate	ed sample(s):	02 QC Batch	ID: \	VG1601945-	3 QC Samp	ole: L2205978-02	2 Client	ID: MS Sampl
Hardness	315	66.2	379	97		-	-	75-125	-	20
Total Metals - Mansfield La	b Associated sam	ple(s): 02	QC Batch ID): WG1601947-	-3	QC Sample:	L2205978-02	Client ID: MS	Sample	
Antimony, Total	ND	0.5	0.4565	91		-	-	70-130	-	20
Arsenic, Total	0.00294	0.12	0.1202	98		-	-	70-130	-	20
Cadmium, Total	ND	0.053	0.05013	94		-	-	70-130	-	20
Chromium, Total	ND	0.2	0.1880	94		-	-	70-130	-	20
Copper, Total	ND	0.25	0.2377	95		-	-	70-130	-	20
Lead, Total	0.01433	0.53	0.5157	94		-	-	70-130	-	20
Nickel, Total	ND	0.5	0.4758	95		-	-	70-130	-	20
Selenium, Total	ND	0.12	0.1132	94		-	-	70-130	-	20
Silver, Total	ND	0.05	0.05013	100		-	-	70-130	-	20
Zinc, Total	0.01373	0.5	0.4928	96		-	-	70-130	-	20
Total Metals - Mansfield La	b Associated sam	ple(s): 02	QC Batch ID): WG1602468-	-3	QC Sample:	L2205601-02	Client ID: HA	21-B6(OV	V)_20220202
Mercury, Total	ND	0.01	0.00974	97		-	-	70-130	-	20

Lab Duplicate Analysis Batch Quality Control

Project Name: 155 NORTH BEACON STREET

Project Number: 0201602-000

 Lab Number:
 L2205601

 Report Date:
 02/14/22

arameter	Native Sample Dup	olicate Sample	Units	RPD	Qual	RPD Limits
otal Metals - Mansfield Lab Associated sample(s): 02	QC Batch ID: WG1601945-4	QC Sample:	L2205978-02	Client ID:	DUP Sample	
Iron, Total	8.21	8.12	mg/l	1		20
otal Metals - Mansfield Lab Associated sample(s): 02	QC Batch ID: WG1601947-4	QC Sample:	L2205978-02	Client ID:	DUP Sample	
Antimony, Total	ND	ND	mg/l	NC		20
Arsenic, Total	0.00294	0.00288	mg/l	2		20
Cadmium, Total	ND	ND	mg/l	NC		20
Chromium, Total	ND	ND	mg/l	NC		20
Copper, Total	ND	ND	mg/l	NC		20
Lead, Total	0.01433	0.01435	mg/l	0		20
Nickel, Total	ND	ND	mg/l	NC		20
Selenium, Total	ND	ND	mg/l	NC		20
Silver, Total	ND	ND	mg/l	NC		20
Zinc, Total	0.01373	0.01372	mg/l	0		20
otal Metals - Mansfield Lab Associated sample(s): 02	QC Batch ID: WG1602468-4	QC Sample:	L2205601-02	Client ID:	HA21-B6(OW)	_20220202
Mercury, Total	ND	ND	mg/l	NC		20

INORGANICS & MISCELLANEOUS

Project Name: 155 NORTH BEACON STREET Lab Number: L2205601

SAMPLE RESULTS

Lab ID: L2205601-01 Date Collected: 02/02/22 10:30

Client ID: HA21-B1(OW)_20220202 Date Received: 02/02/22 Sample Location: BOSTON, MA Field Prep: Refer to COC

Sample Depth:

Matrix: Water

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	Date Prepared	Date Analyzed	Analytical Method	Analyst
General Chemistry - V	Vestborough Lab)								
TPH, SGT-HEM	ND		mg/l	4.00		1	02/03/22 15:00	02/03/22 15:45	140,1664B	NP

Project Name: 155 NORTH BEACON STREET Lab Number: L2205601

Project Number: 0201602-000 **Report Date:** 02/14/22

SAMPLE RESULTS

Lab ID: L2205601-02 Date Collected: 02/02/22 14:00

Client ID: HA21-B6(OW)_20220202 Date Received: 02/02/22 Sample Location: BOSTON, MA Field Prep: Refer to COC

Sample Depth:

Matrix: Water

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	Date Prepared	Date Analyzed	Analytical Method	Analyst
General Chemistry - We	stborough La	b								
Solids, Total Suspended	7.3		mg/l	5.0	NA	1	-	02/06/22 13:57	121,2540D	SH
Cyanide, Total	ND		mg/l	0.005		1	02/03/22 05:20	02/03/22 14:01	121,4500CN-CE	CS
Chlorine, Total Residual	ND		mg/l	0.02		1	-	02/02/22 23:11	121,4500CL-D	AS
pH (H)	7.6		SU	-	NA	1	-	02/02/22 22:41	121,4500H+-B	AS
Nitrogen, Ammonia	0.135		mg/l	0.075		1	02/03/22 02:34	02/03/22 20:33	121,4500NH3-BH	H AT
TPH, SGT-HEM	ND		mg/l	4.00		1	02/03/22 15:00	02/03/22 15:45	140,1664B	NP
Phenolics, Total	ND		mg/l	0.030		1	02/04/22 06:47	02/04/22 11:57	4,420.1	KP
Chromium, Hexavalent	ND		mg/l	0.010		1	02/02/22 23:40	02/03/22 00:03	1,7196A	AS
Anions by Ion Chromato	graphy - Wes	tborough	Lab							
Chloride	199.		mg/l	12.5		25	-	02/03/22 20:17	44,300.0	AT

L2205601

Lab Number:

Project Name: 155 NORTH BEACON STREET

Project Number: 0201602-000 **Report Date:** 02/14/22

Method Blank Analysis Batch Quality Control

Parameter	Result Qu	alifier	Units	RL	MDL	Dilution Factor	Date Prepared	Date Analyzed	Analytical Method	Analyst
General Chemistry	- Westborough Lab	for sam	ple(s): 02	Batch:	WG16	600858-1				
Chlorine, Total Residual	ND		mg/l	0.02		1	-	02/02/22 23:11	121,4500CL-D	AS
General Chemistry	- Westborough Lab	for sam	ple(s): 02	Batch:	WG16	00864-1				
Chromium, Hexavalent	ND		mg/l	0.010		1	02/02/22 23:40	02/03/22 00:02	1,7196A	AS
General Chemistry	- Westborough Lab	for sam	ple(s): 02	Batch:	WG16	600872-1				
Nitrogen, Ammonia	ND		mg/l	0.075		1	02/03/22 02:34	02/03/22 20:30	121,4500NH3-BH	H AT
General Chemistry	- Westborough Lab	for sam	ple(s): 02	Batch:	WG16	600887-1				
Cyanide, Total	ND		mg/l	0.005		1	02/03/22 05:20	02/03/22 13:05	121,4500CN-CE	CS
General Chemistry	- Westborough Lab	for sam	ple(s): 01-	02 Bat	ch: W	G1601044-1				
TPH, SGT-HEM	ND		mg/l	4.00		1	02/03/22 15:00	02/03/22 15:45	140,1664B	NP
Anions by Ion Chror	matography - Westb	orough	Lab for sar	mple(s):	02 B	atch: WG1	601336-1			
Chloride	ND		mg/l	0.500		1	-	02/03/22 16:49	44,300.0	AT
General Chemistry	- Westborough Lab	for sam	ple(s): 02	Batch:	WG16	01417-1				
Phenolics, Total	ND		mg/l	0.030		1	02/04/22 06:47	02/04/22 11:51	4,420.1	KP
General Chemistry	- Westborough Lab	for sam	ple(s): 02	Batch:	WG16	01948-1				
Solids, Total Suspended	ND		mg/l	5.0	NA	1	-	02/06/22 13:57	121,2540D	SH

Lab Control Sample Analysis Batch Quality Control

Project Name: 155 NORTH BEACON STREET

Project Number: 0201602-000

Lab Number:

L2205601

Report Date:

02/14/22

Parameter	LCS %Recovery	LCSD Qual %Recovery	%Recovery Qual Limits	RPD	Qual F	RPD Limits
General Chemistry - Westborough Lab	Associated sample(s):	02 Batch: WG1600852	2-1			
рН	100	-	99-101	-		5
General Chemistry - Westborough Lab	Associated sample(s):	02 Batch: WG1600858	3-2			
Chlorine, Total Residual	104	-	90-110	-		
General Chemistry - Westborough Lab	Associated sample(s):	02 Batch: WG1600864	4-2			
Chromium, Hexavalent	104	-	85-115	-		20
General Chemistry - Westborough Lab	Associated sample(s):	02 Batch: WG1600872	2-2			
Nitrogen, Ammonia	96	-	80-120	-		20
General Chemistry - Westborough Lab	Associated sample(s):	02 Batch: WG1600887	7-2			
Cyanide, Total	107	-	90-110	-		
General Chemistry - Westborough Lab	Associated sample(s):	01-02 Batch: WG1601	044-2			
TPH	78	-	64-132	-		34
Anions by Ion Chromatography - Westb	orough Lab Associated	d sample(s): 02 Batch:	WG1601336-2			
Chloride	103	-	90-110	-		

Lab Control Sample Analysis Batch Quality Control

Project Name: 155 NORTH BEACON STREET

Project Number: 0201602-000

Lab Number:

L2205601

Report Date:

02/14/22

Parameter	LCS %Recovery	LCSD %Recovery	%Recovery Limits	RPD	RPD Limits
General Chemistry - Westborough Lab	Associated sample(s): 02	Batch: WG1601417-2			
Phenolics, Total	91	-	70-130	-	
General Chemistry - Westborough Lab	Associated sample(s): 02	Batch: WG1601948-2			
Solids, Total Suspended	103	-	80-120	-	

Matrix Spike Analysis Batch Quality Control

Project Name: 155 NORTH BEACON STREET

Project Number: 0201602-000

Lab Number: L2205601

Report Date: 02/14/22

arameter	Native Sample	MS Added	MS Found	MS %Recovery	MSD Qual Found	MSD %Recovery Qual	Recovery Limits	RPD Qual	RPD Limits
General Chemistry - Westboroug B6(OW)_20220202	gh Lab Asso	ciated samp	le(s): 02	QC Batch ID: V	VG1600858-4	QC Sample: L2205601	-02 Client I	D: HA21-	
Chlorine, Total Residual	ND	0.25	ND	0	Q -	-	80-120	-	20
General Chemistry - Westboroug B6(OW)_20220202	gh Lab Asso	ciated samp	le(s): 02	QC Batch ID: V	VG1600864-4	QC Sample: L2205601	-02 Client I	D: HA21-	
Chromium, Hexavalent	ND	0.1	0.088	88	-	-	85-115	-	20
General Chemistry - Westboroug B6(OW)_20220202	gh Lab Asso	ciated samp	le(s): 02	QC Batch ID: V	VG1600872-4	QC Sample: L2205601	-02 Client I	D: HA21-	
Nitrogen, Ammonia	0.135	4	3.43	82	-	-	80-120	-	20
General Chemistry - Westboroug B6(OW)_20220202	gh Lab Asso	ciated samp	le(s): 02	QC Batch ID: V	VG1600887-4	QC Sample: L2205601	-02 Client I	D: HA21-	
Cyanide, Total	ND	0.2	0.215	108	-	-	90-110	-	30
General Chemistry - Westboroug B6(OW)_20220202	gh Lab Asso	ciated samp	le(s): 01-0	2 QC Batch II	D: WG1601044-	4 QC Sample: L2205	601-02 Clie	ent ID: HA21-	
TPH	ND	19.2	13.6	71	-	-	64-132	-	34
Anions by Ion Chromatography - Sample	- Westborouç	gh Lab Asso	ciated san	nple(s): 02 Q0	Batch ID: WG1	601336-3 QC Sampl	e: L2205661-	-01 Client II	D: MS
Chloride	331	100	435	104	-	-	90-110	-	18
General Chemistry - Westboroug	gh Lab Asso	ciated samp	le(s): 02	QC Batch ID: V	VG1601417-4	QC Sample: L2205323	-01 Client I	D: MS Samp	le
Phenolics, Total	ND	0.4	0.37	92	-	-	70-130	-	20

Lab Duplicate Analysis Batch Quality Control

Project Name: 155 NORTH BEACON STREET

Project Number: 0201602-000

 Lab Number:
 L2205601

 Report Date:
 02/14/22

Parameter	Nati	ve S	ample	Duplicate Sam	ple Unit	s RPD	Qual	RPD I	Limits
General Chemistry - Westborough Lab B6(OW)_20220202	Associated sample(s):	02	QC Batch ID:	WG1600852-2	QC Sample:	L2205601-02	Client ID:	HA21-	
рН (Н)		7.6		7.3	SU	4			5
General Chemistry - Westborough Lab B6(OW)_20220202	Associated sample(s):	02	QC Batch ID:	WG1600858-3	QC Sample:	L2205601-02	Client ID:	HA21-	
Chlorine, Total Residual		ND		ND	mg/l	NC			20
General Chemistry - Westborough Lab B6(OW)_20220202	Associated sample(s):	02	QC Batch ID:	WG1600864-3	QC Sample:	L2205601-02	Client ID:	HA21-	
Chromium, Hexavalent		ND		ND	mg/l	NC			20
General Chemistry - Westborough Lab B6(OW)_20220202	Associated sample(s):	02	QC Batch ID:	WG1600872-3	QC Sample:	L2205601-02	Client ID:	HA21-	
Nitrogen, Ammonia		0.13	5	0.131	mg/l	3			20
General Chemistry - Westborough Lab	Associated sample(s):	02	QC Batch ID:	WG1600887-3	QC Sample:	L2204040-01	Client ID:	DUP Sam	ple
Cyanide, Total		ND		ND	mg/l	NC			30
General Chemistry - Westborough Lab B1(OW)_20220202	Associated sample(s):	01-0	2 QC Batch	ID: WG1601044	-3 QC Samp	le: L2205601-	-01 Client	ID: HA21-	
TPH, SGT-HEM		ND		ND	mg/l	NC			34
Anions by Ion Chromatography - Westb Sample	orough Lab Associated	d sam	nple(s): 02 C	C Batch ID: WG	1601336-4 (QC Sample: L	2205661-0	1 Client ID	: DUP
Chloride		331		330	mg/l	0			18

Lab Duplicate Analysis Batch Quality Control

Project Name: 155 NORTH BEACON STREET

Project Number: 0201602-000

Lab Number:

L2205601

Report Date: 02/14/22

Parameter	Native S	ample	Duplicate Sam	ple Units	RPD	RPD	Limits
General Chemistry - Westborough Lab	Associated sample(s): 02	QC Batch ID:	WG1601417-3	QC Sample:	L2205323-01	Client ID: DUP San	nple
Phenolics, Total	ND	1	ND	mg/l	NC		20
General Chemistry - Westborough Lab	Associated sample(s): 02	QC Batch ID:	WG1601948-3	QC Sample:	L2205161-01	Client ID: DUP San	nple
Solids, Total Suspended	200)	200	mg/l	0		29

Project Name: 155 NORTH BEACON STREET

Project Number: 0201602-000

Lab Number: L2205601
Report Date: 02/14/22

Sample Receipt and Container Information

YES

Were project specific reporting limits specified?

Cooler Information

Cooler Custody Seal

A Absent B Absent

Container Info	rmation		Initial	Final	Temp			Frozen	
Container ID	Container Type	Cooler	рН	pН	deg C	Pres	Seal	Date/Time	Analysis(*)
L2205601-01A	Amber 1000ml Na2S2O3	Α	7	7	3.0	Υ	Absent		L-EXT-PCB-608.3(365)
L2205601-01B	Amber 1000ml Na2S2O3	Α	7	7	3.0	Υ	Absent		L-EXT-625.1(7)
L2205601-01C	Amber 1000ml HCl preserved	Α	NA		3.0	Υ	Absent		TPH-1664(28)
L2205601-01D	Amber 1000ml HCl preserved	Α	NA		3.0	Υ	Absent		TPH-1664(28)
L2205601-02A	Vial Na2S2O3 preserved	В	NA		2.8	Υ	Absent		624.1-RGP(7),624.1-SIM-RGP(7)
L2205601-02B	Vial Na2S2O3 preserved	В	NA		2.8	Υ	Absent		624.1-RGP(7),624.1-SIM-RGP(7)
L2205601-02C	Vial Na2S2O3 preserved	В	NA		2.8	Υ	Absent		624.1-RGP(7),624.1-SIM-RGP(7)
L2205601-02D	Vial Na2S2O3 preserved	В	NA		2.8	Υ	Absent		624.1-RGP(7),624.1-SIM-RGP(7)
L2205601-02E	Vial Na2S2O3 preserved	В	NA		2.8	Υ	Absent		504(14)
L2205601-02F	Vial Na2S2O3 preserved	В	NA		2.8	Υ	Absent		504(14)
L2205601-02G	Vial Na2S2O3 preserved	В	NA		2.8	Υ	Absent		504(14)
L2205601-02H	Vial Na2S2O3 preserved	В	NA		2.8	Υ	Absent		504(14)
L2205601-02J	Vial unpreserved	В	NA		2.8	Υ	Absent		SUB-ETHANOL(14)
L2205601-02K	Vial unpreserved	В	NA		2.8	Υ	Absent		SUB-ETHANOL(14)
L2205601-02L	Vial unpreserved	В	NA		2.8	Υ	Absent		SUB-ETHANOL(14)
L2205601-02M	Plastic 250ml HNO3 preserved	В	<2	<2	2.8	Y	Absent		CD-2008T(180),NI-2008T(180),ZN- 2008T(180),CU-2008T(180),FE- UI(180),HARDU(180),SE-2008T(180),AG- 2008T(180),HG-U(28),AS-2008T(180),PB- 2008T(180),CR-2008T(180),SB-2008T(180)
L2205601-02N	Plastic 250ml HNO3 preserved	В	<2	<2	2.8	Υ	Absent		HOLD-METAL-DISSOLVED(180),HOLD-HG- DISSOLVED(28)
L2205601-02O	Plastic 250ml NaOH preserved	В	>12	>12	2.8	Υ	Absent		TCN-4500(14)
L2205601-02P	Plastic 500ml H2SO4 preserved	В	<2	<2	2.8	Υ	Absent		NH3-4500(28)

Lab Number: L2205601

Report Date: 02/14/22

Project Name: 155 NORTH BEACON STREET

Project Number: 0201602-000

Container Information Initial Final Temp Frozen	
Container ID Container Type Cooler pH pH deg C Pres Seal Date/Time Analysis(*)	
L2205601-02Q Plastic 950ml unpreserved A 7 7 3.0 Y Absent HEXCR-7196(1),CL-300(24500(.01)	28),TRC-4500(1),PH-
L2205601-02R Plastic 950ml unpreserved A 7 7 3.0 Y Absent TSS-2540(7)	
L2205601-02S Amber 950ml H2SO4 preserved A <4 <4 3.0 Y Absent TPHENOL-420(28)	
L2205601-02T Amber 1000ml Na2S2O3 A 7 7 3.0 Y Absent 625.1-RGP(7),625.1-SIM-	RGP(7)
L2205601-02U Amber 1000ml Na2S2O3 A 7 7 3.0 Y Absent 625.1-RGP(7),625.1-SIM-	RGP(7)
L2205601-02V Amber 1000ml Na2S2O3 A 7 7 3.0 Y Absent PCB-608.3(365)	
L2205601-02V1 Amber 1000ml Na2S2O3 A 7 7 3.0 Y Absent PCB-608.3(365)	
L2205601-02V2 Amber 1000ml Na2S2O3 A 7 7 3.0 Y Absent PCB-608.3(365)	
L2205601-02V3 Amber 1000ml Na2S2O3 A 7 7 3.0 Y Absent PCB-608.3(365)	
L2205601-02X Amber 1000ml HCl preserved A NA 3.0 Y Absent TPH-1664(28)	
L2205601-02Y Amber 1000ml HCl preserved A NA 3.0 Y Absent TPH-1664(28)	

Project Name: Lab Number: 155 NORTH BEACON STREET L2205601 **Project Number:** 0201602-000 **Report Date:** 02/14/22

GLOSSARY

Acronyms

EDL

LOQ

MS

RPD

DL - Detection Limit: This value represents the level to which target analyte concentrations are reported as estimated values, when those target analyte concentrations are quantified below the limit of quantitation (LOQ). The DL includes any adjustments from dilutions, concentrations or moisture content, where applicable. (DoD report formats only.)

- Estimated Detection Limit: This value represents the level to which target analyte concentrations are reported as estimated values, when those target analyte concentrations are quantified below the reporting limit (RL). The EDL includes any adjustments from dilutions, concentrations or moisture content, where applicable. The use of EDLs is specific to the analysis

of PAHs using Solid-Phase Microextraction (SPME).

EMPC - Estimated Maximum Possible Concentration: The concentration that results from the signal present at the retention time of an analyte when the ions meet all of the identification criteria except the ion abundance ratio criteria. An EMPC is a worst-case estimate of the concentration.

EPA Environmental Protection Agency.

LCS - Laboratory Control Sample: A sample matrix, free from the analytes of interest, spiked with verified known amounts of analytes or a material containing known and verified amounts of analytes.

LCSD Laboratory Control Sample Duplicate: Refer to LCS.

LFB - Laboratory Fortified Blank: A sample matrix, free from the analytes of interest, spiked with verified known amounts of analytes or a material containing known and verified amounts of analytes.

LOD - Limit of Detection: This value represents the level to which a target analyte can reliably be detected for a specific analyte in a specific matrix by a specific method. The LOD includes any adjustments from dilutions, concentrations or moisture content, where applicable. (DoD report formats only.)

- Limit of Quantitation: The value at which an instrument can accurately measure an analyte at a specific concentration. The LOQ includes any adjustments from dilutions, concentrations or moisture content, where applicable. (DoD report formats

Limit of Quantitation: The value at which an instrument can accurately measure an analyte at a specific concentration. The LOQ includes any adjustments from dilutions, concentrations or moisture content, where applicable. (DoD report formats

MDI - Method Detection Limit: This value represents the level to which target analyte concentrations are reported as estimated values, when those target analyte concentrations are quantified below the reporting limit (RL). The MDL includes any adjustments from dilutions, concentrations or moisture content, where applicable.

- Matrix Spike Sample: A sample prepared by adding a known mass of target analyte to a specified amount of matrix sample for which an independent estimate of target analyte concentration is available. For Method 332.0, the spike recovery is calculated using the native concentration, including estimated values.

MSD - Matrix Spike Sample Duplicate: Refer to MS.

NA - Not Applicable.

NC - Not Calculated: Term is utilized when one or more of the results utilized in the calculation are non-detect at the parameter's reporting unit.

NDPA/DPA - N-Nitrosodiphenylamine/Diphenylamine.

NI - Not Ignitable.

NP - Non-Plastic: Term is utilized for the analysis of Atterberg Limits in soil.

- No Results: Term is utilized when 'No Target Compounds Requested' is reported for the analysis of Volatile or Semivolatile NR Organic TIC only requests.

RL - Reporting Limit: The value at which an instrument can accurately measure an analyte at a specific concentration. The RL includes any adjustments from dilutions, concentrations or moisture content, where applicable.

- Relative Percent Difference: The results from matrix and/or matrix spike duplicates are primarily designed to assess the precision of analytical results in a given matrix and are expressed as relative percent difference (RPD). Values which are less than five times the reporting limit for any individual parameter are evaluated by utilizing the absolute difference between the values; although the RPD value will be provided in the report.

SRM - Standard Reference Material: A reference sample of a known or certified value that is of the same or similar matrix as the associated field samples.

STLP - Semi-dynamic Tank Leaching Procedure per EPA Method 1315.

TEF - Toxic Equivalency Factors: The values assigned to each dioxin and furan to evaluate their toxicity relative to 2,3,7,8-TCDD.

TEO - Toxic Equivalent: The measure of a sample's toxicity derived by multiplying each dioxin and furan by its corresponding TEF and then summing the resulting values.

TIC - Tentatively Identified Compound: A compound that has been identified to be present and is not part of the target compound list (TCL) for the method and/or program. All TICs are qualitatively identified and reported as estimated concentrations.

Report Format: Data Usability Report

Project Name:155 NORTH BEACON STREETLab Number:L2205601Project Number:0201602-000Report Date:02/14/22

Footnotes

1 - The reference for this analyte should be considered modified since this analyte is absent from the target analyte list of the original method.

Terms

Analytical Method: Both the document from which the method originates and the analytical reference method. (Example: EPA 8260B is shown as 1,8260B.) The codes for the reference method documents are provided in the References section of the Addendum.

Difference: With respect to Total Oxidizable Precursor (TOP) Assay analysis, the difference is defined as the Post-Treatment value minus the Pre-Treatment value.

Final pH: As it pertains to Sample Receipt & Container Information section of the report, Final pH reflects pH of container determined after adjustment at the laboratory, if applicable. If no adjustment required, value reflects Initial pH.

Frozen Date/Time: With respect to Volatile Organics in soil, Frozen Date/Time reflects the date/time at which associated Reagent Water-preserved vials were initially frozen. Note: If frozen date/time is beyond 48 hours from sample collection, value will be reflected in 'bold'.

Initial pH: As it pertains to Sample Receipt & Container Information section of the report, Initial pH reflects pH of container determined upon receipt, if applicable.

PAH Total: With respect to Alkylated PAH analyses, the 'PAHs, Total' result is defined as the summation of results for all or a subset of the following compounds: Naphthalene, C1-C4 Naphthalenes, 2-Methylnaphthalene, 1-Methylnaphthalene, Biphenyl, Acenaphthylene, Acenaphthene, Fluorene, C1-C3 Fluorenes, Phenanthrene, C1-C4 Phenanthrenes/Anthracenes, Anthracene, Fluoranthene, Pyrene, C1-C4 Fluoranthenes/Pyrenes, Benz(a)anthracene, Chrysene, C1-C4 Chrysenes, Benzo(b)fluoranthene, Benzo(j)+(k)fluoranthene, Benzo(e)pyrene, Benzo(a)pyrene, Perylene, Indeno(1,2,3-cd)pyrene, Dibenz(ah)+(ac)anthracene, Benzo(g,h,i)perylene. If a 'Total' result is requested, the results of its individual components will also be reported.

PFAS Total: With respect to PFAS analyses, the 'PFAS, Total (5)' result is defined as the summation of results for: PFHpA, PFHxS, PFOA, PFNA and PFOS. In addition, the 'PFAS, Total (6)' result is defined as the summation of results for: PFHpA, PFHxS, PFOA, PFNA, PFDA and PFOS. For MassDEP DW compliance analysis only, the 'PFAS, Total (6)' result is defined as the summation of results at or above the RL. Note: If a 'Total' result is requested, the results of its individual components will also be reported.

The target compound Chlordane (CAS No. 57-74-9) is reported for GC ECD analyses. Per EPA, this compound "refers to a mixture of chlordane isomers, other chlorinated hydrocarbons and numerous other components." (Reference: USEPA Toxicological Review of Chlordane, In Support of Summary Information on the Integrated Risk Information System (IRIS), December 1997.)

Total: With respect to Organic analyses, a 'Total' result is defined as the summation of results for individual isomers or Aroclors. If a 'Total' result is requested, the results of its individual components will also be reported. This is applicable to 'Total' results for methods 8260, 8081 and 8082.

Data Qualifiers

- A Spectra identified as "Aldol Condensates" are byproducts of the extraction/concentration procedures when acetone is introduced in the process.
- The analyte was detected above the reporting limit in the associated method blank. Flag only applies to associated field samples that have detectable concentrations of the analyte at less than ten times (10x) the concentration found in the blank. For MCP-related projects, flag only applies to associated field samples that have detectable concentrations of the analyte at less than ten times (10x) the concentration found in the blank. For DOD-related projects, flag only applies to associated field samples that have detectable concentrations of the analyte at less than ten times (10x) the concentration found in the blank AND the analyte was detected above one-half the reporting limit (or above the reporting limit for common lab contaminants) in the associated method blank. For NJ-Air-related projects, flag only applies to associated field samples that have detectable concentrations of the analyte above the reporting limit. For NJ-related projects (excluding Air), flag only applies to associated field samples that have detectable concentrations of the analyte, which was detected above the reporting limit in the associated method blank or above five times the reporting limit for common lab contaminants (Phthalates, Acetone, Methylene Chloride, 2-Butanone).
- Co-elution: The target analyte co-elutes with a known lab standard (i.e. surrogate, internal standards, etc.) for co-extracted analyses.
- Concentration of analyte was quantified from diluted analysis. Flag only applies to field samples that have detectable concentrations of the analyte.
- E Concentration of analyte exceeds the range of the calibration curve and/or linear range of the instrument.
- F The ratio of quantifier ion response to qualifier ion response falls outside of the laboratory criteria. Results are considered to be an estimated maximum concentration.
- G The concentration may be biased high due to matrix interferences (i.e, co-elution) with non-target compound(s). The result should be considered estimated.
- H The analysis of pH was performed beyond the regulatory-required holding time of 15 minutes from the time of sample collection.
- I The lower value for the two columns has been reported due to obvious interference.
- J Estimated value. This represents an estimated concentration for Tentatively Identified Compounds (TICs).
- M Reporting Limit (RL) exceeds the MCP CAM Reporting Limit for this analyte.
- **ND** Not detected at the reporting limit (RL) for the sample.
- NJ Presumptive evidence of compound. This represents an estimated concentration for Tentatively Identified Compounds (TICs), where

Report Format: Data Usability Report

Project Name:155 NORTH BEACON STREETLab Number:L2205601Project Number:0201602-000Report Date:02/14/22

Data Qualifiers

the identification is based on a mass spectral library search.

- P The RPD between the results for the two columns exceeds the method-specified criteria.
- Q The quality control sample exceeds the associated acceptance criteria. For DOD-related projects, LCS and/or Continuing Calibration Standard exceedences are also qualified on all associated sample results. Note: This flag is not applicable for matrix spike recoveries when the sample concentration is greater than 4x the spike added or for batch duplicate RPD when the sample concentrations are less than 5x the RL. (Metals only.)
- **R** Analytical results are from sample re-analysis.
- **RE** Analytical results are from sample re-extraction.
- S Analytical results are from modified screening analysis.
- The surrogate associated with this target analyte has a recovery outside the QC acceptance limits. (Applicable to MassDEP DW Compliance samples only.)
- Z The batch matrix spike and/or duplicate associated with this target analyte has a recovery/RPD outside the QC acceptance limits. (Applicable to MassDEP DW Compliance samples only.)

Report Format: Data Usability Report

Project Name:155 NORTH BEACON STREETLab Number:L2205601Project Number:0201602-000Report Date:02/14/22

REFERENCES

- Test Methods for Evaluating Solid Waste: Physical/Chemical Methods. EPA SW-846. Third Edition. Updates I VI, 2018.
- Methods for the Determination of Metals in Environmental Samples, Supplement I. EPA/600/R-94/111. May 1994.
- 4 Methods for Chemical Analysis of Water and Wastes. EPA 600/4-79-020. Revised March 1983.
- Methods for the Determination of Organic Compounds in Finished Drinking Water and Raw Source Water. EPA/600/4-88/039, Revised July 1991.
- 19 Inductively Coupled Plasma Atomic Emission Spectrometric Method for Trace Element Analysis of Water and Wastes. Appendix C, Part 136, 40 CFR (Code of Federal Regulations). July 1, 1999 edition.
- Methods for the Determination of Inorganic Substances in Environmental Samples, EPA/600/R-93/100, August 1993.
- 107 Alpha Analytical In-house calculation method.
- 121 Standard Methods for the Examination of Water and Wastewater. APHA-AWWA-WEF. Standard Methods Online.
- Method 608.3: Organochlorine Pesticides and PCBs by GC/HSD, EPA 821-R-16-009, December 2016.
- 128 Method 624.1: Purgeables by GC/MS, EPA 821-R-16-008, December 2016.
- Method 625.1: Base/Neutrals and Acids by GC/MS, EPA 821-R-16-007, December 2016.
- Method 1664, Revision B: N-Hexane Extractable Material (HEM; Oil & Grease) and Silica Gel Treated N-Hexane Extractable Material (SGT-HEM; Non-polar Material) by Extraction and Gravimetry, EPA-821-R-10-001, February 2010.

LIMITATION OF LIABILITIES

Alpha Analytical performs services with reasonable care and diligence normal to the analytical testing laboratory industry. In the event of an error, the sole and exclusive responsibility of Alpha Analytical shall be to re-perform the work at it's own expense. In no event shall Alpha Analytical be held liable for any incidental, consequential or special damages, including but not limited to, damages in any way connected with the use of, interpretation of, information or analysis provided by Alpha Analytical.

We strongly urge our clients to comply with EPA protocol regarding sample volume, preservation, cooling, containers, sampling procedures, holding time and splitting of samples in the field.

Alpha Analytical, Inc. Facility: Company-wide

Department: Quality Assurance

Title: Certificate/Approval Program Summary

ID No.:17873 Revision 19

Page 1 of 1

Published Date: 4/2/2021 1:14:23 PM

Certification Information

The following analytes are not included in our Primary NELAP Scope of Accreditation:

Westborough Facility

EPA 624/624.1: m/p-xylene, o-xylene, Naphthalene

EPA 625/625.1: alpha-Terpineol

EPA 8260C/8260D: NPW: 1,2,4,5-Tetramethylbenzene; 4-Ethyltoluene, Azobenzene; SCM: Iodomethane (methyl iodide), 1,2,4,5-Tetramethylbenzene;

EPA 8270D/8270E: NPW: Dimethylnaphthalene,1,4-Diphenylhydrazine, alpha-Terpineol; SCM: Dimethylnaphthalene,1,4-Diphenylhydrazine.

SM4500: NPW: Amenable Cyanide; SCM: Total Phosphorus, TKN, NO2, NO3.

Mansfield Facility

SM 2540D: TSS

EPA 8082A: NPW: PCB: 1, 5, 31, 87,101, 110, 141, 151, 153, 180, 183, 187.

EPA TO-15: Halothane, 2,4,4-Trimethyl-2-pentene, 2,4,4-Trimethyl-1-pentene, Thiophene, 2-Methylthiophene,

3-Methylthiophene, 2-Ethylthiophene, 1,2,3-Trimethylbenzene, Indan, Indene, 1,2,4,5-Tetramethylbenzene, Benzothiophene, 1-Methylnaphthalene.

Biological Tissue Matrix: EPA 3050B

The following analytes are included in our Massachusetts DEP Scope of Accreditation

Westborough Facility:

Drinking Water

EPA 300.0: Chloride, Nitrate-N, Fluoride, Sulfate; EPA 353.2: Nitrate-N, Nitrite-N; SM4500NO3-F: Nitrate-N, Nitrite-N; SM4500F-C, SM4500CN-CE,

EPA 180.1, SM2130B, SM4500CI-D, SM2320B, SM2540C, SM4500H-B, SM4500NO2-B

EPA 332: Perchlorate; EPA 524.2: THMs and VOCs; EPA 504.1: EDB, DBCP.

Microbiology: SM9215B; SM9223-P/A, SM9223B-Colilert-QT,SM9222D.

Non-Potable Water

SM4500H,B, EPA 120.1, SM2510B, SM2540C, SM2320B, SM4500CL-E, SM4500F-BC, SM4500NH3-BH: Ammonia-N and Kjeldahl-N, EPA 350.1: Ammonia-N, LACHAT 10-107-06-1-B: Ammonia-N, EPA 351.1, SM4500NO3-F, EPA 353.2: Nitrate-N, SM4500P-E, SM4500P-B, E, SM4500SO4-E, SM5220D, EPA 410.4, SM5210B, SM5310C, SM4500CL-D, EPA 1664, EPA 420.1, SM4500-CN-CE, SM2540D, EPA 300: Chloride, Sulfate, Nitrate. EPA 624.1: Volatile Halocarbons & Aromatics,

EPA 608.3: Chlordane, Toxaphene, Aldrin, alpha-BHC, beta-BHC, gamma-BHC, delta-BHC, Dieldrin, DDD, DDE, DDT, Endosulfan II, Endosulfan II, Endosulfan sulfate, Endrin, Endrin Aldehyde, Heptachlor, Heptachlor Epoxide, PCBs

EPA 625.1: SVOC (Acid/Base/Neutral Extractables), EPA 600/4-81-045: PCB-Oil.

Microbiology: SM9223B-Colilert-QT; Enterolert-QT, SM9221E, EPA 1600, EPA 1603, SM9222D.

Mansfield Facility:

Drinking Water

EPA 200.7: Al, Ba, Cd, Cr, Cu, Fe, Mn, Ni, Na, Ag, Ca, Zn. EPA 200.8: Al, Sb, As, Ba, Be, Cd, Cr, Cu, Pb, Mn, Ni, Se, Ag, TL, Zn. EPA 245.1 Hg. EPA 522, EPA 537.1.

Non-Potable Water

EPA 200.7: Al, Sb, As, Be, Cd, Ca, Cr, Co, Cu, Fe, Pb, Mg, Mn, Mo, Ni, K, Se, Ag, Na, Sr, TL, Ti, V, Zn.

EPA 200.8: Al, Sb, As, Be, Cd, Cr, Cu, Fe, Pb, Mn, Ni, K, Se, Ag, Na, TL, Zn.

EPA 245.1 Hg

SM2340B

For a complete listing of analytes and methods, please contact your Alpha Project Manager.

Pre-Qualtrax Document ID: 08-113 Document Type: Form

100,000	CHAIN OF	Service Centers Server, ME 94412 Porters	outh, NY 00801 Michael	n.NJ	Page	1			Date	Park		- 1			11-	Saturday
Агрна	CUSTODY	07420 Albany, NY 12208 Tonswanda, NY 14150 Solme			af	1				Lab		2/8	213	22		L2205601
Westporough, MA 0180	II NameTeld, NA. 02048	Project Information	-12 X Y X X					Della	eraban							Billing information
8 Walkup Dr. 191, 608-608-0000	729 Forbas Blvd TEL: 508-823-9300	Project Name:		65 Noveb	Beacon 3	ía.			Email			0	Fax			Same as Client Info
FAX: 506-806-9195	FAX: 508-832-3266	Project Location:			on, MA	ot.	_		DQuit		Sec.			15 (41	riseo.	POF
H&A Information		Project &		7 7					Other			65		261	-	
H&A Client IQHQ.	las	(Use Project name as Pr	mine D	02010	602-000	_		_	latory	_		MK IDS	CONTRACT OF THE PARTY OF	w. Calle	wia)	Disposal Site Information
	ectiond Street, Suite 2200		rigido, W)	· ·	Block			_	20171			_	-			
H&A Address: 465 M Boston, MA 02129	econo ocieta ocos 2200	ALPHAQuete #:		n.	DIOCE	_	_	-	20111		11.00	1				Please identify below location of applicable disposal facilities.
	0 2293	Turn-Around Time														Disposal Facility:
	0.2293	Standard	G 0	ue Date:		_	_	•								D NJ D NY
H&A Fax: H&A Email: JThibs	uit, TCaims, KBlock	Rush (only if pre approved	10	of Days:	s Davi				Select	Flate b			danser.			D Other
				or nays:	2 may		_	_	ALYSI		Sea cos	enu o x	oenay	Droprie		Sample Filtration
	een previously analyzed : requirements/common	y ripine					_	~~					_	_	_	
	2017 NPOES RGP appli	required by EPA.	oved testing metho	ds and n	ninimum d	detection to	evels as	3 6 60	S.1 & 125.1	, TRC 4500 , TCN	TPH 1664	via (NH3), ndness, pH	Dharel	DES RGP	NPDES RGP Metals (Tield Fillered) (DN	☐ Done ☐ Lab to do Preservation ☐ Lab to do
ALPHA Lab ID			Collection	0	Same		_	Sa ca	2 SVOCs 625.1 N.S.y SW	CI 300.	H	x Cr, Hardr	0.0	7. Total NPDES Metals	VPDES F	(Please Specify below)
(Lab Use Only)	Sa	mple ID		Time	Sample Matrix	Sampler Initials	Depth	2	519	12	20	08		15	9 0	Sample Specific Comments
001000000000000000000000000000000000000	HA21- BI (OW)_	20220202			AQ	582	-	6		e	x	6	10	1	4	1. 1,4-Dioxane by 624.1-SIM
05/101 -01				400	AQ.	1	-				-		-	x	X	6. Sub Ethanol
-Col	Receiving Water	tetto to c	-	100	40	-		^	^	^	^	^	-	r -	^	7. NPDEG ROP Metals
	THOUSAND TRAIN				~							Α		A		includes: Ag. As. Cd. Cr. Tri C
			_	_			-	-	-		-	-	-	-	-	Cu. N. Pb. Sb. Se. Zn. Fe. Hg
							-	-	-		-		-	1		5. Field Filtered NPDES RGP
				_			-	-	-		_	-	-	-	-	Metals (DN HDLD)
				_			-	-				-	-	+	-	Interes (UN FIGURE)
			_	_		-	-					-	-	+	-	
				_		-	\vdash	\vdash	\vdash	-	-	-	-	+	-	
Preservative Code: A = None B = HCI C = HMCy D = HySOy E = NeOH	Container Code P = Plastio A = Anther Class V = Vial G = Class B = Bacteria Cup	Westboro: Certification N Mansfield: Certification N				ntainer Typ										Please print clearly, legibly and completely. Samples can not be logged in and temeround time cloc will not start until any emblguities resolved. Alpha Anabhoa's services under this Chain of Custody shall be
F = MeOH	C = Cube	, /-Nelinquished	Dy:	Date/1	lime o		Re	geived	By:	$\overline{}$	_		Date	e/Time	,	performed in accordance with terms a conditions within Stanket Service
G = NaHSO ₄ H = Na ₄ S ₂ O ₃	O = Other E = Encore	A.P.J.		12/22	1530	Wa	Land	16	100	1	t -	21	_		3-0	Agreement# 2019-23-Alpha Analytics
K/E = Zn ApNisOH	D = 900 Suttle	Tear word			1579	-	1	10	A 6	mo	RE.	-	to	_	130	Special Association 1 standard in a second of such and
0 = Other		and a		3/30	813	100	-		-	~	,	20	17	7.50	70-	Analytical.
Document ID: 20455 Rev	A J L CT TO A L L L L L L L L L L L L L L L L L L	- person	71	0.104	1025	-	-		_	-		26	-	10,	-	1

			Subcontra	act Chain of Custody		
ALPH		Tel 54- Co	k Lab, Inc. 45 Horsehoe Binsville, IL 6	Lake Road 2234-7425		Alpha Job Numbe
MANA COMPANY						
CI	ient Information	3 3 150	Project In	formation	Regulatory Req	uirements/Report Limits
Client: Alpha Ar Address: Eight Wi Westbor Phone: 603.319 Email: mgulli@	nalytical Labs alkup Orive ough, MA 01581-1019 .5010 alphalab.com	Project Location Project Manage Turnare Due Date Deliverables:	und & Deliv	m verables Information	State/Federal Program: Regulatory Criteria: RC	
		Project Specif	ic Requirem	ents and/or Report Requ	irements	
F	Reference following Alpha Job I	fumber on final repor	Udeliverables	: L2205601 R	teport to include Method Blan	ik, LCS/LCSD:
		Collection Date/Time	Sample Matrix			Batch
Lab ID	Lab ID Client ID HA21-86(OW)_20220202		WATER	Analysis Ethanol by EPA 1671 Revision A	QC	
	Relinquishe	d By:	_	Date/Time:	Received By:	Date/Time:
		7		3/3/27		
	coc					

http://www.teklabinc.com/

February 14, 2022

Melissa Gulli
Alpha Analytical

Illinois 100226

Kansas E-10374

Louisiana 05002

145 Flanders Road
Westborough, MA 01581

Louisiana 05003
Oklahoma 9978

TEL: (603) 319-5010

FAX:

RE: L2205601 **WorkOrder:** 22020243

Dear Melissa Gulli:

TEKLAB, INC received 1 sample on 2/7/2022 10:19:00 AM for the analysis presented in the following report.

Samples are analyzed on an as received basis unless otherwise requested and documented. The sample results contained in this report relate only to the requested analytes of interest as directed on the chain of custody. NELAP accredited fields of testing are indicated by the letters NELAP under the Certification column. Unless otherwise documented within this report, Teklab Inc. analyzes samples utilizing the most current methods in compliance with 40CFR. All tests are performed in the Collinsville, IL laboratory unless otherwise noted in the Case Narrative.

All quality control criteria applicable to the test methods employed for this project have been satisfactorily met and are in accordance with NELAP except where noted. The following report shall not be reproduced, except in full, without the written approval of Teklab, Inc.

If you have any questions regarding these tests results, please feel free to call.

Sincerely,

Marvin L. Darling Project Manager (618)344-1004 ex 41 mdarling@teklabinc.com

Report Contents

http://www.teklabinc.com/

Client: Alpha Analytical	Work Order: 22020243
Client Project: L2205601	Report Date: 14-Feb-22

This reporting package includes the following:

Cover Letter	1
Report Contents	2
Definitions	3
Case Narrative	5
Accreditations	6
Laboratory Results	7
Quality Control Results	8
Receiving Check List	9
Chain of Custody	Appended

Definitions

http://www.teklabinc.com/

Client: Alpha Analytical Work Order: 22020243

Client Project: L2205601 Report Date: 14-Feb-22

Abbr Definition

- * Analytes on report marked with an asterisk are not NELAP accredited
- CCV Continuing calibration verification is a check of a standard to determine the state of calibration of an instrument between recalibration.
- CRQL A Client Requested Quantitation Limit is a reporting limit that varies according to customer request. The CRQL may not be less than the MDL.
 - DF Dilution factor is the dilution performed during analysis only and does not take into account any dilutions made during sample preparation. The reported result is final and includes all dilution factors.
 - DNI Did not ignite
- DUP Laboratory duplicate is a replicate aliquot prepared under the same laboratory conditions and independently analyzed to obtain a measure of precision.
- ICV Initial calibration verification is a check of a standard to determine the state of calibration of an instrument before sample analysis is initiated.
- IDPH IL Dept. of Public Health
- LCS Laboratory control sample is a sample matrix, free from the analytes of interest, spiked with verified known amounts of analytes and analyzed exactly like a sample to establish intra-laboratory or analyst specific precision and bias or to assess the performance of all or a portion of the measurement system.
- LCSD Laboratory control sample duplicate is a replicate laboratory control sample that is prepared and analyzed in order to determine the precision of the approved test method. The acceptable recovery range is listed in the QC Package (provided upon request).
- MBLK Method blank is a sample of a matrix similar to the batch of associated sample (when available) that is free from the analytes of interest and is processed simultaneously with and under the same conditions as samples through all steps of the analytical procedures, and in which no target analytes or interferences should present at concentrations that impact the analytical results for sample analyses.
- MDL "The method detection limit is defined as the minimum measured concentration of a substance that can be reported with 99% confidence that the measured concentration is distinguishable from method blank results."
- MS Matrix spike is an aliquot of matrix fortified (spiked) with known quantities of specific analytes that is subjected to the entire analytical procedures in order to determine the effect of the matrix on an approved test method's recovery system. The acceptable recovery range is listed in the QC Package (provided upon request).
- MSD Matrix spike duplicate means a replicate matrix spike that is prepared and analyzed in order to determine the precision of the approved test method. The acceptable recovery range is listed in the QC Package (provided upon request).
- MW Molecular weight
- NC Data is not acceptable for compliance purposes
- ND Not Detected at the Reporting Limit
- NELAP NELAP Accredited
 - PQL Practical quantitation limit means the lowest level that can be reliably achieved within specified limits of precision and accuracy during routine laboratory operation conditions.
 - RL The reporting limit the lowest level that the data is displayed in the final report. The reporting limit may vary according to customer request or sample dilution. The reporting limit may not be less than the MDL.
 - RPD Relative percent difference is a calculated difference between two recoveries (ie. MS/MSD). The acceptable recovery limit is listed in the QC Package (provided upon request).
 - SPK The spike is a known mass of target analyte added to a blank sample or sub-sample; used to determine recovery deficiency or for other quality control purposes.
 - Surr Surrogates are compounds which are similar to the analytes of interest in chemical composition and behavior in the analytical process, but which are not normally found in environmental samples.
 - TIC Tentatively identified compound: Analytes tentatively identified in the sample by using a library search. Only results not in the calibration standard will be reported as tentatively identified compounds. Results for tentatively identified compounds that are not present in the calibration standard, but are assigned a specific chemical name based upon the library search, are calculated using total peak areas from reconstructed ion chromatograms and a response factor of one. The nearest Internal Standard is used for the calculation. The results of any TICs must be considered estimated, and are flagged with a "T". If the estimated result is above the calibration range it is flagged "ET"
- TNTC Too numerous to count (> 200 CFU)

Definitions

http://www.teklabinc.com/

Client: Alpha Analytical Work Order: 22020243
Client Project: L2205601 Report Date: 14-Feb-22

Qualifiers

- # Unknown hydrocarbon
- C RL shown is a Client Requested Quantitation Limit
- H Holding times exceeded
- J Analyte detected below quantitation limits
- ND Not Detected at the Reporting Limit
 - S Spike Recovery outside recovery limits
 - X Value exceeds Maximum Contaminant Level

- B Analyte detected in associated Method Blank
- E Value above quantitation range
- I Associated internal standard was outside method criteria
- M Manual Integration used to determine area response
- R RPD outside accepted recovery limits
- T TIC(Tentatively identified compound)

Case Narrative

http://www.teklabinc.com/

Client: Alpha Analytical Work Order: 22020243
Client Project: L2205601 Report Date: 14-Feb-22

Cooler Receipt Temp: 1.8 °C

Locations

	Collinsville		Springfield	Kansas City			
Address	5445 Horseshoe Lake Road	Address	3920 Pintail Dr	Address	8421 Nieman Road		
	Collinsville, IL 62234-7425		Springfield, IL 62711-9415		Lenexa, KS 66214		
Phone	(618) 344-1004	Phone	(217) 698-1004	Phone	(913) 541-1998		
Fax	(618) 344-1005	Fax	(217) 698-1005	Fax	(913) 541-1998		
Email	jhriley@teklabinc.com	Email	KKlostermann@teklabinc.com	Email	jhriley@teklabinc.com		
	Collinsville Air	_	Chicago				
Address	5445 Horseshoe Lake Road	Address	1319 Butterfield Rd.				
	Collinsville, IL 62234-7425		Downers Grove, IL 60515				
Phone	(618) 344-1004	Phone	(630) 324-6855				
Fax	(618) 344-1005	Fax					
Email	EHurley@teklabinc.com	Email	arenner@teklabinc.com				

Accreditations

http://www.teklabinc.com/

Client: Alpha Analytical Work Order: 22020243

Client Project: L2205601 Report Date: 14-Feb-22

State	Dept	Cert #	NELAP	Exp Date	Lab	
Illinois	IEPA	100226	NELAP	1/31/2023	Collinsville	
Kansas	KDHE	E-10374	NELAP	4/30/2022	Collinsville	
Louisiana	LDEQ	05002	NELAP	6/30/2022	Collinsville	
Louisiana	LDEQ	05003	NELAP	6/30/2022	Collinsville	
Oklahoma	ODEQ	9978	NELAP	8/31/2022	Collinsville	
Arkansas	ADEQ	88-0966		3/14/2022	Collinsville	
Illinois	IDPH	17584		5/31/2023	Collinsville	
Kentucky	UST	0073		1/31/2023	Collinsville	
Missouri	MDNR	00930		5/31/2023	Collinsville	
Missouri	MDNR	930		1/31/2025	Collinsville	

Laboratory Results

http://www.teklabinc.com/

Client: Alpha Analytical Work Order: 22020243

Client Project: L2205601 Report Date: 14-Feb-22

Lab ID: 22020243-001 Client Sample ID: HA21-B6(OW)_20220202

Matrix: AQUEOUS Collection Date: 02/02/2022 14:00

Anal	yses Certification	RL Qual	Result	Units	DF	Date Analyzed Batch				
EPA 600 1671A, PHARMACEUTICAL MANUFACTURING INDUSTRY NON-PURGEABLE VOLATILE ORGANICS										
Ethanol	*	20	ND	mg/L	1	02/10/2022 10:25 R306928				

Quality Control Results

http://www.teklabinc.com/

Client: Alpha Analytical Work Order: 22020243
Client Project: L2205601 Report Date: 14-Feb-22

EPA 600 1671A, PH	ARMACEL	JTICAL M.	ANUF.	ACTURING	INDUSTRY NO	ON-PUR	GEABLE VOI	LATILE (OR		
Batch R306928	SampType:	MBLK		Units mg/L							
SamplD: MBLK-02102	22										Date
Analyses		Cert	RL	Qual	Result	Spike	SPK Ref Val	%REC	Low Limit	High Limit	Analyzed
Ethanol		*	20		ND						02/10/2022
Batch R306928	SampType:	LCS		Units mg/L							
SamplD: LCS-021022											Date
Analyses		Cert	RL	Qual	Result	Spike	SPK Ref Val	%REC	Low Limit	High Limit	Analyzed
Ethanol		*	20		300	250.0	0	119.0	70	132	02/10/2022
Batch R306928	SampType:	MS		Units mg/L							
SampID: 22020243-00	1AMS										Date
Analyses		Cert	RL	Qual	Result	Spike	SPK Ref Val	%REC	Low Limit	High Limit	Analyzed
Ethanol		*	20	·	310	250.0	0	125.9	70	132	02/10/2022
Batch R306928	SampType:	MSD		Units mg/L					RPD Lir	mit: 30	
SampID: 22020243-00	1AMSD										Date
Analyses		Cert	RL	Qual	Result	Spike	SPK Ref Val	%REC	RPD Ref V	al %RPD	Analyzed
Ethanol		*	20		320	250.0	0	126.3	314.7	0.36	02/10/2022

Receiving Check List

http://www.teklabinc.com/

Client: Alpha Analytical Client Project: L2205601			Work Order: 22020243 Report Date: 14-Feb-22				
Carrier: UPS Completed by: On: 07-Feb-22 Mary E. Kemp	Received By: Reviewed by On: 07-Feb-22						
Pages to follow: Chain of custody 1 Shipping container/cooler in good condition? Type of thermal preservation? Chain of custody present? Chain of custody signed when relinquished and received? Chain of custody agrees with sample labels? Samples in proper container/bottle? Sample containers intact? Sufficient sample volume for indicated test? All samples received within holding time? Reported field parameters measured: Container/Temp Blank temperature in compliance? When thermal preservation is required, samples are compliance.	Extra pages included Yes No None ce Yes No	Not Present Blue Ice Not Present Not Prese	Temp °C 1.8 Dry Ice				
0.1°C - 6.0°C, or when samples are received on ice the same Water – at least one vial per sample has zero headspace? Water - TOX containers have zero headspace? Water - pH acceptable upon receipt? NPDES/CWA TCN interferences checked/treated in the field?		No VOA vials ☐ No TOX containers ✓ NA ☐ NA ✓					

Alpha Job Number Batch OC 330202-B Regulatory Requirements/Report Limits 18°C LTG 73 21777 L2205601 Date/Time: अपीक्ष Report to include Method Blank, LCS/LCSD: Regulatory Criteria: RCS-1-19 State/Federal Program: Mary Received By: Project Specific Requirements and/or Report Requirements Ethanol by EPA 1671 Revision A Subcontract Chain of Custody **Turnaround & Deliverables Information** 333 Date/Time: Project Information Reference following Alpha Job Number on final report/deliverables: L2205601 Tek Lab, Inc. 5445 Horsehoe Lake Road Collinsville, IL 62234-7425 Project Location: MA Project Manager: Melissa Gulli Sample Matrix WATER Additional Comments: Send all results/reports to subreports@alphalab.com Due Date: Deliverables: Collection Date/Time 02-02-22 14:00 Relinquished By: HA21-86(OW)_Z0220202 Client: Alpha Analytical Labs Address: Eight Walkup Drive Westborough, MA 01581-1019 Client Information Client ID Phone: 603.319,5010 Email: mgulli@alphalab.com ANALVICAL APTA Morid Ciass Commissing Form No: AL_subcoc 120-6460GCC Lab (D

ANALYTICAL REPORT

Lab Number: L2205983

Client: Haley & Aldrich, Inc.

465 Medford Street, Suite 2200 Charlestown, MA 02129-1400

ATTN: Kyle Block Phone: (617) 886-7440

Project Name: 155 NORTH BEACON STREET

Project Number: 0201602-000

Report Date: 02/09/22

The original project report/data package is held by Alpha Analytical. This report/data package is paginated and should be reproduced only in its entirety. Alpha Analytical holds no responsibility for results and/or data that are not consistent with the original.

Certifications & Approvals: MA (M-MA086), NH NELAP (2064), CT (PH-0574), IL (200077), ME (MA00086), MD (348), NJ (MA935), NY (11148), NC (25700/666), PA (68-03671), RI (LAO00065), TX (T104704476), VT (VT-0935), VA (460195), USDA (Permit #P330-17-00196).

Eight Walkup Drive, Westborough, MA 01581-1019 508-898-9220 (Fax) 508-898-9193 800-624-9220 - www.alphalab.com

Project Name: 155 NORTH BEACON STREET

Project Number: 0201602-000

Lab Number:

L2205983

Report Date: 02/09/22

Alpha Sample ID Client ID Matrix Sample Location Collection Date/Time

BOSTON, MA

L2205983-01 RECEIVING WATER-20220203 WATER

Date/Time 02/03/22 13:30

Receive Date

02/03/22

Project Name: 155 NORTH BEACON STREET Lab Number: L2205983
Project Number: 0201602-000 Report Date: 02/09/22

Case Narrative

The samples were received in accordance with the Chain of Custody and no significant deviations were encountered during the preparation or analysis unless otherwise noted. Sample Receipt, Container Information, and the Chain of Custody are located at the back of the report.

Results contained within this report relate only to the samples submitted under this Alpha Lab Number and meet NELAP requirements for all NELAP accredited parameters unless otherwise noted in the following narrative. The data presented in this report is organized by parameter (i.e. VOC, SVOC, etc.). Sample specific Quality Control data (i.e. Surrogate Spike Recovery) is reported at the end of the target analyte list for each individual sample, followed by the Laboratory Batch Quality Control at the end of each parameter. Tentatively Identified Compounds (TICs), if requested, are reported for compounds identified to be present and are not part of the method/program Target Compound List, even if only a subset of the TCL are being reported. If a sample was re-analyzed or re-extracted due to a required quality control corrective action and if both sets of data are reported, the Laboratory ID of the re-analysis or re-extraction is designated with an "R" or "RE", respectively.

When multiple Batch Quality Control elements are reported (e.g. more than one LCS), the associated samples for each element are noted in the grey shaded header line of each data table. Any Laboratory Batch, Sample Specific % recovery or RPD value that is outside the listed Acceptance Criteria is bolded in the report. In reference to questions H (CAM) or 4 (RCP) when "NO" is checked, the performance criteria for CAM and RCP methods allow for some quality control failures to occur and still be within method compliance. In these instances, the specific failure is not narrated but noted in the associated QC Outlier Summary Report, located directly after the Case Narrative. QC information is also incorporated in the Data Usability Assessment table (Format 11) of our Data Merger tool, where it can be reviewed in conjunction with the sample result, associated regulatory criteria and any associated data usability implications.

Soil/sediments, solids and tissues are reported on a dry weight basis unless otherwise noted. Definitions of all data qualifiers and acronyms used in this report are provided in the Glossary located at the back of the report.

HOLD POLICY - For samples submitted on hold, Alpha's policy is to hold samples (with the exception of Air canisters) free of charge for 21 calendar days from the date the project is completed. After 21 calendar days, we will dispose of all samples submitted including those put on hold unless you have contacted your Alpha Project Manager and made arrangements for Alpha to continue to hold the samples. Air canisters will be disposed after 3 business days from the date the project is completed.

Please contact Project Management at 800-624-9220 with any questions.	

Serial_No:02092218:22

Project Name:155 NORTH BEACON STREETLab Number:L2205983Project Number:0201602-000Report Date:02/09/22

Case Narrative (continued)

Total Metals

L2205983-01: The sample has elevated detection limits due to the dilution required by the sample matrix.

Total Mercury

L2205983-01: The sample has an elevated detection limit for mercury due to the prep dilution required by the limited sample volume available for analysis.

I, the undersigned, attest under the pains and penalties of perjury that, to the best of my knowledge and belief and based upon my personal inquiry of those responsible for providing the information contained in this analytical report, such information is accurate and complete. This certificate of analysis is not complete unless this page accompanies any and all pages of this report.

Authorized Signature:

Title: Technical Director/Representative Date: 02/09/22

Coutlin Wallet Caitlin Walukevich

METALS

02/03/22 13:30

Date Collected:

Project Name: Lab Number: 155 NORTH BEACON STREET L2205983 **Report Date:** 02/09/22

Project Number: 0201602-000

SAMPLE RESULTS

Lab ID: L2205983-01

Client ID: RECEIVING WATER-20220203 Date Received: 02/03/22 Field Prep: Not Specified Sample Location: BOSTON, MA

Sample Depth:

Matrix: Water

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	Date Prepared	Date Analyzed	Prep Method	Analytical Method	Analyst
Total Metals - Man	sfield Lab										
Antimony, Total	ND		mg/l	0.04000		10	02/06/22 13:0	9 02/09/22 11:39	EPA 3005A	3,200.8	CD
Arsenic, Total	ND		mg/l	0.01000		10	02/06/22 13:0	9 02/09/22 11:39	EPA 3005A	3,200.8	CD
Cadmium, Total	ND		mg/l	0.00200		10	02/06/22 13:0	9 02/09/22 11:39	EPA 3005A	3,200.8	CD
Chromium, Total	ND		mg/l	0.01000		10	02/06/22 13:0	9 02/09/22 11:39	EPA 3005A	3,200.8	CD
Copper, Total	0.03374		mg/l	0.01000		10	02/06/22 13:0	9 02/09/22 11:39	EPA 3005A	3,200.8	CD
Iron, Total	6.26		mg/l	0.050		1	02/06/22 13:0	9 02/06/22 20:57	EPA 3005A	19,200.7	DL
Lead, Total	0.03249		mg/l	0.01000		10	02/06/22 13:0	9 02/09/22 11:39	EPA 3005A	3,200.8	CD
Mercury, Total	ND		mg/l	0.00100		1	02/09/22 13:2	9 02/09/22 16:26	EPA 245.1	3,245.1	AC
Nickel, Total	ND		mg/l	0.02000		10	02/06/22 13:0	9 02/09/22 11:39	EPA 3005A	3,200.8	CD
Selenium, Total	ND		mg/l	0.05000		10	02/06/22 13:0	9 02/09/22 11:39	EPA 3005A	3,200.8	CD
Silver, Total	ND		mg/l	0.00400		10	02/06/22 13:0	9 02/09/22 11:39	EPA 3005A	3,200.8	CD
Zinc, Total	0.1727		mg/l	0.1000		10	02/06/22 13:0	9 02/09/22 11:39	EPA 3005A	3,200.8	CD
Total Hardness by	SM 2340E	B - Mansfiel	d Lab								
Hardness	115		mg/l	0.660	NA	1	02/06/22 13:0	9 02/07/22 10:56	EPA 3005A	19,200.7	GD
General Chemistry	- Mansfiel	ld Lab									
Chromium, Trivalent	ND		mg/l	0.010		1		02/09/22 11:39	NA	107,-	

Serial_No:02092218:22

Project Name: 155 NORTH BEACON STREET

Project Number: 0201602-000

Lab Number:

L2205983

Report Date: 02/09/22

Method Blank Analysis Batch Quality Control

Parameter	Result Qualifier	Units	RL	MDL	Dilution Factor	Date Prepared	Date Analyzed	Analytical Method	
Total Metals - Mansfield	Lab for sample(s):	01 Batch	: WG16	601945-	1				
Iron, Total	ND	mg/l	0.050		1	02/06/22 13:09	02/06/22 19:05	19,200.7	DL

Prep Information

Digestion Method: EPA 3005A

Parameter	Result Qualifier	Units	RL	MDL	Dilution Factor	Date Prepared	Date Analyzed	Analytical Method	Analyst	
Total Hardness by SM 2340B - Mansfield Lab for sample(s): 01 Batch: WG1601945-1										
Hardness	ND	mg/l	0.660	NA	1	02/06/22 13:09	02/07/22 12:28	19,200.7	GD	

Prep Information

Digestion Method: EPA 3005A

Parameter	Result Qualifier	Units	RL	MDL	Dilution Factor	Date Prepared	Date Analyzed	Analytical Method	Analyst
Total Metals - Mans	sfield Lab for sample(s):	01 Batc	h: WG16	01947	·1				
Antimony, Total	ND	mg/l	0.00400		1	02/06/22 13:09	02/07/22 08:35	3,200.8	SV
Arsenic, Total	ND	mg/l	0.00100		1	02/06/22 13:09	02/07/22 08:35	3,200.8	SV
Cadmium, Total	ND	mg/l	0.00020		1	02/06/22 13:09	02/07/22 08:35	3,200.8	SV
Chromium, Total	ND	mg/l	0.00100		1	02/06/22 13:09	02/07/22 08:35	3,200.8	SV
Copper, Total	ND	mg/l	0.00200		1	02/06/22 13:09	02/07/22 08:35	3,200.8	SV
Lead, Total	ND	mg/l	0.00100		1	02/06/22 13:09	02/07/22 08:35	3,200.8	SV
Nickel, Total	ND	mg/l	0.00200		1	02/06/22 13:09	02/07/22 08:35	3,200.8	SV
Selenium, Total	ND	mg/l	0.00500		1	02/06/22 13:09	02/07/22 08:35	3,200.8	SV
Silver, Total	ND	mg/l	0.00040		1	02/06/22 13:09	02/07/22 08:35	3,200.8	SV
Zinc, Total	ND	mg/l	0.01000		1	02/06/22 13:09	02/07/22 08:35	3,200.8	SV

Prep Information

Digestion Method: EPA 3005A

Serial_No:02092218:22

Project Name: 155 NORTH BEACON STREET

Project Number: 0201602-000

Lab Number:

L2205983

Report Date:

02/09/22

Method Blank Analysis Batch Quality Control

Parameter	Result Qualifier	Units	RL	MDL	Dilution Factor	Date Prepared	Date Analyzed	Analytica Method	
Total Metals - Mansfield	d Lab for sample(s):	01 Batc	h: WG16	603119-	1				
Mercury, Total	ND	mg/l	0.00020		1	02/09/22 13:29	02/09/22 16:19	3,245.1	AC

Prep Information

Digestion Method: EPA 245.1

Project Name: 155 NORTH BEACON STREET

Project Number: 0201602-000

Lab Number:

L2205983

Report Date:

02/09/22

Parameter	LCS %Recovery	LCSD Qual %Recovery	%Reco Qual Limi		Qual	RPD Limits
Total Metals - Mansfield Lab Associated sample	e(s): 01 Batch: W	/G1601945-2				
Iron, Total	100	-	85-11	5 -		
Total Hardness by SM 2340B - Mansfield Lab A	Associated sample	(s): 01 Batch: WG160194	15-2			
Hardness	103	-	85-11	5 -		
Fotal Metals - Mansfield Lab Associated sample	e(s): 01 Batch: W	/G1601947-2				
Antimony, Total	91	-	85-11	5 -		
Arsenic, Total	100	-	85-11	5 -		
Cadmium, Total	96	-	85-11	5 -		
Chromium, Total	97	-	85-11	5 -		
Copper, Total	95	-	85-11	5 -		
Lead, Total	97	-	85-11	5 -		
Nickel, Total	98	-	85-11	5 -		
Selenium, Total	99	-	85-11	5 -		
Silver, Total	101	-	85-11	5 -		
Zinc, Total	97	-	85-11	5 -		
Fotal Metals - Mansfield Lab Associated sample	e(s): 01 Batch: W	/G1603119-2				
Mercury, Total	99	-	85-11	5 -		

Matrix Spike Analysis Batch Quality Control

Project Name: 155 NORTH BEACON STREET

Project Number: 0201602-000

Lab Number:

L2205983

Report Date:

02/09/22

Native Sample	MS Added	MS Found	MS %Recovery	Qua	MSD Found	MSD %Recovery	Recovery Qual Limits	RPD	RPD Qual Limits
Associated sam	ple(s): 01	QC Batch ID): WG160194	5-3	QC Sample:	L2205978-02	Client ID: MS S	ample	
8.21	1	9.06	85		-	-	75-125	-	20
B - Mansfield La	b Associate	ed sample(s):	01 QC Bato	h ID: \	WG1601945-	3 QC Samp	le: L2205978-02	Client I	D: MS Sample
315	66.2	379	97		-	-	75-125	-	20
Associated sam	nple(s): 01	QC Batch ID): WG160194	7-3	QC Sample:	L2205978-02	Client ID: MS S	ample	
ND	0.5	0.4565	91		-	-	70-130	-	20
0.00294	0.12	0.1202	98		-	-	70-130	-	20
ND	0.053	0.05013	94		-	-	70-130	-	20
ND	0.2	0.1880	94		-	-	70-130	-	20
ND	0.25	0.2377	95		-	-	70-130	-	20
0.01433	0.53	0.5157	94		-	-	70-130	-	20
ND	0.5	0.4758	95		-	-	70-130	-	20
ND	0.12	0.1132	94		-	-	70-130	-	20
ND	0.05	0.05013	100		-	-	70-130	-	20
0.01373	0.5	0.4928	96		-	-	70-130	-	20
Associated sam	nple(s): 01	QC Batch ID): WG160311	9-3	QC Sample:	L2205983-01	Client ID: RECE	EIVING	WATER-202202
ND	0.025	0.02294	92		-	-	70-130	-	20
	Sample Associated sam 8.21 B - Mansfield Lai 315 Associated sam ND 0.00294 ND ND ND ND ND ND ND ND ND N	Sample Added Associated sample(s): 01 8.21 1 B - Mansfield Lab Associated 315 66.2 Associated sample(s): 01 ND 0.5 ND 0.053 ND 0.25 ND 0.25 0.01433 0.53 ND 0.5 ND 0.12 ND 0.12 ND 0.05 ND 0.05 0.012 ND 0.05 0.01373 0.5 Associated sample(s): 01	Sample Added Found 9 Associated sample(s): 01 QC Batch ID 8.21 1 9.06 3 - Mansfield Lab Associated sample(s): 315 66.2 379 Associated sample(s): 01 QC Batch ID ND 0.5 0.4565 0.00294 0.12 0.1202 ND 0.053 0.05013 ND 0.2 0.1880 ND 0.25 0.2377 0.01433 0.53 0.5157 ND 0.5 0.4758 ND 0.12 0.1132 ND 0.05 0.05013 0.01373 0.5 0.4928 Associated sample(s): 01 QC Batch ID	Sample Added Found %Recovery Associated sample(s): 01 QC Batch ID: WG1601945 8.21 1 9.06 85 3 - Mansfield Lab Associated sample(s): 01 QC Batch ID: WG1601947 Associated sample(s): 01 QC Batch ID: WG1601947 ND 0.5 0.4565 91 0.00294 0.12 0.1202 98 ND 0.053 0.05013 94 ND 0.2 0.1880 94 ND 0.25 0.2377 95 0.01433 0.53 0.5157 94 ND 0.12 0.1132 94 ND 0.12 0.1132 94 ND 0.05 0.05013 100 0.01373 0.5 0.4928 96	Sample Added Found %Recovery Qua Associated sample(s): 01 QC Batch ID: WG1601945-3 8.21 1 9.06 85 3 - Mansfield Lab Associated sample(s): 01 QC Batch ID: WG1601947-3 97 Associated sample(s): 01 QC Batch ID: WG1601947-3 ND 0.5 0.4565 91 98 ND 0.053 0.05013 94 94 ND 0.2 0.1880 94 94 ND 0.25 0.2377 95 95 0.01433 0.53 0.5157 94 95 ND 0.12 0.1132 94 ND 0.05 0.05013 100 0.01373 0.5 0.4928 96 Associated sample(s): 01 QC Batch ID: WG1603119-3	Sample Added Found %Recovery Qual Found Associated sample(s): 01 QC Batch ID: WG1601945-3 QC Sample: 8.21 1 9.06 85 - 3 - Mansfield Lab Associated sample(s): 01 QC Batch ID: WG1601947-3 QC Sample: 315 66.2 379 97 - Associated sample(s): 01 QC Batch ID: WG1601947-3 QC Sample: ND 0.5 0.4565 91 - 0.00294 0.12 0.1202 98 - ND 0.053 0.05013 94 - ND 0.25 0.2377 95 - ND 0.5 0.4758 95 - ND 0.12 0.1132 94 - ND 0.12 0.1132 94 - ND 0.05 0.05013 100 - ND 0.05 0.05013 100 - ND 0.05 0.4928 96 <	Sample Added Found %Recovery Qual Found %Recovery Associated sample(s): 01 QC Batch ID: WG1601945-3 QC Sample: L2205978-02 8.21 1 9.06 85 - - 3 - Mansfield Lab Associated sample(s): 01 QC Batch ID: WG1601947-3 QC Sample: L2205978-02 Associated sample(s): 01 QC Batch ID: WG1601947-3 QC Sample: L2205978-02 ND 0.5 0.45665 91 - - ND 0.053 0.05013 94 - - ND 0.2 0.1880 94 - - ND 0.25 0.2377 95 - - ND 0.5 0.4758 95 - - ND 0.12 0.1132 94 - - ND 0.5 0.4758 95 - - ND 0.12 0.1132 94 - - ND 0.05 0.05013 100 - <t< td=""><td>Sample Added Found %Recovery Qual Found %Recovery Recovery Qual Limits Associated sample(s): 01 QC Batch ID: WG1601945-3 QC Sample: L2205978-02 Client ID: MS S 8.21 1 9.06 85 - - - - 75-125 3 - Mansfield Lab Associated sample(s): 01 QC Batch ID: WG1601947-3 QC Sample: L2205978-02 Client ID: MS S Associated sample(s): 01 QC Batch ID: WG1601947-3 QC Sample: L2205978-02 Client ID: MS S ND 0.5 0.4565 91 - - - 70-130 ND 0.053 0.05013 94 - - - 70-130 ND 0.2 0.1880 94 - - - 70-130 ND 0.25 0.2377 95 - - - 70-130 ND 0.5 0.4758 95 - - - 70-130 ND 0.12 0.1132 94 - - - 70-130</td><td>Sample Added Found %Recovery Qual Found %Recovery Qual Limits RPD Associated sample(s): 01 QC Batch ID: WG1601945-3 QC Sample: L2205978-02 Client ID: MS Sample 8.21 1 9.06 85 - - - 75-125 - 3 - Mansfield Lab Associated sample(s): 01 QC Batch ID: WG1601947-3 QC Sample: L2205978-02 Client ID: MS Sample Associated sample(s): 01 QC Batch ID: WG1601947-3 QC Sample: L2205978-02 Client ID: MS Sample ND 0.5 0.4565 91 - - 70-130 - ND 0.5 0.4565 91 - - 70-130 - ND 0.053 0.05013 94 - - 70-130 - ND 0.25 0.2377 95 - - 70-130 - ND 0.5 0.4758 95 - - 70-130 - ND 0.12 0.1132 94</td></t<>	Sample Added Found %Recovery Qual Found %Recovery Recovery Qual Limits Associated sample(s): 01 QC Batch ID: WG1601945-3 QC Sample: L2205978-02 Client ID: MS S 8.21 1 9.06 85 - - - - 75-125 3 - Mansfield Lab Associated sample(s): 01 QC Batch ID: WG1601947-3 QC Sample: L2205978-02 Client ID: MS S Associated sample(s): 01 QC Batch ID: WG1601947-3 QC Sample: L2205978-02 Client ID: MS S ND 0.5 0.4565 91 - - - 70-130 ND 0.053 0.05013 94 - - - 70-130 ND 0.2 0.1880 94 - - - 70-130 ND 0.25 0.2377 95 - - - 70-130 ND 0.5 0.4758 95 - - - 70-130 ND 0.12 0.1132 94 - - - 70-130	Sample Added Found %Recovery Qual Found %Recovery Qual Limits RPD Associated sample(s): 01 QC Batch ID: WG1601945-3 QC Sample: L2205978-02 Client ID: MS Sample 8.21 1 9.06 85 - - - 75-125 - 3 - Mansfield Lab Associated sample(s): 01 QC Batch ID: WG1601947-3 QC Sample: L2205978-02 Client ID: MS Sample Associated sample(s): 01 QC Batch ID: WG1601947-3 QC Sample: L2205978-02 Client ID: MS Sample ND 0.5 0.4565 91 - - 70-130 - ND 0.5 0.4565 91 - - 70-130 - ND 0.053 0.05013 94 - - 70-130 - ND 0.25 0.2377 95 - - 70-130 - ND 0.5 0.4758 95 - - 70-130 - ND 0.12 0.1132 94

Lab Duplicate Analysis Batch Quality Control

Project Name: 155 NORTH BEACON STREET

Project Number: 0201602-000

Lab Number:

L2205983 02/09/22

Report Date:

Parameter	Native Sample D	uplicate Sample	Units	RPD	Qual	RPD Limits
Total Metals - Mansfield Lab Associated sample(s): 01	QC Batch ID: WG1601945	-4 QC Sample:	L2205978-02	Client ID:	DUP Sample	
Iron, Total	8.21	8.12	mg/l	1		20
Total Metals - Mansfield Lab Associated sample(s): 01	QC Batch ID: WG1601947	-4 QC Sample:	L2205978-02	Client ID:	DUP Sample	
Antimony, Total	ND	ND	mg/l	NC		20
Arsenic, Total	0.00294	0.00288	mg/l	2		20
Cadmium, Total	ND	ND	mg/l	NC		20
Chromium, Total	ND	ND	mg/l	NC		20
Copper, Total	ND	ND	mg/l	NC		20
Lead, Total	0.01433	0.01435	mg/l	0		20
Nickel, Total	ND	ND	mg/l	NC		20
Selenium, Total	ND	ND	mg/l	NC		20
Silver, Total	ND	ND	mg/l	NC		20
Zinc, Total	0.01373	0.01372	mg/l	0		20
Total Metals - Mansfield Lab Associated sample(s): 01	QC Batch ID: WG1603119	-4 QC Sample:	L2205983-01	Client ID:	RECEIVING V	WATER-20220203
Mercury, Total	ND	ND	mg/l	NC		20

INORGANICS & MISCELLANEOUS

Serial_No:02092218:22

Project Name: 155 NORTH BEACON STREET Lab Number: L2205983

SAMPLE RESULTS

Lab ID: L2205983-01 Date Collected: 02/03/22 13:30

Client ID: RECEIVING WATER-20220203 Date Received: 02/03/22 Sample Location: BOSTON, MA Field Prep: Not Specified

Sample Depth:

Matrix: Water

Parameter	Result Q	Qualifier U	nits	RL	MDL	Dilution Factor	Date Prepared	Date Analyzed	Analytical Method	Analyst
General Chemistry - We	estborough Lab									
pH (H)	6.8	Ş	SU	-	NA	1	-	02/03/22 23:04	121,4500H+-B	AS
Nitrogen, Ammonia	1.28	n	ng/l	0.750		10	02/04/22 03:15	02/04/22 20:12	121,4500NH3-BH	I AT
Chromium, Hexavalent	ND	n	ng/l	0.010		1	02/04/22 08:50	02/04/22 09:04	1,7196A	KP

Serial_No:02092218:22

Project Name: 155 NORTH BEACON STREET **Lab Number:** L2205983

> Method Blank Analysis Batch Quality Control

Parameter	Result Qual	ifier Units	RL	MDL	Dilution Factor	Date Prepared	Date Analyzed	Analytical Method	Analyst
General Chemistry - V	Vestborough Lab for	r sample(s): 01	Batch:	WG16	601361-1				
Nitrogen, Ammonia	ND	mg/l	0.075		1	02/04/22 03:15	02/04/22 19:54	121,4500NH3-B	BH AT
General Chemistry - V	Vestborough Lab for	r sample(s): 01	Batch:	WG16	601498-1				
Chromium, Hexavalent	ND	mg/l	0.010		1	02/04/22 08:50	02/04/22 09:04	1,7196A	KP

Project Name: 155 NORTH BEACON STREET

Project Number: 0201602-000

Lab Number:

L2205983

Report Date:

02/09/22

Parameter	LCS %Recovery Qua	LCSD al %Recovery	Qual	%Recovery Limits	RPD	Qual	RPD Limits
General Chemistry - Westborough Lab	Associated sample(s): 01	Batch: WG1601332-1					
рН	99	-		99-101	-		5
General Chemistry - Westborough Lab	Associated sample(s): 01	Batch: WG1601361-2					
Nitrogen, Ammonia	95	-		80-120	-		20
General Chemistry - Westborough Lab	Associated sample(s): 01	Batch: WG1601498-2	2				
Chromium, Hexavalent	106	-		85-115	-		20

Matrix Spike Analysis Batch Quality Control

Project Name: 155 NORTH BEACON STREET

Project Number: 0201602-000

Lab Number:

L2205983

Report Date:

02/09/22

Parameter	Native Sample	MS Added	MS Found	MS %Recovery	MSD Qual Found	MSD %Recovery	Recovery Qual Limits	RPD Qual	RPD Limits
General Chemistry - Westbord	ough Lab Asso	ciated samp	le(s): 01	QC Batch ID: V	NG1601361-4	QC Sample: L22	05978-01 Client	ID: MS Sam	ple
Nitrogen, Ammonia	2.90	4	7.03	103	-	-	80-120	-	20
General Chemistry - Westbord 20220203	ough Lab Asso	ciated samp	le(s): 01	QC Batch ID: \	WG1601498-4	QC Sample: L22	05983-01 Client	ID: RECEIV	ING WATER
Chromium, Hexavalent	ND	0.1	0.102	102	-	-	85-115	-	20

Lab Duplicate Analysis Batch Quality Control

Project Name: 155 NORTH BEACON STREET

Project Number: 0201602-000

Lab Number: L2205983

Report Date: 02/09/22

Parameter		Nati	ve S	ample	Duplicate Sam	nple Unit	s RPD	Qual	RPD Limits
General Chemistry - \ 20220203	Westborough Lab	Associated sample(s):	01	QC Batch ID:	WG1601332-2	QC Sample:	L2205983-01	Client ID:	RECEIVING WATER-
pH (H)			6.8		6.9	SU	1		5
General Chemistry - \	Westborough Lab	Associated sample(s):	01	QC Batch ID:	WG1601361-3	QC Sample:	L2205978-01	Client ID:	DUP Sample
Nitrogen, Ammonia			2.90)	3.28	mg/l	12		20
General Chemistry - \ 20220203	Westborough Lab	Associated sample(s):	01	QC Batch ID:	WG1601498-3	QC Sample:	L2205983-01	Client ID:	RECEIVING WATER-
Chromium, Hexavalent			ND		ND	mg/l	NC		20

Serial_No:02092218:22

Lab Number: L2205983

Report Date: 02/09/22

Project Name: 155 NORTH BEACON STREET

Project Number: 0201602-000

Sample Receipt and Container Information

Were project specific reporting limits specified?

YES

Cooler Information

Cooler Custody Seal

D Absent

Container Information			Initial	Final	Temp			Frozen	
Container ID	Container Type	Cooler	рН	рН	deg C	Pres	Seal	Date/Time	Analysis(*)
L2205983-01A	Plastic 250ml unpreserved	D	7	7	3.9	Υ	Absent		HEXCR-7196(1),TRICR-CALC(1),PH-4500(.01)
L2205983-01B	Plastic 250ml HNO3 preserved	D	<2	<2	3.9	Υ	Absent		CD-2008T(180),NI-2008T(180),ZN- 2008T(180),HARDU(180),CU-2008T(180),FE- UI(180),SE-2008T(180),AG-2008T(180),AS- 2008T(180),HG-U(28),SB-2008T(180),PB- 2008T(180),CR-2008T(180)
L2205983-01C	Plastic 500ml H2SO4 preserved	D	<2	<2	3.9	Υ	Absent		NH3-4500(28)

GLOSSARY

Acronyms

LOD

MS

DL - Detection Limit: This value represents the level to which target analyte concentrations are reported as estimated values, when those target analyte concentrations are quantified below the limit of quantitation (LOQ). The DL includes any adjustments from dilutions, concentrations or moisture content, where applicable (DoD report formats only)

from dilutions, concentrations or moisture content, where applicable. (DoD report formats only.)

EDL - Estimated Detection Limit: This value represents the level to which target analyte concentrations are reported as estimated values, when those target analyte concentrations are quantified below the reporting limit (RL). The EDL includes any adjustments from dilutions, concentrations or measure content, where applicable. The use of EDLs is specific to the analysis

of PAHs using Solid-Phase Microextraction (SPME).

EMPC - Estimated Maximum Possible Concentration: The concentration that results from the signal present at the retention time of an analyte when the ions meet all of the identification criteria except the ion abundance ratio criteria. An EMPC is a worst-case estimate of the concentration.

EPA - Environmental Protection Agency.

LCS - Laboratory Control Sample: A sample matrix, free from the analytes of interest, spiked with verified known amounts of analytes or a material containing known and verified amounts of analytes.

LCSD - Laboratory Control Sample Duplicate: Refer to LCS.

LFB - Laboratory Fortified Blank: A sample matrix, free from the analytes of interest, spiked with verified known amounts of analytes or a material containing known and verified amounts of analytes.

- Limit of Detection: This value represents the level to which a target analyte can reliably be detected for a specific analyte in a specific matrix by a specific method. The LOD includes any adjustments from dilutions, concentrations or moisture content,

where applicable. (DoD report formats only.)

LOQ - Limit of Quantitation: The value at which an instrument can accurately measure an analyte at a specific concentration. The LOQ includes any adjustments from dilutions, concentrations or moisture content, where applicable. (DoD report formats

oniy.)

Limit of Quantitation: The value at which an instrument can accurately measure an analyte at a specific concentration. The LOQ includes any adjustments from dilutions, concentrations or moisture content, where applicable. (DoD report formats

MDL - Method Detection Limit: This value represents the level to which target analyte concentrations are reported as estimated values, when those target analyte concentrations are quantified below the reporting limit (RL). The MDL includes any adjustments from dilutions, concentrations or moisture content, where applicable.

- Matrix Spike Sample: A sample prepared by adding a known mass of target analyte to a specified amount of matrix sample for which an independent estimate of target analyte concentration is available. For Method 332.0, the spike recovery is calculated using the native concentration, including estimated values.

MSD - Matrix Spike Sample Duplicate: Refer to MS.

NA - Not Applicable.

NC - Not Calculated: Term is utilized when one or more of the results utilized in the calculation are non-detect at the parameter's

reporting unit.

NDPA/DPA - N-Nitrosodiphenylamine/Diphenylamine.

NI - Not Ignitable.

NP - Non-Plastic: Term is utilized for the analysis of Atterberg Limits in soil.

NR - No Results: Term is utilized when 'No Target Compounds Requested' is reported for the analysis of Volatile or Semivolatile

Organic TIC only requests.

RL - Reporting Limit: The value at which an instrument can accurately measure an analyte at a specific concentration. The RL

includes any adjustments from dilutions, concentrations or moisture content, where applicable.

RPD - Relative Percent Difference: The results from matrix and/or matrix spike duplicates are primarily designed to assess the precision of analytical results in a given matrix and are expressed as relative percent difference (RPD). Values which are less than five times the reporting limit for any individual parameter are evaluated by utilizing the absolute difference between the

values; although the RPD value will be provided in the report.

SRM - Standard Reference Material: A reference sample of a known or certified value that is of the same or similar matrix as the

associated field samples.

STLP - Semi-dynamic Tank Leaching Procedure per EPA Method 1315.

TEF - Toxic Equivalency Factors: The values assigned to each dioxin and furan to evaluate their toxicity relative to 2,3,7,8-TCDD.

TEQ - Toxic Equivalent: The measure of a sample's toxicity derived by multiplying each dioxin and furan by its corresponding TEF

and then summing the resulting values.

TIC - Tentatively Identified Compound: A compound that has been identified to be present and is not part of the target compound list (TCL) for the method and/or program. All TICs are qualitatively identified and reported as estimated concentrations.

Report Format: Data Usability Report

Footnotes

1 - The reference for this analyte should be considered modified since this analyte is absent from the target analyte list of the original method.

Terms

Analytical Method: Both the document from which the method originates and the analytical reference method. (Example: EPA 8260B is shown as 1,8260B.) The codes for the reference method documents are provided in the References section of the Addendum.

Difference: With respect to Total Oxidizable Precursor (TOP) Assay analysis, the difference is defined as the Post-Treatment value minus the Pre-Treatment value.

Final pH: As it pertains to Sample Receipt & Container Information section of the report, Final pH reflects pH of container determined after adjustment at the laboratory, if applicable. If no adjustment required, value reflects Initial pH.

Frozen Date/Time: With respect to Volatile Organics in soil, Frozen Date/Time reflects the date/time at which associated Reagent Water-preserved vials were initially frozen. Note: If frozen date/time is beyond 48 hours from sample collection, value will be reflected in 'bold'.

Initial pH: As it pertains to Sample Receipt & Container Information section of the report, Initial pH reflects pH of container determined upon receipt, if applicable.

PAH Total: With respect to Alkylated PAH analyses, the 'PAHs, Total' result is defined as the summation of results for all or a subset of the following compounds: Naphthalene, C1-C4 Naphthalenes, 2-Methylnaphthalene, 1-Methylnaphthalene, Biphenyl, Acenaphthylene, Acenaphthene, Fluorene, C1-C3 Fluorenes, Phenanthrene, C1-C4 Phenanthrenes/Anthracenes, Anthracene, Fluoranthene, Pyrene, C1-C4 Fluoranthenes/Pyrenes, Benz(a)anthracene, Chrysene, C1-C4 Chrysenes, Benzo(b)fluoranthene, Benzo(j)+(k)fluoranthene, Benzo(e)pyrene, Benzo(a)pyrene, Perylene, Indeno(1,2,3-cd)pyrene, Dibenz(ah)+(ac)anthracene, Benzo(g,h,i)perylene. If a 'Total' result is requested, the results of its individual components will also be reported.

PFAS Total: With respect to PFAS analyses, the 'PFAS, Total (5)' result is defined as the summation of results for: PFHpA, PFHxS, PFOA, PFNA and PFOS. In addition, the 'PFAS, Total (6)' result is defined as the summation of results for: PFHpA, PFHxS, PFOA, PFNA, PFDA and PFOS. For MassDEP DW compliance analysis only, the 'PFAS, Total (6)' result is defined as the summation of results at or above the RL. Note: If a 'Total' result is requested, the results of its individual components will also be reported.

The target compound Chlordane (CAS No. 57-74-9) is reported for GC ECD analyses. Per EPA, this compound "refers to a mixture of chlordane isomers, other chlorinated hydrocarbons and numerous other components." (Reference: USEPA Toxicological Review of Chlordane, In Support of Summary Information on the Integrated Risk Information System (IRIS), December 1997.)

Total: With respect to Organic analyses, a 'Total' result is defined as the summation of results for individual isomers or Aroclors. If a 'Total' result is requested, the results of its individual components will also be reported. This is applicable to 'Total' results for methods 8260, 8081 and 8082.

Data Qualifiers

- A -Spectra identified as "Aldol Condensates" are byproducts of the extraction/concentration procedures when acetone is introduced in the process.
- The analyte was detected above the reporting limit in the associated method blank. Flag only applies to associated field samples that have detectable concentrations of the analyte at less than ten times (10x) the concentration found in the blank. For MCP-related projects, flag only applies to associated field samples that have detectable concentrations of the analyte at less than ten times (10x) the concentration found in the blank. For DOD-related projects, flag only applies to associated field samples that have detectable concentrations of the analyte at less than ten times (10x) the concentration found in the blank AND the analyte was detected above one-half the reporting limit (or above the reporting limit for common lab contaminants) in the associated method blank. For NJ-Air-related projects, flag only applies to associated field samples that have detectable concentrations of the analyte above the reporting limit. For NJ-related projects (excluding Air), flag only applies to associated field samples that have detectable concentrations of the analyte, which was detected above the reporting limit in the associated method blank or above five times the reporting limit for common lab contaminants (Phthalates, Acetone, Methylene Chloride, 2-Butanone).
- Co-elution: The target analyte co-elutes with a known lab standard (i.e. surrogate, internal standards, etc.) for co-extracted analyses.
- Concentration of analyte was quantified from diluted analysis. Flag only applies to field samples that have detectable concentrations of the analyte.
- E Concentration of analyte exceeds the range of the calibration curve and/or linear range of the instrument.
- F The ratio of quantifier ion response to qualifier ion response falls outside of the laboratory criteria. Results are considered to be an estimated maximum concentration.
- G The concentration may be biased high due to matrix interferences (i.e, co-elution) with non-target compound(s). The result should be considered estimated.
- H The analysis of pH was performed beyond the regulatory-required holding time of 15 minutes from the time of sample collection.
- I The lower value for the two columns has been reported due to obvious interference.
- J Estimated value. This represents an estimated concentration for Tentatively Identified Compounds (TICs).
- M Reporting Limit (RL) exceeds the MCP CAM Reporting Limit for this analyte.
- **ND** Not detected at the reporting limit (RL) for the sample.
- NJ Presumptive evidence of compound. This represents an estimated concentration for Tentatively Identified Compounds (TICs), where

Report Format: Data Usability Report

Data Qualifiers

the identification is based on a mass spectral library search.

- P The RPD between the results for the two columns exceeds the method-specified criteria.
- Q The quality control sample exceeds the associated acceptance criteria. For DOD-related projects, LCS and/or Continuing Calibration Standard exceedences are also qualified on all associated sample results. Note: This flag is not applicable for matrix spike recoveries when the sample concentration is greater than 4x the spike added or for batch duplicate RPD when the sample concentrations are less than 5x the RL. (Metals only.)
- **R** Analytical results are from sample re-analysis.
- **RE** Analytical results are from sample re-extraction.
- S Analytical results are from modified screening analysis.
- The surrogate associated with this target analyte has a recovery outside the QC acceptance limits. (Applicable to MassDEP DW Compliance samples only.)
- The batch matrix spike and/or duplicate associated with this target analyte has a recovery/RPD outside the QC acceptance limits.
 (Applicable to MassDEP DW Compliance samples only.)

Report Format: Data Usability Report

REFERENCES

- Test Methods for Evaluating Solid Waste: Physical/Chemical Methods. EPA SW-846. Third Edition. Updates I VI, 2018.
- Methods for the Determination of Metals in Environmental Samples, Supplement I. EPA/600/R-94/111. May 1994.
- 19 Inductively Coupled Plasma Atomic Emission Spectrometric Method for Trace Element Analysis of Water and Wastes. Appendix C, Part 136, 40 CFR (Code of Federal Regulations). July 1, 1999 edition.
- 107 Alpha Analytical In-house calculation method.
- 121 Standard Methods for the Examination of Water and Wastewater. APHA-AWWA-WEF. Standard Methods Online.

LIMITATION OF LIABILITIES

Alpha Analytical performs services with reasonable care and diligence normal to the analytical testing laboratory industry. In the event of an error, the sole and exclusive responsibility of Alpha Analytical shall be to re-perform the work at it's own expense. In no event shall Alpha Analytical be held liable for any incidental, consequential or special damages, including but not limited to, damages in any way connected with the use of, interpretation of, information or analysis provided by Alpha Analytical.

We strongly urge our clients to comply with EPA protocol regarding sample volume, preservation, cooling, containers, sampling procedures, holding time and splitting of samples in the field.

Serial_No:02092218:22

Alpha Analytical, Inc. Facility: Company-wide

Department: Quality Assurance

Title: Certificate/Approval Program Summary

ID No.:17873 Revision 19

Page 1 of 1

Published Date: 4/2/2021 1:14:23 PM

Certification Information

The following analytes are not included in our Primary NELAP Scope of Accreditation:

Westborough Facility

EPA 624/624.1: m/p-xylene, o-xylene, Naphthalene

EPA 625/625.1: alpha-Terpineol

EPA 8260C/8260D: NPW: 1,2,4,5-Tetramethylbenzene; 4-Ethyltoluene, Azobenzene; SCM: Iodomethane (methyl iodide), 1,2,4,5-Tetramethylbenzene;

EPA 8270D/8270E: NPW: Dimethylnaphthalene,1,4-Diphenylhydrazine, alpha-Terpineol; SCM: Dimethylnaphthalene,1,4-Diphenylhydrazine.

SM4500: NPW: Amenable Cyanide; SCM: Total Phosphorus, TKN, NO2, NO3.

Mansfield Facility

SM 2540D: TSS

EPA 8082A: NPW: PCB: 1, 5, 31, 87,101, 110, 141, 151, 153, 180, 183, 187.

EPA TO-15: Halothane, 2,4,4-Trimethyl-2-pentene, 2,4,4-Trimethyl-1-pentene, Thiophene, 2-Methylthiophene,

3-Methylthiophene, 2-Ethylthiophene, 1,2,3-Trimethylbenzene, Indan, Indene, 1,2,4,5-Tetramethylbenzene, Benzothiophene, 1-Methylnaphthalene.

Biological Tissue Matrix: EPA 3050B

The following analytes are included in our Massachusetts DEP Scope of Accreditation

Westborough Facility:

Drinking Water

EPA 300.0: Chloride, Nitrate-N, Fluoride, Sulfate; EPA 353.2: Nitrate-N, Nitrite-N; SM4500NO3-F: Nitrate-N, Nitrite-N; SM4500F-C, SM4500CN-CE,

EPA 180.1, SM2130B, SM4500CI-D, SM2320B, SM2540C, SM4500H-B, SM4500NO2-B

EPA 332: Perchlorate; EPA 524.2: THMs and VOCs; EPA 504.1: EDB, DBCP.

Microbiology: SM9215B; SM9223-P/A, SM9223B-Colilert-QT,SM9222D.

Non-Potable Water

SM4500H,B, EPA 120.1, SM2510B, SM2540C, SM2320B, SM4500CL-E, SM4500F-BC, SM4500NH3-BH: Ammonia-N and Kjeldahl-N, EPA 350.1: Ammonia-N, LACHAT 10-107-06-1-B: Ammonia-N, EPA 351.1, SM4500NO3-F, EPA 353.2: Nitrate-N, SM4500P-E, SM4500P-B, E, SM4500SO4-E, SM5220D, EPA 410.4, SM5210B, SM5310C, SM4500CL-D, EPA 1664, EPA 420.1, SM4500-CN-CE, SM2540D, EPA 300: Chloride, Sulfate, Nitrate. EPA 624.1: Volatile Halocarbons & Aromatics,

EPA 608.3: Chlordane, Toxaphene, Aldrin, alpha-BHC, beta-BHC, gamma-BHC, delta-BHC, Dieldrin, DDD, DDE, DDT, Endosulfan II, Endosulfan II, Endosulfan sulfate, Endrin, Endrin Aldehyde, Heptachlor, Heptachlor Epoxide, PCBs

EPA 625.1: SVOC (Acid/Base/Neutral Extractables), EPA 600/4-81-045: PCB-Oil.

Microbiology: SM9223B-Colilert-QT; Enterolert-QT, SM9221E, EPA 1600, EPA 1603, SM9222D.

Mansfield Facility:

Drinking Water

EPA 200.7: Al, Ba, Cd, Cr, Cu, Fe, Mn, Ni, Na, Ag, Ca, Zn. EPA 200.8: Al, Sb, As, Ba, Be, Cd, Cr, Cu, Pb, Mn, Ni, Se, Ag, TL, Zn. EPA 245.1 Hg. EPA 522, EPA 537.1.

Non-Potable Water

EPA 200.7: Al, Sb, As, Be, Cd, Ca, Cr, Co, Cu, Fe, Pb, Mg, Mn, Mo, Ni, K, Se, Ag, Na, Sr, TL, Ti, V, Zn.

EPA 200.8: Al, Sb, As, Be, Cd, Cr, Cu, Fe, Pb, Mn, Ni, K, Se, Ag, Na, TL, Zn.

EPA 245.1 Hg

SM2340B

For a complete listing of analytes and methods, please contact your Alpha Project Manager.

Pre-Qualtrax Document ID: 08-113 Document Type: Form

Дірна	CHAIN OF CUSTODY	Service Centers Brews, AE 9412 Portsmouth, NR 93601 Bahwah, NJ 07430 Albany, NY 12395 Tonawanda, NY 14150 Holmes, PA 19043								Rec'd		21:	3/3	22		ALPHA Job # L 2205983	
Westborough, MA 01581	Manefield, MA 02048 320 Forbers Blvd	Project Information						Deliv	erable	5						Bitting Information	
8 Walker Dr. TEL: 308-896-9220	TEL: 508-822-9300	Project Name:		155 North	Beacon :	St.		2	Emai	1			Fax			Same as Client Info	
FAX: 538-898-9193	FAX: 506-822-0068	Project Location:			ton, MA				EQui	8 (1 F	lle)	V	EQu	5 (4 8	ile)	101	
H&A Information		Project #		0201	602-000				Othe								
H&A Client: IQHQ, Ir	10.	(Use Project name as P	Project #)					Regu	latory	Requ	eemer	YS (PY	ogran	n/Cris	eria)	Disposal Site Information	
H&A Address: 465 Med	ford Street, Suite 2200			K.	Block			MA	2017	NPOE8	ROP					Please identify below location of:	
Boston, MA 02129		ALPHAQuote #:						1								applicable disposal facilities.	
H&A Phone: 617.680.	2293	Turn-Around Time		9.30	1		34									Disposal Facility:	
H&A Fax:		Standar	el 🕗	Due Date:				1								□ NU □ NY	
H&A Email: JThibaul	t, TCalms, KBlock	Rush (only if pre approved) # of Days: 5 Day Note: Select State from menu & identify criteria.									Ower:						
These samples have bee	n previously analyzed	by Alpha ANALYSIS									Sample Filtration						
Other project specific n									0	Done							
Samples submitted for a Please specify Metals of	and the second second	scation; please follow app as required by EPA		ethods and	minimum t	detection	levels	24.1 & 624. SIM	25.1 & GGS.	, TPIC 4500,	8, EDB 50, TPH 166	nia (NHZ), indness, ph	Ethanol	PDES RGP	RCP Metal	Lab to do Preservation Lab to do	
ALPHA Lab ID			Collec	tion	Sample	Sampler		S 500	SVOCs 625.	TSS 2540, THC CI 300, TCN	4. PCBs 608, E TPHENOL, TR	x Cr. Hard	6	Total NPDES Metals	APDES ROP M	(Please Specify below)	
(Lab Use Only)	Sa	mple ID	Date	Time	Matrix	Initials	Depth	2	6	3.1	4 5	Fex.		100	4 10	Sample Specific Comments	
05983 -01	Receiving Water_ 2	0220103	2/3	1330	AQ	SRP	-	_	-			×		x	-	1. 1,4-Dioxane by 624.1-SIM 3	
DAUG TVI	Consuming Water A	025000	212	1000	-	314		-	-	-		-	-		-	6. Sub Ethanol	
					_		-	-								7. NPDES RGP Metals	
			_											-	-	includes: Ag. As. Cd, Cr, Tri C	
			_			/				-	-	-		-		Cu, Ni, Pb, Sb, Se, Zn, Fe, Ho	
			_	_				_								8. Field Filtered NPDES RGP	
			_		/			_				-	-			Metals (ON HOLD)	
			+	_	-		-	-	-	_		-	-	+	-		
			_	-										-	-		
			1	-(-								=	-	+	_		
Preservative Code: A = None B = HCI C = H9VO ₃ D = H ₂ SO ₄ E = NaCH	Container Code P = Plastic A = Anther Glass V = Viel G = Glass B = Bacteria Cup	Westboro: Certification I Mansfield: Certification I				rtainer Typ						P		P		Please print clearly, legibly and completely. Samples can not be logged in and turnaround time slock will not start until any ambiguities are resolved Alpha Analytica's services under this Chain of Custody shall be performed in	
F = MeOH	C = Cube	Relinquished	By:	Date/	Time		Bi	celved	Bv		,		Dan	o/Time	0	accordance with terms and conditions within Blanket Service Agreement# 2019	
= NaHSO ₄ U = Other				2/3/2		100	احب ع		_	4	l	2/3		14		22-Kiphia Analytical by and between Hale	
H = Na,SyO ₄ S/E = Zn AoNaOH O = Other	D = 800 Bottle	- BYD Roste					& Atlanta, Inc., its subsidiaries and affiliates and Alpha Analytical.										
Document ID: 20455 Rev 3 (1	(7/2019)	/				1				-/	2						

ANALYTICAL REPORT

Lab Number: L2205987

Client: Haley & Aldrich, Inc.

465 Medford Street, Suite 2200 Charlestown, MA 02129-1400

ATTN: Kyle Block Phone: (617) 886-7440

Project Name: 155 NORTH BEACON STREET

Project Number: 0201602-000

Report Date: 02/11/22

The original project report/data package is held by Alpha Analytical. This report/data package is paginated and should be reproduced only in its entirety. Alpha Analytical holds no responsibility for results and/or data that are not consistent with the original.

Certifications & Approvals: MA (M-MA086), NH NELAP (2064), CT (PH-0574), IL (200077), ME (MA00086), MD (348), NJ (MA935), NY (11148), NC (25700/666), PA (68-03671), RI (LAO00065), TX (T104704476), VT (VT-0935), VA (460195), USDA (Permit #P330-17-00196).

Eight Walkup Drive, Westborough, MA 01581-1019 508-898-9220 (Fax) 508-898-9193 800-624-9220 - www.alphalab.com

Project Name: 155 NORTH BEACON STREET

Project Number: 0201602-000

Lab Number:

L2205987

Report Date:

02/11/22

Alpha Sample ID	Client ID	Matrix	Sample Location	Collection Date/Time	Receive Date
L2205987-01	HA21-B9(OW)_20220203	WATER	BOSTON, MA	02/03/22 12:30	02/03/22

Project Name: 155 NORTH BEACON STREET Lab Number: L2205987

Project Number: 0201602-000 **Report Date:** 02/11/22

MADEP MCP Response Action Analytical Report Certification

This form provides certifications for all samples performed by MCP methods. Please refer to the Sample Results and Container Information sections of this report for specification of MCP methods used for each analysis. The following questions pertain only to MCP Analytical Methods.

An af	firmative response to questions A through F is required for "Presumptive Certainty" status	
A	Were all samples received in a condition consistent with those described on the Chain-of-Custody, properly preserved (including temperature) in the field or laboratory, and prepared/analyzed within method holding times?	YES
В	Were the analytical method(s) and all associated QC requirements specified in the selected CAM protocol(s) followed?	YES
С	Were all required corrective actions and analytical response actions specified in the selected CAM protocol(s) implemented for all identified performance standard non-conformances?	YES
D	Does the laboratory report comply with all the reporting requirements specified in CAM VII A, "Quality Assurance and Quality Control Guidelines for the Acquisition and Reporting of Analytical Data?"	YES
E a.	VPH, EPH, and APH Methods only: Was each method conducted without significant modification(s)? (Refer to the individual method(s) for a list of significant modifications).	YES
E b.	APH and TO-15 Methods only: Was the complete analyte list reported for each method?	N/A
F	Were all applicable CAM protocol QC and performance standard non-conformances identified and evaluated in a laboratory narrative (including all "No" responses to Questions A through E)?	YES

A res	A response to questions G, H and I is required for "Presumptive Certainty" status							
G	Were the reporting limits at or below all CAM reporting limits specified in the selected CAM protocol(s)?	YES						
Н	Were all QC performance standards specified in the CAM protocol(s) achieved?	NO						
I	Were results reported for the complete analyte list specified in the selected CAM protocol(s)?	NO						

For any questions answered "No", please refer to the case narrative section on the following page(s).

Please note that sample matrix information is located in the Sample Results section of this report.

Case Narrative

The samples were received in accordance with the Chain of Custody and no significant deviations were encountered during the preparation or analysis unless otherwise noted. Sample Receipt, Container Information, and the Chain of Custody are located at the back of the report.

Results contained within this report relate only to the samples submitted under this Alpha Lab Number and meet NELAP requirements for all NELAP accredited parameters unless otherwise noted in the following narrative. The data presented in this report is organized by parameter (i.e. VOC, SVOC, etc.). Sample specific Quality Control data (i.e. Surrogate Spike Recovery) is reported at the end of the target analyte list for each individual sample, followed by the Laboratory Batch Quality Control at the end of each parameter. Tentatively Identified Compounds (TICs), if requested, are reported for compounds identified to be present and are not part of the method/program Target Compound List, even if only a subset of the TCL are being reported. If a sample was re-analyzed or re-extracted due to a required quality control corrective action and if both sets of data are reported, the Laboratory ID of the re-analysis or re-extraction is designated with an "R" or "RE", respectively.

When multiple Batch Quality Control elements are reported (e.g. more than one LCS), the associated samples for each element are noted in the grey shaded header line of each data table. Any Laboratory Batch, Sample Specific % recovery or RPD value that is outside the listed Acceptance Criteria is bolded in the report. In reference to questions H (CAM) or 4 (RCP) when "NO" is checked, the performance criteria for CAM and RCP methods allow for some quality control failures to occur and still be within method compliance. In these instances, the specific failure is not narrated but noted in the associated QC Outlier Summary Report, located directly after the Case Narrative. QC information is also incorporated in the Data Usability Assessment table (Format 11) of our Data Merger tool, where it can be reviewed in conjunction with the sample result, associated regulatory criteria and any associated data usability implications.

Soil/sediments, solids and tissues are reported on a dry weight basis unless otherwise noted. Definitions of all data qualifiers and acronyms used in this report are provided in the Glossary located at the back of the report.

HOLD POLICY - For samples submitted on hold, Alpha's policy is to hold samples (with the exception of Air canisters) free of charge for 21 calendar days from the date the project is completed. After 21 calendar days, we will dispose of all samples submitted including those put on hold unless you have contacted your Alpha Project Manager and made arrangements for Alpha to continue to hold the samples. Air canisters will be disposed after 3 business days from the date the project is completed.

Please contact Project Management at 800-624-9220 with any questions.						

Project Name: 155 NORTH BEACON STREET Lab Number: L2205987

Case Narrative (continued)

MCP Related Narratives

Volatile Organics

In reference to question H:

L2205987-01: Initial Calibration did not meet:

Lowest Calibration Standard Minimum Response Factor: 1,4-dioxane (0.0025)

Average Response Factor: 1,4-dioxane

L2205987-01: The associated continuing calibration standard is outside the acceptance criteria for several compounds; however, it is within overall method allowances. Associated results are considered to be biased high if the %D is negative and biased low if the %D is positive. A copy of the continuing calibration standard is included as an addendum to this report.

Semivolatile Organics by SIM

L2205987-01 and WG1603319: The initial calibration utilized a quadratic fit for Pentachlorophenol.

VPH

In reference to question I:

All samples were analyzed for a subset of MCP analytes per client request.

EPH

In reference to question I:

All samples were analyzed for a subset of MCP analytes per client request.

I, the undersigned, attest under the pains and penalties of perjury that, to the best of my knowledge and belief and based upon my personal inquiry of those responsible for providing the information contained in this analytical report, such information is accurate and complete. This certificate of analysis is not complete unless this page accompanies any and all pages of this report.

Custen Halker Cristin Walker

Authorized Signature:

Title: Technical Director/Representative

ALPHA

Date: 02/11/22

QC OUTLIER SUMMARY REPORT

Project Name: 155 NORTH BEACON STREET

Lab Number: L2205987

Project Number: 0201602-000

					Recovery/RPD		Associated	
Method	Client ID (Native ID)	Lab ID	Parameter	QC Type	(%)	(%)	Samples	Assessment
MCP Volatil	e Organics - Westborough Lab							
8260D	Batch QC	WG1602114-3	1,4-Dioxane	LCS	68	70-130	01	potential low bias
8260D	Batch QC	WG1602114-4	Acetone	LCSD	22	20	01	non-directional bias
8260D	Batch QC	WG1602114-4	Acetone	LCSD	150	70-130	01	potential high bias
8260D	Batch QC	WG1602114-4	1,4-Dioxane	LCSD	21	20	01	non-directional bias
MCP Semiv	olatile Organics - Westborough Lab							
8270E	Batch QC	WG1603318-2	3,3'-Dichlorobenzidine	LCS	31	40-140	01	potential low bias
8270E	Batch QC	WG1603318-2	Hexachlorobutadiene	LCS	39	40-140	01	potential low bias
8270E	Batch QC	WG1603318-2	Aniline	LCS	15	40-140	01	potential low bias
8270E	Batch QC	WG1603318-2	4-Chloroaniline	LCS	28	40-140	01	potential low bias
8270E	Batch QC	WG1603318-3	3,3'-Dichlorobenzidine	LCSD	36	40-140	01	potential low bias
8270E	Batch QC	WG1603318-3	Aniline	LCSD	25	40-140	01	potential low bias
8270E	Batch QC	WG1603318-3	Aniline	LCSD	50	20	01	non-directional bias
8270E	Batch QC	WG1603318-3	4-Chloroaniline	LCSD	34	40-140	01	potential low bias

ORGANICS

VOLATILES

L2205987

02/03/22 12:30

Not Specified

02/03/22

Project Name: 155 NORTH BEACON STREET

Project Number: 0201602-000

SAMPLE RESULTS

Report Date:

Lab Number:

Date Collected:

Date Received:

Field Prep:

02/11/22

Lab ID: L2205987-01

Client ID: HA21-B9(OW)_20220203

Sample Location: BOSTON, MA

Sample Depth:

Matrix: Water

Analytical Method: 141,8260D Analytical Date: 02/07/22 05:45

Analyst: MM

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
MCP Volatile Organics - Westboro	ugh Lab					
Methylene chloride	ND		ug/l	2.0		1
1,1-Dichloroethane	ND		ug/l	1.0		1
Chloroform	ND		ug/l	1.0		1
Carbon tetrachloride	ND		ug/l	1.0		1
1,2-Dichloropropane	ND		ug/l	1.0		1
Dibromochloromethane	ND		ug/l	1.0		1
1,1,2-Trichloroethane	ND		ug/l	1.0		1
Tetrachloroethene	ND		ug/l	1.0		1
Chlorobenzene	ND		ug/l	1.0		1
Trichlorofluoromethane	ND		ug/l	2.0		1
1,2-Dichloroethane	ND		ug/l	1.0		1
1,1,1-Trichloroethane	ND		ug/l	1.0		1
Bromodichloromethane	ND		ug/l	1.0		1
trans-1,3-Dichloropropene	ND		ug/l	0.40		1
cis-1,3-Dichloropropene	ND		ug/l	0.40		1
1,3-Dichloropropene, Total	ND		ug/l	0.40		1
1,1-Dichloropropene	ND		ug/l	2.0		1
Bromoform	ND		ug/l	2.0		1
1,1,2,2-Tetrachloroethane	ND		ug/l	1.0		1
Benzene	ND		ug/l	0.50		1
Toluene	ND		ug/l	1.0		1
Ethylbenzene	ND		ug/l	1.0		1
Chloromethane	ND		ug/l	2.0		1
Bromomethane	ND		ug/l	2.0		1
Vinyl chloride	ND		ug/l	1.0		1
Chloroethane	ND		ug/l	2.0		1
1,1-Dichloroethene	ND		ug/l	1.0		1
trans-1,2-Dichloroethene	ND		ug/l	1.0		1

L2205987

02/11/22

Project Name: 155 NORTH BEACON STREET

HA21-B9(OW)_20220203

L2205987-01

BOSTON, MA

Project Number: 0201602-000

SAMPLE RESULTS

Date Collected: 02/03/22 12:30

Lab Number:

Report Date:

Date Received: 02/03/22 Field Prep: Not Specified

Sample Depth:

Sample Location:

Lab ID:

Client ID:

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
MCP Volatile Organics - Westboro	ugh Lab					
Trichloroethene	ND		ug/l	1.0		1
1,2-Dichlorobenzene	ND		ug/l	1.0		1
1,3-Dichlorobenzene	ND		ug/l	1.0		1
1,4-Dichlorobenzene	ND		ug/l	1.0		1
Methyl tert butyl ether	ND		ug/l	2.0		1
p/m-Xylene	ND		ug/l	2.0		1
o-Xylene	ND		ug/l	1.0		1
Xylenes, Total	ND		ug/l	1.0		1
cis-1,2-Dichloroethene	ND		ug/l	1.0		1
1,2-Dichloroethene, Total	ND		ug/l	1.0		1
Dibromomethane	ND		ug/l	2.0		1
1,2,3-Trichloropropane	ND		ug/l	2.0		1
Styrene	ND		ug/l	1.0		1
Dichlorodifluoromethane	ND		ug/l	2.0		1
Acetone	7.5		ug/l	5.0		1
Carbon disulfide	ND		ug/l	2.0		1
Methyl ethyl ketone	ND		ug/l	5.0		1
Methyl isobutyl ketone	ND		ug/l	5.0		1
2-Hexanone	ND		ug/l	5.0		1
Bromochloromethane	ND		ug/l	2.0		1
Tetrahydrofuran	ND		ug/l	2.0		1
2,2-Dichloropropane	ND		ug/l	2.0		1
1,2-Dibromoethane	ND		ug/l	2.0		1
1,3-Dichloropropane	ND		ug/l	2.0		1
1,1,1,2-Tetrachloroethane	ND		ug/l	1.0		1
Bromobenzene	ND		ug/l	2.0		1
n-Butylbenzene	ND		ug/l	2.0		1
sec-Butylbenzene	ND		ug/l	2.0		1
tert-Butylbenzene	ND		ug/l	2.0		1
o-Chlorotoluene	ND		ug/l	2.0		1
p-Chlorotoluene	ND		ug/l	2.0		1
1,2-Dibromo-3-chloropropane	ND		ug/l	2.0		1
Hexachlorobutadiene	ND		ug/l	0.60		1
Isopropylbenzene	ND		ug/l	2.0		1
p-Isopropyltoluene	ND		ug/l	2.0		1

ND

ND

ug/l

ug/l

2.0

2.0

--

1

1

Naphthalene

n-Propylbenzene

Project Name: 155 NORTH BEACON STREET **Lab Number:** L2205987

Project Number: 0201602-000 **Report Date:** 02/11/22

SAMPLE RESULTS

Lab ID: L2205987-01 Date Collected: 02/03/22 12:30

Client ID: HA21-B9(OW)_20220203 Date Received: 02/03/22 Sample Location: BOSTON, MA Field Prep: Not Specified

Sample Depth:

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	
MCP Volatile Organics - Westbord	ough Lab						
1,2,3-Trichlorobenzene	ND		ug/l	2.0		1	
1,2,4-Trichlorobenzene	ND		ug/l	2.0		1	
1,3,5-Trimethylbenzene	ND		ug/l	2.0		1	
1,2,4-Trimethylbenzene	ND		ug/l	2.0		1	
Diethyl ether	ND		ug/l	2.0		1	
Diisopropyl Ether	ND		ug/l	2.0		1	
Ethyl-Tert-Butyl-Ether	ND		ug/l	2.0		1	
Tertiary-Amyl Methyl Ether	ND		ug/l	2.0		1	
1,4-Dioxane	ND		ug/l	250		1	

Surrogate	% Recovery	Acceptance Qualifier Criteria	
1,2-Dichloroethane-d4	98	70-130	
Toluene-d8	96	70-130	
4-Bromofluorobenzene	97	70-130	
Dibromofluoromethane	109	70-130	

Project Name: 155 NORTH BEACON STREET **Lab Number:** L2205987

Project Number: 0201602-000 **Report Date:** 02/11/22

Method Blank Analysis Batch Quality Control

Analytical Method: 141,8260D Analytical Date: 02/07/22 04:52

Analyst: MM

arameter	Result	Qualifier Unit	ts	RL	MDL
ICP Volatile Organics	- Westborough Lab for	sample(s): 01	Batch:	WG160	02114-5
Methylene chloride	ND	ug	/I	2.0	
1,1-Dichloroethane	ND	ug	/I	1.0	
Chloroform	ND	ug	/I	1.0	
Carbon tetrachloride	ND	ug	/I	1.0	
1,2-Dichloropropane	ND	ug	/I	1.0	
Dibromochloromethane	ND	ug	/I	1.0	
1,1,2-Trichloroethane	ND	ug	/I	1.0	
Tetrachloroethene	ND	ug	/I	1.0	
Chlorobenzene	ND	ug	/I	1.0	
Trichlorofluoromethane	ND	ug	/I	2.0	
1,2-Dichloroethane	ND	ug	/I	1.0	
1,1,1-Trichloroethane	ND	ug	/I	1.0	
Bromodichloromethane	ND	ug	/I	1.0	
trans-1,3-Dichloropropene	ND	ug	/I	0.40	
cis-1,3-Dichloropropene	ND	ug	/I	0.40	
1,3-Dichloropropene, Total	l ND	ug	/I	0.40	
1,1-Dichloropropene	ND	ug	/I	2.0	
Bromoform	ND	ug	/I	2.0	
1,1,2,2-Tetrachloroethane	ND	ug	/I	1.0	
Benzene	ND	ug	/I	0.50	
Toluene	ND	ug	/I	1.0	
Ethylbenzene	ND	ug	/I	1.0	
Chloromethane	ND	ug	/I	2.0	
Bromomethane	ND	ug	/I	2.0	
Vinyl chloride	ND	ug	/I	1.0	
Chloroethane	ND	ug	/I	2.0	
1,1-Dichloroethene	ND	ug	/I	1.0	
trans-1,2-Dichloroethene	ND	ug	/I	1.0	
Trichloroethene	ND	ug	/I	1.0	

Project Name: 155 NORTH BEACON STREET **Lab Number:** L2205987

Project Number: 0201602-000 **Report Date:** 02/11/22

Method Blank Analysis Batch Quality Control

Analytical Method: 141,8260D Analytical Date: 02/07/22 04:52

Analyst: MM

arameter	Result	Qualifier Unit	s	RL	MDL
ICP Volatile Organics	- Westborough Lab for	sample(s): 01	Batch:	WG16021	14-5
1,2-Dichlorobenzene	ND	ug	/ I	1.0	
1,3-Dichlorobenzene	ND	ug	/1	1.0	
1,4-Dichlorobenzene	ND	ug	/1	1.0	
Methyl tert butyl ether	ND	ug	/1	2.0	
p/m-Xylene	ND	ug	/1	2.0	
o-Xylene	ND	ug	/1	1.0	
Xylenes, Total	ND	ug	/1	1.0	
cis-1,2-Dichloroethene	ND	ug	/1	1.0	
1,2-Dichloroethene, Total	ND	ug	/1	1.0	
Dibromomethane	ND	ug	/1	2.0	
1,2,3-Trichloropropane	ND	ug	/1	2.0	
Styrene	ND	ug	/1	1.0	
Dichlorodifluoromethane	ND	ug	1	2.0	
Acetone	ND	ug,	/ I	5.0	
Carbon disulfide	ND	ug	/1	2.0	
Methyl ethyl ketone	ND	ug	/1	5.0	
Methyl isobutyl ketone	ND	ug	/ I	5.0	
2-Hexanone	ND	ug	/I	5.0	
Bromochloromethane	ND	ug	/I	2.0	
Tetrahydrofuran	ND	ug	/ I	2.0	
2,2-Dichloropropane	ND	ug	/ I	2.0	
1,2-Dibromoethane	ND	ug	/ I	2.0	
1,3-Dichloropropane	ND	ug	/ I	2.0	
1,1,1,2-Tetrachloroethane	ND	ug	/ I	1.0	
Bromobenzene	ND	ug	/ I	2.0	
n-Butylbenzene	ND	ug	/ I	2.0	
sec-Butylbenzene	ND	ug	/ I	2.0	
tert-Butylbenzene	ND	ug	/1	2.0	
o-Chlorotoluene	ND	ug	/ I	2.0	

L2205987

Project Name: 155 NORTH BEACON STREET Lab Number:

Project Number: 0201602-000 **Report Date:** 02/11/22

Method Blank Analysis Batch Quality Control

Analytical Method: 141,8260D Analytical Date: 02/07/22 04:52

Analyst: MM

Parameter	Result	Qualifier	Unit	s	RL	MDL
MCP Volatile Organics - Westbo	rough Lab for s	sample(s):	01	Batch:	WG16	602114-5
p-Chlorotoluene	ND		ug/	/ I	2.0	
1,2-Dibromo-3-chloropropane	ND		ug/	/ I	2.0	
Hexachlorobutadiene	ND		ug/	/1	0.60	
Isopropylbenzene	ND		ug/	1	2.0	
p-Isopropyltoluene	ND		ug/	1	2.0	
Naphthalene	ND		ug/	/1	2.0	
n-Propylbenzene	ND		ug/	/1	2.0	
1,2,3-Trichlorobenzene	ND		ug/	/1	2.0	
1,2,4-Trichlorobenzene	ND		ug/	/I	2.0	
1,3,5-Trimethylbenzene	ND		ug/	/I	2.0	
1,2,4-Trimethylbenzene	ND		ug/	/ I	2.0	
Diethyl ether	ND		ug/	/ I	2.0	
Diisopropyl Ether	ND		ug/	/ I	2.0	
Ethyl-Tert-Butyl-Ether	ND		ug/	/ I	2.0	
Tertiary-Amyl Methyl Ether	ND		ug	/ I	2.0	
1,4-Dioxane	ND		ug/	/ I	250	

		Acceptance			
Surrogate	%Recovery	Qualifier	Criteria		
1,2-Dichloroethane-d4	98		70-130		
Toluene-d8	95		70-130		
4-Bromofluorobenzene	99		70-130		
Dibromofluoromethane	110		70-130		

Project Name: 155 NORTH BEACON STREET

Project Number: 0201602-000

Lab Number: L2205987

Parameter	LCS %Recovery	Qual	LCSD %Recovery	Qual	%Recovery Limits	RPD	RPD Qual Limits	
MCP Volatile Organics - Westborough Lab	Associated sam	ple(s): 01	Batch: WG160211	14-3 WG1	602114-4			
Methylene chloride	99		92		70-130	7	20	
1,1-Dichloroethane	100		95		70-130	5	20	
Chloroform	96		90		70-130	6	20	
Carbon tetrachloride	99		96		70-130	3	20	
1,2-Dichloropropane	96		93		70-130	3	20	
Dibromochloromethane	82		82		70-130	0	20	
1,1,2-Trichloroethane	83		84		70-130	1	20	
Tetrachloroethene	97		95		70-130	2	20	
Chlorobenzene	88		87		70-130	1	20	
Trichlorofluoromethane	100		98		70-130	2	20	
1,2-Dichloroethane	87		85		70-130	2	20	
1,1,1-Trichloroethane	98		95		70-130	3	20	
Bromodichloromethane	92		87		70-130	6	20	
trans-1,3-Dichloropropene	87		85		70-130	2	20	
cis-1,3-Dichloropropene	94		92		70-130	2	20	
1,1-Dichloropropene	100		98		70-130	2	20	
Bromoform	72		75		70-130	4	20	
1,1,2,2-Tetrachloroethane	76		77		70-130	1	20	
Benzene	100		97		70-130	3	20	
Toluene	90		90		70-130	0	20	
Ethylbenzene	93		89		70-130	4	20	
Chloromethane	100		95		70-130	5	20	
Bromomethane	82		83		70-130	1	20	

Project Name: 155 NORTH BEACON STREET

Project Number: 0201602-000

Lab Number: L2205987

Parameter	LCS %Recovery	Qual	LCSD %Recovery	Qual	%Recovery Limits	RPD	Qual	RPD Limits	
MCP Volatile Organics - Westborough Lab	Associated samp	ole(s): 01	Batch: WG16021	14-3 WG1	1602114-4				
Vinyl chloride	94		90		70-130	4		20	
Chloroethane	94		87		70-130	8		20	
1,1-Dichloroethene	100		96		70-130	4		20	
trans-1,2-Dichloroethene	100		94		70-130	6		20	
Trichloroethene	100		98		70-130	2		20	
1,2-Dichlorobenzene	85		83		70-130	2		20	
1,3-Dichlorobenzene	86		84		70-130	2		20	
1,4-Dichlorobenzene	85		85		70-130	0		20	
Methyl tert butyl ether	89		87		70-130	2		20	
p/m-Xylene	90		85		70-130	6		20	
o-Xylene	90		85		70-130	6		20	
cis-1,2-Dichloroethene	98		94		70-130	4		20	
Dibromomethane	85		85		70-130	0		20	
1,2,3-Trichloropropane	77		74		70-130	4		20	
Styrene	90		85		70-130	6		20	
Dichlorodifluoromethane	83		78		70-130	6		20	
Acetone	120		150	Q	70-130	22	Q	20	
Carbon disulfide	100		100		70-130	0		20	
Methyl ethyl ketone	96		100		70-130	4		20	
Methyl isobutyl ketone	76		76		70-130	0		20	
2-Hexanone	79		85		70-130	7		20	
Bromochloromethane	100		94		70-130	6		20	
Tetrahydrofuran	86		86		70-130	0		20	

Project Name: 155 NORTH BEACON STREET

Project Number: 0201602-000

Lab Number: L2205987

Parameter	LCS %Recovery	Qual	LCSD %Recovery	Qual	%Recovery Limits	RPD	RPD Qual Limits	
MCP Volatile Organics - Westborough Lab	Associated samp	ole(s): 01	Batch: WG160211	4-3 WG1	602114-4			
2,2-Dichloropropane	99		93		70-130	6	20	
1,2-Dibromoethane	82		84		70-130	2	20	
1,3-Dichloropropane	88		88		70-130	0	20	
1,1,1,2-Tetrachloroethane	85		84		70-130	1	20	
Bromobenzene	84		82		70-130	2	20	
n-Butylbenzene	89		87		70-130	2	20	
sec-Butylbenzene	90		88		70-130	2	20	
tert-Butylbenzene	89		87		70-130	2	20	
o-Chlorotoluene	86		83		70-130	4	20	
p-Chlorotoluene	85		83		70-130	2	20	
1,2-Dibromo-3-chloropropane	78		80		70-130	3	20	
Hexachlorobutadiene	110		110		70-130	0	20	
Isopropylbenzene	88		85		70-130	3	20	
p-Isopropyltoluene	90		89		70-130	1	20	
Naphthalene	85		84		70-130	1	20	
n-Propylbenzene	88		86		70-130	2	20	
1,2,3-Trichlorobenzene	93		92		70-130	1	20	
1,2,4-Trichlorobenzene	94		92		70-130	2	20	
1,3,5-Trimethylbenzene	85		83		70-130	2	20	
1,2,4-Trimethylbenzene	84		82		70-130	2	20	
Diethyl ether	92		90		70-130	2	20	
Diisopropyl Ether	93		91		70-130	2	20	
Ethyl-Tert-Butyl-Ether	86		86		70-130	0	20	

Project Name: 155 NORTH BEACON STREET

Project Number: 0201602-000

Lab Number:

L2205987

Report Date:

02/11/22

Parameter	LCS %Recovery	Qual	LCSD %Recovery	Qual	%Recovery Limits	RPD	Qual	RPD Limits	
MCP Volatile Organics - Westborough Lab	o Associated samp	le(s): 01 l	Batch: WG16021	14-3 WG160	02114-4				
Tertiary-Amyl Methyl Ether	84		83		70-130	1		20	
1,4-Dioxane	68	Q	84		70-130	21	Q	20	

Surrogate	LCS %Recovery Qual	LCSD %Recovery Qual	Acceptance Criteria
1,2-Dichloroethane-d4	91	89	70-130
Toluene-d8	97	96	70-130
4-Bromofluorobenzene	98	95	70-130
Dibromofluoromethane	102	98	70-130

SEMIVOLATILES

L2205987

02/11/22

Project Name: 155 NORTH BEACON STREET

L2205987-01

HA21-B9(OW)_20220203

Project Number: 0201602-000

SAMPLE RESULTS

Date Collected: 02/03/22 12:30

Date Received: 02/03/22
Field Prep: Not Specified

Sample Location: BOSTON, MA Field Pr

Sample Depth:

Lab ID:

Client ID:

Matrix: Water
Analytical Method: 141,8270E
Analytical Date: 02/11/22 04:04

Analyst: CMM

Ex	traction I	Method:	EPA 3510C
Ex	traction I	Date:	02/10/22 01:06

Lab Number:

Report Date:

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
MCP Semivolatile Organics - Westbo	rough Lab					
1,2,4-Trichlorobenzene	ND		ug/l	5.0		1
Bis(2-chloroethyl)ether	ND		ug/l	2.0		1
1,2-Dichlorobenzene	ND		ug/l	2.0		1
1,3-Dichlorobenzene	ND		ug/l	2.0		1
1,4-Dichlorobenzene	ND		ug/l	2.0		1
3,3'-Dichlorobenzidine	ND		ug/l	5.0		1
2,4-Dinitrotoluene	ND		ug/l	5.0		1
2,6-Dinitrotoluene	ND		ug/l	5.0		1
Azobenzene	ND		ug/l	2.0		1
4-Bromophenyl phenyl ether	ND		ug/l	2.0		1
Bis(2-chloroisopropyl)ether	ND		ug/l	2.0		1
Bis(2-chloroethoxy)methane	ND		ug/l	5.0		1
Isophorone	ND		ug/l	5.0		1
Nitrobenzene	ND		ug/l	2.0		1
Bis(2-ethylhexyl)phthalate	ND		ug/l	3.0		1
Butyl benzyl phthalate	ND		ug/l	5.0		1
Di-n-butylphthalate	ND		ug/l	5.0		1
Di-n-octylphthalate	ND		ug/l	5.0		1
Diethyl phthalate	ND		ug/l	5.0		1
Dimethyl phthalate	ND		ug/l	5.0		1
Biphenyl	ND		ug/l	0.73		1
Aniline	ND		ug/l	2.0		1
4-Chloroaniline	ND		ug/l	5.0		1
Dibenzofuran	ND		ug/l	2.0		1
Acetophenone	ND		ug/l	5.0		1
2,4,6-Trichlorophenol	ND		ug/l	5.0		1
2-Chlorophenol	ND		ug/l	2.0		1
2,4-Dichlorophenol	ND		ug/l	5.0		1

Project Name: 155 NORTH BEACON STREET **Lab Number:** L2205987

Project Number: 0201602-000 **Report Date:** 02/11/22

SAMPLE RESULTS

Lab ID: L2205987-01 Date Collected: 02/03/22 12:30

Client ID: HA21-B9(OW)_20220203 Date Received: 02/03/22 Sample Location: BOSTON, MA Field Prep: Not Specified

Sample Depth:

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	
MCP Semivolatile Organics - Westbo	rough Lab						
2,4-Dimethylphenol	ND		ug/l	5.0		1	
2-Nitrophenol	ND		ug/l	10		1	
4-Nitrophenol	ND		ug/l	10		1	
2,4-Dinitrophenol	ND		ug/l	20		1	
Phenol	ND		ug/l	5.0		1	
2-Methylphenol	ND		ug/l	5.0		1	
3-Methylphenol/4-Methylphenol	ND		ug/l	5.0		1	
2,4,5-Trichlorophenol	ND		ug/l	5.0		1	

Surrogate	% Recovery	Acceptance Qualifier Criteria
2-Fluorophenol	53	15-110
Phenol-d6	38	15-110
Nitrobenzene-d5	64	30-130
2-Fluorobiphenyl	43	30-130
2,4,6-Tribromophenol	50	15-110
4-Terphenyl-d14	48	30-130

Project Name: Lab Number: 155 NORTH BEACON STREET L2205987

Project Number: Report Date: 0201602-000 02/11/22

SAMPLE RESULTS

02/11/22 12:04

Lab ID: L2205987-01 Date Collected: 02/03/22 12:30

Date Received: Client ID: HA21-B9(OW)_20220203 02/03/22 Sample Location: BOSTON, MA Field Prep: Not Specified

Sample Depth:

Extraction Method: EPA 3510C Matrix: Water

Extraction Date: 02/10/22 01:09 Analytical Method: 141,8270E-SIM Analytical Date:

Analyst: DV

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
MCP Semivolatile Organics by SIM - We	estborough Lab					
Acenaphthene	ND		ug/l	0.10		1
2-Chloronaphthalene	ND		ug/l	0.20		1
Fluoranthene	ND		ug/l	0.10		1
Hexachlorobutadiene	ND		ug/l	0.50		1
Naphthalene	ND		ug/l	0.10		1
Benzo(a)anthracene	ND		ug/l	0.10		1
Benzo(a)pyrene	ND		ug/l	0.10		1
Benzo(b)fluoranthene	ND		ug/l	0.10		1
Benzo(k)fluoranthene	ND		ug/l	0.10		1
Chrysene	ND		ug/l	0.10		1
Acenaphthylene	ND		ug/l	0.10		1
Anthracene	ND		ug/l	0.10		1
Benzo(ghi)perylene	ND		ug/l	0.10		1
Fluorene	ND		ug/l	0.10		1
Phenanthrene	ND		ug/l	0.10		1
Dibenzo(a,h)anthracene	ND		ug/l	0.10		1
Indeno(1,2,3-cd)pyrene	ND		ug/l	0.10		1
Pyrene	ND		ug/l	0.10		1
2-Methylnaphthalene	ND		ug/l	0.10		1
Pentachlorophenol	ND		ug/l	0.80		1
Hexachlorobenzene	ND		ug/l	0.80		1
Hexachloroethane	ND		ug/l	0.80		1

Project Name: Lab Number: 155 NORTH BEACON STREET L2205987

Project Number: 0201602-000 **Report Date:** 02/11/22

SAMPLE RESULTS

Lab ID: L2205987-01 Date Collected: 02/03/22 12:30

Date Received: Client ID: HA21-B9(OW)_20220203 02/03/22 Sample Location: Field Prep: BOSTON, MA Not Specified

Sample Depth:

Result Qualifier Units RL MDL **Dilution Factor** Parameter

MCP Semivolatile Organics by SIM - Westborough Lab

Surrogate	% Recovery	Acceptance Qualifier Criteria
2-Fluorophenol	49	15-110
Phenol-d6	40	15-110
Nitrobenzene-d5	61	30-130
2-Fluorobiphenyl	60	30-130
2,4,6-Tribromophenol	61	15-110
4-Terphenyl-d14	63	30-130

L2205987

Project Name: 155 NORTH BEACON STREET Lab Number:

Project Number: 0201602-000 **Report Date:** 02/11/22

Method Blank Analysis Batch Quality Control

Analytical Method: 141,8270E Analytical Date: 02/10/22 22:07

Analyst: CMM

Extraction Method: EPA 3510C Extraction Date: 02/10/22 01:06

arameter	Result	Qualifier	Units	;	RL	MDL
CP Semivolatile Organics -	· Westborough Lab	for sample	e(s):	01	Batch:	WG1603318-1
Acenaphthene	ND		ug/l		2.0	
1,2,4-Trichlorobenzene	ND		ug/l		5.0	
Hexachlorobenzene	ND		ug/l		2.0	
Bis(2-chloroethyl)ether	ND		ug/l		2.0	
2-Chloronaphthalene	ND		ug/l		2.0	
1,2-Dichlorobenzene	ND		ug/l		2.0	
1,3-Dichlorobenzene	ND		ug/l		2.0	
1,4-Dichlorobenzene	ND		ug/l		2.0	
3,3'-Dichlorobenzidine	ND		ug/l		5.0	
2,4-Dinitrotoluene	ND		ug/l		5.0	
2,6-Dinitrotoluene	ND		ug/l		5.0	
Azobenzene	ND		ug/l		2.0	
Fluoranthene	ND		ug/l		2.0	
4-Bromophenyl phenyl ether	ND		ug/l		2.0	
Bis(2-chloroisopropyl)ether	ND		ug/l		2.0	
Bis(2-chloroethoxy)methane	ND		ug/l		5.0	
Hexachlorobutadiene	ND		ug/l		2.0	
Hexachloroethane	ND		ug/l		2.0	
Isophorone	ND		ug/l		5.0	
Naphthalene	ND		ug/l		2.0	
Nitrobenzene	ND		ug/l		2.0	
Bis(2-ethylhexyl)phthalate	ND		ug/l		3.0	
Butyl benzyl phthalate	ND		ug/l		5.0	
Di-n-butylphthalate	ND		ug/l		5.0	
Di-n-octylphthalate	ND		ug/l		5.0	
Diethyl phthalate	ND		ug/l		5.0	
Dimethyl phthalate	ND		ug/l		5.0	
Benzo(a)anthracene	ND		ug/l		2.0	
Benzo(a)pyrene	ND		ug/l		2.0	

L2205987

Lab Number:

Project Name: 155 NORTH BEACON STREET

Project Number: 0201602-000 **Report Date:** 02/11/22

Method Blank Analysis
Batch Quality Control

Analytical Method: 141,8270E Extraction Method: EPA 3510C
Analytical Date: 02/10/22 22:07 Extraction Date: 02/10/22 01:06

Analyst: CMM

arameter	Result	Qualifier Unit	s RL	MDL
ICP Semivolatile Organics - W	estborough Lab	for sample(s):	01 Batch:	WG1603318-1
Benzo(b)fluoranthene	ND	ug	/I 2.0	
Benzo(k)fluoranthene	ND	ug	/I 2.0	
Chrysene	ND	ug	/I 2.0	
Acenaphthylene	ND	ug	/I 2.0	
Anthracene	ND	ug	/I 2.0	
Benzo(ghi)perylene	ND	ug	/I 2.0	
Fluorene	ND	ug	/I 2.0	
Phenanthrene	ND	ug	/I 2.0	
Dibenzo(a,h)anthracene	ND	ug	/I 2.0	
Indeno(1,2,3-cd)pyrene	ND	ug	/I 2.0	
Pyrene	ND	ug	/I 2.0	
Biphenyl	ND	ug	/I 0.73	3
Aniline	ND	ug	/I 2.0	
4-Chloroaniline	ND	ug	/I 5.0	
Dibenzofuran	ND	ug	/l 2.0	
2-Methylnaphthalene	ND	ug	/l 2.0	
Acetophenone	ND	ug	/I 5.0	
2,4,6-Trichlorophenol	ND	ug	/I 5.0	
2-Chlorophenol	ND	ug	/I 2.0	
2,4-Dichlorophenol	ND	ug	/I 5.0	
2,4-Dimethylphenol	ND	ug	/I 5.0	
2-Nitrophenol	ND	ug	/I 10	
4-Nitrophenol	ND	ug	/I 10	
2,4-Dinitrophenol	ND	ug	/I 20	
Pentachlorophenol	ND	ug	/I 10	
Phenol	ND	ug	/I 5.0	
2-Methylphenol	ND	ug	/I 5.0	
3-Methylphenol/4-Methylphenol	ND	ug	/I 5.0	
2,4,5-Trichlorophenol	ND	ug	/I 5.0	

Project Name: 155 NORTH BEACON STREET Lab Number: L2205987

Project Number: 0201602-000 **Report Date:** 02/11/22

Method Blank Analysis Batch Quality Control

Analytical Method: 141,8270E Extraction Method: EPA 3510C
Analytical Date: 02/10/22 22:07 Extraction Date: 02/10/22 01:06

Analyst: CMM

Parameter Result Qualifier Units RL MDL

MCP Semivolatile Organics - Westborough Lab for sample(s): 01 Batch: WG1603318-1

		Acceptance
Surrogate	%Recovery 0	Qualifier Criteria
2-Fluorophenol	47	15-110
Phenol-d6	33	15-110
Nitrobenzene-d5	54	30-130
2-Fluorobiphenyl	43	30-130
2,4,6-Tribromophenol	34	15-110
4-Terphenyl-d14	46	30-130

L2205987

Project Name: 155 NORTH BEACON STREET Lab Number:

Project Number: 0201602-000 **Report Date:** 02/11/22

Method Blank Analysis Batch Quality Control

Analytical Method: 141,8270E-SIM Extraction Method: EPA 3510C
Analytical Date: 02/11/22 11:45 Extraction Date: 02/10/22 01:09

Analyst: DV

Parameter	Result	Qualifier	Units	RL	MDL
MCP Semivolatile Organics by SIM	l - Westboro	ugh Lab fo	r sample(s):	01 Ba	atch: WG1603319-1
Acenaphthene	ND		ug/l	0.10	
2-Chloronaphthalene	ND		ug/l	0.20	
Fluoranthene	ND		ug/l	0.10	
Hexachlorobutadiene	ND		ug/l	0.50	
Naphthalene	ND		ug/l	0.10	
Benzo(a)anthracene	ND		ug/l	0.10	
Benzo(a)pyrene	ND		ug/l	0.10	
Benzo(b)fluoranthene	ND		ug/l	0.10	
Benzo(k)fluoranthene	ND		ug/l	0.10	
Chrysene	ND		ug/l	0.10	
Acenaphthylene	ND		ug/l	0.10	
Anthracene	ND		ug/l	0.10	
Benzo(ghi)perylene	ND		ug/l	0.10	
Fluorene	ND		ug/l	0.10	
Phenanthrene	ND		ug/l	0.10	
Dibenzo(a,h)anthracene	ND		ug/l	0.10	
Indeno(1,2,3-cd)pyrene	ND		ug/l	0.10	
Pyrene	ND		ug/l	0.10	
2-Methylnaphthalene	ND		ug/l	0.10	
Pentachlorophenol	ND		ug/l	0.80	
Hexachlorobenzene	ND		ug/l	0.80	
Hexachloroethane	ND		ug/l	0.80	

Project Name: 155 NORTH BEACON STREET **Lab Number:** L2205987

Project Number: 0201602-000 **Report Date:** 02/11/22

Method Blank Analysis Batch Quality Control

Analytical Method: 141,8270E-SIM Extraction Method: EPA 3510C
Analytical Date: 02/11/22 11:45 Extraction Date: 02/10/22 01:09

Analyst: DV

Parameter Result Qualifier Units RL MDL

MCP Semivolatile Organics by SIM - Westborough Lab for sample(s): 01 Batch: WG1603319-1

Surrogate	%Recovery Qualifie	Acceptance er Criteria
2-Fluorophenol	36	15-110
Phenol-d6	33	15-110
Nitrobenzene-d5	54	30-130
2-Fluorobiphenyl	53	30-130
2,4,6-Tribromophenol	37	15-110
4-Terphenyl-d14	53	30-130

Project Name: 155 NORTH BEACON STREET

Project Number: 0201602-000

Lab Number: L2205987

Parameter	LCS %Recovery	Qual	LCSD %Recovery	Qual	%Recovery Limits	RPD	RPD Qual Limits	
MCP Semivolatile Organics - Westborough L	_ab Associated	sample(s): 01	Batch: WG1	603318-2	WG1603318-3			
Acenaphthene	54		55		40-140	2	20	
1,2,4-Trichlorobenzene	46		46		40-140	0	20	
Hexachlorobenzene	48		51		40-140	6	20	
Bis(2-chloroethyl)ether	49		51		40-140	4	20	
2-Chloronaphthalene	46		46		40-140	0	20	
1,2-Dichlorobenzene	47		50		40-140	6	20	
1,3-Dichlorobenzene	46		49		40-140	6	20	
1,4-Dichlorobenzene	48		51		40-140	6	20	
3,3'-Dichlorobenzidine	31	Q	36	Q	40-140	15	20	
2,4-Dinitrotoluene	52		57		40-140	9	20	
2,6-Dinitrotoluene	47		52		40-140	10	20	
Azobenzene	54		56		40-140	4	20	
Fluoranthene	48		52		40-140	8	20	
4-Bromophenyl phenyl ether	46		49		40-140	6	20	
Bis(2-chloroisopropyl)ether	51		51		40-140	0	20	
Bis(2-chloroethoxy)methane	54		54		40-140	0	20	
Hexachlorobutadiene	39	Q	40		40-140	3	20	
Hexachloroethane	52		56		40-140	7	20	
Isophorone	47		50		40-140	6	20	
Naphthalene	48		48		40-140	0	20	
Nitrobenzene	76		82		40-140	8	20	
Bis(2-ethylhexyl)phthalate	57		63		40-140	10	20	
Butyl benzyl phthalate	54		55		40-140	2	20	

Project Name: 155 NORTH BEACON STREET

Project Number: 0201602-000

Lab Number: L2205987

Parameter	LCS %Recovery	Qual	LCSD %Recovery	Qual	%Recovery Limits	RPD	Qual	RPD Limits	
MCP Semivolatile Organics - Westborough L	ab Associated	sample(s): 01	Batch: WG16	603318-2	WG1603318-3				
Di-n-butylphthalate	48		52		40-140	8		20	
Di-n-octylphthalate	54		56		40-140	4		20	
Diethyl phthalate	52		57		40-140	9		20	
Dimethyl phthalate	44		48		40-140	9		20	
Benzo(a)anthracene	52		58		40-140	11		20	
Benzo(a)pyrene	55		54		40-140	2		20	
Benzo(b)fluoranthene	63		65		40-140	3		20	
Benzo(k)fluoranthene	58		56		40-140	4		20	
Chrysene	53		58		40-140	9		20	
Acenaphthylene	43		44		40-140	2		20	
Anthracene	50		54		40-140	8		20	
Benzo(ghi)perylene	58		67		40-140	14		20	
Fluorene	52		53		40-140	2		20	
Phenanthrene	50		55		40-140	10		20	
Dibenzo(a,h)anthracene	54		64		40-140	17		20	
Indeno(1,2,3-cd)pyrene	51		58		40-140	13		20	
Pyrene	48		50		40-140	4		20	
Biphenyl	46		45		40-140	2		20	
Aniline	15	Q	25	Q	40-140	50	Q	20	
4-Chloroaniline	28	Q	34	Q	40-140	19		20	
Dibenzofuran	51		52		40-140	2		20	
2-Methylnaphthalene	46		45		40-140	2		20	
Acetophenone	51		52		40-140	2		20	

Project Name: 155 NORTH BEACON STREET

Project Number: 0201602-000

Lab Number: L2205987

arameter	LCS %Recovery	Qual	LCSE %Recov		%Recovery Limits	RPD	Qual	RPD Limits	
ICP Semivolatile Organics - Westborough La	ab Associated	sample(s): 0	1 Batch:	WG1603318-2	WG1603318-3				
2,4,6-Trichlorophenol	42		45		30-130	7		20	
2-Chlorophenol	52		54		30-130	4		20	
2,4-Dichlorophenol	51		53		30-130	4		20	
2,4-Dimethylphenol	37		43		30-130	15		20	
2-Nitrophenol	58		59		30-130	2		20	
4-Nitrophenol	62		68		30-130	9		20	
2,4-Dinitrophenol	68		72		30-130	6		20	
Pentachlorophenol	38		42		30-130	10		20	
Phenol	41		44		30-130	7		20	
2-Methylphenol	49		50		30-130	2		20	
3-Methylphenol/4-Methylphenol	51		54		30-130	6		20	
2,4,5-Trichlorophenol	45		48		30-130	6		20	

	LCS	LCSD	Acceptance
Surrogate	%Recovery Qual	%Recovery Qual	Criteria
2-Fluorophenol	48	51	15-110
Phenol-d6	40	44	15-110
Nitrobenzene-d5	54	58	30-130
2-Fluorobiphenyl	42	42	30-130
2,4,6-Tribromophenol	51	53	15-110
4-Terphenyl-d14	45	47	30-130

Project Name: 155 NORTH BEACON STREET

Project Number: 0201602-000

Lab Number: L2205987

Parameter	LCS %Recovery	LCSD Qual %Recovery	%Recovery Qual Limits	RPD	RPD Qual Limits
MCP Semivolatile Organics by SIM - Westbor	rough Lab Asso	ociated sample(s): 01 Batc	h: WG1603319-2 WG160331	9-3	
Acenaphthene	57	56	40-140	2	20
2-Chloronaphthalene	58	57	40-140	2	20
Fluoranthene	61	62	40-140	2	20
Hexachlorobutadiene	53	51	40-140	4	20
Naphthalene	55	54	40-140	2	20
Benzo(a)anthracene	62	62	40-140	0	20
Benzo(a)pyrene	56	57	40-140	2	20
Benzo(b)fluoranthene	64	61	40-140	5	20
Benzo(k)fluoranthene	57	63	40-140	10	20
Chrysene	58	59	40-140	2	20
Acenaphthylene	58	57	40-140	2	20
Anthracene	59	61	40-140	3	20
Benzo(ghi)perylene	66	68	40-140	3	20
Fluorene	60	60	40-140	0	20
Phenanthrene	57	58	40-140	2	20
Dibenzo(a,h)anthracene	69	72	40-140	4	20
Indeno(1,2,3-cd)pyrene	64	66	40-140	3	20
Pyrene	61	62	40-140	2	20
2-Methylnaphthalene	57	56	40-140	2	20
Pentachlorophenol	66	70	30-130	6	20
Hexachlorobenzene	58	58	40-140	0	20
Hexachloroethane	50	47	40-140	6	20

Project Name: 155 NORTH BEACON STREET

Lab Number:

L2205987

Project Number: 0201602-000

Report Date:

02/11/22

LCS LCSD %Recovery RPD
Parameter %Recovery Qual %Recovery Qual Limits RPD Qual Limits

MCP Semivolatile Organics by SIM - Westborough Lab Associated sample(s): 01 Batch: WG1603319-2 WG1603319-3

Surrogate	LCS %Recovery Qual	LCSD %Recovery Qual	Acceptance Criteria
2-Fluorophenol	48	47	15-110
Phenol-d6	41	42	15-110
Nitrobenzene-d5	59	57	30-130
2-Fluorobiphenyl	57	57	30-130
2,4,6-Tribromophenol	62	64	15-110
4-Terphenyl-d14	64	66	30-130

PETROLEUM HYDROCARBONS

Project Name: Lab Number: 155 NORTH BEACON STREET L2205987

Project Number: 0201602-000 **Report Date:** 02/11/22

SAMPLE RESULTS

Lab ID: L2205987-01 Date Collected: 02/03/22 12:30

Client ID: HA21-B9(OW)_20220203 Date Received: 02/03/22 Field Prep: Not Specified

Sample Location: BOSTON, MA

Sample Depth:

Matrix: Water

Analytical Method: 131, VPH-18-2.1 Analytical Date: 02/06/22 01:55

Analyst: **KJD**

Restek, RTX-502.2, Trap: EST, Carbopack B/Carboxen 1000&1001 Analytical Column:

105m, 0.53ID, 3um

Quality Control Information

Condition of sample received: Satisfactory

Laboratory Provided Preserved Aqueous Preservative:

Container Received on Ice

Sample Temperature upon receipt:

ıalifier Units	RL	MDI	
		MDL	Dilution Factor
ug/l	100		1
ua/l	100		1
	ug/l ug/l	ug/l 100 ug/l 100 ug/l 100	ug/l 100 ug/l 100 ug/l 100

Surrogate	% Recovery	Qualifier	Acceptance Criteria	
2,5-Dibromotoluene-PID	81		70-130	
2,5-Dibromotoluene-FID	84		70-130	

Project Name: 155 NORTH BEACON STREET **Lab Number:** L2205987

Project Number: 0201602-000 **Report Date:** 02/11/22

SAMPLE RESULTS

Lab ID: L2205987-01 Date Collected: 02/03/22 12:30

Sample Location: BOSTON, MA Field Prep: Not Specified

Sample Depth:

Matrix: Water Extraction Method: EPA 3510C

Analytical Method: 135,EPH-19-2.1 Extraction Date: 02/08/22 17:26
Analytical Date: 02/09/22 11:34 Cleanup Method1: EPH-19-2.1

Analyst: MEO Cleanup Date1: 02/09/22

Quality Control Information

Condition of sample received: Satisfactory

Aqueous Preservative: Laboratory Provided Preserved

Sample Temperature upon receipt: Container Received on Ice

Sample Extraction method: Extracted Per the Method

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor			
Extractable Petroleum Hydrocarbons - Westborough Lab									
C9-C18 Aliphatics	ND		ug/l	100		1			
C19-C36 Aliphatics	ND		ug/l	100		1			
C11-C22 Aromatics	ND		ug/l	100		1			
C11-C22 Aromatics, Adjusted	ND		ug/l	100		1			

Surrogate	% Recovery	Qualifier	Acceptance Criteria	
Chloro-Octadecane	69		40-140	
o-Terphenyl	57		40-140	
2-Fluorobiphenyl	72		40-140	
2-Bromonaphthalene	72		40-140	

Project Name: 155 NORTH BEACON STREET **Lab Number:** L2205987

Project Number: 0201602-000 **Report Date:** 02/11/22

Method Blank Analysis Batch Quality Control

Analytical Method: 131,VPH-18-2.1 Analytical Date: 02/05/22 18:57

Analyst: KJD

Result	Qualifier	Units		RL	MDL	
- Westborough	Lab for s	sample(s):	01	Batch:	WG1602563-4	
ND		ug/l		100		
ND		ug/l		100		
ND		ug/l		100		
ND		ug/l		100		
ND		ug/l		100		
	- Westborough ND ND ND ND ND	- Westborough Lab for s ND ND ND ND ND	- Westborough Lab for sample(s): ND ug/l ND ug/l ND ug/l ND ug/l ND ug/l	- Westborough Lab for sample(s): 01 ND ug/l ND ug/l ND ug/l ND ug/l ND ug/l	- Westborough Lab for sample(s): 01 Batch: ND ug/l 100 ND ug/l 100 ND ug/l 100 ND ug/l 100 ND ug/l 100	- Westborough Lab for sample(s): 01 Batch: WG1602563-4 ND ug/l 100 ND ug/l 100 ND ug/l 100 ND ug/l 100

	Acceptance					
Surrogate	%Recovery Qualif	ier Criteria				
2,5-Dibromotoluene-PID	84	70-130				
2,5-Dibromotoluene-FID	86	70-130				
2,5 DIDIOINGUIGHE FID	80	70-100				

L2205987

Lab Number:

Project Name: 155 NORTH BEACON STREET

Project Number: 0201602-000 **Report Date:** 02/11/22

Method Blank Analysis Batch Quality Control

Analytical Method: 135,EPH-19-2.1 Analytical Date: 02/09/22 07:26

Analyst: SC

Extraction Method: EPA 3510C
Extraction Date: 02/08/22 16:17
Cleanup Method: EPH-19-2.1
Cleanup Date: 02/09/22

Parameter	Result	Qualifier	Units	RL	MDL
Extractable Petroleum Hydrocarbons	s - Westbor	ough Lab t	for sample(s):	01	Batch: WG1602743-1
C9-C18 Aliphatics	ND		ug/l	100	
C19-C36 Aliphatics	ND		ug/l	100	
C11-C22 Aromatics	ND		ug/l	100	
C11-C22 Aromatics, Adjusted	ND		ug/l	100	

		Acceptance	
Surrogate Chloro-Octadecane o-Terphenyl 2-Fluorobiphenyl	%Recovery Qualifie	r Criteria	
Chlore Ostadosono	66	40.440	
Chioro-Octadecane	66	40-140	
o-Terphenyl	55	40-140	
2-Fluorobiphenyl	76	40-140	
2-Bromonaphthalene	76	40-140	

Project Name: 155 NORTH BEACON STREET

Project Number: 0201602-000

Lab Number: L2205987

Parameter	LCS %Recovery	Qual	LCSD %Recovery	Qual	%Recovery Limits	RPD	Qual	RPD Limits
Volatile Petroleum Hydrocarbons - Westboro	ough Lab Assoc	iated sample(s)	: 01 Batch:	WG1602563-2	2 WG1602563-3			
C5-C8 Aliphatics	105		104		70-130	1		25
C9-C12 Aliphatics	111		109		70-130	2		25
C9-C10 Aromatics	100		99		70-130	1		25
Benzene	103		102		70-130	1		25
Toluene	103		102		70-130	1		25
Ethylbenzene	104		103		70-130	1		25
p/m-Xylene	104		102		70-130	2		25
o-Xylene	104		103		70-130	1		25
Methyl tert butyl ether	106		106		70-130	0		25
Naphthalene	99		102		70-130	3		25
1,2,4-Trimethylbenzene	100		99		70-130	1		25
Pentane	98		99		70-130	1		25
2-Methylpentane	107		106		70-130	1		25
2,2,4-Trimethylpentane	109		108		70-130	1		25
n-Nonane	112		111		30-130	1		25
n-Decane	110		108		70-130	2		25
n-Butylcyclohexane	111		109		70-130	2		25

Surrogate	LCS %Recovery Qua	LCSD al %Recovery Qua	Acceptance Criteria
2,5-Dibromotoluene-PID	100	99	70-130
2,5-Dibromotoluene-FID	103	101	70-130

Project Name: 155 NORTH BEACON STREET

Project Number: 0201602-000

Lab Number: L2205987

Parameter	LCS %Recovery	LCS Qual %Reco		%Recovery Limits	RPD	PD mits
Extractable Petroleum Hydrocarbons - Wes	tborough Lab As	ssociated sample(s): 01	1 Batch: WG16	02743-2 WG1602	743-3	
C9-C18 Aliphatics	47	46	6	40-140	2	25
C19-C36 Aliphatics	74	77	7	40-140	4	25
C11-C22 Aromatics	67	69	9	40-140	3	25
Naphthalene	50	46	6	40-140	8	25
2-Methylnaphthalene	56	55	5	40-140	2	25
Acenaphthylene	59	61	1	40-140	3	25
Acenaphthene	64	66	6	40-140	3	25
Fluorene	62	64	4	40-140	3	25
Phenanthrene	62	67	7	40-140	8	25
Anthracene	60	64	4	40-140	6	25
Fluoranthene	64	69	9	40-140	8	25
Pyrene	65	69	9	40-140	6	25
Benzo(a)anthracene	65	70)	40-140	7	25
Chrysene	66	7′	1	40-140	7	25
Benzo(b)fluoranthene	64	69	9	40-140	8	25
Benzo(k)fluoranthene	63	68	3	40-140	8	25
Benzo(a)pyrene	64	68	3	40-140	6	25
Indeno(1,2,3-cd)Pyrene	63	67	7	40-140	6	25
Dibenzo(a,h)anthracene	67	72	2	40-140	7	25
Benzo(ghi)perylene	64	68	3	40-140	6	25

Project Name: 155 NORTH BEACON STREET

Lab Number:

L2205987

Project Number: 0201602-000

Report Date:

02/11/22

	LCS		LCSD		%Recovery			RPD
Parameter	%Recovery	Qual	%Recovery	Qual	Limits	RPD	Qual	Limits

Extractable Petroleum Hydrocarbons - Westborough Lab Associated sample(s): 01 Batch: WG1602743-2 WG1602743-3

Surrogate	LCS %Recovery Qua	LCSD I %Recovery Qua	Acceptance Criteria
Chloro-Octadecane	68	65	40-140
o-Terphenyl	57	60	40-140
2-Fluorobiphenyl	75	77	40-140
2-Bromonaphthalene	74	76	40-140
% Naphthalene Breakthrough	0	0	
% 2-Methylnaphthalene Breakthrough	0	0	

Project Name: 155 NORTH BEACON STREET

Lab Number: L2205987

Report Date: 02/11/22

Sample Receipt and Container Information

YES Were project specific reporting limits specified?

Cooler Information

Custody Seal Cooler

D Absent

Project Number: 0201602-000

Container Info	rmation		Initial	Final	Temp			Frozen	
Container ID	Container Type	Cooler	рH	pН	deg C	Pres	Seal	Date/Time	Analysis(*)
L2205987-01A	Vial HCl preserved	D	NA		3.9	Υ	Absent		MCP-8260-21(14)
L2205987-01B	Vial HCI preserved	D	NA		3.9	Υ	Absent		MCP-8260-21(14)
L2205987-01C	Vial HCI preserved	D	NA		3.9	Υ	Absent		MCP-8260-21(14)
L2205987-01D	Vial HCI preserved	D	NA		3.9	Υ	Absent		VPH-18(14)
L2205987-01E	Vial HCI preserved	D	NA		3.9	Υ	Absent		VPH-18(14)
L2205987-01F	Vial HCI preserved	D	NA		3.9	Υ	Absent		VPH-18(14)
L2205987-01G	Amber 250ml unpreserved	D	7	7	3.9	Υ	Absent		MCP-8270SIM-21-LVI(7),MCP-8270-21-LVI(7)
L2205987-01H	Amber 250ml unpreserved	D	7	7	3.9	Υ	Absent		MCP-8270SIM-21-LVI(7),MCP-8270-21-LVI(7)
L2205987-01J	Amber 1000ml HCl preserved	D	<2	<2	3.9	Υ	Absent		EPH-20(14)
L2205987-01K	Amber 1000ml HCI preserved	D	<2	<2	3.9	Υ	Absent		EPH-20(14)

Project Name: Lab Number: 155 NORTH BEACON STREET L2205987 0201602-000 **Report Date: Project Number:** 02/11/22

GLOSSARY

Acronyms

EDL

LOQ

MS

DL - Detection Limit: This value represents the level to which target analyte concentrations are reported as estimated values, when those target analyte concentrations are quantified below the limit of quantitation (LOQ). The DL includes any adjustments

from dilutions, concentrations or moisture content, where applicable. (DoD report formats only.)

- Estimated Detection Limit: This value represents the level to which target analyte concentrations are reported as estimated values, when those target analyte concentrations are quantified below the reporting limit (RL). The EDL includes any adjustments from dilutions, concentrations or moisture content, where applicable. The use of EDLs is specific to the analysis of PAHs using Solid-Phase Microextraction (SPME).

EMPC - Estimated Maximum Possible Concentration: The concentration that results from the signal present at the retention time of an analyte when the ions meet all of the identification criteria except the ion abundance ratio criteria. An EMPC is a worst-case

estimate of the concentration. **EPA**

Environmental Protection Agency.

LCS - Laboratory Control Sample: A sample matrix, free from the analytes of interest, spiked with verified known amounts of

analytes or a material containing known and verified amounts of analytes. LCSD Laboratory Control Sample Duplicate: Refer to LCS.

LFB - Laboratory Fortified Blank: A sample matrix, free from the analytes of interest, spiked with verified known amounts of analytes or a material containing known and verified amounts of analytes.

LOD - Limit of Detection: This value represents the level to which a target analyte can reliably be detected for a specific analyte in a specific matrix by a specific method. The LOD includes any adjustments from dilutions, concentrations or moisture content, where applicable. (DoD report formats only.)

- Limit of Quantitation: The value at which an instrument can accurately measure an analyte at a specific concentration. The LOQ includes any adjustments from dilutions, concentrations or moisture content, where applicable. (DoD report formats

Limit of Quantitation: The value at which an instrument can accurately measure an analyte at a specific concentration. The LOQ includes any adjustments from dilutions, concentrations or moisture content, where applicable. (DoD report formats

MDI - Method Detection Limit: This value represents the level to which target analyte concentrations are reported as estimated values, when those target analyte concentrations are quantified below the reporting limit (RL). The MDL includes any adjustments from dilutions, concentrations or moisture content, where applicable.

- Matrix Spike Sample: A sample prepared by adding a known mass of target analyte to a specified amount of matrix sample for which an independent estimate of target analyte concentration is available. For Method 332.0, the spike recovery is calculated using the native concentration, including estimated values.

MSD - Matrix Spike Sample Duplicate: Refer to MS.

NA - Not Applicable.

NC - Not Calculated: Term is utilized when one or more of the results utilized in the calculation are non-detect at the parameter's

reporting unit.

NDPA/DPA - N-Nitrosodiphenylamine/Diphenylamine.

NI - Not Ignitable.

NP - Non-Plastic: Term is utilized for the analysis of Atterberg Limits in soil.

- No Results: Term is utilized when 'No Target Compounds Requested' is reported for the analysis of Volatile or Semivolatile NR

Organic TIC only requests.

RL - Reporting Limit: The value at which an instrument can accurately measure an analyte at a specific concentration. The RL

includes any adjustments from dilutions, concentrations or moisture content, where applicable.

RPD - Relative Percent Difference: The results from matrix and/or matrix spike duplicates are primarily designed to assess the precision of analytical results in a given matrix and are expressed as relative percent difference (RPD). Values which are less than five times the reporting limit for any individual parameter are evaluated by utilizing the absolute difference between the

values; although the RPD value will be provided in the report.

SRM - Standard Reference Material: A reference sample of a known or certified value that is of the same or similar matrix as the

associated field samples.

STLP - Semi-dynamic Tank Leaching Procedure per EPA Method 1315.

TEF - Toxic Equivalency Factors: The values assigned to each dioxin and furan to evaluate their toxicity relative to 2,3,7,8-TCDD.

TEO - Toxic Equivalent: The measure of a sample's toxicity derived by multiplying each dioxin and furan by its corresponding TEF and then summing the resulting values.

TIC - Tentatively Identified Compound: A compound that has been identified to be present and is not part of the target compound list (TCL) for the method and/or program. All TICs are qualitatively identified and reported as estimated concentrations.

Report Format: Data Usability Report

Project Name:155 NORTH BEACON STREETLab Number:L2205987Project Number:0201602-000Report Date:02/11/22

Footnotes

 The reference for this analyte should be considered modified since this analyte is absent from the target analyte list of the original method.

Terms

1

Analytical Method: Both the document from which the method originates and the analytical reference method. (Example: EPA 8260B is shown as 1,8260B.) The codes for the reference method documents are provided in the References section of the Addendum.

Difference: With respect to Total Oxidizable Precursor (TOP) Assay analysis, the difference is defined as the Post-Treatment value minus the Pre-Treatment value.

Final pH: As it pertains to Sample Receipt & Container Information section of the report, Final pH reflects pH of container determined after adjustment at the laboratory, if applicable. If no adjustment required, value reflects Initial pH.

Frozen Date/Time: With respect to Volatile Organics in soil, Frozen Date/Time reflects the date/time at which associated Reagent Water-preserved vials were initially frozen. Note: If frozen date/time is beyond 48 hours from sample collection, value will be reflected in 'bold'.

Initial pH: As it pertains to Sample Receipt & Container Information section of the report, Initial pH reflects pH of container determined upon receipt, if applicable.

PAH Total: With respect to Alkylated PAH analyses, the 'PAHs, Total' result is defined as the summation of results for all or a subset of the following compounds: Naphthalene, C1-C4 Naphthalenes, 2-Methylnaphthalene, 1-Methylnaphthalene, Biphenyl, Acenaphthylene, Acenaphthene, Fluorene, C1-C3 Fluorenes, Phenanthrene, C1-C4 Phenanthrenes/Anthracenes, Anthracene, Fluoranthene, Pyrene, C1-C4 Fluoranthenes/Pyrenes, Benz(a)anthracene, Chrysene, C1-C4 Chrysenes, Benzo(b)fluoranthene, Benzo(j)+(k)fluoranthene, Benzo(e)pyrene, Benzo(a)pyrene, Perylene, Indeno(1,2,3-cd)pyrene, Dibenz(ah)+(ac)anthracene, Benzo(g,h,i)perylene. If a 'Total' result is requested, the results of its individual components will also be reported.

PFAS Total: With respect to PFAS analyses, the 'PFAS, Total (5)' result is defined as the summation of results for: PFHpA, PFHxS, PFOA, PFNA and PFOS. In addition, the 'PFAS, Total (6)' result is defined as the summation of results for: PFHpA, PFHxS, PFOA, PFNA, PFDA and PFOS. For MassDEP DW compliance analysis only, the 'PFAS, Total (6)' result is defined as the summation of results at or above the RL. Note: If a 'Total' result is requested, the results of its individual components will also be reported.

The target compound Chlordane (CAS No. 57-74-9) is reported for GC ECD analyses. Per EPA, this compound "refers to a mixture of chlordane isomers, other chlorinated hydrocarbons and numerous other components." (Reference: USEPA Toxicological Review of Chlordane, In Support of Summary Information on the Integrated Risk Information System (IRIS), December 1997.)

Total: With respect to Organic analyses, a 'Total' result is defined as the summation of results for individual isomers or Aroclors. If a 'Total' result is requested, the results of its individual components will also be reported. This is applicable to 'Total' results for methods 8260, 8081 and 8082.

Data Qualifiers

- A Spectra identified as "Aldol Condensates" are byproducts of the extraction/concentration procedures when acetone is introduced in the process.
- The analyte was detected above the reporting limit in the associated method blank. Flag only applies to associated field samples that have detectable concentrations of the analyte at less than ten times (10x) the concentration found in the blank. For MCP-related projects, flag only applies to associated field samples that have detectable concentrations of the analyte at less than ten times (10x) the concentrations of the analyte at less than ten times (10x) the concentrations of the analyte was detectable concentrations of the analyte at less than ten times (10x) the concentration found in the blank AND the analyte was detected above one-half the reporting limit (or above the reporting limit for common lab contaminants) in the associated method blank. For NJ-Air-related projects, flag only applies to associated field samples that have detectable concentrations of the analyte above the reporting limit. For NJ-related projects (excluding Air), flag only applies to associated field samples that have detectable concentrations of the analyte, which was detected above the reporting limit in the associated method blank or above five times the reporting limit for common lab contaminants (Phthalates, Acetone, Methylene Chloride, 2-Butanone).
- Co-elution: The target analyte co-elutes with a known lab standard (i.e. surrogate, internal standards, etc.) for co-extracted analyses.
- Concentration of analyte was quantified from diluted analysis. Flag only applies to field samples that have detectable concentrations of the analyte.
- E Concentration of analyte exceeds the range of the calibration curve and/or linear range of the instrument.
- F The ratio of quantifier ion response to qualifier ion response falls outside of the laboratory criteria. Results are considered to be an estimated maximum concentration.
- G The concentration may be biased high due to matrix interferences (i.e, co-elution) with non-target compound(s). The result should be considered estimated.
- H The analysis of pH was performed beyond the regulatory-required holding time of 15 minutes from the time of sample collection.
- I The lower value for the two columns has been reported due to obvious interference.
- J Estimated value. This represents an estimated concentration for Tentatively Identified Compounds (TICs).
- M Reporting Limit (RL) exceeds the MCP CAM Reporting Limit for this analyte.
- **ND** Not detected at the reporting limit (RL) for the sample.
- NJ Presumptive evidence of compound. This represents an estimated concentration for Tentatively Identified Compounds (TICs), where

Report Format: Data Usability Report

Project Name:155 NORTH BEACON STREETLab Number:L2205987Project Number:0201602-000Report Date:02/11/22

Data Qualifiers

the identification is based on a mass spectral library search.

- P The RPD between the results for the two columns exceeds the method-specified criteria.
- Q The quality control sample exceeds the associated acceptance criteria. For DOD-related projects, LCS and/or Continuing Calibration Standard exceedences are also qualified on all associated sample results. Note: This flag is not applicable for matrix spike recoveries when the sample concentration is greater than 4x the spike added or for batch duplicate RPD when the sample concentrations are less than 5x the RL. (Metals only.)
- **R** Analytical results are from sample re-analysis.
- **RE** Analytical results are from sample re-extraction.
- S Analytical results are from modified screening analysis.
- The surrogate associated with this target analyte has a recovery outside the QC acceptance limits. (Applicable to MassDEP DW Compliance samples only.)
- Z The batch matrix spike and/or duplicate associated with this target analyte has a recovery/RPD outside the QC acceptance limits. (Applicable to MassDEP DW Compliance samples only.)

Report Format: Data Usability Report

Project Name:155 NORTH BEACON STREETLab Number:L2205987Project Number:0201602-000Report Date:02/11/22

REFERENCES

Method for the Determination of Volatile Petroleum Hydrocarbons (VPH), MassDEP, February 2018, Revision 2.1 with QC Requirements & Performance Standards for the Analysis of VPH under the Massachusetts Contingency Plan, WSC-CAM-IVA, June 1, 2018.

- Method for the Determination of Extractable Petroleum Hydrocarbons (EPH), MassDEP, December 2019, Revision 2.1 with QC Requirements & Performance Standards for the Analysis of EPH under the Massachusetts Contingency Plan, WSC-CAM-IVB, March 1, 2020.
- 141 EPA Test Methods (SW-846) with QC Requirements & Performance Standards for the Analysis of EPA SW-846 Methods under the Massachusetts Contingency Plan, WSC-CAM-IIA and IIB, November 2021.

LIMITATION OF LIABILITIES

Alpha Analytical performs services with reasonable care and diligence normal to the analytical testing laboratory industry. In the event of an error, the sole and exclusive responsibility of Alpha Analytical shall be to re-perform the work at it's own expense. In no event shall Alpha Analytical be held liable for any incidental, consequential or special damages, including but not limited to, damages in any way connected with the use of, interpretation of, information or analysis provided by Alpha Analytical.

We strongly urge our clients to comply with EPA protocol regarding sample volume, preservation, cooling, containers, sampling procedures, holding time and splitting of samples in the field.

Alpha Analytical, Inc. Facility: Company-wide

Department: Quality Assurance

Title: Certificate/Approval Program Summary

Revision 19

ID No.:17873

Page 1 of 1

Published Date: 4/2/2021 1:14:23 PM

Certification Information

The following analytes are not included in our Primary NELAP Scope of Accreditation:

Westborough Facility

EPA 624/624.1: m/p-xylene, o-xylene, Naphthalene

EPA 625/625.1: alpha-Terpineol

EPA 8260C/8260D: NPW: 1,2,4,5-Tetramethylbenzene; 4-Ethyltoluene, Azobenzene; SCM: Iodomethane (methyl iodide), 1,2,4,5-Tetramethylbenzene;

EPA 8270D/8270E: NPW: Dimethylnaphthalene,1,4-Diphenylhydrazine, alpha-Terpineol; SCM: Dimethylnaphthalene,1,4-Diphenylhydrazine.

SM4500: NPW: Amenable Cyanide; SCM: Total Phosphorus, TKN, NO2, NO3.

Mansfield Facility

SM 2540D: TSS

EPA 8082A: NPW: PCB: 1, 5, 31, 87,101, 110, 141, 151, 153, 180, 183, 187.

EPA TO-15: Halothane, 2,4,4-Trimethyl-2-pentene, 2,4,4-Trimethyl-1-pentene, Thiophene, 2-Methylthiophene,

3-Methylthiophene, 2-Ethylthiophene, 1,2,3-Trimethylbenzene, Indan, Indene, 1,2,4,5-Tetramethylbenzene, Benzothiophene, 1-Methylnaphthalene.

Biological Tissue Matrix: EPA 3050B

The following analytes are included in our Massachusetts DEP Scope of Accreditation

Westborough Facility:

Drinking Water

EPA 300.0: Chloride, Nitrate-N, Fluoride, Sulfate; EPA 353.2: Nitrate-N, Nitrite-N; SM4500NO3-F: Nitrate-N, Nitrite-N; SM4500F-C, SM4500CN-CE,

EPA 180.1, SM2130B, SM4500CI-D, SM2320B, SM2540C, SM4500H-B, SM4500NO2-B

EPA 332: Perchlorate; EPA 524.2: THMs and VOCs; EPA 504.1: EDB, DBCP.

Microbiology: SM9215B; SM9223-P/A, SM9223B-Colilert-QT,SM9222D.

Non-Potable Water

SM4500H,B, EPA 120.1, SM2510B, SM2540C, SM2320B, SM4500CL-E, SM4500F-BC, SM4500NH3-BH: Ammonia-N and Kjeldahl-N, EPA 350.1: Ammonia-N, LACHAT 10-107-06-1-B: Ammonia-N, EPA 351.1, SM4500NO3-F, EPA 353.2: Nitrate-N, SM4500P-E, SM4500P-B, E, SM4500SO4-E, SM5220D, EPA 410.4, SM5210B, SM5310C, SM4500CL-D, EPA 1664, EPA 420.1, SM4500-CN-CE, SM2540D, EPA 300: Chloride, Sulfate, Nitrate. EPA 624.1: Volatile Halocarbons & Aromatics,

EPA 608.3: Chlordane, Toxaphene, Aldrin, alpha-BHC, beta-BHC, gamma-BHC, delta-BHC, Dieldrin, DDD, DDE, DDT, Endosulfan II, Endosulfan II, Endosulfan sulfate, Endrin, Endrin Aldehyde, Heptachlor, Heptachlor Epoxide, PCBs

EPA 625.1: SVOC (Acid/Base/Neutral Extractables), EPA 600/4-81-045: PCB-Oil.

Microbiology: SM9223B-Colilert-QT; Enterolert-QT, SM9221E, EPA 1600, EPA 1603, SM9222D.

Mansfield Facility:

Drinking Water

EPA 200.7: Al, Ba, Cd, Cr, Cu, Fe, Mn, Ni, Na, Ag, Ca, Zn. EPA 200.8: Al, Sb, As, Ba, Be, Cd, Cr, Cu, Pb, Mn, Ni, Se, Ag, TL, Zn. EPA 245.1 Hg. EPA 522, EPA 537.1.

Non-Potable Water

EPA 200.7: Al, Sb, As, Be, Cd, Ca, Cr, Co, Cu, Fe, Pb, Mg, Mn, Mo, Ni, K, Se, Ag, Na, Sr, TL, Ti, V, Zn.

EPA 200.8: Al, Sb, As, Be, Cd, Cr, Cu, Fe, Pb, Mn, Ni, K, Se, Ag, Na, TL, Zn.

EPA 245.1 Hg

SM2340B

For a complete listing of analytes and methods, please contact your Alpha Project Manager.

Document Type: Form

Pre-Qualtrax Document ID: 08-113

Westporough MA 01581 8 Westporough Pr. 1511 508-618-8220 FAX: 508-618-8220 FAX: 508-618-8183 H&A (Client: IQHQ, In	CHAIN OF CUSTODY Mensited, MA 00048 200 Forter Blind TEL 508-822-9000 FAC 508-822-9008	Service Centers Brewn, NE 00012 Porters CPGD Rharp, NY 12005 Tonswands, NY 14130 Holive Project Marrie: Project Location: Project # (Use Project name as Pr		155 North Bost	Page of Beacon: ion, MA 602-000	1		000	Email EQui Other	l 8 (1 File) r	Ø	Fax EQuit	2,2 S (4 File)	
H&A Address: 465 Med Boston, MA 02129 H&A Phone: 617.680. H&A Fax:	2293 , TCairns, KBlock	Project Manager: ALPHAQuote #: Turn-Atound Time Standard Rush (only if pre approved	12	Due Date:				MA Note:	20141	State from				Please identify below location of applicable disposal facilities. Disposal Facility: NJ NY Other Sample Filtration
Other project specific re	quirements/commen 017 NPDES RGP app	ts: loation; please follow app as required by EPA			Sample	detection Sampler		1, VOCs	2. SVOCs	EPH and VPH ranges only				□ Done □ Lab to do Preservation □ Lab to do (Please Specify below)
(Lab Use Only) OS 987 - O 1		ngle ID v)_2012.02.03	2 /3	Time 730	Matrix	SRP	Depth	x	×	X				Sample Specific Comments
				7	/									
Preservative Code: A = Nume S = HCl C = HNO ₃ D = H ₂ SO ₃ E = NsOH F = MsOH S = NsHSO ₄ H = Ns ₂ S ₂ O ₃ K-E = 2n As/NsOH O = Other Document ID, 20455 Rev 3 (1)	Container Code P = Plautic A = Amber Glass V = Val G = Glass B = Besteria Cup G = Cube O = Other E = Encore D = BOO Bottle	Westoon: Certification N Manafield: Certification N Relinquished APA	lo: MA015 By:	Date/12 / 2/3 /8/	Pr (30 (439	reservative	Page 1 Complete	-	A		12/3	16	/Time /43:36 18:10	affiliates and Alpha Analytical.

Method Blank Summary Form 4 Volatiles

Client : Haley & Aldrich, Inc. Lab Number
Project Name : 155 NORTH BEACON STREET Project Number

Lab Sample ID : WG1602114-5

Instrument ID : JACK1
Matrix : WATER

 Lab Number
 : L2205987

 Project Number
 : 0201602-000

 Lab File ID
 : J220207A04

Analysis Date : 02/07/22 04:52

Client Sample No.	Lab Sample ID	Analysis Date	
WG1602114-3LCS	WG1602114-3	02/07/22 03:32	
WG1602114-4LCSD	WG1602114-4	02/07/22 03:59	
HA21-B9(OW)_20220203	L2205987-01	02/07/22 05:45	

Calibration Verification Summary Form 7 **Volatiles**

Client : Haley & Aldrich, Inc. **Project Name**

: 155 NORTH BEACON STREET

: JACK1 Instrument ID Lab File ID : J220207A01 Sample No : WG1602114-2

Channel

Lab Number : L2205987 Project Number : 0201602-000 Calibration Date : 02/07/22 03:32

Init. Calib. Date(s) : 01/13/22 01/13/22 Init. Calib. Times : 04:34 09:19

Compound	Ave. RRF	RRF	Min RRF	%D	Max %D	Area%	Dev(min)
Fluorobenzene	1	1	-	0	20	99	0
Dichlorodifluoromethane	0.632	0.523	-	17.2	20	77	0
Chloromethane	0.625	0.626	-	-0.2	20	88	0
Vinyl chloride	0.577	0.542	-	6.1	20	81	0
Bromomethane	0.288	0.236	-	18.1	20	84	0
Chloroethane	0.354	0.331	-	6.5	20	81	0
Trichlorofluoromethane	0.815	0.829	-	-1.7	20	92	0
Ethyl ether	0.309	0.284	-	8.1	20	85	0
1,1-Dichloroethene	0.476	0.485	-	-1.9	20	95	0
Carbon disulfide	1.296	1.339	-	-3.3	20	92	0
Methylene chloride	0.559	0.556	-	0.5	20	92	0
Acetone	0.159	0.191	-	-20.1*	20	113	0
trans-1,2-Dichloroethene	0.523	0.524	-	-0.2	20	92	0
Methyl tert-butyl ether	1.549	1.377	-	11.1	20	84	0
Diisopropyl ether	1.9	1.771	-	6.8	20	87	0
1,1-Dichloroethane	1.033	1.03	-	0.3	20	89	01
Ethyl tert-butyl ether	1.685	1.442	-	14.4	20	83	0
cis-1,2-Dichloroethene	0.59	0.581	-	1.5	20	90	0
2,2-Dichloropropane	0.864	0.853	-	1.3	20	93	01
Bromochloromethane	0.282	0.282	-	0	20	92	01
Chloroform	0.984	0.942	-	4.3	20	85	0
Carbon tetrachloride	0.755	0.746	-	1.2	20	93	0
Tetrahydrofuran	0.195	0.167	-	14.4	20	83	0
Dibromofluoromethane	0.268	0.274	-	-2.2	20	101	0
1,1,1-Trichloroethane	0.853	0.837	-	1.9	20	90	01
2-Butanone	0.259	0.25	-	3.5	20	89	01
1,1-Dichloropropene	0.723	0.735	-	-1.7	20	94	0
Benzene	2.114	2.115	-	-0	20	93	0
tert-Amyl methyl ether	1.48	1.248	-	15.7	20	82	0
1,2-Dichloroethane-d4	0.354	0.323	-	8.8	20	91	01
1,2-Dichloroethane	0.777	0.68	-	12.5	20	81	01
Trichloroethene	0.543	0.549	-	-1.1	20	92	01
Dibromomethane	0.358	0.303	-	15.4	20	82	0
1,2-Dichloropropane	0.577	0.556	-	3.6	20	88	01
Bromodichloromethane	0.79	0.723	-	8.5	20	85	01
1,4-Dioxane	0.00252	0.00172*	-	31.7*	20	66	01
cis-1,3-Dichloropropene	0.925	0.875	-	5.4	20	87	0
Chlorobenzene-d5	1	1	-	0	20	103	0
Toluene-d8	1.243	1.202	-	3.3	20	100	01
Toluene	1.623	1.468	-	9.6	20	90	01
4-Methyl-2-pentanone	0.251	0.191	-	23.9*	20	78	0
Tetrachloroethene	0.725	0.702	-	3.2	20	100	01
trans-1,3-Dichloropropene	1.003	0.869	-	13.4	20	86	01

^{*} Value outside of QC limits.

Calibration Verification Summary Form 7 Volatiles

Client : Haley & Aldrich, Inc.

Project Name : 155 NORTH BEACON STREET

Instrument ID : JACK1 Lab File ID : J220207A01 Sample No : WG1602114-2

Channel:

Lab Number : L2205987

Project Number : 0201602-000

Calibration Date : 02/07/22 03:32

Compound	Ave. RRF	RRF	Min RRF	%D	Max %D	Area%	Dev(min)
1,1,2-Trichloroethane	0.473	0.393	-	16.9	20	83	0
Chlorodibromomethane	0.696	0.574	-	17.5	20	86	01
1,3-Dichloropropane	0.979	0.858	-	12.4	20	89	0
1,2-Dibromoethane	0.596	0.492	-	17.4	20	85	02
2-Hexanone	0.526	0.418	-	20.5*	20	78	0
Chlorobenzene	1.895	1.677	-	11.5	20	90	0
Ethylbenzene	3.216	2.978	-	7.4	20	91	0
1,1,1,2-Tetrachloroethane	0.678	0.574	-	15.3	20	89	0
p/m Xylene	1.28	1.15	-	10.2	20	91	01
o Xylene	1.252	1.107	-	11.6	20	89	01
Styrene	2.143	1.899	-	11.4	20	90	01
1,4-Dichlorobenzene-d4	1	1	-	0	20	112	01
Bromoform	0.838	0.607	-	27.6*	20	85	02
Isopropylbenzene	6.16	5.402	-	12.3	20	93	0
4-Bromofluorobenzene	0.905	0.884	-	2.3	20	104	01
Bromobenzene	1.551	1.298	-	16.3	20	93	01
n-Propylbenzene	7.242	6.4	-	11.6	20	93	0
1,1,2,2-Tetrachloroethane	1.342	1.027	-	23.5*	20	84	0
2-Chlorotoluene	4.879	4.181	-	14.3	20	91	0
1,3,5-Trimethylbenzene	5.007	4.268	-	14.8	20	92	01
1,2,3-Trichloropropane	1.169	0.898	-	23.2*	20	87	0
4-Chlorotoluene	4.485	3.817	-	14.9	20	92	01
tert-Butylbenzene	4.409	3.94	-	10.6	20	96	0
1,2,4-Trimethylbenzene	4.994	4.214	-	15.6	20	92	0
sec-Butylbenzene	6.573	5.944	-	9.6	20	97	0
p-Isopropyltoluene	5.554	4.989	-	10.2	20	97	0
1,3-Dichlorobenzene	2.932	2.537	-	13.5	20	93	01
1,4-Dichlorobenzene	2.926	2.478	-	15.3	20	93	0
n-Butylbenzene	4.692	4.19	-	10.7	20	96	01
1,2-Dichlorobenzene	2.728	2.315	-	15.1	20	93	0
1,2-Dibromo-3-chloropropan	0.258	0.202	-	21.7*	20	89	0
Hexachlorobutadiene	0.69	0.753	-	-9.1	20	121	0
1,2,4-Trichlorobenzene	1.62	1.518	-	6.3	20	100	0
Naphthalene	4.489	3.811	-	15.1	20	94	0
1,2,3-Trichlorobenzene	1.441	1.338	-	7.1	20	100	0

^{*} Value outside of QC limits.