

NOTICE OF INTENT FOR DISCHARGE PURSUANT TO MASSACHUSETTS REMEDIATION GENERAL PERMIT MAG9100000

1395-1405 WASHINGTON STREET BOSTON, MASSACHUSETTS

JANUARY 5, 2022

Prepared For:

United States Environmental Protection Agency
OFFICE OF ECOSYSTEM PROTECTION
5 POST OFFICE SQUARE, SUITE 100
MAIL CODE OEP06-01
BOSTON, MA 02109-3912

On Behalf Of:

The Wash El LLC 22 Brimmer Street Boston, MA 02108

2269 Massachusetts Avenue Cambridge, MA 02140 www.mcphailgeo.com (617) 868-1420

January 5, 2022

United States Environmental Protection Agency Office of Ecosystem Protection 5 Post Office Square, Suite 100 Mail Code OEP06-01 Boston, MA 02109-3912

Attention: EPA RGP Applications Coordinator

Reference: 1395-1405 Washington Street; Boston, MA

Notice of Intent for Temporary Construction Dewatering Discharge;

Massachusetts Remediation General Permit MAG910000

Ladies and Gentlemen:

On behalf of The Wash El LLC, McPhail Associates, LLC (McPhail) has prepared the attached Notice of Intent (NOI) for coverage under the Remediation General Permit (RGP) MAG910000 for the discharge of construction dewatering effluent into the Bass River via the off-site storm drainage system. The temporary construction dewatering discharge will occur during redevelopment of the property located at 1395-1405 Washington Street in Boston, Massachusetts (subject site). Refer to **Figure 1** for the general site locus.

These services were performed and this permit application was prepared in accordance with the authorization of The Wash El LLC. These services are subject to the limitations contained in **Appendix A**.

The required Notice of Intent Form contained in the RGP permit and Boston Water & Sewer Dewatering Discharge Permit Application are included in **Appendix B**. This project is considered Activity Category III-G as defined in the RGP. Based on the activity category, and in accordance with the RGP, contamination Type A: Inorganics, as defined in Table 2 of the RGP apply.

Applicant/Owner

The applicant for the Notice of Intent-Remediation General Permit is:

The Wash El LLC 22 Brimmer Street Boston, MA 02108

Attention: Mr. Peter Georgantas

Existing Conditions

Fronting onto Washington Street to the south, the approximate 7,037 square-foot, generally trapezoidal-shaped subject site is bounded by a 6-story building to the east identified as 1393 Washington Street known as "The Washington Union Condominium" and a 5-story building to the west identified as 1407-1417 Washington Street. An approximate 5-foot tall stone retaining wall is located to the north of the property with the retained soil located on the south side (the subject site side) of the retaining wall. The property identified as the "Hellenic Orthodox Church - The Second of Saint John the Baptist" is located to the north of the retaining wall.

The subject site is currently improved by an approximate 1-story building that occupies an approximate 5,500 square-foot plan area. The ground floor (first floor) varies from about Elevation +17.2 to about Elevation +18.1. The existing building is also understood to include a basement level that extends approximately 7.5 to 8.5-feet below the ground floor (first floor) level, corresponding to levels varying from about Elevation +9.0 to Elevation +9.7. The ground surface along the south (front) of the building slopes gradually downward from west to east from about Elevation +17.3 at the southwest corner of the building to about Elevation +16.6 at the southeast corner of the building. The ground surface along the north side of the building (between the existing building and the retaining wall) slopes downward from about Elevation +15 adjacent to the north side (rear) of the building to about Elevation +13 along the south side of the retaining wall. The boundaries of the subject site, which define the limits of our work, are shown on the enclosed **Figure 2**.

Proposed Scope of Site Development

The proposed site development will consist of the demolition of the existing building, followed by the construction of a 5 to 6-story building that occupies an approximate 6,300 square-foot plan area and extends one level below grade. At this time a basement floor level of Elevation +7 is being considered.

Site Environmental Setting and Surrounding Historical Places

Based on an online edition of the Massachusetts Department of Environmental Protection (DEP) Phase I Site Assessment Map viewed on November 18, 2021, the subject site is not located within the boundaries of a Sole Source Aquifer, Potentially Productive Aquifer or within a Zone II, Interim Wellhead Protection Area as defined by the Massachusetts Department of Environmental Protection. Further, there are no public drinking water supply wells, no Areas of Critical Environmental Concern, no fish habitats, no habitats of Species of Special Concern or Threatened or Endangered Species within specified distances of the subject site. The Resource Map indicates that there are no water bodies or wetland areas at the subject site. The closest body of water is the Bass River that leads to the Fort Point Channel located approximately 2,700 feet to the northeast of the subject site. No areas designated as solid waste sites (landfills) are noted as being located within 1,000 feet of the

site. A copy of the Massachusetts DEP Phase I Site Assessment Map is included in **Appendix C**.

A review of information provided by the U.S. Fish and Wildlife Service in an Information for Planning and Conservation (IPaC) Trust Resource Report for the subject site did not identify the presence of threatened or endangered species at or in the vicinity of the discharge location and/or discharge outfall. Further, the Trust Resource Report did not identify the presence of a critical habitat in the vicinity of the discharge outfall and/or discharge location. Based upon the above, the site is considered a Criterion A pursuant to Appendix IV of the RGP. A copy of the IPaC Trust Resource Report and U.S. Fish and Wildlife Service's Nationwide Standard Conservation Measures are included in **Appendix C**.

The subject site is not listed on the State or National Register of Historical Places. The properties which abut the subject site, located at 1387-1393 Washington Street and 1409-1417 Washington Street, are listed in the MACRIS database. Copies of the State of Massachusetts MACRIS reports are included in **Appendix C**.

Construction at the subject site is likely to extend below the surface of groundwater. If dewatering is necessary, treated construction dewatering effluent will be discharged into the City of Boston storm drain system that flows into the Bass River. If encountered, the dewatering of groundwater at the subject site will be temporary and intermittent.

Groundwater discharged as part of the proposed project will be controlled and monitored. Treatment systems will consist of temporary structures. Therefore, based on the anticipated duration of construction dewatering and the location of its discharge into the Bass River, construction dewatering activities are not considered to affect elements of historical listings. Hence, the site meets Permit Eligibility Criterion B in accordance with Appendix III of the RGP.

Site History

It is understood that the existing subject site building was constructed prior to 1887 and was formerly occupied by apartments and the Hotel Arlington before the conversion to the existing multi-tenant commercial spaces during the early 1900's.

Construction Site Dewatering

In general, the depth of excavation required to install the proposed building foundation elements and subsurface utilities will not encounter groundwater, however, there may be localized areas of excavation that may encounter groundwater and hence require dewatering. If required, the rate of construction dewatering within these localized areas of excavation may range from approximately 25 to 50 gallons per minute (gpm). These estimates do not include surface run-off which will be removed from the excavation during periods of precipitation.

Construction dewatering will require the discharge of collected groundwater into the storm drain system under the requested Remedial General Permit. A review of relevant stormwater drainage plans provided by the Boston Water and Sewer Commission indicates that the catch basins in the vicinity of the subject site flow to discharge to the Bass River. The locations of relevant catch basins with relation to the subject site and the route of the storm drains to the Bass River are indicated on **Figure 2**.

Summary of Groundwater Analysis

On November 11, 2021, McPhail obtained a sample of groundwater from a sump pump located within the central portion of the subject site building. The groundwater sample was submitted to a certified laboratory for analysis for the presence of compounds required under the EPA's Remediation General Permit (RGP) application, including total suspended solids (TSS), total residual chlorine, total petroleum hydrocarbons (TPH), non-halogenated volatile organic compounds (VOCs) including BTEX and benzene, fuel parameters, and total recoverable metals. The results of the laboratory analysis are summarized in **Table 1**, and laboratory data reports are included in **Appendix D**.

A surface water sample was obtained from the Bass River (42° 20' 35" N, -71° 3' 39" W) in March 2021 and analyzed for temperature, pH, salinity, and ammonia nitrogen. The results of the laboratory analysis are summarized in **Table 2**, and laboratory data reports are included in **Appendix E**.

Due to discharge to saltwater receiving waters, a Dilution Factor (DF) is not applicable in accordance with the procedure contained in RGP MAG910000, Appendix V.

With the exception of total suspended solids (TSS) total arsenic, total copper, total iron, and total lead, results of laboratory testing did not detect concentrations of the tested compounds in excess of the TBELs and Water Quality-Based Effluent Limitations (WQBELs). It is anticipated that the construction dewatering treatment system that is discussed below will reduce concentrations of TSS in the effluent to below the applicable TBELs.

Groundwater Treatment

Based upon the anticipated rates of construction dewatering in conjunction with the results of the above referenced groundwater analyses, it is our opinion that one 5,000-gallon capacity settling tank, and bag filters in series will be necessary to settle out and remove particulate matter in the effluent to meet allowable discharge limits established by the US EPA prior to discharge. A schematic of the treatment system is shown on **Figure 4**.

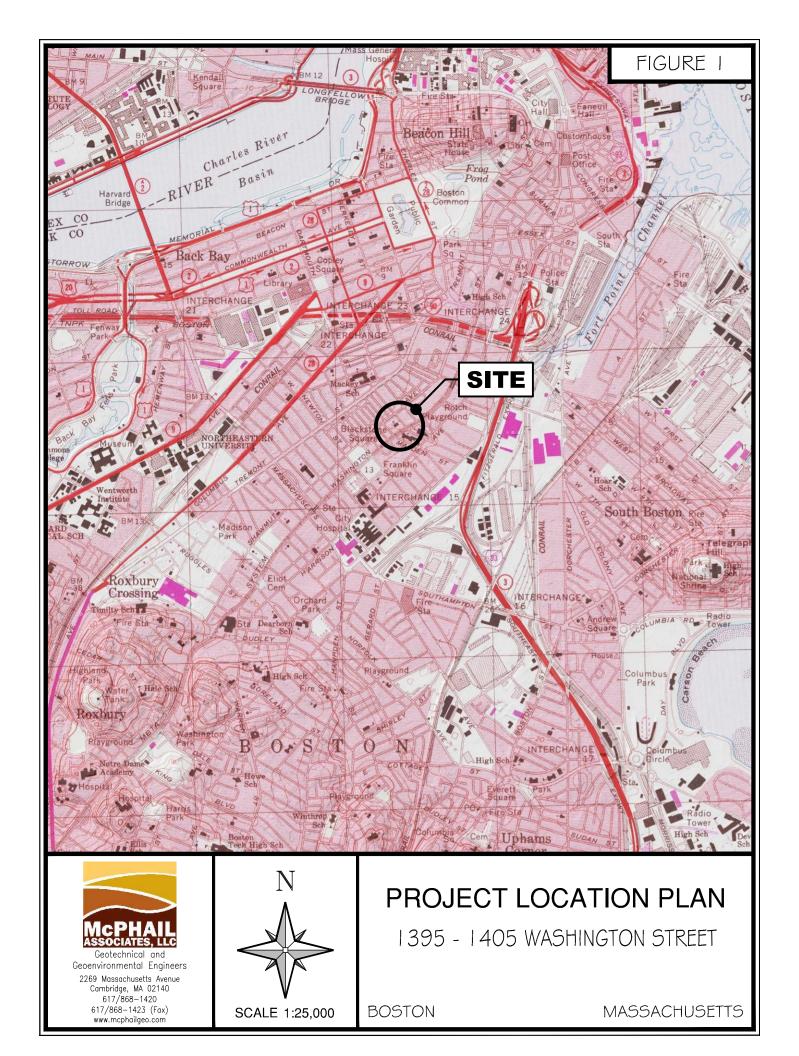
A Best Management Practices Plan (BMPP) has been prepared as **Appendix F** to the RGP and will be posted at the site during the time period that temporary construction dewatering is occurring at the site.

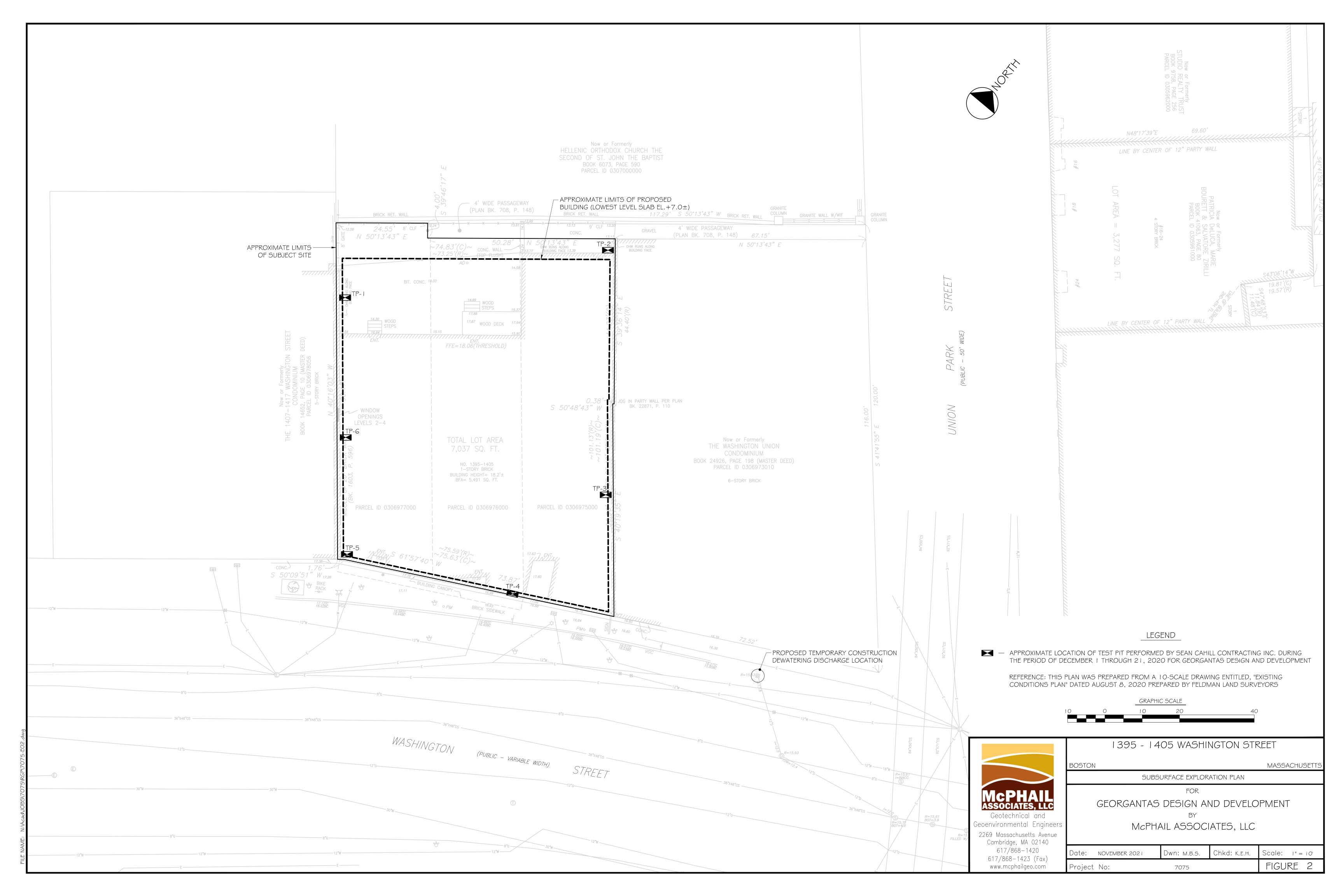
Summary and Conclusions

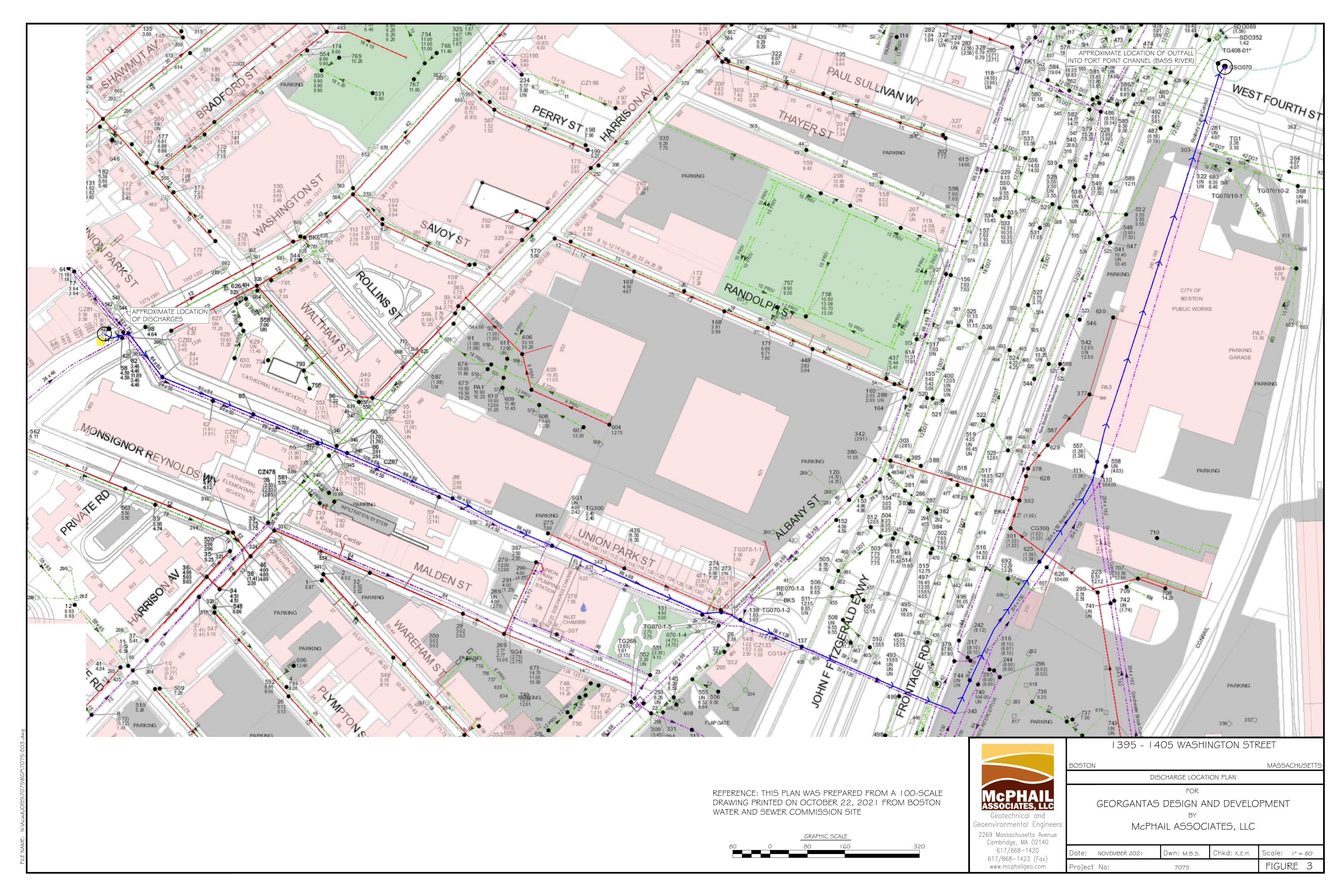
The purpose of this report is to summarize site environmental conditions and groundwater data to support a Notice of Intent to discharge under the Remediation General Permit for the off-site discharge of dewatered groundwater which may be encountered during the redevelopment of the property located at 1395-1405 Washington Street in Boston, Massachusetts.

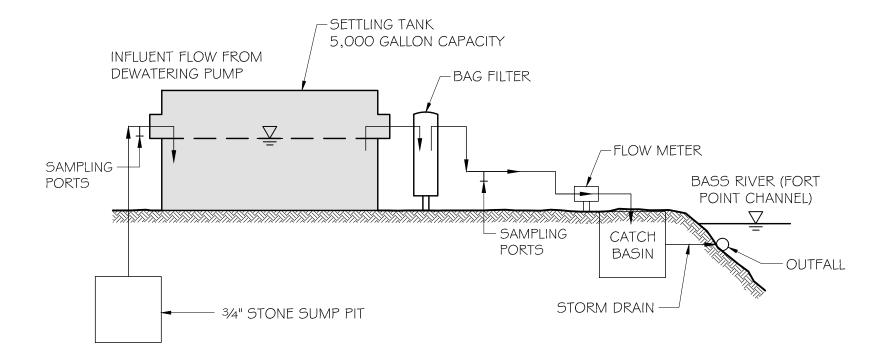
The proposed construction dewatering effluent treatment system will consist of one 5,000-gallon capacity settling tank and bag filters in series. However, should the effluent monitoring results identify concentrations of contaminants that are in excess of the limits established by the RGP, additional mitigative measures will be implemented to meet the allowable discharge limits.

We trust that the above satisfies your present requirements. Should you have any questions or comments concerning the above, please do not hesitate to contact us.


Sincerely,


McPHAIL ASSOCIATES, LLC


Kathryn E. Hanrahan


Ambrose J. Donovan, P.E., L.S.P.

 $N: \begin{tabular}{l} N: \begin{tabular}{l$

1395 - 1405 WASHINGTON STREET

MASSACHUSETTS BOSTON

SCHEMATIC OF TREATMENT SYSTEM

FOR

GEORGANTAS DESIGN AND DEVELOPMENT

ΒY

McPHAIL ASSOCIATES, LLC CONSULTING GEOTECHNICAL ENGINEERS

Date: NOVEMBER 202 Dwn: M.B.S. Chkd: K.E.H.

Scale: N.T.S.

Project No:

7075

TABLE 1 ANALYTICAL RESULTS - GROUNDWATER

1395-1405 Washington Street Boston, MA Project No. 7075

LOCATION SAMPLING DATE LAB SAMPLE ID	MassDEP RCGW-2	MassDEP GW-3	Water Quality Based	Technology Based Effluent	GW 11/11/2021 L2162279-0
SAMPLE TYPE	Esquent Limitation				
A. Inorganics	<u> </u>				WATER
Nitrogen, Ammonia (mg/L)			F	Reporting	0.287
Chloride (µg/L)				Reporting	196000
Chlorine, Total Residual (µg/L)			1100	200	ND(20)
Solids, Total Suspended (mg/L) OH (H)				30 6.5-8.3	48 7.6
Hardness (mg/L)				0.5-6.5	194
Antimony, Total (µg/L)	8000	8000	640	206	ND(4)
Arsenic, Total (µg/L)	900	900	10	104	9.26
Cadmium, Total (µg/L)	4	4	0.25	10.2	ND(0.2)
Chromium, Trivalent (µg/L) Chromium, Hexavalent (µg/L)	600	600 300	74	323	ND(10)
Chromium, Hexavalent (µg/L) Chromium, Total (µg/L)	300 300	300	11	323	ND(10) 3.01
Copper, Total (µg/L)	100000	500	9	242	32.87
ron, Total (μg/L)			1000	5000	3920
.ead, Total (μg/L)	10	10	2.5	160	23.28
ead, Dissolved (µg/L)	10	10			ND(10)
Mercury, Total (µg/L)	20	20	0.77	0.739	ND(0.2)
Nickel, Total (µg/L) Selenium, Total (µg/L)	200 100	200 100	52 5	1450 235.8	8.54 ND(5)
Silver, Total (µg/L)	7	7	3.2	35.1	ND(0.4)
Zinc, Total (µg/L)	900	900	120	420	51.36
Cyanide, Total (µg/L)	30	30	5.2	178	ND(5)
3. Non-Halogenated Volatile Organi	c Compou	nds			
Total BTEX (µg/L)	4000	40000		100	ND(1)
Benzene (µg/L) Foluene (µg/L)	1000 40000	10000 40000		5	ND(1) ND(1)
thylbenzene (µg/L)	5000	5000			ND(1) ND(1)
/m-Xylene (μg/L)	3000	5000			ND(2)
-xylene (μg/L)	3000	5000			ND(1)
(ylenes, Total (µg/L)	3000	5000			ND(1)
,4-Dioxane (µg/L)	6000	50000		200	ND(5)
Acetone (µg/L) Phenolics, Total (µg/L)	50000	50000	300	7970 1080	ND(10) ND(30)
C. Halogenated Volatile Organic Co	mnounds		300	1000	14D(30)
Carbon tetrachloride (µg/L)	2	5000	1.6	4.4	ND(1)
,2-Dichlorobenzene (µg/L)	2000	2000		600	ND(5)
,3-Dichlorobenzene (µg/L)	6000	50000		320	ND(5)
,4-Dichlorobenzene (µg/L)	60	8000		5	ND(5)
Total dichlorobenzene 1,1-Dichloroethane (µg/L)	2000	20000		763 70	ND ND(1.5)
,2-Dichloroethane (µg/L)	5	20000		5	ND(1.5)
1,1-Dichloroethene (µg/L)	80	30000		3.2	ND(1)
Methylene chloride (µg/L)	2000	50000		4.6	ND(1)
1,1,1-Trichloroethane (µg/L)	4000	20000		200	ND(2)
1,1,2-Trichloroethane (µg/L)	900	50000		5	ND(1.5) ND(1)
Γrichloroethene (μg/L) Γetrachloroethene (μg/L)	5 50	5000 30000	3.3	5 5	ND(1)
cis-1,2-Dichloroethene (µg/L)	20	50000	0.0	70	ND(1)
/inyl chloride (µg/L)	2	50000		2	ND(1)
,2-Dibromoethane (µg/L)	2	50000			ND(0.01)
,2-Dibromo-3-chloropropane (µg/L)	1000				-
,2,3-Trichloropropane (µg/L)	10000				-
D. Non-Halogenated Sem-Volatile O Bis(2-ethylhexyl)phthalate (µg/L)	50000	50000		1	ND(2.2)
Butyl benzyl phthalate (µg/L)	10000	23000			ND(2.2)
Di-n-butylphthalate (µg/L)	5000		3	Sum = 190	ND(5)
Di-n-octylphthalate (µg/L)	100000				ND(5)
Diethyl phthalate (µg/L)	9000	9000			ND(5)
Dimethyl phthalate (µg/L)	50000	50000	1.01	As Individual	ND(5) ND
Fotal Group I PAHs Benzo(a)anthracene (µg/L)	1000	1000	0.0038	As iliuividual	ND(0.1)
Benzo(a)pyrene (µg/L)	500	500	0.0038	1	ND(0.1)
Benzo(b)fluoranthene (µg/L)	400	400	0.0038	As Total Group !	ND(0.1)
Benzo(k)fluoranthene (µg/L)	100	100	0.0038	As Total Group I PAHs	ND(0.1)
Chrysene (µg/L)	70	70	0.0038		ND(0.1)
Dibenzo(a,h)anthracene (µg/L)	40	40	0.0038		ND(0.1) ND
Total Group II PAHs ndeno(1,2,3-cd)pyrene (μg/L)	100	100	0.0038	100	ND(0.1)
Acenaphthene (µg/L)	10000	10000		.00	ND(0.1)
cenaphthylene (µg/L)	40	40			ND(0.1)
Anthracene (µg/L)	30	30		As Total Group II	ND(0.1)
Senzo(ghi)perylene (µg/L)	20	20		PAHs including	ND(0.1)
Fluoranthene (µg/L)	200	200		Naphthalene	ND(0.1)
Fluorene (µg/L) Phenanthrene (µg/L)	40 10000	40 10000			ND(0.1) ND(0.1)
nenantnrene (µg/L) Aphthalene (µg/L)	700	20000		20	ND(0.1)
Pyrene (µg/L)	20	20			ND(0.1)
. Halogenated Semi-Volatile Organ	ic Compo				
otal Polychlorinated Biphenyls (μg/L)	5	10	(0.000064	ND(0.2)
Pentachlorophenol (µg/L)	200	200		1	ND(1)
F. Fuels Parameters	-	-		-	NID(4)
PH, SGT-HEM (mg/L)	5	5		5 Reporting	ND(4) ND(20)
Methyl tert butyl ether (µg/L)	5000	50000	20	70	ND(20)
ert-Butyl Alcohol (µg/L)				120	ND(100)
Γertiary-Amyl Methyl Ether (μg/L)				90	ND(20)

TABLE 2 ANALYTICAL RESULTS - SURFACE WATER

1395-1405 Washington Street Boston, MA Project No: 7075

LOCATION		RGP EFFLUENT SW
SAMPLING DATE	EPA-	3/30/2021
LAB SAMPLE ID	ALSCCC	L2115935-01
SAMPLE TYPE		WATER
General Chemistry		
SALINITY		27
Temperature (C)		6.4
рН (Н)		7.7
Nitrogen, Ammonia (ug/l)		218

APPENDIX A:

LIMITATIONS

LIMITATIONS

The purpose of this report is to present the results of testing of a groundwater sample obtained from a monitoring well located at 1395-1405 Washington Street in Boston, Massachusetts, in support of an application for approval of construction site dewatering discharge into surface waters of the Commonwealth of Massachusetts under EPA's Massachusetts Remediation General Permit MAG910000.

The observations were made under the conditions stated in this report. The conclusions presented above were based on these observations. If variations in the nature and extent of subsurface conditions between the spaced subsurface explorations become evident in the future, it will be necessary to re-evaluate the conclusions presented herein after performing on-site observations and noting the characteristics of any variations.

The conclusions submitted in this report are based in part upon laboratory test data obtained from analysis of groundwater samples and are contingent upon their validity. The data have been reviewed, and interpretations have been made in the text. It should also be noted that fluctuations in the types and levels of contaminants and variations in their flow paths may occur due to changes in the seasonal water table, past practices used at the site, and other factors.

Laboratory analyses have been performed for specific constituents during this assessment, as described in the text.

This report and application have been prepared on behalf of and for the exclusive use of The Wash El LLC. This report and the findings contained herein shall not, in whole or in part, be disseminated or conveyed to any other party, other than submission to relevant governmental agencies, nor used in whole or in part by any other party without the prior written consent of McPhail Associates, LLC.

APPENDIX B: NOTICE OF INTENT TRANSMITTAL FORM

II. Suggested Format for the Remediation General Permit Notice of Intent (NOI)

A. General site information:

1. Name of site:	Site address:							
1395-1405 Washington Street	Street: 1395-1405 Washington Street							
	City:Boston		State: _{MA}	^{Zip:} 02118				
2. Site owner The Wash El LLC	Contact Person:Mr. Peter Georgantas							
THE WASH ET LES	Telephone:617.941.4800	Email:pete	er@livegeo	rgantas.com				
	Mailing address:							
	22 Brimmer Street Street:							
Owner is (check one): ☐ Federal ☐ State/Tribal ■ Private ☐ Other; if so, specify:	City:Boston	State:MA	Zip: ₀₂₁₀₈					
3. Site operator, if different than owner	Contact Person:							
	Telephone: Email:							
	Mailing address:							
	Street:							
	City:		State:	Zip:				
4. NPDES permit number assigned by EPA:	5. Other regulatory program(s) that apply to the site (check all that apply):							
	☐ MA Chapter 21e; list RTN(s):	□ CERCL	LΑ					
NPDES permit is (check all that apply: □ RGP □ DGP □ CGP		□ UIC Pro	ogram					
☐ MSGP ☐ Individual NPDES permit ☐ Other; if so, specify:	☐ NH Groundwater Management Permit or Groundwater Release Detection Permit:	☐ POTW Pretreatment						
		□ CWA Section 404						

B. Receiving water information:							
1. Name of receiving water(s):	Waterbody identification of receiving water(s):	Classi	fication of receiving water(s):				
Fort Point Channel MA70-02 SB(CSO)							
Receiving water is (check any that apply): \Box Outstanding	Resource Water □ Ocean Sanctuary □ territorial sea □ \	Wild and Scenic	River				
2. Has the operator attached a location map in accordance	with the instructions in B, above? (check one): \blacksquare Yes \Box	No					
Are sensitive receptors present near the site? (check one): If yes, specify:	□ Yes ■ No						
3. Indicate if the receiving water(s) is listed in the State's I pollutants indicated. Also, indicate if a final TMDL is avail 4.6 of the RGP. Pathogens and phosphorus							
4. Indicate the seven day-ten-year low flow (7Q10) of the Appendix V for sites located in Massachusetts and Appendix		ctions in	N/A				
5. Indicate the requested dilution factor for the calculation of water quality-based effluent limitations (WQBELs) determined in accordance with the instructions in Appendix V for sites in Massachusetts and Appendix VI for sites in New Hampshire.							
6. Has the operator received confirmation from the approp If yes, indicate date confirmation received:	riate State for the 7Q10and dilution factor indicated? (che	eck one): Yes	□ No				
7. Has the operator attached a summary of receiving water	sampling results as required in Part 4.2 of the RGP in according to the RGP in	cordance with th	e instruction in Appendix VIII?				
(check one): ■ Yes □ No							
C. Source water information:							
1. Source water(s) is (check any that apply):							

1. Source water(s) is (check any that apply):			
☐ Contaminated groundwater	☐ Contaminated surface water	☐ The receiving water	☐ Potable water; if so, indicate municipality or origin:
Has the operator attached a summary of influent sampling results as required in Part 4.2 of the RGP	Has the operator attached a summary of influent sampling results as required in Part 4.2 of the	☐ A surface water other	
in accordance with the instruction in Appendix VIII? (check one):	RGP in accordance with the instruction in Appendix VIII? (check one):	than the receiving water; if so, indicate waterbody:	☐ Other; if so, specify:
■ Yes □ No	□ Yes □ No		

2. Source water contaminants:BTEX, fuels parameters	
a. For source waters that are contaminated groundwater or contaminated surface water, indicate are any contaminants present that are not included in the RGP? (check one): ☐ Yes ■ No If yes, indicate the contaminant(s) and the maximum concentration present in accordance with the instructions in Appendix VIII.	b. For a source water that is a surface water other than the receiving water, potable water or other, indicate any contaminants present at the maximum concentration in accordance with the instructions in Appendix VIII? (check one): □ Yes □ No
3. Has the source water been previously chlorinated or otherwise contains resid	dual chlorine? (check one): ☐ Yes ■ No
D. Discharge information	
1. The discharge(s) is $a(n)$ (check any that apply): \Box Existing discharge \blacksquare New	w discharge □ New source
Outfall(s): CSO070	Outfall location(s): (Latitude, Longitude) 42.34812, -71.060966
Discharges enter the receiving water(s) via (check any that apply): □ Direct di	ischarge to the receiving water ■ Indirect discharge, if so, specify:
Discharge into Fort Point Channel through City of Boston stormwater lin ☐ A private storm sewer system ■ A municipal storm sewer system If the discharge enters the receiving water via a private or municipal storm sew Has notification been provided to the owner of this system? (check one): ■ Yes	ver system:
Has the operator has received permission from the owner to use such system for obtaining permission:	or discharges? (check one): ■ Yes □ No, if so, explain, with an estimated timeframe for
Has the operator attached a summary of any additional requirements the owner	
Provide the expected start and end dates of discharge(s) (month/year): Tempo	rary treatment system 1/2022 - 12/2022
Indicate if the discharge is expected to occur over a duration of: ■ less than 1	
Has the operator attached a site plan in accordance with the instructions in D, a	above? (check one): ■ Yes □ No

2. Activity Category: (check all that apply)	3. Contamination Type Category: (check all that apply)				
	a. If Activity Category I or II: (check all that apply)				
	 □ A. Inorganics □ B. Non-Halogenated Volatile Organi □ C. Halogenated Volatile Organic Cor □ D. Non-Halogenated Semi-Volatile Organi □ E. Halogenated Semi-Volatile Organi □ F. Fuels Parameters 	mpounds Organic Compounds			
☐ I – Petroleum-Related Site Remediation ☐ II – Non-Petroleum-Related Site Remediation	b. If Activity Category III, IV, V, VI, VII or VIII: (check either G or H)				
 □ II – Non-Petroleum-Related Site Remediation ■ III – Contaminated Site Dewatering □ IV – Dewatering of Pipelines and Tanks □ V – Aquifer Pump Testing □ VI – Well Development/Rehabilitation □ VII – Collection Structure Dewatering/Remediation □ VIII – Dredge-Related Dewatering 	B. If Activity Category III, IV G. Sites with Known Contamination c. If Category III-G, IV-G, V-G, VI-G, VII-G or VIII-G: (check all that apply) A. Inorganics B. Non-Halogenated Volatile Organic Compounds C. Halogenated Volatile Organic Compounds D. Non-Halogenated Semi-Volatile Organic Compounds E. Halogenated Semi-Volatile Organic Compounds F. Fuels Parameters	d. If Category III-H, IV-H, V-H, VI-H, VII-H or VIII-H Contamination Type Categories A through F apply			

4. Influent and Effluent Characteristics

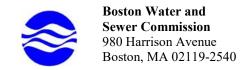
	Known	Known			Detection	In	fluent	Effluent Lir	nitations
Parameter	or believed absent	or believed present	# of samples	Test method (#)	Detection limit (µg/l)	Daily maximum (µg/l)	Daily average (µg/l)	TBEL	WQBEL
A. Inorganics									
Ammonia		/	1	121.4500	75	0.287	0.287	Report mg/L	
Chloride		'	1	44,300.0	5000	0.287	196000	Report μg/l	
Total Residual Chlorine	✓		1	121,4500	0.02	<dl< td=""><td><dl< td=""><td>0.2 mg/L</td><td></td></dl<></td></dl<>	<dl< td=""><td>0.2 mg/L</td><td></td></dl<>	0.2 mg/L	
Total Suspended Solids		✓	1	121,2540D	5	48	48	30 mg/L	
Antimony	/		1	200.8	4	<dl< td=""><td><dl< td=""><td>206 μg/L</td><td></td></dl<></td></dl<>	<dl< td=""><td>206 μg/L</td><td></td></dl<>	206 μg/L	
Arsenic		'	1	200.8	1	9.26	9.26	104 μg/L	
Cadmium	✓		1	200.8	0.2	<dl< td=""><td><dl< td=""><td>10.2 μg/L</td><td></td></dl<></td></dl<>	<dl< td=""><td>10.2 μg/L</td><td></td></dl<>	10.2 μg/L	
Chromium III	✓		1	107	10	<dl< td=""><td><dl< td=""><td>323 μg/L</td><td></td></dl<></td></dl<>	<dl< td=""><td>323 μg/L</td><td></td></dl<>	323 μg/L	
Chromium VI	✓		1	7196A	10	<dl< td=""><td><dl< td=""><td>323 μg/L</td><td></td></dl<></td></dl<>	<dl< td=""><td>323 μg/L</td><td></td></dl<>	323 μg/L	
Copper		✓	1	200.8	1	32.87	32.87	242 μg/L	
Iron		/	1	200.7	50	3920	3920	5,000 μg/L	
Lead		/	1	200.8	1	23.28	23.28	160 μg/L	
Mercury	/		1	245.1	0.2	<dl< td=""><td><dl< td=""><td>0.739 μg/L</td><td></td></dl<></td></dl<>	<dl< td=""><td>0.739 μg/L</td><td></td></dl<>	0.739 μg/L	
Nickel	✓		1	200.8	2	8.54	8.54	1,450 μg/L	
Selenium	✓		1	200.8	5	<dl< td=""><td><dl< td=""><td>235.8 μg/L</td><td></td></dl<></td></dl<>	<dl< td=""><td>235.8 μg/L</td><td></td></dl<>	235.8 μg/L	
Silver	/		1	200.8	0.4	<dl< td=""><td><dl< td=""><td>35.1 μg/L</td><td></td></dl<></td></dl<>	<dl< td=""><td>35.1 μg/L</td><td></td></dl<>	35.1 μg/L	
Zinc	/		1	200.8	10	51.36	51.36	420 μg/L	
Cyanide	/		1	121,4500	5	<dl< td=""><td><dl< td=""><td>178 mg/L</td><td></td></dl<></td></dl<>	<dl< td=""><td>178 mg/L</td><td></td></dl<>	178 mg/L	
B. Non-Halogenated VOCs									
Total BTEX	✓		1	128,624.1	1	<dl< td=""><td><dl< td=""><td>100 μg/L</td><td></td></dl<></td></dl<>	<dl< td=""><td>100 μg/L</td><td></td></dl<>	100 μg/L	
Benzene	✓		1	128,624.1	1	<dl< td=""><td><dl< td=""><td>5.0 μg/L</td><td></td></dl<></td></dl<>	<dl< td=""><td>5.0 μg/L</td><td></td></dl<>	5.0 μg/L	
1,4 Dioxane	✓		1	128,624.1	5	<dl< td=""><td><dl< td=""><td>200 μg/L</td><td></td></dl<></td></dl<>	<dl< td=""><td>200 μg/L</td><td></td></dl<>	200 μg/L	
Acetone	V		1	128,624.1	10	<dl< td=""><td><dl< td=""><td>7.97 mg/L</td><td></td></dl<></td></dl<>	<dl< td=""><td>7.97 mg/L</td><td></td></dl<>	7.97 mg/L	
Phenol	/		1	128,625.1	30	<dl< td=""><td><dl< td=""><td>1,080 μg/L</td><td></td></dl<></td></dl<>	<dl< td=""><td>1,080 μg/L</td><td></td></dl<>	1,080 μg/L	

	Known	Known		_		In	fluent	Effluent Lin	nitations
Parameter	or believed absent	or believed present	# of samples	Test method (#)	Detection limit (µg/l)	Daily maximum (µg/l)	Daily average (µg/l)	TBEL	WQBEL
C. Halogenated VOCs									
Carbon Tetrachloride	V		1	128,624.1	1	<dl< td=""><td><dl< td=""><td>4.4 μg/L</td><td></td></dl<></td></dl<>	<dl< td=""><td>4.4 μg/L</td><td></td></dl<>	4.4 μg/L	
1,2 Dichlorobenzene	✓		1	128,624.1	5	<dl< td=""><td><dl< td=""><td>600 μg/L</td><td></td></dl<></td></dl<>	<dl< td=""><td>600 μg/L</td><td></td></dl<>	600 μg/L	
1,3 Dichlorobenzene	~		1	128,624.1	5	<dl< td=""><td><dl< td=""><td>320 μg/L</td><td></td></dl<></td></dl<>	<dl< td=""><td>320 μg/L</td><td></td></dl<>	320 μg/L	
1,4 Dichlorobenzene	V		1	128,624.1	5	<dl< td=""><td><dl< td=""><td>5.0 μg/L</td><td></td></dl<></td></dl<>	<dl< td=""><td>5.0 μg/L</td><td></td></dl<>	5.0 μg/L	
Total dichlorobenzene	✓		1	128,624.1	5	<dl< td=""><td><dl< td=""><td>763 μg/L in NH</td><td></td></dl<></td></dl<>	<dl< td=""><td>763 μg/L in NH</td><td></td></dl<>	763 μg/L in NH	
1,1 Dichloroethane	✓		1	128,624.1	1.5	<dl< td=""><td><dl< td=""><td>70 μg/L</td><td></td></dl<></td></dl<>	<dl< td=""><td>70 μg/L</td><td></td></dl<>	70 μg/L	
1,2 Dichloroethane	V		1	128,624.1	1.5	<dl< td=""><td><dl< td=""><td>5.0 μg/L</td><td></td></dl<></td></dl<>	<dl< td=""><td>5.0 μg/L</td><td></td></dl<>	5.0 μg/L	
1,1 Dichloroethylene	✓		1	128,624.1	1	<dl< td=""><td><dl< td=""><td>3.2 μg/L</td><td></td></dl<></td></dl<>	<dl< td=""><td>3.2 μg/L</td><td></td></dl<>	3.2 μg/L	
Ethylene Dibromide	✓		0					0.05 μg/L	
Methylene Chloride	/		1	128,624.1	1	<dl< td=""><td><dl< td=""><td>4.6 μg/L</td><td></td></dl<></td></dl<>	<dl< td=""><td>4.6 μg/L</td><td></td></dl<>	4.6 μg/L	
1,1,1 Trichloroethane	✓		1	128,624.1	2	<dl< td=""><td><dl< td=""><td>200 μg/L</td><td></td></dl<></td></dl<>	<dl< td=""><td>200 μg/L</td><td></td></dl<>	200 μg/L	
1,1,2 Trichloroethane	✓		1	128,624.1	1.5	<dl< td=""><td><dl< td=""><td>5.0 μg/L</td><td></td></dl<></td></dl<>	<dl< td=""><td>5.0 μg/L</td><td></td></dl<>	5.0 μg/L	
Trichloroethylene	/		1	128,624.1	1	<dl< td=""><td><dl< td=""><td>5.0 μg/L</td><td></td></dl<></td></dl<>	<dl< td=""><td>5.0 μg/L</td><td></td></dl<>	5.0 μg/L	
Tetrachloroethylene	✓		1	128,624.1	1	<dl< td=""><td><dl< td=""><td>5.0 μg/L</td><td></td></dl<></td></dl<>	<dl< td=""><td>5.0 μg/L</td><td></td></dl<>	5.0 μg/L	
cis-1,2 Dichloroethylene	✓		1	128,624.1	1	<dl< td=""><td><dl< td=""><td>70 μg/L</td><td></td></dl<></td></dl<>	<dl< td=""><td>70 μg/L</td><td></td></dl<>	70 μg/L	
Vinyl Chloride	V		1	128,624.1	1	<dl< td=""><td><dl< td=""><td>2.0 μg/L</td><td></td></dl<></td></dl<>	<dl< td=""><td>2.0 μg/L</td><td></td></dl<>	2.0 μg/L	
D. Non-Halogenated SVOC	7.0								
Total Phthalates	<u> </u>		1	129,625.1	0.1	<dl< td=""><td><dl< td=""><td>190 μg/L</td><td></td></dl<></td></dl<>	<dl< td=""><td>190 μg/L</td><td></td></dl<>	190 μg/L	
Diethylhexyl phthalate	~		1	129,625.1	5	<dl< td=""><td><dl< td=""><td>101 μg/L</td><td></td></dl<></td></dl<>	<dl< td=""><td>101 μg/L</td><td></td></dl<>	101 μg/L	
Total Group I PAHs	✓		1	129,625.1	5	<dl< td=""><td><dl< td=""><td>1.0 μg/L</td><td></td></dl<></td></dl<>	<dl< td=""><td>1.0 μg/L</td><td></td></dl<>	1.0 μg/L	
Benzo(a)anthracene	V		1	129,625.1	0.1	<dl< td=""><td><dl< td=""><td>, ,</td><td></td></dl<></td></dl<>	<dl< td=""><td>, ,</td><td></td></dl<>	, ,	
Benzo(a)pyrene	/		1	129,625.1	0.1	<dl< td=""><td><dl< td=""><td> </td><td></td></dl<></td></dl<>	<dl< td=""><td> </td><td></td></dl<>		
Benzo(b)fluoranthene	V		1	129,625.1	0.1	<dl< td=""><td><dl< td=""><td>] </td><td></td></dl<></td></dl<>	<dl< td=""><td>] </td><td></td></dl<>]	
Benzo(k)fluoranthene	V		1	129,625.1	0.1	<dl< td=""><td><dl< td=""><td>As Total PAHs</td><td></td></dl<></td></dl<>	<dl< td=""><td>As Total PAHs</td><td></td></dl<>	As Total PAHs	
Chrysene	V		1	129,625.1	0.1	<dl< td=""><td><dl< td=""><td>1</td><td></td></dl<></td></dl<>	<dl< td=""><td>1</td><td></td></dl<>	1	
Dibenzo(a,h)anthracene	V		1	129,625.1	0.1	<dl< td=""><td><dl< td=""><td> </td><td></td></dl<></td></dl<>	<dl< td=""><td> </td><td></td></dl<>		
Indeno(1,2,3-cd)pyrene	/		1	129,625.1	0.1	<dl< td=""><td><dl< td=""><td>7 </td><td></td></dl<></td></dl<>	<dl< td=""><td>7 </td><td></td></dl<>	7	

	Known	Known				In	fluent	Effluent Lin	nitations
Parameter	or believed absent	or believed present	# of samples	Test method (#)	Detection limit (µg/l)	Daily maximum (µg/l)	Daily average (µg/l)	TBEL	WQBEL
Total Group II PAHs	V		1	129,625.1	0.1	<dl< td=""><td><dl< td=""><td>100 μg/L</td><td></td></dl<></td></dl<>	<dl< td=""><td>100 μg/L</td><td></td></dl<>	100 μg/L	
Naphthalene	V		1	129,625.1	0.1	<dl< td=""><td><dl< td=""><td>20 μg/L</td><td></td></dl<></td></dl<>	<dl< td=""><td>20 μg/L</td><td></td></dl<>	20 μg/L	
E. Halogenated SVOCs									
Total PCBs	V		1	127,608.3	0.2	<dl< td=""><td><dl< td=""><td>0.000064 μg/L</td><td></td></dl<></td></dl<>	<dl< td=""><td>0.000064 μg/L</td><td></td></dl<>	0.000064 μg/L	
Pentachlorophenol	V		1	129,625.1	1	<dl< td=""><td><dl< td=""><td>1.0 μg/L</td><td></td></dl<></td></dl<>	<dl< td=""><td>1.0 μg/L</td><td></td></dl<>	1.0 μg/L	
F. Fuels Parameters									
Total Petroleum Hydrocarbons	~		1	74.1664A	4.0	<dl< td=""><td><dl< td=""><td>5.0 mg/L</td><td></td></dl<></td></dl<>	<dl< td=""><td>5.0 mg/L</td><td></td></dl<>	5.0 mg/L	
Ethanol	V		1	1671A	20	<dl< td=""><td><dl< td=""><td>Report mg/L</td><td></td></dl<></td></dl<>	<dl< td=""><td>Report mg/L</td><td></td></dl<>	Report mg/L	
Methyl-tert-Butyl Ether	✓		1	128,624.1	10	<dl< td=""><td><dl< td=""><td>70 μg/L</td><td></td></dl<></td></dl<>	<dl< td=""><td>70 μg/L</td><td></td></dl<>	70 μg/L	
tert-Butyl Alcohol	'		1	128,624.1	100	<dl< td=""><td><dl< td=""><td>120 μg/L in MA 40 μg/L in NH</td><td></td></dl<></td></dl<>	<dl< td=""><td>120 μg/L in MA 40 μg/L in NH</td><td></td></dl<>	120 μg/L in MA 40 μg/L in NH	
tert-Amyl Methyl Ether	'		1	128,624.1	20	<dl< td=""><td><dl< td=""><td>90 μg/L in MA 140 μg/L in NH</td><td></td></dl<></td></dl<>	<dl< td=""><td>90 μg/L in MA 140 μg/L in NH</td><td></td></dl<>	90 μg/L in MA 140 μg/L in NH	
Other (i.e., pH, temperatur	re, hardness,	salinity, LC	C50, addition	nal pollutar	nts present);	if so, specify:			
pH - Influent		✓	1	121,4500		7.6	7.6		
hardness - Influent		'	1	3005A		194	194		

E. Treatment system information

1. Indicate the type(s) of treatment that will be applied to effluent prior to discharge: (check all that apply)	
□ Adsorption/Absorption □ Advanced Oxidation Processes □ Air Stripping □ Granulated Activated Carbon ("GAC")/Liquid Phase Carbon Adsorption □ Ion Exchange □ Precipitation/Coagulation/Flocculation ■ Separation/Filtration □ Other; if so, specify:	
2. Provide a written description of all treatment system(s) or processes that will be applied to the effluent prior to discharge. Settling tank and bag filters	
Identify each major treatment component (check any that apply): ■ Fractionation tanks □ Equalization tank □ Oil/water separator □ Mechanical filter □ Media filter □ Chemical feed tank □ Air stripping unit ■ Bag filter □ Other; if so, specify:	
Indicate if either of the following will occur (check any that apply): □ Chlorination □ De-chlorination	
3. Provide the design flow capacity in gallons per minute (gpm) of the most limiting component. Indicate the most limiting component: Settling tank Is use of a flow meter feasible? (check one): ■ Yes □ No, if so, provide justification:	100
Provide the proposed maximum effluent flow in gpm.	100
Provide the average effluent flow in gpm.	50
If Activity Category IV applies, indicate the estimated total volume of water that will be discharged:	N/A
4. Has the operator attached a schematic of flow in accordance with the instructions in E, above? (check one): ■ Yes □ No	


F. Chemical and additive information

1. Indicate the type(s) of chemical or additive that will be applied to effluent prior to discharge or that may otherwise be present in the discharge(s): (check all that apply)
□ Algaecides/biocides □ Antifoams □ Coagulants □ Corrosion/scale inhibitors □ Disinfectants □ Flocculants □ Neutralizing agents □ Oxidants □ Oxygen □
scavengers □ pH conditioners □ Bioremedial agents, including microbes □ Chlorine or chemicals containing chlorine □ Other; if so, specify:
2. Provide the following information for each chemical/additive, using attachments, if necessary:
a. Product name, chemical formula, and manufacturer of the chemical/additive;
b. Purpose or use of the chemical/additive or remedial agent;
c. Material Safety Data Sheet (MSDS) and Chemical Abstracts Service (CAS) Registry number for each chemical/additive;
d. The frequency (hourly, daily, etc.), duration (hours, days), quantity (maximum and average), and method of application for the chemical/additive;
e. Any material compatibility risks for storage and/or use including the control measures used to minimize such risks; and
f. If available, the vendor's reported aquatic toxicity (NOAEL and/or LC50 in percent for aquatic organism(s)).
3. Has the operator attached an explanation which demonstrates that the addition of such chemicals/additives may be authorized under this general permit in accordance
with the instructions in F, above? (check one): Yes No; if no, has the operator attached data that demonstrates each of the 126 priority pollutants in CWA Section
307(a) and 40 CFR Part 423.15(j)(1) are non-detect in discharges with the addition of the proposed chemical/additive?
(check one): ■ Yes □ No
G. Endangered Species Act eligibility determination
1. Indicate under which criterion the discharge(s) is eligible for coverage under this general permit:
■ FWS Criterion A: No endangered or threatened species or critical habitat are in proximity to the discharges or related activities or come in contact with the "action area".
□ FWS Criterion B : Formal or informal consultation with the FWS under section 7 of the ESA resulted in either a no jeopardy opinion (formal consultation) or a written concurrence by FWS on a finding that the discharges and related activities are "not likely to adversely affect" listed species or critical habitat
(informal consultation). Has the operator completed consultation with FWS? (check one): \Box Yes \Box No; if no, is consultation underway? (check one): \Box
Yes □ No
□ FWS Criterion C : Using the best scientific and commercial data available, the effect of the discharges and related activities on listed species and critical habitat have been evaluated. Based on those evaluations, a determination is made by EPA, or by the operator and affirmed by EPA, that the discharges and related activities will have "no effect" on any federally threatened or endangered listed species or designated critical habitat under the jurisdiction of the

□ NMFS Criterion : A determination made by EPA is affirmed by the operator that the discharges and related activities will have "no effect" or are "not likely to adversely affect" any federally threatened or endangered listed species or critical habitat under the jurisdiction of NMFS and will not result in any take of
listed species. Has the operator previously completed consultation with NMFS? (check one): ■ Yes □ No
2. Has the operator attached supporting documentation of ESA eligibility in accordance with the instructions in Appendix I, and G, above? (check one): ■ Yes □ No
Does the supporting documentation include any written concurrence or finding provided by the Services? (check one): ■ Yes □ No; if yes, attach.
H. National Historic Preservation Act eligibility determination
1. Indicate under which criterion the discharge(s) is eligible for coverage under this general permit:
■ Criterion A: No historic properties are present. The discharges and discharge-related activities (e.g., BMPs) do not have the potential to cause effects on historic properties.
☐ Criterion B: Historic properties are present. Discharges and discharge related activities do not have the potential to cause effects on historic properties.
☐ Criterion C : Historic properties are present. The discharges and discharge-related activities have the potential to have an effect or will have an adverse effect on historic properties.
2. Has the operator attached supporting documentation of NHPA eligibility in accordance with the instructions in H, above? (check one): ☐ Yes ■ No
Does the supporting documentation include any written agreement with the State Historic Preservation Officer (SHPO), Tribal Historic Preservation Officer (TPHO), or other tribal representative that outlines measures the operator will carry out to mitigate or prevent any adverse effects on historic properties? (check one): Yes No
I. Supplemental information
Describe any supplemental information being provided with the NOI. Include attachments if required or otherwise necessary.
Has the operator attached data, including any laboratory case narrative and chain of custody used to support the application? (check one): ■ Yes □ No
Has the operator attached the certification requirement for the Best Management Practices Plan (BMPP)? (check one): ■ Yes □ No

J. Certification requirement

I certify under penalty of law that this document and all attachments were prepared under my direction or supervision in that qualified personnel properly gathered and evaluated the information submitted. Based on my inquiry of the person of persons directly responsible for gathering the information, the information submitted is, to the best of my knowledge and no personal knowledge that the information submitted is other than true, accurate, and complete. I am aware that there information, including the possibility of fine and imprisonment for knowing violations.	or persons who manage the system, or those belief, true, accurate, and complete. I have
A BMPP Statement has been implemented in accordance with good BMPP certification statement: Part 2.5 of the RGP and shall be implemented upon initiation of discount in the statement of the part 2.5 of the RGP and shall be implemented upon initiation of discount in the statement of the part 2.5 of the RGP and shall be implemented upon initiation of discount in the part 2.5 of the RGP and shall be implemented upon initiation of discount in the part 2.5 of the RGP and shall be implemented upon initiation of discount in the part 2.5 of the RGP and shall be implemented upon initiation of discount in the part 2.5 of the RGP and shall be implemented upon initiation of discount in the part 2.5 of the RGP and shall be implemented upon initiation of discount in the part 2.5 of the RGP and shall be implemented upon initiation of discount in the part 2.5 of the RGP and shall be implemented upon initiation of discount in the part 2.5 of the RGP and shall be implemented upon initiation of the RGP and shall be implemented upon the RGP and shall be implement	
Notification provided to the appropriate State, including a copy of this NOI, if required.	Check one: Yes ☒ No □
Notification provided to the municipality in which the discharge is located, including a copy of this NOI, if requested.	Check one: Yes ☒ No □
Notification provided to the owner of a private or municipal storm sewer system, if such system is used for site discharges, including a copy of this NOI, if requested. Permission obtained from the owner of a private or municipal storm sewer system, if such system is used for site	Check one: Yes ☒ No ☐ NA ☐
discharges. If yes, attach additional conditions. If no, attach explanation and timeframe for obtaining permission.	Check one: Yes □ No □ NA 🛛
Notification provided to the owner/operator of the area associated with activities covered by an additional discharge permit(s). Additional discharge permit is (check one): □ RGP □ DGP □ CGP □ MSGP □ Individual NPDES permit □ Other; if so, specify:	Check one: Yes □ No □ NA 🛛
Signature: No Jupo	Oate: 01.05.22
Print Name and Title: Peter Georgantas	

DEWATERING DISCHARGE PERMIT APPLICATION

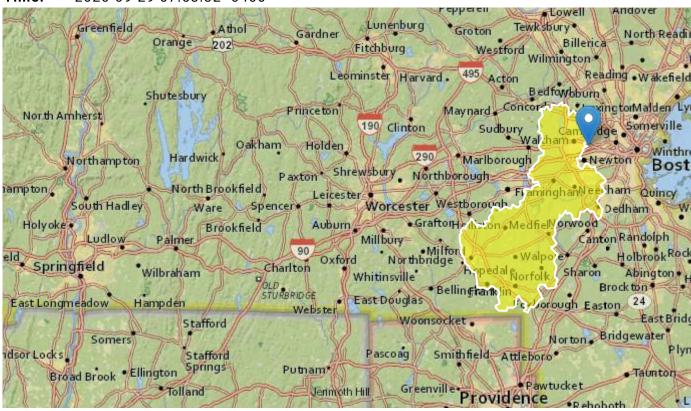
OWNER / AUTHORIZED APPLICAN	NT PROVIDE INFO	ORMATION HERE:				
Company Name: The Wash El L	LC	Address: 1395-140	5 Wash	ington Street	t	
Phone Number: <u>617-941-4800</u>		Fax number:				
Contact person name: Peter Geor	gantas	Title: Principal				
Cell number: 617-901-7700		Email address: peter	@livege	organtas.cor	n	
Permit Request (check one): 🗹 New	Application	Permit Extension	Other (Sp	ecify):		
Owner's Information (if different fr Owner of property being dewatered:		_LC				
Owner's mailing address: 22 Brimi			Pho	ne number: 617	-941-4800)
Location of Discharge & Proposed	Treatment Syster	m(s):				
Street number and name: 1395-1	405 Washingto	on Street Neigh	borhood <u>S</u>	South End		
Discharge is to a: ☐ Sanitary Sewer		ewer 🗹 Storm Drain	□ Other ((specify):		
Describe Proposed Pre-Treatment Sys	stem(s):Frac Ta	nk, Bag Filters				
BWSC Outfall No. MA70-02 CS		Waters Bass River				
Temporary Discharges (Provide Anti ☐ Groundwater Remediation ☐ Utility/Manhole Pumping ✓ Accumulated Surface Water		charge): From Tank Removal/Installatio Test Pipe Hydrogeologic Testing	on	2022 To ✓ Foundation Excava □ Trench Excava	cavation tion	/01/2023
Permanent Discharges □ Foundation Drainage □ Accumulated Surface Water □ Non-contact/Uncontaminated Process		Crawl Space/Footing Dra Non-contact/Uncontamina Other;	in ated Coolin	g		
E 9 A E	ote. All discharges to the sewer, attach a copy of ttach a copy of EPA's led or revoked if applications where and Sewer ngineering Customer Serventen attention avenue, Buttn: Matthew Tuttle, Engemail: tuttlemp@bwsc. hone: 617-989-7204	ne Commission's sewer system MWRA's Sewer Use Dischar NPDES Permit or NOI applicant fails to obtain the necessar Commission ervices oston, MA 02119 gineering Customer Service org Fax: 617-989-7716	m will be ass rge permit or cation, or NP.	essed current sewer c application. DES Permit exclusion	charges.	
Signature of Authorized Representative for	Property Owner:	No Gupto		Dat	e:	

APPENDIX C:

DEP PRIORITY RESOURCES MAP USGS STREAMFLOW STATISTICS REPORT DILUTION FACTOR AND WQBEL CALCULATIONS ADDITIONAL NOI SUPPORT INFORMATION

MassDEP - Bureau of Waste Site Cleanup Phase 1 Site Assessment Map: 500 feet & 0.5 Mile Radii The information shown is the best available at the date of printing. However, it may be incomplete. The Site Information[.] 1395-1405 WASHINGTON STREET responsible party and LSP are ultimately responsible 1395-1405 WASHINGTON STREET BOSTON. MA for ascertaining the true conditions surrounding the site. Metadata for data layers shown on this map can NAD83 UTM Meters: 4689740mN , 329451mE (Zone: 19) November 18, 2021 be found at: Department of Environmental Protection https://www.mass.gov/orgs/massgis-bureau-of-geographic-information. STREET England College of Opto **Emerson College** DOCK SQUARE State Collec PROVIDENCE STREET PUBLIC ALLEY NO 427 BAY VILLAGE Tufts Univ HESTER STREET WARRENTON PL П ASHINGTON STREET BOYLSTON STREET Adult Academy er School Boston Architectural College AMP-RT 28 SB (CLARENDON ST Josiah Qui PAUL PLACE of Music vatory at Berklee EMERALD COURT TRAVELER STREET Kinley School GILLETTE PARK Willia WEST RUTLAN REENBAUM STREET ATHENS ST PAUL SULLIVAN WAY PERRY STREE SAVOY STREET in Baills SH KER ST Cathedral High School Blackstone Scho velopm ntal Cente FIFTH STREET Colosi BYST! LBANY STREET n Universi Hurley School SEVERTH STR ton Medical Center Boston University School of Me DEWITT DRIVE Boston Medical Center - Menino P H ALGER STREET Ruggles A sisted Living DING STREET City n a Hill Charter Public School II 500 m matics and Science ACE ALTHER STREET 1000 ft LACE Orchard Gardens School Roads: Limited Access, Divided, Other Hwy, Major Road, Minor Road, Track, Trail PWS Protection Areas: Zone II, IWPA, Zone A Hydrography: Open Water, PWS Reservoir, Tidal Flat Boundaries: Town, County, DEP Region; Train; Powerline; Pipeline; Aqueduct Wetlands: Freshwater, Saltwater, Cranberry Bog ... Basins: Major, PWS; Streams: Perennial, Intermittent, Man Made Shore, Dam FEMA 100yr Floodplain; Protected Open Space; ACEC .. Est. Rare Wetland Wildlife Hab; Vernal Pool: Cert., Potential Aquifers: Medium Yield, High Yield, EPA Sole Source..... Solid Waste Landfill; PWS: Com.GW,SW, Emerg., Non-Com. Non Potential Drinking Water Source Area: Medium, High (Yield)...

9/29/2020 StreamStats


StreamStats Report - Riverdale on the Charles

Region ID: MA

Workspace ID: MA20200929115313021000

Clicked Point (Latitude, Longitude): 42.36736, -71.19591

Time: 2020-09-29 07:53:32 -0400

Parameter Code	Parameter Description	Value	Unit
Code	raidilleter bescription	Value	Ollit
DRNAREA	Area that drains to a point on a stream	266	square miles
BSLDEM250	Mean basin slope computed from 1:250K DEM	2.341	percent
DRFTPERSTR	Area of stratified drift per unit of stream length	0.22	square mile per mile
MAREGION	Region of Massachusetts 0 for Eastern 1 for Western	0	dimensionless

9/29/2020 StreamStats

Low-Flow Statistics Parameters[Statewide Low Flow WRIR00 4135]

Parameter Code	Parameter Name	Value	Units	Min Limit	Max Limit
DRNAREA	Drainage Area	266	square miles	1.61	149
BSLDEM250	Mean Basin Slope from 250K DEM	2.341	percent	0.32	24.6
DRFTPERSTR	Stratified Drift per Stream Length	0.22	square mile per mile	0	1.29
MAREGION	Massachusetts Region	0	dimensionless	0	1

Low-Flow Statistics Disclaimers[Statewide Low Flow WRIR00 4135]

One or more of the parameters is outside the suggested range. Estimates were extrapolated with unknown errors

Low-Flow Statistics Flow Report[Statewide Low Flow WRIR00 4135]

Statistic	Value	Unit
7 Day 2 Year Low Flow	45.1	ft^3/s
7 Day 10 Year Low Flow	22.2	ft^3/s

Low-Flow Statistics Citations

Ries, K.G., III,2000, Methods for estimating low-flow statistics for Massachusetts streams: U.S. Geological Survey Water Resources Investigations Report 00-4135, 81 p. (http://pubs.usgs.gov/wri/wri004135/)

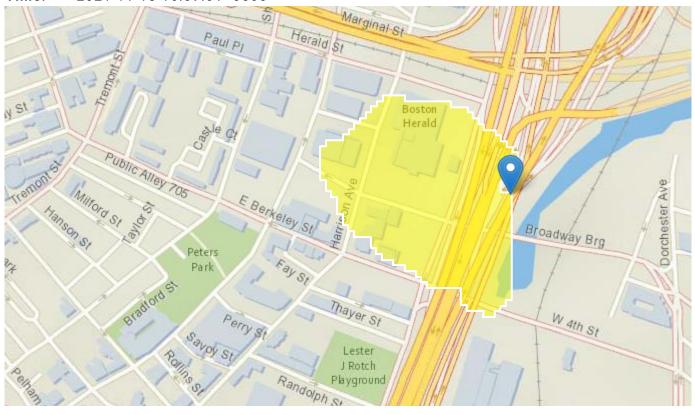
USGS Data Disclaimer: Unless otherwise stated, all data, metadata and related materials are considered to satisfy the quality standards relative to the purpose for which the data were collected. Although these data and associated metadata have been reviewed for accuracy and completeness and approved for release by the U.S. Geological Survey (USGS), no warranty expressed or implied is made regarding the display or utility of the data for other purposes, nor on all computer systems, nor shall the act of distribution constitute any such warranty.

USGS Software Disclaimer: This software has been approved for release by the U.S. Geological Survey (USGS). Although the software has been subjected to rigorous review, the USGS reserves the right to update the software as needed pursuant to further analysis and review. No warranty, expressed or implied, is made by the USGS or the U.S. Government as to the functionality of the software and related material nor shall the fact of release constitute any such warranty. Furthermore, the software is released on condition that neither the USGS nor the U.S. Government shall be held liable for any damages resulting from its authorized or unauthorized use.

9/29/2020 StreamStats

USGS Product Names Disclaimer: Any use of trade, firm, or product names is for descriptive purposes only and does not imply endorsement by the U.S. Government.

Application Version: 4.4.0


StreamStats Report

Region ID: MA

Workspace ID: MA20211118210841375000

Clicked Point (Latitude, Longitude): 42.34440, -71.06073

Time: 2021-11-18 16:09:01 -0500

1395-1405 Washington Street, Boston MA

Basin Characteristics			
Parameter Code	Parameter Description	Value	Unit
DRNAREA	Area that drains to a point on a stream	0.0351	square miles
BSLDEM250	Mean basin slope computed from 1:250K DEM	0.227	percent
DRFTPERSTR	Area of stratified drift per unit of stream length	-100000	square mile per mile
MAREGION	Region of Massachusetts 0 for Eastern 1 for Western	0	dimensionless

Parameter Code	Parameter Name	Value	Units	Min Limit	Max Limit
DRNAREA	Drainage Area	0.0351	square miles	1.61	149
BSLDEM250	Mean Basin Slope from 250K DEM	0.227	percent	0.32	24.6
DRFTPERSTR	Stratified Drift per Stream Length	-100000	square mile per mile	0	1.29
MAREGION	Massachusetts Region	0	dimensionless	0	1
Low-Flow Statistic	cs Flow Report [Statewide Low Flow V	VRIR00 413	5]		
Statistic	Value Unit				

USGS Data Disclaimer: Unless otherwise stated, all data, metadata and related materials are considered to satisfy the quality standards relative to the purpose for which the data were collected. Although these data and associated metadata have been reviewed for accuracy and completeness and approved for release by the U.S. Geological Survey (USGS), no warranty expressed or implied is made regarding the display or utility of the data for other purposes, nor on all computer systems, nor shall the act of distribution constitute any such warranty.

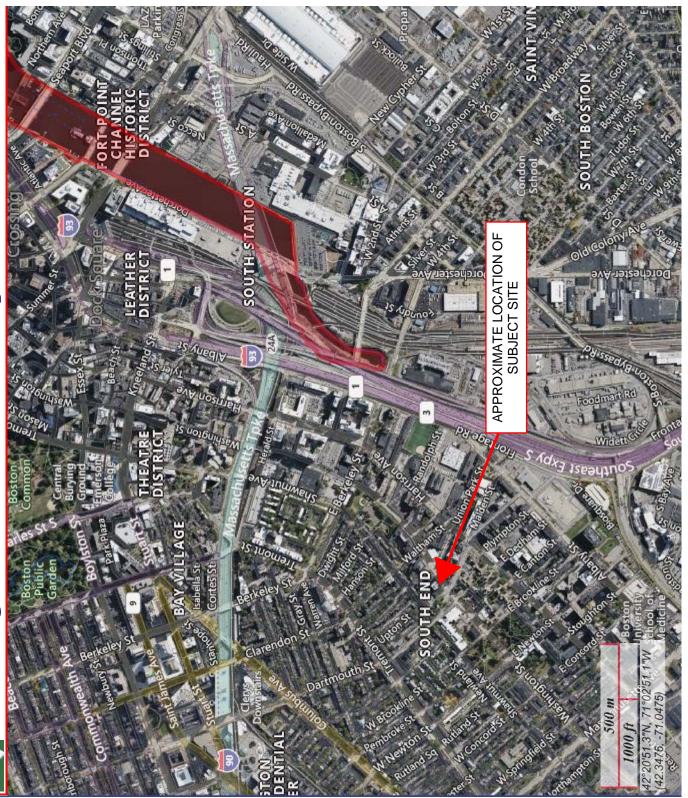
USGS Software Disclaimer: This software has been approved for release by the U.S. Geological Survey (USGS). Although the software has been subjected to rigorous review, the USGS reserves the right to update the software as needed pursuant to further analysis and review. No warranty, expressed or implied, is made by the USGS or the U.S. Government as to the functionality of the software and related material nor shall the fact of release constitute any such warranty. Furthermore, the software is released on condition that neither the USGS nor the U.S. Government shall be held liable for any damages resulting from its authorized or unauthorized use.

USGS Product Names Disclaimer: Any use of trade, firm, or product names is for descriptive purposes only and does not imply endorsement by the U.S. Government.

Application Version: 4.6.2

StreamStats Services Version: 1.2.22

NSS Services Version: 2.1.2



MassDEP Online Map Viewer 2014 Integrated List of Waters Map

Helpful Links:

The Clean Water Act

MassDEP Total Maximum Daily Loads

Massachusetts Cultural Resource Information System

MHC Home | MACRIS Home

For more information about this page and how to use it, click here.

Inventory No: BOS.13050

Historic Name: Saint George Building

Common Name: Lebanon Baking Company

Address: 1387-1393 Washington St

City/Town: Boston
Village/Neighborhood: South End

Local No:

Year Constructed: C 1873

Architect(s):

Architectural Style(s): Italianate; Panel Brick

Use(s): Abandoned or Vacant; Apartment House; Bakery; Commercial

Block; Market or Grocery Store

Significance: Architecture; Commerce; Ethnic Heritage; Industry

Area(s):

BOS.AB: South End District

BOS.AC: South End Landmark District

Designation(s): Nat'l Register District (05/08/1973); Local Historic District (11/14/1983)

Roof: Tar, Built-up

Building Material(s): Wall: Aluminum; Brick; Sheet Metal

Foundation: Stone, Cut

New Search

Previous

MHC Home | MACRIS Home

DEMOLISHED

Massachusetts Cultural Resource Information System MACRIS

MHC Home | MACRIS Home

For more information about this page and how to use it, click here.

Inventory No: BOS.13051 BOS.13051 Arlington, The

Common Name:

Address: 1409-1417 Washington St

City/Town:BostonVillage/Neighborhood:South EndLocal No:03-6978Year Constructed:R 1890

Architect(s):

Architectural Style(s): Colonial Revival

Use(s): Apartment House; Commercial Block

Significance: Architecture; Commerce

Area(s): BOS.AB: South End District

BOS.AC: South End Landmark District

Designation(s): Nat'l Register District (05/08/1973); Local Historic District (11/14/1983)

Roof: Tar, Built-up

Building Material(s): Wall: Brick; Cast Iron; Cast Stone; Stone, Cut

Foundation: Stone, Cut

New Search

Previous

MHC Home

MACRIS Home

United States Department of the Interior

FISH AND WILDLIFE SERVICE

New England Ecological Services Field Office 70 Commercial Street, Suite 300 Concord, NH 03301-5094 Phone: (603) 223-2541 Fax: (603) 223-0104

http://www.fws.gov/newengland

In Reply Refer To: December 10, 2021

Consultation Code: 05E1NE00-2022-SLI-0787

Event Code: 05E1NE00-2022-E-02773 Project Name: 1395-1405 Washington Street

Subject: List of threatened and endangered species that may occur in your proposed project

location or may be affected by your proposed project

To Whom It May Concern:

The enclosed species list identifies threatened, endangered, proposed and candidate species, as well as proposed and final designated critical habitat, that may occur within the boundary of your proposed project and/or may be affected by your proposed project. The species list fulfills the requirements of the U.S. Fish and Wildlife Service (Service) under section 7(c) of the Endangered Species Act (Act) of 1973, as amended (16 U.S.C. 1531 *et seq.*).

New information based on updated surveys, changes in the abundance and distribution of species, changed habitat conditions, or other factors could change this list. Please feel free to contact us if you need more current information or assistance regarding the potential impacts to federally proposed, listed, and candidate species and federally designated and proposed critical habitat. Please note that under 50 CFR 402.12(e) of the regulations implementing section 7 of the Act, the accuracy of this species list should be verified after 90 days. This verification can be completed formally or informally as desired. The Service recommends that verification be completed by visiting the ECOS-IPaC website at regular intervals during project planning and implementation for updates to species lists and information. An updated list may be requested through the ECOS-IPaC system by completing the same process used to receive the enclosed list.

The purpose of the Act is to provide a means whereby threatened and endangered species and the ecosystems upon which they depend may be conserved. Under sections 7(a)(1) and 7(a)(2) of the Act and its implementing regulations (50 CFR 402 *et seq.*), Federal agencies are required to utilize their authorities to carry out programs for the conservation of threatened and endangered species and to determine whether projects may affect threatened and endangered species and/or designated critical habitat.

A Biological Assessment is required for construction projects (or other undertakings having similar physical impacts) that are major Federal actions significantly affecting the quality of the human environment as defined in the National Environmental Policy Act (42 U.S.C. 4332(2) (c)). For projects other than major construction activities, the Service suggests that a biological evaluation similar to a Biological Assessment be prepared to determine whether the project may affect listed or proposed species and/or designated or proposed critical habitat. Recommended contents of a Biological Assessment are described at 50 CFR 402.12.

If a Federal agency determines, based on the Biological Assessment or biological evaluation, that listed species and/or designated critical habitat may be affected by the proposed project, the agency is required to consult with the Service pursuant to 50 CFR 402. In addition, the Service recommends that candidate species, proposed species and proposed critical habitat be addressed within the consultation. More information on the regulations and procedures for section 7 consultation, including the role of permit or license applicants, can be found in the "Endangered Species Consultation Handbook" at:

http://www.fws.gov/endangered/esa-library/pdf/TOC-GLOS.PDF

Please be aware that bald and golden eagles are protected under the Bald and Golden Eagle Protection Act (16 U.S.C. 668 *et seq.*), and projects affecting these species may require development of an eagle conservation plan

(http://www.fws.gov/windenergy/eagle_guidance.html). Additionally, wind energy projects should follow the wind energy guidelines (http://www.fws.gov/windenergy/) for minimizing impacts to migratory birds and bats.

Guidance for minimizing impacts to migratory birds for projects including communications towers (e.g., cellular, digital television, radio, and emergency broadcast) can be found at: http://www.fws.gov/migratorybirds/CurrentBirdIssues/Hazards/towers/towers.htm; http://www.towerkill.com; and http://www.fws.gov/migratorybirds/CurrentBirdIssues/Hazards/towers/comtow.html.

We appreciate your concern for threatened and endangered species. The Service encourages Federal agencies to include conservation of threatened and endangered species into their project planning to further the purposes of the Act. Please include the Consultation Tracking Number in the header of this letter with any request for consultation or correspondence about your project that you submit to our office.

Attachment(s):

Official Species List

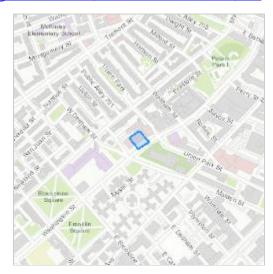
Official Species List

This list is provided pursuant to Section 7 of the Endangered Species Act, and fulfills the requirement for Federal agencies to "request of the Secretary of the Interior information whether any species which is listed or proposed to be listed may be present in the area of a proposed action".

This species list is provided by:

New England Ecological Services Field Office 70 Commercial Street, Suite 300 Concord, NH 03301-5094 (603) 223-2541

Project Summary


Consultation Code: 05E1NE00-2022-SLI-0787

Event Code: Some(05E1NE00-2022-E-02773)
Project Name: 1395-1405 Washington Street

Project Type: ** OTHER **
Project Description: redevelopment

Project Location:

Approximate location of the project can be viewed in Google Maps: https://www.google.com/maps/@42.34122875,-71.07040335587061,14z

Counties: Suffolk County, Massachusetts

Endangered Species Act Species

There is a total of 1 threatened, endangered, or candidate species on this species list.

Species on this list should be considered in an effects analysis for your project and could include species that exist in another geographic area. For example, certain fish may appear on the species list because a project could affect downstream species.

IPaC does not display listed species or critical habitats under the sole jurisdiction of NOAA Fisheries¹, as USFWS does not have the authority to speak on behalf of NOAA and the Department of Commerce.

See the "Critical habitats" section below for those critical habitats that lie wholly or partially within your project area under this office's jurisdiction. Please contact the designated FWS office if you have questions.

1. <u>NOAA Fisheries</u>, also known as the National Marine Fisheries Service (NMFS), is an office of the National Oceanic and Atmospheric Administration within the Department of Commerce.

Insects

NAME

Monarch Butterfly Danaus plexippus

Candidate

No critical habitat has been designated for this species. Species profile: https://ecos.fws.gov/ecp/species/9743

Critical habitats

THERE ARE NO CRITICAL HABITATS WITHIN YOUR PROJECT AREA UNDER THIS OFFICE'S JURISDICTION.

Category 5 waters listed alphabetically by major watershed The 303(d) List – "Waters requiring a TMDL"

		•		-	VGH _	EPA TMDI
Water Body	Segment ID	Description	Size	Units	Impairment Impairment	No.
West River	MA51-12	From Upton WWTP discharge (NPDES:	9.40	Miles	(Non-Native Aquatic Plants*)	
		MA0100196), Upton to mouth at confluence		_	Cadmium	
		with the Blackstone River, Uxbridge			Chloride	
		(tillough former segments harmigum Foor MA51197, and West River Pond			Copper	
		MA51177).			Lead	
					Nutrient/Eutrophication Biological Indicators	
					pH, Low	
Woodbury Pond	MA51185	Sutton.	2.00	Acres	(Non-Native Aquatic Plants*)	
					Aquatic Plants (Macrophytes)	
Woolshop Pond	MA51186	Millbury.	5.00	Acres	(Non-Native Aquatic Plants*)	
				_	Aquatic Plants (Macrophytes)	
					Turbidity	
Boston Harbor (Proper)	(
Boston Harbor	MA70-01	The area defined by a line from the southerty tip of Deer Island to Boston	18.60	Square Miles	Cause Unknown (Contaminants in Fish and/or Shellfish)	
		Lighthouse on Little Brewster Island, then		<u>-</u>	Fecal Coliform	
		south to Point Allerton; across Hull and			PCBs In Fish Tissue	
		West guts; across the mouths of Quincy and Dorchester bays, Boston Inner Harbor				
		and Winthrop Bay (including President Roads and Nantasket Roads).				
Boston Inner Harbor	MA70-02	From the Mystic and Chelsea rivers,	2.56	Square	Cause Unknown (Contaminants in Fish and/or	
				2	Dissolved Oxygen	
		Boston (East Boston) (including Fort Point.		_	Entrepopular	
		Reserved and Little Mystic channels).		_	Ellielococcus	
				_	Fecal Colitorm	
					PCBs In Fish Tissue	
Dorchester Bay	MA70-03	From the mouth of the Neponset River, Boston/Quincy to the line between Head	3.46	Square Miles	Cause Unknown (Contaminants in Fish and/or Shellfish)	
		Island and the north side of Thompson			Enterococcus	
		Island and the line between the south point			Fecal Coliform	
		or I nompson Island, boston and Chapel Rocks, Quincy.			PCBs In Fish Tissue	
Hingham Bay	MA70-06	The area north of the mouth of the	96.0	Square	Cause Unknown (Contaminants in Fish and/or	
		west along the line between Nut Island and			Fecal Coliform	
		the south point of West Head, and on the		_	DOBo In Eich Ticouro	
		east side along a line from Prince Head just				
		east of Pig Rock to the mouth of the		_		

APPENDIX D: LABORATORY ANALYTICAL DATA – GROUNDWATER

ANALYTICAL REPORT

Lab Number: L2162279

Client: McPhail Associates

2269 Massachusetts Avenue

Cambridge, MA 02140

ATTN: Ambrose Donovan Phone: (617) 868-1420

Project Name: 1395-1405 WASHINGTON STREET

Project Number: 7075.9.00

Report Date: 11/18/21

The original project report/data package is held by Alpha Analytical. This report/data package is paginated and should be reproduced only in its entirety. Alpha Analytical holds no responsibility for results and/or data that are not consistent with the original.

Certifications & Approvals: MA (M-MA086), NH NELAP (2064), CT (PH-0574), IL (200077), ME (MA00086), MD (348), NJ (MA935), NY (11148), NC (25700/666), PA (68-03671), RI (LAO00065), TX (T104704476), VT (VT-0935), VA (460195), USDA (Permit #P330-17-00196).

Eight Walkup Drive, Westborough, MA 01581-1019 508-898-9220 (Fax) 508-898-9193 800-624-9220 - www.alphalab.com

Project Name: 1395-1405 WASHINGTON STREET

Project Number: 7075.9.00

Lab Number:

L2162279

Report Date:

11/18/21

Alpha Sample ID	Client ID	Matrix	Sample Location	Collection Date/Time	Receive Date
L2162279-01	GW	WATER	BOSTON, MA	11/11/21 14:45	11/11/21

Project Name: 1395-1405 WASHINGTON STREET Lab Number: L2162279

Project Number: 7075.9.00 Report Date: 11/18/21

Case Narrative

The samples were received in accordance with the Chain of Custody and no significant deviations were encountered during the preparation or analysis unless otherwise noted. Sample Receipt, Container Information, and the Chain of Custody are located at the back of the report.

Results contained within this report relate only to the samples submitted under this Alpha Lab Number and meet NELAP requirements for all NELAP accredited parameters unless otherwise noted in the following narrative. The data presented in this report is organized by parameter (i.e. VOC, SVOC, etc.). Sample specific Quality Control data (i.e. Surrogate Spike Recovery) is reported at the end of the target analyte list for each individual sample, followed by the Laboratory Batch Quality Control at the end of each parameter. Tentatively Identified Compounds (TICs), if requested, are reported for compounds identified to be present and are not part of the method/program Target Compound List, even if only a subset of the TCL are being reported. If a sample was re-analyzed or re-extracted due to a required quality control corrective action and if both sets of data are reported, the Laboratory ID of the re-analysis or re-extraction is designated with an "R" or "RE", respectively.

When multiple Batch Quality Control elements are reported (e.g. more than one LCS), the associated samples for each element are noted in the grey shaded header line of each data table. Any Laboratory Batch, Sample Specific % recovery or RPD value that is outside the listed Acceptance Criteria is bolded in the report. In reference to questions H (CAM) or 4 (RCP) when "NO" is checked, the performance criteria for CAM and RCP methods allow for some quality control failures to occur and still be within method compliance. In these instances, the specific failure is not narrated but noted in the associated QC Outlier Summary Report, located directly after the Case Narrative. QC information is also incorporated in the Data Usability Assessment table (Format 11) of our Data Merger tool, where it can be reviewed in conjunction with the sample result, associated regulatory criteria and any associated data usability implications.

Soil/sediments, solids and tissues are reported on a dry weight basis unless otherwise noted. Definitions of all data qualifiers and acronyms used in this report are provided in the Glossary located at the back of the report.

HOLD POLICY - For samples submitted on hold, Alpha's policy is to hold samples (with the exception of Air canisters) free of charge for 21 calendar days from the date the project is completed. After 21 calendar days, we will dispose of all samples submitted including those put on hold unless you have contacted your Alpha Project Manager and made arrangements for Alpha to continue to hold the samples. Air canisters will be disposed after 3 business days from the date the project is completed.

Please contact Project Management at 800-624-9220 with any questions.	

Project Name:1395-1405 WASHINGTON STREETLab Number:L2162279

Project Number: 7075.9.00 **Report Date:** 11/18/21

Case Narrative (continued)

Report Submission

November 18, 2021: This final report includes the results of all requested analyses.

November 18, 2021: This is a preliminary report.

The analysis of Ethanol was subcontracted. A copy of the laboratory report is included as an addendum.

Please note: This data is only available in PDF format and is not available on Data Merger.

Sample Receipt

The analyses performed were specified by the client.

I, the undersigned, attest under the pains and penalties of perjury that, to the best of my knowledge and belief and based upon my personal inquiry of those responsible for providing the information contained in this analytical report, such information is accurate and complete. This certificate of analysis is not complete unless this page accompanies any and all pages of this report.

Custen Walker Cristin Walker

Authorized Signature:

Title: Technical Director/Representative Date: 11/18/21

ALPHA

ORGANICS

VOLATILES

L2162279

Project Name: 1395-1405 WASHINGTON STREET

L2162279-01

BOSTON, MA

GW

Project Number: 7075.9.00

SAMPLE RESULTS

Date Collected: 11/11/21 14:45

Report Date: 11/18/21

Lab Number:

Date Received: 11/11/21 Field Prep: Not Specified

Sample Depth:

Sample Location:

Lab ID:

Client ID:

Matrix: Water Analytical Method: 128,624.1 Analytical Date: 11/15/21 13:37

Analyst: NLK

Parameter	Result	Qualifier Units	RL	MDL	Dilution Factor
Volatile Organics by GC/MS - Wes	stborough Lab				
Methylene chloride	ND	ug/l	1.0		1
1,1-Dichloroethane	ND	ug/l	1.5		1
Carbon tetrachloride	ND	ug/l	1.0		1
1,1,2-Trichloroethane	ND	ug/l	1.5		1
Tetrachloroethene	ND	ug/l	1.0		1
1,2-Dichloroethane	ND	ug/l	1.5		1
1,1,1-Trichloroethane	ND	ug/l	2.0		1
Benzene	ND	ug/l	1.0		1
Toluene	ND	ug/l	1.0		1
Ethylbenzene	ND	ug/l	1.0		1
Vinyl chloride	ND	ug/l	1.0		1
1,1-Dichloroethene	ND	ug/l	1.0		1
cis-1,2-Dichloroethene	ND	ug/l	1.0		1
Trichloroethene	ND	ug/l	1.0		1
1,2-Dichlorobenzene	ND	ug/l	5.0		1
1,3-Dichlorobenzene	ND	ug/l	5.0		1
1,4-Dichlorobenzene	ND	ug/l	5.0		1
p/m-Xylene	ND	ug/l	2.0		1
o-xylene	ND	ug/l	1.0		1
Xylenes, Total	ND	ug/l	1.0		1
Acetone	ND	ug/l	10		1
Methyl tert butyl ether	ND	ug/l	10		1
Tert-Butyl Alcohol	ND	ug/l	100		1
Tertiary-Amyl Methyl Ether	ND	ug/l	20		1

Project Name: Lab Number: 1395-1405 WASHINGTON STREET L2162279

Project Number: Report Date: 7075.9.00

11/18/21

SAMPLE RESULTS

Lab ID: Date Collected: 11/11/21 14:45 L2162279-01

Date Received: Client ID: GW 11/11/21 Sample Location: Field Prep: BOSTON, MA Not Specified

Sample Depth:

Parameter Result Qualifier Units RL MDL **Dilution Factor**

Volatile Organics by GC/MS - Westborough Lab

Surrogate	% Recovery	Qualifier	Acceptance Criteria	
Pentafluorobenzene	103		60-140	
Fluorobenzene	96		60-140	
4-Bromofluorobenzene	107		60-140	

L2162279

11/11/21 14:45

Project Name: 1395-1405 WASHINGTON STREET

Project Number: 7075.9.00

SAMPLE RESULTS

Report Date:

Lab Number:

Date Collected:

11/18/21

Lab ID: L2162279-01

Client ID: GW

Sample Location: BOSTON, MA Date Received: 11/11/21 Field Prep: Not Specified

Sample Depth:

Matrix: Water

Analytical Method: 128,624.1-SIM Analytical Date: 11/15/21 13:37

Analyst: NLK

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
Volatile Organics by GC/MS-SIM	- Westborough Lab					
1,4-Dioxane	ND		ug/l	5.0		1
Surrogate			% Recovery	Qualifier		eptance riteria
Fluorobenzene			104			60-140
4-Bromofluorobenzene			88			60-140

Project Name: Lab Number: 1395-1405 WASHINGTON STREET L2162279

Project Number: Report Date: 7075.9.00 11/18/21

SAMPLE RESULTS

Lab ID: Date Collected: 11/11/21 14:45 L2162279-01

Client ID: Date Received: GW 11/11/21 Sample Location: BOSTON, MA Field Prep: Not Specified

Sample Depth:

Extraction Method: EPA 504.1 Matrix: Water **Extraction Date:** 11/15/21 15:15

Analytical Method: 14,504.1 Analytical Date: 11/15/21 17:45

Analyst: AMM

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	Column
Microextractables by GC - Westborough Lab							
1,2-Dibromoethane	ND		ug/l	0.010		1	Α

Project Name: 1395-1405 WASHINGTON STREET Lab Number: L2162279

Project Number: 7075.9.00 **Report Date:** 11/18/21

Method Blank Analysis Batch Quality Control

Analytical Method: 14,504.1 Extraction Method: EPA 504.1

Analytical Date: 11/15/21 16:12 Extraction Date: 11/15/21 15:15

Analyst: AMM

Parameter	Result	Qualifier	Units	RL	MDL	
Microextractables by GC - Westbord	ough Lab for	sample(s)	: 01	Batch: WG157	71612-1	
1,2-Dibromoethane	ND		ug/l	0.010		Α

Project Name: 1395-1405 WASHINGTON STREET **Lab Number:** L2162279

Project Number: 7075.9.00 **Report Date:** 11/18/21

Method Blank Analysis Batch Quality Control

Analytical Method: 128,624.1 Analytical Date: 11/15/21 13:02

Analyst: NLK

Parameter	Result	Qualifier Units	RL	MDL
Volatile Organics by GC/MS - Westl	oorough Lab	for sample(s): (01 Batch:	WG1571942-4
Methylene chloride	ND	ug/l	1.0	
1,1-Dichloroethane	ND	ug/l	1.5	
Carbon tetrachloride	ND	ug/l	1.0	
1,1,2-Trichloroethane	ND	ug/l	1.5	
Tetrachloroethene	ND	ug/l	1.0	
1,2-Dichloroethane	ND	ug/l	1.5	
1,1,1-Trichloroethane	ND	ug/l	2.0	
Benzene	ND	ug/l	1.0	
Toluene	ND	ug/l	1.0	
Ethylbenzene	ND	ug/l	1.0	
Vinyl chloride	ND	ug/l	1.0	
1,1-Dichloroethene	ND	ug/l	1.0	
cis-1,2-Dichloroethene	ND	ug/l	1.0	
Trichloroethene	ND	ug/l	1.0	
1,2-Dichlorobenzene	ND	ug/l	5.0	
1,3-Dichlorobenzene	ND	ug/l	5.0	
1,4-Dichlorobenzene	ND	ug/l	5.0	
p/m-Xylene	ND	ug/l	2.0	
o-xylene	ND	ug/l	1.0	
Xylenes, Total	ND	ug/l	1.0	
Acetone	ND	ug/l	10	
Methyl tert butyl ether	ND	ug/l	10	
Tert-Butyl Alcohol	ND	ug/l	100	
Tertiary-Amyl Methyl Ether	ND	ug/l	20	

Project Name: 1395-1405 WASHINGTON STREET Lab Number: L2162279

Project Number: 7075.9.00 **Report Date:** 11/18/21

Method Blank Analysis
Batch Quality Control

Analytical Method: 128,624.1 Analytical Date: 11/15/21 13:02

Analyst: NLK

Parameter Result Qualifier Units RL MDL

Volatile Organics by GC/MS - Westborough Lab for sample(s): 01 Batch: WG1571942-4

		Acceptance
Surrogate	%Recovery Quali	fier Criteria
Pentafluorobenzene	100	60-140
Fluorobenzene	96	60-140
4-Bromofluorobenzene	110	60-140

Project Name: 1395-1405 WASHINGTON STREET **Lab Number:** L2162279

Project Number: 7075.9.00 **Report Date:** 11/18/21

Method Blank Analysis Batch Quality Control

Analytical Method: 128,624.1-SIM Analytical Date: 11/15/21 13:02

Analyst: NLK

Parameter	Result	Qualifier	Units		RL	MDL	
Volatile Organics by GC/MS-SIM -	Westborough	Lab for s	ample(s):	01	Batch:	WG1571950-4	
1,4-Dioxane	ND		ug/l		5.0		

		Acceptance)
Surrogate	%Recovery	Qualifier Criteria	
Fluorobenzene	104	60-140	
4-Bromofluorobenzene	92	60-140	

Project Name: 1395-1405 WASHINGTON STREET

Project Number: 7075.9.00 Lab Number:

L2162279

Report Date:

11/18/21

Parameter	LCS %Recovery	Qual	LCSD %Recovery	Qual	%Recovery Limits	RPD	Qual	RPD Limits	Column
Microextractables by GC - Westborough Lab	Associated sam	ple(s): 01	Batch: WG1571	612-2					
1,2-Dibromoethane	101		-		80-120	-			А

Project Name: 1395-1405 WASHINGTON STREET

Project Number: 7075.9.00

Lab Number: L2162279

Report Date: 11/18/21

Parameter	LCS %Recovery	LCS Qual %Reco		%Recovery Limits	RPD	RPD Qual Limits	
Volatile Organics by GC/MS - Westborough	Lab Associated	sample(s): 01 Batch	: WG1571942-3				
Methylene chloride	105	-		60-140	-	28	
1,1-Dichloroethane	95	-		50-150	-	49	
Carbon tetrachloride	80	-		70-130	-	41	
1,1,2-Trichloroethane	105	-		70-130	-	45	
Tetrachloroethene	105	-		70-130	-	39	
1,2-Dichloroethane	80	-		70-130	-	49	
1,1,1-Trichloroethane	85	-		70-130	-	36	
Benzene	110	-		65-135	-	61	
Toluene	115	-		70-130	-	41	
Ethylbenzene	135	-		60-140	-	63	
Vinyl chloride	70	-		5-195	-	66	
1,1-Dichloroethene	100	-		50-150	-	32	
cis-1,2-Dichloroethene	110	-		60-140	-	30	
Trichloroethene	100	-		65-135	-	48	
1,2-Dichlorobenzene	125	-		65-135	-	57	
1,3-Dichlorobenzene	125	-		70-130	-	43	
1,4-Dichlorobenzene	125	-		65-135	-	57	
p/m-Xylene	122	-		60-140	-	30	
o-xylene	115	-		60-140	-	30	
Acetone	84	-		40-160	-	30	
Methyl tert butyl ether	100	-		60-140	-	30	
Tert-Butyl Alcohol	100	-		60-140	-	30	
Tertiary-Amyl Methyl Ether	95	-		60-140	-	30	

Project Name: 1395-1405 WASHINGTON STREET

Lab Number:

L2162279

Project Number: 7075.9.00

Report Date:

11/18/21

	LCS		LCSD		%Recovery			RPD
Parameter	%Recovery	Qual	%Recovery	Qual	Limits	RPD	Qual	Limits

Volatile Organics by GC/MS - Westborough Lab Associated sample(s): 01 Batch: WG1571942-3

Surrogate	LCS %Recovery Qual	LCSD %Recovery	Qual	Acceptance Criteria
Pentafluorobenzene	105			60-140
Fluorobenzene	97			60-140
4-Bromofluorobenzene	109			60-140

1395-1405 WASHINGTON STREET

Lab Number:

L2162279

Project Name:

Project Number:	7075.9.00	Report Date:	11/18/21

	LCS		LO	CSD	9	6Recovery			RPD	
Parameter	%Recovery	Qual	%Re	covery	Qual	Limits	RPD	Qual	Limits	
Volatile Organics by GC/MS-SIM - Westboroo	ugh Lab Associat	ed sample(s)	: 01	Batch:	WG1571950-3					
1,4-Dioxane	110			-		60-140	-		20	

Surrogate	LCS %Recovery Qua	LCSD I %Recovery	Qual	Acceptance Criteria
Fluorobenzene 4-Bromofluorobenzene	105 88			60-140 60-140

Matrix Spike Analysis Batch Quality Control

Project Name: 1395-1405 WASHINGTON STREET

Project Number: 7075.9.00

Lab Number:

L2162279

Report Date:

11/18/21

Parameter	Native Sample	MS Added	MS Found %	MS &Recovery	Qual	MSD Found	MSD %Recovery		overy nits RPE	Qual	RPD Limits	Column
Microextractables by GC	- Westborough Lab	Associat	ted sample(s): 01	QC Batch	ID: WG1	571612-3	QC Sample:	L2160136-01	Client ID:	MS Sam	ple	
1,2-Dibromoethane	ND	0.251	0.273	109		-	-	80-	-120 -		20	А
1,2-Dibromo-3-chloropropane	ND	0.251	0.313	125	Q	-	-	80-	120 -		20	Α
1,2,3-Trichloropropane	ND	0.251	0.278	111		-	-	80-	120 -		20	Α

SEMIVOLATILES

Project Name: Lab Number: 1395-1405 WASHINGTON STREET L2162279

Project Number: Report Date: 7075.9.00 11/18/21

SAMPLE RESULTS

Lab ID: Date Collected: 11/11/21 14:45 L2162279-01

Date Received: Client ID: GW 11/11/21 Sample Location: BOSTON, MA Field Prep: Not Specified

Sample Depth:

Extraction Method: EPA 625.1 Matrix: Water **Extraction Date:** 11/17/21 14:43 Analytical Method: 129,625.1

Analytical Date: 11/18/21 06:31

Analyst: SZ

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
Semivolatile Organics by GC/MS - Westboro	ugh Lab					
Di (O da III - I) Lida La	ND			0.00		,
Bis(2-ethylhexyl)phthalate	ND		ug/l	2.20		1
Butyl benzyl phthalate	ND		ug/l	5.00		1
Di-n-butylphthalate	ND		ug/l	5.00		1
Di-n-octylphthalate	ND		ug/l	5.00		1
Diethyl phthalate	ND		ug/l	5.00		1
Dimethyl phthalate	ND		ug/l	5.00		1

Surrogate	% Recovery	Acceptance Qualifier Criteria)
Nitrobenzene-d5	59	42-122	
2-Fluorobiphenyl	53	46-121	
4-Terphenyl-d14	61	47-138	

Lab Number: **Project Name:** 1395-1405 WASHINGTON STREET L2162279

Project Number: Report Date: 7075.9.00 11/18/21

SAMPLE RESULTS

11/16/21 17:32

Lab ID: Date Collected: 11/11/21 14:45 L2162279-01

Date Received: Client ID: GW 11/11/21 Sample Location: BOSTON, MA Field Prep: Not Specified

Sample Depth:

Extraction Method: EPA 625.1 Matrix: Water

Extraction Date: 11/13/21 08:42 Analytical Method: 129,625.1-SIM

Analyst: RP

Analytical Date:

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	
Semivolatile Organics by GC/MS-S	SIM - Westborough La	ab					
Acenaphthene	ND		ug/l	0.100		1	
Fluoranthene	ND		ug/l	0.100		1	
Naphthalene	ND		ug/l	0.100		1	
Benzo(a)anthracene	ND		ug/l	0.100		1	
Benzo(a)pyrene	ND		ug/l	0.100		1	
Benzo(b)fluoranthene	ND		ug/l	0.100		1	
Benzo(k)fluoranthene	ND		ug/l	0.100		1	
Chrysene	ND		ug/l	0.100		1	
Acenaphthylene	ND		ug/l	0.100		1	
Anthracene	ND		ug/l	0.100		1	
Benzo(ghi)perylene	ND		ug/l	0.100		1	
Fluorene	ND		ug/l	0.100		1	
Phenanthrene	ND		ug/l	0.100		1	
Dibenzo(a,h)anthracene	ND		ug/l	0.100		1	
Indeno(1,2,3-cd)pyrene	ND		ug/l	0.100		1	
Pyrene	ND		ug/l	0.100		1	
Pentachlorophenol	ND		ug/l	1.00		1	

Surrogate	% Recovery	Acceptance Qualifier Criteria	
2-Fluorophenol	28	25-87	
Phenol-d6	22	16-65	
Nitrobenzene-d5	56	42-122	
2-Fluorobiphenyl	53	46-121	
2,4,6-Tribromophenol	75	45-128	
4-Terphenyl-d14	62	47-138	

L2162279

Project Name: 1395-1405 WASHINGTON STREET Lab Number:

Project Number: 7075.9.00 **Report Date:** 11/18/21

Method Blank Analysis Batch Quality Control

Analytical Method: 129,625.1-SIM Extraction Method: EPA 625.1
Analytical Date: 11/14/21 21:49 Extraction Date: 11/13/21 08:11

Analyst: DV

Parameter	Result	Qualifier	Units	RL	M	DL
Semivolatile Organics by GC/MS-S	SIM - Westbo	rough Lab	for sampl	e(s): 01	Batch:	WG1570976-1
Acenaphthene	ND		ug/l	0.100		
Fluoranthene	ND		ug/l	0.100		
Naphthalene	ND		ug/l	0.100		
Benzo(a)anthracene	ND		ug/l	0.100		
Benzo(a)pyrene	ND		ug/l	0.100		
Benzo(b)fluoranthene	ND		ug/l	0.100		
Benzo(k)fluoranthene	ND		ug/l	0.100		
Chrysene	ND		ug/l	0.100		
Acenaphthylene	ND		ug/l	0.100		
Anthracene	ND		ug/l	0.100		
Benzo(ghi)perylene	ND		ug/l	0.100		
Fluorene	ND		ug/l	0.100		
Phenanthrene	ND		ug/l	0.100		
Dibenzo(a,h)anthracene	ND		ug/l	0.100		
Indeno(1,2,3-cd)pyrene	ND		ug/l	0.100		
Pyrene	ND		ug/l	0.100		
Pentachlorophenol	ND		ug/l	1.00		

Surrogate	%Recovery Qual	Acceptance ifier Criteria
2-Fluorophenol	38	25-87
Phenol-d6	27	16-65
Nitrobenzene-d5	55	42-122
2-Fluorobiphenyl	54	46-121
2,4,6-Tribromophenol	97	45-128
4-Terphenyl-d14	66	47-138

Project Name: 1395-1405 WASHINGTON STREET Lab Number: L2162279

Project Number: 7075.9.00 **Report Date:** 11/18/21

Method Blank Analysis Batch Quality Control

Analytical Method: 129,625.1 Extraction Method: EPA 625.1
Analytical Date: 11/17/21 09:26 Extraction Date: 11/16/21 19:46

Analyst: SZ

Parameter	Result	Qualifier Units	RL	MDL
Semivolatile Organics by GC/N	MS - Westborough	Lab for sample(s):	01 Batch:	WG1572230-1
Bis(2-ethylhexyl)phthalate	ND	ug/l	2.20	
Butyl benzyl phthalate	ND	ug/l	5.00	
Di-n-butylphthalate	ND	ug/l	5.00	
Di-n-octylphthalate	ND	ug/l	5.00	
Diethyl phthalate	ND	ug/l	5.00	
Dimethyl phthalate	ND	ug/l	5.00	

		Acceptance	
Surrogate	%Recovery	Qualifier Criteria	
Nitrobenzene-d5	83	42-122	
2-Fluorobiphenyl	79	46-121	
4-Terphenyl-d14	107	47-138	

Project Name: 1395-1405 WASHINGTON STREET

Project Number: 7075.9.00

Lab Number: L2162279

Report Date: 11/18/21

arameter	LCS %Recovery	Qual	LCSD %Recovery	Qual	%Recovery Limits	RPD	Qual	RPD Limits
Semivolatile Organics by GC/MS-SIM - Westh	oorough Lab As	ssociated samp	e(s): 01 Batc	h: WG157	70976-3			
Acenaphthene	66		-		60-132	-		30
Fluoranthene	80		-		43-121	-		30
Naphthalene	66		-		36-120	-		30
Benzo(a)anthracene	85		-		42-133	-		30
Benzo(a)pyrene	84		-		32-148	-		30
Benzo(b)fluoranthene	83		-		42-140	-		30
Benzo(k)fluoranthene	86		-		25-146	-		30
Chrysene	81		-		44-140	-		30
Acenaphthylene	74		-		54-126	-		30
Anthracene	78		-		43-120	-		30
Benzo(ghi)perylene	83		-		1-195	-		30
Fluorene	70		-		70-120	-		30
Phenanthrene	74		-		65-120	-		30
Dibenzo(a,h)anthracene	82		-		1-200	-		30
Indeno(1,2,3-cd)pyrene	80		-		1-151	-		30
Pyrene	79		-		70-120	-		30
Pentachlorophenol	67		-		38-152	-		30

Project Name: 1395-1405 WASHINGTON STREET

Lab Number: L2162279

Project Number: 7075.9.00 Report Date:

11/18/21

	LCS		LCSD		%Recovery			RPD
Parameter	%Recovery	Qual	%Recovery	Qual	Limits	RPD	Qual	Limits

Semivolatile Organics by GC/MS-SIM - Westborough Lab Associated sample(s): 01 Batch: WG1570976-3

Surrogate	LCS LCS %Recovery Qual %Recov		
2-Fluorophenol	46	25-8	37
Phenol-d6	33	16-6	35
Nitrobenzene-d5	69	42-1	22
2-Fluorobiphenyl	65	46-1	21
2,4,6-Tribromophenol	117	45-1	28
4-Terphenyl-d14	68	47-1	38

Project Name: 1395-1405 WASHINGTON STREET

Project Number: 7075.9.00

Lab Number:

L2162279

11/18/21

Report Date:

Parameter	LCS %Recovery	Qual	LCSD %Recovery	Qual	%Recovery Limits	RPD	Qual	RPD Limits	
Semivolatile Organics by GC/MS - Westboro	ugh Lab Associa	ited sample(s)	: 01 Batch:	WG1572230)-2				
Bis(2-ethylhexyl)phthalate	104		-		29-137	-		82	
Butyl benzyl phthalate	106		-		1-140	-		60	
Di-n-butylphthalate	96		-		8-120	-		47	
Di-n-octylphthalate	106		-		19-132	-		69	
Diethyl phthalate	91		-		1-120	-		100	
Dimethyl phthalate	93		-		1-120	-		183	

Surrogate	LCS %Recovery Qual	LCSD %Recovery Qual	Acceptance Criteria
Nitrobenzene-d5	95		42-122
2-Fluorobiphenyl	85		46-121
4-Terphenyl-d14	97		47-138

PCBS

Project Name: 1395-1405 WASHINGTON STREET **Lab Number:** L2162279

Project Number: 7075.9.00 **Report Date:** 11/18/21

SAMPLE RESULTS

Lab ID: L2162279-01 Date Collected: 11/11/21 14:45

Client ID: GW Date Received: 11/11/21 Sample Location: BOSTON, MA Field Prep: Not Specified

Sample Depth:

Matrix: Water Extraction Method: EPA 608.3
Analytical Method: 127,608.3 Extraction Date: 11/12/21 21:15
Analytical Date: 11/15/21 00:44 Cleanup Method: EPA 3665A

Analytical Date: 11/15/21 00:44 Cleanup Method: EPA 3665A Analyst: JM Cleanup Date: 11/14/21

Cleanup Method: EPA 3660B Cleanup Date: 11/14/21

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	Column
Polychlorinated Biphenyls by GC - Westbo	rough Lab						
Aroclor 1016	ND		ug/l	0.250		1	Α
Aroclor 1221	ND		ug/l	0.250		1	Α
Aroclor 1232	ND		ug/l	0.250		1	Α
Aroclor 1242	ND		ug/l	0.250		1	Α
Aroclor 1248	ND		ug/l	0.250		1	Α
Aroclor 1254	ND		ug/l	0.250		1	Α
Aroclor 1260	ND		ug/l	0.200		1	Α

% Recovery	Qualifier	Acceptance Criteria	Column
60		37-123	В
58		38-114	В
59		37-123	Α
60		38-114	Α
	60 58 59	60 58 59	% Recovery Qualifier Criteria 60 37-123 58 38-114 59 37-123

Project Name: 1395-1405 WASHINGTON STREET **Lab Number:** L2162279

Project Number: 7075.9.00 **Report Date:** 11/18/21

Method Blank Analysis Batch Quality Control

Analytical Method: 127,608.3 Analytical Date: 11/12/21 20:53

Analyst: CW

Extraction Method: EPA 608.3
Extraction Date: 11/12/21 11:32
Cleanup Method: EPA 3665A
Cleanup Date: 11/12/21
Cleanup Method: EPA 3660B
Cleanup Date: 11/12/21

Parameter	Result	Qualifier	Units	RL	MDL	Column
Polychlorinated Biphenyls by GC - V	Vestborough	Lab for s	ample(s):	01 Batch:	WG1570665	-1
Aroclor 1016	ND		ug/l	0.250		Α
Aroclor 1221	ND		ug/l	0.250		Α
Aroclor 1232	ND		ug/l	0.250		Α
Aroclor 1242	ND		ug/l	0.250		Α
Aroclor 1248	ND		ug/l	0.250		Α
Aroclor 1254	ND		ug/l	0.250		Α
Aroclor 1260	ND		ug/l	0.200		Α

		Acceptance	ce
Surrogate	%Recovery Qualifie	r Criteria	Column
2.4.5.6. Tetrophlare as vulone	E4	37-123	D.
2,4,5,6-Tetrachloro-m-xylene	51	37-123	В
Decachlorobiphenyl	77	38-114	В
2,4,5,6-Tetrachloro-m-xylene	51	37-123	Α
Decachlorobiphenyl	88	38-114	Α

Lab Control Sample Analysis Batch Quality Control

Project Name: 1395-1405 WASHINGTON STREET

Project Number: 7075.9.00 Lab Number:

L2162279

11/18/21

Report Date:

	LCS		LCSD		%Recovery			RPD	
Parameter	%Recovery	Qual	%Recovery	Qual	Limits	RPD	Qual	Limits	Column
Polychlorinated Biphenyls by GC - Westbo	orough Lab Associa	ated sample(s)	: 01 Batch:	WG1570665	-2				
Aroclor 1016	71		-		50-140	-		36	Α
Aroclor 1260	85		-		8-140	-		38	Α

Surrogate	LCS %Recovery Qual	LCSD %Recovery Qual	Acceptance Criteria	Column
0.4507			07.400	
2,4,5,6-Tetrachloro-m-xylene	54		37-123	В
Decachlorobiphenyl	79		38-114	В
2,4,5,6-Tetrachloro-m-xylene	55		37-123	Α
Decachlorobiphenyl	90		38-114	Α

METALS

11/11/21 14:45

Date Collected:

Project Name: Lab Number: 1395-1405 WASHINGTON STREET L2162279

Project Number: Report Date: 7075.9.00 11/18/21

SAMPLE RESULTS

Lab ID: L2162279-01

Client ID: GW

Date Received: 11/11/21 Sample Location: BOSTON, MA Field Prep: Not Specified

Sample Depth:

Matrix: Water

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	Date Prepared	Date Analyzed	Prep Method	Analytical Method	Analyst
Total Metals - Mans	field Lab										
Antimony, Total	ND		mg/l	0.00400		1	11/16/21 12:41	11/16/21 20:09	EPA 3005A	3,200.8	PS
Arsenic, Total	0.00926		mg/l	0.00100		1	11/16/21 12:41	11/16/21 20:09	EPA 3005A	3,200.8	PS
Cadmium, Total	ND		mg/l	0.00020		1	11/16/21 12:41	11/16/21 20:09	EPA 3005A	3,200.8	PS
Chromium, Total	0.00301		mg/l	0.00100		1	11/16/21 12:41	11/16/21 20:09	EPA 3005A	3,200.8	PS
Copper, Total	0.03287		mg/l	0.00100		1	11/16/21 12:41	11/16/21 20:09	EPA 3005A	3,200.8	PS
Iron, Total	3.92		mg/l	0.050		1	11/16/21 12:41	11/17/21 10:36	EPA 3005A	19,200.7	GD
Lead, Total	0.02328		mg/l	0.00100		1	11/16/21 12:41	11/16/21 20:09	EPA 3005A	3,200.8	PS
Mercury, Total	ND		mg/l	0.00020		1	11/16/21 14:05	5 11/17/21 06:00	EPA 245.1	3,245.1	AC
Nickel, Total	0.00854		mg/l	0.00200		1	11/16/21 12:41	11/16/21 20:09	EPA 3005A	3,200.8	PS
Selenium, Total	ND		mg/l	0.00500		1	11/16/21 12:41	11/16/21 20:09	EPA 3005A	3,200.8	PS
Silver, Total	ND		mg/l	0.00040		1	11/16/21 12:41	11/16/21 20:09	EPA 3005A	3,200.8	PS
Zinc, Total	0.05136		mg/l	0.01000		1	11/16/21 12:41	11/16/21 20:09	EPA 3005A	3,200.8	PS
Total Hardness by	SM 2340B	B - Mansfield	d Lab								
Hardness	194		mg/l	0.660	NA	1	11/16/21 12:41	I 11/17/21 10:36	EPA 3005A	19,200.7	GD
							,,			,	
General Chemistry	- Mansfiel	d Lab									
Chromium, Trivalent	ND		mg/l	0.010		1		11/16/21 20:09	NA	107,-	

Project Name: 1395-1405 WASHINGTON STREET

Project Number: 7075.9.00

Lab Number:

L2162279

Report Date: 11/18/21

Method Blank Analysis Batch Quality Control

Parameter	Result Qualifier	Units	RL	MDL	Dilution Factor	Date Prepared	Date Analyzed	Analytical Method	Analyst
Total Metals - Mansfie	eld Lab for sample(s):	01 Batc	h: WG15	71615-	1				
Antimony, Total	ND	mg/l	0.00400		1	11/16/21 12:41	11/16/21 18:23	3,200.8	PS
Arsenic, Total	ND	mg/l	0.00100		1	11/16/21 12:41	11/16/21 18:23	3,200.8	PS
Cadmium, Total	ND	mg/l	0.00020		1	11/16/21 12:41	11/16/21 18:23	3,200.8	PS
Chromium, Total	ND	mg/l	0.00100		1	11/16/21 12:41	11/16/21 18:23	3,200.8	PS
Copper, Total	ND	mg/l	0.00100		1	11/16/21 12:41	11/16/21 18:23	3,200.8	PS
Lead, Total	ND	mg/l	0.00100		1	11/16/21 12:41	11/16/21 18:23	3,200.8	PS
Nickel, Total	ND	mg/l	0.00200		1	11/16/21 12:41	11/16/21 18:23	3,200.8	PS
Selenium, Total	ND	mg/l	0.00500		1	11/16/21 12:41	11/16/21 18:23	3,200.8	PS
Silver, Total	ND	mg/l	0.00040		1	11/16/21 12:41	11/16/21 18:23	3,200.8	PS
Zinc, Total	ND	mg/l	0.01000		1	11/16/21 12:41	11/16/21 18:23	3,200.8	PS

Prep Information

Digestion Method: EPA 3005A

Parameter	Result Qualifier	Units	RL	MDL	Dilution Factor	Date Prepared	Date Analyzed	Analytical Method	Analyst
Total Metals - Mansfield	d Lab for sample(s):	01 Batch	n: WG1	571617-	1				
Iron, Total	ND	mg/l	0.050		1	11/16/21 12:41	11/17/21 11:17	19,200.7	GD

Prep Information

Digestion Method: EPA 3005A

Parameter	Result Qualifier	Units	RL	MDL	Dilution Factor	Date Prepared	Date Analyzed	Analytical Method	l Analyst
Total Hardness by	SM 2340B - Mansfield La	ab for sam	nple(s): 0	1 Bat	ch: WG157	1617-1			
Hardness	ND	mg/l	0.660	NA	1	11/16/21 12:41	11/17/21 11:17	7 19,200.7	GD

Prep Information

Digestion Method: EPA 3005A

L2162279

Lab Number:

Project Name: 1395-1405 WASHINGTON STREET

Project Number: 7075.9.00 **Report Date:** 11/18/21

Method Blank Analysis Batch Quality Control

Parameter	Result Qualifier	Units	RL	MDL	Dilution Factor	Date Prepared	Date Analyzed	Analytica Method	I Analyst
Total Metals - Mansfield	Lab for sample(s):	01 Batc	h: WG15	71621-	1				
Mercury, Total	ND	mg/l	0.00020		1	11/16/21 14:05	11/17/21 05:24	3,245.1	AC

Prep Information

Digestion Method: EPA 245.1

Lab Control Sample Analysis Batch Quality Control

Project Name: 1395-1405 WASHINGTON STREET

Project Number: 7075.9.00

Lab Number: L2162279

Parameter	LCS %Recovery	LCSD Qual %Recovery	%Recovery Qual Limits	RPD	Qual	RPD Limits
Total Metals - Mansfield Lab Associated samp	le(s): 01 Batch: \	WG1571615-2				
Antimony, Total	98	-	85-115	-		
Arsenic, Total	108	-	85-115	-		
Cadmium, Total	107	-	85-115	-		
Chromium, Total	108	-	85-115	-		
Copper, Total	109	•	85-115	-		
Lead, Total	111	•	85-115	-		
Nickel, Total	107	-	85-115	-		
Selenium, Total	112	-	85-115	-		
Silver, Total	111	-	85-115	-		
Zinc, Total	108	-	85-115	-		
Total Metals - Mansfield Lab Associated samp	le(s): 01 Batch: \	WG1571617-2				
Iron, Total	99	-	85-115	-		
Total Hardness by SM 2340B - Mansfield Lab	Associated sample	e(s): 01 Batch: WG157161	7-2			
Hardness	98	-	85-115	-		
Total Metals - Mansfield Lab Associated samp	le(s): 01 Batch: \	WG1571621-2				
Mercury, Total	102	-	85-115	-		

Matrix Spike Analysis Batch Quality Control

Project Name: 1395-1405 WASHINGTON STREET

Project Number: 7075.9.00

Lab Number: L2162279

arameter	Native Sample	MS Added	MS Found	MS %Recovery	Qua	MSD Found	MSD %Recovery	Qual	Recovery Limits	RPD	Qual	RPD Limits
otal Metals - Mansfield	Lab Associated san	nple(s): 01	QC Batch I	D: WG157161	5-3	QC Sample	: L2162608-01	Clien	t ID: MS Sa	ample		
Antimony, Total	ND	0.5	0.4223	84		-	-		70-130	-		20
Arsenic, Total	ND	0.12	0.1281	107		-	-		70-130	-		20
Cadmium, Total	ND	0.053	0.05686	107		-	-		70-130	-		20
Chromium, Total	0.00660	0.2	0.2199	107		-	-		70-130	-		20
Copper, Total	0.00361	0.25	0.2709	107		-	-		70-130	-		20
Lead, Total	ND	0.53	0.5743	108		-	-		70-130	-		20
Nickel, Total	ND	0.5	0.5232	105		-	-		70-130	-		20
Selenium, Total	ND	0.12	0.1340	112		-	-		70-130	-		20
Silver, Total	ND	0.05	0.05421	108		-	-		70-130	-		20
Zinc, Total	0.01311	0.5	0.5552	108		-	-		70-130	-		20
otal Metals - Mansfield	Lab Associated san	nple(s): 01	QC Batch I	D: WG157161	5-5	QC Sample	: L2162608-02	Clien	t ID: MS Sa	ample		
Antimony, Total	ND	0.5	0.4614	92		-	-		70-130	-		20
Arsenic, Total	ND	0.12	0.1334	111		-	-		70-130	-		20
Cadmium, Total	ND	0.053	0.05613	106		-	-		70-130	-		20
Chromium, Total	0.00516	0.2	0.2132	104		-	-		70-130	-		20
Copper, Total	0.00270	0.25	0.2652	105		-	-		70-130	-		20
Lead, Total	ND	0.53	0.5690	107		-	-		70-130	-		20
Nickel, Total	ND	0.5	0.5117	102		-	-		70-130	-		20
Selenium, Total	ND	0.12	0.1217	101		-	-		70-130	-		20
Silver, Total	ND	0.05	0.05476	110		-	-		70-130	-		20
Zinc, Total	0.02003	0.5	0.5425	104		-	-		70-130	-		20

Matrix Spike Analysis Batch Quality Control

Project Name: 1395-1405 WASHINGTON STREET

Project Number: 7075.9.00

Lab Number:

L2162279

Parameter	Native Sample	MS Added	MS Found	MS %Recovery	MSD Found	MSD %Recovery	Recovery Limits	RPD	RPD Limits
Total Metals - Mansfield Lab	Associated san	nple(s): 01	QC Batch I	D: WG1571617-3	QC Sample	: L2162608-01	Client ID: MS S	ample	
Iron, Total	0.191	1	1.21	102	-	-	75-125	-	20
Total Hardness by SM 2340B	- Mansfield La	b Associate	ed sample(s)	: 01 QC Batch ID	: WG1571617	-3 QC Samp	le: L2162608-01	Client ID	: MS Sample
Hardness	311	66.2	380	104	-	-	75-125	-	20
Total Metals - Mansfield Lab	Associated san	nple(s): 01	QC Batch I	D: WG1571621-3	QC Sample	: L2162372-01	Client ID: MS S	ample	
Mercury, Total	ND	0.005	0.00498	100	-	-	70-130	-	20

Lab Duplicate Analysis Batch Quality Control

Project Name: 1395-1405 WASHINGTON STREET

Project Number: 7075.9.00

Lab Number:

L2162279

Parameter	Native Sample	Duplicate Sample	Units	RPD	Qual	RPD Limits
otal Metals - Mansfield Lab Associated sample(s): 01	QC Batch ID: WG15716	15-4 QC Sample:	L2162608-01	Client ID: D	OUP Sample	
Antimony, Total	ND	ND	mg/l	NC		20
Arsenic, Total	ND	ND	mg/l	NC		20
Cadmium, Total	ND	ND	mg/l	NC		20
Chromium, Total	0.00660	0.00652	mg/l	1		20
Copper, Total	0.00361	0.00351	mg/l	3		20
Lead, Total	ND	ND	mg/l	NC		20
Nickel, Total	ND	ND	mg/l	NC		20
Selenium, Total	ND	ND	mg/l	NC		20
Silver, Total	ND	ND	mg/l	NC		20
Zinc, Total	0.01311	0.01291	mg/l	2		20

Lab Duplicate Analysis Batch Quality Control

Project Name: 1395-1405 WASHINGTON STREET

Project Number: 7075.9.00

Lab Number: L2162279

Parameter	Native Sample Du	plicate Sample	Units	RPD	RPD Limits
otal Metals - Mansfield Lab Associated sample(s): 01	QC Batch ID: WG1571615-6	G QC Sample:	L2162608-02	Client ID:	DUP Sample
Antimony, Total	ND	ND	mg/l	NC	20
Arsenic, Total	ND	ND	mg/l	NC	20
Cadmium, Total	ND	ND	mg/l	NC	20
Chromium, Total	0.00516	0.00520	mg/l	1	20
Copper, Total	0.00270	0.00262	mg/l	3	20
Lead, Total	ND	ND	mg/l	NC	20
Nickel, Total	ND	ND	mg/l	NC	20
Selenium, Total	ND	ND	mg/l	NC	20
Silver, Total	ND	ND	mg/l	NC	20
Zinc, Total	0.02003	0.02014	mg/l	1	20
otal Metals - Mansfield Lab Associated sample(s): 01	QC Batch ID: WG1571617-4	4 QC Sample:	L2162608-01	Client ID:	DUP Sample
Iron, Total	0.191	0.189	mg/l	1	20
otal Metals - Mansfield Lab Associated sample(s): 01	QC Batch ID: WG1571621-4	4 QC Sample:	L2162372-01	Client ID:	DUP Sample
Mercury, Total	ND	ND	mg/l	NC	20

INORGANICS & MISCELLANEOUS

Project Name: 1395-1405 WASHINGTON STREET Lab Number: L2162279

Project Number: 7075.9.00 **Report Date:** 11/18/21

SAMPLE RESULTS

Lab ID: L2162279-01 Date Collected: 11/11/21 14:45

Client ID: GW Date Received: 11/11/21 Sample Location: BOSTON, MA Field Prep: Not Specified

Sample Depth:

Matrix: Water

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	Date Prepared	Date Analyzed	Analytical Method	Analyst
General Chemistry - We	stborough La	b								
Solids, Total Suspended	48.		mg/l	8.5	NA	1.7	-	11/15/21 17:37	121,2540D	SH
Cyanide, Total	ND		mg/l	0.005		1	11/12/21 00:50	11/12/21 13:31	121,4500CN-CE	CS
Chlorine, Total Residual	ND		mg/l	0.02		1	-	11/12/21 03:05	121,4500CL-D	MR
pH (H)	7.6		SU	-	NA	1	-	11/11/21 21:59	121,4500H+-B	AS
Nitrogen, Ammonia	0.287		mg/l	0.075		1	11/13/21 14:00	11/15/21 21:11	121,4500NH3-BH	H AT
TPH, SGT-HEM	ND		mg/l	4.00		1	11/16/21 16:30	11/16/21 17:15	140,1664B	TL
Phenolics, Total	ND		mg/l	0.030		1	11/16/21 07:12	11/16/21 10:36	4,420.1	KP
Chromium, Hexavalent	ND		mg/l	0.010		1	11/12/21 08:15	11/12/21 08:39	1,7196A	KP
Anions by Ion Chromato	graphy - Wes	tborough	Lab							
Chloride	196.		mg/l	5.00		10	-	11/16/21 21:30	44,300.0	AT

Project Name: 1395-1405 WASHINGTON STREET

Project Number: 7075.9.00

Lab Number:

L2162279

Report Date: 11/18/21

Method Blank Analysis Batch Quality Control

Parameter	Result Qual	ifier Units	RL	MDL	Dilution Factor	Date Prepared	Date Analyzed	Analytical Method	Analyst
General Chemistry -	Westborough Lab for	sample(s): 01	Batch:	WG15	70372-1				
Chlorine, Total Residual	ND	mg/l	0.02		1	-	11/12/21 03:05	121,4500CL-D	MR
General Chemistry -	Westborough Lab for	sample(s): 01	Batch:	WG15	70388-1				
Cyanide, Total	ND	mg/l	0.005		1	11/12/21 00:50	11/12/21 13:04	121,4500CN-CE	CS
General Chemistry -	Westborough Lab for	sample(s): 01	Batch:	WG15	70565-1				
Chromium, Hexavalent	ND	mg/l	0.010		1	11/12/21 08:15	11/12/21 08:36	1,7196A	KP
General Chemistry -	Westborough Lab for	sample(s): 01	Batch:	WG15	70969-1				
Nitrogen, Ammonia	ND	mg/l	0.075		1	11/13/21 14:00	11/15/21 20:50	121,4500NH3-BH	TA H
General Chemistry -	Westborough Lab for	sample(s): 01	Batch:	WG15	71716-1				
Solids, Total Suspended	ND	mg/l	5.0	NA	1	-	11/15/21 17:37	121,2540D	SH
Anions by Ion Chrom	atography - Westbord	ough Lab for sai	mple(s):	01 B	atch: WG1	571772-1			
Chloride	ND	mg/l	0.500		1	-	11/16/21 17:04	44,300.0	AT
General Chemistry -	Westborough Lab for	sample(s): 01	Batch:	WG15	71854-1				
Phenolics, Total	ND	mg/l	0.030		1	11/16/21 07:12	11/16/21 10:33	4,420.1	KP
General Chemistry -	Westborough Lab for	sample(s): 01	Batch:	WG15	72115-1				
TPH, SGT-HEM	ND	mg/l	4.00		1	11/16/21 16:30	11/16/21 17:15	140,1664B	TL

Lab Control Sample Analysis Batch Quality Control

Project Name: 1395-1405 WASHINGTON STREET

Project Number: 7075.9.00 Lab Number:

L2162279

Report Date:

11/18/21

Parameter	LCS %Recovery	LCSD Qual %Recovery	%Recovery Qual Limits	RPD	Qual R	PD Limits
General Chemistry - Westborough Lab	Associated sample(s):	01 Batch: WG1570372	2-2			
Chlorine, Total Residual	100	-	90-110	-		
General Chemistry - Westborough Lab	Associated sample(s):	01 Batch: WG1570385	5-1			
рН	100	-	99-101	-		5
General Chemistry - Westborough Lab	Associated sample(s):	01 Batch: WG1570388	3-2			
Cyanide, Total	100	-	90-110	-		
General Chemistry - Westborough Lab	Associated sample(s):	01 Batch: WG1570565	5-2			
Chromium, Hexavalent	107	-	85-115	-		20
General Chemistry - Westborough Lab	Associated sample(s):	01 Batch: WG1570969	9-2			
Nitrogen, Ammonia	99	-	80-120	-		20
General Chemistry - Westborough Lab	Associated sample(s):	01 Batch: WG1571716	6-2			
Solids, Total Suspended	97	-	80-120	-		
Anions by Ion Chromatography - Westb	orough Lab Associated	d sample(s): 01 Batch:	WG1571772-2			
Chloride	99	-	90-110			

Lab Control Sample Analysis Batch Quality Control

Project Name: 1395-1405 WASHINGTON STREET

Project Number: 7075.9.00

Lab Number:

L2162279

Report Date:

11/18/21

Parameter	LCS %Recovery	LCSD %Recovery	%Recovery Limits	RPD	RPD Limits
General Chemistry - Westborough Lab	Associated sample(s): 01	Batch: WG1571854-2			
Phenolics, Total	109	-	70-130	-	
General Chemistry - Westborough Lab	Associated sample(s): 01	Batch: WG1572115-2			
TPH	85	-	64-132	-	34

Matrix Spike Analysis Batch Quality Control

Project Name: 1395-1405 WASHINGTON STREET

Project Number: 7075.9.00

Lab Number: L2162279

Parameter	Native Sample	MS Added	MS Found	MS %Recovery	MSD Qual Found	MSD %Recovery Qual	Recovery Limits R	PD Qual	RPD Limits
General Chemistry - Westbord	ough Lab Assoc	ciated samp	le(s): 01	QC Batch ID: V	WG1570372-4	QC Sample: L2162141	-07 Client ID:	MS Sampl	е
Chlorine, Total Residual	ND	0.25	0.24	96	-	-	80-120	-	20
General Chemistry - Westbord	ough Lab Assoc	iated samp	le(s): 01	QC Batch ID: V	WG1570388-4	QC Sample: L2160443	-01 Client ID:	MS Sampl	е
Cyanide, Total	0.007	0.2	0.187	90	-	-	90-110	-	30
General Chemistry - Westbord	ough Lab Assoc	iated samp	le(s): 01	QC Batch ID: V	NG1570565-4	QC Sample: L2162279	-01 Client ID:	GW	
Chromium, Hexavalent	ND	0.1	0.107	107	-	-	85-115	-	20
General Chemistry - Westbord	ough Lab Assoc	iated samp	le(s): 01	QC Batch ID: V	NG1570969-4	QC Sample: L2160422	-01 Client ID:	MS Sampl	е
Nitrogen, Ammonia	0.136	4	3.59	86	-	-	80-120	-	20
Anions by Ion Chromatograph Sample	y - Westboroug	h Lab Asso	ciated sar	nple(s): 01 Q0	C Batch ID: WG1	571772-3 QC Sampl	e: L2162744-07	7 Client ID	: MS
Chloride	16.4	4	19.8	87	Q -	-	90-110	-	18
General Chemistry - Westbord	ough Lab Assoc	ciated samp	le(s): 01	QC Batch ID: V	VG1571854-4	QC Sample: L2162372	-02 Client ID:	MS Sampl	е
Phenolics, Total	ND	0.4	0.32	80	-	-	70-130	-	20
General Chemistry - Westbord	ough Lab Assoc	iated samp	le(s): 01	QC Batch ID: V	NG1572115-4	QC Sample: L2160114	-03 Client ID:	MS Sampl	е
TPH	ND	19.6	14.2	72	-	-	64-132	-	34

Lab Duplicate Analysis Batch Quality Control

Project Name: 1395-1405 WASHINGTON STREET

Project Number: 7075.9.00

Lab Number:

L2162279

Parameter	Native	Sample	Duplicate Sam	ple Units	s RPD	Qual	RPD Limits
General Chemistry - Westborough Lab	Associated sample(s): 01	QC Batch ID:	WG1570372-3	QC Sample:	L2162141-04	Client ID:	DUP Sample
Chlorine, Total Residual	N	ID	ND	mg/l	NC		20
General Chemistry - Westborough Lab	Associated sample(s): 01	QC Batch ID:	WG1570385-2	QC Sample:	L2161921-01	Client ID:	DUP Sample
рН	8	.4	8.2	SU	2		5
General Chemistry - Westborough Lab	Associated sample(s): 01	QC Batch ID:	WG1570388-3	QC Sample:	L2160443-01	Client ID:	DUP Sample
Cyanide, Total	0.0	007	ND	mg/l	NC		30
General Chemistry - Westborough Lab	Associated sample(s): 01	QC Batch ID:	WG1570565-3	QC Sample:	L2162279-01	Client ID:	GW
Chromium, Hexavalent	N	ID	ND	mg/l	NC		20
General Chemistry - Westborough Lab	Associated sample(s): 01	QC Batch ID:	WG1570969-3	QC Sample:	L2160422-01	Client ID:	DUP Sample
Nitrogen, Ammonia	0.2	136	0.155	mg/l	13		20
General Chemistry - Westborough Lab	Associated sample(s): 01	QC Batch ID:	WG1571716-3	QC Sample:	L2162098-01	Client ID:	DUP Sample
Solids, Total Suspended	3	37	40	mg/l	8		29
Anions by Ion Chromatography - Westb Sample	orough Lab Associated sa	ımple(s): 01 Q	C Batch ID: WG	1571772-4 C	C Sample: L2	2162744-07	7 Client ID: DUP
Chloride	16	6.4	16.4	mg/l	0		18
General Chemistry - Westborough Lab	Associated sample(s): 01	QC Batch ID:	WG1571854-3	QC Sample:	L2162372-02	Client ID:	DUP Sample
Phenolics, Total	N	ID	ND	mg/l	NC		20
General Chemistry - Westborough Lab	Associated sample(s): 01	QC Batch ID:	WG1572115-3	QC Sample:	L2159926-01	Client ID:	DUP Sample
ТРН	N	ID	ND	mg/l	NC		34

Project Name: 1395-1405 WASHINGTON STREET

Project Number: 7075.9.00

Lab Number: L2162279

Report Date: 11/18/21

Sample Receipt and Container Information

Were project specific reporting limits specified?

Cooler Information

Container Information

Cooler Custody Seal

B Absent

Container Information		rmation		Initial	Final	Temp			Frozen	
	Container ID	Container Type	Cooler	рН	рH	deg C	Pres	Seal	Date/Time	Analysis(*)
	L2162279-01A	Vial Na2S2O3 preserved	В	NA		3.5	Υ	Absent		624.1-RGP(7),624.1-SIM-RGP(7)
	L2162279-01B	Vial Na2S2O3 preserved	В	NA		3.5	Υ	Absent		624.1-RGP(7),624.1-SIM-RGP(7)
	L2162279-01C	Vial Na2S2O3 preserved	В	NA		3.5	Υ	Absent		624.1-RGP(7),624.1-SIM-RGP(7)
	L2162279-01D	Vial Na2S2O3 preserved	В	NA		3.5	Υ	Absent		624.1-RGP(7),624.1-SIM-RGP(7)
	L2162279-01E	Vial Na2S2O3 preserved	В	NA		3.5	Υ	Absent		624.1-RGP(7),624.1-SIM-RGP(7)
	L2162279-01F	Vial Na2S2O3 preserved	В	NA		3.5	Υ	Absent		624.1-RGP(7),624.1-SIM-RGP(7)
	L2162279-01G	Vial unpreserved	В	NA		3.5	Υ	Absent		SUB-ETHANOL(14)
	L2162279-01H	Vial unpreserved	В	NA		3.5	Υ	Absent		SUB-ETHANOL(14)
	L2162279-01I	Vial unpreserved	В	NA		3.5	Υ	Absent		SUB-ETHANOL(14)
	L2162279-01J	Plastic 250ml HNO3 preserved	В	<2	<2	3.5	Υ	Absent		CD-2008T(180),NI-2008T(180),ZN- 2008T(180),HARDU(180),CU-2008T(180),FE- UI(180),AS-2008T(180),SE-2008T(180),AG- 2008T(180),HG-U(28),CR-2008T(180),PB- 2008T(180),SB-2008T(180)
	L2162279-01K	Plastic 250ml NaOH preserved	В	>12	>12	3.5	Υ	Absent		TCN-4500(14)
	L2162279-01L	Plastic 500ml H2SO4 preserved	В	<2	<2	3.5	Υ	Absent		NH3-4500(28)
	L2162279-01M	Plastic 950ml unpreserved	В	7	7	3.5	Υ	Absent		HEXCR-7196(1),CL-300(28),TRC-4500(1),PH-4500(.01)
	L2162279-01N	Plastic 950ml unpreserved	В	7	7	3.5	Υ	Absent		TSS-2540(7)
	L2162279-01O	Amber 1000ml H2SO4 preserved	В	<2	<2	3.5	Υ	Absent		TPHENOL-420(28)
	L2162279-01P	Amber 1000ml Na2S2O3	В	7	7	3.5	Υ	Absent		PCB-608.3(365)
	L2162279-01Q	Amber 1000ml Na2S2O3	В	7	7	3.5	Υ	Absent		PCB-608.3(365)
	L2162279-01R	Amber 1000ml Na2S2O3	В	7	7	3.5	Υ	Absent		625.1-RGP(7)
	L2162279-01S	Amber 1000ml Na2S2O3	В	7	7	3.5	Υ	Absent		625.1-RGP(7)
	L2162279-01T	Amber 1000ml Na2S2O3	В	7	7	3.5	Υ	Absent		625.1-SIM-RGP(7)
	L2162279-01U	Amber 1000ml Na2S2O3	В	7	7	3.5	Υ	Absent		625.1-SIM-RGP(7)

Lab Number: L2162279

Report Date: 11/18/21

Project Name: 1395-1405 WASHINGTON STREET
Project Number: 7075.9.00

Project Number: 7075.9.00

Container Info		Initial	Final	Temp			Frozen		
Container ID	Container Type	Cooler pH p		рН	deg C	Pres	Seal	Date/Time	Analysis(*)
L2162279-01V	Amber 1000ml HCI preserved	В	NA		3.5	Υ	Absent		TPH-1664(28)
L2162279-01W	Amber 1000ml HCl preserved	В	NA		3.5	Υ	Absent		TPH-1664(28)
L2162279-01X	Vial Na2S2O3 preserved	В	NA		3.5	Υ	Absent		504(14)
L2162279-01Y	Vial Na2S2O3 preserved	В	NA		3.5	Υ	Absent		504(14)

Project Name: Lab Number: 1395-1405 WASHINGTON STREET L2162279

7075.9.00 **Report Date: Project Number:** 11/18/21

GLOSSARY

Acronyms

LCSD

LOD

LOQ

MS

DL - Detection Limit: This value represents the level to which target analyte concentrations are reported as estimated values, when those target analyte concentrations are quantified below the limit of quantitation (LOQ). The DL includes any adjustments

from dilutions, concentrations or moisture content, where applicable. (DoD report formats only.)

EDL - Estimated Detection Limit: This value represents the level to which target analyte concentrations are reported as estimated values, when those target analyte concentrations are quantified below the reporting limit (RL). The EDL includes any adjustments from dilutions, concentrations or moisture content, where applicable. The use of EDLs is specific to the analysis

of PAHs using Solid-Phase Microextraction (SPME).

Laboratory Control Sample Duplicate: Refer to LCS.

EMPC - Estimated Maximum Possible Concentration: The concentration that results from the signal present at the retention time of an analyte when the ions meet all of the identification criteria except the ion abundance ratio criteria. An EMPC is a worst-case

estimate of the concentration. **EPA**

Environmental Protection Agency.

LCS - Laboratory Control Sample: A sample matrix, free from the analytes of interest, spiked with verified known amounts of

analytes or a material containing known and verified amounts of analytes.

LFB - Laboratory Fortified Blank: A sample matrix, free from the analytes of interest, spiked with verified known amounts of analytes or a material containing known and verified amounts of analytes.

- Limit of Detection: This value represents the level to which a target analyte can reliably be detected for a specific analyte in a specific matrix by a specific method. The LOD includes any adjustments from dilutions, concentrations or moisture content,

where applicable. (DoD report formats only.) - Limit of Quantitation: The value at which an instrument can accurately measure an analyte at a specific concentration. The LOQ includes any adjustments from dilutions, concentrations or moisture content, where applicable. (DoD report formats

Limit of Quantitation: The value at which an instrument can accurately measure an analyte at a specific concentration. The LOQ includes any adjustments from dilutions, concentrations or moisture content, where applicable. (DoD report formats

MDI - Method Detection Limit: This value represents the level to which target analyte concentrations are reported as estimated values, when those target analyte concentrations are quantified below the reporting limit (RL). The MDL includes any adjustments from dilutions, concentrations or moisture content, where applicable.

> - Matrix Spike Sample: A sample prepared by adding a known mass of target analyte to a specified amount of matrix sample for which an independent estimate of target analyte concentration is available. For Method 332.0, the spike recovery is calculated using the native concentration, including estimated values.

MSD - Matrix Spike Sample Duplicate: Refer to MS.

NA - Not Applicable.

NC - Not Calculated: Term is utilized when one or more of the results utilized in the calculation are non-detect at the parameter's

reporting unit.

NDPA/DPA - N-Nitrosodiphenylamine/Diphenylamine.

NI - Not Ignitable.

NP - Non-Plastic: Term is utilized for the analysis of Atterberg Limits in soil.

NR - No Results: Term is utilized when 'No Target Compounds Requested' is reported for the analysis of Volatile or Semivolatile

Organic TIC only requests.

RL - Reporting Limit: The value at which an instrument can accurately measure an analyte at a specific concentration. The RL

includes any adjustments from dilutions, concentrations or moisture content, where applicable.

RPD - Relative Percent Difference: The results from matrix and/or matrix spike duplicates are primarily designed to assess the precision of analytical results in a given matrix and are expressed as relative percent difference (RPD). Values which are less than five times the reporting limit for any individual parameter are evaluated by utilizing the absolute difference between the

values; although the RPD value will be provided in the report.

SRM - Standard Reference Material: A reference sample of a known or certified value that is of the same or similar matrix as the

associated field samples.

STLP - Semi-dynamic Tank Leaching Procedure per EPA Method 1315.

TEF - Toxic Equivalency Factors: The values assigned to each dioxin and furan to evaluate their toxicity relative to 2,3,7,8-TCDD.

TEO - Toxic Equivalent: The measure of a sample's toxicity derived by multiplying each dioxin and furan by its corresponding TEF

and then summing the resulting values.

TIC - Tentatively Identified Compound: A compound that has been identified to be present and is not part of the target compound list (TCL) for the method and/or program. All TICs are qualitatively identified and reported as estimated concentrations.

Report Format: Data Usability Report

Project Name:1395-1405 WASHINGTON STREETLab Number:L2162279Project Number:7075.9.00Report Date:11/18/21

Footnotes

1 - The reference for this analyte should be considered modified since this analyte is absent from the target analyte list of the original method.

Terms

Analytical Method: Both the document from which the method originates and the analytical reference method. (Example: EPA 8260B is shown as 1,8260B.) The codes for the reference method documents are provided in the References section of the Addendum.

Difference: With respect to Total Oxidizable Precursor (TOP) Assay analysis, the difference is defined as the Post-Treatment value minus the Pre-Treatment value.

Final pH: As it pertains to Sample Receipt & Container Information section of the report, Final pH reflects pH of container determined after adjustment at the laboratory, if applicable. If no adjustment required, value reflects Initial pH.

Frozen Date/Time: With respect to Volatile Organics in soil, Frozen Date/Time reflects the date/time at which associated Reagent Water-preserved vials were initially frozen. Note: If frozen date/time is beyond 48 hours from sample collection, value will be reflected in 'bold'.

Initial pH: As it pertains to Sample Receipt & Container Information section of the report, Initial pH reflects pH of container determined upon receipt, if applicable.

PAH Total: With respect to Alkylated PAH analyses, the 'PAHs, Total' result is defined as the summation of results for all or a subset of the following compounds: Naphthalene, C1-C4 Naphthalenes, 2-Methylnaphthalene, 1-Methylnaphthalene, Biphenyl, Acenaphthylene, Acenaphthene, Fluorene, C1-C3 Fluorenes, Phenanthrene, C1-C4 Phenanthrenes/Anthracenes, Anthracene, Fluoranthene, Pyrene, C1-C4 Fluoranthenes/Pyrenes, Benza(a)anthracene, Chrysene, C1-C4 Chrysenes, Benzo(b)fluoranthene, Benzo(j)+(k)fluoranthene, Benzo(e)pyrene, Benzo(a)pyrene, Perylene, Indeno(1,2,3-cd)pyrene, Dibenz(ah)+(ac)anthracene, Benzo(g,h,i)perylene. If a 'Total' result is requested, the results of its individual components will also be reported.

PFAS Total: With respect to PFAS analyses, the 'PFAS, Total (5)' result is defined as the summation of results for: PFHpA, PFHxS, PFOA, PFNA and PFOS. In addition, the 'PFAS, Total (6)' result is defined as the summation of results for: PFHpA, PFHxS, PFOA, PFNA, PFDA and PFOS. For MassDEP DW compliance analysis only, the 'PFAS, Total (6)' result is defined as the summation of results at or above the RL. Note: If a 'Total' result is requested, the results of its individual components will also be reported.

The target compound Chlordane (CAS No. 57-74-9) is reported for GC ECD analyses. Per EPA, this compound "refers to a mixture of chlordane isomers, other chlorinated hydrocarbons and numerous other components." (Reference: USEPA Toxicological Review of Chlordane, In Support of Summary Information on the Integrated Risk Information System (IRIS), December 1997.)

Total: With respect to Organic analyses, a 'Total' result is defined as the summation of results for individual isomers or Aroclors. If a 'Total' result is requested, the results of its individual components will also be reported. This is applicable to 'Total' results for methods 8260, 8081 and 8082.

Data Qualifiers

- A Spectra identified as "Aldol Condensates" are byproducts of the extraction/concentration procedures when acetone is introduced in the process.
- The analyte was detected above the reporting limit in the associated method blank. Flag only applies to associated field samples that have detectable concentrations of the analyte at less than ten times (10x) the concentration found in the blank. For MCP-related projects, flag only applies to associated field samples that have detectable concentrations of the analyte at less than ten times (10x) the concentrations of the analyte at less than ten times (10x) the concentrations of the analyte was detectable concentrations of the analyte at less than ten times (10x) the concentration found in the blank AND the analyte was detected above one-half the reporting limit (or above the reporting limit for common lab contaminants) in the associated method blank. For NJ-Air-related projects, flag only applies to associated field samples that have detectable concentrations of the analyte above the reporting limit. For NJ-related projects (excluding Air), flag only applies to associated field samples that have detectable concentrations of the analyte, which was detected above the reporting limit in the associated method blank or above five times the reporting limit for common lab contaminants (Phthalates, Acetone, Methylene Chloride, 2-Butanone).
- Co-elution: The target analyte co-elutes with a known lab standard (i.e. surrogate, internal standards, etc.) for co-extracted analyses.
- Concentration of analyte was quantified from diluted analysis. Flag only applies to field samples that have detectable concentrations of the analyte.
- E Concentration of analyte exceeds the range of the calibration curve and/or linear range of the instrument.
- F The ratio of quantifier ion response to qualifier ion response falls outside of the laboratory criteria. Results are considered to be an estimated maximum concentration.
- G The concentration may be biased high due to matrix interferences (i.e, co-elution) with non-target compound(s). The result should be considered estimated.
- H The analysis of pH was performed beyond the regulatory-required holding time of 15 minutes from the time of sample collection.
- I The lower value for the two columns has been reported due to obvious interference.
- J Estimated value. This represents an estimated concentration for Tentatively Identified Compounds (TICs).
- M Reporting Limit (RL) exceeds the MCP CAM Reporting Limit for this analyte.
- **ND** Not detected at the reporting limit (RL) for the sample.
- NJ Presumptive evidence of compound. This represents an estimated concentration for Tentatively Identified Compounds (TICs), where

Report Format: Data Usability Report

Project Name:1395-1405 WASHINGTON STREETLab Number:L2162279Project Number:7075.9.00Report Date:11/18/21

Data Qualifiers

the identification is based on a mass spectral library search.

- P The RPD between the results for the two columns exceeds the method-specified criteria.
- Q The quality control sample exceeds the associated acceptance criteria. For DOD-related projects, LCS and/or Continuing Calibration Standard exceedences are also qualified on all associated sample results. Note: This flag is not applicable for matrix spike recoveries when the sample concentration is greater than 4x the spike added or for batch duplicate RPD when the sample concentrations are less than 5x the RL. (Metals only.)
- **R** Analytical results are from sample re-analysis.
- **RE** Analytical results are from sample re-extraction.
- S Analytical results are from modified screening analysis.
- The surrogate associated with this target analyte has a recovery outside the QC acceptance limits. (Applicable to MassDEP DW Compliance samples only.)
- Z The batch matrix spike and/or duplicate associated with this target analyte has a recovery/RPD outside the QC acceptance limits. (Applicable to MassDEP DW Compliance samples only.)

Report Format: Data Usability Report

Project Name: 1395-1405 WASHINGTON STREET Lab Number: L2162279

Project Number: 7075.9.00 **Report Date:** 11/18/21

REFERENCES

Test Methods for Evaluating Solid Waste: Physical/Chemical Methods. EPA SW-846. Third Edition. Updates I - VI, 2018.

- Methods for the Determination of Metals in Environmental Samples, Supplement I. EPA/600/R-94/111. May 1994.
- 4 Methods for Chemical Analysis of Water and Wastes. EPA 600/4-79-020. Revised March 1983.
- Methods for the Determination of Organic Compounds in Finished Drinking Water and Raw Source Water. EPA/600/4-88/039, Revised July 1991.
- 19 Inductively Coupled Plasma Atomic Emission Spectrometric Method for Trace Element Analysis of Water and Wastes. Appendix C, Part 136, 40 CFR (Code of Federal Regulations). July 1, 1999 edition.
- Methods for the Determination of Inorganic Substances in Environmental Samples, EPA/600/R-93/100, August 1993.
- 107 Alpha Analytical In-house calculation method.
- 121 Standard Methods for the Examination of Water and Wastewater. APHA-AWWA-WEF. Standard Methods Online.
- Method 608.3: Organochlorine Pesticides and PCBs by GC/HSD, EPA 821-R-16-009, December 2016.
- 128 Method 624.1: Purgeables by GC/MS, EPA 821-R-16-008, December 2016.
- Method 625.1: Base/Neutrals and Acids by GC/MS, EPA 821-R-16-007, December 2016.
- Method 1664,Revision B: N-Hexane Extractable Material (HEM; Oil & Grease) and Silica Gel Treated N-Hexane Extractable Material (SGT-HEM; Non-polar Material) by Extraction and Gravimetry, EPA-821-R-10-001, February 2010.

LIMITATION OF LIABILITIES

Alpha Analytical performs services with reasonable care and diligence normal to the analytical testing laboratory industry. In the event of an error, the sole and exclusive responsibility of Alpha Analytical shall be to re-perform the work at it's own expense. In no event shall Alpha Analytical be held liable for any incidental, consequential or special damages, including but not limited to, damages in any way connected with the use of, interpretation of, information or analysis provided by Alpha Analytical.

We strongly urge our clients to comply with EPA protocol regarding sample volume, preservation, cooling, containers, sampling procedures, holding time and splitting of samples in the field.

Alpha Analytical, Inc. Facility: Company-wide

Department: Quality Assurance

Title: Certificate/Approval Program Summary

ID No.:17873 Revision 19

Published Date: 4/2/2021 1:14:23 PM

Page 1 of 1

Certification Information

The following analytes are not included in our Primary NELAP Scope of Accreditation:

Westborough Facility

EPA 624/624.1: m/p-xylene, o-xylene, Naphthalene

EPA 625/625.1: alpha-Terpineol

EPA 8260C/8260D: NPW: 1,2,4,5-Tetramethylbenzene; 4-Ethyltoluene, Azobenzene; SCM: Iodomethane (methyl iodide), 1,2,4,5-Tetramethylbenzene;

EPA 8270D/8270E: NPW: Dimethylnaphthalene,1,4-Diphenylhydrazine, alpha-Terpineol; SCM: Dimethylnaphthalene,1,4-Diphenylhydrazine.

SM4500: NPW: Amenable Cyanide; SCM: Total Phosphorus, TKN, NO2, NO3.

Mansfield Facility

SM 2540D: TSS

EPA 8082A: NPW: PCB: 1, 5, 31, 87,101, 110, 141, 151, 153, 180, 183, 187.

EPA TO-15: Halothane, 2,4,4-Trimethyl-2-pentene, 2,4,4-Trimethyl-1-pentene, Thiophene, 2-Methylthiophene,

3-Methylthiophene, 2-Ethylthiophene, 1,2,3-Trimethylbenzene, Indan, Indene, 1,2,4,5-Tetramethylbenzene, Benzothiophene, 1-Methylnaphthalene.

Biological Tissue Matrix: EPA 3050B

The following analytes are included in our Massachusetts DEP Scope of Accreditation

Westborough Facility:

Drinking Water

EPA 300.0: Chloride, Nitrate-N, Fluoride, Sulfate; EPA 353.2: Nitrate-N, Nitrite-N; SM4500NO3-F: Nitrate-N, Nitrite-N; SM4500F-C, SM4500CN-CE,

EPA 180.1, SM2130B, SM4500CI-D, SM2320B, SM2540C, SM4500H-B, SM4500NO2-B

EPA 332: Perchlorate; EPA 524.2: THMs and VOCs; EPA 504.1: EDB, DBCP.

Microbiology: SM9215B; SM9223-P/A, SM9223B-Colilert-QT,SM9222D.

Non-Potable Water

SM4500H,B, EPA 120.1, SM2510B, SM2540C, SM2320B, SM4500CL-E, SM4500F-BC, SM4500NH3-BH: Ammonia-N and Kjeldahl-N, EPA 350.1: Ammonia-N, LACHAT 10-107-06-1-B: Ammonia-N, EPA 351.1, SM4500NO3-F, EPA 353.2: Nitrate-N, SM4500P-E, SM4500P-B, E, SM4500SO4-E, SM5220D, EPA 410.4, SM5210B, SM5310C, SM4500CL-D, EPA 1664, EPA 420.1, SM4500-CN-CE, SM2540D, EPA 300: Chloride, Sulfate, Nitrate. EPA 624.1: Volatile Halocarbons & Aromatics,

EPA 608.3: Chlordane, Toxaphene, Aldrin, alpha-BHC, beta-BHC, gamma-BHC, delta-BHC, Dieldrin, DDD, DDE, DDT, Endosulfan II, Endosulfan II, Endosulfan sulfate, Endrin, Endrin Aldehyde, Heptachlor, Heptachlor Epoxide, PCBs

EPA 625.1: SVOC (Acid/Base/Neutral Extractables), EPA 600/4-81-045: PCB-Oil.

Microbiology: SM9223B-Colilert-QT; Enterolert-QT, SM9221E, EPA 1600, EPA 1603, SM9222D.

Mansfield Facility:

Drinking Water

EPA 200.7: Al, Ba, Cd, Cr, Cu, Fe, Mn, Ni, Na, Ag, Ca, Zn. EPA 200.8: Al, Sb, As, Ba, Be, Cd, Cr, Cu, Pb, Mn, Ni, Se, Ag, TL, Zn. EPA 245.1 Hg. EPA 522, EPA 537.1.

Non-Potable Water

EPA 200.7: Al, Sb, As, Be, Cd, Ca, Cr, Co, Cu, Fe, Pb, Mg, Mn, Mo, Ni, K, Se, Ag, Na, Sr, TL, Ti, V, Zn.

EPA 200.8: Al, Sb, As, Be, Cd, Cr, Cu, Fe, Pb, Mn, Ni, K, Se, Ag, Na, TL, Zn.

EPA 245.1 Hg

SM2340B

For a complete listing of analytes and methods, please contact your Alpha Project Manager.

Pre-Qualtrax Document ID: 08-113 Document Type: Form

	CHAIN OF	CUSTO	DY	PAGE 1 OF	1	Date	Rec'd	in Lab:	11	111	12			ALP	на Ј	ob #:	LE	716227	7
ALPH	A	Project Infor	mation	S. W.		Rep	ort li	nform	ation	Data	Deli	verab	les	Billi	ng In	forma	ation		
Westborough, MA	Mansfield, MA	Destruction	1005 1105 1							⊠ E	MAIL			⊠ s	ame a	s Client	info	PO #:	
TEL: 508-898-9220 FAX: 508-898-9193	TEL: 508-822-9300 FAX: 508-822-3288	Project Name:	1395-1405 V	vashington S	treet	-	ADEx	11111			Add'l De	NAME OF TAXABLE PARTY.	-						
Client Informat		Project Location	n: Boston. M	A						ement	s/Rep	ort L	imits						
Client: McPhail As		Project #: 7075	11000 100000000000000000000000000000000	200			RGP	rogram)					Criter	ia				- 0
Address: 2269 Ma		ject Manager: K. Hanrahan			MCP PRESUMPTIVE CERTAINTY-CT RE				T RE	ASO	NABI	E CC	NFID	ENCE PROTOCO	LS				
Cambridge, MA 0	2140	ALPHA Quote #					C10000		□ No ⊠ No	-		CONTRACTO		V-12 (11 14 1		quired?	\$1000000000	s) Required?	
Phone: 978-273-6	enus V	Turn-Around	A CONTRACTOR OF THE PARTY OF TH	200		-	ALYS	7.00	M INO		Mie	JI NOP	(Neas	onable	COLLIN	rende r	TOTOCOL) Nequiled?	T O
Fax: 6178681423		Standard		sh (ONLY IF PR	E-APPROVED)				-									SAMPLE HANDLING Filtration	TA
Email: khanrahan(@mcphailgeo.com																	☐ Done	L
☐ These samples have	been Previously analyzed by Alpha	Due Date:	Time:									(8)						☑ Not Needed ☐ Lab to do	# B
Other Project Specific Requirements/Comments/Detection Limits:											BTEX and Benzene (8260)						Preservation	o T	
Hardness, PH					8)(A)		2		3	1	(8) (8)		: C				☐ Lab to do (Please specify	Ī	
Sect B NonHaloge	Ammonia, Chloride, TRC, TSS, Cr nated VOCs: Total BTEX, Benzene					200.		(00		ō		nzer	W(22)3	OL (F)				below)	E 5
Sect F Fuels Parar	meters: TPH, Ethanol, MTBE, tert-E	Butyl Alc, tert-Amyl	Methyl Et			RGP Metals (200.8)(A)		Ammonia (4500)(A)		HexCr (7196),	1000	d Be	TPH-1664 (F)	ETHANOL			1	16	
ALPHA Lab ID	Sample ID	Coll	ection	Sample	Sampler's	Me	€	nonia	TCN (A)	C (2	8260 (F)	×an	-166	-ET					
(Lab Use Only)		Date	Time	Matrix	Initials	RGF	TSS (A)	Amn	1CN	Hex	826(BTE	TPH	SUB-				Sample Specific Comments	
62279-01	BHOW) GW	11/11/21	14:45	GW	ZD	\boxtimes	×	×		×	\boxtimes	\boxtimes	\boxtimes						15
				33300															
							Ц	Ц	Ц	Щ				ᆜ	브	닏			
					-	님	님		님	님	님		님	님	片	님	님		
			-		-	片	片	님	님	님	片	Η	님	무	님	님	님	- N.	
						님	님		H	님	님		님	무	님	님	님		\vdash
						H	片	H	님	H	님	片	님	Η	H	H	뷰		
						П	ш	П	ш	П	ш	ш	ᆜ	ш	ш	ш	ш		
PLEASE ANSWER	QUESTIONS ABOVE!				Container Type							-			-		-	Please print clearly, legib	oly
IS VALID	PROJECT		Relin	quished By:	Preservative	D-	ate/Tim		~	3412	Receiv	ad By	10		r	ate/Tin	ne	and completely. Sample not be logged in and	
		140	des	Des	ú	16:1	2 11	10 1		111	11	COT W	1	Da.	11/11	/21	1101	turnaround time clock will start until any ambiguities resolved. All samples	
FORM NO. 01-0101	or CT RCP?	W	XX	al A	46	11/11	121	17:	0\$	MA				11	177	7-	ZX	submitted are subject to Alpha's Payment Terms.	
(rev. 20-30.g07)			(1					-				161				100

Subcontract Chain of Custody

NAL Y		Te 54 Cc	k Lab, Inc. 45 Horsehoe Illinsville, IL 62	Lake Road 2234-7425		Alpha Job Nu L2162279	umber			
C	lient Information	Value Savesu	Project In	formation	Regulatory Re	quirements/Report Limit	ts			
Make 1	Analytical Labs /alkup Drive rough, MA 01581-1019	The last time of the second	ound & Deliv	ılli verables Informati	Regulatory Criteria:	State/Federal Program: Regulatory Criteria:				
Phone: 603.31: Email: mgulli@	9.5010 Palphalab.com	Due Date Deliverables	:							
ESE WANTE		Project Specif	fic Requirem	ents and/or Repo	rt Requirements					
	Reference following Alpha Job	Number on final report	rt/deliverables	: L2162279	Report to include Method Bl	ank, LCS/LCSD:				
Additional Com	ments: Send all results/reports	to subreports@alphal	ab.com							
	FERNOLS OF THE STATE	IN ALTOHOLISM				CELEBRATIVA CONTRACTO	Bariel			
Lab ID	Client ID	Collection Date/Time	Sample Matrix		Analysis	1	Batch QC			
78	GW	11-11-21 14:45	WATER	Ethanol by EPA 1671 R	Revision A					
	Relinquish	ed By:		Date/Time:	Received By:	Date/Time:				
	0	X		11 15 121						
		U								
Form No: AL_su	bcoc									

http://www.teklabinc.com/

November 18, 2021

Melissa Gulli Alpha Analytical 145 Flanders Road Westborough, MA 01581 TEL: (603) 319-5010

FAX:

RE: L2162279

Dear Melissa Gulli:

TEKLAB, INC received 1 sample on 11/16/2021 10:00:00 AM for the analysis presented in the following report.

Samples are analyzed on an as received basis unless otherwise requested and documented. The sample results contained in this report relate only to the requested analytes of interest as directed on the chain of custody. NELAP accredited fields of testing are indicated by the letters NELAP under the Certification column. Unless otherwise documented within this report, Teklab Inc. analyzes samples utilizing the most current methods in compliance with 40CFR. All tests are performed in the Collinsville, IL laboratory unless otherwise noted in the Case Narrative.

All quality control criteria applicable to the test methods employed for this project have been satisfactorily met and are in accordance with NELAP except where noted. The following report shall not be reproduced, except in full, without the written approval of Teklab, Inc.

If you have any questions regarding these tests results, please feel free to call.

Sincerely,

Elizabeth A. Hurley

Elizabeth a Hurley

Project Manager

(618)344-1004 ex 33

ehurley@teklabinc.com

WorkOrder: 21110993

Illinois 100226 Kansas E-10374 Louisiana 05002 Louisiana 05003 Oklahoma 9978

Page 1 of 9

Report Contents

http://www.teklabinc.com/

Client: Alpha Analytical Work Order: 21110993
Client Project: L2162279 Report Date: 18-Nov-21

This reporting package includes the following:

Cover Letter	1
Report Contents	2
Definitions	3
Case Narrative	5
Accreditations	6
Laboratory Results	7
Quality Control Results	8
Receiving Check List	9
Chain of Custody	Appended

Definitions

http://www.teklabinc.com/

Client: Alpha Analytical Work Order: 21110993

Client Project: L2162279 Report Date: 18-Nov-21

Abbr Definition

- * Analytes on report marked with an asterisk are not NELAP accredited
- CCV Continuing calibration verification is a check of a standard to determine the state of calibration of an instrument between recalibration.
- CRQL A Client Requested Quantitation Limit is a reporting limit that varies according to customer request. The CRQL may not be less than the MDL.
 - DF Dilution factor is the dilution performed during analysis only and does not take into account any dilutions made during sample preparation. The reported result is final and includes all dilution factors.
 - DNI Did not ignite
- DUP Laboratory duplicate is a replicate aliquot prepared under the same laboratory conditions and independently analyzed to obtain a measure of precision.
- ICV Initial calibration verification is a check of a standard to determine the state of calibration of an instrument before sample analysis is initiated.
- IDPH IL Dept. of Public Health
- LCS Laboratory control sample is a sample matrix, free from the analytes of interest, spiked with verified known amounts of analytes and analyzed exactly like a sample to establish intra-laboratory or analyst specific precision and bias or to assess the performance of all or a portion of the measurement system.
- LCSD Laboratory control sample duplicate is a replicate laboratory control sample that is prepared and analyzed in order to determine the precision of the approved test method. The acceptable recovery range is listed in the QC Package (provided upon request).
- MBLK Method blank is a sample of a matrix similar to the batch of associated sample (when available) that is free from the analytes of interest and is processed simultaneously with and under the same conditions as samples through all steps of the analytical procedures, and in which no target analytes or interferences should present at concentrations that impact the analytical results for sample analyses.
- MDL "The method detection limit is defined as the minimum measured concentration of a substance that can be reported with 99% confidence that the measured concentration is distinguishable from method blank results."
- MS Matrix spike is an aliquot of matrix fortified (spiked) with known quantities of specific analytes that is subjected to the entire analytical procedures in order to determine the effect of the matrix on an approved test method's recovery system. The acceptable recovery range is listed in the QC Package (provided upon request).
- MSD Matrix spike duplicate means a replicate matrix spike that is prepared and analyzed in order to determine the precision of the approved test method. The acceptable recovery range is listed in the QC Package (provided upon request).
- MW Molecular weight
- NC Data is not acceptable for compliance purposes
- ND Not Detected at the Reporting Limit
- NELAP NELAP Accredited
 - PQL Practical quantitation limit means the lowest level that can be reliably achieved within specified limits of precision and accuracy during routine laboratory operation conditions.
 - RL The reporting limit the lowest level that the data is displayed in the final report. The reporting limit may vary according to customer request or sample dilution. The reporting limit may not be less than the MDL.
 - RPD Relative percent difference is a calculated difference between two recoveries (ie. MS/MSD). The acceptable recovery limit is listed in the QC Package (provided upon request).
 - SPK The spike is a known mass of target analyte added to a blank sample or sub-sample; used to determine recovery deficiency or for other quality control purposes.
 - Surr Surrogates are compounds which are similar to the analytes of interest in chemical composition and behavior in the analytical process, but which are not normally found in environmental samples.
 - TIC Tentatively identified compound: Analytes tentatively identified in the sample by using a library search. Only results not in the calibration standard will be reported as tentatively identified compounds. Results for tentatively identified compounds that are not present in the calibration standard, but are assigned a specific chemical name based upon the library search, are calculated using total peak areas from reconstructed ion chromatograms and a response factor of one. The nearest Internal Standard is used for the calculation. The results of any TICs must be considered estimated, and are flagged with a "T". If the estimated result is above the calibration range it is flagged "ET"
- TNTC Too numerous to count (> 200 CFU)

Definitions

http://www.teklabinc.com/

Client: Alpha Analytical Work Order: 21110993
Client Project: L2162279 Report Date: 18-Nov-21

Qualifiers

- # Unknown hydrocarbon
- C RL shown is a Client Requested Quantitation Limit
- H Holding times exceeded
- J Analyte detected below quantitation limits
- ND Not Detected at the Reporting Limit
 - S Spike Recovery outside recovery limits
 - X Value exceeds Maximum Contaminant Level

- B Analyte detected in associated Method Blank
- E Value above quantitation range
- I Associated internal standard was outside method criteria
- M Manual Integration used to determine area response
- R RPD outside accepted recovery limits
- T TIC(Tentatively identified compound)

Case Narrative

http://www.teklabinc.com/

Work Order: 21110993

Client Project: L2162279 Report Date: 18-Nov-21

Cooler Receipt Temp: 2.6 °C

Client: Alpha Analytical

Locations

Collinsville		Springfield	Kansas City			
Address	5445 Horseshoe Lake Road	Address	3920 Pintail Dr	Address	8421 Nieman Road	
	Collinsville, IL 62234-7425		Springfield, IL 62711-9415		Lenexa, KS 66214	
Phone	(618) 344-1004	Phone	(217) 698-1004	Phone	(913) 541-1998	
Fax	(618) 344-1005	Fax	(217) 698-1005	Fax	(913) 541-1998	
Email	jhriley@teklabinc.com	Email	KKlostermann@teklabinc.com	Email	jhriley@teklabinc.com	
	Collinsville Air		Chicago			
Address	5445 Horseshoe Lake Road	Address	1319 Butterfield Rd.			
	Collinsville, IL 62234-7425		Downers Grove, IL 60515			
Phone	(618) 344-1004	Phone	(630) 324-6855			
Fax	(618) 344-1005	Fax				
Email	EHurley@teklabinc.com	Email	arenner@teklabinc.com			

Accreditations

http://www.teklabinc.com/

Client: Alpha Analytical Work Order: 21110993

Client Project: L2162279 Report Date: 18-Nov-21

State	Dept	Cert #	NELAP	Exp Date	Lab
Illinois	IEPA	100226	NELAP	1/31/2022	Collinsville
Kansas	KDHE	E-10374	NELAP	4/30/2022	Collinsville
Louisiana	LDEQ	05002	NELAP	6/30/2022	Collinsville
Louisiana	LDEQ	05003	NELAP	6/30/2022	Collinsville
Oklahoma	ODEQ	9978	NELAP	8/31/2022	Collinsville
Arkansas	ADEQ	88-0966		3/14/2022	Collinsville
Illinois	IDPH	17584		5/31/2021	Collinsville
Kentucky	UST	0073		1/31/2022	Collinsville
Missouri	MDNR	00930		5/31/2021	Collinsville
Missouri	MDNR	930		1/31/2022	Collinsville

Laboratory Results

http://www.teklabinc.com/

Client: Alpha Analytical Work Order: 21110993

Client Project: L2162279 Report Date: 18-Nov-21

Lab ID: 21110993-001 Client Sample ID: GW

Matrix: AQUEOUS Collection Date: 11/11/2021 14:45

Analyses	Certification	RL Qual	Result	Units	DF	Date Analyzed Batch
EPA 600 1671A, PHARM	ACEUTICAL MANUFACTUR	RING INDUSTRY N	ON-PURGEA	BLE VOLAT	TILE ORGA	NICS
Ethanol	*	20	ND	mg/L	1	11/16/2021 20:03 R302738

Quality Control Results

http://www.teklabinc.com/

Client: Alpha Analytical Work Order: 21110993
Client Project: L2162279 Report Date: 18-Nov-21

Batch R302738 SampType:	mblk		Units mg/L							
SampID: mblk-111521										Date
Analyses	Cert	RL	Qual	Result	Spike	SPK Ref Val	%REC	Low Limit	High Limit	Analyzed
Ethanol	*	20		ND						11/16/2021
Batch R302738 SampType:	MBLK		Units mg/L							
SampID: MBLK-111621										Date
Analyses	Cert	RL	Qual	Result	Spike	SPK Ref Val	%REC	Low Limit	High Limit	Analyzed
Ethanol	*	20		ND						11/16/2021
Batch R302738 SampType:	LCS		Units mg/L							
SampID: LCS-111521										Date
Analyses	Cert	RL	Qual	Result	Spike	SPK Ref Val	%REC	Low Limit	High Limit	Analyzed
Ethanol	*	20	V	280	250.0	0	111.9	70	132	11/16/2021
Batch R302738 SampType:	LCS		Units mg/L							
SampID: LCS-111621										Date
Analyses	Cert	RL	Qual	Result	Spike	SPK Ref Val	%REC	Low Limit	High Limit	Analyzed
Ethanol	*	20		280	250.0	0	111.6	70	132	11/16/2021
Batch R302738 SampType:	MS		Units mg/L							
SampID: 21110988-001AMS										Date
Analyses	Cert	RL	Oual	Result	Spike	SPK Ref Val	%REC	Low Limit	High Limit	Analyzed
Ethanol	*	20	V	290	250.0	0	114.8	70	132	11/16/2021
Batch R302738 SampType:	MSD		Units mg/L					RPD Lir	nit: 30	
SampID: 21110988-001AMSD										Date
Analyses	Cert	RL	Oual	Result	Spike	SPK Ref Val	%REC	RPD Ref Va	al %RPD	Analyzed

Water - pH acceptable upon receipt?

NPDES/CWA TCN interferences checked/treated in the field?

Receiving Check List

http://www.teklabinc.com/

Client: Alpha Analytical Work Order: 21110993 Client Project: L2162279 Report Date: 18-Nov-21 Carrier: UPS Received By: PWR Marin L. Darling II Shelly A Hennessy Completed by: Reviewed by: On: On: 16-Nov-21 16-Nov-21 Shelly A. Hennessy Marvin L. Darling Extra pages included 0 Pages to follow: Chain of custody Shipping container/cooler in good condition? Yes **V** No 🗔 Not Present Temp °C 2.6 Type of thermal preservation? Ice 🗹 Blue Ice None Dry Ice Chain of custody present? **~** No 🗌 Yes Chain of custody signed when relinquished and received? **~** Yes No L **~** Chain of custody agrees with sample labels? No 🗀 Yes **~** Samples in proper container/bottle? Yes No 🗀 **V** Sample containers intact? Yes No **~** No Sufficient sample volume for indicated test? Yes **✓** No \square All samples received within holding time? Yes NA 🗸 Field Lab \square Reported field parameters measured: Yes 🗹 No 🗌 Container/Temp Blank temperature in compliance? When thermal preservation is required, samples are compliant with a temperature between 0.1°C - 6.0°C, or when samples are received on ice the same day as collected. Yes 🗸 Water - at least one vial per sample has zero headspace? No 🗀 No VOA vials No TOX containers Water - TOX containers have zero headspace? Yes No _

Yes 🗹

Yes

Any No responses must be detailed below or on the COC.

No 🗌

No 🗀

NA 🗸

Subcontract Chain of Custody

Tek Lab, Inc. 5445 Horsehoe Lake Road Collinsville, IL 62234-7425 Alpha Job Number

A N.A.L.Y.T.I.C.A.L. World Class Chemistry		Col	llinsville, IL 62	2234-7425				L2162279	
	nformation ,		Project In	formation		Regulato	ory Requiremen	nts/Report Lir	nits
Client: Alpha Analytic Address: Eight Walkup Westborough	cal Labs Drive , MA 01581-1019	Project Location Project Manage Turnaro		IIII rerables Informat	tion	State/Federal P Regulatory Crite	-		
Phone: 603.319.5010 Email: mgulli@alpha	lab.com	Due Date: Deliverables:		i					
	<u>:</u>			ents and/or Rep					
	ence following Alpha Job : Send all results/reports			: L2162279	Repo	rt to include Meti	nod Blank, LCS/L	CSD:	
Additional Comments	. Jena un resaltemento	to subreports aipman							
		Collection	Sample						Ratch
Lab ID	Client ID	Date/Time	Sample Matrix		Analysis				Batch QC
						7.6°C	LTG 3		
	Relinquish	ed By:		Date/Time:		Received By:	· · · · · · · · · · · · · · · · · · ·	Date/Time:	
				11 15 121		sister les	Lifs)	11/16/21	1000
Form No: AL subcoc				1				1	

ANALYTICAL REPORT

Lab Number: L2164349

Client: McPhail Associates

2269 Massachusetts Avenue

Cambridge, MA 02140

ATTN: Ambrose Donovan Phone: (617) 868-1420

Project Name: 1395-1405 WASHINGTON STREET

Project Number: 7075.9.00

Report Date: 11/30/21

The original project report/data package is held by Alpha Analytical. This report/data package is paginated and should be reproduced only in its entirety. Alpha Analytical holds no responsibility for results and/or data that are not consistent with the original.

Certifications & Approvals: MA (M-MA086), NH NELAP (2064), CT (PH-0574), IL (200077), ME (MA00086), MD (348), NJ (MA935), NY (11148), NC (25700/666), PA (68-03671), RI (LAO00065), TX (T104704476), VT (VT-0935), VA (460195), USDA (Permit #P330-17-00196).

Eight Walkup Drive, Westborough, MA 01581-1019 508-898-9220 (Fax) 508-898-9193 800-624-9220 - www.alphalab.com

Project Name: 1395-1405 WASHINGTON STREET

Project Number: 7075.9.00

Lab Number:

L2164349

Report Date:

11/30/21

Alpha Sample ID	Client ID	Matrix	Sample Location	Collection Date/Time	Receive Date
L2164349-01	GW	WATER	BOSTON, MA	11/19/21 13:00	11/19/21

Project Name: 1395-1405 WASHINGTON STREET Lab Number: L2164349

Project Number: 7075.9.00 **Report Date:** 11/30/21

MADEP MCP Response Action Analytical Report Certification

This form provides certifications for all samples performed by MCP methods. Please refer to the Sample Results and Container Information sections of this report for specification of MCP methods used for each analysis. The following questions pertain only to MCP Analytical Methods.

A	Were all samples received in a condition consistent with those described on the Chain-of-Custody, properly preserved (including temperature) in the field or laboratory, and prepared/analyzed within method holding times?	YES
В	Were the analytical method(s) and all associated QC requirements specified in the selected CAM protocol(s) followed?	YES
С	Were all required corrective actions and analytical response actions specified in the selected CAM protocol(s) implemented for all identified performance standard non-conformances?	YES
D	Does the laboratory report comply with all the reporting requirements specified in CAM VII A, "Quality Assurance and Quality Control Guidelines for the Acquisition and Reporting of Analytical Data?"	YES
E a.	VPH, EPH, and APH Methods only: Was each method conducted without significant modification(s)? (Refer to the individual method(s) for a list of significant modifications).	N/A
≣ b.	APH and TO-15 Methods only: Was the complete analyte list reported for each method?	N/A
F	Were all applicable CAM protocol QC and performance standard non-conformances identified and evaluated in a laboratory narrative (including all "No" responses to Questions A through E)?	YES

A res	sponse to questions G, H and I is required for "Presumptive Certainty" status	
G	Were the reporting limits at or below all CAM reporting limits specified in the selected CAM protocol(s)?	YES
Н	Were all QC performance standards specified in the CAM protocol(s) achieved?	YES
ı	Were results reported for the complete analyte list specified in the selected CAM protocol(s)?	NO

For any questions answered "No", please refer to the case narrative section on the following page(s).

Please note that sample matrix information is located in the Sample Results section of this report.

Project Name: 1395-1405 WASHINGTON STREET Lab Number: L2164349

Project Number: 7075.9.00 Report Date: 11/30/21

Case Narrative

The samples were received in accordance with the Chain of Custody and no significant deviations were encountered during the preparation or analysis unless otherwise noted. Sample Receipt, Container Information, and the Chain of Custody are located at the back of the report.

Results contained within this report relate only to the samples submitted under this Alpha Lab Number and meet NELAP requirements for all NELAP accredited parameters unless otherwise noted in the following narrative. The data presented in this report is organized by parameter (i.e. VOC, SVOC, etc.). Sample specific Quality Control data (i.e. Surrogate Spike Recovery) is reported at the end of the target analyte list for each individual sample, followed by the Laboratory Batch Quality Control at the end of each parameter. Tentatively Identified Compounds (TICs), if requested, are reported for compounds identified to be present and are not part of the method/program Target Compound List, even if only a subset of the TCL are being reported. If a sample was re-analyzed or re-extracted due to a required quality control corrective action and if both sets of data are reported, the Laboratory ID of the re-analysis or re-extraction is designated with an "R" or "RE", respectively.

When multiple Batch Quality Control elements are reported (e.g. more than one LCS), the associated samples for each element are noted in the grey shaded header line of each data table. Any Laboratory Batch, Sample Specific % recovery or RPD value that is outside the listed Acceptance Criteria is bolded in the report. In reference to questions H (CAM) or 4 (RCP) when "NO" is checked, the performance criteria for CAM and RCP methods allow for some quality control failures to occur and still be within method compliance. In these instances, the specific failure is not narrated but noted in the associated QC Outlier Summary Report, located directly after the Case Narrative. QC information is also incorporated in the Data Usability Assessment table (Format 11) of our Data Merger tool, where it can be reviewed in conjunction with the sample result, associated regulatory criteria and any associated data usability implications.

Soil/sediments, solids and tissues are reported on a dry weight basis unless otherwise noted. Definitions of all data qualifiers and acronyms used in this report are provided in the Glossary located at the back of the report.

HOLD POLICY - For samples submitted on hold, Alpha's policy is to hold samples (with the exception of Air canisters) free of charge for 21 calendar days from the date the project is completed. After 21 calendar days, we will dispose of all samples submitted including those put on hold unless you have contacted your Alpha Project Manager and made arrangements for Alpha to continue to hold the samples. Air canisters will be disposed after 3 business days from the date the project is completed.

Please contact Project Management at 800-624-9220 with any questions.	

Project Name: 1395-1405 WASHINGTON STREET Lab Number: L2164349

Project Number: 7075.9.00 **Report Date:** 11/30/21

Case Narrative (continued)

MCP Related Narratives

Dissolved Metals

In reference to question I:

All samples were analyzed for a subset of MCP analytes per client request.

I, the undersigned, attest under the pains and penalties of perjury that, to the best of my knowledge and belief and based upon my personal inquiry of those responsible for providing the information contained in this analytical report, such information is accurate and complete. This certificate of analysis is not complete unless this page accompanies any and all pages of this report.

Custen Walker Cristin Walker

Authorized Signature:

Title: Technical Director/Representative Date: 11/30/21

QC OUTLIER SUMMARY REPORT

Project Name: 1395-1405 WASHINGTON STREET

Lab Number:

L2164349

Project Number: 7075.9.00

Report Date:

11/30/21

Recovery/RPD QC Limits Associated Data Quality
Method Client ID (Native ID) Lab ID Parameter QC Type (%) (%) Samples Assessment

There are no QC Outliers associated with this report.

METALS

11/19/21 13:00

Date Collected:

Project Name:1395-1405 WASHINGTON STREETLab Number:L2164349

Project Number: 7075.9.00 **Report Date:** 11/30/21

SAMPLE RESULTS

Lab ID: L2164349-01

Client ID: GW Date Received: 11/19/21

Sample Location: BOSTON, MA Field Prep: Not Specified

Sample Depth:

Matrix: Water

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	Date Prepared	Date Analyzed	Prep Method	Analytical Method	Analyst
MCP Dissolved M	etals - Man	sfield Lab									
Lead, Dissolved	ND		mg/l	0.010		1	11/26/21 12:0	3 11/30/21 13:23	B EPA 3005A	97,6010D	GD

L2164349

Lab Number:

Project Name: 1395-1405 WASHINGTON STREET

Domest Date.

Project Number: 7075.9.00 **Report Date:** 11/30/21

Method Blank Analysis Batch Quality Control

Dilution Date Date Analytical Method Analyst **Parameter Result Qualifier** RLMDL **Factor Prepared** Analyzed **Units** MCP Dissolved Metals - Mansfield Lab for sample(s): 01 Batch: WG1575572-1 Lead, Dissolved ND mg/l 0.010 1 11/30/21 12:38 97,6010D GD 11/26/21 12:03

Prep Information

Digestion Method: EPA 3005A

Lab Control Sample Analysis Batch Quality Control

Project Name: 1395-1405 WASHINGTON STREET

Lab Number: L2164349

Project Number: 7075.9.00 Report Date:

11/30/21

Parameter	LCS %Recovery	Qual	LCSD %Recovery	Qual	%Recovery Limits	RPD	Qual	RPD Limits	
MCP Dissolved Metals - Mansfield Lab Asso	ciated sample(s): 01	Batch: \	WG1575572-2	WG1575572-3					
Lead, Dissolved	100		102		80-120	2		20	

Lab Number: L2164349

Project Number: 7075.9.00 **Report Date:** 11/30/21

Sample Receipt and Container Information

Were project specific reporting limits specified?

1395-1405 WASHINGTON STREET

Cooler Information

Project Name:

Cooler Custody Seal

A Absent

Container Info	rmation		Initial	Final	Temp			Frozen		
Container ID	Container Type	Cooler	рН	рН	deg C	Pres	Seal	Date/Time	Analysis(*)	
L2164349-01A	Plastic 950ml unpreserved	Α	7	7	3.0	Υ	Absent		-	
L2164349-01X	Plastic 120ml HNO3 preserved Filtrates	Α	NA		3.0	Υ	Absent		MCP-PB-6010S-10(180)	

Project Name: 1395-1405 WASHINGTON STREET Lab Number: L2164349

Project Number: 7075.9.00 Report Date: 11/30/21

GLOSSARY

Acronyms

DL

EDL

LOQ

MS

- Detection Limit: This value represents the level to which target analyte concentrations are reported as estimated values, when those target analyte concentrations are quantified below the limit of quantitation (LOQ). The DL includes any adjustments from dilutions, concentrations or moisture content, where applicable. (DoD report formats only.)

 Estimated Detection Limit: This value represents the level to which target analyte concentrations are reported as estimated values, when those target analyte concentrations are quantified below the reporting limit (RL). The EDL includes any adjustments from dilutions, concentrations or moisture content, where applicable. The use of EDLs is specific to the analysis

of PAHs using Solid-Phase Microextraction (SPME).

EMPC - Estimated Maximum Possible Concentration: The concentration that results from the signal present at the retention time of an analyte when the ions meet all of the identification criteria except the ion abundance ratio criteria. An EMPC is a worst-case

estimate of the concentration.

EPA - Environmental Protection Agency.

LCS - Laboratory Control Sample: A sample matrix, free from the analytes of interest, spiked with verified known amounts of

analytes or a material containing known and verified amounts of analytes.

LCSD - Laboratory Control Sample Duplicate: Refer to LCS.

LFB - Laboratory Fortified Blank: A sample matrix, free from the analytes of interest, spiked with verified known amounts of analytes or a material containing known and verified amounts of analytes.

LOD - Limit of Detection: This value represents the level to which a target analyte can reliably be detected for a specific analyte in a specific matrix by a specific method. The LOD includes any adjustments from dilutions, concentrations or moisture content, where applicable. (DoD report formats only.)

 Limit of Quantitation: The value at which an instrument can accurately measure an analyte at a specific concentration. The LOQ includes any adjustments from dilutions, concentrations or moisture content, where applicable. (DoD report formats only.)

Limit of Quantitation: The value at which an instrument can accurately measure an analyte at a specific concentration. The LOQ includes any adjustments from dilutions, concentrations or moisture content, where applicable. (DoD report formats only.)

MDL - Method Detection Limit: This value represents the level to which target analyte concentrations are reported as estimated values, when those target analyte concentrations are quantified below the reporting limit (RL). The MDL includes any adjustments from dilutions, concentrations or moisture content, where applicable.

 Matrix Spike Sample: A sample prepared by adding a known mass of target analyte to a specified amount of matrix sample for which an independent estimate of target analyte concentration is available. For Method 332.0, the spike recovery is calculated using the native concentration, including estimated values.

MSD - Matrix Spike Sample Duplicate: Refer to MS.

NA - Not Applicable.

NC - Not Calculated: Term is utilized when one or more of the results utilized in the calculation are non-detect at the parameter's

reporting unit.

NDPA/DPA - N-Nitrosodiphenylamine/Diphenylamine.

NI - Not Ignitable.

NP - Non-Plastic: Term is utilized for the analysis of Atterberg Limits in soil.

NR - No Results: Term is utilized when 'No Target Compounds Requested' is reported for the analysis of Volatile or Semivolatile

Organic TIC only requests.

RL - Reporting Limit: The value at which an instrument can accurately measure an analyte at a specific concentration. The RL

includes any adjustments from dilutions, concentrations or moisture content, where applicable.

RPD - Relative Percent Difference: The results from matrix and/or matrix spike duplicates are primarily designed to assess the precision of analytical results in a given matrix and are expressed as relative percent difference (RPD). Values which are less than five times the reporting limit for any individual parameter are evaluated by utilizing the absolute difference between the

values; although the RPD value will be provided in the report.

SRM - Standard Reference Material: A reference sample of a known or certified value that is of the same or similar matrix as the

associated field samples.

STLP - Semi-dynamic Tank Leaching Procedure per EPA Method 1315.

TEF - Toxic Equivalency Factors: The values assigned to each dioxin and furan to evaluate their toxicity relative to 2,3,7,8-TCDD.

TEQ - Toxic Equivalent: The measure of a sample's toxicity derived by multiplying each dioxin and furan by its corresponding TEF

and then summing the resulting values.

TIC - Tentatively Identified Compound: A compound that has been identified to be present and is not part of the target compound list (TCL) for the method and/or program. All TICs are qualitatively identified and reported as estimated concentrations.

Project Name:1395-1405 WASHINGTON STREETLab Number:L2164349Project Number:7075.9.00Report Date:11/30/21

Footnotes

1 - The reference for this analyte should be considered modified since this analyte is absent from the target analyte list of the original method.

Terms

Analytical Method: Both the document from which the method originates and the analytical reference method. (Example: EPA 8260B is shown as 1,8260B.) The codes for the reference method documents are provided in the References section of the Addendum.

Difference: With respect to Total Oxidizable Precursor (TOP) Assay analysis, the difference is defined as the Post-Treatment value minus the Pre-Treatment value.

Final pH: As it pertains to Sample Receipt & Container Information section of the report, Final pH reflects pH of container determined after adjustment at the laboratory, if applicable. If no adjustment required, value reflects Initial pH.

Frozen Date/Time: With respect to Volatile Organics in soil, Frozen Date/Time reflects the date/time at which associated Reagent Water-preserved vials were initially frozen. Note: If frozen date/time is beyond 48 hours from sample collection, value will be reflected in 'bold'.

Initial pH: As it pertains to Sample Receipt & Container Information section of the report, Initial pH reflects pH of container determined upon receipt, if applicable.

PAH Total: With respect to Alkylated PAH analyses, the 'PAHs, Total' result is defined as the summation of results for all or a subset of the following compounds: Naphthalene, C1-C4 Naphthalenes, 2-Methylnaphthalene, 1-Methylnaphthalene, Biphenyl, Acenaphthylene, Acenaphthene, Fluorene, C1-C3 Fluorenes, Phenanthrene, C1-C4 Phenanthrenes/Anthracenes, Anthracene, Fluoranthene, Pyrene, C1-C4 Fluoranthenes/Pyrenes, Benz(a)anthracene, Chrysene, C1-C4 Chrysenes, Benzo(b)fluoranthene, Benzo(j)+(k)fluoranthene, Benzo(e)pyrene, Benzo(a)pyrene, Perylene, Indeno(1,2,3-cd)pyrene, Dibenz(ah)+(ac)anthracene, Benzo(g,h,i)perylene. If a 'Total' result is requested, the results of its individual components will also be reported.

PFAS Total: With respect to PFAS analyses, the 'PFAS, Total (5)' result is defined as the summation of results for: PFHpA, PFHxS, PFOA, PFNA and PFOS. In addition, the 'PFAS, Total (6)' result is defined as the summation of results for: PFHpA, PFHxS, PFOA, PFNA, PFDA and PFOS. For MassDEP DW compliance analysis only, the 'PFAS, Total (6)' result is defined as the summation of results at or above the RL. Note: If a 'Total' result is requested, the results of its individual components will also be reported.

The target compound Chlordane (CAS No. 57-74-9) is reported for GC ECD analyses. Per EPA, this compound "refers to a mixture of chlordane isomers, other chlorinated hydrocarbons and numerous other components." (Reference: USEPA Toxicological Review of Chlordane, In Support of Summary Information on the Integrated Risk Information System (IRIS), December 1997.)

Total: With respect to Organic analyses, a 'Total' result is defined as the summation of results for individual isomers or Aroclors. If a 'Total' result is requested, the results of its individual components will also be reported. This is applicable to 'Total' results for methods 8260, 8081 and 8082.

Data Qualifiers

- A Spectra identified as "Aldol Condensates" are byproducts of the extraction/concentration procedures when acetone is introduced in the process.
- The analyte was detected above the reporting limit in the associated method blank. Flag only applies to associated field samples that have detectable concentrations of the analyte at less than ten times (10x) the concentration found in the blank. For MCP-related projects, flag only applies to associated field samples that have detectable concentrations of the analyte at less than ten times (10x) the concentrations of the analyte at less than ten times (10x) the concentrations of the analyte was detectable concentrations of the analyte at less than ten times (10x) the concentration found in the blank AND the analyte was detected above one-half the reporting limit (or above the reporting limit for common lab contaminants) in the associated method blank. For NJ-Air-related projects, flag only applies to associated field samples that have detectable concentrations of the analyte above the reporting limit. For NJ-related projects (excluding Air), flag only applies to associated field samples that have detectable concentrations of the analyte, which was detected above the reporting limit in the associated method blank or above five times the reporting limit for common lab contaminants (Phthalates, Acetone, Methylene Chloride, 2-Butanone).
- Co-elution: The target analyte co-elutes with a known lab standard (i.e. surrogate, internal standards, etc.) for co-extracted analyses.
- Concentration of analyte was quantified from diluted analysis. Flag only applies to field samples that have detectable concentrations of the analyte.
- E Concentration of analyte exceeds the range of the calibration curve and/or linear range of the instrument.
- F The ratio of quantifier ion response to qualifier ion response falls outside of the laboratory criteria. Results are considered to be an estimated maximum concentration.
- G The concentration may be biased high due to matrix interferences (i.e, co-elution) with non-target compound(s). The result should be considered estimated.
- H The analysis of pH was performed beyond the regulatory-required holding time of 15 minutes from the time of sample collection.
- I The lower value for the two columns has been reported due to obvious interference.
- J Estimated value. This represents an estimated concentration for Tentatively Identified Compounds (TICs).
- M Reporting Limit (RL) exceeds the MCP CAM Reporting Limit for this analyte.
- **ND** Not detected at the reporting limit (RL) for the sample.
- NJ Presumptive evidence of compound. This represents an estimated concentration for Tentatively Identified Compounds (TICs), where

Project Name:1395-1405 WASHINGTON STREETLab Number:L2164349Project Number:7075.9.00Report Date:11/30/21

Data Qualifiers

the identification is based on a mass spectral library search.

- P The RPD between the results for the two columns exceeds the method-specified criteria.
- Q The quality control sample exceeds the associated acceptance criteria. For DOD-related projects, LCS and/or Continuing Calibration Standard exceedences are also qualified on all associated sample results. Note: This flag is not applicable for matrix spike recoveries when the sample concentration is greater than 4x the spike added or for batch duplicate RPD when the sample concentrations are less than 5x the RL. (Metals only.)
- **R** Analytical results are from sample re-analysis.
- **RE** Analytical results are from sample re-extraction.
- S Analytical results are from modified screening analysis.
- The surrogate associated with this target analyte has a recovery outside the QC acceptance limits. (Applicable to MassDEP DW Compliance samples only.)
- Z The batch matrix spike and/or duplicate associated with this target analyte has a recovery/RPD outside the QC acceptance limits. (Applicable to MassDEP DW Compliance samples only.)

Project Name: 1395-1405 WASHINGTON STREET Lab Number: L2164349

Project Number: 7075.9.00 Report Date: 11/30/21

REFERENCES

97 EPA Test Methods (SW-846) with QC Requirements & Performance Standards for the Analysis of EPA SW-846 Methods under the Massachusetts Contingency Plan, WSC-CAM-IIA, IIB, IIIA, IIIB, IIIC, IIID, VA, VB, VC, VIA, VIB, VIIIA and VIIIB, July 2010.

LIMITATION OF LIABILITIES

Alpha Analytical performs services with reasonable care and diligence normal to the analytical testing laboratory industry. In the event of an error, the sole and exclusive responsibility of Alpha Analytical shall be to re-perform the work at it's own expense. In no event shall Alpha Analytical be held liable for any incidental, consequential or special damages, including but not limited to, damages in any way connected with the use of, interpretation of, information or analysis provided by Alpha Analytical.

We strongly urge our clients to comply with EPA protocol regarding sample volume, preservation, cooling, containers, sampling procedures, holding time and splitting of samples in the field.

Alpha Analytical, Inc. Facility: Company-wide

Department: Quality Assurance

Title: Certificate/Approval Program Summary

ID No.:17873 Revision 19

Page 1 of 1

Published Date: 4/2/2021 1:14:23 PM

Certification Information

The following analytes are not included in our Primary NELAP Scope of Accreditation:

Westborough Facility

EPA 624/624.1: m/p-xylene, o-xylene, Naphthalene

EPA 625/625.1: alpha-Terpineol

EPA 8260C/8260D: NPW: 1,2,4,5-Tetramethylbenzene; 4-Ethyltoluene, Azobenzene; SCM: Iodomethane (methyl iodide), 1,2,4,5-Tetramethylbenzene;

EPA 8270D/8270E: NPW: Dimethylnaphthalene,1,4-Diphenylhydrazine, alpha-Terpineol; SCM: Dimethylnaphthalene,1,4-Diphenylhydrazine.

SM4500: NPW: Amenable Cyanide; SCM: Total Phosphorus, TKN, NO2, NO3.

Mansfield Facility

SM 2540D: TSS

EPA 8082A: NPW: PCB: 1, 5, 31, 87,101, 110, 141, 151, 153, 180, 183, 187.

EPA TO-15: Halothane, 2,4,4-Trimethyl-2-pentene, 2,4,4-Trimethyl-1-pentene, Thiophene, 2-Methylthiophene,

3-Methylthiophene, 2-Ethylthiophene, 1,2,3-Trimethylbenzene, Indan, Indene, 1,2,4,5-Tetramethylbenzene, Benzothiophene, 1-Methylnaphthalene.

Biological Tissue Matrix: EPA 3050B

The following analytes are included in our Massachusetts DEP Scope of Accreditation

Westborough Facility:

Drinking Water

EPA 300.0: Chloride, Nitrate-N, Fluoride, Sulfate; EPA 353.2: Nitrate-N, Nitrite-N; SM4500NO3-F: Nitrate-N, Nitrite-N; SM4500F-C, SM4500CN-CE,

EPA 180.1, SM2130B, SM4500CI-D, SM2320B, SM2540C, SM4500H-B, SM4500NO2-B

EPA 332: Perchlorate; EPA 524.2: THMs and VOCs; EPA 504.1: EDB, DBCP.

Microbiology: SM9215B; SM9223-P/A, SM9223B-Colilert-QT,SM9222D.

Non-Potable Water

SM4500H,B, EPA 120.1, SM2510B, SM2540C, SM2320B, SM4500CL-E, SM4500F-BC, SM4500NH3-BH: Ammonia-N and Kjeldahl-N, EPA 350.1: Ammonia-N, LACHAT 10-107-06-1-B: Ammonia-N, EPA 351.1, SM4500NO3-F, EPA 353.2: Nitrate-N, SM4500P-E, SM4500P-B, E, SM4500SO4-E, SM5220D, EPA 410.4, SM5210B, SM5310C, SM4500CL-D, EPA 1664, EPA 420.1, SM4500-CN-CE, SM2540D, EPA 300: Chloride, Sulfate, Nitrate. EPA 624.1: Volatile Halocarbons & Aromatics,

EPA 608.3: Chlordane, Toxaphene, Aldrin, alpha-BHC, beta-BHC, gamma-BHC, delta-BHC, Dieldrin, DDD, DDE, DDT, Endosulfan II, Endosulfan II, Endosulfan sulfate, Endrin, Endrin Aldehyde, Heptachlor, Heptachlor Epoxide, PCBs

EPA 625.1: SVOC (Acid/Base/Neutral Extractables), EPA 600/4-81-045: PCB-Oil.

Microbiology: SM9223B-Colilert-QT; Enterolert-QT, SM9221E, EPA 1600, EPA 1603, SM9222D.

Mansfield Facility:

Drinking Water

EPA 200.7: Al, Ba, Cd, Cr, Cu, Fe, Mn, Ni, Na, Ag, Ca, Zn. EPA 200.8: Al, Sb, As, Ba, Be, Cd, Cr, Cu, Pb, Mn, Ni, Se, Ag, TL, Zn. EPA 245.1 Hg. EPA 522, EPA 537.1.

Non-Potable Water

EPA 200.7: Al, Sb, As, Be, Cd, Ca, Cr, Co, Cu, Fe, Pb, Mg, Mn, Mo, Ni, K, Se, Ag, Na, Sr, TL, Ti, V, Zn.

EPA 200.8: Al, Sb, As, Be, Cd, Cr, Cu, Fe, Pb, Mn, Ni, K, Se, Ag, Na, TL, Zn.

EPA 245.1 Hg

SM2340B

For a complete listing of analytes and methods, please contact your Alpha Project Manager.

Pre-Qualtrax Document ID: 08-113 Document Type: Form

ALPHI	٩	OF CUSTO	DDY		PAGE_			Da	te Re	ec'd i	n Lat	p: [1/1	9/2	(ALP	L C	ob#: 64	349	
A SHARE THE STREET		Proj	ect Inform	nation	是必要			Re	port	Infor	matic	on - D	ata De	elivera	bles			Bi	lling	nforma	tion	180
8 Walkup Drive Westboro, MA Tel: 508-898-9	01581 Mansfield, MA 02048	Proje	ct Name: \2	3/IC-IN	105Was	Annertu	ast		DEx	102-100		EMAIL	in the	er very less	NA CONTRACTOR	1000	noke i	100		Client info		22000
Client Information	CONTRACTOR OF THE PARTY OF THE	Proje	ct Location:	200t	UNIVIA	-	130	Re	gulat	tory i	Requ	ireme	nts	& Pr	oject	Infor	matic	on Re	quire	ments		A STATE OF
Client: McPhail	Associates, LLC	Proje	ct#: —	75 0	CY TAVIE		_													alytical Me	thods	
Address: 2269 Mass	sachusetts Avenue	Proje	ct Manager:	2 11	1 mine							r Requir dards (Ir										
Cambrid	lge, MA 02140	ALPH	IA Quote #:	F. HZ	nane	n		☐ Yes	2NNo	NPD	ES RG	p ram				Cri	teria_					
Phone: (617) 868-	1420	Tu	rn-Around	Time			Alexander Son	3000	oi Oidi	la m ec	riog						-					-
Email: Klygnys	McPhailgeo.com	m V						٩ ١							O RCRA8	Zu			0		No. 12. 150	-
	roject Information:		itandard te Due:	RUSH (only confirmed i	f pre-approved	11)	≥				w	2	3A8	J RC). 		50	PAD			0
Run TCLP (if tri		00, S-1						Soil Assessment Package IV (less VOC)	□ 8260	Total Solids	SVOC: 🗆 PAH	EPH: ☐ Ranges & Targets ☐ Ranges Only	VPH: ☐ Ranges & Targets ☐ Ranges Only	TOTAL METALS: D RCRAS	DISSOLVED METALS: [METALS: Total Sb,Be,Ni,TI,V,Zn	☐ PCBs ☐ Pesticides	RGP Section A Inorganics	PISSOLVED LE		SAMPLE INFO Filtration Field Lab to do Preservation Lab to do	AL # BOTT
ALPHA Lab ID (Lab Use Only)	Sample ID		Sample		Colle	decide la company of the company of	Sampler	oil A	VOC:	otal	Voc	PH:	PH:	OTA PP	ISSC PP	ETA	PC	GP	2			L E
6434901	GW	-	Depth	Material Gw	11/14/21	Time	Initials	S E	>	F	(O)	шП	> 0	F 0	۵۵	2	D	œ	X	+	LABFILTE	_
0926101	ga			Goo	141-11-11	().0	FCI.	\vdash			-					_					UND-TUE	7
				1				\vdash										\vdash		\vdash		+
							-	\vdash	-		_		-			-	\vdash	\vdash		\vdash	+	+
								\vdash	_	_		_	-	-	-			\vdash		+	-	+
I SKIEWAY								\vdash						_				\vdash		\vdash	_	+
				\vdash				\vdash	-											\vdash	+	+
								+		_				-	-	H		\vdash)			+
						-		H			-							\vdash			+	+
The state of								\vdash										\vdash		\vdash	_	+
Container Type	Preservative	RGP Section A			ewoestov	C	ontainer Type	\vdash		_	_			_	_			\vdash		\vdash	1	+
A=Amber glass B=Bacteria cup	A=None B=HCI	Ammonia, Chlori Cyanide, Total R		S, CrVI, Cri	III, Total		Preservative															\top
C=Cube D=BOD bottle	C=HNO ₃ D=H ₂ SO ₄		Relinquis	hed By:		Da	te/Time					Rece	ved By						Date	Time	NEW YORK	
E=Encore G+Glass	E=NaOH F=MeOH	Mr	1			11/4/	21 15:0	McP	hall A	Associ	ates s	secure	CO. 1000	e stora	ge for I	abora	tory				All sample	
O=Other P=Plastic	G=NaHSO _a H=Na ₂ S ₂ O ₂	McPhail Ass			e storage for	1	7 /6:20	1/	1		<i>,</i>		Alba Alba	/				111	10	16:2	submitted a	
V=Vial Sample Material F=Fill S=Sand O=Organics C=Clay	I=Ascorbix Acid J=NH _d Cl K≈Zn Acetate O≃Other	hijam:	-Scor-		4	11/19	18:51	Meg	\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	N	~	-1	J (22		[[119,	15	1 /8	37	Alpha's Ter and Condition See reverse s	ms ons.
N=Natural T=Till GM=Glaciomarine GW=Groundwater															9						DOC ID: 25188 R (11/28/2017)	

APPENDIX E: LABORATORY ANALYTICAL DATA – SURFACE WATER

ANALYTICAL REPORT

Lab Number: L2115935

Client: McPhail Associates

2269 Massachusetts Avenue

Cambridge, MA 02140

ATTN: Ambrose Donovan
Phone: (617) 868-1420

Project Name: E. NEWTON ST.

Project Number: 7029.9.06

Report Date: 04/05/21

The original project report/data package is held by Alpha Analytical. This report/data package is paginated and should be reproduced only in its entirety. Alpha Analytical holds no responsibility for results and/or data that are not consistent with the original.

Certifications & Approvals: MA (M-MA086), NH NELAP (2064), CT (PH-0574), IL (200077), ME (MA00086), MD (348), NJ (MA935), NY (11148), NC (25700/666), PA (68-03671), RI (LAO00065), TX (T104704476), VT (VT-0935), VA (460195), USDA (Permit #P330-17-00196).

Eight Walkup Drive, Westborough, MA 01581-1019 508-898-9220 (Fax) 508-898-9193 800-624-9220 - www.alphalab.com

Project Name: E. NEWTON ST.

Project Number: 7029.9.06

Lab Number:

L2115935

Report Date:

04/05/21

Alpha Sample ID	Client ID	Matrix	Sample Location	Collection Date/Time	Receive Date
L2115935-01	RGP EFFLUENT SW	WATER	BOSTON, MA	03/30/21 09:00	03/30/21

Serial No:04052110:25

Project Name:E. NEWTON ST.Lab Number:L2115935Project Number:7029.9.06Report Date:04/05/21

Case Narrative

The samples were received in accordance with the Chain of Custody and no significant deviations were encountered during the preparation or analysis unless otherwise noted. Sample Receipt, Container Information, and the Chain of Custody are located at the back of the report.

Results contained within this report relate only to the samples submitted under this Alpha Lab Number and meet NELAP requirements for all NELAP accredited parameters unless otherwise noted in the following narrative. The data presented in this report is organized by parameter (i.e. VOC, SVOC, etc.). Sample specific Quality Control data (i.e. Surrogate Spike Recovery) is reported at the end of the target analyte list for each individual sample, followed by the Laboratory Batch Quality Control at the end of each parameter. Tentatively Identified Compounds (TICs), if requested, are reported for compounds identified to be present and are not part of the method/program Target Compound List, even if only a subset of the TCL are being reported. If a sample was re-analyzed or re-extracted due to a required quality control corrective action and if both sets of data are reported, the Laboratory ID of the re-analysis or re-extraction is designated with an "R" or "RE", respectively.

When multiple Batch Quality Control elements are reported (e.g. more than one LCS), the associated samples for each element are noted in the grey shaded header line of each data table. Any Laboratory Batch, Sample Specific % recovery or RPD value that is outside the listed Acceptance Criteria is bolded in the report. In reference to questions H (CAM) or 4 (RCP) when "NO" is checked, the performance criteria for CAM and RCP methods allow for some quality control failures to occur and still be within method compliance. In these instances, the specific failure is not narrated but noted in the associated QC Outlier Summary Report, located directly after the Case Narrative. QC information is also incorporated in the Data Usability Assessment table (Format 11) of our Data Merger tool, where it can be reviewed in conjunction with the sample result, associated regulatory criteria and any associated data usability implications.

Soil/sediments, solids and tissues are reported on a dry weight basis unless otherwise noted. Definitions of all data qualifiers and acronyms used in this report are provided in the Glossary located at the back of the report.

HOLD POLICY - For samples submitted on hold, Alpha's policy is to hold samples (with the exception of Air canisters) free of charge for 21 calendar days from the date the project is completed. After 21 calendar days, we will dispose of all samples submitted including those put on hold unless you have contacted your Alpha Project Manager and made arrangements for Alpha to continue to hold the samples. Air canisters will be disposed after 3 business days from the date the project is completed.

I, the undersigned, attest under the pains and penalties of perjury that, to the best of my knowledge and belief and based upon my personal inquiry of those responsible for providing the information contained in this analytical report, such information is accurate and complete. This certificate of analysis is not complete unless this page accompanies any and all pages of this report.

Cattlin Wallet Caitlin Walukevich

Authorized Signature:

Title: Technical Director/Representative

Please contact Project Management at 800-624-9220 with any questions.

Date: 04/05/21

INORGANICS & MISCELLANEOUS

Serial_No:04052110:25

Project Name: E. NEWTON ST. Lab Number: L2115935

Project Number: 7029.9.06 **Report Date:** 04/05/21

SAMPLE RESULTS

Lab ID: L2115935-01 Date Collected: 03/30/21 09:00

Client ID: RGP EFFLUENT SW Date Received: 03/30/21 Sample Location: BOSTON, MA Field Prep: Not Specified

Sample Depth:

Matrix: Water

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	Date Prepared	Date Analyzed	Analytical Method	Analyst
General Chemistry - Westbo	orough Lab)								
SALINITY	27		SU	2.0		1	-	04/02/21 19:19	121,2520B	AS
pH (H)	7.7		SU	-	NA	1	-	03/31/21 17:54	121,4500H+-B	AS
Nitrogen, Ammonia	0.218		mg/l	0.075		1	04/02/21 03:22	04/02/21 19:06	121,4500NH3-BH	l AT

Serial_No:04052110:25

L2115935

Project Name: E. NEWTON ST.

Project Number: 7029.9.06 **Report Date:**

04/05/21

Lab Number:

Method Blank Analysis Batch Quality Control

Parameter	Result Qualifier	Units	RL	MDL	Dilution Factor	Date Prepared	Date Analyzed	Analytical Method	Analyst
General Chemistry - V	Vestborough Lab for sam	nple(s): 01	Batch:	: WG14	481628-1				
Nitrogen, Ammonia	ND	mg/l	0.075		1	04/02/21 03:22	04/02/21 18:26	121,4500NH3-E	BH AT

Lab Control Sample Analysis Batch Quality Control

Project Name: E. NEWTON ST.

Lab Number:

L2115935

Project Number:

7029.9.06

Report Date: 04/05/21

Parameter	LCS %Recovery 0	LCSD Qual %Recovery	Qual	%Recovery Limits	RPD	Qual	RPD Limits
General Chemistry - Westborough Lab	Associated sample(s): 0	01 Batch: WG148106	5-1				
рН	100	-		99-101	-		5
General Chemistry - Westborough Lab	Associated sample(s): 0	01 Batch: WG1481628	3-2				
Nitrogen, Ammonia	100	-		80-120	-		20
General Chemistry - Westborough Lab	Associated sample(s): 0	01 Batch: WG148202	1-1				
SALINITY	100	-			-		

Matrix Spike Analysis Batch Quality Control

Project Name: E. NEWTON ST.

Lab Number:

L2115935

Project Number: 7029.9.06

Report Date:

04/05/21

Parameter Parameter	Native Sample	MS Added	MS Found	MS %Recovery	MSD Qual Found	MSD %Recovery Qua	Recovery I Limits	RPD Qu	RPD _{ual} Limits
General Chemistry - Westboro	ugh Lab Asso	ciated samp	le(s): 01	QC Batch ID: V	VG1481628-4	QC Sample: L211552	21-06 Client	ID: MS Sa	ample
Nitrogen, Ammonia	0.186	4	3.61	86	-	-	80-120	-	20

Lab Duplicate Analysis Batch Quality Control

Project Name: E. NEWTON ST.

Project Number: 7029.9.06

Lab Number:

L2115935 04/05/21

Report Date:

Parameter		e Sample	Duplicate Sam	ple Units	RPD	Qual	RPD Limits
General Chemistry - Westborough Lab	Associated sample(s): 0	O1 QC Batch ID:	WG1481065-2	QC Sample: L211	5857-01	Client ID:	DUP Sample
рН		7.7	7.6	SU	1		5
General Chemistry - Westborough Lab	Associated sample(s): 0	01 QC Batch ID:	WG1481628-3	QC Sample: L211	5521-06	Client ID:	DUP Sample
Nitrogen, Ammonia	C	0.186	0.108	mg/l	53	Q	20
General Chemistry - Westborough Lab	Associated sample(s): 0	01 QC Batch ID:	WG1482021-2	QC Sample: L211	5935-01	Client ID:	RGP EFFLUENT SW
SALINITY		27	28	SU	4		

Serial_No:04052110:25

Lab Number: L2115935

Report Date: 04/05/21

Sample Receipt and Container Information

YES Were project specific reporting limits specified?

E. NEWTON ST.

Cooler Information

Project Name:

Custody Seal Cooler

Α Absent

Project Number: 7029.9.06

Container Information			Initial	Final	Temp			Frozen	
Container ID	Container Type	Cooler	pН	pН	deg C	Pres	Seal	Date/Time	Analysis(*)
L2115935-01A	Plastic 60ml unpreserved	Α	7	7	2.1	Υ	Absent		PH-4500(.01)
L2115935-01B	Amber 120ml unpreserved	Α	7	7	2.1	Υ	Absent		SALINITY(28)
L2115935-01C	Plastic 500ml H2SO4 preserved	Α	<2	<2	2.1	Υ	Absent		NH3-4500(28)

Project Name: Lab Number: E. NEWTON ST. L2115935

Project Number: 7029.9.06 **Report Date:** 04/05/21

GLOSSARY

Acronyms

LOQ

MS

DL - Detection Limit: This value represents the level to which target analyte concentrations are reported as estimated values, when those target analyte concentrations are quantified below the limit of quantitation (LOQ). The DL includes any adjustments

from dilutions, concentrations or moisture content, where applicable. (DoD report formats only.)

EDL - Estimated Detection Limit: This value represents the level to which target analyte concentrations are reported as estimated values, when those target analyte concentrations are quantified below the reporting limit (RL). The EDL includes any adjustments from dilutions, concentrations or moisture content, where applicable. The use of EDLs is specific to the analysis of PAHs using Solid-Phase Microextraction (SPME).

EMPC - Estimated Maximum Possible Concentration: The concentration that results from the signal present at the retention time of an analyte when the ions meet all of the identification criteria except the ion abundance ratio criteria. An EMPC is a worst-case

estimate of the concentration. **EPA**

LCS - Laboratory Control Sample: A sample matrix, free from the analytes of interest, spiked with verified known amounts of

analytes or a material containing known and verified amounts of analytes.

LCSD Laboratory Control Sample Duplicate: Refer to LCS.

Environmental Protection Agency.

LFB - Laboratory Fortified Blank: A sample matrix, free from the analytes of interest, spiked with verified known amounts of analytes or a material containing known and verified amounts of analytes.

LOD - Limit of Detection: This value represents the level to which a target analyte can reliably be detected for a specific analyte in a specific matrix by a specific method. The LOD includes any adjustments from dilutions, concentrations or moisture content, where applicable. (DoD report formats only.)

- Limit of Quantitation: The value at which an instrument can accurately measure an analyte at a specific concentration. The LOQ includes any adjustments from dilutions, concentrations or moisture content, where applicable. (DoD report formats

Limit of Quantitation: The value at which an instrument can accurately measure an analyte at a specific concentration. The LOQ includes any adjustments from dilutions, concentrations or moisture content, where applicable. (DoD report formats

MDI - Method Detection Limit: This value represents the level to which target analyte concentrations are reported as estimated values, when those target analyte concentrations are quantified below the reporting limit (RL). The MDL includes any adjustments from dilutions, concentrations or moisture content, where applicable.

- Matrix Spike Sample: A sample prepared by adding a known mass of target analyte to a specified amount of matrix sample for which an independent estimate of target analyte concentration is available. For Method 332.0, the spike recovery is calculated using the native concentration, including estimated values.

MSD - Matrix Spike Sample Duplicate: Refer to MS.

NA - Not Applicable.

NC - Not Calculated: Term is utilized when one or more of the results utilized in the calculation are non-detect at the parameter's

reporting unit.

NDPA/DPA - N-Nitrosodiphenylamine/Diphenylamine.

NI - Not Ignitable.

NP - Non-Plastic: Term is utilized for the analysis of Atterberg Limits in soil.

NR - No Results: Term is utilized when 'No Target Compounds Requested' is reported for the analysis of Volatile or Semivolatile

Organic TIC only requests.

RL - Reporting Limit: The value at which an instrument can accurately measure an analyte at a specific concentration. The RL

includes any adjustments from dilutions, concentrations or moisture content, where applicable.

RPD - Relative Percent Difference: The results from matrix and/or matrix spike duplicates are primarily designed to assess the precision of analytical results in a given matrix and are expressed as relative percent difference (RPD). Values which are less than five times the reporting limit for any individual parameter are evaluated by utilizing the absolute difference between the

values; although the RPD value will be provided in the report.

SRM - Standard Reference Material: A reference sample of a known or certified value that is of the same or similar matrix as the

associated field samples.

STLP - Semi-dynamic Tank Leaching Procedure per EPA Method 1315.

TEF - Toxic Equivalency Factors: The values assigned to each dioxin and furan to evaluate their toxicity relative to 2,3,7,8-TCDD.

TEO - Toxic Equivalent: The measure of a sample's toxicity derived by multiplying each dioxin and furan by its corresponding TEF

and then summing the resulting values.

TIC - Tentatively Identified Compound: A compound that has been identified to be present and is not part of the target compound list (TCL) for the method and/or program. All TICs are qualitatively identified and reported as estimated concentrations.

Project Name:E. NEWTON ST.Lab Number:L2115935Project Number:7029.9.06Report Date:04/05/21

Footnotes

 The reference for this analyte should be considered modified since this analyte is absent from the target analyte list of the original method.

Terms

1

Analytical Method: Both the document from which the method originates and the analytical reference method. (Example: EPA 8260B is shown as 1,8260B.) The codes for the reference method documents are provided in the References section of the Addendum.

Difference: With respect to Total Oxidizable Precursor (TOP) Assay analysis, the difference is defined as the Post-Treatment value minus the Pre-Treatment value.

Final pH: As it pertains to Sample Receipt & Container Information section of the report, Final pH reflects pH of container determined after adjustment at the laboratory, if applicable. If no adjustment required, value reflects Initial pH.

Frozen Date/Time: With respect to Volatile Organics in soil, Frozen Date/Time reflects the date/time at which associated Reagent Water-preserved vials were initially frozen. Note: If frozen date/time is beyond 48 hours from sample collection, value will be reflected in 'bold'. Initial pH: As it pertains to Sample Receipt & Container Information section of the report, Initial pH reflects pH of container determined upon receipt, if applicable.

PAH Total: With respect to Alkylated PAH analyses, the 'PAHs, Total' result is defined as the summation of results for all or a subset of the following compounds: Naphthalene, C1-C4 Naphthalenes, 2-Methylnaphthalene, 1-Methylnaphthalene, Biphenyl, Acenaphthylene, Acenaphthene, Fluorene, C1-C3 Fluorenes, Phenanthrene, C1-C4 Phenanthrenes/Anthracenes, Anthracene, Fluoranthene, Pyrene, C1-C4 Fluoranthenes/Pyrenes, Benz(a)anthracene, Chrysene, C1-C4 Chrysenes, Benzo(b)fluoranthene, Benzo(j)+(k)fluoranthene, Benzo(e)pyrene, Benzo(a)pyrene, Perylene, Indeno(1,2,3-cd)pyrene, Dibenz(ah)+(ac)anthracene, Benzo(g,h,i)perylene. If a 'Total' result is requested, the results of its individual components will also be reported.

PFAS Total: With respect to PFAS analyses, the 'PFAS, Total (5)' result is defined as the summation of results for: PFHpA, PFHxS, PFOA, PFNA and PFOS. In addition, the 'PFAS, Total (6)' result is defined as the summation of results at or above the RL for: PFHpA, PFHxS, PFOA, PFNA, PFDA and PFOS. (Note: 'PFAS, Total (6)' is applicable to MassDEP DW compliance analysis only.). If a "Total' result is requested, the results of its individual components will also be reported.

The target compound Chlordane (CAS No. 57-74-9) is reported for GC ECD analyses. Per EPA, this compound "refers to a mixture of chlordane isomers, other chlorinated hydrocarbons and numerous other components." (Reference: USEPA Toxicological Review of Chlordane, In Support of Summary Information on the Integrated Risk Information System (IRIS), December 1997.)

Total: With respect to Organic analyses, a 'Total' result is defined as the summation of results for individual isomers or Aroclors. If a 'Total' result is requested, the results of its individual components will also be reported. This is applicable to 'Total' results for methods 8260, 8081 and 8082.

Data Qualifiers

- A -Spectra identified as "Aldol Condensates" are byproducts of the extraction/concentration procedures when acetone is introduced in the process.
- The analyte was detected above the reporting limit in the associated method blank. Flag only applies to associated field samples that have detectable concentrations of the analyte at less than ten times (10x) the concentration found in the blank. For MCP-related projects, flag only applies to associated field samples that have detectable concentrations of the analyte at less than ten times (10x) the concentration found in the blank. For DOD-related projects, flag only applies to associated field samples that have detectable concentrations of the analyte at less than ten times (10x) the concentration found in the blank AND the analyte was detected above one-half the reporting limit (or above the reporting limit for common lab contaminants) in the associated method blank. For NJ-Air-related projects, flag only applies to associated field samples that have detectable concentrations of the analyte above the reporting limit. For NJ-related projects (excluding Air), flag only applies to associated field samples that have detectable concentrations of the analyte, which was detected above the reporting limit in the associated method blank or above five times the reporting limit for common lab contaminants (Phthalates, Acetone, Methylene Chloride, 2-Butanone).
- Co-elution: The target analyte co-elutes with a known lab standard (i.e. surrogate, internal standards, etc.) for co-extracted analyses.
- Concentration of analyte was quantified from diluted analysis. Flag only applies to field samples that have detectable concentrations of the analyte.
- E Concentration of analyte exceeds the range of the calibration curve and/or linear range of the instrument.
- F The ratio of quantifier ion response to qualifier ion response falls outside of the laboratory criteria. Results are considered to be an estimated maximum concentration.
- G The concentration may be biased high due to matrix interferences (i.e, co-elution) with non-target compound(s). The result should be considered estimated.
- H The analysis of pH was performed beyond the regulatory-required holding time of 15 minutes from the time of sample collection.
- I The lower value for the two columns has been reported due to obvious interference.
- J Estimated value. This represents an estimated concentration for Tentatively Identified Compounds (TICs).
- M Reporting Limit (RL) exceeds the MCP CAM Reporting Limit for this analyte.
- **ND** Not detected at the reporting limit (RL) for the sample.
- NJ Presumptive evidence of compound. This represents an estimated concentration for Tentatively Identified Compounds (TICs), where

Project Name:E. NEWTON ST.Lab Number:L2115935Project Number:7029.9.06Report Date:04/05/21

Data Qualifiers

the identification is based on a mass spectral library search.

- P The RPD between the results for the two columns exceeds the method-specified criteria.
- Q -The quality control sample exceeds the associated acceptance criteria. For DOD-related projects, LCS and/or Continuing Calibration Standard exceedences are also qualified on all associated sample results. Note: This flag is not applicable for matrix spike recoveries when the sample concentration is greater than 4x the spike added or for batch duplicate RPD when the sample concentrations are less than 5x the RL. (Metals only.)
- **R** Analytical results are from sample re-analysis.
- **RE** Analytical results are from sample re-extraction.
- S Analytical results are from modified screening analysis.

Serial_No:04052110:25

Project Name:E. NEWTON ST.Lab Number:L2115935Project Number:7029.9.06Report Date:04/05/21

REFERENCES

121 Standard Methods for the Examination of Water and Wastewater. APHA-AWWA-WEF. Standard Methods Online.

LIMITATION OF LIABILITIES

Alpha Analytical performs services with reasonable care and diligence normal to the analytical testing laboratory industry. In the event of an error, the sole and exclusive responsibility of Alpha Analytical shall be to re-perform the work at it's own expense. In no event shall Alpha Analytical be held liable for any incidental, consequential or special damages, including but not limited to, damages in any way connected with the use of, interpretation of, information or analysis provided by Alpha Analytical.

We strongly urge our clients to comply with EPA protocol regarding sample volume, preservation, cooling, containers, sampling procedures, holding time and splitting of samples in the field.

Serial_No:04052110:25

Alpha Analytical, Inc. Facility: Company-wide

Department: Quality Assurance

Title: Certificate/Approval Program Summary

ID No.:17873 Revision 19

Published Date: 4/2/2021 1:14:23 PM

Page 1 of 1

Certification Information

The following analytes are not included in our Primary NELAP Scope of Accreditation:

Westborough Facility

EPA 624/624.1: m/p-xylene, o-xylene, Naphthalene

EPA 625/625.1: alpha-Terpineol

EPA 8260C/8260D: NPW: 1,2,4,5-Tetramethylbenzene; 4-Ethyltoluene, Azobenzene; SCM: Iodomethane (methyl iodide), 1,2,4,5-Tetramethylbenzene;

EPA 8270D/8270E: NPW: Dimethylnaphthalene,1,4-Diphenylhydrazine, alpha-Terpineol; SCM: Dimethylnaphthalene,1,4-Diphenylhydrazine.

SM4500: NPW: Amenable Cyanide; SCM: Total Phosphorus, TKN, NO2, NO3.

Mansfield Facility

SM 2540D: TSS

EPA 8082A: NPW: PCB: 1, 5, 31, 87,101, 110, 141, 151, 153, 180, 183, 187.

EPA TO-15: Halothane, 2,4,4-Trimethyl-2-pentene, 2,4,4-Trimethyl-1-pentene, Thiophene, 2-Methylthiophene,

3-Methylthiophene, 2-Ethylthiophene, 1,2,3-Trimethylbenzene, Indan, Indene, 1,2,4,5-Tetramethylbenzene, Benzothiophene, 1-Methylnaphthalene.

Biological Tissue Matrix: EPA 3050B

The following analytes are included in our Massachusetts DEP Scope of Accreditation

Westborough Facility:

Drinking Water

EPA 300.0: Chloride, Nitrate-N, Fluoride, Sulfate; EPA 353.2: Nitrate-N, Nitrite-N; SM4500NO3-F: Nitrate-N, Nitrite-N; SM4500F-C, SM4500CN-CE,

EPA 180.1, SM2130B, SM4500CI-D, SM2320B, SM2540C, SM4500H-B, SM4500NO2-B

EPA 332: Perchlorate; EPA 524.2: THMs and VOCs; EPA 504.1: EDB, DBCP.

Microbiology: SM9215B; SM9223-P/A, SM9223B-Colilert-QT,SM9222D.

Non-Potable Water

SM4500H,B, EPA 120.1, SM2510B, SM2540C, SM2320B, SM4500CL-E, SM4500F-BC, SM4500NH3-BH: Ammonia-N and Kjeldahl-N, EPA 350.1: Ammonia-N, LACHAT 10-107-06-1-B: Ammonia-N, EPA 351.1, SM4500NO3-F, EPA 353.2: Nitrate-N, SM4500P-E, SM4500P-B, E, SM4500SO4-E, SM5220D, EPA 410.4, SM5210B, SM5310C, SM4500CL-D, EPA 1664, EPA 420.1, SM4500-CN-CE, SM2540D, EPA 300: Chloride, Sulfate, Nitrate. EPA 624.1: Volatile Halocarbons & Aromatics,

EPA 608.3: Chlordane, Toxaphene, Aldrin, alpha-BHC, beta-BHC, gamma-BHC, delta-BHC, Dieldrin, DDD, DDE, DDT, Endosulfan II, Endosulfan II, Endosulfan sulfate, Endrin, Endrin Aldehyde, Heptachlor, Heptachlor Epoxide, PCBs

EPA 625.1: SVOC (Acid/Base/Neutral Extractables), EPA 600/4-81-045: PCB-Oil.

Microbiology: SM9223B-Colilert-QT; Enterolert-QT, SM9221E, EPA 1600, EPA 1603, SM9222D.

Mansfield Facility:

Drinking Water

EPA 200.7: Al, Ba, Cd, Cr, Cu, Fe, Mn, Ni, Na, Ag, Ca, Zn. EPA 200.8: Al, Sb, As, Ba, Be, Cd, Cr, Cu, Pb, Mn, Ni, Se, Ag, TL, Zn. EPA 245.1 Hg. EPA 522, EPA 537.1.

Non-Potable Water

EPA 200.7: Al, Sb, As, Be, Cd, Ca, Cr, Co, Cu, Fe, Pb, Mg, Mn, Mo, Ni, K, Se, Ag, Na, Sr, TL, Ti, V, Zn.

EPA 200.8: Al, Sb, As, Be, Cd, Cr, Cu, Fe, Pb, Mn, Ni, K, Se, Ag, Na, TL, Zn.

EPA 245.1 Hg

SM2340B

Page 15 of 16

For a complete listing of analytes and methods, please contact your Alpha Project Manager.

Document Type: Form

ALPHA	CHAIN	OF CU	STO	DY ,	AGE_\	OF	Date	Rec'd	in Lab	31	30	1/21			ALF	HA J	ob #:	L21	15935	
A MALTITICAL AMARIAN DAMA	200 5 4 01 4	Project	Project Information						Report Information - Data Deliverables						Billing Information					
8 Walkup Drive Westboro, MA Tel: 508-898-9	01581 Mansfield, MA 02048	Project N	Project Name: E. Newton St					DEx		Z EI	MAIL	1000			□ Sa	me as (Client in	nfo P	0#:	
Client Information	on	Project L	ocation: [Baston	MA		Reg	ulator	y Req	uiren	nents	&	Proj	ect li	nform	ation F	Requir	ement	ts	188
Client: MCPha	11 Associates	Project #		9.9.06			Yes Yes	□ No	MAM	ICP Ar	alytic	al Meth	ods	2000	(2)	Yes 🖸	(No C	TRCP	Analytical Metho	ods
Address: 2269		Project N		nakib f		7	☐ Yes	No No	GW1	Stand	ards (MCP I		(CS)	
Cambrida	r MA	ALPHA	Quote #:	UCIUT	THINC	,			NPDE te /Fed							Crite	eria			
Phone: (017-8	868-1420	Turn-A	round Ti	ne																
Email: SAhme	de mophalgeo.c	- 1		I RUSH (conty	confirméd il pre-c	approved)	78260	U ABN C 0 524.2	METALS: DMCP 13 DIA	EPH: DB. DRCRAS DRCP 14 DRCP 15	VPH; DR.	C PCB C PEST	T. Douant Only C.	Lingerprint	CH3		//		SAMPLE INFO	TOTAL # BOTTLE
ALPHA Lab ID (Lab Use Only)	Sample	ID	Coll	ection	Sample Matrix	Sampler Initials	, çç	SVOC	ETAL	H	PH:	7 PCB		TA	1/3/	/	/			
15935-01	RGP EFFIUENT	SW/	3 30	qoo	SW	MIW							X	X	*				mple Comment	3
Container Type P= Plastic A= Amber glass V= Vial G= Glass B= Bacteria cup C= Cube O= Other E= Encore D= BOD Bottle Page 16 of 16	Preservative A= None B= HCI C= HNO ₃ D= H ₂ SO ₄ E= NaOH F= MeOH G= NaHSO ₄ H= Na ₂ S ₂ O ₃ I= Ascorbic Acid J= NH ₄ CI K= Zn Acetate O= Other	Jeggles	ished By:	F	Pr	eservative		notes Call	Receiv	ed By	ANU	rej		-3	P Time	745 S	lpha's T ee reve	Terms a erse side	mitted are subje nd Conditions, e. v. 12-Mar-2012)	ect to

APPENDIX F:

BEST MANAGEMENT PRACTICE PLAN

A Notice of Intent for a Remediation General Permit (RGP) under the National Pollutant Discharge Elimination System (NPDES) has been submitted to the US Environmental Protection Agency (EPA) in anticipation of temporary construction dewatering that will occur during the redevelopment of the property located at 1395-1405 Washington Street in Boston, Massachusetts. This Best Management Practices Plan (BMPP) has been prepared as an Appendix to the RGP application and will be posted at the site during the time period that temporary construction dewatering is occurring.

Water Treatment and Management

During construction of the proposed foundation, dewatering effluent is anticipated to be pumped from localized sumps and trenches within the excavation directly into a settling tank. The effluent will then flow through any necessary treatment systems and discharge through hoses or piping connected into the storm water drains located beneath subject site. Based upon a review of the City of Boston stormwater drainage plan, the above referenced stormwater drain ultimately discharges into the Bass River. Dewatering effluent treatment will consist of a 5,000-gallon settling tank and bag filters in series to remove suspended soil particulates, prior to off-site discharge.

Discharge Monitoring and Compliance

Regular sampling and testing will be conducted at the influent to the system and the treated effluent as required by the RGP. This includes laboratory testing required on days 1 and 3 of initial discharge and then weekly or monthly testing to be conducted through the end of the scheduled discharge.

Monitoring will include checking the condition of the treatment system, assessing the need for treatment system adjustments based on monitoring data, observing and recording daily flow rates and discharge quantities, and verifying the flow path of the discharged effluent.

The total monthly flow will be monitored by checking and documenting the flow through the flow meter to be installed on the system. Flow will be maintained below the "system design flow" by regularly monitoring flow and adjusting the amount of construction dewatering as needed. Monthly monitoring reports will be compiled and maintained at the site.

System Maintenance

A number of methods will be used to minimize the potential for violations during the term of this permit discharge. Scheduled regular maintenance of the treatment system will be conducted to verify proper operation. Regular maintenance will include checking the condition of the treatment system equipment such as the settling tanks, bag filters, hoses, pumps, and

flow meters. Equipment will be monitored daily for potential issues or unscheduled maintenance requirements.

Employees who have direct or indirect responsibility for ensuring compliance with the RGP will be trained by the Contractor.

Miscellaneous Items

It is anticipated that the erosion control measures and the nature of the site will minimize potential runoff to or from the site. The project specifications also include requirements for erosion control. Site security for the treatment system will be addressed within the overall site security plan.

No adverse effects on designated uses of surrounding surface water bodies are anticipated. The nearest surface water body is the Bass River which is located approximately 250 feet to the southeast of the subject site. Dewatering effluent will be pumped into a settling tank. Water within the settling tank will pumped through bag filters prior to discharge into the storm drains.

Management of Treatment System Materials

Dewatering effluent will be pumped directly to the treatment system from the excavation with use of hoses and localized sumps to minimize handling. The Contractor will establish staging areas for equipment or materials storage that may be possible sources of pollution away from any dewatering activities, to the extent practicable.

Sediment from the tank used in the treatment system will be characterized and removed from the site to an appropriate receiving facility, in accordance with applicable laws and regulations. Bag filters will be disposed of as necessary.