

U.S. Environmental Protection Agency Office of Ecosystem Protection EPA/OEP RGP Applications Coordinator 5 Post Office Square, Suite 100 (OEP06-01) Boston, MA 02109-3912 March 30, 2022 File No. 4954.00

Re: Notice of Intent for the Remediation General Permit

Temporary Construction Dewatering

103 Fourth Avenue Waltham, Massachusetts

Dear Sir/Madam:

On behalf BP 103 Fourth Avenue LLC (BXP, Client), Sanborn, Head & Associates, Inc. (Sanborn Head) is submitting this Notice of Intent (NOI) to the United States Environmental Protection Agency (USEPA) for coverage under the National Pollutant Discharge Elimination System (NPDES) Remediation General Permit (RGP) MAG910000 for 103 Fourth Avenue in Waltham, Massachusetts (the Site). This letter and supporting documentation were prepared in accordance with the general requirements of the NPDES RGP and related guidance documentation provided by USEPA. Commodore Builders LLC is the construction manager for the project and will have responsibility for the subcontractors performing the dewatering activities at the Site. Subcontractors working for Commodore Builders LLC on the project will be required to meet the requirements of this NOI and the RGP. The completed NOI form is provided as Appendix A.

This NOI has been prepared for the management of groundwater that will be generated during dewatering activities associated with construction of a new below-grade parking structure. The work is anticipated to be completed within 12 months. The location of the Site and the discharge locations into Beaver Brook via private on-Site storm water catch basins are shown on Figure 1 and Figure 2.

The Site is approximately 6-acres and is occupied by a vacant, 2-story, approximately 62,000-square foot (sf) brick and steel building that will be demolished prior to construction of the parking garage, as well as approximately 75,000 sf of paved area. The 2-story building was constructed in 1961 to be used as office and laboratory space. Abutting properties include a multi-level office building and parking garage at 230 Third Avenue to the southwest, a multi-level office building at 300 Fifth Avenue to the east, and a multi-level office building at 400 Fifth Avenue to the southeast. Parking lots surround the Site to the north, east, and south.

The proposed development consists of the construction of a 4-level office building occupying a footprint of approximately 21,000 square feet (sf) attached to a 1-level manufacturing

building occupying a footprint of approximately 27,000 sf. A parking garage is proposed to be constructed to the north of the buildings.

Groundwater is anticipated to be encountered between approximately 5.2 and 6.5 feet below ground surface (bgs). Groundwater that requires dewatering and cannot be discharged back into the ground will be treated prior to discharge to the existing storm water system and associated private on-Site catch basins such that the discharged effluent meets the effluent limitations established by NPDES Part 2.1 and Appendix V of the RGP Application. Figure 3 includes a schematic of the proposed dewatering treatment system.

On January 27, 2022, Sanborn Head, the project's environmental consultant, collected three water samples to characterize the receiving and source waters in support of this NOI. The source water samples were collected from groundwater monitoring wells identified as SH-105 and SH-106 on Figure 2. The receiving water sample was collected from the surface water immediately downstream of the closest outlet, which empties into Kendall Brook. Kendall Brook ultimately empties into Beaver Brook. The water samples were collected using dedicated, disposable bailers and were submitted to Alpha Analytical Laboratories, Inc. (Alpha) of Westborough, MA for analysis for the 2017 NPDES suite of parameters.

The discharge point for the treatment system will be an on-Site private storm water catch basins, which discharges to a detention basin that empties into Kendell Brook. The intent of this permit application is to be able to discharge to the catch basin during construction dewatering to accommodate total flow rates of up to 500 gallons per minute (GPM).

Information regarding the receiving water was collected from the Massachusetts Year 2016 Integrated List of Waters which is included in Appendix B. Receiving water calculations are included in Appendix C. Analytical laboratory data for on-Site and surface water sampling is summarized in Tables 1 and 2, respectively, and analytical data reports are included in Appendix D. Concentrations of certain metals were detected in groundwater at concentrations above the respective NPDES RGP Effluent Limitations. To meet these standards, source water will undergo treatment that includes bag filtration prior to discharge.

A water treatment system schematic is provided as Figure 3. Source water will be pumped to a treatment system with a design flow rate of up to 500 gallons per minute (gpm); the average effluent flow of the system is estimated to be 350 gpm, and the maximum flow will not exceed 500 gpm. Source water will enter two weir tanks plumbed in parallel, at the head of the system. From the weir tanks, water will be pumped to a multi-bag filter skid (consisting of two multi-bag filter housings each containing six bag filters) and subsequently discharged to the approved discharge point. If required, contingency treatment items will include pH adjustment system (sulfuric acid) mixed inside both weir tanks, carbon treatment and ion exchange media.

Discharge from the water treatment system will pass through a flow/totalizer meter prior to discharge into a private catch basin that discharges to Kendall Brook, which then discharges to Beaver Brook.

The contingency pH adjustment system includes an automated feed system with a mix tank, chemical feed pumps and setpoint controls that maintain the pH to within discharge permit parameters. The maximum application concentration for sulfuric acid or sodium hydroxide would be 333 mg/L.

The addition of pH conditioners will 1) not add any pollutants in concentrations which exceed permit effluent limitations; 2) not result in the exceedance of any applicable water quality standard; and 3) not add any pollutants that would justify the application of permit conditions that are different from or absent in this permit. The addition of sulfuric acid or sodium hydroxide to control pH is a standard treatment for temporary construction dewatering and is not expected to exceed applicable permit limitations and water quality standards or alter conditions in the receiving water. No additional testing is considered necessary for use of this product or to demonstrate that use of this product will not adversely affect the receiving water.

According to the Information for Planning and Conservation (IPaC), available through the U.S. Fish and Wildlife Service (FWS) website, the proposed on-Site dewatering activities will not impact Areas of Critical Environmental Concern (ACEC) or Habitats of Rare Wetland Wildlife. A letter from the FWS is included in Appendix E. Based on the proposed activities a no-effects determination has been made.

A review of the National Register of Historic Places within Waltham was performed. Based on the review, the discharge and discharge-related activities do not have the potential to cause effects on historic properties. A list of the properties reviewed is included in Appendix F.

Thank you for your consideration of this NOI/Permit. Please feel free to contact us if you wish to discuss the information contained in this application, or if any additional information is needed.

Very truly yours,

SANBORN, HEAD & ASSOCIATES, INC.

Laura J. Garvey, P.E., LSP

Senior Project Manager

Kevin P. Stetson, P.E. Senior Vice President

Encl. Table 1 – Summary of Influent Water Quality Data

Table 2 – Summary of Receiving Water Quality Data

Figure 1 – Locus Plan

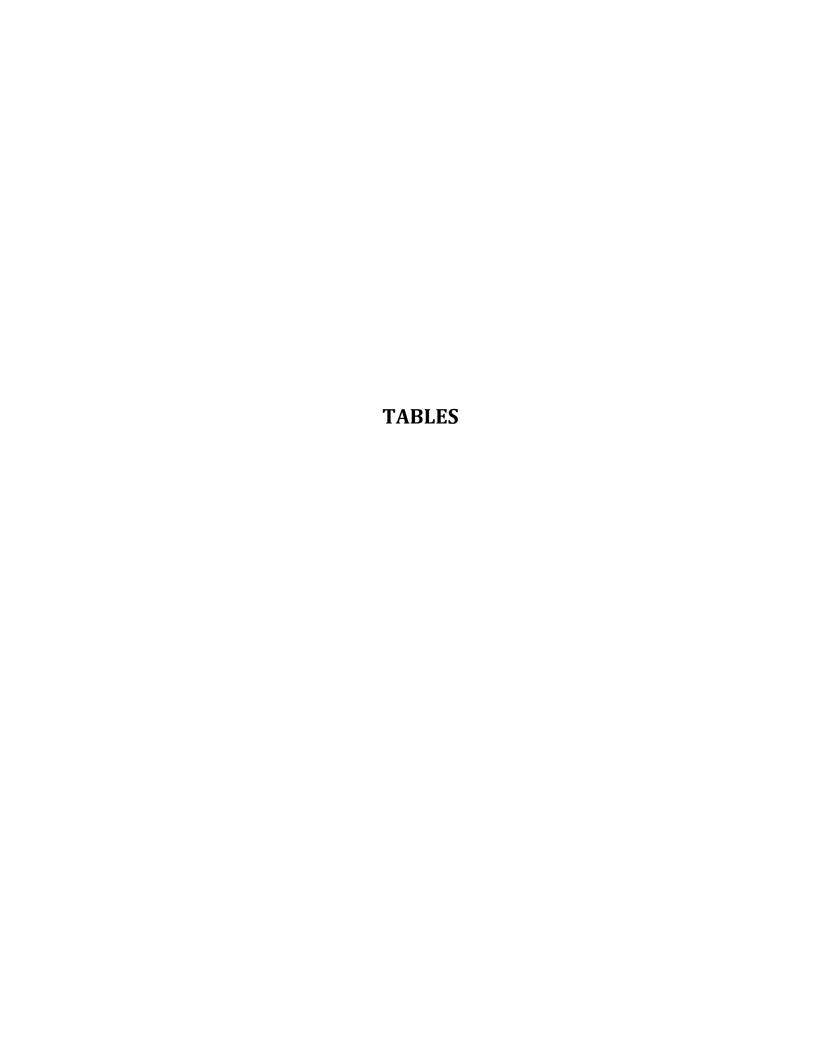
Figure 2 – Exploration Location Plan

Figure 3 – Proposed Groundwater Treatment Schematic

Appendix A – Notice of Intent Form

Appendix B - Selected Massachusetts Category 5 Waters

Appendix C – Receiving Water Calculations


Appendix D - Analytical Data Reports

Appendix E - NOAA and US Fishery and Wildlife Services

Appendix F - National Register of Historic Places - Waltham, MA

cc: City of Waltham Board of Health DEP Bureau of Water Resources

P:\4900s\4954.00\Source Files\NPDES RGP NOI\20220330 NPDES RGP NOI Cover Letter.docx

Table 1 **Summary of Influent Water Quality Data**

103 4th Avenue

Waltham, Massachusetts

LOCATION			SH-105	SH-106
SAMPLING DATE	NPDES TBEL	Units	1/27/2022	1/27/2022
LAB SAMPLE ID			L2204656-01	L2204656-02
Anions by Ion Chromatography	I	1		
Chloride	Monitor Only	mg/l	328	841
General Chemistry	interior only	8/ -	520	011
Chromium, Trivalent	0.323	mg/l	< 0.01	< 0.01
Solids, Total Suspended	30	mg/l	510	14
Cyanide, Total	178	mg/l	< 0.005	0.005
Chlorine, Total Residual	0.2	mg/l	< 0.02	< 0.02
Nitrogen, Ammonia	Monitor Only	mg/l	< 0.75	0.082
TPH, SGT-HEM	5	mg/l	<4	<4
Phenolics, Total	NS	mg/l	< 0.03	< 0.03
Chromium, Hexavalent	0.323	mg/l	< 0.01	< 0.01
Hardness as CaCO3	NS	mg/l	45.4	79.9
рН (Н)	NS	SU	6.8	6.3
Microextractables by GC	•		•	
1,2-Dibromoethane	NS	mg/l	< 0.00001	< 0.00001
1,2-Dibromo-3-chloropropane	NS	mg/l	< 0.00001	< 0.00001
1,2,3-Trichloropropane	NS	mg/l	< 0.00003	< 0.00003
Polychlorinated Biphenyls by GC				
Total PCBs	0.064	mg/l	BDL (<0.00025)	BDL (<0.00025)
Semivolatile Organics by GC/MS				
Total Phthalates	0.19	mg/l	BDL (<0.0022)	BDL (<0.0022)
Semivolatile Organics by GC/MS-	SIM			
Total Group 1 PAHs	0.001	mg/l	BDL (<0.0001)	BDL (<0.0001)
Total Group 2 PAHs	0.1	mg/l	BDL (<0.0001)	BDL (<0.0001)
Total SVOCs	NS	mg/l	BDL (<0.001)	BDL (<0.001)
Total Metals				
Antimony, Total	0.206	mg/l	< 0.004	< 0.004
Arsenic, Total	0.104	mg/l	0.00143	< 0.001
Cadmium, Total	0.0102	mg/l	< 0.0002	0.00032
Chromium, Total	0.323	mg/l	0.00465	0.00109
Copper, Total	0.242	mg/l	0.02147	0.00892
Iron, Total	5	mg/l	3.89	1.1
Lead, Total	0.16	mg/l	0.00397	< 0.001
Mercury, Total	0.00739	mg/l	< 0.0002	< 0.0002
Nickel, Total	1.45	mg/l	0.008	0.00487
Selenium, Total	0.2358	mg/l	< 0.005	< 0.005
Silver, Total	0.0351	mg/l	0.00681	0.0031
Zinc, Total	0.42	mg/l	0.04327	0.02425
Volatile Organics by GC/MS				
Total BTEX	0.1	mg/l	BDL (<0.001)	BDL (<0.001)
Volatile Organics by GC/MS-SIM				
1,4-Dioxane	NS	mg/l	< 0.05	< 0.05

Notes:

- 1. Samples were collected by Sanborn, Head & Associates, Inc. (Sanborn Head) on the indicated dates and were analyzed by Alpha Analytical Laboratories, Inc. of Westborough, MA.
- and were analyzed by Alpha Analytical Laboratories, Inc. of Westborough,
 2. Bolded values indicate detections above the laboratory reporting limits.
 3. Abbreviations:

 NPDES = National Pollutant Discharge Elimination System

 TBEL = Technology based effluent limitation

 WQBEL = Water quality based effluent limitation

 MCP = Massachusetts Continentcy Plan

ug/L = micrograms per liter

mg/L = milligrams per liter

"<" indicates the analyte was not detected above the laboratory reporting limit shown

BDL = below detection limit

NS = No Standard

Table 2 Summary of Receiving Water Quality Data

103 4th Avenue Waltham, Massachusetts

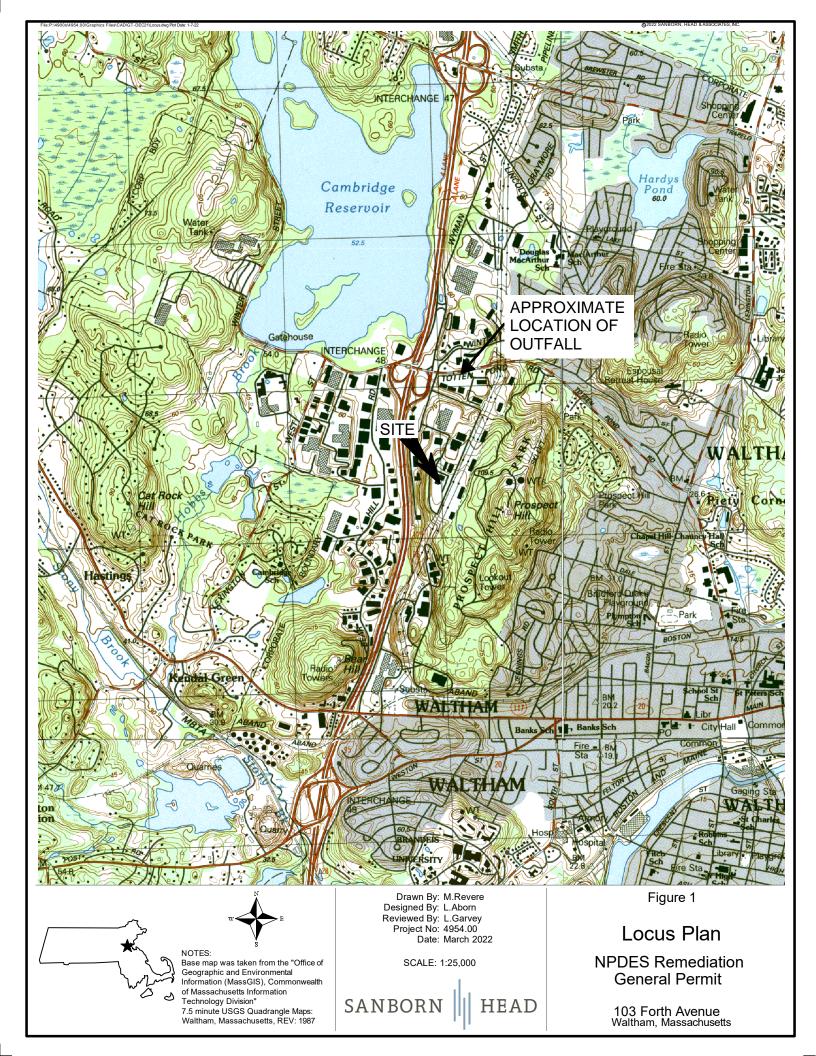
LOCATION				Surface
SAMPLING DATE	NPDES TBEL	NPDES WQBEL	Units	1/27/2022
LAB SAMPLE ID				L2204656-03
General Chemistry	•		•	
Nitrogen, Ammonia	Monitor Only	Monitor Only	mg/l	1.1
Hardness as CaCO3	NS	-	mg/l	291
рН (Н)	NS	-	SU	7.2
Total Metals				
Antimony, Total	0.206	-	mg/l	< 0.004
Arsenic, Total	0.104	-	mg/l	< 0.001
Cadmium, Total	0.0102	-	mg/l	< 0.0002
Chromium, Total	0.323	-	mg/l	< 0.001
Copper, Total	0.242	-	mg/l	0.00202
Iron, Total	5	1	mg/l	0.383
Lead, Total	0.16	-	mg/l	< 0.001
Mercury, Total	0.00739	-	mg/l	< 0.0002
Nickel, Total	1.45	-	mg/l	< 0.002
Selenium, Total	0.2358	-	mg/l	< 0.005
Silver, Total	0.0351	-	mg/l	< 0.0004
Zinc, Total	0.42	-	mg/l	0.0243

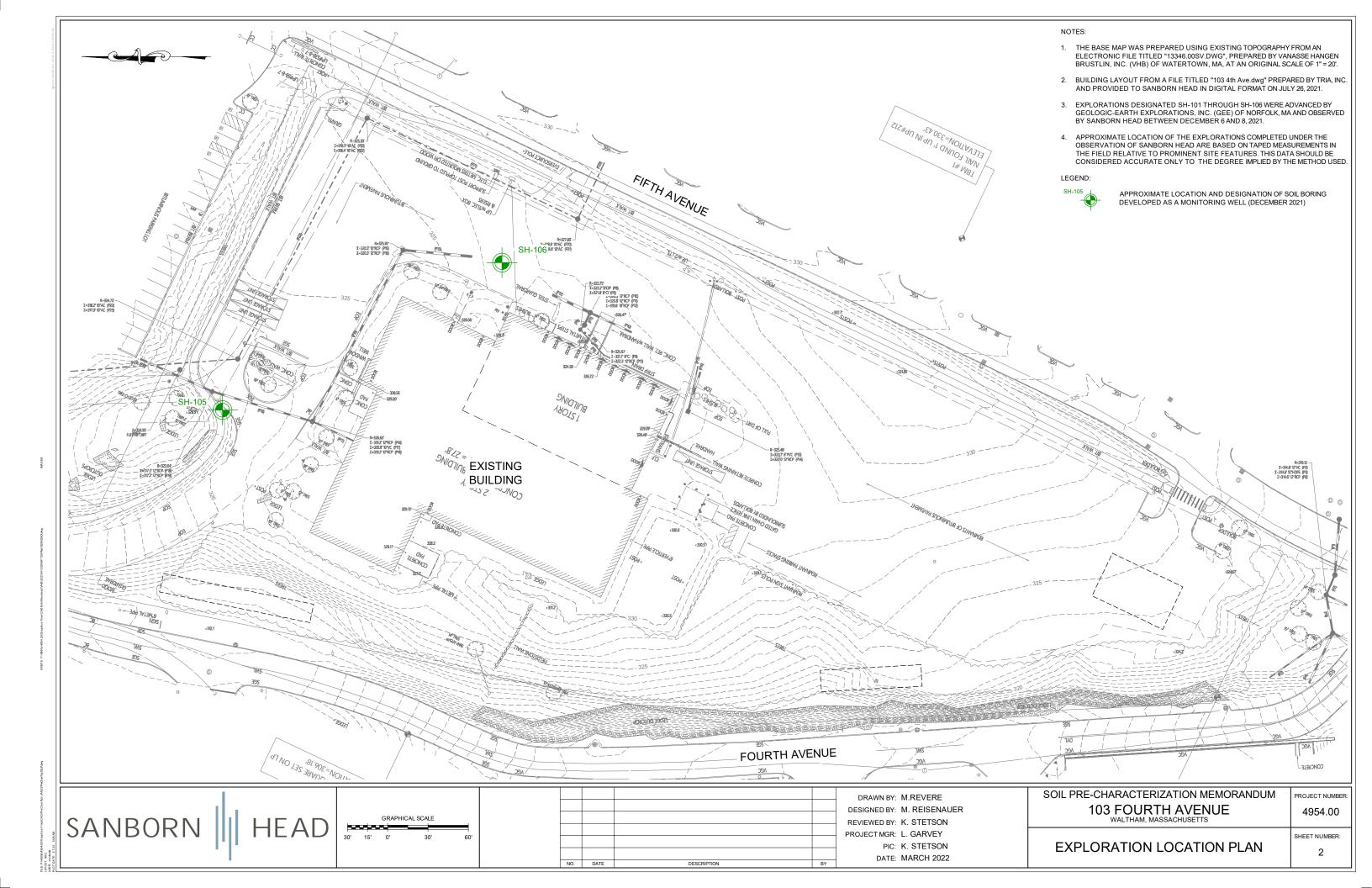
Notes:

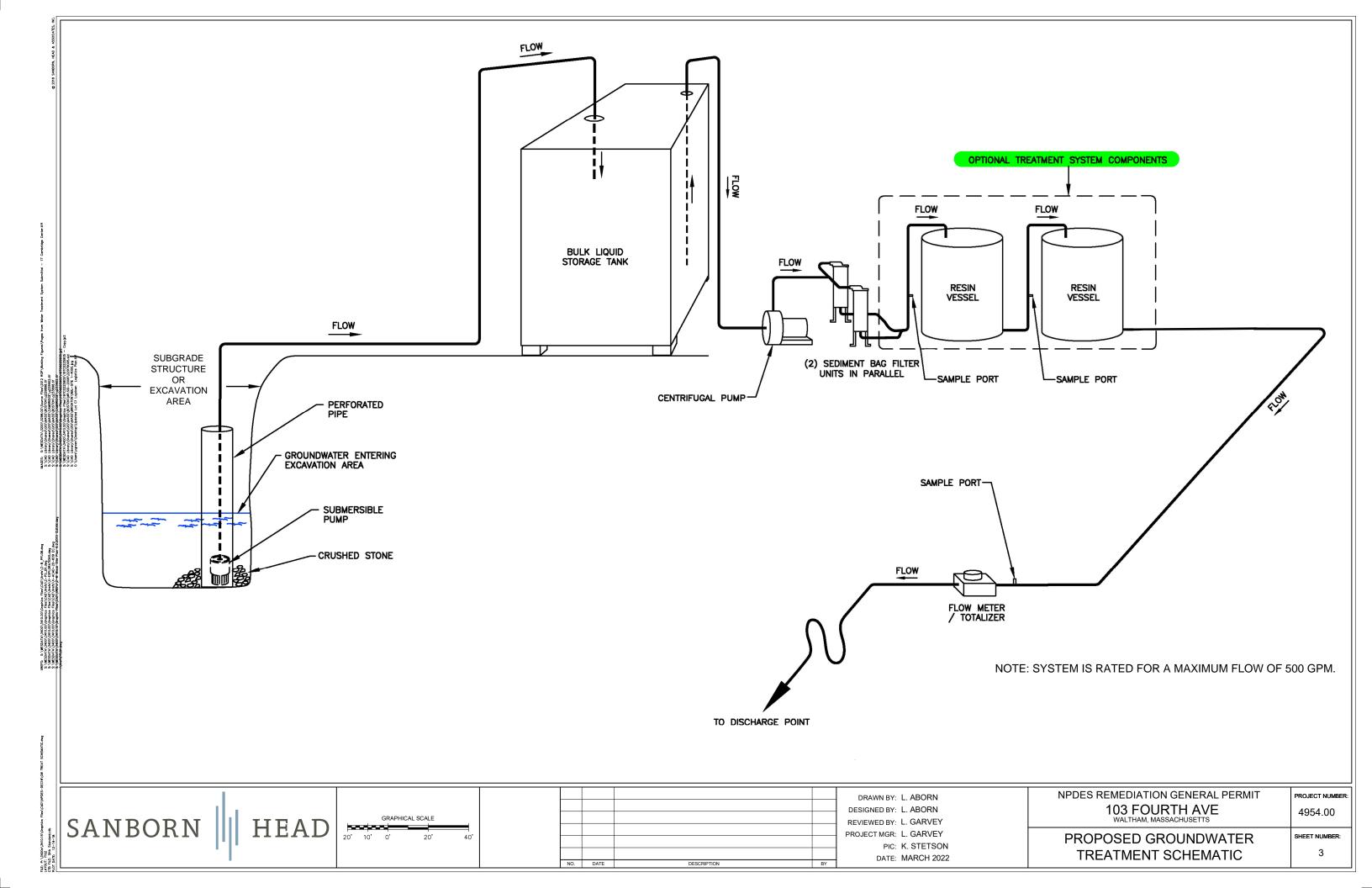
- 1. Samples were collected by Sanborn, Head & Associates, Inc. (Sanborn Head) on the indicated dates and were analyzed by Alpha Analytical Laboratories, Inc. of Westborough, MA.
- 2. Bolded values indicate detections above the laboratory reporting limits.
- 3. Abbreviations:

NPDES = National Pollutant Discharge Elimination System

TBEL = Technology based effluent limitation


WQBEL = Water quality based effluent limitation


MCP = Massachusetts Continentcy Plan


mg/L = milligrams per liter

[&]quot;<" indicates the analyte was not detected above the laboratory reporting limit shown

APPENDIX A NOTICE OF INTENT FORM

II. Suggested Format for the Remediation General Permit Notice of Intent (NOI)

A. General site information:

1. Name of site:	Site address: 103						
103 Fourth Avenue	Street: Fourth Avenue						
	City: Waltham		State: MA	^{Zip:} 02451			
2. Site owner	Contact Person: Katie Ownes						
BP 103 Fourth Avenue LLC	Telephone: 617-236-2369	Email: kov	vnes@bxp.	com			
	Mailing address: 800 Boylston Street, Suite 1900	Mailing address: 800 Boylston Street, Suite 1900					
	Street:						
Owner is (check one): ☐ Federal ☐ State/Tribal ■ Private ☐ Other; if so, specify:	City: Boston		State: MA	Zip: 02119			
3. Site operator, if different than owner	Contact Person: Michael P. Roche, General Cour	sel					
Commodore Builders LLC	Telephone: 617-614-3500	modorebuilders.com					
	Mailing address:						
	Street: 404 Wyman St, Suite 400						
	City: Waltham		State: MA	Zip: 02451			
4. NPDES permit number assigned by EPA:	5. Other regulatory program(s) that apply to the site	(check all th	at apply):				
NA	☐ MA Chapter 21e; list RTN(s):	□ CERCL	LΑ				
		□ UIC Program					
NPDES permit is (check all that apply: □ RGP □ DGP □ CGP	□ NH Groundwater Management Permit or	□ POTW Pretreatment					
☐ MSGP ☐ Individual NPDES permit ☐ Other; if so, specify:	Groundwater Release Detection Permit:	☐ CWA Section 404					
	1						

B. Receiving water information:								
1. Name of receiving water(s):	Waterbody identification of receiving water(s):	Classi	fication of receiving water(s):					
Beaver Brook via Unnamed Stream	tream MA-72-28							
Receiving water is (check any that apply): □ Outstanding Resource Water □ Ocean Sanctuary □ territorial sea □ Wild and Scenic River								
2. Has the operator attached a location map in accordance of Are sensitive receptors present near the site? (check one): If yes, specify:		No						
3. Indicate if the receiving water(s) is listed in the State's Inpollutants indicated. Also, indicate if a final TMDL is avait 4.6 of the RGP. Refer to App B for Listed Imp	lable for any of the indicated pollutants. For more inform	-	-					
4. Indicate the seven day-ten-year low flow (7Q10) of the rappendix V for sites located in Massachusetts and Appendix		etions in	NA - See App C					
	4. Indicate the seven day-ten-year low flow (7Q10) of the receiving water determined in accordance with the instructions in Appendix V for sites located in Massachusetts and Appendix VI for sites located in New Hampshire. 5. Indicate the requested dilution factor for the calculation of water quality-based effluent limitations (WQBELs) determined in accordance with the instructions in Appendix V for sites in Massachusetts and Appendix VI for sites in New Hampshire. 1 - See App C							
6. Has the operator received confirmation from the appropriate yes, indicate date confirmation received: April 30, 2	021	•						
7. Has the operator attached a summary of receiving water	sampling results as required in Part 4.2 of the RGP in acc	ordance with th	e instruction in Appendix VIII?					
(check one): ■ Yes □ No								
C. Source water information:								
1. Source water(s) is (check any that apply):								

1. Source water(s) is (check any that apply):			
■ Contaminated groundwater	☐ Contaminated surface water	☐ The receiving water	☐ Potable water; if so, indicate municipality or origin:
Has the operator attached a summary of influent sampling results as required in Part 4.2 of the RGP	Has the operator attached a summary of influent sampling results as required in Part 4.2 of the	☐ A surface water other	
in accordance with the instruction in Appendix VIII? (check one):	RGP in accordance with the instruction in Appendix VIII? (check one):	than the receiving water; if so, indicate waterbody:	☐ Other; if so, specify:
■ Yes □ No	□ Yes □ No		

2. Source water contaminants: Metals, TSS							
a. For source waters that are contaminated groundwater or contaminated surface water, indicate are any contaminants present that are not included in		b. For a source water that is a surface water other than the receiving water, potable water or other, indicate any contaminants present at the maximum concentration in accordance					
· · · · · · · · · · · · · · · · · · ·		n the instructions in Appendix VIII? (check one): ☐ Yes ☐ No					
3. Has the source water been previously chlorinated or otherwise contains resid	dual cl	hlorine? (check one): □ Yes ■ No					
D. Discharge information							
1. The discharge(s) is a(n) (check any that apply): ☐ Existing discharge ■ New	w discl	harge □ New source					
Outfall(s):		Outfall location(s): (Latitude, Longitude)					
Unamed Wetland (drainage to Beaver Brook via Kendal Brook)		Approximately 42.39647 Latitude, -71.25683 Longitude					
Discharges enter the receiving water(s) via (check any that apply): □ Direct dis	scharg	ge to the receiving water Indirect discharge, if so, specify:					
Discharge through public/private storm water system							
■ A private storm sewer system □ A municipal storm sewer system If the discharge enters the receiving water via a private or municipal storm sew	ver sys	stem:					
Has notification been provided to the owner of this system? (check one): ■ Yes □ No							
Has the operator has received permission from the owner to use such system for discharges? (check one): ■ Yes □ No, if so, explain, with an estimated timeframe for obtaining permission: Permission confirmed from owner of private system.							
Has the operator attached a summary of any additional requirements the owner		is system has specified? (check one): ☐ Yes ■ No					
Provide the expected start and end dates of discharge(s) (month/year): 4/15/20	022 -	4/15/2023					
Indicate if the discharge is expected to occur over a duration of: less than 1:	2 mon	nths □ 12 months or more □ is an emergency discharge					
Has the operator attached a site plan in accordance with the instructions in D. a	above?	? (check one): ■ Yes □ No See Figure 3					

2. Activity Category: (check all that apply)	3. Contamination Type Category: (check all that apply)				
	a. If Activity Category I or II: (check all that apply)				
	 □ A. Inorganics □ B. Non-Halogenated Volatile Organic Compounds □ C. Halogenated Volatile Organic Compounds □ D. Non-Halogenated Semi-Volatile Organic Compounds □ E. Halogenated Semi-Volatile Organic Compounds □ F. Fuels Parameters 				
 □ I – Petroleum-Related Site Remediation □ II – Non-Petroleum-Related Site Remediation 	b. If Activity Category III, IV, V, VI, VII or VIII: (check either G or H)				
 ■ III – Contaminated Site Dewatering □ IV – Dewatering of Pipelines and Tanks □ V – Aquifer Pump Testing □ VI – Well Development/Rehabilitation □ VII – Collection Structure Dewatering/Remediation □ VIII – Dredge-Related Dewatering 	 ■ G. Sites with Known Contamination c. If Category III-G, IV-G, V-G, VI-G, VII-G or VIII-G: (check all that apply) ■ A. Inorganics □ B. Non-Halogenated Volatile Organic Compounds □ C. Halogenated Volatile Organic 	□ H. Sites with Unknown Contamination d. If Category III-H, IV-H, V-H, VI-H, VII-H or VIII-H Contamination Type Categories A through			
	Compounds □ D. Non-Halogenated Semi-Volatile Organic Compounds □ E. Halogenated Semi-Volatile Organic Compounds □ F. Fuels Parameters	F apply			

4. Influent and Effluent Characteristics

	Known	Known				In	Influent		imitations
Parameter	or believed absent	or believed present	# of samples	Test method (#)	Detection limit (µg/l)	Daily maximum (µg/l)	Daily average (µg/l)	TBEL	WQBEL
A. Inorganics									
Ammonia		~	2	4500NH3-	75	82	82	Report mg/L	
Chloride		~	2	300.0	25000	841000	584500	Report µg/l	
Total Residual Chlorine	~		2	4500CL-D	20	ND	ND	0.2 mg/L	0.011 mg/L
Total Suspended Solids		~	2	2540D	5000	510000	344666.67	30 mg/L	
Antimony	~		2	200.8	4.0	ND	ND	206 μg/L	
Arsenic		~	2	200.8	1.0	1.43	1.43	104 μg/L	
Cadmium		~	2	200.8	0.2	.32	.32	10.2 μg/L	
Chromium III	~		2	200.8	1	ND	ND	323 µg/L	
Chromium VI	V		2	7196A	1	ND	ND	323 μg/L	
Copper		~	2	200.8	1.0	21.47	17.28	242 μg/L	
Iron		~	2	19,200.7	50	3890	2960	5,000 μg/L	1000 ug/L
Lead		~	2	200.8	1.0	3.97	3.97	160 μg/L	
Mercury	~		2	245.1	0.2	ND	ND	0.739 μg/L	
Nickel		~	2	200.8	2	8	6.957	1,450 µg/L	
Selenium	~		2	200.8	5	ND	ND	235.8 μg/L	
Silver		~	2	200.8	0.4	6.81	5.57	35.1 μg/L	
Zinc		~	2	200.8	10	43.27	36.93	420 μg/L	
Cyanide		~	2	4500CN-C	5	5	5	178 mg/L	
B. Non-Halogenated VOCs	S								
Total BTEX	~		2	multiple	NA	ND	ND	100 μg/L	
Benzene	V		2	624.1	1	ND	ND	5.0 μg/L	
1,4 Dioxane	~		2	624.1-SIM		ND	ND	200 μg/L	
Acetone	V		2	624.1	10	ND	ND	7.97 mg/L	
Phenol	~		2	4420.1	30	ND	ND	1,080 µg/L	

	Known	Known		_		Influent		ient Effluent Limitation	
Parameter	or believed absent	or believed present	# of samples	Test method (#)	Detection limit (µg/l)	Daily maximum (µg/l)	Daily average (µg/l)	TBEL	WQBEL
C. Halogenated VOCs									
Carbon Tetrachloride	~		2	624.1	1	ND	ND	4.4 μg/L	
1,2 Dichlorobenzene	~		2	624.1	5	ND	ND	600 μg/L	
1,3 Dichlorobenzene	~		2	624.1	5	ND	ND	320 μg/L	
1,4 Dichlorobenzene	~		2	624.1	5	ND	ND	5.0 μg/L	
Total dichlorobenzene	~		2	624.1	15	ND	ND	763 μg/L in NH	
1,1 Dichloroethane	V		2	624.1	1.5	ND	ND	70 μg/L	
1,2 Dichloroethane	~		2	624.1	1.5	ND	ND	5.0 μg/L	
1,1 Dichloroethylene	~		2	624.1	1	ND	ND	3.2 μg/L	
Ethylene Dibromide	~		2	504.1	0.01	ND	ND	0.05 μg/L	
Methylene Chloride	~		2	624.1	1	ND	ND	4.6 μg/L	
1,1,1 Trichloroethane	~		2	624.1	2	ND	ND	200 μg/L	
1,1,2 Trichloroethane	~		2	624.1	1.5	ND	ND	5.0 μg/L	
Trichloroethylene	~		2	624.1	1	ND	ND	5.0 μg/L	
Tetrachloroethylene	~		2	624.1	1	ND	ND	5.0 μg/L	
cis-1,2 Dichloroethylene	~		2	624.1	1	ND	ND	70 μg/L	
Vinyl Chloride	~		2	624.1	1	ND	ND	2.0 µg/L	
D. Non-Halogenated SVO	Cs								
Total Phthalates	~		2	625.1	27.2	ND	ND	190 μg/L	
Diethylhexyl phthalate	~		2	625.1	5	ND	ND	101 μg/L	
Total Group I PAHs	~		2	625.1	0.7	ND	ND	1.0 μg/L	
Benzo(a)anthracene	~		2	625.1	0.1	ND	ND		
Benzo(a)pyrene	~		2	625.1	0.1	ND	ND		
Benzo(b)fluoranthene	~		2	625.1	0.1	ND	ND		
Benzo(k)fluoranthene	~		2	625.1	0.1	ND	ND	As Total PAHs	
Chrysene	~		2	625.1	0.1	ND	ND		
Dibenzo(a,h)anthracene	~		2	625.1	0.1	ND	ND		
Indeno(1,2,3-cd)pyrene	~		2	625.1	0.1	ND	ND	╡	

	Known	Known				In	fluent	Effluent Lin	nitations
Parameter	or believed absent	or believed present	# of samples	Test method (#)	Detection limit (µg/l)	Daily maximum (µg/l)	Daily average (µg/l)	TBEL	WQBEL
Total Group II PAHs	~		2	625.1	0.8	ND	ND	100 μg/L	
Naphthalene	V		2	625.1	0.1	ND	ND	20 μg/L	
E. Halogenated SVOCs									
Total PCBs	V		2	608.3	0.25	ND	ND	0.000064 μg/L	
Pentachlorophenol	V		2	625.1	1	ND	ND	1.0 µg/L	
F. Fuels Parameters									
Total Petroleum Hydrocarbons	~		2	1664B	4,000	ND	ND	5.0 mg/L	
Ethanol	~		2	1671A	20	ND	ND	Report mg/L	
Methyl-tert-Butyl Ether	~		2	624.1	10	ND	ND	70 μg/L	
tert-Butyl Alcohol	~		2	624.1	100	ND	ND	120 μg/L in MA 40 μg/L in NH	
tert-Amyl Methyl Ether	~		2	624.1	20	ND	ND	90 μg/L in MA 140 μg/L in NH	
Other (i.e., pH, temperature)	re, hardness,	salinity, LC	C ₅₀ , addition	nal pollutar 4500H+B	nts present);	if so, specify:	6.63		
Hardness		~	2	3005A	660	79900	56900		
Total Chromium		~	2	200.8	1	4.65	3.46		

E. Treatment system information

1. Indicate the type(s) of treatment that will be applied to effluent prior to discharge: (check all that apply)	
□ Adsorption/Absorption □ Advanced Oxidation Processes □ Air Stripping □ Granulated Activated Carbon ("GAC")/Liquid Phase Carbon Adsorption	
■ Ion Exchange □ Precipitation/Coagulation/Flocculation ■ Separation/Filtration ■ Other; if so, specify:	ļ
pH adjustment may be used to meet effluent requirements	
2. Provide a written description of all treatment system(s) or processes that will be applied to the effluent prior to discharge.	
Water encountered during construction activities will be pumped into a treatment system prior to discharge into existing catch basin. The first element of the treatment syst fractionalization tank where solids will settle out. The water will then pass through the following as necessary: a bag filter and two cation resin vessels plumbed in series. It be discharged to the existing catch basin.	tem will be a Γhe effluent will
Identify each major treatment component (check any that apply):	
■ Fractionation tanks □ Equalization tank □ Oil/water separator □ Mechanical filter □ Media filter	
□ Chemical feed tank □ Air stripping unit ■ Bag filter ■ Other; if so, specify: cation resin vessel and/or ion exchange if needed	
Indicate if either of the following will occur (check any that apply):	
☐ Chlorination ☐ De-chlorination	
3. Provide the design flow capacity in gallons per minute (gpm) of the most limiting component.	
Indicate the most limiting component: Bag filters	500
Is use of a flow meter feasible? (check one): ■ Yes □ No, if so, provide justification:	
Provide the proposed maximum effluent flow in gpm.	500
Provide the average effluent flow in gpm.	350
If Activity Category IV applies, indicate the estimated total volume of water that will be discharged:	
4. Has the operator attached a schematic of flow in accordance with the instructions in E, above? (check one): ■ Yes □ No	

F. Chemical and additive information

1. Indicate the type(s) of chemical or additive that will be applied to effluent prior to discharge or that may otherwise be present in the discharge(s): (check all that apply)
□ Algaecides/biocides □ Antifoams □ Coagulants □ Corrosion/scale inhibitors □ Disinfectants □ Flocculants □ Neutralizing agents □ Oxidants □ Oxygen □
scavengers ■ pH conditioners □ Bioremedial agents, including microbes □ Chlorine or chemicals containing chlorine □ Other; if so, specify:
None anticipated 2. Provide the fellowing information for each physical/addition union attachments if accounts.
2. Provide the following information for each chemical/additive, using attachments, if necessary:
a. Product name, chemical formula, and manufacturer of the chemical/additive;
b. Purpose or use of the chemical/additive or remedial agent;
c. Material Safety Data Sheet (MSDS) and Chemical Abstracts Service (CAS) Registry number for each chemical/additive;
d. The frequency (hourly, daily, etc.), duration (hours, days), quantity (maximum and average), and method of application for the chemical/additive;
e. Any material compatibility risks for storage and/or use including the control measures used to minimize such risks; and f. If available, the vendor's reported aquatic toxicity (NOAEL and/or LC50 in percent for aquatic organism(s)).
1. If available, the vehaof steported aquatic toxicity (100/1212 and/of 12030 in percent for aquatic organism(s)).
3. Has the operator attached an explanation which demonstrates that the addition of such chemicals/additives may be authorized under this general permit in accordance
with the instructions in F, above? (check one): Yes No; if no, has the operator attached data that demonstrates each of the 126 priority pollutants in CWA Section
307(a) and 40 CFR Part 423.15(j)(1) are non-detect in discharges with the addition of the proposed chemical/additive?
(check one): ☐ Yes ☐ No
G. Endangered Species Act eligibility determination
1. Indicate under which criterion the discharge(s) is eligible for coverage under this general permit:
□ FWS Criterion A : No endangered or threatened species or critical habitat are in proximity to the discharges or related activities or come in contact with the "action area".
□ FWS Criterion B : Formal or informal consultation with the FWS under section 7 of the ESA resulted in either a no jeopardy opinion (formal consultation)
or a written concurrence by FWS on a finding that the discharges and related activities are "not likely to adversely affect" listed species or critical habitat
(informal consultation). Has the operator completed consultation with FWS? (check one): ☐ Yes ☐ No; if no, is consultation underway? (check one): ☐
Yes □ No
■ FWS Criterion C: Using the best scientific and commercial data available, the effect of the discharges and related activities on listed species and critical habitat have been evaluated. Based on those evaluations, a determination is made by EPA, or by the operator and affirmed by EPA, that the discharges and related activities will have "no effect" on any federally threatened or endangered listed species or designated critical habitat under the jurisdiction of the
FWS. This determination was made by: (check one) ■ the operator □ EPA □ Other; if so, specify:

■ NMFS Criterion: A determination made by EPA is affirmed by the operator that the discharges and related activities will have "no effect" or are "not likely to adversely affect" any federally threatened or endangered listed species or critical habitat under the jurisdiction of NMFS and will not result in any take of
listed species. Has the operator previously completed consultation with NMFS? (check one): ■ Yes □ No
2. Has the operator attached supporting documentation of ESA eligibility in accordance with the instructions in Appendix I, and G, above? (check one): Yes No
Does the supporting documentation include any written concurrence or finding provided by the Services? (check one): ■ Yes □ No; if yes, attach. See Appendix E
H. National Historic Preservation Act eligibility determination
1. Indicate under which criterion the discharge(s) is eligible for coverage under this general permit:
■ Criterion A: No historic properties are present. The discharges and discharge-related activities (e.g., BMPs) do not have the potential to cause effects on historic properties. See Appendix F
□ Criterion B: Historic properties are present. Discharges and discharge related activities do not have the potential to cause effects on historic properties.
□ Criterion C : Historic properties are present. The discharges and discharge-related activities have the potential to have an effect or will have an adverse effect on historic properties.
2. Has the operator attached supporting documentation of NHPA eligibility in accordance with the instructions in H, above? (check one): ■ Yes □ No
See Appendix F
Does the supporting documentation include any written agreement with the State Historic Preservation Officer (SHPO), Tribal Historic Preservation Officer (TPHO), or
other tribal representative that outlines measures the operator will carry out to mitigate or prevent any adverse effects on historic properties? (check one): Yes No
I. Supplemental information
Describe any supplemental information being provided with the NOI. Include attachments if required or otherwise necessary.
Appendix B includes the Massachusetts Category 5 Waters Listings and Site Assessment Map
Appendix C includes receiving water calculations Appendix D includes analytical laboratory data
Appendix E includes correspondence from US Fishery and Wildlife Service
Appendix F includes a list of Historic Places in Waltham.
Has the operator attached data, including any laboratory case narrative and chain of custody used to support the application? (check one): ■ Yes □ No
Has the operator attached the certification requirement for the Best Management Practices Plan (BMPP)? (check one): ■ Yes □ No

J. Certification requirement

I certify under penalty of law that this document and all attachments were prepared under my direction or supervision in accordance with a system designed to assure that qualified personnel properly gathered and evaluated the information submitted. Based on my inquiry of the person or persons who manage the system, or those persons directly responsible for gathering the information, the information submitted is, to the best of my knowledge and belief, true, accurate, and complete. I have no personal knowledge that the information submitted is other than true, accurate, and complete. I am aware that there are significant penalties for submitting false information, including the possibility of fine and imprisonment for knowing violations.						
A BMPP meeting the requirements of this general permit will be deve BMPP certification statement: initiation of discharge.	loped and implen	nented upon				
Notification provided to the appropriate State, including a copy of this NOI, if required.	Check one: Yes ■	No □				
Notification provided to the municipality in which the discharge is located, including a copy of this NOI, if requested.	Check one: Yes ■	No □				
Notification provided to the owner of a private or municipal storm sewer system, if such system is used for site discharges, including a copy of this NOI, if requested. Permission obtained from the owner of a private or municipal storm sewer system, if such system is used for site discharges. If yes, attach additional conditions. If no, attach explanation and timeframe for obtaining permission.	Check one: Yes ■ Check one: Yes ■	No □ NA □ No □ NA □				
Notification provided to the owner/operator of the area associated with activities covered by an additional discharge permit(s). Additional discharge permit is (check one): □ RGP □ DGP □ CGP □ MSGP □ Individual NPDES permit □ Other; if so, specify:	Check one: Yes □	No □ NA ■				
Signature: Dat	e: ^{3/30/22}					

Print Name and Title: Michael P. Roche, Commodore Builders LLC, General Counsel

APPENDIX B SELECTED MASSACHUSETTS CATEGORY 5 WATERS

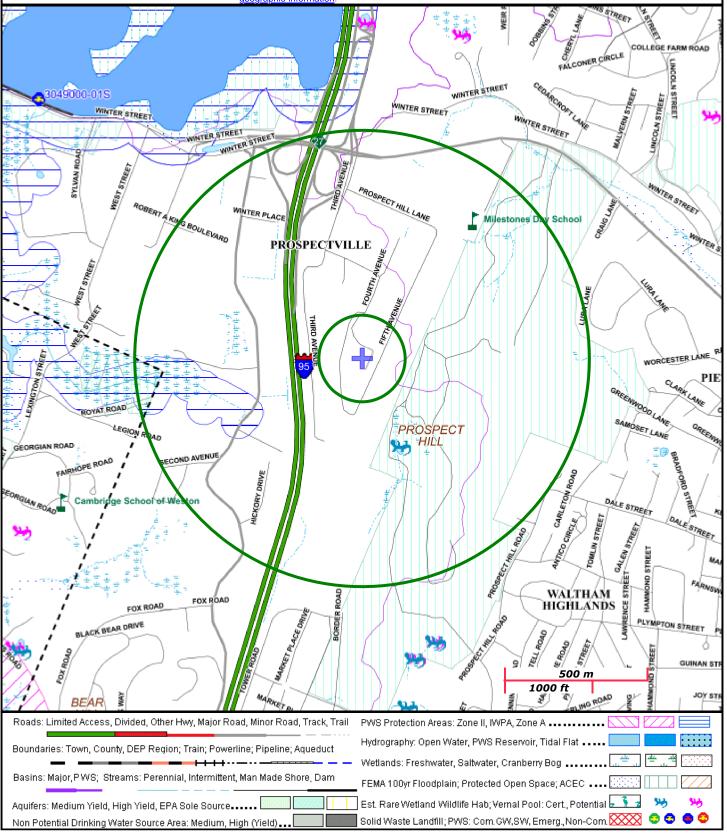
Category 5 waters listed alphabetically by major watershed The 303(d) List – "Waters requiring a TMDL"

Water Body	Segment ID	Description	Size	Units	Impairment	EPA TMDL No.
Beaver Brook	MA72-28	Headwaters, perennial portion north of	5.50	Miles	(Flow Regime Modification*)	
		Route 2, Lexington to mouth at confluence			(Non-Native Aquatic Plants*)	
		with the Charles River, Waltham (one culverted portion approximately 2900 feet			(Other anthropogenic substrate alterations*)	
		(0.55mile)).			Algae	40317
		(0.00111110)).			Dissolved Oxygen	40317
					Escherichia Coli (E. Coli)	32379
					Organic Enrichment (Sewage) Biological Indicators	40317
					Phosphorus, Total	40317
					Sedimentation/Siltation	
Bulloughs Pond	MA72011	Newton.	7.00	Acres	Algae	
					Nutrient/Eutrophication Biological Indicators	
Cambridge Reservoir	MA72014	Waltham/Lincoln/Lexington.	531.00	Acres	Chloride	
Cambridge Reservoir,	MA72156	Lincoln/Lexington.	44.00	Acres	Aquatic Plants (Macrophytes)	
Upper Basin					Chloride	
					Turbidity	
Chandler Pond	MA72017	Boston.	11.00	Acres	Algae	
					Nutrient/Eutrophication Biological Indicators	
					Phosphorus, Total	
					Transparency / Clarity	
Charles River	MA72-03	From Milford WWTF discharge (NPDES:	3.40	Miles	Algae	40317
		MA0100579), Hopedale to outlet Box Pond			DDT in Fish Tissue	
		(formerly segment MA72008), Bellingham.			Dissolved Oxygen Supersaturation	40317
					Escherichia Coli (E. Coli)	32365
					Organic Enrichment (Sewage) Biological Indicators	40317
					Phosphorus, Total	40317
Charles River	MA72-04	From outlet Box Pond, Bellingham to inlet	11.50	Miles	(Flow Regime Modification*)	
		Populatic Pond, Norfolk/Medway (one			Chlordane in Fish Tissue	
		culverted portion approximately 350 feet			DDT in Fish Tissue	
		(0.07mile)).			Escherichia Coli (E. Coli)	32366
					Fish Bioassessments	
					Mercury in Fish Tissue	
					-	
	1	1	l	I	1	i

MassDEP - Bureau of Waste Site Cleanup

Phase 1 Site Assessment Map: 500 feet & 0.5 Mile Radii

Sit Information: 103 FOURTH AVENUE

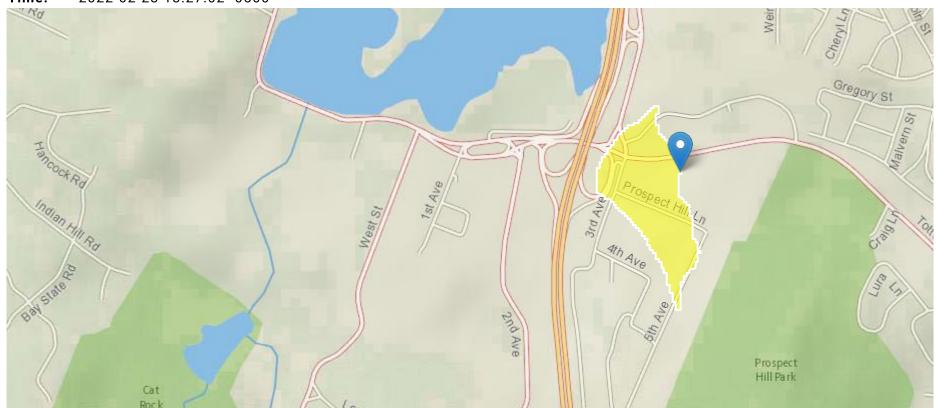

103 FOURTH AVENUE WALTHAM, MA

NAD83 UTM Meters: 4695608mN , 314036mE (Zone: 19) February 28, 2022

The information shown is the best available at the date of printing. However, it may be incomplete. The responsible party and LSP are ultimately responsible for ascertaining the true conditions surrounding the site. Metadata for data layers shown on this map can

https://www.mass.gov/orgs/massgis-bureau-of-geographic-information.

APPENDIX C RECEIVING WATER CALCULATIONS


103 Fourth Ave - NPDES RGP

Region ID: MA

Workspace ID: MA20220228182641408000

Clicked Point (Latitude, Longitude): 42.39648, -71.25715

Time: 2022-02-28 13:27:02 -0500

As part of the NPDES RGP NOI, dewatering for the 103 Fourth Ave Project located in Waltham, MA may require discharge to a storm drain which empties to a detention pond located at 20 City Point in Waltham, MA. The detention pond empties to Kendell Brook at an outlet located at approximately 42.39648 Latitude, -71.25715 Longitude.

Basin Characteristics

Parameter Code	Parameter Description	Value	Unit
DRNAREA	Area that drains to a point on a stream	0.0463	square miles
BSLDEM250	Mean basin slope computed from 1:250K DEM	3.417	percent
DRFTPERSTR	Area of stratified drift per unit of stream length	-100000	square mile per mile
MAREGION	Region of Massachusetts 0 for Eastern 1 for Western	0	dimensionless
ELEV	Mean Basin Elevation	223	feet
LC06STOR	Percentage of water bodies and wetlands determined from the NLCD 2006	0	percent
PCTSNDGRV	Percentage of land surface underlain by sand and gravel deposits	0	percent
FOREST	Percentage of area covered by forest	17.42	percent

Peak-Flow Statistics Parameters [Peak Statewide 2016 5156]

Parameter Code	Parameter Name	Value	Units	Min Limit	Max Limit
DRNAREA	Drainage Area	0.0463	square miles	0.16	512
ELEV	Mean Basin Elevation	223	feet	80.6	1948
LC06STOR	Percent Storage from NLCD2006	0	percent	0	32.3

Peak-Flow Statistics Disclaimers [Peak Statewide 2016 5156]

One or more of the parameters is outside the suggested range. Estimates were extrapolated with unknown errors

Peak-Flow Statistics Flow Report [Peak Statewide 2016 5156]

Statistic	Value	Unit
50-percent AEP flood	4	ft^3/s
20-percent AEP flood	6.95	ft^3/s
10-percent AEP flood	9.37	ft^3/s
4-percent AEP flood	13	ft^3/s
2-percent AEP flood	16	ft^3/s
1-percent AEP flood	19.3	ft^3/s
0.5-percent AEP flood	23	ft^3/s
0.2-percent AEP flood	28.3	ft^3/s

Peak-Flow Statistics Citations

Zarriello, P.J.,2017, Magnitude of flood flows at selected annual exceedance probabilities for streams in Massachusetts: U.S. Geological Survey Scientific Investigations Report 2016-5156, 99 p. (https://dx.doi.org/10.3133/sir20165156)

Low-Flow Statistics Parameters [Statewide Low Flow WRIR00 4135]

Parameter Code	Parameter Name	Value	Units	Min Limit	Max Limit
DRNAREA	Drainage Area	0.0463	square miles	1.61	149
BSLDEM250	Mean Basin Slope from 250K DEM	3.417	percent	0.32	24.6
DRFTPERSTR	Stratified Drift per Stream Length	-100000	square mile per mile	0	1.29
MAREGION	Massachusetts Region	0	dimensionless	0	1

Low-Flow Statistics Flow Report [Statewide Low Flow WRIR00 4135]

Statistic	Value	Unit

Flow-Duration Statistics Parameters [Statewide Low Flow WRIR00 4135]

Parameter Code	Parameter Name	Value	Units	Min Limit	Max Limit
DRNAREA	Drainage Area	0.0463	square miles	1.61	149
DRFTPERSTR	Stratified Drift per Stream Length	-100000	square mile per mile	0	1.29
MAREGION	Massachusetts Region	0	dimensionless	0	1
BSLDEM250	Mean Basin Slope from 250K DEM	3.417	percent	0.32	24.6

Flow-Duration Statistics Flow Report [Statewide Low Flow WRIR00 4135]

Statistic Value Unit

Flow-Duration Statistics Citations

Probability Statistics Parameters [Perennial Flow Probability]

Parameter Code	Parameter Name	Value	Units	Min Limit	Max Limit
DRNAREA	Drainage Area	0.0463	square miles	0.01	1.99
PCTSNDGRV	Percent Underlain By Sand And Gravel	0	percent	0	100
FOREST	Percent Forest	17.42	percent	0	100
MAREGION	Massachusetts Region	0	dimensionless	0	1

Probability Statistics Flow Report [Perennial Flow Probability]

PII: Prediction Interval-Lower, Plu: Prediction Interval-Upper, ASEp: Average Standard Error of Prediction, SE: Standard Error (other -- see report)

Statistic	Value	Unit	PC
Probability Stream Flowing Perennially	0.347	dim	71

Probability Statistics Citations

Bent, G.C., and Steeves, P.A.,2006, A revised logistic regression equation and an automated procedure for mapping the probability of a stream flowing perennially in Massachusetts: U.S. Geological Survey Scientific Investigations Report 2006–5031, 107 p. (http://pubs.usgs.gov/sir/2006/5031/pdfs/SIR_2006-5031rev.pdf)

USGS Data Disclaimer: Unless otherwise stated, all data, metadata and related materials are considered to satisfy the quality standards relative to the purpose for which the data were collected. Although these data and associated metadata have been reviewed for accuracy and completeness and approved for release by the U.S. Geological Survey (USGS), no warranty expressed or implied is made regarding the display or utility of the data for other purposes, nor on all computer systems, nor shall the act of distribution constitute any such warranty.

USGS Software Disclaimer: This software has been approved for release by the U.S. Geological Survey (USGS). Although the software has been subjected to rigorous review, the USGS reserves the right to update the software as needed pursuant to further analysis and review. No warranty, expressed or implied, is made by the USGS or the U.S. Government as to the functionality of the software and related material nor shall the fact of release constitute any such warranty. Furthermore, the software is released on condition that neither the USGS nor the U.S. Government shall be held liable for any damages resulting from its authorized or unauthorized use.

USGS Product Names Disclaimer: Any use of trade, firm, or product names is for descriptive purposes only and does not imply endorsement by the U.S. Government.

Application Version: 4.7.0

StreamStats Services Version: 1.2.22

NSS Services Version: 2.1.2

Note that while this correspondence was related to a different nearby project, the discharge location and flow rates are the same.

From: Ruan, Xiaodan (DEP)
To: Americo Santamaria

Cc: <u>Vakalopoulos, Catherine (DEP)</u>; <u>Kevin Stetson</u>; <u>Corinne Disenhof</u>; <u>Anna Campbell</u>

Subject: RE: 180 Third Ave, Waltham, MA

Date: Friday, April 30, 2021 4:43:28 PM

Hi America,

I looked at the GIS, google map, and the imagery layer in the StreamStats, but could not locate the Kendall brook. Is it primarily underground, or is it just a tiny brook?

The StreamStats cannot calculate a 7Q10 for the location with latitude/longitude of 42.39647, -71.25683; also, the report indicates the brook is intermittent; therefore, you were correct that the dilution factor would be 0/1, which is no dilution.

Here is the water quality information you will need to fill out the NOI:

Waterbody and ID: Beaver River (MA72-28), within Charles River Watershed

Classification: B

Outstanding Resource Water?: no

State's most recent Integrated List is located

here: https://www.mass.gov/files/documents/2020/01/07/16ilwplist.pdf, search for "MA72-

28" to see the causes of impairments.

TMDLs: there are two approved TMDLs for pathogens and nutrients for this segment.

Since this is not a current MCP site, in addition to submitting the NOI to EPA, you need to apply with MassDEP and submit a \$500 fee using the ePLACE. The instructions are located here: https://www.mass.gov/how-to/wm-15-npdes-general-permit-notice-of-intent. Technical assistance is available on the front page of the ePLACE application webpage.

Please let me know if you have any other questions.

Thanks, Xiaodan

Xiaodan Ruan
Environmental Engineer
Massachusetts Department of Environmental Protection
One Winter Street, Boston, MA 02108
(617) 654-6517
xiaodan.ruan@mass.gov

From: Americo Santamaria <asantamaria@sanbornhead.com>

Sent: Thursday, April 29, 2021 12:55 PM

To: Ruan, Xiaodan (DEP) < xiaodan.ruan@mass.gov>

Cc: Vakalopoulos, Catherine (DEP) <catherine.vakalopoulos@mass.gov>; Kevin Stetson <kstetson@sanbornhead.com>; Corinne Disenhof <cdisenhof@sanbornhead.com>; Anna Campbell <acampbell@sanbornhead.com>

Subject: 180 Third Ave, Waltham, MA

Importance: High

CAUTION: This email originated from a sender outside of the Commonwealth of Massachusetts mail system. Do not click on links or open attachments unless you recognize the sender and know the content is safe.

Good afternoon, Xiaodan and Cathy,

Thank you again for your time yesterday on the call. I've been looking into the NOI and tracking down receiving water information.

As part of the NPDES RGP NOI, dewatering for the 180 Third Ave Project located in Waltham, MA may require discharge to a storm drain which empties to a detention pond located at 20 City Point in Waltham, MA. The detention pond empties to Kendall Brook at an outlet located at approximately 42.39647 Latitude, -71.25683 Longitude.

Our understanding is that Kendall Brook is not listed on the integrated list of waters and a 7Q10 is not directly available. I have provided the StreamStats report showing the basin and peak-flow statistics; however, at this time we are requesting a dilution factor of 1, which I believe does not require formal calculations to be checked. Kendall Brook eventually empties into Beaver Brook which empties into the Charles River. We intend to collect our receiving water sample from surface water immediately downstream of the closest outlet at the location provided above.

Please let me know at your earliest convenience if my assessment provided above is correct.

Thank you.

-Rico

Americo J. Santamaria

Project Manager

SANBORN | HEAD & ASSOCIATES, INC.

D 978.577.1040 M 603.520.5106 1 Technology Park Drive, Westford, MA 01886

Click here to follow us on LinkedIn | Twitter | Facebook | sanbornhead.com

This message and any attachments are intended for the individual or entity named above and may contain privileged or confidential information. If you are not the intended recipient, please do not forward, copy, print, use or disclose this communication to others; please notify the sender by replying to this message and then delete the message and any attachments.

APPENDIX D ANALYTICAL DATA REPORTS

ANALYTICAL REPORT

Lab Number: L2204656

Client: Sanborn, Head & Associates, Inc.

1 Technology Park Drive Westford, MA 01886

ATTN: Laura Garvey
Phone: (978) 577-1031

Project Name: 103 4TH AVENUE

Project Number: 4954.00 Report Date: 02/11/22

The original project report/data package is held by Alpha Analytical. This report/data package is paginated and should be reproduced only in its entirety. Alpha Analytical holds no responsibility for results and/or data that are not consistent with the original.

Certifications & Approvals: MA (M-MA086), NH NELAP (2064), CT (PH-0574), IL (200077), ME (MA00086), MD (348), NJ (MA935), NY (11148), NC (25700/666), PA (68-03671), RI (LAO00065), TX (T104704476), VT (VT-0935), VA (460195), USDA (Permit #P330-17-00196).

Eight Walkup Drive, Westborough, MA 01581-1019 508-898-9220 (Fax) 508-898-9193 800-624-9220 - www.alphalab.com

Project Name: 103 4TH AVENUE

Project Number: 4954.00

Lab Number: L2204656 **Report Date:** 02/11/22

Alpha Sample ID	Client ID	Matrix	Sample Location	Collection Date/Time	Receive Date
L2204656-01	SH-105	WATER	WALTHAM, MA	01/27/22 13:59	01/27/22
L2204656-02	SH-106	WATER	WALTHAM, MA	01/27/22 11:39	01/27/22
L2204656-03	SURFACE	WATER	WALTHAM, MA	01/27/22 15:30	01/27/22

Project Name: 103 4TH AVENUE Lab Number: L2204656

Project Number: 4954.00 Report Date: 02/11/22

Case Narrative

The samples were received in accordance with the Chain of Custody and no significant deviations were encountered during the preparation or analysis unless otherwise noted. Sample Receipt, Container Information, and the Chain of Custody are located at the back of the report.

Results contained within this report relate only to the samples submitted under this Alpha Lab Number and meet NELAP requirements for all NELAP accredited parameters unless otherwise noted in the following narrative. The data presented in this report is organized by parameter (i.e. VOC, SVOC, etc.). Sample specific Quality Control data (i.e. Surrogate Spike Recovery) is reported at the end of the target analyte list for each individual sample, followed by the Laboratory Batch Quality Control at the end of each parameter. Tentatively Identified Compounds (TICs), if requested, are reported for compounds identified to be present and are not part of the method/program Target Compound List, even if only a subset of the TCL are being reported. If a sample was re-analyzed or re-extracted due to a required quality control corrective action and if both sets of data are reported, the Laboratory ID of the re-analysis or re-extraction is designated with an "R" or "RE", respectively.

When multiple Batch Quality Control elements are reported (e.g. more than one LCS), the associated samples for each element are noted in the grey shaded header line of each data table. Any Laboratory Batch, Sample Specific % recovery or RPD value that is outside the listed Acceptance Criteria is bolded in the report. In reference to questions H (CAM) or 4 (RCP) when "NO" is checked, the performance criteria for CAM and RCP methods allow for some quality control failures to occur and still be within method compliance. In these instances, the specific failure is not narrated but noted in the associated QC Outlier Summary Report, located directly after the Case Narrative. QC information is also incorporated in the Data Usability Assessment table (Format 11) of our Data Merger tool, where it can be reviewed in conjunction with the sample result, associated regulatory criteria and any associated data usability implications.

Soil/sediments, solids and tissues are reported on a dry weight basis unless otherwise noted. Definitions of all data qualifiers and acronyms used in this report are provided in the Glossary located at the back of the report.

HOLD POLICY - For samples submitted on hold, Alpha's policy is to hold samples (with the exception of Air canisters) free of charge for 21 calendar days from the date the project is completed. After 21 calendar days, we will dispose of all samples submitted including those put on hold unless you have contacted your Alpha Project Manager and made arrangements for Alpha to continue to hold the samples. Air canisters will be disposed after 3 business days from the date the project is completed.

Please contact Project Management at 800-624-9220 with any questions.	

Project Name:

103 4TH AVENUE

Lab Number:

L2204656

Project Number:

4954.00

Report Date:

02/11/22

Case Narrative (continued)

Report Submission

The analysis of Ethanol was subcontracted. A copy of the laboratory report is included as an addendum.

Please note: This data is only available in PDF format and is not available on Data Merger.

Nitrogen, Ammonia

L2204656-01: The sample has an elevated detection limit due to the dilution required by the sample matrix.

Cyanide, Total

The WG1599586-4 MS recovery, performed on L2204656-02, is outside the acceptance criteria for cyanide, total (65%); however, the associated LCS recovery is within criteria. No further action was taken.

I, the undersigned, attest under the pains and penalties of perjury that, to the best of my knowledge and belief and based upon my personal inquiry of those responsible for providing the information contained in this analytical report, such information is accurate and complete. This certificate of analysis is not complete unless this page accompanies any and all pages of this report.

Cattlin Wallet Caitlin Walukevich

Authorized Signature:

Title: Technical Director/Representative

Date: 02/11/22

ORGANICS

VOLATILES

Project Name: 103 4TH AVENUE

Project Number: 4954.00

SAMPLE RESULTS

Lab Number: L2204656

Report Date: 02/11/22

Lab ID: L2204656-01

Client ID: SH-105

Sample Location: WALTHAM, MA

Sample Depth:

Matrix: Water
Analytical Method: 128,624.1
Analytical Date: 01/28/22 11:28

Analyst: MKS

Date Collected:	01/27/22 13:59
Date Received:	01/27/22
Field Prep:	Not Specified

Parameter	Result	Qualifier Uni	its RL	MDL	Dilution Factor
Volatile Organics by GC/MS - Wes	stborough Lab				
Methylene chloride	ND	ug	/ 1.0		1
1,1-Dichloroethane	ND	ug	/I 1.5		1
Carbon tetrachloride	ND	ug	/I 1.0		1
1,1,2-Trichloroethane	ND	ug	/ 1.5		1
Tetrachloroethene	ND	ug	/ 1.0		1
1,2-Dichloroethane	ND	ug	/ 1.5		1
1,1,1-Trichloroethane	ND	ug	/ 2.0		1
Benzene	ND	ug	/I 1.0		1
Toluene	ND	ug	/I 1.0		1
Ethylbenzene	ND	ug	/I 1.0		1
Vinyl chloride	ND	ug	/I 1.0		1
1,1-Dichloroethene	ND	ug	/ 1.0		1
cis-1,2-Dichloroethene	ND	ug	/I 1.0		1
Trichloroethene	ND	ug	/I 1.0		1
1,2-Dichlorobenzene	ND	ug	/I 5.0		1
1,3-Dichlorobenzene	ND	ug	/ 5.0		1
1,4-Dichlorobenzene	ND	ug	/ 5.0		1
p/m-Xylene	ND	ug	/ 2.0		1
o-xylene	ND	ug	/I 1.0		1
Xylenes, Total	ND	ug	/I 1.0		1
Acetone	ND	ug	/ 10		1
Methyl tert butyl ether	ND	ug	/ 10		1
Tert-Butyl Alcohol	ND	ug	/ 100		1
Tertiary-Amyl Methyl Ether	ND	ug	/ 20		1

Project Name: 103 4TH AVENUE Lab Number: L2204656

Project Number: 4954.00 Report Date: 02/11/22

SAMPLE RESULTS

Lab ID: L2204656-01 Date Collected: 01/27/22 13:59

Client ID: SH-105 Date Received: 01/27/22 Sample Location: WALTHAM, MA Field Prep: Not Specified

Sample Depth:

Parameter Result Qualifier Units RL MDL Dilution Factor

Volatile Organics by GC/MS - Westborough Lab

Surrogate	% Recovery	Qualifier	Acceptance Criteria	
Pentafluorobenzene	100		60-140	
Fluorobenzene	92		60-140	
4-Bromofluorobenzene	113		60-140	

01/27/22 13:59

Not Specified

01/27/22

Project Name: 103 4TH AVENUE

Project Number: 4954.00

SAMPLE RESULTS

Lab Number: L2204656

Report Date: 02/11/22

Date Collected:

Date Received:

Field Prep:

Lab ID: L2204656-01

Client ID: SH-105

Sample Location: WALTHAM, MA

Sample Depth:

Matrix: Water

Analytical Method: 128,624.1-SIM Analytical Date: 01/28/22 11:28

Analyst: MKS

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
Volatile Organics by GC/MS-SIM - Westbor	ough Lab					
1,4-Dioxane	ND		ug/l	5.0		1

	_			
Surrogate	% Recovery	Qualifier	Acceptance Criteria	
Fluorobenzene	98		60-140	
4-Bromofluorobenzene	106		60-140	

Project Name: 103 4TH AVENUE Lab Number: L2204656

Project Number: 4954.00 Report Date: 02/11/22

SAMPLE RESULTS

Lab ID: L2204656-01 Date Collected: 01/27/22 13:59

Client ID: SH-105 Date Received: 01/27/22 Sample Location: WALTHAM, MA Field Prep: Not Specified

Sample Depth:

Matrix: Water Extraction Method: EPA 504.1

Analytical Method: 14,504.1 Extraction Date: 01/31/22 12:54
Analytical Date: 01/31/22 14:38

Analyst: AMM

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	Column
Microextractables by GC - Westboroug	jh Lab						
1,2-Dibromoethane	ND		ug/l	0.010		1	Α
1,2-Dibromo-3-chloropropane	ND		ug/l	0.010		1	А
1,2,3-Trichloropropane	ND		ug/l	0.030		1	Α

01/27/22 11:39

Not Specified

01/27/22

Project Name: 103 4TH AVENUE

Project Number: 4954.00

SAMPLE RESULTS

Lab Number: L2204656

Report Date: 02/11/22

Date Collected:

Date Received:

Field Prep:

Lab ID: L2204656-02

Client ID: SH-106

Sample Location: WALTHAM, MA

Sample Depth:

Matrix: Water Analytical Method: 128,624.1 Analytical Date: 01/28/22 12:03

Analyst: MKS

1.1 Dichloroethane	Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
1,1-Dichloroethane	Volatile Organics by GC/MS - Wes	tborough Lab					
Carbon tetrachloride ND ug/l 1.0 1 L1,1,2-Trichloroethane ND ug/l 1.5 1 L1,2-Dichloroethane ND ug/l 1.0 1 L1,1-Trichloroethane ND ug/l 2.0 1 L1,1-Trichloroethane ND ug/l 1.0 1 Senzene ND ug/l 1.0 1 Senzene ND ug/l 1.0 1 Toluene ND ug/l 1.0 1 Setylbenzene ND ug/l 1.0 1 Vinyl chloride ND ug/l 1.0 1 L1,1-Dichloroethene ND ug/l 1.0 1 L1,1-Dichloroethene ND ug/l 1.0 1 L1,2-Dichloroethene ND ug/l 5.0 1 L2-Dichloro	Methylene chloride	ND		ug/l	1.0		1
1,1,2-Trichloroethane	1,1-Dichloroethane	ND		ug/l	1.5		1
ND	Carbon tetrachloride	ND		ug/l	1.0		1
1,2-Dichloroethane ND ug/l 1.5 1 1 1 1 1 1 1 1	1,1,2-Trichloroethane	ND		ug/l	1.5		1
1,1,1-Trichloroethane	Tetrachloroethene	ND		ug/l	1.0		1
Selenzene ND ug/l 1.0 1	1,2-Dichloroethane	ND		ug/l	1.5		1
Toluene ND	1,1,1-Trichloroethane	ND		ug/l	2.0		1
ND	Benzene	ND		ug/l	1.0		1
Vinyl chloride ND ug/l 1.0 1 1,1-Dichloroethene ND ug/l 1.0 1 cis-1,2-Dichloroethene ND ug/l 1.0 1 Trichloroethene ND ug/l 1.0 1 1,2-Dichlorobenzene ND ug/l 5.0 1 1,3-Dichlorobenzene ND ug/l 5.0 1 1,4-Dichlorobenzene ND ug/l 5.0 1 1,4-Dichlorobenzene ND ug/l 5.0 1 1,4-Dichlorobenzene ND ug/l 2.0 1 1,4-Dichlorobenzene ND ug/l 1.0 1 2-wylene ND ug/l 1.0 1 2-wylene ND ug/l 1.0 1 Acetone ND ug/l 1.0 1 Methyl ter	Toluene	ND		ug/l	1.0		1
1,1-Dichloroethene	Ethylbenzene	ND		ug/l	1.0		1
ND	Vinyl chloride	ND		ug/l	1.0		1
Trichloroethene ND ug/l 1.0 1 1,2-Dichlorobenzene ND ug/l 5.0 1 1,3-Dichlorobenzene ND ug/l 5.0 1 1,4-Dichlorobenzene ND ug/l 5.0 1 0/m-Xylene ND ug/l 2.0 1 0-xylene ND ug/l 1.0 1 Xylenes, Total ND ug/l 1.0 1 Acetone ND ug/l 10 1 Methyl tert butyl ether ND ug/l 10 1 Tert-Butyl Alcohol ND ug/l 100 1	1,1-Dichloroethene	ND		ug/l	1.0		1
1,2-Dichlorobenzene ND ug/l 5.0 1 1,3-Dichlorobenzene ND ug/l 5.0 1 1,4-Dichlorobenzene ND ug/l 5.0 1 p/m-Xylene ND ug/l 2.0 1 p-xylene ND ug/l 1.0 1 Xylenes, Total ND ug/l 1.0 1 Acetone ND ug/l 10 1 Wethyl tert butyl ether ND ug/l 10 1 Tert-Butyl Alcohol ND ug/l 100 1	cis-1,2-Dichloroethene	ND		ug/l	1.0		1
1,3-Dichlorobenzene ND ug/l 5.0 1 1,4-Dichlorobenzene ND ug/l 5.0 1 po/m-Xylene ND ug/l 2.0 1 po-xylene ND ug/l 1.0 1 xylenes, Total ND ug/l 1.0 1 Acetone ND ug/l 10 1 Methyl tert butyl ether ND ug/l 10 1 Tert-Butyl Alcohol ND ug/l 100 1	Trichloroethene	ND		ug/l	1.0		1
1,4-Dichlorobenzene ND ug/l 5.0 1 p/m-Xylene ND ug/l 2.0 1 p-xylene ND ug/l 1.0 1 xylenes, Total ND ug/l 1.0 1 Acetone ND ug/l 10 1 Methyl tert butyl ether ND ug/l 10 1 Tert-Butyl Alcohol ND ug/l 100 1	1,2-Dichlorobenzene	ND		ug/l	5.0		1
Do/m-Xylene ND ug/l 2.0 1 Do-xylene ND ug/l 1.0 1 Xylenes, Total ND ug/l 1.0 1 Acetone ND ug/l 10 1 Methyl tert butyl ether ND ug/l 10 1 Tert-Butyl Alcohol ND ug/l 100 1	1,3-Dichlorobenzene	ND		ug/l	5.0		1
Description ND ug/l 1.0 1 Xylenes, Total ND ug/l 1.0 1 Acetone ND ug/l 10 1 Methyl tert butyl ether ND ug/l 10 1 Tert-Butyl Alcohol ND ug/l 100 1	1,4-Dichlorobenzene	ND		ug/l	5.0		1
Xylenes, Total ND ug/l 1.0 1 Acetone ND ug/l 10 1 Methyl tert butyl ether ND ug/l 10 1 Tert-Butyl Alcohol ND ug/l 100 1	p/m-Xylene	ND		ug/l	2.0		1
Acetone ND ug/l 10 1 Methyl tert butyl ether ND ug/l 10 1 Tert-Butyl Alcohol ND ug/l 100 1	o-xylene	ND		ug/l	1.0		1
Methyl tert butyl ether ND ug/l 10 1 Fert-Butyl Alcohol ND ug/l 100 1	Xylenes, Total	ND		ug/l	1.0		1
Tert-Butyl Alcohol ND ug/l 100 1	Acetone	ND		ug/l	10		1
,	Methyl tert butyl ether	ND		ug/l	10		1
Tertiary-Amyl Methyl Ether ND ug/l 20 1	Tert-Butyl Alcohol	ND		ug/l	100		1
	Tertiary-Amyl Methyl Ether	ND		ug/l	20		1

Project Name: 103 4TH AVENUE Lab Number: L2204656

Project Number: 4954.00 Report Date: 02/11/22

SAMPLE RESULTS

Lab ID: L2204656-02 Date Collected: 01/27/22 11:39

Client ID: SH-106 Date Received: 01/27/22 Sample Location: WALTHAM, MA Field Prep: Not Specified

Sample Depth:

Parameter Result Qualifier Units RL MDL Dilution Factor

Volatile Organics by GC/MS - Westborough Lab

Surrogate	% Recovery	Qualifier	Acceptance Criteria	
Pentafluorobenzene	102		60-140	
Fluorobenzene	91		60-140	
4-Bromofluorobenzene	114		60-140	

L2204656

01/27/22 11:39

Not Specified

01/27/22

Project Name: 103 4TH AVENUE

Project Number: 4954.00

SAMPLE RESULTS

Report Date:

02/11/22

Lab Number:

Date Collected:

Date Received:

Field Prep:

Lab ID: L2204656-02 Client ID: SH-106

Sample Location: WALTHAM, MA

Sample Depth:

Matrix: Water

Analytical Method: 128,624.1-SIM Analytical Date: 01/28/22 12:03

Analyst: MKS

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
Volatile Organics by GC/MS-SIM - Westboro	ugh Lab					
1,4-Dioxane	ND		ug/l	5.0		1

Fluorobenzene 98 60-140

Project Name: Lab Number: 103 4TH AVENUE L2204656

Project Number: Report Date: 4954.00 02/11/22

SAMPLE RESULTS

L2204656-02

01/31/22 14:45

Date Collected: 01/27/22 11:39

Client ID: Date Received: 01/27/22 SH-106 Sample Location: WALTHAM, MA Field Prep: Not Specified

Sample Depth: Extraction Method: EPA 504.1 Matrix: Water

Extraction Date: 01/31/22 12:54 Analytical Method: 14,504.1 Analytical Date:

Analyst: AMM

Lab ID:

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	Column
Microextractables by GC - Westborough Lab							
1,2-Dibromoethane	ND		ug/l	0.010		1	Α
1,2-Dibromo-3-chloropropane	ND		ug/l	0.010		1	А
1,2,3-Trichloropropane	ND		ug/l	0.030		1	Α

L2204656

Project Name: 103 4TH AVENUE Lab Number:

Project Number: 4954.00 Report Date: 02/11/22

Method Blank Analysis Batch Quality Control

Analytical Method: 128,624.1-SIM Analytical Date: 01/28/22 03:21

Analyst: MKS

Parameter	Result	Qualifier	Units	RL		MDL	
Volatile Organics by GC/MS-SIM -	Westborough	Lab for s	ample(s):	01-02	Batch:	WG1599364-4	
1,4-Dioxane	ND		ug/l	5.0			

		Acceptance			
Surrogate	%Recovery	Qualifier Crite	ria		
Fluorobenzene	99	60-14	0		
Fluoropenzene	99	60-14	U		
4-Bromofluorobenzene	104	60-14	0		

L2204656

Lab Number:

Project Name: 103 4TH AVENUE

Project Number: 4954.00 Report Date: 02/11/22

t Number: 4954.00 Report Date: 02/

Method Blank Analysis Batch Quality Control

Analytical Method: 128,624.1 Analytical Date: 01/28/22 03:21

Analyst: MKS

Parameter	Result	Qualifier Unit	s	RL	MDL
Volatile Organics by GC/MS - Wes	tborough Lab	for sample(s):	01-02	Batch:	WG1599369-4
Methylene chloride	ND	ug,	′ I	1.0	
1,1-Dichloroethane	ND	ug/		1.5	
Carbon tetrachloride	ND	ug	Ί	1.0	
1,1,2-Trichloroethane	ND	ug,	Ί	1.5	
Tetrachloroethene	ND	ug/	1	1.0	
1,2-Dichloroethane	ND	ug/	1	1.5	
1,1,1-Trichloroethane	ND	ug/	Ί	2.0	
Benzene	ND	ug/	1	1.0	
Toluene	ND	ug/	1	1.0	
Ethylbenzene	ND	ug/	1	1.0	
Vinyl chloride	ND	ug	1	1.0	
1,1-Dichloroethene	ND	ug	1	1.0	
cis-1,2-Dichloroethene	ND	ug	1	1.0	
Trichloroethene	ND	ug/	1	1.0	
1,2-Dichlorobenzene	ND	ug/	1	5.0	
1,3-Dichlorobenzene	ND	ug/	1	5.0	
1,4-Dichlorobenzene	ND	ug/	Ί	5.0	
p/m-Xylene	ND	ug/	1	2.0	
o-xylene	ND	ug/	1	1.0	
Xylenes, Total	ND	ug/	1	1.0	
Acetone	ND	ug/	1	10	
Methyl tert butyl ether	ND	ug/	1	10	
Tert-Butyl Alcohol	ND	ug/	1	100	
Tertiary-Amyl Methyl Ether	ND	ug/	1	20	

Project Name: 103 4TH AVENUE Lab Number: L2204656

Project Number: 4954.00 Report Date: 02/11/22

Method Blank Analysis
Batch Quality Control

Analytical Method: 128,624.1 Analytical Date: 01/28/22 03:21

Analyst: MKS

Parameter Result Qualifier Units RL MDL

Volatile Organics by GC/MS - Westborough Lab for sample(s): 01-02 Batch: WG1599369-4

		Acceptance	
Surrogate	%Recovery	Qualifier Criteria	_
Pentafluorobenzene	102	60-140	
Fluorobenzene	93	60-140	
4-Bromofluorobenzene	112	60-140	

Project Name: 103 4TH AVENUE Lab Number: L2204656

Project Number: 4954.00 Report Date: 02/11/22

Method Blank Analysis Batch Quality Control

Analytical Method: 14,504.1 Extraction Method: EPA 504.1

Analytical Date: 01/31/22 13:52 Extraction Date: 01/31/22 12:54

Analyst: AMM

Parameter	Result	Qualifier	Units	RL	MDL	
Microextractables by GC - Westbor	ough Lab for	r sample(s)	: 01-02	Batch: W	/G1599672-1	
1,2-Dibromoethane	ND		ug/l	0.010		Α
1,2-Dibromo-3-chloropropane	ND		ug/l	0.010		Α
1,2,3-Trichloropropane	ND		ug/l	0.030		Α

Project Name: 103 4TH AVENUE

L2204656

Project Number: 4954.00

Lab Number: Report Date:

02/11/22

Parameter	LCS %Recovery	Qual	LCSD %Recovery	Qual	%Recovery Limits	RPD	Qual	RPD Limits	
Volatile Organics by GC/MS-SIM - Westboro	ugh Lab Associa	ted sample(s)	: 01-02 Batch:	WG15993	64-3				
1,4-Dioxane	124		-		60-140	-		20	

Surrogate	LCS %Recovery	Qual	LCSD %Recovery	Qual	Acceptance Criteria
Fluorobenzene 4-Bromofluorobenzene	102 100				60-140 60-140

Project Name: 103 4TH AVENUE

Project Number: 4954.00

Lab Number: L2204656

Report Date: 02/11/22

Parameter	LCS %Recovery	Qual	LCSD %Recovery	Qual	%Recovery Limits	RPD	Qual	RPD Limits
Volatile Organics by GC/MS - Westborough	Lab Associated	sample(s):	01-02 Batch: W	/G1599369-	-3			
Methylene chloride	95		-		60-140	-		28
1,1-Dichloroethane	95		-		50-150	-		49
Carbon tetrachloride	110		-		70-130	-		41
1,1,2-Trichloroethane	115		-		70-130	-		45
Tetrachloroethene	130		-		70-130	-		39
1,2-Dichloroethane	110		-		70-130	-		49
1,1,1-Trichloroethane	110		-		70-130	-		36
Benzene	105		-		65-135	-		61
Toluene	120		-		70-130	-		41
Ethylbenzene	130		-		60-140	-		63
Vinyl chloride	80		-		5-195	-		66
1,1-Dichloroethene	105		-		50-150	-		32
cis-1,2-Dichloroethene	105		-		60-140	-		30
Trichloroethene	110		-		65-135	•		48
1,2-Dichlorobenzene	130		-		65-135	-		57
1,3-Dichlorobenzene	125		-		70-130	-		43
1,4-Dichlorobenzene	130		-		65-135	-		57
p/m-Xylene	125		-		60-140	-		30
o-xylene	120		-		60-140	-		30
Acetone	82		-		40-160	-		30
Methyl tert butyl ether	85		-		60-140	-		30
Tert-Butyl Alcohol	98		-		60-140	-		30
Tertiary-Amyl Methyl Ether	90		-		60-140	-		30

Project Name: 103 4TH AVENUE

Lab Number:

L2204656

Project Number: 4954.00

Report Date:

02/11/22

	LCS		LCSD		%Recovery			RPD
Parameter	%Recovery	Qual	%Recovery	Qual	l imits	RPD	Qual	l imits

Volatile Organics by GC/MS - Westborough Lab Associated sample(s): 01-02 Batch: WG1599369-3

Surrogate	LCS %Recovery Qual	LCSD %Recovery	Qual	Acceptance Criteria
Pentafluorobenzene	106			60-140
Fluorobenzene	97			60-140
4-Bromofluorobenzene	111			60-140

Project Name: 103 4TH AVENUE

Project Number: 4954.00

Lab Number:

L2204656

Report Date:

02/11/22

Parameter	LCS %Recovery	Qual	LCSD %Recovery	Qual	%Recovery Limits	RPD	Qual	RPD Limits	Column
Microextractables by GC - Westborough Lab	Associated sar	mple(s): 01-02	2 Batch: WG1	599672-2					
1,2-Dibromoethane	88		-		80-120	-			Α
1,2-Dibromo-3-chloropropane	85		-		80-120	-			Α
1,2,3-Trichloropropane	105		-		80-120	-			А

Matrix Spike Analysis Batch Quality Control

Project Name: 103 4TH AVENUE

Project Number: 4954.00

Lab Number:

L2204656

Report Date:

02/11/22

	Native	MS	MS	MS		MSD	MSD		Recovery	/	R	PD	
Parameter	Sample	Added	Found	%Recovery	Qual	Found	%Recovery	Qual	Limits	RPD	Qual Lii	nits	<u>Column</u>
Microextractables by GC	- Westborough Lab	Associat	ed sample(s): 0	01-02 QC Ba	tch ID: W	/G1599672-	3 QC Samp	le: L220	4031-01	Client ID:	: MS Samp	ole	
1,2-Dibromoethane	ND	0.252	0.225	90		-	-		80-120	-		20	Α
1,2-Dibromo-3-chloropropane	ND	0.252	0.221	88		-	-		80-120	-		20	Α
1,2,3-Trichloropropane	ND	0.252	0.283	113		-	-		80-120	-		20	Α

SEMIVOLATILES

Project Name: 103 4TH AVENUE Lab Number: L2204656

Project Number: 4954.00 Report Date: 02/11/22

SAMPLE RESULTS

Lab ID: L2204656-01 Date Collected: 01/27/22 13:59

Client ID: SH-105 Date Received: 01/27/22 Sample Location: WALTHAM, MA Field Prep: Not Specified

Sample Depth:

Matrix: Water Extraction Method: EPA 625.1

Analytical Method: 129,625.1 Extraction Date: 02/02/22 17:16
Analytical Date: 02/03/22 16:09

Analyst: ALS

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
Semivolatile Organics by GC/MS -	Westborough Lab					
Bis(2-ethylhexyl)phthalate	ND		ug/l	2.20		1
Butyl benzyl phthalate	ND		ug/l	5.00		1
Di-n-butylphthalate	ND		ug/l	5.00		1
Di-n-octylphthalate	ND		ug/l	5.00		1
Diethyl phthalate	ND		ug/l	5.00		1
Dimethyl phthalate	ND		ug/l	5.00		1

Surrogate	% Recovery	Qualifier	cceptance Criteria
Nitrobenzene-d5	72		42-122
2-Fluorobiphenyl	68		46-121
4-Terphenyl-d14	93		47-138

L2204656

02/11/22

01/27/22 13:59

Not Specified

01/27/22

Project Name: 103 4TH AVENUE

Project Number: 4954.00

Lab Number:

Report Date:

Date Collected:

Date Received:

Field Prep:

SAMPLE RESULTS

Lab ID: L2204656-01

Client ID: SH-105

Sample Location: WALTHAM, MA

Sample Depth:

Matrix: Water

Analytical Method: 129,625.1-SIM Analytical Date: 02/06/22 18:58

Analyst: JJW

Extraction Method: EPA 625.1 Extraction Date: 02/02/22 17:16

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor		
Semivolatile Organics by GC/MS-SIM - Westborough Lab								
Acenaphthene	ND		ug/l	0.100		1		
Fluoranthene	ND		ug/l	0.100				
Naphthalene	ND		ug/l	0.100		1		
Benzo(a)anthracene	ND		ug/l	0.100		1		
Benzo(a)pyrene	ND		ug/l	0.100		1		
Benzo(b)fluoranthene	ND		ug/l	0.100		1		
Benzo(k)fluoranthene	ND		ug/l	0.100		1		
Chrysene	ND		ug/l	0.100		1		
Acenaphthylene	ND		ug/l	0.100		1		
Anthracene	ND		ug/l	0.100		1		
Benzo(ghi)perylene	ND		ug/l	0.100		1		
Fluorene	ND		ug/l	0.100		1		
Phenanthrene	ND		ug/l	0.100		1		
Dibenzo(a,h)anthracene	ND		ug/l	0.100		1		
Indeno(1,2,3-cd)pyrene	ND		ug/l	0.100		1		
Pyrene	ND		ug/l	0.100		1		
Pentachlorophenol	ND		ug/l	1.00		1		

Surrogate	% Recovery	Acceptance Qualifier Criteria
2-Fluorophenol	50	25-87
Phenol-d6	35	16-65
Nitrobenzene-d5	87	42-122
2-Fluorobiphenyl	77	46-121
2,4,6-Tribromophenol	106	45-128
4-Terphenyl-d14	87	47-138

Project Name: 103 4TH AVENUE Lab Number: L2204656

Project Number: 4954.00 Report Date: 02/11/22

SAMPLE RESULTS

Lab ID: L2204656-02 Date Collected: 01/27/22 11:39

Client ID: SH-106 Date Received: 01/27/22 Sample Location: WALTHAM, MA Field Prep: Not Specified

Sample Depth:

Matrix: Water Extraction Method: EPA 625.1
Analytical Method: 129.625.1 Extraction Date: 02/02/22 17:16

Analytical Method: 129,625.1 Extraction Date: 02/02/22 17:16
Analytical Date: 02/03/22 17:00

Analyst: ALS

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
Semivolatile Organics by GC/MS -	Westborough Lab					
Bis(2-ethylhexyl)phthalate	ND		ug/l	2.20		1
Butyl benzyl phthalate	ND		ug/l	5.00		1
Di-n-butylphthalate	ND		ug/l	5.00		1
Di-n-octylphthalate	ND		ug/l	5.00		1
Diethyl phthalate	ND		ug/l	5.00		1
Dimethyl phthalate	ND		ug/l	5.00		1

			Acceptance	
Surrogate	% Recovery	Qualifier	Criteria	
Nitrobenzene-d5	75		42-122	
2-Fluorobiphenyl	63		46-121	
4-Terphenyl-d14	85		47-138	

L2204656

Project Name: 103 4TH AVENUE Lab Number:

Project Number: 4954.00 Report Date: 02/11/22

SAMPLE RESULTS

Lab ID: L2204656-02 Date Collected: 01/27/22 11:39

Client ID: SH-106 Date Received: 01/27/22 Sample Location: WALTHAM, MA Field Prep: Not Specified

Sample Depth:

Matrix: Water Extraction Method: EPA 625.1

Analytical Method: 129,625.1-SIM Extraction Date: 02/02/22 17:16
Analytical Date: 02/06/22 19:15

Analyst: JJW

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor			
Semivolatile Organics by GC/MS-SIM - Westborough Lab									
Acenaphthene	ND		ug/l	0.100		1			
Fluoranthene	ND		ug/l	0.100		1			
Naphthalene	ND		ug/l	0.100		1			
Benzo(a)anthracene	ND		ug/l	0.100		1			
Benzo(a)pyrene	ND		ug/l	0.100		1			
Benzo(b)fluoranthene	ND		ug/l	0.100		1			
Benzo(k)fluoranthene	ND		ug/l	0.100		1			
Chrysene	ND		ug/l	0.100		1			
Acenaphthylene	ND		ug/l	0.100		1			
Anthracene	ND		ug/l	0.100		1			
Benzo(ghi)perylene	ND		ug/l	0.100		1			
Fluorene	ND		ug/l	0.100		1			
Phenanthrene	ND		ug/l	0.100		1			
Dibenzo(a,h)anthracene	ND		ug/l	0.100		1			
Indeno(1,2,3-cd)pyrene	ND		ug/l	0.100		1			
Pyrene	ND		ug/l	0.100		1			
Pentachlorophenol	ND		ug/l	1.00		1			

Surrogate	% Recovery	Acceptance Qualifier Criteria	
2-Fluorophenol	50	25-87	
Phenol-d6	35	16-65	
Nitrobenzene-d5	87	42-122	
2-Fluorobiphenyl	75	46-121	
2,4,6-Tribromophenol	91	45-128	
4-Terphenyl-d14	85	47-138	

L2204656

Lab Number:

Project Name: 103 4TH AVENUE

Project Number: 4954.00 Report Date: 02/11/22

10port 2 at 1

Method Blank Analysis Batch Quality Control

Analytical Method: 129,625.1 Analytical Date: 02/03/22 10:36

Analyst: WR

Extraction Method: EPA 625.1
Extraction Date: 02/02/22 17:16

Parameter	Result	Qualifier	Units	RL		MDL
Semivolatile Organics by GC/MS - V	Vestborough	Lab for s	ample(s):	01-02	Batch:	WG1600782-1
Bis(2-ethylhexyl)phthalate	ND		ug/l	2.20		
Butyl benzyl phthalate	ND		ug/l	5.00		
Di-n-butylphthalate	ND		ug/l	5.00		
Di-n-octylphthalate	ND		ug/l	5.00		
Diethyl phthalate	ND		ug/l	5.00		
Dimethyl phthalate	ND		ug/l	5.00		

		Acceptance	9
Surrogate	%Recovery	Qualifier Criteria	
Nitrobenzene-d5	73	42-122	
2-Fluorobiphenyl	68	46-121	
4-Terphenyl-d14	92	47-138	

L2204656

Project Name: 103 4TH AVENUE

Project Number: Report Date: 4954.00

02/11/22

Lab Number:

Method Blank Analysis Batch Quality Control

Analytical Method: 129,625.1-SIM Analytical Date: 02/03/22 12:10

Analyst: RP Extraction Method: EPA 625.1 02/02/22 17:16 **Extraction Date:**

Parameter	Result	Qualifier Units	RL	MDL	
Semivolatile Organics by	GC/MS-SIM - Westbo	rough Lab for sam	ple(s): 01-02	Batch:	WG1600783-1
Acenaphthene	ND	ug/l	0.100		
Fluoranthene	ND	ug/l	0.100		
Naphthalene	ND	ug/l	0.100		
Benzo(a)anthracene	ND	ug/l	0.100		
Benzo(a)pyrene	ND	ug/l	0.100		
Benzo(b)fluoranthene	ND	ug/l	0.100		
Benzo(k)fluoranthene	ND	ug/l	0.100		
Chrysene	ND	ug/l	0.100		
Acenaphthylene	ND	ug/l	0.100		
Anthracene	ND	ug/l	0.100		
Benzo(ghi)perylene	ND	ug/l	0.100		
Fluorene	ND	ug/l	0.100		
Phenanthrene	ND	ug/l	0.100		
Dibenzo(a,h)anthracene	ND	ug/l	0.100		
Indeno(1,2,3-cd)pyrene	ND	ug/l	0.100		
Pyrene	ND	ug/l	0.100		
Pentachlorophenol	ND	ug/l	1.00		

Surrogate	%Recovery	Acceptance Qualifier Criteria
2-Fluorophenol	44	25-87
Phenol-d6	31	16-65
Nitrobenzene-d5	83	42-122
2-Fluorobiphenyl	73	46-121
2,4,6-Tribromophenol	93	45-128
4-Terphenyl-d14	98	47-138

Project Name: 103 4TH AVENUE

Project Number: 4954.00

Lab Number:

L2204656

Report Date:

02/11/22

Parameter	LCS %Recovery	Qual	LCSD %Recovery	Qual	%Recovery Limits	RPD	Qual	RPD Limits	
Semivolatile Organics by GC/MS - Westborou	gh Lab Associa	ated sample(s)	: 01-02 Batch:	WG1600	782-2				
Bis(2-ethylhexyl)phthalate	76		-		29-137	-		82	
Butyl benzyl phthalate	76		-		1-140	-		60	
Di-n-butylphthalate	76		-		8-120	-		47	
Di-n-octylphthalate	76		-		19-132	-		69	
Diethyl phthalate	72		-		1-120	-		100	
Dimethyl phthalate	75		-		1-120	-		183	

Surrogate	LCS %Recovery Qual	LCSD %Recovery Qual	Acceptance Criteria	
Nitrobenzene-d5	74		42-122	
2-Fluorobiphenyl	69		46-121	
4-Terphenyl-d14	85		47-138	

Project Name: 103 4TH AVENUE

Project Number: 4954.00

Lab Number: L2204656

Report Date: 02/11/22

arameter	LCS %Recovery	Qual	LCSD %Recovery	Qual	%Recovery Limits	RPD	Qual	RPD Limits	
emivolatile Organics by GC/MS-SIM - Wes	stborough Lab As	ssociated sam	ple(s): 01-02	Batch: \	WG1600783-2				
Acenaphthene	77		-		60-132	-		30	
Fluoranthene	86		-		43-121	-		30	
Naphthalene	76		-		36-120	-		30	
Benzo(a)anthracene	98		-		42-133	-		30	
Benzo(a)pyrene	93		-		32-148	-		30	
Benzo(b)fluoranthene	92		-		42-140	-		30	
Benzo(k)fluoranthene	85		-		25-146	-		30	
Chrysene	74		-		44-140	-		30	
Acenaphthylene	88		-		54-126	-		30	
Anthracene	83		-		43-120	-		30	
Benzo(ghi)perylene	91		-		1-195	-		30	
Fluorene	83		-		70-120	-		30	
Phenanthrene	76		-		65-120	-		30	
Dibenzo(a,h)anthracene	101		-		1-200	-		30	
Indeno(1,2,3-cd)pyrene	98		-		1-151	-		30	
Pyrene	86		-		70-120	-		30	
Pentachlorophenol	95		-		38-152	-		30	

Project Name: 103 4TH AVENUE

Lab Number:

L2204656

Project Number: 4954.00

Report Date:

02/11/22

LCS LCSD %Recovery RPD Parameter %Recovery Qual %Recovery Qual Limits RPD Qual Limits

Semivolatile Organics by GC/MS-SIM - Westborough Lab Associated sample(s): 01-02 Batch: WG1600783-2

Surrogate	LCS %Recovery Qual	LCSD %Recovery Qual	Acceptance Criteria
2-Fluorophenol	61		25-87
Phenol-d6	42		16-65
Nitrobenzene-d5	95		42-122
2-Fluorobiphenyl	81		46-121
2,4,6-Tribromophenol	106		45-128
4-Terphenyl-d14	89		47-138

PCBS

Project Name: 103 4TH AVENUE Lab Number: L2204656

Project Number: 4954.00 Report Date: 02/11/22

SAMPLE RESULTS

Lab ID: L2204656-01 Date Collected: 01/27/22 13:59

Client ID: SH-105 Date Received: 01/27/22 Sample Location: WALTHAM, MA Field Prep: Not Specified

Sample Depth:

Matrix: Water Extraction Method: EPA 608.3
Analytical Method: 127,608.3 Extraction Date: 02/10/22 16:37

Analytical Method: 127,000.5

Analytical Date: 02/11/22 10:13

Cleanup Method: EPA 3665A

Cleanup Date: 02/10/22

Cleanup Method: EPA 3660B Cleanup Date: 02/11/22

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	Column	
Polychlorinated Biphenyls by GC - Westborough Lab								
Aroclor 1016	ND		ug/l	0.250		1	Α	
Aroclor 1221	ND		ug/l	0.250		1	Α	
Aroclor 1232	ND		ug/l	0.250		1	Α	
Aroclor 1242	ND		ug/l	0.250		1	Α	
Aroclor 1248	ND		ug/l	0.250		1	Α	
Aroclor 1254	ND		ug/l	0.250		1	Α	
Aroclor 1260	ND		ug/l	0.200		1	Α	

Surrogate	% Recovery	Qualifier	Criteria	Column
2,4,5,6-Tetrachloro-m-xylene	70		37-123	В
Decachlorobiphenyl	77		38-114	В
2,4,5,6-Tetrachloro-m-xylene	67		37-123	Α
Decachlorobiphenyl	70		38-114	Α

Project Name: 103 4TH AVENUE Lab Number: L2204656

Project Number: 4954.00 Report Date: 02/11/22

SAMPLE RESULTS

Lab ID: L2204656-02 Date Collected: 01/27/22 11:39

Client ID: SH-106 Date Received: 01/27/22 Sample Location: WALTHAM, MA Field Prep: Not Specified

Sample Depth:

Matrix: Water Extraction Method: EPA 608.3
Analytical Method: 127,608.3 Extraction Date: 02/10/22 16:37

Analytical Method: 127,608.3 Extraction Date: 02/10/22 16:37

Analytical Date: 02/11/22 10:22 Cleanup Method: EPA 3665A

Analyst: CW Cleanup Date: 02/10/22

Cleanup Method: EPA 3660B Cleanup Date: 02/11/22

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	Column
Polychlorinated Biphenyls by 0							
Aroclor 1016	ND		ug/l	0.250		1	Α
Aroclor 1221	ND		ug/l	0.250		1	Α
Aroclor 1232	ND		ug/l	0.250		1	Α
Aroclor 1242	ND		ug/l	0.250		1	Α
Aroclor 1248	ND		ug/l	0.250		1	Α
Aroclor 1254	ND		ug/l	0.250		1	Α
Aroclor 1260	ND		ug/l	0.200		1	Α

Surrogate	% Recovery	Qualifier	Criteria	Column
2,4,5,6-Tetrachloro-m-xylene	73		37-123	В
Decachlorobiphenyl	87		38-114	В
2,4,5,6-Tetrachloro-m-xylene	71		37-123	Α
Decachlorobiphenyl	79		38-114	Α

L2204656

Project Name: 103 4TH AVENUE

Report Date: **Project Number:** 4954.00 02/11/22

Lab Number:

Method Blank Analysis Batch Quality Control

Analytical Method: 127,608.3 Analytical Date: 02/11/22 08:21

Analyst: CW

Extraction Method: EPA 608.3 02/10/22 16:10 **Extraction Date:** Cleanup Method: EPA 3665A Cleanup Date: 02/10/22 Cleanup Method: EPA 3660B Cleanup Date: 02/11/22

Parameter	Result	Qualifier	Units	RL		MDL	Column
Polychlorinated Biphenyls by GC - V	Vestborough	Lab for s	ample(s):	01-02	Batch:	WG16	03703-1
Aroclor 1016	ND		ug/l	0.250			Α
Aroclor 1221	ND		ug/l	0.250			Α
Aroclor 1232	ND		ug/l	0.250			А
Aroclor 1242	ND		ug/l	0.250			А
Aroclor 1248	ND		ug/l	0.250			А
Aroclor 1254	ND		ug/l	0.250			Α
Aroclor 1260	ND		ug/l	0.200			Α

		Acceptance				
Surrogate	%Recovery Qualifie	er Criteria	Column			
2,4,5,6-Tetrachloro-m-xylene	77	37-123	В			
•						
Decachlorobiphenyl	88	38-114	В			
2,4,5,6-Tetrachloro-m-xylene	74	37-123	Α			
Decachlorobiphenyl	81	38-114	Α			

Lab Control Sample Analysis Batch Quality Control

Project Name: 103 4TH AVENUE

4954.00

Project Number:

TH AVENUE

Lab Number: L2204656

Report Date:

Parameter	LCS %Recovery	Qual	LCSI %Recov		Qual	%Recovery Limits	RPD	Qual	RPD Limits	Column
Polychlorinated Biphenyls by GC - V	Westborough Lab Associa	ted sample(s)	: 01-02	Batch:	WG160	3703-2				
Aroclor 1016	72		-			50-140	-		36	Α
Aroclor 1260	63		-			8-140	-		38	А

Surrogate	LCS %Recovery Q	LCSD ual %Recovery	Qual	Acceptance Criteria	Column
2,4,5,6-Tetrachloro-m-xylene	64			37-123	В
Decachlorobiphenyl	57			38-114	В
2,4,5,6-Tetrachloro-m-xylene	63			37-123	Α
Decachlorobiphenyl	52			38-114	Α

METALS

Project Name: 103 4TH AVENUE

Project Number: 4954.00

Lab Number: Report Date: L2204656 02/11/22

SAMPLE RESULTS

Date Collected:

01/27/22 13:59

Client ID: Sample Location:

Lab ID:

L2204656-01 SH-105

: WALTHAM, MA

Date Received: 01/27/22
Field Prep: Not Specified

Sample Depth:

Matrix: Water

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	Date Prepared	Date Analyzed	Prep Method	Analytical Method	Analyst
Total Metals - Mans	field Lab										
Antimony, Total	ND		mg/l	0.00400		1	02/01/22 12:4	4 02/01/22 19:36	EPA 3005A	3,200.8	SV
Arsenic, Total	0.00143		mg/l	0.00100		1	02/01/22 12:4	4 02/01/22 19:36	EPA 3005A	3,200.8	SV
Cadmium, Total	ND		mg/l	0.00020		1	02/01/22 12:4	4 02/01/22 19:36	EPA 3005A	3,200.8	SV
Chromium, Total	0.00465		mg/l	0.00100		1	02/01/22 12:4	4 02/01/22 19:36	EPA 3005A	3,200.8	SV
Copper, Total	0.02147		mg/l	0.00100		1	02/01/22 12:4	4 02/01/22 19:36	EPA 3005A	3,200.8	SV
Iron, Total	3.89		mg/l	0.050		1	02/01/22 12:4	4 02/02/22 12:02	EPA 3005A	19,200.7	GD
Lead, Total	0.00397		mg/l	0.00100		1	02/01/22 12:4	4 02/01/22 19:36	EPA 3005A	3,200.8	SV
Mercury, Total	ND		mg/l	0.00020		1	02/01/22 13:4	9 02/03/22 11:33	EPA 245.1	3,245.1	ZK
Nickel, Total	0.00800		mg/l	0.00200		1	02/01/22 12:4	4 02/01/22 19:36	EPA 3005A	3,200.8	SV
Selenium, Total	ND		mg/l	0.00500		1	02/01/22 12:4	4 02/01/22 19:36	EPA 3005A	3,200.8	SV
Silver, Total	0.00681		mg/l	0.00040		1	02/01/22 12:4	4 02/01/22 19:36	EPA 3005A	3,200.8	SV
Zinc, Total	0.04327		mg/l	0.01000		1	02/01/22 12:4	4 02/01/22 19:36	EPA 3005A	3,200.8	SV
Total Hardness by	SM 2340B	- Mansfield	d Lab								
Hardness	45.5		mg/l	0.660	NA	1	02/01/22 12:4	4 02/02/22 12:02	EPA 3005A	19,200.7	GD
General Chemistry	 Mansfiel 	d Lab									
Chromium, Trivalent	ND		mg/l	0.010		1		02/01/22 19:36	NA	107,-	

Project Name: Lab Number: 103 4TH AVENUE

L2204656

Project Number: 4954.00 Report Date:

02/11/22

SAMPLE RESULTS

Lab ID: L2204656-02 Client ID:

Date Collected:

01/27/22 11:39

Sample Location:

SH-106

Date Received:

01/27/22

WALTHAM, MA

Field Prep:

Not Specified

Sample Depth:

Matrix:

Water

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	Date Prepared	Date Analyzed	Prep Method	Analytical Method	Analyst
Total Metals - Mans	field Lab										
Antimony, Total	ND		mg/l	0.00400		1	02/01/22 12:44	4 02/01/22 19:52	EPA 3005A	3,200.8	SV
Arsenic, Total	ND		mg/l	0.00100		1	02/01/22 12:44	4 02/01/22 19:52	EPA 3005A	3,200.8	SV
Cadmium, Total	0.00032		mg/l	0.00020		1	02/01/22 12:44	4 02/01/22 19:52	EPA 3005A	3,200.8	SV
Chromium, Total	0.00109		mg/l	0.00100		1	02/01/22 12:44	4 02/01/22 19:52	EPA 3005A	3,200.8	SV
Copper, Total	0.00892		mg/l	0.00100		1	02/01/22 12:44	4 02/01/22 19:52	EPA 3005A	3,200.8	SV
Iron, Total	1.10		mg/l	0.050		1	02/01/22 12:44	4 02/02/22 12:45	EPA 3005A	19,200.7	GD
Lead, Total	ND		mg/l	0.00100		1	02/01/22 12:44	4 02/01/22 19:52	EPA 3005A	3,200.8	SV
Mercury, Total	ND		mg/l	0.00020		1	02/01/22 13:49	9 02/03/22 11:43	EPA 245.1	3,245.1	ZK
Nickel, Total	0.00487		mg/l	0.00200		1	02/01/22 12:44	4 02/01/22 19:52	EPA 3005A	3,200.8	SV
Selenium, Total	ND		mg/l	0.00500		1	02/01/22 12:44	4 02/01/22 19:52	EPA 3005A	3,200.8	SV
Silver, Total	0.00310		mg/l	0.00040		1	02/01/22 12:44	4 02/01/22 19:52	EPA 3005A	3,200.8	SV
Zinc, Total	0.02425		mg/l	0.01000		1	02/01/22 12:44	4 02/01/22 19:52	EPA 3005A	3,200.8	SV
Total Hardness by S	SM 2340B	- Mansfiel	d Lab								
Hardness	79.9		mg/l	0.660	NA	1	02/01/22 12:44	4 02/02/22 12:45	EPA 3005A	19,200.7	GD
General Chemistry	- Mansfiel	d Lab									
Chromium, Trivalent	ND		mg/l	0.010		1		02/01/22 19:52	NA	107,-	

Project Name: 103 4TH AVENUE Lab Number: L2204656

Project Number: 4954.00 Report Date: 02/11/22

SAMPLE RESULTS

Lab ID:L2204656-03Date Collected:01/27/22 15:30Client ID:SURFACEDate Received:01/27/22Sample Location:WALTHAM, MAField Prep:Not Specified

Sample Depth:

Matrix: Water

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	Date Prepared	Date Analyzed	Prep Method	Analytical Method	Analyst
							-				
Total Metals - Mans	field Lab										
Antimony, Total	ND		mg/l	0.00400		1	02/01/22 12:44	1 02/01/22 19:57	EPA 3005A	3,200.8	SV
Arsenic, Total	ND		mg/l	0.00100		1	02/01/22 12:44	1 02/01/22 19:57	EPA 3005A	3,200.8	SV
Cadmium, Total	ND		mg/l	0.00020		1	02/01/22 12:44	1 02/01/22 19:57	EPA 3005A	3,200.8	SV
Chromium, Total	ND		mg/l	0.00100		1	02/01/22 12:44	1 02/01/22 19:57	EPA 3005A	3,200.8	SV
Copper, Total	0.00202		mg/l	0.00100		1	02/01/22 12:44	1 02/01/22 19:57	EPA 3005A	3,200.8	SV
Iron, Total	0.383		mg/l	0.050		1	02/01/22 12:44	1 02/02/22 13:08	EPA 3005A	19,200.7	GD
Lead, Total	ND		mg/l	0.00100		1	02/01/22 12:44	1 02/01/22 19:57	EPA 3005A	3,200.8	SV
Mercury, Total	ND		mg/l	0.00020		1	02/01/22 13:49	02/03/22 11:46	EPA 245.1	3,245.1	ZK
Nickel, Total	ND		mg/l	0.00200		1	02/01/22 12:44	1 02/01/22 19:57	EPA 3005A	3,200.8	SV
Selenium, Total	ND		mg/l	0.00500		1	02/01/22 12:44	1 02/01/22 19:57	EPA 3005A	3,200.8	SV
Silver, Total	ND		mg/l	0.00040		1	02/01/22 12:44	1 02/01/22 19:57	EPA 3005A	3,200.8	SV
Zinc, Total	0.02430		mg/l	0.01000		1	02/01/22 12:44	1 02/01/22 19:57	EPA 3005A	3,200.8	SV
Total Hardness by S	SM 2340B	- Mansfield	d Lab								
Hardness	291		mg/l	0.660	NA	1	02/01/22 12:44	1 02/02/22 13:08	EPA 3005A	19,200.7	GD

Project Name: 103 4TH AVENUE

Project Number: 4954.00

Lab Number: L2204656

Report Date: 02/11/22

Method Blank Analysis Batch Quality Control

Parameter	Result Qualifier	Units	RL	MDL	Dilution Factor	Date Prepared	Date Analyzed	Analytical Method	
Total Metals - Man	sfield Lab for sample(s):	01-03 E	Batch: Wo	G15997	'16-1				
Iron, Total	ND	mg/l	0.050		1	02/01/22 12:44	02/02/22 11:07	19,200.7	GD

Prep Information

Digestion Method: EPA 3005A

Parameter	Result Qualifier	Units	RL	MDL	Dilution Factor	Date Prepared	Date Analyzed	Analytical Method	Analyst
Total Hardness by SM	2340B - Mansfield La	b for sam	ple(s):	01-03 E	Batch: WG	1599716-1			
Hardness	ND	mg/l	0.660	NA	1	02/01/22 12:44	02/02/22 11:07	19,200.7	GD

Prep Information

Digestion Method: EPA 3005A

Parameter	Result Qualifier	Units	RL	MDL	Dilution Factor	Date Prepared	Date Analyzed	Analytical Method	Analyst
Total Metals - Mans	field Lab for sample(s):	01-03 E	Batch: Wo	G15997	20-1				
Antimony, Total	ND	mg/l	0.00400		1	02/01/22 12:44	02/01/22 19:03	3,200.8	SV
Arsenic, Total	ND	mg/l	0.00100		1	02/01/22 12:44	02/01/22 19:03	3,200.8	SV
Cadmium, Total	ND	mg/l	0.00020		1	02/01/22 12:44	02/01/22 19:03	3,200.8	SV
Chromium, Total	ND	mg/l	0.00100		1	02/01/22 12:44	02/01/22 19:03	3,200.8	SV
Copper, Total	ND	mg/l	0.00100		1	02/01/22 12:44	02/01/22 19:03	3,200.8	SV
Lead, Total	ND	mg/l	0.00100		1	02/01/22 12:44	02/01/22 19:03	3,200.8	SV
Nickel, Total	ND	mg/l	0.00200		1	02/01/22 12:44	02/01/22 19:03	3,200.8	SV
Selenium, Total	ND	mg/l	0.00500		1	02/01/22 12:44	02/01/22 19:03	3,200.8	SV
Silver, Total	ND	mg/l	0.00040		1	02/01/22 12:44	02/01/22 19:03	3,200.8	SV
Zinc, Total	ND	mg/l	0.01000		1	02/01/22 12:44	02/01/22 19:03	3,200.8	SV

Prep Information

Digestion Method: EPA 3005A

L2204656

Lab Number:

Project Name: 103 4TH AVENUE

Project Number:

4954.00 **Report Date:** 02/11/22

> **Method Blank Analysis Batch Quality Control**

Dilution Date Date Analytical Method Analyst **Parameter Result Qualifier** Units RLMDL **Factor Prepared** Analyzed Total Metals - Mansfield Lab for sample(s): 01-03 Batch: WG1599722-1 Mercury, Total ND mg/l 0.00020 1 02/03/22 11:05 3,245.1 ZK 02/01/22 13:49

Prep Information

Digestion Method: EPA 245.1

Lab Control Sample Analysis Batch Quality Control

Project Name: 103 4TH AVENUE

Project Number: 4954.00

Lab Number:

L2204656

Report Date:

Parameter	LCS %Recovery	Qual	LCSD %Recovery	Qual	%Recovery Limits	RPD	Qual	RPD Limits
Total Metals - Mansfield Lab Associated sample	e(s): 01-03 Bato	ch: WG1599	9716-2					
Iron, Total	100		-		85-115	-		
Fotal Hardness by SM 2340B - Mansfield Lab A	ssociated sample	e(s): 01-03	Batch: WG159	9716-2				
Hardness	104		-		85-115	-		
otal Metals - Mansfield Lab Associated sample	e(s): 01-03 Bato	ch: WG1599	9720-2					
Antimony, Total	89		-		85-115	-		
Arsenic, Total	100		-		85-115	-		
Cadmium, Total	100		-		85-115	-		
Chromium, Total	93		-		85-115	-		
Copper, Total	95		-		85-115	-		
Lead, Total	102		-		85-115	-		
Nickel, Total	92		-		85-115	-		
Selenium, Total	106		-		85-115	-		
Silver, Total	102		-		85-115	-		
Zinc, Total	98		-		85-115	-		
Total Metals - Mansfield Lab Associated sample	e(s): 01-03 Bato	ch: WG1599	9722-2					
Mercury, Total	109		-		85-115	-		

Matrix Spike Analysis Batch Quality Control

Project Name: 103 4TH AVENUE

Project Number: 4954.00

Lab Number:

L2204656

Report Date:

arameter	Native Sample	MS Added	MS Found	MS %Recovery	Qual	MSD Found	MSD %Recovery Q	Recovery ual Limits	RPD Qua	RPD I Limits
Total Metals - Mansfield La	b Associated sam	ple(s): 01-03	QC Bato	ch ID: WG159	9716-3	QC Sam	ple: L2204656-01	Client ID: SH-	-105	
Iron, Total	3.89	1	4.73	84		-	-	75-125	-	20
Fotal Hardness by SM 2340	OB - Mansfield Lat	Associated	sample(s):	01-03 QC E	Batch ID	: WG1599	716-3 QC Samp	ole: L2204656-01	1 Client ID	: SH-105
Hardness	45.5	66.2	107	93		-	-	75-125	-	20
Total Metals - Mansfield La	b Associated sam	ple(s): 01-03	QC Bato	ch ID: WG159	9720-3	QC Sam	ple: L2204656-01	Client ID: SH-	-105	
Antimony, Total	ND	0.5	0.4166	83		-	-	70-130	-	20
Arsenic, Total	0.00143	0.12	0.1222	101		-	-	70-130	-	20
Cadmium, Total	ND	0.053	0.05455	103		-	-	70-130	-	20
Chromium, Total	0.00465	0.2	0.1905	93		-	-	70-130	-	20
Copper, Total	0.02147	0.25	0.2683	99		-	-	70-130	-	20
Lead, Total	0.00397	0.53	0.5450	102		-	-	70-130	-	20
Nickel, Total	0.00800	0.5	0.4749	93		-	-	70-130	-	20
Selenium, Total	ND	0.12	0.1236	103		-	-	70-130	-	20
Silver, Total	0.00681	0.05	0.05927	105		-	-	70-130	-	20
Zinc, Total	0.04327	0.5	0.5431	100		-	-	70-130	-	20
Total Metals - Mansfield La	b Associated sam	ple(s): 01-03	QC Bato	ch ID: WG159	9722-3	QC Sam	ple: L2204656-01	Client ID: SH-	-105	
Mercury, Total	ND	0.005	0.00477	96		-	-	70-130	-	20

Lab Duplicate Analysis Batch Quality Control

Project Name: 103 4TH AVENUE

Project Number: 4954.00

Lab Number:

L2204656

Report Date:

Parameter	Native Sample	Duplicate Sample	Units	RPD	Qual RPD Limits
Total Metals - Mansfield Lab Associated sample(s): 01-0	3 QC Batch ID: \	WG1599716-4 QC Sample:	L2204656-01	Client ID:	: SH-105
Iron, Total	3.89	3.71	mg/l	5	20
Total Hardness by SM 2340B - Mansfield Lab Associated	sample(s): 01-03	QC Batch ID: WG1599716	-4 QC Samp	le: L2204	656-01 Client ID: SH-105
Hardness	45.5	45.0	mg/l	1	20
Total Metals - Mansfield Lab Associated sample(s): 01-0	3 QC Batch ID: \	WG1599720-4 QC Sample:	L2204656-01	Client ID:	: SH-105
Antimony, Total	ND	0.00499	mg/l	NC	20
Arsenic, Total	0.00143	0.00134	mg/l	7	20
Cadmium, Total	ND	ND	mg/l	NC	20
Chromium, Total	0.00465	0.00413	mg/l	12	20
Copper, Total	0.02147	0.02149	mg/l	0	20
Lead, Total	0.00397	0.00387	mg/l	3	20
Nickel, Total	0.00800	0.00785	mg/l	2	20
Selenium, Total	ND	ND	mg/l	NC	20
Silver, Total	0.00681	0.00606	mg/l	12	20
Zinc, Total	0.04327	0.04300	mg/l	1	20
Total Metals - Mansfield Lab Associated sample(s): 01-0	3 QC Batch ID: \	WG1599722-4 QC Sample:	L2204656-01	Client ID:	: SH-105
Mercury, Total	ND	ND	mg/l	NC	20

INORGANICS & MISCELLANEOUS

01/27/22 13:59

Project Name: Lab Number: 103 4TH AVENUE

L2204656

Date Collected:

Report Date: Project Number: 02/11/22 4954.00

SAMPLE RESULTS

Lab ID: L2204656-01

Client ID: SH-105

Date Received: 01/27/22 Not Specified Sample Location: WALTHAM, MA Field Prep:

Sample Depth:

Matrix: Water

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	Date Prepared	Date Analyzed	Analytical Method	Analyst
General Chemistry - Wes	stborough Lal	o								
Solids, Total Suspended	510		mg/l	20	NA	4	-	02/02/22 19:00	121,2540D	MD
Cyanide, Total	ND		mg/l	0.005		1	01/31/22 10:50	02/01/22 09:37	121,4500CN-CE	CS
Chlorine, Total Residual	ND		mg/l	0.02		1	-	01/27/22 22:22	121,4500CL-D	AS
pH (H)	6.8		SU	-	NA	1	-	01/27/22 23:03	121,4500H+-B	AS
Nitrogen, Ammonia	ND		mg/l	0.750		10	01/28/22 02:22	01/28/22 18:02	121,4500NH3-BH	H AT
TPH, SGT-HEM	ND		mg/l	4.00		1	02/01/22 22:00	02/01/22 22:15	140,1664B	TL
Phenolics, Total	ND		mg/l	0.030		1	02/04/22 06:47	02/04/22 12:14	4,420.1	KP
Chromium, Hexavalent	ND		mg/l	0.010		1	01/28/22 07:15	01/28/22 07:42	1,7196A	KP
Anions by Ion Chromatog	graphy - Wes	tborough	Lab							
Chloride	328.		mg/l	12.5		25	-	02/01/22 22:07	44,300.0	SH

Project Name: 103 4TH AVENUE Lab Number: L2204656

Project Number: 4954.00 **Report Date:** 02/11/22

SAMPLE RESULTS

Lab ID: L2204656-02 Date Collected: 01/27/22 11:39

Client ID: SH-106 Date Received: 01/27/22 Sample Location: WALTHAM, MA Field Prep: Not Specified

Sample Depth:

Matrix: Water

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	Date Prepared	Date Analyzed	Analytical Method	Analyst
General Chemistry - We	stborough Lal	b								
Solids, Total Suspended	14.		mg/l	5.0	NA	1	-	02/02/22 19:00	121,2540D	MD
Cyanide, Total	0.005		mg/l	0.005		1	01/31/22 10:50	02/01/22 09:39	121,4500CN-CE	CS
Chlorine, Total Residual	ND		mg/l	0.02		1	-	01/27/22 22:22	121,4500CL-D	AS
pH (H)	6.3		SU	-	NA	1	-	01/27/22 23:03	121,4500H+-B	AS
Nitrogen, Ammonia	0.082		mg/l	0.075		1	01/28/22 02:22	01/28/22 18:03	121,4500NH3-BH	l AT
TPH, SGT-HEM	ND		mg/l	4.00		1	02/01/22 22:00	02/01/22 22:15	140,1664B	TL
Phenolics, Total	ND		mg/l	0.030		1	02/04/22 06:47	02/04/22 11:53	4,420.1	KP
Chromium, Hexavalent	ND		mg/l	0.010		1	01/28/22 07:15	01/28/22 07:43	1,7196A	KP
Anions by Ion Chromato	graphy - Wes	tborough	Lab							
Chloride	841.		mg/l	25.0		50	-	02/01/22 22:18	44,300.0	SH

Project Name: 103 4TH AVENUE Lab Number: L2204656

Project Number: 4954.00 Report Date: 02/11/22

SAMPLE RESULTS

 Lab ID:
 L2204656-03
 Date Collected:
 01/27/22 15:30

 Client ID:
 SURFACE
 Date Received:
 01/27/22

Sample Location: WALTHAM, MA Field Prep: Not Specified

Sample Depth:

Matrix: Water

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	Date Prepared	Date Analyzed	Analytical Method	Analyst
General Chemistry - V	Vestborough Lat)								
pH (H)	7.2		SU	-	NA	1	-	01/27/22 23:03	121,4500H+-B	AS
Nitrogen, Ammonia	1.10		mg/l	0.375		5	01/28/22 02:22	01/28/22 18:04	121,4500NH3-BH	I AT

L2204656

Lab Number:

Project Name: 103 4TH AVENUE

Project Number: 4954.00 **Report Date:** 02/11/22

Method Blank Analysis Batch Quality Control

Parameter	Result Qu	ualifier	Units	RL	- M	IDL	Dilution Factor	Date Prepared	Date Analyzed	Analytical Method	Analyst
General Chemistry -	Westborough Lab	for sam	ple(s): (01-02	Batch	: W	G1598987-1				
Chlorine, Total Residual	ND		mg/l	0.0	02		1	-	01/27/22 22:22	121,4500CL-D	AS
General Chemistry -	Westborough Lab	for sam	ple(s): (01-03	Batch	: W	G1599054-1				
Nitrogen, Ammonia	ND		mg/l	0.0	75		1	01/28/22 02:22	01/28/22 17:43	121,4500NH3-BH	H AT
General Chemistry -	Westborough Lab	for sam	ple(s): (01-02	Batch	: W	G1599154-1				
Chromium, Hexavalent	ND		mg/l	0.0	10		1	01/28/22 07:15	01/28/22 07:39	1,7196A	KP
General Chemistry -	Westborough Lab	for sam	ple(s): (01-02	Batch	: W	G1599586-1				
Cyanide, Total	ND		mg/l	0.0	05		1	01/31/22 10:50	02/01/22 09:32	121,4500CN-CE	CS CS
General Chemistry -	Westborough Lab	for sam	ple(s): (01-02	Batch	: W	G1600284-1				
TPH, SGT-HEM	ND		mg/l	4.0	00		1	02/01/22 22:00	02/01/22 22:15	140,1664B	TL
Anions by Ion Chron	natography - Westb	orough	Lab for	sample	e(s): 0	1-02	Batch: W	G1600428-1			
Chloride	ND		mg/l	0.5	00		1	-	02/01/22 17:01	44,300.0	SH
General Chemistry -	Westborough Lab	for sam	ple(s): (01-02	Batch	: W	G1600758-1				
Solids, Total Suspended	ND		mg/l	5.	0	NA	1	-	02/02/22 19:00	121,2540D	MD
General Chemistry -	Westborough Lab	for sam	ple(s): (01-02	Batch	: W	G1601417-1				
Phenolics, Total	ND		mg/l	0.0	30		1	02/04/22 06:47	02/04/22 11:51	4,420.1	KP

Lab Control Sample Analysis Batch Quality Control

Project Name: 103 4TH AVENUE

Project Number: 4954.00

Lab Number:

L2204656

Report Date:

Parameter	LCS %Recovery C	Qual	LCSD %Recovery	Qual	%Recovery Limits	RPD	Qual	RPD Limits
General Chemistry - Westborough Lab	Associated sample(s): 0)1-02	Batch: WG15989	987-2				
Chlorine, Total Residual	92		-		90-110	-		
General Chemistry - Westborough Lab	Associated sample(s): 0	01-03	Batch: WG15990)48-1				
рН	100		-		99-101	-		5
General Chemistry - Westborough Lab	Associated sample(s): 0	01-03	Batch: WG15990)54-2				
Nitrogen, Ammonia	94		-		80-120	-		20
General Chemistry - Westborough Lab	Associated sample(s): 0)1-02	Batch: WG15991	154-2				
Chromium, Hexavalent	106		-		85-115	-		20
General Chemistry - Westborough Lab	Associated sample(s): 0	01-02	Batch: WG15995	586-2				
Cyanide, Total	108		-		90-110	-		
General Chemistry - Westborough Lab	Associated sample(s): 0)1-02	Batch: WG16002	284-2				
TPH	90		-		64-132	-		34
Anions by Ion Chromatography - Westb	orough Lab Associated	sampl	le(s): 01-02 Bato	h: WG160	00428-2			
Chloride	97		-		90-110	-		

Lab Control Sample Analysis Batch Quality Control

Project Name: 103 4TH AVENUE

Project Number: 4954.00

Lab Number: L2204656

Report Date: 02/11/22

Parameter	LCS %Recovery	LCSD %Recovery	%Recovery Limits	RPD	RPD Limits
General Chemistry - Westborough Lab	Associated sample(s): 01-02	Batch: WG1600758-2			
Solids, Total Suspended	97	-	80-120	-	
General Chemistry - Westborough Lab	Associated sample(s): 01-02	Batch: WG1601417-2			
Phenolics, Total	91	-	70-130	-	

Matrix Spike Analysis Batch Quality Control

Project Name: 103 4TH AVENUE

Project Number: 4954.00

Lab Number:

L2204656

Report Date: 02/11/22

Parameter	Native Sample	MS Added	MS Found	MS %Recovery	Qual	MSD Found	MSD %Recovery		covery imits RPD	Qual	RPD Limits
General Chemistry - Westbo	orough Lab Assoc	ciated samp	ole(s): 01-02	QC Batch II	D: WG15	598987-4	QC Sample:	L2204656-	02 Client ID	: SH-106	3
Chlorine, Total Residual	ND	0.25	0.24	96		-	-	8	0-120 -		20
General Chemistry - Westbo	orough Lab Asso	ciated samp	ole(s): 01-03	QC Batch II	D: WG15	599054-4	QC Sample:	L2204678-	03 Client ID	: MS Saı	mple
Nitrogen, Ammonia	1.19	4	5.21	100		-	-	8	0-120 -		20
General Chemistry - Westbo	orough Lab Asso	ciated samp	ole(s): 01-02	QC Batch II	D: WG15	599154-4	QC Sample:	L2204656-	02 Client ID	: SH-106	5
Chromium, Hexavalent	ND	0.1	0.102	102		-	-	8	5-115 -		20
General Chemistry - Westbo	orough Lab Asso	ciated samp	ole(s): 01-02	QC Batch II	D: WG15	599586-4	QC Sample:	L2204656-	02 Client ID	: SH-106	5
Cyanide, Total	0.005	0.2	0.136	65	Q	-	-	9	0-110 -		30
General Chemistry - Westbo	orough Lab Asso	ciated samp	ole(s): 01-02	QC Batch II	D: WG16	600284-4	QC Sample:	L2200025-	13 Client ID	: MS Saı	mple
TPH	ND	19.2	14.5	76		-	-	6	4-132 -		34
Anions by Ion Chromatogra Sample	phy - Westboroug	gh Lab Asso	ociated samp	ole(s): 01-02	QC Bat	ch ID: WG	1600428-3	QC Sample	: L2204976-0	2 Client	ID: MS
Chloride	ND	4	4.30	108		-	-	9	0-110 -		18
General Chemistry - Westbo	orough Lab Asso	ciated samp	ole(s): 01-02	QC Batch II	D: WG16	601417-4	QC Sample:	L2205323-	01 Client ID	: MS Saı	mple
Phenolics, Total	ND	0.4	0.37	92		-	-	7	0-130 -		20

Lab Duplicate Analysis Batch Quality Control

Project Name: 103 4TH AVENUE

Project Number: 4954.00

Lab Number:

L2204656

Report Date:

Parameter	Native Sample	Duplicate Sample	Units	RPD	Qual	RPD Limits
General Chemistry - Westborough Lab Associa	ated sample(s): 01-02 QC Batch IE	D: WG1598987-3	QC Sample:	L2204452-01	Client ID:	DUP Sample
Chlorine, Total Residual	1.2	1.2	mg/l	0		20
General Chemistry - Westborough Lab Associa	ated sample(s): 01-03 QC Batch IE	D: WG1599048-2	QC Sample:	L2204277-03	Client ID:	DUP Sample
рН	7.9	7.9	SU	0		5
General Chemistry - Westborough Lab Associa	ated sample(s): 01-03 QC Batch IE	D: WG1599054-3	QC Sample:	L2204678-03	Client ID:	DUP Sample
Nitrogen, Ammonia	1.19	1.37	mg/l	14		20
General Chemistry - Westborough Lab Associa	ated sample(s): 01-02 QC Batch IE	D: WG1599154-3	QC Sample:	L2204656-01	Client ID:	SH-105
Chromium, Hexavalent	ND	ND	mg/l	NC		20
General Chemistry - Westborough Lab Associa	ated sample(s): 01-02 QC Batch IE	D: WG1599586-3	QC Sample:	L2204656-01	Client ID:	SH-105
Cyanide, Total	ND	ND	mg/l	NC		30
General Chemistry - Westborough Lab Associa	ated sample(s): 01-02 QC Batch IE	D: WG1600284-3	QC Sample:	L2200025-12	Client ID:	DUP Sample
ТРН	ND	ND	mg/l	NC		34
Anions by Ion Chromatography - Westborough Sample	Lab Associated sample(s): 01-02	QC Batch ID: WG1	600428-4	QC Sample: L	2204976-0	2 Client ID: DUP
Chloride	ND	ND	mg/l	NC		18
General Chemistry - Westborough Lab Associa	ated sample(s): 01-02 QC Batch IE	D: WG1600758-3	QC Sample:	L2205006-04	Client ID:	DUP Sample
Solids, Total Suspended	360	360	mg/l	0		29
General Chemistry - Westborough Lab Associa	ated sample(s): 01-02 QC Batch IE	D: WG1601417-3	QC Sample:	L2205323-01	Client ID:	DUP Sample
Phenolics, Total	ND	ND		NC		20

Serial_No:02112213:21 *Lab Number:* L2204656

Project Name: 103 4TH AVENUE
Project Number: 4954.00

Report Date: 02/11/22

Sample Receipt and Container Information

Were project specific reporting limits specified?

YES

Cooler Information

Cooler Custody Seal

B Absent C Absent

Container Info	ormation		Initial	Final	Temp			Frozen	
Container ID	Container Type	Cooler	рН	pН	deg C	Pres	Seal	Date/Time	Analysis(*)
L2204656-01A	Vial Na2S2O3 preserved	В	NA		2.4	Υ	Absent		624.1-SIM-RGP(7),624.1-RGP(7)
L2204656-01A1	Vial Na2S2O3 preserved	В	NA		2.4	Υ	Absent		624.1-SIM-RGP(7),624.1-RGP(7)
L2204656-01B	Vial Na2S2O3 preserved	В	NA		2.4	Υ	Absent		624.1-SIM-RGP(7),624.1-RGP(7)
L2204656-01B1	Vial Na2S2O3 preserved	В	NA		2.4	Υ	Absent		624.1-SIM-RGP(7),624.1-RGP(7)
L2204656-01C	Vial Na2S2O3 preserved	В	NA		2.4	Υ	Absent		624.1-SIM-RGP(7),624.1-RGP(7)
L2204656-01C1	Vial Na2S2O3 preserved	В	NA		2.4	Υ	Absent		624.1-SIM-RGP(7),624.1-RGP(7)
L2204656-01D	Vial Na2S2O3 preserved	В	NA		2.4	Υ	Absent		504(14)
L2204656-01E	Vial Na2S2O3 preserved	В	NA		2.4	Υ	Absent		504(14)
L2204656-01F	Vial unpreserved	В	NA		2.4	Υ	Absent		SUB-ETHANOL(14)
L2204656-01G	Vial unpreserved	В	NA		2.4	Υ	Absent		SUB-ETHANOL(14)
L2204656-01H	Vial unpreserved	В	NA		2.4	Υ	Absent		SUB-ETHANOL(14)
L2204656-01I	Plastic 250ml NaOH preserved	В	>12	>12	2.4	Υ	Absent		TCN-4500(14)
L2204656-01J	Plastic 250ml HNO3 preserved	В	<2	<2	2.4	Υ	Absent		HOLD-METAL-DISSOLVED(180)
L2204656-01K	Plastic 250ml HNO3 preserved	В	<2	<2	2.4	Y	Absent		CD-2008T(180),NI-2008T(180),ZN- 2008T(180),CU-2008T(180),FE- UI(180),HARDU(180),HG-U(28),SE- 2008T(180),AG-2008T(180),AS- 2008T(180),CR-2008T(180),PB-2008T(180),SB- 2008T(180)
L2204656-01L	Plastic 500ml H2SO4 preserved	В	<2	<2	2.4	Υ	Absent		NH3-4500(28)
L2204656-01M	Plastic 950ml unpreserved	В	7	7	2.4	Υ	Absent		HEXCR-7196(1),CL-300(28),TRC-4500(1),PH-4500(.01)
L2204656-01N	Plastic 950ml unpreserved	В	7	7	2.4	Υ	Absent		TSS-2540(7)
L2204656-01O	Amber 950ml H2SO4 preserved	В	<2	<2	2.4	Υ	Absent		TPHENOL-420(28)
L2204656-01P	Amber 1000ml Na2S2O3	В	7	7	2.4	Υ	Absent		PCB-608.3(365)

Lab Number: L2204656

Report Date: 02/11/22

Project Name: 103 4TH AVENUE

Project Number: 4954.00

Container Info	ormation		Initial	Final	Temp			Frozen	
Container ID	Container Type	Cooler	рН	рН	deg C	Pres	Seal	Date/Time	Analysis(*)
L2204656-01Q	Amber 1000ml Na2S2O3	В	7	7	2.4	Υ	Absent		PCB-608.3(365)
L2204656-01R	Amber 1000ml Na2S2O3	В	7	7	2.4	Υ	Absent		625.1-RGP(7)
L2204656-01S	Amber 1000ml Na2S2O3	В	7	7	2.4	Υ	Absent		625.1-RGP(7)
L2204656-01T	Amber 1000ml Na2S2O3	В	7	7	2.4	Υ	Absent		625.1-SIM-RGP(7)
L2204656-01U	Amber 1000ml Na2S2O3	В	7	7	2.4	Υ	Absent		625.1-SIM-RGP(7)
L2204656-01V	Amber 1000ml HCl preserved	В	NA		2.4	Υ	Absent		TPH-1664(28)
L2204656-01W	Amber 1000ml HCl preserved	В	NA		2.4	Υ	Absent		TPH-1664(28)
L2204656-02A	Vial Na2S2O3 preserved	С	NA		3.6	Υ	Absent		624.1-RGP(7),624.1-SIM-RGP(7)
L2204656-02A1	Vial Na2S2O3 preserved	С	NA		3.6	Υ	Absent		624.1-RGP(7),624.1-SIM-RGP(7)
L2204656-02B	Vial Na2S2O3 preserved	С	NA		3.6	Υ	Absent		624.1-RGP(7),624.1-SIM-RGP(7)
L2204656-02B1	Vial Na2S2O3 preserved	С	NA		3.6	Υ	Absent		624.1-RGP(7),624.1-SIM-RGP(7)
L2204656-02C	Vial Na2S2O3 preserved	С	NA		3.6	Υ	Absent		624.1-RGP(7),624.1-SIM-RGP(7)
L2204656-02C1	Vial Na2S2O3 preserved	С	NA		3.6	Υ	Absent		624.1-RGP(7),624.1-SIM-RGP(7)
L2204656-02D	Vial Na2S2O3 preserved	С	NA		3.6	Υ	Absent		504(14)
L2204656-02E	Vial Na2S2O3 preserved	С	NA		3.6	Υ	Absent		504(14)
L2204656-02F	Vial unpreserved	С	NA		3.6	Υ	Absent		SUB-ETHANOL(14)
L2204656-02G	Vial unpreserved	С	NA		3.6	Υ	Absent		SUB-ETHANOL(14)
L2204656-02H	Vial unpreserved	С	NA		3.6	Υ	Absent		SUB-ETHANOL(14)
L2204656-02I	Plastic 250ml NaOH preserved	С	>12	>12	3.6	Υ	Absent		TCN-4500(14)
L2204656-02J	Plastic 250ml HNO3 preserved	С	<2	<2	3.6	Υ	Absent		HOLD-METAL-DISSOLVED(180)
L2204656-02K	Plastic 250ml HNO3 preserved	С	<2	<2	3.6	Y	Absent		CD-2008T(180),NI-2008T(180),ZN- 2008T(180),HARDU(180),CU-2008T(180),FE- UI(180),AG-2008T(180),HG-U(28),SE- 2008T(180),AS-2008T(180),PB-2008T(180),CR- 2008T(180),SB-2008T(180)
L2204656-02L	Plastic 500ml H2SO4 preserved	С	<2	<2	3.6	Υ	Absent		NH3-4500(28)
L2204656-02M	Plastic 950ml unpreserved	С	7	7	3.6	Υ	Absent		HEXCR-7196(1),CL-300(28),TRC-4500(1),PH-4500(.01)
L2204656-02N	Plastic 950ml unpreserved	С	7	7	3.6	Υ	Absent		TSS-2540(7)
L2204656-02O	Amber 950ml H2SO4 preserved	С	<2	<2	3.6	Υ	Absent		TPHENOL-420(28)
L2204656-02P	Amber 1000ml Na2S2O3	С	7	7	3.6	Υ	Absent		PCB-608.3(365)

Lab Number: L2204656

Report Date: 02/11/22

Project Name: 103 4TH AVENUE

Project Number: 4954.00

Container Info	ormation		Initial	Final	Temp			Frozen	
Container ID	Container Type	Cooler	рН	рH	deg C	Pres	Seal	Date/Time	Analysis(*)
L2204656-02Q	Amber 1000ml Na2S2O3	С	7	7	3.6	Υ	Absent		PCB-608.3(365)
L2204656-02R	Amber 1000ml Na2S2O3	С	7	7	3.6	Υ	Absent		625.1-RGP(7)
L2204656-02S	Amber 1000ml Na2S2O3	С	7	7	3.6	Υ	Absent		625.1-RGP(7)
L2204656-02T	Amber 1000ml Na2S2O3	С	7	7	3.6	Υ	Absent		625.1-SIM-RGP(7)
L2204656-02U	Amber 1000ml Na2S2O3	С	7	7	3.6	Υ	Absent		625.1-SIM-RGP(7)
L2204656-02V	Amber 1000ml HCl preserved	С	NA		3.6	Υ	Absent		TPH-1664(28)
L2204656-02W	Amber 1000ml HCl preserved	С	NA		3.6	Υ	Absent		TPH-1664(28)
L2204656-03A	Plastic 60ml unpreserved	С	7	7	3.6	Υ	Absent		PH-4500(.01)
L2204656-03B	Plastic 250ml HNO3 preserved	С	<2	<2	3.6	Y	Absent		CD-2008T(180),NI-2008T(180),ZN- 2008T(180),FE-UI(180),HARDU(180),CU- 2008T(180),SE-2008T(180),AS- 2008T(180),HG-U(28),AG-2008T(180),SB- 2008T(180),CR-2008T(180),PB-2008T(180)
L2204656-03C	Plastic 500ml H2SO4 preserved	С	<2	<2	3.6	Υ	Absent		NH3-4500(28)

Project Name: 103 4TH AVENUE Lab Number: L2204656

Project Number: 4954.00 Report Date: 02/11/22

GLOSSARY

Acronyms

EDL

LOQ

MS

DL - Detection Limit: This value represents the level to which target analyte concentrations are reported as estimated values, when those target analyte concentrations are quantified below the limit of quantitation (LOQ). The DL includes any adjustments from dilutions, concentrations or moisture content, where applicable. (DoD report formats only.)

 Estimated Detection Limit: This value represents the level to which target analyte concentrations are reported as estimated values, when those target analyte concentrations are quantified below the reporting limit (RL). The EDL includes any adjustments from dilutions, concentrations or moisture content, where applicable. The use of EDLs is specific to the analysis

of PAHs using Solid-Phase Microextraction (SPME).

EMPC - Estimated Maximum Possible Concentration: The concentration that results from the signal present at the retention time of an analyte when the ions meet all of the identification criteria except the ion abundance ratio criteria. An EMPC is a worst-case

estimate of the concentration.

EPA - Environmental Protection Agency.

LCS - Laboratory Control Sample: A sample matrix, free from the analytes of interest, spiked with verified known amounts of

analytes or a material containing known and verified amounts of analytes.

LCSD - Laboratory Control Sample Duplicate: Refer to LCS.

LFB - Laboratory Fortified Blank: A sample matrix, free from the analytes of interest, spiked with verified known amounts of

analytes or a material containing known and verified amounts of analytes.

LOD - Limit of Detection: This value represents the level to which a target analyte can reliably be detected for a specific analyte in a specific matrix by a specific method. The LOD includes any adjustments from dilutions, concentrations or moisture content, where applicable. (DoD report formats only.)

- Limit of Quantitation: The value at which an instrument can accurately measure an analyte at a specific concentration. The LOQ includes any adjustments from dilutions, concentrations or moisture content, where applicable. (DoD report formats

only.)

Limit of Quantitation: The value at which an instrument can accurately measure an analyte at a specific concentration. The LOQ includes any adjustments from dilutions, concentrations or moisture content, where applicable. (DoD report formats

MDL - Method Detection Limit: This value represents the level to which target analyte concentrations are reported as estimated values, when those target analyte concentrations are quantified below the reporting limit (RL). The MDL includes any

adjustments from dilutions, concentrations or moisture content, where applicable.

- Matrix Spike Sample: A sample prepared by adding a known mass of target analyte to a specified amount of matrix sample for

which an independent estimate of target analyte concentration is available. For Method 332.0, the spike recovery is calculated using the native concentration, including estimated values.

MSD - Matrix Spike Sample Duplicate: Refer to MS.

NA - Not Applicable.

NC - Not Calculated: Term is utilized when one or more of the results utilized in the calculation are non-detect at the parameter's

reporting unit.

NDPA/DPA - N-Nitrosodiphenylamine/Diphenylamine.

NI - Not Ignitable.

NP - Non-Plastic: Term is utilized for the analysis of Atterberg Limits in soil.

NR - No Results: Term is utilized when 'No Target Compounds Requested' is reported for the analysis of Volatile or Semivolatile

Organic TIC only requests.

RL - Reporting Limit: The value at which an instrument can accurately measure an analyte at a specific concentration. The RL

includes any adjustments from dilutions, concentrations or moisture content, where applicable.

RPD - Relative Percent Difference: The results from matrix and/or matrix spike duplicates are primarily designed to assess the precision of analytical results in a given matrix and are expressed as relative percent difference (RPD). Values which are less

than five times the reporting limit for any individual parameter are evaluated by utilizing the absolute difference between the values; although the RPD value will be provided in the report.

SRM - Standard Reference Material: A reference sample of a known or certified value that is of the same or similar matrix as the

associated field samples.

STLP - Semi-dynamic Tank Leaching Procedure per EPA Method 1315.

TEF - Toxic Equivalency Factors: The values assigned to each dioxin and furan to evaluate their toxicity relative to 2,3,7,8-TCDD.

TEQ - Toxic Equivalent: The measure of a sample's toxicity derived by multiplying each dioxin and furan by its corresponding TEF

and then summing the resulting values.

TIC - Tentatively Identified Compound: A compound that has been identified to be present and is not part of the target compound list (TCL) for the method and/or program. All TICs are qualitatively identified and reported as estimated concentrations.

Report Format: Data Usability Report

Project Name: 103 4TH AVENUE Lab Number: L2204656

Project Number: 4954.00 Report Date: 02/11/22

Footnotes

1 - The reference for this analyte should be considered modified since this analyte is absent from the target analyte list of the original method.

Terms

Analytical Method: Both the document from which the method originates and the analytical reference method. (Example: EPA 8260B is shown as 1,8260B.) The codes for the reference method documents are provided in the References section of the Addendum.

Difference: With respect to Total Oxidizable Precursor (TOP) Assay analysis, the difference is defined as the Post-Treatment value minus the Pre-Treatment value.

Final pH: As it pertains to Sample Receipt & Container Information section of the report, Final pH reflects pH of container determined after adjustment at the laboratory, if applicable. If no adjustment required, value reflects Initial pH.

Frozen Date/Time: With respect to Volatile Organics in soil, Frozen Date/Time reflects the date/time at which associated Reagent Water-preserved vials were initially frozen. Note: If frozen date/time is beyond 48 hours from sample collection, value will be reflected in 'bold'.

Initial pH: As it pertains to Sample Receipt & Container Information section of the report, Initial pH reflects pH of container determined upon receipt, if applicable.

PAH Total: With respect to Alkylated PAH analyses, the 'PAHs, Total' result is defined as the summation of results for all or a subset of the following compounds: Naphthalene, C1-C4 Naphthalenes, 2-Methylnaphthalene, 1-Methylnaphthalene, Biphenyl, Acenaphthylene, Acenaphthene, Fluorene, C1-C3 Fluorenes, Phenanthrene, C1-C4 Phenanthrenes/Anthracenes, Anthracene, Fluoranthene, Pyrene, C1-C4 Fluoranthenes/Pyrenes, Benza(a)anthracene, Chrysene, C1-C4 Chrysenes, Benzo(b)fluoranthene, Benzo(j)+(k)fluoranthene, Benzo(e)pyrene, Benzo(a)pyrene, Perylene, Indeno(1,2,3-cd)pyrene, Dibenz(ah)+(ac)anthracene, Benzo(g,h,i)perylene. If a 'Total' result is requested, the results of its individual components will also be reported.

PFAS Total: With respect to PFAS analyses, the 'PFAS, Total (5)' result is defined as the summation of results for: PFHpA, PFHxS, PFOA, PFNA and PFOS. In addition, the 'PFAS, Total (6)' result is defined as the summation of results for: PFHpA, PFHxS, PFOA, PFNA, PFDA and PFOS. For MassDEP DW compliance analysis only, the 'PFAS, Total (6)' result is defined as the summation of results at or above the RL. Note: If a 'Total' result is requested, the results of its individual components will also be reported.

The target compound Chlordane (CAS No. 57-74-9) is reported for GC ECD analyses. Per EPA, this compound "refers to a mixture of chlordane isomers, other chlorinated hydrocarbons and numerous other components." (Reference: USEPA Toxicological Review of Chlordane, In Support of Summary Information on the Integrated Risk Information System (IRIS), December 1997.)

Total: With respect to Organic analyses, a 'Total' result is defined as the summation of results for individual isomers or Aroclors. If a 'Total' result is requested, the results of its individual components will also be reported. This is applicable to 'Total' results for methods 8260, 8081 and 8082.

Data Qualifiers

- A Spectra identified as "Aldol Condensates" are byproducts of the extraction/concentration procedures when acetone is introduced in the process.
- The analyte was detected above the reporting limit in the associated method blank. Flag only applies to associated field samples that have detectable concentrations of the analyte at less than ten times (10x) the concentration found in the blank. For MCP-related projects, flag only applies to associated field samples that have detectable concentrations of the analyte at less than ten times (10x) the concentration found in the blank. For DOD-related projects, flag only applies to associated field samples that have detectable concentrations of the analyte at less than ten times (10x) the concentration found in the blank AND the analyte was detected above one-half the reporting limit (or above the reporting limit for common lab contaminants) in the associated method blank. For NJ-Air-related projects, flag only applies to associated field samples that have detectable concentrations of the analyte above the reporting limit. For NJ-related projects (excluding Air), flag only applies to associated field samples that have detectable concentrations of the analyte, which was detected above the reporting limit in the associated method blank or above five times the reporting limit for common lab contaminants (Phthalates, Acetone, Methylene Chloride, 2-Butanone).
- Co-elution: The target analyte co-elutes with a known lab standard (i.e. surrogate, internal standards, etc.) for co-extracted analyses.
- Concentration of analyte was quantified from diluted analysis. Flag only applies to field samples that have detectable concentrations of the analyte.
- E Concentration of analyte exceeds the range of the calibration curve and/or linear range of the instrument.
- F The ratio of quantifier ion response to qualifier ion response falls outside of the laboratory criteria. Results are considered to be an estimated maximum concentration.
- G The concentration may be biased high due to matrix interferences (i.e, co-elution) with non-target compound(s). The result should be considered estimated.
- H The analysis of pH was performed beyond the regulatory-required holding time of 15 minutes from the time of sample collection.
- I The lower value for the two columns has been reported due to obvious interference.
- J Estimated value. This represents an estimated concentration for Tentatively Identified Compounds (TICs).
- M Reporting Limit (RL) exceeds the MCP CAM Reporting Limit for this analyte.
- **ND** Not detected at the reporting limit (RL) for the sample.
- NJ Presumptive evidence of compound. This represents an estimated concentration for Tentatively Identified Compounds (TICs), where

Report Format: Data Usability Report

Project Name:103 4TH AVENUELab Number:L2204656Project Number:4954.00Report Date:02/11/22

Data Qualifiers

the identification is based on a mass spectral library search.

- P The RPD between the results for the two columns exceeds the method-specified criteria.
- Q The quality control sample exceeds the associated acceptance criteria. For DOD-related projects, LCS and/or Continuing Calibration Standard exceedences are also qualified on all associated sample results. Note: This flag is not applicable for matrix spike recoveries when the sample concentration is greater than 4x the spike added or for batch duplicate RPD when the sample concentrations are less than 5x the RL. (Metals only.)
- **R** Analytical results are from sample re-analysis.
- **RE** Analytical results are from sample re-extraction.
- S Analytical results are from modified screening analysis.
- The surrogate associated with this target analyte has a recovery outside the QC acceptance limits. (Applicable to MassDEP DW Compliance samples only.)
- Z The batch matrix spike and/or duplicate associated with this target analyte has a recovery/RPD outside the QC acceptance limits. (Applicable to MassDEP DW Compliance samples only.)

Report Format: Data Usability Report

Project Name: 103 4TH AVENUE Lab Number: L2204656

Project Number: 4954.00 Report Date: 02/11/22

REFERENCES

- Test Methods for Evaluating Solid Waste: Physical/Chemical Methods. EPA SW-846. Third Edition. Updates I VI, 2018.
- Methods for the Determination of Metals in Environmental Samples, Supplement I. EPA/600/R-94/111. May 1994.
- 4 Methods for Chemical Analysis of Water and Wastes. EPA 600/4-79-020. Revised March 1983.
- Methods for the Determination of Organic Compounds in Finished Drinking Water and Raw Source Water. EPA/600/4-88/039, Revised July 1991.
- 19 Inductively Coupled Plasma Atomic Emission Spectrometric Method for Trace Element Analysis of Water and Wastes. Appendix C, Part 136, 40 CFR (Code of Federal Regulations). July 1, 1999 edition.
- Methods for the Determination of Inorganic Substances in Environmental Samples, EPA/600/R-93/100, August 1993.
- 107 Alpha Analytical In-house calculation method.
- 121 Standard Methods for the Examination of Water and Wastewater. APHA-AWWA-WEF. Standard Methods Online.
- Method 608.3: Organochlorine Pesticides and PCBs by GC/HSD, EPA 821-R-16-009, December 2016.
- 128 Method 624.1: Purgeables by GC/MS, EPA 821-R-16-008, December 2016.
- Method 625.1: Base/Neutrals and Acids by GC/MS, EPA 821-R-16-007, December 2016.
- Method 1664,Revision B: N-Hexane Extractable Material (HEM; Oil & Grease) and Silica Gel Treated N-Hexane Extractable Material (SGT-HEM; Non-polar Material) by Extraction and Gravimetry, EPA-821-R-10-001, February 2010.

LIMITATION OF LIABILITIES

Alpha Analytical performs services with reasonable care and diligence normal to the analytical testing laboratory industry. In the event of an error, the sole and exclusive responsibility of Alpha Analytical shall be to re-perform the work at it's own expense. In no event shall Alpha Analytical be held liable for any incidental, consequential or special damages, including but not limited to, damages in any way connected with the use of, interpretation of, information or analysis provided by Alpha Analytical.

We strongly urge our clients to comply with EPA protocol regarding sample volume, preservation, cooling, containers, sampling procedures, holding time and splitting of samples in the field.

Alpha Analytical, Inc. Facility: Company-wide

Department: Quality Assurance

Title: Certificate/Approval Program Summary

ID No.:17873 Revision 19

Published Date: 4/2/2021 1:14:23 PM

Page 1 of 1

Certification Information

The following analytes are not included in our Primary NELAP Scope of Accreditation:

Westborough Facility

EPA 624/624.1: m/p-xylene, o-xylene, Naphthalene

EPA 625/625.1: alpha-Terpineol

EPA 8260C/8260D: NPW: 1,2,4,5-Tetramethylbenzene; 4-Ethyltoluene, Azobenzene; SCM: Iodomethane (methyl iodide), 1,2,4,5-Tetramethylbenzene;

EPA 8270D/8270E: NPW: Dimethylnaphthalene,1,4-Diphenylhydrazine, alpha-Terpineol; SCM: Dimethylnaphthalene,1,4-Diphenylhydrazine.

SM4500: NPW: Amenable Cyanide; SCM: Total Phosphorus, TKN, NO2, NO3.

Mansfield Facility

SM 2540D: TSS

EPA 8082A: NPW: PCB: 1, 5, 31, 87,101, 110, 141, 151, 153, 180, 183, 187.

EPA TO-15: Halothane, 2,4,4-Trimethyl-2-pentene, 2,4,4-Trimethyl-1-pentene, Thiophene, 2-Methylthiophene,

3-Methylthiophene, 2-Ethylthiophene, 1,2,3-Trimethylbenzene, Indan, Indene, 1,2,4,5-Tetramethylbenzene, Benzothiophene, 1-Methylnaphthalene.

Biological Tissue Matrix: EPA 3050B

The following analytes are included in our Massachusetts DEP Scope of Accreditation

Westborough Facility:

Drinking Water

EPA 300.0: Chloride, Nitrate-N, Fluoride, Sulfate; EPA 353.2: Nitrate-N, Nitrite-N; SM4500NO3-F: Nitrate-N, Nitrite-N; SM4500F-C, SM4500CN-CE,

EPA 180.1, SM2130B, SM4500CI-D, SM2320B, SM2540C, SM4500H-B, SM4500NO2-B

EPA 332: Perchlorate; EPA 524.2: THMs and VOCs; EPA 504.1: EDB, DBCP.

Microbiology: SM9215B; SM9223-P/A, SM9223B-Colilert-QT,SM9222D.

Non-Potable Water

SM4500H,B, EPA 120.1, SM2510B, SM2540C, SM2320B, SM4500CL-E, SM4500F-BC, SM4500NH3-BH: Ammonia-N and Kjeldahl-N, EPA 350.1: Ammonia-N, LACHAT 10-107-06-1-B: Ammonia-N, EPA 351.1, SM4500NO3-F, EPA 353.2: Nitrate-N, SM4500P-E, SM4500P-B, E, SM4500SO4-E, SM5220D, EPA 410.4, SM5210B, SM5310C, SM4500CL-D, EPA 1664, EPA 420.1, SM4500-CN-CE, SM2540D, EPA 300: Chloride, Sulfate, Nitrate. EPA 624.1: Volatile Halocarbons & Aromatics,

EPA 608.3: Chlordane, Toxaphene, Aldrin, alpha-BHC, beta-BHC, gamma-BHC, delta-BHC, Dieldrin, DDD, DDE, DDT, Endosulfan II, Endosulfan II, Endosulfan sulfate, Endrin, Endrin Aldehyde, Heptachlor, Heptachlor Epoxide, PCBs

EPA 625.1: SVOC (Acid/Base/Neutral Extractables), EPA 600/4-81-045: PCB-Oil.

Microbiology: SM9223B-Colilert-QT; Enterolert-QT, SM9221E, EPA 1600, EPA 1603, SM9222D.

Mansfield Facility:

Drinking Water

EPA 200.7: Al, Ba, Cd, Cr, Cu, Fe, Mn, Ni, Na, Ag, Ca, Zn. EPA 200.8: Al, Sb, As, Ba, Be, Cd, Cr, Cu, Pb, Mn, Ni, Se, Ag, TL, Zn. EPA 245.1 Hg. EPA 522, EPA 537.1.

Non-Potable Water

EPA 200.7: Al, Sb, As, Be, Cd, Ca, Cr, Co, Cu, Fe, Pb, Mg, Mn, Mo, Ni, K, Se, Ag, Na, Sr, TL, Ti, V, Zn.

EPA 200.8: Al, Sb, As, Be, Cd, Cr, Cu, Fe, Pb, Mn, Ni, K, Se, Ag, Na, TL, Zn.

EPA 245.1 Hg

SM2340B

For a complete listing of analytes and methods, please contact your Alpha Project Manager.

Pre-Qualtrax Document ID: 08-113 Document Type: Form

17																			
Дірна	CHAIN	OF CU	STO	DY P	AGE_	OF	Date F	Rec'd in L	ab: (127	7/22			AL	РНА	Job#	:L2	207656	
8 Walkup Drive	320 Forbes Blvd	Project	Informa	tion			Repo	rt Infor	nation	- Data	Delive	rable	s	Bil	ling	Inform	ation		
Westboro, MA Tel: 508-898-9	01581 Mansfield, MA 02048	Project N	Name: 103	3 4th A	venue) XDAD	Ex)kDE	MAIL			1	Ø's	ame a	as Client	t info	PO #:	
Client Informati		Project L	ocation: //	ha Home	n MA	L	Regu	latory F	equire	ments	. &	Proje	ct In	form	atio	n Requ	ıiremei	nts	
Client: Sanha	in Head Assauch	Project #		4.00				□ No Ma					DG2					Analytical Metho	ods
Address: /-tech	neagy face Dive	Project N	Manager: /	avrab	45100		☐ Yes	□ No G	N1 Star	dards	Info Re	quired	for Me	etals	& EP	H with 7	rargets)	illus)	
WEST OF	A, NA 01886	ALPHA	Quote #:		1			□ No No er State /							С	riteria			
Phone: 978-	496-2109	Turn-A	Around Ti	me	916	a jak		7		7	7.7	. /	7	7	7	11	1		
Email: LGarv	Project Information:	Date I		RUSH (coly	confirmed if pre-aj	oproved()	ANALYSIS	7524.2	DMCP 14 DRCP	SRAB DPP1	Ranges Only		9erprint	, al	//	GP.W.		SAMPLE INF	101
	Dissolved metals l the Capped desy fiel filtered + not three = HCI, Ity Soy, 1	ebel is su greation " freed file Just 203, Hi	n buttle FF" as ef. Nos, Na	e income and "NA	rectly, F" for		78260	METALS: D. D. PAH	METALS: URCRAS	VPH. C. PRanges & Targets C. DPP13	C PCB C PEST	No Douant Only Deir	Hart King Pace	"Hest		1	MES HULLES	Filtration Difield Lab to do Preservation Lab to do	AL # BOTT
ALPHA Lab ID (Lab Use Only)	Sample ID			ection Time	Sample Matrix		8	METALS	META	Has	O P	100	The state of	10	0	the same	5 s	ample Comment	E S
04656-01	SH-105	-	127/22	13:57	FW	972			T			X	X	X	H	X		= H	
	SH-106		The state of the s	11:39	A CONTRACTOR OF THE PARTY OF TH	PZ.						X	X	Z	H	X	Hol	&=H	\top
	Surface			15:30	100	PT							X	X		XX			ļ
																			+
																			+
Container Type	Preservative			Г	Contr	ainer Type			-			P/	0	0	C		-		+
P= Plastic A= Amber glass V= Vial	A= None B= HCI C= HNO ₃			- 1	Sec. 13	eservative		++	+		-	14/	A	A	C		-		+
G= Glass B= Bacteria cup C= Cube	D= H ₂ SO ₄ E= NaOH	Relingu	ished By:		1000	e/Time		Ro	ceived E	lu-		U	Date/		C				
O= other E= Encore D= BOD Bottle Page 65 of 77	F= MeOH G= NaHSO ₄ H = Na ₂ S ₂ O ₂ I= Ascorbic Acid J = NH ₄ Ci K= Zn Acetate O= Other	Home -	44	1/2-	1	15:50	1	HJ.	W	AA		12-	7/2	7)*	Alpha See re	ls Terms everse s	bmitted are subjected and Conditions. de.	ect to

ANALY.	AL VINE AND A COLOR OF THE ADDRESS O	Te 54 Cc	Subcontra ek Lab, Inc. 145 Horsehoe ollinsville, IL 62	Alpha Job Num L2204656						
C	lient Information	基份品别是	Project In	formation	Regulat	latory Requirements/Report Limits				
Client: Alpha A Address: Eight V Westbo	Analytical Labs Valkup Drive orough, MA 01581-1019	Project Locatio Project Manage Turnare		ht verables Informati	State/Federal F Regulatory Crit	1100-2001				
Phone: 508.43 Email: senrigh	9.5176 t@alphalab.com	Due Date Deliverables	:							
	建筑是建筑地域。	Project Specif	fic Requirem	ents and/or Repo	rt Requirements	ST SUE		TO ME		
	Reference following Alpha Job	Number on final repor	rt/deliverables	: L2204656	Report to include Me	thod Blank, LCS/LC	CSD:			
Additional Com	ments: Send all results/reports	to subreports@alphal	ab.com							
		Burger Break	THE STREET							
Lab ID	Client ID	Collection Date/Time	Sample Matrix		Analysis			Batch QC		
	SH-105 SH-106	01-27-22 13:59 01-27-22 11:39	WATER	Ethanol by EPA 1671 R	Revision A					
	Relinquish	ed By:		Date/Time:	Received By:		Date/Time:			

http://www.teklabinc.com/

Oklahoma

9978

February 08, 2022

Scott Enright

Alpha Analytical

Louisiana 05002

Louisiana 05003

Westborough, MA 01581

FAX:

RE: L2204656 **WorkOrder:** 22020024

Dear Scott Enright:

145 Flanders Road

TEL: (508) 439-5176

TEKLAB, INC received 2 samples on 2/1/2022 9:57:00 AM for the analysis presented in the following report.

Samples are analyzed on an as received basis unless otherwise requested and documented. The sample results contained in this report relate only to the requested analytes of interest as directed on the chain of custody. NELAP accredited fields of testing are indicated by the letters NELAP under the Certification column. Unless otherwise documented within this report, Teklab Inc. analyzes samples utilizing the most current methods in compliance with 40CFR. All tests are performed in the Collinsville, IL laboratory unless otherwise noted in the Case Narrative.

All quality control criteria applicable to the test methods employed for this project have been satisfactorily met and are in accordance with NELAP except where noted. The following report shall not be reproduced, except in full, without the written approval of Teklab, Inc.

If you have any questions regarding these tests results, please feel free to call.

Sincerely,

Marvin L. Darling Project Manager (618)344-1004 ex 41 mdarling@teklabinc.com

Report Contents

http://www.teklabinc.com/

Client: Alpha Analytical	Work Order: 22020024
Client Project: L2204656	Report Date: 08-Feb-22

This reporting package includes the following:

Cover Letter	1
Report Contents	2
Definitions	3
Case Narrative	5
Accreditations	6
Laboratory Results	7
Quality Control Results	9
Receiving Check List	10
Chain of Custody	Appended

Definitions

http://www.teklabinc.com/

Client: Alpha Analytical Work Order: 22020024

Client Project: L2204656 Report Date: 08-Feb-22

Abbr Definition

- * Analytes on report marked with an asterisk are not NELAP accredited
- CCV Continuing calibration verification is a check of a standard to determine the state of calibration of an instrument between recalibration.
- CRQL A Client Requested Quantitation Limit is a reporting limit that varies according to customer request. The CRQL may not be less than the MDL.
 - DF Dilution factor is the dilution performed during analysis only and does not take into account any dilutions made during sample preparation. The reported result is final and includes all dilution factors.
 - DNI Did not ignite
- DUP Laboratory duplicate is a replicate aliquot prepared under the same laboratory conditions and independently analyzed to obtain a measure of precision.
- ICV Initial calibration verification is a check of a standard to determine the state of calibration of an instrument before sample analysis is initiated.
- IDPH IL Dept. of Public Health
- LCS Laboratory control sample is a sample matrix, free from the analytes of interest, spiked with verified known amounts of analytes and analyzed exactly like a sample to establish intra-laboratory or analyst specific precision and bias or to assess the performance of all or a portion of the measurement system.
- LCSD Laboratory control sample duplicate is a replicate laboratory control sample that is prepared and analyzed in order to determine the precision of the approved test method. The acceptable recovery range is listed in the QC Package (provided upon request).
- MBLK Method blank is a sample of a matrix similar to the batch of associated sample (when available) that is free from the analytes of interest and is processed simultaneously with and under the same conditions as samples through all steps of the analytical procedures, and in which no target analytes or interferences should present at concentrations that impact the analytical results for sample analyses.
- MDL "The method detection limit is defined as the minimum measured concentration of a substance that can be reported with 99% confidence that the measured concentration is distinguishable from method blank results."
- MS Matrix spike is an aliquot of matrix fortified (spiked) with known quantities of specific analytes that is subjected to the entire analytical procedures in order to determine the effect of the matrix on an approved test method's recovery system. The acceptable recovery range is listed in the QC Package (provided upon request).
- MSD Matrix spike duplicate means a replicate matrix spike that is prepared and analyzed in order to determine the precision of the approved test method. The acceptable recovery range is listed in the QC Package (provided upon request).
- MW Molecular weight
- NC Data is not acceptable for compliance purposes
- ND Not Detected at the Reporting Limit
- NELAP NELAP Accredited
 - PQL Practical quantitation limit means the lowest level that can be reliably achieved within specified limits of precision and accuracy during routine laboratory operation conditions.
 - RL The reporting limit the lowest level that the data is displayed in the final report. The reporting limit may vary according to customer request or sample dilution. The reporting limit may not be less than the MDL.
 - RPD Relative percent difference is a calculated difference between two recoveries (ie. MS/MSD). The acceptable recovery limit is listed in the QC Package (provided upon request).
 - SPK The spike is a known mass of target analyte added to a blank sample or sub-sample; used to determine recovery deficiency or for other quality control purposes.
 - Surr Surrogates are compounds which are similar to the analytes of interest in chemical composition and behavior in the analytical process, but which are not normally found in environmental samples.
 - TIC Tentatively identified compound: Analytes tentatively identified in the sample by using a library search. Only results not in the calibration standard will be reported as tentatively identified compounds. Results for tentatively identified compounds that are not present in the calibration standard, but are assigned a specific chemical name based upon the library search, are calculated using total peak areas from reconstructed ion chromatograms and a response factor of one. The nearest Internal Standard is used for the calculation. The results of any TICs must be considered estimated, and are flagged with a "T". If the estimated result is above the calibration range it is flagged "ET"
- TNTC Too numerous to count (> 200 CFU)

Definitions

http://www.teklabinc.com/

Client: Alpha Analytical Work Order: 22020024
Client Project: L2204656 Report Date: 08-Feb-22

Qualifiers

- # Unknown hydrocarbon
- C RL shown is a Client Requested Quantitation Limit
- H Holding times exceeded
- J Analyte detected below quantitation limits
- ND Not Detected at the Reporting Limit
 - S Spike Recovery outside recovery limits
 - X Value exceeds Maximum Contaminant Level

- B Analyte detected in associated Method Blank
- E Value above quantitation range
- I Associated internal standard was outside method criteria
- M Manual Integration used to determine area response
- R RPD outside accepted recovery limits
- T TIC(Tentatively identified compound)

Case Narrative

http://www.teklabinc.com/

Client: Alpha Analytical Work Order: 22020024
Client Project: L2204656 Report Date: 08-Feb-22

Cooler Receipt Temp: 4.6 °C

Locations

Collinsville			Springfield		Kansas City		
Address	5445 Horseshoe Lake Road	Address	3920 Pintail Dr	Address	8421 Nieman Road		
	Collinsville, IL 62234-7425		Springfield, IL 62711-9415		Lenexa, KS 66214		
Phone	(618) 344-1004	Phone	(217) 698-1004	Phone	(913) 541-1998		
Fax	(618) 344-1005	Fax	(217) 698-1005	Fax	(913) 541-1998		
Email	jhriley@teklabinc.com	Email	KKlostermann@teklabinc.com	Email	jhriley@teklabinc.com		
	Collinsville Air	_	Chicago				
Address	5445 Horseshoe Lake Road	Address	1319 Butterfield Rd.				
	Collinsville, IL 62234-7425		Downers Grove, IL 60515				
Phone	(618) 344-1004	Phone	(630) 324-6855				
Fax	(618) 344-1005	Fax					
Email	EHurley@teklabinc.com	Email	arenner@teklabinc.com				

Accreditations

http://www.teklabinc.com/

Client: Alpha Analytical Work Order: 22020024

Client Project: L2204656 Report Date: 08-Feb-22

State	Dept	Cert #	NELAP	Exp Date	Lab
Illinois	IEPA	100226	NELAP	1/31/2023	Collinsville
Kansas	KDHE	E-10374	NELAP	4/30/2022	Collinsville
Louisiana	LDEQ	05002	NELAP	6/30/2022	Collinsville
Louisiana	LDEQ	05003	NELAP	6/30/2022	Collinsville
Oklahoma	ODEQ	9978	NELAP	8/31/2022	Collinsville
Arkansas	ADEQ	88-0966		3/14/2022	Collinsville
Illinois	IDPH	17584		5/31/2023	Collinsville
Kentucky	UST	0073		1/31/2023	Collinsville
Missouri	MDNR	00930		5/31/2023	Collinsville
Missouri	MDNR	930		1/31/2025	Collinsville

Laboratory Results

http://www.teklabinc.com/

Client: Alpha Analytical Work Order: 22020024

Client Project: L2204656 Report Date: 08-Feb-22

Lab ID: 22020024-001 Client Sample ID: SH-105

Matrix: AQUEOUS Collection Date: 01/27/2022 13:59

	Analyses	Certification	RL Qual	Result	Units	DF	Date Analyzed Batch
EPA 600 1	1671A, PHARMAC	EUTICAL MANUFACTU	RING INDUSTRY NO	N-PURGEA	BLE VOLAT	ILE ORGA	NICS
Ethanol		*	20	ND	mg/L	1	02/04/2022 12:48 R306736

Laboratory Results

http://www.teklabinc.com/

Client: Alpha Analytical Work Order: 22020024

Client Project: L2204656 Report Date: 08-Feb-22

Lab ID: 22020024-002 Client Sample ID: SH-106

Matrix: AQUEOUS Collection Date: 01/27/2022 11:39

	Analyses	Certification	RL	Qual	Result	Units	DF	Date Analyzed Batch
EPA 600 16	EPA 600 1671A, PHARMACEUTICAL MANUFACTURING INDUSTRY NON-PURGEABLE VOLATILE ORGANICS							
Ethanol		*	20		ND	mg/L	1	02/04/2022 13:24 R306736

Quality Control Results

http://www.teklabinc.com/

Client: Alpha Analytical Work Order: 22020024

Client Project: L2204656 Report Date: 08-Feb-22

EPA 600 1671A, PHARMACE	ITICAL M	A NII IE	ACTUDING	INDUSTR	V NON-DUD	SEARLE VOI	ATII E	ΛP		
Batch R306736 SampType:		ANUI	Units mg/L	INDUSTR	I NON-FORC	SLABLE VOI	AIILL	<u>OK</u>		
SampID: MBLK-020422 Analyses	Cert	RL	Qual	Result	Spike	SPK Ref Val	%REC	Low Limit	High Limit	Date Analyzed
Ethanol	*	20	Quui	ND	Брис					02/04/2022
Batch R306736 SampType:	LCS		Units mg/L							
SampID: LCS-020422 Analyses	Cert	RL	Oual	Result	Spike	SPK Ref Val	%REC	Low Limit	High Limit	Date Analyzed
Ethanol	*	20	•	290	250.0	0	115.8	70	132	02/04/2022
Batch R306736 SampType: SampID: 22020024-002AMS	MS		Units mg/L							
Analyses	Cert	RL	Qual	Result	Spike	SPK Ref Val	%REC	Low Limit	High Limit	Date Analyzed
Ethanol	*	20		300	250.0	0	118.8	70	132	02/04/2022
Batch R306736 SampType:	MSD		Units mg/L					RPD Lir	nit: 30	
SampID: 22020024-002AMSD Analyses	Cert	RL	Qual	Result	Spike	SPK Ref Val	%REC	RPD Ref V	al %RPD	Date Analyzed
Ethanol	*	20	•	320	250.0	0	126.4	297.0	6.16	02/04/2022

Receiving Check List

http://www.teklabinc.com/

Client: Alpha Analytical Client Project: L2204656				der: 22020024 ate: 08-Feb-22
Carrier: UPS Completed by:	Revi	ved By: PWF	R	
On: 01-Feb-22 Mary E. Kemp	Ο 01-Fe	eb-22	Elizabeth A. Hurley	
Pages to follow: Chain of custody 1	Extra pages included	0		
Shipping container/cooler in good condition?	Yes 🗸	No 🗌	Not Present	Temp °C 4.6
Type of thermal preservation?	None	Ice 🗸	Blue Ice	Dry Ice
Chain of custody present?	Yes 🗸	No 🗌		•
Chain of custody signed when relinquished and received?	Yes 🗹	No 🗌		
Chain of custody agrees with sample labels?	Yes 🗹	No 🗌		
Samples in proper container/bottle?	Yes 🗸	No 🗌		
Sample containers intact?	Yes 🗸	No 🗌		
Sufficient sample volume for indicated test?	Yes 🗹	No 🗌		
All samples received within holding time?	Yes 🗸	No 🗌		
Reported field parameters measured:	Field	Lab \square	NA 🗹	
Container/Temp Blank temperature in compliance?	Yes 🗹	No 🗌		
When thermal preservation is required, samples are complian 0.1°C - 6.0°C, or when samples are received on ice the same		between		
Water – at least one vial per sample has zero headspace?	Yes 🗸	No	No VOA vials 🗌	
Water - TOX containers have zero headspace?	Yes	No 🗌	No TOX containers	
Water - pH acceptable upon receipt?	Yes 🗸	No 🗌	NA 🗆	
NPDES/CWA TCN interferences checked/treated in the field?	Yes	No 🗌	NA 🗹	
Any No responses n	nust be detailed belo	w or on the	coc.	

2112

APPENDIX E NOAA AND US FISHERY AND WILDLIFE SERVICES

United States Department of the Interior

FISH AND WILDLIFE SERVICE

New England Ecological Services Field Office 70 Commercial Street, Suite 300 Concord, NH 03301-5094 Phone: (603) 223-2541 Fax: (603) 223-0104

http://www.fws.gov/newengland

In Reply Refer To: February 22, 2022

Project Code: 2022-0011086 Project Name: 103 Fourth Avenue

Subject: List of threatened and endangered species that may occur in your proposed project

location or may be affected by your proposed project

To Whom It May Concern:

Please review this letter each time you request an Official Species List, we will continue to update it with additional information and links to websites may change.

About Official Species Lists

The purpose of the Act is to provide a means whereby threatened and endangered species and the ecosystems upon which they depend may be conserved. Federal and non-Federal project proponents have responsibilities under the Act to consider effects on listed species.

The enclosed species list identifies threatened, endangered, proposed, and candidate species, as well as proposed and final designated critical habitat, that may occur within the boundary of your proposed project and/or may be affected by your proposed project. The species list fulfills the requirements of the U.S. Fish and Wildlife Service (Service) under section 7(c) of the Endangered Species Act (Act) of 1973, as amended (16 U.S.C. 1531 et seq.).

New information based on updated surveys, changes in the abundance and distribution of species, changed habitat conditions, or other factors could change this list. Please note that under 50 CFR 402.12(e) of the regulations implementing section 7 of the Act, the accuracy of this species list should be verified after 90 days. The Service recommends that verification be completed by visiting the ECOS-IPaC website at regular intervals during project planning and implementation for updates to species lists and information. An updated list may be requested by returning to an existing project's page in IPaC.

Endangered Species Act Project Review

Please visit the "New England Field Office Endangered Species Project Review and Consultation" website for step-by-step instructions on how to consider effects on listed

species and prepare and submit a project review package if necessary:

https://www.fws.gov/newengland/endangeredspecies/project-review/index.html

NOTE Please <u>do not</u> use the **Consultation Package Builder** tool in IPaC except in specific situations following coordination with our office. Please follow the project review guidance on our website instead and reference your **Project Code** in all correspondence.

Additional Info About Section 7 of the Act

Under section 7(a)(2) of the Act and its implementing regulations (50 CFR 402 et seq.), Federal agencies are required to determine whether projects may affect threatened and endangered species and/or designated critical habitat. If a Federal agency, or its non-Federal representative, determines that listed species and/or designated critical habitat may be affected by the proposed project, the agency is required to consult with the Service pursuant to 50 CFR 402. In addition, the Federal agency also may need to consider proposed species and proposed critical habitat in the consultation. 50 CFR 402.14(c)(1) specifies the information required for consultation under the Act regardless of the format of the evaluation. More information on the regulations and procedures for section 7 consultation, including the role of permit or license applicants, can be found in the "Endangered Species Consultation Handbook" at:

http://www.fws.gov/endangered/esa-library/pdf/TOC-GLOS.PDF

In addition to consultation requirements under Section 7(a)(2) of the ESA, please note that under sections 7(a)(1) of the Act and its implementing regulations (50 CFR 402 et seq.), Federal agencies are required to utilize their authorities to carry out programs for the conservation of threatened and endangered species. Please contact NEFO if you would like more information.

Candidate species that appear on the enclosed species list have no current protections under the ESA. The species' occurrence on an official species list does not convey a requirement to consider impacts to this species as you would a proposed, threatened, or endangered species. The ESA does not provide for interagency consultations on candidate species under section 7, however, the Service recommends that all project proponents incorporate measures into projects to benefit candidate species and their habitats wherever possible.

Migratory Birds

In addition to responsibilities to protect threatened and endangered species under the Endangered Species Act (ESA), there are additional responsibilities under the Migratory Bird Treaty Act (MBTA) and the Bald and Golden Eagle Protection Act (BGEPA) to protect native birds from project-related impacts. Any activity, intentional or unintentional, resulting in take of migratory birds, including eagles, is prohibited unless otherwise permitted by the U.S. Fish and Wildlife Service (50 C.F.R. Sec. 10.12 and 16 U.S.C. Sec. 668(a)). For more information regarding these Acts see:

https://www.fws.gov/birds/policies-and-regulations.php

Please feel free to contact us at **newengland@fws.gov** with your **Project Code** in the subject line if you need more information or assistance regarding the potential impacts to federally proposed, listed, and candidate species and federally designated and proposed critical habitat.

Attachment(s): Official Species List

Attachment(s):

Official Species List

Official Species List

This list is provided pursuant to Section 7 of the Endangered Species Act, and fulfills the requirement for Federal agencies to "request of the Secretary of the Interior information whether any species which is listed or proposed to be listed may be present in the area of a proposed action".

This species list is provided by:

New England Ecological Services Field Office 70 Commercial Street, Suite 300 Concord, NH 03301-5094 (603) 223-2541

Project Summary

Project Code: 2022-0011086

Event Code: None

Project Name: 103 Fourth Avenue
Project Type: Mixed-Use Construction

Project Description: The location is 103 Fourth Avenue, Waltham, MA 02451. The property is

approximately 7 acres. Lat: 42.3905654, Long: -71.2593011. The

proposed construction is the development of a mixed-use manufacturing,

laboratory, and office building.

Project Location:

Counties: Middlesex County, Massachusetts

Endangered Species Act Species

There is a total of 2 threatened, endangered, or candidate species on this species list.

Species on this list should be considered in an effects analysis for your project and could include species that exist in another geographic area. For example, certain fish may appear on the species list because a project could affect downstream species.

IPaC does not display listed species or critical habitats under the sole jurisdiction of NOAA Fisheries¹, as USFWS does not have the authority to speak on behalf of NOAA and the Department of Commerce.

See the "Critical habitats" section below for those critical habitats that lie wholly or partially within your project area under this office's jurisdiction. Please contact the designated FWS office if you have questions.

1. <u>NOAA Fisheries</u>, also known as the National Marine Fisheries Service (NMFS), is an office of the National Oceanic and Atmospheric Administration within the Department of Commerce.

Mammals

NAME

Northern Long-eared Bat Myotis septentrionalis

Threatened

No critical habitat has been designated for this species. Species profile: https://ecos.fws.gov/ecp/species/9045

Insects

NAME STATUS

Monarch Butterfly *Danaus plexippus*

Candidate

No critical habitat has been designated for this species. Species profile: https://ecos.fws.gov/ecp/species/9743

Critical habitats

THERE ARE NO CRITICAL HABITATS WITHIN YOUR PROJECT AREA UNDER THIS OFFICE'S JURISDICTION.

IPaC User Contact Information

Name: Lindsey Aborn

Address: 98 North Washington Street

City: Boston State: MA Zip: 02114

Email laborn@sanbornhead.com

Phone: 7812485730

Drawn Action Area & Overlapping S7 Consultation Areas

Area of Interest (AOI) Information

Area: 2,317.18 acres

Feb 28 2022 19:16:12 Eastern Standard Time

Summary

Name	Count	Area(acres)	Length(mi)
Atlantic Sturgeon	0	0	N/A
Shortnose Sturgeon	0	0	N/A
Atlantic Salmon	0	0	N/A
Sea Turtles	0	0	N/A
Atlantic Large Whales	0	0	N/A
In or Near Critical Habitat	0	0	N/A

DISCLAIMER: Use of this App does NOT replace the Endangered Species Act (ESA) Section 7 consultation process; it is a first step in determining if a proposed Federal action overlaps with listed species or critical habitat presence. Because the data provided through this App are updated regularly, reporting results must include the date they were generated. The report outputs (map/tables) depend on the options picked by the user, including the shape and size of the action area drawn, the layers marked as visible or selectable, and the buffer distance specified when using the "Draw your Action Area" function. Area calculations represent the size of overlap between the user-drawn Area of Interest (with buffer) and the specified S7 Consultation Area. Summary table areas represent the sum of these overlapping areas for each species group.

APPENDIX F

NATIONAL REGISTER OF HISTORICAL PLACES, WALTHAM, MASSACHUSETTS

Waltham General Purpose February

Ref#	Property Name	State	County	City	Street & Number	Restricted Address	Listed Date
89001501	American Waltham Watch Company Historic Distr	ict MASSACHUSETTS	Middlesex	Waltham	185241 Crescent St.	FALSE	9/28/1989
89001574	American Watch Tool Company	MASSACHUSETTS	Middlesex	Waltham	169 Elm St.	FALSE	9/28/1989
89001554	Andrews, Joseph, House	MASSACHUSETTS	Middlesex	Waltham	258 Linden St.	FALSE	9/28/1989
89001484	Baker, Charles, House	MASSACHUSETTS	Middlesex	Waltham	107 Adams St.	FALSE	9/28/1989
89001485	Baker, Charles, Property	MASSACHUSETTS	Middlesex	Waltham	119121 Adams St.	FALSE	9/28/1989
89001488	Banks, E. Sybbill, House	MASSACHUSETTS	Middlesex	Waltham	27 Appleton St.	FALSE	9/28/1989
89001529	Beard, Josiah, House	MASSACHUSETTS	Middlesex	Waltham	70 School St.	FALSE	9/28/1989
89001544	Beth Eden Baptist Church	MASSACHUSETTS	Middlesex	Waltham	82 Maple St.	FALSE	9/28/1989
77001412	Boston Manufacturing Company	MASSACHUSETTS	Middlesex	Waltham	144 Moody St.	FALSE	12/22/1977
89001534	Boston Manufacturing Company Housing	MASSACHUSETTS	Middlesex	Waltham	380410 River St.	FALSE	9/28/1989
89001535	Boston Manufacturing Company Housing	MASSACHUSETTS	Middlesex	Waltham	153165 River St.	FALSE	9/28/1989
89001551	Brigham House	MASSACHUSETTS	Middlesex	Waltham	235 Main St.	FALSE	9/28/1989
89001493	Building at 202204 Charles Street	MASSACHUSETTS	Middlesex	Waltham	202204 Charles St.	FALSE	9/28/1989
89001566	Buttrick, Francis, House	MASSACHUSETTS	Middlesex	Waltham	44 Harvard St.	FALSE	9/28/1989
89001547	Buttrick, Francis, Library	MASSACHUSETTS	Middlesex	Waltham	741 Main St.	FALSE	9/28/1989
89001576	Byam, Charles, House	MASSACHUSETTS	Middlesex	Waltham	337 Crescent St.	FALSE	9/28/1989
79000359	Castle, The	MASSACHUSETTS	Middlesex	Waltham	415 South St.	FALSE	4/9/1979
89001526	Central Square Historic District	MASSACHUSETTS	Middlesex	Waltham	Roughly bounded by Church, Carter, Moody, N	I FALSE	9/28/1989
89001503	Charles Street Workers' Housing Historic District	MASSACHUSETTS	Middlesex	Waltham	128144 Charles St.	FALSE	9/28/1989
89001546	Christ Episcopal Church	MASSACHUSETTS	Middlesex	Waltham	750 Main St.	FALSE	9/28/1989
89001536	Clough, Benjamin F., House	MASSACHUSETTS	Middlesex	Waltham	42 Prospect St.	FALSE	9/28/1989
89001578	Colburn, Gilbert, House	MASSACHUSETTS	Middlesex	Waltham	110112 Crescent St.	FALSE	9/28/1989
89001571	Company F State Armory	MASSACHUSETTS	Middlesex	Waltham	Curtis and Sharon Sts.	FALSE	9/28/1989
89001487	Dow, Lenoir, House	MASSACHUSETTS	Middlesex	Waltham	215 Adams St.	FALSE	9/28/1989
89001517	DunbarStearns House	MASSACHUSETTS	Middlesex	Waltham	209 Linden St.	FALSE	3/9/1990
89001498	East Main Street Historic District	MASSACHUSETTS	Middlesex	Waltham	Roughly E. Main St. from Townsend St. to Char	r FALSE	9/28/1989
89001516	Eastern Middlesex County Second District Court	MASSACHUSETTS	Middlesex	Waltham	34 Linden St.	FALSE	9/28/1989
93001487	Fernald, Walter E., State School	MASSACHUSETTS	Middlesex	Waltham	200 Trapelo Rd.	FALSE	1/21/1994
89001548	First Congregational Church	MASSACHUSETTS	Middlesex	Waltham	730 Main St.	FALSE	9/28/1989
89001507	First Parish Church	MASSACHUSETTS	Middlesex	Waltham	87 School St.	FALSE	9/28/1989
89001577	Fisher, Henry N., House	MASSACHUSETTS	Middlesex	Waltham	120 Crescent St.	FALSE	9/28/1989
89001514	Fiske, Elijah, House	MASSACHUSETTS	Middlesex	Waltham	457 Lincoln St.	FALSE	9/28/1989
89001489	Fitch, Ezra, School	MASSACHUSETTS	Middlesex	Waltham	10 Ash St.	FALSE	9/28/1989
89001573	Flagg, Frederick, House	MASSACHUSETTS	Middlesex	Waltham	65 Fairmont Ave.	FALSE	9/28/1989
89001581	French, Daniel, School	MASSACHUSETTS	Middlesex	Waltham	3840 Common St.	FALSE	9/28/1989
89001495	FullerBemis House	MASSACHUSETTS	Middlesex	Waltham	119 Adams St.	FALSE	3/9/1990
89001545	GaleBanks House	MASSACHUSETTS	Middlesex	Waltham	935 Main St.	FALSE	3/9/1990
89001561	Gibbs, William, House	MASSACHUSETTS	Middlesex	Waltham	14 Liberty St.	FALSE	9/28/1989
89001550	Gilbrae Inn	MASSACHUSETTS	Middlesex	Waltham	403 River St.	FALSE	9/28/1989
70000542	Gore Place	MASSACHUSETTS	Middlesex	Waltham	52 Gore St.	FALSE	12/30/1970
89001549	Grove Hill Cemetery	MASSACHUSETTS	Middlesex	Waltham	290 Main St.	FALSE	9/28/1989
89001532	HagarSmithLivermoreSanderson House	MASSACHUSETTS	Middlesex	Waltham	51 Sanders Ln.	FALSE	9/28/1989
89001572	HagerMead House	MASSACHUSETTS	Middlesex	Waltham	411 Main St.	FALSE	9/28/1989
89001579	Hall, Henry C., House	MASSACHUSETTS	Middlesex	Waltham	107 Crescent St.	FALSE	9/28/1989

Ref#	Property Name	State	County	City	Street & Number	Restricted Address	Listed Date
89001490	Hammond, Ephraim, House	MASSACHUSETTS	Middlesex	Waltham	265 Beaver St.	FALSE	9/28/1989
89001491	Hammond, Jonathan, House	MASSACHUSETTS	Middlesex	Waltham	311 Beaver St.	FALSE	9/28/1989
9001562	Hardy, Nahum, House	MASSACHUSETTS	Middlesex	Waltham	724 Lexington St.	FALSE	9/28/1989
39001543	Harrington Block	MASSACHUSETTS	Middlesex	Waltham	376390 Moody St.	FALSE	9/28/1989
39001508	Harrington, Samuel, House	MASSACHUSETTS	Middlesex	Waltham	475 South St.	FALSE	9/28/1989
39001528	Hill, Rev. Thomas, House	MASSACHUSETTS	Middlesex	Waltham	132 Church St.	FALSE	9/28/1989
39001524	Hobbs Brook Basin Gate House	MASSACHUSETTS	Middlesex	Waltham	Off Winter St. at mouth of Hobbs Brook	FALSE	9/28/1989
39001565	Holbrook, Richard, Houses	MASSACHUSETTS	Middlesex	Waltham	27 Heard St.	FALSE	9/28/1989
39001522	Johnson, Edwin C., House	MASSACHUSETTS	Middlesex	Waltham	8 Caldwell Rd.	FALSE	9/28/1989
9001564	Johnson, Newell D., House	MASSACHUSETTS	Middlesex	Waltham	428 Lexington St.	FALSE	9/28/1989
7001397	Lawrence, Phineas, House	MASSACHUSETTS	Middlesex	Waltham	257 Trapelo Rd.	FALSE	8/20/1987
9001504	Lawton Place Historic District	MASSACHUSETTS	Middlesex	Waltham	Lawton Pl. between Amory Rd. and Jackson St.	FALSE	9/28/1989
9001521	Libby, Nelson F., House	MASSACHUSETTS	Middlesex	Waltham	147149 Weston St.	FALSE	9/28/1989
9001515	Linden Street Bridge	MASSACHUSETTS	Middlesex	Waltham	Boston & Maine Railroad over Linden St.	FALSE	9/28/1989
9001567	Lord's Castle	MASSACHUSETTS	Middlesex	Waltham	211 Hammond St.	FALSE	9/28/1989
9001505	Lyman Street Historic District	MASSACHUSETTS	Middlesex	Waltham	Roughly Lyman St. from Church to Main Sts.	FALSE	9/28/1989
9001540	Martin, Aaron, House	MASSACHUSETTS	Middlesex	Waltham	786 Moody St.	FALSE	9/28/1989
9001486	Martin, Aaron, Houses	MASSACHUSETTS	Middlesex	Waltham	188194 Adams St.	FALSE	9/28/1989
3001482	Metropolitan State Hospital	MASSACHUSETTS	Middlesex	Waltham	475 Trapelo Rd.	FALSE	1/21/1994
9001541	Moody Street Fire Station	MASSACHUSETTS	Middlesex	Waltham	533 Moody St.	FALSE	9/28/1989
9001502	Moody Street Historic District	MASSACHUSETTS	Middlesex	Waltham	Moody and Crescent Sts.	FALSE	3/9/1990
9001497	Mount Feake Cemetery	MASSACHUSETTS	Middlesex	Waltham	203 Prospect St.	FALSE	9/28/1989
9001525	Mt. Prospect School for Boys	MASSACHUSETTS	Middlesex	Waltham	90 Worcester Ln.	FALSE	3/9/1990
9001580	Murray, Robert, House	MASSACHUSETTS	Middlesex	Waltham	85 Crescent St.	FALSE	9/28/1989
9001539	Newton Street Bridge	MASSACHUSETTS	Middlesex	Waltham	Newton St. at River St. over the Charles River	FALSE	9/28/1989
9001500	North Lexington Street Historic District	MASSACHUSETTS	Middlesex	Waltham	508536 N. Lexington St.	FALSE	9/28/1989
9001533	O'Hara Waltham Dial Company	MASSACHUSETTS	Middlesex	Waltham	74 Rumford Ave.	FALSE	9/28/1989
9001492	Olcott, John E., House	MASSACHUSETTS	Middlesex	Waltham	3537 Central St.	FALSE	9/28/1989
9001483	Oxford, The	MASSACHUSETTS	Middlesex	Waltham	4 Adams St.	FALSE	9/28/1989
5000291	Paine, Robert Treat, Jr., House	MASSACHUSETTS	Middlesex	Waltham	577 Beaver St.	FALSE	10/7/1975
9001559	Peck, John M., House	MASSACHUSETTS	Middlesex	Waltham	27 Liberty St.	FALSE	9/28/1989
9001499	Piety Corner Historic District	MASSACHUSETTS	Middlesex	Waltham	Roughly Bacon and Lexington Sts.	FALSE	3/9/1990
9001538	PotterO'Brian House	MASSACHUSETTS	Middlesex	Waltham	206 Newton St.	FALSE	9/28/1989
9001568	Prospect House	MASSACHUSETTS	Middlesex	Waltham	11 Hammond St.	FALSE	9/28/1989
9001496	Robbins, Royal E., School	MASSACHUSETTS	Middlesex	Waltham	58 Chestnut St.	FALSE	9/28/1989
9001563	Sanderson, John, House	MASSACHUSETTS	Middlesex	Waltham	562 Lexington St.	FALSE	9/28/1989
9001556	Sanderson, Nathan, I, House	MASSACHUSETTS	Middlesex	Waltham	107 Lincoln St.	FALSE	9/28/1989
9001513	Sanderson, Nathan, II, House	MASSACHUSETTS	Middlesex	Waltham	111 Lincoln St.	FALSE	9/28/1989
9001557	SandersonClark Farmhouse	MASSACHUSETTS	Middlesex	Waltham	75 Lincoln/26 Lincoln Ter.	FALSE	9/28/1989
9001560	Smith, Marshall, House	MASSACHUSETTS	Middlesex	Waltham	26 Liberty St.	FALSE	9/28/1989
9001558	Smith, Perez, House	MASSACHUSETTS	Middlesex	Waltham	46 Lincoln St.	FALSE	9/28/1989
9001569	St. Charles Borromeo Church	MASSACHUSETTS	Middlesex	Waltham	Hall and Cushing Sts.	FALSE	9/28/1989
9001527	St. Mary's Roman Catholic Church Complex	MASSACHUSETTS	Middlesex	Waltham	133 School St.	FALSE	9/28/1989
9001509	Stanley, Leonard W., House	MASSACHUSETTS	Middlesex	Waltham	2325 Taylor St.	FALSE	9/28/1989

Ref#	Property Name	State	County	City	Street & Number	Restricted Address	Listed Date
39001542	Stark Building	MASSACHUSETTS	Middlesex	Waltham	414 Moody St.	FALSE	9/28/1989
39001552	Stark, Robert M., House	MASSACHUSETTS	Middlesex	Waltham	176 Main St.	FALSE	9/28/1989
39001518	Stearns, Amos, House	MASSACHUSETTS	Middlesex	Waltham	1079 Trapelo Rd.	FALSE	9/28/1989
39001553	Stewart, Henry, House	MASSACHUSETTS	Middlesex	Waltham	294 Linden St.	FALSE	9/28/1989
39001530	Swasey, James, House	MASSACHUSETTS	Middlesex	Waltham	30 Common St.	FALSE	9/28/1989
39001555	Tyler, Frank J., House	MASSACHUSETTS	Middlesex	Waltham	238 Linden St.	FALSE	9/28/1989
39001494	United States Watch Company	MASSACHUSETTS	Middlesex	Waltham	260 Charles St.	FALSE	9/28/1989
36001248	US Post OfficeWaltham Main	MASSACHUSETTS	Middlesex	Waltham	774 Main St.	FALSE	5/30/1986
70000737	Vale, The	MASSACHUSETTS	Middlesex	Waltham	Lyman and Beaver Sts.	FALSE	12/30/1970
39001537	Waltham Gas and Electric Company Generating Plan	[*] MASSACHUSETTS	Middlesex	Waltham	96 Pine St.	FALSE	9/28/1989
39001506	Waltham Gas Light Company	MASSACHUSETTS	Middlesex	Waltham	2 Cooper St.	FALSE	9/28/1989
39001531	Waltham High School	MASSACHUSETTS	Middlesex	Waltham	55 School St.	FALSE	9/28/1989
39001570	Waltham Water Works Shop	MASSACHUSETTS	Middlesex	Waltham	92 Felton St.	FALSE	9/28/1989
39001520	Warren, Nathan, House	MASSACHUSETTS	Middlesex	Waltham	50 Weston St.	FALSE	3/9/1990
39001523	Wellington, Benjamin, House	MASSACHUSETTS	Middlesex	Waltham	56 Whittier St.	FALSE	9/28/1989
39001512	Wellington, William, House	MASSACHUSETTS	Middlesex	Waltham	775 Trapelo Rd.	FALSE	9/28/1989
39001511	WellingtonCastner House	MASSACHUSETTS	Middlesex	Waltham	685 Trapelo Rd.	FALSE	9/28/1989
39001575	Wetherbee House	MASSACHUSETTS	Middlesex	Waltham	357 Crescent St.	FALSE	9/28/1989
39001519	White, Warren, House	MASSACHUSETTS	Middlesex	Waltham	192 Warren St.	FALSE	9/28/1989
39001510	WhitneyFarringtonCook House	MASSACHUSETTS	Middlesex	Waltham	385 Trapelo Rd.	FALSE	9/28/1989
9001126	Wilson's Diner	MASSACHUSETTS	Middlesex	Waltham	507 Main St.	FALSE	9/22/1999