

Known for excellence.
Built on trust.

GEOTECHNICAL

ENVIRONMENTAL

ECOLOGICAL

WATER

CONSTRUCTION MANAGEMENT

249 Vanderbilt Avenue Norwood, MA 02062 T: 781.278.3700 F: 781.278.5701 F: 781.278.5702 www.gza.com

March 4, 2022 File No. 01.0171094.32

United States Environmental Protection Agency – Region 1 1 Congress Street, Suite 1100 Boston, Massachusetts 02114-2023

Attention: Ms. Shauna Little

Re: Submittal of Notice of Intent (NOI) Remediation General Permit (RGP)

100 Commercial Street Malden, Massachusetts

RTN: 3-362

Dear Ms. Little:

GZA GeoEnvironmental, Inc. (GZA), on behalf of Boston Gas Company, is submitting the attached Notice of Intent (NOI; Appendix A) for a Remediation General Permit (RGP) for 100 Commercial Street (the Site) in Malden Massachusetts. The NOI and RGP are required for dewatering activities because the project site is a Massachusetts Contingency Plan (MCP; 310 CMR 40.0000) disposal site with documented impacts to groundwater.

BACKGROUND

The 7-acre Site is located at 100 Commercial Street in a commercial area of Malden, Massachusetts. Dewatering activities are being conducted as part of an MCP Release Abatement Measure (RAM). The objective of the RAM is to provide procedures for the management of soil and groundwater which will be disturbed during the renovation of the property. The renovation project will include remodeling of the existing main building and fleet garage, landscape and urban edge enhancements, utility and stormwater upgrades and parking lot reconstruction.

This Property is a portion of the former Malden manufactured gas plant (MGP) which includes several surrounding and nearby parcels and which is identified as Release Tracking Number (RTN) 3-362 by the Massachusetts Department of Environmental Protection (MassDEP). The 100 Commercial Street facility is currently used by National Grid for general gas service operations including a natural gas regulating station. A Locus Plan is included as Figure 1.

The former MGP facilities were operated by predecessors to National Grid from the late 1880s to the early 1970s. Assessment and remediation have been ongoing since 1988. A partial Class C Response Action Outcome (RAO – now known as a Temporary Solution) was submitted for the Site by Haley & Aldrich, Inc. (H&A) in February 2004. The Class C RAO was submitted for portions of the disposal Site which had not been previously closed with a Waiver Completion Statement or a Permanent Solution RAO, including the 100 Commercial Street Property. Work under the main Site RTN 3-362 continues as Post-Temporary Solution and RAM activities, with status reports submitted semi-annually. Phase IV remedial activities are also underway at the Property in accordance with a Phase IV Remedy Implementation Plan (RIP) submitted in July 2021.

NOTICE OF INTENT

GZA is submitting this NOI to request authorization for the discharge of treated water generated from dewatering and decontamination activities from the Site to the existing on-site stormwater drainage system. The treated groundwater will be discharged to a storm drain located on the property which discharges to the Malden River (MA71-05) via the West End Brook culvert.

A Best Management Practices Plan (BMPP) meeting the requirements of the RGP has been prepared and will be posted at the Site and implemented during the time-period that temporary dewatering is occurring at the Site.

This NOI application includes the following items:

- Laboratory analytical results of the influent source and receiving water are included as Appendix B;
- Calculation sheets for establishing effluent limitations and a dilution factor are included as Appendix C;
- A review of Areas of Critical Environmental Concern (ACEC) indicate that the proposed discharge does not go to an ACEC. A review of Federally Listed Endangered and Threatened Species in Massachusetts indicates that a Northern Long-eared Bat habitat is located state-wide but is not likely to be present at the Site. A review of the U.S. Fish and Wildlife's online Information for Planning and Consultation (IPaC) service indicates that federallylisted species were not likely to be present within the action area of site activities (see Appendix D);
- A review of the Massachusetts Geographic Information System (MassGIS) MassDEP Priority Resources Map of Malden shows that there are no ACECs and no habitats for Species of Special Concern or Threatened or Endangered Species within 500 feet of the subject site. Therefore, permit eligibility meets "Criterion A";
- A review of the electronic Massachusetts Cultural Resource Information System database, made available through
 the Massachusetts Historical Commission, indicates that the are no properties listed or eligible for listing on the
 National Registry of Historic Places under the National Historic Preservation Act. Therefore, there will be no
 impact to such properties associated with this discharge. The documentation of this review can be found in
 Appendix E.
- The Malden River (Segment MA71-05, Class B) which is classified as a Category 5 water subject to a Total Maximum Daily Load (TMDL) which is included in Appendix F.

Please do not hesitate to contact the undersigned at (781) 278-3700 if you have any questions or require further information.

Very truly yours, GZA GEOENVIRONMENTAL, INC.

William Davis
Project Manager

Geoffrey Schwartz, P.E. Consultant/Reviewer

Charles A. Lindberg, LSP

Charles A. Lindberg

Principal

Attachments Figure 1 - Site Locus Map

Figure 2 – Discharge Outfall Location/Site Plan

Figure 3 – Groundwater Treatment System Process Flow Diagram Figure 4 – Site Scoring Map Showing 500 Foot & ½ Mile Radii

Figure 5 – Map Indicating Portion of the Project Covered Under RGP

Appendix A - Notice of Intent Form

Appendix B – Influent and Receiving Water Laboratory Analytical Report Appendix C – Calculation Sheets for Effluent Limitations and Dilution Factor

Appendix D – ACEC and Federally Listed Endangered and Threatened Species in Massachusetts Evaluation

Appendix E – MACRIS Search Results

Appendix F – TMDL Information for the Malden River (MA71-05)

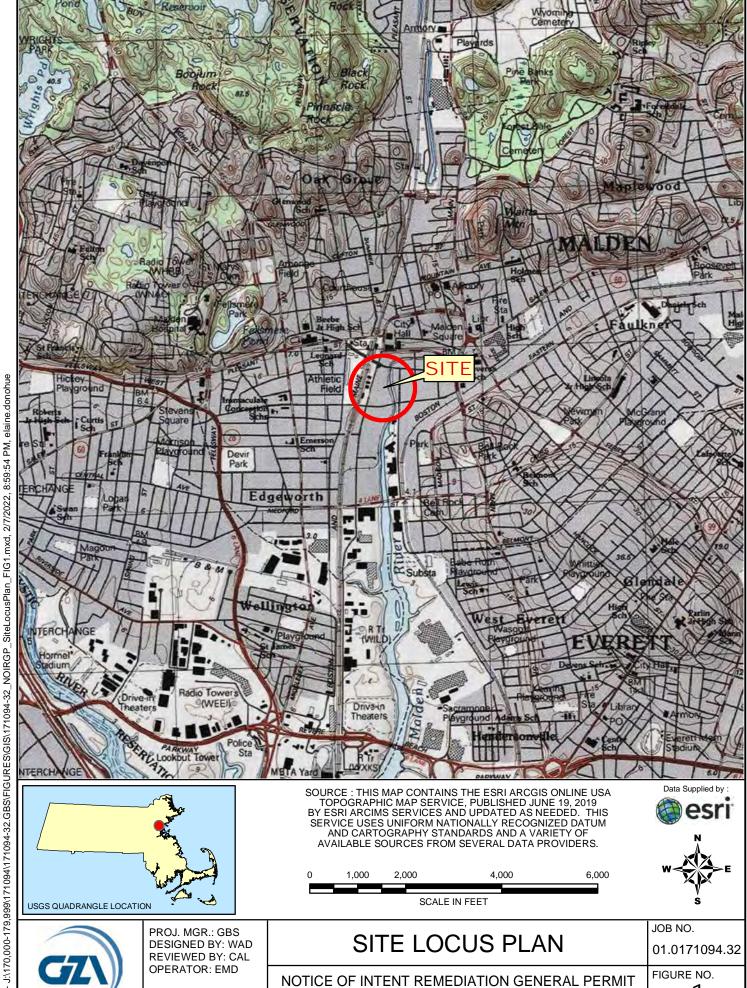
J:\170,000-179,999\171094\171094-32.GBS\RGP NOI\NOI Cover Letter FEB 2022 draft.docx

FIGURES

APPENDIX A - NOTICE OF INTENT FORM

APPENDIX	B – INFLUEN	T AND RECE	IVING WAT	ER LABORAT	ORY ANALYT	ICAL REPORT

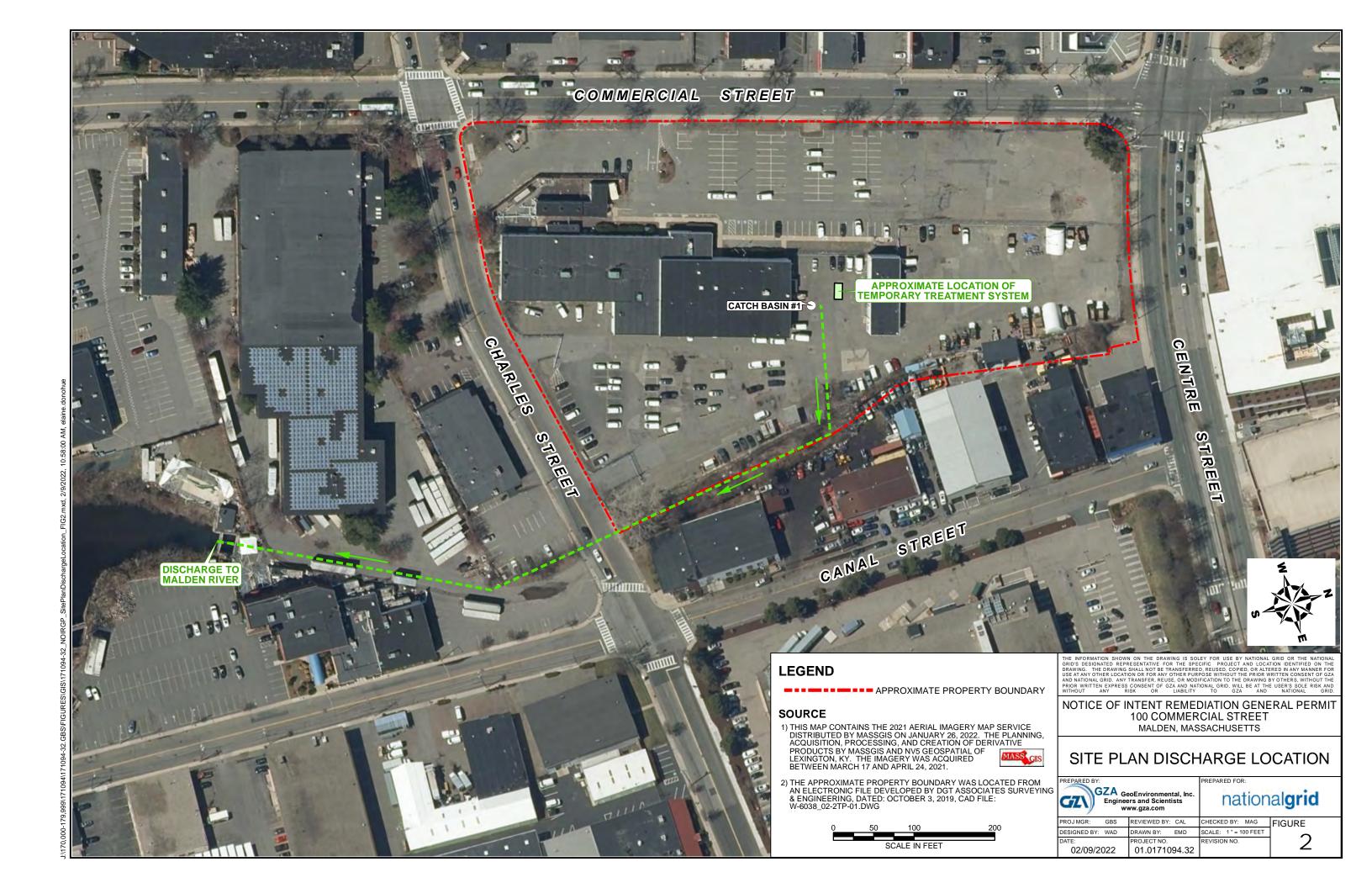
APPENDIX C – CALCULA	ATION SHEETS FOR E	FFLUENT LIMITAT	IONS AND DILUTI	ON FACTOR


APPENDIX D – ACEC AND FEDERALLY LISTED ENDANGERED AND THREATENED SPECIES IN MASSACHUSETTS EVALUATION

APPENDIX E – MACRIS SEARCH RESULTS

FIGURE 1Site Locus Map

100 COMMERCIAL STREET, MALDEN, MASSACHUSETTS


GZA - J:\170,000-179,999\171094\171094-32.GBS\FIGURES\GIS\171094-32. NOIRGP_SiteLocusPlan_FIG1.mxd, 2/7/2022,

DATE: 02-07-2022

FIGURE 2

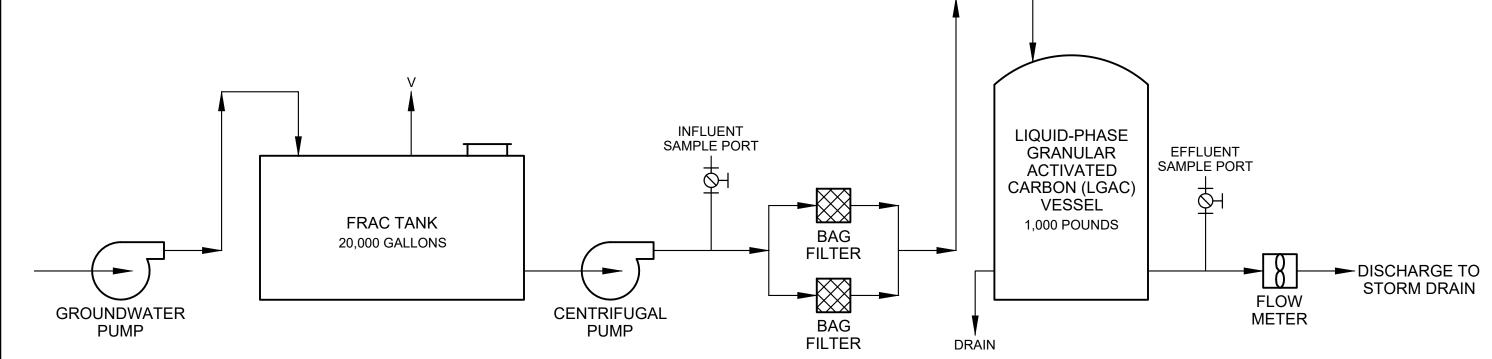
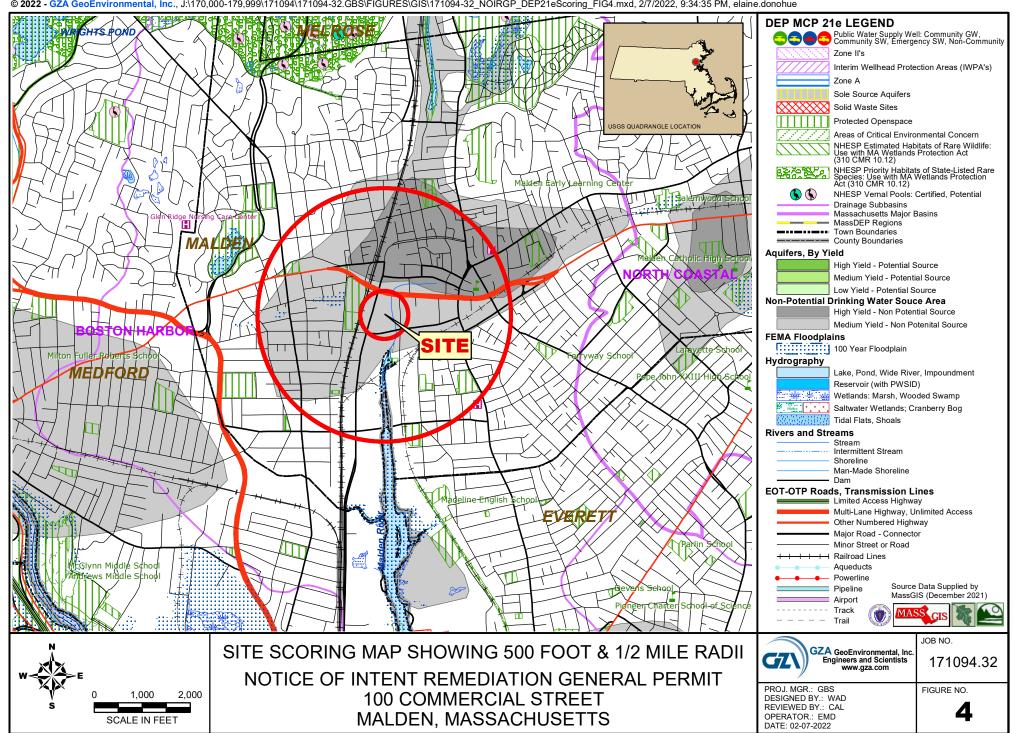

Site Discharge Location Plan

FIGURE 3

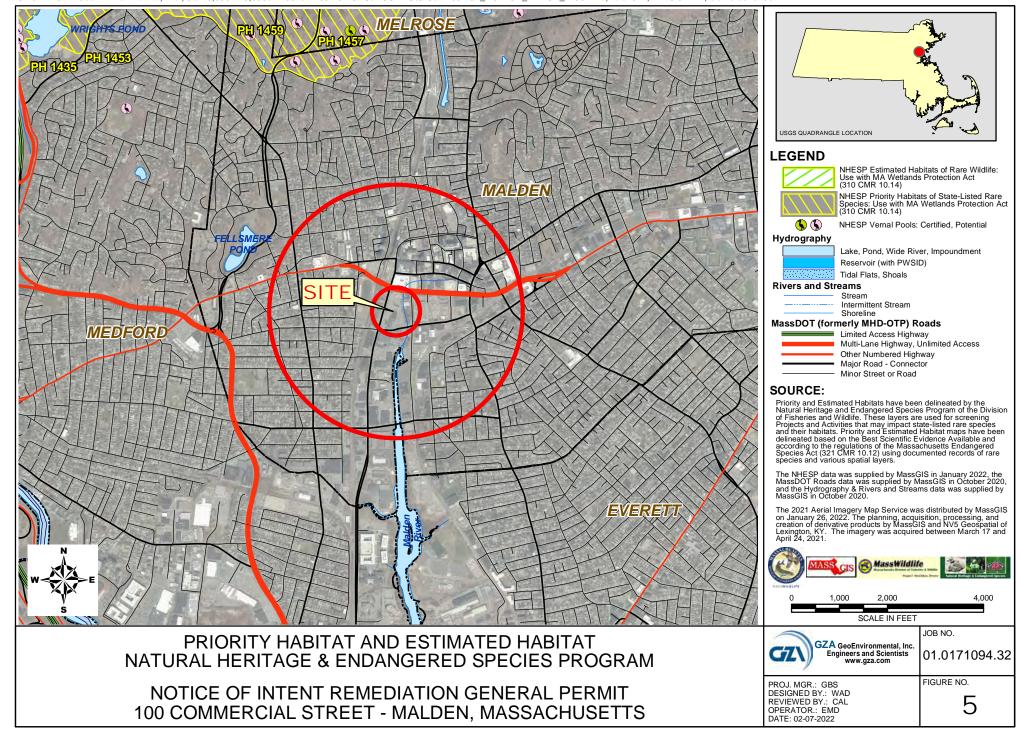
Groundwater Treatment System Process Flow Diagram

THE INFORMATION SHOWN ON THE DRAWING IS SOLELY FOR USE BY NATIONAL GRID OR THE NATIONAL GRID OR THE NATIONAL GRID OR THE NATIONAL GRID OR THE THE ORDER OF THE SPECIFIC PROJECT AND LOCATION IDENTIFIED ON THE DRAWING. THE DRAWING SHALL NOT BE TRANSFERRED, REUSED, COPIED, OR ALTERED IN ANY MANNER FOR USE AT ANY OTHER PLOSTION OR FOR ANY OTHER PURPOSE WITHOUT THE PRIOR WRITTEN CONSENT OF GZA AND NATIONAL GRID. ANY TRANSFER, REUSE, OR MODIFICATION TO THE DRAWING BY OTHERS, WITHOUT THE PRIOR WRITTEN EXPRESS, CONSENT OF GZA AND NATIONAL GRID. WILL BE AT THE USER'S SOLE RISK AND

NOTICE OF INTENT REMEDIATION GENERAL PERMIT 100 COMMERCIAL STREET MALDEN, MASSACHUSETTS


PROCESS FLOW DIAGRAM

PREPARED BY:		PREPARED FOR:		
Engine	DEnvironmental, Inc. ers and Scientists ww.gza.com	national grid		
PROJ MGR: GBS	REVIEWED BY: CAL	CHECKED BY: MAG	FIGURE	
DESIGNED BY: WAD	DRAWN BY: EMD	SCALE: N.T.S.	2	
DATE: 02-07-2022	PROJECT NO. 01.0171094.32	REVISION NO.	3	


FIGURE 4

Site Scoring Map 500 Foot and ½ Mile Radii

FIGURE 5NHESP Priority Map

APPENDIX A

NOTICE OF INTENT FORM

II. Suggested Format for the Remediation General Permit Notice of Intent (NOI)

A. General site information:

1. Name of site:	Site address:						
	Street:						
	City:		State:	Zip:			
2. Site owner	Contact Person:						
	Telephone:	Email:					
	Mailing address:						
	Street:						
Owner is (check one): ☐ Federal ☐ State/Tribal ☐ Private ☐ Other; if so, specify:	City:		State:	Zip:			
3. Site operator, if different than owner	Contact Person:						
	Telephone:	Email:					
	Mailing address:						
	Street:						
	City:		State:	Zip:			
4. NPDES permit number assigned by EPA:	5. Other regulatory program(s) that apply to the site (check all that apply):						
	☐ MA Chapter 21e; list RTN(s):	□ CERCL	.A				
NPDES permit is (check all that apply: \square RGP \square DGP \square CGP	☐ NH Groundwater Management Permit or	☐ UIC Program					
☐ MSGP ☐ Individual NPDES permit ☐ Other; if so, specify:	Groundwater Release Detection Permit:	☐ POTW Pretreatment					
· · · · · · · · · · · · · · · · · · ·		☐ CWA Section 404					

B	Receiving water information:
1	Name of receiving water(s).

1. Name of receiving water(s):	Waterbody identification of receiving water	(s): Classific	Classification of receiving water(s):						
Receiving water is (check any that apply): □ Outstar	nding Resource Water □ Ocean Sanctuary □ territo	rial sea □ Wild and Scenic Ri	ver						
2. Has the operator attached a location map in accordance with the instructions in B, above? (check one): ☐ Yes ☐ No									
Are sensitive receptors present near the site? (check of the sensitive receptors) that is the sensitive receptors present near the site?	one): □ Yes □ No								
3. Indicate if the receiving water(s) is listed in the Stapollutants indicated. Also, indicate if a final TMDL i 4.6 of the RGP.									
4. Indicate the seven day-ten-year low flow (7Q10) of the receiving water determined in accordance with the instructions in Appendix V for sites located in Massachusetts and Appendix VI for sites located in New Hampshire.									
5. Indicate the requested dilution factor for the calculaccordance with the instructions in Appendix V for s									
6. Has the operator received confirmation from the a If yes, indicate date confirmation received:7. Has the operator attached a summary of receiving	-								
(check one): ☐ Yes ☐ No									
C. Source water information:									
1. Source water(s) is (check any that apply):									
☐ Contaminated groundwater	☐ Contaminated surface water	☐ The receiving water	☐ Potable water; if so, indicate municipality or origin:						
Has the operator attached a summary of influent sampling results as required in Part 4.2 of the RGP	Has the operator attached a summary of influent sampling results as required in Part 4.2 of the	☐ A surface water other							
in accordance with the instruction in Appendix VIII? (check one):	RGP in accordance with the instruction in Appendix VIII? (check one):	than the receiving water; if so, indicate waterbody:	☐ Other; if so, specify:						
□ Yes □ No	□ Yes □ No								

2. Source water contaminants:							
a. For source waters that are contaminated groundwater or contaminated surface water, indicate are any contaminants present that are not included in	b. For a source water that is a surface water other than the receiving water, potable water or other, indicate any contaminants present at the maximum concentration in accordance						
the RGP? (check one): ☐ Yes ☐ No If yes, indicate the contaminant(s) and the maximum concentration present in accordance with the instructions in Appendix VIII.	with the instructions in Appendix VIII? (check one): □ Yes □ No						
3. Has the source water been previously chlorinated or otherwise contains resid	dual chlorine? (check one): □ Yes □ No						
D. Discharge information							
1.The discharge(s) is a(n) (check any that apply): \Box Existing discharge \Box New	w discharge □ New source						
Outfall(s):	Outfall location(s): (Latitude, Longitude)						
Discharges enter the receiving water(s) via (check any that apply): □ Direct di	scharge to the receiving water \Box Indirect discharge, if so, specify:						
☐ A private storm sewer system ☐ A municipal storm sewer system If the discharge enters the receiving water via a private or municipal storm sew	ver system:						
Has notification been provided to the owner of this system? (check one): □ You	•						
Has the operator has received permission from the owner to use such system for discharges? (check one): Yes No, if so, explain, with an estimated timeframe for obtaining permission:							
Has the operator attached a summary of any additional requirements the owner of this system has specified? (check one): Yes No							
Provide the expected start and end dates of discharge(s) (month/year):							
Indicate if the discharge is expected to occur over a duration of: □ less than 12 months □ 12 months or more □ is an emergency discharge							
Has the operator attached a site plan in accordance with the instructions in D, above? (check one): ☐ Yes ☐ No							

2. Activity Category: (check all that apply)	3. Contamination Type Category: (check all that apply)					
	a. If Activity Category I or II: (check all that apply)					
	 □ A. Inorganics □ B. Non-Halogenated Volatile Organic Compounds □ C. Halogenated Volatile Organic Compounds □ D. Non-Halogenated Semi-Volatile Organic Compounds □ E. Halogenated Semi-Volatile Organic Compounds □ F. Fuels Parameters 					
 □ I – Petroleum-Related Site Remediation □ II – Non-Petroleum-Related Site Remediation 	b. If Activity Category III, IV, V, VI, VII or VIII: (check either G or H)					
 □ III – Non-Petroleum-Related Site Remediation □ III – Contaminated Site Dewatering □ IV – Dewatering of Pipelines and Tanks □ V – Aquifer Pump Testing □ VI – Well Development/Rehabilitation □ VII – Collection Structure Dewatering/Remediation □ VIII – Dredge-Related Dewatering 	□ G. Sites with Known Contamination c. If Category III-G, IV-G, V-G, VI-G, VII-G or VIII-G: (check all that apply) □ A. Inorganics □ B. Non-Halogenated Volatile Organic Compounds □ C. Halogenated Volatile Organic Compounds □ D. Non-Halogenated Semi-Volatile Organic Compounds □ E. Halogenated Semi-Volatile Organic Compounds □ F. Fuels Parameters	□ H. Sites with Unknown Contamination d. If Category III-H, IV-H, V-H, VI-H, VII-H or VIII-H Contamination Type Categories A through F apply				

4. Influent and Effluent Characteristics

	Known	Known		_		Influent		Effluent Limitations	
Parameter	or believed absent	or believed present	# of samples	Test method (#)	Detection limit (µg/l)	Daily maximum (µg/l)	Daily average (µg/l)	TBEL	WQBEL
A. Inorganics									
Ammonia								Report mg/L	
Chloride								Report µg/l	
Total Residual Chlorine								0.2 mg/L	
Total Suspended Solids								30 mg/L	
Antimony								206 μg/L	
Arsenic								104 μg/L	
Cadmium								10.2 μg/L	
Chromium III								323 μg/L	
Chromium VI								323 μg/L	
Copper								242 μg/L	
Iron								5,000 μg/L	
Lead								160 μg/L	
Mercury								0.739 μg/L	
Nickel								1,450 μg/L	
Selenium								235.8 μg/L	
Silver								35.1 μg/L	
Zinc								420 μg/L	
Cyanide								178 mg/L	
B. Non-Halogenated VOCs	3								
Total BTEX								100 μg/L	
Benzene								5.0 μg/L	
1,4 Dioxane								200 μg/L	
Acetone								7.97 mg/L	
Phenol								1,080 µg/L	

	Known	Known	or # of eved samples	Test method (#)	Detection limit (µg/l)	Influent		Effluent Limitations	
Parameter	or believed absent	or believed present				Daily maximum (µg/l)	Daily average (µg/l)	TBEL	WQBEL
C. Halogenated VOCs									
Carbon Tetrachloride								4.4 μg/L	
1,2 Dichlorobenzene								600 μg/L	
1,3 Dichlorobenzene								320 μg/L	
1,4 Dichlorobenzene								5.0 μg/L	
Total dichlorobenzene								763 µg/L in NH	
1,1 Dichloroethane								70 μg/L	
1,2 Dichloroethane								5.0 μg/L	
1,1 Dichloroethylene								3.2 µg/L	
Ethylene Dibromide								0.05 μg/L	
Methylene Chloride								4.6 μg/L	
1,1,1 Trichloroethane								200 μg/L	
1,1,2 Trichloroethane								5.0 μg/L	
Trichloroethylene								5.0 μg/L	
Tetrachloroethylene								5.0 μg/L	
cis-1,2 Dichloroethylene								70 μg/L	
Vinyl Chloride								2.0 μg/L	
D. Non-Halogenated SVO	Cs								
Total Phthalates								190 μg/L	
Diethylhexyl phthalate								101 μg/L	
Total Group I PAHs								1.0 μg/L	
Benzo(a)anthracene								_	
Benzo(a)pyrene								_	
Benzo(b)fluoranthene								_	
Benzo(k)fluoranthene								As Total PAHs	
Chrysene								_	
Dibenzo(a,h)anthracene								_	
Indeno(1,2,3-cd)pyrene									

	Known	Known		Test method (#)	Detection limit (µg/l)	Influent		Effluent Limitations	
Parameter	or believed absent	or believed present	# of samples			Daily maximum (µg/l)	Daily average (µg/l)	TBEL	WQBEL
Total Group II PAHs								100 μg/L	
Naphthalene								20 μg/L	
E. Halogenated SVOCs									
Total PCBs								0.000064 µg/L	
Pentachlorophenol								1.0 μg/L	
	1			•					
F. Fuels Parameters Total Petroleum		1	1	1		1 1			
Hydrocarbons								5.0 mg/L	
Ethanol								Report mg/L	
Methyl-tert-Butyl Ether								70 μg/L	
tert-Butyl Alcohol								120 μg/L in MA 40 μg/L in NH	
tert-Amyl Methyl Ether								90 μg/L in MA 140 μg/L in NH	
Other (i.e., pH, temperatur	re, hardness,	salinity, LC	50, addition	al pollutar	ats present);	if so, specify:			

E. Treatment system information

1. Indicate the type(s) of treatment that will be applied to effluent prior to discharge: (check all that apply)					
☐ Adsorption/Absorption ☐ Advanced Oxidation Processes ☐ Air Stripping ☐ Granulated Activated Carbon ("GAC")/Liquid Phase Carbon Adsorption					
□ Ion Exchange □ Precipitation/Coagulation/Flocculation □ Separation/Filtration □ Other; if so, specify:					
2. Provide a written description of all treatment system(s) or processes that will be applied to the effluent prior to discharge.					
Identify each major treatment component (check any that apply):					
☐ Fractionation tanks☐ Equalization tank ☐ Oil/water separator ☐ Mechanical filter ☐ Media filter					
☐ Chemical feed tank ☐ Air stripping unit ☐ Bag filter ☐ Other; if so, specify:					
Indicate if either of the following will occur (check any that apply):					
□ Chlorination □ De-chlorination					
3. Provide the design flow capacity in gallons per minute (gpm) of the most limiting component.					
Indicate the most limiting component:					
Is use of a flow meter feasible? (check one): \square Yes \square No, if so, provide justification:					
Provide the proposed maximum effluent flow in gpm.					
Trovide the proposed maximum errident now in gpin.					
Provide the average effluent flow in gpm.					
If Activity Category IV applies, indicate the estimated total volume of water that will be discharged:					
4. Has the operator attached a schematic of flow in accordance with the instructions in E, above? (check one): ☐ Yes ☐ No					

F. Chemical and additive information

r. Chemical and additive information					
1. Indicate the type(s) of chemical or additive that will be applied to effluent prior to discharge or that may otherwise be present in the discharge(s): (check all that apply)					
□ Algaecides/biocides □ Antifoams □ Coagulants □ Corrosion/scale inhibitors □ Disinfectants □ Flocculants □ Neutralizing agents □ Oxidants □ Oxygen □					
scavengers □ pH conditioners □ Bioremedial agents, including microbes □ Chlorine or chemicals containing chlorine □ Other; if so, specify:					
2. Provide the following information for each chemical/additive, using attachments, if necessary:					
a. Product name, chemical formula, and manufacturer of the chemical/additive; b. Purpose or use of the chemical/additive or remedial agent; c. Material Safety Data Sheet (MSDS) and Chemical Abstracts Service (CAS) Registry number for each chemical/additive; d. The frequency (hourly, daily, etc.), duration (hours, days), quantity (maximum and average), and method of application for the chemical/additive; e. Any material compatibility risks for storage and/or use including the control measures used to minimize such risks; and f. If available, the vendor's reported aquatic toxicity (NOAEL and/or LC50 in percent for aquatic organism(s)).					
3. Has the operator attached an explanation which demonstrates that the addition of such chemicals/additives may be authorized under this general permit in accordance					
with the instructions in F, above? (check one): \square Yes \square No; if no, has the operator attached data that demonstrates each of the 126 priority pollutants in CWA Section 307(a) and 40 CFR Part 423.15(j)(1) are non-detect in discharges with the addition of the proposed chemical/additive?					
(check one): □ Yes □ No					
G. Endangered Species Act eligibility determination					
1. Indicate under which criterion the discharge(s) is eligible for coverage under this general permit:					
□ FWS Criterion A : No endangered or threatened species or critical habitat are in proximity to the discharges or related activities or come in contact with the "action area".					
□ FWS Criterion B : Formal or informal consultation with the FWS under section 7 of the ESA resulted in either a no jeopardy opinion (formal consultation) or a written concurrence by FWS on a finding that the discharges and related activities are "not likely to adversely affect" listed species or critical habitat					
(informal consultation). Has the operator completed consultation with FWS? (check one): ☐ Yes ☐ No; if no, is consultation underway? (check one): ☐					
Yes □ No					
□ FWS Criterion C : Using the best scientific and commercial data available, the effect of the discharges and related activities on listed species and critical habitat have been evaluated. Based on those evaluations, a determination is made by EPA, or by the operator and affirmed by EPA, that the discharges and related activities will have "no effect" on any federally threatened or endangered listed species or designated critical habitat under the jurisdiction of the					
FWS. This determination was made by: (check one) \square the operator \square EPA \square Other; if so, specify:					

□ NMFS Criterion: A determination made by EPA is affirmed by the operator that the discharges and related activities will have "no effect" or are "not likely to adversely affect" any federally threatened or endangered listed species or critical habitat under the jurisdiction of NMFS and will not result in any take of						
listed species. Has the operator previously completed consultation with NMFS? (check one): ☐ Yes ☐ No						
2. Has the operator attached supporting documentation of ESA eligibility in accordance with the instructions in Appendix I, and G, above? (check one): □ Yes □ No						
Does the supporting documentation include any written concurrence or finding provided by the Services? (check one): Yes No; if yes, attach.						
H. National Historic Preservation Act eligibility determination						
1. Indicate under which criterion the discharge(s) is eligible for coverage under this general permit:						
□ Criterion A : No historic properties are present. The discharges and discharge-related activities (e.g., BMPs) do not have the potential to cause effects on historic properties.						
☐ Criterion B: Historic properties are present. Discharges and discharge related activities do not have the potential to cause effects on historic properties.						
□ Criterion C : Historic properties are present. The discharges and discharge-related activities have the potential to have an effect or will have an adverse effect on historic properties.						
2. Has the operator attached supporting documentation of NHPA eligibility in accordance with the instructions in H, above? (check one): ☐ Yes ☐ No						
Does the supporting documentation include any written agreement with the State Historic Preservation Officer (SHPO), Tribal Historic Preservation Officer (TPHO), or						
other tribal representative that outlines measures the operator will carry out to mitigate or prevent any adverse effects on historic properties? (check one): Yes No						
I. Supplemental information						
Describe any supplemental information being provided with the NOI. Include attachments if required or otherwise necessary.						
Has the operator attached data, including any laboratory case narrative and chain of custody used to support the application? (check one): \square Yes \square No						
Has the operator attached the certification requirement for the Best Management Practices Plan (BMPP)? (check one): ☐ Yes ☐ No						

J. Certification requirement

I certify under penalty of law that this document and all attachments were prepared under my direction or supervision in accordance with a system designed to assure that qualified personnel properly gathered and evaluated the information submitted. Based on my inquiry of the person or persons who manage the system, or those persons directly responsible for gathering the information, the information submitted is, to the best of my knowledge and belief, true, accurate, and complete. I have no personal knowledge that the information submitted is other than true, accurate, and complete. I am aware that there are significant penalties for submitting false information, including the possibility of fine and imprisonment for knowing violations.					
BMPP certification statement:					
Notification provided to the appropriate State, including a copy of this NOI, if required.	Check one: Yes □ No □				
Notification provided to the municipality in which the discharge is located, including a copy of this NOI, if requested.	Check one: Yes □ No □				
Notification provided to the owner of a private or municipal storm sewer system, if such system is used for site discharges, including a copy of this NOI, if requested.	Check one: Yes □ No □ NA □				
Permission obtained from the owner of a private or municipal storm sewer system, if such system is used for site discharges. If yes, attach additional conditions. If no, attach explanation and timeframe for obtaining permission.	Check one: Yes □ No □ NA □				
Notification provided to the owner/operator of the area associated with activities covered by an additional discharge permit(s). Additional discharge permit is (check one): \square RGP \square DGP \square CGP \square MSGP \square Individual NPDES permit \square Other; if so, specify:	Check one: Yes □ No □ NA □				
Signature: Cuy L	re:				
Print Name and Title:					

APPENDIX BLABORATORY ANALYTICAL REPORT

ANALYTICAL REPORT

Lab Number: L2206591

Client: GZA GeoEnvironmental, Inc.

249 Vanderbilt Ave Norwood, MA 02062

ATTN: Bill Davis

Phone: (781) 278-5769
Project Name: MALDEN RGP
Project Number: 01.0171094.40

Report Date: 02/14/22

The original project report/data package is held by Alpha Analytical. This report/data package is paginated and should be reproduced only in its entirety. Alpha Analytical holds no responsibility for results and/or data that are not consistent with the original.

Certifications & Approvals: MA (M-MA086), NH NELAP (2064), CT (PH-0574), IL (200077), ME (MA00086), MD (348), NJ (MA935), NY (11148), NC (25700/666), PA (68-03671), RI (LAO00065), TX (T104704476), VT (VT-0935), VA (460195), USDA (Permit #P330-17-00196).

Eight Walkup Drive, Westborough, MA 01581-1019 508-898-9220 (Fax) 508-898-9193 800-624-9220 - www.alphalab.com

Project Name: MALDEN RGP **Project Number:** 01.0171094.40

Lab Number: L2206591 **Report Date:** 02/14/22

Alpha Sample ID	Client ID	Matrix	Sample Location	Collection Date/Time	Receive Date
L2206591-01	B1010	WATER	100 COMMERCIAL STREET MALDEN	02/08/22 12:15	02/08/22
L2206591-02	B16	WATER	100 COMMERCIAL STREET MALDEN	02/08/22 10:45	02/08/22
L2206591-03	SW-1	WATER	100 COMMERCIAL STREET MALDEN	02/08/22 09:45	02/08/22

Project Name:MALDEN RGPLab Number:L2206591Project Number:01.0171094.40Report Date:02/14/22

Case Narrative

The samples were received in accordance with the Chain of Custody and no significant deviations were encountered during the preparation or analysis unless otherwise noted. Sample Receipt, Container Information, and the Chain of Custody are located at the back of the report.

Results contained within this report relate only to the samples submitted under this Alpha Lab Number and meet NELAP requirements for all NELAP accredited parameters unless otherwise noted in the following narrative. The data presented in this report is organized by parameter (i.e. VOC, SVOC, etc.). Sample specific Quality Control data (i.e. Surrogate Spike Recovery) is reported at the end of the target analyte list for each individual sample, followed by the Laboratory Batch Quality Control at the end of each parameter. Tentatively Identified Compounds (TICs), if requested, are reported for compounds identified to be present and are not part of the method/program Target Compound List, even if only a subset of the TCL are being reported. If a sample was re-analyzed or re-extracted due to a required quality control corrective action and if both sets of data are reported, the Laboratory ID of the re-analysis or re-extraction is designated with an "R" or "RE", respectively.

When multiple Batch Quality Control elements are reported (e.g. more than one LCS), the associated samples for each element are noted in the grey shaded header line of each data table. Any Laboratory Batch, Sample Specific % recovery or RPD value that is outside the listed Acceptance Criteria is bolded in the report. In reference to questions H (CAM) or 4 (RCP) when "NO" is checked, the performance criteria for CAM and RCP methods allow for some quality control failures to occur and still be within method compliance. In these instances, the specific failure is not narrated but noted in the associated QC Outlier Summary Report, located directly after the Case Narrative. QC information is also incorporated in the Data Usability Assessment table (Format 11) of our Data Merger tool, where it can be reviewed in conjunction with the sample result, associated regulatory criteria and any associated data usability implications.

Soil/sediments, solids and tissues are reported on a dry weight basis unless otherwise noted. Definitions of all data qualifiers and acronyms used in this report are provided in the Glossary located at the back of the report.

HOLD POLICY - For samples submitted on hold, Alpha's policy is to hold samples (with the exception of Air canisters) free of charge for 21 calendar days from the date the project is completed. After 21 calendar days, we will dispose of all samples submitted including those put on hold unless you have contacted your Alpha Project Manager and made arrangements for Alpha to continue to hold the samples. Air canisters will be disposed after 3 business days from the date the project is completed.

Please contact Project Management at 800-624-9220 with any questions.	

Project Name:MALDEN RGPLab Number:L2206591Project Number:01.0171094.40Report Date:02/14/22

Case Narrative (continued)

Report Submission

The analysis of Ethanol was subcontracted. A copy of the laboratory report is included as an addendum.

Please note: This data is only available in PDF format and is not available on Data Merger.

Sample Receipt

The analyses performed were specified by the client.

Volatile Organics by Method 624

L2206591-01D: The sample has elevated detection limits due to the dilution required by the sample matrix.

Sample is cloudy, has particles and an odor.

L2206591-01D: Due to the matrix of the sample (foam generation during purging/analysis), the laboratory used Anti-Foam solution in the sample and associated QC.

Volatile Organics by SIM

L2206591-01D: The sample has elevated detection limits due to the dilution required by the sample matrix.

Sample is cloudy, has particles and an odor.

L2206591-01D: Due to the matrix of the sample (foam generation during purging/analysis), the laboratory used Anti-Foam solution in the sample and associated QC.

Total Metals

L2206591-01: The sample has elevated detection limits for all elements, with the exception of mercury and iron, due to the dilution required by matrix interferences encountered during analysis.

The WG1603027-3 MS recovery for iron (130%), performed on L2206591-01, does not apply because the sample concentration is greater than four times the spike amount added.

The WG1603028-5 MS recovery for selenium (53%), performed on L2206591-02, recovered outside the 70-130% acceptance criteria. The result for this analyte is considered suspect due to either the heterogeneous nature of the sample or matrix interference.

Project Name:MALDEN RGPLab Number:L2206591Project Number:01.0171094.40Report Date:02/14/22

Case Narrative (continued)

The WG1603028-6 Laboratory Duplicate RPDs for chromium (21%) and copper (69%), performed on L2206591-02, are outside the acceptance criteria. The elevated RPDs have been attributed to the non-homogeneous nature of the native sample.

Chlorine, Total Residual

The WG1602843-4 MS recovery, performed on L2206591-02, is outside the acceptance criteria for chlorine, total residual (0%); however, the associated LCS recovery is within criteria. No further action was taken.

I, the undersigned, attest under the pains and penalties of perjury that, to the best of my knowledge and belief and based upon my personal inquiry of those responsible for providing the information contained in this analytical report, such information is accurate and complete. This certificate of analysis is not complete unless this page accompanies any and all pages of this report.

(attlin Wallet Caitlin Walukevich

Authorized Signature:

Title: Technical Director/Representative

Date: 02/14/22

ORGANICS

VOLATILES

Project Name: Lab Number: MALDEN RGP L2206591

Project Number: Report Date: 01.0171094.40 02/14/22

SAMPLE RESULTS

Lab ID: Date Collected: 02/08/22 12:15 L2206591-01

Client ID: B1010 Date Received: 02/08/22 Sample Location: 100 COMMERCIAL STREET MALDEN Field Prep: Not Specified

Sample Depth:

Extraction Method: EPA 504.1 Matrix: Water **Extraction Date:** 02/10/22 10:01 Analytical Method: 14,504.1

Analytical Date: 02/10/22 12:58

Analyst: GT

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	Column
Microextractables by GC - Westborough Lab							
1,2-Dibromoethane	ND		ug/l	0.010		1	Α

Project Name: MALDEN RGP **Lab Number:** L2206591

Project Number: 01.0171094.40 **Report Date:** 02/14/22

SAMPLE RESULTS

Lab ID: L2206591-01 D Date Collected: 02/08/22 12:15

Client ID: B1010 Date Received: 02/08/22 Sample Location: 100 COMMERCIAL STREET MALDEN Field Prep: Not Specified

•

Sample Depth:

Matrix: Water
Analytical Method: 128,624.1
Analytical Date: 02/09/22 12:34

Analyst: GT

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
Volatile Organics by GC/MS - Westbo	rough Lab					
Methylene chloride	ND		ug/l	2.5		2.5
1,1-Dichloroethane	ND		ug/l	3.8		2.5
Carbon tetrachloride	ND		ug/l	2.5		2.5
1,1,2-Trichloroethane	ND		ug/l	3.8		2.5
Tetrachloroethene	ND		ug/l	2.5		2.5
1,2-Dichloroethane	ND		ug/l	3.8		2.5
1,1,1-Trichloroethane	ND		ug/l	5.0		2.5
Benzene	10		ug/l	2.5		2.5
Toluene	ND		ug/l	2.5		2.5
Ethylbenzene	2.8		ug/l	2.5		2.5
Vinyl chloride	ND		ug/l	2.5		2.5
1,1-Dichloroethene	ND		ug/l	2.5		2.5
cis-1,2-Dichloroethene	ND		ug/l	2.5		2.5
Trichloroethene	ND		ug/l	2.5		2.5
1,2-Dichlorobenzene	ND		ug/l	12		2.5
1,3-Dichlorobenzene	ND		ug/l	12		2.5
1,4-Dichlorobenzene	ND		ug/l	12		2.5
p/m-Xylene	ND		ug/l	5.0		2.5
o-xylene	ND		ug/l	2.5		2.5
Xylenes, Total	ND		ug/l	2.5		2.5
Acetone	ND		ug/l	25		2.5
Methyl tert butyl ether	ND		ug/l	25		2.5
Tert-Butyl Alcohol	ND		ug/l	250		2.5
Tertiary-Amyl Methyl Ether	ND		ug/l	50		2.5

Project Name: MALDEN RGP Lab Number: L2206591

Project Number: 01.0171094.40 **Report Date:** 02/14/22

SAMPLE RESULTS

Lab ID: L2206591-01 D Date Collected: 02/08/22 12:15

Client ID: B1010 Date Received: 02/08/22 Sample Location: 100 COMMERCIAL STREET MALDEN Field Prep: Not Specified

Sample Depth:

Parameter Result Qualifier Units RL MDL Dilution Factor

Volatile Organics by GC/MS - Westborough Lab

Surrogate	% Recovery	Qualifier	Acceptance Criteria	
Pentafluorobenzene	100		60-140	
Fluorobenzene	94		60-140	
4-Bromofluorobenzene	108		60-140	

Project Name: MALDEN RGP Lab Number: L2206591

Project Number: 01.0171094.40 **Report Date:** 02/14/22

SAMPLE RESULTS

Lab ID: L2206591-01 D Date Collected: 02/08/22 12:15

Client ID: B1010 Date Received: 02/08/22

Sample Location: 100 COMMERCIAL STREET MALDEN Field Prep: Not Specified

Sample Depth:

Matrix: Water

Analytical Method: 128,624.1-SIM Analytical Date: 02/09/22 12:34

Analyst: GT

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
Volatile Organics by GC/MS-S	IM - Westborough Lab					
1,4-Dioxane	ND		ug/l	12		2.5
Surrogato			0/ Deceyory	Qualifian	Accep	otance

Surrogate	% Recovery	Qualifier	Acceptance Criteria	
Fluorobenzene	98		60-140	
4-Bromofluorobenzene	111		60-140	

Project Name: MALDEN RGP Lab Number: L2206591

Project Number: 01.0171094.40 **Report Date:** 02/14/22

SAMPLE RESULTS

Lab ID: L2206591-02 Date Collected: 02/08/22 10:45

Client ID: B16 Date Received: 02/08/22

Sample Location: 100 COMMERCIAL STREET MALDEN Field Prep: Not Specified

Sample Depth:

Matrix: Water
Analytical Method: 128,624.1
Analytical Date: 02/09/22 13:08

Analyst: GT

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
Volatile Organics by GC/MS - Wes	stborough Lab					
Methylene chloride	ND		ug/l	1.0		1
1,1-Dichloroethane	ND		ug/l	1.5		1
Carbon tetrachloride	ND		ug/l	1.0		1
1,1,2-Trichloroethane	ND		ug/l	1.5		1
Tetrachloroethene	ND		ug/l	1.0		1
1,2-Dichloroethane	ND		ug/l	1.5		1
1,1,1-Trichloroethane	ND		ug/l	2.0		1
Benzene	48		ug/l	1.0		1
Toluene	1.1		ug/l	1.0		1
Ethylbenzene	6.4		ug/l	1.0		1
Vinyl chloride	ND		ug/l	1.0		1
1,1-Dichloroethene	ND		ug/l	1.0		1
cis-1,2-Dichloroethene	ND		ug/l	1.0		1
Trichloroethene	ND		ug/l	1.0		1
1,2-Dichlorobenzene	ND		ug/l	5.0		1
1,3-Dichlorobenzene	ND		ug/l	5.0		1
1,4-Dichlorobenzene	ND		ug/l	5.0		1
p/m-Xylene	6.7		ug/l	2.0		1
o-xylene	17		ug/l	1.0		1
Xylenes, Total	24		ug/l	1.0		1
Acetone	ND		ug/l	10		1
Methyl tert butyl ether	15		ug/l	10		1
Tert-Butyl Alcohol	ND		ug/l	100		1
Tertiary-Amyl Methyl Ether	ND		ug/l	20		1

Project Name: MALDEN RGP Lab Number: L2206591

Project Number: 01.0171094.40 **Report Date:** 02/14/22

SAMPLE RESULTS

Lab ID: L2206591-02 Date Collected: 02/08/22 10:45

Client ID: B16 Date Received: 02/08/22 Sample Location: 100 COMMERCIAL STREET MALDEN Field Prep: Not Specified

Sample Depth:

Parameter Result Qualifier Units RL MDL Dilution Factor

Volatile Organics by GC/MS - Westborough Lab

Surrogate	% Recovery	Qualifier	Acceptance Criteria	
Pentafluorobenzene	99		60-140	
Fluorobenzene	98		60-140	
4-Bromofluorobenzene	108		60-140	

Project Name: MALDEN RGP Lab Number: L2206591

Project Number: 01.0171094.40 **Report Date:** 02/14/22

SAMPLE RESULTS

Lab ID: L2206591-02 Date Collected: 02/08/22 10:45

Client ID: Date Received: 02/08/22

Sample Location: 100 COMMERCIAL STREET MALDEN Field Prep: Not Specified

Sample Depth:

Matrix: Water

Analytical Method: 128,624.1-SIM Analytical Date: 02/09/22 13:08

Analyst: GT

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
Volatile Organics by GC/MS-SIN	M - Westborough Lab					
1,4-Dioxane	ND		ug/l	5.0		1
Surrogate			% Recovery	Qualifier		eptance iteria

Surrogate	% Recovery	Qualifier	Acceptance Criteria
Fluorobenzene	104		60-140
4-Bromofluorobenzene	107		60-140

Project Name: MALDEN RGP Lab Number: L2206591

Project Number: 01.0171094.40 **Report Date:** 02/14/22

SAMPLE RESULTS

Lab ID: L2206591-02 Date Collected: 02/08/22 10:45

Client ID: B16 Date Received: 02/08/22

Sample Location: 100 COMMERCIAL STREET MALDEN Field Prep: Not Specified

Sample Depth:

Analytical Date:

Matrix: Water Extraction Method: EPA 504.1
Analytical Method: 14,504.1 Extraction Date: 02/10/22 10:01

Analyst: GT

02/10/22 13:07

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	Column
Microextractables by GC - Westborough Lab							
1,2-Dibromoethane	ND		ug/l	0.010		1	Α

Project Name:MALDEN RGPLab Number:L2206591

Project Number: 01.0171094.40 **Report Date:** 02/14/22

Method Blank Analysis Batch Quality Control

Analytical Method: 128,624.1-SIM Analytical Date: 02/09/22 10:18

Analyst: GT

Parameter	Result	Qualifier	Units	RL		MDL	
Volatile Organics by GC/MS-SIM -	Westborough	Lab for s	ample(s):	01-02	Batch:	WG1603455-4	
1,4-Dioxane	ND		ug/l	5.0			

		Α	cceptance	
Surrogate	%Recovery	Qualifier	Criteria	
Charakaanaa	404		CO 440	
Fluorobenzene	101		60-140	
4-Bromofluorobenzene	109		60-140	

Project Name: MALDEN RGP Lab Number: L2206591

Project Number: 01.0171094.40 **Report Date:** 02/14/22

Method Blank Analysis Batch Quality Control

Analytical Method: 128,624.1 Analytical Date: 02/09/22 10:18

Analyst: GT

Parameter	Result	Qualifier Unit	s	RL	MDL
Volatile Organics by GC/MS - West	borough Lab	for sample(s):	01-02	Batch:	WG1603464-4
Methylene chloride	ND	ug/	1	1.0	
1,1-Dichloroethane	ND	ug/		1.5	
Carbon tetrachloride	ND	ug/	1	1.0	
1,1,2-Trichloroethane	ND	ug/	1	1.5	
Tetrachloroethene	ND	ug/	1	1.0	
1,2-Dichloroethane	ND	ug/	1	1.5	
1,1,1-Trichloroethane	ND	ug/	1	2.0	
Benzene	ND	ug/	1	1.0	
Toluene	ND	ug/	l	1.0	
Ethylbenzene	ND	ug/	1	1.0	
Vinyl chloride	ND	ug/	1	1.0	
1,1-Dichloroethene	ND	ug/	1	1.0	
cis-1,2-Dichloroethene	ND	ug/	1	1.0	
Trichloroethene	ND	ug/	1	1.0	
1,2-Dichlorobenzene	ND	ug/	1	5.0	
1,3-Dichlorobenzene	ND	ug/	I	5.0	
1,4-Dichlorobenzene	ND	ug/	1	5.0	
p/m-Xylene	ND	ug/	1	2.0	
o-xylene	ND	ug/	1	1.0	
Xylenes, Total	ND	ug/	1	1.0	
Acetone	ND	ug/	1	10	
Methyl tert butyl ether	ND	ug/	1	10	
Tert-Butyl Alcohol	ND	ug/	1	100	
Tertiary-Amyl Methyl Ether	ND	ug/	1	20	

Project Name: MALDEN RGP Lab Number: L2206591

Project Number: 01.0171094.40 **Report Date:** 02/14/22

Method Blank Analysis
Batch Quality Control

Analytical Method: 128,624.1 Analytical Date: 02/09/22 10:18

Analyst: GT

Parameter Result Qualifier Units RL MDL

Volatile Organics by GC/MS - Westborough Lab for sample(s): 01-02 Batch: WG1603464-4

		Acceptance			
Surrogate	%Recovery	Qualifier Criteria			
Pentafluorobenzene	101	60-140			
Fluorobenzene	94	60-140			
4-Bromofluorobenzene	109	60-140			

Project Name: MALDEN RGP **Lab Number:** L2206591

Project Number: 01.0171094.40 **Report Date:** 02/14/22

Method Blank Analysis Batch Quality Control

Analytical Method: 14,504.1 Extraction Method: EPA 504.1

Analytical Date: 02/10/22 11:35 Extraction Date: 02/10/22 10:01

Analyst: GT

Parameter	Result	Qualifier	Units	RL	MDL	
Microextractables by GC - Westbo	rough Lab fo	or sample(s):	: 01-02	Batch:	WG1603504-1	
1,2-Dibromoethane	ND		ug/l	0.010		А

Lab Control Sample Analysis Batch Quality Control

Project Name: MALDEN RGP **Project Number:** 01.0171094.40

Lab Number:

L2206591

Report Date:

02/14/22

Parameter	LCS %Recovery	Qual	LCSD %Recovery	Qual	%Recovery Limits	RPD	Qual	RPD Limits	
Volatile Organics by GC/MS-SIM - Westbor	ough Lab Associa	ated sample(s)	: 01-02 Batch:	WG1603	3455-3				
1,4-Dioxane	118		-		60-140	-		20	

Surrogate	LCS %Recovery Qu	LCSD ual %Recovery	Qual	Acceptance Criteria
Fluorobenzene 4-Bromofluorobenzene	108 102			60-140 60-140

02/14/22

Lab Control Sample Analysis Batch Quality Control

Project Name: MALDEN RGP

Lab Number: L2206591

Report Date:

Project Number:	01.0171094.40
-----------------	---------------

arameter	LCS %Recovery	Qual	LCSD %Recovery	Qual	%Recovery Limits	RPD	Qual	RPD Limits	
olatile Organics by GC/MS - Westboroug	h Lab Associated	sample(s): 01	-02 Batch: W	/G1603464-	3				
Methylene chloride	100		-		60-140	-		28	
1,1-Dichloroethane	100		-		50-150	-		49	
Carbon tetrachloride	120		-		70-130	-		41	
1,1,2-Trichloroethane	100		-		70-130	-		45	
Tetrachloroethene	125		-		70-130	-		39	
1,2-Dichloroethane	105		-		70-130	-		49	
1,1,1-Trichloroethane	120		-		70-130	-		36	
Benzene	110		-		65-135	-		61	
Toluene	110		-		70-130	-		41	
Ethylbenzene	115		-		60-140	-		63	
Vinyl chloride	120		-		5-195	-		66	
1,1-Dichloroethene	110		-		50-150	-		32	
cis-1,2-Dichloroethene	100		-		60-140	-		30	
Trichloroethene	110		-		65-135	-		48	
1,2-Dichlorobenzene	125		-		65-135	-		57	
1,3-Dichlorobenzene	120		-		70-130	-		43	
1,4-Dichlorobenzene	125		-		65-135	-		57	
p/m-Xylene	112		-		60-140	-		30	
o-xylene	100		-		60-140	-		30	
Acetone	84		-		40-160	-		30	
Methyl tert butyl ether	85		-		60-140	-		30	
Tert-Butyl Alcohol	81		-		60-140	-		30	
Tertiary-Amyl Methyl Ether	80		-		60-140	-		30	

Lab Control Sample Analysis Batch Quality Control

Project Name: MALDEN RGP

Lab Number:

L2206591

Project Number: 01.0171094.40

Report Date:

02/14/22

LCS LCSD %Recovery RPD Parameter %Recovery Qual %Recovery Qual Limits RPD Qual Limits

Volatile Organics by GC/MS - Westborough Lab Associated sample(s): 01-02 Batch: WG1603464-3

Surrogate	LCS %Recovery Qual	LCSD %Recovery	Qual	Acceptance Criteria
Pentafluorobenzene	104			60-140
Fluorobenzene	100			60-140
4-Bromofluorobenzene	108			60-140

Lab Control Sample Analysis Batch Quality Control

Project Name: MALDEN RGP **Project Number:** 01.0171094.40

Lab Number:

L2206591 02/14/22

Report Date:

Parameter	LCS %Recovery	Qual	LCSD %Recovery	Qual	%Recovery Limits	RPD	Qual	RPD Limits	Column
Microextractables by GC - Westborough Lab	Associated sam	ple(s): 01-02	2 Batch: WG1	603504-2					
1,2-Dibromoethane	116		-		80-120	-			Α

Matrix Spike Analysis Batch Quality Control

Project Name: MALDEN RGP **Project Number:** 01.0171094.40

Lab Number:

L2206591

Report Date:

02/14/22

Parameter	Native Sample	MS Added	MS Found	MS %Recovery	Qual	MSD Found	MSD %Recovery		overy mits	, RPD	_	RPD imits	<u>Colum</u> n
Microextractables by GC -	- Westborough Lab	Associat	ed sample(s): (01-02 QC Ba	tch ID: W	/G1603504-	3 QC Samp	le: L220581	8-01	Client ID:	: MS Sam	ple	
1,2-Dibromoethane	ND	0.253	0.297	118		-	-	80	-120	-		20	Α
1,2-Dibromo-3-chloropropane	ND	0.253	0.316	125	Q	-	-	80	-120	-		20	Α
1,2,3-Trichloropropane	ND	0.253	0.323	128	Q	-	-	80	-120	-		20	Α

SEMIVOLATILES

Project Name: MALDEN RGP Lab Number: L2206591

Project Number: 01.0171094.40 **Report Date:** 02/14/22

SAMPLE RESULTS

Lab ID: L2206591-01 Date Collected: 02/08/22 12:15

Client ID: B1010 Date Received: 02/08/22 Sample Location: 100 COMMERCIAL STREET MALDEN Field Prep: Not Specified

Sample Depth:

Matrix: Water Extraction Method: EPA 625.1
Analytical Method: 129,625.1 Extraction Date: 02/11/22 16:49

Analytical Date: 02/14/22 13:46

Analyst: ALS

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
Semivolatile Organics by GC/MS -	Westborough Lab					
Bis(2-ethylhexyl)phthalate	ND		ug/l	2.20		1
Butyl benzyl phthalate	ND		ug/l	5.00		1
Di-n-butylphthalate	ND		ug/l	5.00		1
Di-n-octylphthalate	ND		ug/l	5.00		1
Diethyl phthalate	ND		ug/l	5.00		1
Dimethyl phthalate	ND		ug/l	5.00		1

Surrogate	% Recovery	Qualifier	Acceptance Criteria	
Nitrobenzene-d5	74		42-122	
2-Fluorobiphenyl	75		46-121	
4-Terphenyl-d14	81		47-138	

Project Name: MALDEN RGP **Lab Number:** L2206591

Project Number: 01.0171094.40 **Report Date:** 02/14/22

SAMPLE RESULTS

Lab ID: L2206591-01 Date Collected: 02/08/22 12:15

Client ID: B1010 Date Received: 02/08/22 Sample Location: 100 COMMERCIAL STREET MALDEN Field Prep: Not Specified

·

Sample Depth:

Matrix: Water Extraction Method: EPA 625.1

Analytical Method: 129,625.1-SIM Extraction Date: 02/11/22 16:47

Analytical Date: 02/12/22 13:52

Analyst: JJW

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor			
Semivolatile Organics by GC/MS-SIM - Westborough Lab									
Acenaphthene	19.3		ug/l	0.100		1			
Fluoranthene	5.18		ug/l	0.100		1			
Naphthalene	14.1		ug/l	0.100		1			
Benzo(a)anthracene	4.07		ug/l	0.100		1			
Benzo(a)pyrene	2.82		ug/l	0.100		1			
Benzo(b)fluoranthene	2.52		ug/l	0.100		1			
Benzo(k)fluoranthene	0.911		ug/l	0.100		1			
Chrysene	1.73		ug/l	0.100		1			
Acenaphthylene	3.13		ug/l	0.100		1			
Anthracene	3.46		ug/l	0.100		1			
Benzo(ghi)perylene	1.51		ug/l	0.100		1			
Fluorene	10.0		ug/l	0.100		1			
Phenanthrene	7.60		ug/l	0.100		1			
Dibenzo(a,h)anthracene	0.312		ug/l	0.100		1			
Indeno(1,2,3-cd)pyrene	1.72		ug/l	0.100		1			
Pyrene	6.56		ug/l	0.100		1			
Pentachlorophenol	ND		ug/l	1.00		1			

Surrogate	% Recovery	Acceptance Qualifier Criteria	
2-Fluorophenol	57	25-87	
Phenol-d6	40	16-65	
Nitrobenzene-d5	85	42-122	
2-Fluorobiphenyl	77	46-121	
2,4,6-Tribromophenol	88	45-128	
4-Terphenyl-d14	70	47-138	

Project Name: MALDEN RGP **Lab Number:** L2206591

Project Number: 01.0171094.40 **Report Date:** 02/14/22

SAMPLE RESULTS

Lab ID: L2206591-02 Date Collected: 02/08/22 10:45

Client ID: B16 Date Received: 02/08/22 Sample Location: 100 COMMERCIAL STREET MALDEN Field Prep: Not Specified

Sample Depth:

Matrix: Water Extraction Method: EPA 625.1
Analytical Method: 129,625.1 Extraction Date: 02/11/22 16:49

Analytical Date: 02/14/22 14:09

Analyst: ALS

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
Semivolatile Organics by GC/MS - '	Westborough Lab					
Bis(2-ethylhexyl)phthalate	ND		ug/l	2.20		1
Butyl benzyl phthalate	ND		ug/l	5.00		1
Di-n-butylphthalate	ND		ug/l	5.00		1
Di-n-octylphthalate	ND		ug/l	5.00		1
Diethyl phthalate	ND		ug/l	5.00		1
Dimethyl phthalate	ND		ug/l	5.00		1

Surrogate	% Recovery	Accep Qualifier Crit	tance eria
Nitrobenzene-d5	82	42	2-122
2-Fluorobiphenyl	78	46	G-121
4-Terphenyl-d14	80	47	'-138

Project Name: MALDEN RGP **Lab Number:** L2206591

Project Number: 01.0171094.40 **Report Date:** 02/14/22

SAMPLE RESULTS

Lab ID: L2206591-02 Date Collected: 02/08/22 10:45

Client ID: B16 Date Received: 02/08/22

Sample Location: 100 COMMERCIAL STREET MALDEN Field Prep: Not Specified

Sample Depth:

Matrix: Water Extraction Method: EPA 625.1

Analytical Method: 129,625.1-SIM Extraction Date: 02/11/22 16:47
Analytical Date: 02/12/22 14:09

Analyst: JJW

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	
Semivolatile Organics by GC/MS	-SIM - Westborough La	ab					
Acenaphthene	4.08		ug/l	0.100		1	
Fluoranthene	0.766		ug/l	0.100		1	
Naphthalene	6.84		ug/l	0.100		1	
Benzo(a)anthracene	0.322		ug/l	0.100		1	
Benzo(a)pyrene	0.255		ug/l	0.100		1	
Benzo(b)fluoranthene	0.417		ug/l	0.100		1	
Benzo(k)fluoranthene	0.119		ug/l	0.100		1	
Chrysene	0.210		ug/l	0.100		1	
Acenaphthylene	1.11		ug/l	0.100		1	
Anthracene	1.52		ug/l	0.100		1	
Benzo(ghi)perylene	0.354		ug/l	0.100		1	
Fluorene	5.43		ug/l	0.100		1	
Phenanthrene	5.54		ug/l	0.100		1	
Dibenzo(a,h)anthracene	ND		ug/l	0.100		1	
Indeno(1,2,3-cd)pyrene	0.355		ug/l	0.100		1	
Pyrene	0.574		ug/l	0.100		1	
Pentachlorophenol	ND		ug/l	1.00		1	

Surrogate	% Recovery	Acceptance Qualifier Criteria	
2-Fluorophenol	54	25-87	
Phenol-d6	37	16-65	
Nitrobenzene-d5	86	42-122	
2-Fluorobiphenyl	76	46-121	
2,4,6-Tribromophenol	100	45-128	
4-Terphenyl-d14	83	47-138	

Project Name: MALDEN RGP Lab Number: L2206591

Project Number: 01.0171094.40 **Report Date:** 02/14/22

Method Blank Analysis Batch Quality Control

Analytical Method: 129,625.1-SIM Extraction Method: EPA 625.1
Analytical Date: 02/12/22 18:01 Extraction Date: 02/11/22 10:51

Analyst: JJW

Parameter	Result	Qualifier	Units	RL	MDL	
Semivolatile Organics by GC/MS-SI	M - Westbor	ough Lab	for sample(s)	: 01-02	Batch:	WG1603996-1
Acenaphthene	ND		ug/l	0.100		
Fluoranthene	ND		ug/l	0.100		
Naphthalene	ND		ug/l	0.100		
Benzo(a)anthracene	ND		ug/l	0.100		
Benzo(a)pyrene	ND		ug/l	0.100		
Benzo(b)fluoranthene	ND		ug/l	0.100		
Benzo(k)fluoranthene	ND		ug/l	0.100		
Chrysene	ND		ug/l	0.100		
Acenaphthylene	ND		ug/l	0.100		
Anthracene	ND		ug/l	0.100		
Benzo(ghi)perylene	ND		ug/l	0.100		
Fluorene	ND		ug/l	0.100		
Phenanthrene	ND		ug/l	0.100		
Dibenzo(a,h)anthracene	ND		ug/l	0.100		
Indeno(1,2,3-cd)pyrene	ND		ug/l	0.100		
Pyrene	ND		ug/l	0.100		
Pentachlorophenol	ND		ug/l	1.00		

Surrogate	%Recovery	Acceptance Qualifier Criteria
2-Fluorophenol	51	25-87
Phenol-d6	35	16-65
Nitrobenzene-d5	76	42-122
2-Fluorobiphenyl	64	46-121
2,4,6-Tribromophenol	80	45-128
4-Terphenyl-d14	66	47-138

Project Name:MALDEN RGPLab Number:L2206591

Project Number: 01.0171094.40 **Report Date:** 02/14/22

Method Blank Analysis Batch Quality Control

Analytical Method: 129,625.1 Analytical Date: 02/12/22 00:20

Analyst: ALS

Extraction Method: EPA 625.1 Extraction Date: 02/11/22 10:51

Parameter	Result	Qualifier Units	RL	MDL
Semivolatile Organics by GC/MS	- Westborough	Lab for sample(s):	01-02	Batch: WG1603997-1
Bis(2-ethylhexyl)phthalate	ND	ug/l	2.20	
Butyl benzyl phthalate	ND	ug/l	5.00	
Di-n-butylphthalate	ND	ug/l	5.00	
Di-n-octylphthalate	ND	ug/l	5.00	
Diethyl phthalate	ND	ug/l	5.00	
Dimethyl phthalate	ND	ug/l	5.00	

		Acceptance		
Surrogate	%Recovery	Qualifier Criteria		
Nitrobenzene-d5	52	42-122		
2-Fluorobiphenyl	54	46-121		
4-Terphenyl-d14	56	47-138		

Lab Control Sample Analysis Batch Quality Control

Project Name: MALDEN RGP **Project Number:** 01.0171094.40

Lab Number: L2206591

Report Date: 02/14/22

arameter	LCS %Recovery	Qual	LCSD %Recovery	Qual	%Recovery Limits	RPD	Qual	RPD Limits	
emivolatile Organics by GC/MS-SIM - Wes	stborough Lab A	ssociated sar	mple(s): 01-02	Batch: V	/G1603996-2				
Acenaphthene	74		-		60-132	-		30	
Fluoranthene	80		-		43-121	-		30	
Naphthalene	72		-		36-120	-		30	
Benzo(a)anthracene	84		-		42-133	-		30	
Benzo(a)pyrene	85		-		32-148	-		30	
Benzo(b)fluoranthene	83		-		42-140	-		30	
Benzo(k)fluoranthene	82		-		25-146	-		30	
Chrysene	71		-		44-140	-		30	
Acenaphthylene	81		-		54-126	-		30	
Anthracene	76		-		43-120	-		30	
Benzo(ghi)perylene	85		-		1-195	-		30	
Fluorene	79		-		70-120	-		30	
Phenanthrene	72		-		65-120	-		30	
Dibenzo(a,h)anthracene	94		-		1-200	-		30	
Indeno(1,2,3-cd)pyrene	91		-		1-151	-		30	
Pyrene	80		-		70-120	-		30	
Pentachlorophenol	69		-		38-152	-		30	

Lab Control Sample Analysis

Project Name: MALDEN RGP Batch Quality Control

Lab Number:

L2206591

Project Number: 01.0171094.40 Report Date:

02/14/22

LCSD LCS %Recovery RPD %Recovery %Recovery Limits Parameter Qual Qual Limits RPD Qual

Semivolatile Organics by GC/MS-SIM - Westborough Lab Associated sample(s): 01-02 Batch: WG1603996-2

Surrogate	LCS %Recovery Qual	LCSD %Recovery Qual	Acceptance Criteria
2-Fluorophenol	58		25-87
Phenol-d6	40		16-65
Nitrobenzene-d5	79		42-122
2-Fluorobiphenyl	74		46-121
2,4,6-Tribromophenol	93		45-128
4-Terphenyl-d14	80		47-138

Lab Control Sample Analysis Batch Quality Control

Project Name: MALDEN RGP **Project Number:** 01.0171094.40

Lab Number: L

L2206591

Report Date:

02/14/22

Parameter	LCS %Recovery	Qual	LCSD %Recovery	Qual	%Recovery Limits	RPD	Qual	RPD Limits	
Semivolatile Organics by GC/MS - Westborou	gh Lab Associa	ated sample(s)	: 01-02 Batch:	WG16039	997-2				
Bis(2-ethylhexyl)phthalate	72		-		29-137	-		82	
Butyl benzyl phthalate	67		-		1-140	-		60	
Di-n-butylphthalate	65		-		8-120	-		47	
Di-n-octylphthalate	71		-		19-132	-		69	
Diethyl phthalate	62		-		1-120	-		100	
Dimethyl phthalate	62		-		1-120	-		183	

Surrogate	LCS %Recovery Qual	LCSD %Recovery Qual	Acceptance Criteria
Nitrobenzene-d5	58		42-122
2-Fluorobiphenyl	59		46-121
4-Terphenyl-d14	59		47-138

PCBS

Project Name:MALDEN RGPLab Number:L2206591Project Number:01.0171094.40Report Date:02/14/22

SAMPLE RESULTS

Lab ID: L2206591-01 Date Collected: 02/08/22 12:15

Client ID: B1010 Date Received: 02/08/22 Sample Location: 100 COMMERCIAL STREET MALDEN Field Prep: Not Specified

Sample Depth:

Matrix: Water Extraction Method: EPA 608.3
Analytical Method: 127,608.3
Analytical Date: 02/11/22 11:18
Extraction Date: 02/10/22 16:38
Cleanup Method: EPA 3665A

Analyst: AWS Cleanup Date: 02/10/22 Cleanup Method: EPA 3660B

Cleanup Date: 02/11/22

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	Column
Polychlorinated Biphenyls by	GC - Westborough Lab						
Aroclor 1016	ND		ug/l	0.250		1	Α
Aroclor 1221	ND		ug/l	0.250		1	Α
Aroclor 1232	ND		ug/l	0.250		1	Α
Aroclor 1242	ND		ug/l	0.250		1	Α
Aroclor 1248	ND		ug/l	0.250		1	Α
Aroclor 1254	ND		ug/l	0.250		1	Α
Aroclor 1260	ND		ua/l	0.200		1	Α

	Acceptance					
Surrogate	% Recovery	Qualifier	Criteria	Column		
2,4,5,6-Tetrachloro-m-xylene	69		37-123	В		
Decachlorobiphenyl	76		38-114	В		
2,4,5,6-Tetrachloro-m-xylene	68		37-123	Α		
Decachlorobiphenyl	69		38-114	Α		

02/08/22

Project Name: Lab Number: MALDEN RGP L2206591 **Project Number: Report Date:** 02/14/22

01.0171094.40

SAMPLE RESULTS

Lab ID: Date Collected: 02/08/22 10:45 L2206591-02

Client ID: B16

100 COMMERCIAL STREET MALDEN Sample Location: Field Prep: Not Specified

Sample Depth:

Matrix: Water Analytical Method: 127,608.3 Analytical Date: 02/11/22 11:36

Analyst: **AWS** **Extraction Date:** 02/10/22 16:38 Cleanup Method: EPA 3665A Cleanup Date: 02/10/22 Cleanup Method: EPA 3660B Cleanup Date: 02/11/22

Extraction Method: EPA 608.3

Date Received:

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	Column
Polychlorinated Biphenyls by	GC - Westborough Lab						
Aroclor 1016	ND		ug/l	0.250		1	Α
Aroclor 1221	ND		ug/l	0.250		1	Α
Aroclor 1232	ND		ug/l	0.250		1	Α
Aroclor 1242	ND		ug/l	0.250		1	Α
Aroclor 1248	ND		ug/l	0.250		1	Α
Aroclor 1254	ND		ug/l	0.250		1	Α
Aroclor 1260	ND		ua/l	0.200		1	Α

	Acceptance					
Surrogate	% Recovery	Qualifier	Criteria	Column		
2,4,5,6-Tetrachloro-m-xylene	75		37-123	В		
Decachlorobiphenyl	88		38-114	В		
2,4,5,6-Tetrachloro-m-xylene	75		37-123	Α		
Decachlorobiphenyl	78		38-114	Α		

Project Name: MALDEN RGP Lab Number: L2206591

Project Number: 01.0171094.40 **Report Date:** 02/14/22

Method Blank Analysis Batch Quality Control

Analytical Method: 127,608.3 Analytical Date: 02/11/22 08:21

Analyst: CW

Extraction Method: EPA 608.3
Extraction Date: 02/10/22 16:10
Cleanup Method: EPA 3665A
Cleanup Date: 02/10/22
Cleanup Method: EPA 3660B
Cleanup Date: 02/11/22

Parameter	Result	Qualifier	Units	RL		MDL	Column
Polychlorinated Biphenyls by GC -	Westborough	n Lab for s	ample(s):	01-02	Batch:	WG16	03703-1
Aroclor 1016	ND		ug/l	0.250			А
Aroclor 1221	ND		ug/l	0.250			Α
Aroclor 1232	ND		ug/l	0.250			Α
Aroclor 1242	ND		ug/l	0.250			Α
Aroclor 1248	ND		ug/l	0.250			Α
Aroclor 1254	ND		ug/l	0.250			Α
Aroclor 1260	ND		ug/l	0.200			Α

		Acceptance				
Surrogate	%Recovery Qualifie	er Criteria	Column			
2,4,5,6-Tetrachloro-m-xylene	77	37-123	В			
•						
Decachlorobiphenyl	88	38-114	В			
2,4,5,6-Tetrachloro-m-xylene	74	37-123	Α			
Decachlorobiphenyl	81	38-114	Α			

L2206591

Lab Control Sample Analysis Batch Quality Control

Project Name: MALDEN RGP **Project Number:** 01.0171094.40

n Quality Control

Lab Number:

Report Date: 02/14/22

	LCS		LCSD		%Recovery			RPD	
Parameter	%Recovery	Qual	%Recovery	Qual	Limits	RPD	Qual	Limits	Column
Polychlorinated Biphenyls by GC - W	estborough Lab Associa	ited sample(s)	: 01-02 Batch:	WG1603	3703-2				
Aroclor 1016	72		-		50-140	-		36	Α
Aroclor 1260	63		-		8-140	-		38	А

Surrogate	LCS %Recovery Qu	LCSD ual %Recovery	cceptance Criteria	Column
2,4,5,6-Tetrachloro-m-xylene	64		37-123	В
Decachlorobiphenyl	57		38-114	В
2,4,5,6-Tetrachloro-m-xylene	63		37-123	Α
Decachlorobiphenyl	52		38-114	Α

METALS

02/08/22 12:15

Date Collected:

 Project Name:
 MALDEN RGP
 Lab Number:
 L2206591

 Project Number:
 01.0171094.40
 Report Date:
 02/14/22

SAMPLE RESULTS

Lab ID: L2206591-01

Client ID: B1010 Date Received: 02/08/22

Sample Location: 100 COMMERCIAL STREET MALDEN Field Prep: Not Specified

Sample Depth:

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	Date Prepared	Date Analyzed	Prep Method	Analytical Method	Analyst
Total Metals - Mans	sfield Lab										
Antimony, Total	ND		mg/l	0.08000		20	02/09/22 14:3	2 02/10/22 10:55	EPA 3005A	3,200.8	SV
Arsenic, Total	ND		mg/l	0.02000		20	02/09/22 14:3	2 02/10/22 10:55	EPA 3005A	3,200.8	SV
Cadmium, Total	ND		mg/l	0.00400		20	02/09/22 14:3	2 02/10/22 10:55	EPA 3005A	3,200.8	SV
Chromium, Total	ND		mg/l	0.02000		20	02/09/22 14:3	2 02/10/22 10:55	EPA 3005A	3,200.8	SV
Copper, Total	ND		mg/l	0.02000		20	02/09/22 14:3	2 02/10/22 10:55	EPA 3005A	3,200.8	SV
Iron, Total	23.5		mg/l	0.050		1	02/09/22 14:3	2 02/10/22 19:22	EPA 3005A	19,200.7	GD
Lead, Total	ND		mg/l	0.02000		20	02/09/22 14:3	2 02/10/22 10:55	EPA 3005A	3,200.8	sv
Mercury, Total	ND		mg/l	0.00020		1	02/09/22 16:2	1 02/11/22 15:51	EPA 245.1	3,245.1	ZK
Nickel, Total	ND		mg/l	0.04000		20	02/09/22 14:3:	2 02/10/22 10:55	EPA 3005A	3,200.8	SV
Selenium, Total	ND		mg/l	0.1000		20	02/09/22 14:3	2 02/10/22 10:55	EPA 3005A	3,200.8	sv
Silver, Total	ND		mg/l	0.00800		20	02/09/22 14:3:	2 02/10/22 10:55	EPA 3005A	3,200.8	SV
Zinc, Total	ND		mg/l	0.2000		20	02/09/22 14:3	2 02/10/22 10:55	EPA 3005A	3,200.8	SV
Total Hardness by	SM 2340E	B - Mansfiel	d Lab								
Hardness	939		mg/l	0.660	NA	1	02/09/22 14:3	2 02/10/22 19:22	FPA 3005A	19,200.7	GD
	300		1119/1	0.000	1471		32/00/22 14.0.	_ 3_/ 10/22 10.22	2.7.000071	-,	05
General Chemistry	- Mansfiel	ld Lab									
Chromium, Trivalent	ND		mg/l	0.020		1		02/10/22 10:55	NA	107,-	

02/08/22 10:45

Date Collected:

 Project Name:
 MALDEN RGP
 Lab Number:
 L2206591

 Project Number:
 01.0171094.40
 Report Date:
 02/14/22

SAMPLE RESULTS

Lab ID: L2206591-02

Client ID: B16 Date Received: 02/08/22 Sample Location: 100 COMMERCIAL STREET MALDEN Field Prep: Not Specified

Sample Depth:

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	Date Prepared	Date Analyzed	Prep Method	Analytical Method	Analyst
Tatal Matala Mara	afialal ala										
Total Metals - Man	stield Lab										
Antimony, Total	ND		mg/l	0.00400		1	02/09/22 14:3	2 02/10/22 10:45	EPA 3005A	3,200.8	SV
Arsenic, Total	0.09358		mg/l	0.00100		1	02/09/22 14:3	2 02/10/22 10:45	EPA 3005A	3,200.8	SV
Cadmium, Total	0.00114		mg/l	0.00020		1	02/09/22 14:3	2 02/10/22 10:45	EPA 3005A	3,200.8	SV
Chromium, Total	0.00916		mg/l	0.00100		1	02/09/22 14:3	2 02/10/22 10:45	EPA 3005A	3,200.8	SV
Copper, Total	0.04342		mg/l	0.00100		1	02/09/22 14:3	2 02/10/22 10:45	EPA 3005A	3,200.8	SV
Iron, Total	34.0		mg/l	0.050		1	02/09/22 14:3	2 02/10/22 20:35	EPA 3005A	19,200.7	GD
Lead, Total	0.03001		mg/l	0.00100		1	02/09/22 14:3	2 02/10/22 10:45	EPA 3005A	3,200.8	SV
Mercury, Total	ND		mg/l	0.00020		1	02/09/22 16:2	1 02/11/22 16:01	EPA 245.1	3,245.1	ZK
Nickel, Total	0.00535		mg/l	0.00200		1	02/09/22 14:3	2 02/10/22 10:45	EPA 3005A	3,200.8	SV
Selenium, Total	ND		mg/l	0.00500		1	02/09/22 14:3	2 02/10/22 10:45	EPA 3005A	3,200.8	SV
Silver, Total	ND		mg/l	0.00040		1	02/09/22 14:3	2 02/10/22 10:45	EPA 3005A	3,200.8	SV
Zinc, Total	0.1280		mg/l	0.01000		1	02/09/22 14:3	2 02/10/22 10:45	EPA 3005A	3,200.8	SV
Total Hardness by	SM 2340E	B - Mansfiel	d Lab								
Hardness	404		mg/l	0.660	NA	1	02/09/22 14:3	2 02/10/22 22:36	EPA 3005A	19,200.7	GD
General Chemistry	- Mansfiel	ld Lab									
Chromium, Trivalent	ND		mg/l	0.010		1		02/10/22 10:45	NA	107,-	

02/08/22 09:45

Date Collected:

 Project Name:
 MALDEN RGP
 Lab Number:
 L2206591

 Project Number:
 01.0171094.40
 Report Date:
 02/14/22

SAMPLE RESULTS

Lab ID: L2206591-03

Client ID: SW-1 Date Received: 02/08/22 Sample Location: 100 COMMERCIAL STREET MALDEN Field Prep: Not Specified

Sample Depth:

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	Date Prepared	Date Analyzed	Prep Method	Analytical Method	Analyst
Total Metals - Man	sfield Lab										
Antimony, Total	ND		mg/l	0.00400		1	02/09/22 14:32	02/10/22 13:37	EPA 3005A	3,200.8	SV
Arsenic, Total	0.00115		mg/l	0.00100		1	02/09/22 14:32	02/10/22 13:37	EPA 3005A	3,200.8	SV
Cadmium, Total	ND		mg/l	0.00020		1	02/09/22 14:32	02/10/22 13:37	EPA 3005A	3,200.8	SV
Chromium, Total	ND		mg/l	0.00100		1	02/09/22 14:32	02/10/22 13:37	EPA 3005A	3,200.8	SV
Copper, Total	0.00293		mg/l	0.00100		1	02/09/22 14:32	02/10/22 13:37	EPA 3005A	3,200.8	SV
Iron, Total	0.432		mg/l	0.050		1	02/09/22 14:32	02/11/22 00:18	EPA 3005A	19,200.7	GD
Lead, Total	0.00261		mg/l	0.00100		1	02/09/22 14:32	02/10/22 13:37	EPA 3005A	3,200.8	SV
Mercury, Total	ND		mg/l	0.00020		1	02/09/22 16:21	02/11/22 16:04	EPA 245.1	3,245.1	ZK
Nickel, Total	ND		mg/l	0.00200		1	02/09/22 14:32	02/10/22 13:37	EPA 3005A	3,200.8	SV
Selenium, Total	ND		mg/l	0.00500		1	02/09/22 14:32	02/10/22 13:37	EPA 3005A	3,200.8	SV
Silver, Total	ND		mg/l	0.00040		1	02/09/22 14:32	02/10/22 13:37	EPA 3005A	3,200.8	SV
Zinc, Total	0.02744		mg/l	0.01000		1	02/09/22 14:32	02/10/22 13:37	EPA 3005A	3,200.8	SV
Total Hardness by	SM 2340F	B - Mansfiel									
•		- Manono		0.660	NIA	4	00/00/00 44-00	02/44/22 00:48	EDA 2005A	19,200.7	CD
Hardness	54.5		mg/l	0.660	NA	1	02/09/22 14:32	02/11/22 00:18	EPA 3005A	19,200.7	GD

Project Name: MALDEN RGP
Project Number: 01.0171094.40

Lab Number: L2206591 **Report Date:** 02/14/22

Method Blank Analysis Batch Quality Control

Dilution Analytical Date **Date Result Qualifier Factor Prepared Analyzed** Method Analyst **Parameter Units** RL **MDL** Total Metals - Mansfield Lab for sample(s): 01-03 Batch: WG1603027-1 Iron, Total ND 0.050 02/10/22 19:04 mg/l 1 02/09/22 14:32 19,200.7 GD

Prep Information

Digestion Method: EPA 3005A

Dilution Analytical Date **Date** Method Analyst **Result Qualifier** Units RL**Factor Prepared Analyzed Parameter** MDL Total Hardness by SM 2340B - Mansfield Lab for sample(s): 01-03 Batch: WG1603027-1 Hardness ND GD mg/l 0.660 NA 02/10/22 19:04 19,200.7 02/09/22 14:32

Prep Information

Digestion Method: EPA 3005A

Parameter	Result Qualifier	Units	RL	MDL	Dilution Factor	Date Prepared	Date Analyzed	Analytical Method	Analyst
Total Metals - Mans	field Lab for sample(s):	01-03 E	Batch: Wo	G16030	28-1				
Antimony, Total	ND	mg/l	0.00400		1	02/09/22 14:32	02/10/22 09:59	3,200.8	SV
Arsenic, Total	ND	mg/l	0.00100		1	02/09/22 14:32	02/10/22 09:59	3,200.8	SV
Cadmium, Total	ND	mg/l	0.00020		1	02/09/22 14:32	02/10/22 09:59	3,200.8	SV
Chromium, Total	ND	mg/l	0.00100		1	02/09/22 14:32	02/10/22 09:59	3,200.8	SV
Copper, Total	ND	mg/l	0.00100		1	02/09/22 14:32	02/10/22 09:59	3,200.8	SV
Lead, Total	ND	mg/l	0.00100		1	02/09/22 14:32	02/10/22 09:59	3,200.8	SV
Nickel, Total	ND	mg/l	0.00200		1	02/09/22 14:32	02/10/22 09:59	3,200.8	SV
Selenium, Total	ND	mg/l	0.00500		1	02/09/22 14:32	02/10/22 09:59	3,200.8	SV
Silver, Total	ND	mg/l	0.00040		1	02/09/22 14:32	02/10/22 09:59	3,200.8	SV
Zinc, Total	ND	mg/l	0.01000		1	02/09/22 14:32	02/10/22 09:59	3,200.8	SV

Prep Information

Digestion Method: EPA 3005A

Project Name: Lab Number: MALDEN RGP L2206591 **Project Number:** 01.0171094.40 **Report Date:**

02/14/22

Method Blank Analysis Batch Quality Control

Parameter	Result Qualifier	Units	RL	MDL	Dilution Factor	Date Prepared	Date Analyzed	Analytical Method	Analyst
Total Metals - Mansf	ield Lab for sample(s):	01-03 B	Batch: Wo	G16030	30-1				
Mercury, Total	ND	mg/l	0.00020		1	02/09/22 16:21	02/11/22 15:43	3,245.1	ZK

Prep Information

Digestion Method: EPA 245.1

Lab Control Sample Analysis Batch Quality Control

Project Name: MALDEN RGP **Project Number:** 01.0171094.40

Lab Number: L2206591

Parameter	LCS %Recovery	Qual	LCSD %Recovery	Qual	%Recovery Limits	RPD	Qual	RPD Limits
Total Metals - Mansfield Lab Associated sample	(s): 01-03 Bate	ch: WG1603	3027-2					
Iron, Total	104		-		85-115	-		
Total Hardness by SM 2340B - Mansfield Lab As	ssociated sampl	e(s): 01-03	Batch: WG160	3027-2				
Hardness	108		-		85-115	-		
Total Metals - Mansfield Lab Associated sample	(s): 01-03 Bate	ch: WG1603	3028-2					
Antimony, Total	89		-		85-115	-		
Arsenic, Total	99		-		85-115	-		
Cadmium, Total	96		-		85-115	-		
Chromium, Total	100		-		85-115	-		
Copper, Total	95		-		85-115	-		
Lead, Total	96		-		85-115	-		
Nickel, Total	93		-		85-115	-		
Selenium, Total	100		-		85-115	-		
Silver, Total	101		-		85-115	-		
Zinc, Total	95		-		85-115	-		
Total Metals - Mansfield Lab Associated sample	(s): 01-03 Bat	ch: WG1603	3030-2					
Mercury, Total	102		-		85-115	-		

Matrix Spike Analysis Batch Quality Control

Project Name: MALDEN RGP **Project Number:** 01.0171094.40

Lab Number: L2206591

arameter	Native Sample	MS Added	MS Found	MS %Recovery	Qual	MSD Found	MSD %Recovery Qu	Recovery ual Limits	RPD Qual	RPD Limits
otal Metals - Mansfield Lab	Associated sam	nple(s): 01-03	QC Bate	ch ID: WG160	3027-3	QC Sam	ple: L2206591-01	Client ID: B10	010	
Iron, Total	23.5	1	24.8	130	Q	-	-	75-125	-	20
otal Hardness by SM 2340	B - Mansfield La	b Associated	sample(s)	: 01-03 QC E	Batch ID	: WG1603	027-3 QC Samp	ole: L2206591-0	1 Client ID:	B1010
Hardness	939	66.2	1020	122		-	-	75-125	-	20
otal Metals - Mansfield Lab	Associated sam	nple(s): 01-03	QC Bate	ch ID: WG160	3027-7	QC Sam	ple: L2206591-02	Client ID: B16	6	
Iron, Total	34.0	1	34.8	80		-	-	75-125	-	20
otal Hardness by SM 2340	B - Mansfield La	b Associated	sample(s)	01-03 QC E	Batch ID	: WG1603	027-7 QC Samp	ole: L2206591-0	2 Client ID:	B16
Hardness	404	66.2	470	100		-	-	75-125	-	20
otal Metals - Mansfield Lab	Associated sam	nple(s): 01-03	QC Bate	ch ID: WG160	3028-3	QC Sam	ple: L2206591-01	Client ID: B10	010	
Antimony, Total	ND	0.5	0.4915	98		-	-	70-130	-	20
Arsenic, Total	ND	0.12	0.1209	101		-	-	70-130	-	20
Cadmium, Total	ND	0.053	0.04756	90		-	-	70-130	-	20
Chromium, Total	ND	0.2	0.1754	88		-	-	70-130	-	20
Copper, Total	ND	0.25	0.2341	94		-	-	70-130	-	20
Lead, Total	ND	0.53	0.5542	104		-	-	70-130	-	20
Nickel, Total	ND	0.5	0.4803	96		-	-	70-130	-	20
Selenium, Total	ND	0.12	0.1098	92		-	-	70-130	-	20
Silver, Total	ND	0.05	0.04671	93		-	-	70-130	-	20

Matrix Spike Analysis Batch Quality Control

Project Name: MALDEN RGP **Project Number:** 01.0171094.40

Lab Number: L2206591

arameter	Native Sample	MS Added	MS Found	MS %Recovery		MSD Found	MSD %Recovery	Recovery Limits	RPD	RPD Limits
otal Metals - Mansfield	Lab Associated sam	ple(s): 01-03	QC Bat	ch ID: WG16030	028-5	QC Sam	ple: L2206591-02	Client ID: B1	6	
Antimony, Total	ND	0.5	0.5000	100		-	-	70-130	-	20
Arsenic, Total	0.09358	0.12	0.2152	101		-	-	70-130	-	20
Cadmium, Total	0.00114	0.053	0.05258	97		-	-	70-130	-	20
Chromium, Total	0.00916	0.2	0.1865	89		-	-	70-130	-	20
Copper, Total	0.04342	0.25	0.2668	89		-	-	70-130	-	20
Lead, Total	0.03001	0.53	0.5391	96		-	-	70-130	-	20
Nickel, Total	0.00535	0.5	0.4533	90		-	-	70-130	-	20
Selenium, Total	ND	0.12	0.06356	53	Q	-	-	70-130	-	20
Silver, Total	ND	0.05	0.05091	102		-	-	70-130	-	20
Zinc, Total	0.1280	0.5	0.6051	95		-	-	70-130	-	20
otal Metals - Mansfield	Lab Associated sam	ple(s): 01-03	QC Bat	ch ID: WG16030	030-3	QC Sam	ple: L2206591-01	Client ID: B1	010	
Mercury, Total	ND	0.005	0.00500	100		-	-	70-130	-	20

Lab Duplicate Analysis Batch Quality Control

Project Name: MALDEN RGP **Project Number:** 01.0171094.40

Lab Number: L2206591

Parameter	Native Sample	Duplicate Sample	Units	RPD	Qual RP	D Limits
Total Metals - Mansfield Lab Associated sample(s): 0	1-03 QC Batch ID: W	G1603027-4 QC Sample:	L2206591-01	Client ID:	B1010	
Iron, Total	23.5	23.5	mg/l	0		20
Fotal Hardness by SM 2340B - Mansfield Lab Associa	ted sample(s): 01-03	QC Batch ID: WG1603027	-4 QC Samp	le: L2206	591-01 Client ID): B1010
Hardness	939	946	mg/l	1		20
Fotal Metals - Mansfield Lab Associated sample(s): 0°	1-03 QC Batch ID: W	G1603027-8 QC Sample:	L2206591-02	Client ID:	B16	
Iron, Total	34.0	32.8	mg/l	4		20
Fotal Hardness by SM 2340B - Mansfield Lab Associa	ted sample(s): 01-03	QC Batch ID: WG1603027	-8 QC Samp	le: L2206	591-02 Client ID): B16
Hardness	404	404	mg/l	0		20
Fotal Metals - Mansfield Lab Associated sample(s): 0°	1-03 QC Batch ID: W	G1603028-4 QC Sample:	L2206591-01	Client ID:	B1010	
Antimony, Total	ND	ND	mg/l	NC		20
Arsenic, Total	ND	ND	mg/l	NC		20
Cadmium, Total	ND	ND	mg/l	NC		20
Chromium, Total	ND	ND	mg/l	NC		20
Copper, Total	ND	ND	mg/l	NC		20
Lead, Total	ND	ND	mg/l	NC		20
Nickel, Total	ND	ND	mg/l	NC		20
Selenium, Total	ND	ND	mg/l	NC		20
Silver, Total	ND	ND	mg/l	NC		20
Zinc, Total	ND	ND	mg/l	NC		20

Lab Duplicate Analysis Batch Quality Control

Project Name: MALDEN RGP **Project Number:** 01.0171094.40

Lab Number: L2206591

Parameter	Native Sample	Duplicate Sample	Units	RPD	RPD Limits
Total Metals - Mansfield Lab Associated sample(s): 01-0	3 QC Batch ID:	WG1603028-6 QC Sample:	L2206591-02	Client ID:	: B16
Antimony, Total	ND	ND	mg/l	NC	20
Arsenic, Total	0.09358	0.08556	mg/l	9	20
Cadmium, Total	0.00114	0.00095	mg/l	18	20
Chromium, Total	0.00916	0.00738	mg/l	21	Q 20
Copper, Total	0.04342	0.02106	mg/l	69	Q 20
Lead, Total	0.03001	0.02557	mg/l	16	20
Nickel, Total	0.00535	0.00476	mg/l	12	20
Selenium, Total	ND	ND	mg/l	NC	20
Silver, Total	ND	ND	mg/l	NC	20
Zinc, Total	0.1280	0.1185	mg/l	8	20
otal Metals - Mansfield Lab Associated sample(s): 01-0	3 QC Batch ID:	WG1603030-4 QC Sample:	L2206591-01	Client ID:	: B1010
Mercury, Total	ND	ND	mg/l	NC	20

INORGANICS & MISCELLANEOUS

 Project Name:
 MALDEN RGP
 Lab Number:
 L2206591

 Project Number:
 01.0171094.40
 Report Date:
 02/14/22

SAMPLE RESULTS

Lab ID: L2206591-01 Date Collected: 02/08/22 12:15

Client ID: B1010 Date Received: 02/08/22 Sample Location: 100 COMMERCIAL STREET MALDEN Field Prep: Not Specified

Sample Depth:

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	Date Prepared	Date Analyzed	Analytical Method	Analyst
General Chemistry - Westl	oorough Lab)								
Solids, Total Suspended	88.		mg/l	20	NA	4	-	02/11/22 16:00	121,2540D	MD
Cyanide, Total	0.089		mg/l	0.005		1	02/09/22 06:00	02/09/22 11:26	121,4500CN-CE	CS
Chlorine, Total Residual	ND		mg/l	0.02		1	-	02/08/22 22:45	121,4500CL-D	AS
Nitrogen, Ammonia	5.30		mg/l	0.075		1	02/09/22 03:01	02/09/22 20:12	121,4500NH3-BH	I AT
Nitrogen, Nitrate/Nitrite	ND		mg/l	0.10		1	-	02/10/22 08:42	121,4500NO3-F	MR
Total Nitrogen	6.4		mg/l	0.30		1	-	02/14/22 13:03	107,-	JO
Nitrogen, Total Kjeldahl	6.45		mg/l	0.300		1	02/09/22 01:56	02/09/22 21:35	121,4500NH3-H	AT
TPH, SGT-HEM	ND		mg/l	4.00		1	02/09/22 13:45	02/09/22 15:00	140,1664B	NP
Phenolics, Total	ND		mg/l	0.030		1	02/11/22 07:04	02/11/22 10:24	4,420.1	KP
Chromium, Hexavalent	ND		mg/l	0.010		1	02/09/22 08:10	02/09/22 08:30	1,7196A	KP
Anions by Ion Chromatogr	aphy - West	borough	Lab							
Chloride	7440		mg/l	250		500	-	02/09/22 22:18	44,300.0	AT

 Project Name:
 MALDEN RGP
 Lab Number:
 L2206591

 Project Number:
 01.0171094.40
 Report Date:
 02/14/22

SAMPLE RESULTS

Lab ID: L2206591-02 Date Collected: 02/08/22 10:45

Client ID: B16 Date Received: 02/08/22 Sample Location: 100 COMMERCIAL STREET MALDEN Field Prep: Not Specified

Sample Depth:

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	Date Prepared	Date Analyzed	Analytical Method	Analyst
General Chemistry - West	borough Lab)								
Solids, Total Suspended	140		mg/l	12	NA	2.5	-	02/11/22 16:00	121,2540D	MD
Cyanide, Total	0.763		mg/l	0.010		2	02/09/22 06:00	02/09/22 11:43	121,4500CN-CE	CS
Chlorine, Total Residual	ND		mg/l	0.02		1	-	02/08/22 22:45	121,4500CL-D	AS
Nitrogen, Ammonia	7.08		mg/l	0.075		1	02/11/22 13:00	02/11/22 18:56	121,4500NH3-BH	I AT
Nitrogen, Nitrate/Nitrite	ND		mg/l	0.10		1	-	02/10/22 08:43	121,4500NO3-F	MR
Total Nitrogen	7.7		mg/l	0.30		1	-	02/14/22 13:03	107,-	JO
Nitrogen, Total Kjeldahl	7.69		mg/l	0.300		1	02/12/22 01:44	02/14/22 11:53	121,4500NH3-H	JO
TPH, SGT-HEM	ND		mg/l	4.00		1	02/09/22 13:45	02/09/22 15:00	140,1664B	NP
Phenolics, Total	ND		mg/l	0.030		1	02/11/22 07:04	02/11/22 10:02	4,420.1	KP
Chromium, Hexavalent	ND		mg/l	0.010		1	02/09/22 08:10	02/09/22 08:30	1,7196A	KP
Anions by Ion Chromatogr	aphy - West	borough	Lab							
Chloride	939.		mg/l	50.0		100	-	02/09/22 21:54	44,300.0	AT

 Project Name:
 MALDEN RGP
 Lab Number:
 L2206591

 Project Number:
 01.0171094.40
 Report Date:
 02/14/22

SAMPLE RESULTS

Lab ID: L2206591-03 Date Collected: 02/08/22 09:45

Client ID: SW-1 Date Received: 02/08/22 Sample Location: 100 COMMERCIAL STREET MALDEN Field Prep: Not Specified

Sample Depth:

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	Date Prepared	Date Analyzed	Analytical Method	Analyst
General Chemistry - West	borough Lat)								
SALINITY	ND		SU	2.0		1	-	02/11/22 20:26	121,2520B	AS
Nitrogen, Ammonia	0.313		mg/l	0.075		1	02/09/22 03:01	02/09/22 20:15	121,4500NH3-BH	I AT
Nitrogen, Nitrate/Nitrite	0.84		mg/l	0.10		1	-	02/10/22 08:44	121,4500NO3-F	MR
Total Nitrogen	1.7		mg/l	0.30		1	-	02/14/22 13:03	107,-	JO
Nitrogen, Total Kjeldahl	0.825		mg/l	0.300		1	02/09/22 01:56	02/09/22 21:37	121,4500NH3-H	AT

Project Name: MALDEN RGP **Project Number:** 01.0171094.40

Lab Number: L2206591 **Report Date:** 02/14/22

Method Blank Analysis Batch Quality Control

Parameter	Result (Qualifier	Units	R	L	MDL	Dilution Factor	Date Prepared	Date Analyzed	Analytical Method	Analyst
General Chemistry - We	stborough La	b for sam	ple(s):	01-02	Bato	h: W	G1602843-1				
Chlorine, Total Residual	ND		mg/l	C	0.02		1	-	02/08/22 22:45	121,4500CL-D	AS
General Chemistry - We	stborough La	b for sam	ple(s):	01,03	Batc	h: W	G1602855-1				
Nitrogen, Total Kjeldahl	ND		mg/l	0.	300		1	02/09/22 01:56	02/09/22 21:22	121,4500NH3-H	AT
General Chemistry - We	stborough La	b for sam	ple(s):	01,03	Batc	h: W	G1602857-1				
Nitrogen, Ammonia	ND		mg/l	0.	.075		1	02/09/22 03:01	02/09/22 19:57	121,4500NH3-BH	TA H
General Chemistry - We	stborough La	b for sam	ıple(s):	01-02	Bato	:h: W	G1602865-1				
Cyanide, Total	ND		mg/l	0.	.005		1	02/09/22 06:00	02/09/22 11:01	121,4500CN-CE	: CS
General Chemistry - We	stborough La	b for sam	ple(s):	01-02	Bato	:h: W	G1602989-1				
Chromium, Hexavalent	ND		mg/l		.010		1	02/09/22 08:10	02/09/22 08:29	1,7196A	KP
General Chemistry - We	stborough La	b for sam	ple(s):	01-02	Bato	:h: W	G1603050-1				
TPH, SGT-HEM	ND		mg/l		.00		1	02/09/22 13:45	02/09/22 15:00	140,1664B	NP
Anions by Ion Chromato	graphy - Wes	tborough	Lab for	sampl	e(s):	01-02	Batch: W	G1603296-1			
Chloride	ND ND		mg/l	•	.500		1	-	02/09/22 19:54	44,300.0	АТ
General Chemistry - We	stborough La	b for sam	ple(s): (01-03	Bato	:h: W	G1603343-1				
Nitrogen, Nitrate/Nitrite	ND		mg/l		0.10		1	-	02/10/22 08:16	121,4500NO3-F	MR
General Chemistry - We	stborough La	b for sam	iple(s): (01-02	Bato	:h: W(G1603861-1				
Phenolics, Total	ND		mg/l		.030		1	02/11/22 07:04	02/11/22 09:58	4,420.1	KP
General Chemistry - We	stborough La	b for sam	nole(s): (02 Ba	atch:	WG16	604025-1				
Nitrogen, Ammonia	ND	o ioi caii	mg/l		.075		1	02/11/22 13:00	02/11/22 18:42	121,4500NH3-BI	H AT
General Chemistry - We	sthorough La	h for sam	nole(s):	01-02	Bato	:h: \//(G1604145-1				
Solids, Total Suspended	ND	o ioi ouiii	mg/l		5.0	NA	1	-	02/11/22 16:00	121,2540D	MD
General Chemistry - We	ethorough La	h for sam		N2 P	atch:	\ <i>\</i> /C16	604245-1				
Nitrogen, Total Kjeldahl	ND	D IUI Salli	mg/l		300		1	02/12/22 01:44	02/14/22 11:50	121,4500NH3-H	JO

Lab Control Sample Analysis Batch Quality Control

Project Name: MALDEN RGP **Project Number:** 01.0171094.40

Lab Number: L2206591

Parameter	LCS %Recovery	Qual	LCSD %Recovery	Qual	%Recovery Limits	RPD	Qual	RPD Limits
General Chemistry - Westborough Lab	Associated sample(s)	: 01-02	Batch: WG16028	343-2				
Chlorine, Total Residual	108		-		90-110	-		
General Chemistry - Westborough Lab	Associated sample(s)	: 01,03	Batch: WG16028	355-2				
Nitrogen, Total Kjeldahl	90		-		78-122	-		
General Chemistry - Westborough Lab	Associated sample(s)	: 01,03	Batch: WG16028	357-2				
Nitrogen, Ammonia	104		-		80-120	-		20
General Chemistry - Westborough Lab	Associated sample(s)	: 01-02	Batch: WG16028	365-2				
Cyanide, Total	94		-		90-110	-		
General Chemistry - Westborough Lab	Associated sample(s)	: 01-02	Batch: WG16029	989-2				
Chromium, Hexavalent	106		-		85-115	-		20
General Chemistry - Westborough Lab	Associated sample(s)	: 01-02	Batch: WG16030	050-2				
ТРН	65		-		64-132	-		34
Anions by Ion Chromatography - Westbe	orough Lab Associate	ed samp	le(s): 01-02 Bato	h: WG160	03296-2			
Chloride	100		-		90-110	-		

Lab Control Sample Analysis Batch Quality Control

Project Name: MALDEN RGP **Project Number:** 01.0171094.40

Lab Number: L2206591

Report Date:

02/14/22

Parameter	LCS %Recovery	LCSD %Recovery	%Recovery Limits	RPD	RPD Limits
General Chemistry - Westborough Lab	Associated sample(s): 01-	03 Batch: WG1603343-2			
Nitrogen, Nitrate/Nitrite	96	-	90-110	-	20
General Chemistry - Westborough Lab	Associated sample(s): 01-	02 Batch: WG1603861-2			
Phenolics, Total	108	-	70-130	-	
General Chemistry - Westborough Lab	Associated sample(s): 02	Batch: WG1604025-2			
Nitrogen, Ammonia	106	-	80-120	-	20
General Chemistry - Westborough Lab	Associated sample(s): 01-	02 Batch: WG1604145-2			
Solids, Total Suspended	90	-	80-120	-	
General Chemistry - Westborough Lab	Associated sample(s): 03	Batch: WG1604217-1			
SALINITY	99	-		-	
General Chemistry - Westborough Lab	Associated sample(s): 02	Batch: WG1604245-2			
Nitrogen, Total Kjeldahl	93		78-122	-	

Matrix Spike Analysis Batch Quality Control

Project Name: MALDEN RGP **Project Number:** 01.0171094.40

Lab Number:

L2206591

Parameter	Native Sample	MS Added	MS Found	MS %Recovery	Qual	MSD Found	MSD %Recovery		Recovery Limits		Qual	RPD Limits
General Chemistry - Westbor	ough Lab Asso	ciated samp	ole(s): 01-02	QC Batch II	D: WG16	602843-4	QC Sample:	L22065	91-02 C	ient ID:	B16	
Chlorine, Total Residual	ND	0.25	ND	0	Q	-	-		80-120	-		20
General Chemistry - Westbor	ough Lab Asso	ciated samp	ole(s): 01,03	QC Batch II	D: WG16	602855-4	QC Sample:	L22063	13-01 CI	ient ID:	MS Sa	mple
Nitrogen, Total Kjeldahl	0.549	8	ND	0	Q	-	-		77-111	-		24
General Chemistry - Westbor	ough Lab Asso	ciated samp	ole(s): 01,03	QC Batch II	D: WG16	602857-4	QC Sample:	L22065	91-01 CI	ient ID:	B1010	
Nitrogen, Ammonia	5.30	4	9.19	97		-	-		80-120	-		20
General Chemistry - Westbor	ough Lab Asso	ciated samp	ole(s): 01-02	QC Batch II	D: WG16	602865-4	QC Sample:	L22050	75-01 C	ient ID:	MS Sa	mple
Cyanide, Total	0.005	0.2	0.204	99		-	-		90-110	-		30
General Chemistry - Westbor	ough Lab Asso	ciated samp	ole(s): 01-02	QC Batch II	D: WG16	602989-4	QC Sample:	L22065	91-02 C	ient ID:	B16	
Chromium, Hexavalent	ND	0.1	0.085	85		-	-		85-115	-		20
General Chemistry - Westbor	ough Lab Asso	ciated samp	ole(s): 01-02	QC Batch II	D: WG16	603050-4	QC Sample:	L22000	25-66 C	ient ID:	MS Sa	mple
TPH	ND	18.9	15.9	84		-	-		64-132	-		34
Anions by Ion Chromatograph Sample	hy - Westborou	gh Lab Asso	ociated sam	ole(s): 01-02	QC Bat	ch ID: WG	1603296-3	QC Sam	ple: L220	6370-04	Clien	t ID: MS
Chloride	ND	4	4.29	107		-	-		90-110	-		18
General Chemistry - Westbor	ough Lab Asso	ciated samp	ole(s): 01-03	QC Batch II	D: WG16	603343-4	QC Sample:	L22067	40-01 C	ient ID:	MS Sa	mple
Nitrogen, Nitrate/Nitrite	ND	4	3.6	90		-	-		80-120	-		20
General Chemistry - Westbor	ough Lab Asso	ciated samp	ole(s): 01-02	QC Batch II	D: WG16	603861-4	QC Sample:	L22065	91-01 C	ient ID:	B1010	
Phenolics, Total	ND	0.4	0.42	104		-	-		70-130	-		20

Matrix Spike Analysis Batch Quality Control

Project Name: MALDEN RGP **Project Number:** 01.0171094.40

Lab Number:

L2206591

Report Date:

02/14/22

Parameter	Native Sample	MS Added	MS Found	MS %Recovery	MSD Found	MSD %Recovery	Recovery Limits RP	RPD Limits
General Chemistry - Westbo	rough Lab Assoc	ciated samp	ole(s): 02	QC Batch ID: W	G1604025-4	QC Sample: L22000	025-91 Client ID:	MS Sample
Nitrogen, Ammonia	0.245	4	3.75	88	-	-	80-120 -	20
General Chemistry - Westbo	rough Lab Assoc	ciated samp	ole(s): 02	QC Batch ID: W	G1604245-4	QC Sample: L22066	92-01 Client ID:	MS Sample
Nitrogen, Total Kjeldahl	3.03	8	11.1	101	-	-	77-111 -	24

Lab Duplicate Analysis Batch Quality Control

Project Name: MALDEN RGP **Project Number:** 01.0171094.40

Lab Number: L22

L2206591

Parameter	Native Sample	Duplicate Sample	Units	RPD	Qual	RPD Limits		
General Chemistry - Westborough Lab Associa	ted sample(s): 01-02 QC Bato	h ID: WG1602843-3	QC Sample:	L2206591-01	Client ID:	B1010		
Chlorine, Total Residual	ND	ND	mg/l	NC		20		
General Chemistry - Westborough Lab Associa	ted sample(s): 01,03 QC Batc	h ID: WG1602855-3	QC Sample:	L2206313-01	Client ID:	DUP Sample		
Nitrogen, Total Kjeldahl	0.549	ND	mg/l	NC		24		
General Chemistry - Westborough Lab Associa	ted sample(s): 01,03 QC Batc	h ID: WG1602857-3	QC Sample:	L2206591-01	Client ID:	B1010		
Nitrogen, Ammonia	5.30	5.62	mg/l	6		20		
General Chemistry - Westborough Lab Associa	ted sample(s): 01-02 QC Bato	h ID: WG1602865-3	QC Sample:	L2205076-01	Client ID:	DUP Sample		
Cyanide, Total	ND	ND	mg/l	NC		30		
General Chemistry - Westborough Lab Associa	ted sample(s): 01-02 QC Bato	h ID: WG1602989-3	QC Sample:	L2206591-01	Client ID:	B1010		
Chromium, Hexavalent	ND	ND	mg/l	NC		20		
General Chemistry - Westborough Lab Associa	ted sample(s): 01-02 QC Bato	h ID: WG1603050-3	QC Sample:	L2200025-65	Client ID:	DUP Sample		
TPH	ND	ND	mg/l	NC		34		
Anions by Ion Chromatography - Westborough I	Lab Associated sample(s): 01-0	2 QC Batch ID: WG1	1603296-4	QC Sample: L	2206370-0	4 Client ID: DUP		
Chloride	ND	ND	mg/l	NC		18		
General Chemistry - Westborough Lab Associa	ted sample(s): 01-03 QC Bato	th ID: WG1603343-3	QC Sample:	L2206740-01	Client ID:	DUP Sample		
Nitrogen, Nitrate/Nitrite	ND	ND	mg/l	NC		20		
General Chemistry - Westborough Lab Associa	ted sample(s): 01-02 QC Bato	h ID: WG1603861-3	QC Sample:	L2206591-01	Client ID:	B1010		
Phenolics, Total	ND	ND	mg/l	NC		20		

Lab Duplicate Analysis Batch Quality Control

Project Name: MALDEN RGP **Project Number:** 01.0171094.40

Lab Number:

L2206591

Report Date:

02/14/22

Parameter	Native Sample	Duplicate Sample	Units RPI	RPD Limits
General Chemistry - Westborough Lab Associated s	ample(s): 02 QC Batch ID:	WG1604025-3 QC \$	Sample: L2200025-91	Client ID: DUP Sample
Nitrogen, Ammonia	0.245	0.230	mg/l 6	20
General Chemistry - Westborough Lab Associated s	ample(s): 01-02 QC Batch	ID: WG1604145-3 C	C Sample: L2206591	-02 Client ID: B16
Solids, Total Suspended	140	150	mg/l 7	29
General Chemistry - Westborough Lab Associated s	ample(s): 03 QC Batch ID:	WG1604217-2 QC S	Sample: L2206591-03	3 Client ID: SW-1
SALINITY	ND	ND	SU NC	
General Chemistry - Westborough Lab Associated s	ample(s): 02 QC Batch ID:	WG1604245-3 QC	Sample: L2206692-01	Client ID: DUP Sample
Nitrogen, Total Kjeldahl	3.03	3.38	mg/l 11	24

Project Name: MALDEN RGP Lab Number: L2206591 **Project Number:** 01.0171094.40

Report Date: 02/14/22

Sample Receipt and Container Information

Were project specific reporting limits specified?

YES

Cooler Information

Custody Seal Cooler

Α Absent В Absent

Container Info	ormation		Initial	Final	Temp			Frozen	
Container ID	Container Type	Cooler	рН	pН	deg C	Pres	Seal	Date/Time	Analysis(*)
L2206591-01A	Vial Na2S2O3 preserved	В	NA		2.8	Υ	Absent		624.1-RGP(7),624.1-SIM-RGP(7)
L2206591-01B	Vial Na2S2O3 preserved	В	NA		2.8	Υ	Absent		624.1-RGP(7),624.1-SIM-RGP(7)
L2206591-01C	Vial Na2S2O3 preserved	В	NA		2.8	Υ	Absent		624.1-RGP(7),624.1-SIM-RGP(7)
L2206591-01D	Vial Na2S2O3 preserved	В	NA		2.8	Υ	Absent		624.1-RGP(7),624.1-SIM-RGP(7)
L2206591-01E	Vial Na2S2O3 preserved	В	NA		2.8	Υ	Absent		624.1-RGP(7),624.1-SIM-RGP(7)
L2206591-01F	Vial Na2S2O3 preserved	В	NA		2.8	Υ	Absent		624.1-RGP(7),624.1-SIM-RGP(7)
L2206591-01G	Vial unpreserved	В	NA		2.8	Υ	Absent		SUB-ETHANOL(14)
L2206591-01H	Vial unpreserved	В	NA		2.8	Υ	Absent		SUB-ETHANOL(14)
L2206591-01I	Vial unpreserved	В	NA		2.8	Υ	Absent		SUB-ETHANOL(14)
L2206591-01J	Vial Na2S2O3 preserved	В	NA		2.8	Υ	Absent		504(14)
L2206591-01K	Vial Na2S2O3 preserved	В	NA		2.8	Υ	Absent		504(14)
L2206591-01L	Plastic 250ml HNO3 preserved	В	<2	<2	2.8	Y	Absent		CD-2008T(180),NI-2008T(180),ZN- 2008T(180),CU-2008T(180),HARDU(180),FE- UI(180),SE-2008T(180),HG-U(28),AS- 2008T(180),AG-2008T(180),PB- 2008T(180),CR-2008T(180),SB-2008T(180)
L2206591-01M	Plastic 250ml NaOH preserved	В	>12	>12	2.8	Υ	Absent		TCN-4500(14)
L2206591-01N	Plastic 500ml H2SO4 preserved	В	<2	<2	2.8	Υ	Absent		TKN-4500(28),NO3/NO2- 4500(28),TNITROGEN(28),NH3-4500(28)
L2206591-01O	Plastic 950ml unpreserved	В	7	7	2.8	Υ	Absent		CL-300(28),HEXCR-7196(1),TRC-4500(1)
L2206591-01P	Plastic 950ml unpreserved	В	7	7	2.8	Υ	Absent		TSS-2540(7)
L2206591-01Q	Amber 950ml H2SO4 preserved	В	<2	<2	2.8	Υ	Absent		TPHENOL-420(28)
L2206591-01R	Amber 1000ml Na2S2O3	В	7	7	2.8	Υ	Absent		625.1-RGP(7),625.1-SIM-RGP(7)
L2206591-01S	Amber 1000ml Na2S2O3	В	7	7	2.8	Υ	Absent		625.1-RGP(7),625.1-SIM-RGP(7)
L2206591-01T	Amber 1000ml Na2S2O3	В	7	7	2.8	Υ	Absent		625.1-RGP(7),625.1-SIM-RGP(7)

Lab Number: L2206591

Report Date: 02/14/22

Project Name: MALDEN RGP **Project Number:** 01.0171094.40

Container Info	ormation		Initial	Final	Temp			Frozen	
Container ID	Container Type	Cooler	рН	pН	deg C	Pres	Seal	Date/Time	Analysis(*)
L2206591-01U	Amber 1000ml Na2S2O3	В	7	7	2.8	Υ	Absent		PCB-608.3(365)
L2206591-01V	Amber 1000ml Na2S2O3	В	7	7	2.8	Υ	Absent		PCB-608.3(365)
L2206591-01W	Amber 1000ml Na2S2O3	В	7	7	2.8	Υ	Absent		PCB-608.3(365)
L2206591-01X	Amber 1000ml HCl preserved	В	NA		2.8	Υ	Absent		TPH-1664(28)
L2206591-01Y	Amber 1000ml HCl preserved	В	NA		2.8	Υ	Absent		TPH-1664(28)
L2206591-02A	Vial Na2S2O3 preserved	Α	NA		2.5	Υ	Absent		624.1-RGP(7),624.1-SIM-RGP(7)
L2206591-02B	Vial Na2S2O3 preserved	Α	NA		2.5	Υ	Absent		624.1-RGP(7),624.1-SIM-RGP(7)
L2206591-02C	Vial Na2S2O3 preserved	Α	NA		2.5	Υ	Absent		624.1-RGP(7),624.1-SIM-RGP(7)
L2206591-02D	Vial Na2S2O3 preserved	Α	NA		2.5	Υ	Absent		624.1-RGP(7),624.1-SIM-RGP(7)
L2206591-02E	Vial Na2S2O3 preserved	Α	NA		2.5	Υ	Absent		624.1-RGP(7),624.1-SIM-RGP(7)
L2206591-02F	Vial Na2S2O3 preserved	Α	NA		2.5	Υ	Absent		624.1-RGP(7),624.1-SIM-RGP(7)
L2206591-02G	Vial unpreserved	Α	NA		2.5	Υ	Absent		SUB-ETHANOL(14)
L2206591-02H	Vial unpreserved	Α	NA		2.5	Υ	Absent		SUB-ETHANOL(14)
L2206591-02I	Vial unpreserved	Α	NA		2.5	Υ	Absent		SUB-ETHANOL(14)
L2206591-02J	Vial Na2S2O3 preserved	Α	NA		2.5	Υ	Absent		504(14)
L2206591-02K	Vial Na2S2O3 preserved	Α	NA		2.5	Υ	Absent		504(14)
L2206591-02L	Plastic 250ml HNO3 preserved	Α	<2	<2	2.5	Y	Absent		CD-2008T(180),NI-2008T(180),ZN- 2008T(180),HARDU(180),FE-UI(180),CU- 2008T(180),HG-U(28),AG-2008T(180),SE- 2008T(180),AS-2008T(180),CR-2008T(180),PB- 2008T(180),SB-2008T(180)
L2206591-02M	Plastic 250ml NaOH preserved	Α	>12	>12	2.5	Υ	Absent		TCN-4500(14)
L2206591-02N	Plastic 500ml H2SO4 preserved	Α	<2	<2	2.5	Υ	Absent		TKN-4500(28),NO3/NO2- 4500(28),TNITROGEN(28),NH3-4500(28)
L2206591-02O	Plastic 950ml unpreserved	Α	7	7	2.5	Υ	Absent		CL-300(28),HEXCR-7196(1),TRC-4500(1)
L2206591-02P	Plastic 950ml unpreserved	Α	7	7	2.5	Υ	Absent		TSS-2540(7)
L2206591-02Q	Amber 950ml H2SO4 preserved	Α	<2	<2	2.5	Υ	Absent		TPHENOL-420(28)
L2206591-02R	Amber 1000ml Na2S2O3	Α	7	7	2.5	Υ	Absent		625.1-RGP(7),625.1-SIM-RGP(7)
L2206591-02S	Amber 1000ml Na2S2O3	Α	7	7	2.5	Υ	Absent		625.1-RGP(7),625.1-SIM-RGP(7)
L2206591-02T	Amber 1000ml Na2S2O3	Α	7	7	2.5	Υ	Absent		625.1-RGP(7),625.1-SIM-RGP(7)
L2206591-02U	Amber 1000ml Na2S2O3	Α	7	7	2.5	Υ	Absent		PCB-608.3(365)

Lab Number: L2206591

Report Date: 02/14/22

Project Name: MALDEN RGP **Project Number:** 01.0171094.40

Container Info	rmation		Initial	Final	Temp			Frozen	
Container ID	Container Type	Cooler	рН	pН	deg C	Pres	Seal	Date/Time	Analysis(*)
L2206591-02V	Amber 1000ml Na2S2O3	Α	7	7	2.5	Υ	Absent		PCB-608.3(365)
L2206591-02W	Amber 1000ml Na2S2O3	Α	7	7	2.5	Υ	Absent		PCB-608.3(365)
L2206591-02X	Amber 1000ml HCI preserved	Α	NA		2.5	Υ	Absent		TPH-1664(28)
L2206591-02Y	Amber 1000ml HCI preserved	Α	NA		2.5	Υ	Absent		TPH-1664(28)
L2206591-03A	Amber 120ml unpreserved	Α	7	7	2.5	Υ	Absent		SALINITY(28)
L2206591-03B	Plastic 250ml HNO3 preserved	A	<2	<2	2.5	Y	Absent		CD-2008T(180),NI-2008T(180),ZN- 2008T(180),HARDU(180),CU-2008T(180),FE- UI(180),HG-U(28),SE-2008T(180),AG- 2008T(180),AS-2008T(180),PB-2008T(180),CR- 2008T(180),SB-2008T(180)
L2206591-03C	Plastic 500ml H2SO4 preserved	Α	<2	<2	2.5	Υ	Absent		TKN-4500(28),NO3/NO2- 4500(28),TNITROGEN(28),NH3-4500(28)

Project Name:MALDEN RGPLab Number:L2206591Project Number:01.0171094.40Report Date:02/14/22

GLOSSARY

Acronyms

EPA

DL - Detection Limit: This value represents the level to which target analyte concentrations are reported as estimated values, when those target analyte concentrations are quantified below the limit of quantitation (LOQ). The DL includes any adjustments from dilutions, concentrations or moisture content, where applicable. (DoD report formats only.)

EDL - Estimated Detection Limit: This value represents the level to which target analyte concentrations a

- Estimated Detection Limit: This value represents the level to which target analyte concentrations are reported as estimated values, when those target analyte concentrations are quantified below the reporting limit (RL). The EDL includes any adjustments from dilutions, concentrations or moisture content, where applicable. The use of EDLs is specific to the analysis of PAHs using Solid Phase Microsystration (SPME)

of PAHs using Solid-Phase Microextraction (SPME).

EMPC - Estimated Maximum Possible Concentration: The concentration that results from the signal present at the retention time of an analyte when the ions meet all of the identification criteria except the ion abundance ratio criteria. An EMPC is a worst-case

estimate of the concentration.

LCS - Laboratory Control Sample: A sample matrix, free from the analytes of interest, spiked with verified known amounts of

analytes or a material containing known and verified amounts of analytes.

LCSD - Laboratory Control Sample Duplicate: Refer to LCS.

Environmental Protection Agency.

LFB - Laboratory Fortified Blank: A sample matrix, free from the analytes of interest, spiked with verified known amounts of

analytes or a material containing known and verified amounts of analytes.

LOD - Limit of Detection: This value represents the level to which a target analyte can reliably be detected for a specific analyte in a specific matrix by a specific method. The LOD includes any adjustments from dilutions, concentrations or moisture content,

where applicable. (DoD report formats only.)

LOQ - Limit of Quantitation: The value at which an instrument can accurately measure an analyte at a specific concentration. The LOQ includes any adjustments from dilutions, concentrations or moisture content, where applicable. (DoD report formats

only.)

Limit of Quantitation: The value at which an instrument can accurately measure an analyte at a specific concentration. The LOQ includes any adjustments from dilutions, concentrations or moisture content, where applicable. (DoD report formats

MDL - Method Detection Limit: This value represents the level to which target analyte concentrations are reported as estimated values, when those target analyte concentrations are quantified below the reporting limit (RL). The MDL includes any

adjustments from dilutions, concentrations or moisture content, where applicable.

MS - Matrix Spike Sample: A sample prepared by adding a known mass of target analyte to a specified amount of matrix sample for which an independent estimate of target analyte concentration is available. For Method 332.0, the spike recovery is calculated using the native concentration, including estimated values.

MSD - Matrix Spike Sample Duplicate: Refer to MS.

NA - Not Applicable.

NC - Not Calculated: Term is utilized when one or more of the results utilized in the calculation are non-detect at the parameter's

reporting unit.

NDPA/DPA - N-Nitrosodiphenylamine/Diphenylamine.

NI - Not Ignitable.

NP - Non-Plastic: Term is utilized for the analysis of Atterberg Limits in soil.

NR - No Results: Term is utilized when 'No Target Compounds Requested' is reported for the analysis of Volatile or Semivolatile

Organic TIC only requests.

RL - Reporting Limit: The value at which an instrument can accurately measure an analyte at a specific concentration. The RL

includes any adjustments from dilutions, concentrations or moisture content, where applicable.

RPD - Relative Percent Difference: The results from matrix and/or matrix spike duplicates are primarily designed to assess the precision of analytical results in a given matrix and are expressed as relative percent difference (RPD). Values which are less

than five times the reporting limit for any individual parameter are evaluated by utilizing the absolute difference between the values; although the RPD value will be provided in the report.

SRM - Standard Reference Material: A reference sample of a known or certified value that is of the same or similar matrix as the

associated field samples.

STLP - Semi-dynamic Tank Leaching Procedure per EPA Method 1315.

TEF - Toxic Equivalency Factors: The values assigned to each dioxin and furan to evaluate their toxicity relative to 2,3,7,8-TCDD.

TEQ - Toxic Equivalent: The measure of a sample's toxicity derived by multiplying each dioxin and furan by its corresponding TEF

and then summing the resulting values.

TIC - Tentatively Identified Compound: A compound that has been identified to be present and is not part of the target compound list (TCL) for the method and/or program. All TICs are qualitatively identified and reported as estimated concentrations.

Report Format: Data Usability Report

Project Name:MALDEN RGPLab Number:L2206591Project Number:01.0171094.40Report Date:02/14/22

Footnotes

1 - The reference for this analyte should be considered modified since this analyte is absent from the target analyte list of the original method.

Terms

Analytical Method: Both the document from which the method originates and the analytical reference method. (Example: EPA 8260B is shown as 1,8260B.) The codes for the reference method documents are provided in the References section of the Addendum.

Difference: With respect to Total Oxidizable Precursor (TOP) Assay analysis, the difference is defined as the Post-Treatment value minus the Pre-Treatment value.

Final pH: As it pertains to Sample Receipt & Container Information section of the report, Final pH reflects pH of container determined after adjustment at the laboratory, if applicable. If no adjustment required, value reflects Initial pH.

Frozen Date/Time: With respect to Volatile Organics in soil, Frozen Date/Time reflects the date/time at which associated Reagent Water-preserved vials were initially frozen. Note: If frozen date/time is beyond 48 hours from sample collection, value will be reflected in 'bold'.

Initial pH: As it pertains to Sample Receipt & Container Information section of the report, Initial pH reflects pH of container determined upon receipt, if applicable.

PAH Total: With respect to Alkylated PAH analyses, the 'PAHs, Total' result is defined as the summation of results for all or a subset of the following compounds: Naphthalene, C1-C4 Naphthalenes, 2-Methylnaphthalene, 1-Methylnaphthalene, Biphenyl, Acenaphthylene, Acenaphthene, Fluorene, C1-C3 Fluorenes, Phenanthrene, C1-C4 Phenanthrenes/Anthracenes, Anthracene, Fluoranthene, Pyrene, C1-C4 Fluoranthenes/Pyrenes, Benz(a)anthracene, Chrysene, C1-C4 Chrysenes, Benzo(b)fluoranthene, Benzo(j)+(k)fluoranthene, Benzo(e)pyrene, Benzo(a)pyrene, Perylene, Indeno(1,2,3-cd)pyrene, Dibenz(ah)+(ac)anthracene, Benzo(g,h,i)perylene. If a 'Total' result is requested, the results of its individual components will also be reported.

PFAS Total: With respect to PFAS analyses, the 'PFAS, Total (5)' result is defined as the summation of results for: PFHpA, PFHxS, PFOA, PFNA and PFOS. In addition, the 'PFAS, Total (6)' result is defined as the summation of results for: PFHpA, PFHxS, PFOA, PFNA, PFDA and PFOS. For MassDEP DW compliance analysis only, the 'PFAS, Total (6)' result is defined as the summation of results at or above the RL. Note: If a 'Total' result is requested, the results of its individual components will also be reported.

The target compound Chlordane (CAS No. 57-74-9) is reported for GC ECD analyses. Per EPA, this compound "refers to a mixture of chlordane isomers, other chlorinated hydrocarbons and numerous other components." (Reference: USEPA Toxicological Review of Chlordane, In Support of Summary Information on the Integrated Risk Information System (IRIS), December 1997.)

Total: With respect to Organic analyses, a 'Total' result is defined as the summation of results for individual isomers or Aroclors. If a 'Total' result is requested, the results of its individual components will also be reported. This is applicable to 'Total' results for methods 8260, 8081 and 8082.

Data Qualifiers

- A -Spectra identified as "Aldol Condensates" are byproducts of the extraction/concentration procedures when acetone is introduced in the process.
- The analyte was detected above the reporting limit in the associated method blank. Flag only applies to associated field samples that have detectable concentrations of the analyte at less than ten times (10x) the concentration found in the blank. For MCP-related projects, flag only applies to associated field samples that have detectable concentrations of the analyte at less than ten times (10x) the concentration found in the blank. For DOD-related projects, flag only applies to associated field samples that have detectable concentrations of the analyte at less than ten times (10x) the concentration found in the blank AND the analyte was detected above one-half the reporting limit (or above the reporting limit for common lab contaminants) in the associated method blank. For NJ-Air-related projects, flag only applies to associated field samples that have detectable concentrations of the analyte above the reporting limit. For NJ-related projects (excluding Air), flag only applies to associated field samples that have detectable concentrations of the analyte, which was detected above the reporting limit in the associated method blank or above five times the reporting limit for common lab contaminants (Phthalates, Acetone, Methylene Chloride, 2-Butanone).
- Co-elution: The target analyte co-elutes with a known lab standard (i.e. surrogate, internal standards, etc.) for co-extracted analyses.
- Concentration of analyte was quantified from diluted analysis. Flag only applies to field samples that have detectable concentrations of the analyte.
- E Concentration of analyte exceeds the range of the calibration curve and/or linear range of the instrument.
- F The ratio of quantifier ion response to qualifier ion response falls outside of the laboratory criteria. Results are considered to be an estimated maximum concentration.
- G The concentration may be biased high due to matrix interferences (i.e, co-elution) with non-target compound(s). The result should be considered estimated.
- H The analysis of pH was performed beyond the regulatory-required holding time of 15 minutes from the time of sample collection.
- I The lower value for the two columns has been reported due to obvious interference.
- J Estimated value. This represents an estimated concentration for Tentatively Identified Compounds (TICs).
- M Reporting Limit (RL) exceeds the MCP CAM Reporting Limit for this analyte.
- **ND** Not detected at the reporting limit (RL) for the sample.
- NJ Presumptive evidence of compound. This represents an estimated concentration for Tentatively Identified Compounds (TICs), where

Report Format: Data Usability Report

 Project Name:
 MALDEN RGP
 Lab Number:
 L2206591

 Project Number:
 01.0171094.40
 Report Date:
 02/14/22

Data Qualifiers

the identification is based on a mass spectral library search.

- P The RPD between the results for the two columns exceeds the method-specified criteria.
- Q The quality control sample exceeds the associated acceptance criteria. For DOD-related projects, LCS and/or Continuing Calibration Standard exceedences are also qualified on all associated sample results. Note: This flag is not applicable for matrix spike recoveries when the sample concentration is greater than 4x the spike added or for batch duplicate RPD when the sample concentrations are less than 5x the RL. (Metals only.)
- **R** Analytical results are from sample re-analysis.
- **RE** Analytical results are from sample re-extraction.
- S Analytical results are from modified screening analysis.
- The surrogate associated with this target analyte has a recovery outside the QC acceptance limits. (Applicable to MassDEP DW Compliance samples only.)
- Z The batch matrix spike and/or duplicate associated with this target analyte has a recovery/RPD outside the QC acceptance limits. (Applicable to MassDEP DW Compliance samples only.)

Report Format: Data Usability Report

 Project Name:
 MALDEN RGP
 Lab Number:
 L2206591

 Project Number:
 01.0171094.40
 Report Date:
 02/14/22

REFERENCES

- Test Methods for Evaluating Solid Waste: Physical/Chemical Methods. EPA SW-846. Third Edition. Updates I VI, 2018.
- Methods for the Determination of Metals in Environmental Samples, Supplement I. EPA/600/R-94/111. May 1994.
- 4 Methods for Chemical Analysis of Water and Wastes. EPA 600/4-79-020. Revised March 1983.
- Methods for the Determination of Organic Compounds in Finished Drinking Water and Raw Source Water. EPA/600/4-88/039, Revised July 1991.
- 19 Inductively Coupled Plasma Atomic Emission Spectrometric Method for Trace Element Analysis of Water and Wastes. Appendix C, Part 136, 40 CFR (Code of Federal Regulations). July 1, 1999 edition.
- Methods for the Determination of Inorganic Substances in Environmental Samples, EPA/600/R-93/100, August 1993.
- 107 Alpha Analytical In-house calculation method.
- 121 Standard Methods for the Examination of Water and Wastewater. APHA-AWWA-WEF. Standard Methods Online.
- Method 608.3: Organochlorine Pesticides and PCBs by GC/HSD, EPA 821-R-16-009, December 2016.
- 128 Method 624.1: Purgeables by GC/MS, EPA 821-R-16-008, December 2016.
- Method 625.1: Base/Neutrals and Acids by GC/MS, EPA 821-R-16-007, December 2016.
- Method 1664, Revision B: N-Hexane Extractable Material (HEM; Oil & Grease) and Silica Gel Treated N-Hexane Extractable Material (SGT-HEM; Non-polar Material) by Extraction and Gravimetry, EPA-821-R-10-001, February 2010.

LIMITATION OF LIABILITIES

Alpha Analytical performs services with reasonable care and diligence normal to the analytical testing laboratory industry. In the event of an error, the sole and exclusive responsibility of Alpha Analytical shall be to re-perform the work at it's own expense. In no event shall Alpha Analytical be held liable for any incidental, consequential or special damages, including but not limited to, damages in any way connected with the use of, interpretation of, information or analysis provided by Alpha Analytical.

We strongly urge our clients to comply with EPA protocol regarding sample volume, preservation, cooling, containers, sampling procedures, holding time and splitting of samples in the field.

Alpha Analytical, Inc. Facility: Company-wide

Department: Quality Assurance

Title: Certificate/Approval Program Summary

Revision 19 Published Date: 4/2/2021 1:14:23 PM

ID No.:17873

Page 1 of 1

Certification Information

The following analytes are not included in our Primary NELAP Scope of Accreditation:

Westborough Facility

EPA 624/624.1: m/p-xylene, o-xylene, Naphthalene

EPA 625/625.1: alpha-Terpineol

EPA 8260C/8260D: NPW: 1,2,4,5-Tetramethylbenzene; 4-Ethyltoluene, Azobenzene; SCM: Iodomethane (methyl iodide), 1,2,4,5-Tetramethylbenzene;

EPA 8270D/8270E: NPW: Dimethylnaphthalene,1,4-Diphenylhydrazine, alpha-Terpineol; SCM: Dimethylnaphthalene,1,4-Diphenylhydrazine.

SM4500: NPW: Amenable Cyanide; SCM: Total Phosphorus, TKN, NO2, NO3.

Mansfield Facility

SM 2540D: TSS

EPA 8082A: NPW: PCB: 1, 5, 31, 87,101, 110, 141, 151, 153, 180, 183, 187.

EPA TO-15: Halothane, 2,4,4-Trimethyl-2-pentene, 2,4,4-Trimethyl-1-pentene, Thiophene, 2-Methylthiophene,

3-Methylthiophene, 2-Ethylthiophene, 1,2,3-Trimethylbenzene, Indan, Indene, 1,2,4,5-Tetramethylbenzene, Benzothiophene, 1-Methylnaphthalene.

Biological Tissue Matrix: EPA 3050B

The following analytes are included in our Massachusetts DEP Scope of Accreditation

Westborough Facility:

Drinking Water

EPA 300.0: Chloride, Nitrate-N, Fluoride, Sulfate; EPA 353.2: Nitrate-N, Nitrite-N; SM4500NO3-F: Nitrate-N, Nitrite-N; SM4500F-C, SM4500CN-CE,

EPA 180.1, SM2130B, SM4500CI-D, SM2320B, SM2540C, SM4500H-B, SM4500NO2-B

EPA 332: Perchlorate; EPA 524.2: THMs and VOCs; EPA 504.1: EDB, DBCP.

Microbiology: SM9215B; SM9223-P/A, SM9223B-Colilert-QT,SM9222D.

Non-Potable Water

SM4500H,B, EPA 120.1, SM2510B, SM2540C, SM2320B, SM4500CL-E, SM4500F-BC, SM4500NH3-BH: Ammonia-N and Kjeldahl-N, EPA 350.1: Ammonia-N, LACHAT 10-107-06-1-B: Ammonia-N, EPA 351.1, SM4500NO3-F, EPA 353.2: Nitrate-N, SM4500P-E, SM4500P-B, E, SM4500SO4-E, SM5220D, EPA 410.4, SM5210B, SM5310C, SM4500CL-D, EPA 1664, EPA 420.1, SM4500-CN-CE, SM2540D, EPA 300: Chloride, Sulfate, Nitrate. EPA 624.1: Volatile Halocarbons & Aromatics,

EPA 608.3: Chlordane, Toxaphene, Aldrin, alpha-BHC, beta-BHC, gamma-BHC, delta-BHC, Dieldrin, DDD, DDE, DDT, Endosulfan II, Endosulfan II, Endosulfan sulfate, Endrin, Endrin Aldehyde, Heptachlor, Heptachlor Epoxide, PCBs

EPA 625.1: SVOC (Acid/Base/Neutral Extractables), EPA 600/4-81-045: PCB-Oil.

Microbiology: SM9223B-Colilert-QT; Enterolert-QT, SM9221E, EPA 1600, EPA 1603, SM9222D.

Mansfield Facility:

Drinking Water

EPA 200.7: Al, Ba, Cd, Cr, Cu, Fe, Mn, Ni, Na, Ag, Ca, Zn. EPA 200.8: Al, Sb, As, Ba, Be, Cd, Cr, Cu, Pb, Mn, Ni, Se, Ag, TL, Zn. EPA 245.1 Hg. EPA 522, EPA 537.1.

Non-Potable Water

EPA 200.7: Al, Sb, As, Be, Cd, Ca, Cr, Co, Cu, Fe, Pb, Mg, Mn, Mo, Ni, K, Se, Ag, Na, Sr, TL, Ti, V, Zn.

EPA 200.8: Al, Sb, As, Be, Cd, Cr, Cu, Fe, Pb, Mn, Ni, K, Se, Ag, Na, TL, Zn.

EPA 245.1 Hg

SM2340B

For a complete listing of analytes and methods, please contact your Alpha Project Manager.

Document Type: Form

Pre-Qualtrax Document ID: 08-113

M	CHAIN OF	CUSTO	DY	PAGE 1 OF	2	Date	Rec'd i	n Lab:	21	81	23)		ALPI	HA Jo	ob #:	La	206591
AL PHÁ	<u> </u>	Decinet Infor	mation	- 4		-		form	-	-	Deliv	erab				orma		
ANALYTIC		Project Infor	mation							⊠ E				☐ Sa	ame as	Client	info	PO #:
World Class Chemist	(4)				4.5	× ×	ADEx			⊠ A	dd'I Del	liverabl	es	7 8	EQ.	15	62	+ 8200
TEL: 508-898-9220	Mansfield, MA (EL: 508-822-9300 FAX: 508-822-3288	Project Name:	Malden RGP			100000000000000000000000000000000000000		ry Re	quire	ment	s/Rep	ort L	imits	Criteri	W.I			
Client Information	100000000000000000000000000000000000000	Project Locatio	n: 100 comme	ercial street N	/lalden	RGP												
Client: GZA		Project #: 01.0	171094.40			_			200	E CE	75000000	ON CALL PARTY	STOC NOW YOU	COLUMN TRAVELLE	20010000000	225-Marco.	NFID	ENCE PROTOCOLS
Address: 249 Vand	erhilt Ave	Project Manage	er:			Y			No No		ALCOHOLOGY AND ADDRESS OF THE PARTY OF THE P	-	alytical (Reas		ALCOHOL: NAME OF STREET		rotocols) Required?
Norwood Ma. 0206		ALPHA Quote					ALYS		1 140	_	no c	11101	111000	or in orio	-			T
Phone: 781-983-13		Turn-Around	Sales .			7.11.0								Σ			list	SAMPLE HANDLING TA
Fax:		Standard	CONTRACTOR OF	sh (ONLY IF PR	E-APPROVED)				**			420.1	56	EPA 8270-SIM			- see li	□ Done □ Not Needed #
Email: william.davis	@gza.com							4	335.4	T.	-	thod	25.1	A 8	m	300	Metals	☐ Lab to do
☐ These samples have	been Previously analyzed by Alpha	Due Date: 4-da	y Time:			_	공	1664	Method 335	1 624.1	504	Me	9 po	y EF	1 608	Method	& Me	Preservation Lab to do
See attached RGP Metals (Antimony,	ecific Requirements/Comme list, surface water at outfall in N Arsenic, Cadmium, Chromium I ilver, Zinc and Iron) by EPA Me	falden River, HexCr I and VI, Copper, Le	hold time ad, Mercury,			TSS by Method 2540D	r 3, TRC-4500,	TPH by EPA method 1664A	oy EPA	s by EPA method	by EPA Method 504.1	Total Phenols by EPA Method 420.1	SVOCs by EPA Method 625.1	PAHS, PCP, BEHP by	s by EPA Method 608	by EPA	Hardness by 3005A	below) E
ALPHA Lab ID	Sample ID	Col	lection	Sample	Sampler's	SS	HexCr	표	Cyanide	VOCs by	EDB	otal	0,0	PAH	PCBs by	Chloride	Hard	Sample Specific
(Lab Use Only)	10. White WAY (10.00)	Date	Time	Matrix	Initials	- 17	-				-							
06591-01	B1010	2/8/22	12:15	GW	JAI	\boxtimes		\boxtimes	\boxtimes	\boxtimes	\boxtimes	\boxtimes	\boxtimes		\boxtimes	\boxtimes	\boxtimes	2
02	B16	2/8/22	10:45	GW	JAI		\boxtimes	\boxtimes	\boxtimes	M		\boxtimes	\boxtimes		\boxtimes	×		2
			379.26			Щ			닏	브	님	님	ᆜ	무	님	H	片	- 85
					-	H		H	님	片	H	무	H	님	片	H	님	
						H	H	님	Η	H	Η	౼		님	片	H	H	
						-		H		님	님			H	님	片	금	
			-		-	14-			님	님	금	H		7	H	片	H	
						H	H	H	H	H	H	H		ī	H	I	F	
	OUESTISMS ABOVE			-	eteless Tues	-	-	-		-		-						
PLEASE ANSWER	QUESTIONS ABOVE!			- 00	Preservative		-				3		*					Please print clearly, legibly and completely. Samples or
	PROJECT or CT RCP?	dot	Reline YN //	quished By:	A .	3/4/		60	in	K.	Receiv	ped By:	flux #	H	_	Date/Tir		not be logged in and turnaround time clock will no start until any ambiguities ar resolved. All samples submitted are subject to Alpha's Payment Terms.

Page 70 of 83

	CHAIN OF	CUSTO	DY	PAGE 2 OF	2	Date	Rec'd i	n Lab:	2	18	120)		ALP	HA J	ob #:	L	220659	1
ALPH	4	Project Infor	mation			Rep	ort In	form	ation	Data	Deliv	erab	les	Billir	ng Inf	forma	tion		
World Clase Chemistry			Project mormation				☐ FAX ☐ EMAIL ☐ Add'I Deliverables						□ s	ame as	Client	info	PO#:		
												es	EQUIS GZA EZEDD						
Westborough, MA Mansfield, MA TEL: 508-898-9220 TEL: 508-822-9300 FAX: 508-898-9193 FAX: 508-822-3288		Project Name: Malden RGP				Regulatory Requirements/Report Limits State/Fed Program Criteria													
Client Informati	on	Project Location	n: 100 comm	ercial street f	Malden														
Client: GZA		Project #: 171094				MCP PRESUMPTIVE CERTAINTY-CT REASONABLE CONFIDENCE PROT							ENCE PROTOCO	LS					
Address: 249 Vanderbilt Ave.		Project Manager:								_	asonable Confidence Protocols) Required?				s) Required?				
Norwood Ma. 0206		ALPHA Quote #:				ANALYSIS										DAGGER STEN COMPONENTS	TO		
Phone: 781-983-1	357	Turn-Around Time				-											SAMPLE HANDLING Filtration	TOTAL	
Fax:		☐ Standard ☐ Rush (ONLY IF PRE-APPROVED)			1200								□ Do			☐ Done			
Email: william.davi	s@gza.com					SM-4								4 1 1			☐ Not Needed ☐ Lab to do	B	
	been Previously analyzed by Alpha	Due Date: 4-da	y Time:			by S	AS S						6	1				Preservation Lab to do	0
Other Project Specific Requirements/Comments/ See attached RGP list, surface water at outfall in Malde Metals (Antimony, Arsenic, Cadmium, Chromium III and		lalden River, HexCr	den River, HexCr hold time			Nitroger	s by 300											(Please specify below)	LES
Nickel, Selenium, 7196A	Silver, Zinc and Iron) by EPA Me	thod 7000, 6010, 60	20, 7470 or			Ammonia and Nitrogen by SM-4500	Total Hardness by 3005A												
ALPHA Lab ID (Lab Use Only)	Sample ID	Col	lection Time	Sample Matrix	Sampler's Initials	Am	Tot											Sample Specific Comments	
-01 -0	Tana		- 007056 J	7/50/00/00	200000000	57		П		П		П	П	П	П	П	П		3
06591-03	SW-1	2/8/22	9:45	SW	JAI			H	H	H	H	Ħ	H	H	H	Ħ	Ħ		
						Ħ	H	H	H	H	H	Ħ		T	Ħ		1		
						t E	ī			ī									
			-																
POUT LE LINE OF ST																			
			99																
PLEASE ANSWER QUESTIONS ABOVE! IS YOUR PROJECT MA MCP or CT RCP? FORM NO. 01-01(1) (NYL 5-JAN-12)		Co	Container Type			*		•	3	2	2					Please print clearly, legibly			
		quished By:	Preservative quished By:			ر م	h	Received By:			Plum	DAL OF			me 630	and completely. Samples car not be logged in and turnarround time clock will not start until any ambiguities are resolved. All samples submitted are subject to Alpha's Payment Terms.			

Page 71 of 83

ANALY)	and the same	I	Subcontro k Lab, Inc. 45 Horsehoe Ilinsville, IL 6	Lake Road 2234-7425	У	Alpha Job L2206591	Number		
Client: Alpha A Address: Eight W Westbo Phone: 716.42 Email: jbyrnes	nalytical Labs /alkup Drive rough, MA 01581-1019 7.5228 @alphalab.com Reference following Alpha Job	Due Date Deliverables: Project Specif Number on final repor	n: MA er: Jennifer By ound & Deliv : 02/11/22 (Re ic Requirem t/deliverables	verables Information USH) ents and/or Report Red : L2206591	State/Federal Program Regulatory Criteria: quirements Report to include Method Bla				
Lab ID	nents: Send all results/reports Client ID	Collection Date/Time	Sample Matrix	S: Rush by 02/14 at the la			Batch QC		
	B1010 B16	02-08-22 12:15 02-08-22 10:45	WATER	Ethanol by EPA 1671 Revision Ethanol by EPA 1671 Revision	A				
	Relinquishe	ed By:		Date/Time:	Received By:	Date/Time:			
Form No: AL_sul	осос								

http://www.teklabinc.com/

February 10, 2022

Jennifer Byrnes

Alpha Analytical

Illinois 100226

Kansas E-10374

Louisiana 05002

145 Flanders Road
Westborough, MA 01581

Louisiana 05003
Oklahoma 9978

TEL: (716) 427-5228

FAX:

RE: L2206591 **WorkOrder:** 22020567

Dear Jennifer Byrnes:

TEKLAB, INC received 2 samples on 2/10/2022 9:45:00 AM for the analysis presented in the following report.

Samples are analyzed on an as received basis unless otherwise requested and documented. The sample results contained in this report relate only to the requested analytes of interest as directed on the chain of custody. NELAP accredited fields of testing are indicated by the letters NELAP under the Certification column. Unless otherwise documented within this report, Teklab Inc. analyzes samples utilizing the most current methods in compliance with 40CFR. All tests are performed in the Collinsville, IL laboratory unless otherwise noted in the Case Narrative.

All quality control criteria applicable to the test methods employed for this project have been satisfactorily met and are in accordance with NELAP except where noted. The following report shall not be reproduced, except in full, without the written approval of Teklab, Inc.

If you have any questions regarding these tests results, please feel free to call.

Sincerely,

Marvin L. Darling Project Manager (618)344-1004 ex 41 mdarling@teklabinc.com

Report Contents

http://www.teklabinc.com/

Client: Alpha Analytical	Work Order: 22020567
Client Project: L2206591	Report Date: 10-Feb-22

This reporting package includes the following:

Cover Letter	1
Report Contents	2
Definitions	3
Case Narrative	5
Accreditations	6
Laboratory Results	7
Quality Control Results	9
Receiving Check List	10
Chain of Custody	Appended

Definitions

http://www.teklabinc.com/

Client: Alpha Analytical Work Order: 22020567

Client Project: L2206591 Report Date: 10-Feb-22

Abbr Definition

- * Analytes on report marked with an asterisk are not NELAP accredited
- CCV Continuing calibration verification is a check of a standard to determine the state of calibration of an instrument between recalibration.
- CRQL A Client Requested Quantitation Limit is a reporting limit that varies according to customer request. The CRQL may not be less than the MDL.
 - DF Dilution factor is the dilution performed during analysis only and does not take into account any dilutions made during sample preparation. The reported result is final and includes all dilution factors.
 - DNI Did not ignite
- DUP Laboratory duplicate is a replicate aliquot prepared under the same laboratory conditions and independently analyzed to obtain a measure of precision.
- ICV Initial calibration verification is a check of a standard to determine the state of calibration of an instrument before sample analysis is initiated.
- IDPH IL Dept. of Public Health
- LCS Laboratory control sample is a sample matrix, free from the analytes of interest, spiked with verified known amounts of analytes and analyzed exactly like a sample to establish intra-laboratory or analyst specific precision and bias or to assess the performance of all or a portion of the measurement system.
- LCSD Laboratory control sample duplicate is a replicate laboratory control sample that is prepared and analyzed in order to determine the precision of the approved test method. The acceptable recovery range is listed in the QC Package (provided upon request).
- MBLK Method blank is a sample of a matrix similar to the batch of associated sample (when available) that is free from the analytes of interest and is processed simultaneously with and under the same conditions as samples through all steps of the analytical procedures, and in which no target analytes or interferences should present at concentrations that impact the analytical results for sample analyses.
- MDL "The method detection limit is defined as the minimum measured concentration of a substance that can be reported with 99% confidence that the measured concentration is distinguishable from method blank results."
- MS Matrix spike is an aliquot of matrix fortified (spiked) with known quantities of specific analytes that is subjected to the entire analytical procedures in order to determine the effect of the matrix on an approved test method's recovery system. The acceptable recovery range is listed in the QC Package (provided upon request).
- MSD Matrix spike duplicate means a replicate matrix spike that is prepared and analyzed in order to determine the precision of the approved test method. The acceptable recovery range is listed in the QC Package (provided upon request).
- MW Molecular weight
- NC Data is not acceptable for compliance purposes
- ND Not Detected at the Reporting Limit
- NELAP NELAP Accredited
 - PQL Practical quantitation limit means the lowest level that can be reliably achieved within specified limits of precision and accuracy during routine laboratory operation conditions.
 - RL The reporting limit the lowest level that the data is displayed in the final report. The reporting limit may vary according to customer request or sample dilution. The reporting limit may not be less than the MDL.
 - RPD Relative percent difference is a calculated difference between two recoveries (ie. MS/MSD). The acceptable recovery limit is listed in the QC Package (provided upon request).
 - SPK The spike is a known mass of target analyte added to a blank sample or sub-sample; used to determine recovery deficiency or for other quality control purposes.
 - Surr Surrogates are compounds which are similar to the analytes of interest in chemical composition and behavior in the analytical process, but which are not normally found in environmental samples.
 - TIC Tentatively identified compound: Analytes tentatively identified in the sample by using a library search. Only results not in the calibration standard will be reported as tentatively identified compounds. Results for tentatively identified compounds that are not present in the calibration standard, but are assigned a specific chemical name based upon the library search, are calculated using total peak areas from reconstructed ion chromatograms and a response factor of one. The nearest Internal Standard is used for the calculation. The results of any TICs must be considered estimated, and are flagged with a "T". If the estimated result is above the calibration range it is flagged "ET"
- TNTC Too numerous to count (> 200 CFU)

Definitions

http://www.teklabinc.com/

Client: Alpha Analytical Work Order: 22020567
Client Project: L2206591 Report Date: 10-Feb-22

Qualifiers

- # Unknown hydrocarbon
- C RL shown is a Client Requested Quantitation Limit
- H Holding times exceeded
- J Analyte detected below quantitation limits
- ND Not Detected at the Reporting Limit
 - S Spike Recovery outside recovery limits
 - X Value exceeds Maximum Contaminant Level

- B Analyte detected in associated Method Blank
- E Value above quantitation range
- I Associated internal standard was outside method criteria
- M Manual Integration used to determine area response
- R RPD outside accepted recovery limits
- T TIC(Tentatively identified compound)

Case Narrative

http://www.teklabinc.com/

Client: Alpha Analytical Work Order: 22020567
Client Project: L2206591 Report Date: 10-Feb-22

Cooler Receipt Temp: 2.4 °C

Locations

	Collinsville	_	Springfield		Kansas City
Address	5445 Horseshoe Lake Road	Address	3920 Pintail Dr	Address	8421 Nieman Road
	Collinsville, IL 62234-7425		Springfield, IL 62711-9415		Lenexa, KS 66214
Phone	(618) 344-1004	Phone	(217) 698-1004	Phone	(913) 541-1998
Fax	(618) 344-1005	Fax	(217) 698-1005	Fax	(913) 541-1998
Email	jhriley@teklabinc.com	Email	KKlostermann@teklabinc.com	Email	jhriley@teklabinc.com
	Collinsville Air	_	Chicago		
Address	5445 Horseshoe Lake Road	Address	1319 Butterfield Rd.		
	Collinsville, IL 62234-7425		Downers Grove, IL 60515		
Phone	(618) 344-1004	Phone	(630) 324-6855		
Fax	(618) 344-1005	Fax			
Email	EHurley@teklabinc.com	Email	arenner@teklabinc.com		

Accreditations

http://www.teklabinc.com/

Client: Alpha Analytical Work Order: 22020567

Client Project: L2206591 Report Date: 10-Feb-22

State	Dept	Cert #	NELAP	Exp Date	Lab
Illinois	IEPA	100226	NELAP	1/31/2023	Collinsville
Kansas	KDHE	E-10374	NELAP	4/30/2022	Collinsville
Louisiana	LDEQ	05002	NELAP	6/30/2022	Collinsville
Louisiana	LDEQ	05003	NELAP	6/30/2022	Collinsville
Oklahoma	ODEQ	9978	NELAP	8/31/2022	Collinsville
Arkansas	ADEQ	88-0966		3/14/2022	Collinsville
Illinois	IDPH	17584		5/31/2023	Collinsville
Kentucky	UST	0073		1/31/2023	Collinsville
Missouri	MDNR	00930		5/31/2023	Collinsville
Missouri	MDNR	930		1/31/2025	Collinsville

Laboratory Results

http://www.teklabinc.com/

Client: Alpha Analytical Work Order: 22020567

Client Project: L2206591 Report Date: 10-Feb-22

Lab ID: 22020567-001 Client Sample ID: B1010

Matrix: AQUEOUS Collection Date: 02/08/2022 12:15

	Analyses	Certification	RL Qual	Result	Units	DF	Date Analyzed Batch
EPA 600 1	671A, PHARMAC	EUTICAL MANUFACTI	JRING INDUSTRY N	ON-PURGEA	BLE VOLAT	ΓILE ORGA	NICS
Ethanol		*	20	ND	mg/L	1	02/10/2022 12:40 R306928

Laboratory Results

http://www.teklabinc.com/

Client: Alpha Analytical Work Order: 22020567

Client Project: L2206591 Report Date: 10-Feb-22

Lab ID: 22020567-002 Client Sample ID: B16

Matrix: AQUEOUS Collection Date: 02/08/2022 10:45

Analyses	Certification	RL Qu	al Result	Units	DF	Date Analyzed Batch	
EPA 600 1671A, PHARMACEUTICAL MANUFACTURING INDUSTRY NON-PURGEABLE VOLATILE ORGANICS							
Ethanol	*	20	ND	mg/L	1	02/10/2022 13:17 R306928	

Quality Control Results

http://www.teklabinc.com/

Client: Alpha Analytical Work Order: 22020567

Client Project: L2206591 Report Date: 10-Feb-22

EPA 600 1671A, PH	IARMACEL	JTICAL M.	ANUF	ACTURING	INDUSTR	Y NON-PUR	SEABLE VOI	ATILE	OR		
Batch R306928	SampType:	MBLK		Units mg/L							
SampID: MBLK-0210	22										Date
Analyses		Cert	RL	Qual	Result	Spike	SPK Ref Val	%REC	Low Limit	High Limit	Analyzed
Ethanol		*	20		ND						02/10/2022
Batch R306928	SampType:	LCS		Units mg/L							
SamplD: LCS-021022	2										Date
Analyses		Cert	RL	Qual	Result	Spike	SPK Ref Val	%REC	Low Limit	High Limit	Analyzed
Ethanol		*	20		300	250.0	0	119.0	70	132	02/10/2022
Batch R306928	SampType:	MS		Units mg/L							
SampID: 22020243-0	01AMS										Date
Analyses		Cert	RL	Qual	Result	Spike	SPK Ref Val	%REC	Low Limit	High Limit	Analyzed
Ethanol		*	20		310	250.0	0	125.9	70	132	02/10/2022
Batch R306928	SampType:	MSD		Units mg/L					RPD Lir	nit: 30	
SampID: 22020243-0	01AMSD										Date
Analyses		Cert	RL	Qual	Result	Spike	SPK Ref Val	%REC	RPD Ref V	al %RPD	Analyzed
Ethanol		*	20		320	250.0	0	126.3	314.7	0.36	02/10/2022

Receiving Check List

http://www.teklabinc.com/

Client: Alpha Analytical Client Project: L2206591 Work Order: 22020567 Report Date: 10-Feb-22									
Carrier: UPS Received By: PWR Completed by: On: On: 10-Feb-22 Mary E. Kemp Reviewed by: On: 10-Feb-22 Elizabeth A. Hurley									
Pages to follow: Chain of custody 1	Extra pages included	d 0							
Shipping container/cooler in good condition?	Yes 🗹	No 🗌	Not Present	Temp °C 2.4					
Type of thermal preservation?	None \square	Ice 🗹	Blue Ice	Dry Ice					
Chain of custody present?	Yes 👱	No 🖳							
Chain of custody signed when relinquished and received?	Yes 🗸	No 🗌							
Chain of custody agrees with sample labels?	Yes 🗹	No 🗌							
Samples in proper container/bottle?	Yes 🗹	No 🗌							
Sample containers intact?	Yes 🗹	No 🗌							
Sufficient sample volume for indicated test?	Yes 🗹	No 🗌							
All samples received within holding time?	Yes 🗹	No 🗌							
Reported field parameters measured:	Field	Lab \square	NA 🗸						
Container/Temp Blank temperature in compliance?	Yes 🗹	No 🗌							
When thermal preservation is required, samples are complian 0.1°C - 6.0°C, or when samples are received on ice the same	,	between							
Water – at least one vial per sample has zero headspace?	Yes 🗸	No 🗌	No VOA vials						
Water - TOX containers have zero headspace?	Yes	No 🗌	No TOX containers						
Water - pH acceptable upon receipt?	Yes 🗹	No 🗌	NA 🗌						
NPDES/CWA TCN interferences checked/treated in the field?	Yes	No 🗌	NA 🗹						
Any No responses n	nust be detailed bel	ow or on the	coc.						

ANALYTICAL REPORT

Lab Number: L2206740

Client: GZA GeoEnvironmental, Inc.

249 Vanderbilt Ave Norwood, MA 02062

ATTN: Bill Davis

Phone: (781) 278-5769

Project Name: MALDEN RGP

Project Number: 01.0171094.32

Report Date: 02/15/22

The original project report/data package is held by Alpha Analytical. This report/data package is paginated and should be reproduced only in its entirety. Alpha Analytical holds no responsibility for results and/or data that are not consistent with the original.

Certifications & Approvals: MA (M-MA086), NH NELAP (2064), CT (PH-0574), IL (200077), ME (MA00086), MD (348), NJ (MA935), NY (11148), NC (25700/666), PA (68-03671), RI (LAO00065), TX (T104704476), VT (VT-0935), VA (460195), USDA (Permit #P330-17-00196).

Eight Walkup Drive, Westborough, MA 01581-1019 508-898-9220 (Fax) 508-898-9193 800-624-9220 - www.alphalab.com

Project Name: MALDEN RGP **Project Number:** 01.0171094.32

Lab Number: L2206740 **Report Date:** 02/15/22

Alpha Sample ID Client ID Matrix Sample Location Date/Time Receive Date

L2206740-01 B501 WATER 100 COMMERCIAL STREET MALDEN 02/09/22 10:20 02/09/22

Project Name:MALDEN RGPLab Number:L2206740Project Number:01.0171094.32Report Date:02/15/22

Case Narrative

The samples were received in accordance with the Chain of Custody and no significant deviations were encountered during the preparation or analysis unless otherwise noted. Sample Receipt, Container Information, and the Chain of Custody are located at the back of the report.

Results contained within this report relate only to the samples submitted under this Alpha Lab Number and meet NELAP requirements for all NELAP accredited parameters unless otherwise noted in the following narrative. The data presented in this report is organized by parameter (i.e. VOC, SVOC, etc.). Sample specific Quality Control data (i.e. Surrogate Spike Recovery) is reported at the end of the target analyte list for each individual sample, followed by the Laboratory Batch Quality Control at the end of each parameter. Tentatively Identified Compounds (TICs), if requested, are reported for compounds identified to be present and are not part of the method/program Target Compound List, even if only a subset of the TCL are being reported. If a sample was re-analyzed or re-extracted due to a required quality control corrective action and if both sets of data are reported, the Laboratory ID of the re-analysis or re-extraction is designated with an "R" or "RE", respectively.

When multiple Batch Quality Control elements are reported (e.g. more than one LCS), the associated samples for each element are noted in the grey shaded header line of each data table. Any Laboratory Batch, Sample Specific % recovery or RPD value that is outside the listed Acceptance Criteria is bolded in the report. In reference to questions H (CAM) or 4 (RCP) when "NO" is checked, the performance criteria for CAM and RCP methods allow for some quality control failures to occur and still be within method compliance. In these instances, the specific failure is not narrated but noted in the associated QC Outlier Summary Report, located directly after the Case Narrative. QC information is also incorporated in the Data Usability Assessment table (Format 11) of our Data Merger tool, where it can be reviewed in conjunction with the sample result, associated regulatory criteria and any associated data usability implications.

Soil/sediments, solids and tissues are reported on a dry weight basis unless otherwise noted. Definitions of all data qualifiers and acronyms used in this report are provided in the Glossary located at the back of the report.

HOLD POLICY - For samples submitted on hold, Alpha's policy is to hold samples (with the exception of Air canisters) free of charge for 21 calendar days from the date the project is completed. After 21 calendar days, we will dispose of all samples submitted including those put on hold unless you have contacted your Alpha Project Manager and made arrangements for Alpha to continue to hold the samples. Air canisters will be disposed after 3 business days from the date the project is completed.

Please contact Project Management at 800-624-9220 with any questions.	

 Project Name:
 MALDEN RGP
 Lab Number:
 L2206740

 Project Number:
 01.0171094.32
 Report Date:
 02/15/22

Case Narrative (continued)

Report Submission

The analysis of Ethanol was subcontracted. A copy of the laboratory report is included as an addendum.

Please note: This data is only available in PDF format and is not available on Data Merger.

Sample Receipt

The analyses performed were specified by the client.

Volatile Organics by SIM

The WG1604767-3 LCS recovery, associated with L2206740-01, is above the acceptance criteria for 1,4-dioxane (156%); however, the associated sample is non-detect to the RL for this target analyte. The results of the original analysis are reported.

I, the undersigned, attest under the pains and penalties of perjury that, to the best of my knowledge and belief and based upon my personal inquiry of those responsible for providing the information contained in this analytical report, such information is accurate and complete. This certificate of analysis is not complete unless this page accompanies any and all pages of this report.

Cattlin Wallet Caitlin Walukevich

Authorized Signature:

Title: Technical Director/Representative

Date: 02/15/22

ORGANICS

VOLATILES

Project Name: MALDEN RGP Lab Number: L2206740

Project Number: 01.0171094.32 **Report Date:** 02/15/22

SAMPLE RESULTS

Lab ID: L2206740-01 Date Collected: 02/09/22 10:20

Client ID: B501 Date Received: 02/09/22 Sample Location: 100 COMMERCIAL STREET MALDEN Field Prep: Not Specified

Matrix: Water
Analytical Method: 128,624.1
Analytical Date: 02/11/22 11:15

Analyst: GT

Sample Depth:

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
Volatile Organics by GC/MS - Wes	tborough Lab					
Methylene chloride	ND		ug/l	1.0		1
1,1-Dichloroethane	ND		ug/l	1.5		1
Carbon tetrachloride	ND		ug/l	1.0		1
1,1,2-Trichloroethane	ND		ug/l	1.5		1
Tetrachloroethene	ND		ug/l	1.0		1
1,2-Dichloroethane	ND		ug/l	1.5		1
1,1,1-Trichloroethane	ND		ug/l	2.0		1
Benzene	9.6		ug/l	1.0		1
Toluene	ND		ug/l	1.0		1
Ethylbenzene	6.8		ug/l	1.0		1
Vinyl chloride	ND		ug/l	1.0		1
1,1-Dichloroethene	ND		ug/l	1.0		1
cis-1,2-Dichloroethene	ND		ug/l	1.0		1
Trichloroethene	ND		ug/l	1.0		1
1,2-Dichlorobenzene	ND		ug/l	5.0		1
1,3-Dichlorobenzene	ND		ug/l	5.0		1
1,4-Dichlorobenzene	ND		ug/l	5.0		1
p/m-Xylene	ND		ug/l	2.0		1
o-xylene	ND		ug/l	1.0		1
Xylenes, Total	ND		ug/l	1.0		1
Acetone	ND		ug/l	10		1
Methyl tert butyl ether	ND		ug/l	10		1
Tert-Butyl Alcohol	ND		ug/l	100		1
Tertiary-Amyl Methyl Ether	ND		ug/l	20		1

Project Name: MALDEN RGP Lab Number: L2206740

Project Number: 01.0171094.32 **Report Date:** 02/15/22

SAMPLE RESULTS

Lab ID: L2206740-01 Date Collected: 02/09/22 10:20

Client ID: B501 Date Received: 02/09/22 Sample Location: 100 COMMERCIAL STREET MALDEN Field Prep: Not Specified

Sample Depth:

Parameter Result Qualifier Units RL MDL Dilution Factor

Volatile Organics by GC/MS - Westborough Lab

Surrogate	% Recovery	Qualifier	Acceptance Criteria	
Pentafluorobenzene	100		60-140	
Fluorobenzene	100		60-140	
4-Bromofluorobenzene	99		60-140	

Project Name: MALDEN RGP Lab Number: L2206740

Project Number: 01.0171094.32 **Report Date:** 02/15/22

SAMPLE RESULTS

Lab ID: L2206740-01 Date Collected: 02/09/22 10:20

Client ID: B501 Date Received: 02/09/22

Sample Location: 100 COMMERCIAL STREET MALDEN Field Prep: Not Specified

Sample Depth:

Matrix: Water

Analytical Method: 128,624.1-SIM Analytical Date: 02/11/22 11:15

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
Volatile Organics by GC/MS-SIM	- Westborough Lab					
1,4-Dioxane	ND		ug/l	5.0		1
Surrogate			% Recovery	Qualifier		eptance riteria

Surrogate	% Recovery	Qualifier	Acceptance Criteria
Fluorobenzene	106		60-140
4-Bromofluorobenzene	103		60-140

Project Name: MALDEN RGP Lab Number: L2206740

Project Number: 01.0171094.32 **Report Date:** 02/15/22

SAMPLE RESULTS

Lab ID: L2206740-01 Date Collected: 02/09/22 10:20

Client ID: B501 Date Received: 02/09/22 Sample Location: 100 COMMERCIAL STREET MALDEN Field Prep: Not Specified

Sample Depth:

Matrix: Water Extraction Method: EPA 504.1

Analytical Method: 14,504.1 Extraction Date: 02/10/22 10:01
Analytical Date: 02/10/22 13:15

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	Column
Microextractables by GC - Westborough Lab							
1,2-Dibromoethane	ND		ug/l	0.010		1	Α

Project Name: MALDEN RGP Lab Number: L2206740

Project Number: 01.0171094.32 **Report Date:** 02/15/22

Method Blank Analysis Batch Quality Control

Analytical Method: 14,504.1 Extraction Method: EPA 504.1

Analytical Date: 02/10/22 11:35 Extraction Date: 02/10/22 10:01

Parameter	Result	Qualifier	Units	RL	MDL	
Microextractables by GC - Westbord	ough Lab for	sample(s)	: 01	Batch: WG16	03504-1	
1,2-Dibromoethane	ND		ug/l	0.010		Α

Project Name: MALDEN RGP Lab Number: L2206740

Project Number: 01.0171094.32 **Report Date:** 02/15/22

Method Blank Analysis Batch Quality Control

Analytical Method: 128,624.1 Analytical Date: 02/11/22 10:06

Parameter	Result	Qualifier Units	RL	MDL
Volatile Organics by GC/MS - Wes	tborough Lab	for sample(s): 01	Batch:	WG1603638-10
Methylene chloride	ND	ug/l	1.0	
1,1-Dichloroethane	ND	ug/l	1.5	
Carbon tetrachloride	ND	ug/l	1.0	
1,1,2-Trichloroethane	ND	ug/l	1.5	
Tetrachloroethene	ND	ug/l	1.0	
1,2-Dichloroethane	ND	ug/l	1.5	
1,1,1-Trichloroethane	ND	ug/l	2.0	
Benzene	ND	ug/l	1.0	
Toluene	ND	ug/l	1.0	
Ethylbenzene	ND	ug/l	1.0	
Vinyl chloride	ND	ug/l	1.0	
1,1-Dichloroethene	ND	ug/l	1.0	
cis-1,2-Dichloroethene	ND	ug/l	1.0	
Trichloroethene	ND	ug/l	1.0	
1,2-Dichlorobenzene	ND	ug/l	5.0	
1,3-Dichlorobenzene	ND	ug/l	5.0	
1,4-Dichlorobenzene	ND	ug/l	5.0	
p/m-Xylene	ND	ug/l	2.0	
o-xylene	ND	ug/l	1.0	
Xylenes, Total	ND	ug/l	1.0	
Acetone	ND	ug/l	10	
Methyl tert butyl ether	ND	ug/l	10	
Tert-Butyl Alcohol	ND	ug/l	100	
Tertiary-Amyl Methyl Ether	ND	ug/l	20	

Project Name: MALDEN RGP Lab Number: L2206740

Project Number: 01.0171094.32 **Report Date:** 02/15/22

Method Blank Analysis
Batch Quality Control

Analytical Method: 128,624.1 Analytical Date: 02/11/22 10:06

Analyst: GT

Parameter Result Qualifier Units RL MDL

Volatile Organics by GC/MS - Westborough Lab for sample(s): 01 Batch: WG1603638-10

		Acceptance			
Surrogate	%Recovery	Qualifier Criteria			
Pentafluorobenzene	99	60-140			
Fluorobenzene	98	60-140			
4-Bromofluorobenzene	100	60-140			

Project Name:MALDEN RGPLab Number:L2206740

Project Number: 01.0171094.32 **Report Date:** 02/15/22

Method Blank Analysis Batch Quality Control

Analytical Method: 128,624.1-SIM Analytical Date: 02/11/22 10:06

Parameter	Result	Qualifier	Units	RL	MDL	
Volatile Organics by GC/MS-SIM -	Westborough	Lab for s	ample(s):	01 Batch:	WG1604767-4	
1,4-Dioxane	ND		ug/l	5.0		

		Acceptance			
Surrogate	%Recovery	Qualifier	Criteria		
Fluorobenzene	106		60-140		
4-Bromofluorobenzene	106		60-140		

Project Name: MALDEN RGP **Project Number:** 01.0171094.32

Lab Number: L2206740

Report Date:

02/15/22

Parameter	LCS %Recovery	Qual	LCSD %Recovery	Qual	%Recovery Limits	RPD	Qual	RPD Limits	Column
Microextractables by GC - Westborough Lab	Associated sam	nple(s): 01	Batch: WG1603	3504-2					
1,2-Dibromoethane	116		-		80-120	-			Α

Project Name: MALDEN RGP

Lab Number: L2206740

Report Date:

02/15/22

Project Number:	01.0171094.32
-----------------	---------------

Methylene chloride	Parameter	LCS %Recovery	Qual	LCSD %Recovery	Qual	%Recovery Limits	RPD	RPD Qual Limits	
1,1-Dichloroethane 95 - 50-150 - 49 Carbon tetrachloride 100 - 70-130 - 41 1,1,2-Trichloroethane 90 - 70-130 - 45 Tetrachloroethene 100 - 70-130 - 39 1,2-Dichloroethane 100 - 70-130 - 49 1,1,1-Trichloroethane 100 - 70-130 - 36 Benzene 100 - 65-135 - 61 Toluene 100 - 70-130 - 41 Ethyleonzene 90 - 60-140 - 63 Viryl chloride 115 - 5-195 - 66 1,1-Dichloroethene 100 - 50-150 - 32 cis-1,2-Dichloroethene 95 - 60-140 - 30 Trichloroethene 95 - 65-135 - 57 <td< td=""><td>Volatile Organics by GC/MS - Westborough L</td><td>_ab Associated</td><td>sample(s): 01</td><td>Batch: WG1</td><td>1603638-9</td><td></td><td></td><td></td><td></td></td<>	Volatile Organics by GC/MS - Westborough L	_ab Associated	sample(s): 01	Batch: WG1	1603638-9				
Carbon tetrachloride 100 - 70-130 - 41 1,1,2-Trichlorethane 90 - 70-130 - 45 Tetrachlorethane 100 - 70-130 - 39 1,2-Dichloroethane 100 - 70-130 - 49 1,1,1-Trichlorethane 100 - 70-130 - 36 Benzene 100 - 65-135 - 61 Toluene 100 - 70-130 - 41 Ethylbenzene 90 - 60-140 - 63 Vinyl chloride 115 - 5-195 - 66 1,1-Dichloroethene 100 - 50-150 - 32 cis-1,2-Dichloroethene 95 - 60-140 - 30 Trichloroethene 95 - 65-135 - 57 1,2-Dichlorobenzene 95 - 65-135 - 57 1	Methylene chloride	95		-		60-140	-	28	
1,1,2-Trichloroethane 90 - 70-130 - 45 Tetrachloroethane 100 - 70-130 - 39 1,2-Dichloroethane 100 - 70-130 - 49 1,1,1-Trichloroethane 100 - 70-130 - 36 Benzene 100 - 65-135 - 61 Toluene 100 - 70-130 - 41 Ethylbenzene 90 - 60-140 - 63 Vinyl chloride 115 - 5-195 - 66 1,1-Dichloroethene 100 - 50-150 - 32 cis-1,2-Dichloroethene 95 - 60-140 - 30 Trichloroethene 95 - 65-135 - 48 1,2-Dichlorobenzene 95 - 65-135 - 57 1,3-Dichlorobenzene 95 - 70-130 - 43	1,1-Dichloroethane	95		-		50-150	-	49	
Tetrachloroethene 100 - 70-130 - 39 1,2-Dichloroethane 100 - 70-130 - 49 1,1,1-Trichloroethane 100 - 70-130 - 36 Benzene 100 - 65-135 - 61 Toluene 100 - 70-130 - 41 Ethylbenzene 90 - 60-140 - 63 Vinyl chloride 115 - 5-195 - 66 1,1-Dichloroethene 100 - 50-150 - 32 cis-1,2-Dichloroethene 95 - 60-140 - 30 Trichloroethene 95 - 65-135 - 48 1,2-Dichlorobenzene 100 - 65-135 - 57 1,3-Dichlorobenzene 96 - 70-130 - 43 1,4-Dichlorobenzene 100 - 65-135 - 57	Carbon tetrachloride	100		-		70-130	-	41	
1,2-Dichloroethane 100 - 70-130 - 49 1,1,1-Trichloroethane 100 - 70-130 - 36 Benzene 100 - 65-135 - 61 Toluene 100 - 70-130 - 41 Ethylbenzene 90 - 60-140 - 63 Vinyl chloride 115 - 5-195 - 66 1,1-Dichloroethene 100 - 50-150 - 32 cis-1,2-Dichloroethene 95 - 60-140 - 30 Trichloroethene 95 - 65-135 - 48 1,2-Dichlorobenzene 100 - 65-135 - 57 1,3-Dichlorobenzene 100 - 65-135 - 57 p/m-Xylene 88 - 60-140 - 30 o-xylene 80 - 60-140 - 30 Methyl tert butyl ether 100 - 60-140 - 30 October	1,1,2-Trichloroethane	90		-		70-130	-	45	
1,1,1-Trichloroethane 100 - 70-130 - 36 Benzene 100 - 65-135 - 61 Toluene 100 - 70-130 - 41 Ethylbenzene 90 - 60-140 - 63 Vinyl chloride 115 - 5-195 - 66 1,1-Dichloroethene 100 - 50-150 - 32 cis-1,2-Dichloroethene 95 - 60-140 - 30 Trichloroethene 95 - 65-135 - 48 1,2-Dichlorobenzene 100 - 65-135 - 57 1,3-Dichlorobenzene 95 - 70-130 - 43 1,4-Dichlorobenzene 95 - 70-130 - 43 1,4-Dichlorobenzene 95 - 60-140 - 30 p/m-Xylene 88 - 60-140 - 30 o-xylene 80 - 60-140 - 30 Methyl tert butyl ethe	Tetrachloroethene	100		-		70-130	-	39	
Benzene 100 - 65-135 - 61 Toluene 100 - 70-130 - 41 Ethylbenzene 90 - 60-140 - 63 Vinyl chloride 115 - 5-195 - 66 1,1-Dichloroethene 100 - 50-150 - 32 cis-1,2-Dichloroethene 95 - 60-140 - 30 Trichloroethene 95 - 65-135 - 48 1,2-Dichlorobenzene 100 - 65-135 - 57 1,3-Dichlorobenzene 95 - 70-130 - 43 1,4-Dichlorobenzene 95 - 70-130 - 43 1,4-Dichlorobenzene 95 - 65-135 - 57 p/m-Xylene 88 - 60-140 - 30 o-xylene 80 - 60-140 - 30 Methyl tert butyl ether	1,2-Dichloroethane	100		-		70-130	-	49	
Toluene 100 - 70-130 - 41 Ethylbenzene 90 - 60-140 - 63 Vinyl chloride 115 - 5-195 - 66 1,1-Dichloroethene 100 - 50-150 - 32 cis-1,2-Dichloroethene 95 - 60-140 - 30 Trichloroethene 95 - 65-135 - 48 1,2-Dichlorobenzene 100 - 65-135 - 57 1,3-Dichlorobenzene 95 - 70-130 - 43 1,4-Dichlorobenzene 95 - 65-135 - 57 p/m-Xylene 88 - 60-140 - 30 o-xylene 80 - 60-140 - 30 Acetone 102 - 40-160 - 30 Methyl tert butyl ether 100 - 60-140 - 30	1,1,1-Trichloroethane	100		-		70-130	-	36	
Ethylbenzene 90 - 60-140 - 63 Vinyl chloride 115 - 5-195 - 66 1,1-Dichloroethene 100 - 50-150 - 32 cis-1,2-Dichloroethene 95 - 60-140 - 30 Trichloroethene 95 - 65-135 - 48 1,2-Dichlorobenzene 100 - 65-135 - 57 1,3-Dichlorobenzene 95 - 70-130 - 43 1,4-Dichlorobenzene 95 - 65-135 - 57 p/m-Xylene 88 - 60-140 - 30 o-xylene 80 - 60-140 - 30 Acetone 102 - 40-160 - 30 Methyl tert butyl ether 100 - 60-140 - 30 Tert-Butyl Alcohol 120 - 60-140 - 30	Benzene	100		-		65-135	-	61	
Viryl chloride 115 - 5-195 - 66 1,1-Dichloroethene 100 - 50-150 - 32 cis-1,2-Dichloroethene 95 - 60-140 - 30 Trichloroethene 95 - 65-135 - 48 1,2-Dichlorobenzene 100 - 65-135 - 57 1,3-Dichlorobenzene 95 - 70-130 - 43 1,4-Dichlorobenzene 100 - 65-135 - 57 p/m-Xylene 88 - 60-140 - 30 o-xylene 80 - 60-140 - 30 Acetone 102 - 40-160 - 30 Methyl tert butyl ether 100 - 60-140 - 30 Tert-Butyl Alcohol 120 - 60-140 - 30	Toluene	100		-		70-130	-	41	
1,1-Dichloroethene 100 - 50-150 - 32 cis-1,2-Dichloroethene 95 - 60-140 - 30 Trichloroethene 95 - 65-135 - 48 1,2-Dichlorobenzene 100 - 65-135 - 57 1,3-Dichlorobenzene 95 - 70-130 - 43 1,4-Dichlorobenzene 100 - 65-135 - 57 p/m-Xylene 88 - 60-140 - 30 o-xylene 80 - 60-140 - 30 Acetone 102 - 40-160 - 30 Methyl tert butyl ether 100 - 60-140 - 30 Tert-Butyl Alcohol 120 - 60-140 - 30	Ethylbenzene	90		-		60-140	-	63	
cis-1,2-Dichloroethene 95 - 60-140 - 30 Trichloroethene 95 - 65-135 - 48 1,2-Dichlorobenzene 100 - 65-135 - 57 1,3-Dichlorobenzene 95 - 70-130 - 43 1,4-Dichlorobenzene 100 - 65-135 - 57 p/m-Xylene 88 - 60-140 - 30 o-xylene 80 - 60-140 - 30 Acetone 102 - 40-160 - 30 Methyl tert butyl ether 100 - 60-140 - 30 Tert-Butyl Alcohol 120 - 60-140 - 30	Vinyl chloride	115		-		5-195	-	66	
Trichloroethene 95 - 65-135 - 48 1,2-Dichlorobenzene 100 - 65-135 - 57 1,3-Dichlorobenzene 95 - 70-130 - 43 1,4-Dichlorobenzene 100 - 65-135 - 57 p/m-Xylene 88 - 60-140 - 30 0-xylene 80 - 60-140 - 30 Acetone 102 - 40-160 - 30 Methyl tert butyl ether 100 - 60-140 - 30 Tert-Butyl Alcohol 120 - 60-140 - 30	1,1-Dichloroethene	100		-		50-150	-	32	
1,2-Dichlorobenzene 100 - 65-135 - 57 1,3-Dichlorobenzene 95 - 70-130 - 43 1,4-Dichlorobenzene 100 - 65-135 - 57 p/m-Xylene 88 - 60-140 - 30 o-xylene 80 - 60-140 - 30 Acetone 102 - 40-160 - 30 Methyl tert butyl ether 100 - 60-140 - 30 Tert-Butyl Alcohol 120 - 60-140 - 30	cis-1,2-Dichloroethene	95		-		60-140	-	30	
1,3-Dichlorobenzene 95 - 70-130 - 43 1,4-Dichlorobenzene 100 - 65-135 - 57 p/m-Xylene 88 - 60-140 - 30 o-xylene 80 - 60-140 - 30 Acetone 102 - 40-160 - 30 Methyl tert butyl ether 100 - 60-140 - 30 Tert-Butyl Alcohol 120 - 60-140 - 30	Trichloroethene	95		-		65-135	-	48	
1,4-Dichlorobenzene 100 - 65-135 - 57 p/m-Xylene 88 - 60-140 - 30 o-xylene 80 - 60-140 - 30 Acetone 102 - 40-160 - 30 Methyl tert butyl ether 100 - 60-140 - 30 Tert-Butyl Alcohol 120 - 60-140 - 30	1,2-Dichlorobenzene	100		-		65-135	-	57	
p/m-Xylene 88 - 60-140 - 30 o-xylene 80 - 60-140 - 30 Acetone 102 - 40-160 - 30 Methyl tert butyl ether 100 - 60-140 - 30 Tert-Butyl Alcohol 120 - 60-140 - 30	1,3-Dichlorobenzene	95		-		70-130	-	43	
o-xylene 80 - 60-140 - 30 Acetone 102 - 40-160 - 30 Methyl tert butyl ether 100 - 60-140 - 30 Tert-Butyl Alcohol 120 - 60-140 - 30	1,4-Dichlorobenzene	100		-		65-135	-	57	
Acetone 102 - 40-160 - 30 Methyl tert butyl ether 100 - 60-140 - 30 Tert-Butyl Alcohol 120 - 60-140 - 30	p/m-Xylene	88		-		60-140	-	30	
Methyl tert butyl ether 100 - 60-140 - 30 Tert-Butyl Alcohol 120 - 60-140 - 30	o-xylene	80		-		60-140	-	30	
Tert-Butyl Alcohol 120 - 60-140 - 30	Acetone	102		-		40-160	-	30	
	Methyl tert butyl ether	100		-		60-140	-	30	
Tertiary-Amyl Methyl Ether 90 - 60-140 - 30	Tert-Butyl Alcohol	120		-		60-140	-	30	
	Tertiary-Amyl Methyl Ether	90		-		60-140	-	30	

Project Name: MALDEN RGP

Lab Number:

L2206740

Project Number: 01.0171094.32

Report Date:

02/15/22

LCS LCSD %Recovery RPD Parameter %Recovery Qual %Recovery Qual Limits RPD Qual Limits

Volatile Organics by GC/MS - Westborough Lab Associated sample(s): 01 Batch: WG1603638-9

Surrogate	LCS %Recovery Qual	LCSD %Recovery (Acceptance Qual Criteria
Pentafluorobenzene	101		60-140
Fluorobenzene	101		60-140
4-Bromofluorobenzene	100		60-140

Project Name: MALDEN RGP **Project Number:** 01.0171094.32

Report Date:

L2206740

Lab Number:

02/15/22

Parameter	LCS %Recovery	Qual	LCSD %Recovery	Qual	%Recovery Limits	RPD	Qual	RPD Limits	
Volatile Organics by GC/MS-SIM - Westboro	ough Lab Associa	ted sample(s)	: 01 Batch:	WG1604767	7-3				
1,4-Dioxane	156	Q	-		60-140	-		20	

Surrogate	LCS %Recovery Qual	LCSD %Recovery	Qual	Acceptance Criteria
Fluorobenzene 4-Bromofluorobenzene	109 104			60-140 60-140

Matrix Spike Analysis Batch Quality Control

Project Name: MALDEN RGPProject Number: 01.0171094.32

Lab Number:

L2206740

Report Date:

02/15/22

Parameter	Native Sample	MS Added	MS Found %	MS &Recovery	Qual	MSD Found	MSD %Recovery	Reco Qual Lin	overy nits RPD	Qual	RPD Limits	<u>Column</u>
Microextractables by GC	- Westborough Lab	Associat	ted sample(s): 01	QC Batch	ID: WG1	603504-3	QC Sample:	L2205818-01	Client ID:	MS Samp	ole	
1,2-Dibromoethane	ND	0.253	0.297	118		-	-	80-	120 -		20	А
1,2-Dibromo-3-chloropropane	ND	0.253	0.316	125	Q	-	-	80-	120 -		20	Α
1,2,3-Trichloropropane	ND	0.253	0.323	128	Q	-	-	80-	120 -		20	Α

SEMIVOLATILES

Project Name: MALDEN RGP **Lab Number:** L2206740

Project Number: 01.0171094.32 **Report Date:** 02/15/22

SAMPLE RESULTS

Lab ID: L2206740-01 Date Collected: 02/09/22 10:20

Client ID: B501 Date Received: 02/09/22 Sample Location: 100 COMMERCIAL STREET MALDEN Field Prep: Not Specified

Sample Depth:

Matrix: Water Extraction Method: EPA 625.1

Analytical Method: 129 625.1 Extraction Date: 02/11/22 16:49

Analytical Method: 129,625.1 Extraction Date: 02/11/22 16:49

Analytical Date: 02/14/22 17:12

Analyst: SZ

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
Semivolatile Organics by GC/MS -	Westborough Lab					
Bis(2-ethylhexyl)phthalate	ND		ug/l	2.20		1
Butyl benzyl phthalate	ND		ug/l	5.00		1
Di-n-butylphthalate	ND		ug/l	5.00		1
Di-n-octylphthalate	ND		ug/l	5.00		1
Diethyl phthalate	ND		ug/l	5.00		1
Dimethyl phthalate	ND		ug/l	5.00		1

Surrogate	% Recovery	Qualifier	Acceptance Criteria	
Nitrobenzene-d5	75		42-122	
2-Fluorobiphenyl	74		46-121	
4-Terphenyl-d14	77		47-138	

Project Name: MALDEN RGP Lab Number: L2206740

Project Number: 01.0171094.32 **Report Date:** 02/15/22

SAMPLE RESULTS

Lab ID: L2206740-01 Date Collected: 02/09/22 10:20

Client ID: B501 Date Received: 02/09/22

Sample Location: 100 COMMERCIAL STREET MALDEN Field Prep: Not Specified

Sample Depth:

Matrix: Water Extraction Method: EPA 625.1

Analytical Method: 129,625.1-SIM Extraction Date: 02/11/22 16:47
Analytical Date: 02/12/22 14:25

Analyst: JJW

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	
Semivolatile Organics by GC/MS	S-SIM - Westborough La	ab					
Acenaphthene	8.00		ug/l	0.100		1	
Fluoranthene	0.728		ug/l	0.100		1	
Naphthalene	11.2		ug/l	0.100		1	
Benzo(a)anthracene	0.202		ug/l	0.100		1	
Benzo(a)pyrene	ND		ug/l	0.100		1	
Benzo(b)fluoranthene	ND		ug/l	0.100		1	
Benzo(k)fluoranthene	ND		ug/l	0.100		1	
Chrysene	ND		ug/l	0.100		1	
Acenaphthylene	0.488		ug/l	0.100		1	
Anthracene	0.910		ug/l	0.100		1	
Benzo(ghi)perylene	ND		ug/l	0.100		1	
Fluorene	2.39		ug/l	0.100		1	
Phenanthrene	0.692		ug/l	0.100		1	
Dibenzo(a,h)anthracene	ND		ug/l	0.100		1	
Indeno(1,2,3-cd)pyrene	ND		ug/l	0.100		1	
Pyrene	0.471		ug/l	0.100		1	
Pentachlorophenol	ND		ug/l	1.00		1	

Surrogate	% Recovery	Acceptance Qualifier Criteria
2-Fluorophenol	49	25-87
Phenol-d6	34	16-65
Nitrobenzene-d5	76	42-122
2-Fluorobiphenyl	67	46-121
2,4,6-Tribromophenol	91	45-128
4-Terphenyl-d14	77	47-138

Project Name: MALDEN RGP Lab Number: L2206740

Project Number: 01.0171094.32 **Report Date:** 02/15/22

Method Blank Analysis Batch Quality Control

Analytical Method: 129,625.1-SIM Extraction Method: EPA 625.1
Analytical Date: 02/12/22 18:01 Extraction Date: 02/11/22 10:51

Analyst: JJW

Result	Qualifier	Units	RL	MDL	
M - Westbor	ough Lab	for sampl	e(s): 01	Batch: WG160399	6-1
ND		ug/l	0.100		
ND		ug/l	0.100		
ND		ug/l	0.100		
ND		ug/l	0.100		
ND		ug/l	0.100		
ND		ug/l	0.100		
ND		ug/l	0.100		
ND		ug/l	0.100		
ND		ug/l	0.100		
ND		ug/l	0.100		
ND		ug/l	0.100		
ND		ug/l	0.100		
ND		ug/l	0.100		
ND		ug/l	0.100		
ND		ug/l	0.100		
ND		ug/l	0.100		
ND		ug/l	1.00		
	M - Westbor	M - Westborough Lab ND ND ND ND ND ND ND ND ND N	ND	ND	ND

Surrogate	%Recovery Quali	Acceptance fier Criteria
2-Fluorophenol	51	25-87
Phenol-d6	35	16-65
Nitrobenzene-d5	76	42-122
2-Fluorobiphenyl	64	46-121
2,4,6-Tribromophenol	80	45-128
4-Terphenyl-d14	66	47-138

02/11/22 10:51

Project Name: Lab Number: MALDEN RGP L2206740

Project Number: Report Date: 01.0171094.32 02/15/22

Method Blank Analysis Batch Quality Control

Analytical Method: 129,625.1 Extraction Method: EPA 625.1 Analytical Date: 02/12/22 00:20 **Extraction Date:**

Analyst: ALS

Parameter	Result	Qualifier	Units	RL	MDL	
Semivolatile Organics by GC/MS - V	Vestborough	Lab for s	ample(s):	01 Batch:	WG1603997-1	
Bis(2-ethylhexyl)phthalate	ND		ug/l	2.20		
Butyl benzyl phthalate	ND		ug/l	5.00		
Di-n-butylphthalate	ND		ug/l	5.00		
Di-n-octylphthalate	ND		ug/l	5.00		
Diethyl phthalate	ND		ug/l	5.00		
Dimethyl phthalate	ND		ug/l	5.00		

		Acceptance			
Surrogate	%Recovery	Qualifier Criteria			
Nitrobenzene-d5	52	42-122			
2-Fluorobiphenyl	54	46-121			
4-Terphenyl-d14	56	47-138			

02/15/22

Lab Control Sample Analysis Batch Quality Control

Project Name: MALDEN RGP **Project Number:** 01.0171094.32

Lab Number: L2206740

Report Date:

arameter	LCS %Recovery	LCSD Qual %Recovery	Qual	%Recovery Limits	RPD	RPD Qual Limits
emivolatile Organics by GC/MS-S	M - Westborough Lab Asso	ociated sample(s): 01 Bat	ch: WG160	03996-2		
Acenaphthene	74	-		60-132	-	30
Fluoranthene	80	-		43-121	-	30
Naphthalene	72	-		36-120	-	30
Benzo(a)anthracene	84	-		42-133	-	30
Benzo(a)pyrene	85	-		32-148	-	30
Benzo(b)fluoranthene	83	-		42-140	-	30
Benzo(k)fluoranthene	82	-		25-146	-	30
Chrysene	71	-		44-140	-	30
Acenaphthylene	81	-		54-126	-	30
Anthracene	76	-		43-120	-	30
Benzo(ghi)perylene	85	-		1-195	-	30
Fluorene	79	-		70-120	-	30
Phenanthrene	72	-		65-120	-	30
Dibenzo(a,h)anthracene	94	-		1-200	-	30
Indeno(1,2,3-cd)pyrene	91	-		1-151	-	30
Pyrene	80	-		70-120	-	30
Pentachlorophenol	69	-		38-152	-	30

Project Name: MALDEN RGP

Lab Number:

L2206740

Project Number: 01.0171094.32

Report Date:

02/15/22

LCS LCSD %Recovery RPD Parameter %Recovery Qual %Recovery Qual Limits RPD Qual Limits

Semivolatile Organics by GC/MS-SIM - Westborough Lab Associated sample(s): 01 Batch: WG1603996-2

Surrogate	LCS %Recovery Qual %Re	LCSD ecovery Q	Acceptance ual Criteria
2-Fluorophenol	58		25-87
Phenol-d6	40		16-65
Nitrobenzene-d5	79		42-122
2-Fluorobiphenyl	74		46-121
2,4,6-Tribromophenol	93		45-128
4-Terphenyl-d14	80		47-138

Project Name: MALDEN RGP **Project Number:** 01.0171094.32

Lab Number:

L2206740

Report Date:

02/15/22

Parameter	LCS %Recovery	Qual	LCSD %Recovery	Qual	%Recovery Limits	RPD	Qual	RPD Limits	
Semivolatile Organics by GC/MS - Westborou	gh Lab Associa	ited sample(s):	01 Batch:	WG1603997	·-2				
Bis(2-ethylhexyl)phthalate	72		-		29-137	-		82	
Butyl benzyl phthalate	67		-		1-140	-		60	
Di-n-butylphthalate	65		-		8-120	-		47	
Di-n-octylphthalate	71		-		19-132	-		69	
Diethyl phthalate	62		-		1-120	-		100	
Dimethyl phthalate	62		-		1-120	-		183	

Surrogate	LCS %Recovery Qual	LCSD %Recovery Qual	Acceptance Criteria	
Nitrobenzene-d5	58		42-122	
2-Fluorobiphenyl	59		46-121	
4-Terphenyl-d14	59		47-138	

PCBS

Project Name: Lab Number: MALDEN RGP L2206740 **Report Date:** 02/15/22

Project Number: 01.0171094.32

SAMPLE RESULTS

Lab ID: Date Collected: 02/09/22 10:20 L2206740-01

Date Received: Client ID: 02/09/22 B501 Sample Location: Field Prep: 100 COMMERCIAL STREET MALDEN Not Specified

Sample Depth:

Extraction Method: EPA 608.3 Matrix: Water **Extraction Date:** 02/10/22 16:38 Analytical Method: 127,608.3 Cleanup Method: EPA 3665A Analytical Date: 02/11/22 11:46

Analyst: **AWS** Cleanup Date: 02/10/22 Cleanup Method: EPA 3660B Cleanup Date: 02/11/22

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	Column
Polychlorinated Biphenyls by	GC - Westborough Lab						
Aroclor 1016	ND		ug/l	0.250		1	Α
Aroclor 1221	ND		ug/l	0.250		1	Α
Aroclor 1232	ND		ug/l	0.250		1	Α
Aroclor 1242	ND		ug/l	0.250		1	Α
Aroclor 1248	ND		ug/l	0.250		1	А
Aroclor 1254	ND		ug/l	0.250		1	Α
Aroclor 1260	ND		ug/l	0.200		1	Α

	Acceptance				
Surrogate	% Recovery	Qualifier	Criteria	Column	
2,4,5,6-Tetrachloro-m-xylene	73		37-123	В	
Decachlorobiphenyl	79		38-114	В	
2,4,5,6-Tetrachloro-m-xylene	71		37-123	Α	
Decachlorobiphenyl	72		38-114	Α	

Project Name: MALDEN RGP **Lab Number:** L2206740

Project Number: 01.0171094.32 **Report Date:** 02/15/22

Method Blank Analysis Batch Quality Control

Analytical Method: 127,608.3 Analytical Date: 02/11/22 08:21

Analyst: CW

Extraction Method: EPA 608.3
Extraction Date: 02/10/22 16:10
Cleanup Method: EPA 3665A
Cleanup Date: 02/10/22
Cleanup Method: EPA 3660B
Cleanup Date: 02/11/22

Parameter	Result	Qualifier	Units	RL	MDL	Column
Polychlorinated Biphenyls by GC -	Westborough	n Lab for s	ample(s):	01 Batch:	WG1603703	-1
Aroclor 1016	ND		ug/l	0.250		Α
Aroclor 1221	ND		ug/l	0.250		Α
Aroclor 1232	ND		ug/l	0.250		Α
Aroclor 1242	ND		ug/l	0.250		Α
Aroclor 1248	ND		ug/l	0.250		Α
Aroclor 1254	ND		ug/l	0.250		Α
Aroclor 1260	ND		ug/l	0.200		Α

	Acceptance Acceptance						
Surrogate	%Recovery Qualific	er Criteria	Column				
2,4,5,6-Tetrachloro-m-xylene	77	37-123	В				
•		***					
Decachlorobiphenyl	88	38-114	В				
2,4,5,6-Tetrachloro-m-xylene	74	37-123	Α				
Decachlorobiphenyl	81	38-114	Α				

Lab Control Sample Analysis Batch Quality Control

Project Name: MALDEN RGP **Project Number:** 01.0171094.32

Lab Number:

L2206740

Report Date:

02/15/22

Parameter	LCS %Recovery	Qual	LCSD %Recovery	Qual	%Recovery Limits	RPD	Qual	RPD Limits	Column
Polychlorinated Biphenyls by GC - Wes	stborough Lab Associa	ted sample(s):	: 01 Batch:	WG1603703-	2				
Aroclor 1016	72		-		50-140	-		36	Α
Aroclor 1260	63		-		8-140	-		38	Α

Surrogate	LCS %Recovery Q	LCSD ual %Recovery	Qual	Acceptance Criteria	Column
2,4,5,6-Tetrachloro-m-xylene	64			37-123	В
Decachlorobiphenyl	57			38-114	В
2,4,5,6-Tetrachloro-m-xylene	63			37-123	Α
Decachlorobiphenyl	52			38-114	Α

METALS

02/09/22 10:20

Date Collected:

 Project Name:
 MALDEN RGP
 Lab Number:
 L2206740

 Project Number:
 01.0171094.32
 Report Date:
 02/15/22

SAMPLE RESULTS

Lab ID: L2206740-01

Client ID: B501 Date Received: 02/09/22 Sample Location: 100 COMMERCIAL STREET MALDEN Field Prep: Not Specified

Sample Depth:

Matrix: Water

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	Date Prepared	Date Analyzed	Prep Method	Analytical Method	Analyst
Tatal Matala Man	- C - L - L - L										
Total Metals - Man	stield Lab										
Antimony, Total	ND		mg/l	0.00400		1	02/10/22 13:5	2 02/10/22 22:04	EPA 3005A	3,200.8	SV
Arsenic, Total	0.01068		mg/l	0.00100		1	02/10/22 13:5	2 02/10/22 22:04	EPA 3005A	3,200.8	SV
Cadmium, Total	0.00046		mg/l	0.00020		1	02/10/22 13:5	2 02/10/22 22:04	EPA 3005A	3,200.8	SV
Chromium, Total	0.00142		mg/l	0.00100		1	02/10/22 13:5	2 02/10/22 22:04	EPA 3005A	3,200.8	SV
Copper, Total	ND		mg/l	0.00100		1	02/10/22 13:5	2 02/10/22 22:04	EPA 3005A	3,200.8	SV
Iron, Total	15.0		mg/l	0.050		1	02/10/22 13:5	2 02/11/22 12:25	EPA 3005A	19,200.7	GD
Lead, Total	ND		mg/l	0.00100		1	02/10/22 13:5	2 02/10/22 22:04	EPA 3005A	3,200.8	sv
Mercury, Total	ND		mg/l	0.00020		1	02/10/22 15:5	9 02/15/22 06:01	EPA 245.1	3,245.1	AC
Nickel, Total	0.00323		mg/l	0.00200		1	02/10/22 13:5	2 02/10/22 22:04	EPA 3005A	3,200.8	SV
Selenium, Total	ND		mg/l	0.00500		1	02/10/22 13:5	2 02/10/22 22:04	EPA 3005A	3,200.8	sv
Silver, Total	ND		mg/l	0.00040		1	02/10/22 13:5	2 02/10/22 22:04	EPA 3005A	3,200.8	SV
Zinc, Total	0.03133		mg/l	0.01000		1	02/10/22 13:5	2 02/10/22 22:04	EPA 3005A	3,200.8	sv
Total Hardness by	SM 2340E	B - Mansfiel	d Lab								
Hardness	307		mg/l	0.660	NA	1	02/10/22 13:5	2 02/11/22 12:25	EPA 3005A	19,200.7	GD
General Chemistry	- Mansfiel	d Lab									
Chromium, Trivalent	ND		mg/l	0.010		1		02/10/22 22:04	NA	107,-	

Serial_No:02152214:32

Project Name: MALDEN RGP
Project Number: 01.0171094.32

Lab Number: L2206740 **Report Date:** 02/15/22

Method Blank Analysis Batch Quality Control

Dilution Analytical Date **Date Result Qualifier Factor Prepared Analyzed** Method Analyst **Parameter** Units RL **MDL** Total Metals - Mansfield Lab for sample(s): 01 Batch: WG1603627-1 Iron, Total ND 0.050 02/11/22 12:02 mg/l 1 02/10/22 13:52 19,200.7 GD

Prep Information

Digestion Method: EPA 3005A

Dilution Analytical Date **Date Factor** Method Analyst **Result Qualifier** Units RL **Prepared Analyzed Parameter** MDL Total Hardness by SM 2340B - Mansfield Lab for sample(s): 01 Batch: WG1603627-1 Hardness ND GD mg/l 0.660 NA 02/10/22 13:52 02/11/22 12:02 19,200.7

Prep Information

Digestion Method: EPA 3005A

Parameter	Result Qualifier	Units	RL	MDL	Dilution Factor	Date Prepared	Date Analyzed	Analytical Method	Analyst
Total Metals - Mans	sfield Lab for sample(s):	01 Bato	h: WG16	03628-	-1				
Antimony, Total	ND	mg/l	0.00400		1	02/10/22 13:52	02/10/22 21:43	3,200.8	WP
Arsenic, Total	ND	mg/l	0.00100		1	02/10/22 13:52	02/10/22 21:43	3,200.8	WP
Cadmium, Total	ND	mg/l	0.00020		1	02/10/22 13:52	02/10/22 21:43	3,200.8	WP
Chromium, Total	ND	mg/l	0.00100		1	02/10/22 13:52	02/10/22 21:43	3,200.8	WP
Copper, Total	ND	mg/l	0.00100		1	02/10/22 13:52	02/10/22 21:43	3,200.8	WP
Lead, Total	ND	mg/l	0.00100		1	02/10/22 13:52	02/10/22 21:43	3,200.8	WP
Nickel, Total	ND	mg/l	0.00200		1	02/10/22 13:52	02/10/22 21:43	3,200.8	WP
Selenium, Total	ND	mg/l	0.00500		1	02/10/22 13:52	02/10/22 21:43	3,200.8	WP
Silver, Total	ND	mg/l	0.00040		1	02/10/22 13:52	02/10/22 21:43	3,200.8	WP
Zinc, Total	ND	mg/l	0.01000		1	02/10/22 13:52	02/10/22 21:43	3,200.8	WP

Prep Information

Digestion Method: EPA 3005A

Serial_No:02152214:32

Project Name: Lab Number: L2206740 MALDEN RGP **Project Number:** 01.0171094.32 **Report Date:** 02/15/22

Method Blank Analysis Batch Quality Control

Parameter	Result Qualifier	Units	RL	MDL	Dilution Factor	Date Prepared	Date Analyzed	Analytica Method	
Total Metals - Mansfiel	d Lab for sample(s):	01 Batc	h: WG16	603629-	1				
Mercury, Total	ND	mg/l	0.00020		1	02/10/22 15:59	02/15/22 05:37	3,245.1	AC

Prep Information

Digestion Method: EPA 245.1

Lab Control Sample Analysis Batch Quality Control

Project Name: MALDEN RGP **Project Number:** 01.0171094.32

Lab Number: L2206740

Report Date:

02/15/22

Parameter	LCS %Recovery	LCSD Qual %Recovery	/ Qual	%Recovery Limits	RPD	Qual	RPD Limits
Total Metals - Mansfield Lab Associated sample	(s): 01 Batch: \	VG1603627-2					
Iron, Total	99	-		85-115	-		
Total Hardness by SM 2340B - Mansfield Lab As	ssociated sample	e(s): 01 Batch: WG1603	3627-2				
Hardness	103	-		85-115	-		
Total Metals - Mansfield Lab Associated sample	(s): 01 Batch: \	VG1603628-2					
Antimony, Total	90	-		85-115	-		
Arsenic, Total	104	-		85-115	-		
Cadmium, Total	98	-		85-115	-		
Chromium, Total	104	-		85-115	-		
Copper, Total	104	-		85-115	-		
Lead, Total	98	-		85-115	-		
Nickel, Total	98	-		85-115	-		
Selenium, Total	102	-		85-115	-		
Silver, Total	106	-		85-115	-		
Zinc, Total	100	-		85-115	-		
Total Metals - Mansfield Lab Associated sample	(s): 01 Batch: \	VG1603629-2					
Mercury, Total	102	-		85-115	-		

Matrix Spike Analysis Batch Quality Control

Project Name: MALDEN RGP **Project Number:** 01.0171094.32

Lab Number: L2206740

arameter	Native Sample	MS Added	MS Found %	MS %Recovery	Qual	MSD Found	MSD %Recovery	R Qual	ecovery Limits	RPD	Qual	RPD Limits
Total Metals - Mansfield Lab	Associated sam	ple(s): 01	QC Batch ID): WG1603627	-3	QC Sample:	L2206740-01	Client I	ID: B501			
Iron, Total	15.0	1	15.8	80		-	-		75-125	-		20
Total Hardness by SM 2340B	3 - Mansfield Lal	o Associate	ed sample(s):	01 QC Batch	ID: \	VG1603627-	·3 QC Samp	le: L220	6740-01	Client I	D: B50)1
Hardness	307	66.2	367	91		-	-		75-125	-		20
Total Metals - Mansfield Lab	Associated sam	ple(s): 01	QC Batch ID): WG1603628	-3	QC Sample:	L2206740-01	Client I	ID: B501			
Antimony, Total	ND	0.5	0.5194	104		-	-		70-130	-		20
Arsenic, Total	0.01068	0.12	0.1359	104		-	-		70-130	-		20
Cadmium, Total	0.00046	0.053	0.05180	97		-	-		70-130	-		20
Chromium, Total	0.00142	0.2	0.2034	101		-	-		70-130	-		20
Copper, Total	ND	0.25	0.2549	102		-	-		70-130	-		20
Lead, Total	ND	0.53	0.5293	100		-	-		70-130	-		20
Nickel, Total	0.00323	0.5	0.4918	98		-	-		70-130	-		20
Selenium, Total	ND	0.12	0.1148	96		-	-		70-130	-		20
Silver, Total	ND	0.05	0.05203	104		-	-		70-130	-		20
Zinc, Total	0.03133	0.5	0.5152	97		-	-		70-130	-		20
Total Metals - Mansfield Lab	Associated sam	ple(s): 01	QC Batch ID): WG1603629	-3	QC Sample:	L2206864-01	Client I	ID: MS Sa	ample		
Mercury, Total	ND	0.005	0.00505	101		-	-		70-130	-		20

Lab Duplicate Analysis Batch Quality Control

Project Name: MALDEN RGP **Project Number:** 01.0171094.32

 Lab Number:
 L2206740

 Report Date:
 02/15/22

Native Sample Duplicate Sample RPD Limits Units RPD Qual **Parameter** Total Metals - Mansfield Lab Associated sample(s): 01 QC Batch ID: WG1603627-4 QC Sample: L2206740-01 Client ID: B501 Iron, Total 15.0 15.2 mg/l 20 QC Sample: L2206740-01 Client ID: B501 Total Hardness by SM 2340B - Mansfield Lab Associated sample(s): 01 QC Batch ID: WG1603627-4 307 313 20 Hardness mg/l 2 Total Metals - Mansfield Lab Associated sample(s): 01 QC Batch ID: WG1603628-4 QC Sample: L2206740-01 Client ID: B501 ND NC 20 Antimony, Total ND mg/l 0.01071 20 Arsenic, Total 0.01068 mg/l 0 Cadmium, Total 0.00046 0.00049 mg/l 6 20 Chromium, Total 0.00142 0.00156 mg/l 9 20 Copper, Total ND ND NC 20 mg/l Lead, Total ND ND NC 20 mg/l Nickel, Total 0.00323 0.00313 3 20 mg/l Selenium, Total ND ND NC 20 mg/l Silver, Total ND ND NC 20 mg/l Zinc, Total 20 0.03133 0.03212 2 mg/l Total Metals - Mansfield Lab Associated sample(s): 01 QC Batch ID: WG1603629-4 QC Sample: L2206864-01 Client ID: DUP Sample Mercury, Total ND ND mg/l NC 20

INORGANICS & MISCELLANEOUS

Serial_No:02152214:32

 Project Name:
 MALDEN RGP
 Lab Number:
 L2206740

 Project Number:
 01.0171094.32
 Report Date:
 02/15/22

SAMPLE RESULTS

Lab ID: L2206740-01 Date Collected: 02/09/22 10:20

Client ID: B501 Date Received: 02/09/22 Sample Location: 100 COMMERCIAL STREET MALDEN Field Prep: Not Specified

Sample Depth:

Matrix: Water

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	Date Prepared	Date Analyzed	Analytical Method	Analyst
General Chemistry - West	borough Lab)								
Solids, Total Suspended	33.		mg/l	10	NA	2	-	02/11/22 17:00	121,2540D	MD
Cyanide, Total	0.069		mg/l	0.005		1	02/11/22 06:15	02/11/22 12:37	121,4500CN-CE	CS
Chlorine, Total Residual	ND		mg/l	0.02		1	-	02/09/22 21:42	121,4500CL-D	AS
Nitrogen, Ammonia	2.00		mg/l	0.075		1	02/10/22 03:30	02/10/22 20:39	121,4500NH3-BH	I AT
Nitrogen, Nitrate/Nitrite	ND		mg/l	0.10		1	-	02/10/22 08:45	121,4500NO3-F	MR
Total Nitrogen	2.3		mg/l	0.30		1	-	02/14/22 13:03	107,-	JO
Nitrogen, Total Kjeldahl	2.29		mg/l	0.300		1	02/10/22 12:25	02/10/22 22:15	121,4500NH3-H	AT
TPH, SGT-HEM	ND		mg/l	4.00		1	02/10/22 19:45	02/10/22 20:45	140,1664B	TL
Phenolics, Total	ND		mg/l	0.030		1	02/11/22 07:04	02/11/22 10:03	4,420.1	KP
Chromium, Hexavalent	ND		mg/l	0.010		1	02/10/22 07:20	02/10/22 07:36	1,7196A	KA
Anions by Ion Chromatogr	raphy - West	borough	Lab							
Chloride	990.		mg/l	12.5		25	-	02/14/22 16:39	44,300.0	SH

Project Name: MALDEN RGP
Project Number: 01.0171094.32

Lab Number: L2206740 **Report Date:** 02/15/22

Method Blank Analysis Batch Quality Control

Parameter	Result Qı	ualifier	Units	RL	MDL	Dilution Factor	Date Prepared	Date Analyzed	Analytical Method	Analyst
General Chemistry -	Westborough Lab	for sam	nple(s): 01	Batch:	WG1	603285-1				
Chlorine, Total Residual	ND		mg/l	0.02		1	-	02/09/22 21:42	121,4500CL-D	AS
General Chemistry -	Westborough Lab	for sam	nple(s): 01	Batch:	WG1	603320-1				
Nitrogen, Ammonia	ND		mg/l	0.075		1	02/10/22 03:30	02/10/22 20:07	121,4500NH3-BI	H AT
General Chemistry -	Westborough Lab	for sam	nple(s): 01	Batch:	WG1	603343-1				
Nitrogen, Nitrate/Nitrite	ND		mg/l	0.10		1	-	02/10/22 08:16	121,4500NO3-F	MR
General Chemistry -	Westborough Lab	for sam	nple(s): 01	Batch:	WG1	603421-1				
Chromium, Hexavalent	ND		mg/l	0.010		1	02/10/22 07:20	02/10/22 07:32	1,7196A	KA
General Chemistry -	Westborough Lab	for sam	nple(s): 01	Batch:	WG1	603530-1				
Nitrogen, Total Kjeldahl	ND		mg/l	0.300		1	02/10/22 12:25	02/10/22 22:07	121,4500NH3-H	I AT
General Chemistry -	Westborough Lab	for sam	nple(s): 01	Batch:	WG1	603666-1				
TPH, SGT-HEM	ND		mg/l	4.00		1	02/10/22 19:45	02/10/22 20:45	140,1664B	TL
General Chemistry -	Westborough Lab	for sam	nple(s): 01	Batch:	WG1	603805-1				
Cyanide, Total	ND		mg/l	0.005		1	02/11/22 06:15	02/11/22 12:13	121,4500CN-CE	: CS
General Chemistry -	Westborough Lab	for sam	nple(s): 01	Batch:	WG1	603861-1				
Phenolics, Total	ND		mg/l	0.030		1	02/11/22 07:04	02/11/22 09:58	4,420.1	KP
General Chemistry -	Westborough Lab	for sam	nple(s): 01	Batch:	WG1	604147-1				
Solids, Total Suspended	ND		mg/l	5.0	NA	1	-	02/11/22 17:00	121,2540D	MD
Anions by Ion Chron	natography - Westb	orough	Lab for sai	mple(s):	01 E	Batch: WG1	604870-1			
Chloride	ND		mg/l	0.500		1	-	02/14/22 15:55	44,300.0	SH

Lab Control Sample Analysis Batch Quality Control

Project Name: MALDEN RGP **Project Number:** 01.0171094.32

Lab Number: L2206740

Report Date:

02/15/22

Parameter	LCS %Recovery	Qual	LCSD %Recovery	Qual	%Recovery Limits	RPD	Qual	RPD Limits
General Chemistry - Westborough Lab	Associated sample(s):	01	Batch: WG1603285-2	2				
Chlorine, Total Residual	100		-		90-110	-		
General Chemistry - Westborough Lab	Associated sample(s):	01	Batch: WG1603320-2	2				
Nitrogen, Ammonia	97		-		80-120	-		20
General Chemistry - Westborough Lab	Associated sample(s):	01 I	Batch: WG1603343-2	2				
Nitrogen, Nitrate/Nitrite	96		-		90-110	-		20
General Chemistry - Westborough Lab	Associated sample(s):	01 I	Batch: WG1603421-2	2				
Chromium, Hexavalent	106		-		85-115	-		20
General Chemistry - Westborough Lab	Associated sample(s):	01 I	Batch: WG1603530-2	2				
Nitrogen, Total Kjeldahl	101		-		78-122	-		
General Chemistry - Westborough Lab	Associated sample(s):	01 I	Batch: WG1603666-2	2				
ТРН	72		-		64-132	-		34
General Chemistry - Westborough Lab	Associated sample(s):	01 I	Batch: WG1603805-2	2				
Cyanide, Total	103				90-110			

Lab Control Sample Analysis Batch Quality Control

Project Name: MALDEN RGP **Project Number:** 01.0171094.32

Lab Number: L2206740

Parameter	LCS %Recovery	LCSD %Recovery	%Recovery Limits	RPD	RPD Limits
General Chemistry - Westborough Lab	Associated sample(s): 01	Batch: WG1603861-2			
Phenolics, Total	108	-	70-130	-	
General Chemistry - Westborough Lab	Associated sample(s): 01	Batch: WG1604147-2			
Solids, Total Suspended	94	-	80-120	-	
Anions by Ion Chromatography - Westb	orough Lab Associated sa	mple(s): 01 Batch: WG1604	870-2		
Chloride	103	-	90-110	-	

Matrix Spike Analysis Batch Quality Control

Project Name: MALDEN RGP **Project Number:** 01.0171094.32

Lab Number:

L2206740

Parameter	Native Sample	MS Added	MS Found	MS %Recovery	MSD Qual Found	MSD %Recovery Qual	Recovery Limits F	RPD Qual	RPD Limits
General Chemistry - Westborou	ugh Lab Asso	ciated samp	le(s): 01	QC Batch ID: V	NG1603285-4	QC Sample: L2206814-	-03 Client ID	: MS Sample	Э
Chlorine, Total Residual	ND	0.25	ND	0	Q -	-	80-120	-	20
General Chemistry - Westboro	ugh Lab Asso	ciated samp	le(s): 01	QC Batch ID: V	NG1603320-4	QC Sample: L2206759-	-01 Client ID	: MS Sample	Э
Nitrogen, Ammonia	0.178	4	3.66	87		-	80-120	-	20
General Chemistry - Westboro	ugh Lab Asso	ciated samp	le(s): 01	QC Batch ID: V	NG1603343-4	QC Sample: L2206740-	-01 Client ID	: B501	
Nitrogen, Nitrate/Nitrite	ND	4	3.6	90	-	-	80-120	-	20
General Chemistry - Westboro	ugh Lab Asso	ciated samp	le(s): 01	QC Batch ID: V	NG1603421-4	QC Sample: L2206740-	-01 Client ID	: B501	
Chromium, Hexavalent	ND	0.1	0.101	101	-	-	85-115	-	20
General Chemistry - Westboro	ugh Lab Asso	ciated samp	le(s): 01	QC Batch ID: V	NG1603530-4	QC Sample: L2206671-	-02 Client ID	: MS Sample	Э
Nitrogen, Total Kjeldahl	1.28	8	6.82	69	Q -	-	77-111	-	24
General Chemistry - Westboro	ugh Lab Asso	ciated samp	le(s): 01	QC Batch ID: V	NG1603666-4	QC Sample: L2200025-	-85 Client ID	: MS Sample	Э
TPH	ND	19.2	16.4	85	-	-	64-132	-	34
General Chemistry - Westborou	ugh Lab Asso	ciated samp	le(s): 01	QC Batch ID: V	NG1603805-4	QC Sample: L2206911-	-01 Client ID	: MS Sample	Э
Cyanide, Total	0.008	0.2	0.210	100		-	90-110	-	30
General Chemistry - Westboro	ugh Lab Asso	ciated samp	le(s): 01	QC Batch ID: V	NG1603861-4	QC Sample: L2206591-	-01 Client ID	: MS Sample	Э
Phenolics, Total	ND	0.4	0.42	104	-	-	70-130	-	20
Anions by Ion Chromatography Sample	/ - Westborou	gh Lab Asso	ciated sar	nple(s): 01 Q0	C Batch ID: WG	1604870-3 QC Sample	e: L2207415-0	5 Client ID	MS
Chloride	20.9	4	24.1	81	Q -	-	90-110	-	18

Lab Duplicate Analysis Batch Quality Control

Project Name: MALDEN RGP **Project Number:** 01.0171094.32

Lab Number:

L2206740

Parameter	Nat	ve S	ample	Duplicate Sam	nple Unit	s RPD	Qual	RPD Limits
General Chemistry - Westborough Lab	Associated sample(s):	01	QC Batch ID:	WG1603285-3	QC Sample:	L2206814-01	Client ID:	DUP Sample
Chlorine, Total Residual		ND		ND	mg/l	NC		20
General Chemistry - Westborough Lab	Associated sample(s):	01	QC Batch ID:	WG1603320-3	QC Sample:	L2206759-01	Client ID:	DUP Sample
Nitrogen, Ammonia		0.17	8	0.245	mg/l	32	Q	20
General Chemistry - Westborough Lab	Associated sample(s):	01	QC Batch ID:	WG1603343-3	QC Sample:	L2206740-01	Client ID:	B501
Nitrogen, Nitrate/Nitrite		ND	1	ND	mg/l	NC		20
General Chemistry - Westborough Lab	Associated sample(s):	01	QC Batch ID:	WG1603421-3	QC Sample:	L2206740-01	Client ID:	B501
Chromium, Hexavalent		ND		ND	mg/l	NC		20
General Chemistry - Westborough Lab	Associated sample(s):	01	QC Batch ID:	WG1603530-3	QC Sample:	L2206671-02	Client ID:	DUP Sample
Nitrogen, Total Kjeldahl		1.28	3	1.72	mg/l	29	Q	24
General Chemistry - Westborough Lab	Associated sample(s):	01	QC Batch ID:	WG1603666-3	QC Sample:	L2206740-01	Client ID:	B501
TPH, SGT-HEM		ND	1	ND	mg/l	NC		34
General Chemistry - Westborough Lab	Associated sample(s):	01	QC Batch ID:	WG1603805-3	QC Sample:	L2206003-01	Client ID:	DUP Sample
Cyanide, Total		0.01	0	0.009	mg/l	6		30
General Chemistry - Westborough Lab	Associated sample(s):	01	QC Batch ID:	WG1603861-3	QC Sample:	L2206591-01	Client ID:	DUP Sample
Phenolics, Total		ND		ND	mg/l	NC		20
General Chemistry - Westborough Lab	Associated sample(s):	01	QC Batch ID:	WG1604147-3	QC Sample:	L2206740-01	Client ID:	B501
Solids, Total Suspended		33		34	mg/l	3		29

Lab Duplicate Analysis

Batch Quality Control

Project Name: MALDEN RGP Batch Quality Control
Project Number: 01.0171094.32

Lab Number:

L2206740

Parameter	Native Sample	Duplicate Sample	Units	RPD	RPD Limits
Anions by Ion Chromatography - Westborough Lab Sample	Associated sample(s): 01	QC Batch ID: WG160487	0-4 QC Sa	mple: L220741	5-05 Client ID: DUP
Chloride	20.9	21.6	mg/l	3	18

Serial_No:02152214:32

 Project Name:
 MALDEN RGP

 Project Number:
 01.0171094.32

 Lab Number:
 02/15/22

Sample Receipt and Container Information

Were project specific reporting limits specified?

YES

Cooler Information

Container Information

Cooler Custody Seal

A Absent

Container Info	miliai i mai Temp		Frozen						
Container ID	Container Type	Cooler	рН	рН	deg C	Pres	Seal	Date/Time	Analysis(*)
L2206740-01A	Vial Na2S2O3 preserved	Α	NA		3.3	Υ	Absent		624.1-SIM-RGP(7)
L2206740-01B	Vial Na2S2O3 preserved	Α	NA		3.3	Υ	Absent		624.1-SIM-RGP(7)
L2206740-01C	Vial Na2S2O3 preserved	Α	NA		3.3	Υ	Absent		624.1-SIM-RGP(7)
L2206740-01D	Vial Na2S2O3 preserved	Α	NA		3.3	Υ	Absent		624.1-RGP(7)
L2206740-01E	Vial Na2S2O3 preserved	Α	NA		3.3	Υ	Absent		624.1-RGP(7)
L2206740-01F	Vial Na2S2O3 preserved	Α	NA		3.3	Υ	Absent		624.1-RGP(7)
L2206740-01G	Vial Na2S2O3 preserved	Α	NA		3.3	Υ	Absent		504(14)
L2206740-01H	Vial Na2S2O3 preserved	Α	NA		3.3	Υ	Absent		504(14)
L2206740-01I	Vial unpreserved	Α	NA		3.3	Υ	Absent		SUB-ETHANOL(14)
L2206740-01J	Vial unpreserved	Α	NA		3.3	Υ	Absent		SUB-ETHANOL(14)
L2206740-01K	Vial unpreserved	Α	NA		3.3	Υ	Absent		SUB-ETHANOL(14)
L2206740-01L	Plastic 250ml HNO3 preserved	A	<2	<2	3.3	Y	Absent		CD-2008T(180),NI-2008T(180),ZN- 2008T(180),CU-2008T(180),FE- UI(180),HARDU(180),SE-2008T(180),HG- U(28),AG-2008T(180),AS-2008T(180),CR- 2008T(180),SB-2008T(180),PB-2008T(180)
L2206740-01M	Plastic 250ml NaOH preserved	Α	>12	>12	3.3	Υ	Absent		TCN-4500(14)
L2206740-01N	Plastic 500ml H2SO4 preserved	Α	<2	<2	3.3	Υ	Absent		TKN-4500(28),NO3/NO2- 4500(28),TNITROGEN(28),NH3-4500(28)
L2206740-01O	Plastic 950ml unpreserved	Α	7	7	3.3	Υ	Absent		HEXCR-7196(1),CL-300(28),TRC-4500(1)
L2206740-01P	Plastic 950ml unpreserved	Α	7	7	3.3	Υ	Absent		TSS-2540(7)
L2206740-01Q	Amber 950ml H2SO4 preserved	Α	<2	<2	3.3	Υ	Absent		TPHENOL-420(28)
L2206740-01R	Amber 1000ml Na2S2O3	Α	7	7	3.3	Υ	Absent		PCB-608.3(365)
L2206740-01S	Amber 1000ml Na2S2O3	Α	7	7	3.3	Υ	Absent		PCB-608.3(365)
L2206740-01T	Amber 1000ml Na2S2O3	Α	7	7	3.3	Υ	Absent		625.1-RGP(7)
L2206740-01U	Amber 1000ml Na2S2O3	Α	7	7	3.3	Υ	Absent		625.1-RGP(7)

Serial_No:02152214:32

Lab Number: L2206740

Report Date: 02/15/22

Container Information

Project Number: 01.0171094.32

MALDEN RGP

Project Name:

Container Information			Initial	Final	Temp			Frozen	
Container ID	Container Type	Cooler	рН	рН	deg C	Pres	Seal	Date/Time	Analysis(*)
L2206740-01V	Amber 1000ml Na2S2O3	А	7	7	3.3	Υ	Absent		625.1-SIM-RGP(7)
L2206740-01W	Amber 1000ml Na2S2O3	Α	7	7	3.3	Υ	Absent		625.1-SIM-RGP(7)
L2206740-01X	Amber 1000ml HCl preserved	Α	NA		3.3	Υ	Absent		TPH-1664(28)
L2206740-01Y	Amber 1000ml HCl preserved	Α	NA		3.3	Υ	Absent		TPH-1664(28)

Project Name:MALDEN RGPLab Number:L2206740Project Number:01.0171094.32Report Date:02/15/22

GLOSSARY

Acronyms

EDL

DL - Detection Limit: This value represents the level to which target analyte concentrations are reported as estimated values, when those target analyte concentrations are quantified below the limit of quantitation (LOQ). The DL includes any adjustments from dilutions, concentrations or moisture content, where applicable. (DoD report formats only.)

 Estimated Detection Limit: This value represents the level to which target analyte concentrations are reported as estimated values, when those target analyte concentrations are quantified below the reporting limit (RL). The EDL includes any adjustments from dilutions, concentrations or moisture content, where applicable. The use of EDLs is specific to the analysis

of PAHs using Solid-Phase Microextraction (SPME).

EMPC - Estimated Maximum Possible Concentration: The concentration that results from the signal present at the retention time of an analyte when the ions meet all of the identification criteria except the ion abundance ratio criteria. An EMPC is a worst-case

estimate of the concentration.

EPA - Environmental Protection Agency.

LCS - Laboratory Control Sample: A sample matrix, free from the analytes of interest, spiked with verified known amounts of

analytes or a material containing known and verified amounts of analytes.

LCSD - Laboratory Control Sample Duplicate: Refer to LCS.

LFB - Laboratory Fortified Blank: A sample matrix, free from the analytes of interest, spiked with verified known amounts of

analytes or a material containing known and verified amounts of analytes.

LOD - Limit of Detection: This value represents the level to which a target analyte can reliably be detected for a specific analyte in a specific matrix by a specific method. The LOD includes any adjustments from dilutions, concentrations or moisture content,

where applicable. (DoD report formats only.)

LOQ - Limit of Quantitation: The value at which an instrument can accurately measure an analyte at a specific concentration. The LOQ includes any adjustments from dilutions, concentrations or moisture content, where applicable. (DoD report formats

oniy.)

Limit of Quantitation: The value at which an instrument can accurately measure an analyte at a specific concentration. The LOQ includes any adjustments from dilutions, concentrations or moisture content, where applicable. (DoD report formats

only.)

MDL - Method Detection Limit: This value represents the level to which target analyte concentrations are reported as estimated values, when those target analyte concentrations are quantified below the reporting limit (RL). The MDL includes any

adjustments from dilutions, concentrations or moisture content, where applicable.

MS - Matrix Spike Sample: A sample prepared by adding a known mass of target analyte to a specified amount of matrix sample for which an independent estimate of target analyte concentration is available. For Method 332.0, the spike recovery is calculated

using the native concentration, including estimated values.

MSD - Matrix Spike Sample Duplicate: Refer to MS.

NA - Not Applicable.

NC - Not Calculated: Term is utilized when one or more of the results utilized in the calculation are non-detect at the parameter's

reporting unit.

NDPA/DPA - N-Nitrosodiphenylamine/Diphenylamine.

NI - Not Ignitable.

NP - Non-Plastic: Term is utilized for the analysis of Atterberg Limits in soil.

NR - No Results: Term is utilized when 'No Target Compounds Requested' is reported for the analysis of Volatile or Semivolatile

Organic TIC only requests.

RL - Reporting Limit: The value at which an instrument can accurately measure an analyte at a specific concentration. The RL

includes any adjustments from dilutions, concentrations or moisture content, where applicable.

RPD - Relative Percent Difference: The results from matrix and/or matrix spike duplicates are primarily designed to assess the precision of analytical results in a given matrix and are expressed as relative percent difference (RPD). Values which are less

than five times the reporting limit for any individual parameter are evaluated by utilizing the absolute difference between the

values; although the RPD value will be provided in the report.

SRM - Standard Reference Material: A reference sample of a known or certified value that is of the same or similar matrix as the

associated field samples.

STLP - Semi-dynamic Tank Leaching Procedure per EPA Method 1315.

TEF - Toxic Equivalency Factors: The values assigned to each dioxin and furan to evaluate their toxicity relative to 2,3,7,8-TCDD.

TEQ - Toxic Equivalent: The measure of a sample's toxicity derived by multiplying each dioxin and furan by its corresponding TEF

and then summing the resulting values.

TIC - Tentatively Identified Compound: A compound that has been identified to be present and is not part of the target compound list (TCL) for the method and/or program. All TICs are qualitatively identified and reported as estimated concentrations.

Report Format: Data Usability Report

Project Name:MALDEN RGPLab Number:L2206740Project Number:01.0171094.32Report Date:02/15/22

Footnotes

 The reference for this analyte should be considered modified since this analyte is absent from the target analyte list of the original method.

Terms

1

Analytical Method: Both the document from which the method originates and the analytical reference method. (Example: EPA 8260B is shown as 1,8260B.) The codes for the reference method documents are provided in the References section of the Addendum.

Difference: With respect to Total Oxidizable Precursor (TOP) Assay analysis, the difference is defined as the Post-Treatment value minus the Pre-Treatment value.

Final pH: As it pertains to Sample Receipt & Container Information section of the report, Final pH reflects pH of container determined after adjustment at the laboratory, if applicable. If no adjustment required, value reflects Initial pH.

Frozen Date/Time: With respect to Volatile Organics in soil, Frozen Date/Time reflects the date/time at which associated Reagent Water-preserved vials were initially frozen. Note: If frozen date/time is beyond 48 hours from sample collection, value will be reflected in 'bold'.

Initial pH: As it pertains to Sample Receipt & Container Information section of the report, Initial pH reflects pH of container determined upon receipt, if applicable.

PAH Total: With respect to Alkylated PAH analyses, the 'PAHs, Total' result is defined as the summation of results for all or a subset of the following compounds: Naphthalene, C1-C4 Naphthalenes, 2-Methylnaphthalene, 1-Methylnaphthalene, Biphenyl, Acenaphthylene, Acenaphthene, Fluorene, C1-C3 Fluorenes, Phenanthrene, C1-C4 Phenanthrenes/Anthracenes, Anthracene, Fluoranthene, Pyrene, C1-C4 Fluoranthenes/Pyrenes, Benz(a)anthracene, Chrysene, C1-C4 Chrysenes, Benzo(b)fluoranthene, Benzo(j)+(k)fluoranthene, Benzo(e)pyrene, Benzo(a)pyrene, Perylene, Indeno(1,2,3-cd)pyrene, Dibenz(ah)+(ac)anthracene, Benzo(g,h,i)perylene. If a 'Total' result is requested, the results of its individual components will also be reported.

PFAS Total: With respect to PFAS analyses, the 'PFAS, Total (5)' result is defined as the summation of results for: PFHpA, PFHxS, PFOA, PFNA and PFOS. In addition, the 'PFAS, Total (6)' result is defined as the summation of results for: PFHpA, PFHxS, PFOA, PFNA, PFDA and PFOS. For MassDEP DW compliance analysis only, the 'PFAS, Total (6)' result is defined as the summation of results at or above the RL. Note: If a 'Total' result is requested, the results of its individual components will also be reported.

The target compound Chlordane (CAS No. 57-74-9) is reported for GC ECD analyses. Per EPA, this compound "refers to a mixture of chlordane isomers, other chlorinated hydrocarbons and numerous other components." (Reference: USEPA Toxicological Review of Chlordane, In Support of Summary Information on the Integrated Risk Information System (IRIS), December 1997.)

Total: With respect to Organic analyses, a 'Total' result is defined as the summation of results for individual isomers or Aroclors. If a 'Total' result is requested, the results of its individual components will also be reported. This is applicable to 'Total' results for methods 8260, 8081 and 8082.

Data Qualifiers

- A Spectra identified as "Aldol Condensates" are byproducts of the extraction/concentration procedures when acetone is introduced in the process.
- The analyte was detected above the reporting limit in the associated method blank. Flag only applies to associated field samples that have detectable concentrations of the analyte at less than ten times (10x) the concentration found in the blank. For MCP-related projects, flag only applies to associated field samples that have detectable concentrations of the analyte at less than ten times (10x) the concentration found in the blank. For DOD-related projects, flag only applies to associated field samples that have detectable concentrations of the analyte at less than ten times (10x) the concentration found in the blank AND the analyte was detected above one-half the reporting limit (or above the reporting limit for common lab contaminants) in the associated method blank. For NJ-Air-related projects, flag only applies to associated field samples that have detectable concentrations of the analyte above the reporting limit. For NJ-related projects (excluding Air), flag only applies to associated field samples that have detectable concentrations of the analyte, which was detected above the reporting limit in the associated method blank or above five times the reporting limit for common lab contaminants (Phthalates, Acetone, Methylene Chloride, 2-Butanone).
- Co-elution: The target analyte co-elutes with a known lab standard (i.e. surrogate, internal standards, etc.) for co-extracted analyses.
- Concentration of analyte was quantified from diluted analysis. Flag only applies to field samples that have detectable concentrations of the analyte.
- ${f E}$ Concentration of analyte exceeds the range of the calibration curve and/or linear range of the instrument.
- F The ratio of quantifier ion response to qualifier ion response falls outside of the laboratory criteria. Results are considered to be an estimated maximum concentration.
- G The concentration may be biased high due to matrix interferences (i.e, co-elution) with non-target compound(s). The result should be considered estimated.
- H The analysis of pH was performed beyond the regulatory-required holding time of 15 minutes from the time of sample collection.
- I The lower value for the two columns has been reported due to obvious interference.
- J Estimated value. This represents an estimated concentration for Tentatively Identified Compounds (TICs).
- M Reporting Limit (RL) exceeds the MCP CAM Reporting Limit for this analyte.
- **ND** Not detected at the reporting limit (RL) for the sample.
- NJ Presumptive evidence of compound. This represents an estimated concentration for Tentatively Identified Compounds (TICs), where

Report Format: Data Usability Report

Project Name:MALDEN RGPLab Number:L2206740Project Number:01.0171094.32Report Date:02/15/22

Data Qualifiers

the identification is based on a mass spectral library search.

- P The RPD between the results for the two columns exceeds the method-specified criteria.
- Q The quality control sample exceeds the associated acceptance criteria. For DOD-related projects, LCS and/or Continuing Calibration Standard exceedences are also qualified on all associated sample results. Note: This flag is not applicable for matrix spike recoveries when the sample concentration is greater than 4x the spike added or for batch duplicate RPD when the sample concentrations are less than 5x the RL. (Metals only.)
- **R** Analytical results are from sample re-analysis.
- **RE** Analytical results are from sample re-extraction.
- S Analytical results are from modified screening analysis.
- The surrogate associated with this target analyte has a recovery outside the QC acceptance limits. (Applicable to MassDEP DW Compliance samples only.)
- Z The batch matrix spike and/or duplicate associated with this target analyte has a recovery/RPD outside the QC acceptance limits. (Applicable to MassDEP DW Compliance samples only.)

Report Format: Data Usability Report

 Project Name:
 MALDEN RGP
 Lab Number:
 L2206740

 Project Number:
 01.0171094.32
 Report Date:
 02/15/22

REFERENCES

- Test Methods for Evaluating Solid Waste: Physical/Chemical Methods. EPA SW-846. Third Edition. Updates I VI, 2018.
- Methods for the Determination of Metals in Environmental Samples, Supplement I. EPA/600/R-94/111. May 1994.
- 4 Methods for Chemical Analysis of Water and Wastes. EPA 600/4-79-020. Revised March 1983.
- Methods for the Determination of Organic Compounds in Finished Drinking Water and Raw Source Water. EPA/600/4-88/039, Revised July 1991.
- 19 Inductively Coupled Plasma Atomic Emission Spectrometric Method for Trace Element Analysis of Water and Wastes. Appendix C, Part 136, 40 CFR (Code of Federal Regulations). July 1, 1999 edition.
- Methods for the Determination of Inorganic Substances in Environmental Samples, EPA/600/R-93/100, August 1993.
- 107 Alpha Analytical In-house calculation method.
- 121 Standard Methods for the Examination of Water and Wastewater. APHA-AWWA-WEF. Standard Methods Online.
- Method 608.3: Organochlorine Pesticides and PCBs by GC/HSD, EPA 821-R-16-009, December 2016.
- 128 Method 624.1: Purgeables by GC/MS, EPA 821-R-16-008, December 2016.
- Method 625.1: Base/Neutrals and Acids by GC/MS, EPA 821-R-16-007, December 2016.
- Method 1664, Revision B: N-Hexane Extractable Material (HEM; Oil & Grease) and Silica Gel Treated N-Hexane Extractable Material (SGT-HEM; Non-polar Material) by Extraction and Gravimetry, EPA-821-R-10-001, February 2010.

LIMITATION OF LIABILITIES

Alpha Analytical performs services with reasonable care and diligence normal to the analytical testing laboratory industry. In the event of an error, the sole and exclusive responsibility of Alpha Analytical shall be to re-perform the work at it's own expense. In no event shall Alpha Analytical be held liable for any incidental, consequential or special damages, including but not limited to, damages in any way connected with the use of, interpretation of, information or analysis provided by Alpha Analytical.

We strongly urge our clients to comply with EPA protocol regarding sample volume, preservation, cooling, containers, sampling procedures, holding time and splitting of samples in the field.

Serial_No:02152214:32

Alpha Analytical, Inc. Facility: Company-wide

Department: Quality Assurance

Title: Certificate/Approval Program Summary

ID No.:17873

Page 1 of 1

Revision 19 Published Date: 4/2/2021 1:14:23 PM

Certification Information

The following analytes are not included in our Primary NELAP Scope of Accreditation:

Westborough Facility

EPA 624/624.1: m/p-xylene, o-xylene, Naphthalene

EPA 625/625.1: alpha-Terpineol

EPA 8260C/8260D: NPW: 1,2,4,5-Tetramethylbenzene; 4-Ethyltoluene, Azobenzene; SCM: Iodomethane (methyl iodide), 1,2,4,5-Tetramethylbenzene;

EPA 8270D/8270E: NPW: Dimethylnaphthalene,1,4-Diphenylhydrazine, alpha-Terpineol; SCM: Dimethylnaphthalene,1,4-Diphenylhydrazine.

SM4500: NPW: Amenable Cyanide; SCM: Total Phosphorus, TKN, NO2, NO3.

Mansfield Facility

SM 2540D: TSS

EPA 8082A: NPW: PCB: 1, 5, 31, 87,101, 110, 141, 151, 153, 180, 183, 187.

EPA TO-15: Halothane, 2,4,4-Trimethyl-2-pentene, 2,4,4-Trimethyl-1-pentene, Thiophene, 2-Methylthiophene,

3-Methylthiophene, 2-Ethylthiophene, 1,2,3-Trimethylbenzene, Indan, Indene, 1,2,4,5-Tetramethylbenzene, Benzothiophene, 1-Methylnaphthalene.

Biological Tissue Matrix: EPA 3050B

The following analytes are included in our Massachusetts DEP Scope of Accreditation

Westborough Facility:

Drinking Water

EPA 300.0: Chloride, Nitrate-N, Fluoride, Sulfate; EPA 353.2: Nitrate-N, Nitrite-N; SM4500NO3-F: Nitrate-N, Nitrite-N; SM4500F-C, SM4500CN-CE,

EPA 180.1, SM2130B, SM4500CI-D, SM2320B, SM2540C, SM4500H-B, SM4500NO2-B

EPA 332: Perchlorate; EPA 524.2: THMs and VOCs; EPA 504.1: EDB, DBCP.

Microbiology: SM9215B; SM9223-P/A, SM9223B-Colilert-QT,SM9222D.

Non-Potable Water

SM4500H,B, EPA 120.1, SM2510B, SM2540C, SM2320B, SM4500CL-E, SM4500F-BC, SM4500NH3-BH: Ammonia-N and Kjeldahl-N, EPA 350.1: Ammonia-N, LACHAT 10-107-06-1-B: Ammonia-N, EPA 351.1, SM4500NO3-F, EPA 353.2: Nitrate-N, SM4500P-E, SM4500P-B, E, SM4500SO4-E, SM5220D, EPA 410.4, SM5210B, SM5310C, SM4500CL-D, EPA 1664, EPA 420.1, SM4500-CN-CE, SM2540D, EPA 300: Chloride, Sulfate, Nitrate. EPA 624.1: Volatile Halocarbons & Aromatics,

EPA 608.3: Chlordane, Toxaphene, Aldrin, alpha-BHC, beta-BHC, gamma-BHC, delta-BHC, Dieldrin, DDD, DDE, DDT, Endosulfan II, Endosulfan II, Endosulfan sulfate, Endrin, Endrin Aldehyde, Heptachlor, Heptachlor Epoxide, PCBs

EPA 625.1: SVOC (Acid/Base/Neutral Extractables), EPA 600/4-81-045: PCB-Oil.

Microbiology: SM9223B-Colilert-QT; Enterolert-QT, SM9221E, EPA 1600, EPA 1603, SM9222D.

Mansfield Facility:

Drinking Water

EPA 200.7: Al, Ba, Cd, Cr, Cu, Fe, Mn, Ni, Na, Ag, Ca, Zn. EPA 200.8: Al, Sb, As, Ba, Be, Cd, Cr, Cu, Pb, Mn, Ni, Se, Ag, TL, Zn. EPA 245.1 Hg. EPA 522, EPA 537.1.

Non-Potable Water

EPA 200.7: Al, Sb, As, Be, Cd, Ca, Cr, Co, Cu, Fe, Pb, Mg, Mn, Mo, Ni, K, Se, Ag, Na, Sr, TL, Ti, V, Zn.

EPA 200.8: Al, Sb, As, Be, Cd, Cr, Cu, Fe, Pb, Mn, Ni, K, Se, Ag, Na, TL, Zn.

EPA 245.1 Hg

SM2340B

For a complete listing of analytes and methods, please contact your Alpha Project Manager.

Pre-Qualtrax Document ID: 08-113 Document Type: Form

	CHAIN OF	CUSTO	DY	PAGE 1 0	F1	Date	Rec'd	in Lab:	2	19/2	22) Kall	WE	ALP	HA J	ob #:	LZ	206740
ALPH	A	Project Inform	mation			Rep	ort Ir	nform	ation	Data	Deliv	erab	les	Billir	ng In	forma	tion	
ANALYTIC	AL	i rojectimon	mation				FAX			⊠ E	MAIL			Same as Client info PO#:			PO#:	
Would Class Chemi			الملحات			⊠.	ADEx			⊠ A	dd'I De	liverabl	les -	80	2,15	6:	21	EZEDP
Westborough, MA TEL: 508-898-9220 FAX: 508-898-9193	Mansfield, MA TEL: 508-822-9300 FAX: 508-822-3288	Project Name: I	Malden RGP			100000000	julato			ment	nts/Report Limits							
Client Informati	ion	Project Location	n: 100 comm	ercial street	Malden	RGP								- 42 70 00				
Client: GZA		Project #: 01.01	71094	52		1112	781-		Control of the	E CE		SECURITY FOR		200		1.0000000000000000000000000000000000000	NFID	ENCE PROTOCOLS
Address: 249 Vano	derbilt Ave.	Project Manage				믕			□ No				onable Confidence Protocols			rotocols) Required?	
Norwood Ma. 02062 ALPHA Quote #:			ALYS						4					T				
Phone: 781-983-13	357	Turn-Around	Time											Σ			list	SAMPLE HANDLING T Filtration A
Fax:		☐ Standard	28000000	ish (ONLY IF F	RE-APPROVED)	1						20.1		10-S			see I	☐ Done
Email: william.davi	s@gza.com	149						3-D 664A	Method 335.4	624.1	hod 504.1 EPA Method 420.1	bod 4	5.1	EPA 8270-SIM		300	200	□ Not Needed □ Lab to do
☐ These samples have	☐ These samples have been Previously analyzed by Alpha Due Date: 4-day Time:					100000	2					od 62	BEHP by EP/	EPA Method 608	Method 3	& Metals	Preservation 0	
	Arsenic, Cadmium, Chromium II Silver, Zinc and Iron) by EPA Me	thod 7000, 6010, 602	20, 7470 or			TSS by Method 2540D	.Cr 3, TRC-4500, Cl-D	TPH by EPA method 1664A	Cyanide by EPA	VOCs by EPA method	3 by EPA Method 504.1	Total Phenols by	SVOCs by EPA Method 625.1	PAHS, PCP.	PCBs by EPA	Chloride by EPA	Hardness by	
ALPHA Lab ID	Sample ID	Colle	lection Sample		Sampler's	TSS	HexCr	FH	Sal	00	EDB	Potal	000	PAH	CB	용	Hard	Sample Specific
(Lab Use Only)		Date	Time	Matrix	Initials		-	1000			ST-5	15	55.0			_		
						215				Ц					Ц			
06740-01	B501	2/9/22	10:20	GW	JAI								\boxtimes	\boxtimes				25
						H	닏			片	님		님		님	님	님	400
					-	1	님	무	H	무	무	님		님	님	님	H	
					1.	H	H	님	H	H	님	Η		H	님	H	H	
			-			H	H	님	H	Η	님	금		H	금	H	H	
		_				H	H	H	H	H	H	뉴	H	H	H	Ħ	H	
						H	Ħ	H	Ħ	Ħ	Ħ	H				t		
						Ħ												
PLEASE ANSWER	QUESTIONS ABOVE!				Container Type		•	*			(-	2		žo.	755	4	5	
		<i>29</i>			Preservative	æ	*			* .		•	*		*	*	28	Please print clearly, legibly and completely. Samples can
MA MCP	PROJECT or CT RCP?	JAC.	Relig	equished By:	ANI 2	Date/Time			Received By:				Date/Time			2:43	not be logged in and turnaround time clock will not start until any ambiguities are resolved. All samples submitted are subject to	
ORMAND: 01-01(1) ev. 8-JAN-12)		0	July AAL 2			19122 15:11 ge			(u	wifan_			न्विवार 1977			/	Alpha's Payment Terms.	

	10.10	1,000,000		act Chain of Custo	ody		Alpha Job	Number	
ANALY	iA	54/ Co	k Lab, Inc. 45 Horsehoe Ilinsville, IL 62	Lake Road 2234-7425			L2206740	Number	
Wolle Class Ch	A TANK DETAIL								
C	lient Information	No. 18 Big	Project In	formation		Regulatory Require	ements/Report Lir	nits	
Client: Alpha A Address: Eight W Westbo	Analytical Labs /alkup Drive rrough, MA 01581-1019	Project Location Project Manage Turnaro		rnes rerables Information	Re	ate/Federal Program: gulatory Criteria:			
Phone: 716.42 Email: jbyrnes	7.5228 @alphalab.com	Due Date: Deliverables:	02/14/22 (RI	JSH)					
		Project Specifi	ic Requirem	ents and/or Report	Requireme	nts			
	Reference following Alpha Job				Report to	include Method Blank, L	.CS/LCSD:		
Additional Com	ments: Send all results/reports	to subreports@alphala	ib.com NPDE	S- Rush					
			DE TOTAL				TVA THE STATE		
Lab ID	Client ID	Collection Date/Time	Sample Matrix	Ar	nalysis			Batch QC	
	B501	02-09-22 10:20	WATER	Ethanol by EPA 1671 Revi					
MANAGE SERVICE	Relinquishe	ed By:		Date/Time:	Red	eived By:	Date/Time:		
	6	1		2010132					
Form No: AL_su	bcoc								

http://www.teklabinc.com/

February 14, 2022

Jennifer Byrnes

Alpha Analytical

Illinois 100226

Kansas E-10374

Louisiana 05002

145 Flanders Road
Westborough, MA 01581

Louisiana 05003
Oklahoma 9978

TEL: (716) 427-5228 FAX:

RE: L2206740 **WorkOrder:** 22020652

Dear Jennifer Byrnes:

TEKLAB, INC received 1 sample on 2/11/2022 9:15:00 AM for the analysis presented in the following report.

Samples are analyzed on an as received basis unless otherwise requested and documented. The sample results contained in this report relate only to the requested analytes of interest as directed on the chain of custody. NELAP accredited fields of testing are indicated by the letters NELAP under the Certification column. Unless otherwise documented within this report, Teklab Inc. analyzes samples utilizing the most current methods in compliance with 40CFR. All tests are performed in the Collinsville, IL laboratory unless otherwise noted in the Case Narrative.

All quality control criteria applicable to the test methods employed for this project have been satisfactorily met and are in accordance with NELAP except where noted. The following report shall not be reproduced, except in full, without the written approval of Teklab, Inc.

If you have any questions regarding these tests results, please feel free to call.

Sincerely,

Marvin L. Darling Project Manager (618)344-1004 ex 41 mdarling@teklabinc.com

Report Contents

http://www.teklabinc.com/

Client: Alpha Analytical	Work Order: 22020652
Client Project: L2206740	Report Date: 14-Feb-22

This reporting package includes the following:

Cover Letter	1
Report Contents	2
Definitions	3
Case Narrative	5
Accreditations	6
Laboratory Results	7
Quality Control Results	8
Receiving Check List	9
Chain of Custody	Appended

Definitions

http://www.teklabinc.com/

Client: Alpha Analytical Work Order: 22020652

Client Project: L2206740 Report Date: 14-Feb-22

Abbr Definition

- * Analytes on report marked with an asterisk are not NELAP accredited
- CCV Continuing calibration verification is a check of a standard to determine the state of calibration of an instrument between recalibration.
- CRQL A Client Requested Quantitation Limit is a reporting limit that varies according to customer request. The CRQL may not be less than the MDL.
 - DF Dilution factor is the dilution performed during analysis only and does not take into account any dilutions made during sample preparation. The reported result is final and includes all dilution factors.
 - DNI Did not ignite
- DUP Laboratory duplicate is a replicate aliquot prepared under the same laboratory conditions and independently analyzed to obtain a measure of precision.
- ICV Initial calibration verification is a check of a standard to determine the state of calibration of an instrument before sample analysis is initiated.
- IDPH IL Dept. of Public Health
- LCS Laboratory control sample is a sample matrix, free from the analytes of interest, spiked with verified known amounts of analytes and analyzed exactly like a sample to establish intra-laboratory or analyst specific precision and bias or to assess the performance of all or a portion of the measurement system.
- LCSD Laboratory control sample duplicate is a replicate laboratory control sample that is prepared and analyzed in order to determine the precision of the approved test method. The acceptable recovery range is listed in the QC Package (provided upon request).
- MBLK Method blank is a sample of a matrix similar to the batch of associated sample (when available) that is free from the analytes of interest and is processed simultaneously with and under the same conditions as samples through all steps of the analytical procedures, and in which no target analytes or interferences should present at concentrations that impact the analytical results for sample analyses.
- MDL "The method detection limit is defined as the minimum measured concentration of a substance that can be reported with 99% confidence that the measured concentration is distinguishable from method blank results."
- MS Matrix spike is an aliquot of matrix fortified (spiked) with known quantities of specific analytes that is subjected to the entire analytical procedures in order to determine the effect of the matrix on an approved test method's recovery system. The acceptable recovery range is listed in the QC Package (provided upon request).
- MSD Matrix spike duplicate means a replicate matrix spike that is prepared and analyzed in order to determine the precision of the approved test method. The acceptable recovery range is listed in the QC Package (provided upon request).
- MW Molecular weight
- NC Data is not acceptable for compliance purposes
- ND Not Detected at the Reporting Limit

NELAP NELAP Accredited

- PQL Practical quantitation limit means the lowest level that can be reliably achieved within specified limits of precision and accuracy during routine laboratory operation conditions.
- RL The reporting limit the lowest level that the data is displayed in the final report. The reporting limit may vary according to customer request or sample dilution. The reporting limit may not be less than the MDL.
- RPD Relative percent difference is a calculated difference between two recoveries (ie. MS/MSD). The acceptable recovery limit is listed in the QC Package (provided upon request).
- SPK The spike is a known mass of target analyte added to a blank sample or sub-sample; used to determine recovery deficiency or for other quality control purposes.
- Surr Surrogates are compounds which are similar to the analytes of interest in chemical composition and behavior in the analytical process, but which are not normally found in environmental samples.
- TIC Tentatively identified compound: Analytes tentatively identified in the sample by using a library search. Only results not in the calibration standard will be reported as tentatively identified compounds. Results for tentatively identified compounds that are not present in the calibration standard, but are assigned a specific chemical name based upon the library search, are calculated using total peak areas from reconstructed ion chromatograms and a response factor of one. The nearest Internal Standard is used for the calculation. The results of any TICs must be considered estimated, and are flagged with a "T". If the estimated result is above the calibration range it is flagged "ET"
- TNTC Too numerous to count (> 200 CFU)

Definitions

http://www.teklabinc.com/

Client: Alpha Analytical Work Order: 22020652
Client Project: L2206740 Report Date: 14-Feb-22

Qualifiers

- # Unknown hydrocarbon
- C RL shown is a Client Requested Quantitation Limit
- H Holding times exceeded
- J Analyte detected below quantitation limits
- ND Not Detected at the Reporting Limit
 - S Spike Recovery outside recovery limits
 - X Value exceeds Maximum Contaminant Level

- B Analyte detected in associated Method Blank
- E Value above quantitation range
- I Associated internal standard was outside method criteria
- M Manual Integration used to determine area response
- R RPD outside accepted recovery limits
- T TIC(Tentatively identified compound)

Case Narrative

http://www.teklabinc.com/

Client: Alpha Analytical Work Order: 22020652
Client Project: L2206740 Report Date: 14-Feb-22

Cooler Receipt Temp: 2.8 °C

Locations

	Collinsville	_	Springfield	<u> </u>	Kansas City
Address	5445 Horseshoe Lake Road	Address	3920 Pintail Dr	Address	8421 Nieman Road
	Collinsville, IL 62234-7425		Springfield, IL 62711-9415		Lenexa, KS 66214
Phone	(618) 344-1004	Phone	(217) 698-1004	Phone	(913) 541-1998
Fax	(618) 344-1005	Fax	(217) 698-1005	Fax	(913) 541-1998
Email	jhriley@teklabinc.com	Email	KKlostermann@teklabinc.com	Email	jhriley@teklabinc.com
	Collinsville Air	_	Chicago		
Address	5445 Horseshoe Lake Road	Address	1319 Butterfield Rd.		
	Collinsville, IL 62234-7425		Downers Grove, IL 60515		
Phone	(618) 344-1004	Phone	(630) 324-6855		
Fax	(618) 344-1005	Fax			
	EHurley@teklabinc.com	Email	arenner@teklabinc.com		

Accreditations

http://www.teklabinc.com/

Client: Alpha Analytical Work Order: 22020652

Client Project: L2206740 Report Date: 14-Feb-22

State	Dept	Cert #	NELAP	Exp Date	Lab	
Illinois	IEPA	100226	NELAP	1/31/2023	Collinsville	
Kansas	KDHE	E-10374	NELAP	4/30/2022	Collinsville	
Louisiana	LDEQ	05002	NELAP	6/30/2022	Collinsville	
Louisiana	LDEQ	05003	NELAP	6/30/2022	Collinsville	
Oklahoma	ODEQ	9978	NELAP	8/31/2022	Collinsville	
Arkansas	ADEQ	88-0966		3/14/2022	Collinsville	
Illinois	IDPH	17584		5/31/2023	Collinsville	
Kentucky	UST	0073		1/31/2023	Collinsville	
Missouri	MDNR	00930		5/31/2023	Collinsville	
Missouri	MDNR	930		1/31/2025	Collinsville	

Laboratory Results

http://www.teklabinc.com/

Client: Alpha Analytical Work Order: 22020652

Client Project: L2206740 Report Date: 14-Feb-22

Lab ID: 22020652-001 Client Sample ID: B501

Matrix: AQUEOUS Collection Date: 02/09/2022 10:20

	Analyses	Certification	RL Qual	Result	Units	DF	Date Analyzed Batch
EPA 600 1	671A, PHARMACE	EUTICAL MANUFACTU	JRING INDUSTRY NO	N-PURGEA	BLE VOLAT	ILE ORGA	NICS
Ethanol		*	20	ND	mg/L	1	02/11/2022 15:53 R307009

Quality Control Results

http://www.teklabinc.com/

Client: Alpha Analytical Work Order: 22020652
Client Project: L2206740 Report Date: 14-Feb-22

EPA 600 1671A, PHARMACEUTICAL MANUFACTURING INDUSTRY NON-PURGEABLE VOLATILE OR											
MBLK		Units mg/L									
									Date		
Cert	RL	Qual	Result	Spike	SPK Ref Val	%REC	Low Limit	High Limit	Analyzed		
*	20		ND						02/11/2022		
LCS		Units mg/L									
									Date		
Cert	RL	Qual	Result	Spike	SPK Ref Val	%REC	Low Limit	High Limit	Analyzed		
*	20	-	310	250.0	0	122.2	70	132	02/11/2022		
MS		Units mg/L									
									Date		
Cert	RL	Qual	Result	Spike	SPK Ref Val	%REC	Low Limit	High Limit	Analyzed		
*	20		320	250.0	0	129.5	70	132	02/11/2022		
MSD		Units mg/L				RPD Limit: 30					
									Date		
Cert	RL	Oual	Result	Spike	SPK Ref Val	%REC	RPD Ref Va	al %RPD	Analyzed		
	MBLK Cert * LCS Cert * MS Cert *	MBLK Cert RL 20 LCS RL Cert RL * 20 MS RL 4 20	MBLK Units mg/L Cert RL Qual * 20 Units mg/L Cert RL Qual * 20 Units mg/L MS Units mg/L MSD Units mg/L	MBLK Units mg/L Cert RL Qual Result * 20 ND LCS Units mg/L Very control of the contr	MBLK Units mg/L Cert RL Qual Result Spike * 20 ND Volume ND Volume ND Volume Spike ND Volume Spike ND Spike ND Spike ND Spike ND ND	MBLK Units mg/L Cert RL Qual Result Spike SPK Ref Val * 20 ND Val ND SPK Ref Val LCS Units mg/L Spike SPK Ref Val SPK Ref Val * * 20 310 250.0 0 O MS Units mg/L Spike SPK Ref Val * * 20 320 250.0 0 O MSD Units mg/L Units mg/L *	MBLK Units mg/L Result Spike SPK Ref Val %REC * 20 ND ************************************	MBLK Units mg/L Spike SPK Ref Val %REC Low Limit * 20 ND *** **** **** ***** ***** ***** ***** ***** ****** ****** ****** ******* ****** ******* ******* ********** ***************** ************************************	MBLK Units mg/L Spike SPK Ref Val %REC Low Limit High Limit ** 20 ND ** </td		

Receiving Check List

http://www.teklabinc.com/

Client: Alpha Analytical Client Project: L2206740	Work Order: 22020652 Report Date: 14-Feb-22					
Carrier: UPS Completed by: On: 11-Feb-22 Mary E. Kemp	Received Reviewe On: 11-Feb-2	·				
Pages to follow: Chain of custody 1 Shipping container/cooler in good condition? Type of thermal preservation? Chain of custody present? Chain of custody signed when relinquished and received? Chain of custody agrees with sample labels? Samples in proper container/bottle? Sample containers intact? Sufficient sample volume for indicated test? All samples received within holding time? Reported field parameters measured: Container/Temp Blank temperature in compliance? When thermal preservation is required, samples are compliance.	None	No Not Present Temp °C 2.8 Ice ♥ Blue Ice Dry Ice Dry Ice No No No No No No No No No No No No etween No No No				
0.1°C - 6.0°C, or when samples are received on ice the same Water – at least one vial per sample has zero headspace? Water - TOX containers have zero headspace? Water - pH acceptable upon receipt? NPDES/CWA TCN interferences checked/treated in the field? Any No responses received on ice the same	Yes ✓ Yes ☐ Yes ✓	No				

APPENDIX C

CALCULATION SHEETS FOR EFFLUENT LIMITATIONS AND DILUTION FACTOR

DILUTION FACTOR CALCULATIONS

NOTICE OF INTENT FOR THE REMEDIATION GENERAL PERMIT 100 Commercial Street, Malden, Massachusetts

$$DF = \frac{Q_d + Q_s}{Q_d}$$

Where.

DF = Dilution Factor

 Q_d = Maximum Flow Rate of the Discharge in million gallons per day (MGD)

 Q_s = Receiving Water 7Q10 Flow (MGD) where,

7Q10 = Minimum Flow (MGD) for 7 Consecutive Days with a Recurrence Interval of 10 Years.

 $Q_d = 50 \text{ gpm} = 0.072 \text{ MGD}$

 $Q_s = 0.436 \text{ cfs} = 0.28179 \text{ MGD}$ (7Q10 approved by MassDEP in email dated 2/9/2022)

$$\therefore DF = \frac{Q_d + Q_s}{Q_d} = \frac{0.072 + 0.28179}{0.072} = 4.913$$

 $\label{lem:condition} J:\label{lem:condition} J:\lab$

Enter number values in green boxes below

Enter values in the units specified

\bot	
	$Q_R = Enter upstream flow in MGD$
0.072	Q_P = Enter discharge flow in MGD
0	Downstream 7Q10

Enter a dilution factor, if other than zero

Enter values in the units specified

939 C_d = Enter influent hardness in **mg/L** CaCO₃ C_s = Enter receiving water hardness in **mg/L** CaCO₃

Enter receiving water concentrations in the units specified

\downarrow	
8.15	pH in Standard Units
5.2	Temperature in °C
0.313	Ammonia in mg/L
54.5	Hardness in mg/L CaCO ₃
0	Salinity in ppt
0	Antimony in μg/L
1.15	Arsenic in µg/L
0	Cadmium in µg/L
0	Chromium III in µg/L
0	Chromium VI in µg/L
2.93	Copper in µg/L
432	Iron in μg/L
2.61	Lead in μg/L
0	Mercury in µg/L
0	Nickel in μg/L
0	Selenium in µg/L
0	Silver in µg/L
27.44	Zinc in μg/L

Enter **influent** concentrations in the units specified

\downarrow	_
0	TRC in µg/L
7.08	Ammonia in mg/L
0	Antimony in μg/L
93.58	Arsenic in μg/L
1.14	Cadmium in µg/L
9.16	Chromium III in µg/L
0	Chromium VI in µg/L
43.42	Copper in µg/L
34000	Iron in μg/L
30.01	Lead in µg/L
0	Mercury in µg/L
5.35	Nickel in µg/L
0	Selenium in µg/L
0	Silver in µg/L
128	Zinc in µg/L
763	Cyanide in µg/L
0	Phenol in µg/L
0	Carbon Tetrachloride in µg/L
0	Tetrachloroethylene in µg/L
0	Total Phthalates in µg/L
0	Diethylhexylphthalate in μg/L
4.07	Benzo(a)anthracene in µg/L
2.82	Benzo(a)pyrene in µg/L
2.52	Benzo(b)fluoranthene in µg/L
0.911	Benzo(k)fluoranthene in µg/L
1.73	Chrysene in µg/L
0.312	Dibenzo(a,h)anthracene in µg/L
1.72	Indeno(1,2,3-cd)pyrene in µg/L
15	Methyl-tert butyl ether in μg/L

A. Inorganics	TBEL applies if	bolded	WQBEL applies if bolded	
Ammonia	Report	mg/L		
Chloride	Report	μg/L		
Total Residual Chlorine	0.2	μg/L mg/L	11	μg/L
Total Suspended Solids	30	_		μg/L
•		mg/L		7
Antimony	206	μg/L	640	μg/L
Arsenic	104	μg/L	10	μg/L
Cadmium	10.2	μ g/L	1.4224	μg/L
Chromium III	323	$\mu g/L$	539.5	$\mu g/L$
Chromium VI	323	$\mu g/L$	11.4	μg/L
Copper	242	μg/L	63.2	μg/L
Iron	5000	μg/L	1000	μg/L
Lead	160	μg/L	55.06	μg/L
Mercury	0.739	μg/L	0.91	μg/L
Nickel	1450		346.9	
Selenium		μg/L	5.0	μg/L
	235.8	μg/L		μg/L
Silver	35.1	μg/L	178.2	μg/L
Zinc	420	μg/L	799.2	μg/L
Cyanide	178	mg/L	5.2	$\mu g/L$
B. Non-Halogenated VOCs				
Total BTEX	100	μg/L		
Benzene	5.0	μg/L		
1,4 Dioxane	200 7970	μg/L		
Acetone Phenol	1,080	μg/L μg/L	300	ug/I
C. Halogenated VOCs	1,000	μg/L	300	μg/L
Carbon Tetrachloride	4.4	μg/L	1.6	μg/L
1,2 Dichlorobenzene	600	μg/L		P-8-
1,3 Dichlorobenzene	320	μg/L		
1,4 Dichlorobenzene	5.0	μg/L		
Total dichlorobenzene		$\mu g/L$		
1,1 Dichloroethane	70	$\mu g/L$		
1,2 Dichloroethane	5.0	μg/L		
1,1 Dichloroethylene	3.2	μg/L		
Ethylene Dibromide	0.05	μg/L		
Methylene Chloride	4.6	μg/L		
1,1,1 Trichloroethane 1,1,2 Trichloroethane	200 5.0	μg/L		
Trichloroethylene	5.0 5.0	μg/L μg/L		
Tetrachloroethylene	5.0 5.0	μg/L μg/L	3.3	μg/L
cis-1,2 Dichloroethylene	70	μg/L μg/L	3.3 	μg/L
1,2 Diemoroemyiene	, ,	M 5 -		

Vinyl Chloride	2.0	μg/L		
D. Non-Halogenated SVOCs				
Total Phthalates	190	μg/L		μg/L
Diethylhexyl phthalate	101	μg/L	2.2	μg/L
Total Group I Polycyclic				
Aromatic Hydrocarbons	1.0	μg/L		
Benzo(a)anthracene	1.0	μg/L	0.0038	μg/L
Benzo(a)pyrene	1.0	μg/L	0.0038	$\mu g/L$
Benzo(b)fluoranthene	1.0	μg/L	0.0038	$\mu g/L$
Benzo(k)fluoranthene	1.0	μg/L	0.0038	$\mu g/L$
Chrysene	1.0	μg/L	0.0038	$\mu g/L$
Dibenzo(a,h)anthracene	1.0	μg/L	0.0038	$\mu g/L$
Indeno(1,2,3-cd)pyrene	1.0	μg/L	0.0038	$\mu g/L$
Total Group II Polycyclic				
Aromatic Hydrocarbons	100	μg/L		
Naphthalene	20	μg/L		
E. Halogenated SVOCs				
Total Polychlorinated Biphenyls	0.000064	μg/L		
Pentachlorophenol	1.0	μg/L		
F. Fuels Parameters				
Total Petroleum Hydrocarbons	5.0	mg/L		
Ethanol	Report	mg/L		
Methyl-tert-Butyl Ether	70	μg/L	20	$\mu g/L$
tert-Butyl Alcohol	120	μg/L		
tert-Amyl Methyl Ether	90	$\mu g/L$		

APPENDIX D

ACEC AND FEDERALLY LISTED ENDANGERED AND THREATENED SPECIES IN MASSACHUSETTS EVALUATION

United States Department of the Interior

FISH AND WILDLIFE SERVICE

New England Ecological Services Field Office 70 Commercial Street, Suite 300 Concord, NH 03301-5094 Phone: (603) 223-2541 Fax: (603) 223-0104

http://www.fws.gov/newengland

In Reply Refer To: February 10, 2022

Project Code: 2022-0005993

Project Name: 100 Commercial Street - Malden MA

Subject: List of threatened and endangered species that may occur in your proposed project

location or may be affected by your proposed project

To Whom It May Concern:

The enclosed species list identifies threatened, endangered, proposed and candidate species, as well as proposed and final designated critical habitat, that may occur within the boundary of your proposed project and/or may be affected by your proposed project. The species list fulfills the requirements of the U.S. Fish and Wildlife Service (Service) under section 7(c) of the Endangered Species Act (Act) of 1973, as amended (16 U.S.C. 1531 *et seq.*).

New information based on updated surveys, changes in the abundance and distribution of species, changed habitat conditions, or other factors could change this list. Please feel free to contact us if you need more current information or assistance regarding the potential impacts to federally proposed, listed, and candidate species and federally designated and proposed critical habitat. Please note that under 50 CFR 402.12(e) of the regulations implementing section 7 of the Act, the accuracy of this species list should be verified after 90 days. This verification can be completed formally or informally as desired. The Service recommends that verification be completed by visiting the ECOS-IPaC website at regular intervals during project planning and implementation for updates to species lists and information. An updated list may be requested through the ECOS-IPaC system by completing the same process used to receive the enclosed list.

The purpose of the Act is to provide a means whereby threatened and endangered species and the ecosystems upon which they depend may be conserved. Under sections 7(a)(1) and 7(a)(2) of the Act and its implementing regulations (50 CFR 402 *et seq.*), Federal agencies are required to utilize their authorities to carry out programs for the conservation of threatened and endangered species and to determine whether projects may affect threatened and endangered species and/or designated critical habitat.

A Biological Assessment is required for construction projects (or other undertakings having similar physical impacts) that are major Federal actions significantly affecting the quality of the human environment as defined in the National Environmental Policy Act (42 U.S.C. 4332(2)

(c)). For projects other than major construction activities, the Service suggests that a biological evaluation similar to a Biological Assessment be prepared to determine whether the project may affect listed or proposed species and/or designated or proposed critical habitat. Recommended contents of a Biological Assessment are described at 50 CFR 402.12.

If a Federal agency determines, based on the Biological Assessment or biological evaluation, that listed species and/or designated critical habitat may be affected by the proposed project, the agency is required to consult with the Service pursuant to 50 CFR 402. In addition, the Service recommends that candidate species, proposed species and proposed critical habitat be addressed within the consultation. More information on the regulations and procedures for section 7 consultation, including the role of permit or license applicants, can be found in the "Endangered Species Consultation Handbook" at:

http://www.fws.gov/endangered/esa-library/pdf/TOC-GLOS.PDF

Migratory Birds: In addition to responsibilities to protect threatened and endangered species under the Endangered Species Act (ESA), there are additional responsibilities under the Migratory Bird Treaty Act (MBTA) and the Bald and Golden Eagle Protection Act (BGEPA) to protect native birds from project-related impacts. Any activity, intentional or unintentional, resulting in take of migratory birds, including eagles, is prohibited unless otherwise permitted by the U.S. Fish and Wildlife Service (50 C.F.R. Sec. 10.12 and 16 U.S.C. Sec. 668(a)). For more information regarding these Acts see https://www.fws.gov/birds/policies-and-regulations.php.

The MBTA has no provision for allowing take of migratory birds that may be unintentionally killed or injured by otherwise lawful activities. It is the responsibility of the project proponent to comply with these Acts by identifying potential impacts to migratory birds and eagles within applicable NEPA documents (when there is a federal nexus) or a Bird/Eagle Conservation Plan (when there is no federal nexus). Proponents should implement conservation measures to avoid or minimize the production of project-related stressors or minimize the exposure of birds and their resources to the project-related stressors. For more information on avian stressors and recommended conservation measures see https://www.fws.gov/birds/bird-enthusiasts/threats-to-birds.php.

In addition to MBTA and BGEPA, Executive Order 13186: *Responsibilities of Federal Agencies to Protect Migratory Birds*, obligates all Federal agencies that engage in or authorize activities that might affect migratory birds, to minimize those effects and encourage conservation measures that will improve bird populations. Executive Order 13186 provides for the protection of both migratory birds and migratory bird habitat. For information regarding the implementation of Executive Order 13186, please visit https://www.fws.gov/birds/policies-and-regulations/executive-orders/e0-13186.php.

We appreciate your concern for threatened and endangered species. The Service encourages Federal agencies to include conservation of threatened and endangered species into their project planning to further the purposes of the Act. Please include the Consultation Code in the header of this letter with any request for consultation or correspondence about your project that you submit to our office.

Official Species List

This list is provided pursuant to Section 7 of the Endangered Species Act, and fulfills the requirement for Federal agencies to "request of the Secretary of the Interior information whether any species which is listed or proposed to be listed may be present in the area of a proposed action".

This species list is provided by:

New England Ecological Services Field Office 70 Commercial Street, Suite 300 Concord, NH 03301-5094 (603) 223-2541

Project Summary

Project Code: 2022-0005993

Event Code: None

Project Name: 100 Commercial Street - Malden MA

Project Type: Commercial Development

Project Description: Remediation project

Project Location:

Approximate location of the project can be viewed in Google Maps: https://

www.google.com/maps/@42.42410395,-71.07357049831825,14z

Counties: Middlesex County, Massachusetts

Endangered Species Act Species

There is a total of 1 threatened, endangered, or candidate species on this species list.

Species on this list should be considered in an effects analysis for your project and could include species that exist in another geographic area. For example, certain fish may appear on the species list because a project could affect downstream species.

IPaC does not display listed species or critical habitats under the sole jurisdiction of NOAA Fisheries¹, as USFWS does not have the authority to speak on behalf of NOAA and the Department of Commerce.

See the "Critical habitats" section below for those critical habitats that lie wholly or partially within your project area under this office's jurisdiction. Please contact the designated FWS office if you have questions.

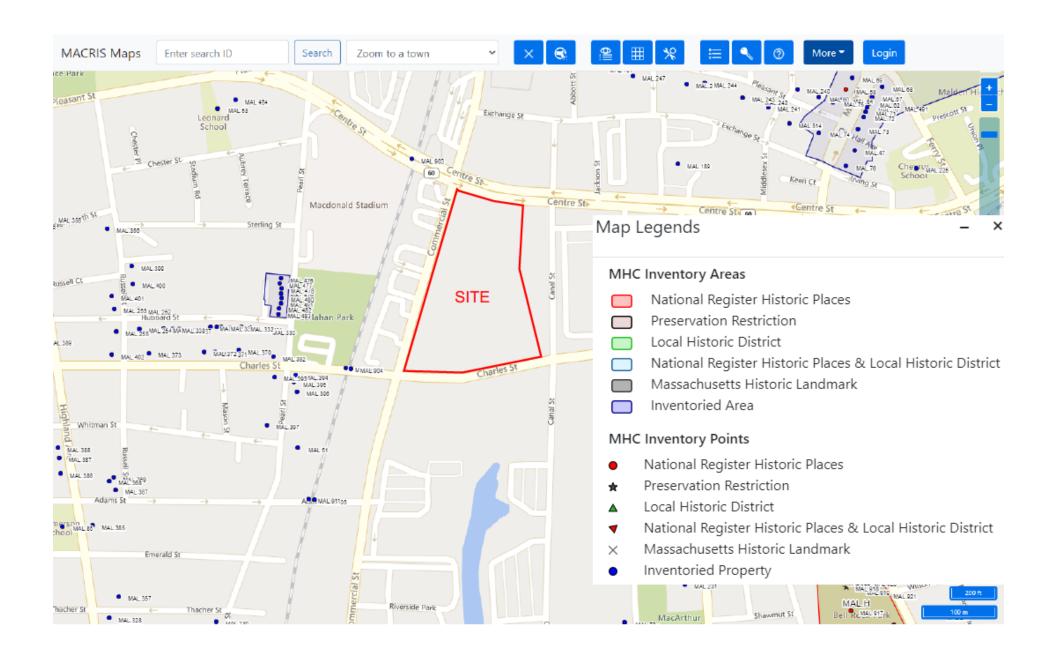
1. <u>NOAA Fisheries</u>, also known as the National Marine Fisheries Service (NMFS), is an office of the National Oceanic and Atmospheric Administration within the Department of Commerce.

Insects

NAME

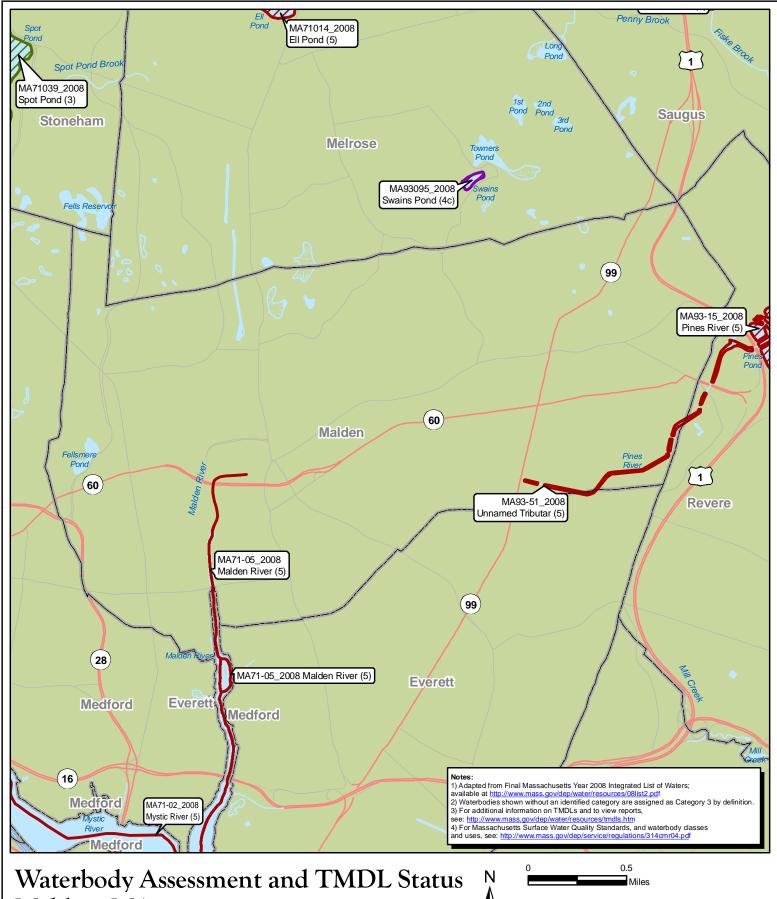
Monarch Butterfly Danaus plexippus

Candidate


No critical habitat has been designated for this species. Species profile: https://ecos.fws.gov/ecp/species/9743

Critical habitats

THERE ARE NO CRITICAL HABITATS WITHIN YOUR PROJECT AREA UNDER THIS OFFICE'S JURISDICTION.


APPENDIX EMACRIS SEARCH RESULTS

APPENDIX F

TMDL INFORMATION
MALDEN RIVER – MA71-05

Malden, MA

Map produced by EPA Region I GIS Center Map Tracker ID 6678, February 25, 2010 Data Sources: TeleAtlas, Census Bureau, USGS, MassDEP

Waterbody Label

State ID, Waterbody Name (Category) (TMDL(s) approved for this waterbody

See companion table for a listing of pollutants, non-pollutants, and TMDLs for each waterbody

Assessment of Waterbody Segment

Category 2: Attaining some uses; other uses

Category 3: Insufficient information to make

Category 4a: TMDL is completed and approved for

Category 4c: Impairment not caused by a pollutant.

Category 5: Impaired or threatened for one or more uses and requiring a TMDL.

Waterbodies

MS4 Urbanized Areas (2000 Census) Municipal Boundaries

Category 5 waters listed alphabetically by major watershed The 303(d) List – "Waters requiring a TMDL"

Water Body	Segment ID	Description	Size	Units	Impairment	EPA TMDL No.
Malden River	MA71-05	Headwaters south of Exchange Street,	2.30	Miles	(Debris*)	
		Malden to confluence with Mystic River, Everett/Medford.			(Trash*)	
					Chlordane in Fish Tissue	
					DDT in Fish Tissue	
					Dissolved Oxygen	
					Dissolved Oxygen Supersaturation	
					Escherichia Coli (E. Coli)	
					Fecal Coliform	
					Flocculant Masses	
					Odor	
					Oil And Grease	
					PCBs In Fish Tissue	
					pH, High	
					Phosphorus, Total	
					Scum/Foam	
					Sediment Bioassay (Chronic Toxicity Freshwater)	
					Total Suspended Solids (TSS)	
					Transparency / Clarity	
Mill Brook	MA71-07	Headwaters south of Massachusetts	3.90	Miles	(Physical substrate habitat alterations*)	
		Avenue, Lexington to inlet of Lower Mystic Lake, Arlington (portions culverted underground).			Escherichia Coli (E. Coli)	
Mill Creek	MA71-08	From Route 1, Chelsea/Revere to	0.02	Square	Cause Unknown (Contaminants in Fish and/or	
		confluence with Chelsea River,		Miles	Shellfish)	
		Chelsea/Revere.			Fecal Coliform	
					PCBs In Fish Tissue	
Munroe Brook	MA71-15	Headwaters, north of Solomon Pierce Road, Lexington to the mouth at inlet Arlington Reservoir, Lexington (includes culverted portion).	1.80	Miles	Escherichia Coli (E. Coli)	