February 11, 2021

U.S. Environmental Protection Agency Office of Ecosystem Protection EPA/OEP RGP Applications Coordinator 5 Post Office Square, Suite 100 Boston, Massachusetts 02109-3912

Re: NPDES RGP Application for Dredge-Related Dewatering Activities

Project Title: Spy Pond Dredging and Stormwater Improvements along a Section of Route

2 (Concord Turnpike)

Project Location: Arlington, MA 02474 MassDOT Project No.: 609222 – 111309

Dear Sir/Madam:

On behalf of MacKay Construction (MacKay) and MassDOT District 4 (MassDOT), SAK Environmental (SAK) is submitting this application as part of permit coverage request under the National Pollutant Discharge Elimination System (NPDES) Remediation General Permit (RGP) for dredge-related dewatering activities to be performed at Spy Pond in Arlington, MA (Project). A copy of the Notice of Intent (NOI) is included as **Attachment 1**.

1. Project Description

The Project consists of work to remove approximately 800 cubic yards of sediment in Spy Pond at the MassDOT Route 2 (Concord Turnpike) outfall and construct stormwater drainage improvements related to the drainage system. Work will include, but not be limited to, dredging and disposal of sediment, improvement of scour protection at the outfall, replacement of drainage structures and new drainage structures along Route 2. See **Figure 1** – Site Location Map and **Figure 2** – Aerial Site Map for more details of the Project location. The Project will also improve scour protection at the pond outfall. Dredging activities are expected to start in March and continue to April 2021.

In 2018, waste characterization of the sediment was completed by MassDOT's engineer to fulfill the requirements of the MassDEP 401 Water Quality Certification permit. Based on the analytical data, the dredge area contains sediment with levels of arsenic and lead above the RCS-1. Additionally, small portion of the dredge area is a RCRA characteristic hazardous waste for lead. The site will be listed on MassDEP ePLACE. A 401 Water Quality Certification was issued by MassDEP on February 5, 2020 and is included as **Attachment 2**.

2. Source Water and Receiving Water Information

Spy Pond is considered both the source and receiving water. Water collected during the proposed dredging activities at Spy Pond will be returned back to the pond after filtration. Spy Pond (segment ID: MA71040) is listed within the Massachusetts Year 2016 Integrated List of Waters as impaired due to chlordane in fish tissue, Dichlorodiphenyltrichloroethane (DDT) in fish tissue, dissolved oxygen, algal blooms, and total phosphorus. Total Maximum Daily Load (TMDL) has not been developed for this waterbody.

On January 20, 2021, SAK collected a receiving water sample (designated as RE-01) and the source water sample (designed as IN-01) from the pond pursuant to testing requirements by the RGP. Receiving water sample RE-01 was collected from surface water within the Pond just outside the limit of dredging activities. Whereas, source water sample IN-01 was collected within the area subject to dredging activities. Water sample IN-01 was collected from a temporary well installed within the sediment. The temporary 4-inch PVC well was advanced to 2-feet below the top of the sediment using a hand auger. Pond water was then purged from the well using a bailer. Once the well recovered, a water sample was collected using a bailer. The water sample locations are provided in **Figure 2**.

The water samples were submitted to New England Testing Laboratory Inc. of West Warwick, RI. Water sample IN-01 was analyzed for the parameters required under the NPDES RGP for a source water. Water sample RE-01 was analyzed for the parameters required under the NPDES RGP for a receiving water. Results for the two water samples are summarized in **Table 1**. Laboratory reports are included in **Attachment 3**. In Sample IN-01, the following metals were detected: antimony, arsenic, cadmium, chromium, chromium III, copper, iron, lead, nickel, zinc, and mercury. Other parameters such as total suspended solids, chloride, total residual chlorine, cyanide, and ammonia were also present. In Sample RE-01, iron, calcium, and magnesium are the only metals detected.

3. Water Treatment System

The proposed sediment dredging activities will result in accumulation of source water after the dredged sediment has been dewatered. A sediment bag filter (Ultra-Dewatering Bags®) will be utilized to dewater the dredged sediment prior to disposal and discharge the accumulated water back into the pond. Schematic of the bag filter system is included as **Figure 3**. Sediment will be pumped into the bag filter treatment system with a design flow of up to 1100 gallons per minute (gmp); the average effluent flow of the system is estimated to be 1100 gpm, and the maximum flow is estimated to be 1500 gmp. A total of 15 dewatering bags will be utilized. These bags are to be set up on crushed stone within reinforced polyethylene liner along the shared-use path. Effluent water will be routed to a single point (Outfall 001) prior to discharge back into the pond.

4. Consultation with Federal Services

SAK utilized the U.S. Fish & Wildlife Service (USFWS) Information, Planning, and Conservation (IPaC) System and determined that the Northern Long-eared Bat, which is an endangered species, is potentially within the Project's action area. However, according to the Natural Heritage and Endangered Species Program (NHESP) online map¹, the Massachusetts Northern Long-eared Bat (with ¼ miles buffer) is not located on or nearby the Project area. Therefore, FWS Criterion A of Section G within the NOI is applied to discharge under this Project.

SAK utilized Massachusetts Cultural Resource Information System (MACRIS) online tool as administered by the Massachusetts Historic Commission (MHC) and determined that no historic properties (listed or eligible for listing in the National Registry of Historic Places under the National Historic Preservation Act of 1966) will be impacted by the discharges to be performed under the Project. Therefore, Criterion A of Section H within the NOI is appropriate.

See **Attachment 4** for supporting documentation regarding consultation with the federal services.

5. Coverage under NPDES RGP

It is in our opinion that the information provided within this letter report is sufficient for eligibility determination of the proposed discharge to be covered under the NPDES RGP program.

The completed NOI form is included in **Attachment 1** and contain further information regarding the Project, discharge, treatment system, receiving water, and consultation with state and federal agencies. For this Project, MacKay is considered the Operator with control over day-to-day construction activities, and MassDOT is considered the Owner with operational control over the construction plans and specifications.

Do not hesitate to contact us with any questions.

SAK Environmental LLC

Prepared by:

Chhavan Nuon Project Engineer Reviewed by:

Meghan Emmert Project Manager

¹ NHESP No. Long-eared Bat Location:

https://www.arcgis.com/apps/Viewer/index.html?appid=de59364ebbb348a9b0de55f6febdfd52

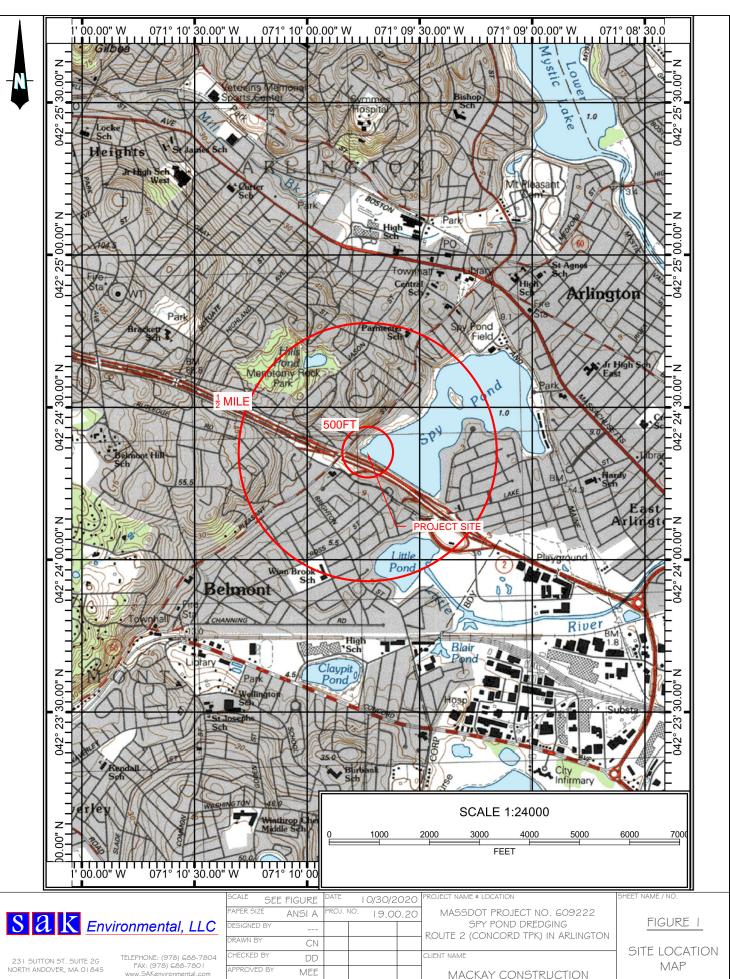
ENCLOSURES

Figure 1 Site Location Map Figure 2 Aerial Site Map

Figure 3 Process Flow Diagram

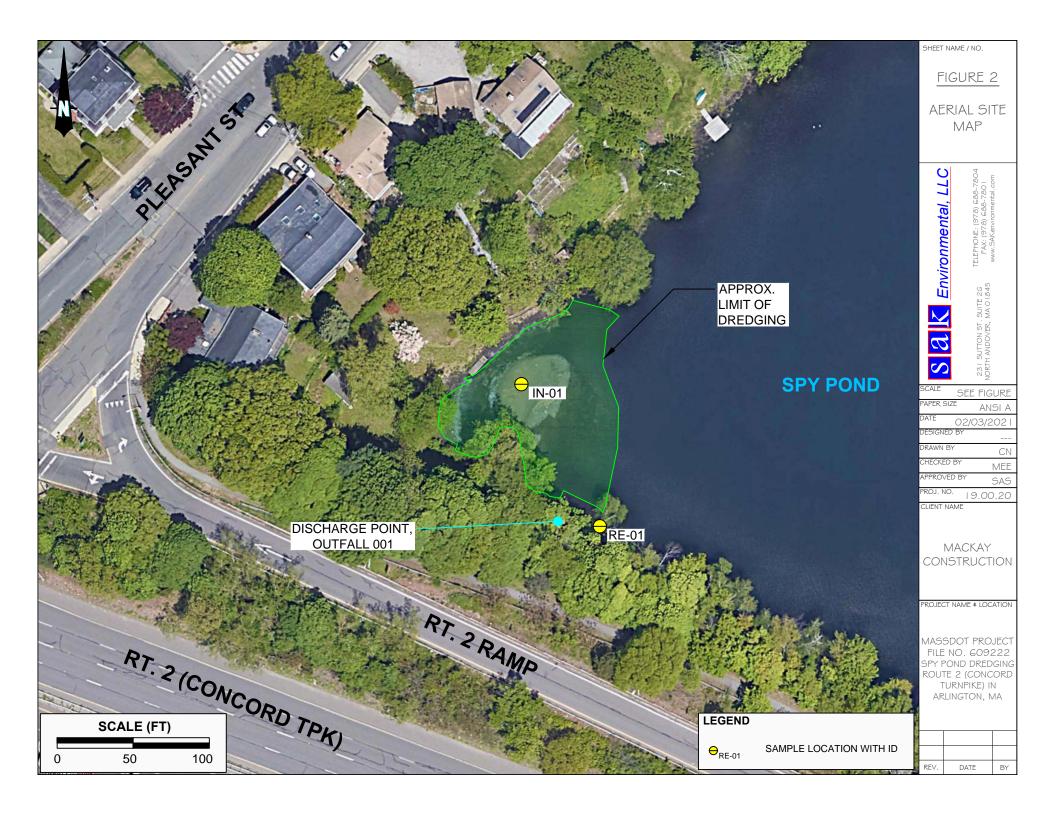
Table 1 Water Sample Analytical Results

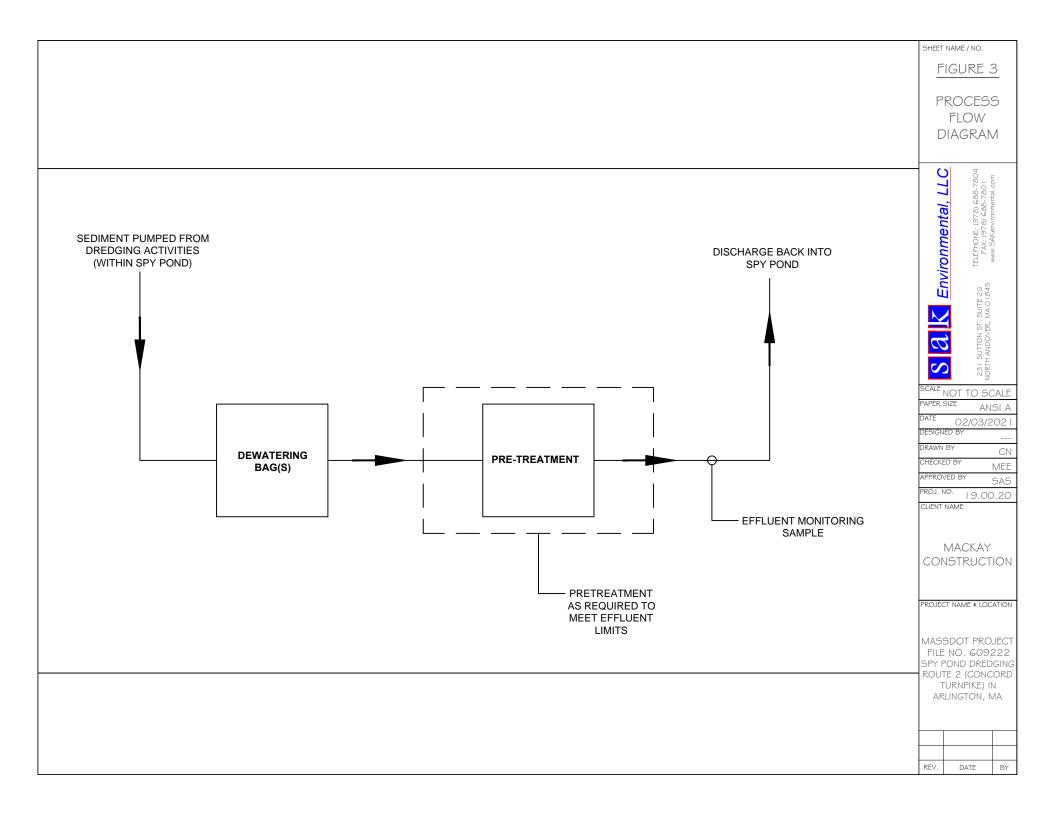
Attachment 1 RGP NOI Form


Attachment 2 401 Water Quality Certification

Attachment 3 Laboratory Report

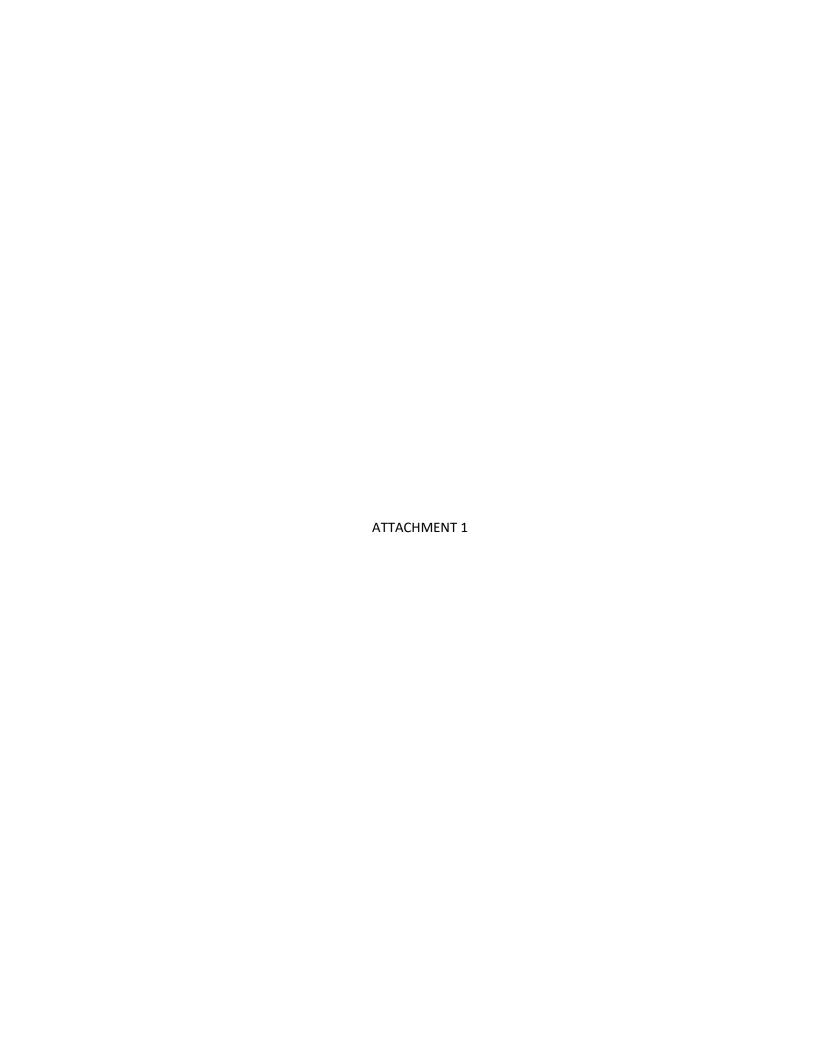
Attachment 4 Supporting Documentation with Federal and State Service/Agencies


Attachment 5 Ultra-Dewatering Bags® Specification


Attachment 6 MassDEP Dilution Factor Confirmation Email

TELEPHONE: (978) 688-7804 FAX: (978) 688-7801 www.SAKenvironmental.com NORTH ANDOVER, MA 01845

SCALE	SEE FIGURE	DATE	10/30/2	2020	PR
PAPER SIZE	ANSI A	PROJ.	^{NO.} 19.0	0.20]
DESIGNED	BY	-			
DRAWN BY	CN	1			
CHECKED E	BY DE)			CL
APPROVED.	BY NACE	:			1


Table 1 Water Sample Analytical Results Spy Pond Dredging Arlington, MA

Sampling Date Sample Type Collection Method (Grab/Composite) Obychlorinated Biphenyl Arocolor-1016 Arocolor-1221 Arocolor-1223 Arocolor-1224 Arocolor-1248 Arocolor-1260 Bromochloromethane Bromochlorometha		Sample Location ID		
Sample Type Collection Method (Grab/Composite) olychlorinated Biphenyl Arcolor-1214 Arcolor-1221 Arcolor-1232 Arcolor-1242 Arcolor-1243 Arcolor-1254 Arcolor-1260 Bromochloromethane Chloroform Chlorochtane Chlorochtane Chlorochtane Chlorochtane U.2-Dichlorochtane U.3-Dichloropropane U.3-Tirchlorochtane U.3-Tirchloroc	Unit	RE-01	IN-01	
Collection Method (Grab/Composite) Dychlorinated Bipheny/I Aroclor-1216 Aroclor-1232 Aroclor-1248 Aroclor-1248 Aroclor-1260 Aroclor-1260 Aroclor-1260 Aroclor-1268 PCBs (Total) United Profession Method (WOCs) Aroclor-1268 PCBs (Total) United Profession Method (WOCs) Aroclor-1268 PCBs (Total) United Profession Method (WOCs) Acetone Benzene Bromochloromethane Bromochloromethane Bromochloromethane Bromodelnioromethane Bromodelnioromethane Bromodelnioromethane Bromothloromethane Bromothloromethane Bromothloromethane Bromothloromethane Bromothloromethane Bromothloromethane Bromothloromethane Bromothloromethane Bromothloromethane United States (Wocs) Acetone Bromothloromethane United States (Wocs) Acetone Bromothloromethane United States (Wocs) Aroclor-1268 Unit		01/20/2021	01/20/2021	
Aproclation		Receiving Water Grab	Source Water Grab	
Arcolor-1231 Arcolor-1232 Arcolor-1248 Arcolor-1254 Arcolor-12560 Arcolor-1260 Arcolor-1268 - Ar		Glub	Glub	
Arcolor-1232 Arcolor-1248 Arcolor-1254 Arcolor-1260 Arcolor-1268 Arcolor-1268 PCBs (Total) Datal Petroleum Hydrocarbons IPH Datal Perroleum Hydrocarbons IPH Datal Hydrocarbons IPH Datal Perroleum Hydrocarbons IPH Datal Hydrocarbons	ug/l	NT	< 0.2	
Arcolor-1248 Arcolor-1254 Arcolor-1260 Arcolor-1260 Arcolor-1260 Arcolor-1262 Arcolor-1262 Arcolor-1268 UPGBs (Total) otal Petroleum Hydrocarbons TPH Updatile Organic Compounds (VOCs) Acetone Benzene Bromobenzene Bromodichloromethane Updatile Upda	ug/l	NT	< 0.4	
Arcolor-1264 Arcolor-1260 Arcolor-1260 Arcolor-1268 PCBs (Total) Undarfetroleum Hydrocarbons TPH Jotalie Organic Compounds (VOCs) Acetone Benzene Bromochloromethane Bromochloromethane Bromodichloromethane Bromodichloromethane Bromodichloromethane Bromothoromethane Bromothoromethane Bromothoromethane Bromothoromethane Bromothoromethane Bromothoromethane Bromothoromethane Bromothane	ug/l	NT	< 0.2	
Arcolor-1260 BCBS (Total) Upolar Petroleum Hydrocarbons TPH Upolatile Organic Compounds (VOCs) Acetone Benzene Bromochorene Bromochore	ug/l	NT	< 0.2	
Arcolor-1260 Arcolor-1262 Arcolor-1263 Arcolor-1268 CBs (Total) Undal Petroleum Hydrocarbons TPH Undal Petroleum Hydrocarbons TPH Ostalio Organic Compounds (VOCs) Acetone Benzene Bromochloromethane Bromo	ug/l ug/l	NT NT	< 0.2 < 0.2	
Arcolor-1262 Arcolor-1268 PCBs (Total) Unital Petroleum Hydrocarbons TPH Unitalia Organic Compounds (VOCs) Acetone Benzene Bromochoromethane Bromodichloromethane Butylbenzene Bett-Butylbenzene Bettylbenzene Bett-Butylbenzene Bett-Butylbenzene Bett-Butylbenzene Bettylbenzene Bettylben	ug/l	NT	< 0.2	
Arcclor-1268 PCBs (Total) otal Petroleum Hydrocarbons TPH uolatile Organic Compounds (VOCs) Acetone Beromochoromethane Bromochoromethane Utert-Butyl alcohol sec-Butylbenzene Utert-Butyl alcohol sec-Butylbenzene Utert-Butylbenzene Utertans-1,3-Dichloropropane Utertans-1,2-Trichlorobethane Utertans-1,2-Trichlorobethane Utertans-1,2-Trichlorobethane Utertans-1,2-Trichlorobethane Utertans-1,2-Trichlorobethane Utertans-1,2-Trichlorobethane Utertans-1,2-Trichlo	ug/l	NT	< 0.2	
total Petroleum Hydrocarbons TPH lotatile Organic Compounds (VOCs) Acetone Benzene Bromobenzene Bromochloromethane Lett-Butyl alcohol sec-Butylbenzene Hett-Butylbenzene Methyl t-butyl ether (MTBE) Carbon Disulfide Carbon Tetrachloride Chlorobenzene Chloroform Chloromethane Chloroform Chloromethane L2-Dichlorotoluene L2-Dichlorotoluene L2-Dichlorotoluene L1-Dichlorotoluene L1-Dichlorotethane L2-Dichlorotethane L1-Dichlorotethane L2-Dichlorotethane L1-Dichlorotethane L1-Dichlorotethane L2-Dichlorotethane L2-Dichlorotethane L1-Dichloropropane L2-Dichloropropane L2-Dichloropropane L2-Dichloropropane L3-Dichloropropane L3-Dichloropropan	ug/l	NT	< 0.2	
TPH Outsile Organic Compounds (VOCs) Acetone Benzene Bromochoromethane Bromochloromethane Bromochloromethane Bromodichloromethane Lett-Butyl alcohol sec-Butylbenzene Lett-Butyl alcohol sec-Butylbenzene Lett-Butylbenzene Lett-Butylbenzene Lett-Butylbenzene Lett-Butylbenzene Lett-Butylbenzene Lett-Butylbenzene Lett-Butylbenzene Lett-Butylbenzene Lett-Butylbenzene Lolloroothane Chloroform Chloromethane Lollororothane Lollorotoluene Lo	ug/l	NT	< 0.2	
olatile Organic Compounds (VOCs) Acetone Benzene Bromobenzene Bromobenzene Bromodichloromethane Bromodichloromethane Bromodichloromethane Bromodichloromethane Bromodichloromethane Bromodichloromethane Bromodichloromethane 2-Butanone tet-Butyl alcohol sec-Butylbenzene tet-Butylbenzene ty-Butylbenzene ty-Ly-Trichlorobethane tetr-Butylbenzene ty-Ly-Trichlorobethane tetr-Ly-Butylbenzene ty-Ly-Trichlorobethane te		NIT		
Acetone Benzene Bromochloromethane Bromomethane Uter-Butyl alcohol sec-Butylbenzene Uter-Butylbenzene Uter-Buty	ug/l	NT	< 200	
Benzene Bromochloromethane Lett-Butylbenzene Methyl t-butyl ether (MTBE) Carbon Disulfide Carbon Disulfide Carbon Tetrachloride Chlorobenzene Chloroform Chloromethane Uchlorotoluene L2-Dichlorotoluene U2-Chlorotoluene U2-Chlorotoluene U2-Dichromo-3-chloropropane (DBCP) Dibromochloromethane U2-Dibromochloromethane U3-Dichlorothane U4-Dichlorotobenzene U4-Dichlorotobenzene U4-Dichlorotobenzene U4-Dichlorotobenzene U4-Dichlorotobenzene U4-Dichlorotobenzene U4-Dichlorotopropane U5-Dichloropropane U5-Dichlo	ug/l	NT	< 20	
Bromochoromethane Bromochloromethane Bromochloromethane Bromochloromethane Bromochoromethane Bromochoromethane Bromochoromethane 2-Butanone uter-Butyl alcohol sec-ButylbenzeneButylbenzene tert-Butylbenzene tert-Butylbenzene dethyl t-butyl ether (MTBE) Carbon Disulfide Carbon Disulfide Carbon Toltrachloride Chlorobenzene Chloroethane ChloroethaneChlorotolueneChlorotolueneChlorotolueneChlorotolueneChlorotolueneChlorotolueneChlorotolueneChlorobenzene	ug/l	NT	< 1	
Bromochloromethane Bromodichioromethane Bromodichioromethane Bromodichioromethane Bromodichioromethane Bromomethane Bromom	ug/l	NT	< 1	
Bromoferm Bromomethane 2-Butlanone utert-Butly lalcohol sec-Butly benzeneButly benzeneBu	ug/l	NT	< 1	
Bromomethane 2-Butanone tert-Butyl alcohol sec-Butylbenzene methyl t-butyl ether (MTBE) Carbon Disulfide Carbon Disulfide Carbon Tetrachloride Chlorobenzene Unitoriorm Chloromethane Unitoriorm Unitoriorm Chloromethane Unitoriorm Uni	ug/l	NT	< 1	
2-Butanone tert-Butyl alcohol sec-Butylbenzene n-Butylbenzene tert-Butylbenzene thororethane Carbon Tetrachloride Chlorobenzene tholrorethane Chlororethane Chlororethane Chlororothane Chlororothane thororothane tholrorothane tholroromochloromethane tholroromochloromethane tholroromochloromethane tholroromochloromethane tholroromochloromethane tholrorothane tholrorotha	ug/l	NT	< 1	
tert-Butyl alcohol seo-Butylbenzene -Butylbenzene uert-Butylbenzene uert-Butylbenzene uert-Butylbenzene uert-Butylbenzene uert-Butylbenzene uert-Butylbenzene uert-Butylbenzene uert-Butylbenzene Untorobrene Carbon Disulfide Carbon Tetrachloride Chlorobethane Chlorobethane Chlorobethane Chloroform Chloroform Chlorotoluene 2-Chlorotoluene 1,2-Dibromo-3-chloropropane (DBCP) Dibromochloromethane 1,2-Dibromoethane 1,2-Dibromoethane 1,2-Dichlorobenzene 1,3-Dichlorobenzene 1,1-Dichlorobenzene 1,1-Dichlorobenzene 1,1-Dichloroethane 1,1-Dichloroethane 1,1-Dichloroethane 1,2-Dichloroethene 1,1-Dichloropropane 1,2-Dichloropropane 1,2-Dichloropropene 1,1-Dichloropropene	ug/l	NT NT	< 1	
sec-Bulylbenzene metrt-Bulylbenzene Carbon Disulfide Carbon Tetrachloride Chlorobenzene Chloroform Chloromethane Chloroform Chloromethane U.2-Dibromo-3-chloropropane (DBCP) Dibromo-dibromo-3-chloropropane (DBCP) Dibromo-dibromo-dibromethane U.2-Dibromo-dibromethane U.2-Dibromo-dibromethane U.2-Dichlorobenzene U.3-Dichlorobenzene U.3-Dichlorobenzene U.1-Dichloroethane U.1-Dichloroethane U.1-Dichloroethene U.1-Dichloroethene U.2-Dichloroethene U.2-Dichloropropane U.3-Dichloropropane U.3-Dichloropropane U.3-Dichloropropane U.3-Dichloropropene U.4-Dichloropropene U.4-Dichloropropene U.5-1.3-Dichloropropene U.5-1.3-Dichloropropene U.5-1.4-Dichloropropene U.5-Dichloropropene U.5-Dichloroprope	ug/l	NT NT	< 10 < 5	
n-Butylbenzene tert-Butylbenzene Methyl t-butyl ether (MTBE) Carbon Disulfide Carbon Tetrachloride Chlorobenzene Chloroethane Chloroform Chloromethane 4-Chlorotoluene 1,2-Dibromo-3-chloropropane (DBCP) Dibromochloromethane 1,2-Dibromochloromethane 1,2-Dibromochloromethane 1,2-Dibromochloromethane 1,2-Dibromochloromethane 1,2-Dichlorobenzene 1,3-Dichlorobenzene 1,1-Dichlorobenzene 1,1-Dichloroethane 1,1-Dichloroethane 1,2-Dichloroethane 1,2-Dichloroethene 1,2-Dichloropopane 1,3-Dichloropopane 1,3-Dichloropropane 1,1-Dichloropopane 1,1-Dichloropopane 1,2-Dichloropopane 1,2-Dichloropopane 1,2-Dichloropopane 1,3-Dichloropopane 1,3-Dichloropopane 1,3-Dichloropopane 1,3-Dichloropopane 1,3-Dichloropopane 1,3-Dichloropopane 1,3-Dichloropopane 1,3-Dichloropopane 1,1-Dichloropopane 1,3-Dichloropopane 1,3-Trichlorobutadiene 1,1-Trichlorobutadiene 1,1-Trichlorobutadiene 1,1,1-Trichlorobutadiene 1,1,1-Trichlorobutadiene 1,1,1-Trichlorobutadiene 1,1,1-Trichlorobutadiene 1,1,1-Trichlorobutadiene 1,1,1-Trichlorobutadiene 1,1,1-Trichlorobutadiene 1,1,1-Trichlorobutadiene 1,1,2-Trichloropopane 1,1,2-Trichloropopane 1,1,2-Trichloropopane 1,1,2-Trichloropopane 1,1,2-Trichloropopane 1,1,2-Trichloropopane 1,1,2-Trichloropopane 1,1,2-Trichloropopane 1,1,1-Trichloropopane 1,1-Dichloropopa	ug/l ug/l	NT NT	< 5 < 1	
tert-Butylbenzene Methyl t-butyl ether (MTBE) Carbon Disulfide Carbon Tetrachloride Chlorobenzene Chloroethane Chloroform Chloromethane 4-Chlorotoluene 2-Chlorotoluene 4-Chlorotoluene 4-C-Dichloroethane 4-C-Dichloroethane 4-C-Dichloroethane 4-C-Dichloroethene 4-C-Dichloroethene 4-C-Dichloroethene 4-C-Dichloroethene 4-C-Dichloropropane 4-C-Dichloropropane 4-C-Dichloropropene 4-C-D	ug/l	NT	< 1	
Methyl t-butyl ether (MTBE) Carbon Disulfide Carbon Tetrachloride Chlorobenzene Chloroferme Chloromethane Chlorotoluene 2-Chlorotoluene 2-Chlorotoluene 1,2-Dibromo-3-chloropropane (DBCP) Dibromochloromethane 1,2-Dibromoethane 1,2-Dibromoethane 1,2-Dichlorobenzene 1,3-Dichlorobenzene 1,1-Dichlorobenzene 1,1-Dichloroethane 1,2-Dichloroethane 1,2-Dichloroethane 1,2-Dichloroethene 1,1-Dichloroethene 1,2-Dichloropropane 1,1-Dichloroethene 1,1-Dichloropropane 1,1-Dich	ug/l	NT	< 1	
Carbon Disulfide Carbon Tetrachloride Chlorobenzene Chloroethane Chloroethane Chloroform Chlororothane Chloroform Chlororothane C-Chlorofoluene U-Chlorotoluene U-Chlorotomethane U-Chlorofoluoromethane U-Chlorotomethane U-Chlorotomethane U-Chlorofoluoromethane U-Chlorotomethane U-Chlorotomethane U-Chlorotomethane U-Chlorotomethane U-Chlorotomethane U-Chlorotomethane U-Chlorotomethane U-Ch	ug/l	NT	< 1	
Chlorobenzene Chlorothane Chlorothane Chlororethane Chlororethane Chlororethane Chlororethane Chlororethane Chlororethane C-Chlorotoluene 2-Chlorotoluene 1,2-Dibromo-3-chloropropane (DBCP) Dibromochloromethane 1,2-Dibromochloromethane 1,2-Dichlorobenzene 1,3-Dichlorobenzene 1,3-Dichlorotethane 1,2-Dichlorotethane 1,2-Dichlorotethane 1,2-Dichlorotethane 1,2-Dichlorotethane 1,2-Dichlorotethane 1,1-Dichlorotethane 1,1-Dichlorotethane 1,1-Dichlorotethane 1,1-Dichloropropane 1,1-Dichloropropane 1,1-Dichloropropane 1,1-Dichloropropene 1,1-Tichlorotethane 1,1-Tichlorotethane 1,1-Tichlorotethane 1,1-Tichlorotethane 1,1-Tichlorotethane 1,1,1-Tetrachlorotethane 1,1,1-Tichlorotethane 1,1,1-Tichlorotethane 1,1,1-Tichlorotethane 1,1,1-Tichlorotethane 1,1,1-Tichlorotethane 1,1,1-Tichlorotethane 1,1,1-Tichlorotethane 1,1,1-Tichlorotethane 1,1,1-Tichlorotethane 1,1,1-Tichloropropane 1,1,2-Tichloropropane 1,1,2-Tichloropropane 1,1,2-Tichloropropane 1,1,2-Tichlorotethane 1,1,1-Tichlorotethane	ug/l	NT	< 1	
Chloroethane Chloroform Chloroform Chloromethane 4-Chlorotoluene 2-Chlorotoluene 1,2-Dibromo-3-chloropropane (DBCP) Dibromochloromethane 1,2-Dichlorobenzene 1,2-Dichlorobenzene 1,3-Dichlorobenzene 1,1-Dichloroethane 1,1-Dichloroethane 1,1-Dichloroethane 1,1-Dichloroethane 1,1-Dichloroethane 1,1-Dichloroethane 1,2-Dichloropropane 1,1-Dichloropropane 1,1-Dichloropropane 1,2-Dichloropropane 1,2-Dichloropropane 1,3-Dichloropropane 1,3-Dichloropropane 1,3-Dichloropropane 1,3-Dichloropropane 1,3-Dichloropropane 1,3-Dichloropropane 1,3-Dichloropropane 1,3-Dichloropropane 1,1-Dichloropropane 1,3-Dichloropropane 1,1-Dichloropropane 1,1-Dichloropro	ug/l	NT	< 1	
Chloroform Chloromethane Ch-Chlorotoluene 2-Chlorotoluene 1,2-Dibromo-3-chloropropane (DBCP) Dibromo-dhoromethane 1,2-Dibromo-shane (EDB) Dibromomethane 1,2-Dichlorobenzene 1,3-Dichlorobenzene 1,1-Dichlorotenzene 1,1-Dichlorotethane 1,2-Dichloroethane 1,2-Dichloroethene 1,2-Dichloroethene 1,2-Dichloroethene 1,2-Dichloropropane 1,1-Dichloroethene 1,1-Dichloroethene 1,1-Dichloropropane 1,2-Dichloropropane 1,1-Dichloropropane	ug/l	NT	< 1	
Chloromethane 4-Chlorotoluene U-Chlorotoluene U-Chlorotoluene U-Chlorotoluene U-Chlorotoluene U-Chlorotoluene U-Chlorotoluene U-Chlorotoluene U-Chloromochloromethane U-Chloromochloromethane U-Chloromochloromethane U-Chloromochloromethane U-Chloromochloromethane U-Chloromochloromethane U-Chlorotomethane U-Chlorotometh	ug/l	NT	< 1	
4-Chlorotoluene 2-Chlorotoluene 3-Chlorotoluene 3-Chlorotoluen	ug/l	NT NT	< 1 < 1	
2-Chlorotoluene 1,2-Dibromo-3-chloropropane (DBCP) Dibromochloromethane 1,2-Dibromochtane (EDB) Dibromochtane 1,2-Dichlorobenzene 1,3-Dichlorobenzene 1,3-Dichlorobenzene 1,1-Dichloroethane 1,2-Dichloroethane 1,2-Dichloroethane 1,2-Dichloroethane 1,2-Dichloroethene 1,2-Dichloroethene 1,2-Dichloropropane 1,1-Dichloropropane 1,2-Dichloropropane 1,1-Dichloropropane 1,1-Dichloropropane 1,1-Dichloropropane 1,1-Dichloropropane 1,1-Dichloropropene 1,	ug/l ug/l	NI NT	< 1 < 1	
1,2-Dibromo-3-chloropropane (DBCP) Dibromochloromethane 1,2-Dibromochloromethane 1,2-Dibromochloromethane 1,2-Dichlorobenzene 1,3-Dichlorobenzene 1,3-Dichlorobenzene 1,1-Dichloroethane 1,2-Dichloroethane 1,2-Dichloroethane 1,2-Dichloroethane 1,1-Dichloroethane 1,1-Dichloroethane 1,1-Dichloropropane 2,2-Dichloropropane 2,2-Dichloropropane 1,1-Dichloropropene 1,1-Tichloropropene 1,1-Tichlorobutadiene 2-Hexanone 1,1-Tichlorobutadiene 2-Hexanone 1,1-Tichlorobutadiene 1,1,1-Tichlorobutadiene 1,1,1-Tichlorobutane 1,1,1-Tichlorobutane 1,1,1-Tichlorobutane 1,1,1-Tichlorobutane 1,1,1-Tichlorobutane 1,1,1-Tichlorobutane 1,1,1-Tichlorobutane 1,1,2-Tichlorobutane 1,1,2-Tichlorobutane 1,1,2-Tichloropropane 1,1,2-Tichlorobutane 1,1,2-Tichloropropane 1,1,2-Tichloropropane 1,1,2-Tichloropropane 1,1,2-Tichloropropane 1,1,2-Tichloropropane 1,1,2-Tichloropropane 1,1,2-Tichloropropane 1,1,1-Tichloropropane 1,1,1-Tichloropropane 1,1,1-Tichloropropane 1,1,2-Tichloropropane 1,1,1-Tichloropropane 1,1,1-Tich	ug/I ug/I	NT NT	< 1	
Dibromochloromethane U.2-Dichloromoethane (EDB) Dibromomethane U.2-Dichlorobenzene 1.2-Dichlorobenzene 1.4-Dichlorobenzene 1.4-Dichloroethane U.2-Dichloroethane U.2-Dichloroethane U.2-Dichloroethane U.3-Dichloroethane U.3-Dichloroethene U.2-Dichloropropane U.2-Dichloropropane U.2-Dichloropropane U.3-Dichloropropane U.3-Dichloropropene U.3-Trichloroethane U.3-Trichloroethane U.3-Trichloroethane U.3-Trichloroethane U.3-Trichloroethane U.3-Trichloropropane	ug/l	NT	< 1	
1.2-Dibriormonethane 1.2-Dibriormomethane 1.3-Dichlorobenzene 1.3-Dichlorobenzene 1.4-Dichlorobenzene 1.1-Dichlorotenzene 1.1-Dichlorotethane 1.2-Dichlorotethane 1.2-Dichlorotethane 1.2-Dichlorotethane 1.3-Dichlorotethane 1.4-Dichlorotethane 1.4-Dichloropropane 1.5-Dichloropropane 1.5-Dichloropropane 1.1-Dichloropropane 1.1-Dichloropropene 1.1-Propylbenzene 1.1-Propylbenzene 1.1-Propylbenzene 1.1-Propylbenzene 1.1-Propylbenzene 1.1-Propylbenzene 1.1-Prichlorobenzene 1.1-Prichlorobenzene 1.1-Prichlorobenzene 1.1-Prichlorobenzene 1.1-Prichloropropane 1.1-	ug/l	NT	< 1	
Dibromonethane 1,2-Dichlorobenzene 1,3-Dichlorobenzene 1,4-Dichlorobenzene 1,4-Dichlorobenzene 1,1-Dichloroethane 1,2-Dichloroethane 1,2-Dichloroethene 1,2-Dichloroethene 1,1-Dichloroethene 1,1-Dichloropropane 1,2-Dichloropropane 1,2-Dichloropropane 1,2-Dichloropropane 1,2-Dichloropropane 1,3-Dichloropropene 1,3-Dichloropropene 1,3-Dichloropropene 1,3-Dichloropropene 1,4-Dioknoropropene 1,4-Dioxane 1,4-Tiropropropene 1,4-Dioxane 1,4-Tiropropropene 1,	ug/l	NT	< 1	
1,3-Dichlorobenzene 1,4-Dichloroethane 1,4-Dichloroethane 1,2-Dichloroethane 1,2-Dichloroethane 1,1-Dichloroethane 1,1-Dichloroethene 1,1-Dichloroethene 1,1-Dichloropropane 1,1-Dichloropropane 1,2-Dichloropropane 1,2-Dichloropropene 1,1-Dichloropropene 1,1-Piopropyllouene 1,1-Piopropyl	ug/l	NT	< 1	
1.4-Dichlorobenzene 1.1-Dichloroethane 1.2-Dichloroethane 1.2-Dichloroethene 1.2-Dichloroethene 1.2-Dichloroethene 1.2-Dichloroethene 1.2-Dichloropropane 1.2-Dichloropropane 1.2-Dichloropropane 1.2-Dichloropropane 1.3-Dichloropropene 1.3-Sirpropropene 1.3-Dichloropropene 1.3-Dichloropropene 1.3-Tirchloroethane 1.3-Tirchlorobenzene 1.1,1-Tirchloroethane 1.1,1-Tirchloroethane 1.1,1-Tirchloroethane 1.1,2-Tirchloropropane 1.1,2-Tirchloropropane 1.1,2-Tirchloropropane 1.1,2-Tirchloropropane 1.1,2-Tirchloropropane 1.1,2-Tirchloropropane 1.1,2-Tirchloropropane 1.1,2-Tirchloropropane 1.1,3-Tirchloropropane 1.1,1-Tirchloropropane 1.1,1-Tirchlor	ug/l	NT	< 1	
1,1-Dichloroethane trans-1,2-Dichloroethane trans-1,2-Dichloroethene uis-1,2-Dichloroethene uis-1,2-Dichloroethene 1,2-Dichloroptopane u,2-Dichloroptopane uis-1,3-Dichloroptopane utrans-1,3-Dichloroptopene trans-1,3-Dichloroptopene utrans-1,3-Dichloroptopene utrans-1,3-Dichloroptopene utrans-1,3-Dichloroptopene utrans-1,3-Dichloroptopene utrans-1,3-Dichloroptopene utrans-1,3-Dichloroptopene utrans-1,3-Dichloroptopene utrans-1,3-Dichloroptopene utrans-1,3-Dichloroptopene utrans-1,1-Dichloroptopene utrans-1,1-Dichloroptopene utrans-1,1-Dichloroptopene utrans-1,1-Dichloroptopene utrans-1,1-Dichloroptopene utrans-1,1-Z-Trichloroptopene utrans-1,1-Z-Trichlorobenzene utrans-1,1-Trichloroptopene utra	ug/l	NT	< 1	
1,2-Dichloroethane trans-1,2-Dichloroethene trans-1,2-Dichloroethene utars-1,2-Dichloroethene utars-1,3-Dichloropropane u,2-Dichloropropane u,2-Dichloropropene utars-1,3-Dichloropropene utars-1,3-Trichloroethane utars-1,3-Trichloroethane utars-1,1,2-Tetrachloroethane utars-1,1,2-Trichloroethane utars-1,1,1-Trichloroethane utars-1,1,1-Trichloroethane utars-1,1,1-Trichloroethane utars-1,1,2-Trichloroethane utars-1,1,2-Trichloroethane utars-1,1,1-Trichloroethane utars-1,1,1-Trichloroethane utars-1,1,1-Trichloroethane utars-1,1,2-Trichloropropane utars-1,1,2-Trichloropropane utars-1,1,2-Trichloropropane utars-1,1,2-Trichloropropane utars-1,1,2-Trichloropropane utars-1,1,2-Trichloropropane utars-1,1,2-Trichloropropane utars-1,1,2-Tetrachloroethane utars-1,2-Tetrachloroethane utars-1,2-Tetrachloroethane uta	ug/l	NT NT	< 1 < 1	
trans-1,2-Dichloroethene trans-1,2-Dichloroethene 1,1-Dichloroethene 1,2-Dichloropropane 2,2-Dichloropropane us-1,3-Dichloropropene trans-1,3-Dichloropropene trans-1,3-Dichloropropene 1,3-Dichloropropene 1,3-Dichloropropene 1,3-Dichloropropene 1,3-Dichloropropene 1,3-Dichloropropene 1,3-Dichloropropene 1,4-Dioxane 1,4-Trichloroethane 1,4-Trichloroethane 1,4-Trichloroethane 1,4-Trichloroethane 1,4-Trichloroethane 1,4-Trichloroethane 1,1,5-Trichloroethane 1,2,4-Trimethylbenzene 1,2,3-Trichloropopane 1,2,4-Trimethylbenzene 1,2,4-Trimethylbenzene 1,2,4-Trimethylbenzene 1,2,4-Trimethylbenzene 1,1,2-Trichloropopane 1,1,1-Trichloropopane 1,1-Trichloropopane 1,1-Tri	ug/l ug/l	NI NT	< 1 < 1	
cis-1,2-Dichloroethene 1,2-Dichloropropane 2,2-Dichloropropane 2,2-Dichloropropane 2,2-Dichloropropane 1,1-Dichloropropene 1,1	ug/I ug/I	NT NT	< 1	
1,1-Dichloroethene 2,2-Dichloropropane 2,2-Dichloropropane 2,2-Dichloropropane 3,3-Dichloropropene 4,1-Dichloropropene 4,1-Dichloropropene 4,1-Dichloropropene 5,3-Dichloropropene 6,3-Dichloropropene 7,4-Dichloropropene 8,1-Dichloropropene 9,1-Dichloropropene 1,4-Dioxane 1,4-Trichloroethane 1,4-Trichloroethane 1,4-Trichloroethane 1,1-Trichloroethane 1,1-Trichloroethane 1,1-Trichloroethane 1,1-Trichloroethane 1,1-Trichloroethane 1,1-Trichloropropane 1,2-Trichloropropane 1,2-Trinethylbenzene 1,2-Trinethylbenzene 1,2-Trinethylbenzene 1,1-2-Tetrachloroethane 1,1-1-Trichloropropane 1,1-1-Tetrachloroethane 1,1-1-Trichloropropane 1,1-1-Tetrachloroethane 1,2-1-Tetrachloroethane 1,2-1-Tetrachloroeth	ug/l	NT	< 1	
1,2-Dichloropropane ui,2-Dichloropropane uis-1,3-Dichloropropene utrans-1,3-Dichloropropene u,1-Dichloropropene u,1-Dichloropropene ui,1-Dichloropropene ui,	ug/l	NT	< 1	
2,2-Dichloropropane utans-1,3-Dichloropropene trans-1,3-Dichloropropene utans-1,3-Dichloropropene utans-1,1,2-Tetrachloroethane utans-1,1,2-Tichlorobenzene utans-1,1,2-Tichloropropane utan	ug/l	NT	< 1	
trans-1,3-Dichloropropene 1,3-Dichloropropene 1,3-Dichloropropene 1,3-Dichloropropene 1,3-Dichloropropene 1,3-Dichloropropene 1,4-Dioxane Ethylbenzene Ethylbenzene Hexachlorobutadiene 2-Hexanone Usopropylbenzene Usopropylbene Usopropylben	ug/l	NT	< 1	
1,1-Dichloropropene 1,1-Dichloropropene (cis + trans) Diethyl ether 1,4-Dioxane Ethylbenzene Hexachlorobutadiene 2-Hexanone Isopropylibenzene p-Isopropyltoluene Methylene ChloridePropylbenzene NaphthalenePropylbenzene Styrene 1,1,1,2-Tetrachloroethane Tetrachloroethene Tetrachloroethene Tetrachloroethene 1,2,3-Trichlorobenzene 1,1,2-Trichlorobenzene 1,1,2-Trichloroethane 1,1,2-Trichloroethane 1,2,3-Trichloroethane 1,2,3-Trichloroethane 1,2,3-Trichloropenane 1,3,5-Trimethylbenzene 1,3,5-Trimethylbenzene 1,3,5-Trimethylbenzene 1,1,2-Tetrachloroethane 1,1,2-Trichloropropane 1,1,2-Trichloropropane 1,1,2-Trichloropropane 1,1,2-Trichloropropane 1,1,2-Trimethylbenzene 1,1,2-Trichloropropane 1,1,2-Tetrachloroethane 1,1,2-Trichloropropane 1,1,1-Trichloropropane 1,1,2-Trichloropropane 1,1,2-Trichloropropane 1,1,2-Trichloropropane 1,1,1-Trichloropropane 1,1,2-Trichloropropane 1,1,1-Trichloropropane 1,1-Trichloropropane 1,1-Trichloropr	ug/l	NT	< 1	
1,3-Dichloropropene (cis + trans) 1,3-Dichloropropene (cis + trans) 1,4-Dioxane University Universit	ug/l	NT	< 1	
Diethyl ether Ut.4-Dioxane Ethylbenzene Utexachlorobutadiene 2-Hexanone Isopropylbenzene p-Isopropyltoluene Wethylene Chloride 4-Methyl-2-pentanone NaphthalenePropylbenzene Utrachlorobethane Utrachlorobethane Tetrachloroethane Tetrachloroethane Tetrachloroethane Utrachloroethane	ug/l	NT NT	< 1 < 2	
1.4-Dioxane Ethylbenzene Hexachlorobutadiene 2-Hexanone Isopropylbenzene p-Isopropyltoluene Methylene Chloride	ug/l ug/l	NT NT	< 2 < 5	
Ethylbenzene Hexachlorobutadiene Underschorbutadiene Underschorbut	ug/l	NT	< 500	
Hexachlorobutadiene 2-Hexanone Isopropylbenzene p-Isopropyltoluene Wethylene Chloride 4-Methyl-2-pentanone Naphthalene In-Propylbenzene Un-Propylbenzene Un-Pro	ug/l	NT	< 1	
2-Hexanone Isopropylbenzene Isopropylbenzene Isopropylboluene Methylene Chloride 4-Methyl-2-pentanone Naphthalene IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII	ug/l	NT	< 1	
Isopropylbenzene p-Isopropyltoluene Methylene Chloride 4-Methyl-2-pentanone Naphthalene n-Propylbenzene Styrene 1,1,1,2-Tetrachloroethane Tetrahydrofuran Toluene 1,2,4-Trinchlorobenzene 1,2,4-Trinchloroethane 1,1,1-Trichloroethane 1,2,1-Trichloroethane 1,2,3-Trichlorobenzene 1,1,2-Trichloroethane 1,1,1-Trichloroethane 1,1,1-Trichloroethane 1,1,1-Trichloroethane 1,1,1-Trichloroethane 1,1,2-Trichloroethane 1,1,2-Trichloroethane 1,1,2-Trichloroethane 1,1,2-Trichloroethane 1,1,1-Trichloroethane 1,1,2-Trichloroethane 1,1,2-Trichloroethane 1,1,2-Trichloropropane 1,1,2-Trichloroethane 1,2,3-Trichloropropane 1,1,2-Trichloroethane 1,2,3-Trichloroethane 1,2,2-Trimethylbenzene 1,2,2-Trimethylbenzene 1,1,2-Trichloroethane 1,2-Toltichloropropane 1,1,2-Tetrachloroethane 1,2-Toltichloropropane 1,1,2-Tetrachloroethane 1,2-Toltichloropropane 1,1,2-Trichloropropane 1,1,2-Trichloropropane 1,1,2-Trichloropropane 1,1,2-Trichloropropane 1,1,2-Trichloropropane 1,1,2-Trichloropropane 1,1,1,2-Trichloropropane 1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,	ug/l	NT	< 5	
Methylene Chloride 4-Methyl-2-pentanone Naphthalene Naphthalene N-Propylbenzene Styrene 1,1,1,2-Tetrachloroethane Tetrachloroethene Tetrachloroethene Tetrahydrofuran Toluene 1,2,4-Trichlorobenzene 1,2,3-Trichlorobenzene 1,1,2-Trichloroethane 1,1,1-Trichloroethane 1,1,1-Trichloroethane 1,1,1-Trichloropropane 1,2,3-Trinchloropropane 1,2,3-Trinchloropropane 1,2,3-Trinchloropropane 1,2,3-Trinchloropropane 1,2,3-Trinchloropropane 1,2,2-Trimethylbenzene 1,2,4-Trimethylbenzene 1,2,2-Trichloroethane 1,2-Trichloropropane 1,2,2-Tetrachloroethane 1,2,2-Tetrachloroethane 1,2,2-Tetrachloroethane 1,2,2-Tetrachloroethane 1,2,2-Tetrachloroethane 1,3-Dichloropropane 1,1,2-Tetrachloroethane 1,3-Dichloropropane 1,3	ug/l	NT	< 1	
4-Methyl-2-pentanone Naphthalene n-Propylbenzene Styrene 1,1,1,2-Tetrachloroethane Tetrahydrofuran Toluene 1,2,4-Trinchlorobenzene 1,2,3-Trichlorobenzene 1,1,2-Trichlorobenzene 1,1,2-Trichloroethane 1,1,1-Trichloroethane 1,1,1-Trichloroethane 1,1,1-Trichloroethane 1,1,1-Trichloropenzene 1,2,3-Trichloropenzene 1,2,3-Trichloropenzene 1,2,3-Trichloropenzene 1,2,3-Trichloropenzene 1,2,3-Trichloropenzene 1,2,4-Trimethylbenzene 1,2,4-Trimethylbenzene 1,2,2-Trimethylbenzene 1,1,2-Trichloropenzene 1,1,2-Trichloropenzene 1,1,2-Trimethylbenzene 1,1,2-Trimethylbenzene 1,1,2-Trimethylbenzene 1,2,3-Trindenylbenzene 1,3-Dichloropropane 1,1,2-Tetrachloroethane 1,2,3-Trichloropenzene 1,3-Dichloropropane 1,1,2-Tetrachloroethane 1,3-Dichlorofluoromethane 1,3-Dichlorofluoromethane 1,3-Dichlorofluoromethane 1,3-Dichlorofluoromethane	ug/l	NT	< 1	
Naphthalene Naphth	ug/l	NT	< 1	
n-Propylbenzene Styrene ut.1,1,2-Tetrachloroethane Tetrachloroethane Tetrachloroethane Tetrachloroethane Tetrachloroethane Tetrachloroethane Tolluene ut.2,4-Trichlorobenzene 1,2,3-Trichlorobenzene 1,1,2-Trichloroethane 1,1,1-Trichloroethane 1,1,1-Trichloropropane 1,2,3-Trichloropropane 1,2,3-Trinethylbenzene 1,2,3-Trinethylbenzene 1,2,4-Trimethylbenzene 1,2,4-Trimethylbenzene 1,2,4-Trimethylbenzene 1,2,4-Trimethylbenzene 1,2,4-Trimethylbenzene 1,2,2-Tetrachloroethane tetr-Amyl methyl ether 1,1,2-Tetrachloroethane tetr-Amyl methyl ether 1,3-Dichloropropane Ethyl tert-buyl ether Ut.1,5-Dichloropropane Ut.1,5-Dichloropropane Ut.1,5-Dichloropropane Ut.1,5-Dichloropropane Ut.1,5-Dichloropropane Ut.1,5-Dichloropropane Ut.1,5-Dichloropropane Ut.1,5-Dichlorofluoromethane Ut.1,5-Dichlorofluoromethane	ug/l	NT NT	< 5	
Styrene U,1,1,2-Tetrachloroethane Tetrachloroethene Tetrachloroethene Tetrachloroethene Tetrachloroethene U,2,3-Trichlorobenzene U,2,3-Trichloroethane U,1,2-Trichloroethane U,1,1-Trichloroethane U,1,1-Trichloroethane U,2,3-Trichloropenane U,3,5-Trimethylbenzene U,2,4-Trimethylbenzene U,2,4-Trimethylbenzene U,2,4-Trimethylbenzene U,1,2,4-Trichloroethane U,1,1,2-Tetrachloroethane U,1,1,2-Tetrachloroethane U,1,2,2-Tetrachloroethane U,1,2,2-Tetrachloroethane Uetrt-Amyl methyl ether U,1,3-Dichloropropane Uthyl tetr-butyl ether Uisopropyl ether Trichlorofluoromethane Uniloofluoromethane Uniloofluoromethane Unilooflorofluoromethane Unilooflorofluoromethane Unilooflorofluoromethane Uniloofloromethane Uniloofloromethane Uniloofloromethane Uniloofloromethane Uniloofloromethane Uniloofloromethane Uniloofloromethane	ug/l	NT NT	< 1 < 1	
1,1,1,2-Tetrachloroethane Tetrachloroethene Utratrahydrofuran Toluene 1,2,3-Trichlorobenzene 1,2,3-Trichloroethane Ut,1,1-Trichloroethane Ut,1,1-Trichloroethane Ut,1,3-Trichloroethane Ut,1,3-Trichloroethane Ut,1,3-Trichloropropane Ut,2,3-Trichloropropane Ut,2,3-Trichloropropane Ut,2,3-Trichloropropane Ut,2,4-Trimethylbenzene Ut,2,4-Trimethylbenzene Utyly Chloride Utyly Utyly Chloride Utyly Utyly Chloride Utyly Utyly Chloride Utyly Chlori	ug/l ug/l	NT NT	< 1	
Tetrachloroethene Tetrahydrofuran Toluene U.2,4-Trichlorobenzene U.2,2-Trichlorobenzene U.1,2,2-Trichloroethane U.1,1,1-Trichloroethane U.1,1,1-Trichloroethane U.1,1,3-Trichloropropane U.2,3-Trichloropropane U.3,5-Trimethylbenzene U.2,4-Trimethylbenzene U.5,4-Trimethylbenzene U.7,4-Trimethylbenzene Umyl Chloride Umyl Umyl Umyl Umyl Umyl Umyl Umyl Umyl	ug/l	NT	< 1	
Tetrahydrofuran Toluene U1,2,4-Trichlorobenzene U2,2,3-Trichlorobenzene U1,2,3-Trichlorobenzene U1,1,2-Trichlorobenzene U1,1,1-Trichloroethane U1,1,1-Trichloroethane U2,3-Trichloropropane U3,3-Trimethylbenzene U3,3-Trimethylbenzene U1,2,4-Trimethylbenzene U1,2,4-Trimethylbenzene U1,2,4-Trimethylbenzene U1,2,4-Trimethylbenzene U1,2,4-Tetrachloroethane U2,1,2,2-Tetrachloroethane U2,1,2,2-Tetrachloroethane U2,1,2-Tetrachloroethane U2,1,2-Tetrachloroethane U3,3-Dichloropropane U4,1,2-Tetrachloroethane U5,3-Dichloropropane U5,1-Dichloropropane U5,1-Dichl	ug/l	NT	< 1	
Toluene U1,2,4-Trichlorobenzene U1,2,3-Trichlorobenzene U1,2,3-Trichlorobenzene U1,1,2-Trichloroethane U1,1,1-Trichloroethane U1,1,1-Trichloroethane U1,2,3-Trichloropropane U2,3,5-Trinethylbenzene U3,5-Trimethylbenzene U3,4-Trimethylbenzene U4,2,4-Trimethylbenzene U5,4-Trimethylbenzene U6,1,2,4-Trimethylbenzene U7,1,2,2-Tetrachloroethane U8,2-Xylene U8,2-Xylene U9,1,2,2-Tetrachloroethane U8,1-1,2-Tetrachloroethane U8,1-1,1,2-Tetrachloroethane U8,1-1,1,2-Tetrachloroethane U8,1-1,1,2-Tetrachloroethane U8,1-1,1,2-Tetrachloroethane U8,1-1,1,2-Tetrachloroethane U8,1-1,1,2-Tetrachloroethane U8,1-1,1,2-Tetrachloroethane U8,1-1,1,2-Tetrachloroethane U8,1-1,1,2-Tetrachloroethane U8,1-1,1-1,2-Tetrachloroethane U8,1-1,1-1,2-Tetrachloroethane U8,1-1,2-Tetrachloroethane	ug/l	NT	< 5	
1,2,3-Trichlorobenzene 1,1,2-Trichloroethane 1,1,1-Trichloroethane 1,1,1-Trichloroethane 1,1,1-Trichloroethane 1,2,3-Trichloropropane 1,3,5-Trimethylbenzene 1,2,4-Trimethylbenzene 1,2,4-Trimethylbenzene 1,2,4-Trimethylbenzene 1,2,4-Trimethylbenzene 1,2,4-Trimethylbenzene 1,2,4-Trimethylbenzene 1,2,4-Trimethylbenzene 1,1,2,2-Tetrachloroethane 1,1,2,2-Tetrachloroethane 1,1,2,2-Tetrachloroethane 1,2,4-Trimethylbenzene 1,2,4-Trimethylbenzene 1,1,2,2-Tetrachloroethane 1,2,2-Tetrachloroethane 1,2,2-Tetrachloroethane 1,2,3-Dichloropropane 1,3-Dichloropropane 1,3-Dichloropropane 1,3-Dichloropropopl ether 1,3-Dichloropropopl 1,3-Di	ug/l	NT	< 1	
1,1,2-Trichloroethane 1,1,1-Trichloroethane 1,2,3-Trichloropropane 1,2,3-Trichloropropane 1,2,4-Trimethylbenzene 1,2,4-Trimethylbenzene 1,2,4-Trimethylbenzene 1,2,4-Trimethylbenzene 1,2,4-Trimethylbenzene 1,2,4-Trimethylbenzene 1,2,4-Trimethylbenzene 1,1,2,2-Tetrachloroethane 1,1,2,2-Tetrachloroethane 1,1,2,2-Tetrachloropropane 1,3-Dichloropropane 1,3-Dichloropropane 1,3-Dichloropropane 1,3-Dichloropropane 1,3-Dichloromethane 1,0-Dichlorofilloromethane 1,0-Dichlorodilloromethane 1,0-Dichlorodilloromethane 1,0-Dichlorodilloromethane 1,0-Dichlorodilloromethane 1,0-Dichlorodilloromethane	ug/l	NT	< 1	
1,1,1-Trichloroethane Trichloroethane U1,2,3-Trichloropropane U3,3-Trimethylbenzene U3,3-Trimethylbenzene U4,2,4-Trimethylbenzene U6,2-4-Trimethylbenzene U7,1,2-Trimethylbenzene U7,1,2-Tettachloroethane U8,7-Yylene U8,7-Yylene U9,7-Yylene U9,7-Yylene U1,1,2,2-Tettachloroethane U8,1-Yylene U9,1-Yylene U9,1	ug/l	NT	< 1	
Trichloroethene 1,2,3-Trichloropropane 1,2,3-Trichloropropane 1,3,5-Trimethylbenzene 1,2,4-Trimethylbenzene 1,2,4-Trimethylbenzene 1,2,4-Trimethylbenzene 1,2,4-Trimethylbenzene 1,2,4-Trimethylbenzene 1,2,4-Trimethylbenzene 1,1,2,2-Tetrachloroethane 1,1,2,2-Tetrachloroethane 1,1,2,2-Tetrachloroethane 1,1,2-Tetrachloropropane 1,1,2-Tetrachloropropane 1,1,2-Tetrachloropropane 1,1,2-Tetrachloropropane 1,1,2-Tetrachloropropane 1,1,2-Tetrachloropropane 1,1,2-Tetrachloropropane 1,1,2-Tetrachloropropane 1,2,3-Tetrachloropropane 1,2,3-Tetrachloropropane 1,2,3-Tetrachloropropane 1,2,3-Tetrachloropropane 1,2,3-Tetrachloropropane 1,2,4-Trimethylbenzene 1,2,4-Trimethylb	ug/l	NT	< 1	
1,2,3-Trichloropropane 1,3,5-Trimethylbenzene 1,3,5-Trimethylbenzene 1,2,4-Trimethylbenzene 1,2,4-Trimethylbenzene 1,2,4-Trimethylbenzene 1,2,2-Trimethylbenzene 1,2,2-Tetrachloroethane 1,1,2,2-Tetrachloroethane 1,1,2,2-Tetrachloroethane 1,1,2-Tetrachloropropane 1,3-Dichloropropane 1,3-Dichloropropane 1,3-Dichlorofluoromethane 1,0-Dichlorofluoromethane 1,0-Dichlorofluoromethane 1,0-Dichlorofluoromethane 1,0-Dichlorofluoromethane 1,0-Dichlorofluoromethane 1,0-Dichlorofluoromethane 1,0-Dichlorofluoromethane 1,0-Dichlorofluoromethane	ug/l	NT NT	< 1 < 1	
1,3,5-Trimethylbenzene 1,2,4-Trimethylbenzene Univny Chloride Uno-Xylene Uno-Xylene Unotal xylenes Unotal xylen	ug/l ug/l	NT NT	< 1	
1,2,4-Trimethylbenzene Viryl Chloride Uno-Xylene Um&p-Xylene Uno-Xylene Uno-X	ug/I ug/I	NT NT	< 1	
Vinyl Chloride o-Xylene m&p-Xylene Total xylenes U Total xylenes U Total xylenes U 1,2,2-Tetrachloroethane uert-Amyl methyl ether U,3-Dichloropropane U U Diisopropyl ether U Diisopropyl ether U U Diisopromyl uerhene U U Diisopromyl uerhene U U U U U U U U U U U U U U U U U U	ug/l	NT	< 1	
o-Xylene un Ap-Xylene un Ap-Xylene un Total xylenes un 1,1,2,2-Tetrachloroethane un 1,1,3-Dichloropropane un 1,3-Dichloropropane un 1,3-Dichloropropane un 1,3-Dichloropropyl ether un Unisopropyl eth	ug/l	NT	< 1	
m&p-Xylene Total xylenes 1,1,2,2-Tetrachloroethane uert-Amyl methyl ether 1,3-Dichloropropane Ethyl tert-butyl ether Uisopropyl ether Uirichlorofluoromethane u Dichlorodifluoromethane Uitholrodifluoromethane	ug/l	NT	< 1	
Total xylenes u 1,1,2,2-Tetrachloroethane tetr4-Amyl methyl ether 1,3-Dichloropropane u Ethyl tert-butyl ether Uiisopropyl ether u Dirichlorofluoromethane u Dichlorodifluoromethane u	ug/l	NT	< 2	
tert-Amyl methyl ether 1,3-Dichloropropane Lithyl tert-butyl ether Uisopropyl ether Uirichlorofluoromethane Uichlorodifluoromethane Uichlorodifluoromethane Uichlorodifluoromethane	ug/l	NT	< 1	
1,3-Dichloropropane u Ethyl tert-butyl ether u Diisopropyl ether u Trichlorofluoromethane u Dichlorodifluoromethane u	ug/l	NT	< 1	
Ethyl tert-butyl ether u Diisopropyl ether u U Trichlorofluoromethane u Dichlorodifluoromethane u	ug/l	NT	< 1	
Diisopropyl ether u Trichlorofluoromethane u Dichlorodifluoromethane u	ug/l	NT	< 1	
Trichlorofluoromethane u Dichlorodifluoromethane u	ug/l	NT	< 1	
Dichlorodifluoromethane u	ug/l	NT NT	< 1	
	ug/l	NT NT	< 1 < 1	
aga	ug/l	INI	` '	
	ug/l	NT	< 2	
	ug/l	NT	< 2	
	ug/l	NT	< 2	
1,4-Dichlorobenzene u	ug/l	NT	< 2	
Phenol	ug/l ug/l	NT NT	< 2 < 2	

Table 1 Water Sample Analytical Results Spy Pond Dredging Arlington, MA

Arlington, N		Sample Location ID			
Parameter	Unit	RE-01	IN-01		
2,4,6-Trichlorophenol	ug/l	NT	< 2		
2,4-Dichlorophenol	ug/l	NT	< 2		
2,4-Dimethylphenol	ug/l	NT	< 10		
2,4-Dinitrophenol	ug/l	NT	< 5		
2,4-Dinitrotoluene	ug/l	NT NT	< 2 < 2		
2,6-Dinitrotoluene 2-Chloronaphthalene	ug/l ug/l	NT NT	< 2		
2-Chlorophenol	ug/l	NT	< 2		
2-Methylnaphthalene	ug/l	NT	< 2		
Nitrobenzene	ug/l	NT	< 2		
2-Methylphenol	ug/l	NT	< 2		
2-Nitroaniline	ug/l	NT	< 2		
2-Nitrophenol 3.3'-Dichlorobenzidine	ug/l	NT	< 5 < 5		
3,3 -Dichlorobenziaine 3-Nitroaniline	ug/l ug/l	NT NT	< 2		
4,6-Dinitro-2-methylphenol	ug/l	NT	< 5		
4-Bromophenyl phenyl ether	ug/l	NT	< 2		
4-Chloro-3-methylphenol	ug/l	NT	< 2		
4-Chloroaniline	ug/l	NT	< 5		
4-Chlorophenyl phenyl ether	ug/l	NT	< 2		
4-Nitroaniline	ug/l	NT	< 2		
4-Nitrophenol	ug/l	NT	< 5		
Acenaphthene Acenaphthylene	ug/l	NT	< 2 < 2		
Acenaphthylene Aniline	ug/l ug/l	NT NT	< 2		
Anthracene	ug/l ug/l	NT NT	< 2		
Benzo(a)anthracene	ug/l	NT	< 2		
Benzo(a)pyrene	ug/l	NT	< 2		
Benzo(b)fluoranthene	ug/l	NT	< 2		
Benzo(g,h,i)perylene	ug/l	NT	< 2		
Benzo(k)fluoranthene	ug/l	NT	< 2		
Benzoic acid	ug/l	NT	< 15 < 2		
Bis(2-chloroethoxy)methane Bis(2-chloroethyl)ether	ug/l	NT NT	< 2		
Bis(2-chloroisopropyl)ether	ug/l ug/l	NT NT	< 2		
Bis(2-ethylhexyl)phthalate	ug/l	NT	< 6		
Butyl benzyl phthalate	ug/l	NT	< 3		
Chrysene	ug/l	NT	< 2		
Di(n)octyl phthalate	ug/l	NT	< 3		
Dibenz(a,h)anthracene	ug/l	NT	< 2		
Dibenzofuran	ug/l	NT	< 2		
Diethyl phthalate Dimethyl phthalate	ug/l ug/l	NT NT	< 2 < 5		
Di-n-butylphthalate	ug/l	NT	< 2		
Fluoranthene	ug/l	NT	< 2		
Fluorene	ug/l	NT	< 2		
Hexachlorobenzene	ug/l	NT	< 2		
Hexachlorobutadiene	ug/l	NT	< 2		
Hexachlorocyclopentadiene	ug/l	NT	< 5 < 2		
Hexachloroethane Indeno(1,2,3-cd)pyrene	ug/l ug/l	NT NT	< 2		
Isophorone	ug/l ug/l	NT NT	< 2		
Naphthalene	ug/l	NT	< 2		
N-Nitrosodimethylamine	ug/l	NT	< 2		
N-Nitrosodi-n-propylamine	ug/l	NT	< 2		
N-Nitrosodiphenylamine	ug/l	NT	< 2		
Pentachlorophenol	ug/l	NT	< 5		
Phenanthrene	ug/l	NT	< 2 < 2		
Pyrene m&p-Cresol	ug/l ug/l	NT NT	< 2		
Pyridine	ug/l	NT	< 2		
Ethanol	mg/L	NT	< 10		
General Chemistry					
Total Suspended Solids	mg/L	NT	1490		
Chloride	mg/L	NT	295		
Total Residual Chlorine Cyanide	mg/L	NT NT	0.5 0.013		
Ammonia	mg/L mg/L	N1 0.2	0.013 1.7		
Temperature	oF	60.2	NT		
pH	L.	7.19	NT		
Total Metals					
Total Hardness	mg/L	70.5	NT		
Antimony	mg/L	< 0.005	0.016 0.06		
Arsenic Cadmium	mg/L mg/L	< 0.01 < 0.005	0.06 0.033		
Chromium	mg/L	< 0.005	0.033		
Trivalent Chromium	mg/L	< 0.005	0.343		
Hexavalent chromium	mg/L	< 0.01	< 0.01		
Copper	mg/L	< 0.02	1.53		
Iron	mg/L	0.2	161		
Lead	mg/L	< 0.005	5.96		
Nickel Selenium	mg/L	< 0.005	0.173		
Selenium Silver	mg/L	< 0.01 < 0.005	< 0.01 < 0.005		
Zinc	mg/L mg/L	< 0.005	4.12		
	y/L				
Mercury	ma/L	< 0.0002	0.0006		
	mg/L mg/L	< 0.0002 21.2	0.0006 NT		

Notes:
<: result with "<" sign indicates non-detected result and is instead shown reporting limit.
NT: Not tested

II. Suggested Format for the Remediation General Permit Notice of Intent (NOI)

A. General site information:

1. Name of site:	Site address:						
	Street:						
	City:	State:	Zip:				
2. Site owner	Contact Person:						
	Telephone:	Email:					
	Mailing address:	l					
	Street:						
Owner is (check one): ☐ Federal ☐ State/Tribal ☐ Private ☐ Other; if so, specify:	City:	State:	Zip:				
3. Site operator, if different than owner	Contact Person:						
	Telephone:	Email:					
	Mailing address:						
	Street:						
	City:		State:	Zip:			
4. NPDES permit number assigned by EPA:	5. Other regulatory program(s) that apply to the site	(check all th	at apply):				
	☐ MA Chapter 21e; list RTN(s):	□ CERCL	LΑ				
NPDES permit is (check all that apply: □ RGP □ DGP □ CGP	☐ NH Groundwater Management Permit or	☐ UIC Program					
☐ MSGP ☐ Individual NPDES permit ☐ Other; if so, specify:		☐ POTW Pretreatment					
L MISSI L Marriada M DES permit L Suici, ii so. seccir.	Groundwater Release Detection Permit:	□ CWA S					

В.	Receiving	water	information:	
----	-----------	-------	--------------	--

1. Name of receiving water(s):	waterbody identification of receiving water(waterbody identification of receiving water(s): Classificatio								
Receiving water is (check any that apply): □ Outstanding Resource Water □ Ocean Sanctuary □ territorial sea □ Wild and Scenic River										
2. Has the operator attached a location map in accordance with the instructions in B, above? (check one): ☐ Yes ☐ No										
Are sensitive receptors present near the site? (check of If yes, specify:	Are sensitive receptors present near the site? (check one): □ Yes □ No									
3. Indicate if the receiving water(s) is listed in the Stapollutants indicated. Also, indicate if a final TMDL i 4.6 of the RGP.										
4. Indicate the seven day-ten-year low flow (7Q10) o Appendix V for sites located in Massachusetts and A		the instructions in								
5. Indicate the requested dilution factor for the calcul accordance with the instructions in Appendix V for s										
6. Has the operator received confirmation from the ap If yes, indicate date confirmation received:	opropriate State for the 7Q10and dilution factor indi	cated? (check one): ☐ Yes ☐	No							
7. Has the operator attached a summary of receiving (check one): ☐ Yes ☐ No	water sampling results as required in Part 4.2 of the	RGP in accordance with the i	nstruction in Appendix VIII?							
C. Source water information:										
1. Source water(s) is (check any that apply):										
☐ Contaminated groundwater	☐ Contaminated surface water	☐ The receiving water	☐ Potable water; if so, indicate municipality or origin:							
Has the operator attached a summary of influent sampling results as required in Part 4.2 of the RGP	Has the operator attached a summary of influent sampling results as required in Part 4.2 of the	☐ A surface water other								
in accordance with the instruction in Appendix VIII? (check one):	RGP in accordance with the instruction in Appendix VIII? (check one):	than the receiving water; if so, indicate waterbody:	☐ Other; if so, specify:							
□ Yes □ No	□ Yes □ No									

2. Source water contaminants:						
a. For source waters that are contaminated groundwater or contaminated surface water, indicate are any contaminants present that are not included in	b. For a source water that is a surface water other than the receiving water, potable water or other, indicate any contaminants present at the maximum concentration in accordance					
the RGP? (check one): ☐ Yes ☐ No If yes, indicate the contaminant(s) and the maximum concentration present in accordance with the instructions in Appendix VIII.	with the instructions in Appendix VIII? (check one): ☐ Yes ☐ No					
3. Has the source water been previously chlorinated or otherwise contains resid	dual chlorine? (check one): □ Yes □ No					
D. Discharge information						
1.The discharge(s) is a(n) (check any that apply): \Box Existing discharge \Box New	w discharge □ New source					
Outfall(s):	Outfall location(s): (Latitude, Longitude)					
Discharges enter the receiving water(s) via (check any that apply): □ Direct di	scharge to the receiving water □ Indirect discharge, if so, specify:					
☐ A private storm sewer system ☐ A municipal storm sewer system If the discharge enters the receiving water via a private or municipal storm sew	ver system:					
Has notification been provided to the owner of this system? (check one): ☐ Ye	es 🗆 No					
Has the operator has received permission from the owner to use such system for discharges? (check one): Yes No, if so, explain, with an estimated timeframe for obtaining permission:						
Has the operator attached a summary of any additional requirements the owner of this system has specified? (check one): ☐ Yes ☐ No						
Provide the expected start and end dates of discharge(s) (month/year):						
Indicate if the discharge is expected to occur over a duration of: □ less than 12 months □ 12 months or more □ is an emergency discharge						
Has the operator attached a site plan in accordance with the instructions in D, a	above? (check one): □ Yes □ No					

2. Activity Category: (check all that apply)	3. Contamination Type Category: (check all that apply)				
	a. If Activity Category I or II: (check all that apply)				
	 □ A. Inorganics □ B. Non-Halogenated Volatile Organic Compounds □ C. Halogenated Volatile Organic Compounds □ D. Non-Halogenated Semi-Volatile Organic Compounds □ E. Halogenated Semi-Volatile Organic Compounds □ F. Fuels Parameters 				
 □ I – Petroleum-Related Site Remediation □ II – Non-Petroleum-Related Site Remediation 	b. If Activity Category III, IV, V, VI, VII or VIII: (check either G or H)				
 □ III – Non-Petroleum-Related Site Remediation □ III – Contaminated Site Dewatering □ IV – Dewatering of Pipelines and Tanks □ V – Aquifer Pump Testing □ VI – Well Development/Rehabilitation □ VII – Collection Structure Dewatering/Remediation □ VIII – Dredge-Related Dewatering 	□ G. Sites with Known Contamination c. If Category III-G, IV-G, V-G, VI-G, VII-G or VIII-G: (check all that apply) □ A. Inorganics □ B. Non-Halogenated Volatile Organic Compounds □ C. Halogenated Volatile Organic Compounds □ D. Non-Halogenated Semi-Volatile Organic Compounds □ E. Halogenated Semi-Volatile Organic Compounds □ F. Fuels Parameters	□ H. Sites with Unknown Contamination d. If Category III-H, IV-H, V-H, VI-H, VII-H or VIII-H Contamination Type Categories A through F apply			

4. Influent and Effluent Characteristics

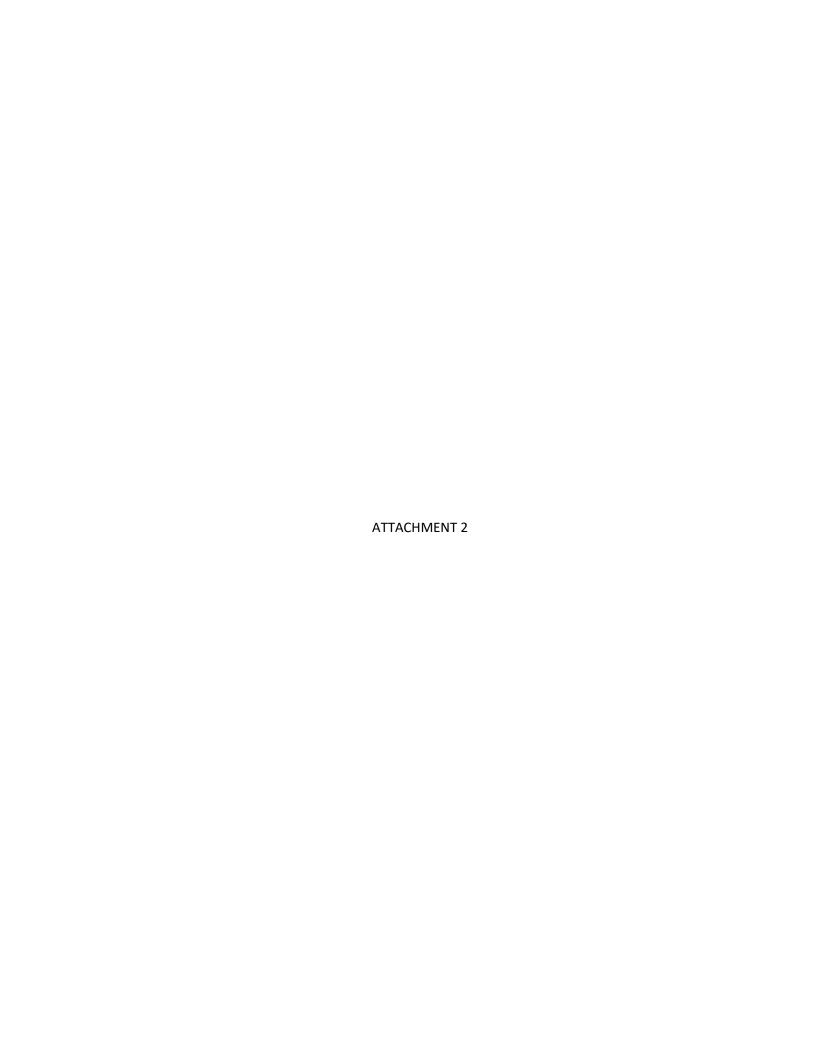
	Known	Known				Influent		Effluent Limitations		
Parameter	or believed absent	or believed present	# of samples	Test method (#)	Detection limit (µg/l)	Daily maximum (µg/l)	Daily average (µg/l)	TBEL	WQBEL	
A. Inorganics										
Ammonia								Report mg/L		
Chloride								Report µg/l		
Total Residual Chlorine								0.2 mg/L		
Total Suspended Solids								30 mg/L		
Antimony								206 μg/L		
Arsenic								104 μg/L		
Cadmium								10.2 μg/L		
Chromium III								323 µg/L		
Chromium VI								323 μg/L		
Copper								242 μg/L		
Iron								5,000 µg/L		
Lead								160 μg/L		
Mercury								0.739 µg/L		
Nickel								1,450 μg/L		
Selenium								235.8 μg/L		
Silver								35.1 μg/L		
Zinc								420 μg/L		
Cyanide								178 mg/L		
B. Non-Halogenated VOCs			•							
Total BTEX								100 μg/L		
Benzene								5.0 μg/L		
1,4 Dioxane								200 μg/L		
Acetone								7.97 mg/L		
Phenol								1,080 µg/L		

	Known	Known				Infl	luent	Effluent Limitations		
Parameter	or believed absent	or believed present	# of samples	Test method (#)	Detection limit (µg/l)	Daily maximum (µg/l)	Daily average (µg/l)	TBEL	WQBEL	
C. Halogenated VOCs										
Carbon Tetrachloride								4.4 μg/L		
1,2 Dichlorobenzene								600 μg/L		
1,3 Dichlorobenzene								320 µg/L		
1,4 Dichlorobenzene								5.0 μg/L		
Total dichlorobenzene								763 µg/L in NH		
1,1 Dichloroethane								70 μg/L		
1,2 Dichloroethane								5.0 μg/L		
1,1 Dichloroethylene								3.2 µg/L		
Ethylene Dibromide								0.05 μg/L		
Methylene Chloride								4.6 μg/L		
1,1,1 Trichloroethane								200 μg/L		
1,1,2 Trichloroethane								5.0 μg/L		
Trichloroethylene								5.0 μg/L		
Tetrachloroethylene								5.0 μg/L		
cis-1,2 Dichloroethylene								70 μg/L		
Vinyl Chloride								2.0 μg/L		
D. Non-Halogenated SVO	Cs	_								
Total Phthalates								190 μg/L		
Diethylhexyl phthalate								101 μg/L		
Total Group I PAHs								1.0 μg/L		
Benzo(a)anthracene								_		
Benzo(a)pyrene								_		
Benzo(b)fluoranthene								<u> </u>		
Benzo(k)fluoranthene								As Total PAHs		
Chrysene								_		
Dibenzo(a,h)anthracene								_		
Indeno(1,2,3-cd)pyrene										

	Known	Known				Inf	Influent Effluent L		nitations
Parameter	or believed absent	or believed present	# of samples	Test method (#)	Detection limit (µg/l)	Daily maximum (µg/l)	Daily average (µg/l)	TBEL	WQBEL
Total Group II PAHs								100 μg/L	
Naphthalene								20 μg/L	
E. Halogenated SVOCs									
Total PCBs								0.000064 µg/L	
Pentachlorophenol								1.0 μg/L	
	1			•					
F. Fuels Parameters Total Petroleum		1	1	1		1 1		<u> </u>	
Hydrocarbons								5.0 mg/L	
Ethanol								Report mg/L	
Methyl-tert-Butyl Ether								70 μg/L	
tert-Butyl Alcohol								120 μg/L in MA 40 μg/L in NH	
tert-Amyl Methyl Ether								90 μg/L in MA 140 μg/L in NH	
Other (i.e., pH, temperatur	re, hardness,	salinity, LC	50, addition	al pollutar	ats present);	if so, specify:			

E. Treatment system information

1. Indicate the type(s) of treatment that will be applied to effluent prior to discharge: (check all that apply)	
☐ Adsorption/Absorption ☐ Advanced Oxidation Processes ☐ Air Stripping ☐ Granulated Activated Carbon ("GAC")/Liquid Phase Carbon Adsorption	
□ Ion Exchange □ Precipitation/Coagulation/Flocculation □ Separation/Filtration □ Other; if so, specify:	
2. Provide a written description of all treatment system(s) or processes that will be applied to the effluent prior to discharge.	
Identify each major treatment component (check any that apply):	
□ Fractionation tanks□ Equalization tank □ Oil/water separator □ Mechanical filter □ Media filter	
□ Chemical feed tank □ Air stripping unit □ Bag filter □ Other; if so, specify:	
Indicate if either of the following will occur (check any that apply):	
□ Chlorination □ De-chlorination	
3. Provide the design flow capacity in gallons per minute (gpm) of the most limiting component.	
Indicate the most limiting component:	
Is use of a flow meter feasible? (check one): ☐ Yes ☐ No, if so, provide justification:	
Provide the proposed maximum effluent flow in gpm.	
Provide the average effluent flow in gpm.	
Trovide the average erritaint now in gpin.	
If Activity Category IV applies, indicate the estimated total volume of water that will be discharged:	
4. Has the operator attached a schematic of flow in accordance with the instructions in E, above? (check one): ☐ Yes ☐ No	


F. Chemical and additive information

r. Chemical and additive information
1. Indicate the type(s) of chemical or additive that will be applied to effluent prior to discharge or that may otherwise be present in the discharge(s): (check all that apply)
□ Algaecides/biocides □ Antifoams □ Coagulants □ Corrosion/scale inhibitors □ Disinfectants □ Flocculants □ Neutralizing agents □ Oxidants □ Oxygen □
scavengers □ pH conditioners □ Bioremedial agents, including microbes □ Chlorine or chemicals containing chlorine □ Other; if so, specify:
2. Provide the following information for each chemical/additive, using attachments, if necessary:
a. Product name, chemical formula, and manufacturer of the chemical/additive; b. Purpose or use of the chemical/additive or remedial agent; c. Material Safety Data Sheet (MSDS) and Chemical Abstracts Service (CAS) Registry number for each chemical/additive; d. The frequency (hourly, daily, etc.), duration (hours, days), quantity (maximum and average), and method of application for the chemical/additive; e. Any material compatibility risks for storage and/or use including the control measures used to minimize such risks; and f. If available, the vendor's reported aquatic toxicity (NOAEL and/or LC50 in percent for aquatic organism(s)).
3. Has the operator attached an explanation which demonstrates that the addition of such chemicals/additives may be authorized under this general permit in accordance
with the instructions in F, above? (check one): \square Yes \square No; if no, has the operator attached data that demonstrates each of the 126 priority pollutants in CWA Section 307(a) and 40 CFR Part 423.15(j)(1) are non-detect in discharges with the addition of the proposed chemical/additive?
(check one): □ Yes □ No
G. Endangered Species Act eligibility determination
1. Indicate under which criterion the discharge(s) is eligible for coverage under this general permit:
□ FWS Criterion A : No endangered or threatened species or critical habitat are in proximity to the discharges or related activities or come in contact with the "action area".
□ FWS Criterion B : Formal or informal consultation with the FWS under section 7 of the ESA resulted in either a no jeopardy opinion (formal consultation) or a written concurrence by FWS on a finding that the discharges and related activities are "not likely to adversely affect" listed species or critical habitat
(informal consultation). Has the operator completed consultation with FWS? (check one): ☐ Yes ☐ No; if no, is consultation underway? (check one): ☐
Yes □ No
□ FWS Criterion C : Using the best scientific and commercial data available, the effect of the discharges and related activities on listed species and critical habitat have been evaluated. Based on those evaluations, a determination is made by EPA, or by the operator and affirmed by EPA, that the discharges and related activities will have "no effect" on any federally threatened or endangered listed species or designated critical habitat under the jurisdiction of the
FWS. This determination was made by: (check one) \square the operator \square EPA \square Other; if so, specify:

□ NMFS Criterion: A determination made by EPA is affirmed by the operator that the discharges and related activities will have "no effect" or are "not likely to adversely affect" any federally threatened or endangered listed species or critical habitat under the jurisdiction of NMFS and will not result in any take of					
listed species. Has the operator previously completed consultation with NMFS? (check one): ☐ Yes ☐ No					
2. Has the operator attached supporting documentation of ESA eligibility in accordance with the instructions in Appendix I, and G, above? (check one): □ Yes □ No					
Does the supporting documentation include any written concurrence or finding provided by the Services? (check one): Yes No; if yes, attach.					
H. National Historic Preservation Act eligibility determination					
1. Indicate under which criterion the discharge(s) is eligible for coverage under this general permit:					
□ Criterion A : No historic properties are present. The discharges and discharge-related activities (e.g., BMPs) do not have the potential to cause effects on historic properties.					
☐ Criterion B: Historic properties are present. Discharges and discharge related activities do not have the potential to cause effects on historic properties.					
□ Criterion C : Historic properties are present. The discharges and discharge-related activities have the potential to have an effect or will have an adverse effect on historic properties.					
2. Has the operator attached supporting documentation of NHPA eligibility in accordance with the instructions in H, above? (check one): ☐ Yes ☐ No					
Does the supporting documentation include any written agreement with the State Historic Preservation Officer (SHPO), Tribal Historic Preservation Officer (TPHO), or					
other tribal representative that outlines measures the operator will carry out to mitigate or prevent any adverse effects on historic properties? (check one): \square Yes \square No					
I. Supplemental information					
Describe any supplemental information being provided with the NOI. Include attachments if required or otherwise necessary.					
Has the operator attached data, including any laboratory case narrative and chain of custody used to support the application? (check one): \square Yes \square No					
Has the operator attached the certification requirement for the Best Management Practices Plan (BMPP)? (check one): ☐ Yes ☐ No					

J. Certification requirement

I certify under penalty of law that this document and all attachments were prepared under my direction or supervision in act that qualified personnel properly gathered and evaluated the information submitted. Based on my inquiry of the person or persons directly responsible for gathering the information, the information submitted is, to the best of my knowledge and be no personal knowledge that the information submitted is other than true, accurate, and complete. I am aware that there are information, including the possibility of fine and imprisonment for knowing violations.	ersons who manage . lief true accurate a	the system, or those
BMPP meeting the requirements of this general permit will be develop BMPP certification statement: initiation of discharge.	ed and impleme	ented upon
Notification provided to the appropriate State, including a copy of this NOI, if required.	Check one: Yes □	No ■
Notification provided to the municipality in which the discharge is located, including a copy of this NOI, if requested.	Check one: Yes	No □
Notification provided to the owner of a private or municipal storm sewer system, if such system is used for site discharges, including a copy of this NOI, if requested. Permission obtained from the owner of a private or municipal storm sewer system, if such system is used for site	Check one: Yes □	No □ NA ■
discharges. If yes, attach additional conditions. If no, attach explanation and timeframe for obtaining permission. Notification provided to the owner/operator of the area associated with activities covered by an additional discharge	Check one: Yes □	No □ NA ■
permit(s). Additional discharge permit is (check one): □ RGP □ DGP □ CGP □ MSGP □ Individual NPDES permit □ Other; if so, specify:	Check one: Yes □	No □ NA ■
Signature: Date	: 2/11/2	21
Print Name and Title: Kyle Annuflo - Project Manager		

Commonwealth of Massachusetts
Executive Office of Energy & Environmental Affairs

Department of Environmental Protection

One Winter Street Boston, MA 02108 • 617-292-5500

Charles D. Baker Governor

Karyn E. Polito Lieutenant Governor Kathleen A. Theoharides Secretary

February 5, 2020

Martin Suuberg Commissioner

Susan McArthur MassDOT-Highway Division Ten Park Plaza, Room 4260 Boston, MA 02116

401 WATER QUALITY CERTIFICATION

Application for: BRP WW 08

MINOR DREDGE CERTIFICATION

Application for BRP WW11

MINOR FILL AND EXCAVATION PROJECTS

AT:

RE:

Spy Pond Arlington

Mystic River & Coastal Drainage Area

401 WQC Transmittal No: X284180 (Fill) & X284214 (Dredge)

Wetlands File No: NE 91-310

AcoE Application No: NAE-2019-00082

Project No. 609222

Dear Ms. McArthur:

The Department of Environmental Protection ("MassDEP") has reviewed your application for a Water Quality Certification (WQC), as referenced above. In accordance with the provisions of MGL Ch. 21, §§26-53 and Section 401 of the Federal Clean Water Act as amended (33 U.S.C. §1251 et seq.), it has been determined there is reasonable assurance the proposed project will be conducted in a manner which will not violate applicable water quality standards (314 CMR 4.00) and other applicable requirements of state law.

The proposed project entails the dredging of approximately 800 yd³ of sediment from the southwest corner of Spy Pond. Stormwater runoff from Route 2 and neighboring towns of Arlington and Belmont discharges through a 54-inch outfall to Spy Pond. Sediment from sand used for winter roadway maintenance has accumulated over time in the southwestern corner of the Pond and hindered recreational access for the public and ecological integrity. The purpose of the Project is to remove accumulated sediment downstream of the outfall to restore recreational access and aquatic habitat to the corner of the Pond. In addition to dredging, the existing riprap erosion control at the outfall will be modified including placing grout to stabilize the existing riprap.

401 WQC - Transmittal # X284180 (Fill) & X284214 (Dredge) Arlington - Spy Pond

As required by the Order of Conditions issued by the Arlington Conservation Commission (File No. SE91-310) the dredging shall be performed by hydraulic dredging. The dredge spoils will be pumped to geo-tubes to be located on the multi-use path for dewatering. This work will be performed in accordance with the "Construction Sequence" and Hydraulic Dredging Alternative outlined in the Water Quality Certification Application.

In addition, the proposed scour improvements at the 54-inch outfall will consist of modifying the existing stone stabilization at the headwall. The existing stabilization is comprised of a layer of stone on the pond bottom and vertical stone slabs, installed to disperse the discharge velocity or divert the flow. Improvements will consist of drilling holes into the stone slabs at the pond bottom and breaking off the top 2-feet of the slabs with an excavator, laying them down at an elevation below the outfall culvert invert, and place underwater grout to stabilize the existing stones (in between the existing rock and slabs).

The proposed improvements will direct stormwater flow from the outfall toward the center of the Pond. The proposed drilling and grouting will occur in wet conditions, and the excavator will be placed on a spud barge, which will be "secured" in-place while the slabs are cut and removed. A turbidity curtain will be installed around the barge as a primary containment measure prior to construction activities.

The access/egress location into the Pond to perform the work is proposed to be through the MassDOT right-of-way (ROW) along the southeastern edge of the Pond adjacent to Route 2. Vegetative clearing will be necessary to allow for adequate access. A change in access location may require approval of both the Arlington Conservation Commission and MassDEP.

The cumulative impacts to wetlands will be 10,350 ft² of impacts to Land Under Water (LUW) with 10,000 ft² associated with the dredging operation and 350 ft² associated with the scour protection.

Based on a review of information provided by the applicant, MassDEP finds that this project complies with the standards described under 314 CMR 9.06. Public notice was provided in The Arlington Advocate on September 5, 2019. The Department did not receive any public comments during the 21-day public comment periods which ended on September 26, 2019.

Therefore, based on information currently in the record, the Department grants a 401 Water Quality Certification for this project subject to the following conditions to maintain water quality, to minimize impact on waters and wetlands, and to ensure compliance with appropriate state law. The Department further certifies in accordance with 314 CMR 9.00 that there is reasonable assurance the project or activity will be conducted in a manner which will not violate applicable water quality standards (314 CMR 4.00) and other applicable requirements of state law. Finally, the Department has determined that upon satisfying the conditions and mitigation requirements of this approval, the project provides a level of water quality necessary to protect existing uses and accordingly finds that the project to be implemented satisfies the Surface Water Quality Standards at 314 CMR 4.00.

Those special conditions that require direct submittals to MassDEP for either review or review and approval are denoted by the following notation (Submittal) at the end of the condition. In addition, those conditions with the (Submittal) designation shall be included in the Special Provisions and reviewed at the District Pre-Construction Conference.

401 WQC - Transmittal # X284180 (Fill) & X284214 (Dredge) Arlington - Spy Pond

- 1. This project could result in a violation of the water quality standards adopted by MassDEP's Division of Water Pollution Control. Therefore, reasonable care and diligence shall be taken by the applicant to ensure that the proposed activity will not violate Inland Water Class B criteria [314 CMR 4.05 (4) (a) and (5)].
- 2. Prior to the start of work, MassDOT shall provide MassDEP with an electronic copy the 100% Design Plans. (Submittal)
- 3. Prior to the start of work, the applicant shall provide MassDEP with the name, address and phone number(s) of the person responsible for ensuring that all work complies with the conditions of this Water Quality Certification. (Submittal)
- 4. MassDEP shall be copied on the Army Corps of Engineers (Corps) Work Start Notification Form which is due at least two weeks before the anticipated starting date and the Corps Compliance Certification Form within one month following the completion of the authorized work. (Submittal)
- 5. Any proposed changes, alterations or amendment request as well as any required submittals shall be sent by email to christopher.ross@mass.gov. (Submittal)
- 6. A minimum of twenty-one (21) days prior to commencement of construction MassDOT shall contact MassDEP, (with notice provided to the Arlington Conservation Agent) to schedule a pre-construction on-site inspection to review the plans and terms and conditions of this Water Quality Certificate (WQC). It would be preferable for the dewatering system to be installed prior to the pre-construction on-site. (Submittal)
- 7. Any change to the approved dewatering system requires the prior written approval of MassDEP. (Submittal)
- 8. Vegetative cutting and clearing of the slope necessary to allow for access shall be minimized.
- 9. All work shall be performed in accordance with the following documents and plans:
 - Application(s) for Water Quality Certificate received on September 18, 2019, Transmittal Forms #X284180 (Fill) & X28214 (Dredge).
 - Plan entitled: "At: Spy Pond, In: Arlington Middlesex County" USGS Locus Map; Sheet 1 of 8; Prepared by VHB; Dated: November, 2019.
 - Plan entitled: "At: Spy Pond, In: Arlington Middlesex County" Overall Proposed Conditions; Sheet 2 of 8; Prepared by VHB; Dated: November, 2019.
 - Plan entitled: "At: Spy Pond, In: Arlington Middlesex County" Proposed Conditions; Sheet 3 of 8; Prepared by VHB; Dated: November, 2019.
 - Plan entitled: "At: Spy Pond, In: Arlington Middlesex County" Proposed Conditions; Sheet 4 of 8; Prepared by VHB; Dated: November, 2019.
 - Plan entitled: "At: Spy Pond, In: Arlington Middlesex County" Cross Section A-A; Sheet 5 of 8; Prepared by VHB; Dated: November, 2019.

401 WQC - Transmittal # X284180 (Fill) & X284214 (Dredge) Arlington - Spy Pond

- Plan entitled: "At: Spy Pond, In: Arlington Middlesex County" Cross Section B-B; Sheet 6 of 8;
 Prepared by VHB; Dated: November, 2019.
- Plan entitled: "At: Spy Pond, In: Arlington Middlesex County" Cross Section C-C; Sheet 7 of 8; Prepared by VHB; Dated: November, 2019.
- Plan entitled: "At: Spy Pond, In: Arlington Middlesex County" Cross Section D-D; Sheet 8 of 8; Prepared by VHB; Dated: November, 2019.
- 10. Prior to commencement of construction adequate erosion control measures shall be installed to protect all wetland resource areas. Erosion control measures may consist of, but are not limited to silt fence, staked hay bales, silt curtains/booms, silt bags, compost filter tubes, etc.
- 11. All sedimentation barriers shall be maintained in good repair until all disturbed areas have been fully stabilized with vegetation or other means. At no time shall sediments be deposited in a wetland or water body. During construction, the applicant or his/her designee shall inspect the erosion controls on a daily basis and shall remove accumulated sediments as needed. The applicant shall immediately control any erosion problems that occur at the site and shall also immediately notify MassDEP, which reserves the right to require additional erosion and/or damage prevention controls it may deem necessary. Sedimentation barriers shall serve as the limit of work unless another limit of work line has been approved by MassDEP pursuant to this Certification.
- 12. A stockpile of erosion control materials shall be kept on-site at all times for emergency and routine replacement. The materials may include but are not limited to silt fence, hay bales, stone riprap, filter dikes, compost filter tubes or any other devices planned for use during construction.
- 13. It is the responsibility of the contractor to assure that all wetland resource areas are adequately protected with erosion and sedimentation controls. Additional erosion and sedimentation control barriers beyond that which is shown on the plan may be required.
- 14. The proposed project will result in cumulative impacts to wetlands of 10,350 ft² of permanent impact Land Under Water (LUW) with 10,000 ft² of impacts associated with the dredging operation and 350 ft² with the scour protection.
 - 15. Dredging, as proposed and hereby permitted is limited to a total volume of 800+/- yd³.
 - 16. As required by special condition #32 of the Arlington Conservation Commission's Order of Conditions (File No. NE 91-310) dredging shall be performed by hydraulic dredge.
 - 17. The dredge spoils will be pumped to geo-tubes to be located on the multi-use path for dewatering. This work will be performed in accordance with the "Construction Sequence" and Hydraulic Dredging Alternative outlined in the Water Quality Certification Application.
 - 18. Dredging in accord with this Certification may begin following the 21-day appeal period and once all other permits have been received.

401 WQC - Transmittal # X284180 (Fill) & X284214 (Dredge) Arlington - Spy Pond

- 19. No later than four (4) weeks after Awarding of the Contract, the applicant shall submit a notification procedure outlining the reporting process to the Department for incidents, relating to the dredging activities, impacting surrounding resource areas and habitats such as, but not limited to, observed dead or distressed fish, or other aquatic organisms, observed oily sheen on surface water, sediment spill, turbidity plume beyond deployed BMP's and barging or equipment accident/spill. If at any time during implementation of the project, all site related activities impacting the water shall cease until the source of the problem is identified and adequate mitigating measures employed to the satisfaction of the Department. (Submittal)
- 20. The Water Quality Certification (WQC) Dredge Permit Notification procedure for Incidents Related to Dredging Activities developed by the MADOT in 2010 shall be implemented in executing this project. Dredging activity shall not commence until the Dredge Permit Notification procedure is in place.
- 21. The Department shall be notified, one week prior to the start of in-water work so that Department staff may inspect the work for compliance with the terms and conditions of this Certification. (Submittal)
- 22. The contractor will be required to provide the dredge material disposal location to the Department prior to disposal. The estimated volume to be stored, prior to transport to the disposal location, shall be reported to the Department. (Submittal)
- 23. The Certification remains in effect for the same duration as the federal permit that requires it or five years from the date of issuance of this Certification whichever comes first.
- 24. Future maintenance dredging is not authorized under this Certification.
- 25. A Dredged Material Tracking Form (DMTF) or Material Shipping Record (MSR) shall be used to track the dredged material to the approved licensed upland facility. A fully executed copy of the DMTF or MSR shall be provided to the Department within 30 days of final shipment to the reused location or facility. (Submittal)
- 26. Best Management Practices (BMPs) shall be implemented during transportation of the dredged material to the licensed receiving facility. At a minimum, when transported upon public roadways, all dredged material shall have no free liquid as determined by the Paint Filter Test or other suitably analogous methodology acceptable to the Department, and a tarpaulin or other means shall be used to cover the dredged material during transport.
- 27. Upon completion of construction and once areas have been stabilized all non-biodegradable erosion control barriers shall be removed.
- 28. Compost filter that are encased in non-biodegradable material(s) shall be sliced and the non-biodegradable material(s) removed.
- 29. No Special Condition set forth herein shall be constructed or operate to prohibit the Department from taking enforcement against the DOT or its contractors for any failure to comply with the terms and requirements of this 401 Water Quality Certification.
- 30. No activity authorized by this Water Quality Certification may begin prior to expiration of the 21-day appeal period or until a final decision is issued by MassDEP if an appeal is filed.

401 WQC - Transmittal # X284180 (Fill) & X284214 (Dredge) Arlington - Spy Pond

Failure to comply with this Certification is grounds for enforcement, including civil and criminal penalties, under MGL Ch. 21 §42, MGL Ch. 21A §16, or other possible actions/penalties as authorized by the General Laws of the Commonwealth.

This Certification does not relieve the applicant of the obligation to comply with other appropriate state or federal statutes or regulations.

NOTICE OF APPEAL RIGHTS

A) Appeal Rights and Time Limits

Certain persons shall have a right to request an adjudicatory hearing concerning certifications by MassDEP when an application is required: (a) the applicant or property owner; (b) any person aggrieved by the decision who has submitted written comments during the public comment period; any ten (10) persons of the Commonwealth pursuant to M.G.L. c.30A where a group member has submitted written comments during the public comment period; or (d) any governmental body or private organization with a mandate to protect the environment which has submitted written comments during the public comment period. Any person aggrieved, any ten (10) persons of the Commonwealth, or a governmental body or private organization with a mandate to protect the environment may appeal without having submitted written comments during the public comment period only when the claim is based on new substantive issues arising from material changes to the scope or impact of the activity and not apparent at the time of public notice. To request an adjudicatory hearing pursuant to M.G.L. c.30A, § 10, a Notice of Claim must be made in writing, provided that the request is made by certified mail or hand delivery to MassDEP, with the appropriate filing fee specified within 310 CMR 4.10 along with a DEP Fee Transmittal Form within twenty-one (21) days from the date of issuance of this Certificate, and addressed to:

Case Administrator
Department of Environmental Protection
One Winter Street, 2nd Floor
Boston, MA 02108

A copy of the request shall at the same time be sent by certified mail or hand delivery to the Department of Environmental Protection at:

Department of Environmental Protection Commissioner's Office One Winter Street, 2nd Floor Boston, MA 02108

B) Contents of Hearing Request

A Notice of Claim for Adjudicatory Hearing shall comply with MassDEP's Rules for Adjudicatory Proceedings, 310 CMR 1.01(6), and shall contain the following information pursuant to 314 CMR 9.10(3):

- (a) the 401 Certification Transmittal Number;
- (b) the complete name of the applicant and address of the project;
- (c) the complete name, address, and fax and telephone numbers of the party filing the request, and, if represented by counsel or other representative, the name, fax and telephone numbers, and address of the attorney;
- (d) if claiming to be a party aggrieved, the specific facts that demonstrate that the party satisfies the definition of "aggrieved person" found at 314 CMR 9.02;
- (e) a clear and concise statement that an adjudicatory hearing is being requested;

401 WQC - Transmittal # X284180 (Fill) & X284214 (Dredge) Arlington - Spy Pond

- (f) a clear and concise statement of (1) the facts which are grounds for the proceedings, (2) the objections to this Certificate, including specifically the manner in which it is alleged to be inconsistent with the MassDEP's Water Quality Regulations, 314 CMR 9.00, and (3) the relief sought through the adjudicatory hearing, including specifically the changes desired in the final written Certification; and
- (g) a statement that a copy of the request has been sent by certified mail or hand delivery to the applicant, the owner (if different from the applicant), the conservation commission of the city or town where the activity will occur, the Department of Environmental Management (when the certificate concerns projects in Areas of Critical Environmental Concern), the public or private water supplier where the project is located (when the certificate concerns projects in Outstanding Resource Waters), and any other entity with responsibility for the resource where the project is located.

C) Filing Fee and Address

The hearing request along with a DEP Fee Transmittal Form and a valid check or money order payable to the Commonwealth of Massachusetts in the amount of one hundred dollars (\$100) must be mailed to:

Commonwealth of Massachusetts Department of Environmental Protection Commonwealth Master Lockbox PO Box 4062 Boston, MA 02211

The request will be dismissed if the filing fee is not paid, unless the appellant is exempt or granted a waiver. The filing fee is not required if the appellant is a city or town (or municipal agency), county, or district of the Commonwealth of Massachusetts, or a municipal housing authority. MassDEP may waive the adjudicatory hearing filing fee pursuant to 310 CMR 4.06(2) for a person who shows that paying the fee will create an undue financial hardship. A person seeking a waiver must file an affidavit setting forth the facts believed to support the claim of undue financial hardship together with the hearing request as provided above.

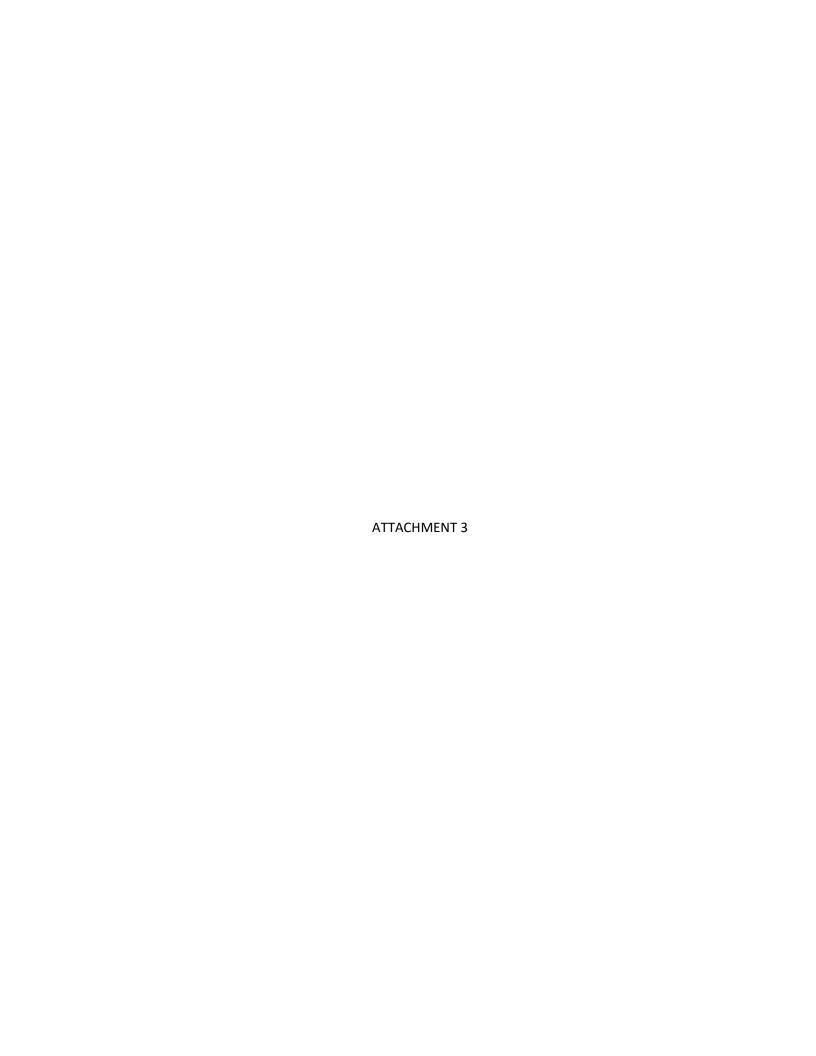
Should you have any questions relative to this permit, please contact me at (508) 946-2813.

Very truly yours,

Christopher Ross

MassDOT Project Manager

Enc: Material Shipping Record


cc: Arlington Conservation Commission

730 Mass Avenue Arlington, MA 02474

Ecc: DEP-NERO-Rachel Freed DEP-Boston- Susan You

Arlington Conservation Commission-Emily Sullivan

MassDOT-Melissa Lenker ACOE-Dan Vasconcelos VHB- Jay Quattrocchi

REPORT OF ANALYTICAL RESULTS

NETLAB Work Order Number: 1A20046 Client Project: 19.00.20 - Spy Pond Dredging

Report Date: 25-January-2021

Prepared for:

Chhavan Nuon SAK Environmental, LLC 231 Sutton Street, Suite 2G North Andover, MA 01845

> Richard Warila, Laboratory Director New England Testing Laboratory, Inc. 59 Greenhill Street West Warwick, RI 02893 rich.warila@newenglandtesting.com

NETLAB Case Number: 1A20046

Samples Submitted:

The samples listed below were submitted to New England Testing Laboratory on 01/20/21. The group of samples appearing in this report was assigned an internal identification number (case number) for laboratory information management purposes. The client's designations for the individual samples, along with our case numbers, are used to identify the samples in this report. This report of analytical results pertains only to the sample(s) provided to us by the client which are indicated on the custody record. The case number for this sample submission is 1A20046. Custody records are included in this report.

Lab ID	Sample	Matrix	Date Sampled	Date Received
1A20046-01	RE-01	Water	01/20/2021	01/20/2021
1A20046-02	IN-01	Water	01/20/2021	01/20/2021

Request for Analysis

At the client's request, the analyses presented in the following table were performed on the samples submitted.

IN-01 (Lab Number: 1A20046-02)

<u>Analysis</u>	<u>Method</u>
Ammonia	SM4500-NH3-D (11)
Antimony	EPA 6010C
Arsenic	EPA 6010C
Cadmium	EPA 6010C
Chloride	SM4500CI-B (11)
Chromium	EPA 6010C
Copper	EPA 6010C
Cyanide	SM4500-CN-E (11)
Hexavalent Chromium	SM3500-Cr-B (11)
Iron	EPA 6010C
Lead	EPA 6010C
Mercury	EPA 7470A
Methanol and Ethanol	EPA-8100-mod
Nickel	EPA 6010C
PCBs	EPA 8082A
Selenium	EPA 6010C
Semivolatile Organic Compounds	EPA 8270D
Silver	EPA 6010C
Total Petroleum Hydrocarbons	EPA-8100-mod
Total Residual Chlorine	SM4500-CI-G (11)
Total Suspended Solids	SM2540-D (11)
Trivalent Chromium	Calculation
Volatile Organic Compounds	EPA 8260C
Zinc	EPA 6010C

RE-01 (Lab Number: 1A20046-01)

<u>Analysis</u>	<u>Method</u>
Ammonia	SM4500-NH3-D (11)
Antimony	EPA 6010C
Arsenic	EPA 6010C
Cadmium	EPA 6010C
Calcium	SM3120-B (11)
Chromium	EPA 6010C
Copper	EPA 6010C
Hexavalent Chromium	SM3500-Cr-B (11)
Iron	EPA 6010C
Lead	EPA 6010C
Magnesium	SM3120-B (11)
Mercury	EPA 7470A
Nickel	EPA 6010C
Selenium	EPA 6010C
Silver	EPA 6010C
Total Hardness	Calculation
Trivalent Chromium	Calculation
Zinc	EPA 6010C

Method References

Methods for the Determination of Metals in Environmental Samples EPA-600/R-94/111, USEPA, 1994 Standard Methods for the Examination of Water and Wastewater, 20th Edition, APHA/ AWWA-WPCF, 1998

Test Methods for Evaluating Solid Waste, Physical/Chemical Methods, SW846, USEPA

NETLAB Case Number: 1A20046

Case Narrative

Sample Receipt:

The samples associated with this work order were received in appropriately cooled and preserved containers. The chain of custody was adequately completed and corresponded to the samples submitted.

Exceptions: None

Analysis:

All samples were prepared and analyzed within method specified holding times and according to NETLAB's documented standard operating procedures. The results for the associated calibration, method blank and laboratory control sample (LCS) were within method specified quality control requirements and allowances. Results for all soil samples, unless otherwise indicated, are reported on a dry weight basis.

Exceptions:

Ammonia: Due to a matrix interference, the 'RE-01' sample had a matrix spike recovery outside of the recommended QC parameters.

Chloride: Due to a matrix interference, the 'IN-01' sample had a matrix spike recovery outside of the recommended QC parameters. The sample was recieved and analyzed outside of the method recommended holding time.

Total Residual Chlorine: Due to a matrix interference, the 'IN-01' sample had a matrix spike recovery outside of the recommended QC parameters.

NETLAB Case Number: 1A20046

Results: Calculation

Sample: RE-01

Lab Number: 1A20046-01 (Water)

Reporting						
Analyte	Result	Qual	Limit	Units	Date Prepared	Date Analyzed
Trivalent Chromium	ND		0.0150	ma/L	01/21/21 12:34	01/22/21 14:29

Results: Calculation

Sample: IN-01

			Reporting			
Analyte	Result	Qual	Limit	Units	Date Prepared	Date Analyzed
Trivalent Chromium	0.343		0.0150	ma/L	01/21/21 12:34	01/22/21 14:32

Results: General Chemistry

Sample: RE-01

			Reporting			
Analyte	Result	Qual	Limit Units		Date Prepared	Date Analyzed
Ammonia	0.2		0.1	mg/L	01/25/21	01/25/21
Hexavalent chromium	ND		0.01	mg/L	01/21/21 9:00	01/21/21 9:00

Results: General Chemistry

Sample: IN-01

Reporting										
Analyte	Result	Qual	Limit	Units	Date Prepared	Date Analyzed				
Ammonia	1.7		0.1	mg/L	01/25/21	01/25/21				
Chloride	295		25	mg/L	01/25/21	01/25/21				
Cyanide	0.013		0.010	mg/L	01/25/21	01/25/21				
Hexavalent chromium	ND		0.01	mg/L	01/21/21 9:00	01/21/21 9:00				
Total Residual Chlorine	0.50		0.01	mg/L	01/21/21 16:45	01/21/21 16:45				
Total Suspended Solids	1490		11	mg/L	01/22/21	01/22/21				

Results: Total Metals

Sample: RE-01

			Reporting			
Analyte	Result	Qual	Limit	Units	Date Prepared	Date Analyzed
Total Hardness	70.5		0.125	mg/L	01/21/21	01/22/21
Antimony	ND		0.005	mg/L	01/21/21	01/22/21
Arsenic	ND		0.01	mg/L	01/21/21	01/22/21
Cadmium	ND		0.005	mg/L	01/21/21	01/22/21
Calcium	21.2		0.05	mg/L	01/21/21	01/22/21
Chromium	ND		0.005	mg/L	01/21/21	01/22/21
Copper	ND		0.02	mg/L	01/21/21	01/22/21
Iron	0.20		0.05	mg/L	01/21/21	01/22/21
Lead	ND		0.005	mg/L	01/21/21	01/22/21
Magnesium	4.26		0.05	mg/L	01/21/21	01/22/21
Mercury	ND		0.0002	mg/L	01/22/21	01/22/21
Nickel	ND		0.005	mg/L	01/21/21	01/22/21
Selenium	ND		0.01	mg/L	01/21/21	01/22/21
Silver	ND		0.005	mg/L	01/21/21	01/22/21
Zinc	ND		0.020	mg/L	01/21/21	01/22/21

Results: Total Metals

Sample: IN-01

			Reporting			
Analyte	Result	Qual	Limit	Units	Date Prepared	Date Analyzed
Antimony	0.016		0.005	mg/L	01/21/21	01/22/21
Arsenic	0.06		0.01	mg/L	01/21/21	01/22/21
Cadmium	0.033		0.005	mg/L	01/21/21	01/22/21
Chromium	0.343		0.005	mg/L	01/21/21	01/22/21
Copper	1.53		0.02	mg/L	01/21/21	01/22/21
Iron	161		0.05	mg/L	01/21/21	01/22/21
Lead	5.96		0.005	mg/L	01/21/21	01/22/21
Mercury	0.0006		0.0002	mg/L	01/22/21	01/22/21
Nickel	0.173		0.005	mg/L	01/21/21	01/22/21
Selenium	ND		0.01	mg/L	01/21/21	01/22/21
Silver	ND		0.005	mg/L	01/21/21	01/22/21
Zinc	4.12		0.020	mg/L	01/21/21	01/22/21

Results: Volatile Organic Compounds

Sample: IN-01

Analyte	Result	Qual	Reporting Limit	Units	Date Prepared	Date Analyzed
Acetone	ND		20	ug/l	01/21/21	01/21/21
Benzene	ND		1	ug/l	01/21/21	01/21/21
Bromobenzene	ND		1	ug/l	01/21/21	01/21/21
Bromochloromethane	ND		1	ug/l	01/21/21	01/21/21
Bromodichloromethane	ND		1	ug/l	01/21/21	01/21/21
Bromoform	ND		1	ug/l	01/21/21	01/21/21
Bromomethane	ND		1	ug/l	01/21/21	01/21/21
2-Butanone	ND		10	ug/l	01/21/21	01/21/21
tert-Butyl alcohol	ND		5	ug/l	01/21/21	01/21/21
sec-Butylbenzene	ND		1	ug/l	01/21/21	01/21/21
n-Butylbenzene	ND		1	ug/l	01/21/21	01/21/21
tert-Butylbenzene	ND		1	ug/l	01/21/21	01/21/21
Methyl t-butyl ether (MTBE)	ND		1	ug/l	01/21/21	01/21/21
Carbon Disulfide	ND		1	ug/l	01/21/21	01/21/21
Carbon Tetrachloride	ND		1	ug/l	01/21/21	01/21/21
Chlorobenzene	ND		1	ug/l	01/21/21	01/21/21
Chloroethane	ND		1	ug/l	01/21/21	01/21/21
Chloroform	ND		1	ug/l	01/21/21	01/21/21
Chloromethane	ND		1	ug/l	01/21/21	01/21/21
4-Chlorotoluene	ND		1	ug/l	01/21/21	01/21/21
2-Chlorotoluene	ND		1	ug/l	01/21/21	01/21/21
1,2-Dibromo-3-chloropropane (DBCP)	ND		1	ug/l	01/21/21	01/21/21
Dibromochloromethane	ND ND		1	ug/l	01/21/21	01/21/21
	ND		1	_		
1,2-Dibromoethane (EDB)				ug/l	01/21/21	01/21/21
Dibromomethane	ND		1	ug/l	01/21/21	01/21/21
1,2-Dichlorobenzene	ND		1	ug/l	01/21/21	01/21/21
1,3-Dichlorobenzene	ND		1	ug/l	01/21/21	01/21/21
1,4-Dichlorobenzene	ND		1	ug/l	01/21/21	01/21/21
1,1-Dichloroethane	ND		1	ug/l	01/21/21	01/21/21
1,2-Dichloroethane	ND		1	ug/l	01/21/21	01/21/21
trans-1,2-Dichloroethene	ND		1	ug/l	01/21/21	01/21/21
cis-1,2-Dichloroethene	ND		1	ug/l	01/21/21	01/21/21
1,1-Dichloroethene	ND		1	ug/l	01/21/21	01/21/21
1,2-Dichloropropane	ND		1	ug/l	01/21/21	01/21/21
2,2-Dichloropropane	ND		1	ug/l	01/21/21	01/21/21
cis-1,3-Dichloropropene	ND		1	ug/l	01/21/21	01/21/21
trans-1,3-Dichloropropene	ND		1	ug/l	01/21/21	01/21/21
1,1-Dichloropropene	ND		1	ug/l	01/21/21	01/21/21
1,3-Dichloropropene (cis + trans)	ND		2	ug/l	01/21/21	01/21/21
Diethyl ether	ND		5	ug/l	01/21/21	01/21/21
1,4-Dioxane	ND		500	ug/l	01/21/21	01/21/21
Ethylbenzene	ND		1	ug/l	01/21/21	01/21/21
Hexachlorobutadiene	ND		1	ug/l	01/21/21	01/21/21
2-Hexanone	ND		5	ug/l	01/21/21	01/21/21
Isopropylbenzene	ND		1	ug/l	01/21/21	01/21/21
p-Isopropyltoluene	ND		1	ug/l	01/21/21	01/21/21
Methylene Chloride	ND		1	ug/l	01/21/21	01/21/21
4-Methyl-2-pentanone	ND		5	ug/l	01/21/21	01/2 Page 1

Results: Volatile Organic Compounds (Continued)

Sample: IN-01 (Continued) Lab Number: 1A20046-02 (Water)

		Reporting			
Analyte	Result	Qual Limit	Units	Date Prepared	Date Analyzed
Naphthalene	ND	1	ug/l	01/21/21	01/21/21
n-Propylbenzene	ND	1	ug/l	01/21/21	01/21/21
Styrene	ND	1	ug/l	01/21/21	01/21/21
1,1,1,2-Tetrachloroethane	ND	1	ug/l	01/21/21	01/21/21
Tetrachloroethene	ND	1	ug/l	01/21/21	01/21/21
Tetrahydrofuran	ND	5	ug/l	01/21/21	01/21/21
Toluene	ND	1	ug/l	01/21/21	01/21/21
1,2,4-Trichlorobenzene	ND	1	ug/l	01/21/21	01/21/21
1,2,3-Trichlorobenzene	ND	1	ug/l	01/21/21	01/21/21
1,1,2-Trichloroethane	ND	1	ug/l	01/21/21	01/21/21
1,1,1-Trichloroethane	ND	1	ug/l	01/21/21	01/21/21
Trichloroethene	ND	1	ug/l	01/21/21	01/21/21
1,2,3-Trichloropropane	ND	1	ug/l	01/21/21	01/21/21
1,3,5-Trimethylbenzene	ND	1	ug/l	01/21/21	01/21/21
1,2,4-Trimethylbenzene	ND	1	ug/l	01/21/21	01/21/21
Vinyl Chloride	ND	1	ug/l	01/21/21	01/21/21
o-Xylene	ND	1	ug/l	01/21/21	01/21/21
m&p-Xylene	ND	2	ug/l	01/21/21	01/21/21
Total xylenes	ND	1	ug/l	01/21/21	01/21/21
1,1,2,2-Tetrachloroethane	ND	1	ug/l	01/21/21	01/21/21
tert-Amyl methyl ether	ND	1	ug/l	01/21/21	01/21/21
1,3-Dichloropropane	ND	1	ug/l	01/21/21	01/21/21
Ethyl tert-butyl ether	ND	1	ug/l	01/21/21	01/21/21
Diisopropyl ether	ND	1	ug/l	01/21/21	01/21/21
Trichlorofluoromethane	ND	1	ug/l	01/21/21	01/21/21
Dichlorodifluoromethane	ND	1	ug/l	01/21/21	01/21/21
Surrogate(s)	Recovery%	Lim	its		
4-Bromofluorobenzene	99.0%	<i>70-1</i>	30	01/21/21	01/21/21
1,2-Dichloroethane-d4	102%	70-1	30	01/21/21	01/21/21
Toluene-d8	99.9%	70-1	30	01/21/21	01/21/21

Results: Semivolatile organic compounds

Sample: IN-01

Analyte	Result	Reportin Qual Limit	g Units	Date Prepared	Date Analyzed
Ethanol	ND	10	mg/L	01/25/21	01/25/21
1,2,4-Trichlorobenzene	ND	2	ug/l	01/22/21	01/25/21
1,2-Dichlorobenzene	ND	2	ug/l	01/22/21	01/25/21
1,3-Dichlorobenzene	ND	2	ug/l	01/22/21	01/25/21
1,4-Dichlorobenzene	ND	2	ug/l	01/22/21	01/25/21
Phenol	ND	2	ug/l	01/22/21	01/25/21
2,4,5-Trichlorophenol	ND	2	ug/l	01/22/21	01/25/21
2,4,6-Trichlorophenol	ND	2	ug/l	01/22/21	01/25/21
2,4-Dichlorophenol	ND	2	ug/l	01/22/21	01/25/21
2,4-Dimethylphenol	ND	10	ug/l	01/22/21	01/25/21
2,4-Dinitrophenol	ND	5	ug/l	01/22/21	01/25/21
2,4-Dinitrotoluene	ND	2	ug/l	01/22/21	01/25/21
2,6-Dinitrotoluene	ND	2	ug/l	01/22/21	01/25/21
2-Chloronaphthalene	ND	2	ug/l	01/22/21	01/25/21
2-Chlorophenol	ND	2	ug/l	01/22/21	01/25/21
2-Methylnaphthalene	ND	2	ug/l	01/22/21	01/25/21
Nitrobenzene	ND	2	ug/l	01/22/21	01/25/21
2-Methylphenol	ND	2	ug/l	01/22/21	01/25/21
2-Nitroaniline	ND	2	ug/l	01/22/21	01/25/21
-Nitrophenol	ND	5	ug/l	01/22/21	01/25/21
3,3'-Dichlorobenzidine	ND	5	ug/l	01/22/21	01/25/21
-Nitroaniline	ND	2	ug/l	01/22/21	01/25/21
,6-Dinitro-2-methylphenol	ND	5	ug/l	01/22/21	01/25/21
-Bromophenyl phenyl ether	ND	2	ug/l	01/22/21	01/25/21
-Chloro-3-methylphenol	ND	2	ug/l	01/22/21	01/25/21
-Chloroaniline	ND	5	ug/l	01/22/21	01/25/21
-Chlorophenyl phenyl ether	ND	2	ug/l	01/22/21	01/25/21
-Nitroaniline	ND	2	ug/l	01/22/21	01/25/21
-Nitrophenol	ND	5	ug/l	01/22/21	01/25/21
Acenaphthene	ND	2	ug/l	01/22/21	01/25/21
Acenaphthylene	ND	2	_		
niline	ND ND	2	ug/l ug/l	01/22/21 01/22/21	01/25/21 01/25/21
ınthracene	ND ND	2	_	01/22/21	01/25/21
Benzo(a)anthracene	ND ND	2	ug/l ug/l	01/22/21	01/25/21
	ND ND	2	_	01/22/21	01/25/21
enzo(a)pyrene enzo(b)fluoranthene			ug/l ug/l	01/22/21	01/25/21
enzo(g,h,i)perylene	ND ND	2			
enzo(g,n,r)peryiene enzo(k)fluoranthene	ND ND	2	ug/l ug/l	01/22/21 01/22/21	01/25/21 01/25/21
enzo(k)nuorantriene enzoic acid	ND ND	15	ug/l	01/22/21	01/25/21
is(2-chloroethoxy)methane	ND ND	2	ug/l ug/l	01/22/21	01/25/21
is(2-chloroethyl)ether	ND ND	2	ug/l ug/l	01/22/21	01/25/21
is(2-chloroethyr)ether	ND ND	2		01/22/21	01/25/21
	ND ND	6	ug/l	01/22/21	01/25/21
Bis(2-ethylhexyl)phthalate			ug/l		• •
Butyl benzyl phthalate	ND ND	3	ug/l	01/22/21	01/25/21
Chrysene	ND	2	ug/l	01/22/21	01/25/21
Di(n)octyl phthalate	ND ND	3	ug/l	01/22/21	01/25/21
Dibenz(a,h)anthracene	ND	2	ug/l	01/22/21	01/25/21
benzofuran	ND	2	ug/l	01/22/21	01/2 5 F

Results: Semivolatile organic compounds (Continued)

Sample: IN-01 (Continued) Lab Number: 1A20046-02 (Water)

Analyte	Result	Qual	Reporting Limit	Units	Date Prepared	Date Analyzed
Diethyl phthalate	ND		2	ug/l	01/22/21	01/25/21
Dimethyl phthalate	ND		5	ug/l	01/22/21	01/25/21
Di-n-butylphthalate	ND		2	ug/l	01/22/21	01/25/21
Fluoranthene	ND		2	ug/l	01/22/21	01/25/21
Fluorene	ND		2	ug/l	01/22/21	01/25/21
Hexachlorobenzene	ND		2	ug/l	01/22/21	01/25/21
Hexachlorobutadiene	ND		2	ug/l	01/22/21	01/25/21
Hexachlorocyclopentadiene	ND		5	ug/l	01/22/21	01/25/21
Hexachloroethane	ND		2	ug/l	01/22/21	01/25/21
Indeno(1,2,3-cd)pyrene	ND		2	ug/l	01/22/21	01/25/21
Isophorone	ND		2	ug/l	01/22/21	01/25/21
Naphthalene	ND		2	ug/l	01/22/21	01/25/21
N-Nitrosodimethylamine	ND		2	ug/l	01/22/21	01/25/21
N-Nitrosodi-n-propylamine	ND		2	ug/l	01/22/21	01/25/21
N-Nitrosodiphenylamine	ND		2	ug/l	01/22/21	01/25/21
Pentachlorophenol	ND		5	ug/l ug/l	01/22/21 01/22/21	01/25/21 01/25/21
Phenanthrene	ND		2			
Pyrene	ND		2	ug/l	01/22/21	01/25/21
m&p-Cresol	ND		4	ug/l	01/22/21	01/25/21
Pyridine	ND		2	ug/l	01/22/21	01/25/21
Surrogate(s)	Recovery%		Limit	ts		
Nitrobenzene-d5	90.7%		30-11	18	01/22/21	01/25/21
p-Terphenyl-d14	97.4%		38-13	30	01/22/21	01/25/21
2-Fluorobiphenyl	88.5%		30-11	19	01/22/21	01/25/21
Phenol-d6	19.2%		10-11	15	01/22/21	01/25/21
2,4,6-Tribromophenol	108%		15-13	30	01/22/21	01/25/21
2-Fluorophenol	27.4%		10-11	15	01/22/21	01/25/21

Results: Polychlorinated Biphenyls (PCBs)

Sample: IN-01

Reporting										
Analyte	Result	Qual	Limit	Units	Date Prepared	Date Analyzed				
Aroclor-1016	ND		0.2	ug/l	01/22/21	01/25/21				
Aroclor-1221	ND		0.4	ug/l	01/22/21	01/25/21				
Aroclor-1232	ND		0.2	ug/l	01/22/21	01/25/21				
Aroclor-1242	ND		0.2	ug/l	01/22/21	01/25/21				
Aroclor-1248	ND		0.2	ug/l	01/22/21	01/25/21				
Aroclor-1254	ND		0.2	ug/l	01/22/21	01/25/21				
Aroclor-1260	ND		0.2	ug/l	01/22/21	01/25/21				
Aroclor-1262	ND		0.2	ug/l	01/22/21	01/25/21				
Aroclor-1268	ND		0.2	ug/l	01/22/21	01/25/21				
PCBs (Total)	ND		0.2	ug/l	01/22/21	01/25/21				
Surrogate(s)	Recovery%		Limi	ts						
2,4,5,6-Tetrachloro-m-xylene (TCMX)	58.5%		30-1	07	01/22/21	01/25/21				
Decachlorobiphenyl (DCBP)	73.8%		30-1-	40	01/22/21	01/25/21				

Results: Total Petroleum Hydrocarbons

Sample: IN-01

Reporting									
Analyte	Result	Qual	Limit	Units	Date Prepared	Date Analyzed			
Total Petroleum Hydrocarbons	ND		200	ug/l	01/22/21	01/22/21			
Surrogate(s)	Recovery%		Limit	S					
Chlorooctadecane	71.1%		47-11	5	01/22/21	01/22/21			

Quality Control

General Chemistry

Analyte	Result	Qual	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit
Batch: B1A0832 - Hexavalent (Chrome									
Blank (B1A0832-BLK1)					Prepared 8	& Analyzed: 0	1/21/21			
Hexavalent chromium	ND		0.01	mg/L	•	•				
Blank (B1A0832-BLK2)					Prepared 8	& Analyzed: 0	1/21/21			
Hexavalent chromium	ND		0.01	mg/L						
LCS (B1A0832-BS1)					Prepared 8	& Analyzed: 0	1/21/21			
Hexavalent chromium	0.54		0.01	mg/L	0.500		108	90-110		
LCS (B1A0832-BS2)					Prepared 8	& Analyzed: 0	1/21/21			
Hexavalent chromium	0.10		0.01	mg/L	0.100		105	90-110		
LCS (B1A0832-BS3)					Prepared 8	& Analyzed: 0	1/21/21			
Hexavalent chromium	0.54		0.01	mg/L	0.500		108	90-110		
Duplicate (B1A0832-DUP1)	s	ource: 1	A20046-01		Prepared & Analyzed: 01/21/21					
Hexavalent chromium	ND		0.01	mg/L		ND				20
Matrix Spike (B1A0832-MS1)	s	ource: 1	A20046-01		Prepared 8	& Analyzed: 0	1/21/21			
Hexavalent chromium	0.51		0.01	mg/L	0.500	ND	102	80-120		
Batch: B1A0902 - TSS										
Blank (B1A0902-BLK1)					Prepared 8	& Analyzed: 0	1/22/21			
Total Suspended Solids	ND		2	mg/L						
LCS (B1A0902-BS1)					Prepared & Analyzed: 01/22/21					
Total Suspended Solids	934		10	mg/L	1000		93.4	90-110		

				Control						
General Chemistry (Continued)										
Analyte	Result	Qual	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit
Batch: B1A0902 - TSS (Continued)										
Duplicate (B1A0902-DUP1)	5	Source: 1	1A20050-01		Prepared {	& Analyzed: 0	1/22/21			
Total Suspended Solids	112		5	mg/L		116			3.51	20
Batch: B1A0964 - Residual chlorine	,									
Blank (B1A0964-BLK1)					Prepared {	& Analyzed: 0	1/21/21			
Total Residual Chlorine	ND		0.01	mg/L	•	•	•			
Blank (B1A0964-BLK2)					Prepared {	& Analyzed: 0	1/21/21			
Total Residual Chlorine	ND		0.01	mg/L						
LCS (B1A0964-BS1)					Prepared {	& Analyzed: 0	1/21/21			
Total Residual Chlorine	0.49		0.01	mg/L	0.500		98.6	90-110		
LCS (B1A0964-BS2)					Prepared {	& Analyzed: 0	1/21/21			
Total Residual Chlorine	0.50		0.01	mg/L	0.500		100	90-110		
Duplicate (B1A0964-DUP1)		Source: 1	1A20046-02		Prepared 8	& Analyzed: 0	1/21/21			
Total Residual Chlorine	0.46		0.01	mg/L		0.50			8.52	20
Matrix Spike (B1A0964-MS1)		Source: 1	1A20046-02		Prepared 8	& Analyzed: 0	1/21/21			
Total Residual Chlorine	0.57		0.01	mg/L	0.500	0.50	13.0	80-120		
Batch: B1A0969 - Chloride										
Blank (B1A0969-BLK1)					Prepared {	& Analyzed: 0	1/25/21			
Chloride	ND		1	mg/L	·	•	, .			

				Control						
General Chemistry (Continued)										
Analyte	Result	Qual	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit
Batch: B1A0969 - Chloride (Conti	inued)									
LCS (B1A0969-BS1)					Prepared 8	& Analyzed: 0	1/25/21			
Chloride	62		1	mg/L	60.6	,	102	90-110		
Duplicate (B1A0969-DUP1)	•	Source: 1	.A20046-02		Prepared 8	& Analyzed: 0	1/25/21			
Chloride	271		25	mg/L	•	295	•		8.33	20
Matrix Spike (B1A0969-MS1)		Source: 1	A20046-02		Prepared 8	& Analyzed: 0	1/25/21			
Chloride	377		25	mg/L	60.6	295	136	80-120		
Batch: B1A0973 - Ammonia										
Blank (B1A0973-BLK1)					Prepared 8	& Analyzed: 0	1/25/21			
Ammonia	ND		0.1	mg/L	* - - 	,	-,,			
Blank (B1A0973-BLK2)					Prepared 8	& Analyzed: 0	1/25/21			
Ammonia	ND		0.1	mg/L	•	,				
LCS (B1A0973-BS1)				-	Prepared 8	& Analyzed: 0	1/25/21			
Ammonia	0.9		0.1	mg/L	1.00	•	92.7	90-110		
LCS (B1A0973-BS2)				-	Prepared 8	& Analyzed: 0	1/25/21			
Ammonia	1.0		0.1	mg/L	1.00	•	95.4	90-110		
Duplicate (B1A0973-DUP1)	•	Source: 1	A20046-01		Prepared 8	& Analyzed: 0	1/25/21			
Ammonia	0.2		0.1	mg/L		0.2			6.10	20
Matrix Spike (B1A0973-MS1)		Source: 1	A20046-01		Prepared 8	& Analyzed: 0	1/25/21			
Ammonia	0.9		0.1	mg/L	1.00	0.2	77.0	80-120		

				Control						
General Chemistry (Continued)										
Analyte	Result	Qual	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit
Batch: B1A0977 - Cyanide Blank (B1A0977-BLK1) Cyanide	ND		0.010	mg/L	Prepared	& Analyzed: 0	1/25/21			
Blank (B1A0977-BLK2) Cyanide	ND		0.010	mg/L	Prepared	& Analyzed: 0	1/25/21			
LCS (B1A0977-BS1) Cyanide	0.098		0.010	mg/L	Prepared 0.100	& Analyzed: 0	1/25/21 98.0	90-110		
LCS (B1A0977-BS2) Cyanide	0.108		0.010	mg/L	Prepared 0.100	& Analyzed: 0	1/25/21 108	90-110		
LCS (B1A0977-BS3) Cyanide	0.098		0.010	mg/L	Prepared 0.100	& Analyzed: 0	1/25/21 98.0	90-110		
Duplicate (B1A0977-DUP1) Cyanide	ND S	Source: 1	0.010	mg/L	Prepared	& Analyzed: 0 ND	1/25/21			200
Matrix Spike (B1A0977-MS1) Cyanide	0.089	Source: 1	LA19003-01 0.010	mg/L	Prepared 0.100	& Analyzed: 0	1/25/21 89.0	80-120		

				Control						
Total Metals										
			Reporting		Spike	Source		%REC		RPD
Analyte	Result	Qual	Limit	Units	Level	Result	%REC	Limits	RPD	Limit
Batch: B1A0793 - Metals Di	gestion Waters									
Blank (B1A0793-BLK1)				Pr	repared: 01/2	21/21 Analyze	ed: 01/22/21			
Arsenic	ND		0.01	mg/L		·				
Chromium	ND		0.005	mg/L						
Zinc	ND		0.020	mg/L						
Calcium	ND		0.05	mg/L						
Magnesium	ND		0.05	mg/L						
Silver	ND		0.005	mg/L						
Antimony	ND		0.005	mg/L						
Selenium	ND		0.01	mg/L						
Cadmium	ND		0.005	mg/L						
Copper	ND		0.02	mg/L						
Lead	ND		0.005	mg/L						
Nickel	ND		0.005	mg/L						
Iron	ND		0.05	mg/L						
LCS (B1A0793-BS1)				Pr	repared: 01/2	21/21 Analyze	ed: 01/22/21			
Selenium	0.18		0.01	mg/L	0.200		90.5	85-115		
Cadmium	0.957		0.005	mg/L	1.00		95.7	85-114		
Zinc	0.993		0.020	mg/L	1.00		99.3	85-115		
Lead	0.937		0.005	mg/L	1.00		93.7	85-115		
Nickel	0.954		0.005	mg/L	1.00		95.4	85-112		
Iron	9.87		0.05	mg/L	10.0		98.7	85-115		
Arsenic	0.20		0.01	mg/L	0.200		99.1	85-115		
Calcium	10.1		0.05	mg/L	10.0		101	85-115		
Magnesium	10.0		0.05	mg/L	10.0		100	85-115		
Chromium	0.954		0.005	mg/L	1.00		95.4	85-115		
Silver	0.384		0.005	mg/L	0.400		96.1	85-115		
Antimony	0.980		0.005	mg/L	1.00		98.0	85-115		
Copper	0.96		0.02	mg/L	1.00		95.7	85-115		

				Control						
Total Metals (Continued)										
			Reporting		Spike	Source		%REC		RPD
Analyte	Result	Qual	Limit	Units	Level	Result	%REC	Limits	RPD	Limit
Batch: B1A0891 - Metals Co	old-Vapor Mercu	ry								
Blank (B1A0891-BLK1)	•	•			Prepared 8	& Analyzed: 0	1/22/21			
Mercury	ND		0.0002	mg/L						
LCS (B1A0891-BS1)					Prepared 8	& Analyzed: 0	1/22/21			
Mercury	0.0010		0.0002	ma/l	0.00100		104	85-115		

Volatile Organic Compounds

Analyte	Result	Qual	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPI Lim
Batch: B1A0846 - Purge-Trap					_		_		_	
Blank (B1A0846-BLK1)					Prepared 8	& Analyzed: 0	1/21/21			
Acetone	ND		20	ug/l		, , , , ,	, ,			
Benzene	ND		1	ug/l						
Bromobenzene	ND		1	ug/l						
Bromochloromethane	ND		1	ug/l						
Bromodichloromethane	ND		1	ug/l						
Bromoform	ND		1	ug/l						
Bromomethane	ND		1	ug/l						
2-Butanone	ND		10							
tert-Butyl alcohol	ND		5	ug/l						
				ug/l						
sec-Butylbenzene	ND		1	ug/l						
n-Butylbenzene	ND		1	ug/l						
tert-Butylbenzene	ND		1	ug/l						
Methyl t-butyl ether (MTBE)	ND		1	ug/l						
Carbon Disulfide	ND		1	ug/l						
Carbon Tetrachloride	ND		1	ug/l						
Chlorobenzene	ND		1	ug/l						
Chloroethane	ND		1	ug/l						
Chloroform	ND		1	ug/l						
Chloromethane	ND		1	ug/l						
4-Chlorotoluene	ND		1	ug/l						
2-Chlorotoluene	ND		1	ug/l						
1,2-Dibromo-3-chloropropane (DBCP)	ND		1	ug/l						
Dibromochloromethane	ND		1	ug/l						
1,2-Dibromoethane (EDB)	ND		1	ug/l						
Dibromomethane	ND		1	ug/l						
1,2-Dichlorobenzene	ND		1	ug/l						
1,3-Dichlorobenzene	ND		1	ug/l						
1,4-Dichlorobenzene	ND		1	ug/l						
1,1-Dichloroethane	ND		1	ug/l						
1,2-Dichloroethane	ND		1	ug/l						
trans-1,2-Dichloroethene	ND		1	ug/l						
cis-1,2-Dichloroethene	ND		1	ug/l						
	ND		1							
1,1-Dichloroethene				ug/l						
1,2-Dichloropropane	ND		1	ug/l						
2,2-Dichloropropane	ND		1	ug/l						
cis-1,3-Dichloropropene	ND		1	ug/l						
trans-1,3-Dichloropropene	ND		1	ug/l						
1,1-Dichloropropene	ND		1	ug/l						
1,3-Dichloropropene (cis + trans)	ND		2	ug/l						
Diethyl ether	ND		5	ug/l						
1,4-Dioxane	ND		500	ug/l						
Ethylbenzene	ND		1	ug/l						
Hexachlorobutadiene	ND		1	ug/l						
2-Hexanone	ND		5	ug/l						
Isopropylbenzene	ND		1	ug/l						
p-Isopropyltoluene	ND		1	ug/l						
Methylene Chloride	ND		1	ug/l						
4-Methyl-2-pentanone	ND		5	ug/l						
Naphthalene	ND		1	ug/l						
n-Propylbenzene	ND		1	ug/l						
Styrene	ND		1	ug/l						
1,1,1,2-Tetrachloroethane	ND		1	ug/l						
Tetrachloroethene	ND		1	ug/l						
Tetrahydrofuran	ND		5	ug/l						
Toluene	ND		1	ug/l						
1,2,4-Trichlorobenzene	ND		1	ug/l						
1,2,3-Trichlorobenzene	ND		1	ug/l						

Volatile Organic Compounds (Continued)

Analyte	Result	Qual	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit
Batch: B1A0846 - Purge-Trap (Continued)									
Blank (B1A0846-BLK1)	-				Prepared 8	& Analyzed: 0	1/21/21			
1,1,2-Trichloroethane	ND		1	ug/l		•				
1,1,1-Trichloroethane	ND		1	ug/l						
Trichloroethene	ND		1	ug/l						
1,2,3-Trichloropropane	ND		1	ug/l						
1,3,5-Trimethylbenzene	ND		1	ug/l						
1,2,4-Trimethylbenzene	ND		1	ug/l						
Vinyl Chloride	ND		1	ug/l						
o-Xylene	ND		1	ug/l						
m&p-Xylene	ND		2	ug/l						
Total xylenes	ND		1	ug/l						
1,1,2,2-Tetrachloroethane	ND		1	ug/l						
tert-Amyl methyl ether	ND ND		1	ug/l						
1,3-Dichloropropane	ND ND		1	-						
	ND ND			ug/l						
Ethyl tert-butyl ether			1	ug/l						
Diisopropyl ether	ND ND		1	ug/l						
Trichlorofluoromethane	ND		1	ug/l						
Dichlorodifluoromethane	ND		1	ug/l						
Surrogate: 4-Bromofluorobenzene			49.5	ug/l	50.0		99.0	70-130		
Surrogate: 1,2-Dichloroethane-d4			<i>50.7</i>	ug/l	50.0		101	70-130		
Surrogate: Toluene-d8			49.4	ug/l	50.0		98.8	70-130		
LCS (B1A0846-BS1)					Prepared 8	& Analyzed: 0	1/21/21			
Acetone	50			ug/l	50.0		99.0	60-140		
Benzene	49			ug/l	50.0		98.7	70-130		
Bromobenzene	50			ug/l	50.0		100	70-130		
Bromochloromethane	48			ug/l	50.0		95.5	70-130		
Bromodichloromethane	53			ug/l	50.0		105	70-130		
Bromoform	46			ug/l	50.0		92.7	70-130		
Bromomethane	82			ug/l	50.0		165	70-130		
2-Butanone	48			ug/l	50.0		96.3	60-140		
tert-Butyl alcohol	54			ug/l	50.0		109	70-130		
sec-Butylbenzene	55			ug/l	50.0		111	70-130		
n-Butylbenzene	55			ug/l	50.0		111	70-130		
tert-Butylbenzene	52			ug/l	50.0		104	70-130		
Methyl t-butyl ether (MTBE)	52			ug/l	50.0		103	70-130		
Carbon Disulfide	53			ug/l	50.0		105	50-150		
Carbon Tetrachloride	51			ug/l	50.0		101	70-130		
Chlorobenzene	50				50.0		99.7	70-130		
Chloroethane	50			ug/l	50.0		101	70-130		
Chloroform	50			ug/l	50.0		101	70-130 70-130		
Chloromethane	39			ug/l	50.0		78.5	70-130 70-130		
4-Chlorotoluene	52			ug/l	50.0		104	70-130 70-130		
	52 52			ug/l	50.0		104	70-130 70-130		
2-Chlorotoluene				ug/l						
1,2-Dibromo-3-chloropropane (DBCP)	44			ug/l	50.0		88.0	70-130 70-130		
Dibromochloromethane	52 51			ug/l	50.0		104	70-130 70-130		
1,2-Dibromoethane (EDB)	51			ug/l	50.0		102	70-130		
Dibromomethane	51			ug/l	50.0		102	70-130		
1,2-Dichlorobenzene	50			ug/l	50.0		99.1	70-130		
1,3-Dichlorobenzene	50			ug/l	50.0		101	70-130		
1,4-Dichlorobenzene	49			ug/l	50.0		98.9	70-130		
1,1-Dichloroethane	50			ug/l	50.0		99.6	70-130		
1,2-Dichloroethane	50			ug/l	50.0		101	70-130		
trans-1,2-Dichloroethene	48			ug/l	50.0		96.0	70-130		
cis-1,2-Dichloroethene	48			ug/l	50.0		96.7	70-130		
1,1-Dichloroethene	47			ug/l	50.0		93.9	70-130		
1,2-Dichloropropane	51			ug/l	50.0		102	70-130		
2,2-Dichloropropane	53			ug/l	50.0		106	70-130		

Page 25 of 37

Volatile Organic Compounds (Continued)

			Reporting		Spike	Source		%REC		RPE
Analyte	Result	Qual	Limit	Units	Level	Result	%REC	Limits	RPD	Lim
atch: B1A0846 - Purge-Trap	(Continued)									
LCS (B1A0846-BS1)					Prepared 8	& Analyzed: 0	1/21/21			
cis-1,3-Dichloropropene	51			ug/l	50.0		102	70-130		
trans-1,3-Dichloropropene	53			ug/l	50.0		107	70-130		
1,1-Dichloropropene	50			ug/l	50.0		100	70-130		
Diethyl ether	53			ug/l	50.0		105	70-130		
1,4-Dioxane	254			ug/l	250		101	50-150		
Ethylbenzene	50			ug/l	50.0		100	70-130		
Hexachlorobutadiene	49			ug/l	50.0		97.9	70-130		
2-Hexanone	48			ug/l	50.0		96.1	70-130		
Isopropylbenzene	53			ug/l	50.0		105	70-130		
p-Isopropyltoluene	56			ug/l	50.0		112	70-130		
Methylene Chloride	48			ug/l	50.0		95.7	70-130		
4-Methyl-2-pentanone	51			ug/l	50.0		101	70-130		
Naphthalene	50			ug/l	50.0		99.6	70-130		
n-Propylbenzene	56			ug/l	50.0		111	70-130		
Styrene	51			ug/l	50.0		102	70-130		
1,1,1,2-Tetrachloroethane	51			ug/l	50.0		102	70-130		
Tetrachloroethene	49			ug/l	50.0		97.2	70-130		
Tetrahydrofuran	48			ug/l	50.0		96.4	50-150		
Toluene	49			ug/l	50.0		98.4	70-130		
1,2,4-Trichlorobenzene	49			ug/l	50.0		97.8	70-130		
1,2,3-Trichlorobenzene	47			ug/l	50.0		94.9	70-130		
1,1,2-Trichloroethane	52			ug/l	50.0		104	70-130		
1,1,1-Trichloroethane	51			ug/l	50.0		101	70-130		
Trichloroethene	42			ug/l	50.0		84.4	70-130		
1,2,3-Trichloropropane	51			ug/l	50.0		102	70-130		
1,3,5-Trimethylbenzene	53			ug/l	50.0		106	70-130		
1,2,4-Trimethylbenzene	53			ug/l	50.0		107	70-130		
Vinyl Chloride	48			ug/l	50.0		96.3	70-130		
o-Xylene	51			ug/l	50.0		101	70-130		
m&p-Xylene	101			ug/l	100		101	70-130		
1,1,2,2-Tetrachloroethane	54			ug/l	50.0		107	70-130		
tert-Amyl methyl ether	51			ug/l	50.0		103	70-130		
1,3-Dichloropropane	52			ug/l	50.0		104	70-130		
Ethyl tert-butyl ether	53			ug/l	50.0		106	70-130		
Trichlorofluoromethane	52			ug/l	50.0		103	70-130		
Dichlorodifluoromethane	46			ug/l	50.0		91.2	70-130		
Surrogate: 4-Bromofluorobenzene			<i>50.6</i>	ug/l	50.0		101	70-130		
Surrogate: 1,2-Dichloroethane-d4			<i>54.8</i>	ug/l	50.0		110	70-130		
Surrogate: Toluene-d8			50.0	ug/l	50.0		100	70-130		

Volatile Organic Compounds (Continued)

Analyte	Result	Qual	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit
Batch: B1A0846 - Purge-Trap (Continued)									
LCS Dup (B1A0846-BSD1)	•				Prepared 8	& Analyzed: 0	1/21/21			
Acetone	46			ug/l	50.0	,	92.7	60-140	6.61	20
Benzene	48			ug/l	50.0		96.5	70-130	2.19	20
Bromobenzene	49			ug/l	50.0		97.7	70-130	2.51	20
Bromochloromethane	49			ug/l	50.0		97.9	70-130	2.48	20
Bromodichloromethane	51			ug/l	50.0		102	70-130	3.50	20
Bromoform	46			ug/l	50.0		92.3	70-130	0.411	20
Bromomethane	79			ug/l	50.0		159	70-130	3.86	20
2-Butanone	48			ug/l	50.0		95.0	60-140	1.34	20
tert-Butyl alcohol	55			ug/l	50.0		111	70-130	2.13	20
<i>'</i>	53				50.0		107	70-130	3.55	20
sec-Butylbenzene				ug/l						
n-Butylbenzene	54			ug/l	50.0		107	70-130	3.12	20
tert-Butylbenzene	51			ug/l	50.0		102	70-130	2.49	20
Methyl t-butyl ether (MTBE)	51			ug/l	50.0		103	70-130	0.407	20
Carbon Disulfide	51			ug/l	50.0		102	50-150	2.72	20
Carbon Tetrachloride	49			ug/l	50.0		98.3	70-130	2.75	20
Chlorobenzene	48			ug/l	50.0		96.7	70-130	3.06	20
Chloroethane	49			ug/l	50.0		98.4	70-130	2.47	20
Chloroform	50			ug/l	50.0		99.5	70-130	1.10	20
Chloromethane	38			ug/l	50.0		76.6	70-130	2.53	20
4-Chlorotoluene	51			ug/l	50.0		101	70-130	2.42	20
2-Chlorotoluene	50			ug/l	50.0		101	70-130	2.90	20
1,2-Dibromo-3-chloropropane (DBCP)	45			ug/l	50.0		89.4	70-130	1.67	20
Dibromochloromethane	51			ug/l	50.0		103	70-130	0.931	20
1,2-Dibromoethane (EDB)	51			ug/l	50.0		101	70-130	1.32	20
Dibromomethane	49			ug/l	50.0		98.7	70-130	3.03	20
1,2-Dichlorobenzene	48			ug/l	50.0		96.5	70-130	2.64	20
1,3-Dichlorobenzene	49			ug/l	50.0		97.8	70-130	2.82	20
1,4-Dichlorobenzene	49			ug/l	50.0		97.7	70-130	1.16	20
1,1-Dichloroethane	49			ug/l	50.0		97.0	70-130	2.64	20
1,2-Dichloroethane	49			_	50.0		98.6	70-130	1.95	20
trans-1,2-Dichloroethene	47			ug/l	50.0		93.4	70-130	2.73	20
,	47			ug/l						
cis-1,2-Dichloroethene				ug/l	50.0		93.9	70-130	2.94	20
1,1-Dichloroethene	46			ug/l	50.0		91.7	70-130	2.37	20
1,2-Dichloropropane	50			ug/l	50.0		99.0	70-130	3.36	20
2,2-Dichloropropane	50			ug/l	50.0		101	70-130	5.03	20
cis-1,3-Dichloropropene	50			ug/l	50.0		99.5	70-130	2.79	20
trans-1,3-Dichloropropene	52			ug/l	50.0		104	70-130	2.51	20
1,1-Dichloropropene	48			ug/l	50.0		96.9	70-130	3.51	20
Diethyl ether	52			ug/l	50.0		103	70-130	1.82	20
1,4-Dioxane	259			ug/l	250		104	50-150	2.20	20
Ethylbenzene	49			ug/l	50.0		98.2	70-130	2.21	20
Hexachlorobutadiene	49			ug/l	50.0		98.5	70-130	0.631	20
2-Hexanone	47			ug/l	50.0		94.9	70-130	1.24	20
Isopropylbenzene	51			ug/l	50.0		102	70-130	2.56	20
p-Isopropyltoluene	55			ug/l	50.0		109	70-130	2.23	20
Methylene Chloride	48			ug/l	50.0		95.8	70-130	0.146	20
4-Methyl-2-pentanone	51			ug/l	50.0		102	70-130	0.138	20
Naphthalene	52			ug/l	50.0		103	70-130	3.61	20
n-Propylbenzene	54			ug/l	50.0		108	70-130	2.50	20
Styrene	50			ug/l	50.0		100	70-130	1.33	20
1,1,1,2-Tetrachloroethane	50			ug/l	50.0		99.5	70-130	2.58	20
Tetrachloroethene	48				50.0		95.1	70-130	2.12	20
Tetrahydrofuran	48			ug/l	50.0		96.3	50-150	0.0623	20
	48			ug/l	50.0		96.3 95.3			
Toluene				ug/l				70-130 70-130	3.26	20
1,2,4-Trichlorobenzene	48			ug/l	50.0		96.5	70-130	1.28	20
1,2,3-Trichlorobenzene	48			ug/l	50.0		95.4	70-130	0.546	20
1,1,2-Trichloroethane	51			ug/l	50.0		101	70-130	Page	27 of

Volatile Organic Compounds (Continued)

			Reporting		Spike	Source		%REC		RPD
Analyte	Result	Qual	Limit	Units	Level	Result	%REC	Limits	RPD	Limit
Batch: B1A0846 - Purge-Trap	(Continued)									
LCS Dup (B1A0846-BSD1)					Prepared 8	& Analyzed: 0:	1/21/21			
1,1,1-Trichloroethane	49			ug/l	50.0		97.6	70-130	3.62	20
Trichloroethene	41			ug/l	50.0		81.4	70-130	3.62	20
1,2,3-Trichloropropane	51			ug/l	50.0		102	70-130	0.254	20
1,3,5-Trimethylbenzene	52			ug/l	50.0		104	70-130	1.77	20
1,2,4-Trimethylbenzene	52			ug/l	50.0		105	70-130	2.08	20
Vinyl Chloride	47			ug/l	50.0		94.7	70-130	1.65	20
o-Xylene	49			ug/l	50.0		98.8	70-130	2.30	20
m&p-Xylene	99			ug/l	100		99.1	70-130	1.97	20
1,1,2,2-Tetrachloroethane	53			ug/l	50.0		106	70-130	0.693	20
tert-Amyl methyl ether	51			ug/l	50.0		102	70-130	0.292	20
1,3-Dichloropropane	51			ug/l	50.0		102	70-130	2.11	20
Ethyl tert-butyl ether	50			ug/l	50.0		99.6	70-130	6.13	20
Trichlorofluoromethane	50			ug/l	50.0		100	70-130	2.95	20
Dichlorodifluoromethane	44			ug/l	50.0		87.2	70-130	4.53	20
Surrogate: 4-Bromofluorobenzene			51.2	ug/l	50.0		102	70-130		
Surrogate: 1,2-Dichloroethane-d4			56.0	ug/l	50.0		112	70-130		
Surrogate: Toluene-d8			50.1	ug/l	50.0		100	70-130		

Semivolatile organic compounds

Analyte	Result Qu	Reporting al Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPI Limi
Batch: B1A0850 - Sep-Funne	l-extraction								
Blank (B1A0850-BLK1)			Pr	epared: 01/2	22/21 Analyze	ed: 01/25/21			
1,2,4-Trichlorobenzene	ND	2	ug/l						
1,2-Dichlorobenzene	ND	2	ug/l						
1,3-Dichlorobenzene	ND	2	ug/l						
1,4-Dichlorobenzene	ND	2	ug/l						
Phenol	ND	2	ug/l						
2,4,5-Trichlorophenol	ND	2	ug/l						
2,4,6-Trichlorophenol	ND	2	ug/l						
2,4-Dichlorophenol	ND	2							
2,4-Dimethylphenol	ND	10	ug/l ug/l						
2,4-Dinitrophenol	ND	5							
			ug/l						
2,4-Dinitrotoluene	ND	2	ug/l						
2,6-Dinitrotoluene	ND	2	ug/l						
2-Chloronaphthalene	ND	2	ug/l						
2-Chlorophenol	ND	2	ug/l						
2-Methylnaphthalene	ND	2	ug/l						
Nitrobenzene	ND	2	ug/l						
2-Methylphenol	ND	2	ug/l						
2-Nitroaniline	ND	2	ug/l						
2-Nitrophenol	ND	5	ug/l						
3,3'-Dichlorobenzidine	ND	5	ug/l						
3-Nitroaniline	ND	2	ug/l						
4,6-Dinitro-2-methylphenol	ND	5	ug/l						
4-Bromophenyl phenyl ether	ND	2	ug/l						
4-Chloro-3-methylphenol	ND	2	ug/l						
4-Chloroaniline	ND	5	ug/l						
4-Chlorophenyl phenyl ether	ND	2	ug/l						
4-Nitroaniline	ND	2	ug/l						
4-Nitrophenol	ND	5	ug/l						
Acenaphthene	ND	2	ug/l						
Acenaphthylene	ND	2	ug/l						
Aniline	ND	2	ug/l						
Anthracene	ND	2							
Benzo(a)anthracene	ND	2	ug/l						
		2	ug/l						
Benzo(a)pyrene	ND		ug/l						
Benzo(b)fluoranthene	ND	2	ug/l						
Benzo(g,h,i)perylene	ND	2	ug/l						
Benzo(k)fluoranthene	ND	2	ug/l						
Benzoic acid	ND	15	ug/l						
Bis(2-chloroethoxy)methane	ND	2	ug/l						
Bis(2-chloroethyl)ether	ND	2	ug/l						
Bis(2-chloroisopropyl)ether	ND	2	ug/l						
Bis(2-ethylhexyl)phthalate	ND	6	ug/l						
Butyl benzyl phthalate	ND	3	ug/l						
Chrysene	ND	2	ug/l						
Di(n)octyl phthalate	ND	3	ug/l						
Dibenz(a,h)anthracene	ND	2	ug/l						
Dibenzofuran	ND	2	ug/l						
Diethyl phthalate	ND	2	ug/l						
Dimethyl phthalate	ND	5	ug/l						
Di-n-butylphthalate	ND	2	ug/l						
Fluoranthene	ND	2	ug/l						
Fluorene	ND	2	ug/l						
Hexachlorobenzene	ND	2	ug/l						
Hexachlorobutadiene	ND	2	ug/l						
Hexachlorocyclopentadiene	ND	5	ug/l						
Hexachloroethane	ND	2	ug/l						
. Total not octifulle	ND	2	ug/l						

Semivolatile organic compounds (Continued)

Analyte	Result	Reporting Qual Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit
Batch: B1A0850 - Sep-Funnel	extraction (Col	ntinued)							
Blank (B1A0850-BLK1)	,	•	Pi	repared: 01/2	22/21 Analyze	ed: 01/25/21			
Isophorone	ND	2	ug/l	. opu. ou. o., .	, /,	00. 01, 20, 21			
Naphthalene	ND	2	ug/l						
N-Nitrosodimethylamine	ND	2	ug/l						
N-Nitrosodi-n-propylamine	ND	2	ug/l						
N-Nitrosodiphenylamine	ND ND	2	-						
	ND ND	5	ug/l						
Pentachlorophenol			ug/l						
Phenanthrene	ND	2	ug/l						
Pyrene	ND	2	ug/l						
m&p-Cresol	ND	4	ug/l						
Pyridine	ND	2	ug/l						
Surrogate: Nitrobenzene-d5		32.9	ug/l	50.0		65.8	30-118		
Surrogate: p-Terphenyl-d14		38.8	ug/l	50.0		77.6	38-130		
Surrogate: 2-Fluorobiphenyl		34.0	ug/l	50.0		68.0	30-119		
Surrogate: Phenol-d6		8.35	ug/l	50.0		16.7	10-115		
Surrogate: 2,4,6-Tribromophenol		39.2	ug/l	50.0		78.3	<i>15-130</i>		
Surrogate: 2-Fluorophenol		11.3	ug/l ug/l	<i>50.0</i>		22.7	10-115		
		11.3)2/21 Apple		10-113		
LCS (B1A0850-BS1)	20	2		-	22/21 Analyze		26.00		
1,2,4-Trichlorobenzene	38	2	ug/l	50.0		76.3	26-98		
1,2-Dichlorobenzene	38	2	ug/l	50.0		75.8	27-92		
1,3-Dichlorobenzene	37	2	ug/l	50.0		74.7	26-87		
1,4-Dichlorobenzene	38	2	ug/l	50.0		75.6	26-89		
Phenol	16	2	ug/l	50.0		32.0	10-67		
2,4,5-Trichlorophenol	42	2	ug/l	50.0		83.2	34-123		
2,4,6-Trichlorophenol	43	2	ug/l	50.0		86.1	35-114		
2,4-Dichlorophenol	39	2	ug/l	50.0		77.5	28-105		
2,4-Dimethylphenol	38	10	ug/l	50.0		75.6	28-114		
2,4-Dinitrophenol	61	5	ug/l	50.0		121	15-130		
2,4-Dinitrotoluene	51	2	ug/l	50.0		102	41-129		
2,6-Dinitrotoluene	55	2	ug/l	50.0		111	41-128		
2-Chloronaphthalene	40	2	ug/l	50.0		79.2	33-108		
2-Chlorophenol	35	2	ug/l	50.0		70.1	28-85		
2-Methylnaphthalene	42	2		50.0		84.0	27-104		
			ug/l						
Nitrobenzene	36	2	ug/l	50.0		72.6	26-100		
2-Methylphenol	33	2	ug/l	50.0		65.4	30-86		
2-Nitroaniline	53	2	ug/l	50.0		106	37-130		
2-Nitrophenol	45	5	ug/l	50.0		90.2	25-115		
3-Nitroaniline	54	2	ug/l	50.0		108	32-130		
4,6-Dinitro-2-methylphenol	61	5	ug/l	50.0		121	10-130		
4-Bromophenyl phenyl ether	45	2	ug/l	50.0		89.4	36-130		
4-Chloro-3-methylphenol	41	2	ug/l	50.0		81.1	29-116		
4-Chlorophenyl phenyl ether	44	2	ug/l	50.0		88.9	38-130		
4-Nitroaniline	52	2	ug/l	50.0		105	15-130		
Acenaphthene	41	2	ug/l	50.0		82.8	34-130		
Acenaphthylene	45	2	ug/l	50.0		89.5	35-113		
Aniline	20	2	ug/l	50.0		39.7	14-92		
						91.3	45-121		
Anthracene	46	2	ug/l	50.0					
Benzo(a)anthracene	46	2	ug/l	50.0		91.5	52-130		
Benzo(a)pyrene	52	2	ug/l	50.0		104	46-130		
Benzo(b)fluoranthene	51	2	ug/l	50.0		102	45-130		
Benzo(g,h,i)perylene	49	2	ug/l	50.0		97.2	36-130		
Benzo(k)fluoranthene	51	2	ug/l	50.0		103	46-130		
Bis(2-chloroethoxy)methane	38	2	ug/l	50.0		76.6	28-120		
Bis(2-chloroethyl)ether	38	2	ug/l	50.0		75.0	26-120		
Bis(2-ethylhexyl)phthalate	57	6	ug/l	50.0		113	33-130		
Butyl benzyl phthalate	53	3	ug/l	50.0		105	34-130		
Chrysene	47	2	ug/l	50.0		93.3	47-130		

Page 30 of 37

Semivolatile organic compounds (Continued)

			Reporting		Spike	Source		%REC		RPD
Analyte	Result	Qual	Limit	Units	Level	Result	%REC	Limits	RPD	Limit
Batch: B1A0850 - Sep-Funnel	-extraction (C	ontinu	ed)							
LCS (B1A0850-BS1)	•			Pr	epared: 01/2	2/21 Analyze	d: 01/25/21			
Di(n)octyl phthalate	57		3	ug/l	50.0		114	30-130		
Dibenz(a,h)anthracene	50		2	ug/l	50.0		99.7	48-130		
Dibenzofuran	44		2	ug/l	50.0		87.9	36-116		
Diethyl phthalate	44		2	ug/l	50.0		88.8	39-121		
Dimethyl phthalate	43		5	ug/l	50.0		85.4	40-130		
Di-n-butylphthalate	50		2	ug/l	50.0		100	38-130		
Fluoranthene	49		2	ug/l	50.0		97.9	48-122		
Fluorene	45		2	ug/l	50.0		89.5	40-130		
Hexachlorobenzene	44		2	ug/l	50.0		87.5	48-130		
Hexachlorobutadiene	41		2	ug/l	50.0		82.2	26-115		
Hexachlorocyclopentadiene	34		5	ug/l	50.0		67.2	10-115		
Hexachloroethane	37		2	ug/l	50.0		73.5	24-89		
Indeno(1,2,3-cd)pyrene	53		2	ug/l	50.0		106	41-130		
Isophorone	32		2	ug/l	50.0		65.0	26-115		
Naphthalene	40		2	ug/l	50.0		79.9	27-104		
N-Nitrosodimethylamine	19		2	ug/l	50.0		38.9	10-69		
N-Nitrosodi-n-propylamine	39		2	ug/l	50.0		78.1	31-106		
N-Nitrosodiphenylamine	55		2	ug/l	50.0		110	30-130		
Pentachlorophenol	61		5	ug/l	50.0		121	30-130		
Phenanthrene	47		2	ug/l	50.0		93.9	48-115		
Pyrene	49		2	ug/l	50.0		97.0	45-130		
m&p-Cresol	30		4	ug/l	50.0		60.8	15-115		
Surrogate: Nitrobenzene-d5			44.6	ug/l	50.0		89.2	30-118		
Surrogate: p-Terphenyl-d14			50.0	ug/l	50.0		99.9	38-130		
Surrogate: 2-Fluorobiphenyl			44.4	ug/l	50.0		88.7	30-119		
Surrogate: Phenol-d6			18.2	ug/l	50.0		36.4	10-115		
Surrogate: 2,4,6-Tribromophenol			60.6	ug/l	50.0		121	<i>15-130</i>		
Surrogate: 2-Fluorophenol			23.4	ug/l	50.0		46.9	10-115		

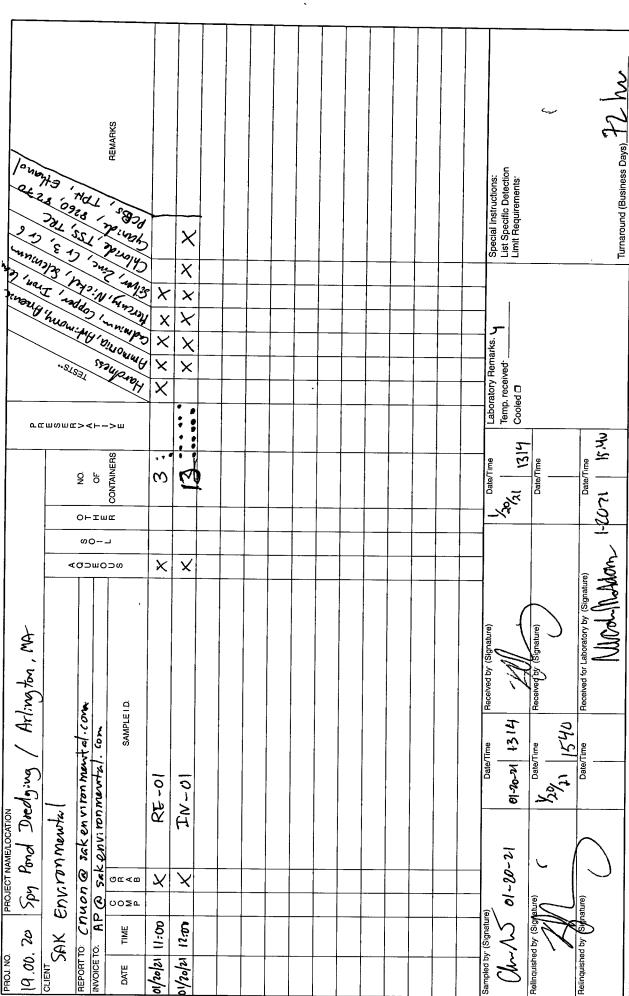
				Control						
Semivolatile organic compounds	(Continued	i)								
Analyte	Result	Qual	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit
Batch: B1A0929 - EPA 3580A	Result	Quai	LIIIIC	Offics	Level	Result	70KEC	Lilling	KPD	LIIII
Blank (B1A0929-BLK1)					Prepared 8	& Analyzed: 0	1/25/21			
Ethanol	ND		10	ma/l	-	. ,	, -, :=			

Polychlorinated Biphenyls (PCBs)

			Reporting		Spike	Source		%REC		RPD
Analyte	Result	Qual	Limit	Units	Level	Result	%REC	Limits	RPD	Limit
Batch: B1A0851 - Sep-Funnel-ex	traction									
Blank (B1A0851-BLK1)				Pi	repared: 01/2	2/21 Analyze	d: 01/25/21			
Aroclor-1016	ND		0.2	ug/l						
Aroclor-1221	ND		0.4	ug/l						
Aroclor-1232	ND		0.2	ug/l						
Aroclor-1242	ND		0.2	ug/l						
Aroclor-1248	ND		0.2	ug/l						
Aroclor-1254	ND		0.2	ug/l						
Aroclor-1260	ND		0.2	ug/l						
Aroclor-1262	ND		0.2	ug/l						
Aroclor-1268	ND		0.2	ug/l						
PCBs (Total)	ND		0.2	ug/l						
Surrogate: 2,4,5,6-Tetrachloro-m-xylene (TCMX)			0.0481	ug/l	0.0800		60.1	30-107		
Surrogate: Decachlorobiphenyl (DCBP)			0.0602	ug/l	0.0800		<i>75.2</i>	30-140		
LCS (B1A0851-BS1)				Pi	repared: 01/2	2/21 Analyze	d: 01/25/21			
Aroclor-1016	0.8		0.2	ug/l	1.00		84.5	40-124		
Aroclor-1260	0.9		0.2	ug/l	1.00		89.3	48-123		
Surrogate: 2,4,5,6-Tetrachloro-m-xylene (TCMX)			0.0470	ug/l	0.0800		58.8	30-107		
Surrogate: Decachlorobiphenyl (DCBP)			0.0588	ug/l	0.0800		73.5	30-140		

			Quality (Cont	Control						
Total Petroleum Hydrocarbons	5									
Analyte	Result	Qual	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit
Batch: B1A0849 - Sep-Funnel	-extraction									
Blank (B1A0849-BLK1)					Prepared	& Analyzed: 0	1/22/21			
Total Petroleum Hydrocarbons	ND		200	ug/l						
Surrogate: Chlorooctadecane			93.3	ug/l	125		74.7	47-115		
LCS (B1A0849-BS1)					Prepared	& Analyzed: 0	1/22/21			
Total Petroleum Hydrocarbons	9780		200	ug/l	10000		97.8	32.6-125		
Surrogate: Chlorooctadecane			117	ug/l	125		93.6	47-115		

Notes and Definitions


<u>Item</u>	<u>Definition</u>
Wet	Sample results reported on a wet weight basis.
ND	Analyte NOT DETECTED at or above the reporting limit.

NEW ENGLAND TESTING LABORATORY, INC.

West Warwick, RI 02893 59 Greenhill Street

1-888-863-8522

CHAIN OF CUSTODY REC



**Netlab subcontracts the following tests: Radiologicals, Radon, Asbestos, UCMRs, Perchlorate, Bromate, Bromide, Sieve, Salmonella, Carbamates, CT ETPH

MassDEP Analytical Protocol Certification Form											
Labo	ratory Na	me: New England	d Testing Laboratory	, Inc.	Project #: 19.00.20)					
Proje	Project Location: Arlington, MA RTN:										
This Form provides certifications for the following data set: list Laboratory Sample ID Number(s): 1A20046											
Matrices: ☐ Groundwater/Surface Water ☐ Soil/Sediment ☐ Drinking Water ☐ Air ☐ Other:											
CAM	CAM Protocol (check all that apply below):										
	2260 VOC 7470/7471 Hg (GC/PID/FID) 8082 PCB CAM V A ☑ 9014 Total Cyanide/PAC CAM VI A ☐ 6860 Perchlora										
	SVOC II B ⊠	MassDEP APH CAM IX A □									
	Metals III A ⊠	TO-15 VOC CAM IX B □									
A	Affirmativ	ve Responses to	Questions A throug	gh F are required t	for "Presumptive Ce	rtainty" status					
A	Were all samples received in a condition consistent with those described on the Chain-of-Custody, properly preserved (including temperature) in the field or laboratory, and □ Yes □ Not prepared/analyzed within method holding times?										
В	Were the analytical method(s) and all associated QC requirements specified in the selected CAM protocol(s) followed? ☑ Yes ☐ No										
С	Were all required corrective actions and analytical response actions specified in the selected CAM protocol(s) implemented for all identified performance standard non-conformances? ☑ Yes ☐ No										
D	Does the laboratory report comply with all the reporting requirements specified in CAM VII A, "Quality Assurance and Quality Control Guidelines for the Acquisition and Reporting of Analytical Data"? ☑ Yes ☐ No										
E	VPH, EPH, APH, and TO-15 only a. VPH, EPH, and APH Methods only: Was each method conducted without significant modification(s)? (Refer to the individual method(s) for a list of significant modifications). □ Yes □ No □ Yes □ No										
F					conformances identified Questions A through E)?						
Res	ponses	to Questions G,	H and I below are re	equired for "Presu	mptive Certainty" st	atus					
G	Were the protocol(. •	or below all CAM repor	ting limits specified in	the selected CAM	⊠ Yes □ No ¹					
<u>Data User Note</u> : Data that achieve "Presumptive Certainty" status may not necessarily meet the data usability and representativeness requirements described in 310 CMR 40. 1056 (2)(k) and WSC-07-350.											
Н	Were all QC performance standards specified in the CAM protocol(s) achieved? ⊠ Yes □ No¹										
ı	Were results reported for the complete analyte list specified in the selected CAM protocol(s)?										
¹ All r	negative re	esponses must be	addressed in an attac	ched laboratory narra	ative.						
I, the undersigned, attest under the pains and penalties of perjury that, based upon my personal inquiry of those responsible for obtaining the information, the material contained in this analytical report is, to the best of my knowledge and belief, is accurate and complete.											
Sign	ature: 🚱	LOW D		Positio	n: <u>Laboratory Director</u>						
Print	ed Name	Richard Warila		— Date:	1/25/2021						

Page 37 of 37

United States Department of the Interior

FISH AND WILDLIFE SERVICE

New England Ecological Services Field Office 70 Commercial Street, Suite 300 Concord, NH 03301-5094 Phone: (603) 223-2541 Fax: (603) 223-0104

http://www.fws.gov/newengland

In Reply Refer To: November 02, 2020

Consultation Code: 05E1NE00-2021-SLI-0335

Event Code: 05E1NE00-2021-E-01017 Project Name: Spy Pond Dredging

Subject: List of threatened and endangered species that may occur in your proposed project

location, and/or may be affected by your proposed project

To Whom It May Concern:

The enclosed species list identifies threatened, endangered, proposed and candidate species, as well as proposed and final designated critical habitat, that may occur within the boundary of your proposed project and/or may be affected by your proposed project. The species list fulfills the requirements of the U.S. Fish and Wildlife Service (Service) under section 7(c) of the Endangered Species Act (Act) of 1973, as amended (16 U.S.C. 1531 *et seq.*).

New information based on updated surveys, changes in the abundance and distribution of species, changed habitat conditions, or other factors could change this list. Please feel free to contact us if you need more current information or assistance regarding the potential impacts to federally proposed, listed, and candidate species and federally designated and proposed critical habitat. Please note that under 50 CFR 402.12(e) of the regulations implementing section 7 of the Act, the accuracy of this species list should be verified after 90 days. This verification can be completed formally or informally as desired. The Service recommends that verification be completed by visiting the ECOS-IPaC website at regular intervals during project planning and implementation for updates to species lists and information. An updated list may be requested through the ECOS-IPaC system by completing the same process used to receive the enclosed list.

The purpose of the Act is to provide a means whereby threatened and endangered species and the ecosystems upon which they depend may be conserved. Under sections 7(a)(1) and 7(a)(2) of the Act and its implementing regulations (50 CFR 402 *et seq.*), Federal agencies are required to utilize their authorities to carry out programs for the conservation of threatened and endangered species and to determine whether projects may affect threatened and endangered species and/or designated critical habitat.

A Biological Assessment is required for construction projects (or other undertakings having similar physical impacts) that are major Federal actions significantly affecting the quality of the human environment as defined in the National Environmental Policy Act (42 U.S.C. 4332(2) (c)). For projects other than major construction activities, the Service suggests that a biological evaluation similar to a Biological Assessment be prepared to determine whether the project may affect listed or proposed species and/or designated or proposed critical habitat. Recommended contents of a Biological Assessment are described at 50 CFR 402.12.

If a Federal agency determines, based on the Biological Assessment or biological evaluation, that listed species and/or designated critical habitat may be affected by the proposed project, the agency is required to consult with the Service pursuant to 50 CFR 402. In addition, the Service recommends that candidate species, proposed species and proposed critical habitat be addressed within the consultation. More information on the regulations and procedures for section 7 consultation, including the role of permit or license applicants, can be found in the "Endangered Species Consultation Handbook" at:

http://www.fws.gov/endangered/esa-library/pdf/TOC-GLOS.PDF

Please be aware that bald and golden eagles are protected under the Bald and Golden Eagle Protection Act (16 U.S.C. 668 *et seq.*), and projects affecting these species may require development of an eagle conservation plan (http://www.fws.gov/windenergy/eagle_guidance.html). Additionally, wind energy projects should follow the wind energy guidelines (http://www.fws.gov/windenergy/) for minimizing impacts to migratory birds and bats.

Guidance for minimizing impacts to migratory birds for projects including communications towers (e.g., cellular, digital television, radio, and emergency broadcast) can be found at: http://www.fws.gov/migratorybirds/CurrentBirdIssues/Hazards/towers/towers.htm; http://www.towerkill.com; and http://www.fws.gov/migratorybirds/CurrentBirdIssues/Hazards/towers/comtow.html.

We appreciate your concern for threatened and endangered species. The Service encourages Federal agencies to include conservation of threatened and endangered species into their project planning to further the purposes of the Act. Please include the Consultation Tracking Number in the header of this letter with any request for consultation or correspondence about your project that you submit to our office.

Attachment(s):

Official Species List

Official Species List

This list is provided pursuant to Section 7 of the Endangered Species Act, and fulfills the requirement for Federal agencies to "request of the Secretary of the Interior information whether any species which is listed or proposed to be listed may be present in the area of a proposed action".

This species list is provided by:

New England Ecological Services Field Office 70 Commercial Street, Suite 300 Concord, NH 03301-5094 (603) 223-2541

Project Summary

Consultation Code: 05E1NE00-2021-SLI-0335

Event Code: 05E1NE00-2021-E-01017

Project Name: Spy Pond Dredging

Project Type: DREDGE / EXCAVATION

Project Description: Spy Pond Dredging and Stormwater Improvements along a Section of

Route 2 (Concord Turnpike) in Arlington, MA

MassDOT Project No. 609222-111309

Project Location:

Approximate location of the project can be viewed in Google Maps: https://www.google.com/maps/place/42.404610473189976N71.15924619721113W

Counties: Middlesex, MA

Endangered Species Act Species

There is a total of 1 threatened, endangered, or candidate species on this species list.

Species on this list should be considered in an effects analysis for your project and could include species that exist in another geographic area. For example, certain fish may appear on the species list because a project could affect downstream species.

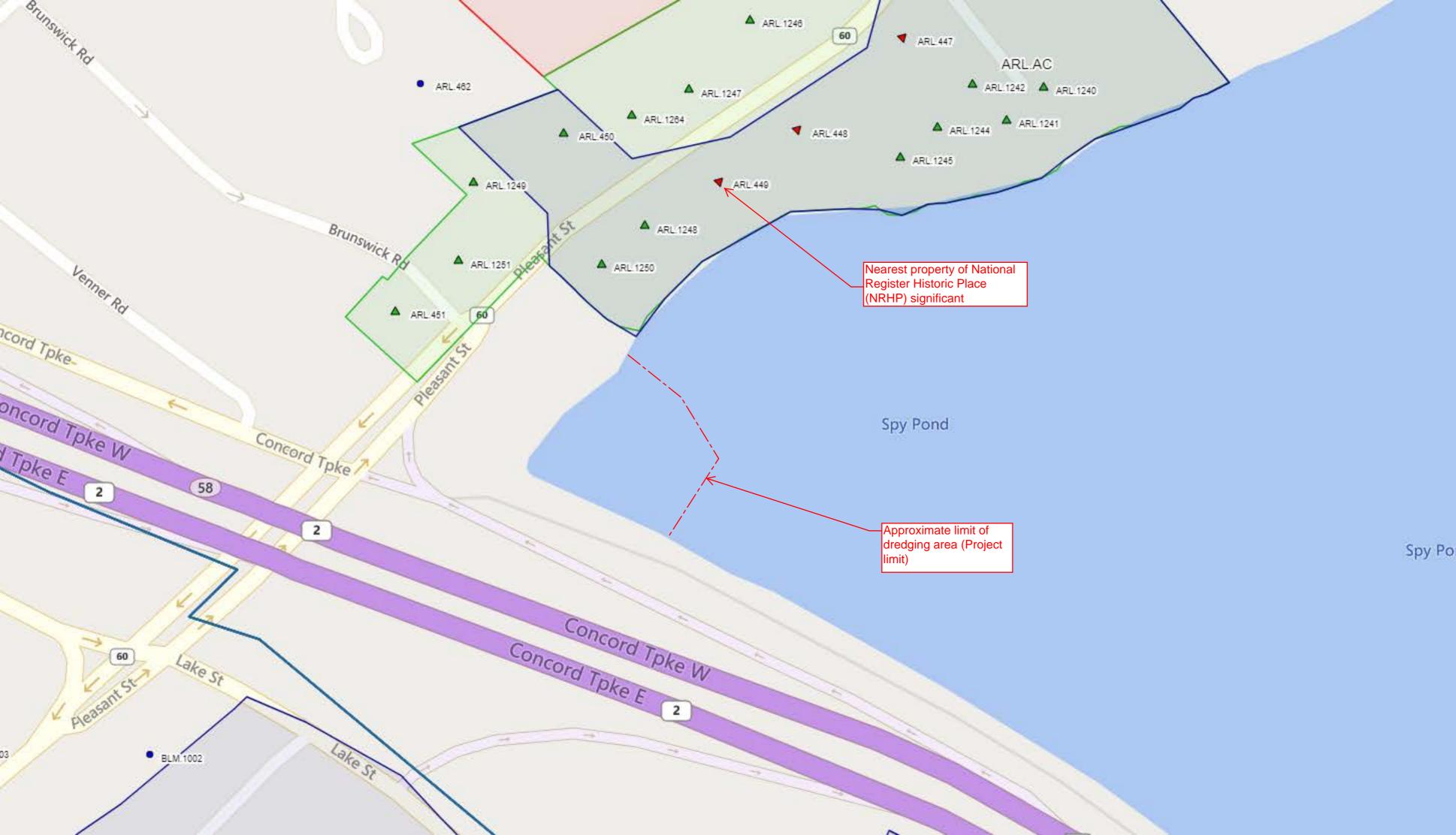
IPaC does not display listed species or critical habitats under the sole jurisdiction of NOAA Fisheries¹, as USFWS does not have the authority to speak on behalf of NOAA and the Department of Commerce.

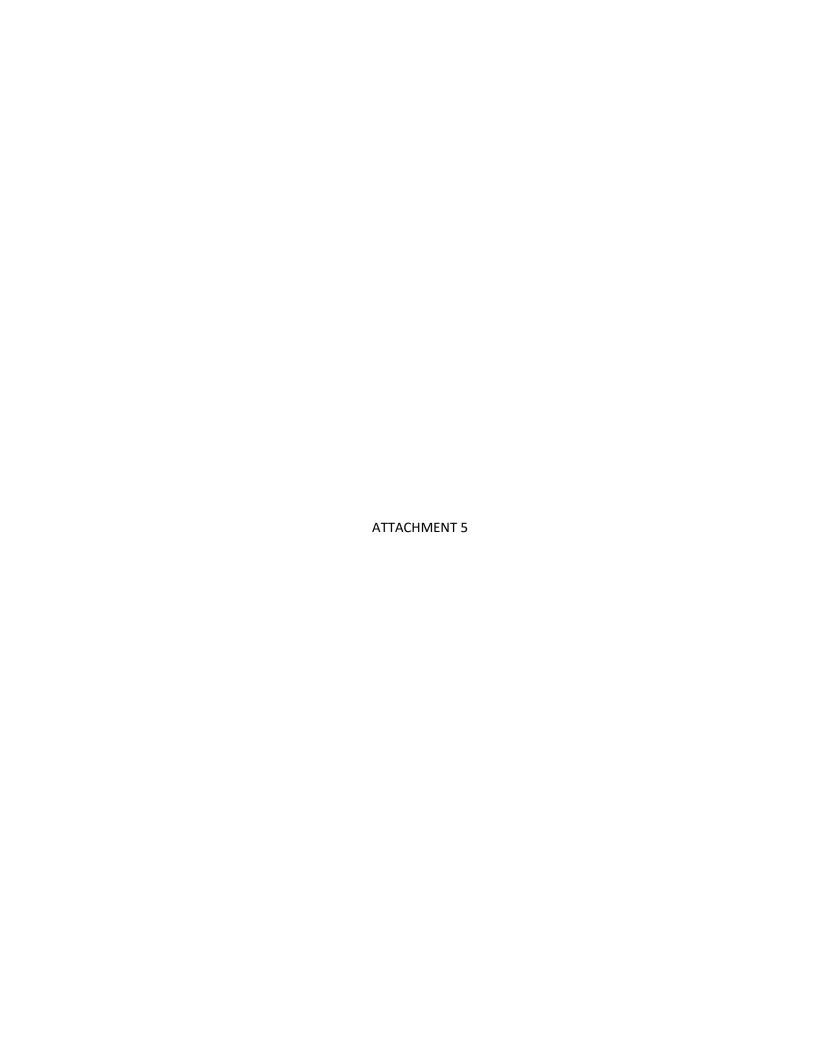
See the "Critical habitats" section below for those critical habitats that lie wholly or partially within your project area under this office's jurisdiction. Please contact the designated FWS office if you have questions.

1. <u>NOAA Fisheries</u>, also known as the National Marine Fisheries Service (NMFS), is an office of the National Oceanic and Atmospheric Administration within the Department of Commerce.

Mammals

NAME STATUS


Northern Long-eared Bat Myotis septentrionalis


Threatened

No critical habitat has been designated for this species. Species profile: https://ecos.fws.gov/ecp/species/9045

Critical habitats

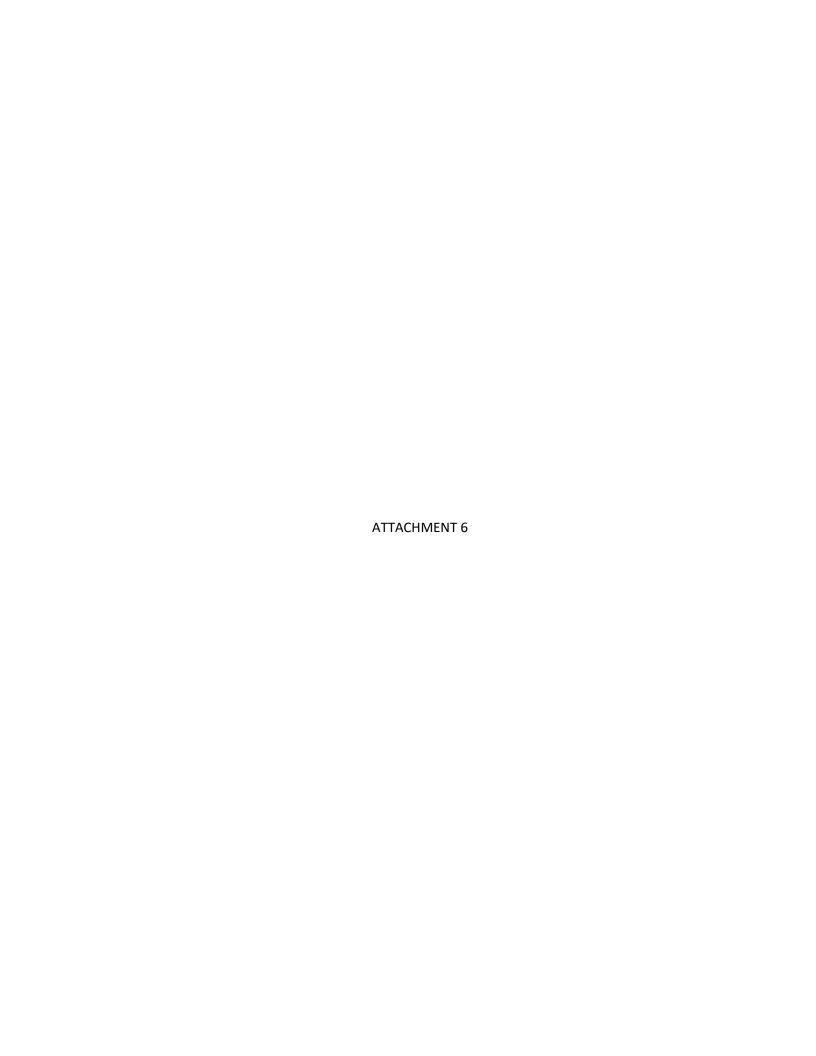
THERE ARE NO CRITICAL HABITATS WITHIN YOUR PROJECT AREA UNDER THIS OFFICE'S JURISDICTION.

Ultra-Dewatering Bags[®] Specifications

Material Specifications

Properties	ASTM Test	Value
Material: Non-Woven, Polyethylene Geotextile	-	-
Grab Tensile	D 4632	205 lbs
Elongation at break	D 4632	50%
Trapezoid Tear	D 4533	80 lbs
Puncture	D 4833	525 lbs
Mullen Burst	D 3786	420 psi
Permittivity	D 4491	1.5 sec ⁻¹
A.O.S. (U.S. sieve no.)/ mm	D 4781	80/0.18
UV Stability (strenth retained %) 500 Hours	D 4355	70%
Fabric Weight (oz./yd²)(typical)	D 5261	8 oz/yd²
Flow Rate	D 4491	90 gpm/ft²

Install the Ultra-Dewatering Bag® on a slope so incoming water flows downhill through the Ultra-Dewatering Bag® without creating more erosion. Strap the neck of the Ultra-Dewatering Bag® tightly to the discharge hose. To increase the efficiency of filtration, place the bag on an aggregate or hay bale bed to maximize water flow through the surface area of the bag.


The Ultra-Dewatering Bag® is full when it no longer can efficiently filter sediment or pass water at a reasonable rate. Flow rates will vary depending on the size of the Ultra-Dewatering Bag®, the type and amount of sediment discharged into the Ultra-Dewatering Bag®, the type of ground, rock or other substance under the bag and the degree of the slope on which the bag lies. Under most circumstances Ultra-Dewatering Bag® will accommodate flow rates of 1500 gallons per minute. Use of excessive flow rates or overfilling Ultra-Dewatering Bag® with sediment will cause ruptures of the bags or failure of the hose att chment straps.

Dispose of the Ultra-Dewatering Bag® as directed by the site engineer. If allowed, the Ultra-Dewatering Bag® may be cut open and the contents seeded after removing visible fabric.

The facts stated and the recommendations made herein are offered free of charge and are accurate to the best of our knowledge. UltraTech International, Inc. assumes no liability for the accuracy or completeness of this information or for the ultimate use by the purchaser. UltraTech disclaims any and all express, implied, or statutory standards, warranties or guarantees, including without limitation any implied warranty as to merchantability or fitness for a particular purpose or arising from a course of dealing o usage of trade as to any equipment, material, or information furnished herewith. Final determination of the use of any information or material, or how it is useful, and whether the use infringes any patents is the sole responsibility of the user.

Unit Specifications

	•					
	Model	Fabric QTY	Max Flow Rate (GPM)	Sediment Capacity (Cu Ft)	Sediment Capacity (lbs.)	Oil Capacity
	Oil & Sediment 3'x4' Part # 9729-0/S	24 sq ft	500	6	720	1.2 gal
	YOIL& Sediment&'x&'Part #49724-0/5	74 sq ft	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	~~36~~~	4320	3.7gal
_	Oil & Sediment 10'x15' Part # 9725-0/S	302 sq ft	500	150	18000	15.1 gal 〈
<u> </u>	Oit & Sediment 15'x15' Part # 9727-0/S	452 sq ft	M-50M	112511	<u> </u>	22.6 dal

Chhavan Nuon

From: Kathleen Keohane <kkeohane@townisp.com>
Sent: Wednesday, February 3, 2021 5:33 PM

To: Chhavan Nuon

Cc: Vakalopoulos, Catherine (DEP); xiaodan.ruan@mass.gov

Subject: RE: Spy Pond Dredging NPDES RGP - 7Q10 and DF calculation

Hi Chhaven,

We have reviewed the information for the proposed discharge for the Mass DOT Project 609222 for the Spy Pond Dredging Project in Arlington. Since the discharge is to Spy Pond, use a **dilution factor 1.0** instead of the adjusted value. We do not grant dilution factor to ponds unless there is enough inflow and outflow that StreamStats can calculate a 7Q10 on its own without further tweaking.

Here is water quality information to assist you with filling out the NOI (some of which you already have):

Waterbody and ID: Spy Pond (MA71040) within the Mystic River portion of the Boston Harbor Watershed

Classification: B

Outstanding Resource Water?: no

State's most recent Integrated List is located here: https://www.epa.gov/sites/production/files/2020-01/documents/2016-ma-303d-list-report.pdf, search for "MA71040" to see the causes of impairments. TMDLs: there one approved TMDL (pathogens) for this segment.

As you may know, if this is not a *current* MCP site, then in addition to submitting the NOI to EPA, you need to apply with MassDEP and submit a \$500 fee (unless fee exempt, e.g., municipality) using the ePLACE. The instructions are located here: https://www.mass.gov/how-to/wm-15-npdes-general-permit-notice-of-intent. Technical assistant information is available on the front page of the ePLACE application webpage.

Please let me know if you have any questions. My work email is down right now, so reply to kkeohane@townisp.com.

Kathleen Keohane MassDEP Surface Water Discharge Permit Program Kathleen.Keohane@mass.gov

Sent from Mail for Windows 10

From: "cnuon@sakenvironmental.com" <cnuon@sakenvironmental.com>

Date: Wednesday, February 3, 2021 at 12:42 PM

To: "Vakalopoulos, Catherine (DEP)" <catherine.vakalopoulos@mass.gov>, "Ruan, Xiaodan (DEP)"

<xiaodan.ruan@mass.gov>

Subject: NPDES RGP - 7Q10 and DF calculation

CAUTION: This email originated from a sender outside of the Commonwealth of Massachusetts mail system. Do not click on links or open attachments unless you recognize the sender and know the content is safe.

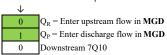
Hello,

Per NPDES RGP application, I'm sending you the attached calculation of the Dilution Factor and the 7-day-10-year (7Q10) low flow value for the below project. Please confirm whether the calculation I've provided is accurate.

Project: MassDOT project 609222 - Spy Pond Dredging in Arlington, MA. Approximate Location: (42.4061, -71.1621)

Thank you,

Chhavan Nuon Project Engineer


SAK Environmental, LLC | 231 Sutton St., Suite 2G | North Andover, MA 01845 cnuon@sakenvironmental.com | www.sakenvironmental.com | advise. remediate. sustain. Office 978-688-7804 x 115 | Fax 978-688-7801

24-hour Emergency Spill No.: 978-688-7804 then press 3

Confidentiality Notice: This e-mail and document(s) accompanying this e-mail contain confidential information that is legally privileged. The information is intended only for the use of the intended recipient(s) named above. If you are not the intended recipient, you are hereby notified that any disclosure, copying, distribution, or the taking of any action in reliance on the contents of this e-mail and its attachments, except its direct delivery to the intended recipient(s) named above, is strictly prohibited. If you have received this e-mail in error, please notify us immediately by telephone.

Enter number values in green boxes below

Enter values in the units specified

Enter a dilution factor, if other than zero

Enter values in the units specified

\downarrow	_
70.5	C_d = Enter influent hardness in mg/L CaCO ₃
70.5	C _s = Enter receiving water hardness in mg/L CaCO ₃

Enter receiving water concentrations in the units specified

	0
\downarrow	_
7.19	pH in Standard Units
15.66	Temperature in °C
0.2	Ammonia in mg/L
70.5	Hardness in mg/L CaCO ₃
0	Salinity in ppt
0	Antimony in μg/L
0	Arsenic in μg/L
0	Cadmium in µg/L
0	Chromium III in µg/L
0	Chromium VI in µg/L
0	Copper in µg/L
0.2	Iron in μg/L
0	Lead in μg/L
0	Mercury in μg/L
0	Nickel in μg/L
0	Selenium in μg/L
0	Silver in μg/L
0	Zinc in μg/L

Enter influent concentrations in the units specified

\downarrow	_
500	TRC in μg/L
1.7	Ammonia in mg/L
16	Antimony in μg/L
60	Arsenic in μg/L
33	Cadmium in μg/L
343	Chromium III in µg/L
0	Chromium VI in μg/L
1530	Copper in µg/L
161000	Iron in μg/L
5960	Lead in μg/L
0.6	Mercury in μg/L
173	Nickel in μg/L
0	Selenium in μg/L
0	Silver in μg/L
4120	Zinc in μg/L
13	Cyanide in µg/L
0	Phenol in μg/L
0	Carbon Tetrachloride in µg/L
0	Tetrachloroethylene in μg/L
0	Total Phthalates in μg/L
0	Diethylhexylphthalate in μg/L
0	Benzo(a)anthracene in μg/L
0	Benzo(a)pyrene in μg/L
0	Benzo(b)fluoranthene in μg/L
0	Benzo(k)fluoranthene in μg/L
0	Chrysene in μg/L
0	Dibenzo(a,h)anthracene in μg/L
0	Indeno(1,2,3-cd)pyrene in μg/L
0	Methyl-tert butyl ether in μg/L

Notes:

Freshwater: Q_R equal to the 7Q10; enter alternate Q_R if approved by the State; enter 0 if no dilution factor approved Saltwater (estuarine and marine): enter Q_R if approved by the State; enter 0 if no entry Discharge flow is equal to the design flow or 1 MGD, whichever is less Downstream 7Q10 an optional entry for Q_R ; leave 0 if no entry

Saltwater (estuarine and marine): only if approved by the State Leave 0 if no entry

if>1 sample, enter maximum if>10 samples, may enter 95th percentile Enter 0 if non-detect or testing not required

I. Dilution Factor Calculation Method

A. 7Q10

Refer to Appendix V for determining critical low flow; must be approved by State before use in calculations.

B. Dilution Factor

Calculated as follows:

$$Df = Q_R + Q_P$$

 $Q_R = 7Q10$ in MGD

 Q_p = Discharge flow, in MGD

II. Effluent Limitation Calculation Method

A. Calculate Water Quality Criterion:

Step 1. Downstream hardness, calculated as follows:

$$C_r = \underline{Q_d C_d + Q_s C_s}$$

 C_r = Downstream hardness in mg/L

 Q_d = Discharge flow in MGD

 $C_d = Discharge hardness in mg/L$

 $Q_s = Upstream flow (7Q10) in MGD$

 $C_s = Upstream$ (receiving water) hardness in mg/L

 $Q_r = Downstream receiving water flow in MGD$

Step 2. Total recoverable water quality criteria for hardness-dependent metals, calculated as follows:

Total Recoverable Criteria = $\exp\{m_c [\ln(h)] + b_c\}$

m_c = Pollutant-specific coefficient (m_a for silver)

 b_c = Pollutant-specific coefficient (b_a for silver)

ln = Natural logarithm

h = Hardness calculated in Step 1

Step 3. Total recoverable water quality criteria for non-hardness-dependent metals, calculated as follows:

WQC in
$$\mu$$
g/L = dissolved WQC in μ g/L

dissolved to total recoverable factor

B. Calculate WQBEL:

Step 1. WQBEL calculated as follows for parameter sampled in and detected in the receiving water:

$$C_{d} = \underline{Q_{r} C_{r} - Q_{s} C_{s}}$$

$$Q_{d}$$

 C_r = Water quality criterion in μ g/L

Q_d = Discharge flow in MGD

 $C_d = WQBEL \text{ in } \mu g/L$

 $Q_s = Upstream flow (7Q10) in MGD$

 C_s = Ustream (receiving water) concentration in μ g/L

 $Q_r = Downstream receiving water flow in MGD$

Step 2. WQBEL calculated as follows for parameter not sampled in or not detected in receiving water:

$$C_d = (Q_r/Q_d) \times C_r$$

 C_r = Water quality criterion in μ g/L

Q_d = Discharge flow in MGD

 $Q_r = Downstream receiving water flow in MGD$

C. Determine if a WQBEL applies:

Step 1. For parameter sampled in and detected in receiving water, downstream concentrations calculated as follows:

$$C_r = \frac{Q_d C_d + Q_s C_s}{Q_r}$$

 C_r = Downstream concentration in μ g/L

Q_d = Discharge flow in MGD

 C_d = Influent concentration in $\mu g/L$

 $Q_s = Upstream flow (7Q10) in MGD$

 C_s = Upstream (receiving water) concentration in μ g/L

 $Q_r = Downstream receiving water flow in MGD$

The WQBEL applies if:

1) the projected downstream concentration calculated in accordance with Step 1, above, and the discharge concentration of a parameter are greater than the WQC calculated for that parameter in accordance with II.A, above

AND

2) the WQBEL determined for that parameter in accordance with II.B, above, is less than the TBEL in Part 2.1.1 of the RGP for that parameter. Otherwise, the TBEL in Part 2.1.1

of the RGP for that parameter applies.

Step 2. For a parameter not sampled in or not detected in receiving water, the WQBEL applies if:

1) the discharge concentration of a parameter is greater than the WQBEL determined for that parameter in accordance with II.A or II.B, above;

AND

2) the WQBEL determined for that parameter in accordance with II.A or II.B, above is less than the TBEL in Part 2.1.1 of the RGP for that parameter. Otherwise, the TBEL in

Part 2.1.1 of the RGP for that parameter applies.

Dilution Factor 1.0

Dilution Factor	1.0					
A. Inorganics	TBEL applies if	bolded	WQBEL applies i	f bolded	Compliance Level applies if shown	
Ammonia	Report	mg/L				
Chloride	Report	μg/L				
Total Residual Chlorine	0.2	mg/L	11	μg/L	50	μg/L
Total Suspended Solids	30	mg/L		1.8		. 8
Antimony	206	μg/L	640	μg/L		
Arsenic	104	μg/L μg/L	10	μg/L μg/L		
Cadmium	10.2		0.2089			
Chromium III		μg/L	64.7	μg/L		
	323	μg/L		μg/L		
Chromium VI	323	μg/L	11.4	μg/L		
Copper	242	μg/L	6.9	μg/L		
Iron	5000	μg/L	1000	μg/L		
Lead	160	$\mu g/L$	2.04	μg/L		
Mercury	0.739	$\mu g/L$	0.91	$\mu g/L$		
Nickel	1450	$\mu g/L$	38.8	μg/L		
Selenium	235.8	μg/L	5.0	μg/L		
Silver	35.1	μg/L	2.1	μg/L		
Zinc	420	μg/L	89.1	μg/L		
Cyanide	178	mg/L	5.2	μg/L	5	μg/L
B. Non-Halogenated VOCs	170	mg/L	3.2	μ _B , L	J	μg·L
Total BTEX	100	μg/L				
Benzene	5.0	μg/L				
1,4 Dioxane	200	μg/L				
Acetone	7970	μg/L				
Phenol	1,080	μg/L	300	μg/L		
C. Halogenated VOCs						
Carbon Tetrachloride	4.4	μg/L	1.6	$\mu g/L$		
1,2 Dichlorobenzene	600	$\mu g/L$				
1,3 Dichlorobenzene	320	μg/L				
1,4 Dichlorobenzene	5.0	μg/L				
Total dichlorobenzene		μg/L				
1,1 Dichloroethane	70	$\mu g/L$				
1,2 Dichloroethane	5.0	μg/L				
1,1 Dichloroethylene	3.2	μg/L				
Ethylene Dibromide	0.05	μg/L				
Methylene Chloride	4.6	μg/L				
1,1,1 Trichloroethane	200	μg/L				
1,1,2 Trichloroethane	5.0	μg/L				
Trichloroethylene	5.0	μg/L		_		
Tetrachloroethylene	5.0	μg/L	3.3	μg/L		
cis-1,2 Dichloroethylene	70	μg/L				
Vinyl Chloride	2.0	μg/L				
D. Non-Halogenated SVOCs						
Total Phthalates	190	$\mu g/L$		$\mu g/L$		
Diethylhexyl phthalate	101	$\mu g/L$	2.2	$\mu g/L$		

Total Group I Polycyclic						
Aromatic Hydrocarbons	1.0	μg/L				
Benzo(a)anthracene	1.0	μg/L	0.0038	μg/L		μg/L
Benzo(a)pyrene	1.0	μg/L	0.0038	μg/L		μg/L
Benzo(b)fluoranthene	1.0	μg/L	0.0038	μg/L		μg/L
Benzo(k)fluoranthene	1.0	μg/L	0.0038	μg/L		μg/L
Chrysene	1.0	μg/L	0.0038	μg/L		μg/L
Dibenzo(a,h)anthracene	1.0	μg/L	0.0038	μg/L		μg/L
Indeno(1,2,3-cd)pyrene	1.0	μg/L	0.0038	μg/L		$\mu g/L$
Total Group II Polycyclic						
Aromatic Hydrocarbons	100	μg/L				
Naphthalene	20	μg/L				
E. Halogenated SVOCs						
Total Polychlorinated Biphenyls	0.000064	μg/L			0.5	μg/L
Pentachlorophenol	1.0	μg/L				
F. Fuels Parameters		. 0				
Total Petroleum Hydrocarbons	5.0	mg/L				
Ethanol	Report	mg/L				
Methyl-tert-Butyl Ether	70	μg/L	20	$\mu g/L$		
tert-Butyl Alcohol	120	μg/L				
tert-Amyl Methyl Ether	90	μg/L				

March 17, 2021

U.S. Environmental Protection Agency Office of Ecosystem Protection EPA/OEP RGP Applications Coordinator 5 Post Office Square, Suite 100 Boston, Massachusetts 02109-3912

Re: ADDENDUM 01 for NPDES RGP Application for Dredge-Related Dewatering Activities

Project Title: Spy Pond Dredging and Stormwater Improvements along a Section of Route

2 (Concord Turnpike)

Project Location: Arlington, MA 02474 MassDOT Project No.: 609222 – 111309

Dear Sir/Madam:

SAK Environmental (SAK) is submitting this addendum to the original RGP application, dated February 11, 2021, for the above referenced project ("Project"). The treatment system design has been revised since the last submittal and a chemical additive (polymer) has been selected by the Project Operator (MacKay Construction) for use in the dewatering process. The polymer was not included in the original RGP application. Per the requirements of the RGP, SAK is submitting this information to the EPA via this addendum.

1. Revisions to the Treatment System

The process flow presented in the original RGP application identified the use of fifteen (15) 10-ft by 15-ft sediment bag filters (Ultra-Dewatering Bags) to dewater dredged sediment, prior to a single discharge point of effluent water. Since the last submittal there have been additions to the treatment system which are described below.

The dredged sediment will be pumped though a flocculation tank, where a polymer is added and monitored by a SmartFeed system (See **Attachment A** for specification sheet). The SmartFeed system is equipped with technology to monitor various dewatering parameters and adjusts polymer dosage based on the particle size of the dredged sediment. Once the polymer is added to the dredged sediment, the material will be routed to GeoTube bags (dewatering bags). A schematic of the SmartFeed system and the dewatering bags included as **Figure 1** and the dewatering bag setup detail is included as **Figure 2**. The design flow of this system is 900 gallons per minute (gpm); the average effluent flow of the system is estimated to be 24.7 gpm, and the maximum flow is estimated to be 30 gpm.

The new design uses a total of six (6) dewatering bags. Each bag (200-ft length X 5.8-ft width X 16-ft circumference) will be staged on a 12-mm woven coated liner along the shared-use path.

Six (6) discharge points will be placed at low points within the staging area (see **Figure 3**) and piped to the bank of the Spy Pond.

2. Chemical Additive Information

The polymer (Product Identifier: Aries 3196) is a type of flocculent that will be used to treat the dredged sediment. The safety data sheet (SDS) for this chemical is included in **Attachment B**. The polymer will help the sediment to settle out from the dredge water. This polymer will be added as described in Section 1, prior to being pumped to the GeoTube bags. Dosage quantity of this polymer will be determined by the SmartFeed system and dependent on the particle size of the sediment. Mineral Processing Services LLC (subcontractor of MacKay Construction) provided a written rationale which demonstrates that the addition of this polymer will not hinder the water quality of the effluent water. This written rationale is included in **Attachment C**.

Do not hesitate to contact us with any questions.

SAK Environmental LLC

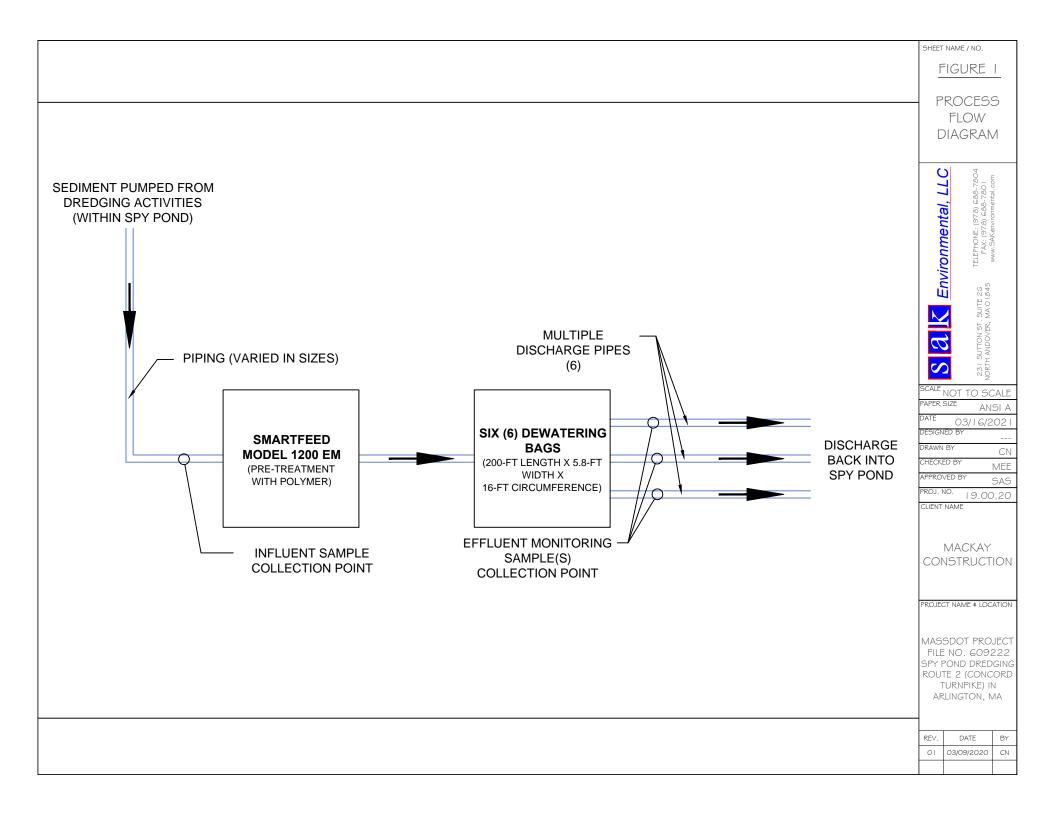
Win Ara

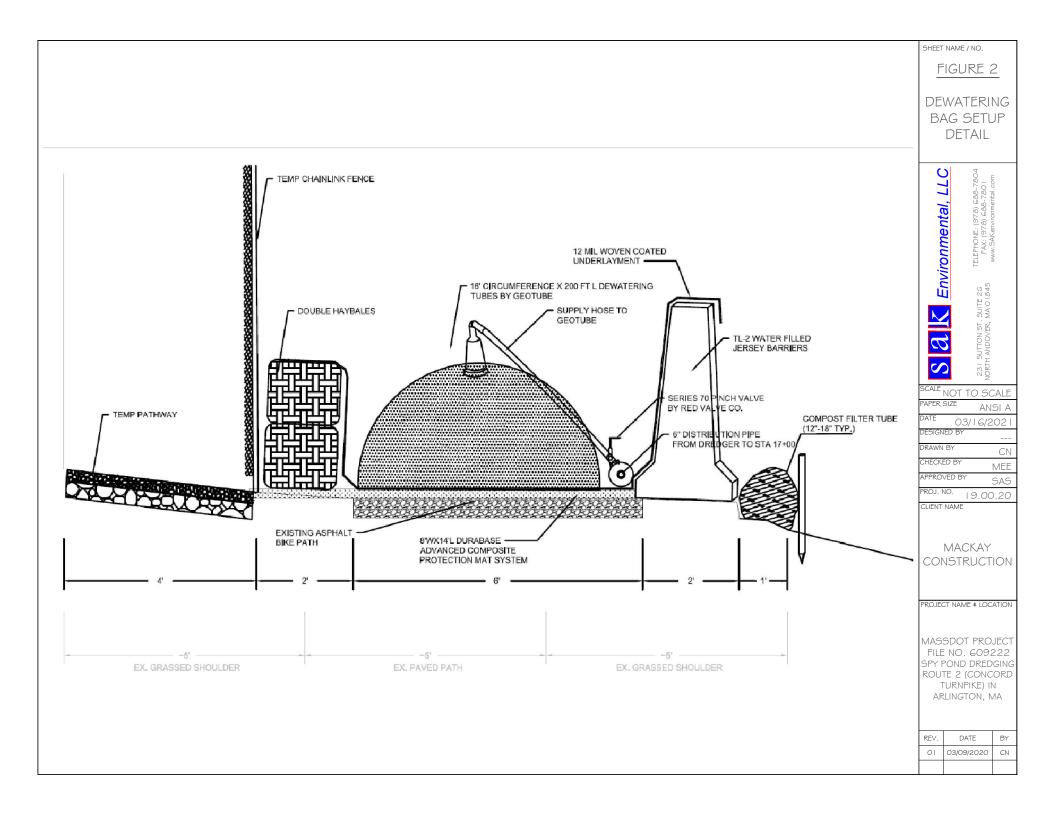
Prepared by:

Chhavan Nuon Project Engineer Reviewed by:

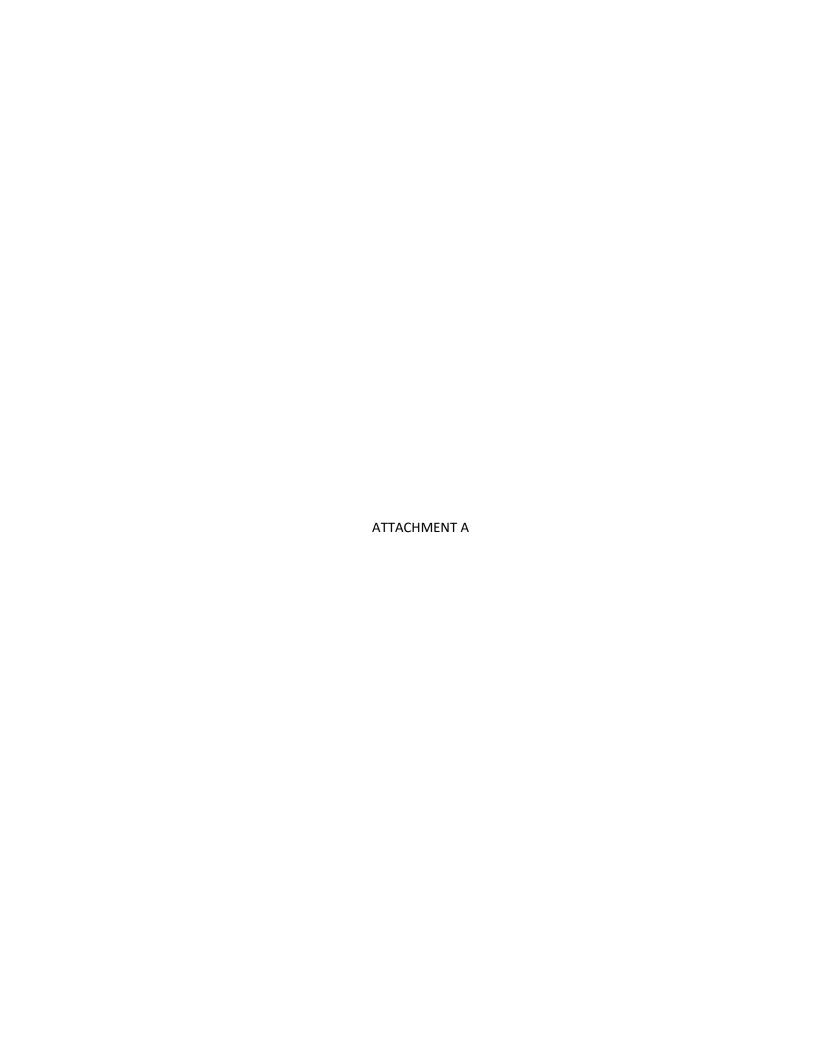
Meghan Emmert Project Manager

ENCLOSURES


Figure 1 Process Flow Diagram


Figure 2 Dewatering Bag Setup Detail Figure 3 Effluent Discharge Locations

Attachment A SmartFeed Specification


Attachment B Chemical SDS

Attachment C Written Rationale of Use

Process Control and Reporting For Geotube® Chemically Conditioned Slurry Dewatering

Manufacturer of Supporting Technologies for Geotube® Applications

Mineral Processing Services, LLC

Dewatering using Geotube® containers is a cost-saving technology for many slurry dewatering projects.

SmartFeed[™] process controls contribute to a successful Geotube[®] application, maintaining benefits throughout the project.

Model 1200 EM

- * Process up to 1,200 gpm slurry flow process
- * Condition up to 12% d.s. raw feed
- Deliver up to 70 gpm of .5% polymer dilution

Site Requirements

- * 6" pipe connection for slurry feed
- * 2"pipe connection 100 gpm @ 80 psi
- * Power 60 amps 480 volts 3 phase
- * Lay-down area 40' x 12'

Model 2500 EM

- * Treats up to 2,500 gpm slurry flow
- * Process slurry up to 12% d.s
- * Can deliver up to 400 gpm of .5% polymer dilution

Site Requirements

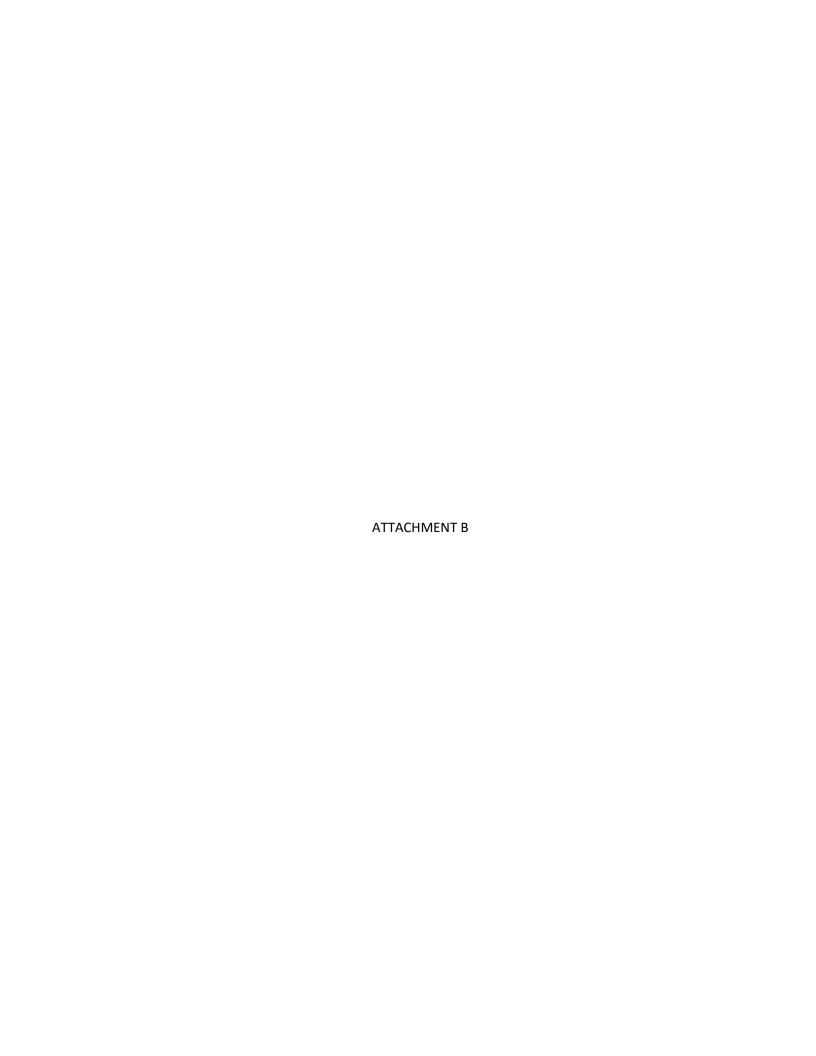
- * 8" pipe connection for slurry feed
- * 4" pipe connection 400 gpm @ 80 psi
- * Power 100 amps 480 volts 3 phase
- * Lay-down area 40' x 30'

Model 4000 EM

- * Treats up to 4,000 gpm slurry flow
- * Process slurry up to 25% d.s.
- * Can deliver up to 1,200 gpm .5% polymer dilution

Site Requirements

- * 12" pipe connection for slurry feed
- * 4" pipe connection 600 gpm @ 100 psi "dilution water"
- * 4" pipe connection 600 gpm @ 100 psi "post dilution"
- * Power 200 amps 480 volts 3 phase
- * Lay-down area 80' x 40'



Mineral Processing Services, LLC PMB 128, 50 Market St., South Portland, ME 04106

Phone: (207) 741-2955 · Fax: (207) 799-3782

Web: http://www.smartfeedsystem.com · E-mail: jmmps@maine.rr.com

Safety Data Sheet

Aries 3196

Section 1. Identification

Product Identifier Aries 3196

Synonyms N/A
Manufacturer Stock N/A

Numbers

Recommended use Water treatment, flocculant

Uses advised against N/A

Manufacturer Contact

Address Aries Chemical Incorporated

PO BOX 519

Beaver Falls, NY, 13305

Phone Emergency Phone Fax

(315) 346-1489 (800) 535-5053 (315) 346-1658

INFOTRAC

Email Website

aries@arieschem.com www.arieschem.com

Section 2. Hazards Identification

Classification EYE DAMAGE/IRRITATION - Category 2
Signal Word Warning

Pictogram

Hazard Statements Causes serious eye irritation

Precautionary Statements

Response

If eye irritation persists: Get medical advice/attention.

IF IN EYES: Rinse cautiously with water for several minutes, including under eyelids. Remove contact lenses, if present and easy to do. Continue rinsing. IF INHALED: Remove to fresh air. If difficulty breathing, seek immediate medical attention.

IF ON SKIN: Take off contaminated clothing and shoes immediately. Wash off with plenty of water. Consult a physician if necessary.

IF SWALLOWED: Do NOT induce vomiting. Rinse mouth with water. Immediately

call a physician. IN CASE OF FIRE: Use water spray, carbon dioxide, dry chemical. Cool tanks

with water spray. Burning may product toxic and irritant gases.

IN CASE OF SPILL: Contain and collect with non-combustible material (ie. sand, earth). Place in waste regulated container. Flush away traces with water. Prevent material from entering water systems. CAUTION: Contaminated surfaces may

be extremely slippery.

Prevention

Avoid contact with eyes, skin and clothing.

Avoid release to the environment. Wash thoroughly after handling.

Wear protective gloves, tightly fitting safety goggles, protective clothing, NIOSH

approved respiratory protection.

Storage

Store at room temperature (between 39.2 and 89.6 F).

Store away from strong oxidizing agents. Do not use iron, copper or aluminum

containers or equipment. Store in well-ventilated place.

Disposal

Dispose of contents in accordance with local, state and federal regulations.

Ingredients of unknown toxicity

0%

Hazards not Otherwise

Classified

No Data Available

Section 3. Ingredients

CAS	Ingredient Name	Weight %
64742-47-8	Distillates, petroleum, hydrotreated light	20% - 30%
77-92-9	Citric acid	1% - 5%
68002-97-1	Alcohols, C10-16, ethoxylated	<2 %

Occupational exposure limits, if available, are listed in Section 8.

Section 4. First-Aid Measures

Ingestion

IF SWALLOWED: Give 1-2 glasses of water if conscious and alert. Do NOT induce vomiting. Consult a physician if necessary. Never give anything by mouth to an unconscious person.

Skin IF ON SKIN: Wash off immediately with soap and plenty of water. Remove

exposed or contaminated clothing, taking care not to contaminate eyes. Get

medical attention if irritation develops and persists.

IF IN EYES: Immediately hold eyelids apart and flush eyes with plenty of water Eye

for at least 15 minutes. Get medical attention if redness or irritation develops.

Inhalation IF INHALED: Move to fresh air. If not breathing, give artificial respiration. If

breathing is difficult, give oxygen. Get medical attention if symptoms persist.

Section 5. Fire Fighting Measures

Suitable Extinguishing

Media

Water spray, carbon dioxide, dry chemical.

Unsuitable Extinguishing

Media

No information available.

Fire fighting instructions

As in any fire, wear self-contained breathing apparatus pressuredemand, MSHA/NIOSH (approved or equivalent) and full protective gear. Stay upwind of fire. Move containers from fire area if possible to do so without risk to personnel. Cool exposed containers with water spray after extinguishing fire. Water runoff can cause environmental damage. Dike and collect water used

to fight fire.

Flammable Properties

During a fire, irritating and toxic gases may be generated by thermal decomposition or combustion such as carbon monoxide, carbon dioxide,

ammonia and/or oxides of nitrogen.

Section 6. Accidental Release Measures

Personal precautions

Wear self-contained breathing apparatus and protective suit. Where the exposure level is known, wear approved respirator suitable for the level of exposure.

Clean-up

Environmental precautions Try to prevent leakage or spillage from entering soil, drains or water sources. Forms slippery surfaces on floors, posing an accident risk. Dike and absorb spill area with inert material (e.g., dry sand or earth), then place in a DOT approved chemical waste container for disposal. Deactivation materials include lime, limestone, sodium carbonate (soda ash) and sodium bicarbonate (baking soda). After removal, flush contaminated area thoroughly with water.

Section 7. Handling and Storage

Handling Avoid contact with eyes, skin, and clothing. Avoid inhalation of vapor or mist.

Avoid breathing aerosols, mists, spray, fumes or vapors. Use with adequate ventilation and employ respiratory protection where mist or spray may be generated. Wash hands before eating, drinking or smoking. Wash thoroughly after handling. Handle in accordance with good industrial hygiene and safety

practice.

Storage Store away from oxidizing agents. Avoid contact with alkaline materials which

> will degrade the polymer. Avoid anionic polymers. To avoid product degradation and equipment corrosion, do not use iron, copper or aluminum containers or equipment. Store at room temperature (between 39.2 and 89.6 F) in original container. Emergency eye wash and safety shower should be located nearby.

Section 8. Exposure Controls/Personal Protection

Occupational Exposure Ingredient Name ACGIH TLV OSHA PEL **STEL** Limits Distillates, petroleum, hydrotreated light N/A 1200 mg/m3 1200 mg/m3 Citric acid N/A N/A N/A N/A N/A N/A Alcohols, C10-16, ethoxylated Personal Protective Goggles, Gloves, Respirator Equipment Engineering controls Observe published airborne exposure limits. Use mechanical ventilation such as dilution and local exhaust. If exposures exceed the PEL or TLV, use NIOSH/MSHA approved respirator in Respiratory protection accordance with OSHA Respiratory Protection Requirements unders 29 CFR 1910.134. If there are no applicable or established exposure limit requirements or guidelines, general ventilation should be sufficient. Eye protection Use approved safety goggles or safety glasses, as described in OSHA 29 CFR 1910.133. Splash goggles with a faceshield may be needed if splash hazards exist. Hand/skin protection Wear chemical resistant gloves and impermeable protective clothing.

Section 9. Physical and Chemical Properties

Physical State	Liquid
Color	Opaque/ greenish to milky white
Odor	Hydrocarbon-like
Odor Threshold	No data available.
Solubility	Limited by viscosity.
Partition coefficient Water/n-octanol	No data available.
VOC%	N/A
Viscosity	>20.5 mm2/s @ 40 C
Specific Gravity	N/A
Density lbs/Gal	N/A
Pounds per Cubic Foot	N/A
Flash Point	>100 C
FP Method	Closed cup
рН	3-6
Melting Point	No data available.
Boiling Point	100 C
Boiling Range	No data available.
LEL	N/A
UEL	N/A
Evaporation Rate	No data available.
Flammability	No data available.
Decomposition Temperature	No data available.
Auto-ignition Temperature	No data available.
Vapor Pressure	Similar to water.
Vapor Density	No data available.

Additional Information Specific gravity: 1.01-1.03

Section 10. Stability and Reactivity

Chemical stability Stable under normal conditions of storage and handling.

Hazardous polymerization
Additional Information

Hazardous polymerization will not occur under normal storage and handling.

-Materials to avoid: Strong oxidizing agents. To avoid product degradation and equipment corrosion, do not use iron, copper or aluminum containers or

equipment.

-Hazardous decomposition products: Oxides of nitrogen, ammonia, hydrogen

chloride, sulfur dioxide, carbon dioxide, carbon monoxide.

Section 11. Toxicological Information

Eye contact May cause eye irritation.

Skin contact Causes skin irritation.

Inhalation See data below.

Aspiration hazard Not classified.

Sensitization Not sensitizing.

Carcinogenicity Not classified.

Reproductive toxicity Not classified.

Specific target organ toxicity Not classified.

- single exposure

Specific target organ toxicity No known effects.

- repeated exposure

Additional Information Acute Toxicity

-Based on similar product LD50/Oral/Rat: >5,000 mg/kg LC50/Inhalation/4hr/Rat: >20 mg/L LD50/Dermal/Rabbit: >2,000 mg/kg

Section 12. Ecological Information

Aquatic toxicity See information below.

Bioaccumulative potential Bioaccumulation is unlikely.

Mobility Water solubility limited by viscosity.

Persistence and degradability

Not readily biodegradable.

Additional Information Aquatic Toxicity:

LC50/96 hr/Branchydanio rerio (zebra fish): >1-10 mg/L (OECD Test Guideline

203)

EC50/48 hr/Daphnia magna (water flea): 10-100 mg/L (Similar product) LC50/48 hr/Pimephales promelas (fathead minnow): 8.54 mg/L

Section 13. Disposal

Disposal Recycling, recovery and reuse of materials is recommended if permitted by

regulations. If recycling is not practicable, dispose of in accordance with local,

state and federal regulations.

Section 14. Transport Information

UN Number N/A

UN Proper Shipping Name Not classified as dangerous in the meaning of transport regulations.

DOT Classification N/A Packing Group N/A

Section 15. Regulatory Information

Additional Information FEDERAL REGULATIONS

-All components of this product are included on the TSCA list.

-SARA Title III Section 311/312 Hazard Categories: Immediate-Yes. Delayed-No.

Fire-No. Pressure-No. Reactivity-No.

-SARA 313: This material does not contain any chemical components that exceed the threshold reporting levels established by SARA Title III, Section 313.

-California Proposition 65: This product contains a chemical or chemicals known to the State of California to cause cancer, birth defects or other

reproductive harm.

Acrylamide (79-06-1), <0.1% by wt.

INTERNATIONAL REGULATIONS

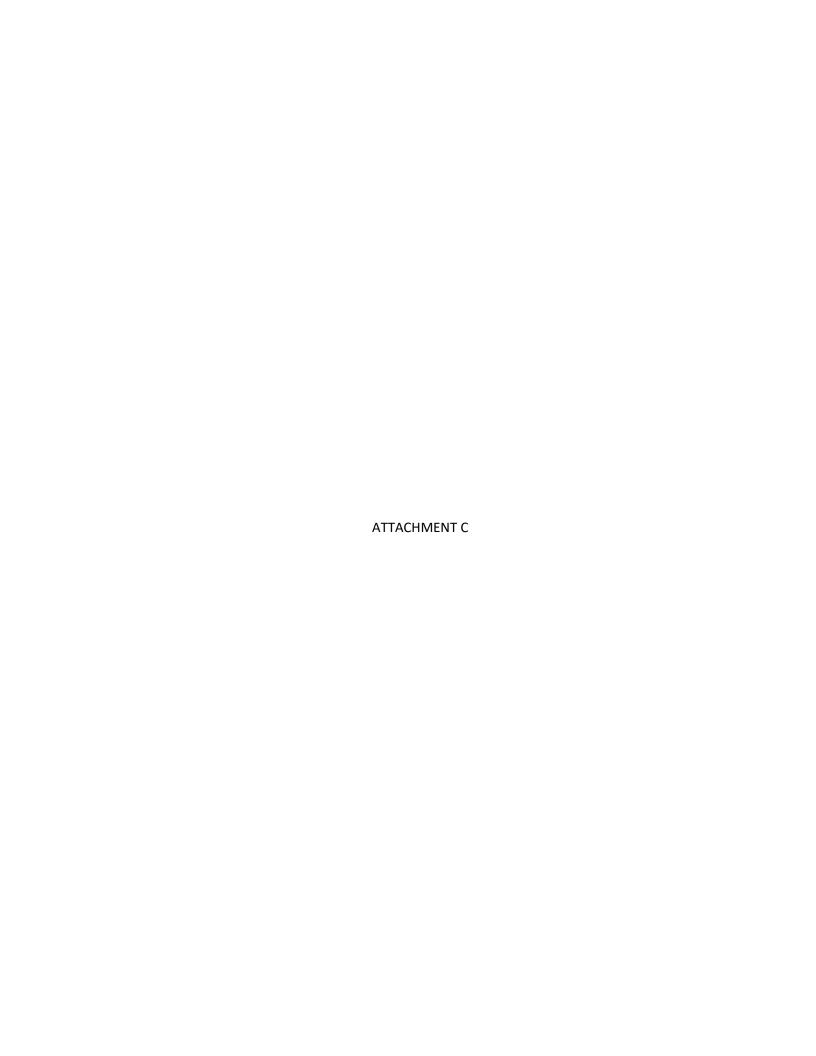
-All components of this product are included in or are not required to be listed on the following countries inventories: Europe (EINECS), Australia (AICS), Canada (DSL), China, Japan (ENCS), Korea (ECL), Philippines (PICCS), Taiwan

-This product's New Zealand Inventory of Chemical Substances (NZIoC) status has NOT been determined.

Section 16. Other Information

Revision Date 7/16/2018

Version number 4


Reason for Revision Updated Composition (Section 3) to reflect changes in composition and/or

associated hazards. Updated Section 11: Toxicological Information.

Disclaimer While Aries Chemical Inc. believes the data set forth herein is accurate as of the

date hereof, Aries Chemical makes no warranty with respect thereto and expressly disclaims all liability for refinance thereon of such data and is offered

solely for your consideration, investigation and verification.

Mineral Processing Services LLC

March 8, 2021

Kyle Annutto – Chief Operating Officer MacKay Construction Services, Inc. 197 Ballardvale Street Wilmington, MA 01887 Office: 617-314-6213

Cell: 781-760-1885 - Kyle

Re: SPY POND Geotube® Polymer Evaluation

Testing Scope:

Chemical program evaluation for sediment dewatering utilizing Geotube® dewatering structures.

Testing Overview:

Mineral Processing Services received freshwater sediment and background water on March 5rh 2021. The sample obtained was sediment black/brown silt clay having a percent dry solid of 34.88% D.S. The second sample was background water having 32 mg/l total suspend solids. The background water was used for dilution to replicate what the hydraulic dredging is expected to yield, being 4.0 % dry solids. Several aliquots were created at 300 mg/l each for the chemical program evaluation.

Testing Method:

Samples were treated with several polymers evaluating water quality as total suspended solids for direct discharge to the watercourse. Samples received a dosage of polymers shown on the dosage log attached as PPM and lbs. of polymer per dry ton of sediment solids. Condition samples were run on a RDT rapid dewatering testing apparatus procedure attached.

Test Results:

The samples treated with Aries Chemical 3196 yield the highest dewatering rates with water quality meeting guidelines of dredge process water return of ≤45 TSS total suspended solids or turbidity lower than the receiving waters of tested background water of 32 mg/l total suspended solids.

Mineral Processing Services LLC

Photo Jar Testing:

Regards,

James E. Meagher, Principal

50 Market St. PMB 128 So. Portland, Maine 04106

Attachments:

- Chemical Dosage Mass-balance
- > RDT Test Method
- ➤ TenCate Certification Laboratory

