

NOTICE OF INTENT FOR DISCHARGE PURSUANT TO MASSACHUSETTS REMEDIATION GENERAL PERMIT MAG9100000

DRISCOLL SCHOOL

BROOKLINE, MASSACHUSETTS

FEBRUARY 3, 2021

Prepared For:
UNITED STATES ENVIRONMENTAL PROTECTION AGENCY
REMEDIATION GP PROCESSING
INDUSTRIAL PERMIT UNIT (OEP 06-4)
5 POST OFFICE SQUARE, SUITE 100
BOSTON, MA 02109-3912

On Behalf Of: Town of Brookline 333 Washington Street Third Floor Brookline, MA 02445

PROJECT NO. 6693

2269 Massachusetts Avenue Cambridge, MA 02140 www.mcphailgeo.com (617) 868-1420

United States Environmental Protection Agency Remediation GP Processing Industrial Permit Unit (OEP 06-4) 5 Post Office Square, Suite 100 Boston, MA 02109-3912

Attention: To Whom It May Concern

Reference: Driscoll School, Brookline, Massachusetts

Notice of Intent for Temporary Construction Dewatering Discharge;

Massachusetts Remediation General Permit MAG9100000

Ladies and Gentlemen:

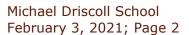
In accordance with the provisions of the Remediation General Permit MAG9100000 (RGP) that was issued to the Commonwealth of Massachusetts by the US EPA, the following is a summary of the site and groundwater quality information in support of a Notice of Intent (NOI) for the discharge of construction dewatering into the Muddy River via the Town of Brookline storm drain system. Temporary discharge of construction dewatering will occur during development of the Michael Driscoll School (MDS) located at 64 Westbourne Terrace in Brookline, Massachusetts (the "subject site"). Refer to **Figure 1**, Project Location Plan for the general site locus.

These services were performed and this permit application was prepared on behalf of The Town of Brookline with the authorization of Jonathan Levi Architects. These services are subject to the limitations contained in **Appendix A**.

The applicable RGP Notice of Intent (NOI) Form is included in **Appendix B**.

Applicant/Operator

The applicant for the Notice of Intent-Remediation General Permit is:


Gilbane Construction 10 Channel Street Boston, MA 02210

Attention: Mr. Robert Braga Jr.

Tel: (617) 960-2956

Existing Conditions

The existing MDS fronts onto Westbourne Terrace to the north, and is bounded by Bartlett Street to the west. Bartlett Crescent parallels the school to the southwest. Currently, an existing 2 to 3-story brick school building occupies the northern portion of the site, a playground, an athletic field and tennis courts are present at the southern and eastern ends of the school property. The existing ground surface across the project site generally slopes

downward from north to south ranging from approximately Elevation +125 along Westbourne Terrace to about Elevation +103 along Washington Street. Elevations cited herein are in feet and are referenced to the Town of Brookline Datum.

Proposed Scope of Site Development

Based on the information provided to us, the proposed 4-story Driscoll School building will occupy a footprint of approximately 43,900 square feet. The proposed structure will include a basement level that extends below approximately half of the building footprint. Within the northern and eastern portions of the building, the basement will occupy a footprint of approximately 25,000 square feet at approximately Elevation +88. The basement is planned to contain a gymnasium, locker rooms, storage, and mechanical space. The first floor of the new building is understood to be at approximately Elevation +106 with a portion of the first-floor space extending beyond the basement footprint to the south and west.

<u>Site Environmental Setting, Review of MA DEP-listed Disposal Sites, Endangered</u> Species and Surrounding Historical Places

Based on the current Massachusetts Geographic Information Systems (GIS) DEP Priority Resources Map of Brookline, the subject site is not located within the boundaries of a Potentially Productive Aquifer or within a Zone II, Interim Wellhead Protection Area as defined by the Massachusetts Department of Environmental Protection. There are no known public or private drinking water supply wells, no Areas of Critical Environmental Concern, no fish habitats, and no habitats of Species of Special Concern or Threatened or Endangered Species within 500 feet of the subject site. There are no surface water bodies or wetland areas located at the subject site. The nearest surface water body is the Muddy River, classified by the DEP as a Class B Surface Water Body, that is located approximately 1 mile to the east of the subject site. The Muddy River has two approved TMDLs for pathogens and phosphorous. No areas designated as solid waste facilities (landfills) are located within 0.5 miles of the subject site. A copy of the DEP Priority Resources Map depicting the location of the subject site is included in **Appendix C**.

McPhail prepared a Phase I Environmental Site Assessment (ESA) for the property dated November 30, 2018. As documented therein, according to the Massachusetts Department of Environmental Protection (DEP) Waste Site database, the subject site is listed with the DEP under historic Release Tracking Number (RTN) 3-14448 due to a 120-day release condition. As reported by others, RTN 3-14448 is associated with a release of No. 4 fuel oil to soils which was encountered during the replacement of one (1) fuel oil underground storage tank (UST). As identified by the DEP database, RTN 3-14448 was closed out under a Class A-2 Response Action Outcome (RAO) Statement in April of 1997 and a Permanent Solution (regulatory closure) has been achieved for the release. The release area is located within the vicinity of the existing (replacement) UST located beneath the paved parking lot outside of the boiler room that is within the western portion of the existing school building.

A series of subsurface explorations were recently completed at the site to pre-characterize site soils in anticipation of the construction of a new school building. The presence of the

volatile organic compound (VOC) tetrachloroethene ("PCE") and the volatile petroleum hydrocarbon (VPH) fractions C9-C10 Aromatics and C5-C8 Aliphatics (the contaminants of concern or "COCs") were detected in soil at concentrations that exceeded the applicable MA DEP RCS-1 Reportable Concentrations as contained in the Massachusetts Contingency Plan 310 CMR 40.0000 (MCP). Accordingly, the Town of Brookline filed a Release Notification Form (RNF) with the DEP on July 23, 2020 listing the above COCs as reportable releases to soil at the site. Release Tracking Number (RTN) 3-36385 was assigned to the release by the DEP.

Additional explorations were completed at the site to further assess the nature and extent of contamination in soil, and to assess possible impacts of the above COCs to groundwater. The extent of the PCE release to soil has been defined and Reportable Concentrations of PCE in groundwater were not detected. The results of supplemental testing of soil samples obtained from the additional borings in the vicinity of the petroleum/VPH release identified the presence of VPH fractions, 2-methylnaphthalene, ethylbenzene, naphthalene, and p/m-Xylene at concentrations that exceed the MA DEP RCS-1 Reporting Concentration.

The results of sampling and testing of groundwater samples obtained from monitoring wells installed at the site identified the presence of the VPH Fraction C9-C10 Aromatics at a concentration 5,420 μ g/L, which exceeds the MCP RCGW-2 Reportable Concentration of 4,000 μ g/L. Given that the release condition has been identified in a different environmental media (groundwater) than what was previously reported to the DEP, a Revised RNF was submitted to the DEP on November 25 to include VPH Fraction C9-C10 Aromatics in groundwater as a contaminant of concern at the site under RTN 3-36385.

A review of information provided in an Information for Planning and Conservation Trust Resource Report (IPaC Report) prepared by the U.S. Fish and Wildlife Service for the subject site identified the presence of one (1) threatened species in the vicinity of the discharge location and/or discharge outfall. The report identifies the Northern Long-Eared Bat as a threatened species; however, it is unlikely that the development of new structure will impact the Northern Long-Eared Bat. Further, the IPaC Report did not identify the presence of a critical habitat in the vicinity of the discharge location and/or discharge outfall. Based upon the above, the site is considered a Criterion C pursuant to Appendix IV of the RGP. A copy of the IPaC Report is included in **Appendix C**.

The proposed development parcel currently consists of a playground, field and tennis courts and is not individually listed on the State and National Register of Historical Places. It is determined that proposed construction will likely not affect listed historical places and thus construction dewatering that is proposed at the subject site meets the Permit Eligibility Criterion A under the Remediation General Permit. A copy of the database search for the subject site's addresses are included in **Appendix C**.

Construction Site Dewatering

To accommodate the construction of the basement foundations and below-grade space, excavation to construct the lowest-level slab is anticipated to extend from about 17 to 19

feet below the existing ground surface within the eastern portion of the site and slightly deeper at the proposed footing and elevator pit locations. In addition, overexcavation of the fill material could extend up to 5 feet below the footings. To limit potential adverse excavation-related impacts to private property, temporary excavation support is proposed along a majority of the basement. The temporary excavation earth support system will likely consist of a cantilevered soldier pile and timber lagging wall.

Given the proposed area of excavation and the existing school will be maintained through construction, on-site recharge of water is very limited. Therefore, on-site recharge of collected groundwater for temporary excavation dewatering is not considered feasible. Therefore, discharge of collected groundwater during foundation construction into the Town of Brookline's drain system will be required.

A review of the existing site plan indicates that the area surrounding the subject site is serviced by the Town of Brookline catch basins that ultimately flow to the Muddy River. Accordingly, a Remediation General Permit will require discharging the collected water into the Town's drain lines. The locations of storm drains surrounding the subject site are indicated on the attached **Figure 3**. The proposed discharge location is the drain located in the eastern portion of the site, as shown on **Figure 3**.

Based upon the proposed excavation depth and the existing groundwater conditions, it is anticipated that temporary construction dewatering will be required for approximately (6) to (12) months during foundation construction. The proposed dewatering system will consist of well points located around the excavation as well as localized sumping. It is estimated that the maximum continuous groundwater discharge required for foundation construction will be on the order of 250 gallons per minute. This quantity does not include surface runoff which would require removal from the excavation over the limited duration of a rain storm and shortly thereafter.

Summary of Groundwater Analysis

In April, July and October, 2020, and January 2021, McPhail Associates, LLC obtained samples of groundwater from monitoring wells B-103(OW), B-106A(OW) B-116(OW), B-310(OW), B-303I(OW) and B-303C(OW) which are located throughout the eastern portion of the subject site within the area of proposed excavation and dewatering. The groundwater sampling events completed during April, July and October, 2020 were performed as part our assessment of the PCE and petroleum hydrocarbon release conditions as previously discussed. Groundwater samples obtained during that time period were submitted to a certified laboratory for analysis for the presence of VOCs, VPH, and extractable petroleum hydrocarbons (EPH). More recently, the January 2021 sampling event was completed to obtain samples of groundwater for submittal to a certified laboratory for analysis for the presence of compounds required under the EPA's Remediation General Permit (RGP) application, including total suspended solids (TSS), total residual chlorine, cyanide, ammonia, chloride, hardness, total recoverable metals as well as pH, total petroleum hydrocarbons, and ethanol. The results of the laboratory analysis are summarized in **Table 1**, and laboratory data is included in **Appendix D**.

The results of the laboratory analysis indicated that the detected concentrations of chloride and iron exceed the 2002 EPA recommended chronic freshwater human health consumption and/or aquatic life criteria.

Pursuant to Section 4.2.2 of the EPA 2017 RGP, a surface water body sample was obtained from the Muddy River and submitted for testing for the presence of pH, ammonia nitrogen, Hardness, and the RGP 12 total metals. The results of the laboratory analysis are summarized in **Table 2** and the laboratory data is included in **Appendix E**.

A Dilution Factor (DF) was calculated for the detected levels of metals pursuant to the procedure contained in RGP MAG910000, Appendix V. The purpose of the DF calculation is to establish Total Recoverable Limits for metals, taking into consideration the anticipated dilution of the detected analyte upon discharge into the Muddy River. The calculated DF was then used to find the appropriate Dilution Range Concentrations (DRCs) contained in MAG910000, Appendix IV. The Minimum Flow Rate calculated by the USGS Streamstats GIS database at the location of discharge into the Muddy River for 7 consecutive days with a recurrence interval of 10 years (7Q10 flow) is 0.352 MGD thus resulting in a DF of 1.97 assuming a design flow rate of 250 gallons per minute (gpm).

With the exception of iron, results of laboratory testing did not detect concentrations of the tested compounds in excess of the Water Quality-Based Effluent Limitations (WQBELs). It is noted that the concentrations of iron did not exceed applicable MCP reporting thresholds established in Appendix VI of the RGP. It is anticipated that the construction dewatering treatment system that is discussed below will reduce concentrations of iron in the effluent to below the applicable TBELs.

In accordance with the RGP and given that the subject site is an MCP site, the proposed dewatering associated with this permit application is considered Contaminated Site Dewatering from Sites with Known Contamination (Category III-G). Based on historical and current groundwater analysis completed at the site and the constituents of concern (COCs) detected, subcategory A (Inorganics), subcategory B (non-halogenated VOCs), and subcategory F (fuel parameters) apply to the discharge.

Groundwater Treatment

Based on the results of the above referenced groundwater analyses, it is recommended that that a minimum 10,000-gallon capacity settling tank and bag filters be utilized to settle out suspended particulates in the discharge during construction dewatering to meet applicable effluent limits established by the US EPA prior to off-site discharge. A schematic of the treatment system is shown on **Figure 4**.

Summary and Conclusions

The purpose of this report is to assess site environmental conditions and groundwater data to support the Notice of Intent for temporary discharge of construction dewatering under

Massachusetts Remediation General Permit (RGP) during development of the MDS located in Brookline, Massachusetts.

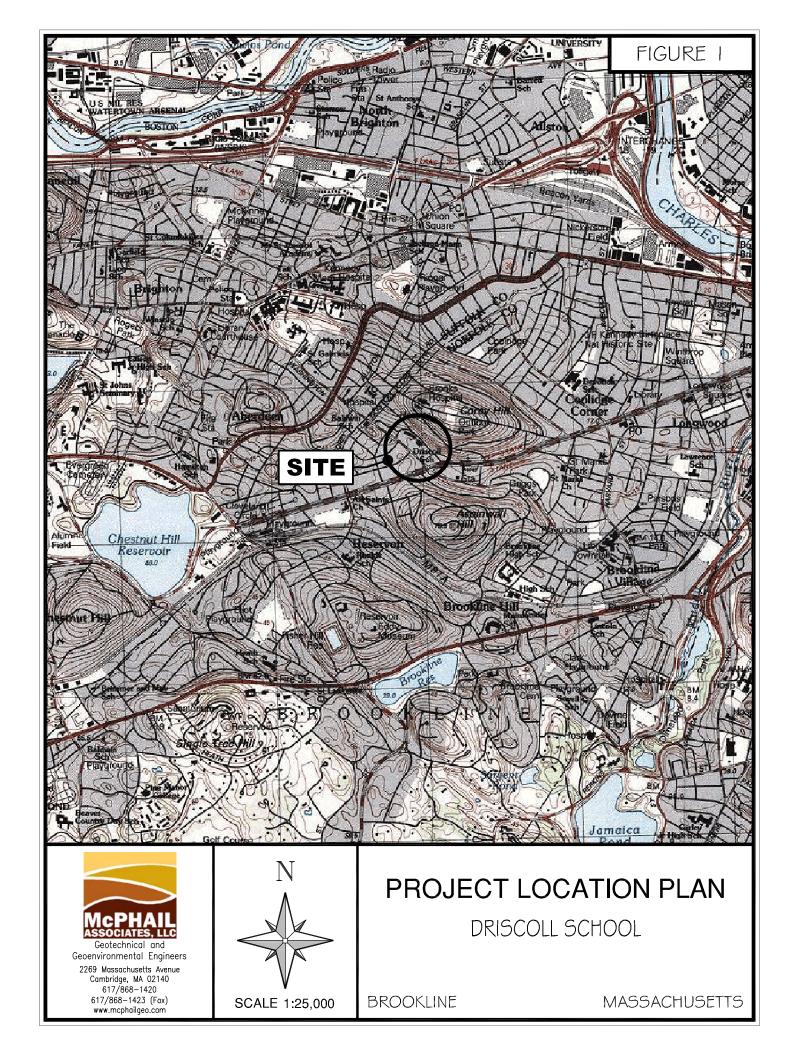
Based on the results of the above referenced groundwater analyses, it is recommended that treatment of construction dewatering consisting of a minimum of one (1), 10,000-gallon capacity settling tank and bag filters be utilized to meet the applicable discharge limits of iron and chloride. However, should the effluent monitoring results indicate levels of TSS in excess of the limits established in the Massachusetts RGP, additional mitigative measures will be implemented to meet the allowable discharge limits.

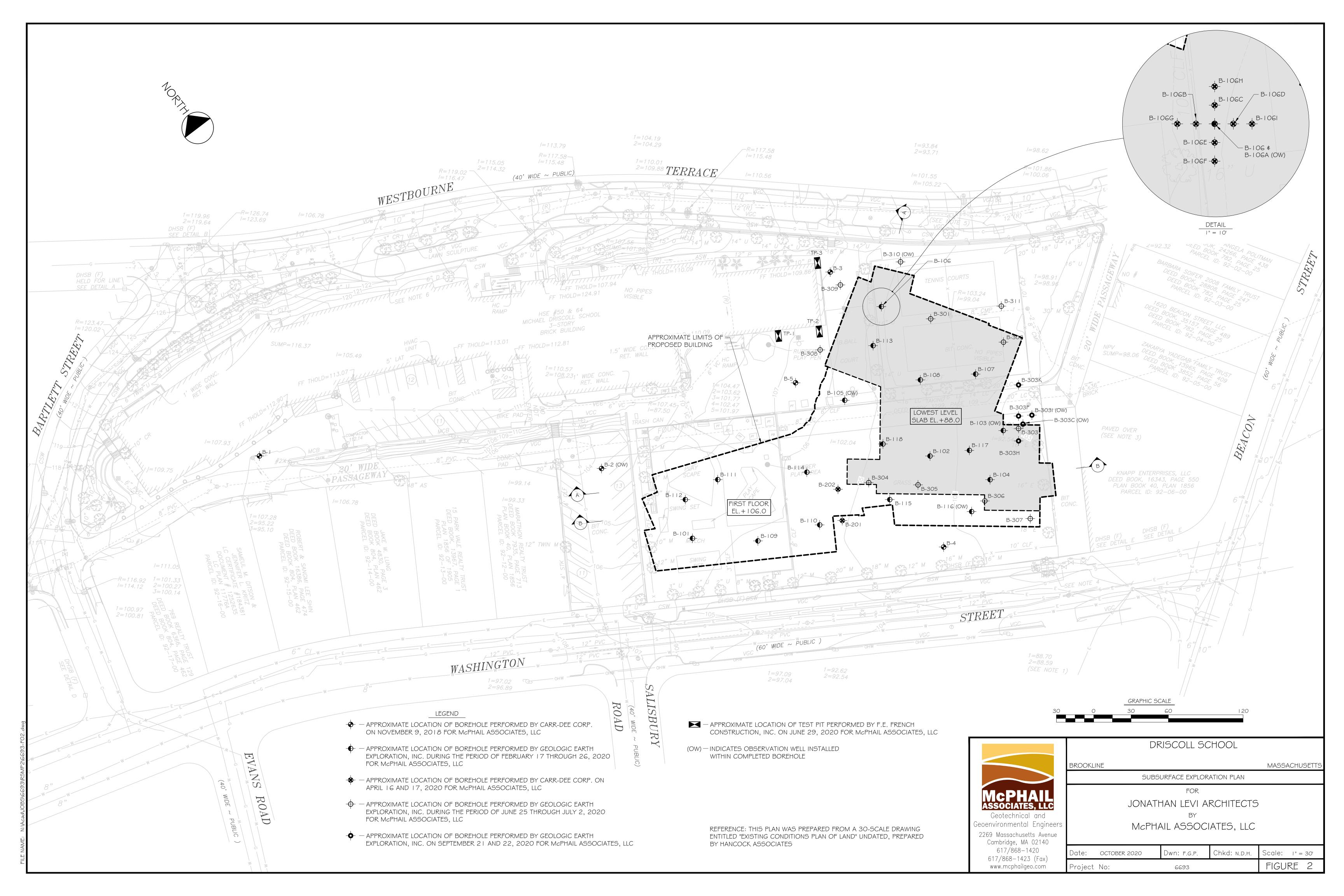
We trust that the above satisfies your present requirements. Should you have any questions or comments concerning the above, please do not hesitate to contact us.

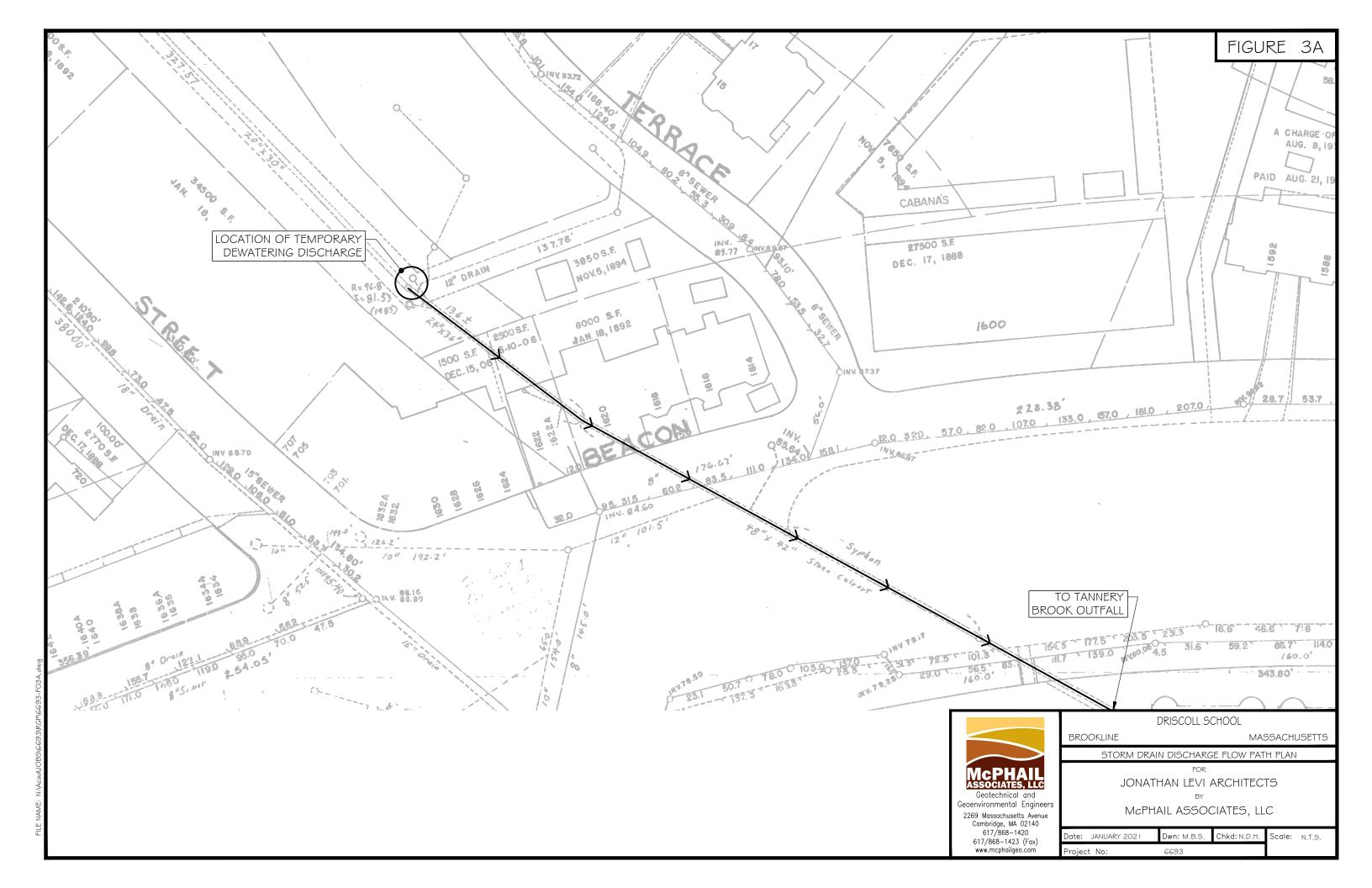
Very truly yours,

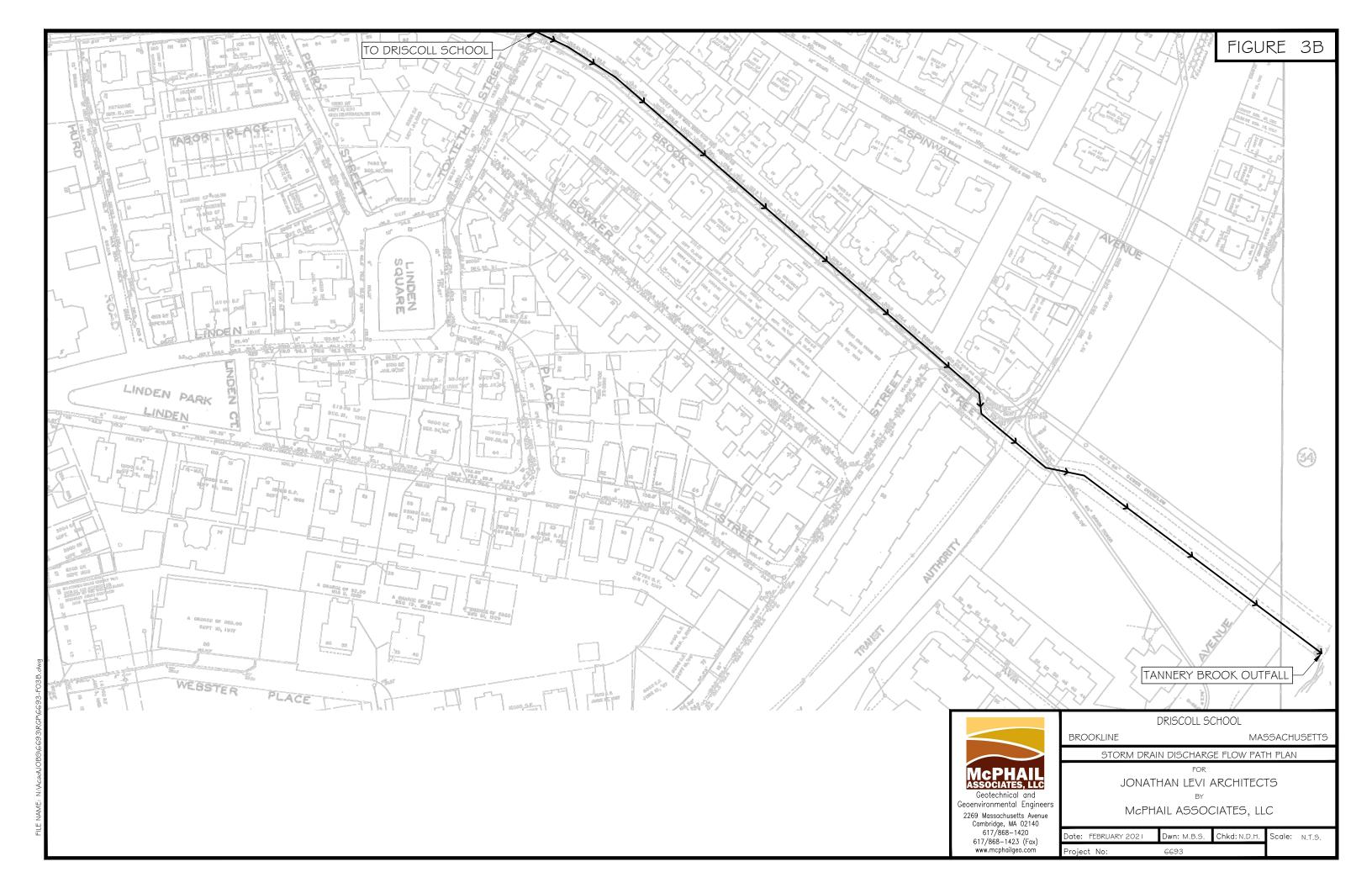
McPHAIL ASSOCIATES, LLC

Nicholas D. Hodge

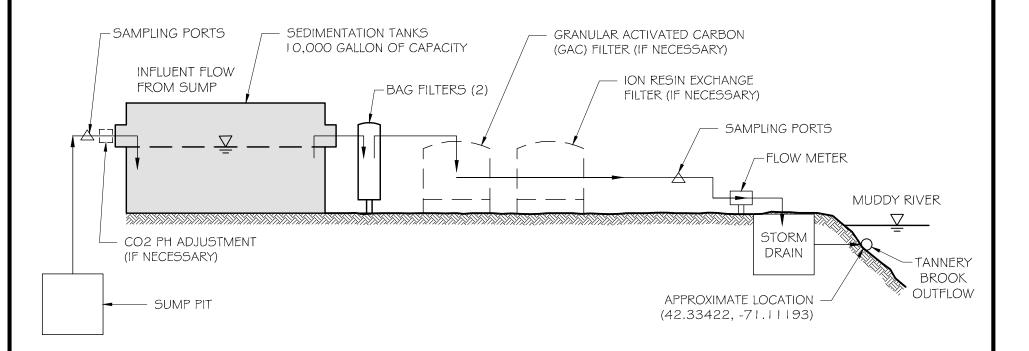

Nicholas D. Hodge


Joseph G. Lombardo, Jr., L.S.P.


NDH/jgl


\\McPhail-fs2\McPhail\Working

Documents\Reports\6693_DriscollSchoolBrookline_RGP_020321.docx



FIGURE

DRISCOLL STREET

BROOKLINE

SCHEMATIC OF TREATMENT SYSTEM

FOR

JONATHAN LEVI ARCHITECTS

BY

McPHAIL ASSOCIATES, LLC CONSULTING GEOTECHNICAL ENGINEERS

Date: JANUARY 2021 Dwn: M.B.S. Chkd: N.D.H.

6693

Scale: N.T.S.

MASSACHUSETTS

k o gurron					* ***				********
LOCATION	2002 EPA -		B-106A(OW)	B-103(OW)	B-116 (OW)	B-310 (OW)	B-303I	B-303C	B-106A(OW)
SAMPLING DATE	Freshwater	n.com. •	4/21/2020	7/30/2020	7/30/2020	7/30/2020	10/7/2020	10/7/2020	1/27/2021
LAB SAMPLE ID	Aquatic Life	RCGW-2	L2016503-01	0 1 1	G 1 (6 1 1	L2042881-01	L2042881-02	L2104344-01
SAMPLE TYPE	Chronic		Groundwater 16'	Groundwater 18'	Groundwater 18'	Groundwater 18'	Groundwater 18'	Groundwater 18'	WATER 18'
SAMPLE DEPTH (ft.)	Criteria		10	18	18	18	18	18	18
General Chemistry Chromium, Trivalent (ug/l)	74	600	-	-	_	_		_	ND(10)
Solids, Total Suspended (ug/l)	74	000		-				-	6700
Cyanide, Total (ug/l)	5.2	30	-	_	-	-			ND(5)
Chlorine, Total (ug/l) Chlorine, Total Residual (ug/l)	J.2	30	-	-	-	-		-	ND(20)
pH (H)(SU)			-	-	-	-		-	6.5
Nitrogen, Ammonia (ug/l)			-	_	-	-	-	-	569
TPH, SGT-HEM (ug/l)		5000	-	-	-	_	_	_	ND(4400)
Chromium, Hexavalent (ug/l)	11	300	-	-	-	-	-	-	ND(10)
Ethanol (mg/l)			-	-	-	-	-	-	ND(20)
Anions (ug/l)									
Chloride	230000		-	-	-	-	-	-	431000
Total Hardness (ug/l)									
Hardness			-	-	-	-	-	-	235000
Total Metals (ug/l)									
Antimony, Total		8000	-	-	-	-	-	-	ND(4)
Arsenic, Total	150	900	-	-	-	-	-	-	ND(1)
Cadmium, Total	0.25	4	-	-	-	-	-	-	ND(0.2)
Chromium, Total	ļ	300	-	-	-	-	-	-	ND(1)
Copper, Total		100000	-	-	-	-	-	-	ND(1)
Iron, Total	1000		-	-	-	-	-	-	2070
Lead, Total	2.5	10	-	-	-	-	-	-	ND(1)
Mercury, Total Nickel. Total	0.77	20 200	-	-	-	-	-	-	ND(0.2)
	52	100	-	-	-	-		-	ND(2) ND(5)
Selenium, Total Silver. Total	5	7	-	-	-	-		-	ND(5) ND(0.4)
Zinc, Total	120	900		-	-	-		-	ND(0.4) ND(10)
MCP Volatile Organics (ug/l)	120	500	-	-	- +	-	-	-	14D(10)
Methylene chloride		2000	ND(2)	ND (5.0)	ND (5.0)	ND (5.0)	-	-	-
1,1-Dichloroethane		2000	ND(1)	ND (1.0)	ND (1.0)	ND (1.0)		-	-
Chloroform		50	ND(1)	ND (2.0)	ND (2.0)	ND (2.0)			-
Carbon tetrachloride		2	ND(1)	ND (1.0)	ND (1.0)	ND (1.0)	-	-	-
1,2-Dichloropropane		3	ND(1)	ND (1.0)	ND (1.0)	ND (1.0)	_	_	-
Dibromochloromethane		20	ND(1)	ND (1.0)	ND (1.0)	ND (1.0)	_	_	-
1,1,2-Trichloroethane		900	ND(1)	ND (1.0)	ND (1.0)	ND (1.0)	-	-	-
Tetrachloroethene		50	ND(1)	ND (1.0)	ND (1.0)	ND (1.0)	-	-	-
Chlorobenzene		200	ND(1)	ND (1.0)	ND (1.0)	ND (1.0)	-	-	-
Trichlorofluoromethane		100000	ND(2)	ND (2.0)	ND (2.0)	ND (2.0)	-	-	-
1,2-Dichloroethane		5	ND(1)	ND (1.0)	ND (1.0)	ND (1.0)	-	-	-
1,1,1-Trichloroethane		4000	ND(1)	ND (1.0)	ND (1.0)	ND (1.0)	-	-	-
Bromodichloromethane		6	ND(1)	ND (1.0)	ND (1.0)	ND (1.0)	-	-	-
trans-1,3-Dichloropropene		10	ND(0.4)	ND (0.40)	ND (0.40)	ND (0.40)	-	-	-
cis-1,3-Dichloropropene		10	ND(0.4)	ND (0.40)	ND (0.40)	ND (0.40)	-	-	-
1,3-Dichloropropene, Total		10	ND(0.4)	-	-	-	-	-	-
1,1-Dichloropropene			ND(2)	ND (0.50)	ND (0.50)	ND (0.50)	-	-	-
Bromoform		700	ND(2)	ND (1.0)	ND (1.0)	ND (1.0)	-	-	-
1,1,2,2-Tetrachloroethane		9	ND(1)	ND (0.50)	ND (0.50)	ND (0.50)	-	-	-
Benzene		1000	ND(0.5)	ND (1.0)	1.7	ND (1.0)	-	-	-
Toluene		40000	ND(1)	1.2	ND (1.0)	ND (1.0)	-	-	-
Ethylbenzene Chloromethane	+	5000 10000	ND(1) ND(2)	53 ND (2.0)	34 ND (2.0)	ND (1.0) ND (2.0)	<u> </u>	-	-
Bromomethane	 	7	ND(2)	ND (2.0)	ND (2.0)	ND (2.0)	<u> </u>	-	-
Vinyl chloride		2	ND(1)	ND (2.0)	ND (2.0)	ND (2.0)	-	-	-
Chloroethane	† †	10000	ND(1)	ND (2.0)	ND (2.0)	ND (2.0)		-	-
1,1-Dichloroethene	† 1	80	ND(1)	ND (1.0)	ND (1.0)	ND (1.0)	-	-	-
trans-1,2-Dichloroethene		80	ND(1)	ND (1.0)	ND (1.0)	ND (1.0)	-	-	-
Trichloroethene		5	ND(1)	ND (1.0)	ND (1.0)	ND (1.0)	-	-	-
1,2-Dichlorobenzene		2000	ND(1)	ND (1.0)	ND (1.0)	ND (1.0)	-	-	-
1,3-Dichlorobenzene		6000	ND(1)	ND (1.0)	ND (1.0)	ND (1.0)	-	-	-
1,4-Dichlorobenzene		60	ND(1)	ND (1.0)	ND (1.0)	ND (1.0)	-	-	-
Methyl tert butyl ether		5000	ND(2)	ND (1.0)	ND (1.0)	ND (1.0)		-	-
p/m-Xylene		3000	ND(2)	94	3.3	ND (2.0)	-	-	-
o-Xylene		3000	ND(1)	31	ND (1.0)	ND (1.0)	-	-	-
Xylenes, Total	oxdot	3000	ND(1)	-		-	-	-	-
cis-1,2-Dichloroethene	ļ	20	ND(1)	1.1	ND (1.0)	ND (1.0)	-	-	-
1,2-Dichloroethene, Total	ļ		ND(1)			-	-	-	-
Dibromomethane	.	50000	ND(2)	ND (1.0)	ND (1.0)	ND (1.0)	-	-	-
1,2,3-Trichloropropane	.	10000	ND(2)	ND (2.0)	ND (2.0)	ND (2.0)	-	-	-
Styrene		100	ND(1)	ND (1.0)	ND (1.0)	ND (1.0)	-	-	-
Dichlorodifluoromethane	 	100000	ND(2)	ND (2.0)	ND (2.0)	ND (2.0)	-	-	-
Acetone	 	50000	ND(5)	ND (10)	ND (10)	ND (10)	-	-	-
Carbon disulfide	 	10000	ND(2)	ND (5.0)	ND (5.0)	ND (5.0)	-	-	-
Methyl ethyl ketone	 	50000	ND(5)	ND (10)	ND (10)	ND (10)	-	-	-
Methyl isobutyl ketone	 	50000	ND(5)	ND (10)	ND (10)	ND (10)	-	-	-
2-Hexanone	 	10000	ND(5)	ND (10) ND (1.0)	ND (10)	ND (10)	<u> </u>	-	-
Bromochloromethane Tetrahydrofuran	+	50000	ND(2) ND(2)	ND (1.0) ND (2.0)	ND (1.0) ND (2.0)	ND (1.0) ND (2.0)	<u>-</u>	-	-
2,2-Dichloropropane	+	50000	ND(2) ND(2)	ND (2.0) ND (1.0)	ND (2.0) ND (1.0)	ND (2.0) ND (1.0)			
	+	2		(-/	ND (1.0) ND (0.50)			-	-
1,2-Dibromoethane			ND(2)	ND (0.50)	(טכֿ.ט) עאו	ND (0.50)	-	-	-

LOCATION	2002 EPA -		B-106A(OW)	B-103(OW)	B-116 (OW)	B-310 (OW)	B-303I	B-303C	B-106A(OW)
SAMPLING DATE	Freshwater		4/21/2020	7/30/2020	7/30/2020	7/30/2020	10/7/2020	10/7/2020	1/27/2021
LAB SAMPLE ID	Aquatic Life	RCGW-2	L2016503-01				L2042881-01	L2042881-02	L2104344-01
SAMPLE TYPE	Chronic		Groundwater	Groundwater	Groundwater	Groundwater	Groundwater	Groundwater	WATER
SAMPLE DEPTH (ft.)	Criteria		16'	18'	18'	18'	18'	18'	18'
General Chemistry									
Chromium, Trivalent (ug/l)	74	600	-	-	-	-	-	-	ND(10)
Solids, Total Suspended (ug/l)			-	-	-	-	-	-	6700
Cyanide, Total (ug/l)	5.2	30	-	-	-	-	-	-	ND(5)
Chlorine, Total Residual (ug/l)			-	-	-	-		-	ND(20)
pH (H) (SU)			-	-	-	-	-	-	6.5
Nitrogen, Ammonia (ug/l)			-	-	-	-	-	-	569
TPH, SGT-HEM (ug/l)		5000	-	-	-	-	-	-	ND(4400)
Chromium, Hexavalent (ug/l)	11	300	-	-	-	-	-	-	ND(10)
Ethanol (mg/l)			-	-	-	-		-	ND(20)
Anions (ug/l)									
Chloride	230000		-	-	-	-	-	-	431000
Total Hardness (ug/l)									
Hardness			-	-	-	-	-	-	235000
Total Metals (ug/l)									
Antimony, Total		8000	-	-	-	-	-	-	ND(4)
Arsenic, Total	150	900	-	-	-	-	-	-	ND(1)
Cadmium, Total	0.25	4	-	-	-	-	-	-	ND(0.2)
Chromium, Total		300	-	-	-	-		-	ND(1)
Copper, Total		100000	-	-	-	-		-	ND(1)
Iron, Total	1000		-	-	-	-	ı	-	2070
Lead, Total	2.5	10	-	-	-	-		-	ND(1)
Mercury, Total	0.77	20	-	-	-	-	-	-	ND(0.2)
Nickel, Total	52	200	-	-	-	-	-	-	ND(2)
Selenium, Total	5	100	-	-	-	-	-	-	ND(5)
Silver, Total		7	-	-	-	-	-	-	ND(0.4)
Zinc, Total	120	900	-	-	-	-	•	-	ND(10)
MCP Volatile Organics (ug/l)									
1,3-Dichloropropane		50000	ND(2)	ND (0.50)	ND (0.50)	ND (0.50)	i	-	-
1,1,1,2-Tetrachloroethane		10	ND(1)	ND (1.0)	ND (1.0)	ND (1.0)	-	-	-
Bromobenzene		10000	ND(2)	ND (1.0)	ND (1.0)	ND (1.0)	-	-	-
n-Butylbenzene			ND(2)	ND (1.0)	ND (1.0)	ND (1.0)	-	-	-
sec-Butylbenzene			ND(2)	6.2	9.0	ND (1.0)	-	-	-
tert-Butylbenzene		10000	ND(2)	ND (1.0)	ND (1.0)	ND (1.0)	-	-	-
o-Chlorotoluene		10000	ND(2)	ND (1.0)	ND (1.0)	ND (1.0)	-	-	-
p-Chlorotoluene			ND(2)	ND (1.0)	ND (1.0)	ND (1.0)	-	-	-
1,2-Dibromo-3-chloropropane		1000	ND(2)	ND (2.0)	ND (2.0)	ND (2.0)	-	-	-
Hexachlorobutadiene		50	ND(0.6)	ND (0.60)	ND (0.60)	ND (0.60)	-	-	-
Isopropylbenzene		100000	ND(2)	17	20	ND (1.0)	-	-	-
p-Isopropyltoluene		10000	ND(2)	ND (1.0)	ND (1.0)	ND (1.0)	-	-	-
Naphthalene		700	ND(2)	43	6.6	ND (2.0)	-	-	-
n-Propylbenzene		10000	ND(2)	47	54	ND (1.0)		-	-
1,2,3-Trichlorobenzene			ND(2)	ND (2.0)	ND (2.0)	ND (2.0)		-	-
1,2,4-Trichlorobenzene		200	ND(2)	ND (1.0)	ND (1.0)	ND (1.0)	-	-	-
1,3,5-Trimethylbenzene		1000	ND(2)	28	2.3	ND (1.0)	-	-	-
1,2,4-Trimethylbenzene		100000	ND(2)	260	46	ND (1.0)	-	-	-
Diethyl ether		10000	ND(2)	ND (2.0)	ND (2.0)	ND (2.0)	-	-	-
Diisopropyl Ether		10000	ND(2)	ND (0.50)	ND (0.50)	ND (0.50)	-	-	-
Ethyl-Tert-Butyl-Ether			ND(2)	ND (0.50)	ND (0.50)	ND (0.50)	-	-	-
Tertiary-Amyl Methyl Ether			ND(2)	ND (0.50)	ND (0.50)	ND (0.50)	-	-	-
1,4-Dioxane		6000	ND(250)	ND (0.50)	ND (0.50)	ND (0.50)	-	-	-
SUM			-	487.5	171.9	-	-	-	-
MADEP-VPH (µg/L)					115-	NB (:)	40.5	45	
C5-C8 ALIPHATICS		3000		530	1100	ND (100)	1210	1350	-
C9-C12 ALIPHATICS		5000	-	680	270	ND (100)	3080	6550	-
C9-C10 AROMATICS		4000	-	1300	440	ND (100)	2500	5420	-
BENZENE ETHYLDENIZENIE		1000	-	ND (2.0)	2.1	ND (1.0)	61.5	12.2	-
ETHYLBENZENE		5000 5000	-	48 ND (2.0)	30 7.1	ND (1.0)	126 14.1	292	-
METHYL TERT-BUTYL ETHER (MTBE) NAPHTHALENE		700	⊢ : →	ND (2.0) 35	6.0	ND (1.0) ND (5.0)	62	ND(15) 201	-
TOLUENE		40000	-	ND (2.0)	ND (1.0)	ND (5.0) ND (1.0)	23	ND(10)	-
M/P-XYLENE		3000	-	ND (2.0) 85	ND (1.0) 3.4	ND (1.0) ND (2.0)	258	ND(10) 348	-
O-XYLENE		3000	-	28	3.4 ND (1.0)	ND (2.0) ND (1.0)	33.6	31.5	<u> </u>
Extractable Petroleum Hydrocarbons (µg/	1)	3000		20	(1.0)	(1.0)	55.0	31.3	-
Extractable Petroleum Hydrocarbons (μg/ C9-C18 Aliphatics	-/	5000	_	_	_	_	ND(100)	ND(100)	_
C19-C16 Aliphatics C19-C36 Aliphatics		50000	-	-	-	-	ND(100)	ND(100)	-
C11-C22 Aromatics		55500	-	-	-	-	246	425	-
C11-C22 Aromatics C11-C22 Aromatics, Adjusted		5000	-	-	-	-	186	278	
Naphthalene		700		-	-	-	42	103	-
2-Methylnaphthalene		2000	-	-	-	-	17.7	43.6	
Acenaphthylene		40	-	-	-	-	ND(10)	ND(10)	-
Acenaphthene		10000	-	-	-	-	ND(10)	ND(10)	-
Fluorene		40	-	-	-	-	ND(10)	ND(10)	-
Phenanthrene		10000	-	-	-	-	ND(10)	ND(10)	-
Anthracene		30	-	-	-	-	ND(10)	ND(10)	-
Fluoranthene		200	-	-	-	-	ND(10)	ND(10)	-
Pyrene		200	-	-	-	-	ND(10)	ND(10)	-
Benzo(a)anthracene		1000	-	-	-	-	ND(10)	ND(10)	-
Chrysene		70	-	-	-	-	ND(10)	ND(10)	-
Benzo(b)fluoranthene		400	-	-	-	-	ND(10)	ND(10)	-
Benzo(k)fluoranthene		100	-	-	-	-	ND(10)	ND(10)	
			-	-	-	-	ND(10)	ND(10)	-
Benzo(a)pyrene		500 100			-	-			-
		100		- -			ND(10) ND(10) ND(10)	ND(10) ND(10)	

Table 2 Labratory Analytical Results - Surface Water Muddy River

Driscoll School Project No.6693

LOCATION	EPA - Freshwater — Aquatic Life	MUDDY RIVER OUTFLOW
SAMPLING DATE	- Chronic	1/14/2021
LAB SAMPLE ID	Criteria	L2102191-01
SAMPLE TYPE	Criteria	WATER
General Chemistry (ug/l)		
Nitrogen, Ammonia		251
pH (SU)		6.8
Hardness		133000
Total Metals (ug/l)		
Antimony, Total		ND(20)
Arsenic, Total	150	ND(5)
Cadmium, Total	0.25	ND(1)
Chromium, Total		ND(5)
Copper, Total		ND(10)
Iron, Total	1000	408
Lead, Total	2.5	ND(5)
Mercury, Total	0.77	ND(0.2)
Nickel, Total	52	ND(10)
Selenium, Total	5	ND(25)
Silver, Total		ND(2)
Zinc, Total	120	ND(50)

1

APPENDIX A:

LIMITATIONS

LIMITATIONS

The purpose of this report is to present a summary of environmental conditions, including the results of testing of groundwater samples obtained from observation wells at the Michael Driscoll School located at 64 Westbourne Terrace in Brookline, Massachusetts in support of an application for approval of temporary construction dewatering discharge of groundwater into surface waters of the Commonwealth of Massachusetts under EPA's Massachusetts Remediation General Permit MAG9100000.

The observations were made under the conditions stated in this report. The conclusions presented above were based on these observations. If variations in the nature and extent of subsurface conditions between the spaced subsurface explorations become evident in the future, it will be necessary to re-evaluate the conclusions presented herein after performing on-site observations and noting the characteristics of any variations.

The conclusions submitted in this report are based in part upon laboratory test data obtained from analysis of groundwater samples, and are contingent upon their validity. The data have been reviewed, and interpretations have been made in the text. It should also be noted that fluctuations in the types and levels of contaminants and variations in their flow paths may occur due to changes in seasonal water table, past practices used in disposal and other factors.

Laboratory analyses have been performed for specific constituents during the course of this assessment, as described in the text. However, it should be noted that additional constituents not searched for during the current study may be present in soil and/or groundwater at the site.

This report and application have been prepared on behalf of and for the exclusive use of the Town of Brookline. This report and the findings contained herein shall not, in whole or in part, be disseminated or conveyed to any other party, other than submission to relevant governmental agencies, nor used in whole or in part by any other party without the prior written consent of McPhail Associates, LLC.

APPENDIX B:

NOTICE OF INTENT TRANSMITTAL FORMS NPDES DEWATERING GENERAL PERMIT

II. Suggested Format for the Remediation General Permit Notice of Intent (NOI)

A. General site information:

Site address: 64 Westbourne Terrace							
Street:							
City: Brookline		State: MA	Zip: 02446				
Contact Person: Tony Guigli							
Telephone: 617-730-2044	Email: tgu	igli@brookl	inema.gov				
Mailing address: 333 Washington Street Third Floor Street:							
City: Brookline		State: MA	Zip: 02445				
Contact Person: Robert Braga							
Telephone: 617-212-3482	Email: rbra	oraga@gilbaneco.com					
Mailing address: 10 Channel Center Street, Suite 100 Street:							
City: Boston		State: MA	Zip: 02210				
5. Other regulatory program(s) that apply to the site	(check all th	at apply):					
■ MA Chapter 21e; list RTN(s): 3-14448	□ CERCLA						
		_					
Groundwater Release Detection Permit:	□ POTW Pretreatment□ CWA Section 404		i				
	Street: City: Brookline Contact Person: Tony Guigli Telephone: 617-730-2044 Mailing address: 333 Washington Street	Street: City: Brookline Contact Person: Tony Guigli Telephone: 617-730-2044 Mailing address: 333 Washington Street	Street: City: Brookline Contact Person: Tony Guigli Telephone: 617-730-2044 Mailing address: 333 Washington Street Third Floor Street: City: Brookline Contact Person: Robert Braga Telephone: 617-212-3482 Mailing address: Street: 10 Channel Center Street, Suite 100 State: MA 5. Other regulatory program(s) that apply to the site (check all that apply): MA Chapter 21e; list RTN(s): 3-14448 3-36385 NH Groundwater Management Permit or Groundwater Release Detection Permit:				

B. Receiving water information:			
1. Name of receiving water(s):	Waterbody identification of receiving water(s):	Class	sification of receiving water(s):
Muddy River	MA72-11	В	
Receiving water is (check any that apply): □ Outstand	ding Resource Water □ Ocean Sanctuary □ territorial sea	□ Wild and Sceni	c River
2. Has the operator attached a location map in accordance Are sensitive receptors present near the site? (check of If yes, specify: Northern Long-Eared Bat	nnce with the instructions in B, above? (check one): ■ Yene): ■ Yes □ No	s □ No	
pollutants indicated. Also, indicate if a final TMDL is	te's Integrated List of Waters (i.e., CWA Section 303(d)). available for any of the indicated pollutants. For more instruction, e.coli, harmful algal blooms, nutrient/eutrophication biological policy.	formation, contact t	the appropriate State as noted in Part
4. Indicate the seven day-ten-year low flow (7Q10) of Appendix V for sites located in Massachusetts and Ap	the receiving water determined in accordance with the in pendix VI for sites located in New Hampshire.	structions in	0.544 ft^3/sec
	ation of water quality-based effluent limitations (WQBEL tes in Massachusetts and Appendix VI for sites in New Ha		0.352 MGD
6. Has the operator received confirmation from the ap If yes, indicate date confirmation received: 1/27/2021	propriate State for the 7Q10and dilution factor indicated?	(check one): ■ Ye	es □ No
7. Has the operator attached a summary of receiving v	vater sampling results as required in Part 4.2 of the RGP i	n accordance with t	the instruction in Appendix VIII?
(check one): ■ Yes □ No			
C. Source water information:			
1. Source water(s) is (check any that apply):			

1. Source water(s) is (check any that apply):										
■ Contaminated groundwater	☐ Contaminated surface water	☐ The receiving water	☐ Potable water; if so, indicate municipality or origin:							
Has the operator attached a summary of influent sampling results as required in Part 4.2 of the RGP	Has the operator attached a summary of influent sampling results as required in Part 4.2 of the	☐ A surface water other								
in accordance with the instruction in Appendix VIII? (check one):	RGP in accordance with the instruction in Appendix VIII? (check one):	than the receiving water; if so, indicate waterbody:	☐ Other; if so, specify:							
■ Yes □ No	□ Yes □ No									

2. Source water contaminants: Naphthalene, C9-C10 Aromatics, C9-C12 A	Aliphatics
a. For source waters that are contaminated groundwater or contaminated surface water, indicate are any contaminants present that are not included in	b. For a source water that is a surface water other than the receiving water, potable water or other, indicate any contaminants present at the maximum concentration in accordance
the RGP? (check one): ☐ Yes ■ No If yes, indicate the contaminant(s) and the maximum concentration present in accordance with the instructions in Appendix VIII.	with the instructions in Appendix VIII? (check one): □ Yes □ No
3. Has the source water been previously chlorinated or otherwise contains residue.	dual chlorine? (check one): ☐ Yes ■ No
D. Discharge information	
1. The discharge(s) is a(n) (check any that apply): ☐ Existing discharge ■ New	w discharge □ New source
Outfall(s): Tannery Brook Outfall	Outfall location(s): (Latitude, Longitude) 42.33422, -71.11193
Discharges enter the receiving water(s) via (check any that apply): ☐ Direct d	ischarge to the receiving water ■ Indirect discharge, if so, specify:
Discharge indirectly into the Muddy River through Town of Brookline S	tormwater System
☐ A private storm sewer system ■ A municipal storm sewer system If the discharge enters the receiving water via a private or municipal storm sew	wer system:
Has notification been provided to the owner of this system? (check one):	·
Has the operator has received permission from the owner to use such system for obtaining permission: Upon approval of this NOI	for discharges? (check one): ☐ Yes ■ No, if so, explain, with an estimated timeframe for
Has the operator attached a summary of any additional requirements the owner	
Provide the expected start and end dates of discharge(s) (month/year): April 2	021 - March 2022
Indicate if the discharge is expected to occur over a duration of: ■ less than 1	
Has the operator attached a site plan in accordance with the instructions in D,	above? (check one): ■ Yes □ No

2. Activity Category: (check all that apply)	3. Contamination Type Category: (check all that apply)					
	a. If Activity Category I or II: (check all that apply)					
	 □ A. Inorganics □ B. Non-Halogenated Volatile Organic Compounds □ C. Halogenated Volatile Organic Compounds □ D. Non-Halogenated Semi-Volatile Organic Compounds □ E. Halogenated Semi-Volatile Organic Compounds □ F. Fuels Parameters 					
 □ I – Petroleum-Related Site Remediation □ II – Non-Petroleum-Related Site Remediation 	b. If Activity Category III, IV, V, VI, VII or VIII: (check either G or H)					
 ■ III – Contaminated Site Dewatering □ IV – Dewatering of Pipelines and Tanks □ V – Aquifer Pump Testing □ VI – Well Development/Rehabilitation □ VII – Collection Structure Dewatering/Remediation □ VIII – Dredge-Related Dewatering 	■ G. Sites with Known Contamination c. If Category III-G, IV-G, V-G, VI-G, VII-G or VIII-G: (check all that apply) □ A. Inorganics □ B. Non-Halogenated Volatile	☐ H. Sites with Unknown Contamination				
	Organic Compounds □ C. Halogenated Volatile Organic Compounds □ D. Non-Halogenated Semi-Volatile Organic Compounds □ E. Halogenated Semi-Volatile Organic Compounds □ F. Fuels Parameters	d. If Category III-H, IV-H, V-H, VI-H, VII-H or VIII-H Contamination Type Categories A through F apply				

4. Influent and Effluent Characteristics

	Known	Known		Test Detection limit (µg/l)	Influent		Effluent Li	imitations	
Parameter bo	or believed absent	or ved believed	or # of metl samples # (#		Daily maximum (µg/l)	Daily average (µg/l)	TBEL	WQBEL	
A. Inorganics									
Ammonia		~	1	121.4500		569	569	Report mg/L	
Chloride		V	1	44,300.0		431000	431000	Report µg/l	
Total Residual Chlorine		V	1	121,4500	20	<dl< td=""><td><dl< td=""><td>0.2 mg/L</td><td>28</td></dl<></td></dl<>	<dl< td=""><td>0.2 mg/L</td><td>28</td></dl<>	0.2 mg/L	28
Total Suspended Solids		V	1	121,2540D		6700	6700	30 mg/L	
Antimony	V		1	200.7	4	<dl< td=""><td><dl< td=""><td>206 μg/L</td><td></td></dl<></td></dl<>	<dl< td=""><td>206 μg/L</td><td></td></dl<>	206 μg/L	
Arsenic		V	1	200.7	1	<dl< td=""><td><dl< td=""><td>104 μg/L</td><td></td></dl<></td></dl<>	<dl< td=""><td>104 μg/L</td><td></td></dl<>	104 μg/L	
Cadmium	V		1	200.7	0.2	<dl< td=""><td><dl< td=""><td>10.2 μg/L</td><td></td></dl<></td></dl<>	<dl< td=""><td>10.2 μg/L</td><td></td></dl<>	10.2 μg/L	
Chromium III	~		1	107	10	<dl< td=""><td><dl< td=""><td>323 µg/L</td><td></td></dl<></td></dl<>	<dl< td=""><td>323 µg/L</td><td></td></dl<>	323 µg/L	
Chromium VI	~		1	7196A	10	<dl< td=""><td><dl< td=""><td>323 µg/L</td><td></td></dl<></td></dl<>	<dl< td=""><td>323 µg/L</td><td></td></dl<>	323 µg/L	
Copper	V		1	200.7	1	<dl< td=""><td><dl< td=""><td>242 μg/L</td><td></td></dl<></td></dl<>	<dl< td=""><td>242 μg/L</td><td></td></dl<>	242 μg/L	
Iron		V	1	200.7		2070	2070	5,000 μg/L	1844
Lead	~		1	200.7	1	<dl< td=""><td><dl< td=""><td>160 μg/L</td><td></td></dl<></td></dl<>	<dl< td=""><td>160 μg/L</td><td></td></dl<>	160 μg/L	
Mercury	V		1	245.1	0.2	<dl< td=""><td><dl< td=""><td>0.739 μg/L</td><td></td></dl<></td></dl<>	<dl< td=""><td>0.739 μg/L</td><td></td></dl<>	0.739 μg/L	
Nickel	V		1	200.7	2	<dl< td=""><td><dl< td=""><td>1,450 μg/L</td><td></td></dl<></td></dl<>	<dl< td=""><td>1,450 μg/L</td><td></td></dl<>	1,450 μg/L	
Selenium	V		1	200.7	5	<dl< td=""><td><dl< td=""><td>235.8 μg/L</td><td></td></dl<></td></dl<>	<dl< td=""><td>235.8 μg/L</td><td></td></dl<>	235.8 μg/L	
Silver	~		1	200.7	0.4	<dl< td=""><td><dl< td=""><td>35.1 μg/L</td><td></td></dl<></td></dl<>	<dl< td=""><td>35.1 μg/L</td><td></td></dl<>	35.1 μg/L	
Zinc	~		1	200.7	10	<dl< td=""><td><dl< td=""><td>420 μg/L</td><td></td></dl<></td></dl<>	<dl< td=""><td>420 μg/L</td><td></td></dl<>	420 μg/L	
Cyanide			1	121,4500	5	<dl< td=""><td><dl< td=""><td>178 mg/L</td><td></td></dl<></td></dl<>	<dl< td=""><td>178 mg/L</td><td></td></dl<>	178 mg/L	
B. Non-Halogenated VOC	's								
Total BTEX	~		1	128,624.1	10	<dl< td=""><td><dl< td=""><td>100 μg/L</td><td></td></dl<></td></dl<>	<dl< td=""><td>100 μg/L</td><td></td></dl<>	100 μg/L	
Benzene		V	5	128,624.1	2	61.5	15.8	5.0 μg/L	
1,4 Dioxane	~		4	624.1	0.5	<dl< td=""><td><dl< td=""><td>200 μg/L</td><td></td></dl<></td></dl<>	<dl< td=""><td>200 μg/L</td><td></td></dl<>	200 μg/L	
Acetone	V		4	624.1	10	<dl< td=""><td><dl< td=""><td>7.97 mg/L</td><td></td></dl<></td></dl<>	<dl< td=""><td>7.97 mg/L</td><td></td></dl<>	7.97 mg/L	
Phenol								1,080 µg/L	

	Known	Known		_		Int	fluent	Effluent Lin	nitations
Parameter	or believed absent	or believed present	# of samples	Test method (#)	Detection limit (µg/l)	Daily maximum (µg/l)	Daily average (µg/l)	TBEL	WQBEL
C. Halogenated VOCs									
Carbon Tetrachloride	·		4	624.1	1	<dl< td=""><td><dl< td=""><td>4.4 μg/L</td><td></td></dl<></td></dl<>	<dl< td=""><td>4.4 μg/L</td><td></td></dl<>	4.4 μg/L	
1,2 Dichlorobenzene	~		4	624.1	1	<dl< td=""><td><dl< td=""><td>600 μg/L</td><td></td></dl<></td></dl<>	<dl< td=""><td>600 μg/L</td><td></td></dl<>	600 μg/L	
1,3 Dichlorobenzene	~		4	624.1	1	<dl< td=""><td><dl< td=""><td>320 μg/L</td><td></td></dl<></td></dl<>	<dl< td=""><td>320 μg/L</td><td></td></dl<>	320 μg/L	
1,4 Dichlorobenzene	~		4	624.1	1	<dl< td=""><td><dl< td=""><td>5.0 μg/L</td><td></td></dl<></td></dl<>	<dl< td=""><td>5.0 μg/L</td><td></td></dl<>	5.0 μg/L	
Total dichlorobenzene			0	, <u> </u>				763 μg/L in NH	
1,1 Dichloroethane	~		4	624.1	1	<dl< td=""><td><dl< td=""><td>70 μg/L</td><td></td></dl<></td></dl<>	<dl< td=""><td>70 μg/L</td><td></td></dl<>	70 μg/L	
1,2 Dichloroethane	V		4	624.1	1	<dl< td=""><td><dl< td=""><td>5.0 μg/L</td><td></td></dl<></td></dl<>	<dl< td=""><td>5.0 μg/L</td><td></td></dl<>	5.0 μg/L	
1,1 Dichloroethylene	~		4	624.1	1	<dl< td=""><td><dl< td=""><td>3.2 μg/L</td><td></td></dl<></td></dl<>	<dl< td=""><td>3.2 μg/L</td><td></td></dl<>	3.2 μg/L	
Ethylene Dibromide			0					0.05 μg/L	
Methylene Chloride	~		4	624.1	5	<dl< td=""><td><dl< td=""><td>4.6 μg/L</td><td></td></dl<></td></dl<>	<dl< td=""><td>4.6 μg/L</td><td></td></dl<>	4.6 μg/L	
1,1,1 Trichloroethane	~		4	624.1	1	<dl< td=""><td><dl< td=""><td>200 μg/L</td><td></td></dl<></td></dl<>	<dl< td=""><td>200 μg/L</td><td></td></dl<>	200 μg/L	
1,1,2 Trichloroethane	~		4	624.1	1	<dl< td=""><td><dl< td=""><td>5.0 μg/L</td><td></td></dl<></td></dl<>	<dl< td=""><td>5.0 μg/L</td><td></td></dl<>	5.0 μg/L	
Trichloroethylene	~		4	624.1	1	<dl< td=""><td><dl< td=""><td>5.0 μg/L</td><td></td></dl<></td></dl<>	<dl< td=""><td>5.0 μg/L</td><td></td></dl<>	5.0 μg/L	
Tetrachloroethylene	~		4	624.1	1	<dl< td=""><td><dl< td=""><td>5.0 μg/L</td><td></td></dl<></td></dl<>	<dl< td=""><td>5.0 μg/L</td><td></td></dl<>	5.0 μg/L	
cis-1,2 Dichloroethylene	~		4	624.1	1	1.1	<dl< td=""><td>70 μg/L</td><td></td></dl<>	70 μg/L	
Vinyl Chloride	V		4	624.1	2	<dl< td=""><td><dl< td=""><td>2.0 μg/L</td><td></td></dl<></td></dl<>	<dl< td=""><td>2.0 μg/L</td><td></td></dl<>	2.0 μg/L	
D. Non-Halogenated SVOC	Cs.								
Total Phthalates			0					190 μg/L	
Diethylhexyl phthalate			0					101 μg/L	
Total Group I PAHs	V		2	625.1	10	<dl< td=""><td><dl< td=""><td>1.0 µg/L</td><td></td></dl<></td></dl<>	<dl< td=""><td>1.0 µg/L</td><td></td></dl<>	1.0 µg/L	
Benzo(a)anthracene	~		2	625.1	10	<dl< td=""><td><dl< td=""><td>, ,</td><td></td></dl<></td></dl<>	<dl< td=""><td>, ,</td><td></td></dl<>	, ,	
Benzo(a)pyrene	V		2	625.1	10	<dl< td=""><td><dl< td=""><td> </td><td></td></dl<></td></dl<>	<dl< td=""><td> </td><td></td></dl<>		
Benzo(b)fluoranthene	~		2	625.1	10	<dl< td=""><td><dl< td=""><td>1</td><td></td></dl<></td></dl<>	<dl< td=""><td>1</td><td></td></dl<>	1	
Benzo(k)fluoranthene	~		2	625.1	10	<dl< td=""><td><dl< td=""><td>As Total PAHs</td><td></td></dl<></td></dl<>	<dl< td=""><td>As Total PAHs</td><td></td></dl<>	As Total PAHs	
Chrysene	~		2	625.1	10	<dl< td=""><td><dl< td=""><td>] </td><td></td></dl<></td></dl<>	<dl< td=""><td>] </td><td></td></dl<>]	
Dibenzo(a,h)anthracene	~		2	625.1	10	<dl< td=""><td><dl< td=""><td>] </td><td></td></dl<></td></dl<>	<dl< td=""><td>] </td><td></td></dl<>]	
Indeno(1,2,3-cd)pyrene	~		2.	625.1	10	<dl< td=""><td><dl< td=""><td>7</td><td></td></dl<></td></dl<>	<dl< td=""><td>7</td><td></td></dl<>	7	

	Known	Known			_	In	fluent	Effluent Lin	nitations
Parameter	or believed absent	or believed present	# of samples	Test method (#)	Detection limit (µg/l)	Daily maximum (µg/l)	Daily average (µg/l)	TBEL	WQBEL
Total Group II PAHs	~		1	625.1	2	<dl< td=""><td><dl< td=""><td>100 μg/L</td><td></td></dl<></td></dl<>	<dl< td=""><td>100 μg/L</td><td></td></dl<>	100 μg/L	
Naphthalene	~		11	625.1	5	201	46.2	20 μg/L	
E. Halogenated SVOCs									
Total PCBs			0					0.000064 µg/L	
Pentachlorophenol			0					1.0 μg/L	
	•	•	1.2	-		•			
F. Fuels Parameters	1		1			1	T	1	
Total Petroleum Hydrocarbons			0		4.4	<dl< td=""><td><dl< td=""><td>5.0 mg/L</td><td></td></dl<></td></dl<>	<dl< td=""><td>5.0 mg/L</td><td></td></dl<>	5.0 mg/L	
Ethanol			0		20	<dl< td=""><td><dl< td=""><td>Report mg/L</td><td></td></dl<></td></dl<>	<dl< td=""><td>Report mg/L</td><td></td></dl<>	Report mg/L	
Methyl-tert-Butyl Ether	~		5		20	14.1	7.87	70 μg/L	
tert-Butyl Alcohol	V		4		2	<dl< td=""><td><dl< td=""><td>120 μg/L in MA 40 μg/L in NH</td><td></td></dl<></td></dl<>	<dl< td=""><td>120 μg/L in MA 40 μg/L in NH</td><td></td></dl<>	120 μg/L in MA 40 μg/L in NH	
tert-Amyl Methyl Ether	~		4		2	<dl< td=""><td><dl< td=""><td>90 μg/L in MA 140 μg/L in NH</td><td></td></dl<></td></dl<>	<dl< td=""><td>90 μg/L in MA 140 μg/L in NH</td><td></td></dl<>	90 μg/L in MA 140 μg/L in NH	
Other Co II Assessment		1''4 T.C	7 - 3 3 2 4 2	1 114	. 4	· 6 · · · · · · · · · · ·			
Other (i.e., pH, temperatur pH - Influent	e, naraness,	sammty, LC	250, addition	121,4500	its present);	6.5	6.5		
hardness (µg/L) - Influent		~	1	3005A		235000	235000		
narchess (µg/E) infracit			1	300371		2.3.3000	2.3.XXX		
pH - receiving water		<i>V</i>	1	121,4500		78			
Hardness (ug/L) - Receiving		<i>V</i>	1	3005A		456000			
Temn - Receiving Water		<i>V</i>	1			7C			
									_

E. Treatment system information

1. Indicate the type(s) of treatment that will be applied to effluent prior to discharge: (check all that apply)	
□ Adsorption/Absorption □ Advanced Oxidation Processes □ Air Stripping □ Granulated Activated Carbon ("GAC")/Liquid Phase Carbon Adsorption	
☐ Ion Exchange ☐ Precipitation/Coagulation/Flocculation ■ Separation/Filtration ☐ Other; if so, specify:	
GAC and ion resin filters will be added to the system, as may be required, based upon the results of influent/effluent testing.	
2. Provide a written description of all treatment system(s) or processes that will be applied to the effluent prior to discharge.	
Settling tank with bag filters. If necessary to meet discharge limits, pH adjustment, ion media resin vessels, and/or GAC filter will be added as a NOC.	
Identify each major treatment component (check any that apply):	
■ Fractionation tanks □ Equalization tank □ Oil/water separator □ Mechanical filter □ Media filter	
☐ Chemical feed tank ☐ Air stripping unit ■ Bag filter ☐ Other; if so, specify:	
Indicate if either of the following will occur (check any that apply):	
☐ Chlorination ☐ De-chlorination	
3. Provide the design flow capacity in gallons per minute (gpm) of the most limiting component.	0 - 0
Indicate the most limiting component: Bag filters	ンちい
Is use of a flow meter feasible? (check one): ■ Yes □ No, if so, provide justification:	200
Provide the proposed maximum effluent flow in gpm.	250
Provide the average effluent flow in gpm.	200
If Activity Category IV applies, indicate the estimated total volume of water that will be discharged:	N/A
4. Has the operator attached a schematic of flow in accordance with the instructions in E, above? (check one): ■ Yes □ No	

F. Chemical and additive information

r. Chemical and additive information
1. Indicate the type(s) of chemical or additive that will be applied to effluent prior to discharge or that may otherwise be present in the discharge(s): (check all that apply)
□ Algaecides/biocides □ Antifoams □ Coagulants □ Corrosion/scale inhibitors □ Disinfectants □ Flocculants □ Neutralizing agents □ Oxidants □ Oxygen □
scavengers □ pH conditioners □ Bioremedial agents, including microbes □ Chlorine or chemicals containing chlorine □ Other; if so, specify:
2. Provide the following information for each chemical/additive, using attachments, if necessary:
a. Product name, chemical formula, and manufacturer of the chemical/additive; b. Purpose or use of the chemical/additive or remedial agent; c. Material Safety Data Sheet (MSDS) and Chemical Abstracts Service (CAS) Registry number for each chemical/additive; d. The frequency (hourly, daily, etc.), duration (hours, days), quantity (maximum and average), and method of application for the chemical/additive; e. Any material compatibility risks for storage and/or use including the control measures used to minimize such risks; and f. If available, the vendor's reported aquatic toxicity (NOAEL and/or LC50 in percent for aquatic organism(s)).
3. Has the operator attached an explanation which demonstrates that the addition of such chemicals/additives may be authorized under this general permit in accordance
with the instructions in F, above? (check one): ☐ Yes ■ No; if no, has the operator attached data that demonstrates each of the 126 priority pollutants in CWA Section 307(a) and 40 CFR Part 423.15(j)(1) are non-detect in discharges with the addition of the proposed chemical/additive?
(check one): □ Yes □ No
G. Endangered Species Act eligibility determination
1. Indicate under which criterion the discharge(s) is eligible for coverage under this general permit:
□ FWS Criterion A : No endangered or threatened species or critical habitat are in proximity to the discharges or related activities or come in contact with the "action area".
□ FWS Criterion B : Formal or informal consultation with the FWS under section 7 of the ESA resulted in either a no jeopardy opinion (formal consultation) or a written concurrence by FWS on a finding that the discharges and related activities are "not likely to adversely affect" listed species or critical habitat (informal consultation). Has the operator completed consultation with FWS? (check one): □ Yes □ No; if no, is consultation underway? (check one): □
Yes □ No
■ FWS Criterion C: Using the best scientific and commercial data available, the effect of the discharges and related activities on listed species and critical habitat have been evaluated. Based on those evaluations, a determination is made by EPA, or by the operator and affirmed by EPA, that the discharges and related activities will have "no effect" on any federally threatened or endangered listed species or designated critical habitat under the jurisdiction of the
FWS. This determination was made by: (check one) \square the operator \square EPA \square Other; if so, specify:

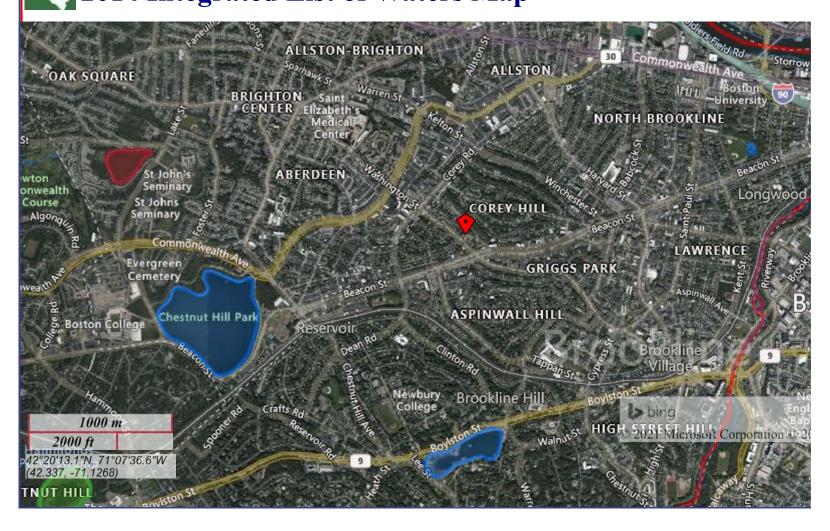
■ NMFS Criterion: A determination made by EPA is affirmed by the operator that the discharges and related activities will have "no effect" or are "not likely to adversely affect" any federally threatened or endangered listed species or critical habitat under the jurisdiction of NMFS and will not result in any take of		
listed species. Has the operator previously completed consultation with NMFS? (check one):		
2. Has the operator attached supporting documentation of ESA eligibility in accordance with the instructions in Appendix I, and G, above? (check one): ■ Yes □ No		
Does the supporting documentation include any written concurrence or finding provided by the Services? (check one): ■ Yes □ No; if yes, attach.		
Does the supporting documentation include any written concurrence of finding provided by the services? (check one).		
H. National Historic Preservation Act eligibility determination		
1. Indicate under which criterion the discharge(s) is eligible for coverage under this general permit:		
■ Criterion A: No historic properties are present. The discharges and discharge-related activities (e.g., BMPs) do not have the potential to cause effects on historic properties.		
☐ Criterion B: Historic properties are present. Discharges and discharge related activities do not have the potential to cause effects on historic properties.		
☐ Criterion C : Historic properties are present. The discharges and discharge-related activities have the potential to have an effect or will have an adverse effect on historic properties.		
2. Has the operator attached supporting documentation of NHPA eligibility in accordance with the instructions in H, above? (check one): ■ Yes □ No		
Does the supporting documentation include any written agreement with the State Historic Preservation Officer (SHPO), Tribal Historic Preservation Officer (TPHO), or		
other tribal representative that outlines measures the operator will carry out to mitigate or prevent any adverse effects on historic properties? (check one): \square Yes \square No		
I. Supplemental information		
Describe any supplemental information being provided with the NOI. Include attachments if required or otherwise necessary.		
Has the operator attached data, including any laboratory case narrative and chain of custody used to support the application? (check one): ■ Yes □ No		
Has the operator attached the certification requirement for the Best Management Practices Plan (BMPP)? (check one): ■ Yes □ No		

J. Certification requirement

I certify under penalty of law that this document and all attachments were prepared under my direction or supervision in accordance with a system designed to assure that qualified personnel properly gathered and evaluated the information submitted. Based on my inquiry of the person or persons who manage the system, or those persons directly responsible for gathering the information, the information submitted is, to the best of my knowledge and belief, true, accurate, and complete. I have no personal knowledge that the information submitted is other than true, accurate, and complete. I am aware that there are significant penalties for submitting false information, including the possibility of fine and imprisonment for knowing violations.		
A BMPP Statement has been implemented in accordance with good engineering practices following BMPP certification statement: Part 2.5 of the RGP and shall be implemented upon initiation of discharge.		
Notification provided to the appropriate State, including a copy of this NOI, if required.	Check one: Yes ■ No □	
Notification provided to the municipality in which the discharge is located, including a copy of this NOI, if requested.	Check one: Yes ■ No □	
	Check one: Yes ■ No □ NA □ ssion of this NOI to the Town of Brookline in m with this submission Check one: Yes □ No ■ NA ■	
Notification provided to the owner/operator of the area associated with activities covered by an additional discharge		
permit(s). Additional discharge permit is (check one): □ RGP □ DGP □ CGP □ MSGP □ Individual NPDES permit	Check one: Yes □ No ■ NA □	
☐ Other; if so, specify:		
Signature: Rule Date	e: 2/2/21	
Print Name and Title: Robert Braga - General Superintendent		

APPENDIX C:

MASSACHUSETTS PHASE I SITE ASSESSMENT GIS MAP, IPAC TRUST RESOURCE REPORT, AND MACRIS REPORT


MassDEP - Bureau of Waste Site Cleanup Phase 1 Site Assessment Map: 500 feet & 0.5 Mile Radii The information shown is the best available at the date of printing. However, it may be incomplete. The responsible party and LSP are ultimately responsible Site Information: DRISCOLL SCHOOL WESTBOURNE BROOKLINE, MA for ascertaining the true conditions surrounding the site. Metadata for data layers shown on this map can NAD83 UTM Meters: 4689781mN , 324047mE (Zone: 19) January 25, 2021 be found at: Department of Environmental Protection https://www.mass.gov/orgs/massgis-bureau-of-RIDGEMONT STREET RADCLIFFE ROAD BARCOCK STREET COMMONWEALTH AVENUE FRONTAGE ROAD CAMELOT COURT ARREN STREET Kennedy Day School Bay Cove School Steward St. Elizabeth's Medical Center Brighton High School School cO JETTE COURT Bell's State EALTH TERRACE RACE OF ROSE PLACE DEVOTION STREET WINCHESTER STREET NFORD ROAD Corey Hill Nursing Home **Edward Devotic** DEEN Brighton House Rehabilitation & Nursing Center EUSTON OOLIDGE COREY HILL EAMINGTON ROAD SUMMIT AVENUE Baldwin Early Learning Center CORNER WEBSTER STREET riscoll School STEARN VANS ROAD oston School SELKIRK ROAD FOSTER STREET ROAD Boston Graduate School of Psy VERNON STREET MANTHROP ROAD ROAD Chestnut Park and Circle UNIVERSITY ROAD CLAFLIN PATH CONSFIELD BE HARVARD CLARK ROAD ASPINWALL BEI ROAS HILL CUNTON ROAD GARDNER ROAD STANTON ROAD RVOIR D Runkle School BUCKMINSTER ROAD CLINTON ROAD Brookline High School HYSLOP ROAD BROOKLIN VILLAGE SUMNER ROA HOLLAND ROAD h School for Boys Newbury College PHILBRICK R 500 m BUCKMINSTER ROAD FISHER 1000 ft HILL Roads: Limited Access, Divided, Other Hwy, Major Road, Minor Road, Track, Trail PWS Protection Areas: Zone II, IWPA, Zone A Hydrography: Open Water, PWS Reservoir, Tidal Flat ... Boundaries: Town, County, DEP Region; Train; Powerline; Pipeline; Aqueduct Wetlands: Freshwater, Saltwater, Cranberry Bog ... Basins: Major, PWS; Streams: Perennial, Intermittent, Man Made Shore, Dam FEMA 100yr Floodplain; Protected Open Space; ACEC ... Est. Rare Wetland Wildlife Hab; Vernal Pool: Cert., Potential Aquifers: Medium Yield, High Yield, EPA Sole Source... Solid Waste Landfill; PWS: Com.GW,SW, Emerg., Non-Com. Non Potential Drinking Water Source Area: Medium, High (Yield).

MassDEP Online Map Viewer 2014 Integrated List of Waters Map

Helpful Links:

- The Clean Water Act
- MassDEP Total Maximum Daily Loads

United States Department of the Interior

FISH AND WILDLIFE SERVICE

New England Ecological Services Field Office 70 Commercial Street, Suite 300 Concord, NH 03301-5094 Phone: (603) 223-2541 Fax: (603) 223-0104

http://www.fws.gov/newengland

In Reply Refer To: January 26, 2021

Consultation Code: 05E1NE00-2021-SLI-1117

Event Code: 05E1NE00-2021-E-03533

Project Name: Driscoll School

Subject: List of threatened and endangered species that may occur in your proposed project

location or may be affected by your proposed project

To Whom It May Concern:

The enclosed species list identifies threatened, endangered, proposed and candidate species, as well as proposed and final designated critical habitat, that may occur within the boundary of your proposed project and/or may be affected by your proposed project. The species list fulfills the requirements of the U.S. Fish and Wildlife Service (Service) under section 7(c) of the Endangered Species Act (Act) of 1973, as amended (16 U.S.C. 1531 *et seq.*).

New information based on updated surveys, changes in the abundance and distribution of species, changed habitat conditions, or other factors could change this list. Please feel free to contact us if you need more current information or assistance regarding the potential impacts to federally proposed, listed, and candidate species and federally designated and proposed critical habitat. Please note that under 50 CFR 402.12(e) of the regulations implementing section 7 of the Act, the accuracy of this species list should be verified after 90 days. This verification can be completed formally or informally as desired. The Service recommends that verification be completed by visiting the ECOS-IPaC website at regular intervals during project planning and implementation for updates to species lists and information. An updated list may be requested through the ECOS-IPaC system by completing the same process used to receive the enclosed list.

The purpose of the Act is to provide a means whereby threatened and endangered species and the ecosystems upon which they depend may be conserved. Under sections 7(a)(1) and 7(a)(2) of the Act and its implementing regulations (50 CFR 402 *et seq.*), Federal agencies are required to utilize their authorities to carry out programs for the conservation of threatened and endangered species and to determine whether projects may affect threatened and endangered species and/or designated critical habitat.

A Biological Assessment is required for construction projects (or other undertakings having similar physical impacts) that are major Federal actions significantly affecting the quality of the human environment as defined in the National Environmental Policy Act (42 U.S.C. 4332(2) (c)). For projects other than major construction activities, the Service suggests that a biological evaluation similar to a Biological Assessment be prepared to determine whether the project may affect listed or proposed species and/or designated or proposed critical habitat. Recommended contents of a Biological Assessment are described at 50 CFR 402.12.

If a Federal agency determines, based on the Biological Assessment or biological evaluation, that listed species and/or designated critical habitat may be affected by the proposed project, the agency is required to consult with the Service pursuant to 50 CFR 402. In addition, the Service recommends that candidate species, proposed species and proposed critical habitat be addressed within the consultation. More information on the regulations and procedures for section 7 consultation, including the role of permit or license applicants, can be found in the "Endangered Species Consultation Handbook" at:

http://www.fws.gov/endangered/esa-library/pdf/TOC-GLOS.PDF

Please be aware that bald and golden eagles are protected under the Bald and Golden Eagle Protection Act (16 U.S.C. 668 *et seq.*), and projects affecting these species may require development of an eagle conservation plan

(http://www.fws.gov/windenergy/eagle_guidance.html). Additionally, wind energy projects should follow the wind energy guidelines (http://www.fws.gov/windenergy/) for minimizing impacts to migratory birds and bats.

Guidance for minimizing impacts to migratory birds for projects including communications towers (e.g., cellular, digital television, radio, and emergency broadcast) can be found at: http://www.fws.gov/migratorybirds/CurrentBirdIssues/Hazards/towers/towers.htm; http://www.towerkill.com; and http://www.fws.gov/migratorybirds/CurrentBirdIssues/Hazards/towers/comtow.html.

We appreciate your concern for threatened and endangered species. The Service encourages Federal agencies to include conservation of threatened and endangered species into their project planning to further the purposes of the Act. Please include the Consultation Tracking Number in the header of this letter with any request for consultation or correspondence about your project that you submit to our office.

Attachment(s):

Official Species List

Official Species List

This list is provided pursuant to Section 7 of the Endangered Species Act, and fulfills the requirement for Federal agencies to "request of the Secretary of the Interior information whether any species which is listed or proposed to be listed may be present in the area of a proposed action".

This species list is provided by:

New England Ecological Services Field Office 70 Commercial Street, Suite 300 Concord, NH 03301-5094 (603) 223-2541

Project Summary

Consultation Code: 05E1NE00-2021-SLI-1117 Event Code: 05E1NE00-2021-E-03533

Project Name: Driscoll School Project Type: ** OTHER **

Project Description: Proposed construction of new school building in Brookline, MA.

Project Location:

Approximate location of the project can be viewed in Google Maps: https://www.google.com/maps/@42.340219700000006, 77.1357494132956, 14z

Counties: Norfolk County, Massachusetts

Endangered Species Act Species

There is a total of 1 threatened, endangered, or candidate species on this species list.

Species on this list should be considered in an effects analysis for your project and could include species that exist in another geographic area. For example, certain fish may appear on the species list because a project could affect downstream species.

IPaC does not display listed species or critical habitats under the sole jurisdiction of NOAA Fisheries¹, as USFWS does not have the authority to speak on behalf of NOAA and the Department of Commerce.

See the "Critical habitats" section below for those critical habitats that lie wholly or partially within your project area under this office's jurisdiction. Please contact the designated FWS office if you have questions.

1. <u>NOAA Fisheries</u>, also known as the National Marine Fisheries Service (NMFS), is an office of the National Oceanic and Atmospheric Administration within the Department of Commerce.

Mammals

NAME STATUS

Northern Long-eared Bat Myotis septentrionalis

Threatened

No critical habitat has been designated for this species. Species profile: https://ecos.fws.gov/ecp/species/9045

Critical habitats

THERE ARE NO CRITICAL HABITATS WITHIN YOUR PROJECT AREA UNDER THIS OFFICE'S JURISDICTION.

United States Department of the Interior

FISH AND WILDLIFE SERVICE

New England Ecological Services Field Office 70 Commercial Street, Suite 300 Concord, NH 03301-5094 Phone: (603) 223-2541 Fax: (603) 223-0104

http://www.fws.gov/newengland

IPaC Record Locator: 460-98696666 January 26, 2021

Subject: Consistency letter for the 'Driscoll School' project indicating that any take of the northern long-eared bat that may occur as a result of the Action is not prohibited under the ESA Section 4(d) rule adopted for this species at 50 CFR §17.40(o).

Dear NICHOLAS Hodge:

The U.S. Fish and Wildlife Service (Service) received on January 26, 2021 your effects determination for the 'Driscoll School' (the Action) using the northern long-eared bat (*Myotis septentrionalis*) key within the Information for Planning and Consultation (IPaC) system. You indicated that no Federal agencies are involved in funding or authorizing this Action. This IPaC key assists users in determining whether a non-Federal action may cause "take" of the northern long-eared bat that is prohibited under the Endangered Species Act of 1973 (ESA) (87 Stat.884, as amended; 16 U.S.C. 1531 et seq.).

Based upon your IPaC submission, any take of the northern long-eared bat that may occur as a result of the Action is not prohibited under the ESA Section 4(d) rule adopted for this species at 50 CFR §17.40(o). Unless the Service advises you within 30 days of the date of this letter that your IPaC-assisted determination was incorrect, this letter verifies that the Action is not likely to result in unauthorized take of the northern long-eared bat.

Please report to our office any changes to the information about the Action that you entered into IPaC, the results of any bat surveys conducted in the Action area, and any dead, injured, or sick northern long-eared bats that are found during Action implementation.

If your Action proceeds as described and no additional information about the Action's effects on species protected under the ESA becomes available, no further coordination with the Service is required with respect to the northern long-eared bat.

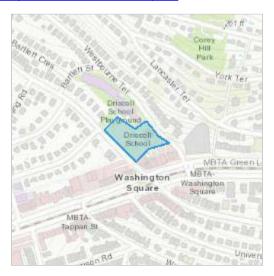
[1]Take means to harass, harm, pursue, hunt, shoot, wound, kill, trap, capture, or collect, or to

attempt to engage in any such conduct [ESA Section 3(19)].

Action Description

You provided to IPaC the following name and description for the subject Action.

1. Name


Driscoll School

2. Description

The following description was provided for the project 'Driscoll School':

Proposed construction of new school building in Brookline, MA.

Approximate location of the project can be viewed in Google Maps: https://www.google.com/maps/@42.34021970000006,-71.1357494132956,14z

Determination Key Result

This non-Federal Action may affect the northern long-eared bat; however, any take of this species that may occur incidental to this Action is not prohibited under the final 4(d) rule at 50 CFR §17.40(o).

Determination Key Description: Northern Long-eared Bat 4(d) Rule

This key was last updated in IPaC on **May 15, 2017**. Keys are subject to periodic revision.

This key is intended for actions that may affect the threatened northern long-eared bat.

The purpose of the key for non-Federal actions is to assist determinations as to whether proposed actions are excepted from take prohibitions under the northern long-eared bat 4(d) rule.

If a non-Federal action may cause prohibited take of northern long-eared bats or other ESA-listed animal species, we recommend that you coordinate with the Service.

Determination Key Result

Based upon your IPaC submission, any take of the northern long-eared bat that may occur as a result of the Action is not prohibited under the ESA Section 4(d) rule adopted for this species at 50 CFR §17.40(o).

Qualification Interview

- 1. Is the action authorized, funded, or being carried out by a Federal agency? *No*
- 2. Will your activity purposefully **Take** northern long-eared bats? *No*
- 3. [Semantic] Is the project action area located wholly outside the White-nose Syndrome Zone?

Automatically answered

No

4. Have you contacted the appropriate agency to determine if your project is near a known hibernaculum or maternity roost tree?

Location information for northern long-eared bat hibernacula is generally kept in state Natural Heritage Inventory databases – the availability of this data varies state-by-state. Many states provide online access to their data, either directly by providing maps or by providing the opportunity to make a data request. In some cases, to protect those resources, access to the information may be limited. A web page with links to state Natural Heritage Inventory databases and other sources of information on the locations of northern long-eared bat roost trees and hibernacula is available at www.fws.gov/midwest/endangered/mammals/nleb/nhisites.html.

Yes

5. Will the action affect a cave or mine where northern long-eared bats are known to hibernate (i.e., hibernaculum) or could it alter the entrance or the environment (physical or other alteration) of a hibernaculum?

No

6. Will the action involve Tree Removal?

Yes

7. Will the action only remove hazardous trees for the protection of human life or property? *Yes*

Project Questionnaire

If the project includes forest conversion, report the appropriate acreages below. Otherwise, type '0' in questions 1-3.

1. Estimated total acres of forest conversion:

n

2. If known, estimated acres of forest conversion from April 1 to October 31

0

3. If known, estimated acres of forest conversion from June 1 to July 31 $\,$

0

If the project includes timber harvest, report the appropriate acreages below. Otherwise, type '0' in questions 4-6.

4. Estimated total acres of timber harvest

0

5. If known, estimated acres of timber harvest from April 1 to October 31

0

6. If known, estimated acres of timber harvest from June 1 to July 31

0

If the project includes prescribed fire, report the appropriate acreages below. Otherwise, type '0' in questions 7-9.

7. Estimated total acres of prescribed fire

0

8. If known, estimated acres of prescribed fire from April 1 to October 31

0

9. If known, estimated acres of prescribed fire from June 1 to July 31 $\,$

0

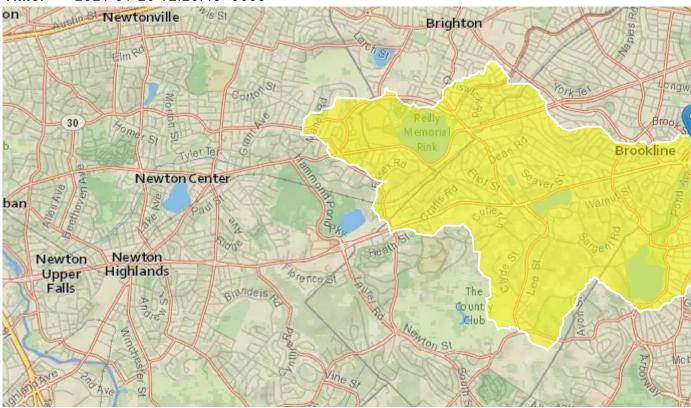
If the project includes new wind turbines, report the megawatts of wind capacity below. Otherwise, type '0' in question 10.

10. What is the estimated wind capacity (in megawatts) of the new turbine(s)?

0

Category 5 waters listed alphabetically by major watershed The 303(d) List – "Waters requiring a TMDL"

Water Body	Segment ID	Description	Size	Units	Impairment	EPA TMD No.
Muddy River	MA72-11	Headwaters, outlet Ward Pond in Olmstead	3.60	Miles	(Bottom Deposits*)	
		Park, Boston through Leverett Pond,			(Flow Regime Modification*)	
		Boston/Brookline to confluence with Charles River, Boston (four culverted			(Non-Native Aquatic Plants*)	
		portions totaling approximately 2200 feet			(Physical substrate habitat alterations*)	
		(0.42mile)).			DDT in Fish Tissue	
					Dissolved Oxygen	
					Escherichia Coli (E. Coli)	32383
					Odor	
					Oil and Grease	
					PCBs In Fish Tissue	
					Phosphorus, Total	
					Turbidity	
					Unspecified Metals in Sediment	
Populatic Pond	MA72096	Norfolk.	42.00	Acres	Algae	40319
					Chlordane in Fish Tissue	
					DDT in Fish Tissue	
					Dissolved Oxygen	40319
					Dissolved Oxygen Supersaturation	40319
					Mercury in Fish Tissue	33880
					Nutrient/Eutrophication Biological Indicators	40319
Powissett Brook	MA72-20	Headwaters, outlet Noannet Pond, Westwood to mouth at confluence with the Charles River, Dover.	1.90	Miles	Combined Biota/Habitat Bioassessments	
Rock Meadow Brook	MA72-21	Headwaters, Fisher Meadow, Westwood to	3.80	Miles	Algae	40317
		mouth at confluence with the Charles River,			Benthic Macroinvertebrates	
		Dedham.			Dissolved Oxygen	40317
					Nutrient/Eutrophication Biological Indicators	40317
					Phosphorus, Total	40317
Sawmill Brook	MA72-23	Headwaters, Newton to mouth at	2.40	Miles	Chloride	
		confluence with the Charles River, Boston.			Dissolved Oxygen	40317
					Escherichia Coli (E. Coli)	32376
					Organic Enrichment (Sewage) Biological Indicators	40317
					Phosphorus, Total	40317
Seaverns Brook	MA72-44	Headwaters outlet Norumbega Reservoir, Weston to mouth at confluence with the Charles River, Weston.	1.60	Miles	Escherichia Coli (E. Coli)	


StreamStats Report

Region ID: MA

Workspace ID: MA20210126172020528000

Clicked Point (Latitude, Longitude): 42.33422, -71.11193

Time: 2021-01-26 12:20:46 -0500

Basin Characteristics						
Parameter Code	Parameter Description	Value	Unit			
DRNAREA	Area that drains to a point on a stream	4.72	square miles			
BSLDEM250	Mean basin slope computed from 1:250K DEM	3.279	percent			
DRFTPERSTR	Area of stratified drift per unit of stream length	0.55	square mile per mile			
MAREGION	Region of Massachusetts 0 for Eastern 1 for Western	0	dimensionless			
ACRSDFT	Area underlain by stratified drift	0.88	square miles			
BSLDEM10M	Mean basin slope computed from 10 m DEM	6.948	percent			

Parameter Code	Parameter Description	Value	Unit
CAT1ROADS	Length of interstates Imtd access highways and ramps for Imtd access highways, includes cloverleaf interchanges (USGS Ntl Transp Dataset)	0	miles
CAT2ROADS	Length of sec hwy or maj connecting roads; main arteries & hwys not Imtd access, usually in the US Hwy or State Hwy systems (USGS Ntl Transp Dataset)	5.76	miles
CAT3ROADS	Length of local connecting roads; roads that collect traffic from local roads & connect towns, subdivisions & neighborhoods (USGS Nat Transp Dataset)	10.4	miles
CAT4ROADS	Length of local roads; generally paved street, road, or byway that usually have single lane of traffic in each direction (USGS Ntnl Transp Dataset)	81.9	miles
CENTROIDX	Basin centroid horizontal (x) location in state plane coordinates	229686.4	meters
CENTROIDY	Basin centroid vertical (y) location in state plane units	897514.1	meters
CROSCOUNT1	Number of intersections between streams and roads, where the roads are interstate, limited access highway, or ramp (CAT1ROADS)	0	dimensionless
CROSCOUNT2	Number of intersections between streams and roads, where the roads are secondary highway or major connecting road (CAT2ROADS)	2	dimensionless
CROSCOUNT3	Number of intersections between streams and roads, where roads are local conecting roads (CAT3ROADS)	9	dimensionless
CROSCOUNT4	Number of intersections between streams and roads, where roads are local roads (CAT4ROADS)	28	dimensionless
CRSDFT	Percentage of area of coarse-grained stratified drift	18.9	percent
CSL10_85	Change in elevation divided by length between points 10 and 85 percent of distance along main channel to basin divide - main channel method not known	44.3	feet per mi
ELEV	Mean Basin Elevation	143	feet

Parameter Code	Parameter Description	Value	Unit
FOREST	Percentage of area covered by forest	8.45	percent
LAKEAREA	Percentage of Lakes and Ponds	6.46	percent
LC06STOR	Percentage of water bodies and wetlands determined from the NLCD 2006	6.57	percent
LC11DEV	Percentage of developed (urban) land from NLCD 2011 classes 21-24	86.2	percent
LC11IMP	Average percentage of impervious area determined from NLCD 2011 impervious dataset	37.5	percent
LFPLENGTH	Length of longest flow path	4.44	miles
MAXTEMPC	Mean annual maximum air temperature over basin area, in degrees Centigrade	15	feet per mi
OUTLETX	Basin outlet horizontal (x) location in state plane coordinates	231975	feet
OUTLETY	Basin outlet vertical (y) location in state plane coordinates	898265	feet
PCTSNDGRV	Percentage of land surface underlain by sand and gravel deposits	18.9	percent
PRECPRIS00	Basin average mean annual precipitation for 1971 to 2000 from PRISM	47.3	inches
STRMTOT	total length of all mapped streams (1:24,000-scale) in the basin	1.59	miles
WETLAND	Percentage of Wetlands	0.03	percent

Low-Flow Statistics Parameters[Statewide Low Flow WRIR00 4135]							
Parameter Code	Parameter Name	Value	Units	Min Limit	Max Limit		
DRNAREA	Drainage Area	4.72	square miles	1.61	149		
BSLDEM250	Mean Basin Slope from 250K DEM	3.279	percent	0.32	24.6		
DRFTPERSTR	Stratified Drift per Stream Length	0.55	square mile per mile	0	1.29		
MAREGION	Massachusetts Region	0	dimensionless	0	1		

Low-Flow Statistics Flow Report[Statewide Low Flow WRIR00 4135]

PII: Prediction Interval-Lower, Plu: Prediction Interval-Upper, SEp: Standard Error of Prediction, SE: Standard Error (other -- see report)

Statistic	Value	Unit	PII	Plu	SE	SEp
7 Day 2 Year Low Flow	0.954	ft^3/s	0.218	4.02	49.5	49.5
7 Day 10 Year Low Flow	0.544	ft^3/s	0.101	2.74	70.8	70.8

Low-Flow Statistics Citations

Ries, K.G., III,2000, Methods for estimating low-flow statistics for Massachusetts streams: U.S. Geological Survey Water Resources Investigations Report 00-4135, 81 p. (http://pubs.usgs.gov/wri/wri004135/)

USGS Data Disclaimer: Unless otherwise stated, all data, metadata and related materials are considered to satisfy the quality standards relative to the purpose for which the data were collected. Although these data and associated metadata have been reviewed for accuracy and completeness and approved for release by the U.S. Geological Survey (USGS), no warranty expressed or implied is made regarding the display or utility of the data for other purposes, nor on all computer systems, nor shall the act of distribution constitute any such warranty.

USGS Software Disclaimer: This software has been approved for release by the U.S. Geological Survey (USGS). Although the software has been subjected to rigorous review, the USGS reserves the right to update the software as needed pursuant to further analysis and review. No warranty, expressed or implied, is made by the USGS or the U.S. Government as to the functionality of the software and related material nor shall the fact of release constitute any such warranty. Furthermore, the software is released on condition that neither the USGS nor the U.S. Government shall be held liable for any damages resulting from its authorized or unauthorized use.

USGS Product Names Disclaimer: Any use of trade, firm, or product names is for descriptive purposes only and does not imply endorsement by the U.S. Government.

Application Version: 4.4.0

APPENDIX D: GROUNDWATER LABORATORY ANALYTICAL DATA

ANALYTICAL REPORT

Lab Number: L2016503

Client: McPhail Associates

2269 Massachusetts Avenue

Cambridge, MA 02140

ATTN: Ambrose Donovan Phone: (617) 868-1420

Project Name: Not Specified

Project Number: 6693 Report Date: 04/23/20

The original project report/data package is held by Alpha Analytical. This report/data package is paginated and should be reproduced only in its entirety. Alpha Analytical holds no responsibility for results and/or data that are not consistent with the original.

Certifications & Approvals: MA (M-MA086), NH NELAP (2064), CT (PH-0574), IL (200077), ME (MA00086), MD (348), NJ (MA935), NY (11148), NC (25700/666), PA (68-03671), RI (LAO00065), TX (T104704476), VT (VT-0935), VA (460195), USDA (Permit #P330-17-00196).

Eight Walkup Drive, Westborough, MA 01581-1019 508-898-9220 (Fax) 508-898-9193 800-624-9220 - www.alphalab.com

Project Number: 6693

Lab Number:

L2016503

Report Date:

04/23/20

Alpha Sample ID

L2016503-01

Client ID

B-106A(OW)

Matrix

GROUNDWATER

Sample Location

BROOKLINE, MA

Collection Date/Time

04/21/20 11:15

Receive Date

04/21/20

Project Name: Not Specified Lab Number: L2016503

Project Number: 6693 Report Date: 04/23/20

MADEP MCP Response Action Analytical Report Certification

This form provides certifications for all samples performed by MCP methods. Please refer to the Sample Results and Container Information sections of this report for specification of MCP methods used for each analysis. The following questions pertain only to MCP Analytical Methods.

An af	firmative response to questions A through F is required for "Presumptive Certainty" status	
Α	Were all samples received in a condition consistent with those described on the Chain-of-Custody, properly preserved (including temperature) in the field or laboratory, and prepared/analyzed within method holding times?	YES
В	Were the analytical method(s) and all associated QC requirements specified in the selected CAM protocol(s) followed?	YES
С	Were all required corrective actions and analytical response actions specified in the selected CAM protocol(s) implemented for all identified performance standard non-conformances?	YES
D	Does the laboratory report comply with all the reporting requirements specified in CAM VII A, "Quality Assurance and Quality Control Guidelines for the Acquisition and Reporting of Analytical Data?"	YES
E a.	VPH, EPH, and APH Methods only: Was each method conducted without significant modification(s)? (Refer to the individual method(s) for a list of significant modifications).	N/A
E b.	APH and TO-15 Methods only: Was the complete analyte list reported for each method?	N/A
F	Were all applicable CAM protocol QC and performance standard non-conformances identified and evaluated in a laboratory narrative (including all "No" responses to Questions A through E)?	YES

A re	A response to questions G, H and I is required for "Presumptive Certainty" status						
G	Were the reporting limits at or below all CAM reporting limits specified in the selected CAM protocol(s)?	YES					
Н	Were all QC performance standards specified in the CAM protocol(s) achieved?	NO					
I	Were results reported for the complete analyte list specified in the selected CAM protocol(s)?	YES					

For any questions answered "No", please refer to the case narrative section on the following page(s).

Please note that sample matrix information is located in the Sample Results section of this report.

Project Name:Not SpecifiedLab Number:L2016503Project Number:6693Report Date:04/23/20

Case Narrative

The samples were received in accordance with the Chain of Custody and no significant deviations were encountered during the preparation or analysis unless otherwise noted. Sample Receipt, Container Information, and the Chain of Custody are located at the back of the report.

Results contained within this report relate only to the samples submitted under this Alpha Lab Number and meet NELAP requirements for all NELAP accredited parameters unless otherwise noted in the following narrative. The data presented in this report is organized by parameter (i.e. VOC, SVOC, etc.). Sample specific Quality Control data (i.e. Surrogate Spike Recovery) is reported at the end of the target analyte list for each individual sample, followed by the Laboratory Batch Quality Control at the end of each parameter. Tentatively Identified Compounds (TICs), if requested, are reported for compounds identified to be present and are not part of the method/program Target Compound List, even if only a subset of the TCL are being reported. If a sample was re-analyzed or re-extracted due to a required quality control corrective action and if both sets of data are reported, the Laboratory ID of the re-analysis or re-extraction is designated with an "R" or "RE", respectively.

When multiple Batch Quality Control elements are reported (e.g. more than one LCS), the associated samples for each element are noted in the grey shaded header line of each data table. Any Laboratory Batch, Sample Specific % recovery or RPD value that is outside the listed Acceptance Criteria is bolded in the report. In reference to questions H (CAM) or 4 (RCP) when "NO" is checked, the performance criteria for CAM and RCP methods allow for some quality control failures to occur and still be within method compliance. In these instances, the specific failure is not narrated but noted in the associated QC Outlier Summary Report, located directly after the Case Narrative. QC information is also incorporated in the Data Usability Assessment table (Format 11) of our Data Merger tool, where it can be reviewed in conjunction with the sample result, associated regulatory criteria and any associated data usability implications.

Soil/sediments, solids and tissues are reported on a dry weight basis unless otherwise noted. Definitions of all data qualifiers and acronyms used in this report are provided in the Glossary located at the back of the report.

HOLD POLICY - For samples submitted on hold, Alpha's policy is to hold samples (with the exception of Air canisters) free of charge for 21 calendar days from the date the project is completed. After 21 calendar days, we will dispose of all samples submitted including those put on hold unless you have contacted your Alpha Project Manager and made arrangements for Alpha to continue to hold the samples. Air canisters will be disposed after 3 business days from the date the project is completed.

Please contact Project Management at 800-624-9220 with any questions.	

Project Name:Not SpecifiedLab Number:L2016503Project Number:6693Report Date:04/23/20

Case Narrative (continued)

MCP Related Narratives

Sample Receipt

At the client's request, the analysis of Total Solids was not performed.

Volatile Organics

The initial calibration, associated with L2016503-01, utilized a quadratic fit for n-butylbenzene.

In reference to question H:

The initial calibration, associated with L2016503-01, did not meet the method required minimum response factor on the lowest calibration standard for 1,4-dioxane (0.0052), as well as the average response factor for 1,4-dioxane.

The continuing calibration standard, associated with L2016503-01, is outside the acceptance criteria for several compounds; however, it is within overall method allowances. A copy of the continuing calibration standard is included as an addendum to this report.

I, the undersigned, attest under the pains and penalties of perjury that, to the best of my knowledge and belief and based upon my personal inquiry of those responsible for providing the information contained in this analytical report, such information is accurate and complete. This certificate of analysis is not complete unless this page accompanies any and all pages of this report.

Authorized Signature:

Title: Technical Director/Representative Date: 04/23/20

600, Sew on Kelly Stenstrom

ALPHA

QC OUTLIER SUMMARY REPORT

Project Name: Not Specified

Lab Number:

L2016503

Project Number: 6693

Report Date:

04/23/20

					Recovery/RP	על Limits עלי	Associated	Data Quality
Method	Client ID (Native ID)	Lab ID	Parameter	QC Type	(%)	(%)	Samples	Assessment
MCP Volatil	le Organics - Westborough Lab							
8260C	B-106A(OW)	L2016503-01	Dibromofluoromethane	Surrogate	151	70-130	-	potential high bias
8260C	Batch QC	WG1363398-3	Acetone	LCS	140	70-130	01	potential high bias
8260C	Batch QC	WG1363398-3	Methyl ethyl ketone	LCS	140	70-130	01	potential high bias
8260C	Batch QC	WG1363398-4	trans-1,2-Dichloroethene	LCSD	26	20	01	non-directional bias
8260C	Batch QC	WG1363398-4	Dichlorodifluoromethane	LCSD	39	20	01	non-directional bias
8260C	Batch QC	WG1363398-4	Acetone	LCSD	150	70-130	01	potential high bias
8260C	Batch QC	WG1363398-4	Methyl ethyl ketone	LCSD	140	70-130	01	potential high bias
8260C	Batch QC	WG1363398-4	1,4-Dioxane	LCSD	22	20	01	non-directional bias

ORGANICS

VOLATILES

04/21/20 11:15

Project Name: Not Specified

Project Number: 6693

SAMPLE RESULTS

Lab Number: L2016503

Report Date: 04/23/20

Lab ID: L2016503-01

B-106A(OW) Client ID: Sample Location: BROOKLINE, MA Date Received: 04/21/20 Field Prep: Not Specified

Date Collected:

Sample Depth:

Matrix: Groundwater 97,8260C Analytical Method: Analytical Date: 04/22/20 09:21

Analyst: MM

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
MCP Volatile Organics - Westboroug	h Lab					
Methylene chloride	ND		ug/l	2.0		1
1,1-Dichloroethane	ND		ug/l	1.0		1
Chloroform	ND		ug/l	1.0		1
Carbon tetrachloride	ND		ug/l	1.0		1
1,2-Dichloropropane	ND		ug/l	1.0		1
Dibromochloromethane	ND		ug/l	1.0		1
1,1,2-Trichloroethane	ND		ug/l	1.0		1
Tetrachloroethene	ND		ug/l	1.0		1
Chlorobenzene	ND		ug/l	1.0		1
Trichlorofluoromethane	ND		ug/l	2.0		1
1,2-Dichloroethane	ND		ug/l	1.0		1
1,1,1-Trichloroethane	ND		ug/l	1.0		1
Bromodichloromethane	ND		ug/l	1.0		1
trans-1,3-Dichloropropene	ND		ug/l	0.40		1
cis-1,3-Dichloropropene	ND		ug/l	0.40		1
1,3-Dichloropropene, Total	ND		ug/l	0.40		1
1,1-Dichloropropene	ND		ug/l	2.0		1
Bromoform	ND		ug/l	2.0		1
1,1,2,2-Tetrachloroethane	ND		ug/l	1.0		1
Benzene	ND		ug/l	0.50		1
Toluene	ND		ug/l	1.0		1
Ethylbenzene	ND		ug/l	1.0		1
Chloromethane	ND		ug/l	2.0		1
Bromomethane	ND		ug/l	2.0		1
Vinyl chloride	ND		ug/l	1.0		1
Chloroethane	ND		ug/l	2.0		1
1,1-Dichloroethene	ND		ug/l	1.0		1
trans-1,2-Dichloroethene	ND		ug/l	1.0		1

Project Name: Not Specified Lab Number: L2016503

Project Number: 6693 Report Date: 04/23/20

SAMPLE RESULTS

Lab ID: L2016503-01 Date Collected: 04/21/20 11:15

Client ID: B-106A(OW) Date Received: 04/21/20 Sample Location: BROOKLINE, MA Field Prep: Not Specified

Sample Depth:

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
MCP Volatile Organics - Westborough La	ab					
Trichloroethene	ND		ug/l	1.0		1
1,2-Dichlorobenzene	ND		ug/l	1.0		1
1,3-Dichlorobenzene	ND		ug/l	1.0		1
1,4-Dichlorobenzene	ND		ug/l	1.0		1
Methyl tert butyl ether	ND		ug/l	2.0		1
p/m-Xylene	ND		ug/l	2.0		1
o-Xylene	ND		ug/l	1.0		1
Xylenes, Total	ND		ug/l	1.0		1
cis-1,2-Dichloroethene	ND		ug/l	1.0		1
1,2-Dichloroethene, Total	ND		ug/l	1.0		1
Dibromomethane	ND		ug/l	2.0		1
1,2,3-Trichloropropane	ND		ug/l	2.0		1
Styrene	ND		ug/l	1.0		1
Dichlorodifluoromethane	ND		ug/l	2.0		1
Acetone	ND		ug/l	5.0		1
Carbon disulfide	ND		ug/l	2.0		1
Methyl ethyl ketone	ND		ug/l	5.0		1
Methyl isobutyl ketone	ND		ug/l	5.0		1
2-Hexanone	ND		ug/l	5.0		1
Bromochloromethane	ND		ug/l	2.0		1
Tetrahydrofuran	ND		ug/l	2.0		1
2,2-Dichloropropane	ND		ug/l	2.0		1
1,2-Dibromoethane	ND		ug/l	2.0		1
1,3-Dichloropropane	ND		ug/l	2.0		1
1,1,1,2-Tetrachloroethane	ND		ug/l	1.0		1
Bromobenzene	ND		ug/l	2.0		1
n-Butylbenzene	ND		ug/l	2.0		1
sec-Butylbenzene	ND		ug/l	2.0		1
tert-Butylbenzene	ND		ug/l	2.0		1
o-Chlorotoluene	ND		ug/l	2.0		1
p-Chlorotoluene	ND		ug/l	2.0		1
1,2-Dibromo-3-chloropropane	ND		ug/l	2.0		1
Hexachlorobutadiene	ND		ug/l	0.60		1
Isopropylbenzene	ND		ug/l	2.0		1
p-Isopropyltoluene	ND		ug/l	2.0		1
Naphthalene	ND		ug/l	2.0		1
n-Propylbenzene	ND		ug/l	2.0		1

Project Name:Not SpecifiedLab Number:L2016503

Project Number: 6693 Report Date: 04/23/20

SAMPLE RESULTS

Lab ID: L2016503-01 Date Collected: 04/21/20 11:15

Client ID: B-106A(OW) Date Received: 04/21/20 Sample Location: BROOKLINE, MA Field Prep: Not Specified

Sample Depth:

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	
MCP Volatile Organics - Westborou	ıgh Lab						
1,2,3-Trichlorobenzene	ND		ug/l	2.0		1	
1,2,4-Trichlorobenzene	ND		ug/l	2.0		1	
1,3,5-Trimethylbenzene	ND		ug/l	2.0		1	
1,2,4-Trimethylbenzene	ND		ug/l	2.0		1	
Diethyl ether	ND		ug/l	2.0		1	
Diisopropyl Ether	ND		ug/l	2.0		1	
Ethyl-Tert-Butyl-Ether	ND		ug/l	2.0		1	
Tertiary-Amyl Methyl Ether	ND		ug/l	2.0		1	
1,4-Dioxane	ND		ug/l	250		1	

Surrogate	% Recovery	Qualifier	Acceptance Criteria	
1,2-Dichloroethane-d4	113		70-130	
Toluene-d8	98		70-130	
4-Bromofluorobenzene	112		70-130	
Dibromofluoromethane	151	Q	70-130	

Project Number: 6693

Lab Number: L2016503

Report Date: 04/23/20

Method Blank Analysis Batch Quality Control

Analytical Method: 97,8260C Analytical Date: 04/22/20 07:12

Analyst: MM

Parameter	Result	Qualifier Unit	s RL	MDL	
MCP Volatile Organics -	Westborough Lab for s	sample(s): 01	Batch: WG	1363398-5	
Methylene chloride	ND	ug/	1 2.0		
1,1-Dichloroethane	ND	ug/	1.0		
Chloroform	ND	ug/	1.0		
Carbon tetrachloride	ND	ug/	1.0		
1,2-Dichloropropane	ND	ug/	1.0		
Dibromochloromethane	ND	ug/	1.0		
1,1,2-Trichloroethane	ND	ug/	1.0		
Tetrachloroethene	ND	ug/	1.0		
Chlorobenzene	ND	ug/	1.0		
Trichlorofluoromethane	ND	ug/	1 2.0		
1,2-Dichloroethane	ND	ug/	1.0		
1,1,1-Trichloroethane	ND	ug/	1.0		
Bromodichloromethane	ND	ug/	1.0		
trans-1,3-Dichloropropene	ND	ug/	0.40		
cis-1,3-Dichloropropene	ND	ug/	0.40		
1,3-Dichloropropene, Total	ND	ug/	0.40		
1,1-Dichloropropene	ND	ug/	1 2.0		
Bromoform	ND	ug/	1 2.0		
1,1,2,2-Tetrachloroethane	ND	ug/	1.0		
Benzene	ND	ug/	0.50		
Toluene	ND	ug/	1.0		
Ethylbenzene	ND	ug/	1.0		
Chloromethane	ND	ug/	1 2.0		
Bromomethane	ND	ug/	1 2.0		
Vinyl chloride	ND	ug/	1.0		
Chloroethane	ND	ug/	1 2.0		
1,1-Dichloroethene	ND	ug/	1.0		
trans-1,2-Dichloroethene	ND	ug/	1.0		
Trichloroethene	ND	ug/	I 1.0		

Project Number: 6693

Lab Number: L2016503

Report Date: 04/23/20

Method Blank Analysis Batch Quality Control

Analytical Method: 97,8260C Analytical Date: 04/22/20 07:12

Analyst: MM

arameter	Result	Qualifier Unit	:s	RL	MDL	
ICP Volatile Organics	- Westborough Lab for	sample(s): 01	Batch:	WG13	63398-5	
1,2-Dichlorobenzene	ND	ug	/I	1.0		
1,3-Dichlorobenzene	ND	ug	/I	1.0		
1,4-Dichlorobenzene	ND	ug	/I	1.0		
Methyl tert butyl ether	ND	ug	/I	2.0		
p/m-Xylene	ND	ug	/I	2.0		
o-Xylene	ND	ug	/I	1.0		
Xylenes, Total	ND	ug	/I	1.0		
cis-1,2-Dichloroethene	ND	ug	/I	1.0		
1,2-Dichloroethene, Total	ND	ug	/I	1.0		
Dibromomethane	ND	ug	/I	2.0		
1,2,3-Trichloropropane	ND	ug	/I	2.0		
Styrene	ND	ug	/I	1.0		
Dichlorodifluoromethane	ND	ug	/I	2.0		
Acetone	ND	ug	/I	5.0		
Carbon disulfide	ND	ug	/I	2.0		
Methyl ethyl ketone	ND	ug	/I	5.0		
Methyl isobutyl ketone	ND	ug	/I	5.0		
2-Hexanone	ND	ug	/I	5.0		
Bromochloromethane	ND	ug	/I	2.0		
Tetrahydrofuran	ND	ug	/I	2.0		
2,2-Dichloropropane	ND	ug	/I	2.0		
1,2-Dibromoethane	ND	ug	/I	2.0		
1,3-Dichloropropane	ND	ug	/I	2.0		
1,1,1,2-Tetrachloroethane	ND	ug	/I	1.0		
Bromobenzene	ND	ug	/I	2.0		
n-Butylbenzene	ND	ug	/I	2.0		
sec-Butylbenzene	ND	ug	/I	2.0		
tert-Butylbenzene	ND	ug	/I	2.0		
o-Chlorotoluene	ND	ug	/I	2.0		

Project Number: 6693

Lab Number: L2016503

Report Date: 04/23/20

Method Blank Analysis Batch Quality Control

Analytical Method: 97,8260C Analytical Date: 04/22/20 07:12

Analyst: MM

Parameter	Result	Qualifier	Unit	s	RL	MDL	
MCP Volatile Organics - Westbor	ough Lab for s	sample(s):	01	Batch:	WG13	363398-5	
p-Chlorotoluene	ND		ug/	/	2.0	<u></u>	
1,2-Dibromo-3-chloropropane	ND		ug/	/	2.0		
Hexachlorobutadiene	ND		ug/	/	0.60		
Isopropylbenzene	ND		ug/	/1	2.0		
p-Isopropyltoluene	ND		ug/	/1	2.0		
Naphthalene	ND		ug/	/1	2.0		
n-Propylbenzene	ND		ug/	/ I	2.0		
1,2,3-Trichlorobenzene	ND		ug/	/ I	2.0		
1,2,4-Trichlorobenzene	ND		ug/	/ I	2.0		
1,3,5-Trimethylbenzene	ND		ug/	/ I	2.0		
1,2,4-Trimethylbenzene	ND		ug/	/ I	2.0		
Diethyl ether	ND		ug/	′ I	2.0		
Diisopropyl Ether	ND		ug/	/ I	2.0		
Ethyl-Tert-Butyl-Ether	ND		ug/	/ I	2.0		
Tertiary-Amyl Methyl Ether	ND		ug/	1	2.0		
1,4-Dioxane	ND		ug/	1	250		

		Acceptance			
Surrogate	%Recovery	Qualifier	Criteria		
1,2-Dichloroethane-d4	111		70-130		
Toluene-d8	99		70-130		
4-Bromofluorobenzene	111		70-130		
Dibromofluoromethane	109		70-130		

Project Name: Not Specified

Project Number: 6693

Lab Number: L2016503

Report Date: 04/23/20

Parameter	LCS %Recovery	Qual	LCSD %Recovery	Qual	%Recovery Limits	RPD	RPD Qual Limits	
MCP Volatile Organics - Westborough Lab	Associated samp	ole(s): 01	Batch: WG136339	8-3 WG13	63398-4			
Methylene chloride	100		120		70-130	18	20	
1,1-Dichloroethane	110		120		70-130	9	20	
Chloroform	110		110		70-130	0	20	
Carbon tetrachloride	110		110		70-130	0	20	
1,2-Dichloropropane	110		110		70-130	0	20	
Dibromochloromethane	110		110		70-130	0	20	
1,1,2-Trichloroethane	110		110		70-130	0	20	
Tetrachloroethene	100		100		70-130	0	20	
Chlorobenzene	100		110		70-130	10	20	
Trichlorofluoromethane	91		99		70-130	8	20	
1,2-Dichloroethane	120		120		70-130	0	20	
1,1,1-Trichloroethane	110		110		70-130	0	20	
Bromodichloromethane	110		110		70-130	0	20	
trans-1,3-Dichloropropene	120		120		70-130	0	20	
cis-1,3-Dichloropropene	110		120		70-130	9	20	
1,1-Dichloropropene	110		110		70-130	0	20	
Bromoform	110		120		70-130	9	20	
1,1,2,2-Tetrachloroethane	120		120		70-130	0	20	
Benzene	110		110		70-130	0	20	
Toluene	110		110		70-130	0	20	
Ethylbenzene	110		110		70-130	0	20	
Chloromethane	90		110		70-130	20	20	
Bromomethane	90		94		70-130	4	20	

Project Name: Not Specified

Project Number: 6693

Lab Number: L2016503

Report Date: 04/23/20

Parameter	LCS %Recovery	Qual	LCSD %Recovery	Qual	%Recovery Limits	RPD	Qual	RPD Limits	
MCP Volatile Organics - Westborough Lab	Associated samp	ole(s): 01	Batch: WG136339	98-3 WG1	1363398-4				
Vinyl chloride	85		96		70-130	12		20	
Chloroethane	100		100		70-130	0		20	
1,1-Dichloroethene	95		110		70-130	15		20	
trans-1,2-Dichloroethene	100		130		70-130	26	Q	20	
Trichloroethene	110		110		70-130	0		20	
1,2-Dichlorobenzene	110		110		70-130	0		20	
1,3-Dichlorobenzene	110		110		70-130	0		20	
1,4-Dichlorobenzene	110		110		70-130	0		20	
Methyl tert butyl ether	120		120		70-130	0		20	
p/m-Xylene	110		110		70-130	0		20	
o-Xylene	105		110		70-130	5		20	
cis-1,2-Dichloroethene	110		110		70-130	0		20	
Dibromomethane	110		120		70-130	9		20	
1,2,3-Trichloropropane	120		120		70-130	0		20	
Styrene	110		115		70-130	4		20	
Dichlorodifluoromethane	74		110		70-130	39	Q	20	
Acetone	140	Q	150	Q	70-130	7		20	
Carbon disulfide	98		100		70-130	2		20	
Methyl ethyl ketone	140	Q	140	Q	70-130	0		20	
Methyl isobutyl ketone	120		120		70-130	0		20	
2-Hexanone	120		120		70-130	0		20	
Bromochloromethane	110		120		70-130	9		20	
Tetrahydrofuran	130		130		70-130	0		20	

Project Name: Not Specified

Project Number: 6693

 Lab Number:
 L2016503

 Report Date:
 04/23/20

<u>Parameter</u>	LCS %Recovery	Qual	LCSD %Recovery	%Recovery Qual Limits	RPD	RPD Qual Limits	
MCP Volatile Organics - Westborough	Lab Associated samp	le(s): 01	Batch: WG13633	398-3 WG1363398-4			
2,2-Dichloropropane	110		120	70-130	9	20	
1,2-Dibromoethane	110		110	70-130	0	20	
1,3-Dichloropropane	110		120	70-130	9	20	
1,1,1,2-Tetrachloroethane	110		110	70-130	0	20	
Bromobenzene	110		110	70-130	0	20	
n-Butylbenzene	99		100	70-130	1	20	
sec-Butylbenzene	100		110	70-130	10	20	
tert-Butylbenzene	100		110	70-130	10	20	
o-Chlorotoluene	110		120	70-130	9	20	
p-Chlorotoluene	110		120	70-130	9	20	
1,2-Dibromo-3-chloropropane	100		110	70-130	10	20	
Hexachlorobutadiene	100		110	70-130	10	20	
Isopropylbenzene	110		110	70-130	0	20	
p-Isopropyltoluene	100		100	70-130	0	20	
Naphthalene	100		100	70-130	0	20	
n-Propylbenzene	110		110	70-130	0	20	
1,2,3-Trichlorobenzene	97		110	70-130	13	20	
1,2,4-Trichlorobenzene	95		100	70-130	5	20	
1,3,5-Trimethylbenzene	100		110	70-130	10	20	
1,2,4-Trimethylbenzene	100		110	70-130	10	20	
Diethyl ether	100		110	70-130	10	20	
Diisopropyl Ether	110		120	70-130	9	20	
Ethyl-Tert-Butyl-Ether	120		120	70-130	0	20	

Project Name: Not Specified

Project Number: 6693

Lab Number: L2016503

Report Date: 04/23/20

Parameter	LCS %Recovery	Qual	LCSD %Recovery	Qual	%Recovery Limits	RPD	Qual	RPD Limits	
MCP Volatile Organics - Westborough Lab	Associated samp	le(s): 01 E	Batch: WG13633	98-3 WG1	363398-4				
Tertiary-Amyl Methyl Ether	110		120		70-130	9		20	
1,4-Dioxane	130		104		70-130	22	Q	20	

Surrogate	LCS %Recovery Qual	LCSD %Recovery Qual	Acceptance Criteria
1,2-Dichloroethane-d4	108	107	70-130
Toluene-d8	99	99	70-130
4-Bromofluorobenzene	105	103	70-130
Dibromofluoromethane	103	103	70-130

Lab Number: L2016503

Lab Nulliber. L2010303

Report Date: 04/23/20

Sample Receipt and Container Information

Were project specific reporting limits specified?

Not Specified

Cooler Information

Project Number: 6693

Project Name:

Cooler Custody Seal

A Absent

Container Information			Initial	Final	Temp			Frozen	
Container ID	Container Type	Cooler	Cooler pH p		deg C	deg C Pres		Date/Time	Analysis(*)
L2016503-01A	Vial HCl preserved	Α	NA		4.4	Υ	Absent		MCP-8260-10(14)
L2016503-01B	Vial HCl preserved	Α	NA		4.4	Υ	Absent		MCP-8260-10(14)
L2016503-01C	Vial HCl preserved	Α	NA		4.4	Υ	Absent		MCP-8260-10(14)
L2016503-01D	Plastic 250ml unpreserved	Α	7	7	4.4	Υ	Absent		ARCHIVE()

Project Name: Lab Number: Not Specified L2016503

Project Number: 6693 **Report Date:** 04/23/20

GLOSSARY

Acronyms

DL - Detection Limit: This value represents the level to which target analyte concentrations are reported as estimated values, when those target analyte concentrations are quantified below the limit of quantitation (LOQ). The DL includes any adjustments from dilutions, concentrations or moisture content, where applicable. (DoD report formats only.)

EDL

- Estimated Detection Limit: This value represents the level to which target analyte concentrations are reported as estimated values, when those target analyte concentrations are quantified below the reporting limit (RL). The EDL includes any adjustments from dilutions, concentrations or moisture content, where applicable. The use of EDLs is specific to the analysis of PAHs using Solid-Phase Microextraction (SPME).

EMPC - Estimated Maximum Possible Concentration: The concentration that results from the signal present at the retention time of an analyte when the ions meet all of the identification criteria except the ion abundance ratio criteria. An EMPC is a worst-case

estimate of the concentration.

EPA Environmental Protection Agency.

LCS - Laboratory Control Sample: A sample matrix, free from the analytes of interest, spiked with verified known amounts of

analytes or a material containing known and verified amounts of analytes.

LCSD Laboratory Control Sample Duplicate: Refer to LCS.

LFB - Laboratory Fortified Blank: A sample matrix, free from the analytes of interest, spiked with verified known amounts of

analytes or a material containing known and verified amounts of analytes.

LOD - Limit of Detection: This value represents the level to which a target analyte can reliably be detected for a specific analyte in a specific matrix by a specific method. The LOD includes any adjustments from dilutions, concentrations or moisture content,

where applicable. (DoD report formats only.)

LOQ - Limit of Quantitation: The value at which an instrument can accurately measure an analyte at a specific concentration. The LOQ includes any adjustments from dilutions, concentrations or moisture content, where applicable. (DoD report formats

Limit of Quantitation: The value at which an instrument can accurately measure an analyte at a specific concentration. The LOQ includes any adjustments from dilutions, concentrations or moisture content, where applicable. (DoD report formats

MDI - Method Detection Limit: This value represents the level to which target analyte concentrations are reported as estimated values, when those target analyte concentrations are quantified below the reporting limit (RL). The MDL includes any

adjustments from dilutions, concentrations or moisture content, where applicable.

MS - Matrix Spike Sample: A sample prepared by adding a known mass of target analyte to a specified amount of matrix sample for which an independent estimate of target analyte concentration is available. For Method 332.0, the spike recovery is calculated

using the native concentration, including estimated values.

MSD - Matrix Spike Sample Duplicate: Refer to MS.

NA - Not Applicable.

- Not Calculated: Term is utilized when one or more of the results utilized in the calculation are non-detect at the parameter's

reporting unit.

NDPA/DPA - N-Nitrosodiphenylamine/Diphenylamine.

NI - Not Ignitable.

- Non-Plastic: Term is utilized for the analysis of Atterberg Limits in soil.

RL - Reporting Limit: The value at which an instrument can accurately measure an analyte at a specific concentration. The RL

includes any adjustments from dilutions, concentrations or moisture content, where applicable.

- Relative Percent Difference: The results from matrix and/or matrix spike duplicates are primarily designed to assess the RPD

precision of analytical results in a given matrix and are expressed as relative percent difference (RPD). Values which are less than five times the reporting limit for any individual parameter are evaluated by utilizing the absolute difference between the

values; although the RPD value will be provided in the report.

SRM - Standard Reference Material: A reference sample of a known or certified value that is of the same or similar matrix as the

associated field samples.

STLP - Semi-dynamic Tank Leaching Procedure per EPA Method 1315.

TEF - Toxic Equivalency Factors: The values assigned to each dioxin and furan to evaluate their toxicity relative to 2,3,7,8-TCDD.

TEQ - Toxic Equivalent: The measure of a sample's toxicity derived by multiplying each dioxin and furan by its corresponding TEF

and then summing the resulting values.

TIC - Tentatively Identified Compound: A compound that has been identified to be present and is not part of the target compound list (TCL) for the method and/or program. All TICs are qualitatively identified and reported as estimated concentrations.

Footnotes

NP

Report Format: Data Usability Report

Project Name:Not SpecifiedLab Number:L2016503Project Number:6693Report Date:04/23/20

 The reference for this analyte should be considered modified since this analyte is absent from the target analyte list of the original method.

Terms

Analytical Method: Both the document from which the method originates and the analytical reference method. (Example: EPA 8260B is shown as 1,8260B.) The codes for the reference method documents are provided in the References section of the Addendum.

Difference: With respect to Total Oxidizable Precursor (TOP) Assay analysis, the difference is defined as the Post-Treatment value minus the Pre-Treatment value.

Final pH: As it pertains to Sample Receipt & Container Information section of the report, Final pH reflects pH of container determined after adjustment at the laboratory, if applicable. If no adjustment required, value reflects Initial pH.

Frozen Date/Time: With respect to Volatile Organics in soil, Frozen Date/Time reflects the date/time at which associated Reagent Water-preserved vials were initially frozen. Note: If frozen date/time is beyond 48 hours from sample collection, value will be reflected in 'bold'. Initial pH: As it pertains to Sample Receipt & Container Information section of the report, Initial pH reflects pH of container determined upon receipt, if applicable.

PAH Total: With respect to Alkylated PAH analyses, the 'PAHs, Total' result is defined as the summation of results for all or a subset of the following compounds: Naphthalene, C1-C4 Naphthalenes, 2-Methylnaphthalene, 1-Methylnaphthalene, Biphenyl, Acenaphthylene, Acenaphthene, Fluorene, C1-C3 Fluorenes, Phenanthrene, C1-C4 Phenanthrenes/Anthracenes, Anthracene, Fluoranthene, Pyrene, C1-C4 Fluoranthenes/Pyrenes, Benza(a)anthracene, Chrysene, C1-C4 Chrysenes, Benzo(b)fluoranthene, Benzo(j)+(k)fluoranthene, Benzo(e)pyrene, Benzo(a)pyrene, Perylene, Indeno(1,2,3-cd)pyrene, Dibenz(ah)+(ac)anthracene, Benzo(g,h,i)perylene. If a 'Total' result is requested, the results of its individual components will also be reported.

PFAS Total: With respect to PFAS analyses, the 'PFAS, Total (5)' result is defined as the summation of results for: PFHpA, PFHxS, PFOA, PFNA and PFOS. If a 'Total' result is requested, the results of its individual components will also be reported.

The target compound Chlordane (CAS No. 57-74-9) is reported for GC ECD analyses. Per EPA,this compound "refers to a mixture of chlordane isomers, other chlorinated hydrocarbons and numerous other components." (Reference: USEPA Toxicological Review of Chlordane, In Support of Summary Information on the Integrated Risk Information System (IRIS), December 1997.)

Total: With respect to Organic analyses, a 'Total' result is defined as the summation of results for individual isomers or Aroclors. If a 'Total' result is requested, the results of its individual components will also be reported. This is applicable to 'Total' results for methods 8260, 8081 and 8082.

Data Qualifiers

- A Spectra identified as "Aldol Condensates" are byproducts of the extraction/concentration procedures when acetone is introduced in the process.
- The analyte was detected above the reporting limit in the associated method blank. Flag only applies to associated field samples that have detectable concentrations of the analyte at less than ten times (10x) the concentration found in the blank. For MCP-related projects, flag only applies to associated field samples that have detectable concentrations of the analyte at less than ten times (10x) the concentrations of the analyte at less than ten times (10x) the concentrations of the analyte was detectable concentrations of the analyte at less than ten times (10x) the concentration found in the blank AND the analyte was detected above one-half the reporting limit (or above the reporting limit for common lab contaminants) in the associated method blank. For NJ-Air-related projects, flag only applies to associated field samples that have detectable concentrations of the analyte above the reporting limit. For NJ-related projects (excluding Air), flag only applies to associated field samples that have detectable concentrations of the analyte, which was detected above the reporting limit in the associated method blank or above five times the reporting limit for common lab contaminants (Phthalates, Acetone, Methylene Chloride, 2-Butanone).
- C Co-elution: The target analyte co-elutes with a known lab standard (i.e. surrogate, internal standards, etc.) for co-extracted analyses
- Concentration of analyte was quantified from diluted analysis. Flag only applies to field samples that have detectable concentrations
 of the analyte.
- E Concentration of analyte exceeds the range of the calibration curve and/or linear range of the instrument.
- G The concentration may be biased high due to matrix interferences (i.e, co-elution) with non-target compound(s). The result should be considered estimated.
- H The analysis of pH was performed beyond the regulatory-required holding time of 15 minutes from the time of sample collection.
- The lower value for the two columns has been reported due to obvious interference.
- J Estimated value. This represents an estimated concentration for Tentatively Identified Compounds (TICs).
- M Reporting Limit (RL) exceeds the MCP CAM Reporting Limit for this analyte.
- **ND** Not detected at the reporting limit (RL) for the sample.
- NJ Presumptive evidence of compound. This represents an estimated concentration for Tentatively Identified Compounds (TICs), where the identification is based on a mass spectral library search.
- ${f P}$ The RPD between the results for the two columns exceeds the method-specified criteria.
- Q The quality control sample exceeds the associated acceptance criteria. For DOD-related projects, LCS and/or Continuing Calibration Standard exceedences are also qualified on all associated sample results. Note: This flag is not applicable for matrix spike recoveries when the sample concentration is greater than 4x the spike added or for batch duplicate RPD when the sample concentrations are less

Report Format: Data Usability Report

Project Name: Not Specified Lab Number: L2016503

Project Number: 6603

Project Number: 6603

Project Number: 6693 Report Date: 04/23/20

Data Qualifiers

than 5x the RL. (Metals only.)

 \boldsymbol{R} — Analytical results are from sample re-analysis.

RE - Analytical results are from sample re-extraction.

 ${f S}$ - Analytical results are from modified screening analysis.

Report Format: Data Usability Report

Project Name: Not Specified Lab Number: L2016503

Project Number: 6693 Report Date: 04/23/20

REFERENCES

97 EPA Test Methods (SW-846) with QC Requirements & Performance Standards for the Analysis of EPA SW-846 Methods under the Massachusetts Contingency Plan, WSC-CAM-IIA, IIB, IIIA, IIIB, IIIC, IIID, VA, VB, VC, VIA, VIB, VIIIA and VIIIB, July 2010.

LIMITATION OF LIABILITIES

Alpha Analytical performs services with reasonable care and diligence normal to the analytical testing laboratory industry. In the event of an error, the sole and exclusive responsibility of Alpha Analytical shall be to re-perform the work at it's own expense. In no event shall Alpha Analytical be held liable for any incidental, consequential or special damages, including but not limited to, damages in any way connected with the use of, interpretation of, information or analysis provided by Alpha Analytical.

We strongly urge our clients to comply with EPA protocol regarding sample volume, preservation, cooling, containers, sampling procedures, holding time and splitting of samples in the field.

Alpha Analytical, Inc.
Facility: Company-wide

Department: Quality Assurance

Title: Certificate/Approval Program Summary

ID No.:**17873** Revision 16

Published Date: 2/17/2020 10:46:05 AM

Page 1 of 1

Certification Information

The following analytes are not included in our Primary NELAP Scope of Accreditation:

Westborough Facility

EPA 624/624.1: m/p-xylene, o-xylene

EPA 8260C: NPW: 1,2,4,5-Tetramethylbenzene; 4-Ethyltoluene, Azobenzene; SCM: lodomethane (methyl iodide), 1,2,4,5-Tetramethylbenzene; 4-Ethyltoluene, Azobenzene; 4-Ethyltoluene, Azobenzene; 500 methyl iodide), 1,2,4,5-Tetramethylbenzene; 500 methyl iodide), 1,2,4,5-Tetramethylbenzene

Ethyltoluene.

EPA 8270D: NPW: Dimethylnaphthalene,1,4-Diphenylhydrazine; SCM: Dimethylnaphthalene,1,4-Diphenylhydrazine.

SM4500: NPW: Amenable Cyanide; SCM: Total Phosphorus, TKN, NO2, NO3.

Mansfield Facility

SM 2540D: TSS

EPA 8082A: NPW: PCB: 1, 5, 31, 87,101, 110, 141, 151, 153, 180, 183, 187.

EPA TO-15: Halothane, 2,4,4-Trimethyl-2-pentene, 2,4,4-Trimethyl-1-pentene, Thiophene, 2-Methylthiophene,

3-Methylthiophene, 2-Ethylthiophene, 1,2,3-Trimethylbenzene, Indan, Indene, 1,2,4,5-Tetramethylbenzene, Benzothiophene, 1-Methylnaphthalene.

EPA TO-12 Non-methane organics

EPA 3C Fixed gases

Biological Tissue Matrix: EPA 3050B

The following analytes are included in our Massachusetts DEP Scope of Accreditation

Westborough Facility:

Drinking Water

EPA 300.0: Chloride, Nitrate-N, Fluoride, Sulfate; EPA 353.2: Nitrate-N, Nitrite-N; SM4500NO3-F: Nitrate-N, Nitrite-N; SM4500F-C, SM4500CN-CE,

EPA 180.1, SM2130B, SM4500CI-D, SM2320B, SM2540C, SM4500H-B, SM4500NO2-B

EPA 332: Perchlorate; EPA 524.2: THMs and VOCs; EPA 504.1: EDB, DBCP.

Microbiology: SM9215B; SM9223-P/A, SM9223B-Colilert-QT,SM9222D.

Non-Potable Water

SM4500H,B, EPA 120.1, SM2510B, SM2540C, SM2320B, SM4500CL-E, SM4500F-BC, SM4500NH3-BH: Ammonia-N and Kjeldahl-N, EPA 350.1: Ammonia-N, LACHAT 10-107-06-1-B: Ammonia-N, EPA 351.1, SM4500NO3-F, EPA 353.2: Nitrate-N, SM4500P-E, SM4500P-B, E, SM4500SO4-E, SM5220D, EPA 410.4, SM5210B, SM5310C, SM4500CL-D, EPA 1664, EPA 420.1, SM4500-CN-CE, SM2540D, EPA 300: Chloride, Sulfate, Nitrate. EPA 624.1: Volatile Halocarbons & Aromatics,

EPA 608.3: Chlordane, Toxaphene, Aldrin, alpha-BHC, beta-BHC, gamma-BHC, delta-BHC, Dieldrin, DDD, DDE, DDT, Endosulfan II, Endosulfan II, Endosulfan sulfate, Endrin, Endrin Aldehyde, Heptachlor, Heptachlor Epoxide, PCBs

EPA 625.1: SVOC (Acid/Base/Neutral Extractables), EPA 600/4-81-045: PCB-Oil.

Microbiology: SM9223B-Colilert-QT; Enterolert-QT, SM9221E, EPA 1600, EPA 1603.

Mansfield Facility:

Drinking Water

EPA 200.7: Al, Ba, Cd, Cr, Cu, Fe, Mn, Ni, Na, Ag, Ca, Zn. EPA 200.8: Al, Sb, As, Ba, Be, Cd, Cr, Cu, Pb, Mn, Ni, Se, Ag, TL, Zn. EPA 245.1 Hg. EPA 522.

Non-Potable Water

EPA 200.7: Al, Sb, As, Be, Cd, Ca, Cr, Co, Cu, Fe, Pb, Mg, Mn, Mo, Ni, K, Se, Ag, Na, Sr, TL, Ti, V, Zn.

EPA 200.8: Al, Sb, As, Be, Cd, Cr, Cu, Fe, Pb, Mn, Ni, K, Se, Ag, Na, TL, Zn.

EPA 245.1 Hg.

SM2340B

For a complete listing of analytes and methods, please contact your Alpha Project Manager.

Document Type: Form

Pre-Qualtrax Document ID: 08-113

CHAIN OF CUSTODY																			ALPHA Job #: L216535				
8 Walkup Drive Westboro, MA, 01	Project Information Project Name:						Report Information - Data Deliverables									Billing Information							
Tel: 508-898-9220 Tel: 508-822-9300			Notification of the second of						Regulatory Requirements & Project Information										Management (Statement of Statement of Statem				
Client Information Client: McPhail A	Project Location: Brockline War										nts (ments lytical Me	hods				
Address: 2269 Massachusetts Avenue			6673							Matrix	Spike	Requir	ed on th	nis SDG	? (Req	uired fo	or MCF	norg	anics)				
Cambridge, MA 02140			ALPHA Quote #.							NPD	ES RG	P	no req	ured to	wetais			arges	9).				
Phone: (617) 868-1	Turn-Around Time						er Sta	le /Fed	Prog	ram				Crit	eria _		_	_					
. N 32	Turn-Around Time						D 8260	Total Solids	SVOC: □ PAH	EPH: C Ranges & Targets Ranges Only	VPH: Canges & Targets Ranges Only	TOTAL METALS: DRCRAB D PP13 D MCP 14	DISSOLVED METALS: 🗅 RCRA8	_									
Email: NGH @McPhailgeo.com			— □ Standard □ RUSH (only confirmed if pre-upproved!) Date Due:											METALS: Total Sb,Be,Ni,TI,V,Zn						т о			
Additional Project Information:															3s 🗆 Pesticides	Si			SAMPLE INFO	T			
Run TCLP (if trig																Section A Inorganics			Filtration Field Lab to do Preservation Lab to do				
ALPHA Lab ID Sample ID (Lab Use Only)			Sample Collection				Sampler	Soil Assessment (less VOC)	VOC:	otal S	000	H.H.	H. E	OTA PP	ISSC PP	ETA	□ PCBs	RGP 8				L E	
(6505-01	R. In	1 Ma .	Depth	GW	Date	Time	Initials	Ø €	V	-	ŝ	<u> </u>	> 0	F-0		Σ	0	œ		+	Sample Con	nments 5	
10/03-01	D. 10	670W)	_	GIV	4/21/20	1112	Tre	-	X	X			-			_						7	
			-	+			-	+	\vdash	H					_	_	\vdash	_	\vdash	_	+	_	
				+				+		H			-			_	-		H	+	-	_	
all Callette				+				-													_	-	
				-				-			-												
				+			-	+	-	-	_	-	\vdash		_	_	-			_	+	-	
				+		-	-			-	_			-	_		_	H	H	- 1	+	-+	
				+				-	-										\vdash	-	+	\rightarrow	
				-						-											_	_	
Container Type	Preservative	e RGP Sec	tion A Inorganics :	1		0	ontainer Type	-	V	P	_	_									+	\rightarrow	
A=Amber glass		ila, Chloride, TRC, TSS, CrVI, CrIII, Total Preservative						P	4	-								\vdash		+	_		
		Religguis	10 /2/3			_	Received By:								Date/	Time							
		4/2/120 /2/2						McPhail Associates secure sample storage for laboratory													All samples		
		ail Associates sec		-	/ pigk-up								,[42		submitted are subject to							
		laboratory	A		Alpha's Terrand Condition See reverse s																		
Sample Material F=Fill S=Sand O=Organics C=Clay	K=Zn Acetate O=Other	y	1/2 4/x 1730												1/2	17	and Con	and Conditions. See reverse side.					
N=Natural T=Till GM=Glaciomarine GW=Groundwater																DOC ID: 25188 Rev 0 (11/28/2017)							

Method Blank Summary Form 4 Volatiles

Client : McPhail Associates Lab Number : L2016503 Project Name : Project Number : 6693

Instrument ID : JACK

Matrix : WATER Analysis Date : 04/22/20 07:12

Client Sample No.	Lab Sample ID	Analysis Date	
WG1363398-3LCS	WG1363398-3	04/22/20 05:03	
WG1363398-4LCSD	WG1363398-4	04/22/20 05:35	
B-106A(OW)	L2016503-01	04/22/20 09:21	

Calibration Verification Summary Form 7 Volatiles

Client : McPhail Associates Lab Number : L2016503
Project Name : Project Number : 6693

Instrument ID : JACK Calibration Date : 04/22/20 05:03

 Lab File ID
 : VJ200422A04
 Init. Calib. Date(s)
 : 04/06/20
 04/06/20

 Sample No
 : WG1363398-2
 Init. Calib. Times
 : 08:51
 12:38

Channel:

Compound	Ave. RRF	RRF	Min RRF	%D	Max %D	Area%	Dev(min)
Fluorobenzene	1	1	-	0	20	86	0
Dichlorodifluoromethane	0.806	0.599	-	25.7*	20	66	0
Chloromethane	0.795	0.714	-	10.2	20	89	0
Vinyl chloride	10	8.497	-	15	20	84	0
Bromomethane	10	9.003	-	10	20	105	0
Chloroethane	0.583	0.6	-	-2.9	20	92	0
Trichlorofluoromethane	1.373	1.251	-	8.9	20	85	0
Ethyl ether	0.404	0.413	-	-2.2	20	94	0
1,1-Dichloroethene	0.779	0.737	-	5.4	20	89	0
Carbon disulfide	1.694	1.669	-	1.5	20	94	0
Methylene chloride	0.759	0.803	-	-5.8	20	92	0
Acetone	10	14.074	-	-40.7*	20	124	0
trans-1,2-Dichloroethene	0.765	0.795	-	-3.9	20	95	0
Methyl tert-butyl ether	1.705	1.98	-	-16.1	20	101	0
Diisopropyl ether	2.425	2.755	-	-13.6	20	113	0
1,1-Dichloroethane	1.494	1.675	-	-12.1	20	105	0
Ethyl tert-butyl ether	2.244	2.615	-	-16.5	20	113	0
cis-1,2-Dichloroethene	0.918	0.983	-	-7.1	20	103	0
2,2-Dichloropropane	1.026	1.18	-	-15	20	108	0
Bromochloromethane	0.397	0.452	-	-13.9	20	103	0
Chloroform	1.411	1.585	-	-12.3	20	106	0
Carbon tetrachloride	1.109	1.203	-	-8.5	20	100	0
Tetrahydrofuran	0.179	0.236	-	-31.8*	20	127	0
Dibromofluoromethane	0.249	0.256	-	-2.8	20	88	0
1,1,1-Trichloroethane	1.285	1.412	-	-9.9	20	104	0
2-Butanone	0.209	0.294	-	-40.7*	20	127	0
1,1-Dichloropropene	1.276	1.408	-	-10.3	20	108	0
Benzene	3.31	3.634	-	-9.8	20	103	0
tert-Amyl methyl ether	1.87	2.112	-	-12.9	20	110	0
1,2-Dichloroethane-d4	0.299	0.323	-	-8	20	101	0
1,2-Dichloroethane	1.109	1.332	-	-20.1*	20	119	0
Trichloroethene	0.873	0.932	-	-6.8	20	102	0
Dibromomethane	0.446	0.5	-	-12.1	20	109	0
1,2-Dichloropropane	0.867	0.939	-	-8.3	20	103	0
Bromodichloromethane	1.028	1.165	-	-13.3	20	109	0
1,4-Dioxane	0.00529	0.00691*	-	-30.6*	20	119	0
cis-1,3-Dichloropropene	1.236	1.408	-	-13.9	20	108	0
Chlorobenzene-d5	1	1	-	0	20	87	0
Toluene-d8	1.216	1.206	-	0.8	20	86	0
Toluene	2.623	2.797	-	-6.6	20	101	0
4-Methyl-2-pentanone	0.237	0.291	-	-22.8*	20	116	0
Tetrachloroethene	1.222	1.261	-	-3.2	20	98	0
trans-1,3-Dichloropropene	1.304	1.503	-	-15.3	20	112	0
, , ,							

^{*} Value outside of QC limits.

Calibration Verification Summary Form 7 Volatiles

Client : McPhail Associates Lab Number : L2016503
Project Name : Project Number : 6693

Instrument ID : JACK Calibration Date : 04/22/20 05:03

 Lab File ID
 : VJ200422A04
 Init. Calib. Date(s)
 : 04/06/20
 04/06/20

 Sample No
 : WG1363398-2
 Init. Calib. Times
 : 08:51
 12:38

Channel:

Compound	Ave. RRF	RRF	Min RRF	%D	Max %D	Area%	Dev(min)
1,1,2-Trichloroethane	0.652	0.747	-	-14.6	20	111	0
Chlorodibromomethane	0.89	0.971	-	-9.1	20	106	0
1,3-Dichloropropane	1.361	1.564	-	-14.9	20	110	0
1,2-Dibromoethane	0.774	0.871	-	-12.5	20	109	0
2-Hexanone	0.402	0.483	-	-20.1*	20	122	0
Chlorobenzene	2.913	3.057	-	-4.9	20	101	0
Ethylbenzene	4.822	5.232	-	-8.5	20	102	0
1,1,1,2-Tetrachloroethane	1.046	1.118	-	-6.9	20	100	0
p/m Xylene	1.955	2.13	-	-9	20	102	0
o Xylene	1.883	2.005	-	-6.5	20	101	0
Styrene	3.208	3.564	-	-11.1	20	105	0
1,4-Dichlorobenzene-d4	1	1	-	0	20	89	0
Bromoform	1.037	1.157	-	-11.6	20	113	0
Isopropylbenzene	8.368	9.1	-	-8.7	20	101	0
4-Bromofluorobenzene	0.784	0.825	-	-5.2	20	92	0
Bromobenzene	2.307	2.481	-	-7.5	20	103	0
n-Propylbenzene	9.181	9.799	-	-6.7	20	101	0
1,1,2,2-Tetrachloroethane	1.52	1.805	-	-18.7	20	111	0
2-Chlorotoluene	6.467	7.126	-	-10.2	20	105	0
1,3,5-Trimethylbenzene	6.431	6.78	-	-5.4	20	103	0
1,2,3-Trichloropropane	1.313	1.616	-	-23.1*	20	118	0
4-Chlorotoluene	5.914	6.658	-	-12.6	20	106	0
tert-Butylbenzene	5.507	5.731	-	-4.1	20	100	0
1,2,4-Trimethylbenzene	5.951	6.116	-	-2.8	20	104	0
sec-Butylbenzene	7.019	7.288	-	-3.8	20	99	0
p-Isopropyltoluene	10	9.967	-	0.3	20	99	0
1,3-Dichlorobenzene	4.269	4.635	-	-8.6	20	104	0
1,4-Dichlorobenzene	4.23	4.542	-	-7.4	20	104	0
n-Butylbenzene	10	9.891	-	1.1	20	101	0
1,2-Dichlorobenzene	3.99	4.318	-	-8.2	20	104	0
1,2-Dibromo-3-chloropropan	0.251	0.265	-	-5.6	20	110	0
Hexachlorobutadiene	0.805	0.843	-	-4.7	20	102	0
1,2,4-Trichlorobenzene	10	9.472	-	5.3	20	101	0
Naphthalene	10	10.349	-	-3.5	20	113	0
1,2,3-Trichlorobenzene	1.613	1.562	-	3.2	20	98	0

^{*} Value outside of QC limits.

ANALYTICAL REPORT

Lab Number: L2042881

Client: McPhail Associates

2269 Massachusetts Avenue

Cambridge, MA 02140

ATTN: Ambrose Donovan Phone: (617) 868-1420

Project Name: DRISCOLL SCHOOL

Project Number: 6693 Report Date: 10/13/20

The original project report/data package is held by Alpha Analytical. This report/data package is paginated and should be reproduced only in its entirety. Alpha Analytical holds no responsibility for results and/or data that are not consistent with the original.

Certifications & Approvals: MA (M-MA086), NH NELAP (2064), CT (PH-0574), IL (200077), ME (MA00086), MD (348), NJ (MA935), NY (11148), NC (25700/666), PA (68-03671), RI (LAO00065), TX (T104704476), VT (VT-0935), VA (460195), USDA (Permit #P330-17-00196).

Eight Walkup Drive, Westborough, MA 01581-1019 508-898-9220 (Fax) 508-898-9193 800-624-9220 - www.alphalab.com

Project Name: DRISCOLL SCHOOL

Project Number: 6693

Lab Number:

L2042881

Report Date:

10/13/20

Alpha Sample ID	Client ID	Matrix	Sample Location	Collection Date/Time	Receive Date
L2042881-01	B-303I	WATER	BROOKLINE, MA	10/07/20 09:30	10/07/20
L2042881-02	B-303C	WATER	BROOKLINE, MA	10/07/20 10:00	10/07/20

Project Name: DRISCOLL SCHOOL Lab Number: L2042881

Project Number: 6693 Report Date: 10/13/20

MADEP MCP Response Action Analytical Report Certification

This form provides certifications for all samples performed by MCP methods. Please refer to the Sample Results and Container Information sections of this report for specification of MCP methods used for each analysis. The following questions pertain only to MCP Analytical Methods.

An af	firmative response to questions A through F is required for "Presumptive Certainty" status	
Α	Were all samples received in a condition consistent with those described on the Chain-of-Custody, properly preserved (including temperature) in the field or laboratory, and prepared/analyzed within method holding times?	YES
В	Were the analytical method(s) and all associated QC requirements specified in the selected CAM protocol(s) followed?	YES
С	Were all required corrective actions and analytical response actions specified in the selected CAM protocol(s) implemented for all identified performance standard non-conformances?	YES
D	Does the laboratory report comply with all the reporting requirements specified in CAM VII A, "Quality Assurance and Quality Control Guidelines for the Acquisition and Reporting of Analytical Data?"	YES
E a.	VPH, EPH, and APH Methods only: Was each method conducted without significant modification(s)? (Refer to the individual method(s) for a list of significant modifications).	YES
E b.	APH and TO-15 Methods only: Was the complete analyte list reported for each method?	N/A
F	Were all applicable CAM protocol QC and performance standard non-conformances identified and evaluated in a laboratory narrative (including all "No" responses to Questions A through E)?	YES

A res	sponse to questions G, H and I is required for "Presumptive Certainty" status	
G	Were the reporting limits at or below all CAM reporting limits specified in the selected CAM protocol(s)?	NO
Н	Were all QC performance standards specified in the CAM protocol(s) achieved?	YES
I	Were results reported for the complete analyte list specified in the selected CAM protocol(s)?	YES

For any questions answered "No", please refer to the case narrative section on the following page(s).

Please note that sample matrix information is located in the Sample Results section of this report.

L2042881

Lab Number:

Project Name: DRISCOLL SCHOOL

Project Number: 6693 Report Date: 10/13/20

Case Narrative

The samples were received in accordance with the Chain of Custody and no significant deviations were encountered during the preparation or analysis unless otherwise noted. Sample Receipt, Container Information, and the Chain of Custody are located at the back of the report.

Results contained within this report relate only to the samples submitted under this Alpha Lab Number and meet NELAP requirements for all NELAP accredited parameters unless otherwise noted in the following narrative. The data presented in this report is organized by parameter (i.e. VOC, SVOC, etc.). Sample specific Quality Control data (i.e. Surrogate Spike Recovery) is reported at the end of the target analyte list for each individual sample, followed by the Laboratory Batch Quality Control at the end of each parameter. Tentatively Identified Compounds (TICs), if requested, are reported for compounds identified to be present and are not part of the method/program Target Compound List, even if only a subset of the TCL are being reported. If a sample was re-analyzed or re-extracted due to a required quality control corrective action and if both sets of data are reported, the Laboratory ID of the re-analysis or re-extraction is designated with an "R" or "RE", respectively.

When multiple Batch Quality Control elements are reported (e.g. more than one LCS), the associated samples for each element are noted in the grey shaded header line of each data table. Any Laboratory Batch, Sample Specific % recovery or RPD value that is outside the listed Acceptance Criteria is bolded in the report. In reference to questions H (CAM) or 4 (RCP) when "NO" is checked, the performance criteria for CAM and RCP methods allow for some quality control failures to occur and still be within method compliance. In these instances, the specific failure is not narrated but noted in the associated QC Outlier Summary Report, located directly after the Case Narrative. QC information is also incorporated in the Data Usability Assessment table (Format 11) of our Data Merger tool, where it can be reviewed in conjunction with the sample result, associated regulatory criteria and any associated data usability implications.

Soil/sediments, solids and tissues are reported on a dry weight basis unless otherwise noted. Definitions of all data qualifiers and acronyms used in this report are provided in the Glossary located at the back of the report.

HOLD POLICY - For samples submitted on hold, Alpha's policy is to hold samples (with the exception of Air canisters) free of charge for 21 calendar days from the date the project is completed. After 21 calendar days, we will dispose of all samples submitted including those put on hold unless you have contacted your Alpha Project Manager and made arrangements for Alpha to continue to hold the samples. Air canisters will be disposed after 3 business days from the date the project is completed.

Please contact Project Management at 800-624-9220 with any questions.	

Project Name:

DRISCOLL SCHOOL

Lab Number:

L2042881

Project Number:

6693

Report Date:

10/13/20

Case Narrative (continued)

MCP Related Narratives

VPH

In reference to question G:

L2042881-01 and -02: One or more of the target analytes did not achieve the requested CAM reporting limits.

I, the undersigned, attest under the pains and penalties of perjury that, to the best of my knowledge and belief and based upon my personal inquiry of those responsible for providing the information contained in this analytical report, such information is accurate and complete. This certificate of analysis is not complete unless this page accompanies any and all pages of this report.

Cattlin Wallet Caitlin Walukevich

Authorized Signature:

Title: Technical Director/Representative

Date: 10/13/20

QC OUTLIER SUMMARY REPORT

Project Name: DRISCOLL SCHOOL L2042881

Project Number: 6693 Report Date: 10/13/20

Recovery/RPD QC Limits Associated Data Quality
Method Client ID (Native ID) Lab ID Parameter QC Type (%) (%) Samples Assessment

There are no QC Outliers associated with this report.

ORGANICS

PETROLEUM HYDROCARBONS

Project Name: Lab Number: DRISCOLL SCHOOL L2042881

Project Number: 6693 **Report Date:** 10/13/20

SAMPLE RESULTS

Lab ID: L2042881-01 Date Collected: 10/07/20 09:30

Client ID: B-303I Date Received: 10/07/20

BROOKLINE, MA Field Prep: Sample Location: Not Specified

Sample Depth:

EPA 3510C Matrix: Water Extraction Method:

Analytical Method: 135,EPH-19-2.1 **Extraction Date:** 10/08/20 05:02 Analytical Date: 10/09/20 07:47 Cleanup Method1: EPH-04-1

Analyst: **MEO** Cleanup Date1: 10/08/20

Quality Control Information

Condition of sample received: Satisfactory

Aqueous Preservative: Laboratory Provided Preserved

Container Received on Ice

Sample Temperature upon receipt: Sample Extraction method: Extracted Per the Method

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	
Extractable Petroleum Hydrocarbons - Westborough Lab							
C9-C18 Aliphatics	ND		ug/l	100		1	
C19-C36 Aliphatics	ND		ug/l	100		1	
C11-C22 Aromatics	246		ug/l	100		1	
C11-C22 Aromatics, Adjusted	186		ug/l	100		1	
Naphthalene	42.0		ug/l	10.0		1	
2-Methylnaphthalene	17.7		ug/l	10.0		1	
Acenaphthylene	ND		ug/l	10.0		1	
Acenaphthene	ND		ug/l	10.0		1	
Fluorene	ND		ug/l	10.0		1	
Phenanthrene	ND		ug/l	10.0		1	
Anthracene	ND		ug/l	10.0		1	
Fluoranthene	ND		ug/l	10.0		1	
Pyrene	ND		ug/l	10.0		1	
Benzo(a)anthracene	ND		ug/l	10.0		1	
Chrysene	ND		ug/l	10.0		1	
Benzo(b)fluoranthene	ND		ug/l	10.0		1	
Benzo(k)fluoranthene	ND		ug/l	10.0		1	
Benzo(a)pyrene	ND		ug/l	10.0		1	
Indeno(1,2,3-cd)Pyrene	ND		ug/l	10.0		1	
Dibenzo(a,h)anthracene	ND		ug/l	10.0		1	
Benzo(ghi)perylene	ND		ug/l	10.0		1	

Project Name: DRISCOLL SCHOOL Lab Number: L2042881

Project Number: 6693 Report Date: 10/13/20

SAMPLE RESULTS

Lab ID: L2042881-01 Date Collected: 10/07/20 09:30

Client ID: B-303I Date Received: 10/07/20 Sample Location: BROOKLINE, MA Field Prep: Not Specified

Sumple Location. Die on Line, min

Sample Depth:

Parameter Result Qualifier Units RL MDL Dilution Factor

Extractable Petroleum Hydrocarbons - Westborough Lab

	Acceptance					
Surrogate	% Recovery	Qualifier	Criteria			
Chloro-Octadecane	53		40-140			
o-Terphenyl	70		40-140			
2-Fluorobiphenyl	70		40-140			
2-Bromonaphthalene	72		40-140			

Project Name: Lab Number: DRISCOLL SCHOOL L2042881

Project Number: 6693 **Report Date:** 10/13/20

SAMPLE RESULTS

Lab ID: L2042881-01 10/07/20 09:30 D Date Collected:

Client ID: B-303I

Date Received: 10/07/20 BROOKLINE, MA Field Prep: Not Specified Sample Location:

Sample Depth:

Matrix: Water

131, VPH-18-2.1 Analytical Method: Analytical Date: 10/10/20 12:06

Analyst: BAD

Sample Temperature upon receipt:

Methyl tert butyl ether

Naphthalene

Restek, RTX-502.2, Trap: EST, Carbopack B/Carboxen 1000&1001 Analytical Column:

105m, 0.53ID, 3um

Quality Control Information

Condition of sample received: Satisfactory

Laboratory Provided Preserved Aqueous Preservative:

Container Received on Ice

6.00

8.00

--

ug/l

ug/l

Parameter Result Qualifier Units RL MDL **Dilution Factor** Volatile Petroleum Hydrocarbons - Westborough Lab C5-C8 Aliphatics 1210 2 ug/l 200 2 C9-C12 Aliphatics 3080 ug/l 200 2 C9-C10 Aromatics 2500 ug/l 200 --2 C5-C8 Aliphatics, Adjusted 1110 ug/l 200 2 C9-C12 Aliphatics, Adjusted ND ug/l 200 2 Benzene 61.5 ug/l 4.00 --2 Toluene 23.0 4.00 ug/l --2 126 Ethylbenzene ug/l 4.00 p/m-Xylene 258 ug/l 4.00 2 --33.6 2 o-Xylene ug/l 4.00 --

	Acceptance					
Surrogate	% Recovery	Qualifier	Criteria			
2,5-Dibromotoluene-PID	114		70-130			
2,5-Dibromotoluene-FID	102		70-130			

14.1

62.0

2

2

Project Name: Lab Number: DRISCOLL SCHOOL L2042881

Project Number: 6693 **Report Date:** 10/13/20

SAMPLE RESULTS

Lab ID: L2042881-02 Date Collected: 10/07/20 10:00

Client ID: B-303C Date Received: 10/07/20

BROOKLINE, MA Field Prep: Sample Location: Not Specified

Sample Depth:

EPA 3510C Matrix: Extraction Method: Water

Analytical Method: 135,EPH-19-2.1 **Extraction Date:** 10/08/20 05:02 10/09/20 08:11 Analytical Date: Cleanup Method1: EPH-04-1

Analyst: **MEO** Cleanup Date1: 10/08/20

Quality Control Information

Condition of sample received: Satisfactory

Aqueous Preservative: Laboratory Provided Preserved

Container Sample Temperature upon receipt: Received on Ice

Sample Extraction method: Extracted Per the Method

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	
Extractable Petroleum Hydrocarbons - Westborough Lab							
C9-C18 Aliphatics	ND		ug/l	100		1	
C19-C36 Aliphatics	ND		ug/l	100		1	
C11-C22 Aromatics	425		ug/l	100		1	
C11-C22 Aromatics, Adjusted	278		ug/l	100		1	
Naphthalene	103		ug/l	10.0		1	
2-Methylnaphthalene	43.6		ug/l	10.0		1	
Acenaphthylene	ND		ug/l	10.0		1	
Acenaphthene	ND		ug/l	10.0		1	
Fluorene	ND		ug/l	10.0		1	
Phenanthrene	ND		ug/l	10.0		1	
Anthracene	ND		ug/l	10.0		1	
Fluoranthene	ND		ug/l	10.0		1	
Pyrene	ND		ug/l	10.0		1	
Benzo(a)anthracene	ND		ug/l	10.0		1	
Chrysene	ND		ug/l	10.0		1	
Benzo(b)fluoranthene	ND		ug/l	10.0		1	
Benzo(k)fluoranthene	ND		ug/l	10.0		1	
Benzo(a)pyrene	ND		ug/l	10.0		1	
Indeno(1,2,3-cd)Pyrene	ND		ug/l	10.0		1	
Dibenzo(a,h)anthracene	ND		ug/l	10.0		1	
Benzo(ghi)perylene	ND		ug/l	10.0		1	

Project Name: DRISCOLL SCHOOL Lab Number: L2042881

Project Number: 6693 Report Date: 10/13/20

SAMPLE RESULTS

Lab ID: L2042881-02 Date Collected: 10/07/20 10:00

Client ID: B-303C Date Received: 10/07/20 Sample Location: BROOKLINE, MA Field Prep: Not Specified

Sample Depth:

Parameter Result Qualifier Units RL MDL Dilution Factor

Extractable Petroleum Hydrocarbons - Westborough Lab

	Acceptance					
Surrogate	% Recovery	Qualifier	Criteria			
Chloro-Octadecane	62		40-140			
o-Terphenyl	62		40-140			
2-Fluorobiphenyl	63		40-140			
2-Bromonaphthalene	65		40-140			

Project Name: Lab Number: DRISCOLL SCHOOL L2042881

Project Number: 6693 **Report Date:** 10/13/20

SAMPLE RESULTS

Lab ID: 10/07/20 10:00 L2042881-02 D Date Collected:

Client ID: B-303C

Date Received: 10/07/20 BROOKLINE, MA Field Prep: Not Specified Sample Location:

Sample Depth:

Matrix: Water

131, VPH-18-2.1 Analytical Method: Analytical Date: 10/10/20 18:07

Analyst: BAD

Sample Temperature upon receipt:

Methyl tert butyl ether

Naphthalene

Restek, RTX-502.2, Trap: EST, Carbopack B/Carboxen 1000&1001 Analytical Column:

105m, 0.53ID, 3um

Quality Control Information

Condition of sample received: Satisfactory

Laboratory Provided Preserved Aqueous Preservative:

Container Received on Ice

Parameter Result Qualifier Units RL MDL **Dilution Factor** Volatile Petroleum Hydrocarbons - Westborough Lab C5-C8 Aliphatics 1350 5 ug/l 500 5 C9-C12 Aliphatics 6550 ug/l 500 5 C9-C10 Aromatics 5420 ug/l 500 --5 C5-C8 Aliphatics, Adjusted 1340 ug/l 500 5 C9-C12 Aliphatics, Adjusted ND ug/l 500 12.2 5 Benzene ug/l 10.0 --5 Toluene ND ug/l 10.0 --5 292 Ethylbenzene ug/l 10.0 p/m-Xylene 348 ug/l 10.0 5 --31.5 5 o-Xylene ug/l 10.0 --

	Acceptance										
Surrogate	% Recovery	Qualifier	Criteria								
2,5-Dibromotoluene-PID	107		70-130								
2,5-Dibromotoluene-FID	97		70-130								

ug/l

ug/l

15.0

20.0

--

ND

201

5

5

L2042881

Project Name: DRISCOLL SCHOOL

Project Number: 6693

Report Date: 10/13/20

Lab Number:

Method Blank Analysis Batch Quality Control

Analytical Method: 135,EPH-19-2.1 Analytical Date: 10/08/20 16:35

Analyst: MEO

Extraction Method: EPA 3510C
Extraction Date: 10/07/20 10:35
Cleanup Method: EPH-04-1
Cleanup Date: 10/08/20

Extractable Petroleum Hydrocarbons C9-C18 Aliphatics C19-C36 Aliphatics C11-C22 Aromatics	- Westbore ND ND ND	ough Lab f	or sample(s):	01-02	Batch:	WG1419246-1
C19-C36 Aliphatics	ND		ug/l	100		
C11 C22 Aromatics	ND		ug/l	100		
CTT-G22 Albinatics			ug/l	100		
C11-C22 Aromatics, Adjusted	ND		ug/l	100		
Naphthalene	ND		ug/l	10.0		
2-Methylnaphthalene	ND		ug/l	10.0		
Acenaphthylene	ND		ug/l	10.0		
Acenaphthene	ND		ug/l	10.0		
Fluorene	ND		ug/l	10.0		
Phenanthrene	ND		ug/l	10.0		
Anthracene	ND		ug/l	10.0		
Fluoranthene	ND		ug/l	10.0		
Pyrene	ND		ug/l	10.0		
Benzo(a)anthracene	ND		ug/l	10.0		
Chrysene	ND		ug/l	10.0		
Benzo(b)fluoranthene	ND		ug/l	10.0		
Benzo(k)fluoranthene	ND		ug/l	10.0		
Benzo(a)pyrene	ND		ug/l	10.0		
Indeno(1,2,3-cd)Pyrene	ND		ug/l	10.0		
Dibenzo(a,h)anthracene	ND		ug/l	10.0		
Benzo(ghi)perylene	ND		ug/l	10.0		

	Acceptance
%Recovery Qu	alifier Criteria
73	40-140
70	40-140
77	40-140
78	40-140
	70 77

L2042881

Project Name: DRISCOLL SCHOOL Lab Number:

Project Number: 6693 Report Date: 10/13/20

Method Blank Analysis Batch Quality Control

Analytical Method: 131,VPH-18-2.1 Analytical Date: 10/10/20 11:05

Analyst: BAD

Parameter	Result	Qualifier	Units	RL		MDL
Volatile Petroleum Hydrocarbons	- Westborough	n Lab for	sample(s):	01-02	Batch:	WG1421427-4
C5-C8 Aliphatics	ND		ug/l	100		
C9-C12 Aliphatics	ND		ug/l	100		
C9-C10 Aromatics	ND		ug/l	100		
C5-C8 Aliphatics, Adjusted	ND		ug/l	100		
C9-C12 Aliphatics, Adjusted	ND		ug/l	100		
Benzene	ND		ug/l	2.00		
Toluene	ND		ug/l	2.00		
Ethylbenzene	ND		ug/l	2.00		
p/m-Xylene	ND		ug/l	2.00		
o-Xylene	ND		ug/l	2.00		
Methyl tert butyl ether	ND		ug/l	3.00		
Naphthalene	ND		ug/l	4.00		

		Acceptance
Surrogate	%Recovery Qualifie	r Criteria
2,5-Dibromotoluene-PID	105	70-130
2,5-Dibromotoluene-FID	96	70-130

Lab Control Sample Analysis Batch Quality Control

Project Name: DRISCOLL SCHOOL

Project Number:

6693

Lab Number: L2042881

Report Date: 10/13/20

Parameter	LCS %Recovery	Qual	LCSD %Recovery	Qual	%Recove Limits	ry RPD	RPI Qual Lim	
Extractable Petroleum Hydrocarbons - Westbo	orough Lab As	sociated sample	(s): 01-02	Batch: V	VG1419246-2	WG1419246-3		
C9-C18 Aliphatics	52		53		40-140	2	25	i
C19-C36 Aliphatics	73		75		40-140	3	25	
C11-C22 Aromatics	75		76		40-140	1	25	
Naphthalene	64		63		40-140	2	25	
2-Methylnaphthalene	67		66		40-140	2	25	
Acenaphthylene	66		65		40-140	2	25	
Acenaphthene	72		71		40-140	1	25	
Fluorene	72		72		40-140	0	25	i
Phenanthrene	73		74		40-140	1	25	i
Anthracene	74		74		40-140	0	25	i
Fluoranthene	76		77		40-140	1	25	j.
Pyrene	76		77		40-140	1	25	
Benzo(a)anthracene	74		76		40-140	3	25	i
Chrysene	77		78		40-140	1	25	i
Benzo(b)fluoranthene	84		86		40-140	2	25	
Benzo(k)fluoranthene	63		65		40-140	3	25	i
Benzo(a)pyrene	71		73		40-140	3	25	i
Indeno(1,2,3-cd)Pyrene	70		72		40-140	3	25	j
Dibenzo(a,h)anthracene	75		77		40-140	3	25	i
Benzo(ghi)perylene	68		71		40-140	4	25	j

Lab Control Sample Analysis Batch Quality Control

Project Name: DRISCOLL SCHOOL

Lab Number:

L2042881

Project Number: 6693

Report Date:

10/13/20

	LCS		LCSD		%Recovery			RPD
Parameter	%Recoverv	Qual	%Recovery	Qual	Limits	RPD	Qual	Limits

Extractable Petroleum Hydrocarbons - Westborough Lab Associated sample(s): 01-02 Batch: WG1419246-2 WG1419246-3

	LCS	LCSD	Acceptance
Surrogate	%Recovery Qu	al %Recovery Q	ual Criteria
Chloro-Octadecane	73	74	40-140
o-Terphenyl	74	75	40-140
2-Fluorobiphenyl	76	76	40-140
2-Bromonaphthalene	77	77	40-140
% Naphthalene Breakthrough	0	0	
% 2-Methylnaphthalene Breakthrough	0	0	

Lab Control Sample Analysis Batch Quality Control

Project Name: DRISCOLL SCHOOL

Project Number: 6693

Lab Number: L2042881

Report Date: 10/13/20

Parameter	LCS %Recovery	LCSD Qual %Recovery	%Recovery Qual Limits	RPD	RPD Qual Limits
Volatile Petroleum Hydrocarbons - W	estborough Lab Associate	ed sample(s): 01-02 Batc	h: WG1421427-2 WG14214	27-3	
C5-C8 Aliphatics	99	106	70-130	7	25
C9-C12 Aliphatics	100	106	70-130	6	25
C9-C10 Aromatics	106	112	70-130	6	25
Benzene	108	116	70-130	7	25
Toluene	107	114	70-130	6	25
Ethylbenzene	107	114	70-130	6	25
p/m-Xylene	107	113	70-130	5	25
o-Xylene	106	113	70-130	6	25
Methyl tert butyl ether	115	123	70-130	7	25
Naphthalene	110	116	70-130	5	25
1,2,4-Trimethylbenzene	106	112	70-130	6	25
Pentane	101	108	70-130	7	25
2-Methylpentane	100	107	70-130	7	25
2,2,4-Trimethylpentane	99	105	70-130	6	25
n-Nonane	101	107	30-130	6	25
n-Decane	98	103	70-130	5	25
n-Butylcyclohexane	101	108	70-130	7	25

Surrogate	LCS %Recovery	Qual	LCSD %Recovery	Qual	Acceptance Criteria
2,5-Dibromotoluene-PID 2,5-Dibromotoluene-FID	106 96		109 100		70-130 70-130

Project Name: DRISCOLL SCHOOL Lab Number: L2042881

Project Number: 6693

Report Date: 10/13/20

Sample Receipt and Container Information

Were project specific reporting limits specified?

Cooler Information

Cooler Custody Seal

A Absent

Container Info	rmation		Initial	Final	Temp			Frozen	
Container ID	Container Type	Cooler	рН	рН	deg C	Pres	Seal	Date/Time	Analysis(*)
L2042881-01A	Vial HCl preserved	Α	NA		2.6	Υ	Absent		VPH-DELUX-18(14)
L2042881-01B	Vial HCl preserved	Α	NA		2.6	Υ	Absent		VPH-DELUX-18(14)
L2042881-01C	Amber 1000ml HCl preserved	Α	<2	<2	2.6	Υ	Absent		EPH-DELUX-20(14)
L2042881-01D	Amber 1000ml HCl preserved	Α	<2	<2	2.6	Υ	Absent		EPH-DELUX-20(14)
L2042881-02A	Vial HCl preserved	Α	NA		2.6	Υ	Absent		VPH-DELUX-18(14)
L2042881-02B	Vial HCl preserved	Α	NA		2.6	Υ	Absent		VPH-DELUX-18(14)
L2042881-02C	Amber 1000ml HCl preserved	Α	<2	<2	2.6	Υ	Absent		EPH-DELUX-20(14)
L2042881-02D	Amber 1000ml HCl preserved	Α	<2	<2	2.6	Υ	Absent		EPH-DELUX-20(14)

Project Name: Lab Number: DRISCOLL SCHOOL L2042881

Project Number: 6693 **Report Date:** 10/13/20

GLOSSARY

Acronyms

LCSD

LOD

LOQ

MS

DL Detection Limit: This value represents the level to which target analyte concentrations are reported as estimated values, when those target analyte concentrations are quantified below the limit of quantitation (LOQ). The DL includes any adjustments

from dilutions, concentrations or moisture content, where applicable. (DoD report formats only.)

EDL - Estimated Detection Limit: This value represents the level to which target analyte concentrations are reported as estimated values, when those target analyte concentrations are quantified below the reporting limit (RL). The EDL includes any adjustments from dilutions, concentrations or moisture content, where applicable. The use of EDLs is specific to the analysis

of PAHs using Solid-Phase Microextraction (SPME).

Laboratory Control Sample Duplicate: Refer to LCS.

EMPC - Estimated Maximum Possible Concentration: The concentration that results from the signal present at the retention time of an analyte when the ions meet all of the identification criteria except the ion abundance ratio criteria. An EMPC is a worst-case

estimate of the concentration. **EPA**

Environmental Protection Agency.

LCS - Laboratory Control Sample: A sample matrix, free from the analytes of interest, spiked with verified known amounts of

analytes or a material containing known and verified amounts of analytes.

LFB - Laboratory Fortified Blank: A sample matrix, free from the analytes of interest, spiked with verified known amounts of analytes or a material containing known and verified amounts of analytes.

- Limit of Detection: This value represents the level to which a target analyte can reliably be detected for a specific analyte in a specific matrix by a specific method. The LOD includes any adjustments from dilutions, concentrations or moisture content, where applicable. (DoD report formats only.)

- Limit of Quantitation: The value at which an instrument can accurately measure an analyte at a specific concentration. The LOQ includes any adjustments from dilutions, concentrations or moisture content, where applicable. (DoD report formats

Limit of Quantitation: The value at which an instrument can accurately measure an analyte at a specific concentration. The LOQ includes any adjustments from dilutions, concentrations or moisture content, where applicable. (DoD report formats

MDL - Method Detection Limit: This value represents the level to which target analyte concentrations are reported as estimated values, when those target analyte concentrations are quantified below the reporting limit (RL). The MDL includes any adjustments from dilutions, concentrations or moisture content, where applicable.

- Matrix Spike Sample: A sample prepared by adding a known mass of target analyte to a specified amount of matrix sample for which an independent estimate of target analyte concentration is available. For Method 332.0, the spike recovery is calculated using the native concentration, including estimated values.

MSD - Matrix Spike Sample Duplicate: Refer to MS.

NA - Not Applicable.

- Not Calculated: Term is utilized when one or more of the results utilized in the calculation are non-detect at the parameter's reporting unit.

 $NDPA/DPA \quad \text{- N-Nitrosodiphenylamine}.$

NI - Not Ignitable.

NP - Non-Plastic: Term is utilized for the analysis of Atterberg Limits in soil.

NR - No Results: Term is utilized when 'No Target Compounds Requested' is reported for the analysis of Volatile or Semivolatile Organic TIC only requests.

- Reporting Limit: The value at which an instrument can accurately measure an analyte at a specific concentration. The RL

RL includes any adjustments from dilutions, concentrations or moisture content, where applicable. RPD

- Relative Percent Difference: The results from matrix and/or matrix spike duplicates are primarily designed to assess the precision of analytical results in a given matrix and are expressed as relative percent difference (RPD). Values which are less than five times the reporting limit for any individual parameter are evaluated by utilizing the absolute difference between the values; although the RPD value will be provided in the report.

SRM - Standard Reference Material: A reference sample of a known or certified value that is of the same or similar matrix as the associated field samples.

STLP - Semi-dynamic Tank Leaching Procedure per EPA Method 1315.

TEF - Toxic Equivalency Factors: The values assigned to each dioxin and furan to evaluate their toxicity relative to 2,3,7,8-TCDD.

TEQ - Toxic Equivalent: The measure of a sample's toxicity derived by multiplying each dioxin and furan by its corresponding TEF and then summing the resulting values.

TIC - Tentatively Identified Compound: A compound that has been identified to be present and is not part of the target compound list (TCL) for the method and/or program. All TICs are qualitatively identified and reported as estimated concentrations.

Report Format: Data Usability Report

Project Name:DRISCOLL SCHOOLLab Number:L2042881Project Number:6693Report Date:10/13/20

Footnotes

1 - The reference for this analyte should be considered modified since this analyte is absent from the target analyte list of the original method.

Terms

Analytical Method: Both the document from which the method originates and the analytical reference method. (Example: EPA 8260B is shown as 1,8260B.) The codes for the reference method documents are provided in the References section of the Addendum.

Difference: With respect to Total Oxidizable Precursor (TOP) Assay analysis, the difference is defined as the Post-Treatment value minus the Pre-Treatment value.

Final pH: As it pertains to Sample Receipt & Container Information section of the report, Final pH reflects pH of container determined after adjustment at the laboratory, if applicable. If no adjustment required, value reflects Initial pH.

Frozen Date/Time: With respect to Volatile Organics in soil, Frozen Date/Time reflects the date/time at which associated Reagent Water-preserved vials were initially frozen. Note: If frozen date/time is beyond 48 hours from sample collection, value will be reflected in 'bold'.

Initial pH: As it pertains to Sample Receipt & Container Information section of the report, Initial pH reflects pH of container determined upon receipt, if applicable.

PAH Total: With respect to Alkylated PAH analyses, the 'PAHs, Total' result is defined as the summation of results for all or a subset of the following compounds: Naphthalene, C1-C4 Naphthalenes, 2-Methylnaphthalene, 1-Methylnaphthalene, Biphenyl, Acenaphthylene, Acenaphthene, Fluorenes, C1-C3 Fluorenes, Phenanthrene, C1-C4 Phenanthrenes/Anthracenes, Anthracene, Fluoranthene, Pyrene, C1-C4 Fluoranthenes/Pyrenes, Benza(a)anthracene, Chrysene, C1-C4 Chrysenes, Benzo(b)fluoranthene, Benzo(j)+(k)fluoranthene, Benzo(e)pyrene, Benzo(a)pyrene, Perylene, Indeno(1,2,3-cd)pyrene, Dibenz(ah)+(ac)anthracene, Benzo(g,h,i)perylene. If a 'Total' result is requested, the results of its individual components will also be reported.

PFAS Total: With respect to PFAS analyses, the 'PFAS, Total (5)' result is defined as the summation of results for: PFHpA, PFHxS, PFOA, PFNA and PFOS. If a 'Total' result is requested, the results of its individual components will also be reported.

The target compound Chlordane (CAS No. 57-74-9) is reported for GC ECD analyses. Per EPA, this compound "refers to a mixture of chlordane isomers, other chlorinated hydrocarbons and numerous other components." (Reference: USEPA Toxicological Review of Chlordane, In Support of Summary Information on the Integrated Risk Information System (IRIS), December 1997.)

Total: With respect to Organic analyses, a 'Total' result is defined as the summation of results for individual isomers or Aroclors. If a 'Total' result is requested, the results of its individual components will also be reported. This is applicable to 'Total' results for methods 8260, 8081 and 8082.

Data Qualifiers

- A Spectra identified as "Aldol Condensates" are byproducts of the extraction/concentration procedures when acetone is introduced in the process.
- The analyte was detected above the reporting limit in the associated method blank. Flag only applies to associated field samples that have detectable concentrations of the analyte at less than ten times (10x) the concentration found in the blank. For MCP-related projects, flag only applies to associated field samples that have detectable concentrations of the analyte at less than ten times (10x) the concentration found in the blank. For DOD-related projects, flag only applies to associated field samples that have detectable concentrations of the analyte at less than ten times (10x) the concentration found in the blank AND the analyte was detected above one-half the reporting limit (or above the reporting limit for common lab contaminants) in the associated method blank. For NJ-Air-related projects, flag only applies to associated field samples that have detectable concentrations of the analyte above the reporting limit. For NJ-related projects (excluding Air), flag only applies to associated field samples that have detectable concentrations of the analyte, which was detected above the reporting limit in the associated method blank or above five times the reporting limit for common lab contaminants (Phthalates, Acetone, Methylene Chloride, 2-Butanone).
- Co-elution: The target analyte co-elutes with a known lab standard (i.e. surrogate, internal standards, etc.) for co-extracted analyses.
- Concentration of analyte was quantified from diluted analysis. Flag only applies to field samples that have detectable concentrations of the analyte.
- E Concentration of analyte exceeds the range of the calibration curve and/or linear range of the instrument.
- F The ratio of quantifier ion response to qualifier ion response falls outside of the laboratory criteria. Results are considered to be an estimated maximum concentration.
- G The concentration may be biased high due to matrix interferences (i.e, co-elution) with non-target compound(s). The result should be considered estimated.
- H The analysis of pH was performed beyond the regulatory-required holding time of 15 minutes from the time of sample collection.
- I The lower value for the two columns has been reported due to obvious interference.
- J Estimated value. This represents an estimated concentration for Tentatively Identified Compounds (TICs).
- M Reporting Limit (RL) exceeds the MCP CAM Reporting Limit for this analyte.
- **ND** Not detected at the reporting limit (RL) for the sample.
- NJ Presumptive evidence of compound. This represents an estimated concentration for Tentatively Identified Compounds (TICs), where the identification is based on a mass spectral library search.
- ${f P}$ The RPD between the results for the two columns exceeds the method-specified criteria.

Report Format: Data Usability Report

Project Name:DRISCOLL SCHOOLLab Number:L2042881Project Number:6693Report Date:10/13/20

Data Qualifiers

Q -The quality control sample exceeds the associated acceptance criteria. For DOD-related projects, LCS and/or Continuing Calibration Standard exceedences are also qualified on all associated sample results. Note: This flag is not applicable for matrix spike recoveries when the sample concentration is greater than 4x the spike added or for batch duplicate RPD when the sample concentrations are less than 5x the RL. (Metals only.)

- \boldsymbol{R} Analytical results are from sample re-analysis.
- **RE** Analytical results are from sample re-extraction.
- S Analytical results are from modified screening analysis.

Report Format: Data Usability Report

Project Name: DRISCOLL SCHOOL Lab Number: L2042881

Project Number: 6693 Report Date: 10/13/20

REFERENCES

Method for the Determination of Volatile Petroleum Hydrocarbons (VPH), MassDEP, February 2018, Revision 2.1 with QC Requirements & Performance Standards for the Analysis of VPH under the Massachusetts Contingency Plan, WSC-CAM-IVA, June 1, 2018.

Method for the Determination of Extractable Petroleum Hydrocarbons (EPH), MassDEP, December 2019, Revision 2.1 with QC Requirements & Performance Standards for the Analysis of EPH under the Massachusetts Contingency Plan, WSC-CAM-IVB, March 1, 2020.

LIMITATION OF LIABILITIES

Alpha Analytical performs services with reasonable care and diligence normal to the analytical testing laboratory industry. In the event of an error, the sole and exclusive responsibility of Alpha Analytical shall be to re-perform the work at it's own expense. In no event shall Alpha Analytical be held liable for any incidental, consequential or special damages, including but not limited to, damages in any way connected with the use of, interpretation of, information or analysis provided by Alpha Analytical.

We strongly urge our clients to comply with EPA protocol regarding sample volume, preservation, cooling, containers, sampling procedures, holding time and splitting of samples in the field.

Alpha Analytical, Inc. Facility: Company-wide

Department: Quality Assurance

Title: Certificate/Approval Program Summary

ID No.:17873 Revision 17

Published Date: 4/28/2020 9:42:21 AM

Page 1 of 1

Certification Information

The following analytes are not included in our Primary NELAP Scope of Accreditation:

Westborough Facility

EPA 624/624.1: m/p-xylene, o-xylene, Naphthalene

EPA 8260C: NPW: 1,2,4,5-Tetramethylbenzene; 4-Ethyltoluene, Azobenzene; SCM: lodomethane (methyl iodide), 1,2,4,5-Tetramethylbenzene; 4-

Ethyltoluene.

EPA 8270D: NPW: Dimethylnaphthalene,1,4-Diphenylhydrazine; SCM: Dimethylnaphthalene,1,4-Diphenylhydrazine.

SM4500: NPW: Amenable Cyanide; SCM: Total Phosphorus, TKN, NO2, NO3.

Mansfield Facility

SM 2540D: TSS

EPA 8082A: NPW: PCB: 1, 5, 31, 87,101, 110, 141, 151, 153, 180, 183, 187.

EPA TO-15: Halothane, 2,4,4-Trimethyl-2-pentene, 2,4,4-Trimethyl-1-pentene, Thiophene, 2-Methylthiophene,

3-Methylthiophene, 2-Ethylthiophene, 1,2,3-Trimethylbenzene, Indan, Indene, 1,2,4,5-Tetramethylbenzene, Benzothiophene, 1-Methylnaphthalene.

EPA TO-12 Non-methane organics

EPA 3C Fixed gases

Biological Tissue Matrix: EPA 3050B

The following analytes are included in our Massachusetts DEP Scope of Accreditation

Westborough Facility:

Drinking Water

EPA 300.0: Chloride, Nitrate-N, Fluoride, Sulfate; EPA 353.2: Nitrate-N, Nitrite-N; SM4500NO3-F: Nitrate-N, Nitrite-N; SM4500F-C, SM4500CN-CE,

EPA 180.1, SM2130B, SM4500CI-D, SM2320B, SM2540C, SM4500H-B, SM4500NO2-B

EPA 332: Perchlorate: EPA 524.2: THMs and VOCs; EPA 504.1: EDB, DBCP.

Microbiology: SM9215B; SM9223-P/A, SM9223B-Colilert-QT,SM9222D.

Non-Potable Water

SM4500H,B, EPA 120.1, SM2510B, SM2540C, SM2320B, SM4500CL-E, SM4500F-BC, SM4500NH3-BH: Ammonia-N and Kjeldahl-N, EPA 350.1: Ammonia-N, LACHAT 10-107-06-1-B: Ammonia-N, EPA 351.1, SM4500NO3-F, EPA 353.2: Nitrate-N, SM4500P-E, SM4500P-B, E, SM4500SO4-E, SM5220D, EPA 410.4, SM5210B, SM5310C, SM4500CL-D, EPA 1664, EPA 420.1, SM4500-CN-CE, SM2540D, EPA 300: Chloride, Sulfate, Nitrate.

EPA 624.1: Volatile Halocarbons & Aromatics,

EPA 608.3: Chlordane, Toxaphene, Aldrin, alpha-BHC, beta-BHC, gamma-BHC, delta-BHC, Dieldrin, DDD, DDE, DDT, Endosulfan II, Endosulfan II, Endosulfan sulfate, Endrin, Endrin Aldehyde, Heptachlor, Heptachlor Epoxide, PCBs

EPA 625.1: SVOC (Acid/Base/Neutral Extractables), EPA 600/4-81-045: PCB-Oil.

Microbiology: SM9223B-Colilert-QT; Enterolert-QT, SM9221E, EPA 1600, EPA 1603.

Mansfield Facility:

Drinking Water

EPA 200.7: Al, Ba, Cd, Cr, Cu, Fe, Mn, Ni, Na, Ag, Ca, Zn. EPA 200.8: Al, Sb, As, Ba, Be, Cd, Cr, Cu, Pb, Mn, Ni, Se, Ag, TL, Zn. EPA 245.1 Hg. EPA 522.

Non-Potable Water

EPA 200.7: Al, Sb, As, Be, Cd, Ca, Cr, Co, Cu, Fe, Pb, Mg, Mn, Mo, Ni, K, Se, Ag, Na, Sr, TL, Ti, V, Zn.

EPA 200.8: Al, Sb, As, Be, Cd, Cr, Cu, Fe, Pb, Mn, Ni, K, Se, Ag, Na, TL, Zn.

EPA 245.1 Hg.

SM2340B

For a complete listing of analytes and methods, please contact your Alpha Project Manager.

Pre-Qualtrax Document ID: 08-113 Document Type: Form

Дерна	CHAIN OF C			PAGE_	OF	=52	Date	e Re	c'd ii	n Lat	»: [()[1/20	0		Super-	ALPHA Job#: L2042881							
8 Walkup Drive Westboro, MA 015		Project Infor Project Name:	//W/49=	COLL	SCH00		Rep		Infor		on - D EMAIL	ata De	elivera	bles		LAVE	Billing Information Same as Client info PO#:							
Client Information Client: McPhail As Address: 2269 Massa	sociates, LLC	Project Location Project #: Project Manage	BR00	OKLINE	MA		Reg	□ No	MA N Matrix	CP A	nalytica Requir	Metho ed on t	ds his SDG	? (Req	Yes uired f	No or MC	CT R P Inon	CP Ana ganics)	ments alytical M		s			
	e, MA 02140	Project Manage	NLC	10LAS H	OUGE		☐ Yes ((\$45-405) II							Cri	teria								
Phone: (617) 868-14		Turn-Arour		The s			U Othe	rotat	e /r-ec	Prog	ram					tena_			$\overline{}$	П				
Email: NH OOGE	@McPhailgeo.com	Standard	C) RUSH	(only confirmed	if pre-approve	d!)	≥						A8	D RCRAB	II,V,Zn		l rest					T 0		
Additional Pro	ject Information:	Date Due:					ege				rgets	gets	PCR.	(i) 4	ž.	60	anics			5	SAMPLE INFO	T.		
□ Run TCLP (if triggered) Sample "Sample ID" Nomenclature: B-100, S-1						Soil Assessment Package IV (less VOC)	/OC)	□ 8260	spilos	Total Solids SVOC: □ PAH	O PAH	O PAH	EPH: X Ranges & Targets	CRANGES ONLY NPH: X Ranges & Targets Ranges Only	TOTAL METALS: DIRCRAS	DISSOLVED METALS:	S: Total Sb,Be,Ni,TI,V,Zn	is 🗆 Pesticides	Section A Inorganics			0	Filtration Field Lab to do Preservation Lab to do	BOTT
ALPHA Lab ID (Lab Use Only)	Sample ID	Samp Depth	le Materia		ection Time	Sampler	Soil As less V	VOC:	Total Solids	SVOC:	EPH:)	VPH: 1	TOTAL PP1	OSSIC PP1	METALS:	O PCBs	RGP S				Sample Comments	E		
42881-01	B-3631	2.00	GW	10/7/2020	09:30	TOH	0.0				X	X										4		
		10:06	TJH					X	X										4					
			+		-	-							-		_		-	H		\dashv		+		
																						T		
			-										-				-			\dashv		+		
																						T		
			+				+				-	\vdash	\vdash							+		+		
Container Type A=Arnber glass	A=None	RGP Section A Inorganic Ammonia, Chloride, TRC, 1 Cyanide, Total RGP Metals		Criti, Total		Container Type Preservative	\rightarrow		-		A	V								\exists		Ŧ		
B=Bacteria cup C=Cube D=BOD bottle E=Encore	B=HCl C=HNO ₃ D=H ₂ SO ₄ E=NaOH	Relinq	ished By:	11/	-	ate/Time	McP	hail	Assoc	intes	Rece	ived By		ge for	labora	atory		Date	/Time		All sample	s		
G=Glass O=Other P=Plastic	F=MeOH G=NaHSO ₄ H=Na ₂ S ₂ O ₃	TYLER HILL <				11.05	McPhail Associate					ck-up		-	m Pi		10	2/20	165	SS	submitted are subject to			
V=Vial Sample Material F=Fill S=Sand O=Organica C=Clay	l=Ascorbix Acid J=NH ₄ Cl K≈Zn Acetale O≕Other	laborati	ry pick-up	M	10/7/	00 1808		-	ú	u	- 1	ev			-		10	17/	201	sex	Alpha's Terr and Conditio See reverse si	ns.		
N=Natural T=Till GM=Glaciomarine GW=Groundwater																					DOC ID: 25188 Re (11/28/2017)	o vi		

ANALYTICAL REPORT

Lab Number: L2104344

Client: McPhail Associates

2269 Massachusetts Avenue

Cambridge, MA 02140

ATTN: Ambrose Donovan Phone: (617) 868-1420

Project Name: DRISCOLL SCHOOL

Project Number: 6693

Report Date: 02/02/21

The original project report/data package is held by Alpha Analytical. This report/data package is paginated and should be reproduced only in its entirety. Alpha Analytical holds no responsibility for results and/or data that are not consistent with the original.

Certifications & Approvals: MA (M-MA086), NH NELAP (2064), CT (PH-0574), IL (200077), ME (MA00086), MD (348), NJ (MA935), NY (11148), NC (25700/666), PA (68-03671), RI (LAO00065), TX (T104704476), VT (VT-0935), VA (460195), USDA (Permit #P330-17-00196).

Eight Walkup Drive, Westborough, MA 01581-1019 508-898-9220 (Fax) 508-898-9193 800-624-9220 - www.alphalab.com

Project Name: DRISCOLL SCHOOL

Project Number: 6693 Lab Number:

L2104344

Report Date:

02/02/21

Alpha Sample ID Sample Location **Client ID** Matrix B-106A(OW) WATER L2104344-01

Collection Date/Time

Receive Date

BROOKLINE, MA 01/27/21 09:30 01/27/21

L2104344

Project Name: DRISCOLL SCHOOL Lab Number:

Project Number: 6693 Report Date: 02/02/21

Case Narrative

The samples were received in accordance with the Chain of Custody and no significant deviations were encountered during the preparation or analysis unless otherwise noted. Sample Receipt, Container Information, and the Chain of Custody are located at the back of the report.

Results contained within this report relate only to the samples submitted under this Alpha Lab Number and meet NELAP requirements for all NELAP accredited parameters unless otherwise noted in the following narrative. The data presented in this report is organized by parameter (i.e. VOC, SVOC, etc.). Sample specific Quality Control data (i.e. Surrogate Spike Recovery) is reported at the end of the target analyte list for each individual sample, followed by the Laboratory Batch Quality Control at the end of each parameter. Tentatively Identified Compounds (TICs), if requested, are reported for compounds identified to be present and are not part of the method/program Target Compound List, even if only a subset of the TCL are being reported. If a sample was re-analyzed or re-extracted due to a required quality control corrective action and if both sets of data are reported, the Laboratory ID of the re-analysis or re-extraction is designated with an "R" or "RE", respectively.

When multiple Batch Quality Control elements are reported (e.g. more than one LCS), the associated samples for each element are noted in the grey shaded header line of each data table. Any Laboratory Batch, Sample Specific % recovery or RPD value that is outside the listed Acceptance Criteria is bolded in the report. In reference to questions H (CAM) or 4 (RCP) when "NO" is checked, the performance criteria for CAM and RCP methods allow for some quality control failures to occur and still be within method compliance. In these instances, the specific failure is not narrated but noted in the associated QC Outlier Summary Report, located directly after the Case Narrative. QC information is also incorporated in the Data Usability Assessment table (Format 11) of our Data Merger tool, where it can be reviewed in conjunction with the sample result, associated regulatory criteria and any associated data usability implications.

Soil/sediments, solids and tissues are reported on a dry weight basis unless otherwise noted. Definitions of all data qualifiers and acronyms used in this report are provided in the Glossary located at the back of the report.

HOLD POLICY - For samples submitted on hold, Alpha's policy is to hold samples (with the exception of Air canisters) free of charge for 21 calendar days from the date the project is completed. After 21 calendar days, we will dispose of all samples submitted including those put on hold unless you have contacted your Alpha Project Manager and made arrangements for Alpha to continue to hold the samples. Air canisters will be disposed after 3 business days from the date the project is completed.

Please contact Project Management at 800-624-9220 with any questions.	

Serial_No:02022112:15

Project Name: DRISCOLL SCHOOL Lab Number: L2104344

Project Number: 6693 Report Date: 02/02/21

Case Narrative (continued)

Report Submission

February 02, 2021: This final report includes the results of all requested analyses.

February 01, 2021: This is a preliminary report.

Hexavalent Chromium

WG1459500: An LCS/LCSD was performed in lieu of a Matrix Spike and Laboratory Duplicate due to insufficient sample volume available for analysis.

Nitrogen, Ammonia

The WG1459415-3 Laboratory Duplicate RPD for nitrogen, ammonia (36%), performed on L2104344-01, is outside the acceptance criteria. The elevated RPD has been attributed to the non-homogeneous nature of the native sample.

I, the undersigned, attest under the pains and penalties of perjury that, to the best of my knowledge and belief and based upon my personal inquiry of those responsible for providing the information contained in this analytical report, such information is accurate and complete. This certificate of analysis is not complete unless this page accompanies any and all pages of this report.

Authorized Signature:

Title: Technical Director/Representative Date: 02/02/21

M 2004 Jennifer L Clements

METALS

Project Name: DRISCOLL SCHOOL Lab Number:

Report Date:

L2104344

02/02/21

Project Number: 6693

SAMPLE RESULTS

Date Collected:

01/27/21 09:30

Lab ID: Client ID: L2104344-01 B-106A(OW)

Date Received:

01/27/21

Sample Location:

BROOKLINE, MA

Field Prep: Not Specified

Sample Depth:

Matrix:

Water

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	Date Prepared	Date Analyzed	Prep Method	Analytical Method	Analyst
Total Metals - Mans	field Lab										
Antimony, Total	ND		mg/l	0.00400		1	01/28/21 09:07	7 01/28/21 14:03	EPA 3005A	3,200.8	AM
Arsenic, Total	ND		mg/l	0.00100		1	01/28/21 09:07	7 01/28/21 14:03	EPA 3005A	3,200.8	AM
Cadmium, Total	ND		mg/l	0.00020		1	01/28/21 09:07	7 01/28/21 14:03	EPA 3005A	3,200.8	AM
Chromium, Total	ND		mg/l	0.00100		1	01/28/21 09:07	7 01/28/21 14:03	EPA 3005A	3,200.8	AM
Copper, Total	ND		mg/l	0.00100		1	01/28/21 09:07	7 01/28/21 14:03	EPA 3005A	3,200.8	AM
Iron, Total	2.07		mg/l	0.050		1	01/28/21 09:07	7 01/28/21 13:20	EPA 3005A	19,200.7	GD
Lead, Total	ND		mg/l	0.00100		1	01/28/21 09:07	7 01/28/21 14:03	EPA 3005A	3,200.8	AM
Mercury, Total	ND		mg/l	0.00020		1	01/28/21 09:50	01/28/21 21:14	EPA 245.1	3,245.1	VW
Nickel, Total	ND		mg/l	0.00200		1	01/28/21 09:07	7 01/28/21 14:03	EPA 3005A	3,200.8	AM
Selenium, Total	ND		mg/l	0.00500		1	01/28/21 09:07	7 01/28/21 14:03	EPA 3005A	3,200.8	AM
Silver, Total	ND		mg/l	0.00040		1	01/28/21 09:07	7 01/28/21 14:03	EPA 3005A	3,200.8	AM
Zinc, Total	ND		mg/l	0.01000		1	01/28/21 09:07	7 01/28/21 14:03	EPA 3005A	3,200.8	AM
Total Hardness by S	SM 2340B	3 - Mansfield	d Lab								
Hardness	235		mg/l	0.660	NA	1	01/28/21 09:07	7 01/28/21 13:20	EPA 3005A	19,200.7	GD
			-								
General Chemistry	- Mansfiel	d Lab									
Chromium, Trivalent	ND		mg/l	0.010		1		01/28/21 14:03	NA	107,-	

Serial_No:02022112:15

Project Name: DRISCOLL SCHOOL

Project Number: 6693

Lab Number:

L2104344

Report Date: 02/02/21

Method Blank Analysis Batch Quality Control

Parameter	Result Qualifier	Units	RL	MDL	Dilution Factor	Date Prepared	Date Analyzed	Analytical Method	Analyst
Total Metals - Mansf	field Lab for sample(s):	01 Bato	h: WG14	I59571	·1				
Antimony, Total	ND	mg/l	0.00400		1	01/28/21 09:07	01/28/21 13:43	3,200.8	AM
Arsenic, Total	ND	mg/l	0.00100		1	01/28/21 09:07	01/28/21 13:43	3,200.8	AM
Cadmium, Total	ND	mg/l	0.00020		1	01/28/21 09:07	01/28/21 13:43	3,200.8	AM
Chromium, Total	ND	mg/l	0.00100		1	01/28/21 09:07	01/28/21 13:43	3,200.8	AM
Copper, Total	ND	mg/l	0.00100		1	01/28/21 09:07	01/28/21 13:43	3,200.8	AM
Lead, Total	ND	mg/l	0.00100		1	01/28/21 09:07	01/28/21 13:43	3,200.8	AM
Nickel, Total	ND	mg/l	0.00200		1	01/28/21 09:07	01/28/21 13:43	3,200.8	AM
Selenium, Total	ND	mg/l	0.00500		1	01/28/21 09:07	01/28/21 13:43	3,200.8	AM
Silver, Total	ND	mg/l	0.00040		1	01/28/21 09:07	01/28/21 13:43	3,200.8	AM
Zinc, Total	ND	mg/l	0.01000		1	01/28/21 09:07	01/28/21 13:43	3,200.8	AM

Prep Information

Digestion Method: EPA 3005A

Parameter	Result Qualifier	Units	RL	MDL	Dilution Factor	Date Prepared	Date Analyzed	Analytical Method	
Total Metals - Mansfield	d Lab for sample(s):	01 Batch	: WG14	459572-	1				
Iron, Total	ND	mg/l	0.050		1	01/28/21 09:07	01/28/21 13:01	19,200.7	GD

Prep Information

Digestion Method: EPA 3005A

Parameter	Result Qualifie	er Units	RL	MDL	Dilution Factor	Date Prepared	Date Analyzed	Analytica Method	
Total Hardness by	SM 2340B - Mansfield	Lab for san	nple(s): (01 Bate	ch: WG145	59572-1			
Hardness	ND	mg/l	0.660	NA	1	01/28/21 09:07	01/28/21 13:0	1 19,200.7	GD

Prep Information

Digestion Method: EPA 3005A

Serial_No:02022112:15

Project Name: DRISCOLL SCHOOL

Lab Number:

L2104344

Project Number: 6693

Report Date:

02/02/21

Method Blank Analysis Batch Quality Control

Parameter	Result Qualifier	Units	RL	Dilution RL MDL Factor		Date Prepared	Date Analyzed	Analytica Method	
Total Metals - Mansfiel	ld Lab for sample(s):	01 Batc	h: WG14	159577-	1				
Mercury, Total	ND	mg/l	0.00020		1	01/28/21 09:50	01/28/21 21:00	3,245.1	VW

Prep Information

Digestion Method: EPA 245.1

Lab Control Sample Analysis Batch Quality Control

Project Name: DRISCOLL SCHOOL

Project Number: 6693

Lab Number: L2104344

Parameter	LCS %Recovery	LCSD Qual %Recovery	%Recovery Qual Limits	RPD	Qual	RPD Limits
Total Metals - Mansfield Lab Associated sample	e(s): 01 Batch: \	WG1459571-2				
Antimony, Total	93	-	85-115	-		
Arsenic, Total	98	-	85-115	-		
Cadmium, Total	100	-	85-115	-		
Chromium, Total	91	-	85-115	-		
Copper, Total	94	-	85-115	-		
Lead, Total	93	-	85-115	-		
Nickel, Total	86	-	85-115	-		
Selenium, Total	96	-	85-115	-		
Silver, Total	93	-	85-115	-		
Zinc, Total	98	-	85-115	-		
Total Metals - Mansfield Lab Associated sample	e(s): 01 Batch: \	WG1459572-2				
Iron, Total	98	-	85-115	-		
Total Hardness by SM 2340B - Mansfield Lab	Associated sample	e(s): 01 Batch: WG145957	· · · · · · · · · · · · · · · · · · ·			
Hardness	101	-	85-115	-		
Total Metals - Mansfield Lab Associated sample	e(s): 01 Batch: \	WG1459577-2				
Mercury, Total	98	-	85-115	-		

Matrix Spike Analysis Batch Quality Control

Project Name: DRISCOLL SCHOOL

Project Number: 6693

Lab Number: L2104344

arameter	Native Sample	MS Added	MS Found	MS %Recovery	Qua	MSD Found	MSD %Recovery	Qual	Recovery Limits	RPD (RPD Qual Limits
Total Metals - Mansfield Lab	Associated san	nple(s): 01	QC Batch II	D: WG145957	1-3	QC Sample:	L2104344-01	Client	ID: B-106	A(OW)	
Antimony, Total	ND	0.5	0.4700	94		-	-		70-130	-	20
Arsenic, Total	ND	0.12	0.1263	105		-	-		70-130	-	20
Cadmium, Total	ND	0.051	0.05341	105		-	-		70-130	-	20
Chromium, Total	ND	0.2	0.1966	98		-	-		70-130	-	20
Copper, Total	ND	0.25	0.2463	98		-	-		70-130	-	20
Lead, Total	ND	0.51	0.5375	105		-	-		70-130	-	20
Nickel, Total	ND	0.5	0.4720	94		-	-		70-130	-	20
Selenium, Total	ND	0.12	0.1257	105		-	-		70-130	-	20
Silver, Total	ND	0.05	0.05149	103		-	-		70-130	-	20
Zinc, Total	ND	0.5	0.5250	105		-	-		70-130	-	20
otal Metals - Mansfield Lab	Associated sam	nple(s): 01	QC Batch II	D: WG145957	2-3	QC Sample:	L2104344-01	Client	ID: B-106	A(OW)	
Iron, Total	2.07	1	3.00	93		-	-		75-125	-	20
otal Hardness by SM 2340E	B - Mansfield La	b Associate	ed sample(s):	01 QC Bato	h ID:	WG1459572-	-3 QC Samp	le: L210	04344-01	Client ID): B-106A(OW)
Hardness	235	66.2	302	101		-	-		75-125	-	20
otal Metals - Mansfield Lab	Associated sam	nple(s): 01	QC Batch II	D: WG145957	7-3	QC Sample:	L2104344-01	Client	ID: B-106	A(OW)	
Mercury, Total	ND	0.005	0.00461	92		-	•		70-130	-	20

L2104344

Lab Duplicate Analysis Batch Quality Control

Project Name: DRISCOLL SCHOOL

Project Number: 6693

rality Control

Lab Number:

Parameter	Native Sample	Duplicate Sample	Units	RPD	Qual	RPD Limits
otal Metals - Mansfield Lab Associated sample(s): 01	QC Batch ID: WG14	59571-4 QC Sample:	L2104344-01	Client ID:	B-106A(OW)	
Antimony, Total	ND	ND	mg/l	NC		20
Arsenic, Total	ND	ND	mg/l	NC		20
Cadmium, Total	ND	ND	mg/l	NC		20
Chromium, Total	ND	ND	mg/l	NC		20
Copper, Total	ND	ND	mg/l	NC		20
Lead, Total	ND	ND	mg/l	NC		20
Nickel, Total	ND	ND	mg/l	NC		20
Selenium, Total	ND	ND	mg/l	NC		20
Silver, Total	ND	ND	mg/l	NC		20
Zinc, Total	ND	ND	mg/l	NC		20
otal Metals - Mansfield Lab Associated sample(s): 01	QC Batch ID: WG14	59572-4 QC Sample:	L2104344-01	Client ID:	B-106A(OW)	
Iron, Total	2.07	1.99	mg/l	4		20
otal Hardness by SM 2340B - Mansfield Lab Associate	d sample(s): 01 QC	Batch ID: WG1459572-	4 QC Sampl	e: L21043	44-01 Client I	D: B-106A(OW)
Hardness	235	234	mg/l	0		20
otal Metals - Mansfield Lab Associated sample(s): 01	QC Batch ID: WG14	59577-4 QC Sample:	L2104344-01	Client ID:	B-106A(OW)	
Mercury, Total	ND	ND	mg/l	NC		20

INORGANICS & MISCELLANEOUS

Serial_No:02022112:15

Project Name: DRISCOLL SCHOOL Lab Number: L2104344

Project Number: 6693 Report Date: 02/02/21

SAMPLE RESULTS

Lab ID: L2104344-01 Date Collected: 01/27/21 09:30

Client ID: B-106A(OW) Date Received: 01/27/21 Sample Location: BROOKLINE, MA Field Prep: Not Specified

Sample Depth:

Matrix: Water

Parameter	Dilution Date Result Qualifier Units RL MDL Factor Prepare		Date Prepared	Date Analyzed	Analytical Method	Analyst				
General Chemistry - Wes	stborough Lat)								
Solids, Total Suspended	6.7		mg/l	5.0	NA	1	-	01/28/21 14:30	121,2540D	AC
Cyanide, Total	ND		mg/l	0.005		1	01/28/21 10:15	01/28/21 12:48	121,4500CN-CE	CR
Chlorine, Total Residual	ND		mg/l	0.02		1	-	01/27/21 22:56	121,4500CL-D	QW
pH (H)	6.5		SU	-	NA	1	-	01/27/21 20:43	121,4500H+-B	AS
Nitrogen, Ammonia	0.569		mg/l	0.075		1	01/28/21 03:33	01/29/21 19:44	121,4500NH3-BH	H AT
TPH, SGT-HEM	ND		mg/l	4.40		1.1	01/29/21 19:30	01/29/21 20:30	74,1664A	TL
Chromium, Hexavalent	ND		mg/l	0.010		1	01/28/21 06:10	01/28/21 06:50	1,7196A	AW
Anions by Ion Chromatog	graphy - Wes	borough	Lab							
Chloride	431.		mg/l	12.5		25	-	01/29/21 01:09	44,300.0	AT

Serial_No:02022112:15

L2104344

Lab Number:

Project Name: DRISCOLL SCHOOL

Project Number: 6693 Report Date: 02/02/21

Method Blank Analysis Batch Quality Control

Parameter	Result Qual	lifier Ur	nits	RL	MDL	Dilution Factor	Date Prepared	Date Analyzed	Analytical Method	Analyst
General Chemistry -	Westborough Lab fo	r sample	s): 01	Batch:	WG14	59414-1				
Chlorine, Total Residual	ND		mg/l	0.02		1	-	01/27/21 22:56	121,4500CL-D	QW
General Chemistry -	Westborough Lab fo	r sample	s): 01	Batch:	WG14	59415-1				
Nitrogen, Ammonia	ND		mg/l	0.075		1	01/28/21 03:33	01/29/21 19:41	121,4500NH3-B	H AT
General Chemistry -	Westborough Lab fo	r sample	s): 01	Batch:	WG14	59500-1				
Chromium, Hexavalent	ND		mg/l	0.010		1	01/28/21 06:10	01/28/21 06:49	1,7196A	AW
General Chemistry -	Westborough Lab fo	r sample	s): 01	Batch:	WG14	59573-1				
Cyanide, Total	ND		mg/l	0.005		1	01/28/21 10:15	01/28/21 12:30	121,4500CN-CE	Ē CR
General Chemistry -	Westborough Lab fo	r sample	s): 01	Batch:	WG14	59576-1				
Solids, Total Suspended	ND		mg/l	5.0	NA	1	-	01/28/21 14:30	121,2540D	AC
Anions by Ion Chrom	atography - Westbor	ough Lab	for sa	mple(s):	01 Ba	atch: WG1	459861-1			
Chloride	ND		mg/l	0.500		1	-	01/28/21 17:18	44,300.0	AT
General Chemistry -	Westborough Lab fo	r sample	s): 01	Batch:	WG14	60143-1				
TPH, SGT-HEM	ND		mg/l	4.00		1	01/29/21 19:30	01/29/21 20:30	74,1664A	TL

Lab Control Sample Analysis Batch Quality Control

Project Name: DRISCOLL SCHOOL

Project Number: 6693

Lab Number:

L2104344

Report Date:

02/02/21

Parameter	LCS %Recovery	Qual	LCSD %Recovery	Qual	%Recovery Limits	RPD	Qual	RPD Limits
General Chemistry - Westborough Lab	Associated sample(s):	01	Batch: WG1459372-1					
рН	101		-		99-101	-		5
General Chemistry - Westborough Lab	Associated sample(s):	01	Batch: WG1459414-2	2				
Chlorine, Total Residual	108		-		90-110	-		
General Chemistry - Westborough Lab	Associated sample(s):	01	Batch: WG1459415-2	2				
Nitrogen, Ammonia	97		-		80-120	-		20
General Chemistry - Westborough Lab	Associated sample(s):	01	Batch: WG1459500-2	2 WG1	459500-3			
Chromium, Hexavalent	102		102		85-115	0		20
General Chemistry - Westborough Lab	Associated sample(s):	01	Batch: WG1459573-2	2				
Cyanide, Total	92		-		90-110	-		
General Chemistry - Westborough Lab	Associated sample(s):	01	Batch: WG1459576-2	2				
Solids, Total Suspended	98		-		80-120	-		
Anions by Ion Chromatography - Westb	orough Lab Associate	d sam	nple(s): 01 Batch: W	/G14598	861-2			
Chloride	107		-		90-110	-		

Lab Control Sample Analysis Batch Quality Control

DRISCOLL SCHOOL

Lab Number: L2104344

Project Number: 6693

Project Name:

Donart Date

Parameter	LCS %Recovery	LCSD %Recovery	%Recovery Limits	RPD	RPD Limits
General Chemistry - Westborough Lab	Associated sample(s): 01	Batch: WG1460143-2			
TPH	82	-	64-132	-	34

Matrix Spike Analysis Batch Quality Control

Project Name: DRISCOLL SCHOOL

Project Number: 6693

Lab Number:

L2104344

Report Date:

02/02/21

Parameter	Native Sample	MS Added	MS Found	MS %Recovery	MSD Qual Four	IVIOD	Recovery Qual Limits	RPD Qual	RPD Limits
General Chemistry - Westbord	ough Lab Assoc	ciated samp	ole(s): 01	QC Batch ID: \	NG1459414-4	QC Sample: L2	2104295-02 Client	ID: MS Samp	le
Chlorine, Total Residual	ND	0.25	0.25	100			80-120	-	20
General Chemistry - Westbord	ough Lab Assoc	ciated samp	ole(s): 01	QC Batch ID: \	NG1459415-4	QC Sample: L2	2104344-01 Client	ID: B-106A(O	W)
Nitrogen, Ammonia	0.569	4	3.96	85			80-120	-	20
General Chemistry - Westbord	ough Lab Assoc	ciated samp	ole(s): 01	QC Batch ID: \	NG1459573-4	QC Sample: L2	2104295-02 Client	ID: MS Samp	le
Cyanide, Total	ND	0.2	0.199	100			90-110	-	30
Anions by Ion Chromatograph Sample	y - Westboroug	h Lab Asso	ociated san	nple(s): 01 Q0	C Batch ID: Wo	G1459861-3 QC	Sample: L2104130	0-04 Client IE): MS
Chloride	ND	4	4.10	103		-	90-110	-	18
General Chemistry - Westbord	ough Lab Assoc	iated samp	ole(s): 01	QC Batch ID: \	NG1460143-4	QC Sample: L2	2104358-01 Client	ID: MS Samp	le
TPH	ND	20	12.1	60	Q ·	-	64-132	-	34

L2104344

Lab Duplicate Analysis Batch Quality Control

Project Name: DRISCOLL SCHOOL

Project Number: 6693

Quality Control Lab Number:

Parameter	Native	Sample	Duplicate Sam	ple Units	s RPD	Qual	RPD Limits
General Chemistry - Westborough Lab	Associated sample(s): 0	I QC Batch ID:	WG1459372-2	QC Sample:	L2104306-02	Client ID:	DUP Sample
рН		7.4	7.4	SU	0		5
General Chemistry - Westborough Lab	Associated sample(s): 0	I QC Batch ID:	WG1459414-3	QC Sample:	L2104295-01	Client ID:	DUP Sample
Chlorine, Total Residual		ND	ND	mg/l	NC		20
General Chemistry - Westborough Lab	Associated sample(s): 07	QC Batch ID:	WG1459415-3	QC Sample:	L2104344-01	Client ID:	B-106A(OW)
Nitrogen, Ammonia	0	569	0.394	mg/l	36	Q	20
General Chemistry - Westborough Lab	Associated sample(s): 07	QC Batch ID:	WG1459573-3	QC Sample:	L2104295-01	Client ID:	DUP Sample
Cyanide, Total		ND	ND	mg/l	NC		30
General Chemistry - Westborough Lab	Associated sample(s): 02	QC Batch ID:	WG1459576-3	QC Sample:	L2104120-01	Client ID:	DUP Sample
Solids, Total Suspended	4	130	450	mg/l	5		29
Anions by Ion Chromatography - Westb Sample	orough Lab Associated s	ample(s): 01 C	C Batch ID: WG	1459861-4 (QC Sample: L2	2104130-0	4 Client ID: DUP
Chloride		ND	ND	mg/l	NC		18
General Chemistry - Westborough Lab	Associated sample(s): 0	I QC Batch ID:	WG1460143-3	QC Sample:	L2104344-01	Client ID:	B-106A(OW)
TPH, SGT-HEM		ND	ND	mg/l	NC		34

Serial_No:02022112:15

Project Name: DRISCOLL SCHOOL

Lab Number: L2104344

Report Date: 02/02/21

Sample Receipt and Container Information

Were project specific reporting limits specified?

YES

Cooler Information

Project Number: 6693

Cooler Custody Seal

A Absent

Container Information			Initial	Final	Temp			Frozen		
	Container ID	Container Type	Cooler	рH	рН	deg C	Pres	Seal	Date/Time	Analysis(*)
	L2104344-01A	Vial unpreserved	Α	NA		3.0	Υ	Absent		SUB-ETHANOL(14)
	L2104344-01B	Vial unpreserved	Α	NA		3.0	Υ	Absent		SUB-ETHANOL(14)
	L2104344-01C	Vial unpreserved	Α	NA		3.0	Υ	Absent		SUB-ETHANOL(14)
	L2104344-01D	Plastic 250ml NaOH preserved	Α	>12	>12	3.0	Υ	Absent		TCN-4500(14)
	L2104344-01E	Plastic 500ml HNO3 preserved	A	<2	<2	3.0	Y	Absent		CD-2008T(180),NI-2008T(180),ZN- 2008T(180),FE-UI(180),CU- 2008T(180),HARDU(180),AS-2008T(180),SE- 2008T(180),HG-U(28),AG-2008T(180),PB- 2008T(180),CR-2008T(180),SB-2008T(180)
	L2104344-01F	Plastic 500ml H2SO4 preserved	Α	<2	<2	3.0	Υ	Absent		NH3-4500(28)
	L2104344-01G	Plastic 500ml unpreserved	Α	7	7	3.0	Υ	Absent		CL-300(28),HEXCR-7196(1),TRC-4500(1),PH-4500(.01)
	L2104344-01H	Plastic 500ml unpreserved	Α	7	7	3.0	Y	Absent		CL-300(28),HEXCR-7196(1),TRC-4500(1),PH-4500(.01)
	L2104344-01I	Plastic 500ml unpreserved	Α	7	7	3.0	Υ	Absent		TSS-2540(7)
	L2104344-01J	Plastic 500ml unpreserved	Α	7	7	3.0	Υ	Absent		TSS-2540(7)
	L2104344-01K	Amber 1000ml HCl preserved	Α	NA		3.0	Υ	Absent		TPH-1664(28)
	L2104344-01L	Amber 1000ml HCl preserved	Α	NA		3.0	Υ	Absent		TPH-1664(28)

Project Name: Lab Number: DRISCOLL SCHOOL L2104344

Report Date: Project Number: 6693 02/02/21

GLOSSARY

Acronyms

LOD

LOQ

MS

DL - Detection Limit: This value represents the level to which target analyte concentrations are reported as estimated values, when those target analyte concentrations are quantified below the limit of quantitation (LOQ). The DL includes any adjustments

from dilutions, concentrations or moisture content, where applicable. (DoD report formats only.)

EDL - Estimated Detection Limit: This value represents the level to which target analyte concentrations are reported as estimated values, when those target analyte concentrations are quantified below the reporting limit (RL). The EDL includes any adjustments from dilutions, concentrations or moisture content, where applicable. The use of EDLs is specific to the analysis

of PAHs using Solid-Phase Microextraction (SPME).

EMPC - Estimated Maximum Possible Concentration: The concentration that results from the signal present at the retention time of an analyte when the ions meet all of the identification criteria except the ion abundance ratio criteria. An EMPC is a worst-case

estimate of the concentration. **EPA**

LCS - Laboratory Control Sample: A sample matrix, free from the analytes of interest, spiked with verified known amounts of analytes or a material containing known and verified amounts of analytes.

LCSD Laboratory Control Sample Duplicate: Refer to LCS.

Environmental Protection Agency.

LFB - Laboratory Fortified Blank: A sample matrix, free from the analytes of interest, spiked with verified known amounts of analytes or a material containing known and verified amounts of analytes.

- Limit of Detection: This value represents the level to which a target analyte can reliably be detected for a specific analyte in a specific matrix by a specific method. The LOD includes any adjustments from dilutions, concentrations or moisture content, where applicable. (DoD report formats only.)

- Limit of Quantitation: The value at which an instrument can accurately measure an analyte at a specific concentration. The LOQ includes any adjustments from dilutions, concentrations or moisture content, where applicable. (DoD report formats

Limit of Quantitation: The value at which an instrument can accurately measure an analyte at a specific concentration. The LOQ includes any adjustments from dilutions, concentrations or moisture content, where applicable. (DoD report formats

MDI - Method Detection Limit: This value represents the level to which target analyte concentrations are reported as estimated values, when those target analyte concentrations are quantified below the reporting limit (RL). The MDL includes any adjustments from dilutions, concentrations or moisture content, where applicable.

- Matrix Spike Sample: A sample prepared by adding a known mass of target analyte to a specified amount of matrix sample for which an independent estimate of target analyte concentration is available. For Method 332.0, the spike recovery is calculated using the native concentration, including estimated values.

MSD - Matrix Spike Sample Duplicate: Refer to MS.

NA - Not Applicable.

NC - Not Calculated: Term is utilized when one or more of the results utilized in the calculation are non-detect at the parameter's reporting unit.

NDPA/DPA - N-Nitrosodiphenylamine/Diphenylamine.

NI - Not Ignitable.

NP - Non-Plastic: Term is utilized for the analysis of Atterberg Limits in soil.

NR - No Results: Term is utilized when 'No Target Compounds Requested' is reported for the analysis of Volatile or Semivolatile

Organic TIC only requests.

RL - Reporting Limit: The value at which an instrument can accurately measure an analyte at a specific concentration. The RL

includes any adjustments from dilutions, concentrations or moisture content, where applicable.

RPD - Relative Percent Difference: The results from matrix and/or matrix spike duplicates are primarily designed to assess the precision of analytical results in a given matrix and are expressed as relative percent difference (RPD). Values which are less than five times the reporting limit for any individual parameter are evaluated by utilizing the absolute difference between the values; although the RPD value will be provided in the report.

SRM - Standard Reference Material: A reference sample of a known or certified value that is of the same or similar matrix as the associated field samples.

STLP - Semi-dynamic Tank Leaching Procedure per EPA Method 1315.

TEF - Toxic Equivalency Factors: The values assigned to each dioxin and furan to evaluate their toxicity relative to 2,3,7,8-TCDD.

TEO - Toxic Equivalent: The measure of a sample's toxicity derived by multiplying each dioxin and furan by its corresponding TEF and then summing the resulting values.

TIC - Tentatively Identified Compound: A compound that has been identified to be present and is not part of the target compound list (TCL) for the method and/or program. All TICs are qualitatively identified and reported as estimated concentrations.

Report Format: Data Usability Report

Project Name:DRISCOLL SCHOOLLab Number:L2104344Project Number:6693Report Date:02/02/21

Footnotes

 The reference for this analyte should be considered modified since this analyte is absent from the target analyte list of the original method.

Terms

1

Analytical Method: Both the document from which the method originates and the analytical reference method. (Example: EPA 8260B is shown as 1,8260B.) The codes for the reference method documents are provided in the References section of the Addendum.

Difference: With respect to Total Oxidizable Precursor (TOP) Assay analysis, the difference is defined as the Post-Treatment value minus the Pre-Treatment value.

Final pH: As it pertains to Sample Receipt & Container Information section of the report, Final pH reflects pH of container determined after adjustment at the laboratory, if applicable. If no adjustment required, value reflects Initial pH.

Frozen Date/Time: With respect to Volatile Organics in soil, Frozen Date/Time reflects the date/time at which associated Reagent Water-preserved vials were initially frozen. Note: If frozen date/time is beyond 48 hours from sample collection, value will be reflected in 'bold'. Initial pH: As it pertains to Sample Receipt & Container Information section of the report, Initial pH reflects pH of container determined upon

PAH Total: With respect to Alkylated PAH analyses, the 'PAHs, Total' result is defined as the summation of results for all or a subset of the following compounds: Naphthalene, C1-C4 Naphthalenes, 2-Methylnaphthalene, 1-Methylnaphthalene, Biphenyl, Acenaphthylene, Acenaphthene, Fluorene, C1-C3 Fluorenes, Phenanthrene, C1-C4 Phenanthrenes/Anthracenes, Anthracene, Fluoranthene, Pyrene, C1-C4 Fluoranthenes/Pyrenes, Benz(a)anthracene, Chrysene, C1-C4 Chrysenes, Benzo(b)fluoranthene, Benzo(j)+(k)fluoranthene, Benzo(e)pyrene, Benzo(a)pyrene, Perylene, Indeno(1,2,3-cd)pyrene, Dibenz(ah)+(ac)anthracene, Benzo(g,h,i)perylene. If a 'Total' result is requested, the results of its individual components will also be reported.

PFAS Total: With respect to PFAS analyses, the 'PFAS, Total (5)' result is defined as the summation of results for: PFHpA, PFHxS, PFOA, PFNA and PFOS. In addition, the 'PFAS, Total (6)' result is defined as the summation of results at or above the RL for: PFHpA, PFHxS, PFOA, PFNA, PFDA and PFOS. (Note: 'PFAS, Total (6)' is applicable to MassDEP DW compliance analysis only.). If a "Total' result is requested, the results of its individual components will also be reported.

The target compound Chlordane (CAS No. 57-74-9) is reported for GC ECD analyses. Per EPA, this compound "refers to a mixture of chlordane isomers, other chlorinated hydrocarbons and numerous other components." (Reference: USEPA Toxicological Review of Chlordane, In Support of Summary Information on the Integrated Risk Information System (IRIS), December 1997.)

Total: With respect to Organic analyses, a 'Total' result is defined as the summation of results for individual isomers or Aroclors. If a 'Total' result is requested, the results of its individual components will also be reported. This is applicable to 'Total' results for methods 8260, 8081 and 8082.

Data Qualifiers

receipt, if applicable.

- Spectra identified as "Aldol Condensates" are byproducts of the extraction/concentration procedures when acetone is introduced in the process.
- The analyte was detected above the reporting limit in the associated method blank. Flag only applies to associated field samples that have detectable concentrations of the analyte at less than ten times (10x) the concentration found in the blank. For MCP-related projects, flag only applies to associated field samples that have detectable concentrations of the analyte at less than ten times (10x) the concentrations of the analyte at less than ten times (10x) the concentrations of the analyte was detectable concentrations of the analyte at less than ten times (10x) the concentration found in the blank AND the analyte was detected above one-half the reporting limit (or above the reporting limit for common lab contaminants) in the associated method blank. For NJ-Air-related projects, flag only applies to associated field samples that have detectable concentrations of the analyte above the reporting limit. For NJ-related projects (excluding Air), flag only applies to associated field samples that have detectable concentrations of the analyte, which was detected above the reporting limit in the associated method blank or above five times the reporting limit for common lab contaminants (Phthalates, Acetone, Methylene Chloride, 2-Butanone).
- Co-elution: The target analyte co-elutes with a known lab standard (i.e. surrogate, internal standards, etc.) for co-extracted analyses.
- Concentration of analyte was quantified from diluted analysis. Flag only applies to field samples that have detectable concentrations of the analyte.
- ${\bf E} \qquad \hbox{-Concentration of analyte exceeds the range of the calibration curve and/or linear range of the instrument.}$
- F The ratio of quantifier ion response to qualifier ion response falls outside of the laboratory criteria. Results are considered to be an estimated maximum concentration.
- G The concentration may be biased high due to matrix interferences (i.e, co-elution) with non-target compound(s). The result should be considered estimated.
- H The analysis of pH was performed beyond the regulatory-required holding time of 15 minutes from the time of sample collection.
- I The lower value for the two columns has been reported due to obvious interference.
- J Estimated value. This represents an estimated concentration for Tentatively Identified Compounds (TICs).
- M Reporting Limit (RL) exceeds the MCP CAM Reporting Limit for this analyte.
- **ND** Not detected at the reporting limit (RL) for the sample.
- NJ Presumptive evidence of compound. This represents an estimated concentration for Tentatively Identified Compounds (TICs), where

Report Format: Data Usability Report

Project Name:DRISCOLL SCHOOLLab Number:L2104344Project Number:6693Report Date:02/02/21

Data Qualifiers

the identification is based on a mass spectral library search.

- P The RPD between the results for the two columns exceeds the method-specified criteria.
- Q -The quality control sample exceeds the associated acceptance criteria. For DOD-related projects, LCS and/or Continuing Calibration Standard exceedences are also qualified on all associated sample results. Note: This flag is not applicable for matrix spike recoveries when the sample concentration is greater than 4x the spike added or for batch duplicate RPD when the sample concentrations are less than 5x the RL. (Metals only.)
- **R** Analytical results are from sample re-analysis.
- **RE** Analytical results are from sample re-extraction.
- S Analytical results are from modified screening analysis.

Report Format: Data Usability Report

Project Name:DRISCOLL SCHOOLLab Number:L2104344Project Number:6693Report Date:02/02/21

REFERENCES

- Test Methods for Evaluating Solid Waste: Physical/Chemical Methods. EPA SW-846. Third Edition. Updates I VI, 2018.
- Methods for the Determination of Metals in Environmental Samples, Supplement I. EPA/600/R-94/111. May 1994.
- 19 Inductively Coupled Plasma Atomic Emission Spectrometric Method for Trace Element Analysis of Water and Wastes. Appendix C, Part 136, 40 CFR (Code of Federal Regulations). July 1, 1999 edition.
- Methods for the Determination of Inorganic Substances in Environmental Samples, EPA/600/R-93/100, August 1993.
- Method 1664,Revision A: N-Hexane Extractable Material (HEM; Oil & Grease) and Silica Gel Treated N-Hexane Extractable Material (SGT-HEM; Non-polar Material) by Extraction and Gravimetry, EPA-821-R-98-002, February 1999.
- 107 Alpha Analytical In-house calculation method.
- 121 Standard Methods for the Examination of Water and Wastewater. APHA-AWWA-WEF. Standard Methods Online.

LIMITATION OF LIABILITIES

Alpha Analytical performs services with reasonable care and diligence normal to the analytical testing laboratory industry. In the event of an error, the sole and exclusive responsibility of Alpha Analytical shall be to re-perform the work at it's own expense. In no event shall Alpha Analytical be held liable for any incidental, consequential or special damages, including but not limited to, damages in any way connected with the use of, interpretation of, information or analysis provided by Alpha Analytical.

We strongly urge our clients to comply with EPA protocol regarding sample volume, preservation, cooling, containers, sampling procedures, holding time and splitting of samples in the field.

Serial_No:02022112:15

Alpha Analytical, Inc.
Facility: Company-wide
Department: Quality Assurance

Title: Certificate/Approval Program Summary

ID No.:**17873** Revision 17

Published Date: 4/28/2020 9:42:21 AM

Page 1 of 1

Certification Information

The following analytes are not included in our Primary NELAP Scope of Accreditation:

Westborough Facility

EPA 624/624.1: m/p-xylene, o-xylene, Naphthalene

EPA 8260C: <u>NPW</u>: 1,2,4,5-Tetramethylbenzene; 4-Ethyltoluene, Azobenzene; <u>SCM</u>: lodomethane (methyl iodide), 1,2,4,5-Tetramethylbenzene; 4-Ethyltoluene.

EPÁ 8270D: NPW: Dimethylnaphthalene,1,4-Diphenylhydrazine; SCM: Dimethylnaphthalene,1,4-Diphenylhydrazine.

SM4500: NPW: Amenable Cyanide; SCM: Total Phosphorus, TKN, NO2, NO3.

Mansfield Facility

SM 2540D: TSS

EPA 8082A: NPW: PCB: 1, 5, 31, 87,101, 110, 141, 151, 153, 180, 183, 187.

EPA TO-15: Halothane, 2,4,4-Trimethyl-2-pentene, 2,4,4-Trimethyl-1-pentene, Thiophene, 2-Methylthiophene,

3-Methylthiophene, 2-Ethylthiophene, 1,2,3-Trimethylbenzene, Indan, Indene, 1,2,4,5-Tetramethylbenzene, Benzothiophene, 1-Methylnaphthalene.

EPA TO-12 Non-methane organics

EPA 3C Fixed gases

Biological Tissue Matrix: EPA 3050B

The following analytes are included in our Massachusetts DEP Scope of Accreditation

Westborough Facility:

Drinking Water

EPA 300.0: Chloride, Nitrate-N, Fluoride, Sulfate; EPA 353.2: Nitrate-N, Nitrite-N; SM4500NO3-F: Nitrate-N, Nitrite-N; SM4500F-C, SM4500CN-CE, EPA 180.1, SM2130B, SM4500CI-D, SM2320B, SM2540C, SM4500H-B, SM4500NO2-B

EPA 332: Perchlorate; EPA 524.2: THMs and VOCs; EPA 504.1: EDB, DBCP.

Microbiology: SM9215B; SM9223-P/A, SM9223B-Colilert-QT,SM9222D.

Non-Potable Water

SM4500H,B, EPA 120.1, SM2510B, SM2540C, SM2320B, SM4500CL-E, SM4500F-BC, SM4500NH3-BH: Ammonia-N and Kjeldahl-N, EPA 350.1: Ammonia-N, LACHAT 10-107-06-1-B: Ammonia-N, EPA 351.1, SM4500NO3-F, EPA 353.2: Nitrate-N, SM4500P-E, SM4500P-B, E, SM4500SO4-E, SM5220D, EPA 410.4, SM5210B, SM5310C, SM4500CL-D, EPA 1664, EPA 420.1, SM4500-CN-CE, SM2540D, EPA 300: Chloride, Sulfate, Nitrate. EPA 624.1: Volatile Halocarbons & Aromatics,

EPA 608.3: Chlordane, Toxaphene, Aldrin, alpha-BHC, beta-BHC, gamma-BHC, delta-BHC, Dieldrin, DDD, DDE, DDT, Endosulfan II, Endosulfan II, Endosulfan sulfate, Endrin, Endrin Aldehyde, Heptachlor, Heptachlor Epoxide, PCBs

EPA 625.1: SVOC (Acid/Base/Neutral Extractables), EPA 600/4-81-045: PCB-Oil.

Microbiology: SM9223B-Colilert-QT; Enterolert-QT, SM9221E, EPA 1600, EPA 1603.

Mansfield Facility:

Drinking Water

EPA 200.7: Al, Ba, Cd, Cr, Cu, Fe, Mn, Ni, Na, Ag, Ca, Zn. EPA 200.8: Al, Sb, As, Ba, Be, Cd, Cr, Cu, Pb, Mn, Ni, Se, Ag, TL, Zn. EPA 245.1 Hg. EPA 522.

Non-Potable Water

EPA 200.7: Al, Sb, As, Be, Cd, Ca, Cr, Co, Cu, Fe, Pb, Mg, Mn, Mo, Ni, K, Se, Ag, Na, Sr, TL, Ti, V, Zn.

EPA 200.8: Al, Sb, As, Be, Cd, Cr, Cu, Fe, Pb, Mn, Ni, K, Se, Ag, Na, TL, Zn.

EPA 245.1 Hg.

SM2340B

For a complete listing of analytes and methods, please contact your Alpha Project Manager.

Document Type: Form Pre-Qualtrax Document ID: 08-113

Дерна	B Walkup Drive Westboro, MA 01581 320 Forbes Bivd Mansfield, MA 02048			Project Information					Date Rec'd in Lab:								ALPHA JOB#: LNU 4379						
		10						NAME OF TAXABLE PARTY.			rmati	on - D	ata D	eliver	ables		377	В	illing	Infor	mati	on	
Tel: 508-698-92	20 Tel: 508-822-9300		20000000000000000000000000000000000000	Drisa	coll Sc	hool			ADEx	ê	100	EMAIL	2					□ Sa	ime as	Client	info	PO#:	
Client Information			Project Location.	1500	oleline,	MA		R	egula	tory	Requ	iireme	nts	& P	roject							Manager and Company	
Processor Sweets	ssociates, LLC		Project #: 66	93				□ Ye	s □ No s Ø No	o MA I o Matri	MCP A x Spik	knalytica e Requi	I Metho	ds his SD(3? (Red	☐ Yes, quired	No for MC	CT R	RCP An	alytica)	Meth	ods	
Address: 2269 Mass	achusetts Avenue		Project Manager:	Ni	ck Ho	dap		□ Ye	s WN	GW	1 Stan	dards (r Metals					2			
1 N. W.	ge, MA 02140		ALPHA Quote #:		1.10					NPD te /Fe						Cri	iteria_						
Phone: (617) 868-1	1420		Turn-Around	Time	THE PARTY		NEW		П	П	П	П			7.1		1		$\overline{}$				10
Email: Nhodge	@McPhailgeo	.com	unn.	/											RA8	LZ.					1		
Commission Plans of Continues	oject Information		Date Due: *** ** ** ** ** ** ** ** ** ** ** ** *	RUSH	Conly confirmed	F pre-approved	2 TEAT	ackage IV				Targets	argets	14	LS: D RCRAB	METALS: Total Sb.Be,Ni,TI,V,Zn	des	ganics			Aness	SAMPLE INFO	TOTAL
			ALL TES	TING	G BY	FEB I	er 1,2021	essment Pa	□ 8260	spi	SVOC: 🗆 PAH	Ranges & 7 s Only	VPH: ☐ Ranges & Targets ☐ Ranges Only	TOTAL METALS: DIRCRAB	DISSOLVED METALS:	Total Sb,E	☐ Pesticides	Section A Inorganics		lou	9	Filtration Field Lab to do Preservation	# B 0
Sample "Sample ID ALPHA Lab ID	" Nomenclature: E Sample		T Comple			WE'-		Assess VOC)	0	Sol	6	n e	□ å	AL N	OLV P13	ALS	Bs	Sec	PH	Eihan	+	□ Lab to do	T
(Lab Use Only)					Sampler Initials	Soil A	VOC	Total Solids	SV0	표	AH I	10T	SSIC P L	MET,	D PCBs	RGP	1	山	동	Sample Comments	- 1		
04344-4	B-106A	(ow)		GW	1/27/21	9:30	75F											X	X	X	×	Sample Comments	12
																							╀
																							t
													2										
							1																
																							T
Container Type A=Amber glass	Preservative A=None		ion A Inorganics : Chloride, TRC, TSS	, CrVI, Cr	ill, Total		intainer Type						i i					P	Α	٧			T
B=Bacteria cup C=Cube	B=HCI C=HNO ₃	Cyanide,	Fotal RGP Metals Relinquish	ed By	antico-antil	-	Preservative te/Time											AJE	B	A			
D=BOD bottle E=Encore	D=H ₂ SO ₄ E=NaOH		57.0000A64.50%	A 41	20/	1	1					1	ved By:					-83	Date/	Time			
G=Glass O=Other P=Plastic	F=MeOH G=NaHSO ₄	2 ulia	high Ginney OM 1/24/14 11:00 Phail Associates, secure sample storage for		MCF	naii A	SSOCI	ates s		sample K-up	storag	je for la	borat	ory	1/23	1/21	111	00	All samples submitted are				
V=Vial	H=Na ₂ S ₂ O ₃ I=Ascorbix Acid	WICETIE	laboratory	re sampi pick-up	e storage for			1	M	fil	2	In		AA	-	_		1/2	1/21	16	cc	subject to	
Sample Material F=Fill S=Sand O=Organics C=Clay	J=NH ₄ Cl K=Zn Acetate O=Other	sel	ness	AA	L	1/27	11/10		Ш	W	v		dl	^				2/2	17/2	100	n	Alpha's Term and Condition See reverse sid	s.
N=Natural T=Till GM=Glaciomarine GW=Groundwater																						DOC ID: 25188 Rev (11/28/2017)	0

Subcontract Chain of Custody

ANALYT	ICAL	Te 54 Co	ek Lab, Inc. 45 Horsehoe ollinsville, IL 6	Lake Road 2234-7425	ay	Alpha Job Numbe L2104344
E PART OF	Client Information	The second second	Project Ir	nformation	quirements/Report Limits	
Client: Alpha Address: Eight \ Westb	Analytical Labs Walkup Drive orough, MA 01581-1019	Project Locatio Project Manage		ulli verables Information	State/Federal Program Regulatory Criteria:	1:
Phone: 603.3' Email: mgulli	Client Information Client: Alpha Analytical Labs dress: Eight Walkup Drive Westborough, MA 01581-1019 Chone: 603.319.5010 Chone: 603.319.5010 Chone: Goding Alpha Job ditional Comments: Send all results/reports Ab ID Client ID B-106A(OW)	and the second second second	: 02/01/21 (R	and the Post for the state of t		
	APADay 4 of Carl	Project Specif	ic Requirem	nents and/or Report Re	equirements	
	Reference following Alpha Jol	Number on final repor	rt/deliverables	: L2104344	Report to include Method Bla	ink, LCS/LCSD:
Lab ID	Client ID	Collection Date/Time	Sample Matrix	Ana	ılysis	Batch QC
	B-106A(OW)	01-27-21 09:30	WATER	Ethanol by EPA 1671 Revision	on A	
	Relinquish	ned By:		Date/Time:	Received By:	Date/Time:
	ese	beau		1/28/21		
				1		
Form No: AL_su	ubcoc					

http://www.teklabinc.com/

February 02, 2021

Melissa Gulli Alpha Analytical 145 Flanders Road Westborough, MA 01581 TEL: (603) 319-5010

FAX:

RE: L2104344

Dear Melissa Gulli:

TEKLAB, INC received 1 sample on 1/29/2021 9:39:00 AM for the analysis presented in the following report.

Samples are analyzed on an as received basis unless otherwise requested and documented. The sample results contained in this report relate only to the requested analytes of interest as directed on the chain of custody. NELAP accredited fields of testing are indicated by the letters NELAP under the Certification column. Unless otherwise documented within this report, Teklab Inc. analyzes samples utilizing the most current methods in compliance with 40CFR. All tests are performed in the Collinsville, IL laboratory unless otherwise noted in the Case Narrative.

All quality control criteria applicable to the test methods employed for this project have been satisfactorily met and are in accordance with NELAP except where noted. The following report shall not be reproduced, except in full, without the written approval of Teklab, Inc.

If you have any questions regarding these tests results, please feel free to call.

Sincerely,

Marvin L. Darling

Project Manager

(618)344-1004 ex 41

mdarling@teklabinc.com

Mowin L. Darling I

WorkOrder: 21011491

Illinois 100226 Kansas E-10374 Louisiana 05002 Louisiana 05003

9978

Oklahoma 9

Report Contents

http://www.teklabinc.com/

Client: Alpha Analytical Work Order: 21011491
Client Project: L2104344 Report Date: 02-Feb-21

This reporting package includes the following:

Cover Letter	1
Report Contents	2
Definitions	3
Case Narrative	5
Accreditations	6
Laboratory Results	7
Quality Control Results	8
Receiving Check List	9
Chain of Custody	Appended

Definitions

http://www.teklabinc.com/

Client: Alpha Analytical Work Order: 21011491
Client Project: L2104344 Report Date: 02-Feb-21

Abbr Definition

- * Analytes on report marked with an asterisk are not NELAP accredited
- CCV Continuing calibration verification is a check of a standard to determine the state of calibration of an instrument between recalibration.
- CRQL A Client Requested Quantitation Limit is a reporting limit that varies according to customer request. The CRQL may not be less than the MDL.
 - DF Dilution factor is the dilution performed during analysis only and does not take into account any dilutions made during sample preparation. The reported result is final and includes all dilution factors.
 - DNI Did not ignite
- DUP Laboratory duplicate is a replicate aliquot prepared under the same laboratory conditions and independently analyzed to obtain a measure of precision.
- ICV Initial calibration verification is a check of a standard to determine the state of calibration of an instrument before sample analysis is initiated.
- IDPH IL Dept. of Public Health
- LCS Laboratory control sample is a sample matrix, free from the analytes of interest, spiked with verified known amounts of analytes and analyzed exactly like a sample to establish intra-laboratory or analyst specific precision and bias or to assess the performance of all or a portion of the measurement system.
- LCSD Laboratory control sample duplicate is a replicate laboratory control sample that is prepared and analyzed in order to determine the precision of the approved test method. The acceptable recovery range is listed in the QC Package (provided upon request).
- MBLK Method blank is a sample of a matrix similar to the batch of associated sample (when available) that is free from the analytes of interest and is processed simultaneously with and under the same conditions as samples through all steps of the analytical procedures, and in which no target analytes or interferences should present at concentrations that impact the analytical results for sample analyses.
- MDL "The method detection limit is defined as the minimum measured concentration of a substance that can be reported with 99% confidence that the measured concentration is distinguishable from method blank results."
- MS Matrix spike is an aliquot of matrix fortified (spiked) with known quantities of specific analytes that is subjected to the entire analytical procedures in order to determine the effect of the matrix on an approved test method's recovery system. The acceptable recovery range is listed in the QC Package (provided upon request).
- MSD Matrix spike duplicate means a replicate matrix spike that is prepared and analyzed in order to determine the precision of the approved test method. The acceptable recovery range is listed in the QC Package (provided upon request).
- MW Molecular weight
- NC Data is not acceptable for compliance purposes
- ND Not Detected at the Reporting Limit
- NELAP NELAP Accredited
 - PQL Practical quantitation limit means the lowest level that can be reliably achieved within specified limits of precision and accuracy during routine laboratory operation conditions.
 - RL The reporting limit the lowest level that the data is displayed in the final report. The reporting limit may vary according to customer request or sample dilution. The reporting limit may not be less than the MDL.
 - RPD Relative percent difference is a calculated difference between two recoveries (ie. MS/MSD). The acceptable recovery limit is listed in the QC Package (provided upon request).
 - SPK The spike is a known mass of target analyte added to a blank sample or sub-sample; used to determine recovery deficiency or for other quality control purposes.
 - Surr Surrogates are compounds which are similar to the analytes of interest in chemical composition and behavior in the analytical process, but which are not normally found in environmental samples.
 - TIC Tentatively identified compound: Analytes tentatively identified in the sample by using a library search. Only results not in the calibration standard will be reported as tentatively identified compounds. Results for tentatively identified compounds that are not present in the calibration standard, but are assigned a specific chemical name based upon the library search, are calculated using total peak areas from reconstructed ion chromatograms and a response factor of one. The nearest Internal Standard is used for the calculation. The results of any TICs must be considered estimated, and are flagged with a "T". If the estimated result is above the calibration range it is flagged "ET"
- TNTC Too numerous to count (> 200 CFU)

Definitions

http://www.teklabinc.com/

Client: Alpha Analytical Work Order: 21011491
Client Project: L2104344 Report Date: 02-Feb-21

Qualifiers

- Unknown hydrocarbon

C - RL shown is a Client Requested Quantitation Limit

H - Holding times exceeded

J - Analyte detected below quantitation limits

ND - Not Detected at the Reporting Limit

S - Spike Recovery outside recovery limits

X - Value exceeds Maximum Contaminant Level

- B Analyte detected in associated Method Blank
- E Value above quantitation range
- I Associated internal standard was outside method criteria
- M Manual Integration used to determine area response
- R RPD outside accepted recovery limits
- T TIC(Tentatively identified compound)

Case Narrative

http://www.teklabinc.com/

Client: Alpha Analytical Work Order: 21011491
Client Project: L2104344 Report Date: 02-Feb-21

Cooler Receipt Temp: 0.4 °C

Locations

	Collinsville		Springfield		Kansas City
Address	5445 Horseshoe Lake Road	Address	3920 Pintail Dr	Address	8421 Nieman Road
	Collinsville, IL 62234-7425		Springfield, IL 62711-9415		Lenexa, KS 66214
Phone	(618) 344-1004	Phone	(217) 698-1004	Phone	(913) 541-1998
Fax	(618) 344-1005	Fax	(217) 698-1005	Fax	(913) 541-1998
Email	jhriley@teklabinc.com	Email	KKlostermann@teklabinc.com	Email	jhriley@teklabinc.com
	Collinsville Air		Chicago		
Address	5445 Horseshoe Lake Road	Address	1319 Butterfield Rd.		
	Collinsville, IL 62234-7425		Downers Grove, IL 60515		
Phone	(618) 344-1004	Phone	(630) 324-6855		
Fax	(618) 344-1005	Fax			
Email	EHurley@teklabinc.com	Email	arenner@teklabinc.com		

Accreditations

http://www.teklabinc.com/

Client: Alpha Analytical Work Order: 21011491

Client Project: L2104344 Report Date: 02-Feb-21

State	Dept	Cert #	NELAP	Exp Date	Lab	
Illinois	IEPA	100226	NELAP	1/31/2022	Collinsville	
Kansas	KDHE	E-10374	NELAP	4/30/2021	Collinsville	
Louisiana	LDEQ	05002	NELAP	6/30/2021	Collinsville	
Louisiana	LDEQ	05003	NELAP	6/30/2021	Collinsville	
Oklahoma	ODEQ	9978	NELAP	8/31/2021	Collinsville	
Arkansas	ADEQ	88-0966		3/14/2021	Collinsville	
Illinois	IDPH	17584		5/31/2021	Collinsville	
Kentucky	UST	0073		1/31/2021	Collinsville	
Missouri	MDNR	00930		5/31/2021	Collinsville	
Missouri	MDNR	930		1/31/2022	Collinsville	

Laboratory Results

http://www.teklabinc.com/

Client: Alpha Analytical Work Order: 21011491

Client Project: L2104344 Report Date: 02-Feb-21

Lab ID: 21011491-001 Client Sample ID: B-106A (OW)

Matrix: AQUEOUS Collection Date: 01/27/2021 9:30

	Analyses	Certification	RL Qual	Result	Units	DF	Date Analyzed Batch
EPA 600 1	671A, PHARMAC	EUTICAL MANUFACTU	JRING INDUSTRY N	ON-PURGEA	BLE VOLAT	ΓILE ORGA	NICS
Ethanol		*	20	ND	mg/L	1	02/01/2021 16:10 R286958

Quality Control Results

http://www.teklabinc.com/

Client: Alpha Analytical Work Order: 21011491
Client Project: L2104344 Report Date: 02-Feb-21

EPA 600 1671A, P	HARMACEU	TICAL MA	ANUFA	ACTURING	INDUSTRY	NON-PURG	EABLE VOL	ATILE C	ORG		
Batch R286958	SampType:	MBLK		Units mg/L							
SampID: MBLK-020)121										Date
Analyses		Cert	RL	Qual	Result	Spike	SPK Ref Val	%REC	Low Limit	High Limit	Analyzed
Ethanol		*	20		ND						02/01/202
Batch R286958	SampType:	LCS		Units mg/L							
SampID: LCS-0201	21										Date
Analyses		Cert	RL	Qual	Result	Spike	SPK Ref Val	%REC	Low Limit	High Limit	Analyzed
Ethanol		*	20		220	250.0	0	86.9	70	132	02/01/202
Batch R286958	SampType:	MS		Units mg/L							
SampID: 21011493	-003AMS										Date
Analyses		Cert	RL	Qual	Result	Spike	SPK Ref Val	%REC	Low Limit	High Limit	Analyzed
Ethanol		*	20		220	250.0	0	87.8	70	132	02/01/202
Batch R286958	SampType:	msd		Units mg/L					RPD Lin	nit 30	
SampID: 21011493	-003AMSD										Date
Analyses		Cert	RL	Qual	Result	Spike	SPK Ref Val	%REC	RPD Ref Va	al %RPD	Analyzed
Ethanol		*	20		220	250.0	0	86.8	219.4	1.09	02/01/202

Client: Alpha Analytical

Receiving Check List

http://www.teklabinc.com/

Work Order: 21011491

Client Project: L2104344 Report Date: 02-Feb-21 Carrier: UPS Received By: AH Marin L. Darling II (madter Reviewed by: Completed by: On: On: 29-Jan-21 29-Jan-21 Amanda R. Ham Marvin L. Darling Extra pages included 0 Pages to follow: Chain of custody Shipping container/cooler in good condition? Yes 🗸 No Not Present Temp °C 0.4 Type of thermal preservation? Ice 🗹 Blue Ice None Dry Ice Chain of custody present? **V** No _ Yes Chain of custody signed when relinquished and received? **V** Yes No __ **~** Chain of custody agrees with sample labels? No 🗔 Yes **V** Samples in proper container/bottle? Yes No 🗀 **V** Sample containers intact? Yes No Sufficient sample volume for indicated test? Yes ~ No **V** No 🗌 All samples received within holding time? Yes NA 🗸 Field Lab 🗌 Reported field parameters measured: Yes 🗸 No 🗌 Container/Temp Blank temperature in compliance? When thermal preservation is required, samples are compliant with a temperature between 0.1°C - 6.0°C, or when samples are received on ice the same day as collected. Yes 🗸 Water - at least one vial per sample has zero headspace? No 🗀 No VOA vials No TOX containers Water - TOX containers have zero headspace? Yes No 🗌 Yes 🗹 No 🗌 Water - pH acceptable upon receipt? NA 🗸 NPDES/CWA TCN interferences checked/treated in the field? Yes No 🗌 Any No responses must be detailed below or on the COC.

Subcontract Chain of Custody

Tek Lab, Inc. 5445 Horsehoe Lake Road Collinsville, IL 62234-7425

Alpha Job Number L2104344

World Class Chemistry	L								<u> </u>	· · · · · · · · · · · · · · · · · · ·
Client	Informatio	1		Project In	formation		Regulato	ry Requireme	ents/Report Li	mits
Client: Alpha Analyti Address: Eight Walkup Westborough	cal Labs Drive , MA 01581-	1019	Project Locatio Project Manage		lli erables Informati	OB	State/Federal Pro	-		
Phone: 603.319.5010 Email: mgulli@alpha) lab.com			: 02/01/21 (RU :	·	OTE				
			Project Specif	ic Requirem	ents and/or Repo	rt Require	ements			- <u>- 6</u>
Reference Additional Comments			mber on final repor ubreports@alphala				ort to include Metho I(C, DHS (
	25.00								- Marie	
Lab ID	Client ID)	Collection Date/Time	Sample Matrix		Analysis				Batch QC
21011491-001	B-106A(OW)		01-27-21 09:30	WATER	Ethanol by EPA 1671 R	Revision A				
		Relinquished B			Datę/Timej:		Received By:		Date/Time:	
¥		<u>e eve</u>	<u>ou</u>		428/21	***************************************	Ent	4_4PS	1/29/21	0939
Form No: AL_subcoc										

August 10, 2020

Nick Hodge McPhail Associates 2269 Massachusetts Avenue Cambridge, MA 02140

Project Location: Brookline, MA

Client Job Number: Project Number: 6693

Laboratory Work Order Number: 20G1646

Enclosed are results of analyses for samples received by the laboratory on July 31, 2020. If you have any questions concerning this report, please feel free to contact me.

Sincerely,

Jessica L. Hoffman Project Manager

McPhail Associates 2269 Massachusetts Avenue Cambridge, MA 02140 ATTN: Nick Hodge

PURCHASE ORDER NUMBER:

REPORT DATE: 8/10/2020

PROJECT NUMBER: 6693

ANALYTICAL SUMMARY

WORK ORDER NUMBER: 20G1646

The results of analyses performed on the following samples submitted to the CON-TEST Analytical Laboratory are found in this report.

PROJECT LOCATION: Brookline, MA

FIELD SAMPLE #	LAB ID:	MATRIX	SAMPLE DESCRIPTION	TEST	SUB LAB
B-103 (OW)	20G1646-01	Ground Water		MADEP-VPH-Feb 2018 Rev 2.1 SW-846 8260C-D	
B-116 (OW)	20G1646-02	Ground Water		MADEP-VPH-Feb 2018 Rev 2.1 SW-846 8260C-D	
B-310 (OW)	20G1646-03	Ground Water		MADEP-VPH-Feb 2018 Rev 2.1 SW-846 8260C-D	

CASE NARRATIVE SUMMARY

All reported results are within defined laboratory quality control objectives unless listed below or otherwise qualified in this report.

SW-846 8260C-D

Qualifications:

L-04

Laboratory fortified blank/laboratory control sample recovery and duplicate recovery are outside of control limits. Reported value for this compound is likely to be biased on the low side. Analyte & Samples(s) Qualified:

1,1-Dichloroethylene

 $20G1646-01[B-103 \ (OW)], \ 20G1646-02[B-116 \ (OW)], \ 20G1646-03[B-310 \ (OW)], \ B263756-BLK1, \ B263756-BSD1, \ B263756-BSD1, \ S051133-CCV1, \ B263756-BSD1, \ S05113-CCV1, \ B263756-BSD1, \ S05113-CCV1, \ B263756-BS$

L-07

Either laboratory fortified blank/laboratory control sample or duplicate recovery is outside of control limits, but the other is within limits. RPD between the two LFB/LCS results is within method specified criteria.

Analyte & Samples(s) Qualified:

Methylene Chloride

B263756-BSD1

V-05

Continuing calibration verification (CCV) did not meet method specifications and was biased on the low side for this compound.

Analyte & Samples(s) Qualified:

1,1-Dichloroethylene

 $20G1646-01[B-103 \ (OW)], 20G1646-02[B-116 \ (OW)], 20G1646-03[B-310 \ (OW)], B263756-BLK1, B263756-BS1, B263756-BSD1, S051133-CCV1, B263756-BSD1, B263756$

1,2-Dibromo-3-chloropropane (DB)

20G1646-01[B-103 (OW)], 20G1646-02[B-116 (OW)], 20G1646-03[B-310 (OW)], B263756-BLK1, B263756-BS1, B263756-BSD1, S051133-CCV1

Acetone

20G1646-01[B-103 (OW)], 20G1646-02[B-116 (OW)], 20G1646-03[B-310 (OW)], B263756-BLK1, B263756-BS1, B263756-BSD1, S051133-CCV1

Diethyl Ether

20G1646-01[B-103 (OW)], 20G1646-02[B-116 (OW)], 20G1646-03[B-310 (OW)], B263756-BLK1, B263756-BS1, B263756-BSD1, S051133-CCV1

Methylene Chloride

20G1646-01[B-103 (OW)], 20G1646-02[B-116 (OW)], 20G1646-03[B-310 (OW)], B263756-BLK1, B263756-BSD1, B263756-BSD1, S051133-CCV1

Trichlorofluoromethane (Freon 11)

20G1646-01[B-103 (OW)], 20G1646-02[B-116 (OW)], 20G1646-03[B-310 (OW)], B263756-BLK1, B263756-BS1, B263756-BSD1, S051133-CCV1

V-16

Response factor is less than method specified minimum acceptable value. Reduced precision and accuracy may be associated with reported result.

Analyte & Samples(s) Qualified:

1.4-Dioxane

20G1646-01[B-103 (OW)], 20G1646-02[B-116 (OW)], 20G1646-03[B-310 (OW)], B263756-BLK1, B263756-BS1, B263756-BSD1, S051133-CCV1

MADEP-VPH-Feb 2018 Rev 2.1

No significant modifications were made to the method. All VPH samples were received preserved properly at pH ≤ 2 in the proper containers as specified on the chain-of-custody form unless specified in this narrative.

Analytical column used for VPH analysis is Restek, Rtx-502.2, 105meter, 0.53mmID, 3um df. Trap used for VPH analysis is Carbopack B/CarboSieveS-III.

 $The \ results \ of \ analyses \ reported \ only \ relate \ to \ samples \ submitted \ to \ the \ Con-Test \ Analytical \ Laboratory \ for \ testing.$

I certify that the analyses listed above, unless specifically listed as subcontracted, if any, were performed under my direction according to the approved methodologies listed in this document, and that based upon my inquiry of those individuals immediately responsible for obtaining the information, the material contained in this report is, to the best of my knowledge and belief, accurate and complete.

Lisa A. Worthington

Technical Representative

Lua Watsleugten

Work Order: 20G1646

Sample Description:

Project Location: Brookline, MA
Date Received: 7/31/2020
Field Sample #: B-103 (OW)

Sampled: 7/30/2020 12:30

Sample ID: 20G1646-01
Sample Matrix: Ground Water

Volatile Organic Compounds by GC/MS

	ъ .	D.		D0	FI (C :		Date	Date/Time	
Analyte	Results	RL	Units	Dilution	Flag/Qual	Method	Prepared	Analyzed	Analys
Acetone	ND	10	μg/L	1	V-05	SW-846 8260C-D	8/7/20	8/7/20 18:41	BRF
tert-Amyl Methyl Ether (TAME)	ND	0.50	μg/L	1		SW-846 8260C-D	8/7/20	8/7/20 18:41	BRF
Benzene	ND	1.0	μg/L	1		SW-846 8260C-D	8/7/20	8/7/20 18:41	BRF
Bromobenzene	ND	1.0	μg/L	1		SW-846 8260C-D	8/7/20	8/7/20 18:41	BRF
Bromochloromethane	ND	1.0	μg/L	1		SW-846 8260C-D	8/7/20	8/7/20 18:41	BRF
Bromodichloromethane	ND	1.0	μg/L	1		SW-846 8260C-D	8/7/20	8/7/20 18:41	BRF
Bromoform	ND	1.0	μg/L	1		SW-846 8260C-D	8/7/20	8/7/20 18:41	BRF
Bromomethane	ND	2.0	$\mu g/L$	1		SW-846 8260C-D	8/7/20	8/7/20 18:41	BRF
2-Butanone (MEK)	ND	10	$\mu g/L$	1		SW-846 8260C-D	8/7/20	8/7/20 18:41	BRF
n-Butylbenzene	ND	1.0	$\mu g/L$	1		SW-846 8260C-D	8/7/20	8/7/20 18:41	BRF
sec-Butylbenzene	6.2	1.0	$\mu g/L$	1		SW-846 8260C-D	8/7/20	8/7/20 18:41	BRF
tert-Butylbenzene	ND	1.0	$\mu g/L$	1		SW-846 8260C-D	8/7/20	8/7/20 18:41	BRF
tert-Butyl Ethyl Ether (TBEE)	ND	0.50	$\mu g/L$	1		SW-846 8260C-D	8/7/20	8/7/20 18:41	BRF
Carbon Disulfide	ND	5.0	$\mu g/L$	1		SW-846 8260C-D	8/7/20	8/7/20 18:41	BRF
Carbon Tetrachloride	ND	1.0	μg/L	1		SW-846 8260C-D	8/7/20	8/7/20 18:41	BRF
Chlorobenzene	ND	1.0	μg/L	1		SW-846 8260C-D	8/7/20	8/7/20 18:41	BRF
Chlorodibromomethane	ND	0.50	μg/L	1		SW-846 8260C-D	8/7/20	8/7/20 18:41	BRF
Chloroethane	ND	2.0	μg/L	1		SW-846 8260C-D	8/7/20	8/7/20 18:41	BRF
Chloroform	ND	2.0	μg/L	1		SW-846 8260C-D	8/7/20	8/7/20 18:41	BRF
Chloromethane	ND	2.0	μg/L	1		SW-846 8260C-D	8/7/20	8/7/20 18:41	BRF
2-Chlorotoluene	ND	1.0	μg/L	1		SW-846 8260C-D	8/7/20	8/7/20 18:41	BRF
4-Chlorotoluene	ND	1.0	μg/L	1		SW-846 8260C-D	8/7/20	8/7/20 18:41	BRF
1,2-Dibromo-3-chloropropane (DBCP)	ND	2.0	μg/L	1	V-05	SW-846 8260C-D	8/7/20	8/7/20 18:41	BRF
1,2-Dibromoethane (EDB)	ND	0.50	μg/L	1		SW-846 8260C-D	8/7/20	8/7/20 18:41	BRF
Dibromomethane	ND	1.0	μg/L	1		SW-846 8260C-D	8/7/20	8/7/20 18:41	BRF
1,2-Dichlorobenzene	ND	1.0	μg/L	1		SW-846 8260C-D	8/7/20	8/7/20 18:41	BRF
1,3-Dichlorobenzene	ND	1.0	μg/L	1		SW-846 8260C-D	8/7/20	8/7/20 18:41	BRF
1,4-Dichlorobenzene	ND	1.0	μg/L	1		SW-846 8260C-D	8/7/20	8/7/20 18:41	BRF
Dichlorodifluoromethane (Freon 12)	ND	2.0	μg/L	1		SW-846 8260C-D	8/7/20	8/7/20 18:41	BRF
1,1-Dichloroethane	ND	1.0	μg/L	1		SW-846 8260C-D	8/7/20	8/7/20 18:41	BRF
1,2-Dichloroethane	ND	1.0	μg/L	1		SW-846 8260C-D	8/7/20	8/7/20 18:41	BRF
1,1-Dichloroethylene	ND	1.0	μg/L	1	L-04, V-05	SW-846 8260C-D	8/7/20	8/7/20 18:41	BRF
cis-1,2-Dichloroethylene	1.1	1.0	μg/L μg/L	1	L-04, V-03	SW-846 8260C-D	8/7/20	8/7/20 18:41	BRF
trans-1,2-Dichloroethylene	ND	1.0		1		SW-846 8260C-D	8/7/20	8/7/20 18:41	BRF
1,2-Dichloropropane		1.0	μg/L			SW-846 8260C-D			BRF
	ND		μg/L	1			8/7/20	8/7/20 18:41	
1,3-Dichloropropane	ND	0.50	μg/L	1		SW-846 8260C-D	8/7/20	8/7/20 18:41	BRF
2,2-Dichloropropane	ND	1.0	μg/L	1		SW-846 8260C-D	8/7/20	8/7/20 18:41	BRF
1,1-Dichloropropene	ND	0.50	μg/L	1		SW-846 8260C-D	8/7/20	8/7/20 18:41	BRF
cis-1,3-Dichloropropene	ND	0.40	μg/L	1		SW-846 8260C-D	8/7/20	8/7/20 18:41	BRF
trans-1,3-Dichloropropene	ND	0.40	μg/L	1		SW-846 8260C-D	8/7/20	8/7/20 18:41	BRF
Diethyl Ether	ND	2.0	μg/L	1	V-05	SW-846 8260C-D	8/7/20	8/7/20 18:41	BRF
Diisopropyl Ether (DIPE)	ND	0.50	$\mu g/L$	1		SW-846 8260C-D	8/7/20	8/7/20 18:41	BRF
1,4-Dioxane	ND	50	$\mu g/L$	1	V-16	SW-846 8260C-D	8/7/20	8/7/20 18:41	BRF
Ethylbenzene	53	1.0	μg/L	1		SW-846 8260C-D	8/7/20	8/7/20 18:41	BRF

Project Location: Brookline, MA Sample Description: Work Order: 20G1646

Date Received: 7/31/2020
Field Sample #: B-103 (OW)

Sampled: 7/30/2020 12:30

Sample ID: 20G1646-01
Sample Matrix: Ground Water

Volatile Organic Compounds by GC/MS

Analyte	Results	RL	Units	Dilution	Flag/Qual	Method	Date Prepared	Date/Time Analyzed	Analyst
Hexachlorobutadiene	ND	0.60	μg/L	1		SW-846 8260C-D	8/7/20	8/7/20 18:41	BRF
2-Hexanone (MBK)	ND	10	μg/L	1		SW-846 8260C-D	8/7/20	8/7/20 18:41	BRF
Isopropylbenzene (Cumene)	17	1.0	μg/L	1		SW-846 8260C-D	8/7/20	8/7/20 18:41	BRF
p-Isopropyltoluene (p-Cymene)	ND	1.0	μg/L	1		SW-846 8260C-D	8/7/20	8/7/20 18:41	BRF
Methyl tert-Butyl Ether (MTBE)	ND	1.0	μg/L	1		SW-846 8260C-D	8/7/20	8/7/20 18:41	BRF
Methylene Chloride	ND	5.0	μg/L	1	V-05	SW-846 8260C-D	8/7/20	8/7/20 18:41	BRF
4-Methyl-2-pentanone (MIBK)	ND	10	μg/L	1		SW-846 8260C-D	8/7/20	8/7/20 18:41	BRF
Naphthalene	43	2.0	μg/L	1		SW-846 8260C-D	8/7/20	8/7/20 18:41	BRF
n-Propylbenzene	47	1.0	μg/L	1		SW-846 8260C-D	8/7/20	8/7/20 18:41	BRF
Styrene	ND	1.0	μg/L	1		SW-846 8260C-D	8/7/20	8/7/20 18:41	BRF
1,1,1,2-Tetrachloroethane	ND	1.0	μg/L	1		SW-846 8260C-D	8/7/20	8/7/20 18:41	BRF
1,1,2,2-Tetrachloroethane	ND	0.50	μg/L	1		SW-846 8260C-D	8/7/20	8/7/20 18:41	BRF
Tetrachloroethylene	ND	1.0	μg/L μg/L	1		SW-846 8260C-D	8/7/20	8/7/20 18:41	BRF
Tetrahydrofuran	ND	2.0	μg/L μg/L	1		SW-846 8260C-D	8/7/20	8/7/20 18:41	BRF
Toluene	1.2	1.0		1		SW-846 8260C-D	8/7/20	8/7/20 18:41	BRF
1,2,3-Trichlorobenzene			μg/L /ī						
1,2,4-Trichlorobenzene	ND	2.0	μg/L	1		SW-846 8260C-D	8/7/20	8/7/20 18:41	BRF
	ND	1.0	μg/L	1		SW-846 8260C-D	8/7/20	8/7/20 18:41	BRF
1,1,1-Trichloroethane	ND	1.0	μg/L	1		SW-846 8260C-D	8/7/20	8/7/20 18:41	BRF
1,1,2-Trichloroethane	ND	1.0	μg/L	1		SW-846 8260C-D	8/7/20	8/7/20 18:41	BRF
Trichloroethylene	ND	1.0	μg/L	1		SW-846 8260C-D	8/7/20	8/7/20 18:41	BRF
Trichlorofluoromethane (Freon 11)	ND	2.0	μg/L	1	V-05	SW-846 8260C-D	8/7/20	8/7/20 18:41	BRF
1,2,3-Trichloropropane	ND	2.0	μg/L	1		SW-846 8260C-D	8/7/20	8/7/20 18:41	BRF
1,2,4-Trimethylbenzene	260	40	$\mu g/L$	40		SW-846 8260C-D	8/10/20	8/10/20 15:19	MFF
1,3,5-Trimethylbenzene	28	1.0	$\mu g/L$	1		SW-846 8260C-D	8/7/20	8/7/20 18:41	BRF
Vinyl Chloride	ND	2.0	$\mu g/L$	1		SW-846 8260C-D	8/7/20	8/7/20 18:41	BRF
m+p Xylene	94	2.0	$\mu g/L$	1		SW-846 8260C-D	8/7/20	8/7/20 18:41	BRF
o-Xylene	31	1.0	$\mu g/L$	1		SW-846 8260C-D	8/7/20	8/7/20 18:41	BRF
Surrogates		% Recovery	Recovery Limits		Flag/Qual				
1,2-Dichloroethane-d4		91.0	70-130					8/7/20 18:41	
1,2-Dichloroethane-d4		110	70-130					8/10/20 15:19	
Toluene-d8		97.8	70-130					8/7/20 18:41	
Toluene-d8		88.9	70-130					8/10/20 15:19	
4-Bromofluorobenzene		93.3	70-130					8/10/20 15:19	
4-Bromofluorobenzene		103	70-130					8/7/20 18:41	

Work Order: 20G1646

Project Location: Brookline, MA Sample Description:

Date Received: 7/31/2020
Field Sample #: B-103 (OW)

Sampled: 7/30/2020 12:30

Sample ID: 20G1646-01
Sample Matrix: Ground Water

Petroleum Hydrocarbons Analyses - VPH

Analyte	Results	RL	Units	Dilution	Flag/Qual	Method	Date Prepared	Date/Time Analyzed	Analyst
Unadjusted C5-C8 Aliphatics	530	200	μg/L	2		MADEP-VPH-Feb 2018 Rev 2.1	8/8/20	8/9/20 1:51	KMB
C5-C8 Aliphatics	530	200	$\mu g/L$	2		MADEP-VPH-Feb 2018 Rev 2.1	8/8/20	8/9/20 1:51	KMB
Unadjusted C9-C12 Aliphatics	2100	200	$\mu g/L$	2		MADEP-VPH-Feb 2018 Rev 2.1	8/8/20	8/9/20 1:51	KMB
C9-C12 Aliphatics	680	200	$\mu g/L$	2		MADEP-VPH-Feb 2018 Rev 2.1	8/8/20	8/9/20 1:51	KMB
C9-C10 Aromatics	1300	200	$\mu g/L$	2		MADEP-VPH-Feb 2018 Rev 2.1	8/8/20	8/9/20 1:51	KMB
Benzene	ND	2.0	$\mu g/L$	2		MADEP-VPH-Feb 2018 Rev 2.1	8/8/20	8/9/20 1:51	KMB
Ethylbenzene	48	2.0	$\mu g/L$	2		MADEP-VPH-Feb 2018 Rev 2.1	8/8/20	8/9/20 1:51	KMB
Methyl tert-Butyl Ether (MTBE)	ND	2.0	$\mu g/L$	2		MADEP-VPH-Feb 2018 Rev 2.1	8/8/20	8/9/20 1:51	KMB
Naphthalene	35	10	$\mu g/L$	2		MADEP-VPH-Feb 2018 Rev 2.1	8/8/20	8/9/20 1:51	KMB
Toluene	ND	2.0	μg/L	2		MADEP-VPH-Feb 2018 Rev 2.1	8/8/20	8/9/20 1:51	KMB
m+p Xylene	85	4.0	μg/L	2		MADEP-VPH-Feb 2018 Rev 2.1	8/8/20	8/9/20 1:51	KMB
o-Xylene	28	2.0	$\mu g/L$	2		MADEP-VPH-Feb 2018 Rev 2.1	8/8/20	8/9/20 1:51	KMB
Surrogates		% Recovery	Recovery Limits	1	Flag/Qual				
2,5-Dibromotoluene (FID)		128	70-130					8/9/20 1:51	
2,5-Dibromotoluene (PID)		129	70-130					8/9/20 1:51	

Project Location: Brookline, MA Sample Description: Work Order: 20G1646

Date Received: 7/31/2020
Field Sample #: B-116 (OW)

Sampled: 7/30/2020 11:30

Sample ID: 20G1646-02
Sample Matrix: Ground Water

Volatile Organic Compounds by GC/MS

Analyte	Results	RL	Units	Dilution	Flag/Qual	Method	Date Prepared	Date/Time Analyzed	Analyst
Acetone	ND	10	μg/L	1	V-05	SW-846 8260C-D	8/7/20	8/7/20 19:07	BRF
tert-Amyl Methyl Ether (TAME)	ND	0.50	$\mu g/L$	1		SW-846 8260C-D	8/7/20	8/7/20 19:07	BRF
Benzene	1.7	1.0	$\mu g/L$	1		SW-846 8260C-D	8/7/20	8/7/20 19:07	BRF
Bromobenzene	ND	1.0	$\mu g/L$	1		SW-846 8260C-D	8/7/20	8/7/20 19:07	BRF
Bromochloromethane	ND	1.0	$\mu g/L$	1		SW-846 8260C-D	8/7/20	8/7/20 19:07	BRF
Bromodichloromethane	ND	1.0	$\mu g/L$	1		SW-846 8260C-D	8/7/20	8/7/20 19:07	BRF
Bromoform	ND	1.0	$\mu g/L$	1		SW-846 8260C-D	8/7/20	8/7/20 19:07	BRF
Bromomethane	ND	2.0	$\mu g/L$	1		SW-846 8260C-D	8/7/20	8/7/20 19:07	BRF
2-Butanone (MEK)	ND	10	$\mu g/L$	1		SW-846 8260C-D	8/7/20	8/7/20 19:07	BRF
n-Butylbenzene	ND	1.0	$\mu g/L$	1		SW-846 8260C-D	8/7/20	8/7/20 19:07	BRF
sec-Butylbenzene	9.0	1.0	$\mu g/L$	1		SW-846 8260C-D	8/7/20	8/7/20 19:07	BRF
tert-Butylbenzene	ND	1.0	$\mu g/L$	1		SW-846 8260C-D	8/7/20	8/7/20 19:07	BRF
tert-Butyl Ethyl Ether (TBEE)	ND	0.50	$\mu g/L$	1		SW-846 8260C-D	8/7/20	8/7/20 19:07	BRF
Carbon Disulfide	ND	5.0	$\mu g/L$	1		SW-846 8260C-D	8/7/20	8/7/20 19:07	BRF
Carbon Tetrachloride	ND	1.0	$\mu g/L$	1		SW-846 8260C-D	8/7/20	8/7/20 19:07	BRF
Chlorobenzene	ND	1.0	$\mu g/L$	1		SW-846 8260C-D	8/7/20	8/7/20 19:07	BRF
Chlorodibromomethane	ND	0.50	$\mu g/L$	1		SW-846 8260C-D	8/7/20	8/7/20 19:07	BRF
Chloroethane	ND	2.0	$\mu g/L$	1		SW-846 8260C-D	8/7/20	8/7/20 19:07	BRF
Chloroform	ND	2.0	$\mu g/L$	1		SW-846 8260C-D	8/7/20	8/7/20 19:07	BRF
Chloromethane	ND	2.0	μg/L	1		SW-846 8260C-D	8/7/20	8/7/20 19:07	BRF
2-Chlorotoluene	ND	1.0	μg/L	1		SW-846 8260C-D	8/7/20	8/7/20 19:07	BRF
4-Chlorotoluene	ND	1.0	μg/L	1		SW-846 8260C-D	8/7/20	8/7/20 19:07	BRF
1,2-Dibromo-3-chloropropane (DBCP)	ND	2.0	μg/L	1	V-05	SW-846 8260C-D	8/7/20	8/7/20 19:07	BRF
1,2-Dibromoethane (EDB)	ND	0.50	μg/L	1		SW-846 8260C-D	8/7/20	8/7/20 19:07	BRF
Dibromomethane	ND	1.0	μg/L	1		SW-846 8260C-D	8/7/20	8/7/20 19:07	BRF
1,2-Dichlorobenzene	ND	1.0	$\mu g/L$	1		SW-846 8260C-D	8/7/20	8/7/20 19:07	BRF
1,3-Dichlorobenzene	ND	1.0	μg/L	1		SW-846 8260C-D	8/7/20	8/7/20 19:07	BRF
1,4-Dichlorobenzene	ND	1.0	μg/L	1		SW-846 8260C-D	8/7/20	8/7/20 19:07	BRF
Dichlorodifluoromethane (Freon 12)	ND	2.0	μg/L	1		SW-846 8260C-D	8/7/20	8/7/20 19:07	BRF
1,1-Dichloroethane	ND	1.0	μg/L	1		SW-846 8260C-D	8/7/20	8/7/20 19:07	BRF
1,2-Dichloroethane	ND	1.0	μg/L	1		SW-846 8260C-D	8/7/20	8/7/20 19:07	BRF
1,1-Dichloroethylene	ND	1.0	μg/L	1	L-04, V-05	SW-846 8260C-D	8/7/20	8/7/20 19:07	BRF
cis-1,2-Dichloroethylene	ND	1.0	$\mu g/L$	1		SW-846 8260C-D	8/7/20	8/7/20 19:07	BRF
trans-1,2-Dichloroethylene	ND	1.0	μg/L	1		SW-846 8260C-D	8/7/20	8/7/20 19:07	BRF
1,2-Dichloropropane	ND	1.0	μg/L	1		SW-846 8260C-D	8/7/20	8/7/20 19:07	BRF
1,3-Dichloropropane	ND	0.50	μg/L	1		SW-846 8260C-D	8/7/20	8/7/20 19:07	BRF
2,2-Dichloropropane	ND	1.0	μg/L	1		SW-846 8260C-D	8/7/20	8/7/20 19:07	BRF
1,1-Dichloropropene	ND	0.50	μg/L	1		SW-846 8260C-D	8/7/20	8/7/20 19:07	BRF
cis-1,3-Dichloropropene	ND	0.40	μg/L	1		SW-846 8260C-D	8/7/20	8/7/20 19:07	BRF
trans-1,3-Dichloropropene	ND	0.40	μg/L	1		SW-846 8260C-D	8/7/20	8/7/20 19:07	BRF
Diethyl Ether	ND	2.0	μg/L	1	V-05	SW-846 8260C-D	8/7/20	8/7/20 19:07	BRF
Diisopropyl Ether (DIPE)	ND	0.50	μg/L	1		SW-846 8260C-D	8/7/20	8/7/20 19:07	BRF
1,4-Dioxane	ND	50	μg/L	1	V-16	SW-846 8260C-D	8/7/20	8/7/20 19:07	BRF
Ethylbenzene	34	1.0	μg/L	1		SW-846 8260C-D	8/7/20	8/7/20 19:07	BRF

Sample Description: Work Order: 20G1646

Project Location: Brookline, MA
Date Received: 7/31/2020
Field Sample #: B-116 (OW)

Sampled: 7/30/2020 11:30

102

70-130

8/7/20 19:07

Sample ID: 20G1646-02
Sample Matrix: Ground Water

4-Bromofluorobenzene

Volatile Organic Compounds by GC/MS

Analyte	Results	RL	Units	Dilution	Flag/Qual	Method	Date Prepared	Date/Time Analyzed	Analyst
Hexachlorobutadiene	ND	0.60	μg/L	1	riag/Quai	SW-846 8260C-D	8/7/20	8/7/20 19:07	BRF
2-Hexanone (MBK)	ND	10	μg/L μg/L	1		SW-846 8260C-D	8/7/20	8/7/20 19:07	BRF
Isopropylbenzene (Cumene)	20	1.0	μg/L μg/L	1		SW-846 8260C-D	8/7/20	8/7/20 19:07	BRF
p-Isopropyltoluene (p-Cymene)	ND	1.0	μg/L μg/L	1		SW-846 8260C-D	8/7/20	8/7/20 19:07	BRF
Methyl tert-Butyl Ether (MTBE)	ND	1.0	μg/L	1		SW-846 8260C-D	8/7/20	8/7/20 19:07	BRF
Methylene Chloride	ND	5.0	μg/L	1	V-05	SW-846 8260C-D	8/7/20	8/7/20 19:07	BRF
4-Methyl-2-pentanone (MIBK)	ND	10	μg/L	1		SW-846 8260C-D	8/7/20	8/7/20 19:07	BRF
Naphthalene	6.6	2.0	μg/L	1		SW-846 8260C-D	8/7/20	8/7/20 19:07	BRF
n-Propylbenzene	54	1.0	μg/L	1		SW-846 8260C-D	8/7/20	8/7/20 19:07	BRF
Styrene	ND	1.0	μg/L	1		SW-846 8260C-D	8/7/20	8/7/20 19:07	BRF
1,1,1,2-Tetrachloroethane	ND	1.0	μg/L	1		SW-846 8260C-D	8/7/20	8/7/20 19:07	BRF
1,1,2,2-Tetrachloroethane	ND	0.50	μg/L	1		SW-846 8260C-D	8/7/20	8/7/20 19:07	BRF
Tetrachloroethylene	ND	1.0	μg/L	1		SW-846 8260C-D	8/7/20	8/7/20 19:07	BRF
Tetrahydrofuran	ND	2.0	μg/L	1		SW-846 8260C-D	8/7/20	8/7/20 19:07	BRF
Toluene	ND	1.0	μg/L	1		SW-846 8260C-D	8/7/20	8/7/20 19:07	BRF
1,2,3-Trichlorobenzene	ND	2.0	μg/L	1		SW-846 8260C-D	8/7/20	8/7/20 19:07	BRF
1,2,4-Trichlorobenzene	ND	1.0	μg/L	1		SW-846 8260C-D	8/7/20	8/7/20 19:07	BRF
1,1,1-Trichloroethane	ND	1.0	μg/L	1		SW-846 8260C-D	8/7/20	8/7/20 19:07	BRF
1,1,2-Trichloroethane	ND	1.0	μg/L	1		SW-846 8260C-D	8/7/20	8/7/20 19:07	BRF
Trichloroethylene	ND	1.0	μg/L	1		SW-846 8260C-D	8/7/20	8/7/20 19:07	BRF
Trichlorofluoromethane (Freon 11)	ND	2.0	μg/L	1	V-05	SW-846 8260C-D	8/7/20	8/7/20 19:07	BRF
1,2,3-Trichloropropane	ND	2.0	μg/L	1		SW-846 8260C-D	8/7/20	8/7/20 19:07	BRF
1,2,4-Trimethylbenzene	46	1.0	μg/L	1		SW-846 8260C-D	8/7/20	8/7/20 19:07	BRF
1,3,5-Trimethylbenzene	2.3	1.0	μg/L	1		SW-846 8260C-D	8/7/20	8/7/20 19:07	BRF
Vinyl Chloride	ND	2.0	μg/L	1		SW-846 8260C-D	8/7/20	8/7/20 19:07	BRF
m+p Xylene	3.3	2.0	μg/L	1		SW-846 8260C-D	8/7/20	8/7/20 19:07	BRF
o-Xylene	ND	1.0	μg/L	1		SW-846 8260C-D	8/7/20	8/7/20 19:07	BRF
Surrogates		% Recovery	Recovery Limits	i	Flag/Qual				
1,2-Dichloroethane-d4		88.2	70-130		_			8/7/20 19:07	
Toluene-d8		98.1	70-130					8/7/20 19:07	

Work Order: 20G1646

Project Location: Brookline, MA Sample Description:

Date Received: 7/31/2020 Field Sample #: B-116 (OW)

Sampled: 7/30/2020 11:30

Sample ID: 20G1646-02
Sample Matrix: Ground Water

Petroleum Hydrocarbons Analyses - VPH

Analyte	Results	RL	Units	Dilution	Flag/Qual	Method	Date Prepared	Date/Time Analyzed	Analyst
Unadjusted C5-C8 Aliphatics	1100	100	μg/L	1	0 -	MADEP-VPH-Feb 2018 Rev 2.1	8/8/20	8/9/20 0:53	KMB
C5-C8 Aliphatics	1100	100	$\mu g/L$	1		MADEP-VPH-Feb 2018 Rev 2.1	8/8/20	8/9/20 0:53	KMB
Unadjusted C9-C12 Aliphatics	750	100	$\mu g/L$	1		MADEP-VPH-Feb 2018 Rev 2.1	8/8/20	8/9/20 0:53	KMB
C9-C12 Aliphatics	270	100	$\mu g/L$	1		MADEP-VPH-Feb 2018 Rev 2.1	8/8/20	8/9/20 0:53	KMB
C9-C10 Aromatics	440	100	$\mu g/L$	1		MADEP-VPH-Feb 2018 Rev 2.1	8/8/20	8/9/20 0:53	KMB
Benzene	2.1	1.0	$\mu g/L$	1		MADEP-VPH-Feb 2018 Rev 2.1	8/8/20	8/9/20 0:53	KMB
Ethylbenzene	30	1.0	$\mu g/L$	1		MADEP-VPH-Feb 2018 Rev 2.1	8/8/20	8/9/20 0:53	KMB
Methyl tert-Butyl Ether (MTBE)	7.1	1.0	$\mu g/L$	1		MADEP-VPH-Feb 2018 Rev 2.1	8/8/20	8/9/20 0:53	KMB
Naphthalene	6.0	5.0	$\mu g/L$	1		MADEP-VPH-Feb 2018 Rev 2.1	8/8/20	8/9/20 0:53	KMB
Toluene	ND	1.0	$\mu g/L$	1		MADEP-VPH-Feb 2018 Rev 2.1	8/8/20	8/9/20 0:53	KMB
m+p Xylene	3.4	2.0	$\mu g/L$	1		MADEP-VPH-Feb 2018 Rev 2.1	8/8/20	8/9/20 0:53	KMB
o-Xylene	ND	1.0	$\mu g/L$	1		MADEP-VPH-Feb 2018 Rev 2.1	8/8/20	8/9/20 0:53	KMB
Surrogates		% Recovery	Recovery Limits		Flag/Qual				
2,5-Dibromotoluene (FID)		126	70-130					8/9/20 0:53	
2,5-Dibromotoluene (PID)		129	70-130					8/9/20 0:53	

Sample Description: Work Order: 20G1646

Project Location: Brookline, MA
Date Received: 7/31/2020
Field Sample #: B-310 (OW)

Sampled: 7/30/2020 14:00

Sample ID: 20G1646-03
Sample Matrix: Ground Water

Volatile Organic Compounds by GC/MS

Analyte	Results	RL	Units	Dilution	Flag/Qual	Method	Date Prepared	Date/Time Analyzed	Analyst
Acetone	ND	10	μg/L	1	V-05	SW-846 8260C-D	8/7/20	8/7/20 19:33	BRF
tert-Amyl Methyl Ether (TAME)	ND	0.50	μg/L	1		SW-846 8260C-D	8/7/20	8/7/20 19:33	BRF
Benzene	ND	1.0	μg/L	1		SW-846 8260C-D	8/7/20	8/7/20 19:33	BRF
Bromobenzene	ND	1.0	$\mu g/L$	1		SW-846 8260C-D	8/7/20	8/7/20 19:33	BRF
Bromochloromethane	ND	1.0	$\mu g/L$	1		SW-846 8260C-D	8/7/20	8/7/20 19:33	BRF
Bromodichloromethane	ND	1.0	$\mu g/L$	1		SW-846 8260C-D	8/7/20	8/7/20 19:33	BRF
Bromoform	ND	1.0	$\mu g/L$	1		SW-846 8260C-D	8/7/20	8/7/20 19:33	BRF
Bromomethane	ND	2.0	$\mu g/L$	1		SW-846 8260C-D	8/7/20	8/7/20 19:33	BRF
2-Butanone (MEK)	ND	10	$\mu g/L$	1		SW-846 8260C-D	8/7/20	8/7/20 19:33	BRF
n-Butylbenzene	ND	1.0	$\mu g/L$	1		SW-846 8260C-D	8/7/20	8/7/20 19:33	BRF
sec-Butylbenzene	ND	1.0	$\mu g/L$	1		SW-846 8260C-D	8/7/20	8/7/20 19:33	BRF
tert-Butylbenzene	ND	1.0	$\mu g/L$	1		SW-846 8260C-D	8/7/20	8/7/20 19:33	BRF
tert-Butyl Ethyl Ether (TBEE)	ND	0.50	$\mu g/L$	1		SW-846 8260C-D	8/7/20	8/7/20 19:33	BRF
Carbon Disulfide	ND	5.0	$\mu g/L$	1		SW-846 8260C-D	8/7/20	8/7/20 19:33	BRF
Carbon Tetrachloride	ND	1.0	$\mu g/L$	1		SW-846 8260C-D	8/7/20	8/7/20 19:33	BRF
Chlorobenzene	ND	1.0	$\mu g/L$	1		SW-846 8260C-D	8/7/20	8/7/20 19:33	BRF
Chlorodibromomethane	ND	0.50	μg/L	1		SW-846 8260C-D	8/7/20	8/7/20 19:33	BRF
Chloroethane	ND	2.0	μg/L	1		SW-846 8260C-D	8/7/20	8/7/20 19:33	BRF
Chloroform	ND	2.0	μg/L	1		SW-846 8260C-D	8/7/20	8/7/20 19:33	BRF
Chloromethane	ND	2.0	μg/L	1		SW-846 8260C-D	8/7/20	8/7/20 19:33	BRF
2-Chlorotoluene	ND	1.0	μg/L	1		SW-846 8260C-D	8/7/20	8/7/20 19:33	BRF
4-Chlorotoluene	ND	1.0	μg/L	1		SW-846 8260C-D	8/7/20	8/7/20 19:33	BRF
1,2-Dibromo-3-chloropropane (DBCP)	ND	2.0	μg/L	1	V-05	SW-846 8260C-D	8/7/20	8/7/20 19:33	BRF
1,2-Dibromoethane (EDB)	ND	0.50	μg/L	1		SW-846 8260C-D	8/7/20	8/7/20 19:33	BRF
Dibromomethane	ND	1.0	μg/L	1		SW-846 8260C-D	8/7/20	8/7/20 19:33	BRF
1,2-Dichlorobenzene	ND	1.0	$\mu g/L$	1		SW-846 8260C-D	8/7/20	8/7/20 19:33	BRF
1,3-Dichlorobenzene	ND	1.0	$\mu g/L$	1		SW-846 8260C-D	8/7/20	8/7/20 19:33	BRF
1,4-Dichlorobenzene	ND	1.0	$\mu g/L$	1		SW-846 8260C-D	8/7/20	8/7/20 19:33	BRF
Dichlorodifluoromethane (Freon 12)	ND	2.0	μg/L	1		SW-846 8260C-D	8/7/20	8/7/20 19:33	BRF
1,1-Dichloroethane	ND	1.0	μg/L	1		SW-846 8260C-D	8/7/20	8/7/20 19:33	BRF
1,2-Dichloroethane	ND	1.0	μg/L	1		SW-846 8260C-D	8/7/20	8/7/20 19:33	BRF
1,1-Dichloroethylene	ND	1.0	μg/L	1	L-04, V-05	SW-846 8260C-D	8/7/20	8/7/20 19:33	BRF
cis-1,2-Dichloroethylene	ND	1.0	$\mu g/L$	1		SW-846 8260C-D	8/7/20	8/7/20 19:33	BRF
trans-1,2-Dichloroethylene	ND	1.0	$\mu g/L$	1		SW-846 8260C-D	8/7/20	8/7/20 19:33	BRF
1,2-Dichloropropane	ND	1.0	$\mu g/L$	1		SW-846 8260C-D	8/7/20	8/7/20 19:33	BRF
1,3-Dichloropropane	ND	0.50	μg/L	1		SW-846 8260C-D	8/7/20	8/7/20 19:33	BRF
2,2-Dichloropropane	ND	1.0	$\mu g/L$	1		SW-846 8260C-D	8/7/20	8/7/20 19:33	BRF
1,1-Dichloropropene	ND	0.50	μg/L	1		SW-846 8260C-D	8/7/20	8/7/20 19:33	BRF
cis-1,3-Dichloropropene	ND	0.40	μg/L	1		SW-846 8260C-D	8/7/20	8/7/20 19:33	BRF
trans-1,3-Dichloropropene	ND	0.40	μg/L	1		SW-846 8260C-D	8/7/20	8/7/20 19:33	BRF
Diethyl Ether	ND	2.0	μg/L	1	V-05	SW-846 8260C-D	8/7/20	8/7/20 19:33	BRF
Diisopropyl Ether (DIPE)	ND	0.50	μg/L	1		SW-846 8260C-D	8/7/20	8/7/20 19:33	BRF
1,4-Dioxane	ND	50	μg/L	1	V-16	SW-846 8260C-D	8/7/20	8/7/20 19:33	BRF
Ethylbenzene	ND	1.0	μg/L	1		SW-846 8260C-D	8/7/20	8/7/20 19:33	BRF

Project Location: Brookline, MA Sample Description: Work Order: 20G1646

Date Received: 7/31/2020

Field Sample #: B-310 (OW)

Sampled: 7/30/2020 14:00

Sample ID: 20G1646-03
Sample Matrix: Ground Water

Volatile Organic Compounds by GC/MS

			mine organic comp	pourus by G	. 0,1,120				
Analyte	Results	RL	Units	Dilution	Flag/Qual	Method	Date Prepared	Date/Time Analyzed	Analyst
Hexachlorobutadiene	ND	0.60	μg/L	1		SW-846 8260C-D	8/7/20	8/7/20 19:33	BRF
2-Hexanone (MBK)	ND	10	$\mu g/L$	1		SW-846 8260C-D	8/7/20	8/7/20 19:33	BRF
Isopropylbenzene (Cumene)	ND	1.0	μg/L	1		SW-846 8260C-D	8/7/20	8/7/20 19:33	BRF
p-Isopropyltoluene (p-Cymene)	ND	1.0	μg/L	1		SW-846 8260C-D	8/7/20	8/7/20 19:33	BRF
Methyl tert-Butyl Ether (MTBE)	ND	1.0	μg/L	1		SW-846 8260C-D	8/7/20	8/7/20 19:33	BRF
Methylene Chloride	ND	5.0	μg/L	1	V-05	SW-846 8260C-D	8/7/20	8/7/20 19:33	BRF
4-Methyl-2-pentanone (MIBK)	ND	10	μg/L	1		SW-846 8260C-D	8/7/20	8/7/20 19:33	BRF
Naphthalene	ND	2.0	μg/L	1		SW-846 8260C-D	8/7/20	8/7/20 19:33	BRF
n-Propylbenzene	ND	1.0	μg/L	1		SW-846 8260C-D	8/7/20	8/7/20 19:33	BRF
Styrene	ND	1.0	μg/L	1		SW-846 8260C-D	8/7/20	8/7/20 19:33	BRF
1,1,1,2-Tetrachloroethane	ND	1.0	μg/L	1		SW-846 8260C-D	8/7/20	8/7/20 19:33	BRF
1,1,2,2-Tetrachloroethane	ND	0.50	μg/L	1		SW-846 8260C-D	8/7/20	8/7/20 19:33	BRF
Tetrachloroethylene	ND	1.0	μg/L	1		SW-846 8260C-D	8/7/20	8/7/20 19:33	BRF
Tetrahydrofuran	ND	2.0	μg/L	1		SW-846 8260C-D	8/7/20	8/7/20 19:33	BRF
Toluene	ND	1.0	μg/L	1		SW-846 8260C-D	8/7/20	8/7/20 19:33	BRF
1,2,3-Trichlorobenzene	ND	2.0	μg/L	1		SW-846 8260C-D	8/7/20	8/7/20 19:33	BRF
1,2,4-Trichlorobenzene	ND	1.0	μg/L	1		SW-846 8260C-D	8/7/20	8/7/20 19:33	BRF
1,1,1-Trichloroethane	ND	1.0	μg/L	1		SW-846 8260C-D	8/7/20	8/7/20 19:33	BRF
1,1,2-Trichloroethane	ND	1.0	μg/L	1		SW-846 8260C-D	8/7/20	8/7/20 19:33	BRF
Trichloroethylene	ND	1.0	μg/L	1		SW-846 8260C-D	8/7/20	8/7/20 19:33	BRF
Trichlorofluoromethane (Freon 11)	ND	2.0	μg/L	1	V-05	SW-846 8260C-D	8/7/20	8/7/20 19:33	BRF
1,2,3-Trichloropropane	ND	2.0	μg/L	1		SW-846 8260C-D	8/7/20	8/7/20 19:33	BRF
1,2,4-Trimethylbenzene	ND	1.0	μg/L	1		SW-846 8260C-D	8/7/20	8/7/20 19:33	BRF
1,3,5-Trimethylbenzene	ND	1.0	$\mu g/L$	1		SW-846 8260C-D	8/7/20	8/7/20 19:33	BRF
Vinyl Chloride	ND	2.0	μg/L	1		SW-846 8260C-D	8/7/20	8/7/20 19:33	BRF
m+p Xylene	ND	2.0	$\mu g/L$	1		SW-846 8260C-D	8/7/20	8/7/20 19:33	BRF
o-Xylene	ND	1.0	$\mu g/L$	1		SW-846 8260C-D	8/7/20	8/7/20 19:33	BRF
Surrogates		% Recovery	Recovery Limits	1	Flag/Qual				
1,2-Dichloroethane-d4		89.2	70-130					8/7/20 19:33	
Toluene-d8		97.7	70-130					8/7/20 19:33	
4-Bromofluorobenzene		101	70-130					8/7/20 19:33	

Project Location: Brookline, MA

Sample Description:

Work Order: 20G1646

Date Received: 7/31/2020 Field Sample #: B-310 (OW)

Sampled: 7/30/2020 14:00

Sample ID: 20G1646-03
Sample Matrix: Ground Water

Petroleum Hydrocarbons Analyses - VPH

Analyte	Results	RL	Units	Dilution	Flag/Qual	Method	Date Prepared	Date/Time Analyzed	Analyst
Unadjusted C5-C8 Aliphatics	ND	100	μg/L	1		MADEP-VPH-Feb 2018 Rev 2.1	8/7/20	8/7/20 15:54	KMB
C5-C8 Aliphatics	ND	100	$\mu g/L$	1		MADEP-VPH-Feb 2018 Rev 2.1	8/7/20	8/7/20 15:54	KMB
Unadjusted C9-C12 Aliphatics	ND	100	$\mu g/L$	1		MADEP-VPH-Feb 2018 Rev 2.1	8/7/20	8/7/20 15:54	KMB
C9-C12 Aliphatics	ND	100	μg/L	1		MADEP-VPH-Feb 2018 Rev 2.1	8/7/20	8/7/20 15:54	KMB
C9-C10 Aromatics	ND	100	$\mu g/L$	1		MADEP-VPH-Feb 2018 Rev 2.1	8/7/20	8/7/20 15:54	KMB
Benzene	ND	1.0	$\mu g/L$	1		MADEP-VPH-Feb 2018 Rev 2.1	8/7/20	8/7/20 15:54	KMB
Ethylbenzene	ND	1.0	$\mu g/L$	1		MADEP-VPH-Feb 2018 Rev 2.1	8/7/20	8/7/20 15:54	KMB
Methyl tert-Butyl Ether (MTBE)	ND	1.0	$\mu g/L$	1		MADEP-VPH-Feb 2018 Rev 2.1	8/7/20	8/7/20 15:54	KMB
Naphthalene	ND	5.0	$\mu g/L$	1		MADEP-VPH-Feb 2018 Rev 2.1	8/7/20	8/7/20 15:54	KMB
Toluene	ND	1.0	$\mu g/L$	1		MADEP-VPH-Feb 2018 Rev 2.1	8/7/20	8/7/20 15:54	KMB
m+p Xylene	ND	2.0	$\mu g/L$	1		MADEP-VPH-Feb 2018 Rev 2.1	8/7/20	8/7/20 15:54	KMB
o-Xylene	ND	1.0	μg/L	1		MADEP-VPH-Feb 2018 Rev 2.1	8/7/20	8/7/20 15:54	KMB
Surrogates		% Recovery	Recovery Limits		Flag/Qual				
2,5-Dibromotoluene (FID)		110	70-130					8/7/20 15:54	
2,5-Dibromotoluene (PID)		105	70-130					8/7/20 15:54	

Sample Extraction Data

Prep Method: MA VPH Analytical Method: MADEP-VPH-Feb 2018 Rev 2.1

Lab Number [Field ID]	Batch	Initial [mL]	Final [mL]	Date
20G1646-03 [B-310 (OW)]	B263767	5	5.00	08/07/20

Prep Method: MA VPH Analytical Method: MADEP-VPH-Feb 2018 Rev 2.1

Lab Number [Field ID]	Batch	Initial [mL]	Final [mL]	Date
20G1646-01 [B-103 (OW)]	B263845	2.5	5.00	08/08/20
20G1646-02 [B-116 (OW)]	B263845	5	5.00	08/08/20

Prep Method: SW-846 5030B Analytical Method: SW-846 8260C-D

Lab Number [Field ID]	Batch	Initial [mL]	Final [mL]	Date
20G1646-01 [B-103 (OW)]	B263756	5	5.00	08/07/20
20G1646-02 [B-116 (OW)]	B263756	5	5.00	08/07/20
20G1646-03 [B-310 (OW)]	B263756	5	5.00	08/07/20

Prep Method: SW-846 5030B Analytical Method: SW-846 8260C-D

Lab Number [Field ID]	Batch	Initial [mL]	Final [mL]	Date
20G1646-01RE1 [B-103 (OW)]	B263978	0.125	5.00	08/10/20

Naphthalene

39 Spruce Street * East Longmeadow, MA 01028 * FAX 413/525-6405 * TEL. 413/525-2332

QUALITY CONTROL

Volatile Organic Compounds by GC/MS - Quality Control

		Reporting		Spike	Source		%REC		RPD	
Analyte	Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Notes
Batch B263756 - SW-846 5030B										
Blank (B263756-BLK1)				Prepared &	Analyzed: 08	/07/20				
Acetone	ND	10	μg/L							V-05
tert-Amyl Methyl Ether (TAME)	ND	0.50	$\mu \text{g/L}$							
Benzene	ND	1.0	$\mu \text{g/L}$							
Bromobenzene	ND	1.0	$\mu \text{g/L}$							
Bromochloromethane	ND	1.0	$\mu g/L$							
Bromodichloromethane	ND	1.0	$\mu g/L$							
Bromoform	ND	1.0	$\mu \text{g/L}$							
Bromomethane	ND	2.0	$\mu \text{g/L}$							
2-Butanone (MEK)	ND	10	$\mu g/L$							
n-Butylbenzene	ND	1.0	$\mu \text{g/L}$							
sec-Butylbenzene	ND	1.0	$\mu \text{g/L}$							
tert-Butylbenzene	ND	1.0	$\mu \text{g/L}$							
tert-Butyl Ethyl Ether (TBEE)	ND	0.50	$\mu \text{g/L}$							
Carbon Disulfide	ND	5.0	$\mu g/L$							
Carbon Tetrachloride	ND	1.0	$\mu \text{g/L}$							
Chlorobenzene	ND	1.0	$\mu \text{g/L}$							
Chlorodibromomethane	ND	0.50	$\mu \text{g/L}$							
Chloroethane	ND	2.0	μg/L							
Chloroform	ND	2.0	μg/L							
Chloromethane	ND	2.0	μg/L							
2-Chlorotoluene	ND	1.0	$\mu g/L$							
4-Chlorotoluene	ND	1.0	μg/L							
1,2-Dibromo-3-chloropropane (DBCP)	ND	2.0	μg/L							V-05
1,2-Dibromoethane (EDB)	ND	0.50	μg/L							
Dibromomethane	ND	1.0	μg/L							
1,2-Dichlorobenzene	ND	1.0	μg/L							
1,3-Dichlorobenzene	ND	1.0	μg/L							
1,4-Dichlorobenzene	ND	1.0	μg/L							
Dichlorodifluoromethane (Freon 12)	ND	2.0	μg/L							
1,1-Dichloroethane	ND	1.0	μg/L							
1,2-Dichloroethane	ND	1.0	μg/L							
1,1-Dichloroethylene	ND	1.0	μg/L							L-04, V-05
cis-1,2-Dichloroethylene	ND	1.0	μg/L							,
trans-1,2-Dichloroethylene	ND	1.0	μg/L							
1,2-Dichloropropane	ND	1.0	μg/L							
1,3-Dichloropropane	ND	0.50	μg/L							
2,2-Dichloropropane	ND	1.0	μg/L							
1,1-Dichloropropene	ND	0.50	μg/L							
cis-1,3-Dichloropropene	ND	0.40	μg/L							
trans-1,3-Dichloropropene	ND	0.40	μg/L							
Diethyl Ether	ND	2.0	μg/L							V-05
Diisopropyl Ether (DIPE)	ND	0.50	μg/L							• 05
1,4-Dioxane		50	μg/L							V-16
Ethylbenzene	ND ND	1.0	μg/L μg/L							4-10
Hexachlorobutadiene	ND ND	0.60	μg/L μg/L							
2-Hexanone (MBK)		10	μg/L μg/L							
Isopropylbenzene (Cumene)	ND	1.0	μg/L μg/L							
p-Isopropyltoluene (p-Cymene)	ND	1.0								
Methyl tert-Butyl Ether (MTBE)	ND		μg/L μg/I							
	ND	1.0	μg/L							1105
Methylene Chloride	ND	5.0	μg/L							V-05
4-Methyl-2-pentanone (MIBK)	ND	10	μg/L							

ND

2.0

 $\mu g \! / \! L$

QUALITY CONTROL

Source

Spike

%REC

RPD

Volatile Organic Compounds by GC/MS - Quality Control

Reporting

Analyte	Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Notes
Batch B263756 - SW-846 5030B										
Blank (B263756-BLK1)				Prepared &	Analyzed: 08	/07/20				
n-Propylbenzene	ND	1.0	$\mu \text{g/L}$							
Styrene	ND	1.0	$\mu g/L$							
1,1,1,2-Tetrachloroethane	ND	1.0	$\mu g/L$							
1,1,2,2-Tetrachloroethane	ND	0.50	$\mu g/L$							
Tetrachloroethylene	ND	1.0	$\mu g/L$							
Tetrahydrofuran	ND	2.0	$\mu g/L$							
Toluene	ND	1.0	$\mu g/L$							
1,2,3-Trichlorobenzene	ND	2.0	$\mu g/L$							
1,2,4-Trichlorobenzene	ND	1.0	$\mu g/L$							
1,1,1-Trichloroethane	ND	1.0	$\mu g/L$							
1,1,2-Trichloroethane	ND	1.0	$\mu g/L$							
Trichloroethylene	ND	1.0	$\mu g/L$							
Trichlorofluoromethane (Freon 11)	ND	2.0	$\mu g/L$							V-05
1,2,3-Trichloropropane	ND	2.0	$\mu \text{g/L}$							
1,2,4-Trimethylbenzene	ND	1.0	$\mu \text{g/L}$							
1,3,5-Trimethylbenzene	ND	1.0	$\mu \text{g/L}$							
Vinyl Chloride	ND	2.0	$\mu g/L$							
m+p Xylene	ND	2.0	$\mu g/L$							
o-Xylene	ND	1.0	$\mu g/L$							
Surrogate: 1,2-Dichloroethane-d4	22.2		μg/L	25.0		88.8	70-130			
Surrogate: Toluene-d8	24.7		μg/L	25.0		98.9	70-130			
Surrogate: 4-Bromofluorobenzene	24.9		μg/L	25.0		99.5	70-130			
LCS (B263756-BS1)				Prepared &	Analyzed: 08	/07/20				
Acetone	61.2	10	μg/L	100		61.2	40-160			L-14, V-05
tert-Amyl Methyl Ether (TAME)	8.79	0.50	μg/L	10.0		87.9	70-130			•
Benzene	9.36	1.0	μg/L	10.0		93.6	70-130			
Bromobenzene	9.68	1.0	μg/L	10.0		96.8	70-130			
Bromochloromethane	8.91	1.0	μg/L	10.0		89.1	70-130			
Bromodichloromethane	9.54	1.0	μg/L	10.0		95.4	70-130			
Bromoform	10.4	1.0	μg/L	10.0		104	70-130			
Bromomethane	8.65	2.0	μg/L	10.0		86.5	40-160			
2-Butanone (MEK)	80.1	10	μg/L	100		80.1	40-160			
n-Butylbenzene	9.61	1.0	μg/L	10.0		96.1	70-130			
sec-Butylbenzene	9.97	1.0	μg/L	10.0		99.7	70-130			
tert-Butylbenzene	10.0	1.0	$\mu g/L$	10.0		100	70-130			
tert-Butyl Ethyl Ether (TBEE)	8.52	0.50	μg/L	10.0		85.2	70-130			
Carbon Disulfide	79.9	5.0	μg/L	100		79.9	70-130			
Carbon Tetrachloride	8.98	1.0	μg/L	10.0		89.8	70-130			
Chlorobenzene	11.0	1.0	μg/L	10.0		110	70-130			
Chlorodibromomethane	9.91	0.50	μg/L	10.0		99.1	70-130			
Chloroethane	7.18	2.0	μg/L	10.0		71.8	70-130			
Chloroform	9.18	2.0	$\mu g/L$	10.0		91.8	70-130			
Chloromethane	9.56	2.0	$\mu g/L$	10.0		95.6	40-160			
2-Chlorotoluene	10.2	1.0	$\mu g/L$	10.0		102	70-130			
4-Chlorotoluene	10.2	1.0	$\mu g/L$	10.0		102	70-130			
1,2-Dibromo-3-chloropropane (DBCP)	8.76	2.0	μg/L	10.0		87.6	70-130			V-05
1,2-Dibromoethane (EDB)	9.73	0.50	μg/L	10.0		97.3	70-130			
Dibromomethane	9.71	1.0	μg/L	10.0		97.1	70-130			
1,2-Dichlorobenzene	10.4	1.0	μg/L	10.0		104	70-130			
1,3-Dichlorobenzene	10.3	1.0	μg/L	10.0		103	70-130			
	10.5		r.o				70 150			

QUALITY CONTROL

Volatile Organic Compounds by GC/MS - Quality Control

Analyte	Result	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Notes	
Batch B263756 - SW-846 5030B											
LCS (B263756-BS1)				Prepared &	Analyzed: 08	/07/20					
Dichlorodifluoromethane (Freon 12)	7.99	2.0	μg/L	10.0		79.9	40-160				
1,1-Dichloroethane	8.83	1.0	μg/L	10.0		88.3	70-130				
1,2-Dichloroethane	9.19	1.0	μg/L	10.0		91.9	70-130				
1,1-Dichloroethylene	6.44	1.0	μg/L	10.0		64.4 *	70-130			L-04, V-05	
cis-1,2-Dichloroethylene	8.88	1.0	μg/L	10.0		88.8	70-130				
trans-1,2-Dichloroethylene	7.36	1.0	μg/L	10.0		73.6	70-130				
1,2-Dichloropropane	9.32	1.0	μg/L	10.0		93.2	70-130				
1,3-Dichloropropane	9.64	0.50	μg/L	10.0		96.4	70-130				
2,2-Dichloropropane	7.84	1.0	μg/L	10.0		78.4	70-130				
1,1-Dichloropropene	9.19	0.50	μg/L	10.0		91.9	70-130				
cis-1,3-Dichloropropene	9.55	0.40	μg/L	10.0		95.5	70-130				
trans-1,3-Dichloropropene	8.75	0.40	μg/L	10.0		87.5	70-130				
Diethyl Ether	7.14	2.0	μg/L	10.0		71.4	70-130			V-05	
Diisopropyl Ether (DIPE)	8.25	0.50	μg/L	10.0		82.5	70-130				
1,4-Dioxane	82.6	50	μg/L	100		82.6	40-160			V-16	
Ethylbenzene	10.6	1.0	μg/L	10.0		106	70-130				
Hexachlorobutadiene	11.4	0.60	μg/L	10.0		114	70-130				
2-Hexanone (MBK)	82.3	10	μg/L	100		82.3	40-160				
(Sopropylbenzene (Cumene)	10.8	1.0	μg/L	10.0		108	70-130				
p-Isopropyltoluene (p-Cymene)	10.1	1.0	μg/L	10.0		101	70-130				
Methyl tert-Butyl Ether (MTBE)	7.57	1.0	μg/L	10.0		75.7	70-130				
Methylene Chloride	7.00	5.0	μg/L μg/L	10.0		70.0	70-130			V-05	
4-Methyl-2-pentanone (MIBK)	83.4	10	μg/L	100		83.4	40-160			• 05	
Naphthalene	8.89	2.0	μg/L	10.0		88.9	70-130				
n-Propylbenzene	10.4	1.0	μg/L	10.0		104	70-130				
Styrene	10.7	1.0	μg/L	10.0		107	70-130				
1,1,1,2-Tetrachloroethane	10.7	1.0	μg/L μg/L	10.0		107	70-130				
1,1,2,2-Tetrachloroethane	10.7	0.50	μg/L μg/L	10.0		107	70-130				
Tetrachloroethylene	10.4	1.0	μg/L μg/L	10.0		104	70-130				
Tetrahydrofuran	7.89	2.0	μg/L μg/L	10.0		78.9	70-130				
Toluene		1.0	μg/L μg/L	10.0		102	70-130				
1,2,3-Trichlorobenzene	10.2 9.72	2.0	μg/L μg/L	10.0		97.2	70-130				
1,2,4-Trichlorobenzene		1.0	μg/L μg/L	10.0		102	70-130				
1,1,1-Trichloroethane	10.2	1.0	μg/L μg/L	10.0		91.4	70-130				
1,1,2-Trichloroethane	9.14	1.0	μg/L μg/L	10.0		101	70-130				
Trichloroethylene	10.1	1.0	μg/L μg/L	10.0		101	70-130				
Trichlorofluoromethane (Freon 11)	10.1	2.0	μg/L μg/L	10.0		71.0	70-130			V-05	
1,2,3-Trichloropropane	7.10	2.0	μg/L μg/L	10.0		94.0	70-130			v-03	
1,2,4-Trimethylbenzene	9.40	1.0	μg/L μg/L	10.0		99.3	70-130				
1,3,5-Trimethylbenzene	9.93	1.0	μg/L μg/L	10.0		103	70-130				
Vinyl Chloride	10.3	2.0	μg/L μg/L	10.0		88.3	70-130				
m+p Xylene	8.83	2.0	μg/L μg/L	20.0		108	70-130				
o-Xylene	21.6 10.9	1.0	μg/L μg/L	10.0		108	70-130				
Surrogate: 1,2-Dichloroethane-d4	22.2		μg/L	25.0		88.6	70-130				_
Surrogate: Toluene-d8	24.9		μg/L	25.0		99.7	70-130				
Surrogate: 4-Bromofluorobenzene	25.7		μg/L	25.0		103	70-130				

QUALITY CONTROL

Volatile Organic Compounds by GC/MS - Quality Control

Analyte	Result	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Notes	
Batch B263756 - SW-846 5030B											
LCS Dup (B263756-BSD1)				Prepared &	Analyzed: 08	/07/20					
Acetone	56.2	10	$\mu g \! / \! L$	100		56.2	40-160	8.47	20	L-14, V-05	
tert-Amyl Methyl Ether (TAME)	8.77	0.50	μg/L	10.0		87.7	70-130	0.228	20		
Benzene	9.43	1.0	μg/L	10.0		94.3	70-130	0.745	20		
Bromobenzene	9.83	1.0	μg/L	10.0		98.3	70-130	1.54	20		
Bromochloromethane	8.95	1.0	μg/L	10.0		89.5	70-130	0.448	20		
Bromodichloromethane	9.88	1.0	μg/L	10.0		98.8	70-130	3.50	20		
Bromoform	10.2	1.0	μg/L	10.0		102	70-130	1.26	20		
Bromomethane	8.48	2.0	μg/L	10.0		84.8	40-160	1.98	20		
2-Butanone (MEK)	80.7	10	μg/L	100		80.7	40-160	0.747	20		
n-Butylbenzene	9.40	1.0	$\mu g/L$	10.0		94.0	70-130	2.21	20		
sec-Butylbenzene	9.88	1.0	$\mu g/L$	10.0		98.8	70-130	0.907	20		
tert-Butylbenzene	9.94	1.0	μg/L	10.0		99.4	70-130	1.00	20		
tert-Butyl Ethyl Ether (TBEE)	8.63	0.50	$\mu g\!/\!L$	10.0		86.3	70-130	1.28	20		
Carbon Disulfide	78.6	5.0	$\mu g\!/\!L$	100		78.6	70-130	1.64	20		
Carbon Tetrachloride	9.53	1.0	$\mu g\!/\!L$	10.0		95.3	70-130	5.94	20		
Chlorobenzene	11.1	1.0	$\mu g/L$	10.0		111	70-130	0.543	20		
Chlorodibromomethane	10.2	0.50	μg/L	10.0		102	70-130	2.88	20		
Chloroethane	7.43	2.0	μg/L	10.0		74.3	70-130	3.42	20		
Chloroform	9.19	2.0	μg/L	10.0		91.9	70-130	0.109	20		
Chloromethane	9.82	2.0	μg/L	10.0		98.2	40-160	2.68	20		
2-Chlorotoluene	10.1	1.0	μg/L	10.0		101	70-130	1.08	20		
1-Chlorotoluene	10.5	1.0	μg/L	10.0		105	70-130	2.32	20		
1,2-Dibromo-3-chloropropane (DBCP)	8.40	2.0	μg/L	10.0		84.0	70-130	4.20	20	V-05	
1,2-Dibromoethane (EDB)	9.96	0.50	μg/L	10.0		99.6	70-130	2.34	20		
Dibromomethane	9.82	1.0	μg/L	10.0		98.2	70-130	1.13	20		
1,2-Dichlorobenzene	10.4	1.0	μg/L	10.0		104	70-130	0.768	20		
1,3-Dichlorobenzene	10.4	1.0	μg/L	10.0		104	70-130	1.06	20		
1,4-Dichlorobenzene	10.1	1.0	μg/L	10.0		101	70-130	1.66	20		
Dichlorodifluoromethane (Freon 12)	8.13	2.0	μg/L	10.0		81.3	40-160	1.74	20		
1,1-Dichloroethane	8.93	1.0	μg/L	10.0		89.3	70-130	1.13	20		
1,2-Dichloroethane	9.20	1.0	μg/L	10.0		92.0	70-130	0.109	20		
1,1-Dichloroethylene	6.86	1.0	μg/L μg/L	10.0		68.6 *	70-130	6.32	20	L-04, V-05	
cis-1,2-Dichloroethylene		1.0	μg/L	10.0		88.7	70-130	0.113	20	L-04, V-03	
trans-1,2-Dichloroethylene	8.87	1.0	μg/L μg/L	10.0		72.8	70-130	1.09	20		
1,2-Dichloropropane	7.28	1.0	μg/L μg/L	10.0		95.4	70-130	2.33	20		
1,3-Dichloropropane	9.54	0.50	μg/L μg/L	10.0		97.2	70-130	0.826	20		
2,2-Dichloropropane	9.72	1.0	μg/L μg/L	10.0		80.7	70-130	2.89	20		
1,1-Dichloropropene	8.07	0.50	μg/L μg/L	10.0		92.8	70-130	0.975	20		
cis-1,3-Dichloropropene	9.28	0.40	μg/L μg/L	10.0		92.8 96.7					
trans-1,3-Dichloropropene	9.67	0.40	μg/L μg/L	10.0		90.7 87.7	70-130	1.25	20		
Diethyl Ether	8.77	2.0					70-130	0.228	20	V 05	
Disopropyl Ether (DIPE)	7.02		μg/L	10.0		70.2	70-130	1.69	20	V-05	
	8.42	0.50	μg/L	10.0		84.2	70-130	2.04	20	V 16	
1,4-Dioxane	89.2	50	μg/L μg/I	100		89.2	40-160	7.69	20	V-16	
Ethylbenzene Havachlorobutadiene	10.5	1.0	μg/L μg/I	10.0		105	70-130	0.759	20		
Hexachlorobutadiene	10.8	0.60	μg/L	10.0		108	70-130	5.05	20		
2-Hexanone (MBK)	83.3	10	μg/L	100		83.3	40-160	1.16	20		
Isopropylbenzene (Cumene)	10.8	1.0	μg/L	10.0		108	70-130	0.278	20		
p-Isopropyltoluene (p-Cymene)	10.2	1.0	μg/L	10.0		102	70-130	0.889	20		
Methyl tert-Butyl Ether (MTBE)	7.35	1.0	μg/L	10.0		73.5	70-130	2.95	20		
Methylene Chloride	6.30	5.0	μg/L	10.0		63.0 *	70-130	10.5	20	L-07, V-05	
4-Methyl-2-pentanone (MIBK)	84.5	10	μg/L	100		84.5	40-160	1.31	20		
Naphthalene	8.93	2.0	μg/L	10.0		89.3	70-130	0.449	20		

QUALITY CONTROL

Volatile Organic Compounds by GC/MS - Quality Control

		Reporting		Spike	Source		%REC		RPD	
Analyte	Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Notes
Batch B263756 - SW-846 5030B										
LCS Dup (B263756-BSD1)				Prepared & A	Analyzed: 08/07	//20				
n-Propylbenzene	10.6	1.0	μg/L	10.0		106	70-130	2.28	20	
Styrene	10.8	1.0	$\mu g/L$	10.0		108	70-130	0.650	20	
1,1,1,2-Tetrachloroethane	10.6	1.0	$\mu g/L$	10.0		106	70-130	0.935	20	
1,1,2,2-Tetrachloroethane	10.5	0.50	$\mu g/L$	10.0		105	70-130	0.863	20	
Tetrachloroethylene	11.1	1.0	$\mu g/L$	10.0		111	70-130	2.10	20	
Tetrahydrofuran	8.34	2.0	$\mu g/L$	10.0		83.4	70-130	5.55	20	
Toluene	10.2	1.0	$\mu g/L$	10.0		102	70-130	0.393	20	
1,2,3-Trichlorobenzene	9.70	2.0	$\mu g/L$	10.0		97.0	70-130	0.206	20	
1,2,4-Trichlorobenzene	10.0	1.0	$\mu g/L$	10.0		100	70-130	1.68	20	
1,1,1-Trichloroethane	9.30	1.0	μg/L	10.0		93.0	70-130	1.74	20	
1,1,2-Trichloroethane	10.2	1.0	μg/L	10.0		102	70-130	1.09	20	
Trichloroethylene	10.4	1.0	μg/L	10.0		104	70-130	2.92	20	
Trichlorofluoromethane (Freon 11)	7.08	2.0	μg/L	10.0		70.8	70-130	0.282	20	V-05
1,2,3-Trichloropropane	9.28	2.0	μg/L	10.0		92.8	70-130	1.28	20	
1,2,4-Trimethylbenzene	9.60	1.0	μg/L	10.0		96.0	70-130	3.38	20	
1,3,5-Trimethylbenzene	10.4	1.0	μg/L	10.0		104	70-130	1.16	20	
Vinyl Chloride	9.12	2.0	μg/L	10.0		91.2	70-130	3.23	20	
m+p Xylene	21.1	2.0	μg/L	20.0		106	70-130	2.25	20	
p-Xylene	10.9	1.0	μg/L	10.0		109	70-130	0.183	20	
Surrogate: 1,2-Dichloroethane-d4	22.2		μg/L	25.0		88.8	70-130			
Surrogate: Toluene-d8	24.9		$\mu g/L$	25.0		99.4	70-130			
Surrogate: 4-Bromofluorobenzene	25.5		$\mu g/L$	25.0		102	70-130			
Batch B263978 - SW-846 5030B										
Blank (B263978-BLK1)				Prepared & A	Analyzed: 08/10	/20				
1,2,4-Trimethylbenzene	ND	1.0	μg/L		<u> </u>					
Surrogate: 1,2-Dichloroethane-d4	27.6		μg/L	25.0		110	70-130			
Surrogate: Toluene-d8	22.2		μg/L	25.0		88.9	70-130			
Surrogate: 4-Bromofluorobenzene	22.3		$\mu g/L$	25.0		89.1	70-130			
LCS (B263978-BS1)				Prepared & A	Analyzed: 08/10	/20				
1,2,4-Trimethylbenzene	9.68	1.0	μg/L	10.0		96.8	70-130			
Surrogate: 1,2-Dichloroethane-d4	24.6		μg/L	25.0		98.6	70-130			
Surrogate: Toluene-d8	24.0		μg/L	25.0		95.9	70-130			
Surrogate: 4-Bromofluorobenzene	25.6		$\mu g/L$	25.0		103	70-130			
LCS Dup (B263978-BSD1)				Prepared & A	Analyzed: 08/10	/20				
1,2,4-Trimethylbenzene	9.43	1.0	μg/L	10.0		94.3	70-130	2.62	20	
Surrogate: 1,2-Dichloroethane-d4	24.9		μg/L	25.0		99.7	70-130			
Surrogate: Toluene-d8	24.6		μg/L	25.0		98.4	70-130			
Surrogate: 4-Bromofluorobenzene	25.9									

QUALITY CONTROL

Petroleum Hydrocarbons Analyses - VPH - Quality Control

Analyte	Result	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Notes
Batch B263767 - MA VPH										
Blank (B263767-BLK1)				Prepared &	Analyzed: 08	/07/20				
Jnadjusted C5-C8 Aliphatics	ND	100	μg/L							
C5-C8 Aliphatics	ND	100	$\mu g/L$							
Jnadjusted C9-C12 Aliphatics	ND	100	$\mu g/L$							
C9-C12 Aliphatics	ND	100	$\mu g/L$							
C9-C10 Aromatics	ND	100	$\mu g/L$							
Benzene	ND	1.0	μg/L							
Butylcyclohexane	ND	1.0	$\mu g/L$							
Decane	ND	1.0	μg/L							
thylbenzene	ND	1.0	μg/L							
Methyl tert-Butyl Ether (MTBE)	ND	1.0	μg/L							
-Methylpentane	ND	1.0	μg/L							
Naphthalene	ND	5.0	μg/L							
Nonane	ND	1.0	μg/L							
Pentane	ND	1.0	μg/L							
Toluene	ND	1.0	μg/L							
,2,4-Trimethylbenzene	ND	1.0	μg/L							
,2,4-Trimethylpentane	ND	1.0	μg/L							
n+p Xylene	ND	2.0	μg/L							
-Xylene	ND	1.0	μg/L							
Surrogate: 2,5-Dibromotoluene (FID)	36.2		μg/L	40.0		90.6	70-130			
urrogate: 2,5-Dibromotoluene (PID)	37.2		μg/L	40.0		93.1	70-130			
.CS (B263767-BS1)					Analyzed: 08					
Benzene	47.4	1.0	μg/L	50.0		94.8	70-130			
Butylcyclohexane	64.0	1.0	μg/L	50.0		128	70-130			
Decane	53.1	1.0	μg/L	50.0		106	70-130			
thylbenzene	48.2	1.0	μg/L	50.0		96.5	70-130			
Methyl tert-Butyl Ether (MTBE)	44.0	1.0	μg/L	50.0		88.1	70-130			
-Methylpentane	59.5	1.0	μg/L	50.0		119	70-130			
Naphthalene	41.2	5.0	μg/L	50.0		82.4	70-130			
Nonane	62.4	1.0	μg/L	50.0		125	30-130			
Pentane	58.7	1.0	μg/L	50.0		117	70-130			
Coluene ,2,4-Trimethylbenzene	47.4	1.0 1.0	μg/L	50.0		94.8	70-130			
2,2,4-Trimethylpentane	47.6	1.0	μg/L	50.0		95.1	70-130			
n+p Xylene	57.3	2.0	μg/L μg/L	50.0 100		115 98.1	70-130			
-Xylene	98.1 48.3	1.0	μg/L μg/L	50.0		96.6	70-130 70-130			
<u> </u>		1.0								
Surrogate: 2,5-Dibromotoluene (FID) Surrogate: 2,5-Dibromotoluene (PID)	50.1 45.6		μg/L μg/L	40.0 40.0		125 114	70-130 70-130			
	43.0		μg/L		A 1 1- 00		70-130			
LCS Dup (B263767-BSD1) Benzene	44.7	1.0	μg/L	50.0	Analyzed: 08	89.4	70-130	5.90	25	
Butylcyclohexane		1.0	μg/L μg/L	50.0		117	70-130	8.89	25	
Decane	58.6 47.5	1.0	μg/L μg/L	50.0		95.0	70-130	11.2	25	
Ethylbenzene	47.5 44.6	1.0	μg/L μg/L	50.0		89.2	70-130	7.82	25	
Methyl tert-Butyl Ether (MTBE)	43.2	1.0	μg/L μg/L	50.0		86.5	70-130	1.85	25	
-Methylpentane	50.6	1.0	μg/L μg/L	50.0		101	70-130	16.3	25	
Japhthalene	40.6	5.0	μg/L μg/L	50.0		81.3	70-130	1.44	25	
Jonane	56.6	1.0	μg/L μg/L	50.0		113	30-130	9.70	25	
Pentane	51.9	1.0	μg/L	50.0		104	70-130	12.4	25	
Coluene	44.4	1.0	μg/L μg/L	50.0		88.8	70-130	6.53	25	
,2,4-Trimethylbenzene	43.7	1.0	μg/L μg/L	50.0		87.4	70-130	8.48	25	

QUALITY CONTROL

Petroleum Hydrocarbons Analyses - VPH - Quality Control

		Reporting		Spike	Source		%REC		RPD	
Analyte	Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Notes
Batch B263767 - MA VPH										
.CS Dup (B263767-BSD1)				Prepared &	Analyzed: 08	3/07/20				
2,2,4-Trimethylpentane	47.8	1.0	μg/L	50.0		95.5	70-130	18.2	25	
m+p Xylene	90.5	2.0	μg/L	100		90.5	70-130	8.05	25	
o-Xylene	45.3	1.0	μg/L	50.0		90.6	70-130	6.50	25	
Surrogate: 2,5-Dibromotoluene (FID)	39.8		$\mu g/L$	40.0		99.5	70-130			
Surrogate: 2,5-Dibromotoluene (PID)	42.5		$\mu g/L$	40.0		106	70-130			
Batch B263845 - MA VPH										
Blank (B263845-BLK1)				Prepared &	Analyzed: 08	3/08/20				
Unadjusted C5-C8 Aliphatics	ND	100	μg/L							
C5-C8 Aliphatics	ND	100	$\mu g/L$							
Jnadjusted C9-C12 Aliphatics	ND	100	$\mu g/L$							
C9-C12 Aliphatics	ND	100	$\mu \text{g/L}$							
C9-C10 Aromatics	ND	100	$\mu g/L$							
Benzene	ND	1.0	$\mu g/L$							
Butylcyclohexane	ND	1.0	$\mu g/L$							
Decane	ND	1.0	μg/L							
thylbenzene	ND	1.0	μg/L							
Methyl tert-Butyl Ether (MTBE)	ND	1.0	μg/L							
-Methylpentane	ND	1.0	$\mu g/L$							
Japhthalene	ND	5.0	μg/L							
Ionane	ND	1.0	μg/L							
entane	ND	1.0	μg/L							
oluene	ND	1.0	μg/L							
,2,4-Trimethylbenzene	ND	1.0	μg/L							
2,2,4-Trimethylpentane	ND	1.0	μg/L							
n+p Xylene	ND	2.0	μg/L							
-Xylene	ND	1.0	μg/L							
Surrogate: 2,5-Dibromotoluene (FID)	37.1		$\mu g/L$	40.0		92.8	70-130			
urrogate: 2,5-Dibromotoluene (PID)	39.7		$\mu g/L$	40.0		99.2	70-130			
.CS (B263845-BS1)				Prepared &	Analyzed: 08	3/08/20				
Benzene	49.0	1.0	μg/L	50.0		98.0	70-130			
Butylcyclohexane	58.7	1.0	μg/L	50.0		117	70-130			
Decane	46.3	1.0	μg/L	50.0		92.5	70-130			
thylbenzene	48.7	1.0	μg/L	50.0		97.4	70-130			
Methyl tert-Butyl Ether (MTBE)	47.2	1.0	μg/L	50.0		94.4	70-130			
-Methylpentane	53.9	1.0	μg/L	50.0		108	70-130			
Naphthalene	43.8	5.0	μg/L	50.0		87.7	70-130			
Ionane	57.0	1.0	μg/L	50.0		114	30-130			
entane	51.5	1.0	μg/L	50.0		103	70-130			
Oluene	48.9	1.0	μg/L	50.0		97.7	70-130			
,2,4-Trimethylbenzene	48.0	1.0	μg/L	50.0		95.9	70-130			
2,2,4-Trimethylpentane	50.5	1.0	μg/L	50.0		101	70-130			
n+p Xylene	99.0	2.0	μg/L μg/I	100		99.0	70-130			
o-Xylene	49.6	1.0	μg/L	50.0		99.3	70-130			
Surrogate: 2,5-Dibromotoluene (FID)	48.1		μg/L	40.0		120	70-130			
Surrogate: 2,5-Dibromotoluene (PID)	47.3		μg/L	40.0		118	70-130			

QUALITY CONTROL

Petroleum Hydrocarbons Analyses - VPH - Quality Control

Analyte	Result	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Notes
Batch B263845 - MA VPH										
LCS Dup (B263845-BSD1)				Prepared &	Analyzed: 08	/08/20				
Benzene	51.4	1.0	μg/L	50.0		103	70-130	4.74	25	
Butylcyclohexane	61.0	1.0	$\mu g/L$	50.0		122	70-130	3.87	25	
Decane	48.5	1.0	$\mu g/L$	50.0		97.0	70-130	4.72	25	
Ethylbenzene	51.3	1.0	$\mu \text{g/L}$	50.0		103	70-130	5.16	25	
Methyl tert-Butyl Ether (MTBE)	48.7	1.0	$\mu \text{g/L}$	50.0		97.4	70-130	3.06	25	
2-Methylpentane	57.5	1.0	$\mu g/L$	50.0		115	70-130	6.43	25	
Naphthalene	45.3	5.0	$\mu \text{g/L}$	50.0		90.6	70-130	3.31	25	
Nonane	59.0	1.0	$\mu \text{g/L}$	50.0		118	30-130	3.39	25	
Pentane	57.5	1.0	$\mu \text{g/L}$	50.0		115	70-130	11.1	25	
Toluene	51.1	1.0	$\mu \text{g/L}$	50.0		102	70-130	4.39	25	
1,2,4-Trimethylbenzene	50.4	1.0	$\mu \text{g/L}$	50.0		101	70-130	5.08	25	
2,2,4-Trimethylpentane	53.7	1.0	$\mu \text{g/L}$	50.0		107	70-130	6.32	25	
m+p Xylene	104	2.0	$\mu \text{g/L}$	100		104	70-130	5.07	25	
o-Xylene	51.9	1.0	$\mu g/L$	50.0		104	70-130	4.49	25	
Surrogate: 2,5-Dibromotoluene (FID)	49.0		μg/L	40.0		123	70-130			
Surrogate: 2,5-Dibromotoluene (PID)	46.3		μg/L	40.0		116	70-130			

FLAG/QUALIFIER SUMMARY

*	QC result is outside of established limits.
†	Wide recovery limits established for difficult compound.
‡	Wide RPD limits established for difficult compound.
#	Data exceeded client recommended or regulatory level
ND	Not Detected
RL	Reporting Limit is at the level of quantitation (LOQ)
DL	Detection Limit is the lower limit of detection determined by the MDL study
MCL	Maximum Contaminant Level
	Percent recoveries and relative percent differences (RPDs) are determined by the software using values in the calculation which have not been rounded.
	No results have been blank subtracted unless specified in the case narrative section.
L-04	Laboratory fortified blank/laboratory control sample recovery and duplicate recovery are outside of control limits. Reported value for this compound is likely to be biased on the low side.
L-07	Either laboratory fortified blank/laboratory control sample or duplicate recovery is outside of control limits, but the other is within limits. RPD between the two LFB/LCS results is within method specified criteria.
L-14	Compound classified by MA CAM as difficult with acceptable recoveries of 40-160%. Recovery does not meet 70-130% criteria but does meet difficult compound criteria.
V-05	Continuing calibration verification (CCV) did not meet method specifications and was biased on the low side for this compound.
V-16	Response factor is less than method specified minimum acceptable value. Reduced precision and accuracy may be associated with reported result.

CERTIFICATIONS

Certified Analyses included in this Report

Analyte	Certifications
MADEP-VPH-Feb 2018 Rev 2.1 in Water	
Unadjusted C5-C8 Aliphatics	CT,NC,ME,NH-P
C5-C8 Aliphatics	CT,NC,ME,NH-P
Unadjusted C9-C12 Aliphatics	CT,NC,ME,NH-P
C9-C12 Aliphatics	CT,NC,ME,NH-P
C9-C12 Amphatics C9-C10 Aromatics	CT,NC,ME,NH-P
Benzene	CT,NC,ME,NH-P
Ethylbenzene	CT,NC,ME,NH-P
Methyl tert-Butyl Ether (MTBE)	CT,NC,ME,NH-P
Naphthalene	CT,NC,ME,NH-P
Toluene	CT,NC,ME,NH-P
m+p Xylene	CT,NC,ME,NH-P
o-Xylene	CT,NC,ME,NH-P
SW-846 8260C-D in Water	C1,1NC,1VIE,1N11-1
	CTANAL MARKET
Acetone	CT,NH,NY,ME
tert-Amyl Methyl Ether (TAME)	NH,NY,ME
Benzene	CT,NH,NY,ME
Bromobenzene	ME
Bromochloromethane	NH,NY,ME
Bromodichloromethane	CT,NH,NY,ME
Bromoform	CT,NH,NY,ME
Bromomethane	CT,NH,NY,ME
2-Butanone (MEK)	CT,NH,NY,ME
n-Butylbenzene sec-Butylbenzene	NY,ME
•	NY,ME
tert-Butylbenzene tert-Butyl Ethyl Ether (TBEE)	NY,ME NH,NY,ME
Carbon Disulfide	CT,NH,NY,ME
Carbon Tetrachloride	CT,NH,NY,ME CT,NH,NY,ME
Chlorobenzene	CT,NH,NY,ME
Chlorodibromomethane	CT,NH,NY,ME
Chloroethane	CT,NH,NY,ME
Chloroform	CT,NH,NY,ME
Chloromethane	CT,NH,NY,ME
2-Chlorotoluene	NY,ME
4-Chlorotoluene	NY,ME
1,2-Dibromo-3-chloropropane (DBCP)	NY
1,2-Dibromoethane (EDB)	NY
Dibromomethane	NH,NY,ME
1,2-Dichlorobenzene	CT,NY,ME
1,3-Dichlorobenzene	CT,NH,NY,ME
1,4-Dichlorobenzene	CT,NH,NY,ME
Dichlorodifluoromethane (Freon 12)	NH,NY,ME
1,1-Dichloroethane	CT,NH,NY,ME
1,2-Dichloroethane	CT,NH,NY,ME
1,1-Dichloroethylene	CT,NH,NY,ME
cis-1,2-Dichloroethylene	NY,ME

CERTIFICATIONS

Certified Analyses included in this Report

Analyte	Certifications
SW-846 8260C-D in Water	
trans-1,2-Dichloroethylene	CT,NH,NY,ME
1,2-Dichloropropane	CT,NH,NY,ME
1,3-Dichloropropane	NY,ME
2,2-Dichloropropane	NH,NY,ME
1,1-Dichloropropene	NH,NY,ME
cis-1,3-Dichloropropene	CT,NH,NY,ME
trans-1,3-Dichloropropene	CT,NH,NY,ME
Diisopropyl Ether (DIPE)	NH,NY,ME
Ethylbenzene	CT,NH,NY,ME
Hexachlorobutadiene	CT,NH,NY,ME
2-Hexanone (MBK)	CT,NH,NY,ME
Isopropylbenzene (Cumene)	NY,ME
p-Isopropyltoluene (p-Cymene)	CT,NH,NY,ME
Methyl tert-Butyl Ether (MTBE)	CT,NH,NY,ME
Methylene Chloride	CT,NH,NY,ME
4-Methyl-2-pentanone (MIBK)	CT,NH,NY,ME
Naphthalene	NH,NY,ME
n-Propylbenzene	CT,NH,NY,ME
Styrene	CT,NH,NY,ME
1,1,1,2-Tetrachloroethane	CT,NH,NY,ME
1,1,2,2-Tetrachloroethane	CT,NH,NY,ME
Tetrachloroethylene	CT,NH,NY,ME
Toluene	CT,NH,NY,ME
1,2,3-Trichlorobenzene	NH,NY,ME
1,2,4-Trichlorobenzene	CT,NH,NY,ME
1,1,1-Trichloroethane	CT,NH,NY,ME
1,1,2-Trichloroethane	CT,NH,NY,ME
Trichloroethylene	CT,NH,NY,ME
Trichlorofluoromethane (Freon 11)	CT,NH,NY,ME
1,2,3-Trichloropropane	NH,NY,ME
1,2,4-Trimethylbenzene	NY,ME
1,3,5-Trimethylbenzene	NY,ME
Vinyl Chloride	CT,NH,NY,ME
m+p Xylene	CT,NH,NY,ME
o-Xylene	CT,NH,NY,ME

 $The \ CON-TEST \ Environmental \ Laboratory \ operates \ under \ the \ following \ certifications \ and \ accreditations:$

Code	Description	Number	Expires
AIHA	AIHA-LAP, LLC - ISO17025:2017	100033	03/1/2022
MA	Massachusetts DEP	M-MA100	06/30/2021
CT	Connecticut Department of Publilc Health	PH-0567	09/30/2021
NY	New York State Department of Health	10899 NELAP	04/1/2021
NH-S	New Hampshire Environmental Lab	2516 NELAP	02/5/2021
RI	Rhode Island Department of Health	LAO00112	12/30/2020
NC	North Carolina Div. of Water Quality	652	12/31/2020
NJ	New Jersey DEP	MA007 NELAP	06/30/2021
FL	Florida Department of Health	E871027 NELAP	06/30/2021
VT	Vermont Department of Health Lead Laboratory	LL015036	07/30/2021
ME	State of Maine	2011028	06/9/2021
VA	Commonwealth of Virginia	460217	12/14/2020
NH-P	New Hampshire Environmental Lab	2557 NELAP	09/6/2020
VT-DW	Vermont Department of Health Drinking Water	VT-255716	06/12/2021
NC-DW	North Carolina Department of Health	25703	07/31/2021
PA	Commonwealth of Pennsylvania DEP	68-05812	06/30/2021

APPENDIX E: SURFACE WATER LABORATORY ANALYTICAL DATA

ANALYTICAL REPORT

Lab Number: L2102191

Client: McPhail Associates

2269 Massachusetts Avenue

Cambridge, MA 02140

ATTN: Ambrose Donovan Phone: (617) 868-1420

Project Name: DRISCOLL SCHOOL

Project Number: 6693

Report Date: 01/20/21

The original project report/data package is held by Alpha Analytical. This report/data package is paginated and should be reproduced only in its entirety. Alpha Analytical holds no responsibility for results and/or data that are not consistent with the original.

Certifications & Approvals: MA (M-MA086), NH NELAP (2064), CT (PH-0574), IL (200077), ME (MA00086), MD (348), NJ (MA935), NY (11148), NC (25700/666), PA (68-03671), RI (LAO00065), TX (T104704476), VT (VT-0935), VA (460195), USDA (Permit #P330-17-00196).

Eight Walkup Drive, Westborough, MA 01581-1019 508-898-9220 (Fax) 508-898-9193 800-624-9220 - www.alphalab.com

Project Name: DRISCOLL SCHOOL

Project Number: 6693

Lab Number:

L2102191

Report Date:

01/20/21

Alpha Sample ID	Client ID	Matrix	Sample Location	Collection Date/Time	Receive Date
I 2102191-01	MUDDY RIVER OUTELOW	WATER	BROOKLINE	01/14/21 12:30	01/14/21

Project Name: DRISCOLL SCHOOL Lab Number: L2102191

Project Number: 6693 Report Date: 01/20/21

Case Narrative

The samples were received in accordance with the Chain of Custody and no significant deviations were encountered during the preparation or analysis unless otherwise noted. Sample Receipt, Container Information, and the Chain of Custody are located at the back of the report.

Results contained within this report relate only to the samples submitted under this Alpha Lab Number and meet NELAP requirements for all NELAP accredited parameters unless otherwise noted in the following narrative. The data presented in this report is organized by parameter (i.e. VOC, SVOC, etc.). Sample specific Quality Control data (i.e. Surrogate Spike Recovery) is reported at the end of the target analyte list for each individual sample, followed by the Laboratory Batch Quality Control at the end of each parameter. Tentatively Identified Compounds (TICs), if requested, are reported for compounds identified to be present and are not part of the method/program Target Compound List, even if only a subset of the TCL are being reported. If a sample was re-analyzed or re-extracted due to a required quality control corrective action and if both sets of data are reported, the Laboratory ID of the re-analysis or re-extraction is designated with an "R" or "RE", respectively.

When multiple Batch Quality Control elements are reported (e.g. more than one LCS), the associated samples for each element are noted in the grey shaded header line of each data table. Any Laboratory Batch, Sample Specific % recovery or RPD value that is outside the listed Acceptance Criteria is bolded in the report. In reference to questions H (CAM) or 4 (RCP) when "NO" is checked, the performance criteria for CAM and RCP methods allow for some quality control failures to occur and still be within method compliance. In these instances, the specific failure is not narrated but noted in the associated QC Outlier Summary Report, located directly after the Case Narrative. QC information is also incorporated in the Data Usability Assessment table (Format 11) of our Data Merger tool, where it can be reviewed in conjunction with the sample result, associated regulatory criteria and any associated data usability implications.

Soil/sediments, solids and tissues are reported on a dry weight basis unless otherwise noted. Definitions of all data qualifiers and acronyms used in this report are provided in the Glossary located at the back of the report.

HOLD POLICY - For samples submitted on hold, Alpha's policy is to hold samples (with the exception of Air canisters) free of charge for 21 calendar days from the date the project is completed. After 21 calendar days, we will dispose of all samples submitted including those put on hold unless you have contacted your Alpha Project Manager and made arrangements for Alpha to continue to hold the samples. Air canisters will be disposed after 3 business days from the date the project is completed.

Please contact Project Management at 800-624-9220 with any questions.	

Project Name: Project Number:

DRISCOLL SCHOOL

6693

Lab Number:

L2102191

Report Date:

01/20/21

Case Narrative (continued)

Sample Receipt

L2102191-01: The sample was received above the appropriate pH for the Ammonia Nitrogen - SM 4500 analysis. The laboratory added additional H2SO4 to a pH <2.

L2102191-01: The sample was received above the appropriate pH for the Total Metals analysis. The laboratory added additional HNO3 to a pH <2.

Total Metals

L2102191-01: The sample has an elevated detection limit for all elements due to the prep dilution required by the limited sample volume available for analysis.

I, the undersigned, attest under the pains and penalties of perjury that, to the best of my knowledge and belief and based upon my personal inquiry of those responsible for providing the information contained in this analytical report, such information is accurate and complete. This certificate of analysis is not complete unless this page accompanies any and all pages of this report.

Cattlin Wallet Caitlin Walukevich

Authorized Signature:

Title: Technical Director/Representative

Date: 01/20/21

METALS

Project Name: Lab Number: DRISCOLL SCHOOL L2102191

Project Number: Report Date: 6693 01/20/21

SAMPLE RESULTS

Lab ID: L2102191-01

Date Collected: 01/14/21 12:30 Client ID: MUDDY RIVER OUTFLOW Date Received: 01/14/21

Sample Location: **BROOKLINE** Field Prep: Not Specified

Sample Depth:

Matrix: Water

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	Date Prepared	Date Analyzed	Prep Method	Analytical Method	Analyst
Total Metals - Mans	field Lab										
Antimony, Total	ND		mg/l	0.02000		1	01/16/21 05:44	01/18/21 08:10	EPA 3005A	3,200.8	AM
Arsenic, Total	ND		mg/l	0.00500		1	01/16/21 05:44	01/18/21 08:10	EPA 3005A	3,200.8	AM
Cadmium, Total	ND		mg/l	0.00100		1	01/16/21 05:44	01/18/21 08:10	EPA 3005A	3,200.8	AM
Chromium, Total	ND		mg/l	0.00500		1	01/16/21 05:44	01/18/21 08:10	EPA 3005A	3,200.8	AM
Copper, Total	ND		mg/l	0.01000		1	01/16/21 05:44	01/18/21 08:10	EPA 3005A	3,200.8	AM
Iron, Total	0.408		mg/l	0.250		1	01/16/21 05:44	01/19/21 14:46	EPA 3005A	19,200.7	EW
Lead, Total	ND		mg/l	0.00500		1	01/16/21 05:44	01/18/21 08:10	EPA 3005A	3,200.8	AM
Mercury, Total	ND		mg/l	0.00020		1	01/16/21 07:44	01/19/21 18:41	EPA 245.1	3,245.1	VW
Nickel, Total	ND		mg/l	0.01000		1	01/16/21 05:44	01/18/21 08:10	EPA 3005A	3,200.8	AM
Selenium, Total	ND		mg/l	0.02500		1	01/16/21 05:44	01/18/21 08:10	EPA 3005A	3,200.8	AM
Silver, Total	ND		mg/l	0.00200		1	01/16/21 05:44	01/18/21 08:10	EPA 3005A	3,200.8	AM
Zinc, Total	ND		mg/l	0.05000		1	01/16/21 05:44	01/18/21 08:10	EPA 3005A	3,200.8	AM
Total Hardness by S	SM 2340B	- Mansfiel	d Lab								
Hardness	222		mg/l	3.30	NA	1	01/16/21 05:44	01/19/21 14:46	EPA 3005A	19,200.7	EW

Project Name: DRISCOLL SCHOOL

Project Number: 6693

Lab Number:

L2102191

Report Date:

01/20/21

Method Blank Analysis Batch Quality Control

Parameter	Result Qualifier	Units	RL	MDL	Dilution Factor	Date Prepared	Date Analyzed	Analytical Method	
Total Metals - Mansfield	Lab for sample(s): ()1 Batch	: WG14	455450-	1				
Iron, Total	ND	mg/l	0.050		1	01/16/21 05:44	01/19/21 14:37	19,200.7	EW

Prep Information

Digestion Method: EPA 3005A

Parameter	Result Qualifier	Units	RL	MDL	Dilution Factor	Date Prepared	Date Analyzed	Analytical Method	Analyst
Total Hardness by SM 23	340B - Mansfield Lab	o for sam	ple(s): (01 Bato	h: WG145	5450-1			
Hardness	ND	mg/l	0.660	NA	1	01/16/21 05:44	01/19/21 14:37	19,200.7	EW

Prep Information

Digestion Method: EPA 3005A

Parameter	Result Qualifier	Units	RL	MDL	Dilution Factor	Date Prepared	Date Analyzed	Analytical Method	Analyst
Total Metals - Mans	sfield Lab for sample(s):	01 Bato	h: WG14	55454-	-1				
Antimony, Total	ND	mg/l	0.00400		1	01/16/21 05:44	01/18/21 07:45	3,200.8	AM
Arsenic, Total	ND	mg/l	0.00100		1	01/16/21 05:44	01/18/21 07:45	3,200.8	АМ
Cadmium, Total	ND	mg/l	0.00020		1	01/16/21 05:44	01/18/21 07:45	3,200.8	АМ
Chromium, Total	ND	mg/l	0.00100		1	01/16/21 05:44	01/18/21 07:45	3,200.8	AM
Copper, Total	ND	mg/l	0.00200		1	01/16/21 05:44	01/18/21 07:45	3,200.8	AM
Lead, Total	ND	mg/l	0.00100		1	01/16/21 05:44	01/18/21 07:45	3,200.8	AM
Nickel, Total	ND	mg/l	0.00200		1	01/16/21 05:44	01/18/21 07:45	3,200.8	AM
Selenium, Total	ND	mg/l	0.00500		1	01/16/21 05:44	01/18/21 07:45	3,200.8	AM
Silver, Total	ND	mg/l	0.00040		1	01/16/21 05:44	01/18/21 07:45	3,200.8	АМ
Zinc, Total	ND	mg/l	0.01000		1	01/16/21 05:44	01/18/21 07:45	3,200.8	AM

Prep Information

Digestion Method: EPA 3005A

L2102191

Project Name: DRISCOLL SCHOOL

COLL SCHOOL Lab Number:

Project Number: 6693 Report Date: 01/20/21

Method Blank Analysis Batch Quality Control

Parameter	Result Qualifier	Units	RL	MDL	Dilution Factor	Date Prepared	Date Analyzed	Analytica Method	l Analyst
Total Metals - Mansfield	Lab for sample(s):	01 Batch	n: WG14	455455-	-1				
Mercury, Total	ND	mg/l	0.0002		1	01/16/21 07:44	01/19/21 18:08	3,245.1	VW

Prep Information

Digestion Method: EPA 245.1

Lab Control Sample Analysis Batch Quality Control

Project Name: DRISCOLL SCHOOL

Project Number: 6693

Lab Number: L2102191

Report Date: 01/20/21

Parameter	LCS %Recovery	LCSD Qual %Recove	ry Qual	%Recovery Limits	RPD	Qual	RPD Limits
Total Metals - Mansfield Lab Associated sample	le(s): 01 Batch: '	WG1455450-2					
Iron, Total	109	-		85-115	-		
Total Hardness by SM 2340B - Mansfield Lab	Associated sample	e(s): 01 Batch: WG14	55450-2				
Hardness	109	-		85-115	-		
Total Metals - Mansfield Lab Associated samp	le(s): 01 Batch: '	WG1455454-2					
Antimony, Total	95	-		85-115	-		
Arsenic, Total	102	-		85-115	-		
Cadmium, Total	109	-		85-115	-		
Chromium, Total	104	-		85-115	-		
Copper, Total	104	-		85-115	-		
Lead, Total	101	-		85-115	-		
Nickel, Total	98	-		85-115	-		
Selenium, Total	104	-		85-115	-		
Silver, Total	99	-		85-115	-		
Zinc, Total	110	-		85-115	-		
Total Metals - Mansfield Lab Associated samp	le(s): 01 Batch: '	WG1455455-2					
Mercury, Total	101	-		85-115	-		

Matrix Spike Analysis Batch Quality Control

Project Name: DRISCOLL SCHOOL

Project Number: 6693

Lab Number: L2102191

Report Date: 01/20/21

arameter	Native Sample	MS Added	MS Found	MS %Recovery	Qual	MSD Found	MSD %Recovery	Recovery Qual Limits	RPD (RPD Qual Limits
Total Metals - Mansfield	Lab Associated sam	nple(s): 01	QC Batch II	D: WG145545	0-3	QC Sample:	L2102191-01	Client ID: MUDI	OY RIVER	ROUTFLOW
Iron, Total	0.408	5	5.81	108		-	-	75-125	-	20
Total Hardness by SM 2 OUTFLOW	2340B - Mansfield La	b Associate	ed sample(s):	01 QC Bato	ch ID: V	VG1455450-	-3 QC Samp	le: L2102191-01	Client ID	: MUDDY RIVE
Hardness	222	331	578	108		-	-	75-125	-	20
Γotal Metals - Mansfield	Lab Associated sam	nple(s): 01	QC Batch II	D: WG145545	4-3	QC Sample:	L2102191-01	Client ID: MUDI	OY RIVER	R OUTFLOW
Antimony, Total	ND	2.5	2.424	97		-	-	70-130	-	20
Arsenic, Total	ND	0.6	0.6245	104		-	-	70-130	-	20
Cadmium, Total	ND	0.255	0.2831	111		-	-	70-130	-	20
Chromium, Total	ND	1	1.048	105		-	-	70-130	-	20
Copper, Total	ND	1.25	1.304	104		-	-	70-130	-	20
Lead, Total	ND	2.55	2.606	102		-	-	70-130	-	20
Nickel, Total	ND	2.5	2.450	98		-	-	70-130	-	20
Selenium, Total	ND	0.6	0.6351	106		-	-	70-130	-	20
Silver, Total	ND	0.25	0.2464	98		-	-	70-130	-	20
Zinc, Total	ND	2.5	2.846	114		-	-	70-130	-	20
Fotal Metals - Mansfield	Lab Associated sam	nple(s): 01	QC Batch II	D: WG145545	5-3	QC Sample:	L2102114-01	Client ID: MS S	ample	
Mercury, Total	ND	0.005	0.0047	95		-	-	70-130	-	20

Lab Duplicate Analysis Batch Quality Control

Lab Number:

L2102191

Report Date:

01/20/21

Parameter	Native Sample Du	ıplicate Sample	Units	RPD	Qual	RPD Limits
Total Metals - Mansfield Lab Associated sample(s): 01	QC Batch ID: WG1455450-4	4 QC Sample:	L2102191-01	Client ID:	MUDDY RIV	/ER OUTFLOW
Iron, Total	0.408	0.380	mg/l	7		20
Total Hardness by SM 2340B - Mansfield Lab Associate OUTFLOW	d sample(s): 01 QC Batch I	D: WG1455450-	4 QC Sample	e: L21021	91-01 Clien	t ID: MUDDY RIVER
Hardness	222	223	mg/l	0		20
Total Metals - Mansfield Lab Associated sample(s): 01	QC Batch ID: WG1455454-	4 QC Sample:	L2102191-01	Client ID:	MUDDY RIV	/ER OUTFLOW
Antimony, Total	ND	ND	mg/l	NC		20
Arsenic, Total	ND	ND	mg/l	NC		20
Cadmium, Total	ND	ND	mg/l	NC		20
Chromium, Total	ND	ND	mg/l	NC		20
Copper, Total	ND	ND	mg/l	NC		20
Lead, Total	ND	ND	mg/l	NC		20
Nickel, Total	ND	ND	mg/l	NC		20
Selenium, Total	ND	ND	mg/l	NC		20
Silver, Total	ND	ND	mg/l	NC		20
Zinc, Total	ND	ND	mg/l	NC		20
Total Metals - Mansfield Lab Associated sample(s): 01	QC Batch ID: WG1455455-	4 QC Sample:	L2102114-01	Client ID:	DUP Sampl	е
Mercury, Total	ND	ND	mg/l	NC		20

Project Name:

Project Number:

DRISCOLL SCHOOL

6693

INORGANICS & MISCELLANEOUS

Project Name: DRISCOLL SCHOOL Lab Number: L2102191

Project Number: 6693 Report Date: 01/20/21

SAMPLE RESULTS

Lab ID: L2102191-01 Date Collected: 01/14/21 12:30

Client ID: MUDDY RIVER OUTFLOW Date Received: 01/14/21
Sample Location: BROOKLINE Field Prep: Not Specified

Sample Depth:

Matrix: Water

Parameter	Result	Qualifier U	Inits	RL	MDL	Dilution Factor	Date Prepared	Date Analyzed	Analytical Method	Analyst
General Chemistry - W	/estborough Lab									
pH (H)	6.8	(SU	-	NA	1	-	01/15/21 05:23	121,4500H+-B	JA
Nitrogen, Ammonia	0.251	n	ng/l	0.075		1	01/15/21 17:40	01/15/21 21:41	121,4500NH3-BH	AT

L2102191

Project Name: DRISCOLL SCHOOL

Project Number: 6693 **Report Date:** 01/20/21

Lab Number:

Method Blank Analysis Batch Quality Control

Parameter	Result Qualifier	Units	RL	MDL	Dilution Factor	Date Prepared	Date Analyzed	Analytical Method	Analyst
General Chemistry - \	Westborough Lab for sam	ple(s): 01	Batch	: WG14	155533-1				
Nitrogen, Ammonia	ND	mg/l	0.075		1	01/15/21 17:40	01/15/21 21:22	121,4500NH3-E	зн ат

Lab Control Sample Analysis Batch Quality Control

Project Name: DRISCOLL SCHOOL

6693

Project Number:

Lab Number: L2102191

Report Date: 01/20/21

Parameter	LCS %Recovery Q	LCSD ual %Recovery	Qual	%Recovery Limits	RPD	Qual	RPD Limits	
General Chemistry - Westborough Lab A	ssociated sample(s): 0	1 Batch: WG1455268	-1					
рН	100	-		99-101	-		5	
General Chemistry - Westborough Lab A	ssociated sample(s): 0°	1 Batch: WG1455533	-2					
Nitrogen, Ammonia	92	-		80-120	-		20	

Matrix Spike Analysis Batch Quality Control

Project Name: DRISCOLL SCHOOL

Lab Number: L2102191

Project Number: 6693

Report Date: 01/20/21

Parameter	Native Sample	MS Added	MS Found	MS %Recovery	MSD Qual Found	MSD %Recovery Qua	Recovery I Limits	RPD Qı	RPD _{ual} Limits
General Chemistry - Westbore	ough Lab Asso	ciated samp	ole(s): 01	QC Batch ID: V	WG1455533-4	QC Sample: L210159	6-01 Client	ID: MS Sa	ample
Nitrogen, Ammonia	9.52	4	13.2	92	-	-	80-120	-	20

Lab Duplicate Analysis Batch Quality Control

Lab Number:

L2102191

Report Date:

01/20/21

Parameter	Native Sample	Duplicate Sampl	le Units	RPD	Qual	RPD Limits
General Chemistry - Westborough Lab Associate	ed sample(s): 01 QC Batch ID:	WG1455268-2 C	QC Sample: L2102	105-01 C	Client ID: [OUP Sample
рН	7.2	7.1	SU	1		5
General Chemistry - Westborough Lab Associate	ed sample(s): 01 QC Batch ID:	WG1455533-3 C	QC Sample: L2101	596-01 C	Client ID: [OUP Sample
Nitrogen, Ammonia	9.52	9.54	mg/l	0		20

Project Name:

Project Number:

DRISCOLL SCHOOL

6693

Serial_No:01202110:42

Lab Number: L2102191

Report Date: 01/20/21

Project Name: DRISCOLL SCHOOL
Project Number: 6693

Sample Receipt and Container Information

Were project specific reporting limits specified?

YES

Cooler Information

Cooler Custody Seal

A Absent

Container Information			Initial Final		Temp			Frozen	
Container ID	Container Type	Cooler	рН	pН	deg C	Pres	Seal	Date/Time	Analysis(*)
L2102191-01A	Plastic 120ml HNO3 preserved split	Α	7	<2	4.2	N	Absent		CD-2008T(180),NI-2008T(180),ZN- 2008T(180),CU-2008T(180),HARDU(180),FE- UI(180),SE-2008T(180),AS-2008T(180),AG- 2008T(180),HG-U(28),CR-2008T(180),PB- 2008T(180),SB-2008T(180)
L2102191-01B	Plastic 500ml H2SO4 preserved	Α	7	<2	4.2	N	Absent		NH3-4500(28)
L2102191-01C	Plastic 500ml unpreserved	Α	7	7	4.2	Υ	Absent		PH-4500(.01)

Project Name: Lab Number: DRISCOLL SCHOOL L2102191

Project Number: 6693 **Report Date:** 01/20/21

GLOSSARY

Acronyms

EPA

MS

DL- Detection Limit: This value represents the level to which target analyte concentrations are reported as estimated values, when those target analyte concentrations are quantified below the limit of quantitation (LOQ). The DL includes any adjustments

from dilutions, concentrations or moisture content, where applicable. (DoD report formats only.)

EDL - Estimated Detection Limit: This value represents the level to which target analyte concentrations are reported as estimated values, when those target analyte concentrations are quantified below the reporting limit (RL). The EDL includes any adjustments from dilutions, concentrations or moisture content, where applicable. The use of EDLs is specific to the analysis

of PAHs using Solid-Phase Microextraction (SPME).

EMPC - Estimated Maximum Possible Concentration: The concentration that results from the signal present at the retention time of an analyte when the ions meet all of the identification criteria except the ion abundance ratio criteria. An EMPC is a worst-case

estimate of the concentration.

LCS - Laboratory Control Sample: A sample matrix, free from the analytes of interest, spiked with verified known amounts of

analytes or a material containing known and verified amounts of analytes.

LCSD Laboratory Control Sample Duplicate: Refer to LCS.

Environmental Protection Agency.

LFB - Laboratory Fortified Blank: A sample matrix, free from the analytes of interest, spiked with verified known amounts of

analytes or a material containing known and verified amounts of analytes.

LOD - Limit of Detection: This value represents the level to which a target analyte can reliably be detected for a specific analyte in a specific matrix by a specific method. The LOD includes any adjustments from dilutions, concentrations or moisture content,

where applicable. (DoD report formats only.)

LOQ - Limit of Quantitation: The value at which an instrument can accurately measure an analyte at a specific concentration. The LOQ includes any adjustments from dilutions, concentrations or moisture content, where applicable. (DoD report formats

Limit of Quantitation: The value at which an instrument can accurately measure an analyte at a specific concentration. The LOQ includes any adjustments from dilutions, concentrations or moisture content, where applicable. (DoD report formats

MDL - Method Detection Limit: This value represents the level to which target analyte concentrations are reported as estimated values, when those target analyte concentrations are quantified below the reporting limit (RL). The MDL includes any adjustments from dilutions, concentrations or moisture content, where applicable.

> - Matrix Spike Sample: A sample prepared by adding a known mass of target analyte to a specified amount of matrix sample for which an independent estimate of target analyte concentration is available. For Method 332.0, the spike recovery is calculated

using the native concentration, including estimated values.

MSD - Matrix Spike Sample Duplicate: Refer to MS.

NA - Not Applicable.

- Not Calculated: Term is utilized when one or more of the results utilized in the calculation are non-detect at the parameter's

reporting unit.

 $NDPA/DPA \quad \text{- N-Nitrosodiphenylamine}.$

NI - Not Ignitable.

NP - Non-Plastic: Term is utilized for the analysis of Atterberg Limits in soil.

NR - No Results: Term is utilized when 'No Target Compounds Requested' is reported for the analysis of Volatile or Semivolatile

Organic TIC only requests.

RL - Reporting Limit: The value at which an instrument can accurately measure an analyte at a specific concentration. The RL

includes any adjustments from dilutions, concentrations or moisture content, where applicable.

RPD - Relative Percent Difference: The results from matrix and/or matrix spike duplicates are primarily designed to assess the precision of analytical results in a given matrix and are expressed as relative percent difference (RPD). Values which are less than five times the reporting limit for any individual parameter are evaluated by utilizing the absolute difference between the

values; although the RPD value will be provided in the report.

SRM - Standard Reference Material: A reference sample of a known or certified value that is of the same or similar matrix as the

associated field samples.

STLP - Semi-dynamic Tank Leaching Procedure per EPA Method 1315.

TEF - Toxic Equivalency Factors: The values assigned to each dioxin and furan to evaluate their toxicity relative to 2,3,7,8-TCDD.

TEQ - Toxic Equivalent: The measure of a sample's toxicity derived by multiplying each dioxin and furan by its corresponding TEF

and then summing the resulting values.

TIC - Tentatively Identified Compound: A compound that has been identified to be present and is not part of the target compound list (TCL) for the method and/or program. All TICs are qualitatively identified and reported as estimated concentrations.

Report Format: Data Usability Report

Project Name:DRISCOLL SCHOOLLab Number:L2102191Project Number:6693Report Date:01/20/21

Footnotes

 The reference for this analyte should be considered modified since this analyte is absent from the target analyte list of the original method.

Terms

Analytical Method: Both the document from which the method originates and the analytical reference method. (Example: EPA 8260B is shown as 1,8260B.) The codes for the reference method documents are provided in the References section of the Addendum.

Difference: With respect to Total Oxidizable Precursor (TOP) Assay analysis, the difference is defined as the Post-Treatment value minus the Pre-Treatment value.

Final pH: As it pertains to Sample Receipt & Container Information section of the report, Final pH reflects pH of container determined after adjustment at the laboratory, if applicable. If no adjustment required, value reflects Initial pH.

Frozen Date/Time: With respect to Volatile Organics in soil, Frozen Date/Time reflects the date/time at which associated Reagent Water-preserved vials were initially frozen. Note: If frozen date/time is beyond 48 hours from sample collection, value will be reflected in 'bold'. Initial pH: As it pertains to Sample Receipt & Container Information section of the report, Initial pH reflects pH of container determined upon receipt, if applicable.

PAH Total: With respect to Alkylated PAH analyses, the 'PAHs, Total' result is defined as the summation of results for all or a subset of the following compounds: Naphthalene, C1-C4 Naphthalenes, 2-Methylnaphthalene, 1-Methylnaphthalene, Biphenyl, Acenaphthylene, Acenaphthene, Fluorene, C1-C3 Fluorenes, Phenanthrene, C1-C4 Phenanthrenes/Anthracenes, Anthracene, Fluoranthene, Pyrene, C1-C4 Fluoranthenes/Pyrenes, Benza(a)anthracene, Chrysene, C1-C4 Chrysenes, Benzo(b)fluoranthene, Benzo(j)+(k)fluoranthene, Benzo(e)pyrene, Benzo(a)pyrene, Perylene, Indeno(1,2,3-cd)pyrene, Dibenz(ah)+(ac)anthracene, Benzo(g,h,i)perylene. If a 'Total' result is requested, the results of its individual components will also be reported.

PFAS Total: With respect to PFAS analyses, the 'PFAS, Total (5)' result is defined as the summation of results for: PFHpA, PFHxS, PFOA, PFNA and PFOS. In addition, the 'PFAS, Total (6)' result is defined as the summation of results at or above the RL for: PFHpA, PFHxS, PFOA, PFNA, PFDA and PFOS. (Note: 'PFAS, Total (6)' is applicable to MassDEP DW compliance analysis only.). If a 'Total' result is requested, the results of its individual components will also be reported.

The target compound Chlordane (CAS No. 57-74-9) is reported for GC ECD analyses. Per EPA, this compound "refers to a mixture of chlordane isomers, other chlorinated hydrocarbons and numerous other components." (Reference: USEPA Toxicological Review of Chlordane, In Support of Summary Information on the Integrated Risk Information System (IRIS), December 1997.)

Total: With respect to Organic analyses, a 'Total' result is defined as the summation of results for individual isomers or Aroclors. If a 'Total' result is requested, the results of its individual components will also be reported. This is applicable to 'Total' results for methods 8260, 8081 and 8082.

Data Qualifiers

- A Spectra identified as "Aldol Condensates" are byproducts of the extraction/concentration procedures when acetone is introduced in the process.
- The analyte was detected above the reporting limit in the associated method blank. Flag only applies to associated field samples that have detectable concentrations of the analyte at less than ten times (10x) the concentration found in the blank. For MCP-related projects, flag only applies to associated field samples that have detectable concentrations of the analyte at less than ten times (10x) the concentrations of the analyte at less than ten times (10x) the concentrations of the analyte was detectable concentrations of the analyte at less than ten times (10x) the concentration found in the blank AND the analyte was detected above one-half the reporting limit (or above the reporting limit for common lab contaminants) in the associated method blank. For NJ-Air-related projects, flag only applies to associated field samples that have detectable concentrations of the analyte above the reporting limit. For NJ-related projects (excluding Air), flag only applies to associated field samples that have detectable concentrations of the analyte, which was detected above the reporting limit in the associated method blank or above five times the reporting limit for common lab contaminants (Phthalates, Acetone, Methylene Chloride, 2-Butanone).
- Co-elution: The target analyte co-elutes with a known lab standard (i.e. surrogate, internal standards, etc.) for co-extracted analyses.
- Concentration of analyte was quantified from diluted analysis. Flag only applies to field samples that have detectable concentrations of the analyte.
- E Concentration of analyte exceeds the range of the calibration curve and/or linear range of the instrument.
- F The ratio of quantifier ion response to qualifier ion response falls outside of the laboratory criteria. Results are considered to be an estimated maximum concentration.
- G The concentration may be biased high due to matrix interferences (i.e, co-elution) with non-target compound(s). The result should be considered estimated.
- H The analysis of pH was performed beyond the regulatory-required holding time of 15 minutes from the time of sample collection.
- I The lower value for the two columns has been reported due to obvious interference.
- J Estimated value. This represents an estimated concentration for Tentatively Identified Compounds (TICs).
- M Reporting Limit (RL) exceeds the MCP CAM Reporting Limit for this analyte.
- **ND** Not detected at the reporting limit (RL) for the sample.
- NJ Presumptive evidence of compound. This represents an estimated concentration for Tentatively Identified Compounds (TICs), where

Report Format: Data Usability Report

Project Name:DRISCOLL SCHOOLLab Number:L2102191Project Number:6693Report Date:01/20/21

Data Qualifiers

the identification is based on a mass spectral library search.

- P The RPD between the results for the two columns exceeds the method-specified criteria.
- Q The quality control sample exceeds the associated acceptance criteria. For DOD-related projects, LCS and/or Continuing Calibration Standard exceedences are also qualified on all associated sample results. Note: This flag is not applicable for matrix spike recoveries when the sample concentration is greater than 4x the spike added or for batch duplicate RPD when the sample concentrations are less than 5x the RL. (Metals only.)
- **R** Analytical results are from sample re-analysis.
- **RE** Analytical results are from sample re-extraction.
- ${f S}$ Analytical results are from modified screening analysis.

Report Format: Data Usability Report

Serial_No:01202110:42

Project Name:DRISCOLL SCHOOLLab Number:L2102191Project Number:6693Report Date:01/20/21

REFERENCES

Methods for the Determination of Metals in Environmental Samples, Supplement I. EPA/600/R-94/111. May 1994.

- Inductively Coupled Plasma Atomic Emission Spectrometric Method for Trace Element Analysis of Water and Wastes. Appendix C, Part 136, 40 CFR (Code of Federal Regulations). July 1, 1999 edition.
- 121 Standard Methods for the Examination of Water and Wastewater. APHA-AWWA-WEF. Standard Methods Online.

LIMITATION OF LIABILITIES

Alpha Analytical performs services with reasonable care and diligence normal to the analytical testing laboratory industry. In the event of an error, the sole and exclusive responsibility of Alpha Analytical shall be to re-perform the work at it's own expense. In no event shall Alpha Analytical be held liable for any incidental, consequential or special damages, including but not limited to, damages in any way connected with the use of, interpretation of, information or analysis provided by Alpha Analytical.

We strongly urge our clients to comply with EPA protocol regarding sample volume, preservation, cooling, containers, sampling procedures, holding time and splitting of samples in the field.

Serial_No:01202110:42

Alpha Analytical, Inc. Facility: Company-wide Department: Quality Assurance

Title: Certificate/Approval Program Summary

ID No.:17873

Revision 17

Published Date: 4/28/2020 9:42:21 AM

Page 1 of 1

Certification Information

The following analytes are not included in our Primary NELAP Scope of Accreditation:

Westborough Facility

EPA 624/624.1: m/p-xylene, o-xylene, Naphthalene

EPA 8260C: NPW: 1,2,4,5-Tetramethylbenzene; 4-Ethyltoluene, Azobenzene; SCM: lodomethane (methyl iodide), 1,2,4,5-Tetramethylbenzene; 4-Ethyltoluene.

EPA 8270D: NPW: Dimethylnaphthalene,1,4-Diphenylhydrazine; SCM: Dimethylnaphthalene,1,4-Diphenylhydrazine.

SM4500: NPW: Amenable Cyanide; SCM: Total Phosphorus, TKN, NO2, NO3.

Mansfield Facility

SM 2540D: TSS

EPA 8082A: NPW: PCB: 1, 5, 31, 87,101, 110, 141, 151, 153, 180, 183, 187.

EPA TO-15: Halothane, 2,4,4-Trimethyl-2-pentene, 2,4,4-Trimethyl-1-pentene, Thiophene, 2-Methylthiophene,

3-Methylthiophene, 2-Ethylthiophene, 1,2,3-Trimethylbenzene, Indan, Indene, 1,2,4,5-Tetramethylbenzene, Benzothiophene, 1-Methylnaphthalene.

EPA TO-12 Non-methane organics

EPA 3C Fixed gases

Biological Tissue Matrix: EPA 3050B

The following analytes are included in our Massachusetts DEP Scope of Accreditation

Westborough Facility:

Drinking Water

EPA 300.0: Chloride, Nitrate-N, Fluoride, Sulfate; EPA 353.2: Nitrate-N, Nitrite-N; SM4500NO3-F: Nitrate-N, Nitrite-N; SM4500F-C, SM4500CN-CE,

EPA 180.1, SM2130B, SM4500CI-D, SM2320B, SM2540C, SM4500H-B, SM4500NO2-B

EPA 332: Perchlorate: EPA 524.2: THMs and VOCs; EPA 504.1: EDB, DBCP.

Microbiology: SM9215B; SM9223-P/A, SM9223B-Colilert-QT,SM9222D.

Non-Potable Water

SM4500H,B, EPA 120.1, SM2510B, SM2540C, SM2320B, SM4500CL-E, SM4500F-BC, SM4500NH3-BH: Ammonia-N and Kjeldahl-N, EPA 350.1: Ammonia-N, LACHAT 10-107-06-1-B: Ammonia-N, EPA 351.1, SM4500NO3-F, EPA 353.2: Nitrate-N, SM4500P-E, SM4500P-B, E, SM4500SO4-E, SM5220D, EPA 410.4, SM5210B, SM5310C, SM4500CL-D, EPA 1664, EPA 420.1, SM4500-CN-CE, SM2540D, EPA 300: Chloride, Sulfate, Nitrate. EPA 624.1: Volatile Halocarbons & Aromatics,

EPA 608.3: Chlordane, Toxaphene, Aldrin, alpha-BHC, beta-BHC, gamma-BHC, delta-BHC, Dieldrin, DDD, DDE, DDT, Endosulfan II, Endosulfan II, Endosulfan sulfate, Endrin, Endrin Aldehyde, Heptachlor, Heptachlor Epoxide, PCBs

EPA 625.1: SVOC (Acid/Base/Neutral Extractables), EPA 600/4-81-045: PCB-Oil.

Microbiology: SM9223B-Colilert-QT; Enterolert-QT, SM9221E, EPA 1600, EPA 1603.

Mansfield Facility:

Drinking Water

EPA 200.7: Al, Ba, Cd, Cr, Cu, Fe, Mn, Ni, Na, Ag, Ca, Zn. EPA 200.8: Al, Sb, As, Ba, Be, Cd, Cr, Cu, Pb, Mn, Ni, Se, Ag, TL, Zn. EPA 245.1 Hg. EPA 522.

Non-Potable Water

EPA 200.7: Al, Sb, As, Be, Cd, Ca, Cr, Co, Cu, Fe, Pb, Mg, Mn, Mo, Ni, K, Se, Ag, Na, Sr, TL, Ti, V, Zn.

EPA 200.8: Al, Sb, As, Be, Cd, Cr, Cu, Fe, Pb, Mn, Ni, K, Se, Ag, Na, TL, Zn.

EPA 245.1 Hg.

SM2340B

For a complete listing of analytes and methods, please contact your Alpha Project Manager.

Document Type: Form

Pre-Qualtrax Document ID: 08-113

CHAIN OF CUSTODY PAGE 1 OF 1							Date Rec'd in Lab: 1/14/21 ALPHA Job #: L2 (02/9											102181					
8 Walkup Drive	320 Forbes Blvd		Project Information					Report Information - Data Deliverables								Billing Information							
Westboro, MA 01 Tel: 508-898-92	581 Mansfield, MA 02048		Project Name: Driscoll School					X	ADEx		0	EMAIL						Sa	me as	Client	info	PO#:	
Client Information			Project Location: Brookline, MA						Regulatory Requirements & Project Information Requirements U Yes No MA MCP Analytical Methods U Yes No CT RCP Analytical Methods														
Client: McPhail Associates, LLC Project #: 66 4 3							☐ Yes	S M No	MA N	ACP A	nalytica Regui	Metho	ds his SDC	37 (Req	I Yes uired f	□ No or MC	CT R	CP Ana	alytica	Metho	ds		
Address: 2269 Massa	achusetts Avenue		Project Manager		K Hods	A P.		☐ Yes	MNo	GW	Stan	dards (I			r Metals					23			
Cambridge, MA 02140 ALPHA Quote #: Phone: (617) 868-1420 Turn-Around Time				1,00	, ,		■ #Yes □ No NPDES RGP □ Other State /Fed Program Criteria																
				and the																			
Email: NHo dge	@McPhailgeo.c	om	Standard	D RUSH (anly confirmed	if pre-approve	adt)							122	RCRA8	/Zn			4		A)		T
Additional Pro	oject Information:		→ Standard □ RUSH (only confirmed if pre-approved!) Date Due:					ge IV				155	22	RA8	2	Ę.		8	3)(550	(005h)	0.9/4.0 47/40/00/00/00	0 T
□ Run TCLP (if trig							ssessment Package VOC)	□ 8260	Fotal Solids	SVOC: □ PAH	H: C Ranges & Targets Ranges Only	VPH; ☐ Ranges & Targets ☐ Ranges Only	TOTAL METALS: DIRCRAB	DISSOLVED METALS:	METALS: Total Sb,Be,Ni,TI,V,Zn	Bs 🗆 Pesticides	RGP Section A Inorganics	P Metals (200.8)(ant	nonia	SAMPLE INFO Filtration Field Lab to do Preservation Lab to do	L . BOTT.	
(Lab Use Only)	ALPHA Lab ID Sample ID (Lab Use Only)		Sample Depth Material		Colle Date	ction Time	Sampler Initials	Soil A	VOC	otal	3000	EPH:	PH.	10. P	SSS	/ET	D PCBs	GP	RGP	古	Am	Sample Comments	£ 5
02/9/-01	Muddy River &	out-610w		GW		12:30		0,0											Х	Х	X	Sample Comments	2
																							-
																							t
																					H		+
																							F
Container Type A=Amber glass	Preservative A=None	Ammonia,	ection A Inorquanics : Container Type nia, Chloride, TRC, TSS, CrVI, CrIII, Total Preservative Preservative																P	P	P		
B=Bacteria cup C=Cube D=BOD bottle E=Encore	B=HCl Cyanide, Total RGP Metals Cyanide Selfinquished By: D=H ₂ SO ₄ Cyanide Selfinquished By: Cyanide Self				D	Date/Time			_		Rece	ived By				A A A							
G=Glass O=Other P=Plastic	E=NaOH F=MeOH G=NaHSO ₄ H=Na ₂ S ₂ O ₃	San McPha	Phail Associates secure sample storage for				1/14/20 2:30			McPhail Associates secure sample pick-up				e stora		abora	tory	1 14/21 1616				All samples submitted as	re
V=Vial Sample Material F=Fili S=Sand O=Organics C=Ctay	laboratory pick-up				Z1 1670 1700	Ken for					1/14/21 1600				Alpha's Terms								
N=Natural T=Till GM=Glaciomarine GW=Groundwater																						DOC ID: 25188 Rev (11/28/2017)	0

APPENDIX F:

BEST MANAGEMENT PRACTICE PLAN

A Notice of Intent for a Remediation General Permit (RGP) under the National Pollutant Discharge Elimination System (NPDES) has been submitted to the US Environmental Protection Agency (EPA) in anticipation of temporary construction dewatering that will occur during redevelopment of Driscoll School in Brookline, Massachusetts. This Best Management Practices Plan (BMPP) has been prepared as an Appendix to the RGP and will be posted at the site during the time period that temporary construction dewatering is occurring at the site.

Water Treatment and Management

During construction of the proposed building foundation, dewatering effluent is anticipated to be pumped from well points or from localized sumps and trenches within the excavation directly into a settling tank. A review of available subgrade sanitary and storm sewer system plans accessed by the Town of Brookline's Engineering Department indicated discharge from the subject site outfalls at C400-034 near Brookline Avenue along the Muddy River as seen in (Figures 3A and 3B). Dewatering effluent treatment will consist of a settling tank and bag filters to remove suspended soil particulates, and an prior to off-site discharge. pH adjustment will be conducted, if necessary, through the addition of hydrochloric acid, caustic soda and carbon dioxide. Additionally, granular activated carbon (GAC) and/or ion resin media filters will be added to the system, if deemed necessary based on the results of influent and effluent sample analysis.

Discharge Monitoring and Compliance

Regular sampling and testing will be conducted at the influent to the system and the treated effluent as required by the RGP. During the first week of discharge, the operator must sample the untreated influent and treated effluent two times: one (1) sample of untreated influent and one (1) sample of treated effluent be collected on the first day of discharge, and one (1) sample of untreated influent and one (1) sample of treated effluent must be collected on one additional non-consecutive day within the first week of discharge. Samples must be analyzed in accordance with 40 CFR §136 unless otherwise specified by the RGP,

with a maximum 5-day turnaround time and results must be reviewed no more than 48 hours from receipt of the results of each sampling event. After the first week, samples may be analyzed with up to a ten (10)-day turnaround time and results must be reviewed no more than 72 hours from receipt of the results. If the treatment system is operating as designed and achieving the effluent limitations outlined in the RGP, on-going sampling shall be conducted weekly for three (3) additional weeks beginning no earlier than 24 hours following initial sampling, and monthly thereafter as described below. Any adjustments/reductions in monitoring frequency must be approved by EPA in writing.

In accordance with Part 4.1 of the RGP, the operator must perform routine monthly monitoring for both influent and effluent beginning no more than 30 days following the completion of the sampling requirements for new discharges or discharges that have been interrupted. The routine monthly monitoring is to be conducted through the end of the scheduled discharge. The routine monthly monitoring must continue for five (5) consecutive months prior to submission of any request for modification of monitoring frequency.

Dewatering activity for the Site is classified as Category III-G: Sites with Known Contamination. Monitoring shall include analysis of influent and effluent samples dictated by the EPA.

Monitoring will include checking the condition of the treatment system, assessing the need for treatment system adjustments based on monitoring data, observing, and recording daily flow rates and discharge quantities, and verifying the flow path of the discharged effluent.

The total monthly flow will be monitored by checking and documenting the flow through the flow meter to be installed on the system. Flow will be maintained below the "system design flow" by regularly monitoring flow and adjusting the amount of construction dewatering as needed. Monthly monitoring reports will be compiled and maintained at the site.

System Maintenance

A number of methods will be used to minimize the potential for violations during the term of this permit discharge. Scheduled regular maintenance and periodic cleaning of the treatment system will be conducted to verify proper operation and shall be conducted in accordance with Section 1.11 of the project earthwork specifications. Regular maintenance will include checking the condition of the treatment system equipment such as the settling tanks, bag filters, hoses, pumps, and flow meters. Equipment will be monitored daily for potential issues and unscheduled maintenance requirements.

Employees who have direct or indirect responsibility for ensuring compliance with the RGP will be trained by the Contractor.

Miscellaneous Items

It is anticipated that the erosion control measures and the nature of the site will minimize potential runoff to or from the site. The project specifications also include requirements for erosion control. Site security for the treatment system will be addressed within the overall site security plan.

No adverse effects on designated uses of surrounding surface water bodies is anticipated. The nearest surface water body is the Muddy River, classified by the DEP as a Class B Surface Water Body, that is located approximately 1 mile to the east of the subject site. Dewatering effluent will be pumped into a settling tank. Water within the settling tank will pumped through bag filters and, if deemed necessary GAC filters and/or ion exchange chambers prior to discharge into the storm drains.

Management of Treatment System Materials

Dewatering effluent will be pumped directly into the treatment system from the excavation with use of hoses and localized sumps to minimize handling. The Contractor will establish staging areas for equipment or materials storage that may be possible sources of pollution away from any dewatering activities, to the extent practicable.

Sediment from the tank used in the treatment system will be characterized and removed from the site to an appropriate receiving facility, in accordance with applicable laws and regulations. Filter media will be replaced/disposed of as necessary.