

U.S. Environmental Protection Agency

EPA/OEP RGP Applications Coordinator 5 Post Office Square, Suite 100 (OEP06-4)

Office of Ecosystem Protection

Boston, Massachusetts 02109-3912

July 29, 2021

89 Crawford Street

Leominster, Massachusetts 01453

Tel: 774.450.7177 Fax: 888.835.0617 www.lrt-llc.net

Reference: Notice of Intent (NOI) - Remediation General Permit (RGP)

MBTA Silverline Head House

Seaport Boulevard Boston, Massachusetts

Dear Sir/Madam:

On behalf of McCourt Construction (McCourt), Lockwood Remediation Technologies, LLC (LRT) has prepared this Notice of Intent (NOI) requesting a determination of coverage under the United States Environmental Protection Agency's (EPA's) Remediation General Permit (RGP), pursuant EPA's National Pollutant Discharge Elimination System (NPDES) program. This NOI was prepared in accordance with the general requirements of the NPDES RGP and related guidance documentation provided by EPA. The completed NOI Form is provided in **Appendix A**.

Site Information

This NOI has been prepared for the management groundwater that will be generated during dewatering activities associated with the construction of the new MBTA Head House for the Silverline Courthouse Station, specifically the excavation for the new foundation. The project is to take place on Seaport Boulevard east of Pier Street and south of District Hall in Boston, Massachusetts (the Site). The work is anticipated to be completed within twelve months. A Site Locus is provided as **Figure 1** and a Site Plan satisfying the requirements of RGP Appendix IV Part I.B and I.D is provided as **Figure 2**.

Work Summary

The Head House construction includes the at grade building and below grade work including an elevator, stairway, and escalator. To complete the foundation excavation in the dry, dewatering will be required to lower the groundwater table as work is being performed. To do this, filtered sumps will be placed in low spots within the excavation. The water generated during dewatering (source water) will be pumped to a treatment system prior to discharge to a stormwater catch basin with an outfall within a Boston Inner Harbor. To characterize groundwater from the proposed excavation area, LRT collected representative groundwater samples from a test pit on June 18, 2021 (**Figure 2**). Groundwater was extracted from the test pit utilizing a low flow sample pump. A sample of the receiving water (Boston Inner Harbor) was

also collected on the same day. The samples were analyzed for various parameters in accordance with the NPDES RGP Activity Category III-G.

Discharge and Receiving Surface Water Information

A summary of the analytical results is provided in **Tables 1 and 2** included within **Appendix A**, and copies of the laboratory data reports are provided in **Appendix D**. Concentrations of polycyclic aromatic hydrocarbons (PAHs) and metals including copper, iron, lead and nickel were detected in groundwater at concentrations above the respective NPDES RGP Effluent Limitations. To meet these standards, source water will undergo treatment that includes bag filtration and carbon treatment prior to discharge. It is assumed that metal concentrations will be handled by settling and bag filtration. pH adjustment, chemical aided settling, zeolite filtration, cation and anion ion exchange and cartridge filtration have been included as contingency treatment options if additional analytes are encountered that would require further treatment beyond the base water treatment system. Details of the water treatment system are provided below.

Water Treatment System

A water treatment system schematic is provided as **Figure 3**. Cutsheets of the system components, product information and Safety Data Sheets (SDS) are included in **Appendix G**.

Source water will be pumped to a treatment system with a design flow rate of up to 100 gallons per minute (gpm); the average effluent flow of the system is estimated to be 75 gpm, and the maximum flow will not exceed 100 gpm. Source water will enter one weir tank at the head of the system. From the weir tank will be pumped to a bag filter skid followed by two reactivated liquid phase carbon carbon vessels plumbed in series. If required, contingency treatment will include pH adjustment, chemical aided settling, zeolite media, cation and/or anion ion exchange media treatment, bone char carbon treatment and cartridge filtration.

Discharge from the water treatment system will pass through a flow/totalizer meter prior to discharge into a stormwater catch basin that discharges to Boston Inner Harbor, as depicted on **Figure 2**. Effluent sampling will correspond with this discharge location.

Chemical and Additive Information

Based on groundwater samples collected from the site and in efforts to meet the expected effluent limitations, the following chemicals and additives have been proposed as contingency items for the treatment system: pH adjustment (sulfuric acid or sodium hydroxide), chemical aided settling system through coagulants/flocculants. Product names, chemical formulas, manufacturer information and Chemical Abstract Services (CAS) registry numbers have been provided on the SDSs included in **Appendix G**.

The pH adjustment system includes an automated feed system with a mix tank, chemical feed pumps and setpoint controls that maintain the pH to within discharge permit parameters. The maximum application

concentration for sulfuric acid or sodium hydroxide would be 333 mg/L. The chemical aided settling system will be added in two parts, the coagulant (LRT-E-50) will be injected into the influent stream prior to entering the frac tanks while the flocculant (LRT-823) will be added directly into the frac tanks. The coagulant and flocculant continually dose as dewatering activities occur at the maximum dosage rate of 25 parts per million (ppm). Although dosage rate for the coagulant and flocculant will be 25ppm, the detected concentration in the post bag filter (carryover) has been recorded in the parts per trillion (ppt) range, (about 6 order of magnitude less than the dosing concentration). This is because nearly all the chemical becomes incorporated in the sludge and removed from the waste stream as solids from the frac and weir tanks.

The addition of pH conditioners and chemical aided settling system chemicals will 1) Not add any pollutant in concentrations which exceed permit effluent limitations; 2) Not result in the exceedance of any applicable water quality standard; and 3) Not add any pollutants that would justify the application of permit conditions that different from or absent in this permit. The addition of sulfuric acid or sodium hydroxide to control pH is a standard treatment for temporary construction dewatering and is not expected to exceed applicable permit limitations and water quality standards or alter conditions in the receiving water. No additional testing is considered necessary for use of this product or to demonstrate that use of this product will not adversely affect the receiving water.

Consultation with Federal Services

LRT reviewed online electronic data viewers and databases from the Massachusetts Geographical Information System (MassGIS), the Massachusetts Division of Fisheries and Wildlife (MassWildlife; Natural Heritage and Endangered Species Program), and the U.S. National Parks Service Natural Historic Places (NPS). Based on this review, the Site and the point where the proposed discharge reaches the receiving surface water body are not located within an Area of Critical Environmental Concern (ACEC). The Site and the proposed discharge point are not located within Habitats of Rare Wetland Wildlife, Habitats of Rare Species, Estimated Habitats of Rare Wildlife, or listed as a National Historic Place. Documentation is included in **Appendix E**.

Coverage under NPDES RGP

It is our opinion that the proposed discharge is eligible for coverage under the NPDES RGP. On behalf of McCourt Construction, LRT is requesting coverage under the NPDES RGP for the discharge of treated wastewater to Boston Inner Harbor in support of construction dewatering activities that are to take place at the Site.

The enclosed NOI form provides required information on the general site conditions, discharge, treatment system, receiving water, and consultation with federal services. For this project, McCourt Construction is considered the Operator and will have operational control over the dewatering and water treatment systems.

Please feel free to contact us at 774-450-7177 if you have any questions or if you require additional information.

Sincerely,

Lockwood Remediation Technologies, LLC

Jacob Jennings

Brian Caccavale

Jacob Jennings Staff Scientist Brian Caccavale Project Manager

Encl: Figure 1 - Locus Plan

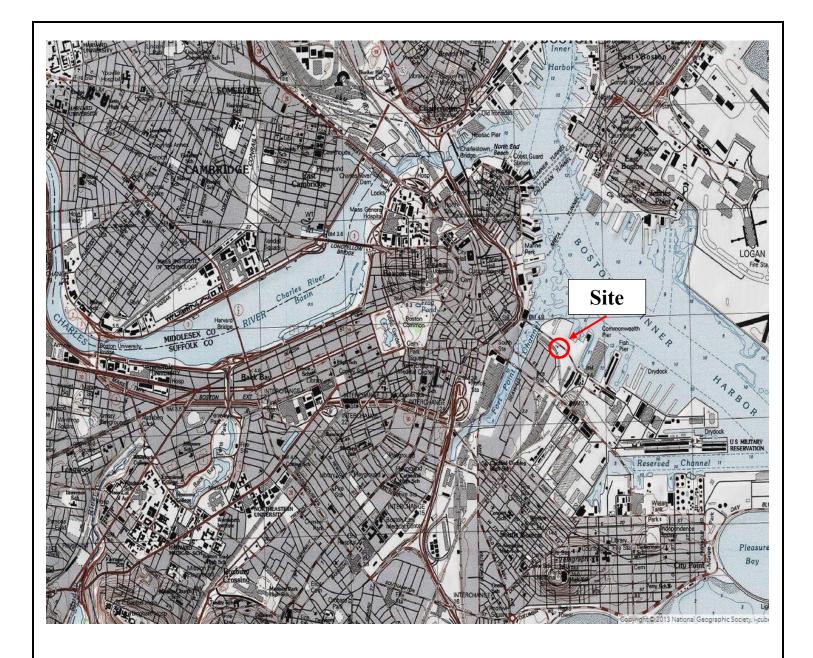
Figure 2 - Site Plan

Figure 3 - Water Treatment System Schematic

Appendix A - NOI Form Appendix B – Laboratory Data

Appendix C – Water Treatment System Cutsheets and SDSs

Appendix D – Supplementary information

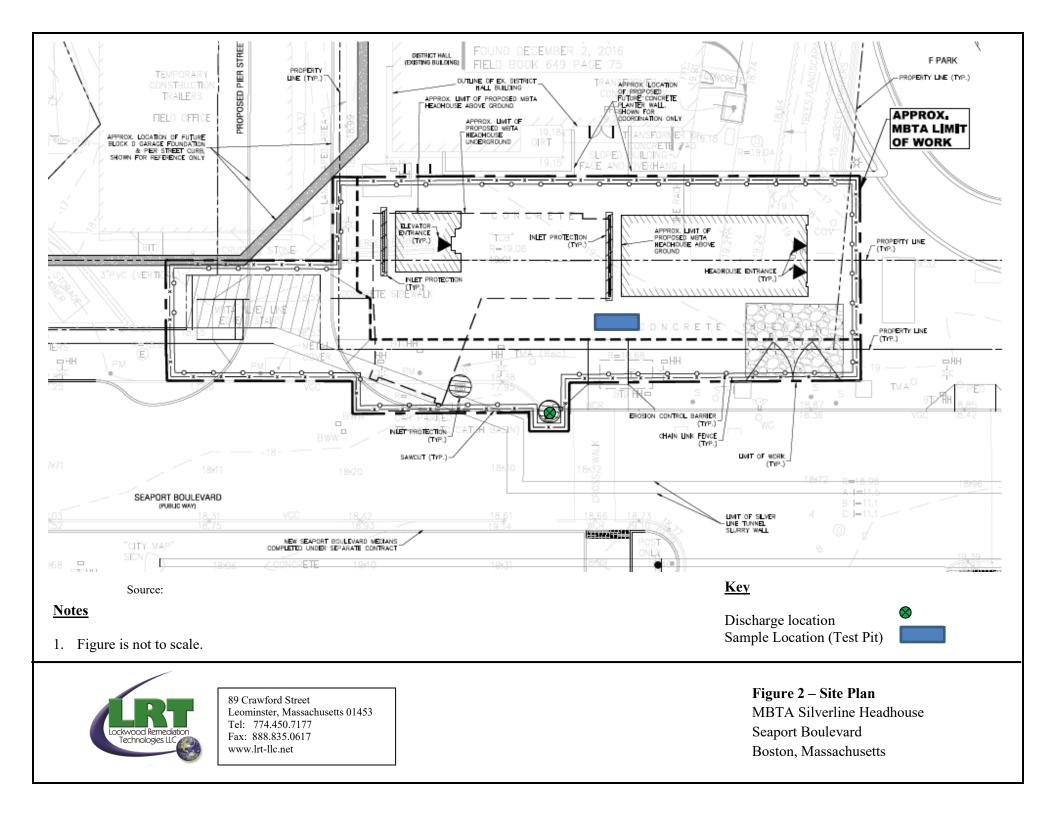

Appendix E – Boston Water and Sewer Commission (BWSC) Discharge Permit

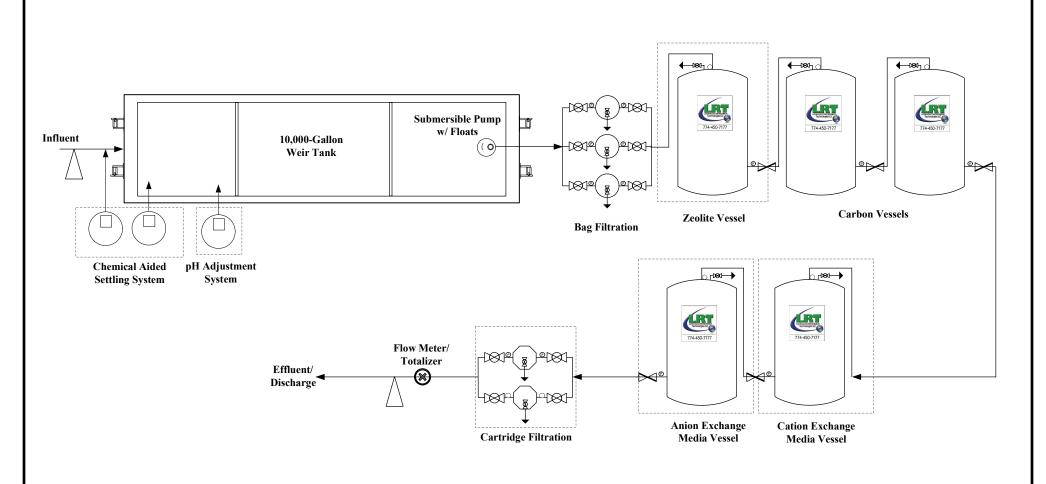
cc: Ms. Catherine Vakalopoulos – MassDEP (via email)

Mr. Steve Winn – McCourt Construction (via email)

Mr. Tom Rovero – MBTA (via email)

Source: ArcGIS Map Viewer


Notes


1. Figure is not to scale.

89 Crawford Street Leominster, Massachusetts 01453 Tel: 774.450.7177

Tel: 774.450.7177 Fax: 888.835.0617 www.lrt-llc.net

Notes:

- 1.) Figure is not to scale
- 2.) System rated for 100 GPM

Key:		_
Piping/Hose		
Sample Port	\triangleright	
Ball Valve	1201	
Butterfly Valve	\bowtie	
Pressure Gauge	0	
Contingency		

Lockwood Remediation Technologies, LLC 89 Crawford Street Leominster, MA 01453

Office: 774-450-7177

DESIGNED BY: LRT DRAWN BY: JHJ

CHECKED BY:

DATE:

Water Treatment System Schematic

MBTA Silver Line Head House Seaport Boulevard Boston, MA

II. Suggested Format for the Remediation General Permit Notice of Intent (NOI)

A. General site information:

1. Name of site:	Site address:						
	Street:						
	City:		State:	Zip:			
2. Site owner	Contact Person:						
	Telephone:	Email:					
	Mailing address:						
	Street:						
Owner is (check one): ☐ Federal ☐ State/Tribal ☐ Private ☐ Other; if so, specify:	City:		State:	Zip:			
3. Site operator, if different than owner	Contact Person:						
	Telephone:	Email:					
	Mailing address:						
	Street:						
	City:		State:	Zip:			
4. NPDES permit number assigned by EPA:	5. Other regulatory program(s) that apply to the site (check all that apply):						
	\square MA Chapter 21e; list RTN(s): \square CERC		CLA				
NPDES permit is (check all that apply: \square RGP \square DGP \square CGP	☐ NH Groundwater Management Permit or	☐ UIC Program					
☐ MSGP ☐ Individual NPDES permit ☐ Other; if so, specify:	Groundwater Release Detection Permit:	□ POTW Pretreatment					
		☐ CWA Section 404					

В.	Receiving water information:	:
1 N	lame of receiving water(s).	

1. Name of receiving water(s):	Waterbody identification of receiving water(s): Classification of receiving water							
Receiving water is (check any that apply): \Box Outstar	nding Resource Water □ Ocean Sanctuary □ territor	rial sea □ Wild and Scenic R	iver					
2. Has the operator attached a location map in accord	lance with the instructions in B, above? (check one)	: □ Yes □ No						
Are sensitive receptors present near the site? (check of If yes, specify:	one): □ Yes □ No							
3. Indicate if the receiving water(s) is listed in the Stapollutants indicated. Also, indicate if a final TMDL i 4.6 of the RGP.								
	dicate the seven day-ten-year low flow (7Q10) of the receiving water determined in accordance with the instructions in endix V for sites located in Massachusetts and Appendix VI for sites located in New Hampshire.							
5. Indicate the requested dilution factor for the calculaccordance with the instructions in Appendix V for s								
6. Has the operator received confirmation from the a If yes, indicate date confirmation received:	ppropriate State for the 7Q10and dilution factor indi	cated? (check one): ☐ Yes ☐	l No					
7. Has the operator attached a summary of receiving	water sampling results as required in Part 4.2 of the	RGP in accordance with the	instruction in Appendix VIII?					
(check one): □ Yes □ No								
C. Source water information:								
1. Source water(s) is (check any that apply):								
☐ Contaminated groundwater	☐ Contaminated surface water	☐ The receiving water	☐ Potable water; if so, indicate municipality or origin:					
Has the operator attached a summary of influent	Has the operator attached a summary of influent	☐ A surface water other						
sampling results as required in Part 4.2 of the RGP in accordance with the instruction in Appendix VIII? (check one):	sampling results as required in Part 4.2 of the RGP in accordance with the instruction in Appendix VIII? (check one):	than the receiving water; if so, indicate waterbody:	☐ Other; if so, specify:					
□ Yes □ No	□ Yes □ No							

2. Source water contaminants:	
a. For source waters that are contaminated groundwater or contaminated surface water, indicate are any contaminants present that are not included in	b. For a source water that is a surface water other than the receiving water, potable water or other, indicate any contaminants present at the maximum concentration in accordance
the RGP? (check one): ☐ Yes ☐ No If yes, indicate the contaminant(s) and the maximum concentration present in accordance with the instructions in Appendix VIII.	with the instructions in Appendix VIII? (check one): □ Yes □ No
3. Has the source water been previously chlorinated or otherwise contains resid	dual chlorine? (check one): □ Yes □ No
D. Discharge information	
1.The discharge(s) is a(n) (check any that apply): \Box Existing discharge \Box New	w discharge □ New source
Outfall(s):	Outfall location(s): (Latitude, Longitude)
Discharges enter the receiving water(s) via (check any that apply): □ Direct di	scharge to the receiving water \Box Indirect discharge, if so, specify:
☐ A private storm sewer system ☐ A municipal storm sewer system If the discharge enters the receiving water via a private or municipal storm sew	ver system:
Has notification been provided to the owner of this system? (check one): □ You	•
Has the operator has received permission from the owner to use such system for obtaining permission:	or discharges? (check one): \square Yes \square No, if so, explain, with an estimated timeframe for
Has the operator attached a summary of any additional requirements the owner	of this system has specified? (check one): \square Yes \square No
Provide the expected start and end dates of discharge(s) (month/year):	
Indicate if the discharge is expected to occur over a duration of: \Box less than 1	2 months □ 12 months or more □ is an emergency discharge
Has the operator attached a site plan in accordance with the instructions in D, a	above? (check one): Yes No

2. Activity Category: (check all that apply)	3. Contamination Type Category: (check all that apply)					
	a. If Activity Categ	ory I or II: (check all that apply)				
	 □ A. Inorganics □ B. Non-Halogenated Volatile Organic □ C. Halogenated Volatile Organic Cor □ D. Non-Halogenated Semi-Volatile Organic □ E. Halogenated Semi-Volatile Organi □ F. Fuels Parameters 	mpounds Organic Compounds				
 □ I – Petroleum-Related Site Remediation □ II – Non-Petroleum-Related Site Remediation 	b. If Activity Category III, IV	V, V, VI, VII or VIII: (check either G or H)				
 □ III – Non-Petroleum-Related Site Remediation □ III – Contaminated Site Dewatering □ IV – Dewatering of Pipelines and Tanks □ V – Aquifer Pump Testing □ VI – Well Development/Rehabilitation □ VII – Collection Structure Dewatering/Remediation □ VIII – Dredge-Related Dewatering 	□ G. Sites with Known Contamination c. If Category III-G, IV-G, V-G, VI-G, VII-G or VIII-G: (check all that apply) □ A. Inorganics □ B. Non-Halogenated Volatile Organic Compounds □ C. Halogenated Volatile Organic Compounds □ D. Non-Halogenated Semi-Volatile Organic Compounds □ E. Halogenated Semi-Volatile Organic Compounds □ F. Fuels Parameters	□ H. Sites with Unknown Contamination d. If Category III-H, IV-H, V-H, VI-H, VII-H or VIII-H Contamination Type Categories A through F apply				

4. Influent and Effluent Characteristics

	Known	Known		75 5 4	Detection	Infl	uent	Effluent Lir	nitations
Parameter	or believed absent	or believed present	# of samples	Test method (#)	Detection limit (µg/l)	Daily maximum (µg/l)	Daily average (µg/l)	TBEL	WQBEL
A. Inorganics									
Ammonia								Report mg/L	
Chloride								Report µg/l	
Total Residual Chlorine								0.2 mg/L	
Total Suspended Solids								30 mg/L	
Antimony								206 μg/L	
Arsenic								104 μg/L	
Cadmium								10.2 μg/L	
Chromium III								323 μg/L	
Chromium VI								323 μg/L	
Copper								242 μg/L	
Iron								5,000 μg/L	
Lead								160 μg/L	
Mercury								0.739 μg/L	
Nickel								1,450 μg/L	
Selenium								235.8 μg/L	
Silver								35.1 μg/L	
Zinc								420 μg/L	
Cyanide								178 mg/L	
B. Non-Halogenated VOCs	3								
Total BTEX								100 μg/L	
Benzene								5.0 μg/L	
1,4 Dioxane								200 μg/L	
Acetone								7.97 mg/L	
Phenol								1,080 µg/L	

	Known	Known		_	_	Inf	luent	Effluent Lin	nitations
Parameter	or believed absent	or believed present	# of samples	Test method (#)	Detection limit (µg/l)	Daily maximum (µg/l)	Daily average (µg/l)	TBEL	WQBEL
C. Halogenated VOCs									
Carbon Tetrachloride								4.4 μg/L	
1,2 Dichlorobenzene								600 μg/L	
1,3 Dichlorobenzene								320 μg/L	
1,4 Dichlorobenzene								5.0 μg/L	
Total dichlorobenzene								763 µg/L in NH	
1,1 Dichloroethane								70 μg/L	
1,2 Dichloroethane								5.0 μg/L	
1,1 Dichloroethylene								3.2 µg/L	
Ethylene Dibromide								0.05 μg/L	
Methylene Chloride								4.6 μg/L	
1,1,1 Trichloroethane								200 μg/L	
1,1,2 Trichloroethane								5.0 μg/L	
Trichloroethylene								5.0 μg/L	
Tetrachloroethylene								5.0 μg/L	
cis-1,2 Dichloroethylene								70 μg/L	
Vinyl Chloride								2.0 μg/L	
D. Non-Halogenated SVO	Cs								
Total Phthalates								190 μg/L	
Diethylhexyl phthalate								101 μg/L	
Total Group I PAHs								1.0 μg/L	
Benzo(a)anthracene								_	
Benzo(a)pyrene								_	
Benzo(b)fluoranthene								_	
Benzo(k)fluoranthene								As Total PAHs	
Chrysene								_	
Dibenzo(a,h)anthracene								_	
Indeno(1,2,3-cd)pyrene									

	Known	Known				Inf	luent	Effluent Lin	nitations
Parameter	or believed absent	or believed present	# of samples	Test method (#)	Detection limit (µg/l)	Daily maximum (µg/l)	Daily average (µg/l)	TBEL	WQBEL
Total Group II PAHs								100 μg/L	
Naphthalene								20 μg/L	
E. Halogenated SVOCs									
Total PCBs								0.000064 µg/L	
Pentachlorophenol								1.0 μg/L	
	1			•					
F. Fuels Parameters Total Petroleum		1	1	1		1 1			
Hydrocarbons								5.0 mg/L	
Ethanol								Report mg/L	
Methyl-tert-Butyl Ether								70 μg/L	
tert-Butyl Alcohol								120 μg/L in MA 40 μg/L in NH	
tert-Amyl Methyl Ether								90 μg/L in MA 140 μg/L in NH	
Other (i.e., pH, temperatur	re, hardness,	salinity, LC	50, addition	al pollutar	ats present);	if so, specify:			

E. Treatment system information

1. Indicate the type(s) of treatment that will be applied to effluent prior to discharge: (check all that apply)	
☐ Adsorption/Absorption ☐ Advanced Oxidation Processes ☐ Air Stripping ☐ Granulated Activated Carbon ("GAC")/Liquid Phase Carbon Adsorption	
☐ Ion Exchange ☐ Precipitation/Coagulation/Flocculation ☐ Separation/Filtration ☐ Other; if so, specify:	
2. Provide a written description of all treatment system(s) or processes that will be applied to the effluent prior to discharge.	
Identify each major treatment component (check any that apply):	
☐ Fractionation tanks☐ Equalization tank ☐ Oil/water separator ☐ Mechanical filter ☐ Media filter	
☐ Chemical feed tank ☐ Air stripping unit ☐ Bag filter ☐ Other; if so, specify:	
Indicate if either of the following will occur (check any that apply):	
□ Chlorination □ De-chlorination	
3. Provide the design flow capacity in gallons per minute (gpm) of the most limiting component.	
Indicate the most limiting component:	
Is use of a flow meter feasible? (check one): \square Yes \square No, if so, provide justification:	
Provide the proposed maximum effluent flow in gpm.	
Trovide the proposed maximum errident now in gpin.	
Provide the average effluent flow in gpm.	
If Activity Category IV applies, indicate the estimated total volume of water that will be discharged:	
4. Has the operator attached a schematic of flow in accordance with the instructions in E, above? (check one): ☐ Yes ☐ No	

F. Chemical and additive information

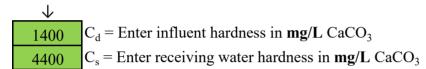
1. Indicate the type(s) of chemical or additive that will be applied to effluent prior to discharge or that may otherwise be present in the discharge(s): (check all that apply)
□ Algaecides/biocides □ Antifoams □ Coagulants □ Corrosion/scale inhibitors □ Disinfectants □ Flocculants □ Neutralizing agents □ Oxidants □ Oxygen □
scavengers □ pH conditioners □ Bioremedial agents, including microbes □ Chlorine or chemicals containing chlorine □ Other; if so, specify:
2. Provide the following information for each chemical/additive, using attachments, if necessary:
a. Product name, chemical formula, and manufacturer of the chemical/additive; b. Purpose or use of the chemical/additive or remedial agent; c. Material Safety Data Sheet (MSDS) and Chemical Abstracts Service (CAS) Registry number for each chemical/additive; d. The frequency (hourly, daily, etc.), duration (hours, days), quantity (maximum and average), and method of application for the chemical/additive; e. Any material compatibility risks for storage and/or use including the control measures used to minimize such risks; and f. If available, the vendor's reported aquatic toxicity (NOAEL and/or LC50 in percent for aquatic organism(s)).
3. Has the operator attached an explanation which demonstrates that the addition of such chemicals/additives may be authorized under this general permit in accordance
with the instructions in F, above? (check one): \square Yes \square No; if no, has the operator attached data that demonstrates each of the 126 priority pollutants in CWA Section 307(a) and 40 CFR Part 423.15(j)(1) are non-detect in discharges with the addition of the proposed chemical/additive?
(check one): ☐ Yes ☐ No
G. Endangered Species Act eligibility determination
1. Indicate under which criterion the discharge(s) is eligible for coverage under this general permit:
□ FWS Criterion A : No endangered or threatened species or critical habitat are in proximity to the discharges or related activities or come in contact with the "action area".
□ FWS Criterion B : Formal or informal consultation with the FWS under section 7 of the ESA resulted in either a no jeopardy opinion (formal consultation) or a written concurrence by FWS on a finding that the discharges and related activities are "not likely to adversely affect" listed species or critical habitat
(informal consultation). Has the operator completed consultation with FWS? (check one): ☐ Yes ☐ No; if no, is consultation underway? (check one): ☐
Yes □ No
□ FWS Criterion C : Using the best scientific and commercial data available, the effect of the discharges and related activities on listed species and critical habitat have been evaluated. Based on those evaluations, a determination is made by EPA, or by the operator and affirmed by EPA, that the discharges and related activities will have "no effect" on any federally threatened or endangered listed species or designated critical habitat under the jurisdiction of the FWS. This determination was made by: (check one) □ the operator □ EPA □ Other; if so, specify:
1 11.5. This determination was made by, (effect one) in the operator in the A in Other, it so, specify.

□ NMFS Criterion : A determination made by EPA is affirmed by the operator that the discharges and related activities will have "no effect" or are "not likely to adversely affect" any federally threatened or endangered listed species or critical habitat under the jurisdiction of NMFS and will not result in any take of
listed species. Has the operator previously completed consultation with NMFS? (check one): ☐ Yes ☐ No
2. Has the operator attached supporting documentation of ESA eligibility in accordance with the instructions in Appendix I, and G, above? (check one): \square Yes \square No
Does the supporting documentation include any written concurrence or finding provided by the Services? (check one): ☐ Yes ☐ No; if yes, attach.
H. National Historic Preservation Act eligibility determination
1. Indicate under which criterion the discharge(s) is eligible for coverage under this general permit:
□ Criterion A : No historic properties are present. The discharges and discharge-related activities (e.g., BMPs) do not have the potential to cause effects on historic properties.
☐ Criterion B: Historic properties are present. Discharges and discharge related activities do not have the potential to cause effects on historic properties.
□ Criterion C : Historic properties are present. The discharges and discharge-related activities have the potential to have an effect or will have an adverse effect on historic properties.
2. Has the operator attached supporting documentation of NHPA eligibility in accordance with the instructions in H, above? (check one): ☐ Yes ☐ No
Does the supporting documentation include any written agreement with the State Historic Preservation Officer (SHPO), Tribal Historic Preservation Officer (TPHO), or
other tribal representative that outlines measures the operator will carry out to mitigate or prevent any adverse effects on historic properties? (check one): \square Yes \square No
I. Supplemental information
Describe any supplemental information being provided with the NOI. Include attachments if required or otherwise necessary.
Has the operator attached data, including any laboratory case narrative and chain of custody used to support the application? (check one): ☐ Yes ☐ No
Has the operator attached the certification requirement for the Best Management Practices Plan (BMPP)? (check one): ☐ Yes ☐ No

J. Certification requirement

I certify under penalty of law that this document and all attachments were prepared under my direction or supervision in a that qualified personnel properly gathered and evaluated the information submitted. Based on my inquiry of the person or persons directly responsible for gathering the information, the information submitted is, to the best of my knowledge and b no personal knowledge that the information submitted is other than true, accurate, and complete. I am aware that there are information, including the possibility of fine and imprisonment for knowing violations.	persons who manage the elief, true, accurate, an	ne system, or those d complete. I have
BMPP certification statement:		
Notification provided to the appropriate State, including a copy of this NOI, if required.	Check one: Yes □	No □
Notification provided to the municipality in which the discharge is located, including a copy of this NOI, if requested.	Check one: Yes □	No □
Notification provided to the owner of a private or municipal storm sewer system, if such system is used for site discharges, including a copy of this NOI, if requested. Permission obtained from the owner of a private or municipal storm sewer system, if such system is used for site	Check one: Yes □	No □ NA □
discharges. If yes, attach additional conditions. If no, attach explanation and timeframe for obtaining permission.	Check one: Yes □	No □ NA □
Notification provided to the owner/operator of the area associated with activities covered by an additional discharge		
$permit(s). \ Additional \ discharge \ permit \ is \ (check \ one): \ \Box \ RGP \ \Box \ DGP \ \Box \ CGP \ \Box \ MSGP \ \ \Box \ Individual \ NPDES \ permit$	Check one: Yes □	No □ NA □
☐ Other; if so, specify:		
Signature: Thomas Rovero, RA Date	te:	
Print Name and Title:		

Enter number values in green boxes below


Enter values in the units specified

\downarrow	_
0	$Q_R = Enter upstream flow in MGD$
0.144	$Q_P = Enter discharge flow in MGD$
0	Downstream 7Q10

Enter a dilution factor, if other than zero

Enter values in the units specified

Enter receiving water concentrations in the units specified

\downarrow	_
7.8	pH in Standard Units
25	Temperature in °C
0.27	Ammonia in mg /L
4400	Hardness in mg/L CaCO ₃
26.1	Salinity in ppt
0	Antimony in μg/L
44	Arsenic in μg/L
0	Cadmium in μg/L
0	Chromium III in µg/L
0	Chromium VI in μg/L
110	Copper in μg/L
0	Iron in μg /L
0	Lead in μg /L
0	Mercury in μg /L
0	Nickel in μg/L
140	Selenium in μg /L
0	Silver in μg/L
0	Zinc in μ g /L

Enter influent concentrations in the units specified

\perp	_
0	TRC in µg/L
1.1	Ammonia in mg /L
9.7	Antimony in μg /L
17	Arsenic in μg/L
0.32	Cadmium in μg/L
12	Chromium III in μg/L
0	Chromium VI in μg/L
65	Copper in µg/L
16000	Iron in μg/L
45	Lead in μg /L
0	Mercury in μg/L
18	Nickel in μg/L
25	Selenium in μg/L
0	Silver in μg/L
71	Zinc in μg/L
0	Cyanide in μg/L
0	Phenol in μg/L
0	Carbon Tetrachloride in µg/L
0	Tetrachloroethylene in μg/L
0	Total Phthalates in μg/L
0	Diethylhexylphthalate in μg/L
0.16	Benzo(a)anthracene in μg/L
0.13	Benzo(a)pyrene in μg/L
0.17	Benzo(b)fluoranthene in μg/L
0.058	Benzo(k)fluoranthene in μg/L
0.16	Chrysene in μg/L
0	Dibenzo(a,h)anthracene in μg/L
0.094	Indeno(1,2,3-cd)pyrene in μg/L
0	Methyl-tert butyl ether in μg/L

A. Inorganics	TBEL applies if	bolded	WQBEL applies if bolded		
Ammonia	Report	mg/L			
Chloride	Report	μg/L			
Total Residual Chlorine	0.2	μg/L mg/L	7.5	ug/I	
Total Suspended Solids		•		μg/L	
_	30	mg/L		/7	
Antimony	206	μg/L	640	μg/L	
Arsenic	104	μg/L	36	μg/L	
Cadmium	10.2	μg/L	8.9	$\mu g/L$	
Chromium III	323	$\mu g/L$	100.0	$\mu g/L$	
Chromium VI	323	$\mu g/L$	50	$\mu g/L$	
Copper	242	μg/L	3.7	μg/L	
Iron	5000	μg/L		μg/L	
Lead	160	μg/L	8.5	μg/L	
Mercury	0.739	μg/L	1.11	μg/L	
Nickel	1450	μg/L	8.3	μg/L	
Selenium	235.8		71		
Silver		μg/L		μg/L	
	35.1	μg/L	2.2	μg/L	
Zinc	420	μg/L	86	μg/L	
Cyanide	178	mg/L	1.0	μg/L	
B. Non-Halogenated VOCs	100	/7			
Total BTEX	100	μg/L			
Benzene 1,4 Dioxane	5.0 200	μg/L μg/L			
Acetone	7.97	μg/L mg/L			
Phenol	1,080	mg/L μg/L	300	μg/L	
C. Halogenated VOCs	2,000	r8 =		P8 2	
Carbon Tetrachloride	4.4		1.6	$\mu g/L$	
1,2 Dichlorobenzene	600	$\mu g/L$			
1,3 Dichlorobenzene	320	$\mu g/L$			
1,4 Dichlorobenzene	5.0	$\mu g/L$			
Total dichlorobenzene		μg/L			
1,1 Dichloroethane	70 7.0	μg/L			
1,2 Dichloroethane	5.0	μg/L			
1,1 Dichloroethylene Ethylene Dibromide	3.2 0.05	μg/L			
Methylene Chloride	4.6	μg/L μg/L			
1,1,1 Trichloroethane	200	μg/L μg/L			
1,1,2 Trichloroethane	5.0	μg/L μg/L			
Trichloroethylene	5.0	μg/L			
Tetrachloroethylene	5.0	μg/L	3.3	μg/L	
cis-1,2 Dichloroethylene	70	μg/L			

Vinyl Chloride 2.0 μg/L	
D. Non-Halogenated SVOCs	
Total Phthalates 190 $\mu g/L$ μg	g/L
Diethylhexyl phthalate 101 μg/L 2.2 μg	g/L
Total Group I Polycyclic	
Aromatic Hydrocarbons 1.0 μg/L	
Benzo(a)anthracene 1.0 μ g/L 0.0038 μ g	g/L
Benzo(a)pyrene 1.0 μg/L 0.0038 μg	g/L
Benzo(b)fluoranthene 1.0 μ g/L 0.0038 μ g	g/L
Benzo(k)fluoranthene 1.0 μ g/L 0.0038 μ g	g/L
Chrysene 1.0 μ g/L 0.0038 μ g	g/L
Dibenzo(a,h)anthracene 1.0 μ g/L 0.0038 μ g	g/L
Indeno(1,2,3-cd)pyrene 1.0 $\mu g/L$ 0.0038 μg	g/L
Total Group II Polycyclic	
Aromatic Hydrocarbons 100 μg/L	
Naphthalene 20 μg/L	
E. Halogenated SVOCs	
Total Polychlorinated Biphenyls 0.000064 µg/L	
Pentachlorophenol 1.0 µg/L	
F. Fuels Parameters	
Total Petroleum Hydrocarbons 5.0 mg/L	
Ethanol Report mg/L	
Methyl-tert-Butyl Ether 70 μg/L 20 μβ	g/L
tert-Butyl Alcohol 120 µg/L	
tert-Amyl Methyl Ether 90 µg/L	

Lockwood Remediation Technologies LLC

June 29, 2021

Brian Caccavale Lockwood Remediation Technologies, LLC 89 Crawford Street Leominster, MA 01453

Project Location: MBTA Headhouse

Client Job Number: Project Number: 2-2223

Laboratory Work Order Number: 21F1162

Keny K. Mille

Enclosed are results of analyses for samples received by the laboratory on June 18, 2021. If you have any questions concerning this report, please feel free to contact me.

Sincerely,

Kerry K. McGee Project Manager

Table of Contents

Sample Summary	4
Case Narrative	5
Sample Results	8
21F1162-01	8
21F1162-02	18
Sample Preparation Information	21
QC Data	23
Volatile Organic Compounds by GC/MS	23
B284408	23
Semivolatile Organic Compounds by GC/MS	25
B284516	25
Semivolatile Organic Compounds by - GC/MS	26
B284382	26
Polychlorinated Biphenyls By GC/ECD	30
B284363	30
Metals Analyses (Total)	31
B284438	31
B284439	31
B284490	32
Conventional Chemistry Parameters by EPA/APHA/SW-846 Methods (Total)	34
B284339	34
B284343	34
B284371	34
B284379	34
B284417	35

Table of Contents (continued)

B284590	35
Drinking Water Organics EPA 504.1	36
B284596	36
Dual Column RPD Report	37
Flag/Qualifier Summary	42
Certifications	43
Chain of Custody/Sample Receipt	47

Lockwood Remediation Technologies, LLC

89 Crawford Street Leominster, MA 01453

ATTN: Brian Caccavale

REPORT DATE: 6/29/2021

PURCHASE ORDER NUMBER: 2-2223

PROJECT NUMBER: 2-2223

ANALYTICAL SUMMARY

WORK ORDER NUMBER: 21F1162

The results of analyses performed on the following samples submitted to CON-TEST, a Pace Analytical Laboratory, are found in this report.

PROJECT LOCATION: MBTA Headhouse

FIELD SAMPLE #	LAB ID:	MATRIX	SAMPLE DESCRIPTION	TEST	SUB LAB
Influent	21F1162-01	Ground Water		-	MA M-MA-086/CT PH-0574/NY11148
				608.3	
				624.1	
				625.1	
				EPA 1664B	
				EPA 200.7	
				EPA 200.8	
				EPA 245.1	
				EPA 300.0	
				EPA 504.1	
				SM19-22 4500 NH3 C	
				SM21-22 2540D	
				SM21-22 3500 Cr B	
				SM21-22 4500 CL G	
				SM2510B	MA M-RI010/CT PH-0740/NY11673/H Additional
				SM2520B	MA M-RI010/CT PH-0740/NY11673/- Additional
				SM4500	MA M-MA-086/CT PH-0574/NY11148
				Tri Chrome Calc.	
Receiving Water	21F1162-02	Ground Water		EPA 200.7	
				EPA 200.8	
				EPA 245.1	
				SM19-22 4500 NH3 C	
				SM21-22 3500 Cr B	
				SM2510B	MA M-RI010/CT PH-0740/NY11673/- Additional
				SM2520B	MA M-RI010/CT PH-0740/NY11673/- Additional
				Tri Chrome Calc.	

CASE NARRATIVE SUMMARY

All reported results are within defined laboratory quality control objectives unless listed below or otherwise qualified in this report.

625.1

Qualifications:

L-04

Laboratory fortified blank/laboratory control sample recovery and duplicate recovery are outside of control limits. Reported value for this compound is likely to be biased on the low side. Analyte & Samples(s) Qualified:

2-Chloronaphthalene

21F1162-01[Influent], B284382-BLK1, B284382-BS1, B284382-BSD1

Hexachlorocyclopentadiene

21F1162-01[Influent], B284382-BLK1, B284382-BS1, B284382-BSD1

L-07

Either laboratory fortified blank/laboratory control sample or duplicate recovery is outside of control limits, but the other is within limits. RPD between the two LFB/LCS results is within method specified criteria.

Analyte & Samples(s) Qualified:

Hexachloroethane

B284382-BS1

V-04

Initial calibration did not meet method specifications. Compound was calibrated using a response factor where %RSD is outside of method specified criteria. Reported result is estimated. Analyte & Samples(s) Qualified:

Benzidine

21F1162-01[Influent], B284382-BLK1, B284382-BS1, B284382-BSD1, S060850-CCV1

V-05

Continuing calibration verification (CCV) did not meet method specifications and was biased on the low side for this compound.

Analyte & Samples(s) Qualified:

Benzidine

21F1162-01[Influent], B284382-BLK1, B284382-BS1, B284382-BSD1, S060850-CCV1

Hexachlorocyclopentadiene

21F1162-01[Influent], B284382-BLK1, B284382-BS1, B284382-BSD1, S060850-CCV1

V-06

Continuing calibration verification (CCV) did not meet method specifications and was biased on the high side for this compound.

Analyte & Samples(s) Qualified:

Bis(2-ethylhexyl)phthalate (SIM)

B284516-BS1, B284516-BSD1, S060834-CCV1

V-20

Continuing calibration verification (CCV) did not meet method specifications and was biased on the high side. Data validation is not affected since sample result was "not detected" for this compound. Analyte & Samples(s) Qualified:

Bis(2-ethylhexyl)phthalate (SIM)

21F1162-01[Influent], B284516-BLK1

EPA 200.7

Qualifications:

DL-04

Elevated reporting limit due to high concentration of an interfering analyte(s).

Analyte & Samples(s) Qualified:

Iron

21F1162-02[Receiving Water]

MS-19

Sample to spike ratio is greater than or equal to 4:1. Spiked amount is not representative of the native amount in the sample. Appropriate or meaningful recoveries cannot be calculated. Analyte & Samples(s) Qualified:

Hardness

21F1162-02[Receiving Water], B284438-MS1

EPA 200.8

Qualifications:

DL-15

Sample required a dilution due to low internal standard recovery of the lesser diluted digestion, reporting limit is elevated.

Analyte & Samples(s) Qualified:

B284439-DUP1

Antimony

21F1162-02[Receiving Water]

Arsenic

21F1162-02[Receiving Water]

Cadmium

21F1162-02[Receiving Water]

Chromium

21F1162-02[Receiving Water]

Copper

21F1162-02[Receiving Water]

Lead

21F1162-02[Receiving Water]

Nickel

21F1162-02[Receiving Water]

Selenium

21F1162-02[Receiving Water]

Silver

21F1162-02[Receiving Water]

Zinc

21F1162-02[Receiving Water]

The results of analyses reported only relate to samples submitted to Con-Test, a Pace Analytical Laboratory, for testing.

I certify that the analyses listed above, unless specifically listed as subcontracted, if any, were performed under my direction according to the approved methodologies listed in this document, and that based upon my inquiry of those individuals immediately responsible for obtaining the information, the material contained in this report is, to the best of my knowledge and belief, accurate and complete.

Lisa A. Worthington
Technical Representative

Lua Watslengton

Project Location: MBTA Headhouse Sample Description: Work Order: 21F1162

Date Received: 6/18/2021 Field Sample #: Influent

Sampled: 6/18/2021 11:00

100

94.2

70-130

70-130

Toluene-d8

4-Bromofluorobenzene

Sample ID: 21F1162-01										
Sample Matrix: Ground Water										
			Volat	ile Organic Comp	ounds by C	GC/MS				
								Date	Date/Time	
Analyte	Results	RL	DL	Units	Dilution	Flag/Qual	Method	Prepared	Analyzed	Analyst
Acetone	4.68	50.0	2.35	$\mu g/L$	1	J	624.1	6/21/21	6/22/21 1:43	LBD
tert-Amyl Methyl Ether (TAME)	< 0.150	0.500	0.150	$\mu g/L$	1		624.1	6/21/21	6/22/21 1:43	LBD
Benzene	< 0.130	1.00	0.130	$\mu g/L$	1		624.1	6/21/21	6/22/21 1:43	LBD
Bromodichloromethane	< 0.140	2.00	0.140	$\mu g/L$	1		624.1	6/21/21	6/22/21 1:43	LBD
Bromoform	< 0.290	2.00	0.290	$\mu g/L$	1		624.1	6/21/21	6/22/21 1:43	LBD
Bromomethane	<1.07	2.00	1.07	$\mu g/L$	1		624.1	6/21/21	6/22/21 1:43	LBD
tert-Butyl Alcohol (TBA)	< 5.34	20.0	5.34	$\mu g/L$	1		624.1	6/21/21	6/22/21 1:43	LBD
Carbon Tetrachloride	< 0.170	2.00	0.170	$\mu g/L$	1		624.1	6/21/21	6/22/21 1:43	LBD
Chlorobenzene	< 0.0800	2.00	0.0800	$\mu g/L$	1		624.1	6/21/21	6/22/21 1:43	LBD
Chlorodibromomethane	< 0.160	2.00	0.160	$\mu g/L$	1		624.1	6/21/21	6/22/21 1:43	LBD
Chloroethane	< 0.370	2.00	0.370	μg/L	1		624.1	6/21/21	6/22/21 1:43	LBD
Chloroform	< 0.190	2.00	0.190	μg/L	1		624.1	6/21/21	6/22/21 1:43	LBD
Chloromethane	< 0.380	2.00	0.380	μg/L	1		624.1	6/21/21	6/22/21 1:43	LBD
1,2-Dichlorobenzene	< 0.100	2.00	0.100	μg/L	1		624.1	6/21/21	6/22/21 1:43	LBD
1,3-Dichlorobenzene	< 0.0900	2.00	0.0900	μg/L	1		624.1	6/21/21	6/22/21 1:43	LBD
1,4-Dichlorobenzene	< 0.110	2.00	0.110	μg/L	1		624.1	6/21/21	6/22/21 1:43	LBD
1,2-Dichloroethane	< 0.320	2.00	0.320	μg/L	1		624.1	6/21/21	6/22/21 1:43	LBD
1,1-Dichloroethane	< 0.160	2.00	0.160	μg/L	1		624.1	6/21/21	6/22/21 1:43	LBD
1,1-Dichloroethylene	< 0.160	2.00	0.160	μg/L	1		624.1	6/21/21	6/22/21 1:43	LBD
trans-1,2-Dichloroethylene	< 0.170	2.00	0.170	μg/L	1		624.1	6/21/21	6/22/21 1:43	LBD
1,2-Dichloropropane	< 0.180	2.00	0.180	μg/L	1		624.1	6/21/21	6/22/21 1:43	LBD
cis-1,3-Dichloropropene	< 0.120	2.00	0.120	μg/L	1		624.1	6/21/21	6/22/21 1:43	LBD
1,4-Dioxane	<21.5	50.0	21.5	μg/L	1		624.1	6/21/21	6/22/21 1:43	LBD
trans-1,3-Dichloropropene	< 0.150	2.00	0.150	μg/L	1		624.1	6/21/21	6/22/21 1:43	LBD
Ethanol	<34.2	50.0	34.2	μg/L	1		624.1	6/21/21	6/22/21 1:43	LBD
Ethylbenzene	<0.0900	2.00	0.0900	μg/L μg/L	1		624.1	6/21/21	6/22/21 1:43	LBD
Methyl tert-Butyl Ether (MTBE)	<0.170	2.00	0.170	μg/L μg/L	1		624.1	6/21/21	6/22/21 1:43	LBD
Methylene Chloride	<0.300	5.00	0.300	μg/L μg/L	1		624.1	6/21/21	6/22/21 1:43	LBD
1,1,2,2-Tetrachloroethane	<0.0900	2.00	0.0900		1		624.1	6/21/21	6/22/21 1:43	LBD
Tetrachloroethylene	<0.200		0.200	μg/L	1		624.1			LBD
Toluene		2.00		μg/L		T	624.1	6/21/21	6/22/21 1:43	
1,1,1-Trichloroethane	0.150	1.00	0.110	μg/L	1	J		6/21/21	6/22/21 1:43	LBD
1,1,2-Trichloroethane	< 0.170	2.00	0.170	μg/L	1		624.1	6/21/21	6/22/21 1:43	LBD
	<0.150	2.00	0.150	μg/L	1		624.1	6/21/21	6/22/21 1:43	LBD
Trichloroethylene Trichloroflyoromethono (Frann 11)	<0.180	2.00	0.180	μg/L	1		624.1	6/21/21	6/22/21 1:43	LBD
Trichlorofluoromethane (Freon 11)	<0.190	2.00	0.190	μg/L	1		624.1	6/21/21	6/22/21 1:43	LBD
Vinyl Chloride	<0.200	2.00	0.200	μg/L	1		624.1	6/21/21	6/22/21 1:43	LBD
m+p Xylene	< 0.180	2.00	0.180	μg/L	1		624.1	6/21/21	6/22/21 1:43	LBD
o-Xylene	< 0.0900	1.00	0.0900	μg/L	1		624.1	6/21/21	6/22/21 1:43	LBD
Surrogates		% Reco	overy	Recovery Limits		Flag/Qual				
1,2-Dichloroethane-d4		113		70-130					6/22/21 1:43	

6/22/21 1:43

6/22/21 1:43

Project Location: MBTA Headhouse Sample Description: Work Order: 21F1162

Date Received: 6/18/2021
Field Sample #: Influent

Sampled: 6/18/2021 11:00

Sample ID: 21F1162-01
Sample Matrix: Ground Water

Semivol	atile O	rganic (Compounds	by	GC/MS	

Analyte	Results	RL	DL	Units	Dilution	Flag/Qual	Method	Date Prepared	Date/Time Analyzed	Analyst
Benzo(a)anthracene (SIM)	0.16	0.048	0.034	μg/L	1		625.1	6/21/21	6/22/21 15:54	IMR
Benzo(a)pyrene (SIM)	0.13	0.097	0.021	$\mu g/L$	1		625.1	6/21/21	6/22/21 15:54	IMR
Benzo(b)fluoranthene (SIM)	0.17	0.048	0.027	$\mu g/L$	1		625.1	6/21/21	6/22/21 15:54	IMR
Benzo(k)fluoranthene (SIM)	0.058	0.19	0.017	$\mu g/L$	1	J	625.1	6/21/21	6/22/21 15:54	IMR
Bis(2-ethylhexyl)phthalate (SIM)	< 0.45	0.97	0.45	μg/L	1	V-20	625.1	6/21/21	6/22/21 15:54	IMR
Chrysene (SIM)	0.16	0.19	0.021	μg/L	1	J	625.1	6/21/21	6/22/21 15:54	IMR
Dibenz(a,h)anthracene (SIM)	< 0.028	0.097	0.028	μg/L	1		625.1	6/21/21	6/22/21 15:54	IMR
Indeno(1,2,3-cd)pyrene (SIM)	0.094	0.097	0.027	μg/L	1	J	625.1	6/21/21	6/22/21 15:54	IMR
Pentachlorophenol (SIM)	< 0.38	0.97	0.38	$\mu g/L$	1		625.1	6/21/21	6/22/21 15:54	IMR
Surrogates		% Reco	very	Recovery Limits	s	Flag/Qual				
2-Fluorophenol (SIM)		39.6		15-110					6/22/21 15:54	
Phenol-d6 (SIM)		35.5		15-110					6/22/21 15:54	
Nitrobenzene-d5		75.7		30-130					6/22/21 15:54	
2-Fluorobiphenyl		68.3		30-130					6/22/21 15:54	
2,4,6-Tribromophenol (SIM)		92.2		15-110					6/22/21 15:54	
p-Terphenyl-d14		77.2		30-130					6/22/21 15:54	

Project Location: MBTA Headhouse Sample Description: Work Order: 21F1162

Date Received: 6/18/2021

Field Sample #: Influent

Sampled: 6/18/2021 11:00

Sample ID: 21F1162-01
Sample Matrix: Ground Water

Semivolatile Organic Compounds by - GC/MS

Analyte	Results	RL	Units	Dilution	Flag/Qual	Method	Date Prepared	Date/Time Analyzed	Analyst
Acenaphthene	<4.83	4.83	μg/L	1	1 lag/Quai	625.1	6/21/21	6/22/21 18:20	BGL
Acenaphthylene	<4.83	4.83	μg/L μg/L	1		625.1	6/21/21	6/22/21 18:20	BGL
Anthracene	<4.83	4.83	μg/L μg/L	1		625.1	6/21/21	6/22/21 18:20	BGL
Benzidine	<19.3	19.3	μg/L μg/L	1	V-04, V-05	625.1	6/21/21	6/22/21 18:20	BGL
Benzo(g,h,i)perylene	<4.83	4.83	μg/L μg/L	1	v-04, v-05	625.1	6/21/21	6/22/21 18:20	BGL
4-Bromophenylphenylether	<9.66	9.66	μg/L	1		625.1	6/21/21	6/22/21 18:20	BGL
Butylbenzylphthalate	<9.66	9.66	μg/L	1		625.1	6/21/21	6/22/21 18:20	BGL
4-Chloro-3-methylphenol	<9.66	9.66	μg/L	1		625.1	6/21/21	6/22/21 18:20	BGL
Bis(2-chloroethyl)ether	<9.66	9.66	μg/L	1		625.1	6/21/21	6/22/21 18:20	BGL
Bis(2-chloroisopropyl)ether	<9.66	9.66	μg/L	1		625.1	6/21/21	6/22/21 18:20	BGL
2-Chloronaphthalene	<9.66	9.66	μg/L	1	L-04	625.1	6/21/21	6/22/21 18:20	BGL
2-Chlorophenol	<9.66	9.66	μg/L	1	20.	625.1	6/21/21	6/22/21 18:20	BGL
4-Chlorophenylphenylether	<9.66	9.66	μg/L	1		625.1	6/21/21	6/22/21 18:20	BGL
Di-n-butylphthalate	<9.66	9.66	μg/L	1		625.1	6/21/21	6/22/21 18:20	BGL
1.3-Dichlorobenzene	<4.83	4.83	μg/L	1		625.1	6/21/21	6/22/21 18:20	BGL
1,4-Dichlorobenzene	<4.83	4.83	μg/L	1		625.1	6/21/21	6/22/21 18:20	BGL
1,2-Dichlorobenzene	<4.83	4.83	μg/L	1		625.1	6/21/21	6/22/21 18:20	BGL
3,3-Dichlorobenzidine	<9.66	9.66	μg/L	1		625.1	6/21/21	6/22/21 18:20	BGL
2,4-Dichlorophenol	<9.66	9.66	μg/L	1		625.1	6/21/21	6/22/21 18:20	BGL
Diethylphthalate	<9.66	9.66	μg/L	1		625.1	6/21/21	6/22/21 18:20	BGL
2,4-Dimethylphenol	<9.66	9.66	μg/L	1		625.1	6/21/21	6/22/21 18:20	BGL
Dimethylphthalate	<9.66	9.66	μg/L	1		625.1	6/21/21	6/22/21 18:20	BGL
4,6-Dinitro-2-methylphenol	<9.66	9.66	μg/L	1		625.1	6/21/21	6/22/21 18:20	BGL
2,4-Dinitrophenol	<9.66	9.66	μg/L	1		625.1	6/21/21	6/22/21 18:20	BGL
2,4-Dinitrotoluene	<9.66	9.66	μg/L	1		625.1	6/21/21	6/22/21 18:20	BGL
2,6-Dinitrotoluene	<9.66	9.66	μg/L	1		625.1	6/21/21	6/22/21 18:20	BGL
Di-n-octylphthalate	<9.66	9.66	μg/L	1		625.1	6/21/21	6/22/21 18:20	BGL
1,2-Diphenylhydrazine/Azobenzene	<9.66	9.66	μg/L	1		625.1	6/21/21	6/22/21 18:20	BGL
Bis(2-Ethylhexyl)phthalate	<9.66	9.66	μg/L	1		625.1	6/21/21	6/22/21 18:20	BGL
Fluoranthene	<4.83	4.83	μg/L	1		625.1	6/21/21	6/22/21 18:20	BGL
Fluorene	<4.83	4.83	μg/L	1		625.1	6/21/21	6/22/21 18:20	BGL
Hexachlorobenzene	<9.66	9.66	μg/L	1		625.1	6/21/21	6/22/21 18:20	BGL
Hexachlorobutadiene	<9.66	9.66	μg/L	1		625.1	6/21/21	6/22/21 18:20	BGL
Hexachlorocyclopentadiene	<9.66	9.66	μg/L	1	V-05, L-04	625.1	6/21/21	6/22/21 18:20	BGL
Hexachloroethane	<9.66	9.66	μg/L	1		625.1	6/21/21	6/22/21 18:20	BGL
Isophorone	<9.66	9.66	μg/L	1		625.1	6/21/21	6/22/21 18:20	BGL
Naphthalene	<4.83	4.83	μg/L	1		625.1	6/21/21	6/22/21 18:20	BGL
Nitrobenzene	<9.66	9.66	μg/L	1		625.1	6/21/21	6/22/21 18:20	BGL
2-Nitrophenol	<9.66	9.66	μg/L	1		625.1	6/21/21	6/22/21 18:20	BGL
4-Nitrophenol	<9.66	9.66	μg/L	1		625.1	6/21/21	6/22/21 18:20	BGL
N-Nitrosodimethylamine	<9.66	9.66	μg/L	1		625.1	6/21/21	6/22/21 18:20	BGL
N-Nitrosodi-n-propylamine	<9.66	9.66	μg/L	1		625.1	6/21/21	6/22/21 18:20	BGL
2-Methylnaphthalene	<4.83	4.83	μg/L	1		625.1	6/21/21	6/22/21 18:20	BGL
Phenanthrene	<4.83	4.83	μg/L	1		625.1	6/21/21	6/22/21 18:20	BGL

Page 10 of 48

Project Location: MBTA Headhouse Sample Description: Work Order: 21F1162

Date Received: 6/18/2021
Field Sample #: Influent

Sampled: 6/18/2021 11:00

Sample ID: 21F1162-01
Sample Matrix: Ground Water

Semivolatile Organic Compounds by - GO	C/MS
--	------

Analyte	Results	RL	Units	Dilution	Flag/Qual	Method	Date Prepared	Date/Time Analyzed	Analyst
2-Methylphenol	<9.66	9.66	μg/L	1		625.1	6/21/21	6/22/21 18:20	BGL
Phenol	< 9.66	9.66	μg/L	1		625.1	6/21/21	6/22/21 18:20	BGL
3/4-Methylphenol	<19.3	19.3	μg/L	1		625.1	6/21/21	6/22/21 18:20	BGL
Pyrene	<4.83	4.83	μg/L	1		625.1	6/21/21	6/22/21 18:20	BGL
1,2,4-Trichlorobenzene	<4.83	4.83	μg/L	1		625.1	6/21/21	6/22/21 18:20	BGL
2,4,6-Trichlorophenol	<9.66	9.66	$\mu g/L$	1		625.1	6/21/21	6/22/21 18:20	BGL
Surrogates		% Recovery	Recovery Limits	s	Flag/Qual				
2-Fluorophenol		39.6	15-110					6/22/21 18:20	
Phenol-d6		37.9	15-110					6/22/21 18:20	
Nitrobenzene-d5		80.1	30-130					6/22/21 18:20	
2-Fluorobiphenyl		74.8	30-130					6/22/21 18:20	
2,4,6-Tribromophenol		75.5	15-110					6/22/21 18:20	
p-Terphenyl-d14		107	30-130					6/22/21 18:20	

Project Location: MBTA Headhouse Sample Description: Work Order: 21F1162

Date Received: 6/18/2021
Field Sample #: Influent

Sampled: 6/18/2021 11:00

Sample ID: 21F1162-01
Sample Matrix: Ground Water

Polychlorinated	Dinhanyle D	CC/ECD
roivemormateu	DIDHEHVIS D	V GC/ECD

Analyte	Results	RL	DL	Units	Dilution	Flag/Qual	Method	Date Prepared	Date/Time Analyzed	Analyst
Aroclor-1016 [1]	< 0.0873	0.0980	0.0873		1	g	608.3	6/19/21	6/23/21 13:59	TG
Aroclor-1221 [1]	< 0.0809	0.0980	0.0809	10	1		608.3	6/19/21	6/23/21 13:59	TG
Aroclor-1232 [1]	< 0.0824	0.0980	0.0824	10	1		608.3	6/19/21	6/23/21 13:59	TG
Aroclor-1242 [1]	< 0.0863	0.0980	0.0863	10	1		608.3	6/19/21	6/23/21 13:59	TG
Aroclor-1248 [1]	< 0.0819	0.0980	0.0819		1		608.3	6/19/21	6/23/21 13:59	TG
Aroclor-1254 [1]	< 0.0922	0.0980	0.0922	μg/L	1		608.3	6/19/21	6/23/21 13:59	TG
Aroclor-1260 [1]	< 0.0804	0.0980	0.0804	μg/L	1		608.3	6/19/21	6/23/21 13:59	TG
Surrogates		% Reco	very	Recovery Limits	5	Flag/Qual				
Decachlorobiphenyl [1]		44.0		30-150					6/23/21 13:59	
Decachlorobiphenyl [2]		39.6		30-150					6/23/21 13:59	
Tetrachloro-m-xylene [1]		77.4		30-150					6/23/21 13:59	
Tetrachloro-m-xylene [2]		73.6		30-150					6/23/21 13:59	

Project Location: MBTA Headhouse Sample Description: Work Order: 21F1162

Date Received: 6/18/2021
Field Sample #: Influent

Sampled: 6/18/2021 11:00

Sample ID: 21F1162-01
Sample Matrix: Ground Water

Metals Analyses (Total)

					,					
Analyte	Results	RL	DL	Units	Dilution	Flag/Qual	Method	Date Prepared	Date/Time Analyzed	Analyst
Antimony	9.7	1.0		μg/L	1		EPA 200.8	6/21/21	6/22/21 13:36	QNW
Arsenic	17	0.80		μg/L	1		EPA 200.8	6/21/21	6/22/21 13:36	QNW
Cadmium	0.32	0.20		μg/L	1		EPA 200.8	6/21/21	6/22/21 13:36	QNW
Chromium	12	1.0		μg/L	1		EPA 200.8	6/21/21	6/22/21 13:36	QNW
Chromium, Trivalent	0.012			mg/L	1		Tri Chrome Calc.	6/21/21	6/22/21 13:36	QNW
Copper	65	1.0		$\mu g/L$	1		EPA 200.8	6/21/21	6/22/21 13:36	QNW
Iron	16	0.050		mg/L	1		EPA 200.7	6/21/21	6/22/21 18:56	AJL
Lead	45	0.50		$\mu g/L$	1		EPA 200.8	6/21/21	6/22/21 13:36	QNW
Mercury	ND	0.00010		mg/L	1		EPA 245.1	6/22/21	6/22/21 14:30	CJV
Nickel	18	5.0		$\mu g/L$	1		EPA 200.8	6/21/21	6/22/21 13:36	QNW
Selenium	25	5.0	0.78	$\mu g/L$	1		EPA 200.8	6/21/21	6/22/21 13:36	QNW
Silver	ND	0.20		$\mu g/L$	1		EPA 200.8	6/21/21	6/22/21 13:36	QNW
Zinc	71	10		$\mu g/L$	1		EPA 200.8	6/21/21	6/22/21 13:36	QNW
Hardness	1300	1.4		mg/L	1		EPA 200.7	6/21/21	6/22/21 18:56	AJL

Project Location: MBTA Headhouse Sample Description: Work Order: 21F1162

Date Received: 6/18/2021
Field Sample #: Influent

Sampled: 6/18/2021 11:00

Sample ID: 21F1162-01
Sample Matrix: Ground Water

Conventional Chemistry Parameters by EPA/APHA/SW-846 Methods (Total)

Analyte	Results	RL	DL	Units	Dilution	Flag/Qual	Method	Date Prepared	Date/Time Analyzed	Analyst
Ammonia as N	1.1	0.30	0.22	mg/L	1		SM19-22 4500 NH3 C	6/23/21	6/24/21 10:00	IS
Chloride	2000	100		mg/L	100		EPA 300.0	6/21/21	6/21/21 19:11	EC
Chlorine, Residual	ND	0.020		mg/L	1		SM21-22 4500 CL G	6/18/21	6/18/21 22:30	DJM
Hexavalent Chromium	ND	0.0040		mg/L	1		SM21-22 3500 Cr B	6/18/21	6/18/21 20:00	CB2 KAA
Total Suspended Solids	110	2.4		mg/L	1		SM21-22 2540D	6/21/21	6/21/21 11:30	LL
Silica Gel Treated HEM (SGT-HEM)	ND	2.8		mg/L	1		EPA 1664B	6/21/21	6/21/21 10:15	LL

Project Location: MBTA Headhouse Sample Description: Work Order: 21F1162

Date Received: 6/18/2021 Field Sample #: Influent

Sampled: 6/18/2021 11:00

Sample ID: 21F1162-01 Sample Matrix: Ground Water

								Date	Date/Time	
Analyte	Results	RL	DL	Units	Dilution	Flag/Qual	Method	Prepared	Analyzed	Analyst
1,2-Dibromoethane (EDB) (1)	ND	0.020	0.0079	μg/L	1		EPA 504.1	6/23/21	6/23/21 18:24	SFM
Surrogates		% Reco	very	Recovery Limit	s	Flag/Qual				
1 3-Dibromonronane (1)		111		70-130			_		6/23/21 18:24	

Project Location: MBTA Headhouse Sample Description: Work Order: 21F1162

Date Received: 6/18/2021

Field Sample #: Influent

Sampled: 6/18/2021 11:00

Sample ID: 21F1162-01
Sample Matrix: Ground Water

Conventional Chemistry Parameters by EPA/APHA/SW-846 Methods (Total)

									Date	Date/Time	
	Analyte	Results	RL	DL	Units	Dilution	Flag/Qual	Method	Prepared	Analyzed	Analyst
Salinity		3.6	1		ppt	1		SM2510B	•	6/23/21 0:00	NET

Project Location: MBTA Headhouse Sample Description: Work Order: 21F1162

Date Received: 6/18/2021
Field Sample #: Influent

Sampled: 6/18/2021 11:00

Sample ID: 21F1162-01
Sample Matrix: Ground Water

Conventional Chemistry Parameters by EPA/APHA/SW-846 Methods (Total)

									Date	Date/Time	
	Analyte	Results	RL	DL	Units	Dilution	Flag/Qual	Method	Prepared	Analyzed	Analyst
Cyanide		ND	0.005	0.001	mg/L	1		SM4500	6/23/21	6/24/21 11:39	AAL

Work Order: 21F1162

39 Spruce Street * East Longmeadow, MA 01028 * FAX 413/525-6405 * TEL. 413/525-2332

Project Location: MBTA Headhouse Sample Description:

Date Received: 6/18/2021

Field Sample #: Receiving Water

Sample ID: 21F1162-02
Sample Matrix: Ground Water

Sampled: 6/18/2021 11:00

Metals Analyses (Total)

					-					
Analyte	Results	RL	DL	Units	Dilution	Flag/Qual	Method	Date Prepared	Date/Time Analyzed	Analyst
Antimony	ND	10		μg/L	10	DL-15	EPA 200.8	6/21/21	6/22/21 13:58	QNW
Arsenic	44	8.0		$\mu g/L$	10	DL-15	EPA 200.8	6/21/21	6/22/21 13:58	QNW
Cadmium	ND	2.0		$\mu g/L$	10	DL-15	EPA 200.8	6/21/21	6/22/21 13:58	QNW
Chromium	ND	10		$\mu g/L$	10	DL-15	EPA 200.8	6/21/21	6/22/21 13:58	QNW
Chromium, Trivalent	0.0			mg/L	1		Tri Chrome Calc.	6/21/21	6/22/21 13:58	QNW
Copper	110	10		$\mu g/L$	10	DL-15	EPA 200.8	6/21/21	6/22/21 13:58	QNW
Iron	ND	0.25		mg/L	5	DL-04	EPA 200.7	6/21/21	6/22/21 17:54	AJL
Lead	ND	5.0		$\mu g/L$	10	DL-15	EPA 200.8	6/21/21	6/22/21 13:58	QNW
Mercury	ND	0.00010		mg/L	1		EPA 245.1	6/22/21	6/22/21 14:25	CJV
Nickel	ND	50		$\mu g/L$	10	DL-15	EPA 200.8	6/21/21	6/22/21 13:58	QNW
Selenium	140	50	7.8	$\mu g/L$	10	DL-15	EPA 200.8	6/21/21	6/22/21 13:58	QNW
Silver	ND	2.0		$\mu g/L$	10	DL-15	EPA 200.8	6/21/21	6/22/21 13:58	QNW
Zinc	ND	100		$\mu g/L$	10	DL-15	EPA 200.8	6/21/21	6/22/21 13:58	QNW
Hardness	4400	7.2		mg/L	5	MS-19	EPA 200.7	6/21/21	6/22/21 17:54	AJL

Project Location: MBTA Headhouse Sample Description: Work Order: 21F1162

Date Received: 6/18/2021

Field Sample #: Receiving Water

Sampled: 6/18/2021 11:00

Sample ID: 21F1162-02
Sample Matrix: Ground Water

Conventional Chemistry Parameters by EPA/APHA/SW-846 Methods (Total)

								Date	Date/Time	
Analyte	Results	RL	DL	Units	Dilution	Flag/Qual	Method	Prepared	Analyzed	Analyst
Ammonia as N	0.27	0.30	0.22	mg/L	1	J	SM19-22 4500 NH3 C	6/23/21	6/24/21 10:00	IS
Hexavalent Chromium	ND	0.0040		mg/L	1		SM21-22 3500 Cr B	6/18/21	6/18/21 20:00	CB2 KAA

Project Location: MBTA Headhouse Sample Description: Work Order: 21F1162

Date Received: 6/18/2021

Field Sample #: Receiving Water

Sample ID: 21F1162-02
Sample Matrix: Ground Water

Sampled: 6/18/2021 11:00

Conventional Chemistry Parameters by EPA/APHA/SW-846 Methods (Total)

									Date	Date/Time	
	Analyte	Results	RL	DL	Units	Dilution	Flag/Qual	Method	Prepared	Analyzed	Analyst
Salinity		26.1	1		ppt	1		SM2510B		6/23/21 0:00	NET

Sample Extraction Data

Prep Method: SW-846 3510C	Analytical Method: 608.3
---------------------------	--------------------------

Lab Number [Field ID]	Batch	Initial [mL]	Final [mL]	Date
21F1162-01 [Influent]	B284363	1020	5.00	06/19/21

Prep Method: SW-846 5030B Analytical Method: 624.1

Lab Number [Field ID]	Batch	Initial [mL]	Final [mL]	Date
21F1162-01 [Influent]	B284408	5	5.00	06/21/21

Prep Method: SW-846 3510C Analytical Method: 625.1

Lab Number [Field ID]	Batch	Initial [mL]	Final [mL]	Date
21F1162-01 [Influent]	B284382	1040	1.00	06/21/21

Prep Method: SW-846 3510C Analytical Method: 625.1

Lab Number [Field ID]	Batch	Initial [mL]	Final [mL]	Date
21F1162-01 [Influent]	B284516	1040	1.00	06/21/21

EPA 1664B

Lab Number [Field ID]	Batch	Initial [mL]	Date
21F1162-01 [Influent]	B284371	500	06/21/21

Prep Method: EPA 200.7 Analytical Method: EPA 200.7

Lab Number [Field ID]	Batch	Initial [mL]	Final [mL]	Date	
21F1162-01 [Influent]	B284438	50.0	50.0	06/21/21	
21F1162-01 [Influent]	B284438	50.0		06/21/21	
21F1162-02 [Receiving Water]	B284438	50.0	50.0	06/21/21	
21F1162-02 [Receiving Water]	B284438	50.0		06/21/21	

Prep Method: EPA 200.8 Analytical Method: EPA 200.8

Lab Number [Field ID]	Batch	Initial [mL]	Final [mL]	Date
21F1162-01 [Influent]	B284439	50.0	50.0	06/21/21
21F1162-02 [Receiving Water]	B284439	50.0	50.0	06/21/21

Prep Method: EPA 245.1 Analytical Method: EPA 245.1

Lab Number [Field ID]	Batch	Initial [mL]	Final [mL]	Date
21F1162-01 [Influent]	B284490	6.00	6.00	06/22/21
21F1162-02 [Receiving Water]	B284490	6.00	6.00	06/22/21

Prep Method: EPA 300.0 Analytical Method: EPA 300.0

Lab Number [Field ID]	Batch	Initial [mL]	Final [mL]	Date
			• •	

Sample Extraction Data

	Prep Method: EPA 300.0	O Analytical Method: EPA 300.0
--	------------------------	--------------------------------

Lab Number [Field ID]	Batch	Initial [mL]	Final [mL]	Date
21F1162-01 [Influent]	B284417	10.0	10.0	06/21/21

Prep Method: EPA 504 water Analytical Method: EPA 504.1

Lab Number [Field ID]	Batch	Initial [mL]	Final [mL]	Date
21F1162-01 [Influent]	B284596	35.6	35.0	06/23/21

SM19-22 4500 NH3 C

Lab Number [Field ID]	Batch	Initial [mL]	Final [mL]	Date
21F1162-01 [Influent]	B284590	100	100	06/23/21
21F1162-02 [Receiving Water]	B284590	100	100	06/23/21

SM21-22 2540D

Lab Number [Field ID]	Batch	Initial [mL]	Date
21F1162-01 [Influent]	B284379	210	06/21/21

SM21-22 3500 Cr B

Lab Number [Field ID]	Batch	Initial [mL]	Final [mL]	Date
21F1162-01 [Influent]	B284343	50.0	50.0	06/18/21
21F1162-02 [Receiving Water]	B284343	50.0	50.0	06/18/21

SM21-22 4500 CL G

Lab Number [Field ID]	Batch	Initial [mL]	Final [mL]	Date
21F1162-01 [Influent]	B284339	100	100	06/18/21

Prep Method: EPA 200.8 Analytical Method: Tri Chrome Calc.

Lab Number [Field ID]	Batch	Initial [mL]	Date
21F1162-01 [Influent]	B284439	50.0	06/21/21
21F1162-02 [Receiving Water]	B284439	50.0	06/21/21

QUALITY CONTROL

Spike

Source

%REC

RPD

Volatile Organic Compounds by GC/MS - Quality Control

Reporting

Analyte	Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Notes
Batch B284408 - SW-846 5030B										
Blank (B284408-BLK1)				Prepared: 06	/21/21 Anal	yzed: 06/22/2	11			
Acetone	ND	50.0	μg/L	<u> </u>						
tert-Amyl Methyl Ether (TAME)	ND	0.500	$\mu g/L$							
Benzene	ND	1.00	$\mu g/L$							
Bromodichloromethane	ND	2.00	μg/L							
Bromoform	ND	2.00	μg/L							
Bromomethane	ND	2.00	μg/L							
tert-Butyl Alcohol (TBA)	ND	20.0	μg/L							
Carbon Tetrachloride	ND	2.00	μg/L							
Chlorobenzene	ND	2.00	μg/L							
Chlorodibromomethane	ND	2.00	μg/L							
Chloroethane	ND	2.00	μg/L							
Chloroform	ND	2.00	μg/L							
Chloromethane	ND	2.00	μg/L							
1,2-Dichlorobenzene	ND	2.00	μg/L							
1,3-Dichlorobenzene	ND	2.00	μg/L							
1,4-Dichlorobenzene	ND	2.00	μg/L							
1,2-Dichloroethane	ND	2.00	μg/L							
,1-Dichloroethane	ND	2.00	μg/L							
,1-Dichloroethylene	ND	2.00	μg/L							
rans-1,2-Dichloroethylene	ND	2.00	μg/L							
,2-Dichloropropane	ND	2.00	μg/L							
cis-1,3-Dichloropropene	ND	2.00	μg/L							
1,4-Dioxane	ND	50.0	μg/L							
rans-1,3-Dichloropropene	ND	2.00	μg/L							
Ethanol	ND	50.0	μg/L							
Ethylbenzene	ND	2.00	μg/L							
Methyl tert-Butyl Ether (MTBE)	ND	2.00	μg/L							
Methylene Chloride	ND	5.00	μg/L							
1,1,2,2-Tetrachloroethane	ND	2.00	μg/L							
Tetrachloroethylene	ND	2.00	μg/L							
Toluene	ND	1.00	μg/L							
1,1,1-Trichloroethane	ND	2.00	μg/L							
1,1,2-Trichloroethane	ND	2.00	μg/L							
Trichloroethylene	ND	2.00	μg/L							
Frichlorofluoromethane (Freon 11)	ND	2.00	μg/L							
Vinyl Chloride	ND	2.00	μg/L							
n+p Xylene	ND	2.00	μg/L							
o-Xylene	ND	1.00	μg/L							
Surrogate: 1,2-Dichloroethane-d4	27.1		μg/L	25.0		108	70-130			
Surrogate: Toluene-d8	24.8		μg/L	25.0		99.0	70-130			
Surrogate: 4-Bromofluorobenzene	24.5		μg/L	25.0		97.8	70-130			
LCS (B284408-BS1)				Prepared & A	Analyzed: 06	/21/21				
Acetone	210	50.0	μg/L	200		106	70-160			
ert-Amyl Methyl Ether (TAME)	18	0.500	μg/L	20.0		92.0	70-130			
Benzene	21	1.00	μg/L	20.0		107	65-135			
Bromodichloromethane	23	2.00	μg/L	20.0		113	65-135			
Bromoform	20	2.00	μg/L	20.0		102	70-130			
Bromomethane	16	2.00	μg/L	20.0		82.0	15-185			
tert-Butyl Alcohol (TBA)	200	20.0	μg/L	200		99.1	40-160			
Carbon Tetrachloride	22	2.00	μg/L	20.0		111	70-130			
Chlorobenzene	21	2.00	μg/L	20.0		107	65-135			

QUALITY CONTROL

Volatile Organic Compounds by GC/MS - Quality Control

Analyte	Result	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Notes
Batch B284408 - SW-846 5030B							<u> </u>			
LCS (B284408-BS1)				Prepared &	Analyzed: 06	5/21/21				
Chlorodibromomethane	21	2.00	μg/L	20.0		105	70-135			
Chloroethane	23	2.00	μg/L	20.0		115	40-160			
Chloroform	22	2.00	μg/L	20.0		112	70-135			
Chloromethane	18	2.00	μg/L	20.0		92.2	20-205			
1,2-Dichlorobenzene	21	2.00	μg/L	20.0		106	65-135			
1,3-Dichlorobenzene	22	2.00	μg/L	20.0		109	70-130			
1,4-Dichlorobenzene	21	2.00	μg/L	20.0		104	65-135			
1,2-Dichloroethane	22	2.00	μg/L	20.0		109	70-130			
1,1-Dichloroethane	22	2.00	μg/L	20.0		111	70-130			
1,1-Dichloroethylene	23	2.00	μg/L	20.0		117	50-150			
trans-1,2-Dichloroethylene	22	2.00	μg/L	20.0		109	70-130			
1,2-Dichloropropane	22	2.00	μg/L	20.0		110	35-165			
cis-1,3-Dichloropropene	21	2.00	μg/L	20.0		105	25-175			
1,4-Dioxane	180	50.0	μg/L	200		89.2	40-130			
trans-1,3-Dichloropropene	21	2.00	μg/L	20.0		104	50-150			
Ethanol	240	50.0	μg/L	200		121	40-160			
Ethylbenzene	21	2.00	μg/L	20.0		104	60-140			
Methyl tert-Butyl Ether (MTBE)	22	2.00	μg/L	20.0		108	70-130			
Methylene Chloride	23	5.00	μg/L	20.0		116	60-140			
1,1,2,2-Tetrachloroethane	21	2.00	μg/L	20.0		105	60-140			
Tetrachloroethylene	22	2.00	μg/L	20.0		108	70-130			
Toluene	21	1.00	μg/L	20.0		106	70-130			
1,1,1-Trichloroethane	23	2.00	μg/L	20.0		114	70-130			
1,1,2-Trichloroethane	22	2.00	μg/L	20.0		111	70-130			
Trichloroethylene	22	2.00	μg/L	20.0		110	65-135			
Trichlorofluoromethane (Freon 11)	23	2.00	μg/L	20.0		114	50-150			
Vinyl Chloride	20	2.00	μg/L	20.0		101	5-195			
m+p Xylene	42	2.00	μg/L	40.0		105	70-130			
o-Xylene	21	1.00	μg/L	20.0		106	70-130			
Surrogate: 1,2-Dichloroethane-d4	26.7		μg/L	25.0		107	70-130			
Surrogate: Toluene-d8	25.8		$\mu g/L$	25.0		103	70-130			
Surrogate: 4-Bromofluorobenzene	25.4		μg/L	25.0		102	70-130			

QUALITY CONTROL

Semivolatile Organic Compounds by GC/MS - Quality Control

Analyte	Result	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Notes
Batch B284516 - SW-846 3510C										
Blank (B284516-BLK1)				Prepared: 06	5/21/21 Analy	yzed: 06/22/	21			
Benzo(a)anthracene (SIM)	ND	0.050	μg/L							
Benzo(a)pyrene (SIM)	ND	0.10	μg/L							
Benzo(b)fluoranthene (SIM)	ND	0.050	μg/L							
Benzo(k)fluoranthene (SIM)	ND	0.20	μg/L							
Bis(2-ethylhexyl)phthalate (SIM)	ND	1.0	$\mu g/L$							V-20
Chrysene (SIM)	ND	0.20	$\mu g/L$							
Dibenz(a,h)anthracene (SIM)	ND	0.10	$\mu g/L$							
ndeno(1,2,3-cd)pyrene (SIM)	ND	0.10	$\mu g/L$							
Pentachlorophenol (SIM)	ND	1.0	$\mu g/L$							
Surrogate: 2-Fluorophenol (SIM)	84.3		μg/L	200		42.2	15-110			
Surrogate: Phenol-d6 (SIM)	74.7		μg/L	200		37.4	15-110			
Surrogate: Nitrobenzene-d5	76.5		μg/L	100		76.5	30-130			
Surrogate: 2-Fluorobiphenyl	68.7		μg/L	100		68.7	30-130			
Surrogate: 2,4,6-Tribromophenol (SIM)	209		μg/L	200		104	15-110			
Surrogate: p-Terphenyl-d14	98.9		$\mu g/L$	100		98.9	30-130			
LCS (B284516-BS1)				Prepared: 06	5/21/21 Analy	yzed: 06/22/	21			
Benzo(a)anthracene (SIM)	42.8	1.0	μg/L	50.0		85.6	33-143			
Benzo(a)pyrene (SIM)	37.8	2.0	μg/L	50.0		75.6	17-163			
Benzo(b)fluoranthene (SIM)	43.9	1.0	μg/L	50.0		87.8	24-159			
Benzo(k)fluoranthene (SIM)	43.8	4.0	μg/L	50.0		87.5	11-162			
Bis(2-ethylhexyl)phthalate (SIM)	56.2	20	μg/L	50.0		112	8-158			V-06
Chrysene (SIM)	42.0	4.0	μg/L	50.0		83.9	17-168			
Dibenz(a,h)anthracene (SIM)	38.6	2.0	μg/L	50.0		77.2	10-227			
ndeno(1,2,3-cd)pyrene (SIM)	40.3	2.0	$\mu g/L$	50.0		80.6	10-171			
Pentachlorophenol (SIM)	40.2	20	$\mu g/L$	50.0		80.3	14-176			
Surrogate: 2-Fluorophenol (SIM)	69.2		μg/L	200		34.6	15-110			
Surrogate: Phenol-d6 (SIM)	67.3		μg/L	200		33.7	15-110			
Surrogate: Nitrobenzene-d5	64.3		$\mu g/L$	100		64.3	30-130			
Surrogate: 2-Fluorobiphenyl	62.9		μg/L	100		62.9	30-130			
Surrogate: 2,4,6-Tribromophenol (SIM)	162		$\mu g/L$	200		81.0	15-110			
Surrogate: p-Terphenyl-d14	73.5		$\mu g/L$	100		73.5	30-130			
LCS Dup (B284516-BSD1)				Prepared: 06	5/21/21 Analy	yzed: 06/22/	21			
Benzo(a)anthracene (SIM)	45.3	1.0	μg/L	50.0		90.5	33-143	5.54	53	
Benzo(a)pyrene (SIM)	40.0	2.0	$\mu g/L$	50.0		80.1	17-163	5.70	72	
Benzo(b)fluoranthene (SIM)	46.6	1.0	$\mu g \! / \! L$	50.0		93.1	24-159	5.93	71	
Benzo(k)fluoranthene (SIM)	46.5	4.0	$\mu g/L$	50.0		92.9	11-162	5.99	63	
Bis(2-ethylhexyl)phthalate (SIM)	59.0	20	$\mu g/L$	50.0		118	8-158	5.00	82	V-06
Chrysene (SIM)	44.3	4.0	$\mu g \! / \! L$	50.0		88.7	17-168	5.52	87	
Dibenz(a,h)anthracene (SIM)	41.0	2.0	$\mu g \! / \! L$	50.0		82.0	10-227	6.08	126	
ndeno(1,2,3-cd)pyrene (SIM)	42.6	2.0	$\mu g \! / \! L$	50.0		85.3	10-171	5.69	99	
Pentachlorophenol (SIM)	43.2	20	μg/L	50.0		86.3	14-176	7.20	86	
Surrogate: 2-Fluorophenol (SIM)	74.6		μg/L	200		37.3	15-110			
Surrogate: Phenol-d6 (SIM)	71.5		$\mu g/L$	200		35.8	15-110			
Surrogate: Nitrobenzene-d5	68.7		$\mu g/L$	100		68.7	30-130			
Surrogate: 2-Fluorobiphenyl	69.0		$\mu g/L$	100		69.0	30-130			
Surrogate: 2,4,6-Tribromophenol (SIM)	175		$\mu g/L$	200		87.3	15-110			
Surrogate: p-Terphenyl-d14	80.9		μg/L	100		80.9	30-130			

QUALITY CONTROL

Spike

Source

%REC

RPD

Semivolatile Organic Compounds by - GC/MS - Quality Control

Reporting

malyta	D amile	Reporting	Linita	Spike	Source	0/DEC	%REC	ממם	RPD	Natas
analyte	Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Notes
atch B284382 - SW-846 3510C										
lank (B284382-BLK1)				Prepared: 06	5/21/21 Analy	yzed: 06/22/2	21			
cenaphthene	ND	5.00	μg/L							
cenaphthylene	ND	5.00	μg/L							
nthracene	ND	5.00	μg/L							
enzidine	ND	20.0	μg/L							V-04, V-0
enzo(g,h,i)perylene	ND	5.00	μg/L							
-Bromophenylphenylether	ND	10.0	μg/L							
utylbenzylphthalate	ND	10.0	μg/L							
-Chloro-3-methylphenol	ND	10.0	μg/L							
is(2-chloroethyl)ether	ND	10.0	μg/L							
is(2-chloroisopropyl)ether	ND	10.0	μg/L							
-Chloronaphthalene	ND	10.0	μg/L							L-04
-Chlorophenol	ND	10.0	μg/L							
-Chlorophenylphenylether	ND	10.0	μg/L							
i-n-butylphthalate	ND	10.0	μg/L							
3-Dichlorobenzene	ND	5.00	μg/L							
4-Dichlorobenzene	ND	5.00	μg/L							
2-Dichlorobenzene	ND	5.00	μg/L							
3-Dichlorobenzidine	ND	10.0	$\mu g/L$							
4-Dichlorophenol	ND	10.0	$\mu g/L$							
iethylphthalate	ND	10.0	$\mu g/L$							
4-Dimethylphenol	ND	10.0	$\mu g/L$							
imethylphthalate	ND	10.0	$\mu g/L$							
6-Dinitro-2-methylphenol	ND	10.0	$\mu g/L$							
4-Dinitrophenol	ND	10.0	$\mu g/L$							
4-Dinitrotoluene	ND	10.0	$\mu g/L$							
6-Dinitrotoluene	ND	10.0	$\mu g/L$							
i-n-octylphthalate	ND	10.0	$\mu g/L$							
2-Diphenylhydrazine/Azobenzene	ND	10.0	$\mu g/L$							
is(2-Ethylhexyl)phthalate	ND	10.0	$\mu g/L$							
luoranthene	ND	5.00	$\mu g/L$							
luorene	ND	5.00	$\mu g/L$							
exachlorobenzene	ND	10.0	$\mu g/L$							
exachlorobutadiene	ND	10.0	$\mu g/L$							
exachlorocyclopentadiene	ND	10.0	$\mu g/L$							L-04, V-0
exachloroethane	ND	10.0	$\mu g/L$							
ophorone	ND	10.0	$\mu g/L$							
aphthalene	ND	5.00	$\mu g/L$							
itrobenzene	ND	10.0	$\mu g/L$							
Nitrophenol	ND	10.0	$\mu g/L$							
Nitrophenol	ND	10.0	$\mu g/L$							
-Nitrosodimethylamine	ND	10.0	$\mu g/L$							
-Nitrosodi-n-propylamine	ND	10.0	μg/L							
Methylnaphthalene	ND	5.00	μg/L							
henanthrene	ND	5.00	μg/L							
Methylphenol	ND	10.0	μg/L							
henol	ND	10.0	μg/L							
4-Methylphenol	ND	20.0	μg/L							
yrene	ND	5.00	μg/L							
2,4-Trichlorobenzene	ND	5.00	μg/L							
4,6-Trichlorophenol	ND	10.0	μg/L							
urrogate: 2-Fluorophenol	92.5		μg/L	200		46.2	15-110			
arrogate. 2-1 Iuorophenor	92.3 87.6		μg/L μg/L	200		43.8	15-110			

QUALITY CONTROL

Spike

Source

%REC

RPD

Semivolatile Organic Compounds by - GC/MS - Quality Control

Reporting

Analyta	Result	Reporting	Linita	Spike	Source	%REC	%KEC Limite	ppn	KPD Limit	Notes
Analyte	Resuit	Limit	Units	Level	Result	/OKEC	Limits	RPD	Limit	Notes
Satch B284382 - SW-846 3510C										
Blank (B284382-BLK1)				Prepared: 06	/21/21 Anal	yzed: 06/22/2	21			
urrogate: Nitrobenzene-d5	91.2		$\mu g/L$	100		91.2	30-130			
urrogate: 2-Fluorobiphenyl	82.2		μg/L	100		82.2	30-130			
urrogate: 2,4,6-Tribromophenol	163		μg/L	200		81.4	15-110			
urrogate: p-Terphenyl-d14	128		μg/L	100		128	30-130			
.CS (B284382-BS1)				Prepared: 06	/21/21 Anal	yzed: 06/22/2	.1			
cenaphthene	30.4	5.00	$\mu g/L$	50.0		60.9	47-145			
cenaphthylene	32.3	5.00	$\mu g/L$	50.0		64.7	33-145			
Anthracene	35.1	5.00	$\mu g/L$	50.0		70.1	27-133			
Benzidine	22.8	20.0	$\mu g/L$	50.0		45.6	40-140			V-04, V-05
Benzo(g,h,i)perylene	30.2	5.00	$\mu g/L$	50.0		60.4	10-219			
-Bromophenylphenylether	29.4	10.0	$\mu g \! / \! L$	50.0		58.9	53-127			
Butylbenzylphthalate	35.9	10.0	$\mu g \! / \! L$	50.0		71.7	10-152			
-Chloro-3-methylphenol	40.1	10.0	$\mu g \! / \! L$	50.0		80.1	22-147			
Bis(2-chloroethyl)ether	30.8	10.0	$\mu g/L$	50.0		61.7	12-158			
Bis(2-chloroisopropyl)ether	31.6	10.0	$\mu g/L$	50.0		63.2	36-166			
-Chloronaphthalene	28.6	10.0	$\mu g/L$	50.0		57.1 *	60-120			L-04
-Chlorophenol	30.0	10.0	$\mu g/L$	50.0		60.1	23-134			
-Chlorophenylphenylether	31.9	10.0	$\mu g/L$	50.0		63.8	25-158			
Pi-n-butylphthalate	34.5	10.0	$\mu g/L$	50.0		68.9	10-120			
,3-Dichlorobenzene	21.3	5.00	$\mu g/L$	50.0		42.6	10-172			
,4-Dichlorobenzene	21.9	5.00	$\mu g/L$	50.0		43.8	20-124			
,2-Dichlorobenzene	23.8	5.00	$\mu g/L$	50.0		47.5	32-129			
,3-Dichlorobenzidine	42.0	10.0	$\mu g/L$	50.0		84.0	10-262			
,4-Dichlorophenol	34.6	10.0	$\mu g/L$	50.0		69.2	39-135			
Diethylphthalate	34.0	10.0	$\mu g/L$	50.0		68.0	10-120			
,4-Dimethylphenol	35.3	10.0	$\mu g/L$	50.0		70.5	32-120			
Dimethylphthalate	35.3	10.0	$\mu g/L$	50.0		70.6	10-120			
,6-Dinitro-2-methylphenol	42.5	10.0	$\mu g/L$	50.0		85.0	10-181			
,4-Dinitrophenol	35.7	10.0	$\mu g/L$	50.0		71.3	10-191			
,4-Dinitrotoluene	39.1	10.0	$\mu g/L$	50.0		78.1	39-139			
,6-Dinitrotoluene	38.9	10.0	$\mu g/L$	50.0		77.8	50-158			
Pi-n-octylphthalate	31.4	10.0	$\mu g/L$	50.0		62.8	4-146			
,2-Diphenylhydrazine/Azobenzene	34.8	10.0	$\mu g/L$	50.0		69.6	40-140			
sis(2-Ethylhexyl)phthalate	32.2	10.0	$\mu g/L$	50.0		64.3	8-158			
luoranthene	36.9	5.00	$\mu g/L$	50.0		73.9	26-137			
luorene	33.4	5.00	$\mu g/L$	50.0		66.8	59-121			
Iexachlorobenzene	30.3	10.0	$\mu g \! / \! L$	50.0		60.6	10-152			
Iexachlorobutadiene	18.8	10.0	μg/L	50.0		37.5	24-120			
Iexachlorocyclopentadiene	13.8	10.0	$\mu g \! / \! L$	50.0		27.6 *	40-140			V-05, L-04
Iexachloroethane	18.6	10.0	$\mu g \! / \! L$	50.0		37.2 *	40-120			L-07
sophorone	39.6	10.0	$\mu g/L$	50.0		79.1	21-196			
Japhthalene	28.6	5.00	$\mu g/L$	50.0		57.1	21-133			
litrobenzene	35.4	10.0	μg/L	50.0		70.7	35-180			
-Nitrophenol	34.9	10.0	μg/L	50.0		69.8	29-182			
-Nitrophenol	29.9	10.0	$\mu g/L$	50.0		59.9	10-132			
I-Nitrosodimethylamine	22.1	10.0	$\mu g/L$	50.0		44.3	40-140			
I-Nitrosodi-n-propylamine	36.5	10.0	$\mu g/L$	50.0		73.0	10-230			
-Methylnaphthalene	32.5	5.00	$\mu g/L$	50.0		64.9	40-140			
henanthrene	34.5	5.00	$\mu g/L$	50.0		69.0	54-120			
-Methylphenol	30.5	10.0	$\mu g/L$	50.0		61.0	40-140			
henol	16.9	10.0	$\mu g/L$	50.0		33.7	5-120			

QUALITY CONTROL

Semivolatile Organic Compounds by - GC/MS - Quality Control

	D •	Reporting	T	Spike	Source	0/850	%REC	B.B.S	RPD	3.7
Analyte	Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Notes
Batch B284382 - SW-846 3510C										
LCS (B284382-BS1)				Prepared: 06	5/21/21 Anal	yzed: 06/22/2	21			
3/4-Methylphenol	31.0	20.0	μg/L	50.0		61.9	40-140			
Pyrene	39.5	5.00	μg/L	50.0		79.1	52-120			
1,2,4-Trichlorobenzene	24.6	5.00	μg/L	50.0		49.1	44-142			
2,4,6-Trichlorophenol	37.0	10.0	μg/L	50.0		74.0	37-144			
Surrogate: 2-Fluorophenol	73.1		$\mu g/L$	200		36.5	15-110			
Surrogate: Phenol-d6	75.1		$\mu g/L$	200		37.6	15-110			
Surrogate: Nitrobenzene-d5	74.6		$\mu g/L$	100		74.6	30-130			
Surrogate: 2-Fluorobiphenyl	64.8		μg/L	100		64.8	30-130			
Surrogate: 2,4,6-Tribromophenol	126		μg/L	200		63.0	15-110			
Surrogate: p-Terphenyl-d14	93.6		μg/L	100		93.6	30-130			
LCS Dup (B284382-BSD1)				Prepared: 06	5/21/21 Anal	yzed: 06/22/2	21			
Acenaphthene	32.3	5.00	$\mu g/L$	50.0		64.7	47-145	6.02	48	
Acenaphthylene	34.3	5.00	$\mu g/L$	50.0		68.7	33-145	6.00	74	
Anthracene	37.2	5.00	$\mu g/L$	50.0		74.5	27-133	6.03	66	
Benzidine	26.6	20.0	$\mu g \! / \! L$	50.0		53.3	40-140	15.4	30	V-04, V-05
Benzo(g,h,i)perylene	33.6	5.00	$\mu g/L$	50.0		67.3	10-219	10.9	97	
1-Bromophenylphenylether	32.3	10.0	μg/L	50.0		64.6	53-127	9.23	43	
Butylbenzylphthalate	37.7	10.0	μg/L	50.0		75.4	10-152	5.00	60	
4-Chloro-3-methylphenol	40.7	10.0	μg/L	50.0		81.5	22-147	1.66	73	
Bis(2-chloroethyl)ether	33.7	10.0	μg/L	50.0		67.4	12-158	8.95	108	
Bis(2-chloroisopropyl)ether	32.8	10.0	μg/L	50.0		65.6	36-166	3.66	76	
2-Chloronaphthalene	28.9	10.0	μg/L	50.0		57.9 *		1.32	24	L-04
2-Chlorophenol	32.3	10.0	μg/L	50.0		64.7	23-134	7.37	61	
1-Chlorophenylphenylether	34.5	10.0	μg/L	50.0		69.0	25-158	7.89	61	
Di-n-butylphthalate	35.8	10.0	μg/L	50.0		71.6	10-120	3.79	47	
,3-Dichlorobenzene	22.3	5.00	μg/L	50.0		44.6	10-172	4.68	30	
,4-Dichlorobenzene	24.1	5.00	μg/L	50.0		48.3	20-124	9.64	30	
,2-Dichlorobenzene	25.6	5.00	μg/L	50.0		51.1	32-129	7.30	30	
3,3-Dichlorobenzidine	45.1	10.0	μg/L	50.0		90.2	10-262	7.14	108	
2,4-Dichlorophenol	37.0	10.0 10.0	μg/L	50.0		74.1	39-135	6.84	50	
Diethylphthalate	35.4		μg/L ug/I	50.0		70.8	10-120	4.01	100	
2,4-Dimethylphenol Dimethylphthalate	36.8	10.0 10.0	μg/L μg/L	50.0		73.6	32-120	4.27	58	
4,6-Dinitro-2-methylphenol	36.8	10.0	μg/L μg/L	50.0 50.0		73.6	10-120 10-181	4.22 3.70	183 203	
2,4-Dinitro-2-methylphenol	44.1	10.0	μg/L μg/L	50.0		88.2 75.3	10-181	5.38	132	
2,4-Dinitrotoluene	37.6 40.4	10.0	μg/L μg/L	50.0		80.8	39-139	3.32	42	
2,6-Dinitrotoluene	40.4	10.0	μg/L μg/L	50.0		81.4	50-158	3.32 4.47	48	
Di-n-octylphthalate	34.1	10.0	μg/L μg/L	50.0		68.2	4-146	8.21	69	
1,2-Diphenylhydrazine/Azobenzene	35.3	10.0	μg/L	50.0		70.6	40-140	1.43	30	
Bis(2-Ethylhexyl)phthalate	33.9	10.0	μg/L	50.0		67.9	8-158	5.36	82	
Fluoranthene	39.6	5.00	μg/L	50.0		79.2	26-137	7.00	66	
Fluorene	35.4	5.00	μg/L	50.0		70.9	59-121	5.84	38	
Hexachlorobenzene	32.6	10.0	μg/L	50.0		65.3	10-152	7.50	55	
Hexachlorobutadiene	21.6	10.0	μg/L	50.0		43.1	24-120	13.9	62	
Hexachlorocyclopentadiene	15.3	10.0	μg/L	50.0		30.6 *		10.2	30	L-04, V-05
Hexachloroethane	20.2	10.0	μg/L	50.0		40.5	40-120	8.34	52	,
Isophorone	41.9	10.0	μg/L	50.0		83.7	21-196	5.65	93	
Naphthalene	31.1	5.00	μg/L	50.0		62.2	21-133	8.49	65	
Nitrobenzene	36.7	10.0	μg/L	50.0		73.4	35-180	3.77	62	
2-Nitrophenol	38.0	10.0	μg/L	50.0		76.0	29-182	8.56	55	
4-Nitrophenol	30.6	10.0	μg/L	50.0		61.3	10-132	2.34	131	

QUALITY CONTROL

Semivolatile Organic Compounds by - GC/MS - Quality Control

		Reporting		Spike	Source		%REC		RPD	
Analyte	Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Notes
Batch B284382 - SW-846 3510C										
LCS Dup (B284382-BSD1)				Prepared: 06	/21/21 Analy	yzed: 06/22/2	21			
N-Nitrosodimethylamine	20.6	10.0	μg/L	50.0		41.3	40-140	6.97	30	
N-Nitrosodi-n-propylamine	38.1	10.0	$\mu g/L$	50.0		76.1	10-230	4.18	87	
2-Methylnaphthalene	35.0	5.00	$\mu g/L$	50.0		69.9	40-140	7.44	30	
Phenanthrene	36.4	5.00	$\mu g/L$	50.0		72.8	54-120	5.42	39	
2-Methylphenol	32.3	10.0	$\mu g/L$	50.0		64.5	40-140	5.67	30	
Phenol	17.5	10.0	$\mu g/L$	50.0		35.1	5-120	3.89	64	
3/4-Methylphenol	31.8	20.0	$\mu g/L$	50.0		63.7	40-140	2.87	30	
Pyrene	41.2	5.00	$\mu g/L$	50.0		82.4	52-120	4.09	49	
1,2,4-Trichlorobenzene	27.3	5.00	$\mu g/L$	50.0		54.5	44-142	10.5	50	
2,4,6-Trichlorophenol	39.1	10.0	$\mu g/L$	50.0		78.2	37-144	5.55	58	
Surrogate: 2-Fluorophenol	78.5		μg/L	200		39.2	15-110			
Surrogate: Phenol-d6	79.3		μg/L	200		39.7	15-110			
Surrogate: Nitrobenzene-d5	78.5		$\mu g/L$	100		78.5	30-130			
Surrogate: 2-Fluorobiphenyl	70.9		$\mu g/L$	100		70.9	30-130			
Surrogate: 2,4,6-Tribromophenol	137		$\mu g/L$	200		68.4	15-110			
Surrogate: p-Terphenyl-d14	101		$\mu g/L$	100		101	30-130			

QUALITY CONTROL

Polychlorinated Biphenyls By GC/ECD - Quality Control

Analyte	Result	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Notes
Batch B284363 - SW-846 3510C										
Blank (B284363-BLK1)				Prepared: 06	5/19/21 Analy	yzed: 06/22/	21			
Aroclor-1016	ND	0.100	μg/L							
Aroclor-1016 [2C]	ND	0.100	$\mu g/L$							
Aroclor-1221	ND	0.100	$\mu g/L$							
Aroclor-1221 [2C]	ND	0.100	$\mu g/L$							
Aroclor-1232	ND	0.100	$\mu g/L$							
Aroclor-1232 [2C]	ND	0.100	$\mu g/L$							
Aroclor-1242	ND	0.100	$\mu g/L$							
Aroclor-1242 [2C]	ND	0.100	$\mu g/L$							
Aroclor-1248	ND	0.100	$\mu g/L$							
Aroclor-1248 [2C]	ND	0.100	$\mu g/L$							
Aroclor-1254	ND	0.100	$\mu g/L$							
Aroclor-1254 [2C]	ND	0.100	$\mu g/L$							
Aroclor-1260	ND	0.100	$\mu g/L$							
Aroclor-1260 [2C]	ND	0.100	$\mu g/L$							
Surrogate: Decachlorobiphenyl	0.435		μg/L	1.00		43.5	30-150			
Surrogate: Decachlorobiphenyl [2C]	0.387		$\mu g/L$	1.00		38.7	30-150			
Surrogate: Tetrachloro-m-xylene	0.680		$\mu g/L$	1.00		68.0	30-150			
Surrogate: Tetrachloro-m-xylene [2C]	0.648		μg/L	1.00		64.8	30-150			
LCS (B284363-BS1)				Prepared: 06	/19/21 Analy	yzed: 06/22/	21			
Aroclor-1016	0.445	0.200	μg/L	0.500		89.1	50-140			
Aroclor-1016 [2C]	0.363	0.200	$\mu g/L$	0.500		72.6	50-140			
Aroclor-1260	0.447	0.200	$\mu g/L$	0.500		89.4	8-140			
Aroclor-1260 [2C]	0.397	0.200	$\mu g/L$	0.500		79.4	8-140			
Surrogate: Decachlorobiphenyl	1.41		μg/L	2.00		70.3	30-150			
Surrogate: Decachlorobiphenyl [2C]	1.26		$\mu g/L$	2.00		63.0	30-150			
Surrogate: Tetrachloro-m-xylene	1.30		$\mu g/L$	2.00		65.2	30-150			
Surrogate: Tetrachloro-m-xylene [2C]	1.27		μg/L	2.00		63.6	30-150			
LCS Dup (B284363-BSD1)				Prepared: 06	/19/21 Anal	yzed: 06/22/	21			
Aroclor-1016	0.406	0.200	μg/L	0.500		81.3	50-140	9.17		
Aroclor-1016 [2C]	0.419	0.200	μg/L	0.500		83.8	50-140	14.4		
Aroclor-1260	0.439	0.200	$\mu g/L$	0.500		87.7	8-140	1.92		
Aroclor-1260 [2C]	0.416	0.200	μg/L	0.500		83.3	8-140	4.81		
Surrogate: Decachlorobiphenyl	3.93		μg/L	4.00		98.2	30-150			
Surrogate: Decachlorobiphenyl [2C]	3.56		$\mu g/L$	4.00		88.9	30-150			
Surrogate: Tetrachloro-m-xylene	2.85		μg/L	4.00		71.3	30-150			
Surrogate: Tetrachloro-m-xylene [2C]	2.72		$\mu g/L$	4.00		68.0	30-150			

QUALITY CONTROL

Metals Analyses (Total) - Quality Control

		Reporting		Spike	Source		%REC		RPD	
Analyte	Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Notes
Batch B284438 - EPA 200.7										
Blank (B284438-BLK1)				Prepared: 06	/21/21 Analy	zed: 06/22/	21			
Iron	ND	0.050	mg/L							
Hardness	ND	1.4	mg/L							
LCS (B284438-BS1)				Prepared: 06	/21/21 Analy	zed: 06/22/	21			
ron	4.01	0.050	mg/L	4.00		100	85-115			
Hardness	26	1.4	mg/L	26.4		98.9	85-115			
LCS Dup (B284438-BSD1)				Prepared: 06	/21/21 Analy	zed: 06/22/	21			
ron	3.83	0.050	mg/L	4.00		95.8	85-115	4.47	20	
Hardness	25	1.4	mg/L	26.4		94.6	85-115	4.40	20	
Duplicate (B284438-DUP1)	Sou	rce: 21F1162-0	02	Prepared: 06	/21/21 Analy	zed: 06/22/	21			
Iron	ND	0.25	mg/L		ND			NC	20	
Hardness	4300	7.2	mg/L		4400			2.73		
Matrix Spike (B284438-MS1)	Sou	rce: 21F1162-0	02	Prepared: 06	/21/21 Analy	zed: 06/22/	21			
ron	4.03	0.25	mg/L	4.00	0.168	96.6	70-130			
Hardness	4500	7.2	mg/L	26.4	4400	274 *	70-130			MS-19
Batch B284439 - EPA 200.8										
Blank (B284439-BLK1)				Prepared: 06	/21/21 Analy	zed: 06/22/	21			
Antimony	ND	1.0	μg/L							
Arsenic	ND	0.80	$\mu g/L$							
Cadmium	ND	0.20	$\mu g \! / \! L$							
21 '										
nromium	ND	1.0	μg/L							
	ND ND	1.0 1.0	μg/L μg/L							
Copper										
Copper Lead	ND	1.0	$\mu g/L$							
Copper Lead Nickel	ND ND	1.0 0.50	μg/L μg/L							
Copper Lead Nickel Selenium	ND ND ND	1.0 0.50 5.0	μg/L μg/L μg/L							
Copper Lead Nickel Selenium Silver	ND ND ND ND	1.0 0.50 5.0 5.0	μg/L μg/L μg/L μg/L							
Copper Lead Nickel Selenium Silver Zinc	ND ND ND ND ND	1.0 0.50 5.0 5.0 0.20	μg/L μg/L μg/L μg/L μg/L	Prepared: 06	/21/21 Analy	/zed: 06/22/	21			
Copper Lead Nickel Selenium Silver Linc LCS (B284439-BS1)	ND ND ND ND ND	1.0 0.50 5.0 5.0 0.20	μg/L μg/L μg/L μg/L μg/L	Prepared: 06 500	/21/21 Analy	/zed: 06/22/ 105	21 85-115			
Copper Lead Nickel Selenium Silver Zinc LCS (B284439-BS1) Antimony Arsenic	ND ND ND ND ND	1.0 0.50 5.0 5.0 0.20	μg/L μg/L μg/L μg/L μg/L μg/L		/21/21 Analy					
Copper Lead Nickel Selenium Silver Zinc LCS (B284439-BS1) Antimony Arsenic	ND ND ND ND ND ND	1.0 0.50 5.0 5.0 0.20 10	μg/L μg/L μg/L μg/L μg/L μg/L	500	/21/21 Analy	105	85-115			
Copper Lead Nickel Selenium Silver Zinc LCS (B284439-BS1) Antimony Arsenic Cadmium	ND ND ND ND ND ND	1.0 0.50 5.0 5.0 0.20 10	μg/L μg/L μg/L μg/L μg/L μg/L μg/L	500 500	/21/21 Analy	105 98.3	85-115 85-115			
Copper Lead Nickel Selenium Silver Zinc LCS (B284439-BS1) Antimony Arsenic Cadmium Chromium	ND ND ND ND ND ND 525 492 485	1.0 0.50 5.0 5.0 0.20 10	µg/L µg/L µg/L µg/L µg/L µg/L µg/L µg/L	500 500 500	/21/21 Anal <u>y</u>	105 98.3 97.0	85-115 85-115 85-115			
Copper Lead Nickel Selenium Silver Zinc LCS (B284439-BS1) Antimony Arsenic Cadmium Chromium Copper	ND ND ND ND ND ND 525 492 485 477	1.0 0.50 5.0 5.0 0.20 10	Hg/L Hg/L Hg/L Hg/L Hg/L Hg/L Hg/L Hg/L	500 500 500 500	/21/21 Anal <u>y</u>	105 98.3 97.0 95.4	85-115 85-115 85-115 85-115			
Copper Lead Nickel Selenium Silver Zinc LCS (B284439-BS1) Antimony Arsenic Cadmium Chromium Copper Lead	ND ND ND ND ND ND 525 492 485 477 961 490	1.0 0.50 5.0 5.0 0.20 10 10 8.0 2.0	Hg/L Hg/L Hg/L Hg/L Hg/L Hg/L Hg/L Hg/L	500 500 500 500 500	/21/21 Analy	105 98.3 97.0 95.4 96.1	85-115 85-115 85-115 85-115 85-115			
Copper Lead Nickel Selenium Silver Zinc LCS (B284439-BS1) Antimony Arsenic Cadmium Chromium Copper Lead Nickel	ND ND ND ND ND ND 525 492 485 477 961	1.0 0.50 5.0 5.0 0.20 10 10 8.0 2.0 10 10 5.0	Hg/L Hg/L Hg/L Hg/L Hg/L Hg/L Hg/L Hg/L	500 500 500 500 1000 500	/21/21 Analy	105 98.3 97.0 95.4 96.1 98.0	85-115 85-115 85-115 85-115 85-115			
Chromium Copper Lead Nickel Selenium Silver Zinc LCS (B284439-BS1) Antimony Arsenic Cadmium Chromium Copper Lead Nickel Selenium Silver	ND ND ND ND ND ND S25 492 485 477 961 490 472	1.0 0.50 5.0 5.0 0.20 10 10 8.0 2.0 10 10 5.0 5.0	Hg/L Hg/L Hg/L Hg/L Hg/L Hg/L Hg/L Hg/L	500 500 500 500 1000 500 500	/21/21 Anal <u>y</u>	105 98.3 97.0 95.4 96.1 98.0 94.4	85-115 85-115 85-115 85-115 85-115 85-115			

QUALITY CONTROL

Metals Analyses (Total) - Quality Control

Part			Reporting		Spike	Source		%REC		RPD	
Prepared: 66/21/21 Analyzed: 66/22/21 Analyze	Analyte	Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Notes
Artimony	Batch B284439 - EPA 200.8										
Areenic	LCS Dup (B284439-BSD1)				Prepared: 06	5/21/21 Analy	zed: 06/22/	21			
Cademium 511 2.0 µg/L 500 102 85-15 5.29 20 Chromium 500 µg/L 500 100 µg/L 500 100 85-15 4.80 20 Copper 996 10 µg/L 500 102 85-15 4.07 20 Niked 492 50 µg/L 500 98.4 85-115 4.07 20 Silver 490 2.0 µg/L 500 97.0 85-15 4.07 20 Silver 490 2.0 µg/L 500 97.0 85-15 4.0 20 Poplicate (B284439-DUT) Source: 21F116-2*** Pepred: 06-21/2 No 50 2	Antimony	543	10	μg/L	500		109	85-115	3.42	20	
Chromium	Arsenic	515	8.0	$\mu g/L$	500		103	85-115	4.59	20	
Copper	Cadmium	511	2.0	μg/L	500		102	85-115	5.29	20	
Lead	Chromium	500	10	μg/L	500		100	85-115	4.80	20	
Neikel 492 50 µg/L 500 98.4 85.115 4.17 20 Sedenium 503 50 µg/L 500 1101 85.115 2.90 20 Silver 490 2.0 µg/L 500 1101 85.115 2.90 20 Zine 1010 100 µg/L 1000 101 85.115 4.94 20 Zine 1010 100 µg/L 1000 101 85.115 4.94 20 Zine 1010 100 µg/L 1000 101 85.115 4.29 20 Duplicate (B284439-DUP1) ND 10 µg/L 1000 101 85.115 4.29 20 Duplicate (B284439-DUP1) ND 10 µg/L 1000 101 85.115 4.94 20 Aritimory ND 10 µg/L 130	Copper	996	10	μg/L	1000		99.6	85-115	3.52	20	
Selenium	Lead	510	5.0	$\mu g/L$	500		102	85-115	4.07	20	
Silver 490 2.0 µg/L 500 97.9 85-115 4.94 20 Zine 1010 100 µg/L 1000 101 85-115 4.29 20 Doplicate (B284439-DUP1) Source: 21F1162-02 Prepared: 06/21/21 Analyzed: 06/22/21 Antimony ND 10 µg/L ND NC 20 Antenion ND 10 µg/L ND NC 20 Cadmium ND 2.0 µg/L ND NC 20 Cadmium ND 10 µg/L ND NC 20 Cadmium ND 10 µg/L ND NC 20 Cadmium ND 10 µg/L ND NC 20 Chromium ND 5.0 µg/L ND NC 20 Chead ND 5.0 µg/L ND NC 20 Silver ND 2.0 µg/L ND NC 20 Silver ND 2.0 µg/L ND NC 20 Silver ND 2.0 µg/L ND NC 20 Cinc ND 101 µg/L ND NC 20 Cinc ND 100 µg/L ND NC 20 Cinc ND NC 20 Cinc ND ND 100 µg/L ND NC 100 Cinc ND ND 100 µg/L ND NC 20 Cinc ND ND 100 µg/L ND NC 20 Cinc ND NC 20 Cinc ND ND 100 µg/L ND ND 100 NC 20 Cinc ND ND 100 ND ND 100 NC 20 Cinc ND	Nickel	492	50	$\mu g/L$	500		98.4	85-115	4.17	20	
Dipolitate (B284439-DUP1) Source: 21F1162-02 Prepared: 06/21/21 Analyzed: 06/22/21	Selenium	503	50	μg/L	500		101	85-115	2.90	20	
Duplicate (B284439-DUP1) Source: 21F1162-02 Prepared: 06/21/21 Analyzed: 06/22/21 VEX. VEX. 20 Antimony ND 10 µg/L ND 43.8 2.42 20 Arsenie 42.7 8.0 µg/L ND 50 NC 20 Codmium ND 2.0 µg/L ND NC 20 Copper 101 10 µg/L ND NC 20 Copper 101 10 µg/L ND NC 20 Sklech ND 50 µg/L ND NC 20 Sklech ND 2.0 µg/L ND NC 20 Skler ND 2.0 µg/L ND NC 20 Skler ND 2.0 µg/L ND NC 20 Skler ND ½ Prepared: 66/21/21 Analyzet: 96/22/21 NC 20 Antimony 558 10	Silver	490	2.0	$\mu g/L$	500		97.9	85-115	4.94	20	
Antimony Arsenic Antimony Ant	Zinc	1010	100	$\mu g/L$	1000		101	85-115	4.29	20	
Arsenic 42.7 8.0 μg/L 43.8	Duplicate (B284439-DUP1)	Sou	rce: 21F1162-0	02	Prepared: 06	5/21/21 Analy	zed: 06/22/	21			DL-1
Cadmium ND 2.0 µg/L ND NC 20 Chromium ND 10 µg/L ND NC 20 Copper 101 10 µg/L 108 6.40 20 Lead ND 5.0 µg/L ND NC 20 Nickel ND 50 µg/L ND NC 20 Selenium 131 50 µg/L ND NC 20 Silver ND 2.0 µg/L ND NC 20 Zine ND 100 µg/L ND NC 20 Matrix Spike (B284439-MS1) Source: 21F1162-02 Prepared: 96/21/21 Analyzed: 06/21/21 NC 20 Matrix Spike (B284439-MS1) Source: 21F1162-02 Prepared: 96/21/21 Analyzed: 06/21/21 NC 20 Matrix Spike (B284439-MS1) Source: 21F1162-02 Prepared: 96/21/21 Analyzed: 06/21/21 NC 20 NC	Antimony	ND	10	μg/L		ND			NC	20	
ND	Arsenic	42.7	8.0	μg/L		43.8			2.42	20	
Copper	Cadmium	ND	2.0	μg/L		ND			NC	20	
Lead ND 5.0 µg/L ND NC 20 Nickel ND 50 µg/L ND NC 20 Selenium 131 50 µg/L ND 138 4.93 20 Silver ND 2.0 µg/L ND NC 20 Zine ND 100 µg/L ND NC 20 Matrix Spike (B284439-MS1) Source: 21F1162-02 Prepared: 06/21/21 Analyzed: 06/22/21 NC 20 Matrix Spike (B284439-MS1) Source: 21F1162-02 Prepared: 06/21/21 Analyzed: 06/22/21 V NC 20 Matrix Spike (B284439-MS1) Source: 21F1162-02 Prepared: 06/21/21 Analyzed: 06/22/21 V NC 20 Matrix Spike (B284439-MS1) Source: 21F1162-02 Prepared: 06/21/21 Analyzed: 06/22/21 V V ND ND 70-130 ND	Chromium		10	μg/L		ND			NC	20	
Nickel ND 50 µg/L ND 138 4.93 20 Selenium 131 50 µg/L 138 4.93 20 Silver ND 2.0 µg/L ND NC 20 Zinc ND 100 µg/L ND NC 20 Matrix Spike (B284439-MS1) Source: 21F1162-02 Prepared: 06/21/21 Analyzed: 06/22/21 Antimony 558 10 µg/L 500 ND 112 70-130 Arsenic 559 8.0 µg/L 500 ND 112 70-130 Cadmium 459 2.0 µg/L 500 ND 105 70-130 Chromium 524 10 µg/L 500 ND 105 70-130 Copper 965 10 µg/L 500 ND 105 70-130 Copper 965 10 µg/L 500 ND 111 70-130 Nickel 468 50 µg/L 500 ND 111 70-130 Selenium 638 50 µg/L 500 ND 111 70-130 Silver 424 2.0 µg/L 500 ND 119 91.2 70-130 Selenium 638 50 µg/L 500 ND 110 90.2 70-130 Selenium 907 100 µg/L 1000 ND 84.8 70-130 Zinc 907 100 µg/L 1000 ND 90.7 70-130 Batch B284490-BLK1) Prepared & Analyzed: 06/22/21 LCS (B284490-BLK1) Prepared & Analyzed: 06/22/21	Copper	101	10	μg/L		108			6.40	20	
Nickel ND 50 µg/L ND 138 4.93 20 Selenium 131 50 µg/L ND 138 4.93 20 Silver ND 2.0 µg/L ND NC 20 Zinc ND 100 µg/L ND NC 20 Matrix Spike (B284439-MS1) Source: 21F1162-02 Prepared: 66/21/21 Analyzed: 06/22/21 Antimony 558 10 µg/L 500 ND 112 70-130 Cadmium 459 2.0 µg/L 500 ND 105 70-130 Chromium 524 10 µg/L 500 ND 105 70-130 Copper 965 10 µg/L 500 ND 105 70-130 Copper 965 10 µg/L 500 ND 111 70-130 Nickel 468 50 µg/L 500 ND 111 70-130 Nickel 468 50 µg/L 500 ND 111 70-130 Selenium 638 50 µg/L 500 ND 111 70-130 Silver 424 2.0 µg/L 500 ND 111 70-130 Silver 424 2.0 µg/L 500 ND 110 70-130 Silver 424 2.0 µg/L 500 ND 110 70-130 Silver 424 2.0 µg/L 500 ND 110 70-130 Silver 424 2.0 µg/L 500 ND 84.8 70-130	Lead	ND	5.0	μg/L		ND			NC	20	
Selenium 131 50 \(\psi g/L\) 138 4.93 20 20 20 20 20 20 20 2	Nickel		50	μg/L					NC	20	
ND 2.0	Selenium		50						4.93	20	
Matrix Spike (B284439-MS1) Source: 21F1162-02 Prepared: 06/21/21 Analyzed: 06/22/21 NC 20 Antimony 558 10 µg/L 500 ND 112 70-130 <	Silver		2.0							20	
Antimony 558 10 µg/L 500 ND 112 70-130 Arsenic 559 8.0 µg/L 500 43.8 103 70-130 Cadmium 459 2.0 µg/L 500 ND 91.9 70-130 Chromium 524 10 µg/L 500 ND 105 70-130 Copper 965 10 µg/L 1000 108 85.7 70-130 Lead 555 5.0 µg/L 500 ND 111 70-130 Nickel 468 50 µg/L 500 ND 111 70-130 Selenium 638 50 µg/L 500 11.9 91.2 70-130 Selenium 638 50 µg/L 500 11.9 91.2 70-130 Silver 424 2.0 µg/L 500 ND 84.8 70-130 Zinc 907 100 µg/L 1000 ND 90.7 70-130 Batch B284490 - EPA 245.1 Blank (B284490-BLK1) Prepared & Analyzed: 06/22/21 Mercury ND 0.00010 mg/L Prepared & Analyzed: 06/22/21	Zinc		100						NC	20	
Arsenic 559 8.0 µg/L 500 43.8 103 70-130 Cadmium 459 2.0 µg/L 500 ND 91.9 70-130 Chromium 524 10 µg/L 500 ND 105 70-130 Copper 965 10 µg/L 1000 108 85.7 70-130 Lead 555 5.0 µg/L 500 ND 111 70-130 Nickel 468 50 µg/L 500 ND 111 70-130 Selenium 638 50 µg/L 500 11.9 91.2 70-130 Silver 424 2.0 µg/L 500 ND 84.8 70-130 Zinc 907 100 µg/L 1000 ND 90.7 70-130 Batch B284490 - EPA 245.1 Blank (B284490-BLK1) Prepared & Analyzed: 06/22/21 LCS (B284490-BS1) Prepared & Analyzed: 06/22/21	Matrix Spike (B284439-MS1)	Sou	rce: 21F1162-0	02	Prepared: 06	5/21/21 Analyz	zed: 06/22/	21			
Arsenic 559 8.0 µg/L 500 43.8 103 70-130 Cadmium 459 2.0 µg/L 500 ND 91.9 70-130 Chromium 524 10 µg/L 500 ND 105 70-130 Copper 965 10 µg/L 1000 108 85.7 70-130 Lead 555 5.0 µg/L 500 ND 111 70-130 Nickel 468 50 µg/L 500 ND 111 70-130 Selenium 638 50 µg/L 500 11.9 91.2 70-130 Silver 424 2.0 µg/L 500 ND 84.8 70-130 Silver 424 2.0 µg/L 500 ND 84.8 70-130 Zinc 907 100 µg/L 1000 ND 90.7 70-130 Batch B284490 - EPA 245.1 Blank (B284490-BLK1) Prepared & Analyzed: 06/22/21 LCS (B284490-BS1) Prepared & Analyzed: 06/22/21	Antimony	558	10	μg/L	500	ND	112	70-130			
Cadmium 459 2.0 μg/L 500 ND 91.9 70-130 Chromium 524 10 μg/L 500 ND 105 70-130 Copper 965 10 μg/L 1000 108 85.7 70-130 Lead 555 5.0 μg/L 500 ND 111 70-130 Nickel 468 50 μg/L 500 11.9 91.2 70-130 Selenium 638 50 μg/L 500 138 100 70-130 Silver 424 2.0 μg/L 500 ND 84.8 70-130 Zinc 907 100 μg/L 1000 ND 90.7 70-130 Batch B284490 - EPA 245.1 Prepared & Analyzed: 06/22/21 LCS (B284490-BS1) Prepared & Analyzed: 06/22/21	Arsenic		8.0		500		103	70-130			
Chromium 524 10 µg/L 500 ND 105 70-130 Copper 965 10 µg/L 1000 108 85.7 70-130 Lead 555 5.0 µg/L 500 ND 111 70-130 Nickel 468 50 µg/L 500 11.9 91.2 70-130 Selenium 638 50 µg/L 500 138 100 70-130 Silver 424 2.0 µg/L 500 ND 84.8 70-130 Zinc 907 100 µg/L 1000 ND 90.7 70-130 Batch B284490 - EPA 245.1 Blank (B284490-BLK1) Prepared & Analyzed: 06/22/21 LCS (B284490-BS1) Prepared & Analyzed: 06/22/21	Cadmium		2.0								
Copper 965 10 μg/L 1000 108 85.7 70-130 Lead 555 5.0 μg/L 500 ND 111 70-130 Nickel 468 50 μg/L 500 11.9 91.2 70-130 Selenium 638 50 μg/L 500 138 100 70-130 Silver 424 2.0 μg/L 500 ND 84.8 70-130 Zinc 907 100 μg/L 1000 ND 90.7 70-130 Batch B284490 - EPA 245.1 Prepared & Analyzed: 06/22/21 Mg/L LCS (B284490-BS1) Prepared & Analyzed: 06/22/21	Chromium		10								
Lead 555 5.0 μg/L 500 ND 111 70-130 Nickel 468 50 μg/L 500 11.9 91.2 70-130 Selenium 638 50 μg/L 500 138 100 70-130 Silver 424 2.0 μg/L 500 ND 84.8 70-130 Zinc 907 100 μg/L 1000 ND 90.7 70-130 Batch B284490 - EPA 245.1 Prepared & Analyzed: 06/22/21 Mercury ND 0.00010 mg/L Prepared & Analyzed: 06/22/21 LCS (B284490-BS1)	Copper		10		1000						
Nickel 468 50 µg/L 500 11.9 91.2 70-130 Selenium 638 50 µg/L 500 138 100 70-130 Silver 424 2.0 µg/L 500 ND 84.8 70-130 Zinc 907 100 µg/L 1000 ND 90.7 70-130 Batch B284490 - EPA 245.1 Blank (B284490-BLK1) Prepared & Analyzed: 06/22/21 Mercury ND 0.00010 mg/L LCS (B284490-BS1) Prepared & Analyzed: 06/22/21	**										
Selenium 638 50 µg/L 500 138 100 70-130 Silver 424 2.0 µg/L 500 ND 84.8 70-130 Zine 907 100 µg/L 1000 ND 90.7 70-130 Batch B284490 - EPA 245.1 Prepared & Analyzed: 06/22/21 Mercury ND 0.00010 mg/L LCS (B284490-BS1) Prepared & Analyzed: 06/22/21											
Silver 424 2.0 µg/L 500 ND 84.8 70-130 Zine 907 100 µg/L 1000 ND 90.7 70-130 Batch B284490 - EPA 245.1 Blank (B284490-BLK1) Prepared & Analyzed: 06/22/21 Mercury ND 0.00010 mg/L LCS (B284490-BS1) Prepared & Analyzed: 06/22/21											
Zinc 907 100 μg/L 1000 ND 90.7 70-130 Batch B284490 - EPA 245.1 Blank (B284490-BLK1) Prepared & Analyzed: 06/22/21 Mercury ND 0.00010 mg/L LCS (B284490-BS1) Prepared & Analyzed: 06/22/21	Silver										
Blank (B284490-BLK1) Prepared & Analyzed: 06/22/21 Mercury ND 0.00010 mg/L LCS (B284490-BS1) Prepared & Analyzed: 06/22/21	Zinc										
Mercury ND 0.00010 mg/L LCS (B284490-BS1) Prepared & Analyzed: 06/22/21	Batch B284490 - EPA 245.1										
Mercury ND 0.00010 mg/L LCS (B284490-BS1) Prepared & Analyzed: 06/22/21	Blank (B284490-BLK1)				Prepared &	Analyzed: 06/2	22/21				
		ND	0.00010	mg/L	-	-					
	LCS (B284490-BS1)				Prepared &	Analyzed: 06/2	22/21				
	Mercury	0.00395	0.00010	mg/L	0.00400	<u> </u>	98.7	85-115			

QUALITY CONTROL

Metals Analyses (Total) - Quality Control

Analyte	Result	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Notes
Batch B284490 - EPA 245.1										
LCS Dup (B284490-BSD1)				Prepared & A	Analyzed: 06/	/22/21				
Mercury	0.00392	0.00010	mg/L	0.00400		98.1	85-115	0.566	20	
Duplicate (B284490-DUP1)	Sour	ce: 21F1162-0)2	Prepared & A	Analyzed: 06/	/22/21				
Mercury	ND	0.00010	mg/L		ND			NC	30	
Matrix Spike (B284490-MS1)	Sour	ce: 21F1162-)2	Prepared & A	Analyzed: 06/	/22/21				
Mercury	0.00380	0.00010	mg/L	0.00400	ND	95.0	75-125			

QUALITY CONTROL

Conventional Chemistry Parameters by EPA/APHA/SW-846 Methods (Total) - Quality Control

Analyte	Result	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Notes
-	ROSuit	Limit	Omo	Ectel	Result	/VILLE	Dillitis	МЪ	Limit	110003
Batch B284339 - SM21-22 4500 CL G										
Blank (B284339-BLK1)				Prepared & A	Analyzed: 06	/18/21				
Chlorine, Residual	ND	0.020	mg/L							
LCS (B284339-BS1)				Prepared & A	Analyzed: 06	/18/21				
Chlorine, Residual	0.72	0.020	mg/L	0.641		112	80.3-122			
LCS Dup (B284339-BSD1)				Prepared & A	Analyzed: 06	/18/21				
Chlorine, Residual	0.71	0.020	mg/L	0.641		111	80.3-122	1.56	10.7	
Duplicate (B284339-DUP1)	Sour	ce: 21F1162-	01	Prepared & A	Analyzed: 06	/18/21				
Chlorine, Residual	ND	0.020	mg/L		ND)		NC	27.6	
Matrix Spike (B284339-MS1)	Sour	ce: 21F1162-	01	Prepared & A	Analyzed: 06	/18/21				
Chlorine, Residual	0.34	0.020	mg/L	0.300	ND		10-169			
Batch B284343 - SM21-22 3500 Cr B										
Blank (B284343-BLK1)				Prepared & A	Analyzed: 06	/18/21				
Hexavalent Chromium	ND	0.0040	mg/L							
LCS (B284343-BS1)				Prepared & A	Analyzed: 06	/18/21				
Hexavalent Chromium	0.10	0.0040	mg/L	0.100		103	90-114			
LCS Dup (B284343-BSD1)				Prepared & A	Analyzed: 06	/18/21				
Hexavalent Chromium	0.10	0.0040	mg/L	0.100		101	90-114	2.64	5	
Matrix Spike (B284343-MS1)	Sour	ce: 21F1162-	02	Prepared & A	Analyzed: 06	/18/21				
Hexavalent Chromium	0.095	0.0040	mg/L	0.100	ND	95.1	60.5-130			
Matrix Spike Dup (B284343-MSD1)	Som	ce: 21F1162-	02	Prepared & A	Analyzed: 06	/18/21				
Hexavalent Chromium	0.099	0.0040	mg/L	0.100	ND		60.5-130	4.15	7.53	
Batch B284371 - EPA 1664B										
Blank (B284371-BLK1)				Prepared & A	Analyzed: 06	/21/21				
Silica Gel Treated HEM (SGT-HEM)	ND	1.4	mg/L							
LCS (B284371-BS1)				Prepared & A	Analyzed: 06	/21/21				
Silica Gel Treated HEM (SGT-HEM)	9.1		mg/L	10.0	· · · · · · · · · · · · · · · · · · ·	91.0	64-132			
Batch B284379 - SM21-22 2540D										
Blank (B284379-BLK1)				Prepared & A	Analyzed: 06	/21/21				
Total Suspended Solids	ND	2.5	mg/L							

QUALITY CONTROL

Conventional Chemistry Parameters by EPA/APHA/SW-846 Methods (Total) - Quality Control

		Reporting		Spike	Source		%REC		RPD	
Analyte	Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Notes
Batch B284379 - SM21-22 2540D										
LCS (B284379-BS1)				Prepared &	Analyzed: 06	5/21/21				
Total Suspended Solids	218	10	mg/L	200		109	53.8-124			
Batch B284417 - EPA 300.0										
Blank (B284417-BLK1)				Prepared &	Analyzed: 06	5/21/21				
Chloride	ND	1.0	mg/L							
LCS (B284417-BS1)				Prepared &	Analyzed: 06	/21/21				
Chloride	9.4	1.0	mg/L	10.0		94.0	90-110			
LCS Dup (B284417-BSD1)				Prepared &	Analyzed: 06	5/21/21				
Chloride	9.4	1.0	mg/L	10.0		93.6	90-110	0.454	20	
Batch B284590 - SM19-22 4500 NH3 C										
Blank (B284590-BLK1)				Prepared: 06	5/23/21 Anal	yzed: 06/24/	21			
Ammonia as N	ND	0.30	mg/L							
LCS (B284590-BS1)				Prepared: 06	5/23/21 Anal	yzed: 06/24/	21			
Ammonia as N	4.9	0.30	mg/L	5.00		98.4	86.2-110			
LCS Dup (B284590-BSD1)				Prepared: 06	5/23/21 Anal	yzed: 06/24/	21			
Ammonia as N	5.0	0.30	mg/L	5.00		101	86.2-110	2.61	10	

QUALITY CONTROL

Drinking Water Organics EPA 504.1 - Quality Control

		Reporting		Spike	Source		%REC		RPD	
Analyte	Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Notes
Batch B284596 - EPA 504 water										
Blank (B284596-BLK1)				Prepared &	Analyzed: 06	5/23/21				
1,2-Dibromoethane (EDB)	ND	0.021	μg/L							
Surrogate: 1,3-Dibromopropane	1.10		μg/L	1.05		105	70-130			
LCS (B284596-BS1)				Prepared &	Analyzed: 06	5/23/21				
1,2-Dibromoethane (EDB)	0.283	0.021	μg/L	0.258		110	70-130			
Surrogate: 1,3-Dibromopropane	1.17		μg/L	1.03		113	70-130			
LCS Dup (B284596-BSD1)				Prepared &	Analyzed: 06	5/23/21				
1,2-Dibromoethane (EDB)	0.316	0.020	μg/L	0.256		124	70-130	10.9		
Surrogate: 1,3-Dibromopropane	1.19		μg/L	1.02		117	70-130			
Matrix Spike (B284596-MS1)	Sou	rce: 21F1162-	01	Prepared &	Analyzed: 06	5/23/21				
1,2-Dibromoethane (EDB)	0.274	0.020	μg/L	0.245	NE	112	65-135			
Surrogate: 1,3-Dibromopropane	1.04		μg/L	0.980		106	70-130			

IDENTIFICATION SUMMARY FOR SINGLE COMPONENT ANALYTES

LCS

608.3

Lab Sample ID:	B284363-BS1		Date(s) Analyzed:	06/22/2021	06/22/20)21
Instrument ID (1):	ECD5	_	Instrument ID (2):	ECD5		<u>-</u>
GC Column (1):	ID:	(mm)	GC Column (2):		ID:	(mm)

ANALYTE	COL	RT	RT WINDOW		CONCENTRATION	%RPD
7.10.12.1.2	002		FROM	TO	00110211111111111111	70111 2
Aroclor-1016	1	0.000	0.000	0.000	0.445	
	2	0.000	0.000	0.000	0.363	21.4
Aroclor-1260	1	0.000	0.000	0.000	0.447	
	2	0.000	0.000	0.000	0.397	12.5

IDENTIFICATION SUMMARY FOR SINGLE COMPONENT ANALYTES

LCS Dup	

608.3

Lab Sample ID:	B284363-BSD1		Date(s) Analyzed:	06/22/2021	06/22	/2021
Instrument ID (1):	ECD5	_	Instrument ID (2):	ECD5		
GC Column (1):	ID:	(mm)	GC Column (2):		ID:	(mm

ANALYTE	COL	RT	RT WINDOW		CONCENTRATION	%RPD
7.10.112	OOL	111	FROM	TO	OONOLIVITUUTOIV	70111 15
Aroclor-1016	1	0.000	0.000	0.000	0.406	
	2	0.000	0.000	0.000	0.419	2.2
Aroclor-1260	1	0.000	0.000	0.000	0.439	
	2	0.000	0.000	0.000	0.416	5.6

IDENTIFICATION SUMMARY FOR SINGLE COMPONENT ANALYTES

LCS	

EPA 504.1

La	b Sample ID: B28	4596-BS1	<u> </u>	Da	ate(s) Analy	zed: 06/23/2021	06/2	23/2021
Ins	strument ID (1):			In	strument ID	(2):		
G	C Column (1):	ID:	(m	nm) G	C Column (2	2):	ID:	(mm
	ANALYTE	COL	RT	RT WI	NDOW	CONCENTRATION	%RPD]
	,	001		FROM	TO	00110=1111#111011	701 11 2	
Ī	1.2-Dibromoethane (EDB)	1	2 723	0.000	0.000	0.283		

IDENTIFICATION SUMMARY FOR SINGLE COMPONENT ANALYTES

LCS Dup	

EPA 504.1

La	b Sample ID: B284	596-BSD	1	Da	ate(s) Analy	zed: 06/23/2021	06/2	23/2021
Ins	strument ID (1):			In	strument ID	(2):		
G	C Column (1):	ID:	(m	nm) G	C Column (2	2):	ID:	(mm
	ANALYTE	COL	RT	RT WI	NDOW	CONCENTRATION	%RPD	
				FROM	TO			
Ī	1.2-Dibromoethane (EDB)	1	2 723	0.000	0.000	0.316		

IDENTIFICATION SUMMARY FOR SINGLE COMPONENT ANALYTES

Matrix	Snike
IVIALIA	Ohive

EPA 504.1

La	b Sample ID: B28	4596-MS	<u> </u>	Da	ate(s) Analy	zed: 06/23/20	21 06/	23/2021
Ins	strument ID (1):			In	strument ID	(2):		
G	C Column (1):	ID:	(m	nm) G	C Column (2	2):	ID:	(mm)
	ANALYTE	COL	RT	RT WI	NDOW	CONCENTRATIO	N %RPD	
				FROM	TO			
	1.2-Dibromoethane (EDB)	1	2 721	0.000	0.000	0 274		

FLAG/QUALIFIER SUMMARY

*	QC result is outside of established limits.		
†	Wide recovery limits established for difficult compound.		
‡	Wide RPD limits established for difficult compound.		
#	Data exceeded client recommended or regulatory level		
ND	Not Detected		
RL	Reporting Limit is at the level of quantitation (LOQ)		
DL	Detection Limit is the lower limit of detection determined by the MDL study		
MCL	Maximum Contaminant Level		
	Percent recoveries and relative percent differences (RPDs) are determined by the software using values in the calculation which have not been rounded.		
	No results have been blank subtracted unless specified in the case narrative section.		
DL-04	Elevated reporting limit due to high concentration of an interfering analyte(s).		
DL-15	Sample required a dilution due to low internal standard recovery of the lesser diluted digestion, reporting limit is elevated.		
J	Detected but below the Reporting Limit (lowest calibration standard); therefore, result is an estimated concentration (CLP J-Flag).		
L-04	Laboratory fortified blank/laboratory control sample recovery and duplicate recovery are outside of control limits. Reported value for this compound is likely to be biased on the low side.		
L-07	Either laboratory fortified blank/laboratory control sample or duplicate recovery is outside of control limits, but the other is within limits. RPD between the two LFB/LCS results is within method specified criteria.		
MS-19	Sample to spike ratio is greater than or equal to 4:1. Spiked amount is not representative of the native amount in the sample. Appropriate or meaningful recoveries cannot be calculated.		
V-04	Initial calibration did not meet method specifications. Compound was calibrated using a response factor where %RSD is outside of method specified criteria. Reported result is estimated.		
V-05	Continuing calibration verification (CCV) did not meet method specifications and was biased on the low side for this compound.		
V-06	Continuing calibration verification (CCV) did not meet method specifications and was biased on the high side for this compound.		
V-20	Continuing calibration verification (CCV) did not meet method specifications and was biased on the high side. Data validation is not affected since sample result was "not detected" for this compound.		

CERTIFICATIONS

Certified Analyses included in this Report

Analyte	Certifications	
- in Water		
Cyanide	CT,MA,NH,NY,RI,NC,ME,VA	
608.3 in Water		
Aroclor-1016	CT,MA,NH,NY,RI,NC,ME,VA	
Aroclor-1016 [2C]	CT,MA,NH,NY,RI,NC,ME,VA	
Aroclor-1221	CT,MA,NH,NY,RI,NC,ME,VA	
Aroclor-1221 [2C]	CT,MA,NH,NY,RI,NC,ME,VA	
Aroclor-1232	CT,MA,NH,NY,RI,NC,ME,VA	
Aroclor-1232 [2C]	CT,MA,NH,NY,RI,NC,ME,VA	
Aroclor-1242	CT,MA,NH,NY,RI,NC,ME,VA	
Aroclor-1242 [2C]	CT,MA,NH,NY,RI,NC,ME,VA	
Aroclor-1248	CT,MA,NH,NY,RI,NC,ME,VA	
Aroclor-1248 [2C]	CT,MA,NH,NY,RI,NC,ME,VA	
Aroclor-1254	CT,MA,NH,NY,RI,NC,ME,VA	
Aroclor-1254 [2C]	CT,MA,NH,NY,RI,NC,ME,VA	
Aroclor-1260	CT,MA,NH,NY,RI,NC,ME,VA	
Aroclor-1260 [2C]	CT,MA,NH,NY,RI,NC,ME,VA	
624.1 in Water		
Acetone	CT,NY,MA,NH	
tert-Amyl Methyl Ether (TAME)	MA	
Benzene	CT,NY,MA,NH,RI,NC,ME,VA	
Bromodichloromethane	CT,NY,MA,NH,RI,NC,ME,VA	
Bromoform	CT,NY,MA,NH,RI,NC,ME,VA	
Bromomethane	CT,NY,MA,NH,RI,NC,ME,VA	
tert-Butyl Alcohol (TBA)	NY,MA	
Carbon Tetrachloride	CT,NY,MA,NH,RI,NC,ME,VA	
Chlorobenzene	CT,NY,MA,NH,RI,NC,ME,VA	
Chlorodibromomethane	CT,NY,MA,NH,RI,NC,ME,VA	
Chloroethane	CT,NY,MA,NH,RI,NC,ME,VA	
Chloroform	CT,NY,MA,NH,RI,NC,ME,VA	
Chloromethane	CT,NY,MA,NH,RI,NC,ME,VA	
1,2-Dichlorobenzene	CT,NY,MA,NH,RI,NC,ME,VA	
1,3-Dichlorobenzene	CT,NY,MA,NH,RI,NC,ME,VA	
1,4-Dichlorobenzene	CT,NY,MA,NH,RI,NC,ME,VA	
1,2-Dichloroethane	CT,NY,MA,NH,RI,NC,ME,VA	
1,1-Dichloroethane	CT,NY,MA,NH,RI,NC,ME,VA	
1,1-Dichloroethylene	CT,NY,MA,NH,RI,NC,ME,VA	
trans-1,2-Dichloroethylene	CT,NY,MA,NH,RI,NC,ME,VA	
1,2-Dichloropropane	CT,NY,MA,NH,RI,NC,ME,VA	
cis-1,3-Dichloropropene	CT,NY,MA,NH,RI,NC,ME,VA	
1,4-Dioxane	MA	
trans-1,3-Dichloropropene	CT,NY,MA,NH,RI,NC,ME,VA	
Ethanol	NY,MA,NH	
Ethylbenzene	CT,NY,MA,NH,RI,NC,ME,VA	
Methyl tert-Butyl Ether (MTBE)	NY,MA,NH,NC	
Methylene Chloride	CT,NY,MA,NH,RI,NC,ME,VA	
Naphthalene	NY,MA,NC	

CERTIFICATIONS

Certified Analyses included in this Report

Analyte	Certifications
624.1 in Water	
1,1,2,2-Tetrachloroethane	CT,NY,MA,NH,RI,NC,ME,VA
Tetrachloroethylene	CT,NY,MA,NH,RI,NC,ME,VA
Toluene	CT,NY,MA,NH,RI,NC,ME,VA
1,2,4-Trichlorobenzene	MA,NC
1,1,1-Trichloroethane	CT,NY,MA,NH,RI,NC,ME,VA
1,1,2-Trichloroethane	CT,NY,MA,NH,RI,NC,ME,VA
Trichloroethylene	CT,NY,MA,NH,RI,NC,ME,VA
Trichlorofluoromethane (Freon 11)	CT,NY,MA,NH,RI,NC,ME,VA
Vinyl Chloride	CT,NY,MA,NH,RI,NC,ME,VA
m+p Xylene	CT,NY,MA,NH,RI,NC
o-Xylene	CT,NY,MA,NH,RI,NC
625.1 in Water	
Acenaphthene	CT,MA,NH,NY,NC,RI,ME,VA
Acenaphthylene	CT,MA,NH,NY,NC,RI,ME,VA
Anthracene	CT,MA,NH,NY,NC,RI,ME,VA
Benzidine	CT,MA,NH,NY,NC,RI,ME,VA
Benzo(g,h,i)perylene	CT,MA,NH,NY,NC,RI,ME,VA
4-Bromophenylphenylether	CT,MA,NH,NY,NC,RI,ME,VA
Butylbenzylphthalate	CT,MA,NH,NY,NC,RI,ME,VA
4-Chloro-3-methylphenol	CT,MA,NH,NY,NC,RI,VA
Bis(2-chloroethyl)ether	CT,MA,NH,NY,NC,RI,ME,VA
Bis(2-chloroisopropyl)ether	CT,MA,NH,NY,NC,RI,ME,VA
2-Chloronaphthalene	CT,MA,NH,NY,NC,RI,ME,VA
2-Chlorophenol	CT,MA,NH,NY,NC,RI,ME,VA
4-Chlorophenylphenylether	CT,MA,NH,NY,NC,RI,ME,VA
Di-n-butylphthalate	CT,MA,NH,NY,NC,RI,ME,VA
1,3-Dichlorobenzene	MA,NC
1,4-Dichlorobenzene	MA,NC
1,2-Dichlorobenzene	MA,NC
3,3-Dichlorobenzidine	CT,MA,NH,NY,NC,RI,ME,VA
2,4-Dichlorophenol	CT,MA,NH,NY,NC,RI,ME,VA
Diethylphthalate	CT,MA,NH,NY,NC,RI,ME,VA
2,4-Dimethylphenol	CT,MA,NH,NY,NC,RI,ME,VA
Dimethylphthalate	CT,MA,NH,NY,NC,RI,ME,VA
4,6-Dinitro-2-methylphenol	CT,MA,NH,NY,NC,RI,ME,VA
2,4-Dinitrophenol	CT,MA,NH,NY,NC,RI,ME,VA
2,4-Dinitrotoluene	CT,MA,NH,NY,NC,RI,ME,VA
2,6-Dinitrotoluene	CT,MA,NH,NY,NC,RI,ME,VA
Di-n-octylphthalate	CT,MA,NH,NY,NC,RI,ME,VA
1,2-Diphenylhydrazine/Azobenzene	NC
Bis(2-Ethylhexyl)phthalate	CT,MA,NH,NY,NC,RI,ME,VA
Fluoranthene	CT,MA,NH,NY,NC,RI,ME,VA
Fluorene	CT,MA,NH,NY,NC,RI,ME,VA
Hexachlorobenzene	CT,MA,NH,NY,NC,RI,ME,VA
Hexachlorobutadiene	CT,MA,NH,NY,NC,RI,ME,VA
Hexachlorocyclopentadiene	CT,MA,NH,NY,NC,RI,ME,VA

39 Spruce Street * East Longmeadow, MA 01028 * FAX 413/525-6405 * TEL. 413/525-2332

CERTIFICATIONS

Certified Analyses included in this Report

Hexavalent Chromium

Analyte	Certifications
625.1 in Water	
Hexachloroethane	CT,MA,NH,NY,NC,RI,ME,VA
Isophorone	CT,MA,NH,NY,NC,RI,ME,VA
Naphthalene	CT,MA,NH,NY,NC,RI,ME,VA
Nitrobenzene	CT,MA,NH,NY,NC,RI,ME,VA
2-Nitrophenol	CT,MA,NH,NY,NC,RI,ME,VA
4-Nitrophenol	CT,MA,NH,NY,NC,RI,ME,VA
N-Nitrosodimethylamine	CT,MA,NH,NY,NC,RI,ME,VA
N-Nitrosodi-n-propylamine	CT,MA,NH,NY,NC,RI,ME,VA
2-Methylnaphthalene	NC
Phenanthrene	CT,MA,NH,NY,NC,RI,ME,VA
2-Methylphenol	NY,NC
Phenol	CT,MA,NH,NY,NC,RI,ME,VA
3/4-Methylphenol	NY,NC
Pyrene	CT,MA,NH,NY,NC,RI,ME,VA
1,2,4-Trichlorobenzene	CT,MA,NH,NY,NC,RI,ME,VA
2,4,6-Trichlorophenol	CT,MA,NH,NY,NC,RI,ME,VA
2-Fluorophenol	NC
2-Fluorophenol	NC,VA
Phenol-d6	VA
Nitrobenzene-d5	VA
EPA 200.7 in Water	
Iron	CT,MA,NH,NY,RI,NC,ME,VA
Hardness	CT,MA,NH,NY,RI,VA
EPA 200.8 in Water	
Antimony	CT,MA,NH,NY,RI,NC,ME,VA
Arsenic	CT,MA,NH,NY,RI,NC,ME,VA
Cadmium	CT,MA,NH,NY,RI,NC,ME,VA
Chromium	CT,MA,NH,NY,RI,NC,ME,VA
Copper	CT,MA,NH,NY,RI,NC,ME,VA
Lead	CT,MA,NH,NY,RI,NC,ME,VA
Nickel	CT,MA,NH,NY,RI,NC,ME,VA
Selenium	CT,MA,NH,NY,RI,NC,ME,VA
Silver	CT,MA,NH,NY,RI,NC,ME,VA
Zinc	CT,MA,NH,NY,RI,NC,ME,VA
EPA 245.1 in Water	
Mercury	CT,MA,NH,RI,NY,NC,ME,VA
EPA 300.0 in Water	
Chloride	NC,NY,MA,VA,ME,NH,CT,RI
SM19-22 4500 NH3 C in Water	
Ammonia as N	NY,MA,CT,RI,VA,NC,ME
SM21-22 2540D in Water	
Total Suspended Solids	CT,MA,NH,NY,RI,NC,ME,VA
SM21-22 3500 Cr B in Water	

NY,CT,NH,RI,ME,VA,NC

39 Spruce Street * East Longmeadow, MA 01028 * FAX 413/525-6405 * TEL. 413/525-2332

CERTIFICATIONS

Certified Analyses included in this Report

Analyte Certifications

SM21-22 4500 CL G in Water

Chlorine, Residual

CT,MA,RI,ME

Con-Test, a Pace Environmental Laboratory, operates under the following certifications and accreditations:

Code	Description	Number	Expires
AIHA	AIHA-LAP, LLC - ISO17025:2017	100033	03/1/2022
MA	Massachusetts DEP	M-MA100	06/30/2022
CT	Connecticut Department of Publilc Health	PH-0165	12/31/2022
NY	New York State Department of Health	10899 NELAP	04/1/2022
NH-S	New Hampshire Environmental Lab	2516 NELAP	02/5/2022
RI	Rhode Island Department of Health	LAO00112	12/30/2021
NC	North Carolina Div. of Water Quality	652	12/31/2021
NJ	New Jersey DEP	MA007 NELAP	06/30/2022
FL	Florida Department of Health	E871027 NELAP	06/30/2022
VT	Vermont Department of Health Lead Laboratory	LL720741	07/30/2022
ME	State of Maine	MA00100	06/9/2023
VA	Commonwealth of Virginia	460217	12/14/2021
NH-P	New Hampshire Environmental Lab	2557 NELAP	09/6/2021
VT-DW	Vermont Department of Health Drinking Water	VT-255716	06/12/2022
NC-DW	North Carolina Department of Health	25703	07/31/2021
PA	Commonwealth of Pennsylvania DEP	68-05812	06/30/2022
MI	Dept. of Env, Great Lakes, and Energy	9100	09/6/2021

21F1162

CON-LEST

http://www.contestlabs.com CHAIN OF CUSTODY RECORD

Doc # 381 Rev 1_03242017

Con-test	Phone: 413-525-2332	CHAIN OF CL	USTODY RECORD				8	39 Spruce Street	Street							
TITLE AMARYTICAL LABORATORY	Fax: 413-525-6405						ធ្ល	East Longmeadow, MA 01028	meado	w, MA(1028					Page_1of_1
The second secon	Email: info@contestlabs.com		10-Day		2 1	-	7	-	2	-	-	 -	₁ ├-	-	Г	***************************************
Company Name:	Lockwood Remediation Technologies	Due Date:	5-day	Ľ	<u> </u> -	E	1 Z	- ×	-	+	7 \	~ -	7 Z	7	7 -	# of Containers
Address: 89 Crawford Street, Leominster, MA 01453	eominster, MA 01453	Riteheap	rovali Kequirad		a a	۵	۵	۵	∀	✓	, 4		: 🗅	-	-	Preservation Code
Phone: (774) 450-7177	The state of the s		3-Dav		+	,	ANIA! VCIC BEAL EFTER	1		- I -	+	+	-	-	_	' Container Code
Project Name: MBTA Headhouse			4-Day				<u> </u>	 12	= G =			···	···			Dissolved Mercils Samples
Project Location:		EstaG	a Delivery													
Project Number: 2-2223		PDF 🗸	EXCEL			***	, Сг ۸⊈,									C Lab to Filter
Project Manager: Brian Caccavale		Other:							···			·				
Con-Test Quote Name/Number:		CLP Like Data Pkg Required:	equired:										- 4			
Invoice Recipient:		Email To: jeni	nings@lrt-llc.n∈	et et								espo .	g _{in}		1/	Dalani Circina C
Sampled By:		cc: <u>bcac</u>	bcaccavale@Irt-Ilc.net	<u> </u>				ē	s,>c			٠	S		/ mu	
Con-Test Work Order#	Client Sample ID / Description Beginning Date/Time	Ending Composite Date/Time	e Grab Matrix	S S	omma.	BC	otal A u, Fe,	yanid	y-¦me 0€'s	s,8:	Ho	- 80 - SS	ardne:	linity	imonn	1 Matrix Codes:
-	Influent 7/19	3.5	we w	+-	+	+-		_	+)d ;	-			₆ 2 >	э	GW = Ground Water WW = Waste Water
6		2 2 3	+	+	+	{	<	$\frac{1}{\sqrt{1}}$	<u> </u>	×	×	× ×	×	4	×	DW = Drinking Water
	Receiving water	8	≫ S ×	×	J		×	_					×	×	×	A=Air S=Soil
															1	SL = Studge
								\vdash	<u> </u>		<u> </u>	╬	_		1	O = Other (please
					-			1	-		+	+	_		1	define)
100 GEO 100 GE						1		+	+		\dagger	+	_		1	The second secon
					$\overline{\parallel}$										73000	* Preservation Codes:
									···						564225	
								_				-			T	M = Methanol N = Nitric Acid
								-	-		_	-			1	S = Sulfuric Acid
						_		-	-		1	+			7.434	X = Sodium Hydroxide
Comments: pH In: '2 '4	DH RW () X			-	1	\exists		\dashv	-			_			3,343	T = Sodium Thinguifate
	0 1/6		Please us	Please use the following codes to indicate possible sample concentration within the Conc Code	wing co	des to ir	dicate	possib	e sampl	e conce	entratio	n withi	n the (č onc S	de	O = Other (please
				•	•	:	8 .	column above:	oove:						es kiege	
samples are tor NF	samples are for NPDES RGP Parameters.			-	. H gir.	r - rign; M - Medium; L - Law; C - Clean; U - Unknown	dium;	۲ - ۲۰ ۱	ت ن	ean; U	- Unkn	nwo			56N-43	³ Container Codes:
Kelinquished by: (signature)	Date/Time: 8/9424460n	Detaction Limit Requirements	Special Requirements	quiremen	: :										T	A = Amber Glass G = Glass
Readfied by: (Manazure)	(e/Tiple:		MCP Certification Form Required	MM MCF REQUIRED	duired	-	ناند سند سنند	((4	6	6			00000	P = Plastic
Land land	6/18/11 15K			CT RCP Required	quired			y	Ç	Ž	V	· _			34773	V = Vial
Methylogy on grayurer	Date Time: 1810		RCP Certification Form Required	ion Form Re	equired			ANA	YTICAL	LABO	analytical Laboratory	r firedo.			(1819)	> = Summa Canister T = Tedlar Bag
(Stringthie)	(Mye/Jing:		AA SE	MA State DW Required	positi			f			E 65				SHNS	
1 1 1 1	- 01/9/1 151 one		# QISMd	have and				SELAC.	100	A-LAP		0.25				Programme A Program
G quished by: (signature)	Date/Time: Project Entity	ity						ð	Other							ole (
4 V ved by: (signature)	Date/Time:	Government	Municipa(ity		MWRA	☐ WRTA	YTA .			Chrom	Chromatogram	_				
of 4		City	Brownfield	x ≈]□	MBTA					AIHA-L	AIHA-LAP,LLC					Non Soxhlet
8															-	ents

I Have Not Confirmed Sample Container
Numbers With Lab Staff Before Relinquishing
Over Samples_____

Doc# 277 Rev 5 2017

Login Sample Receipt Checklist - (Rejection	Criteria Listing - Using Accep	stance Policy) Any False
Statement will be brought to the a	attention of the Client - State [*]	Γrue or False

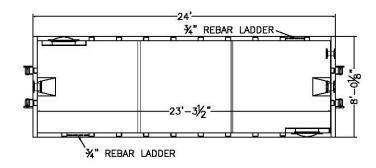
Client LKT	•							
Received By	_92		Date	6/18	jai	Time	1610_	
How were the samples	In Cooler		No Cooler_	,	On Ice	<u> </u>	_ No Ice	
received?	Direct from Samp	oling			Ambient		_ Melted Ice	
Were samples within		By Gun#	<u> </u>		Actual Tem	<u>р- ДД</u>		
Temperature? 2-6°C	T	By Blank #			Actual Tem	p -		
Was Custody Se	eal Intact?	NA	•	•	Tampered		MA	
Was COC Relin	•		•	Chain Agr	ee With Sar	mples?	T	
Are there broken/le	eaking/loose caps	on any sam	· _	<u>F</u>				
Is COC in ink/ Legible?		. •		ples receiv		olding time?	1	
Did COC include all	Client		Analysis _		•	er Name		
pertinent Information?	Project	T	. ID's	T	Collection	Dates/Times	<u> </u>	
Are Sample labels filled	_		-					
Are there Lab to Filters?	?	E	-		notified?			
Are there Rushes?		_F	•		notified?			
Are there Short Holds?		T	_	Who was	notified?	<u> (G55)</u>	<u>'</u>	
Is there enough Volume		<u> </u>						
Is there Headspace who		<u></u>		MS/MSD?	<u> </u>		_	
Proper Media/Container		T			samples red	juired?		
Were trip blanks receive		<u> </u>	•	On COC?				
Do all samples have the	proper pH?		Acid _			Base		
Vials #	Containers:	#			#			#
Unp-	1 Liter Amb.	6	1 Liter F		1		z Amb.	
HCL- 6	500 mL Amb.		500 mL)		nb/Clear	
Meoh-	250 mL Amb.		250 mL		13		nb/Clear	
Bisulfate-	Flashpoint		Col./Ba				nb/Clear	••••
DI- Thiosulfate-	Other Glass		Other F			Frozen:	core	
Sulfuric-	SOC Kit Perchlorate		Plastic Ziplo			1102611.		
Gardine-	1 Cromorate		Unused N					
Vials #	Containers:		Onused II	reura I	#			#
Unp-	1 Liter Amb.		1 Liter F	Plastic		16 oz	z Amb.	
HCL-	500 mL Amb.		500 mL			1	nb/Clear	
Meoh-	250 mL Amb.		250 mL			<u> </u>	nb/Clear	
Bisulfate-	Col./Bacteria		Flash				nb/Clear	
DI-	Other Plastic		Other (Glass		En	core	
I I								
Thiosulfate-	SOC Kit		Plastic	Bag		Frozen:		1
	·		Plastic Ziplo	~		Frozen:		

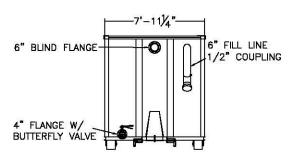
SPECIFICATION

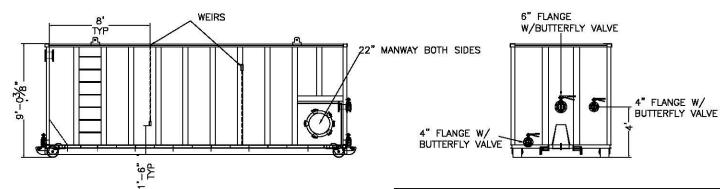
CAPACITY: 50 CUBIC YARD (10K GAL) 1/2" A36 PLATE FLOOR CONSTRUCTION 3/16" A36 PLATE WALL CONSTRUCTION 4" X 3" X 11GA. TOP CAP TUBE

6" X 2" X 1/4" FLOOR RAILS

PORTS: (3) 4" FLANGE W/BUTTERFLY VALVE (1) FLANGED INTERNAL

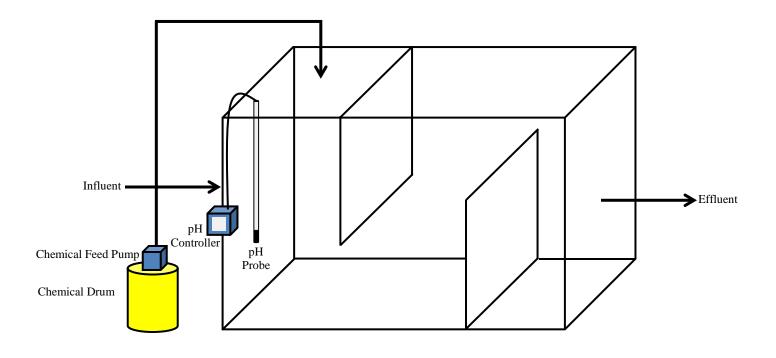

(2) 6" FLANGE W/BUTTERFLY VALVE FLANGED INTERNAL


(1) 6" FILL LINE W/ 1/2" COUPLER


MANWAY: (2) ONE EACH SIDE

OVER UNDER WEIRS WHEELS: 10" STEEL

BLAST: SSPC-SP-6 (COMMERCIAL BLAST) PAINT: POLYURETHANE 3.0-4.0 MILS D.F.T.



10,000 gal. Weir Tank

Lockwood Remediation Technologies, LLC

89 Crawford Street Leominster, Massachusetts 01453 O: 774-450-7177 F: 888-835-0617

Notes:

- 1.) Figure is not to scale.
- 2.) System layout can vary with site conditions.

89 Crawford Street

Leominster, Massachusetts 01453

Tel: 774.450.7177 Fax: 888.835.0617 www.lrt-llc.net

One Controller for the Broadest Range of Sensors.

Choose from 30 digital and analog sensor families for up to 17 di:erent parameters.

Maximum Versatility

The sc200 controller allows the use of digital and analog sensors, either alone or in combination, to provide compatibility with Hach's broad range of sensors, eliminating the need for dedicated, parameter-specific controllers.

Ease of Use and Confidence in Results

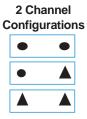
Large, high-resolution, transreflective display provides optimal viewing resolution in any lighting condition. Guided calibration procedures in 19 languages minimize complexity and reduce operator error. Password-protected SD card reader o:ers a simple solution for data download and transfer. Visual warning system provides critical alerts.

Wide Variety of Communication Options

Utilize two to five analog outputs to transmit primary and secondary values for each sensor, or integrate Hach sensors and analyzers into MODBUS RS232/RS485, Profibus® DP, and HART networks.

Password protected SD card reader offers a simple solution for data download and transfer, and sc200 and digital sensor configuration file duplication and backup.

Controller Comparison


Features	Previous I sc100™ Controller	Models GLI53 Controller	sc200™ Controller	Benefits
Display	64 x 128 pixels 33 x 66 mm (1.3 x 2.6 in.)	64 x 128 pixels 33 x 66 mm (1.3 x 2.6 in.)	160 x 240 pixels 48 x 68 mm (1.89 x 2.67 in.) Transreflective	 Improved user interface— 50% bigger Easier to read in daylight and sunlight
Data Management	irDA Port/PDA Service Cable	N/A	SD Card Service Cable	 Simplifies data transfer Standardized accessories/ max compatibility
Sensor Inputs	2 Max Direct Digital Analog via External Gateway	2 Max Analog Depending on Parameter	2 Max Digital and/or Analog with Sensor Card	Simplifies analog sensor connectionsWorks with analog and digital sensors
Analog Inputs	N/A	N/A	1 Analog Input Signal Analog 4-20mA Card	 Enables non-sc analyzer monitoring Accepts mA signals from other analyzers for local display Consolidates analog mA signals to a digital output
4-20 mA Outputs	2 Standard	2 Standard	2 Standard Optional 3 Additional	Total of five (5) 4-20 mA outputs allows multiple mA outputs per sensor input
Digital Communication	MODBUS RS232/RS485 Profibus DP V1.0	HART	MODBUS RS232/RS485 Profibus DP V1.0 HART7.2	Unprecedented combination of sensor breadth and digital communication options

sc200™ Universal Controller

Choose from Hach's Br	oad Range of Digital and Analog Sensors	
Parameter	Sensor	Digital or Analog
Ammonia	AMTAX™ sc, NH4D sc, AISE sc, AN-ISE sc	•
Chlorine	CLF10 sc, CLT10 sc, 9184 sc	•
Chlorine Dioxide	9185 sc	•
Conductivity	GLI 3400 Contacting, GLI 3700 Inductive	A
Dissolved Oxygen	LDO® Model 2, 5740 sc	•
Dissolved Oxygen	5500	
Flow	U53, F53 Sensors	
Nitrate	NITRATAX™ sc, NO3D sc, NISE sc, AN-ISE sc	•
Oil in Water	FP360 sc	•
Organics	UVAS sc	•
Ozone	9187 sc	•
pH/ORP	pHD	•
pH/ORP	pHD, pH Combination, LCP	
Phosphate	PHOSPHAX™ sc	•
Sludge Level	SONATAX™sc	•
Suspended Solids	SOLITAX™ sc, TSS sc	•
Turbidity	1720E, FT660 sc, SS7 sc, ULTRATURB sc, SOLITAX sc, TSS sc	•
Ultra Pure Conductivity	8310, 8311, 8312, 8315, 8316, 8317 Contacting	
Ultra Pure pH/ORP	8362	

● = Digital ▲ = Analog

Connect up to two of any of the sensors listed above, in any combination, to meet your application needs. The diagrams below demonstrate the potential configurations. Operation of analog sensors requires the controller to be equipped with the appropriate sensor module. Contact Hach Technical Support for help with selecting the appropriate module.

1 Channel
Configurations

Specifications*

Dimensions (H x W x

D)

5.7 in x 5.7 in x 7.1 in (144 mm x 144 mm x 181 mm) **Display** Graphic dot matrix LCD with LED

> backlighting, transreflective 1.9 x 2.7 in. (48 mm x 68 mm)

Display Resolution 240 x 160 pixels Weight 3.75 lbs. (1.70 kg)

Power Requirements 100 - 240 V AC, 24 V DC

(Voltage)

Display Size

Power Requirements 50/60 Hz

(Hz)

Operating **Temperature Range** -20 to 60 °C, 0 to 95% RH non-condensing

Two (Five with optional expansion **Analog Outputs**

module) to isolated current outputs, max 550 Ω , Accuracy: ± 0.1% of FS (20mA) at 25 °C, ± 0.5% of FS over -20 °C to 60 °C

range

Operational Mode: measurement

or calculated value

Analog Output Functional Mode Linear, Logarithmic, Bi-linear, PID

Security Levels 2 password-protected levels Wall, pole, and panel mounting Mounting

Configurations **Enclosure Rating** NEMA 4X/IP66 **Conduit Openings**

Relay: Operational

Mode

1/2 in NPT Conduit Primaryorsecondary

measurement, calculated value (dual channel only) or timer

Relay Functions

Scheduler (Timer), Alarm, Feeder Control, Event Control, Pulse Width Modulation, Frequency Control,

and Warning

Four electromechanical SPDT Relays

(Form C) contacts, 1200 W, 5 A

Communication MODBUS RS232/RS485, PROFIBUS DPV1, or HART7.2

optional

Memory Backup

Electrical Certifications Flash memory

EMC

CE compliant for conducted and radiated emissions:

- CISPR 11 (Class A limits)

- EMC Immunity EN 61326-1 (Industrial limits)

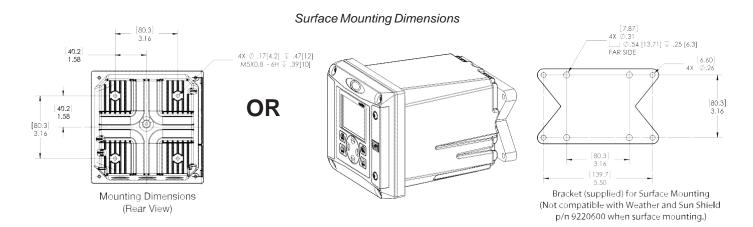
Safety

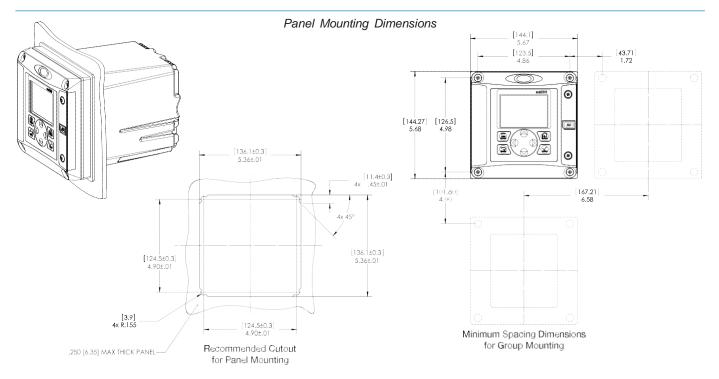
cETLus safety mark for:

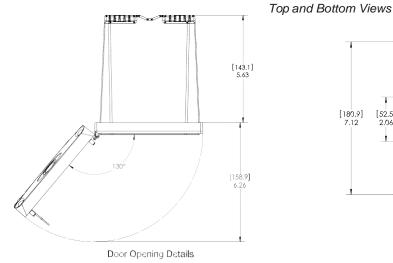
- General Locations per ANSI/UL 61010-1 & CAN/CSA C22.2. No. 61010-1

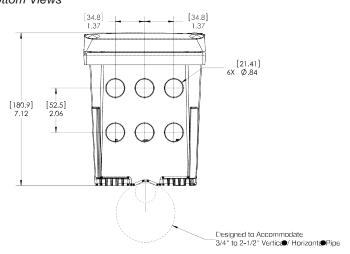
- Hazardous Location Class I, Division 2, Groups A,B,C & D (Zone 2, Group IIC) per FM 3600 / FM 3611 & CSA C22.2 No. 213 M1987 with approved options and appropriately rated Class I,

Division 2 or Zone 2 sensors


cULus safety mark


- General Locations per UL 61010-1 & CAN/CSA C22.2. No. 61010-1


*Subject to change without notice.


sc200™ Universal Controller

Dimensions

3/4-inch Combination pH and ORP Sensor Kits

Use the Digital Gateway to make any Hach analog combination pH or ORP sensor compatible with the Hach sc1000 Controller.

Digital combination pH and ORP sensors are available in convertible, insertion, and sanitary mounting styles. Choose from rugged dome electrodes or "easy-to-clean" flat glass electrodes.

Features and Benefits

Low Price—High Performance

These combination sensors are designed for specialty applications for immersion or in-line mounting. The reference cell features a double-junction design for extended service life, and a built-in solution ground. The body is molded from chemically-resistant Ryton® or PVDF, and the reference junction is coaxial porous Teflon®. All sensors are rated 0 to 105°C up to 100 psig, and have integral 4.5 m (15 ft.) cables with tinned leads. The PC-series (for pH) and RC-series (for ORP) combination sensors are ideal for measuring mild and aggressive media.

Special Electrode Configurations

Sensors with rugged dome electrodes, "easy-to-clean" flat glass electrodes, and even HF (hydrofluoric acid) resistant glass electrodes are available for a wide variety of process solutions.

Temperature Compensation Element Option

The PC-series combination pH sensors are available with or without a Pt 1000 ohm RTD temperature element. The RC-series combination ORP sensors are supplied without a temperature element.

Versatile Mounting Styles

Sensors are available in three mounting styles—convertible, insertion, and sanitary. Please turn to page 3 for more information.

Full-Featured "Plug and Play" Hach sc Digital Controllers

There are no complicated wiring or set up procedures with any Hach sc controller. Just plug in any combination of Hach digital sensors and it's ready to use—it's "plug and play."

One or multiple sensors—The sc controller family allows you to receive data from up to eight Hach digital sensors in any combination using a single controller.

Communications—Multiple alarm/control schemes are available using the relays and PID control outputs. Available communications include analog 4-20 mA, digital MODBUS[®] (RS485 and RS232) or Profibus DP protocols. (Other digital protocols are available. Contact your Hach representative for details.)

Data logger—A built-in data logger collects measurement data, calibration, verification points, and alarm history.

Specifications*

Most pH applications fall in the 2.5-12.5 pH range. General purpose pH glass electrodes perform well in this range. Some industrial applications require accurate measurements and control at pH values below 2 or above 12. Consult Hach Technical Support for details on these applications.

Combination pH Sensors

Measuring Range

0 to 14 pH

Accuracy

Less than 0.1 pH under reference conditions

Temperature Range

0 to 105°C (32 to 221°F)

Flow Rate

0 to 2 m/s (0 to 6.6 ft./s); non-abrasive

Pressure Range

0 to 6.9 bar at 100°C (0 to 100 psig at 212°F)

Signal Transmission Distance

100 m (328 ft.) when used with the Hach Digital Gateway and a Hach sc Digital Controller.

1000 m (3280 ft.) when used with the Hach Digital Gateway, Termination Box, and a Hach sc Digital Controller.

Sensor Cable

Integral coaxial cable (plus two conductors for temperature compensator option); 4.5 m (15 ft.) long

Wetted Materials

Convertible style: Ryton® body (glass filled)

Insertion style: PVDF body (Kynar®)

Sanitary style: 316 stainless steel sleeved PVDF body

Common materials for all sensor styles include PTFE Teflon double junction, glass process electrode, and Viton® O-rings

Warranty

90 days

Combination ORP Sensors

Measuring Range

-2000 to +2000 millivolts

Accuracy

Limited to calibration solution accuracy (± 20 mV)

Temperature Range

0 to 105°C (32 to 221°F)

Flow Rate

0 to 2 m/s (0 to 6.6 ft./s); non-abrasive

Pressure Range

0 to 6.9 bar at 100°C (0 to 100 psig at 212°F)

Signal Transmission Distance

100 m (328 ft.) when used with the Hach Digital Gateway and a Hach sc Digital Controller.

1000 m (3280 ft.) when used with the Hach Digital Gateway, Termination Box, and a Hach sc Digital Controller.

Sensor Cable

Integral coaxial cable; 4.5 m (15 ft.) long; terminated with stripped and tinned wires

Wetted Materials

Convertible style: Ryton® body (glass filled)

Insertion style: PVDF body (Kynar®)

Common materials for all sensor styles include PTFE Teflon double junction, glass with platinum process electrode, and Viton® O-rings

Warranty

90 days

*Specifications subject to change without notice.

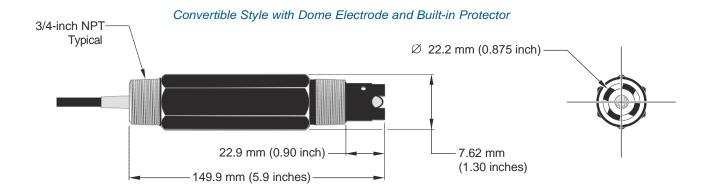
Ryton® is a registered trademark of Phillips 66 Co.; Viton® is a registered trademark of E.I. DuPont de Nemours + Co.; Kynar® is a registered trademark of Pennwalt Corp.

Engineering Specifications

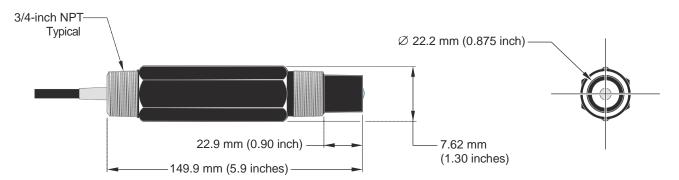
- The pH sensor shall be available in convertible, insertion or sanitary styles. The ORP sensor shall be available in only convertible or insertion styles.
- 2. The convertible style sensor shall have a Ryton[®] body. The insertion style sensor shall have a PVDF body. The sanitary style sensor shall have a 316 stainless steel sleeved PVDF body. Common materials for all sensor styles shall include a PTFE Teflon[®] double junction, and Viton[®] O-rings. The pH sensor shall have a glass pH electrode. The ORP sensor shall have a platinum ORP electrode.
- The convertible style pH sensor shall be available with or without a built-in Pt 1000 ohm RTD temperature element. Insertion and sanitary style pH sensors shall have a built-in Pt 1000 ohm RTD temperature element. Convertible and insertion style ORP sensors shall not have a built-in temperature element.
- The sensor shall communicate via MODBUS[®] RS-485 to a Hach sc Digital Controller.
- The sensor shall be Hach Company Model PC sc or PC-series for pH measurement or Model PC sc or RC-series for ORP measurement.

Dimensions

Convertible Style Sensor


The convertible style sensor has a Ryton[®] body that features 3/4-inch NPT threads on both ends. The sensor can be directly mounted into a standard 3/4-inch pipe tee for flow-through mounting or fastened onto the end of a pipe for immersion mounting. The convertible style sensor enables inventory consolidation, thereby reducing associated costs. Mounting tees and immersion mounting hardware are offered in a variety of materials to suit application requirements.

Insertion Style Sensor


Insertion style sensors feature a longer, non-threaded PVDF body with two Viton® O-rings, providing a seal when used with the optional Hach insertion mount hardware assembly. This ball valve hardware enables sensor insertion and retraction from a pipe or vessel without having to stop the process flow.

Sanitary Style Sensor

The sanitary style sensor, offered for pH measurement, has a 316 stainless steel-sleeved PVDF body with a 2-inch flange. The sensor mates to a standard 2-inch Tri-Clover fitting. The optional Hach sanitary mounting hardware includes a standard 2-inch sanitary tee, sanitary clamp, and Viton[®] sanitary gasket.

Convertible Style with Flat Electrode

The Pulsatron Series A Plus offers manual function controls over stroke length and stroke rate as standard with the option to select external pace for automatic control.

Ten distinct models are available, having pressure capabilities to 250 PSIG (17 BAR) @ 12 GPO (1.9 lph), and flow capacities to 58 GPO (9.1 lph) @ 100 PSIG (7.0 BAR), with a standard turndown ratio of 100:1, and optional ratio of 1000:1. Metering performance is reproducible to within \pm 3% of maximum capacity.

Features

- Manual Control by on-line adjustable stroke rate and stroke length.
- Highly Reliable timing circuit.
- Circuit Protection against voltage and current upsets.
- Solenoid Protection by thermal overload with autoreset.
- Water Resistant, for outdoor and indoor applications.
- Internally Dampened To Reduce Noise.
- Guided Ball Check Valve Systems, to reduce back flow and enhance outstanding priming characteristics.
- Few Moving Parts and Wall Mountable.
- Safe & Easy Priming with durable leak-free bleed valve assembly (standard).
- Optional Control: External pace with auto/manual selection.

Controls

Manual Stroke Rate

Manual Stroke Length

External Pacing-Optional

External Pace With Stop-Optional (125 SPM only)

C	ontrols Options	
F	Standard	Optional
Feature	Configuration	Configuration ¹
External Pacing		Auto / Manual Selection /
External Pace w/ Stop		Auto / Manual Selection 2
(125SPMonly)		
Manual Stroke Rate	10:1Ratio	100:1 Raio
Manual Stroke Length	10:1 Ratio	10:1 Ratio
Total Turndown Ratio	1001 Ratio	1000:1 Ratio

Note 1:On S2,S3 & S4 sizes only.

Note 2:Not available on 1000:1 turn down pumps.

Operating Benefits

- Reliable metering performance.
- Rated "hot" for continuous duty.
- High viscosity capability.
- Leak-free, sealless, liquid end.

Aftermarket

- KOPkits
- Gauges
- Dampeners
- Pressure Relief Valves
- Tanks
- Pre-Engineered Systems
 - Process Controllers (PULSAblue, MicroVision)

Series A Plus Electronic Metering Pumps

Series A Plus

Specifications and Model Selection

	MODEL		LBC2	LB02	LBC3	LB03	LB04	LB64	LBC4	LBS2	LBS3	LBS4
Capacity		GPH	0.25	025	0.42	0.50	1.00	125	2.00	0.50	1.38	2.42
nominal		GPO	6	6	10	12	24	30	48	12	33	58
(max.)		LPH	0.9	0.9	1.6	1.9	3.8	4.7	7.6	1.9	5.2	9.14
Pressure ³ (max.)	GFPP,PVDF,316SS or PVC <;Ncode) wTFE Seats) PVC (V code) Vton or CSPE Seats IDegas Liquid End	PSIG	250 (17) 150 (10)	150 (10)	250 (17)	150 (10)	100 (7)	100 (7)	50 (33)	250 (17) 150 (10)	150 (10)	100 (7)
Connections:		Tubina			114'IDX	318' OD			318'DX 112'OD	114	!'D X 318' O[)
		Pioina					1	14'FNPT				
Strokes/Minute		SPM				125					250	

Note 3: Pumps with rated pressure above 150 PSI will be de-rated to 150 PSI Max. when selecting certain valve options, see Price Book for details.

Engineering Data

Pump Head Materials Available: **GFPPL**

PVC **PVDF** 316 SS

PTFE-faced CSPE-backed Diaphragm:

Check Valves Materials Available:

Seats/0-Rings: **PTFE**

> **CSPE** Viton

Balls: Ceramic

> **PTFE** 316 SS

Alloy C

GFPPL Fittings Materials Available:

PVC **PVDF**

Bleed Valve: Same as fitting and check valve

selected, except 316SS

hjection Valve & Foot Valve Assy: Same as fitting and check valve

selected

ClearPVC Tubing:

White PF

Important: Material Code - GFPPL=Glass-filled Polypropylene, PVC=Polyvinyl Chloride, PE=Polyethylene, PVDF=Polyvinylidene Fluoride, CSPE=Generic formulation of Hypalon, a registered trademark of E.I. DuPont Company. Viton is a registered trademark of E.I. DuPont Company. PVC wetted end recommended for sodium hypochlorite.

Engineering Data

Reproducibility: +/- 3% at maximum capady

Viscosity Max CPS: 1000CPS Stroke Frequency Max SPM: 125 / 250 by Model Stroke Frequency Turn-Down Ratio: 10:1/100:1 by Model

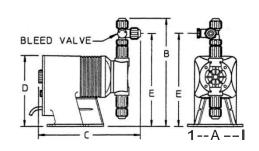
Stroke Length Turn-Down Ratio:

Power Input: 115 VAC/50-60 HZ/1 ph 230 VAC/50-60 HZ/1 ph

Average Current Draw:

@ 115 VAC; Amps: 0.6 Amps @ 230 VAC; Amps: 0.3 Amps 130 Watts Peak hput Power: 50 Watts Average Input Power @ Max SPM:

Custom Engineered Designs-Pre-Engineered Systems



Pre-Engineered Systems Pulsafeeder's Pre-Engineered Systems are designed to provide complete chemical feed solutions for all electronic metering applications. From stand alone simplex pH control applications to full-featured, redundant sodium hypochlorite disinfection metering, these rugged fabricated assemblies offer turnkey simplicity and industrial-grade durability. The UV-stabilized, high-grade HOPE frame offers maximum chemical compatibility and structural rigidity. Each system is factory assembled and hydrostatically tested prior to shipment.

Dimensions

	Serie	s A PLI	JS Dime	nsions	(inches)
						Shipping
Model No.	Α	В	С	D	Е	Weight
LB02 IS2	5.0	9.6	9.5	6.5	8.2	10
LBC2	5.0	9.9	9.5	6.5	8.5	10
LBC3	5.0	9.9	9.5	6.5	8.5	10
LB03 IS3	5.0	9.9	9.5	6.5	8.5	10
LB0 \$ 4	5.0	9.9	9.5	6.5	8.5	10
LB64	5.0	9.9	9.5	6.5	8.5	10
LBC4	5.0	9.9	9.5	6.5	8.5	10

NOTE: hches X 2.54 cm

95-Gallon OverPack - 32" dia x 41.5", 1 each/package

Stock a SpillTech® OverPack with sorbents for emergency spill response, or use it as a salvage drum to ship damaged containers or hazardous waste.

- DOT-Approved for Salvage: All SpillTech® OverPacks are DOT-approved and X-rated for use as salvage drums. Helps companies conform to federal regulations when shipping damaged or leaking containers of hazardous materials, or absorbents contaminated with hazardous substances.
- Perfect for Spill Kits: Stores sorbent products (not included) for easy access as needed for spill control. Saves time when quick response is necessary.
- Sturdy Construction: 100% polyethylene OverPack resists chemicals, rust and corrosion for years of use. Integrated handles make them easy to lift, move or carry with standard material handling equipment. Twist-on, double-wall lid with closed-cell gasket provides sealed, secure closure to prevent leaks and protect contents from moisture, dirt and damage. Durable to withstand rough handling.
- Customized for You: We can customize a Spill Kit to your exact specifications, including the container, its contents and accessories, with no upcharge! Contact your local Distributor for details.

A950VER Specifications

Dimensions: ext. dia. 32" x 41.5" H

Shipping 31.75" W x 41.5" L x 31.75" H

Dimensions:

Sold as: 1 per package

Color: Yellow

Composition: Polyethylene

per Pallet: 3
Incinerable: No
Ship Class: 250

Metric Equivalent Specifications

Dimensions: ext. dia. 81.3cm x 105.4cm H

Shipping 80.6cm W x 105.4cm L x 80.6cm H

Dimensions:

Office: 774-450-7177 • Fax: 888-835-0617

A950VER Technical Information

Warnings & Restrictions:

There are no known warnings and restrictions for this product.

Regulations and Compliance:

49 CFR 173.3(c)(1) - If a container of hazardous waste is damaged or leaking, it can be placed in a compatible salvage drum that meets UN criteria for shipping

49 CFR 173.12(b)(2)(iv) - When labpacking, "Inner packagings...must be surrounded by a chemically compatible absorbent material in sufficient quantity to absorb the total liquid contents."

49 CFR 173.12(b) - A container used for labpacking must be "a UN 1A2 or UN 1B2 metal drum, a UN 1D plywood drum, a UN 1G fiber drum or a UN 1H2 plastic drum tested and marked at least for the Packing Group III performance level for liquids or solids."

Office: 774-450-7177 • Fax: 888-835-0617

The Pulsatron Series HV designed for high viscosity applications for precise and accurate metering control. The Series HV offers manual control over stroke length and stroke rate as standard with the option to choose between 4-20mA and external pace inputs for automatic control.

Five distinct models are available, having pressure capabilities to 150 PSIG (10 BAR) @ 12 GPD (1.9 lph), and flow capacities to 240 GPD (37.9 lph) @ 80 PSIG (5.6 BAR), with a turndown ratio of 100:1. Metering performance is reproducible to within ± 2% of maximum capacity.

Features

- Automatic Control, available with 4-20mADC direct or external pacing, with stop function.
- Manual Control by on-line adjustable stroke rate and stroke length.
- Auto-Off-Manual switch.
- · Highly Reliable timing circuit.
- Circuit Protection against voltage and current upsets.
- Panel Mounted Fuse.
- Solenoid Protection by thermal overload with autoreset.
- Water Resistant, for outdoor and indoor applications.
- Indicator Lights, panel mounted.
- Guided Ball Check Valve Systems, to reduce back flow and enhance outstanding priming characteristics.
- Viscosities to 20,000 CPS.

Controls

Manual Stroke Rate

Turn-Down Ratio 10:1

Manual Stroke Length

Turn-Down Ratio 10:1

4-20mA or 20-4mA Input

Automatic Control

Operating Benefits

- Reliable metering performance.
- Rated "hot" for continuous duty.
- High viscosity capability.
- Leak-free, sealless, liquid end.

Aftermarket

- KOPkits
- Gauges
- Dampeners
- Pressure Relief Valves
- Tanks
- Pre-Engineered Systems
 - Process Controllers
 (PULSAblue, MicroVision)

Series HV

Specifications and Model Selection

MODEL		LVB3	LVF4	LVG4	LVG5	LVH7
Capacity	GPH	0.50	1.00	2.00	4.00	10.00
nominal	GPD	12	24	48	96	240
(max.)	LPH	1.9	3.8	7.6	15.1	37.9
Pressure	PSIG	150	150	110	110	80
(max.)	BAR	10	10	7	7	5.6
Connections:	Tubing	Charles and Street St.		38" I.D. X .5 (.75" O.D. (L)		

Engineering Data

Pump Head Materials Available: GFPPL

PVC PVDF 316 SS

Diaphragm: PTFE-faced CSPE-backed

Check Valves Materials Available:

Seats/O-Rings: PTFE

CSPE Viton

Balls: Ceramic

PTFE 316 SS Alloy C GFPPL

Fittings Materials Available: GFF

PVC PVDF

Bleed Valve: Same as fitting and check valve

selected, except 316SS

Injection Valve & Foot Valve Assy: Same as fitting and check valve

selected

Tubing: Clear PVC White PE

AALIITE EE

Important: Material Code - GFPPL=Glass-filled Polypropylene, PVC=Polywinyl Chloride, PE=Polyethylene, PVDF=Polywinylidene Fluoride, CSPE=Generic formulation of Hypalon, a registered trademark of E.I. DuPont Company. Viton is a registered trademark of E.I. DuPont Company. PVC wetted end recommended for sodium hypochlorite.

Engineering Data

Reproducibility: +/- 2% at maximum capacity

Viscosity Max CPS: 20,000 CPS

Stroke Frequency Max SPM: 125
Stroke Frequency Turn-Down Ratio: 10:1
Stroke Length Turn-Down Ratio: 10:1

Power Input: 115 VAC/50-60 HZ/1 ph 230 VAC/50-60 HZ/1 ph

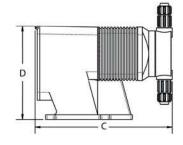
Average Current Draw:

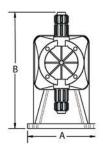
@ 115 VAC; Amps: 1.0 Amps

@ 230 VAC; Amps: 0.5 Amps @ 230 VAC

Peak Input Power: 300 Watts Average Input Power @ Max SPM: 130 Watts

Custom Engineered Designs – Pre-Engineered Systems

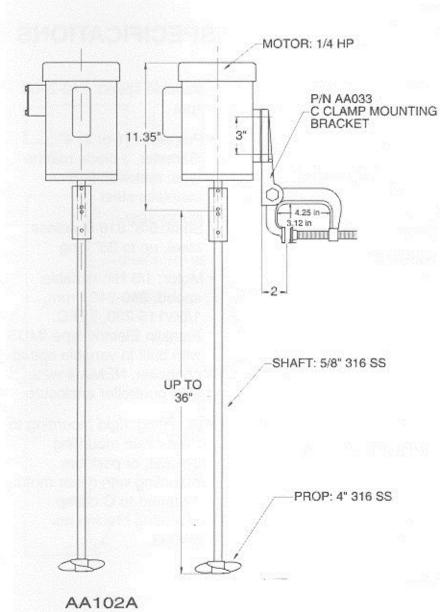

Pre-Engineered Systems


Pulsafeeder's Pre-Engineered Systems are designed to provide complete chemical feed solutions for all electronic metering applications. From stand alone simplex pH control applications to full-featured, redundant sodium hypochlorite disinfection metering, these rugged fabricated assemblies offer turn-key simplicity and industrial-grade durability. The UV-stabilized, high-grade HDPE frame offers maximum chemical compatibility and structural rigidity. Each system is factory assembled and hydrostatically tested prior to shipment.

Dimensions

	Series	HV Dim	ensions	(inches	s)
Model No.	Α	В	С	D	Shipping Weight
LVB3	5.4	9.3	9.5	7.5	13
LVF4	5.4	10.8	10.8	7.5	18
LVG4	5.4	9.5	10.6	7.5	18
LVG5	5.4	10.8	10.8	7.5	18
LVH7	6.1	11.5	11	8.2	25

NOTE: Inches X 2.54 = cm



MIXER MODEL NO. AA102A

SPECIFICATIONS

- Speed: 1,725 rpm
- Propeller: (1 or 2)
 4" diameter, 3 blade marine type, material: 316 stainless steel
- Shaft: 5/8" 316 stainless steel, up to 36" long
- Motor: 1/4 HP, 1,725 rpm, 1/60/115-230, capacitor start, or 3/60/230-460, TEFC
- Mounting: rigid mounting to fixed mixer mounting bracket, or portable mounting with mixer motor mounted to C clamp mounting bracket no. AA033.

SAFETY DATA SHEET

Revision date 2018-06-11 Revision number 2

1. IDENTIFICATION OF THE SUBSTANCE/PREPARATION AND OF THE COMPANY/UNDERTAKING

Product identifier

Product name Redux E50

Other means of identification

Product code

Synonyms Water And Wastewater Treatment Coagulant/Flocculant

Recommended use of the chemical and restrictions on use

Recommended use [RU] No information available Uses advised against No information available

Details of the supplier of the safety data sheet

Supplier Lockwood Remediation Technologies, LLC

89 Crawford Street

Leominster, Massachusetts 01453

Tel: (774) 450-7177

Hours: Monday-Friday 9:00-5:00 EST

Emergency telephone number

24 Hour Emergency Phone Number CHEMTREC: (800) 424-9300

Outside USA - +1 (703) 527-3887 collect calls accepted

Contact Point info@reduxtech.com

2. HAZARDS IDENTIFICATION

Classification

OSHA Regulatory Status

This chemical is considered hazardous by the 2012 OSHA Hazard Communication Standard (29 CFR 1910.1200).

Skin corrosion/irritation	Category 2
Serious eye damage/eye irritation	Category 2
Corrosive to metals	Category 1

GHS Label elements, including precautionary statements

EMERGENCY OVERVIEW

Physical state	Color	Appearance	Odor
liquid	colorless to yellow	clear	no appreciable odor

WARNING

Hazard statements

Causes skin irritation Causes serious eye irritation May be corrosive to metals

Precautionary Statements - Prevention

Wash face, hands and any exposed skin thoroughly after handling Wear protective gloves/protective clothing/eye protection/face protection Keep only in original container

Precautionary Statements - Response

IF IN EYES: Rinse cautiously with water for several minutes. Remove contact lenses, if present and easy to do. Continue rinsing If eye irritation persists: Get medical advice/attention IF ON SKIN: Wash with plenty of soap and water If skin irritation occurs: Get medical advice/attention

Take off contaminated clothing and wash before reuse

Absorb spillage to prevent material damage

Precautionary Statements - Storage

Store in corrosive resistant container with a resistant inner liner

Other information

• May be harmful in contact with skin

3. COMPOSITION/INFORMATION ON INGREDIENTS

Component	CAS-No	weight-%	TRADE SECRET
Trade Secret Ingredient	PROPRIETARY	45 - 55%	*

^{*}The exact percentage (concentration) of composition has been withheld as a trade secret

4. FIRST AID MEASURES

Page 2/11

First Aid Measures

Eye contact

Immediately flush with plenty of water for at least 20 minutes, holding eyelids apart to ensure flushing of the entire surface. Washing within one minute is essential to achieve maximum effectiveness. Seek immediate medical attention.

Skin contact

Immediately wash thoroughly with soap and water, remove contaminated clothing and footwear. Wash clothing before reuse. Get medical attention if irritation should develop.

Ingestion

Seek medical attention immediately. Give large amounts of water to drink. If vomiting should occur spontaneously, keep airway clear. Never give anything by mouth to an unconscious person.

Inhalation

Remove to fresh air.

Most important symptoms and effects, both acute and delayed

Acute effects

Possible eye, skin and respiratory tract irritation.

Chronic effects

May aggravate existing skin, eye, and lung conditions. Persons with kidney disorders have an increased risk from exposure based on general information found on aluminum salts.

Indication of any immediate medical attention and special treatment needed

Note to physicians

Aluminum soluble salts may cause gastroenteritis if ingested. Treatment includes the use of demulcents. Note: Consideration should be given to the possibility that overexposure to materials other than this product may have occurred.

5. FIRE-FIGHTING MEASURES

Extinguishing media

Suitable extinguishing media

Water Spray, Carbon Dioxide, Foam, Dry Chemical.

Extinguishing media which must not be used for safety reasons

No information available

Special hazards arising from the substance or mixture

Special Hazard

May produce hazardous fumes or hazardous decomposition products.

Advice for firefighters

Firefighting measures

Product is a water solution and nonflammable. In a fire, this product may build up pressure and rupture a sealed container; cool exposed containers with water spray. Use self-contained breathing apparatus in confined areas; avoid breathing mist or spray.

Special protective equipment for firefighters

Not determined

Explosion data

Sensitivity to Mechanical Impact

None.

Sensitivity to Static Discharge

None.

6. ACCIDENTAL RELEASE MEASURES

Personal precautions, protective equipment and emergency procedures

Personal precautions

Wear suitable protective clothing and gloves.

Environmental precautions

Environmental precautions

Do not permit run-off to get into sewers or surface waterways.

Methods and material for containment and cleaning up

Methods for containment

Prevent further leakage or spillage if safe to do so. Dike to collect large liquid spills.

Methods for cleaning up

Clear spills immediately. Contain large spill and remove using a vacuum truck. Soak up small spills with inert absorbent material and place in a labeled waste container for disposal. Ventilate area of leak or spill. Spills of solution are extremely slippery so all residue must be removed promptly.

7. HANDLING AND STORAGE

Precautions for safe handling

Advice on safe handling

Keep container closed when not in use

Keep away from heat and open flame.

Avoid contact with eyes, skin and clothing

Wash thoroughly after handling

Wear chemical splash goggles, gloves, and protective clothing when handling.

Avoid breathing vapor or mist

Use with adequate ventilation and employ respiratory protection where mist or spray may be generated.

FOR INDUSTRIAL USE ONLY.

Conditions for safe storage, including any incompatibilities

Technical measures and storage conditions

Do not store in unlined metal containers.

Product may slowly corrode iron, brass, copper, aluminum, mild steel, and stainless steel.

Store in a cool, dry place away from direct heat.

Keep in tightly closed container.

Incompatible products

Oxidizing agents.

8. EXPOSURE CONTROLS/PERSONAL PROTECTION

Control parameters

Exposure Guidelines

This product, as supplied, does not contain any hazardous materials with occupational exposure limits established by the region specific regulatory bodies

Appropriate engineering controls

Engineering controls

Local exhaust ventilation as necessary to maintain exposures to within applicable limits. Please refer to the ACGIH document, "Industrial Ventilation, A Manual of Recommended Practices", most recent edition, for details. If there are no applicable or established exposure limit requirements or guidelines, general ventilation should be sufficient.

Individual protection measures, such as personal protective equipment

Eye/face Protection

Wear chemical splash goggles and face shield (when eye and face contact is possible due to splashing or spraying of material).

Hand Protection

Appropriate chemical resistant gloves should be worn.

Skin and body protection

Standard work clothing and work shoes.

Respiratory protection

If exposures exceed the PEL or TLV, use NIOSH/MSHA approved respirator in accordance with OSHA Respiratory Protection Requirements under 29 CFR 1910.134.

Other personal protection data

Eyewash fountains and safety showers must be easily accessible.

Hygiene measures

Handle in accordance with good industrial hygiene and safety practice.

9. PHYSICAL AND CHEMICAL PROPERTIES

Information on basic physical and chemical properties

Physical state liquid

Color colorless to yellow

Appearance clear

Odor no appreciable odor
Odor threshold No information available

<u>Property</u>	<u>Values</u>	Remarks / Method
рН	3.5	as is
Melting / freezing point	-7 °C / 19 °F	No information available
Boiling point / boiling range	No information available	No information available
Flash point	Not applicable	No information available
Evaporation rate	No information available	No information available

No information available

Flammability Limit in Air

Flammability (solid, gas)

Upper flammability limitNot applicableNo information availableLower flammability limitNot applicableNo information available

Vapor pressure No information available No information available

Not applicable

Vapor density No information available No information available

Specific gravity 1.33 - 1.35 No information available

Solubility (water) Soluble No information available

Solubility in other solvents No information available No information available

Partition coefficient: n-octanol/water No information available No information available

Autoignition temperature Not applicable No information available

Decomposition temperatureNo information available
No information available

Kinematic viscosity

No information available

No information available

Dynamic viscosity < 100 cps @ 20 °C No information available

Other information

Density	11.0 - 11.3 lb/gal
Bulk Density	No information available
Explosive properties	No information available.
Oxidizing properties	No information available
Softening point	No information available
Molecular weight	No information available
Volatile organic compounds (VOCs) content	No information available
Percent Volatile, wt.%	40 - 50%

10. STABILITY AND REACTIVITY

Reactivity

Reactivity

No data available.

Chemical stability

Chemical stability

Stable.

Possibility of hazardous reactions

Possibility of hazardous reactions

None under normal processing.

Hazardous polymerization

No.

Conditions to avoid

Conditions to avoid

None

Incompatible materials

Materials to avoid

Oxidizing agents.

Hazardous decomposition products

Hazardous decomposition products

Thermal decomposition may release toxic and/or hazardous gases such as Cl2 and HCl.

11. TOXICOLOGICAL INFORMATION

Information on likely routes of exposure

Eye contact

May cause moderate eye irritation that can become severe with prolonged contact. Prolonged exposure to Aluminum salts may cause conjunctivitis.

Skin contact

May be harmful in contact with skin. Prolonged and/or repeated contact may cause skin irritation.

Ingestion

May cause irritation of the mouth, throat and stomach. Ingestion may cause gastrointestinal irritation, nausea, vomiting and diarrhea.

Inhalation

Inhalation of mist or vapor may cause respiratory tract irritation.

Acute toxicity - Product Information

Oral LD50 No information available

Dermal LD50 No information available

Inhalation LC50 No information available

Acute toxicity - Component Information

Component	weight-%	Oral LD50	Dermal LD50	Inhalation LC50
Trade Secret Ingredient	45 - 55%	= 9187 mg/kg (Rat)	> 2000 mg/kg (Rat)	

Information on toxicological effects

Symptoms

No information available.

Delayed and immediate effects as well as chronic effects from short and long-term exposure

Skin corrosion/irritation

Irritating to skin

Serious eye damage/eye irritation

Causes serious eye irritation

Sensitization

No information available

Germ cell mutagenicity

No information available

Carcinogenicity

This product does not contain any components in concentrations greater than or equal to 0.1% that are listed as known or suspected carcinogens by NTP, IARC, ACGIH, or OSHA.

Reproductive toxicity

No information available

Specific target organ toxicity - Single exposure

No information available.

Specific target organ toxicity - Repeated exposure

No information available

Aspiration hazard

No information available.

Numerical measures of toxicity - Product Information

The following values are calculated based on chapter 3.1 of the GHS document

ATEmix (oral) 18374 mg/kg ATEmix (dermal) 4004 mg/kg

Other information

Conclusions are drawn from sources other than direct testing.

12. ECOLOGICAL INFORMATION

Ecotoxicity

Aquatic toxicity - Product Information

Fish LC 50 (96 hour, static) 776.4 mg/L Pimephales promelas (Fathead Minnow) 1

EC 50 (96 hour, static) 265.5 mg/L Pimephales promelas (Fathead Minnow) 1

Crustacea LC 50 (48 hour, static) 803.8 mg/L Ceriodaphnia dubia (Water Flea) 1

NOEC (7 day chronic, static) 200 mg/L Ceriodaphnia dubia (Water Flea) ¹

Algae/aquatic plants No information available

Acute aquatic toxicity - Component Information

Component	weight-%	Algae/aquatic plants	Fish	Toxicity to daphnia and other aquatic invertebrates
Trade Secret Ingredient	45 - 55%		LC50 (96 h static) 100 - 500 mg/L	
			(Brachydanio rerio)	

Persistence and degradability

Persistence and degradability

No information available

Bioaccumulative potential

Bioaccumulative potential

No information available.

Mobility

Mobility

No information available

Results of PBT and vPvB assessment

PBT and vPvB assessment

No information available

Other adverse effects

Other information

¹ Generated from tests conducted by ECT-Superior Laboratories May 2010

13. DISPOSAL CONSIDERATIONS

Waste treatment methods

Disposal of wastes

Do NOT mix with other chemical wastes. Do not put solutions containing this product into sewer systems. Dispose of product in an approved chemical waste landfill or incinerate in accordance with applicable Federal, state and local regulations. Do not re-use empty containers.

Contaminated packaging

Since empty containers retain product residue, follow label warnings even after container is emptied.

14. TRANSPORT INFORMATION

DOT NOT REGULATED FOR TRANSPORTATION

This product is excepted from DOT regulations under 49 CFR 173.154(d) when shipped by road or railway. The product exception is referenced in 49 CFR 172.101 Table. Packaging

material must not be aluminum, steel or be degraded by this product

<u>ICAO/IATA</u> Regulated

UN number UN3264

Proper shipping name Corrosive Liquid, Acidic, Inorganic, N.O.S. (Polyaluminum Chloride Solution)

Hazard class8Packing groupIIIERG Code8L

<u>IMDG</u> Regulated

UN number UN3264

Proper shipping name Corrosive Liquid, Acidic, Inorganic, N.O.S. (Polyaluminum Chloride Solution)

Hazard class 8
Packing group III
EmS F-A, S-B

Harmonized Tariff Number 2827.32

15. REGULATORY INFORMATION

International Inventories

TSCA (United States)

All ingredients are on the inventory or exempt from listing

Australia (AICS)

All ingredients are on the inventory or exempt from listing

Canada (DSL)

All ingredients are on the inventory or exempt from listing

Canada (NDSL)

None of the ingredients are on the inventory.

China (IECSC)

All ingredients are on the inventory or exempt from listing

EINECS (European Inventory of Existing Chemical Substances)

All ingredients are on the inventory or exempt from listing

ELINCS (European List of Notified Chemical Substances)

None of the ingredients are on the inventory.

ENCS (Japan)

All ingredients are on the inventory or exempt from listing

South Korea (KECL)

All ingredients are on the inventory or exempt from listing

Philippines (PICCS)

All ingredients are on the inventory or exempt from listing

Legend

TSCA - United States Toxic Substances Control Act Section 8(b) Inventory

AICS - Australian Inventory of Chemical Substances

DSL/NDSL - Canadian Domestic Substances List/Non-Domestic Substances List

IECSC - China Inventory of Existing Chemical Substances

EINECS/ELINCS - European Inventory of Existing Commercial Chemical Substances/EU List of Notified Chemical Substances

ENCS - Japan Existing and New Chemical Substances

KECL - Korean Existing and Evaluated Chemical Substances

PICCS - Philippines Inventory of Chemicals and Chemical Substances

U.S. Federal Regulations

CERCLA

This material, as supplied, does not contain any substances regulated as hazardous substances under the Comprehensive Environmental Response Compensation and Liability Act (CERCLA) (40 CFR 302) or the Superfund Amendments and Reauthorization Act (SARA) (40 CFR 355). There may be specific reporting requirements at the local, regional, or state level pertaining to releases of this material.

CWA (Clean Water Act)

This product does not contain any substances regulated as pollutants pursuant to the Clean Water Act (40 CFR 122.21 and 40 CFR 122.42).

SARA 311/312 Hazard Categories

Acute health hazard Yes
Chronic health hazard No
Fire hazard No
Sudden release of pressure hazard No
Reactive hazard No

SARA 313

Section 313 of Title III of the Superfund Amendments and Reauthorization Act of 1986 (SARA). This product does not contain any chemicals which are subject to the reporting requirements of the Act and Title 40 of the Code of Federal Regulations, Part 372.

U.S. State Regulations

California Proposition 65

This product does not contain any Proposition 65 chemicals.

U.S. State Right-to-Know Regulations

This product does not contain any substances regulated under applicable state right-to-know regulations

16. OTHER INFORMATION

NFPA Rating Health - 1 Flammability - 0 Instability - 0 Special Hazard - HMIS Rating Health - 1 Flammability - 0 Physical hazard - 0 Personal protection - B

Product code

Revision date 2015-03-12

Revision number 1

Disclaimer

The information provided in this Safety Data Sheet is correct to the best of our knowledge, information and belief at the date of its publication. The information given is designed only as a guidance for safe handling, use, processing, storage, transportation, disposal and release and is not to be considered a warranty or quality specification. The information relates only to the specific material designated and may not be valid for such material used in combination with any other materials or in any process, unless specified in the text.

End of Safety Data Sheet

SAFETY DATA SHEET

I. Chemical Product and Company Identification

Product Name: Nonionic / Anionic Polymer Product #s: LRT- 800 Series Polymers

Distributor: Lockwood Remediation Technologies, LLC

89 Crawford Street

Leominster, Massachusetts 01453

Tel: 774-450-7177 Fax: 885-835-0617

Email: plockwood@Irt-llc.net

For Chemical Emergency - Spill, Leak, Fire, Exposure or Accident

Call CHEMTEL - Day or Night - 1800-255-3924

II. Composition and Ingredient Information

Components: CAS #:

Anionic Polyacrylamide 25085-02-3

Permissible Exposure Limit (PEL): No information available.

Threshold Limit Value (TLV): Information not available.

III. Hazard Identification

Primary Routes of Exposure: Skin Contact - Eye Contact - Inhalation

Skin Contact: May cause irritation, especially after prolonged or repeated contact.

Eye Contact: Dust contact and solution may cause irritation.

Ingestion: May cause discomfort or gastrointestinal disturbance. Low oral toxicity.

Inhalation: Dust contact and solution may cause irritation.

Unusual Chronic Toxicity: None Known.

IV. First Aid Measures

Skin Contact: Flush with plenty of soap and water for at least 15 minutes. If irritation

persists, get medical attention.

Eyes Contact: Immediately flush with water, continuing for 15 minutes. Immediately

contact a physician for additional treatment.

Ingestion: If conscious, immediately give 2 to 4 glasses of water, and induce

vomiting by touching finger to back of throat or giving syrup of Ipecac.

CAUTION: If unconscious, having breathing or in convulsions, do not

induce vomiting or give water.

Remove to fresh air. Inhalation:

V. Fire-Fighting Measures

Flammability Classification: NFPA - Minimal - Will not burn under normal conditions.

Flash Point: Not flammable.

Flammable and Explosive Limits: UEL: ND LEL: ND

Hazardous Combustion Byproducts:

Thermal decomposition expected to produce carbon monoxide, carbon dioxide, and various nitrous oxides and some HCl vapors.

Extinguishing Media: Foam - Carbon Dioxide - Dry Chemical

AVOID USING WATER - MAY CAUSE EXTREMELY SLIPPERY CONDITIONS.

Special Fire-Fighting Procedures: Wear self-contained breathing apparatus.

Solutions of product are extremely slippery.

Unusual Fire and Explosion Hazards: Material and its solutions are extremely slippery.

VI. Accidental Release Measures

Procedures: Sweep up or shovel into metal or plastic container. Do not use water to

clean area; product is very slippery when wet.

Incineration and/or disposal in a chemical landfill. Disposer must Waste Disposal:

comply with Federal, State, and Local disposal or discharge laws.

VII. Handling and Storage Avoid contact with skin, eyes, or clothing.

Do not inhale mist if formed.

Use normal personal hygiene and housekeeping.

Store in a cool dry place.

VIII. Exposure Controls and Personal Protection

Eye Protection: Safety glasses for normal handling conditions.

Splash-proof goggles when handling solutions.

Do not wear contact lens.

Hand Protection: Rubber gloves.

Ventilation: Local exhaust - if dusting occurs. Natural ventilation adequate in

absence of dust.

Respiratory Protection: If dusty conditions are encountered, wear NIOSH

approved respirator.

Other Protection: Eye wash recommended, full work clothing, add protective

rubber clothing if splashing or repeated contact with solution is

likely.

IX. Physical and Chemical Properties

Appearance White granular

State Solid
Specific Gravity (Water = 1) 0.8 - 1.0
Solubility in Water Complete

X. Stability and Reactivity

Stability: Product is stable as supplied.

Incompatibility: Oxidizing Agents may cause exothermic reaction.

Hazardous Decomposition or Byproducts:

Thermal decomposition expected to produce carbon oxides, and various nitrous oxides.

Hazardous Polymerization: Will not occur.

XI. Toxicological Information Not listed as a carcinogen by IARC, NTP, OSHA or ACGIH.

XII. Ecological Information

XIII. Disposal Considerations

Incineration and/or disposal in chemical landfill. Disposer must comply with federal, state, and local disposal or discharge laws.

RCRA Status of Unused Material if Discarded: Not a hazardous waste.

Hazardous Waste Number: N/A

XIV. Transport Information

Not DOT regulated. Not a RCRA hazardous waste.

Label Instructions: Signal Word: "Caution! Products are extremely slippery!"

XV. Regulatory Information

Reportable Quantity (EPA 40 CFR 302): N/A

Threshold Planning Quantity (EPA 40 CFR 355): N/A

Toxic Chemical Release Reporting (EPA 40 CFR 372): N/A

SARA TITLE 3: Section 311 Hazard Categorizations (40CFR 370): N/A

SARA TITLE 3: Section 313 Information (40CFR 372): N/A

Comprehensive Environmental Response, Compensation and Liability Act (CERCLA) Information (40CFR 302.4) N/A

US TSCA: Product is manufactured in compliance with all provisions of the Toxic Substances Control Act, 15 U.S.C.

XVI. Other Information

Health 0 4 = Severe
Flammability 1 3 = Serious
Reactivity 0 2 = Moderate
Personal Protection F 1 = Slight
0 = Insignificant

Personal Protective Equipment Guide

A = Safety Glasses, Gloves, and

Vapor Respirator

B = Safety Glasses, Gloves H = Splash Goggles, Gloves,

Apron, Vapor Respirator C =

Safety Glasses, Gloves, Apron I = Safety Glasses, Gloves, and

Dust & Vapor Respirator

D = Gloves, Apron, Face shield J = Splash Goggles, Gloves, Apron,

and Dust & Vapor Respirator

E = Safety Glasses, Gloves, and Dust K = Air Line Hood/Mask, Respirator Gloves, Full Suit, Boots

F = Safety Glasses, Gloves, Apron X = Ask supervisor for special and Dust Respirator handling instructions

ABBREVIATIONS:

ACGIH - American Conference of Governmental Industrial Hygienists

OSHA - Occupational Safety and Health Administration

TLV - Threshold Limit Value

PEL - Permissible Exposure Limit

TWA - Time Weighted Average

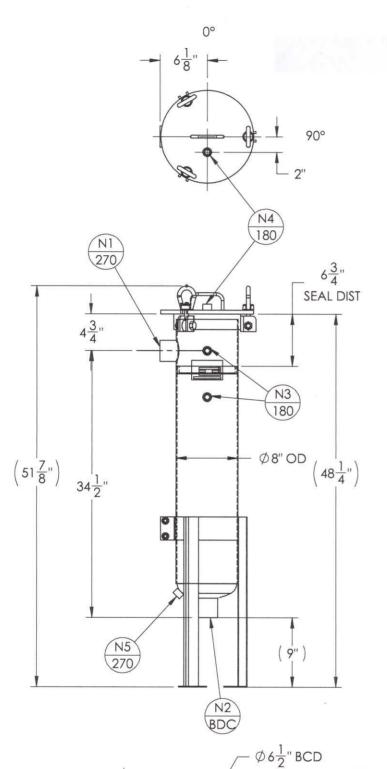
STEL - Short-Term Exposure Limit

ANSI - American National Standard Institute

MSHA - Mine Safety and Health Administration

NIOSH - National Institute for Occupational Safety & Health

NA - Not Applicable


NE - Not Established

NR - Not Required

PPE - Personal Protective Equipment

LEL - Lower Exposure Level

UEL - Upper Exposure Level

		NOZZLE	SCHEDULE		
MARK	QTY	SIZE	/ RATING	DESCI	RIPTION
N1	1	2" 150	# NPT	IN	LET
N2	1	2" 150)# NPT	OU.	TLET
N3	2	1/2" 30	00# NPT	PRES	SS GA
N4	1	1/2" 30	00# NPT	VE	NT
N5	1	1/2" 30	00# NPT	CLEAN	DRAIN
N6	-		-	DIRT	Y DRAIN
	VESS	SEL DESIG	N CONDITION	S	
CODE:	BES	т сомме	RCIAL PRACT	ICE	
M.A.W.P.:	150 PSI @	250°F	M.D.M.T.:	-20° F	@ 150 PS
M.A.E.P.:	15 PSI @	250°F			
CORROSION	ALLOWANCE	: NONE	HYDROTEST	PRESS:	195 PSI
STAMP:	'NC'		SERVICE:	NON I	ETHAL
PWHT:	N/A		RADIOGRAP	HY:	N/A
MATERIAL:	SS 304/	L	GASKET:	BUN	IA-N

DRY WEIGHT: 77.62 #'s FLOODED WEIGHT: 140 #'s SHIPPING WEIGHT: 100 #'s VESSEL VOLUME: 1.0 C.F.

1:1

 $otin \frac{1}{2}$ " TYP.

Polyester Liquid Filter Bag

Features

- * Polyester liquid bag filter are available with a carbon steel ring, stainless steel ring or plastic flanges.
- * Heavy-duty handle eases installation and removal
- * Metal ring sewn into bag top for increased durability and positive sealing
- * Wide array of media fibers to meet needed temperature and micron specifications

Applications

Polyester liquid filter bags can be used in the filtering of a wide array of industrial and commercial process fluids

Sizes

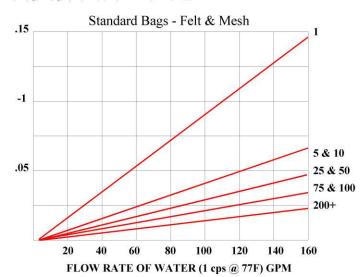
Our liquid filter bags are available for all common liquid bag housings. Dimensions range from 4.12" diameter X 8" length thru 9" diameter X 32" length.

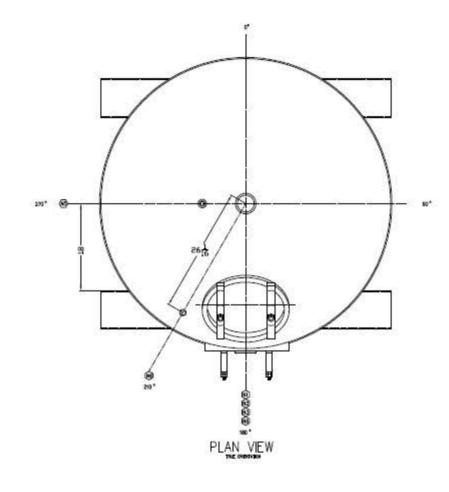
Micron Ratings

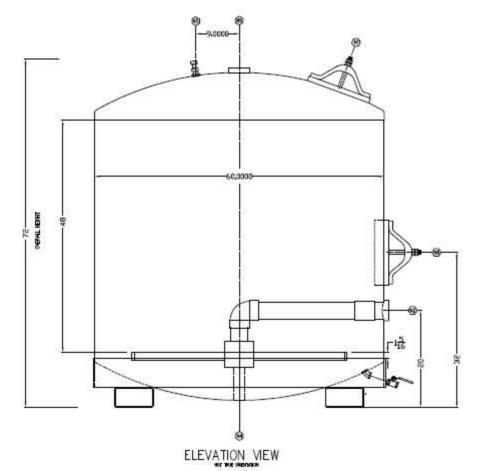
Available fibers range from 1 to 1500 microns

Options

- * Bag finish or covers for strict migration requirements.
- * Plastic top O.E.M. replacements
- * Multi-layered filtering capabilities for higher dirt holding capacities


Optional Filter Media


Felt: Nomex, Polyester, Polypropylene


Monofilament: Nylon, Polyester, Polypropylene

Multifilament: Nylon, Polyester

Polypropylene: Oil Removal

NO.	Descri	ption	Service			
N1	12" x 1	6" ELIPTICAL MANWAY W/COVER	Upper hed access with Cover (SA-36), Bolts, Nesprene Gasket			
N2	3" MNPT 3000# Coupling		Process inlet			
N3	3" MNF	T 3000# Coupling	Process Outlet			
N4	1/2" M	NPT 3000# Coupling	Drah			
N5	1/2" M	NPT 3000# Coupling	VENT			
N6	12" x 1	6" ELLIPTICAL MANWAY W/COVER	Lower bed access with Cover (SA-36), Bolts, Neoprene Gasket			
N7	Y Market					
		COAT	TINGS SCHEDULE			
Surf	ace	Surface Preparation	Product Specification			
Inter	rnsl - 1 SSPC-SP6		SW Mecropoxy 646 5-10 mils DFT			
Inter	nal - 2	Inspect	SW Macropoxy 646 5-10 Mis DFT			
Exter	rnal - 1	SSPC-SP6	SW Ken Bond Primer 2-6 mils OFT			
Exter	rnal - 2	n/a	Carboline Carbothane 8845 (Safety Green) 2-4 mls DFI			
Exter	rnal - 3	n/a	n/a			
			NOTES			
llen		Details				
Cons	truction	ction Non-Code Design Pressure: 75 PSIG @ 140 DEG F.				
Miris	Vessel	essel Shelli SA-36 Heads SA-36 Pipei SA-53 (see nozzle detail for others)				
Miris	interla	Hub, Lateral's (212" Stot), Diffuser, Hose: PVC Gaskets: Neoprene Hardware: Plated				
n/a		n/a				
n/a		n/a				
Media	8	TBD				

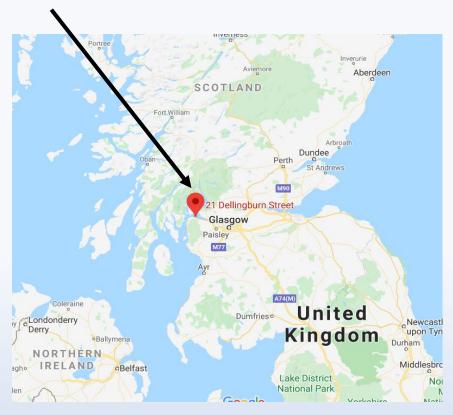
HPAF-2000-60 Media Filter

89 Crawford Street

Leominster, Massachusetts 01453

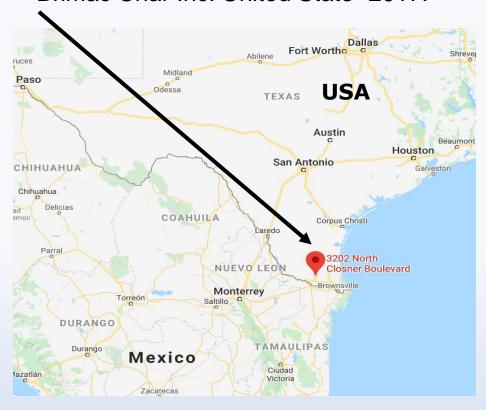
Tel: 774.450.7177 Fax: 888.835.0617 www.lrt-llc.net

FILTRATION MEDIA: 8x30 RE-ACTIVATED CARBON 4x10 RE-ACTIVATED CARBON


GENERAL DESCRIPTION

Select Re-Activated carbon from domestic sources is quality screened during our purchasing process for activity, density and fines. The use of re-activated carbon is recommended as a lower cost alternative for most sites where drinking water quality is not necessary. In many cases our re-activated carbon meets and exceeds imported virgin carbon. In addition all carbon either sold by itself or installed in our filtration units traced by lot number to the installation or sale.

8x30 (Liquid Phase) Standard Specifications:	Standard	Value
lodine Number	ASTM D-4607	800 Minimum
Moisture Content	ASTM D-2867	5% Maximum (as packed)
Particle Size	ASTM D-2862	8x30 US Mesh
Ash		10% Maximum
Total Surface Area (N2BET)		1050 Minimum
Pore Volume (cc/g)		0.75


4*10 (Vapor Phase) Standard Specifications:	Standard	Value
Carbon Tetrachloride Activity Level	ASTM D-3467	40 Minimum
Moisture Content	ASTM D-2867	5% Maximum (as packed)
Particle Size	ASTM D-2862	4x10 US Mesh
Ash		10% Maximum
Total Surface Area (N2BET)		1050 Minimum
Pore Volume (cc/g)		0.75

Brimac Char Inc. Scotland-1825.

21 Dellingburn Street, Greenock, Inverclyde, Scotland PA15 4TP, United Kingdom www.brimacchar.com

Brimac Char Inc. United State -2017.

3202 North Closner Boulevard, Edinburg, Texas 78541, United States www.brimacchar.com

Filtration Media to Remove

- > Arsenic
- > Manganese
- > Iron
- > Lead
- > And other Heavy Metals

Filtration Media to Remove

- > Fluorine
- > Fluoride
- > Chlorine
- > Color
- > Odor

Large Stock

Alamo Texas warehouse

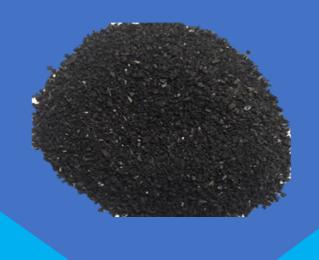
Brimac Bone Char?: "A porous black solid, consisting of an amorphous form of carbon, obtained as a residue when wood, bone, or other organic matter is heated in the absence of air."

Charcoal is mostly pure carbon, it is produced by heating organic material (Wood, Coal, Bone and other fibrous material) in the absence of Oxygen (pyrolysis). This removes water and the volatile chemicals from the material. The resulting product contains carbon and some residual chemicals from the original source material. So depending on the source material each type of charcoal, have different chemical properties.

Bone Char is a unique from of activated carbon, due to the nature of the raw material. The carbonized material possess great mechanical strength and improved adsorption of many chemicals, e.g. Fluorine, Chlorine, Lead and many more.

It main use for many years has been in sugar refining, where it has been used to decolorized and remove other mineral impurities.

Bone Char is also an effective water filter media, as it ability to remove many heavy metals is greater than plain activated carbon. Most of these heavy metals are neurotoxins and pose significant hazards to human health.


Innovation in Filtration

Brimac Bone Char Spec

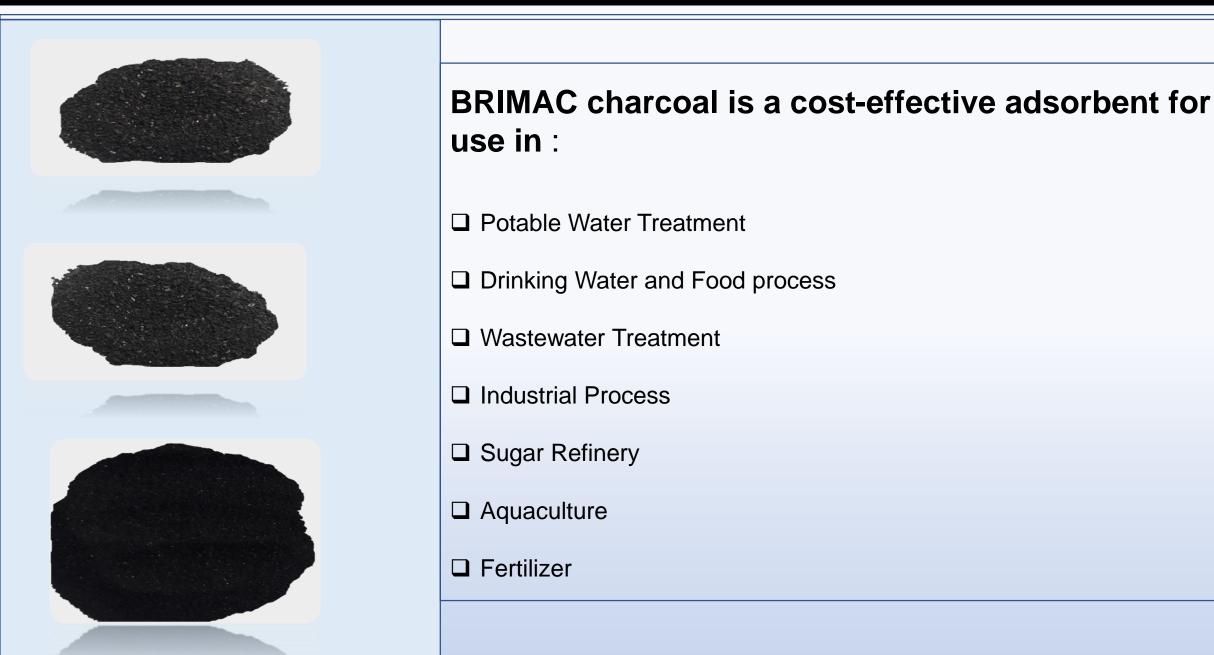
Brimac - Bone Charcoal Product Specifications							
Typical Product Analysis	Values						
	Min	Max		Unit			
Carbon	8	11		%			
Acid Insoluble Ash		3		%			
Moisture		5		%			
Calcium Carbonate	6	9		%			
Calcium Sulphate	0.1/0.22	0.2	%				
Water Soluble Phosphate	0.003 As P205, %						
Phosphate Soluble	16.5		As P205, %				
Iron		0.1	As Fe203, %				
Hydroxyapatite (Tri-calcium phosphate)	70	76	%				
Total Surface Area	80	120	m2/g				
Carbon Surface Area	40	60		m2/g			
Bulk Density	550/35	700/44	Kg/m3, Lb/ft3				
Particle Size Range							
Grade	5/8	8/24	20/60	Fines			
Particle Size Range (mm)	1.70/4.00	0.60/1.00	0.25/1.00	0.075/0.60			
Oversize Maximum (%)	10	5	15 5				
Undersize Maximum (%)	5	5	2	N/A			
Mean Particle Diameter (mm)	2.55	1.73	0.635 0.255				

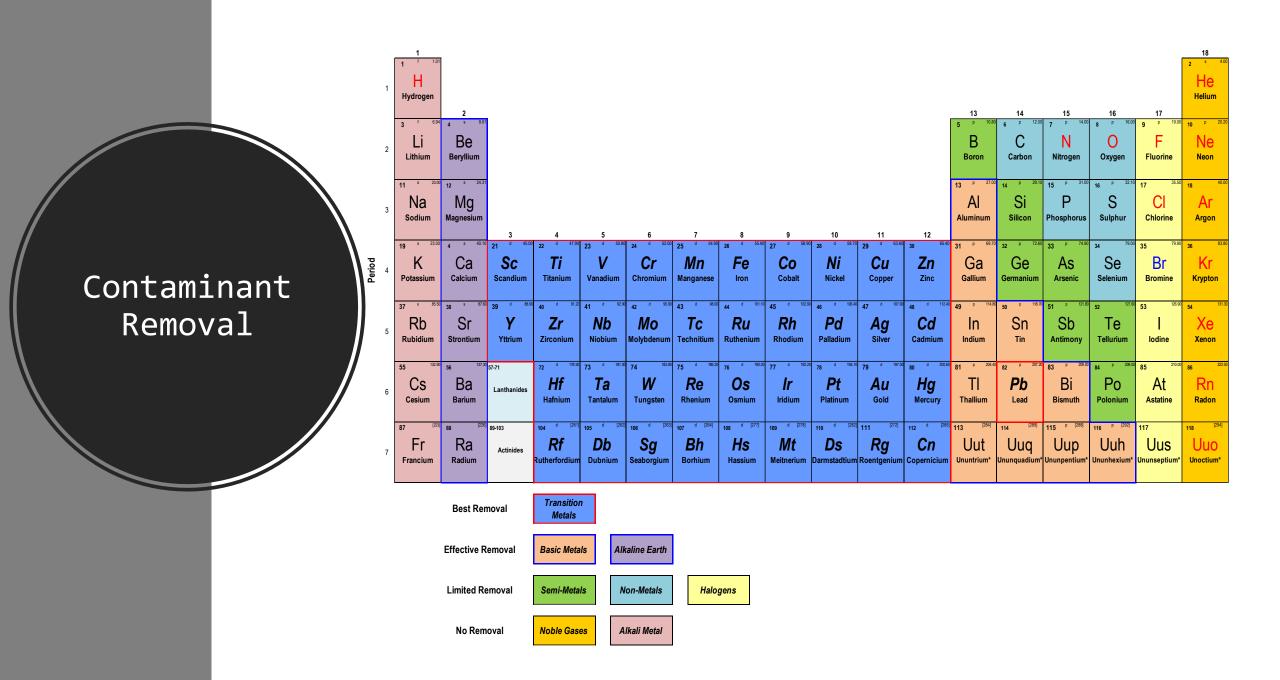
Metal Removal

Typical Metals Removal Rates					
Parameter	% Removal	Parameter	% Removal		
Aluminum (AI)	> 90%	Manganese (Mn)	> 99%		
Antimony (Sb)	> 90%	Nickel (Ni)	> 99%		
Arsenic (As)	> 90%	Phosphorus (P)	> 99%		
Barium (Ba)	> 91%	Silicon (Si)	> 90%		
Beryllium (Be)	> 92%	Silver (Ag)	> 94%		
Bismuth (Bi)	> 93%	Strontium (Sr)	> 94%		
Boron (B)	> 86%	Thallium (TI)	> 90%		
Cadmium (Cd)	> 92%	Titanium (Ti)	> 68%		
Chromium (Cr)	>96%	Tungsten (W)	> 90%		
Cobalt (Co)	> 90%	Vanadium (V)	> 92%		
Copper (Cu)	> 91%	Zinc (Zn)	> 99%		
Iron (Fe)	> 99%	Zirconium (Zr)	> 95%		
Lead (Pb)	> 90%				

Typical Other Reduction Property Reductions				
Parameter % Reduction				
Chemical Oxygen Demand	> 70%			
Biological Oxygen Demand	> 60%			
Susp. Solids (TSS) 104 Deg C	> 40%			

Benefits Using Brimac Charcoal




- a) Removal of organic and inorganic contaminants in one process, often without any need for chemical pre-treatment.
- b) Virtually maintenance free operation, suitable for remote or unmanned sites.
- c) Unique buffering action which maintains alkalinity in the adsorbate.
- d) Significant reduction in potable water chlorine demand thereby minimizing the amount of chlorine used for final chlorination and producing a much more stable chlorine residual that is easier to maintain.
- e) Remove the heavy metals

This also results in lower levels of Trihalomethanes in the treated water.

e) BRIMAC Charcoal meets the approval standards: NSF, FDA, KOSHER.

Applications

Granulate Brimac Char

Parameter	Brimac Char Membra		Membrane	s	Chemical Syst	ems
Capital Cost	Moderate	-	High	x	Moderate	-
Through Life Cost	Moderate	1	Moderate	1	High	x
Treatment Efficiency	Excellent	√	Moderate	1	Poor	x
Cleaning Regime	Minimal	✓	Frequent CIP	1	Moderate	1
Waste Stream	OK for discharge	√	Concentrated - disposal difficult	x	Concentrated - disposal difficult	x
Re-uses	Many possibilities	✓	Many possibilities	✓	Few possibilities	x
Treatment Streams	Treats combined streams	√	Treats only rinse streams	√	Treats combined streams	√
Influent Quality Tolerance	High	√	Moderate	1	Low	x
Maintenance Level	Low	√	High	x	High	x
Environmental Impact	Low	√	Moderate	1	High	x
Overall	Excellent	✓	Moderate	-	Poor	x

Granulate Brimac Char (GAC) Water Grade

- Potable Water and Drink Water
- Remove Manganese
- Remove Iron
- Remove Fluorine
- Remove Arsenic
- Remove Copper
- Remove Aluminum
- Remove Chlorine
- Remove Color
- Remove Odor

Granulate Brimac Char(GAC) Sugar Grade

Sugar Refinery

- Color Removal
- Ash Removal
- Great Performance

Brimac

Bone Char Media

For the Cost-Effective Removal of Metals,

Colour and Large Organics

About Brimac Char Inc

Brimac Char Inc. is a unique industrial consultancy with a strong history in the areas of organics & heavy metals removal from potable water and industrial effluent streams.

Our aim is to give businesses the ability to turn environmental and technical problems into business benefits by improving performance and efficiency.

The services we offer (from consultancy, innovation and implementation) are backed by the expertise of our people, partners, laboratory, and manufacturing facilities.

Benefits of using Brimac Char:

- Removal of organic and inorganic contaminants in one process, often without any need for chemical pretreatment
- Removes metals, naturally occurring colour and large organics (humic and fulvic acids) that can blind the pores of GAC(Granular Activated Carbon).
- Significant though-life cost saving against Ion Exchange.
- Robust, low maintenance process suitable for remote or un-manned sites
- Can reduce chlorine demand and levels of Trihalomethanes in potable water.

Applications

INDUSTRIAL WATER

- Metallurgical
- Chemicals
- Polishing of industrial and trade effluents
 prior to disposal to sewer, river or re-cycling.

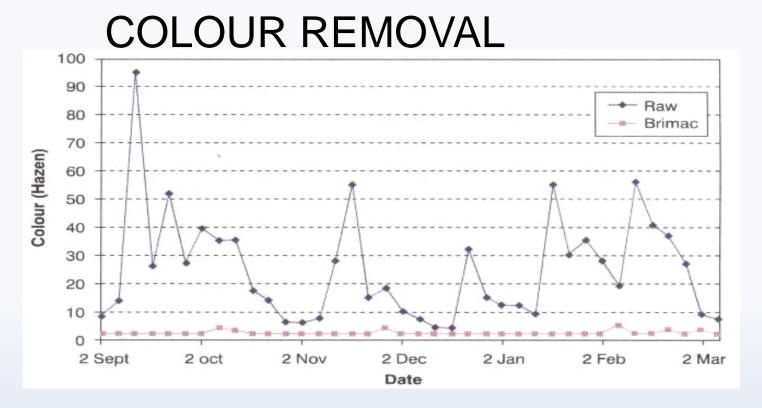
POTABLE WATER

- Pharmaceutical
- Foodstuffs
- Beverages
- Dairies
- Municipal treatment works
- Remote sites
- Private supplies
- Farms
- Domestic point of entry and point of

use

FEATURES OF BRIMAC CHAR

Key Features


- Unique properties of adsorbing large organic molecules, colour and dissolved metals.
- Unique combination of ion exchange and adsorption characteristics
- Brimac Char is not activated carbon and can address contaminants that GAC handles poorly.
- Brimac Char contact time is typically 3 times longer than Carbon/GAC
- Brimac Char is a unique material consisting of a mixture of elemental carbon and calcium hydroxyapatite with a predominantly mesoporous to macroporous structure which has the unique properties of adsorbing large organic molecules, color and dissolved metals from effluent waters.

- Brimac Char comprises two complementary components:
- 1) A carbon surface (around 10% by weight of the finished product) which adsorbs weakly anionic molecules
- 2) A hydroxyapatite lattice Ca10(PO4)6(OH)2 which adsorbs strongly charged molecules together with many inorganic ions
- The manufacturing process creates a porous structure of a wide range of pore sizes within both the carbon and hydroxyapatite components. The total surface of Brimac HA is approximately 100 m2 /g (50% of which is attributable to the carbon content) with a larger pore size range than GAC. Unlike charcoals and activated carbons this porosity is achieved totally by thermal means without the use of any other chemical additives

- Brimac Char (Potable Water Grade) is further processed to ensure no taste is added to the water. See page 6
- Because Brimac Char adsorption process is different to GAC, a Mass Transfer Zone model is used to size the plant. Empty bed contact times are typically 3 times that of GAC.
- Combinations of metals will change Brimac Char performance characteristics. Brimac can conduct characterization trials in our in-house laboratory to determine specific removal rates of combined contaminants.

METAL REMOVAL

Metal	Capacity	Linear velocity	Removal efficiency
	mg/g	m/hr	
Aluminium	24	1	>80
Arsenic III	30	0.5	>80
ArsenicV	26	0.5	>80
Cadmium	15	0.5	>80
Chromium III	15	0.5	>80
Chromium IV	8	0.5	~50
Copper	50	3	>90
Iron	30	3	>80
Lead	151	3	>80
Manganese	50	3	>80
Nickel	45	3	>90
Silver	**	0.5	~50#
Zinc	37	3	>90

Comparison of Brimac HA with GAC and Ion Exchange

	Brimac Char	GAC	Ion exchange
Flow rate (m/hr)	Up to 3	Up to 12	Typically 25
Surface area(m ² /g)	100	1000	Up to 750
Pore size (nm)	7.5 – 60000	0.5 - 5000	2 - 50
Process Waste	Land fill	Regenerable / Landfill	Liquid effluent

How Brimac Char is used?:

Brimac Char can be used in granular form in fixed bed systems, either by itself or in conjunction with other media e.g. sand or granular activated carbon as in:

- Rapid gravity filters
- Pressure filters
- Slow sand filters
- Cartridges
- Small modular containers

Powdered material may also be used in conjunction with suitable dosing and filtration systems.

Are there pH limits?:

For optimal performance the stream pH should be > 4.5. Lower pH will attack the hydroxyapatite structure. The upper pH limit will be determined by the point at which precipitation starts.

What is the maximum level of suspended solids allowed?:

Suspended solids must be < 50 ppm and smaller than 10 µm to prevent the bed becoming blocked with particulates.

Pre-filtration may be needed to achieve this, depending on the nature of the suspended solids in the feed stream.

What level of contaminants will Brimac Char treat?:

Brimac Char is most economic when used as a polishing adsorbent. Contaminants at levels above 20 ppm will typically require pre – treatment by other means such as flocculation, clarification, precipitation or filtration.

What backwash flows are used?:

Backwashing is not required if the influent stream is properly filtered. Backwashing will tumble the bed and disrupt the mass transfer zone, adversely affecting performance and operational life.

Can Brimac Char be reactivated like GAC?:

Brimac Char is different to GAC and due to the mechanisms of adsorption is not easily reactivated.

What is the best way to dispose of Brimac Char?:

As contaminants are firmly bound to the Brimac Char, it is highly resistant to leaching. Spent material can be disposed of in landfill disposal sites subject to local statutory regulations.

BRIMAC Char

Europe: Manufactured in accordance with BS EN14456:2004 for Potable Water Treatment Certified by

EDQM – European Directorate for the Quality of Medicines

USA: Certified by NSF to NSF/ANSI standard 61 for Potable Water treatment

PROCESS DESIGN GUIDELINES

- Brimac Char is normally used at minimum bed depth of 500 mm.
- Underbed and strainers are used in the same way as for GAC or ion exchange media.
- For single metal removal the velocity through the bed is dependent on the metal species to be removed and is typically one third that through GAC.
- For colour removal in potable water systems, velocities are in the same range as used in slow sand filters, 0.1 to 0.5 m/hr. Metals will also be removed.
- A liquid cushion should be maintained above the Brimac Char to minimise the disturbance of the media by the influent stream.

LEAD/LAG SYSTEMS

As with non regenerable mixed bed systems, Brimac Char can be used in dual Adsorber with a sampling point between the two. The primary Adsorber is run until influent concentration of the contaminant is measured at the sampling point between the two units. At this point the second unit is switched over to become the primary Adsorber and a fresh Adsorber is installed in the secondary position.

QUALITY ASSURANCE

Brimac Char Media is manufactured under an ISO 9001:2018 approved quality system.

TECHNICAL SERVICES

A full technical back up service is available in the form of technical advice, research and development, laboratory trial and pilot plant facilities.

Technical Data Sheets, Material Safety Data Sheets and "In to service" specifications are available separately.

Brimac Case Studies

- 1. Colour Removal
- 1. Colour, Iron & Aluminum Removal
- 1. Manganese Removal

1. Colour removal

Brimac Bone Char compared with carbon (GAC)

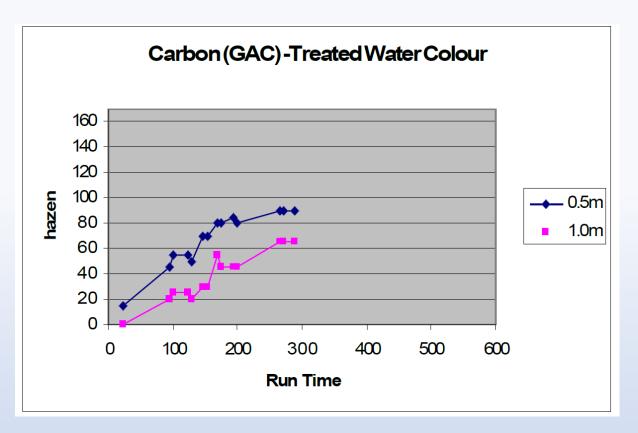
The Challenge

A large water sample was taken from a raw surface water source containing high levels of humic and fulvic acid colorants. The chosen samples colour level was exceptionally high (165 hazen) and therefore provided an accelerated test comparison between carbon and Brimac media.

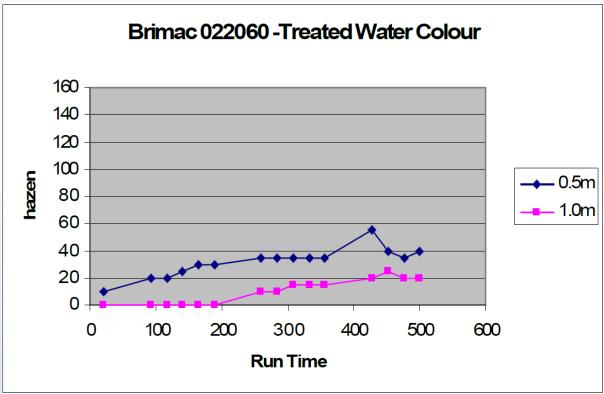
The water sample was fed at a constant velocity of 0.2m/hr through separate columns of GAC and **Brimac Bone Char**. The GAC used is sold widely in the UK for drinking water treatment.

Conclusion

- Rapid, almost immediate breakthrough of colour was observed in the GAC column.
- For this water sample, Brimac Bone Char has a colour removal capacity of up to 5 times that of GAC.
- As most operating cost (OPEX) is associated with the labor and equipment used to change out granular media, *Brimac Bone Char* can provide dramatic savings in operating costs over GAC.


Results

The graphed results show measured colour (in hazen) at 0.5m and 1.0m bed depth for GAC and


Brimac Bone Char

Colour Removal

Carbon GAC

Brimac Bone Char

1. Colour, iron and aluminum removal

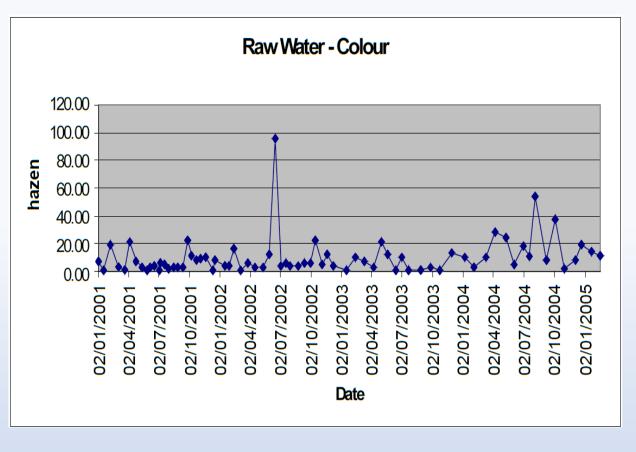
The Company

A large municipal water company providing water and sewerage services over a wide area with difficult geography.

Challenge

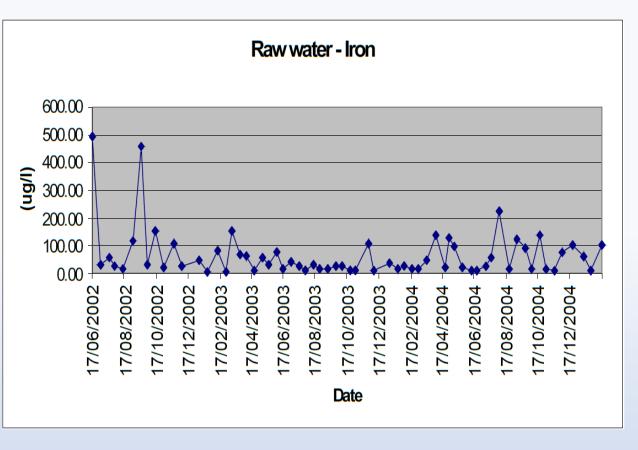
Several unconnected, remote water treatment works with high colour, iron and aluminium levels. The works supplies the local population through small community distribution. Current treatment and raw water condition meant that the water quality regularly failed drinking water—standards.

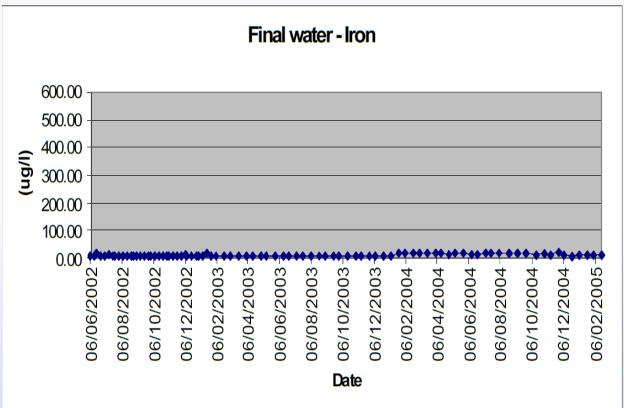
Solution

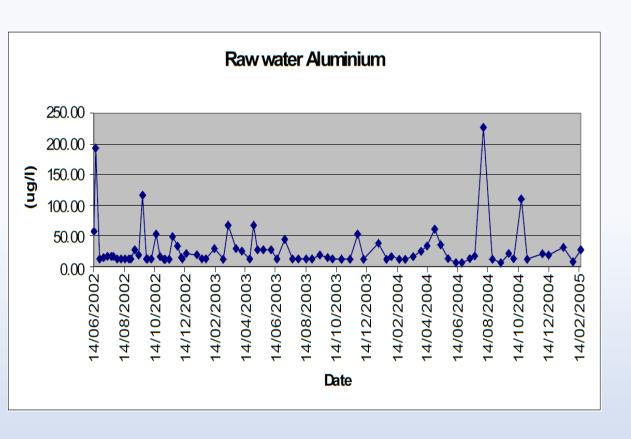

Six slow sand filters containing *Brimac Bone Char* adsorption media were installed in the mid 1990's. *Brimac Bone Char* is manufactured specifically for the removal of colour, dissolved heavy metals and THM precursors for potable water applications. It is approved for drinking water purification throughout Europe and the USA.

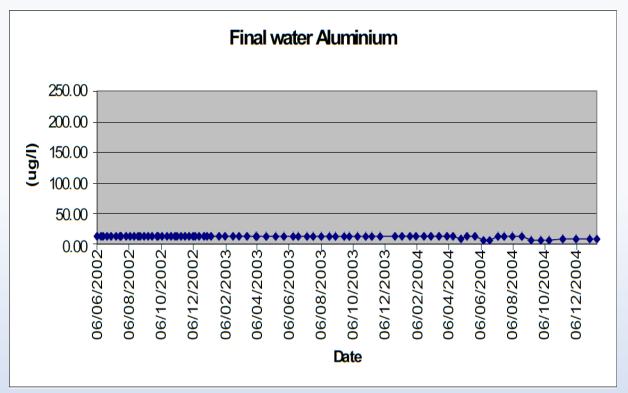

Results and conclusion

- Consistent colour, iron and aluminum removal even when levels spike
- Brimac Bone Char is a reliable solution for removing colour, heavy metals or both all in one granular material.


The graphed results show raw water quality, and final water quality after treatment with **Brimac Bone Char.**


Colour Removal




Iron Removal

Aluminum Removal

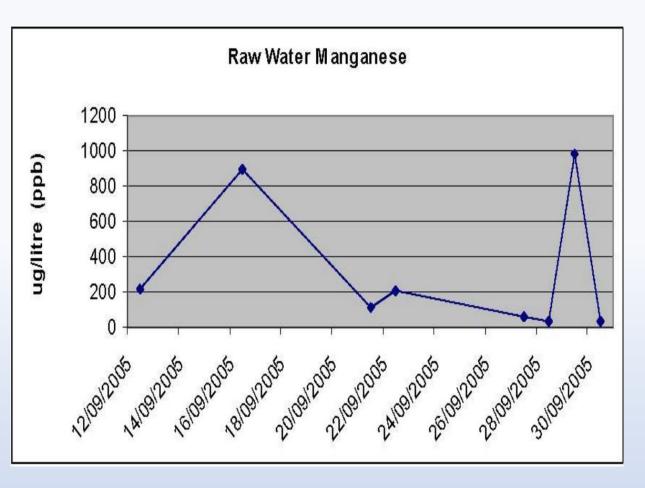
1. Manganese Removal

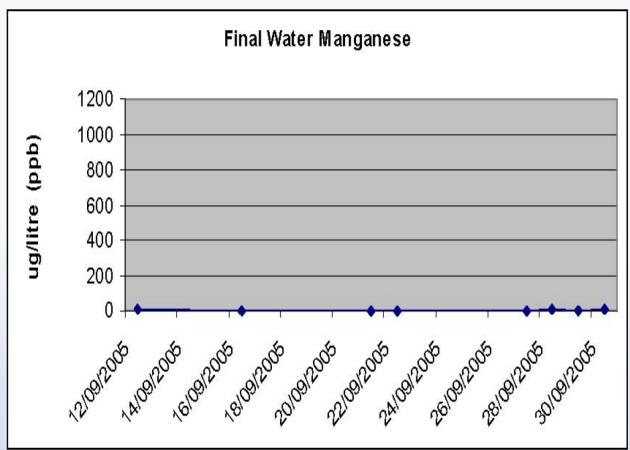
The Company

A large water company based in the south of England, providing water and sewerage services to a large population.

Challenge

A number of isolated properties in southern England had been having problems with high manganese levels in their potable water supply. The water often failed to meet drinking water standards.


Solution


A small pilot plant was installed to determine the efficacy of *Brimac Bone Char* in removing manganese from raw reservoir water. *Brimac Bone Char* is manufactured specifically for the removal of colour, dissolved heavy metals and THM precursors for potable water applications. It is approved for drinking water purification throughout Europe.

Results and conclusion

- Consistent manganese, colour and iron and removal was achieved even when raw water levels spiked.
- Brimac Bone Char is a reliable solution for removing colour, heavy metals or both all in one granular material.
- As a result of the pilot study, six point of use treatment plant were ordered for installation during the first quarter of 2006.

Manganese Removal

Fluride Removal

The ability of bone meal to sorb fluoride has been known since the early 1900's. The use of bone meal in a South Dakota water treatment plant from 1940-1971 to remove fluoride showed the potential bone charcoal should have for removal of fluoride. Bone meal imparts an unpleasant taste to water and has the potential for bacterial contamination (Mwaniki, 1990), and was the main reason for the plants closure. Bone charcoal however does not have the taste problems or significant bacteriological problems. Much of the limited research regarding bone charcoal as a water cleanup treatment has focused on its ability to remove fluoride. It is hoped that bone charcoal may be a cheap method to defluoridate drinking water in many developing countries and help prevent fluorosis (Mwaniki, 1992). Discussion in the literature regarding fluoride sorption by bone charcoal has considered the type of charcoal, amount of sorption possible, and the influence of pH, surface area and other possible contaminants in the water. Mwaniki (1992), and Larsen et al. (1994) found that bone charcoal became more crystalline when heated to high temperatures and was therefore better at sorbing fluoride when bone was heated to around 350-400°C instead of over 600°C.

The influence of calcium oxides and carbon content were considered influential also. Abdel-Fattah and Selim (1982) compared the surface areas of bone charcoals produced at different temperatures and concluded that if the bone was ground first material with a higher surface area was produced allowing greater sorption. The amount of fluoride sorbed by bone charcoal described in literature has varied. Some commentators have found only 2.5 mg g-1 of fluoride sorbed onto bone charcoal (Mwaniki, 1990), while in 1992 Mwaniki noted that between 0.3 mg g-1 and 11.3 mg g-1 were sorbed depending on the type of bone charcoal used in the sorption. Most investigators found that a pH <7 provided greater sorption of the ion (Bhargava and Killedar, 1991, Mwaniki, 1992, Larsen and Pearce, 1993). Only Bhargava and Killedar, (1991) suggested pH 7 was the optimum pH for maximum fluoride sorption. He also found that the presence of Cl⁻, I⁻, K⁺ or Na⁺ had no effect on the sorption of F⁻. The main mechanism of sorption for fluoride attenuation by bone charcoal was proposed by Christoffersen et al. (1991). They suggested a dissolution / precipitation type reaction with any ion-exchange supplementary to this. Larsen and Pearce (1992) also concurred that dissolution/precipitation was the main mechanism.

May 2010 NSF 10/33/EPADWCTR EPA/600/R-10/099

Environmental Technology Verification Report

Removal of Uranium in Drinking Water

Brimac Environmental Services, Inc. Brimac HA 216 Adsorptive Media

Prepared by

Under a Cooperative Agreement with U.S. Environmental Protection Agency

THE ENVIRONMENTAL TECHNOLOGY VERIFICATION PROGRAM

ETV Joint Verification Statement

TECHNOLOGY TYPE: ADSORBTIVE MEDIA

APPLICATION: REMOVAL OF URANIUM IN DRINKING WATER

PRODUCT NAME: BRIMAC HA 216 ADSORPTIVE MEDIA

VENDOR: BRIMAC ENVIRONMENTAL SERVICES, INC.

ADDRESS: 318 GRALAKE AVE.

ANN ARBOR, MI 48103

PHONE: 734-998-0763

WEBSITE: HTTP://WWW.BRIMACSERVICES.COM

EMAIL: INFO@BRIMACSERVICES.COM

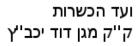
NSF International (NSF) manages the Drinking Water systems (DWS) Center under the U.S. Environmental Protection Agency's (EPA) Environmental Technology Verification (ETV) Program. The DWS Center recently evaluated the performance of the Brimac Environmental Services, Inc. (Brimac) HA 216 Adsorptive Media. The New Hampshire Department of Environmental Services (NHDES) monitored the operation of the pilot unit containing the media, collected water samples, and provided some laboratory services. NSF also analyzed samples and authored the verification report and this verification statement. The verification report contains a comprehensive description of the test.

EPA created the ETV Program to facilitate the deployment of innovative or improved environmental technologies through performance verification and dissemination of information. The ETV Program's goal is to further environmental protection by accelerating the acceptance and use of improved and more cost-effective technologies. ETV seeks to achieve this goal by providing high quality, peer-reviewed data on technology performance to those involved in the design, distribution, permitting, purchase, and use of environmental technologies.

ETV works in partnership with recognized standards and testing organizations, stakeholder groups (consisting of buyers, vendor organizations, and permitters), and with the full participation of individual technology developers. The program evaluates the performance of innovative technologies by developing test plans that are responsive to the needs of stakeholders, conducting field or laboratory tests (as appropriate), collecting and analyzing data, and preparing peer-reviewed reports. All evaluations are conducted in accordance with rigorous quality assurance protocols to ensure that data of known and adequate quality are generated and that the results are defensible.

NSF 10/33/EPADWCTR The accompanying notice is an integral part of this verification statement.

September 2010


VS-

Certifications

Certificado Kosher

Los siguientes productos elaborados por: HA2 Natural de México, S de R.L. de C.V

KASHRUT

MAGUÉN DAVID

Fecha de emisión: 10 de Octubre del 2019

Ubicado en: -, -, Mexico

Están certificados Kosher con las restricciones señaladas en la siguiente lista:

Código: 837

Marca	Clave	ave Nombre Código Kosher		Status	Restricciones	Observaciones	
Carbon de Hueso de Bovino		Carbon de Hueso de Bovino	837-38259	Parve			

Este certificado es válido hasta el: 09 de Octubre del 2020

Rabino David Abourmad v.kosher.com.mx

Certifications

NSF International

789 N. Dixboro Road, Ann Arbor, MI 48105 USA

RECOGNIZES

Ha2 Natural de Mexico, S. de R.L. de C.V.

Facility: Reynosa, Tamaulipas, México

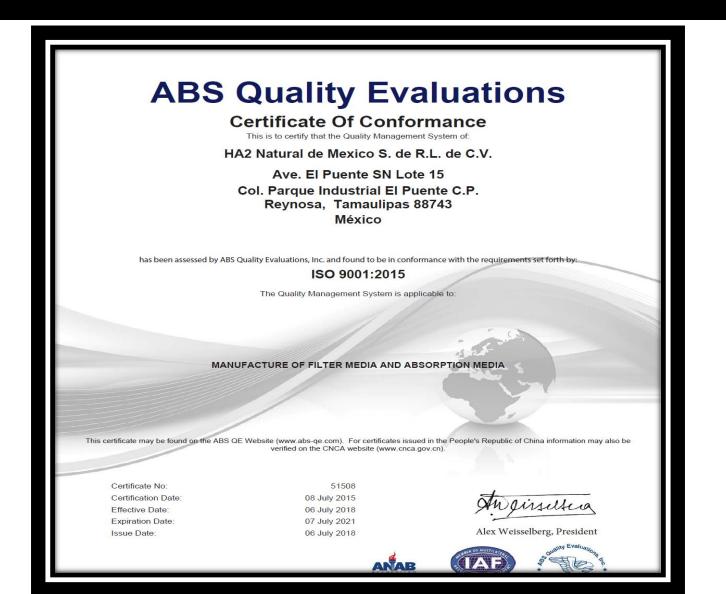
AS COMPLYING WITH NSF/ANSI/CAN 61 AND ALL APPLICABLE REQUIREMENTS.

PRODUCTS APPEARING IN THE NSF OFFICIAL LISTING ARE

AUTHORIZED TO BEAR THE NSF MARK.

#0216
Certification Program
Accredited by the
American National
Standards Institute

Certification Progra Accredited by the Standards Council


This certificate is the property of NSF International and must be returned upon request. This certificate remains valid as long as this client has products in Listing for the referenced standards. For the most current and complete Listing information, please access NSF's website (www.nsf.org).

Speresa Bellist

May 22, 2020 Certificate# C0549848 - 01 Theresa Bellish

General Manager, Water Systems

Certifications

Back to HS-200 page

HS-200

Media to Remove Oil, Heavy Metals and Similar Organics from Water Safety Data Sheet

Revision date: 2017

SECTION 1: Identification of the substance/mixture and of the company/undertaking

1.1 - Product Identifier

Product Name: HS-200

1.2 - Relevant identified uses of the substance or mixture and uses advised against

Use of the substance/mixture: Filtration

1.3 - Details of the supplier of the safety data sheet

Hydrosil International Ltd. 125 Prairie Lake Rd East Dundee, IL 60118

T 847-844-0680 - F 847-844-0799 www.hydrosilintl.com

1.4 - Emergency telephone number

Emergency number: 1-847-844-0680

Section 2: Hazards Identification

2.1 - Classification of the substance or mixture

GHS-US classification Eye Dam. 1 H318 STOT SE 3 H335

2.2 - Label Elements

GHS-US labeling Hazard pictograms (GHS-US) :

Signal word (GHS-US): Danger Hazard statements (GHS-US):

H318 - Causes serious eye damage H335 - May cause respiratory irritation

Precautionary statements (GHS-US):

P261 - Avoid breathing dust/fume/gas/mist/vapors/spray

P271 - Use only outdoors or in a well-ventilated area

P280 - Wear protective gloves/protective clothing/eye protection/face protection

P304+P340 - IF INHALED: Remove person to fresh air and keep comfortable for breathing

P305+P351+P338 - If in eyes: Rinse cautiously with water for several minutes. Remove contact lenses, if present and easy to do. Continue rinsing

P310 - Immediately call a POISON CENTER/doctor/...

P312 - Call a POISON CENTER/doctor/.../if you feel unwell

P403+P233 - Store in a well-ventilated place. Keep container tightly closed

P405 - Store locked up

P501 - Dispose of contents/container to ...

2.3 - Other Hazards

No additional information available

2.4 - Unknown acute toxicity (GHS US)

No data available

3.1 - Substances

Not applicable

3.2 - Mixture

Name	Product Identifier	%	GHS-US Classification
Zeolite	(CAS No.) 1318-02-1	85.2 - 86.2	STOT SE 3, H335
Water	(CAS No.) 7732-18-5	8.4 - 11.4	Not classified
N,N,N-Trimethyl-1-hexadecanaminium chloride	(CAS No.) 112-02-7		Skin Irrit. 2, H315 Eye Dam. 1, H318 Aquatic Acute 1, H400

SECTION 4: First aid measures

4.1 - Description of first aid measures

First-aid measures after inhalation: Remove person to fresh air. If not breathing, administer CPR or artificial respiration. Get immediate medical attention.

First-aid measures after skin contact: If skin reddening or irritation develops, seek medical attention.

First-aid measures after eye contact: Immediately flush eyes with plenty of water for at least 15 minutes. If irritation persists get medical attention.

First-aid measures after ingestion: If the material is swallowed, get immediate medical attention or advice. DO NOT induce vomiting unless directed to do so by medical personnel.

4.2 - Most important symptoms and effects, both acute and delayed

Symptoms/injuries after inhalation: May cause respiratory irritation.

Symptoms/injuries after skin contact: Causes skin irritation.

Symptoms/injuries after eye contact: Causes serious eye irritation.

Symptoms/injuries after ingestion: May be harmful if swallowed.

4.3 - Indication of any immediate medical attention and special treatment needed

No additional information available

SECTION 5: Firefighting measures

5.1 - Extinguishing media

Suitable extinguishing media: If involved with fire, flood with plenty of water.

Unsuitable extinguishing media: None.

5.2 - Special hazards arising from the substance or mixture

Fire hazard : None known. Explosion hazard : None known.

5.3 - Advice for firefighters

Protection during firefighting: Firefighters should wear full protective gear.

SECTION 6: Accidental release measures

6.1 - Personal precautions, protective equipment and emergency procedures

General measures: Avoid contact with the skin and the eyes. For non-emergency personnel: No additional information available For emergency responders: No additional information available

6.2 - Environmental precautions

None.

6.3 - Methods and material for containment and cleaning up

For containment : If possible, stop flow of product.

Methods for cleaning up: Shovel or sweep up and put in a closed container for disposal.

6.4 - Reference to other sections

No additional information available

SECTION 7: Handling and storage

7.1 - Precautions for safe handling

Precautions for safe handling: Wet carbon/coal removes oxygen from air causing a severe hazard to workers inside carbon vessels or confined spaces.

7.2 - Conditions for safe storage, including any incompatibilities

Storage conditions: Protect containers from physical damage. Store in dry, cool, well-ventilated area.

7.3 - Specific end use(s)

No additional information available

SECTION 8: Exposure controls/personal protection

8.1 - Control parameters

No additional information available

8.2 - Exposure controls

Appropriate engineering controls : Local exhaust and general ventilation must be adequate to meet exposure

standards.

Hand protection: Use impervious gloves.

Eye protection : Safety glasses.

Skin and body protection: Wear suitable working clothes.

Respiratory protection: If airborne concentrations are above the applicable exposure limits, use NIOSH

approved respiratory protection.

SECTION 9: Physical and chemical properties

9.1 - Information on basic physical and chemical properties

Physical state: Solid

Appearance: Irregular shaped.

Color: White

Odor: No data available

Odor threshold: No data available

pH: No data available

Relative evaporation rate (butyl acetate=1): No data available

Melting point: No data available Freezing point: No data available Boiling point: No data available Flash point: No data available

Self ignition temperature : No data available Decomposition temperature : No data available Flammability (solid, gas) : No data available

Vapor pressure : No data available

Relative vapor density at 20 °C: No data available

Relative density: 57-59 lb/ft3 Solubility: No data available Log Pow: No data available Log Kow: No data available

Viscosity, kinematics: No data available Viscosity, dynamic: No data available Explosive properties: No data available Oxidizing properties: No data available Explosive limits: No data available

9.1 - Other information

No additional information available

SECTION 10: Stability and Reactivity

10.1 - Reactivity

No additional information available

10.2 - Chemical stability

Stable under normal conditions.

10.3 - Possibility of hazardous reactions

Will not occur

10.4 - Conditions to avoid

None

10.5 - Incompatible materials

Strong oxidizing and reducing agents.

10.6 - Hazardous decomposition products

Organic chlorides, amines, hydrogen chloride may be produced.

SECTION 11: Toxicological information

11.1 - Information on toxicological effects

Acute toxicity: Not classified

Zeolite (1318-02-1)					
LD50 oral rat	5000 mg/kg				
LD50 dermal rabbit	> 2000 mg/kg				
LC50 inhalation rat (mg/l)	2.4 mg/l (Exposure time: 1 h)				
ATE (oral)	5000 mg/kg				

Skin corrosion/irritation: Not classified

Serious eye damage/irritation : Causes serious eye damage.

Respiratory or skin sensitization: Not classified

Germ cell mutagenicity: Not classified Carcinogenicity: Not classified

Zeolite (1318-02-1)	
IARC group	3

Reproductive toxicity: Not classified

Specific target organ toxicity (single exposure): May cause respiratory irritation.

Specific target organ toxicity (repeated exposure): Not classified

Aspiration hazard: Not classified

SECTION 12: Ecological information

12.1 - Toxicity

Zeolite (1318-02-1)	
LC50 fishes 1	1800 mg/l (Exposure time: 96 h - Species: Brachydanio rerio [semi-static])
EC50 Daphnia 1	1000 - 1800 mg/l (Exposure time: 48 h - Species: Daphnia magna)
EC50 other aquatic organisms 1	18 mg/l (Exposure time: 96 h - Species: Desmodesmus subspicatus)
LC50 fish 2	3200 - 5600 mg/l (Exposure time: 96 h - Species: Oryzias latipes [semi-static])

12.2 - Persistence and degradability

No additional information available

12.3 - Bioaccumulative potential

No additional information available

12.4 - Mobility in soil

No additional information available

12.5 - Other adverse effects

No additional information available

SECTION 13: Disposal considerations

13.1 - Waste treatment methods

Waste disposal recommendations: Dispose of contents/container in accordance with local/regional/national/international regulations.

SECTION 14: Transport information

In accordance with DOT / ADR / RID / ADNR / IMDG / ICAO / IATA

14.1 - UN number

Not applicable

14.2 - UN proper shipping name

Not applicable

SECTION 15: Regulatory information

15.1 - US Federal regulations

15.2 - US State regulations

No additional information available

SECTION 16: Other information

Full text of H-phrases:

Aquatic Acute 1	Hazardous to the aquatic environment - Acute Hazard Category 1
Eye Dam. 1	Serious eye damage/eye irritation Category 1
Skin Irrit. 2	skin corrosion/irritation Category 2
STOT SE 3	Specific target organ toxicity (single exposure) Category 3
H315	Causes skin irritation
H318	Causes serious eye damage
H335	May cause respiratory irritation
H400	Very toxic to aquatic life

NFPA health hazard : 2 - Intense or continued exposure could cause temporary incapacitation or possible residual injury unless prompt

medical attention is given.

NFPA fire hazard: 0 - Materials that will not burn.

NFPA reactivity: 0 - Normally stable, even under fire exposure conditions, and are not reactive with water

RESINTECH SBG1 is a high capacity, shock resistant, gelular, Type 1, strongly basic anion exchange resin supplied in the chloride or hydroxide form as moist, tough, uniform, spherical beads. *RESINTECH SBG1* is intended for use in all types of deionization systems and chemical processing applications. It is similar to *RESINTECH SBG1P* but has a higher volumetric capacity and exhibits lower TOC leach rates. This makes it the better performer in single use applications such as in cartridge deionization and when high levels of regeneration are used such as in polishing mixed beds. On the other hand, *RESINTECH SBG1P* is more resistant to organic fouling and gives higher operating capacities at low regeneration levels such as those used in make up demineralizers.

FEATURES & BENEFITS

COMPLIES WITH FDA REGULATIONS FOR POTABLE WATER APPLICATIONS.

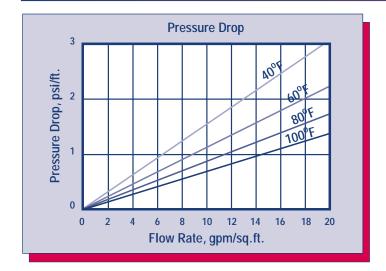
Conforms to paragraph 21CFR173.125 of the Food Additives Regulations of the F.D.A.*

HIGH TOTAL CAPACITY

Provides longer run lengths in single use applications or where high levels of regeneration are used such as in mixed bed polishers, cartridge demineralizers.

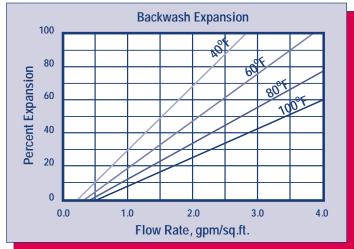
UNIFORM PARTICLE SIZE

16 to plus 50 mesh range; gives a LOWER PRESSURE DROP while maintaining SUPERIOR KINETICS.


SUPERIOR PHYSICAL STABILITY

LOWER TOC LEACH RATE

Makes it ideal for polishing mixed beds in wafer washing and other high purity water polishing applications.


*For potable water applications, the resin must be properly pre-treated, usually by multiple exhaustion and regeneration cycles, to ensure compliance with extractable levels.

HYDRAULIC PROPERTIES

The graph above shows the expected pressure loss per foot of bed depth as a function of flow rate, at various temperatures.

BACKWASH

After each cycle the resin bed should be backwashed at a rate that expands the bed 50 to 75 percent. This will remove any foreign matter and reclassify the bed. The graph above shows the expansion characteristics of $RESINTECH\ SBG1$ in the sodium form.

RESINTECH® SBG1

PHYSICAL PROPERTIES

Polymer Structure

Functional Group

R-N-(CH₃)₃+Cl⁻

Ionic Form, as shipped

Physical Form

Styrene Crosslinked with DVB

R-N-(CH₃)₃+Cl⁻

Chloride or Hydroxide

Tough, Spherical Beads

Screen Size Distribution 16 to 50
+16 mesh (U.S. Std) < 5 percent
-50 mesh (U.S. Std) < 1 percent

PH Range 0 to 14

Sphericity > 93 percent

Uniformity Coefficient Approx. 1.6

Water Retention

Chloride Form 43 to 50 percent
Hydroxide Form Approx. 53 to 60 percent

Solubility Insoluble

Approximate Shipping Weight

CI Form 44 lbs/cu.ft.

OH Form 41 lbs/cu.ft.

Swelling CI- to OH- 18 to 25 percent

Total Capacity

CI Form 1.45 meq/ml min OH Form 1.15 meq/ml min

SUGGESTED OPERATING CONDITIONS

Maximum Continuous Temperature

Hydroxide Form 140°F alt Form 170°F Minimum Bed Depth 24 inches

Backwash Rate 50 to 75 percent Bed Expansion

Regenerant Concentration* 2 to 6 percent
Regenerant Flow Rate 0.25 to 1.0 gpm/cu.ft.
Regenerant Contact Time At least 40 Minutes
Regenerant Level 4 to 10 pounds/cu.ft.

Displacement Rinse Rate Same as Regenerant Flow Rate

Displacement Rinse Volume 10 to 15 gals/cu.ft.
Fast Rinse Rate Same as Service Flow Rate

ast Direct Values 25 to 10 calcles ft

Fast Rinse Volume 35 to 60 gals/cu.ft.

Service Flow Rates

Polishing Mixed Beds 3 to 15 gpm/cu.ft. Non-Polishing Apps. 2 to 4 gpm/cu.ft.

OPERATING CAPACITY

The operating capacity of *RESINTECH SBG1* for a variety of acids at various regeneration levels when treating an influent with a concentration 500 ppm, expressed as $CaCO_3$ is shown in the following table:

Pounds	Capacity Kilograms per cubic foot							
NaOH/ft ³	HCI	H_2SO_4	H_2SiO_3	H_2CO_3				
4	11.3	14.0	14.7	18.6				
6	12.8	16.3	17.3	19.8				
8	14.3	13.3	19.5	21.6				
10	15.5	20.0	22.2	22.2				

APPLICATIONS

DEMINERALIZATION – RESINTECH SBG1 is highly recommended for use in mixed bed demineralizers, wherever complete ion removal; superior physical and osmotic stability and low TOC leachables are required such as in wafer fabrication and other ultrapure applications.

RESINTECH SBG1 has high total capacity and low swelling on regeneration and provides maximum operating capacity in cartridge deionization applications. It is ideal for single use applications such as precious metal recovery, radwaste disposal and purification of toxic waste streams.

Highly crosslinked Type 1, styrenic anion exchangers have greater thermal and oxidation resistance than other types of strong base resins. They can be operated and regenerated at higher temperatures. The combination of lower porosity, high total capacity and Type 1 functionality make *RESINTECH SBG1* the resin of choice when water temperatures exceed 85°F and where the combination of carbon dioxide, borate and silica exceed 40% of the total anions.

RESINTECH SBG1P and RESINTECH SBG1 are quite similar; the difference between them is the degree of porosity. RESINTECH SBG1P has greater porosity that gives it faster kinetics, and greater ability to reversibly sorb slow moving ions such as Naturally occurring Organic Matter (NOM). At lower regeneration levels and where chlorides make up a substantial portion of the anion load, or where the removal and elution of naturally occurring organics is of concern RESINTECH SBG1P, SBACR or SBG2 should be considered. At the higher regeneration levels used in mixed bed polishers RESINTECH SBG1 provides higher capacity, and the lowest possible TOC leach rates.

*CAUTION:DO NOT MIX ION EXCHANGE RESIN WITH STRONG OXIDIZING AGENTS. Nitric acid and other strong oxidizing agents can cause explosive reactions when mixed with organic materials, such as ion exchange resins.

Material Safety Data Sheets (MSDS) are available for all ResinTech Inc.products. To obtain a copy, contact your local ResinTech sales representative or our corporate headquarters. They contain important health and safety information. That information may be needed to protect your employees and customers from any known health and safety hazards associated with our products. We recommend that you secure and study the pertinent MSDS for our products and any other products being used These suggestions and data are based on information we believe to be reliable. They are offered in good faith. However we do not make any guarantee or warranty. We caution against using these products in an unsafe manner or in violation of any patents; further we assume no liability for the consequences of any such actions.

RESINTECH CGS is a sodium form standard crosslinked gel strong acid cation resin. *CGS* is optimized for residential applications that require good regeneration efficiency and high capacity. *RESINTECH CGS* is intended for use in all residential and commercial softening applications that do not have significant amounts of chlorine in the feedwater. *CGS* is supplied in the sodium form.

FEATURES & BENEFITS

RESIDENTIAL SOFTENING APPLICATIONS

Resin parameters are optimized for residential softeners

LOW COLOR THROW

SUPERIOR PHYSICAL STABILITY


93% plus sphericity and high crush strengths together with carefully controlled particle distribution provides long life and low pressure drop

COMPLIES WITH US FDA REGULATIONS

Conforms to paragraph 21CFR173.25 of the Food Additives Regulations of the US FDA

Prior to first use for potable water, resin should be backwashed for a minimum of 20 minutes, followed by 10 bed volumes of downflow rinse.

HYDRAULIC PROPERTIES

The graph above shows the expected pressure loss of *ResinTech CGS* per foot of bed depth as a function of flow rate at various temperatures.

BACKWASH

The graph above shows the expansion characteristics of *ResinTech CGS* as a function of flow rate at various temperatures.

RESINTECH® CGS

PHYSICAL PROPERTIES

Polymer Structure Styrene/DVB

Polymer Type Gel

Functional Group Sulfonic Acid Physical Form Spherical beads

Ionic Form as shipped Sodium

Total Capacity

Sodium form >1.8 meq/mL

Water Retention

Sodium form 40 to 52 percent

Approximate Shipping Weight

Sodium form 50 lbs./cu.ft.

Screen Size Distribution (U.S. mesh) 16 to 50

Maximum Fines Content (<50 mesh) 1 percent

Minimum Sphericity 90 percent

Uniformity Coefficient 1.6 approx.

Resin Color Amber

Note: Physical properties can be certified on a per lot basis, available upon request

SUGGESTED OPERATING CONDITIONS

Maximum continuous temperature

Sodium form 250°F

Minimum bed depth 24 inches

Backwash expansion 25 to 50 percent

Maximum pressure loss 25 psi
Operating pH range 0 to 14 SU

Regenerant Concentration

Salt cycle 10 to 15 percent NaCl Regenerant level 4 to 15 lbs./cu.ft. Regenerant flow rate. 0.5 to 1.5 gpm/cu.ft.

Regenerant contact time >20 minutes

Displacement flow rate

Displacement volume

10 to 15 gallons/cu.ft.

Rinse flow rate

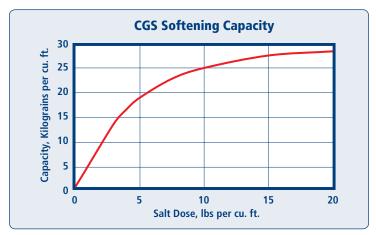
Same as service flow

Rinse volume

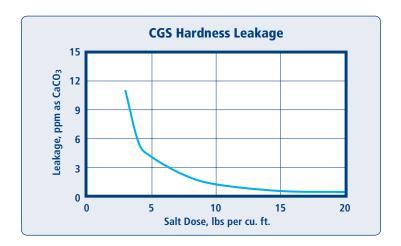
35 to 60 gallons/cu.ft.

Service flow rate

1 to 10 gpm/cu.ft.


Note: These guidelines describe average low risk operating conditions. They are not intended to be absolute minimums or maximums.

For operation outside these guidelines, contact ResinTech Technical Support


APPLICATIONS

SOFTENING

RESINTECH CGS is a standard crosslinked cation resin optimized for residential and commercial applications. This type of resin is easier to regenerate than the higher crosslinked resins. CGS has marginal resistance to chlorine and other oxidants and is not ideal for high temperature and other high stress applications.

Capacity and leakage data are based on the following: 2:1 Ca:Mg ratio, 500 ppm TDS as CaCO3, 0.2% hardness in the salt and 10% brine concentration applied co-currently through the resin over 30 minutes. No engineering downgrade has been applied.

East Coast - West Berlin, NJ p:856.768.9600 • Midwest - Chicago, IL p:708.777.1167 • West Coast - Los Angeles, CA p:323.262.1600

GROOVED & SMOOTH-END FLOWMETER MODEL MG/MS100 SPECIFICATIONS

PERFORMANCE

ACCURACY/REPEATABILITY: ±2% of reading

guaranteed throughout full range. ±1% over reduced

range. Repeatability 0.25% or better. RANGE: (see dimensions chart below) HEAD LOSS: (see dimensions chart below)

MAXIMUM TEMPERATURE: (Standard Construction)

160°F constant

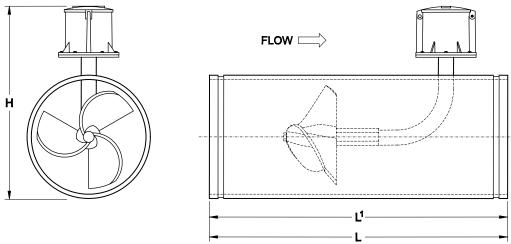
PRESSURE RATING: 150 psi

MATERIALS

TUBE: Epoxy-coated carbon steel.

BEARING ASSEMBLY: Impeller shaft is 316 stainless steel.

Ball bearings are 440C stainless steel.


MAGNETS: (Permanent type) Cast or sintered alnico BEARING HOUSING: Brass; Stainless Steel optional IMPELLER: Impellers are manufactured of high-impact plastic, retaining their shape and accuracy over the life of the meter. High temperature impeller is optional.

REGISTER: An instantaneous flowrate indicator and six-digit straight-reading totalizer are standard. The register is hermetically sealed within a die cast aluminum case. This protective housing includes a domed acrylic lens and hinged lens cover with locking hasn

COATING: Fusion-bonded epoxy

OPTIONS

- Forward/reverse flow measurement
- High temperature construction
- "Over Run" bearing assembly for higher-than-normal flowrates
- Electronic Propeller Meter available in all sizes of this model
- A complete line of flow recording/control instrumentation
- Straightening vanes and register extensions available
- · Certified calibration test results

McCrometer reserves the right to change design or specifications without notice.
--

MG100 / MS100	DIMENSIONS												
Meter Size (inches)	2	2 1/2	3	4	6	8	10	12	14	16	18	20	24
Maximum Flow U.S. GPM	250	250	250	600	1200	1500	1800	2500	3000	4000	5000	6000	8500
Minimum Flow U.S. GPM	Minimum Flow U.S. GPM 40 40		40	50	90	100	125	150	250	275	400	475	700
Head Loss in Inches at Max. Flow	29.50	29.50	29.50	23.00	17.00	6.75	3.75	2.75	2.00	1.75	1.50	1.25	1.00
Shipping Weight, Ibs.			17	40	54	68	87	106	140	144	172	181	223
H (inches)	* 5	See	10.9	12.78	13.84	14.84	16.91	18.90	20.53	22.53	25.53	26.53	30.53
L (inches) MG100	_ (inches) MG100 Special		13	20	20	20	20	20	20	22	22	22	22
L ¹ (inches) MS100 Note		13	20	22	22	22	22	22	24	24	24	24	
O.D. of Meter Tube			3.50	4.500	6.625	8.625	10.750	12.750	14.00	16.00	18.00	20.00	24.00

*Special Note—Reducing fittings incorporating grooves are supplied to adapt the 3-inch model to smaller line sizes.

Larger flowmeters on special order.

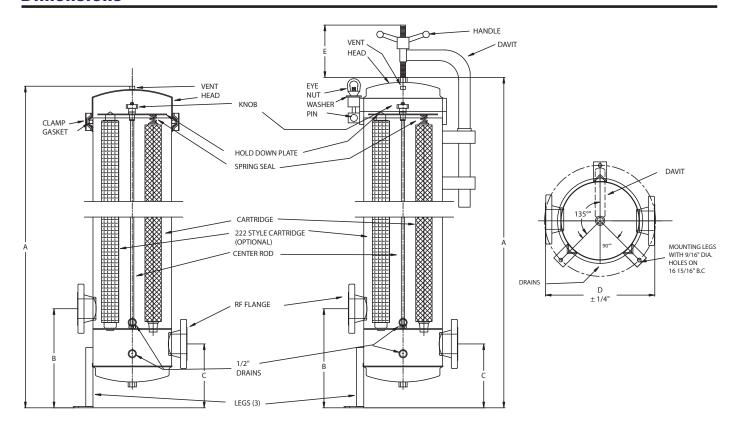
12FOS and 22FOS Multi Cartridge Housings

Our twelve and twenty-two round models are designed for flow rates up to 600 GPM. Housings accept double-open-end style cartridges. Options include 304L or 316L stainless steel; band clamp or swing bolt closure. Design pressure 150 psi (10 bar) @ 300° F (149° C). Standard inlet and outlet connections for the 12FOS series is 3" flanged and the 22FOS series is 4" flanged, with many other options available by special order. Standard finish is Poly-coat over stainless. All twelve and twenty-two round models are standard with heavy duty mounting legs. Standard gasket is FDA grade Buna-N.

Features

- Designed for industrial and commercial filtration needs
- Heavy duty stainless steel construction for durability
- 304L standard and 316L stainless steel available
- Band clamp and swing-bolt closures for guick cartridge change outs
- Heavy duty mounting legs standard
- Pipe fittings readily accessible for easy installation
- Knife edge seal at both cartridge ends to eliminate by-pass
- Adjustable top plate for more cartridge options
- Adapters for 222 or 226 style cartridges available by special order.
- Complete selection of pipe fittings, flanged, sanitary, BSP, Grooved and others
- See ordering guide for a complete section of options to fit your application

Adjustable top plate accepts variable length cartriges


Standard Design Specifications

Model	No. & (length) Of Cartridges <mark>†</mark>	Flow Rate GPM*	Flange Size	Drains	Vent	Max Ctg Diameter°	Shipping Weight Clamp	Shipping Weight SB
12F0S2	12 (20")	168	3F	1/2" NPT	1/4" NPT	2 3/4" OD	86 lbs	131 lbs
12F0S3	12 (30")	252	3F	1/2" NPT	1/4" NPT	2 3/4" OD	92 lbs	142 lbs
12F0S4	12 (40")	336	3F	1/2" NPT	1/4" NPT	2 3/4" OD	100 lbs	150 lbs
22F0S3	22 (30")	462	4F	1/2" NPT	1/2" NPT	2 5/8" OD	140 lbs	205 lbs
22F0S4	22 (40")	616	4F	1/2" NPT	1/2" NPT	2 5/8" OD	165 lbs	225 lbs

[†] Housings will accept: 20" = (19 1/2" or 20") 30" = (29 1/4" or 30") 40" = (39" or 40") Lengths

^{*}Based on 7 gpm per 10" length with a 25 mocron wound cartridge at 2 psid clean and a viscosity of 1 cps. Flow rates are for guide lines only. Actual flow rates are based on fluid, viscosity, cartridge type, micron ratings and other factors.

When using 222 or 226 adapters with the 22 FOS series housing you must change it to a 21 FOS (21 Round) max catridge OD 2 3/4"

MODEL	CLAMP STYLE	SWING BOLT STYLE				
	DIM. A	DIM. A	В	С	D	Е
12F0S2	20 1/2"	40 1/2"	15 1/8"	9 3/4"	16 11/16"	8"
12F0S3	49 1/2"	50 1/2"	15 1/8"	9 3/4"	16 11/16"	8"
12F0S4	59 1/2"	60 1/2"	15 1/8"	9 3/4"	16 11/16"	8"
22F0S3	50 3/16"	50 3/16"	15 1/4"	9 1/2"	21"	10"
22F0S4	60 3/16"	50 3/16"	15 1/4"	9 1/2"	21"	10"

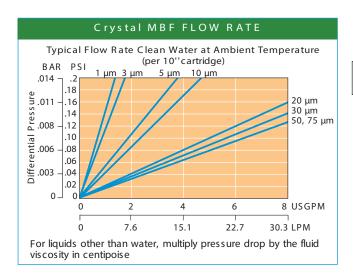
ORDERING GUIDE

12	FOS	3	- SB -	316	- 222	- 3F	- EP	- GP	- E
No. of Columns	Product Code	No. of Stacks	Closure Style	Material	Cartridge Configuration	Connection Type	Finish	Options	Gasket
12 22	FOS	12 FOS 2 = 2 High 3 = 3 High 4 = 4 High 22 FOS 3 = 3 High 4 = 4 High	Blank = V-Band Clamp SB = Swing Bolt	Blank = 304L 316 = 316L	Blank = Double Open Ended 222 = 222 Style Cartridge Fin or Flat 226 = 226 Style Cartridge Fin or Flat	12 FOS Blank = 3" Flanged 22 FOS Blank = 4" Flanged OPTIONS 2F = 2" Flanged 2TC = 2" Ferrules 2GF = 2" Grooved Fittings 3F = 3" Flanged 3TC = 3" Ferrules 3GF = 3" Grooved Fittings 4F = 4" Flanged 4TC = 4" Ferrules 4GF = 4" Grooved Fittings	Blank = Standard Poly Coat EP = Electro-Polished GB = Glass Bead P = Passivate	Blank = None GP = Gauge ports GPA = Gauge ports with gauges	Blank = Buna E = EPR S = Silicone V = Viton TS = Teflon Encapsulated Silicone

tel: 860.854.6121 800.543.5843 fax: 860.854.6120 e-mail: info@shelco.com www.shelco.com

SHELCO FILTERS

100 Bradley Street . Middletown, CT 06457 . USA



Crystal MBF Series Filter Cartridges

Ordering Information

Crystal MBF Nomenclature Information					
CMBF	10	-20	N	N	-BB
1 3	crons) 20 30 50 75	Nominal Length (inches) -4 -5 -9.75 -10 -19.5 -20 -29.25 -30 -39 -40 -50	End Configuration P Double Open End P2 226/Flat Single Open End P3 222/Flat Single Open End P6 Self-Seal Spring on One End P7 226/Fin Single Open End P8 222/Fin Single Open End PX Extended Core N None (Cut Ends) DBG Direct Bond Santoprene Gaskets	Gasket o S Silico B Buna E EPD V Vitor T Teflo N None	one n-N M n ings only) on endcap. Viton (O-R

Example: CMBF 10-20NN-BB

Certified to NSF/ANSI Standard 61 for materials requirements only.

COMPONENT

MassDEP - Bureau of Waste Site Cleanup Phase 1 Site Assessment Map: 500 feet & 0.5 Mile Radii

Site Information: MBTA HEAD HOUSE 85 SEAPORT BLVD BOSTON, MA

The information shown is the best available at the date of printing. However, it may be incomplete. The responsible party and LSP are ultimately responsible for ascertaining the true conditions surrounding the site. Metadata for data layers shown on this map can be found to the state. be found at:

<u>Documentation of the Results of the ESA Eligibility Determination:</u>

Using information in Appendix II of the NPDES RGP, the project located on Seaport Blvd, Boston, MA is eligible for coverage under this general permit under FWS Criterion A. This project is located in Suffolk County. No designated critical habitats were listed in the project area. An Endangered Species Consultation was conducted on the U.S. Fish & Wildlife Service New England Field Office ECOS IPaC webpage for the Site:

No Endangered species found at this location.

United States Department of the Interior

FISH AND WILDLIFE SERVICE

New England Ecological Services Field Office 70 Commercial Street, Suite 300 Concord, NH 03301-5094 Phone: (603) 223-2541 Fax: (603) 223-0104

http://www.fws.gov/newengland

In Reply Refer To: June 08, 2021

Consultation Code: 05E1NE00-2021-SLI-3755

Event Code: 05E1NE00-2021-E-11241 Project Name: MBTA Head House

Subject: List of threatened and endangered species that may occur in your proposed project

location or may be affected by your proposed project

To Whom It May Concern:

The enclosed species list identifies threatened, endangered, proposed and candidate species, as well as proposed and final designated critical habitat, that may occur within the boundary of your proposed project and/or may be affected by your proposed project. The species list fulfills the requirements of the U.S. Fish and Wildlife Service (Service) under section 7(c) of the Endangered Species Act (Act) of 1973, as amended (16 U.S.C. 1531 *et seq.*).

New information based on updated surveys, changes in the abundance and distribution of species, changed habitat conditions, or other factors could change this list. Please feel free to contact us if you need more current information or assistance regarding the potential impacts to federally proposed, listed, and candidate species and federally designated and proposed critical habitat. Please note that under 50 CFR 402.12(e) of the regulations implementing section 7 of the Act, the accuracy of this species list should be verified after 90 days. This verification can be completed formally or informally as desired. The Service recommends that verification be completed by visiting the ECOS-IPaC website at regular intervals during project planning and implementation for updates to species lists and information. An updated list may be requested through the ECOS-IPaC system by completing the same process used to receive the enclosed list.

The purpose of the Act is to provide a means whereby threatened and endangered species and the ecosystems upon which they depend may be conserved. Under sections 7(a)(1) and 7(a)(2) of the Act and its implementing regulations (50 CFR 402 *et seq.*), Federal agencies are required to utilize their authorities to carry out programs for the conservation of threatened and endangered species and to determine whether projects may affect threatened and endangered species and/or designated critical habitat.

A Biological Assessment is required for construction projects (or other undertakings having similar physical impacts) that are major Federal actions significantly affecting the quality of the human environment as defined in the National Environmental Policy Act (42 U.S.C. 4332(2) (c)). For projects other than major construction activities, the Service suggests that a biological evaluation similar to a Biological Assessment be prepared to determine whether the project may affect listed or proposed species and/or designated or proposed critical habitat. Recommended contents of a Biological Assessment are described at 50 CFR 402.12.

If a Federal agency determines, based on the Biological Assessment or biological evaluation, that listed species and/or designated critical habitat may be affected by the proposed project, the agency is required to consult with the Service pursuant to 50 CFR 402. In addition, the Service recommends that candidate species, proposed species and proposed critical habitat be addressed within the consultation. More information on the regulations and procedures for section 7 consultation, including the role of permit or license applicants, can be found in the "Endangered Species Consultation Handbook" at:

http://www.fws.gov/endangered/esa-library/pdf/TOC-GLOS.PDF

Please be aware that bald and golden eagles are protected under the Bald and Golden Eagle Protection Act (16 U.S.C. 668 *et seq.*), and projects affecting these species may require development of an eagle conservation plan

(http://www.fws.gov/windenergy/eagle_guidance.html). Additionally, wind energy projects should follow the wind energy guidelines (http://www.fws.gov/windenergy/) for minimizing impacts to migratory birds and bats.

Guidance for minimizing impacts to migratory birds for projects including communications towers (e.g., cellular, digital television, radio, and emergency broadcast) can be found at: http://www.fws.gov/migratorybirds/CurrentBirdIssues/Hazards/towers/towers.htm; http://www.towerkill.com; and http://www.fws.gov/migratorybirds/CurrentBirdIssues/Hazards/towers/comtow.html.

We appreciate your concern for threatened and endangered species. The Service encourages Federal agencies to include conservation of threatened and endangered species into their project planning to further the purposes of the Act. Please include the Consultation Tracking Number in the header of this letter with any request for consultation or correspondence about your project that you submit to our office.

Attachment(s):

Official Species List

Official Species List

This list is provided pursuant to Section 7 of the Endangered Species Act, and fulfills the requirement for Federal agencies to "request of the Secretary of the Interior information whether any species which is listed or proposed to be listed may be present in the area of a proposed action".

This species list is provided by:

New England Ecological Services Field Office 70 Commercial Street, Suite 300 Concord, NH 03301-5094 (603) 223-2541

Project Summary

Consultation Code: 05E1NE00-2021-SLI-3755 Event Code: 05E1NE00-2021-E-11241

Project Name: MBTA Head House

Project Type: Water Withdrawal / Depletion Project Description: Construction Dewatering

Project Location:

Approximate location of the project can be viewed in Google Maps: https://www.google.com/maps/@42.35215365,-71.04584480565586,14z

Counties: Suffolk County, Massachusetts

Endangered Species Act Species

There is a total of 0 threatened, endangered, or candidate species on this species list.

Species on this list should be considered in an effects analysis for your project and could include species that exist in another geographic area. For example, certain fish may appear on the species list because a project could affect downstream species.

IPaC does not display listed species or critical habitats under the sole jurisdiction of NOAA Fisheries¹, as USFWS does not have the authority to speak on behalf of NOAA and the Department of Commerce.

See the "Critical habitats" section below for those critical habitats that lie wholly or partially within your project area under this office's jurisdiction. Please contact the designated FWS office if you have questions.

1. <u>NOAA Fisheries</u>, also known as the National Marine Fisheries Service (NMFS), is an office of the National Oceanic and Atmospheric Administration within the Department of Commerce.

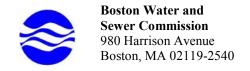
Critical habitats

THERE ARE NO CRITICAL HABITATS WITHIN YOUR PROJECT AREA UNDER THIS OFFICE'S JURISDICTION.

<u>Documentation of the National Historic Preservation Act Eligibility Determination:</u>

As part of this permit, a determination was made as to whether there were any historic properties or places listed on the national register in the path of the discharge or in the vicinity of the construction of treatment systems or BMPs related to the discharge. A search on the Massachusetts Cultural Resource Information System Database and the National Register of Historic Places found no properties are located on or near the project route. In addition, construction and dewatering / water treatment work will be conducted on and along the roadway and will not impact surrounding areas. Therefore, the proposed discharge will not have the potential to cause effects on historical properties.

Massachusetts Cultural Resource Information System MACRIS


MACRIS Search Results

Search Criteria: Town(s): Boston; Street No: 85; Street Name: Seaport BIVD; Resource Type(s): Area, Building, Burial Ground, Object, Structure;

Inv. No. Property Name Street Town Year

Tuesday, June 8, 2021 Page 1 of 1

Appendix E BWSC DischargePermit Ekwood Remediation

DEWATERING DISCHARGE PERMIT APPLICATION

OWNER / AUTHORIZED APPLICANT PROVIDE INFORMATION HERE:

Company Name:	Address:
Phone Number:	Fax number:
Contact person name:	Title:
Cell number:	Email address:
Permit Request (check one): □ No	ew Application Permit Extension Other (Specify):
Owner's Information (if different	from above):
Owner of property being dewatered	l:
	Phone number:
Location of Discharge & Propose	d Treatment System(s):
Street number and name:	Neighborhood
	er Combined Sewer Storm Drain Other (specify): System(s):
	Receiving Waters
	•
number, size, make and start reading. 2. If discharging to a sanitary or combine 3. If discharging to a separate storm drain as other relevant information.	of the discharge and the location of the point of discharge (i.e. the sewer pipe or catch basin). Include meter type, meter Note. All discharges to the Commission's sewer system will be assessed current sewer charges. In discharge to the Commission's sewer system will be assessed current sewer charges. In discharge, as well assessed current sewer charges. In discharge the discharge permit or application. In attach a copy of EPA's NPDES Permit or NOI application, or NPDES Permit exclusion letter for the discharge, as well assessed current sewer charges. Boston Water and Sewer Commission Engineering Customer Services 980 Harrison Avenue, Boston, MA 02119 Attn: Jodi Dobay, Engineering Customer Service E-mail: beginj@bwsc.org Phone: 617-989-7259 Fax: 617-989-7716
Signature of Authorized Representative for	or Property Owner: