

July 29, 2021

89 Crawford Street Leominster, Massachusetts 01453

Tel: 774.450.7177 Fax: 888.835.0617 www.lrt-llc.net

U.S. Environmental Protection Agency Office of Ecosystem Protection EPA/OEP RGP Applications Coordinator 5 Post Office Square, Suite 100 (OEP06-4) Boston, Massachusetts 02109-3912

Reference: Notice of Intent (NOI) - Remediation General Permit (RGP)

Arlington Town Yard 51 Grove Street

Arlington, Massachusetts

Dear Sir/Madam:

On behalf of the J. Derenzo Company (JDC), Lockwood Remediation Technologies, LLC (LRT) has prepared this Notice of Intent (NOI) requesting a determination of coverage under the United States Environmental Protection Agency's (EPA's) Remediation General Permit (RGP), pursuant EPA's National Pollutant Discharge Elimination System (NPDES) program. This NOI was prepared in accordance with the general requirements of the NPDES RGP and related guidance documentation provided by EPA. The completed NOI Form is provided in **Appendix A**.

Site Information

This NOI has been prepared for the management groundwater that will be generated during dewatering activities associated with construction activities that are to take place at the at the Arlington Department of Public Works (DPW) yard (the Site). The work is anticipated to be completed within twelve months. A Site Locus is provided as **Figure 1** and a Site Plan satisfying the requirements of RGP Appendix IV Part I.B and I.D is provided as **Figure 2**.

Regulatory Status

The subject site which is designated as a Tier 1 site (Permit No. W008727) has been assigned Release Tracking Number (RTN) 3-4241 by the Massachusetts Department of Environmental Protection (MassDEP). The RTN was issued due to historic past use and remains open. The DPW yard property is a portion of the larger 51 Grove Street "Site" which encompasses properties currently owned by the Town of Arlington, Boston Gas Company, and portions of three abutting private properties. The DPW yard property was the location of a former manufactured gas plant (MGP) and a former chrome plating manufacturing facility. Most of the historical operations related to this Site occurred on the DPW yard property (now the Arlington Department of Public Works Yard). Activities on the DPW yard property has resulted in the release of oil and hazardous materials (OHM) to soil and groundwater. The compounds

associated with these releases include polycyclic aromatic hydrocarbons (PAHs), lead, total chromium, and hexavalent chromium.

Work Summary

The work at the Site includes the construction of the new building (Building E), the installation of new site utilities and other miscellaneous site improvements. To complete portions of the building foundation and other deeper excavations in the dry, dewatering will be required to lower the groundwater table as work is being performed. To do this, filtered sumps will be placed in low spots within the excavations. Water generated during dewatering (Source Water) will be pumped to a water treatment system prior to direct discharge to Mill Brook. The discharge location is depicted on **Figure 2**.

LRT collected representative groundwater samples from an onsite monitoring well (MW-04-03) on July 14, 2021 (**Figure 2**). A sample of the receiving water (Mill Brook) was also collected on the same day. The samples were analyzed for various parameters in accordance with the NPDES RGP Activity Category III-G.

Discharge and Receiving Surface Water Information

A summary of the analytical results is provided in the NOI Form included within **Appendix A**, and copies of the laboratory data reports are provided in **Appendix B**. Concentrations of polycyclic aromatic hydrocarbons (PAHs) and metals including copper, and lead were detected in groundwater at concentrations above the respective NPDES RGP Effluent Limitations. To meet these standards, source water will undergo treatment that includes bag filtration, activated carbon and ion exchange resin prior to discharge. Details of the water treatment system are provided below.

Water Treatment System

A water treatment system schematic is provided as **Figure 3**. Cutsheets of the system components, product information and Safety Data Sheets (SDS) are included in **Appendix C**.

Source water will be pumped to a treatment system with a design flow rate of up to 150 gallons per minute (gpm); the average effluent flow of the system is estimated to be 100 gpm, and the maximum flow will not exceed 150 gpm. Source water will enter one weir tank at the head of the system from the weir tank water will be pumped to a triple-bag filter skid (consisting of three-bag filter housings) followed by two carbon vessels plumbed in series. From the carbon vessels water, be pumped through two resin vessels filled with ion exchange media (one cation and one anion) plumbed in series and subsequently discharged to the approved discharge point.

Discharge from the water treatment system will pass through a flow/totalizer meter prior to direct discharge into Mill Brook, as depicted on **Figure 2**. Effluent sampling will correspond with this discharge location.

Consultation with Federal Services

LRT reviewed online electronic data viewers and databases from the Massachusetts Geographical Information System (MassGIS), the Massachusetts Division of Fisheries and Wildlife (MassWildlife; Natural Heritage and Endangered Species Program), and the U.S. National Parks Service Natural Historic Places (NPS). Based on this review, the Site, and the point where the proposed discharge reaches the receiving surface water body are not located within an Area of Critical Environmental Concern (ACEC). The Site and the proposed discharge point are not located within Habitats of Rare Wetland Wildlife, Habitats of Rare Species, Estimated Habitats of Rare Wildlife, or listed as a National Historic Place. Documentation is included in **Appendix D**.

Coverage under NPDES RGP

It is our opinion that the proposed discharge is eligible for coverage under the NPDES RGP. On behalf of JDC, LRT is requesting coverage under the NPDES RGP for the discharge of treated wastewater to Mill Brook in support of construction dewatering activities that are to take place at the Arlington DPW Yard.

The enclosed NOI form provides required information on the general site conditions, discharge, treatment system, receiving water, and consultation with federal services. For this project, JDC is considered the Operator and has operational control over the construction plans and specifications, including the ability to make modifications to those plans and specifications.

Please feel free to contact us at 774-450-7177 if you have any questions or if you require additional information.

Sincerely,

Lockwood Remediation Technologies, LLC

Jacob Jennings

Jacob Jennings

Staff Scientist / Estimator

Kim Gravelle

Kim Gravelle P.G. Senior Project Manager

Encl: Figure 1 - Locus Plan

Figure 2 - Site Plan

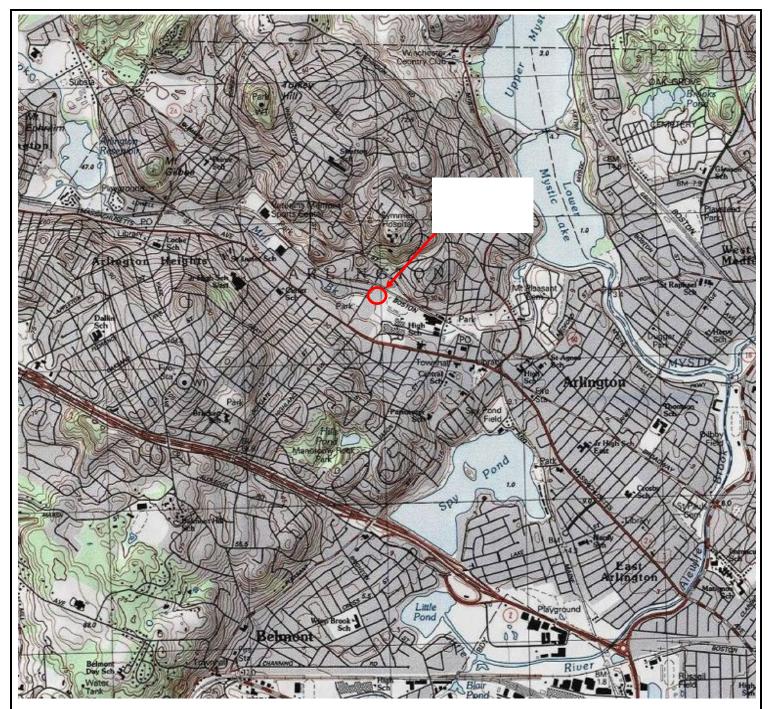
Figure 3 - Water Treatment System Schematic

Appendix A - NOI Form

Appendix B – Laboratory Data

Appendix C – Water Treatment System Cutsheets and SDSs

Appendix D – Supplementary information


Appendix E – Boston Water and Sewer Commission (BWSC) Discharge Permit

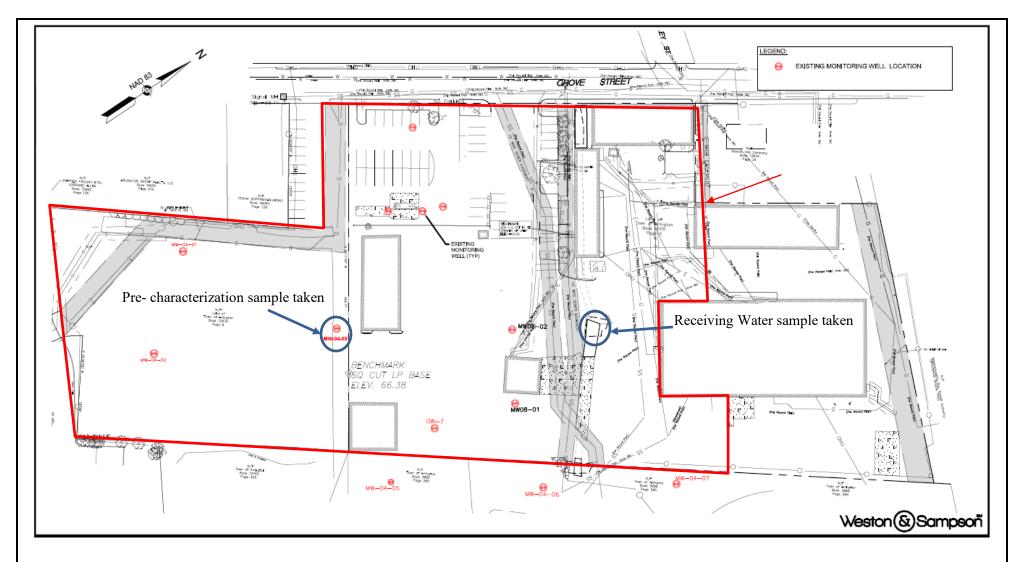
cc: Cathy Vakalopoulos – Massachusetts Department of Environmental Protection

Bradd Biagini – JDC

Michael Rademacher – Town of Arlington

Source: ArcGIS Map Viewer

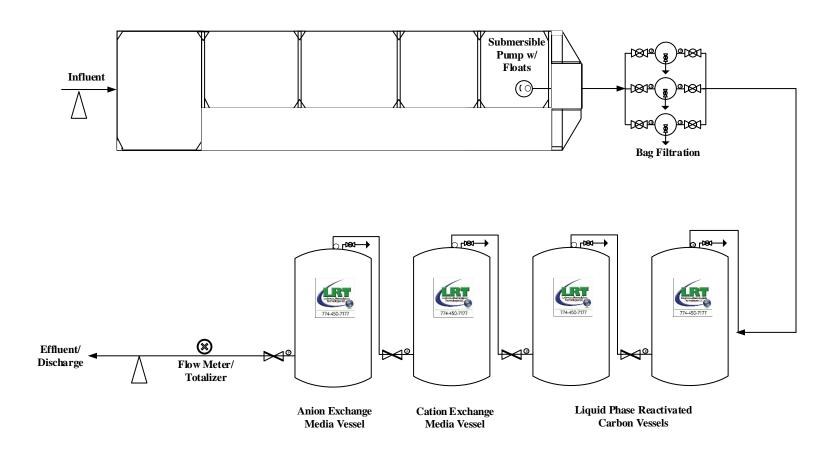
Notes:


1. Figure is not to scale.

89 Crawford Street Leominster, Massachusetts 01453 Tel: 774.450.7177

Tel: 774.450.7177 Fax: 888.835.0617 www.lrt-llc.net Figure 1 – Locus Plan Arlington Town Yard 51 Grove Street Arlington, MA

Notes


1. Figure is not to scale.

89 Crawford Street Leominster, Massachusetts 01453 Tel: 774.450.7177 Fax: 888.835.0617

www.lrt-llc.net

Figure 2 –Site Layout Arlington Town Yard 51 Grove Street Arlington, MA

Notes:

- 1.) Figure is not to scale
- 2.) System rated for 150 GPM

Key:	
Piping/Hose	
Sample Port	\triangleright
Ball Valve	1831
Butterfly Valve	\bowtie
Pressure Gauge	0

Lockwood Remediation Technologies, LLC 89 Crawford Street Leominster, MA 01453

Office: 774-450-7177

DESIGNED BY: LRT DRAWN BY: JHJ

CHECKED BY: DATE: **Water Treatment System Schematic**

Arlington Town Yard Arlington, MA

II. Suggested Format for the Remediation General Permit Notice of Intent (NOI)

A. General site information:

1. Name of site:	Site address:							
	Street:							
	City:		State:	Zip:				
2. Site owner	Contact Person:							
	Telephone:	Email:						
	Mailing address:	l						
	Street:							
Owner is (check one): □ Federal □ State/Tribal □ Private □ Other; if so, specify:	City:	Zip:						
3. Site operator, if different than owner	Contact Person:							
	Telephone: Email:							
	Mailing address:							
	Street:							
	City:		State:	Zip:				
4. NPDES permit number assigned by EPA:	5. Other regulatory program(s) that apply to the site	(check all th	at apply):					
	☐ MA Chapter 21e; list RTN(s):	□ CERCL	CLA					
NPDES permit is (check all that apply: □ RGP □ DGP □ CGP	☐ NH Groundwater Management Permit or	☐ UIC Program						
☐ MSGP ☐ Individual NPDES permit ☐ Other; if so, specify:		☐ POTW Pretreatment						
L MISSI L Marriada M DES permit L Suici, ii so. seccir.	Groundwater Release Detection Permit:	□ CWA S						

В.	Receiving	water	information:	
----	-----------	-------	--------------	--

1. Name of receiving water(s):	waterbody identification of receiving water(waterbody identification of receiving water(s):							
Receiving water is (check any that apply): □ Outstanding Resource Water □ Ocean Sanctuary □ territorial sea □ Wild and Scenic River									
2. Has the operator attached a location map in accord	ance with the instructions in B, above? (check one)	: □ Yes □ No							
Are sensitive receptors present near the site? (check of If yes, specify:	one): □ Yes □ No								
3. Indicate if the receiving water(s) is listed in the Stapollutants indicated. Also, indicate if a final TMDL i 4.6 of the RGP.									
	. Indicate the seven day-ten-year low flow (7Q10) of the receiving water determined in accordance with the instructions in appendix V for sites located in Massachusetts and Appendix VI for sites located in New Hampshire.								
5. Indicate the requested dilution factor for the calcul accordance with the instructions in Appendix V for s									
6. Has the operator received confirmation from the ap If yes, indicate date confirmation received:	opropriate State for the 7Q10and dilution factor indi	cated? (check one): ☐ Yes ☐	No						
7. Has the operator attached a summary of receiving (check one): ☐ Yes ☐ No	water sampling results as required in Part 4.2 of the	RGP in accordance with the i	nstruction in Appendix VIII?						
C. Source water information:									
1. Source water(s) is (check any that apply):									
☐ Contaminated groundwater	☐ Contaminated surface water	☐ The receiving water	☐ Potable water; if so, indicate municipality or origin:						
Has the operator attached a summary of influent sampling results as required in Part 4.2 of the RGP	Has the operator attached a summary of influent sampling results as required in Part 4.2 of the	☐ A surface water other							
in accordance with the instruction in Appendix VIII? (check one):	RGP in accordance with the instruction in Appendix VIII? (check one):	than the receiving water; if so, indicate waterbody:	☐ Other; if so, specify:						
□ Yes □ No	□ Yes □ No								

2. Source water contaminants:	
a. For source waters that are contaminated groundwater or contaminated surface water, indicate are any contaminants present that are not included in	b. For a source water that is a surface water other than the receiving water, potable water or other, indicate any contaminants present at the maximum concentration in accordance
the RGP? (check one): ☐ Yes ☐ No If yes, indicate the contaminant(s) and the maximum concentration present in accordance with the instructions in Appendix VIII.	with the instructions in Appendix VIII? (check one): ☐ Yes ☐ No
3. Has the source water been previously chlorinated or otherwise contains resid	dual chlorine? (check one): □ Yes □ No
D. Discharge information	
1.The discharge(s) is a(n) (check any that apply): \Box Existing discharge \Box New	w discharge □ New source
Outfall(s):	Outfall location(s): (Latitude, Longitude)
Discharges enter the receiving water(s) via (check any that apply): □ Direct di	scharge to the receiving water □ Indirect discharge, if so, specify:
☐ A private storm sewer system ☐ A municipal storm sewer system If the discharge enters the receiving water via a private or municipal storm sew	ver system:
Has notification been provided to the owner of this system? (check one): ☐ Ye	es 🗆 No
Has the operator has received permission from the owner to use such system for obtaining permission:	or discharges? (check one): \square Yes \square No, if so, explain, with an estimated timeframe for
Has the operator attached a summary of any additional requirements the owner	of this system has specified? (check one): \square Yes \square No
Provide the expected start and end dates of discharge(s) (month/year):	
Indicate if the discharge is expected to occur over a duration of: \Box less than 1	2 months \square 12 months or more \square is an emergency discharge
Has the operator attached a site plan in accordance with the instructions in D, a	above? (check one): □ Yes □ No

2. Activity Category: (check all that apply)	3. Contamination Type Category: (check all that apply)				
	a. If Activity Categ	ory I or II: (check all that apply)			
	 □ A. Inorganics □ B. Non-Halogenated Volatile Organic □ C. Halogenated Volatile Organic Cor □ D. Non-Halogenated Semi-Volatile Organic □ E. Halogenated Semi-Volatile Organi □ F. Fuels Parameters 	mpounds Organic Compounds			
 □ I – Petroleum-Related Site Remediation □ II – Non-Petroleum-Related Site Remediation 	b. If Activity Category III, IV	V, V, VI, VII or VIII: (check either G or H)			
 □ III – Non-Petroleum-Related Site Remediation □ III – Contaminated Site Dewatering □ IV – Dewatering of Pipelines and Tanks □ V – Aquifer Pump Testing □ VI – Well Development/Rehabilitation □ VII – Collection Structure Dewatering/Remediation □ VIII – Dredge-Related Dewatering 	□ G. Sites with Known Contamination c. If Category III-G, IV-G, V-G, VI-G, VII-G or VIII-G: (check all that apply) □ A. Inorganics □ B. Non-Halogenated Volatile Organic Compounds □ C. Halogenated Volatile Organic Compounds □ D. Non-Halogenated Semi-Volatile Organic Compounds □ E. Halogenated Semi-Volatile Organic Compounds □ F. Fuels Parameters	□ H. Sites with Unknown Contamination d. If Category III-H, IV-H, V-H, VI-H, VII-H or VIII-H Contamination Type Categories A through F apply			

4. Influent and Effluent Characteristics

	Known	Known				Inf	luent	Effluent Lir	nitations
Parameter	or believed absent	or believed present	# of samples	Test method (#)	Detection limit (µg/l)	Daily maximum (µg/l)	Daily average (µg/l)	TBEL	WQBEL
A. Inorganics									
Ammonia								Report mg/L	
Chloride								Report µg/l	
Total Residual Chlorine								0.2 mg/L	
Total Suspended Solids								30 mg/L	
Antimony								206 μg/L	
Arsenic								104 μg/L	
Cadmium								10.2 μg/L	
Chromium III								323 µg/L	
Chromium VI								323 μg/L	
Copper								242 μg/L	
Iron								5,000 µg/L	
Lead								160 μg/L	
Mercury								0.739 µg/L	
Nickel								1,450 μg/L	
Selenium								235.8 μg/L	
Silver								35.1 μg/L	
Zinc								420 μg/L	
Cyanide								178 mg/L	
B. Non-Halogenated VOCs			•						
Total BTEX								100 μg/L	
Benzene								5.0 μg/L	
1,4 Dioxane								200 μg/L	
Acetone								7.97 mg/L	
Phenol								1,080 µg/L	

	Known	Known		_		Infl	luent	Effluent Lin	nitations
Parameter	or believed absent	or believed present	# of samples	Test method (#)	Detection limit (µg/l)	Daily maximum (µg/l)	Daily average (µg/l)	TBEL	WQBEL
C. Halogenated VOCs									
Carbon Tetrachloride								4.4 μg/L	
1,2 Dichlorobenzene								600 μg/L	
1,3 Dichlorobenzene								320 µg/L	
1,4 Dichlorobenzene								5.0 μg/L	
Total dichlorobenzene								763 µg/L in NH	
1,1 Dichloroethane								70 μg/L	
1,2 Dichloroethane								5.0 μg/L	
1,1 Dichloroethylene								3.2 µg/L	
Ethylene Dibromide								0.05 μg/L	
Methylene Chloride								4.6 μg/L	
1,1,1 Trichloroethane								200 μg/L	
1,1,2 Trichloroethane								5.0 μg/L	
Trichloroethylene								5.0 μg/L	
Tetrachloroethylene								5.0 μg/L	
cis-1,2 Dichloroethylene								70 μg/L	
Vinyl Chloride								2.0 μg/L	
D. Non-Halogenated SVO	Cs	_							
Total Phthalates								190 μg/L	
Diethylhexyl phthalate								101 μg/L	
Total Group I PAHs								1.0 μg/L	
Benzo(a)anthracene								_	
Benzo(a)pyrene								_	
Benzo(b)fluoranthene								<u> </u>	
Benzo(k)fluoranthene								As Total PAHs	
Chrysene								_	
Dibenzo(a,h)anthracene								_	
Indeno(1,2,3-cd)pyrene									

	Known	Known				Inf	luent	Effluent Lin	nitations
Parameter	or believed absent	or believed present	# of samples	Test method (#)	Detection limit (µg/l)	Daily maximum (µg/l)	Daily average (µg/l)	TBEL	WQBEL
Total Group II PAHs								100 μg/L	
Naphthalene								20 μg/L	
E. Halogenated SVOCs									
Total PCBs								0.000064 µg/L	
Pentachlorophenol								1.0 μg/L	
	1			•					
F. Fuels Parameters Total Petroleum		1	1	1		1 1		<u> </u>	
Hydrocarbons								5.0 mg/L	
Ethanol								Report mg/L	
Methyl-tert-Butyl Ether								70 μg/L	
tert-Butyl Alcohol								120 μg/L in MA 40 μg/L in NH	
tert-Amyl Methyl Ether								90 μg/L in MA 140 μg/L in NH	
Other (i.e., pH, temperatur	re, hardness,	salinity, LC	50, addition	al pollutar	ats present);	if so, specify:			

E. Treatment system information

1. Indicate the type(s) of treatment that will be applied to effluent prior to discharge: (check all that apply)	
☐ Adsorption/Absorption ☐ Advanced Oxidation Processes ☐ Air Stripping ☐ Granulated Activated Carbon ("GAC")/Liquid Phase Carbon Adsorption	
□ Ion Exchange □ Precipitation/Coagulation/Flocculation □ Separation/Filtration □ Other; if so, specify:	
2. Provide a written description of all treatment system(s) or processes that will be applied to the effluent prior to discharge.	
Identify each major treatment component (check any that apply):	
□ Fractionation tanks□ Equalization tank □ Oil/water separator □ Mechanical filter □ Media filter	
□ Chemical feed tank □ Air stripping unit □ Bag filter □ Other; if so, specify:	
Indicate if either of the following will occur (check any that apply):	
□ Chlorination □ De-chlorination	
3. Provide the design flow capacity in gallons per minute (gpm) of the most limiting component.	
Indicate the most limiting component:	
Is use of a flow meter feasible? (check one): ☐ Yes ☐ No, if so, provide justification:	
Provide the proposed maximum effluent flow in gpm.	
Provide the average effluent flow in gpm.	
Trovide the average erritaint now in gpin.	
If Activity Category IV applies, indicate the estimated total volume of water that will be discharged:	
4. Has the operator attached a schematic of flow in accordance with the instructions in E, above? (check one): ☐ Yes ☐ No	

F. Chemical and additive information

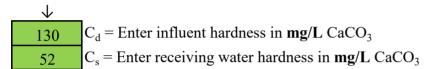
F. Chemical and additive information
1. Indicate the type(s) of chemical or additive that will be applied to effluent prior to discharge or that may otherwise be present in the discharge(s): (check all that apply)
□ Algaecides/biocides □ Antifoams □ Coagulants □ Corrosion/scale inhibitors □ Disinfectants □ Flocculants □ Neutralizing agents □ Oxidants □ Oxygen □
scavengers □ pH conditioners □ Bioremedial agents, including microbes □ Chlorine or chemicals containing chlorine □ Other; if so, specify:
2. Provide the following information for each chemical/additive, using attachments, if necessary:
a. Product name, chemical formula, and manufacturer of the chemical/additive; b. Purpose or use of the chemical/additive or remedial agent; c. Material Safety Data Sheet (MSDS) and Chemical Abstracts Service (CAS) Registry number for each chemical/additive; d. The frequency (hourly, daily, etc.), duration (hours, days), quantity (maximum and average), and method of application for the chemical/additive; e. Any material compatibility risks for storage and/or use including the control measures used to minimize such risks; and f. If available, the vendor's reported aquatic toxicity (NOAEL and/or LC50 in percent for aquatic organism(s)).
3. Has the operator attached an explanation which demonstrates that the addition of such chemicals/additives may be authorized under this general permit in accordance
with the instructions in F, above? (check one): \square Yes \square No; if no, has the operator attached data that demonstrates each of the 126 priority pollutants in CWA Section 307(a) and 40 CFR Part 423.15(j)(1) are non-detect in discharges with the addition of the proposed chemical/additive?
(check one): □ Yes □ No
G. Endangered Species Act eligibility determination
1. Indicate under which criterion the discharge(s) is eligible for coverage under this general permit:
□ FWS Criterion A : No endangered or threatened species or critical habitat are in proximity to the discharges or related activities or come in contact with the "action area".
□ FWS Criterion B : Formal or informal consultation with the FWS under section 7 of the ESA resulted in either a no jeopardy opinion (formal consultation) or a written concurrence by FWS on a finding that the discharges and related activities are "not likely to adversely affect" listed species or critical habitat (informal consultation). Has the operator completed consultation with FWS? (check one): □ Yes □ No; if no, is consultation underway? (check one): □
Yes □ No
□ FWS Criterion C : Using the best scientific and commercial data available, the effect of the discharges and related activities on listed species and critical habitat have been evaluated. Based on those evaluations, a determination is made by EPA, or by the operator and affirmed by EPA, that the discharges and related activities will have "no effect" on any federally threatened or endangered listed species or designated critical habitat under the jurisdiction of the
FWS. This determination was made by: (check one) \square the operator \square EPA \square Other; if so, specify:

□ NMFS Criterion : A determination made by EPA is affirmed by the operator that the discharges and related activities will have "no effect" or are "not likely to adversely affect" any federally threatened or endangered listed species or critical habitat under the jurisdiction of NMFS and will not result in any take of
listed species. Has the operator previously completed consultation with NMFS? (check one): ☐ Yes ☐ No
2. Has the operator attached supporting documentation of ESA eligibility in accordance with the instructions in Appendix I, and G, above? (check one): \square Yes \square No
Does the supporting documentation include any written concurrence or finding provided by the Services? (check one): ☐ Yes ☐ No; if yes, attach.
H. National Historic Preservation Act eligibility determination
1. Indicate under which criterion the discharge(s) is eligible for coverage under this general permit:
□ Criterion A : No historic properties are present. The discharges and discharge-related activities (e.g., BMPs) do not have the potential to cause effects on historic properties.
☐ Criterion B: Historic properties are present. Discharges and discharge related activities do not have the potential to cause effects on historic properties.
□ Criterion C : Historic properties are present. The discharges and discharge-related activities have the potential to have an effect or will have an adverse effect on historic properties.
2. Has the operator attached supporting documentation of NHPA eligibility in accordance with the instructions in H, above? (check one): ☐ Yes ☐ No
Does the supporting documentation include any written agreement with the State Historic Preservation Officer (SHPO), Tribal Historic Preservation Officer (TPHO), or
other tribal representative that outlines measures the operator will carry out to mitigate or prevent any adverse effects on historic properties? (check one): \square Yes \square No
I. Supplemental information
Describe any supplemental information being provided with the NOI. Include attachments if required or otherwise necessary.
Has the operator attached data, including any laboratory case narrative and chain of custody used to support the application? (check one): ☐ Yes ☐ No
Has the operator attached the certification requirement for the Best Management Practices Plan (BMPP)? (check one): ☐ Yes ☐ No

J. Certification requirement

I certify under penalty of law that this document and all attachments were prepared under my direction or supervision in a that qualified personnel properly gathered and evaluated the information submitted. Based on my inquiry of the person or persons directly responsible for gathering the information, the information submitted is, to the best of my knowledge and be no personal knowledge that the information submitted is other than true, accurate, and complete. I am aware that there are information, including the possibility of fine and imprisonment for knowing violations.	persons who manage the system, or those elief, true, accurate, and complete. I have
A BMPP meeting the requirements of this general permit will be deve BMPP certification statement: initiation of discharge	loped and implemented upon
Notification provided to the appropriate State, including a copy of this NOI, if required.	Check one: Yes ■ No □
Notification provided to the municipality in which the discharge is located, including a copy of this NOI, if requested.	Check one: Yes ■ No □
Notification provided to the owner of a private or municipal storm sewer system, if such system is used for site discharges, including a copy of this NOI, if requested.	Check one: Yes □ No □ NA ■
Permission obtained from the owner of a private or municipal storm sewer system, if such system is used for site discharges. If yes, attach additional conditions. If no, attach explanation and timeframe for obtaining permission. Notification provided to the owner/operator of the area associated with activities covered by an additional discharge	Check one: Yes □ No □ NA ■
permit(s). Additional discharge permit is (check one): □ RGP □ DGP □ CGP □ MSGP □ Individual NPDES permit □ Other; if so, specify:	Check one: Yes □ No ■ NA □
ignature: Date	e: 7-29-21
rint Name and Title: BRADD BINGIN - PROJET MANAGER	

Enter number values in green boxes below


Enter values in the units specified

\downarrow	
0.114	$Q_R = Enter upstream flow in MGD$
0.216	$Q_P = Enter discharge flow in MGD$
0	Downstream 7Q10

Enter a dilution factor, if other than zero

Enter values in the units specified

Enter receiving water concentrations in the units specified

\downarrow	_
7.8	pH in Standard Units
25	Temperature in °C
0	Ammonia in mg /L
52	Hardness in mg/L CaCO ₃
0	Salinity in ppt
0	Antimony in μg/L
1.4	Arsenic in μg /L
0	Cadmium in μg/L
29	Chromium III in μg/L
11	Chromium VI in μg/L
3.9	Copper in µg/L
2000	Iron in μg/L
5.5	Lead in μg/L
0	Mercury in μg /L
0	Nickel in μg/L
0	Selenium in μg/L
0.99	Silver in μg/L
12	Zinc in μ g /L

Enter influent concentrations in the units specified

\perp	_
0	TRC in μg/L
0	Ammonia in mg /L
0	Antimony in μg /L
0.87	Arsenic in μg/L
0	Cadmium in μg/L
150	Chromium III in μg/L
57	Chromium VI in µg/L
7	Copper in µg/L
2900	Iron in μg/L
15	Lead in μg/L
0	Mercury in μg/L
0	Nickel in μg/L
0	Selenium in μg/L
0	Silver in μg/L
10	Zinc in μg/L
1	Cyanide in µg/L
0	Phenol in μg/L
0	Carbon Tetrachloride in µg/L
0.37	Tetrachloroethylene in μg/L
0	Total Phthalates in μg/L
0	Diethylhexylphthalate in μg/L
11	Benzo(a)anthracene in μg/L
14	Benzo(a)pyrene in μg/L
10	Benzo(b)fluoranthene in μg/L
3.7	Benzo(k)fluoranthene in μg/L
12	Chrysene in µg/L
1.7	Dibenzo(a,h)anthracene in μg/L
5.7	Indeno(1,2,3-cd)pyrene in μ g/L
0	Methyl-tert butyl ether in $\mu g/L$

A. Inorganics	TBEL applies if bolded		WQBEL applies in	f bolded
Ammonia	Report	mg/L		
Chloride	Report	μg/L		
Total Residual Chlorine	0.2	mg/L	17	μg/L
Total Suspended Solids	30	mg/L		μg/L
Antimony	206	_	978	~/I
Arsenic		μg/L	15	μg/L
	104	μg/L		μg/L
Cadmium	10.2	μg/L	0.2767	μg/L
Chromium III	323	μ g/L	119.6	μg/L
Chromium VI	323	$\mu g/L$	11.7	$\mu g/L$
Copper	242	$\mu g/L$	12.6	$\mu g/L$
Iron	5000	μg/L	1000	μg/L
Lead	160	μg/L	3.31	μg/L
Mercury	0.739	μg/L	1.38	μg/L
Nickel	1450	μg/L	81.7	μg/L
Selenium	235.8	μg/L	7.6	μg/L
Silver	35.1		5.6	
Zinc		μg/L	181.4	μg/L
	420	μg/L		μg/L
Cyanide P. Nara Halanawata I VOCa	178	mg/L	7.9	$\mu g/L$
B. Non-Halogenated VOCs Total BTEX	100	ua/I		
Benzene	5.0	μg/L μg/L		
1,4 Dioxane	200	μg/L μg/L		
Acetone	7970	μg/L		
Phenol	1,080	μg/L	458	μg/L
C. Halogenated VOCs				
Carbon Tetrachloride	4.4	$\mu g/L$	2.4	$\mu g/L$
1,2 Dichlorobenzene	600	$\mu g/L$		
1,3 Dichlorobenzene	320	μg/L		
1,4 Dichlorobenzene	5.0	μg/L		
Total dichlorobenzene	 70	μg/L		
1,1 Dichloroethane 1,2 Dichloroethane	5.0	μg/L		
1,1 Dichloroethylene	3.2	μg/L μg/L		
Ethylene Dibromide	0.05	μg/L μg/L		
Methylene Chloride	4.6	μg/L		
1,1,1 Trichloroethane	200	μg/L		
1,1,2 Trichloroethane	5.0	μg/L		
Trichloroethylene	5.0	$\mu g/L$		
Tetrachloroethylene	5.0	$\mu g/L$	5.0	$\mu g/L$
cis-1,2 Dichloroethylene	70	μg/L		

Vinyl Chloride	2.0	μg/L		
D. Non-Halogenated SVOCs				
Total Phthalates	190	μg/L		μg/L
Diethylhexyl phthalate	101	μg/L	3.4	μg/L
Total Group I Polycyclic				
Aromatic Hydrocarbons	1.0	μg/L		
Benzo(a)anthracene	1.0	μg/L	0.0058	$\mu g/L$
Benzo(a)pyrene	1.0	μg/L	0.0058	$\mu g/L$
Benzo(b)fluoranthene	1.0	μg/L	0.0058	$\mu g/L$
Benzo(k)fluoranthene	1.0	μg/L	0.0058	$\mu g/L$
Chrysene	1.0	μg/L	0.0058	$\mu g/L$
Dibenzo(a,h)anthracene	1.0	μg/L	0.0058	$\mu g/L$
Indeno(1,2,3-cd)pyrene	1.0	μg/L	0.0058	$\mu g/L$
Total Group II Polycyclic				
Aromatic Hydrocarbons	100	μg/L		
Naphthalene	20	μg/L		
E. Halogenated SVOCs				
Total Polychlorinated Biphenyls	0.000064	$\mu g/L$		
Pentachlorophenol	1.0	μg/L		
F. Fuels Parameters				
Total Petroleum Hydrocarbons	5.0	mg/L		
Ethanol	Report	mg/L		
Methyl-tert-Butyl Ether	70	μg/L	31	$\mu g/L$
tert-Butyl Alcohol	120	$\mu g/L$		
tert-Amyl Methyl Ether	90	$\mu g/L$		

From: Keohane, Kathleen (DEP)

Carlo Lombardo To:

Ruan, Xiaodan (DEP); Vakalopoulos, Catherine (DEP) Cc:

Subject: Arlington Town Yard, 51 Grove St, Arlington Dilution Calculations for NOI

Date: Tuesday, July 20, 2021 1:59:08 PM

Attachments: image002.jpg

image003.jpg StreamStats Rev. 1.pdf

Culvert Opening.PNG **Dilution Calcs.xlsx**

Okay, Carlo -

The 7Q10 of 0.176 cfs (.114 MGD) and the dilution factor calculation of 1.53 using a design flow of 150 gpm (0.216 MGD) for the proposed discharge to Mill Brook from the Arlington Town Yard at 51 Grove Street in your revised calculation is correct.

Here is water quality information to assist you with filling out the NOI (some of which you already have):

Waterbody and ID: Mill Brook (MA71-07) in the Boston Harbor: Mystic River Watershed

Classification: B, Warm water fishery Outstanding Resource Water?: No

State's most recent Integrated List is located here:

https://www.epa.gov/sites/production/files/2020-01/documents/2016-ma-303d-list-report.pdf, search for "MA71-07" to see the causes of impairments.

TMDLs: There are approved TMDL (pathogens and phosphorus) for this segment.

As you may know, if this is not a current MCP site, then in addition to submitting the NOI to EPA, you need to apply with MassDEP and submit a \$500 fee (unless fee exempt, e.g., municipality) using ePLACE. Instructions on how to apply are located here: https://www.mass.gov/how-to/wm-15npdes-general-permit-notice-of-intent and information on how to get ePLACE technical assistance is available on the ePLACE Portal webpage: https://eplace.eea.mass.gov/citizenaccess/.

Please let me know if you have any questions.

From: Carlo Lombardo <CLombardo@Irt-Ilc.net>

Sent: Tuesday, July 20, 2021 1:07 PM

To: Keohane, Kathleen (DEP) < Kathleen. Keohane@mass.gov>

Subject: RE: Dilution Calculations for NOI

CAUTION: This email originated from a sender outside of the Commonwealth of Massachusetts mail system. Do not click on links or open attachments unless you recognize the sender and know the content is safe.

Hi Kathleen,

I see exactly what you are saying.

Upon refinement of my search criteria and an improved delineation of the basin I am given a 7q10 value of 0.176 cubic feet per second.

According to my calculations this gives a DF of 1.53. Significantly lower than my previous model. I have adjusted my calculations and attached them alongside the revised delineation.

Thank you,

Carlo Lombardo
Staff Scientist

Lockwood Remediation Technologies, LLC

89 Crawford Street Leominster, MA 01453 O: 774-450-7177 F: 888-835-0617

clombardo@Irt-llc.net

From: Keohane, Kathleen (DEP) < kathleen.keohane@state.ma.us>

Sent: Tuesday, July 20, 2021 11:42 AM

To: Carlo Lombardo < <u>CLombardo@Irt-Ilc.net</u>> **Subject:** FW: Dilution Calculations for NOI

The segmant is MA71-07.

From: Keohane, Kathleen (DEP)

Sent: Tuesday, July 20, 2021 11:09 AM

To: Carlo Lombardo < <u>CLombardo@Irt-Ilc.net</u>> **Subject:** RE: Dilution Calculations for NOI

I have reviewed your calculations, and you should use the StreamStats value for the discharge point, not the 7Q10 at the gage. The drainage area at that gage is greater than at the discharge point. When I run StreamStats at the discharge point, I get 0.19 cfs. I have attached my report, but you may want to run again with better StreamStats version than I have at home. I also noticed that the values in the "Assumptions" on the calculation sheet were leftover from a previous site.

Let me know if you have any questions. I can give you a quick turnaround now that I have done an initial review.

From: Carlo Lombardo < <u>CLombardo@Irt-llc.net</u>> that

Sent: Monday, July 19, 2021 2:02 PM

To: Ruan, Xiaodan (DEP) < <u>xiaodan.ruan@mass.gov</u>>

Cc: Keohane, Kathleen (DEP) < <u>Kathleen.Keohane@mass.gov</u>>

Subject: Dilution Calculations for NOI

CAUTION: This email originated from a sender outside of the Commonwealth of Massachusetts mail system. Do not click on links or open attachments unless you recognize the sender and know the content is safe.

Hi Xiaodan,

I hope this message finds you well. Please see attached dilution calculations for Arlington Town Yard at 51 Grove Street Arlington, MA for your review and approval.

The project:

Arlington Town Yard 51 Grove Street Arlington, MA

We plan to discharge to Mill Brook (MA71-01) via a culvert opening at 42.419843, -71.163460.

The 7 Day 10 Year Low Flow value given by streamstats report is 0.84 CFS and the calculated dilution factor at 150 GPM is 3.51.

Can you please confirm these values are accurate?

Thank you,

Carlo Lombardo
Staff Scientist

Lockwood Remediation Technologies, LLC

89 Crawford Street Leominster, MA 01453 O: 774-450-7177

F: 888-835-0617

clombardo@lrt-llc.net

	1		

DILUTION CALCULATIONS Arlington Town Yard Arlington, MA

Calculate Dilution Factor (DF) for project based on 7 Day 10 Year (7Q10) Low Flow values

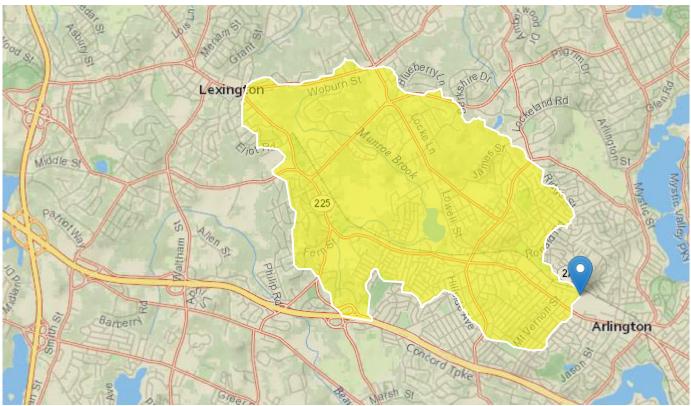
Calculate DF based on EPA formula $(Q_S + Q_D)/Q_D$, where Q_S is 7Q10 in million gallons per day (MGD) and Q_D is discharge flow in MGD

ASSUMPTIONS FOR 150 GPM SYSTEM

7Q10 is 0.176 cubic feet per second (cfs) - from StreamStats 4.6.1 A conversion of 7.48 is used to convert cubic feet to gallons A design flow rate of 150 gallons per minute (gpm) is assumed

CALCULATIONS

7q10 Low Flow Value (Q_s)


StreamStats e rt ringt n

egi n ID: MA

Works ace ID: MA20210720164939919000h

Cicked P int (Latitude, L ngitude): 42.42000, -71.16396 n

Time: 2021-07-20 12:49:57 -0400

Streamstats based off of closest poi t to proposed discharge. Segme t ID: MA71-07

asin Characterist	tics		
Parameter C de	Parameter Descri ti n n	Vanue	Unit
DRNAREA	Area that drains to a point on a streamn	4.5	square miles
BSLDEM250	Mean basin slope computed from 1:250K DEM	3.066	percent
DRFTPERSTR	Area of stratified drift per unit of stream length	0.17	square mile per mile
MAREGION	Region of Massachusetts 0 for Eastern 1 for Western	0	dimensionless

Low-Flow S P m name er n mew dae Low Flow WRIR00 4135]				
Pme er Codem	PannasemterNa	Varhue Unints	Min Max mbitmmbit	
DRNAREA m	Dr mm rg e Are m	.5 s m qu m e mile m	.61 m 14 m	
BSLDEM250 m	M enm B m n Slope from 250K DEM m	3.066 pe rme m m	.32 m 24 m 6	
DRFTPERSTR	Srmmfed Drf ponerSnne mm Leng mr	0.17 s m qu re mile pe mile m	er 0 m 1. 2 m9	
MAREGION	M hu meam Regom m	0 mm d mmen mmonle mm	n 1	
Low-Flow S Flow Repor [S ew de Low Flow WRIR00 4135]				
PII: Pred on In erv I-Lower, Plu: Pred on In erv I-Upper, ASEp: Aver gre S nd mrd Error of Pred on, SE: S nd rd Error (o her ee repor)				
Statistic m	Vartue m U	nnitm Plimm Pli	nım SEmm ASMEp	

Low-Fillow Sam Cm on

7 D mg 2 Ye mr Lownn Flow mr

7 D mg 10 Ye mr Low Flow mr

Ries, K.G., III,2000, Methods for estia ting low-flow statistics for Massachusetts strenes: U.S. Geological Survey Water Resources Investigations Report 00m4135, 81 p. (https://pubs.usgs.gov/wri/wri004135/)

0.4m17 m f 1m3/m

0.**fm**76 **m** f 1m3/ **m**

.15 **m**

1.**im**2 m

.0494 m 0.6m84 m 70m8 m 70m8

49m5 m 49m5

USGSnibrata Disclaimer: Umbess otherwisenstated, all data, metadatamand related materials and considered drive satisfy the enquality standands metative not the roumposen for which threndata wene not lieuted. At though rithe see data and associated mentadata have been reviewed for accuracy and completeness and approved for release by rithe U.S. Geological Survey (USGS), no warranty expressed or implied is made regarding the display or utility of the data for other purposes, nor on all computer systems, nor shall the act of distribution constitute any such warranty.

USGS Software Disclaimer: This software has been approved for release by the U.S. Geological Survey (USGS). Although the software has been subjected to rigorous review, the USGS reserves the right to update the software as needed pursuant to further analysis and review. No warranty, expressed or implied, is made by the USGS or the U.S. Government as to the functionality of the software and related material nor shall the fact of release constitute any such warranty. Furthermore, the software is released on condition that neither the USGS nor the U.S. Government shall be held liable for any damages resulting from its authorized or unauthorized use. **m**

USGS Product Names Disclaimer: Any use of trade, firm, or product names is for descriptive purposes only and does not imply endorsement by the U.S. Government. **m**

Applicatio sio: 4.6.1

St amStats S vic s sio: 1.2.22

NSS S vic s sio : 2.1.2

39 Spruce Street * East Longmeadow, MA 01028 * FAX 413/525-6405 * TEL. 413/525-2332

July 20, 2021

Kim Gravelle Lockwood Remediation Technologies, LLC 89 Crawford Street Leominster, MA 01453

Project Location: Arlington Town Yard

Client Job Number: Project Number: 2-2237

Laboratory Work Order Number: 21G0623

Keny K. Mille

Enclosed are results of analyses for samples received by the laboratory on July 13, 2021. If you have any questions concerning this report, please feel free to contact me.

Sincerely,

Kerry K. McGee Project Manager

Table of Contents

Sample Summary	4
Case Narrative	5
Sample Results	8
21G0623-01	8
21G0623-02	17
Sample Preparation Information	19
QC Data	21
Volatile Organic Compounds by GC/MS	21
B285929	21
Semivolatile Organic Compounds by GC/MS	23
B286032	23
Semivolatile Organic Compounds by - GC/MS	24
B285899	24
Polychlorinated Biphenyls By GC/ECD	28
B285906	28
Metals Analyses (Total)	29
B285894	29
B285900	29
B285904	30
B286082	30
Conventional Chemistry Parameters by EPA/APHA/SW-846 Methods (Total)	31
B285869	31
B285873	31
B285890	31
B285895	31

Table of Contents (continued)

B286026	32
B286215	32
Drinking Water Organics EPA 504.1	33
B286276	33
Dual Column RPD Report	34
Flag/Qualifier Summary	39
Certifications	40
Chain of Custody/Sample Receipt	44

Lockwood Remediation Technologies, LLC

89 Crawford Street

 $\mbox{REPORT DATE: } 7/20/2021$ PURCHASE ORDER NUMBER: 2-2237

Leominster, MA 01453 ATTN: Kim Gravelle

PROJECT NUMBER: 2-2237

ANALYTICAL SUMMARY

WORK ORDER NUMBER: 21G0623

The results of analyses performed on the following samples submitted to CON-TEST, a Pace Analytical Laboratory, are found in this report.

PROJECT LOCATION: Arlington Town Yard

FIELD SAMPLE #	LAB ID:	MATRIX	SAMPLE DESCRIPTION	TEST	SUB LAB
Influent	21G0623-01	Ground Water		-	MA M-MA-086/CT PH-0574/NY11148
				608.3	111-03/4/11111140
				624.1	
				625.1	
				EPA 1664B	
				EPA 200.7	
				EPA 200.8	
				EPA 245.1	
				EPA 300.0	
				EPA 504.1	
				SM19-22 4500 NH3 C	
				SM21-22 2540D	
				SM21-22 3500 Cr B	
				SM21-22 4500 CL G	
				SM4500	MA M-MA-086/CT PH-0574/NY11148
				Tri Chrome Calc.	
Receiving Water	21G0623-02	Ground Water		EPA 200.7	
				EPA 200.8	
				EPA 245.1	
				SM19-22 4500 NH3 C	
				SM21-22 3500 Cr B	
				Tri Chrome Calc.	

CASE NARRATIVE SUMMARY

All reported results are within defined laboratory quality control objectives unless listed below or otherwise qualified in this report.

608.3

Qualifications:

S-13

Surrogate recovery is outside of control limits on both columns.

Data validation is not affected since all results are "not detected" and bias is on the high side. Analyte & Samples(s) Qualified:

Decachlorobiphenyl

B285906-BLK1

Decachlorobiphenyl [2C]

B285906-BLK1

Tetrachloro-m-xylene

21G0623-01[Influent]

Tetrachloro-m-xylene [2C]

21G0623-01[Influent]

625.1

Qualifications:

L-04

Laboratory fortified blank/laboratory control sample recovery and duplicate recovery are outside of control limits. Reported value for this compound is likely to be biased on the low side. Analyte & Samples(s) Qualified:

1.2.4-Trichlorobenzene

21G0623-01[Influent], B285899-BLK1, B285899-BS1, B285899-BSD1

2-Chloronaphthalene

21G0623-01[Influent], B285899-BLK1, B285899-BS1, B285899-BSD1

Hexachlorocyclopentadiene

21G0623-01[Influent], B285899-BLK1, B285899-BS1, B285899-BSD1

Hexachloroethane

21G0623-01[Influent], B285899-BLK1, B285899-BS1, B285899-BSD1

R-05

Laboratory fortified blank duplicate RPD is outside of control limits. Reduced precision is anticipated for any reported value for this

compound.

Analyte & Samples(s) Qualified:

Benzidine

21G0623-01[Influent], B285899-BLK1, B285899-BS1, B285899-BSD1

RL-12

Elevated reporting limit due to matrix interference.

Analyte & Samples(s) Qualified:

21G0623-01[Influent]

V-04

Initial calibration did not meet method specifications. Compound was calibrated using a response factor where %RSD is outside of method specified criteria. Reported result is estimated.

Analyte & Samples(s) Qualified:

Benzidine

21G0623-01[Influent], B285899-BLK1, B285899-BS1, B285899-BSD1, S061535-CCV1

V-05

Continuing calibration verification (CCV) did not meet method specifications and was biased on the low side for this compound.

Analyte & Samples(s) Qualified:

21G0623-01[Influent], B285899-BLK1, B285899-BS1, B285899-BSD1, S061535-CCV1

V-06

Continuing calibration verification (CCV) did not meet method specifications and was biased on the high side for this compound.

Analyte & Samples(s) Qualified:

N-Nitrosodimethylamine

21G0623-01[Influent]

Pentachlorophenol (SIM)

S061550-CCV1

V-34

Initial calibration verification (ICV) did not meet method specifications and was biased on the low side for this compound. Reported result is estimated

estimated.
Analyte & Samples(s) Qualified:

Benzidine

21G0623-01[Influent], B285899-BLK1, B285899-BS1, B285899-BSD1, S061535-CCV1

V-35

Initial calibration verification (ICV) did not meet method specifications and was biased on the high side for this compound. Reported result is estimated

Analyte & Samples(s) Qualified:

Benzidine

21G0623-01[Influent]

EPA 200.8

Qualifications:

L-07

Either laboratory fortified blank/laboratory control sample or duplicate recovery is outside of control limits, but the other is within limits. RPD between the two LFB/LCS results is within method specified criteria.

Analyte & Samples(s) Qualified:

Antimony

B285900-BS1

The results of analyses reported only relate to samples submitted to Con-Test, a Pace Analytical Laboratory, for testing.

I certify that the analyses listed above, unless specifically listed as subcontracted, if any, were performed under my direction according to the approved methodologies listed in this document, and that based upon my inquiry of those individuals immediately responsible for obtaining the information, the material contained in this report is, to the best of my knowledge and belief, accurate and complete.

Lisa A. Worthington
Technical Representative

Lua Warrengton

Project Location: Arlington Town Yard Sample Description: Work Order: 21G0623

Date Received: 7/13/2021
Field Sample #: Influent

Sampled: 7/13/2021 12:00

Sample ID: 21G0623-01
Sample Matrix: Ground Water

Analyte	Results	RL	DL	Units	Dilution	Flag/Qual	Method	Date Prepared	Date/Time Analyzed	Analyst
Acetone	<2.35	50.0	2.35	μg/L	1		624.1	7/14/21	7/14/21 18:03	EEH
tert-Amyl Methyl Ether (TAME)	< 0.150	0.500	0.150	μg/L	1		624.1	7/14/21	7/14/21 18:03	EEH
Benzene	< 0.130	1.00	0.130	μg/L	1		624.1	7/14/21	7/14/21 18:03	EEH
Bromodichloromethane	< 0.140	2.00	0.140	μg/L	1		624.1	7/14/21	7/14/21 18:03	EEH
Bromoform	< 0.290	2.00	0.290	μg/L	1		624.1	7/14/21	7/14/21 18:03	EEH
Bromomethane	<1.07	2.00	1.07	μg/L	1		624.1	7/14/21	7/14/21 18:03	EEH
tert-Butyl Alcohol (TBA)	<5.34	20.0	5.34	μg/L	1		624.1	7/14/21	7/14/21 18:03	EEH
Carbon Tetrachloride	< 0.170	2.00	0.170	μg/L	1		624.1	7/14/21	7/14/21 18:03	EEH
Chlorobenzene	< 0.0800	2.00	0.0800	μg/L	1		624.1	7/14/21	7/14/21 18:03	EEH
Chlorodibromomethane	< 0.160	2.00	0.160	μg/L	1		624.1	7/14/21	7/14/21 18:03	EEH
Chloroethane	< 0.370	2.00	0.370	μg/L	1		624.1	7/14/21	7/14/21 18:03	EEH
Chloroform	< 0.190	2.00	0.190	μg/L	1		624.1	7/14/21	7/14/21 18:03	EEH
Chloromethane	< 0.380	2.00	0.380	μg/L	1		624.1	7/14/21	7/14/21 18:03	EEH
1,2-Dichlorobenzene	< 0.100	2.00	0.100	μg/L	1		624.1	7/14/21	7/14/21 18:03	EEH
1,3-Dichlorobenzene	< 0.0900	2.00	0.0900	μg/L	1		624.1	7/14/21	7/14/21 18:03	EEH
1,4-Dichlorobenzene	< 0.110	2.00	0.110	μg/L	1		624.1	7/14/21	7/14/21 18:03	EEH
1,2-Dichloroethane	< 0.320	2.00	0.320	μg/L	1		624.1	7/14/21	7/14/21 18:03	EEH
1,1-Dichloroethane	< 0.160	2.00	0.160	μg/L	1		624.1	7/14/21	7/14/21 18:03	EEH
1,1-Dichloroethylene	< 0.160	2.00	0.160	μg/L	1		624.1	7/14/21	7/14/21 18:03	EEH
trans-1,2-Dichloroethylene	< 0.170	2.00	0.170	μg/L	1		624.1	7/14/21	7/14/21 18:03	EEH
1,2-Dichloropropane	< 0.180	2.00	0.180	μg/L	1		624.1	7/14/21	7/14/21 18:03	EEH
cis-1,3-Dichloropropene	< 0.120	2.00	0.120	μg/L	1		624.1	7/14/21	7/14/21 18:03	EEH
1,4-Dioxane	<21.5	50.0	21.5	μg/L	1		624.1	7/14/21	7/14/21 18:03	EEH
trans-1,3-Dichloropropene	< 0.150	2.00	0.150	μg/L	1		624.1	7/14/21	7/14/21 18:03	EEH
Ethanol	<34.2	50.0	34.2	μg/L	1		624.1	7/14/21	7/14/21 18:03	EEH
Ethylbenzene	< 0.0900	2.00	0.0900	μg/L	1		624.1	7/14/21	7/14/21 18:03	EEH
Methyl tert-Butyl Ether (MTBE)	< 0.170	2.00	0.170	μg/L	1		624.1	7/14/21	7/14/21 18:03	EEH
Methylene Chloride	< 0.300	5.00	0.300	μg/L	1		624.1	7/14/21	7/14/21 18:03	EEH
1,1,2,2-Tetrachloroethane	< 0.0900	2.00	0.0900	μg/L	1		624.1	7/14/21	7/14/21 18:03	EEH
Tetrachloroethylene	0.370	2.00	0.200	μg/L	1	J	624.1	7/14/21	7/14/21 18:03	EEH
Toluene	< 0.110	1.00	0.110	μg/L	1		624.1	7/14/21	7/14/21 18:03	EEH
1,1,1-Trichloroethane	< 0.170	2.00	0.170	μg/L	1		624.1	7/14/21	7/14/21 18:03	EEH
1,1,2-Trichloroethane	< 0.150	2.00	0.150	μg/L	1		624.1	7/14/21	7/14/21 18:03	EEH
Trichloroethylene	< 0.180	2.00	0.180	μg/L	1		624.1	7/14/21	7/14/21 18:03	EEH
Trichlorofluoromethane (Freon 11)	< 0.190	2.00	0.190	μg/L	1		624.1	7/14/21	7/14/21 18:03	EEH
Vinyl Chloride	< 0.200	2.00	0.200	μg/L	1		624.1	7/14/21	7/14/21 18:03	EEH
m+p Xylene	< 0.180	2.00	0.180	μg/L	1		624.1	7/14/21	7/14/21 18:03	EEH
o-Xylene	< 0.0900	1.00	0.0900	μg/L	1		624.1	7/14/21	7/14/21 18:03	EEH
Surrogates	<u> </u>	% Reco	very	Recovery Limits	-	Flag/Qual			<u> </u>	
1,2-Dichloroethane-d4		102		70-130					7/14/21 18:03	

Surrogates	% Recovery	Recovery Limits	Flag/Qual	
1,2-Dichloroethane-d4	102	70-130		7/14/21 18:03
Toluene-d8	97.3	70-130		7/14/21 18:03
4-Bromofluorobenzene	95.3	70-130		7/14/21 18:03

Project Location: Arlington Town Yard Sample Description: Work Order: 21G0623

Date Received: 7/13/2021

Field Sample #: Influent

Sampled: 7/13/2021 12:00

Sample ID: 21G0623-01

Benzo(a)anthracene (SIM)
Benzo(a)pyrene (SIM)
Benzo(b)fluoranthene (SIM)
Benzo(k)fluoranthene (SIM)
Bis(2-ethylhexyl)phthalate (SIM)

Dibenz(a,h)anthracene (SIM) Indeno(1,2,3-cd)pyrene (SIM) Pentachlorophenol (SIM)

Chrysene (SIM)

Sample Flags: RL-12

Sample Matrix: Ground Water

Analyte

		Semivolat							
							Date	Date/Time	
Results	RL	DL	Units	Dilution	Flag/Qual	Method	Prepared	Analyzed	Analyst
11	0.20	0.14	$\mu g/L$	4		625.1	7/14/21	7/19/21 9:45	IMR
14	0.39	0.087	$\mu g/L$	4		625.1	7/14/21	7/19/21 9:45	IMR
10	0.20	0.11	$\mu g/L$	4		625.1	7/14/21	7/19/21 9:45	IMR
3.7	0.79	0.071	$\mu g/L$	4		625.1	7/14/21	7/19/21 9:45	IMR
<1.9	3.9	1.9	$\mu g/L$	4		625.1	7/14/21	7/19/21 9:45	IMR
12	0.79	0.087	$\mu g/L$	4		625.1	7/14/21	7/19/21 9:45	IMR
1.7	0.39	0.11	$\mu g/L$	4		625.1	7/14/21	7/19/21 9:45	IMR
5.7	0.39	0.11	$\mu g/L$	4		625.1	7/14/21	7/19/21 9:45	IMR
<1.6	3.9	1.6	μg/L	4		625.1	7/14/21	7/19/21 9:45	IMR

Surrogates	% Recovery	Recovery Limits	Flag/Qual	
2-Fluorophenol (SIM)	26.6	15-110		7/19/21 9:45
Phenol-d6 (SIM)	29.8	15-110		7/19/21 9:45
Nitrobenzene-d5	64.6	30-130		7/19/21 9:45
2-Fluorobiphenyl	76.9	30-130		7/19/21 9:45
2,4,6-Tribromophenol (SIM)	105	15-110		7/19/21 9:45
p-Terphenyl-d14	82.2	30-130		7/19/21 9:45

Project Location: Arlington Town Yard Sample Description: Work Order: 21G0623

Date Received: 7/13/2021
Field Sample #: Influent

Sampled: 7/13/2021 12:00

Sample ID: 21G0623-01

Sample Matrix: Ground Water
Sample Flags: RL-12

Semivolatile Organic Compounds by - GC/MS

Sample Flags: RL-12		Semi	ivolatile Organic C	ompounds by	y - GC/MS				
Analyte	Results	RL	Units	Dilution	Flag/Qual	Method	Date Prepared	Date/Time Analyzed	Analyst
Acenaphthene	<19.7	19.7	μg/L	4	0 -	625.1	7/14/21	7/19/21 21:36	BGL
Acenaphthylene	<19.7	19.7	μg/L	4		625.1	7/14/21	7/19/21 21:36	BGL
Anthracene	<19.7	19.7	μg/L	4		625.1	7/14/21	7/19/21 21:36	BGL
Benzidine	<78.8	78.8	μg/L	4	V-04, V-05, R-05,	625.1	7/14/21	7/19/21 21:36	BGL
Benzo(g,h,i)perylene	<19.7	19.7	μg/L	4	V-34, V-35	625.1	7/14/21	7/19/21 21:36	BGL
4-Bromophenylphenylether	<39.4	39.4	μg/L	4		625.1	7/14/21	7/19/21 21:36	BGL
Butylbenzylphthalate	<39.4	39.4	μg/L	4		625.1	7/14/21	7/19/21 21:36	BGL
4-Chloro-3-methylphenol	<39.4	39.4	μg/L	4		625.1	7/14/21	7/19/21 21:36	BGL
Bis(2-chloroethyl)ether	<39.4	39.4	μg/L	4		625.1	7/14/21	7/19/21 21:36	BGL
Bis(2-chloroisopropyl)ether	<39.4	39.4	μg/L	4		625.1	7/14/21	7/19/21 21:36	BGL
2-Chloronaphthalene	<39.4	39.4	μg/L	4	L-04	625.1	7/14/21	7/19/21 21:36	BGL
2-Chlorophenol	<39.4	39.4	μg/L	4		625.1	7/14/21	7/19/21 21:36	BGL
4-Chlorophenylphenylether	<39.4	39.4	μg/L	4		625.1	7/14/21	7/19/21 21:36	BGL
Di-n-butylphthalate	<39.4	39.4	μg/L	4		625.1	7/14/21	7/19/21 21:36	BGL
1,3-Dichlorobenzene	<19.7	19.7	μg/L	4		625.1	7/14/21	7/19/21 21:36	BGL
1,4-Dichlorobenzene	<19.7	19.7	μg/L	4		625.1	7/14/21	7/19/21 21:36	BGL
1,2-Dichlorobenzene	<19.7	19.7	$\mu g/L$	4		625.1	7/14/21	7/19/21 21:36	BGL
3,3-Dichlorobenzidine	<39.4	39.4	μg/L	4		625.1	7/14/21	7/19/21 21:36	BGL
2,4-Dichlorophenol	<39.4	39.4	μg/L	4		625.1	7/14/21	7/19/21 21:36	BGL
Diethylphthalate	<39.4	39.4	μg/L	4		625.1	7/14/21	7/19/21 21:36	BGL
2,4-Dimethylphenol	<39.4	39.4	μg/L	4		625.1	7/14/21	7/19/21 21:36	BGL
Dimethylphthalate	<39.4	39.4	μg/L	4		625.1	7/14/21	7/19/21 21:36	BGL
4,6-Dinitro-2-methylphenol	<39.4	39.4	μg/L	4		625.1	7/14/21	7/19/21 21:36	BGL
2,4-Dinitrophenol	<39.4	39.4	μg/L	4		625.1	7/14/21	7/19/21 21:36	BGL
2,4-Dinitrotoluene	<39.4	39.4	μg/L	4		625.1	7/14/21	7/19/21 21:36	BGL
2,6-Dinitrotoluene	<39.4	39.4	μg/L	4		625.1	7/14/21	7/19/21 21:36	BGL
Di-n-octylphthalate	<39.4	39.4	μg/L	4		625.1	7/14/21	7/19/21 21:36	BGL
1,2-Diphenylhydrazine/Azobenzene	<39.4	39.4	μg/L	4		625.1	7/14/21	7/19/21 21:36	BGL
Bis(2-Ethylhexyl)phthalate	<39.4	39.4	μg/L	4		625.1	7/14/21	7/19/21 21:36	BGL
Fluoranthene	<19.7	19.7	μg/L	4		625.1	7/14/21	7/19/21 21:36	BGL
Fluorene	<19.7	19.7	μg/L	4		625.1	7/14/21	7/19/21 21:36	BGL
Hexachlorobenzene	<39.4	39.4	μg/L	4		625.1	7/14/21	7/19/21 21:36	BGL
Hexachlorobutadiene	<39.4	39.4	μg/L	4		625.1	7/14/21	7/19/21 21:36	BGL
Hexachlorocyclopentadiene	<39.4	39.4	μg/L	4	L-04	625.1	7/14/21	7/19/21 21:36	BGL
Hexachloroethane	<39.4	39.4	μg/L	4	L-04	625.1	7/14/21	7/19/21 21:36	BGL
Isophorone	<39.4	39.4	μg/L	4		625.1	7/14/21	7/19/21 21:36	BGL
Naphthalene	<19.7	19.7	μg/L	4		625.1	7/14/21	7/19/21 21:36	BGL
Nitrobenzene	<39.4	39.4	μg/L	4		625.1	7/14/21	7/19/21 21:36	BGL
2-Nitrophenol	<39.4	39.4	μg/L	4		625.1	7/14/21	7/19/21 21:36	BGL
4-Nitrophenol	<39.4	39.4	μg/L	4		625.1	7/14/21	7/19/21 21:36	BGL
N-Nitrosodimethylamine	<39.4	39.4	μg/L	4	V-06	625.1	7/14/21	7/19/21 21:36	BGL
N-Nitrosodi-n-propylamine	<39.4	39.4	μg/L	4		625.1	7/14/21	7/19/21 21:36	BGL
2-Methylnaphthalene	<19.7	19.7	μg/L	4		625.1	7/14/21	7/19/21 21:36	BGL

BGL

BGL

7/19/21 21:36

7/19/21 21:36

39 Spruce Street * East Longmeadow, MA 01028 * FAX 413/525-6405 * TEL. 413/525-2332

Project Location: Arlington Town Yard Sample Description: Work Order: 21G0623

 $\mu g/L$

 $\mu g/L$

Date Received: 7/13/2021

Field Sample #: Influent

Sampled: 7/13/2021 12:00

Results

<19.7

<39.4

<39.4

<78.8

<19.7

<19.7

19.7

19.7

Sample ID: 21G0623-01

Sample Flags: RL-12

Phenanthrene

Phenol

Pyrene

2-Methylphenol

3/4-Methylphenol

1,2,4-Trichlorobenzene

Sample Matrix: Ground Water

Analyte

	Semivolatile Organic	Compounds by				_	
					Date	Date/Time	
RL	Units	Dilution	Flag/Qual	Method	Prepared	Analyzed	Analyst
19.7	$\mu g/L$	4		625.1	7/14/21	7/19/21 21:36	BGL
39.4	$\mu g/L$	4		625.1	7/14/21	7/19/21 21:36	BGL
39.4	$\mu g/L$	4		625.1	7/14/21	7/19/21 21:36	BGL
78.8	$\mu g/L$	4		625.1	7/14/21	7/19/21 21:36	BGL

L-04

625.1

625.1

7/14/21

7/14/21

2,4,6-Trichlorophenol	<39.4	39.4	μg/L	4		625.1	7/14/21	7/19/21 21:36	BGL
Surrogates		% Recovery	Recovery Limits		Flag/Qual				
2-Fluorophenol		28.0	15-110					7/19/21 21:36	
Phenol-d6		32.0	15-110					7/19/21 21:36	
Nitrobenzene-d5		59.9	30-130					7/19/21 21:36	
2-Fluorobiphenyl		73.6	30-130					7/19/21 21:36	
2,4,6-Tribromophenol		74.6	15-110					7/19/21 21:36	
p-Terphenyl-d14		116	30-130					7/19/21 21:36	

4

4

Project Location: Arlington Town Yard Sample Description: Work Order: 21G0623

Date Received: 7/13/2021
Field Sample #: Influent

Sampled: 7/13/2021 12:00

Sample ID: 21G0623-01
Sample Matrix: Ground Water

Polychlorinated	Biphenyls By GC/ECD	
-----------------	---------------------	--

								Date	Date/Time	
Analyte	Results	RL	DL	Units	Dilution	Flag/Qual	Method	Prepared	Analyzed	Analyst
Aroclor-1016 [1]	< 0.0877	0.0985	0.0877	μg/L	1		608.3	7/14/21	7/17/21 4:01	JMB
Aroclor-1221 [1]	< 0.0813	0.0985	0.0813	μg/L	1		608.3	7/14/21	7/17/21 4:01	JMB
Aroclor-1232 [1]	< 0.0828	0.0985	0.0828	μg/L	1		608.3	7/14/21	7/17/21 4:01	JMB
Aroclor-1242 [1]	< 0.0867	0.0985	0.0867	$\mu g/L$	1		608.3	7/14/21	7/17/21 4:01	JMB
Aroclor-1248 [1]	< 0.0823	0.0985	0.0823	$\mu g/L$	1		608.3	7/14/21	7/17/21 4:01	JMB
Aroclor-1254 [1]	< 0.0926	0.0985	0.0926	μg/L	1		608.3	7/14/21	7/17/21 4:01	JMB
Aroclor-1260 [1]	< 0.0808	0.0985	0.0808	$\mu g/L$	1		608.3	7/14/21	7/17/21 4:01	JMB
Surrogates		% Reco	very	Recovery Limits	1	Flag/Qual				
Decachlorobiphenyl [1]		133		30-150					7/17/21 4:01	
Decachlorobiphenyl [2]		131		30-150					7/17/21 4:01	
Tetrachloro-m-xylene [1]		172	*	30-150		S-13			7/17/21 4:01	
Tetrachloro-m-xylene [2]		166	*	30-150		S-13			7/17/21 4:01	

Project Location: Arlington Town Yard Sample Description: Work Order: 21G0623

Date Received: 7/13/2021
Field Sample #: Influent

Sampled: 7/13/2021 12:00

Sample ID: 21G0623-01
Sample Matrix: Ground Water

Analyte	Results	RL	DL	Units	Dilution	Flag/Qual	Method	Date Prepared	Date/Time Analyzed	Analyst
Antimony	ND	1.0		μg/L	1		EPA 200.8	7/14/21	7/15/21 11:29	QNW
Arsenic	0.87	0.80		$\mu g/L$	1		EPA 200.8	7/14/21	7/15/21 11:29	QNW
Cadmium	ND	0.20		$\mu g/L$	1		EPA 200.8	7/14/21	7/15/21 11:29	QNW
Chromium	150	1.0		$\mu g/L$	1		EPA 200.8	7/14/21	7/15/21 11:29	QNW
Chromium, Trivalent	0.093			mg/L	1		Tri Chrome Calc.	7/14/21	7/15/21 11:29	QNW
Copper	7.0	1.0		$\mu g/L$	1		EPA 200.8	7/14/21	7/15/21 11:29	QNW
Iron	2.9	0.050		mg/L	1		EPA 200.7	7/14/21	7/15/21 11:48	AJL
Lead	15	0.50		$\mu g/L$	1		EPA 200.8	7/15/21	7/16/21 13:07	QNW
Mercury	ND	0.00010		mg/L	1		EPA 245.1	7/14/21	7/15/21 11:02	CJV
Nickel	ND	5.0		$\mu g/L$	1		EPA 200.8	7/14/21	7/15/21 11:29	QNW
Selenium	ND	5.0	0.78	$\mu g/L$	1		EPA 200.8	7/14/21	7/15/21 11:29	QNW
Silver	ND	0.20		$\mu g/L$	1		EPA 200.8	7/14/21	7/15/21 11:29	QNW
Zinc	10	10		$\mu g/L$	1		EPA 200.8	7/14/21	7/15/21 11:29	QNW
Hardness	130	1.4		mg/L	1		EPA 200.7	7/14/21	7/20/21 11:25	AJL

Project Location: Arlington Town Yard Sample Description: Work Order: 21G0623

Date Received: 7/13/2021
Field Sample #: Influent

Sampled: 7/13/2021 12:00

Sample ID: 21G0623-01
Sample Matrix: Ground Water

Conventional Chemistry Parameters by EPA/APHA/SW-846 Methods (Total)

								Date	Date/Time	
Analyte	Results	RL	DL	Units	Dilution	Flag/Qual	Method	Prepared	Analyzed	Analyst
Ammonia as N	ND	0.30	0.22	mg/L	1		SM19-22 4500 NH3 C	7/15/21	7/19/21 9:30	EC
Chloride	450	10		mg/L	10		EPA 300.0	7/19/21	7/19/21 13:52	IS
Chlorine, Residual	ND	0.020		mg/L	1		SM21-22 4500 CL G	7/13/21	7/13/21 20:00	ALG
Hexavalent Chromium	0.057	0.0040		mg/L	1		SM21-22 3500 Cr B	7/13/21	7/13/21 22:00	DJM
Total Suspended Solids	52	1.7		mg/L	1		SM21-22 2540D	7/14/21	7/14/21 13:26	LL
Silica Gel Treated HEM (SGT-HEM)	ND	2.8		mg/L	1		EPA 1664B	7/14/21	7/14/21 9:15	LL

Project Location: Arlington Town Yard Sample Description: Work Order: 21G0623

Date Received: 7/13/2021
Field Sample #: Influent

Sampled: 7/13/2021 12:00

Sample ID: 21G0623-01

Sample Matrix: Ground Water

Drinking Water Organics EPA 504.1										
Analyte	Results	RL	DL	Units	Dilution	Flag/Qual	Method	Date Prepared	Date/Time Analyzed	Analyst
1,2-Dibromoethane (EDB) (1)	ND	0.020	0.0079	μg/L	1		EPA 504.1	7/19/21	7/19/21 20:53	JMB
Surrogates		% Reco	very	Recovery Limit	s	Flag/Qual				
1,3-Dibromopropane (1)		96.4		70-130			_		7/19/21 20:53	

Project Location: Arlington Town Yard Sample Description: Work Order: 21G0623

Date Received: 7/13/2021
Field Sample #: Influent

Sampled: 7/13/2021 12:00

Sample ID: 21G0623-01
Sample Matrix: Ground Water

Conventional Chemistry Parameters by EPA/APHA/SW-846 Methods (Total)

									Date	Date/Time	
	Analyte	Results	RL	DL	Units	Dilution	Flag/Qual	Method	Prepared	Analyzed	Analyst
Cyanide		0.001 - J	0.005	0.001	mg/L	1		SM4500	7/15/21	7/15/21 12:38	AAL

Project Location: Arlington Town Yard Sample Description: Work Order: 21G0623

Date Received: 7/13/2021

Field Sample #: Receiving Water

Sample ID: 21G0623-02
Sample Matrix: Ground Water

Sampled: 7/13/2021 12:00

Metals Analyses (Total)

Analyte	Results	RL	DL	Units	Dilution	Flag/Qual	Method	Date Prepared	Date/Time Analyzed	Analyst
Antimony	ND	1.0		μg/L	1		EPA 200.8	7/14/21	7/15/21 11:39	QNW
Arsenic	1.4	0.80		$\mu g/L$	1		EPA 200.8	7/14/21	7/15/21 11:39	QNW
Cadmium	ND	0.20		$\mu g/L$	1		EPA 200.8	7/14/21	7/15/21 11:39	QNW
Chromium	29	1.0		$\mu g/L$	1		EPA 200.8	7/14/21	7/15/21 11:39	QNW
Chromium, Trivalent	0.018			mg/L	1		Tri Chrome Calc.	7/14/21	7/15/21 11:39	QNW
Copper	3.9	1.0		$\mu g/L$	1		EPA 200.8	7/14/21	7/15/21 11:39	QNW
Iron	2.0	0.050		mg/L	1		EPA 200.7	7/14/21	7/15/21 0:05	AJL
Lead	5.5	0.50		$\mu g/L$	1		EPA 200.8	7/15/21	7/16/21 13:09	QNW
Mercury	ND	0.00010		mg/L	1		EPA 245.1	7/14/21	7/15/21 11:03	CJV
Nickel	ND	5.0		$\mu g/L$	1		EPA 200.8	7/14/21	7/15/21 11:39	QNW
Selenium	ND	5.0	0.78	$\mu g/L$	1		EPA 200.8	7/14/21	7/15/21 11:39	QNW
Silver	0.99	0.20		$\mu g/L$	1		EPA 200.8	7/14/21	7/15/21 11:39	QNW
Zinc	12	10		$\mu g/L$	1		EPA 200.8	7/14/21	7/15/21 11:39	QNW
Hardness	52	1.4		mg/L	1		EPA 200.7	7/14/21	7/15/21 0:05	AJL

Project Location: Arlington Town Yard Sample Description: Work Order: 21G0623

Date Received: 7/13/2021

Field Sample #: Receiving Water

Sampled: 7/13/2021 12:00

Sample ID: 21G0623-02
Sample Matrix: Ground Water

Conventional Chemistry Parameters by EPA/APHA/SW-846 Methods (Total)

								Date	Date/Time	
Analyte	Results	RL	DL	Units	Dilution	Flag/Qual	Method	Prepared	Analyzed	Analyst
Ammonia as N	ND	0.30	0.22	mg/L	1		SM19-22 4500 NH3 C	7/15/21	7/19/21 9:30	EC
Hexavalent Chromium	0.011	0.0040		mg/L	1		SM21-22 3500 Cr B	7/13/21	7/13/21 22:00	DJM

Sample Extraction Data

Prep Method: SW-846 3510C	Analytical Method: 608.3
---------------------------	--------------------------

Lab Number [Field ID]	Batch	Initial [mL]	Final [mL]	Date
21G0623-01 [Influent]	B285906	1020	5.00	07/14/21

Prep Method: SW-846 5030B Analytical Method: 624.1

Lab Number [Field ID]	Batch	Initial [mL]	Final [mL]	Date
21G0623-01 [Influent]	B285929	5	5.00	07/14/21

Prep Method: SW-846 3510C Analytical Method: 625.1

Lab Number [Field ID]	Batch	Initial [mL]	Final [mL]	Date
21G0623-01 [Influent]	B285899	1020	1.00	07/14/21

Prep Method: SW-846 3510C Analytical Method: 625.1

Lab Number [Field ID]	Batch	Initial [mL]	Final [mL]	Date
21G0623-01 [Influent]	B286032	1020	1.00	07/14/21

EPA 1664B

Lab Number [Field ID]	Batch	Initial [mL]	Date
21G0623-01 [Influent]	B285890	500	07/14/21

Prep Method: EPA 200.7 Analytical Method: EPA 200.7

07/14/21
07/14/21
07/14/21
07/14/21

Prep Method: EPA 200.8 Analytical Method: EPA 200.8

Lab Number [Field ID]	Batch	Initial [mL]	Final [mL]	Date
21G0623-01 [Influent]	B285900	50.0	50.0	07/14/21
21G0623-02 [Receiving Water]	B285900	50.0	50.0	07/14/21

Prep Method: EPA 200.8 Analytical Method: EPA 200.8

Lab Number [Field ID]	Batch	Initial [mL]	Final [mL]	Date
21G0623-01RE1 [Influent]	B286082	50.0	50.0	07/15/21
21G0623-02RE1 [Receiving Water]	B286082	50.0	50.0	07/15/21

Prep Method: EPA 245.1 Analytical Method: EPA 245.1

Lab Number [Field ID]	Batch	Initial [mL]	Final [mL]	Date

Sample Extraction Data

Prep Method: EPA 245.1 Analytical Method: EPA 245.1

Lab Number [Field ID]	Batch	Initial [mL]	Final [mL]	Date
21G0623-01 [Influent]	B285904	6.00	6.00	07/14/21
21G0623-02 [Receiving Water]	B285904	6.00	6.00	07/14/21

Prep Method: EPA 300.0 Analytical Method: EPA 300.0

Lab Number [Field ID]	Batch	Initial [mL]	Final [mL]	Date
21G0623-01 [Influent]	B286215	10.0	10.0	07/19/21

Prep Method: EPA 504 water Analytical Method: EPA 504.1

Lab Number [Field ID]	Batch	Initial [mL]	Final [mL]	Date
21G0623-01 [Influent]	B286276	35.3	35.0	07/19/21

SM19-22 4500 NH3 C

Lab Number [Field ID]	Batch	Initial [mL]	Final [mL]	Date
21G0623-01 [Influent]	B286026	100	100	07/15/21
21G0623-02 [Receiving Water]	B286026	100	100	07/15/21

SM21-22 2540D

Lab Number [Field ID]	Batch	Initial [mL]	Date
21G0623-01 [Influent]	B285895	300	07/14/21

SM21-22 3500 Cr B

Lab Number [Field ID]	Batch	Initial [mL]	Final [mL]	Date
21G0623-01 [Influent]	B285873	50.0	50.0	07/13/21
21G0623-02 [Receiving Water]	B285873	50.0	50.0	07/13/21

SM21-22 4500 CL G

Lab Number [Field ID]	Batch	Initial [mL]	Final [mL]	Date
21G0623-01 [Influent]	B285869	100	100	07/13/21

Prep Method: EPA 200.8 Analytical Method: Tri Chrome Calc.

Lab Number [Field ID]	Batch	Initial [mL]	Date
21G0623-01 [Influent]	B285900	50.0	07/14/21
21G0623-02 [Receiving Water]	B285900	50.0	07/14/21

QUALITY CONTROL

Spike

Source

%REC

RPD

Volatile Organic Compounds by GC/MS - Quality Control

Reporting

Analyte	Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Notes
Batch B285929 - SW-846 5030B										
Blank (B285929-BLK1)				Prepared & A	Analyzed: 07	/14/21				
Acetone	ND	50.0	μg/L							-
tert-Amyl Methyl Ether (TAME)	ND	0.500	$\mu g/L$							
Benzene	ND	1.00	μg/L							
Bromodichloromethane	ND	2.00	$\mu g/L$							
Bromoform	ND	2.00	$\mu g/L$							
Bromomethane	ND	2.00	$\mu g/L$							
tert-Butyl Alcohol (TBA)	ND	20.0	$\mu g/L$							
Carbon Tetrachloride	ND	2.00	μg/L							
Chlorobenzene	ND	2.00	μg/L							
Chlorodibromomethane	ND	2.00	μg/L							
Chloroethane	ND	2.00	μg/L							
Chloroform	ND	2.00	μg/L							
Chloromethane	ND	2.00	$\mu g/L$							
1,2-Dichlorobenzene	ND	2.00	$\mu g/L$							
1,3-Dichlorobenzene	ND	2.00	$\mu g/L$							
1,4-Dichlorobenzene	ND	2.00	$\mu g/L$							
1,2-Dichloroethane	ND	2.00	$\mu g/L$							
1,1-Dichloroethane	ND	2.00	$\mu g/L$							
1,1-Dichloroethylene	ND	2.00	μg/L							
trans-1,2-Dichloroethylene	ND	2.00	μg/L							
1,2-Dichloropropane	ND	2.00	μg/L							
cis-1,3-Dichloropropene	ND	2.00	μg/L							
1,4-Dioxane	ND	50.0	$\mu g/L$							
trans-1,3-Dichloropropene	ND	2.00	μg/L							
Ethanol	ND	50.0	$\mu g/L$							
Ethylbenzene	ND	2.00	μg/L							
Methyl tert-Butyl Ether (MTBE)	ND	2.00	μg/L							
Methylene Chloride	ND	5.00	μg/L							
1,1,2,2-Tetrachloroethane	ND	2.00	μg/L							
Tetrachloroethylene	ND	2.00	μg/L							
Toluene	ND	1.00	μg/L							
1,1,1-Trichloroethane	ND	2.00	μg/L							
1,1,2-Trichloroethane	ND	2.00	μg/L							
Trichloroethylene	ND	2.00	μg/L							
Trichlorofluoromethane (Freon 11)	ND	2.00	μg/L							
Vinyl Chloride	ND	2.00	μg/L							
m+p Xylene	ND	2.00	μg/L							
o-Xylene	ND	1.00	μg/L							
Surrogate: 1,2-Dichloroethane-d4	25.0		$\mu g/L$	25.0		100	70-130			
Surrogate: Toluene-d8	24.2		$\mu g/L$	25.0		96.8	70-130			
Surrogate: 4-Bromofluorobenzene	23.6		$\mu g/L$	25.0		94.4	70-130			
LCS (B285929-BS1)				Prepared & A	Analyzed: 07	/14/21				
Acetone	200	50.0	$\mu g/L$	200		102	70-160			
tert-Amyl Methyl Ether (TAME)	21	0.500	$\mu g/L$	20.0		107	70-130			
Benzene	20	1.00	$\mu g/L$	20.0		97.8	65-135			
Bromodichloromethane	22	2.00	$\mu g/L$	20.0		111	65-135			
Bromoform	23	2.00	$\mu g/L$	20.0		116	70-130			
Bromomethane	12	2.00	$\mu g/L$	20.0		57.9	15-185			
tert-Butyl Alcohol (TBA)	180	20.0	$\mu g/L$	200		87.8	40-160			
Carbon Tetrachloride	23	2.00	$\mu g/L$	20.0		113	70-130			
Chlorobenzene	21	2.00	μg/L	20.0		105	65-135			

QUALITY CONTROL

Volatile Organic Compounds by GC/MS - Quality Control

Analyte	Result	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Notes
Batch B285929 - SW-846 5030B										
LCS (B285929-BS1)				Prepared &	Analyzed: 07	/14/21				
Chlorodibromomethane	22	2.00	μg/L	20.0		109	70-135			
Chloroethane	19	2.00	μg/L	20.0		97.2	40-160			
Chloroform	21	2.00	μg/L	20.0		105	70-135			
Chloromethane	16	2.00	$\mu g/L$	20.0		79.0	20-205			
1,2-Dichlorobenzene	20	2.00	$\mu g/L$	20.0		99.7	65-135			
,3-Dichlorobenzene	21	2.00	$\mu g/L$	20.0		105	70-130			
1,4-Dichlorobenzene	20	2.00	$\mu g/L$	20.0		101	65-135			
1,2-Dichloroethane	20	2.00	$\mu g/L$	20.0		102	70-130			
1,1-Dichloroethane	21	2.00	$\mu g/L$	20.0		106	70-130			
1,1-Dichloroethylene	22	2.00	$\mu g/L$	20.0		109	50-150			
rans-1,2-Dichloroethylene	19	2.00	$\mu g/L$	20.0		93.4	70-130			
,2-Dichloropropane	21	2.00	$\mu g/L$	20.0		106	35-165			
cis-1,3-Dichloropropene	20	2.00	$\mu g/L$	20.0		101	25-175			
,4-Dioxane	180	50.0	$\mu g/L$	200		91.1	40-130			
rans-1,3-Dichloropropene	22	2.00	$\mu g/L$	20.0		108	50-150			
Ethanol	160	50.0	$\mu g/L$	200		82.4	40-160			
Ethylbenzene	20	2.00	$\mu g/L$	20.0		102	60-140			
Methyl tert-Butyl Ether (MTBE)	21	2.00	$\mu g/L$	20.0		103	70-130			
Methylene Chloride	23	5.00	$\mu g/L$	20.0		114	60-140			
1,1,2,2-Tetrachloroethane	21	2.00	$\mu g/L$	20.0		103	60-140			
Tetrachloroethylene	21	2.00	$\mu g/L$	20.0		106	70-130			
Toluene	20	1.00	$\mu g/L$	20.0		102	70-130			
1,1,1-Trichloroethane	22	2.00	$\mu g/L$	20.0		109	70-130			
1,1,2-Trichloroethane	21	2.00	$\mu g/L$	20.0		106	70-130			
Trichloroethylene	22	2.00	$\mu g/L$	20.0		108	65-135			
Trichlorofluoromethane (Freon 11)	24	2.00	$\mu g/L$	20.0		121	50-150			
Vinyl Chloride	17	2.00	$\mu g/L$	20.0		84.1	5-195			
m+p Xylene	41	2.00	$\mu g/L$	40.0		103	70-130			
o-Xylene	21	1.00	μg/L	20.0		103	70-130			
Surrogate: 1,2-Dichloroethane-d4	24.8		$\mu g/L$	25.0		99.1	70-130			
Surrogate: Toluene-d8	23.9		μg/L	25.0		95.6	70-130			
Surrogate: 4-Bromofluorobenzene	25.0		$\mu g/L$	25.0		100	70-130			

QUALITY CONTROL

Semivolatile Organic Compounds by GC/MS - Quality Control

Result Result Limit Units Livet Result SRPC Limit Notes			Reporting		Spike	Corres		%REC		RPD	
Black (1286032-111-X1)	Analyte	Result		Units			%REC		RPD		Notes
Berox laphramene (SIM)	Batch B286032 - SW-846 3510C										
Benovid placemathers (SIM) ND 0.00	Blank (B286032-BLK1)				Prepared &	Analyzed: 07/	/15/21				
Benovid placemater (SIM)	Benzo(a)anthracene (SIM)	ND	0.050	μg/L							
Benoxib Diseasembers (SIM) ND 0.09	Benzo(a)pyrene (SIM)		0.10	μg/L							
Bazzo (SIM)	Benzo(b)fluoranthene (SIM)		0.050	μg/L							
Bin-2	Benzo(k)fluoranthene (SIM)		0.20	μg/L							
Chrysene (SIM)	Bis(2-ethylhexyl)phthalate (SIM)		1.0	μg/L							
Debut (A) Juniburbanene (SIM) ND 0.10 pgL	Chrysene (SIM)		0.20	μg/L							
Pentablorophonol (SIM)	Dibenz(a,h)anthracene (SIM)		0.10	μg/L							
Pentachlorophenol (SIM)	Indeno(1,2,3-cd)pyrene (SIM)		0.10	μg/L							
Surrogate: Phenol-de (SIMI)	Pentachlorophenol (SIM)		1.0	μg/L							
Surrogate: Phenol-de (SIMI)	Surrogate: 2-Fluorophenol (SIM)	67.9		це/[,	200		33.9	15-110			
Surrogate: Nitrobenzened 5 \$8,6											
Surrogate: 2-Au-Cribromophend (SIM)	- · · · · · · · · · · · · · · · · · · ·										
Surrogate: 2,4,6-Tnbromophend (SIM)											
Name of the Composition of the											
Prepared & Analyzec (7/15/21 Parameter (SIM) 32.2 1.0 µg/L 50.0 64.3 33-143	Surrogate: p-Terphenyl-d14										
Benzo(a)anthracene (SIM) 32.2 1.0 µg/L 50.0 64.3 33.143 Benzo(a)pyrene (SIM) 31.8 2.0 µg/L 50.0 63.5 17.163 Benzo(b)pyrene (SIM) 35.3 1.0 µg/L 50.0 63.5 17.163 Benzo(b)pyrene (SIM) 34.4 4.0 µg/L 50.0 68.7 11.162 Benzo(b)phenzhene (SIM) 34.4 4.0 µg/L 50.0 68.7 11.162 Bin(2-chylhexy)phthalate (SIM) 38.1 20 µg/L 50.0 68.7 17.168 Bin(2-chylhexy)phthalate (SIM) 31.9 4.0 µg/L 50.0 69.3 10.227 Indeno (1,2,3-cd)pyrene (SIM) 36.4 2.0 µg/L 50.0 69.3 10.227 Indeno (1,2,3-cd)pyrene (SIM) 36.4 2.0 µg/L 50.0 69.3 10.227 Indeno (1,2,3-cd)pyrene (SIM) 35.5 20 µg/L 50.0 72.7 10.171 Pentachlorophenol (SIM) 35.5 20 µg/L 50.0 72.7 10.171 Surrogate: Phenol-d6 (SIM) 35.5 20 µg/L 200 29.5 15-110 Surrogate: Phenol-d6 (SIM) 35.1 µg/L 100 45.5 30.130 Surrogate: Phenol-d6 (SIM) 46.2 µg/L 200 32.0 15-110 Surrogate: Phenol-d6 (SIM) 46.2 µg/L 200 48.6 15-110 Surrogate: Phenol-d6 (SIM) 35.2 1.0 µg/L 50.0 70.4 33.143 9.08 53 Benzo(a)anthracene (SIM) 35.6 1.0 µg/L 50.0 70.4 33.143 9.08 53 Benzo(a)anthracene (SIM) 36.6 1.0 µg/L 50.0 70.4 33.143 9.08 53 Benzo(a)anthracene (SIM) 36.6 1.0 µg/L 50.0 70.4 33.143 9.08 53 Benzo(a)anthracene (SIM) 36.6 1.0 µg/L 50.0 70.4 33.143 9.08 53 Benzo(a)anthracene (SIM) 36.6 1.0 µg/L 50.0 70.4 10.10 20.10 Benzo(a)anthracene (SIM) 37.4 4.0 µg/L 50.0 70.4 33.143 9.08 71 Benzo(a)anthracene (SIM) 37.4 40.0 µg/L 50.0 70.4 10.10 20.10 Benzo(a)anthracene (SIM) 37.4 40.0 µg/L 50.0						Analyzed: 07					
Benzo(a)pyrene (SIM) 31.8 2.0		22.2	1.0	ua/I		Allaryzeu. 07/		22 142			
Benze(Olf) duoranthene (SIM) 35.3 1.0 µg/L 50.0 70.6 24.159											
Benzo(k)fluoranthene (SIM) 34,4 4.0 μg/L 50.0 68.7 11-162											
Bis(2-ethylhexyl)phthalate (SIM) 38.1 20											
Chrysene (SIM) 31.9 4.0 µg/L 50.0 63.8 17-168											
Dibenz(a,h)anthracene (SIM) 34.7 2.0 µg/L 50.0 69.3 10-227 10-171											
Indeno(1,2,3-ed)pyrene (SIM) 36.4 2.0 µg/L 50.0 72.7 10-171 Pentachlorophenol (SIM) 35.5 20 µg/L 50.0 70.9 14-176 Surrogate: 2-Fluorophenol (SIM) 39.1 µg/L 200 29.5 15-110 Surrogate: Phenol-do (SIM) 63.9 µg/L 200 32.0 15-110 Surrogate: Nitrobenzene-d5 45.5 µg/L 100 45.5 30-130 Surrogate: 2-Fluorophenol (SIM) 169 µg/L 200 84.6 15-110 Surrogate: 2-Fluorophenol (SIM) 169 µg/L 200 84.6 15-110 Surrogate: p-Terphenyl-d14 62.2 µg/L 100 62.2 30-130 LCS Dup (B286032-BSD1) Prepared & Analyzed: 07/15/21 Benzo(a)anthracene (SIM) 35.2 1.0 µg/L 50.0 70.4 33-143 9.08 53 Benzo(plyrene (SIM) 34.6 2.0 µg/L 50.0 77.3 24-159 8.98 71 Benzo(plyllovarnthene (SIM) 37.4 4.0 µg/L 50.0 74.9 11-162 8.58 63 Bis/2-ethylhexyl)phthalate (SIM) 35.0 4.0 µg/L 50.0 70.0 83.2 8-158 8.44 82 Chrysene (SIM) 35.0 4.0 µg/L 50.0 70.0 70.0 17-168 9.21 87 Dibenz(a,h)anthracene (SIM) 37.9 2.0 µg/L 50.0 77.7 14-176 9.15 86 Surrogate: 2-Fluorophenol (SIM) 38.9 20 µg/L 50.0 77.7 14-176 9.15 86 Surrogate: 2-Fluorophenol (SIM) 38.9 20 µg/L 50.0 77.7 14-176 9.15 86 Surrogate: 2-Fluorophenol (SIM) 38.9 20 µg/L 50.0 77.7 14-176 9.15 86 Surrogate: 2-Fluorophenol (SIM) 62.5 µg/L 200 31.3 15-110 Surrogate: 2-Fluorophenol (SIM) 67.3 µg/L 200 31.3 15-110 Surrogate: 2-Fluorophenol (SIM) 67.3 µg/L 200 31.3 30-130 Surrogate: 2-Fluorophenol (SIM) 67.3 µg/L 200 31.3 30-130 Surrogate: 2-Fluorophenol (SIM) 67.4 30-130 30-130 Surrogate: 2-Fluorophenol (SIM) 67.3 µg/L 200 31.3 30-130 Surrogate: 2-Fluorophenol (SIM) 67.3 µg/L 200 31.3 30-130 Surrogate: 2-Fluorophenol (SIM) 67.4 30-130 30-130 Surrogate: 2-Fluorophenol (SIM) 67.4 30-130 30-130 Surrogate: 2-Fluorophen	• ` '										
Pentachlorophenol (SIM) 35.5 20 µg/L 50.0 70.9 14-176											
Surrogate: 2-Fluorophenol (SIM) 59.1											
Surrogate: Phenol-d6 (SIM) 63.9											
Surrogate: Nitrobenzene-d5	. , ,										
Surrogate: 2-Fluorobiphenyl So.1 \(\mu_g/L \) 100 50.1 30-130 Surrogate: 2,4,6-Tribromophenol (SIM) 169 \(\mu_g/L \) 200 84.6 15-110 Surrogate: p-Terphenyl-d14 62.2 \(\mu_g/L \) 100 62.2 30-130 Surrogate: p-Terphenyl-d14 62.2 \(\mu_g/L \) 100 62.2 30-130 Surrogate: p-Terphenyl-d14 62.2 \(\mu_g/L \) 100 62.2 30-130 Surrogate: p-Terphenyl-d14 62.2 \(\mu_g/L \) 100 62.2 30-130 Surrogate: p-Terphenyl-d14 62.2 \(\mu_g/L \) 100 62.2 30-130 Surrogate: p-Terphenyl-d14 62.2 \(\mu_g/L \) 100 62.2 30-130 Surrogate: p-Terphenyl-d14 62.2 \(\mu_g/L \) 100	- · · · ·										
Surrogate: 2,4,6-Tribromophenol (SIM) 169 169 162.2 100 100 100 100 100 100 100	-										
Surrogate: p-Terphenyl-d14 62.2 µg/L 100 62.2 30-130											
Prepared & Analyzed: 07/15/21	- · · · · ·										
Benzo(a)anthracene (SIM) 35.2 1.0 μg/L 50.0 70.4 33-143 9.08 53 Benzo(a)pyrene (SIM) 34.6 2.0 μg/L 50.0 69.3 17-163 8.67 72 Benzo(b)fluoranthene (SIM) 38.6 1.0 μg/L 50.0 77.3 24-159 8.98 71 Benzo(k)fluoranthene (SIM) 37.4 4.0 μg/L 50.0 74.9 11-162 8.58 63 Bis(2-ethylnexyl)phthalate (SIM) 41.6 20 μg/L 50.0 83.2 8-158 8.84 82 Chrysene (SIM) 35.0 4.0 μg/L 50.0 70.0 17-168 9.21 87 Dibenz(a,h)anthracene (SIM) 37.9 2.0 μg/L 50.0 75.8 10-227 8.98 126 Indeno(1,2,3-cd)pyrene (SIM) 39.7 2.0 μg/L 50.0 79.4 10-171 8.73 99 Pentachlorophenol (SIM) 38.9 20 μg/L 50.0 77.7 14-176 9.15 86 Surrogate: 2-Fluorophenol (SIM) 67.3 μg/L 200 31.3 15-110 Surrogate: Nitrobenzene-d5 53.1 μg/L 200 33.6 15-110 Surrogate: 2-Fluorophenol (SIM) 54.6 μg/L 100 54.6 30-130 Surrogate: 2-Fluorophenol (SIM) 54.6 μg/L 200 90.4 15-110 Surrogate: 2-Fluorophenol (SIM) 181 μg/L 200 90.4 15-110		02.2		μg/L				30-130			
Benzo(a)pyrene (SIM) 34.6 2.0 μg/L 50.0 69.3 17-163 8.67 72 Benzo(b)fluoranthene (SIM) 38.6 1.0 μg/L 50.0 77.3 24-159 8.98 71 Benzo(k)fluoranthene (SIM) 37.4 4.0 μg/L 50.0 74.9 11-162 8.58 63 Bis(2-ethylhexyl)phthalate (SIM) 41.6 20 μg/L 50.0 83.2 8-158 8.84 82 Chrysene (SIM) 35.0 4.0 μg/L 50.0 70.0 17-168 9.21 87 Dibenz(a,h)anthracene (SIM) 37.9 2.0 μg/L 50.0 75.8 10-227 8.98 126 Indeno(1,2,3-cd)pyrene (SIM) 39.7 2.0 μg/L 50.0 79.4 10-171 8.73 99 Pentachlorophenol (SIM) 38.9 20 μg/L 50.0 77.7 14-176 9.15 86 Surrogate: 2-Fluorophenol (SIM) 67.3 μg/L 200 31.3 15-110 Surrogate: 2-Fluorobiphenyl 54.6 μg/L 100 <td< td=""><td></td><td></td><td>1.0</td><td> /r</td><td>-</td><td>Analyzed: 07/</td><td></td><td>22.112</td><td>0.63</td><td></td><td></td></td<>			1.0	/r	-	Analyzed: 07/		22.112	0.63		
Benzo(b)fluoranthene (SIM) 38.6 1.0 μg/L 50.0 77.3 24-159 8.98 71 Benzo(k)fluoranthene (SIM) 37.4 4.0 μg/L 50.0 74.9 11-162 8.58 63 Bis(2-ethylhexyl)phthalate (SIM) 41.6 20 μg/L 50.0 83.2 8-158 8.84 82 Chrysene (SIM) 35.0 4.0 μg/L 50.0 70.0 17-168 9.21 87 Dibenz(a,h)anthracene (SIM) 37.9 2.0 μg/L 50.0 75.8 10-227 8.98 126 Indeno(1,2,3-ed)pyrene (SIM) 39.7 2.0 μg/L 50.0 79.4 10-171 8.73 99 Pentachlorophenol (SIM) 38.9 20 μg/L 50.0 77.7 14-176 9.15 86 Surrogate: 2-Fluorophenol (SIM) 62.5 μg/L 200 31.3 15-110 Surrogate: Nitrobenzene-d5 53.1 μg/L 100 53.1 30-130 Surrogate: 2-Fluorophenol (SIM) 54.6 μg/L 100 54.6 30-130 <											
Benzo(k)fluoranthene (SIM) 37.4 4.0 μg/L 50.0 74.9 11-162 8.58 63 Bis(2-ethylhexyl)phthalate (SIM) 41.6 20 μg/L 50.0 83.2 8-158 8.84 82 Chrysene (SIM) 35.0 4.0 μg/L 50.0 70.0 17-168 9.21 87 Dibenz(a,h)anthracene (SIM) 37.9 2.0 μg/L 50.0 75.8 10-227 8.98 126 Indeno(1,2,3-ed)pyrene (SIM) 39.7 2.0 μg/L 50.0 79.4 10-171 8.73 99 Pentachlorophenol (SIM) 38.9 20 μg/L 50.0 77.7 14-176 9.15 86 Surrogate: 2-Fluorophenol (SIM) 62.5 μg/L 200 31.3 15-110 Surrogate: Nitrobenzene-d5 53.1 μg/L 100 53.1 30-130 Surrogate: 2-Fluorophenol (SIM) 54.6 μg/L 100 54.6 30-130 Surrogate: 2-Fluorophenol (SIM) 181 μg/L 200 90.4 15-110											
Bis(2-ethylhexyl)phthalate (SIM) 41.6 20 μg/L 50.0 83.2 8-158 8.84 82 Chrysene (SIM) 35.0 4.0 μg/L 50.0 70.0 17-168 9.21 87 Dibenz(a,h)anthracene (SIM) 37.9 2.0 μg/L 50.0 75.8 10-227 8.98 126 Indeno(1,2,3-cd)pyrene (SIM) 39.7 2.0 μg/L 50.0 79.4 10-171 8.73 99 Pentachlorophenol (SIM) 38.9 20 μg/L 50.0 77.7 14-176 9.15 86 Surrogate: 2-Fluorophenol (SIM) 62.5 μg/L 200 31.3 15-110 Surrogate: Phenol-d6 (SIM) 67.3 μg/L 200 33.6 15-110 Surrogate: Nitrobenzene-d5 53.1 μg/L 100 53.1 30-130 Surrogate: 2-Fluorobiphenyl 54.6 μg/L 100 54.6 30-130 Surrogate: 2,4,6-Tribromophenol (SIM) 181 μg/L 200 90.4 15-110											
Chrysene (SIM) 35.0 4.0 μg/L 50.0 70.0 17-168 9.21 87 Dibenz(a,h)anthracene (SIM) 37.9 2.0 μg/L 50.0 75.8 10-227 8.98 126 Indeno(1,2,3-cd)pyrene (SIM) 39.7 2.0 μg/L 50.0 79.4 10-171 8.73 99 Pentachlorophenol (SIM) 38.9 20 μg/L 50.0 77.7 14-176 9.15 86 Surrogate: 2-Fluorophenol (SIM) 62.5 μg/L 200 31.3 15-110 Surrogate: Phenol-d6 (SIM) 67.3 μg/L 200 33.6 15-110 Surrogate: Nitrobenzene-d5 53.1 μg/L 100 53.1 30-130 Surrogate: 2-Fluorobiphenyl 54.6 μg/L 100 54.6 30-130 Surrogate: 2,4,6-Tribromophenol (SIM) 181 μg/L 200 90.4 15-110											
Dibenz(a,h)anthracene (SIM) 37.9 2.0 μg/L 50.0 75.8 10-227 8.98 126 Indeno(1,2,3-cd)pyrene (SIM) 39.7 2.0 μg/L 50.0 79.4 10-171 8.73 99 Pentachlorophenol (SIM) 38.9 20 μg/L 50.0 77.7 14-176 9.15 86 Surrogate: 2-Fluorophenol (SIM) 62.5 μg/L 200 31.3 15-110 Surrogate: Phenol-d6 (SIM) 67.3 μg/L 200 33.6 15-110 Surrogate: Nitrobenzene-d5 53.1 μg/L 100 53.1 30-130 Surrogate: 2-Fluorobiphenyl 54.6 μg/L 100 54.6 30-130 Surrogate: 2,4,6-Tribromophenol (SIM) 181 μg/L 200 90.4 15-110											
Indeno(1,2,3-cd)pyrene (SIM) 39.7 2.0 μg/L 50.0 79.4 10-171 8.73 99 Pentachlorophenol (SIM) 38.9 20 μg/L 50.0 77.7 14-176 9.15 86 Surrogate: 2-Fluorophenol (SIM) 62.5 μg/L 200 31.3 15-110 Surrogate: Phenol-d6 (SIM) 67.3 μg/L 200 33.6 15-110 Surrogate: Nitrobenzene-d5 53.1 μg/L 100 53.1 30-130 Surrogate: 2-Fluorobiphenyl 54.6 μg/L 100 54.6 30-130 Surrogate: 2,4,6-Tribromophenol (SIM) 181 μg/L 200 90.4 15-110											
Pentachlorophenol (SIM) 38.9 20 μg/L 50.0 77.7 14-176 9.15 86 Surrogate: 2-Fluorophenol (SIM) 62.5 μg/L 200 31.3 15-110 Surrogate: Phenol-d6 (SIM) 67.3 μg/L 200 33.6 15-110 Surrogate: Nitrobenzene-d5 53.1 μg/L 100 53.1 30-130 Surrogate: 2-Fluorobiphenyl 54.6 μg/L 100 54.6 30-130 Surrogate: 2,4,6-Tribromophenol (SIM) 181 μg/L 200 90.4 15-110											
Surrogate: 2-Fluorophenol (SIM) 62.5											
Surrogate: Phenol-d6 (SIM) 67.3 μg/L 200 33.6 15-110 Surrogate: Nitrobenzene-d5 53.1 μg/L 100 53.1 30-130 Surrogate: 2-Fluorobiphenyl 54.6 μg/L 100 54.6 30-130 Surrogate: 2,4,6-Tribromophenol (SIM) 181 μg/L 200 90.4 15-110			20						9.13	80	
Surrogate: Nitrobenzene-d5 53.1 μg/L 100 53.1 30-130 Surrogate: 2-Fluorobiphenyl 54.6 μg/L 100 54.6 30-130 Surrogate: 2,4,6-Tribromophenol (SIM) 181 μg/L 200 90.4 15-110	Surrogate: 2-Fluorophenol (SIM)										
Surrogate: 2-Fluorobiphenyl 54.6 $\mu g/L$ 100 54.6 $30-130$ Surrogate: 2,4,6-Tribromophenol (SIM) 181 $\mu g/L$ 200 90.4 $15-110$. ,										
Surrogate: 2,4,6-Tribromophenol (SIM) 181 μg/L 200 90.4 15-110	_										
Surrogate: p-1erphenyI-d14 66.0 µg/L 100 66.0 30-130											
	Surrogate: p-1erphenyl-d14	66.0		μg/L	100		66.0	30-130			

QUALITY CONTROL

Semivolatile Organic Compounds by - GC/MS - Quality Control

		Reporting		Spike	Source		%REC		RPD	
Analyte	Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Notes
Batch B285899 - SW-846 3510C										
Blank (B285899-BLK1)				Prepared: 07	7/14/21 Analy	yzed: 07/15/2	.1			
Acenaphthene	ND	5.00	μg/L							
Acenaphthylene	ND	5.00	$\mu g \! / \! L$							
Anthracene	ND	5.00	μg/L							
Benzidine	ND	20.0	μg/L							R-05, V-04, V-05, V-34
Benzo(g,h,i)perylene	ND	5.00	$\mu g/L$							
4-Bromophenylphenylether	ND	10.0	$\mu g/L$							
Butylbenzylphthalate	ND	10.0	$\mu g/L$							
4-Chloro-3-methylphenol	ND	10.0	$\mu g/L$							
Bis(2-chloroethyl)ether	ND	10.0	$\mu g/L$							
Bis(2-chloroisopropyl)ether	ND	10.0	$\mu g/L$							
2-Chloronaphthalene	ND	10.0	$\mu g/L$							L-04
2-Chlorophenol	ND	10.0	$\mu g/L$							
4-Chlorophenylphenylether	ND	10.0	$\mu g/L$							
Di-n-butylphthalate	ND	10.0	$\mu g/L$							
1,3-Dichlorobenzene	ND	5.00	$\mu g/L$							
1,4-Dichlorobenzene	ND	5.00	$\mu g/L$							
1,2-Dichlorobenzene	ND	5.00	$\mu g/L$							
3,3-Dichlorobenzidine	ND	10.0	$\mu g/L$							
2,4-Dichlorophenol	ND	10.0	$\mu g/L$							
Diethylphthalate	ND	10.0	$\mu g/L$							
2,4-Dimethylphenol	ND	10.0	$\mu g/L$							
Dimethylphthalate	ND	10.0	$\mu g/L$							
4,6-Dinitro-2-methylphenol	ND	10.0	μg/L							
2,4-Dinitrophenol	ND	10.0	$\mu g/L$							
2,4-Dinitrotoluene	ND	10.0	μg/L							
2,6-Dinitrotoluene	ND	10.0	μg/L							
Di-n-octylphthalate	ND	10.0	μg/L							
1,2-Diphenylhydrazine/Azobenzene	ND	10.0	μg/L							
Bis(2-Ethylhexyl)phthalate	ND	10.0	μg/L							
Fluoranthene	ND	5.00	μg/L							
Fluorene	ND	5.00	μg/L							
Hexachlorobenzene	ND	10.0	μg/L							
Hexachlorobutadiene	ND	10.0	μg/L							
Hexachlorocyclopentadiene	ND	10.0	μg/L							L-04
Hexachloroethane	ND ND	10.0	μg/L							L-04
Isophorone	ND ND	10.0	μg/L							
Naphthalene	ND	5.00	μg/L							
Nitrobenzene	ND	10.0	μg/L							
2-Nitrophenol	ND	10.0	μg/L							
4-Nitrophenol	ND	10.0	μg/L							
N-Nitrosodimethylamine	ND	10.0	μg/L							
N-Nitrosodi-n-propylamine	ND ND	10.0	μg/L μg/L							
2-Methylnaphthalene	ND ND	5.00	μg/L μg/L							
Phenanthrene	ND ND	5.00	μg/L							
2-Methylphenol	ND ND	10.0	μg/L							
Phenol		10.0	μg/L μg/L							
3/4-Methylphenol	ND	20.0	μg/L μg/L							
Pyrene	ND ND	5.00	μg/L μg/L							
1,2,4-Trichlorobenzene	ND	5.00								1 04
2,4,6-Trichlorophenol	ND		μg/L μg/I							L-04
	ND	10.0	μg/L							
Surrogate: 2-Fluorophenol	73.3		$\mu g/L$	200		36.6	15-110			

QUALITY CONTROL

Semivolatile Organic Compounds by - GC/MS - Quality Control

Analyte	Result	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Notes
Batch B285899 - SW-846 3510C										
Blank (B285899-BLK1)				Prepared: 07	//14/21 Anal	yzed: 07/15/2	.1			
urrogate: Phenol-d6	73.9		μg/L	200		37.0	15-110			
urrogate: Nitrobenzene-d5	58.1		$\mu g/L$	100		58.1	30-130			
urrogate: 2-Fluorobiphenyl	60.3		$\mu g/L$	100		60.3	30-130			
urrogate: 2,4,6-Tribromophenol	174		$\mu g/L$	200		87.2	15-110			
urrogate: p-Terphenyl-d14	107		$\mu g/L$	100		107	30-130			
.CS (B285899-BS1)				Prepared: 07	7/14/21 Anal	yzed: 07/15/2	.1			
cenaphthene	27.5	5.00	μg/L	50.0		55.1	47-145			
cenaphthylene	29.4	5.00	$\mu g/L$	50.0		58.7	33-145			
anthracene	35.7	5.00	$\mu g/L$	50.0		71.3	27-133			
enzidine	53.5	20.0	$\mu g/L$	50.0		107	40-140			V-04, V-05, R-05 V-34
enzo(g,h,i)perylene	33.5	5.00	μg/L	50.0		66.9	10-219			v-3 4
Bromophenylphenylether	32.0	10.0	$\mu g/L$	50.0		64.0	53-127			
Butylbenzylphthalate	35.7	10.0	μg/L	50.0		71.4	10-152			
-Chloro-3-methylphenol	35.3	10.0	μg/L	50.0		70.6	22-147			
is(2-chloroethyl)ether	26.2	10.0	μg/L	50.0		52.3	12-158			
is(2-chloroisopropyl)ether	25.0	10.0	$\mu g/L$	50.0		49.9	36-166			
-Chloronaphthalene	22.7	10.0	$\mu g/L$	50.0		45.3 *	60-120			L-04
-Chlorophenol	26.1	10.0	μg/L	50.0		52.2	23-134			
-Chlorophenylphenylether	31.0	10.0	μg/L	50.0		61.9	25-158			
i-n-butylphthalate	37.0	10.0	μg/L	50.0		74.0	10-120			
3-Dichlorobenzene	15.1	5.00	$\mu g/L$	50.0		30.3	10-172			
,4-Dichlorobenzene	15.3	5.00	μg/L	50.0		30.6	20-124			
2-Dichlorobenzene	16.4	5.00	$\mu g/L$	50.0		32.8	32-129			
,3-Dichlorobenzidine	39.8	10.0	$\mu g/L$	50.0		79.5	10-262			
4-Dichlorophenol	29.1	10.0	$\mu g/L$	50.0		58.3	39-135			
Piethylphthalate	37.1	10.0	$\mu g \! / \! L$	50.0		74.3	10-120			
,4-Dimethylphenol	29.6	10.0	$\mu g \! / \! L$	50.0		59.2	32-120			
Dimethylphthalate	36.4	10.0	$\mu g/L$	50.0		72.9	10-120			
,6-Dinitro-2-methylphenol	44.4	10.0	$\mu g\!/\!L$	50.0		88.8	10-181			
,4-Dinitrophenol	36.6	10.0	$\mu g \! / \! L$	50.0		73.3	10-191			
,4-Dinitrotoluene	42.2	10.0	$\mu g \! / \! L$	50.0		84.4	39-139			
,6-Dinitrotoluene	42.8	10.0	$\mu g \! / \! L$	50.0		85.5	50-158			
Di-n-octylphthalate	35.1	10.0	$\mu g/L$	50.0		70.2	4-146			
,2-Diphenylhydrazine/Azobenzene	31.3	10.0	$\mu g/L$	50.0		62.6	40-140			
sis(2-Ethylhexyl)phthalate	34.7	10.0	$\mu g/L$	50.0		69.5	8-158			
luoranthene	36.6	5.00	$\mu g/L$	50.0		73.1	26-137			
luorene	31.5	5.00	$\mu g/L$	50.0		63.0	59-121			
Iexachlorobenzene	35.2	10.0	$\mu g/L$	50.0		70.4	10-152			
Iexachlorobutadiene	13.4	10.0	$\mu g/L$	50.0		26.8	24-120			
I exachlorocyclopentadiene	10.5	10.0	$\mu g/L$	50.0		21.1 *	40-140			L-04
Iexachloroethane	12.7	10.0	$\mu g/L$	50.0		25.5 *	40-120			L-04
sophorone	30.3	10.0	$\mu g/L$	50.0		60.6	21-196			
Japhthalene	21.7	5.00	$\mu g/L$	50.0		43.4	21-133			
litrobenzene	25.7	10.0	$\mu g/L$	50.0		51.5	35-180			
-Nitrophenol	28.4	10.0	$\mu g/L$	50.0		56.7	29-182			
Nitrophenol	27.8	10.0	$\mu g/L$	50.0		55.6	10-132			
-Nitrosodimethylamine	24.1	10.0	$\mu g/L$	50.0		48.2	40-140			
-Nitrosodi-n-propylamine	24.5	10.0	$\mu g/L$	50.0		49.0	10-230			
-Methylnaphthalene	25.4	5.00	$\mu g/L$	50.0		50.9	40-140			
henanthrene	35.6	5.00	$\mu g/L$	50.0		71.2	54-120			
-Methylphenol	27.1	10.0	μg/L	50.0		54.2	40-140			

QUALITY CONTROL

Semivolatile Organic Compounds by - GC/MS - Quality Control

Analyte	Result	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Notes
Batch B285899 - SW-846 3510C										
LCS (B285899-BS1)				Prepared: 07	7/14/21 Analy	zed: 07/15/	21			
Phenol	15.2	10.0	μg/L	50.0		30.4	5-120			
3/4-Methylphenol	26.4	20.0	$\mu g/L$	50.0		52.7	40-140			
Pyrene	36.0	5.00	$\mu g/L$	50.0		72.0	52-120			
1,2,4-Trichlorobenzene	18.2	5.00	$\mu g/L$	50.0		36.4 *	44-142			L-04
2,4,6-Trichlorophenol	32.6	10.0	$\mu g \! / \! L$	50.0		65.1	37-144			
Surrogate: 2-Fluorophenol	68.5		μg/L	200		34.2	15-110			
Surrogate: Phenol-d6	70.5		$\mu g/L$	200		35.2	15-110			
Surrogate: Nitrobenzene-d5	54.9		$\mu g/L$	100		54.9	30-130			
Surrogate: 2-Fluorobiphenyl	61.0		$\mu g/L$	100		61.0	30-130			
Surrogate: 2,4,6-Tribromophenol	161		$\mu g/L$	200		80.7	15-110			
Surrogate: p-Terphenyl-d14	101		$\mu g/L$	100		101	30-130			
LCS Dup (B285899-BSD1)				Prepared: 07	7/14/21 Analy	zed: 07/15/	21			
Acenaphthene	28.1	5.00	μg/L	50.0		56.2	47-145	2.08	48	
Acenaphthylene	30.1	5.00	$\mu g/L$	50.0		60.3	33-145	2.62	74	
Anthracene	36.9	5.00	$\mu g/L$	50.0		73.9	27-133	3.47	66	
Benzidine	20.9	20.0	$\mu g/L$	50.0		41.9	40-140	87.5	* 30	R-05, V-04, V-05, V-34
Benzo(g,h,i)perylene	37.0	5.00	$\mu g/L$	50.0		73.9	10-219	9.94	97	
4-Bromophenylphenylether	32.5	10.0	$\mu g/L$	50.0		65.0	53-127	1.58	43	
Butylbenzylphthalate	37.3	10.0	$\mu g/L$	50.0		74.7	10-152	4.46	60	
4-Chloro-3-methylphenol	37.3	10.0	$\mu g/L$	50.0		74.6	22-147	5.51	73	
Bis(2-chloroethyl)ether	30.4	10.0	$\mu g/L$	50.0		60.8	12-158	15.0	108	
Bis(2-chloroisopropyl)ether	28.0	10.0	$\mu g/L$	50.0		55.9	36-166	11.3	76	
2-Chloronaphthalene	23.8	10.0	$\mu g/L$	50.0		47.6 *	60-120	4.95	24	L-04
2-Chlorophenol	26.6	10.0	$\mu g/L$	50.0		53.3	23-134	2.01	61	
4-Chlorophenylphenylether	31.8	10.0	$\mu g/L$	50.0		63.6	25-158	2.58	61	
Di-n-butylphthalate	37.6	10.0	$\mu g/L$	50.0		75.3	10-120	1.74	47	
1,3-Dichlorobenzene	14.2	5.00	$\mu g/L$	50.0		28.3	10-172	6.76	30	
1,4-Dichlorobenzene	15.0	5.00	μg/L	50.0		29.9	20-124	2.31	30	
1,2-Dichlorobenzene	16.0	5.00	μg/L	50.0		32.1	32-129	2.34	30	
3,3-Dichlorobenzidine	40.7	10.0	$\mu g/L$	50.0		81.5	10-262	2.43	108	
2,4-Dichlorophenol	32.2	10.0	$\mu g/L$	50.0		64.4	39-135	10.0	50	
Diethylphthalate	37.8	10.0	$\mu g/L$	50.0		75.6	10-120	1.74	100	
2,4-Dimethylphenol	32.1	10.0	$\mu g/L$	50.0		64.2	32-120	8.04	58	
Dimethylphthalate	37.7	10.0	$\mu g/L$	50.0		75.5	10-120	3.53	183	
4,6-Dinitro-2-methylphenol	44.1	10.0	$\mu g/L$	50.0		88.2	10-181	0.678	203	
2,4-Dinitrophenol	39.1	10.0	$\mu g/L$	50.0		78.1	10-191	6.39	132	
2,4-Dinitrotoluene	44.7	10.0	$\mu g/L$	50.0		89.4	39-139	5.71	42	
2,6-Dinitrotoluene	44.1	10.0	$\mu g/L$	50.0		88.1	50-158	2.99	48	
Di-n-octylphthalate	36.1	10.0	$\mu g/L$	50.0		72.2	4-146	2.87	69	
1,2-Diphenylhydrazine/Azobenzene	32.7	10.0	$\mu g/L$	50.0		65.5	40-140	4.43	30	
Bis(2-Ethylhexyl)phthalate	36.1	10.0	$\mu g/L$	50.0		72.2	8-158	3.90	82	
Fluoranthene	36.8	5.00	$\mu g/L$	50.0		73.5	26-137	0.518	66	
Fluorene	32.2	5.00	$\mu g/L$	50.0		64.4	59-121	2.20	38	
Hexachlorobenzene	35.5	10.0	$\mu g/L$	50.0		71.1	10-152	0.990	55	
Hexachlorobutadiene	12.7	10.0	$\mu g/L$	50.0		25.5	24-120	4.98	62	
Hexachlorocyclopentadiene	10.2	10.0	$\mu g/L$	50.0		20.5 *	40-140	2.89	30	L-04
Hexachloroethane	11.6	10.0	$\mu g/L$	50.0		23.2 *	40-120	9.20	52	L-04
Isophorone	33.0	10.0	$\mu g/L$	50.0		66.1	21-196	8.68	93	
Naphthalene	23.5	5.00	$\mu g/L$	50.0		47.1	21-133	8.23	65	
Nitrobenzene	27.7	10.0	μg/L	50.0		55.5	35-180	7.52	62	
2-Nitrophenol	30.6	10.0	μg/L	50.0		61.2	29-182	7.50	55	

Page 26 of 45

QUALITY CONTROL

Semivolatile Organic Compounds by - GC/MS - Quality Control

		Reporting		Spike	Source		%REC		RPD	
Analyte	Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Notes
Batch B285899 - SW-846 3510C										
LCS Dup (B285899-BSD1)				Prepared: 07	7/14/21 Anal	yzed: 07/15/2	.1			
4-Nitrophenol	26.3	10.0	μg/L	50.0		52.6	10-132	5.54	131	
N-Nitrosodimethylamine	23.6	10.0	μg/L	50.0		47.2	40-140	2.05	30	
N-Nitrosodi-n-propylamine	27.2	10.0	μg/L	50.0		54.3	10-230	10.3	87	
2-Methylnaphthalene	27.2	5.00	μg/L	50.0		54.4	40-140	6.76	30	
Phenanthrene	35.5	5.00	μg/L	50.0		71.1	54-120	0.112	39	
2-Methylphenol	27.4	10.0	μg/L	50.0		54.8	40-140	1.06	30	
Phenol	16.2	10.0	μg/L	50.0		32.4	5-120	6.50	64	
3/4-Methylphenol	28.6	20.0	μg/L	50.0		57.3	40-140	8.33	30	
Pyrene	37.5	5.00	μg/L	50.0		74.9	52-120	4.00	49	
1,2,4-Trichlorobenzene	17.9	5.00	μg/L	50.0		35.9 *	44-142	1.44	50	L-04
2,4,6-Trichlorophenol	33.9	10.0	$\mu g/L$	50.0		67.7	37-144	3.91	58	
Surrogate: 2-Fluorophenol	69.4		μg/L	200		34.7	15-110			
Surrogate: Phenol-d6	72.9		$\mu g/L$	200		36.4	15-110			
Surrogate: Nitrobenzene-d5	58.3		$\mu g/L$	100		58.3	30-130			
Surrogate: 2-Fluorobiphenyl	63.8		$\mu g/L$	100		63.8	30-130			
Surrogate: 2,4,6-Tribromophenol	163		$\mu g/L$	200		81.7	15-110			
Surrogate: p-Terphenyl-d14	104		μg/L	100		104	30-130			

QUALITY CONTROL

Polychlorinated Biphenyls By GC/ECD - Quality Control

Analyte	Result	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Notes
Batch B285906 - SW-846 3510C										
Blank (B285906-BLK1)				Prepared: 07	//14/21 Analy	yzed: 07/17/	21			
Aroclor-1016	ND	0.100	μg/L							
Aroclor-1016 [2C]	ND	0.100	$\mu g/L$							
Aroclor-1221	ND	0.100	$\mu g/L$							
Aroclor-1221 [2C]	ND	0.100	$\mu g/L$							
Aroclor-1232	ND	0.100	$\mu g/L$							
Aroclor-1232 [2C]	ND	0.100	$\mu g/L$							
Aroclor-1242	ND	0.100	$\mu g/L$							
Aroclor-1242 [2C]	ND	0.100	$\mu g/L$							
Aroclor-1248	ND	0.100	$\mu g/L$							
Aroclor-1248 [2C]	ND	0.100	$\mu g/L$							
Aroclor-1254	ND	0.100	$\mu g/L$							
Aroclor-1254 [2C]	ND	0.100	μg/L							
Aroclor-1260	ND	0.100	μg/L							
Aroclor-1260 [2C]	ND	0.100	μg/L							
Surrogate: Decachlorobiphenyl	1.95		$\mu g/L$	1.00		195 *	30-130			S-13
Surrogate: Decachlorobiphenyl [2C]	1.80		μg/L	1.00		180 *	50 150			S-13
Surrogate: Tetrachloro-m-xylene	1.30		μg/L	1.00		130	30-150			
Surrogate: Tetrachloro-m-xylene [2C]	1.26		μg/L	1.00		126	30-150			
LCS (B285906-BS1)				Prepared: 07	//14/21 Analy	yzed: 07/17/	21			
Aroclor-1016	0.522	0.200	$\mu g/L$	0.500		104	50-140			
Aroclor-1016 [2C]	0.495	0.200	$\mu g/L$	0.500		99.0	50-140			
Aroclor-1260	0.510	0.200	$\mu g/L$	0.500		102	8-140			
Aroclor-1260 [2C]	0.468	0.200	μg/L	0.500		93.7	8-140			
Surrogate: Decachlorobiphenyl	1.93		$\mu g/L$	2.00		96.4	30-150			
Surrogate: Decachlorobiphenyl [2C]	1.80		$\mu g/L$	2.00		90.2	30-150			
Surrogate: Tetrachloro-m-xylene	1.51		μg/L	2.00		75.3	30-150			
Surrogate: Tetrachloro-m-xylene [2C]	1.47		μg/L	2.00		73.5	30-150			
LCS Dup (B285906-BSD1)				Prepared: 07	//14/21 Analy	zed: 07/17/	21			
Aroclor-1016	0.527	0.200	μg/L	0.500		105	50-140	1.04		
Aroclor-1016 [2C]	0.502	0.200	$\mu g/L$	0.500		100	50-140	1.45		
Aroclor-1260	0.496	0.200	$\mu g/L$	0.500		99.3	8-140	2.78		
Aroclor-1260 [2C]	0.456	0.200	μg/L	0.500		91.2	8-140	2.71		
Surrogate: Decachlorobiphenyl	1.30		μg/L	2.00		65.0	30-150			
Surrogate: Decachlorobiphenyl [2C]	1.22		$\mu g/L$	2.00		61.2	30-150			
Surrogate: Tetrachloro-m-xylene	1.57		$\mu g/L$	2.00		78.5	30-150			
Surrogate: Tetrachloro-m-xylene [2C]	1.54		$\mu g/L$	2.00		77.1	30-150			

QUALITY CONTROL

Metals Analyses (Total) - Quality Control

Analyte	Result	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Notes
Batch B285894 - EPA 200.7										
Blank (B285894-BLK1)				Prepared &	Analyzed: 07	7/14/21				
Iron	ND	0.050	mg/L							
Hardness	ND	1.4	mg/L							
LCS (B285894-BS1)				Prepared &	Analyzed: 07	7/14/21				
Íron	4.14	0.050	mg/L	4.00		103	85-115			
Hardness	29	1.4	mg/L	26.4		109	85-115			
LCS Dup (B285894-BSD1)				Prepared &	Analyzed: 07	7/14/21				
ron	3.67	0.050	mg/L	4.00		91.8	85-115	12.0	20	
Iardness	25	1.4	mg/L	26.4		93.1	85-115	16.0	20	
Batch B285900 - EPA 200.8										
Blank (B285900-BLK1)				Prepared: 07	7/14/21 Anal	yzed: 07/15/	21			
Antimony	ND	1.0	μg/L	<u> </u>				<u> </u>	<u> </u>	
Arsenic	ND	0.80	$\mu g/L$							
Cadmium	ND	0.20	$\mu g/L$							
Chromium	ND	1.0	μg/L							
Copper	ND	1.0	μg/L							
lickel	ND	5.0	μg/L							
elenium	ND	5.0	μg/L							
ilver	ND	0.20	μg/L							
line	ND	10	$\mu g/L$							
CS (B285900-BS1)				Prepared: 07	7/14/21 Anal	yzed: 07/15/	21			
Antimony	602	10	$\mu g/L$	500		120 *	85-115			L-07
arsenic	556	8.0	$\mu g/L$	500		111	85-115			
Cadmium	541	2.0	$\mu g/L$	500		108	85-115			
Chromium	534	10	μg/L	500		107	85-115			
Copper	1070	10	$\mu g/L$	1000		107	85-115			
Nickel	551	50	$\mu g \! / \! L$	500		110	85-115			
elenium	549	50	$\mu g/L$	500		110	85-115			
Silver	489	2.0	$\mu g/L$	500		97.8	85-115			
linc	1140	100	μg/L	1000		114	85-115			
CS Dup (B285900-BSD1)				•	7/14/21 Anal	•				
Antimony	531	10	μg/L	500		106	85-115	12.4	20	
Arsenic	492	8.0	μg/L	500		98.3	85-115	12.4	20	
Cadmium	477	2.0	μg/L	500		95.4	85-115	12.6	20	
Chromium	469	10	μg/L	500		93.8	85-115	13.0	20	
Copper	951	10	μg/L	1000		95.1	85-115	11.8	20	
Nickel	490	50	μg/L	500		98.0	85-115	11.6	20	
Selenium	490	50	μg/L	500		98.0	85-115	11.3	20	
Silver	437	2.0	μg/L	500		87.4	85-115	11.3	20	
Zinc	1000	100	μg/L μg/L	1000		100	85-115	12.7	20	

QUALITY CONTROL

Metals Analyses (Total) - Quality Control

Analyte	Result	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Notes
Batch B285904 - EPA 245.1										
Blank (B285904-BLK1)				Prepared: 07	/14/21 Anal	yzed: 07/15/2	21			
Mercury	ND	0.00010	mg/L							
LCS (B285904-BS1)				Prepared: 07	/14/21 Anal	yzed: 07/15/2	21			
Mercury	0.00407	0.00010	mg/L	0.00400		102	85-115			
LCS Dup (B285904-BSD1)				Prepared: 07	/14/21 Anal	yzed: 07/15/2	21			
Mercury	0.00405	0.00010	mg/L	0.00400		101	85-115	0.461	20	
Batch B286082 - EPA 200.8										
Blank (B286082-BLK1)				Prepared: 07	/15/21 Anal	yzed: 07/16/2	21			
Lead	ND	0.50	μg/L							
LCS (B286082-BS1)				Prepared: 07	/15/21 Anal	yzed: 07/16/2	21			
Lead	482	5.0	μg/L	500		96.4	85-115			
LCS Dup (B286082-BSD1)				Prepared: 07	/15/21 Anal	yzed: 07/16/2	21			
Lead	469	5.0	μg/L	500		93.8	85-115	2.69	20	

QUALITY CONTROL

Conventional Chemistry Parameters by EPA/APHA/SW-846 Methods (Total) - Quality Control

Analysta	D14	Reporting Limit	I I.e. : 4-	Spike	Source	0/DEC	%REC	RPD	RPD	N-4
Analyte	Result	Limit	Units	Level	Result	%REC	Limits	KLD	Limit	Notes
Batch B285869 - SM21-22 4500 CL G										
Blank (B285869-BLK1)				Prepared & A	Analyzed: 07	//13/21				
Chlorine, Residual	ND	0.020	mg/L							
LCS (B285869-BS1)				Prepared & A	Analyzed: 07	//13/21				
Chlorine, Residual	0.70	0.020	mg/L	0.663		106	80.3-122			
LCS Dup (B285869-BSD1)				Prepared & A	Analyzed: 07	//13/21				
Chlorine, Residual	0.70	0.020	mg/L	0.663		105	80.3-122	1.00	10.7	
Batch B285873 - SM21-22 3500 Cr B										
Blank (B285873-BLK1)				Prepared & A	Analyzed: 07	//13/21				
Hexavalent Chromium	ND	0.0040	mg/L							
LCS (B285873-BS1)				Prepared & A	Analyzed: 07	//13/21				
Hexavalent Chromium	0.11	0.0040	mg/L	0.100		106	90-114			
LCS Dup (B285873-BSD1)				Prepared & A	Analyzed: 07	//13/21				
Hexavalent Chromium	0.11	0.0040	mg/L	0.100		106	90-114	0.00	5	
Batch B285890 - EPA 1664B										
Blank (B285890-BLK1)				Prepared & A	Analyzed: 07	//14/21				
Silica Gel Treated HEM (SGT-HEM)	ND	1.4	mg/L							
LCS (B285890-BS1)				Prepared & A	Analyzed: 07	//14/21				
Silica Gel Treated HEM (SGT-HEM)	10		mg/L	10.0		104	64-132			
Duplicate (B285890-DUP1)	Sour	ce: 21G0623-	01	Prepared & A	Analyzed: 07	//14/21				
Silica Gel Treated HEM (SGT-HEM)	ND	2.8	mg/L		NE)		NC	18	
Matrix Spike (B285890-MS1)	Sour	ce: 21G0623-	01	Prepared & A	Analyzed: 07	//14/21				
Silica Gel Treated HEM (SGT-HEM)	72	14	mg/L	100	NE	72.0	64-132			
Batch B285895 - SM21-22 2540D										
Blank (B285895-BLK1)				Prepared & A	Analyzed: 07	//14/21				
Total Suspended Solids	ND	2.5	mg/L							
LCS (B285895-BS1)				Prepared & A	Analyzed: 07	//14/21				
Total Suspended Solids	230	10	mg/L	200		115	53.8-124			

QUALITY CONTROL

Conventional Chemistry Parameters by EPA/APHA/SW-846 Methods (Total) - Quality Control

	-	Reporting		Spike	Source	avene:	%REC		RPD	
Analyte	Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Notes
Batch B285895 - SM21-22 2540D										
Duplicate (B285895-DUP1)	Sour	ce: 21G0623-	01	Prepared &	Analyzed: 07	/14/21				
Total Suspended Solids	54	1.7	mg/L		52			3.80	5	
Batch B286026 - SM19-22 4500 NH3 C										
Blank (B286026-BLK1)				Prepared: 07	7/15/21 Analy	yzed: 07/19/	21			
Ammonia as N	ND	0.30	mg/L							
LCS (B286026-BS1)				Prepared: 07	7/15/21 Analy	yzed: 07/19/	21			
Ammonia as N	4.8	0.30	mg/L	5.00		95.8	86.2-110			
LCS Dup (B286026-BSD1)				Prepared: 07	7/15/21 Analy	yzed: 07/19/	21			
Ammonia as N	4.8	0.30	mg/L	5.00		95.8	86.2-110	0.00	10	
Batch B286215 - EPA 300.0										
Blank (B286215-BLK1)				Prepared &	Analyzed: 07	/19/21				
Chloride	ND	1.0	mg/L							
LCS (B286215-BS1)				Prepared &	Analyzed: 07	/19/21				
Chloride	9.4	1.0	mg/L	10.0		94.4	90-110			
LCS Dup (B286215-BSD1)				Prepared &	Analyzed: 07	/19/21				
Chloride	9.5	1.0	mg/L	10.0		94.9	90-110	0.491	20	

QUALITY CONTROL

Drinking Water Organics EPA 504.1 - Quality Control

		Reporting		Spike	Source		%REC		RPD	
Analyte	Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Notes
Batch B286276 - EPA 504 water										
Blank (B286276-BLK1)				Prepared &	Analyzed: 07	//19/21				
1,2-Dibromoethane (EDB)	ND	0.021	$\mu g/L$							
Surrogate: 1,3-Dibromopropane	1.06		μg/L	1.04		102	70-130			
LCS (B286276-BS1)				Prepared &	Analyzed: 07	//19/21				
1,2-Dibromoethane (EDB)	0.234	0.020	μg/L	0.256		91.6	70-130			
Surrogate: 1,3-Dibromopropane	0.973		μg/L	1.02		95.2	70-130			
LCS Dup (B286276-BSD1)				Prepared &	Analyzed: 07	//19/21				
1,2-Dibromoethane (EDB)	0.234	0.021	μg/L	0.263		88.8	70-130	0.109		
Surrogate: 1,3-Dibromopropane	0.932		μg/L	1.05		88.5	70-130			
Matrix Spike (B286276-MS1)	Sou	rce: 21G0623	-01	Prepared &	Analyzed: 07	//19/21				
1,2-Dibromoethane (EDB)	0.207	0.020	μg/L	0.247	NE	84.0	65-135			
Surrogate: 1,3-Dibromopropane	0.899		μg/L	0.987		91.1	70-130			

IDENTIFICATION SUMMARY FOR SINGLE COMPONENT ANALYTES

LCS

608.3

Lab Sample ID: B285906-BS1			Date(s) Analyzed:	07/17/2021	07/17/2	.021
Instrument ID (1):	ECD4	_	Instrument ID (2):	ECD4		_
GC Column (1):	ID:	(mm)	GC Column (2):		ID:	(mm)

ANALYTE	COL	RT	RT WINDOW		CONCENTRATION	%RPD
700702112	002	111	FROM	TO	OONOLIVITUATION	70111 15
Aroclor-1016	1	0.000	0.000	0.000	0.522	
	2	0.000	0.000	0.000	0.495	4.9
Aroclor-1260	1	0.000	0.000	0.000	0.510	
	2	0.000	0.000	0.000	0.468	8.6

IDENTIFICATION SUMMARY FOR SINGLE COMPONENT ANALYTES

LCS Du	p

608.3

Lab Sample ID: B285906-BSD1			Date(s) Analyzed:	07/17/2021	07/17	7/2021
Instrument ID (1):	ECD4		Instrument ID (2):	ECD4		
GC Column (1):	ID:	(mm)	GC Column (2):		ID:	(mm)

ANALYTE	ANALYTE COL RT		RT WI	NDOW	CONCENTRATION	%RPD
7117/2112	002	111	FROM	TO	CONCENTIVITION	70111 13
Aroclor-1016	1	0.000	0.000	0.000	0.527	
	2	0.000	0.000	0.000	0.502	5.4
Aroclor-1260	1	0.000	0.000	0.000	0.496	
	2	0.000	0.000	0.000	0.456	9.2

IDENTIFICATION SUMMARY FOR SINGLE COMPONENT ANALYTES

LCS	

EPA 504.1

La	b Sample ID: B28	B286276-BS1		Da	Date(s) Analyzed: 07/1		07/1	9/2021
Ins	strument ID (1):			In	strument ID	(2):		
G	C Column (1):	ID:	(m	nm) G	C Column (2	2):	ID:	(mm
	ANALYTE	COL		RT WI	NDOW	CONCENTRATION	%RPD]
			RT	FROM	TO			
Ī	1.2-Dibromoethane (EDB)	1	3 321	0.000	0.000	0.234		

IDENTIFICATION SUMMARY FOR SINGLE COMPONENT ANALYTES

LCS Dup	

EPA 504.1

La	b Sample ID: B286	B286276-BSD1		Da	ate(s) Analy	zed: 07/19/2021	07/1	9/2021		
Ins	strument ID (1):			In	strument ID	(2):				
G	C Column (1):	ID:	(m	nm) G	C Column (2	2):	ID:	(mm		
	ANALYTE	TE COL		COL RT		RT WI	NDOW	CONCENTRATION	%RPD	
				FROM	TO					
Ī	1.2-Dibromoethane (EDB)	1	3 315	0.000	0.000	0.234				

IDENTIFICATION SUMMARY FOR SINGLE COMPONENT ANALYTES

Matrix Spike

EPA 504.1

La	b Sample ID: B28	B286276-MS1		Da	ate(s) Analy	zed: 07/19/2021	07/1	9/2021
Ins	strument ID (1):			In	strument ID	(2):		
G	C Column (1):	ID:	(m	nm) G	C Column (2	2):	ID:	(mm
	ANALYTE	COL	RT	RT WI	NDOW	CONCENTRATION	%RPD	
	, ,			FROM	ТО		701 11 2	
	1.2-Dibromoethane (FDB)	1	3 321	0.000	0.000	0.207		ĺ

FLAG/QUALIFIER SUMMARY

*	OC result is outside of established limits.
	· ·
†	Wide recovery limits established for difficult compound.
‡	Wide RPD limits established for difficult compound.
#	Data exceeded client recommended or regulatory level
ND	Not Detected
RL	Reporting Limit is at the level of quantitation (LOQ)
DL	Detection Limit is the lower limit of detection determined by the MDL study
MCL	Maximum Contaminant Level
	Percent recoveries and relative percent differences (RPDs) are determined by the software using values in the calculation which have not been rounded.
	No results have been blank subtracted unless specified in the case narrative section.
J	Detected but below the Reporting Limit (lowest calibration standard); therefore, result is an estimated concentration (CLP J-Flag).
L-04	Laboratory fortified blank/laboratory control sample recovery and duplicate recovery are outside of control limits. Reported value for this compound is likely to be biased on the low side.
L-07	Either laboratory fortified blank/laboratory control sample or duplicate recovery is outside of control limits, but the other is within limits. RPD between the two LFB/LCS results is within method specified criteria.
R-05	Laboratory fortified blank duplicate RPD is outside of control limits. Reduced precision is anticipated for any reported value for this compound.
RL-12	Elevated reporting limit due to matrix interference.
S-13	Surrogate recovery is outside of control limits on both columns. Data validation is not affected since all results are "not detected" and bias is on the high side.
V-04	Initial calibration did not meet method specifications. Compound was calibrated using a response factor where %RSD is outside of method specified criteria. Reported result is estimated.
V-05	Continuing calibration verification (CCV) did not meet method specifications and was biased on the low side for this compound.
V-06	Continuing calibration verification (CCV) did not meet method specifications and was biased on the high side for this compound.
V-34	Initial calibration verification (ICV) did not meet method specifications and was biased on the low side for this compound. Reported result is estimated.
V-35	Initial calibration verification (ICV) did not meet method specifications and was biased on the high side for this compound. Reported result is estimated.

CERTIFICATIONS

Certified Analyses included in this Report

Analyte	Certifications	
- in Water		
Cyanide	CT,MA,NH,NY,RI,NC,ME,VA	
608.3 in Water		
Aroclor-1016	CT,MA,NH,NY,RI,NC,ME,VA	
Aroclor-1016 [2C]	CT,MA,NH,NY,RI,NC,ME,VA	
Aroclor-1221	CT,MA,NH,NY,RI,NC,ME,VA	
Aroclor-1221 [2C]	CT,MA,NH,NY,RI,NC,ME,VA	
Aroclor-1232	CT,MA,NH,NY,RI,NC,ME,VA	
Aroclor-1232 [2C]	CT,MA,NH,NY,RI,NC,ME,VA	
Aroclor-1242	CT,MA,NH,NY,RI,NC,ME,VA	
Aroclor-1242 [2C]	CT,MA,NH,NY,RI,NC,ME,VA	
Aroclor-1248	CT,MA,NH,NY,RI,NC,ME,VA	
Aroclor-1248 [2C]	CT,MA,NH,NY,RI,NC,ME,VA	
Aroclor-1254	CT,MA,NH,NY,RI,NC,ME,VA	
Aroclor-1254 [2C]	CT,MA,NH,NY,RI,NC,ME,VA	
Aroclor-1260	CT,MA,NH,NY,RI,NC,ME,VA	
Aroclor-1260 [2C]	CT,MA,NH,NY,RI,NC,ME,VA	
624.1 in Water		
Acetone	CT,NY,MA,NH	
tert-Amyl Methyl Ether (TAME)	MA	
Benzene	CT,NY,MA,NH,RI,NC,ME,VA	
Bromodichloromethane	CT,NY,MA,NH,RI,NC,ME,VA	
Bromoform	CT,NY,MA,NH,RI,NC,ME,VA	
Bromomethane	CT,NY,MA,NH,RI,NC,ME,VA	
tert-Butyl Alcohol (TBA)	NY,MA	
Carbon Tetrachloride	CT,NY,MA,NH,RI,NC,ME,VA	
Chlorobenzene	CT,NY,MA,NH,RI,NC,ME,VA	
Chlorodibromomethane	CT,NY,MA,NH,RI,NC,ME,VA	
Chloroethane	CT,NY,MA,NH,RI,NC,ME,VA	
Chloroform	CT,NY,MA,NH,RI,NC,ME,VA	
Chloromethane	CT,NY,MA,NH,RI,NC,ME,VA	
1,2-Dichlorobenzene	CT,NY,MA,NH,RI,NC,ME,VA	
1,3-Dichlorobenzene	CT,NY,MA,NH,RI,NC,ME,VA	
1,4-Dichlorobenzene	CT,NY,MA,NH,RI,NC,ME,VA	
1,2-Dichloroethane	CT,NY,MA,NH,RI,NC,ME,VA	
1,1-Dichloroethane	CT,NY,MA,NH,RI,NC,ME,VA	
1,1-Dichloroethylene	CT,NY,MA,NH,RI,NC,ME,VA	
trans-1,2-Dichloroethylene	CT,NY,MA,NH,RI,NC,ME,VA	
1,2-Dichloropropane	CT,NY,MA,NH,RI,NC,ME,VA	
cis-1,3-Dichloropropene	CT,NY,MA,NH,RI,NC,ME,VA	
1,4-Dioxane	MA	
trans-1,3-Dichloropropene	CT,NY,MA,NH,RI,NC,ME,VA	
Ethanol	NY,MA,NH	
Ethylbenzene	CT,NY,MA,NH,RI,NC,ME,VA	
Methyl tert-Butyl Ether (MTBE)	NY,MA,NH,NC	
Methylene Chloride	CT,NY,MA,NH,RI,NC,ME,VA	
Naphthalene	NY,MA,NC	

CERTIFICATIONS

Certified Analyses included in this Report

Analyte	Certifications
624.1 in Water	
1,1,2,2-Tetrachloroethane	CT,NY,MA,NH,RI,NC,ME,VA
Tetrachloroethylene	CT,NY,MA,NH,RI,NC,ME,VA
Toluene	CT,NY,MA,NH,RI,NC,ME,VA
1,2,4-Trichlorobenzene	MA,NC
1,1,1-Trichloroethane	CT,NY,MA,NH,RI,NC,ME,VA
1,1,2-Trichloroethane	CT,NY,MA,NH,RI,NC,ME,VA
Trichloroethylene	CT,NY,MA,NH,RI,NC,ME,VA
Trichlorofluoromethane (Freon 11)	CT,NY,MA,NH,RI,NC,ME,VA
Vinyl Chloride	CT,NY,MA,NH,RI,NC,ME,VA
m+p Xylene	CT,NY,MA,NH,RI,NC
o-Xylene	CT,NY,MA,NH,RI,NC
625.1 in Water	
Acenaphthene	CT,MA,NH,NY,NC,RI,ME,VA
Acenaphthylene	CT,MA,NH,NY,NC,RI,ME,VA
Anthracene	CT,MA,NH,NY,NC,RI,ME,VA
Benzidine	CT,MA,NH,NY,NC,RI,ME,VA
Benzo(g,h,i)perylene	CT,MA,NH,NY,NC,RI,ME,VA
4-Bromophenylphenylether	CT,MA,NH,NY,NC,RI,ME,VA
Butylbenzylphthalate	CT,MA,NH,NY,NC,RI,ME,VA
4-Chloro-3-methylphenol	CT,MA,NH,NY,NC,RI,VA
Bis(2-chloroethyl)ether	CT,MA,NH,NY,NC,RI,ME,VA
Bis(2-chloroisopropyl)ether	CT,MA,NH,NY,NC,RI,ME,VA
2-Chloronaphthalene	CT,MA,NH,NY,NC,RI,ME,VA
2-Chlorophenol	CT,MA,NH,NY,NC,RI,ME,VA
4-Chlorophenylphenylether	CT,MA,NH,NY,NC,RI,ME,VA
Di-n-butylphthalate	CT,MA,NH,NY,NC,RI,ME,VA
1,3-Dichlorobenzene	MA,NC
1,4-Dichlorobenzene	MA,NC
1,2-Dichlorobenzene	MA,NC
3,3-Dichlorobenzidine	CT,MA,NH,NY,NC,RI,ME,VA
2,4-Dichlorophenol	CT,MA,NH,NY,NC,RI,ME,VA
Diethylphthalate	CT,MA,NH,NY,NC,RI,ME,VA
2,4-Dimethylphenol	CT,MA,NH,NY,NC,RI,ME,VA
Dimethylphthalate	CT,MA,NH,NY,NC,RI,ME,VA
4,6-Dinitro-2-methylphenol	CT,MA,NH,NY,NC,RI,ME,VA
2,4-Dinitrophenol	CT,MA,NH,NY,NC,RI,ME,VA
2,4-Dinitrotoluene	CT,MA,NH,NY,NC,RI,ME,VA
2,6-Dinitrotoluene	CT,MA,NH,NY,NC,RI,ME,VA
Di-n-octylphthalate	CT,MA,NH,NY,NC,RI,ME,VA
1,2-Diphenylhydrazine/Azobenzene	NC
Bis(2-Ethylhexyl)phthalate	CT,MA,NH,NY,NC,RI,ME,VA
Fluoranthene	CT,MA,NH,NY,NC,RI,ME,VA
Fluorene	CT,MA,NH,NY,NC,RI,ME,VA
Hexachlorobenzene	CT,MA,NH,NY,NC,RI,ME,VA
Hexachlorobutadiene	CT,MA,NH,NY,NC,RI,ME,VA
Hexachlorocyclopentadiene	CT,MA,NH,NY,NC,RI,ME,VA

CERTIFICATIONS

Certified Analyses included in this Report

Hexavalent Chromium

Analyte	Certifications
625.1 in Water	CH UIRAUJII3
Hexachloroethane	CT,MA,NH,NY,NC,RI,ME,VA
Isophorone	CT,MA,NH,NY,NC,RI,ME,VA
Naphthalene	CT,MA,NH,NY,NC,RI,ME,VA
Nitrobenzene	CT,MA,NH,NY,NC,RI,ME,VA
2-Nitrophenol	CT,MA,NH,NY,NC,RI,ME,VA
4-Nitrophenol	CT,MA,NH,NY,NC,RI,ME,VA
N-Nitrosodimethylamine	CT,MA,NH,NY,NC,RI,ME,VA
N-Nitrosodi-n-propylamine	CT,MA,NH,NY,NC,RI,ME,VA
2-Methylnaphthalene	NC
Phenanthrene	CT,MA,NH,NY,NC,RI,ME,VA
2-Methylphenol	NY,NC
Phenol	CT,MA,NH,NY,NC,RI,ME,VA
3/4-Methylphenol	NY,NC
Pyrene	CT,MA,NH,NY,NC,RI,ME,VA
1,2,4-Trichlorobenzene	CT,MA,NH,NY,NC,RI,ME,VA
2,4,6-Trichlorophenol	CT,MA,NH,NY,NC,RI,ME,VA
2-Fluorophenol	NC
2-Fluorophenol	NC,VA
Phenol-d6	VA
Nitrobenzene-d5	VA
EPA 200.7 in Water	
Iron	CT,MA,NH,NY,RI,NC,ME,VA
Hardness	CT,MA,NH,NY,RI,VA
EPA 200.8 in Water	C I,WA,WII,W I,WI, VA
Antimony	CT,MA,NH,NY,RI,NC,ME,VA
Arsenic	CT,MA,NH,NY,RI,NC,ME,VA
Cadmium	CT,MA,NH,NY,RI,NC,ME,VA
Chromium	CT,MA,NH,NY,RI,NC,ME,VA
Copper	CT,MA,NH,NY,RI,NC,ME,VA
Lead	CT,MA,NH,NY,RI,NC,ME,VA
Nickel	CT,MA,NH,NY,RI,NC,ME,VA
Selenium	CT,MA,NH,NY,RI,NC,ME,VA
Silver	CT,MA,NH,NY,RI,NC,ME,VA
Zinc	CT,MA,NH,NY,RI,NC,ME,VA
EPA 245.1 in Water	
Mercury	CT,MA,NH,RI,NY,NC,ME,VA
EPA 300.0 in Water	
Chloride	NC,NY,MA,VA,ME,NH,CT,RI
SM19-22 4500 NH3 C in Water	
Ammonia as N	NY,MA,CT,RI,VA,NC,ME
SM21-22 2540D in Water	
	CTMA NII NIVDI NG ME VA
Total Suspended Solids	CT,MA,NH,NY,RI,NC,ME,VA
SM21-22 3500 Cr B in Water	

NY,CT,NH,RI,ME,VA,NC

CERTIFICATIONS

Certified Analyses included in this Report

Analyte Certifications

SM21-22 4500 CL G in Water

Chlorine, Residual

CT,MA,RI,ME

Con-Test, a Pace Environmental Laboratory, operates under the following certifications and accreditations:

Code	Description	Number	Expires
AIHA	AIHA-LAP, LLC - ISO17025:2017	100033	03/1/2022
MA	Massachusetts DEP	M-MA100	06/30/2022
CT	Connecticut Department of Publile Health	PH-0165	12/31/2022
NY	New York State Department of Health	10899 NELAP	04/1/2022
NH-S	New Hampshire Environmental Lab	2516 NELAP	02/5/2022
RI	Rhode Island Department of Health	LAO00112	12/30/2021
NC	North Carolina Div. of Water Quality	652	12/31/2021
NJ	New Jersey DEP	MA007 NELAP	06/30/2022
FL	Florida Department of Health	E871027 NELAP	06/30/2022
VT	Vermont Department of Health Lead Laboratory	LL720741	07/30/2022
ME	State of Maine	MA00100	06/9/2023
VA	Commonwealth of Virginia	460217	12/14/2021
NH-P	New Hampshire Environmental Lab	2557 NELAP	09/6/2021
VT-DW	Vermont Department of Health Drinking Water	VT-255716	06/12/2022
NC-DW	North Carolina Department of Health	25703	07/31/2021
PA	Commonwealth of Pennsylvania DEP	68-05812	06/30/2022
MI	Dept. of Env, Great Lakes, and Energy	9100	09/6/2021

	<u></u> 1
くけっく	
)
<u>_</u>	
7)

Phone: 413-525-2332

ttp://www.contestlabs.com

CHAIN OF CUSTODY RECORD

Doc # 381 Rev 1_03242017

Table of Contents salidinos simaly payiosita 3 = Sodium BisulfateX = Sodium Hydroxide ² Preservation Codes: ' Matrix Codes; GW = Ground Water WW = Waste Water DW = Drinking Water Page __1__ of __1__ = Summa Canister 3 Container Codes: 0 = Other (please 0 = Other (please O = Other (please A = Amber Glass G = Glass Preservation Code = Sulfuric Acid Orthophosphale O Field Filtered O Field Filtered N = Nitric Acid PCB ONL O Lab to Filter = Tedlar Bag Lab to Filter Container Code M = Methanol P = Plastic ST = Sterile V = Vial A = Air S = Soil SL = Sludge SOL = Solid # of Containers = Sodium Thiosulfate H = H define) define) define) Chromium VI Please use the following codes to indicate possible sample concentration within the Conc Code ۵ Yainias EDB NELAC and Alflatab, LLC Accredit H - High; M - Medium; L - Low; C - Clean; U - Unknown ZST East Longmeadow, MA 01028 ⋖ HqT ⋖ SCB,2 ANALYSIS REQUESTED ⋖ 39 Spruce Street Semi-Voc's column above: 工 Other Cyanide Cu, Fe, Pb, Hg, Ni, Se, Ag, Zn) Z Fotal Metals (Sb, As, Cd, Cr III, ۵. TRC Chloride MA MCP Required MCP Certification Form Required CT RCP Required MA State DW Required RCP Certification Form Requi Special Requirements ğğ _ bcaccavale@irt-llc.net ljennings@lrt-llc.net Requested Turnaround Time Matrix Code Datinbey levolute ĕ <u>₹</u> 5-day 10-Day Victor Beforen # GISW9 3-Day EXCEL 4-Day Grab CLP Like Data Pkg Required: Composite PDF 🗸 PH RW. 7 7.8 (0) (4. 9 °C Email To: Due Date: (2:80 Date/Time 5.6 Format: Ending Other: 7-Day 1-Day 2-Day Project Entity Date/Time Officer Samples are for NPDES RGP Parameters. ockwood Remediation Technologies Email: info@contestlabs.com Client Sample ID / Description Address: 89 Crawford Street, Leominster, MA 01453 Fax: 413-525-6405 Receiving Water)ate/Time: Date/Time: 1321 Influent PHIN: 7.4@14.9 °C かた Project Name: Anington Town Yard Project Manager: Kim Gravelle Con-Test Quote Name/Number CON-LEST uished by: (signature) Phone: (774) 450-7177 Relinquished.by. (signature Project Number: 2-2237 Con-Test Work Order# Invoice Recipient: Project Location: Company Name Sampled By: Comments: Page 44 of 45

Non Soxhlet

Soxhlet

Chromatogram AIHA-LAP,LLC

WRTA

MWRA School

Municipality

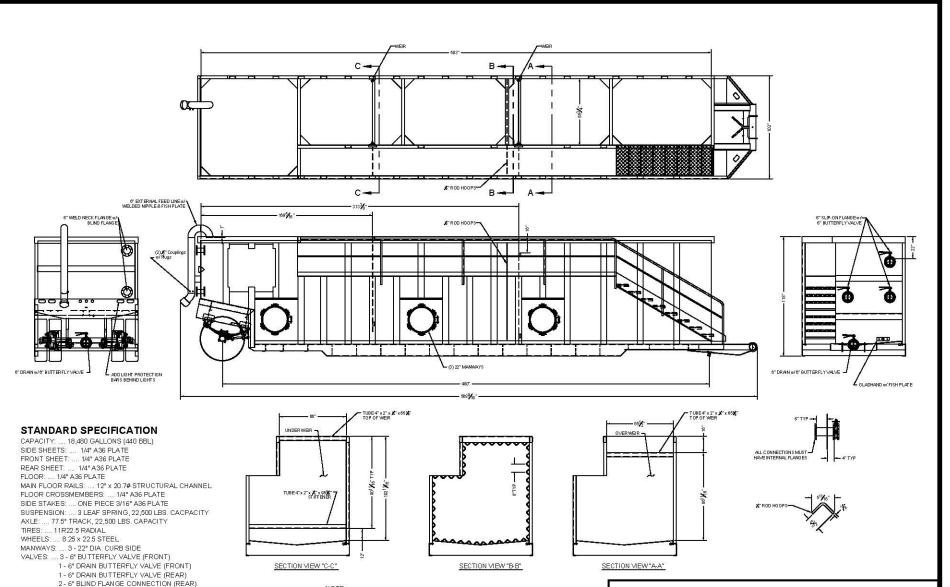
MBTA

Brownfield

Government
Federal
City

Date/Time:

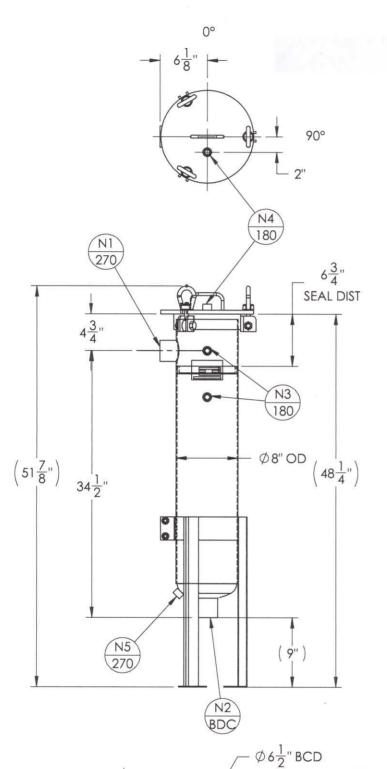
red by: (signature)


I Have Not Confirmed Sample Container
Numbers With Lab Staff Before Relinquishing
Over Samples_____

Login Sample Receipt Checklist - (Rejection Criteria Listing - Using Acceptance Policy) Any False
Statement will be brought to the attention of the Client - State True or False

Client		nent will be broug	ght to the at	tention of	the Client	- State Tru	e or False		
Receiv		4/11/		Date	7/13/	21	Time	1740	
How were th	e samples	In Cooler		No Cooler		On Ice		No Ice	
receiv	•		1:	NO COUIEI					
		Direct from Samp	-			Ambient	P . F	Melted Ice	
Were samp	les within		By Gun #			Actual Ten	1p-4,4		
Temperatu	e? 2-6°C		By Blank #			Actual Ten	1p -		
Was	Custody Se	eal Intact?	<u> Ala</u>	We	re Samples	Tampered	with?	na	•
Was	COC Relin	quished?		Does	s Chain Agr	ee With Sa	mples?		,
Are the	re broken/l	eaking/loose caps	on any sam	ples?	<u> </u>				
Is COC in in	-				nples receiv		olding time?		
Did COC ir		Client	<u> </u>	Analysis	<u> </u>	•	ler Name	<u> </u>	
pertinent Inf		Project		ID's		Collection	Dates/Times	T	
•		d out and legible?		ı					
Are there La		?	F		Who was	notified?			
Are there Ru			F	,		notified?			
Are there Sh	ort Holds?				Who was	notified?	David		
Is there enou	gh Volume	?					J		
Is there Head	Ispace whe	ere applicable?			MS/MSD?	<u> </u>	_	**************************************	
Proper Media	n/Container	s Used?			Is splitting s	samples red	quired?	<u> </u>	
Were trip bla	nks receive	ed?	F_		On COC?	<u> </u>			
Do all sample	es have the	proper pH?		Acid			Base	<u> </u>	
Vials		Gontainers:	#			#			#
Unp-		1 Liter Amb.	Ca	1 Liter I		<u> </u>	16 oz		
HCL-		500 mL Amb.		500 mL			8oz Am		
Meoh-		250 mL Amb.		250 mL			4oz Am		
Bisulfate-		Flashpoint		Col./Ba			2oz Am		
DI- Thiosulfate-	***	Other Glass		Other F			Enc	ore	
Sulfuric-	3	SOC Kit Perchlorate		Plastic			Frozen:		
Sulfulic*		Ferchiorate		Ziplo					
				Unused N	iedia				
Vials	#	Containers:	#	410	51 12	#	40		#
Unp-		1 Liter Amb.		1 Liter i			16 oz		
HCL- Meoh-		500 mL Amb. 250 mL Amb.		500 mL			8oz Am		
Bisulfate-		Col./Bacteria		250 mL Flash			4oz Am 2oz Am		······
DI-		Other Plastic		Other (Enc		
Thiosulfate-		SOC Kit		Plastic			Frozen:	ore 1	
Sulfuric-		Perchlorate		Ziplo		·	1102011.		
Comments:									
Maria de la companya			***************************************						

NOTE: This drawing is a representation baseline for this model of tank. Variations between this drawing and the actual equipment do exist, primarily with appurtenance locations, sizes and quantities.


INLET PIPING: 1 - 6" PIPE SYSTEM (REAR)

18,000 gal. Weir Tank

Lockwood Remediation Technologies, LLC

89 Crawford Street Leominster, Massachusetts 01453 O: 774-450-7177 F: 888-835-0617

		NOZZLE	SCHEDULE				
MARK	QTY	SIZE	/ RATING	DESCI	RIPTION		
N1	1	2" 150	# NPT	IN	LET		
N2	1	2" 150)# NPT	OU.	TLET		
N3	2	1/2" 30	00# NPT	PRES	SS GA		
N4	1	1/2" 30	00# NPT	VE	NT		
N5	1	1/2" 30	00# NPT	CLEAN	CLEAN DRAIN		
N6	-		-	DIRT	DIRTY DRAIN		
	VESS	SEL DESIG	N CONDITION	S			
CODE:	BES	Т СОММЕ	RCIAL PRACT	ICE			
M.A.W.P.:	150 PSI @	250°F	M.D.M.T.:	-20° F	@ 150 PSI		
M.A.E.P.:	15 PSI @	250°F					
CORROSION	ALLOWANCE	: NONE	HYDROTEST	PRESS:	195 PSI		
STAMP:	'NC'		SERVICE:	NON I	ETHAL		
PWHT:	N/A		RADIOGRAP	HY:	N/A		
MATERIAL:	SS 304/	L	GASKET:	BUN	IA-N		

DRY WEIGHT: 77.62 #'s FLOODED WEIGHT: 140 #'s SHIPPING WEIGHT: 100 #'s VESSEL VOLUME: 1.0 C.F.

1:1

 $otin \frac{1}{2}$ " TYP.

Polyester Liquid Filter Bag

Features

- * Polyester liquid bag filter are available with a carbon steel ring, stainless steel ring or plastic flanges.
- * Heavy-duty handle eases installation and removal
- * Metal ring sewn into bag top for increased durability and positive sealing
- * Wide array of media fibers to meet needed temperature and micron specifications

Applications

Polyester liquid filter bags can be used in the filtering of a wide array of industrial and commercial process fluids

Sizes

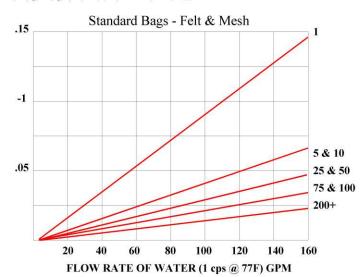
Our liquid filter bags are available for all common liquid bag housings. Dimensions range from 4.12" diameter X 8" length thru 9" diameter X 32" length.

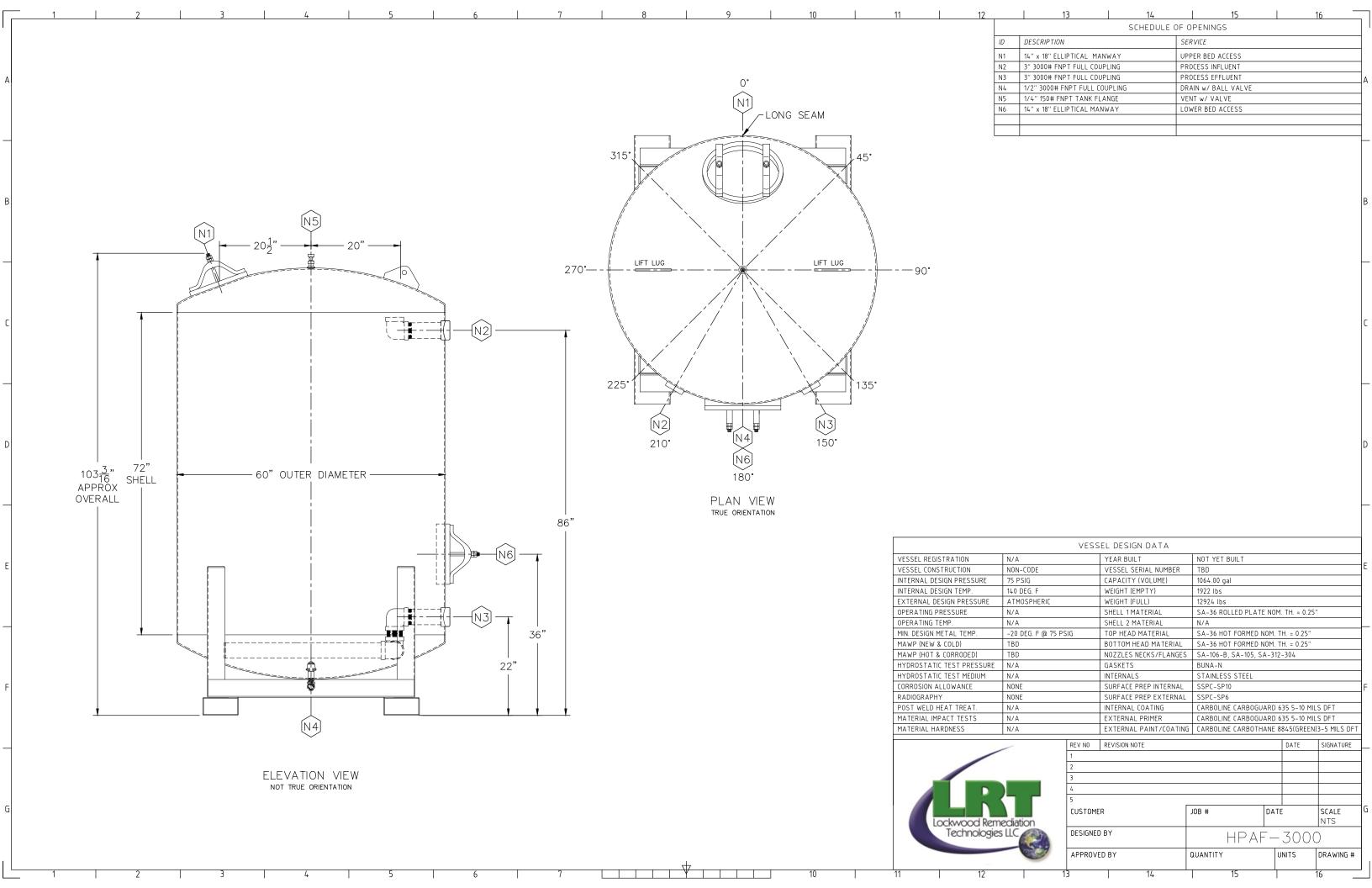
Micron Ratings

Available fibers range from 1 to 1500 microns

Options

- * Bag finish or covers for strict migration requirements.
- * Plastic top O.E.M. replacements
- * Multi-layered filtering capabilities for higher dirt holding capacities


Optional Filter Media


Felt: Nomex, Polyester, Polypropylene

Monofilament: Nylon, Polyester, Polypropylene

Multifilament: Nylon, Polyester

Polypropylene: Oil Removal

89 Crawford Street

Leominster, Massachusetts 01453

Tel: 774.450.7177 Fax: 888.835.0617 www.lrt-llc.net

FILTRATION MEDIA: 8x30 RE-ACTIVATED CARBON 4x10 RE-ACTIVATED CARBON

GENERAL DESCRIPTION

Select Re-Activated carbon from domestic sources is quality screened during our purchasing process for activity, density and fines. The use of re-activated carbon is recommended as a lower cost alternative for most sites where drinking water quality is not necessary. In many cases our re-activated carbon meets and exceeds imported virgin carbon. In addition all carbon either sold by itself or installed in our filtration units traced by lot number to the installation or sale.

8x30 (Liquid Phase) Standard Specifications:	Standard	Value
lodine Number	ASTM D-4607	800 Minimum
Moisture Content	ASTM D-2867	5% Maximum (as packed)
Particle Size	ASTM D-2862	8x30 US Mesh
Ash		10% Maximum
Total Surface Area (N2BET)		1050 Minimum
Pore Volume (cc/g)		0.75

4*10 (Vapor Phase) Standard Specifications:	Standard	Value
Carbon Tetrachloride Activity Level	ASTM D-3467	40 Minimum
Moisture Content	ASTM D-2867	5% Maximum (as packed)
Particle Size	ASTM D-2862	4x10 US Mesh
Ash		10% Maximum
Total Surface Area (N2BET)		1050 Minimum
Pore Volume (cc/g)		0.75

RESINTECH CGS is a sodium form standard crosslinked gel strong acid cation resin. *CGS* is optimized for residential applications that require good regeneration efficiency and high capacity. *RESINTECH CGS* is intended for use in all residential and commercial softening applications that do not have significant amounts of chlorine in the feedwater. *CGS* is supplied in the sodium form.

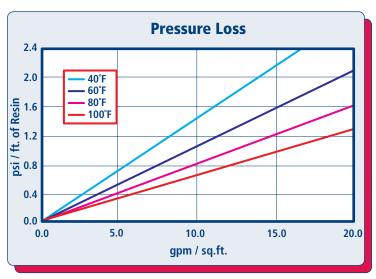
FEATURES & BENEFITS

RESIDENTIAL SOFTENING APPLICATIONS

Resin parameters are optimized for residential softeners

LOW COLOR THROW

SUPERIOR PHYSICAL STABILITY


93% plus sphericity and high crush strengths together with carefully controlled particle distribution provides long life and low pressure drop

COMPLIES WITH US FDA REGULATIONS

Conforms to paragraph 21CFR173.25 of the Food Additives Regulations of the US FDA

Prior to first use for potable water, resin should be backwashed for a minimum of 20 minutes, followed by 10 bed volumes of downflow rinse.

HYDRAULIC PROPERTIES

The graph above shows the expected pressure loss of *ResinTech CGS* per foot of bed depth as a function of flow rate at various temperatures.

BACKWASH

The graph above shows the expansion characteristics of *ResinTech CGS* as a function of flow rate at various temperatures.

RESINTECH® CGS

PHYSICAL PROPERTIES

Polymer Structure Styrene/DVB

Polymer Type Gel

Functional Group Sulfonic Acid Physical Form Spherical beads

Ionic Form as shipped Sodium

Total Capacity

Sodium form >1.8 meq/mL

Water Retention

Sodium form 40 to 52 percent

Approximate Shipping Weight

Sodium form 50 lbs./cu.ft.

Screen Size Distribution (U.S. mesh) 16 to 50

Maximum Fines Content (<50 mesh) 1 percent

Minimum Sphericity 90 percent

Uniformity Coefficient 1.6 approx.

Resin Color Amber

Note: Physical properties can be certified on a per lot basis, available upon request

SUGGESTED OPERATING CONDITIONS

Maximum continuous temperature

Sodium form 250°F

Minimum bed depth 24 inches

Backwash expansion 25 to 50 percent

Maximum pressure loss 25 psi
Operating pH range 0 to 14 SU

Regenerant Concentration

Salt cycle 10 to 15 percent NaCl Regenerant level 4 to 15 lbs./cu.ft. Regenerant flow rate. 0.5 to 1.5 gpm/cu.ft.

Regenerant contact time >20 minutes

Displacement flow rate

Displacement volume

10 to 15 gallons/cu.ft.

Rinse flow rate

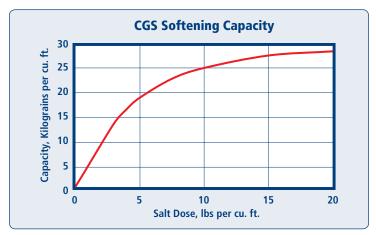
Same as service flow

Rinse volume

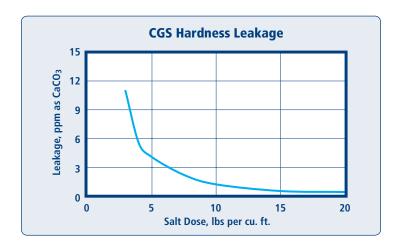
35 to 60 gallons/cu.ft.

Service flow rate

1 to 10 gpm/cu.ft.


Note: These guidelines describe average low risk operating conditions. They are not intended to be absolute minimums or maximums.

For operation outside these guidelines, contact ResinTech Technical Support


APPLICATIONS

SOFTENING

RESINTECH CGS is a standard crosslinked cation resin optimized for residential and commercial applications. This type of resin is easier to regenerate than the higher crosslinked resins. CGS has marginal resistance to chlorine and other oxidants and is not ideal for high temperature and other high stress applications.

Capacity and leakage data are based on the following: 2:1 Ca:Mg ratio, 500 ppm TDS as CaCO3, 0.2% hardness in the salt and 10% brine concentration applied co-currently through the resin over 30 minutes. No engineering downgrade has been applied.

East Coast - West Berlin, NJ p:856.768.9600 • Midwest - Chicago, IL p:708.777.1167 • West Coast - Los Angeles, CA p:323.262.1600

RESINTECH SBG1 is a high capacity, shock resistant, gelular, Type 1, strongly basic anion exchange resin supplied in the chloride or hydroxide form as moist, tough, uniform, spherical beads. *RESINTECH SBG1* is intended for use in all types of deionization systems and chemical processing applications. It is similar to *RESINTECH SBG1P* but has a higher volumetric capacity and exhibits lower TOC leach rates. This makes it the better performer in single use applications such as in cartridge deionization and when high levels of regeneration are used such as in polishing mixed beds. On the other hand, *RESINTECH SBG1P* is more resistant to organic fouling and gives higher operating capacities at low regeneration levels such as those used in make up demineralizers.

FEATURES & BENEFITS

COMPLIES WITH FDA REGULATIONS FOR POTABLE WATER APPLICATIONS.

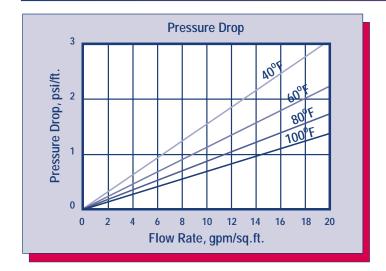
Conforms to paragraph 21CFR173.125 of the Food Additives Regulations of the F.D.A.*

HIGH TOTAL CAPACITY

Provides longer run lengths in single use applications or where high levels of regeneration are used such as in mixed bed polishers, cartridge demineralizers.

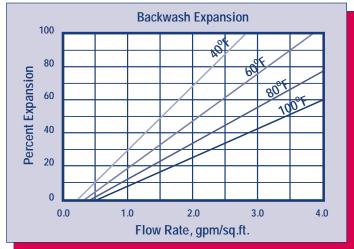
UNIFORM PARTICLE SIZE

16 to plus 50 mesh range; gives a LOWER PRESSURE DROP while maintaining SUPERIOR KINETICS.


SUPERIOR PHYSICAL STABILITY

LOWER TOC LEACH RATE

Makes it ideal for polishing mixed beds in wafer washing and other high purity water polishing applications.


*For potable water applications, the resin must be properly pre-treated, usually by multiple exhaustion and regeneration cycles, to ensure compliance with extractable levels.

HYDRAULIC PROPERTIES

The graph above shows the expected pressure loss per foot of bed depth as a function of flow rate, at various temperatures.

BACKWASH

After each cycle the resin bed should be backwashed at a rate that expands the bed 50 to 75 percent. This will remove any foreign matter and reclassify the bed. The graph above shows the expansion characteristics of *RESINTECH SBG1* in the sodium form.

RESINTECH® SBG1

PHYSICAL PROPERTIES

Polymer Structure

Functional Group

R-N-(CH₃)₃+Cl⁻

Ionic Form, as shipped

Physical Form

Styrene Crosslinked with DVB

R-N-(CH₃)₃+Cl⁻

Chloride or Hydroxide

Tough, Spherical Beads

Screen Size Distribution 16 to 50
+16 mesh (U.S. Std) < 5 percent
-50 mesh (U.S. Std) < 1 percent

PH Range 0 to 14

Sphericity > 93 percent

Uniformity Coefficient Approx. 1.6

Water Retention

Chloride Form 43 to 50 percent

Hydroxide Form Approx. 53 to 60 percent

Solubility Insoluble

Approximate Shipping Weight

CI Form 44 lbs/cu.ft.

OH Form 41 lbs/cu.ft.

Swelling CI- to OH- 18 to 25 percent

Total Capacity

CI Form 1.45 meq/ml min OH Form 1.15 meq/ml min

SUGGESTED OPERATING CONDITIONS

Maximum Continuous Temperature

Hydroxide Form 140°F alt Form 170°F Minimum Bed Depth 24 inches

Backwash Rate 50 to 75 percent Bed Expansion

Regenerant Concentration* 2 to 6 percent
Regenerant Flow Rate 0.25 to 1.0 gpm/cu.ft.
Regenerant Contact Time At least 40 Minutes
Regenerant Level 4 to 10 pounds/cu.ft.

Displacement Rinse Rate Same as Regenerant Flow Rate

Displacement Rinse Volume 10 to 15 gals/cu.ft.
Fast Rinse Rate Same as Service Flow Rate

ast Direct Values 25 to 10 calcles ft

Fast Rinse Volume 35 to 60 gals/cu.ft.

Service Flow Rates

Polishing Mixed Beds 3 to 15 gpm/cu.ft. Non-Polishing Apps. 2 to 4 gpm/cu.ft.

OPERATING CAPACITY

The operating capacity of *RESINTECH SBG1* for a variety of acids at various regeneration levels when treating an influent with a concentration 500 ppm, expressed as $CaCO_3$ is shown in the following table:

Pounds	Capacity Kilograms per cubic foot									
NaOH/ft ³	HCI	H_2SO_4	H_2SiO_3	H_2CO_3						
4	11.3	14.0	14.7	18.6						
6	12.8	16.3	17.3	19.8						
8	14.3	13.3	19.5	21.6						
10	15.5	20.0	22.2	22.2						

APPLICATIONS

DEMINERALIZATION – RESINTECH SBG1 is highly recommended for use in mixed bed demineralizers, wherever complete ion removal; superior physical and osmotic stability and low TOC leachables are required such as in wafer fabrication and other ultrapure applications.

RESINTECH SBG1 has high total capacity and low swelling on regeneration and provides maximum operating capacity in cartridge deionization applications. It is ideal for single use applications such as precious metal recovery, radwaste disposal and purification of toxic waste streams.

Highly crosslinked Type 1, styrenic anion exchangers have greater thermal and oxidation resistance than other types of strong base resins. They can be operated and regenerated at higher temperatures. The combination of lower porosity, high total capacity and Type 1 functionality make *RESINTECH SBG1* the resin of choice when water temperatures exceed 85°F and where the combination of carbon dioxide, borate and silica exceed 40% of the total anions.

RESINTECH SBG1P and RESINTECH SBG1 are quite similar; the difference between them is the degree of porosity. RESINTECH SBG1P has greater porosity that gives it faster kinetics, and greater ability to reversibly sorb slow moving ions such as Naturally occurring Organic Matter (NOM). At lower regeneration levels and where chlorides make up a substantial portion of the anion load, or where the removal and elution of naturally occurring organics is of concern RESINTECH SBG1P, SBACR or SBG2 should be considered. At the higher regeneration levels used in mixed bed polishers RESINTECH SBG1 provides higher capacity, and the lowest possible TOC leach rates.

*CAUTION:DO NOT MIX ION EXCHANGE RESIN WITH STRONG OXIDIZING AGENTS. Nitric acid and other strong oxidizing agents can cause explosive reactions when mixed with organic materials, such as ion exchange resins.

Material Safety Data Sheets (MSDS) are available for all ResinTech Inc.products. To obtain a copy, contact your local ResinTech sales representative or our corporate headquarters. They contain important health and safety information. That information may be needed to protect your employees and customers from any known health and safety hazards associated with our products. We recommend that you secure and study the pertinent MSDS for our products and any other products being used These suggestions and data are based on information we believe to be reliable. They are offered in good faith. However we do not make any guarantee or warranty. We caution against using these products in an unsafe manner or in violation of any patents; further we assume no liability for the consequences of any such actions.

GROOVED & SMOOTH-END FLOWMETER MODEL MG/MS100 SPECIFICATIONS

PERFORMANCE

ACCURACY/REPEATABILITY: ±2% of reading

guaranteed throughout full range. ±1% over reduced

range. Repeatability 0.25% or better. RANGE: (see dimensions chart below) HEAD LOSS: (see dimensions chart below)

MAXIMUM TEMPERATURE: (Standard Construction)

160°F constant

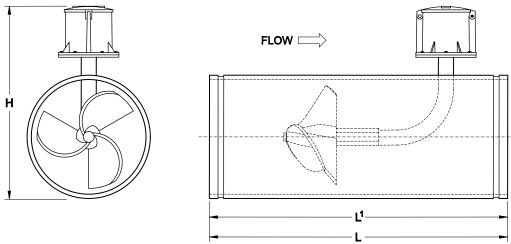
PRESSURE RATING: 150 psi

MATERIALS

TUBE: Epoxy-coated carbon steel.

BEARING ASSEMBLY: Impeller shaft is 316 stainless steel.

Ball bearings are 440C stainless steel.


MAGNETS: (Permanent type) Cast or sintered alnico BEARING HOUSING: Brass; Stainless Steel optional IMPELLER: Impellers are manufactured of high-impact plastic, retaining their shape and accuracy over the life of the meter. High temperature impeller is optional.

REGISTER: An instantaneous flowrate indicator and six-digit straight-reading totalizer are standard. The register is hermetically sealed within a die cast aluminum case. This protective housing includes a domed acrylic lens and hinged lens cover with locking hasn

COATING: Fusion-bonded epoxy

OPTIONS

- Forward/reverse flow measurement
- High temperature construction
- "Over Run" bearing assembly for higher-than-normal flowrates
- Electronic Propeller Meter available in all sizes of this model
- A complete line of flow recording/control instrumentation
- Straightening vanes and register extensions available
- · Certified calibration test results

McCrometer reserves the right to change design or specifications without notice.
--

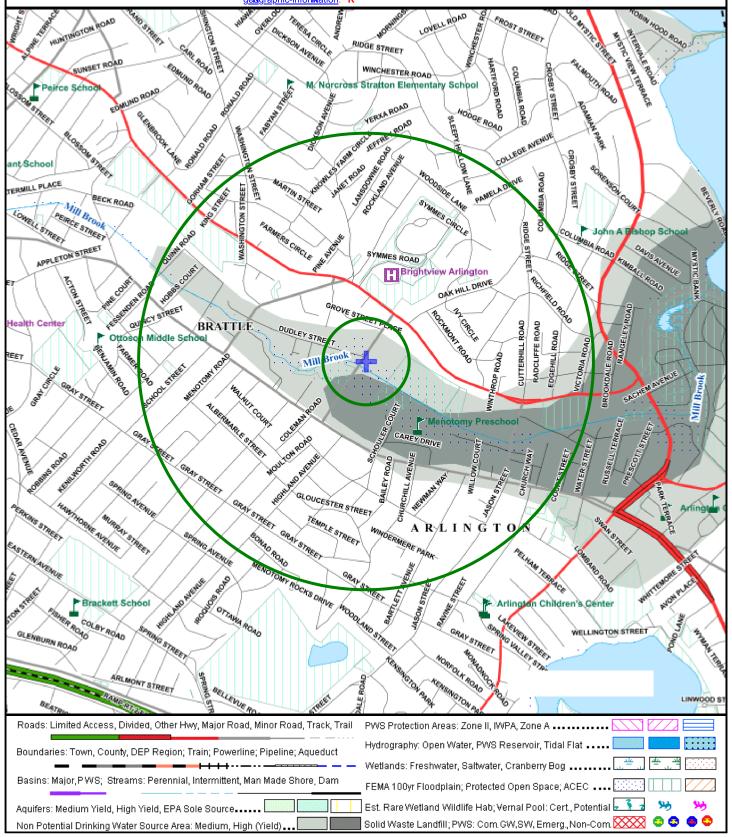
MG100 / MS100		DIMENSIONS											
Meter Size (inches)	2	2 1/2	3	4	6	8	10	12	14	16	18	20	24
Maximum Flow U.S. GPM	250	250	250	600	1200	1500	1800	2500	3000	4000	5000	6000	8500
Minimum Flow U.S. GPM	40	40	40	50	90	100	125	150	250	275	400	475	700
Head Loss in Inches at Max. Flow	29.50	29.50	29.50	23.00	17.00	6.75	3.75	2.75	2.00	1.75	1.50	1.25	1.00
Shipping Weight, Ibs.			17	40	54	68	87	106	140	144	172	181	223
H (inches)	* 5	See	10.9	12.78	13.84	14.84	16.91	18.90	20.53	22.53	25.53	26.53	30.53
L (inches) MG100	Spe	ecial	13	20	20	20	20	20	20	22	22	22	22
L ¹ (inches) MS100	N	ote	13	20	22	22	22	22	22	24	24	24	24
O.D. of Meter Tube			3.50	4.500	6.625	8.625	10.750	12.750	14.00	16.00	18.00	20.00	24.00

*Special Note—Reducing fittings incorporating grooves are supplied to adapt the 3-inch model to smaller line sizes.

Larger flowmeters on special order.

MassDERRR

a R f Wast Site Kelkarn Ro


PHRISTRI STAR FASTSRIRSHIR ent INVap: 15000 FR Rt 170.5 Mil R RICHR

S<mark>if Rinfrenati Fre R</mark> Arlingerorn Town yar d 51 G ove streener Arlingeron, Ma

NATORIS UTNRMet R: 4698707mR R321967mE (Z R R19) J Ry 8, 2021 R The information shown is the livest available at the date of printing. However, it may be incomplete. It is responsible party and LSTRER ultimately responsible for ascertaining the true conditions surrounding the site. Metadata for Italia layers shown on this map can be found at:

beRound at: httRs://wwRRnass.gov/orgsRnassgis-bureauRofgeRgraphic-inforMation.

Documentation of the Results of the ESA Eligibility Determination:

Using information in Appendix II of the NPDES RGP, the project located at 51 Grove Street Arlington, MA is eligible for coverage under this general permit under FWS Criterion B. This project is located in Middlesex County. No designated critical habitats were listed in the project area.

An Endangered Species Consultation was conducted on the U.S. Fish & Wildlife Service New England Field Office ECOS IPaC webpage for the Site:

• The Northern long-eared bat was listed as "Threatened" in Middlesex County.

Based upon a information provided by U.S. Fish & Wildlife Service (USFWS), temporary dewatering activities at the site are not expected to impact the Northern Long-eared Bat.

Northern long-eared bats spend winter hibernating in caves and mines. They use areas in various sized caves or mines with constant temperatures, high humidity, and no air currents. During the summer, northern long-eared bats roost singly or in colonies underneath bark, in cavities or in crevices of both live trees and snags (dead trees). There are no caves and mines located at the site. There are no trees in the immediate vicinity of the site; and tree removal is not part of the scope of work related to this Notice of Intent. Therefore, temporary dewatering activities will have "no impact" to the Northern Long-eared Bat.

United States Department of the Interior

FISH AND WILDLIFE SERVICE

New England Ecological Services Field Office 70 Commercial Street, Suite 300 Concord, NH 03301-5094 Phone: (603) 223-2541 Fax: (603) 223-0104

http://www.fws.gov/newengland

In Reply Refer To: July 08, 2021

Consultation Code: 05E1NE00-2021-SLI-4061

Event Code: 05E1NE00-2021-E-12305 Project Name: Arlington Town Yard

Subject: List of threatened and endangered species that may occur in your proposed project

location or may be affected by your proposed project

To Whom It May Concern:

The enclosed species list identifies threatened, endangered, proposed and candidate species, as well as proposed and final designated critical habitat, that may occur within the boundary of your proposed project and/or may be affected by your proposed project. The species list fulfills the requirements of the U.S. Fish and Wildlife Service (Service) under section 7(c) of the Endangered Species Act (Act) of 1973, as amended (16 U.S.C. 1531 *et seq.*).

New information based on updated surveys, changes in the abundance and distribution of species, changed habitat conditions, or other factors could change this list. Please feel free to contact us if you need more current information or assistance regarding the potential impacts to federally proposed, listed, and candidate species and federally designated and proposed critical habitat. Please note that under 50 CFR 402.12(e) of the regulations implementing section 7 of the Act, the accuracy of this species list should be verified after 90 days. This verification can be completed formally or informally as desired. The Service recommends that verification be completed by visiting the ECOS-IPaC website at regular intervals during project planning and implementation for updates to species lists and information. An updated list may be requested through the ECOS-IPaC system by completing the same process used to receive the enclosed list.

The purpose of the Act is to provide a means whereby threatened and endangered species and the ecosystems upon which they depend may be conserved. Under sections 7(a)(1) and 7(a)(2) of the Act and its implementing regulations (50 CFR 402 *et seq.*), Federal agencies are required to utilize their authorities to carry out programs for the conservation of threatened and endangered species and to determine whether projects may affect threatened and endangered species and/or designated critical habitat.

A Biological Assessment is required for construction projects (or other undertakings having similar physical impacts) that are major Federal actions significantly affecting the quality of the human environment as defined in the National Environmental Policy Act (42 U.S.C. 4332(2) (c)). For projects other than major construction activities, the Service suggests that a biological evaluation similar to a Biological Assessment be prepared to determine whether the project may affect listed or proposed species and/or designated or proposed critical habitat. Recommended contents of a Biological Assessment are described at 50 CFR 402.12.

If a Federal agency determines, based on the Biological Assessment or biological evaluation, that listed species and/or designated critical habitat may be affected by the proposed project, the agency is required to consult with the Service pursuant to 50 CFR 402. In addition, the Service recommends that candidate species, proposed species and proposed critical habitat be addressed within the consultation. More information on the regulations and procedures for section 7 consultation, including the role of permit or license applicants, can be found in the "Endangered Species Consultation Handbook" at:

http://www.fws.gov/endangered/esa-library/pdf/TOC-GLOS.PDF

Please be aware that bald and golden eagles are protected under the Bald and Golden Eagle Protection Act (16 U.S.C. 668 *et seq.*), and projects affecting these species may require development of an eagle conservation plan

(http://www.fws.gov/windenergy/eagle_guidance.html). Additionally, wind energy projects should follow the wind energy guidelines (http://www.fws.gov/windenergy/) for minimizing impacts to migratory birds and bats.

Guidance for minimizing impacts to migratory birds for projects including communications towers (e.g., cellular, digital television, radio, and emergency broadcast) can be found at: http://www.fws.gov/migratorybirds/CurrentBirdIssues/Hazards/towers/towers.htm; http://www.towerkill.com; and http://www.fws.gov/migratorybirds/CurrentBirdIssues/Hazards/towers/comtow.html.

We appreciate your concern for threatened and endangered species. The Service encourages Federal agencies to include conservation of threatened and endangered species into their project planning to further the purposes of the Act. Please include the Consultation Tracking Number in the header of this letter with any request for consultation or correspondence about your project that you submit to our office.

Attachment(s):

Official Species List

Official Species List

This list is provided pursuant to Section 7 of the Endangered Species Act, and fulfills the requirement for Federal agencies to "request of the Secretary of the Interior information whether any species which is listed or proposed to be listed may be present in the area of a proposed action".

This species list is provided by:

New England Ecological Services Field Office 70 Commercial Street, Suite 300 Concord, NH 03301-5094 (603) 223-2541

Project Summary

Consultation Code: 05E1NE00-2021-SLI-4061
Event Code: 05E1NE00-2021-E-12305
Project Name: Arlington Town Yard
Project Type: DEVELOPMENT

Project Description: Construction of new DPW building (building E)

Construction of new salt shed and pump island

Installation of associated site utility

Project Location:

Approximate location of the project can be viewed in Google Maps: https://www.google.com/maps/@42.41993805,-71.16351761600703,14z

Counties: Middlesex County, Massachusetts

Endangered Species Act Species

There is a total of 1 threatened, endangered, or candidate species on this species list.

Species on this list should be considered in an effects analysis for your project and could include species that exist in another geographic area. For example, certain fish may appear on the species list because a project could affect downstream species.

IPaC does not display listed species or critical habitats under the sole jurisdiction of NOAA Fisheries¹, as USFWS does not have the authority to speak on behalf of NOAA and the Department of Commerce.

See the "Critical habitats" section below for those critical habitats that lie wholly or partially within your project area under this office's jurisdiction. Please contact the designated FWS office if you have questions.

1. <u>NOAA Fisheries</u>, also known as the National Marine Fisheries Service (NMFS), is an office of the National Oceanic and Atmospheric Administration within the Department of Commerce.

Mammals

NAME STATUS

Northern Long-eared Bat Myotis septentrionalis

Threatened

No critical habitat has been designated for this species. Species profile: https://ecos.fws.gov/ecp/species/9045

Critical habitats

THERE ARE NO CRITICAL HABITATS WITHIN YOUR PROJECT AREA UNDER THIS OFFICE'S JURISDICTION.

<u>Documentation of the National Historic Preservation Act Eligibility Determination:</u>

As part of this permit, a determination was made as to whether there were any historic properties or places listed on the national register in the path of the discharge or in the vicinity of the construction of treatment systems or BMPs related to the discharge. A search on the Massachusetts Cultural Resource Information System Database and the National Register of Historic Places found that no historic properties are located on the project site. Therefore, construction and dewatering / water treatment work will be conducted on an existing development and will not impact surrounding areas. Therefore, the proposed discharge will not have the potential to cause effects on historical properties.

Massachusetts Cultural Resource Information System MACRIS

MACRIS Search Results

Search Criteria: Town(s): Arlington; Street No: 51; Street Name: Grove; Resource Type(s): Area, Building, Burial Ground, Object, Structure;

Inv. No. Property Name Street Town Year

Thursday, July 8, 2021 Page 1 of 1