

NPDES RGP APPLICATION - TEMPORARY CONSTRUCTION DEWATERING
ALLSTON YARDS — BUILDING A
60 EVERETT STREET
ALLSTON, MASSACHUSETTS

by Haley & Aldrich, Inc. Boston, Massachusetts

for Environmental Protection Agency (EPA) Region 1 Boston, Massachusetts

File No. 134110-007 August 2021



HALEY & ALDRICH, INC. 465 Medford St. Suite 2200 Boston, MA 02129 617.886.7400

5 August 2021 File No. 134110-007

Environmental Protection Agency (EPA) Region 1 5 Post Office Square, Suite 100 Mail Code OEP06-4 Boston, Massachusetts 02129

Attention: Shauna Little

Subject: NPDES RGP Application - Temporary Construction Dewatering

Allston Yards - Building A

60 Everett Street

Allston, Massachusetts

### Ladies and Gentlemen:

On behalf of the project team, Haley & Aldrich, Inc. (Haley & Aldrich) is submitting this application to request authorization under the National Pollutant Discharge Elimination System (NPDES) Remediation General Permit (RGP) for off-site discharge of temporary construction dewatering during construction activities at the planned Building A portion of the Allston Yards redevelopment project (herein referred to as the "Site") located at 60 Everett Street in Allston, Massachusetts. A copy of the Notice of Intent (NOI) is included in Appendix A.

# **EXISTING SITE CONDITIONS**

The site is located in Allston, Massachusetts as shown on Figures 1 and 2 and is part of a 10.5-acre property currently occupied by a retail center (including the following retailers: Stop & Shop; Dollar Tree; and HomeGoods); and an active paved parking lot. The Site is bound to the north by the railroad corridor and the Massachusetts Turnpike (I-90), Everett Street to the east, several commercial buildings and parking lots to the south, and the New Balance headquarters to the west.

#### **SITE HISTORY**

Based on historical Sanborn Fire Insurance Maps and Aerial Photographs, prior to the early 1900s, the Site was vacant, located adjacent to a railroad corridor, and situated in a mixed industrial/residential area. In the early 1900s, a belting company warehouse was built southeast of the Site. This building would become a gum company warehouse around 1925, around the same time the Harvey Company steel fabrication facility was built at the Site. This large brick and steel frame warehouse building, and a smaller garage structure was later owned by Joseph T. Ryerson/East and operated as a steel fabrication facility from 1927 to approximately 1994.

The Ryerson Steel warehouse buildings were demolished in 1997 and the Site was developed into its current configuration as a retail center (Stop & Shop store, a Dollar Tree store, and a HomeGoods store). The retail center, which opened for business in May 1998, includes 100,000 square feet (sq ft) of retail space and surrounded by a paved parking lot and loading docks.

### PROPOSED CONSTRUCTION

The Allston Yards redevelopment project will include two levels of below-grade parking that extends below the footprint of the Building A site totaling approximately 70,000 sq ft; the east side of the site will have a building that includes a larger 2-story podium portion below a smaller 4-story "T" shaped residential building; and the west side of the site will be developed into a park.

The Building A site is located in the southern portion of the Allston Yards redevelopment and is approximately 93,000 sq ft. The limits of Building A and associated excavation and construction dewatering are shown on Figure 2.

### **REGULATORY STATUS**

There are four Release Tracking Numbers (RTNs) associated with the subject property as summarized below. Limits of these Disposal Sites and the RTNs which are applicable to this submittal (RTNs 3-33943, 3-12447, and 3-2332) are shown on Figure 2.

# **Release Tracking Number 3-2332**

During the removal of underground storage tanks (USTs) at the subject property in 1987, chlorinated volatile organic compounds (CVOCs) in groundwater and petroleum in soil were detected at concentrations that exceeded applicable Massachusetts Contingency Plan (MCP) Reportable Concentrations, RCGW-2 and RCS-1, respectively. The release was Tier Classified (Tier II) on 9 August 1996. Response actions were conducted under a Release Abatement Measure (RAM) Plan submitted to Massachusetts Department of Environmental Protection (MassDEP) on 29 January 1999. Response actions included installation of a subslab vapor liner and venting system below the building slab of the new retail building. In addition, an air sparging/soil vapor extraction system (AS/SVE) operated for approximately 18 months (shut down on 2 February 2000) to reduce CVOC concentrations in groundwater.

RTN 3-2332 achieved regulatory closure with the filing of a RAM Completion Statement and Class A-2 Response Action Outcome (RAO) Statement, submitted to MassDEP on 27 June 2001. It was noted that an off-site source(s) of volatile organic compounds (VOCs) and/or petroleum related contamination from up-gradient sources located up-gradient west and south of the subject property had likely contributed to the release reported under RTN 3-2332.

MassDEP prepared an internal Memorandum for the Record, entitled, "Trichloroethylene Vapor Intrusion Evaluation," dated 13 February 2018. The memorandum concluded that the presence of a passive venting system beneath the commercial building slab should prevent a complete vapor intrusion



pathway. In addition, given the size and construction of the building and constant introduction of fresh air through multiple entrances and the HVAC system, it concluded that is highly unlikely that VOC concentrations to indoor air would be of concern. The February 2018 Memorandum is commonplace for Disposal Sites with TCE impacted groundwater. No further MassDEP follow-up was warranted with regard to the TCE contamination and the potential for vapor intrusion related to RTN 3-2332. A portion of the site is located within the limits of RTN 3-2332.

# Release Tracking Number 3-12447 (and linked RTN 3-15227)

RTN 3-12447 is associated with a release of petroleum hydrocarbons to soil from a former 12,000-gallon fuel oil UST located in the southwestern portion of the subject property. The majority of petroleum impacted soils were removed during RAM response actions conducted during the period 31 December 1997 through 11 March 1998, as discussed in the Haley & Aldrich RAM Completion Report (Partial), dated 18 May 1998. Based on confirmatory soil and groundwater testing results, residual petroleum contamination remained in soil at the former tank grave. No petroleum-related VOCs existed in groundwater at the former tank grave.

Petroleum contaminated soils were encountered in shallow soil (0 to 3 ft.) below the former Ryerson Steel Warehouse floor slab and at other locations within the subject property. Petroleum contamination (lubricating oil) originated from discrete and localized spills that occurred over the historical use of the building as a steel fabrication facility. Petroleum impacted soil from RTN 3-15227 was linked to Tier II Disposal Site RTN 3-12447.

RTN 3-12447 (and linked RTN 3-15227) achieved regulatory closure with the filing of a Class A-2 RAO Statement submitted to MassDEP on 21 July 1999. RTN 3-12447 is located within the site limits, and the Site is located within a portion of linked RTN 3-15227.

# **Release Tracking Number 3-33943**

During a June 2016 soil precharacterization program conducted by Haley & Aldrich, concentration levels of arsenic were detected in soil above applicable RCS-1 Reportable Concentrations. As arsenic was not previously reported as a compound of concern for the above listed RTNs, WJG Realty Company, LLC submitted a Release Notification Form (RNF; BWSC103) to MassDEP for the arsenic concentrations detected in soil as a 120-day release notification.

The RNF also included CVOCs detected above applicable RCGW-2 Reportable Concentrations that have been historically detected in groundwater beneath the property, reported to MassDEP under separate RTNs, and brought to regulatory closure previously. The MassDEP issued RTN 3-33943 in response to the new RNF. A Phase I Initial Site Investigation and Tier II Classification was submitted to MassDEP in November 2017.

A Method 1 Risk Characterization was conducted pursuant to 310 CMR 40.0900. Results of the Method 1 Risk Characterization indicated that a condition of No Significant Risk exists relative to human health, safety, public welfare, and the environment under current and foreseeable Site conditions, as



well as unrestricted (i.e., hypothetical residential) potential uses. Subsequently, a Permanent Solution Statement With Conditions was submitted to MassDEP in April 2020.

The Permanent Solution Statement includes certain Conditions for the Site that are necessary to ensure that future construction in areas of undeveloped land in the area where groundwater concentrations exceed GW-2 standards does not result in impacts to indoor air of newly constructed buildings. Specifically, the Condition stipulates that any new buildings will be evaluated for potential vapor intrusion and mitigation prior to construction to maintain a Condition of No Significant Risk.

The Site is located within a portion of RTN 3-33943.

# **Release Tracking Number 3-36625**

During a July 2020 soil precharacterization program conducted by Haley & Aldrich in preparation for proposed enabling activities, concentration levels of CVOCs, including tetrachloroethylene (PCE) and trichloroethylene (TCE), were detected in urban fill soil above applicable RCS-1 Reportable Concentrations. As PCE and TCE were not previously reported as a compound of concern in soil for the above listed RTNs, WJG Realty Company, LLC submitted a Release Notification Form (BWSC103) to MassDEP for the PCE and TCE concentrations detected in soil as a 120-day release notification. MassDEP subsequently assigned RTN 3-36625 to the release.

# **RECEIVING WATER INFORMATION**

On 24 May 2021, one water sample was collected from the MA72-36 outfall location into the Charles River and submitted to a MassDEP-certified laboratory, Alpha Analytical Laboratory of Westborough, Massachusetts (Alpha), for NPDES receiving water (freshwater) parameters, including hardness, pH, ammonia, and total metals. The laboratory data report is enclosed in Appendix B. Results of this sampling program are provided in Table I.

The seven-day-ten-year flow (7Q10) of the receiving water was established using the U.S. Geological Survey (USGS) StreamStats program and confirmed by MassDEP on 7 June 2021. We have additionally confirmed with the MassDEP that the dilution factor for the receiving waters is 73.7. The StreamStats Report, Dilution Factor calculations, and confirmation from MassDEP are included in Appendix C.

Copies of the "EnterData" and "Freshwater" tabs from the excel file provided as an additional resource by EPA are included in Appendix C and will be transmitted electronically with the NOI. The effluent limitations are included for reference in Table I.

### **SOURCE WATER INFORMATION**

On 24 May 2021, one groundwater sample was collected from monitoring well HA16-11(OW) to evaluate groundwater (source water) quality with respect to NPDES RGP dewatering effluent criteria.



The groundwater sample was sent to Alpha for analysis of constituents consistent with requirements for a NPDES RGP. The groundwater sample was analyzed for one or more of the following parameters: total petroleum hydrocarbons (TPH), VOCs, semi-volatile organic compounds (SVOCs), polychlorinated biphenyls (PCBs), total metals, and waste characteristics.

The data are compared to the applicable 2014 MCP Reportable Groundwater Concentrations (RCGW-2) criteria and the site-specific 2017 NPDES RGP Freshwater Effluent Limits as determined in the Technology Based Effluent Limits (TBEL) calculations.

As part of site characterization, groundwater samples were collected at the Site in June 2016. The samples were submitted to Alpha for analysis of VOCs. Samples detected cis-1,2-dichloroethene, TCE, and vinyl chloride above site-specific NPDES RGP criteria. Additionally, the 24 May 2021 sampling data exceed the site-specific NPDES RGP criteria for TCE. These exceedances will require dewatering treatment, as discussed below. The source water quality data are summarized in Table I. Laboratory data reports are included in Appendix B.

### **DISCHARGE INFORMATION**

During construction of the building, it will be necessary to perform temporary dewatering to control surface water runoff from precipitation, groundwater seepage, and construction-generated water to enable construction in-the-dry. Construction and construction dewatering is currently anticipated to begin in September 2021 and is anticipated to be required for up to 12 months. On average, we estimate effluent discharge rates of about 50 to 100 gallons per minute (gpm) or less, with occasional peak flows of approximately 150 gpm during significant precipitation events. Temporary dewatering will be conducted from sumps located in excavations.

Construction dewatering under this RGP will include piping and discharging to storm drains located near the Site that ultimately discharge to the Charles River through outfall MA72-36. The proposed discharge locations and route are shown on Figure 3.

# **DEWATERING TREATMENT SYSTEM INFORMATION**

An effluent treatment system will be designed and implemented by site contractor(s) to meet the applicable 2017 RGP Discharge Effluent Criteria. Prior to discharge, collected water will be routed through a sedimentation tank and bag filters with pH control, at a minimum, to remove suspended solids and undissolved chemical constituents and adjust the pH to within the limits established by the permit. Additionally, granulated activated carbon (GAC) filters will be required to remove VOC constituents. The proposed treatment system schematic is provided on Figure 4. A Notice of Change (NOC) will be submitted to EPA if additional treatment components need to be mobilized at the Site.

The site Contractor has not yet submitted their construction dewatering submittal, which will include details of the proposed dewatering system along with Safety Data Sheets (SDSs) and fact sheets for possible chemical additives (if needed to adjust pH or reduce suspended sediments). A Best



Management Practices Plan (BMPP), which outlines the proposed discharge operations covered under the RGP, will be available at the Site and is not being submitted with this NOI.

### **DETERMINATION OF ENDANGERED SPECIES ACT ELIGIBILITY**

According to the guidelines outlined in Appendix I of the 2017 NPDES RGP, a preliminary determination for the action area associated with this project was established using the U.S. Fish and Wildlife Service (FWS) Information, Planning, and Conservation (IPAC) online system; a copy of the determination is attached in Appendix D. Based on the results of the determination, the project and action area are considered to meet FWS Criterion A as no listed species or critical habitat have been established to be present within the project action area. Additionally, a MassDEP Phase 1 Site Assessment Map is included in Appendix D, which confirms that no critical habitats are present at the Site.

### **DOCUMENTATION OF NATIONAL HISTORIC PRESERVATION ACT REQUIREMENTS**

Based on a review of the resources provided by the U.S. National Register of Historic Places and a review of the Massachusetts Cultural Resource Information System (MACRIS), no historic properties have been established to be present at the Site, and discharges and discharge-related activities are not considered to have the potential to affect historic properties. The discharge is considered to meet Criterion A. Documentation is included in Appendix E.

# **ETHANOL DISCUSSION**

The site history does not suggest that ethanol was stored at the property, or that a petroleum product containing ethanol was released at the Site.

### SUPPLEMENTAL INFORMATION

Permits for temporary construction dewatering will also be required from the Boston Water and Sewer Commission (BWSC). The permit application is being submitted concurrently with this NOI. Copies of the permit application is provided in Appendix F.

Owner and operator information are provided below for reference:

Owner:

Allston Yards Phase A LLC 1385 Hancock Street Quincy, MA 02169 Contact: Jeffrey Morgan Operator:

Dimeo Construction Company 88 Black Falcon Avenue, Suite 307 Boston, MA 02210 Contact: Frank Allard



# **CLOSING**

Thank you very much for your consideration. Please feel free to contact us should you wish to discuss the information contained herein or if you need additional information.

Sincerely yours, HALEY & ALDRICH, INC.

Mathew Plumble
Mathew Plourde
Staff Engineer

Corinne McKenzie Project Manager

Cole E. Worthy, LSP Senior Associate

# **Enclosures:**

Table I – Summary of Water Quality Data

Figure 1 – Project Locus

Figure 2 – Site and Subsurface Exploration Location Plan

Figure 3A – Proposed Discharge Route

Figure 3B – Proposed Discharge Route

Figure 4 – Proposed Treatment System Schematic

Appendix A – Notice of Intent (NOI)

Appendix B – Laboratory Data Reports

Appendix C – Effluent Limitations Documentation

Appendix D – Endangered Species Act Assessment

Appendix E - National Historic Preservation Act Review

Appendix F – BWSC Permit Application

c: Bozzuto Development Company; Attn: Jay Zachariah, Chris Mannix

Dimeo Construction Company; Attn: Frank Allard

 $\label{thm:comshare} $$ \hdelower \end{comshare} $$ \hde$ 



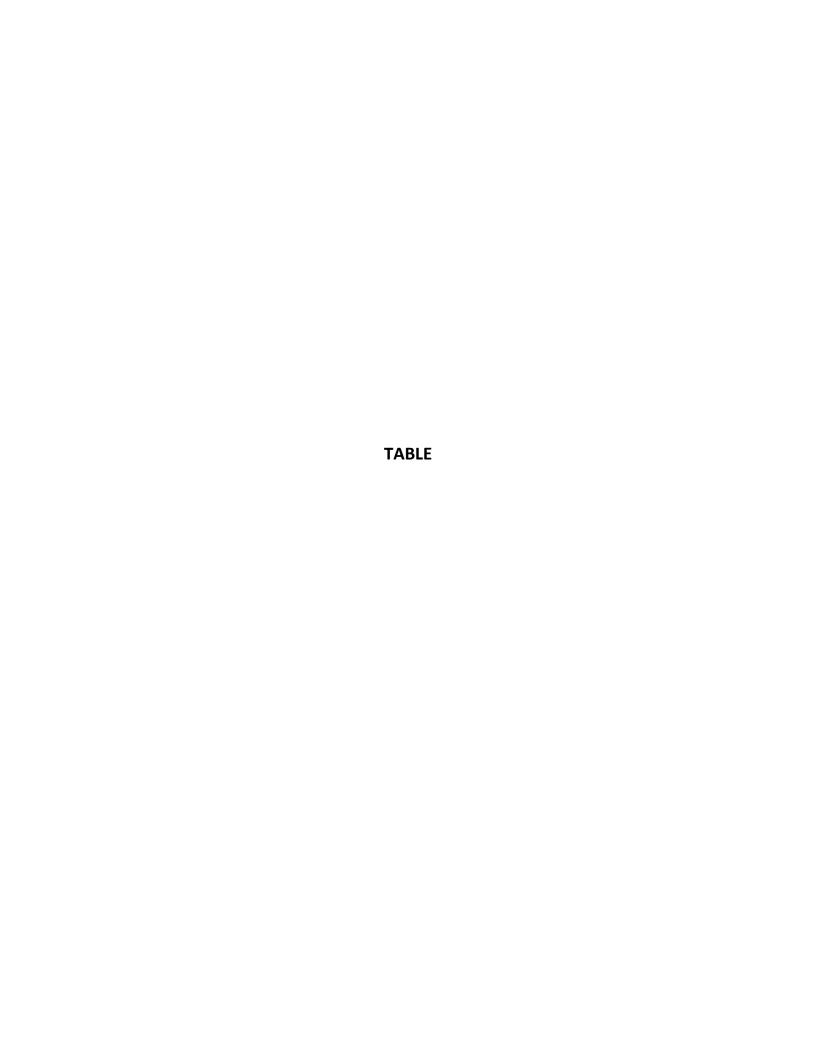


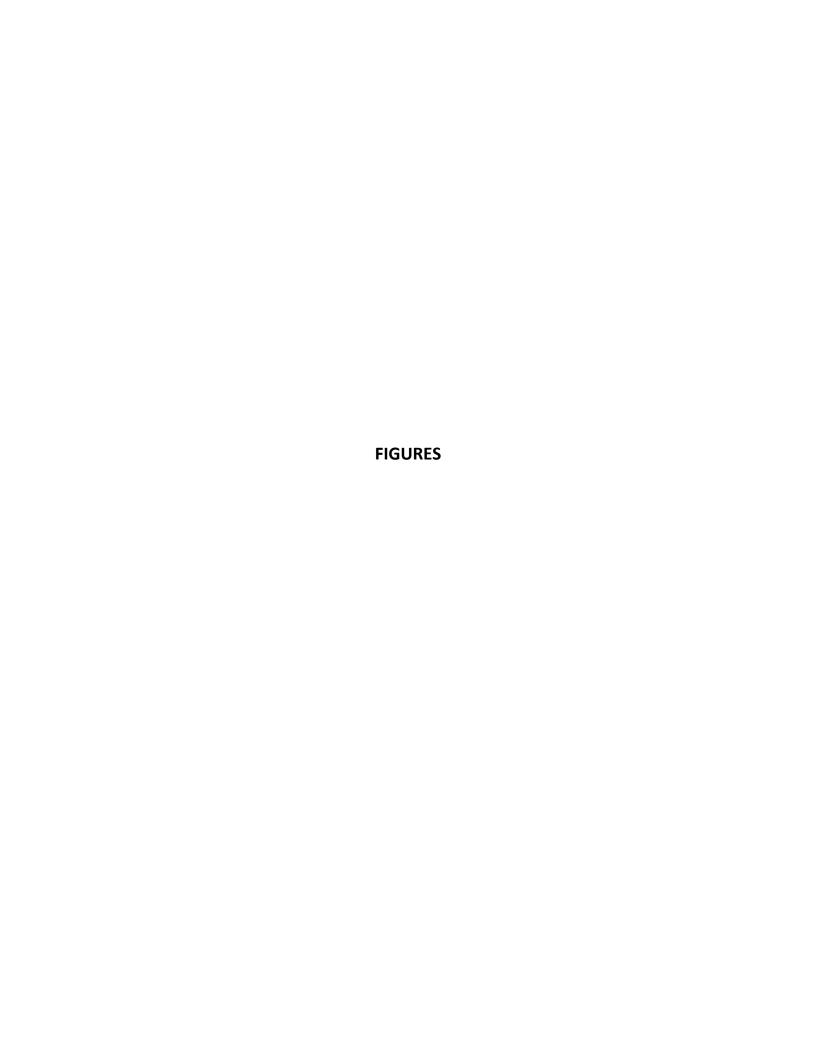

TABLE I SUMMARY OF WATER QUALITY DATA ALLSTON YARDS (60 EVERETT) ALLSTON, MA FILE NO. 134110

|                                           |                    |              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                     |                       | UISTORIS DATA     |                  |                |               |
|-------------------------------------------|--------------------|--------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------|-----------------------|-------------------|------------------|----------------|---------------|
| Prechai                                   | racterization Grid | Actio        | n Level                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | OUTFALL             | BUILDING A            |                   | HISTORIC D       | ATA<br>I       |               |
|                                           |                    |              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                     |                       |                   |                  |                |               |
|                                           |                    |              | MCP                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                     |                       |                   |                  |                |               |
|                                           |                    |              | Reportable                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                     |                       |                   |                  |                |               |
|                                           | Location Name      | MA RGP TBELs | Concentration                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | HA21-AY-RW          | HA16-11(OW)           | HA16-11(OW)       | HA16-5(OW)       | MW-10          | MW-8          |
|                                           | Sample Name        |              | RCGW-1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | HA21-AY-RW-05242021 | HA16-11_05242021      | HA16-11(OW)_62916 | HA16-5(OW)_62916 | MW-10-20160615 | MW-8-20160615 |
|                                           | Sample Date        |              | 2014                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 05/24/2021          | 05/24/2021            | 06/29/2016        | 06/29/2016       | 06/15/2016     | 06/15/2016    |
|                                           | Lab Sample ID      |              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | L2127467-02         | L2127467-01           | L1620128-02       | L1620128-03      | L1618400-04    | L1618400-03   |
|                                           | Lab Sample ID      |              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | L212/467-02         | L212/40/-U1           | L1020128-02       | L1020128-03      | L1018400-04    | L1018400-03   |
| Volatile Organic Compounds (ug/L)         |                    |              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                     |                       |                   |                  |                |               |
| 1,1,1-Trichloroethane                     |                    | 200          | 4000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | -                   | ND (4)                | ND (1)            | ND (1)           | ND (1)         | ND (1)        |
| 1,1-Dichloroethane                        |                    | 70           | 2000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | -                   | ND (3)                | 1.5               | ND (1)           | 1              | 1.6           |
| 1,1-Dichloroethene                        |                    | 3.2          | 80                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | -                   | ND (2)                | ND (1)            | ND (1)           | ND (1)         | ND (1)        |
| 1,4-Dichlorobenzene                       |                    | 5            | 60                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | _                   | ND (10)               | ND (1)            | ND (1)           | ND (1)         | 1             |
| Chlorobenzene                             |                    | NA           | 200                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | _                   | -                     | 3.4               | ND (1)           | 1.2            | 19            |
| cis-1,2-Dichloroethene                    |                    | 70           | 20                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | _                   | 17                    | 23                | ND (1)           | 21             | 46            |
| Trichloroethene                           |                    | 5            | 5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                     | 210                   | 14                |                  | 100            | 24            |
|                                           |                    |              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | -                   |                       |                   | ND (1)           |                |               |
| Vinyl chloride                            |                    | 2            | 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | -                   | ND (2)                | 5.8               | ND (1)           | 2.7            | 3.1           |
| Semi-Volatile Organic Compounds (ug/L)    |                    |              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                     |                       |                   |                  |                |               |
| bis(2-Ethylhexyl)phthalate                |                    | 190          | 50000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | -                   | ND (2.2)              | _                 | _                | _              | _             |
| Butyl benzylphthalate                     |                    | 190          | 10000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | _                   | ND (5)                | _                 | _                | _              | _             |
| Diethyl phthalate                         |                    | 190          | 9000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | _                   | ND (5)                | _                 | _                | _              | _             |
| Dimethyl phthalate                        |                    | 190          | 50000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                     |                       | -                 |                  | _              | _             |
| Di-n-butylphthalate                       |                    |              | 5000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | -                   | ND (5)                | -                 | -                | l -            | _             |
|                                           |                    | 190          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | -                   | ND (5)                | -                 | -                | -              | _             |
| Di-n-octyl phthalate                      |                    | 190          | 100000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | -                   | ND (5)                | -                 | -                | -              | -             |
| Total Petroleum Hydrocarbons (mg/L)       |                    |              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                     |                       |                   |                  |                |               |
| Petroleum hydrocarbons                    |                    | 5            | 5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | _                   | ND (4.4)              | -                 | -                | _              | -             |
| ,                                         |                    | , ,          | , in the second |                     |                       |                   |                  |                |               |
| Inorganic Compounds (mg/L)                |                    |              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                     |                       |                   |                  |                |               |
| Chromium VI (Hexavalent), Dissolved       |                    | 0.323        | 0.3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | -                   | ND (0.01)             | -                 | -                | -              | -             |
| Antimony, Total                           |                    | 0.206        | 8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | ND (0.004)          | ND (0.004)            | -                 | -                | -              | -             |
| Arsenic, Total                            |                    | 0.104        | 0.9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | ND (0.001)          | ND (0.001)            | -                 | -                | -              | -             |
| Cadmium, Total                            |                    | 0.0102       | 0.004                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | ND (0.0002)         | ND (0.0002)           | -                 | _                | _              | _             |
| Chromium, Total                           |                    | NA           | 0.3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | ND (0.001)          | ND (0.001)            | _                 | _                | l <u>.</u>     | _             |
| Copper, Total                             |                    | 0.242        | 100                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 0.00192             | 0.0041                |                   | _                | _              | _             |
| Hardness, Total                           |                    | NA           | NA<br>NA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 403                 | 427                   | -                 | -                | _              | _             |
|                                           |                    | 5            | NA<br>NA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                     | 0.492                 | -                 | -                | · -            | -             |
| Iron, Total                               |                    |              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 0.553               |                       | -                 | -                | -              | -             |
| Lead, Total                               |                    | 0.16         | 0.01                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 0.00134             | 0.00109               | -                 | -                | -              | -             |
| Mercury, Total                            |                    | 0.000739     | 0.02                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | ND (0.0002)         | ND (0.0002)           | -                 | -                | -              | -             |
| Nickel, Total                             |                    | 1.45         | 0.2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | ND (0.002)          | 0.00412               | -                 | -                | -              | -             |
| Selenium, Total                           |                    | 0.2358       | 0.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | ND (0.005)          | ND (0.005)            | -                 | -                | -              | -             |
| Silver, Total                             |                    | 0.0351       | 0.007                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | ND (0.0004)         | ND (0.0004)           | -                 | -                | -              | -             |
| Zinc, Total                               |                    | 0.42         | 0.9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | ND (0.01)           | ND (0.01)             | -                 | -                | -              | -             |
|                                           |                    |              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                     |                       |                   |                  |                |               |
| Other                                     |                    |              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 4                   |                       |                   |                  |                |               |
| Ammonia, Total (mg/L)                     |                    | NA           | NA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | ND (0.15)           | ND (0.075)            | -                 | -                | -              | -             |
| Chloride, Total (mg/L)                    |                    | NA           | NA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | -                   | 987                   | -                 | -                | -              | -             |
| Chlorine, residual, Total (mg/L)          |                    | 0.2          | NA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | -                   | ND (0.02)             | -                 | -                | -              | -             |
| Chromium III (Trivalent), Total (mg/L)    |                    | 0.323        | 0.6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | -                   | ND (0.01)             | -                 | -                | -              | -             |
| Cyanide, Total (mg/L)                     |                    | 178          | 0.03                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | =                   | ND (0.005)            | -                 | -                | -              | -             |
| Total Phenols (mg/L)                      |                    | 1.08         | NA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | -                   | ND (0.03)             | -                 | -                | -              | -             |
| Total Suspended Solids (TSS) (mg/L)       |                    | 30           | NA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | -                   | 6.2                   | _                 | _                | _              | _             |
| pH (lab), Total (pH units)                |                    | NA           | NA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 7                   | 6.6                   | _                 | _                | _              | _             |
| Salinity, Total (SU)                      |                    | NA           | NA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | -                   | ND (2)                | _                 | _                | l _            | _             |
|                                           |                    | IVA          | IVA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | <del>-</del>        | ND (2)                | -                 | -                | _              |               |
| Pesticides and PCBs (ug/L)                |                    |              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                     |                       |                   |                  |                |               |
| Aroclor-1016 (PCB-1016)                   |                    | 6.40E-05     | 5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | -                   | ND (0.25)             | -                 | -                | -              | -             |
| Aroclor-1221 (PCB-1221)                   |                    | 6.40E-05     | 5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | -                   | ND (0.25)             | -                 | -                | -              | -             |
| Aroclor-1232 (PCB-1232)                   |                    | 6.40E-05     | 5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | _                   | ND (0.25)             | _                 | -                | _              | _             |
| Aroclor-1242 (PCB-1242)                   |                    | 6.40E-05     | 5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | _                   | ND (0.25)             | -                 | _                | _              | _             |
| Aroclor-1248 (PCB-1248)                   |                    | 6.40E-05     | 5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | _                   | ND (0.25)             | _                 | _                | _              | _             |
| Aroclor-1254 (PCB-1254)                   |                    | 6.40E-05     | 5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | _                   | ND (0.25)             | _                 | _                | _              | _             |
| Aroclor-1260 (PCB-1260)                   |                    | 6.40E-05     | 5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | _                   | ND (0.23)<br>ND (0.2) | _                 | _                | _              | _             |
| 7.100101 1200 (1 CB-1200)                 |                    | 0.40L-03     | J                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | =                   | 140 (0.2)             | =                 | <u>-</u>         | <u> </u>       | =             |
| Semi-Volatile Organic Compounds (SIM) (սչ | g/L)               |              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                     |                       |                   |                  |                |               |
| Acenaphthene                              |                    | 100          | 6000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | -                   | ND (0.1)              | -                 | -                | -              | -             |
| Acenaphthylene                            |                    | 100          | 40                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | -                   | ND (0.1)              | -                 | -                | -              | -             |
| Anthracene                                |                    | 100          | 30                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | <u>-</u>            | ND (0.1)              | -                 | -                | -              | -             |
| Benzo(a)anthracene                        |                    | 1            | 1000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | _                   | ND (0.1)              | -                 | _                | _              | _             |
| Benzo(a)pyrene                            |                    | 1            | 500                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | _                   | ND (0.1)              | _                 | _                | _              | _             |
| Benzo(b)fluoranthene                      |                    | 1            | 400                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | _                   | ND (0.1)              | _                 | _                | l .            | _             |
|                                           |                    | 100          | 20                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | =                   |                       | =                 | =                |                | -             |
| Benzo(g,h,i)perylene                      |                    |              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | -                   | ND (0.1)              | -                 | -                | -              | _             |
| Benzo(k)fluoranthene                      |                    | 1            | 100                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | -                   | ND (0.1)              | -                 | -                |                | _             |
| Chrysene                                  |                    | 1            | 70                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | -                   | ND (0.1)              | -                 | -                | · -            | -             |
| Dibenz(a,h)anthracene                     |                    | 1            | 40                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | -                   | ND (0.1)              | -                 | -                | -              | -             |
| Fluoranthene                              |                    | 100          | 200                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | -                   | ND (0.1)              | -                 | -                | -              | -             |
| Fluorene                                  |                    | 100          | 40                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | -                   | ND (0.1)              | -                 | -                | -              | -             |
| Indeno(1,2,3-cd)pyrene                    |                    | 1            | 100                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | -                   | ND (0.1)              | -                 | -                | -              | -             |
| Naphthalene                               |                    | 20           | 700                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | -                   | ND (0.1)              | -                 | -                | -              | -             |
| Pentachlorophenol                         |                    | 1            | 200                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | <u>-</u>            | ND (1)                | _                 | -                | _              | _             |
| Phenanthrene                              |                    | 100          | 10000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | _                   | ND (0.1)              | -                 | _                | _              | _             |
| Pyrene                                    |                    | 100          | 20                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | _                   | ND (0.1)              | _                 | _                | _              | _             |
|                                           |                    | 100          | 20                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                     | .10 (0.1)             |                   |                  |                |               |
| Volatile Organic Compounds SIM (ug/L)     |                    |              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                     |                       |                   |                  |                |               |
| 1,4-Dioxane                               |                    | 200          | 6000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | -                   | ND (10)               | -                 | -                | -              | -             |
| ARREVIATIONS AND NOTES:                   |                    |              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                     |                       |                   |                  |                |               |

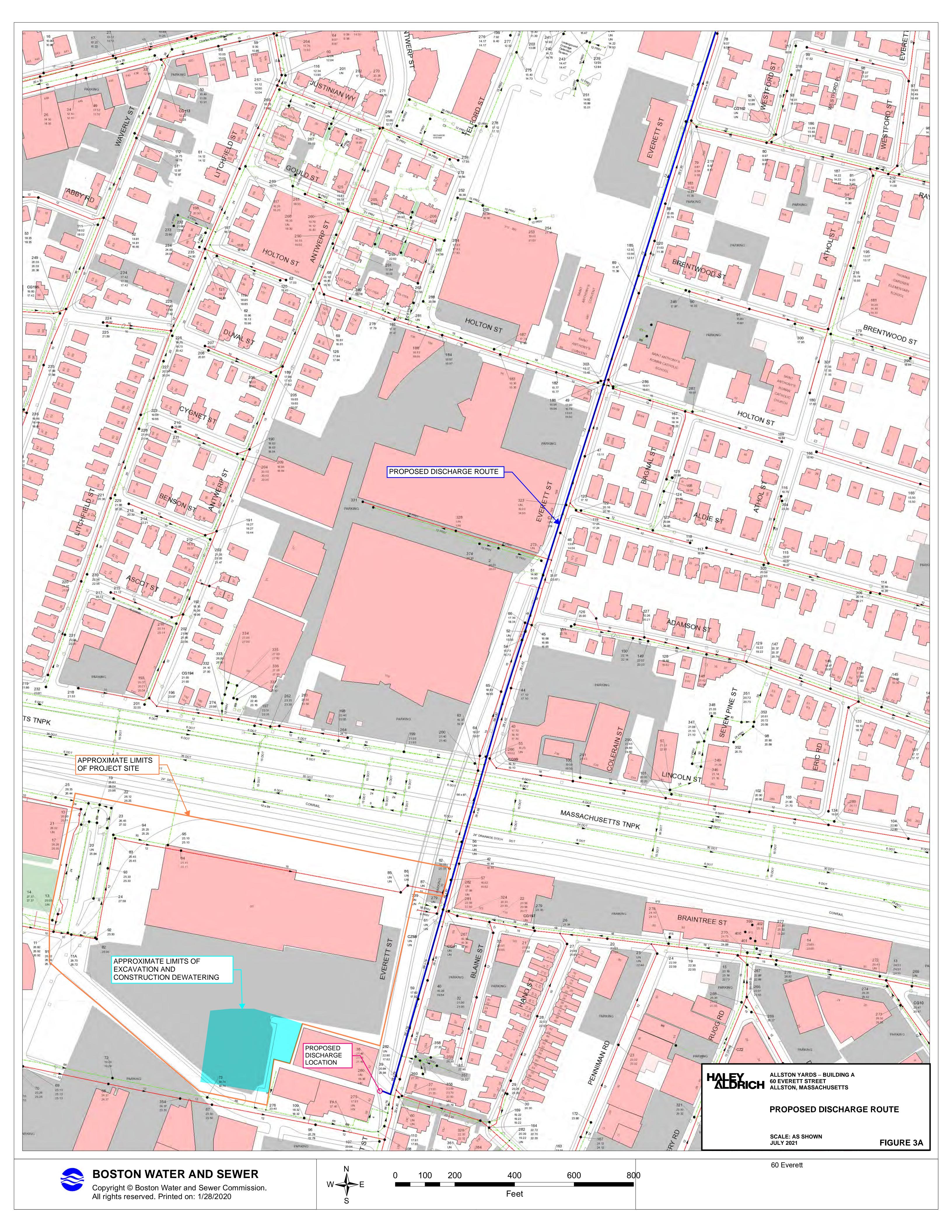
# ABBREVIATIONS AND NOTES:

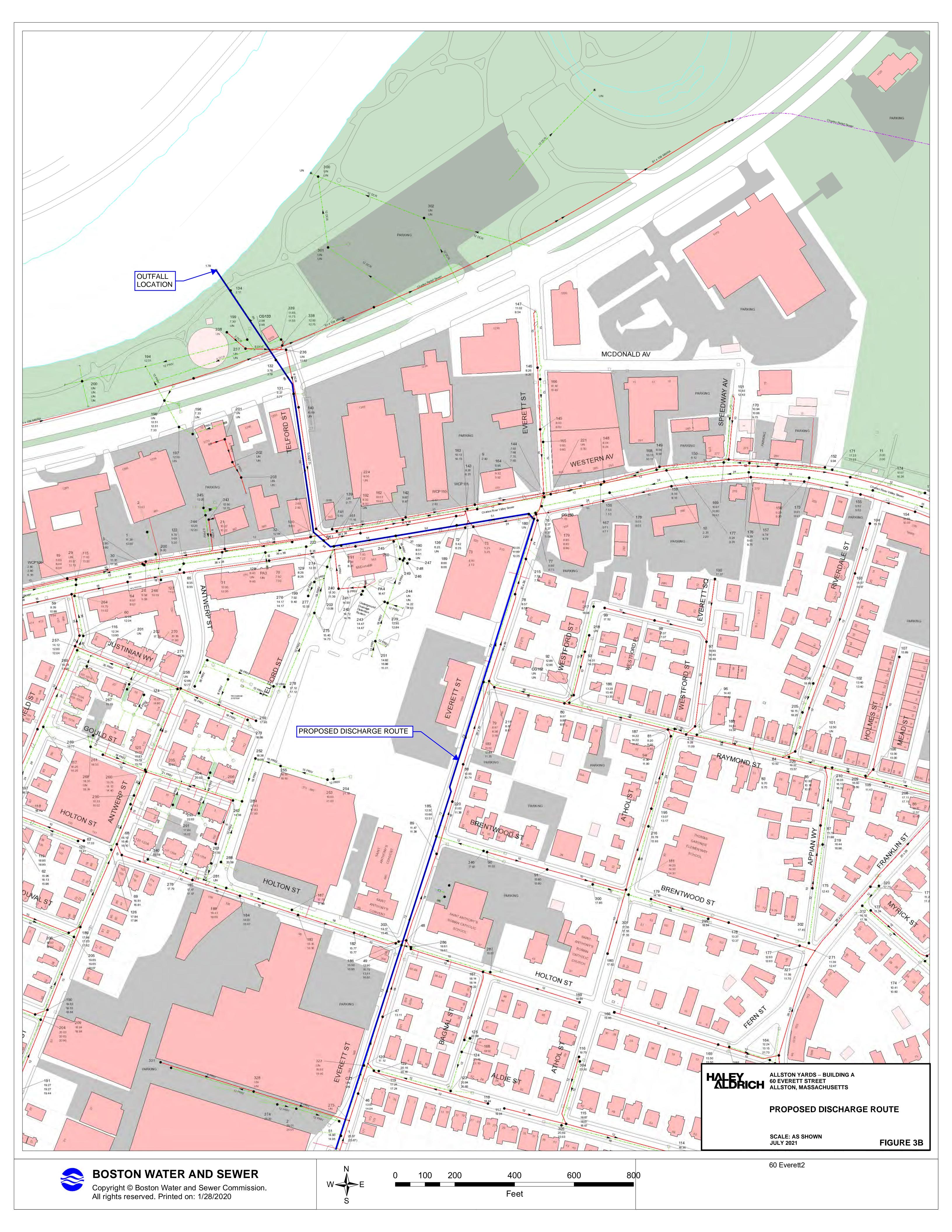
-: Not Analyzed

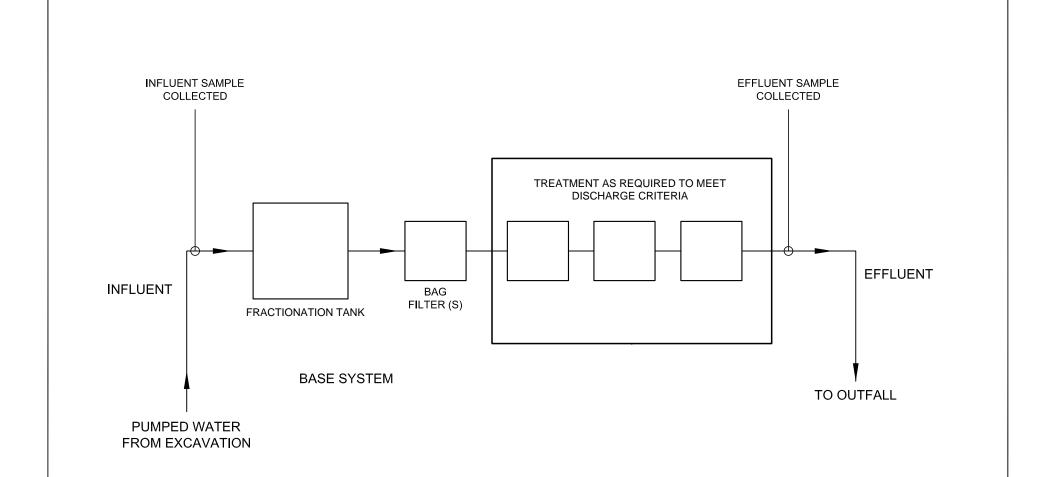
 $\mu g/L\colon$  micrograms per liter bgs: below ground surface


ft: feet

mg/L: milligram per liter


NA: Not Applicable


ND (2.5): Not detected, number in parentheses is the laboratory reporting limit


- Analytes detected in at least one sample are reported herein. For a complete list of analytes see the laboratory data sheets. Groundwater samples analyzed for dissolved metals were filtered in the field with a 0.45 micrometer filter.
- Bold values indicate an exceedance of the  $\mbox{RCGW-2}$  criteria.











#### LEGEND:

DIRECTION OF FLOW

#### NOTE:

1. DETAILS OF TREATMENT SYSTEM MAY VARY FROM SYSTEM INDICATED ABOVE. SPECIFIC MEANS AND METHODS OF TREATMENT TO BE SELECTED BY CONTRACTOR. WATER WILL BE TREATED TO MEET REQUIRED EFFLUENT STANDARDS.



ALLSTON YARDS - BUILDING A ALLSTON YARDS - BUILDING A 60 EVERETT STREET ALLSTON, MASSACHUSETTS

> PROPOSED TREATMENT SYSTEM SCHEMATIC

SCALE: NONE JULY 2021

FIGURE 4

# **APPENDIX A**

Notice of Intent (NOI)

# II. Suggested Format for the Remediation General Permit Notice of Intent (NOI)

# A. General site information:

| Name of site:     Allston Yards - Building A                                      | Site address: 60 Everett Street                                               |                                                                                       |                |                       |  |  |  |
|-----------------------------------------------------------------------------------|-------------------------------------------------------------------------------|---------------------------------------------------------------------------------------|----------------|-----------------------|--|--|--|
|                                                                                   | Street:                                                                       |                                                                                       |                |                       |  |  |  |
|                                                                                   | City: Allston                                                                 |                                                                                       | State: MA      | <sup>Zip:</sup> 02134 |  |  |  |
| Site owner     Allston Yards Phase A LLC                                          | Contact Person: Jeffrey Morgan                                                | •                                                                                     |                |                       |  |  |  |
|                                                                                   | Telephone: 508-326-7276                                                       | Email: jmc                                                                            | organ@reta     | ilbusinessservices.   |  |  |  |
|                                                                                   | Mailing address: 1385 Hancock Street                                          |                                                                                       |                |                       |  |  |  |
| Owner is (sheet one). The level of State 1 in Principle                           | Street:                                                                       |                                                                                       |                |                       |  |  |  |
| Owner is (check one): ☐ Federal ☐ State/Tribal ■ Private ☐ Other; if so, specify: | City: Quincy                                                                  | •                                                                                     | State: MA      | Zip: 02169            |  |  |  |
| 3. Site operator, if different than owner                                         | Contact Person: Frank Allard                                                  |                                                                                       |                |                       |  |  |  |
| Dimeo Construction Company                                                        | Telephone: 401-639-4557                                                       | Email: falla                                                                          | lard@dimeo.com |                       |  |  |  |
|                                                                                   | Mailing address:                                                              |                                                                                       |                |                       |  |  |  |
|                                                                                   | Street: 88 Black Falcon Avenue, Suite 307                                     |                                                                                       |                |                       |  |  |  |
|                                                                                   | City: Boston                                                                  |                                                                                       | State: MA      | Zip: 02210            |  |  |  |
| <ol> <li>NPDES permit number assigned by EPA:</li> <li>Not Applicable</li> </ol>  | 5. Other regulatory program(s) that apply to the site (check all that apply): |                                                                                       |                |                       |  |  |  |
|                                                                                   | ■ MA Chapter 21e; list RTN(s):<br>3-33943, 3-2332, and 3-12447                | □ CERCL                                                                               |                |                       |  |  |  |
| NPDES permit is (check all that apply: ■ RGP □ DGP □ CGP                          | □ NH Groundwater Management Permit or                                         | <ul><li>☐ UIC Program</li><li>☐ POTW Pretreatment</li><li>☐ CWA Section 404</li></ul> |                |                       |  |  |  |
| ☐ MSGP ☐ Individual NPDES permit ☐ Other; if so, specify:                         | Groundwater Release Detection Permit:                                         |                                                                                       |                |                       |  |  |  |
|                                                                                   |                                                                               |                                                                                       |                |                       |  |  |  |

| B. Receiving water information:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                       |                                                     |                                                          |  |  |  |  |  |  |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------|----------------------------------------------------------|--|--|--|--|--|--|
| 1. Name of receiving water(s):                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | of receiving water(s): Waterbody identification of receiving water(s): Cla                                            |                                                     |                                                          |  |  |  |  |  |  |
| Charles River MA72-36 Class B                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                       |                                                     |                                                          |  |  |  |  |  |  |
| Receiving water is (check any that apply): □ Outstanding Resource Water □ Ocean Sanctuary □ territorial sea □ Wild and Scenic River                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                       |                                                     |                                                          |  |  |  |  |  |  |
| 2. Has the operator attached a location map in accordance with the instructions in B, above? (check one): ■ Yes □ No                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                       |                                                     |                                                          |  |  |  |  |  |  |
| Are sensitive receptors present near the site? (check one): □ Yes ■ No If yes, specify:                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                       |                                                     |                                                          |  |  |  |  |  |  |
| 3. Indicate if the receiving water(s) is listed in the State's Integrated List of Waters (i.e., CWA Section 303(d)). Include which designated uses are impaired, and any pollutants indicated. Also, indicate if a final TMDL is available for any of the indicated pollutants. For more information, contact the appropriate State as noted in Part 4.6 of the RGP. Chlorophyll-a 33826, DDT in Fish Tissue, Dissolved Oxygen, E. Coli, Fish Bioassessments, Harmful Algal Blooms, Nutrient/Eutrophication Biological |                                                                                                                       |                                                     |                                                          |  |  |  |  |  |  |
| 4. Indicate the seven day-ten-year low flow (7Q10) of the receiving water determined in accordance with the instructions in Appendix V for sites located in Massachusetts and Appendix VI for sites located in New Hampshire.                                                                                                                                                                                                                                                                                          |                                                                                                                       |                                                     |                                                          |  |  |  |  |  |  |
| 5. Indicate the requested dilution factor for the calcula accordance with the instructions in Appendix V for six                                                                                                                                                                                                                                                                                                                                                                                                       | tion of water quality-based effluent limitations (Wester in Massachusetts and Appendix VI for sites in N              | QBELs) determined in New Hampshire.                 | 73.7                                                     |  |  |  |  |  |  |
| 6. Has the operator received confirmation from the ap If yes, indicate date confirmation received: 7 June 2021                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                       |                                                     |                                                          |  |  |  |  |  |  |
| 7. Has the operator attached a summary of receiving v                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | vater sampling results as required in Part 4.2 of the                                                                 | RGP in accordance with the                          | e instruction in Appendix VIII?                          |  |  |  |  |  |  |
| (check one): ■ Yes □ No                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                       | 0                                                   |                                                          |  |  |  |  |  |  |
| C. Source water information:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | *                                                                                                                     | *                                                   |                                                          |  |  |  |  |  |  |
| 1. Source water(s) is (check any that apply):                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                       |                                                     |                                                          |  |  |  |  |  |  |
| ■ Contaminated groundwater                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | ☐ Contaminated surface water                                                                                          | ☐ The receiving water                               | ☐ Potable water; if so, indicate municipality or origin: |  |  |  |  |  |  |
| Has the operator attached a summary of influent sampling results as required in Part 4.2 of the RGP                                                                                                                                                                                                                                                                                                                                                                                                                    | Has the operator attached a summary of influent                                                                       | ☐ A surface water other                             |                                                          |  |  |  |  |  |  |
| in accordance with the instruction in Appendix VIII? (check one):                                                                                                                                                                                                                                                                                                                                                                                                                                                      | sampling results as required in Part 4.2 of the RGP in accordance with the instruction in Appendix VIII? (check one): | than the receiving water; i so, indicate waterbody: | ☐ Other; if so, specify:                                 |  |  |  |  |  |  |
| ■ Yes □ No                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                       |                                                     |                                                          |  |  |  |  |  |  |

| 2. Source water contaminants: Trichloroethylene, cis-1,2-dichloroethylene,                                                                                                                            | vinyl chloride                                                                                                                                                                     |  |  |  |  |  |  |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|--|--|--|
| a. For source waters that are contaminated groundwater or contaminated surface water, indicate are any contaminants present that are not included in                                                  | b. For a source water that is a surface water other than the receiving water, potable water or other, indicate any contaminants present at the maximum concentration in accordance |  |  |  |  |  |  |
| the RGP? (check one): $\square$ Yes $\blacksquare$ No If yes, indicate the contaminant(s) and                                                                                                         |                                                                                                                                                                                    |  |  |  |  |  |  |
| the maximum concentration present in accordance with the instructions in                                                                                                                              | with the instructions in Appendix VIII? (check one): ☐ Yes ☐ No                                                                                                                    |  |  |  |  |  |  |
| Appendix VIII.                                                                                                                                                                                        |                                                                                                                                                                                    |  |  |  |  |  |  |
| 3. Has the source water been previously chlorinated or otherwise contains resid                                                                                                                       | ual chlorine? (check one): □ Yes ■ No                                                                                                                                              |  |  |  |  |  |  |
| D. Discharge information                                                                                                                                                                              |                                                                                                                                                                                    |  |  |  |  |  |  |
| 1. The discharge(s) is a(n) (check any that apply): ☐ Existing discharge ■ New                                                                                                                        | discharge □ New source                                                                                                                                                             |  |  |  |  |  |  |
|                                                                                                                                                                                                       | •                                                                                                                                                                                  |  |  |  |  |  |  |
| Outfall(s):<br>Charles River (MA72-36)                                                                                                                                                                | Outfall location(s): (Latitude, Longitude) 42.36673, -71.13665                                                                                                                     |  |  |  |  |  |  |
| Thansa third (WITT 200)                                                                                                                                                                               | 42.30073, -71.13003                                                                                                                                                                |  |  |  |  |  |  |
| ,                                                                                                                                                                                                     |                                                                                                                                                                                    |  |  |  |  |  |  |
|                                                                                                                                                                                                       |                                                                                                                                                                                    |  |  |  |  |  |  |
| Discharges enter the receiving water(s) via (check any that apply): □ Direct dis                                                                                                                      | scharge to the receiving water   Indirect discharge, if so, specify:                                                                                                               |  |  |  |  |  |  |
|                                                                                                                                                                                                       |                                                                                                                                                                                    |  |  |  |  |  |  |
| ☐ A private storm sewer system ■ A municipal storm sewer system                                                                                                                                       |                                                                                                                                                                                    |  |  |  |  |  |  |
| If the discharge enters the receiving water via a private or municipal storm sew                                                                                                                      |                                                                                                                                                                                    |  |  |  |  |  |  |
| Has notification been provided to the owner of this system? (check one): ■ Yes □ No                                                                                                                   |                                                                                                                                                                                    |  |  |  |  |  |  |
| Has the operator has received permission from the owner to use such system for discharges? (check one): Yes \( \subseteq \) No, if so, explain, with an estimated timeframe for obtaining permission: |                                                                                                                                                                                    |  |  |  |  |  |  |
| Has the operator attached a summary of any additional requirements the owner of this system has specified? (check one): ☐ Yes ■ No                                                                    |                                                                                                                                                                                    |  |  |  |  |  |  |
| Provide the expected start and end dates of discharge(s) (month/year):  September 2021 - September 2022                                                                                               |                                                                                                                                                                                    |  |  |  |  |  |  |
| Indicate if the discharge is expected to occur over a duration of: ☐ less than 12 months ■ 12 months or more ☐ is an emergency discharge                                                              |                                                                                                                                                                                    |  |  |  |  |  |  |
| Has the operator attached a site plan in accordance with the instructions in D, above? (check one): ■ Yes □ No                                                                                        |                                                                                                                                                                                    |  |  |  |  |  |  |

| 2. Activity Category: (check all that apply)                                                                                                                                                                  | 3. Contamination Type Category: (check all that apply)                                                                                                                                                                                                                                                   |                                                                                                        |  |  |  |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------|--|--|--|
| $\Box$ I – Petroleum-Related Site Remediation                                                                                                                                                                 | a. If Activity Category I or II: (check all that apply)  A. Inorganics  B. Non-Halogenated Volatile Organic Compounds  C. Halogenated Volatile Organic Compounds  D. Non-Halogenated Semi-Volatile Organic Compounds  E. Halogenated Semi-Volatile Organic Compounds  F. Fuels Parameters                |                                                                                                        |  |  |  |
| ☐ II – Non-Petroleum-Related Site Remediation ■ III – Contaminated Site Dewatering                                                                                                                            | ■ G. Sites with Known                                                                                                                                                                                                                                                                                    | V, V, VI, VII or VIII: (check either G or H)  □ H. Sites with Unknown Contamination                    |  |  |  |
| <ul> <li>□ IV – Dewatering of Pipelines and Tanks</li> <li>□ V – Aquifer Pump Testing</li> <li>□ VI – Well Development/Rehabilitation</li> <li>□ VII – Collection Structure Dewatering/Remediation</li> </ul> | c. If Category III-G, IV-G, V-G, VI-G, VII-G or VIII-G: (check all that apply)                                                                                                                                                                                                                           | 11. Sites with Chanowi Contamination                                                                   |  |  |  |
| □ VIII – Dredge-Related Dewatering                                                                                                                                                                            | <ul> <li>■ A. Inorganics</li> <li>■ B. Non-Halogenated Volatile Organic Compounds</li> <li>■ C. Halogenated Volatile Organic Compounds</li> <li>■ D. Non-Halogenated Semi-Volatile Organic Compounds</li> <li>□ E. Halogenated Semi-Volatile Organic Compounds</li> <li>■ F. Fuels Parameters</li> </ul> | d. If Category III-H, IV-H, V-H, VI-H, VII-H or VIII-H Contamination Type Categories A through F apply |  |  |  |

| 4. | Influent | and | Effluent | Charact | eristics |
|----|----------|-----|----------|---------|----------|
|    |          |     |          |         |          |

|                         | Known                    | Known                     |              |                       | D                            | _ In                                                                                                           | fluent                     | Effluent L  | imitations |
|-------------------------|--------------------------|---------------------------|--------------|-----------------------|------------------------------|----------------------------------------------------------------------------------------------------------------|----------------------------|-------------|------------|
| Parameter               | or<br>believed<br>absent | or<br>believed<br>present | # of samples | Test<br>method<br>(#) | Detection<br>limit<br>(µg/l) | Daily<br>maximum<br>(µg/l)                                                                                     | Daily<br>average<br>(µg/l) | TBEL        | WQBEL      |
| A. Inorganics           |                          |                           |              |                       |                              |                                                                                                                |                            |             |            |
| Ammonia                 | /                        |                           | 1            | 121,4500              | 75                           | <75                                                                                                            | <75                        | Report mg/L |            |
| Chloride                |                          | ✓                         | 1 .          | 44.300.0              | 25000                        | 987.000                                                                                                        | 987.000                    | Report µg/l |            |
| Total Residual Chlorine | 1                        |                           | 1            | 121,4500              | 20                           | <20                                                                                                            | <20                        | 0.2 mg/L    | NA         |
| Total Suspended Solids  |                          | 1                         | 1            | 121,2540D             | 5000                         | 6200                                                                                                           | 6200                       | 30 mg/L     |            |
| Antimony                | 1                        |                           | 1            | 3,200.8               | 4                            | <4                                                                                                             | <4                         | 206 μg/L    | NA         |
| Arsenic                 | 1                        |                           | 1            | 3,200.8               | 1                            | <1                                                                                                             | <1                         | 104 μg/L    | NA         |
| Cadmium                 | 1                        |                           | 1            | 3,200.8               | 2                            | <2                                                                                                             | <2                         | 10.2 μg/L   | NA NA      |
| Chromium III            | 1                        |                           | 1            | 107,-                 | 10                           | <10                                                                                                            | <10                        | 323 μg/L    | NA NA      |
| Chromium VI             | 1                        |                           | 1            | 1,7196A               | 10                           | <10                                                                                                            | <10                        | 323 μg/L    | NA NA      |
| Copper                  |                          | /                         | 1 .          | 3,200.8               | 1                            | 4.1                                                                                                            | 4.1                        | 242 μg/L    | NA         |
| Iron                    |                          | /                         | 1            | 19,200.7              | 50                           | 492                                                                                                            | 492                        | 5,000 μg/L  | NA         |
| Lead                    |                          | 1                         | 1            | 3,200.8               | 1                            | 1.09                                                                                                           | 1.09                       | 160 μg/L    | NA         |
| Mercury                 | 1                        |                           | 1            | 3,245.1               | 0.2                          | <0.2                                                                                                           | <0.2                       | 0.739 μg/L  | NA NA      |
| Nickel                  |                          | 1                         | 1            | 3,200.8               | 2                            | 4.12                                                                                                           | 4.12                       | 1,450 μg/L  | NA         |
| Selenium                | 1                        |                           | 1            | 3,200.8               | 5                            | <5                                                                                                             | <5                         | 235.8 μg/L  | NA         |
| Silver                  | 1                        |                           | 1            | 3,200.8               | 0.4                          | <0.4                                                                                                           | <0.4                       | 35.1 μg/L   | NA         |
| Zinc                    | 1                        |                           | 1            | 3,200.8               | 10                           | <10                                                                                                            | <10                        | 420 μg/L    | NA NA      |
| Cyanide                 | 1                        |                           | 1 .          | 121,4500              |                              | <5                                                                                                             | <5                         | 178 mg/L    | NA NA      |
| B. Non-Halogenated VOCs | 8                        |                           |              | ,,                    |                              | de la companya de la |                            |             | IIVA       |
| Total BTEX              | 1                        |                           | 5            | 128,624.1             | 2                            | <2                                                                                                             | <2                         | 100 μg/L    |            |
| Benzene                 | 1                        |                           | 5            | 128,624.1             | 2                            | <2                                                                                                             | <2                         | 5.0 μg/L    |            |
| 1,4 Dioxane             | 1                        |                           | 5            | 128,624.1             |                              | <10                                                                                                            | <10                        | 200 μg/L    |            |
| Acetone                 | ~                        |                           | 5            | 128,624.1             | 20                           | <20                                                                                                            | <20                        | 7.97 mg/L   |            |
| Phenol                  | /                        |                           | 5            | 4,420.1               | 30                           | <30                                                                                                            | <30                        | 1,080 μg/L  | NA         |

|                          | Known                    | Known                     |              | Tread                 | D                            | In                         | fluent                     | Effluent Li    | mitations |
|--------------------------|--------------------------|---------------------------|--------------|-----------------------|------------------------------|----------------------------|----------------------------|----------------|-----------|
| Parameter                | or<br>believed<br>absent | or<br>believed<br>present | # of samples | Test<br>method<br>(#) | Detection<br>limit<br>(µg/l) | Daily<br>maximum<br>(µg/l) | Daily<br>average<br>(µg/l) | TBEL           | WQBEL     |
| C. Halogenated VOCs      |                          |                           |              |                       |                              |                            |                            |                |           |
| Carbon Tetrachloride     | 1                        |                           | 5            | 128,624,1             | 2                            | <2                         | <2                         | 4.4 μg/L       | NA        |
| 1,2 Dichlorobenzene      | 1                        |                           | 5            | 128,624.1             | 10                           | <10                        | <10                        | 600 μg/L       |           |
| 1,3 Dichlorobenzene      | 1                        |                           | 5            | 128.624.1             | 10                           | <10                        | <10                        | 320 μg/L       |           |
| 1,4 Dichlorobenzene      | 1                        |                           | 5            | 128,624.1             | 10                           | <10                        | <10                        | 5.0 μg/L       |           |
| Total dichlorobenzene    | 1                        |                           | 5            | 128.624.1             | 10                           | <10                        | <10                        | 763 μg/L in NH |           |
| 1,1 Dichloroethane       |                          | 1                         | 5            | 97,8260C              | 1                            | 1.5                        | 1.5                        | 70 μg/L        |           |
| 1,2 Dichloroethane       | 1                        |                           | 5            | 128,624.1             | 3                            | <3                         | <3                         | 5.0 μg/L       |           |
| 1,1 Dichloroethylene     | 1                        |                           | 5            | 128,624.1             | 2                            | <2                         | <2                         | 3.2 μg/L       |           |
| Ethylene Dibromide       | 1                        |                           | 5            | 128,624.1             | 0.01                         | <0.01                      | <0.01                      | 0.05 μg/L      |           |
| Methylene Chloride       | 1                        |                           | 5            | 128,624.1             | 2                            | <2.                        | <22.                       | 4.6 μg/L       |           |
| 1,1,1 Trichloroethane    | 1                        |                           | 5            | 128,624.1             | 4                            | <4                         | <4                         | 200 μg/L       |           |
| 1,1,2 Trichloroethane    | 1                        |                           | 5            | 128,624.1             | 3                            | <3                         | <3                         | 5.0 μg/L       |           |
| Trichloroethylene        |                          | 1                         | 5            | 128,624.1             | 2                            | 210                        | 26.75                      | 5.0 μg/L       |           |
| Tetrachloroethylene      | 1                        |                           | 5            | 128.624.1             | 2                            | <2                         | <2                         | 5.0 μg/L       | NA        |
| cis-1,2 Dichloroethylene |                          | 1                         | 5            | 128,624.1             | 1                            | 46                         | 87.0                       | 70 μg/L        | INA       |
| Vinyl Chloride           |                          | 1                         | 5            | 128,624.1             | 2                            | 5.8                        | 3.87                       | 2.0 μg/L       |           |
| D. Non-Halogenated SVO   |                          |                           |              | 120,021,1             | 2                            | 1.1.0                      |                            |                |           |
| Total Phthalates         | 1                        |                           | 1            | 129,625.1             | 5                            | <5                         | <5                         | 190 μg/L       | NA        |
| Diethylhexyl phthalate   | <b>/</b>                 |                           | 1            | 129,625.1             | 2.2                          | <2.2                       | <2.2                       | 101 μg/L       | NA        |
| Total Group I PAHs       | /                        |                           | 1            | 129,625.1             | 0.1                          | <0.1                       | <0.1                       | 1.0 μg/L       |           |
| Benzo(a)anthracene       | /                        |                           | 1            | 129,625.1             | 0.1                          | <0.1                       | <0.1                       | -              | NA        |
| Benzo(a)pyrene           | 1                        |                           | 1            | 129.625.1             | 0.1                          | <0.1                       | <0.1                       |                | NA        |
| Benzo(b)fluoranthene     | <b>V</b>                 |                           | 1            | 129,625.1             | 0.1                          | <0.1                       | <0.1                       |                | NA        |
| Benzo(k)fluoranthene     | 1                        |                           | 1            | 129,625.1             | 0.1                          | <0.1                       | <0.1                       | As Total PAHs  | NA        |
| Chrysene                 | <b>V</b>                 |                           | 1            | 129,625.1             | 0.1                          | <0.1                       | <0.1                       |                | NA        |
| Dibenzo(a,h)anthracene   | <b>*</b>                 |                           | 1            | 129,625.1             | 0.1                          | <0.1                       | <0.1                       |                | NA        |
| Indeno(1,2,3-cd)pyrene   | 1                        |                           | 1            | 129,625.1             | 0.1                          | <0.1                       | <0.1                       |                | NA        |

|                                                  | Known                    | Known                     |              | m .                   |                              | In                         | fluent                                       | Effluent Li                     | mitations |
|--------------------------------------------------|--------------------------|---------------------------|--------------|-----------------------|------------------------------|----------------------------|----------------------------------------------|---------------------------------|-----------|
| Parameter                                        | or<br>believed<br>absent | or<br>believed<br>present | # of samples | Test<br>method<br>(#) | Detection<br>limit<br>(µg/l) | Daily<br>maximum<br>(µg/l) | Daily<br>average<br>(µg/l)                   | TBEL                            | WQBEL     |
| Total Group II PAHs                              | <b>✓</b>                 |                           | 1            | 129.625.1             | 0.1                          | <0.1                       | <0.1                                         | 100 μg/L                        |           |
| Naphthalene                                      | <b>/</b>                 |                           | 1            | 129,625.1             | 0.1                          | <0.1                       | <0.1                                         | 20 μg/L                         |           |
| E. Halogenated SVOCs                             |                          |                           |              |                       |                              |                            |                                              |                                 |           |
| Total PCBs                                       | <b>V</b>                 |                           | 1            | 127,608.3             | 0.25                         | <0.25                      | <0.25                                        | 0.000064 μg/L                   |           |
| Pentachlorophenol                                | 1                        |                           | 1            | 129,625.1             | 1                            | <1                         | <1                                           | 1.0 μg/L                        |           |
| F. Fuels Parameters Total Petroleum Hydrocarbons | ·                        |                           | 1            | 74,1664A              | 4400                         | . <4400                    | <4400                                        | 5.0 mg/L                        |           |
| Ethanol                                          | 1                        |                           | NA           | NA                    | 0.00 00000                   | 27.4                       | 20 20 10 10 10 10 10 10 10 10 10 10 10 10 10 | Report mg/L                     |           |
| Methyl-tert-Butyl Ether                          | /                        |                           | 5            | 128,624.1             | NA<br>20                     | NA<br>20                   | NA                                           | 70 μg/L                         |           |
| tert-Butyl Alcohol                               | 1                        |                           | 1            | 128,624.1             | 200                          | <200<br><200               | <200<br><200                                 | 120 μg/L in MA<br>40 μg/L in NH | NA        |
| tert-Amyl Methyl Ether                           | <b>/</b>                 |                           | 5            | 128,624.1             | 40                           | <40                        | <40                                          | 90 μg/L in MA<br>140 μg/L in NH |           |
| Other (i.e., pH, temperatur                      | re, hardness, :          | salinity, LC              | 50, addition | al pollutan           | ts present):                 | if so, specify:            |                                              |                                 |           |
| Hardness                                         |                          | 1                         | 1            | 19,2007               | 660                          | 427000                     | 427000                                       |                                 |           |
| рН                                               |                          | <b>✓</b>                  | 1            | 121,45000             |                              | 6.6                        | 6.6                                          |                                 |           |
| Salinity                                         | <b>/</b>                 |                           | 1            | 121.2520B             |                              | <2000                      | <2000                                        |                                 |           |
|                                                  |                          |                           |              |                       |                              |                            |                                              |                                 |           |
|                                                  |                          |                           |              |                       |                              |                            |                                              |                                 |           |
|                                                  |                          |                           | -            |                       |                              |                            |                                              |                                 |           |
|                                                  |                          |                           | -            |                       |                              |                            |                                              |                                 |           |
|                                                  |                          |                           |              |                       |                              |                            |                                              |                                 |           |
|                                                  |                          |                           |              |                       |                              |                            |                                              |                                 |           |
|                                                  |                          |                           |              |                       |                              |                            |                                              |                                 |           |
|                                                  |                          |                           |              |                       |                              |                            |                                              |                                 |           |
|                                                  |                          |                           |              |                       |                              |                            |                                              |                                 |           |

# E. Treatment system information

| 1. Indicate the type(s) of treatment that will be applied to effluent prior to discharge: (check all that apply)                                                                                                                                                                                                                                                                                                                                  |              |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------|
| □ Adsorption/Absorption □ Advanced Oxidation Processes □ Air Stripping ■ Granulated Activated Carbon ("GAC")/Liquid Phase Carbon Adsorption □ Ion Exchange □ Precipitation/Coagulation/Flocculation ■ Separation/Filtration ■ Other; if so, specify:  Treatment as required to meet effluent limitations.                                                                                                                                         |              |
| 2. Provide a written description of all treatment system(s) or processes that will be applied to the effluent prior to discharge.  Prior to discharge, collected water is routed through a sedimentation tank and bag filters to remove suspended solids and undissolved chemical constituents. Additional treinclude granulated activated carbon (GAC) and pH adjustment, as needed to meet necessary effluent limits established by the permit. | eatment will |
| Identify each major treatment component (check any that apply):                                                                                                                                                                                                                                                                                                                                                                                   |              |
| ■ Fractionation tanks□ Equalization tank □ Oil/water separator □ Mechanical filter □ Media filter                                                                                                                                                                                                                                                                                                                                                 |              |
| ☐ Chemical feed tank ☐ Air stripping unit ■ Bag filter ■ Other; if so, specify: Granulated Activated Carbon (GAC) and/or pH adjustment may be added to meet necessary effluent limits.                                                                                                                                                                                                                                                            | t            |
| Indicate if either of the following will occur (check any that apply):                                                                                                                                                                                                                                                                                                                                                                            |              |
| ☐ Chlorination ☐ De-chlorination                                                                                                                                                                                                                                                                                                                                                                                                                  |              |
| 3. Provide the <b>design flow capacity</b> in gallons per minute (gpm) of the most limiting component.  Indicate the most limiting component:  Is use of a flow meter feasible? (check one): ■ Yes □ No, if so, provide justification:                                                                                                                                                                                                            | 150 GPM      |
| Provide the proposed maximum effluent flow in gpm.                                                                                                                                                                                                                                                                                                                                                                                                | 150 GPM      |
| Provide the average effluent flow in gpm.                                                                                                                                                                                                                                                                                                                                                                                                         | 50 GPM       |
| If Activity Category IV applies, indicate the estimated total volume of water that will be discharged:                                                                                                                                                                                                                                                                                                                                            | NA           |
| 4. Has the operator attached a schematic of flow in accordance with the instructions in E, above? (check one): ■ Yes □ No                                                                                                                                                                                                                                                                                                                         |              |

# F. Chemical and additive information

| r. Chemical and additive information                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 1. Indicate the type(s) of chemical or additive that will be applied to effluent prior to discharge or that may otherwise be present in the discharge(s): (check all that apply)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| □ Algaecides/biocides □ Antifoams □ Coagulants □ Corrosion/scale inhibitors □ Disinfectants □ Flocculants □ Neutralizing agents □ Oxidants □ Oxygen □                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| scavengers pH conditioners Bioremedial agents, including microbes Chlorine or chemicals containing chlorine Other; if so, specify:  The site contractor has not yet submitted their construction dewatering submittal which will include details of the proposed treatment system along with Safety Data Sheets (SDSs).                                                                                                                                                                                                                                                                                                                                                                                                            |
| 2. Provide the following information for each chemical/additive, using attachments, if necessary:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| <ul> <li>a. Product name, chemical formula, and manufacturer of the chemical/additive;</li> <li>b. Purpose or use of the chemical/additive or remedial agent;</li> <li>c. Material Safety Data Sheet (MSDS) and Chemical Abstracts Service (CAS) Registry number for each chemical/additive;</li> <li>d. The frequency (hourly, daily, etc.), duration (hours, days), quantity (maximum and average), and method of application for the chemical/additive;</li> <li>e. Any material compatibility risks for storage and/or use including the control measures used to minimize such risks; and</li> <li>f. If available, the vendor's reported aquatic toxicity (NOAEL and/or LC50 in percent for aquatic organism(s)).</li> </ul> |
| 3. Has the operator attached an explanation which demonstrates that the addition of such chemicals/additives may be authorized under this general permit in accordance                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| with the instructions in F, above? (check one): $\square$ Yes $\square$ No; if no, has the operator attached data that demonstrates each of the 126 priority pollutants in CWA Section 307(a) and 40 CFR Part 423.15(j)(1) are non-detect in discharges with the addition of the proposed chemical/additive?                                                                                                                                                                                                                                                                                                                                                                                                                       |
| (check one): ☐ Yes ☐ No                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| G. Endangered Species Act eligibility determination                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 1. Indicate under which criterion the discharge(s) is eligible for coverage under this general permit:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| ■ FWS Criterion A: No endangered or threatened species or critical habitat are in proximity to the discharges or related activities or come in contact with the "action area".                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| □ FWS Criterion B: Formal or informal consultation with the FWS under section 7 of the ESA resulted in either a no jeopardy opinion (formal consultation) or a written concurrence by FWS on a finding that the discharges and related activities are "not likely to adversely affect" listed species or critical habitat (informal consultation). Has the operator completed consultation with FWS? (check one): □ Yes □ No; if no, is consultation underway? (check one): □ Yes □ No                                                                                                                                                                                                                                             |
| □ FWS Criterion C: Using the best scientific and commercial data available, the effect of the discharges and related activities on listed species and critical habitat have been evaluated. Based on those evaluations, a determination is made by EPA, or by the operator and affirmed by EPA, that the discharges and related activities will have "no effect" on any federally threatened or endangered listed species or designated critical habitat under the jurisdiction of the FWS. This determination was made by: (check one) □ the operator □ EPA □ Other; if so, specify:                                                                                                                                              |

| □ NMFS Criterion: A determination made by EPA is affirmed by the operator that the discharges and related activities will have "no effect" or are "not likely to adversely affect" any federally threatened or endangered listed species or critical habitat under the jurisdiction of NMFS and will not result in any take of |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| listed species. Has the operator previously completed consultation with NMFS? (check one): ☐ Yes ☐ No                                                                                                                                                                                                                          |
| 2. Has the operator attached supporting documentation of ESA eligibility in accordance with the instructions in Appendix I, and G, above? (check one):                                                                                                                                                                         |
|                                                                                                                                                                                                                                                                                                                                |
| Does the supporting documentation include any written concurrence or finding provided by the Services? (check one):   Yes No; if yes, attach.                                                                                                                                                                                  |
| H. National Historic Preservation Act eligibility determination                                                                                                                                                                                                                                                                |
| 1. Indicate under which criterion the discharge(s) is eligible for coverage under this general permit:                                                                                                                                                                                                                         |
| ■ Criterion A: No historic properties are present. The discharges and discharge-related activities (e.g., BMPs) do not have the potential to cause effects on historic properties.                                                                                                                                             |
| ☐ Criterion B: Historic properties are present. Discharges and discharge related activities do not have the potential to cause effects on historic properties.                                                                                                                                                                 |
| ☐ Criterion C: Historic properties are present. The discharges and discharge-related activities have the potential to have an effect or will have an adverse effect on historic properties.                                                                                                                                    |
| 2. Has the operator attached supporting documentation of NHPA eligibility in accordance with the instructions in H, above? (check one): ■ Yes □ No                                                                                                                                                                             |
|                                                                                                                                                                                                                                                                                                                                |
|                                                                                                                                                                                                                                                                                                                                |
| Does the supporting documentation include any written agreement with the State Historic Preservation Officer (SHPO), Tribal Historic Preservation Officer (TPHO), or                                                                                                                                                           |
| other tribal representative that outlines measures the operator will carry out to mitigate or prevent any adverse effects on historic properties? (check one):   Yes  No                                                                                                                                                       |
|                                                                                                                                                                                                                                                                                                                                |
| I. Supplemental information                                                                                                                                                                                                                                                                                                    |
| Describe any supplemental information being provided with the NOI. Include attachments if required or otherwise necessary.                                                                                                                                                                                                     |
| Refer to attached Haley & Aldrich, Inc. letter                                                                                                                                                                                                                                                                                 |
|                                                                                                                                                                                                                                                                                                                                |
|                                                                                                                                                                                                                                                                                                                                |
|                                                                                                                                                                                                                                                                                                                                |
| Has the operator attached data, including any laboratory case narrative and chain of custody used to support the application? (check one): ■ Yes □ No                                                                                                                                                                          |
| Has the operator attached the certification requirement for the Best Management Practices Plan (BMPP)? (check one): ■ Yes □ No                                                                                                                                                                                                 |
|                                                                                                                                                                                                                                                                                                                                |

# J. Certification requirement

| I certify under penalty of law that this document and all attachments were prepared under my direction or supervision in a that qualified personnel properly gathered and evaluated the information submitted. Based on my inquiry of the person or persons directly responsible for gathering the information, the information submitted is, to the best of my knowledge and be no personal knowledge that the information submitted is other than true, accurate, and complete. I am aware that there are information, including the possibility of fine and imprisonment for knowing violations. | persons who manage<br>elief. true. accurate. a | the syste<br>nd comp | m, or those<br>lete. I have |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------|----------------------|-----------------------------|
| A BMPP meeting the requirements of this general permit will be imple BMPP certification statement: discharge and available for review at the site.                                                                                                                                                                                                                                                                                                                                                                                                                                                  | emented upon in                                | tiation              | of                          |
| Notification provided to the appropriate State, including a copy of this NOI, if required.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Check one: Yes □                               | No □                 | Not<br>Required             |
| Notification provided to the municipality in which the discharge is located, including a copy of this NOI, if requested.                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Check one: Yes ■                               | No □                 |                             |
| Notification provided to the owner of a private or municipal storm sewer system, if such system is used for site discharges, including a copy of this NOI, if requested.  Permission obtained from the owner of a private or municipal storm sewer system, if such system is used for site                                                                                                                                                                                                                                                                                                          | Check one: Yes ■                               | No □                 | NA □                        |
| discharges. If yes, attach additional conditions. If no, attach explanation and timeframe for obtaining permission.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Check one: Yes                                 | No □                 | NA 🗆                        |
| Notification provided to the owner/operator of the area associated with activities covered by an additional discharge permit(s). Additional discharge permit is (check one): □ RGP □ DGP □ CGP □ MSGP □ Individual NPDES permit □ Other; if so, specify:                                                                                                                                                                                                                                                                                                                                            | Check one: Yes □                               | No □                 | NA ■                        |
| ignature. Transis Callana                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | e: 7/28/202                                    | 1                    |                             |
| rint Name and Title: Francis C ALLARIT Provide Francis C                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | / /                                            |                      |                             |

# **PARAMETERS DETECTED IN SOIL**

# **Non-Halogenated VOCs**

Methyl Ethyl Ketone Acetone

Toluene Xylene (total)

# **Halogenated VOCs**

1,1,1-Trichloroethane

1,1-Dichloroethane

1,2,4-Trimethylbenzene

1,2-Dichlorobenzene

1,4-Dichlorobenzene

2-Phenylbutane (sec-Butylbenzene)

Bromomethane Chlorobenzene Chloroform

cis-1,2-Dichloroethene

Cymene (p-Isopropyltoluene)

Naphthalene n-Butylbenzene n-Propylbenzene Trichloroethene Vinyl chloride

# **Fuel Parameters**

**Petroleum Hydrocarbons** 

# **Non-Halogenated SVOCs**

2-Methylnaphthalene Acenaphthene Acenaphthylene Anthracene

Benzo(a)anthracene Benzo(a)pyrene Benzo(b)fluoranthene Benzo(g,h,i)perylene Benzo(k)fluoranthene bis(2-Ethylhexyl)phthalate

Chrysene

Dibenz(a,h)anthracene

Dibenzofuran Fluoranthene Fluorene

Indeno(1,2,3-cd)pyrene

Naphthalene Phenanthrene Pyrene

# **Halogenated SVOCs**

**Total PCBs** 

# **Inorganics**

Arsenic Barium Beryllium Cadmium Chromium Lead Mercury Nickel Vanadium

Zinc

# **APPENDIX B**

**Laboratory Data Reports** 



# ANALYTICAL REPORT

Lab Number: L1618400

Client: Haley & Aldrich, Inc.

465 Medford Street, Suite 2200 Charlestown, MA 02129-1400

ATTN: Jesse Siegel Phone: (617) 886-7400

Project Name: 60 EVERETT ST. REDEVELOPMENT

Project Number: 43088-002

Report Date: 06/21/16

The original project report/data package is held by Alpha Analytical. This report/data package is paginated and should be reproduced only in its entirety. Alpha Analytical holds no responsibility for results and/or data that are not consistent with the original.

Certifications & Approvals: MA (M-MA086), NY (11148), CT (PH-0574), NH (2003), NJ NELAP (MA935), RI (LAO00065), ME (MA00086), PA (68-03671), VA (460195), MD (348), IL (200077), NC (666), TX (T104704476), DOD (L2217), USDA (Permit #P-330-11-00240).

Eight Walkup Drive, Westborough, MA 01581-1019 508-898-9220 (Fax) 508-898-9193 800-624-9220 - www.alphalab.com



**Project Name:** 60 EVERETT ST. REDEVELOPMENT

Project Number: 43088-002

Lab Number:

L1618400

Report Date:

06/21/16

| Alpha<br>Sample ID | Client ID | Matrix | Sample<br>Location         | Collection<br>Date/Time | Receive Date |
|--------------------|-----------|--------|----------------------------|-------------------------|--------------|
| L1618400-01        | MW-1      | WATER  | 60 EVERETT ST., BOSTON, MA | 06/15/16 08:40          | 06/15/16     |
| L1618400-02        | MW-2      | WATER  | 60 EVERETT ST., BOSTON, MA | 06/15/16 09:30          | 06/15/16     |
| L1618400-03        | MW-8      | WATER  | 60 EVERETT ST., BOSTON, MA | 06/15/16 10:45          | 06/15/16     |
| L1618400-04        | MW-10     | WATER  | 60 EVERETT ST., BOSTON, MA | 06/15/16 11:40          | 06/15/16     |



Project Name: 60 EVERETT ST. REDEVELOPMENT Lab Number: L1618400

**Project Number:** 43088-002 **Report Date:** 06/21/16

# **MADEP MCP Response Action Analytical Report Certification**

This form provides certifications for all samples performed by MCP methods. Please refer to the Sample Results and Container Information sections of this report for specification of MCP methods used for each analysis. The following questions pertain only to MCP Analytical Methods.

| An af | firmative response to questions A through F is required for "Presumptive Certainty" status                                                                                                                                  |     |
|-------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|
| A     | Were all samples received in a condition consistent with those described on the Chain-of-Custody, properly preserved (including temperature) in the field or laboratory, and prepared/analyzed within method holding times? | YES |
| В     | Were the analytical method(s) and all associated QC requirements specified in the selected CAM protocol(s) followed?                                                                                                        | YES |
| С     | Were all required corrective actions and analytical response actions specified in the selected CAM protocol(s) implemented for all identified performance standard non-conformances?                                        | YES |
| D     | Does the laboratory report comply with all the reporting requirements specified in CAM VII A, "Quality Assurance and Quality Control Guidelines for the Acquisition and Reporting of Analytical Data?"                      | YES |
| E a.  | VPH, EPH, and APH Methods only: Was each method conducted without significant modification(s)? (Refer to the individual method(s) for a list of significant modifications).                                                 | N/A |
| E b.  | APH and TO-15 Methods only: Was the complete analyte list reported for each method?                                                                                                                                         | N/A |
| F     | Were all applicable CAM protocol QC and performance standard non-conformances identified and evaluated in a laboratory narrative (including all "No" responses to Questions A through E)?                                   | YES |

| A response to questions G, H and I is required for "Presumptive Certainty" status |                                                                                                           |     |  |
|-----------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------|-----|--|
| G                                                                                 | Were the reporting limits at or below all CAM reporting limits specified in the selected CAM protocol(s)? | YES |  |
| н                                                                                 | Were all QC performance standards specified in the CAM protocol(s) achieved?                              | NO  |  |
| ı                                                                                 | Were results reported for the complete analyte list specified in the selected CAM protocol(s)?            | YES |  |

For any questions answered "No", please refer to the case narrative section on the following page(s).

Please note that sample matrix information is located in the Sample Results section of this report.



**Project Name:** 60 EVERETT ST. REDEVELOPMENT Lab Number: L1618400

**Project Number:** 43088-002 **Report Date:** 06/21/16

### **Case Narrative**

The samples were received in accordance with the Chain of Custody and no significant deviations were encountered during the preparation or analysis unless otherwise noted. Sample Receipt, Container Information, and the Chain of Custody are located at the back of the report.

Results contained within this report relate only to the samples submitted under this Alpha Lab Number and meet NELAP requirements for all NELAP accredited parameters unless otherwise noted in the following narrative. The data presented in this report is organized by parameter (i.e. VOC, SVOC, etc.). Sample specific Quality Control data (i.e. Surrogate Spike Recovery) is reported at the end of the target analyte list for each individual sample, followed by the Laboratory Batch Quality Control at the end of each parameter. Tentatively Identified Compounds (TICs), if requested, are reported for compounds identified to be present and are not part of the method/program Target Compound List, even if only a subset of the TCL are being reported. If a sample was re-analyzed or re-extracted due to a required quality control corrective action and if both sets of data are reported, the Laboratory ID of the re-analysis or re-extraction is designated with an "R" or "RE", respectively. When multiple Batch Quality Control elements are reported (e.g. more than one LCS), the associated samples for each element are noted in the grey shaded header line of each data table. Any Laboratory Batch, Sample Specific % recovery or RPD value that is outside the listed Acceptance Criteria is bolded in the report. All specific QC information is also incorporated in the Data Usability format of our Data Merger tool where it can be reviewed along with any associated usability implications. Soil/sediments, solids and tissues are reported on a dry weight basis unless otherwise noted. Definitions of all data qualifiers and acronyms used in this report are provided in the Glossary located at the back of the report.

In reference to questions H (CAM) or 4 (RCP) when "NO" is checked, the performance criteria for CAM and RCP methods allow for some quality control failures to occur and still be within method compliance. In these instances the specific failure is not narrated but noted in the associated QC table. The information is also incorporated in the Data Usability format of our Data Merger tool where it can be reviewed along with any associated usability implications.

Please see the associated ADEx data file for a comparison of laboratory reporting limits that were achieved with the regulatory Numerical Standards requested on the Chain of Custody.

### HOLD POLICY

For samples submitted on hold, Alpha's policy is to hold samples (with the exception of Air canisters) free of charge for 21 calendar days from the date the project is completed. After 21 calendar days, we will dispose of all samples submitted including those put on hold unless you have contacted your Client Service Representative and made arrangements for Alpha to continue to hold the samples. Air canisters will be disposed after 3 business days from the date the project is completed.

Please contact Client Services at 800-624-9220 with any questions.



Serial\_No:06211619:52

Project Name: 60 EVERETT ST. REDEVELOPMENT Lab Number: L1618400

**Project Number:** 43088-002 **Report Date:** 06/21/16

# Case Narrative (continued)

MCP Related Narratives

Volatile Organics

In reference to question H:

The initial calibration, associated with L1618400-01 through -04 (all samples), did not meet the method required minimum response factor on the lowest calibration standard for trichloroethene (0.1803), 4-methyl-2-pentanone (0.0900), 2-hexanone (0.0928) and 1,4-dioxane (0.0003), as well as the average response factor for 4-methyl-2-pentanone and 1,4-dioxane. The initial calibration verification is outside acceptance criteria for tetrahydrofuran (65%), but within overall method criteria

The continuing calibration standard, associated with L1618400-01 through -04 (all samples), is outside the acceptance criteria for several compounds; however, it is within overall method allowances. A copy of the continuing calibration standard is included as an addendum to this report.

I, the undersigned, attest under the pains and penalties of perjury that, to the best of my knowledge and belief and based upon my personal inquiry of those responsible for providing the information contained in this analytical report, such information is accurate and complete. This certificate of analysis is not complete unless this page accompanies any and all pages of this report.

Authorized Signature:

Title: Technical Director/Representative Date: 06/21/16

600 Jewson Kelly Stenstrom

# **ORGANICS**



### **VOLATILES**



L1618400

06/21/16

**Project Name:** 60 EVERETT ST. REDEVELOPMENT

**Project Number:** 43088-002

**SAMPLE RESULTS** 

Date Collected: 06/15/16 08:40

Lab Number:

Report Date:

Date Received: 06/15/16 Field Prep: Not Specified

Lab ID: L1618400-01

Client ID: MW-1

Sample Location: 60 EVERETT ST., BOSTON, MA

Matrix: Water Analytical Method: 97,8260C Analytical Date: 06/20/16 09:45

| Parameter                          | Result | Qualifier | Units | RL   | MDL | Dilution Factor |
|------------------------------------|--------|-----------|-------|------|-----|-----------------|
| MCP Volatile Organics - Westboroug | gh Lab |           |       |      |     |                 |
| Methylene chloride                 | ND     |           | ug/l  | 2.0  |     | 1               |
| 1,1-Dichloroethane                 | 2.5    |           | ug/l  | 1.0  |     | 1               |
| Chloroform                         | ND     |           | ug/l  | 1.0  |     | 1               |
| Carbon tetrachloride               | ND     |           | ug/l  | 1.0  |     | 1               |
| 1,2-Dichloropropane                | ND     |           | ug/l  | 1.0  |     | 1               |
| Dibromochloromethane               | ND     |           | ug/l  | 1.0  |     | 1               |
| 1,1,2-Trichloroethane              | ND     |           | ug/l  | 1.0  |     | 1               |
| Tetrachloroethene                  | ND     |           | ug/l  | 1.0  |     | 1               |
| Chlorobenzene                      | ND     |           | ug/l  | 1.0  |     | 1               |
| Trichlorofluoromethane             | ND     |           | ug/l  | 2.0  |     | 1               |
| 1,2-Dichloroethane                 | ND     |           | ug/l  | 1.0  |     | 1               |
| 1,1,1-Trichloroethane              | 2.3    |           | ug/l  | 1.0  |     | 1               |
| Bromodichloromethane               | ND     |           | ug/l  | 1.0  |     | 1               |
| trans-1,3-Dichloropropene          | ND     |           | ug/l  | 0.50 |     | 1               |
| cis-1,3-Dichloropropene            | ND     |           | ug/l  | 0.50 |     | 1               |
| 1,3-Dichloropropene, Total         | ND     |           | ug/l  | 0.50 |     | 1               |
| 1,1-Dichloropropene                | ND     |           | ug/l  | 2.0  |     | 1               |
| Bromoform                          | ND     |           | ug/l  | 2.0  |     | 1               |
| 1,1,2,2-Tetrachloroethane          | ND     |           | ug/l  | 1.0  |     | 1               |
| Benzene                            | ND     |           | ug/l  | 0.50 |     | 1               |
| Toluene                            | ND     |           | ug/l  | 1.0  |     | 1               |
| Ethylbenzene                       | ND     |           | ug/l  | 1.0  |     | 1               |
| Chloromethane                      | ND     |           | ug/l  | 2.0  |     | 1               |
| Bromomethane                       | ND     |           | ug/l  | 2.0  |     | 1               |
| Vinyl chloride                     | ND     |           | ug/l  | 1.0  |     | 1               |
| Chloroethane                       | ND     |           | ug/l  | 2.0  |     | 1               |
| 1,1-Dichloroethene                 | ND     |           | ug/l  | 1.0  |     | 1               |
| trans-1,2-Dichloroethene           | ND     |           | ug/l  | 1.0  |     | 1               |
| Trichloroethene                    | ND     |           | ug/l  | 1.0  |     | 1               |
| 1,2-Dichlorobenzene                | ND     |           | ug/l  | 1.0  |     | 1               |
|                                    |        |           |       |      |     |                 |



**Project Name:** 60 EVERETT ST. REDEVELOPMENT **Lab Number:** L1618400

**Project Number:** 43088-002 **Report Date:** 06/21/16

SAMPLE RESULTS

Lab ID: L1618400-01

Client ID: MW-1

Sample Location: 60 EVERETT ST., BOSTON, MA

Date Collected: 06/15/16 08:40

Date Received: 06/15/16
Field Prep: Not Specified

| Parameter                           | Result | Qualifier | Units | RL   | MDL | Dilution Factor |
|-------------------------------------|--------|-----------|-------|------|-----|-----------------|
| MCP Volatile Organics - Westborough | n Lab  |           |       |      |     |                 |
| 1,3-Dichlorobenzene                 | ND     |           | ug/l  | 1.0  |     | 1               |
| 1,4-Dichlorobenzene                 | ND     |           | ug/l  | 1.0  |     | 1               |
| Methyl tert butyl ether             | ND     |           | ug/l  | 2.0  |     | 1               |
| p/m-Xylene                          | ND     |           | ug/l  | 2.0  |     | 1               |
| o-Xylene                            | ND     |           | ug/l  | 1.0  |     | 1               |
| Xylene (Total)                      | ND     |           | ug/l  | 1.0  |     | 1               |
| cis-1,2-Dichloroethene              | ND     |           | ug/l  | 1.0  |     | 1               |
| 1,2-Dichloroethene (total)          | ND     |           | ug/l  | 1.0  |     | 1               |
| Dibromomethane                      | ND     |           | ug/l  | 2.0  |     | 1               |
| 1,2,3-Trichloropropane              | ND     |           | ug/l  | 2.0  |     | 1               |
| Styrene                             | ND     |           | ug/l  | 1.0  |     | 1               |
| Dichlorodifluoromethane             | ND     |           | ug/l  | 2.0  |     | 1               |
| Acetone                             | ND     |           | ug/l  | 5.0  |     | 1               |
| Carbon disulfide                    | ND     |           | ug/l  | 2.0  |     | 1               |
| 2-Butanone                          | ND     |           | ug/l  | 5.0  |     | 1               |
| 4-Methyl-2-pentanone                | ND     |           | ug/l  | 5.0  |     | 1               |
| 2-Hexanone                          | ND     |           | ug/l  | 5.0  |     | 1               |
| Bromochloromethane                  | ND     |           | ug/l  | 2.0  |     | 1               |
| Tetrahydrofuran                     | ND     |           | ug/l  | 2.0  |     | 1               |
| 2,2-Dichloropropane                 | ND     |           | ug/l  | 2.0  |     | 1               |
| 1,2-Dibromoethane                   | ND     |           | ug/l  | 2.0  |     | 1               |
| 1,3-Dichloropropane                 | ND     |           | ug/l  | 2.0  |     | 1               |
| 1,1,1,2-Tetrachloroethane           | ND     |           | ug/l  | 1.0  |     | 1               |
| Bromobenzene                        | ND     |           | ug/l  | 2.0  |     | 1               |
| n-Butylbenzene                      | ND     |           | ug/l  | 2.0  |     | 1               |
| sec-Butylbenzene                    | ND     |           | ug/l  | 2.0  |     | 1               |
| tert-Butylbenzene                   | ND     |           | ug/l  | 2.0  |     | 1               |
| o-Chlorotoluene                     | ND     |           | ug/l  | 2.0  |     | 1               |
| p-Chlorotoluene                     | ND     |           | ug/l  | 2.0  |     | 1               |
| 1,2-Dibromo-3-chloropropane         | ND     |           | ug/l  | 2.0  |     | 1               |
| Hexachlorobutadiene                 | ND     |           | ug/l  | 0.60 |     | 1               |
| Isopropylbenzene                    | ND     |           | ug/l  | 2.0  |     | 1               |
| p-Isopropyltoluene                  | ND     |           | ug/l  | 2.0  |     | 1               |
| Naphthalene                         | ND     |           | ug/l  | 2.0  |     | 1               |
| n-Propylbenzene                     | ND     |           | ug/l  | 2.0  |     | 1               |
| 1,2,3-Trichlorobenzene              | ND     |           | ug/l  | 2.0  |     | 1               |
| 1,2,4-Trichlorobenzene              | ND     |           | ug/l  | 2.0  |     | 1               |
| 1,3,5-Trimethylbenzene              | ND     |           | ug/l  | 2.0  |     | 1               |
| 1,2,4-Trimethylbenzene              | ND     |           | ug/l  | 2.0  |     | 1               |



**Project Name:** Lab Number: 60 EVERETT ST. REDEVELOPMENT L1618400

**Project Number:** Report Date: 43088-002 06/21/16

**SAMPLE RESULTS** 

Lab ID: L1618400-01 Date Collected: 06/15/16 08:40

Client ID: Date Received: 06/15/16 MW-1 Sample Location: 60 EVERETT ST., BOSTON, MA Field Prep: Not Specified

| Parameter                               | Result | Qualifier | Units | RL  | MDL | Dilution Factor |
|-----------------------------------------|--------|-----------|-------|-----|-----|-----------------|
| MCP Volatile Organics - Westborough Lab | )      |           |       |     |     |                 |
|                                         |        |           |       |     |     |                 |
| Ethyl ether                             | ND     |           | ug/l  | 2.0 |     | 1               |
| Isopropyl Ether                         | ND     |           | ug/l  | 2.0 |     | 1               |
| Ethyl-Tert-Butyl-Ether                  | ND     |           | ug/l  | 2.0 |     | 1               |
| Tertiary-Amyl Methyl Ether              | ND     |           | ug/l  | 2.0 |     | 1               |
| 1,4-Dioxane                             | ND     |           | ug/l  | 250 |     | 1               |

|                       |            |           | Acceptance |  |
|-----------------------|------------|-----------|------------|--|
| Surrogate             | % Recovery | Qualifier | Criteria   |  |
| 1,2-Dichloroethane-d4 | 91         |           | 70-130     |  |
| Toluene-d8            | 104        |           | 70-130     |  |
| 4-Bromofluorobenzene  | 110        |           | 70-130     |  |
| Dibromofluoromethane  | 96         |           | 70-130     |  |



L1618400

06/21/16

06/15/16

Not Specified

**Project Name:** 60 EVERETT ST. REDEVELOPMENT

**Project Number:** 43088-002

**SAMPLE RESULTS** 

Lab Number:

Report Date:

Date Received:

Field Prep:

Lab ID: L1618400-02 Date Collected: 06/15/16 09:30

Client ID: MW-2

Sample Location: 60 EVERETT ST., BOSTON, MA

Matrix: Water Analytical Method: 97,8260C Analytical Date: 06/20/16 10:10

| Parameter                          | Result | Qualifier | Units | RL   | MDL | Dilution Factor |  |
|------------------------------------|--------|-----------|-------|------|-----|-----------------|--|
| MCP Volatile Organics - Westboroug | h Lab  |           |       |      |     |                 |  |
| Methylene chloride                 | ND     |           | ug/l  | 2.0  |     | 1               |  |
| 1,1-Dichloroethane                 | 2.0    |           | ug/l  | 1.0  |     | 1               |  |
| Chloroform                         | ND     |           | ug/l  | 1.0  |     | 1               |  |
| Carbon tetrachloride               | ND     |           | ug/l  | 1.0  |     | 1               |  |
| 1,2-Dichloropropane                | ND     |           | ug/l  | 1.0  |     | 1               |  |
| Dibromochloromethane               | ND     |           | ug/l  | 1.0  |     | 1               |  |
| 1,1,2-Trichloroethane              | ND     |           | ug/l  | 1.0  |     | 1               |  |
| Tetrachloroethene                  | ND     |           | ug/l  | 1.0  |     | 1               |  |
| Chlorobenzene                      | 1.9    |           | ug/l  | 1.0  |     | 1               |  |
| Trichlorofluoromethane             | ND     |           | ug/l  | 2.0  |     | 1               |  |
| 1,2-Dichloroethane                 | ND     |           | ug/l  | 1.0  |     | 1               |  |
| 1,1,1-Trichloroethane              | ND     |           | ug/l  | 1.0  |     | 1               |  |
| Bromodichloromethane               | ND     |           | ug/l  | 1.0  |     | 1               |  |
| trans-1,3-Dichloropropene          | ND     |           | ug/l  | 0.50 |     | 1               |  |
| cis-1,3-Dichloropropene            | ND     |           | ug/l  | 0.50 |     | 1               |  |
| 1,3-Dichloropropene, Total         | ND     |           | ug/l  | 0.50 |     | 1               |  |
| 1,1-Dichloropropene                | ND     |           | ug/l  | 2.0  |     | 1               |  |
| Bromoform                          | ND     |           | ug/l  | 2.0  |     | 1               |  |
| 1,1,2,2-Tetrachloroethane          | ND     |           | ug/l  | 1.0  |     | 1               |  |
| Benzene                            | ND     |           | ug/l  | 0.50 |     | 1               |  |
| Toluene                            | ND     |           | ug/l  | 1.0  |     | 1               |  |
| Ethylbenzene                       | ND     |           | ug/l  | 1.0  |     | 1               |  |
| Chloromethane                      | ND     |           | ug/l  | 2.0  |     | 1               |  |
| Bromomethane                       | ND     |           | ug/l  | 2.0  |     | 1               |  |
| Vinyl chloride                     | ND     |           | ug/l  | 1.0  |     | 1               |  |
| Chloroethane                       | ND     |           | ug/l  | 2.0  |     | 1               |  |
| 1,1-Dichloroethene                 | ND     |           | ug/l  | 1.0  |     | 1               |  |
| trans-1,2-Dichloroethene           | ND     |           | ug/l  | 1.0  |     | 1               |  |
| Trichloroethene                    | 1.4    |           | ug/l  | 1.0  |     | 1               |  |
| 1,2-Dichlorobenzene                | ND     |           | ug/l  | 1.0  |     | 1               |  |
|                                    |        |           |       |      |     |                 |  |



**Project Name:** 60 EVERETT ST. REDEVELOPMENT **Lab Number:** L1618400

**Project Number:** 43088-002 **Report Date:** 06/21/16

SAMPLE RESULTS

Lab ID: L1618400-02 Date Collected: 06/15/16 09:30

Client ID: MW-2 Date Received: 06/15/16
Sample Location: 60 EVERETT ST., BOSTON, MA Field Prep: Not Specified

| Oampio 2000110111 00 2 1 2112  |           |           |       | 1 1010 1 10 | ۳.  | not opcomed     |  |
|--------------------------------|-----------|-----------|-------|-------------|-----|-----------------|--|
| Parameter                      | Result    | Qualifier | Units | RL          | MDL | Dilution Factor |  |
| MCP Volatile Organics - Westbo | rough Lab |           |       |             |     |                 |  |
| 1,3-Dichlorobenzene            | ND        |           | ug/l  | 1.0         |     | 1               |  |
| 1,4-Dichlorobenzene            | ND        |           | ug/l  | 1.0         |     | 1               |  |
| Methyl tert butyl ether        | ND        |           | ug/l  | 2.0         |     | 1               |  |
| p/m-Xylene                     | ND        |           | ug/l  | 2.0         |     | 1               |  |
| o-Xylene                       | ND        |           | ug/l  | 1.0         |     | 1               |  |
| Xylene (Total)                 | ND        |           | ug/l  | 1.0         |     | 1               |  |
| cis-1,2-Dichloroethene         | 3.9       |           | ug/l  | 1.0         |     | 1               |  |
| 1,2-Dichloroethene (total)     | 3.9       |           | ug/l  | 1.0         |     | 1               |  |
| Dibromomethane                 | ND        |           | ug/l  | 2.0         |     | 1               |  |
| 1,2,3-Trichloropropane         | ND        |           | ug/l  | 2.0         |     | 1               |  |
| Styrene                        | ND        |           | ug/l  | 1.0         |     | 1               |  |
| Dichlorodifluoromethane        | ND        |           | ug/l  | 2.0         |     | 1               |  |
| Acetone                        | ND        |           | ug/l  | 5.0         |     | 1               |  |
| Carbon disulfide               | ND        |           | ug/l  | 2.0         |     | 1               |  |
| 2-Butanone                     | ND        |           | ug/l  | 5.0         |     | 1               |  |
| 4-Methyl-2-pentanone           | ND        |           | ug/l  | 5.0         |     | 1               |  |
| 2-Hexanone                     | ND        |           | ug/l  | 5.0         |     | 1               |  |
| Bromochloromethane             | ND        |           | ug/l  | 2.0         |     | 1               |  |
| Tetrahydrofuran                | ND        |           | ug/l  | 2.0         |     | 1               |  |
| 2,2-Dichloropropane            | ND        |           | ug/l  | 2.0         |     | 1               |  |
| 1,2-Dibromoethane              | ND        |           | ug/l  | 2.0         |     | 1               |  |
| 1,3-Dichloropropane            | ND        |           | ug/l  | 2.0         |     | 1               |  |
| 1,1,1,2-Tetrachloroethane      | ND        |           | ug/l  | 1.0         |     | 1               |  |
| Bromobenzene                   | ND        |           | ug/l  | 2.0         |     | 1               |  |
| n-Butylbenzene                 | ND        |           | ug/l  | 2.0         |     | 1               |  |
| sec-Butylbenzene               | ND        |           | ug/l  | 2.0         |     | 1               |  |
| tert-Butylbenzene              | ND        |           | ug/l  | 2.0         |     | 1               |  |
| o-Chlorotoluene                | ND        |           | ug/l  | 2.0         |     | 1               |  |
| p-Chlorotoluene                | ND        |           | ug/l  | 2.0         |     | 1               |  |
| 1,2-Dibromo-3-chloropropane    | ND        |           | ug/l  | 2.0         |     | 1               |  |
| Hexachlorobutadiene            | ND        |           | ug/l  | 0.60        |     | 1               |  |
| Isopropylbenzene               | ND        |           | ug/l  | 2.0         |     | 1               |  |
| p-Isopropyltoluene             | ND        |           | ug/l  | 2.0         |     | 1               |  |
| Naphthalene                    | ND        |           | ug/l  | 2.0         |     | 1               |  |
| n-Propylbenzene                | ND        |           | ug/l  | 2.0         |     | 1               |  |
| 1,2,3-Trichlorobenzene         | ND        |           | ug/l  | 2.0         |     | 1               |  |
| 1,2,4-Trichlorobenzene         | ND        |           | ug/l  | 2.0         |     | 1               |  |
| 1,3,5-Trimethylbenzene         | ND        |           | ug/l  | 2.0         |     | 1               |  |
| 1,2,4-Trimethylbenzene         | ND        |           | ug/l  | 2.0         |     | 1               |  |
|                                |           |           |       |             |     |                 |  |



**Project Name:** 60 EVERETT ST. REDEVELOPMENT **Lab Number:** L1618400

**Project Number:** 43088-002 **Report Date:** 06/21/16

SAMPLE RESULTS

Lab ID: Date Collected: 06/15/16 09:30

Client ID: MW-2 Date Received: 06/15/16
Sample Location: 60 EVERETT ST., BOSTON, MA Field Prep: Not Specified

| Parameter                         | Result | Qualifier | Units | RL  | MDL | <b>Dilution Factor</b> |  |
|-----------------------------------|--------|-----------|-------|-----|-----|------------------------|--|
| MCP Volatile Organics - Westborou | gh Lab |           |       |     |     |                        |  |
|                                   |        |           |       |     |     |                        |  |
| Ethyl ether                       | ND     |           | ug/l  | 2.0 |     | 1                      |  |
| Isopropyl Ether                   | ND     |           | ug/l  | 2.0 |     | 1                      |  |
| Ethyl-Tert-Butyl-Ether            | ND     |           | ug/l  | 2.0 |     | 1                      |  |
| Tertiary-Amyl Methyl Ether        | ND     |           | ug/l  | 2.0 |     | 1                      |  |
| 1,4-Dioxane                       | ND     |           | ua/l  | 250 |     | 1                      |  |

| Surrogate             | % Recovery | Qualifier | Acceptance<br>Criteria |  |
|-----------------------|------------|-----------|------------------------|--|
| 1,2-Dichloroethane-d4 | 93         |           | 70-130                 |  |
| Toluene-d8            | 104        |           | 70-130                 |  |
| 4-Bromofluorobenzene  | 110        |           | 70-130                 |  |
| Dibromofluoromethane  | 96         |           | 70-130                 |  |



L1618400

06/21/16

**Project Name:** 60 EVERETT ST. REDEVELOPMENT

Project Number: 43088-002

**SAMPLE RESULTS** 

Date Collected: 06/15/16 10:45

5

Lab Number:

Report Date:

Date Received: 06/15/16
Field Prep: Not Specified

Lab ID: L1618400-03

Client ID: MW-8

Sample Location: 60 EVERETT ST., BOSTON, MA

Matrix: Water
Analytical Method: 97,8260C
Analytical Date: 06/20/16 11:00

| Parameter                          | Result | Qualifier | Units | RL   | MDL | Dilution Factor |  |
|------------------------------------|--------|-----------|-------|------|-----|-----------------|--|
| MCP Volatile Organics - Westboroug | h Lab  |           |       |      |     |                 |  |
| Methylene chloride                 | ND     |           | ug/l  | 2.0  |     | 1               |  |
| 1,1-Dichloroethane                 | 1.6    |           | ug/l  | 1.0  |     | 1               |  |
| Chloroform                         | ND     |           | ug/l  | 1.0  |     | 1               |  |
| Carbon tetrachloride               | ND     |           | ug/l  | 1.0  |     | 1               |  |
| 1,2-Dichloropropane                | ND     |           | ug/l  | 1.0  |     | 1               |  |
| Dibromochloromethane               | ND     |           | ug/l  | 1.0  |     | 1               |  |
| 1,1,2-Trichloroethane              | ND     |           | ug/l  | 1.0  |     | 1               |  |
| Tetrachloroethene                  | ND     |           | ug/l  | 1.0  |     | 1               |  |
| Chlorobenzene                      | 19     |           | ug/l  | 1.0  |     | 1               |  |
| Trichlorofluoromethane             | ND     |           | ug/l  | 2.0  |     | 1               |  |
| 1,2-Dichloroethane                 | ND     |           | ug/l  | 1.0  |     | 1               |  |
| 1,1,1-Trichloroethane              | ND     |           | ug/l  | 1.0  |     | 1               |  |
| Bromodichloromethane               | ND     |           | ug/l  | 1.0  |     | 1               |  |
| trans-1,3-Dichloropropene          | ND     |           | ug/l  | 0.50 |     | 1               |  |
| cis-1,3-Dichloropropene            | ND     |           | ug/l  | 0.50 |     | 1               |  |
| 1,3-Dichloropropene, Total         | ND     |           | ug/l  | 0.50 |     | 1               |  |
| 1,1-Dichloropropene                | ND     |           | ug/l  | 2.0  |     | 1               |  |
| Bromoform                          | ND     |           | ug/l  | 2.0  |     | 1               |  |
| 1,1,2,2-Tetrachloroethane          | ND     |           | ug/l  | 1.0  |     | 1               |  |
| Benzene                            | ND     |           | ug/l  | 0.50 |     | 1               |  |
| Toluene                            | ND     |           | ug/l  | 1.0  |     | 1               |  |
| Ethylbenzene                       | ND     |           | ug/l  | 1.0  |     | 1               |  |
| Chloromethane                      | ND     |           | ug/l  | 2.0  |     | 1               |  |
| Bromomethane                       | ND     |           | ug/l  | 2.0  |     | 1               |  |
| Vinyl chloride                     | 3.1    |           | ug/l  | 1.0  |     | 1               |  |
| Chloroethane                       | ND     |           | ug/l  | 2.0  |     | 1               |  |
| 1,1-Dichloroethene                 | ND     |           | ug/l  | 1.0  |     | 1               |  |
| trans-1,2-Dichloroethene           | ND     |           | ug/l  | 1.0  |     | 1               |  |
| Trichloroethene                    | 24     |           | ug/l  | 1.0  |     | 1               |  |
| 1,2-Dichlorobenzene                | ND     |           | ug/l  | 1.0  |     | 1               |  |
|                                    |        |           |       |      |     |                 |  |



**Project Name:** 60 EVERETT ST. REDEVELOPMENT Lab Number: L1618400

**Report Date: Project Number:** 43088-002 06/21/16

**SAMPLE RESULTS** 

Lab ID: L1618400-03 Date Collected: 06/15/16 10:45

Client ID: MW-8 Date Received: 06/15/16 Sample Location: 60 EVERETT ST., BOSTON, MA Field Prep: Not Specified

**Parameter** Result Qualifier Units RL MDL **Dilution Factor** MCP Volatile Organics - Westborough Lab ND 1,3-Dichlorobenzene 1.0 ug/l 1 1,4-Dichlorobenzene 1.0 ug/l 1.0 Methyl tert butyl ether ND ug/l 2.0 1 p/m-Xylene ND 2.0 1 ug/l o-Xylene ND 1.0 1 ug/l Xylene (Total) ND 1.0 1 ug/l -cis-1,2-Dichloroethene 46 1.0 1 ug/l --1,2-Dichloroethene (total) 46 1.0 1 ug/l Dibromomethane ND 2.0 1 ug/l 1,2,3-Trichloropropane ND 2.0 1 ug/l Styrene ND ug/l 1.0 1 Dichlorodifluoromethane ND 2.0 1 ug/l --ND 5.0 1 Acetone ug/l Carbon disulfide ND ug/l 2.0 1 2-Butanone ND 5.0 1 ug/l 4-Methyl-2-pentanone ND 5.0 1 ug/l ND 2-Hexanone ug/l 5.0 1 Bromochloromethane ND 2.0 1 ug/l --Tetrahydrofuran ND 2.0 1 ug/l 2,2-Dichloropropane ND 2.0 1 ug/l --ND 2.0 1 1,2-Dibromoethane ug/l 1,3-Dichloropropane ND 2.0 1 ug/l 1,1,1,2-Tetrachloroethane ND ug/l 1.0 --1 Bromobenzene ND 2.0 1 ug/l -n-Butylbenzene ND 2.0 1 ug/l sec-Butylbenzene ND 2.0 1 ug/l tert-Butylbenzene ND 2.0 1 ug/l o-Chlorotoluene ND 2.0 1 ug/l p-Chlorotoluene ND 2.0 1 ug/l --1,2-Dibromo-3-chloropropane ND ug/l 2.0 1 Hexachlorobutadiene ND ug/l 0.60 1 ND 1 Isopropylbenzene ug/l 2.0 p-Isopropyltoluene ND ug/l 2.0 1 ND Naphthalene ug/l 2.0 --1 n-Propylbenzene ND 2.0 1 ug/l --1,2,3-Trichlorobenzene ND 2.0 1 ug/l 1,2,4-Trichlorobenzene ND 1 ug/l 2.0 ND 1,3,5-Trimethylbenzene 2.0 1 ug/l

ND

ug/l

2.0



1

1,2,4-Trimethylbenzene

**Project Name:** Lab Number: 60 EVERETT ST. REDEVELOPMENT L1618400

**Project Number:** Report Date: 43088-002 06/21/16

**SAMPLE RESULTS** 

Lab ID: L1618400-03 Date Collected: 06/15/16 10:45

Client ID: Date Received: 06/15/16 MW-8 Sample Location: 60 EVERETT ST., BOSTON, MA Field Prep: Not Specified

| Parameter                         | Result  | Qualifier | Units | RL  | MDL | Dilution Factor |  |
|-----------------------------------|---------|-----------|-------|-----|-----|-----------------|--|
| MCP Volatile Organics - Westborou | ıgh Lab |           |       |     |     |                 |  |
| Ethyl ether                       | ND      |           | ug/l  | 2.0 |     | 1               |  |
| Isopropyl Ether                   | ND      |           | ug/l  | 2.0 |     | 1               |  |
| Ethyl-Tert-Butyl-Ether            | ND      |           | ug/l  | 2.0 |     | 1               |  |
| Tertiary-Amyl Methyl Ether        | ND      |           | ug/l  | 2.0 |     | 1               |  |
| 1,4-Dioxane                       | ND      |           | ug/l  | 250 |     | 1               |  |

| Surrogate             | % Recovery | Qualifier | Acceptance<br>Criteria |  |
|-----------------------|------------|-----------|------------------------|--|
| 1,2-Dichloroethane-d4 | 95         |           | 70-130                 |  |
| Toluene-d8            | 104        |           | 70-130                 |  |
| 4-Bromofluorobenzene  | 110        |           | 70-130                 |  |
| Dibromofluoromethane  | 95         |           | 70-130                 |  |



L1618400

06/21/16

**Project Name:** 60 EVERETT ST. REDEVELOPMENT

**Project Number:** 43088-002

**SAMPLE RESULTS** 

Date Collected: 06/15/16 11:40

Lab Number:

Report Date:

Date Received: 06/15/16 Field Prep: Not Specified

Lab ID: L1618400-04

Client ID: MW-10

60 EVERETT ST., BOSTON, MA Sample Location:

Matrix: Water Analytical Method: 97,8260C Analytical Date: 06/20/16 10:35

| Parameter                          | Result | Qualifier | Units | RL   | MDL | Dilution Factor |  |
|------------------------------------|--------|-----------|-------|------|-----|-----------------|--|
| MCP Volatile Organics - Westboroug | h Lab  |           |       |      |     |                 |  |
| Methylene chloride                 | ND     |           | ug/l  | 2.0  |     | 1               |  |
| 1,1-Dichloroethane                 | 1.0    |           | ug/l  | 1.0  |     | 1               |  |
| Chloroform                         | ND     |           | ug/l  | 1.0  |     | 1               |  |
| Carbon tetrachloride               | ND     |           | ug/l  | 1.0  |     | 1               |  |
| 1,2-Dichloropropane                | ND     |           | ug/l  | 1.0  |     | 1               |  |
| Dibromochloromethane               | ND     |           | ug/l  | 1.0  |     | 1               |  |
| 1,1,2-Trichloroethane              | ND     |           | ug/l  | 1.0  |     | 1               |  |
| Tetrachloroethene                  | ND     |           | ug/l  | 1.0  |     | 1               |  |
| Chlorobenzene                      | 1.2    |           | ug/l  | 1.0  |     | 1               |  |
| Trichlorofluoromethane             | ND     |           | ug/l  | 2.0  |     | 1               |  |
| 1,2-Dichloroethane                 | ND     |           | ug/l  | 1.0  |     | 1               |  |
| 1,1,1-Trichloroethane              | ND     |           | ug/l  | 1.0  |     | 1               |  |
| Bromodichloromethane               | ND     |           | ug/l  | 1.0  |     | 1               |  |
| trans-1,3-Dichloropropene          | ND     |           | ug/l  | 0.50 |     | 1               |  |
| cis-1,3-Dichloropropene            | ND     |           | ug/l  | 0.50 |     | 1               |  |
| 1,3-Dichloropropene, Total         | ND     |           | ug/l  | 0.50 |     | 1               |  |
| 1,1-Dichloropropene                | ND     |           | ug/l  | 2.0  |     | 1               |  |
| Bromoform                          | ND     |           | ug/l  | 2.0  |     | 1               |  |
| 1,1,2,2-Tetrachloroethane          | ND     |           | ug/l  | 1.0  |     | 1               |  |
| Benzene                            | ND     |           | ug/l  | 0.50 |     | 1               |  |
| Toluene                            | ND     |           | ug/l  | 1.0  |     | 1               |  |
| Ethylbenzene                       | ND     |           | ug/l  | 1.0  |     | 1               |  |
| Chloromethane                      | ND     |           | ug/l  | 2.0  |     | 1               |  |
| Bromomethane                       | ND     |           | ug/l  | 2.0  |     | 1               |  |
| Vinyl chloride                     | 2.7    |           | ug/l  | 1.0  |     | 1               |  |
| Chloroethane                       | ND     |           | ug/l  | 2.0  |     | 1               |  |
| 1,1-Dichloroethene                 | ND     |           | ug/l  | 1.0  |     | 1               |  |
| trans-1,2-Dichloroethene           | ND     |           | ug/l  | 1.0  |     | 1               |  |
| Trichloroethene                    | 100    |           | ug/l  | 1.0  |     | 1               |  |
| 1,2-Dichlorobenzene                | ND     |           | ug/l  | 1.0  |     | 1               |  |
|                                    |        |           |       |      |     |                 |  |



**Project Name:** 60 EVERETT ST. REDEVELOPMENT **Lab Number:** L1618400

**Project Number:** 43088-002 **Report Date:** 06/21/16

SAMPLE RESULTS

Lab ID: Date Collected: 06/15/16 11:40

Client ID: MW-10 Date Received: 06/15/16
Sample Location: 60 EVERETT ST., BOSTON, MA Field Prep: Not Specified

| Dample Location. OU LVLINL       | 1 31., DOSTON, WA |           |       | i leiu i ie | ρ.  | Not Specified   |
|----------------------------------|-------------------|-----------|-------|-------------|-----|-----------------|
| Parameter                        | Result            | Qualifier | Units | RL          | MDL | Dilution Factor |
| MCP Volatile Organics - Westboro | ough Lab          |           |       |             |     |                 |
| 1,3-Dichlorobenzene              | ND                |           | ug/l  | 1.0         |     | 1               |
| 1,4-Dichlorobenzene              | ND                |           | ug/l  | 1.0         |     | 1               |
| Methyl tert butyl ether          | ND                |           | ug/l  | 2.0         |     | 1               |
| o/m-Xylene                       | ND                |           | ug/l  | 2.0         |     | 1               |
| p-Xylene                         | ND                |           | ug/l  | 1.0         |     | 1               |
| Kylene (Total)                   | ND                |           | ug/l  | 1.0         |     | 1               |
| cis-1,2-Dichloroethene           | 21                |           | ug/l  | 1.0         |     | 1               |
| 1,2-Dichloroethene (total)       | 21                |           | ug/l  | 1.0         |     | 1               |
| Dibromomethane                   | ND                |           | ug/l  | 2.0         |     | 1               |
| ,2,3-Trichloropropane            | ND                |           | ug/l  | 2.0         |     | 1               |
| Styrene                          | ND                |           | ug/l  | 1.0         |     | 1               |
| Dichlorodifluoromethane          | ND                |           | ug/l  | 2.0         |     | 1               |
| Acetone                          | ND                |           | ug/l  | 5.0         |     | 1               |
| Carbon disulfide                 | ND                |           | ug/l  | 2.0         |     | 1               |
| 2-Butanone                       | ND                |           | ug/l  | 5.0         |     | 1               |
| I-Methyl-2-pentanone             | ND                |           | ug/l  | 5.0         |     | 1               |
| 2-Hexanone                       | ND                |           | ug/l  | 5.0         |     | 1               |
| Bromochloromethane               | ND                |           | ug/l  | 2.0         |     | 1               |
| Fetrahydrofuran                  | ND                |           | ug/l  | 2.0         |     | 1               |
| 2,2-Dichloropropane              | ND                |           | ug/l  | 2.0         |     | 1               |
| ,2-Dibromoethane                 | ND                |           | ug/l  | 2.0         |     | 1               |
| ,3-Dichloropropane               | ND                |           | ug/l  | 2.0         |     | 1               |
| 1,1,1,2-Tetrachloroethane        | ND                |           | ug/l  | 1.0         |     | 1               |
| Bromobenzene                     | ND                |           | ug/l  | 2.0         |     | 1               |
| n-Butylbenzene                   | ND                |           | ug/l  | 2.0         |     | 1               |
| sec-Butylbenzene                 | ND                |           | ug/l  | 2.0         |     | 1               |
| ert-Butylbenzene                 | ND                |           | ug/l  | 2.0         |     | 1               |
| o-Chlorotoluene                  | ND                |           | ug/l  | 2.0         |     | 1               |
| o-Chlorotoluene                  | ND                |           | ug/l  | 2.0         |     | 1               |
| 1,2-Dibromo-3-chloropropane      | ND                |           | ug/l  | 2.0         |     | 1               |
| Hexachlorobutadiene              | ND                |           | ug/l  | 0.60        |     | 1               |
| sopropylbenzene                  | ND                |           | ug/l  | 2.0         |     | 1               |
| o-Isopropyltoluene               | ND                |           | ug/l  | 2.0         |     | 1               |
| Naphthalene                      | ND                |           | ug/l  | 2.0         |     | 1               |
| n-Propylbenzene                  | ND                |           | ug/l  | 2.0         |     | 1               |
| 1,2,3-Trichlorobenzene           | ND                |           | ug/l  | 2.0         |     | 1               |
| 1,2,4-Trichlorobenzene           | ND                |           | ug/l  | 2.0         |     | 1               |
| ,3,5-Trimethylbenzene            | ND                |           | ug/l  | 2.0         |     | 1               |
| ,2,4-Trimethylbenzene            | ND                |           | ug/l  | 2.0         |     | 1               |
|                                  |                   |           |       |             |     |                 |



**Project Name:** Lab Number: 60 EVERETT ST. REDEVELOPMENT L1618400

**Project Number:** Report Date: 43088-002 06/21/16

**SAMPLE RESULTS** 

Lab ID: L1618400-04 Date Collected: 06/15/16 11:40

Client ID: Date Received: 06/15/16 MW-10 Sample Location: 60 EVERETT ST., BOSTON, MA Field Prep: Not Specified

| Parameter                         | Result  | Qualifier | Units | RL  | MDL | Dilution Factor |  |
|-----------------------------------|---------|-----------|-------|-----|-----|-----------------|--|
| MCP Volatile Organics - Westborou | ıgh Lab |           |       |     |     |                 |  |
| Ethyl ether                       | ND      |           | ug/l  | 2.0 |     | 1               |  |
| Isopropyl Ether                   | ND      |           | ug/l  | 2.0 |     | 1               |  |
| Ethyl-Tert-Butyl-Ether            | ND      |           | ug/l  | 2.0 |     | 1               |  |
| Tertiary-Amyl Methyl Ether        | ND      |           | ug/l  | 2.0 |     | 1               |  |
| 1,4-Dioxane                       | ND      |           | ug/l  | 250 |     | 1               |  |

| Surrogate             | % Recovery | Qualifier | Acceptance<br>Criteria |  |
|-----------------------|------------|-----------|------------------------|--|
| 1,2-Dichloroethane-d4 | 92         |           | 70-130                 |  |
| Toluene-d8            | 105        |           | 70-130                 |  |
| 4-Bromofluorobenzene  | 112        |           | 70-130                 |  |
| Dibromofluoromethane  | 97         |           | 70-130                 |  |



**Project Name:** 60 EVERETT ST. REDEVELOPMENT **Lab Number:** L1618400

> Method Blank Analysis Batch Quality Control

Analytical Method: 97,8260C Analytical Date: 97,8260C 06/20/16 07:15

| arameter                   | Result                | Qualifier  | Units | RI     | L MDL      |
|----------------------------|-----------------------|------------|-------|--------|------------|
| CP Volatile Organics -     | - Westborough Lab for | sample(s): | 01-04 | Batch: | WG905702-5 |
| Methylene chloride         | ND                    |            | ug/l  | 2.0    | )          |
| 1,1-Dichloroethane         | ND                    |            | ug/l  | 1.0    | )          |
| Chloroform                 | ND                    |            | ug/l  | 1.0    | )          |
| Carbon tetrachloride       | ND                    |            | ug/l  | 1.0    | )          |
| 1,2-Dichloropropane        | ND                    |            | ug/l  | 1.0    | )          |
| Dibromochloromethane       | ND                    |            | ug/l  | 1.0    | )          |
| 1,1,2-Trichloroethane      | ND                    |            | ug/l  | 1.0    | )          |
| Tetrachloroethene          | ND                    |            | ug/l  | 1.0    | )          |
| Chlorobenzene              | ND                    |            | ug/l  | 1.0    | )          |
| Trichlorofluoromethane     | ND                    |            | ug/l  | 2.0    | )          |
| 1,2-Dichloroethane         | ND                    |            | ug/l  | 1.0    | )          |
| 1,1,1-Trichloroethane      | ND                    |            | ug/l  | 1.0    | )          |
| Bromodichloromethane       | ND                    |            | ug/l  | 1.0    | )          |
| trans-1,3-Dichloropropene  | ND                    |            | ug/l  | 0.5    | 0          |
| cis-1,3-Dichloropropene    | ND                    |            | ug/l  | 0.5    | 0          |
| 1,3-Dichloropropene, Total | ND                    |            | ug/l  | 0.5    | 0          |
| 1,1-Dichloropropene        | ND                    |            | ug/l  | 2.0    | )          |
| Bromoform                  | ND                    |            | ug/l  | 2.0    | )          |
| 1,1,2,2-Tetrachloroethane  | ND                    |            | ug/l  | 1.0    | )          |
| Benzene                    | ND                    |            | ug/l  | 0.5    | 0          |
| Toluene                    | ND                    |            | ug/l  | 1.0    | )          |
| Ethylbenzene               | ND                    |            | ug/l  | 1.0    | )          |
| Chloromethane              | ND                    |            | ug/l  | 2.0    | )          |
| Bromomethane               | ND                    |            | ug/l  | 2.0    | )          |
| Vinyl chloride             | ND                    |            | ug/l  | 1.0    | )          |
| Chloroethane               | ND                    |            | ug/l  | 2.0    | )          |
| 1,1-Dichloroethene         | ND                    |            | ug/l  | 1.0    | )          |
| trans-1,2-Dichloroethene   | ND                    |            | ug/l  | 1.0    | )          |
| Trichloroethene            | ND                    |            | ug/l  | 1.0    | )          |



**Project Name:** 60 EVERETT ST. REDEVELOPMENT **Lab Number:** L1618400

> Method Blank Analysis Batch Quality Control

Analytical Method: 97,8260C Analytical Date: 97,8260C 06/20/16 07:15

| arameter                   | Result                | Qualifier  | Units | RI     | L MDL      |
|----------------------------|-----------------------|------------|-------|--------|------------|
| ICP Volatile Organics      | - Westborough Lab for | sample(s): | 01-04 | Batch: | WG905702-5 |
| 1,2-Dichlorobenzene        | ND                    |            | ug/l  | 1.0    | 0          |
| 1,3-Dichlorobenzene        | ND                    |            | ug/l  | 1.0    | 0          |
| 1,4-Dichlorobenzene        | ND                    |            | ug/l  | 1.0    | 0          |
| Methyl tert butyl ether    | ND                    |            | ug/l  | 2.0    | 0          |
| p/m-Xylene                 | ND                    |            | ug/l  | 2.0    | 0          |
| o-Xylene                   | ND                    |            | ug/l  | 1.0    | 0          |
| Xylene (Total)             | ND                    |            | ug/l  | 1.0    | 0          |
| cis-1,2-Dichloroethene     | ND                    |            | ug/l  | 1.0    | 0          |
| 1,2-Dichloroethene (total) | ND                    |            | ug/l  | 1.0    | 0          |
| Dibromomethane             | ND                    |            | ug/l  | 2.0    | 0          |
| 1,2,3-Trichloropropane     | ND                    |            | ug/l  | 2.0    | 0          |
| Styrene                    | ND                    |            | ug/l  | 1.0    | 0          |
| Dichlorodifluoromethane    | ND                    |            | ug/l  | 2.0    | 0          |
| Acetone                    | ND                    |            | ug/l  | 5.0    | 0          |
| Carbon disulfide           | ND                    |            | ug/l  | 2.0    | 0          |
| 2-Butanone                 | ND                    |            | ug/l  | 5.0    | 0          |
| 4-Methyl-2-pentanone       | ND                    |            | ug/l  | 5.0    | 0          |
| 2-Hexanone                 | ND                    |            | ug/l  | 5.0    | 0          |
| Bromochloromethane         | ND                    |            | ug/l  | 2.0    | 0          |
| Tetrahydrofuran            | ND                    |            | ug/l  | 2.0    | 0          |
| 2,2-Dichloropropane        | ND                    |            | ug/l  | 2.0    | 0          |
| 1,2-Dibromoethane          | ND                    |            | ug/l  | 2.0    | 0          |
| 1,3-Dichloropropane        | ND                    |            | ug/l  | 2.0    | 0          |
| 1,1,1,2-Tetrachloroethane  | ND                    |            | ug/l  | 1.0    | 0          |
| Bromobenzene               | ND                    |            | ug/l  | 2.0    | 0          |
| n-Butylbenzene             | ND                    |            | ug/l  | 2.0    | 0          |
| sec-Butylbenzene           | ND                    |            | ug/l  | 2.0    | 0          |
| tert-Butylbenzene          | ND                    |            | ug/l  | 2.0    | 0          |
| o-Chlorotoluene            | ND                    |            | ug/l  | 2.0    | 0          |



L1618400

**Project Name:** 60 EVERETT ST. REDEVELOPMENT **Lab Number**:

Method Blank Analysis
Batch Quality Control

Analytical Method: 97,8260C Analytical Date: 06/20/16 07:15

| Parameter                         | Result     | Qualifier  | Units | RL     | . MDL      |  |
|-----------------------------------|------------|------------|-------|--------|------------|--|
| MCP Volatile Organics - Westborou | gh Lab for | sample(s): | 01-04 | Batch: | WG905702-5 |  |
| p-Chlorotoluene                   | ND         |            | ug/l  | 2.0    | )          |  |
| 1,2-Dibromo-3-chloropropane       | ND         |            | ug/l  | 2.0    | )          |  |
| Hexachlorobutadiene               | ND         |            | ug/l  | 0.6    | 0          |  |
| Isopropylbenzene                  | ND         |            | ug/l  | 2.0    | )          |  |
| p-Isopropyltoluene                | ND         |            | ug/l  | 2.0    | )          |  |
| Naphthalene                       | ND         |            | ug/l  | 2.0    |            |  |
| n-Propylbenzene                   | ND         |            | ug/l  | 2.0    |            |  |
| 1,2,3-Trichlorobenzene            | ND         |            | ug/l  | 2.0    |            |  |
| 1,2,4-Trichlorobenzene            | ND         |            | ug/l  | 2.0    |            |  |
| 1,3,5-Trimethylbenzene            | ND         |            | ug/l  | 2.0    |            |  |
| 1,2,4-Trimethylbenzene            | ND         |            | ug/l  | 2.0    |            |  |
| Ethyl ether                       | ND         |            | ug/l  | 2.0    |            |  |
| Isopropyl Ether                   | ND         |            | ug/l  | 2.0    |            |  |
| Ethyl-Tert-Butyl-Ether            | ND         |            | ug/l  | 2.0    | )          |  |
| Tertiary-Amyl Methyl Ether        | ND         |            | ug/l  | 2.0    | )          |  |
| 1,4-Dioxane                       | ND         |            | ug/l  | 250    | )          |  |

|                       |           |           | Acceptance |  |  |  |  |
|-----------------------|-----------|-----------|------------|--|--|--|--|
| Surrogate             | %Recovery | Qualifier | Criteria   |  |  |  |  |
|                       |           |           |            |  |  |  |  |
| 1,2-Dichloroethane-d4 | 89        |           | 70-130     |  |  |  |  |
| Toluene-d8            | 104       |           | 70-130     |  |  |  |  |
| 4-Bromofluorobenzene  | 112       |           | 70-130     |  |  |  |  |
| Dibromofluoromethane  | 96        |           | 70-130     |  |  |  |  |



**Project Name:** 60 EVERETT ST. REDEVELOPMENT

Project Number: 43088-002

Lab Number: L1618400

| Parameter                               | LCS<br>%Recovery | Qual          | LCSD<br>%Recovery | %Recovery<br>Qual Limits | RPD | RPD<br>Qual Limits |
|-----------------------------------------|------------------|---------------|-------------------|--------------------------|-----|--------------------|
| MCP Volatile Organics - Westborough Lab | Associated samp  | ole(s): 01-04 | Batch: WG905      | 702-3 WG905702-4         |     |                    |
| Methylene chloride                      | 89               |               | 98                | 70-130                   | 10  | 20                 |
| 1,1-Dichloroethane                      | 97               |               | 100               | 70-130                   | 3   | 20                 |
| Chloroform                              | 92               |               | 100               | 70-130                   | 8   | 20                 |
| Carbon tetrachloride                    | 80               |               | 87                | 70-130                   | 8   | 20                 |
| 1,2-Dichloropropane                     | 96               |               | 110               | 70-130                   | 14  | 20                 |
| Dibromochloromethane                    | 86               |               | 88                | 70-130                   | 2   | 20                 |
| 1,1,2-Trichloroethane                   | 97               |               | 98                | 70-130                   | 1   | 20                 |
| Tetrachloroethene                       | 96               |               | 94                | 70-130                   | 2   | 20                 |
| Chlorobenzene                           | 97               |               | 97                | 70-130                   | 0   | 20                 |
| Trichlorofluoromethane                  | 86               |               | 94                | 70-130                   | 9   | 20                 |
| 1,2-Dichloroethane                      | 77               |               | 86                | 70-130                   | 11  | 20                 |
| 1,1,1-Trichloroethane                   | 85               |               | 93                | 70-130                   | 9   | 20                 |
| Bromodichloromethane                    | 81               |               | 88                | 70-130                   | 8   | 20                 |
| trans-1,3-Dichloropropene               | 95               |               | 95                | 70-130                   | 0   | 20                 |
| cis-1,3-Dichloropropene                 | 93               |               | 100               | 70-130                   | 7   | 20                 |
| 1,1-Dichloropropene                     | 93               |               | 100               | 70-130                   | 7   | 20                 |
| Bromoform                               | 84               |               | 84                | 70-130                   | 0   | 20                 |
| 1,1,2,2-Tetrachloroethane               | 98               |               | 100               | 70-130                   | 2   | 20                 |
| Benzene                                 | 97               |               | 100               | 70-130                   | 3   | 20                 |
| Toluene                                 | 98               |               | 97                | 70-130                   | 1   | 20                 |
| Ethylbenzene                            | 100              |               | 100               | 70-130                   | 0   | 20                 |



**Project Name:** 60 EVERETT ST. REDEVELOPMENT

Project Number: 43088-002

Lab Number: L1618400

| Parameter                               | LCS<br>%Recovery | Qual          | LCSD<br>%Recovery | %Recovery<br>Qual Limits | RPD | RPD<br>Qual Limits |
|-----------------------------------------|------------------|---------------|-------------------|--------------------------|-----|--------------------|
| MCP Volatile Organics - Westborough Lab | Associated samp  | ole(s): 01-04 | Batch: WG905      | 702-3 WG905702-4         |     |                    |
| Chloromethane                           | 110              |               | 120               | 70-130                   | 9   | 20                 |
| Bromomethane                            | 80               |               | 84                | 70-130                   | 5   | 20                 |
| Vinyl chloride                          | 120              |               | 130               | 70-130                   | 8   | 20                 |
| Chloroethane                            | 110              |               | 120               | 70-130                   | 9   | 20                 |
| 1,1-Dichloroethene                      | 94               |               | 100               | 70-130                   | 6   | 20                 |
| trans-1,2-Dichloroethene                | 95               |               | 100               | 70-130                   | 5   | 20                 |
| Trichloroethene                         | 89               |               | 97                | 70-130                   | 9   | 20                 |
| 1,2-Dichlorobenzene                     | 92               |               | 94                | 70-130                   | 2   | 20                 |
| 1,3-Dichlorobenzene                     | 98               |               | 96                | 70-130                   | 2   | 20                 |
| 1,4-Dichlorobenzene                     | 97               |               | 95                | 70-130                   | 2   | 20                 |
| Methyl tert butyl ether                 | 81               |               | 89                | 70-130                   | 9   | 20                 |
| p/m-Xylene                              | 95               |               | 95                | 70-130                   | 0   | 20                 |
| o-Xylene                                | 95               |               | 95                | 70-130                   | 0   | 20                 |
| cis-1,2-Dichloroethene                  | 92               |               | 100               | 70-130                   | 8   | 20                 |
| Dibromomethane                          | 84               |               | 92                | 70-130                   | 9   | 20                 |
| 1,2,3-Trichloropropane                  | 92               |               | 95                | 70-130                   | 3   | 20                 |
| Styrene                                 | 95               |               | 95                | 70-130                   | 0   | 20                 |
| Dichlorodifluoromethane                 | 93               |               | 100               | 70-130                   | 7   | 20                 |
| Acetone                                 | 78               |               | 93                | 70-130                   | 18  | 20                 |
| Carbon disulfide                        | 100              |               | 110               | 70-130                   | 10  | 20                 |
| 2-Butanone                              | 75               |               | 90                | 70-130                   | 18  | 20                 |



**Project Name:** 60 EVERETT ST. REDEVELOPMENT

Project Number: 43088-002

Lab Number: L1618400

| Parameter                               | LCS<br>%Recovery | Qual          | LCSD<br>%Recovery | %Recovery<br>Qual Limits | RPD | RPD<br>Qual Limits |  |
|-----------------------------------------|------------------|---------------|-------------------|--------------------------|-----|--------------------|--|
| MCP Volatile Organics - Westborough Lab | Associated samp  | ole(s): 01-04 | Batch: WG905      | 5702-3 WG905702-4        |     |                    |  |
| 4-Methyl-2-pentanone                    | 83               |               | 83                | 70-130                   | 0   | 20                 |  |
| 2-Hexanone                              | 86               |               | 87                | 70-130                   | 1   | 20                 |  |
| Bromochloromethane                      | 91               |               | 99                | 70-130                   | 8   | 20                 |  |
| Tetrahydrofuran                         | 76               |               | 88                | 70-130                   | 15  | 20                 |  |
| 2,2-Dichloropropane                     | 98               |               | 100               | 70-130                   | 2   | 20                 |  |
| 1,2-Dibromoethane                       | 93               |               | 92                | 70-130                   | 1   | 20                 |  |
| 1,3-Dichloropropane                     | 96               |               | 96                | 70-130                   | 0   | 20                 |  |
| 1,1,1,2-Tetrachloroethane               | 88               |               | 88                | 70-130                   | 0   | 20                 |  |
| Bromobenzene                            | 97               |               | 97                | 70-130                   | 0   | 20                 |  |
| n-Butylbenzene                          | 110              |               | 110               | 70-130                   | 0   | 20                 |  |
| sec-Butylbenzene                        | 110              |               | 110               | 70-130                   | 0   | 20                 |  |
| tert-Butylbenzene                       | 100              |               | 100               | 70-130                   | 0   | 20                 |  |
| o-Chlorotoluene                         | 110              |               | 110               | 70-130                   | 0   | 20                 |  |
| p-Chlorotoluene                         | 110              |               | 110               | 70-130                   | 0   | 20                 |  |
| 1,2-Dibromo-3-chloropropane             | 74               |               | 81                | 70-130                   | 9   | 20                 |  |
| Hexachlorobutadiene                     | 96               |               | 99                | 70-130                   | 3   | 20                 |  |
| Isopropylbenzene                        | 110              |               | 110               | 70-130                   | 0   | 20                 |  |
| p-Isopropyltoluene                      | 100              |               | 100               | 70-130                   | 0   | 20                 |  |
| Naphthalene                             | 86               |               | 89                | 70-130                   | 3   | 20                 |  |
| n-Propylbenzene                         | 110              |               | 120               | 70-130                   | 9   | 20                 |  |
| 1,2,3-Trichlorobenzene                  | 85               |               | 89                | 70-130                   | 5   | 20                 |  |



**Project Name:** 60 EVERETT ST. REDEVELOPMENT

Project Number: 43088-002

Lab Number: L1618400

| arameter                                | LCS<br>%Recovery  | Qual        | LCSD<br>%Recovery | Qual      | %Recovery<br>Limits | RPD | Qual | RPD<br>Limits |  |
|-----------------------------------------|-------------------|-------------|-------------------|-----------|---------------------|-----|------|---------------|--|
| MCP Volatile Organics - Westborough Lab | Associated sample | e(s): 01-04 | Batch: WG905      | 5702-3 WC | G905702-4           |     |      |               |  |
| 1,2,4-Trichlorobenzene                  | 90                |             | 93                |           | 70-130              | 3   | 1    | 20            |  |
| 1,3,5-Trimethylbenzene                  | 100               |             | 100               |           | 70-130              | 0   |      | 20            |  |
| 1,2,4-Trimethylbenzene                  | 100               |             | 100               |           | 70-130              | 0   |      | 20            |  |
| Ethyl ether                             | 90                |             | 97                |           | 70-130              | 7   |      | 20            |  |
| Isopropyl Ether                         | 97                |             | 110               |           | 70-130              | 13  |      | 20            |  |
| Ethyl-Tert-Butyl-Ether                  | 89                |             | 97                |           | 70-130              | 9   |      | 20            |  |
| Tertiary-Amyl Methyl Ether              | 84                |             | 92                |           | 70-130              | 9   |      | 20            |  |
| 1,4-Dioxane                             | 84                |             | 106               |           | 70-130              | 23  | Q    | 20            |  |

|                       | LCS       |      | LCSD      |      | Acceptance |  |
|-----------------------|-----------|------|-----------|------|------------|--|
| Surrogate             | %Recovery | Qual | %Recovery | Qual | Criteria   |  |
| 1,2-Dichloroethane-d4 | 76        |      | 86        |      | 70-130     |  |
| Toluene-d8            | 104       |      | 103       |      | 70-130     |  |
| 4-Bromofluorobenzene  | 111       |      | 110       |      | 70-130     |  |
| Dibromofluoromethane  | 84        |      | 93        |      | 70-130     |  |



**Lab Number:** L1618400

**Project Name:** 60 EVERETT ST. REDEVELOPMENT

#### **Sample Receipt and Container Information**

Were project specific reporting limits specified?

Cooler Information Custody Seal

Cooler

A Absent

| Container Info | rmation            |        |     | Temp  |      |        |                 |
|----------------|--------------------|--------|-----|-------|------|--------|-----------------|
| Container ID   | Container Type     | Cooler | рН  | deg C | Pres | Seal   | Analysis(*)     |
| L1618400-01A   | Vial HCI preserved | Α      | N/A | 3.0   | Υ    | Absent | MCP-8260-10(14) |
| L1618400-01B   | Vial HCl preserved | Α      | N/A | 3.0   | Υ    | Absent | MCP-8260-10(14) |
| L1618400-01C   | Vial HCl preserved | Α      | N/A | 3.0   | Υ    | Absent | MCP-8260-10(14) |
| L1618400-02A   | Vial HCl preserved | Α      | N/A | 3.0   | Υ    | Absent | MCP-8260-10(14) |
| L1618400-02B   | Vial HCl preserved | Α      | N/A | 3.0   | Υ    | Absent | MCP-8260-10(14) |
| L1618400-02C   | Vial HCl preserved | Α      | N/A | 3.0   | Υ    | Absent | MCP-8260-10(14) |
| L1618400-03A   | Vial HCl preserved | Α      | N/A | 3.0   | Υ    | Absent | MCP-8260-10(14) |
| L1618400-03B   | Vial HCl preserved | Α      | N/A | 3.0   | Υ    | Absent | MCP-8260-10(14) |
| L1618400-03C   | Vial HCl preserved | Α      | N/A | 3.0   | Υ    | Absent | MCP-8260-10(14) |
| L1618400-04A   | Vial HCl preserved | Α      | N/A | 3.0   | Υ    | Absent | MCP-8260-10(14) |
| L1618400-04B   | Vial HCl preserved | Α      | N/A | 3.0   | Υ    | Absent | MCP-8260-10(14) |
| L1618400-04C   | Vial HCI preserved | Α      | N/A | 3.0   | Υ    | Absent | MCP-8260-10(14) |

Project Name: 60 EVERETT ST. REDEVELOPMENT Lab Number: L1618400

Project Number: 43088-002 Report Date: 06/21/16

#### **GLOSSARY**

#### Acronyms

EDL - Estimated Detection Limit: This value represents the level to which target analyte concentrations are reported as estimated

values, when those target analyte concentrations are quantified below the reporting limit (RL). The EDL includes any adjustments from dilutions, concentrations or moisture content, where applicable. The use of EDLs is specific to the analysis

of PAHs using Solid-Phase Microextraction (SPME).

EPA - Environmental Protection Agency.

LCS - Laboratory Control Sample: A sample matrix, free from the analytes of interest, spiked with verified known amounts of

analytes or a material containing known and verified amounts of analytes.

LCSD - Laboratory Control Sample Duplicate: Refer to LCS.

LFB - Laboratory Fortified Blank: A sample matrix, free from the analytes of interest, spiked with verified known amounts of

analytes or a material containing known and verified amounts of analytes.

MDL - Method Detection Limit: This value represents the level to which target analyte concentrations are reported as estimated values, when those target analyte concentrations are quantified below the reporting limit (RL). The MDL includes any

adjustments from dilutions, concentrations or moisture content, where applicable.

MS - Matrix Spike Sample: A sample prepared by adding a known mass of target analyte to a specified amount of matrix sample for

which an independent estimate of target analyte concentration is available.

MSD - Matrix Spike Sample Duplicate: Refer to MS.

NA - Not Applicable.

NC - Not Calculated: Term is utilized when one or more of the results utilized in the calculation are non-detect at the parameter's

reporting unit.

NDPA/DPA - N-Nitrosodiphenylamine/Diphenylamine.

NI - Not Ignitable.

NP - Non-Plastic: Term is utilized for the analysis of Atterberg Limits in soil.

RL - Reporting Limit: The value at which an instrument can accurately measure an analyte at a specific concentration. The RL

includes any adjustments from dilutions, concentrations or moisture content, where applicable.

RPD - Relative Percent Difference: The results from matrix and/or matrix spike duplicates are primarily designed to assess the precision of analytical results in a given matrix and are expressed as relative percent difference (RPD). Values which are less

precision of analytical results in a given matrix and are expressed as relative percent difference (RPD). Values which are less than five times the reporting limit for any individual parameter are evaluated by utilizing the absolute difference between the

values; although the RPD value will be provided in the report.

SRM - Standard Reference Material: A reference sample of a known or certified value that is of the same or similar matrix as the

associated field samples.

STLP - Semi-dynamic Tank Leaching Procedure per EPA Method 1315.

TIC - Tentatively Identified Compound: A compound that has been identified to be present and is not part of the target compound

list (TCL) for the method and/or program. All TICs are qualitatively identified and reported as estimated concentrations.

#### **Footnotes**

- The reference for this analyte should be considered modified since this analyte is absent from the target analyte list of the original method.

#### Terms

Total: With respect to Organic analyses, a 'Total' result is defined as the summation of results for individual isomers or Aroclors. If a "Total' result is requested, the results of its individual components will also be reported. This is applicable to 'Total' results for methods 8260, 8081 and 8082.

Analytical Method: Both the document from which the method originates and the analytical reference method. (Example: EPA 8260B is shown as 1,8260B.) The codes for the reference method documents are provided in the References section of the Addendum.

#### **Data Qualifiers**

A - Spectra identified as "Aldol Condensation Product".

The analyte was detected above the reporting limit in the associated method blank. Flag only applies to associated field samples that have detectable concentrations of the analyte at less than ten times (10x) the concentration found in the blank. For MCP-related projects, flag only applies to associated field samples that have detectable concentrations of the analyte at less than ten times (10x) the concentration found in the blank. For DOD-related projects, flag only applies to associated field samples that have detectable concentrations of the analyte at less than ten times (10x) the concentration found in the blank AND the analyte was detected above one-half the reporting limit (or above the reporting limit for common lab contaminants) in the associated method blank. For NJ-Air-related projects, flag only applies to associated field samples that have detectable concentrations of the analyte above the reporting limit. For NJ-related projects (excluding Air), flag only applies to associated field samples that have detectable concentrations of the analyte, which was detected above the reporting limit in the associated method blank or above five times the

Report Format: Data Usability Report



Project Name:60 EVERETT ST. REDEVELOPMENTLab Number:L1618400Project Number:43088-002Report Date:06/21/16

#### **Data Qualifiers**

- reporting limit for common lab contaminants (Phthalates, Acetone, Methylene Chloride, 2-Butanone).
- Co-elution: The target analyte co-elutes with a known lab standard (i.e. surrogate, internal standards, etc.) for co-extracted analyses.
- Concentration of analyte was quantified from diluted analysis. Flag only applies to field samples that have detectable concentrations of the analyte.
- E Concentration of analyte exceeds the range of the calibration curve and/or linear range of the instrument.
- G The concentration may be biased high due to matrix interferences (i.e, co-elution) with non-target compound(s). The result should be considered estimated.
- H The analysis of pH was performed beyond the regulatory-required holding time of 15 minutes from the time of sample collection.
- I The lower value for the two columns has been reported due to obvious interference.
- M Reporting Limit (RL) exceeds the MCP CAM Reporting Limit for this analyte.
- NJ Presumptive evidence of compound. This represents an estimated concentration for Tentatively Identified Compounds (TICs), where the identification is based on a mass spectral library search.
- P The RPD between the results for the two columns exceeds the method-specified criteria.
- Q The quality control sample exceeds the associated acceptance criteria. For DOD-related projects, LCS and/or Continuing Calibration Standard exceedences are also qualified on all associated sample results. Note: This flag is not applicable for matrix spike recoveries when the sample concentration is greater than 4x the spike added or for batch duplicate RPD when the sample concentrations are less than 5x the RL. (Metals only.)
- **R** Analytical results are from sample re-analysis.
- **RE** Analytical results are from sample re-extraction.
- S Analytical results are from modified screening analysis.
- J Estimated value. This represents an estimated concentration for Tentatively Identified Compounds (TICs).
- **ND** Not detected at the reporting limit (RL) for the sample.

Report Format: Data Usability Report



Project Name: 60 EVERETT ST. REDEVELOPMENT Lab Number: L1618400

Project Number: 43088-002 Report Date: 06/21/16

#### REFERENCES

97 EPA Test Methods (SW-846) with QC Requirements & Performance Standards for the Analysis of EPA SW-846 Methods under the Massachusetts Contingency Plan, WSC-CAM-IIA, IIB, IIIA, IIIB, IIIC, IIID, VA, VB, VC, VIA, VIB, VIIIA and VIIIB, July 2010.

#### **LIMITATION OF LIABILITIES**

Alpha Analytical performs services with reasonable care and diligence normal to the analytical testing laboratory industry. In the event of an error, the sole and exclusive responsibility of Alpha Analytical shall be to re-perform the work at it's own expense. In no event shall Alpha Analytical be held liable for any incidental, consequential or special damages, including but not limited to, damages in any way connected with the use of, interpretation of, information or analysis provided by Alpha Analytical.

We strongly urge our clients to comply with EPA protocol regarding sample volume, preservation, cooling, containers, sampling procedures, holding time and splitting of samples in the field.



Published Date: 2/3/2016 10:23:10 AM

ID No.:17873

Revision 6

Page 1 of 1

Alpha Analytical, Inc. Facility: Company-wide

Department: Quality Assurance

Title: Certificate/Approval Program Summary

#### Certification Information

The following analytes are not included in our Primary NELAP Scope of Accreditation:

Westborough Facility

EPA 524.2: 1,2-Dibromo-3-chloropropane, 1,2-Dibromoethane, m/p-xylene, o-xylene

EPA 624: 2-Butanone (MEK), 1,4-Dioxane, tert-Amylmethyl Ether, tert-Butyl Alcohol, m/p-xylene, o-xylene

EPA 625: Aniline, Benzoic Acid, Benzyl Alcohol, 4-Chloroaniline, 3-Methylphenol, 4-Methylphenol.

EPA 1010A: NPW: Ignitability

EPA 6010C: NPW: Strontium; SCM: Strontium

EPA 8151A: NPW: 2,4-DB, Dicamba, Dichloroprop, MCPA, MCPP; SCM: 2,4-DB, Dichloroprop, MCPA, MCPP

EPA 8260C: NPW: 1,2,4,5-Tetramethylbenzene; 4-Ethyltoluene, Azobenzene, Isopropanol; SCM: Iodomethane (methyl iodide), Methyl methacrylate

(soil); 1,2,4,5-Tetramethylbenzene; 4-Ethyltoluene.

EPA 8270D: NPW: Pentachloronitrobenzene, 1-Methylnaphthalene, Dimethylnaphthalene, 1,4-Diphenylhydrazine; SCM: Pentachloronitrobenzene, 1-

Methylnaphthalene, Dimethylnaphthalene, 1,4-Diphenylhydrazine.

**EPA 9010:** NPW: Amenable Cyanide Distillation, Total Cyanide Distillation **EPA 9038:** NPW: Sulfate

EPA 9050A: NPW: Specific Conductance EPA 9056: NPW: Chloride, Nitrate, Sulfate

EPA 9065: NPW: Phenols EPA 9251: NPW: Chloride SM3500: NPW: Ferrous Iron

SM4500: NPW: Amenable Cyanide, Dissolved Oxygen; SCM: Total Phosphorus, TKN, NO2, NO3.

SM5310C: DW: Dissolved Organic Carbon

**Mansfield Facility** 

EPA 8270D: NPW: Biphenyl; SCM: Biphenyl, Caprolactam EPA 8270D-SIM Isotope Dilution: SCM: 1,4-Dioxane

**SM 2540D:** TSS

SM2540G: SCM: Percent Solids EPA 1631E: SCM: Mercury EPA 7474: SCM: Mercury

EPA 8081B: NPW and SCM: Mirex, Hexachlorobenzene.

EPA 8082A: NPW: PCB: 1, 5, 31, 87, 101, 110, 141, 151, 153, 180, 183, 187.

EPA 8270-SIM: NPW and SCM: Alkylated PAHs.

EPA TO-15: Halothane, 2,4,4-Trimethyl-2-pentene, 2,4,4-Trimethyl-1-pentene, Thiophene, 2-Methylthiophene,

3-Methylthiophene, 2-Ethylthiophene, 1,2,3-Trimethylbenzene, Indan, Indene, 1,2,4,5-Tetramethylbenzene, Benzothiophene, 1-Methylnaphthalene, n-Butylbenzene, n-Propylbenzene, sec-Butylbenzene, tert-Butylbenzene.

Biological Tissue Matrix: 8270D-SIM; 3050B; 3051A; 7471B; 8081B; 8082A; 6020A: Lead; 8270D: bis(2-ethylhexyl)phthalate, Butylbenzylphthalate, Diethyl phthalate, Dimethyl phthalate, Di-n-butyl phthalate, Di-n-octyl phthalate, Fluoranthene, Pentachlorophenol.

The following analytes are included in our Massachusetts DEP Scope of Accreditation, Westborough Facility:

Drinking Water

EPA 200.8: Sb,As,Ba,Be,Cd,Cr,Cu,Pb,Ni,Se,Tl; EPA 200.7: Ba,Be,Ca,Cd,Cr,Cu,Na; EPA 245.1: Mercury;

EPA 300.0: Nitrate-N, Fluoride, Sulfate; EPA 353.2: Nitrate-N, Nitrite-N; SM4500NO3-F: Nitrate-N, Nitrite-N; SM4500F-C, SM4500CN-CE, EPA 180.1,

SM2130B, SM4500CI-D, SM2320B, SM2540C, SM4500H-B

EPA 332: Perchlorate.

Microbiology: SM9215B; SM9223-P/A, SM9223B-Colilert-QT, Enterolert-QT.

Non-Potable Water

EPA 200.8: Al,Sb,As,Be,Cd,Cr,Cu,Pb,Mn,Ni,Se,Ag,Tl,Zn;

EPA 200.7: Al,Sb,As,Be,Cd,Ca,Cr,Co,Cu,Fe,Pb,Mg,Mn,Mo,Ni,K,Se,Ag,Na,Sr,Ti,Tl,V,Zn;

EPA 245.1, SM4500H,B, EPA 120.1, SM2510B, SM2540C, SM2340B, SM2320B, SM4500CL-E, SM4500F-BC, SM426C, SM4500NH3-BH, EPA 350.1: Ammonia-N, LACHAT 10-107-06-1-B: Ammonia-N, SM4500NO3-F,

EPA 353.2: Nitrate-N, SM4500NH3-BC-NES, EPA 351.1, SM4500P-E, SM4500P-B, E, SM5220D, EPA 410.4, SM5210B, SM5310C, SM4500CL-D, EPA 1664, SM14 510AC, EPA 420.1, SM4500-CN-CE, SM2540D.

EPA 624: Volatile Halocarbons & Aromatics,

EPA 608: Chlordane, Toxaphene, Aldrin, alpha-BHC, beta-BHC, gamma-BHC, delta-BHC, Dieldrin, DDD, DDE, DDT, Endosulfan II, Endosulfan II, Endosulfan sulfate, Endrin, Endrin Aldehyde, Heptachlor, Heptachlor Epoxide, PCBs

EPA 625: SVOC (Acid/Base/Neutral Extractables), EPA 600/4-81-045: PCB-Oil.

Microbiology: SM9223B-Colilert-QT; Enterolert-QT, SM9222D-MF.

For a complete listing of analytes and methods, please contact your Alpha Project Manager.

Pre-Qualtrax Document ID: 08-113 Document Type: Form

| H&A Phone: 617-886-<br>H&A Fax:                                                                                                                                                                                                                    | ford St<br>A 0212-1400        | Service Centers Brewer, ME 04412 Albany, NY 12205 Tonawanda, NY 14150 Holmes, PA 19043  Project Information  Project Name: 60 Everett Street Redevelopment  Project Location: 60 Everett Street, Brighton/Allston, MA  Project # 43088-002  (Use Project name as Project #)  Project Manager: Jesse Siegel  ALPHAQuote #:  Turn-Around Time  Standard |                   |                                            | Date Rec'd in Lab  Deliverables  Fax  EQuIS (1 File) EQUIS (4 File)  Other:  Regulatory Requirements (Program/Criteria) |                    |             |               |  | ria) | Billing Information  Same as Client Info  Po #  Disposal Site Information  Please identify below location of applicable disposal facilities.  Disposal Facility:  NJ NY  Other: |      |                                          |    |                                                                                                                                                                                                                                                                                                                                                                                          |                       |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------|--------------------------------------------|-------------------------------------------------------------------------------------------------------------------------|--------------------|-------------|---------------|--|------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|------------------------------------------|----|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------|
| These samples have been Other project specific re Please specify Metals or                                                                                                                                                                         | quirements/comments           |                                                                                                                                                                                                                                                                                                                                                       |                   |                                            |                                                                                                                         |                    | VOCs 8260   | 1313          |  |      |                                                                                                                                                                                 |      |                                          |    | Sample Filtration  Done Lab to do Preservation Lab to do  (Please Specify below)                                                                                                                                                                                                                                                                                                         | o<br>l<br>a<br>l<br>B |
| ALPHA Lab ID (Lab Use Only)  (8400 - 0 )  02  03                                                                                                                                                                                                   | MW-1<br>MW-2<br>MW-8<br>MW-10 |                                                                                                                                                                                                                                                                                                                                                       | Coll Date 6 15 16 | Time 840 930 1045                          | Sample<br>Matrix                                                                                                        | Sampler's Initials | X<br>X<br>X |               |  |      |                                                                                                                                                                                 |      |                                          |    | Sample Specific Comments                                                                                                                                                                                                                                                                                                                                                                 | 1 e s 3 3 3 3         |
| Preservative Code:                                                                                                                                                                                                                                 | Container Code                | Washara Cadification N                                                                                                                                                                                                                                                                                                                                | 0: MA025          |                                            | >                                                                                                                       |                    |             |               |  |      |                                                                                                                                                                                 |      |                                          |    | Please print clearly, legibly and                                                                                                                                                                                                                                                                                                                                                        | d                     |
| Preservative Code:  A = None  B = HCl  C = HNO <sub>3</sub> D = H <sub>2</sub> SO <sub>4</sub> E = NaOH  F = MeOH  G = NaHSO <sub>4</sub> H = Na <sub>2</sub> S <sub>2</sub> O <sub>3</sub> K/E = Zn Ac/NaOH  Document ID: 20455 Rev 1 (1/28/2016) |                               | A. Prol 6/15/<br>M. auto 6/15/                                                                                                                                                                                                                                                                                                                        |                   | Date/<br>6 15 16<br>6 15/6 16<br>6 15/6 16 | Preservative  Date/Time  F  M c with                                                                                    |                    | Receive     | B eceived By: |  |      | ^                                                                                                                                                                               | 5/16 | A // // // // // // // // // // // // // | 30 | completely. Samples can not be logged in and turnaround time clowill not start until any ambiguities are resolved. Alpha Analytical's services under this Chain of Custody shall be performed in accordance witerms and conditions within Blanket Service Agreement# 2015-18-Alpha Analytical by and between Haley & Aldrich Inc., its subsidiaries and affiliates and Alpha Analytical. |                       |

# Method Blank Summary Form 4

Client : Haley & Aldrich, Inc. Lab Number : L1618400
Project Name : 60 EVERETT ST. REDEVELOPMENT Project Number : 43088-002
Lab Sample ID : WG905702-5 Lab File ID : V16160620B06

Instrument ID : VOA116

Matrix : WATER Analysis Date : 06/20/16 07:15

| Client Sample No. | Lab Sample ID | Analysis Date  |
|-------------------|---------------|----------------|
| WG905702-3LCS     | WG905702-3    | 06/20/16 06:00 |
| WG905702-4LCSD    | WG905702-4    | 06/20/16 06:25 |
| MW-1              | L1618400-01   | 06/20/16 09:45 |
| MW-2              | L1618400-02   | 06/20/16 10:10 |
| MW-10             | L1618400-04   | 06/20/16 10:35 |
| MW-8              | L1618400-03   | 06/20/16 11:00 |



# Continuing Calibration Form 7

Client : Haley & Aldrich, Inc. Lab Number : L1618400
Project Name : 60 EVERETT ST. REDEVELOPMENT Project Number : 43088-002

Project Name : 60 EVERETT ST. REDEVELOPMENT Project Number : 43088-002 | Calibration Date : 06/20/16 06:00

Channel:

| Compound                  | Ave. RRF | RRF     | Min RRF | %D    | Max %D | Area% | Dev(mi |
|---------------------------|----------|---------|---------|-------|--------|-------|--------|
| Fluorobenzene             | 1        | 1       | 0       | 0     | 20     | 175   | 0      |
| Dichlorodifluoromethane   | 0.262    | 0.243   | 0       | 7.3   | 20     | 154   | 0      |
| Chloromethane             | 0.298    | 0.337   | 0       | -13.1 | 20     | 197   | 0      |
| Vinyl chloride            | 0.298    | 0.356   | 0       | -19.5 | 20     | 207   | 0      |
| Bromomethane              | 0.162    | 0.129   | 0       | 20.4* | 20     | 160   | 0      |
| Chloroethane              | 0.172    | 0.187   | 0       | -8.7  | 20     | 184   | 0      |
| Trichlorofluoromethane    | 0.401    | 0.343   | 0       | 14.5  | 20     | 144   | 0      |
| Ethyl ether               | 0.132    | 0.118   | 0       | 10.6  | 20     | 165   | 0      |
| 1,1-Dichloroethene        | 0.217    | 0.204   | 0       | 6     | 20     | 167   | 0      |
| Carbon disulfide          | 0.748    | 0.762   | 0       | -1.9  | 20     | 183   | 0      |
| Methylene chloride        | 0.268    | 0.239   | 0       | 10.8  | 20     | 171   | 0      |
| Acetone                   | 10       | 7.858   | 0       | 21.4* | 20     | 147   | 0      |
| trans-1,2-Dichloroethene  | 0.25     | 0.238   | 0       | 4.8   | 20     | 175   | 0      |
| Methyl tert-butyl ether   | 0.644    | 0.52    | 0       | 19.3  | 20     | 148   | 0      |
| Diisopropyl ether         | 0.862    | 0.839   | 0       | 2.7   | 20     | 183   | 0      |
| 1,1-Dichloroethane        | 0.518    | 0.503   | 0       | 2.9   | 20     | 180   | 0      |
| Ethyl tert-butyl ether    | 0.786    | 0.699   | 0       | 11.1  | 20     | 163   | 0      |
| cis-1,2-Dichloroethene    | 0.279    | 0.257   | 0       | 7.9   | 20     | 170   | 0      |
| 2,2-Dichloropropane       | 0.427    | 0.42    | 0       | 1.6   | 20     | 184   | 0      |
| Bromochloromethane        | 0.098    | 0.089   | 0       | 9.2   | 20     | 156   | 0      |
| Chloroform                | 0.397    | 0.367   | 0       | 7.6   | 20     | 171   | 0      |
| Carbon tetrachloride      | 0.307    | 0.245   | 0       | 20.2* | 20     | 141   | 0      |
| Tetrahydrofuran           | 10       | 7.552   | 0       | 24.5* | 20     | 143   | 0      |
| Dibromofluoromethane      | 0.268    | 0.225   | 0       | 16    | 20     | 144   | 0      |
| 1,1,1-Trichloroethane     | 0.348    | 0.296   | 0       | 14.9  | 20     | 152   | 0      |
| 2-Butanone                | 10       | 7.508   | 0       | 24.9* | 20     | 133   | 0      |
| 1,1-Dichloropropene       | 0.309    | 0.289   | 0       | 6.5   | 20     | 175   | 0      |
| Benzene                   | 0.859    | 0.836   | 0       | 2.7   | 20     | 183   | 0      |
| tert-Amyl methyl ether    | 0.544    | 0.456   | 0       | 16.2  | 20     | 150   | 0      |
| 1,2-Dichloroethane-d4     | 0.339    | 0.256   | 0       | 24.5* | 20     | 131   | 0      |
| 1,2-Dichloroethane        | 0.297    | 0.229   | 0       | 22.9* | 20     | 143   | 0      |
| Trichloroethene           | 0.225    | 0.199   | 0       | 11.6  | 20     | 169   | 0      |
| Dibromomethane            | 0.119    | 0.1     | 0       | 16    | 20     | 149   | 0      |
| 1,2-Dichloropropane       | 0.254    | 0.243   | 0       | 4.3   | 20     | 180   | 0      |
| Bromodichloromethane      | 0.283    | 0.229   | 0       | 19.1  | 20     | 143   | 0      |
| 1,4-Dioxane               | 0.00034  | 0.00029 | 0       | 14.7  | 20     | 124   | 0      |
| cis-1,3-Dichloropropene   | 0.393    | 0.367   | 0       | 6.6   | 20     | 164   | 0      |
| Chlorobenzene-d5          | 1        | 1       | 0       | 0     | 20     | 153   | 0      |
| Toluene-d8                | 1.34     | 1.388   | 0       | -3.6  | 20     | 158   | 0      |
| Toluene                   | 0.751    | 0.737   | 0       | 1.9   | 20     | 170   | 0      |
| 4-Methyl-2-pentanone      | 0.084    | 0.07    | 0       | 16.7  | 20     | 135   | 0      |
| Tetrachloroethene         | 0.281    | 0.27    | 0       | 3.9   | 20     | 155   | 0      |
| trans-1,3-Dichloropropene | 0.452    | 0.432   | 0       | 4.4   | 20     | 145   | 0      |
| 1,1,2-Trichloroethane     | 0.198    | 0.191   | 0       | 3.5   | 20     | 146   | 0      |
| Chlorodibromomethane      | 0.27     | 0.234   | 0       | 13.3  | 20     | 124   | 0      |

<sup>\*</sup> Value outside of QC limits.



: L1618400

# Continuing Calibration Form 7

Client : Haley & Aldrich, Inc. Lab Number
Project Name : 60 EVERETT ST. REDEVELOPMENT Project Number

Project Name : 60 EVERETT ST. REDEVELOPMENT Project Number : 43088-002 Instrument ID : VOA116 Calibration Date : 06/20/16 06:00

 Lab File ID
 : V16160620B03
 Init. Calib. Date(s)
 : 06/09/16
 06/09/16

 Sample No
 : WG905702-2
 Init. Calib. Times
 : 17:39
 20:37

Channel:

| Compound                   | Ave. RRF | RRF   | Min RRF | %D    | Max %D | Area% | Dev(min) |
|----------------------------|----------|-------|---------|-------|--------|-------|----------|
| 1,3-Dichloropropane        | 0.423    | 0.405 | 0       | 4.3   | 20     | 145   | 0        |
| 1,2-Dibromoethane          | 0.213    | 0.198 | 0       | 7     | 20     | 137   | 0        |
| 2-Hexanone                 | 0.132    | 0.113 | 0       | 14.4  | 20     | 125   | 0        |
| Chlorobenzene              | 0.767    | 0.747 | 0       | 2.6   | 20     | 150   | 0        |
| Ethylbenzene               | 1.419    | 1.478 | 0       | -4.2  | 20     | 163   | 0        |
| 1,1,1,2-Tetrachloroethane  | 0.282    | 0.248 | 0       | 12.1  | 20     | 131   | 0        |
| p/m Xylene                 | 0.541    | 0.524 | 0       | 3.1   | 20     | 154   | 0        |
| o Xylene                   | 0.515    | 0.494 | 0       | 4.1   | 20     | 149   | 0        |
| Styrene                    | 0.865    | 0.815 | 0       | 5.8   | 20     | 143   | 0        |
| 1,4-Dichlorobenzene-d4     | 1        | 1     | 0       | 0     | 20     | 133   | 0        |
| Bromoform                  | 0.341    | 0.286 | 0       | 16.1  | 20     | 111   | 0        |
| Isopropylbenzene           | 2.591    | 2.854 | 0       | -10.2 | 20     | 149   | 0        |
| 4-Bromofluorobenzene       | 0.974    | 1.081 | 0       | -11   | 20     | 150   | 0        |
| Bromobenzene               | 0.573    | 0.557 | 0       | 2.8   | 20     | 129   | 0        |
| n-Propylbenzene            | 3.271    | 3.726 | 0       | -13.9 | 20     | 152   | 0        |
| 1,1,2,2-Tetrachloroethane  | 0.54     | 0.531 | 0       | 1.7   | 20     | 122   | 0        |
| 2-Chlorotoluene            | 2.16     | 2.328 | 0       | -7.8  | 20     | 142   | 0        |
| 1,3,5-Trimethylbenzene     | 2.186    | 2.269 | 0       | -3.8  | 20     | 141   | 0        |
| 1,2,3-Trichloropropane     | 0.466    | 0.43  | 0       | 7.7   | 20     | 116   | 0        |
| 4-Chlorotoluene            | 1.956    | 2.086 | 0       | -6.6  | 20     | 141   | 0        |
| tert-Butylbenzene          | 1.816    | 1.864 | 0       | -2.6  | 20     | 137   | 0        |
| 1,2,4-Trimethylbenzene     | 2.179    | 2.285 | 0       | -4.9  | 20     | 140   | 0        |
| sec-Butylbenzene           | 2.666    | 2.862 | 0       | -7.4  | 20     | 143   | 0        |
| p-Isopropyltoluene         | 2.212    | 2.269 | 0       | -2.6  | 20     | 136   | 0        |
| 1,3-Dichlorobenzene        | 1.159    | 1.132 | 0       | 2.3   | 20     | 128   | 0        |
| 1,4-Dichlorobenzene        | 1.178    | 1.143 | 0       | 3     | 20     | 128   | 0        |
| n-Butylbenzene             | 2.099    | 2.269 | 0       | -8.1  | 20     | 145   | 0        |
| 1,2-Dichlorobenzene        | 1.073    | 0.986 | 0       | 8.1   | 20     | 122   | 0        |
| 1,2-Dibromo-3-chloropropan | 0.073    | 0.054 | 0       | 26*   | 20     | 94    | 0        |
| Hexachlorobutadiene        | 0.218    | 0.209 | 0       | 4.1   | 20     | 130   | 0        |
| 1,2,4-Trichlorobenzene     | 0.63     | 0.566 | 0       | 10.2  | 20     | 119   | 0        |
| Naphthalene                | 1.437    | 1.229 | 0       | 14.5  | 20     | 110   | 0        |
| 1,2,3-Trichlorobenzene     | 0.574    | 0.491 | 0       | 14.5  | 20     | 114   | 0        |
|                            |          |       |         |       |        |       |          |



<sup>\*</sup> Value outside of QC limits.



#### ANALYTICAL REPORT

Lab Number: L1620128

Client: Haley & Aldrich, Inc.

465 Medford Street, Suite 2200 Charlestown, MA 02129-1400

ATTN: Jesse Siegel Phone: (617) 886-7400

Project Name: 60 EVERETT ST BRIGHTON/ALLSTON

Project Number: 43088-002

Report Date: 07/06/16

The original project report/data package is held by Alpha Analytical. This report/data package is paginated and should be reproduced only in its entirety. Alpha Analytical holds no responsibility for results and/or data that are not consistent with the original.

Certifications & Approvals: MA (M-MA086), NY (11148), CT (PH-0574), NH (2003), NJ NELAP (MA935), RI (LAO00065), ME (MA00086), PA (68-03671), VA (460195), MD (348), IL (200077), NC (666), TX (T104704476), DOD (L2217), USDA (Permit #P-330-11-00240).

Eight Walkup Drive, Westborough, MA 01581-1019 508-898-9220 (Fax) 508-898-9193 800-624-9220 - www.alphalab.com



**Project Name:** 60 EVERETT ST BRIGHTON/ALLSTON

Project Number: 43088-002

**Lab Number:** L1620128 **Report Date:** 07/06/16

| Alpha<br>Sample ID | Client ID         | Matrix | Sample<br>Location                 | Collection<br>Date/Time | Receive Date |
|--------------------|-------------------|--------|------------------------------------|-------------------------|--------------|
| L1620128-01        | HA16-7(OW)_62916  | WATER  | 60 EVERETT STREET<br>REDEVELOPMENT | 06/29/16 09:30          | 06/29/16     |
| L1620128-02        | HA16-11(OW)_62916 | WATER  | 60 EVERETT STREET<br>REDEVELOPMENT | 06/29/16 10:40          | 06/29/16     |
| L1620128-03        | HA16-5(OW)_62916  | WATER  | 60 EVERETT STREET<br>REDEVELOPMENT | 06/29/16 12:00          | 06/29/16     |
| L1620128-04        | HA16-3(OW)_62916  | WATER  | 60 EVERETT STREET<br>REDEVELOPMENT | 06/29/16 13:20          | 06/29/16     |



Project Name: 60 EVERETT ST BRIGHTON/ALLSTON Lab Number: L1620128

**Project Number:** 43088-002 **Report Date:** 07/06/16

#### **MADEP MCP Response Action Analytical Report Certification**

This form provides certifications for all samples performed by MCP methods. Please refer to the Sample Results and Container Information sections of this report for specification of MCP methods used for each analysis. The following questions pertain only to MCP Analytical Methods.

| An af | firmative response to questions A through F is required for "Presumptive Certainty" status                                                                                                                                  |     |
|-------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|
| Α     | Were all samples received in a condition consistent with those described on the Chain-of-Custody, properly preserved (including temperature) in the field or laboratory, and prepared/analyzed within method holding times? | YES |
| В     | Were the analytical method(s) and all associated QC requirements specified in the selected CAM protocol(s) followed?                                                                                                        | YES |
| С     | Were all required corrective actions and analytical response actions specified in the selected CAM protocol(s) implemented for all identified performance standard non-conformances?                                        | YES |
| D     | Does the laboratory report comply with all the reporting requirements specified in CAM VII A, "Quality Assurance and Quality Control Guidelines for the Acquisition and Reporting of Analytical Data?"                      | YES |
| E a.  | VPH, EPH, and APH Methods only: Was each method conducted without significant modification(s)? (Refer to the individual method(s) for a list of significant modifications).                                                 | N/A |
| E b.  | APH and TO-15 Methods only: Was the complete analyte list reported for each method?                                                                                                                                         | N/A |
| F     | Were all applicable CAM protocol QC and performance standard non-conformances identified and evaluated in a laboratory narrative (including all "No" responses to Questions A through E)?                                   | YES |

| A response to questions G, H and I is required for "Presumptive Certainty" status |                                                                                                           |     |  |  |  |  |  |
|-----------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------|-----|--|--|--|--|--|
| G                                                                                 | Were the reporting limits at or below all CAM reporting limits specified in the selected CAM protocol(s)? | YES |  |  |  |  |  |
| Н                                                                                 | Were all QC performance standards specified in the CAM protocol(s) achieved?                              | NO  |  |  |  |  |  |
| I                                                                                 | Were results reported for the complete analyte list specified in the selected CAM protocol(s)?            | YES |  |  |  |  |  |

For any questions answered "No", please refer to the case narrative section on the following page(s).

Please note that sample matrix information is located in the Sample Results section of this report.



**Project Name:** 60 EVERETT ST BRIGHTON/ALLSTON Lab Number: L1620128

**Project Number:** 43088-002 **Report Date:** 07/06/16

#### **Case Narrative**

The samples were received in accordance with the Chain of Custody and no significant deviations were encountered during the preparation or analysis unless otherwise noted. Sample Receipt, Container Information, and the Chain of Custody are located at the back of the report.

Results contained within this report relate only to the samples submitted under this Alpha Lab Number and meet NELAP requirements for all NELAP accredited parameters unless otherwise noted in the following narrative. The data presented in this report is organized by parameter (i.e. VOC, SVOC, etc.). Sample specific Quality Control data (i.e. Surrogate Spike Recovery) is reported at the end of the target analyte list for each individual sample, followed by the Laboratory Batch Quality Control at the end of each parameter. Tentatively Identified Compounds (TICs), if requested, are reported for compounds identified to be present and are not part of the method/program Target Compound List, even if only a subset of the TCL are being reported. If a sample was re-analyzed or re-extracted due to a required quality control corrective action and if both sets of data are reported, the Laboratory ID of the re-analysis or re-extraction is designated with an "R" or "RE", respectively. When multiple Batch Quality Control elements are reported (e.g. more than one LCS), the associated samples for each element are noted in the grey shaded header line of each data table. Any Laboratory Batch, Sample Specific % recovery or RPD value that is outside the listed Acceptance Criteria is bolded in the report. All specific QC information is also incorporated in the Data Usability format of our Data Merger tool where it can be reviewed along with any associated usability implications. Soil/sediments, solids and tissues are reported on a dry weight basis unless otherwise noted. Definitions of all data qualifiers and acronyms used in this report are provided in the Glossary located at the back of the report.

In reference to questions H (CAM) or 4 (RCP) when "NO" is checked, the performance criteria for CAM and RCP methods allow for some quality control failures to occur and still be within method compliance. In these instances the specific failure is not narrated but noted in the associated QC table. The information is also incorporated in the Data Usability format of our Data Merger tool where it can be reviewed along with any associated usability implications.

Please see the associated ADEx data file for a comparison of laboratory reporting limits that were achieved with the regulatory Numerical Standards requested on the Chain of Custody.

#### HOLD POLICY

For samples submitted on hold, Alpha's policy is to hold samples (with the exception of Air canisters) free of charge for 21 calendar days from the date the project is completed. After 21 calendar days, we will dispose of all samples submitted including those put on hold unless you have contacted your Client Service Representative and made arrangements for Alpha to continue to hold the samples. Air canisters will be disposed after 3 business days from the date the project is completed.

| Please contact Client Services at 800-624-9220 with any questions. |  |
|--------------------------------------------------------------------|--|
|                                                                    |  |



Serial\_No:07061613:13

Project Name: 60 EVERETT ST BRIGHTON/ALLSTON Lab Number: L1620128
Project Number: 43088-002 Report Date: 07/06/16

Case Narrative (continued)

MCP Related Narratives

In reference to question H:

The initial calibration, associated with L1620128-01 through -04 (all submitted samples), did not meet the method required minimum response factor on the lowest calibration standard for acetone (0.0644), 1,4-dioxane (0.0014) and 2-butanone (0.0772), as well as the average response factor for acetone, 1,4-dioxane and 2-butanone.

The continuing calibration standard, associated with L1620128-01 through -04 (all submitted samples), is outside the acceptance criteria for several compounds; however, it is within overall method allowances. A copy of the continuing calibration standard is included as an addendum to this report.

I, the undersigned, attest under the pains and penalties of perjury that, to the best of my knowledge and belief and based upon my personal inquiry of those responsible for providing the information contained in this analytical report, such information is accurate and complete. This certificate of analysis is not complete unless this page accompanies any and all pages of this report.

Authorized Signature:

Title: Technical Director/Representative Date: 07/06/16

Sura L Irry Lura L Troy

### **ORGANICS**



### **VOLATILES**



L1620128

07/06/16

**Project Name:** 60 EVERETT ST BRIGHTON/ALLSTON

**Project Number:** 43088-002

**SAMPLE RESULTS** 

Date Collected: 06/29/16 09:30

Date Received: 06/29/16

Lab Number:

Report Date:

Field Prep: Not Specified

Lab ID: L1620128-01

Client ID: HA16-7(OW)\_62916

60 EVERETT STREET REDEVELOPMENT Sample Location:

Matrix: Water Analytical Method: 97,8260C Analytical Date: 07/05/16 08:49

Analyst: MM

| Parameter                           | Result | Qualifier | Units | RL   | MDL | Dilution Factor |  |
|-------------------------------------|--------|-----------|-------|------|-----|-----------------|--|
| MCP Volatile Organics - Westborough | Lab    |           |       |      |     |                 |  |
| Methylene chloride                  | ND     |           | ug/l  | 2.0  |     | 1               |  |
| 1,1-Dichloroethane                  | ND     |           | ug/l  | 1.0  |     | 1               |  |
| Chloroform                          | ND     |           | ug/l  | 1.0  |     | 1               |  |
| Carbon tetrachloride                | ND     |           | ug/l  | 1.0  |     | 1               |  |
| 1,2-Dichloropropane                 | ND     |           | ug/l  | 1.0  |     | 1               |  |
| Dibromochloromethane                | ND     |           | ug/l  | 1.0  |     | 1               |  |
| 1,1,2-Trichloroethane               | ND     |           | ug/l  | 1.0  |     | 1               |  |
| Tetrachloroethene                   | ND     |           | ug/l  | 1.0  |     | 1               |  |
| Chlorobenzene                       | ND     |           | ug/l  | 1.0  |     | 1               |  |
| Trichlorofluoromethane              | ND     |           | ug/l  | 2.0  |     | 1               |  |
| 1,2-Dichloroethane                  | ND     |           | ug/l  | 1.0  |     | 1               |  |
| 1,1,1-Trichloroethane               | ND     |           | ug/l  | 1.0  |     | 1               |  |
| Bromodichloromethane                | ND     |           | ug/l  | 1.0  |     | 1               |  |
| trans-1,3-Dichloropropene           | ND     |           | ug/l  | 0.50 |     | 1               |  |
| cis-1,3-Dichloropropene             | ND     |           | ug/l  | 0.50 |     | 1               |  |
| 1,3-Dichloropropene, Total          | ND     |           | ug/l  | 0.50 |     | 1               |  |
| 1,1-Dichloropropene                 | ND     |           | ug/l  | 2.0  |     | 1               |  |
| Bromoform                           | ND     |           | ug/l  | 2.0  |     | 1               |  |
| 1,1,2,2-Tetrachloroethane           | ND     |           | ug/l  | 1.0  |     | 1               |  |
| Benzene                             | ND     |           | ug/l  | 0.50 |     | 1               |  |
| Toluene                             | ND     |           | ug/l  | 1.0  |     | 1               |  |
| Ethylbenzene                        | ND     |           | ug/l  | 1.0  |     | 1               |  |
| Chloromethane                       | ND     |           | ug/l  | 2.0  |     | 1               |  |
| Bromomethane                        | ND     |           | ug/l  | 2.0  |     | 1               |  |
| Vinyl chloride                      | ND     |           | ug/l  | 1.0  |     | 1               |  |
| Chloroethane                        | ND     |           | ug/l  | 2.0  |     | 1               |  |
| 1,1-Dichloroethene                  | ND     |           | ug/l  | 1.0  |     | 1               |  |
| trans-1,2-Dichloroethene            | ND     |           | ug/l  | 1.0  |     | 1               |  |
| Trichloroethene                     | 1.7    |           | ug/l  | 1.0  |     | 1               |  |
| 1,2-Dichlorobenzene                 | ND     |           | ug/l  | 1.0  |     | 1               |  |
|                                     |        |           |       |      |     | -               |  |



07/06/16

**Project Name:** Lab Number: 60 EVERETT ST BRIGHTON/ALLSTON L1620128

**Project Number:** 43088-002

**SAMPLE RESULTS** 

Date Collected: 06/29/16 09:30

Report Date:

Lab ID: L1620128-01 Client ID: Date Received: 06/29/16 HA16-7(OW)\_62916

Sample Location: 60 EVERETT STREET REDEVELOPMENT Field Prep: Not Specified

| Sample Location.           | 00 EVENETT STREET     | DEVEREIT STREET REDEVELOPMENT |           |       | rieid Pie | Not Specified |                 |
|----------------------------|-----------------------|-------------------------------|-----------|-------|-----------|---------------|-----------------|
| Parameter                  |                       | Result                        | Qualifier | Units | RL        | MDL           | Dilution Factor |
| MCP Volatile Organ         | ics - Westborough Lab |                               |           |       |           |               |                 |
| 1,3-Dichlorobenzene        |                       | ND                            |           | ug/l  | 1.0       |               | 1               |
| 1,4-Dichlorobenzene        |                       | ND                            |           | ug/l  | 1.0       |               | 1               |
| Methyl tert butyl ether    |                       | ND                            |           | ug/l  | 2.0       |               | 1               |
| p/m-Xylene                 |                       | ND                            |           | ug/l  | 2.0       |               | 1               |
| o-Xylene                   |                       | ND                            |           | ug/l  | 1.0       |               | 1               |
| Xylene (Total)             |                       | ND                            |           | ug/l  | 1.0       |               | 1               |
| cis-1,2-Dichloroethene     |                       | 2.7                           |           | ug/l  | 1.0       |               | 1               |
| 1,2-Dichloroethene (total) |                       | 2.7                           |           | ug/l  | 1.0       |               | 1               |
| Dibromomethane             |                       | ND                            |           | ug/l  | 2.0       |               | 1               |
| 1,2,3-Trichloropropane     |                       | ND                            |           | ug/l  | 2.0       |               | 1               |
| Styrene                    |                       | ND                            |           | ug/l  | 1.0       |               | 1               |
| Dichlorodifluoromethane    |                       | ND                            |           | ug/l  | 2.0       |               | 1               |
| Acetone                    |                       | ND                            |           | ug/l  | 5.0       |               | 1               |
| Carbon disulfide           |                       | ND                            |           | ug/l  | 2.0       |               | 1               |
| 2-Butanone                 |                       | ND                            |           | ug/l  | 5.0       |               | 1               |
| 4-Methyl-2-pentanone       |                       | ND                            |           | ug/l  | 5.0       |               | 1               |
| 2-Hexanone                 |                       | ND                            |           | ug/l  | 5.0       |               | 1               |
| Bromochloromethane         |                       | ND                            |           | ug/l  | 2.0       |               | 1               |
| Tetrahydrofuran            |                       | ND                            |           | ug/l  | 2.0       |               | 1               |
| 2,2-Dichloropropane        |                       | ND                            |           | ug/l  | 2.0       |               | 1               |
| 1,2-Dibromoethane          |                       | ND                            |           | ug/l  | 2.0       |               | 1               |
| 1,3-Dichloropropane        |                       | ND                            |           | ug/l  | 2.0       |               | 1               |
| 1,1,1,2-Tetrachloroethane  |                       | ND                            |           | ug/l  | 1.0       |               | 1               |
| Bromobenzene               |                       | ND                            |           | ug/l  | 2.0       |               | 1               |
| n-Butylbenzene             |                       | ND                            |           | ug/l  | 2.0       |               | 1               |
| sec-Butylbenzene           |                       | ND                            |           | ug/l  | 2.0       |               | 1               |
| tert-Butylbenzene          |                       | ND                            |           | ug/l  | 2.0       |               | 1               |
| o-Chlorotoluene            |                       | ND                            |           | ug/l  | 2.0       |               | 1               |
| p-Chlorotoluene            |                       | ND                            |           | ug/l  | 2.0       |               | 1               |
| 1,2-Dibromo-3-chloropropa  | ane                   | ND                            |           | ug/l  | 2.0       |               | 1               |
| Hexachlorobutadiene        |                       | ND                            |           | ug/l  | 0.60      |               | 1               |
| Isopropylbenzene           |                       | ND                            |           | ug/l  | 2.0       |               | 1               |
| p-Isopropyltoluene         |                       | ND                            |           | ug/l  | 2.0       |               | 1               |
| Naphthalene                |                       | ND                            |           | ug/l  | 2.0       |               | 1               |
| n-Propylbenzene            |                       | ND                            |           | ug/l  | 2.0       |               | 1               |
| 1,2,3-Trichlorobenzene     |                       | ND                            |           | ug/l  | 2.0       |               | 1               |
| 1,2,4-Trichlorobenzene     |                       | ND                            |           | ug/l  | 2.0       |               | 1               |
| 1,3,5-Trimethylbenzene     |                       | ND                            |           | ug/l  | 2.0       |               | 1               |
| 1,2,4-Trimethylbenzene     |                       | ND                            |           | ug/l  | 2.0       |               | 1               |
| .,_,                       |                       | 110                           |           | ug/1  | 2.0       |               | •               |



**Project Name:** Lab Number: 60 EVERETT ST BRIGHTON/ALLSTON L1620128

**Project Number:** Report Date: 43088-002 07/06/16

**SAMPLE RESULTS** 

Lab ID: L1620128-01 Date Collected: 06/29/16 09:30

Client ID: Date Received: 06/29/16 HA16-7(OW)\_62916 Sample Location: 60 EVERETT STREET REDEVELOPMENT Field Prep: Not Specified

| Parameter                         | Result  | Qualifier | Units | RL  | MDL | <b>Dilution Factor</b> |  |
|-----------------------------------|---------|-----------|-------|-----|-----|------------------------|--|
| MCP Volatile Organics - Westborou | ıgh Lab |           |       |     |     |                        |  |
| Ethyl ether                       | ND      |           | ug/l  | 2.0 |     | 1                      |  |
| Isopropyl Ether                   | ND      |           | ug/l  | 2.0 |     | 1                      |  |
| Ethyl-Tert-Butyl-Ether            | ND      |           | ug/l  | 2.0 |     | 1                      |  |
| Tertiary-Amyl Methyl Ether        | ND      |           | ug/l  | 2.0 |     | 1                      |  |
| 1,4-Dioxane                       | ND      |           | ug/l  | 250 |     | 1                      |  |

| Surrogate             | % Recovery | Qualifier | Acceptance<br>Criteria |  |
|-----------------------|------------|-----------|------------------------|--|
| 1,2-Dichloroethane-d4 | 98         |           | 70-130                 |  |
| Toluene-d8            | 96         |           | 70-130                 |  |
| 4-Bromofluorobenzene  | 99         |           | 70-130                 |  |
| Dibromofluoromethane  | 101        |           | 70-130                 |  |



L1620128

07/06/16

**Project Name:** 60 EVERETT ST BRIGHTON/ALLSTON

**Project Number:** 43088-002

**SAMPLE RESULTS** 

Date Collected: 06/29/16 10:40

Lab Number:

Report Date:

Date Received: 06/29/16 Field Prep: Not Specified

Lab ID: L1620128-02

Client ID: HA16-11(OW)\_62916

60 EVERETT STREET REDEVELOPMENT Sample Location:

Matrix: Water 97,8260C Analytical Method: Analytical Date: 07/05/16 09:21

Analyst: MM

| Parameter                        | Result  | Qualifier | Units | RL   | MDL | Dilution Factor |  |
|----------------------------------|---------|-----------|-------|------|-----|-----------------|--|
| MCP Volatile Organics - Westboro | ugh Lab |           |       |      |     |                 |  |
| Methylene chloride               | ND      |           | ug/l  | 2.0  |     | 1               |  |
| 1,1-Dichloroethane               | 1.5     |           | ug/l  | 1.0  |     | 1               |  |
| Chloroform                       | ND      |           | ug/l  | 1.0  |     | 1               |  |
| Carbon tetrachloride             | ND      |           | ug/l  | 1.0  |     | 1               |  |
| 1,2-Dichloropropane              | ND      |           | ug/l  | 1.0  |     | 1               |  |
| Dibromochloromethane             | ND      |           | ug/l  | 1.0  |     | 1               |  |
| 1,1,2-Trichloroethane            | ND      |           | ug/l  | 1.0  |     | 1               |  |
| Tetrachloroethene                | ND      |           | ug/l  | 1.0  |     | 1               |  |
| Chlorobenzene                    | 3.4     |           | ug/l  | 1.0  |     | 1               |  |
| Trichlorofluoromethane           | ND      |           | ug/l  | 2.0  |     | 1               |  |
| 1,2-Dichloroethane               | ND      |           | ug/l  | 1.0  |     | 1               |  |
| 1,1,1-Trichloroethane            | ND      |           | ug/l  | 1.0  |     | 1               |  |
| Bromodichloromethane             | ND      |           | ug/l  | 1.0  |     | 1               |  |
| trans-1,3-Dichloropropene        | ND      |           | ug/l  | 0.50 |     | 1               |  |
| cis-1,3-Dichloropropene          | ND      |           | ug/l  | 0.50 |     | 1               |  |
| 1,3-Dichloropropene, Total       | ND      |           | ug/l  | 0.50 |     | 1               |  |
| 1,1-Dichloropropene              | ND      |           | ug/l  | 2.0  |     | 1               |  |
| Bromoform                        | ND      |           | ug/l  | 2.0  |     | 1               |  |
| 1,1,2,2-Tetrachloroethane        | ND      |           | ug/l  | 1.0  |     | 1               |  |
| Benzene                          | ND      |           | ug/l  | 0.50 |     | 1               |  |
| Toluene                          | ND      |           | ug/l  | 1.0  |     | 1               |  |
| Ethylbenzene                     | ND      |           | ug/l  | 1.0  |     | 1               |  |
| Chloromethane                    | ND      |           | ug/l  | 2.0  |     | 1               |  |
| Bromomethane                     | ND      |           | ug/l  | 2.0  |     | 1               |  |
| Vinyl chloride                   | 5.8     |           | ug/l  | 1.0  |     | 1               |  |
| Chloroethane                     | ND      |           | ug/l  | 2.0  |     | 1               |  |
| 1,1-Dichloroethene               | ND      |           | ug/l  | 1.0  |     | 1               |  |
| trans-1,2-Dichloroethene         | ND      |           | ug/l  | 1.0  |     | 1               |  |
| Trichloroethene                  | 14      |           | ug/l  | 1.0  |     | 1               |  |
| 1,2-Dichlorobenzene              | ND      |           | ug/l  | 1.0  |     | 1               |  |
|                                  |         |           |       |      |     |                 |  |



**Project Name:** 60 EVERETT ST BRIGHTON/ALLSTON **Lab Number:** L1620128

**Project Number:** 43088-002 **Report Date:** 07/06/16

**SAMPLE RESULTS** 

Lab ID: L1620128-02 Date Collected: 06/29/16 10:40

Client ID: HA16-11(OW)\_62916 Date Received: 06/29/16
Sample Location: 60 EVERETT STREET REDEVELOPMENT Field Prep: Not Specified

| Sample Location.                      | 00 EVERETT STREET    | JEVERETT STREET REDEVELOPMENT |           |       | rieia Pie | Not Specified |                 |
|---------------------------------------|----------------------|-------------------------------|-----------|-------|-----------|---------------|-----------------|
| Parameter                             |                      | Result                        | Qualifier | Units | RL        | MDL           | Dilution Factor |
| MCP Volatile Organic                  | cs - Westborough Lab |                               |           |       |           |               |                 |
| 1,3-Dichlorobenzene                   |                      | ND                            |           | ug/l  | 1.0       |               | 1               |
| 1,4-Dichlorobenzene                   |                      | ND                            |           | ug/l  | 1.0       |               | <br>1           |
| Methyl tert butyl ether               |                      | ND                            |           | ug/l  | 2.0       |               | <br>1           |
| p/m-Xylene                            |                      | ND                            |           | ug/l  | 2.0       |               | <br>1           |
| o-Xylene                              |                      | ND                            |           | ug/l  | 1.0       |               | 1               |
| Xylene (Total)                        |                      | ND                            |           | ug/l  | 1.0       |               | 1               |
| cis-1,2-Dichloroethene                |                      | 23                            |           | ug/l  | 1.0       |               | 1               |
| 1,2-Dichloroethene (total)            |                      | 23                            |           | ug/l  | 1.0       |               | 1               |
| Dibromomethane                        |                      | ND                            |           | ug/l  | 2.0       |               | 1               |
| 1,2,3-Trichloropropane                |                      | ND                            |           | ug/l  | 2.0       |               | 1               |
| Styrene                               |                      | ND                            |           | ug/l  | 1.0       |               | 1               |
| Dichlorodifluoromethane               |                      | ND                            |           | ug/l  | 2.0       |               | 1               |
| Acetone                               |                      | ND                            |           | ug/l  | 5.0       |               | 1               |
| Carbon disulfide                      |                      | ND                            |           | ug/l  | 2.0       |               | 1               |
| 2-Butanone                            |                      | ND                            |           | ug/l  | 5.0       |               | 1               |
| 4-Methyl-2-pentanone                  |                      | ND                            |           | ug/l  | 5.0       |               | 1               |
| 2-Hexanone                            |                      | ND                            |           | ug/l  | 5.0       |               | 1               |
| Bromochloromethane                    |                      | ND                            |           | ug/l  | 2.0       |               | 1               |
| Tetrahydrofuran                       |                      | ND                            |           | ug/l  | 2.0       |               | 1               |
| 2,2-Dichloropropane                   |                      | ND                            |           | ug/l  | 2.0       |               | 1               |
| 1,2-Dibromoethane                     |                      | ND                            |           | ug/l  | 2.0       |               | 1               |
| 1,3-Dichloropropane                   |                      | ND                            |           | ug/l  | 2.0       |               | 1               |
| 1,1,1,2-Tetrachloroethane             |                      | ND                            |           | ug/l  | 1.0       |               | 1               |
| Bromobenzene                          |                      | ND                            |           | ug/l  | 2.0       |               | 1               |
| n-Butylbenzene                        |                      | ND                            |           | ug/l  | 2.0       |               | 1               |
| sec-Butylbenzene                      |                      | ND                            |           | ug/l  | 2.0       |               | 1               |
| tert-Butylbenzene                     |                      | ND                            |           | ug/l  | 2.0       |               | 1               |
| o-Chlorotoluene                       |                      | ND                            |           | ug/l  | 2.0       |               | 1               |
| p-Chlorotoluene                       |                      | ND                            |           | ug/l  | 2.0       |               | 1               |
| 1,2-Dibromo-3-chloropropan            | e                    | ND                            |           | ug/l  | 2.0       |               | 1               |
| Hexachlorobutadiene                   |                      | ND                            |           | ug/l  | 0.60      |               | 1               |
| Isopropylbenzene                      |                      | ND                            |           | ug/l  | 2.0       |               | 1               |
| p-Isopropyltoluene                    |                      | ND                            |           | ug/l  | 2.0       |               | 1               |
| Naphthalene                           |                      | ND                            |           | ug/l  | 2.0       |               | 1               |
| n-Propylbenzene                       |                      | ND                            |           | ug/l  | 2.0       |               | 1               |
| 1,2,3-Trichlorobenzene                |                      | ND                            |           | ug/l  | 2.0       |               | 1               |
| 1,2,4-Trichlorobenzene                |                      | ND                            |           | ug/l  | 2.0       |               | 1               |
| 1,3,5-Trimethylbenzene                |                      | ND                            |           | ug/l  | 2.0       |               | 1               |
| 1,2,4-Trimethylbenzene                |                      | ND                            |           | ug/l  | 2.0       |               | 1               |
| · · · · · · · · · · · · · · · · · · · |                      |                               |           |       |           |               |                 |



07/06/16

**Project Name:** Lab Number: 60 EVERETT ST BRIGHTON/ALLSTON L1620128

**Project Number:** 43088-002

**SAMPLE RESULTS** 

Date Collected: 06/29/16 10:40

Report Date:

Lab ID: L1620128-02

Client ID: HA16-11(OW)\_62916 Date Received: 06/29/16 Sample Location: 60 EVERETT STREET REDEVELOPMENT Field Prep: Not Specified

| Parameter                         | Result  | Qualifier | Units | RL  | MDL | Dilution Factor |  |
|-----------------------------------|---------|-----------|-------|-----|-----|-----------------|--|
| MCP Volatile Organics - Westborou | ıgh Lab |           |       |     |     |                 |  |
|                                   |         |           |       |     |     |                 |  |
| Ethyl ether                       | ND      |           | ug/l  | 2.0 |     | 1               |  |
| Isopropyl Ether                   | ND      |           | ug/l  | 2.0 |     | 1               |  |
| Ethyl-Tert-Butyl-Ether            | ND      |           | ug/l  | 2.0 |     | 1               |  |
| Tertiary-Amyl Methyl Ether        | ND      |           | ug/l  | 2.0 |     | 1               |  |
| 1,4-Dioxane                       | ND      |           | ug/l  | 250 |     | 1               |  |

| Surrogate             | % Recovery | Qualifier | Acceptance<br>Criteria |  |
|-----------------------|------------|-----------|------------------------|--|
| 1,2-Dichloroethane-d4 | 97         |           | 70-130                 |  |
| Toluene-d8            | 97         |           | 70-130                 |  |
| 4-Bromofluorobenzene  | 97         |           | 70-130                 |  |
| Dibromofluoromethane  | 101        |           | 70-130                 |  |



L1620128

07/06/16

06/29/16

Not Specified

**Project Name:** 60 EVERETT ST BRIGHTON/ALLSTON

**Project Number:** 43088-002

**SAMPLE RESULTS** 

Date Collected: 06/29/16 12:00

Lab Number:

Report Date:

Field Prep:

Lab ID: L1620128-03 Date Received:

Client ID: HA16-5(OW)\_62916

60 EVERETT STREET REDEVELOPMENT Sample Location:

Matrix: Water 97,8260C Analytical Method: Analytical Date: 07/05/16 09:52

Analyst: MM

| Parameter                           | Result | Qualifier | Units | RL   | MDL | Dilution Factor |
|-------------------------------------|--------|-----------|-------|------|-----|-----------------|
| MCP Volatile Organics - Westborough | Lab    |           |       |      |     |                 |
| Methylene chloride                  | ND     |           | ug/l  | 2.0  |     | 1               |
| 1,1-Dichloroethane                  | ND     |           | ug/l  | 1.0  |     | 1               |
| Chloroform                          | ND     |           | ug/l  | 1.0  |     | 1               |
| Carbon tetrachloride                | ND     |           | ug/l  | 1.0  |     | 1               |
| 1,2-Dichloropropane                 | ND     |           | ug/l  | 1.0  |     | 1               |
| Dibromochloromethane                | ND     |           | ug/l  | 1.0  |     | 1               |
| 1,1,2-Trichloroethane               | ND     |           | ug/l  | 1.0  |     | 1               |
| Tetrachloroethene                   | ND     |           | ug/l  | 1.0  |     | 1               |
| Chlorobenzene                       | ND     |           | ug/l  | 1.0  |     | 1               |
| Trichlorofluoromethane              | ND     |           | ug/l  | 2.0  |     | 1               |
| 1,2-Dichloroethane                  | ND     |           | ug/l  | 1.0  |     | 1               |
| 1,1,1-Trichloroethane               | ND     |           | ug/l  | 1.0  |     | 1               |
| Bromodichloromethane                | ND     |           | ug/l  | 1.0  |     | 1               |
| trans-1,3-Dichloropropene           | ND     |           | ug/l  | 0.50 |     | 1               |
| cis-1,3-Dichloropropene             | ND     |           | ug/l  | 0.50 |     | 1               |
| 1,3-Dichloropropene, Total          | ND     |           | ug/l  | 0.50 |     | 1               |
| 1,1-Dichloropropene                 | ND     |           | ug/l  | 2.0  |     | 1               |
| Bromoform                           | ND     |           | ug/l  | 2.0  |     | 1               |
| 1,1,2,2-Tetrachloroethane           | ND     |           | ug/l  | 1.0  |     | 1               |
| Benzene                             | ND     |           | ug/l  | 0.50 |     | 1               |
| Toluene                             | ND     |           | ug/l  | 1.0  |     | 1               |
| Ethylbenzene                        | ND     |           | ug/l  | 1.0  |     | 1               |
| Chloromethane                       | ND     |           | ug/l  | 2.0  |     | 1               |
| Bromomethane                        | ND     |           | ug/l  | 2.0  |     | 1               |
| Vinyl chloride                      | ND     |           | ug/l  | 1.0  |     | 1               |
| Chloroethane                        | ND     |           | ug/l  | 2.0  |     | 1               |
| 1,1-Dichloroethene                  | ND     |           | ug/l  | 1.0  |     | 1               |
| trans-1,2-Dichloroethene            | ND     |           | ug/l  | 1.0  |     | 1               |
| Trichloroethene                     | ND     |           | ug/l  | 1.0  |     | 1               |
| 1,2-Dichlorobenzene                 | ND     |           | ug/l  | 1.0  |     | 1               |
|                                     |        |           |       |      |     |                 |



07/06/16

Report Date:

Project Name: 60 EVERETT ST BRIGHTON/ALLSTON Lab Number: L1620128

Project Number: 43088-002

Lab ID:

**SAMPLE RESULTS** 

L1620128-03 Date Collected: 06/29/16 12:00

Client ID: HA16-5(OW)\_62916 Date Received: 06/29/16
Sample Location: 60 EVERETT STREET REDEVELOPMENT Field Prep: Not Specified

| bampie Location. Oo LVLINL       | 1 STREET REDEVEL | ET REDEVELOT MEINT |       |      | ρ.  | Not Specified   |
|----------------------------------|------------------|--------------------|-------|------|-----|-----------------|
| Parameter                        | Result           | Qualifier          | Units | RL   | MDL | Dilution Factor |
| MCP Volatile Organics - Westbord | ough Lab         |                    |       |      |     |                 |
| 1,3-Dichlorobenzene              | ND               |                    | ug/l  | 1.0  |     | 1               |
| 1,4-Dichlorobenzene              | ND               |                    | ug/l  | 1.0  |     | 1               |
| Methyl tert butyl ether          | ND               |                    | ug/l  | 2.0  |     | 1               |
| o/m-Xylene                       | ND               |                    | ug/l  | 2.0  |     | 1               |
| o-Xylene                         | ND               |                    | ug/l  | 1.0  |     | 1               |
| Kylene (Total)                   | ND               |                    | ug/l  | 1.0  |     | 1               |
| sis-1,2-Dichloroethene           | ND               |                    | ug/l  | 1.0  |     | 1               |
| 1,2-Dichloroethene (total)       | ND               |                    | ug/l  | 1.0  |     | 1               |
| Dibromomethane                   | ND               |                    | ug/l  | 2.0  |     | 1               |
| ,2,3-Trichloropropane            | ND               |                    | ug/l  | 2.0  |     | 1               |
| Styrene                          | ND               |                    | ug/l  | 1.0  |     | 1               |
| Dichlorodifluoromethane          | ND               |                    | ug/l  | 2.0  |     | 1               |
| Acetone                          | ND               |                    | ug/l  | 5.0  |     | 1               |
| Carbon disulfide                 | ND               |                    | ug/l  | 2.0  |     | 1               |
| 2-Butanone                       | ND               |                    | ug/l  | 5.0  |     | 1               |
| I-Methyl-2-pentanone             | ND               |                    | ug/l  | 5.0  |     | 1               |
| 2-Hexanone                       | ND               |                    | ug/l  | 5.0  |     | 1               |
| Bromochloromethane               | ND               |                    | ug/l  | 2.0  |     | 1               |
| Fetrahydrofuran                  | ND               |                    | ug/l  | 2.0  |     | 1               |
| 2,2-Dichloropropane              | ND               |                    | ug/l  | 2.0  |     | 1               |
| ,2-Dibromoethane                 | ND               |                    | ug/l  | 2.0  |     | 1               |
| l,3-Dichloropropane              | ND               |                    | ug/l  | 2.0  |     | 1               |
| 1,1,1,2-Tetrachloroethane        | ND               |                    | ug/l  | 1.0  |     | 1               |
| Bromobenzene                     | ND               |                    | ug/l  | 2.0  |     | 1               |
| n-Butylbenzene                   | ND               |                    | ug/l  | 2.0  |     | 1               |
| sec-Butylbenzene                 | ND               |                    | ug/l  | 2.0  |     | 1               |
| ert-Butylbenzene                 | ND               |                    | ug/l  | 2.0  |     | 1               |
| o-Chlorotoluene                  | ND               |                    | ug/l  | 2.0  |     | 1               |
| o-Chlorotoluene                  | ND               |                    | ug/l  | 2.0  |     | 1               |
| 1,2-Dibromo-3-chloropropane      | ND               |                    | ug/l  | 2.0  |     | 1               |
| Hexachlorobutadiene              | ND               |                    | ug/l  | 0.60 |     | 1               |
| sopropylbenzene                  | ND               |                    | ug/l  | 2.0  |     | 1               |
| o-Isopropyltoluene               | ND               |                    | ug/l  | 2.0  |     | 1               |
| Naphthalene                      | ND               |                    | ug/l  | 2.0  |     | 1               |
| n-Propylbenzene                  | ND               |                    | ug/l  | 2.0  |     | 1               |
| ,2,3-Trichlorobenzene            | ND               |                    | ug/l  | 2.0  |     | 1               |
| 1,2,4-Trichlorobenzene           | ND               |                    | ug/l  | 2.0  |     | 1               |
| ,3,5-Trimethylbenzene            | ND               |                    | ug/l  | 2.0  |     | 1               |
| ,2,4-Trimethylbenzene            | ND               |                    | ug/l  | 2.0  |     | 1               |
| •                                |                  |                    |       |      |     |                 |



**Project Name:** Lab Number: 60 EVERETT ST BRIGHTON/ALLSTON L1620128

**Project Number:** 43088-002

**SAMPLE RESULTS** 

Report Date: 07/06/16

Lab ID: L1620128-03 Date Collected: 06/29/16 12:00

Client ID: Date Received: 06/29/16 HA16-5(OW)\_62916 Sample Location: 60 EVERETT STREET REDEVELOPMENT Field Prep: Not Specified

| Parameter                        | Result   | Qualifier | Units | RL  | MDL | Dilution Factor |  |
|----------------------------------|----------|-----------|-------|-----|-----|-----------------|--|
| MCP Volatile Organics - Westboro | ough Lab |           |       |     |     |                 |  |
| Ethyl ether                      | ND       |           | ug/l  | 2.0 |     | 1               |  |
| Isopropyl Ether                  | ND       |           | ug/l  | 2.0 |     | 1               |  |
| Ethyl-Tert-Butyl-Ether           | ND       |           | ug/l  | 2.0 |     | 1               |  |
| Tertiary-Amyl Methyl Ether       | ND       |           | ug/l  | 2.0 |     | 1               |  |
| 1,4-Dioxane                      | ND       |           | ug/l  | 250 |     | 1               |  |

| Surrogate             | % Recovery | Qualifier | Acceptance<br>Criteria |  |
|-----------------------|------------|-----------|------------------------|--|
| 1,2-Dichloroethane-d4 | 98         |           | 70-130                 |  |
| Toluene-d8            | 105        |           | 70-130                 |  |
| 4-Bromofluorobenzene  | 94         |           | 70-130                 |  |
| Dibromofluoromethane  | 103        |           | 70-130                 |  |



L1620128

07/06/16

**Project Name:** 60 EVERETT ST BRIGHTON/ALLSTON

**Project Number:** 43088-002

**SAMPLE RESULTS** 

Date Collected: 06/29/16 13:20

Lab Number:

Report Date:

Date Received: 06/29/16 Field Prep: Not Specified

Lab ID: L1620128-04

Client ID: HA16-3(OW)\_62916

60 EVERETT STREET REDEVELOPMENT Sample Location:

Matrix: Water Analytical Method: 97,8260C Analytical Date: 07/05/16 10:23

Analyst: MM

| Parameter                          | Result | Qualifier | Units | RL   | MDL | Dilution Factor |  |
|------------------------------------|--------|-----------|-------|------|-----|-----------------|--|
| MCP Volatile Organics - Westboroug | h Lab  |           |       |      |     |                 |  |
| Methylene chloride                 | ND     |           | ug/l  | 2.0  |     | 1               |  |
| 1,1-Dichloroethane                 | 4.4    |           | ug/l  | 1.0  |     | 1               |  |
| Chloroform                         | ND     |           | ug/l  | 1.0  |     | 1               |  |
| Carbon tetrachloride               | ND     |           | ug/l  | 1.0  |     | 1               |  |
| 1,2-Dichloropropane                | ND     |           | ug/l  | 1.0  |     | 1               |  |
| Dibromochloromethane               | ND     |           | ug/l  | 1.0  |     | 1               |  |
| 1,1,2-Trichloroethane              | ND     |           | ug/l  | 1.0  |     | 1               |  |
| Tetrachloroethene                  | ND     |           | ug/l  | 1.0  |     | 1               |  |
| Chlorobenzene                      | ND     |           | ug/l  | 1.0  |     | 1               |  |
| Trichlorofluoromethane             | ND     |           | ug/l  | 2.0  |     | 1               |  |
| 1,2-Dichloroethane                 | ND     |           | ug/l  | 1.0  |     | 1               |  |
| 1,1,1-Trichloroethane              | 9.1    |           | ug/l  | 1.0  |     | 1               |  |
| Bromodichloromethane               | ND     |           | ug/l  | 1.0  |     | 1               |  |
| trans-1,3-Dichloropropene          | ND     |           | ug/l  | 0.50 |     | 1               |  |
| cis-1,3-Dichloropropene            | ND     |           | ug/l  | 0.50 |     | 1               |  |
| 1,3-Dichloropropene, Total         | ND     |           | ug/l  | 0.50 |     | 1               |  |
| 1,1-Dichloropropene                | ND     |           | ug/l  | 2.0  |     | 1               |  |
| Bromoform                          | ND     |           | ug/l  | 2.0  |     | 1               |  |
| 1,1,2,2-Tetrachloroethane          | ND     |           | ug/l  | 1.0  |     | 1               |  |
| Benzene                            | ND     |           | ug/l  | 0.50 |     | 1               |  |
| Toluene                            | ND     |           | ug/l  | 1.0  |     | 1               |  |
| Ethylbenzene                       | ND     |           | ug/l  | 1.0  |     | 1               |  |
| Chloromethane                      | ND     |           | ug/l  | 2.0  |     | 1               |  |
| Bromomethane                       | ND     |           | ug/l  | 2.0  |     | 1               |  |
| Vinyl chloride                     | ND     |           | ug/l  | 1.0  |     | 1               |  |
| Chloroethane                       | ND     |           | ug/l  | 2.0  |     | 1               |  |
| 1,1-Dichloroethene                 | 1.2    |           | ug/l  | 1.0  |     | 1               |  |
| trans-1,2-Dichloroethene           | ND     |           | ug/l  | 1.0  |     | 1               |  |
| Trichloroethene                    | ND     |           | ug/l  | 1.0  |     | 1               |  |
| 1,2-Dichlorobenzene                | ND     |           | ug/l  | 1.0  |     | 1               |  |
|                                    |        |           |       |      |     |                 |  |



07/06/16

Report Date:

**Project Name:** 60 EVERETT ST BRIGHTON/ALLSTON **Lab Number:** L1620128

Project Number: 43088-002

**SAMPLE RESULTS** 

Lab ID: L1620128-04 Date Collected: 06/29/16 13:20

Client ID: HA16-3(OW)\_62916 Date Received: 06/29/16
Sample Location: 60 EVERETT STREET REDEVELOPMENT Field Prep: Not Specified

| Sample Location:           | 60 EVERETT STREET RE   | DEVE  | OPMENT    |       | Field Pre | p:  | Not Specified   |
|----------------------------|------------------------|-------|-----------|-------|-----------|-----|-----------------|
| Parameter                  | R                      | esult | Qualifier | Units | RL        | MDL | Dilution Factor |
| MCP Volatile Organ         | nics - Westborough Lab |       |           |       |           |     |                 |
| 1,3-Dichlorobenzene        |                        | ND    |           | ug/l  | 1.0       |     | 1               |
| 1,4-Dichlorobenzene        |                        | ND    |           | ug/l  | 1.0       |     | 1               |
| Methyl tert butyl ether    |                        | ND    |           | ug/l  | 2.0       |     | 1               |
| p/m-Xylene                 |                        | ND    |           | ug/l  | 2.0       |     | 1               |
| o-Xylene                   |                        | ND    |           | ug/l  | 1.0       |     | 1               |
| Xylene (Total)             |                        | ND    |           | ug/l  | 1.0       |     | 1               |
| cis-1,2-Dichloroethene     |                        | ND    |           | ug/l  | 1.0       |     | 1               |
| 1,2-Dichloroethene (total) |                        | ND    |           | ug/l  | 1.0       |     | 1               |
| Dibromomethane             |                        | ND    |           | ug/l  | 2.0       |     | 1               |
| 1,2,3-Trichloropropane     |                        | ND    |           | ug/l  | 2.0       |     | 1               |
| Styrene                    |                        | ND    |           | ug/l  | 1.0       |     | 1               |
| Dichlorodifluoromethane    |                        | ND    |           | ug/l  | 2.0       |     | 1               |
| Acetone                    |                        | ND    |           | ug/l  | 5.0       |     | 1               |
| Carbon disulfide           |                        | ND    |           | ug/l  | 2.0       |     | 1               |
| 2-Butanone                 |                        | ND    |           | ug/l  | 5.0       |     | 1               |
| 4-Methyl-2-pentanone       |                        | ND    |           | ug/l  | 5.0       |     | 1               |
| 2-Hexanone                 |                        | ND    |           | ug/l  | 5.0       |     | 1               |
| Bromochloromethane         |                        | ND    |           | ug/l  | 2.0       |     | 1               |
| Tetrahydrofuran            |                        | ND    |           | ug/l  | 2.0       |     | 1               |
| 2,2-Dichloropropane        |                        | ND    |           | ug/l  | 2.0       |     | 1               |
| 1,2-Dibromoethane          |                        | ND    |           | ug/l  | 2.0       |     | 1               |
| 1,3-Dichloropropane        |                        | ND    |           | ug/l  | 2.0       |     | 1               |
| 1,1,1,2-Tetrachloroethane  |                        | ND    |           | ug/l  | 1.0       |     | 1               |
| Bromobenzene               |                        | ND    |           | ug/l  | 2.0       |     | 1               |
| n-Butylbenzene             |                        | ND    |           | ug/l  | 2.0       |     | 1               |
| sec-Butylbenzene           |                        | ND    |           | ug/l  | 2.0       |     | 1               |
| tert-Butylbenzene          |                        | ND    |           | ug/l  | 2.0       |     | 1               |
| o-Chlorotoluene            |                        | ND    |           | ug/l  | 2.0       |     | 1               |
| p-Chlorotoluene            |                        | ND    |           | ug/l  | 2.0       |     | 1               |
| 1,2-Dibromo-3-chloroprop   | ane                    | ND    |           | ug/l  | 2.0       |     | 1               |
| Hexachlorobutadiene        |                        | ND    |           | ug/l  | 0.60      |     | 1               |
| Isopropylbenzene           |                        | ND    |           | ug/l  | 2.0       |     | 1               |
| p-Isopropyltoluene         |                        | ND    |           | ug/l  | 2.0       |     | 1               |
| Naphthalene                |                        | ND    |           | ug/l  | 2.0       |     | 1               |
| n-Propylbenzene            |                        | ND    |           | ug/l  | 2.0       |     | 1               |
| 1,2,3-Trichlorobenzene     |                        | ND    |           | ug/l  | 2.0       |     | 1               |
| 1,2,4-Trichlorobenzene     |                        | ND    |           | ug/l  | 2.0       |     | 1               |
| 1,3,5-Trimethylbenzene     |                        | ND    |           | ug/l  | 2.0       |     | 1               |
| 1,2,4-Trimethylbenzene     |                        | ND    |           | ug/l  | 2.0       |     | 1               |
|                            |                        |       |           | -     |           |     |                 |



07/06/16

06/29/16

**Project Name:** Lab Number: 60 EVERETT ST BRIGHTON/ALLSTON L1620128

**Project Number:** 43088-002

**SAMPLE RESULTS** 

Date Collected: 06/29/16 13:20

Report Date:

Lab ID: L1620128-04 Client ID: Date Received: HA16-3(OW)\_62916

Sample Location: 60 EVERETT STREET REDEVELOPMENT Field Prep: Not Specified

| Parameter                         | Result  | Qualifier | Units | RL  | MDL | <b>Dilution Factor</b> |  |
|-----------------------------------|---------|-----------|-------|-----|-----|------------------------|--|
| MCP Volatile Organics - Westborou | ıgh Lab |           |       |     |     |                        |  |
| Ethyl ether                       | ND      |           | ug/l  | 2.0 |     | 1                      |  |
| Isopropyl Ether                   | ND      |           | ug/l  | 2.0 |     | 1                      |  |
| Ethyl-Tert-Butyl-Ether            | ND      |           | ug/l  | 2.0 |     | 1                      |  |
| Tertiary-Amyl Methyl Ether        | ND      |           | ug/l  | 2.0 |     | 1                      |  |
| 1,4-Dioxane                       | ND      |           | ug/l  | 250 |     | 1                      |  |

| Surrogate             | % Recovery | Qualifier | Acceptance<br>Criteria |  |
|-----------------------|------------|-----------|------------------------|--|
| 1,2-Dichloroethane-d4 | 96         |           | 70-130                 |  |
| Toluene-d8            | 106        |           | 70-130                 |  |
| 4-Bromofluorobenzene  | 99         |           | 70-130                 |  |
| Dibromofluoromethane  | 101        |           | 70-130                 |  |



L1620128

Project Name: 60 EVERETT ST BRIGHTON/ALLSTON Lab Number:

> Method Blank Analysis Batch Quality Control

Analytical Method: 97,8260C Analytical Date: 97,05/16 07:15

Analyst: MM

| arameter                      | Result         | Qualifier  | Units | RL     | _ MDL      |
|-------------------------------|----------------|------------|-------|--------|------------|
| ICP Volatile Organics - Westh | orough Lab for | sample(s): | 01-04 | Batch: | WG910237-5 |
| Methylene chloride            | ND             |            | ug/l  | 2.0    |            |
| 1,1-Dichloroethane            | ND             |            | ug/l  | 1.0    | )          |
| Chloroform                    | ND             |            | ug/l  | 1.0    | )          |
| Carbon tetrachloride          | ND             |            | ug/l  | 1.0    | )          |
| 1,2-Dichloropropane           | ND             |            | ug/l  | 1.0    | )          |
| Dibromochloromethane          | ND             |            | ug/l  | 1.0    | )          |
| 1,1,2-Trichloroethane         | ND             |            | ug/l  | 1.0    | )          |
| Tetrachloroethene             | ND             |            | ug/l  | 1.0    | )          |
| Chlorobenzene                 | ND             |            | ug/l  | 1.0    | )          |
| Trichlorofluoromethane        | ND             |            | ug/l  | 2.0    | )          |
| 1,2-Dichloroethane            | ND             |            | ug/l  | 1.0    | )          |
| 1,1,1-Trichloroethane         | ND             |            | ug/l  | 1.0    | )          |
| Bromodichloromethane          | ND             |            | ug/l  | 1.0    | )          |
| trans-1,3-Dichloropropene     | ND             |            | ug/l  | 0.5    | 0          |
| cis-1,3-Dichloropropene       | ND             |            | ug/l  | 0.5    | 0          |
| 1,3-Dichloropropene, Total    | ND             |            | ug/l  | 0.5    | 0          |
| 1,1-Dichloropropene           | ND             |            | ug/l  | 2.0    | )          |
| Bromoform                     | ND             |            | ug/l  | 2.0    | )          |
| 1,1,2,2-Tetrachloroethane     | ND             |            | ug/l  | 1.0    | )          |
| Benzene                       | ND             |            | ug/l  | 0.5    | 0          |
| Toluene                       | ND             |            | ug/l  | 1.0    | )          |
| Ethylbenzene                  | ND             |            | ug/l  | 1.0    | )          |
| Chloromethane                 | ND             |            | ug/l  | 2.0    | )          |
| Bromomethane                  | ND             |            | ug/l  | 2.0    | )          |
| Vinyl chloride                | ND             |            | ug/l  | 1.0    | )          |
| Chloroethane                  | ND             |            | ug/l  | 2.0    | )          |
| 1,1-Dichloroethene            | ND             |            | ug/l  | 1.0    | )          |
| trans-1,2-Dichloroethene      | ND             |            | ug/l  | 1.0    | )          |
| Trichloroethene               | ND             |            | ug/l  | 1.0    | )          |



L1620128

**Project Name:** 60 EVERETT ST BRIGHTON/ALLSTON **Lab Number**:

> Method Blank Analysis Batch Quality Control

Analytical Method: 97,8260C Analytical Date: 97,05/16 07:15

Analyst: MM

| arameter                    | Result          | Qualifier  | Units | RL     | MDL        |
|-----------------------------|-----------------|------------|-------|--------|------------|
| CP Volatile Organics - West | borough Lab for | sample(s): | 01-04 | Batch: | WG910237-5 |
| 1,2-Dichlorobenzene         | ND              |            | ug/l  | 1.0    |            |
| 1,3-Dichlorobenzene         | ND              |            | ug/l  | 1.0    | )          |
| 1,4-Dichlorobenzene         | ND              |            | ug/l  | 1.0    | )          |
| Methyl tert butyl ether     | ND              |            | ug/l  | 2.0    | )          |
| p/m-Xylene                  | ND              |            | ug/l  | 2.0    | )          |
| o-Xylene                    | ND              |            | ug/l  | 1.0    | )          |
| Xylene (Total)              | ND              |            | ug/l  | 1.0    | )          |
| cis-1,2-Dichloroethene      | ND              |            | ug/l  | 1.0    | )          |
| 1,2-Dichloroethene (total)  | ND              |            | ug/l  | 1.0    | )          |
| Dibromomethane              | ND              |            | ug/l  | 2.0    | )          |
| 1,2,3-Trichloropropane      | ND              |            | ug/l  | 2.0    | )          |
| Styrene                     | ND              |            | ug/l  | 1.0    | )          |
| Dichlorodifluoromethane     | ND              |            | ug/l  | 2.0    | )          |
| Acetone                     | ND              |            | ug/l  | 5.0    | )          |
| Carbon disulfide            | ND              |            | ug/l  | 2.0    | )          |
| 2-Butanone                  | ND              |            | ug/l  | 5.0    | )          |
| 4-Methyl-2-pentanone        | ND              |            | ug/l  | 5.0    | )          |
| 2-Hexanone                  | ND              |            | ug/l  | 5.0    | )          |
| Bromochloromethane          | ND              |            | ug/l  | 2.0    | )          |
| Tetrahydrofuran             | ND              |            | ug/l  | 2.0    | )          |
| 2,2-Dichloropropane         | ND              |            | ug/l  | 2.0    | )          |
| 1,2-Dibromoethane           | ND              |            | ug/l  | 2.0    | )          |
| 1,3-Dichloropropane         | ND              |            | ug/l  | 2.0    | )          |
| 1,1,1,2-Tetrachloroethane   | ND              |            | ug/l  | 1.0    | )          |
| Bromobenzene                | ND              |            | ug/l  | 2.0    | )          |
| n-Butylbenzene              | ND              |            | ug/l  | 2.0    | )          |
| sec-Butylbenzene            | ND              |            | ug/l  | 2.0    | )          |
| tert-Butylbenzene           | ND              |            | ug/l  | 2.0    | )          |
| o-Chlorotoluene             | ND              |            | ug/l  | 2.0    | )          |



L1620128

**Project Name:** 60 EVERETT ST BRIGHTON/ALLSTON **Lab Number**:

Method Blank Analysis
Batch Quality Control

Analytical Method: 97,8260C Analytical Date: 97,05/16 07:15

Analyst: MM

| Parameter                         | Result     | Qualifier  | Units | RL     | MDL        |
|-----------------------------------|------------|------------|-------|--------|------------|
| MCP Volatile Organics - Westborou | gh Lab for | sample(s): | 01-04 | Batch: | WG910237-5 |
| p-Chlorotoluene                   | ND         |            | ug/l  | 2.0    | )          |
| 1,2-Dibromo-3-chloropropane       | ND         |            | ug/l  | 2.0    | )          |
| Hexachlorobutadiene               | ND         |            | ug/l  | 0.6    | 0          |
| Isopropylbenzene                  | ND         |            | ug/l  | 2.0    | )          |
| p-Isopropyltoluene                | ND         |            | ug/l  | 2.0    | )          |
| Naphthalene                       | ND         |            | ug/l  | 2.0    | )          |
| n-Propylbenzene                   | ND         |            | ug/l  | 2.0    | )          |
| 1,2,3-Trichlorobenzene            | ND         |            | ug/l  | 2.0    | )          |
| 1,2,4-Trichlorobenzene            | ND         |            | ug/l  | 2.0    | )          |
| 1,3,5-Trimethylbenzene            | ND         |            | ug/l  | 2.0    | )          |
| 1,2,4-Trimethylbenzene            | ND         |            | ug/l  | 2.0    | )          |
| Ethyl ether                       | ND         |            | ug/l  | 2.0    | )          |
| Isopropyl Ether                   | ND         |            | ug/l  | 2.0    | )          |
| Ethyl-Tert-Butyl-Ether            | ND         |            | ug/l  | 2.0    | )          |
| Tertiary-Amyl Methyl Ether        | ND         |            | ug/l  | 2.0    | )          |
| 1,4-Dioxane                       | ND         |            | ug/l  | 250    | 0          |

|                       |           |           | Acceptance |  |
|-----------------------|-----------|-----------|------------|--|
| Surrogate             | %Recovery | Qualifier | Criteria   |  |
|                       |           |           |            |  |
| 1,2-Dichloroethane-d4 | 97        |           | 70-130     |  |
| Toluene-d8            | 103       |           | 70-130     |  |
| 4-Bromofluorobenzene  | 94        |           | 70-130     |  |
| Dibromofluoromethane  | 100       |           | 70-130     |  |



**Project Name:** 60 EVERETT ST BRIGHTON/ALLSTON

Project Number: 43088-002

Lab Number: L1620128

**Report Date:** 07/06/16

| Parameter                               | LCS<br>%Recovery | Qual          | LCSD<br>%Recovery | %Recovery<br>Qual Limits | RPD | RPD<br>Qual Limits |
|-----------------------------------------|------------------|---------------|-------------------|--------------------------|-----|--------------------|
| MCP Volatile Organics - Westborough Lab | Associated samp  | ole(s): 01-04 | Batch: WG91       | 0237-3 WG910237-4        |     |                    |
| Methylene chloride                      | 120              |               | 96                | 70-130                   | 22  | Q 20               |
| 1,1-Dichloroethane                      | 110              |               | 100               | 70-130                   | 10  | 20                 |
| Chloroform                              | 110              |               | 100               | 70-130                   | 10  | 20                 |
| Carbon tetrachloride                    | 95               |               | 98                | 70-130                   | 3   | 20                 |
| 1,2-Dichloropropane                     | 100              |               | 99                | 70-130                   | 1   | 20                 |
| Dibromochloromethane                    | 97               |               | 97                | 70-130                   | 0   | 20                 |
| 1,1,2-Trichloroethane                   | 100              |               | 98                | 70-130                   | 2   | 20                 |
| Tetrachloroethene                       | 110              |               | 110               | 70-130                   | 0   | 20                 |
| Chlorobenzene                           | 110              |               | 100               | 70-130                   | 10  | 20                 |
| Trichlorofluoromethane                  | 100              |               | 97                | 70-130                   | 3   | 20                 |
| 1,2-Dichloroethane                      | 100              |               | 97                | 70-130                   | 3   | 20                 |
| 1,1,1-Trichloroethane                   | 100              |               | 100               | 70-130                   | 0   | 20                 |
| Bromodichloromethane                    | 100              |               | 99                | 70-130                   | 1   | 20                 |
| trans-1,3-Dichloropropene               | 91               |               | 90                | 70-130                   | 1   | 20                 |
| cis-1,3-Dichloropropene                 | 97               |               | 97                | 70-130                   | 0   | 20                 |
| 1,1-Dichloropropene                     | 100              |               | 99                | 70-130                   | 1   | 20                 |
| Bromoform                               | 78               |               | 92                | 70-130                   | 16  | 20                 |
| 1,1,2,2-Tetrachloroethane               | 98               |               | 100               | 70-130                   | 2   | 20                 |
| Benzene                                 | 110              |               | 100               | 70-130                   | 10  | 20                 |
| Toluene                                 | 110              |               | 100               | 70-130                   | 10  | 20                 |
| Ethylbenzene                            | 100              |               | 98                | 70-130                   | 2   | 20                 |



**Project Name:** 60 EVERETT ST BRIGHTON/ALLSTON

Project Number: 43088-002

Lab Number: L1620128

**Report Date:** 07/06/16

| arameter                                | LCS<br>%Recovery | Qual          | LCSD<br>%Recovery | %Recovery<br>Qual Limits | RPD | RPD<br>Qual Limits |
|-----------------------------------------|------------------|---------------|-------------------|--------------------------|-----|--------------------|
| MCP Volatile Organics - Westborough Lab | Associated samp  | ole(s): 01-04 | Batch: WG910      | 0237-3 WG910237-4        |     |                    |
| Chloromethane                           | 100              |               | 95                | 70-130                   | 5   | 20                 |
| Bromomethane                            | 82               |               | 84                | 70-130                   | 2   | 20                 |
| Vinyl chloride                          | 100              |               | 95                | 70-130                   | 5   | 20                 |
| Chloroethane                            | 120              |               | 100               | 70-130                   | 18  | 20                 |
| 1,1-Dichloroethene                      | 110              |               | 100               | 70-130                   | 10  | 20                 |
| trans-1,2-Dichloroethene                | 110              |               | 100               | 70-130                   | 10  | 20                 |
| Trichloroethene                         | 110              |               | 100               | 70-130                   | 10  | 20                 |
| 1,2-Dichlorobenzene                     | 100              |               | 100               | 70-130                   | 0   | 20                 |
| 1,3-Dichlorobenzene                     | 100              |               | 110               | 70-130                   | 10  | 20                 |
| 1,4-Dichlorobenzene                     | 100              |               | 100               | 70-130                   | 0   | 20                 |
| Methyl tert butyl ether                 | 100              |               | 100               | 70-130                   | 0   | 20                 |
| p/m-Xylene                              | 100              |               | 95                | 70-130                   | 5   | 20                 |
| o-Xylene                                | 100              |               | 95                | 70-130                   | 5   | 20                 |
| cis-1,2-Dichloroethene                  | 110              |               | 100               | 70-130                   | 10  | 20                 |
| Dibromomethane                          | 110              |               | 100               | 70-130                   | 10  | 20                 |
| 1,2,3-Trichloropropane                  | 95               |               | 100               | 70-130                   | 5   | 20                 |
| Styrene                                 | 95               |               | 90                | 70-130                   | 5   | 20                 |
| Dichlorodifluoromethane                 | 96               |               | 85                | 70-130                   | 12  | 20                 |
| Acetone                                 | 100              |               | 100               | 70-130                   | 0   | 20                 |
| Carbon disulfide                        | 110              |               | 98                | 70-130                   | 12  | 20                 |
| 2-Butanone                              | 110              |               | 100               | 70-130                   | 10  | 20                 |



**Project Name:** 60 EVERETT ST BRIGHTON/ALLSTON

Project Number: 43088-002

Lab Number: L1620128

**Report Date:** 07/06/16

| rameter                              | LCS<br>%Recovery Qual           | LCSD<br>%Recovery | %Recovery<br>Qual Limits | RPD | RPD<br>Qual Limits |
|--------------------------------------|---------------------------------|-------------------|--------------------------|-----|--------------------|
| CP Volatile Organics - Westborough L | _ab Associated sample(s): 01-04 | Batch: WG91       | 0237-3 WG910237-4        |     |                    |
| 4-Methyl-2-pentanone                 | 92                              | 94                | 70-130                   | 2   | 20                 |
| 2-Hexanone                           | 97                              | 100               | 70-130                   | 3   | 20                 |
| Bromochloromethane                   | 110                             | 100               | 70-130                   | 10  | 20                 |
| Tetrahydrofuran                      | 99                              | 97                | 70-130                   | 2   | 20                 |
| 2,2-Dichloropropane                  | 96                              | 96                | 70-130                   | 0   | 20                 |
| 1,2-Dibromoethane                    | 100                             | 98                | 70-130                   | 2   | 20                 |
| 1,3-Dichloropropane                  | 99                              | 100               | 70-130                   | 1   | 20                 |
| 1,1,1,2-Tetrachloroethane            | 96                              | 96                | 70-130                   | 0   | 20                 |
| Bromobenzene                         | 100                             | 100               | 70-130                   | 0   | 20                 |
| n-Butylbenzene                       | 110                             | 110               | 70-130                   | 0   | 20                 |
| sec-Butylbenzene                     | 100                             | 100               | 70-130                   | 0   | 20                 |
| tert-Butylbenzene                    | 99                              | 98                | 70-130                   | 1   | 20                 |
| o-Chlorotoluene                      | 100                             | 100               | 70-130                   | 0   | 20                 |
| p-Chlorotoluene                      | 98                              | 98                | 70-130                   | 0   | 20                 |
| 1,2-Dibromo-3-chloropropane          | 87                              | 100               | 70-130                   | 14  | 20                 |
| Hexachlorobutadiene                  | 110                             | 100               | 70-130                   | 10  | 20                 |
| Isopropylbenzene                     | 97                              | 98                | 70-130                   | 1   | 20                 |
| p-Isopropyltoluene                   | 110                             | 110               | 70-130                   | 0   | 20                 |
| Naphthalene                          | 100                             | 120               | 70-130                   | 18  | 20                 |
| n-Propylbenzene                      | 100                             | 99                | 70-130                   | 1   | 20                 |
| 1,2,3-Trichlorobenzene               | 120                             | 120               | 70-130                   | 0   | 20                 |



**Project Name:** 60 EVERETT ST BRIGHTON/ALLSTON

Project Number: 43088-002

Lab Number:

L1620128

Report Date:

07/06/16

| Parameter                               | LCS<br>%Recovery  | Qual        | LCSD<br>%Recovery | Qual     | %Recovery<br>Limits | RPD | Qual | RPD<br>Limits |  |
|-----------------------------------------|-------------------|-------------|-------------------|----------|---------------------|-----|------|---------------|--|
| MCP Volatile Organics - Westborough Lab | Associated sample | e(s): 01-04 | Batch: WG910      | 237-3 WG | 910237-4            |     |      |               |  |
| 1,2,4-Trichlorobenzene                  | 110               |             | 120               |          | 70-130              | 9   |      | 20            |  |
| 1,3,5-Trimethylbenzene                  | 110               |             | 110               |          | 70-130              | 0   |      | 20            |  |
| 1,2,4-Trimethylbenzene                  | 110               |             | 120               |          | 70-130              | 9   |      | 20            |  |
| Ethyl ether                             | 110               |             | 100               |          | 70-130              | 10  |      | 20            |  |
| Isopropyl Ether                         | 100               |             | 100               |          | 70-130              | 0   |      | 20            |  |
| Ethyl-Tert-Butyl-Ether                  | 99                |             | 97                |          | 70-130              | 2   |      | 20            |  |
| Tertiary-Amyl Methyl Ether              | 98                |             | 95                |          | 70-130              | 3   |      | 20            |  |
| 1,4-Dioxane                             | 122               |             | 126               |          | 70-130              | 3   |      | 20            |  |

|                       | LCS       |      | LCSD      |      | Acceptance |
|-----------------------|-----------|------|-----------|------|------------|
| Surrogate             | %Recovery | Qual | %Recovery | Qual | Criteria   |
| 1,2-Dichloroethane-d4 | 93        |      | 97        |      | 70-130     |
| Toluene-d8            | 101       |      | 101       |      | 70-130     |
| 4-Bromofluorobenzene  | 92        |      | 97        |      | 70-130     |
| Dibromofluoromethane  | 103       |      | 104       |      | 70-130     |



**Lab Number:** L1620128

**Project Name:** 60 EVERETT ST BRIGHTON/ALLSTON

**Project Number:** 43088-002 **Report Date:** 07/06/16

#### **Sample Receipt and Container Information**

Were project specific reporting limits specified?

**Cooler Information Custody Seal** 

Cooler

A Absent

| Container Information Temp |                    |        |     |       |      |        |                 |  |
|----------------------------|--------------------|--------|-----|-------|------|--------|-----------------|--|
| Container ID               | Container Type     | Cooler | рН  | deg C | Pres | Seal   | Analysis(*)     |  |
| L1620128-01A               | Vial HCI preserved | Α      | N/A | 3.2   | Υ    | Absent | MCP-8260-10(14) |  |
| L1620128-01B               | Vial HCl preserved | Α      | N/A | 3.2   | Υ    | Absent | MCP-8260-10(14) |  |
| L1620128-01C               | Vial HCl preserved | Α      | N/A | 3.2   | Υ    | Absent | MCP-8260-10(14) |  |
| L1620128-02A               | Vial HCl preserved | Α      | N/A | 3.2   | Υ    | Absent | MCP-8260-10(14) |  |
| L1620128-02B               | Vial HCl preserved | Α      | N/A | 3.2   | Υ    | Absent | MCP-8260-10(14) |  |
| L1620128-02C               | Vial HCl preserved | Α      | N/A | 3.2   | Υ    | Absent | MCP-8260-10(14) |  |
| L1620128-03A               | Vial HCl preserved | Α      | N/A | 3.2   | Υ    | Absent | MCP-8260-10(14) |  |
| L1620128-03B               | Vial HCl preserved | Α      | N/A | 3.2   | Υ    | Absent | MCP-8260-10(14) |  |
| L1620128-03C               | Vial HCl preserved | Α      | N/A | 3.2   | Υ    | Absent | MCP-8260-10(14) |  |
| L1620128-04A               | Vial HCl preserved | Α      | N/A | 3.2   | Υ    | Absent | MCP-8260-10(14) |  |
| L1620128-04B               | Vial HCl preserved | Α      | N/A | 3.2   | Υ    | Absent | MCP-8260-10(14) |  |
| L1620128-04C               | Vial HCI preserved | Α      | N/A | 3.2   | Υ    | Absent | MCP-8260-10(14) |  |



Project Name: 60 EVERETT ST BRIGHTON/ALLSTON Lab Number: L1620128

Project Number: 43088-002 Report Date: 07/06/16

#### **GLOSSARY**

#### Acronyms

EDL - Estimated Detection Limit: This value represents the level to which target analyte concentrations are reported as estimated

values, when those target analyte concentrations are quantified below the reporting limit (RL). The EDL includes any adjustments from dilutions, concentrations or moisture content, where applicable. The use of EDLs is specific to the analysis

of PAHs using Solid-Phase Microextraction (SPME).

EPA - Environmental Protection Agency.

LCS - Laboratory Control Sample: A sample matrix, free from the analytes of interest, spiked with verified known amounts of

analytes or a material containing known and verified amounts of analytes.

LCSD - Laboratory Control Sample Duplicate: Refer to LCS.

LFB - Laboratory Fortified Blank: A sample matrix, free from the analytes of interest, spiked with verified known amounts of

analytes or a material containing known and verified amounts of analytes.

MDL - Method Detection Limit: This value represents the level to which target analyte concentrations are reported as estimated values, when those target analyte concentrations are quantified below the reporting limit (RL). The MDL includes any

adjustments from dilutions, concentrations or moisture content, where applicable.

MS - Matrix Spike Sample: A sample prepared by adding a known mass of target analyte to a specified amount of matrix sample for

which an independent estimate of target analyte concentration is available.

MSD - Matrix Spike Sample Duplicate: Refer to MS.

NA - Not Applicable.

NC - Not Calculated: Term is utilized when one or more of the results utilized in the calculation are non-detect at the parameter's

reporting unit.

NDPA/DPA - N-Nitrosodiphenylamine/Diphenylamine.

NI - Not Ignitable.

NP - Non-Plastic: Term is utilized for the analysis of Atterberg Limits in soil.

RL - Reporting Limit: The value at which an instrument can accurately measure an analyte at a specific concentration. The RL

includes any adjustments from dilutions, concentrations or moisture content, where applicable.

RPD - Relative Percent Difference: The results from matrix and/or matrix spike duplicates are primarily designed to assess the precision of analytical results in a given matrix and are expressed as relative percent difference (RPD). Values which are less

precision of analytical results in a given matrix and are expressed as relative percent difference (RPD). Values which are less than five times the reporting limit for any individual parameter are evaluated by utilizing the absolute difference between the

values; although the RPD value will be provided in the report.

SRM - Standard Reference Material: A reference sample of a known or certified value that is of the same or similar matrix as the

associated field samples.

STLP - Semi-dynamic Tank Leaching Procedure per EPA Method 1315.

TIC - Tentatively Identified Compound: A compound that has been identified to be present and is not part of the target compound

list (TCL) for the method and/or program. All TICs are qualitatively identified and reported as estimated concentrations.

#### **Footnotes**

- The reference for this analyte should be considered modified since this analyte is absent from the target analyte list of the original method.

#### Terms

Total: With respect to Organic analyses, a 'Total' result is defined as the summation of results for individual isomers or Aroclors. If a "Total' result is requested, the results of its individual components will also be reported. This is applicable to 'Total' results for methods 8260, 8081 and 8082.

Analytical Method: Both the document from which the method originates and the analytical reference method. (Example: EPA 8260B is shown as 1,8260B.) The codes for the reference method documents are provided in the References section of the Addendum.

#### **Data Qualifiers**

A - Spectra identified as "Aldol Condensation Product".

The analyte was detected above the reporting limit in the associated method blank. Flag only applies to associated field samples that have detectable concentrations of the analyte at less than ten times (10x) the concentration found in the blank. For MCP-related projects, flag only applies to associated field samples that have detectable concentrations of the analyte at less than ten times (10x) the concentration found in the blank. For DOD-related projects, flag only applies to associated field samples that have detectable concentrations of the analyte at less than ten times (10x) the concentration found in the blank AND the analyte was detected above one-half the reporting limit (or above the reporting limit for common lab contaminants) in the associated method blank. For NJ-Air-related projects, flag only applies to associated field samples that have detectable concentrations of the analyte above the reporting limit. For NJ-related projects (excluding Air), flag only applies to associated field samples that have detectable concentrations of the analyte, which was detected above the reporting limit in the associated method blank or above five times the

Report Format: Data Usability Report



Project Name:60 EVERETT ST BRIGHTON/ALLSTONLab Number:L1620128Project Number:43088-002Report Date:07/06/16

#### **Data Qualifiers**

- reporting limit for common lab contaminants (Phthalates, Acetone, Methylene Chloride, 2-Butanone).
- Co-elution: The target analyte co-elutes with a known lab standard (i.e. surrogate, internal standards, etc.) for co-extracted analyses.
- Concentration of analyte was quantified from diluted analysis. Flag only applies to field samples that have detectable concentrations of the analyte.
- E Concentration of analyte exceeds the range of the calibration curve and/or linear range of the instrument.
- G The concentration may be biased high due to matrix interferences (i.e, co-elution) with non-target compound(s). The result should be considered estimated.
- H The analysis of pH was performed beyond the regulatory-required holding time of 15 minutes from the time of sample collection.
- I The lower value for the two columns has been reported due to obvious interference.
- M Reporting Limit (RL) exceeds the MCP CAM Reporting Limit for this analyte.
- NJ Presumptive evidence of compound. This represents an estimated concentration for Tentatively Identified Compounds (TICs), where the identification is based on a mass spectral library search.
- P The RPD between the results for the two columns exceeds the method-specified criteria.
- Q The quality control sample exceeds the associated acceptance criteria. For DOD-related projects, LCS and/or Continuing Calibration Standard exceedences are also qualified on all associated sample results. Note: This flag is not applicable for matrix spike recoveries when the sample concentration is greater than 4x the spike added or for batch duplicate RPD when the sample concentrations are less than 5x the RL. (Metals only.)
- **R** Analytical results are from sample re-analysis.
- **RE** Analytical results are from sample re-extraction.
- S Analytical results are from modified screening analysis.
- J Estimated value. This represents an estimated concentration for Tentatively Identified Compounds (TICs).
- **ND** Not detected at the reporting limit (RL) for the sample.

Report Format: Data Usability Report



Project Name: 60 EVERETT ST BRIGHTON/ALLSTON Lab Number: L1620128
Project Number: 43088-002 Report Date: 07/06/16

#### REFERENCES

97 EPA Test Methods (SW-846) with QC Requirements & Performance Standards for the Analysis of EPA SW-846 Methods under the Massachusetts Contingency Plan, WSC-CAM-IIA, IIB, IIIA, IIIB, IIIC, IIID, VA, VB, VC, VIA, VIB, VIIIA and VIIIB, July 2010.

#### **LIMITATION OF LIABILITIES**

Alpha Analytical performs services with reasonable care and diligence normal to the analytical testing laboratory industry. In the event of an error, the sole and exclusive responsibility of Alpha Analytical shall be to re-perform the work at it's own expense. In no event shall Alpha Analytical be held liable for any incidental, consequential or special damages, including but not limited to, damages in any way connected with the use of, interpretation of, information or analysis provided by Alpha Analytical.

We strongly urge our clients to comply with EPA protocol regarding sample volume, preservation, cooling, containers, sampling procedures, holding time and splitting of samples in the field.



Alpha Analytical, Inc. Facility: Company-wide

Department: Quality Assurance

Title: Certificate/Approval Program Summary

ID No.:17873

Revision 6

Page 1 of 1

Published Date: 2/3/2016 10:23:10 AM

#### Certification Information

#### The following analytes are not included in our Primary NELAP Scope of Accreditation:

#### Westborough Facility

EPA 524.2: 1,2-Dibromo-3-chloropropane, 1,2-Dibromoethane, m/p-xylene, o-xylene

EPA 624: 2-Butanone (MEK), 1,4-Dioxane, tert-Amylmethyl Ether, tert-Butyl Alcohol, m/p-xylene, o-xylene

EPA 625: Aniline, Benzoic Acid, Benzyl Alcohol, 4-Chloroaniline, 3-Methylphenol, 4-Methylphenol.

EPA 1010A: NPW: Ignitability

EPA 6010C: NPW: Strontium; SCM: Strontium

EPA 8151A: NPW: 2,4-DB, Dicamba, Dichloroprop, MCPA, MCPP; SCM: 2,4-DB, Dichloroprop, MCPA, MCPP

EPA 8260C: NPW: 1,2,4,5-Tetramethylbenzene; 4-Ethyltoluene, Azobenzene, Isopropanol; SCM: Iodomethane (methyl iodide), Methyl methacrylate

(soil); 1,2,4,5-Tetramethylbenzene; 4-Ethyltoluene.

EPA 8270D: NPW: Pentachloronitrobenzene, 1-Methylnaphthalene, Dimethylnaphthalene, 1,4-Diphenylhydrazine; SCM: Pentachloronitrobenzene, 1-

Methylnaphthalene, Dimethylnaphthalene, 1,4-Diphenylhydrazine.

**EPA 9010:** NPW: Amenable Cyanide Distillation, Total Cyanide Distillation **EPA 9038:** NPW: Sulfate

EPA 9050A: NPW: Specific Conductance EPA 9056: NPW: Chloride, Nitrate, Sulfate

EPA 9065: NPW: Phenols EPA 9251: NPW: Chloride SM3500: NPW: Ferrous Iron

SM4500: NPW: Amenable Cyanide, Dissolved Oxygen; SCM: Total Phosphorus, TKN, NO2, NO3.

SM5310C: DW: Dissolved Organic Carbon

#### **Mansfield Facility**

EPA 8270D: NPW: Biphenyl; SCM: Biphenyl, Caprolactam EPA 8270D-SIM Isotope Dilution: SCM: 1,4-Dioxane

**SM 2540D:** TSS

SM2540G: SCM: Percent Solids EPA 1631E: SCM: Mercury EPA 7474: SCM: Mercury

EPA 8081B: NPW and SCM: Mirex, Hexachlorobenzene.

EPA 8082A: NPW: PCB: 1, 5, 31, 87, 101, 110, 141, 151, 153, 180, 183, 187.

EPA 8270-SIM: NPW and SCM: Alkylated PAHs.

EPA TO-15: Halothane, 2,4,4-Trimethyl-2-pentene, 2,4,4-Trimethyl-1-pentene, Thiophene, 2-Methylthiophene,

3-Methylthiophene, 2-Ethylthiophene, 1,2,3-Trimethylbenzene, Indan, Indene, 1,2,4,5-Tetramethylbenzene, Benzothiophene, 1-Methylnaphthalene, n-Butylbenzene, n-Propylbenzene, sec-Butylbenzene, tert-Butylbenzene.

Biological Tissue Matrix: 8270D-SIM; 3050B; 3051A; 7471B; 8081B; 8082A; 6020A: Lead; 8270D: bis(2-ethylhexyl)phthalate, Butylbenzylphthalate, Diethyl phthalate, Dimethyl phthalate, Di-n-butyl phthalate, Di-n-octyl phthalate, Fluoranthene, Pentachlorophenol.

#### The following analytes are included in our Massachusetts DEP Scope of Accreditation, Westborough Facility:

#### Drinking Water

EPA 200.8: Sb,As,Ba,Be,Cd,Cr,Cu,Pb,Ni,Se,Tl; EPA 200.7: Ba,Be,Ca,Cd,Cr,Cu,Na; EPA 245.1: Mercury;

EPA 300.0: Nitrate-N, Fluoride, Sulfate; EPA 353.2: Nitrate-N, Nitrite-N; SM4500NO3-F: Nitrate-N, Nitrite-N; SM4500F-C, SM4500CN-CE, EPA 180.1, SM2130B, SM4500CI-D, SM2320B, SM2540C, SM4500H-B

EPA 332: Perchlorate.

Microbiology: SM9215B; SM9223-P/A, SM9223B-Colilert-QT, Enterolert-QT.

#### Non-Potable Water

EPA 200.8: Al,Sb,As,Be,Cd,Cr,Cu,Pb,Mn,Ni,Se,Ag,Tl,Zn;

EPA 200.7: Al,Sb,As,Be,Cd,Ca,Cr,Co,Cu,Fe,Pb,Mg,Mn,Mo,Ni,K,Se,Ag,Na,Sr,Ti,Tl,V,Zn;

EPA 245.1, SM4500H,B, EPA 120.1, SM2510B, SM2540C, SM2340B, SM2320B, SM4500CL-E, SM4500F-BC, SM426C, SM4500NH3-BH, EPA 350.1: Ammonia-N, LACHAT 10-107-06-1-B: Ammonia-N, SM4500NO3-F,

EPA 353.2: Nitrate-N, SM4500NH3-BC-NES, EPA 351.1, SM4500P-E, SM4500P-B, E, SM5220D, EPA 410.4, SM5210B, SM5310C, SM4500CL-D, EPA 1664, SM14 510AC, EPA 420.1, SM4500-CN-CE, SM2540D.

EPA 624: Volatile Halocarbons & Aromatics,

EPA 608: Chlordane, Toxaphene, Aldrin, alpha-BHC, beta-BHC, gamma-BHC, delta-BHC, Dieldrin, DDD, DDE, DDT, Endosulfan II, Endosulfan II, Endosulfan sulfate, Endrin, Endrin Aldehyde, Heptachlor, Heptachlor Epoxide, PCBs

EPA 625: SVOC (Acid/Base/Neutral Extractables), EPA 600/4-81-045: PCB-Oil.

Microbiology: SM9223B-Colilert-QT; Enterolert-QT, SM9222D-MF.

For a complete listing of analytes and methods, please contact your Alpha Project Manager.

Pre-Qualtrax Document ID: 08-113 Document Type: Form

6/29/16

(617) 886-7400 465 Medford St., CHAIN OF CUSTODY RECORD (617) 886-7600 Suite 2200, Boston, MA 02129-1402 Page of \ 60 Everett street Redevelopment H&A FILE NO. LABORATORY Alpha Analytical DELIVERY DATE 6/29/2016 60 Everett st Brighton/Allston, MA PROJECT NAME ADDRESS Westboro, MA TURNAROUND TIME Standard **H&A CONTACT** Lindsey Howard CONTACT Gina Hall PROJECT MANAGER Jesse Siegel Analysis Requested Comments Sample No. Date Time Depth Type Number of (special instructions, precautions, additional method numbers, etc.) Containers 6/29/16 X HA16-700W2-62916 6W 3 Laboratory to use applicable DEP CAM methods, unless otherwise HAIG-11 (OW) \_ 62916 HAIG-5 (OW) \_ 62916 directed. 6W X 333 HAIG-3(OW) 62916 COC edits by Gina Hall AAL 6/30/16---Project number 43088-002 Sampled and Relinquished by Received by LIQUID Sampling Comments VOA Vial Amber Glass Firm Alpha Plastic Bottle Preservative Relinquished by Received by Volume SOLID Print WEYAR VOA Vial Firm Alpha Amber Glass Date 6/29/16 Clear Glass Relinquished by Received by Preservative Evidence samples were tampered with? YES NO Sign Sign Volume If YES, please explain in section below. PRESERVATION KEY Print Print Firm Firm A Sample chilled C NaOH E H-SO4 G Methanol D HNO Date Time Date Time B Sample filtered F HCL H Water/NaHSO4 (circle) Presumptive Certainty Data Package (Laboratory to use applicable DEP CAM methods) If Presumptive Certainty Data Package is needed, initial all sections: Required Reporting Limits and Data Quality Objectives The required minimum field QC samples, as designated in BWSC CAM-VII have been or will be collected, as appropriate, to meet the requirements of Presumptive Certainty. Matrix Spike (MS) samples for MCP Metals and/or Cyanide are included and identified herein. RC-S1 SI GW1 includes This Chain of Custody Record (specify) \_ does not include samples defined as Drinking Water Samples. S2 RC-S2 GW<sub>2</sub> **S3** RC-GW1 GW3 If this Chain of Custody Record identifies samples defined as Drinking Water Samples, Trip Blanks and Field Duplicates are included and identified and analysis of TICs are required, as RC-GW2 appropriate. Laboratory should (specify if applicable)\_

Haley & Aldrich, Inc.

6/29/16

Serial\_No:07061613:13

(617) 886-7400

465 Medford St., CHAIN OF CUSTODY RECORD (617) 886-7600 Suite 2200, Boston, MA 02129-1402 Page of 60 Everett street Redevelopment H&A FILE NO. LABORATORY Alpha Analytical DELIVERY DATE 6/29/2016 60 Everett st Brighton/Allston, MA PROJECT NAME ADDRESS Westboro, MA TURNAROUND TIME Standard **H&A CONTACT** Lindsey Howard CONTACT Gina Hall PROJECT MANAGER Jesse Siegel Analysis Requested Comments Sample No. Date Time Depth Type Number of (special instructions, precautions, additional method numbers, etc.) Containers 6/29/16 HA16-7(0W)\_62916 X 6W 3 Laboratory to use applicable DEP CAM methods, unless otherwise HAIG-11(0W)\_62916 HAIG-5(0W)\_62916 HAIG-3(0W)\_62916 directed. 6W X 333 Received by LIQUID Sampled and Relinquished by Sampling Comments VOA Vial Amber Glass Firm Alpha Plastic Bottle Preservative Relinquished by Received by Volume SOLID Print Wayne VOA Vial Firm Alpha Amber Glass Date 6/29/16 Clear Glass Relinquished by Received by Preservative Evidence samples were tampered with? YES NO Sign Sign Volume If YES, please explain in section below. PRESERVATION KEY Print Print Firm Firm A Sample chilled C NaOH E H-SO4 G Methanol D HNO3 Date Time Date Time B Sample filtered F HCL H Water/NaHSO4 (circle) Presumptive Certainty Data Package (Laboratory to use applicable DEP CAM methods) If Presumptive Certainty Data Package is needed, initial all sections: Required Reporting Limits and Data Quality Objectives The required minimum field QC samples, as designated in BWSC CAM-VII have been or will be collected, as appropriate, to meet the requirements of Presumptive Certainty. Matrix Spike (MS) samples for MCP Metals and/or Cyanide are included and identified herein RC-S1 S1 GW1 includes does not include samples defined as Drinking Water Samples. This Chain of Custody Record (specify) S2 RC-S2 GW<sub>2</sub> S3 RC-GW1 GW3 - If this Chain of Custody Record identifies samples defined as Drinking Water Samples, Trip Blanks and Field Duplicates are included and identified and analysis of TICs are required, as RC-GW2 appropriate. Laboratory should (specify if applicable)\_

Haley & Aldrich, Inc.

# Method Blank Summary Form 4

Client : Haley & Aldrich, Inc. Lab Number : L1620128
Project Name : 60 EVERETT ST BRIGHTON/ALLSTONProject Number : 43088-002
Lab Sample ID : WG910237-5 Lab File ID : VQ160705A05

Instrument ID : QUIMBY

Matrix : WATER Analysis Date : 07/05/16 07:15

| Client Sample No. | Lab Sample ID | Analysis Date  |
|-------------------|---------------|----------------|
| WG910237-3LCS     | WG910237-3    | 07/05/16 05:10 |
| WG910237-4LCSD    | WG910237-4    | 07/05/16 05:41 |
| HA16-7(OW)_62916  | L1620128-01   | 07/05/16 08:49 |
| HA16-11(OW)_62916 | L1620128-02   | 07/05/16 09:21 |
| HA16-5(OW)_62916  | L1620128-03   | 07/05/16 09:52 |
| HA16-3(OW)_62916  | L1620128-04   | 07/05/16 10:23 |



# Continuing Calibration Form 7

Client : Haley & Aldrich, Inc. Lab Number : L1620128
Project Name : 60 EVERETT ST BRIGHTON/ALLSTONProject Number : 43088-002
Instrument ID : QUIMBY Calibration Date : 07/05/16 05:10

Channel:

| Compound                  | Ave. RRF | RRF     | Min RRF | %D    | Max %D | Area% | Dev( |
|---------------------------|----------|---------|---------|-------|--------|-------|------|
| Fluorobenzene             | 1 0.264  | 1 0 240 | 0.05    | 0     | 20     | 89    | 0    |
| Dichlorodifluoromethane   | 0.364    | 0.349   | 0.05    | 4.1   | 20     | 94    | 0    |
| Chloromethane             | 0.72     | 0.743   | 0.05    | -3.2  | 20     | 99    | 0    |
| Vinyl chloride            | 0.686    | 0.706   | 0.05    | -2.9  | 20     | 104   | 0    |
| Bromomethane              | 0.291    | 0.24    | 0.05    | 17.5  | 20     | 77    | 0    |
| Chloroethane              | 0.321    | 0.383   | 0.05    | -19.3 | 20     | 115   | 0    |
| Trichlorofluoromethane    | 0.548    | 0.564   | 0.05    | -2.9  | 20     | 104   | 0    |
| Ethyl ether               | 0.154    | 0.168   | 0.05    | -9.1  | 20     | 97    | 0    |
| 1,1-Dichloroethene        | 0.33     | 0.367   | 0.05    | -11.2 | 20     | 110   | 0    |
| Carbon disulfide          | 1.152    | 1.222   | 0.05    | -6.1  | 20     | 106   | 0    |
| Methylene chloride        | 10       | 11.713  | 0.05    | -17.1 | 20     | 113   | 0    |
| Acetone                   | 0.054    | 0.056   | 0.05    | -3.7  | 20     | 98    | 0    |
| trans-1,2-Dichloroethene  | 0.385    | 0.432   | 0.05    | -12.2 | 20     | 110   | 0    |
| Methyl tert-butyl ether   | 0.681    | 0.717   | 0.05    | -5.3  | 20     | 99    | 0    |
| Diisopropyl ether         | 1.6      | 1.648   | 0.05    | -3    | 20     | 99    | 0    |
| 1,1-Dichloroethane        | 0.841    | 0.917   | 0.05    | -9    | 20     | 101   | 0    |
| Ethyl tert-butyl ether    | 1.147    | 1.137   | 0.05    | 0.9   | 20     | 98    | 0    |
| cis-1,2-Dichloroethene    | 0.41     | 0.462   | 0.05    | -12.7 | 20     | 104   | 0    |
| 2,2-Dichloropropane       | 0.552    | 0.531   | 0.05    | 3.8   | 20     | 106   | 0    |
| Bromochloromethane        | 0.137    | 0.154   | 0.05    | -12.4 | 20     | 99    | 0    |
| Chloroform                | 0.715    | 0.776   | 0.05    | -8.5  | 20     | 100   | 0    |
| Carbon tetrachloride      | 0.472    | 0.45    | 0.05    | 4.7   | 20     | 107   | 0    |
| Tetrahydrofuran           | 10       | 9.92    | 0.05    | 0.8   | 20     | 99    | 0    |
| Dibromofluoromethane      | 0.19     | 0.196   | 0.05    | -3.2  | 20     | 94    | 0    |
| 1,1,1-Trichloroethane     | 0.62     | 0.647   | 0.05    | -4.4  | 20     | 108   | 0    |
| 2-Butanone                | 0.087    | 0.094   | 0.05    | -8    | 20     | 99    | 0    |
| 1,1-Dichloropropene       | 0.592    | 0.626   | 0.05    | -5.7  | 20     | 106   | 0    |
| Benzene                   | 1.805    | 2.002   | 0.05    | -10.9 | 20     | 102   | 0    |
| tert-Amyl methyl ether    | 0.821    | 0.806   | 0.05    | 1.8   | 20     | 96    | 0    |
| 1,2-Dichloroethane-d4     | 0.23     | 0.213   | 0.05    | 7.4   | 20     | 82    | 0    |
| 1,2-Dichloroethane        | 0.527    | 0.548   | 0.05    | -4    | 20     | 97    | 0    |
| Trichloroethene           | 0.438    | 0.481   | 0.05    | -9.8  | 20     | 104   | 0    |
| Dibromomethane            | 0.176    | 0.191   | 0.05    | -8.5  | 20     | 97    | 0    |
| 1,2-Dichloropropane       | 0.489    | 0.497   | 0.05    | -1.6  | 20     | 96    | 0    |
| Bromodichloromethane      | 0.521    | 0.533   | 0.05    | -2.3  | 20     | 98    | 0    |
| 1,4-Dioxane               | 0.00163  | 0.00198 | 0.05    | -21.5 | 20     | 107   | 0    |
| cis-1,3-Dichloropropene   | 0.603    | 0.585   | 0.05    | 3     | 20     | 94    | 0    |
| Chlorobenzene-d5          | 1        | 1       | 0.05    | 0     | 20     | 95    | 0    |
| Toluene-d8                | 1.398    | 1.415   | 0.05    | -1.2  | 20     | 95    | 0    |
| Toluene                   | 1.627    | 1.761   | 0.05    | -8.2  | 20     | 106   | 0    |
| 4-Methyl-2-pentanone      | 0.113    | 0.103   | 0.05    | 8.8   | 20     | 91    | 0    |
| Tetrachloroethene         | 0.581    | 0.631   | 0.05    | -8.6  | 20     | 107   | 0    |
| trans-1,3-Dichloropropene | 0.566    | 0.513   | 0.05    | 9.4   | 20     | 95    | 0    |
| 1,1,2-Trichloroethane     | 0.283    | 0.285   | 0.05    | -0.7  | 20     | 95    | 0    |
| Chlorodibromomethane      | 0.336    | 0.327   | 0.05    | 2.7   | 20     | 99    | 0    |

<sup>\*</sup> Value outside of QC limits.



# Continuing Calibration Form 7

Client : Haley & Aldrich, Inc. Lab Number : L1620128
Project Name : 60 EVERETT ST BRIGHTON/ALLSTONProject Number : 43088-002
Instrument ID : QUIMBY Calibration Date : 07/05/16 05:10

Channel:

| Compound                   | Ave. RRF | RRF   | Min RRF | %D    | Max %D | Area% | Dev(min) |
|----------------------------|----------|-------|---------|-------|--------|-------|----------|
| 1,3-Dichloropropane        | 0.628    | 0.623 | 0.05    | 0.8   | 20     | 94    | 0        |
| 1,2-Dibromoethane          | 0.314    | 0.313 | 0.05    | 0.3   | 20     | 96    | 0        |
| 2-Hexanone                 | 0.199    | 0.193 | 0.05    | 3     | 20     | 97    | 0        |
| Chlorobenzene              | 1.616    | 1.725 | 0.05    | -6.7  | 20     | 104   | 0        |
| Ethylbenzene               | 2.909    | 2.983 | 0.05    | -2.5  | 20     | 107   | 0        |
| 1,1,1,2-Tetrachloroethane  | 0.484    | 0.464 | 0.05    | 4.1   | 20     | 99    | 0        |
| p/m Xylene                 | 0.863    | 0.874 | 0.05    | -1.3  | 20     | 108   | 0        |
| o Xylene                   | 0.829    | 0.838 | 0.05    | -1.1  | 20     | 105   | 0        |
| Styrene                    | 1.409    | 1.372 | 0.05    | 2.6   | 20     | 105   | 0        |
| 1,4-Dichlorobenzene-d4     | 1        | 1     | 0.05    | 0     | 20     | 98    | 0        |
| Bromoform                  | 0.576    | 0.447 | 0.05    | 22.4* | 20     | 95    | 0        |
| Isopropylbenzene           | 7.033    | 6.836 | 0.05    | 2.8   | 20     | 110   | 0        |
| 4-Bromofluorobenzene       | 1.294    | 1.186 | 0.05    | 8.3   | 20     | 96    | 0        |
| Bromobenzene               | 1.566    | 1.566 | 0.05    | 0     | 20     | 101   | 0        |
| n-Propylbenzene            | 7.566    | 7.567 | 0.05    | -0    | 20     | 109   | 0        |
| 1,1,2,2-Tetrachloroethane  | 10       | 9.807 | 0.05    | 1.9   | 20     | 96    | 0        |
| 2-Chlorotoluene            | 5.412    | 5.49  | 0.05    | -1.4  | 20     | 108   | 0        |
| 1,3,5-Trimethylbenzene     | 4.82     | 5.378 | 0.05    | -11.6 | 20     | 104   | 0        |
| 1,2,3-Trichloropropane     | 10       | 9.464 | 0.05    | 5.4   | 20     | 96    | 0        |
| 4-Chlorotoluene            | 4.722    | 4.63  | 0.05    | 1.9   | 20     | 107   | 0        |
| tert-Butylbenzene          | 3.975    | 3.94  | 0.05    | 0.9   | 20     | 108   | 0        |
| 1,2,4-Trimethylbenzene     | 4.766    | 5.398 | 0.05    | -13.3 | 20     | 104   | 0        |
| sec-Butylbenzene           | 6.056    | 6.141 | 0.05    | -1.4  | 20     | 112   | 0        |
| p-Isopropyltoluene         | 4.804    | 5.292 | 0.05    | -10.2 | 20     | 109   | 0        |
| 1,3-Dichlorobenzene        | 2.719    | 2.853 | 0.05    | -4.9  | 20     | 106   | 0        |
| 1,4-Dichlorobenzene        | 2.57     | 2.673 | 0.05    | -4    | 20     | 105   | 0        |
| n-Butylbenzene             | 5.597    | 6.237 | 0.05    | -11.4 | 20     | 108   | 0        |
| 1,2-Dichlorobenzene        | 2.426    | 2.477 | 0.05    | -2.1  | 20     | 102   | 0        |
| 1,2-Dibromo-3-chloropropan | 10       | 8.684 | 0.05    | 13.2  | 20     | 94    | 0        |
| Hexachlorobutadiene        | 0.537    | 0.571 | 0.05    | -6.3  | 20     | 107   | 0        |
| 1,2,4-Trichlorobenzene     | 1.23     | 1.363 | 0.05    | -10.8 | 20     | 100   | 0        |
| Naphthalene                | 2.075    | 2.193 | 0.05    | -5.7  | 20     | 97    | 0        |
| 1,2,3-Trichlorobenzene     | 0.963    | 1.115 | 0.05    | -15.8 | 20     | 103   | 0        |
|                            |          |       |         |       |        |       |          |



<sup>\*</sup> Value outside of QC limits.



#### ANALYTICAL REPORT

Lab Number: L2127467

Client: Haley & Aldrich, Inc.

465 Medford Street, Suite 2200 Charlestown, MA 02129-1400

ATTN: Jesse Siegel
Phone: (617) 886-7400

Project Name: ALLSTON YARDS-BUILDING A

Project Number: 134110-007 Task 03

Report Date: 05/28/21

The original project report/data package is held by Alpha Analytical. This report/data package is paginated and should be reproduced only in its entirety. Alpha Analytical holds no responsibility for results and/or data that are not consistent with the original.

Certifications & Approvals: MA (M-MA086), NH NELAP (2064), CT (PH-0574), IL (200077), ME (MA00086), MD (348), NJ (MA935), NY (11148), NC (25700/666), PA (68-03671), RI (LAO00065), TX (T104704476), VT (VT-0935), VA (460195), USDA (Permit #P330-17-00196).

Eight Walkup Drive, Westborough, MA 01581-1019 508-898-9220 (Fax) 508-898-9193 800-624-9220 - www.alphalab.com



**Project Name:** ALLSTON YARDS-BUILDING A

Project Number: 134110-007 Task 03 Lab Number: L2127467

Report Date: 05/28/21

| Alpha<br>Sample ID | Client ID        | Matrix | Sample<br>Location | Collection<br>Date/Time | Receive Date |
|--------------------|------------------|--------|--------------------|-------------------------|--------------|
| L2127467-01        | HA16-11_05242021 | WATER  | ALLSTON, MA        | 05/24/21 14:55          | 05/24/21     |
| L2127467-02        | HA21-AY-RW       | WATER  | ALLSTON, MA        | 05/24/21 11:20          | 05/24/21     |



Project Name: ALLSTON YARDS-BUILDING A Lab Number: L2127467

Project Number: 134110-007 Task 03 Report Date: 05/28/21

#### **Case Narrative**

The samples were received in accordance with the Chain of Custody and no significant deviations were encountered during the preparation or analysis unless otherwise noted. Sample Receipt, Container Information, and the Chain of Custody are located at the back of the report.

Results contained within this report relate only to the samples submitted under this Alpha Lab Number and meet NELAP requirements for all NELAP accredited parameters unless otherwise noted in the following narrative. The data presented in this report is organized by parameter (i.e. VOC, SVOC, etc.). Sample specific Quality Control data (i.e. Surrogate Spike Recovery) is reported at the end of the target analyte list for each individual sample, followed by the Laboratory Batch Quality Control at the end of each parameter. Tentatively Identified Compounds (TICs), if requested, are reported for compounds identified to be present and are not part of the method/program Target Compound List, even if only a subset of the TCL are being reported. If a sample was re-analyzed or re-extracted due to a required quality control corrective action and if both sets of data are reported, the Laboratory ID of the re-analysis or re-extraction is designated with an "R" or "RE", respectively.

When multiple Batch Quality Control elements are reported (e.g. more than one LCS), the associated samples for each element are noted in the grey shaded header line of each data table. Any Laboratory Batch, Sample Specific % recovery or RPD value that is outside the listed Acceptance Criteria is bolded in the report. In reference to questions H (CAM) or 4 (RCP) when "NO" is checked, the performance criteria for CAM and RCP methods allow for some quality control failures to occur and still be within method compliance. In these instances, the specific failure is not narrated but noted in the associated QC Outlier Summary Report, located directly after the Case Narrative. QC information is also incorporated in the Data Usability Assessment table (Format 11) of our Data Merger tool, where it can be reviewed in conjunction with the sample result, associated regulatory criteria and any associated data usability implications.

Soil/sediments, solids and tissues are reported on a dry weight basis unless otherwise noted. Definitions of all data qualifiers and acronyms used in this report are provided in the Glossary located at the back of the report.

HOLD POLICY - For samples submitted on hold, Alpha's policy is to hold samples (with the exception of Air canisters) free of charge for 21 calendar days from the date the project is completed. After 21 calendar days, we will dispose of all samples submitted including those put on hold unless you have contacted your Alpha Project Manager and made arrangements for Alpha to continue to hold the samples. Air canisters will be disposed after 3 business days from the date the project is completed.

| Please contact Project Management at 800-624-9220 with any questions. |  |
|-----------------------------------------------------------------------|--|
|                                                                       |  |



Serial\_No:05282120:48

Project Name:ALLSTON YARDS-BUILDING ALab Number:L2127467Project Number:134110-007 Task 03Report Date:05/28/21

#### **Case Narrative (continued)**

Volatile Organics by SIM

L2127467-01D: The sample has elevated detection limits due to the dilution required by the elevated concentrations of non-target compounds in the sample.

The WG1503271-4 Method Blank, associated with L2127467-01D, has a concentration above the reporting limit for 1,4-Dioxane. Since the sample was non-detect to the RL for this target analyte, no further actions were taken. The results of the original analysis are reported.

Nitrogen, Ammonia

L2127467-02: The sample has an elevated detection limit due to the dilution required by the sample matrix.

I, the undersigned, attest under the pains and penalties of perjury that, to the best of my knowledge and belief and based upon my personal inquiry of those responsible for providing the information contained in this analytical report, such information is accurate and complete. This certificate of analysis is not complete unless this page accompanies any and all pages of this report.

Authorized Signature:

Title: Technical Director/Representative Date: 05/28/21

Jufani Morrissey-Tiffani Morrissey

### **ORGANICS**



### **VOLATILES**



Serial\_No:05282120:48

**Project Name:** ALLSTON YARDS-BUILDING A Lab Number: L2127467

**Project Number:** 134110-007 Task 03 **Report Date:** 05/28/21

**SAMPLE RESULTS** 

Lab ID: L2127467-01 Date Collected: 05/24/21 14:55

Client ID: HA16-11\_05242021 Date Received: 05/24/21 Sample Location: Field Prep: ALLSTON, MA Refer to COC

Sample Depth:

Extraction Method: EPA 504.1 Matrix: Water **Extraction Date:** 05/25/21 16:34 14,504.1 Analytical Method:

Analytical Date: 05/25/21 18:15 Analyst: AMM

Result Qualifier Units RL MDL **Dilution Factor** Column **Parameter** Microextractables by GC - Westborough Lab ND 0.010 В 1,2-Dibromoethane ug/l 1



05/24/21 14:55

Refer to COC

05/24/21

Project Name: ALLSTON YARDS-BUILDING A

**Project Number:** 134110-007 Task 03

**SAMPLE RESULTS** 

Lab Number: L2127467

Date Collected:

Date Received:

**Report Date:** 05/28/21

O/tim EE ItEO

Lab ID: L2127467-01 D
Client ID: HA16-11\_05242021

Sample Location: ALLSTON, MA Field Prep:

Sample Depth:

Matrix: Water
Analytical Method: 128,624.1
Analytical Date: 05/25/21 07:39

Analyst: GT

| Parameter                         | Result       | Qualifier | Units | RL  | MDL | Dilution Factor |
|-----------------------------------|--------------|-----------|-------|-----|-----|-----------------|
| Volatile Organics by GC/MS - West | tborough Lab |           |       |     |     |                 |
| Methylene chloride                | ND           |           | ug/l  | 2.0 |     | 2               |
| 1,1-Dichloroethane                | ND           |           | ug/l  | 3.0 |     | 2               |
| Carbon tetrachloride              | ND           |           | ug/l  | 2.0 |     | 2               |
| 1,1,2-Trichloroethane             | ND           |           | ug/l  | 3.0 |     | 2               |
| Tetrachloroethene                 | ND           |           | ug/l  | 2.0 |     | 2               |
| 1,2-Dichloroethane                | ND           |           | ug/l  | 3.0 |     | 2               |
| 1,1,1-Trichloroethane             | ND           |           | ug/l  | 4.0 |     | 2               |
| Benzene                           | ND           |           | ug/l  | 2.0 |     | 2               |
| Toluene                           | ND           |           | ug/l  | 2.0 |     | 2               |
| Ethylbenzene                      | ND           |           | ug/l  | 2.0 |     | 2               |
| Vinyl chloride                    | ND           |           | ug/l  | 2.0 |     | 2               |
| 1,1-Dichloroethene                | ND           |           | ug/l  | 2.0 |     | 2               |
| cis-1,2-Dichloroethene            | 17           |           | ug/l  | 2.0 |     | 2               |
| Trichloroethene                   | 210          |           | ug/l  | 2.0 |     | 2               |
| 1,2-Dichlorobenzene               | ND           |           | ug/l  | 10  |     | 2               |
| 1,3-Dichlorobenzene               | ND           |           | ug/l  | 10  |     | 2               |
| 1,4-Dichlorobenzene               | ND           |           | ug/l  | 10  |     | 2               |
| p/m-Xylene                        | ND           |           | ug/l  | 4.0 |     | 2               |
| o-xylene                          | ND           |           | ug/l  | 2.0 |     | 2               |
| Xylenes, Total                    | ND           |           | ug/l  | 2.0 |     | 2               |
| Acetone                           | ND           |           | ug/l  | 20  |     | 2               |
| Methyl tert butyl ether           | ND           |           | ug/l  | 20  |     | 2               |
| Tert-Butyl Alcohol                | ND           |           | ug/l  | 200 |     | 2               |
| Tertiary-Amyl Methyl Ether        | ND           |           | ug/l  | 40  |     | 2               |
|                                   |              |           |       |     |     |                 |



Project Name: ALLSTON YARDS-BUILDING A Lab Number: L2127467

**Project Number:** 134110-007 Task 03 **Report Date:** 05/28/21

SAMPLE RESULTS

Lab ID: L2127467-01 D Date Collected: 05/24/21 14:55

Client ID: HA16-11\_05242021 Date Received: 05/24/21 Sample Location: ALLSTON, MA Field Prep: Refer to COC

Sample Depth:

Parameter Result Qualifier Units RL MDL Dilution Factor

Volatile Organics by GC/MS - Westborough Lab

| Surrogate            | % Recovery | Qualifier | Acceptance<br>Criteria |  |
|----------------------|------------|-----------|------------------------|--|
| Pentafluorobenzene   | 109        |           | 60-140                 |  |
| Fluorobenzene        | 88         |           | 60-140                 |  |
| 4-Bromofluorobenzene | 96         |           | 60-140                 |  |



**Project Name:** ALLSTON YARDS-BUILDING A

**Project Number:** 134110-007 Task 03

**SAMPLE RESULTS** 

Report Date:

L2127467 05/28/21

Lab ID: L2127467-01 D Client ID:

Sample Location:

HA16-11\_05242021

Date Collected:

Lab Number:

05/24/21 14:55

ALLSTON, MA

Date Received: Field Prep:

05/24/21 Refer to COC

Sample Depth:

Matrix:

Water

Analytical Method: Analytical Date:

128,624.1-SIM 05/25/21 07:39

Analyst:

GT

| Parameter                               | Result    | Qualifier | Units | RL | MDL Dilution Factor |   |  |
|-----------------------------------------|-----------|-----------|-------|----|---------------------|---|--|
| Volatile Organics by GC/MS-SIM - Westbo | rough Lab |           |       |    |                     |   |  |
| 1,4-Dioxane                             | ND        |           | ug/l  | 10 |                     | 2 |  |

| Surrogate            | % Recovery | Acceptance<br>Qualifier Criteria | • |
|----------------------|------------|----------------------------------|---|
| Fluorobenzene        | 91         | 60-140                           |   |
| 4-Bromofluorobenzene | 106        | 60-140                           |   |



Project Name: ALLSTON YARDS-BUILDING A

**Project Number:** 134110-007 Task 03

Lab Number: L2127467

**Report Date:** 05/28/21

Method Blank Analysis Batch Quality Control

Analytical Method: 128,624.1 Analytical Date: 05/25/21 04:37

Analyst: GT

| Parameter                        | Result       | Qualifier Units   | RL     | MDL         |
|----------------------------------|--------------|-------------------|--------|-------------|
| Volatile Organics by GC/MS - Wes | tborough Lab | for sample(s): 01 | Batch: | WG1502829-8 |
| Methylene chloride               | ND           | ug/l              | 1.0    |             |
| 1,1-Dichloroethane               | ND           | ug/l              | 1.5    |             |
| Carbon tetrachloride             | ND           | ug/l              | 1.0    |             |
| 1,1,2-Trichloroethane            | ND           | ug/l              | 1.5    |             |
| Tetrachloroethene                | ND           | ug/l              | 1.0    |             |
| 1,2-Dichloroethane               | ND           | ug/l              | 1.5    |             |
| 1,1,1-Trichloroethane            | ND           | ug/l              | 2.0    |             |
| Benzene                          | ND           | ug/l              | 1.0    |             |
| Toluene                          | ND           | ug/l              | 1.0    |             |
| Ethylbenzene                     | ND           | ug/l              | 1.0    |             |
| Vinyl chloride                   | ND           | ug/l              | 1.0    |             |
| 1,1-Dichloroethene               | ND           | ug/l              | 1.0    |             |
| cis-1,2-Dichloroethene           | ND           | ug/l              | 1.0    |             |
| Trichloroethene                  | ND           | ug/l              | 1.0    |             |
| 1,2-Dichlorobenzene              | ND           | ug/l              | 5.0    |             |
| 1,3-Dichlorobenzene              | ND           | ug/l              | 5.0    |             |
| 1,4-Dichlorobenzene              | ND           | ug/l              | 5.0    |             |
| p/m-Xylene                       | ND           | ug/l              | 2.0    |             |
| o-xylene                         | ND           | ug/l              | 1.0    |             |
| Xylenes, Total                   | ND           | ug/l              | 1.0    |             |
| Acetone                          | ND           | ug/l              | 10     |             |
| Methyl tert butyl ether          | ND           | ug/l              | 10     |             |
| Tert-Butyl Alcohol               | ND           | ug/l              | 100    |             |
| Tertiary-Amyl Methyl Ether       | ND           | ug/l              | 20     |             |



Project Name: ALLSTON YARDS-BUILDING A Lab Number: L2127467

**Project Number:** 134110-007 Task 03 **Report Date:** 05/28/21

Method Blank Analysis
Batch Quality Control

Analytical Method: 128,624.1 Analytical Date: 05/25/21 04:37

Analyst: GT

Parameter Result Qualifier Units RL MDL

Volatile Organics by GC/MS - Westborough Lab for sample(s): 01 Batch: WG1502829-8

|                      |             | Acceptance        |
|----------------------|-------------|-------------------|
| Surrogate            | %Recovery Q | ualifier Criteria |
|                      |             |                   |
| Pentafluorobenzene   | 110         | 60-140            |
| Fluorobenzene        | 89          | 60-140            |
| 4-Bromofluorobenzene | 94          | 60-140            |



Project Name: ALLSTON YARDS-BUILDING A Lab Number: L2127467

**Project Number:** 134110-007 Task 03 **Report Date:** 05/28/21

Method Blank Analysis Batch Quality Control

Analytical Method: 128,624.1-SIM Analytical Date: 05/25/21 04:37

Analyst: GT

| Parameter                        | Result      | Qualifier  | Units     |    | RL     | MDL         |  |
|----------------------------------|-------------|------------|-----------|----|--------|-------------|--|
| Volatile Organics by GC/MS-SIM - | Westborough | Lab for sa | ample(s): | 01 | Batch: | WG1503271-4 |  |
| 1,4-Dioxane                      | 5.8         |            | ug/l      |    | 5.0    |             |  |

|                      |           | Acceptance |          |  |
|----------------------|-----------|------------|----------|--|
| Surrogate            | %Recovery | Qualifier  | Criteria |  |
|                      |           |            |          |  |
| Fluorobenzene        | 91        |            | 60-140   |  |
| 4-Bromofluorobenzene | 104       |            | 60-140   |  |



**Project Name:** Lab Number: ALLSTON YARDS-BUILDING A L2127467

**Project Number: Report Date:** 134110-007 Task 03 05/28/21

Method Blank Analysis Batch Quality Control

Analytical Method: 14,504.1 Extraction Method: EPA 504.1

Analytical Date: 05/25/21 17:26 05/25/21 16:34 **Extraction Date:** 

Analyst: AMM

| Parameter                          | Result      | Qualifier   | Units | RL            | MDL    |   |
|------------------------------------|-------------|-------------|-------|---------------|--------|---|
| Microextractables by GC - Westbord | ough Lab fo | r sample(s) | : 01  | Batch: WG1503 | 3496-1 |   |
| 1,2-Dibromoethane                  | ND          |             | ug/l  | 0.010         |        | В |



**Project Name:** ALLSTON YARDS-BUILDING A

Project Number: 134110-007 Task 03

Lab Number: L2127467

| rameter                                 | LCS<br>%Recovery | Qual          | LCSD<br>%Recovery | / Qual      | %Recovery<br>Limits | RPD | RPD<br>imits |
|-----------------------------------------|------------------|---------------|-------------------|-------------|---------------------|-----|--------------|
| platile Organics by GC/MS - Westborough | Lab Associated   | sample(s): 01 | l Batch: W        | /G1502829-7 |                     |     |              |
| Methylene chloride                      | 85               |               | -                 |             | 60-140              | -   | 28           |
| 1,1-Dichloroethane                      | 85               |               | -                 |             | 50-150              | -   | 49           |
| Carbon tetrachloride                    | 100              |               | -                 |             | 70-130              | -   | 41           |
| 1,1,2-Trichloroethane                   | 115              |               | -                 |             | 70-130              | -   | 45           |
| Tetrachloroethene                       | 125              |               | -                 |             | 70-130              | -   | 39           |
| 1,2-Dichloroethane                      | 90               |               | -                 |             | 70-130              | -   | 49           |
| 1,1,1-Trichloroethane                   | 90               |               | -                 |             | 70-130              | -   | 36           |
| Benzene                                 | 90               |               | -                 |             | 65-135              | -   | 61           |
| Toluene                                 | 115              |               | -                 |             | 70-130              | -   | 41           |
| Ethylbenzene                            | 105              |               | -                 |             | 60-140              | -   | 63           |
| Vinyl chloride                          | 70               |               | -                 |             | 5-195               | -   | 66           |
| 1,1-Dichloroethene                      | 85               |               | -                 |             | 50-150              | -   | 32           |
| cis-1,2-Dichloroethene                  | 100              |               | -                 |             | 60-140              | -   | 30           |
| Trichloroethene                         | 90               |               | -                 |             | 65-135              | -   | 48           |
| 1,2-Dichlorobenzene                     | 115              |               | -                 |             | 65-135              | -   | 57           |
| 1,3-Dichlorobenzene                     | 110              |               | -                 |             | 70-130              | -   | 43           |
| 1,4-Dichlorobenzene                     | 110              |               | -                 |             | 65-135              | -   | 57           |
| p/m-Xylene                              | 102              |               | -                 |             | 60-140              | -   | 30           |
| o-xylene                                | 105              |               | -                 |             | 60-140              | -   | 30           |
| Acetone                                 | 116              |               | -                 |             | 40-160              | -   | 30           |
| Methyl tert butyl ether                 | 80               |               | -                 |             | 60-140              | -   | 30           |
| Tert-Butyl Alcohol                      | 130              |               | -                 |             | 60-140              | -   | 30           |
| Tertiary-Amyl Methyl Ether              | 75               |               | -                 |             | 60-140              | -   | 30           |



ALLSTON YARDS-BUILDING A

Lab Number:

L2127467

**Project Number:** 134110-007 Task 03

**Project Name:** 

Report Date:

05/28/21

|           | LCS       |      | LCSD      |      | %Recovery |     |      | RPD    |
|-----------|-----------|------|-----------|------|-----------|-----|------|--------|
| Parameter | %Recovery | Qual | %Recovery | Qual | Limits    | RPD | Qual | Limits |

Volatile Organics by GC/MS - Westborough Lab Associated sample(s): 01 Batch: WG1502829-7

| Surrogate            | LCS<br>%Recovery Qual | LCSD<br>%Recovery | Qual | Acceptance<br>Criteria |
|----------------------|-----------------------|-------------------|------|------------------------|
| Pentafluorobenzene   | 110                   |                   |      | 60-140                 |
| Fluorobenzene        | 88                    |                   |      | 60-140                 |
| 4-Bromofluorobenzene | 93                    |                   |      | 60-140                 |



ALLSTON YARDS-BUILDING A

Batch Quality Control

Lab Number: L2127467

**Project Number:** 134110-007 Task 03 **Report Date:** 05/28/21

| Parameter                                  | LCS<br>%Recovery | Qual          | LCSD<br>%Recovery | Qual      | %Recovery<br>Limits | RPD | Qual | RPD<br>Limits |  |
|--------------------------------------------|------------------|---------------|-------------------|-----------|---------------------|-----|------|---------------|--|
| Volatile Organics by GC/MS-SIM - Westboroo | ugh Lab Associat | ted sample(s) | : 01 Batch:       | WG1503271 | -3                  |     |      |               |  |
| 1,4-Dioxane                                | 140              |               | -                 |           | 60-140              | -   |      | 20            |  |

| Surrogate                          | LCS<br>%Recovery Qu | LCSD<br>al %Recovery | Qual | Acceptance<br>Criteria |
|------------------------------------|---------------------|----------------------|------|------------------------|
| Fluorobenzene 4-Bromofluorobenzene | 92<br>103           |                      |      | 60-140<br>60-140       |



**Project Name:** 

**Project Name:** ALLSTON YARDS-BUILDING A

Lab Number:

L2127467

**Project Number:** 134110-007 Task 03 Report Date:

05/28/21

| Parameter                                 | LCS<br>%Recovery | Qual       | LCSD<br>%Recovery | Qual   | %Recovery<br>Limits | RPD | Qual | RPD<br>Limits | Column |
|-------------------------------------------|------------------|------------|-------------------|--------|---------------------|-----|------|---------------|--------|
| Microextractables by GC - Westborough Lab | Associated sam   | ple(s): 01 | Batch: WG1503     | 3496-2 |                     |     |      |               |        |
| 1,2-Dibromoethane                         | 110              |            | -                 |        | 80-120              | -   |      |               | В      |



# Matrix Spike Analysis Batch Quality Control

**Project Name:** ALLSTON YARDS-BUILDING A

**Project Number:** 134110-007 Task 03

Lab Number:

L2127467

Report Date:

05/28/21

| Parameter                   | Native<br>Sample  | MS<br>Added | MS<br>Found %    | MS<br>6Recovery | Qual    | MSD<br>Found | MSD<br>%Recovery |          | ecovery<br>Limits | RPD       | Qual    | RPD<br>Limits | <u>Column</u> |
|-----------------------------|-------------------|-------------|------------------|-----------------|---------|--------------|------------------|----------|-------------------|-----------|---------|---------------|---------------|
| Microextractables by GC     | - Westborough Lab | Associat    | ed sample(s): 01 | QC Batch        | ID: WG1 | 503496-3     | QC Sample:       | L2126018 | -01 Clie          | ent ID: N | /IS Sam | ple           |               |
| 1,2-Dibromoethane           | ND                | 0.249       | 0.259            | 104             |         | -            | -                |          | 80-120            | -         |         | 20            | В             |
| 1,2-Dibromo-3-chloropropane | ND                | 0.249       | 0.291            | 117             |         | -            | -                |          | 80-120            | -         |         | 20            | В             |
| 1,2,3-Trichloropropane      | ND                | 0.249       | 0.311            | 125             | Q       | -            | -                |          | 80-120            | -         |         | 20            | В             |

#### **SEMIVOLATILES**



**Project Name:** Lab Number: ALLSTON YARDS-BUILDING A L2127467

Report Date: **Project Number:** 134110-007 Task 03 05/28/21

**SAMPLE RESULTS** 

Lab ID: L2127467-01 Date Collected: 05/24/21 14:55

Date Received: Client ID: HA16-11\_05242021 05/24/21 Sample Location: Field Prep: ALLSTON, MA Refer to COC

Sample Depth:

Extraction Method: EPA 625.1 Matrix: Water **Extraction Date:** 05/27/21 01:43 Analytical Method: 129,625.1

Analytical Date: 05/27/21 14:47 Analyst: SZ

| Parameter                                        | Result | Qualifier | Units | RL   | MDL | Dilution Factor |  |  |
|--------------------------------------------------|--------|-----------|-------|------|-----|-----------------|--|--|
| Semivolatile Organics by GC/MS - Westborough Lab |        |           |       |      |     |                 |  |  |
| Bis(2-ethylhexyl)phthalate                       | ND     |           | ug/l  | 2.20 |     | 1               |  |  |
| Butyl benzyl phthalate                           | ND     |           | ug/l  | 5.00 |     | 1               |  |  |
| Di-n-butylphthalate                              | ND     |           | ug/l  | 5.00 |     | 1               |  |  |
| Di-n-octylphthalate                              | ND     |           | ug/l  | 5.00 |     | 1               |  |  |
| Diethyl phthalate                                | ND     |           | ug/l  | 5.00 |     | 1               |  |  |
| Dimethyl phthalate                               | ND     |           | ug/l  | 5.00 |     | 1               |  |  |

| Surrogate        | % Recovery | Qualifier | Acceptance<br>Criteria |  |
|------------------|------------|-----------|------------------------|--|
| Nitrobenzene-d5  | 60         |           | 42-122                 |  |
| 2-Fluorobiphenyl | 71         |           | 46-121                 |  |
| 4-Terphenyl-d14  | 79         |           | 47-138                 |  |



**Project Name:** Lab Number: ALLSTON YARDS-BUILDING A L2127467

**Project Number:** Report Date: 134110-007 Task 03 05/28/21

**SAMPLE RESULTS** 

05/27/21 18:05

Lab ID: L2127467-01 Date Collected: 05/24/21 14:55

Date Received: Client ID: HA16-11\_05242021 05/24/21 Sample Location: Field Prep: ALLSTON, MA Refer to COC

Sample Depth:

Extraction Method: EPA 625.1 Matrix: Water

**Extraction Date:** 05/27/21 01:47 Analytical Method: 129,625.1-SIM Analytical Date:

Analyst:  $\mathsf{DV}$ 

| Parameter                       | Result               | Qualifier | Units | RL    | MDL | Dilution Factor |  |
|---------------------------------|----------------------|-----------|-------|-------|-----|-----------------|--|
| Semivolatile Organics by GC/MS- | SIM - Westborough La | ab        |       |       |     |                 |  |
| Acenaphthene                    | ND                   |           | ug/l  | 0.100 |     | 1               |  |
| Fluoranthene                    | ND                   |           | ug/l  | 0.100 |     | 1               |  |
| Naphthalene                     | ND                   |           | ug/l  | 0.100 |     | 1               |  |
| Benzo(a)anthracene              | ND                   |           | ug/l  | 0.100 |     | 1               |  |
| Benzo(a)pyrene                  | ND                   |           | ug/l  | 0.100 |     | 1               |  |
| Benzo(b)fluoranthene            | ND                   |           | ug/l  | 0.100 |     | 1               |  |
| Benzo(k)fluoranthene            | ND                   |           | ug/l  | 0.100 |     | 1               |  |
| Chrysene                        | ND                   |           | ug/l  | 0.100 |     | 1               |  |
| Acenaphthylene                  | ND                   |           | ug/l  | 0.100 |     | 1               |  |
| Anthracene                      | ND                   |           | ug/l  | 0.100 |     | 1               |  |
| Benzo(ghi)perylene              | ND                   |           | ug/l  | 0.100 |     | 1               |  |
| Fluorene                        | ND                   |           | ug/l  | 0.100 |     | 1               |  |
| Phenanthrene                    | ND                   |           | ug/l  | 0.100 |     | 1               |  |
| Dibenzo(a,h)anthracene          | ND                   |           | ug/l  | 0.100 |     | 1               |  |
| Indeno(1,2,3-cd)pyrene          | ND                   |           | ug/l  | 0.100 |     | 1               |  |
| Pyrene                          | ND                   |           | ug/l  | 0.100 |     | 1               |  |
| Pentachlorophenol               | ND                   |           | ug/l  | 1.00  |     | 1               |  |

| Surrogate            | % Recovery | Acceptance<br>Qualifier Criteria |  |
|----------------------|------------|----------------------------------|--|
| 2-Fluorophenol       | 41         | 25-87                            |  |
| Phenol-d6            | 31         | 16-65                            |  |
| Nitrobenzene-d5      | 62         | 42-122                           |  |
| 2-Fluorobiphenyl     | 64         | 46-121                           |  |
| 2,4,6-Tribromophenol | 71         | 45-128                           |  |
| 4-Terphenyl-d14      | 65         | 47-138                           |  |



L2127467

Lab Number:

Project Name: ALLSTON YARDS-BUILDING A

**Project Number:** 134110-007 Task 03 **Report Date:** 05/28/21

Method Blank Analysis Batch Quality Control

 Analytical Method:
 129,625.1
 Extraction Method:
 EPA 625.1

 Analytical Date:
 05/27/21 14:02
 Extraction Date:
 05/27/21 01:43

Analyst: SZ

| Parameter                     | Result Q            | ualifier Units    | RL        | MDL         |
|-------------------------------|---------------------|-------------------|-----------|-------------|
| Semivolatile Organics by GC/N | IS - Westborough La | ab for sample(s): | 01 Batch: | WG1504225-1 |
| Bis(2-ethylhexyl)phthalate    | ND                  | ug/l              | 2.20      |             |
| Butyl benzyl phthalate        | ND                  | ug/l              | 5.00      |             |
| Di-n-butylphthalate           | ND                  | ug/l              | 5.00      |             |
| Di-n-octylphthalate           | ND                  | ug/l              | 5.00      |             |
| Diethyl phthalate             | ND                  | ug/l              | 5.00      |             |
| Dimethyl phthalate            | ND                  | ug/l              | 5.00      |             |
|                               |                     |                   |           |             |

|                  | Acceptance |                    |  |  |  |
|------------------|------------|--------------------|--|--|--|
| Surrogate        | %Recovery  | Qualifier Criteria |  |  |  |
|                  |            |                    |  |  |  |
| Nitrobenzene-d5  | 71         | 42-122             |  |  |  |
| 2-Fluorobiphenyl | 79         | 46-121             |  |  |  |
| 4-Terphenyl-d14  | 86         | 47-138             |  |  |  |



Project Name: ALLSTON YARDS-BUILDING A

**Project Number:** 134110-007 Task 03

Lab Number: L2127467

**Report Date:** 05/28/21

Method Blank Analysis Batch Quality Control

Analytical Method: 129,625.1-SIM Analytical Date: 05/27/21 17:49

Analyst: DV

Extraction Method: EPA 625.1 Extraction Date: 05/27/21 01:47

| Parameter                      | Result         | Qualifier | Units      | RL       | MDL              |     |
|--------------------------------|----------------|-----------|------------|----------|------------------|-----|
| Semivolatile Organics by GC/MS | S-SIM - Westbo | rough Lab | for sample | e(s): 01 | Batch: WG1504226 | 3-1 |
| Acenaphthene                   | ND             |           | ug/l       | 0.100    |                  |     |
| Fluoranthene                   | ND             |           | ug/l       | 0.100    |                  |     |
| Naphthalene                    | ND             |           | ug/l       | 0.100    |                  |     |
| Benzo(a)anthracene             | ND             |           | ug/l       | 0.100    |                  |     |
| Benzo(a)pyrene                 | ND             |           | ug/l       | 0.100    |                  |     |
| Benzo(b)fluoranthene           | ND             |           | ug/l       | 0.100    |                  |     |
| Benzo(k)fluoranthene           | ND             |           | ug/l       | 0.100    |                  |     |
| Chrysene                       | ND             |           | ug/l       | 0.100    |                  |     |
| Acenaphthylene                 | ND             |           | ug/l       | 0.100    |                  |     |
| Anthracene                     | ND             |           | ug/l       | 0.100    |                  |     |
| Benzo(ghi)perylene             | ND             |           | ug/l       | 0.100    | <del></del>      |     |
| Fluorene                       | ND             |           | ug/l       | 0.100    | <del></del>      |     |
| Phenanthrene                   | ND             |           | ug/l       | 0.100    | <del></del>      |     |
| Dibenzo(a,h)anthracene         | ND             |           | ug/l       | 0.100    |                  |     |
| Indeno(1,2,3-cd)pyrene         | ND             |           | ug/l       | 0.100    |                  |     |
| Pyrene                         | ND             |           | ug/l       | 0.100    |                  |     |
| Pentachlorophenol              | ND             |           | ug/l       | 1.00     |                  |     |

| Surrogate            | %Recovery Qual | Acceptance<br>ifier Criteria |
|----------------------|----------------|------------------------------|
| 2-Fluorophenol       | 49             | 25-87                        |
| Phenol-d6            | 35             | 16-65                        |
| Nitrobenzene-d5      | 73             | 42-122                       |
| 2-Fluorobiphenyl     | 72             | 46-121                       |
| 2,4,6-Tribromophenol | 74             | 45-128                       |
| 4-Terphenyl-d14      | 77             | 47-138                       |
|                      |                |                              |



**Project Name:** ALLSTON YARDS-BUILDING A

Project Number: 134110-007 Task 03

Lab Number:

L2127467

Report Date:

05/28/21

| Parameter                                  | LCS<br>%Recovery | Qual           | LCSD<br>%Recovery | Qual      | %Recovery<br>Limits | RPD | Qual | RPD<br>Limits |  |
|--------------------------------------------|------------------|----------------|-------------------|-----------|---------------------|-----|------|---------------|--|
| Semivolatile Organics by GC/MS - Westborou | gh Lab Associa   | ated sample(s) | : 01 Batch:       | WG1504225 | 5-3                 |     |      |               |  |
| Bis(2-ethylhexyl)phthalate                 | 99               |                | -                 |           | 29-137              | -   |      | 82            |  |
| Butyl benzyl phthalate                     | 100              |                | -                 |           | 1-140               | -   |      | 60            |  |
| Di-n-butylphthalate                        | 94               |                | -                 |           | 8-120               | -   |      | 47            |  |
| Di-n-octylphthalate                        | 99               |                | -                 |           | 19-132              | -   |      | 69            |  |
| Diethyl phthalate                          | 92               |                | -                 |           | 1-120               | -   |      | 100           |  |
| Dimethyl phthalate                         | 99               |                | -                 |           | 1-120               | -   |      | 183           |  |

| Surrogate        | LCS<br>%Recovery Qual | LCSD<br>%Recovery Qual | Acceptance<br>Criteria |
|------------------|-----------------------|------------------------|------------------------|
| Nitrobenzene-d5  | 79                    |                        | 42-122                 |
| 2-Fluorobiphenyl | 88                    |                        | 46-121                 |
| 4-Terphenyl-d14  | 97                    |                        | 47-138                 |

**Project Name:** ALLSTON YARDS-BUILDING A

Project Number: 134110-007 Task 03

Lab Number: L2127467

| arameter                               | LCS<br>%Recovery Qua   | LCSD<br>al %Recovery    | %Recovery<br>Qual Limits | RPD | RPD<br>Qual Limits |
|----------------------------------------|------------------------|-------------------------|--------------------------|-----|--------------------|
| emivolatile Organics by GC/MS-SIM - We | stborough Lab Associat | ed sample(s): 01 Batch: | WG1504226-3              |     |                    |
| Acenaphthene                           | 66                     | -                       | 60-132                   | -   | 30                 |
| Fluoranthene                           | 75                     | -                       | 43-121                   | -   | 30                 |
| Naphthalene                            | 63                     | -                       | 36-120                   | -   | 30                 |
| Benzo(a)anthracene                     | 74                     | -                       | 42-133                   | -   | 30                 |
| Benzo(a)pyrene                         | 78                     | -                       | 32-148                   | -   | 30                 |
| Benzo(b)fluoranthene                   | 74                     | -                       | 42-140                   | -   | 30                 |
| Benzo(k)fluoranthene                   | 80                     | -                       | 25-146                   | -   | 30                 |
| Chrysene                               | 70                     | -                       | 44-140                   | -   | 30                 |
| Acenaphthylene                         | 75                     | -                       | 54-126                   | -   | 30                 |
| Anthracene                             | 73                     | -                       | 43-120                   | -   | 30                 |
| Benzo(ghi)perylene                     | 72                     | -                       | 1-195                    | -   | 30                 |
| Fluorene                               | 72                     | -                       | 70-120                   | -   | 30                 |
| Phenanthrene                           | 69                     | -                       | 65-120                   | -   | 30                 |
| Dibenzo(a,h)anthracene                 | 73                     | -                       | 1-200                    | -   | 30                 |
| Indeno(1,2,3-cd)pyrene                 | 76                     | -                       | 1-151                    | -   | 30                 |
| Pyrene                                 | 74                     | -                       | 70-120                   | -   | 30                 |
| Pentachlorophenol                      | 56                     | -                       | 38-152                   | -   | 30                 |



Project Name: ALLSTON YARDS-BUILDING A

Lab Number:

L2127467

**Project Number:** 134110-007 Task 03

Report Date:

05/28/21

LCS LCSD %Recovery RPD Parameter %Recovery Qual %Recovery Qual Limits RPD Qual Limits

Semivolatile Organics by GC/MS-SIM - Westborough Lab Associated sample(s): 01 Batch: WG1504226-3

| Surrogate            | LCS<br>%Recovery Qual %R | LCSD<br>Recovery Qual | Acceptance<br>Criteria |
|----------------------|--------------------------|-----------------------|------------------------|
| 2-Fluorophenol       | 44                       |                       | 25-87                  |
| Phenol-d6            | 32                       |                       | 16-65                  |
| Nitrobenzene-d5      | 67                       |                       | 42-122                 |
| 2-Fluorobiphenyl     | 67                       |                       | 46-121                 |
| 2,4,6-Tribromophenol | 70                       |                       | 45-128                 |
| 4-Terphenyl-d14      | 71                       |                       | 47-138                 |



#### **PCBS**



Project Name: ALLSTON YARDS-BUILDING A Lab Number: L2127467

**Project Number:** 134110-007 Task 03 **Report Date:** 05/28/21

**SAMPLE RESULTS** 

Lab ID: Date Collected: 05/24/21 14:55

Client ID: HA16-11\_05242021 Date Received: 05/24/21 Sample Location: ALLSTON, MA Field Prep: Refer to COC

Sample Depth:

Matrix: Water Extraction Method: EPA 608.3
Analytical Method: 127,608.3 Extraction Date: 05/27/21 00:22
Analytical Date: 05/27/21 10:16 Cleanup Method: EPA 3665A

Analyst: JAW Cleanup Date: 05/27/21

Cleanup Method: EPA 3660B Cleanup Date: 05/27/21

| Parameter                                         | Result | Qualifier | Units | RL    | MDL | Dilution Factor | Column |  |  |  |
|---------------------------------------------------|--------|-----------|-------|-------|-----|-----------------|--------|--|--|--|
| Polychlorinated Biphenyls by GC - Westborough Lab |        |           |       |       |     |                 |        |  |  |  |
| Aroclor 1016                                      | ND     |           | ug/l  | 0.250 |     | 1               | Α      |  |  |  |
| Aroclor 1221                                      | ND     |           | ug/l  | 0.250 |     | 1               | Α      |  |  |  |
| Aroclor 1232                                      | ND     |           | ug/l  | 0.250 |     | 1               | Α      |  |  |  |
| Aroclor 1242                                      | ND     |           | ug/l  | 0.250 |     | 1               | Α      |  |  |  |
| Aroclor 1248                                      | ND     |           | ug/l  | 0.250 |     | 1               | Α      |  |  |  |
| Aroclor 1254                                      | ND     |           | ug/l  | 0.250 |     | 1               | Α      |  |  |  |
| Aroclor 1260                                      | ND     |           | ug/l  | 0.200 |     | 1               | Α      |  |  |  |

|                              |            |           | Acceptance |        |
|------------------------------|------------|-----------|------------|--------|
| Surrogate                    | % Recovery | Qualifier | Criteria   | Column |
| 2,4,5,6-Tetrachloro-m-xylene | 91         |           | 37-123     | В      |
| Decachlorobiphenyl           | 94         |           | 38-114     | В      |
| 2,4,5,6-Tetrachloro-m-xylene | 78         |           | 37-123     | Α      |
| Decachlorobiphenyl           | 78         |           | 38-114     | Α      |



L2127467

Lab Number:

Project Name: ALLSTON YARDS-BUILDING A

**Project Number:** 134110-007 Task 03 **Report Date:** 05/28/21

Method Blank Analysis Batch Quality Control

Analytical Method: 127,608.3 Analytical Date: 05/27/21 09:26

Analyst: JAW

Extraction Method: EPA 608.3
Extraction Date: 05/27/21 00:22
Cleanup Method: EPA 3665A
Cleanup Date: 05/27/21
Cleanup Method: EPA 3660B
Cleanup Date: 05/27/21

| Parameter                           | Result      | Qualifier   | Units     | RL        | MDL       | Column |
|-------------------------------------|-------------|-------------|-----------|-----------|-----------|--------|
| Polychlorinated Biphenyls by GC - V | Vestborougl | n Lab for s | ample(s): | 01 Batch: | WG1504221 | -1     |
| Aroclor 1016                        | ND          |             | ug/l      | 0.250     |           | Α      |
| Aroclor 1221                        | ND          |             | ug/l      | 0.250     |           | Α      |
| Aroclor 1232                        | ND          |             | ug/l      | 0.250     |           | Α      |
| Aroclor 1242                        | ND          |             | ug/l      | 0.250     |           | Α      |
| Aroclor 1248                        | ND          |             | ug/l      | 0.250     |           | Α      |
| Aroclor 1254                        | ND          |             | ug/l      | 0.250     |           | Α      |
| Aroclor 1260                        | ND          |             | ug/l      | 0.200     |           | Α      |

|                               | Acceptance         |            |        |  |  |  |  |  |  |
|-------------------------------|--------------------|------------|--------|--|--|--|--|--|--|
| Surrogate                     | %Recovery Qualifie | r Criteria | Column |  |  |  |  |  |  |
| 2.4.5.6. Totrophloro m vulono | 103                | 37-123     | Б      |  |  |  |  |  |  |
| 2,4,5,6-Tetrachloro-m-xylene  |                    | **         | В      |  |  |  |  |  |  |
| Decachlorobiphenyl            | 106                | 38-114     | В      |  |  |  |  |  |  |
| 2,4,5,6-Tetrachloro-m-xylene  | 108                | 37-123     | Α      |  |  |  |  |  |  |
| Decachlorobiphenyl            | 99                 | 38-114     | Α      |  |  |  |  |  |  |



**Project Name:** ALLSTON YARDS-BUILDING A

Lab Number:

L2127467

**Project Number:** 134110-007 Task 03 Report Date:

05/28/21

|                                      | LCS                    |                | LCSD %    |            | %Recovery |     | RPD  |        |        |
|--------------------------------------|------------------------|----------------|-----------|------------|-----------|-----|------|--------|--------|
| Parameter                            | %Recovery              | Qual           | %Recovery | Qual       | Limits    | RPD | Qual | Limits | Column |
| Polychlorinated Biphenyls by GC - We | estborough Lab Associa | ted sample(s): | 01 Batch: | WG1504221- | -2        |     |      |        |        |
| Aroclor 1016                         | 88                     |                | -         |            | 50-140    | -   |      | 36     | А      |
| Aroclor 1260                         | 85                     |                | -         |            | 8-140     | -   |      | 38     | А      |

| Surrogate                    | LCS<br>%Recovery Qual | LCSD<br>%Recovery Qual | Acceptance<br>Criteria Column |
|------------------------------|-----------------------|------------------------|-------------------------------|
| 2,4,5,6-Tetrachloro-m-xylene | 96                    |                        | 37-123 B                      |
| Decachlorobiphenyl           | 101                   |                        | 38-114 B                      |
| 2,4,5,6-Tetrachloro-m-xylene | 92                    |                        | 37-123 A                      |
| Decachlorobiphenyl           | 89                    |                        | 38-114 A                      |

#### **METALS**



Project Name: ALLSTON YARDS-BUILDING A

Project Number: 134110-007 Task 03

Lab Number: Report Date:

L2127467 05/28/21

SAMPLE RESULTS

Lab ID: L2127467-01

HA16-11\_05242021

Client ID: HA16-11\_05242 Sample Location: ALLSTON, MA

Date Collected:

05/24/21 14:55

Date Received:

05/24/21

Field Prep:

Refer to COC

Sample Depth:

Matrix: Water

| Parameter           | Result                       | Qualifier    | Units | RL      | MDL | Dilution<br>Factor | Date<br>Prepared | Date<br>Analyzed | Prep<br>Method | Analytical<br>Method | Analyst |  |
|---------------------|------------------------------|--------------|-------|---------|-----|--------------------|------------------|------------------|----------------|----------------------|---------|--|
| Total Metals - Mans | Total Metals - Mansfield Lab |              |       |         |     |                    |                  |                  |                |                      |         |  |
| Antimony, Total     | ND                           |              | mg/l  | 0.00400 |     | 1                  | 05/26/21 04:22   | 2 05/26/21 18:37 | EPA 3005A      | 3,200.8              | ВМ      |  |
| Arsenic, Total      | ND                           |              | mg/l  | 0.00100 |     | 1                  | 05/26/21 04:22   | 2 05/26/21 18:37 | EPA 3005A      | 3,200.8              | ВМ      |  |
| Cadmium, Total      | ND                           |              | mg/l  | 0.00020 |     | 1                  | 05/26/21 04:22   | 2 05/26/21 18:37 | EPA 3005A      | 3,200.8              | ВМ      |  |
| Chromium, Total     | ND                           |              | mg/l  | 0.00100 |     | 1                  | 05/26/21 04:22   | 2 05/26/21 18:37 | EPA 3005A      | 3,200.8              | ВМ      |  |
| Copper, Total       | 0.00410                      |              | mg/l  | 0.00100 |     | 1                  | 05/26/21 04:22   | 2 05/26/21 18:37 | EPA 3005A      | 3,200.8              | ВМ      |  |
| Iron, Total         | 0.492                        |              | mg/l  | 0.050   |     | 1                  | 05/26/21 04:22   | 2 05/26/21 17:16 | EPA 3005A      | 19,200.7             | SV      |  |
| Lead, Total         | 0.00109                      |              | mg/l  | 0.00100 |     | 1                  | 05/26/21 04:22   | 2 05/26/21 18:37 | EPA 3005A      | 3,200.8              | ВМ      |  |
| Mercury, Total      | ND                           |              | mg/l  | 0.00020 |     | 1                  | 05/26/21 06:5    | 5 05/26/21 14:46 | EPA 245.1      | 3,245.1              | OU      |  |
| Nickel, Total       | 0.00412                      |              | mg/l  | 0.00200 |     | 1                  | 05/26/21 04:22   | 2 05/26/21 18:37 | EPA 3005A      | 3,200.8              | ВМ      |  |
| Selenium, Total     | ND                           |              | mg/l  | 0.00500 |     | 1                  | 05/26/21 04:22   | 2 05/26/21 18:37 | EPA 3005A      | 3,200.8              | ВМ      |  |
| Silver, Total       | ND                           |              | mg/l  | 0.00040 |     | 1                  | 05/26/21 04:22   | 2 05/26/21 18:37 | EPA 3005A      | 3,200.8              | ВМ      |  |
| Zinc, Total         | ND                           |              | mg/l  | 0.01000 |     | 1                  | 05/26/21 04:22   | 2 05/26/21 18:37 | EPA 3005A      | 3,200.8              | ВМ      |  |
| Total Hardness by   | SM 2340B                     | 3 - Mansfiel | d Lab |         |     |                    |                  |                  |                |                      |         |  |
| Hardness            | 427                          |              | mg/l  | 0.660   | NA  | 1                  | 05/26/21 04:22   | 2 05/26/21 17:16 | EPA 3005A      | 19,200.7             | sv      |  |
|                     |                              |              |       |         |     |                    |                  |                  |                |                      |         |  |
| General Chemistry   | - Mansfiel                   | d Lab        |       |         |     |                    |                  |                  |                |                      |         |  |
| Chromium, Trivalent | ND                           |              | mg/l  | 0.010   |     | 1                  |                  | 05/26/21 18:37   | NA             | 107,-                |         |  |



**Project Name:** ALLSTON YARDS-BUILDING A Lab Number: L2127467 **Report Date:** 05/28/21

**Project Number:** 134110-007 Task 03

**SAMPLE RESULTS** 

Lab ID: L2127467-02 Date Collected: 05/24/21 11:20 Client ID: HA21-AY-RW Date Received: 05/24/21 Sample Location: ALLSTON, MA Field Prep: Refer to COC

Sample Depth:

Matrix: Water

| Parameter                    | Result   | Qualifier   | Units | RL      | MDL | Dilution<br>Factor | Date<br>Prepared | Date<br>Analyzed | Prep<br>Method | Analytical<br>Method | Analyst |  |
|------------------------------|----------|-------------|-------|---------|-----|--------------------|------------------|------------------|----------------|----------------------|---------|--|
| Total Metals - Mansfield Lab |          |             |       |         |     |                    |                  |                  |                |                      |         |  |
| Antimony, Total              | ND       |             | mg/l  | 0.00400 |     | 1                  | 05/26/21 04:22   | 05/26/21 18:42   | EPA 3005A      | 3,200.8              | ВМ      |  |
| Arsenic, Total               | ND       |             | mg/l  | 0.00100 |     | 1                  | 05/26/21 04:22   | 05/26/21 18:42   | EPA 3005A      | 3,200.8              | ВМ      |  |
| Cadmium, Total               | ND       |             | mg/l  | 0.00020 |     | 1                  | 05/26/21 04:22   | 05/26/21 18:42   | EPA 3005A      | 3,200.8              | ВМ      |  |
| Chromium, Total              | ND       |             | mg/l  | 0.00100 |     | 1                  | 05/26/21 04:22   | 05/26/21 18:42   | EPA 3005A      | 3,200.8              | ВМ      |  |
| Copper, Total                | 0.00192  |             | mg/l  | 0.00100 |     | 1                  | 05/26/21 04:22   | 05/26/21 18:42   | EPA 3005A      | 3,200.8              | ВМ      |  |
| Iron, Total                  | 0.553    |             | mg/l  | 0.050   |     | 1                  | 05/26/21 04:22   | 05/26/21 17:21   | EPA 3005A      | 19,200.7             | SV      |  |
| Lead, Total                  | 0.00134  |             | mg/l  | 0.00100 |     | 1                  | 05/26/21 04:22   | 05/26/21 18:42   | EPA 3005A      | 3,200.8              | ВМ      |  |
| Mercury, Total               | ND       |             | mg/l  | 0.00020 |     | 1                  | 05/26/21 06:55   | 05/26/21 14:33   | EPA 245.1      | 3,245.1              | OU      |  |
| Nickel, Total                | ND       |             | mg/l  | 0.00200 |     | 1                  | 05/26/21 04:22   | 05/26/21 18:42   | EPA 3005A      | 3,200.8              | ВМ      |  |
| Selenium, Total              | ND       |             | mg/l  | 0.00500 |     | 1                  | 05/26/21 04:22   | 05/26/21 18:42   | EPA 3005A      | 3,200.8              | ВМ      |  |
| Silver, Total                | ND       |             | mg/l  | 0.00040 |     | 1                  | 05/26/21 04:22   | 05/26/21 18:42   | EPA 3005A      | 3,200.8              | ВМ      |  |
| Zinc, Total                  | ND       |             | mg/l  | 0.01000 |     | 1                  | 05/26/21 04:22   | 05/26/21 18:42   | EPA 3005A      | 3,200.8              | ВМ      |  |
| Total Hardness by S          | SM 2340B | - Mansfield | d Lab |         |     |                    |                  |                  |                |                      |         |  |
| Hardness                     | 403      |             | mg/l  | 0.660   | NA  | 1                  | 05/26/21 04:22   | 05/27/21 09:00   | EPA 3005A      | 19,200.7             | GD      |  |



Project Name: ALLSTON YARDS-BUILDING A

**Project Number:** 134110-007 Task 03

Lab Number:

L2127467

**Report Date:** 05/28/21

#### Method Blank Analysis Batch Quality Control

| Parameter              | Result Qualifier      | Units   | RL        | MDL    | Dilution<br>Factor | Date<br>Prepared | Date<br>Analyzed | Analytical<br>Method | Analyst |
|------------------------|-----------------------|---------|-----------|--------|--------------------|------------------|------------------|----------------------|---------|
| Total Metals - Mansfie | ld Lab for sample(s): | 01-02 I | Batch: W0 | G15034 | 32-1               |                  |                  |                      |         |
| Antimony, Total        | ND                    | mg/l    | 0.00400   |        | 1                  | 05/26/21 04:22   | 05/26/21 18:16   | 3,200.8              | ВМ      |
| Arsenic, Total         | ND                    | mg/l    | 0.00100   |        | 1                  | 05/26/21 04:22   | 05/26/21 18:16   | 3,200.8              | ВМ      |
| Cadmium, Total         | ND                    | mg/l    | 0.00020   |        | 1                  | 05/26/21 04:22   | 05/26/21 18:16   | 3,200.8              | ВМ      |
| Chromium, Total        | ND                    | mg/l    | 0.00100   |        | 1                  | 05/26/21 04:22   | 05/26/21 18:16   | 3,200.8              | ВМ      |
| Copper, Total          | ND                    | mg/l    | 0.00100   |        | 1                  | 05/26/21 04:22   | 05/26/21 18:16   | 3,200.8              | ВМ      |
| Lead, Total            | ND                    | mg/l    | 0.00100   |        | 1                  | 05/26/21 04:22   | 05/26/21 18:16   | 3,200.8              | ВМ      |
| Nickel, Total          | ND                    | mg/l    | 0.00200   |        | 1                  | 05/26/21 04:22   | 05/26/21 18:16   | 3,200.8              | ВМ      |
| Selenium, Total        | ND                    | mg/l    | 0.00500   |        | 1                  | 05/26/21 04:22   | 05/26/21 18:16   | 3,200.8              | ВМ      |
| Silver, Total          | ND                    | mg/l    | 0.00040   |        | 1                  | 05/26/21 04:22   | 05/26/21 18:16   | 3,200.8              | ВМ      |
| Zinc, Total            | ND                    | mg/l    | 0.01000   |        | 1                  | 05/26/21 04:22   | 05/26/21 18:16   | 3,200.8              | ВМ      |

**Prep Information** 

Digestion Method: EPA 3005A

| Parameter                | Result Qualifier     | Units   | RL       | MDL    | Dilution<br>Factor | Date<br>Prepared | Date<br>Analyzed | Analytical<br>Method | Analyst |
|--------------------------|----------------------|---------|----------|--------|--------------------|------------------|------------------|----------------------|---------|
| Total Metals - Mansfield | d Lab for sample(s): | 01-02 E | Batch: W | G15037 | 16-1               |                  |                  |                      |         |
| Iron, Total              | ND                   | mg/l    | 0.050    |        | 1                  | 05/26/21 04:22   | 05/26/21 16:04   | 19,200.7             | SV      |

**Prep Information** 

Digestion Method: EPA 3005A

| Parameter           | Result Qualifier        | Units      | RL       | MDL   | Dilution<br>Factor | Date<br>Prepared | Date<br>Analyzed | Analytical<br>Method | Analyst |
|---------------------|-------------------------|------------|----------|-------|--------------------|------------------|------------------|----------------------|---------|
| Total Hardness by S | SM 2340B - Mansfield La | ab for sam | nple(s): | 01-02 | Batch: WG          | 1503716-1        |                  |                      |         |
| Hardness            | ND                      | mg/l       | 0.660    | NA    | 1                  | 05/26/21 04:22   | 05/27/21 08:50   | 19,200.7             | GD      |

**Prep Information** 

Digestion Method: EPA 3005A



Project Name: ALLSTON YARDS-BUILDING A

Project Number: 134110-007 Task 03

Lab Number:

L2127467

**Report Date:** 05/28/21

Method Blank Analysis Batch Quality Control

**Dilution Date Date** Analytical Method Analyst **Parameter Result Qualifier** Units RL**Factor Prepared** Analyzed MDL Total Metals - Mansfield Lab for sample(s): 01-02 Batch: WG1503717-1 Mercury, Total ND mg/l 0.00020 OU 1 3,245.1

**Prep Information** 

Digestion Method: EPA 245.1



**Project Name:** ALLSTON YARDS-BUILDING A

Project Number: 134110-007 Task 03

Lab Number: L2127467

| Parameter                                    | LCS<br>%Recovery   | LCSD<br>Qual %Recovery  | %Recovery<br>Qual Limits | RPD | Qual | RPD Limits |
|----------------------------------------------|--------------------|-------------------------|--------------------------|-----|------|------------|
| Total Metals - Mansfield Lab Associated samp | le(s): 01-02 Batch | : WG1503432-2           |                          |     |      |            |
| Antimony, Total                              | 86                 | -                       | 85-115                   | -   |      |            |
| Arsenic, Total                               | 102                | -                       | 85-115                   | -   |      |            |
| Cadmium, Total                               | 105                | -                       | 85-115                   | -   |      |            |
| Chromium, Total                              | 104                | -                       | 85-115                   | -   |      |            |
| Copper, Total                                | 105                | -                       | 85-115                   | -   |      |            |
| Lead, Total                                  | 104                | -                       | 85-115                   | -   |      |            |
| Nickel, Total                                | 100                | -                       | 85-115                   | -   |      |            |
| Selenium, Total                              | 101                | -                       | 85-115                   | -   |      |            |
| Silver, Total                                | 105                | -                       | 85-115                   | -   |      |            |
| Zinc, Total                                  | 109                | -                       | 85-115                   | -   |      |            |
| Total Metals - Mansfield Lab Associated samp | le(s): 01-02 Batch | : WG1503716-2           |                          |     |      |            |
| Iron, Total                                  | 110                | -                       | 85-115                   | -   |      |            |
| Total Hardness by SM 2340B - Mansfield Lab   | Associated sample( | s): 01-02 Batch: WG1503 | 716-2                    |     |      |            |
| Hardness                                     | 100                | -                       | 85-115                   | -   |      |            |
| Total Metals - Mansfield Lab Associated samp | le(s): 01-02 Batch | : WG1503717-2           |                          |     |      |            |
| Mercury, Total                               | 97                 | -                       | 85-115                   | -   |      |            |



#### Matrix Spike Analysis Batch Quality Control

Project Name: ALLSTON YARDS-BUILDING A

Project Number: 134110-007 Task 03

Lab Number: L2127467

| arameter                     | Native<br>Sample | MS<br>Added    | MS<br>Found | MS<br>%Recovery | Qual     | MSD<br>Found | MSD<br>%Recovery Qu | Recovery<br>ial Limits | RPD Qual   | RPD<br>Limits |
|------------------------------|------------------|----------------|-------------|-----------------|----------|--------------|---------------------|------------------------|------------|---------------|
| Total Metals - Mansfield Lab | Associated sam   | nple(s): 01-02 | QC Bate     | ch ID: WG150    | 3432-3   | QC Sam       | nple: L2127594-01   | Client ID: MS          | Sample     |               |
| Antimony, Total              | ND               | 0.5            | 0.3969      | 79              |          | -            | -                   | 70-130                 | -          | 20            |
| Arsenic, Total               | ND               | 0.12           | 0.1259      | 105             |          | -            | -                   | 70-130                 | -          | 20            |
| Cadmium, Total               | ND               | 0.051          | 0.05348     | 105             |          | -            | -                   | 70-130                 | -          | 20            |
| Chromium, Total              | ND               | 0.2            | 0.2043      | 102             |          | -            | -                   | 70-130                 | -          | 20            |
| Copper, Total                | 0.00296          | 0.25           | 0.2656      | 105             |          | -            | -                   | 70-130                 | -          | 20            |
| Lead, Total                  | ND               | 0.51           | 0.5341      | 105             |          | -            | -                   | 70-130                 | -          | 20            |
| Nickel, Total                | 0.00399          | 0.5            | 0.4953      | 98              |          | -            | -                   | 70-130                 | -          | 20            |
| Selenium, Total              | ND               | 0.12           | 0.1283      | 107             |          | -            | -                   | 70-130                 | -          | 20            |
| Silver, Total                | ND               | 0.05           | 0.05236     | 105             |          | -            | -                   | 70-130                 | -          | 20            |
| Zinc, Total                  | 0.1010           | 0.5            | 0.6481      | 109             |          | -            | -                   | 70-130                 | -          | 20            |
| otal Metals - Mansfield Lab  | Associated sam   | nple(s): 01-02 | QC Bate     | ch ID: WG150    | 3716-3   | QC Sam       | nple: L2127594-01   | Client ID: MS          | Sample     |               |
| Iron, Total                  | ND               | 1              | 1.07        | 107             |          | -            | -                   | 75-125                 | -          | 20            |
| otal Hardness by SM 2340     | B - Mansfield La | b Associated   | sample(s):  | 01-02 QC E      | Batch ID | : WG1503     | 716-3 QC Samp       | le: L2127594-01        | Client ID: | MS Samp       |
| Hardness                     | 220              | 66.2           | 279         | 89              |          | -            | -                   | 75-125                 | -          | 20            |
| Total Metals - Mansfield Lab | Associated sam   | nple(s): 01-02 | QC Bate     | ch ID: WG150    | 3717-3   | QC Sam       | nple: L2127467-02   | Client ID: HAZ         | 21-AY-RW   |               |
| Mercury, Total               | ND               | 0.005          | 0.00487     | 97              |          | -            | -                   | 70-130                 | -          | 20            |

# Lab Duplicate Analysis Batch Quality Control

**Project Name:** ALLSTON YARDS-BUILDING A

Project Number: 134110-007 Task 03

Lab Number: L2127467

| Parameter                                               | Native Sample  | Duplicate Sample       | Units       | RPD        | Qual R     | PD Limits |
|---------------------------------------------------------|----------------|------------------------|-------------|------------|------------|-----------|
| Total Metals - Mansfield Lab Associated sample(s): 01-0 | 2 QC Batch ID: | WG1503432-4 QC Sample: | L2127594-01 | Client ID: | DUP Sample |           |
| Antimony, Total                                         | ND             | 0.00523                | mg/l        | NC         |            | 20        |
| Arsenic, Total                                          | ND             | ND                     | mg/l        | NC         |            | 20        |
| Cadmium, Total                                          | ND             | ND                     | mg/l        | NC         |            | 20        |
| Chromium, Total                                         | ND             | ND                     | mg/l        | NC         |            | 20        |
| Copper, Total                                           | 0.00296        | 0.00281                | mg/l        | 5          |            | 20        |
| Lead, Total                                             | ND             | ND                     | mg/l        | NC         |            | 20        |
| Nickel, Total                                           | 0.00399        | 0.00405                | mg/l        | 2          |            | 20        |
| Selenium, Total                                         | ND             | ND                     | mg/l        | NC         |            | 20        |
| Silver, Total                                           | ND             | ND                     | mg/l        | NC         |            | 20        |
| Zinc, Total                                             | 0.1010         | 0.1005                 | mg/l        | 0          |            | 20        |
| Total Metals - Mansfield Lab Associated sample(s): 01-0 | 2 QC Batch ID: | WG1503716-4 QC Sample: | L2127594-01 | Client ID: | DUP Sample |           |
| Iron, Total                                             | ND             | ND                     | mg/l        | NC         |            | 20        |
| Fotal Metals - Mansfield Lab Associated sample(s): 01-0 | 2 QC Batch ID: | WG1503717-4 QC Sample: | L2127467-02 | Client ID: | HA21-AY-RV | V         |
| Mercury, Total                                          | ND             | ND                     | mg/l        | NC         |            | 20        |



# INORGANICS & MISCELLANEOUS



**Project Name:** ALLSTON YARDS-BUILDING A Lab Number:

L2127467

Project Number: 134110-007 Task 03

**Report Date:** 

05/28/21

#### **SAMPLE RESULTS**

Lab ID: L2127467-01

Client ID: HA16-11\_05242021

Field Prep:

05/24/21 14:55

Sample Location: ALLSTON, MA

Date Received:

Date Collected:

05/24/21 Refer to COC

Sample Depth:

Matrix:

Water

| Parameter                | Result        | Qualifier | Units | RL    | MDL | Dilution<br>Factor | Date<br>Prepared | Date<br>Analyzed | Analytical<br>Method | Analyst |
|--------------------------|---------------|-----------|-------|-------|-----|--------------------|------------------|------------------|----------------------|---------|
| General Chemistry - We   | stborough Lat | )         |       |       |     |                    |                  |                  |                      |         |
| SALINITY                 | ND            |           | SU    | 2.0   |     | 1                  | -                | 05/25/21 18:52   | 121,2520B            | AS      |
| Solids, Total Suspended  | 6.2           |           | mg/l  | 5.0   | NA  | 1                  | -                | 05/25/21 09:10   | 121,2540D            | AC      |
| Cyanide, Total           | ND            |           | mg/l  | 0.005 |     | 1                  | 05/25/21 10:55   | 05/25/21 13:45   | 121,4500CN-CE        | CR      |
| Chlorine, Total Residual | ND            |           | mg/l  | 0.02  |     | 1                  | -                | 05/25/21 05:33   | 121,4500CL-D         | AW      |
| pH (H)                   | 6.6           |           | SU    | -     | NA  | 1                  | -                | 05/28/21 06:10   | 121,4500H+-B         | KA      |
| Nitrogen, Ammonia        | ND            |           | mg/l  | 0.075 |     | 1                  | 05/25/21 17:00   | 05/25/21 21:56   | 121,4500NH3-BH       | I AT    |
| TPH, SGT-HEM             | ND            |           | mg/l  | 4.40  |     | 1.1                | 05/25/21 18:30   | 05/25/21 19:30   | 74,1664A             | TL      |
| Phenolics, Total         | ND            |           | mg/l  | 0.030 |     | 1                  | 05/26/21 07:04   | 05/26/21 12:16   | 4,420.1              | KP      |
| Chromium, Hexavalent     | ND            |           | mg/l  | 0.010 |     | 1                  | 05/25/21 04:50   | 05/25/21 05:31   | 1,7196A              | KA      |
| Anions by Ion Chromato   | graphy - West | borough l | Lab   |       |     |                    |                  |                  |                      |         |
| Chloride                 | 987.          |           | mg/l  | 25.0  |     | 50                 | -                | 05/25/21 21:15   | 44,300.0             | AT      |



Project Name: ALLSTON YARDS-BUILDING A Lab Number: L2127467

**Project Number:** 134110-007 Task 03 **Report Date:** 05/28/21

**SAMPLE RESULTS** 

Lab ID: L2127467-02 Date Collected: 05/24/21 11:20

Client ID: HA21-AY-RW Date Received: 05/24/21 Sample Location: ALLSTON, MA Field Prep: Refer to COC

Sample Depth:

Matrix: Water

| Parameter             | Result          | Qualifier | Units | RL    | MDL | Dilution<br>Factor | Date<br>Prepared | Date<br>Analyzed | Analytical<br>Method | Analyst |
|-----------------------|-----------------|-----------|-------|-------|-----|--------------------|------------------|------------------|----------------------|---------|
| General Chemistry - W | Vestborough Lab |           |       |       |     |                    |                  |                  |                      |         |
| pH (H)                | 7.0             |           | SU    | -     | NA  | 1                  | -                | 05/26/21 03:18   | 121,4500H+-B         | KA      |
| Nitrogen, Ammonia     | ND              |           | mg/l  | 0.150 |     | 2                  | 05/25/21 17:00   | 05/25/21 21:57   | 121,4500NH3-BH       | I AT    |



Project Name: ALLSTON YARDS-BUILDING A

Project Number: 134110-007 Task 03

Lab Number:

L2127467

**Report Date:** 05/28/21

#### Method Blank Analysis Batch Quality Control

| Parameter                | Result Qualific       | er Units      | RL       | MDL    | Dilution<br>Factor | Date<br>Prepared | Date<br>Analyzed | Analytical<br>Method | Analyst |
|--------------------------|-----------------------|---------------|----------|--------|--------------------|------------------|------------------|----------------------|---------|
| General Chemistry -      | Westborough Lab for s | ample(s): 01  | Batch:   | WG15   | 03163-1            |                  |                  |                      |         |
| Chromium, Hexavalent     | ND                    | mg/l          | 0.010    |        | 1                  | 05/25/21 04:50   | 05/25/21 05:29   | 1,7196A              | KA      |
| General Chemistry -      | Westborough Lab for s | ample(s): 01  | Batch:   | WG15   | 03165-1            |                  |                  |                      |         |
| Chlorine, Total Residual | ND                    | mg/l          | 0.02     |        | 1                  | -                | 05/25/21 05:33   | 121,4500CL-D         | AW      |
| General Chemistry -      | Westborough Lab for s | ample(s): 01  | Batch:   | WG15   | 03262-1            |                  |                  |                      |         |
| Solids, Total Suspended  | ND                    | mg/l          | 5.0      | NA     | 1                  | -                | 05/25/21 09:10   | 121,2540D            | AC      |
| General Chemistry -      | Westborough Lab for s | ample(s): 01  | Batch:   | WG15   | 03298-1            |                  |                  |                      |         |
| Cyanide, Total           | ND                    | mg/l          | 0.005    |        | 1                  | 05/25/21 10:55   | 05/25/21 13:23   | 121,4500CN-CE        | E CR    |
| General Chemistry -      | Westborough Lab for s | ample(s): 01  | Batch:   | WG15   | 03485-1            |                  |                  |                      |         |
| TPH, SGT-HEM             | ND                    | mg/l          | 4.00     |        | 1                  | 05/25/21 18:30   | 05/25/21 19:30   | 74,1664A             | TL      |
| General Chemistry -      | Westborough Lab for s | ample(s): 01- | 02 Bat   | ch: WO | G1503570-1         |                  |                  |                      |         |
| Nitrogen, Ammonia        | ND                    | mg/l          | 0.075    |        | 1                  | 05/25/21 17:00   | 05/25/21 21:50   | 121,4500NH3-B        | H AT    |
| Anions by Ion Chrom      | atography - Westborou | gh Lab for sa | mple(s): | 01 B   | atch: WG1          | 503669-1         |                  |                      |         |
| Chloride                 | ND                    | mg/l          | 0.500    |        | 1                  | -                | 05/25/21 17:05   | 44,300.0             | AT      |
| General Chemistry -      | Westborough Lab for s | ample(s): 01  | Batch:   | WG15   | 03784-1            |                  |                  |                      |         |
| Phenolics, Total         | ND                    | mg/l          | 0.030    |        | 1                  | 05/26/21 07:04   | 05/26/21 12:13   | 4,420.1              | KP      |



# Lab Control Sample Analysis Batch Quality Control

**Project Name:** ALLSTON YARDS-BUILDING A

Project Number: 134110-007 Task 03

Lab Number:

L2127467

Report Date:

05/28/21

| Parameter                           | LCS<br>%Recovery Qu      | LCSD<br>ıal %Recovery Qual | %Recovery<br>Limits | RPD | Qual | RPD Limits |
|-------------------------------------|--------------------------|----------------------------|---------------------|-----|------|------------|
| General Chemistry - Westborough Lab | Associated sample(s): 01 | Batch: WG1503163-2         |                     |     |      |            |
| Chromium, Hexavalent                | 101                      | -                          | 85-115              | -   |      | 20         |
| General Chemistry - Westborough Lab | Associated sample(s): 01 | Batch: WG1503165-2         |                     |     |      |            |
| Chlorine, Total Residual            | 92                       | -                          | 90-110              | -   |      |            |
| General Chemistry - Westborough Lab | Associated sample(s): 01 | Batch: WG1503262-2         |                     |     |      |            |
| Solids, Total Suspended             | 82                       |                            | 80-120              | -   |      |            |
| General Chemistry - Westborough Lab | Associated sample(s): 01 | Batch: WG1503298-2         |                     |     |      |            |
| Cyanide, Total                      | 97                       | -                          | 90-110              | -   |      |            |
| General Chemistry - Westborough Lab | Associated sample(s): 01 | Batch: WG1503485-2         |                     |     |      |            |
| TPH                                 | 74                       | -                          | 64-132              | -   |      | 34         |
| General Chemistry - Westborough Lab | Associated sample(s): 01 | -02 Batch: WG1503570-2     |                     |     |      |            |
| Nitrogen, Ammonia                   | 95                       | -                          | 80-120              | -   |      | 20         |
| General Chemistry - Westborough Lab | Associated sample(s): 01 | Batch: WG1503598-1         |                     |     |      |            |
| SALINITY                            | 99                       | -                          |                     | -   |      |            |



# Lab Control Sample Analysis Batch Quality Control

**Project Name:** ALLSTON YARDS-BUILDING A

Project Number: 134110-007 Task 03

Lab Number: L2127467

**Report Date:** 05/28/21

| Parameter                               | LCS<br>%Recovery       | LCSD<br>%Recovery       | %Recovery<br>Limits | RPD | RPD Limits |
|-----------------------------------------|------------------------|-------------------------|---------------------|-----|------------|
| Anions by Ion Chromatography - Westboro | ugh Lab Associated sar | mple(s): 01 Batch: WG1: | 503669-2            |     |            |
| Chloride                                | 100                    | -                       | 90-110              | -   |            |
| General Chemistry - Westborough Lab As  | sociated sample(s): 02 | Batch: WG1503705-1      |                     |     |            |
| рН                                      | 100                    | -                       | 99-101              | -   | 5          |
| General Chemistry - Westborough Lab As  | sociated sample(s): 01 | Batch: WG1503784-2      |                     |     |            |
| Phenolics, Total                        | 117                    | -                       | 70-130              | -   |            |
| General Chemistry - Westborough Lab As  | sociated sample(s): 01 | Batch: WG1504812-1      |                     |     |            |
| рН                                      | 100                    | -                       | 99-101              | -   | 5          |



# Matrix Spike Analysis Batch Quality Control

**Project Name:** ALLSTON YARDS-BUILDING A

Project Number: 134110-007 Task 03

Lab Number: L2127467

**Report Date:** 05/28/21

| Parameter                           | Native<br>Sample | MS<br>Added | MS<br>Found  | MS<br>%Recovery | MSD<br>Qual Found | MSD<br>%Recovery Q | Recovery<br>ual Limits | RPD Qual     | RPD<br>Limits |
|-------------------------------------|------------------|-------------|--------------|-----------------|-------------------|--------------------|------------------------|--------------|---------------|
| General Chemistry - Westb           | orough Lab Asso  | ciated samp | ole(s): 01   | QC Batch ID: \  | WG1503163-4       | QC Sample: L2127   | 7467-01 Client I       | D: HA16-11   | _05242021     |
| Chromium, Hexavalent                | ND               | 0.1         | 0.095        | 95              |                   | -                  | 85-115                 | -            | 20            |
| General Chemistry - Westb           | orough Lab Asso  | ciated samp | ole(s): 01   | QC Batch ID: \  | WG1503165-4       | QC Sample: L2127   | 7415-02 Client I       | D: MS Sam    | ple           |
| Chlorine, Total Residual            | ND               | 0.25        | 0.23         | 92              |                   | -                  | 80-120                 | -            | 20            |
| General Chemistry - Westb           | orough Lab Asso  | ciated samp | ole(s): 01   | QC Batch ID: \  | WG1503298-4       | QC Sample: L2127   | 7528-02 Client I       | D: MS Sam    | ple           |
| Cyanide, Total                      | ND               | 0.2         | 0.199        | 100             | -                 | -                  | 90-110                 | -            | 30            |
| General Chemistry - Westb           | orough Lab Asso  | ciated samp | ole(s): 01   | QC Batch ID: \  | WG1503485-4       | QC Sample: L2124   | 1668-02 Client I       | D: MS Sam    | ple           |
| TPH                                 | ND               | 20.4        | 13.7         | 67              | -                 | -                  | 64-132                 | -            | 34            |
| General Chemistry - Westb           | orough Lab Asso  | ciated samp | ole(s): 01-0 | 2 QC Batch I    | D: WG1503570-     | 4 QC Sample: L2    | 127373-06 Clie         | nt ID: MS S  | ample         |
| Nitrogen, Ammonia                   | ND               | 4           | 3.24         | 81              |                   | -                  | 80-120                 | -            | 20            |
| Anions by Ion Chromatogra<br>Sample | phy - Westborouç | gh Lab Asso | ociated san  | nple(s): 01 Q   | C Batch ID: WG    | 1503669-3 QC Sa    | ample: L2127415        | -01 Client I | D: MS         |
| Chloride                            | 36.6             | 4           | 39.9         | 85              | Q -               | -                  | 90-110                 | -            | 18            |
| General Chemistry - Westb           | orough Lab Asso  | ciated samp | ole(s): 01   | QC Batch ID: \  | WG1503784-4       | QC Sample: L2127   | 7467-01 Client I       | D: HA16-11   | _05242021     |
| Phenolics, Total                    | ND               | 0.4         | 0.38         | 96              | -                 | -                  | 70-130                 | -            | 20            |

# Lab Duplicate Analysis Batch Quality Control

Project Name: ALLSTON YARDS-BUILDING A

Project Number: 134110-007 Task 03

Lab Number:

L2127467

Report Date:

05/28/21

| Parameter                                       | Nati                  | ve S  | ample         | Duplicate Sam  | ple Unit   | s RPD          | ) Qual     | RPD Limits       |
|-------------------------------------------------|-----------------------|-------|---------------|----------------|------------|----------------|------------|------------------|
| General Chemistry - Westborough Lab A           | Associated sample(s): | 01    | QC Batch ID:  | WG1503163-3    | QC Sample: | L2127467-01    | Client ID: | HA16-11_05242021 |
| Chromium, Hexavalent                            |                       | ND    |               | ND             | mg/        | NC NC          |            | 20               |
| General Chemistry - Westborough Lab A           | Associated sample(s): | 01    | QC Batch ID:  | WG1503165-3    | QC Sample: | L2127415-01    | Client ID: | DUP Sample       |
| Chlorine, Total Residual                        |                       | ND    |               | ND             | mg/        | NC             |            | 20               |
| General Chemistry - Westborough Lab A           | Associated sample(s): | 01    | QC Batch ID:  | WG1503262-3    | QC Sample: | L2126778-01    | Client ID: | DUP Sample       |
| Solids, Total Suspended                         |                       | 29    |               | 29             | mg/        | 0              |            | 29               |
| General Chemistry - Westborough Lab A           | Associated sample(s): | 01    | QC Batch ID:  | WG1503298-3    | QC Sample: | L2127528-02    | Client ID: | DUP Sample       |
| Cyanide, Total                                  |                       | ND    |               | ND             | mg/        | NC NC          |            | 30               |
| General Chemistry - Westborough Lab A           | Associated sample(s): | 01    | QC Batch ID:  | WG1503485-3    | QC Sample: | L2124652-01    | Client ID: | DUP Sample       |
| TPH                                             |                       | ND    |               | ND             | mg/        | I NC           |            | 34               |
| General Chemistry - Westborough Lab A           | Associated sample(s): | 01-0  | 2 QC Batch    | ID: WG1503570- | -3 QC Samp | ole: L2127373- | -06 Client | ID: DUP Sample   |
| Nitrogen, Ammonia                               |                       | ND    |               | ND             | mg/        | NC NC          |            | 20               |
| General Chemistry - Westborough Lab             | Associated sample(s): | 01    | QC Batch ID:  | WG1503598-2    | QC Sample: | L2127586-01    | Client ID: | DUP Sample       |
| SALINITY                                        |                       | ND    |               | ND             | SU         | NC             |            |                  |
| Anions by Ion Chromatography - Westbo<br>Sample | orough Lab Associated | l sam | nple(s): 01 Q | C Batch ID: WG | 1503669-4  | QC Sample: L   | 2127415-0  | 1 Client ID: DUP |
| Chloride                                        |                       | 36.6  | 5             | 37.4           | mg/        | 2              |            | 18               |
| General Chemistry - Westborough Lab A           | Associated sample(s): | 02    | QC Batch ID:  | WG1503705-2    | QC Sample: | L2126836-01    | Client ID: | DUP Sample       |
| рН                                              |                       | 4.6   |               | 4.9            | SU         | 6              | Q          | 5                |



L2127467

Lab Number:

# Lab Duplicate Analysis Batch Quality Control

Project Name: ALLSTON YARDS-BUILDING A

TON YARDS-BUILDING A Batch Quality C

**Project Number:** 134110-007 Task 03 **Report Date:** 05/28/21

| Parameter                           | Native S                 | ample        | Duplicate Sam | nple Units | RPD         | RPI                | D Limits   |
|-------------------------------------|--------------------------|--------------|---------------|------------|-------------|--------------------|------------|
| General Chemistry - Westborough Lab | Associated sample(s): 01 | QC Batch ID: | WG1503784-3   | QC Sample: | L2127467-01 | Client ID: HA16-11 | I_05242021 |
| Phenolics, Total                    | ND                       | ı            | ND            | mg/l       | NC          |                    | 20         |
| General Chemistry - Westborough Lab | Associated sample(s): 01 | QC Batch ID: | WG1504812-2   | QC Sample: | L2127467-01 | Client ID: HA16-1  | I_05242021 |
| pH (H)                              | 6.6                      | i            | 6.5           | SU         | 2           |                    | 5          |



Serial\_No:05282120:48

Project Name: ALLSTON YARDS-BUILDING A

**Project Number:** 134110-007 Task 03

Lab Number: L2127467 Report Date: 05/28/21

## Sample Receipt and Container Information

YES

Were project specific reporting limits specified?

**Cooler Information** 

**Custody Seal** Cooler

Α Absent В Absent

| Container Info | ormation                      |        | Initial | Final | Temp  |      |        | Frozen    |                                                                                                                                                                            |
|----------------|-------------------------------|--------|---------|-------|-------|------|--------|-----------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Container ID   | Container Type                | Cooler | рН      | рН    | deg C | Pres | Seal   | Date/Time | Analysis(*)                                                                                                                                                                |
| L2127467-01A   | Vial Na2S2O3 preserved        | Α      | NA      |       | 3.5   | Υ    | Absent |           | 624.1-RGP(7)                                                                                                                                                               |
| L2127467-01B   | Vial Na2S2O3 preserved        | Α      | NA      |       | 3.5   | Υ    | Absent |           | 624.1-RGP(7)                                                                                                                                                               |
| L2127467-01C   | Vial Na2S2O3 preserved        | Α      | NA      |       | 3.5   | Υ    | Absent |           | 624.1-RGP(7)                                                                                                                                                               |
| L2127467-01D   | Vial Na2S2O3 preserved        | Α      | NA      |       | 3.5   | Υ    | Absent |           | 624.1-SIM-RGP(7)                                                                                                                                                           |
| L2127467-01E   | Vial Na2S2O3 preserved        | Α      | NA      |       | 3.5   | Υ    | Absent |           | 624.1-SIM-RGP(7)                                                                                                                                                           |
| L2127467-01F   | Vial Na2S2O3 preserved        | Α      | NA      |       | 3.5   | Υ    | Absent |           | 624.1-SIM-RGP(7)                                                                                                                                                           |
| L2127467-01G   | Vial Na2S2O3 preserved        | Α      | NA      |       | 3.5   | Υ    | Absent |           | 504(14)                                                                                                                                                                    |
| L2127467-01H   | Vial Na2S2O3 preserved        | Α      | NA      |       | 3.5   | Υ    | Absent |           | 504(14)                                                                                                                                                                    |
| L2127467-01I   | Amber 120ml unpreserved       | Α      | 7       | 7     | 3.5   | Υ    | Absent |           | SALINITY(28)                                                                                                                                                               |
| L2127467-01J   | Plastic 250ml NaOH preserved  | Α      | >12     | >12   | 3.5   | Υ    | Absent |           | TCN-4500(14)                                                                                                                                                               |
| L2127467-01K   | Plastic 250ml HNO3 preserved  | Α      | <2      | <2    | 3.5   | Υ    | Absent |           | HOLD-METAL-DISSOLVED(180)                                                                                                                                                  |
| L2127467-01L   | Plastic 250ml HNO3 preserved  | Α      | <2      | <2    | 3.5   | Y    | Absent |           | CD-2008T(180),NI-2008T(180),ZN-2008T(180),HARDU(180),CU-2008T(180),FE-UI(180),HG-U(28),SE-2008T(180),AG-2008T(180),AS-2008T(180),CR-2008T(180),PB-2008T(180),SB-2008T(180) |
| L2127467-01M   | Plastic 500ml H2SO4 preserved | Α      | <2      | <2    | 3.5   | Υ    | Absent |           | NH3-4500(28)                                                                                                                                                               |
| L2127467-01N   | Plastic 950ml unpreserved     | Α      | 7       | 7     | 3.5   | Υ    | Absent |           | HEXCR-7196(1),CL-300(28),TRC-4500(1),PH-4500(.01)                                                                                                                          |
| L2127467-01O   | Plastic 950ml unpreserved     | Α      | 7       | 7     | 3.5   | Υ    | Absent |           | TSS-2540(7)                                                                                                                                                                |
| L2127467-01P   | Amber 950ml H2SO4 preserved   | Α      | <2      | <2    | 3.5   | Υ    | Absent |           | TPHENOL-420(28)                                                                                                                                                            |
| L2127467-01Q   | Amber 1000ml Na2S2O3          | Α      | 7       | 7     | 3.5   | Υ    | Absent |           | 625.1-RGP(7),625.1-SIM-RGP(7)                                                                                                                                              |
| L2127467-01R   | Amber 1000ml Na2S2O3          | Α      | 7       | 7     | 3.5   | Υ    | Absent |           | 625.1-RGP(7),625.1-SIM-RGP(7)                                                                                                                                              |
| L2127467-01S   | Amber 1000ml Na2S2O3          | Α      | 7       | 7     | 3.5   | Υ    | Absent |           | PCB-608.3(365)                                                                                                                                                             |
| L2127467-01T   | Amber 1000ml Na2S2O3          | Α      | 7       | 7     | 3.5   | Υ    | Absent |           | PCB-608.3(365)                                                                                                                                                             |



Serial\_No:05282120:48

Lab Number: L2127467

Report Date: 05/28/21

**Project Name:** ALLSTON YARDS-BUILDING A

**Project Number:** 134110-007 Task 03

| Container Info | ormation                      |        | Initial | Final | Temp  |      |        | Frozen    |                                                                                                                                                                                            |
|----------------|-------------------------------|--------|---------|-------|-------|------|--------|-----------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Container ID   | Container Type                | Cooler | pН      | рН    | deg C | Pres | Seal   | Date/Time | Analysis(*)                                                                                                                                                                                |
| L2127467-01U   | Amber 1000ml Na2S2O3          | Α      | 7       | 7     | 3.5   | Υ    | Absent |           | PCB-608.3(365)                                                                                                                                                                             |
| L2127467-01V   | Amber 1000ml Na2S2O3          | Α      | 7       | 7     | 3.5   | Υ    | Absent |           | PCB-608.3(365)                                                                                                                                                                             |
| L2127467-01W   | Amber 1000ml HCl preserved    | Α      | NA      |       | 3.5   | Υ    | Absent |           | TPH-1664(28)                                                                                                                                                                               |
| L2127467-01X   | Amber 1000ml HCl preserved    | Α      | NA      |       | 3.5   | Υ    | Absent |           | TPH-1664(28)                                                                                                                                                                               |
| L2127467-02A   | Plastic 60ml unpreserved      | В      | 7       | 7     | 4.2   | Υ    | Absent |           | PH-4500(.01)                                                                                                                                                                               |
| L2127467-02B   | Plastic 250ml HNO3 preserved  | В      | <2      | <2    | 4.2   | Υ    | Absent |           | HOLD-METAL-DISSOLVED(180)                                                                                                                                                                  |
| L2127467-02C   | Plastic 250ml HNO3 preserved  | В      | <2      | <2    | 4.2   | Υ    | Absent |           | CD-2008T(180),NI-2008T(180),ZN-<br>2008T(180),FE-UI(180),HARDU(180),CU-<br>2008T(180),AG-2008T(180),SE-2008T(180),AS-<br>2008T(180),HG-U(28),SB-2008T(180),PB-<br>2008T(180),CR-2008T(180) |
| L2127467-02D   | Plastic 500ml H2SO4 preserved | В      | <2      | <2    | 4.2   | Υ    | Absent |           | NH3-4500(28)                                                                                                                                                                               |



**Project Name:** Lab Number: ALLSTON YARDS-BUILDING A L2127467 134110-007 Task 03 **Report Date: Project Number:** 05/28/21

#### GLOSSARY

#### Acronyms

LOD

MS

DL - Detection Limit: This value represents the level to which target analyte concentrations are reported as estimated values, when those target analyte concentrations are quantified below the limit of quantitation (LOQ). The DL includes any adjustments from dilutions, concentrations or moisture content, where applicable. (DoD report formats only.)

**EDL** - Estimated Detection Limit: This value represents the level to which target analyte concentrations are reported as estimated values, when those target analyte concentrations are quantified below the reporting limit (RL). The EDL includes any adjustments from dilutions, concentrations or moisture content, where applicable. The use of EDLs is specific to the analysis

of PAHs using Solid-Phase Microextraction (SPME).

**EMPC** - Estimated Maximum Possible Concentration: The concentration that results from the signal present at the retention time of an analyte when the ions meet all of the identification criteria except the ion abundance ratio criteria. An EMPC is a worst-case estimate of the concentration.

**EPA** Environmental Protection Agency.

LCS - Laboratory Control Sample: A sample matrix, free from the analytes of interest, spiked with verified known amounts of

analytes or a material containing known and verified amounts of analytes.

LCSD Laboratory Control Sample Duplicate: Refer to LCS.

LFB - Laboratory Fortified Blank: A sample matrix, free from the analytes of interest, spiked with verified known amounts of analytes or a material containing known and verified amounts of analytes.

- Limit of Detection: This value represents the level to which a target analyte can reliably be detected for a specific analyte in a specific matrix by a specific method. The LOD includes any adjustments from dilutions, concentrations or moisture content,

where applicable. (DoD report formats only.)

LOQ - Limit of Quantitation: The value at which an instrument can accurately measure an analyte at a specific concentration. The LOQ includes any adjustments from dilutions, concentrations or moisture content, where applicable. (DoD report formats

Limit of Quantitation: The value at which an instrument can accurately measure an analyte at a specific concentration. The LOQ includes any adjustments from dilutions, concentrations or moisture content, where applicable. (DoD report formats

MDI - Method Detection Limit: This value represents the level to which target analyte concentrations are reported as estimated values, when those target analyte concentrations are quantified below the reporting limit (RL). The MDL includes any adjustments from dilutions, concentrations or moisture content, where applicable.

> - Matrix Spike Sample: A sample prepared by adding a known mass of target analyte to a specified amount of matrix sample for which an independent estimate of target analyte concentration is available. For Method 332.0, the spike recovery is calculated

using the native concentration, including estimated values.

MSD - Matrix Spike Sample Duplicate: Refer to MS.

NA - Not Applicable.

NC - Not Calculated: Term is utilized when one or more of the results utilized in the calculation are non-detect at the parameter's

reporting unit.

NDPA/DPA - N-Nitrosodiphenylamine/Diphenylamine.

NI - Not Ignitable.

NP - Non-Plastic: Term is utilized for the analysis of Atterberg Limits in soil.

NR - No Results: Term is utilized when 'No Target Compounds Requested' is reported for the analysis of Volatile or Semivolatile

Organic TIC only requests.

RL - Reporting Limit: The value at which an instrument can accurately measure an analyte at a specific concentration. The RL

includes any adjustments from dilutions, concentrations or moisture content, where applicable.

RPD - Relative Percent Difference: The results from matrix and/or matrix spike duplicates are primarily designed to assess the precision of analytical results in a given matrix and are expressed as relative percent difference (RPD). Values which are less

than five times the reporting limit for any individual parameter are evaluated by utilizing the absolute difference between the

values; although the RPD value will be provided in the report.

SRM - Standard Reference Material: A reference sample of a known or certified value that is of the same or similar matrix as the

associated field samples.

STLP - Semi-dynamic Tank Leaching Procedure per EPA Method 1315.

TEF - Toxic Equivalency Factors: The values assigned to each dioxin and furan to evaluate their toxicity relative to 2,3,7,8-TCDD.

TEO - Toxic Equivalent: The measure of a sample's toxicity derived by multiplying each dioxin and furan by its corresponding TEF

and then summing the resulting values.

TIC - Tentatively Identified Compound: A compound that has been identified to be present and is not part of the target compound list (TCL) for the method and/or program. All TICs are qualitatively identified and reported as estimated concentrations.

Report Format: Data Usability Report



Project Name:ALLSTON YARDS-BUILDING ALab Number:L2127467Project Number:134110-007 Task 03Report Date:05/28/21

#### **Footnotes**

1 - The reference for this analyte should be considered modified since this analyte is absent from the target analyte list of the original method.

#### **Terms**

Analytical Method: Both the document from which the method originates and the analytical reference method. (Example: EPA 8260B is shown as 1,8260B.) The codes for the reference method documents are provided in the References section of the Addendum.

Difference: With respect to Total Oxidizable Precursor (TOP) Assay analysis, the difference is defined as the Post-Treatment value minus the Pre-Treatment value.

Final pH: As it pertains to Sample Receipt & Container Information section of the report, Final pH reflects pH of container determined after adjustment at the laboratory, if applicable. If no adjustment required, value reflects Initial pH.

Frozen Date/Time: With respect to Volatile Organics in soil, Frozen Date/Time reflects the date/time at which associated Reagent Water-preserved vials were initially frozen. Note: If frozen date/time is beyond 48 hours from sample collection, value will be reflected in 'bold'. Initial pH: As it pertains to Sample Receipt & Container Information section of the report, Initial pH reflects pH of container determined upon receipt, if applicable.

PAH Total: With respect to Alkylated PAH analyses, the 'PAHs, Total' result is defined as the summation of results for all or a subset of the following compounds: Naphthalene, C1-C4 Naphthalenes, 2-Methylnaphthalene, 1-Methylnaphthalene, Biphenyl, Acenaphthylene, Acenaphthene, Fluorene, C1-C3 Fluorenes, Phenanthrene, C1-C4 Phenanthrenes/Anthracenes, Anthracene, Fluoranthene, Pyrene, C1-C4 Fluoranthenes/Pyrenes, Benz(a)anthracene, Chrysene, C1-C4 Chrysenes, Benzo(b)fluoranthene, Benzo(j)+(k)fluoranthene, Benzo(e)pyrene, Benzo(a)pyrene, Perylene, Indeno(1,2,3-cd)pyrene, Dibenz(ah)+(ac)anthracene, Benzo(g,h,i)perylene. If a 'Total' result is requested, the results of its individual components will also be reported.

PFAS Total: With respect to PFAS analyses, the 'PFAS, Total (5)' result is defined as the summation of results for: PFHpA, PFHxS, PFOA, PFNA and PFOS. In addition, the 'PFAS, Total (6)' result is defined as the summation of results at or above the RL for: PFHpA, PFHxS, PFOA, PFNA, PFDA and PFOS. (Note: 'PFAS, Total (6)' is applicable to MassDEP DW compliance analysis only.). If a "Total' result is requested, the results of its individual components will also be reported.

The target compound Chlordane (CAS No. 57-74-9) is reported for GC ECD analyses. Per EPA, this compound "refers to a mixture of chlordane isomers, other chlorinated hydrocarbons and numerous other components." (Reference: USEPA Toxicological Review of Chlordane, In Support of Summary Information on the Integrated Risk Information System (IRIS), December 1997.)

Total: With respect to Organic analyses, a 'Total' result is defined as the summation of results for individual isomers or Aroclors. If a 'Total' result is requested, the results of its individual components will also be reported. This is applicable to 'Total' results for methods 8260, 8081 and 8082.

#### Data Qualifiers

- A Spectra identified as "Aldol Condensates" are byproducts of the extraction/concentration procedures when acetone is introduced in the process.
- The analyte was detected above the reporting limit in the associated method blank. Flag only applies to associated field samples that have detectable concentrations of the analyte at less than ten times (10x) the concentration found in the blank. For MCP-related projects, flag only applies to associated field samples that have detectable concentrations of the analyte at less than ten times (10x) the concentration found in the blank. For DOD-related projects, flag only applies to associated field samples that have detectable concentrations of the analyte at less than ten times (10x) the concentration found in the blank AND the analyte was detected above one-half the reporting limit (or above the reporting limit for common lab contaminants) in the associated method blank. For NJ-Air-related projects, flag only applies to associated field samples that have detectable concentrations of the analyte above the reporting limit. For NJ-related projects (excluding Air), flag only applies to associated field samples that have detectable concentrations of the analyte, which was detected above the reporting limit in the associated method blank or above five times the reporting limit for common lab contaminants (Phthalates, Acetone, Methylene Chloride, 2-Butanone).
- Co-elution: The target analyte co-elutes with a known lab standard (i.e. surrogate, internal standards, etc.) for co-extracted analyses.
- Concentration of analyte was quantified from diluted analysis. Flag only applies to field samples that have detectable concentrations of the analyte.
- E Concentration of analyte exceeds the range of the calibration curve and/or linear range of the instrument.
- F The ratio of quantifier ion response to qualifier ion response falls outside of the laboratory criteria. Results are considered to be an estimated maximum concentration.
- G The concentration may be biased high due to matrix interferences (i.e, co-elution) with non-target compound(s). The result should be considered estimated.
- H The analysis of pH was performed beyond the regulatory-required holding time of 15 minutes from the time of sample collection.
- I The lower value for the two columns has been reported due to obvious interference.
- J Estimated value. This represents an estimated concentration for Tentatively Identified Compounds (TICs).
- M Reporting Limit (RL) exceeds the MCP CAM Reporting Limit for this analyte.
- **ND** Not detected at the reporting limit (RL) for the sample.
- NJ Presumptive evidence of compound. This represents an estimated concentration for Tentatively Identified Compounds (TICs), where

Report Format: Data Usability Report



Project Name:ALLSTON YARDS-BUILDING ALab Number:L2127467Project Number:134110-007 Task 03Report Date:05/28/21

#### **Data Qualifiers**

the identification is based on a mass spectral library search.

- P The RPD between the results for the two columns exceeds the method-specified criteria.
- Q -The quality control sample exceeds the associated acceptance criteria. For DOD-related projects, LCS and/or Continuing Calibration Standard exceedences are also qualified on all associated sample results. Note: This flag is not applicable for matrix spike recoveries when the sample concentration is greater than 4x the spike added or for batch duplicate RPD when the sample concentrations are less than 5x the RL. (Metals only.)
- **R** Analytical results are from sample re-analysis.
- **RE** Analytical results are from sample re-extraction.
- S Analytical results are from modified screening analysis.

Report Format: Data Usability Report



Project Name: ALLSTON YARDS-BUILDING A Lab Number: L2127467

**Project Number:** 134110-007 Task 03 **Report Date:** 05/28/21

#### **REFERENCES**

Test Methods for Evaluating Solid Waste: Physical/Chemical Methods. EPA SW-846. Third Edition. Updates I - VI, 2018.

- Methods for the Determination of Metals in Environmental Samples, Supplement I. EPA/600/R-94/111. May 1994.
- 4 Methods for Chemical Analysis of Water and Wastes. EPA 600/4-79-020. Revised March 1983.
- Methods for the Determination of Organic Compounds in Finished Drinking Water and Raw Source Water. EPA/600/4-88/039, Revised July 1991.
- 19 Inductively Coupled Plasma Atomic Emission Spectrometric Method for Trace Element Analysis of Water and Wastes. Appendix C, Part 136, 40 CFR (Code of Federal Regulations). July 1, 1999 edition.
- Methods for the Determination of Inorganic Substances in Environmental Samples, EPA/600/R-93/100, August 1993.
- Method 1664,Revision A: N-Hexane Extractable Material (HEM; Oil & Grease) and Silica Gel Treated N-Hexane Extractable Material (SGT-HEM; Non-polar Material) by Extraction and Gravimetry, EPA-821-R-98-002, February 1999.
- 107 Alpha Analytical In-house calculation method.
- 121 Standard Methods for the Examination of Water and Wastewater. APHA-AWWA-WEF. Standard Methods Online.
- 127 Method 608.3: Organochlorine Pesticides and PCBs by GC/HSD, EPA 821-R-16-009, December 2016.
- 128 Method 624.1: Purgeables by GC/MS, EPA 821-R-16-008, December 2016.
- Method 625.1: Base/Neutrals and Acids by GC/MS, EPA 821-R-16-007, December 2016.

#### **LIMITATION OF LIABILITIES**

Alpha Analytical performs services with reasonable care and diligence normal to the analytical testing laboratory industry. In the event of an error, the sole and exclusive responsibility of Alpha Analytical shall be to re-perform the work at it's own expense. In no event shall Alpha Analytical be held liable for any incidental, consequential or special damages, including but not limited to, damages in any way connected with the use of, interpretation of, information or analysis provided by Alpha Analytical.

We strongly urge our clients to comply with EPA protocol regarding sample volume, preservation, cooling, containers, sampling procedures, holding time and splitting of samples in the field.



Serial\_No:05282120:48

Alpha Analytical, Inc.
Facility: Company-wide
Department: Quality Assurance

Department: Quality Assurance

Title: Certificate/Approval Program Summary

ID No.:17873

Revision 19 Published Date: 4/2/2021 1:14:23 PM

Page 1 of 1

### **Certification Information**

#### The following analytes are not included in our Primary NELAP Scope of Accreditation:

#### Westborough Facility

EPA 624/624.1: m/p-xylene, o-xylene, Naphthalene

EPA 625/625.1: alpha-Terpineol

EPA 8260C/8260D: NPW: 1,2,4,5-Tetramethylbenzene; 4-Ethyltoluene, Azobenzene; SCM: lodomethane (methyl iodide), 1,2,4,5-Tetramethylbenzene; 4-Ethyltoluene, Azobenzene; 1,2,4,5-Tetramethylbenzene; 4-Ethyltoluene, Azobenzene; 1,2,4,5-Tetramethylbenzene; 1,2,4,

4-Ethyltoluene.

**EPA 8270D/8270E:** NPW: Dimethylnaphthalene,1,4-Diphenylhydrazine, alpha-Terpineol; SCM: Dimethylnaphthalene,1,4-Diphenylhydrazine.

SM4500: NPW: Amenable Cyanide; SCM: Total Phosphorus, TKN, NO2, NO3.

### Mansfield Facility

SM 2540D: TSS

**EPA 8082A:** NPW: PCB: 1, 5, 31, 87,101, 110, 141, 151, 153, 180, 183, 187.

EPA TO-15: Halothane, 2,4,4-Trimethyl-2-pentene, 2,4,4-Trimethyl-1-pentene, Thiophene, 2-Methylthiophene,

3-Methylthiophene, 2-Ethylthiophene, 1,2,3-Trimethylbenzene, Indan, Indene, 1,2,4,5-Tetramethylbenzene, Benzothiophene, 1-Methylnaphthalene.

Biological Tissue Matrix: EPA 3050B

#### The following analytes are included in our Massachusetts DEP Scope of Accreditation

#### Westborough Facility:

#### **Drinking Water**

EPA 300.0: Chloride, Nitrate-N, Fluoride, Sulfate; EPA 353.2: Nitrate-N, Nitrite-N; SM4500NO3-F: Nitrate-N, Nitrite-N; SM4500F-C, SM4500CN-CE,

EPA 180.1, SM2130B, SM4500CI-D, SM2320B, SM2540C, SM4500H-B, SM4500NO2-B

EPA 332: Perchlorate; EPA 524.2: THMs and VOCs; EPA 504.1: EDB, DBCP.

Microbiology: SM9215B; SM9223-P/A, SM9223B-Colilert-QT,SM9222D.

#### Non-Potable Water

SM4500H,B, EPA 120.1, SM2510B, SM2540C, SM2320B, SM4500CL-E, SM4500F-BC, SM4500NH3-BH: Ammonia-N and Kjeldahl-N, EPA 350.1: Ammonia-N, LACHAT 10-107-06-1-B: Ammonia-N, EPA 351.1, SM4500NO3-F, EPA 353.2: Nitrate-N, SM4500P-E, SM4500P-B, E, SM4500SO4-E, SM5220D, EPA 410.4, SM5210B, SM5310C, SM4500CL-D, EPA 1664, EPA 420.1, SM4500-CN-CE, SM2540D, EPA 300: Chloride, Sulfate, Nitrate. EPA 624.1: Volatile Halocarbons & Aromatics.

EPA 608.3: Chlordane, Toxaphene, Aldrin, alpha-BHC, beta-BHC, gamma-BHC, delta-BHC, Dieldrin, DDD, DDE, DDT, Endosulfan II, Endosulfan III, Endosulfan sulfate, Endrin, Endrin Aldehyde, Heptachlor, Heptachlor Epoxide, PCBs

EPA 625.1: SVOC (Acid/Base/Neutral Extractables), EPA 600/4-81-045: PCB-Oil.

Microbiology: SM9223B-Colilert-QT; Enterolert-QT, SM9221E, EPA 1600, EPA 1603, SM9222D.

### Mansfield Facility:

#### **Drinking Water**

EPA 200.7: Al, Ba, Cd, Cr, Cu, Fe, Mn, Ni, Na, Ag, Ca, Zn. EPA 200.8: Al, Sb, As, Ba, Be, Cd, Cr, Cu, Pb, Mn, Ni, Se, Ag, TL, Zn. EPA 245.1 Hg. EPA 522, EPA 537.1.

#### Non-Potable Water

EPA 200.7: Al, Sb, As, Be, Cd, Ca, Cr, Co, Cu, Fe, Pb, Mg, Mn, Mo, Ni, K, Se, Ag, Na, Sr, TL, Ti, V, Zn.

EPA 200.8: Al, Sb, As, Be, Cd, Cr, Cu, Fe, Pb, Mn, Ni, K, Se, Ag, Na, TL, Zn.

EPA 245.1 Hg.

SM2340B

For a complete listing of analytes and methods, please contact your Alpha Project Manager.

Document Type: Form

Pre-Qualtrax Document ID: 08-113

| Дирна                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | CHAIN OF                                            | Service Centers<br>Brewer, ME 04412<br>07430 Alberry, NY 1 |              | 03901 Mahwah, NJ | Pag                           | n 1<br>f 1            | 10       |               | Rec                  |                                   | A LI                                                |               | Sept.                                          | -      | 101         | 11         | 2 1        | 18                        |     | 1        |                                                     | ALPHA Job # /                                                                                                                                     |     |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------|------------------------------------------------------------|--------------|------------------|-------------------------------|-----------------------|----------|---------------|----------------------|-----------------------------------|-----------------------------------------------------|---------------|------------------------------------------------|--------|-------------|------------|------------|---------------------------|-----|----------|-----------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------|-----|
| The same of the sa | CUSTODY                                             | Tonawanda, NY 14150                                        |              | 43               |                               |                       | 100      | in            | Lab                  |                                   |                                                     |               |                                                | )      | 12          | 71         | 21         |                           |     |          |                                                     | ALPHA JOB # L 212746                                                                                                                              | 0   |
| Westborough, MA 01581<br>6 Walkup Dr.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Mansfield, MA 02048<br>320 Forbes Blvd              | Project Information                                        |              | 51 -00           | No. of Lot                    | SHIN                  | Deli     | verable       | s                    |                                   |                                                     | 70.0          |                                                |        |             |            |            |                           | 100 |          |                                                     | Billing Information                                                                                                                               |     |
| TEL: 508-898-9220<br>FAX: 508-898-9193                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | TEL: 508-822-9300<br>FAX: 508-822-3288              | Project Name:                                              | Aliston Yard | s - Building A   |                               |                       | 1        | Emai          | il                   |                                   |                                                     | Fax           |                                                |        |             |            |            |                           |     |          |                                                     |                                                                                                                                                   |     |
| PAX SUPERIORISA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | LHW 200-075-3500                                    | Project Location:                                          | Allston, MA  |                  |                               |                       | ] [      | EQui          | S (1 F               | File)                             | 1                                                   | EQuis         | 4 File                                         | 1)     |             |            |            |                           |     |          |                                                     | PO #                                                                                                                                              |     |
| H&A Information                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                     | Project #                                                  | 134110-007   | Phase 007 Tas    | sk 03                         |                       | 10       | Othe          | t:                   |                                   |                                                     |               |                                                |        |             |            |            |                           |     |          |                                                     |                                                                                                                                                   |     |
| H&A Client: Bozzuto                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Development Company                                 | (Use Project name                                          | as Project   |                  |                               |                       | Reg      | ulatory       | Requ                 | ulremen                           | ts (Pro                                             | gram/Cr       | iteria)                                        | -      | MIT         | 100        | 5          |                           | DN  | -        | 100                                                 | Disposal Site Information                                                                                                                         |     |
| H&A Address 465 Med                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | ford St                                             | Project Manager:                                           | J. Siegel/C. | Worthy           |                               |                       | MA       | NPE           | DES                  | RGP                               | T                                                   |               |                                                |        |             |            |            |                           |     |          |                                                     | Please identify below location of applicable dispos                                                                                               | iai |
| Boston,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | MA 02129-1400                                       | ALPHAQuote #:                                              |              |                  |                               |                       | 1        |               |                      |                                   |                                                     |               |                                                |        |             |            |            |                           |     |          |                                                     | facilities.                                                                                                                                       |     |
| H&A Phone: 617-886-                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 7400                                                | Turn-Around Time                                           |              |                  | COLUMN TO STATE OF THE PARTY. | ALTERNATION OF        |          |               |                      |                                   |                                                     |               |                                                |        |             |            |            |                           |     |          |                                                     | Disposal Facility:                                                                                                                                |     |
| H&A Fax:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                     | Standard                                                   | 1 1          | Due Date         |                               |                       | 1        |               |                      |                                   |                                                     |               |                                                |        |             |            |            |                           |     |          |                                                     | L NI DNA                                                                                                                                          |     |
| H&A Email: cmckenz                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | rie@haleyaldrich.com                                | (only if pre approved                                      | )            | # of Days        | 5 Day                         |                       | Note     | : Select      | State f              | from me                           | nu & ider                                           | nify criter   | ria.                                           |        |             |            |            |                           |     |          |                                                     | Other:                                                                                                                                            |     |
| These samples have b                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | een previously analyzed                             | by Alpha [                                                 |              |                  |                               |                       | AN/      | ALYSIS        |                      |                                   |                                                     |               |                                                |        |             |            |            |                           |     |          |                                                     | Sample Filtration                                                                                                                                 |     |
| Other project specific                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | requirements/commer                                 | nts:                                                       |              |                  |                               |                       |          | T             | cane                 | T                                 | T <sub>m</sub>                                      |               | 50                                             | Т      |             |            | Т          |                           |     |          |                                                     |                                                                                                                                                   |     |
| Analyze using the EP                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | JLL 2017 RGP SUITE, N<br>A 2017 RGP Approved        |                                                            |              |                  |                               |                       | TRC-4500 | TCN-4500, 504 | 8                    | HEXCR-3500, Trivalent<br>Chromium | 25.1 TCL (also including<br>Diethylhexylphthalate), | 625.1 TCL-SIM | g. As. Cd. Cr.<br>, Se, Zn. Fe,                | 1      | Ammonia     | 550        | PCB-608,   | "HOLD DISSOLVED<br>METALS | _   | App.     |                                                     | Done Lab to do  Expervation Lab to do                                                                                                             |     |
| Please specify Metals                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | or TAL,                                             |                                                            |              |                  |                               |                       | o.       | 45            | io                   | 350                               | ex (a                                               | E             | S. A                                           | CL-300 | E .         | hardness   | 64.<br>EN. | E E                       | F.  | Salinity |                                                     |                                                                                                                                                   |     |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                     |                                                            | ,            |                  |                               |                       | -25      | S             | 25                   | 8 0                               | 무를                                                  | 325           | 鲁品                                             | 1      | <           | E.         | 19 1       | 2                         |     | (TE)     |                                                     | (Please Specify below)                                                                                                                            |     |
| ALPHA Lab ID<br>(Lab Use Only)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Sample                                              | e ID                                                       | Date         | llection<br>Time | Sample<br>Matrix              | Sampler's<br>Initials | TSS      | N.A.          | 624.1, 624.1-SIM for | HEX                               | 625.1<br>Diet                                       |               | Total Metals: Ag, As,<br>Cu, Ni, Pb, Sb, Se, J |        |             |            | TP         | :                         |     |          |                                                     | Sample Specific Comments                                                                                                                          |     |
| 27467-01                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | HA16-11052                                          | 142021                                                     | 5/24/20      |                  | AQ                            | MTD                   | X        | X             | Х                    | X                                 | х                                                   | х             | x                                              | Х      | Х           | х          | х          | Х                         | х   | X        |                                                     | HOLD diss metals sample                                                                                                                           | 26  |
| -02                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | HA21-AY-RW                                          |                                                            | 5/24/201     | 1720             | AQ                            | MID                   |          |               |                      |                                   |                                                     |               | х                                              |        | х           | х          |            | x                         | X   |          |                                                     | HOLD diss metals sample 4                                                                                                                         |     |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                     |                                                            |              | 288              |                               |                       |          |               |                      |                                   |                                                     |               | -                                              |        |             |            |            |                           |     |          |                                                     |                                                                                                                                                   |     |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                     |                                                            |              |                  |                               |                       |          |               |                      |                                   |                                                     |               |                                                |        |             |            |            |                           |     |          |                                                     | Receiving                                                                                                                                         |     |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                     |                                                            |              |                  |                               |                       |          |               |                      |                                   |                                                     |               |                                                |        |             |            |            |                           |     |          |                                                     | Sourple PH.                                                                                                                                       |     |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                     |                                                            |              |                  |                               |                       | Г        |               |                      |                                   |                                                     |               |                                                |        |             |            |            |                           |     |          |                                                     | 7.19                                                                                                                                              |     |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                     |                                                            |              |                  |                               |                       |          |               |                      |                                   |                                                     |               |                                                |        |             |            |            |                           |     |          |                                                     |                                                                                                                                                   |     |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                     |                                                            |              |                  |                               |                       |          |               |                      |                                   |                                                     |               |                                                |        |             |            |            |                           |     |          |                                                     |                                                                                                                                                   |     |
| U (RICO-D                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                     |                                                            |              |                  |                               |                       |          |               |                      |                                   |                                                     |               |                                                |        |             |            | П          |                           |     |          |                                                     |                                                                                                                                                   |     |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                     |                                                            |              |                  |                               |                       |          | 1             | . ,                  |                                   | 1                                                   |               |                                                |        |             |            |            |                           |     |          |                                                     | 30 TOTAL 2 Coolers                                                                                                                                | •   |
| Preservative Code:<br>A = None<br>B = HCI<br>C = HNO <sub>2</sub>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Container Code P = Plastic A = Amber Glass V = Vial | Westboro: Certifica<br>Mansfield: Certifica                |              |                  | c                             | Container Type        | P        |               | M                    | P                                 | AND A                                               | AV            | 7                                              | P      | P           | ۴          | A          | P                         |     | Α        |                                                     | Please print clearly, legibly and completely.<br>Samples can not be logged in and turnaround<br>time clock will not start until any ambiguities a |     |
| D = H <sub>2</sub> SO <sub>4</sub>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | G = Glass                                           |                                                            |              |                  |                               | Preservative          | A        |               | H                    | A                                 | 14                                                  |               | C                                              | A      | 0           | A          | H          | C                         |     | A        |                                                     | resolved. Alpha Analytical's services under this<br>Chain of Custody shall be performed in accordance                                             | 00  |
| E = NaOH<br>E = MaOH                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | E = NaOH B = Bacteria Cup                           |                                                            |              |                  | Time                          |                       | 1        | word Pu       | _                    | 11.7                              |                                                     | _             | _                                              |        |             | Date/      | -          |                           | _   | 1        |                                                     | with terms and conditions within Blanket Service<br>Agreement# 2015-18-Alpha Analytical by and                                                    |     |
| G = NaHSO, O = Other Off Will.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                     |                                                            |              |                  | ma                            | rece                  | ved By   |               | . ^                  | 01                                | m,                                                  | A A I         | _                                              | 15     | Contract of |            |            | _                         |     | _        | between Haley & Aldrich, Inc., its subsidiaries and |                                                                                                                                                   |     |
| H = Na <sub>2</sub> S <sub>2</sub> O <sub>3</sub><br>K/E = Zn Ac/NaOH<br>O = Other                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | E = Encore<br>D = BOD Bottle                        | Letter,                                                    | m            | 5/24/21          | 1818                          | mi                    | K        | N             |                      |                                   | FA                                                  | S/2           | Di                                             | 18     |             | <i>y</i> 0 |            |                           |     |          |                                                     | alliliates and Alpha Analytical.                                                                                                                  |     |
| Document ID: 20455 Rev 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | (1/28/2016)                                         |                                                            |              |                  |                               |                       |          |               |                      |                                   |                                                     |               |                                                |        |             |            |            |                           |     |          |                                                     |                                                                                                                                                   |     |

# **APPENDIX C**

**Effluent Limitations Documentation** 

6/3/2021 StreamStats

# **StreamStats Report - Allston Yards**

Region ID: MA

Workspace ID: MA20210603180004444000

Clicked Point (Latitude, Longitude): 42.36673, -71.13665

Time: 2021-06-03 14:00:21 -0400



| Parameter<br>Code | Parameter Description                                                 | Value | Unit                    |
|-------------------|-----------------------------------------------------------------------|-------|-------------------------|
| DRNAREA           | Area that drains to a point on a stream                               | 279   | square miles            |
| ELEV              | Mean Basin Elevation                                                  | 202   | feet                    |
| _C06STOR          | Percentage of water bodies and wetlands determined from the NLCD 2006 | 13.21 | percent                 |
| BSLDEM250         | Mean basin slope computed from 1:250K DEM                             | 2.342 | percent                 |
| ORFTPERSTR        | Area of stratified drift per unit of stream length                    | 0.23  | square mile<br>per mile |
| MAREGION          | Region of Massachusetts 0 for Eastern 1 for Western                   | 0     | dimensionles            |

6/3/2021 StreamStats

Low-Flow Statistics Parameters [Statewide Low Flow WRIR00 4135]

| Parameter<br>Code | Parameter Name                        | Value | Units                   | Min<br>Limit | Max<br>Limit |
|-------------------|---------------------------------------|-------|-------------------------|--------------|--------------|
| DRNAREA           | Drainage Area                         | 279   | square miles            | 1.61         | 149          |
| BSLDEM250         | Mean Basin Slope from 250K<br>DEM     | 2.342 | percent                 | 0.32         | 24.6         |
| DRFTPERSTR        | Stratified Drift per Stream<br>Length | 0.23  | square mile per<br>mile | 0            | 1.29         |
| MAREGION          | Massachusetts Region                  | 0     | dimensionless           | 0            | 1            |

Low-Flow Statistics Disclaimers [Statewide Low Flow WRIR00 4135]

One or more of the parameters is outside the suggested range. Estimates were extrapolated with unknown errors

Low-Flow Statistics Flow Report [Statewide Low Flow WRIR00 4135]

| Statistic              | Value | Unit   |
|------------------------|-------|--------|
| 7 Day 2 Year Low Flow  | 48.9  | ft^3/s |
| 7 Day 10 Year Low Flow | 24.3  | ft^3/s |

Low-Flow Statistics Citations

Ries, K.G., III,2000, Methods for estimating low-flow statistics for Massachusetts streams: U.S. Geological Survey Water Resources Investigations Report 00-4135, 81 p. (http://pubs.usgs.gov/wri/wri004135/)

USGS Data Disclaimer: Unless otherwise stated, all data, metadata and related materials are considered to satisfy the quality standards relative to the purpose for which the data were collected. Although these data and associated metadata have been reviewed for accuracy and completeness and approved for release by the U.S. Geological Survey (USGS), no warranty expressed or implied is made regarding the display or utility of the data for other purposes, nor on all computer systems, nor shall the act of distribution constitute any such warranty.

USGS Software Disclaimer: This software has been approved for release by the U.S. Geological Survey (USGS). Although the software has been subjected to rigorous review, the USGS reserves the right to update the software as needed pursuant to further analysis and review. No warranty, expressed or implied, is made by the USGS or the U.S. Government as to the

6/3/2021 StreamStats

functionality of the software and related material nor shall the fact of release constitute any such warranty. Furthermore, the software is released on condition that neither the USGS nor the U.S. Government shall be held liable for any damages resulting from its authorized or unauthorized use.

USGS Product Names Disclaimer: Any use of trade, firm, or product names is for descriptive purposes only and does not imply endorsement by the U.S. Government.

Application Version: 4.5.3

StreamStats Services Version: 1.2.22

NSS Services Version: 2.1.2

| HALEY & ALDRIC                   | CH, INC.                                                         |              |                                                                                                    | CALCU                 | LATIONS                          | FILE N                | O.                                             | 1341100-0            | 007 |   |
|----------------------------------|------------------------------------------------------------------|--------------|----------------------------------------------------------------------------------------------------|-----------------------|----------------------------------|-----------------------|------------------------------------------------|----------------------|-----|---|
| CLIENT<br>PROJECT<br>SUBJECT     | WJG Realty Compa<br>Allston Yards (60 E<br>Dilution Factor Cald  | verett Stree | et), Allston, MA                                                                                   |                       |                                  | SHEET<br>DATE<br>COMP | UTED BY                                        | 1<br>4-Jun-21<br>MSP | of  | 1 |
| PURPOSE:                         | Calculate Dilution F                                             | Factor (DF)  | for project based on 7 [                                                                           | Day 10 Y              | ear (7Q10) Low Flow v            | /alues.               |                                                |                      |     |   |
| APPROACH:                        | Calculate DF based<br>MGD.                                       | on EPA for   | mula ( $Q_{\scriptscriptstyle S}$ + $Q_{\scriptscriptstyle D}$ )/ $Q_{\scriptscriptstyle D}$ , whe | ere Q <sub>s</sub> is | 7Q10 in million gallon           | s per day (M          | GD) and $Q_{\scriptscriptstyle D}$ is $\alpha$ | discharge flow       | in  |   |
| ASSUMPTIONS:                     | 1. 7Q10 is 24.3 cfs<br>2. A conversion of<br>3. A discharge flow | 7.48 is used | to convert cubic feet to                                                                           | o gallons             | 5                                |                       |                                                |                      |     |   |
| CALCULATIONS:<br>7Q10 Low Flow \ |                                                                  |              |                                                                                                    |                       |                                  |                       |                                                |                      |     |   |
| Q <sub>S</sub> =                 | 24.3 ft <sup>3</sup><br>sec                                      | Х            | 7.48 gallons<br>ft <sup>3</sup>                                                                    | Х                     | <u>86,400 sec</u><br>day         | X<br>1,0              | <u>1 MG</u><br>00,000 gallons                  | S                    |     |   |
| Q <sub>S</sub> =                 | = 15.7                                                           | 7 MGD        |                                                                                                    |                       |                                  |                       |                                                |                      |     |   |
| Discharge Flowr                  |                                                                  |              |                                                                                                    |                       |                                  |                       |                                                |                      |     |   |
| $Q_D =$                          | = <u>150 gallons</u><br>min                                      | Х            | <u>1,440 min</u><br>day                                                                            | Х                     | <u>1 MG</u><br>1,000,000 gallons |                       |                                                |                      |     |   |
| $Q_D =$                          | = 0.216 MGD                                                      |              |                                                                                                    |                       |                                  |                       |                                                |                      |     |   |
| Dilution Factor (I               | 0 + 0                                                            | = 15.        | 7 MGD + 0.216 MGD<br>0.216 MGD                                                                     | =                     | 73.7                             |                       |                                                |                      |     |   |
| CONCLUSION                       | The dilution factor discharge flowrate                           |              | ject is calculated to be                                                                           | 73.7 bas              | ed on the provided 70            | Q10 low flow          | value and                                      |                      |     |   |

### Plourde, Mathew

From: Kathleen Keohane <kkeohane@townisp.com>

**Sent:** Monday, June 7, 2021 3:58 PM **To:** Plourde, Mathew; McKenzie, Corinne

Cc:Vakalopoulos, Catherine (DEP); xiodan.ruan@mass.gov; kathleen.keohane@mass.govSubject:RE: 7Q10 + Dilution Factor for NPDES NOI - Allston Yards Project - 60 Everett St.,

Allston

#### **CAUTION: External Email**

The 7Q10 of 24.3 cfs (15.7 MGD) and the dilution factor calculation of 73.7 using a design flow of 150 gpm (0.216 MGD) for the proposed discharge from Allston Yards at 60 Everett St, Allston to the Charles River is correct.

Here is the water quality information to assist you with filling out the NOI (some of which you already have):

Waterbody and ID: Charles River (MA72-36) Classification: B, warm water fishery Outstanding Resource Water?: No

State's most recent Integrated List is located here: <a href="https://www.epa.gov/sites/production/files/2020-01/documents/2016-ma-303d-list-report.pdf">https://www.epa.gov/sites/production/files/2020-01/documents/2016-ma-303d-list-report.pdf</a>, search for "MA72-36" to see the causes of impairments. TMDLs: There are approved TMDL (pathogens and phosphorus) for this segment.

As you may know, if this is not a *current* MCP site, then in addition to submitting the NOI to EPA, you need to apply with MassDEP and submit a \$500 fee (unless fee exempt, e.g., municipality) using ePLACE. Instructions on how to apply are located here: <a href="https://www.mass.gov/how-to/wm-15-npdes-general-permit-notice-of-intent">https://www.mass.gov/how-to/wm-15-npdes-general-permit-notice-of-intent</a> and information on how to get ePLACE technical assistance is available on the ePLACE Portal webpage: <a href="https://eplace.eea.mass.gov/citizenaccess/">https://eplace.eea.mass.gov/citizenaccess/</a>.

Please let me know if you have any questions.

Sent from Mail for Windows 10

From: "Plourde, Mathew" < MPlourde@haleyaldrich.com>

**Date:** Friday, June 4, 2021 at 2:36 PM

To: "Vakalopoulos, Catherine (DEP)" < <a href="mailto:catherine.vakalopoulos@mass.gov">catherine.vakalopoulos@mass.gov</a>

Cc: "McKenzie, Corinne" < <a href="mailto:CMcKenzie@HaleyAldrich.com">CMcKenzie@HaleyAldrich.com</a>

Subject: 7Q10 + Dilution Factor for NPDES NOI - Allston Yards Project

CAUTION: This email originated from a sender outside of the Commonwealth of Massachusetts mail system. Do not click on links or open attachments unless you recognize the sender and know the content is safe.

Hi Cathy,

As required in Appendix V of the 2017 NPDES RGP, I have attached to this email our StreamStats report detailing the 7 Day 10 Year (7Q10) low flow value for our project (listed below) along with the dilution factor calculations for your review and confirmation.

Project:

Allston Yards 60 Everett Street Allston, MA

### Discharge:

Charles River via stormwater system outfall. See attached discharge route.

Design System Flow: 150 gallons per minute (0.216 MGD)

7 Day 10 Year Low Flow value (from attached StreamStats Report) = 24.3 cfs or 15.7 MGD

Dilution Factor (from attached calculations) = 73.7

Can you please confirm if these values are appropriate for use for our project?

Thank you, Mat

### **Mathew Plourde**

Staff Engineer

### Haley & Aldrich, Inc.

465 Medford Street | Suite 2200 Charlestown, MA 02129

T: 617-886-7386 C: 978-328-4273

www.haleyaldrich.com

<StreamStats - Allston Yards.pdf>
<2021-0603-HAI-Allston Yards Dilution Factor Calc.pdf>
<Figure 3 - Discharge Route.pdf>

### Enter number values in green boxes below

Enter values in the units specified

Enter a dilution factor, if other than zero



Enter values in the units specified

↓
427 C<sub>d</sub> = Enter influent hardness in mg/L CaCO<sub>3</sub>

403 C<sub>s</sub> = Enter receiving water hardness in mg/L CaCO<sub>3</sub>

Enter receiving water concentrations in the units specified

pH in Standard Units 19.9 Temperature in °C Ammonia in mg/L Hardness in mg/L CaCO<sub>3</sub> 403 Salinity in ppt Antimony in μg/L Arsenic in μg/L Cadmium in µg/L Chromium III in μg/L Chromium VI in µg/L 0 Copper in µg/L 553 Iron in μg/L 1.34 Lead in **μg/L** Mercury in μg/L Nickel in μg/L Selenium in µg/L Silver in μg/L Zinc in μg/L

Enter influent concentrations in the units specified

| TRC in µg/L                     |
|---------------------------------|
| Ammonia in <b>mg</b> /L         |
| Antimony in μg/L                |
| Arsenic in μg/L                 |
| Cadmium in <b>μg/L</b>          |
| Chromium III in μg/L            |
| Chromium VI in μg/L             |
| Copper in <b>μg/L</b>           |
| Iron in μg/L                    |
| Lead in μg/L                    |
| Mercury in μg/L                 |
| Nickel in μg/L                  |
| Selenium in μg/L                |
| Silver in μg/L                  |
| Zinc in μg/L                    |
| Cyanide in μg/L                 |
| Phenol in μg/L                  |
| Carbon Tetrachloride in μg/L    |
| Tetrachloroethylene in μg/L     |
| Total Phthalates in μg/L        |
| Diethylhexylphthalate in μg/L   |
| Benzo(a)anthracene in μg/L      |
| Benzo(a)pyrene in μg/L          |
| Benzo(b)fluoranthene in μg/L    |
| Benzo(k)fluoranthene in μg/L    |
| Chrysene in µg/L                |
| Dibenzo(a,h)anthracene in μg/L  |
| Indeno(1,2,3-cd)pyrene in μg/L  |
| Methyl-tert butyl ether in μg/L |
|                                 |

### **Notes:**

Freshwater:  $Q_R$  equal to the 7Q10; enter alternate  $Q_R$  if approved by the State; enter 0 if no dilution factor approved Saltwater (estuarine and marine): enter  $Q_R$  if approved by the State; enter 0 if no entry Discharge flow is equal to the design flow or 1 MGD, whichever is less Only if approved by State as the entry for  $Q_R$ ; leave 0 if no entry

Saltwater (estuarine and marine): only if approved by the State Leave  $\boldsymbol{0}$  if no entry

Freshwater only

if >1 sample, enter maximum if >10 samples, may enter 95th percentile Enter 0 if non-detect or testing not required **Dilution Factor** 73.7

| Dilution Factor                                         | 73.7                   |              |                         |              | ~                                 |              |
|---------------------------------------------------------|------------------------|--------------|-------------------------|--------------|-----------------------------------|--------------|
| A. Inorganics                                           | TBEL applies if bolded |              | WQBEL applies if bolded |              | Compliance Level applies if shown |              |
| Ammonia                                                 | Report                 | mg/L         |                         |              | applies if shown                  |              |
| Chloride                                                | Report                 | μg/L         |                         |              |                                   |              |
| Total Residual Chlorine                                 | 0.2                    | mg/L         | 811                     | μg/L         |                                   | μg/L         |
| Total Suspended Solids                                  | 30                     | mg/L         |                         | P-8-         |                                   | 1.9 -        |
| Antimony                                                | 206                    | μg/L         | 47159                   | μg/L         |                                   |              |
| Arsenic                                                 | 104                    | μg/L         | 737                     | μg/L         |                                   |              |
| Cadmium                                                 | 10.2                   | μg/L         | 56.0370                 | μg/L         |                                   |              |
| Chromium III                                            | 323                    | μg/L         | 19898.4                 | μg/L         |                                   |              |
| Chromium VI                                             | 323                    | μg/L         | 842.6                   | μg/L         |                                   |              |
| Copper                                                  | 242                    | μg/L         | 2263.3                  | μg/L         |                                   |              |
| Iron                                                    | 5000                   | μg/L<br>μg/L | 33490                   | μg/L<br>μg/L |                                   |              |
| Lead                                                    | 160                    | μg/L         | 1286.25                 | μg/L         |                                   |              |
| Mercury                                                 | 0.739                  | μg/L<br>μg/L | 66.75                   | μg/L<br>μg/L |                                   |              |
| Nickel                                                  | 1450                   | μg/L<br>μg/L | 12506.3                 | μg/L<br>μg/L |                                   |              |
| Selenium                                                | 235.8                  | μg/L<br>μg/L | 368.4                   | μg/L<br>μg/L |                                   |              |
| Silver                                                  | 35.1                   | μg/L<br>μg/L | 3069.8                  | μg/L<br>μg/L |                                   |              |
| Zinc                                                    | 420                    | μg/L<br>μg/L | 28778.5                 | μg/L<br>μg/L |                                   |              |
| Cyanide                                                 | 178                    | μg/L<br>mg/L | 383.2                   |              |                                   | ug/I         |
| B. Non-Halogenated VOCs                                 | 176                    | mg/L         | 363.2                   | μg/L         |                                   | μg/L         |
| Total BTEX                                              | 100                    | μg/L         |                         |              |                                   |              |
| Benzene                                                 | 5.0                    | μg/L         |                         |              |                                   |              |
| 1,4 Dioxane                                             | 200                    | μg/L         |                         |              |                                   |              |
| Acetone                                                 | 7970                   | μg/L         | 22106                   | ~/T          |                                   |              |
| Phenol C. Halogenated VOCs                              | 1,080                  | μg/L         | 22106                   | μg/L         |                                   |              |
| Carbon Tetrachloride                                    | 4.4                    | μg/L         | 117.9                   | μg/L         |                                   |              |
| 1,2 Dichlorobenzene                                     | 600                    | μg/L         |                         |              |                                   |              |
| 1,3 Dichlorobenzene                                     | 320                    | $\mu g/L$    |                         |              |                                   |              |
| 1,4 Dichlorobenzene                                     | 5.0                    | μg/L         |                         |              |                                   |              |
| Total dichlorobenzene 1,1 Dichloroethane                | <br>70                 | μg/L<br>μg/L |                         |              |                                   |              |
| 1,2 Dichloroethane                                      | 5.0                    | μg/L<br>μg/L |                         |              |                                   |              |
| 1,1 Dichloroethylene                                    | 3.2                    | μg/L         |                         |              |                                   |              |
| Ethylene Dibromide                                      | 0.05                   | μg/L         |                         |              |                                   |              |
| Methylene Chloride                                      | 4.6                    | μg/L         |                         |              |                                   |              |
| 1,1,1 Trichloroethane                                   | 200                    | μg/L         |                         |              |                                   |              |
| 1,1,2 Trichloroethane Trichloroethylene                 | 5.0<br>5.0             | μg/L<br>μg/L |                         |              |                                   |              |
| Tetrachloroethylene                                     | 5.0                    | μg/L<br>μg/L | 243.2                   | μg/L         |                                   |              |
| cis-1,2 Dichloroethylene                                | 70                     | μg/L         |                         |              |                                   |              |
| Vinyl Chloride                                          | 2.0                    | $\mu g/L$    |                         |              |                                   |              |
| D. Non-Halogenated SVOCs                                |                        |              |                         |              |                                   |              |
| Total Phthalates                                        | 190                    | μg/L         |                         | μg/L         |                                   |              |
| Diethylhexyl phthalate                                  | 101                    | μg/L         | 162.1                   | μg/L         |                                   |              |
| Total Group I Polycyclic                                |                        | , 0          |                         | , 0          |                                   |              |
| Aromatic Hydrocarbons                                   | 1.0                    | $\mu g/L$    |                         |              |                                   |              |
| Benzo(a)anthracene                                      | 1.0                    | μg/L         | 0.2800                  | μg/L         |                                   | μg/L         |
| Benzo(a)pyrene Benzo(b)fluoranthene                     | 1.0<br>1.0             | μg/L<br>μg/L | 0.2800<br>0.2800        | μg/L<br>μg/L |                                   | μg/L<br>μg/L |
| Benzo(k)fluoranthene                                    | 1.0                    | μg/L<br>μg/L | 0.2800                  | μg/L<br>μg/L |                                   | μg/L<br>μg/L |
| Chrysene                                                | 1.0                    | μg/L         | 0.2800                  | μg/L         |                                   | μg/L         |
| Dibenzo(a,h)anthracene                                  | 1.0                    | μg/L         | 0.2800                  | μg/L         |                                   | μg/L         |
| Indeno(1,2,3-cd)pyrene                                  | 1.0                    | $\mu g/L$    | 0.2800                  | μg/L         |                                   | μg/L         |
| Total Group II Polycyclic                               | 100                    | /Т           |                         |              |                                   |              |
| Aromatic Hydrocarbons Naphthalene                       | 100<br>20              | μg/L<br>μg/L |                         |              |                                   |              |
| E. Halogenated SVOCs                                    | 20                     | μg/ L        |                         |              |                                   |              |
| Total Polychlorinated Biphenyls                         |                        |              |                         |              |                                   |              |
|                                                         | 0.000064               | μg/L         |                         |              | 0.5                               | $\mu g/L$    |
| Pentachlorophenol                                       | 1.0                    | μg/L         |                         |              |                                   |              |
| <b>F. Fuels Parameters</b> Total Petroleum Hydrocarbons | 5.0                    | mg/L         |                         |              |                                   |              |
| Ethanol                                                 | Report                 | mg/L         |                         |              |                                   |              |
| Methyl-tert-Butyl Ether                                 | 70                     | μg/L         | 1474                    | $\mu g/L$    |                                   |              |
| tert-Butyl Alcohol                                      | 120                    | μg/L         |                         |              |                                   |              |
| tert-Amyl Methyl Ether                                  | 90                     | μg/L         |                         |              |                                   |              |
|                                                         |                        |              |                         |              |                                   |              |

# **APPENDIX D**

**Endangered Species Act Assessment** 

U.S. Fish & Wildlife Service

# IPaC resource list

This report is an automatically generated list of species and other resources such as critical habitat (collectively referred to as *trust resources*) under the U.S. Fish and Wildlife Service's (USFWS) jurisdiction that are known or expected to be on or near the project area referenced below. The list may also include trust resources that occur outside of the project area, but that could potentially be directly or indirectly affected by activities in the project area. However, determining the likelihood and extent of effects a project may have on trust resources typically requires gathering additional site-specific (e.g., vegetation/species surveys) and project-specific (e.g., magnitude and timing of proposed activities) information.

Below is a summary of the project information you provided and contact information for the USFWS office(s) with jurisdiction in the defined project area. Please read the introduction to each section that follows (Endangered Species, Migratory Birds, USFWS Facilities, and NWI Wetlands) for additional information applicable to the trust resources addressed in that section.

# **Project information**

NAME

Allston Yards - Building A

LOCATION

Suffolk County, Massachusetts



**DESCRIPTION** 

Some(60 Everett Street, Allston, MA)

# Local office

New England Ecological Services Field Office

**(**603) 223-2541

**(603)** 223-0104

70 Commercial Street, Suite 300 Concord, NH 03301-5094

http://www.fws.gov/newengland

# Endangered species

This resource list is for informational purposes only and does not constitute an analysis of project level impacts.

The primary information used to generate this list is the known or expected range of each species. Additional areas of influence (AOI) for species are also considered. An AOI includes areas outside of the species range if the species could be indirectly affected by activities in that area (e.g., placing a dam upstream of a fish population even if that fish does not occur at the dam site, may indirectly impact the species by reducing or eliminating water flow downstream). Because species can move, and site conditions can change, the species on this list are not guaranteed to be found on or near the project area. To fully determine any potential effects to species, additional site-specific and project-specific information is often required.

Section 7 of the Endangered Species Act **requires** Federal agencies to "request of the Secretary information whether any species which is listed or proposed to be listed may be present in the area of such proposed action" for any project that is conducted, permitted, funded, or licensed by any Federal agency. A letter from the local office and a species list which fulfills this requirement can **only** be obtained by requesting an official species list from either the Regulatory Review section in IPaC (see directions below) or from the local field office directly.

For project evaluations that require USFWS concurrence/review, please return to the IPaC website and request an official species list by doing the following:

- 1. Log in to IPaC.
- 2. Go to your My Projects list.
- 3. Click PROJECT HOME for this project.
- 4. Click REQUEST SPECIES LIST.

Listed species<sup>1</sup> and their critical habitats are managed by the <u>Ecological Services Program</u> of the U.S. Fish and Wildlife Service (USFWS) and the fisheries division of the National Oceanic and Atmospheric Administration (NOAA Fisheries<sup>2</sup>).

Species and critical habitats under the sole responsibility of NOAA Fisheries are **not** shown on this list. Please contact <u>NOAA</u> <u>Fisheries</u> for <u>species under their jurisdiction</u>.

- 1. Species listed under the <u>Endangered Species Act</u> are threatened or endangered; IPaC also shows species that are candidates, or proposed, for listing. See the <u>listing status page</u> for more information. IPaC only shows species that are regulated by USFWS (see FAQ).
- 2. <u>NOAA Fisheries</u>, also known as the National Marine Fisheries Service (NMFS), is an office of the National Oceanic and Atmospheric Administration within the Department of Commerce.

THERE ARE NO ENDANGERED SPECIES EXPECTED TO OCCUR AT THIS LOCATION.

# Migratory birds

Certain birds are protected under the Migratory Bird Treaty Act $\frac{1}{2}$  and the Bald and Golden Eagle Protection Act $\frac{2}{3}$ .

Any person or organization who plans or conducts activities that may result in impacts to migratory birds, eagles, and their habitats should follow appropriate regulations and consider implementing appropriate conservation measures, as described below.

- 1. The Migratory Birds Treaty Act of 1918.
- 2. The Bald and Golden Eagle Protection Act of 1940.

Additional information can be found using the following links:

- Birds of Conservation Concern <a href="http://www.fws.gov/birds/management/managed-species/birds-of-conservation-concern.php">http://www.fws.gov/birds/management/managed-species/birds-of-conservation-concern.php</a>
- Measures for avoiding and minimizing impacts to birds <a href="http://www.fws.gov/birds/management/project-assessment-tools-and-guidance/">http://www.fws.gov/birds/management/project-assessment-tools-and-guidance/</a>
   conservation-measures.php
- Nationwide conservation measures for birds <u>http://www.fws.gov/migratorybirds/pdf/management/nationwidestandardconservationmeasures.pdf</u>

The birds listed below are birds of particular concern either because they occur on the <u>USFWS Birds of Conservation Concern</u> (BCC) list or warrant special attention in your project location. To learn more about the levels of concern for birds on your list and how this list is generated, see the FAQ <u>below</u>. This is not a list of every bird you may find in this location, nor a guarantee

that every bird on this list will be found in your project area. To see exact locations of where birders and the general public have sighted birds in and around your project area, visit the <u>E-bird data mapping tool</u> (Tip: enter your location, desired date range and a species on your list). For projects that occur off the Atlantic Coast, additional maps and models detailing the relative occurrence and abundance of bird species on your list are available. Links to additional information about Atlantic Coast birds, and other important information about your migratory bird list, including how to properly interpret and use your migratory bird report, can be found <u>below</u>.

For guidance on when to schedule activities or implement avoidance and minimization measures to reduce impacts to migratory birds on your list, click on the PROBABILITY OF PRESENCE SUMMARY at the top of your list to see when these birds are most likely to be present and breeding in your project area.

NAME

BREEDING SEASON (IF A BREEDING
SEASON IS INDICATED FOR A BIRD ON
YOUR LIST, THE BIRD MAY BREED IN YOUR
PROJECT AREA SOMETIME WITHIN THE
TIMEFRAME SPECIFIED, WHICH IS A VERY
LIBERAL ESTIMATE OF THE DATES INSIDE
WHICH THE BIRD BREEDS ACROSS ITS
ENTIRE RANGE. "BREEDS ELSEWHERE"
INDICATES THAT THE BIRD DOES NOT
LIKELY BREED IN YOUR PROJECT AREA.)

## Bald Eagle Haliaeetus leucocephalus

This is not a Bird of Conservation Concern (BCC) in this area, but warrants attention because of the Eagle Act or for potential susceptibilities in offshore areas from certain types of development or activities.

https://ecos.fws.gov/ecp/species/1626

Breeds Oct 15 to Aug 31

Black-billed Cuckoo Coccyzus erythropthalmus

This is a Bird of Conservation Concern (BCC) throughout its range in the continental USA and Alaska.

https://ecos.fws.gov/ecp/species/9399

Breeds May 15 to Oct 10

**Bobolink** Dolichonyx oryzivorus

This is a Bird of Conservation Concern (BCC) throughout its range in the continental USA and Alaska.

Breeds May 20 to Jul 31

Canada Warbler Cardellina canadensis

This is a Bird of Conservation Concern (BCC) throughout its range in the continental USA and Alaska.

Breeds May 20 to Aug 10

Cerulean Warbler Dendroica cerulea

This is a Bird of Conservation Concern (BCC) throughout its range in the continental USA and Alaska.

https://ecos.fws.gov/ecp/species/2974

Breeds Apr 29 to Jul 20

Dunlin Calidris alpina arcticola

This is a Bird of Conservation Concern (BCC) only in particular Bird Conservation Regions (BCRs) in the continental USA

Breeds elsewhere

**Evening Grosbeak** Coccothraustes vespertinus

This is a Bird of Conservation Concern (BCC) throughout its range in the continental USA and Alaska.

Breeds elsewhere

Kentucky Warbler Oporornis formosus

This is a Bird of Conservation Concern (BCC) throughout its range in the continental USA and Alaska.

Breeds Apr 20 to Aug 20

**Lesser Yellowlegs** Tringa flavipes

This is a Bird of Conservation Concern (BCC) throughout its range in the continental USA and Alaska.

https://ecos.fws.gov/ecp/species/9679

Breeds elsewhere

| INCISOR S SPARTOW ARRIVALARIUS REISOR | Nelson's S | parrow | Ammodramus nelson | i |
|---------------------------------------|------------|--------|-------------------|---|
|---------------------------------------|------------|--------|-------------------|---|

This is a Bird of Conservation Concern (BCC) throughout its range in the continental USA and Alaska.

Breeds May 15 to Sep 5

### Prairie Warbler Dendroica discolor

This is a Bird of Conservation Concern (BCC) throughout its range in the continental USA and Alaska.

Breeds May 1 to Jul 31

## Prothonotary Warbler Protonotaria citrea

This is a Bird of Conservation Concern (BCC) throughout its range in the continental USA and Alaska.

Breeds Apr 1 to Jul 31

# Red-headed Woodpecker Melanerpes erythrocephalus

This is a Bird of Conservation Concern (BCC) throughout its range in the continental USA and Alaska.

Breeds May 10 to Sep 10

### Red-throated Loon Gavia stellata

This is a Bird of Conservation Concern (BCC) throughout its range in the continental USA and Alaska.

Breeds elsewhere

## Rusty Blackbird Euphagus carolinus

This is a Bird of Conservation Concern (BCC) throughout its range in the continental USA and Alaska.

Breeds elsewhere

## Semipalmated Sandpiper Calidris pusilla

This is a Bird of Conservation Concern (BCC) throughout its range in the continental USA and Alaska.

Breeds elsewhere

## Snowy Owl Bubo scandiacus

This is a Bird of Conservation Concern (BCC) throughout its range in the continental USA and Alaska.

Breeds elsewhere

Wood Thrush Hylocichla mustelina

Breeds May 10 to Aug 31

This is a Bird of Conservation Concern (BCC) throughout its range in the continental USA and Alaska.

# Probability of Presence Summary

The graphs below provide our best understanding of when birds of concern are most likely to be present in your project area. This information can be used to tailor and schedule your project activities to avoid or minimize impacts to birds. Please make sure you read and understand the FAQ "Proper Interpretation and Use of Your Migratory Bird Report" before using or attempting to interpret this report.

## Probability of Presence (■)

Each green bar represents the bird's relative probability of presence in the 10km grid cell(s) your project overlaps during a particular week of the year. (A year is represented as 12 4-week months.) A taller bar indicates a higher probability of species presence. The survey effort (see below) can be used to establish a level of confidence in the presence score. One can have higher confidence in the presence score if the corresponding survey effort is also high.

How is the probability of presence score calculated? The calculation is done in three steps:

- 1. The probability of presence for each week is calculated as the number of survey events in the week where the species was detected divided by the total number of survey events for that week. For example, if in week 12 there were 20 survey events and the Spotted Towhee was found in 5 of them, the probability of presence of the Spotted Towhee in week 12 is 0.25.
- 2. To properly present the pattern of presence across the year, the relative probability of presence is calculated. This is the probability of presence divided by the maximum probability of presence across all weeks. For example, imagine the probability of presence in week 20 for the Spotted Towhee is 0.05, and that the probability of presence at week 12 (0.25) is the maximum of any week of the year. The relative probability of presence on week 12 is 0.25/0.25 = 1; at week 20 it is 0.05/0.25 = 0.2.
- 3. The relative probability of presence calculated in the previous step undergoes a statistical conversion so that all possible values fall between 0 and 10, inclusive. This is the probability of presence score.

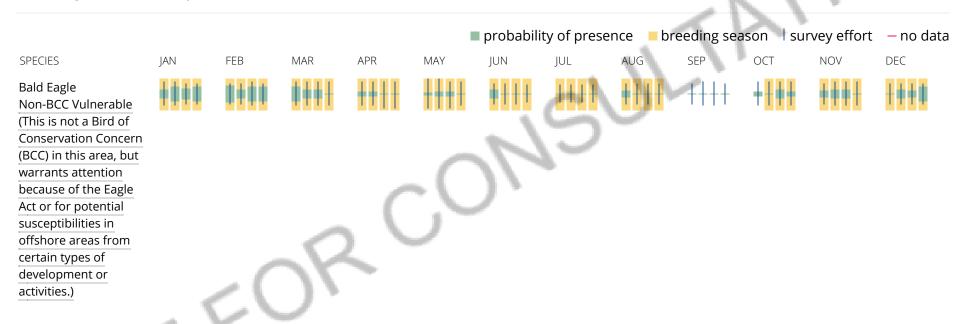
To see a bar's probability of presence score, simply hover your mouse cursor over the bar.

# Breeding Season (=)

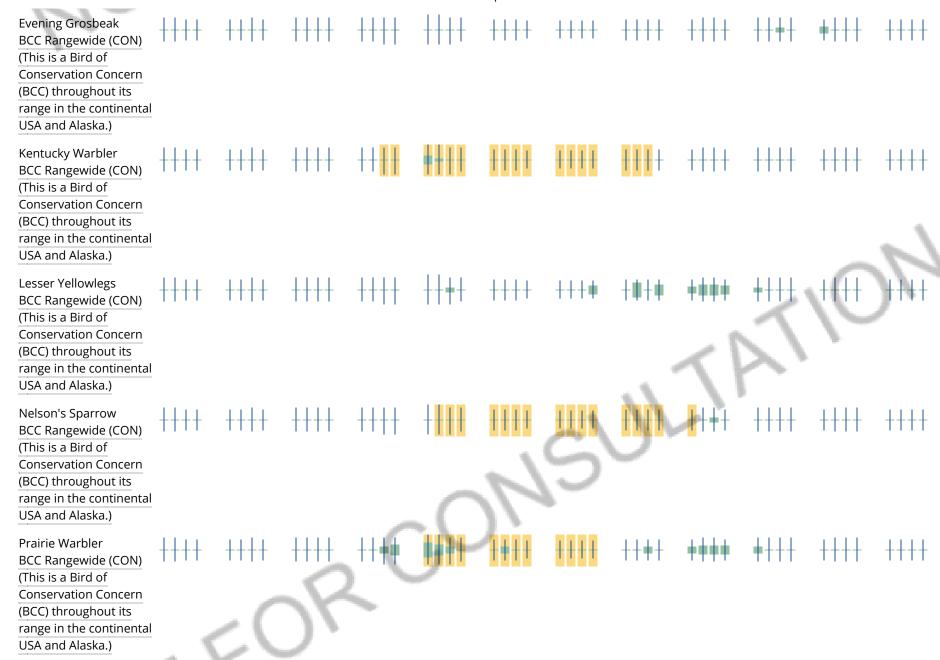
Yellow bars denote a very liberal estimate of the time-frame inside which the bird breeds across its entire range. If there are no yellow bars shown for a bird, it does not breed in your project area.

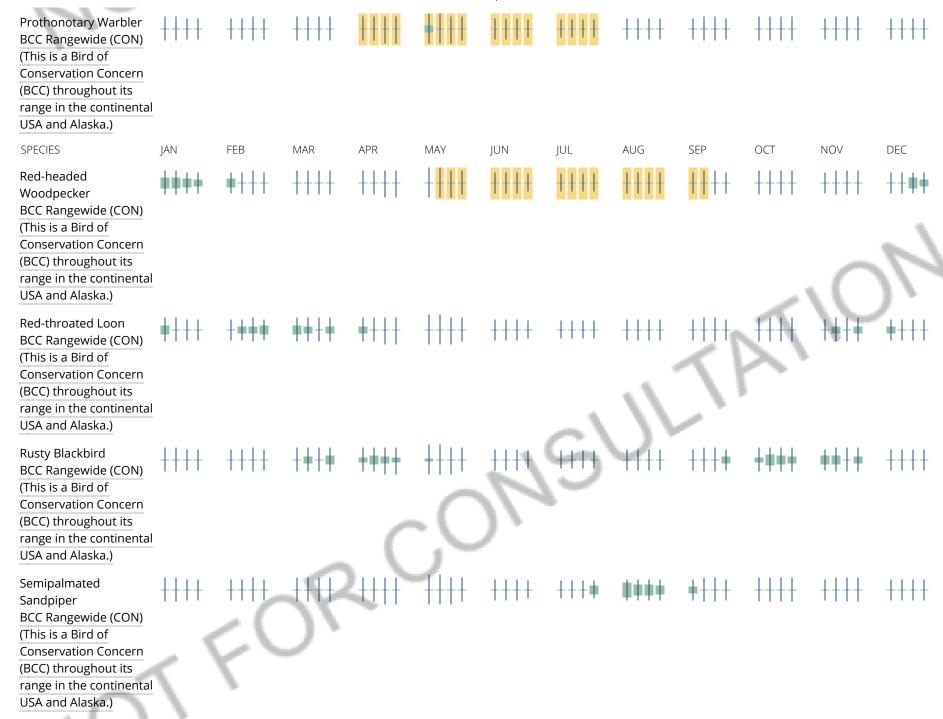
# Survey Effort (1)

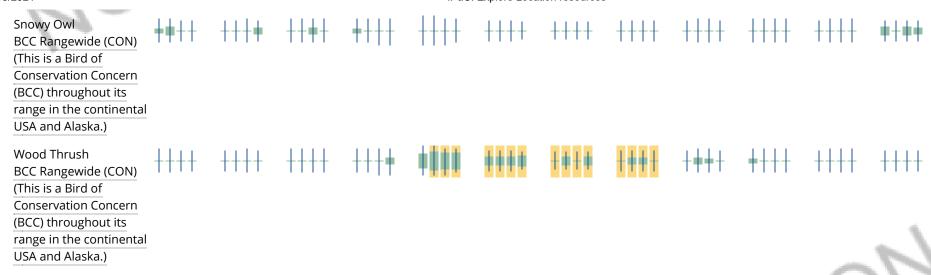
Vertical black lines superimposed on probability of presence bars indicate the number of surveys performed for that species in the 10km grid cell(s) your project area overlaps. The number of surveys is expressed as a range, for example, 33 to 64 surveys.


To see a bar's survey effort range, simply hover your mouse cursor over the bar.

# No Data (-)


A week is marked as having no data if there were no survey events for that week.


## **Survey Timeframe**


Surveys from only the last 10 years are used in order to ensure delivery of currently relevant information. The exception to this is areas off the Atlantic coast, where bird returns are based on all years of available data, since data in these areas is currently much more sparse.











Tell me more about conservation measures I can implement to avoid or minimize impacts to migratory birds.

Nationwide Conservation Measures describes measures that can help avoid and minimize impacts to all birds at any location year round. Implementation of these measures is particularly important when birds are most likely to occur in the project area. When birds may be breeding in the area, identifying the locations of any active nests and avoiding their destruction is a very helpful impact minimization measure. To see when birds are most likely to occur and be breeding in your project area, view the Probability of Presence Summary. Additional measures or permits may be advisable depending on the type of activity you are conducting and the type of infrastructure or bird species present on your project site.

# What does IPaC use to generate the migratory birds potentially occurring in my specified location?

The Migratory Bird Resource List is comprised of USFWS <u>Birds of Conservation Concern (BCC)</u> and other species that may warrant special attention in your project location.

The migratory bird list generated for your project is derived from data provided by the <u>Avian Knowledge Network (AKN)</u>. The AKN data is based on a growing collection of <u>survey</u>, <u>banding</u>, <u>and citizen science datasets</u> and is queried and filtered to return a list of those birds reported as occurring in the 10km grid cell(s) which your project intersects, and that have been identified as warranting special attention because they are a BCC species in that area, an eagle (<u>Eagle Act</u> requirements may apply), or a species that has a particular vulnerability to offshore activities or development.

Again, the Migratory Bird Resource list includes only a subset of birds that may occur in your project area. It is not representative of all birds that may occur in your project area. To get a list of all birds potentially present in your project area, please visit the <u>AKN Phenology Tool</u>.

What does IPaC use to generate the probability of presence graphs for the migratory birds potentially occurring in my specified location?

The probability of presence graphs associated with your migratory bird list are based on data provided by the <u>Avian Knowledge Network (AKN)</u>. This data is derived from a growing collection of <u>survey, banding, and citizen science datasets</u>.

Probability of presence data is continuously being updated as new and better information becomes available. To learn more about how the probability of presence graphs are produced and how to interpret them, go the Probability of Presence Summary and then click on the "Tell me about these graphs" link.

#### How do I know if a bird is breeding, wintering, migrating or present year-round in my project area?

To see what part of a particular bird's range your project area falls within (i.e. breeding, wintering, migrating or year-round), you may refer to the following resources: The Cornell Lab of Ornithology All About Birds Bird Guide, or (if you are unsuccessful in locating the bird of interest there), the Cornell Lab of Ornithology Neotropical Birds guide. If a bird on your migratory bird species list has a breeding season associated with it, if that bird does occur in your project area, there may be nests present at some point within the timeframe specified. If "Breeds elsewhere" is indicated, then the bird likely does not breed in your project area.

#### What are the levels of concern for migratory birds?

Migratory birds delivered through IPaC fall into the following distinct categories of concern:

- 1. "BCC Rangewide" birds are <u>Birds of Conservation Concern</u> (BCC) that are of concern throughout their range anywhere within the USA (including Hawaii, the Pacific Islands, Puerto Rico, and the Virgin Islands);
- 2. "BCC BCR" birds are BCCs that are of concern only in particular Bird Conservation Regions (BCRs) in the continental USA; and
- 3. "Non-BCC Vulnerable" birds are not BCC species in your project area, but appear on your list either because of the <u>Eagle Act</u> requirements (for eagles) or (for non-eagles) potential susceptibilities in offshore areas from certain types of development or activities (e.g. offshore energy development or longline fishing).

Although it is important to try to avoid and minimize impacts to all birds, efforts should be made, in particular, to avoid and minimize impacts to the birds on this list, especially eagles and BCC species of rangewide concern. For more information on conservation measures you can implement to help avoid and minimize migratory bird impacts and requirements for eagles, please see the FAQs for these topics.

#### Details about birds that are potentially affected by offshore projects

For additional details about the relative occurrence and abundance of both individual bird species and groups of bird species within your project area off the Atlantic Coast, please visit the <u>Northeast Ocean Data Portal</u>. The Portal also offers data and information about other taxa besides birds that may be helpful to you in your project review. Alternately, you may download the bird model results files underlying the portal maps through the <u>NOAA NCCOS Integrative Statistical Modeling and Predictive Mapping of Marine Bird Distributions and Abundance on the Atlantic Outer Continental Shelf project webpage.</u>

Bird tracking data can also provide additional details about occurrence and habitat use throughout the year, including migration. Models relying on survey data may not include this information. For additional information on marine bird tracking data, see the <u>Diving Bird Study</u> and the <u>nanotag studies</u> or contact <u>Caleb Spiegel</u> or <u>Pam Loring</u>.

#### What if I have eagles on my list?

If your project has the potential to disturb or kill eagles, you may need to <u>obtain a permit</u> to avoid violating the Eagle Act should such impacts occur.

#### Proper Interpretation and Use of Your Migratory Bird Report

The migratory bird list generated is not a list of all birds in your project area, only a subset of birds of priority concern. To learn more about how your list is generated, and see options for identifying what other birds may be in your project area, please see the FAQ "What does IPaC use to generate the migratory birds potentially occurring in my specified location". Please be aware this report provides the "probability of presence" of birds within the 10 km grid cell(s) that overlap your project; not your exact project footprint. On the graphs provided, please also look carefully at the survey effort (indicated by the black vertical bar) and for the existence of the "no data" indicator (a red horizontal bar). A high survey effort is the key component. If the survey effort is high, then the probability of presence score can be viewed as more dependable. In contrast, a low survey effort bar or no data bar means a lack of data and, therefore, a lack of certainty about presence of the species. This list is not perfect; it is simply a starting point for identifying what birds of concern have the potential to be in your project area, when they might be there, and if they might be breeding (which means nests might be present). The list helps you know what to look for to confirm presence, and helps guide you in knowing when to implement conservation measures to avoid or minimize potential impacts from your project activities, should presence be confirmed. To learn more about conservation measures, visit the FAQ "Tell me about conservation measures I can implement to avoid or minimize impacts to migratory birds" at the bottom of your migratory bird trust resources page.

## **Facilities**

## National Wildlife Refuge lands

Any activity proposed on lands managed by the <u>National Wildlife Refuge</u> system must undergo a 'Compatibility Determination' conducted by the Refuge. Please contact the individual Refuges to discuss any questions or concerns.

THERE ARE NO REFUGE LANDS AT THIS LOCATION.

## Fish hatcheries

THERE ARE NO FISH HATCHERIES AT THIS LOCATION.

# Wetlands in the National Wetlands Inventory

Impacts to <u>NWI wetlands</u> and other aquatic habitats may be subject to regulation under Section 404 of the Clean Water Act, or other State/Federal statutes.

For more information please contact the Regulatory Program of the local <u>U.S. Army Corps of Engineers District</u>

THERE ARE NO KNOWN WETLANDS AT THIS LOCATION.

#### **Data limitations**

The Service's objective of mapping wetlands and deepwater habitats is to produce reconnaissance level information on the location, type and size of these resources. The maps are prepared from the analysis of high altitude imagery. Wetlands are identified based on vegetation, visible hydrology and geography. A margin of error is inherent in the use of imagery; thus, detailed on-the-ground inspection of any particular site may result in revision of the wetland boundaries or classification established through image analysis.

The accuracy of image interpretation depends on the quality of the imagery, the experience of the image analysts, the amount and quality of the collateral data and the amount of ground truth verification work conducted. Metadata should be consulted to determine the date of the source imagery used and any mapping problems.

Wetlands or other mapped features may have changed since the date of the imagery or field work. There may be occasional differences in polygon boundaries or classifications between the information depicted on the map and the actual conditions on site.

#### Data exclusions

Certain wetland habitats are excluded from the National mapping program because of the limitations of aerial imagery as the primary data source used to detect wetlands. These habitats include seagrasses or submerged aquatic vegetation that are found in the intertidal and subtidal zones of estuaries and nearshore coastal waters. Some deepwater reef communities (coral or tuberficid worm reefs) have also been excluded from the inventory. These habitats, because of their depth, go undetected by aerial imagery.

#### **Data precautions**

Federal, state, and local regulatory agencies with jurisdiction over wetlands may define and describe wetlands in a different manner than that used in this inventory. There is no attempt, in either the design or products of this inventory, to define the limits of proprietary jurisdiction of any Federal, state, or local government or to establish the geographical scope of the regulatory programs of government agencies. Persons intending to engage in activities involving modifications within or adjacent to wetland areas should seek the advice of appropriate federal, state, or local agencies concerning specified agency regulatory programs and proprietary jurisdictions that may affect such activities.



## United States Department of the Interior



#### FISH AND WILDLIFE SERVICE

New England Ecological Services Field Office 70 Commercial Street, Suite 300 Concord, NH 03301-5094 Phone: (603) 223-2541 Fax: (603) 223-0104

http://www.fws.gov/newengland

In Reply Refer To: June 03, 2021

Consultation Code: 05E1NE00-2021-SLI-3706

Event Code: 05E1NE00-2021-E-11082 Project Name: Allston Yards - Building A

Subject: List of threatened and endangered species that may occur in your proposed project

location or may be affected by your proposed project

#### To Whom It May Concern:

The enclosed species list identifies threatened, endangered, proposed and candidate species, as well as proposed and final designated critical habitat, that may occur within the boundary of your proposed project and/or may be affected by your proposed project. The species list fulfills the requirements of the U.S. Fish and Wildlife Service (Service) under section 7(c) of the Endangered Species Act (Act) of 1973, as amended (16 U.S.C. 1531 *et seq.*).

New information based on updated surveys, changes in the abundance and distribution of species, changed habitat conditions, or other factors could change this list. Please feel free to contact us if you need more current information or assistance regarding the potential impacts to federally proposed, listed, and candidate species and federally designated and proposed critical habitat. Please note that under 50 CFR 402.12(e) of the regulations implementing section 7 of the Act, the accuracy of this species list should be verified after 90 days. This verification can be completed formally or informally as desired. The Service recommends that verification be completed by visiting the ECOS-IPaC website at regular intervals during project planning and implementation for updates to species lists and information. An updated list may be requested through the ECOS-IPaC system by completing the same process used to receive the enclosed list.

The purpose of the Act is to provide a means whereby threatened and endangered species and the ecosystems upon which they depend may be conserved. Under sections 7(a)(1) and 7(a)(2) of the Act and its implementing regulations (50 CFR 402 *et seq.*), Federal agencies are required to utilize their authorities to carry out programs for the conservation of threatened and endangered species and to determine whether projects may affect threatened and endangered species and/or designated critical habitat.

A Biological Assessment is required for construction projects (or other undertakings having similar physical impacts) that are major Federal actions significantly affecting the quality of the human environment as defined in the National Environmental Policy Act (42 U.S.C. 4332(2) (c)). For projects other than major construction activities, the Service suggests that a biological evaluation similar to a Biological Assessment be prepared to determine whether the project may affect listed or proposed species and/or designated or proposed critical habitat. Recommended contents of a Biological Assessment are described at 50 CFR 402.12.

If a Federal agency determines, based on the Biological Assessment or biological evaluation, that listed species and/or designated critical habitat may be affected by the proposed project, the agency is required to consult with the Service pursuant to 50 CFR 402. In addition, the Service recommends that candidate species, proposed species and proposed critical habitat be addressed within the consultation. More information on the regulations and procedures for section 7 consultation, including the role of permit or license applicants, can be found in the "Endangered Species Consultation Handbook" at:

http://www.fws.gov/endangered/esa-library/pdf/TOC-GLOS.PDF

Please be aware that bald and golden eagles are protected under the Bald and Golden Eagle Protection Act (16 U.S.C. 668 *et seq.*), and projects affecting these species may require development of an eagle conservation plan

(http://www.fws.gov/windenergy/eagle\_guidance.html). Additionally, wind energy projects should follow the wind energy guidelines (http://www.fws.gov/windenergy/) for minimizing impacts to migratory birds and bats.

Guidance for minimizing impacts to migratory birds for projects including communications towers (e.g., cellular, digital television, radio, and emergency broadcast) can be found at: http://www.fws.gov/migratorybirds/CurrentBirdIssues/Hazards/towers/towers.htm; http://www.towerkill.com; and http://www.fws.gov/migratorybirds/CurrentBirdIssues/Hazards/towers/comtow.html.

We appreciate your concern for threatened and endangered species. The Service encourages Federal agencies to include conservation of threatened and endangered species into their project planning to further the purposes of the Act. Please include the Consultation Tracking Number in the header of this letter with any request for consultation or correspondence about your project that you submit to our office.

#### Attachment(s):

Official Species List

## **Official Species List**

This list is provided pursuant to Section 7 of the Endangered Species Act, and fulfills the requirement for Federal agencies to "request of the Secretary of the Interior information whether any species which is listed or proposed to be listed may be present in the area of a proposed action".

This species list is provided by:

New England Ecological Services Field Office 70 Commercial Street, Suite 300 Concord, NH 03301-5094 (603) 223-2541

## **Project Summary**

Consultation Code: 05E1NE00-2021-SLI-3706 Event Code: 05E1NE00-2021-E-11082 Project Name: Allston Yards - Building A

Project Type: DEVELOPMENT

Project Description: 60 Everett Street, Allston, MA

**Project Location:** 

Approximate location of the project can be viewed in Google Maps: <a href="https://www.google.com/maps/@42.3564291,-71.14005916167102,14z">https://www.google.com/maps/@42.3564291,-71.14005916167102,14z</a>



Counties: Suffolk County, Massachusetts

## **Endangered Species Act Species**

There is a total of 0 threatened, endangered, or candidate species on this species list.

Species on this list should be considered in an effects analysis for your project and could include species that exist in another geographic area. For example, certain fish may appear on the species list because a project could affect downstream species.

IPaC does not display listed species or critical habitats under the sole jurisdiction of NOAA Fisheries<sup>1</sup>, as USFWS does not have the authority to speak on behalf of NOAA and the Department of Commerce.

See the "Critical habitats" section below for those critical habitats that lie wholly or partially within your project area under this office's jurisdiction. Please contact the designated FWS office if you have questions.

1. <u>NOAA Fisheries</u>, also known as the National Marine Fisheries Service (NMFS), is an office of the National Oceanic and Atmospheric Administration within the Department of Commerce.

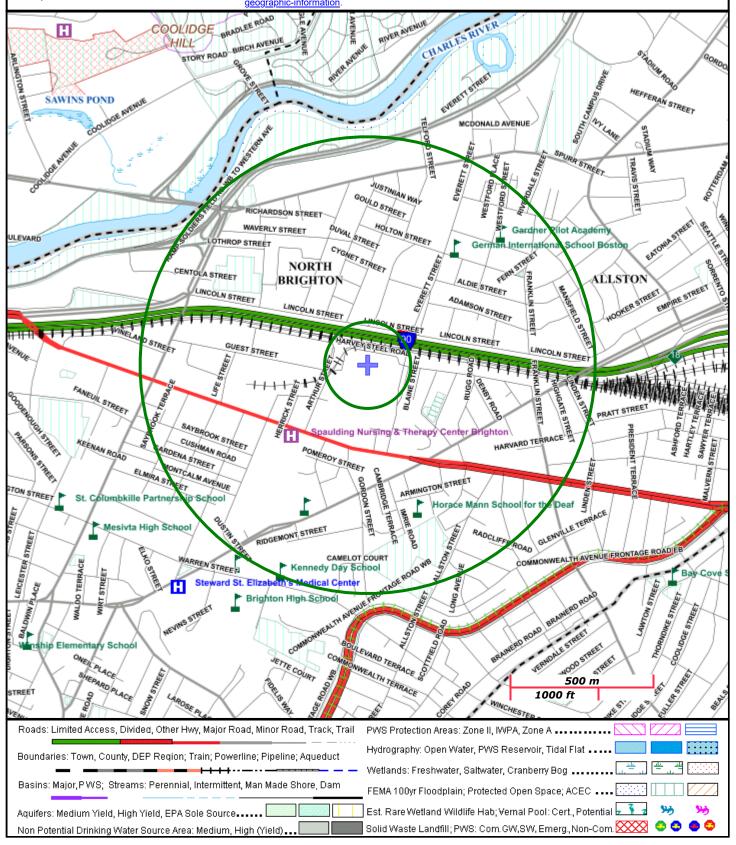
#### **Critical habitats**

THERE ARE NO CRITICAL HABITATS WITHIN YOUR PROJECT AREA UNDER THIS OFFICE'S JURISDICTION.

# MassDEP - Bureau of Waste Site Cleanup

Phase 1 Site Assessment Map: 500 feet & 0.5 Mile Radii

Site Information:


ALLSTON YARDS - BUILDING A 60 EVERETT STREET BOSTON, MA

NAD83 UTM Meters: 4691589mN , 323770mE (Zone: 19) June 3, 2021

The information shown is the best available at the date of printing. However, it may be incomplete. The responsible party and LSP are ultimately responsible for ascertaining the true conditions surrounding the site. Metadata for data layers shown on this map can be found at:

https://www.mass.gov/orgs/massgis-bureau-of-





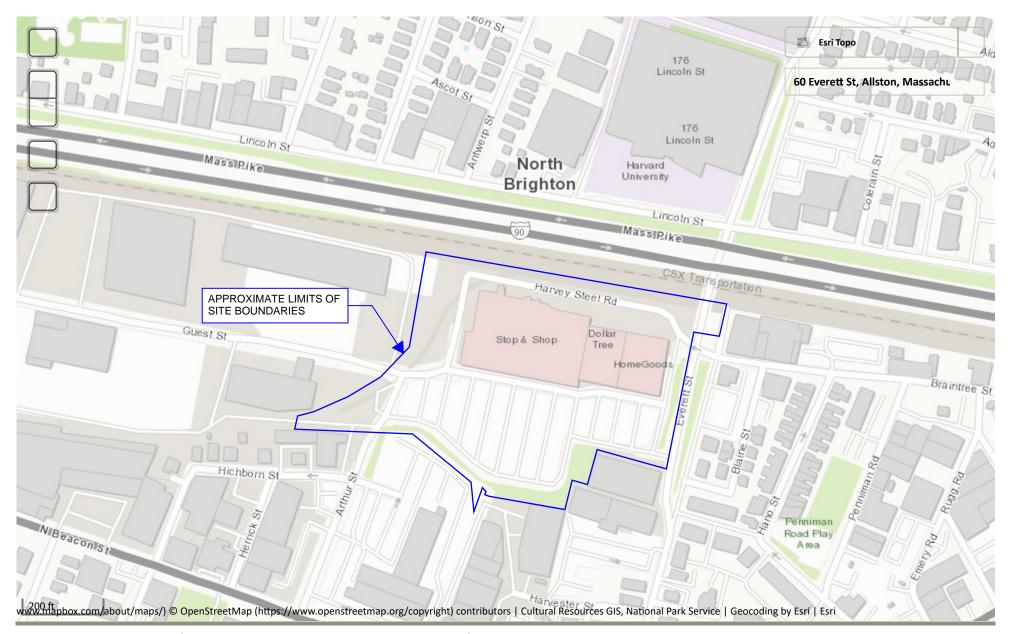
## **APPENDIX E**

**National Historic Preservation Act Review** 

# Massachusetts Cultural Resource Information System MACRIS

#### **MACRIS Search Results**

Search Criteria: Town(s): Boston; Street No: 60; Street Name: Everett; Resource Type(s): Area, Building, Burial Ground, Object, Structure;


Inv. No. Property Name Street Town Year

Thursday, June 3, 2021 Page 1 of 1

# National Register of Historic Places

National Park Service U.S. Department of the Interior

Public, non-restricted data depicting National Register spatial data processed by the Cultural Resources GIS facility. ...



Home (https://www.nps.gov) | Frequently Asked Questions (https://www.nps.gov/faqs.htm) | Website Policies (https://www.nps.gov/aboutus/website-policies.htm)

## **APPENDIX F**

**BWSC Permit Application** 



HALEY & ALDRICH, INC. 465 Medford St. Suite 2200 Boston, MA 02129 617.886.7400

9 July 2021 File No. 134110-007

Boston Water and Sewer Commission Engineering Customer Services 980 Harrison Avenue Boston, MA 02119

Attention: Jodi Dobay

Subject: Request for Approval of Temporary Construction Dewatering

Allston Yards – Building A

60 Everett Street

Allston, Massachusetts

Dear Mrs. Dobay:

On behalf of our client, Bozzuto Development Company, this letter submits the Dewatering Discharge Permit Application in support of the proposed Building A portion of the Allston Yards redevelopment project located at 60 Everett Street in Allston, Massachusetts.

Dewatering is necessary to enable construction in-the-dry and is anticipated to begin in September 2021 and continue for up to 12 months. Prior to discharge, collected water will be routed through at minimum a sedimentation tank and bag filter to remove suspended solids and un-dissolved chemical constituents. Other pre-treatment may be conducted as necessary to comply with National Pollutant Discharge Elimination System (NPDES) Remediation General Permit (RGP) temporary construction dewatering discharge criteria. The potential discharge location is shown on Figure 2. Effluent will be introduced into catch basins directed to a storm drain system and continue to the Charles River through outfall SDO037. A copy of the Boston Water and Sewer Commission Water and Sewer Map associated with the project site is attached.

A submittal was provided to the Environmental Protection Agency (EPA) for discharge of the dewatering effluent under the Remediation General Permit (RGP). A copy of the submitted RGP application is attached.

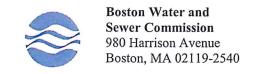
Boston Water and Sewer Commission 9 July 2021 Page 2

If you have any questions, please feel free to contact the undersigned at 617-886-7400.

Sincerely yours, HALEY & ALDRICH, INC.

Mathew Plourde
Staff Engineer

Corinne McKenzie Project Manager


Cole E. Worthy, LSP Senior Associate

#### Attachments:

Dewatering Discharge Permit Application Figure 1 – Project Locus Figure 2 – Phase I Development Map Copy of NPDES RGP Application

\haleyaldrich.com\share\CF\Projects\134110\Building A\NPDES\Notice of Intent\Appendix C\_BWSC Permit\2021-0709-BWSC Permit - Cover Letter - F.docx





OWNER / AUTHORIZED APPLICANT PROVIDE INFORMATION HERE:

#### DEWATERING DISCHARGE PERMIT APPLICATION

#### Company Name: Dimeo Construction Company Address: 88 Black Falcon Avenue, Suite 307 Phone Number: (401) 639-4557 \_\_ Fax number: \_\_\_\_ Contact person name: Frank Allard \_\_\_\_\_ Title: \_\_\_\_\_ Email address: fallard@dimeo.com Cell number: (401) 639-4557 Permit Request (check one): ✓ New Application □ Permit Extension □ Other (Specify): \_\_\_ Owner's Information (if different from above): Owner of property being dewatered: Allston Yards Phase A LLC Owner's mailing address: 1385 Hancock Street, Quincy, MA 02169 Phone number: 508-326-7276 Location of Discharge & Proposed Treatment System(s): Street number and name: 60 Everett Street \_\_\_\_\_Neighborhood Allston Discharge is to a: ☐ Sanitary Sewer ☐ Combined Sewer ☑ Storm Drain ☐ Other (specify): Describe Proposed Pre-Treatment System(s): Settlement tank, bag filters, and potentially granular activated carbon (GAC). BWSC Outfall No. SDO037 \_\_\_\_\_Receiving Waters Charles River 09/01/2021 To 09/30/2022 Temporary Discharges (Provide Anticipated Dates of Discharge): From ☐ Groundwater Remediation ☐ Tank Removal/Installation □ Utility/Manhole Pumping □ Test Pipe □ Trench Excavation ☐ Accumulated Surface Water Other Soil Excavation for Site Development □ Hydrogeologic Testing **Permanent Discharges** ☐ Foundation Drainage □ Crawl Space/Footing Drain ☐ Accumulated Surface Water □ Non-contact/Uncontaminated Cooling □ Non-contact/Uncontaminated Process □ Other; 1. Attach a Site Plan showing the source of the discharge and the location of the point of discharge (i.e. the sewer pipe or catch basin). Include meter type, meter number, size, make and start reading. Note. All discharges to the Commission's sewer system will be assessed current sewer charges. 2. If discharging to a sanitary or combined sewer, attach a copy of MWRA's Sewer Use Discharge permit or application. 3. If discharging to a separate storm drain, attach a copy of EPA's NPDES Permit or NOI application, or NPDES Permit exclusion letter for the discharge, as well as other relevant information. Dewatering Drainage Permit will be denied or revoked if applicant fails to obtain the necessary permits from MWRA or EPA. Submit Completed Application to: Boston Water and Sewer Commission **Engineering Customer Services** 980 Harrison Avenue, Boston, MA 02119 Attn: Jodi Dobay, Engineering Customer Service E-mail: beginj@bwsc.org Phone: 617-989-7259 Fax: 617-989-7716 Date: 7 Signature of Authorized Representative for Property Owner: