

NPDES RGP APPLICATION FOR TEMPORARY CONSTRUCTION DEWATERING 74 MIDDLESEX AVENUE SOMERVILLE, MASSACHUSETTS 02145

by Haley & Aldrich, Inc. Boston, Massachusetts

for Environmental Protection Agency (EPA) Region 1 Boston, Massachusetts

File No. 134081-019 June 2021

HALEY & ALDRICH, INC. 465 Medford St. Suite 2200 Boston, MA 02129 617.886.7400

11 June 2021 File No. 134081-019

Environmental Protection Agency (EPA) Region 1 5 Post Office Square, Suite 100 Mail Code OEP06-4 Boston, Massachusetts 02109

Attention: Shauna Little

Subject: NPDES RGP Application for Temporary Construction Dewatering

74 Middlesex Avenue

Somerville, Massachusetts 02145

Dear Ms. Little:

On behalf of our client, Greystar Development, East, LLC (Greystar), Haley & Aldrich, Inc. (Haley & Aldrich) is submitting this application to request authorization under the National Pollutant Discharge Elimination System (NPDES) Remediation General Permit (RGP) for off-site discharge of temporary construction dewatering effluent during construction activities for the proposed laboratory and office building at the 74 Middlesex Avenue site (the Site) in Somerville, Massachusetts (Figure 1). A copy of the Notice of Intent (NOI) is included in Appendix A.

GENERAL SITE DESCRIPTION

The approximately 37,000 square foot (sq ft) Site is comprised of two parcels at 74 Middlesex Avenue and 845 McGrath Highway in Somerville, Massachusetts (Figures 1 and 2). The 74 Middlesex Avenue portion of the Site is occupied by an approximately 3,800 sq ft one-story building and parking lot, and the 845 McGrath Highway portion of the Site is vacant.

The project consists of construction of an 18-story laboratory and office building. Three and a half levels of below grade parking are planned below the building to be constructed to the property line on each side of the site, which covers approximately 37,000 sq ft.

The Site has a history of use for trucking storage and maintenance and storage of gasoline and fuel oil in underground storage tanks (USTs). Former buildings associated with the trucking operations were demolished around 2013 and known USTs were previously removed. There are two Massachusetts Department of Environmental Protection (MassDEP) Release Tracking Numbers (RTNs) for the Site: RTN 3-2891 (845 McGrath Highway parcel) and 3-35232 (74 Middlesex parcel). RTN 3-2891 has achieved a Temporary Solution and RTN 3-35232 is in Phase II of Massachusetts Contingency Plan (MCP) Comprehensive Response Actions. Consequently, the Site is subject to response actions under the MCP (310 CMR 40.0000). Regulated constituents associated with these RTNs primarily include petroleum

compounds and metals, particularly lead in soil and groundwater. The source of these contaminants is likely historical Site use and filling.

Based on existing Site conditions, and the regulatory compliance status of RTNs 3-2891 and 3-35232, Haley & Aldrich will prepare a Tier Classification Submittal to combine the two existing RTNs under RTN 3-2891 prior to the start of construction. Soil and groundwater management will be performed under a Release Abatement Measure (RAM) Plan submitted to MassDEP prior to the start of soil and groundwater disturbing activities.

RECEIVING WATER INFORMATION

The receiving water for the Site is the Mystic River located approximately 1,000 feet north and 1,500 feet east of the Site. The Mystic River receives water from the Site primarily from MWRA Combined Sewer Outfall (CSO) 205 located downstream of the Amelia Earhart Dam as shown in Figure 3A. Occasionally, during high stormwater discharge events, water also discharges from the Site to the Mystic River via the City of Somerville CSO 205A shown in Figure 3A.

On 22 April 2021, Haley & Aldrich collected a receiving water sample from the Mystic River downstream of the Amelia Earhart Dam near primary CSO 205 (Figure 3A). The surface water sample was collected and submitted to Alpha Analytical, Inc. of Westborough, Massachusetts (Alpha) for laboratory analysis of total metals, ammonia, and hardness. Field parameters, including pH and temperature, were collected from the surface water sample at the time of sampling. The results are summarized in Table I. Receiving water temperature is also noted on the effluent limitations input calculation page in Appendix B. The laboratory data report is provided in Appendix C.

The seven-day-ten-year flow (7Q10) of the receiving water could not be calculated at either the primary CSO (205) or overflow CSO (205A) using the U.S. Geological Survey (USGS) StreamStats program. Therefore, the resulting Dilution Factor (DF) at both outfall locations is zero. On 13 May 2021 MassDEP confirmed the Streamstats 7Q10 result and that a DF of zero was appropriate for calculating site specific effluent limits by email. A copy of the email correspondence is provided in Appendix B.

Copies of the "EnterData" and "SaltwaterResults" tabs from the excel file provided as an additional resource by EPA are included in Appendix B and will be transmitted electronically with the NOI. The calculated effluent limitations are included for reference in Table I.

SOURCE WATER INFORMATION

To evaluate groundwater (source water) quality at the Site, groundwater samples were collected from monitoring well HA105(OW) on 13 and 22 April 2021. Haley & Aldrich sampled the well twice: once for MWRA construction dewatering parameters and once for additional parameters required under the NPDES RGP because the discharge path for the Site is to the Mystic River via an MWRA combined sewer overflow (CSO; see Discharge information Section below). The monitoring well is located within the planned building footprint area requiring temporary construction dewatering, as shown on Figure 2.

The groundwater samples were submitted to Alpha for laboratory analysis of 2017 NPDES RGP parameters including VOCs, SVOCs including polycyclic aromatic hydrocarbons (PAHs), total metals, total petroleum hydrocarbons (TPH), extractable hydrocarbons (EPH), pesticides, PCBs, total suspended solids, chloride, total cyanide, total phenols, ammonia, and total residual chlorine. The samples were also tested for extractable petroleum hydrocarbons (EPH) and oil and grease. Field parameters, including pH and temperature, were collected at the time of groundwater sampling.

The source water quality data are summarized in Table I. Laboratory data reports are included in Appendix C.

Ethanol Discussion

The groundwater samples were tested for ethanol because of Site history as a former filling station and trucking storage and maintenance facility, and the results of both past and recent investigations and testing that indicate petroleum products potentially containing ethanol were used, stored, or released at the site. Ethanol testing results are in Table 1. Ethanol was not detected above laboratory reporting limits.

DISCHARGE INFORMATION

Water from construction dewatering activities will be discharged into storm drains via temporary pipes located along the north, west, and south limits of the project site. The storm drain locations and proposed discharge route is shown on Figures 3A and 3B. The discharge route flows north along the east side of the Site down Middlesex Avenue (City of Somerville Main Drain). During normal stormwater discharge, discharge flows from the City of Somerville Main Drain to the MWRA Somerville Marginal Conduit. The Conduit runs parallel to the southern bank of the Mystic River and discharges to Outfall 205 in the Mystic River (downstream of the Amelia Earhart Dam). Occasionally during high stormwater discharge events, effluent bypasses the Marginal Conduit and discharges to outfall 205A directly from the City of Somerville Main Drain. We anticipate effluent discharge rates to be 50 gallons per minute (gpm) or less, with occasional peak flows of about 100 gpm during significant precipitation events. The temporary dewatering is planned to be conducted using sumps and pumps within the limits of the excavation.

DEWATERING TREATMENT SYSTEM INFORMATION

An effluent treatment system will be designed and implemented by the Contractor to meet the applicable 2017 RGP Discharge Effluent Criteria. Prior to discharge, dewatering effluent will be routed through a sedimentation tank and bag filters to remove suspended solids and undissolved regulated constituents, as shown on Figure 4.

TREATMENT CHEMICALS AND ADDITIVES INFORMATION

A pH adjustment system will likely be added to the sedimentation tank (estimated to be 18,000-gallon capacity) at the head of the treatment system. Sulfuric acid (70-100%) will be used to lower the pH as necessary to maintain pH within the prescribed RGP discharge requirements of 6.5 to 8.3, and dosing

will be automatically controlled using a meter pump, pH controller, and probe. The sulfuric acid will be stored in a 55-gallon drum within secondary containment.

In accordance with Part 2.5.3.d.i of the RGP, the product information, including chemical formula, SDS, CAS registry number, manufacturer, and associated hazards, toxicological and ecological information, and manufacturer information, including dosing and metering, are provided in Appendix D. A summary of control measures for proper handling and spill prevention are incorporated in the Best Management Practices Plan and include regular maintenance to ensure proper operation; daily monitoring for the condition of the treatment system; storage in appropriate containers in accordance with local, state, and federal regulations; and appropriate training for employees who have direct or indirect responsibility for ensuring compliance with the RGP.

The estimated maximum magnitude of application ("worst case/ceiling value") would be 48 gallons of sulfuric acid per day at a flow rate of 0.144 million gallons per day, which equates to a concentration of 333 ppm. The lethal concentration to kill 50% of the fish population (LC50) in a receiving water is 500 ppm per the SDS in Attachment B. So even at ceiling values, the sulfuric acid would not exceed LC50. Actual daily application of sulfuric acid is anticipated to be 7 to 8 gallons/day or less for a dose concentration of 85 ppm. The pH adjustment would be installed near the influent of the treatment chain and would be buffered by the rest of the treatment chain. Additionally, this dose of sulfuric acid would be diluted by other flows in the stormwater discharge and the Mystic River.

Part F of the RGP NOI requires that chemical additives be identified if applied to the effluent prior to discharge. To satisfy the confirmation requirements of RGP Part 2.5.3.d.ii:

- 1. The addition of a pH conditioner will not add any pollutants in concentrations which exceed permit effluent limitations;
- 2. The use of this chemical will not result in the exceedance of any applicable water quality standard; and
- 3. This chemical will not add any pollutants that would justify the application of permit conditions that are different from or absent in the permit.

DETERMINATION OF ENDANGERED SPECIES ACT ELIGIBILITY

According to the guidelines outlined in Appendix I of the 2017 NPDES RGP, a preliminary determination for the action area associated with this project was established using the U.S. Fish and Wildlife Service (FWS) Information, Planning, and Conservation (IPAC) online system; a copy of the determination is attached in Appendix E. Based on the results of the determination, the project and action area are considered to meet FWS Criterion A because no listed species or critical habitat are present within the project action area.

DOCUMENTATION OF NATIONAL HISTORIC PRESERVATION ACT REQUIREMENTS

Based on a review of the resources provided by the U.S. National Register of Historic Places and a review of the Massachusetts Cultural Resource Information System (MACRIS), no historic properties are within the Site. The Site's primary outfall discharges to a Nation wetlands Inventory (NWI) estuarine and

marine deep-water wetland (E1UBLx). The Site meets Criterion A. Documentation is included in Appendix F.

SUPPLEMENTAL INFORMATION

Owner and operator information are provided below for reference:

Owner: Operator:

Greystar Development, East, LLC
One Federal Street, Suite 1804
Boston, Massachusetts 02110
Attn: Ryan Souls, Director, Development

Consigli Construction Company 266 Summer Street Boston, Massachusetts 02210 Attn: Christopher Harris

CLOSING

Thank you very much for your consideration. Please feel free to contact us should you wish to discuss the information contained herein or if you need additional information.

Sincerely yours,

HALEY & ALDRICH, INC.

Kristen M. Ingraham

Geologist

Heather A. Ballantyne, P.G. (NH), LSP

&Ballontyne

Senior Project Manager

Enclosures:

Table I – Summary of Water Quality Data

Figure 1 – Project Locus

Figure 2 – Site and Subsurface Exploration Plan

Figure 3A – Proposed Dewatering Discharge Route

Figure 3B – Proposed Dewatering Discharge Location Plan

Figure 4 – Proposed Treatment System Schematic

Appendix A – Notice of Intent (NOI)

Appendix B – Effluent Limitations Documentation

Appendix C – Laboratory Data Reports

Appendix D – Chemicals and Additives Information

Appendix E – Endangered Species Act Assessment

Appendix F - National Historic Preservation Act Review

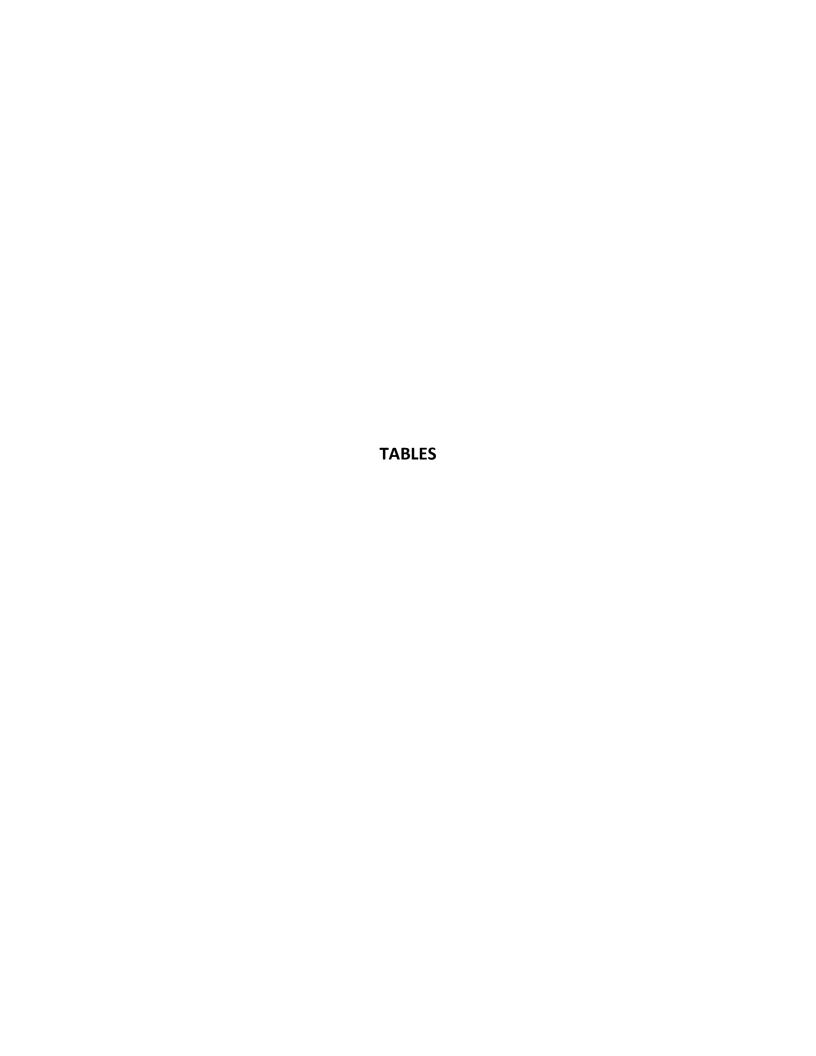


TABLE I SUMMARY OF WATER QUALITY DATA 74 MIDDLESEX AVENUE SOMERVILLE, MA FILE NO. 134081

FILE NO. 134081	1			
Location Name		HA20-105(OW)	HA20-105(OW)	MYSTIC-1
Sample Date	NPDES Site Specific Criteria	HA20-105(OW)_2021-0413 04/13/2021	HA20-105(OW)_2021-0422 04/22/2021	MYSTIC-1_2021-0422 04/22/2021
Lab Sample ID Volatile Organic Compounds (ug/L)		L2118775-01	L2120709-01	L2120709-02
1,1,1-Trichloroethane	200	ND (20)	ND (2)	-
1,1,2,2-Tetrachloroethane 1,1,2-Trichloroethane	NA 5	ND (10) ND (15)	- ND (1.5)	-
1,1-Dichloroethane 1,1-Dichloroethene	70 3.2	ND (15) ND (10)	ND (1.5) ND (1)	-
1,2-Dibromoethane (Ethylene Dibromide)	0.05	•	ND (1) ND (0.01)	-
1,2-Dichlorobenzene 1,2-Dichloroethane	600 5	ND (50) ND (15)	ND (5) ND (1.5)	-
1,2-Dichloropropane 1,3-Dichlorobenzene	NA 320	ND (35) ND (50)	- ND (5)	-
1,3-Dichloropropene	NA	ND (15)	-	-
1,4-Dichlorobenzene 2-Butanone (Methyl Ethyl Ketone)	5 NA	ND (50) ND (100)	ND (5) -	-
2-Chloroethyl vinyl ether 2-Hexanone	NA NA	ND (100) ND (100)	-	-
4-Methyl-2-Pentanone (Methyl Isobutyl Ketone)	NA	ND (100)	-	-
Acetone Acrolein	7970 NA	ND (100) ND (80)	ND (10) -	-
Acrylonitrile Benzene	NA 5^	ND (100) ND (10)	- ND (1)	-
Bromodichloromethane	NA	ND (10)	-	-
Bromoform Bromomethane (Methyl Bromide)	NA NA	ND (10) ND (50)	-	-
Carbon disulfide Carbon tetrachloride	NA 4.4	ND (50) ND (10)	- ND (1)	-
Chlorobenzene	NA	ND (35)	ND (1)	-
Chloroethane Chloroform (Trichloromethane)	NA NA	ND (20) ND (10)	-	-
Chloromethane (Methyl Chloride)	NA	ND (50)	-	-
cis-1,2-Dichloroethene cis-1,3-Dichloropropene	70 NA	ND (10) ND (15)	2 -	-
Dibromochloromethane Dibromomethane	NA NA	ND (10) ND (10)	-	-
Ethanol	Report	-	ND (20000)	-
Ethylbenzene n,p-Xylenes	٨	ND (10) ND (20)	ND (1) ND (2)	-
Methylene chloride	4.6	ND (10)	ND (1)	-
o-Xylene Styrene	NA	ND (10) ND (10)	ND (1) -	-
Fetrachloroethene Foluene	5 ^	ND (10) ND (10)	ND (1) ND (1)	-
rans-1,2-Dichloroethene	NA	ND (15)	- ND (1)	-
trans-1,3-Dichloropropene Trichloroethene	NA 5	ND (15) ND (10)	- ND (1)	-
Trichlorofluoromethane (CFC-11)	NA	ND (50)	- '	-
Vinyl acetate Vinyl chloride	NA 2	ND (100) ND (10)	- ND (1)	-
Kylene (total) Total BTEX	100^	ND (10) ND	ND (1) ND	-
Volatile Organic Compounds SIM (ug/L)	200	ND (5)		
1,4-Dioxane Semi-Volatile Organic Compounds (ug/L)	200	ND (5)	-	-
Benzo(a)anthracene	1*	ND (2)	-	-
Benzo(a)pyrene Benzo(b)fluoranthene	1* 1*	ND (2) ND (2)	-	-
Benzo(k)fluoranthene Chrysene	1* 1*	ND (2) ND (2)	-	-
Dibenz(a,h)anthracene	1*	ND (2)	-	-
Indeno(1,2,3-cd)pyrene Total Group I PAHs	1* 1*	ND (2) ND	-	-
Acenaphthene	**	ND (2)	-	-
Acenaphthylene Anthracene	**	ND (2) ND (2)	-	-
Benzo(g,h,i)perylene	**	ND (2)	-	-
Fluoranthene Fluorene	**	ND (2) ND (2)	-	-
Naphthalene Phenanthrene	20**	ND (2) ND (2)	-	-
Pyrene	**	ND (2)	-	-
Total Group II PAHs bis(2-Ethylhexyl)phthalate	100**	ND ND (2.2)	-	-
Butyl benzylphthalate	NA	ND (5)	-	-
Diethyl phthalate Dimethyl phthalate	NA NA	ND (5) ND (5)	-	-
Di-n-butylphthalate Di-n-octyl phthalate	NA NA	ND (5) ND (5)	-	-
Fotal Phthalates	190	ND	-	-
2,4,5-Trichlorophenol 2,4,6-Trichlorophenol	NA NA	ND (5) ND (5)	-	<u>-</u>
2,4-Dichlorophenol	NA	ND (5)	-	-
2,4-Dimethylphenol 2,4-Dinitrophenol	NA NA	ND (5) ND (20)	-	-
2-Chlorophenol	NA	ND (2)	-	-
2-Methylphenol (o-Cresol) 2-Nitrophenol	NA NA	ND (5) ND (5)	-	-
3&4-Methylphenol 4,6-Dinitro-2-methylphenol	NA NA	ND (5) ND (10)	-	-
4-Chloro-3-methylphenol	NA	ND (2)	-	-
1-Nitrophenol Pentachlorophenol	NA 1	ND (10) ND (5)	-	-
Phenol Fotal Phenols (ug/L)	NA 1080	ND (5)	- ND (30)	- -
otal Pnenois (ug/L) 1,2,4-Trichlorobenzene	NA NA	- ND (5)	- (30)	-
2,2'-oxybis(1-Chloropropane) 2,4-Dinitrotoluene	NA	ND (2)	-	-
2,6-Dinitrotoluene	NA NA	ND (5) ND (5)	-	-
2-Chloronaphthalene 2-Methylnaphthalene	NA NA	ND (2) ND (2)	- -	
3,3'-Dichlorobenzidine	NA	ND (5)	-	-
I-Bromophenyl phenyl ether I-Chloroaniline	NA NA	ND (2) ND (5)	-	-
4-Chlorophenyl phenyl ether Azobenzene	NA NA	ND (2) ND (2)	-	-
Benzidine	NA	ND (20)	-	-
Benzoic acid Benzyl Alcohol	NA NA	ND (50) ND (2)	-	
ois(2-Chloroethoxy)methane	NA	ND (5)	-	-
ois(2-Chloroethyl)ether Dibenzofuran	NA NA	ND (2) ND (2)	-	-
Hexachlorobenzene	NA	ND (2)	-	-
	NA	ND (2)	-	-
Hexachlorobutadiene	NA	ND (10)		
Hexachlorobutadiene Hexachlorocyclopentadiene Hexachloroethane	NA	ND (2)	-	-
Hexachlorobutadiene Hexachlorocyclopentadiene Hexachloroethane Sophorone Nitrobenzene	NA NA NA	ND (2) ND (5) ND (2)	- - -	- - -
Hexachlorobutadiene Hexachlorocyclopentadiene Hexachloroethane Isophorone	NA NA	ND (2) ND (5)	- - - - -	- - - - -

TABLE I SUMMARY OF WATER QUALITY DATA 74 MIDDLESEX AVENUE SOMERVILLE, MA FILE NO. 134081

	Location Name	Action Level	HA20-105(OW)	HA20-105(OW)	MYSTIC-1
	Sample Name	NPDES Site Specific	HA20-105(OW) HA20-105(OW)_2021-0413	HA20-105(OW) HA20-105(OW)_2021-0422	MYSTIC-1 MYSTIC-1 2021-0422
	Sample Date	Criteria	04/13/2021	04/22/2021	04/22/2021
	Lab Sample ID		L2118775-01	L2120709-01	L2120709-02
Semi-Volatile Organic Compounds (ug/L)					
Benzo(a)anthracene		1*	-	ND (0.1)	-
Benzo(a)pyrene Benzo(b)fluoranthene		1* 1*	-	ND (0.1) ND (0.1)	-
Benzo(k)fluoranthene		1*	-	ND (0.1)	-
Chrysene		1*	-	ND (0.1)	-
Dibenz(a,h)anthracene		1*	-	ND (0.1)	-
Indeno(1,2,3-cd)pyrene		1* 1*	- ND	ND (0.1)	-
Total Group I PAHs			ND	-	-
Acenaphthulana		**	-	ND (0.1)	-
Acenaphthylene Anthracene		**		ND (0.1) ND (0.1)	-
Benzo(g,h,i)perylene		**	-	ND (0.1)	-
Fluoranthene		**	-	ND (0.1)	-
Fluorene		**	-	ND (0.1)	-
Naphthalene Phenanthrene		20** **	-	ND (0.1) ND (0.1)	-
Pyrene		**	-	ND (0.1)	-
Total Group II PAHs		100**	ND	-	-
Pentachlorophenol		1		ND (1)	-
Total Petroleum Hydrocarbons (ug/L)				, ,	
Oil and Grease (HEM), Total			ND (3600)		-
Petroleum hydrocarbons		5000	-	4520	-
EPH (ug/L)					
MADEP C11-C22 Aromatic Hydrocarbons, A	djusted	NA	ND (100)	-	-
MADEP C11-C22 Aromatic Hydrocarbons, U	nadjusted	NA	ND (100)	-	-
MADER C9-C18 Aliphatic Hydrocarbons		NA NA	ND (100)	-	-
MADEP C9-C18 Aliphatic Hydrocarbons 2-Methylnaphthalene		NA NA	ND (100) ND (0.4)	-	_
Acenaphthene		NA NA	ND (0.4)	-	-
Acenaphthylene		NA	ND (0.4)	-	-
Anthracene		NA NA	ND (0.4)	-	-
Benzo(a)anthracene Benzo(a)pyrene		NA NA	ND (0.4) ND (0.2)		
Benzo(a)pyrene Benzo(b)fluoranthene		NA NA	ND (0.2) ND (0.4)	-	-
Benzo(g,h,i)perylene		NA	ND (0.4)	-	-
Benzo(k)fluoranthene		NA	ND (0.4)	-	-
Chrysene		NA	ND (0.4)	-	-
Dibenz(a,h)anthracene Fluoranthene		NA NA	ND (0.4) ND (0.4)		
Fluorene		NA	ND (0.4)		-
Indeno(1,2,3-cd)pyrene		NA	ND (0.4)	-	-
Naphthalene		NA	ND (0.4)	-	-
Phenanthrene Pyrene		NA NA	ND (0.4)	-	-
		NA	ND (0.4)	-	-
Inorganic Compounds (ug/L) Antimony, Total		206	ND (4)		ND (20)
Arsenic, Total		104	ND (4) ND (1)		ND (20)
Cadmium, Total		10.2	ND (0.2)		ND (1)
Chromium, Total		323	ND (1)	ND (5)	ND (5)
Chromium III (Trivalent), Total		323	-	ND (10)	-
Chromium VI (Hexavalent), Dissolved Copper, Total		323 242	- 1.3	ND (10)	- ND (5)
Hardness, Total		NA	-	284000	1650000
Iron, Total		5000	25600	-	442
Lead, Total		160	2.9	-	ND (5)
Mercury, Total Nickel, Total		0.739 1450	ND (0.2) ND (2)	-	ND (0.2) ND (10)
Selenium, Total		235.8	ND (5)	-	ND (25)
Silver, Total		35.1	ND (0.4)	-	ND (2)
Zinc, Total		420	19.8	-	ND (50)
Other					
pH (lab), Total (pH units)			6.6	-	-
Ammonia, Total (ug/L)		Report	-	1080 353000	228
Chloride, Total (ug/L) Chlorine, residual, Total (ug/L)		Report 7.5	-	353000 ND (20)	-
Cyanide, Total (ug/L)		178000	-	ND (5)	-
		30000	-	26000	-
Total Suspended Solids (TSS) (ug/L)					I
Total Suspended Solids (TSS) (ug/L) PCBs (ug/L)					
PCBs (ug/L) Aroclor-1016 (PCB-1016)		+	ND (0.25)	-	-
PCBs (ug/L) Aroclor-1016 (PCB-1016) Aroclor-1221 (PCB-1221)		+	ND (0.25)	- -	- -
PCBs (ug/L) Aroclor-1016 (PCB-1016) Aroclor-1221 (PCB-1221) Aroclor-1232 (PCB-1232)		+ +	ND (0.25) ND (0.25)	- - - -	- - - -
PCBs (ug/L) Aroclor-1016 (PCB-1016) Aroclor-1221 (PCB-1221)		+	ND (0.25) ND (0.25) ND (0.25)	- - - -	- - - -
PCBs (ug/L) Aroclor-1016 (PCB-1016) Aroclor-1221 (PCB-1221) Aroclor-1232 (PCB-1232) Aroclor-1242 (PCB-1242) Aroclor-1248 (PCB-1248) Aroclor-1254 (PCB-1254)		+ +	ND (0.25) ND (0.25)	- - - - -	- - - - -
PCBs (ug/L) Aroclor-1016 (PCB-1016) Aroclor-1221 (PCB-1221) Aroclor-1232 (PCB-1232) Aroclor-1242 (PCB-1242) Aroclor-1248 (PCB-1248) Aroclor-1254 (PCB-1254) Aroclor-1260 (PCB-1260)		+ + + + +	ND (0.25) ND (0.25) ND (0.25) ND (0.25) ND (0.25) ND (0.2)	- - - - -	- - - - - -
PCBs (ug/L) Aroclor-1016 (PCB-1016) Aroclor-1221 (PCB-1221) Aroclor-1232 (PCB-1232) Aroclor-1242 (PCB-1242) Aroclor-1248 (PCB-1248) Aroclor-1254 (PCB-1254)		+ + + +	ND (0.25) ND (0.25) ND (0.25) ND (0.25) ND (0.25)		- - - - - - -
PCBs (ug/L) Aroclor-1016 (PCB-1016) Aroclor-1221 (PCB-1221) Aroclor-1232 (PCB-1232) Aroclor-1242 (PCB-1242) Aroclor-1248 (PCB-1248) Aroclor-1254 (PCB-1254) Aroclor-1260 (PCB-1260) SUM PCBs Pesticides (ug/L)		+ + + + + + 0.000064+	ND (0.25) ND (0.25) ND (0.25) ND (0.25) ND (0.25) ND (0.2) ND	- - - - - -	- - - - - - - -
PCBs (ug/L) Aroclor-1016 (PCB-1016) Aroclor-1221 (PCB-1221) Aroclor-1232 (PCB-1232) Aroclor-1242 (PCB-1242) Aroclor-1248 (PCB-1242) Aroclor-1254 (PCB-1254) Aroclor-1260 (PCB-1256) SUM PCBs Pesticides (ug/L) 4,4'-DDD		+ + + + + + 0.000064+	ND (0.25) ND (0.25) ND (0.25) ND (0.25) ND (0.25) ND (0.2) ND	- - - - - - - -	- - - - - - - -
PCBs (ug/L) Aroclor-1016 (PCB-1016) Aroclor-1221 (PCB-1221) Aroclor-1232 (PCB-1232) Aroclor-1242 (PCB-1242) Aroclor-1248 (PCB-1242) Aroclor-1254 (PCB-1254) Aroclor-1250 (PCB-1250) SUM PCBs Pesticides (ug/L) 4,4'-DDD		+ + + + + + 0.000064+	ND (0.25) ND (0.25) ND (0.25) ND (0.25) ND (0.25) ND (0.2) ND ND ND (0.04)	- - - - - - - -	- - - - - - - - -
PCBs (ug/L) Aroclor-1016 (PCB-1016) Aroclor-1221 (PCB-1221) Aroclor-1232 (PCB-1232) Aroclor-1242 (PCB-1242) Aroclor-1248 (PCB-1242) Aroclor-1254 (PCB-1254) Aroclor-1260 (PCB-1256) SUM PCBs Pesticides (ug/L) 4,4'-DDD		+ + + + + + 0.000064+	ND (0.25) ND (0.2) ND ND ND (0.04) ND (0.04) ND (0.04) ND (0.04)	- - - - - - - - -	- - - - - - - - - - - -
PCBs (ug/L) Aroclor-1016 (PCB-1016) Aroclor-1221 (PCB-1221) Aroclor-1232 (PCB-1232) Aroclor-1242 (PCB-1242) Aroclor-1248 (PCB-1248) Aroclor-1254 (PCB-1254) Aroclor-1260 (PCB-1260) SUM PCBs Pesticides (ug/L) 4,4'-DDD 4,4'-DDE 4,4'-DDT		+ + + + + + 0.000064+	ND (0.25) ND (0.25) ND (0.25) ND (0.25) ND (0.25) ND (0.2) ND ND ND (0.04)	- - - - - - - - - - -	- - - - - - - - - - - - - - - - - - -
PCBs (ug/L) Aroclor-1016 (PCB-1016) Aroclor-1211 (PCB-1221) Aroclor-1232 (PCB-1232) Aroclor-1242 (PCB-1232) Aroclor-1248 (PCB-1242) Aroclor-1248 (PCB-1248) Aroclor-1254 (PCB-1254) Aroclor-1260 (PCB-1250) SUM PCBs Pesticides (ug/L) 4,4'-DDD 4,4'-DDT Aldrin alpha-BHC alpha-Chlordane		+ + + + + 0.000064+ NA NA NA NA NA	ND (0.25) ND (0.25) ND (0.25) ND (0.25) ND (0.25) ND (0.25) ND (0.2) ND ND ND (0.04) ND (0.04) ND (0.04) ND (0.04) ND (0.02) ND (0.02) ND (0.02)	- - - - - - - - - - - - -	- - - - - - - - - - - - - - - - - - -
PCBs (ug/L) Aroclor-1016 (PCB-1016) Aroclor-1211 (PCB-1221) Aroclor-1232 (PCB-1232) Aroclor-1242 (PCB-1232) Aroclor-1248 (PCB-1242) Aroclor-1248 (PCB-1248) Aroclor-1254 (PCB-1254) Aroclor-1260 (PCB-1260) SUM PCBs Pesticides (ug/L) 4,4'-DDD 4,4'-DDT Aldrin alpha-BhC alpha-Chlordane beta-BHC		+ + + + + + 0.000064+ NA NA NA NA NA	ND (0.25) ND (0.2) ND ND ND (0.04) ND (0.04) ND (0.04) ND (0.02)	- - - - - - - - - - - - - - - - - - -	- - - - - - - - - - - - - - - - - - -
PCBs (ug/L) Aroclor-1016 (PCB-1016) Aroclor-1221 (PCB-1221) Aroclor-1232 (PCB-1232) Aroclor-1242 (PCB-1232) Aroclor-1248 (PCB-1248) Aroclor-1248 (PCB-1248) Aroclor-1254 (PCB-1254) Aroclor-1260 (PCB-1260) SUM PCBs Pesticides (ug/L) 4,4'-DDD 4,4'-DDD 4,4'-DDT Aldrin alpha-BHC alpha-Chlordane beta-BHC Chlordane		+ + + + + 0.000064+ NA NA NA NA NA NA	ND (0.25) ND (0.20) ND ND ND (0.04) ND (0.04) ND (0.04) ND (0.02)		
PCBs (ug/L) Aroclor-1016 (PCB-1016) Aroclor-1211 (PCB-1221) Aroclor-1232 (PCB-1232) Aroclor-1242 (PCB-1232) Aroclor-1248 (PCB-1242) Aroclor-1248 (PCB-1248) Aroclor-1254 (PCB-1254) Aroclor-1260 (PCB-1260) SUM PCBs Pesticides (ug/L) 4,4'-DDD 4,4'-DDT Aldrin alpha-BhC alpha-Chlordane beta-BHC		+ + + + + + 0.000064+ NA NA NA NA NA	ND (0.25) ND (0.2) ND ND ND (0.04) ND (0.04) ND (0.04) ND (0.02)		- - - - - - - - - - - - - - - - - - -
PCBs (ug/L) Aroclor-1016 (PCB-1016) Aroclor-1211 (PCB-1221) Aroclor-1232 (PCB-1232) Aroclor-1242 (PCB-1232) Aroclor-1248 (PCB-1242) Aroclor-1254 (PCB-1254) Aroclor-12560 (PCB-1250) SUM PCBs Pesticides (ug/L) 4,4'-DDD 4,4'-DDE 4,4'-DDT Aldrin alpha-BHC alpha-Chlordane beta-BHC Chlordane delta-BHC Dieldrin Endosulfan I		+ + + + + 0.000064+ NA NA NA NA NA NA NA	ND (0.25) ND (0.2) ND ND ND (0.04) ND (0.04) ND (0.04) ND (0.02) ND (0.04) ND (0.02) ND (0.04) ND (0.02)		- - - - - - - - - - - - - - - - - - -
PCBs (ug/L) Aroclor-1016 (PCB-1016) Aroclor-1221 (PCB-1221) Aroclor-1232 (PCB-1232) Aroclor-1242 (PCB-1232) Aroclor-1248 (PCB-1248) Aroclor-1248 (PCB-1248) Aroclor-1254 (PCB-1254) Aroclor-1260 (PCB-1260) SUM PCBs Pesticides (ug/L) 4,4'-DDD 4,4'-DDD 4,4'-DDT Aldrin alpha-BHC alpha-Chlordane beta-BHC Chlordane delta-BHC Dieldrin Endosulfan II		+ + + + + 0.000064+ NA NA NA NA NA NA NA NA NA NA	ND (0.25) ND (0.20) ND ND ND (0.04) ND (0.04) ND (0.04) ND (0.02) ND (0.04) ND (0.04)		
PCBs (ug/L) Aroclor-1016 (PCB-1016) Aroclor-1211 (PCB-1221) Aroclor-1232 (PCB-1232) Aroclor-1242 (PCB-1232) Aroclor-1248 (PCB-1242) Aroclor-1248 (PCB-1248) Aroclor-1254 (PCB-1254) Aroclor-1260 (PCB-1260) SUM PCBS Pesticides (ug/L) 4,4'-DDE 4,4'-DDE 4,4'-DDT Aldrin alpha-BHC alpha-Chlordane beta-BHC Chlordane delta-BHC Dieldrin Endosulfan II Endosulfan II Endosulfan sulfate		+ + + + + 0.000064+ NA NA NA NA NA NA NA NA NA NA NA NA	ND (0.25) ND ND ND ND (0.04) ND (0.04) ND (0.04) ND (0.02) ND (0.04)		
PCBs (ug/L) Aroclor-1016 (PCB-1016) Aroclor-1211 (PCB-1221) Aroclor-1232 (PCB-1232) Aroclor-1242 (PCB-1232) Aroclor-1248 (PCB-1242) Aroclor-1248 (PCB-1248) Aroclor-1254 (PCB-1254) Aroclor-1260 (PCB-1260) SUM PCBs Pesticides (ug/L) 4,4'-DDD 4,4'-DDT Aldrin alpha-BHC alpha-Chlordane beta-BHC Chlordane delta-BHC Dieldrin Endosulfan I Endosulfan I Endosulfan sulfate Endrin		+ + + + + 0.000064+ NA NA NA NA NA NA NA NA NA NA NA NA	ND (0.25) ND (0.2) ND ND ND ND ND (0.04) ND (0.04) ND (0.04) ND (0.02) ND (0.04)		
PCBs (ug/L) Aroclor-1016 (PCB-1016) Aroclor-1211 (PCB-1221) Aroclor-1232 (PCB-1232) Aroclor-1242 (PCB-1232) Aroclor-1248 (PCB-1242) Aroclor-1248 (PCB-1248) Aroclor-1254 (PCB-1254) Aroclor-1260 (PCB-1260) SUM PCBS Pesticides (ug/L) 4,4'-DDE 4,4'-DDE 4,4'-DDT Aldrin alpha-BHC alpha-Chlordane beta-BHC Chlordane delta-BHC Dieldrin Endosulfan II Endosulfan II Endosulfan sulfate		+ + + + + 0.000064+ NA NA NA NA NA NA NA NA NA NA NA NA	ND (0.25) ND ND ND ND (0.04) ND (0.04) ND (0.04) ND (0.02) ND (0.04)		
PCBs (ug/L) Aroclor-1016 (PCB-1016) Aroclor-1211 (PCB-1221) Aroclor-1232 (PCB-1232) Aroclor-1242 (PCB-1232) Aroclor-1248 (PCB-1242) Aroclor-1248 (PCB-1248) Aroclor-1254 (PCB-1254) Aroclor-1260 (PCB-1260) SUM PCBS Pesticides (ug/L) 4,4'-DDE 4,4'-DDE 4,4'-DDT Aldrin alpha-BHC alpha-Chlordane beta-BHC Chlordane delta-BHC Dieldrin Endosulfan II Endosulfan II Endosulfan II Endosulfan II Endosulfan sulfate Endrin Endrin aldehyde Endrin ketone gamma-BHC (Lindane)		+ + + + + + + + + + + + + + + + + + +	ND (0.25) ND (0.20) ND ND ND (0.04) ND (0.04) ND (0.04) ND (0.02) ND (0.04)		
PCBs (ug/L) Aroclor-1016 (PCB-1016) Aroclor-1211 (PCB-1221) Aroclor-1232 (PCB-1232) Aroclor-1232 (PCB-1232) Aroclor-1242 (PCB-1242) Aroclor-1248 (PCB-1248) Aroclor-1254 (PCB-1254) Aroclor-1260 (PCB-1260) SUM PCBs Pesticides (ug/L) 4,4'-DDD 4,4'-DDT Aldrin alpha-BHC alpha-Chlordane beta-BHC Chlordane delta-BHC Dieldrin Endosulfan I Endosulfan I Endosulfan sulfate Endrin Endrin aldehyde Endrin ketone gamma-BHC (Lindane) gamma-BHC (Lindane) gamma-Chlordane		+ + + + + + + + + + + + + + + + + + +	ND (0.25) ND (0.2) ND		
PCBs (ug/L) Aroclor-1016 (PCB-1016) Aroclor-1211 (PCB-1221) Aroclor-1232 (PCB-1232) Aroclor-1232 (PCB-1232) Aroclor-1242 (PCB-1242) Aroclor-1248 (PCB-1248) Aroclor-1254 (PCB-1254) Aroclor-1260 (PCB-1260) SUM PCBs Pesticides (ug/L) 4,4'-DDT 4,4'-DDT Aldrin alpha-BHC alpha-Chlordane beta-BHC Chlordane delta-BHC Dieldrin Endosulfan I Endosulfan I Endosulfan sulfate Endrin Endrin aldehyde Endrin ketone gamma-BHC (Lindane) gamma-BHC (Lindane) gamma-BHC (Lindane) gamma-Chlordane		+ + + + + + + + + + + + + + + + + + +	ND (0.25) ND (0.20) ND		
PCBs (ug/L) Aroclor-1016 (PCB-1016) Aroclor-1211 (PCB-1221) Aroclor-1232 (PCB-1232) Aroclor-1232 (PCB-1232) Aroclor-1242 (PCB-1242) Aroclor-1248 (PCB-1248) Aroclor-1254 (PCB-1254) Aroclor-1260 (PCB-1260) SUM PCBs Pesticides (ug/L) 4,4'-DDD 4,4'-DDT Aldrin alpha-BHC alpha-Chlordane beta-BHC Chlordane delta-BHC Dieldrin Endosulfan I Endosulfan I Endosulfan sulfate Endrin Endrin aldehyde Endrin ketone gamma-BHC (Lindane) gamma-BHC (Lindane) gamma-Chlordane		+ + + + + + + + + + + + + + + + + + +	ND (0.25) ND (0.2) ND		

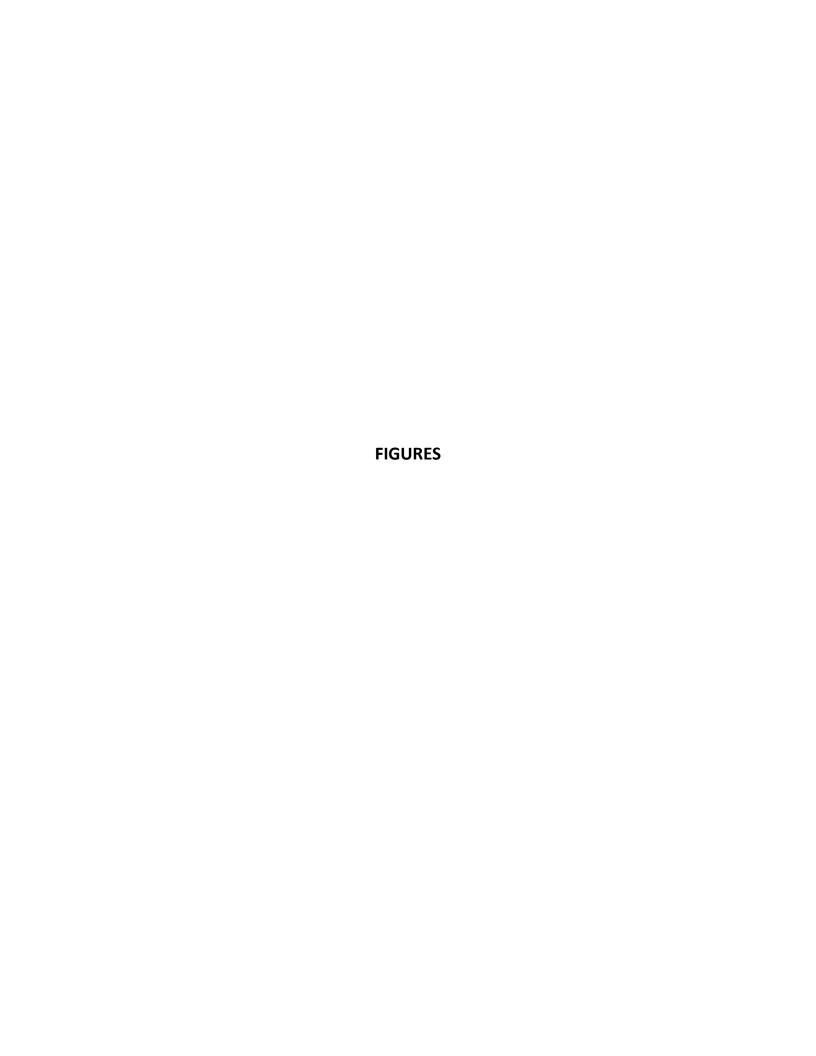
ABBREVIATIONS AND NOTES:

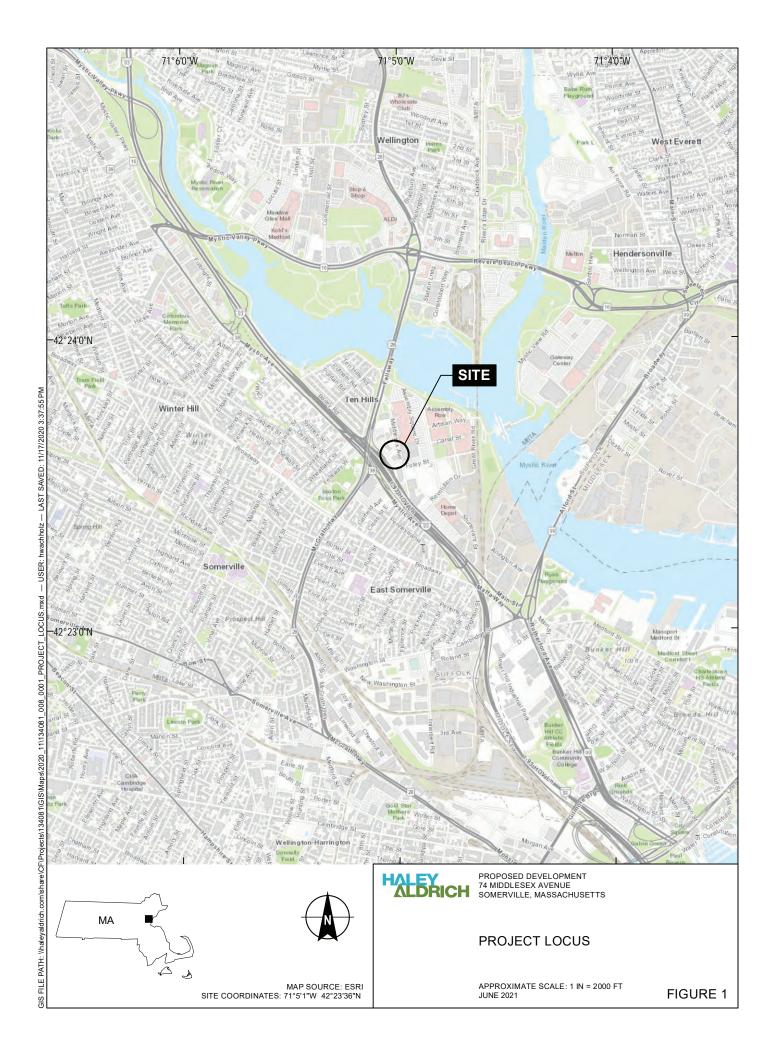
-: Not Analyzed

mg/L: micrograms per liter MCP: 310 CMR 40.0000 Massachusetts Contingency Plan effective 25 April 2014; revisions 23 May 2014. NA: Not Applicable

ND (2.5): Not detected, number in parentheses is the laboratory detection limit RC: MCP Reportable Concentration

- Analytes detected in at least one sample are reported herein. For a complete list of analytes see the laboratory data sheets.


 Black bold values indicate an exceedance of applicable NPDES RGP Project Effluent Limit Criteria


 ^: Indicates effluent limit is limited as total BTEX of 100 ug/l.

- *: Indicates effluent limit is limited as total Group I PAHs of 1 ug/l.

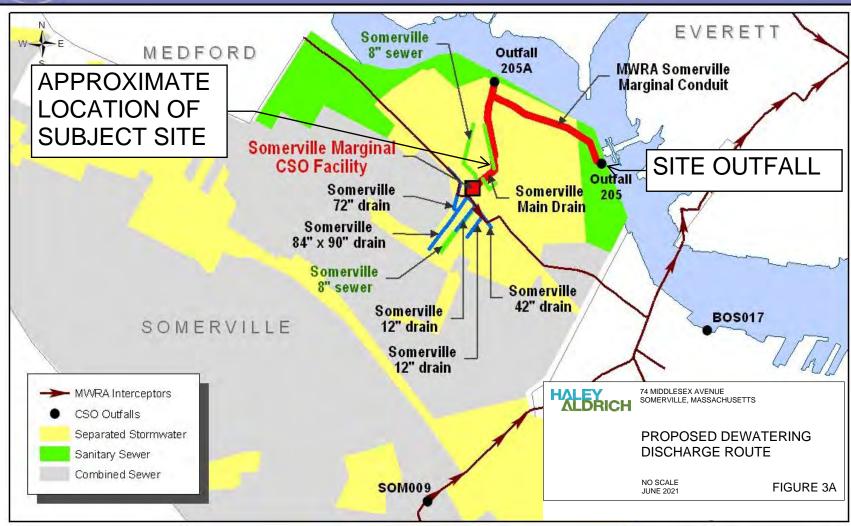
 **: Indicates effluent limit is limited as total Group I PAHs of 100 ug/l.

 +: Indicates effluent limit is limited as total PCBs of 0.000064 ug/l.

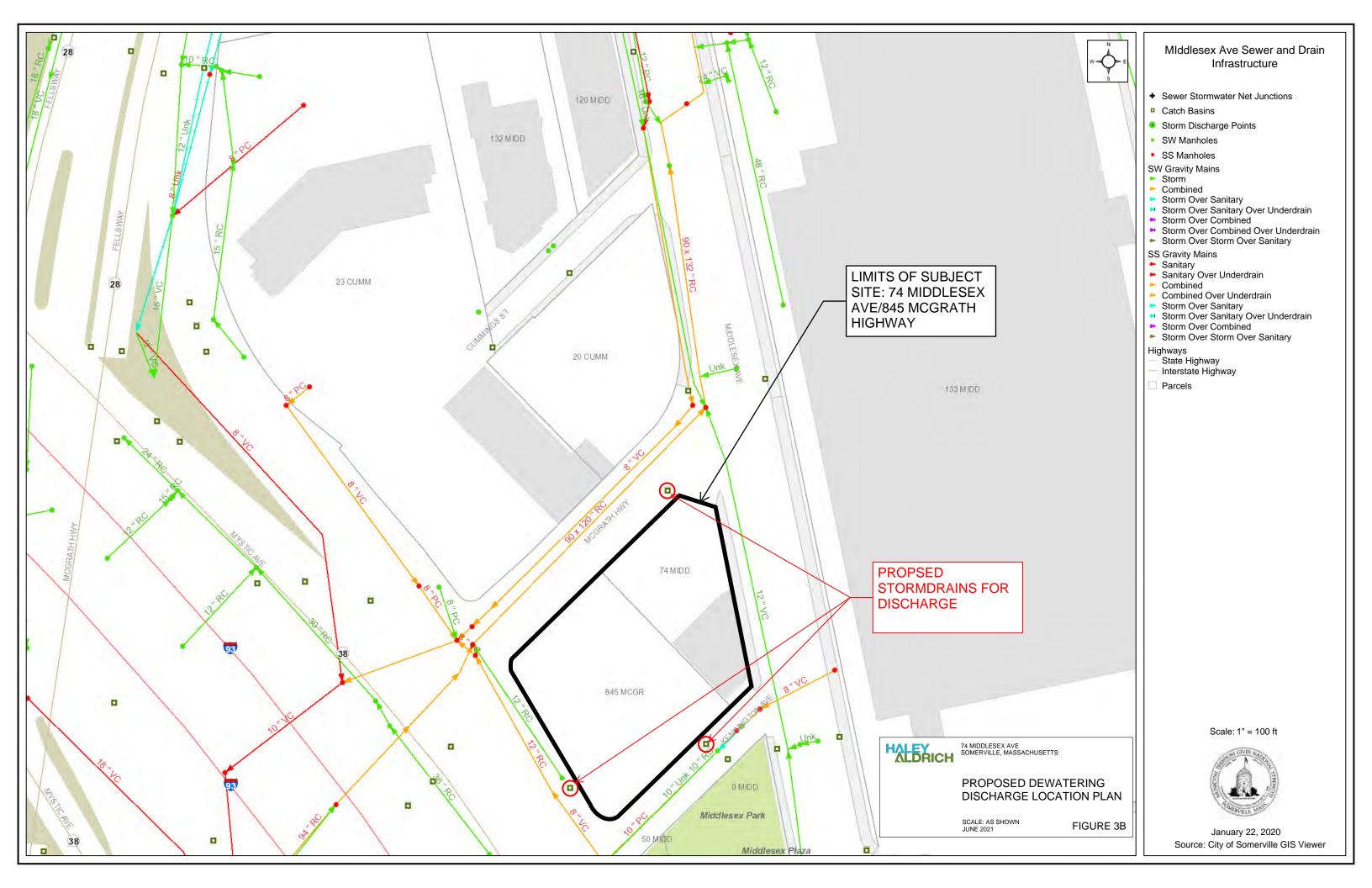
8.32'

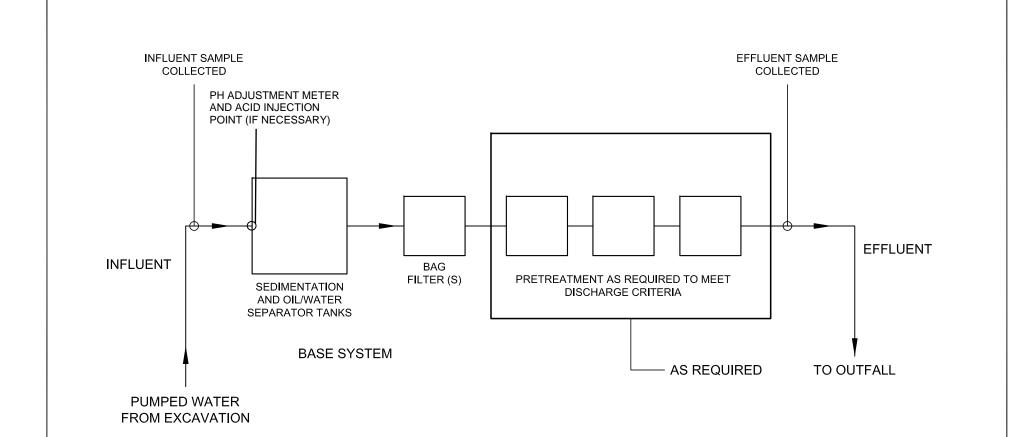
r: DTE Printed: 5/28/2021 1:10 PM Sheet: B01

FIGURE 2


SCALE: AS SHOWN

JUNE 2021


SCALE IN FEET



About the Somerville Marginal CSO Facility

- City of Somerville Main Drain, Middlesex Ave. 7'x 6" 11'x 0" (2,147' Linear Feet & 25 connections)
- MWRA Somerville Marginal Conduit 7'x6" 11'x 0" (1,588' Linear Feet & 5 connections)
- MWRA Metropolitan Sewer, Section 35 39" x 47.5"
- City of Somerville drain and 8" sewer, McGrath Highway

DIRECTION OF FLOW

NOTE:

- 1. DETAILS OF TREATMENT SYSTEM MAY VARY FROM SYSTEM INDICATED ABOVE. SPECIFIC MEANS AND METHODS OF TREATMENT TO BE SELECTED BY CONTRACTOR. WATER WILL BE TREATED TO MEET REQUIRED EFFLUENT STANDARDS.
- 2. PH ADJUSTMENT ACID STORAGE TO BE ADJACENT TO TREATMENT NEAR INJECTION POINT. REFER TO EQUIPMENT CUT SHEETS IN APPENDIX D.

74 MIDDLESEX AVENUE SOMERVILLE, MASSACHUSETTS

PROPOSED
TREATMENT SYSTEM
SCHEMATIC

SCALE: NONE JUNE 2021

FIGURE 4

APPENDIX A

Notice of Intent (NOI)

II. Suggested Format for the Remediation General Permit Notice of Intent (NOI)

A. General site information:

1. Name of site:	Site address:						
	Street:						
	City:		State:	Zip:			
2. Site owner	Contact Person:						
	Telephone:	Email:					
	Mailing address:						
	Street:						
Owner is (check one): ☐ Federal ☐ State/Tribal ☐ Private ☐ Other; if so, specify:	City:		State:	Zip:			
3. Site operator, if different than owner	Contact Person:						
	Telephone:	Email:					
	Mailing address:						
	Street:						
	City:		State:	Zip:			
4. NPDES permit number assigned by EPA:	5. Other regulatory program(s) that apply to the site	(check all th	at apply):				
	☐ MA Chapter 21e; list RTN(s):	□ CERCL	Α				
NPDES permit is (check all that apply: \square RGP \square DGP \square CGP			□ UIC Program				
☐ MSGP ☐ Individual NPDES permit ☐ Other; if so, specify:	☐ NH Groundwater Management Permit or Groundwater Release Detection Permit:	□ POTW Pretreatment					
-	☐ CWA Section 404						

Classification of receiving water(s):

В.	Receiving water information:
1. N	Name of receiving water(s):

Receiving water is (check any that apply): □ Outstanding Resource Water □ Ocean Sanctuary □ territorial sea □ Wild and Scenic River							
2. Has the operator attached a location map in accord	ance with the instructions in B, above? (check one)	: □ Yes □ No					
Are sensitive receptors present near the site? (check of If yes, specify:	one): □ Yes □ No						
3. Indicate if the receiving water(s) is listed in the Stapollutants indicated. Also, indicate if a final TMDL i 4.6 of the RGP.							
4. Indicate the seven day-ten-year low flow (7Q10) o Appendix V for sites located in Massachusetts and A		the instructions in					
5. Indicate the requested dilution factor for the calculation of water quality-based effluent limitations (WQBELs) determined in accordance with the instructions in Appendix V for sites in Massachusetts and Appendix VI for sites in New Hampshire.							
6. Has the operator received confirmation from the ap If yes, indicate date confirmation received:	opropriate State for the 7Q10and dilution factor indi	cated? (check one): ☐ Yes ☐	No				
7. Has the operator attached a summary of receiving	water sampling results as required in Part 4.2 of the	RGP in accordance with the i	nstruction in Appendix VIII?				
(check one): □ Yes □ No							
C. Source water information:							
1. Source water(s) is (check any that apply):							
☐ Contaminated groundwater	☐ Contaminated surface water	☐ The receiving water	☐ Potable water; if so, indicate municipality or origin:				
Has the operator attached a summary of influent	Has the operator attached a summary of influent	☐ A surface water other					
sampling results as required in Part 4.2 of the RGP in accordance with the instruction in Appendix VIII? (check one):	sampling results as required in Part 4.2 of the RGP in accordance with the instruction in Appendix VIII? (check one):	than the receiving water; if so, indicate waterbody:	☐ Other; if so, specify:				
□ Yes □ No	□ Yes □ No						

Waterbody identification of receiving water(s):

2. Source water contaminants:						
a. For source waters that are contaminated groundwater or contaminated surface water, indicate are any contaminants present that are not included in	b. For a source water that is a surface water other than the receiving water, potable water or other, indicate any contaminants present at the maximum concentration in accordance					
the RGP? (check one): ☐ Yes ☐ No If yes, indicate the contaminant(s) and the maximum concentration present in accordance with the instructions in Appendix VIII.	with the instructions in Appendix VIII? (check one): □ Yes □ No					
3. Has the source water been previously chlorinated or otherwise contains resid	dual chlorine? (check one): □ Yes □ No					
D. Discharge information						
1. The discharge(s) is $a(n)$ (check any that apply): \Box Existing discharge \Box New	v discharge □ New source					
Outfall(s):	Outfall location(s): (Latitude, Longitude)					
Discharges enter the receiving water(s) via (check any that apply): □ Direct di	scharge to the receiving water □ Indirect discharge, if so, specify:					
☐ A private storm sewer system ☐ A municipal storm sewer system						
If the discharge enters the receiving water via a private or municipal storm sew	ver system:					
Has notification been provided to the owner of this system? (check one): \Box Ye	es 🗆 No					
Has the operator has received permission from the owner to use such system for discharges? (check one): \square Yes \square No, if so, explain, with an estimated timeframe for obtaining permission:						
Has the operator attached a summary of any additional requirements the owner of this system has specified? (check one): ☐ Yes ☐ No						
Provide the expected start and end dates of discharge(s) (month/year):						
Indicate if the discharge is expected to occur over a duration of: □ less than 12 months □ 12 months or more □ is an emergency discharge						
Has the operator attached a site plan in accordance with the instructions in D, above? (check one): □ Yes □ No						

2. Activity Category: (check all that apply)	3. Contamination Type Category: (check all that apply)				
	a. If Activity Category I or II: (check all that apply)				
	 □ A. Inorganics □ B. Non-Halogenated Volatile Organic Compounds □ C. Halogenated Volatile Organic Compounds □ D. Non-Halogenated Semi-Volatile Organic Compounds □ E. Halogenated Semi-Volatile Organic Compounds □ F. Fuels Parameters 				
 □ I – Petroleum-Related Site Remediation □ II – Non-Petroleum-Related Site Remediation 	b. If Activity Category III, IV, V, VI, VII or VIII: (check either G or H)				
 □ III – Contaminated Site Dewatering □ IV – Dewatering of Pipelines and Tanks 	☐ G. Sites with Known Contamination	☐ H. Sites with Unknown Contamination			
 □ V – Aquifer Pump Testing □ VI – Well Development/Rehabilitation □ VII – Collection Structure Dewatering/Remediation 	c. If Category III-G, IV-G, V-G, VI-G, VII-G or VIII-G: (check all that apply)				
□ VIII – Dredge-Related Dewatering	 □ A. Inorganics □ B. Non-Halogenated Volatile Organic Compounds* □ C. Halogenated Volatile Organic Compounds □ D. Non-Halogenated Semi-Volatile Organic Compounds* □ E. Halogenated Semi-Volatile Organic Compounds* □ F. Fuels Parameters * 	d. If Category III-H, IV-H, V-H, VI-H, VII-H or VIII-H Contamination Type Categories A through F apply			

4. Influent and Effluent Characteristics

	Known	Known			Influent		Effluent Limitations	
Parameter	Parameter or or # of method l	Detection limit (µg/l)	Daily maximum (µg/l)	Daily average (µg/l)	TBEL	WQBEL		
A. Inorganics								
Ammonia							Report mg/L	
Chloride							Report μg/l	
Total Residual Chlorine							0.2 mg/L	
Total Suspended Solids							30 mg/L	
Antimony		*					206 μg/L	
Arsenic		*					104 μg/L	
Cadmium		*					10.2 μg/L	
Chromium III							323 μg/L	
Chromium VI		*					323 μg/L	
Copper							242 μg/L	
Iron							5,000 μg/L	
Lead							160 μg/L	
Mercury		*					0.739 μg/L	
Nickel							1,450 μg/L	
Selenium		*					235.8 μg/L	
Silver		*					35.1 μg/L	
Zinc							420 μg/L	
Cyanide							178 mg/L	
B. Non-Halogenated VOCs	S						100 %	
Total BTEX							100 μg/L	
Benzene							5.0 μg/L	
1,4 Dioxane							200 μg/L	
Acetone		*					7.97 mg/L	
Phenol							1,080 μg/L	

	Known	Known Known		_		Influent		Effluent Limitations	
Parameter or or # of believed absent present # of	Test method (#)	Detection limit (µg/l)	Daily maximum (µg/l)	Daily average (µg/l)	TBEL	WQBEL			
C. Halogenated VOCs									
Carbon Tetrachloride								4.4 μg/L	
1,2 Dichlorobenzene								600 μg/L	
1,3 Dichlorobenzene								320 μg/L	
1,4 Dichlorobenzene								5.0 μg/L	
Total dichlorobenzene								763 μg/L in NH	
1,1 Dichloroethane								70 μg/L	
1,2 Dichloroethane								5.0 μg/L	
1,1 Dichloroethylene								3.2 μg/L	
Ethylene Dibromide								0.05 μg/L	
Methylene Chloride								4.6 μg/L	
1,1,1 Trichloroethane								200 μg/L	
1,1,2 Trichloroethane								5.0 μg/L	
Trichloroethylene								5.0 μg/L	
Tetrachloroethylene								5.0 μg/L	
cis-1,2 Dichloroethylene								70 μg/L	
Vinyl Chloride								2.0 μg/L	
D. Non-Halogenated SVO	Cs		1		1				
Total Phthalates								190 μg/L	
Diethylhexyl phthalate								101 μg/L	
Total Group I PAHs		*						1.0 μg/L	
Benzo(a)anthracene		*						_	
Benzo(a)pyrene		*						_	
Benzo(b)fluoranthene		*						_	
Benzo(k)fluoranthene		*						As Total PAHs	
Chrysene		*						_	
Dibenzo(a,h)anthracene		*						_	
Indeno(1,2,3-cd)pyrene		*							

	Known	Known				Inf	luent	Effluent Lin	nitations
Parameter	or believed absent	or believed present	# of samples	Test method (#)	Detection limit (µg/l)	Daily maximum (µg/l)	Daily average (µg/l)	TBEL	WQBEL
Total Group II PAHs		*						100 μg/L	
Naphthalene		*						20 μg/L	
E. Halogenated SVOCs									
Total PCBs		*						0.000064 μg/L	
Pentachlorophenol								1.0 μg/L	
F. Fuels Parameters									
Total Petroleum Hydrocarbons		*						5.0 mg/L	
Ethanol								Report mg/L	
Methyl-tert-Butyl Ether								70 μg/L	
tert-Butyl Alcohol								120 μg/L in MA 40 μg/L in NH	
tert-Amyl Methyl Ether								90 μg/L in MA 140 μg/L in NH	
Other (i.e., pH, temperatur	re, hardness,	salinity, LC	50, addition	al pollutar	nts present);	if so, specify:			

Detected in soil onlySalinity measured at outfall location on 28 May 2021

Additional compounds detected in soil only:

VOCs

Acetone

Carbon disulfide

Chloroform (Trichloromethane)

Naphthalene

Toluene

1,2,4-Trimethylbenzene

1,3,5-Trimethylbenzene

2-Phenylbutane (sec-Butylbenzene)

Benzene

Cymene (p-Isopropyltoluene)

Ethylbenzene

Isopropylbenzene (Cumene)

Methyl Tert Butyl Ether

n-Butylbenzene

n-Propylbenzene

tert-Butylbenzene

Tetrachloroethene

trans-1,2-Dichloroethene

Trichloroethene

Xylene (total)

SVOCs

2-Methylnaphthalene

Acenaphthene

Acenaphthylene

Anthracene

Benzo(a)anthracene

Benzo(a)pyrene

Benzo(b)fluoranthene

Benzo(g,h,i)perylene Benzo(k)fluoranthene

Chrysene

Dibenz(a,h)anthracene

Dibenzofuran Fluoranthene

- uoranine

Fluorene

Indeno(1,2,3-cd)pyrene

Naphthalene Phenanthrene

Phenol Pyrene

Other

Lead TCLP

Aroclor-1254 (PCB-1254)

Total Solids (%)

Oxidation reduction potential (millivolts)

Conductivity (umhos/cm)

MADEP C5-C8 Aliphatic Hydrocarbons

MADEP C9-C12 Aliphatic Hydrocarbons,

Adjusted

MADEP C9-C12 Aliphatic Hydrocarbons

Metals

Chromium VI (Hexavalent), Dissolved

Antimony

Arsenic

Barium

Beryllium

Cadmium

Chromium

Mercury

Nickel

Selenium

Silver

Vanadium

E. Treatment system information

1. Indicate the type(s) of treatment that will be applied to effluent prior to discharge: (check all that apply)					
☐ Adsorption/Absorption ☐ Advanced Oxidation Processes ☐ Air Stripping ☐ Granulated Activated Carbon ("GAC")/Liquid Phase Carbon Adsorption					
□ Ion Exchange □ Precipitation/Coagulation/Flocculation □ Separation/Filtration □ Other; if so, specify:					
2. Provide a written description of all treatment system(s) or processes that will be applied to the effluent prior to discharge.					
Identify each major treatment component (check any that apply):					
☐ Fractionation tanks☐ Equalization tank ☐ Oil/water separator ☐ Mechanical filter ☐ Media filter					
□ Chemical feed tank □ Air stripping unit □ Bag filter □ Other; if so, specify:					
Indicate if either of the following will occur (check any that apply):					
□ Chlorination □ De-chlorination					
3. Provide the design flow capacity in gallons per minute (gpm) of the most limiting component.					
Indicate the most limiting component:					
Is use of a flow meter feasible? (check one): □ Yes □ No, if so, provide justification:					
Provide the proposed maximum effluent flow in gpm.					
Provide the average effluent flow in gpm.					
If Activity Category IV applies, indicate the estimated total volume of water that will be discharged:					
4. Has the operator attached a schematic of flow in accordance with the instructions in E, above? (check one): □ Yes □ No					

F. Chemical and additive information

1. Indicate the type(s) of chemical or additive that will be applied to effluent prior to discharge or that may	y otherwise be present in the discharge(s): (check all that apply)
☐ Algaecides/biocides ☐ Antifoams ☐ Coagulants ☐ Corrosion/scale inhibitors ☐ Disinfectants ☐ Floca	culants □ Neutralizing agents □ Oxidants □ Oxygen □
scavengers □ pH conditioners □ Bioremedial agents, including microbes □ Chlorine or chemicals contain	ining chlorine Other; if so, specify:
a. Product name, chemical formula, and manufacturer of the chemical/additive; currently duration,	necessary. This information is only included as a contingency and is not needed based on groundwater data. Exact specifications on frequency, quantity, and method of application are not known at this time. If the ventually requires chemical additives, these details will be provided to chemical/additive; ethod of application for the chemical/additive; mize such risks; and
3. Has the operator attached an explanation which demonstrates that the addition of such chemicals/addition	ves may be authorized under this general permit in accordance
with the instructions in F, above? (check one): \square Yes \square No; if no, has the operator attached data that d 307(a) and 40 CFR Part 423.15(j)(1) are non-detect in discharges with the addition of the proposed cher	1 * 1
(check one): □ Yes □ No	
G. Endangered Species Act eligibility determination	
1. Indicate under which criterion the discharge(s) is eligible for coverage under this general permit:	
☐ FWS Criterion A : No endangered or threatened species or critical habitat are in proximity to "action area".	the discharges or related activities or come in contact with the
□ FWS Criterion B : Formal or informal consultation with the FWS under section 7 of the ESA or a written concurrence by FWS on a finding that the discharges and related activities are "in	
(informal consultation). Has the operator completed consultation with FWS? (check one):	Yes □ No; if no, is consultation underway? (check one): □
Yes □ No	
□ FWS Criterion C : Using the best scientific and commercial data available, the effect of the data that have been evaluated. Based on those evaluations, a determination is made by EPA, or related activities will have "no effect" on any federally threatened or endangered listed specific.	or by the operator and affirmed by EPA, that the discharges and
FWS. This determination was made by: (check one) \square the operator \square EPA \square Other; if so,	specify:

□ NMFS Criterion: A determination made by EPA is affirmed by the operator that the discharges and related activities will have "no effect" or are "not likely to adversely affect" any federally threatened or endangered listed species or critical habitat under the jurisdiction of NMFS and will not result in any take of				
listed species. Has the operator previously completed consultation with NMFS? (check one): ☐ Yes ☐ No				
2. Has the operator attached supporting documentation of ESA eligibility in accordance with the instructions in Appendix I, and G, above? (check one): □ Yes □ No				
Does the supporting documentation include any written concurrence or finding provided by the Services? (check one): ☐ Yes ☐ No; if yes, attach.				
H. National Historic Preservation Act eligibility determination				
1. Indicate under which criterion the discharge(s) is eligible for coverage under this general permit:				
□ Criterion A : No historic properties are present. The discharges and discharge-related activities (e.g., BMPs) do not have the potential to cause effects on historic properties.				
☐ Criterion B: Historic properties are present. Discharges and discharge related activities do not have the potential to cause effects on historic properties.				
☐ Criterion C : Historic properties are present. The discharges and discharge-related activities have the potential to have an effect or will have an adverse effect on historic properties.				
2. Has the operator attached supporting documentation of NHPA eligibility in accordance with the instructions in H, above? (check one): □ Yes □ No				
Does the supporting documentation include any written agreement with the State Historic Preservation Officer (SHPO), Tribal Historic Preservation Officer (TPHO), or				
other tribal representative that outlines measures the operator will carry out to mitigate or prevent any adverse effects on historic properties? (check one): Yes No				
I. Supplemental information				
Describe any supplemental information being provided with the NOI. Include attachments if required or otherwise necessary.				
Has the operator attached data, including any laboratory case narrative and chain of custody used to support the application? (check one): Yes No				
Has the operator attached the certification requirement for the Best Management Practices Plan (BMPP)? (check one): ☐ Yes ☐ No				

J. Certification requirement

I certify under penalty of law that this document and all attachments were prepared under my direction or supervision in accordance with a system designed to assure that qualified personnel properly gathered and evaluated the information submitted. Based on my inquiry of the person or persons who manage the system, or those persons directly responsible for gathering the information, the information submitted is, to the best of my knowledge and belief, true, accurate, and complete. I have no personal knowledge that the information submitted is other than true, accurate, and complete. I am aware that there are significant penalties for submitting false information, including the possibility of fine and imprisonment for knowing violations.						
A BMPP meeting the requirements of this general permit will be imp BMPP certification statement: of discharge.	elemented at the si	te upon initiation				
Notification provided to the appropriate State, including a copy of this NOI, if required.	Check one: Yes	№ □				
Notification provided to the municipality in which the discharge is located, including a copy of this NOI, if requested.	Check one: Yes ■	№ □				
Notification provided to the owner of a private or municipal storm sewer system, if such system is used for site discharges, including a copy of this NOI, if requested. Permission obtained from the owner of a private or municipal storm sewer system, if such system is used for site discharges. If yes, attach additional conditions. If no, attach explanation and timeframe for obtaining permission.	Check one: Yes ■ The NOI will be submitted concurrently with NPDES. Check one: Yes □	to the City of Somerville Application/NOI.				
Notification provided to the owner/operator of the area associated with activities covered by an additional discharge permit(s). Additional discharge permit is (check one): □ RGP □ DGP □ CGP □ MSGP □ Individual NPDES permit □ Other; if so specify:	Check one: Yes □	No□ NA■				
Signature: (h. D. // D.	ate: 6-11.7021					
Print Name and Title: Christopher Harris, Consigli Construction						

APPENDIX B

Effluent Limitations Documentation

Enter number values in green boxes below

Enter values in the units specified

\downarrow	
0	Q_R = Enter upstream flow in MGD
0.144	Q_P = Enter discharge flow in MGD
0	Downstream 7Q10

Enter a dilution factor, if other than zero

Enter values in the units specified

\downarrow	
0	C_d = Enter influent hardness in mg/L $CaCO_3$
1650	C _s = Enter receiving water hardness in mg/L CaCO ₃

Enter receiving water concentrations in the units specified

\downarrow	_
7.95	pH in Standard Units
15.8	Temperature in °C
0.228	Ammonia in mg/L
1650	Hardness in mg/L CaCO ₃
10.97	Salinity in ppt
20	Antimony in µg/L
5	Arsenic in μg/L
1	Cadmium in µg/L
0	Chromium III in µg/L
0	Chromium VI in µg/L
5	Copper in µg/L
442	Iron in μg/L
5	Lead in µg/L
0.2	Mercury in µg/L
10	Nickel in μg/L
25	Selenium in µg/L
2	Silver in µg/L
50	Zinc in µg/L

Enter influent concentrations in the units specified

ucite concentrations in the units sp
-
TRC in µg/L
Ammonia in mg/L
Antimony in μg/L
Arsenic in μg/L
Cadmium in µg/L
Chromium III in µg/L
Chromium VI in µg/L
Copper in µg/L
Iron in μg/L
Lead in µg/L
Mercury in μg/L
Nickel in µg/L
Selenium in µg/L
Silver in µg/L
Zinc in µg/L
Cyanide in µg/L
Phenol in µg/L
Carbon Tetrachloride in µg/L
Tetrachloroethylene in µg/L
Total Phthalates in µg/L
Diethylhexylphthalate in µg/L
Benzo(a)anthracene in μg/L
Benzo(a)pyrene in μg/L
Benzo(b)fluoranthene in μg/L
Benzo(k)fluoranthene in μg/L
Chrysene in µg/L
Dibenzo(a,h)anthracene in µg/L
Indeno(1,2,3-cd)pyrene in μg/L
Methyl-tert butyl ether in $\mu g/L$

Notes:

Freshwater: Q_R equal to the 7Q10; enter alternate Q_R if approved by the State; enter 0 if no dilution factor approved Saltwater (estuarine and marine): enter Q_R if approved by the State; enter 0 if no entry Discharge flow is equal to the design flow or 1 MGD, whichever is less

Saltwater (estuarine and marine): only if approved by the State Leave 0 if no entry

Only if approved by State as the entry for Q_R ; leave 0 if no entry

Freshwater only

pH, temperature, and ammonia required for all discharges Hardness required for freshwater Salinity required for saltwater (estuarine and marine) Metals required for all discharges if present and if dilution factor is > 1 Enter 0 if non-detect or testing not required

if >1 sample, enter maximum

if >10 samples, may enter 95th percentile

Enter 0 if non-detect or testing not required

APPENDIX C

Laboratory Data Reports

ANALYTICAL REPORT

Lab Number: L2118775

Client: Haley & Aldrich, Inc.

465 Medford Street, Suite 2200 Charlestown, MA 02129-1400

ATTN: Heather Ballantyne Phone: (617) 886-3061

Project Name: 74 MIDDLESEX AVENUE

Project Number: 134081-009

Report Date: 04/21/21

The original project report/data package is held by Alpha Analytical. This report/data package is paginated and should be reproduced only in its entirety. Alpha Analytical holds no responsibility for results and/or data that are not consistent with the original.

Certifications & Approvals: MA (M-MA086), NH NELAP (2064), CT (PH-0574), IL (200077), ME (MA00086), MD (348), NJ (MA935), NY (11148), NC (25700/666), PA (68-03671), RI (LAO00065), TX (T104704476), VT (VT-0935), VA (460195), USDA (Permit #P330-17-00196).

Eight Walkup Drive, Westborough, MA 01581-1019 508-898-9220 (Fax) 508-898-9193 800-624-9220 - www.alphalab.com

Serial_No:04212115:52

Project Name: 74 MIDDLESEX AVENUE

Project Number: 134081-009

Lab Number:

L2118775

Report Date:

04/21/21

Alpha Sample ID Client ID Matrix Sample Location Date/Time Receive Date

L2118775-01 HA20-105(OW)_2021-0413 WATER SOMERVILLE, MA 04/13/21 13:45 04/13/21

L2118775

Lab Number:

Project Name: 74 MIDDLESEX AVENUE

Case Narrative

The samples were received in accordance with the Chain of Custody and no significant deviations were encountered during the preparation or analysis unless otherwise noted. Sample Receipt, Container Information, and the Chain of Custody are located at the back of the report.

Results contained within this report relate only to the samples submitted under this Alpha Lab Number and meet NELAP requirements for all NELAP accredited parameters unless otherwise noted in the following narrative. The data presented in this report is organized by parameter (i.e. VOC, SVOC, etc.). Sample specific Quality Control data (i.e. Surrogate Spike Recovery) is reported at the end of the target analyte list for each individual sample, followed by the Laboratory Batch Quality Control at the end of each parameter. Tentatively Identified Compounds (TICs), if requested, are reported for compounds identified to be present and are not part of the method/program Target Compound List, even if only a subset of the TCL are being reported. If a sample was re-analyzed or re-extracted due to a required quality control corrective action and if both sets of data are reported, the Laboratory ID of the re-analysis or re-extraction is designated with an "R" or "RE", respectively.

When multiple Batch Quality Control elements are reported (e.g. more than one LCS), the associated samples for each element are noted in the grey shaded header line of each data table. Any Laboratory Batch, Sample Specific % recovery or RPD value that is outside the listed Acceptance Criteria is bolded in the report. In reference to questions H (CAM) or 4 (RCP) when "NO" is checked, the performance criteria for CAM and RCP methods allow for some quality control failures to occur and still be within method compliance. In these instances, the specific failure is not narrated but noted in the associated QC Outlier Summary Report, located directly after the Case Narrative. QC information is also incorporated in the Data Usability Assessment table (Format 11) of our Data Merger tool, where it can be reviewed in conjunction with the sample result, associated regulatory criteria and any associated data usability implications.

Soil/sediments, solids and tissues are reported on a dry weight basis unless otherwise noted. Definitions of all data qualifiers and acronyms used in this report are provided in the Glossary located at the back of the report.

HOLD POLICY - For samples submitted on hold, Alpha's policy is to hold samples (with the exception of Air canisters) free of charge for 21 calendar days from the date the project is completed. After 21 calendar days, we will dispose of all samples submitted including those put on hold unless you have contacted your Alpha Project Manager and made arrangements for Alpha to continue to hold the samples. Air canisters will be disposed after 3 business days from the date the project is completed.

lease contact i Toject Management at 000-024-9220 with any questions.							

Places contact Project Management at 800 624 0220 with any questions

Serial_No:04212115:52

Project Name: 74 MIDDLESEX AVENUE Lab Number: L2118775

Case Narrative (continued)

Sample Receipt

The analyses performed were specified by the client.

L2118775-01: The sample identified as "HA20-105(OW)_2021-0413" on the chain of custody was identified as "HA21-105(OW)_2021-0413" on the container label. At the client's request, the sample is reported as "HA20-105(OW)_2021-0413".

Volatile Organics by Method 624

L2118775-01D was analyzed on a dilution. The MWRA detection limits were achieved.

Volatile Organics by SIM

The WG1487995-3 LCS recovery, associated with L2118775-01, is above the acceptance criteria for 1,4-dioxane (152%); however, the associated sample is non-detect for this target analyte. The results of the original analysis are reported.

I, the undersigned, attest under the pains and penalties of perjury that, to the best of my knowledge and belief and based upon my personal inquiry of those responsible for providing the information contained in this analytical report, such information is accurate and complete. This certificate of analysis is not complete unless this page accompanies any and all pages of this report.

Authorized Signature:

Title: Technical Director/Representative Date: 04/21/21

Custen Walker Cristin Walker

ORGANICS

VOLATILES

Project Name: Lab Number: 74 MIDDLESEX AVENUE L2118775

Project Number: Report Date: 134081-009 04/21/21

SAMPLE RESULTS

Lab ID: L2118775-01 Date Collected: 04/13/21 13:45

HA20-105(OW)_2021-0413 Client ID: Date Received: 04/13/21 Field Prep: Sample Location: SOMERVILLE, MA Refer to COC

Sample Depth:

Matrix: Water

Analytical Method: 128,624.1-SIM Analytical Date: 04/19/21 12:10

Analyst: GT

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
Volatile Organics by GC/MS-SIM - Westbord	ough Lab					
1,4-Dioxane	ND		ug/l	5.0		1
Surrogate			% Recovery	Qualifier		ptance iteria

1,1210,16110	ug/i	
Surrogate	% Recovery	Acceptance Qualifier Criteria
Fluorobenzene	99	60-140
4-Bromofluorobenzene	91	60-140

L2118775

04/13/21 13:45

Refer to COC

04/13/21

Project Name: 74 MIDDLESEX AVENUE

Project Number: 134081-009

SAMPLE RESULTS

Report Date:

Lab Number:

Date Collected:

Date Received:

Field Prep:

04/21/21

Lab ID: L2118775-01 D

HA20-105(OW)_2021-0413 Client ID:

Sample Location: SOMERVILLE, MA

Sample Depth:

Matrix: Water Analytical Method: 128,624.1 Analytical Date: 04/14/21 23:06

Analyst: GT

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	
Volatile Organics by GC/MS - West	oorough Lab						
Methylene chloride	ND		ug/l	10		10	
1,1-Dichloroethane	ND		ug/l	15		10	
Chloroform	ND		ug/l	10		10	
Carbon tetrachloride	ND		ug/l	10		10	
1,2-Dichloropropane	ND		ug/l	35		10	
Dibromochloromethane	ND		ug/l	10		10	
1,1,2-Trichloroethane	ND		ug/l	15		10	
2-Chloroethylvinyl ether	ND		ug/l	100		10	
Tetrachloroethene	ND		ug/l	10		10	
Chlorobenzene	ND		ug/l	35		10	
Trichlorofluoromethane	ND		ug/l	50		10	
1,2-Dichloroethane	ND		ug/l	15		10	
1,1,1-Trichloroethane	ND		ug/l	20		10	
Bromodichloromethane	ND		ug/l	10		10	
trans-1,3-Dichloropropene	ND		ug/l	15		10	
cis-1,3-Dichloropropene	ND		ug/l	15		10	
1,3-Dichloropropene, Total	ND		ug/l	15		10	
Bromoform	ND		ug/l	10		10	
1,1,2,2-Tetrachloroethane	ND		ug/l	10		10	
Benzene	ND		ug/l	10		10	
Toluene	ND		ug/l	10		10	
Ethylbenzene	ND		ug/l	10		10	
Chloromethane	ND		ug/l	50		10	
Bromomethane	ND		ug/l	50		10	
Vinyl chloride	ND		ug/l	10		10	
Chloroethane	ND		ug/l	20		10	
1,1-Dichloroethene	ND		ug/l	10		10	
trans-1,2-Dichloroethene	ND		ug/l	15		10	

Project Name: 74 MIDDLESEX AVENUE **Lab Number:** L2118775

Project Number: 134081-009 **Report Date:** 04/21/21

SAMPLE RESULTS

Lab ID: L2118775-01 D Date Collected: 04/13/21 13:45

Client ID: HA20-105(OW)_2021-0413 Date Received: 04/13/21 Sample Location: SOMERVILLE, MA Field Prep: Refer to COC

Sample Depth:

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	
Volatile Organics by GC/MS - Westbo	rough Lab						
cis-1,2-Dichloroethene	ND		ug/l	10		10	
Trichloroethene	ND		ug/l	10		10	
1,2-Dichlorobenzene	ND		ug/l	50		10	
1,3-Dichlorobenzene	ND		ug/l	50		10	
1,4-Dichlorobenzene	ND		ug/l	50		10	
p/m-Xylene	ND		ug/l	20		10	
o-xylene	ND		ug/l	10		10	
Xylenes, Total	ND		ug/l	10		10	
Styrene	ND		ug/l	10		10	
Acetone	ND		ug/l	100		10	
Carbon disulfide	ND		ug/l	50		10	
2-Butanone	ND		ug/l	100		10	
Vinyl acetate	ND		ug/l	100		10	
4-Methyl-2-pentanone	ND		ug/l	100		10	
2-Hexanone	ND		ug/l	100		10	
Acrolein	ND		ug/l	80		10	
Acrylonitrile	ND		ug/l	100		10	
Dibromomethane	ND		ug/l	10		10	

Surrogate	% Recovery	Qualifier	Acceptance Criteria	
Pentafluorobenzene	100		60-140	
Fluorobenzene	91		60-140	
4-Bromofluorobenzene	98		60-140	

L2118775

Project Name: 74 MIDDLESEX AVENUE Lab Number:

Project Number: 134081-009 **Report Date:** 04/21/21

Method Blank Analysis Batch Quality Control

Analytical Method: 128,624.1 Analytical Date: 04/14/21 13:08

Analyst: GT

arameter	Result	Qualifier Units	RL	MDL
olatile Organics by GC/MS -	Westborough Lab	o for sample(s): 01	Batch:	WG1486572-4
Methylene chloride	ND	ug/l	1.0	
1,1-Dichloroethane	ND	ug/l	1.5	
Chloroform	ND	ug/l	1.0	
Carbon tetrachloride	ND	ug/l	1.0	
1,2-Dichloropropane	ND	ug/l	3.5	
Dibromochloromethane	ND	ug/l	1.0	
1,1,2-Trichloroethane	ND	ug/l	1.5	
2-Chloroethylvinyl ether	ND	ug/l	10	
Tetrachloroethene	ND	ug/l	1.0	
Chlorobenzene	ND	ug/l	3.5	
Trichlorofluoromethane	ND	ug/l	5.0	
1,2-Dichloroethane	ND	ug/l	1.5	
1,1,1-Trichloroethane	ND	ug/l	2.0	
Bromodichloromethane	ND	ug/l	1.0	
trans-1,3-Dichloropropene	ND	ug/l	1.5	
cis-1,3-Dichloropropene	ND	ug/l	1.5	-
1,3-Dichloropropene, Total	ND	ug/l	1.5	-
Bromoform	ND	ug/l	1.0	
1,1,2,2-Tetrachloroethane	ND	ug/l	1.0	
Benzene	ND	ug/l	1.0	
Toluene	ND	ug/l	1.0	
Ethylbenzene	ND	ug/l	1.0	
Chloromethane	ND	ug/l	5.0	
Bromomethane	ND	ug/l	5.0	
Vinyl chloride	ND	ug/l	1.0	
Chloroethane	ND	ug/l	2.0	
1,1-Dichloroethene	ND	ug/l	1.0	
trans-1,2-Dichloroethene	ND	ug/l	1.5	
cis-1,2-Dichloroethene	ND	ug/l	1.0	

L2118775

Lab Number:

Project Name: 74 MIDDLESEX AVENUE

128,624.1

04/14/21 13:08

Project Number: Report Date: 134081-009 04/21/21

Method Blank Analysis Batch Quality Control

Analyst: GT

Analytical Method:

Analytical Date:

arameter	Result	Qualifier Unit	s RL	MDL	
olatile Organics by GC/MS -	Westborough Lab	for sample(s):	01 Batch	: WG1486572-4	
Trichloroethene	ND	ug/	/I 1.0		
1,2-Dichlorobenzene	ND	ug/	/I 5.0		
1,3-Dichlorobenzene	ND	ug/	/I 5.0		
1,4-Dichlorobenzene	ND	ug/	/I 5.0		
p/m-Xylene	ND	ug/	/I 2.0		
o-xylene	ND	ug/	/I 1.0		
Xylenes, Total	ND	ug/	/I 1.0		
Styrene	ND	ug/	/I 1.0		
Acetone	ND	ug/	/I 10		
Carbon disulfide	ND	ug/	/I 5.0		
2-Butanone	ND	ug/	/I 10		
Vinyl acetate	ND	ug/	/I 10		
4-Methyl-2-pentanone	ND	ug/	/I 10		
2-Hexanone	ND	ug/	/I 10		
Acrolein	ND	ug/	/I 8.0		
Acrylonitrile	ND	ug/	/I 10		
Methyl tert butyl Ether	ND	ug/	/I 10		
Dibromomethane	ND	ug/	/I 1.0		
Tert-Butyl Alcohol	ND	ug/	/I 100		
Tertiary-Amyl Methyl Ether	ND	ug/	/I 20		

Surrogate	%Recovery	Acceptance Qualifier Criteria
Pentafluorobenzene	104	60-140
Fluorobenzene	96	60-140
4-Bromofluorobenzene	98	60-140

Project Name: 74 MIDDLESEX AVENUE **Lab Number:** L2118775

Project Number: 134081-009 **Report Date:** 04/21/21

Method Blank Analysis Batch Quality Control

Analytical Method: 128,624.1-SIM Analytical Date: 04/19/21 11:19

Analyst: GT

Parameter	Result	Qualifier	Units		RL	MDL	
Volatile Organics by GC/MS-SIM -	Westborough	Lab for s	ample(s):	01	Batch:	WG1487995-4	
1,4-Dioxane	ND		ug/l		5.0		

		Acceptance			
Surrogate	%Recovery 0	Qualifier Criteria			
Fluorobenzene	99	60-140			
4-Bromofluorobenzene	95	60-140			

Project Name: 74 MIDDLESEX AVENUE

Project Number: 134081-009

Lab Number: L2118775

Parameter	LCS %Recovery	Qual	LCSD %Recovery	Qual	%Recovery Limits	RPD	Qual	RPD Limits	
Volatile Organics by GC/MS - Westborough I	Lab Associated	sample(s): 0	1 Batch: WG1	486572-3					
Methylene chloride	95		-		60-140	-		28	
1,1-Dichloroethane	105		-		50-150	-		49	
Chloroform	105		-		70-135	-		54	
Carbon tetrachloride	95		-		70-130	-		41	
1,2-Dichloropropane	105		-		35-165	-		55	
Dibromochloromethane	90		-		70-135	-		50	
1,1,2-Trichloroethane	100		-		70-130	-		45	
2-Chloroethylvinyl ether	95		-		1-225	-		71	
Tetrachloroethene	110		-		70-130	-		39	
Chlorobenzene	95		-		65-135	-		53	
Trichlorofluoromethane	100		-		50-150	-		84	
1,2-Dichloroethane	110		-		70-130	-		49	
1,1,1-Trichloroethane	105		-		70-130	-		36	
Bromodichloromethane	110		-		65-135	-		56	
trans-1,3-Dichloropropene	90		-		50-150	-		86	
cis-1,3-Dichloropropene	105		-		25-175	-		58	
Bromoform	80		-		70-130	-		42	
1,1,2,2-Tetrachloroethane	105		-		60-140	-		61	
Benzene	110		-		65-135	-		61	
Toluene	110		-		70-130	-		41	
Ethylbenzene	110		-		60-140	-		63	
Chloromethane	85		-		1-205	-		60	
Bromomethane	80		-		15-185	-		61	

Project Name: 74 MIDDLESEX AVENUE

Project Number: 134081-009

Lab Number: L2118775

Parameter	LCS %Recovery	Qual	LCSD %Recovery	Qual	%Recovery Limits	RPD	Qual	RPD Limits	
Volatile Organics by GC/MS - Westborough I	_ab Associated	sample(s): (01 Batch: WG1	486572-3					
Vinyl chloride	90		-		5-195	-		66	
Chloroethane	100		-		40-160	-		78	
1,1-Dichloroethene	100		-		50-150	-		32	
trans-1,2-Dichloroethene	105		-		70-130	-		45	
cis-1,2-Dichloroethene	110		-		60-140	-		30	
Trichloroethene	100		-		65-135	-		48	
1,2-Dichlorobenzene	95		-		65-135	-		57	
1,3-Dichlorobenzene	95		-		70-130	-		43	
1,4-Dichlorobenzene	95		-		65-135	-		57	
p/m-Xylene	102		-		60-140	-		30	
o-xylene	100		-		60-140	-		30	
Styrene	95		-		60-140	-		30	
Acetone	102		-		40-160	-		30	
Carbon disulfide	100		-		60-140	-		30	
2-Butanone	104		-		60-140	-		30	
Vinyl acetate	100		-		60-140	-		30	
4-Methyl-2-pentanone	110		-		60-140	-		30	
2-Hexanone	114		-		60-140	-		30	
Acrolein	108		-		60-140	-		30	
Acrylonitrile	100		-		60-140	-		60	
Methyl tert butyl Ether	90		-		60-140	-		30	
Dibromomethane	85		-		70-130	-		30	
Tert-Butyl Alcohol	80		-		60-140	-		30	

Project Name: 74 MIDDLESEX AVENUE

Project Number: 134081-009

Lab Number: L2118775

Parameter	LCS %Recovery	Qual	LCSD %Recovery	Qual	%Recovery Limits	RPD	Qual	RPD Limits	
Volatile Organics by GC/MS - Westborough L	ab Associated	sample(s): (01 Batch: WG1	486572-3					
Methylene chloride	95		-		60-140	-		28	
1,1-Dichloroethane	105		-		50-150	-		49	
Chloroform	105		-		70-135	-		54	
Carbon tetrachloride	95		-		70-130	-		41	
1,2-Dichloropropane	105		-		35-165	-		55	
Dibromochloromethane	90		-		70-135	-		50	
1,1,2-Trichloroethane	100		-		70-130	-		45	
2-Chloroethylvinyl ether	95		-		1-225	-		71	
Tetrachloroethene	110		-		70-130	-		39	
Chlorobenzene	95		-		65-135	-		53	
Trichlorofluoromethane	100		-		50-150	-		84	
1,2-Dichloroethane	110		-		70-130	-		49	
1,1,1-Trichloroethane	105		-		70-130	-		36	
Bromodichloromethane	110		-		65-135	-		56	
trans-1,3-Dichloropropene	90		-		50-150	-		86	
cis-1,3-Dichloropropene	105		-		25-175	-		58	
Bromoform	80		-		70-130	-		42	
1,1,2,2-Tetrachloroethane	105		-		60-140	-		61	
Benzene	110		-		65-135	-		61	
Toluene	110		-		70-130	-		41	
Ethylbenzene	110		-		60-140	-		63	
Chloromethane	85		-		1-205	-		60	
Bromomethane	80		-		15-185	-		61	

Project Name: 74 MIDDLESEX AVENUE

Project Number: 134081-009

Lab Number: L2118775

Parameter	LCS %Recovery	Qual	LCSD %Recovery	Qual	%Recovery Limits	RPD	Qual	RPD Limits	
Volatile Organics by GC/MS - Westborough	Lab Associated	sample(s):	01 Batch: WG1	486572-3					
Vinyl chloride	90		-		5-195	-		66	
Chloroethane	100		-		40-160	-		78	
1,1-Dichloroethene	100		-		50-150	-		32	
trans-1,2-Dichloroethene	105		-		70-130	-		45	
cis-1,2-Dichloroethene	110		-		60-140	-		30	
Trichloroethene	100		-		65-135	-		48	
1,2-Dichlorobenzene	95		-		65-135	-		57	
1,3-Dichlorobenzene	95		-		70-130	-		43	
1,4-Dichlorobenzene	95		-		65-135	-		57	
p/m-Xylene	102		-		60-140	-		30	
o-xylene	100		-		60-140	-		30	
Styrene	95		-		60-140	-		30	
Acetone	102		-		40-160	-		30	
Carbon disulfide	100		-		60-140	-		30	
2-Butanone	104		-		60-140	-		30	
Vinyl acetate	100		-		60-140	-		30	
4-Methyl-2-pentanone	110		-		60-140	-		30	
2-Hexanone	114		-		60-140	-		30	
Acrolein	108		-		60-140	-		30	
Acrylonitrile	100		-		60-140	-		60	
Methyl tert butyl Ether	90		-		60-140	-		30	
Dibromomethane	85		-		70-130	-		30	
Tert-Butyl Alcohol	80		-		60-140	-		30	

Project Name: 74 MIDDLESEX AVENUE

Lab Number:

L2118775

Project Number: 134081-009

Report Date:

04/21/21

Parameter	LCS %Recovery	Qual	LCSD %Recovery	Qual	%Recovery Limits	RPD	Qual	RPD Limits	
Volatile Organics by GC/MS - Westborough I	Lab Associated s	sample(s): 0	1 Batch: WG1	486572-3					
Tertiary-Amyl Methyl Ether	90		-		60-140	-		30	

Surrogate	LCS %Recovery Qual	LCSD %Recovery Qua	Acceptance al Criteria
Pentafluorobenzene	108		60-140
Fluorobenzene	97		60-140
4-Bromofluorobenzene	94		60-140

Project Name: 74 MIDDLESEX AVENUE

Lab Number:

L2118775

Project Number: 134081-009 Report Date:

04/21/21

Parameter	LCS %Recovery	Qual	LCSD %Recovery	Qual	%Recovery Limits	RPD	Qual	RPD Limits	
Volatile Organics by GC/MS - Westborough L	_ab Associated s	sample(s): 0	1 Batch: WG1	486572-3					
Tertiary-Amyl Methyl Ether	90		-		60-140	-		30	

Surrogate	LCS %Recovery Qual	LCSD %Recovery Qua	Acceptance al Criteria
Pentafluorobenzene	108		60-140
Fluorobenzene	97		60-140
4-Bromofluorobenzene	94		60-140

Project Name: 74 MIDDLESEX AVENUE

Lab Number:

L2118775

Project Number: 134081-009

Parameter	LCS %Recovery	Qual	LCSD %Recovery	Qual	%Recovery Limits	RPD	Qual	RPD Limits	
Volatile Organics by GC/MS-SIM - Westborot	ugh Lab Associat	ed sample(s)	: 01 Batch:	WG1487995	-3				
1,4-Dioxane	152	Q	-		60-140	-		20	

Surrogate	LCS %Recovery Qu	LCSD ual %Recovery	Qual	Acceptance Criteria
Fluorobenzene 4-Bromofluorobenzene	99 102			60-140 60-140

Matrix Spike Analysis Batch Quality Control

Project Name: 74 MIDDLESEX AVENUE

Project Number: 134081-009

Lab Number: L2118775

	Native	MS	MS	MS	MSD	MSD	Recovery		RPD
Parameter	Sample	Added	Found	%Recovery	Qual Found	%Recovery	Qual Limits	RPD	Qual Limits
Volatile Organics by GC/MS - HA20-105(OW)_2021-0413	- Westborough	Lab Asso	ociated sample(s): 01 QC Ba	tch ID: WG1486572-	-5 WG148657	2-6 QC Sample: I	_211877	5-01 Client ID:
Methylene chloride	ND	200	200	100	190	95	1-221	5	28
1,1-Dichloroethane	ND	200	200	100	200	100	59-155	0	49
Chloroform	ND	200	210	105	210	105	51-138	0	54
Carbon tetrachloride	ND	200	190	95	180	90	70-140	5	41
1,2-Dichloropropane	ND	200	200	100	200	100	1-210	0	55
Dibromochloromethane	ND	200	200	100	190	95	53-149	5	50
1,1,2-Trichloroethane	ND	200	210	105	200	100	52-150	5	45
2-Chloroethylvinyl ether	ND	200	190	95	180	90	1-305	5	71
Tetrachloroethene	ND	200	220	110	210	105	64-148	5	39
Chlorobenzene	ND	200	200	100	200	100	37-160	0	53
Trichlorofluoromethane	ND	200	200	100	190	95	17-181	5	84
1,2-Dichloroethane	ND	200	210	105	200	100	49-155	5	49
1,1,1-Trichloroethane	ND	200	200	100	200	100	52-162	0	36
Bromodichloromethane	ND	200	220	110	220	110	35-155	0	56
rans-1,3-Dichloropropene	ND	200	170	85	160	80	17-183	6	86
cis-1,3-Dichloropropene	ND	200	170	85	170	85	1-227	0	58
Bromoform	ND	200	180	90	180	90	45-169	0	42
1,1,2,2-Tetrachloroethane	ND	200	230	115	220	110	45-157	4	61
Benzene	ND	200	210	105	210	105	37-151	0	61
Toluene	ND	200	230	115	230	115	47-150	0	41
Ethylbenzene	ND	200	240	120	230	115	37-162	4	63
Chloromethane	ND	200	160	80	150	75	1-273	6	60
Bromomethane	ND	200	97	48	99	50	1-242	2	61

Matrix Spike Analysis Batch Quality Control

Project Name: 74 MIDDLESEX AVENUE

Project Number: 134081-009

Lab Number: L2118775

	Native	MS	MS	MS	MSD	MSD	Recovery		RPD
Parameter	Sample	Added	Found	%Recovery	Qual Found	%Recovery	Qual Limits	RPD	Qual Limits
Volatile Organics by GC/MS HA20-105(OW)_2021-0413		Lab Assoc	ciated sample	(s): 01 QC Ba	tch ID: WG1486572	-5 WG148657	'2-6 QC Sample: L	.211877	5-01 Client ID:
Vinyl chloride	ND	200	180	90	170	85	1-251	6	66
Chloroethane	ND	200	190	95	180	90	14-230	5	78
1,1-Dichloroethene	ND	200	200	100	190	95	1-234	5	32
rans-1,2-Dichloroethene	ND	200	210	105	200	100	54-156	5	45
cis-1,2-Dichloroethene	ND	200	220	110	220	110	60-140	0	30
Trichloroethene	ND	200	190	95	200	100	70-157	5	48
1,2-Dichlorobenzene	ND	200	210	105	200	100	18-190	5	57
1,3-Dichlorobenzene	ND	200	200	100	200	100	59-156	0	43
1,4-Dichlorobenzene	ND	200	210	105	200	100	18-190	5	57
n/m-Xylene	ND	400	440	110	430	108	60-140	2	30
o-xylene	ND	200	220	110	210	105	60-140	5	30
Styrene	ND	200	200	100	200	100	60-140	0	30
Acetone	ND	500	490	98	490	98	40-160	0	30
Carbon disulfide	ND	200	190	95	180	90	60-140	5	30
2-Butanone	ND	500	480	96	480	96	60-140	0	30
Vinyl acetate	ND	400	360	90	360	90	60-140	0	30
4-Methyl-2-pentanone	ND	500	540	108	520	104	60-140	4	30
2-Hexanone	ND	500	570	114	550	110	60-140	4	30
Acrolein	ND	400	320	80	300	75	40-160	6	30
Acrylonitrile	ND	400	400	100	390	98	40-160	3	60
Dibromomethane	ND	200	170	85	160	80	70-130	6	30

Matrix Spike Analysis Batch Quality Control

Project Name: 74 MIDDLESEX AVENUE

Project Number:

134081-009

Lab Number:

L2118775

Report Date:

04/21/21

	Native	MS	MS	MS		MSD	MSD		Recovery			RPD
Parameter	Sample	Added	Found	%Recovery	Qual	Found	%Recovery	Qual	Limits	RPD	Qual	Limits

Volatile Organics by GC/MS - Westborough Lab Associated sample(s): 01 QC Batch ID: WG1486572-5 WG1486572-6 QC Sample: L2118775-01 Client ID: HA20-105(OW)_2021-0413

	MS	MSD	Acceptance
Surrogate	% Recovery Qualifier	% Recovery Qualifier	Criteria
4-Bromofluorobenzene	98	98	60-140
Fluorobenzene	94	94	60-140
Pentafluorobenzene	106	106	60-140

SEMIVOLATILES

L2118775

04/21/21

Project Name: 74 MIDDLESEX AVENUE

L2118775-01

SOMERVILLE, MA

HA20-105(OW)_2021-0413

Project Number: 134081-009

SAMPLE RESULTS

Date Collected: 04/13/21 13:45

D 1 0 11 1 1 04/40/04 40 45

Lab Number:

Report Date:

Date Received: 04/13/21
Field Prep: Refer to COC

Sample Depth:

Sample Location:

Lab ID:

Client ID:

Matrix: Water
Analytical Method: 129,625.1
Analytical Date: 04/19/21 17:20

Analyst: SZ

Extraction Metho	d: EPA 625.1
Extraction Date:	04/19/21 01:54

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	
Semivolatile Organics by GC/MS - We	stborough Lab						
Acenaphthene	ND		ug/l	2.00		1	
Benzidine ¹	ND		ug/l	20.0		1	
1,2,4-Trichlorobenzene	ND		ug/l	5.00		1	
Hexachlorobenzene	ND		ug/l	2.00		1	
Bis(2-chloroethyl)ether	ND		ug/l	2.00		1	
2-Chloronaphthalene	ND		ug/l	2.00		1	
3,3'-Dichlorobenzidine	ND		ug/l	5.00		1	
2,4-Dinitrotoluene	ND		ug/l	5.00		1	
2,6-Dinitrotoluene	ND		ug/l	5.00		1	
Azobenzene ¹	ND		ug/l	2.00		1	
Fluoranthene	ND		ug/l	2.00		1	
4-Chlorophenyl phenyl ether	ND		ug/l	2.00		1	
4-Bromophenyl phenyl ether	ND		ug/l	2.00		1	
Bis(2-chloroisopropyl)ether	ND		ug/l	2.00		1	
Bis(2-chloroethoxy)methane	ND		ug/l	5.00		1	
Hexachlorobutadiene	ND		ug/l	2.00		1	
Hexachlorocyclopentadiene¹	ND		ug/l	10.0		1	
Hexachloroethane	ND		ug/l	2.00		1	
Isophorone	ND		ug/l	5.00		1	
Naphthalene	ND		ug/l	2.00		1	
Nitrobenzene	ND		ug/l	2.00		1	
NDPA/DPA1	ND		ug/l	2.00		1	
n-Nitrosodi-n-propylamine	ND		ug/l	5.00		1	
Bis(2-ethylhexyl)phthalate	ND		ug/l	2.20		1	
Butyl benzyl phthalate	ND		ug/l	5.00		1	
Di-n-butylphthalate	ND		ug/l	5.00		1	
Di-n-octylphthalate	ND		ug/l	5.00		1	
Diethyl phthalate	ND		ug/l	5.00		1	

Project Name: 74 MIDDLESEX AVENUE **Lab Number:** L2118775

Project Number: 134081-009 **Report Date:** 04/21/21

SAMPLE RESULTS

Lab ID: L2118775-01 Date Collected: 04/13/21 13:45

Sample Location: SOMERVILLE, MA Field Prep: Refer to COC

Sample Depth:

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
Semivolatile Organics by GC/MS - V	Vestborough Lab					
Dimethyl phthalate	ND		ug/l	5.00		1
Benzo(a)anthracene	ND		ug/l	2.00		1
Benzo(a)pyrene	ND		ug/l	2.00		1
Benzo(b)fluoranthene	ND		ug/l	2.00		1
Benzo(k)fluoranthene	ND		ug/l	2.00		1
Chrysene	ND		ug/l	2.00		1
Acenaphthylene	ND		ug/l	2.00		1
Anthracene	ND		ug/l	2.00		1
Benzo(ghi)perylene	ND		ug/l	2.00		1
Fluorene	ND		ug/l	2.00		1
Phenanthrene	ND		ug/l	2.00		1
Dibenzo(a,h)anthracene	ND		ug/l	2.00		1
Indeno(1,2,3-cd)pyrene	ND		ug/l	2.00		1
Pyrene	ND		ug/l	2.00		1
4-Chloroaniline ¹	ND		ug/l	5.00		1
Dibenzofuran¹	ND		ug/l	2.00		1
2-Methylnaphthalene ¹	ND		ug/l	2.00		1
n-Nitrosodimethylamine ¹	ND		ug/l	2.00		1
2,4,6-Trichlorophenol	ND		ug/l	5.00		1
p-Chloro-m-cresol ¹	ND		ug/l	2.00		1
2-Chlorophenol	ND		ug/l	2.00		1
2,4-Dichlorophenol	ND		ug/l	5.00		1
2,4-Dimethylphenol	ND		ug/l	5.00		1
2-Nitrophenol	ND		ug/l	5.00		1
4-Nitrophenol	ND		ug/l	10.0		1
2,4-Dinitrophenol	ND		ug/l	20.0		1
4,6-Dinitro-o-cresol	ND		ug/l	10.0		1
Pentachlorophenol	ND		ug/l	5.00		1
Phenol	ND		ug/l	5.00		1
2-Methylphenol ¹	ND		ug/l	5.00		1
3-Methylphenol/4-Methylphenol ¹	ND		ug/l	5.00		1
2,4,5-Trichlorophenol ¹	ND		ug/l	5.00		1
Benzoic Acid¹	ND		ug/l	50.0		1
Benzyl Alcohol ¹	ND		ug/l	2.00		1

Project Name: Lab Number: 74 MIDDLESEX AVENUE L2118775

Project Number: Report Date: 134081-009 04/21/21

SAMPLE RESULTS

Lab ID: Date Collected: L2118775-01 04/13/21 13:45

Date Received: Client ID: HA20-105(OW)_2021-0413 04/13/21 Sample Location: Field Prep: SOMERVILLE, MA Refer to COC

Sample Depth:

Result Qualifier Units RL MDL **Dilution Factor** Parameter

Semivolatile Organics by GC/MS - Westborough Lab

Surrogate	% Recovery	Acceptance Qualifier Criteria
2-Fluorophenol	42	25-87
Phenol-d6	29	16-65
Nitrobenzene-d5	63	42-122
2-Fluorobiphenyl	74	46-121
2,4,6-Tribromophenol	87	45-128
4-Terphenyl-d14	83	47-138

Project Name: 74 MIDDLESEX AVENUE

Project Number: 134081-009

Lab Number: L2118775

Report Date: 04/21/21

Method Blank Analysis Batch Quality Control

Analytical Method: 129,625.1 Analytical Date: 04/19/21 16:34

Analyst: SZ

Extraction Method: EPA 625.1 Extraction Date: 04/19/21 01:54

arameter	Result	Qualifier	Units		RL	MDL	
emivolatile Organics by GC/MS	- Westborough	Lab for s	ample(s):	01	Batch:	WG1487774-1	
Acenaphthene	ND		ug/l	:	2.00		
Benzidine ¹	ND		ug/l	:	20.0		
1,2,4-Trichlorobenzene	ND		ug/l	,	5.00		
Hexachlorobenzene	ND		ug/l	:	2.00		
Bis(2-chloroethyl)ether	ND		ug/l	:	2.00		
2-Chloronaphthalene	ND		ug/l	:	2.00		
3,3'-Dichlorobenzidine	ND		ug/l	;	5.00		
2,4-Dinitrotoluene	ND		ug/l	;	5.00		
2,6-Dinitrotoluene	ND		ug/l	;	5.00		
Azobenzene ¹	ND		ug/l	:	2.00		
Fluoranthene	ND		ug/l	:	2.00		
4-Chlorophenyl phenyl ether	ND		ug/l	:	2.00		
4-Bromophenyl phenyl ether	ND		ug/l	:	2.00		
Bis(2-chloroisopropyl)ether	ND		ug/l	:	2.00		
Bis(2-chloroethoxy)methane	ND		ug/l	;	5.00		
Hexachlorobutadiene	ND		ug/l	:	2.00		
Hexachlorocyclopentadiene ¹	ND		ug/l		10.0		
Hexachloroethane	ND		ug/l	:	2.00		
Isophorone	ND		ug/l		5.00		
Naphthalene	ND		ug/l		2.00		
Nitrobenzene	ND		ug/l		2.00		
NDPA/DPA ¹	ND		ug/l	:	2.00		
n-Nitrosodi-n-propylamine	ND		ug/l	;	5.00		
Bis(2-ethylhexyl)phthalate	ND		ug/l	:	2.20		
Butyl benzyl phthalate	ND		ug/l		5.00		
Di-n-butylphthalate	ND		ug/l		5.00		
Di-n-octylphthalate	ND		ug/l		5.00		
Diethyl phthalate	ND		ug/l		5.00		
Dimethyl phthalate	ND		ug/l		5.00		

Project Name: 74 MIDDLESEX AVENUE

Project Number: 134081-009

Lab Number: L2118775

Report Date: 04/21/21

Method Blank Analysis Batch Quality Control

Analytical Method: 129,625.1 Analytical Date: 04/19/21 16:34

Analyst: SZ

Extraction Method: EPA 625.1 Extraction Date: 04/19/21 01:54

arameter	Result	Qualifier Unit	s	RL	MDL
emivolatile Organics by GC/MS	- Westborough	Lab for sample	e(s): 01	Batch:	WG1487774-1
Benzo(a)anthracene	ND	ug	/I	2.00	
Benzo(a)pyrene	ND	ug	/ I	2.00	
Benzo(b)fluoranthene	ND	ug	/ I	2.00	
Benzo(k)fluoranthene	ND	ug	/ I	2.00	
Chrysene	ND	ug	/ I	2.00	
Acenaphthylene	ND	ug	/ I	2.00	
Anthracene	ND	ug	/ I	2.00	
Benzo(ghi)perylene	ND	ug	/ I	2.00	
Fluorene	ND	ug	/ I	2.00	
Phenanthrene	ND	ug	/ I	2.00	
Dibenzo(a,h)anthracene	ND	ug	/ I	2.00	
Indeno(1,2,3-cd)pyrene	ND	ug	/ I	2.00	
Pyrene	ND	ug,	/ I	2.00	
4-Chloroaniline ¹	ND	ug	/1	5.00	
Dibenzofuran¹	ND	ug,	/1	2.00	
2-Methylnaphthalene ¹	ND	ug	/1	2.00	
n-Nitrosodimethylamine¹	ND	ug	/ I	2.00	
2,4,6-Trichlorophenol	ND	ug.	/I	5.00	
p-Chloro-m-cresol ¹	ND	ug.	/I	2.00	
2-Chlorophenol	ND	ug.	/I	2.00	
2,4-Dichlorophenol	ND	ug.	/ I	5.00	
2,4-Dimethylphenol	ND	ug.	/ I	5.00	
2-Nitrophenol	ND	ug.	/ I	5.00	
4-Nitrophenol	ND	ug.	/ I	10.0	
2,4-Dinitrophenol	ND	ug,	/I	20.0	
4,6-Dinitro-o-cresol	ND	ug	/I	10.0	
Pentachlorophenol	ND	ug,	/I	5.00	
Phenol	ND	ug	/I	5.00	
2-Methylphenol ¹	ND	ug	/I	5.00	

L2118775

04/19/21 01:54

Lab Number:

Project Name: 74 MIDDLESEX AVENUE

Report Date: Project Number:

134081-009 04/21/21

Method Blank Analysis Batch Quality Control

Analytical Method: 129,625.1 Extraction Method: EPA 625.1 Analytical Date: 04/19/21 16:34 Extraction Date:

Analyst: SZ

Parameter	Result	Qualifier	Units	RL		MDL	
Semivolatile Organics by GC/MS -	Westborough	Lab for s	sample(s):	01 E	Batch:	WG1487774-1	
3-Methylphenol/4-Methylphenol ¹	ND		ug/l	5.00	0		
2,4,5-Trichlorophenol ¹	ND		ug/l	5.0	0		
Benzoic Acid¹	ND		ug/l	50.	0		
Benzyl Alcohol ¹	ND		ug/l	2.0	0		

Surrogate	%Recovery	Acceptance Qualifier Criteria
2-Fluorophenol	47	25-87
Phenol-d6	31	16-65
Nitrobenzene-d5	67	42-122
2-Fluorobiphenyl	74	46-121
2,4,6-Tribromophenol	74	45-128
4-Terphenyl-d14	85	47-138

Project Name: 74 MIDDLESEX AVENUE

Project Number: 134081-009

Lab Number: L2118775

Parameter	LCS %Recovery	Qual	LCSD %Recovery	Qual	%Recovery Limits	RPD	RPD Qual Limits	
Semivolatile Organics by GC/MS - Westbo	rough Lab Associ	ated sample(s)	: 01 Batch:	WG1487774-	-2			
Acenaphthene	70		-		60-132	-	48	
1,2,4-Trichlorobenzene	73		-		57-130	-	50	
Hexachlorobenzene	80		-		8-142	-	55	
Bis(2-chloroethyl)ether	74		-		43-126	-	108	
2-Chloronaphthalene	79		-		65-120	-	24	
3,3'-Dichlorobenzidine	38		-		8-213	-	108	
2,4-Dinitrotoluene	87		-		48-127	-	42	
2,6-Dinitrotoluene	91		-		68-137	-	48	
Azobenzene ¹	70		-		44-115	-	23	
Fluoranthene	79		-		43-121	-	66	
4-Chlorophenyl phenyl ether	79		-		38-145	-	61	
4-Bromophenyl phenyl ether	82		-		65-120	-	43	
Bis(2-chloroisopropyl)ether	65		-		63-139	-	76	
Bis(2-chloroethoxy)methane	74		-		49-165	-	54	
Hexachlorobutadiene	78		-		38-120	-	62	
Hexachlorocyclopentadiene ¹	87		-		7-118	-	35	
Hexachloroethane	67		-		55-120	-	52	
Isophorone	72		-		47-180	-	93	
Naphthalene	70		-		36-120	-	65	
Nitrobenzene	73		-		54-158	-	62	
NDPA/DPA ¹	78		-		45-112	-	36	
n-Nitrosodi-n-propylamine	74		-		14-198	-	87	
Bis(2-ethylhexyl)phthalate	90		-		29-137	-	82	

Project Name: 74 MIDDLESEX AVENUE

Project Number: 134081-009

Lab Number: L2118775

Parameter	LCS %Recovery	Qual	LCSD %Recovery	Qual	%Recovery Limits	RPD	Qual	RPD Limits	
Semivolatile Organics by GC/MS - Westboro	ugh Lab Associ	ated sample(s)	: 01 Batch:	WG1487774	4-2				
Butyl benzyl phthalate	96		-		1-140	-		60	
Di-n-butylphthalate	86		-		8-120	-		47	
Di-n-octylphthalate	94		-		19-132	-		69	
Diethyl phthalate	81		-		1-120	-		100	
Dimethyl phthalate	86		-		1-120	-		183	
Benzo(a)anthracene	71		-		42-133	-		53	
Benzo(a)pyrene	104		-		32-148	-		72	
Benzo(b)fluoranthene	68		-		42-140	-		71	
Benzo(k)fluoranthene	105		-		25-146	-		63	
Chrysene	84		-		44-140	-		87	
Acenaphthylene	77		-		54-126	-		74	
Anthracene	79		-		43-120	-		66	
Benzo(ghi)perylene	82		-		1-195	-		97	
Fluorene	77		-		70-120	-		38	
Phenanthrene	69		-		65-120	-		39	
Dibenzo(a,h)anthracene	86		-		1-200	-		126	
Indeno(1,2,3-cd)pyrene	70		-		1-151	-		99	
Pyrene	79		-		70-120	-		49	
4-Chloroaniline ¹	68		-		10-100	-		53	
Dibenzofuran¹	74		-		23-126	-		22	
2-Methylnaphthalene ¹	75		-		40-109	-		18	
n-Nitrosodimethylamine¹	46		-		15-68	-		17	
2,4,6-Trichlorophenol	90		-		52-129	-		58	

Project Name: 74 MIDDLESEX AVENUE

Project Number: 134081-009

Lab Number: L2118775

Parameter	LCS %Recovery		LCSD ecovery	Qual	%Recovery Limits	RPD	Qual	RPD Limits	
Semivolatile Organics by GC/MS - Westborou	ugh Lab Associa	ated sample(s): 01	Batch:	WG148777	4-2				
p-Chloro-m-cresol¹	84		-		68-130	-		73	
2-Chlorophenol	76		-		36-120	-		61	
2,4-Dichlorophenol	86		-		53-122	-		50	
2,4-Dimethylphenol	81		-		42-120	-		58	
2-Nitrophenol	92		-		45-167	-		55	
4-Nitrophenol	52		-		13-129	-		131	
2,4-Dinitrophenol	63		-		1-173	-		132	
4,6-Dinitro-o-cresol	85		-		56-130	-		203	
Pentachlorophenol	79		-		38-152	-		86	
Phenol	37		-		17-120	-		64	
2-Methylphenol ¹	72		-		38-102	-		23	
3-Methylphenol/4-Methylphenol ¹	66		-		35-103	-		26	
2,4,5-Trichlorophenol ¹	97		-		47-126	-		28	
Benzoic Acid¹	19		-		2-55	-		27	
Benzyl Alcohol ¹	47		-		31-103	-		23	

Surrogate	LCS %Recovery Qual	LCSD %Recovery Qual	Acceptance Criteria
2-Fluorophenol	53		25-87
Phenol-d6	37		16-65
Nitrobenzene-d5	76		42-122
2-Fluorobiphenyl	79		46-121
2,4,6-Tribromophenol	95		45-128
4-Terphenyl-d14	85		47-138

Project Name: 74 MIDDLESEX AVENUE

L2118775

Project Number: 134081-009 Report Date:

Lab Number:

04/21/21

Parameter	LCS %Recovery	Qual	LCSD %Recovery	Qual	%Recovery Limits	RPD	Qual	RPD Limits	
Semivolatile Organics by GC/MS - Westboro	ugh Lab Associa	ted sample(s)	: 01 Batch:	WG1487774	l - 3				
Benzidine¹	53		-		0-70	-		30	

PETROLEUM HYDROCARBONS

Project Name: Lab Number: 74 MIDDLESEX AVENUE L2118775

Project Number: 134081-009 **Report Date:** 04/21/21

SAMPLE RESULTS

Lab ID: L2118775-01

Date Collected: 04/13/21 13:45

Client ID: HA20-105(OW)_2021-0413 Date Received: 04/13/21 Field Prep: Refer to COC

SOMERVILLE, MA Sample Location:

Sample Depth:

Matrix: Extraction Method: EPA 3510C Water

Extraction Date: Analytical Method: 135,EPH-19-2.1 04/18/21 03:31

M.S. Analytical Date: 04/19/21 00:22 Analytical Date: 04/19/21 17:56 Cleanup Method1: EPH-19-2.1 Analyst: M.S. Analyst: MEO RP Cleanup Date1: 04/18/21

Quality Control Information

Condition of sample received:

Aqueous Preservative:

Sample Temperature upon receipt:

Sample Extraction method:

Satisfactory

Laboratory Provided Preserved

Container Received on Ice

Extracted Per the Method

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor			
EPH w/Targets via GCMS-SIM - Westborough Lab									
C9-C18 Aliphatics	ND		ug/l	100		1			
C19-C36 Aliphatics	ND		ug/l	100		1			
C11-C22 Aromatics	ND		ug/l	100		1			
C11-C22 Aromatics, Adjusted	ND		ug/l	100		1			
Naphthalene	ND		ug/l	0.400		1			
2-Methylnaphthalene	ND		ug/l	0.400		1			
Acenaphthylene	ND		ug/l	0.400		1			
Acenaphthene	ND		ug/l	0.400		1			
Fluorene	ND		ug/l	0.400		1			
Phenanthrene	ND		ug/l	0.400		1			
Anthracene	ND		ug/l	0.400		1			
Fluoranthene	ND		ug/l	0.400		1			
Pyrene	ND		ug/l	0.400		1			
Benzo(a)anthracene	ND		ug/l	0.400		1			
Chrysene	ND		ug/l	0.400		1			
Benzo(b)fluoranthene	ND		ug/l	0.400		1			
Benzo(k)fluoranthene	ND		ug/l	0.400		1			
Benzo(a)pyrene	ND		ug/l	0.200		1			
Indeno(1,2,3-cd)Pyrene	ND		ug/l	0.400		1			
Dibenzo(a,h)anthracene	ND		ug/l	0.400		1			
Benzo(ghi)perylene	ND		ug/l	0.400		1			

Project Name: 74 MIDDLESEX AVENUE Lab Number: L2118775

Project Number: 134081-009 **Report Date:** 04/21/21

SAMPLE RESULTS

Lab ID: Date Collected: 04/13/21 13:45

Client ID: HA20-105(OW)_2021-0413 Date Received: 04/13/21 Sample Location: SOMERVILLE, MA Field Prep: Refer to COC

Sample Depth:

Parameter Result Qualifier Units RL MDL Dilution Factor

EPH w/Targets via GCMS-SIM - Westborough Lab

	a. =		Acceptance Criteria
Surrogate	% Recovery	Qualifier	Criteria
Chloro-Octadecane	51		40-140
o-Terphenyl	67		40-140
2-Fluorobiphenyl	78		40-140
2-Bromonaphthalene	76		40-140
)-Terphenyl-MS	82		40-140

L2118775

Lab Number:

Project Name: 74 MIDDLESEX AVENUE

Report Date: **Project Number:** 134081-009

04/21/21

Method Blank Analysis Batch Quality Control

Analytical Method: 135,EPH-19-2.1

Extraction Method: EPA 3510C Analytical Date: 04/19/21 16:43 M.S. Analytical Date: 04/18/21 23:33 **Extraction Date:** 04/18/21 03:31

Analyst: MEO M.S. Analyst: RP Cleanup Method: EPH-19-2.1 Cleanup Date: 04/18/21

Parameter	Result	Qualifier	Units		RL	MDL
EPH w/Targets via GCMS-SIM - We	stborough	Lab for sar	nple(s):	01	Batch:	WG1487618-1
C9-C18 Aliphatics	ND		ug/l		100	
C19-C36 Aliphatics	ND		ug/l		100	
C11-C22 Aromatics	ND		ug/l		100	
C11-C22 Aromatics, Adjusted	ND		ug/l		100	
Naphthalene	ND		ug/l		0.400	
2-Methylnaphthalene	ND		ug/l		0.400	
Acenaphthylene	ND		ug/l		0.400	
Acenaphthene	ND		ug/l		0.400	
Fluorene	ND		ug/l		0.400	
Phenanthrene	ND		ug/l		0.400	
Anthracene	ND		ug/l		0.400	
Fluoranthene	ND		ug/l		0.400	
Pyrene	ND		ug/l		0.400	
Benzo(a)anthracene	ND		ug/l		0.400	
Chrysene	ND		ug/l		0.400	
Benzo(b)fluoranthene	ND		ug/l		0.400	
Benzo(k)fluoranthene	ND		ug/l		0.400	
Benzo(a)pyrene	ND		ug/l		0.200	
Indeno(1,2,3-cd)Pyrene	ND		ug/l		0.400	
Dibenzo(a,h)anthracene	ND		ug/l		0.400	
Benzo(ghi)perylene	ND		ug/l		0.400	

Project Name: Lab Number: 74 MIDDLESEX AVENUE L2118775

Project Number: Report Date: 134081-009 04/21/21

> **Method Blank Analysis Batch Quality Control**

Analytical Method: 135,EPH-19-2.1

Extraction Method: EPA 3510C Analytical Date: 04/19/21 16:43 M.S. Analytical Date: 04/18/21 23:33 04/18/21 03:31 **Extraction Date:**

Analyst: MEO M.S. Analyst: RP EPH-19-2.1 Cleanup Method: Cleanup Date: 04/18/21

Result Qualifier Units RL MDL **Parameter**

EPH w/Targets via GCMS-SIM - Westborough Lab for sample(s): 01 Batch: WG1487618-1

		Acceptance
Surrogate	%Recovery C	ualifier Criteria
Chloro-Octadecane	65	40-140
o-Terphenyl	68	40-140
2-Fluorobiphenyl	72	40-140
2-Bromonaphthalene	74	40-140
O-Terphenyl-MS	72	40-140

Project Name: 74 MIDDLESEX AVENUE

Project Number: 134081-009

Lab Number: L2118775

Parameter	LCS %Recovery	Qual	LCSD %Recovery	Qual	%Recovery Limits	RPD	RPD Qual Limits	
EPH w/Targets via GCMS-SIM - Westborough	n Lab Associat	ed sample(s):	01 Batch: W	G1487618-2	WG1487618-3			
C9-C18 Aliphatics	52		54		40-140	4	25	
C19-C36 Aliphatics	72		73		40-140	1	25	
C11-C22 Aromatics	68		74		40-140	8	25	
Naphthalene	70		76		40-140	8	25	
2-Methylnaphthalene	77		86		40-140	11	25	
Acenaphthylene	72		82		40-140	13	25	
Acenaphthene	76		84		40-140	10	25	
Fluorene	75		81		40-140	8	25	
Phenanthrene	80		84		40-140	5	25	
Anthracene	81		86		40-140	6	25	
Fluoranthene	84		88		40-140	5	25	
Pyrene	88		91		40-140	3	25	
Benzo(a)anthracene	79		83		40-140	5	25	
Chrysene	86		90		40-140	5	25	
Benzo(b)fluoranthene	94		100		40-140	6	25	
Benzo(k)fluoranthene	75		74		40-140	1	25	
Benzo(a)pyrene	87		90		40-140	3	25	
Indeno(1,2,3-cd)Pyrene	79		80		40-140	1	25	
Dibenzo(a,h)anthracene	82		84		40-140	2	25	
Benzo(ghi)perylene	78		79		40-140	1	25	

Project Name: 74 MIDDLESEX AVENUE

Lab Number:

L2118775

Project Number: 134081-009

Report Date:

04/21/21

	LCS		LCSD		%Recovery		RPD	
Parameter	%Recovery	Qual	%Recovery	Qual	Limits	RPD	Qual	Limits

EPH w/Targets via GCMS-SIM - Westborough Lab Associated sample(s): 01 Batch: WG1487618-2 WG1487618-3

Surrogate	LCS %Recovery Qua	LCSD al %Recovery Qual	Acceptance Criteria
Chloro-Octadecane	62	61	40-140
o-Terphenyl	67	72	40-140
2-Fluorobiphenyl	68	76	40-140
2-Bromonaphthalene	69	77	40-140
O-Terphenyl-MS	83	96	40-140
% Naphthalene Breakthrough	0	0	
% 2-Methylnaphthalene Breakthrough	0	0	

PCBS

04/18/21

Cleanup Date:

Project Name: 74 MIDDLESEX AVENUE **Lab Number:** L2118775

Project Number: 134081-009 **Report Date:** 04/21/21

SAMPLE RESULTS

Lab ID: Date Collected: 04/13/21 13:45

Client ID: HA20-105(OW)_2021-0413 Date Received: 04/13/21 Sample Location: SOMERVILLE, MA Field Prep: Refer to COC

Sample Depth:

Matrix: Water Extraction Method: EPA 608.3
Analytical Method: 127,608.3 Extraction Date: 04/18/21 01:31
Analytical Date: 04/18/21 18:44 Cleanup Method: EPA 3665A

Analyst: AWS Cleanup Date: 04/18/21 Cleanup Method: EPA 3660B

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	Column
Polychlorinated Biphenyls by GC - Wes	tborough Lab						
Aroclor 1016	ND		ug/l	0.250		1	А
Aroclor 1221	ND		ug/l	0.250		1	Α
Aroclor 1232	ND		ug/l	0.250		1	Α
Aroclor 1242	ND		ug/l	0.250		1	Α
Aroclor 1248	ND		ug/l	0.250		1	Α
Aroclor 1254	ND		ug/l	0.250		1	Α
Aroclor 1260	ND		ug/l	0.200		1	Α

			Acceptance					
Surrogate	% Recovery	Qualifier	Criteria	Column				
2,4,5,6-Tetrachloro-m-xylene	54		37-123	В				
Decachlorobiphenyl	49		38-114	В				
2,4,5,6-Tetrachloro-m-xylene	48		37-123	Α				
Decachlorobiphenyl	37	Q	38-114	Α				

L2118775

Project Name: 74 MIDDLESEX AVENUE

Report Date: Project Number: 134081-009 04/21/21

Lab Number:

Method Blank Analysis Batch Quality Control

Analytical Method: 127,608.3 Analytical Date: 04/18/21 13:29

Analyst: CW

Extraction Method: EPA 608.3 04/17/21 02:32 Extraction Date: Cleanup Method: EPA 3665A Cleanup Date: 04/17/21 Cleanup Method: EPA 3660B Cleanup Date: 04/17/21

Parameter	Result	Qualifier	Units	RL	MDL	Column
Polychlorinated Biphenyls by GC - V	Vestborough	n Lab for s	ample(s):	01 Batch:	WG1487409-	-1
Aroclor 1016	ND		ug/l	0.250		Α
Aroclor 1221	ND		ug/l	0.250		Α
Aroclor 1232	ND		ug/l	0.250		Α
Aroclor 1242	ND		ug/l	0.250		Α
Aroclor 1248	ND		ug/l	0.250		Α
Aroclor 1254	ND		ug/l	0.250		Α
Aroclor 1260	ND		ug/l	0.200		А

		Acceptance						
Surrogate	%Recovery Qualifi	er Criteria	Column					
O A E C Tahasahlara ya unlara	0.7	27.400	D					
2,4,5,6-Tetrachloro-m-xylene	87	37-123	В					
Decachlorobiphenyl	83	38-114	В					
2,4,5,6-Tetrachloro-m-xylene	89	37-123	Α					
Decachlorobiphenyl	69	38-114	Α					

Lab Control Sample Analysis Batch Quality Control

Project Name: 74 MIDDLESEX AVENUE

Project Number:

134081-009

Lab Number: L2118775

Report Date:

04/21/21

Parameter	LCS %Recovery	Qual	LCSD %Recovery	Qual	%Recovery Limits	RPD	Qual	RPD Limits	Column
Polychlorinated Biphenyls by GC - Westbore	ough Lab Associa	ated sample(s)	: 01 Batch:	WG1487409)-2				
Aroclor 1016	74		-		50-140	-		36	Α
Aroclor 1260	79		-		8-140	-		38	Α

Surrogate	LCS %Recovery Qual	LCSD %Recovery Qual	Acceptance Criteria Column
2,4,5,6-Tetrachloro-m-xylene	78		37-123 B
Decachlorobiphenyl	84		38-114 B
2,4,5,6-Tetrachloro-m-xylene	76		37-123 A
Decachlorobiphenyl	67		38-114 A

PESTICIDES

Project Name: 74 MIDDLESEX AVENUE Lab Number: L2118775

Project Number: 134081-009 **Report Date:** 04/21/21

SAMPLE RESULTS

L2118775-01

Date Collected: 04/13/21 13:45

Client ID: HA20-105(OW)_2021-0413 Date Received: 04/13/21

Sample Location: SOMERVILLE, MA Field Prep: Refer to COC

Sample Depth:

Lab ID:

Matrix: Water Extraction Method: EPA 608.3
Analytical Method: 127,608.3 Extraction Date: 04/19/21 01:35
Analytical Date: 04/20/21 19:00 Cleanup Method: EPA 3620B

Analyst: EJL Cleanup Date: 04/19/21

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	Column
Organochlorine Pesticides by GC - We	estborough Lab						
Delta-BHC	ND		ug/l	0.020		1	А
Lindane	ND		ug/l	0.020		1	Α
Alpha-BHC	ND		ug/l	0.020		1	А
Beta-BHC	ND		ug/l	0.020		1	Α
Heptachlor	ND		ug/l	0.020		1	А
Aldrin	ND		ug/l	0.020		1	А
Heptachlor epoxide	ND		ug/l	0.020		1	А
Endrin	ND		ug/l	0.040		1	А
Endrin aldehyde	ND		ug/l	0.040		1	Α
Endrin ketone¹	ND		ug/l	0.040		1	Α
Dieldrin	ND		ug/l	0.040		1	Α
4,4'-DDE	ND		ug/l	0.040		1	Α
4,4'-DDD	ND		ug/l	0.040		1	Α
4,4'-DDT	ND		ug/l	0.040		1	Α
Endosulfan I	ND		ug/l	0.020		1	Α
Endosulfan II	ND		ug/l	0.040		1	А
Endosulfan sulfate	ND		ug/l	0.040		1	Α
Methoxychlor ¹	ND		ug/l	0.100		1	А
Toxaphene	ND		ug/l	0.400		1	Α
Chlordane	ND		ug/l	0.200		1	А
cis-Chlordane¹	ND		ug/l	0.020		1	А
trans-Chlordane¹	ND		ug/l	0.020		1	Α

Project Name: 74 MIDDLESEX AVENUE **Lab Number:** L2118775

Project Number: 134081-009 **Report Date:** 04/21/21

SAMPLE RESULTS

Lab ID: Date Collected: 04/13/21 13:45

Client ID: HA20-105(OW)_2021-0413 Date Received: 04/13/21 Sample Location: SOMERVILLE, MA Field Prep: Refer to COC

Sample Depth:

Parameter Result Qualifier Units RL MDL Dilution Factor Column

Organochlorine Pesticides by GC - Westborough Lab

Surrogate	% Recovery	Qualifier	Acceptance Criteria	Column
2,4,5,6-Tetrachloro-m-xylene	76		47-124	Α
Decachlorobiphenyl	63		32-167	А
2,4,5,6-Tetrachloro-m-xylene	77		47-124	В
Decachlorobiphenyl	78		32-167	В

L2118775

Lab Number:

Project Name: 74 MIDDLESEX AVENUE

Report Date: Project Number: 134081-009 04/21/21

Method Blank Analysis Batch Quality Control

Analytical Method: 127,608.3 Analytical Date: 04/20/21 19:44

Analyst: EJL

Extraction Method: EPA 608.3 Extraction Date: 04/19/21 01:35 Cleanup Method: EPA 3620B Cleanup Date: 04/19/21

Parameter	Result	Qualifier	Units	R	RL	MDL	Column
Organochlorine Pesticides by GC	C - Westboroug	gh Lab for	sample(s):	01	Batch:	WG148777	2-1
Delta-BHC	ND		ug/l	0.0	020		Α
Lindane	ND		ug/l	0.0	020		Α
Alpha-BHC	ND		ug/l	0.0)20		Α
Beta-BHC	ND		ug/l	0.0	020		А
Heptachlor	ND		ug/l	0.0	020		А
Aldrin	ND		ug/l	0.0)20		А
Heptachlor epoxide	ND		ug/l	0.0	020		А
Endrin	ND		ug/l	0.0	040		Α
Endrin aldehyde	ND		ug/l	0.0	040		А
Endrin ketone¹	ND		ug/l	0.0	040		Α
Dieldrin	ND		ug/l	0.0	040		А
4,4'-DDE	ND		ug/l	0.0	040		А
4,4'-DDD	ND		ug/l	0.0	040		Α
4,4'-DDT	ND		ug/l	0.0	040		А
Endosulfan I	ND		ug/l	0.0	020		А
Endosulfan II	ND		ug/l	0.0	040		Α
Endosulfan sulfate	ND		ug/l	0.0	040		Α
Methoxychlor ¹	ND		ug/l	0.1	100		Α
Toxaphene	ND		ug/l	0.4	100		А
Chlordane	ND		ug/l	0.2	200		Α
cis-Chlordane ¹	ND		ug/l	0.0	020		Α
trans-Chlordane ¹	ND		ug/l	0.0	020		А

Project Name: 74 MIDDLESEX AVENUE **Lab Number:** L2118775

Method Blank Analysis
Batch Quality Control

Analytical Method: 127,608.3 Analytical Date: 04/20/21 19:44

Analyst: EJL

Extraction Method: EPA 608.3
Extraction Date: 04/19/21 01:35
Cleanup Method: EPA 3620B
Cleanup Date: 04/19/21

Parameter	Result	Qualifier	Units		RL	MDL	Column
Organochlorine Pesticides by GC -	. Westborou	gh Lab for s	sample(s):	01	Batch:	WG1487772	·-1

		47-124 32-167 47-124	Acceptance	nce	
Surrogate	%Recovery	Qualifier	Criteria	Column	
2,4,5,6-Tetrachloro-m-xylene	81		47-124	Α	
Decachlorobiphenyl	58		32-167	Α	
2,4,5,6-Tetrachloro-m-xylene	75		47-124	В	
Decachlorobiphenyl	77		32-167	В	

Lab Control Sample Analysis Batch Quality Control

Project Name: 74 MIDDLESEX AVENUE

Project Number: 134081-009

Lab Number: L2118775

Report Date: 04/21/21

Parameter	LCS %Recovery	Qual	LCSD %Recovery	Qual	%Recovery Limits	RPD	Qual	RPD Limits	Column
Organochlorine Pesticides by GC - Westboro	ugh Lab Assoc	iated sample(s): 01 Batch:	WG148777	'2-2				
Delta-BHC	84		-		19-140	-		52	Α
Lindane	83		-		32-140	-		39	А
Alpha-BHC	89		-		37-140	-		36	А
Beta-BHC	96		-		17-147	-		44	А
Heptachlor	77		-		34-140	-		43	А
Aldrin	78		-		42-140	-		35	А
Heptachlor epoxide	79		-		37-142	-		26	А
Endrin	76		-		30-147	-		48	А
Endrin aldehyde	66		-		30-150	-		30	А
Endrin ketone ¹	86		-		30-150	-		30	А
Dieldrin	77		-		36-146	-		49	Α
4,4'-DDE	72		-		30-145	-		35	Α
4,4'-DDD	80		-		31-141	-		39	А
4,4'-DDT	85		-		25-160	-		42	А
Endosulfan I	78		-		45-153	-		28	Α
Endosulfan II	87		-		1-202	-		53	Α
Endosulfan sulfate	81		-		26-144	-		38	Α
Methoxychlor ¹	89		-		30-150	-		30	Α
cis-Chlordane¹	80		-		45-140	-		35	А
trans-Chlordane¹	82		-		45-140	-		35	А

Lab Control Sample Analysis Batch Quality Control

Project Name: 74 MIDDLESEX AVENUE

Lab Number:

L2118775

Project Number: 134081-009

Report Date:

04/21/21

	LCS		LCSD		%Recovery			RPD
Parameter	%Recovery	Qual	%Recovery	Qual	Limits	RPD	Qual	Limits

Organochlorine Pesticides by GC - Westborough Lab Associated sample(s): 01 Batch: WG1487772-2

Surrogate	LCS %Recovery Qua	LCSD al %Recovery Qual	Acceptance Criteria Column
2,4,5,6-Tetrachloro-m-xylene	78		47-124 A
Decachlorobiphenyl	66		32-167 A
2,4,5,6-Tetrachloro-m-xylene	75		47-124 B
Decachlorobiphenyl	82		32-167 B

METALS

Project Name: Lab Number: 74 MIDDLESEX AVENUE L2118775 **Project Number: Report Date:** 04/21/21

134081-009

SAMPLE RESULTS

Lab ID: L2118775-01 Date Collected: 04/13/21 13:45

Client ID: HA20-105(OW)_2021-0413 Date Received: 04/13/21 Sample Location: Field Prep: Refer to COC SOMERVILLE, MA

Sample Depth:

Matrix: Water

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	Date Prepared	Date Analyzed	Prep Method	Analytical Method	Analyst
Total Metals - Mans	sfield Lab										
Antimony, Total	ND		mg/l	0.00400		1	04/15/21 00:56	04/16/21 15:22	EPA 3005A	3,200.8	CD
Arsenic, Total	ND		mg/l	0.00100		1	04/15/21 00:56	04/16/21 15:22	EPA 3005A	3,200.8	CD
Cadmium, Total	ND		mg/l	0.00020		1	04/15/21 00:56	04/16/21 15:22	EPA 3005A	3,200.8	CD
Chromium, Total	ND		mg/l	0.00100		1	04/15/21 00:56	04/16/21 15:22	EPA 3005A	3,200.8	CD
Copper, Total	0.00130		mg/l	0.00100		1	04/15/21 00:56	04/16/21 15:22	EPA 3005A	3,200.8	CD
Iron, Total	25.6		mg/l	0.050		1	04/15/21 00:56	04/16/21 22:39	EPA 3005A	19,200.7	SV
Lead, Total	0.00290		mg/l	0.00100		1	04/15/21 00:56	04/16/21 15:22	EPA 3005A	3,200.8	CD
Mercury, Total	ND		mg/l	0.00020		1	04/15/21 03:55	04/15/21 19:08	EPA 245.1	3,245.1	OU
Nickel, Total	ND		mg/l	0.00200		1	04/15/21 00:56	04/16/21 15:22	EPA 3005A	3,200.8	CD
Selenium, Total	ND		mg/l	0.00500		1	04/15/21 00:56	04/16/21 15:22	EPA 3005A	3,200.8	CD
Silver, Total	ND		mg/l	0.00040		1	04/15/21 00:56	04/16/21 15:22	EPA 3005A	3,200.8	CD
Zinc, Total	0.01980		mg/l	0.01000		1	04/15/21 00:56	04/16/21 15:22	EPA 3005A	3,200.8	CD

Project Name: 74 MIDDLESEX AVENUE

Project Number: 134081-009

Lab Number:

L2118775

Report Date: 04/21/21

Method Blank Analysis Batch Quality Control

Parameter	Result Qualifier	Units	RL	MDL	Dilution Factor	Date Prepared	Date Analyzed	Analytica Method	
Total Metals - Mansfiel	d Lab for sample(s):	01 Batc	h: WG14	185744-	-1				
Mercury, Total	ND	mg/l	0.00020		1	04/15/21 03:55	04/15/21 17:47	3,245.1	OU

Prep Information

Digestion Method: EPA 245.1

Parameter	Result Qualifier	Units	RL	MDL	Dilution Factor	Date Prepared	Date Analyzed	Analytical Method	
Total Metals - Mansfield	Lab for sample(s):	01 Batch	: WG14	486389-	1				
Iron, Total	ND	mg/l	0.050		1	04/15/21 00:56	04/16/21 20:20	19,200.7	SV

Prep Information

Digestion Method: EPA 3005A

Parameter	Result Qualifier	Units	RL	MDL	Dilution Factor	Date Prepared	Date Analyzed	Analytical Method	Analyst
Total Metals - Mans	sfield Lab for sample(s):	01 Bato	h: WG14	86782-	-1				
Antimony, Total	ND	mg/l	0.00400		1	04/15/21 00:56	04/16/21 14:07	3,200.8	CD
Arsenic, Total	ND	mg/l	0.00100		1	04/15/21 00:56	04/16/21 14:07	3,200.8	CD
Cadmium, Total	ND	mg/l	0.00020		1	04/15/21 00:56	04/16/21 14:07	3,200.8	CD
Chromium, Total	ND	mg/l	0.00100		1	04/15/21 00:56	04/16/21 14:07	3,200.8	CD
Copper, Total	ND	mg/l	0.00100		1	04/15/21 00:56	04/16/21 14:07	3,200.8	CD
Lead, Total	ND	mg/l	0.00100		1	04/15/21 00:56	04/16/21 14:07	3,200.8	CD
Nickel, Total	ND	mg/l	0.00200		1	04/15/21 00:56	04/16/21 14:07	3,200.8	CD
Selenium, Total	ND	mg/l	0.00500		1	04/15/21 00:56	04/16/21 14:07	3,200.8	CD
Silver, Total	ND	mg/l	0.00040		1	04/15/21 00:56	04/16/21 14:07	3,200.8	CD
Zinc, Total	ND	mg/l	0.01000		1	04/15/21 00:56	04/16/21 14:07	3,200.8	CD

Prep Information

Digestion Method: EPA 3005A

Lab Control Sample Analysis Batch Quality Control

Project Name: 74 MIDDLESEX AVENUE

Project Number: 134081-009

Lab Number: L2118775

Report Date: 04/21/21

Parameter	LCS %Recovery	LCSE Qual %Recov	%Recovery Limits	RPD	Qual	RPD Limits
Total Metals - Mansfield Lab Associated sample	e(s): 01 Batch: \	WG1485744-2				
Mercury, Total	113	-	85-115	-		
Total Metals - Mansfield Lab Associated sample	e(s): 01 Batch: \	WG1486389-2				
Iron, Total	100	-	85-115	-		
Total Metals - Mansfield Lab Associated sample	e(s): 01 Batch: \	WG1486782-2				
Antimony, Total	89	-	85-115	-		
Arsenic, Total	105	-	85-115	-		
Cadmium, Total	105	-	85-115	-		
Chromium, Total	105	-	85-115	-		
Copper, Total	104	-	85-115	-		
Lead, Total	100	-	85-115	-		
Nickel, Total	100	-	85-115	-		
Selenium, Total	100	-	85-115	-		
Silver, Total	101	-	85-115	-		
Zinc, Total	110	-	85-115	-		

Matrix Spike Analysis Batch Quality Control

Project Name: 74 MIDDLESEX AVENUE

Project Number: 134081-009

Lab Number: L2118775

Report Date: 04/21/21

arameter	Native Sample	MS Added	MS Found %	MS Recovery (MSD Qual Found	MSD %Recovery	Recovery Qual Limits	RPD Q	RPD ual Limits
Гotal Metals - Mansfield La	b Associated sam	nple(s): 01	QC Batch ID	: WG1485744-	3 QC Sample:	L2118457-01	Client ID: MS Sa	ample	
Mercury, Total	ND	0.005	0.00537	107	-	-	70-130	-	20
Гotal Metals - Mansfield La	b Associated sam	nple(s): 01	QC Batch ID	: WG1485744-	5 QC Sample:	L2118671-01	Client ID: MS Sa	ample	
Mercury, Total	ND	0.005	0.00596	119	-	-	70-130	-	20
Total Metals - Mansfield La	b Associated sam	nple(s): 01	QC Batch ID	: WG1486389-	3 QC Sample:	L2117615-01	Client ID: MS Sa	ample	
Iron, Total	1.09	1	2.05	96	-	-	75-125	-	20
Total Metals - Mansfield La	b Associated sam	nple(s): 01	QC Batch ID	: WG1486389-	7 QC Sample:	L2117615-02	Client ID: MS Sa	ample	
Iron, Total	0.516	1	1.51	99	-	-	75-125	-	20
Гotal Metals - Mansfield La	b Associated sam	nple(s): 01	QC Batch ID	: WG1486782-	3 QC Sample:	L2100009-244	Client ID: MS S	Sample	
Antimony, Total	ND	0.5	0.4852	97	-	-	70-130	-	20
Arsenic, Total	0.01705	0.12	0.1416	104	-	-	70-130	-	20
Cadmium, Total	ND	0.051	0.05432	106	-	-	70-130	-	20
Chromium, Total	0.1592	0.2	0.3578	99	-	-	70-130	-	20
Copper, Total	0.4201	0.25	0.6659	98	-	-	70-130	-	20
Lead, Total	0.05835	0.51	0.5865	104	-	-	70-130	-	20
Nickel, Total	0.08199	0.5	0.5759	99	-	-	70-130	-	20
Selenium, Total	ND	0.12	0.1215	101	-	-	70-130	-	20
Silver, Total	ND	0.05	0.05164	103	-	-	70-130	-	20
Zinc, Total	0.2142	0.5	0.6837	94	-	-	70-130	-	20

Lab Duplicate Analysis Batch Quality Control

Project Name: 74 MIDDLESEX AVENUE Batch Quality

Project Number: 134081-009

 Lab Number:
 L2118775

 Report Date:
 04/21/21

Parameter	Native Sample D	uplicate Sample	Units	RPD	Qual	RPD Limits
Total Metals - Mansfield Lab Associated sample(s): 01	QC Batch ID: WG1485744	-4 QC Sample:	L2118457-01	Client ID: D	UP Sample	
Mercury, Total	ND	ND	mg/l	NC		20
otal Metals - Mansfield Lab Associated sample(s): 01	QC Batch ID: WG1485744	-6 QC Sample:	L2118671-01	Client ID: D	UP Sample	
Mercury, Total	ND	ND	mg/l	NC		20
otal Metals - Mansfield Lab Associated sample(s): 01	QC Batch ID: WG1486782	-4 QC Sample:	L2100009-24	4 Client ID:	DUP Sample	9
Antimony, Total	ND	ND	mg/l	NC		20
Arsenic, Total	0.01705	0.01617	mg/l	5		20
Cadmium, Total	ND	ND	mg/l	NC		20
Chromium, Total	0.1592	0.1604	mg/l	1		20
Copper, Total	0.4201	0.4065	mg/l	3		20
Lead, Total	0.05835	0.05953	mg/l	2		20
Nickel, Total	0.08199	0.07934	mg/l	3		20
Selenium, Total	ND	ND	mg/l	NC		20
Silver, Total	ND	ND	mg/l	NC		20
Zinc, Total	0.2142	0.1372	mg/l	44	Q	20

INORGANICS & MISCELLANEOUS

Project Name: 74 MIDDLESEX AVENUE Lab Number: L2118775

SAMPLE RESULTS

Lab ID: L2118775-01 Date Collected: 04/13/21 13:45

Client ID: HA20-105(OW)_2021-0413 Date Received: 04/13/21

Sample Location: SOMERVILLE, MA Field Prep: Refer to COC

Sample Depth:

Matrix: Water

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	Date Prepared	Date Analyzed	Analytical Method	Analyst
General Chemistry - Wes	stborough La	b								
pH (H)	6.6		SU	-	NA	1	-	04/14/21 17:44	121,4500H+-B	AS
Oil & Grease, Hem-Grav	ND		mg/l	3.6		.9	04/16/21 19:30	04/16/21 22:30	74,1664A	IR

L2118775

Project Name: 74 MIDDLESEX AVENUE

Project Number: 134081-009 Rep

Report Date: 04/21/21

Lab Number:

Method Blank Analysis Batch Quality Control

Parameter	Result Qualifier	Units	RL	MDL	Dilution Factor	Date Prepared	Date Analyzed	Analytical Method	Analyst
General Chemistry - W	estborough Lab for sam	ple(s): 01	Batch:	WG14	187349-1				
Oil & Grease, Hem-Grav	ND	mg/l	4.0		1	04/16/21 19:30	04/16/21 22:30	74,1664A	IR

Lab Control Sample Analysis Batch Quality Control

Project Name: 74 MIDDLESEX AVENUE

Project Number:

134081-009

Lab Number: L2118775

Report Date: 04/21/21

Parameter	LCS %Recovery Qu	LCSD al %Recovery	Qual	%Recovery Limits	RPD	Qual	RPD Limits	
General Chemistry - Westborough Lab As	sociated sample(s): 01	Batch: WG1486291-	1					
рН	100	-		99-101	-		5	
General Chemistry - Westborough Lab As	sociated sample(s): 01	Batch: WG1487349-	2					
Oil & Grease, Hem-Grav	87	-		78-114	-		18	

Matrix Spike Analysis Batch Quality Control

Project Name: 74 MIDDLESEX AVENUE

Lab Number:

L2118775

Project Number: 134081-009

Report Date: 04/21/21

Parameter	Native Sample	MS Added	MS Found	MS %Recovery	MSD Qual Found	MSD %Recovery Q	Recovery Qual Limits	RPD Qua	RPD Limits
General Chemistry - Westborou	igh Lab Assc	ciated samp	le(s): 01	QC Batch ID: V	VG1487349-4	QC Sample: L2118	3059-19 Client	ID: MS Sam	nple
Oil & Grease, Hem-Grav	ND	41.2	35	86	-	-	78-114	-	18

Lab Duplicate Analysis Batch Quality Control

Lab Number:

L2118775

Report Date:

04/21/21

Parameter	Native Sample	Duplicate Sam	ple Units	RPD	Qual RPD Limit	ts
General Chemistry - Westborough Lab Associated	sample(s): 01 QC Batch ID:	WG1486291-2	QC Sample: L2118	574-01 Clie	ent ID: DUP Sample	
рН	8.7	8.7	SU	0	5	
General Chemistry - Westborough Lab Associated	sample(s): 01 QC Batch ID:	WG1487349-3	QC Sample: L2118	059-10 Clie	ent ID: DUP Sample	
Oil & Grease, Hem-Grav	ND	ND	mg/l	NC	18	

Project Name:

Project Number: 134081-009

74 MIDDLESEX AVENUE

Report Date: 04/21/21

Project Name: 74 MIDDLESEX AVENUE

Project Number: 134081-009

Sample Receipt and Container Information

YES

Were project specific reporting limits specified?

Cooler Information

Cooler Custody Seal

B Absent

Container Information		Initial	Final	Temp			Frozen			
Container ID	Container Type	Cooler	рН	pН		Pres	Seal	Date/Time	Analysis(*)	
L2118775-01A	Vial Na2S2O3 preserved	В	NA		2.2	Υ	Absent		624.1-MWRA(3),624.1-SIM-RGP(7)	
L2118775-01B	Vial Na2S2O3 preserved	В	NA		2.2	Υ	Absent		624.1-MWRA(3),624.1-SIM-RGP(7)	
L2118775-01C	Vial Na2S2O3 preserved	В	NA		2.2	Υ	Absent		624.1-MWRA(3),624.1-SIM-RGP(7)	
L2118775-01D	Plastic 250ml HNO3 preserved	В	<2	<2	2.2	Υ	Absent		HOLD-METAL-DISSOLVED(180)	
L2118775-01E	Plastic 250ml HNO3 preserved	В	<2	<2	2.2	Y	Absent		CD-2008T(180),NI-2008T(180),ZN- 2008T(180),FE-UI(180),CU-2008T(180),AS- 2008T(180),AG-2008T(180),HG-U(28),SE- 2008T(180),SB-2008T(180),CR-2008T(180),PB- 2008T(180)	
L2118775-01F	Plastic 250ml unpreserved	В	7	7	2.2	Υ	Absent		PH-4500(.01)	
L2118775-01G	Amber 1000ml Na2S2O3	В	7	7	2.2	Υ	Absent		PESTICIDE-608.3(7),PCB-608.3(365)	
L2118775-01H	Amber 1000ml Na2S2O3	В	7	7	2.2	Υ	Absent		PESTICIDE-608.3(7),PCB-608.3(365)	
L2118775-01I	Amber 1000ml Na2S2O3	В	7	7	2.2	Υ	Absent		PESTICIDE-608.3(7),PCB-608.3(365)	
L2118775-01J	Amber 1000ml Na2S2O3	В	7	7	2.2	Υ	Absent		625.1(7)	
L2118775-01K	Amber 1000ml Na2S2O3	В	7	7	2.2	Υ	Absent		625.1(7)	
L2118775-01L	Amber 1000ml Na2S2O3	В	7	7	2.2	Υ	Absent		625.1(7)	
L2118775-01M	Amber 1000ml HCl preserved	В	<2	<2	2.2	Υ	Absent		EPHD-GC-20(14),EPH-MS-20(14)	
L2118775-01N	Amber 1000ml HCl preserved	В	<2	<2	2.2	Υ	Absent		EPHD-GC-20(14),EPH-MS-20(14)	
L2118775-01O	Amber 1000ml HCl preserved	В	NA		2.2	Υ	Absent		OG-1664(28)	
L2118775-01P	Amber 1000ml HCl preserved	В	NA		2.2	Υ	Absent		OG-1664(28)	

Project Name:74 MIDDLESEX AVENUELab Number:L2118775Project Number:134081-009Report Date:04/21/21

GLOSSARY

Acronyms

LOQ

MS

RPD

DL - Detection Limit: This value represents the level to which target analyte concentrations are reported as estimated values, when those target analyte concentrations are quantified below the limit of quantitation (LOQ). The DL includes any adjustments from dilutions, concentrations or moisture content, where applicable (DoD report formats only)

from dilutions, concentrations or moisture content, where applicable. (DoD report formats only.)

EDL - Estimated Detection Limit: This value represents the level to which target analyte concentrations are reported as estimated values, when those target analyte concentrations are quantified below the reporting limit (RL). The EDL includes any adjustments from dilutions, concentrations or moisture content, where applicable. The use of EDLs is specific to the analysis of PAHs using Solid-Phase Microextraction (SPME).

EMPC - Estimated Maximum Possible Concentration: The concentration that results from the signal present at the retention time of an analyte when the ions meet all of the identification criteria except the ion abundance ratio criteria. An EMPC is a worst-case

estimate of the concentration.

EPA - Environmental Protection Agency.

LCS - Laboratory Control Sample: A sample matrix, free from the analytes of interest, spiked with verified known amounts of

analytes or a material containing known and verified amounts of analytes.

LCSD - Laboratory Control Sample Duplicate: Refer to LCS.

LFB - Laboratory Fortified Blank: A sample matrix, free from the analytes of interest, spiked with verified known amounts of analytes or a material containing known and verified amounts of analytes.

LOD - Limit of Detection: This value represents the level to which a target analyte can reliably be detected for a specific analyte in a specific matrix by a specific method. The LOD includes any adjustments from dilutions, concentrations or moisture content, where applicable. (DoD report formats only.)

- Limit of Quantitation: The value at which an instrument can accurately measure an analyte at a specific concentration. The LOQ includes any adjustments from dilutions, concentrations or moisture content, where applicable. (DoD report formats only.)

Limit of Quantitation: The value at which an instrument can accurately measure an analyte at a specific concentration. The LOQ includes any adjustments from dilutions, concentrations or moisture content, where applicable. (DoD report formats only.)

MDL - Method Detection Limit: This value represents the level to which target analyte concentrations are reported as estimated values, when those target analyte concentrations are quantified below the reporting limit (RL). The MDL includes any adjustments from dilutions, concentrations or moisture content, where applicable.

- Matrix Spike Sample: A sample prepared by adding a known mass of target analyte to a specified amount of matrix sample for which an independent estimate of target analyte concentration is available. For Method 332.0, the spike recovery is calculated using the native concentration, including estimated values.

MSD - Matrix Spike Sample Duplicate: Refer to MS.

NA - Not Applicable.

NC - Not Calculated: Term is utilized when one or more of the results utilized in the calculation are non-detect at the parameter's reporting unit.

NDPA/DPA - N-Nitrosodiphenylamine/Diphenylamine.

NI - Not Ignitable.

NP - Non-Plastic: Term is utilized for the analysis of Atterberg Limits in soil.

NR - No Results: Term is utilized when 'No Target Compounds Requested' is reported for the analysis of Volatile or Semivolatile

Organic TIC only requests.

RL - Reporting Limit: The value at which an instrument can accurately measure an analyte at a specific concentration. The RL includes any adjustments from dilutions, concentrations or moisture content, where applicable.

- Relative Percent Difference: The results from matrix and/or matrix spike duplicates are primarily designed to assess the precision of analytical results in a given matrix and are expressed as relative percent difference (RPD). Values which are less than five times the reporting limit for any individual parameter are evaluated by utilizing the absolute difference between the values; although the RPD value will be provided in the report.

 SRM - Standard Reference Material: A reference sample of a known or certified value that is of the same or similar matrix as the associated field samples.

STLP - Semi-dynamic Tank Leaching Procedure per EPA Method 1315.

TEF - Toxic Equivalency Factors: The values assigned to each dioxin and furan to evaluate their toxicity relative to 2,3,7,8-TCDD.

TEQ - Toxic Equivalent: The measure of a sample's toxicity derived by multiplying each dioxin and furan by its corresponding TEF and then summing the resulting values.

TIC - Tentatively Identified Compound: A compound that has been identified to be present and is not part of the target compound list (TCL) for the method and/or program. All TICs are qualitatively identified and reported as estimated concentrations.

Report Format: Data Usability Report

Project Name:74 MIDDLESEX AVENUELab Number:L2118775Project Number:134081-009Report Date:04/21/21

Footnotes

 The reference for this analyte should be considered modified since this analyte is absent from the target analyte list of the original method.

Terms

1

Analytical Method: Both the document from which the method originates and the analytical reference method. (Example: EPA 8260B is shown as 1,8260B.) The codes for the reference method documents are provided in the References section of the Addendum.

Difference: With respect to Total Oxidizable Precursor (TOP) Assay analysis, the difference is defined as the Post-Treatment value minus the Pre-Treatment value.

Final pH: As it pertains to Sample Receipt & Container Information section of the report, Final pH reflects pH of container determined after adjustment at the laboratory, if applicable. If no adjustment required, value reflects Initial pH.

Frozen Date/Time: With respect to Volatile Organics in soil, Frozen Date/Time reflects the date/time at which associated Reagent Water-preserved vials were initially frozen. Note: If frozen date/time is beyond 48 hours from sample collection, value will be reflected in 'bold'.

Initial pH: As it pertains to Sample Receipt & Container Information section of the report, Initial pH reflects pH of container determined upon receipt, if applicable.

PAH Total: With respect to Alkylated PAH analyses, the 'PAHs, Total' result is defined as the summation of results for all or a subset of the following compounds: Naphthalene, C1-C4 Naphthalenes, 2-Methylnaphthalene, 1-Methylnaphthalene, Biphenyl, Acenaphthylene, Acenaphthene, Fluorene, C1-C3 Fluorenes, Phenanthrene, C1-C4 Phenanthrenes/Anthracenes, Anthracene, Fluoranthene, Pyrene, C1-C4 Fluoranthenes/Pyrenes, Benza(a)anthracene, Chrysene, C1-C4 Chrysenes, Benzo(b)fluoranthene, Benzo(j)+(k)fluoranthene, Benzo(e)pyrene, Benzo(a)pyrene, Perylene, Indeno(1,2,3-cd)pyrene, Dibenz(ah)+(ac)anthracene, Benzo(g,h,i)perylene. If a 'Total' result is requested, the results of its individual components will also be reported.

PFAS Total: With respect to PFAS analyses, the 'PFAS, Total (5)' result is defined as the summation of results for: PFHpA, PFHxS, PFOA, PFNA and PFOS. In addition, the 'PFAS, Total (6)' result is defined as the summation of results at or above the RL for: PFHpA, PFHxS, PFOA, PFNA, PFDA and PFOS. (Note: 'PFAS, Total (6)' is applicable to MassDEP DW compliance analysis only.). If a 'Total' result is requested, the results of its individual components will also be reported.

The target compound Chlordane (CAS No. 57-74-9) is reported for GC ECD analyses. Per EPA, this compound "refers to a mixture of chlordane isomers, other chlorinated hydrocarbons and numerous other components." (Reference: USEPA Toxicological Review of Chlordane, In Support of Summary Information on the Integrated Risk Information System (IRIS), December 1997.)

Total: With respect to Organic analyses, a 'Total' result is defined as the summation of results for individual isomers or Aroclors. If a 'Total' result is requested, the results of its individual components will also be reported. This is applicable to 'Total' results for methods 8260, 8081 and 8082.

Data Qualifiers

- A Spectra identified as "Aldol Condensates" are byproducts of the extraction/concentration procedures when acetone is introduced in the process.
- The analyte was detected above the reporting limit in the associated method blank. Flag only applies to associated field samples that have detectable concentrations of the analyte at less than ten times (10x) the concentration found in the blank. For MCP-related projects, flag only applies to associated field samples that have detectable concentrations of the analyte at less than ten times (10x) the concentration found in the blank. For DOD-related projects, flag only applies to associated field samples that have detectable concentrations of the analyte at less than ten times (10x) the concentration found in the blank AND the analyte was detected above one-half the reporting limit (or above the reporting limit for common lab contaminants) in the associated method blank. For NJ-Air-related projects, flag only applies to associated field samples that have detectable concentrations of the analyte above the reporting limit. For NJ-related projects (excluding Air), flag only applies to associated field samples that have detectable concentrations of the analyte, which was detected above the reporting limit in the associated method blank or above five times the reporting limit for common lab contaminants (Phthalates, Acetone, Methylene Chloride, 2-Butanone).
- Co-elution: The target analyte co-elutes with a known lab standard (i.e. surrogate, internal standards, etc.) for co-extracted analyses.
- Concentration of analyte was quantified from diluted analysis. Flag only applies to field samples that have detectable concentrations of the analyte.
- E Concentration of analyte exceeds the range of the calibration curve and/or linear range of the instrument.
- F The ratio of quantifier ion response to qualifier ion response falls outside of the laboratory criteria. Results are considered to be an estimated maximum concentration.
- G The concentration may be biased high due to matrix interferences (i.e, co-elution) with non-target compound(s). The result should be considered estimated.
- H The analysis of pH was performed beyond the regulatory-required holding time of 15 minutes from the time of sample collection.
- I The lower value for the two columns has been reported due to obvious interference.
- J Estimated value. This represents an estimated concentration for Tentatively Identified Compounds (TICs).
- M Reporting Limit (RL) exceeds the MCP CAM Reporting Limit for this analyte.
- **ND** Not detected at the reporting limit (RL) for the sample.
- NJ Presumptive evidence of compound. This represents an estimated concentration for Tentatively Identified Compounds (TICs), where

Report Format: Data Usability Report

Project Name:74 MIDDLESEX AVENUELab Number:L2118775Project Number:134081-009Report Date:04/21/21

Data Qualifiers

the identification is based on a mass spectral library search.

- P The RPD between the results for the two columns exceeds the method-specified criteria.
- Q -The quality control sample exceeds the associated acceptance criteria. For DOD-related projects, LCS and/or Continuing Calibration Standard exceedences are also qualified on all associated sample results. Note: This flag is not applicable for matrix spike recoveries when the sample concentration is greater than 4x the spike added or for batch duplicate RPD when the sample concentrations are less than 5x the RL. (Metals only.)
- **R** Analytical results are from sample re-analysis.
- **RE** Analytical results are from sample re-extraction.
- S Analytical results are from modified screening analysis.

Report Format: Data Usability Report

Project Name: 74 MIDDLESEX AVENUE Lab Number: L2118775

Project Number: 134081-009 Report Date: 04/21/21

REFERENCES

- Methods for the Determination of Metals in Environmental Samples, Supplement I. EPA/600/R-94/111. May 1994.
- 19 Inductively Coupled Plasma Atomic Emission Spectrometric Method for Trace Element Analysis of Water and Wastes. Appendix C, Part 136, 40 CFR (Code of Federal Regulations). July 1, 1999 edition.
- Method 1664,Revision A: N-Hexane Extractable Material (HEM; Oil & Grease) and Silica Gel Treated N-Hexane Extractable Material (SGT-HEM; Non-polar Material) by Extraction and Gravimetry, EPA-821-R-98-002, February 1999.
- 121 Standard Methods for the Examination of Water and Wastewater. APHA-AWWA-WEF. Standard Methods Online.
- Method 608.3: Organochlorine Pesticides and PCBs by GC/HSD, EPA 821-R-16-009, December 2016.
- 128 Method 624.1: Purgeables by GC/MS, EPA 821-R-16-008, December 2016.
- Method 625.1: Base/Neutrals and Acids by GC/MS, EPA 821-R-16-007, December 2016.
- Method for the Determination of Extractable Petroleum Hydrocarbons (EPH), MassDEP, December 2019, Revision 2.1 with QC Requirements & Performance Standards for the Analysis of EPH under the Massachusetts Contingency Plan, WSC-CAM-IVB, March 1, 2020.

LIMITATION OF LIABILITIES

Alpha Analytical performs services with reasonable care and diligence normal to the analytical testing laboratory industry. In the event of an error, the sole and exclusive responsibility of Alpha Analytical shall be to re-perform the work at it's own expense. In no event shall Alpha Analytical be held liable for any incidental, consequential or special damages, including but not limited to, damages in any way connected with the use of, interpretation of, information or analysis provided by Alpha Analytical.

We strongly urge our clients to comply with EPA protocol regarding sample volume, preservation, cooling, containers, sampling procedures, holding time and splitting of samples in the field.

Alpha Analytical, Inc. Facility: Company-wide

Department: Quality Assurance

Title: Certificate/Approval Program Summary

Revision 19

Published Date: 4/2/2021 1:14:23 PM

ID No.:17873

Page 1 of 1

Certification Information

The following analytes are not included in our Primary NELAP Scope of Accreditation:

Westborough Facility

EPA 624/624.1: m/p-xylene, o-xylene, Naphthalene

EPA 625/625.1: alpha-Terpineol

EPA 8260C/8260D: NPW: 1,2,4,5-Tetramethylbenzene; 4-Ethyltoluene, Azobenzene; SCM: Iodomethane (methyl iodide), 1,2,4,5-Tetramethylbenzene;

EPA 8270D/8270E: NPW: Dimethylnaphthalene,1,4-Diphenylhydrazine, alpha-Terpineol; SCM: Dimethylnaphthalene,1,4-Diphenylhydrazine.

SM4500: NPW: Amenable Cyanide; SCM: Total Phosphorus, TKN, NO2, NO3.

Mansfield Facility

SM 2540D: TSS

EPA 8082A: NPW: PCB: 1, 5, 31, 87,101, 110, 141, 151, 153, 180, 183, 187.

EPA TO-15: Halothane, 2,4,4-Trimethyl-2-pentene, 2,4,4-Trimethyl-1-pentene, Thiophene, 2-Methylthiophene,

3-Methylthiophene, 2-Ethylthiophene, 1,2,3-Trimethylbenzene, Indan, Indene, 1,2,4,5-Tetramethylbenzene, Benzothiophene, 1-Methylnaphthalene.

Biological Tissue Matrix: EPA 3050B

The following analytes are included in our Massachusetts DEP Scope of Accreditation

Westborough Facility:

Drinking Water

EPA 300.0: Chloride, Nitrate-N, Fluoride, Sulfate; EPA 353.2: Nitrate-N, Nitrite-N; SM4500NO3-F: Nitrate-N, Nitrite-N; SM4500F-C, SM4500CN-CE,

EPA 180.1, SM2130B, SM4500CI-D, SM2320B, SM2540C, SM4500H-B, SM4500NO2-B

EPA 332: Perchlorate; EPA 524.2: THMs and VOCs; EPA 504.1: EDB, DBCP.

Microbiology: SM9215B; SM9223-P/A, SM9223B-Colilert-QT,SM9222D.

Non-Potable Water

SM4500H,B, EPA 120.1, SM2510B, SM2540C, SM2320B, SM4500CL-E, SM4500F-BC, SM4500NH3-BH: Ammonia-N and Kjeldahl-N, EPA 350.1: Ammonia-N, LACHAT 10-107-06-1-B: Ammonia-N, EPA 351.1, SM4500NO3-F, EPA 353.2: Nitrate-N, SM4500P-E, SM4500P-B, E, SM4500SO4-E, SM5220D, EPA 410.4, SM5210B, SM5310C, SM4500CL-D, EPA 1664, EPA 420.1, SM4500-CN-CE, SM2540D, EPA 300: Chloride, Sulfate, Nitrate. EPA 624.1: Volatile Halocarbons & Aromatics,

EPA 608.3: Chlordane, Toxaphene, Aldrin, alpha-BHC, beta-BHC, gamma-BHC, delta-BHC, Dieldrin, DDD, DDE, DDT, Endosulfan II, Endosulfan II, Endosulfan sulfate, Endrin, Endrin Aldehyde, Heptachlor, Heptachlor Epoxide, PCBs

EPA 625.1: SVOC (Acid/Base/Neutral Extractables), EPA 600/4-81-045: PCB-Oil.

Microbiology: SM9223B-Colilert-QT; Enterolert-QT, SM9221E, EPA 1600, EPA 1603, SM9222D.

Mansfield Facility:

Drinking Water

EPA 200.7: Al, Ba, Cd, Cr, Cu, Fe, Mn, Ni, Na, Ag, Ca, Zn. EPA 200.8: Al, Sb, As, Ba, Be, Cd, Cr, Cu, Pb, Mn, Ni, Se, Ag, TL, Zn. EPA 245.1 Hg. EPA 522, EPA 537.1.

Non-Potable Water

EPA 200.7: Al, Sb, As, Be, Cd, Ca, Cr, Co, Cu, Fe, Pb, Mg, Mn, Mo, Ni, K, Se, Ag, Na, Sr, TL, Ti, V, Zn.

EPA 200.8: Al, Sb, As, Be, Cd, Cr, Cu, Fe, Pb, Mn, Ni, K, Se, Ag, Na, TL, Zn.

EPA 245.1 Hg

SM2340B

Page 66 of 67

For a complete listing of analytes and methods, please contact your Alpha Project Manager.

Document Type: Form

ДІРНА	CHAIN OF CUSTODY	Service Centers Brewer, ME 04412 Portsmo Albany, NY 12205 Tonawanda, NY 14160 Holme	outh, NH 03801 M s, PA 19043	ahwah, NJ 07430	Page / O	e f ø /		Date	Rec Lab	ď	ul	131	21		ALPHA JOB# LZ 1 8775	5				
Westborough, MA B1581 8 Walkup Dr.	Mansfield, MA 02048 320 Forbes Blvd	Project Information					Deliv	rerable	25						Billing Information					
TEL: 508-896-9220 FAX: 508-898-9193	TEL: 508-822-9300 FAX: 508-822-3288	Project Name:	74 Middlese	ex Avenue				Ema	il			Fax	9		☐ Same as Client Info					
PAA, 300-380-9 (3)3	PAA: 300-822-3288	Project Location:	Project Location: Somerville, MA			☐ EQuIS (1 File)			☐ EQuIS (4 File)			Tile)	PO#							
H&A Information		Project # 134081-009				☐ Other:														
H&A Client: Greystar		(Use Project name as Pr	roject#)				Regulatory Requirements (Program/Criteria)						ria)	Disposal Site Information						
H&A Address: 465 Medfor	rd Street	Project Manager:	Heather Ba	llantyne/Denis	Bell		MA	MWF	A						Please identify below location of					
Boston, MA 02129		ALPHAQuote #:									1				applicable disposal facilities.					
H&A Phone: 617-886-53	365	Turn-Around Time									1				Disposal Facility:					
H&A Fax: -		Standar	(J	Due Date											Z NI D NY					
H&A Email: hballantyne	e/kingraham	Rush (only if pre approved	口	# of Days	5 Day		Note:	Select	State	from m	enu &	identify	y criteria	1	Other:					
These samples have been p	previously analyzed by	Alpha 🗆					ANA	LYSIS							Sample Filtration					
Other project specific requ 1. Total Metals - Run Cd, Cr 2. PHC, EPH carbon ranges Please specify Metals or T	, Cu, Pb, Ni, Ag, Zn, A and PAH analytes (b)	s, Se, Sb by 200.7, Hg by	245.1				VOCs (624)	TTO ABNs (625)	PCBs (608)	TTO Pesticides (608)	5. PHC (note 2)	6. pH (150.1)	Total & Dissolved Metals (note 1)	Fats, Oil, Grease (1664)	☐ Done ☐ Lab to do Preservation ☐ Lab to do	0 1 a 1 B 0 t				
ALPHA Lab ID		Collection		Sample	le Sampler's	TTO.	2, 110	3. 110	TOP	5 PH	6. p	Total	7. Tota Meta	(Please Specify below)	1					
(Lab Use Only)	Sc		Sample ID Date		Time Matrix Initials		-	100	6	4			- 8		Sample Specific Comments					
18775 -01	HA20-105(OW)_202	21-0413	21-0413	21-0413	1-0413	-0413	4/13/2021	13:45	AQ	NTL	х	х	х	х	х	х	х	X	HOLD Dissolved Metals	16
			1																	
														_						
Preservative Code: A = None	Container Code P = Plastic	Westboro Certification N	lo: MA935		Co	atolinas Tuna				+		+	-	-	Please print clearly, legibly a completely. Samples can not					
B = HCI A = Amber Glass C = HNO ₃ V = Vial D = H ₂ SO ₄ G = Glass E = NaOH B = Bacteria Cup		Mansfield: Certification No: MA015					V	A A	A A	A A	A	A	A	P	A	logged in and turnaround tim will not start until any ambigu	e clock uities			
						Preservative		н	н	н	В	A	C	В	are resolved. Alpha Analytical services under this Chain of Cu					
F = MeQH G = NaHSO ₄	C = Cube D = Other	, Relinguished By:			Date/Time F			ved B	y:			Dat	e/Time	1	shall be performed in accordant					
H = Na ₂ S ₂ O ₃	E = Encore D = BOD Bottle	111	-	4.13.21	16:15	me	16	~	Mism	MAL	4/13	101	163	S	terms and conditions within Blanket Service Agreement# 2015-18-Alpha					
K/E = Zri Ac/NaOH O = Other	D - BOD BOTTLE	/ resp	1	4/13/21	1804	1804		Lax			113121 1804				Analytical by and between Haley & Aldrich, Inc., its subsidiaries and affiliates and Alpha Analytical.					
Document ID: 20455 Rev 1 (1/2)	8/2016)																			

ANALYTICAL REPORT

Lab Number: L2120709

Client: Haley & Aldrich, Inc.

465 Medford Street, Suite 2200 Charlestown, MA 02129-1400

ATTN: Heather Ballantyne Phone: (617) 886-3061

Project Name: 74 MIDDLESEX AVENUE

Project Number: 134081-009

Report Date: 05/05/21

The original project report/data package is held by Alpha Analytical. This report/data package is paginated and should be reproduced only in its entirety. Alpha Analytical holds no responsibility for results and/or data that are not consistent with the original.

Certifications & Approvals: MA (M-MA086), NH NELAP (2064), CT (PH-0574), IL (200077), ME (MA00086), MD (348), NJ (MA935), NY (11148), NC (25700/666), PA (68-03671), RI (LAO00065), TX (T104704476), VT (VT-0935), VA (460195), USDA (Permit #P330-17-00196).

Eight Walkup Drive, Westborough, MA 01581-1019 508-898-9220 (Fax) 508-898-9193 800-624-9220 - www.alphalab.com

Project Name: 74 MIDDLESEX AVENUE

Project Number: 134081-009

Lab Number: L2120709 **Report Date:** 05/05/21

Alpha Sample ID	Client ID	Matrix	Sample Location	Collection Date/Time	Receive Date
L2120709-01	HA20-105(OW)_2021-0422	WATER	SOMERVILLE, MA	04/22/21 10:40	04/22/21
L 2120709-02	MYSTIC-1 2021-0422	WATER	SOMERVILLE. MA	04/22/21 12:40	04/22/21

L2120709

Project Name: 74 MIDDLESEX AVENUE Lab Number:

Case Narrative

The samples were received in accordance with the Chain of Custody and no significant deviations were encountered during the preparation or analysis unless otherwise noted. Sample Receipt, Container Information, and the Chain of Custody are located at the back of the report.

Results contained within this report relate only to the samples submitted under this Alpha Lab Number and meet NELAP requirements for all NELAP accredited parameters unless otherwise noted in the following narrative. The data presented in this report is organized by parameter (i.e. VOC, SVOC, etc.). Sample specific Quality Control data (i.e. Surrogate Spike Recovery) is reported at the end of the target analyte list for each individual sample, followed by the Laboratory Batch Quality Control at the end of each parameter. Tentatively Identified Compounds (TICs), if requested, are reported for compounds identified to be present and are not part of the method/program Target Compound List, even if only a subset of the TCL are being reported. If a sample was re-analyzed or re-extracted due to a required quality control corrective action and if both sets of data are reported, the Laboratory ID of the re-analysis or re-extraction is designated with an "R" or "RE", respectively.

When multiple Batch Quality Control elements are reported (e.g. more than one LCS), the associated samples for each element are noted in the grey shaded header line of each data table. Any Laboratory Batch, Sample Specific % recovery or RPD value that is outside the listed Acceptance Criteria is bolded in the report. In reference to questions H (CAM) or 4 (RCP) when "NO" is checked, the performance criteria for CAM and RCP methods allow for some quality control failures to occur and still be within method compliance. In these instances, the specific failure is not narrated but noted in the associated QC Outlier Summary Report, located directly after the Case Narrative. QC information is also incorporated in the Data Usability Assessment table (Format 11) of our Data Merger tool, where it can be reviewed in conjunction with the sample result, associated regulatory criteria and any associated data usability implications.

Soil/sediments, solids and tissues are reported on a dry weight basis unless otherwise noted. Definitions of all data qualifiers and acronyms used in this report are provided in the Glossary located at the back of the report.

HOLD POLICY - For samples submitted on hold, Alpha's policy is to hold samples (with the exception of Air canisters) free of charge for 21 calendar days from the date the project is completed. After 21 calendar days, we will dispose of all samples submitted including those put on hold unless you have contacted your Alpha Project Manager and made arrangements for Alpha to continue to hold the samples. Air canisters will be disposed after 3 business days from the date the project is completed.

r lease contact i roject Management at 000-024-0220 With any questions.								

Places contact Project Management at 800 624 0220 with any questions

Serial_No:05052112:55

Project Name: 74 MIDDLESEX AVENUE Lab Number: L2120709

Project Number: 134081-009 **Report Date:** 05/05/21

Case Narrative (continued)

Report Submission

May 05, 2021: This final report includes the results of all requested analyses.

April 29, 2021: This is a preliminary report.

The analysis of Ethanol was subcontracted. A copy of the laboratory report is included as an addendum.

Please note: This data is only available in PDF format and is not available on Data Merger.

Sample Receipt

The analyses performed were specified by the client.

L2120709-01: The sample was received above the appropriate pH for the Ammonia Nitrogen - SM 4500 analysis. The laboratory added additional H2SO4 to a pH <2.

Total Metals

L2120709-01 and -02: The sample has elevated detection limits for all elements analyzed by Method 200.8 due to the dilution required by the high concentrations of target and non-target elements.

I, the undersigned, attest under the pains and penalties of perjury that, to the best of my knowledge and belief and based upon my personal inquiry of those responsible for providing the information contained in this analytical report, such information is accurate and complete. This certificate of analysis is not complete unless this page accompanies any and all pages of this report.

Jufani Morrissey-Tiffani Morrissey

Authorized Signature:

Title: Technical Director/Representative

ДІРНА

Date: 05/05/21

ORGANICS

VOLATILES

Serial_No:05052112:55

L2120709

04/22/21 10:40

Dilution Factor

04/22/21

None

Project Name: 74 MIDDLESEX AVENUE

Project Number: 134081-009

SAMPLE RESULTS

Report Date: 05/05/21

Lab Number:

Date Collected:

Date Received:

Field Prep:

RL

MDL

Result

Lab ID: L2120709-01

Client ID: HA20-105(OW)_2021-0422

Sample Location: SOMERVILLE, MA

Sample Depth:

Parameter

Matrix: Water Analytical Method: 128,624.1 Analytical Date: 04/24/21 10:04

Analyst: MKS

ND ND ND	ug/l	1.0		1	
ND		1.0		1	
	ug/l			1	
ND	ug/i	1.5		1	
110	ug/l	1.0		1	
ND	ug/l	1.5		1	
ND	ug/l	1.0		1	
ND	ug/l	1.5		1	
ND	ug/l	2.0		1	
ND	ug/l	1.0		1	
ND	ug/l	1.0		1	
ND	ug/l	1.0		1	
ND	ug/l	1.0		1	
ND	ug/l	1.0		1	
2.0	ug/l	1.0		1	
ND	ug/l	1.0		1	
ND	ug/l	5.0		1	
ND	ug/l	5.0		1	
ND	ug/l	5.0		1	
ND	ug/l	2.0		1	
ND	ug/l	1.0		1	
ND	ug/l	1.0		1	
ND	ug/l	10		1	
	ND N	ND	ND	ND	ND ug/l 1.0 1 ND ug/l 1.5 1 ND ug/l 1.5 1 ND ug/l 1.5 1 ND ug/l 2.0 1 ND ug/l 1.0 1 ND ug/l 5.0 1

Qualifier

Units

Surrogate	% Recovery	Qualifier	Acceptance Criteria	
Pentafluorobenzene	104		60-140	
Fluorobenzene	98		60-140	
4-Bromofluorobenzene	92		60-140	

Project Name: 74 MIDDLESEX AVENUE Lab Number: L2120709

Project Number: 134081-009 **Report Date:** 05/05/21

SAMPLE RESULTS

Lab ID: L2120709-01 Date Collected: 04/22/21 10:40

Client ID: HA20-105(OW)_2021-0422 Date Received: 04/22/21 Sample Location: SOMERVILLE, MA Field Prep: None

Sample Depth:

Matrix: Water Extraction Method: EPA 504.1
Analytical Method: 14,504.1 Extraction Date: 04/26/21 14:00

Analytical Date: 04/26/21 16:21
Analyst: AMM

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	Column
Microextractables by GC - Westborough Lab							
1,2-Dibromoethane	ND		ug/l	0.010		1	А

L2120709

Project Name: 74 MIDDLESEX AVENUE Lab Number:

Project Number: 134081-009 **Report Date:** 05/05/21

Method Blank Analysis Batch Quality Control

Analytical Method: 128,624.1 Analytical Date: 04/24/21 08:49

Analyst: GT

Parameter	Result	Qualifier Units	RL	MDL
Volatile Organics by GC/MS - Wes	tborough Lab	for sample(s): 01	Batch:	WG1490307-10
Methylene chloride	ND	ug/l	1.0	
1,1-Dichloroethane	ND	ug/l	1.5	
Carbon tetrachloride	ND	ug/l	1.0	
1,1,2-Trichloroethane	ND	ug/l	1.5	
Tetrachloroethene	ND	ug/l	1.0	
1,2-Dichloroethane	ND	ug/l	1.5	
1,1,1-Trichloroethane	ND	ug/l	2.0	
Benzene	ND	ug/l	1.0	
Toluene	ND	ug/l	1.0	
Ethylbenzene	ND	ug/l	1.0	
Vinyl chloride	ND	ug/l	1.0	
1,1-Dichloroethene	ND	ug/l	1.0	
cis-1,2-Dichloroethene	ND	ug/l	1.0	
Trichloroethene	ND	ug/l	1.0	
1,2-Dichlorobenzene	ND	ug/l	5.0	
1,3-Dichlorobenzene	ND	ug/l	5.0	
1,4-Dichlorobenzene	ND	ug/l	5.0	
p/m-Xylene	ND	ug/l	2.0	
o-xylene	ND	ug/l	1.0	
Xylenes, Total	ND	ug/l	1.0	
Acetone	ND	ug/l	10	
Methyl tert butyl ether	ND	ug/l	10	
Tert-Butyl Alcohol	ND	ug/l	100	
Tertiary-Amyl Methyl Ether	ND	ug/l	20	

Project Name: 74 MIDDLESEX AVENUE Lab Number: L2120709

Project Number: 134081-009 **Report Date:** 05/05/21

Method Blank Analysis
Batch Quality Control

Analytical Method: 128,624.1 Analytical Date: 04/24/21 08:49

Analyst: GT

Parameter Result Qualifier Units RL MDL

Volatile Organics by GC/MS - Westborough Lab for sample(s): 01 Batch: WG1490307-10

		Acceptance			
Surrogate	%Recovery Qualific	er Criteria			
Pentafluorobenzene	103	60-140			
Fluorobenzene	92	60-140			
4-Bromofluorobenzene	92	60-140			

Project Name: Lab Number: 74 MIDDLESEX AVENUE L2120709

Project Number: Report Date: 134081-009 05/05/21

Method Blank Analysis Batch Quality Control

Analytical Method: 14,504.1 Extraction Method: EPA 504.1

Analytical Date: 04/26/21 15:13 04/26/21 14:00 Extraction Date:

Analyst: AMM

Parameter	Result	Qualifier	Units	RL	. MD	L
Microextractables by GC - Westbord	ough Lab for	sample(s)	: 01	Batch: V	VG1490827-1	1
1,2-Dibromoethane	ND		ug/l	0.01	0	. А

Project Name: 74 MIDDLESEX AVENUE

Project Number: 134081-009

Lab Number: L2120709

Parameter	LCS %Recovery	Qual	LCSD %Recovery	Qual	%Recovery Limits	RPD	RPD Qual Limits	
Volatile Organics by GC/MS - Westborough L	.ab Associated	sample(s): 01	Batch: WG1	490307-9				
Methylene chloride	85		-		60-140	-	28	
1,1-Dichloroethane	90		-		50-150	-	49	
Carbon tetrachloride	85		-		70-130	-	41	
1,1,2-Trichloroethane	105		-		70-130	-	45	
Tetrachloroethene	105		-		70-130	-	39	
1,2-Dichloroethane	95		-		70-130	-	49	
1,1,1-Trichloroethane	90		-		70-130	-	36	
Benzene	90		-		65-135	-	61	
Toluene	110		-		70-130	-	41	
Ethylbenzene	100		-		60-140	-	63	
Vinyl chloride	75		-		5-195	-	66	
1,1-Dichloroethene	85		-		50-150	-	32	
cis-1,2-Dichloroethene	95		-		60-140	-	30	
Trichloroethene	85		-		65-135	-	48	
1,2-Dichlorobenzene	100		-		65-135	-	57	
1,3-Dichlorobenzene	95		-		70-130	-	43	
1,4-Dichlorobenzene	95		-		65-135	-	57	
p/m-Xylene	92		-		60-140	-	30	
o-xylene	90		-		60-140	-	30	
Acetone	124		-		40-160	-	30	
Methyl tert butyl ether	80		-		60-140	-	30	
Tert-Butyl Alcohol	120		-		60-140	-	30	
Tertiary-Amyl Methyl Ether	75		-		60-140	-	30	

Project Name: 74 MIDDLESEX AVENUE

Lab Number:

L2120709

Project Number: 134081-009

Report Date:

05/05/21

	LCS		LCSD		%Recovery			RPD
Parameter	%Recovery	Qual	%Recovery	Qual	Limits	RPD	Qual	Limits

Volatile Organics by GC/MS - Westborough Lab Associated sample(s): 01 Batch: WG1490307-9

Surrogate	LCS %Recovery Qual	LCSD %Recovery	Qual	Acceptance Criteria
Pentafluorobenzene	108			60-140
Fluorobenzene	94			60-140
4-Bromofluorobenzene	93			60-140

Project Name: 74 MIDDLESEX AVENUE

Lab Number:

L2120709

Project Number: 134081-009

Report Date:

05/05/21

Parameter	LCS %Recovery	Qual	LCSD %Recovery	Qual	%Recovery Limits	RPD	Qual	RPD Limits	Column
Microextractables by GC - Westborough Lab	Associated sam	ple(s): 01	Batch: WG1490)827-2					
1,2-Dibromoethane	99		-		80-120	-			А

Matrix Spike Analysis Batch Quality Control

Project Name: 74 MIDDLESEX AVENUE

Project Number: 134081-009

Lab Number: L2120709

Parameter	Native Sample	MS Added	MS Found %	MS Recovery	Qual	MSD Found	MSD %Recovery	Qual	Recovery Limits	RPD	Qual	RPD Limits	<u>Colum</u> n
Microextractables by GC	- Westborough Lab	Associat	ted sample(s): 01	QC Batch	ID: WG14	490827-3	QC Sample:	L212021	5-01 Clie	nt ID: N	MS Sam	ple	
1,2-Dibromoethane	ND	0.25	0.216	86		-	-		80-120	-		20	Α
1,2-Dibromo-3-chloropropane	ND	0.25	0.257	103		-	-		80-120	-		20	Α
1,2,3-Trichloropropane	ND	0.25	0.295	118		-	-		80-120	-		20	Α

SEMIVOLATILES

Project Name: 74 MIDDLESEX AVENUE Lab Number: L2120709

Project Number: 134081-009 **Report Date:** 05/05/21

SAMPLE RESULTS

Lab ID: L2120709-01 Date Collected: 04/22/21 10:40

Client ID: HA20-105(OW)_2021-0422 Date Received: 04/22/21 Sample Location: SOMERVILLE, MA Field Prep: None

Sample Depth:

Matrix: Water Extraction Method: EPA 625.1

Analytical Method: 129,625.1-SIM Extraction Date: 04/26/21 00:38
Analytical Date: 04/27/21 16:02

Analyst: DV

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	
Semivolatile Organics by GC/MS-	SIM - Westborough La	ab					
Acenaphthene	ND		ug/l	0.100		1	
Fluoranthene	ND		ug/l	0.100		1	
Naphthalene	ND		ug/l	0.100		1	
Benzo(a)anthracene	ND		ug/l	0.100		1	
Benzo(a)pyrene	ND		ug/l	0.100		1	
Benzo(b)fluoranthene	ND		ug/l	0.100		1	
Benzo(k)fluoranthene	ND		ug/l	0.100		1	
Chrysene	ND		ug/l	0.100		1	
Acenaphthylene	ND		ug/l	0.100		1	
Anthracene	ND		ug/l	0.100		1	
Benzo(ghi)perylene	ND		ug/l	0.100		1	
Fluorene	ND		ug/l	0.100		1	
Phenanthrene	ND		ug/l	0.100		1	
Dibenzo(a,h)anthracene	ND		ug/l	0.100		1	
Indeno(1,2,3-cd)pyrene	ND		ug/l	0.100		1	
Pyrene	ND		ug/l	0.100		1	
Pentachlorophenol	ND		ug/l	1.00		1	

Surrogate	% Recovery	Acceptance Qualifier Criteria
2-Fluorophenol	50	25-87
Phenol-d6	35	16-65
Nitrobenzene-d5	95	42-122
2-Fluorobiphenyl	87	46-121
2,4,6-Tribromophenol	100	45-128
4-Terphenyl-d14	87	47-138

Project Name: 74 MIDDLESEX AVENUE

Project Number: 134081-009

Lab Number:

L2120709

Report Date: 05/05/21

Method Blank Analysis
Batch Quality Control

Analytical Method: 129,625.1-S Analytical Date: 04/26/21 16

Pentachlorophenol

Analyst:

RP

129,625.1-SIM Extraction Method: EPA 625.1 04/26/21 16:15 Extraction Date: 04/26/21 00:38

Qualifier RL MDL **Parameter** Result Units Semivolatile Organics by GC/MS-SIM - Westborough Lab for sample(s): 01 Batch: WG1490539-1 Acenaphthene ND ug/l 0.100 Fluoranthene ND ug/l 0.100 ND 0.100 Naphthalene ug/l Benzo(a)anthracene ND ug/l 0.100 ND 0.100 Benzo(a)pyrene ug/l Benzo(b)fluoranthene ND 0.100 ug/l Benzo(k)fluoranthene ND ug/l 0.100 Chrysene ND ug/l 0.100 Acenaphthylene ND ug/l 0.100 --Anthracene ND 0.100 ug/l Benzo(ghi)perylene 0.100 ND ug/l Fluorene ND ug/l 0.100 Phenanthrene ND ug/l 0.100 --Dibenzo(a,h)anthracene ND ug/l 0.100 Indeno(1,2,3-cd)pyrene ND ug/l 0.100 Pyrene ND ug/l 0.100 --

1.00

--

ug/l

Surrogate	%Recovery Qu	Acceptance alifier Criteria
2-Fluorophenol	42	25-87
Phenol-d6	29	16-65
Nitrobenzene-d5	74	42-122
2-Fluorobiphenyl	76	46-121
2,4,6-Tribromophenol	91	45-128
4-Terphenyl-d14	68	47-138

ND

Project Name: 74 MIDDLESEX AVENUE

Project Number: 134081-009

Lab Number: L2120709

Parameter	LCS %Recovery	Qual	LCSD %Recovery	Qual	%Recovery Limits	RPD	Qual	RPD Limits	
Semivolatile Organics by GC/MS-SIM - West	oorough Lab As	sociated sar	nple(s): 01 Bate	ch: WG14	90539-3				
Acenaphthene	85		-		60-132	-		30	
Fluoranthene	93		-		43-121	-		30	
Naphthalene	81		-		36-120	-		30	
Benzo(a)anthracene	95		-		42-133	-		30	
Benzo(a)pyrene	101		-		32-148	-		30	
Benzo(b)fluoranthene	98		-		42-140	-		30	
Benzo(k)fluoranthene	94		-		25-146	-		30	
Chrysene	93		-		44-140	-		30	
Acenaphthylene	91		-		54-126	-		30	
Anthracene	91		-		43-120	-		30	
Benzo(ghi)perylene	98		-		1-195	-		30	
Fluorene	86		-		70-120	-		30	
Phenanthrene	87		-		65-120	-		30	
Dibenzo(a,h)anthracene	101		-		1-200	-		30	
Indeno(1,2,3-cd)pyrene	106		-		1-151	-		30	
Pyrene	93		-		70-120	-		30	
Pentachlorophenol	111		-		38-152	-		30	

Project Name: 74 MIDDLESEX AVENUE

Lab Number: L2120709

Project Number: 134081-009

Report Date: 05/05/21

	LCS		LCSD		%Recovery			RPD
Parameter	%Recovery	Qual	%Recovery	Qual	Limits	RPD	Qual	Limits

Semivolatile Organics by GC/MS-SIM - Westborough Lab Associated sample(s): 01 Batch: WG1490539-3

Surrogate	LCS %Recovery Qual	LCSD %Recovery Qual	Acceptance Criteria
2-Fluorophenol	52		25-87
Phenol-d6	36		16-65
Nitrobenzene-d5	93		42-122
2-Fluorobiphenyl	82		46-121
2,4,6-Tribromophenol	112		45-128
4-Terphenyl-d14	77		47-138

METALS

04/22/21 10:40

Date Collected:

Project Name:74 MIDDLESEX AVENUELab Number:L2120709Project Number:134081-009Report Date:05/05/21

SAMPLE RESULTS

Lab ID: L2120709-01

Client ID: HA20-105(OW)_2021-0422 Date Received: 04/22/21 Sample Location: SOMERVILLE, MA Field Prep: None

Sample Depth:

Matrix: Water

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	Date Prepared	Date Analyzed	Prep Method	Analytical Method	Analyst
Total Metals - Manst	field Lab										
Chromium, Total	ND		mg/l	0.00500		5	04/27/21 09:20	04/27/21 19:37	EPA 3005A	3,200.8	CD
Total Hardness by S	M 2340B	- Mansfield	l Lab								
Hardness	284		mg/l	0.660	NA	1	04/27/21 09:20	04/30/21 14:13	EPA 3005A	19,200.7	SV
General Chemistry -	Mansfield	l Lab									
Chromium, Trivalent	ND		mg/l	0.010		1		04/27/21 19:37	NA	107,-	

Date Collected:

Project Name: Lab Number: 74 MIDDLESEX AVENUE L2120709 **Project Number: Report Date:** 134081-009 05/05/21

SAMPLE RESULTS

Lab ID: L2120709-02

04/22/21 12:40 Client ID: MYSTIC-1_2021-0422 Date Received: 04/22/21 Sample Location: Field Prep: Refer to COC SOMERVILLE, MA

Sample Depth:

Matrix: Water

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	Date Prepared	Date Analyzed	Prep Method	Analytical Method	Analyst
Total Metals - Mans	field Lab										
Antimony, Total	ND		mg/l	0.02000		5	04/27/21 09:20	04/27/21 21:58	EPA 3005A	3,200.8	CD
Arsenic, Total	ND		mg/l	0.00500		5	04/27/21 09:20	04/27/21 21:58	EPA 3005A	3,200.8	CD
Cadmium, Total	ND		mg/l	0.00100		5	04/27/21 09:20	04/27/21 21:58	EPA 3005A	3,200.8	CD
Chromium, Total	ND		mg/l	0.00500		5	04/27/21 09:20	04/27/21 21:58	EPA 3005A	3,200.8	CD
Copper, Total	ND		mg/l	0.00500		5	04/27/21 09:20	04/27/21 21:58	EPA 3005A	3,200.8	CD
Iron, Total	0.442		mg/l	0.050		1	04/27/21 09:20	04/27/21 13:13	EPA 3005A	19,200.7	GD
Lead, Total	ND		mg/l	0.00500		5	04/27/21 09:20	04/27/21 21:58	EPA 3005A	3,200.8	CD
Mercury, Total	ND		mg/l	0.00020		1	04/27/21 09:25	04/27/21 20:12	EPA 245.1	3,245.1	OU
Nickel, Total	ND		mg/l	0.01000		5	04/27/21 09:20	04/27/21 21:58	EPA 3005A	3,200.8	CD
Selenium, Total	ND		mg/l	0.02500		5	04/27/21 09:20	04/27/21 21:58	EPA 3005A	3,200.8	CD
Silver, Total	ND		mg/l	0.00200		5	04/27/21 09:20	04/27/21 21:58	EPA 3005A	3,200.8	CD
Zinc, Total	ND		mg/l	0.05000		5	04/27/21 09:20	04/27/21 21:58	EPA 3005A	3,200.8	CD
Total Hardness by S	SM 2340B	- Mansfield	d Lab								
Hardness	1650		mg/l	0.660	NA	1	04/27/21 09:20	04/27/21 13:13	EPA 3005A	19,200.7	GD
			-								

Project Name: 74 MIDDLESEX AVENUE

Project Number: 134081-009

Lab Number:

L2120709

Report Date:

05/05/21

Method Blank Analysis Batch Quality Control

Parameter	Result Qualifier	Units	RL	MDL	Dilution Factor	Date Prepared	Date Analyzed	Analytical Method	Analyst
Total Metals - Mans	sfield Lab for sample(s):	01-02 E	Batch: W0	314900	03-1				
Antimony, Total	ND	mg/l	0.00400		1	04/27/21 09:20	04/27/21 18:56	3,200.8	CD
Arsenic, Total	ND	mg/l	0.00100		1	04/27/21 09:20	04/27/21 18:56	3,200.8	CD
Cadmium, Total	ND	mg/l	0.00020		1	04/27/21 09:20	04/27/21 18:56	3,200.8	CD
Chromium, Total	ND	mg/l	0.00100		1	04/27/21 09:20	04/27/21 18:56	3,200.8	CD
Copper, Total	ND	mg/l	0.00100		1	04/27/21 09:20	04/27/21 18:56	3,200.8	CD
Lead, Total	ND	mg/l	0.00100		1	04/27/21 09:20	04/27/21 18:56	3,200.8	CD
Nickel, Total	ND	mg/l	0.00200		1	04/27/21 09:20	04/27/21 18:56	3,200.8	CD
Selenium, Total	ND	mg/l	0.00500		1	04/27/21 09:20	04/27/21 18:56	3,200.8	CD
Silver, Total	ND	mg/l	0.00040		1	04/27/21 09:20	04/27/21 18:56	3,200.8	CD
Zinc, Total	ND	mg/l	0.01000		1	04/27/21 09:20	04/27/21 18:56	3,200.8	CD

Prep Information

Digestion Method: EPA 3005A

Parameter	Result Qualifier	Units	RL	MDL	Dilution Factor	Date Prepared		Analytical Method	
Total Metals - Mansfield	d Lab for sample(s):	01-02 E	Batch: Wo	G14900	08-1				
Iron, Total	ND	mg/l	0.050		1	04/27/21 09:20	04/27/21 12:48	19,200.7	GD

Prep Information

Digestion Method: EPA 3005A

Parameter	Result Qualifier	Units	RL	MDL	Dilution Factor	Date Prepared	Date Analyzed	Analytical Method	
Total Hardness by SM	2340B - Mansfield Lab	o for sam	nple(s):	01-02 l	Batch: WG	1490008-1			
Hardness	ND	mg/l	0.660	NA	1	04/27/21 09:20	04/27/21 12:48	19,200.7	GD

Prep Information

Digestion Method: EPA 3005A

Project Name: 74 MIDDLESEX AVENUE

Lab Number:

L2120709

Project Number: 134081-009

Report Date:

05/05/21

Method Blank Analysis Batch Quality Control

Parameter	Result Qualifier	Units	RL	MDL	Dilution Factor	Date Prepared	Date Analyzed	Analytica Method	
Total Metals - Mansfield	Lab for sample(s):	02 Batc	h: WG14	90011-	1				
Mercury, Total	ND	mg/l	0.00020		1	04/27/21 09:25	04/27/21 18:56	3,245.1	OU

Prep Information

Digestion Method: EPA 245.1

Project Name: 74 MIDDLESEX AVENUE

Project Number: 134081-009

Lab Number: L2120709

Parameter	LCS %Recovery	Qual 9	LCSD %Recovery	Qual	%Recovery Limits	RPD	Qual	RPD Limits
Total Metals - Mansfield Lab Associated sample	e(s): 01-02 Bato	ch: WG14900	03-2					
Antimony, Total	91		-		85-115	-		
Arsenic, Total	104		-		85-115	-		
Cadmium, Total	104		-		85-115	-		
Chromium, Total	103		-		85-115	-		
Copper, Total	102		-		85-115	-		
Lead, Total	103		-		85-115	-		
Nickel, Total	96		-		85-115	-		
Selenium, Total	102		-		85-115	-		
Silver, Total	100		-		85-115	-		
Zinc, Total	108		-		85-115	-		
Total Metals - Mansfield Lab Associated sample	e(s): 01-02 Bato	ch: WG14900	08-2					
Iron, Total	94		-		85-115	-		
Total Hardness by SM 2340B - Mansfield Lab A	ssociated sample	e(s): 01-02	Batch: WG149	0008-2				
Hardness	100		-		85-115	-		
Total Metals - Mansfield Lab Associated sample	e(s): 02 Batch: '	WG1490011-:	2					
Mercury, Total	95		-		85-115	-		

Matrix Spike Analysis Batch Quality Control

Project Name: 74 MIDDLESEX AVENUE

Project Number: 134081-009

Lab Number: L2120709

arameter	Native Sample	MS Added	MS Found	MS %Recovery	Qual	MSD Found	MSD %Recovery Qu	Recovery al Limits	RPD Qua	RPD Limits
Total Metals - Mansfield	Lab Associated sar	nple(s): 01-02	QC Bat	ch ID: WG149	0003-3	QC Sam	ple: L2120709-02	Client ID: MY	STIC-1_202	1-0422
Antimony, Total	ND	0.5	0.5466	109		-	-	70-130	-	20
Arsenic, Total	ND	0.12	0.1215	101		-	-	70-130	-	20
Cadmium, Total	ND	0.051	0.05237	103		-	-	70-130	-	20
Chromium, Total	ND	0.2	0.1832	92		-	-	70-130	-	20
Copper, Total	ND	0.25	0.2555	102		-	-	70-130	-	20
Lead, Total	ND	0.51	0.5730	112		-	-	70-130	-	20
Nickel, Total	ND	0.5	0.4866	97		-	-	70-130	-	20
Selenium, Total	ND	0.12	0.09134	76		-	-	70-130	-	20
Silver, Total	ND	0.05	0.04425	88		-	-	70-130	-	20
Zinc, Total	ND	0.5	0.5008	100		-	-	70-130	-	20
otal Metals - Mansfield	Lab Associated sar	nple(s): 01-02	QC Bat	ch ID: WG149	0008-3	QC Sam	ple: L2120709-02	Client ID: MY	STIC-1_202	1-0422
Iron, Total	0.442	1	1.36	92		-	-	75-125	-	20
otal Hardness by SM 23 _2021-0422	340B - Mansfield La	b Associated	sample(s)): 01-02 QC E	Batch ID	: WG1490	008-3 QC Sampl	e: L2120709-02	2 Client ID	: MYSTIC
Hardness	1650	66.2	1720	106		-	-	75-125	-	20
otal Metals - Mansfield	Lab Associated sar	nple(s): 01-02	QC Bat	ch ID: WG149	0008-7	QC Sam	ple: L2120724-01	Client ID: MS	Sample	
Iron, Total	2.95	1	3.92	97		-	-	75-125	-	20
otal Hardness by SM 2	340B - Mansfield La	b Associated	sample(s)	: 01-02 QC E	Batch ID	: WG1490	008-7 QC Sampl	e: L2120724-01	1 Client ID	: MS Sam
Hardness	237	66.2	303	100		_	-	75-125	_	20

Matrix Spike Analysis Batch Quality Control

Project Name: 74 MIDDLESEX AVENUE

Project Number:

134081-009

Lab Number: L2120709

Parameter	Native Sample	MS Added	MS Found	MS %Recovery	MSD Found	MSD %Recovery	Recovery Limits	RPD	RPD Limits
Total Metals - Mansfield Lab	Associated sam	ple(s): 02	QC Batch	ID: WG1490011-3	QC Sample	: L2120441-01	Client ID: MS Sa	ample	
Mercury, Total	ND	0.005	0.00468	94	-	-	70-130	-	20
Total Metals - Mansfield Lab	Associated sam	ple(s): 02	QC Batch	ID: WG1490011-5	QC Sample	: L2120447-01	Client ID: MS Sa	ample	
Mercury, Total	ND	0.005	0.00494	99	-	-	70-130	-	20

Lab Duplicate Analysis Batch Quality Control

Lab Number:

L2120709

Report Date:

05/05/21

arameter	Native Sample	Duplicate Sample	Units	RPD	Qual	RPD Limits
otal Metals - Mansfield Lab Associated sample(s): 01	-02 QC Batch ID: WG	1490003-4 QC Sample:	L2120709-02	Client ID:	MYSTIC-1_	2021-0422
Antimony, Total	ND	ND	mg/l	NC		20
Arsenic, Total	ND	ND	mg/l	NC		20
Cadmium, Total	ND	ND	mg/l	NC		20
Chromium, Total	ND	ND	mg/l	NC		20
Copper, Total	ND	ND	mg/l	NC		20
Lead, Total	ND	ND	mg/l	NC		20
Nickel, Total	ND	ND	mg/l	NC		20
Selenium, Total	ND	ND	mg/l	NC		20
Silver, Total	ND	ND	mg/l	NC		20
Zinc, Total	ND	ND	mg/l	NC		20
otal Metals - Mansfield Lab Associated sample(s): 01	-02 QC Batch ID: WG	1490008-4 QC Sample:	L2120709-02	Client ID:	MYSTIC-1_	2021-0422
Iron, Total	0.442	0.448	mg/l	1		20
otal Hardness by SM 2340B - Mansfield Lab Associat _2021-0422	ed sample(s): 01-02 C	QC Batch ID: WG1490008	-4 QC Samp	le: L2120	709-02 Clier	t ID: MYSTIC
Hardness	1650	1680	mg/l	2		20
otal Metals - Mansfield Lab Associated sample(s): 01	-02 QC Batch ID: WG	1490008-8 QC Sample:	L2120724-01	Client ID:	DUP Samp	le
Iron, Total	2.95	2.97	mg/l	1		20
otal Metals - Mansfield Lab Associated sample(s): 02	QC Batch ID: WG149	90011-4 QC Sample: L2	120441-01 Cli	ient ID: DI	UP Sample	
Mercury, Total	ND	ND	mg/l	NC		20

Project Name:

Project Number: 134081-009

74 MIDDLESEX AVENUE

Lab Duplicate Analysis

Batch Quality Control

Lab Number:

L2120709

Project Number: 134081-009

74 MIDDLESEX AVENUE

Project Name:

Report Date:

05/05/21

Parameter	Native Sample	Duplicate Sample	Units	RPD	RPD Limits
Total Metals - Mansfield Lab Associated sample(s): 02	QC Batch ID: WG14900	011-6 QC Sample:	L2120447-01	Client ID: DUP	Sample
Mercury, Total	ND	ND	mg/l	NC	20

INORGANICS & MISCELLANEOUS

Project Name: 74 MIDDLESEX AVENUE

Project Number: 134081-009

Lab Number:

Date Collected:

L2120709

Report Date: 05/

05/05/21

04/22/21 10:40

SAMPLE RESULTS

Lab ID: L2120709-01

Client ID: HA20-105(OW)_2021-0422

Sample Location: SOMERVILLE, MA

Date Received: 04/22/21

Field Prep: None

Sample Depth:

Matrix: Water

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	Date Prepared	Date Analyzed	Analytical Method	Analyst
General Chemistry - We	stborough La	b								
Solids, Total Suspended	26.		mg/l	5.0	NA	1	-	04/27/21 08:50	121,2540D	AC
Cyanide, Total	ND		mg/l	0.005		1	04/26/21 09:55	04/26/21 12:48	121,4500CN-CE	CR
Chlorine, Total Residual	ND		mg/l	0.02		1	-	04/23/21 08:24	121,4500CL-D	MR
Nitrogen, Ammonia	1.08		mg/l	0.075		1	04/27/21 10:00	04/28/21 14:00	121,4500NH3-BH	H JO
TPH, SGT-HEM	4.52		mg/l	4.00		1	04/27/21 18:00	04/27/21 18:45	74,1664A	TL
Phenolics, Total	ND		mg/l	0.030		1	04/26/21 06:57	04/26/21 11:34	4,420.1	KP
Chromium, Hexavalent	ND		mg/l	0.010		1	04/23/21 06:30	04/23/21 06:52	1,7196A	AW
Anions by Ion Chromato	graphy - Wes	tborough	Lab							
Chloride	353.		mg/l	12.5		25	-	04/25/21 17:01	44,300.0	SH

Project Name: 74 MIDDLESEX AVENUE Lab Number: L2120709

SAMPLE RESULTS

Lab ID: L2120709-02 Date Collected: 04/22/21 12:40

Client ID: MYSTIC-1_2021-0422 Date Received: 04/22/21 Sample Location: SOMERVILLE, MA Field Prep: Refer to COC

Sample Depth:

Matrix: Water

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	Date Prepared	Date Analyzed	Analytical Method	Analyst
General Chemistry - We	estborough Lab)								
Nitrogen, Ammonia	0.228		mg/l	0.075		1	04/27/21 10:00	04/28/21 14:01	121,4500NH3-BH	H JO

Project Name: 74 MIDDLESEX AVENUE

Project Number: 134081-009

Lab Number:

L2120709

Report Date: 05/05/21

Method Blank Analysis Batch Quality Control

Parameter	Result Qua	lifier Units	RL	MDL	Dilution Factor	Date Prepared	Date Analyzed	Analytical Method	Analyst
General Chemistry -	Westborough Lab fo	or sample(s): 0)1 Batch:	WG1	489700-1				
Chlorine, Total Residual	ND	mg/l	0.02		1	-	04/23/21 08:24	121,4500CL-D	MR
General Chemistry -	Westborough Lab fo	or sample(s): 0)1 Batch:	WG1	489765-1				
Chromium, Hexavalent	ND	mg/l	0.010		1	04/23/21 06:30	04/23/21 06:50	1,7196A	AW
Anions by Ion Chron	natography - Westbor	ough Lab for s	sample(s):	01 E	Batch: WG1	490522-1			
Chloride	ND	mg/l	0.500		1	-	04/25/21 13:01	44,300.0	SH
General Chemistry -	Westborough Lab fo	or sample(s): 0)1 Batch:	WG1	490596-1				
Phenolics, Total	ND	mg/l	0.030		1	04/26/21 06:57	04/26/21 11:27	4,420.1	KP
General Chemistry -	Westborough Lab fo	or sample(s): 0)1 Batch:	WG1	490673-1				
Cyanide, Total	ND	mg/l	0.005		1	04/26/21 09:55	04/26/21 12:41	121,4500CN-CE	E CR
General Chemistry -	Westborough Lab fo	or sample(s): 0)1 Batch:	WG1	491157-1				
Solids, Total Suspended	ND	mg/l	5.0	NA	1	-	04/27/21 08:50	121,2540D	AC
General Chemistry -	Westborough Lab fo	or sample(s): 0)1-02 Bat	ch: W	G1491245-1	1			
Nitrogen, Ammonia	ND	mg/l	0.075		1	04/27/21 10:00	04/28/21 13:56	121,4500NH3-B	Н ЈО
General Chemistry -	Westborough Lab fo	or sample(s): 0)1 Batch:	WG1	491412-1				
TPH, SGT-HEM	ND	mg/l	4.00		1	04/27/21 18:00	04/27/21 18:45	74,1664A	TL

Project Name: 74 MIDDLESEX AVENUE

Project Number: 134081-009

Lab Number: L2120709

Parameter	LCS %Recovery Qu	LCSD al %Recovery	%Recovery Qual Limits	RPD	Qual	RPD Limits
General Chemistry - Westborough Lab Asso	ciated sample(s): 01	Batch: WG1489700-	2			
Chlorine, Total Residual	104	-	90-110	-		
General Chemistry - Westborough Lab Asso	ciated sample(s): 01	Batch: WG1489765-	2			
Chromium, Hexavalent	101	-	85-115	-		20
Anions by Ion Chromatography - Westboroug	h Lab Associated sa	ample(s): 01 Batch: V	VG1490522-2			
Chloride	100	-	90-110	-		
General Chemistry - Westborough Lab Asso	ciated sample(s): 01	Batch: WG1490596-	2			
Phenolics, Total	88	-	70-130	-		
General Chemistry - Westborough Lab Asso	ciated sample(s): 01	Batch: WG1490673-	2			
Cyanide, Total	102	-	90-110	-		
General Chemistry - Westborough Lab Asso	ciated sample(s): 01	Batch: WG1491157-	2			
Solids, Total Suspended	105	-	80-120	-		
General Chemistry - Westborough Lab Asso	ciated sample(s): 01-	-02 Batch: WG14912	45-2			
Nitrogen, Ammonia	94	-	80-120	-		20

L2120709

Lab Control Sample Analysis Batch Quality Control

Project Name: 74 MIDDLESEX AVENUE

X AVENUE

Report Date: 05/05/21

Lab Number:

Project Number: 134081-009

Parameter	LCS %Recovery	LCSD %Recovery	%Recovery Limits	RPD	RPD Limits
General Chemistry - Westborough Lab	Associated sample(s): 01	Batch: WG1491412-2			
ТРН	79	-	64-132	-	34

Matrix Spike Analysis Batch Quality Control

Project Name: 74 MIDDLESEX AVENUE

Project Number:

134081-009

Lab Number: L2120709

Parameter	Native Sample	MS Added	MS Found	MS %Recovery	MSD Qual Found	MSD %Recovery Qua	Recovery I Limits I	RPD Qual	RPD Limits
General Chemistry - Westborou	ıgh Lab Asso	ciated samp	le(s): 01	QC Batch ID: V	WG1489700-4	QC Sample: L212032	25-04 Client ID): MS Sampl	е
Chlorine, Total Residual	ND	0.25	0.26	104	-	-	80-120	-	20
General Chemistry - Westborou 105(OW)_2021-0422	igh Lab Assoc	ciated samp	le(s): 01	QC Batch ID: V	WG1489765-4	QC Sample: L212070	09-01 Client ID): HA20-	
Chromium, Hexavalent	ND	0.1	0.093	93	-	-	85-115	-	20
Anions by Ion Chromatography Sample	- Westboroug	jh Lab Asso	ciated sar	nple(s): 01 Q0	C Batch ID: WG1	490522-3 QC Sam	ple: L2119365-0	2 Client ID	: MS
Chloride	5.96	4	9.38	86	Q -	-	90-110	-	18
General Chemistry - Westborou	ıgh Lab Asso	ciated samp	le(s): 01	QC Batch ID: V	NG1490596-4	QC Sample: L212097	71-01 Client ID): MS Sampl	е
Phenolics, Total	ND	0.4	0.38	96	-	-	70-130	-	20
General Chemistry - Westborou Sample	igh Lab Assoc	ciated samp	le(s): 01	QC Batch ID: V	WG1490673-3 V	VG1490673-4 QC Sa	mple: L2119063	3-02 Client	ID: MS
Cyanide, Total	ND	0.2	0.202	101	0.203	102	90-110	0	30
General Chemistry - Westborou	igh Lab Assoc	ciated samp	le(s): 01-0	2 QC Batch II	D: WG1491245-	4 QC Sample: L212	0724-02 Clien	it ID: MS Sai	mple
Nitrogen, Ammonia	0.468	4	4.30	96	-	-	80-120	-	20
General Chemistry - Westborou	ıgh Lab Assoo	ciated samp	le(s): 01	QC Batch ID: V	NG1491412-4	QC Sample: L211652	21-174 Client I	D: MS Samp	ole
TPH	ND	20.8	17.3	83	-	-	64-132	-	34

Lab Duplicate Analysis Batch Quality Control

Lab Number:

L2120709 05/05/21

Project Name: **Project Number:** 134081-009

74 MIDDLESEX AVENUE

Report Date:

Parameter	Native Sample	Duplicate Sam	ple Units	RPD	Qual	RPD Limits
General Chemistry - Westborough Lab Associated samp	ole(s): 01 QC Batch II	D: WG1489700-3	QC Sample: L2120	325-02 C	Client ID: D	UP Sample
Chlorine, Total Residual	ND	ND	mg/l	NC		20
General Chemistry - Westborough Lab Associated samp 105(OW)_2021-0422	ole(s): 01 QC Batch IE	D: WG1489765-3	QC Sample: L2120	709-01 C	Client ID: F	IA20-
Chromium, Hexavalent	ND	ND	mg/l	NC		20
Anions by Ion Chromatography - Westborough Lab Asso	ociated sample(s): 01	QC Batch ID: WG	1490522-4 QC Sar	mple: L21	119365-02	Client ID: DUP
Chloride	5.96	5.91	mg/l	1		18
General Chemistry - Westborough Lab Associated samp	ole(s): 01 QC Batch II	D: WG1490596-3	QC Sample: L2120	971-01 C	Client ID: D	UP Sample
Phenolics, Total	ND	ND	mg/l	NC		20
General Chemistry - Westborough Lab Associated samp	ole(s): 01 QC Batch IE	D: WG1491157-3	QC Sample: L2120	328-01 C	Client ID: D	UP Sample
Solids, Total Suspended	48	50	mg/l	4		29
General Chemistry - Westborough Lab Associated samp	ole(s): 01-02 QC Batc	h ID: WG1491245-	3 QC Sample: L2	120724-02	2 Client ID	: DUP Sample
Nitrogen, Ammonia	0.468	0.589	mg/l	23	Q	20
General Chemistry - Westborough Lab Associated samp	ole(s): 01 QC Batch IE	D: WG1491412-3	QC Sample: L2116	521-173	Client ID:	DUP Sample
ТРН	ND	ND	mg/l	NC		34

Lab Number: L2120709

Report Date: 05/05/21

Sample Receipt and Container Information

Were project specific reporting limits specified?

74 MIDDLESEX AVENUE

YES

Cooler Information

Project Name:

Cooler Custody Seal

A Absent

Project Number: 134081-009

Container Information			Initial	Final	Temp			Frozen	
Container ID	Container Type	Cooler	рН	рН	deg C	Pres	Seal	Date/Time	Analysis(*)
L2120709-01A	Vial Na2S2O3 preserved	Α	NA		2.8	Υ	Absent		624.1-RGP(7)
L2120709-01B	Vial Na2S2O3 preserved	Α	NA		2.8	Υ	Absent		624.1-RGP(7)
L2120709-01C	Vial Na2S2O3 preserved	Α	NA		2.8	Υ	Absent		624.1-RGP(7)
L2120709-01D	Vial Na2S2O3 preserved	Α	NA		2.8	Υ	Absent		504(14)
L2120709-01E	Vial Na2S2O3 preserved	Α	NA		2.8	Υ	Absent		504(14)
L2120709-01F	Vial unpreserved	Α	NA		2.8	Υ	Absent		SUB-ETHANOL(14)
L2120709-01G	Vial unpreserved	Α	NA		2.8	Υ	Absent		SUB-ETHANOL(14)
L2120709-01H	Vial unpreserved	Α	NA		2.8	Υ	Absent		SUB-ETHANOL(14)
L2120709-01J	Plastic 250ml HNO3 preserved	Α	<2	<2	2.8	Υ	Absent		HARDU(180),CR-2008T(180)
L2120709-01K	Plastic 250ml NaOH preserved	Α	>12	>12	2.8	Υ	Absent		TCN-4500(14)
L2120709-01L	Plastic 250ml NaOH preserved	Α	>12	>12	2.8	Υ	Absent		HOLD-WETCHEM()
L2120709-01M	Plastic 950ml unpreserved	Α	7	7	2.8	Υ	Absent		HEXCR-7196(1),HOLD-WETCHEM(),CL-300(28),TRC-4500(1)
L2120709-01N	Plastic 950ml unpreserved	Α	7	7	2.8	Υ	Absent		TSS-2540(7)
L2120709-01O	Amber 950ml H2SO4 preserved	Α	<2	<2	2.8	Υ	Absent		TPHENOL-420(28)
L2120709-01P	Amber 1000ml Na2S2O3	Α	7	7	2.8	Υ	Absent		625.1-SIM-RGP(7)
L2120709-01Q	Amber 1000ml Na2S2O3	Α	7	7	2.8	Υ	Absent		625.1-SIM-RGP(7)
L2120709-01R	Amber 1000ml HCl preserved	Α	NA		2.8	Υ	Absent		TPH-1664(28)
L2120709-01S	Amber 1000ml HCl preserved	Α	NA		2.8	Υ	Absent		TPH-1664(28)
L2120709-01X	Plastic 250ml H2SO4 preserved split	Α	7	<2	2.8	Ν	Absent		NH3-4500(28)
L2120709-02A	Plastic 250ml HNO3 preserved	Α	<2	<2	2.8	Y	Absent		CR-2008S(180),AG-2008S(180),FE- RI(180),HOLD-METAL-DISSOLVED(180),AS- 2008S(180),ZN-2008S(180),PB-2008S(180),NI- 2008S(180),SE-2008S(180),CD- 2008S(180),CU-2008S(180),SB- 2008S(180),HG-R(28)

Lab Number: L2120709

Report Date: 05/05/21

Project Number: 134081-009

Project Name:

Container Info	ormation		Initial	Final	Temp			Frozen	
Container ID	Container Type	Cooler	рН	рН	deg C	Pres	Seal	Date/Time	Analysis(*)
L2120709-02B	Plastic 250ml HNO3 preserved	A	<2	<2	2.8	Υ	Absent		CD-2008T(180),NI-2008T(180),ZN- 2008T(180),FE-UI(180),HARDU(180),CU- 2008T(180),AG-2008T(180),HG-U(28),AS- 2008T(180),SE-2008T(180),CR-2008T(180),PB- 2008T(180),SB-2008T(180)
L2120709-02C	Plastic 500ml H2SO4 preserved	Α	<2	<2	2.8	Υ	Absent		NH3-4500(28)

Container Comments

WM: H2SO4 added per PM 4/23/21 @ 14:10 L2120709-01X

74 MIDDLESEX AVENUE

Project Name:74 MIDDLESEX AVENUELab Number:L2120709Project Number:134081-009Report Date:05/05/21

GLOSSARY

Acronyms

EDL

EPA

LOQ

MS

RPD

DL - Detection Limit: This value represents the level to which target analyte concentrations are reported as estimated values, when those target analyte concentrations are quantified below the limit of quantitation (LOQ). The DL includes any adjustments from dilutions, concentrations or moisture content, where applicable, (DoD report formats only.)

from dilutions, concentrations or moisture content, where applicable. (DoD report formats only.)

 Estimated Detection Limit: This value represents the level to which target analyte concentrations are reported as estimated values, when those target analyte concentrations are quantified below the reporting limit (RL). The EDL includes any adjustments from dilutions, concentrations or moisture content, where applicable. The use of EDLs is specific to the analysis of PAHs using Solid-Phase Microextraction (SPME).

EMPC - Estimated Maximum Possible Concentration: The concentration that results from the signal present at the retention time of an analyte when the ions meet all of the identification criteria except the ion abundance ratio criteria. An EMPC is a worst-case

estimate of the concentration.

LCS - Laboratory Control Sample: A sample matrix, free from the analytes of interest, spiked with verified known amounts of analytes or a material containing known and verified amounts of analytes.

LCSD - Laboratory Control Sample Duplicate: Refer to LCS.

- Environmental Protection Agency

LFB - Laboratory Fortified Blank: A sample matrix, free from the analytes of interest, spiked with verified known amounts of analytes or a material containing known and verified amounts of analytes.

LOD - Limit of Detection: This value represents the level to which a target analyte can reliably be detected for a specific analyte in a specific matrix by a specific method. The LOD includes any adjustments from dilutions, concentrations or moisture content, where applicable. (DoD report formats only.)

 Limit of Quantitation: The value at which an instrument can accurately measure an analyte at a specific concentration. The LOQ includes any adjustments from dilutions, concentrations or moisture content, where applicable. (DoD report formats only.)

Limit of Quantitation: The value at which an instrument can accurately measure an analyte at a specific concentration. The LOQ includes any adjustments from dilutions, concentrations or moisture content, where applicable. (DoD report formats only.)

MDL - Method Detection Limit: This value represents the level to which target analyte concentrations are reported as estimated values, when those target analyte concentrations are quantified below the reporting limit (RL). The MDL includes any adjustments from dilutions, concentrations or moisture content, where applicable.

 Matrix Spike Sample: A sample prepared by adding a known mass of target analyte to a specified amount of matrix sample for which an independent estimate of target analyte concentration is available. For Method 332.0, the spike recovery is calculated using the native concentration, including estimated values.

MSD - Matrix Spike Sample Duplicate: Refer to MS.

NA - Not Applicable.

NC - Not Calculated: Term is utilized when one or more of the results utilized in the calculation are non-detect at the parameter's reporting unit.

NDPA/DPA - N-Nitrosodiphenylamine/Diphenylamine.

NI - Not Ignitable.

NP - Non-Plastic: Term is utilized for the analysis of Atterberg Limits in soil.

NR - No Results: Term is utilized when 'No Target Compounds Requested' is reported for the analysis of Volatile or Semivolatile

Organic TIC only requests.

RL - Reporting Limit: The value at which an instrument can accurately measure an analyte at a specific concentration. The RL includes any adjustments from dilutions, concentrations or moisture content, where applicable.

- Relative Percent Difference: The results from matrix and/or matrix spike duplicates are primarily designed to assess the precision of analytical results in a given matrix and are expressed as relative percent difference (RPD). Values which are less than five times the reporting limit for any individual parameter are evaluated by utilizing the absolute difference between the values; although the RPD value will be provided in the report.

SRM - Standard Reference Material: A reference sample of a known or certified value that is of the same or similar matrix as the

associated field samples.

STLP - Semi-dynamic Tank Leaching Procedure per EPA Method 1315.

TEF - Toxic Equivalency Factors: The values assigned to each dioxin and furan to evaluate their toxicity relative to 2,3,7,8-TCDD.

TEQ - Toxic Equivalent: The measure of a sample's toxicity derived by multiplying each dioxin and furan by its corresponding TEF and then summing the resulting values.

TIC - Tentatively Identified Compound: A compound that has been identified to be present and is not part of the target compound list (TCL) for the method and/or program. All TICs are qualitatively identified and reported as estimated concentrations.

Report Format: Data Usability Report

Project Name:74 MIDDLESEX AVENUELab Number:L2120709Project Number:134081-009Report Date:05/05/21

Footnotes

 The reference for this analyte should be considered modified since this analyte is absent from the target analyte list of the original method.

Terms

1

Analytical Method: Both the document from which the method originates and the analytical reference method. (Example: EPA 8260B is shown as 1,8260B.) The codes for the reference method documents are provided in the References section of the Addendum.

Difference: With respect to Total Oxidizable Precursor (TOP) Assay analysis, the difference is defined as the Post-Treatment value minus the Pre-Treatment value.

Final pH: As it pertains to Sample Receipt & Container Information section of the report, Final pH reflects pH of container determined after adjustment at the laboratory, if applicable. If no adjustment required, value reflects Initial pH.

Frozen Date/Time: With respect to Volatile Organics in soil, Frozen Date/Time reflects the date/time at which associated Reagent Water-preserved vials were initially frozen. Note: If frozen date/time is beyond 48 hours from sample collection, value will be reflected in 'bold'.

Initial pH: As it pertains to Sample Receipt & Container Information section of the report, Initial pH reflects pH of container determined upon receipt, if applicable.

PAH Total: With respect to Alkylated PAH analyses, the 'PAHs, Total' result is defined as the summation of results for all or a subset of the following compounds: Naphthalene, C1-C4 Naphthalenes, 2-Methylnaphthalene, 1-Methylnaphthalene, Biphenyl, Acenaphthylene, Acenaphthene, Fluorene, C1-C3 Fluorenes, Phenanthrene, C1-C4 Phenanthrenes/Anthracenes, Anthracene, Fluoranthene, Pyrene, C1-C4 Fluoranthenes/Pyrenes, Benza(a)anthracene, Chrysene, C1-C4 Chrysenes, Benzo(b)fluoranthene, Benzo(j)+(k)fluoranthene, Benzo(e)pyrene, Benzo(a)pyrene, Perylene, Indeno(1,2,3-cd)pyrene, Dibenz(ah)+(ac)anthracene, Benzo(g,h,i)perylene. If a 'Total' result is requested, the results of its individual components will also be reported.

PFAS Total: With respect to PFAS analyses, the 'PFAS, Total (5)' result is defined as the summation of results for: PFHpA, PFHxS, PFOA, PFNA and PFOS. In addition, the 'PFAS, Total (6)' result is defined as the summation of results at or above the RL for: PFHpA, PFHxS, PFOA, PFNA, PFDA and PFOS. (Note: 'PFAS, Total (6)' is applicable to MassDEP DW compliance analysis only.). If a 'Total' result is requested, the results of its individual components will also be reported.

The target compound Chlordane (CAS No. 57-74-9) is reported for GC ECD analyses. Per EPA,this compound "refers to a mixture of chlordane isomers, other chlorinated hydrocarbons and numerous other components." (Reference: USEPA Toxicological Review of Chlordane, In Support of Summary Information on the Integrated Risk Information System (IRIS), December 1997.)

Total: With respect to Organic analyses, a 'Total' result is defined as the summation of results for individual isomers or Aroclors. If a 'Total' result is requested, the results of its individual components will also be reported. This is applicable to 'Total' results for methods 8260, 8081 and 8082.

Data Qualifiers

- A -Spectra identified as "Aldol Condensates" are byproducts of the extraction/concentration procedures when acetone is introduced in the process.
- The analyte was detected above the reporting limit in the associated method blank. Flag only applies to associated field samples that have detectable concentrations of the analyte at less than ten times (10x) the concentration found in the blank. For MCP-related projects, flag only applies to associated field samples that have detectable concentrations of the analyte at less than ten times (10x) the concentration found in the blank. For DOD-related projects, flag only applies to associated field samples that have detectable concentrations of the analyte at less than ten times (10x) the concentration found in the blank AND the analyte was detected above one-half the reporting limit (or above the reporting limit for common lab contaminants) in the associated method blank. For NJ-Air-related projects, flag only applies to associated field samples that have detectable concentrations of the analyte above the reporting limit. For NJ-related projects (excluding Air), flag only applies to associated field samples that have detectable concentrations of the analyte, which was detected above the reporting limit in the associated method blank or above five times the reporting limit for common lab contaminants (Phthalates, Acetone, Methylene Chloride, 2-Butanone).
- Co-elution: The target analyte co-elutes with a known lab standard (i.e. surrogate, internal standards, etc.) for co-extracted analyses.
- Concentration of analyte was quantified from diluted analysis. Flag only applies to field samples that have detectable concentrations of the analyte.
- ${f E}$ Concentration of analyte exceeds the range of the calibration curve and/or linear range of the instrument.
- F The ratio of quantifier ion response to qualifier ion response falls outside of the laboratory criteria. Results are considered to be an estimated maximum concentration.
- G The concentration may be biased high due to matrix interferences (i.e, co-elution) with non-target compound(s). The result should be considered estimated.
- H The analysis of pH was performed beyond the regulatory-required holding time of 15 minutes from the time of sample collection.
- I The lower value for the two columns has been reported due to obvious interference.
- J Estimated value. This represents an estimated concentration for Tentatively Identified Compounds (TICs).
- M Reporting Limit (RL) exceeds the MCP CAM Reporting Limit for this analyte.
- **ND** Not detected at the reporting limit (RL) for the sample.
- NJ Presumptive evidence of compound. This represents an estimated concentration for Tentatively Identified Compounds (TICs), where

Report Format: Data Usability Report

Project Name:74 MIDDLESEX AVENUELab Number:L2120709Project Number:134081-009Report Date:05/05/21

Data Qualifiers

the identification is based on a mass spectral library search.

- P The RPD between the results for the two columns exceeds the method-specified criteria.
- Q -The quality control sample exceeds the associated acceptance criteria. For DOD-related projects, LCS and/or Continuing Calibration Standard exceedences are also qualified on all associated sample results. Note: This flag is not applicable for matrix spike recoveries when the sample concentration is greater than 4x the spike added or for batch duplicate RPD when the sample concentrations are less than 5x the RL. (Metals only.)
- **R** Analytical results are from sample re-analysis.
- **RE** Analytical results are from sample re-extraction.
- S Analytical results are from modified screening analysis.

Report Format: Data Usability Report

Project Name:74 MIDDLESEX AVENUELab Number:L2120709Project Number:134081-009Report Date:05/05/21

REFERENCES

- Test Methods for Evaluating Solid Waste: Physical/Chemical Methods. EPA SW-846. Third Edition. Updates I VI, 2018.
- Methods for the Determination of Metals in Environmental Samples, Supplement I. EPA/600/R-94/111. May 1994.
- 4 Methods for Chemical Analysis of Water and Wastes. EPA 600/4-79-020. Revised March 1983.
- Methods for the Determination of Organic Compounds in Finished Drinking Water and Raw Source Water. EPA/600/4-88/039, Revised July 1991.
- 19 Inductively Coupled Plasma Atomic Emission Spectrometric Method for Trace Element Analysis of Water and Wastes. Appendix C, Part 136, 40 CFR (Code of Federal Regulations). July 1, 1999 edition.
- Methods for the Determination of Inorganic Substances in Environmental Samples, EPA/600/R-93/100, August 1993.
- Method 1664,Revision A: N-Hexane Extractable Material (HEM; Oil & Grease) and Silica Gel Treated N-Hexane Extractable Material (SGT-HEM; Non-polar Material) by Extraction and Gravimetry, EPA-821-R-98-002, February 1999.
- 107 Alpha Analytical In-house calculation method.
- 121 Standard Methods for the Examination of Water and Wastewater. APHA-AWWA-WEF. Standard Methods Online.
- 128 Method 624.1: Purgeables by GC/MS, EPA 821-R-16-008, December 2016.
- Method 625.1: Base/Neutrals and Acids by GC/MS, EPA 821-R-16-007, December 2016.

LIMITATION OF LIABILITIES

Alpha Analytical performs services with reasonable care and diligence normal to the analytical testing laboratory industry. In the event of an error, the sole and exclusive responsibility of Alpha Analytical shall be to re-perform the work at it's own expense. In no event shall Alpha Analytical be held liable for any incidental, consequential or special damages, including but not limited to, damages in any way connected with the use of, interpretation of, information or analysis provided by Alpha Analytical.

We strongly urge our clients to comply with EPA protocol regarding sample volume, preservation, cooling, containers, sampling procedures, holding time and splitting of samples in the field.

Serial No:05052112:55

Alpha Analytical, Inc. Facility: Company-wide

Department: Quality Assurance

Title: Certificate/Approval Program Summary

ID No.:17873 Revision 19

Published Date: 4/2/2021 1:14:23 PM

Page 1 of 1

Certification Information

The following analytes are not included in our Primary NELAP Scope of Accreditation:

Westborough Facility

EPA 624/624.1: m/p-xylene, o-xylene, Naphthalene

EPA 625/625.1: alpha-Terpineol

EPA 8260C/8260D: NPW: 1,2,4,5-Tetramethylbenzene; 4-Ethyltoluene, Azobenzene; SCM: Iodomethane (methyl iodide), 1,2,4,5-Tetramethylbenzene;

EPA 8270D/8270E: NPW: Dimethylnaphthalene,1,4-Diphenylhydrazine, alpha-Terpineol; SCM: Dimethylnaphthalene,1,4-Diphenylhydrazine.

SM4500: NPW: Amenable Cyanide; SCM: Total Phosphorus, TKN, NO2, NO3.

Mansfield Facility

SM 2540D: TSS

EPA 8082A: NPW: PCB: 1, 5, 31, 87,101, 110, 141, 151, 153, 180, 183, 187.

EPA TO-15: Halothane, 2,4,4-Trimethyl-2-pentene, 2,4,4-Trimethyl-1-pentene, Thiophene, 2-Methylthiophene,

3-Methylthiophene, 2-Ethylthiophene, 1,2,3-Trimethylbenzene, Indan, Indene, 1,2,4,5-Tetramethylbenzene, Benzothiophene, 1-Methylnaphthalene.

Biological Tissue Matrix: EPA 3050B

The following analytes are included in our Massachusetts DEP Scope of Accreditation

Westborough Facility:

Drinking Water

EPA 300.0: Chloride, Nitrate-N, Fluoride, Sulfate; EPA 353.2: Nitrate-N, Nitrite-N; SM4500NO3-F: Nitrate-N, Nitrite-N; SM4500F-C, SM4500CN-CE,

EPA 180.1, SM2130B, SM4500CI-D, SM2320B, SM2540C, SM4500H-B, SM4500NO2-B

EPA 332: Perchlorate; EPA 524.2: THMs and VOCs; EPA 504.1: EDB, DBCP.

Microbiology: SM9215B; SM9223-P/A, SM9223B-Colilert-QT,SM9222D.

Non-Potable Water

SM4500H,B, EPA 120.1, SM2510B, SM2540C, SM2320B, SM4500CL-E, SM4500F-BC, SM4500NH3-BH: Ammonia-N and Kjeldahl-N, EPA 350.1: Ammonia-N, LACHAT 10-107-06-1-B: Ammonia-N, EPA 351.1, SM4500NO3-F, EPA 353.2: Nitrate-N, SM4500P-E, SM4500P-B, E, SM4500SO4-E, SM5220D, EPA 410.4, SM5210B, SM5310C, SM4500CL-D, EPA 1664, EPA 420.1, SM4500-CN-CE, SM2540D, EPA 300: Chloride, Sulfate, Nitrate. EPA 624.1: Volatile Halocarbons & Aromatics,

EPA 608.3: Chlordane, Toxaphene, Aldrin, alpha-BHC, beta-BHC, gamma-BHC, delta-BHC, Dieldrin, DDD, DDE, DDT, Endosulfan I, Endosulfan II, Endosulfan sulfate, Endrin, Endrin Aldehyde, Heptachlor, Heptachlor Epoxide, PCBs

EPA 625.1: SVOC (Acid/Base/Neutral Extractables), EPA 600/4-81-045: PCB-Oil.

Microbiology: SM9223B-Colilert-QT; Enterolert-QT, SM9221E, EPA 1600, EPA 1603, SM9222D.

Mansfield Facility:

Drinking Water

EPA 200.7: Al, Ba, Cd, Cr, Cu, Fe, Mn, Ni, Na, Ag, Ca, Zn. EPA 200.8: Al, Sb, As, Ba, Be, Cd, Cr, Cu, Pb, Mn, Ni, Se, Ag, TL, Zn. EPA 245.1 Hg. EPA 522, EPA 537.1.

Non-Potable Water

EPA 200.7: Al, Sb, As, Be, Cd, Ca, Cr, Co, Cu, Fe, Pb, Mg, Mn, Mo, Ni, K, Se, Ag, Na, Sr, TL, Ti, V, Zn.

EPA 200.8: Al, Sb, As, Be, Cd, Cr, Cu, Fe, Pb, Mn, Ni, K, Se, Ag, Na, TL, Zn.

EPA 245.1 Hg

SM2340B

For a complete listing of analytes and methods, please contact your Alpha Project Manager.

Document Type: Form

Pre-Qualtrax Document ID: 08-113

CUSTODY Withdraways, M. G1651 Withdraways,	30	CHAIN OF	Service Centers	da me ta		Pag	je 1	1	Cor X	20.30	160		-	-			-	_		-						
Residua (b) 30 Falsa (b) 10 Fal	ALPHA	22 - 10 22 2 2 2 2 2	07430 Albany, NY t	2205		17						01	11	or	2 1	r	11							ALPHA	Job#	7 0
MAA Clients Greyster Club Project Among New Project Sample	8 Walkup Dr. TEL 508-888-9220	120 Forbes Blvd TEL 508-822-9300	Project Information Project Name:	74 Middlese	ox.			U	verab	ies iii				0			-1							Billing Informa	ation	
MAX Claim Control Co	HZ & Information		1			MA		-	- AV	400	ila)	П	EQui	S (4 File	b)									PO .		
### ### ### ### ### ### ### ### ### ##	China Commission of the Commis								-	-	line some	to (Plan		47/0-4										- Table 10 (197)	A Company of the Company	-
Basion, MA 03129-1400 APHAQiona # Basion, MA 03129-1400 Copporation of spelicable discretal facilities Billiantyne, King sham File a specified process operating of the process of the process operating operating operating of the process operating		ord St						Table 1	puratury	y rungu	iremen	es (Proj	granv Gr	nenaj			_					_	_	THE RESIDENCE OF	Service of the last of the las	
HBA Phone 517-896-7400 Tom Around Time Standard Due Date HBA Fix Standard Date Date HBA Fix Date Date Date HBA Fix Date Date Date Date Date Date Date Date	Principal Company of the Company of			a v mailos alkin		4.2																			telow location of appl	cable disposal
HIGH Fax Standard C Due Date: NSA Erms Hisalishinyae, Kingraham proviously analyzed by Aprix C ANALYSIS Sample Fittration Those camples have been proviously analyzed by Aprix C Other project specific requiremental comments: ANALYSIS Sample Fittration Please sample per PA Approved 2017 ROP Permit methods Hold dissolved trivelent divormum (field filtered) APPA as sample per PA Approved 2017 ROP Permit methods Hold dissolved trivelent divormum (field filtered) APPA as sample per PA Approved 2017 ROP Permit methods Hold dissolved trivelent divormum (field filtered) APPA as sample permit methods Hold dissolved trivelent divormum (field filtered) APPA as sample permit methods Hold dissolved trivelent divormum (field filtered) APPA as permit permit methods Hold dissolved trivelent divormum (field filtered) APPA as permit permit methods Hold dissolved trivelent divormum (field filtered) APPA as permit permit methods Hold dissolved trivelent divormum (field filtered) APPA as permit permit methods Hold dissolved trivelent divormum (field filtered) APPA as permit permit methods Hold dissolved trivelent divormum (field filtered) APPA as permit permit methods Hold dissolved trivelent divormum (field filtered) APPA as permit permit methods Hold dissolved trivelent divormum (field filtered) APPA as permit permit methods Hold dissolved trivelent divormum (field filtered) APPA as permit permit methods Hold dissolved trivelent divormum (field filtered) APPA as permit permit methods Hold dissolved trivelent divormum (field filtered) APPA as permit permit methods Hold dissolved trivelent divormum (field filtered) APPA as permit permit methods Hold dissolved trivelent divormum (field filtered) APPA as permit permit methods Hold dissolved trivelent divormum (field filtered) APPA as permit permit divormum (field filtered) Hold dissolved trivelent divormum (field filtered) Hold dissolved trivelent divormum (field filtered) Hold dissolved trivelent divormum (field filtered) Hold dissolve	100000000000000000000000000000000000000																									
Other project specific requiremental comments: Please again per EPA Approved 2017 ROP Permit mentiods Hold dissionly directly disposed by the disposed project of the disposed disposed disposed disposed project of the disposed	H&A Fax		Standard					Note	Select	State	rum mer	nu & idea	utify crite	eta.										9	NA [] NA	
Please sample per EPA Approved 2017 RGP Permit methods Hold dischived fiviellar dynomium (field fillared). ALPHA Lab ID Sample ID Collection Date Time Malrix M	These samples have be	een previously analyzed	by Alpha C				3	ANA	LYSIS	S														Sample Filtre	ition	100
Date Time main minute and a property of the pr	Please sample per EP Hold dissolved trivelent	A Approved 2017 RGF chromium (field filtered	Permit methods	kavaleni diro	mium (field filt	ered)		latile Organics - EPA	V Extractables -	2540	A 4500		1.25	agically Avilable	pande - SM.	ent Chromium - EPA	6 9	EPA		EPA 1664				Preservation Lab to do	- TA	B
Preservative Code: A None P = Plastic B HCI A Amber Glass B HCI A Substitution B HCI A Substitution B HCI A Substitution B HCI B H		Samp	e (D)					RGP Vol	RSP AB	1 3	TRC - Sh	8		Physiolo	Amenable	Hexaval 196	1. Trivale A 7196/	Ethangle evnlon &	Total Ph					0		+
A = None A = None B = HCI A = Amber Glass B = HCI C = HNO_3 V = Vial D = H_3SO_4 E = NaOH E = MaCH E = NaoH E = MacH E =	20709-01	HA-105(OW)_2021-04	22	4/22/2021	10:40	AQ	NTL		_	-	X	X	X	X	X	X	X	X	X	-	-				2-2-1-11-1	18
CE HNO, V = Val D = H ₂ SO, G = Glass E = NaCH D = H ₂ SO, G = Glass E = NaCH D = H ₂ SO, G = Glass E = NaCH D = H ₂ SO, G = Glass E = NaCH D = H ₂ SO, G = Glass E = NaCH D = H ₂ SO, G = Glass D	A = None	P = Plastic			-	c	ontainer Type																			
Document ID: 20455 Rev 1 (1/28/2016)	C = HNO ₃ D = H ₂ SO ₄ E = NaOH F = MeOH G = NaHSO ₄ H = Na ₃ S-O ₃	V = Vial G = Glass B = Bacteria Cup C = Cube D = Other E = Encore		ng/By	9/22/21	113:30	M	any	E ved By	A	A ~	PA	E Y Do	E AL	E 4	A			2.00	B NO	V H			filme clock will resolved. Alph Chain of Custod with terms and o Agreement# 20 between Haley	not start until any as a Analytica's services by shall be performed conditions within Blan 15-18-Alpha Analytica & Aldrich, Inc., Its sub	mbiguities are under this in accordance ket Service I by and
	Document (D: 20455 Rev 1	(1/28/2016)						-		-				-	_	-	_	_	-	_	_			-		

3	CHAIN OF	Service Centers Brewer, ME 04412	a tal a that has		Pag	0 2		Label .		0		-		u i	-					
ALPHA	CUSTODY	07400 Albany, NY 1 Tonomanda, NY 14150	2205	03695 Mahmali, N 43		f 2			Rec Lab	ď	0	41	22	12	1				L212070	-
Westborough, MA 01581 8 Welkup Dr. TEL: 508-698-5220	Manafield, MA 02048 320 Forbes Blvd TEL 508-622-9300	Project Information	74 Middless				_	verable Emai			H 6			1)				Billing Information	-
FAX: 508-898-9193	FAX: 508-822-3288	Project Location		x, Somerville	***		4	-	SITE	last.	□ Fa								Same as Client Info	
H&A Information	-	Project #	134081-009		NA.	_		Other		lia)	D FO	ulS (4 File	9)						204	
H&A Client: Greystar		(Use Project name			_					and a second	(Please and	e anna							Discount Con Laboratory	
H&A Address 465 Med	ford St	1277223333	H Ballantyn				200	uratory	wedn	rement	s (Program	Criteria)		-					Disposal Site Information	
	MA D2129-1400	ALPHAQuole #:	C Dunancy 1		4.2		1												Please identify below location of applicable disp facilities.	osal
H&A Phone 617-886-	-	Turn-Around Time																	Disposal Facility	
H&A Fax. H&A Email: HBallant		Standard (only if pre approved		Due Date			Nate	Select	State In	om men	u & identify o	steria.							NJ II NY	
These samples have b	een previously analyze	d by Alpha E					-	LYSIS				-				_			Sample Filtration	
Other project specific							-	T	T				1					11	D. C.	
Please sample per EP		Permit methods					gen - 5M 4500		4	Metals									Done Lab to do Preservation Lab to do	
Please specify Metals	or TAL						nia Mitro	ardness	Total NPDES Metals	NPDES Metals 245.1									(Please Specify below)	
ALPHA Lab ID (Lab Use Only)	Samp	le ID	Col	Time	Sample Matrix	Sampler's Initials	Armino	Total Hardon	Total NP	4. Soluble NPDE EPA 22.8/245.1					Н					
20709-02	MVSTIC_1 2021-0422		4/22/2021	12:40	AQ	NTL	×	X	X	A ID		+	++	-	-	-		-	sample specific Comments	_
and to	an or to to to		- SELICOL!	12,40	Pring.	1414	1	-	1	^		+	+	-	1	+	-	++		3
									1				+	-	1					4
									1			-				-		++		***
			-											7			1	++		
												1	\vdash			_				
			25			1														
				1					1											
					1															
Preservative Code: A = None B = HCl C + HNO ₃ D = H ₂ SO ₄	Container Code P = Plastic A = Amber Glass V = Vial G = Gless	Westboro: Certifica Mansfield: Certifica			0	ontainer Type Preservative	р	Р	Р										Please print clearly, legibly and completely. Samples can not be logged in and turnarour time clock will not start until any ambiguitie resolved. Alpha Analytical's services under the	are
E = NaOH	B = Bacteria Cup C = Cube	Paris As	400	F.			C	D	C										Chain of Custody shall be performed in accords with terms and conditions within Blanket Service	
F = MeOH G = NaHSO ₄	O = Other	Relinquish	ed By.		e/Time		Recei	ved By			n	***			te/Time	111	_		Agreement# 2015-18-Alpha Analytical by and between Haley & Aldrich, Inc., its subsidiaries a	
H = Na ₂ S ₂ O ₃ K/E = Zn Ac/Na/OH O = Other	E = Encore D = BOD Battle	July	Ch-	4/22/21		au	N	K	1	=	Plum,	2/211		19219		1640	0		alfiliates and Alpha Analytical.	P. C.
Document ID: 20455 Rev 1	(1/28/2018)																			

ALPI	IRAL	Te 54 Co	Subcontr k Lab, Inc. 45 Horsehoe Illinsville, IL 63	act Chain of Custo Lake Road 2234-7425	ody	Alpha Job Number L2120709
	Analytical Labs Valkup Drive Porough, MA 01581-1019	Project Location Project Manage Turnard Due Date Deliverables	n: MA er: Melissa Gu ound & Deliv	nformation ulli verables Information	Regulatory Red State/Federal Program: Regulatory Criteria:	quirements/Report Limits
	Reference following Alpha Job Ments: Send all results/reports to	Project Specif	ic Requirem	nents and/or Report F	Requirements Report to include Method Bla	nk, LCS/LCSD:
Lab ID	Client ID HA20-105(OW)_2021-0422	Collection Date/Time	Sample Matrix WATER	An Ethanol by EPA 1671 Revis	alysis sion A	Batch
	Relinquishe	d By:		Date/Time: 4/26/21	Received By:	Date/Time:

http://www.teklabinc.com/

May 03, 2021

Melissa Gulli Alpha Analytical 145 Flanders Road Westborough, MA 01581 TEL: (603) 319-5010

FAX:

RE: L2120709

Dear Melissa Gulli:

TEKLAB, INC received 1 sample on 4/27/2021 10:06:00 AM for the analysis presented in the following report.

Samples are analyzed on an as received basis unless otherwise requested and documented. The sample results contained in this report relate only to the requested analytes of interest as directed on the chain of custody. NELAP accredited fields of testing are indicated by the letters NELAP under the Certification column. Unless otherwise documented within this report, Teklab Inc. analyzes samples utilizing the most current methods in compliance with 40CFR. All tests are performed in the Collinsville, IL laboratory unless otherwise noted in the Case Narrative.

All quality control criteria applicable to the test methods employed for this project have been satisfactorily met and are in accordance with NELAP except where noted. The following report shall not be reproduced, except in full, without the written approval of Teklab, Inc.

If you have any questions regarding these tests results, please feel free to call.

Sincerely,

Marvin L. Darling

Project Manager

(618)344-1004 ex 41

mdarling@teklabinc.com

Mowin L. Darling I

Illinois 100226 Kansas E-10374 Louisiana 05002 Louisiana 05003 Oklahoma 9978

WorkOrder: 21041565

Report Contents

http://www.teklabinc.com/

Client: Alpha Analytical Work Order: 21041565
Client Project: L2120709 Report Date: 03-May-21

This reporting package includes the following:

Cover Letter	1
Report Contents	2
Definitions	3
Case Narrative	5
Accreditations	6
Laboratory Results	7
Quality Control Results	8
Receiving Check List	9
Chain of Custody	Appended

Definitions

http://www.teklabinc.com/

Client: Alpha Analytical Work Order: 21041565

Client Project: L2120709 Report Date: 03-May-21

Abbr Definition

- * Analytes on report marked with an asterisk are not NELAP accredited
- CCV Continuing calibration verification is a check of a standard to determine the state of calibration of an instrument between recalibration.
- CRQL A Client Requested Quantitation Limit is a reporting limit that varies according to customer request. The CRQL may not be less than the MDL.
 - DF Dilution factor is the dilution performed during analysis only and does not take into account any dilutions made during sample preparation. The reported result is final and includes all dilution factors.
 - DNI Did not ignite
- DUP Laboratory duplicate is a replicate aliquot prepared under the same laboratory conditions and independently analyzed to obtain a measure of precision.
- ICV Initial calibration verification is a check of a standard to determine the state of calibration of an instrument before sample analysis is initiated.
- IDPH IL Dept. of Public Health
- LCS Laboratory control sample is a sample matrix, free from the analytes of interest, spiked with verified known amounts of analytes and analyzed exactly like a sample to establish intra-laboratory or analyst specific precision and bias or to assess the performance of all or a portion of the measurement system.
- LCSD Laboratory control sample duplicate is a replicate laboratory control sample that is prepared and analyzed in order to determine the precision of the approved test method. The acceptable recovery range is listed in the QC Package (provided upon request).
- MBLK Method blank is a sample of a matrix similar to the batch of associated sample (when available) that is free from the analytes of interest and is processed simultaneously with and under the same conditions as samples through all steps of the analytical procedures, and in which no target analytes or interferences should present at concentrations that impact the analytical results for sample analyses.
- MDL "The method detection limit is defined as the minimum measured concentration of a substance that can be reported with 99% confidence that the measured concentration is distinguishable from method blank results."
- MS Matrix spike is an aliquot of matrix fortified (spiked) with known quantities of specific analytes that is subjected to the entire analytical procedures in order to determine the effect of the matrix on an approved test method's recovery system. The acceptable recovery range is listed in the QC Package (provided upon request).
- MSD Matrix spike duplicate means a replicate matrix spike that is prepared and analyzed in order to determine the precision of the approved test method. The acceptable recovery range is listed in the QC Package (provided upon request).
- MW Molecular weight
- NC Data is not acceptable for compliance purposes
- ND Not Detected at the Reporting Limit
- NELAP NELAP Accredited
 - PQL Practical quantitation limit means the lowest level that can be reliably achieved within specified limits of precision and accuracy during routine laboratory operation conditions.
 - RL The reporting limit the lowest level that the data is displayed in the final report. The reporting limit may vary according to customer request or sample dilution. The reporting limit may not be less than the MDL.
 - RPD Relative percent difference is a calculated difference between two recoveries (ie. MS/MSD). The acceptable recovery limit is listed in the QC Package (provided upon request).
 - SPK The spike is a known mass of target analyte added to a blank sample or sub-sample; used to determine recovery deficiency or for other quality control purposes.
 - Surr Surrogates are compounds which are similar to the analytes of interest in chemical composition and behavior in the analytical process, but which are not normally found in environmental samples.
 - TIC Tentatively identified compound: Analytes tentatively identified in the sample by using a library search. Only results not in the calibration standard will be reported as tentatively identified compounds. Results for tentatively identified compounds that are not present in the calibration standard, but are assigned a specific chemical name based upon the library search, are calculated using total peak areas from reconstructed ion chromatograms and a response factor of one. The nearest Internal Standard is used for the calculation. The results of any TICs must be considered estimated, and are flagged with a "T". If the estimated result is above the calibration range it is flagged "ET"
- TNTC Too numerous to count (> 200 CFU)

Definitions

http://www.teklabinc.com/

Client: Alpha Analytical Work Order: 21041565
Client Project: L2120709 Report Date: 03-May-21

Qualifiers

- # Unknown hydrocarbon
- C RL shown is a Client Requested Quantitation Limit
- H Holding times exceeded
- J Analyte detected below quantitation limits
- ND Not Detected at the Reporting Limit
- S Spike Recovery outside recovery limits
- X Value exceeds Maximum Contaminant Level

- B Analyte detected in associated Method Blank
- E Value above quantitation range
- I Associated internal standard was outside method criteria
- M Manual Integration used to determine area response
- R RPD outside accepted recovery limits
- T TIC(Tentatively identified compound)

Case Narrative

http://www.teklabinc.com/

Work Order: 21041565

Report Date: 03-May-21

Cooler Receipt Temp: 1.8 °C

Client Project: L2120709

Client: Alpha Analytical

Locations

	Collinsville		Springfield		Kansas City
Address	5445 Horseshoe Lake Road	Address	3920 Pintail Dr	Address	8421 Nieman Road
	Collinsville, IL 62234-7425		Springfield, IL 62711-9415		Lenexa, KS 66214
Phone	(618) 344-1004	Phone	(217) 698-1004	Phone	(913) 541-1998
Fax	(618) 344-1005	Fax	(217) 698-1005	Fax	(913) 541-1998
Email	jhriley@teklabinc.com	Email	KKlostermann@teklabinc.com	Email	jhriley@teklabinc.com
	Collinsville Air		Chicago		
Address	5445 Horseshoe Lake Road	Address	1319 Butterfield Rd.		
	Collinsville, IL 62234-7425		Downers Grove, IL 60515		
Phone	(618) 344-1004	Phone	(630) 324-6855		
Fax	(618) 344-1005	Fax			
Email	EHurley@teklabinc.com	Email	arenner@teklabinc.com		

Accreditations

http://www.teklabinc.com/

Client: Alpha Analytical Work Order: 21041565

Client Project: L2120709 Report Date: 03-May-21

State	Dept	Cert #	NELAP	Exp Date	Lab
Illinois	IEPA	100226	NELAP	1/31/2022	Collinsville
Kansas	KDHE	E-10374	NELAP	4/30/2022	Collinsville
Louisiana	LDEQ	05002	NELAP	6/30/2021	Collinsville
Louisiana	LDEQ	05003	NELAP	6/30/2021	Collinsville
Oklahoma	ODEQ	9978	NELAP	8/31/2021	Collinsville
Arkansas	ADEQ	88-0966		3/14/2022	Collinsville
Illinois	IDPH	17584		5/31/2021	Collinsville
Kentucky	UST	0073		1/31/2022	Collinsville
Missouri	MDNR	00930		5/31/2021	Collinsville
Missouri	MDNR	930		1/31/2022	Collinsville

Laboratory Results

http://www.teklabinc.com/

Client: Alpha Analytical Work Order: 21041565

Client Project: L2120709 Report Date: 03-May-21

Lab ID: 21041565-001 Client Sample ID: HA20-105(OW)_2021-0422

Matrix: AQUEOUS Collection Date: 04/22/2021 10:40

Analyses	Certification	RL Qual	Result	Units	DF	Date Analyzed Batch
EPA 600 1671A, PHARMA	ACEUTICAL MANUFACTUR	RING INDUSTRY N	ON-PURGEA	BLE VOLA	TILE ORGA	ANICS
Ethanol	*	20	ND	mg/L	1	04/30/2021 13:40 R290427

Quality Control Results

http://www.teklabinc.com/

Client: Alpha Analytical Work Order: 21041565
Client Project: L2120709 Report Date: 03-May-21

EPA 600 1671A, PI	HARMACEU	TICAL MA	ANUF	ACTURING	INDUSTRY NO	N-PUR	SEABLE VO	LATILE C	R		
Batch R290427	SampType:	MBLK		Units mg/L							
SamplD: MBLK-0430				_							Date
		~				~ ''	ODK D-£V-I	0/ DEO	1 1	1.15	Analyzed
Analyses		Cert	RL	Qual	Result	Spike	SPK Ref Val	%REC	Low Limit	High Limit	7 triary20a
Ethanol		*	20		ND						04/30/2021
Batch R290427	SampType:	LCS		Units mg/L							
SampID: LCS-04302	1										Date
•		~ .	D.T	0 1	5 1.	a '1	CDK D-f V-l	%REC	I accel insit	Litala Linait	Analyzed
Analyses		Cert	RL	Qual	Result	Spike	SPK Ref Val	%REC	Low Limit	High Limit	7 thaty20a
Ethanol		*	20		270	250.0	0	107.0	70	132	04/30/2021
Batch R290427	SampType:	MS		Units mg/L							
SampID: 21041476-0				· ·							Data
,							0D14 D 414 1	0/ DE0			Date Analyzed
Analyses		Cert	RL	Qual	Result	Spike	SPK Ref Val	%REC	Low Limit	High Limit	Allalyzeu
Ethanol		*	20		280	250.0	0	111.0	70	132	04/30/2021
Batch R290427	SampType:	MSD		Units mg/L					RPD Lir	nit 30	
SampID: 21041476-0											Data
,		_					0D14 D 414 1	0/ DE0	DDD D ()/		Date Analyzed
Analyses		Cert	RL	Qual	Result	Spike	SPK Ref Val	%REC	RPD Ref Va	al %RPD	Allalyzeu
Ethanol		*	20		300	250.0	0	119.3	277.4	7.22	04/30/2021

Receiving Check List

http://www.teklabinc.com/

Client: Alpha Analytical			Work Or	der: 21041565
Client Project: L2120709			Report I	Date: 03-May-21
Carrier: UPS Completed by: On: 27-Apr-21 Ellie Hopkins		r-21	Elizabeth L. Hhr. Elizabeth A. Hurley	ly.
Pages to follow: Chain of custody 1 Shipping container/cooler in good condition? Type of thermal preservation? Chain of custody present? Chain of custody signed when relinquished and received? Chain of custody agrees with sample labels? Samples in proper container/bottle?	Extra pages included Yes None Yes Yes Yes Yes Yes Yes Yes Ye	No ONO NO NO NO NO NO ONO NO ONO NO ONO O	Not Present Blue Ice	Temp °C 1.8 Dry Ice
Sample containers intact? Sufficient sample volume for indicated test? All samples received within holding time? Reported field parameters measured: Container/Temp Blank temperature in compliance? When thermal preservation is required, samples are compliant 0.1°C - 6.0°C, or when samples are received on ice the same		No	NA ✓	
Water – at least one vial per sample has zero headspace?	Yes 🗹	No 🗌	No VOA vials	
Water - TOX containers have zero headspace?	Yes	No 🗌	No TOX containers ✓	
Water - pH acceptable upon receipt?	Yes 🗹	No 🗌	NA 🗌	
NPDES/CWA TCN interferences checked/treated in the field?	Yes	No 🗌	NA 🗹	
Any No responses n	nust be detailed belo	w or on the	COC.	

Subcontract Chain of Custody

Tek Lab, Inc. 5445 Horsehoe Lake Road Collinsville, IL 62234-7425 2 (0) 4/5 65 Alpha Job Number L2120709

ANALY TIGA			miisvine, (L Oz	224-7-123		22/20/00	
Client	Information		Project In	formation	Regulatory I	Requirements/Report Li	mits
Client: Alpha Analyti Address; Eight Walkup Westborough	ical Labs Drive I, MA 01581-1019	Project Location Project Manage Turnaro		illi erables Information	State/Federal Progra Regulatory Criteria:	am:	
Phone: 603.319.5010 Email: mgulli@alpha	0 alab.com	Due Date: Deliverables:					
	ence following Alpha Job N :: Send all results/reports to	umber on final repor	t/deliverables	ents and/or Report Rec : L2120709 I+8°C LTG (Report to include Method	Blank, LCS/LCSD:	
Lab ID	Client ID	Collection Date/Time	Sample Matrix	Analy	sis		Batch QC
21041505 -001	HA20-105(OW)_2021-0422	04-22-21 10:40	WATER	Ethanol by EPA 1671 Revision	A		
Form No: AL_subcoc	Relinquished	By:		Date/Time:	Received By:	Date/Time:	

APPENDIX D

Chemicals and Additives Information

sc200™ UNIVERSAL CONTROLLER

Applications

- Drinking Water
- Wastewater
- Industrial Water
- Power

One Controller for the Broadest Range of Sensors.

Choose from 30 digital and analog sensor families for up to 17 different parameters.

Maximum Versatility

The sc200 controller allows the use of digital and analog sensors, either alone or in combination, to provide compatibility with Hach's broad range of sensors, eliminating the need for dedicated, parameter-specific controllers.

Ease of Use and Confidence in Results

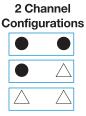
Large, high-resolution, transreflective display provides optimal viewing resolution in any lighting condition. Guided calibration procedures in 19 languages minimize complexity and reduce operator error. Password-protected SD card reader offers a simple solution for data download and transfer. Visual warning system provides critical alerts.

Wide Variety of Communication Options

Utilize two to five analog outputs to transmit primary and secondary values for each sensor, or integrate Hach sensors and analyzers into MODBUS RS232/RS485, Profibus® DP, and HART networks.

Password protected SD card reader offers a simple solution for data download and transfer, and sc200 and digital sensor configuration file duplication and backup.

Controller Comparison



Features	Previous I sc100™ Controller	Models GLI53 Controller	sc200™ Controller	Benefits
Display	64 x 128 pixels 33 x 66 mm (1.3 x 2.6 in.)	64 x 128 pixels 33 x 66 mm (1.3 x 2.6 in.)	160 x 240 pixels 48 x 68 mm (1.89 x 2.67 in.) Transreflective	 Improved user interface— 50% bigger Easier to read in daylight and sunlight
Data Management	irDA Port/PDA Service Cable	N/A	SD Card Service Cable	Simplifies data transferStandardized accessories/ max compatibility
Sensor Inputs	2 Max Direct Digital Analog via External Gateway	2 Max Analog Depending on Parameter	2 Max Digital and/or Analog with Sensor Card	Simplifies analog sensor connectionsWorks with analog and digital sensors
Analog Inputs	N/A	N/A	1 Analog Input Signal Analog 4-20mA Card	 Enables non-sc analyzer monitoring Accepts mA signals from other analyzers for local display Consolidates analog mA signals to a digital output
4-20 mA Outputs	2 Standard	2 Standard	2 Standard Optional 3 Additional	Total of five (5) 4-20 mA outputs allows multiple mA outputs per sensor input
Digital Communication	MODBUS RS232/RS485 Profibus DP V1.0	HART	MODBUS RS232/RS485 Profibus DP V1.0 HART 7.2	Unprecedented combination of sensor breadth and digital communication options

Choose from Hach's Broad Range of Digital and Analog Sensors								
Parameter	Sensor	Digital or Analog						
Ammonia	AMTAX™ sc, NH4D sc, AISE sc, AN-ISE sc	•						
Chlorine	CLF10 sc, CLT10 sc, 9184 sc	•						
Chlorine Dioxide	9185 sc	•						
Conductivity	GLI 3400 Contacting, GLI 3700 Inductive	\triangle						
Dissolved Oxygen	LDO® Model 2, 5740 sc	•						
Dissolved Oxygen	5500	\triangle						
Flow	U53, F53 Sensors	\triangle						
Nitrate	NITRATAX™ sc, NO3D sc, NISE sc, AN-ISE sc	•						
Oil in Water	FP360 sc	•						
Organics	UVAS sc							
Ozone	9187 sc							
pH/ORP	pHD							
pH/ORP	pHD, pH Combination, LCP	\triangle						
Phosphate	PHOSPHAX™ sc							
Sludge Level	SONATAX™ sc							
Suspended Solids	SOLITAX™ sc, TSS sc							
Turbidity	1720E, FT660 sc, SS7 sc, ULTRATURB sc, SOLITAX sc, TSS sc							
Ultra Pure Conductivity	8310, 8311, 8312, 8315, 8316, 8317 Contacting	\triangle						
Ultra Pure pH/ORP	8362	\triangle						

= Digital = Analog

Connect up to two of any of the sensors listed above, in any combination, to meet your application needs. The diagrams below demonstrate the potential configurations. Operation of analog sensors requires the controller to be equipped with the appropriate sensor module. Contact Hach Technical Support for help with selecting the appropriate module.

Specifications*

Dimensions (H x W x

D)

5.7 in x 5.7 in x 7.1 in (144 mm x 144 mm x 181 mm) Graphic dot matrix LCD with LED

Display backlighting, transreflective

Display Size 1.9 x 2.7 in. (48 mm x 68 mm)

Display Resolution 240 x 160 pixels Weight 3.75 lbs. (1.70 kg) 100 - 240 V AC, 24 V DC

Power Requirements (Voltage)

Mode

Power Requirements 50/60 Hz (Hz)

Operating **Temperature Range**

Analog Outputs

-20 to 60 $^{\circ}\text{C}$, 0 to 95% RH non-condensing

Two (Five with optional expansion module) to isolated current outputs, max 550 Ω , Accuracy: ± 0.1% of FS (20mA) at 25 °C, \pm 0.5% of FS over -20 °C to 60 °C

Operational Mode: measurement

or calculated value

Analog Output Linear, Logarithmic, Bi-linear, PID **Functional Mode**

Security Levels 2 password-protected levels Mounting Wall, pole, and panel mounting

Configurations NEMA 4X/IP66 **Enclosure Rating Conduit Openings** 1/2 in NPT Conduit **Relay: Operational** Primary or secondary

> measurement, calculated value (dual channel only) or timer

Relay Functions

Relays

Scheduler (Timer), Alarm, Feeder Control, Event Control, Pulse Width Modulation, Frequency Control,

and Warning

Four electromechanical SPDT (Form C) contacts, 1200 W, 5 A

> MODBUS RS232/RS485, PROFIBUS DPV1, or HART 7.2

optional

Memory Backup

Communication

Electrical Certifications Flash memory

EMC

CE compliant for conducted and radiated emissions:

- CISPR 11 (Class A limits)

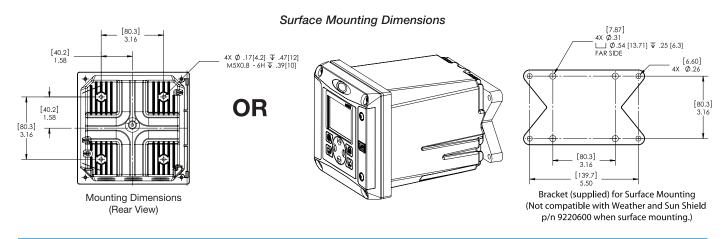
- EMC Immunity EN 61326-1 (Industrial limits)

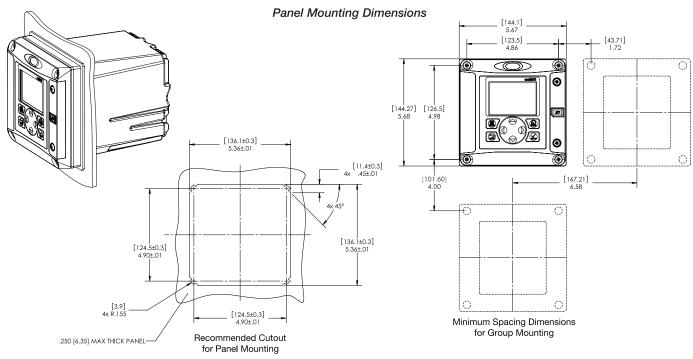
Safety

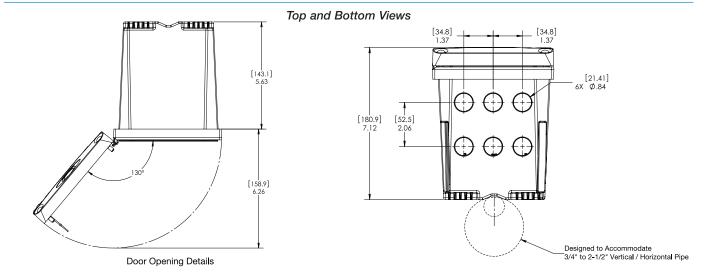
cETLus safety mark for:

- General Locations per ANSI/UL 61010-1 & CAN/CSA C22.2. No. 61010-1

- Hazardous Location Class I, Division 2, Groups A,B,C & D (Zone 2, Group IIC) per FM 3600 / FM 3611 & CSA C22.2 No. 213 M1987 with approved options and appropriately rated Class I, Division 2 or Zone 2 sensors


cULus safety mark


- General Locations per UL 61010-1 & CAN/CSA C22.2. No. 61010-1


*Subject to change without notice.

sc200™ Universal Controller 5

Dimensions

Ordering Information

sc200 for Hach Digital and Analog Sensors

LXV404.99.00552sc200 controller, 2 channels, digitalLXV404.99.00502sc200 controller, 1 channel, digitalLXV404.99.00102sc200 controller, 1 channel, pH/DOLXV404.99.00202sc200 controller, 1 channel, Conductivity

LXV404.99.01552 sc200 controller, 2 channels, digital, Modbus RS232/RS485

LXV404.99.00112 sc200 controller, 2 channel, pH/DO

Note: Other Sensor combinations are available. Please contact Hach Technical Support or your Hach representative.

Note: Communication options (MODBUS, Profibus DPV1, and HART) are available. Please contact Hach Technical Support or your Hach representative.

9500.99.00602 sc200 controller, 1 channel, ultrapure conductivity

9500.99.00702 sc200 controller, 1 channel, ultrapure pH

9500.99.00662 sc200 controller, 2 channel, ultrapure conductivity

9500.99.00772 sc200 controller, 2 channel, ultrapure pH

Sensor and Communication Modules

9012900 Analog pH/ORP and DO module for GLI Sensors9013000 Analog Conductivity module for GLI Sensors

9012700 Flow module

9012800 4-20 mA Input Module

9525700 Analog pH/ORP Module for Polymetron Sensors9525800 Analog Conductivity Module for Polymetron Sensors

9013200 Modbus 232/485 Module9173900 Profibus DP Module

9328100 HART Module

9334600 4-20 mA Output Module (Provides 3 additional mA Outputs)

Accessories

9220600 sc200 Weather and Sun Shield with UV Protection Screen

8809200 sc200 UV Protection Screen

9218200 SD card reader (USB) for connection to PC

9218100 4 GB SD card

HACH COMPANY World Headquarters: Loveland, Colorado USA

United States: 800-227-4224 tel 970-669-2932 fax orders@hach.com
Outside United States: 970-669-3050 tel 970-461-3939 fax int@hach.com

hach.com

3/4-inch Combination pH and ORP Sensor Kits

Use the Digital Gateway to make any Hach analog combination pH or ORP sensor compatible with the Hach sc1000 Controller.

Digital combination pH and ORP sensors are available in convertible, insertion, and sanitary mounting styles. Choose from rugged dome electrodes or "easy-to-clean" flat glass electrodes.

DW

ww

PW

IW

Features and Benefits

Low Price—High Performance

These combination sensors are designed for specialty applications for immersion or in-line mounting. The reference cell features a double-junction design for extended service life, and a built-in solution ground. The body is molded from chemically-resistant Ryton® or PVDF, and the reference junction is coaxial porous PTFE. All sensors are rated 0 to 105°C up to 100 psig, and have integral 4.5 m (15 ft.) cables with tinned leads. The PC-series (for pH) and RC-series (for ORP) combination sensors are ideal for measuring mild and aggressive media.

Special Electrode Configurations

Sensors with rugged dome electrodes, "easy-to-clean" flat glass electrodes, and even HF (hydrofluoric acid) resistant glass electrodes are available for a wide variety of process solutions.

Temperature Compensation Element Option

The PC-series combination pH sensors are available with or without a Pt 1000 ohm RTD temperature element. The RC-series combination ORP sensors are supplied without a temperature element.

Versatile Mounting Styles

Sensors are available in three mounting styles—convertible, insertion, and sanitary. Please turn to page 3 for more information.

Full-Featured "Plug and Play" Hach sc Digital Controllers

There are no complicated wiring or set up procedures with any Hach sc controller. Just plug in any combination of Hach digital sensors and it's ready to use—it's "plug and play."

One or multiple sensors—The sc controller family allows you to receive data from up to eight Hach digital sensors in any combination using a single controller.

Communications—Multiple alarm/control schemes are available using the relays and PID control outputs. Available communications include analog 4-20 mA, digital MODBUS[®] (RS485 and RS232) or Profibus DP protocols. (Other digital protocols are available. Contact your Hach representative for details.)

Data logger—A built-in data logger collects measurement data, calibration, verification points, and alarm history.

Specifications*

Most pH applications fall in the 2.5-12.5 pH range. General purpose pH glass electrodes perform well in this range. Some industrial applications require accurate measurements and control at pH values below 2 or above 12. Consult Hach Technical Support for details on these applications.

Combination pH Sensors

Measuring Range

0 to 14 pH

Accuracy

Less than 0.1 pH under reference conditions

Temperature Range

0 to 105°C (32 to 221°F)

Flow Rate

0 to 2 m/s (0 to 6.6 ft./s); non-abrasive

Pressure Range

0 to 6.9 bar at 100°C (0 to 100 psig at 212°F)

Signal Transmission Distance

100 m (328 ft.) when used with the Hach Digital Gateway and a Hach sc Digital Controller.

1000 m (3280 ft.) when used with the Hach Digital Gateway, Termination Box, and a Hach sc Digital Controller.

Sensor Cable

Integral coaxial cable (plus two conductors for temperature compensator option); 4.5 m (15 ft.) long

Wetted Materials

Convertible style: Ryton® body (glass filled)

Insertion style: PVDF body (Kynar®)

Sanitary style: 316 stainless steel sleeved PVDF body

Common materials for all sensor styles include PTFE double junction, glass process electrode, and Viton® O-rings

Warranty

90 days

Combination ORP Sensors

Measuring Range

-2000 to +2000 millivolts

Accuracy

Limited to calibration solution accuracy (± 20 mV)

Temperature Range

0 to 105°C (32 to 221°F)

Flow Rate

0 to 2 m/s (0 to 6.6 ft./s); non-abrasive

Pressure Range

0 to 6.9 bar at 100°C (0 to 100 psig at 212°F)

Signal Transmission Distance

100 m (328 ft.) when used with the Hach Digital Gateway and a Hach sc Digital Controller.

1000 m (3280 ft.) when used with the Hach Digital Gateway, Termination Box, and a Hach sc Digital Controller.

Sensor Cable

Integral coaxial cable; 4.5 m (15 ft.) long; terminated with stripped and tinned wires

Wetted Materials

Convertible style: Ryton® body (glass filled)

Insertion style: PVDF body (Kynar®)

Common materials for all sensor styles include PTFE double junction, glass with platinum process electrode, and Viton® Orings

Warranty

90 days

*Specifications subject to change without notice.

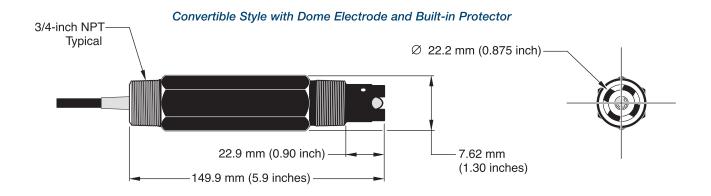
Ryton[®] is a registered trademark of Phillips 66 Co.; Viton[®] is a registered trademark of E.I. DuPont de Nemours + Co.; Kynar[®] is a registered trademark of Pennwalt Corp.

Engineering Specifications

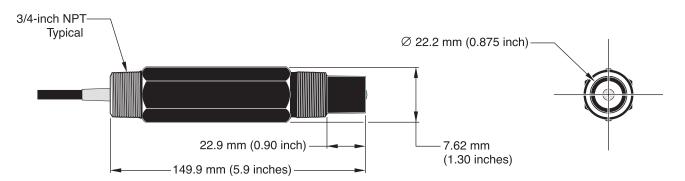
- The pH sensor shall be available in convertible, insertion or sanitary styles. The ORP sensor shall be available in only convertible or insertion styles.
- 2. The convertible style sensor shall have a Ryton[®] body. The insertion style sensor shall have a PVDF body. The sanitary style sensor shall have a 316 stainless steel sleeved PVDF body. Common materials for all sensor styles shall include a PTFE double junction, and Viton[®] O-rings. The pH sensor shall have a glass pH electrode. The ORP sensor shall have a platinum ORP electrode.
- The convertible style pH sensor shall be available with or without a built-in Pt 1000 ohm RTD temperature element. Insertion and sanitary style pH sensors shall have a built-in Pt 1000 ohm RTD temperature element. Convertible and insertion style ORP sensors shall not have a built-in temperature element.
- 4. The sensor shall communicate via MODBUS® RS-485 to a Hach sc Digital Controller.
- The sensor shall be Hach Company Model PC sc or PC-series for pH measurement or Model PC sc or RC-series for ORP measurement.

Dimensions

Convertible Style Sensor

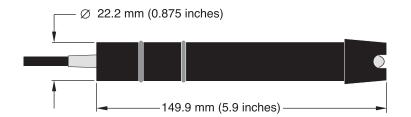

The convertible style sensor has a Ryton® body that features 3/4-inch NPT threads on both ends. The sensor can be directly mounted into a standard 3/4-inch pipe tee for flow-through mounting or fastened onto the end of a pipe for immersion mounting. The convertible style sensor enables inventory consolidation, thereby reducing associated costs. Mounting tees and immersion mounting hardware are offered in a variety of materials to suit application requirements.

Insertion Style Sensor


Insertion style sensors feature a longer, non-threaded PVDF body with two Viton® O-rings, providing a seal when used with the optional Hach insertion mount hardware assembly. This ball valve hardware enables sensor insertion and retraction from a pipe or vessel without having to stop the process flow.

Sanitary Style Sensor

The sanitary style sensor, offered for pH measurement, has a 316 stainless steel-sleeved PVDF body with a 2-inch flange. The sensor mates to a standard 2-inch Tri-Clover fitting. The optional Hach sanitary mounting hardware includes a standard 2-inch sanitary tee, sanitary clamp, and Viton[®] sanitary gasket.



Convertible Style with Flat Electrode

Dimensions continued

Insertion Style with Dome Electrode and Built-In Protector

Sanitary Style Ø 22.2 mm (0.875 inches) Ø 49.1 mm (1.96 inches) Ø 22 mm (0.87 inches) 88.9 mm (3.5 inches)

Ordering Information

Digital PC sc and RC sc 3/4-inch Combination pH/ORP Sensors

All PC sc and RC sc 3/4-inch combination sensors come complete with an integral 4.5 m (15 ft.) sensor cable, Digital Gateway, and 1 m (3.3 ft.) digital extension cable.

<u>Product Number</u>	<u>Measurement</u>	<u>Sensor Style</u>	Body Material	Electrode Type	Temp. Comp.
DPC1R1N	рН	Convertible	Ryton	General purpose glass	None
DPC1R1A	рН	Convertible	Ryton	General purpose glass	Pt 1000 ohm RTD
DPC1R2N	рН	Convertible	Ryton	Flat glass, general purpose	None
DPC1R2A	рН	Convertible	Ryton	Flat glass, general purpose	Pt 1000 ohm RTD
DPC1R3A	рН	Convertible	Ryton	HF-resistant glass (see Note)	Pt 1000 ohm RTD
DPC2K1A	рН	Insertion	PVDF	General purpose glass	Pt 1000 ohm RTD
DPC2K2A	рН	Insertion	PVDF	Flat Glass	Pt 1000 ohm RTD
DPC3K2A	рН	Sanitary	316 SS/PVDF	General purpose glass	Pt 1000 ohm RTD
DRC1R5N	ORP	Convertible	Ryton	Platinum	None
DRC2K5N	ORP	Insertion	PVDF	Platinum	None

NOTE

The HF (hydrofluoric acid) resistant glass electrode reduces the HF dissolution of the complete glass surface to extend the lifetime of the electrode in acid fluoride solutions. The electrode will last longer than conventional glass pH electrodes. How much longer depends on the HF concentration and temperature of the solution.

Replacement Digital Gateway

6120600 Use the Digital Gateway to connect analog PC and RC sensors to a Hach sc Digital Controller.

Ordering Information continued

Analog PC and RC 3/4-inch Combination pH/ORP Sensors

All PC and RC 3/4-inch combination sensors come with an integral 4.5 m (15 ft.) standard length sensor cable.

<u>Product Number</u>	<u>Measurement</u>	<u>Sensor Style</u>	Body Material	<u>Electrode Type</u>	Temp. Comp.
PC1R1N	рН	Convertible	Ryton	General purpose glass	None
PC1R1A	рН	Convertible	Ryton	General purpose glass	Pt 1000 ohm RTD
PC1R2N	рН	Convertible	Ryton	Flat glass, general purpose	None
PC1R2A	рН	Convertible	Ryton	Flat glass, general purpose	Pt 1000 ohm RTD
PC1R3A	рН	Convertible	Ryton	HF-resistant glass	Pt 1000 ohm RTD
PC2K1A	рН	Insertion	PVDF	General purpose glass	Pt 1000 ohm RTD
PC2K2A	рН	Insertion	PVDF	Flat Glass	Pt 1000 ohm RTD
PC3K2A	рН	Sanitary	316 SS/PVDF	General purpose glass	Pt 1000 ohm RTD
RC1R5N	ORP	Convertible	Ryton	Platinum	None
RC2K5N	ORP	Insertion	PVDF	Platinum	None

Accessories for Digital and Analog 3/4-inch combination pH/ORP Sensors

Cables

Digital cables are used only with digital sensors or gateways when connecting to a Hach sc Digital Controller.

 6122400
 Digital Extension Cable, 1 m (3.3 ft)

 5796000
 Digital Extension Cable, 7.7 m (25 ft)

 5796100
 Digital Extension Cable, 15 m (50 ft)

 5796200
 Digital Extension Cable, 31 m (100 ft)

Analog cables are used only with analog sensors, junction box, and controller.

1W1100 Analog Interconnect Cable (order per foot)

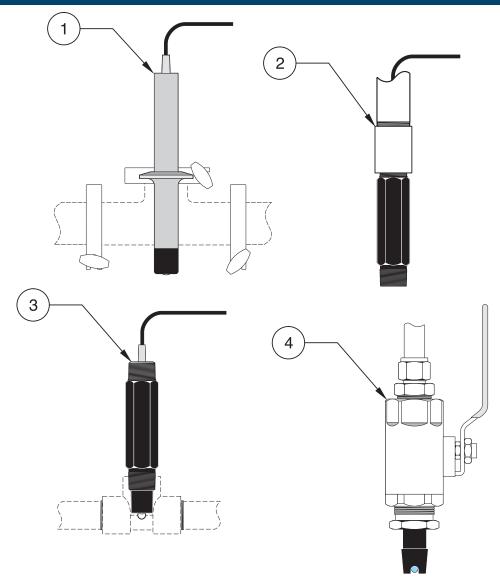
Digital Termination Box

Used with digital extension cables when the desired cable length between the digital sensor/digital gateway and the Hach sc Digital Controller is between 100 m (328 ft) and 1000 m (3280 ft).

5867000 Digital Termination Box

Analog Junction Box

Used with analog interconnect cable when the desired cable length between analog sensor and analog controller is greater than the standard length of sensor cable. Each junction box includes terminal strip and gasket.


60A2053 Junction Box, Surface-mount, aluminum (includes mounting hardware)

Junction Box, Pipe-mount, PVC, for 1/2-inch diameter pipe (includes mounting hardware)

Junction Box, Pipe-mount, PVC, for 1-inch diameter pipe (includes mounting hardware)

76A4010-001 Junction Box, NEMA 4X (no mounting hardware included)

Ordering Information continued

1. Sanitary Mounting

2. Immersion Mounting

3. Flow-through Mounting

4. Insertion Mounting

Mounting Hardware for PC sc and RC sc Combination Sensors

Sanitary Mount Hardware

9H1310 2-inch Sanitary Tee
9H1132 2-inch Sanitary Clamp
9H1384 2-inch Sanitary Viton Gasket

Immersion Mount Hardware

Each immersion hardware includes a 1/2-inch diameter x 4 foot long pipe, 1/2 x 3/4-inch NPT coupling, and plastic pipe-mount junction box with terminal strip.

MH432G CPVC Pipe

Flow-through Mount Hardware

Each tee is a standard 3/4-inch tee with 3/4-inch NPT threads on all three openings.

 MH313N3NZ
 316 SS Tee

 MH333N3NZ
 CPVC Tee

 MH373N3NZ
 PVC Tee

Insertion Mount Hardware

The insertion hardware includes a 1-1/2 inch ball valve, 1-1/2 inch NPT close nipple for process connection, sensor connection tube, stainless steel extension pipe, and stainless steel compression fitting with washer and lock nut.

MH116M3MZ 316 SS Hardware

To complete your pH and ORP measurement system, choose from these Hach controllers...

Model sc200 Controller

(see Lit. #2665)

The sc200 controller platform can be configured to operate either 2 Digital Sensor Inputs, or 1 or 2 Analog Sensor Inputs, or a combination of Digital and Analog Sensor Inputs. Customers may choose their communication options from a variety of offerings ranging from MODBUS RTU to Profibus DPV1.

sc200 for Hach Digital Sensors

LXV404.99.00552sc200 controller, 2 channel, digitalLXV404.99.00502sc200 controller, 1 channel, digitalLXV404.99.00512sc200 controller, 2 channel, digital & mA inputLXV404.99.00522sc200 controller, 2 channel, digital & pH/DOLXV404.99.00532sc200 controller, 2 channel, digital & ConductivityLXV404.99.00532sc200 controller, 2 channel, digital & Flow

sc200 for Hach Analog Sensors

LXV404.99.00102sc200 controller, 1 channel, pH/DOLXV404.99.00212sc200 controller, 2 channel, pH/DOLXV404.99.00222sc200 controller, 1 channel, ConductivityLXV404.99.00212sc200 controller, 2 channel, pH/DO & ConductivityLXV404.99.00302sc200 controller, 2 channel, FlowLXV404.99.00312sc200 controller, 2 channel, Flow & pH/DOLXV404.99.00322sc200 controller, 2 channel, Flow & Conductivity

Note: Other sensor combinations are available. Please contact Hach Technical Support or your Hach representative.

Note: Communication options (MODBUS and Profibus DPV1) are available.

Model sc1000 Controller

(see Lit. #2403)

Each sc1000 Probe Module provides power to the system and can accept up to 8 digital sensors/expansion boards. Probe Modules can be networked together to accommodate up to 32 digital sensors/expansion boards attached to the same network.

LXV402.99.00002 sc1000 Display Module

LXV400.99.1R572 sc1000 Probe Module, 4 sensors,

4 mA Out, 4 mA In, 4 Relays,

110-230V

LXV400.99.1B572 sc1000 Probe Module, 4 sensors,

4 mA Out, 4 mA In, 4 Relays, RS-485

(MODBUS), 110-230V

LXV400.99.1F572 sc1000 Probe Module, 4 sensors,

4 mA Out, 4 mA In, 4 Relays, PROFIBUS DP, 110-230V

LXV400.99.1R582 sc1000 Probe Module, 6 sensors,

4 mA Out, 4 mA In, 4 Relays, 110-230V

At Hach, it's about learning from our customers and providing the right answers. It's more than ensuring the quality of water—it's about ensuring the quality of life. When it comes to the things that touch our lives...

Keep it pure.

Make it simple.

Be right.

For current price information, technical support, and ordering assistance, contact the Hach office or distributor serving your area.

In the United States, contact:

HACH COMPANY World Headquarters

P.O. Box 389

Loveland, Colorado 80539-0389

U.S.A.

Telephone: 800-227-4224 Fax: 970-669-2932 E-mail: orders@hach.com

U.S. exporters and customers in Canada, Latin America, sub-Saharan Africa, Asia, and Australia/New Zealand, contact:

HACH COMPANY World Headquarters

P.O. Box 389

Loveland, Colorado 80539-0389

U.S.A.

Telephone: 970-669-3050 Fax: 970-461-3939 E-mail: intl@hach.com www.hach.com

In Europe, the Middle East, and Mediterranean Africa, contact:

HACH LANGE GmbH Willstätterstraße 11 D-40549 Düsseldorf GERMANY

Tel: +49 (0) 211 5288-0 Fax: +49 (0) 211 5288-143 E-mail: info@hach-lange.de www.hach-lange.com

LIT2470 Rev 2 Printed in U.S.A. ©Hach Company, 2016. All rights reserved.

In the interest of improving and updating its equipment, Hach Company reserves the right to alter specifications to equipment at any time.

95-Gallon OverPack Salvage Drum #A95OVER - 32" dia x 41.5", 1 each/package

Stock a SpillTech® OverPack with sorbents for emergency spill response, or use it as a salvage drum to ship damaged containers or hazardous waste.

- DOT-Approved for Salvage: All SpillTech® OverPacks are DOT-approved and X-rated for use as salvage drums. Helps companies conform to federal regulations when shipping damaged or leaking containers of hazardous materials, or absorbents contaminated with hazardous substances.
- Perfect for Spill Kits: Stores sorbent products (not included) for easy access as needed for spill control. Saves time when quick response is necessary.
- Sturdy Construction: 100% polyethylene OverPack resists chemicals, rust and corrosion for years of use. Integrated handles make them easy to lift, move or carry with standard material handling equipment. Twist-on, double-wall lid with closed-cell gasket provides sealed, secure closure to prevent leaks and protect contents from moisture, dirt and damage. Durable to withstand rough handling.
- Customized for You: We can customize a Spill Kit to your exact specifications, including the container, its contents and accessories, with no upcharge! Contact your local Distributor for details.

A950VER Specifications

Dimensions: ext. dia. 32" x 41.5" H

Shipping 31.75" W x 41.5" L x 31.75" H

Dimensions:

Sold as: 1 per package

Color: Yellow

Composition: Polyethylene

Weight: 48 lbs.

per Pallet: 3
Incinerable: No

UN RATING: 1H2/X295/S

Ship Class: 250

Metric Equivalent Specifications

Dimensions: ext. dia. 81.3cm x 105.4cm H

Shipping 80.6cm W x 105.4cm L x 80.6cm H

Dimensions:

Weight: 21.8 kg

Online: spilltech.com Phone: 1-800-228-3877 (N.Am.) 1-770-475-3877 (Other) Fax: 1-800-872-3764 (N.Am.) 1-770-410-1812 (Other) Email: sales@spilltech.com

A950VER Technical Information

Warnings & Restrictions:

There are no known warnings and restrictions for this product.

Regulations and Compliance:

49 CFR 173.3(c)(1) - If a container of hazardous waste is damaged or leaking, it can be placed in a compatible salvage drum that meets UN criteria for shipping

49 CFR 173.12(b)(2)(iv) - When labpacking, "Inner packagings...must be surrounded by a chemically compatible absorbent material in sufficient quantity to absorb the total liquid contents."

49 CFR 173.12(b) - A container used for labpacking must be "a UN 1A2 or UN 1B2 metal drum, a UN 1D plywood drum, a UN 1G fiber drum or a UN 1H2 plastic drum tested and marked at least for the Packing Group III performance level for liquids or solids."

Technical Documents:

(Available at **spilltech.com**)
Product Data Sheet (PDS)
Chemical Compatibility (CCG)

Phone: 1-800-228-3877 (N.Am.) 1-770-475-3877 (Other) Fax: 1-800-872-3764 (N.Am.) 1-770-410-1812 (Other)

Email: sales@spilltech.com

SAFETY DATA SHEET

Creation Date 12-Nov-2010 Revision Date 24-May-2017 Revision Number 5

1. Identification

Product Name Sulfuric Acid (Certified ACS Plus)

Cat No.: A300-212; A300-225LB; A300-500; A300-612GAL; A300-700LB;

A300C212; A300C212EA; A300P500; A300S212; A300S212EA;

A300S500; A300SI212

Synonyms Hydrogen sulfate; Vitriol brown oil; Oil of vitriol

Recommended Use Laboratory chemicals.

Uses advised against Not for food, drug, pesticide or biocidal product use

Details of the supplier of the safety data sheet

Company

Fisher Scientific One Reagent Lane Fair Lawn, NJ 07410 Tel: (201) 796-7100

Emergency Telephone Number

CHEMTREC®, Inside the USA: 800-424-9300 CHEMTREC®, Outside the USA: 001-703-527-3887

2. Hazard(s) identification

Classification

This chemical is considered hazardous by the 2012 OSHA Hazard Communication Standard (29 CFR 1910.1200)

Skin Corrosion/irritation

Serious Eye Damage/Eye Irritation

Specific target organ toxicity (single exposure)

Category 1

Category 1

Category 2

Category 3

Target Organs - Respiratory system.

Label Elements

Signal Word

Danger

Hazard Statements

Causes severe skin burns and eye damage May cause respiratory irritation

Precautionary Statements

Prevention

Do not breathe dust/fume/gas/mist/vapors/spray

Wear protective gloves/protective clothing/eye protection/face protection

Wash face, hands and any exposed skin thoroughly after handling

Use only outdoors or in a well-ventilated area

Response

Immediately call a POISON CENTER or doctor/physician

Inhalation

IF INHALED: Remove victim to fresh air and keep at rest in a position comfortable for breathing

Skin

IF ON SKIN (or hair): Take off immediately all contaminated clothing. Rinse skin with water/shower

Wash contaminated clothing before reuse

Eyes

IF IN EYES: Rinse cautiously with water for several minutes. Remove contact lenses, if present and easy to do. Continue rinsing **Ingestion**

IF SWALLOWED: Rinse mouth. DO NOT induce vomiting

Storage

Store locked up

Store in a well-ventilated place. Keep container tightly closed

Disposal

Dispose of contents/container to an approved waste disposal plant

Hazards not otherwise classified (HNOC)

WARNING! This product contains a chemical known in the State of California to cause cancer.

Unknown Acute Toxicity

3. Composition / information on ingredients

Component	CAS-No	Weight %
Sulfuric acid	7664-93-9	90 - 98
Water	7732-18-5	2 - 10

4. First-aid measures

General Advice Show this safety data sheet to the doctor in attendance. Immediate medical attention is

required.

Eye Contact Rinse immediately with plenty of water, also under the eyelids, for at least 15 minutes.

Immediate medical attention is required.

Skin Contact Wash off immediately with plenty of water for at least 15 minutes. Remove and wash

contaminated clothing before re-use. Call a physician immediately.

Inhalation If not breathing, give artificial respiration. Remove from exposure, lie down. Do not use

mouth-to-mouth method if victim ingested or inhaled the substance; give artificial respiration with the aid of a pocket mask equipped with a one-way valve or other proper respiratory

medical device. Call a physician immediately.

Ingestion Do not induce vomiting. Clean mouth with water. Never give anything by mouth to an

unconscious person. Call a physician immediately.

Most important symptoms/effects Causes burns by all exposure routes. Product is a corrosive material. Use of gastric

lavage or emesis is contraindicated. Possible perforation of stomach or esophagus should be investigated: Ingestion causes severe swelling, severe damage to the delicate tissue

and danger of perforation

Notes to Physician Treat symptomatically

5. Fire-fighting measures

Suitable Extinguishing Media CO 2, dry chemical, dry sand, alcohol-resistant foam.

Unsuitable Extinguishing Media DO NOT USE WATER

Flash Point Not applicable

Method - No information available

Autoignition Temperature

Explosion Limits

No information available

Upper No data available
Lower No data available
Sensitivity to Mechanical Impact No information available
Sensitivity to Static Discharge No information available

Specific Hazards Arising from the Chemical

Thermal decomposition can lead to release of irritating gases and vapors. The product causes burns of eyes, skin and mucous membranes.

Hazardous Combustion Products

Sulfur oxides Hydrogen

Protective Equipment and Precautions for Firefighters

As in any fire, wear self-contained breathing apparatus pressure-demand, MSHA/NIOSH (approved or equivalent) and full protective gear. Thermal decomposition can lead to release of irritating gases and vapors.

NFPA

Health	Flammability	Instability	Physical hazards
3	0	2	W

Accidental release measures

Personal Precautions Ensure adequate ventilation. Use personal protective equipment. Evacuate personnel to

safe areas. Keep people away from and upwind of spill/leak.

Environmental Precautions Should not be released into the environment.

Methods for Containment and Clean Soak up with inert absorbent material. Keep in suitable, closed containers for disposal. **Up**

7. Handling and storage

Handling Wear personal protective equipment. Do not get in eyes, on skin, or on clothing. Use only

under a chemical fume hood. Do not breathe vapors or spray mist. Do not ingest.

Storage Keep containers tightly closed in a dry, cool and well-ventilated place. Keep away from

water. Corrosives area.

8. Exposure controls / personal protection

Exposure Guidelines

Component	ACGIH TLV	OSHA PEL	NIOSH IDLH	Mexico OEL (TWA)
Sulfuric acid	TWA: 0.2 mg/m ³	(Vacated) TWA: 1 mg/m ³	IDLH: 15 mg/m ³	TWA: 1 mg/m ³
	_	TWA: 1 mg/m ³	TWA: 1 mg/m ³	_

Legend

ACGIH - American Conference of Governmental Industrial Hygienists

OSHA - Occupational Safety and Health Administration

NIOSH IDLH: The National Institute for Occupational Safety and Health Immediately Dangerous to Life or Health

Engineering Measures Use only under a chemical fume hood. Ensure adequate ventilation, especially in confined

areas. Ensure that eyewash stations and safety showers are close to the workstation

location.

Personal Protective Equipment

Eye/face Protection Wear appropriate protective eyeglasses or chemical safety goggles as described by

OSHA's eye and face protection regulations in 29 CFR 1910.133 or European Standard

EN166.

Skin and body protection Long sleeved clothing.

Respiratory Protection Follow the OSHA respirator regulations found in 29 CFR 1910.134 or European Standard

EN 149. Use a NIOSH/MSHA or European Standard EN 149 approved respirator if exposure limits are exceeded or if irritation or other symptoms are experienced.

Hygiene Measures Handle in accordance with good industrial hygiene and safety practice.

9. Physical and chemical properties

Physical State Liquid

Appearance Clear, Colorless to brown

Odor Odorless

Odor Threshold No information available

pH 0.3 (1N) **Melting Point/Range** 10 °C / 50 °F

Boiling Point/Range 290 - 338 °C / 554 - 640.4 °F

Flash PointNot applicableEvaporation RateSlower than etherFlammability (solid,gas)Not applicable

Flammability or explosive limits

Upper No data available
Lower No data available

Vapor Pressure < 0.001 mmHg @ 20 °C

Vapor Density 3.38 (Air = 1.0)

Specific Gravity 1.84

Solubility Soluble in water
Partition coefficient; n-octanol/water No data available

Autoignition Temperature No information available

Decomposition Temperature 340°C

Viscosity No information available

Molecular FormulaH2SO4Molecular Weight98.08

10. Stability and reactivity

Reactive Hazard Yes

Stability Reacts violently with water. Hygroscopic.

Conditions to Avoid Incompatible products. Excess heat. Exposure to moist air or water.

Incompatible Materials Water, Organic materials, Strong acids, Strong bases, Metals, Alcohols, Cyanides, Sulfides

Hazardous Decomposition Products Sulfur oxides, Hydrogen

Hazardous Polymerization Hazardous polymerization does not occur.

Hazardous Reactions

None under normal processing.

11. Toxicological information

Acute Toxicity

Product Information

Oral LD50 Based on ATE data, the classification criteria are not met. ATE > 2000 mg/kg. **Dermal LD50** Based on ATE data, the classification criteria are not met. ATE > 2000 mg/kg. Based on ATE data, the classification criteria are not met. ATE > 20 mg/l. Vapor LC50

Component Information

Component	LD50 Oral	LD50 Dermal	LC50 Inhalation		
Sulfuric acid	2140 mg/kg (Rat)	Not listed	LC50 = 510 mg/m³(Rat)2 h		
Water	-	Not listed	Not listed		

Toxicologically Synergistic

No information available

Products

Delayed and immediate effects as well as chronic effects from short and long-term exposure

Irritation Causes severe burns by all exposure routes

Sensitization No information available

Carcinogenicity The table below indicates whether each agency has listed any ingredient as a carcinogen.

Exposure to strong inorganic mists containing sulfuric acid may cause cancer by inhalation.

Component	CAS-No	IARC	NTP	ACGIH	OSHA	Mexico
Sulfuric acid	7664-93-9	Group 1	Known	A2	X	A2
Water	7732-18-5	Not listed				

IARC: (International Agency for Research on Cancer)

NTP: (National Toxicity Program)

IARC: (International Agency for Research on Cancer)

Group 1 - Carcinogenic to Humans

Group 2A - Probably Carcinogenic to Humans Group 2B - Possibly Carcinogenic to Humans

NTP: (National Toxicity Program)

Known - Known Carcinogen

Reasonably Anticipated - Reasonably Anticipated to be a Human

Carcinogen

ACGIH: (American Conference of Governmental Industrial

Mexico - Occupational Exposure Limits - Carcinogens

Hygienists)

A1 - Known Human Carcinogen

A2 - Suspected Human Carcinogen

A3 - Animal Carcinogen

ACGIH: (American Conference of Governmental Industrial Hygienists)

Mexico - Occupational Exposure Limits - Carcinogens

A1 - Confirmed Human Carcinogen A2 - Suspected Human Carcinogen

A3 - Confirmed Animal Carcinogen

A4 - Not Classifiable as a Human Carcinogen

A5 - Not Suspected as a Human Carcinogen **Mutagenic Effects** No information available

Reproductive Effects No information available.

Developmental Effects No information available.

No information available. **Teratogenicity**

STOT - single exposure Respiratory system

STOT - repeated exposure None known

Aspiration hazard No information available

delayed

Symptoms / effects.both acute and Product is a corrosive material. Use of gastric lavage or emesis is contraindicated. Possible perforation of stomach or esophagus should be investigated: Ingestion causes

severe swelling, severe damage to the delicate tissue and danger of perforation

Endocrine Disruptor Information No information available

Other Adverse Effects The toxicological properties have not been fully investigated.

12. Ecological information

Ecotoxicity

This product contains the following substance(s) which are hazardous for the environment. .

Component	Freshwater Algae	Freshwater Fish	Microtox	Water Flea
Sulfuric acid	-	LC50: > 500 mg/L, 96h static	-	EC50: 29 mg/L/24h
		(Brachydanio rerio)		

Persistence and Degradability No information available

Bioaccumulation/ AccumulationNo information available.

Mobility No information available.

13. Disposal considerations

Waste Disposal Methods

Chemical waste generators must determine whether a discarded chemical is classified as a hazardous waste. Chemical waste generators must also consult local, regional, and national hazardous waste regulations to ensure complete and accurate classification.

14. Transport information

DOT

UN-No UN1830
Proper Shipping Name Sulfuric acid

Hazard Class
Packing Group

TDG

UN-No UN1830

Proper Shipping Name SULFURIC ACID

Hazard Class 8
Packing Group ||

<u>IATA</u>

UN-No UN1830

Proper Shipping Name SULFURIC ACID

Hazard Class 8
Packing Group ||

IMDG/IMO

UN-No UN1830

Proper Shipping Name SULFURIC ACID

Hazard Class 8
Packing Group ||

Regulatory information

All of the components in the product are on the following Inventory lists: X = listed

International Inventories

Component	TSCA	DSL	NDSL	EINECS	ELINCS	NLP	PICCS	ENCS	AICS	IECSC	KECL
Sulfuric acid	Х	Х	-	231-639-5	-		Χ	Χ	Χ	Χ	Χ
Water	Х	Х	-	231-791-2	-		Х	-	Х	Х	Χ

Legend:

X - Listed

E - Indicates a substance that is the subject of a Section 5(e) Consent order under TSCA.

F - Indicates a substance that is the subject of a Section 5(f) Rule under TSCA.

- N Indicates a polymeric substance containing no free-radical initiator in its inventory name but is considered to cover the designated polymer made with any free-radical initiator regardless of the amount used.
- P Indicates a commenced PMN substance
- R Indicates a substance that is the subject of a Section 6 risk management rule under TSCA.
- S Indicates a substance that is identified in a proposed or final Significant New Use Rule
- T Indicates a substance that is the subject of a Section 4 test rule under TSCA.
- XU Indicates a substance exempt from reporting under the Inventory Update Rule, i.e. Partial Updating of the TSCA Inventory Data Base Production and Site Reports (40 CFR 710(B).
- Y1 Indicates an exempt polymer that has a number-average molecular weight of 1,000 or greater.
- Y2 Indicates an exempt polymer that is a polyester and is made only from reactants included in a specified list of low concern reactants that comprises one of the eligibility criteria for the exemption rule.

U.S. Federal Regulations

TSCA 12(b)

Not applicable

SARA 313

Component	CAS-No	Weight %	SARA 313 - Threshold Values %
Sulfuric acid	7664-93-9	90 - 98	1.0

SARA 311/312 Hazard Categories

Acute Health Hazard Yes
Chronic Health Hazard Yes
Fire Hazard No
Sudden Release of Pressure Hazard No
Reactive Hazard Yes

CWA (Clean Water Act)

Component	CWA - Hazar Substand		le CWA - Toxic Pollutants	CWA - Priority Pollutants
Sulfuric acid	X	1000 lb	-	-

Clean Air Act Not applicable

OSHA Occupational Safety and Health Administration

Not applicable

CERCLA

This material, as supplied, contains one or more substances regulated as a hazardous substance under the Comprehensive Environmental Response Compensation and Liability Act (CERCLA) (40 CFR 302)

Component	Hazardous Substances RQs	CERCLA EHS RQs
Sulfuric acid	1000 lb	1000 lb

California Proposition 65

This product contains the following proposition 65 chemicals

Component	CAS-No	California Prop. 65	Prop 65 NSRL	Category
Sulfuric acid	7664-93-9	Carcinogen	-	Carcinogen

U.S. State Right-to-Know

Regulations

Component	Massachusetts	New Jersey	Pennsylvania	Illinois	Rhode Island
Sulfuric acid	X	Х	Х	Х	Х
Water	-	-	X	-	-

U.S. Department of Transportation

Reportable Quantity (RQ): Y
DOT Marine Pollutant N
DOT Severe Marine Pollutant N

U.S. Department of Homeland Security

This product does not contain any DHS chemicals.

Other International Regulations

Mexico - Grade No information available

|--|

Prepared By Regulatory Affairs

Thermo Fisher Scientific

Email: EMSDS.RA@thermofisher.com

 Creation Date
 12-Nov-2010

 Revision Date
 24-May-2017

 Print Date
 24-May-2017

Revision Summary SDS sections updated. 2.

Disclaimer

The information provided in this Safety Data Sheet is correct to the best of our knowledge, information and belief at the date of its publication. The information given is designed only as a guidance for safe handling, use, processing, storage, transportation, disposal and release and is not to be considered a warranty or quality specification. The information relates only to the specific material designated and may not be valid for such material used in combination with any other materials or in any process, unless specified in the text

End of SDS

* PULSAFEEDER

The Pulsatron Series A Plus offers manual function controls over stroke length and stroke rate as standard with the option to select external pace for automatic control.

Ten distinct models are available, having pressure capabilities to 250 PSIG (17 BAR) @ 12 GPD (1.9 lph), and flow capacities to 58 GPD (9.1 lph) @ 100 PSIG (7.0 BAR), with a standard turndown ratio of 100:1, and optional ratio of 1000:1. Metering performance is reproducible to within ± 3% of maximum capacity.

Features

- Manual Control by on-line adjustable stroke rate and stroke length.
- Highly Reliable timing circuit.
- Circuit Protection against voltage and current upsets.
- Solenoid Protection by thermal overload with auto-reset.
- Water Resistant, for outdoor and indoor applications.
- Internally Dampened To Reduce Noise.
- Guided Ball Check Valve Systems, to reduce back flow and enhance outstanding priming characteristics.
- Few Moving Parts and Wall Mountable.
- Safe & Easy Priming with durable leak-free bleed valve assembly (standard).
- Optional Control: External pace with auto/manual selection.

Controls

Manual Stroke Rate

Manual Stroke Length

External Pacing - Optional

External Pace With Stop - Optional (125 SPM only)

Controls Options										
Feature	Standard Configuration	Optional Configuration 1								
External Pacing		Auto / Manual Selection								
External Pace w/ Stop (125 SPM only)	/-	Auto / Manual Selection ²								
Manual Stroke Rate	10:1 Ratio	100:1 Ratio								
Manual Stroke Length	10:1 Ratio	10:1 Ratio								
Total Turndown Ratio	100.1 Ratio	1000:1 Ratio								

Note 1: On S2, S3 & S4 sizes only.

Note 2: Not available on 1000:1 turndown pumps.

Tested and Certified by WQA against NSF/ANSI 61 & 372

Operating Benefits

- Reliable metering performance.
- Rated "hot" for continuous duty.
- High viscosity capability.
- · Leak-free, sealless, liquid end.

Aftermarket

- KOPkits
- Gauges
- Dampeners
- Pressure Relief Valves
- Tanks
- Pre-Engineered Systems
- Process Controllers
 (MicroVision)

PULSAfron[®] Series A Plus Electronic Metering Pumps

PULSAiron Series A Plus

Specifications and Model Selection

	MODEL		LBC2	LB02	LBC3	LB03	LB04	LB64	LBC4	LBS2	LBS3	LBS4
Capacity		GPH	0.25	0.25	0.42	0.50	1.00	1.25	2.00	0.50	1.38	2.42
nominal		GPD	6	6	10	12	24	30	48	12	33	58
(max.)		LPH	0.9	0.9	1.6	1.9	3.8	4.7	7.6	1.9	5.2	9.14
Pressure ³ (max.)	GFPP, PVDF, 316SS or PVC (W code) w/TFE Seats) PVC (V code) Viton or CSPE Seats / Degas Liquid End	PSIG	250 (17) 150 (10)	150 (10)	250 (17)	150 (10)	100 (7)	100 (7)	50 (3.3)	250 (17)	150 (10)	100 (7)
Connections:		Tubing		1/4" ID X 3/8" OD 3/8" ID X 1/2" OD						174	ID X 3/8" (DD
		Piping	1/4" FNPT									
Strokes/Minute		SPM			125						250	

Note 3: Pumps with rated pressure above 150 PSI will be de-rated to 150 PSI Max. when selecting certain valve options, see Price Book for details

Engineering Data

Pump Head Materials Available: GFPPL

PVC PVDF

316 SS

Diaphragm: PTFE-faced CSPE-backed

Check Valves Materials Available:

Seats/O-Rings: PTFE

CSPE Viton

Balls: Ceramic

PTFE 316 SS

Alloy C

Fittings Materials Available: GFPPL

PVC

PVDF

Bleed Valve: Same as fitting and check valve

selected, except 316SS

Injection Valve & Foot Valve Assy: Same as fitting and check valve

selected

Tubing: Clear PVC

White PE

Important: Material Code - GFPPL=Glass-filled Polypropylene, PVC=Polyvinyl Chloride, PE=Polyethylene, PVDF=Polyvinylidene Fluoride, CSPE=Generic formulation of Hypalon, a registered trademark of E.I. DuPont Company. Viton is a registered trademark of E.I. DuPont Company. PVC wetted end recommended for sodium hypochlorite.

Engineering Data

Reproducibility: +/- 3% at maximum capacity

Viscosity Max CPS: 1000 CPS

Stroke Frequency Max SPM: 125 / 250 by Model Stroke Frequency Turn-Down Ratio: 10:1 /100:1 by Model

Stroke Length Turn-Down Ratio: 10:

Power Input: 115 VAC/50-60 HZ/1 ph 230 VAC/50-60 HZ/1 ph

Average Current Draw:

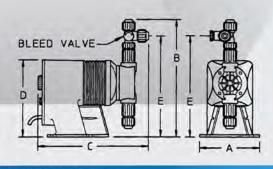
 @ 115 VAC; Amps:
 0.6 Amps

 @ 230 VAC; Amps:
 0.3 Amps

 Peak Input Power:
 130 Watts

 Average Input Power @ Max SPM:
 50 Watts

Custom Engineered Designs – Pre-Engineered Systems

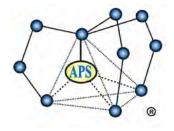

Pre-Engineered Systems

Pulsafeeder's Pre-Engineered Systems are designed to provide complete chemical feed solutions for all electronic metering applications. From stand alone simplex pH control applications to full-featured, redundant sodium hypochlorite disinfection metering, these rugged fabricated assemblies offer turn-key simplicity and industrial-grade durability. The UV-stabilized, high-grade HDPE frame offers maximum chemical compatibility and structural rigidity. Each system is factory assembled and hydrostatically tested prior to shipment.

Dimensions

Series A PLUS Dimensions (inches)							
Model No.	A	В	С	D	E	Shipping Weight	
LB02 / S2	5.0	9.6	9.5	6.5	8.2	10	
LBC2	5.0	9.9	9.5	6.5	8.5	10	
LBC3	50	9.9	9.5	6.5	8.5	10	
LB03 / S3	5.0	9.9	9.5	6.5	8.5	10	
LB04 /S4	5.0	9.9	9.5	6.5	8.5	10	
LB64	5.0	9.9	9.5	6.5	8.5	10	
LBC4	5.0	9.9	9.5	6.5	8.5	10	

NOTE: Inches X 2.54 = cm



www.pulsatron.com

★PULSAFEEDER

Applied Polymer Systems

519 Industrial Drive, Woodstock, GA 30189

www.siltstop.com

Phone: 678-494-5998 Toll-free: 866-200-9868 Fax: 678-494-5298

APS 700 Series Floc Logs®

Polyacrylamide Sediment and Turbidity Control Applicator Logs

APS 700 Series Floc Logs are a group of soil-specific tailored log-blocks that contain blends of water treatment components and polyacrylamide co-polymer for water clarification. They reduce and prevent fine particles and colloidal clays from suspension in stormwater. There are several types of Floc Logs designed to treat most water and soil types. Contact Applied Polymer Systems, Inc. or your local distributor for free testing and site-specific application information.

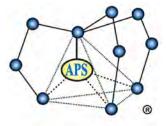
Primary Applications

- Mine tailings and waste pile ditches
- Stormwater drainage from construction and building sites
- Road and highway construction runoff ditches
- Ditch and treatment system placement for all forms of highly turbid waters (less than 4% solids)
- · Dredging operations as a flocculent

Features and Benefits

- · Removes solubilized soils and clay from water
- Prevents colloidal solutions in water within ditch systems
- Binds cationic metals within water, reducing solubilization
- Binds pesticides and fertilizers within runoff water
- Reduces operational and cleanup costs
- Reduces environmental risks and helps meet compliance

Specifications / Compliances


- ANSI/NSF Standard 60 Drinking water treatment chemical additives
- 48h or 96h Acute Toxicity Tests (*D. magna* or *O. mykiss*)
- 7 Day Chronic Toxicity Tests (P. promealas or C. dubia

<u>Packaging</u>

APS 700 Series Floc Logs are packaged in boxes of four (4)

Technical Information

Appearance - semi-solid block Biodegradable internal coconut skeleton Percent Moisture - 40% maximum pH 0.5% Solution - 6-8 Shelf Life – up to 5 years when stored out of UV rays

Applied Polymer Systems

519 Industrial Drive, Woodstock, GA 30189

www.siltstop.com

Phone: 678-494-5998 Toll-free: 866-200-9868 Fax: 678-494-5298

Placement

Floc Logs are designed for placement within ditches averaging three feet wide by two feet deep. Floc log placement is based on gallon per minute flow rates. Note: actual GPM or dosage will vary based on site criteria and soil/water testing.

Directions for Use

(Water and Floc Log Mixing is Very Important!)

APS 700 Series Floc Logs should be placed within the upper quarter to half of a *stabilized* ditch system or as close as possible to active earth moving activities. Floc Logs have built in ropes with attachment loops which can be looped over stakes to ensure they remain where placed. Mixing is key! If the flow rate is too slow, adding sand bags, cinder blocks, etc., can create the turbulence required for proper mixing. Floc Logs are designed to treat dirty water, not liquid mud; when the water contains heavy solids (exceeding 4%), it will be necessary to create a sediment or grit pit to let the heavy solids settle before treating the water.

Floc Logs must not be placed in areas where heavy erosion would result in the Floc Logs becoming buried. Where there is heavy sedimentation, maintenance will be required.

APS 700 Series Floc Logs can easily be moved to different locations as site conditions change. Water quality will be improved with the addition of a dispersion field or soft armor covered ditch checks below the Floc Log(s) to collect flocculated particulate. Construction of mixing weirs may be required in areas where short ditch lines, swelling clays, heavy particle concentrations, or steep slopes may be encountered.

Cleanup:

Latex or rubber gloves are recommended for handling during usage. Use soap and water to wash hands after handling.

Precautions / Limitations

- APS 700 Series Floc Logs are extremely slippery when wet.
- Clean up spills quickly. Do not use water unless necessary as extremely slippery conditions will
 result and if water is necessary, use pressure washer.
- APS Floc Log will remain viable for up to 5 years when stored out of UV rays.
- APS 700 Series Floc Logs have been specifically tailored to specific water and soil types and samples must be tested. Testing is necessary and is free.
- For product information, treatment system design assistance, or performance issues, contact Applied Polymer Systems.

APPENDIX E

Endangered Species Act Assessment

United States Department of the Interior

FISH AND WILDLIFE SERVICE

New England Ecological Services Field Office 70 Commercial Street, Suite 300 Concord, NH 03301-5094 Phone: (603) 223-2541 Fax: (603) 223-0104

http://www.fws.gov/newengland

In Reply Refer To: June 02, 2021

Consultation Code: 05E1NE00-2021-SLI-3694

Event Code: 05E1NE00-2021-E-11045 Project Name: 74 Middlesex Avenue

Subject: List of threatened and endangered species that may occur in your proposed project

location or may be affected by your proposed project

To Whom It May Concern:

The enclosed species list identifies threatened, endangered, proposed and candidate species, as well as proposed and final designated critical habitat, that may occur within the boundary of your proposed project and/or may be affected by your proposed project. The species list fulfills the requirements of the U.S. Fish and Wildlife Service (Service) under section 7(c) of the Endangered Species Act (Act) of 1973, as amended (16 U.S.C. 1531 *et seq.*).

New information based on updated surveys, changes in the abundance and distribution of species, changed habitat conditions, or other factors could change this list. Please feel free to contact us if you need more current information or assistance regarding the potential impacts to federally proposed, listed, and candidate species and federally designated and proposed critical habitat. Please note that under 50 CFR 402.12(e) of the regulations implementing section 7 of the Act, the accuracy of this species list should be verified after 90 days. This verification can be completed formally or informally as desired. The Service recommends that verification be completed by visiting the ECOS-IPaC website at regular intervals during project planning and implementation for updates to species lists and information. An updated list may be requested through the ECOS-IPaC system by completing the same process used to receive the enclosed list.

The purpose of the Act is to provide a means whereby threatened and endangered species and the ecosystems upon which they depend may be conserved. Under sections 7(a)(1) and 7(a)(2) of the Act and its implementing regulations (50 CFR 402 *et seq.*), Federal agencies are required to utilize their authorities to carry out programs for the conservation of threatened and endangered species and to determine whether projects may affect threatened and endangered species and/or designated critical habitat.

A Biological Assessment is required for construction projects (or other undertakings having similar physical impacts) that are major Federal actions significantly affecting the quality of the human environment as defined in the National Environmental Policy Act (42 U.S.C. 4332(2) (c)). For projects other than major construction activities, the Service suggests that a biological evaluation similar to a Biological Assessment be prepared to determine whether the project may affect listed or proposed species and/or designated or proposed critical habitat. Recommended contents of a Biological Assessment are described at 50 CFR 402.12.

If a Federal agency determines, based on the Biological Assessment or biological evaluation, that listed species and/or designated critical habitat may be affected by the proposed project, the agency is required to consult with the Service pursuant to 50 CFR 402. In addition, the Service recommends that candidate species, proposed species and proposed critical habitat be addressed within the consultation. More information on the regulations and procedures for section 7 consultation, including the role of permit or license applicants, can be found in the "Endangered Species Consultation Handbook" at:

http://www.fws.gov/endangered/esa-library/pdf/TOC-GLOS.PDF

Please be aware that bald and golden eagles are protected under the Bald and Golden Eagle Protection Act (16 U.S.C. 668 *et seq.*), and projects affecting these species may require development of an eagle conservation plan

(http://www.fws.gov/windenergy/eagle_guidance.html). Additionally, wind energy projects should follow the wind energy guidelines (http://www.fws.gov/windenergy/) for minimizing impacts to migratory birds and bats.

Guidance for minimizing impacts to migratory birds for projects including communications towers (e.g., cellular, digital television, radio, and emergency broadcast) can be found at: http://www.fws.gov/migratorybirds/CurrentBirdIssues/Hazards/towers/towers.htm; http://www.towerkill.com; and http://www.fws.gov/migratorybirds/CurrentBirdIssues/Hazards/towers/comtow.html.

We appreciate your concern for threatened and endangered species. The Service encourages Federal agencies to include conservation of threatened and endangered species into their project planning to further the purposes of the Act. Please include the Consultation Tracking Number in the header of this letter with any request for consultation or correspondence about your project that you submit to our office.

Attachment(s):

Official Species List

Official Species List

This list is provided pursuant to Section 7 of the Endangered Species Act, and fulfills the requirement for Federal agencies to "request of the Secretary of the Interior information whether any species which is listed or proposed to be listed may be present in the area of a proposed action".

This species list is provided by:

New England Ecological Services Field Office 70 Commercial Street, Suite 300 Concord, NH 03301-5094 (603) 223-2541

Project Summary

Consultation Code: 05E1NE00-2021-SLI-3694
Event Code: 05E1NE00-2021-E-11045
Project Name: 74 Middlesex Avenue
Project Type: DEVELOPMENT

Project Description: Proposed laboratory building.

Project Location:

Approximate location of the project can be viewed in Google Maps: https://www.google.com/maps/@42.39329295,-71.08370950685946,14z

Counties: Middlesex County, Massachusetts

Endangered Species Act Species

There is a total of 0 threatened, endangered, or candidate species on this species list.

Species on this list should be considered in an effects analysis for your project and could include species that exist in another geographic area. For example, certain fish may appear on the species list because a project could affect downstream species.

IPaC does not display listed species or critical habitats under the sole jurisdiction of NOAA Fisheries¹, as USFWS does not have the authority to speak on behalf of NOAA and the Department of Commerce.

See the "Critical habitats" section below for those critical habitats that lie wholly or partially within your project area under this office's jurisdiction. Please contact the designated FWS office if you have questions.

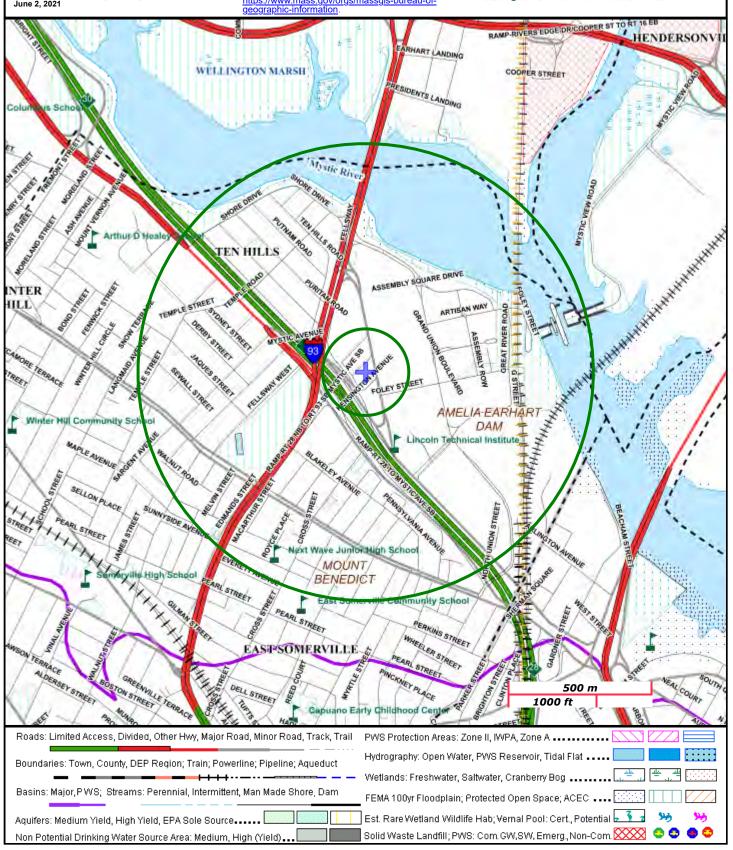
1. <u>NOAA Fisheries</u>, also known as the National Marine Fisheries Service (NMFS), is an office of the National Oceanic and Atmospheric Administration within the Department of Commerce.

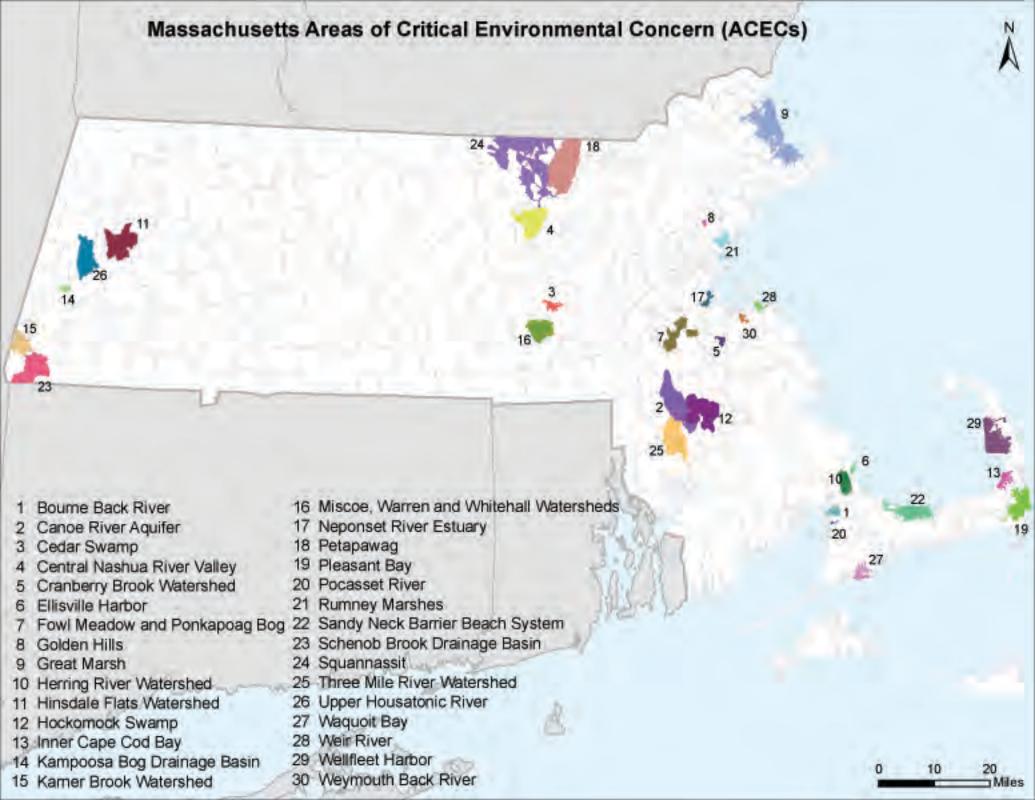
Critical habitats

THERE ARE NO CRITICAL HABITATS WITHIN YOUR PROJECT AREA UNDER THIS OFFICE'S JURISDICTION.

MassDEP - Bureau of Waste Site Cleanup Phase 1 Site Assessment Map: 500 feet & 0.5 Mile Radii

Site Information:


74 MIDDLESEX AVENUE 74 MIDDLESEX AVENUE SOMERVILLE, MA


NAD83 UTM Meters: 4695552mN , 328498mE (Zone: 19) June 2, 2021

The information shown is the best available at the date of printing. However, it may be incomplete. The responsible party and LSP are ultimately responsible for ascertaining the true conditions surrounding the site. Metadata for data layers shown on this map can be found at: be found at:

FEDERALLY LISTED ENDANGERED AND THREATENED SPECIES IN MASSACHUSETTS

COUNTY	SPECIES	FEDERAL STATUS	GENERAL LOCATION/HABITAT	TOWNS	
	Piping Plover	Threatened	Coastal Beaches	All Towns	
	Roseate Tern	Endangered	Coastal beaches and the Atlantic Ocean	All Towns	
Barnstable	Northeastern beach tiger beetle	Threatened	Coastal Beaches	Chatham	
	Sandplain gerardia	Endangered	Open areas with sandy soils.	Sandwich and Falmouth.	
	Northern Red- bellied Cooter	Endangered	Inland Ponds and Rivers	Bourne (north of the Cape Cod Canal)	
	Red Knot ¹	Threatened	Coastal Beaches and Rocky Shores, sand and mud flats	Coastal Towns	
	Northern Long- eared Bat	Threatened Final 4(d) Rule	Winter- mines and caves, Summer – wide variety of forested habitats	Statewide	
	Bog Turtle	Threatened	Wetlands	Egremont and Sheffield	
Berkshire	Northern Long- eared Bat	Threatened Final 4(d) Rule	Winter- mines and caves, Summer – wide variety of forested habitats	Statewide	
	Piping Plover	Threatened	Coastal Beaches	Fairhaven, Dartmouth, Westport	
	Roseate Tern	Endangered	Coastal beaches and the Atlantic Ocean	Fairhaven, New Bedford, Dartmouth, Westport	
Bristol	Northern Red- bellied Cooter	Endangered	Inland Ponds and Rivers	Taunton	
	Red Knot ¹	Threatened	Coastal Beaches and Rocky Shores, sand and mud flats	Coastal Towns	
	Northern Long- eared Bat	Threatened Final 4(d) Rule	Winter- mines and caves, Summer – wide variety of forested habitats	Statewide	
	Roseate Tern	Endangered	Coastal beaches and the Atlantic Ocean	All Towns	
	Piping Plover	Threatened	Coastal Beaches	All Towns	
Dukes	Northeastern beach tiger beetle	Threatened	Coastal Beaches	Aquinnah and Chilmark	
	Sandplain gerardia	Endangered	Open areas with sandy soils.	West Tisbury	
	Red Knot ¹	Threatened	Coastal Beaches and Rocky Shores, sand and mud flats	Coastal Towns	
	Northern Long- eared Bat	Threatened Final 4(d) Rule	Winter- mines and caves, Summer – wide variety of forested habitats	Statewide	

FEDERALLY LISTED ENDANGERED AND THREATENED SPECIES IN MASSACHUSETTS

COUNTY	OUNTY SPECIES FEDERAL STATUS		GENERAL LOCATION/HABITAT	TOWNS	
Essex	Small whorled Pogonia	Threatened	Forests with somewhat poorly drained soils and/or a seasonally high water table	Gloucester, Essex and Manchester	
	Piping Plover	Threatened	Coastal Beaches	Gloucester, Essex, Ipswich, Rowley, Revere, Newbury, Newburyport and Salisbury	
	Red Knot ¹	Threatened	Coastal Beaches and Rocky Shores, sand and mud flats	Coastal Towns	
	Northern Long- eared Bat	Threatened Final 4(d) Rule	Winter- mines and caves, Summer – wide variety of forested habitats	Statewide	
	Northeastern bulrush	Endangered	Wetlands	Montague, Warwick	
Franklin	Dwarf wedgemussel	Endangered	Mill River	Whately	
	Northern Long- eared Bat	Threatened Final 4(d) Rule	Winter- mines and caves, Summer – wide variety of forested habitats	Statewide	
	Small whorled Pogonia	Threatened	Forests with somewhat poorly drained soils and/or a seasonally high water table	Hadley	
	Puritan tiger beetle	Threatened	Sandy beaches along the Connecticut River	Northampton and Hadley	
Hampshire	Dwarf wedgemussel	Endangered	Rivers and Streams.	Hatfield, Amherst and Northampton	
	Northern Long- eared Bat	Threatened Final 4(d) Rule	Winter- mines and caves, Summer – wide variety of forested habitats	Statewide	
	Small whorled Pogonia	Threatened	Forests with somewhat poorly drained soils and/or a seasonally high water table	Southwick	
Hampden	Northern Long- eared Bat	Threatened Final 4(d) Rule	Winter- mines and caves, Summer – wide variety of forested habitats	Statewide	
	Small whorled Pogonia	Threatened	Forests with somewhat poorly drained soils and/or a seasonally high water table	Groton	
Middlesex	Northern Long- eared Bat	Threatened Final 4(d) Rule	Winter- mines and caves, Summer – wide variety of forested habitats	Statewide	
Nantucket	Piping Plover	Threatened	Coastal Beaches	Nantucket	
	Roseate Tern	Endangered	Coastal beaches and the Atlantic Ocean	Nantucket	
	American burying beetle	Endangered	Upland grassy meadows	Nantucket	
	Red Knot ¹	Threatened	Coastal Beaches and Rocky Shores, sand and mud flats Coastal Towns		
	Northern Long- eared Bat	Threatened Final 4(d) Rule	Winter- mines and caves, Summer – wide variety of forested habitats	Statewide	

FEDERALLY LISTED ENDANGERED AND THREATENED SPECIES IN MASSACHUSETTS

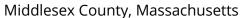
COUNTY	SPECIES	FEDERAL STATUS	GENERAL LOCATION/HABITAT	TOWNS	
Plymouth	Piping Plover	Threatened	Coastal Beaches	Scituate, Marshfield, Duxbury, Plymouth, Wareham and Mattapoisett	
	Northern Red- bellied Cooter	Endangered	Inland Ponds and Rivers	Kingston, Middleborough, Carver, Plymouth, Bourne, Wareham, Halifax, and Pembroke	
	Roseate Tern	Endangered	Coastal beaches and the Atlantic Ocean	Plymouth, Marion, Wareham, and Mattapoisett.	
	Red Knot ¹	Red Knot ¹ Threatened Coastal Beaches and Rocky Shores, sand and mud flats		Coastal Towns	
	Northern Long- eared Bat	Threatened Final 4(d) Rule	Winter- mines and caves, Summer – wide variety of forested habitats	Statewide	
Suffolk	Piping Plover	Threatened	Coastal Beaches	Revere, Winthrop	
	Red Knot ¹	Threatened	Coastal Beaches and Rocky Shores, sand and mud flats	Coastal Towns	
	Northern Long- eared Bat	Threatened Final 4(d) Rule	Winter- mines and caves, Summer – wide variety of forested habitats	Statewide	
Worcester	Small whorled Pogonia	Threatened	Forests with somewhat poorly drained soils and/or a seasonally high water table	Leominster	
	Northern Long- eared Bat	Threatened Final 4(d) Rule	Winter- mines and caves, Summer – wide variety of forested habitats	Statewide	

¹Migratory only, scattered along the coast in small numbers

⁻Eastern cougar and gray wolf are considered extirpated in Massachusetts.

⁻Endangered gray wolves are not known to be present in Massachusetts, but dispersing individuals from source populations in Canada may occur statewide.

⁻Critical habitat for the Northern Red-bellied Cooter is present in Plymouth County.


IPaC

IPaC resource list

This report is an automatically generated list of species and other resources such as critical habitat (collectively referred to as *trust resources*) under the U.S. Fish and Wildlife Service's (USFWS) jurisdiction that are known or expected to be on or near the project area referenced below. The list may also include trust resources that occur outside of the project area, but that could potentially be directly or indirectly affected by activities in the project area. However, determining the likelihood and extent of effects a project may have on trust resources typically requires gathering additional site-specific (e.g., vegetation/species surveys) and project-specific (e.g., magnitude and timing of proposed activities) information.

Below is a summary of the project information you provided and contact information for the USFWS office(s) with jurisdiction in the defined project area. Please read the introduction to each section that follows (Endangered Species, Migratory Birds, USFWS Facilities, and NWI Wetlands) for additional information applicable to the trust resources addressed in that section.

Location

Local office

New England Ecological Services Field Office

(603) 223-2541

(603) 223-0104

70 Commercial Street, Suite 300 Concord, NH 03301-5094

http://www.fws.gov/newengland

Endangered species

This resource list is for informational purposes only and does not constitute an analysis of project level impacts.

The primary information used to generate this list is the known or expected range of each species. Additional areas of influence (AOI) for species are also considered. An AOI includes areas outside of the species range if the species could be indirectly affected by activities in that area (e.g., placing a dam upstream of a fish population even if that fish does not occur at the dam site, may indirectly impact the species by reducing or eliminating water flow downstream). Because species can move, and site conditions can change, the species on this list are not guaranteed to be found on or near the project area. To fully determine any potential effects to species, additional site-specific and project-specific information is often required.

Section 7 of the Endangered Species Act **requires** Federal agencies to "request of the Secretary information whether any species which is listed or proposed to be listed may be present in the area of such proposed action" for any project that is conducted, permitted, funded, or licensed by any Federal agency. A letter from the local office and a species list which fulfills this requirement can **only** be obtained by requesting an official species list from either the Regulatory Review section in IPaC (see directions below) or from the local field office directly.

For project evaluations that require USFWS concurrence/review, please return to the IPaC website and request an official species list by doing the following:

- 1. Draw the project location and click CONTINUE.
- 2. Click DEFINE PROJECT.
- 3. Log in (if directed to do so).
- 4. Provide a name and description for your project.
- 5. Click REQUEST SPECIES LIST.

Listed species¹ and their critical habitats are managed by the <u>Ecological Services Program</u> of the U.S. Fish and Wildlife Service (USFWS) and the fisheries division of the National Oceanic and Atmospheric Administration (NOAA Fisheries²).

Species and critical habitats under the sole responsibility of NOAA Fisheries are **not** shown on this list. Please contact <u>NOAA Fisheries</u> for <u>species under their jurisdiction</u>.

- 1. Species listed under the <u>Endangered Species Act</u> are threatened or endangered; IPaC also shows species that are candidates, or proposed, for listing. See the <u>listing status page</u> for more information. IPaC only shows species that are regulated by USFWS (see FAQ).
- 2. <u>NOAA Fisheries</u>, also known as the National Marine Fisheries Service (NMFS), is an office of the National Oceanic and Atmospheric Administration within the Department of Commerce.

THERE ARE NO ENDANGERED SPECIES EXPECTED TO OCCUR AT THIS LOCATION.

Migratory birds

Certain birds are protected under the Migratory Bird Treaty Act^{1} and the Bald and Golden Eagle Protection Act^{2} .

Any person or organization who plans or conducts activities that may result in impacts to migratory birds, eagles, and their habitats should follow appropriate regulations and consider implementing appropriate conservation measures, as described <u>below</u>.

- 1. The Migratory Birds Treaty Act of 1918.
- 2. The Bald and Golden Eagle Protection Act of 1940.

Additional information can be found using the following links:

- Birds of Conservation Concern http://www.fws.gov/birds/management/managed-species/
 birds-of-conservation-concern.php
- Measures for avoiding and minimizing impacts to birds
 http://www.fws.gov/birds/management/project-assessment-tools-and-guidance/conservation-measures.php
- Nationwide conservation measures for birds http://www.fws.gov/migratorybirds/pdf/management/nationwidestandardconservationmeasures.pdf

The birds listed below are birds of particular concern either because they occur on the <u>USFWS Birds of Conservation Concern</u> (BCC) list or warrant special attention in your project location. To learn more about the levels of concern for birds on your list and how this list is generated, see the FAQ <u>below</u>. This is not a list of every bird you may find in this location, nor a guarantee that every bird on this list will be found in your project area. To see exact locations of where birders and the general public have sighted birds in and around your project area, visit the <u>E-bird data mapping tool</u> (Tip: enter your location, desired date range and a species on your list). For projects that occur off the Atlantic Coast, additional maps and models detailing the relative occurrence and abundance of bird species on your list are available. Links to additional information about Atlantic Coast birds, and other important information about your migratory bird list, including how to properly interpret and use your migratory bird report, can be found <u>below</u>.

For guidance on when to schedule activities or implement avoidance and minimization measures to reduce impacts to migratory birds on your list, click on the PROBABILITY OF PRESENCE SUMMARY at the top of your list to see when these birds are most likely to be present and breeding in your project area.

NAME

BREEDING SEASON (IF A
BREEDING SEASON IS INDICATED
FOR A BIRD ON YOUR LIST, THE
BIRD MAY BREED IN YOUR
PROJECT AREA SOMETIME WITHIN
THE TIMEFRAME SPECIFIED,
WHICH IS A VERY LIBERAL
ESTIMATE OF THE DATES INSIDE
WHICH THE BIRD BREEDS
ACROSS ITS ENTIRE RANGE.

"BREEDS ELSEWHERE" INDICATES
THAT THE BIRD DOES NOT LIKELY
BREED IN YOUR PROJECT AREA.)

Bald Eagle Haliaeetus leucocephalus

This is not a Bird of Conservation Concern (BCC) in this area, but warrants attention because of the Eagle Act or for potential susceptibilities in offshore areas from certain types of development or activities.

https://ecos.fws.gov/ecp/species/1626

Breeds Oct 15 to Aug 31

Black-billed Cuckoo Coccyzus erythropthalmus

This is a Bird of Conservation Concern (BCC) throughout its range in the continental USA and Alaska.

https://ecos.fws.gov/ecp/species/9399

Breeds May 15 to Oct 10

Bobolink Dolichonyx oryzivorus

This is a Bird of Conservation Concern (BCC) throughout its range in the continental USA and Alaska.

Breeds May 20 to Jul 31

Canada Warbler Cardellina canadensis

This is a Bird of Conservation Concern (BCC) throughout its range in the continental USA and Alaska.

Breeds May 20 to Aug 10

Cerulean Warbler Dendroica cerulea

This is a Bird of Conservation Concern (BCC) throughout its range in the continental USA and Alaska.

https://ecos.fws.gov/ecp/species/2974

Breeds Apr 29 to Jul 20

Dunlin Calidris alpina arcticola

This is a Bird of Conservation Concern (BCC) only in particular Bird Conservation Regions (BCRs) in the continental USA

Breeds elsewhere

Evening Grosbeak Coccothraustes vespertinus

This is a Bird of Conservation Concern (BCC) throughout its range in the continental USA and Alaska.

Breeds elsewhere

Kentucky Warbler Oporornis formosus

This is a Bird of Conservation Concern (BCC) throughout its range in the continental USA and Alaska.

Breeds Apr 20 to Aug 20

Lesser Yellowlegs Tringa flavipes

This is a Bird of Conservation Concern (BCC) throughout its range in the continental USA and Alaska. https://ecos.fws.gov/ecp/species/9679

Breeds elsewhere

Nelson's Sparrow Ammodramus nelsoni

This is a Bird of Conservation Concern (BCC) throughout its range in the continental USA and Alaska.

Breeds May 15 to Sep 5

Prairie Warbler Dendroica discolor

This is a Bird of Conservation Concern (BCC) throughout its range in the continental USA and Alaska.

Breeds May 1 to Jul 31

Prothonotary Warbler Protonotaria citrea

This is a Bird of Conservation Concern (BCC) throughout its range in the continental USA and Alaska.

Breeds Apr 1 to Jul 31

Red-headed Woodpecker Melanerpes erythrocephalus

This is a Bird of Conservation Concern (BCC) throughout its range in the continental USA and Alaska.

Breeds May 10 to Sep 10

Red-throated Loon Gavia stellata

This is a Bird of Conservation Concern (BCC) throughout its range in the continental USA and Alaska.

Breeds elsewhere

Rusty Blackbird Euphagus carolinus

This is a Bird of Conservation Concern (BCC) throughout its range in the continental USA and Alaska.

Breeds elsewhere

Semipalmated Sandpiper Calidris pusilla

This is a Bird of Conservation Concern (BCC) throughout its range in the continental USA and Alaska.

Breeds elsewhere

Snowy Owl Bubo scandiacus

This is a Bird of Conservation Concern (BCC) throughout its range in the continental USA and Alaska.

Breeds elsewhere

Wood Thrush Hylocichla mustelina

This is a Bird of Conservation Concern (BCC) throughout its range in the continental USA and Alaska.

Breeds May 10 to Aug 31

Probability of Presence Summary

The graphs below provide our best understanding of when birds of concern are most likely to be present in your project area. This information can be used to tailor and schedule your project activities to avoid or minimize impacts to birds. Please make sure you read and understand the FAQ "Proper Interpretation and Use of Your Migratory Bird Report" before using or attempting to interpret this report.

Probability of Presence (■)

Each green bar represents the bird's relative probability of presence in the 10km grid cell(s) your project overlaps during a particular week of the year. (A year is represented as 12 4-week months.) A taller bar indicates a higher probability of species presence. The survey effort (see below) can be used to establish a level of confidence in the presence score. One can have higher confidence in the presence score if the corresponding survey effort is also high.

How is the probability of presence score calculated? The calculation is done in three steps:

- 1. The probability of presence for each week is calculated as the number of survey events in the week where the species was detected divided by the total number of survey events for that week. For example, if in week 12 there were 20 survey events and the Spotted Towhee was found in 5 of them, the probability of presence of the Spotted Towhee in week 12 is 0.25.
- 2. To properly present the pattern of presence across the year, the relative probability of presence is calculated. This is the probability of presence divided by the maximum probability of presence across all weeks. For example, imagine the probability of presence in week 20 for the Spotted Towhee is 0.05, and that the probability of presence at week 12 (0.25) is the maximum of any week of the year. The relative probability of presence on week 12 is 0.25/0.25 = 1; at week 20 it is 0.05/0.25 = 0.2.
- 3. The relative probability of presence calculated in the previous step undergoes a statistical conversion so that all possible values fall between 0 and 10, inclusive. This is the probability of presence score.

To see a bar's probability of presence score, simply hover your mouse cursor over the bar.

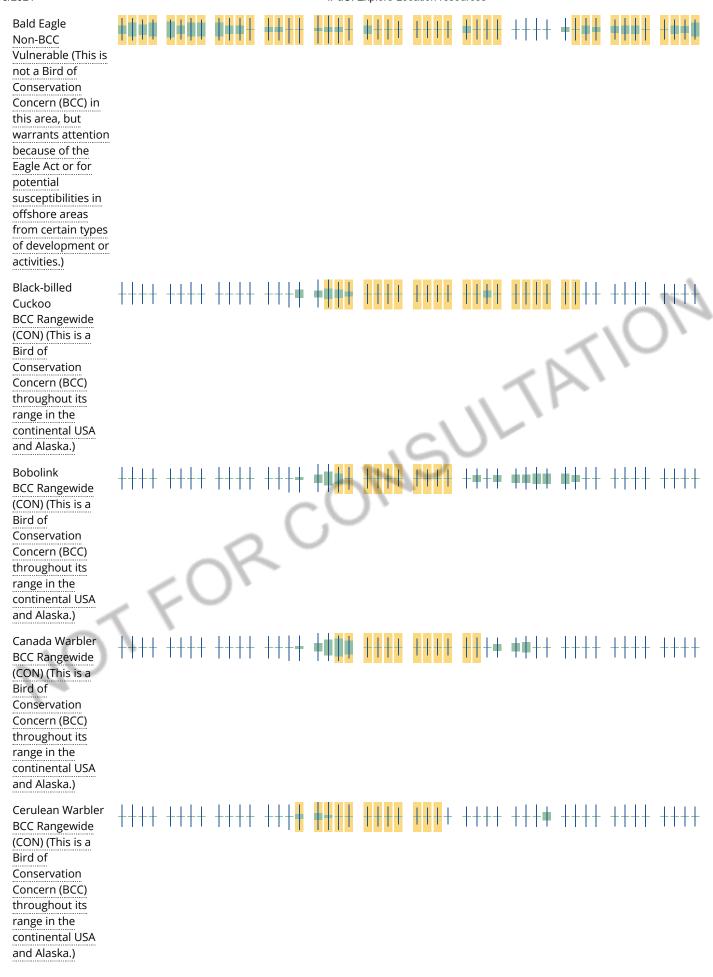
Breeding Season (

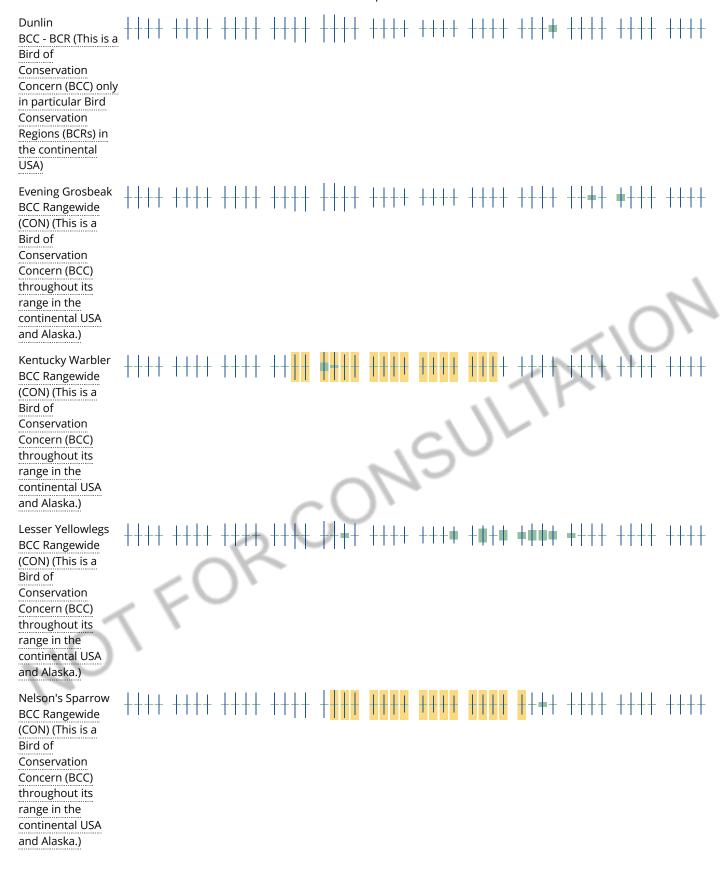
Yellow bars denote a very liberal estimate of the time-frame inside which the bird breeds across its entire range. If there are no yellow bars shown for a bird, it does not breed in your project area.

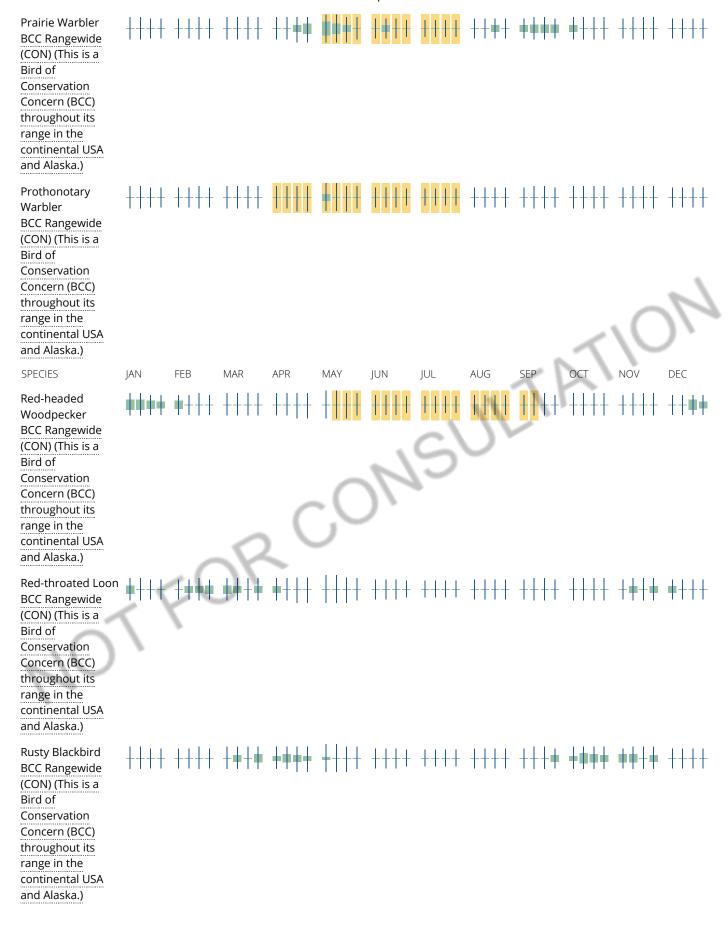
Survey Effort (1)

Vertical black lines superimposed on probability of presence bars indicate the number of surveys performed for that species in the 10km grid cell(s) your project area overlaps. The number of surveys is expressed as a range, for example, 33 to 64 surveys.

To see a bar's survey effort range, simply hover your mouse cursor over the bar.


No Data (-)


A week is marked as having no data if there were no survey events for that week.


Survey Timeframe

Surveys from only the last 10 years are used in order to ensure delivery of currently relevant information. The exception to this is areas off the Atlantic coast, where bird returns are based on all years of available data, since data in these areas is currently much more sparse.

Tell me more about conservation measures I can implement to avoid or minimize impacts to migratory birds.

Nationwide Conservation Measures describes measures that can help avoid and minimize impacts to all birds at any location year round. Implementation of these measures is particularly important when birds are most likely to occur in the project area. When birds may be breeding in the area, identifying the locations of any active nests and avoiding their destruction is a very helpful impact minimization measure. To see when birds are most likely to occur and be breeding in your project area, view the Probability of Presence Summary. Additional measures or permits may be advisable depending on the type of activity you are conducting and the type of infrastructure or bird species present on your project site.

What does IPaC use to generate the migratory birds potentially occurring in my specified location?

The Migratory Bird Resource List is comprised of USFWS <u>Birds of Conservation Concern (BCC)</u> and other species that may warrant special attention in your project location.

The migratory bird list generated for your project is derived from data provided by the <u>Avian Knowledge Network (AKN)</u>. The AKN data is based on a growing collection of <u>survey</u>, <u>banding</u>, <u>and citizen science datasets</u> and is queried and filtered to return a list of those birds reported as occurring in the 10km grid cell(s) which your project intersects, and that have been identified as warranting special attention because they are a BCC species in that area, an eagle (<u>Eagle Act</u> requirements may apply), or a species that has a particular vulnerability to offshore activities or development.

Again, the Migratory Bird Resource list includes only a subset of birds that may occur in your project area. It is not representative of all birds that may occur in your project area. To get a list of all birds potentially present in your project area, please visit the AKN Phenology Tool.

What does IPaC use to generate the probability of presence graphs for the migratory birds potentially occurring in my specified location?

The probability of presence graphs associated with your migratory bird list are based on data provided by the <u>Avian Knowledge Network (AKN)</u>. This data is derived from a growing collection of <u>survey</u>, <u>banding</u>, <u>and citizen science datasets</u>.

Probability of presence data is continuously being updated as new and better information becomes available. To learn more about how the probability of presence graphs are produced and how to interpret them, go the Probability of Presence Summary and then click on the "Tell me about these graphs" link.

How do I know if a bird is breeding, wintering, migrating or present year-round in my project area?

To see what part of a particular bird's range your project area falls within (i.e. breeding, wintering, migrating or year-round), you may refer to the following resources: The Cornell Lab of Ornithology All About Birds Bird Guide, or (if you are unsuccessful in locating the bird of interest there), the Cornell Lab of Ornithology Neotropical Birds guide. If a bird on your migratory bird species list has a breeding season associated with it, if that bird does occur in your project area, there may be nests present at some point within the timeframe specified. If "Breeds elsewhere" is indicated, then the bird likely does not breed in your project area.

What are the levels of concern for migratory birds?

Migratory birds delivered through IPaC fall into the following distinct categories of concern:

- 1. "BCC Rangewide" birds are <u>Birds of Conservation Concern</u> (BCC) that are of concern throughout their range anywhere within the USA (including Hawaii, the Pacific Islands, Puerto Rico, and the Virgin Islands);
- 2. "BCC BCR" birds are BCCs that are of concern only in particular Bird Conservation Regions (BCRs) in the continental USA; and
- 3. "Non-BCC Vulnerable" birds are not BCC species in your project area, but appear on your list either because of the <u>Eagle Act</u> requirements (for eagles) or (for non-eagles) potential susceptibilities in offshore areas from certain types of development or activities (e.g. offshore energy development or longline fishing).

Although it is important to try to avoid and minimize impacts to all birds, efforts should be made, in particular, to avoid and minimize impacts to the birds on this list, especially eagles and BCC species of rangewide concern. For more information on conservation measures you can implement to help avoid and minimize migratory bird impacts and requirements for eagles, please see the FAQs for these topics.

Details about birds that are potentially affected by offshore projects

For additional details about the relative occurrence and abundance of both individual bird species and groups of bird species within your project area off the Atlantic Coast, please visit the <u>Northeast Ocean Data Portal</u>. The Portal also offers data and information about other taxa besides birds that may be helpful to you in your project review. Alternately, you may download the bird model results files underlying the portal maps through the <u>NOAA NCCOS</u> <u>Integrative Statistical Modeling and Predictive Mapping of Marine Bird Distributions and Abundance on the Atlantic Outer Continental Shelf</u> project webpage.

Bird tracking data can also provide additional details about occurrence and habitat use throughout the year, including migration. Models relying on survey data may not include this information. For additional information on marine bird tracking data, see the <u>Diving Bird Study</u> and the <u>nanotag studies</u> or contact <u>Caleb Spiegel</u> or <u>Pam Loring</u>.

What if I have eagles on my list?

If your project has the potential to disturb or kill eagles, you may need to <u>obtain a permit</u> to avoid violating the Eagle Act should such impacts occur.

Proper Interpretation and Use of Your Migratory Bird Report

The migratory bird list generated is not a list of all birds in your project area, only a subset of birds of priority concern. To learn more about how your list is generated, and see options for identifying what other birds may be in your project area, please see the FAQ "What does IPaC use to generate the migratory birds potentially occurring in my specified location". Please be aware this report provides the "probability of presence" of birds within the 10 km grid cell(s) that overlap your project; not your exact project footprint. On the graphs provided, please also look carefully at the survey effort (indicated by the black vertical bar) and for the existence of the "no data" indicator (a red horizontal bar). A high survey effort is the key component. If the survey effort is high, then the probability of presence score can be viewed as more dependable. In contrast, a low survey effort bar or no data bar means a lack of data and, therefore, a lack of certainty about presence of the species. This list is not perfect; it is simply a starting point for identifying what birds of concern have the potential to be in your project area, when they might be there, and if they might be breeding (which means nests might be present). The list helps you know what to look for to confirm presence, and helps guide you in knowing when to implement conservation measures to avoid or minimize potential impacts from your project activities, should presence be confirmed. To learn more about conservation measures, visit the FAQ "Tell me about conservation measures I can implement to avoid or minimize impacts to migratory birds" at the bottom of your migratory bird trust resources page.

Facilities

National Wildlife Refuge lands

Any activity proposed on lands managed by the <u>National Wildlife Refuge</u> system must undergo a 'Compatibility Determination' conducted by the Refuge. Please contact the individual Refuges to discuss any questions or concerns.

THERE ARE NO REFUGE LANDS AT THIS LOCATION.

Fish hatcheries

THERE ARE NO FISH HATCHERIES AT THIS LOCATION.

Wetlands in the National Wetlands Inventory

Impacts to <u>NWI wetlands</u> and other aquatic habitats may be subject to regulation under Section 404 of the Clean Water Act, or other State/Federal statutes.

For more information please contact the Regulatory Program of the local <u>U.S. Army Corps of Engineers District</u>.

WETLAND INFORMATION IS NOT AVAILABLE AT THIS TIME

This can happen when the National Wetlands Inventory (NWI) map service is unavailable, or for very large projects that intersect many wetland areas. Try again, or visit the NWI map to view wetlands at this location.

Data limitations

The Service's objective of mapping wetlands and deepwater habitats is to produce reconnaissance level information on the location, type and size of these resources. The maps are prepared from the analysis of high altitude imagery. Wetlands are identified based on vegetation, visible hydrology and geography. A margin of error is inherent in the use of imagery; thus, detailed on-the-ground inspection of any particular site may result in revision of the wetland boundaries or classification established through image analysis.

The accuracy of image interpretation depends on the quality of the imagery, the experience of the image analysts, the amount and quality of the collateral data and the amount of ground truth verification work conducted.

Metadata should be consulted to determine the date of the source imagery used and any mapping problems.

Wetlands or other mapped features may have changed since the date of the imagery or field work. There may be occasional differences in polygon boundaries or classifications between the information depicted on the map and the actual conditions on site.

Data exclusions

Certain wetland habitats are excluded from the National mapping program because of the limitations of aerial imagery as the primary data source used to detect wetlands. These habitats include seagrasses or submerged aquatic vegetation that are found in the intertidal and subtidal zones of estuaries and nearshore coastal waters. Some deepwater reef communities (coral or tuberficid worm reefs) have also been excluded from the inventory. These habitats, because of their depth, go undetected by aerial imagery.

Data precautions

Federal, state, and local regulatory agencies with jurisdiction over wetlands may define and describe wetlands in a different manner than that used in this inventory. There is no attempt, in either the design or products of this inventory, to define the limits of proprietary jurisdiction of any Federal, state, or local government or to establish the geographical scope of the regulatory programs of government agencies. Persons intending to engage in activities involving modifications within or adjacent to wetland areas should seek the advice of appropriate federal, state, or local agencies concerning specified agency regulatory programs and proprietary jurisdictions that may affect such activities.

Rare species viewer

Town	Common Name	Scientific Name	Taxonomic Group	MESA Status	Most Recent Obs.
SOMERVILLE	Common Tern	Sterna hirundo	Bird	Special Concern	2017

List provided by Mass.gov (https://www.mass.gov/service-details/rare-species-viewer), accessed 6/2/2021.

APPENDIX F

National Historical Preservation Act Review

Massachusetts Cultural Resource Information System MACRIS

MACRIS Search Results

Search Criteria: Street No: 74; Street Name: Middlesex ave; Resource Type(s): ü, Area, Building, Burial Ground, Object, Structure;

Inv. No. Property Name Street Town Year

Wednesday, May 5, 2021 Page 1 of 1

Massachusetts Cultural Resource Information System MACRIS

MACRIS Search Results

Search Criteria: Town(s): Somerville; Street No: 845; Street Name: McGrath Hwy; Resource Type(s): Area, Building, Burial Ground, Object, Structure;

Inv. No. Property Name Street Town Year

Wednesday, May 5, 2021 Page 1 of 1