

NOTICE OF INTENT FOR DISCHARGE PURSUANT TO MASSACHUSETTS REMEDIATION GENERAL PERMIT MAG910000

600 MASSACHUSETTS AVENUE CAMBRIDGE, MASSACHUSETTS

JANUARY 25, 2021

Prepared For:

United States Environmental Protection Agency Office of Ecosystem Protection 5 Post Office Square, Suite 100 Mail Code OEP06-01 Boston, MA 02109-3912

On Behalf Of:

NEI General Contracting 27 Pacella Park Drive Randolph, MA 02368

2269 Massachusetts Avenue Cambridge, MA 02140 www.mcphailgeo.com (617) 868-1420

PROJECT NO. 6691

January 25, 2021

United States Environmental Protection Agency Office of Ecosystem Protection 5 Post Office Square, Suite 100 Mail Code OEP06-01 Boston, MA 02109-3912

Attention:EPA/OEP RGP Applications CoordinatorReference:600 Massachusetts Avenue; Cambridge, MassachusettsNotice of Intent for Temporary Construction Dewatering Discharge;
Massachusetts Remediation General Permit MAG910000

Ladies and Gentlemen:

On behalf of NEI General Contracting, McPhail Associates, LLC (McPhail) has prepared the attached Notice of Intent (NOI) for coverage under the Remediation General Permit (RGP) MAG910000 for the discharge of construction dewatering effluent into the Charles River via the City of Cambridge drainage system. The temporary construction dewatering discharge will occur during redevelopment of the property located at 600 Massachusetts Avenue in Cambridge, Massachusetts (subject site). Refer to **Figure 1** for the general site locus.

These services were performed and this permit application was prepared in accordance with the authorization of Cifrino Mass Ave Realty LLC. These services are subject to the limitations contained in **Appendix A**.

This project is considered Activity Category III-G as defined in the RGP. Category III-G is defined as Contaminated Site Dewatering from Sites with Known Contamination. Based on current groundwater analysis completed at the subject site, the constituents of concern (COCs) are those identified under subcategory A (inorganics). The Notice of Intent (NOI) Form contained in the RGP permit is included in **Appendix B**.

APPLICANT/OPERATOR

The applicant for the Notice of Intent-Remediation General Permit is:

NEI General Contracting 27 Pacella Park Drive Randolph, MA 02368

Attention: Mr. Michael Martin

Tel: 781-356-7666 Email: <u>mmartin@neigc.com</u>

EXISTING SITE CONDITIONS

The subject site is comprised of the properties identified as 596-600 Massachusetts Avenue that are bounded by Green Street to the south and Massachusetts Avenue to the north. The subject site abuts existing buildings to the east and west which are located within a city block that is bounded by River and Pearl Streets. The boundaries of the subject site, which define the limits of our work, are shown on the enclosed **Figure 2**.

The approximately 22,000 square-foot subject site is occupied by a 4-story brick building and its remaining portions are occupied by a single-story building that are constructed on a common foundation. The common foundation occupies the entire area of the subject site and contains one level of below grade space, the bottom of which is located at about Elevation +17.8. The average ground surface level along Massachusetts Avenue and Green Street is at about Elevation +26 and Elevation +24, respectively. Elevations referenced herein are in feet and refer to the Cambridge City Base (CCB) Datum.

REDEVELOPMENT

The redevelopment of the subject site is understood to include the demolition of the eastern portion of the one-story building and replacement with a new six-story structure that will consist of residential units on the upper levels and commercial space on the first level. The existing four-story building is planned to be renovated. Based on our correspondence with the design team, the lowest level floor slab within the southern portion of the existing one-story building will be lowered by about 3 feet below the existing lowest level floor slab, from approximately Elevation +17.8 to about Elevation +14.8.

SITE ENVIRONMENTAL SETTING AND SURROUNDING HISTORICAL PLACES

Based on an online edition of the Massachusetts Geographic Information Systems MassDEP Phase I Map, the subject site is not located within the boundaries of a Sole Source Aquifer, Potentially Productive Aquifer or within a Zone II, Interim Wellhead Protection Area as defined by the Massachusetts Department of Environmental Protection. Further, there are no public drinking water supply wells, no Areas of Critical Environmental Concern, no fish habitats, no habitats of Species of Special Concern or Threatened or Endangered Species within specified distances of the subject site. The Phase I Map indicates that there are no water bodies or wetland areas at the subject site. The closest body of water is the Charles River located approximately 3,500 feet to west and south of the subject site. No areas designated as solid waste sites (landfills) are noted as being located within 1,000 feet of the site. A copy of the MassDEP Phase I Map is included in **Appendix C**.

A review of information provided by the U.S. Fish and Wildlife Service in an Information for Planning and Conservation (IPaC) Trust Resource Report for the subject site did not identify the presence of threatened or endangered species at or in the vicinity of the discharge location and/or discharge outfall. Further, the Trust Resource Report did not identify the presence of a critical habitat in the vicinity of the discharge outfall and/or discharge location. Based upon the above, the site is considered a Criterion A pursuant to Appendix IV

of the RGP. A copy of the IPaC Trust Resource Report and U.S. Fish and Wildlife Service's Nationwide Standard Conservation Measures are included in **Appendix C**.

The subject site building, listed at 596-610 Massachusetts Avenue that was constructed in 1899, is listed by the Massachusetts Historical Commission (MHC) under MHC# CAM 632 and under the historic name of Manhattan Market – Purity Supreme Super Market. The subject site property is further identified by the National Register of Historic Places as part of the larger Central Square Historic District listed under Reference #900000128. A copy of the State of Massachusetts MACRIS report is included in **Appendix C**. As further discussed below, treated construction dewatering effluent will be discharged into the City of Cambridge drain system that flows into the Charles River. The dewatering of groundwater at the subject site during redevelopment activities will be temporary and intermittent, and groundwater discharged as part of the redevelopment will be controlled and monitored. Treatment systems will consist of temporary structures. Therefore, based on the anticipated duration of construction dewatering and the location of its discharge into the Charles River, construction dewatering activities are not considered to affect the historical elements of the subject site historical listings. Hence, the site meets Permit Eligibility Criterion B in accordance with Appendix III of the RGP.

SITE AND RELEASE HISTORY

Based on available historical records, the subject site was likely developed in the 1820's. The existing subject site building was constructed between 1897 and 1902 based on Sanborn Fire Insurance Maps of the Central Square area and was utilized as the Manhattan Market from as early as 1888 to about 1938, then as a bakery from as early as 1934 to sometime between 1950 and 1974. Reportedly, new building facades were constructed in 1938-1939. Since 1974, Supreme Liquors has occupied the subject site building.

Based upon a review of the MassDEP online database for Waste Site and Reportable Releases, the subject site is not a listed release site.

CONSTRUCTION SITE DEWATERING DETAILS

Excavation for the proposed lowest level slab will extend to approximately Elevation +14.8 and excavation for foundation bearings surfaces is anticipated to extend to below recorded groundwater levels, which range from about Elevation +12.8 to Elevation +12.3. Given the proposed depth of the footing bearing surfaces below the existing groundwater level, it is anticipated that localized sumping will control groundwater flow into the footing excavations. It is anticipated that the rate of construction dewatering to facilitate excavation will be on the order of 50 to 100 gallons per minute (gpm). This estimate does not include surface run-off which will be removed from the excavation during periods of precipitation.

Given that the common foundation of the existing buildings occupy the entire area of the subject site, temporary on-site collection and recharge of groundwater is not feasible as part of the proposed construction activities. As a result, construction dewatering will require

the discharge of collected groundwater into the municipal storm drain system under the requested Remediation General Permit.

The location of the relevant stormwater catch basin in relation to the subject site and the flow path of the discharge is shown in plans provided by the City of Cambridge drainage system which is included in **Figure 3** and **Appendix B**. A review of available subgrade utility plans provided by the City of Cambridge indicates that stormwater is collected within catch basins along Green Street and connects to the stormwater drain system. The stormwater drains beneath this portion of Green Street runs east underneath Pearl Street, north toward Massachusetts Avenue then south beneath Brookline Street, and east beneath Pacific Street before running under railroad tacks and running south underneath Endicott Street to Outfall No. D10 into the Charles River.

SUMMARY OF GROUNDWATER ANALYSIS

In May and December 2020, McPhail obtained samples of groundwater at the subject site from observation well B-2(OW). The groundwater samples were submitted to a certified laboratory for analysis for the presence of Type A (Inorganics) compounds required to be tested for under the EPA's Remediation General Permit (RGP) application as well as Extractable Petroleum Hydrocarbons (EPH), Organochlorine Pesticides, Polychlorinated Biphenyls (PCBs), Semi-Volatile Organic Compounds (SVOCs), and VOCs. Analytical results of the testing of the above referenced groundwater samples that were obtained are summarized on the enclosed **Table 1**. Laboratory data is included in **Appendix D**.

An upstream surface water sample was obtained from the Charles River (42° 21' 20" N, 71° 05' 45" W) in October 2020 and analyzed for the presence of pH, total metals, hardness, and ammonia. Analytical results of the testing of the above referenced sample that was obtained are summarized on the enclosed **Table 2**. Laboratory data is included in **Appendix E**.

A Dilution Factor (DF) was calculated for the detected levels of metals pursuant to the procedure contained in RGP MAG910000, Appendix V. The purpose of the DF calculation is to establish Total Recoverable Limits for metals, taking into consideration the anticipated dilution of the detected analyte upon discharge into the Charles River. The calculated DF was then used to find the appropriate Dilution Range Concentrations (DRCs) contained in MAG910000, Appendix IV. The Minimum Flow Rate calculated by the USGS Streamstats GIS database at the location of discharge into the Charles River for 7 consecutive days with a recurrence interval of 10 years (7Q10 flow) is 15.97 MGD thus resulting in a DF of 111.9 assuming a design flow rate of 100 GPM.

With the exception of arsenic, iron, and total suspended solids (TSS), results of laboratory testing did not detect concentrations of the tested compounds in excess of the Water Quality-Based Effluent Limitations (WQBELs). It is noted that the concentrations of arsenic and iron did not exceed applicable MCP reporting thresholds established in Appendix VI of the RGP. Documentation of NOI support calculations is included in **Appendix B**. It is anticipated that the construction dewatering treatment system that is discussed below will

reduce concentrations of arsenic, iron, and TSS in the effluent to below the applicable TBELs.

In accordance with the RGP, the proposed dewatering associated with this permit application is considered Contaminated/Formerly Contaminated Site Dewatering (Category III). Given that the site contamination is considered "Known," this project is considered Activity Category III-G as defined in the RGP. Based on the activity category, and in accordance with the RGP, contamination Type A: Inorganics, as defined in Table 2 of the RGP apply to the discharge.

GROUNDWATER TREATMENT

Based upon the anticipated rates of construction dewatering in conjunction with the results of the above referenced groundwater analyses, it is our opinion that one 10,000-gallon capacity settling tank and bag filters in series will be necessary to settle out and remove particulate matter and thus reduce levels of metals in the effluent to meet allowable discharge limits established by the US EPA prior to discharge. A schematic of the treatment system is shown on **Figure 4**.

A Best Management Practices Plan (BMPP) has been prepared as **Appendix F** to the RGP and will be posted at the site during the time period that temporary construction dewatering is occurring at the site.

SUMMARY AND CONCLUSIONS

The purpose of this report is to summarize site environmental conditions and groundwater data to support a Notice of Intent to discharge under the Remediation General Permit for the off-site discharge of dewatered groundwater which will be encountered during the redevelopment of the property located at 600 Massachusetts Avenue in Cambridge, Massachusetts. The groundwater testing results reported in this application have been provided to the site owner.

Based on the results of the above referenced groundwater analyses, treatment of construction dewatering will be necessary to meet the effluent limits established by the US EPA prior to off-site discharge. The proposed construction dewatering effluent treatment system will consist of one 10,000-gallon capacity settling tank with bag filters in series. However, should the effluent monitoring results identify concentrations of contaminants that are in excess of the limits established by the RGP, additional mitigative measures will be implemented to meet the allowable discharge limits.

We trust that the above satisfies your present requirements. Should you have any questions or comments concerning the above, please do not hesitate to contact us.

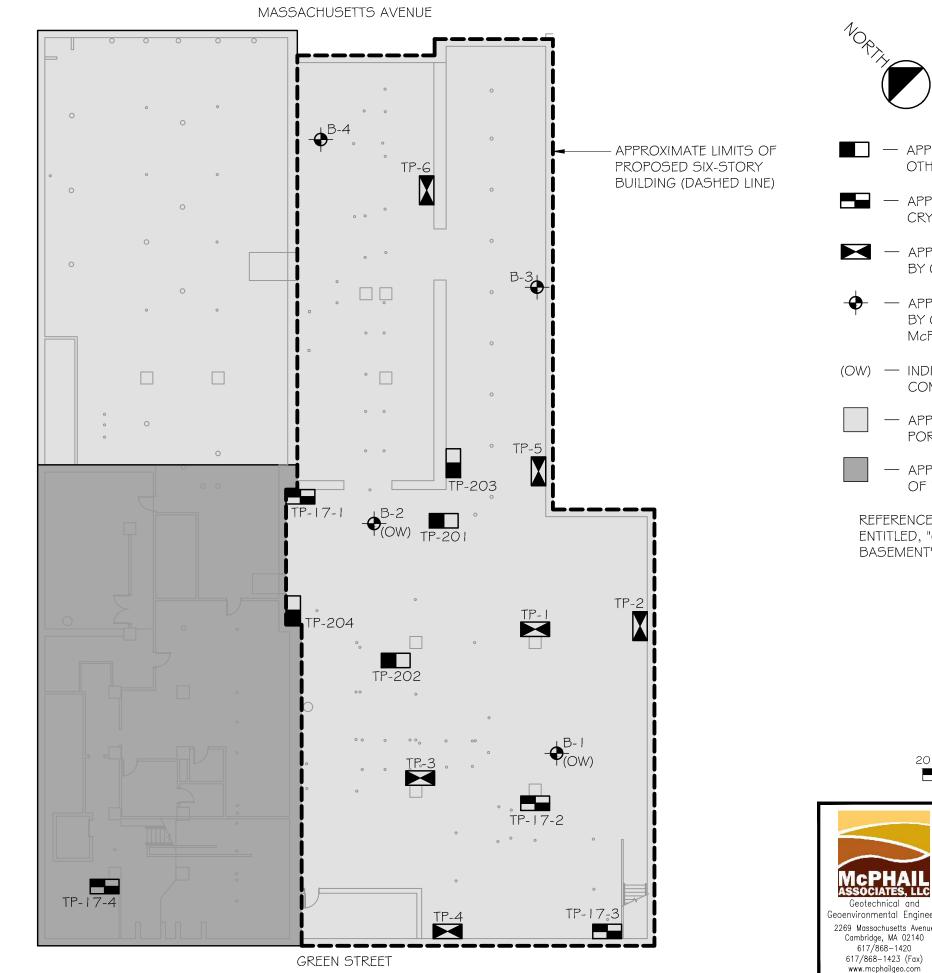
Very truly yours,

McPHAIL ASSOCIATES, LLC

Kasmy EHa nmhan

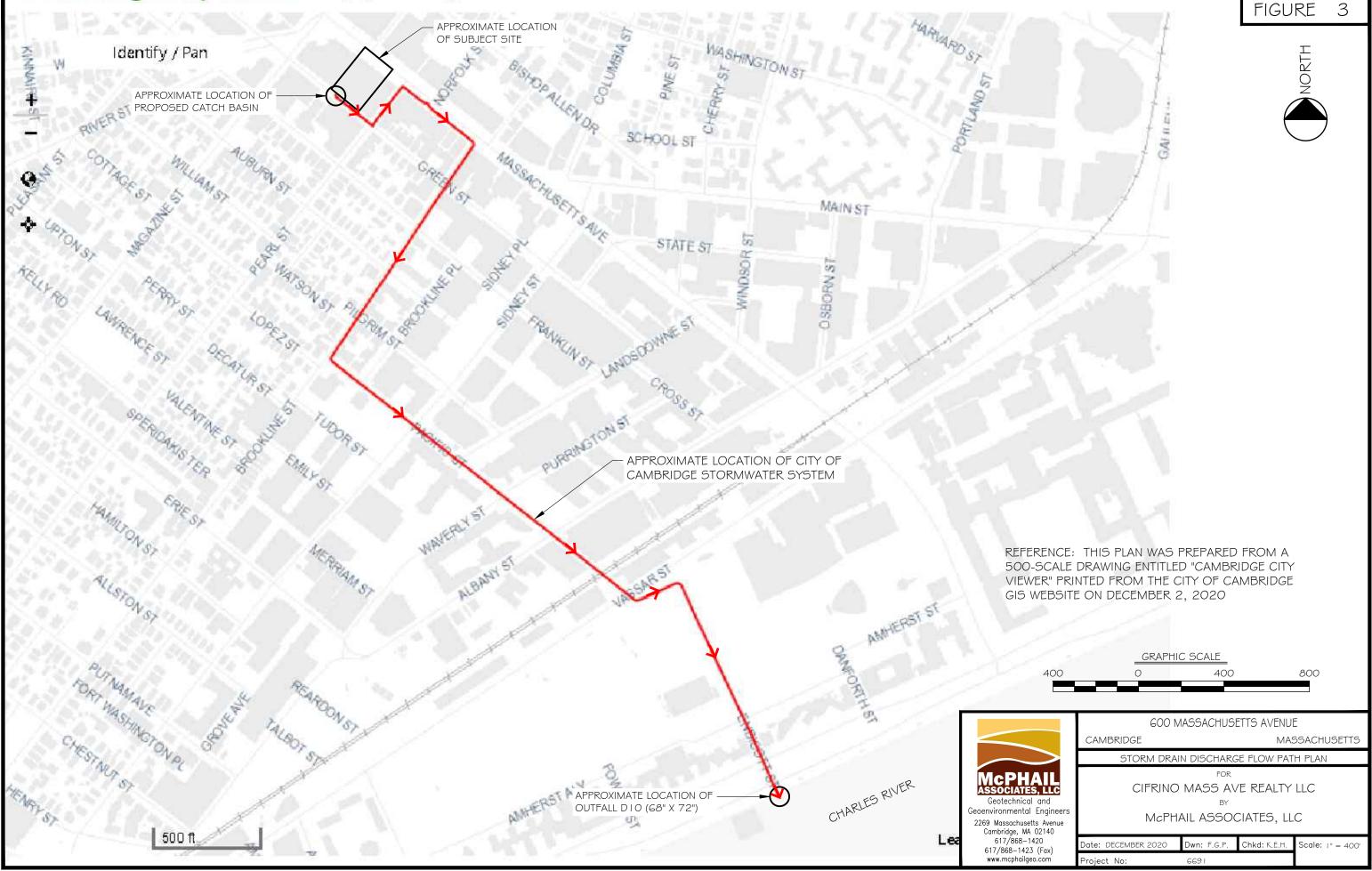
Kathryn E. Hanrahan


William J. Burns, L.S.P., L.E.P.


N:\Working Documents\Reports\6691_600MassAveCambridge_RGP_012521.docx

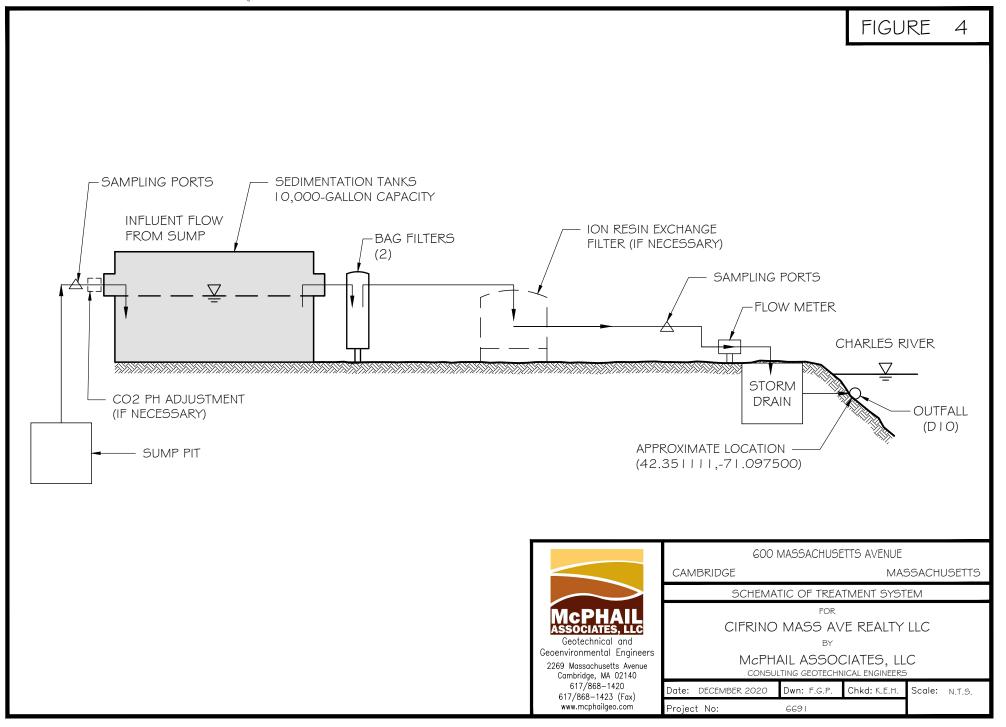
KEH/wjb

FIGURES



LEGEND

- APPROXIMATE LOCATION OF TEST PIT PERFORMED BY
 OTHERS FOR McPHAIL ASSOCIATES, LLC
 - APPROXIMATE LOCATION OF TEST PIT PERFORMED BY CRYAN LANDSCAPE CONTRACTORS, INC. FOR GZA
- APPROXIMATE LOCATION OF TEST PIT PERFORMED BY OTHERS FOR MCPHAIL ASSOCIATES, LLC
 - APPROXIMATE LOCATION OF BORING PERFORMED BY CARR-DEE CORP. ON NOVEMBER 6, 2018 FOR McPHAIL ASSOCIATES, LLC
- (OW) INDICATES OBSERVATION WELL INSTALLED WITHIN COMPLETED BOREHOLE
 - APPROXIMATE LIMITS OF EXISTING ONE-STORY PORTION OF BUILDING
 - APPROXIMATE LIMITS OF FOUR-STORY PORTION OF BUILDING


REFERENCE: THIS PLAN WAS PREPARED FROM A DRAWING ENTITLED, "600 MASS AVE - FLOOR PLAN - EXISTING OO BASEMENT" PROVIDED BY PETER QUINN ARCHITECTS, LLC

20	<u>GRAPHIC</u> O	<u>2 SCALE</u> 20		40			
	600 M	ASSACHUSE	ETTS AVENU				
	CAMBRIDGE		MAS	65ACHUSETTS			
>	SUBSURFACE EXPLORATION PLAN						
ES, LLC	CIFRINO	FOR MASS AV BY	'E REALTY	LLC			
al Engineers setts Avenue 1A 02140	MCPHAIL ASSOCIATES, LLC						
-1420 23 (Fax)	Date: MAY 2020	Dwn: M.B.S.	Chkd: C.M.E.	Scale: !" = 20'			
geo.com	Project No:	6691					

FIGURE

TABLES

TABLE 1 Laboratory Analytical Results - Groundwater

600 Massachusetts Ave Cambridge, MA McPhail Project No. 6691

LOCATION				B-2(OW)
SAMPLING DATE			Water Quality	5/13/2020
LAB SAMPLE ID	DEP	Technology Based	Based Effluent	L2019722-01
	RCGW-2	Effluent Limitation	Limitation	L2019722-01 R
			_	L2053769-01
SAMPLE TYPE				WATER
A. Inorganics Ammonia (mg/L)				0.23
Chloride (µg/L)				1180000
Total Residual Chlorine (mg/L)		0.2	0.011	0.07
Total Suspended Solids (mg/L)		30	01011	69
Antimony (µg/L)	8000	206	640	ND(50)
Arsenic (µg/L)	900	104	10	40
Cadmium (µg/L)	4	10.2	0.25	ND(5)
Total Chromium (µg/L)	300			3.81
Chromium, Trivalent (µg/L)		323	74	ND(10)
Chromium, Hexavalent (µg/L)	1000	323	11	ND(10)
Copper (µg/L) Iron (µg/L)	1000	242 5000	9 1000	ND(10) 3730
Lead (µg/L)	10	160	2.5	ND(10)
Mercury (µg/L)	20	0.739	0.77	ND(10)
Nickel (µg/L)	200	1450	52	ND(25)
Selenium (µg/L)	100	235.8	5	ND(10)
Silver (µg/L)	7	35.1	3.2	ND(7)
Zinc (µg/L)	900	420	120	ND(50)
Cyanide (mg/L)		178	0.0052	ND(0.005)
Hardness (mg/L)				699
рН (Н)		6.5-8.3	6.5-8.3	7
B. Non-Halogenated VOCs	1	400		
Total BTEX (µg/L)	4000	100 5		ND(10)
Benzene (μg/L) 1,4 Dioxane (μg/L)	1000	200		ND(10)
Acetone (mg/L)	50	7.97		- ND(0.1)
Phenol (µg/L)	2000	1,080	300	ND(5)
C. Halogenated VOCs		1,000		
Carbon Tetrachloride (µg/L)	2	4.4	1.6	ND(10)
1,2 Dichlorobenzene (µg/L)	2000	600		ND(50)
1,3 Dichlorobenzene (µg/L)	6000	320		ND(50)
1,4 Dichlorobenzene (µg/L)	60	5.0		ND(50)
Total dichlorobenzene (µg/L)		763		-
1,1 Dichloroethane (µg/L)	2000	70		ND(15)
1,2 Dichloroethane (µg/L) 1,1 Dichloroethylene (µg/L)	5 80	5.0 3.2		ND(15)
Ethylene Dibromide (µg/L)	00	0.05		ND(10)
Methylene Chloride (µg/L)	2000	4.6	' 	ND(10)
1,1,1 Trichloroethane (µg/L)	4000	200		ND(20)
1,1,2 Trichloroethane (µg/L)	900	5.0		ND(15)
Trichloroethylene (µg/L)	5	5.0		ND(10)
Tetrachloroethylene (µg/L)	50	5.0	3.3	ND(10)
cis-1,2 Dichloroethylene (µg/L)	20	70		ND(10)
Vinyl Chloride (µg/L)	2	2.0		ND(10)
D. Non-Halogenated SVOCs	1	100		
Total Phthalates (µg/L)		190	3.0 2.2	-
Diethylhexyl phthalate (μg/L) Total Group I PAHs (μg/L)		101 1.0	2.2	- ND
Benzo(a)anthracene (µg/L)	1000	1.0	0.0038	ND(2)
Benzo(a)pyrene (µg/L)	500	1	0.0038	ND(2)
Benzo(b)fluoranthene (µg/L)	400	1	0.0038	ND(2)
Benzo(k)fluoranthene (µg/L)	100	As Total PAHs	0.0038	ND(2)
Chrysene (µg/L)	70	1	0.0038	ND(2)
Dibenzo(a.h)anthracene (µg/L)	40	4	0.0038	ND(2)
Indeno(1,2,3-cd)pyrene (µg/L)	100		0.0038	ND(2)
Total Group II PAHs (µg/L)	700	100		ND ND(0)
Naphthalene (µg/L) E. Halogenated SVOCs	700	20		ND(2)
Total PCBs (µg/L)	5	0.0000	64	ND(0.2)
Pentachlorophenol (µg/L)	200	1.0	U-1	ND(0.2) ND(5)
F. Fuels Parameters	200	1.0		
Total Petroleum Hydrocarbons (n	na/L)	5	Г	-
C19-C36 Aliphatics (µg/L)	50000	Ĵ		119
Ethanol (mg/L)				-
Methyl-tert-Butyl Ether (µg/L)		70	20	-
tert-Butyl Alcohol (µg/L)		120		-
tert-Amyl Methyl Ether (µg/L))	1	90		-

TABLE 2 Laboratory Analytical Results - Receiving Water

600 Massachusetts Ave Cambridge, MA McPhail Project No. 6691

LOCATION	EPA	RGP-RECEIVING
SAMPLING DATE	Freshwater	10/2/2020
LAB SAMPLE ID	Aquatic Life	L2042092-01
SAMPLE TYPE	Chronic	WATER
A. Inorganics		
Ammonia (mg/L)		0.102
Antimony (µg/L)		ND(4)
Arsenic (µg/L)	150	3.68
Cadmium (µg/L)	0.25	ND(0.2)
Total Chromium (µg/L)		ND(1)
Copper (µg/L)		3.05
Iron (µg/L)	1000	134
Lead (µg/L)	2.5	4.72
Mercury (µg/L)	0.77	ND(0.2)
Nickel (µg/L)	52	2
Selenium (µg/L)	5	11.34
Silver (µg/L)		ND(0.4)
Zinc (µg/L)	120	ND(10)
Cyanide (mg/L)		ND(5000)
Hardness (mg/L)		456
рН (Н)		7.8

APPENDIX A:

LIMITATIONS

LIMITATIONS

The purpose of this report is to present the results of testing of groundwater samples obtained from on-site monitoring wells in connection with the development of the 600 Massachusetts Avenue project in Cambridge, Massachusetts, in support of an application for approval of construction site dewatering discharge into surface waters of the Commonwealth of Massachusetts under EPA's Massachusetts Remediation General Permit MAG910000.

The observations were made under the conditions stated in this report. The conclusions presented above were based on these observations. If variations in the nature and extent of subsurface conditions between the spaced subsurface explorations become evident in the future, it will be necessary to re-evaluate the conclusions presented herein after performing on-site observations and noting the characteristics of any variations.

The conclusions submitted in this report are based in part upon laboratory test data obtained from analysis of groundwater samples, and are contingent upon their validity. The data have been reviewed, and interpretations have been made in the text. It should also be noted that fluctuations in the types and levels of contaminants and variations in their flow paths may occur due to changes in seasonal water table, past practices used at the site, and other factors.

Laboratory analyses have been performed for specific constituents during the course of this assessment, as described in the text.

This report and application have been prepared on behalf of and for the exclusive use of NEI General Contracting and Cifrino Mass Ave Realty. This report and the findings contained herein shall not, in whole or in part, be disseminated or conveyed to any other party, other than submission to relevant governmental agencies, nor used in whole or in part by any other party without the prior written consent of McPhail Associates, LLC.

APPENDIX B:

NOTICE OF INTENT TRANSMITTAL FORM & CITY OF CAMBRIDGE DEWATERING APPLICATION

II. Suggested Format for the Remediation General Permit Notice of Intent (NOI)

A. General site information:

1. Name of site: 600 Massachusetts Avenue	Site address: 600 Massachusetts Avenue				
	Street: City: Cambridge		State: MA	Zip: 02139	
2. Site owner Cifrino Mass Ave Realty LLC c/o Superior Realty Co., LLC	Contact Person: Mr. Thomas Cifrino				
Clinito Mass Ave Really LLC 0/0 Superior Really CO., LLC	Telephone: 617-661-8629 Email: tmcifrino@supremeliquors.net Mailing address: 540 Gallivan Boulevard				
Owner is (check one): □ Federal □ State/Tribal ■ Private □ Other; if so, specify:	Street: City: Dorchester	State: MA	Zip: 02134		
3. Site operator, if different than owner	Contact Person: Michael Martin				
NEI General Contracting	Telephone: 781-356-7666 Email: mmartin@neigc.com Mailing address: 27 Pacella Park Drive Street: 27 Pacella Park Drive				
	City: Randolph	State: MA	Zip: 02368		
4. NPDES permit number assigned by EPA:	5. Other regulatory program(s) that apply to the siteImage: MA Chapter 21e; list RTN(s):	(check all th □ CERCI □ UIC Pro	A		
NPDES permit is (check all that apply: □ RGP □ DGP □ CGP □ MSGP □ Individual NPDES permit □ Other; if so, specify:	NH Groundwater Management Permit or Groundwater Release Detection Permit:	NH Groundwater Management Permit or Groundwater Release Detection Permit:		/ Pretreatment Section 404	

B. Receiving water information:

1. Name of receiving water(s):	Waterbody identification of receiving water(s):	Classi	fication of receiving water(s):				
Charles River	MA72-38	В					
Receiving water is (check any that apply): Outstanding	Resource Water Ocean Sanctuary territorial sea N	Vild and Scenic	River				
2. Has the operator attached a location map in accordance	with the instructions in B, above? (check one): \blacksquare Yes \Box	No					
Are sensitive receptors present near the site? (check one): □ Yes □ No If yes, specify:							
3. Indicate if the receiving water(s) is listed in the State's I pollutants indicated. Also, indicate if a final TMDL is avai 4.6 of the RGP. chlorophyll-a, dissolved oxygen supersaturati		ation, contact th	e appropriate State as noted in Part				
4. Indicate the seven day-ten-year low flow (7Q10) of the Appendix V for sites located in Massachusetts and Append		tions in	15.97 MGD				
5. Indicate the requested dilution factor for the calculation of water quality-based effluent limitations (WQBELs) determined in accordance with the instructions in Appendix V for sites in Massachusetts and Appendix VI for sites in New Hampshire. 111.9							
6. Has the operator received confirmation from the appropriate State for the 7Q10and dilution factor indicated? (check one): Yes \Box No If yes, indicate date confirmation received: 12/10/2020							
7. Has the operator attached a summary of receiving water	sampling results as required in Part 4.2 of the RGP in acc	ordance with th	e instruction in Appendix VIII?				
(check one): \blacksquare Yes \Box No							

C. Source water information:

1. Source water(s) is (check any that apply):							
Contaminated groundwater	□ Contaminated surface water	□ The receiving water	□ Potable water; if so, indicate municipality or origin:				
Has the operator attached a summary of influent sampling results as required in Part 4.2 of the RGP	Has the operator attached a summary of influent sampling results as required in Part 4.2 of the	\Box A surface water other					
in accordance with the instruction in Appendix VIII? (check one):	RGP in accordance with the instruction in Appendix VIII? (check one):	than the receiving water; if so, indicate waterbody:	□ Other; if so, specify:				
■ Yes □ No	\Box Yes \Box No						

2. Source water contaminants: arsenic, iron, total suspended solids	
a. For source waters that are contaminated groundwater or contaminated surface water, indicate are any contaminants present that are not included in	b. For a source water that is a surface water other than the receiving water, potable water or other, indicate any contaminants present at the maximum concentration in accordance
the RGP? (check one): \Box Yes \blacksquare No If yes, indicate the contaminant(s) and the maximum concentration present in accordance with the instructions in Appendix VIII.	with the instructions in Appendix VIII? (check one): \Box Yes \Box No
3. Has the source water been previously chlorinated or otherwise contains resid	lual chlorine? (check one): Ves No

D. Discharge information

1. The discharge(s) is $a(n)$ (check any that apply): \Box Existing discharge \blacksquare New disc	harge \Box New source
Outfall(s):	Outfall location(s): (Latitude, Longitude)
Outfall No. D10	42.355679, -71.096313
Discharges enter the receiving water(s) via (check any that apply):	ge to the receiving water 🔳 Indirect discharge, if so, specify:
Discharge indirectly into Charles River through City of Cambridge Stormwat	er System
□ A private storm sewer system ■ A municipal storm sewer system If the discharge enters the receiving water via a private or municipal storm sewer system	stem:
Has notification been provided to the owner of this system? (check one): \blacksquare Yes \Box ?	No
Has the operator has received permission from the owner to use such system for disc obtaining permission: Upon approval of this NOI	charges? (check one): \Box Yes \blacksquare No, if so, explain, with an estimated timeframe for
Has the operator attached a summary of any additional requirements the owner of th	is system has specified? (check one): ■ Yes □ No
Provide the expected start and end dates of discharge(s) (month/year): January 202	21 - December 2021
Indicate if the discharge is expected to occur over a duration of: 🔳 less than 12 more	ths \Box 12 months or more \Box is an emergency discharge
Has the operator attached a site plan in accordance with the instructions in D, above	? (check one): \blacksquare Yes \Box No

2. Activity Category: (check all that apply)	egory: (check all that apply) 3. Contamination Type Category: (check all that apply)						
	 a. If Activity Category I or II: (check all that apply) A. Inorganics B. Non-Halogenated Volatile Organic Compounds C. Halogenated Volatile Organic Compounds D. Non-Halogenated Semi-Volatile Organic Compounds E. Halogenated Semi-Volatile Organic Compounds F. Fuels Parameters 						
 I – Petroleum-Related Site Remediation II – Non-Petroleum-Related Site Remediation III – Contaminated Site Dewatering IV – Dewatering of Pipelines and Tanks V – Aquifer Pump Testing VI – Well Development/Rehabilitation VII – Collection Structure Dewatering/Remediation VIII – Dredge-Related Dewatering 							
	b. If Activity Category III, IV G. Sites with Known Contamination	 V, V, VI, VII or VIII: (check either G or H) □ H. Sites with Unknown Contamination 					
	c. If Category III-G, IV-G, V-G, VI-G, VII-G or VIII-G: (check all that apply)						
	 A. Inorganics B. Non-Halogenated Volatile Organic Compounds C. Halogenated Volatile Organic Compounds 	d. If Category III-H, IV-H, V-H, VI-H, VII-H or VIII-H Contamination Type Categories A through F apply					
	 D. Non-Halogenated Semi-Volatile Organic Compounds E. Halogenated Semi-Volatile Organic Compounds F. Fuels Parameters 						

4. Influent and Effluent Characteristics

	Known	own Known			Detection limit (µg/l)	Influent		Effluent Limitations	
Parameter	or believed absent	or believed present	# of samples	Test method (#)		Daily maximum (µg/l)	Daily average (µg/l)	TBEL	WQBEL
A. Inorganics									
Ammonia		~	1	121.4500		0.23	0.23	Report mg/L	
Chloride		~	1	44,300.0		1180000	1180000	Report µg/l	
Total Residual Chlorine		~	1	121,4500		0.07	0.07	0.2 mg/L	
Total Suspended Solids		~	1	121,2540D	5000	69000	69000	30 mg/L	
Antimony	~		1	200.7	50	<dl< td=""><td><dl< td=""><td>206 µg/L</td><td></td></dl<></td></dl<>	<dl< td=""><td>206 µg/L</td><td></td></dl<>	206 µg/L	
Arsenic		~	1	200.7	5	40	40	104 µg/L	
Cadmium	~		1	200.7	5	<dl< td=""><td><dl< td=""><td>10.2 µg/L</td><td></td></dl<></td></dl<>	<dl< td=""><td>10.2 µg/L</td><td></td></dl<>	10.2 µg/L	
Chromium III	~		1	107	10	<dl< td=""><td><dl< td=""><td>323 μg/L</td><td></td></dl<></td></dl<>	<dl< td=""><td>323 μg/L</td><td></td></dl<>	323 μg/L	
Chromium VI	~		1	7196A	10	<dl< td=""><td><dl< td=""><td>323 μg/L</td><td></td></dl<></td></dl<>	<dl< td=""><td>323 μg/L</td><td></td></dl<>	323 μg/L	
Copper	~		1	200.7	10	<dl< td=""><td><dl< td=""><td>242 µg/L</td><td></td></dl<></td></dl<>	<dl< td=""><td>242 µg/L</td><td></td></dl<>	242 µg/L	
Iron		~	1	200.7	10	3730	3730	5,000 μg/L	
Lead	~		1	200.7	10	<dl< td=""><td><dl< td=""><td>160 µg/L</td><td></td></dl<></td></dl<>	<dl< td=""><td>160 µg/L</td><td></td></dl<>	160 µg/L	
Mercury	~		1	245.1	0.2	<dl< td=""><td><dl< td=""><td>0.739 μg/L</td><td></td></dl<></td></dl<>	<dl< td=""><td>0.739 μg/L</td><td></td></dl<>	0.739 μg/L	
Nickel	~		1	200.7	25	<dl< td=""><td><dl< td=""><td>1,450 µg/L</td><td></td></dl<></td></dl<>	<dl< td=""><td>1,450 µg/L</td><td></td></dl<>	1,450 µg/L	
Selenium	~		1	200.7	10	<dl< td=""><td><dl< td=""><td>235.8 μg/L</td><td></td></dl<></td></dl<>	<dl< td=""><td>235.8 μg/L</td><td></td></dl<>	235.8 μg/L	
Silver	~		1	200.7	7	<dl< td=""><td><dl< td=""><td>35.1 µg/L</td><td></td></dl<></td></dl<>	<dl< td=""><td>35.1 µg/L</td><td></td></dl<>	35.1 µg/L	
Zinc	~		1	200.7	50	<dl< td=""><td><dl< td=""><td>420 μg/L</td><td></td></dl<></td></dl<>	<dl< td=""><td>420 μg/L</td><td></td></dl<>	420 μg/L	
Cyanide			1	121,4500				178 mg/L	
B. Non-Halogenated VOC	s								
Total BTEX	~		1	128,624.1	10	<dl< td=""><td><dl< td=""><td>100 µg/L</td><td></td></dl<></td></dl<>	<dl< td=""><td>100 µg/L</td><td></td></dl<>	100 µg/L	
Benzene	~		1	128,624.1	10	<dl< td=""><td><dl< td=""><td>5.0 μg/L</td><td></td></dl<></td></dl<>	<dl< td=""><td>5.0 μg/L</td><td></td></dl<>	5.0 μg/L	
1,4 Dioxane			0					200 µg/L	
Acetone	~		1	624.1	100	<dl< td=""><td><dl< td=""><td>7.97 mg/L</td><td></td></dl<></td></dl<>	<dl< td=""><td>7.97 mg/L</td><td></td></dl<>	7.97 mg/L	
Phenol	~		1	625.1	5.0	<dl< td=""><td><dl< td=""><td>1,080 µg/L</td><td></td></dl<></td></dl<>	<dl< td=""><td>1,080 µg/L</td><td></td></dl<>	1,080 µg/L	

	Known	own Known			_	Influent		Effluent Limitations	
Parameter	or believed absent	or believed present	# of samples	Test method (#)	Detection limit (µg/l)	Daily maximum (µg/l)	Daily average (µg/l)	TBEL	WQBEL
C. Halogenated VOCs									
Carbon Tetrachloride	~		1	624.1	10	<dl< td=""><td><dl< td=""><td>4.4 μg/L</td><td></td></dl<></td></dl<>	<dl< td=""><td>4.4 μg/L</td><td></td></dl<>	4.4 μg/L	
1,2 Dichlorobenzene	~		1	624.1	50	<dl< td=""><td><dl< td=""><td>600 μg/L</td><td></td></dl<></td></dl<>	<dl< td=""><td>600 μg/L</td><td></td></dl<>	600 μg/L	
1,3 Dichlorobenzene	~		1	624.1	50	<dl< td=""><td><dl< td=""><td>320 μg/L</td><td></td></dl<></td></dl<>	<dl< td=""><td>320 μg/L</td><td></td></dl<>	320 μg/L	
1,4 Dichlorobenzene	~		1	624.1	50	<dl< td=""><td><dl< td=""><td>5.0 µg/L</td><td></td></dl<></td></dl<>	<dl< td=""><td>5.0 µg/L</td><td></td></dl<>	5.0 µg/L	
Total dichlorobenzene			0					763 µg/L in NH	
1,1 Dichloroethane	~		1	624.1	15	<dl< td=""><td><dl< td=""><td>70 µg/L</td><td></td></dl<></td></dl<>	<dl< td=""><td>70 µg/L</td><td></td></dl<>	70 µg/L	
1,2 Dichloroethane	~		1	624.1	15	<dl< td=""><td><dl< td=""><td>5.0 µg/L</td><td></td></dl<></td></dl<>	<dl< td=""><td>5.0 µg/L</td><td></td></dl<>	5.0 µg/L	
1,1 Dichloroethylene	~		1	624.1	10	<dl< td=""><td><dl< td=""><td>3.2 µg/L</td><td></td></dl<></td></dl<>	<dl< td=""><td>3.2 µg/L</td><td></td></dl<>	3.2 µg/L	
Ethylene Dibromide			0					0.05 µg/L	
Methylene Chloride	~		1	624.1	10	<dl< td=""><td><dl< td=""><td>4.6 μg/L</td><td></td></dl<></td></dl<>	<dl< td=""><td>4.6 μg/L</td><td></td></dl<>	4.6 μg/L	
1,1,1 Trichloroethane	~		1	624.1	20	<dl< td=""><td><dl< td=""><td>200 µg/L</td><td></td></dl<></td></dl<>	<dl< td=""><td>200 µg/L</td><td></td></dl<>	200 µg/L	
1,1,2 Trichloroethane	~		1	624.1	15	<dl< td=""><td><dl< td=""><td>5.0 µg/L</td><td></td></dl<></td></dl<>	<dl< td=""><td>5.0 µg/L</td><td></td></dl<>	5.0 µg/L	
Trichloroethylene	~		1	624.1	10	<dl< td=""><td><dl< td=""><td>5.0 µg/L</td><td></td></dl<></td></dl<>	<dl< td=""><td>5.0 µg/L</td><td></td></dl<>	5.0 µg/L	
Tetrachloroethylene	~		1	624.1	10	<dl< td=""><td><dl< td=""><td>5.0 µg/L</td><td></td></dl<></td></dl<>	<dl< td=""><td>5.0 µg/L</td><td></td></dl<>	5.0 µg/L	
cis-1,2 Dichloroethylene	~		1	624.1	10	<dl< td=""><td><dl< td=""><td>70 µg/L</td><td></td></dl<></td></dl<>	<dl< td=""><td>70 µg/L</td><td></td></dl<>	70 µg/L	
Vinyl Chloride	~		1	624.1	10	<dl< td=""><td><dl< td=""><td>2.0 µg/L</td><td></td></dl<></td></dl<>	<dl< td=""><td>2.0 µg/L</td><td></td></dl<>	2.0 µg/L	
D. Non-Halogenated SVO	Cs								
Total Phthalates			0					190 µg/L	
Diethylhexyl phthalate			0					101 µg/L	
Total Group I PAHs	~		1	625.1	2	<dl< td=""><td><dl< td=""><td>1.0 µg/L</td><td></td></dl<></td></dl<>	<dl< td=""><td>1.0 µg/L</td><td></td></dl<>	1.0 µg/L	
Benzo(a)anthracene	~		1	625.1	2	<dl< td=""><td><dl< td=""><td></td><td></td></dl<></td></dl<>	<dl< td=""><td></td><td></td></dl<>		
Benzo(a)pyrene	~		1	625.1	2	<dl< td=""><td><dl< td=""><td></td><td></td></dl<></td></dl<>	<dl< td=""><td></td><td></td></dl<>		
Benzo(b)fluoranthene	~		1	625.1	2	<dl< td=""><td><dl< td=""><td rowspan="3">As Total PAHs</td><td></td></dl<></td></dl<>	<dl< td=""><td rowspan="3">As Total PAHs</td><td></td></dl<>	As Total PAHs	
Benzo(k)fluoranthene	~		1	625.1	2	<dl< td=""><td><dl< td=""><td></td></dl<></td></dl<>	<dl< td=""><td></td></dl<>		
Chrysene	~		1	625.1	2	<dl< td=""><td><dl< td=""><td></td></dl<></td></dl<>	<dl< td=""><td></td></dl<>		
Dibenzo(a,h)anthracene	~		1	625.1	2	<dl< td=""><td><dl< td=""><td>] [</td><td></td></dl<></td></dl<>	<dl< td=""><td>] [</td><td></td></dl<>] [
Indeno(1,2,3-cd)pyrene	~		1	625.1	2	<dl< td=""><td><dl< td=""><td></td><td></td></dl<></td></dl<>	<dl< td=""><td></td><td></td></dl<>		

	Known	Known				Influent		Effluent Limitations	
Parameter	or believed absent	or believed present	# of samples	Test method (#)	Detection limit (µg/l)	Daily maximum (µg/l)	Daily average (µg/l)	TBEL	WQBEL
Total Group II PAHs	~		1	625.1	2	<dl< td=""><td><dl< td=""><td>100 µg/L</td><td></td></dl<></td></dl<>	<dl< td=""><td>100 µg/L</td><td></td></dl<>	100 µg/L	
Naphthalene	v		1	625.1	2	<dl< td=""><td><dl< td=""><td>20 µg/L</td><td></td></dl<></td></dl<>	<dl< td=""><td>20 µg/L</td><td></td></dl<>	20 µg/L	
E. Halogenated SVOCs									
Total PCBs	~		1	608.3	0.2	<dl< td=""><td><dl< td=""><td>0.000064 µg/L</td><td></td></dl<></td></dl<>	<dl< td=""><td>0.000064 µg/L</td><td></td></dl<>	0.000064 µg/L	
Pentachlorophenol	~		1	625.1	5	<dl< td=""><td><dl< td=""><td>1.0 µg/L</td><td></td></dl<></td></dl<>	<dl< td=""><td>1.0 µg/L</td><td></td></dl<>	1.0 µg/L	
F. Fuels Parameters									
Total Petroleum Hydrocarbons			0					5.0 mg/L	
Ethanol			0					Report mg/L	
Methyl-tert-Butyl Ether			0					70 µg/L	
tert-Butyl Alcohol			0					120 μg/L in MA 40 μg/L in NH	
tert-Amyl Methyl Ether			0					90 μg/L in MA 140 μg/L in NH	
Other (i.e., pH, temperature	e, hardness,	salinity, LC	250, addition	nal pollutar 121,4500	nts present);	if so, specify: 7.0			
hardness (µg/L) - Influent		~	1	3005A		699000			
C19-C36 Ali (µg/L) - Influent		~	1	135,EPH-1		119			
pH - receiving water		~	1	121,4500		78			
Hardness (ug/L) - Receiving	<u> </u>	· ·	1	3005A		456000			
Temp - Receiving Water	1	~	1	500511		16C			
	1		-						
		<u> </u>							
	1								

E. Treatment system information

1. Indicate the type(s) of treatment that will be applied to effluent prior to discharge: (check all that apply)		
□ Adsorption/Absorption □ Advanced Oxidation Processes □ Air Stripping □ Granulated Activated Carbon ("GAC")/Liquid Phase Carbon □ Ion Exchange □ Precipitation/Coagulation/Flocculation ■ Separation/Filtration □ Other; if so, specify:	n Adsorption	
2. Provide a written description of all treatment system(s) or processes that will be applied to the effluent prior to discharge. Settling tank with bag filters. If necessary to meet discharge limits, pH adjustment or ion media resin vessels will be added as a NOC.		
Identify each major treatment component (check any that apply):		
■ Fractionation tanks□ Equalization tank □ Oil/water separator □ Mechanical filter □ Media filter		
\Box Chemical feed tank \Box Air stripping unit \blacksquare Bag filter \Box Other; if so, specify:		
Indicate if either of the following will occur (check any that apply):		
 3. Provide the design flow capacity in gallons per minute (gpm) of the most limiting component. Indicate the most limiting component: sedimentation tank Is use of a flow meter feasible? (check one): ■ Yes □ No, if so, provide justification: 	100	
Provide the proposed maximum effluent flow in gpm.	100	
Provide the average effluent flow in gpm.	50	
If Activity Category IV applies, indicate the estimated total volume of water that will be discharged:	N/A	
4. Has the operator attached a schematic of flow in accordance with the instructions in E, above? (check one): INO		

F. Chemical and additive information

1. Indicate the type(s) of chemical or additive that will be applied to effluent prior to discharge or that may otherwise be present in the discharge(s): (check all that apply)

🗆 Algaecides/biocides 🗆 Antifoams 🗆 Coagulants 🗆 Corrosion/scale inhibitors 🗆 Disinfectants 🗆 Flocculants 🗆 Neutralizing agents 🗆 Oxidants 🗆 Oxygen 🗆

scavengers \Box pH conditioners \Box Bioremedial agents, including microbes \Box Chlorine or chemicals containing chlorine \Box Other; if so, specify:

2. Provide the following information for each chemical/additive, using attachments, if necessary:

a. Product name, chemical formula, and manufacturer of the chemical/additive;

b. Purpose or use of the chemical/additive or remedial agent;

c. Material Safety Data Sheet (MSDS) and Chemical Abstracts Service (CAS) Registry number for each chemical/additive;

d. The frequency (hourly, daily, etc.), duration (hours, days), quantity (maximum and average), and method of application for the chemical/additive;

e. Any material compatibility risks for storage and/or use including the control measures used to minimize such risks; and

f. If available, the vendor's reported aquatic toxicity (NOAEL and/or LC50 in percent for aquatic organism(s)).

3. Has the operator attached an explanation which demonstrates that the addition of such chemicals/additives may be authorized under this general permit in accordance with the instructions in F, above? (check one): \Box Yes \blacksquare No; if no, has the operator attached data that demonstrates each of the 126 priority pollutants in CWA Section 307(a) and 40 CFR Part 423.15(j)(1) are non-detect in discharges with the addition of the proposed chemical/additive?

(check one): \Box Yes \Box No

G. Endangered Species Act eligibility determination

1. Indicate under which criterion the discharge(s) is eligible for coverage under this general permit:

- **FWS Criterion A**: No endangered or threatened species or critical habitat are in proximity to the discharges or related activities or come in contact with the "action area".
- □ FWS Criterion B: Formal or informal consultation with the FWS under section 7 of the ESA resulted in either a no jeopardy opinion (formal consultation) or a written concurrence by FWS on a finding that the discharges and related activities are "not likely to adversely affect" listed species or critical habitat (informal consultation). Has the operator completed consultation with FWS? (check one): □ Yes □ No; if no, is consultation underway? (check one): □ Yes □ No
- □ **FWS Criterion C**: Using the best scientific and commercial data available, the effect of the discharges and related activities on listed species and critical habitat have been evaluated. Based on those evaluations, a determination is made by EPA, or by the operator and affirmed by EPA, that the discharges and related activities will have "no effect" on any federally threatened or endangered listed species or designated critical habitat under the jurisdiction of the FWS. This determination was made by: (check one) □ the operator □ EPA □ Other; if so, specify:

□ NMFS Criterion: A determination made by EPA is affirmed by the operator that the discharges and related activities will have "no effect" or are "not likely to adversely affect" any federally threatened or endangered listed species or critical habitat under the jurisdiction of NMFS and will not result in any take of listed species. Has the operator previously completed consultation with NMFS? (check one): □ Yes □ No

2. Has the operator attached supporting documentation of ESA eligibility in accordance with the instructions in Appendix I, and G, above? (check one): 🔳 Yes 🗆 No

Does the supporting documentation include any written concurrence or finding provided by the Services? (check one): Ves 🗆 No; if yes, attach.

H. National Historic Preservation Act eligibility determination

1. Indicate under which criterion the discharge(s) is eligible for coverage under this general permit:

- Criterion A: No historic properties are present. The discharges and discharge-related activities (e.g., BMPs) do not have the potential to cause effects on historic properties.
- **Criterion B**: Historic properties are present. Discharges and discharge related activities do not have the potential to cause effects on historic properties.
- Criterion C: Historic properties are present. The discharges and discharge-related activities have the potential to have an effect or will have an adverse effect on historic properties.

2. Has the operator attached supporting documentation of NHPA eligibility in accordance with the instructions in H, above? (check one): 🗆 Yes 🗆 No

Does the supporting documentation include any written agreement with the State Historic Preservation Officer (SHPO), Tribal Historic Preservation Officer (TPHO), or other tribal representative that outlines measures the operator will carry out to mitigate or prevent any adverse effects on historic properties? (check one): \Box Yes \Box No

I. Supplemental information

Describe any supplemental information being provided with the NOI. Include attachments if required or otherwise necessary.

Has the operator attached data, including any laboratory case narrative and chain of custody used to support the application? (check one): \blacksquare Yes \Box No Has the operator attached the certification requirement for the Best Management Practices Plan (BMPP)? (check one): \blacksquare Yes \Box No

J. Certification requirement

I certify under penalty of law that this document and all attachments were prepared under my direction or supervision in accordance with a system designed to assure that qualified personnel properly gathered and evaluated the information submitted. Based on my inquiry of the person or persons who manage the system, or those persons directly responsible for gathering the information, the information submitted is, to the best of my knowledge and belief, true, accurate, and complete. I have no personal knowledge that the information submitted is other than true, accurate, and complete. I am aware that there are significant penalties for submitting false information, including the possibility of fine and imprisonment for knowing violations.

A BMPP Statement has been implemented in accordance with good engineering practices following BMPP certification statement: Part 2.5 of the RGP and shall be implemented upon initiation of discharge.

Notification provided to the appropriate State, including a copy of this NOI, if required.	Check one: Yes 🔳	No 🗆
Notification provided to the municipality in which the discharge is located, including a copy of this NOI, if requested.	Check one: Yes 🔳	No 🗆
Notification provided to the owner of a private or municipal storm sewer system, if such system is used for site discharges, including a copy of this NOI, if requested. Permission obtained from the owner of a private or municipal storm sewer system, if such system is used for siterom City discharges. If yes, attach additional conditions. If no, attach explanation and timeframe for obtaining permission.	Check one: Yes ■ on of this documentation of Cambridge DPW in Check one: Yes □	on to and approval tandem with this NOI
Notification provided to the owner/operator of the area associated with activities covered by an additional discharge permit(s). Additional discharge permit is (check one): \Box RGP \Box DGP \Box CGP \Box MSGP \Box Individual NPDES permit \Box Other; if so, specify:	Check one: Yes □	No 🗆 NA 🔳
Signature: Consettion Da	te: 1/15/2	1
Print Name and Title: Michael Martin		

PERMIT TO DEWATER

Location:	600 Massachusetts Avenue	Temporary	
Owner:	Cifrino Mass Ave Realty LLC c/o Superior Realty Co	Permanent	
Contractor:	NEI General Contracting		

The property owner, Cifrino Mass Ave Realty LLC c/o Superior Realty Cc agrees to hold harmless and indemnify the City of Cambridge for any liability on the part of the City directly or indirectly arising out of the dewatering operation.

The issuance of this permit is based in part in the submission packet of the applicant with documentation as follows:

Remediation General Permit (RGP) in Massachusetts (MAG910000)

In addition, the application has been reviewed by the City under third party agreement as documented in the following reports:

N/A

All activities conducted in conjunction with the issuance of this permit must be in accordance with the provisions of the aforementioned reports. Any deviations in conditions must be reported to and approved by the Commissioner of Public Works.

This permit is in addition to any other street permit issued by the Department in connection with any street excavation or obstruction; and all conditions as specified in the Discharge Permit for Dewatering.

For the entire period of time the groundwater is being discharged to a storm drain, the property owner shall provide copies of each Discharge Monitoring Report Form submitted to the EPA, pursuant to the owner's discharge permit.

If in the future the EPA requires the City of Cambridge to bring existing stormwater drainage into compliance with EPA quality standards, as a condition to the continuation of discharge of that stormwater (also including groundwater) into an EPA regulated system into which the Cifrino Mass Ave Realty LLC c/o (property owner) drains, the owner will agree to maintain its water discharge with such EPA water quality standards.

The property owner and contractor shall at all times meet the conditions specified in the requisite legal agreement/affidavits.

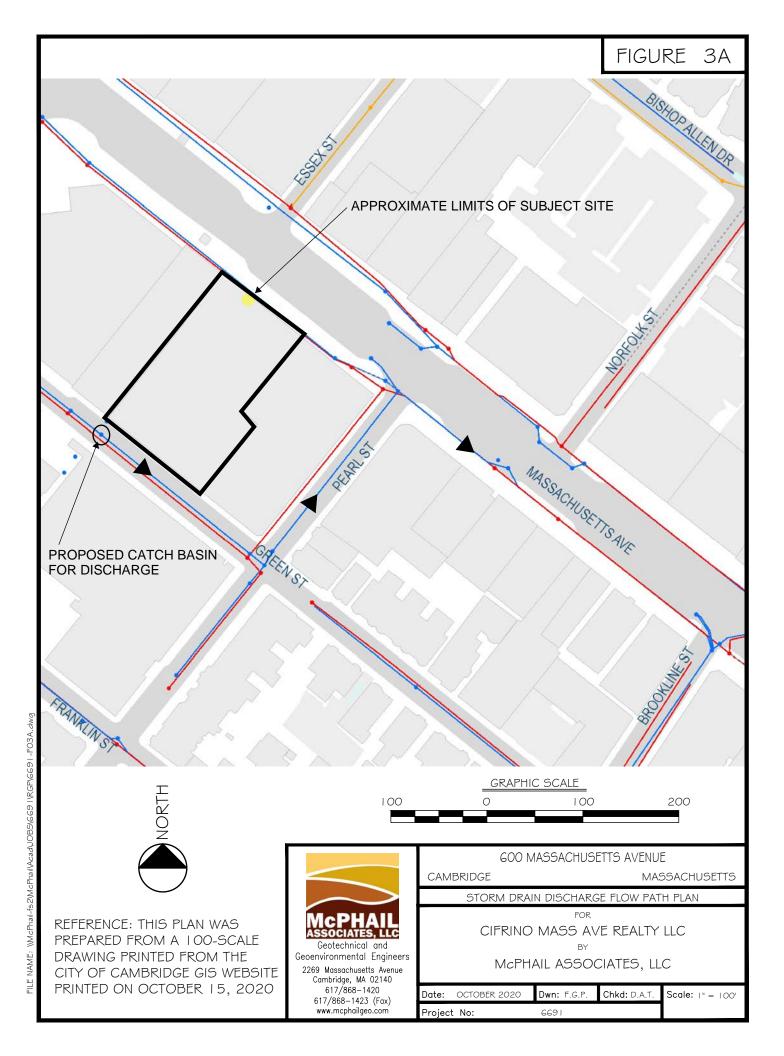
All groundwater pumped from the work shall be disposed of without damage to pavements, other surfaces or property.

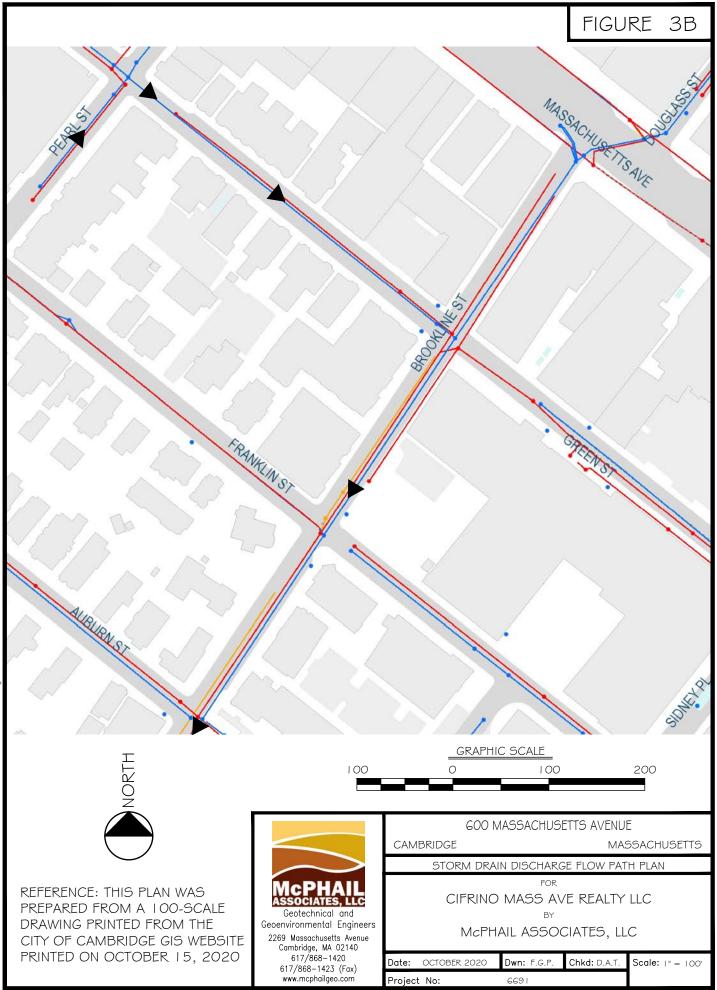
Where material or debris has washed or flowed into or has been placed in existing gutters, drains, pipes or structures, such material or debris shall be entirely removed and satisfactorily disposed of by the

Contractor during the progress of work as directed by the Public Works Department.

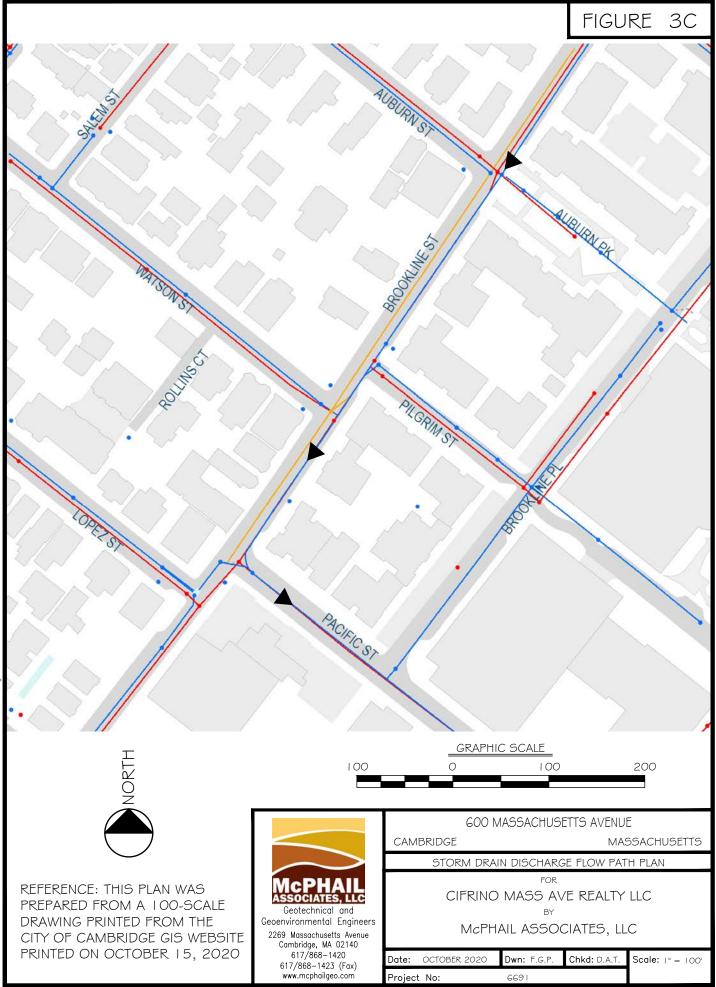
Any flooding or damage of property and possessions caused by siltation of existing gutters, pipes or structures shall be the responsibility of the Contractor.

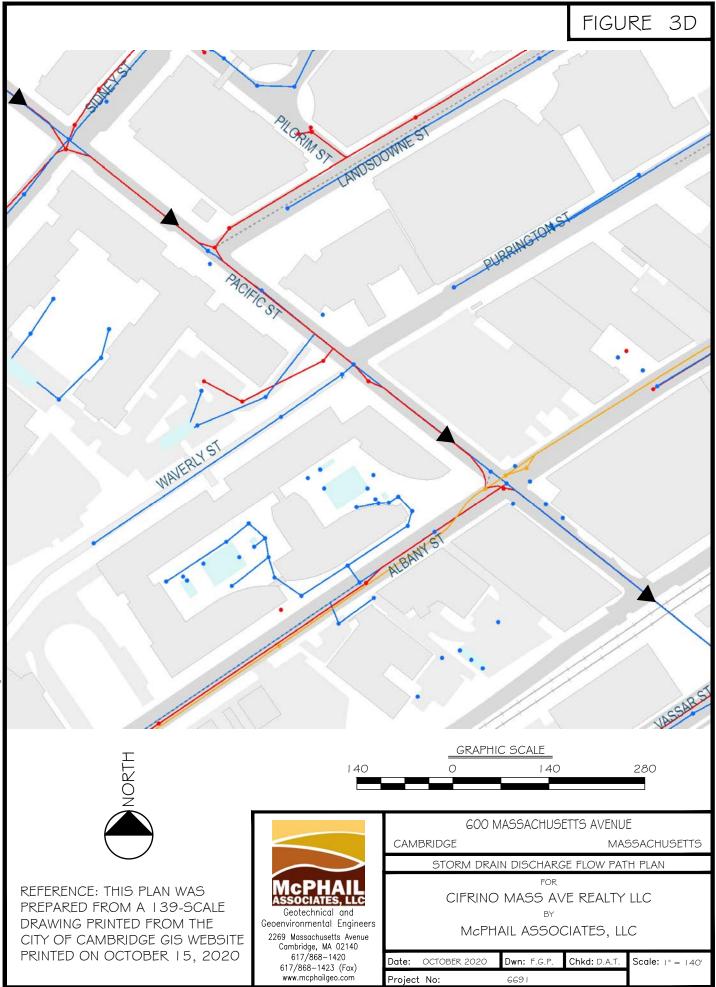
Provisions shall be made to insure that no material, water or solid, will freeze on any pavement or in any location which will cause inconvenience or hazard to the general public.

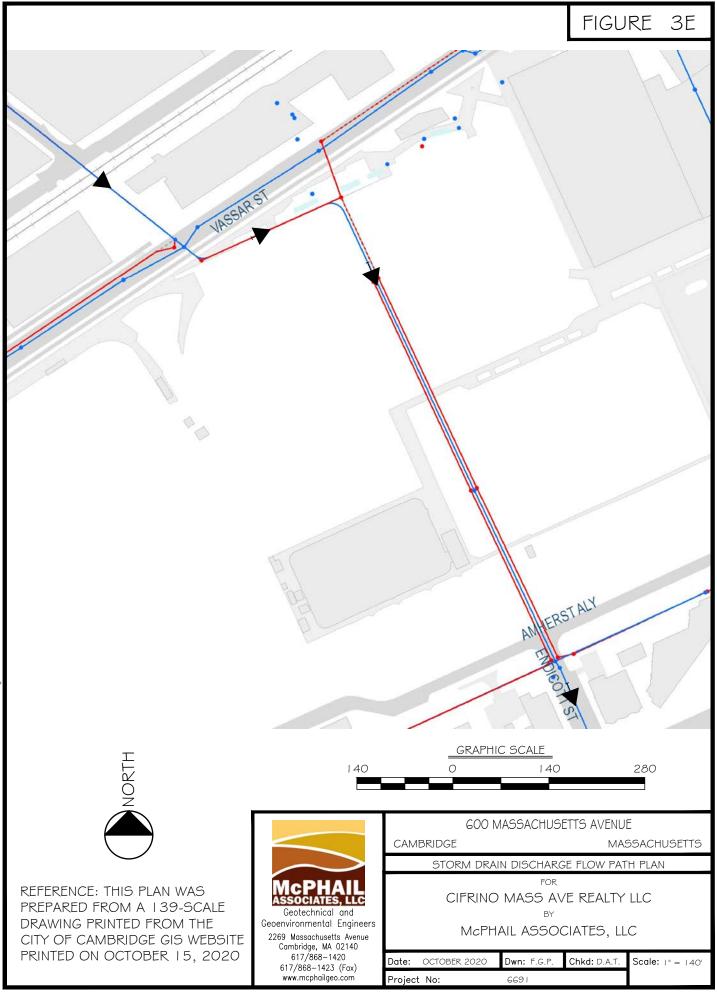

Upon completion of the work, existing gutters, drains, pipes and structures shall be (bucket) cleaned and material disposed of satisfactorily prior to release by the Public Works Department.

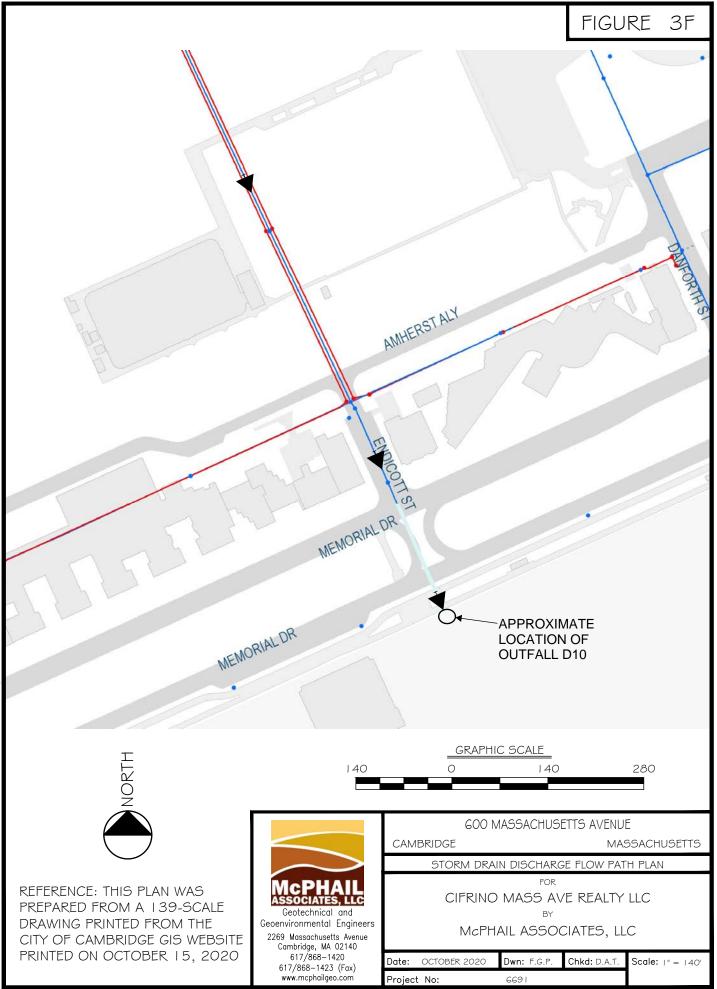

Any permit issued by the City of Cambridge shall be revoked upon transfer of any ownership interest unless and until subsequent owner(s) or parties of interest agree to the foregoing terms.

This permit shall remain in effect for one year and shall be renewable thereafter at the agreement of the parties.


The following special conditions as set forth below are part of the permit.


N/A	
*	Ch li
City Manager	Property Manager: Corporate Entity President, General Partner or Trustee Trustee with Instrument of Authority
Date	Date
City Solicitor	NEL GENERAL CONTRACTING INC. Contractor
Date	$\frac{1/15/2}{Date}$
Commissioner of Public	Contractor - MICHAEL MARTIN
Date	Date 1/15/2-1
CC: Engineering Supervisor of Sewer Maintenance and Engineer Superintendent of Streets Commissioner of Inspectional Services	ning Print Form





FILE NAME: \\McPhail-fs2\McPhail\Acad\UOB5\669 I\RGP(669 I -F03B.dwg

Hi Kate,

The 7Q10 of 24.7 cfs (15.97 MGD) and the dilution factor calculation of 111.9 using a design flow of 100 gpm (0.144 MGD) for the proposed discharge from 600 Mass Ave. in Cambridge to the Charles River are correct.

Here is water quality information to assist you with filling out the NOI (some of which you already have):

Waterbody and ID: Charles River (MA72-38) within Charles River Watershed Classification: B Outstanding Resource Water?: no State's most recent Integrated List is located here: <u>https://www.epa.gov/sites/production/files/2020-01/documents/2016-ma-303d-list-</u> <u>report.pdf</u>, search for "MA72-38" to see the causes of impairments. TMDLs: there are two approved TMDL (pathogens and phosphorus) for this segment.

As you may know, if this is not a *current* MCP site, then in addition to submitting the NOI to EPA, you need to apply with MassDEP and submit a \$500 fee (unless fee exempt, e.g., municipality) using the ePLACE. The instructions are located here: <u>https://www.mass.gov/how-to/wm-15-npdes-general-permit-notice-of-intent</u>. Technical assistant information is available on the front page of the ePLACE application webpage.

Please let me know if you have any questions.

Cathy

Cathy Vakalopoulos, Acting NPDES Chief Massachusetts Department of Environmental Protection 1 Winter St., Boston, MA 02108, 617-348-4026 Please consider the environment before printing this e-mail

From: Kate Hanrahan
Sent: Thursday, December 3, 2020 3:13 PM
To: Vakalopoulos, Catherine (DEP) <catherine.vakalopoulos@state.ma.us>
Subject: 600 Mass Avenue, Cambridge - RGP Dilution Factor

Hi Cathy,

I am currently preparing a NOI to discharge under the RGP for the proposed 600 Mass Ave project located at 600 Mass Avenue in Newton. The Contractor would like to discharge treated water off-site into a storm drain that discharges in to the Charles River (MA72-38). Before we submit our NOI to the EPA, I wanted to confirm

the dilution factor we planned to use.

Here is what I calculated (the Streamstats sheet for the Charles River is attached):

7Q10 for Charles River: 24.7 cfs = 15.97 MGD

Design flow: 100 gpm = 0.144 MGD

 $\mathsf{DF} = (15.97 + 0.144) / 0.144 = 111.9$

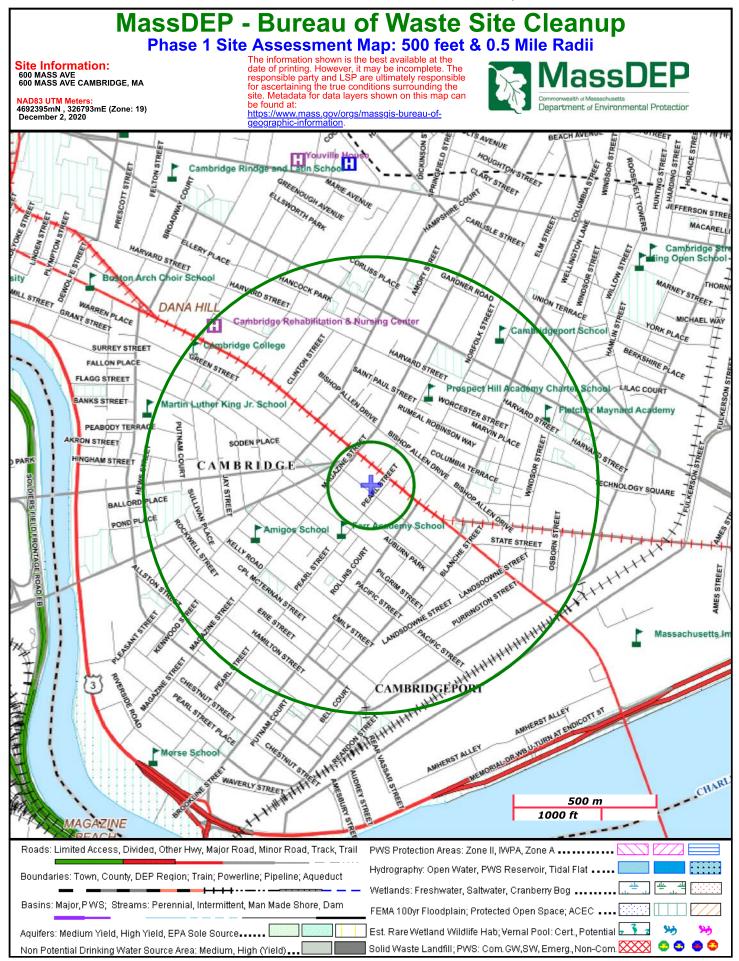
Can you please confirm if this DF is acceptable?

Thank you,

Kate

Kate Hanrahan

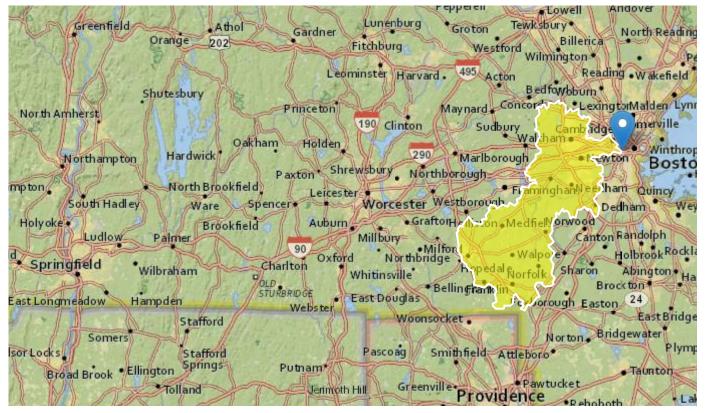
McPhail Associates, LLC


2269 Massachusetts Avenue Cambridge, MA 02140 Tel: 617-868-1420 ext. 362 Direct: 617-349-7362 Cell: 978-273-6529 www.mcphailgeo.com

APPENDIX C:

NOI SUPPORTING INFORMATION

MassDEP Phase 1 Site Assessment Map


StreamStats Report

 Region ID:
 MA

 Workspace ID:
 MA20201203200530518000

 Clicked Point (Latitude, Longitude):
 42.35331, -71.09633

 Time:
 2020-12-03 15:04:04 -0500

Basin Characterist	tics		
Parameter Code	Parameter Description	Value	Unit
DRNAREA	Area that drains to a point on a stream	283	square miles
BSLDEM250	Mean basin slope computed from 1:250K DEM	2.326	percent
DRFTPERSTR	Area of stratified drift per unit of stream length	0.23	square mile per mile
MAREGION	Region of Massachusetts 0 for Eastern 1 for Western	0	dimensionless

Low-Flow Statistics Parameters [Statewide Low Flow WRIR00 4135]

Parameter Code	Parameter Name	Value	Units	Min Limit	Max Limit
DRNAREA	Drainage Area	283	square miles	1.61	149
BSLDEM250	Mean Basin Slope from 250K DEM	2.326	percent	0.32	24.6
DRFTPERSTR	Stratified Drift per Stream Length	0.23	square mile per mile	0	1.29
MAREGION	Massachusetts Region	0	dimensionless	0	1

Low-Flow Statistics Disclaimers [Statewide Low Flow WRIR00 4135]

One or more of the parameters is outside the suggested range. Estimates were extrapolated with unknown errors

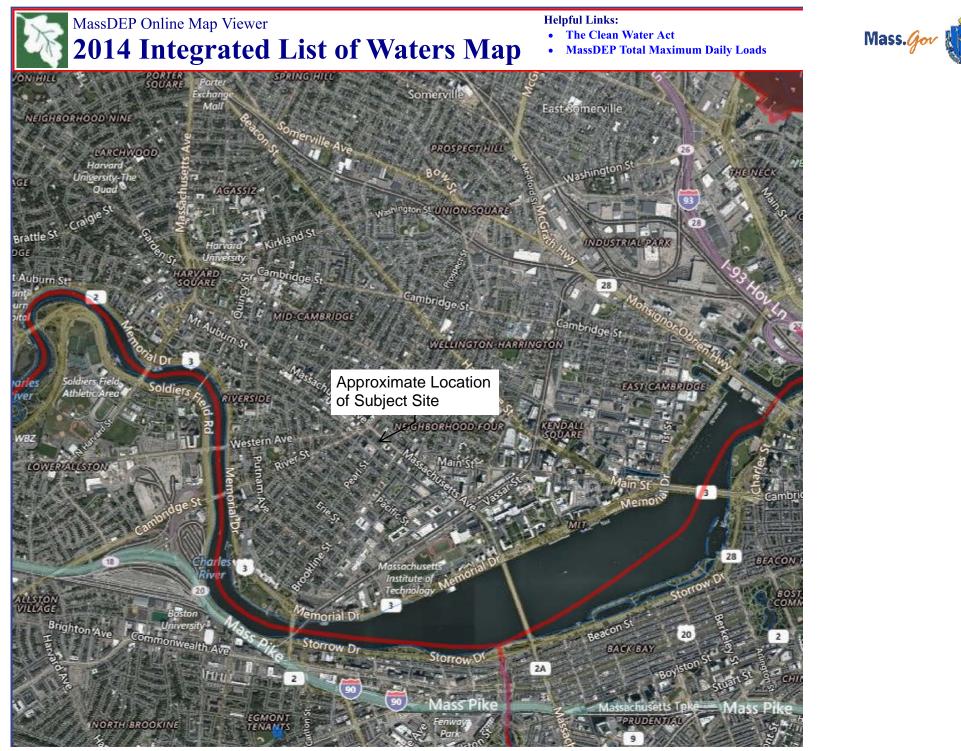
Low-Flow Statistics Flow Report[Statewide Low Flow WRIR00 4135]

Statistic	Value	Unit
7 Day 2 Year Low Flow	49.6	ft^3/s
7 Day 10 Year Low Flow	24.7	ft^3/s

Low-Flow Statistics Citations

Ries, K.G., III,2000, Methods for estimating low-flow statistics for Massachusetts streams: U.S. Geological Survey Water Resources Investigations Report 00-4135, 81 p. (http://pubs.usgs.gov/wri/wri004135/)

USGS Data Disclaimer: Unless otherwise stated, all data, metadata and related materials are considered to satisfy the quality standards relative to the purpose for which the data were collected. Although these data and associated metadata have been reviewed for accuracy and completeness and approved for release by the U.S. Geological Survey (USGS), no warranty expressed or implied is made regarding the display or utility of the data for other purposes, nor on all computer systems, nor shall the act of distribution constitute any such warranty.


USGS Software Disclaimer: This software has been approved for release by the U.S. Geological Survey (USGS). Although the software has been subjected to rigorous review, the USGS reserves the right to update the software as needed pursuant to further analysis and review. No warranty, expressed or implied, is made by the USGS or the U.S. Government as to the functionality of the software and related material nor shall the fact of release constitute any such warranty. Furthermore, the software is released on condition that neither the USGS nor the U.S. Government shall be held liable for any damages resulting from its authorized or unauthorized use.

StreamStats

USGS Product Names Disclaimer: Any use of trade, firm, or product names is for descriptive purposes only and does not imply endorsement by the U.S. Government.

Application Version: 4.4.0

2014 Integrated List Map

Massachusetts Cultural Resource Information System

MHC Home | MACRIS Home

For more information about this page and how to use it, click here.

Inventory No:	CAM.632	
Historic Name:	Manhattan Market - Purity Supreme Super Market	
Common Name:		Digital Photo Not Yet
Address:	596-610 Massachusetts Ave	Available
City/Town:	Cambridge	
Village/Neighborhood:	Cambridgeport; Cambridgeport, South	
0 0	The second se	
Local No:	106-124;Q	There is no form for this
Year Constructed:	1899	resource. Information can be
Architect(s):	Hasty, John A.; Joll, Henry Dustin	found on the <u>CAM.Q</u> form and/or the appropriate area
Architectural Style(s):	Not researched	forms listed below.
Use(s):	Market or Grocery Store	
Significance:	Architecture; Commerce	
Area(s):	CAM.G: Cambridge Multiple Resource Area CAM.G: Central Square Historic District CAM.BC: Central Square Historic District	
Designation(s):	Nat'l Register District (03/02/1990); Nat'l Register MRA (03/02/1990); Nat'l Register	District (07/11/2012)
Building Material(s):		

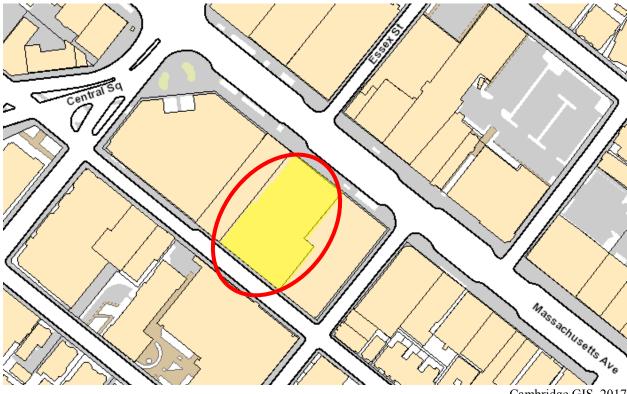
CAMBRIDGE HISTORICAL COMMISSION

831 Massachusetts Avenue, 2nd Fl., Cambridge, Massachusetts 02139 Telephone: 617 349 4683 TTY: 617 349 6112 E-mail: histcomm@cambridgema.gov URL: http://www.cambridgema.gov/Historic

Bruce A. Irving, *Chair*, Charles M. Sullivan, *Executive Director* William Barry, Robert G. Crocker, Chandra Harrington, William B. King, Jo M. Solet, Susannah Barton Tobin, *Members* Joseph V. Ferrara, Kyle Sheffield, *Alternates*

January 31, 2019

To: Members of the Historical Commission


From: Charles Sullivan

Re: D-1513: 596-600 Massachusetts Avenue

An application to demolish a one-story commercial building at 596-600 Massachusetts Avenue was received on January 15, 2019. The applicant, Cifrino Mass Ave Realty LLC, was notified of an initial determination of significance and a public hearing was scheduled for February 7.

Site Description and Current Conditions

The building at 596-600 Massachusetts Avenue is located on the south side of the avenue west of the intersection with Pearl Street. The lot (map 106, parcel 124), which contains 21,262 square feet, contains three contiguous buildings, of which 596-600 occupies approximately 10,000 square feet. The zoning is Business B, modified by the Central Square Overlay District. The assessed value of the entire property is \$6,751,900, of which \$2.353 million represents the buildings.



Cambridge GIS, 2017

The three buildings on the property were built at different times. They consist of

- 596-600 Mass. Ave.: one-story retail store, constructed in 1902, new façade 1938
- 602-614 Mass. Ave.: one-story retail store, constructed in 1899, new façade 1939
- 269 Green Street: four story brick storage and bakery, built in 1897 and expanded in 1903

All three buildings have been unified at ground level for many years.

Cambridge GIS/CONNECTExplorer, 2014

The replacement project will consist of a six-story mixed-use building with stores on the ground floor on both Massachusetts Avenue and Green Street. The four-story bakery building will be restored and adaptively reused for offices; a new stair and elevator tower will join the two.

History

The buildings in question – one to be demolished, one to be restored, and one to remain in its current use and configuration – are historically associated with the Manhattan Market, a major retailer in early 20^{th} century Cambridge.

The Manhattan Market was developed by Arthur H. Smith (1861-1943), a native of England who learned the retail trade in New York City. Mr. Smith was proprietor of the Pleasant Street Market in Cambridgeport when in 1891 he purchased a 6,500 square foot lot east of the Prospect House Hotel in Central Square, along with a right-of-way between Massachusetts Avenue and Green Street and a small frame building dating to the late 18th century. Smith announced plans to erect a two-story brick building designed by George Fogerty that would have a market on the first floor and rooms for clerks on the second. The enterprise would be named the Manhattan Market after "the great Manhattan Market on 125th Street [in] Harlem" *Cambridge Chronicle*, Jan. 31, 1891).¹

The first Manhattan Market 1895 Cambridge Directory

In 1899 Smith announced plans to build a second story and connect his building over the right-of-way to the Prospect House, but this did not occur. Instead, in 1901 he took over a two-year-old building at 596-600 Massachusetts Avenue designed by Cambridge architect H.D. Joll for the Pratt Brothers, dealers in fruit. Smith demolished the partition between them, and Pratt thereafter managed the fruit department of the Manhattan Market. A year later in 1902 Smith announced plans to build an addition behind the former fruit store, enlarging the store to 20,000 square feet and giving his premises 120' of frontage on Green Street. This area was to be used for shipping and receiving and a bakery. A year after that the four-story brick structure was extended back to Green Street.

Probably due to the Panic of 1893 Smith did not actually open the Manhattan Market until 1895, when it occupied a one-story building at 602-614 Massachusetts Avenue next to the Prospect House with about 4,100 feet of selling space; the front was described as having been designed "in the latest New York style with four doors between two display windows" (Chronicle, August 10, 1895). In 1897 Smith began construction of a four-story brick building behind his store on Green Street next to the Prospect House stables; the structure would be an addition to both in that the first floor would provide storage for the market while the upper floors would be available to the stable for storage of carriages and tack (but not horses). With this improvement the market extended 135' back toward Green Street and delivery vehicles were diverted away from the avenue frontage.

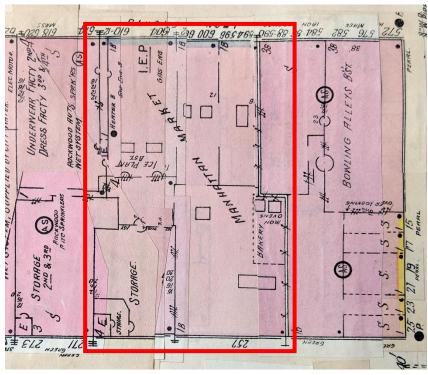
1900 Sanborn Atlas

Smith incorporated the business as the Manhattan Market Co. in 1900 and opened several other stores in the Boston area. The Cambridge store operated as a cooperative, with separate departments selling meat and produce, fruit, vegetables, canned and bottled goods, baked goods, confectioneries, kitchen furnishings, and music and musical instruments (complete with a piano where customers could try out the sheet music). A lunch counter at the back was open all day. According the long-time resident Suzanne Green (b. 1912) it was not a supermarket in the modern sense:

¹ The original Manhattan Market opened in 1872 in a 200' by 900' structure that occupied an entire city block between 34th and 35th streets and 11th and 12th avenues in Manhattan; it was planned to contain 1,000 to 1,200 stalls for retail and wholesale dealers in meat and produce. The building opened in 1880 and was destroyed by fire three months later. The reference to a market on 125th Street could not be substantiated, but Smith's father operated a market somewhere in New York.

Each section had a separate counter ... with a salesman behind it. Some were along the walls and some in islands on the floor. The salesman ... was told, when your turn came, what you wanted, he assembled the items, wrote the prices on a brown bag, added them up, bagged the items. [Then] you paid, and off you went to the next counter

In 1909 Smith retained the firm of Newhall & Blevins to design a unified front with eight doors leading to a vestibule. The firm was then engaged in remodeling the Prospect House with a new terra-cotta façade, and both buildings appeared to share a common cornice. Whatever the improvement, however, Smith lost the vast sign that overwhelmed the old façade but included the memorable tag line, "An ideal pure food department store.".


Manhattan Market, 1909

BERy Collection, Historic New England

Manhattan Market, 1910, with new façade by Newhall & Blevins BERy Collection, CHC

The Manhattan Market Co. under Arthur Smith continued much as before, until in 1928 he organized a new chain of "at least 100 five and ten cent grocery stores in Boston and vicinity within the next year" Chronicle, May 25, 1928). These were apparently branded Serv Ur-Self Stores; seventeen were opened

¹⁹⁰⁰ Sanborn, updated to 1929

Foods, Inc.

The Manhattan Market operated in the combined buildings until 1938, when the former Pratt Brothers store at 596-600 Massachusetts Avenue was leased to the Waldorf Restaurant chain and walled off from the market. At the same time, the Manhattan announced a renovation of its store.

Description

The separate facades at 596-600 and 602-614 Massachusetts Avenue were designed in 1938 and 1939, respectively, for the Waldorf Cafeteria chain and the Manhattan Market. While the facades resemble some of those designed by Cambridge architect William L. Galvin in Brattle Square, the one at 596-602 was designed by John M. Gray and the one at 602-612 by Sumner Schein. Both facades consist of cast stone panels that incorporate decorative designs that were hidden by a later storefront associated with the Purity Supreme Market. Both facades were exposed and restored in 2001; the uniform sign band below the parapet and the aluminum storefronts were installed at that time.

596-600 Massachusetts Avenue (left), 602-614 Massachusetts Avenue (right) Google Street view

within a year, including one directly across the street in Central Square. Smith retired from active management of the Manhattan Market and formed United Markets, Inc. in 1929. He and his son Wesley remained took over the Big Bear Market in Medford in 1935.

United Markets, Inc. operated stores in Dorchester, Quincy, and downtown Boston. The Manhattan Market continued to operate under its original name until 1949, when United was taken over by Elm Farm Foods, which had 40 markets in three New England states. The Elm Farm store became a Supreme Market in 1967 and was rebranded as a Purity Supreme Market in 1968 when the Supreme chain merged with Purity The façade of 596-602 Massachusetts Avenue incorporates a band of alternating red stripes and green panels, colors that were associated with the Waldorf chain of cafeterias that proliferated around Boston in the 1920s and '30s. Waldorf and its competitor, Hayes Bickfords, operated dozens of cafeterias in this period.² The Chronicle described the new Waldorf in Central Square in glowing terms:

This new restaurant was decorated by the Battisti Studios of New York, and may be termed "gorgeous" in every respect. The walls, in brilliant reds and yellows, the long mural painting opposite the serving counter, and the novel lighting effects lend an effect that is at the same time startling, yet pleasing. It is a new note in restaurant decoration for Cambridge.

The seating capacity of this new Waldorf is 210 guests. The dining room is large and airy, with plenty of elbow room anywhere in the restaurant. ... The tables are formica topped, in keeping with the entire color scheme. The chairs are of aluminum with red leather backs. On the walls are round amber-colored mirrors. At the rear of the store is a series of lighting effects upon mirrors which adds to the beauty of the restaurant. (Dec. 29, 1938)

Architect John M. Gray practiced in Boston from 1923 to 1957, primarily designing public buildings and schools for the archdiocese. His only Cambridge projects were a Hayes-Bickfords restaurant in Kendall Square (1926) and the Magazine Beach bathhouse and swimming pool (1950), but he designed several firehouses and schools in Boston. Edoardo G. Battisti was a theatrical designer who designed movie theaters in the Art Deco style; examples are located in Brooklyn, N.Y. and Norwalk, Ohio.

Jurisdiction

The buildings at 596-614 Massachusetts Avenue are contributing structures in the Central Square National Register District. Cambridge's Central Square Overlay District contains special zoning provisions

² In 1941 Waldorf had three locations in Cambridge and Hayes Bickfords had four.

for contributing structures that call upon the Planning Board to meet certain standards for issuance of permits. Among these are provisions that encourage the preservation of contributing buildings:

20.305 *Standards for Issuance of Special Permits*. In addition to the general standards for the issuance of a special permit found in Section 10.40 of the Zoning Ordinance, the special permit granting authority shall in addition make the following findings: 1. The proposed development is consistent with the goals and objectives of the Central Square Action Plan:

- encourage responsible and orderly development;
- strengthen the retail base to more completely serve the needs of the neighborhoods;
- preserve the Square's cultural diversity;
- create active people oriented spaces;
- improve the physical, and visual environment;
- provide retail establishments that serve people of diverse economic and social groups who live in the surrounding neighborhoods;
- encourage the development of new mixed income housing; and •promote compatible retail adjacent to residential uses.

2. The building and site designs are consistent with "Urban Design Plan for Central Square" as outlined in the "Central Square Action Plan" and the "Central Square Development Guidelines";

3. The building and site designs adequately screen the parking provided and are sensitive to the contributing buildings in the vicinity;

4. No National Register or contributing building is demolished or so altered as to terminate or preclude its designation as a National Register or contributing building; and

5. No National Register or contributing building has been demolished or altered so as to terminate or preclude its designation within the five (5) years preceding the application.

However, the protection for contributing buildings will be waived if the Commission finds the building not preferably preserved:

20.303.3 *National Register and Contributing Buildings.* ...a building shall no longer be considered a contributing building ... if, upon application for a demolition permit, the Cambridge Historical Commission shall determine the building not to be a preferably preserved significant building as defined in the City of Cambridge Demolition Ordinance.

If the project is allowed to proceed design review will be undertaken by the Planning Board. Community Development Department staff will bear primary responsibility for design review, and CHC staff will participate in the discussion.

Recommendation

The former Manhattan Market and Waldorf Restaurant represents a significant period in the history of Central Square as Cambridge's downtown. The Art Deco design of the façade reflects aspirations toward modernity at the end of the Great Depression, and along with the adjoining Manhattan Market is the only example of this style in the National Register district.

I recommend that the structure be found significant for the reasons stated above, and that the Commission entertain testimony about the proposed replacement project before making a further determination.

Cc: Ranjit Singanayagam, ISD Suzannah Bigolin, CDD James Rafferty, Esq.

United States Department of the Interior

FISH AND WILDLIFE SERVICE New England Ecological Services Field Office 70 Commercial Street, Suite 300 Concord, NH 03301-5094 Phone: (603) 223-2541 Fax: (603) 223-0104 http://www.fws.gov/newengland

In Reply Refer To: Consultation Code: 05E1NE00-2021-SLI-0127 Event Code: 05E1NE00-2021-E-00368 Project Name: 600 Massachusetts Ave October 14, 2020

Subject: List of threatened and endangered species that may occur in your proposed project location, and/or may be affected by your proposed project

To Whom It May Concern:

The enclosed species list identifies threatened, endangered, proposed and candidate species, as well as proposed and final designated critical habitat, that may occur within the boundary of your proposed project and/or may be affected by your proposed project. The species list fulfills the requirements of the U.S. Fish and Wildlife Service (Service) under section 7(c) of the Endangered Species Act (Act) of 1973, as amended (16 U.S.C. 1531 *et seq.*).

New information based on updated surveys, changes in the abundance and distribution of species, changed habitat conditions, or other factors could change this list. Please feel free to contact us if you need more current information or assistance regarding the potential impacts to federally proposed, listed, and candidate species and federally designated and proposed critical habitat. Please note that under 50 CFR 402.12(e) of the regulations implementing section 7 of the Act, the accuracy of this species list should be verified after 90 days. This verification can be completed formally or informally as desired. The Service recommends that verification be completed by visiting the ECOS-IPaC website at regular intervals during project planning and implementation for updates to species lists and information. An updated list may be requested through the ECOS-IPaC system by completing the same process used to receive the enclosed list.

The purpose of the Act is to provide a means whereby threatened and endangered species and the ecosystems upon which they depend may be conserved. Under sections 7(a)(1) and 7(a)(2) of the Act and its implementing regulations (50 CFR 402 *et seq.*), Federal agencies are required to utilize their authorities to carry out programs for the conservation of threatened and endangered species and to determine whether projects may affect threatened and endangered species and/or designated critical habitat.

A Biological Assessment is required for construction projects (or other undertakings having similar physical impacts) that are major Federal actions significantly affecting the quality of the human environment as defined in the National Environmental Policy Act (42 U.S.C. 4332(2) (c)). For projects other than major construction activities, the Service suggests that a biological evaluation similar to a Biological Assessment be prepared to determine whether the project may affect listed or proposed species and/or designated or proposed critical habitat. Recommended contents of a Biological Assessment are described at 50 CFR 402.12.

If a Federal agency determines, based on the Biological Assessment or biological evaluation, that listed species and/or designated critical habitat may be affected by the proposed project, the agency is required to consult with the Service pursuant to 50 CFR 402. In addition, the Service recommends that candidate species, proposed species and proposed critical habitat be addressed within the consultation. More information on the regulations and procedures for section 7 consultation, including the role of permit or license applicants, can be found in the "Endangered Species Consultation Handbook" at:

http://www.fws.gov/endangered/esa-library/pdf/TOC-GLOS.PDF

Please be aware that bald and golden eagles are protected under the Bald and Golden Eagle Protection Act (16 U.S.C. 668 *et seq.*), and projects affecting these species may require development of an eagle conservation plan (http://www.fws.gov/windenergy/ eagle_guidance.html). Additionally, wind energy projects should follow the wind energy guidelines (http://www.fws.gov/windenergy/) for minimizing impacts to migratory birds and bats.

Guidance for minimizing impacts to migratory birds for projects including communications towers (e.g., cellular, digital television, radio, and emergency broadcast) can be found at: http://www.fws.gov/migratorybirds/CurrentBirdIssues/Hazards/towers/towers.htm; http://www.towerkill.com; and http://www.fws.gov/migratorybirds/CurrentBirdIssues/Hazards/towers/correntBirdIssues/Hazards/towers/comtow.html.

We appreciate your concern for threatened and endangered species. The Service encourages Federal agencies to include conservation of threatened and endangered species into their project planning to further the purposes of the Act. Please include the Consultation Tracking Number in the header of this letter with any request for consultation or correspondence about your project that you submit to our office.

Attachment(s):

Official Species List

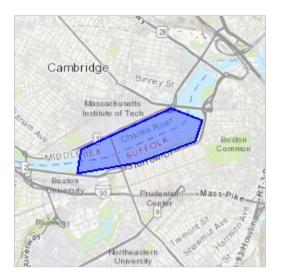
Official Species List

This list is provided pursuant to Section 7 of the Endangered Species Act, and fulfills the requirement for Federal agencies to "request of the Secretary of the Interior information whether any species which is listed or proposed to be listed may be present in the area of a proposed action".

This species list is provided by:

New England Ecological Services Field Office

70 Commercial Street, Suite 300 Concord, NH 03301-5094 (603) 223-2541


Project Summary

Consultation Code:	05E1NE00-2021-SLI-0127
Event Code:	05E1NE00-2021-E-00368
Project Name:	600 Massachusetts Ave
Project Type:	DEVELOPMENT

Project Description: Re-development of <1 acre

Project Location:

Approximate location of the project can be viewed in Google Maps: <u>https://www.google.com/maps/place/42.35619697606724N71.08458198744185W</u>

Counties: Middlesex, MA | Suffolk, MA

Endangered Species Act Species

There is a total of 0 threatened, endangered, or candidate species on this species list.

Species on this list should be considered in an effects analysis for your project and could include species that exist in another geographic area. For example, certain fish may appear on the species list because a project could affect downstream species.

IPaC does not display listed species or critical habitats under the sole jurisdiction of NOAA Fisheries¹, as USFWS does not have the authority to speak on behalf of NOAA and the Department of Commerce.

See the "Critical habitats" section below for those critical habitats that lie wholly or partially within your project area under this office's jurisdiction. Please contact the designated FWS office if you have questions.

1. <u>NOAA Fisheries</u>, also known as the National Marine Fisheries Service (NMFS), is an office of the National Oceanic and Atmospheric Administration within the Department of Commerce.

Critical habitats

THERE ARE NO CRITICAL HABITATS WITHIN YOUR PROJECT AREA UNDER THIS OFFICE'S JURISDICTION.

Category 5 waters listed alphabetically by major watershed The 303(d) List – "Waters requiring a TMDL"

Water Body	Segment ID	Description	Size	Units	Impairment	EPA TMDL No.
Charles River	MA72-36	From Watertown Dam (NATID: MA00456),	6.10	Miles	(Fish Passage Barrier*)	
		Watertown to the Boston University Bridge,			(Flow Regime Modification*)	
		Boston/Cambridge (formerly part of segment MA72-08).			(Non-Native Aquatic Plants*)	
		segment MA72-00).			Chlorophyll-a	33826
					DDT in Fish Tissue	
					Dissolved Oxygen	
					Escherichia Coli (E. Coli)	32371
					Fish Bioassessments	
					Harmful Algal Blooms	33826
					Nutrient/Eutrophication Biological Indicators	33826
					Oil and Grease	
					PCBs In Fish Tissue	
					pH, High	
					Phosphorus, Total	33826
					Sediment Bioassay (Acute Toxicity Freshwater)	
					Transparency / Clarity	33826
					Unspecified Metals in Sediment	
Charles River	MA72-38	From Boston University Bridge,	3.10	Miles	(Flow Regime Modification*)	
		Boston/Cambridge to mouth at the New Charles River Dam (NATID: MA01092),			Cause Unknown (Sediment Screening Value (Exceedence))	
		Boston (formerly part of segment MA72-			Chlorophyll-a	33826
		08).			Combined Biota/Habitat Bioassessments	
					DDT in Fish Tissue	
					Dissolved Oxygen	
					Dissolved Oxygen Supersaturation	33826
					Escherichia Coli (E. Coli)	32371
					Harmful Algal Blooms	33826
					Nutrient/Eutrophication Biological Indicators	33826
					Odor	33826
					Oil and Grease	
					PCBs In Fish Tissue	
					Phosphorus, Total	33826
					Salinity	
					Temperature	
					Transparency / Clarity	33826
Chicken Brook	MA72-34	Source, outlet Waseeka Sanctuary Pond, Holliston to mouth at confluence with the Charles River, Medway.	7.40	Miles	Escherichia Coli (E. Coli)	
Crystal Lake	MA72030	Newton.	27.00	Acres	Harmful Algal Blooms	

Final Massachusetts Year 2016 Integrated List of Waters December, 2019 (9) CN 470.1

* TMDL not required (Non-pollutant)

APPENDIX D:

LABORATORY ANALYTICAL DATA -GROUNDWATER

ANALYTICAL REPORT

L2019722
McPhail Associates
2269 Massachusetts Avenue
Cambridge, MA 02140
Ambrose Donovan
(617) 868-1420
600 MASSACHUSETTS AVENUE
6691.9.01
09/30/20

The original project report/data package is held by Alpha Analytical. This report/data package is paginated and should be reproduced only in its entirety. Alpha Analytical holds no responsibility for results and/or data that are not consistent with the original.

Certifications & Approvals: MA (M-MA086), NH NELAP (2064), CT (PH-0574), IL (200077), ME (MA00086), MD (348), NJ (MA935), NY (11148), NC (25700/666), PA (68-03671), RI (LAO00065), TX (T104704476), VT (VT-0935), VA (460195), USDA (Permit #P330-17-00196).

Eight Walkup Drive, Westborough, MA 01581-1019 508-898-9220 (Fax) 508-898-9193 800-624-9220 - www.alphalab.com

Project Name:600 MASSACHUSETTS AVENUEProject Number:6691.9.01

 Lab Number:
 L2019722

 Report Date:
 09/30/20

Alpha Sample ID	Client ID	Matrix	Sample Location	Collection Date/Time	Receive Date
L2019722-01	OW B-2	WATER	CAMBRIDGE, MA	05/13/20 11:00	05/13/20
L2019722-02	TOP 201,202,204 COMP	SOIL	CAMBRIDGE, MA	05/13/20 11:00	05/13/20
L2019722-03	TOP 201,202,204 COMP	SOIL	CAMBRIDGE, MA	05/13/20 11:00	05/13/20
L2019722-04	TP-204	SOIL	CAMBRIDGE, MA	05/13/20 11:00	05/13/20
L2019722-05	TP-201	SOIL	CAMBRIDGE, MA	05/13/20 11:00	05/13/20

L2019722

Project Name: 600 MASSACHUSETTS AVENUE

Project Number: 6691.9.01

Report Date: 09/30/20

Lab Number:

MADEP MCP Response Action Analytical Report Certification

This form provides certifications for all samples performed by MCP methods. Please refer to the Sample Results and Container Information sections of this report for specification of MCP methods used for each analysis. The following questions pertain only to MCP Analytical Methods.

An af	firmative response to questions A through F is required for "Presumptive Certainty" status	
A	Were all samples received in a condition consistent with those described on the Chain-of- Custody, properly preserved (including temperature) in the field or laboratory, and prepared/analyzed within method holding times?	YES
В	Were the analytical method(s) and all associated QC requirements specified in the selected CAM protocol(s) followed?	YES
С	Were all required corrective actions and analytical response actions specified in the selected CAM protocol(s) implemented for all identified performance standard non-conformances?	YES
D	Does the laboratory report comply with all the reporting requirements specified in CAM VII A, "Quality Assurance and Quality Control Guidelines for the Acquisition and Reporting of Analytical Data?"	YES
E a.	VPH, EPH, and APH Methods only: Was each method conducted without significant modification(s)? (Refer to the individual method(s) for a list of significant modifications).	YES
E b.	APH and TO-15 Methods only: Was the complete analyte list reported for each method?	N/A
F	Were all applicable CAM protocol QC and performance standard non-conformances identified and evaluated in a laboratory narrative (including all "No" responses to Questions A through E)?	YES
A res	ponse to questions G, H and I is required for "Presumptive Certainty" status	
G	Were the reporting limits at or below all CAM reporting limits specified in the selected CAM protocol(s)?	YES
н	Were all QC performance standards specified in the CAM protocol(s) achieved?	NO

I Were results reported for the complete analyte list specified in the selected CAM protocol(s)? NO

For any questions answered "No", please refer to the case narrative section on the following page(s).

Please note that sample matrix information is located in the Sample Results section of this report.

Project Name:600 MASSACHUSETTS AVENUEProject Number:6691.9.01

Lab Number: L2019722 Report Date: 09/30/20

Case Narrative

The samples were received in accordance with the Chain of Custody and no significant deviations were encountered during the preparation or analysis unless otherwise noted. Sample Receipt, Container Information, and the Chain of Custody are located at the back of the report.

Results contained within this report relate only to the samples submitted under this Alpha Lab Number and meet NELAP requirements for all NELAP accredited parameters unless otherwise noted in the following narrative. The data presented in this report is organized by parameter (i.e. VOC, SVOC, etc.). Sample specific Quality Control data (i.e. Surrogate Spike Recovery) is reported at the end of the target analyte list for each individual sample, followed by the Laboratory Batch Quality Control at the end of each parameter. Tentatively Identified Compounds (TICs), if requested, are reported for compounds identified to be present and are not part of the method/program Target Compound List, even if only a subset of the TCL are being reported. If a sample was re-analyzed or re-extracted due to a required quality control corrective action and if both sets of data are reported, the Laboratory ID of the re-analysis or re-extraction is designated with an "R" or "RE", respectively.

When multiple Batch Quality Control elements are reported (e.g. more than one LCS), the associated samples for each element are noted in the grey shaded header line of each data table. Any Laboratory Batch, Sample Specific % recovery or RPD value that is outside the listed Acceptance Criteria is bolded in the report. In reference to questions H (CAM) or 4 (RCP) when "NO" is checked, the performance criteria for CAM and RCP methods allow for some quality control failures to occur and still be within method compliance. In these instances, the specific failure is not narrated but noted in the associated QC Outlier Summary Report, located directly after the Case Narrative. QC information is also incorporated in the Data Usability Assessment table (Format 11) of our Data Merger tool, where it can be reviewed in conjunction with the sample result, associated regulatory criteria and any associated data usability implications.

Soil/sediments, solids and tissues are reported on a dry weight basis unless otherwise noted. Definitions of all data qualifiers and acronyms used in this report are provided in the Glossary located at the back of the report.

HOLD POLICY - For samples submitted on hold, Alpha's policy is to hold samples (with the exception of Air canisters) free of charge for 21 calendar days from the date the project is completed. After 21 calendar days, we will dispose of all samples submitted including those put on hold unless you have contacted your Alpha Project Manager and made arrangements for Alpha to continue to hold the samples. Air canisters will be disposed after 3 business days from the date the project is completed.

Please contact Project Management at 800-624-9220 with any questions.

Project Name: 600 MASSACHUSETTS AVENUE Project Number: 6691.9.01
 Lab Number:
 L2019722

 Report Date:
 09/30/20

Case Narrative (continued)

Report Revision

September 30, 2020: At the client's request, the Total Metals analyte list has been amended on L2019722-01. May 27, 2020: At the client's request, the Total Metals analyte list has been amended on L2019722-03.

MCP Related Narratives

Sample Receipt

L2019722-04 and -05: The samples submitted for Volatile Organics were received without raw soil for the Total Solids analysis. The Total Solids results from the corresponding composite samples were utilized in the dry weight calculation of the Volatile Organics data.

In reference to question H:

A Matrix Spike was not submitted for the analysis of Total Metals.

Volatile Organics

In reference to question H:

The initial calibration, associated with L2019722-04 and -05, did not meet the method required minimum response factor on the lowest calibration standard for 2-butanone (0.0753) and 4-methyl-2-pentanone (0.0725), as well as the average response factor for 2-butanone and 4-methyl-2-pentanone. In addition, the initial calibration verification is outside acceptance criteria for dichlorodifluoromethane (155%). The continuing calibration standard, associated with L2019722-04 and -05, is outside the acceptance criteria for several compounds; however, it is within overall method allowances. A copy of the continuing calibration standard to this report.

EPH

In reference to question H:

L2019722-01: The surrogate recoveries were outside the acceptance criteria for chloro-octadecane (30%); however, re-extraction achieved similar results: chloro-octadecane (25%). The results of both extractions are reported; however, all associated compounds are considered to have a potential bias.

Project Name:600 MASSACHUSETTS AVENUEProject Number:6691.9.01

 Lab Number:
 L2019722

 Report Date:
 09/30/20

Case Narrative (continued)

In reference to question I:

All samples were analyzed for a subset of MCP analytes per client request.

Total Metals

In reference to question I:

L2019722-01 and -02: The samples were analyzed for a subset of MCP analytes per client request.

Non-MCP Related Narratives

Volatile Organics by Method 624

L2019722-01 was analyzed on a dilution. The MWRA detection limits were achieved.

The WG1371527-5 MS recovery, performed on L2019722-01, is below the acceptance criteria for

Bromomethane (0%) due to the concentration of this compound falling below the reported detection limit.

I, the undersigned, attest under the pains and penalties of perjury that, to the best of my knowledge and belief and based upon my personal inquiry of those responsible for providing the information contained in this analytical report, such information is accurate and complete. This certificate of analysis is not complete unless this page accompanies any and all pages of this report.

Authorized Signature:

Jufani Morrissey - Tiffani Morrissey

Title: Technical Director/Representative

Date: 09/30/20

QC OUTLIER SUMMARY REPORT

Project Name: 600 MASSACHUSETTS AVENUE

Project Number: 6691.9.01

Lab Number: L2019722

Report Date: 09/30/20

Method	Client ID (Native ID)	Lab ID	Parameter	QC Type	Recovery/RPD ((%)	QC Limits (%)	Associated Samples	Data Quality Assessment
	le Organics by EPA 5035 Low - West					. ,		
8260C	Batch QC	WG1370877-3	1,1,2,2-Tetrachloroethane	LCS	68	70-130	04-05	potential low bias
8260C	Batch QC	WG1370877-3	Chloroethane	LCS	57	70-130	04-05	potential low bias
8260C	Batch QC	WG1370877-4	1,1,2,2-Tetrachloroethane	LCSD	68	70-130	04-05	potential low bias
8260C	Batch QC	WG1370877-4	Vinyl chloride	LCSD	69	70-130	04-05	potential low bias
8260C	Batch QC	WG1370877-4	Chloroethane	LCSD	57	70-130	04-05	potential low bias
Volatile Org	anics by GC/MS - Westborough Lab							
624.1	Batch QC (L2019722-01)	WG1371527-5	Bromomethane	MS	0	1-242	01	potential low bias
MCP Semiv	volatile Organics - Westborough Lab							
8270D	Batch QC	WG1370433-2	Aniline	LCS	33	40-140	02-03	potential low bias
8270D	Batch QC	WG1370433-3	Aniline	LCSD	38	40-140	02-03	potential low bias
Extractable	Petroleum Hydrocarbons - Westborou	ıgh Lab						
EPH-19-2.1	OW B-2	L2019722-01	Chloro-Octadecane	Surrogate	30	40-140	-	potential low bias
EPH-19-2.1	OW B-2	L2019722-01 RE	Chloro-Octadecane	Surrogate	25	40-140	-	potential low bias
EPH-19-2.1	Batch QC	WG1371343-3	Naphthalene	LCSD	26	25	01	non-directional bias
EPH-19-2.1	Batch QC	WG1371343-3	Acenaphthylene	LCSD	26	25	01	non-directional bias
EPH-19-2.1	Batch QC	WG1371343-3	Acenaphthene	LCSD	26	25	01	non-directional bias
EPH-19-2.1	Batch QC	WG1371343-3	Fluorene	LCSD	26	25	01	non-directional bias
EPH-19-2.1	Laboratory Method BI	WG1371770-1	Chloro-Octadecane	Surrogate	15	40-140	-	potential low bias
EPH-19-2.1	Batch QC	WG1371770-2	Chloro-Octadecane	Surrogate	19	40-140	-	potential low bias
EPH-19-2.1	Batch QC	WG1371770-3	Chloro-Octadecane	Surrogate	32	40-140	-	potential low bias

ORGANICS

VOLATILES

				Serial_N	p:09302012:23
Project Name:	600 MASSACHUSE	TTS AV	'ENUE	Lab Number:	L2019722
Project Number:	6691.9.01			Report Date:	09/30/20
			SAMPLE RESULTS		
Lab ID: Client ID: Sample Location:	L2019722-01 OW B-2 CAMBRIDGE, MA	D		Date Collected: Date Received: Field Prep:	05/13/20 11:00 05/13/20 Not Specified
Sample Depth: Matrix: Analytical Method: Analytical Date: Analyst:	Water 128,624.1 05/14/20 23:38 GT				

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor		
Volatile Organics by GC/MS - Westborough Lab								
Methylene chloride	ND		ug/l	10		10		
1,1-Dichloroethane	ND		ug/l	15		10		
Chloroform	ND		ug/l	10		10		
Carbon tetrachloride	ND		ug/l	10		10		
1,2-Dichloropropane	ND		ug/l	35		10		
Dibromochloromethane	ND		ug/l	10		10		
1,1,2-Trichloroethane	ND		ug/l	15		10		
2-Chloroethylvinyl ether	ND		ug/l	100		10		
Tetrachloroethene	ND		ug/l	10		10		
Chlorobenzene	ND		ug/l	35		10		
Trichlorofluoromethane	ND		ug/l	50		10		
1,2-Dichloroethane	ND		ug/l	15		10		
1,1,1-Trichloroethane	ND		ug/l	20		10		
Bromodichloromethane	ND		ug/l	10		10		
trans-1,3-Dichloropropene	ND		ug/l	15		10		
cis-1,3-Dichloropropene	ND		ug/l	15		10		
1,3-Dichloropropene, Total	ND		ug/l	15		10		
Bromoform	ND		ug/l	10		10		
1,1,2,2-Tetrachloroethane	ND		ug/l	10		10		
Benzene	ND		ug/l	10		10		
Toluene	ND		ug/l	10		10		
Ethylbenzene	ND		ug/l	10		10		
Chloromethane	ND		ug/l	50		10		
Bromomethane	ND		ug/l	50		10		
Vinyl chloride	ND		ug/l	10		10		
Chloroethane	ND		ug/l	20		10		
1,1-Dichloroethene	ND		ug/l	10		10		
trans-1,2-Dichloroethene	ND		ug/l	15		10		

Parameter		Res	ult	Qualifier	Units	RL	MDL	Dilution Factor		
Sample Depth:										
Sample Location:	CAMBRIDGE, MA					Field Prep	:	Not Specified		
Client ID:	OW B-2					Date Rece	ived:	05/13/20		
Lab ID:	L2019722-01	D				Date Colle	cted:	05/13/20 11:00		
		S	SAMPLE	RESULTS						
Project Number:	6691.9.01					Report D	ate:	09/30/20		
Project Name:	600 MASSACHUSETTS AVENUE 6691.9.01 SAMPLE RESULTS				Lab Number:		L2019722			
						Serial_No:09302012:23				

Volatile Organics by GC/MS - Wes	stborough Lab				
cis-1,2-Dichloroethene	ND	ug/l	10	 10	
Trichloroethene	ND	ug/l	10	 10	
1,2-Dichlorobenzene	ND	ug/l	50	 10	
1,3-Dichlorobenzene	ND	ug/l	50	 10	
1,4-Dichlorobenzene	ND	ug/l	50	 10	
p/m-Xylene	ND	ug/l	20	 10	
o-xylene	ND	ug/l	10	 10	
Xylenes, Total	ND	ug/l	10	 10	
Styrene	ND	ug/l	10	 10	
Acetone	ND	ug/l	100	 10	
Carbon disulfide	ND	ug/l	50	 10	
2-Butanone	ND	ug/l	100	 10	
Vinyl acetate	ND	ug/l	100	 10	
4-Methyl-2-pentanone	ND	ug/l	100	 10	
2-Hexanone	ND	ug/l	100	 10	
Acrolein	ND	ug/l	80	 10	
Acrylonitrile	ND	ug/l	100	 10	
Dibromomethane	ND	ug/l	10	 10	

Surrogate	% Recovery	Qualifier	Acceptance Criteria	
Pentafluorobenzene	100		60-140	
Fluorobenzene	101		60-140	
4-Bromofluorobenzene	101		60-140	

SEMIVOLATILES

		Serial_No	0:09302012:23
Project Name:	600 MASSACHUSETTS AVENUE	Lab Number:	L2019722
Project Number:	6691.9.01	Report Date:	09/30/20
	SAMPLE RESULTS		
Lab ID:	L2019722-01	Date Collected:	05/13/20 11:00
Client ID:	OW B-2	Date Received:	05/13/20
Sample Location:	CAMBRIDGE, MA	Field Prep:	Not Specified
Sample Depth:			
Matrix:	Water	Extraction Method	I: EPA 625.1
Analytical Method:	129,625.1	Extraction Date:	05/14/20 03:01
Analytical Date:	05/15/20 10:01		
Analyst:	SZ		
-			

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
Semivolatile Organics by GC/MS - W	estborough Lab					
Acenaphthene	ND		ug/l	2.00		1
Benzidine ¹	ND		ug/l	20.0		1
1,2,4-Trichlorobenzene	ND		ug/l	5.00		1
Hexachlorobenzene	ND		ug/l	2.00		1
Bis(2-chloroethyl)ether	ND		ug/l	2.00		1
2-Chloronaphthalene	ND		ug/l	2.00		1
3,3'-Dichlorobenzidine	ND		ug/l	5.00		1
2,4-Dinitrotoluene	ND		ug/l	5.00		1
2,6-Dinitrotoluene	ND		ug/l	5.00		1
Azobenzene ¹	ND		ug/l	2.00		1
Fluoranthene	ND		ug/l	2.00		1
4-Chlorophenyl phenyl ether	ND		ug/l	2.00		1
4-Bromophenyl phenyl ether	ND		ug/l	2.00		1
Bis(2-chloroisopropyl)ether	ND		ug/l	2.00		1
Bis(2-chloroethoxy)methane	ND		ug/l	5.00		1
Hexachlorobutadiene	ND		ug/l	2.00		1
Hexachlorocyclopentadiene1	ND		ug/l	10.0		1
Hexachloroethane	ND		ug/l	2.00		1
Isophorone	ND		ug/l	5.00		1
Naphthalene	ND		ug/l	2.00		1
Nitrobenzene	ND		ug/l	2.00		1
NDPA/DPA ¹	ND		ug/l	2.00		1
n-Nitrosodi-n-propylamine	ND		ug/l	5.00		1
Bis(2-ethylhexyl)phthalate	ND		ug/l	2.20		1
Butyl benzyl phthalate	ND		ug/l	5.00		1
Di-n-butylphthalate	ND		ug/l	5.00		1
Di-n-octylphthalate	ND		ug/l	5.00		1
Diethyl phthalate	ND		ug/l	5.00		1

Project Name: Lab Number: 600 MASSACHUSETTS AVENUE L2019722 **Project Number:** 6691.9.01 Report Date: 09/30/20 SAMPLE RESULTS Lab ID: L2019722-01 Date Collected: 05/13/20 11:00 Client ID: Date Received: 05/13/20 OW B-2 Sample Location: CAMBRIDGE, MA Field Prep: Not Specified

Sample Depth:

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
Semivolatile Organics by GC/MS - V	Vestborough Lab					
Dimethyl phthalate	ND		ug/l	5.00		1
Benzo(a)anthracene	ND		ug/l	2.00		1
Benzo(a)pyrene	ND		ug/l	2.00		1
Benzo(b)fluoranthene	ND		ug/l	2.00		1
Benzo(k)fluoranthene	ND		ug/l	2.00		1
Chrysene	ND		ug/l	2.00		1
Acenaphthylene	ND		ug/l	2.00		1
Anthracene	ND		ug/l	2.00		1
Benzo(ghi)perylene	ND		ug/l	2.00		1
Fluorene	ND		ug/l	2.00		1
Phenanthrene	ND		ug/l	2.00		1
Dibenzo(a,h)anthracene	ND		ug/l	2.00		1
Indeno(1,2,3-cd)pyrene	ND		ug/l	2.00		1
Pyrene	ND		ug/l	2.00		1
4-Chloroaniline ¹	ND		ug/l	5.00		1
Dibenzofuran ¹	ND		ug/l	2.00		1
2-Methylnaphthalene1	ND		ug/l	2.00		1
n-Nitrosodimethylamine ¹	ND		ug/l	2.00		1
2,4,6-Trichlorophenol	ND		ug/l	5.00		1
p-Chloro-m-cresol ¹	ND		ug/l	2.00		1
2-Chlorophenol	ND		ug/l	2.00		1
2,4-Dichlorophenol	ND		ug/l	5.00		1
2,4-Dimethylphenol	ND		ug/l	5.00		1
2-Nitrophenol	ND		ug/l	5.00		1
4-Nitrophenol	ND		ug/l	10.0		1
2,4-Dinitrophenol	ND		ug/l	20.0		1
4,6-Dinitro-o-cresol	ND		ug/l	10.0		1
Pentachlorophenol	ND		ug/l	5.00		1
Phenol	ND		ug/l	5.00		1
2-Methylphenol ¹	ND		ug/l	5.00		1
3-Methylphenol/4-Methylphenol ¹	ND		ug/l	5.00		1
2,4,5-Trichlorophenol ¹	ND		ug/l	5.00		1
Benzoic Acid ¹	ND		ug/l	50.0		1
Benzyl Alcohol ¹	ND		ug/l	2.00		1

Serial_No:09302012:23

					5	Serial_No	0:09302012:23	
Project Name:	600 MASSACHUSETTS	S AVENUE			Lab Nu	mber:	L2019722	
Project Number:	6691.9.01				Report	Date:	09/30/20	
		SAMP	LE RESULTS	5				
Lab ID:	L2019722-01				Date Coll	ected:	05/13/20 11:00	
Client ID:	OW B-2				Date Rec	eived:	05/13/20	
Sample Location:	CAMBRIDGE, MA				Field Pre	p:	Not Specified	
Sample Depth:								
Parameter		Result	Qualifier	Units	RL	MDL	Dilution Factor	

Semivolatile Organics by GC/MS - Westborough Lab

Surrogate	% Recovery	Acceptance Qualifier Criteria
2-Fluorophenol	50	25-87
Phenol-d6	36	16-65
Nitrobenzene-d5	76	42-122
2-Fluorobiphenyl	74	46-121
2,4,6-Tribromophenol	87	45-128
4-Terphenyl-d14	82	47-138

PETROLEUM HYDROCARBONS

		Serial_No:0	09302012:23
Project Name:	600 MASSACHUSETTS AVENUE	Lab Number:	L2019722
Project Number:	6691.9.01	Report Date:	09/30/20
	SAMPLE RESULTS		
Lab ID: Client ID: Sample Location:	L2019722-01 OW B-2 CAMBRIDGE, MA	Date Collected: Date Received: Field Prep:	05/13/20 11:00 05/13/20 Not Specified
Sample Depth: Matrix: Analytical Method: Analytical Date: Analyst:	Water 135,EPH-19-2.1 05/17/20 20:55 LL	Extraction Method: Extraction Date: Cleanup Method1: Cleanup Date1:	EPA 3510C 05/16/20 03:24 EPH-04-1 05/16/20

Quality Control Inf	ormation
Condition of sample received:	Satisfactory
Aqueous Preservative:	Laboratory Provided Preserve Container
Sample Temperature upon receipt:	Received on Ice
Sample Extraction method:	Extracted Per the Method

D	Desult	Owellifer	11-26-		MDI		
Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	
Extractable Petroleum Hydrocarbons - Westborough Lab							
C9-C18 Aliphatics	ND		ug/l	100		1	
C19-C36 Aliphatics	119		ug/l	100		1	
C11-C22 Aromatics	ND		ug/l	100		1	
C11-C22 Aromatics, Adjusted	ND		ug/l	100		1	

Surrogate	% Recovery	Qualifier	Acceptance Criteria
Chloro-Octadecane	30	Q	40-140
o-Terphenyl	41		40-140
2-Fluorobiphenyl	52		40-140
2-Bromonaphthalene	55		40-140

			Serial_No:(09302012:23
Project Name:	600 MASSACHUSETTS	AVENUE	Lab Number:	L2019722
Project Number:	6691.9.01		Report Date:	09/30/20
		SAMPLE RESULTS		
Lab ID: Client ID: Sample Location:	L2019722-01 RE OW B-2 CAMBRIDGE, MA		Date Collected: Date Received: Field Prep:	05/13/20 11:00 05/13/20 Not Specified
Sample Depth: Matrix: Analytical Method: Analytical Date: Analyst:	Water 135,EPH-19-2.1 05/19/20 04:25 LL		Extraction Method: Extraction Date: Cleanup Method1: Cleanup Date1:	EPA 3510C 05/18/20 10:28 EPH-04-1 05/19/20

Quality Control Inf	ormation
Condition of sample received:	Satisfactory
Aqueous Preservative:	Laboratory Provided Preserv Container
Sample Temperature upon receipt:	Received on Ice
Sample Extraction method:	Extracted Per the Method

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	
Extractable Petroleum Hydrocarbons - Westborough Lab							
C9-C18 Aliphatics	ND		ug/l	100		1	
C19-C36 Aliphatics	542		ug/l	100		1	
C11-C22 Aromatics	ND		ug/l	100		1	
C11-C22 Aromatics, Adjusted	ND		ug/l	100		1	

Surrogate	% Recovery	Qualifier	Acceptance Criteria
Chloro-Octadecane	25	Q	40-140
o-Terphenyl	51		40-140
2-Fluorobiphenyl	59		40-140
2-Bromonaphthalene	62		40-140

PCBS

		Serial_No:09302012:23
Project Name:	600 MASSACHUSETTS AVENUE	Lab Number: L2019722
Project Number:	6691.9.01	Report Date: 09/30/20
	SAMPLE RESULTS	
Lab ID:	L2019722-01	Date Collected: 05/13/20 11:00
Client ID:	OW B-2	Date Received: 05/13/20
Sample Location:	CAMBRIDGE, MA	Field Prep: Not Specified
Sample Depth:		
Matrix:	Water	Extraction Method: EPA 608.3
Analytical Method:	127,608.3	Extraction Date: 05/15/20 15:43
Analytical Date:	05/17/20 12:01	Cleanup Method: EPA 3665A
Analyst:	AWS	Cleanup Date: 05/16/20
-)		Cleanup Method: EPA 3660B
		Cleanup Date: 05/16/20

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	Column
Polychlorinated Biphenyls by	GC - Westborough Lab						
Aroclor 1016	ND		ug/l	0.250		1	А
Aroclor 1221	ND		ug/l	0.250		1	А
Aroclor 1232	ND		ug/l	0.250		1	А
Aroclor 1242	ND		ug/l	0.250		1	А
Aroclor 1248	ND		ug/l	0.250		1	А
Aroclor 1254	ND		ug/l	0.250		1	А
Aroclor 1260	ND		ug/l	0.200		1	А
			- 5				

Surrogate	% Recovery	Qualifier	Acceptance Criteria	Column
2,4,5,6-Tetrachloro-m-xylene	72		37-123	В
Decachlorobiphenyl	56		38-114	В
2,4,5,6-Tetrachloro-m-xylene	72		37-123	А
Decachlorobiphenyl	55		38-114	А

PESTICIDES

		Serial_No:09302012:23
Project Name:	600 MASSACHUSETTS AVENUE	Lab Number: L2019722
Project Number:	6691.9.01	Report Date: 09/30/20
	SAMPLE RESULTS	
Lab ID:	L2019722-01	Date Collected: 05/13/20 11:00
Client ID:	OW B-2	Date Received: 05/13/20
Sample Location:	CAMBRIDGE, MA	Field Prep: Not Specified
Sample Depth:		
Matrix:	Water	Extraction Method: EPA 608.3
Analytical Method:	127,608.3	Extraction Date: 05/16/20 15:29
Analytical Date:	05/17/20 16:15	Cleanup Method: EPA 3620B
Analyst:	SL	Cleanup Date: 05/17/20
-		

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	Column
Organochlorine Pesticides by G	C - Westborough Lab						
Delta-BHC	ND		ug/l	0.020		1	А
			-				
Lindane	ND		ug/l	0.020		1	A
Alpha-BHC	ND		ug/l	0.020		1	A
Beta-BHC	ND		ug/l	0.020		1	А
Heptachlor	ND		ug/l	0.020		1	А
Aldrin	ND		ug/l	0.020		1	А
Heptachlor epoxide	ND		ug/l	0.020		1	А
Endrin	ND		ug/l	0.040		1	А
Endrin aldehyde	ND		ug/l	0.040		1	А
Endrin ketone ¹	ND		ug/l	0.040		1	А
Dieldrin	ND		ug/l	0.040		1	А
4,4'-DDE	ND		ug/l	0.040		1	А
4,4'-DDD	ND		ug/l	0.040		1	А
4,4'-DDT	ND		ug/l	0.040		1	А
Endosulfan I	ND		ug/l	0.020		1	А
Endosulfan II	ND		ug/l	0.040		1	А
Endosulfan sulfate	ND		ug/l	0.040		1	А
Methoxychlor ¹	ND		ug/l	0.100		1	А
Toxaphene	ND		ug/l	0.400		1	А
Chlordane	ND		ug/l	0.200		1	А
cis-Chlordane ¹	ND		ug/l	0.020		1	А
trans-Chlordane ¹	ND		ug/l	0.020		1	А

	Serial_No:09302012:2:							
Project Name:	600 MASSACHUSETTS AVENUE				Lab Nu	umber:	L2019722	
Project Number:	6691.9.01				Report Date:		09/30/20	
		SAMP		6				
Lab ID:	L2019722-01				Date Co	llected:	05/13/20 11:00	
Client ID:	OW B-2				Date Re	ceived:	05/13/20	
Sample Location:	CAMBRIDGE, MA				Field Pro	əp:	Not Specified	
Sample Depth:								
Parameter		Result	Qualifier	Units	RL	MDL	Dilution Factor	Column
Organochlorine Pe	sticides by GC - Westbor	ough Lab						

Surrogate	% Recovery	Qualifier	Acceptance Criteria	Column
2,4,5,6-Tetrachloro-m-xylene	86		47-124	А
Decachlorobiphenyl	119		32-167	А
2,4,5,6-Tetrachloro-m-xylene	85		47-124	В
Decachlorobiphenyl	131		32-167	В

METALS

Serial_No:09302012:23

Project Name:	600 MASSACHUSETTS AVENUE	Lab Number:	L2019722							
Project Number:	6691.9.01	Report Date:	09/30/20							
	SAMPLE RESULTS									
Lab ID:	L2019722-01	Date Collected:	05/13/20 11:00							
Client ID:	OW B-2	Date Received:	05/13/20							
Sample Location:	CAMBRIDGE, MA	Field Prep:	Not Specified							

Sample Depth:

Matrix:

Water

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	Date Prepared	Date Analyzed	Prep Method	Analytical Method	Analyst
Total Metals - Ma	nsfield Lab										
Antimony, Total	ND		mg/l	0.050		1	05/18/20 08:47	05/19/20 06:50	EPA 3005A	19,200.7	LC
Arsenic, Total	0.040		mg/l	0.005		1	05/18/20 08:47	05/19/20 06:50	EPA 3005A	19,200.7	LC
Cadmium, Total	ND		mg/l	0.005		1	05/18/20 08:47	05/19/20 06:50	EPA 3005A	19,200.7	LC
Chromium, Total	ND		mg/l	0.010		1	05/18/20 08:47	05/19/20 06:50	EPA 3005A	19,200.7	LC
Copper, Total	ND		mg/l	0.010		1	05/18/20 08:47	05/19/20 06:50	EPA 3005A	19,200.7	LC
Iron, Total	3.73		mg/l	0.050		1	05/18/20 08:47	05/19/20 06:50	EPA 3005A	19,200.7	LC
Lead, Total	ND		mg/l	0.010		1	05/18/20 08:47	05/19/20 06:50	EPA 3005A	19,200.7	LC
Mercury, Total	ND		mg/l	0.00020		1	05/18/20 13:17	05/19/20 10:03	EPA 245.1	3,245.1	GD
Nickel, Total	ND		mg/l	0.025		1	05/18/20 08:47	05/19/20 06:50	EPA 3005A	19,200.7	LC
Selenium, Total	ND		mg/l	0.010		1	05/18/20 08:47	05/19/20 06:50	EPA 3005A	19,200.7	LC
Silver, Total	ND		mg/l	0.007		1	05/18/20 08:47	05/19/20 06:50	EPA 3005A	19,200.7	LC
Zinc, Total	ND		mg/l	0.050		1	05/18/20 08:47	05/19/20 06:50	EPA 3005A	19,200.7	LC

INORGANICS & MISCELLANEOUS

Serial No:09302012:23

Project Name: Project Number:	600 MASSACHUSETTS AVENUE 6691.9.01	Lab Nun Report I		L2019722 09/30/20	
	SAMPLE RES	ULTS			
Lab ID: Client ID: Sample Location:	L2019722-01 OW B-2 CAMBRIDGE, MA		Date Col Date Rec Field Pre	ceived:	05/13/20 11:00 05/13/20 Not Specified
Sample Depth: Matrix:	Water	Dilution	Date	Date	Analytical

Parameter	Result	Qualifier	Units	RL	MDL	Factor	Prepared	Analyzed	Method	Analyst
General Chemistry - Wes	stborough La	b								
Solids, Total Suspended	69.		mg/l	5.0	NA	1	-	05/14/20 09:30	121,2540D	EM
pH (H)	7.0		SU	-	NA	1	-	05/13/20 20:30	121,4500H+-B	AS
Oil & Grease, Hem-Grav	ND		mg/l	4.0		1	05/15/20 09:24	05/15/20 09:35	74,1664A	DR

Serial_No:09302012:23

Number of the standard wave and the standar		CHAIN O	CUSTODY		PAGE	1_of_1	-	Da	te Re	c'd ir	1 Lab	:	5	13	2	0		ALPH	IA Jo	b#: []	2019722
Clent Mormation Project Location: Composition: Compo	Wesiboro, MA 0158	11 Mansfield, MA 02048	and the second sec	100000000000	Mass-drus	setts A	Venue	20.00		Infor			ita De		oles			Bill	ling Ir	ofrmatio	on
Phone: Bit 7 898-1420 Turn-Around Time Email: 2 ho frawn @McPhalgeo.com Additional Project Information: Bitstandard DRUSH (entronghmed //pre-approved/) Bample: Sample: Bample: Sample: Bample: Date Due: Bample: Date Due: Bample: Date Due: Bample: Sample: Bample: Date Due: Bample: <td>Client: McPhail As Address: 2269 Massad</td> <td>chusetts Avenue</td> <td>Project #: 660 Project Manager:</td> <td>Cambr 1.9.</td> <td>1</td> <td>.MA 01</td> <td></td> <td>Yes Ves Yes Yes</td> <td>No No No No No</td> <td>MA M Matrix GW1 NPDE</td> <td>CP An Spike Stand S RGI</td> <td>alytical Require ards (In P</td> <td>Method ad on th</td> <td>ls is SDG</td> <td>C Requ</td> <td>I Yes S uired fo & EPH</td> <td>No NOF With 1</td> <td>CT RC Inorg</td> <td>P Anal anics)</td> <td></td> <td>ods</td>	Client: McPhail As Address: 2269 Massad	chusetts Avenue	Project #: 660 Project Manager:	Cambr 1.9.	1	.MA 01		Yes Ves Yes Yes	No No No No No	MA M Matrix GW1 NPDE	CP An Spike Stand S RGI	alytical Require ards (In P	Method ad on th	ls is SDG	C Requ	I Yes S uired fo & EPH	No NOF With 1	CT RC Inorg	P Anal anics)		ods
Image: Container Type Arbitistics Preservative Centrols Add Gree Betto Ref Section A Inorganics : Amonali, Chierle, TRC, TSS, CrV, Crill, Total Cyanick, Total Cyanick Add Container Type Arb A Image: Container Type Arb A	Phone: (617) 868-14 Email: Zholawn Additional Proj B Run TCLP (if trigg	20 @McPhailgeo.com ect Information: gered)	Turn-Around		only confirmed if	f pre-approved	9	sment Package IV				ss & Targets	1 Ranges & Targets pes Only	CP 14		Total Sb,Be,Ni,TI,V,Zn	Desticides	sction A Inorganics	Dewatering		Filtration
* 02 TP 201 203, 204 Cmp 2.5'-7' N 5/13/20 N:00 ZMH X Image: Contrainer Type * 014 TP - 204 3" - 3.5' F 5/13/20 II:00 ZMH X Image: Contrainer Type * 05 TP - 201 5 ¹ - 5.5' N 5/13/20 II:00 ZMH X Image: Container Type * 05 TP - 201 5 ¹ - 5.5' N 5/13/20 II:00 ZMH X Image: Container Type * 05 TP - 201 5 ¹ - 5.5' N 5/13/20 II:00 ZMH X Image: Container Type Image: Container	ALPHA Lab ID (Lab Use Only)	Sample ID	Sample Depth	Material	Date	Time	Initials	Soil Ast (less V(voc: \$	Total Sc	SVOC:	EPH: C C Rang	VPH: C	TOTAL D PP1	DISSOI	METAL	D PCB	RGP S	M	_	Sample Comments 5
Container Type Preservative Ref Section A Inorganics : A-Amber glass Container Type A/P A D D M:xed c=nh:xed preservative B=Bacteria cup C=BOD bothis C=Cube D=HSO, D=HSO, C=HNO, D=BOD bothis D=HSO, C=HNO, D=BOD bothis D=HSO, C=HNO, D=BOD bothis D=HSO, C=HNO, D=BOD bothis D=HSO, C=HNO, D=BOD bothis D=HSO, C=HNO, D=BOD bothis D=HSO, C=HNO, D=BOD bothis D=HSO, C=HNO, D=BOD bothis D=HSO, C=HNO, D=HSO, C=HNO, D=HSO, C=HNO, D=HSO, C=HNO, D=HSO, C=HNO, D=HSO, C=HNO, D=HSO, C=HNO, D=HSO, C=HNO, D=HSO, C=HNO, D=HSO, C=HNO, D=HSO, C=HNO, D=HSO, C=HNO, D=HSO, C=HNO, D=HSO, C=HNO, D=HSO, C=HNO, D=HSO, C=HNO, D=HSO, C=HNO, C=HNO, D=HSO, C=HNO, D=HSO, C=HNO, D=HSO, C=HN	-02	TP 201 203,204 TP-204	Comp 2.5'-7' 3"-3.5	N F	5/13/20 5/13/20	11:0D	ZMH	XX	X												3
A=Amber glass A=None B=Bacteria cup B=HCl C=Cube C=HNO3 D=BOD bottle D=H2SO, E=Encore E=NaOH G=Glass F=MeOH O=Other G=NAISO, P=Plastic H=Na3S2O3 V=Vial I=Ascorbix Acid	205	TP-ZOI	5'-5.5	N	5/13/20	11:00	ZMH		X												3
A=Amber glass A=None B=Bacteria cup B=HCl C=Cube C=HNO3 D=BOD bottle D=H2SO, E=Encore E=NaOH G=Glass F=MeOH O=Other G=NAISO, P=Plastic H=Na3S2O3 V=Vial I=Ascorbix Acid		2	R Section A Inormanian :				etainer Tune												0		At* 1
Sample Material J=NH_CI K=Zn Acetate O=Other O=Other O=Other N=Nature N=Nature Sample Material S=Sand O=Other See reverse si	A=Amber glass B=Bacteria cup C=Cube D=BOD bottle E=Encore G=Glass O=Other P=Plastic V=Vial Sample Material F=Fill S=Sand O=Organics C=Clay	A=None Ar B=HCl C) C=HNO ₃ D=H ₂ SO ₄ E=NaOH F=MeOH G=NaHSO ₄ H=Na ₃ S ₂ O ₃ I=Ascorbix Acid J=NH ₂ Cl K=Zn Acetate	monia, Chloride, TRC, TS nide, Total RGP Metals Relinquis 3 44 McPhail Associates sec	hed By: ure samp		Da 5/13/69	Preservative te/Time 3pm	A	F	Associ	ates s	ecure	sample		ge for la	/	1	542	0 Date/ 13/20 3/20	0 1:00A	Mined Reconctic

ANALYTICAL REPORT

Lab Number:	L2053769
Client:	McPhail Associates 2269 Massachusetts Avenue Cambridge, MA 02140
ATTN: Phone:	Ambrose Donovan (617) 868-1420
Project Name:	600 MASS AVE
Project Number:	6691.9.03
Report Date:	12/10/20

The original project report/data package is held by Alpha Analytical. This report/data package is paginated and should be reproduced only in its entirety. Alpha Analytical holds no responsibility for results and/or data that are not consistent with the original.

Certifications & Approvals: MA (M-MA086), NH NELAP (2064), CT (PH-0574), IL (200077), ME (MA00086), MD (348), NJ (MA935), NY (11148), NC (25700/666), PA (68-03671), RI (LAO00065), TX (T104704476), VT (VT-0935), VA (460195), USDA (Permit #P330-17-00196).

Eight Walkup Drive, Westborough, MA 01581-1019 508-898-9220 (Fax) 508-898-9193 800-624-9220 - www.alphalab.com

Serial_No:12102016:55

L2053769

12/10/20

Lab Number: Report Date:

Alpha Sample ID	Client ID	Matrix	Sample Location	Collection Date/Time	Receive Date
L2053769-01	B-2 (OW)	WATER	CAMBRIDGE, MA	12/03/20 14:00	12/03/20

Project Name:

Project Number:

600 MASS AVE

6691.9.03

Project Name:600 MASS AVEProject Number:6691.9.03

 Lab Number:
 L2053769

 Report Date:
 12/10/20

Case Narrative

The samples were received in accordance with the Chain of Custody and no significant deviations were encountered during the preparation or analysis unless otherwise noted. Sample Receipt, Container Information, and the Chain of Custody are located at the back of the report.

Results contained within this report relate only to the samples submitted under this Alpha Lab Number and meet NELAP requirements for all NELAP accredited parameters unless otherwise noted in the following narrative. The data presented in this report is organized by parameter (i.e. VOC, SVOC, etc.). Sample specific Quality Control data (i.e. Surrogate Spike Recovery) is reported at the end of the target analyte list for each individual sample, followed by the Laboratory Batch Quality Control at the end of each parameter. Tentatively Identified Compounds (TICs), if requested, are reported for compounds identified to be present and are not part of the method/program Target Compound List, even if only a subset of the TCL are being reported. If a sample was re-analyzed or re-extracted due to a required quality control corrective action and if both sets of data are reported, the Laboratory ID of the re-analysis or re-extraction is designated with an "R" or "RE", respectively.

When multiple Batch Quality Control elements are reported (e.g. more than one LCS), the associated samples for each element are noted in the grey shaded header line of each data table. Any Laboratory Batch, Sample Specific % recovery or RPD value that is outside the listed Acceptance Criteria is bolded in the report. In reference to questions H (CAM) or 4 (RCP) when "NO" is checked, the performance criteria for CAM and RCP methods allow for some quality control failures to occur and still be within method compliance. In these instances, the specific failure is not narrated but noted in the associated QC Outlier Summary Report, located directly after the Case Narrative. QC information is also incorporated in the Data Usability Assessment table (Format 11) of our Data Merger tool, where it can be reviewed in conjunction with the sample result, associated regulatory criteria and any associated data usability implications.

Soil/sediments, solids and tissues are reported on a dry weight basis unless otherwise noted. Definitions of all data qualifiers and acronyms used in this report are provided in the Glossary located at the back of the report.

HOLD POLICY - For samples submitted on hold, Alpha's policy is to hold samples (with the exception of Air canisters) free of charge for 21 calendar days from the date the project is completed. After 21 calendar days, we will dispose of all samples submitted including those put on hold unless you have contacted your Alpha Project Manager and made arrangements for Alpha to continue to hold the samples. Air canisters will be disposed after 3 business days from the date the project is completed.

Please contact Project Management at 800-624-9220 with any questions.

I, the undersigned, attest under the pains and penalties of perjury that, to the best of my knowledge and belief and based upon my personal inquiry of those responsible for providing the information contained in this analytical report, such information is accurate and complete. This certificate of analysis is not complete unless this page accompanies any and all pages of this report.

Melissa Sturgis Melissa Sturgis

Authorized Signature:

Title: Technical Director/Representative

Date: 12/10/20

METALS

Serial_No:12102016:55

Project Name: Project Number:	600 M 6691.9	ASS AVE 9.03		CAMPL			Lab Nur Report I		L20537 12/10/2		
Lab ID: Client ID: Sample Location:	L2053 ⁻ B-2 (O CAMB		Ą	SAMPL	E KES	ULIS	Date Co Date Re Field Pre	ceived:	12/03/20 12/03/20 Not Spee		
Sample Depth: Matrix:	Water										
Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	Date Prepared	Date Analyzed	Prep Method	Analytical Method	Analyst
Total Metals - Mans	field Lab										
Chromium, Total	0.00381		mg/l	0.00100		1	12/10/20 10:28	12/10/20 15:43	EPA 3005A	3,200.8	AM
Total Hardness by S	SM 2340B	- Mansfiel	d Lab								
Hardness	699		mg/l	0.660	NA	1	12/10/20 10:28	12/10/20 15:58	EPA 3005A	19,200.7	GD
General Chemistry -	Mansfiel	d Lab									
Chromium, Trivalent	ND		mg/l	0.010		1		12/10/20 15:43	NA	107,-	

Project Name:600 MASS AVEProject Number:6691.9.03

 Lab Number:
 L2053769

 Report Date:
 12/10/20

Method Blank Analysis Batch Quality Control

Parameter	Result Qualifier	Units	RL	MDL	Dilution Factor	Date Prepared	Date Analyzed	Analytical Method	Analyst
Total Metals - Mans	sfield Lab for sample(s):	01 Bato	h: WG14	42483	·1				
Chromium, Total	ND	mg/l	0.00100		1	12/10/20 10:28	12/10/20 13:49	3,200.8	AM
			Prep Info	ormatio	on				
		Digestior	Method:	EPA	3005A				
Parameter	Result Qualifier	Units	RL	MDL	Dilution Factor	Date Prepared	Date Analyzed	Analytical Method	Analyst
Total Hardness by	SM 2340B - Mansfield La	b for sar	nple(s): C)1 Bat	ch: WG144	12485-1			

Prep Information

Digestion Method: EPA 3005A

Lab Control Sample Analysis Batch Quality Control

Project Name:600 MASS AVEProject Number:6691.9.03

 Lab Number:
 L2053769

 Report Date:
 12/10/20

Parameter	LCS %Recovery	Qual	LCSD %Recovery	Qual	%Recovery Limits	RPD	Qual	RPD Limits
Total Metals - Mansfield Lab Associated samp	ble(s): 01 Batch:	WG1442	483-2					
Chromium, Total	94		-		85-115	-		
Total Hardness by SM 2340B - Mansfield Lab	Associated sampl	e(s): 01	Batch: WG144248	85-2				
Hardness	99		-		85-115	-		

Matrix Spike Analysis Batch Quality Control

Project Name:	600 MASS AVE
Project Number:	6691.9.03

 Lab Number:
 L2053769

 Report Date:
 12/10/20

Parameter	Native Sample	MS Added	MS Found	MS %Recovery	Qual	MSD Found	MSD %Recovery	Qual	Recovery Limits	RPD Q	RPD ual Limits
Total Metals - Mansfield Lab	Associated sam	ple(s): 01	QC Batch II	D: WG144248	3-3	QC Sample:	L2052973-01	Clier	nt ID: MS S	ample	
Chromium, Total	ND	0.2	0.2076	104		-	-		70-130	-	20
Total Metals - Mansfield Lab	Associated sam	ple(s): 01	QC Batch II	D: WG144248	3-5	QC Sample:	L2052973-02	Clier	nt ID: MS S	ample	
Chromium, Total	ND	0.2	0.2266	113		-	-		70-130	-	20
Total Hardness by SM 2340	B - Mansfield Lat	Associate	ed sample(s):	01 QC Batc	h ID: V	VG1442485	-3 QC Samp	le: L20	052973-01	Client ID:	MS Sample
Hardness	310	66.2	372	94		-	-		75-125	-	20
Total Hardness by SM 2340	B - Mansfield Lat	Associate	ed sample(s):	01 QC Batc	h ID: V	VG1442485	-7 QC Samp	ole: L20)52973-02	Client ID:	MS Sample
Hardness	318	66.2	377	89		-	-		75-125	-	20

Parameter		Native Sample	Duplicate Sample	Units	RPD	Qual	RPD Limits
Project Number:	6691.9.03				R	eport Date	e: 12/10/20
Project Name:	600 MASS AVE	L	ab Duplicate Analy Batch Quality Control		La	ab Numbe	r: L2053769

Total Metals - Mansfield Lab Associated sample(s): 01	QC Batch ID: WG1442483-4	QC Sample: L2052973	-01 Client ID: DUP Sample	
Chromium, Total	ND	ND mg/l	NC	20
Total Metals - Mansfield Lab Associated sample(s): 01	QC Batch ID: WG1442483-6	QC Sample: L2052973	-02 Client ID: DUP Sample	
Chromium, Total	ND	ND mg/l	NC	20

INORGANICS & MISCELLANEOUS

Serial No:12102016:55

Lab Number: L2053769 Report Date: 12/10/20

Project Name: 600 MASS AVE

Project Number: 6691.9.03

SAMPLE RESULTS

Lab ID:	L2053769-01	Date Collected:	12/03/20 14:00
Client ID:	B-2 (OW)	Date Received:	12/03/20
Sample Location:	CAMBRIDGE, MA	Field Prep:	Not Specified
Sample Depth: Matrix:	Water		

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	Date Prepared	Date Analyzed	Analytical Method	Analyst
General Chemistry - Wes	tborough Lab)								
Cyanide, Total	ND		mg/l	0.005		1	12/08/20 14:55	12/08/20 17:01	121,4500CN-CE	CR
Chlorine, Total Residual	0.07		mg/l	0.02		1	-	12/04/20 01:41	121,4500CL-D	AW
Nitrogen, Ammonia	0.230		mg/l	0.150		2	12/09/20 04:46	12/10/20 13:50	121,4500NH3-BH	JO
Chromium, Hexavalent	ND		mg/l	0.010		1	12/04/20 09:16	12/04/20 10:00	1,7196A	KP
Anions by Ion Chromatog	raphy - West	borough	Lab							
Chloride	1180		mg/l	12.5		25	-	12/07/20 22:52	44,300.0	SH

Project Name:600 MASS AVEProject Number:6691.9.03

 Lab Number:
 L2053769

 Report Date:
 12/10/20

Method Blank Analysis Batch Quality Control

Parameter	Result Qu	alifier	Units	RL	MDL	Dilution Factor	Date Prepared	Date Analyzed	Analytical Method	Analyst
General Chemistry -	Westborough Lab	for sam	ple(s): 01	Batch:	WG14	40978-1				
Chlorine, Total Residual	ND		mg/l	0.02		1	-	12/04/20 01:41	121,4500CL-D	AW
General Chemistry -	Westborough Lab	for sam	ple(s): 01	Batch:	WG14	41135-1				
Chromium, Hexavalent	ND		mg/l	0.010		1	12/04/20 09:16	12/04/20 09:57	1,7196A	KP
Anions by Ion Chron	natography - Westb	orough l	_ab for sar	mple(s):	01 B	atch: WG1	442122-1			
Chloride	ND		mg/l	0.500		1	-	12/07/20 16:51	44,300.0	SH
General Chemistry -	Westborough Lab	for sam	ple(s): 01	Batch:	WG14	42394-1				
Cyanide, Total	ND		mg/l	0.005		1	12/08/20 14:55	12/08/20 16:55	121,4500CN-CE	CR
General Chemistry -	Westborough Lab	for sam	ple(s): 01	Batch:	WG14	42546-1				
Nitrogen, Ammonia	ND		mg/l	0.075		1	12/09/20 04:46	12/10/20 13:45	121,4500NH3-B	H JO

Lab Control Sample Analysis Batch Quality Control

Project Name: 600 MASS AVE **Project Number:** 6691.9.03

Lab Number: L2053769 Report Date: 12/10/20

Parameter	LCS %Recovery Qu	LCSD al %Recovery	%Recovery Qual Limits	RPD	Qual	RPD Limits
General Chemistry - Westborough Lab Asso	ociated sample(s): 01	Batch: WG1440978-2				
Chlorine, Total Residual	104	-	90-110	-		
General Chemistry - Westborough Lab Asso	ociated sample(s): 01	Batch: WG1441135-2	-			
Chromium, Hexavalent	106	-	85-115	-		20
Anions by Ion Chromatography - Westborou	gh Lab Associated sa	ample(s): 01 Batch: W	G1442122-2			
Chloride	103	-	90-110	-		
General Chemistry - Westborough Lab Asso	ociated sample(s): 01	Batch: WG1442394-2				
Cyanide, Total	99	-	90-110	-		
General Chemistry - Westborough Lab Asso	ociated sample(s): 01	Batch: WG1442546-2	-			
Nitrogen, Ammonia	92	-	80-120	-		20

Matrix Spike Analysis Batch Quality Control

Project Name: 600 MASS AVE Project Number: 6691.9.03

Lab Number: L2053769 **Report Date:** 12/10/20

Parameter	Native Sample	MS Added	MS Found	MS %Recovery	Qual	MSD Found	MSD %Recovery		Recovery Limits	RPD	Qual	RPD Limits
General Chemistry - Westbord	ough Lab Assoc	iated samp	ole(s): 01	QC Batch ID: V	NG1440	978-4	QC Sample: L20)53643-	02 Client	ID: MS	Samp	le
Chlorine, Total Residual	ND	0.25	0.24	96		-	-		80-120	-		20
General Chemistry - Westbord	ough Lab Assoc	iated samp	ole(s): 01	QC Batch ID: V	NG1441	135-4	QC Sample: L20)53769-	01 Client	ID: B-2	2 (OW)	
Chromium, Hexavalent	ND	0.1	0.105	105		-	-		85-115	-		20
Anions by Ion Chromatograph	N/aatharaug							. .				
	137	40	168	nple(s): 01 QC	C Batch	ID: WG1 -	442122-3 QC	Sample	: L2054242 90-110	2-01 C	lient ID): MS 18
Sample Chloride	137	40	168	· · · ·	Q	-	442122-3 QC - QC Sample: L20	•	90-110			18
Sample	137	40	168	78	Q	-	-	•	90-110	-		18
Sample Chloride General Chemistry - Westborg	137 ough Lab Assoc ND	40 siated samp 0.2	168 ble(s): 01 0.198	78 QC Batch ID: \	Q NG1442	- 394-4 -	-)53231-	90-110 01 Client 90-110	- ID: MS	Samp	18 Ie 30

Lab Duplicate Analysis Batch Quality Control

Project Name: 600 MASS AVE Project Number: 6691.9.03

Parameter	Native Sample	Duplicate Sample	Units	RPD	Qual	RPD Limits
General Chemistry - Westborough Lab As	sociated sample(s): 01 QC Batch ID	: WG1440978-3 QC	Sample: L2053	643-01 (Client ID:	DUP Sample
Chlorine, Total Residual	ND	ND	mg/l	NC		20
General Chemistry - Westborough Lab Ass	sociated sample(s): 01 QC Batch ID	: WG1441135-3 QC	Sample: L2053	769-01 (Client ID:	B-2 (OW)
Chromium, Hexavalent	ND	ND	mg/l	NC		20
Anions by Ion Chromatography - Westboro Sample Chloride	ugh Lab Associated sample(s): 01 (QC Batch ID: WG1442	122-4 QC Sar mg/l	nple: L2	054242-01	1 Client ID: DUP
Sample	137	140		2		18
Sample Chloride	137	140	mg/l	2		18
Sample Chloride General Chemistry - Westborough Lab Ass	137 sociated sample(s): 01 QC Batch ID ND	140 : WG1442394-3 QC 0.005	^{mg/l} Sample: L2053	2 231-01(NC	Client ID:	18 DUP Sample 30

 Project Name:
 600 MASS AVE

 Project Number:
 6691.9.03

Serial_No:12102016:55 *Lab Number:* L2053769 *Report Date:* 12/10/20

Sample Receipt and Container Information

Were project specific reporting limits specified?

YES

Cooler Information

Cooler	Custody Seal
A	Absent

Container Info	rmation		Initial	Final	Temp			Frozen	
Container ID	r ID Container Type		рН	pН	deg C	Pres	Seal	Date/Time	Analysis(*)
L2053769-01A	Plastic 250ml unpreserved	А	7	7	3.2	Y	Absent		CL-300(28)
L2053769-01B	Plastic 250ml H2SO4 preserved	A	<2	<2	3.2	Y	Absent		NH3-4500(28)
L2053769-01C	Plastic 250ml NaOH preserved	A	>12	>12	3.2	Y	Absent		TCN-4500(14)
L2053769-01D	Plastic 500ml unpreserved	A	7	7	3.2	Y	Absent		TRC-4500(1)
L2053769-01E	Plastic 500ml unpreserved	А	7	7	3.2	Y	Absent		HEXCR-7196(1)
L2053769-01F	Plastic 500ml HNO3 preserved	A	<2	<2	3.2	Y	Absent		HARDU(180),CR-2008T(180)

Project Name: 600 MASS AVE

Project Number: 6691.9.03

Lab Number: L2053769

Report Date: 12/10/20

GLOSSARY

Acronyms

Acronyms	
DL	 Detection Limit: This value represents the level to which target analyte concentrations are reported as estimated values, when those target analyte concentrations are quantified below the limit of quantitation (LOQ). The DL includes any adjustments from dilutions, concentrations or moisture content, where applicable. (DoD report formats only.)
EDL	- Estimated Detection Limit: This value represents the level to which target analyte concentrations are reported as estimated values, when those target analyte concentrations are quantified below the reporting limit (RL). The EDL includes any adjustments from dilutions, concentrations or moisture content, where applicable. The use of EDLs is specific to the analysis of PAHs using Solid-Phase Microextraction (SPME).
EMPC	- Estimated Maximum Possible Concentration: The concentration that results from the signal present at the retention time of an analyte when the ions meet all of the identification criteria except the ion abundance ratio criteria. An EMPC is a worst-case estimate of the concentration.
EPA	- Environmental Protection Agency.
LCS	- Laboratory Control Sample: A sample matrix, free from the analytes of interest, spiked with verified known amounts of analytes or a material containing known and verified amounts of analytes.
LCSD	- Laboratory Control Sample Duplicate: Refer to LCS.
LFB	- Laboratory Fortified Blank: A sample matrix, free from the analytes of interest, spiked with verified known amounts of analytes or a material containing known and verified amounts of analytes.
LOD	- Limit of Detection: This value represents the level to which a target analyte can reliably be detected for a specific analyte in a specific matrix by a specific method. The LOD includes any adjustments from dilutions, concentrations or moisture content, where applicable. (DoD report formats only.)
LOQ	- Limit of Quantitation: The value at which an instrument can accurately measure an analyte at a specific concentration. The LOQ includes any adjustments from dilutions, concentrations or moisture content, where applicable. (DoD report formats only.)
	Limit of Quantitation: The value at which an instrument can accurately measure an analyte at a specific concentration. The LOQ includes any adjustments from dilutions, concentrations or moisture content, where applicable. (DoD report formats only.)
MDL	- Method Detection Limit: This value represents the level to which target analyte concentrations are reported as estimated values, when those target analyte concentrations are quantified below the reporting limit (RL). The MDL includes any adjustments from dilutions, concentrations or moisture content, where applicable.
MS	- Matrix Spike Sample: A sample prepared by adding a known mass of target analyte to a specified amount of matrix sample for which an independent estimate of target analyte concentration is available. For Method 332.0, the spike recovery is calculated using the native concentration, including estimated values.
MSD	- Matrix Spike Sample Duplicate: Refer to MS.
NA	- Not Applicable.
NC	- Not Calculated: Term is utilized when one or more of the results utilized in the calculation are non-detect at the parameter's reporting unit.
NDPA/DPA	- N-Nitrosodiphenylamine/Diphenylamine.
NI	- Not Ignitable.
NP	- Non-Plastic: Term is utilized for the analysis of Atterberg Limits in soil.
NR	- No Results: Term is utilized when 'No Target Compounds Requested' is reported for the analysis of Volatile or Semivolatile Organic TIC only requests.
RL	- Reporting Limit: The value at which an instrument can accurately measure an analyte at a specific concentration. The RL includes any adjustments from dilutions, concentrations or moisture content, where applicable.
RPD	- Relative Percent Difference: The results from matrix and/or matrix spike duplicates are primarily designed to assess the precision of analytical results in a given matrix and are expressed as relative percent difference (RPD). Values which are less than five times the reporting limit for any individual parameter are evaluated by utilizing the absolute difference between the values; although the RPD value will be provided in the report.
SRM	- Standard Reference Material: A reference sample of a known or certified value that is of the same or similar matrix as the associated field samples.
STLP	- Semi-dynamic Tank Leaching Procedure per EPA Method 1315.
TEF	- Toxic Equivalency Factors: The values assigned to each dioxin and furan to evaluate their toxicity relative to 2,3,7,8-TCDD.
TEQ	- Toxic Equivalent: The measure of a sample's toxicity derived by multiplying each dioxin and furan by its corresponding TEF and then summing the resulting values.
TIC	- Tentatively Identified Compound: A compound that has been identified to be present and is not part of the target compound list (TCL) for the method and/or program. All TICs are qualitatively identified and reported as estimated concentrations.

Report Format: Data Usability Report

Project Name: 600 MASS AVE

Project Number: 6691.9.03

Lab Number: L2053769

Report Date: 12/10/20

Footnotes

1

- The reference for this analyte should be considered modified since this analyte is absent from the target analyte list of the original method.

Terms

Analytical Method: Both the document from which the method originates and the analytical reference method. (Example: EPA 8260B is shown as 1,8260B.) The codes for the reference method documents are provided in the References section of the Addendum.

Difference: With respect to Total Oxidizable Precursor (TOP) Assay analysis, the difference is defined as the Post-Treatment value minus the Pre-Treatment value.

Final pH: As it pertains to Sample Receipt & Container Information section of the report, Final pH reflects pH of container determined after adjustment at the laboratory, if applicable. If no adjustment required, value reflects Initial pH.

Frozen Date/Time: With respect to Volatile Organics in soil, Frozen Date/Time reflects the date/time at which associated Reagent Waterpreserved vials were initially frozen. Note: If frozen date/time is beyond 48 hours from sample collection, value will be reflected in 'bold'. Initial pH: As it pertains to Sample Receipt & Container Information section of the report, Initial pH reflects pH of container determined upon receipt, if applicable.

PAH Total: With respect to Alkylated PAH analyses, the 'PAHs, Total' result is defined as the summation of results for all or a subset of the following compounds: Naphthalene, C1-C4 Naphthalenes, 2-Methylnaphthalene, 1-Methylnaphthalene, Biphenyl, Acenaphthylene, Acenaphthene, Fluorene, C1-C3 Fluorenes, Phenanthrene, C1-C4 Phenanthrenes/Anthracenes, Anthracene, Fluoranthene, Pyrene, C1-C4 Fluoranthenes/Pyrenes, Benz(a)anthracene, Chrysene, C1-C4 Chrysenes, Benzo(b)fluoranthene, Benzo(j)+(k)fluoranthene, Benzo(e)pyrene, Benzo(a)pyrene, Perylene, Indeno(1,2,3-cd)pyrene, Dibenz(ah)+(ac)anthracene, Benzo(g,h,i)perylene. If a 'Total' result is requested, the results of its individual components will also be reported.

PFAS Total: With respect to PFAS analyses, the 'PFAS, Total (5)' result is defined as the summation of results for: PFHpA, PFHxS, PFOA, PFNA and PFOS. In addition, the 'PFAS, Total (6)' result is defined as the summation of results at or above the RL for: PFHpA, PFHxS, PFOA, PFNA, PFDA and PFOS. (Note: 'PFAS, Total (6)' is applicable to MassDEP DW compliance analysis only.). If a 'Total' result is requested, the results of its individual components will also be reported.

The target compound Chlordane (CAS No. 57-74-9) is reported for GC ECD analyses. Per EPA,this compound "refers to a mixture of chlordane isomers, other chlorinated hydrocarbons and numerous other components." (Reference: USEPA Toxicological Review of Chlordane, In Support of Summary Information on the Integrated Risk Information System (IRIS), December 1997.)

Total: With respect to Organic analyses, a 'Total' result is defined as the summation of results for individual isomers or Aroclors. If a 'Total' result is requested, the results of its individual components will also be reported. This is applicable to 'Total' results for methods 8260, 8081 and 8082.

Data Qualifiers

- A Spectra identified as "Aldol Condensates" are byproducts of the extraction/concentration procedures when acetone is introduced in the process.
- B The analyte was detected above the reporting limit in the associated method blank. Flag only applies to associated field samples that have detectable concentrations of the analyte at less than ten times (10x) the concentration found in the blank. For MCP-related projects, flag only applies to associated field samples that have detectable concentrations of the analyte at less than ten times (10x) the concentrations of the analyte at less than ten times (10x) the concentrations of the analyte at less than ten times (10x) the concentrations of the analyte at less than ten times (10x) the concentrations of the analyte at less than ten times (10x) the concentrations of the analyte at less than ten times (10x) the concentration found in the blank. For DOD-related projects, flag only applies to associated field samples that have detectable concentrations of the analyte was detected above one-half the reporting limit (or above the reporting limit for common lab contaminants) in the associated method blank. For NJ-Air-related projects, flag only applies to associated field samples that have detectable concentrations of the analyte above the reporting limit. For NJ-related projects (excluding Air), flag only applies to associated field samples that have detectable concentrations of the analyte, which was detected above the reporting limit in the associated method blank or above five times the reporting limit for common lab contaminants (Phthalates, Acetone, Methylene Chloride, 2-Butanone).
- C Co-elution: The target analyte co-elutes with a known lab standard (i.e. surrogate, internal standards, etc.) for co-extracted analyses.
- **D** Concentration of analyte was quantified from diluted analysis. Flag only applies to field samples that have detectable concentrations of the analyte.
- E Concentration of analyte exceeds the range of the calibration curve and/or linear range of the instrument.
- **F** The ratio of quantifier ion response to qualifier ion response falls outside of the laboratory criteria. Results are considered to be an estimated maximum concentration.
- G The concentration may be biased high due to matrix interferences (i.e, co-elution) with non-target compound(s). The result should be considered estimated.
- H The analysis of pH was performed beyond the regulatory-required holding time of 15 minutes from the time of sample collection.
- I The lower value for the two columns has been reported due to obvious interference.
- J Estimated value. This represents an estimated concentration for Tentatively Identified Compounds (TICs).
- M Reporting Limit (RL) exceeds the MCP CAM Reporting Limit for this analyte.
- **ND** Not detected at the reporting limit (RL) for the sample.
- NJ Presumptive evidence of compound. This represents an estimated concentration for Tentatively Identified Compounds (TICs), where

Report Format: Data Usability Report

Serial_No:12102016:55

Project Name: 600 MASS AVE

Project Number: 6691.9.03

Lab Number: L2053769

Report Date: 12/10/20

Data Qualifiers

the identification is based on a mass spectral library search.

- **P** The RPD between the results for the two columns exceeds the method-specified criteria.
- Q The quality control sample exceeds the associated acceptance criteria. For DOD-related projects, LCS and/or Continuing Calibration Standard exceedences are also qualified on all associated sample results. Note: This flag is not applicable for matrix spike recoveries when the sample concentration is greater than 4x the spike added or for batch duplicate RPD when the sample concentrations are less than 5x the RL. (Metals only.)
- **R** Analytical results are from sample re-analysis.
- **RE** Analytical results are from sample re-extraction.
- **S** Analytical results are from modified screening analysis.

Report Format: Data Usability Report

Project Name:600 MASS AVEProject Number:6691.9.03

 Lab Number:
 L2053769

 Report Date:
 12/10/20

REFERENCES

- 1 Test Methods for Evaluating Solid Waste: Physical/Chemical Methods. EPA SW-846. Third Edition. Updates I - VI, 2018.
- 3 Methods for the Determination of Metals in Environmental Samples, Supplement I. EPA/600/R-94/111. May 1994.
- 19 Inductively Coupled Plasma Atomic Emission Spectrometric Method for Trace Element Analysis of Water and Wastes. Appendix C, Part 136, 40 CFR (Code of Federal Regulations). July 1, 1999 edition.
- 44 Methods for the Determination of Inorganic Substances in Environmental Samples, EPA/600/R-93/100, August 1993.
- 107 Alpha Analytical In-house calculation method.
- 121 Standard Methods for the Examination of Water and Wastewater. APHA-AWWA-WEF. Standard Methods Online.

LIMITATION OF LIABILITIES

Alpha Analytical performs services with reasonable care and diligence normal to the analytical testing laboratory industry. In the event of an error, the sole and exclusive responsibility of Alpha Analytical shall be to re-perform the work at it's own expense. In no event shall Alpha Analytical be held liable for any incidental, consequential or special damages, including but not limited to, damages in any way connected with the use of, interpretation of, information or analysis provided by Alpha Analytical.

We strongly urge our clients to comply with EPA protocol regarding sample volume, preservation, cooling, containers, sampling procedures, holding time and splitting of samples in the field.

Certification Information

The following analytes are not included in our Primary NELAP Scope of Accreditation:

Westborough Facility

EPA 624/624.1: m/p-xylene, o-xylene, Naphthalene
EPA 8260C: NPW: 1,2,4,5-Tetramethylbenzene; 4-Ethyltoluene, Azobenzene; SCM: Iodomethane (methyl iodide), 1,2,4,5-Tetramethylbenzene; 4-Ethyltoluene.
EPA 8270D: NPW: Dimethylnaphthalene,1,4-Diphenylhydrazine; SCM: Dimethylnaphthalene,1,4-Diphenylhydrazine.
SM4500: NPW: Amenable Cyanide; SCM: Total Phosphorus, TKN, NO2, NO3.
Mansfield Facility
SM 2540D: TSS
EPA 8082A: NPW: PCB: 1, 5, 31, 87,101, 110, 141, 151, 153, 180, 183, 187.
EPA TO-15: Halothane, 2,4,4-Trimethyl-2-pentene, 2,4,4-Trimethyl-1-pentene, Thiophene, 2-Methylthiophene, 3-Methylthiophene, 1,2,3-Trimethylbenzene, Indan, Indene, 1,2,4,5-Tetramethylbenzene, Benzothiophene, 1-Methylnaphthalene.
EPA 3C Fixed gases
Biological Tissue Matrix: EPA 3050B

The following analytes are included in our Massachusetts DEP Scope of Accreditation

Westborough Facility:

Drinking Water

EPA 300.0: Chloride, Nitrate-N, Fluoride, Sulfate; EPA 353.2: Nitrate-N, Nitrite-N; SM4500NO3-F: Nitrate-N, Nitrite-N; SM4500F-C, SM4500CN-CE, EPA 180.1, SM2130B, SM4500CI-D, SM2320B, SM2540C, SM4500H-B, SM4500NO2-B EPA 332: Perchlorate; EPA 524.2: THMs and VOCs; EPA 504.1: EDB, DBCP. Microbiology: SM9215B; SM9223-P/A, SM9223B-Colilert-QT,SM9222D.

Non-Potable Water

SM4500H,B, EPA 120.1, SM2510B, SM2540C, SM2320B, SM4500CL-E, SM4500F-BC, SM4500NH3-BH: Ammonia-N and Kjeldahl-N, EPA 350.1: Ammonia-N, LACHAT 10-107-06-1-B: Ammonia-N, EPA 351.1, SM4500NO3-F, EPA 353.2: Nitrate-N, SM4500P-E, SM4500P-B, E, SM4500SO4-E, SM5220D, EPA 410.4, SM5210B, SM5310C, SM4500CL-D, EPA 1664, EPA 420.1, SM4500-CN-CE, SM2540D, EPA 300: Chloride, Sulfate, Nitrate. EPA 624.1: Volatile Halocarbons & Aromatics,

EPA 608.3: Chlordane, Toxaphene, Aldrin, alpha-BHC, beta-BHC, gamma-BHC, delta-BHC, Dieldrin, DDD, DDE, DDT, Endosulfan I, Endosulfan II, Endosulfan sulfate, Endrin, Endrin Aldehyde, Heptachlor, Heptachlor Epoxide, PCBs **EPA 625.1**: SVOC (Acid/Base/Neutral Extractables), **EPA 600/4-81-045**: PCB-Oil.

Microbiology: SM9223B-Colilert-QT; Enterolert-QT, SM9221E, EPA 1600, EPA 1603.

Mansfield Facility:

Drinking Water

EPA 200.7: Al, Ba, Cd, Cr, Cu, Fe, Mn, Ni, Na, Ag, Ca, Zn. EPA 200.8: Al, Sb, As, Ba, Be, Cd, Cr, Cu, Pb, Mn, Ni, Se, Ag, TL, Zn. EPA 245.1 Hg. EPA 522.

Non-Potable Water

EPA 200.7: Al, Sb, As, Be, Cd, Ca, Cr, Co, Cu, Fe, Pb, Mg, Mn, Mo, Ni, K, Se, Ag, Na, Sr, TL, Ti, V, Zn. **EPA 200.8:** Al, Sb, As, Be, Cd, Cr, Cu, Fe, Pb, Mn, Ni, K, Se, Ag, Na, TL, Zn. **EPA 245.1** Hg. **SM2340B**

For a complete listing of analytes and methods, please contact your Alpha Project Manager.

Агриа	CHA	AIN OF CU			PAGE_	<u>1 or 1</u>			ate R				1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	131	0.04			L	Concession in the local division in the loca	53	-		
8 Walkup Drive Westborg, MA 01	320 Forbes Blvd 1581 Mansfeld, MA 0204	48	Project Inform Project Name:					-	ADEx			ion - D EMAIL		elivera	ables	<u>415</u>				Inform			
Tel: 508-898-92 Client Information	20 Tel: 508-822-9300		Project Name: 6 Project Location:	00 Ma	ss Ave				8											Client in		PO #:	
Contract of the state of the st	ssociates, LLC		Project Location:	Camb	oridge, MA			Re D Ye	egula s N N	tory	Requ	uireme Analytica	nts Melho	& P	roject					ement alytical			
Address: 2269 Massa			Project #: 6691	.9.03				C Yes	s X No	o Matri	ix Spike	e Requi	ired on t	this SDO	G7 (Rec	quired t	for MC	P Inor	rganics))	IMPERIO	/ds	
CONTRACTOR OF CONTRACTOR	14. Mar. 1997, 1997, 1997, 1997, 1997, 1997, 1997, 1997, 1997, 1997, 1997, 1997, 1997, 1997, 1997, 1997, 1997,		Project Manager:		Inrahan				IS 🖾 No				nfo Req	quired fo	or Metals	\$ & EP	H with	Targe	its)				
	ge, MA 02140		ALPHA Quote #:					- OU	her Sta	ste /Fe	d Prog	gram				Cr	itoria _				-		
Phone: (617) 868-1	420		Turn-Around	Time												T		NOTE)	T				
Email: khanral	han @McPhailgeo	.com	Maria	-			12	1							RAB	N		E NO					-
Additional Pro	oject Information	a'	A Standard Date Due:	LI RUSH	(only confirmed	if pre-approve	d1)	age IV				pets	ets	CRA8	D RCRAB	Ni,TI,V,		nics (SEE					T O T
Run TCLP (if trig ANALYZE FC chlorine, hard Sample "Sample ID	OR RGP SECT dness, chromiu	im III, chro	itrogen, chlor omium IV, cya	ide, tol anide	tal residua	Î.		Soil Assessment Package (less VOC)	D 8260	Total Solids	SVOC: D PAH	EPH: C Ranges & Targets C Ranges Only	VPH: C Ranges & Targets Ranges Only	TOTAL METALS: D RCRA8	DISSOLVED METALS: D PP13 D MCP 14	METALS: Total Sb,Be,Ni,TI,V,Zn	Desticides	Section A Inorganics				SAMPLE INFO Filtration Filtration Field Lab to do Preservation	L
ALPHA Lab ID	Sample		Sample	3	Colle	ction	Sampler	I Ass	ö	al S	ö	H: L	H: L	PP1	SOL PP1	TAL	D PCBs	P Se				Lab to do	T.L.
(Lab Use Only)			Depth	Material	Date	Time	Initials	Soi (les	VOC:	Tot	SV	â o	1 D	20	DIS	ME	ð	RGP				Sample Comments	- E 5
5370-4	B-2 (0W)	k.	-	GW	12/3/20	1400	MSD											X					6
and the second																							T
7.00.5																				\square			t
20188																			\square				+
								+					-	-			-	-	\vdash	\vdash	\neg		+
College and								+						<u> </u>	-			1	\vdash	\vdash	\neg		+
				-			<u> </u>	+		\vdash				<u> </u>			-	+	⊢	\vdash	-		+
NUMBER				<u> </u>				+	\vdash		\vdash	-	\vdash	-	-		-	-	\vdash	\vdash	-		+
				+				+	\vdash					<u> </u>	-	\vdash	-	—	\vdash	-	\rightarrow		+
				-				+	\vdash			\vdash		-	-		-	-	\square	\vdash	\square		+
Container Type	Preservative A=None		tion A Inorganics : Chloride, TRC, TSS		rill. Total	C	ontainer Type											-	\square	\vdash	\neg		+
A=Amber glass B=Bacteria cup	B=HCI		Total RGP Metals	M 2 (S. 19)			Preservative																
C=Cube D=BOD bottle	C=HNO ₃ D=H ₂ SO ₄		Relinquist	ned By:		Da	ste/Time					Recei	ived By:	1					Date/	/Time			
E=Encore G=Glass	E=NsOH F=MeOH	Ma	had Don	egter		12/3/-	20/1420	McF	^o hail A	Associ	ates s			e stora	ge for la	abora	tory	-			-	All samples	
O=Other P=Plastic	G=NaHSO ₄ H=Na ₂ S ₂ O ₂	McPha	ail Associates secu			10.00	-010120	+	1	11	-	Pip	₩-up	Q	un 19	AL	_	n/	1	1.17	_	submitted ar	
V=Vial	I=Ascorbix Acid J=NH ₄ Ci		laboratory	pick-up	/	-		1	19	K	-4	n	5			H		12/3		142	_	subject to Alpha's Term	
Sample Material F=Fill S=Sand O=Organics C=Clay	K=Zn Acetate O=Other		nhm	N	\sim	12/3/3	20 15 00	Co	Je	be	au	A	41	-	17	3	20	-	15	02	-	and Condition See reverse sid	ns.
N=Natural T=Till GM=Glaciomarine GW=Groundwater															_		_					DOC ID: 25188 Rev (11/28/2017)	0

APPENDIX E:

LABORATORY ANALYTICAL DATA – SURFACE WATER

Invoice Number: 591859 Invoice Date: 09-OCT-20 Report Due: 08-OCT-20 Account Number: MCPHAIL Receive Date: 02-OCT-20

Invoice To:

Ms. Christine Winship McPhail Associates 2269 Massachusetts Avenue Cambridge, MA 02140 McPhail Job No. 6691.9.03

Alpha Job #: L2042092 Quote #: Payment Terms: Net 30 P.O. Number:

Report To:

Mr. Ambrose Donovan McPhail Associates 2269 Massachusetts Avenue Cambridge, MA 02140

Project Number:	6691	Alpha Contact:	Melissa Gulli
Site:	600 MASS AVE	Project Manager:	Derek Trussell

Matrix	Description	Unit Price	Quantity	Total Price
WATER WATER WATER WATER	Total Hardness Ammonia Nitrogen - SM 4500 Total NPDES Metals - EPA 200.8/245.1 pH-Hydrogen ion concentration - SM	46.00 39.00 161.00 20.00	1 1 1 1	46.00 39.00 161.00 20.00
WATER	4500 Total Cyanide - SM 4500	61.00	1	61.00

Total Amount Due: \$ 327.00

Page 1

Payments should be made via ACH(electronic) transfer directly to Alpha's bank account on or before due date. If you are not enrolled in our electronic payments program please contact us at ar@alphalab.com. If you do not have access to pay Alpha via ACH or wire transfer you may remit payment to the address below. Please include Alpha's invoice number/s on your remittance.

> Alpha Analytical, Inc. 145 Flanders Road Westborough, MA 01581 Ph. 508-898-9220 Fax 508-898-9193 www.alphalab.com FEIN 04-2890415

APPENDIX F:

BEST MANAGEMENT PRACTICE PLAN

BEST MANAGEMENT PRACTICES PLAN

A Notice of Intent for a Remediation General Permit (RGP) under the National Pollutant Discharge Elimination System (NPDES) has been submitted to the US Environmental Protection Agency (EPA) in anticipation of temporary construction dewatering that will occur during development of the 600 Massachusetts Avenue project in Cambridge, Massachusetts. This Best Management Practices Plan (BMPP) has been prepared as an Appendix to the RGP and will be posted at the site during the time period that temporary construction dewatering is occurring at the site.

Water Treatment and Management

During construction of the proposed building foundation, dewatering effluent is anticipated to be pumped from localized sumps and trenches within the excavation directly into a settling tank. Dewatering effluent treatment will consist of a settling tank, bag filters to remove suspended soil particulates, and, if required, ion resin media vessels prior to off-site discharge. The effluent will then flow through the necessary treatment systems and discharge through hoses or piping connected into the storm water drains located beneath Green Street and Massachusetts Avenue. Based upon a review of the Boston Water and Sewer Commission stormwater drainage plan, the above referenced stormwater drain system ultimately discharges into the Charles River at outfall D10.

Discharge Monitoring and Compliance

Regular sampling and testing will be conducted at the influent to the system and the treated effluent as required by the RGP. During the first week of discharge, the operator must sample the untreated influent and treated effluent two times: one (1) sample of untreated influent and one (1) sample of untreated effluent be collected on the first day of discharge, and one (1) sample of untreated influent and one (1) sample of treated effluent and one (1) sample of untreated influent and one (1) sample of untreated influent and one (1) sample of treated effluent must be collected on one additional non-consecutive day within the first week of discharge. Samples must be analyzed in accordance with 40 CFR §136 unless otherwise specified by the RGP, with a maximum 5-day turnaround time and results must be reviewed no more than 48 hours from receipt of the results of each sampling event. After the first week, samples may be analyzed with up to a ten (10)-day turnaround time and results must be reviewed no more than 72 hours from receipt of the results. If the treatment system is operating as designed and achieving the effluent limitations outlined in the RGP, on-going sampling shall be conducted weekly for three (3) additional weeks beginning no earlier than 24 hours following initial sampling, and monthly as described below. Any adjustments/reductions in monitoring frequency must be approved by EPA in writing.

In accordance with Part 4.1 of the RGP, the operator must perform routine monthly monitoring for both influent and effluent beginning no more than 30 days following the completion of the sampling requirements for new discharges or discharges that have been interrupted. The routine monthly monitoring is to be conducted through the end of the scheduled discharge. The routine monthly monitoring must continue for five (5)

consecutive months prior to submission of any request for modification of monitoring frequency.

Dewatering activity for the Site is classified as Category III-G: Sites with Known Contamination. Monitoring shall include analysis of influent and effluent samples for the presence of: pH and inorganics as listed in the RGP including: ammonia, chloride, total residual chlorine, total suspended solids, antimony, arsenic, cadmium, chromium III, chromium VI, copper, lead, mercury, nickel, selenium, silver, zinc and cyanide.

Monitoring will include checking the condition of the treatment system, assessing the need for treatment system adjustments based on monitoring data, observing and recording daily flow rates and discharge quantities, and verifying the flow path of the discharged effluent.

The total monthly flow will be monitored by checking and documenting the flow through the flow meter to be installed on the system. Flow will be maintained below the "system design flow" by regularly monitoring flow and adjusting the amount of construction dewatering as needed. Monthly monitoring reports will be compiled and maintained at the site.

System Maintenance

A number of methods will be used to minimize the potential for violations during the term of this permit discharge. Scheduled regular maintenance and periodic cleaning of the treatment system will be conducted to verify proper operation and shall be conducted in accordance with Section 1.11 of the project earthwork specifications. Regular maintenance will include checking the condition of the treatment system equipment such as the settling tanks, bag filters, hoses, pumps, and flow meters. Equipment will be monitored daily for potential matters and unscheduled maintenance requirements.

Employees who have direct or indirect responsibility for ensuring compliance with the RGP will be trained by the Contractor.

Miscellaneous Items

Site security for the treatment system will be addressed within the overall site security plan.

Management of Treatment System Materials

Dewatering effluent will be pumped directly into the treatment system from the excavation with use of hoses and localized sumps to minimize handling. The Contractor will establish staging areas for equipment or materials storage that may be possible sources of pollution away from any dewatering activities, to the extent practicable.

Sediment from the tank used in the treatment system will be characterized and removed from the site to an appropriate receiving facility, in accordance with applicable laws and regulations. Bag and ion filters will be replaced/disposed of as necessary.