

#### NOTICE OF INTENT FOR DISCHARGE PURSUANT TO MASSACHUSETTS REMEDIATION GENERAL PERMIT MAG9100000

# 58 CHARLES STREET CAMBRIDGE, MASSACHUSETTS

**DECEMBER 19, 2021** 

#### Prepared For:

United States Environmental Protection Agency
OFFICE OF ECOSYSTEM PROTECTION
5 POST OFFICE SQUARE, SUITE 100
MAIL CODE OEP06-01
BOSTON, MA 02109-3912

#### On Behalf Of:

The Richmond Group 77 Main Street Hopkinton, MA 01748

2269 Massachusetts Avenue Cambridge, MA 02140 www.mcphailgeo.com (617) 868-1420



December 19, 2021

United States Environmental Protection Agency Office of Ecosystem Protection 5 Post Office Square, Suite 100 Mail Code OEP06-01 Boston, MA 02109-3912

Attention: EPA RGP Applications Coordinator

Reference: 58 Charles Street; Cambridge, MA

Notice of Intent for Temporary Construction Dewatering Discharge;

Massachusetts Remediation General Permit MAG910000

#### Ladies and Gentlemen:

On behalf of the Richmond Group, McPhail Associates, LLC (McPhail) has prepared the attached Notice of Intent (NOI) for coverage under the Remediation General Permit (RGP) MAG910000 for the temporary discharge of construction dewatering effluent into the Lechmere Canal via the off-site storm drainage system. The temporary construction dewatering discharge began on **December 6, 2021** as an emergency discharge for the property located at 58 Charles Street in Cambridge, Massachusetts (subject site). Refer to **Figure 1** for the general site locus.

These services were performed and this permit application was prepared in accordance with the authorization of BMR-58 Charles Street, LLC. These services are subject to the limitations contained in **Appendix A**.

This project is considered Activity Category III-G as defined in the RGP. Category III-G is defined as Contaminated Site Dewatering from Sites with Known Contamination. Based on current groundwater analysis completed at the subject site, the constituents of concern (COCs) are those identified under subcategory A (inorganics). The required Notice of Intent (NOI) Form contained in the RGP permit is included in **Appendix B**.

#### **Applicant/Operator**

The applicant for the Notice of Intent-Remediation General Permit is:

The Richmond Group 77 Main Street Hopkinton, MA 01748

Attention: Mr. Tom Leduc



#### **Existing Conditions**

Fronting onto Charles Street to the north, the approximate 38,728-square foot subject site is bounded by Second Street to the east, and commercial properties to the south and west. Currently, the subject site is occupied by a 3-story brick and wood-framed structure that was constructed in 1911 that is surrounded by paved surface parking lots. The boundaries of the subject site, which define the limits of our work, are shown on the enclosed **Figure 2**.

The ongoing renovations to the existing building are understood to include the following:

- Construction of a new freight elevator with a bottom of pit slab extending about 8 feet below the existing lowest floor slab.
- The possible addition of a new sump pit to the existing passenger elevator pit.
- The addition of an expanded loading dock area.

During performance of the above referenced renovations during November 2021, on-site recharge from the well point system was causing water infiltration through the building foundation wall and flooding in the elevator pit excavation, thereby posting a risk to the structural integrity of the building elements under construction. Consequently, the renovation activities were stopped, and the elevator construction was temporarily suspended.

As a result, it was determined that the above referenced situation met the definition of emergency discharge, "a discharge that is a result of remediation or dewatering activities conducted in response to a public emergency and the discharge requires immediate authorization to avoid imminent endangerment to human health, public safety, or the environment, or to reestablish essential public services." Accordingly, a written request for provisional approval for emergency off-site discharge was submitted to the EPA on November 30, 2021.

Subsequent to retaining Lockwood Remediation Technologies, LLC (LRT) as a subcontractor to install the dewatering system detailed below, EPA was notified, and off-site discharge began on **December 6, 2021**. Pursuant to the provisions of the RGP, samples of the groundwater, influent, and effluent were obtained and submitted for laboratory analysis for the parameters in accordance with Activity Category III-G, as is further detailed below.

#### **Site and Release History**

During February 2021, McPhail completed a preliminary subsurface exploration program consisting of one soil boring and installation of a groundwater monitoring well to assess subsurface conditions. Additionally, one (1) composite sample of the fill material obtained from a depth range of 0 to 8 feet below ground surface was submitted for laboratory analysis for the presence of constituents typically required by off-site receiving facilities. The results of the laboratory analysis identified the presence of total mercury in the composite sample at a concentration which exceeds the applicable RCS-1 reporting threshold. Specifically, total mercury was identified at a concentration of 63.6 milligrams per kilogram



(mg/kg) which is above the applicable RCS-1 reporting threshold of 20 mg/kg. In order to further evaluate the nature and extent of the mercury contamination, McPhail conducted a supplemental subsurface exploration program that consisted to seven (7) geoprobes. In summary, the results of the supplemental exploration program indicated that the mercury release was limited to an approximate 10 foot by 11-foot area that extended from 2.5 to 5 feet below ground surface. Based on this information, a Limited Removal Action (LRA) consisting of the excavation and removal of about 10.5 cubic yards of mercury impacted fill material was conducted in July 2021. Further, given that groundwater was encountered at a depth of 8.5 feet below ground surface, which is below the bottom of the fill material observed at the site, the groundwater is not considered to be affected by the release of total mercury.

#### **Site Environmental Setting and Surrounding Historical Places**

Based on an online edition of the Massachusetts Department of Environmental Protection (DEP) Phase I Site Assessment Map viewed on December 3, 2021, the subject site is not located within the boundaries of a Sole Source Aquifer, Potentially Productive Aquifer or within a Zone II, Interim Wellhead Protection Area as defined by the Massachusetts Department of Environmental Protection. Further, there are no public drinking water supply wells, no Areas of Critical Environmental Concern, no fish habitats, no habitats of Species of Special Concern or Threatened or Endangered Species within specified distances of the subject site. The Resource Map indicates that there are no water bodies or wetland areas at the subject site. The closest body of water is the Charles River located approximately 1,300 feet to the east of the subject site. No areas designated as solid waste sites (landfills) are noted as being located within 1,000 feet of the site. A copy of the Massachusetts DEP Phase I Site Assessment Map is included in **Appendix C**.

A review of information provided by the U.S. Fish and Wildlife Service in an Information for Planning and Conservation (IPaC) Trust Resource Report for the subject site did not identify the presence of threatened or endangered species at or in the vicinity of the discharge location and/or discharge outfall. Further, the Trust Resource Report did not identify the presence of a critical habitat in the vicinity of the discharge outfall and/or discharge location. Based upon the above, the site is considered a Criterion A pursuant to Appendix IV of the RGP. A copy of the IPaC Trust Resource Report and U.S. Fish and Wildlife Service's Nationwide Standard Conservation Measures are included in **Appendix C**.

The subject site is not listed on the State or National Register of Historical Places. A copy of the State of Massachusetts MACRIS reports is included in **Appendix C**.

Currently, treated construction dewatering effluent is being temporarily discharged into the City of Cambridge storm drain system that flows into the Lechmere Canal. Based on the anticipated duration of construction dewatering and the location of its discharge into the subsurface structures that lead to the Lechmere Canal, construction dewatering activities are not considered to affect elements of historical listings. Hence, the site meets Permit Eligibility Criterion B in accordance with Appendix III of the RGP.



#### **Construction Site Dewatering**

As indicated above, the on-site recharge of groundwater that was pumped from the well point system was causing water infiltration through the building foundation wall and flooding in the elevator pit excavation. Accordingly, LRT was retained to install a temporary construction dewatering system that consists of a 6-inch wellpoint discharge that feeds an 8,000-gallon weir tank with a bag filter skid that flows into an on-site catch basin. The rate of construction dewatering ranges from approximately 25 to 50 gallons per minute (gpm).

A review of relevant stormwater drainage plans provided by the City of Cambridge Department of Public Works indicates that the on-site catch basin flows beneath the subject site to Charles Street, then in a northerly direction beneath First Street and then in an easterly direction to the discharge into the Lechmere Canal. The locations of relevant catch basins with relation to the subject site and the route of the storm drains to the Lechmere Canal are indicated on **Figure 2**.

#### **Summary of Groundwater Analysis**

On December 1, 2021, McPhail obtained a sample of groundwater from a tank that was filled with groundwater pumped from extraction wells at the central portion of the subject site. The groundwater sample was submitted to a certified laboratory for analysis for the presence of compounds required under the RGP application, including total suspended solids (TSS), total residual chlorine, total petroleum hydrocarbons (TPH), non-halogenated volatile organic compounds (VOCs) including BTEX and benzene, fuels parameters, and total recoverable metals. The results of the laboratory analysis are summarized in **Table 1**, and laboratory data reports are included in **Appendix D**. The results of laboratory testing did not detect concentrations of the tested compounds in excess of the applicable RGP Effluent Limitations – Technology Based Effluent Limitations (TBELs) or Water Quality Based Effluent Limitations (WQBELs).

Pursuant to Section 4.2.2 of the EPA 2017 RGP, a receiving water sample was obtained from the Lechmere Canal (42°22′08.9"N 71°04'34.9"W), which is located approximately 100 feet upstream of the discharge location on December 1, 2021. The receiving water sample was analyzed for the presence of pH, hardness, and ammonia. The results of the surface water testing are summarized on **Table 2** and the laboratory data report is included in the enclosed **Appendix D**.

#### **Groundwater Treatment**

Based upon the anticipated rates of construction dewatering in conjunction with the results of the above referenced groundwater analyses, one 8,000-gallon capacity settling tank with bag filters has been installed to settle out and remove particulate matter in the effluent to meet allowable discharge limits established by the EPA prior to discharge. A schematic of the treatment system is shown on **Figure 4**.



A Best Management Practices Plan (BMPP) has been prepared as **Appendix E** and is posted at the site during the temporary construction dewatering at the site.

In accordance with Part 4 of the RGP, influent and effluent monitoring has been performed. On Day 1 and Day 3 of discharge, influent and effluent samples were obtained and submitted for laboratory analysis for the parameters included in Section A. The results which are summarized on the enclosed **Table 3**, did not identify the presence of the tested constituents at concentrations that would be indicative of a reportable release condition or warrant changes to the construction dewatering system in place. The laboratory data reports are included in the enclosed **Appendix D**.

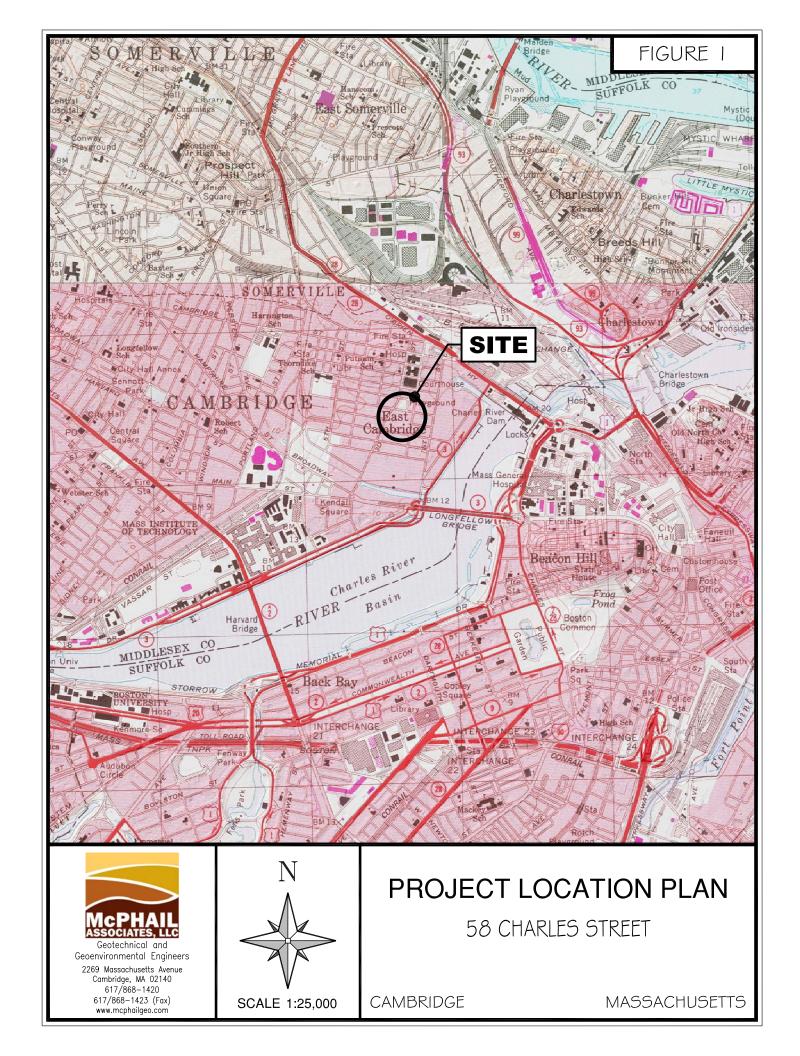
#### **Summary and Conclusions**

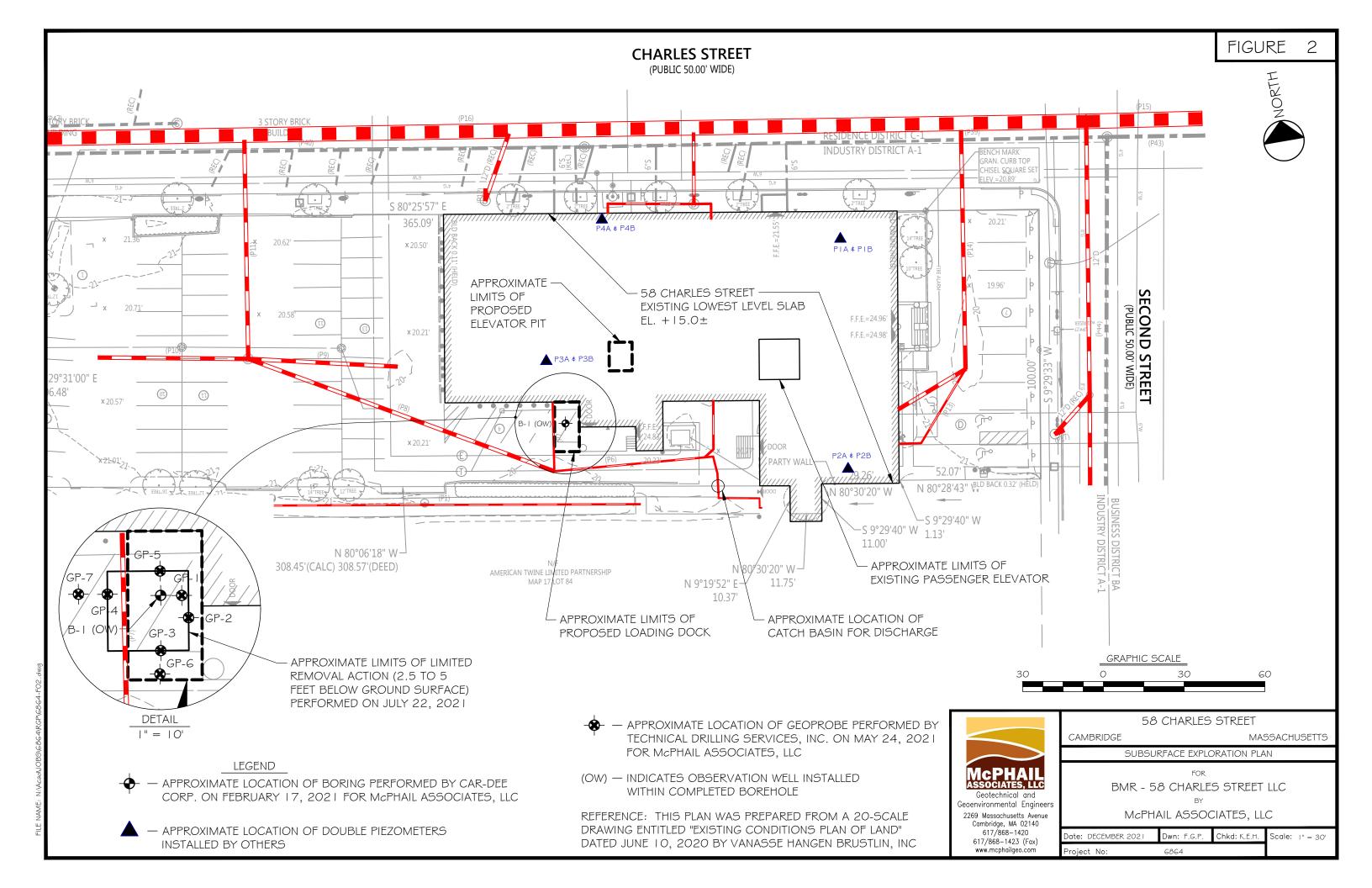
The purpose of this report is to summarize site environmental conditions and groundwater data to support a Notice of Intent to discharge under the Remediation General Permit for the off-site discharge of dewatered groundwater from the property located at 58 Charles Street in Cambridge, Massachusetts that was initiated as an Emergency Discharge on December 6, 2021.

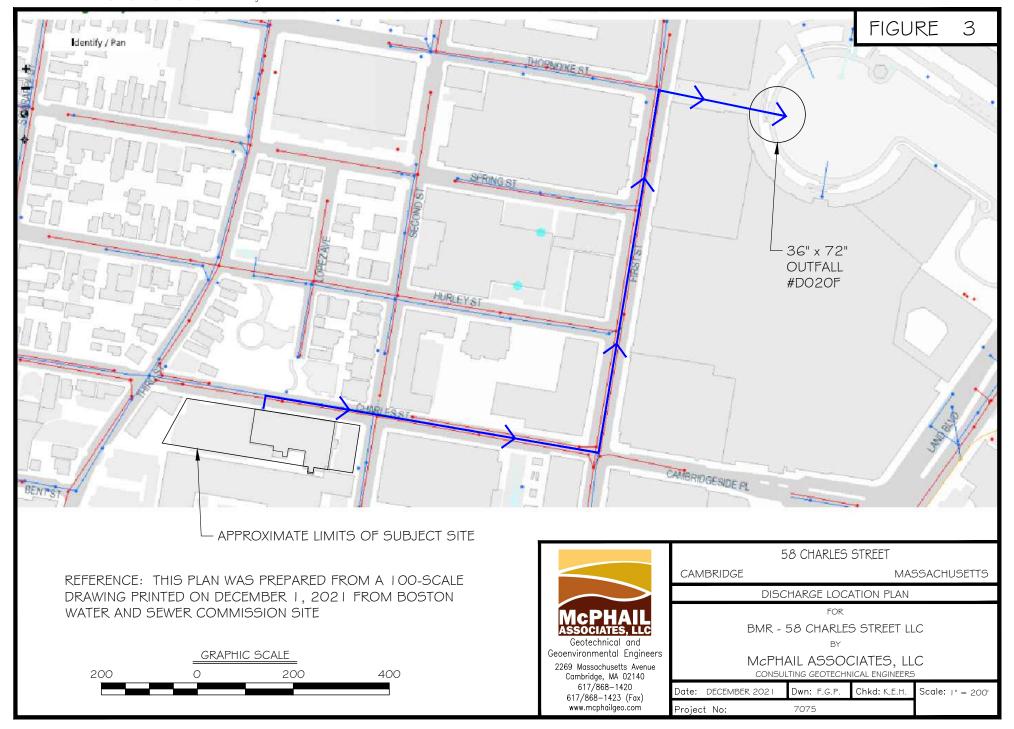
The construction dewatering effluent treatment system consists of one 8,000-gallon capacity settling tank with bag filters. Should the effluent monitoring results identify concentrations of contaminants that are in excess of the limits established by the RGP, additional mitigative measures will be implemented to meet the allowable discharge limits.

We trust that the above satisfies your present requirements. Should you have any questions or comments concerning the above, please do not hesitate to contact us.

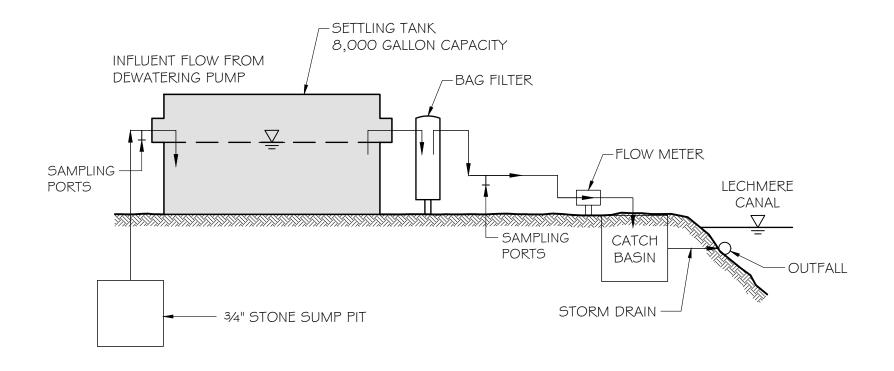
Sincerely,


McPHAIL ASSOCIATES, LLC


Kastry E Hannhar


Kathryn E. Hanrahan

William J. Burns, L.S.P., L.E.P.


 $N: Working\ Documents \ Reports \ 6864\_58 Charles St Cambridge\_RGP\_121921. docx\ KEH/wjb$ 







FIGURE





58 CHARLES STREET

**CAMBRIDGE** 

MASSACHUSETTS

SCHEMATIC OF TREATMENT SYSTEM

FOR

BMR - 58 CHARLES STREET LLC

BY

McPHAIL ASSOCIATES, LLC CONSULTING GEOTECHNICAL ENGINEERS

Dwn: F.G.P.

7075

Date: DECEMBER 2021

Project No:

Chkd: K.E.H.

Scale: N.T.S.

#### TABLE 1 ANALYTICAL RESULTS - GROUNDWATER

58 Charles Street Cambridge, MA Project No. 6864

| LOCATION                                         |           |          | Water    | Toohnology                   | EPA      |          |          | GW                 |
|--------------------------------------------------|-----------|----------|----------|------------------------------|----------|----------|----------|--------------------|
| SAMPLING DATE                                    | MassDEP   | MassDEP  | Quality  | Technology<br>Based Effluent | Fresh    | EPA-     | EPA-     | 12/1/2021          |
| AB SAMPLE ID                                     | RCGW-2    | GW-3     | Based    | Limitation                   | Chronic  | ALFCCC   | ALFCMC   | L2165980-0         |
| SAMPLE TYPE                                      |           |          | Effluent | Limitation                   | Criteria |          |          | WATER              |
| . Inorganics                                     |           |          |          |                              |          |          |          |                    |
| litrogen, Ammonia (mg/L)                         |           |          | Re       | porting                      |          |          |          | 2.22               |
| hloride (µg/L)                                   |           |          | Re       | porting                      | 230000   | 230000   | 860000   | 1510000            |
| Chlorine, Total Residual (µg/L)                  |           |          | 1100     | 200                          | 11       |          |          | ND(20)             |
| Solids, Total Suspended (mg/L)                   |           |          |          | 30                           |          |          |          | ND(5)              |
| H (H)                                            |           |          | 6        | 5.5-8.3                      |          |          |          | 7.8                |
| lardness (mg/L)                                  |           |          |          |                              |          |          |          | 461                |
| Antimony, Total (µg/L)                           | 8000      | 8000     | 640      | 206                          |          |          |          | ND(4)              |
| Arsenic, Total (µg/L)                            | 900       | 900      | 10       | 104                          | 150      | 150      | 340      | ND(1)              |
| Cadmium, Total (µg/L)                            | 4         | 4        | 0.25     | 10.2                         | 0.25     | 0.25     | 2        | ND(0.2)            |
| Chromium, Trivalent (ug/L)                       | 600       | 600      | 74       | 323                          | 0.20     | 74       | 570      | ND(10)             |
| Chromium, Hexavalent (µg/L)                      | 300       | 300      | 11       | 323                          | 11       | 11       | 16       | ND(10)             |
| Chromium, Total (µg/L)                           |           | 300      |          | 323                          | 74       | - ''     | 10       |                    |
|                                                  | 300       | 300      |          | 040                          |          |          |          | 5.09               |
| Copper, Total (µg/L)                             | 100000    |          | 9        | 242                          | 9        | 4000     |          | 4.65               |
| ron, Total (µg/L)                                | 40        | 4.0      | 1000     | 5000                         | 1000     | 1000     | 0.5      | 260                |
| _ead, Total (µg/L)                               | 10        | 10       | 2.5      | 160                          | 2.5      | 2.5      | 65       | ND(1)              |
| Mercury, Total (µg/L)                            | 20        | 20       | 0.77     | 0.739                        | 0.77     | 0.77     | 1.4      | ND(0.2)            |
| Nickel, Total (μg/L)                             | 200       | 200      | 52       | 1450                         | 52       | 52       | 470      | 3.03               |
| Selenium, Total (µg/L)                           | 100       | 100      | 5        | 235.8                        | 5        | 5        |          | ND(5)              |
| Silver, Total (µg/L)                             | 7         | 7        | 3.2      | 35.1                         |          |          | 3.2      | ND(0.4)            |
| Zinc, Total (µg/L)                               | 900       | 900      | 120      | 420                          | 120      | 120      | 120      | 58                 |
| Cyanide, Total (µg/L)                            | 30        | 30       | 5.2      | 178                          | 5.2      | 5.2      | 22       | ND(5)              |
| 3. Non-Halogenated Volatile Organic              | Compounds |          |          |                              |          |          |          |                    |
| Γotal BTEX (μg/L)                                | 1         |          |          | 100                          |          |          |          | ND(1)              |
| Benzene (µg/L)                                   | 1000      | 10000    |          | 5                            |          |          |          | ND(1)              |
| Toluene (µg/L)                                   | 40000     | 40000    |          | -                            |          |          |          | ND(1)              |
| Ethylbenzene (µg/L)                              | 5000      | 5000     |          |                              |          |          |          | ND(1)              |
| p/m-Xylene (μg/L)                                | 3000      | 5000     |          |                              |          |          |          | ND(1)              |
| o-xylene (µg/L)                                  | 3000      | 5000     |          |                              |          |          |          | ND(2)              |
| ylenes, Total (μg/L)                             | 3000      | 5000     |          |                              |          |          |          | ND(1)              |
|                                                  | 6000      | 50000    |          | 200                          |          | <b>-</b> |          | ND(1)<br>ND(5)     |
| 1,4-Dioxane (µg/L) Acetone (µg/L)                | 50000     | 50000    |          | 7970                         |          |          |          |                    |
|                                                  | 50000     | 50000    |          |                              |          |          |          | ND(10)             |
| Phenolics, Total (µg/L)                          | 1         |          | 300      | 1080                         |          |          |          | ND(15)             |
| C. Halogenated Volatile Organic Com              |           |          |          |                              |          |          |          |                    |
| Carbon tetrachloride (µg/L)                      | 2         | 5000     | 1.6      | 4.4                          |          |          |          | ND(1)              |
| 1,2-Dichlorobenzene (µg/L)                       | 2000      | 2000     |          | 600                          |          |          |          | ND(5)              |
| 1,3-Dichlorobenzene (µg/L)                       | 6000      | 50000    |          | 320                          |          |          |          | ND(5)              |
| 1,4-Dichlorobenzene (µg/L)                       | 60        | 8000     |          | 5                            |          |          |          | ND(5)              |
| Total dichlorobenzene                            |           |          |          | 763                          |          |          |          | ND                 |
| 1,1-Dichloroethane (µg/L)                        | 2000      | 20000    |          | 70                           |          |          |          | ND(1.5)            |
| 1,2-Dichloroethane (µg/L)                        | 5         | 20000    |          | 5                            |          |          |          | ND(1.5)            |
| 1,1-Dichloroethene (µg/L)                        | 80        | 30000    |          | 3.2                          |          |          |          | ND(1)              |
| Methylene chloride (µg/L)                        | 2000      | 50000    |          | 4.6                          |          |          |          | ND(1)              |
| 1,1,1-Trichloroethane (µg/L)                     | 4000      | 20000    |          | 200                          |          |          |          | ND(2)              |
| 1,1,2-Trichloroethane (µg/L)                     | 900       | 50000    |          | 5                            |          |          |          | ND(1.5)            |
| Trichloroethene (µg/L)                           | 5         | 5000     |          | 5                            |          |          |          | ND(1)              |
| Tetrachloroethene (µg/L)                         | 50        | 30000    | 3.3      | 5                            |          |          |          | ND(1)              |
| cis-1,2-Dichloroethene (µg/L)                    | 20        | 50000    | 0.0      | 70                           |          |          |          | ND(1)              |
| Vinyl chloride (µg/L)                            | 2         | 50000    |          | 2                            |          |          |          | ND(1)              |
|                                                  | 2         | 50000    |          | 2                            |          |          |          |                    |
| 1,2-Dibromoethane (µg/L)                         |           | 50000    |          |                              |          |          |          | ND(0.01)           |
| 1,2-Dibromo-3-chloropropane (µg/L)               | 1000      |          |          |                              |          |          |          | -                  |
| 1,2,3-Trichloropropane (µg/L)                    | 10000     | لــــــا |          |                              |          |          |          | -                  |
| D. Non-Halogenated Sem-Volatile Org              |           |          |          |                              |          |          |          |                    |
| Bis(2-ethylhexyl)phthalate (µg/L)                | 50000     | 50000    |          |                              |          |          |          | ND(2.2)            |
| Butyl benzyl phthalate (µg/L)                    | 10000     |          |          | 1 _                          |          |          |          | ND(5)              |
| Di-n-butylphthalate (µg/L)                       | 5000      |          | 3        | Sum = 190                    |          |          |          | ND(5)              |
| Di-n-octylphthalate (µg/L)                       | 100000    |          |          | 1                            |          |          |          | ND(5)              |
| Diethyl phthalate (µg/L)                         | 9000      | 9000     |          |                              |          |          |          | ND(5)              |
| Dimethyl phthalate (µg/L)                        | 50000     | 50000    |          |                              |          |          |          | ND(5)              |
| Total Group I PAHs                               |           |          | 1.01     | As Individual                |          |          |          | ND                 |
| Benzo(a)anthracene (µg/L)                        | 1000      | 1000     | 0.0038   |                              |          |          |          | ND(0.1)            |
| Benzo(a)pyrene (µg/L)                            | 500       | 500      | 0.0038   | 1                            |          |          |          | ND(0.1)            |
| Benzo(b)fluoranthene (µg/L)                      | 400       | 400      | 0.0038   | As Total Group               |          |          |          | ND(0.1)            |
| Benzo(k)fluoranthene (µg/L)                      | 100       | 100      | 0.0038   | I                            |          |          |          | ND(0.1)            |
| Chrysene (µg/L)                                  | 70        | 70       | 0.0038   | PAHs                         |          |          |          | ND(0.1)            |
| Dibenzo(a,h)anthracene (µg/L)                    | 40        | 40       | 0.0038   | 1                            |          | <b>-</b> |          | ND(0.1)            |
| ndeno(1,2,3-cd)pyrene (µg/L)                     | 100       | 100      | 0.0038   | 1                            |          |          |          | ND(0.1)            |
| ndeno(1,2,3-cd)pyrene (μg/L) Total Group II PAHs | 100       | 100      | 0.0030   | 100                          |          | <b>-</b> |          |                    |
| Acenaphthene (µg/L)                              | 10000     | 10000    |          | 100                          |          |          |          | ND(0.1)<br>ND(0.1) |
|                                                  |           |          |          |                              |          |          |          |                    |
| Acenaphthylene (µg/L)                            | 40        | 40       |          | As Total Group               |          |          |          | ND(0.1)            |
| Anthracene (µg/L)                                | 30        | 30       |          | II .                         |          |          |          | ND(0.1)            |
| Benzo(ghi)perylene (μg/L)                        | 20        | 20       |          | PAHs including               |          |          | <b> </b> | ND(0.1)            |
| luoranthene (µg/L)                               | 200       | 200      |          | Naphthalene                  |          |          |          | 0.168              |
| fluorene (µg/L)                                  | 40        | 40       |          | .,                           |          |          |          | ND(0.1)            |
| Phenanthrene (µg/L)                              | 10000     | 10000    |          | L                            |          |          |          | ND(0.1)            |
| Naphthalene (μg/L)                               | 700       | 20000    |          | 20                           |          |          |          | ND(0.1)            |
| Pyrene (µg/L)                                    | 20        | 20       |          |                              |          |          |          | 0.118              |
| . Halogenated Semi-Volatile Organic              | Compounds |          |          |                              |          |          |          |                    |
| Total Polychlorinated Biphenyls (µg/L)           | 5         | 10       | 0        | 000064                       | 0.014    |          |          | ND(0.2)            |
| Pentachlorophenol (µg/L)                         | 200       | 200      | 0.       | 1                            | 15       | 15       | 19       | ND(1)              |
| F. Fuels Parameters                              |           | 230      |          | 1                            | .0       | - 10     |          | .45(1)             |
|                                                  | E         | F        |          | 5                            |          |          |          | NID(4)             |
| PH, SGT-HEM (mg/L)                               | 5         | 5        |          | 5                            |          |          |          | ND(4)              |
| Ethanol (mg/L) Methyl tert butyl ether (µg/L)    | F000      | E0000    |          | porting                      |          |          |          | ND(20)             |
|                                                  | 5000      | 50000    | 20       | 70                           |          |          | l        | ND(10)             |
| ert-Butyl Alcohol (µg/L)                         |           |          |          | 120                          |          |          |          | ND(100)            |

1 of 1

## TABLE 2 ANALYTICAL RESULTS - RECEIVING WATER

58 Charles Street Cambridge, MA Project No. 6864

| LOCATION                 | LECHMERE CANAL |
|--------------------------|----------------|
| SAMPLING DATE            | 12/1/2021      |
| LAB SAMPLE ID            | L2165980-02    |
| SAMPLE TYPE              | WATER          |
| A. Inorganics            |                |
| Nitrogen, Ammonia (mg/L) | 0.354          |
| рН (Н)                   | 7.7            |
| Hardness (µg/L)          | 80700          |

#### Table 3 Laboratory Analytical Resuts - RGP Compliance Testing

58 Charles Street Cambridge, MA Project No. 6864

| LOCATION SAMPLING DATE         | MassDEP<br>RCGW-2 | Water<br>Quality<br>Based<br>Effluent | Technology<br>Based<br>Effluent | INFLUENT -<br>DAY 1 | EFFLUENT -<br>DAY 1 | INFLUENT -<br>DAY 3 | EFFLUENT -<br>DAY 3 |
|--------------------------------|-------------------|---------------------------------------|---------------------------------|---------------------|---------------------|---------------------|---------------------|
| LAB SAMPLE ID                  |                   | Limitation                            | Limitation                      | L2166864-01         | L2166864-02         | L2167504-01         | L2167504-02         |
| SAMPLE TYPE                    |                   |                                       |                                 | L2166864-01         | WATER               | WATER               | WATER               |
| General Chemistry              |                   |                                       |                                 |                     |                     |                     |                     |
| Chloride (mg/l)                |                   | R                                     | eport                           | 1530                | 1490                | 1380                | 1380                |
| Solids, Total Suspended (mg/l) |                   |                                       | 30                              | 11                  | 12                  | 12                  | ND(5)               |
| Cyanide, Total (mg/l)          | 0.03              | 5.2                                   | 178                             | ND(0.005)<br>7.6    | ND(0.005)           | 0.006               | 0.005               |
| pH (S.U.)                      |                   | 6.                                    | 6.5-8.3                         |                     | 7.9                 | 7.5                 | 7.6                 |
| Nitrogen, Ammonia (mg/l)       |                   | R                                     | Report                          |                     | 2.41                | 2.06                | 2.18                |
| Hardness (mg/l)                |                   | 100                                   |                                 | 476                 | 487                 | 403                 | 414                 |
| Total Metals (μg/l)            |                   |                                       |                                 |                     |                     |                     |                     |
| Antimony, Total                | 8000              | 640                                   | 206                             | ND(4)               | ND(4)               | ND(4)               | ND(4)               |
| Arsenic, Total                 | 900               | 10                                    | 104                             | ND(1)               | ND(1)               | ND(1)               | ND(1)               |
| Cadmium, Total                 | 4                 | 0.25                                  | 10.2                            | ND(0.2)             | ND(0.2)             | ND(0.2)             | ND(0.2)             |
| Chromium, Total                | 300               |                                       | 323                             | 8.93                | 7.72                | 3.08                | 3.4                 |
| Chromium, Trivalent            | 600               | 74                                    | 323                             | ND(10)              | ND(10)              | ND(10)              | ND(10)              |
| Chromium, Hexavalent           | 300               | 11                                    | 323                             | ND(10)              | ND(10)              | ND(10)              | ND(10)              |
| Copper, Total                  | 100000            | 9                                     | 242                             | 3.74                | 7.69                | ND(1)               | 10.6                |
| Iron, Total                    |                   | 1000                                  | 5000                            | 787                 | 540                 | 225                 | 283                 |
| Lead, Total                    | 10                | 2.5                                   | 160                             | ND(1)               | ND(1)               | ND(1)               | 3.43                |
| Mercury, Total                 | 20                | 0.77                                  | 0.739                           | ND(0.2)             | ND(0.2)             | ND(0.2)             | ND(0.2)             |
| Nickel, Total                  | 200               | 52                                    | 1450                            | 5.02                | 4.47                | ND(2)               | 8.49                |
| Selenium, Total                | 100               | 5                                     | 235.8                           | ND(5)               | ND(5)               | ND(5)               | ND(5)               |
| Silver, Total                  | 7                 | 3.2                                   | 35.1                            | ND(0.4)             | ND(0.4)             | ND(0.4)             | ND(0.4)             |
| Zinc, Total                    | 900               | 120                                   | 420                             | 164.7               | 122.2               | 51.74               | 75.88               |

McPhail Associates, LLC Page 1 of 1



#### **APPENDIX A:**

#### **LIMITATIONS**



#### **LIMITATIONS**

The purpose of this report is to present the results of testing of a groundwater sample obtained from a monitoring well located at 58 Charles Street in Cambridge, Massachusetts, in support of an application for approval of construction site dewatering discharge into surface waters of the Commonwealth of Massachusetts under EPA's Massachusetts Remediation General Permit MAG910000.

The observations were made under the conditions stated in this report. The conclusions presented above were based on these observations. If variations in the nature and extent of subsurface conditions between the spaced subsurface explorations become evident in the future, it will be necessary to re-evaluate the conclusions presented herein after performing on-site observations and noting the characteristics of any variations.

The conclusions submitted in this report are based in part upon laboratory test data obtained from analysis of groundwater samples and are contingent upon their validity. The data have been reviewed, and interpretations have been made in the text. It should also be noted that fluctuations in the types and levels of contaminants and variations in their flow paths may occur due to changes in the seasonal water table, past practices used at the site, and other factors.

Laboratory analyses have been performed for specific constituents during this assessment, as described in the text.

This report and application have been prepared on behalf of and for the exclusive use of BMR-58 Charles Street, LLC and The Richmond Group. This report and the findings contained herein shall not, in whole or in part, be disseminated or conveyed to any other party, other than submission to relevant governmental agencies, nor used in whole or in part by any other party without the prior written consent of McPhail Associates, LLC.



#### **APPENDIX B:**

# NOTICE OF INTENT TRANSMITTAL FORM CITY OF CAMBRIDGE DEWATERING APPLICATION

# NOVIS JAST

agreement/affidavits.

or property.

#### PERMIT TO DEWATER

| Location:                                                          | 58 Charles Street                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Temporary                                                           |
|--------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------|
| Owner:                                                             | BMR-58 Charles Street, LLC                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Permanent                                                           |
| Contractor:                                                        | The Richmond Group                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Termanent                                                           |
| 1 1                                                                | BMR-58 Charles Street, LLC<br>Cambridge for any liability on the part of the Cit<br>ration.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | agrees to hold harmless and<br>y directly or indirectly arising out |
| The issuance of this p as follows:                                 | ermit is based in part in the submission packet of                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | the applicant with documentation                                    |
| Remediation Gen                                                    | eral Permit in Massachusetts (MAG910000).                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                     |
| In addition, the applic the following reports:                     | eation has been reviewed by the City under third p                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | party agreement as documented in                                    |
| the provisions of the a                                            | ed in conjunction with the issuance of this permit aforementioned reports. Any deviations in condit missioner of Public Works.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                     |
|                                                                    | tion to any other street permit issued by the Departstruction; and all conditions as specified in the D                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                     |
|                                                                    | of time the groundwater is being discharged to a soft each Discharge Monitoring Report Form submitmit.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                     |
| compliance with EPA stormwater (also inclu<br>BMR-58 Charles Stree | A requires the City of Cambridge to bring existing quality standards, as a condition to the continuated ading groundwater) into an EPA regulated system to the continuated are considered by the continuated are continuated as a condition to the con | tion of discharge of that into which the                            |
| The property owner a                                               | nd contractor shall at all times meet the condition                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | s specified in the requisite legal                                  |

Where material or debris has washed or flowed into or has been placed in existing gutters, drains, pipes or structures, such material or debris shall be entirely removed and satisfactorily disposed of by the

All groundwater pumped from the work shall be disposed of without damage to pavements, other surfaces

Contractor during the progress of work as directed by the Public Works Department.

Any flooding or damage of property and possessions caused by siltation of existing gutters, pipes or structures shall be the responsibility of the Contractor.

Provisions shall be made to insure that no material, water or solid, will freeze on any pavement or in any location which will cause inconvenience or hazard to the general public.

Upon completion of the work, existing gutters, drains, pipes and structures shall be (bucket) cleaned and material disposed of satisfactorily prior to release by the Public Works Department.

Any permit issued by the City of Cambridge shall be revoked upon transfer of any ownership interest unless and until subsequent owner(s) or parties of interest agree to the foregoing terms.

This permit shall remain in effect for one year and shall be renewable thereafter at the agreement of the parties.

The following special conditions as set forth below are part of the permit.

| N/A                                                                                                                     |                                                                                                                     |
|-------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------|
|                                                                                                                         |                                                                                                                     |
| City Manager                                                                                                            | Property Manager: Corporate Entity<br>President, General Partner or Trustee<br>Trustee with Instrument of Authority |
| Date                                                                                                                    | Date                                                                                                                |
| City Solicitor                                                                                                          | Contractor                                                                                                          |
| Date                                                                                                                    | Date                                                                                                                |
|                                                                                                                         | Tom Leduc                                                                                                           |
| Commissioner of Public                                                                                                  | Contractor                                                                                                          |
|                                                                                                                         | 12/13/21                                                                                                            |
| Date                                                                                                                    | Date                                                                                                                |
| CC: Engineering Supervisor of Sewer Maintenance and Eng Superintendent of Streets Commissioner of Inspectional Services | gineering                                                                                                           |

#### II. Suggested Format for the Remediation General Permit Notice of Intent (NOI)

#### A. General site information:

|                                                           | •                                                     |                |              |                       |  |  |  |
|-----------------------------------------------------------|-------------------------------------------------------|----------------|--------------|-----------------------|--|--|--|
| 1. Name of site:                                          | Site address:                                         |                |              |                       |  |  |  |
| 58 Charles St                                             | Street: 58 Charles St                                 |                |              |                       |  |  |  |
|                                                           | City: Cambridge                                       |                | State: MA    | <sup>Zip:</sup> 02141 |  |  |  |
| 2. Site owner BMR-58 Charles Street, LLC                  | Contact Person: Ashley Myslinski, Project Manag       | er             |              |                       |  |  |  |
| DIVITY OF CHARGS CHOCK, ELO                               | Telephone: 858-524-9153                               | Email: Ash     | nley.Myslins | ski@biomedrealty.c    |  |  |  |
|                                                           | Mailing address:                                      |                |              |                       |  |  |  |
|                                                           | 4570 Executive Drive, Suite 400                       | )              |              |                       |  |  |  |
| 0                                                         | Street:                                               |                |              |                       |  |  |  |
| Owner is (check one): ☐ Federal ☐ State/Tribal ■ Private  | City: San Diego                                       |                | State: CA    | Zip: 92121            |  |  |  |
| ☐ Other; if so, specify:                                  | San Diego                                             |                | Suite CA     | 24. 92121             |  |  |  |
| 3. Site operator, if different than owner                 | Contact Person: Tom Leduc                             |                |              |                       |  |  |  |
| The Richmond Group                                        | Telephone: 508-435-9700                               | Email: TLe     | educ@theri   | chmondgroup.com       |  |  |  |
|                                                           | Mailing address:                                      |                |              |                       |  |  |  |
|                                                           | Street: 77 Main Street                                |                | ,            |                       |  |  |  |
|                                                           | City: Hopkinton                                       |                | State: MA    | Zip: 01748            |  |  |  |
| 4. NPDES permit number assigned by EPA:                   | 5. Other regulatory program(s) that apply to the site | (check all th  | at apply):   |                       |  |  |  |
| Emergency Discharge                                       | ☐ MA Chapter 21e; list RTN(s):                        | □ CERCL        | A            |                       |  |  |  |
|                                                           | in Chapter 210, list KII (6).                         |                |              |                       |  |  |  |
| NPDES permit is (check all that apply: ■ RGP □ DGP □ CGP  | ☐ NH Groundwater Management Permit or                 | □ UIC Pro      | Ü            |                       |  |  |  |
| ☐ MSGP ☐ Individual NPDES permit ☐ Other; if so, specify: | Groundwater Release Detection Permit:                 | $\square$ POTW | Pretreatment | t                     |  |  |  |
| □ MSGr □ marvidual NFDES permit □ Other, if so, specify:  | Crossis water release Detection Fermit.               | □ CWA S        | ection 404   |                       |  |  |  |
|                                                           |                                                       |                |              |                       |  |  |  |

VIII? (check one):

■ Yes □ No

| T. | D           | 4       | • •   | 4 •     |
|----|-------------|---------|-------|---------|
| K. | Receiving   | water   | infor | mation: |
|    | 11000111115 | ******* |       |         |

| B. Receiving water information:                                                                                                                            |                                                                                                 |                                                     |                                                         |
|------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------|-----------------------------------------------------|---------------------------------------------------------|
| 1. Name of receiving water(s):                                                                                                                             | Waterbody identification of receiving water                                                     | (s): Classif                                        | ication of receiving water(s):                          |
| Lechmere Canal                                                                                                                                             | MA72-38                                                                                         | Class B                                             | Surface Water                                           |
| Receiving water is (check any that apply): □ Outstan                                                                                                       | nding Resource Water □ Ocean Sanctuary □ territo                                                | rial sea □ Wild and Scenic I                        | River                                                   |
| 2. Has the operator attached a location map in accord                                                                                                      | dance with the instructions in B, above? (check one)                                            | : ■ Yes □ No                                        |                                                         |
| Are sensitive receptors present near the site? (check If yes, specify:                                                                                     | one): □ Yes ■ No                                                                                |                                                     |                                                         |
| 3. Indicate if the receiving water(s) is listed in the Stapollutants indicated. Also, indicate if a final TMDL in 4.6 of the RGP. Pathogens and phosphorus | · ,                                                                                             | ` '/'                                               | ¥ .                                                     |
| 4. Indicate the seven day-ten-year low flow (7Q10) of Appendix V for sites located in Massachusetts and A                                                  |                                                                                                 | n the instructions in                               | NA                                                      |
| 5. Indicate the requested dilution factor for the calculaccordance with the instructions in Appendix V for s                                               |                                                                                                 |                                                     | NA                                                      |
| 6. Has the operator received confirmation from the a If yes, indicate date confirmation received:                                                          | •                                                                                               |                                                     |                                                         |
| 7. Has the operator attached a summary of receiving (check one): $\blacksquare$ Yes $\square$ No                                                           | water sampling results as required in Part 4.2 of the                                           | RGP in accordance with the                          | instruction in Appendix VIII?                           |
| C. Source water information:                                                                                                                               |                                                                                                 |                                                     |                                                         |
| 1. Source water(s) is (check any that apply):                                                                                                              |                                                                                                 |                                                     |                                                         |
| ■ Contaminated groundwater                                                                                                                                 | ☐ Contaminated surface water                                                                    | ☐ The receiving water                               | ☐ Potable water; if so, indicat municipality or origin: |
| Has the operator attached a summary of influent sampling results as required in Part 4.2 of the RGP                                                        | Has the operator attached a summary of influent sampling results as required in Part 4.2 of the | ☐ A surface water other than the receiving water; i | f                                                       |
| in accordance with the instruction in Appendix                                                                                                             | RGP in accordance with the instruction in                                                       | so, indicate waterbody:                             | ☐ Other; if so, specify:                                |

Appendix VIII? (check one):

□ Yes □ No

| 2. Source water contaminants: Total suspended solids, inorganic metals                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                    |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| a. For source waters that are contaminated groundwater or contaminated surface water, indicate are any contaminants present that are not included in the RGP? (check one): ☐ Yes ■ No If yes, indicate the contaminant(s) and the maximum concentration present in accordance with the instructions in Appendix VIII. | b. For a source water that is a surface water other than the receiving water, potable water or other, indicate any contaminants present at the maximum concentration in accordance with the instructions in Appendix VIII? (check one): □ Yes □ No |
| 3. Has the source water been previously chlorinated or otherwise contains resid                                                                                                                                                                                                                                       | dual chlorine? (check one): ☐ Yes ■ No                                                                                                                                                                                                             |
| D. Discharge information                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                    |
| 1. The discharge(s) is a(n) (check any that apply): ☐ Existing discharge ■ New                                                                                                                                                                                                                                        | w discharge □ New source                                                                                                                                                                                                                           |
| Outfall(s):<br>Lechmere Canal                                                                                                                                                                                                                                                                                         | Outfall location(s): (Latitude, Longitude) 42.369137, -71.076266                                                                                                                                                                                   |
| Discharges enter the receiving water(s) via (check any that apply): □ Direct di                                                                                                                                                                                                                                       | ischarge to the receiving water  Indirect discharge, if so, specify:                                                                                                                                                                               |
| Discharge into Charles River through City of Cambridge stormwater lin  ☐ A private storm sewer system ■ A municipal storm sewer system  If the discharge enters the receiving water via a private or municipal storm sew                                                                                              | ver system:                                                                                                                                                                                                                                        |
| Has notification been provided to the owner of this system? (check one):                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                    |
| obtaining permission:                                                                                                                                                                                                                                                                                                 | or discharges? (check one): ■ Yes □ No, if so, explain, with an estimated timeframe for                                                                                                                                                            |
| Has the operator attached a summary of any additional requirements the owner                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                    |
| Provide the expected start and end dates of discharge(s) (month/year): Tempo                                                                                                                                                                                                                                          | prary treatment system 12/2021 - 12/2022                                                                                                                                                                                                           |
| Indicate if the discharge is expected to occur over a duration of: $\Box$ less than 1                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                    |
| Has the operator attached a site plan in accordance with the instructions in D, a                                                                                                                                                                                                                                     | above? (check one): ■ Yes □ No                                                                                                                                                                                                                     |

| 2. Activity Category: (check all that apply)                                                                                                                                                                                                                                                            | 3. Contamination Type Category: (check                                                                                                                                                                                                                                       | all that apply)                                                                                                                       |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------|
|                                                                                                                                                                                                                                                                                                         | a. If Activity Categ                                                                                                                                                                                                                                                         | ory I or II: (check all that apply)                                                                                                   |
|                                                                                                                                                                                                                                                                                                         | <ul> <li>□ A. Inorganics</li> <li>□ B. Non-Halogenated Volatile Organi</li> <li>□ C. Halogenated Volatile Organic Cor</li> <li>□ D. Non-Halogenated Semi-Volatile Organi</li> <li>□ E. Halogenated Semi-Volatile Organi</li> <li>□ F. Fuels Parameters</li> </ul>            | mpounds  Organic Compounds                                                                                                            |
| <ul><li>□ I – Petroleum-Related Site Remediation</li><li>□ II – Non-Petroleum-Related Site Remediation</li></ul>                                                                                                                                                                                        | b. If Activity Category III, IV                                                                                                                                                                                                                                              | V, V, VI, VII or VIII: (check either G or H)                                                                                          |
| <ul> <li>■ III – Contaminated Site Dewatering</li> <li>□ IV – Dewatering of Pipelines and Tanks</li> <li>□ V – Aquifer Pump Testing</li> <li>□ VI – Well Development/Rehabilitation</li> <li>□ VII – Collection Structure Dewatering/Remediation</li> <li>□ VIII – Dredge-Related Dewatering</li> </ul> | <ul> <li>■ G. Sites with Known Contamination</li> <li>c. If Category III-G, IV-G, V-G, VI-G, VII-G or VIII-G: (check all that apply)</li> <li>■ A. Inorganics</li> <li>□ B. Non-Halogenated Volatile Organic Compounds</li> <li>□ C. Halogenated Volatile Organic</li> </ul> | ☐ H. Sites with Unknown Contamination  d. If Category III-H, IV-H, V-H, VI-H, VII-H or VIII-H Contamination Type Categories A through |
|                                                                                                                                                                                                                                                                                                         | Compounds  □ D. Non-Halogenated Semi-Volatile Organic Compounds □ E. Halogenated Semi-Volatile Organic Compounds □ F. Fuels Parameters                                                                                                                                       | F apply                                                                                                                               |

#### 4. Influent and Effluent Characteristics

| ı                       | Known | Known                   |        | <b></b>                |                            | Influent                                                                  |                                                 | Effluent Limitations |    |
|-------------------------|-------|-------------------------|--------|------------------------|----------------------------|---------------------------------------------------------------------------|-------------------------------------------------|----------------------|----|
| Parameter               | or    | or # of samples present | method | Detection limit (µg/l) | Daily<br>maximum<br>(µg/l) | Daily<br>average<br>(µg/l)                                                | TBEL                                            | WQBEL                |    |
| A. Inorganics           |       |                         |        |                        |                            |                                                                           |                                                 |                      |    |
| Ammonia                 |       | ~                       | 1      | 121.4500               | 75                         | 2.22                                                                      | 2.22                                            | Report mg/L          |    |
| Chloride                | ~     | ~                       | 1      | 44,300.0               | 5000                       | 1510000                                                                   | 1510000                                         | Report µg/l          |    |
| Total Residual Chlorine | ~     |                         | 1      | 121,4500               | 0.02                       | <dl< td=""><td><dl< td=""><td>0.2 mg/L</td><td>NA</td></dl<></td></dl<>   | <dl< td=""><td>0.2 mg/L</td><td>NA</td></dl<>   | 0.2 mg/L             | NA |
| Total Suspended Solids  |       | ~                       | 1      | 121,2540D              | 5000                       | <dl< td=""><td><dl< td=""><td>30 mg/L</td><td>NA</td></dl<></td></dl<>    | <dl< td=""><td>30 mg/L</td><td>NA</td></dl<>    | 30 mg/L              | NA |
| Antimony                | ~     |                         | 1      | 200.8                  | 4                          | <dl< td=""><td><dl< td=""><td>206 μg/L</td><td>NA</td></dl<></td></dl<>   | <dl< td=""><td>206 μg/L</td><td>NA</td></dl<>   | 206 μg/L             | NA |
| Arsenic                 | ~     |                         | 1      | 200.8                  | 1                          | <dl< td=""><td><dl< td=""><td>104 μg/L</td><td>NA</td></dl<></td></dl<>   | <dl< td=""><td>104 μg/L</td><td>NA</td></dl<>   | 104 μg/L             | NA |
| Cadmium                 | ~     |                         | 1      | 200.8                  | 0.2                        | <dl< td=""><td><dl< td=""><td>10.2 μg/L</td><td>NA</td></dl<></td></dl<>  | <dl< td=""><td>10.2 μg/L</td><td>NA</td></dl<>  | 10.2 μg/L            | NA |
| Chromium III            | ~     |                         | 1      | 107                    | 10                         | <dl< td=""><td><dl< td=""><td>323 μg/L</td><td>NA</td></dl<></td></dl<>   | <dl< td=""><td>323 μg/L</td><td>NA</td></dl<>   | 323 μg/L             | NA |
| Chromium VI             | ~     |                         | 1      | 7196A                  | 10                         | <dl< td=""><td><dl< td=""><td>323 μg/L</td><td>NA</td></dl<></td></dl<>   | <dl< td=""><td>323 μg/L</td><td>NA</td></dl<>   | 323 μg/L             | NA |
| Copper                  |       | ~                       | 1      | 200.8                  | 1                          | 4.65                                                                      | 4.65                                            | 242 μg/L             | NA |
| Iron                    |       | ~                       | 1      | 200.7                  | 50                         | 260                                                                       | 260                                             | 5,000 μg/L           | NA |
| Lead                    | ~     |                         | 1      | 200.8                  | 1                          | <dl< td=""><td><dl< td=""><td>160 μg/L</td><td>NA</td></dl<></td></dl<>   | <dl< td=""><td>160 μg/L</td><td>NA</td></dl<>   | 160 μg/L             | NA |
| Mercury                 | ~     |                         | 1      | 245.1                  | 0.2                        | <dl< td=""><td><dl< td=""><td>0.739 μg/L</td><td>NA</td></dl<></td></dl<> | <dl< td=""><td>0.739 μg/L</td><td>NA</td></dl<> | 0.739 μg/L           | NA |
| Nickel                  |       | <b>v</b>                | 1      | 200.8                  | 2                          | 3.03                                                                      | 3.03                                            | 1,450 μg/L           | NA |
| Selenium                | ~     |                         | 1      | 200.8                  | 5                          | <dl< td=""><td><dl< td=""><td>235.8 μg/L</td><td>NA</td></dl<></td></dl<> | <dl< td=""><td>235.8 μg/L</td><td>NA</td></dl<> | 235.8 μg/L           | NA |
| Silver                  | ~     |                         | 1      | 200.8                  | 0.4                        | <dl< td=""><td><dl< td=""><td>35.1 μg/L</td><td>NA</td></dl<></td></dl<>  | <dl< td=""><td>35.1 μg/L</td><td>NA</td></dl<>  | 35.1 μg/L            | NA |
| Zinc                    |       | V                       | 1      | 200.8                  | 10                         | 58                                                                        | 58                                              | 420 μg/L             | NA |
| Cyanide                 | ~     |                         | 1      | 121,4500               | 5                          | <dl< td=""><td><dl< td=""><td>178 mg/L</td><td>NA</td></dl<></td></dl<>   | <dl< td=""><td>178 mg/L</td><td>NA</td></dl<>   | 178 mg/L             | NA |
| B. Non-Halogenated VOC  | s     |                         |        |                        |                            |                                                                           |                                                 |                      |    |
| Total BTEX              | ~     |                         | 1      | 128,624.1              | 1                          | <dl< td=""><td><dl< td=""><td>100 μg/L</td><td></td></dl<></td></dl<>     | <dl< td=""><td>100 μg/L</td><td></td></dl<>     | 100 μg/L             |    |
| Benzene                 | ~     |                         | 1      | 128,624.1              | 1                          | <dl< td=""><td><dl< td=""><td>5.0 μg/L</td><td></td></dl<></td></dl<>     | <dl< td=""><td>5.0 μg/L</td><td></td></dl<>     | 5.0 μg/L             |    |
| 1,4 Dioxane             | ~     |                         | 1      | 128,624.1              | 5                          | <dl< td=""><td><dl< td=""><td>200 μg/L</td><td></td></dl<></td></dl<>     | <dl< td=""><td>200 μg/L</td><td></td></dl<>     | 200 μg/L             |    |
| Acetone                 | ~     |                         | 1      | 128,624.1              | 10                         | <dl< td=""><td><dl< td=""><td>7.97 mg/L</td><td></td></dl<></td></dl<>    | <dl< td=""><td>7.97 mg/L</td><td></td></dl<>    | 7.97 mg/L            |    |
| Phenol                  |       |                         | 0      | 129,625.1              |                            |                                                                           |                                                 | 1,080 µg/L           | NA |

| Parameter                | Known                    | Known                     |   | # of samples Test method (#) |                              | Influent                                                                    |                                                   | Effluent Limitations |       |
|--------------------------|--------------------------|---------------------------|---|------------------------------|------------------------------|-----------------------------------------------------------------------------|---------------------------------------------------|----------------------|-------|
|                          | or<br>believed<br>absent | or<br>believed<br>present |   |                              | Detection<br>limit<br>(µg/l) | Daily<br>maximum<br>(µg/l)                                                  | Daily<br>average<br>(µg/l)                        | TBEL                 | WQBEL |
| C. Halogenated VOCs      |                          |                           |   |                              |                              |                                                                             |                                                   |                      |       |
| Carbon Tetrachloride     | V                        |                           | 1 | 128,624.1                    | 1                            | <dl< td=""><td><dl< td=""><td>4.4 μg/L</td><td>NA</td></dl<></td></dl<>     | <dl< td=""><td>4.4 μg/L</td><td>NA</td></dl<>     | 4.4 μg/L             | NA    |
| 1,2 Dichlorobenzene      | ~                        |                           | 1 | 128,624.1                    | 5                            | <dl< td=""><td><dl< td=""><td>600 μg/L</td><td></td></dl<></td></dl<>       | <dl< td=""><td>600 μg/L</td><td></td></dl<>       | 600 μg/L             |       |
| 1,3 Dichlorobenzene      | ~                        |                           | 1 | 128,624.1                    | 5                            | <dl< td=""><td><dl< td=""><td>320 μg/L</td><td></td></dl<></td></dl<>       | <dl< td=""><td>320 μg/L</td><td></td></dl<>       | 320 μg/L             |       |
| 1,4 Dichlorobenzene      | ~                        |                           | 1 | 128,624.1                    | 5                            | <dl< td=""><td><dl< td=""><td>5.0 μg/L</td><td></td></dl<></td></dl<>       | <dl< td=""><td>5.0 μg/L</td><td></td></dl<>       | 5.0 μg/L             |       |
| Total dichlorobenzene    | ~                        |                           | 1 | 128.624.1                    | 5                            | <dl< td=""><td><dl< td=""><td>763 μg/L in NH</td><td></td></dl<></td></dl<> | <dl< td=""><td>763 μg/L in NH</td><td></td></dl<> | 763 μg/L in NH       |       |
| 1,1 Dichloroethane       | ~                        |                           | 1 | 128,624.1                    | 1.5                          | <dl< td=""><td><dl< td=""><td>70 μg/L</td><td></td></dl<></td></dl<>        | <dl< td=""><td>70 μg/L</td><td></td></dl<>        | 70 μg/L              |       |
| 1,2 Dichloroethane       | V                        |                           | 1 | 128,624.1                    | 1.5                          | <dl< td=""><td><dl< td=""><td>5.0 μg/L</td><td></td></dl<></td></dl<>       | <dl< td=""><td>5.0 μg/L</td><td></td></dl<>       | 5.0 μg/L             |       |
| 1,1 Dichloroethylene     | ~                        |                           | 1 | 128,624.1                    | 1                            | <dl< td=""><td><dl< td=""><td>3.2 µg/L</td><td></td></dl<></td></dl<>       | <dl< td=""><td>3.2 µg/L</td><td></td></dl<>       | 3.2 µg/L             |       |
| Ethylene Dibromide       |                          |                           | 0 |                              |                              |                                                                             |                                                   | 0.05 μg/L            |       |
| Methylene Chloride       | ~                        |                           | 1 | 128,624.1                    | 1                            | <dl< td=""><td><dl< td=""><td>4.6 μg/L</td><td></td></dl<></td></dl<>       | <dl< td=""><td>4.6 μg/L</td><td></td></dl<>       | 4.6 μg/L             |       |
| 1,1,1 Trichloroethane    | ~                        |                           | 1 | 128,624.1                    | 2                            | <dl< td=""><td><dl< td=""><td>200 μg/L</td><td></td></dl<></td></dl<>       | <dl< td=""><td>200 μg/L</td><td></td></dl<>       | 200 μg/L             |       |
| 1,1,2 Trichloroethane    | ~                        |                           | 1 | 128,624.1                    | 1.5                          | <dl< td=""><td><dl< td=""><td>5.0 μg/L</td><td></td></dl<></td></dl<>       | <dl< td=""><td>5.0 μg/L</td><td></td></dl<>       | 5.0 μg/L             |       |
| Trichloroethylene        | ~                        |                           | 1 | 128,624.1                    | 1                            | <dl< td=""><td><dl< td=""><td>5.0 μg/L</td><td></td></dl<></td></dl<>       | <dl< td=""><td>5.0 μg/L</td><td></td></dl<>       | 5.0 μg/L             |       |
| Tetrachloroethylene      | ~                        |                           | 1 | 128.624.1                    | 1                            | <dl< td=""><td><dl< td=""><td>5.0 μg/L</td><td>NA</td></dl<></td></dl<>     | <dl< td=""><td>5.0 μg/L</td><td>NA</td></dl<>     | 5.0 μg/L             | NA    |
| cis-1,2 Dichloroethylene | ~                        |                           | 1 | 128,624.1                    | 1                            | <dl< td=""><td><dl< td=""><td>70 μg/L</td><td></td></dl<></td></dl<>        | <dl< td=""><td>70 μg/L</td><td></td></dl<>        | 70 μg/L              |       |
| Vinyl Chloride           | ~                        |                           | 1 | 128,624.1                    | 1                            | <dl< td=""><td><dl< td=""><td>2.0 μg/L</td><td></td></dl<></td></dl<>       | <dl< td=""><td>2.0 μg/L</td><td></td></dl<>       | 2.0 μg/L             |       |
| D. Non-Halogenated SVOC  | Cs                       |                           |   |                              |                              |                                                                             |                                                   | _                    |       |
| Total Phthalates         | ~                        |                           | 1 | 129,625.1                    | 5                            | <dl< td=""><td><dl< td=""><td>190 μg/L</td><td>NA</td></dl<></td></dl<>     | <dl< td=""><td>190 μg/L</td><td>NA</td></dl<>     | 190 μg/L             | NA    |
| Diethylhexyl phthalate   | ~                        |                           | 1 | 129,625.1                    | 5                            | <dl< td=""><td><dl< td=""><td>101 μg/L</td><td></td></dl<></td></dl<>       | <dl< td=""><td>101 μg/L</td><td></td></dl<>       | 101 μg/L             |       |
| Total Group I PAHs       | ~                        |                           | 1 | 129,625.1                    | 5                            | <dl< td=""><td><dl< td=""><td>1.0 μg/L</td><td></td></dl<></td></dl<>       | <dl< td=""><td>1.0 μg/L</td><td></td></dl<>       | 1.0 μg/L             |       |
| Benzo(a)anthracene       | ~                        |                           | 1 | 129,625.1                    | 0.1                          | <dl< td=""><td><dl< td=""><td></td><td>NA</td></dl<></td></dl<>             | <dl< td=""><td></td><td>NA</td></dl<>             |                      | NA    |
| Benzo(a)pyrene           | ~                        |                           | 1 | 129,625.1                    | 0.1                          | <dl< td=""><td><dl< td=""><td></td><td></td></dl<></td></dl<>               | <dl< td=""><td></td><td></td></dl<>               |                      |       |
| Benzo(b)fluoranthene     | <b>v</b>                 |                           | 1 | 129,625.1                    | 0.1                          | <dl< td=""><td><dl< td=""><td></td><td></td></dl<></td></dl<>               | <dl< td=""><td></td><td></td></dl<>               |                      |       |
| Benzo(k)fluoranthene     | ~                        |                           | 1 | 129,625.1                    | 0.1                          | <dl< td=""><td><dl< td=""><td>As Total PAHs</td><td></td></dl<></td></dl<>  | <dl< td=""><td>As Total PAHs</td><td></td></dl<>  | As Total PAHs        |       |
| Chrysene                 | <b>v</b>                 |                           | 1 | 129,625.1                    | 0.1                          | <dl< td=""><td><dl< td=""><td></td><td></td></dl<></td></dl<>               | <dl< td=""><td></td><td></td></dl<>               |                      |       |
| Dibenzo(a,h)anthracene   | V                        |                           | 1 | 129,625.1                    | 0.1                          | <dl< td=""><td><dl< td=""><td></td><td></td></dl<></td></dl<>               | <dl< td=""><td></td><td></td></dl<>               |                      |       |
| Indeno(1,2,3-cd)pyrene   | ~                        |                           | 1 | 129,625.1                    | 0.1                          | <dl< td=""><td><dl< td=""><td></td><td></td></dl<></td></dl<>               | <dl< td=""><td></td><td></td></dl<>               |                      |       |

|                                                  | Known          | Known or or believed absent present |               |                       |                              | Int                                                                                               | Influent                                                              |                                 | Effluent Limitations |  |
|--------------------------------------------------|----------------|-------------------------------------|---------------|-----------------------|------------------------------|---------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------|---------------------------------|----------------------|--|
| Parameter                                        | or<br>believed |                                     |               | Test<br>method<br>(#) | Detection<br>limit<br>(µg/l) | Daily<br>maximum<br>(µg/l)                                                                        | Daily<br>average<br>(µg/l)                                            | TBEL                            | WQBEL                |  |
| Total Group II PAHs                              | ~              |                                     | 1             | 129,625.1             | 0.1                          | 0.286                                                                                             | <dl< td=""><td>100 μg/L</td><td></td></dl<>                           | 100 μg/L                        |                      |  |
| Naphthalene                                      | ~              |                                     | 1             | 129,625.1             | 0.1                          | <dl< td=""><td><dl< td=""><td>20 μg/L</td><td></td></dl<></td></dl<>                              | <dl< td=""><td>20 μg/L</td><td></td></dl<>                            | 20 μg/L                         |                      |  |
| E. Halogenated SVOCs                             |                |                                     |               |                       |                              |                                                                                                   |                                                                       |                                 |                      |  |
| Total PCBs                                       | ~              |                                     | 1             | 127,608.3             | 0.2                          | <dl< td=""><td><dl< td=""><td>0.000064 µg/L</td><td></td></dl<></td></dl<>                        | <dl< td=""><td>0.000064 µg/L</td><td></td></dl<>                      | 0.000064 µg/L                   |                      |  |
| Pentachlorophenol                                | ~              |                                     | 1             | 129,625.1             | 1                            | <dl< td=""><td><dl< td=""><td>1.0 μg/L</td><td></td></dl<></td></dl<>                             | <dl< td=""><td>1.0 μg/L</td><td></td></dl<>                           | 1.0 μg/L                        |                      |  |
| F. Fuels Parameters Total Petroleum Hydrocarbons |                |                                     | 1             | 74.1664A              | 4.0                          | <dl< th=""><th><dl< th=""><th>5.0 mg/L</th><th></th></dl<></th></dl<>                             | <dl< th=""><th>5.0 mg/L</th><th></th></dl<>                           | 5.0 mg/L                        |                      |  |
| Ethanol                                          |                |                                     | 0             | 1671A                 | 20                           | <dl< td=""><td><dl< td=""><td>Report mg/L</td><td></td></dl<></td></dl<>                          | <dl< td=""><td>Report mg/L</td><td></td></dl<>                        | Report mg/L                     |                      |  |
| Methyl-tert-Butyl Ether                          | · ·            |                                     | 1             | 128,624.1             | 100                          | <dl< td=""><td><dl< td=""><td>70 μg/L</td><td></td></dl<></td></dl<>                              | <dl< td=""><td>70 μg/L</td><td></td></dl<>                            | 70 μg/L                         |                      |  |
| tert-Butyl Alcohol                               | ~              |                                     | 1             | 128,624.1             | 100                          | <dl< td=""><td><dl< td=""><td>120 μg/L in MA<br/>40 μg/L in NH</td><td></td></dl<></td></dl<>     | <dl< td=""><td>120 μg/L in MA<br/>40 μg/L in NH</td><td></td></dl<>   | 120 μg/L in MA<br>40 μg/L in NH |                      |  |
| tert-Amyl Methyl Ether                           | ~              |                                     | 1             | 128,624.1             | 20                           | <di.< td=""><td><di.< td=""><td>90 μg/L in MA<br/>140 μg/L in NH</td><td></td></di.<></td></di.<> | <di.< td=""><td>90 μg/L in MA<br/>140 μg/L in NH</td><td></td></di.<> | 90 μg/L in MA<br>140 μg/L in NH |                      |  |
|                                                  |                |                                     |               |                       | eta muoaamt).                | :f ~~ ~~                                                                                          |                                                                       |                                 |                      |  |
| Other (i.e., pH, temperatu                       | re, hardness,  | salinity, LC                        | 50, addition  | ıal pollutar          | us present);                 | n so, specny:                                                                                     |                                                                       |                                 |                      |  |
| Other (i.e., pH, temperatu<br>pH - Influent      | re, hardness,  | salinity, LC                        | 50, addition  | 121,4500              | rts present);                | 7.8                                                                                               | 7.8                                                                   |                                 |                      |  |
|                                                  | re, hardness,  |                                     | 50, addition  |                       | its present);                |                                                                                                   | 7.8<br>461                                                            |                                 |                      |  |
| pH - Influent                                    | re, hardness,  | ~                                   | 50, addition  | 121,4500              | its present);                | 7.8                                                                                               |                                                                       |                                 |                      |  |
| pH - Influent                                    | re, hardness,  | ~                                   | 550, addition | 121,4500              | nts present);                | 7.8                                                                                               |                                                                       |                                 |                      |  |
| pH - Influent                                    | re, hardness,  | ~                                   | 550, addition | 121,4500              | its present);                | 7.8                                                                                               |                                                                       |                                 |                      |  |
| pH - Influent                                    | re, hardness,  | ~                                   | 1<br>1        | 121,4500              | us present);                 | 7.8                                                                                               |                                                                       |                                 |                      |  |
| pH - Influent                                    | ire, hardness, | ~                                   | 1<br>1        | 121,4500              | its present);                | 7.8                                                                                               |                                                                       |                                 |                      |  |
| pH - Influent                                    | re, hardness,  | ~                                   | 1<br>1        | 121,4500              | its present);                | 7.8                                                                                               |                                                                       |                                 |                      |  |
| pH - Influent                                    | re, hardness,  | ~                                   | 1<br>1        | 121,4500              | tis present);                | 7.8                                                                                               |                                                                       |                                 |                      |  |
| pH - Influent                                    | ire, hardness, | ~                                   | 1<br>1        | 121,4500              | its present);                | 7.8                                                                                               |                                                                       |                                 |                      |  |
| pH - Influent                                    | re, hardness,  | ~                                   | 1<br>1        | 121,4500              | its present);                | 7.8                                                                                               |                                                                       |                                 |                      |  |

## E. Treatment system information

| 1. Indicate the type(s) of treatment that will be applied to effluent prior to discharge: (check all that apply)                                                                                                                                                      |     |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|
| □ Adsorption/Absorption □ Advanced Oxidation Processes □ Air Stripping □ Granulated Activated Carbon ("GAC")/Liquid Phase Carbon Adsorption □ Ion Exchange □ Precipitation/Coagulation/Flocculation ■ Separation/Filtration □ Other; if so, specify:                  |     |
| 2. Provide a written description of all treatment system(s) or processes that will be applied to the effluent prior to discharge. Settling tank, bag filters. If necessary to meet discharge limits, pH adjustment or ion media resin vessels will be added as a NOC. |     |
| Identify each major treatment component (check any that apply):                                                                                                                                                                                                       |     |
| ■ Fractionation tanks□ Equalization tank □ Oil/water separator □ Mechanical filter □ Media filter                                                                                                                                                                     |     |
| □ Chemical feed tank □ Air stripping unit ■ Bag filter □ Other; if so, specify:                                                                                                                                                                                       |     |
| Indicate if either of the following will occur (check any that apply):                                                                                                                                                                                                |     |
| ☐ Chlorination ☐ De-chlorination                                                                                                                                                                                                                                      | Γ   |
| 3. Provide the <b>design flow capacity</b> in gallons per minute (gpm) of the most limiting component. Indicate the most limiting component: Fractionation tank  Is use of a flow meter feasible? (check one): ■ Yes □ No, if so, provide justification:              | 100 |
| Provide the proposed maximum effluent flow in gpm.                                                                                                                                                                                                                    | 50  |
| Provide the average effluent flow in gpm.                                                                                                                                                                                                                             | 25  |
| If Activity Category IV applies, indicate the estimated total volume of water that will be discharged:                                                                                                                                                                | N/A |
| 4. Has the operator attached a schematic of flow in accordance with the instructions in E, above? (check one): ■ Yes □ No                                                                                                                                             |     |

#### F. Chemical and additive information

| 1. Indicate the type(s) of chemical or additive that will be applied to effluent prior to discharge or that may otherwise be present in the discharge(s): (check all that apply)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| □ Algaecides/biocides □ Antifoams □ Coagulants □ Corrosion/scale inhibitors □ Disinfectants □ Flocculants □ Neutralizing agents □ Oxidants □ Oxygen □                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| scavengers □ pH conditioners □ Bioremedial agents, including microbes □ Chlorine or chemicals containing chlorine □ Other; if so, specify:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| 2. Provide the following information for each chemical/additive, using attachments, if necessary:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| a. Product name, chemical formula, and manufacturer of the chemical/additive; b. Purpose or use of the chemical/additive or remedial agent; c. Material Safety Data Sheet (MSDS) and Chemical Abstracts Service (CAS) Registry number for each chemical/additive; d. The frequency (hourly, daily, etc.), duration (hours, days), quantity (maximum and average), and method of application for the chemical/additive; e. Any material compatibility risks for storage and/or use including the control measures used to minimize such risks; and f. If available, the vendor's reported aquatic toxicity (NOAEL and/or LC50 in percent for aquatic organism(s)). |
| 3. Has the operator attached an explanation which demonstrates that the addition of such chemicals/additives may be authorized under this general permit in accordance                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| with the instructions in F, above? (check one): ☐ Yes ■ No; if no, has the operator attached data that demonstrates each of the 126 priority pollutants in CWA Section 307(a) and 40 CFR Part 423.15(j)(1) are non-detect in discharges with the addition of the proposed chemical/additive?                                                                                                                                                                                                                                                                                                                                                                      |
| (check one): ■ Yes □ No                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| G. Endangered Species Act eligibility determination                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| 1. Indicate under which criterion the discharge(s) is eligible for coverage under this general permit:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| ■ FWS Criterion A: No endangered or threatened species or critical habitat are in proximity to the discharges or related activities or come in contact with the "action area".                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| □ <b>FWS Criterion B</b> : Formal or informal consultation with the FWS under section 7 of the ESA resulted in either a no jeopardy opinion (formal consultation) or a written concurrence by FWS on a finding that the discharges and related activities are "not likely to adversely affect" listed species or critical habitat                                                                                                                                                                                                                                                                                                                                 |
| (informal consultation). Has the operator completed consultation with FWS? (check one): ☐ Yes ☐ No; if no, is consultation underway? (check one): ☐                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| Yes □ No                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| □ <b>FWS Criterion C</b> : Using the best scientific and commercial data available, the effect of the discharges and related activities on listed species and critical habitat have been evaluated. Based on those evaluations, a determination is made by EPA, or by the operator and affirmed by EPA, that the discharges and related activities will have "no effect" on any federally threatened or endangered listed species or designated critical habitat under the jurisdiction of the                                                                                                                                                                    |
| FWS. This determination was made by: (check one) $\square$ the operator $\square$ EPA $\square$ Other; if so, specify:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |

| □ NMFS Criterion: A determination made by EPA is affirmed by the operator that the discharges and related activities will have "no effect" or are "not likely to adversely affect" any federally threatened or endangered listed species or critical habitat under the jurisdiction of NMFS and will not result in any take of listed species. Has the operator previously completed consultation with NMFS? (check one): □ Yes ■ No |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 2. Has the operator attached supporting documentation of ESA eligibility in accordance with the instructions in Appendix I, and G, above? (check one): ■ Yes □ No                                                                                                                                                                                                                                                                    |
| Does the supporting documentation include any written concurrence or finding provided by the Services? (check one):   Yes  No; if yes, attach.                                                                                                                                                                                                                                                                                       |
| H. National Historic Preservation Act eligibility determination                                                                                                                                                                                                                                                                                                                                                                      |
| 1. Indicate under which criterion the discharge(s) is eligible for coverage under this general permit:                                                                                                                                                                                                                                                                                                                               |
| ■ Criterion A: No historic properties are present. The discharges and discharge-related activities (e.g., BMPs) do not have the potential to cause effects on historic properties.                                                                                                                                                                                                                                                   |
| ☐ Criterion B: Historic properties are present. Discharges and discharge related activities do not have the potential to cause effects on historic properties.                                                                                                                                                                                                                                                                       |
| ☐ <b>Criterion C</b> : Historic properties are present. The discharges and discharge-related activities have the potential to have an effect or will have an adverse effect on historic properties.                                                                                                                                                                                                                                  |
| 2. Has the operator attached supporting documentation of NHPA eligibility in accordance with the instructions in H, above? (check one): ■ Yes □ No                                                                                                                                                                                                                                                                                   |
| Does the supporting documentation include any written agreement with the State Historic Preservation Officer (SHPO), Tribal Historic Preservation Officer (TPHO), or                                                                                                                                                                                                                                                                 |
| other tribal representative that outlines measures the operator will carry out to mitigate or prevent any adverse effects on historic properties? (check one):   Yes  No                                                                                                                                                                                                                                                             |
| I. Supplemental information                                                                                                                                                                                                                                                                                                                                                                                                          |
| Describe any supplemental information being provided with the NOI. Include attachments if required or otherwise necessary.                                                                                                                                                                                                                                                                                                           |
| Refer to the attached Report                                                                                                                                                                                                                                                                                                                                                                                                         |
|                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| Has the operator attached data, including any laboratory case narrative and chain of custody used to support the application? (check one): ■ Yes □ No                                                                                                                                                                                                                                                                                |
| Has the operator attached the certification requirement for the Best Management Practices Plan (BMPP)? (check one): ■ Yes □ No                                                                                                                                                                                                                                                                                                       |

#### J. Certification requirement

| I certify under penalty of law that this document and all attachments were prepared under my direction or supervision in accordance with a system designed to assure that qualified personnel properly gathered and evaluated the information submitted. Based on my inquiry of the person or persons who manage the system, or those persons directly responsible for gathering the information, the information submitted is, to the best of my knowledge and belief, true, accurate, and complete. I have no personal knowledge that the information submitted is other than true, accurate, and complete. I am aware that there are significant penalties for submitting false information, including the possibility of fine and imprisonment for knowing violations. |                  |           |  |  |  |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------|-----------|--|--|--|
| A BMPP Statement has been implemented in accordance with good engineering practices following BMPP certification statement: Part 2.5 of the RGP and shall be implemented upon initiation of discharge.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                  |           |  |  |  |
| Notification provided to the appropriate State, including a copy of this NOI, if required.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Check one: Yes ☒ | No □      |  |  |  |
| Notification provided to the municipality in which the discharge is located, including a copy of this NOI, if requested.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Check one: Yes ☒ | No □      |  |  |  |
| Notification provided to the owner of a private or municipal storm sewer system, if such system is used for site discharges, including a copy of this NOI, if requested.  Permission obtained from the owner of a private or municipal storm sewer system, if such system is used for site                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Check one: Yes ☒ | No □ NA □ |  |  |  |
| discharges. If yes, attach additional conditions. If no, attach explanation and timeframe for obtaining permission.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Check one: Yes □ | No □ NA 🕱 |  |  |  |
| Notification provided to the owner/operator of the area associated with activities covered by an additional discharge                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                  |           |  |  |  |
| $permit(s). \ Additional \ discharge \ permit \ is \ (check \ one): \ \square \ RGP \ \square \ DGP \ \square \ CGP \ \square \ MSGP \ \ \square \ Individual \ NPDES \ permit$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Check one: Yes □ | No □ NA 🛚 |  |  |  |
| ☐ Other; if so, specify:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                  |           |  |  |  |
| Signature: Jon Leduc Da                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | te: 12/13/21     |           |  |  |  |
| Print Name and Title: Tom Leduc - Project Superintendent                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                  |           |  |  |  |



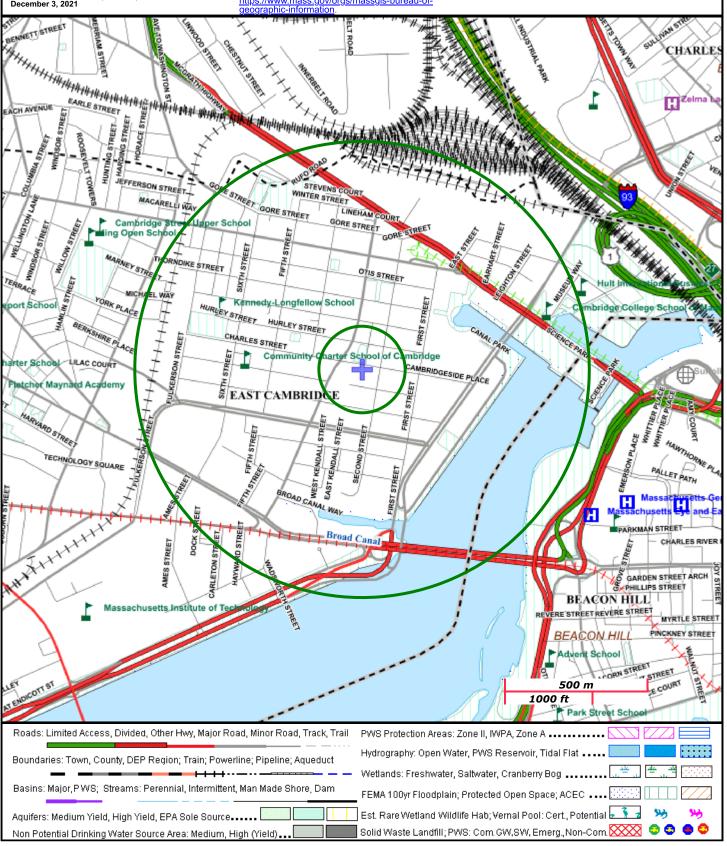
#### **APPENDIX C:**

# DEP PRIORITY RESOURCES MAP USGS STREAMFLOW STATISTICS REPORT DILUTION FACTOR AND WQBEL CALCULATIONS ADDITIONAL NOI SUPPORT INFORMATION

### MassDEP - Bureau of Waste Site Cleanup

Phase 1 Site Assessment Map: 500 feet & 0.5 Mile Radii

Site Information: 58 CHARLES STREET


58 CHARLES STREET CAMBRIDGE, MA

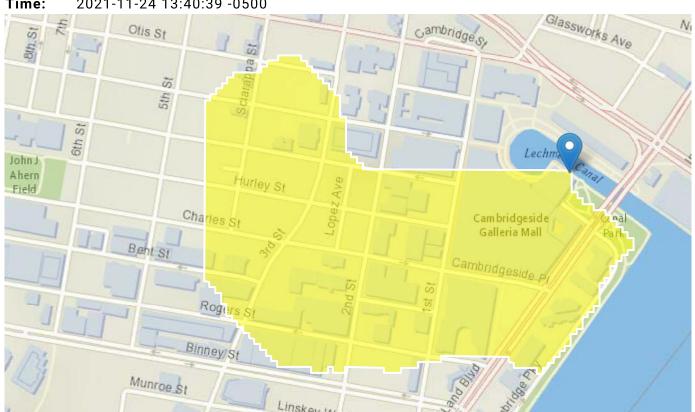
NAD83 UTM Meters: 4692665mN , 328717mE (Zone: 19) December 3, 2021

The information shown is the best available at the date of printing. However, it may be incomplete. The responsible party and LSP are ultimately responsible for ascertaining the true conditions surrounding the site. Metadata for data layers shown on this map can

https://www.mass.gov/orgs/massgis-bureau-of-






## **StreamStats Report**

Region ID: МΑ

Workspace ID: MA20211124184019749000

Clicked Point (Latitude, Longitude): 42.36879, -71.07500

2021-11-24 13:40:39 -0500 Time:



| Basin Characteristics |                                                        |         |                         |  |  |
|-----------------------|--------------------------------------------------------|---------|-------------------------|--|--|
| Parameter<br>Code     | Parameter Description                                  | Value   | Unit                    |  |  |
| DRNAREA               | Area that drains to a point on a stream                | 0.1     | square miles            |  |  |
| BSLDEM250             | Mean basin slope computed from 1:250K DEM              | 0.562   | percent                 |  |  |
| DRFTPERSTR            | Area of stratified drift per unit of stream length     | -100000 | square mile per<br>mile |  |  |
| MAREGION              | Region of Massachusetts 0 for Eastern 1 for<br>Western | 0       | dimensionless           |  |  |

| Low-Flow Statistics Parameters | [Statewide Low Flow WRIR00 4135] |
|--------------------------------|----------------------------------|
|                                |                                  |

| Parameter<br>Code | Parameter Name                        | Value   | Units                   | Min<br>Limit | Max<br>Limit |
|-------------------|---------------------------------------|---------|-------------------------|--------------|--------------|
| DRNAREA           | Drainage Area                         | 0.1     | square miles            | 1.61         | 149          |
| BSLDEM250         | Mean Basin Slope from 250K<br>DEM     | 0.562   | percent                 | 0.32         | 24.6         |
| DRFTPERSTR        | Stratified Drift per Stream<br>Length | -100000 | square mile per<br>mile | 0            | 1.29         |
| MAREGION          | Massachusetts Region                  | 0       | dimensionless           | 0            | 1            |

Low-Flow Statistics Flow Report [Statewide Low Flow WRIR00 4135]

Statistic Value Unit

Low-Flow Statistics Citations

Flow-Duration Statistics Parameters [Statewide Low Flow WRIR00 4135]

| Parameter<br>Code | Parameter Name                        | Value   | Units                   | Min<br>Limit | Max<br>Limit |
|-------------------|---------------------------------------|---------|-------------------------|--------------|--------------|
| DRNAREA           | Drainage Area                         | 0.1     | square miles            | 1.61         | 149          |
| DRFTPERSTR        | Stratified Drift per Stream<br>Length | -100000 | square mile per<br>mile | 0            | 1.29         |
| MAREGION          | Massachusetts Region                  | 0       | dimensionless           | 0            | 1            |
| BSLDEM250         | Mean Basin Slope from 250K<br>DEM     | 0.562   | percent                 | 0.32         | 24.6         |

Flow-Duration Statistics Flow Report [Statewide Low Flow WRIR00 4135]

Statistic Value Unit

Flow-Duration Statistics Citations

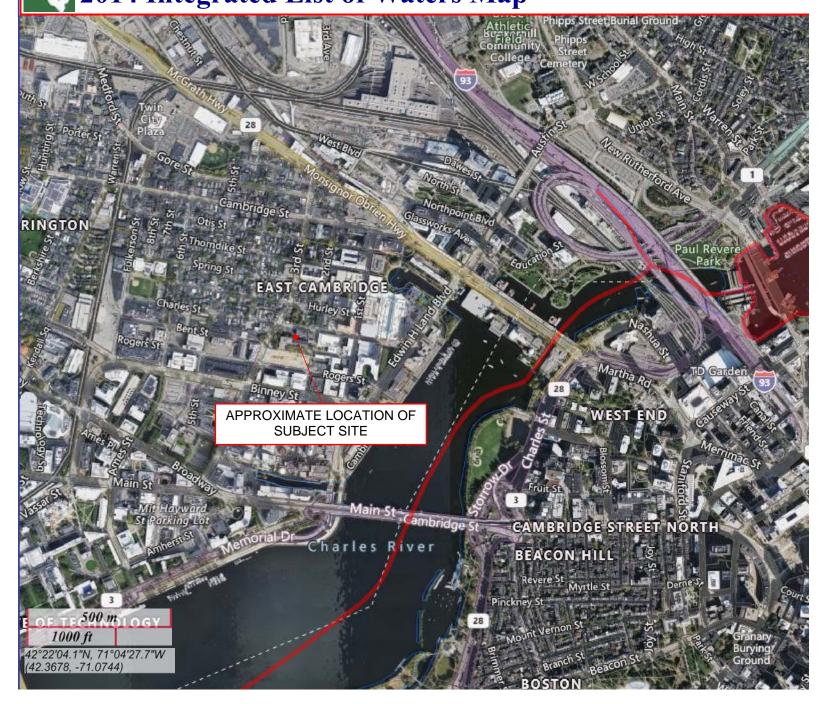
USGS Data Disclaimer: Unless otherwise stated, all data, metadata and related materials are considered to satisfy the quality standards relative to the purpose for which the data were collected. Although these data and associated metadata have been reviewed for accuracy and completeness and approved for release by the U.S. Geological Survey (USGS), no warranty

expressed or implied is made regarding the display or utility of the data for other purposes, nor on all computer systems, nor shall the act of distribution constitute any such warranty.

USGS Software Disclaimer: This software has been approved for release by the U.S. Geological Survey (USGS). Although the software has been subjected to rigorous review, the USGS reserves the right to update the software as needed pursuant to further analysis and review. No warranty, expressed or implied, is made by the USGS or the U.S. Government as to the functionality of the software and related material nor shall the fact of release constitute any such warranty. Furthermore, the software is released on condition that neither the USGS nor the U.S. Government shall be held liable for any damages resulting from its authorized or unauthorized use.

USGS Product Names Disclaimer: Any use of trade, firm, or product names is for descriptive purposes only and does not imply endorsement by the U.S. Government.

Application Version: 4.6.2


StreamStats Services Version: 1.2.22

NSS Services Version: 2.1.2

#### **Helpful Links:**

- The Clean Water Act
- **MassDEP Total Maximum Daily Loads**





# Massachusetts Cultural Resource Information System MACRIS

#### **MACRIS Search Results**

Search Criteria: Town(s): Cambridge; Place: Kendall Square; Street Name: Charles; Resource Type(s): Area, Building, Burial Ground, Object, Structure;

Inv. No. Property Name Street Town Year

Wednesday, December 8, 2021 Page 1 of 1



### United States Department of the Interior



#### FISH AND WILDLIFE SERVICE

New England Ecological Services Field Office 70 Commercial Street, Suite 300 Concord, NH 03301-5094 Phone: (603) 223-2541 Fax: (603) 223-0104

http://www.fws.gov/newengland

In Reply Refer To: December 08, 2021

Consultation Code: 05E1NE00-2022-SLI-0738

Event Code: 05E1NE00-2022-E-02622

Project Name: 58 Charles Street

Subject: List of threatened and endangered species that may occur in your proposed project

location or may be affected by your proposed project

#### To Whom It May Concern:

The enclosed species list identifies threatened, endangered, proposed and candidate species, as well as proposed and final designated critical habitat, that may occur within the boundary of your proposed project and/or may be affected by your proposed project. The species list fulfills the requirements of the U.S. Fish and Wildlife Service (Service) under section 7(c) of the Endangered Species Act (Act) of 1973, as amended (16 U.S.C. 1531 *et seq.*).

New information based on updated surveys, changes in the abundance and distribution of species, changed habitat conditions, or other factors could change this list. Please feel free to contact us if you need more current information or assistance regarding the potential impacts to federally proposed, listed, and candidate species and federally designated and proposed critical habitat. Please note that under 50 CFR 402.12(e) of the regulations implementing section 7 of the Act, the accuracy of this species list should be verified after 90 days. This verification can be completed formally or informally as desired. The Service recommends that verification be completed by visiting the ECOS-IPaC website at regular intervals during project planning and implementation for updates to species lists and information. An updated list may be requested through the ECOS-IPaC system by completing the same process used to receive the enclosed list.

The purpose of the Act is to provide a means whereby threatened and endangered species and the ecosystems upon which they depend may be conserved. Under sections 7(a)(1) and 7(a)(2) of the Act and its implementing regulations (50 CFR 402 *et seq.*), Federal agencies are required to utilize their authorities to carry out programs for the conservation of threatened and endangered species and to determine whether projects may affect threatened and endangered species and/or designated critical habitat.

A Biological Assessment is required for construction projects (or other undertakings having similar physical impacts) that are major Federal actions significantly affecting the quality of the human environment as defined in the National Environmental Policy Act (42 U.S.C. 4332(2) (c)). For projects other than major construction activities, the Service suggests that a biological evaluation similar to a Biological Assessment be prepared to determine whether the project may affect listed or proposed species and/or designated or proposed critical habitat. Recommended contents of a Biological Assessment are described at 50 CFR 402.12.

If a Federal agency determines, based on the Biological Assessment or biological evaluation, that listed species and/or designated critical habitat may be affected by the proposed project, the agency is required to consult with the Service pursuant to 50 CFR 402. In addition, the Service recommends that candidate species, proposed species and proposed critical habitat be addressed within the consultation. More information on the regulations and procedures for section 7 consultation, including the role of permit or license applicants, can be found in the "Endangered Species Consultation Handbook" at:

http://www.fws.gov/endangered/esa-library/pdf/TOC-GLOS.PDF

Please be aware that bald and golden eagles are protected under the Bald and Golden Eagle Protection Act (16 U.S.C. 668 *et seq.*), and projects affecting these species may require development of an eagle conservation plan

(http://www.fws.gov/windenergy/eagle\_guidance.html). Additionally, wind energy projects should follow the wind energy guidelines (http://www.fws.gov/windenergy/) for minimizing impacts to migratory birds and bats.

Guidance for minimizing impacts to migratory birds for projects including communications towers (e.g., cellular, digital television, radio, and emergency broadcast) can be found at: http://www.fws.gov/migratorybirds/CurrentBirdIssues/Hazards/towers/towers.htm; http://www.towerkill.com; and http://www.fws.gov/migratorybirds/CurrentBirdIssues/Hazards/towers/comtow.html.

We appreciate your concern for threatened and endangered species. The Service encourages Federal agencies to include conservation of threatened and endangered species into their project planning to further the purposes of the Act. Please include the Consultation Tracking Number in the header of this letter with any request for consultation or correspondence about your project that you submit to our office.

#### Attachment(s):

Official Species List

### **Official Species List**

This list is provided pursuant to Section 7 of the Endangered Species Act, and fulfills the requirement for Federal agencies to "request of the Secretary of the Interior information whether any species which is listed or proposed to be listed may be present in the area of a proposed action".

This species list is provided by:

New England Ecological Services Field Office 70 Commercial Street, Suite 300 Concord, NH 03301-5094 (603) 223-2541

### **Project Summary**

Consultation Code: 05E1NE00-2022-SLI-0738

Event Code: Some(05E1NE00-2022-E-02622)

Project Name: 58 Charles Street
Project Type: DEVELOPMENT

Project Description: Renovations

**Project Location:** 

Approximate location of the project can be viewed in Google Maps: <a href="https://www.google.com/maps/@42.367303750000005,-71.08009015655702,14z">https://www.google.com/maps/@42.367303750000005,-71.08009015655702,14z</a>



Counties: Middlesex County, Massachusetts

### **Endangered Species Act Species**

There is a total of 1 threatened, endangered, or candidate species on this species list.

Species on this list should be considered in an effects analysis for your project and could include species that exist in another geographic area. For example, certain fish may appear on the species list because a project could affect downstream species.

IPaC does not display listed species or critical habitats under the sole jurisdiction of NOAA Fisheries<sup>1</sup>, as USFWS does not have the authority to speak on behalf of NOAA and the Department of Commerce.

See the "Critical habitats" section below for those critical habitats that lie wholly or partially within your project area under this office's jurisdiction. Please contact the designated FWS office if you have questions.

1. <u>NOAA Fisheries</u>, also known as the National Marine Fisheries Service (NMFS), is an office of the National Oceanic and Atmospheric Administration within the Department of Commerce.

#### Insects

NAME

#### Monarch Butterfly *Danaus plexippus*

Candidate

No critical habitat has been designated for this species. Species profile: <a href="https://ecos.fws.gov/ecp/species/9743">https://ecos.fws.gov/ecp/species/9743</a>

#### **Critical habitats**

THERE ARE NO CRITICAL HABITATS WITHIN YOUR PROJECT AREA UNDER THIS OFFICE'S JURISDICTION.

# Category 5 waters listed alphabetically by major watershed The 303(d) List – "Waters requiring a TMDL"

| Water Body            | Segment ID                     | Description                                                                                                     | Size  | Units                       | Impairment                                            | EPA TMDL<br>No. |
|-----------------------|--------------------------------|-----------------------------------------------------------------------------------------------------------------|-------|-----------------------------|-------------------------------------------------------|-----------------|
| Charles River MA72-36 | MA72-36                        | From Watertown Dam (NATID: MA00456),                                                                            | 6.10  | Miles                       | (Fish Passage Barrier*)                               |                 |
|                       |                                | Watertown to the Boston University Bridge,                                                                      |       |                             | (Flow Regime Modification*)                           |                 |
|                       |                                | Boston/Cambridge (formerly part of segment MA72-08).                                                            |       |                             | (Non-Native Aquatic Plants*)                          |                 |
|                       |                                | Segment WA72-00).                                                                                               |       |                             | Chlorophyll-a                                         | 33826           |
|                       |                                |                                                                                                                 |       |                             | DDT in Fish Tissue                                    |                 |
|                       |                                |                                                                                                                 |       |                             | Dissolved Oxygen                                      |                 |
|                       |                                |                                                                                                                 |       |                             | Escherichia Coli (E. Coli)                            | 32371           |
|                       |                                |                                                                                                                 |       |                             | Fish Bioassessments                                   |                 |
|                       |                                |                                                                                                                 |       |                             | Harmful Algal Blooms                                  | 33826           |
|                       |                                |                                                                                                                 |       |                             | Nutrient/Eutrophication Biological Indicators         | 33826           |
|                       |                                |                                                                                                                 |       |                             | Oil and Grease                                        |                 |
|                       |                                |                                                                                                                 |       |                             | PCBs In Fish Tissue                                   |                 |
|                       |                                |                                                                                                                 |       |                             | pH, High                                              |                 |
|                       |                                |                                                                                                                 |       |                             | Phosphorus, Total                                     | 33826           |
|                       |                                |                                                                                                                 |       |                             | Sediment Bioassay (Acute Toxicity Freshwater)         |                 |
|                       |                                |                                                                                                                 |       |                             | Transparency / Clarity                                | 33826           |
|                       |                                |                                                                                                                 |       |                             | Unspecified Metals in Sediment                        |                 |
| Charles River MA72-38 | From Boston University Bridge, | 3.10                                                                                                            | Miles | (Flow Regime Modification*) |                                                       |                 |
|                       |                                | Boston/Cambridge to mouth at the New Charles River Dam (NATID: MA01092), Boston (formerly part of segment MA72- |       |                             | Cause Unknown (Sediment Screening Value (Exceedence)) |                 |
|                       |                                |                                                                                                                 |       |                             | Chlorophyll-a                                         | 33826           |
|                       |                                | 08).                                                                                                            |       |                             | Combined Biota/Habitat Bioassessments                 |                 |
|                       |                                |                                                                                                                 |       |                             | DDT in Fish Tissue                                    |                 |
|                       |                                |                                                                                                                 |       |                             | Dissolved Oxygen                                      |                 |
|                       |                                |                                                                                                                 |       |                             | Dissolved Oxygen Supersaturation                      | 33826           |
|                       |                                |                                                                                                                 |       |                             | Escherichia Coli (E. Coli)                            | 32371           |
|                       |                                |                                                                                                                 |       |                             | Harmful Algal Blooms                                  | 33826           |
|                       |                                |                                                                                                                 |       |                             | Nutrient/Eutrophication Biological Indicators         | 33826           |
|                       |                                |                                                                                                                 |       |                             | Odor                                                  | 33826           |
|                       |                                |                                                                                                                 |       |                             | Oil and Grease                                        |                 |
|                       |                                |                                                                                                                 |       |                             | PCBs In Fish Tissue                                   |                 |
|                       |                                |                                                                                                                 |       |                             | Phosphorus, Total                                     | 33826           |
|                       |                                |                                                                                                                 |       |                             | Salinity                                              |                 |
|                       |                                |                                                                                                                 |       |                             | Temperature                                           |                 |
|                       |                                |                                                                                                                 |       |                             | Transparency / Clarity                                | 33826           |
| Chicken Brook         | MA72-34                        | Source, outlet Waseeka Sanctuary Pond,<br>Holliston to mouth at confluence with the<br>Charles River, Medway.   | 7.40  | Miles                       | Escherichia Coli (E. Coli)                            |                 |
| Crystal Lake          | MA72030                        | Newton.                                                                                                         | 27.00 | Acres                       | Harmful Algal Blooms                                  |                 |

Final Massachusetts Year 2016 Integrated List of Waters December, 2019 (9) CN 470.1 From: Ruan, Xiaodan (DEP)
To: Kate Hanrahan

Cc: Vakalopoulos, Catherine (DEP)

Subject: RE: 58 Charles Street - RGP Dilution Factor [Filed 13 Dec 2021 14:11]

**Date:** Monday, December 13, 2021 2:09:10 PM

#### [External]

Hi Kate,

You were correct that the Lechmere Canal does not receive enough flow, and the StreamStats cannot calculate a 7Q10; therefore, no dilution will be allowed for the discharge to the Lechmere Canal for the project at 58 Charles Street in Cambridge.

Here is water quality information in assisting you in filling out the NOI:

Waterbody and ID: Charles River (MA72-38) within Charles River Watershed

Classification: B

Outstanding Resource Water?: no

State's most recent Integrated List is located

here: https://www.epa.gov/sites/production/files/2020-01/documents/2016-ma-303d-list-

report.pdf, search for "MA72-38" to see the causes of impairments.

TMDLs: there are two approved TMDL (pathogen and nutrients) for this segment.

Also, if this is not a *current* MCP site, then in addition to submitting the NOI to EPA, you need to apply with MassDEP and submit a \$500 fee (unless fee exempt, e.g., municipality). For MassDEP's application, please use ePLACE, an online application submittal process where you will set up a user ID and be able to submit NOIs for various projects as well as pay by credit card. The instructions are located on this page: <a href="https://www.mass.gov/how-to/wm-15-npdes-general-permit-notice-of-intent">https://www.mass.gov/how-to/wm-15-npdes-general-permit-notice-of-intent</a>. Technical assistant information is available on the front page of the ePLACE application webpage.

Please let me know if you have any questions.

Thanks, Xiaodan

Xiaodan Ruan Environmental Engineer Massachusetts Department of Environmental Protection One Winter Street, Boston, MA 02108 (857)-256-4172

xiaodan.ruan@mass.gov

**From:** Vakalopoulos, Catherine (DEP) <catherine.vakalopoulos@mass.gov>

Sent: Monday, December 13, 2021 1:45 PM

To: khanrahan@mcphailgeo.com

**Cc:** Ruan, Xiaodan (DEP) <xiaodan.ruan@mass.gov>

Subject: Fw: 58 Charles Street - RGP Dilution Factor

Hi Kate,

Sorry for the delay...I have fallen behind. Xiaodan has some time to look at this now.

Cathy

Cathy Vakalopoulos

Massachusetts Department of Environmental Protection 1 Winter St., Boston, MA 02108, 617-348-4026 Please consider the environment before printing this e-mail

From: Kate Hanrahan < khanrahan@mcphailgeo.com > Sent: Wednesday, November 24, 2021 2:02 PM

**To:** Vakalopoulos, Catherine (DEP) < <u>catherine.vakalopoulos@mass.gov</u>>; Ruan, Xiaodan (DEP)

<xiaodan.ruan@mass.gov>

**Cc:** John Miller < <u>imiller@mcphailgeo.com</u>> **Subject:** 58 Charles Street - RGP Dilution Factor

CAUTION: This email originated from a sender outside of the Commonwealth of Massachusetts mail system. Do not click on links or open attachments unless you recognize the sender and know the content is safe.

Hi Cathy,

I am currently preparing a NOI to discharge under the RGP for the project located at 58 Charles Street in Cambridge. The Contractor would like to discharge treated water off-site into a storm drain that directly discharges into a catch basin with a final out fall in the Lechmere Canal (Charles River MA72-38) The 7 Day 10 year flow value from the streamstats report is not available because the Lechmere Canal does not receive enough flow. Please confirm.

Thank you,

#### Kate Hanrahan

McPhail Associates, LLC 2269 Massachusetts Avenue Cambridge, MA 02140 Tel: 617-868-1420 ext. 362

Direct: 617-349-7362 Cell: 978-273-6529 www.mcphailgeo.com



# APPENDIX D: LABORATORY ANALYTICAL DATA



#### ANALYTICAL REPORT

Lab Number: L2165980

Client: McPhail Associates

2269 Massachusetts Avenue

Cambridge, MA 02140

ATTN: Ambrose Donovan Phone: (617) 868-1420

Project Name: 58 CHARLES STREET

Project Number: 6864.9.06

Report Date: 12/06/21

The original project report/data package is held by Alpha Analytical. This report/data package is paginated and should be reproduced only in its entirety. Alpha Analytical holds no responsibility for results and/or data that are not consistent with the original.

Certifications & Approvals: MA (M-MA086), NH NELAP (2064), CT (PH-0574), IL (200077), ME (MA00086), MD (348), NJ (MA935), NY (11148), NC (25700/666), PA (68-03671), RI (LAO00065), TX (T104704476), VT (VT-0935), VA (460195), USDA (Permit #P330-17-00196).

Eight Walkup Drive, Westborough, MA 01581-1019 508-898-9220 (Fax) 508-898-9193 800-624-9220 - www.alphalab.com



**Project Name:** 58 CHARLES STREET

Project Number: 6864.9.06

 Lab Number:
 L2165980

 Report Date:
 12/06/21

| Alpha<br>Sample ID | Client ID      | Matrix | Sample<br>Location | Collection<br>Date/Time | Receive Date |
|--------------------|----------------|--------|--------------------|-------------------------|--------------|
| L2165980-01        | GW             | WATER  | CAMBRIDGE, MA      | 12/01/21 08:30          | 12/01/21     |
| L2165980-02        | LECHMERE CANAL | WATER  | CAMBRIDGE, MA      | 12/01/21 09:30          | 12/01/21     |



L2165980

Lab Number:

Project Name: 58 CHARLES STREET

**Project Number:** 6864.9.06 **Report Date:** 12/06/21

#### **Case Narrative**

The samples were received in accordance with the Chain of Custody and no significant deviations were encountered during the preparation or analysis unless otherwise noted. Sample Receipt, Container Information, and the Chain of Custody are located at the back of the report.

Results contained within this report relate only to the samples submitted under this Alpha Lab Number and meet NELAP requirements for all NELAP accredited parameters unless otherwise noted in the following narrative. The data presented in this report is organized by parameter (i.e. VOC, SVOC, etc.). Sample specific Quality Control data (i.e. Surrogate Spike Recovery) is reported at the end of the target analyte list for each individual sample, followed by the Laboratory Batch Quality Control at the end of each parameter. Tentatively Identified Compounds (TICs), if requested, are reported for compounds identified to be present and are not part of the method/program Target Compound List, even if only a subset of the TCL are being reported. If a sample was re-analyzed or re-extracted due to a required quality control corrective action and if both sets of data are reported, the Laboratory ID of the re-analysis or re-extraction is designated with an "R" or "RE", respectively.

When multiple Batch Quality Control elements are reported (e.g. more than one LCS), the associated samples for each element are noted in the grey shaded header line of each data table. Any Laboratory Batch, Sample Specific % recovery or RPD value that is outside the listed Acceptance Criteria is bolded in the report. In reference to questions H (CAM) or 4 (RCP) when "NO" is checked, the performance criteria for CAM and RCP methods allow for some quality control failures to occur and still be within method compliance. In these instances, the specific failure is not narrated but noted in the associated QC Outlier Summary Report, located directly after the Case Narrative. QC information is also incorporated in the Data Usability Assessment table (Format 11) of our Data Merger tool, where it can be reviewed in conjunction with the sample result, associated regulatory criteria and any associated data usability implications.

Soil/sediments, solids and tissues are reported on a dry weight basis unless otherwise noted. Definitions of all data qualifiers and acronyms used in this report are provided in the Glossary located at the back of the report.

HOLD POLICY - For samples submitted on hold, Alpha's policy is to hold samples (with the exception of Air canisters) free of charge for 21 calendar days from the date the project is completed. After 21 calendar days, we will dispose of all samples submitted including those put on hold unless you have contacted your Alpha Project Manager and made arrangements for Alpha to continue to hold the samples. Air canisters will be disposed after 3 business days from the date the project is completed.

| Please contact Project Management at 800-624-9220 with any questions. |  |
|-----------------------------------------------------------------------|--|
|                                                                       |  |



Project Name: 58 CHARLES STREET Lab Number: L2165980

Project Number: 6864.9.06 Report Date: 12/06/21

#### **Case Narrative (continued)**

#### Report Submission

The analyses of Phenolics and Ethanol were subcontracted. A copy of the laboratory report is included as an addendum. Please note: This data is only available in PDF format and is not available on Data Merger.

#### Sample Receipt

The analyses performed were specified by the client.

L2165980-01: Sample containers for PCBs, Semivolatile Organics and Phenolics were received for the "GW" sample, but were not listed on the chain of custody. At the client's request, the analyses were performed.

#### **Total Metals**

The WG1578225-3 MS recovery for hardness (138%), performed on L2165980-01, does not apply because the sample concentration is greater than four times the spike amount added.

#### Chlorine, Total Residual

The WG1578071-4 MS recovery, performed on L2165980-01, is outside the acceptance criteria for chlorine, total residual (0%); however, the associated LCS recovery is within criteria. No further action was taken.

I, the undersigned, attest under the pains and penalties of perjury that, to the best of my knowledge and belief and based upon my personal inquiry of those responsible for providing the information contained in this analytical report, such information is accurate and complete. This certificate of analysis is not complete unless this page accompanies any and all pages of this report.

Wildle UK. Unawig Michelle M. Morris

Authorized Signature:

Title: Technical Director/Representative

Date: 12/06/21



### **ORGANICS**



### **VOLATILES**



12/01/21 08:30

Not Specified

12/01/21

**Project Name:** 58 CHARLES STREET

Project Number: 6864.9.06

**SAMPLE RESULTS** 

Lab Number: L2165980

**Report Date:** 12/06/21

Date Collected:

Date Received:

Field Prep:

Lab ID: L2165980-01

Client ID: GW

Sample Location: CAMBRIDGE, MA

Sample Depth:

Matrix: Water
Analytical Method: 128,624.1
Analytical Date: 12/02/21 17:52

Analyst: GT

| Parameter                        | Result        | Qualifier Units | RL  | MDL | Dilution Factor |
|----------------------------------|---------------|-----------------|-----|-----|-----------------|
| Volatile Organics by GC/MS - Wes | stborough Lab |                 |     |     |                 |
| Methylene chloride               | ND            | ug/l            | 1.0 |     | 1               |
| 1,1-Dichloroethane               | ND            | ug/l            | 1.5 |     | 1               |
| Carbon tetrachloride             | ND            | ug/l            | 1.0 |     | 1               |
| 1,1,2-Trichloroethane            | ND            | ug/l            | 1.5 |     | 1               |
| Tetrachloroethene                | ND            | ug/l            | 1.0 |     | 1               |
| 1,2-Dichloroethane               | ND            | ug/l            | 1.5 |     | 1               |
| 1,1,1-Trichloroethane            | ND            | ug/l            | 2.0 |     | 1               |
| Benzene                          | ND            | ug/l            | 1.0 |     | 1               |
| Toluene                          | ND            | ug/l            | 1.0 |     | 1               |
| Ethylbenzene                     | ND            | ug/l            | 1.0 |     | 1               |
| Vinyl chloride                   | ND            | ug/l            | 1.0 |     | 1               |
| 1,1-Dichloroethene               | ND            | ug/l            | 1.0 |     | 1               |
| cis-1,2-Dichloroethene           | ND            | ug/l            | 1.0 |     | 1               |
| Trichloroethene                  | ND            | ug/l            | 1.0 |     | 1               |
| 1,2-Dichlorobenzene              | ND            | ug/l            | 5.0 |     | 1               |
| 1,3-Dichlorobenzene              | ND            | ug/l            | 5.0 |     | 1               |
| 1,4-Dichlorobenzene              | ND            | ug/l            | 5.0 |     | 1               |
| p/m-Xylene                       | ND            | ug/l            | 2.0 |     | 1               |
| o-xylene                         | ND            | ug/l            | 1.0 |     | 1               |
| Xylenes, Total                   | ND            | ug/l            | 1.0 |     | 1               |
| Acetone                          | ND            | ug/l            | 10  |     | 1               |
| Methyl tert butyl ether          | ND            | ug/l            | 10  |     | 1               |
| Tert-Butyl Alcohol               | ND            | ug/l            | 100 |     | 1               |
| Tertiary-Amyl Methyl Ether       | ND            | ug/l            | 20  |     | 1               |
|                                  |               |                 |     |     |                 |



**Project Name:** 58 CHARLES STREET **Lab Number:** L2165980

**Project Number:** 6864.9.06 **Report Date:** 12/06/21

**SAMPLE RESULTS** 

Lab ID: L2165980-01 Date Collected: 12/01/21 08:30

Client ID: GW Date Received: 12/01/21 Sample Location: CAMBRIDGE, MA Field Prep: Not Specified

Sample Depth:

Parameter Result Qualifier Units RL MDL Dilution Factor

Volatile Organics by GC/MS - Westborough Lab

| Surrogate            | % Recovery | Acceptance<br>Qualifier Criteria |
|----------------------|------------|----------------------------------|
| Pentafluorobenzene   | 96         | 60-140                           |
| Fluorobenzene        | 110        | 60-140                           |
| 4-Bromofluorobenzene | 97         | 60-140                           |



12/01/21 08:30

Not Specified

12/01/21

**Project Name: 58 CHARLES STREET** 

**Project Number:** 6864.9.06

**SAMPLE RESULTS** 

Lab Number: L2165980

Report Date: 12/06/21

Date Collected:

Date Received:

Field Prep:

Lab ID: L2165980-01

Client ID: GW

Sample Location: CAMBRIDGE, MA

Sample Depth:

Matrix: Water

Analytical Method: 128,624.1-SIM Analytical Date: 12/02/21 17:52

Analyst: GT

| Parameter                                        | Result | Qualifier | Units | RL  | MDL | Dilution Factor |  |
|--------------------------------------------------|--------|-----------|-------|-----|-----|-----------------|--|
| Volatile Organics by GC/MS-SIM - Westborough Lab |        |           |       |     |     |                 |  |
| 1,4-Dioxane                                      | ND     |           | ug/l  | 5.0 |     | 1               |  |

| 1,150,4310           | ug/i       |                                  | • |
|----------------------|------------|----------------------------------|---|
| Surrogate            | % Recovery | Acceptance<br>Qualifier Criteria |   |
| Fluorobenzene        | 112        | 60-140                           |   |
| 4-Bromofluorobenzene | 102        | 60-140                           |   |

**Project Name:** 58 CHARLES STREET **Lab Number:** L2165980

**Project Number:** 6864.9.06 **Report Date:** 12/06/21

SAMPLE RESULTS

Lab ID: L2165980-01 Date Collected: 12/01/21 08:30

Client ID: GW Date Received: 12/01/21

Sample Location: CAMBRIDGE, MA Field Prep: Not Specified

Sample Depth:

AMM

Analyst:

Matrix: Water Extraction Method: EPA 504.1
Analytical Method: 14,504.1 Extraction Date: 12/03/21 13:54

Analytical Date: 12/03/21 16:37

| Parameter                                 | Result | Qualifier | Units | RL    | MDL | Dilution Factor | Column |
|-------------------------------------------|--------|-----------|-------|-------|-----|-----------------|--------|
| Microextractables by GC - Westborough Lab |        |           |       |       |     |                 |        |
| 1,2-Dibromoethane                         | ND     |           | ug/l  | 0.010 |     | 1               | Α      |



**Project Name:** 58 CHARLES STREET **Lab Number:** L2165980

**Project Number:** 6864.9.06 **Report Date:** 12/06/21

Method Blank Analysis Batch Quality Control

Analytical Method: 128,624.1 Analytical Date: 12/02/21 10:01

Analyst: GT

| Parameter                         | Result      | Qualifier Units   | RL     | MDL          |
|-----------------------------------|-------------|-------------------|--------|--------------|
| Volatile Organics by GC/MS - West | borough Lab | for sample(s): 01 | Batch: | WG1578151-10 |
| Methylene chloride                | ND          | ug/l              | 1.0    | <del></del>  |
| 1,1-Dichloroethane                | ND          | ug/l              | 1.5    |              |
| Carbon tetrachloride              | ND          | ug/l              | 1.0    |              |
| 1,1,2-Trichloroethane             | ND          | ug/l              | 1.5    |              |
| Tetrachloroethene                 | ND          | ug/l              | 1.0    |              |
| 1,2-Dichloroethane                | ND          | ug/l              | 1.5    |              |
| 1,1,1-Trichloroethane             | ND          | ug/l              | 2.0    |              |
| Benzene                           | ND          | ug/l              | 1.0    |              |
| Toluene                           | ND          | ug/l              | 1.0    |              |
| Ethylbenzene                      | ND          | ug/l              | 1.0    |              |
| Vinyl chloride                    | ND          | ug/l              | 1.0    |              |
| 1,1-Dichloroethene                | ND          | ug/l              | 1.0    |              |
| cis-1,2-Dichloroethene            | ND          | ug/l              | 1.0    |              |
| Trichloroethene                   | ND          | ug/l              | 1.0    |              |
| 1,2-Dichlorobenzene               | ND          | ug/l              | 5.0    |              |
| 1,3-Dichlorobenzene               | ND          | ug/l              | 5.0    |              |
| 1,4-Dichlorobenzene               | ND          | ug/l              | 5.0    |              |
| p/m-Xylene                        | ND          | ug/l              | 2.0    |              |
| o-xylene                          | ND          | ug/l              | 1.0    |              |
| Xylenes, Total                    | ND          | ug/l              | 1.0    |              |
| Acetone                           | ND          | ug/l              | 10     |              |
| Methyl tert butyl ether           | ND          | ug/l              | 10     |              |
| Tert-Butyl Alcohol                | ND          | ug/l              | 100    |              |
| Tertiary-Amyl Methyl Ether        | ND          | ug/l              | 20     |              |



Project Name: 58 CHARLES STREET Lab Number: L2165980

**Project Number:** 6864.9.06 **Report Date:** 12/06/21

Method Blank Analysis Batch Quality Control

Analytical Method: 128,624.1 Analytical Date: 12/02/21 10:01

Analyst: GT

Parameter Result Qualifier Units RL MDL

Volatile Organics by GC/MS - Westborough Lab for sample(s): 01 Batch: WG1578151-10

|                      |           | Acceptance         |  |  |
|----------------------|-----------|--------------------|--|--|
| Surrogate            | %Recovery | Qualifier Criteria |  |  |
| Pentafluorobenzene   | 93        | 60-140             |  |  |
| Fluorobenzene        | 107       | 60-140             |  |  |
| 4-Bromofluorobenzene | 96        | 60-140             |  |  |



**Project Name:** 58 CHARLES STREET **Lab Number:** L2165980

**Project Number:** 6864.9.06 **Report Date:** 12/06/21

Method Blank Analysis Batch Quality Control

Analytical Method: 128,624.1-SIM Analytical Date: 12/02/21 10:01

Analyst: GT

| Parameter                        | Result      | Qualifier | Units     |    | RL     | MDL         |  |
|----------------------------------|-------------|-----------|-----------|----|--------|-------------|--|
| Volatile Organics by GC/MS-SIM - | Westborough | Lab for s | ample(s): | 01 | Batch: | WG1578247-4 |  |
| 1,4-Dioxane                      | ND          |           | ug/l      |    | 5.0    |             |  |

|                      |           | Acceptance |          |  |
|----------------------|-----------|------------|----------|--|
| Surrogate            | %Recovery | Qualifier  | Criteria |  |
|                      |           |            |          |  |
| Fluorobenzene        | 111       |            | 60-140   |  |
| 4-Bromofluorobenzene | 106       |            | 60-140   |  |



Project Name: 58 CHARLES STREET Lab Number: L2165980

**Project Number:** 6864.9.06 **Report Date:** 12/06/21

Method Blank Analysis Batch Quality Control

Analytical Method: 14,504.1 Extraction Method: EPA 504.1

Analytical Date: 12/03/21 15:13 Extraction Date: 12/03/21 13:54

Analyst: AMM

| Parameter                          | Result       | Qualifier  | Units | RI       | L MD        | L |
|------------------------------------|--------------|------------|-------|----------|-------------|---|
| Microextractables by GC - Westboro | ough Lab for | sample(s): | : 01  | Batch: \ | WG1578706-1 |   |
| 1,2-Dibromoethane                  | ND           |            | ug/l  | 0.0      | 10          | Α |



**Project Name:** 58 CHARLES STREET

Project Number: 6864.9.06

Lab Number: L2165980

**Report Date:** 12/06/21

| Parameter                               | LCS<br>%Recovery | Qual         | LCSD<br>%Recovery | Qual      | %Recovery<br>Limits | RPD | RPD<br>Qual Limits |  |
|-----------------------------------------|------------------|--------------|-------------------|-----------|---------------------|-----|--------------------|--|
| Volatile Organics by GC/MS - Westboroug | h Lab Associated | sample(s): 0 | 1 Batch: WG       | 1578151-9 |                     |     |                    |  |
| Methylene chloride                      | 105              |              | -                 |           | 60-140              | -   | 28                 |  |
| 1,1-Dichloroethane                      | 105              |              | -                 |           | 50-150              | -   | 49                 |  |
| Carbon tetrachloride                    | 115              |              | -                 |           | 70-130              | -   | 41                 |  |
| 1,1,2-Trichloroethane                   | 100              |              | -                 |           | 70-130              | -   | 45                 |  |
| Tetrachloroethene                       | 100              |              | -                 |           | 70-130              | -   | 39                 |  |
| 1,2-Dichloroethane                      | 105              |              | -                 |           | 70-130              | -   | 49                 |  |
| 1,1,1-Trichloroethane                   | 105              |              | -                 |           | 70-130              | -   | 36                 |  |
| Benzene                                 | 115              |              | -                 |           | 65-135              | -   | 61                 |  |
| Toluene                                 | 110              |              | -                 |           | 70-130              | -   | 41                 |  |
| Ethylbenzene                            | 110              |              | -                 |           | 60-140              | -   | 63                 |  |
| Vinyl chloride                          | 105              |              | -                 |           | 5-195               | -   | 66                 |  |
| 1,1-Dichloroethene                      | 105              |              | -                 |           | 50-150              | -   | 32                 |  |
| cis-1,2-Dichloroethene                  | 110              |              | -                 |           | 60-140              | -   | 30                 |  |
| Trichloroethene                         | 120              |              | -                 |           | 65-135              | -   | 48                 |  |
| 1,2-Dichlorobenzene                     | 100              |              | -                 |           | 65-135              | -   | 57                 |  |
| 1,3-Dichlorobenzene                     | 100              |              | -                 |           | 70-130              | -   | 43                 |  |
| 1,4-Dichlorobenzene                     | 100              |              | -                 |           | 65-135              | -   | 57                 |  |
| p/m-Xylene                              | 105              |              | -                 |           | 60-140              | -   | 30                 |  |
| o-xylene                                | 100              |              | -                 |           | 60-140              | -   | 30                 |  |
| Acetone                                 | 96               |              | -                 |           | 40-160              | -   | 30                 |  |
| Methyl tert butyl ether                 | 90               |              | -                 |           | 60-140              | -   | 30                 |  |
| Tert-Butyl Alcohol                      | 90               |              | -                 |           | 60-140              | -   | 30                 |  |
| Tertiary-Amyl Methyl Ether              | 85               |              | -                 |           | 60-140              | -   | 30                 |  |



**Project Name:** 58 CHARLES STREET

Quality Control Lab Number:

Project Number: 6864.9.06

\_ .\_.

L2165980

Report Date:

12/06/21

|           | LCS       |      | LCSD      |      | %Recovery |     |      | RPD    |
|-----------|-----------|------|-----------|------|-----------|-----|------|--------|
| Parameter | %Recovery | Qual | %Recovery | Qual | Limits    | RPD | Qual | Limits |

Volatile Organics by GC/MS - Westborough Lab Associated sample(s): 01 Batch: WG1578151-9

| Surrogate            | LCS<br>%Recovery Qual | LCSD<br>%Recovery | Qual | Acceptance<br>Criteria |
|----------------------|-----------------------|-------------------|------|------------------------|
| Pentafluorobenzene   | 97                    |                   |      | 60-140                 |
| Fluorobenzene        | 111                   |                   |      | 60-140                 |
| 4-Bromofluorobenzene | 100                   |                   |      | 60-140                 |

**Project Name: 58 CHARLES STREET** 

Lab Number:

L2165980 12/06/21

Project Number: 6864.9.06

Report Date:

| Parameter                                 | LCS<br>%Recovery | Qual          | LCSD<br>%Recovery | Qual       | %Recovery<br>Limits | RPD | Qual | RPD<br>Limits |  |
|-------------------------------------------|------------------|---------------|-------------------|------------|---------------------|-----|------|---------------|--|
| Volatile Organics by GC/MS-SIM - Westboro | ugh Lab Associa  | ted sample(s) | : 01 Batch:       | WG1578247- | 3                   |     |      |               |  |
| 1,4-Dioxane                               | 98               |               | -                 |            | 60-140              | -   |      | 20            |  |

| Surrogate                          | LCS<br>%Recovery Qua | LCSD<br>MRecovery | Qual | Acceptance<br>Criteria |
|------------------------------------|----------------------|-------------------|------|------------------------|
| Fluorobenzene 4-Bromofluorobenzene | 110<br>106           |                   |      | 60-140<br>60-140       |

12/06/21

Α

# Lab Control Sample Analysis Batch Quality Control

80-120

**Project Name:** 58 CHARLES STREET

1,2-Dibromoethane

ES STREET Batch Quality Cont

108

Lab Number: L2165980

Project Number: 6864.9.06 Report Date:

| Parameter                                 | LCS<br>%Recovery | Qual       | LCSD<br>%Recovery | Qual   | %Recovery<br>Limits | RPD | Qual | RPD<br>Limits | Column |
|-------------------------------------------|------------------|------------|-------------------|--------|---------------------|-----|------|---------------|--------|
| Microextractables by GC - Westborough Lab | Associated sam   | ple(s): 01 | Batch: WG1578     | 3706-2 |                     |     |      |               |        |



# Matrix Spike Analysis Batch Quality Control

**Project Name:** 58 CHARLES STREET

**Project Number:** 6864.9.06

Lab Number:

L2165980

Report Date:

12/06/21

| Parameter                   | Native<br>Sample  | MS<br>Added | MS<br>Found %    | MS<br>Recovery | Qual     | MSD<br>Found | MSD<br>%Recovery |            | overy<br>nits | RPD      |           | RPD<br>Limits | <u>Colum</u> n |
|-----------------------------|-------------------|-------------|------------------|----------------|----------|--------------|------------------|------------|---------------|----------|-----------|---------------|----------------|
| Microextractables by GC     | - Westborough Lab | Associat    | ed sample(s): 01 | QC Batch       | ID: WG15 | 78706-3      | QC Sample:       | L2165276-0 | 1 Clier       | nt ID: N | /IS Sampl | е             |                |
| 1,2-Dibromoethane           | ND                | 0.252       | 0.261            | 103            |          | -            | -                | 80         | -120          | -        |           | 20            | Α              |
| 1,2-Dibromo-3-chloropropane | ND                | 0.252       | 0.259            | 103            |          | -            | -                | 80         | -120          | -        |           | 20            | Α              |
| 1,2,3-Trichloropropane      | ND                | 0.252       | 0.284            | 113            |          | -            | -                | 80         | -120          | -        |           | 20            | Α              |

### **SEMIVOLATILES**



**Project Name:** 58 CHARLES STREET **Lab Number:** L2165980

**Project Number:** 6864.9.06 **Report Date:** 12/06/21

SAMPLE RESULTS

Lab ID: L2165980-01 Date Collected: 12/01/21 08:30

Client ID: GW Date Received: 12/01/21 Sample Location: CAMBRIDGE, MA Field Prep: Not Specified

Sample Depth:

Matrix: Water Extraction Method: EPA 625.1
Analytical Method: 129,625.1 Extraction Date: 12/02/21 10:04

Analytical Date: 12/03/21 09:20

Analyst: SZ

| Parameter                      | Result            | Qualifier | Units | RL   | MDL | Dilution Factor |  |
|--------------------------------|-------------------|-----------|-------|------|-----|-----------------|--|
| Semivolatile Organics by GC/MS | - Westborough Lab |           |       |      |     |                 |  |
| Bis(2-ethylhexyl)phthalate     | ND                |           | ug/l  | 2.20 |     | 1               |  |
| Butyl benzyl phthalate         | ND                |           | ug/l  | 5.00 |     | 1               |  |
| Di-n-butylphthalate            | ND                |           | ug/l  | 5.00 |     | 1               |  |
| Di-n-octylphthalate            | ND                |           | ug/l  | 5.00 |     | 1               |  |
| Diethyl phthalate              | ND                |           | ug/l  | 5.00 |     | 1               |  |
| Dimethyl phthalate             | ND                |           | ug/l  | 5.00 |     | 1               |  |

| Surrogate        | % Recovery | Acceptance<br>Qualifier Criteria |  |
|------------------|------------|----------------------------------|--|
| Nitrobenzene-d5  | 57         | 42-122                           |  |
| 2-Fluorobiphenyl | 56         | 46-121                           |  |
| 4-Terphenyl-d14  | 67         | 47-138                           |  |



L2165980

12/06/21

12/01/21 08:30

Not Specified

12/02/21 10:05

12/01/21

**Project Name: 58 CHARLES STREET** 

**Project Number:** 6864.9.06

**SAMPLE RESULTS** 

Lab Number:

Report Date:

Date Collected:

Date Received:

Extraction Date:

Field Prep:

Lab ID: L2165980-01

Client ID: GW

Sample Location:

CAMBRIDGE, MA

Sample Depth:

Matrix: Water

Analytical Method: 129,625.1-SIM Analytical Date: 12/04/21 17:11

Analyst: JJW Extraction Method: EPA 625.1

| Parameter                          | Result           | Qualifier | Units | RL    | MDL | Dilution Factor |  |
|------------------------------------|------------------|-----------|-------|-------|-----|-----------------|--|
| Semivolatile Organics by GC/MS-SIM | - Westborough La | ıb        |       |       |     |                 |  |
| Acenaphthene                       | ND               |           | ug/l  | 0.100 |     | 1               |  |
| Fluoranthene                       | 0.168            |           | ug/l  | 0.100 |     | 1               |  |
| Naphthalene                        | ND               |           | ug/l  | 0.100 |     | 1               |  |
| Benzo(a)anthracene                 | ND               |           | ug/l  | 0.100 |     | 1               |  |
| Benzo(a)pyrene                     | ND               |           | ug/l  | 0.100 |     | 1               |  |
| Benzo(b)fluoranthene               | ND               |           | ug/l  | 0.100 |     | 1               |  |
| Benzo(k)fluoranthene               | ND               |           | ug/l  | 0.100 |     | 1               |  |
| Chrysene                           | ND               |           | ug/l  | 0.100 |     | 1               |  |
| Acenaphthylene                     | ND               |           | ug/l  | 0.100 |     | 1               |  |
| Anthracene                         | ND               |           | ug/l  | 0.100 |     | 1               |  |
| Benzo(ghi)perylene                 | ND               |           | ug/l  | 0.100 |     | 1               |  |
| Fluorene                           | ND               |           | ug/l  | 0.100 |     | 1               |  |
| Phenanthrene                       | ND               |           | ug/l  | 0.100 |     | 1               |  |
| Dibenzo(a,h)anthracene             | ND               |           | ug/l  | 0.100 |     | 1               |  |
| Indeno(1,2,3-cd)pyrene             | ND               |           | ug/l  | 0.100 |     | 1               |  |
| Pyrene                             | 0.118            |           | ug/l  | 0.100 |     | 1               |  |
| Pentachlorophenol                  | ND               |           | ug/l  | 1.00  |     | 1               |  |

| Surrogate            | % Recovery | Acceptance<br>Qualifier Criteria |  |
|----------------------|------------|----------------------------------|--|
| 2-Fluorophenol       | 50         | 25-87                            |  |
| Phenol-d6            | 34         | 16-65                            |  |
| Nitrobenzene-d5      | 78         | 42-122                           |  |
| 2-Fluorobiphenyl     | 72         | 46-121                           |  |
| 2,4,6-Tribromophenol | 115        | 45-128                           |  |
| 4-Terphenyl-d14      | 84         | 47-138                           |  |
|                      |            |                                  |  |



L2165980

Lab Number:

**Project Name:** 58 CHARLES STREET

**Project Number:** Report Date: 6864.9.06 12/06/21

Method Blank Analysis Batch Quality Control

Analytical Method: 129,625.1 Extraction Method: EPA 625.1 Analytical Date: 12/02/21 13:56 12/02/21 00:31 Extraction Date:

Analyst: SZ

| Parameter                    | Result           | Qualifier | Units     | RL      | MDL            |  |
|------------------------------|------------------|-----------|-----------|---------|----------------|--|
| Semivolatile Organics by GC/ | MS - Westborough | Lab for s | ample(s): | 01 Bato | h: WG1577981-1 |  |
| Bis(2-ethylhexyl)phthalate   | ND               |           | ug/l      | 2.20    |                |  |
| Butyl benzyl phthalate       | ND               |           | ug/l      | 5.00    |                |  |
| Di-n-butylphthalate          | ND               |           | ug/l      | 5.00    |                |  |
| Di-n-octylphthalate          | ND               |           | ug/l      | 5.00    |                |  |
| Diethyl phthalate            | ND               |           | ug/l      | 5.00    |                |  |
| Dimethyl phthalate           | ND               |           | ug/l      | 5.00    |                |  |
|                              |                  |           |           |         |                |  |

|                  |           | Acceptance         |  |  |  |
|------------------|-----------|--------------------|--|--|--|
| Surrogate        | %Recovery | Qualifier Criteria |  |  |  |
|                  |           |                    |  |  |  |
| Nitrobenzene-d5  | 75        | 42-122             |  |  |  |
| 2-Fluorobiphenyl | 66        | 46-121             |  |  |  |
| 4-Terphenyl-d14  | 81        | 47-138             |  |  |  |



Extraction Method: EPA 625.1

L2165980

12/02/21 00:31

Lab Number:

**Extraction Date:** 

**Project Name:** 58 CHARLES STREET

**Project Number:** Report Date: 6864.9.06 12/06/21

Method Blank Analysis Batch Quality Control

Analytical Method: 129,625.1-SIM Analytical Date: 12/04/21 16:54

Analyst: JJW

| Parameter                       | Result       | Qualifier | Units      | RL       | MDL              |    |
|---------------------------------|--------------|-----------|------------|----------|------------------|----|
| Semivolatile Organics by GC/MS- | SIM - Westbo | rough Lab | for sample | e(s): 01 | Batch: WG1577982 | -1 |
| Acenaphthene                    | ND           |           | ug/l       | 0.100    |                  |    |
| Fluoranthene                    | ND           |           | ug/l       | 0.100    |                  |    |
| Naphthalene                     | ND           |           | ug/l       | 0.100    |                  |    |
| Benzo(a)anthracene              | ND           |           | ug/l       | 0.100    |                  |    |
| Benzo(a)pyrene                  | ND           |           | ug/l       | 0.100    |                  |    |
| Benzo(b)fluoranthene            | ND           |           | ug/l       | 0.100    |                  |    |
| Benzo(k)fluoranthene            | ND           |           | ug/l       | 0.100    |                  |    |
| Chrysene                        | ND           |           | ug/l       | 0.100    |                  |    |
| Acenaphthylene                  | ND           |           | ug/l       | 0.100    |                  |    |
| Anthracene                      | ND           |           | ug/l       | 0.100    |                  |    |
| Benzo(ghi)perylene              | ND           |           | ug/l       | 0.100    |                  |    |
| Fluorene                        | ND           |           | ug/l       | 0.100    |                  |    |
| Phenanthrene                    | ND           |           | ug/l       | 0.100    |                  |    |
| Dibenzo(a,h)anthracene          | ND           |           | ug/l       | 0.100    |                  |    |
| Indeno(1,2,3-cd)pyrene          | ND           |           | ug/l       | 0.100    |                  |    |
| Pyrene                          | ND           |           | ug/l       | 0.100    |                  |    |
| Pentachlorophenol               | ND           |           | ug/l       | 1.00     |                  |    |

| Surrogate            | %Recovery Quali | Acceptance<br>fier Criteria |
|----------------------|-----------------|-----------------------------|
| 2-Fluorophenol       | 59              | 25-87                       |
| Phenol-d6            | 45              | 16-65                       |
| Nitrobenzene-d5      | 85              | 42-122                      |
| 2-Fluorobiphenyl     | 78              | 46-121                      |
| 2,4,6-Tribromophenol | 111             | 45-128                      |
| 4-Terphenyl-d14      | 87              | 47-138                      |
|                      |                 |                             |



**Project Name:** 58 CHARLES STREET

Project Number: 6864.9.06

Lab Number:

L2165980

Report Date:

12/06/21

| Parameter                                    | LCS<br>%Recovery | Qual          | LCSD<br>%Recovery | Qual      | %Recovery<br>Limits | RPD | Qual | RPD<br>Limits |  |
|----------------------------------------------|------------------|---------------|-------------------|-----------|---------------------|-----|------|---------------|--|
| Semivolatile Organics by GC/MS - Westborough | gh Lab Associa   | ted sample(s) | : 01 Batch:       | WG1577981 | 1-2                 |     |      |               |  |
| Bis(2-ethylhexyl)phthalate                   | 107              |               | -                 |           | 29-137              | -   |      | 82            |  |
| Butyl benzyl phthalate                       | 91               |               | -                 |           | 1-140               | -   |      | 60            |  |
| Di-n-butylphthalate                          | 98               |               | -                 |           | 8-120               | -   |      | 47            |  |
| Di-n-octylphthalate                          | 105              |               | -                 |           | 19-132              | -   |      | 69            |  |
| Diethyl phthalate                            | 92               |               | -                 |           | 1-120               | -   |      | 100           |  |
| Dimethyl phthalate                           | 88               |               | -                 |           | 1-120               | -   |      | 183           |  |

| Surrogate        | LCS<br>%Recovery Qual | LCSD<br>%Recovery Qual | Acceptance<br>Criteria |
|------------------|-----------------------|------------------------|------------------------|
| Nitrobenzene-d5  | 95                    |                        | 42-122                 |
| 2-Fluorobiphenyl | 86                    |                        | 46-121                 |
| 4-Terphenyl-d14  | 95                    |                        | 47-138                 |



**Project Name:** 58 CHARLES STREET

Project Number: 6864.9.06

Lab Number: L2165980

**Report Date:** 12/06/21

| arameter                               | LCS<br>%Recovery G   | LCSD<br>Qual %Recovery    | %Recovery<br>Qual Limits | RPD | RPD<br>Qual Limits |
|----------------------------------------|----------------------|---------------------------|--------------------------|-----|--------------------|
| emivolatile Organics by GC/MS-SIM - We | estborough Lab Assoc | iated sample(s): 01 Batch | : WG1577982-2            |     |                    |
| Acenaphthene                           | 87                   | -                         | 60-132                   | -   | 30                 |
| Fluoranthene                           | 96                   | -                         | 43-121                   | -   | 30                 |
| Naphthalene                            | 89                   | -                         | 36-120                   | -   | 30                 |
| Benzo(a)anthracene                     | 88                   | -                         | 42-133                   | -   | 30                 |
| Benzo(a)pyrene                         | 90                   | -                         | 32-148                   | -   | 30                 |
| Benzo(b)fluoranthene                   | 89                   | -                         | 42-140                   | -   | 30                 |
| Benzo(k)fluoranthene                   | 87                   | -                         | 25-146                   | -   | 30                 |
| Chrysene                               | 83                   | -                         | 44-140                   | -   | 30                 |
| Acenaphthylene                         | 105                  | -                         | 54-126                   | -   | 30                 |
| Anthracene                             | 90                   | -                         | 43-120                   | -   | 30                 |
| Benzo(ghi)perylene                     | 89                   | -                         | 1-195                    | -   | 30                 |
| Fluorene                               | 92                   | -                         | 70-120                   | -   | 30                 |
| Phenanthrene                           | 84                   | -                         | 65-120                   | -   | 30                 |
| Dibenzo(a,h)anthracene                 | 95                   | -                         | 1-200                    | -   | 30                 |
| Indeno(1,2,3-cd)pyrene                 | 88                   | -                         | 1-151                    | -   | 30                 |
| Pyrene                                 | 95                   | -                         | 70-120                   | -   | 30                 |
| Pentachlorophenol                      | 78                   | -                         | 38-152                   | -   | 30                 |

**Project Name: 58 CHARLES STREET**  Lab Number:

Qual

L2165980

**Project Number:** 6864.9.06

Parameter

Report Date:

RPD

12/06/21

RPD

Limits

LCSD LCS %Recovery %Recovery

Qual

Semivolatile Organics by GC/MS-SIM - Westborough Lab Associated sample(s): 01 Batch: WG1577982-2

%Recovery

| Surrogate            | LCS<br>%Recovery Qual %Re | LCSD<br>ecovery Qual | Acceptance<br>Criteria |
|----------------------|---------------------------|----------------------|------------------------|
| 2-Fluorophenol       | 62                        |                      | 25-87                  |
| Phenol-d6            | 49                        |                      | 16-65                  |
| Nitrobenzene-d5      | 95                        |                      | 42-122                 |
| 2-Fluorobiphenyl     | 94                        |                      | 46-121                 |
| 2,4,6-Tribromophenol | 126                       |                      | 45-128                 |
| 4-Terphenyl-d14      | 89                        |                      | 47-138                 |

Qual

Limits



# **PCBS**



**Project Name:** 58 CHARLES STREET **Lab Number:** L2165980

**Project Number:** 6864.9.06 **Report Date:** 12/06/21

**SAMPLE RESULTS** 

Lab ID: L2165980-01 Date Collected: 12/01/21 08:30

Client ID: GW Date Received: 12/01/21 Sample Location: CAMBRIDGE, MA Field Prep: Not Specified

Sample Depth:

Matrix: Water Extraction Method: EPA 608.3
Analytical Method: 127,608.3 Extraction Date: 12/02/21 16:40

Analytical Method: 127,608.3 Extraction Date: 12/02/21 16:40
Analytical Date: 12/03/21 09:50 Cleanup Method: EPA 3665A
Analyst: AWS Cleanup Date: 12/02/21

Cleanup Method: EPA 3660B Cleanup Date: 12/03/21

| Parameter                    | Result               | Qualifier | Units | RL    | MDL | Dilution Factor | Column |
|------------------------------|----------------------|-----------|-------|-------|-----|-----------------|--------|
| Polychlorinated Biphenyls by | GC - Westborough Lab |           |       |       |     |                 |        |
| Aroclor 1016                 | ND                   |           | ug/l  | 0.250 |     | 1               | Α      |
| Aroclor 1221                 | ND                   |           | ug/l  | 0.250 |     | 1               | Α      |
| Aroclor 1232                 | ND                   |           | ug/l  | 0.250 |     | 1               | Α      |
| Aroclor 1242                 | ND                   |           | ug/l  | 0.250 |     | 1               | Α      |
| Aroclor 1248                 | ND                   |           | ug/l  | 0.250 |     | 1               | Α      |
| Aroclor 1254                 | ND                   |           | ug/l  | 0.250 |     | 1               | Α      |
| Aroclor 1260                 | ND                   |           | ug/l  | 0.200 |     | 1               | Α      |

|                              |            |           | Acceptance |        |
|------------------------------|------------|-----------|------------|--------|
| Surrogate                    | % Recovery | Qualifier | Criteria   | Column |
| 2,4,5,6-Tetrachloro-m-xylene | 61         |           | 37-123     | В      |
| Decachlorobiphenyl           | 58         |           | 38-114     | В      |
| 2,4,5,6-Tetrachloro-m-xylene | 60         |           | 37-123     | Α      |
| Decachlorobiphenyl           | 61         |           | 38-114     | Α      |



L2165980

Lab Number:

Project Name: 58 CHARLES STREET

**Project Number:** 6864.9.06 **Report Date:** 12/06/21

oject Number. 6664.9.06 Report Date.

Method Blank Analysis Batch Quality Control

Analytical Method: 127,608.3 Analytical Date: 12/03/21 08:18

Analyst: JWL

Extraction Method: EPA 608.3
Extraction Date: 12/02/21 16:40
Cleanup Method: EPA 3665A
Cleanup Date: 12/02/21
Cleanup Method: EPA 3660B
Cleanup Date: 12/03/21

| Parameter                           | Result      | Qualifier   | Units     | RL        | MDL       | Column |
|-------------------------------------|-------------|-------------|-----------|-----------|-----------|--------|
| Polychlorinated Biphenyls by GC - \ | Vestborough | n Lab for s | ample(s): | 01 Batch: | WG1578407 | -1     |
| Aroclor 1016                        | ND          |             | ug/l      | 0.250     |           | Α      |
| Aroclor 1221                        | ND          |             | ug/l      | 0.250     |           | Α      |
| Aroclor 1232                        | ND          |             | ug/l      | 0.250     |           | Α      |
| Aroclor 1242                        | ND          |             | ug/l      | 0.250     |           | Α      |
| Aroclor 1248                        | ND          |             | ug/l      | 0.250     |           | Α      |
| Aroclor 1254                        | ND          |             | ug/l      | 0.250     |           | Α      |
| Aroclor 1260                        | ND          |             | ug/l      | 0.200     |           | Α      |

|                              |             | A        | cceptanc | е      |
|------------------------------|-------------|----------|----------|--------|
| Surrogate                    | %Recovery Q | ualifier | Criteria | Column |
|                              |             |          |          |        |
| 2,4,5,6-Tetrachloro-m-xylene | 67          |          | 37-123   | В      |
| Decachlorobiphenyl           | 68          |          | 38-114   | В      |
| 2,4,5,6-Tetrachloro-m-xylene | 63          |          | 37-123   | Α      |
| Decachlorobiphenyl           | 68          |          | 38-114   | Α      |



# Lab Control Sample Analysis Batch Quality Control

**Project Name:** 58 CHARLES STREET

Project Number: 6864.9.06

Lab Number:

L2165980

12/06/21

Report Date:

| Parameter                         | LCS<br>%Recovery        | Qual %I           | LCSD<br>Recovery | Qual       | %Recovery<br>Limits | RPD | Qual | RPD<br>Limits | Column |
|-----------------------------------|-------------------------|-------------------|------------------|------------|---------------------|-----|------|---------------|--------|
| Polychlorinated Biphenyls by GC - | Westborough Lab Associa | ited sample(s): 0 | 1 Batch:         | WG1578407- | 2                   |     |      |               |        |
| Aroclor 1016                      | 80                      |                   | -                |            | 50-140              | -   |      | 36            | А      |
| Aroclor 1260                      | 81                      |                   | -                |            | 8-140               | -   |      | 38            | Α      |

| Surrogate                    | LCS<br>%Recovery Qual | LCSD<br>I %Recovery Qual | Acceptance<br>Criteria Column |
|------------------------------|-----------------------|--------------------------|-------------------------------|
| 2,4,5,6-Tetrachloro-m-xylene | 76                    |                          | 37-123 B                      |
| Decachlorobiphenyl           | 79                    |                          | 38-114 B                      |
| 2,4,5,6-Tetrachloro-m-xylene | 73                    |                          | 37-123 A                      |
| Decachlorobiphenyl           | 79                    |                          | 38-114 A                      |

## **METALS**



L2165980

12/06/21

**Project Name:** 58 CHARLES STREET

**Project Number:** 6864.9.06

**SAMPLE RESULTS** 

Date Collected: 12/01/21 08:30

Lab Number:

Report Date:

Lab ID: L2165980-01

Client ID: GW Date Received:

12/01/21 Sample Location: CAMBRIDGE, MA Field Prep: Not Specified

Sample Depth:

Matrix: Water

| Parameter            | Result     | Qualifier    | Units | RL      | MDL | Dilution<br>Factor | Date<br>Prepared | Date<br>Analyzed | Prep<br>Method | Analytical<br>Method | Analyst |
|----------------------|------------|--------------|-------|---------|-----|--------------------|------------------|------------------|----------------|----------------------|---------|
|                      |            |              |       |         |     |                    |                  |                  |                |                      |         |
| Total Metals - Mans  | field Lab  |              |       |         |     |                    |                  |                  |                |                      |         |
| Antimony, Total      | ND         |              | mg/l  | 0.00400 |     | 1                  | 12/02/21 14:15   | 12/02/21 18:51   | EPA 3005A      | 3,200.8              | PS      |
| Arsenic, Total       | ND         |              | mg/l  | 0.00100 |     | 1                  | 12/02/21 14:15   | 12/02/21 18:51   | EPA 3005A      | 3,200.8              | PS      |
| Cadmium, Total       | ND         |              | mg/l  | 0.00020 |     | 1                  | 12/02/21 14:15   | 5 12/02/21 18:51 | EPA 3005A      | 3,200.8              | PS      |
| Chromium, Total      | 0.00509    |              | mg/l  | 0.00100 |     | 1                  | 12/02/21 14:15   | 5 12/02/21 18:51 | EPA 3005A      | 3,200.8              | PS      |
| Copper, Total        | 0.00465    |              | mg/l  | 0.00100 |     | 1                  | 12/02/21 14:15   | 5 12/02/21 18:51 | EPA 3005A      | 3,200.8              | PS      |
| Iron, Total          | 0.260      |              | mg/l  | 0.050   |     | 1                  | 12/02/21 14:15   | 12/06/21 09:02   | EPA 3005A      | 19,200.7             | EW      |
| Lead, Total          | ND         |              | mg/l  | 0.00100 |     | 1                  | 12/02/21 14:15   | 12/02/21 18:51   | EPA 3005A      | 3,200.8              | PS      |
| Mercury, Total       | ND         |              | mg/l  | 0.00020 |     | 1                  | 12/02/21 14:24   | 12/03/21 11:38   | EPA 245.1      | 3,245.1              | NB      |
| Nickel, Total        | 0.00303    |              | mg/l  | 0.00200 |     | 1                  | 12/02/21 14:15   | 5 12/02/21 18:51 | EPA 3005A      | 3,200.8              | PS      |
| Selenium, Total      | ND         |              | mg/l  | 0.00500 |     | 1                  | 12/02/21 14:15   | 5 12/02/21 18:51 | EPA 3005A      | 3,200.8              | PS      |
| Silver, Total        | ND         |              | mg/l  | 0.00040 |     | 1                  | 12/02/21 14:15   | 5 12/02/21 18:51 | EPA 3005A      | 3,200.8              | PS      |
| Zinc, Total          | 0.05800    |              | mg/l  | 0.01000 |     | 1                  | 12/02/21 14:15   | 5 12/02/21 18:51 | EPA 3005A      | 3,200.8              | PS      |
| Total Hardness by \$ | SM 2340B   | B - Mansfiel | d Lab |         |     |                    |                  |                  |                |                      |         |
| Hardness             | 461        |              | mg/l  | 0.660   | NA  | 1                  | 12/02/21 1/-15   | 5 12/06/21 12:47 | EPΔ 3005Δ      | 19.200.7             | GD      |
| Taluliess            | 401        |              | mg/i  | 0.000   | INA | <u> </u>           | 12/02/21 14.13   | 12/00/21 12.47   | LI A 3003A     | 10,200.7             | GD      |
|                      |            |              |       |         |     |                    |                  |                  |                |                      |         |
| General Chemistry    | - Mansfiel | d Lab        |       |         |     |                    |                  |                  |                |                      |         |
| Chromium, Trivalent  | ND         |              | mg/l  | 0.010   |     | 1                  |                  | 12/02/21 18:51   | NA             | 107,-                |         |



12/01/21 09:30

Date Collected:

Project Name: 58 CHARLES STREET Lab Number: L2165980

**Project Number:** 6864.9.06 **Report Date:** 12/06/21

**SAMPLE RESULTS** 

Lab ID: L2165980-02

Client ID: LECHMERE CANAL Date Received: 12/01/21
Sample Location: CAMBRIDGE, MA Field Prep: Not Specified

Sample Depth:

Matrix: Water

| Parameter         | Result   | Qualifier  | Units | RL    | MDL | Dilution<br>Factor | Date<br>Prepared | Date<br>Analyzed | Prep<br>Method | Analytical<br>Method | Analyst |
|-------------------|----------|------------|-------|-------|-----|--------------------|------------------|------------------|----------------|----------------------|---------|
| Total Hardness by | SM 2340B | - Mansfiel | d Lab |       |     |                    |                  |                  |                |                      |         |
| Hardness          | 80.7     |            | mg/l  | 0.660 | NA  | 1                  | 12/02/21 14:1    | 5 12/06/21 12:42 | EPA 3005A      | 19,200.7             | GD      |



**Project Name:** 58 CHARLES STREET

**Project Number:** 6864.9.06

Lab Number:

L2165980

Report Date:

12/06/21

# Method Blank Analysis Batch Quality Control

**Dilution Date Date** Analytical Method Analyst **Result Qualifier Factor Prepared** Analyzed **Parameter** Units RL MDL Total Metals - Mansfield Lab for sample(s): 01-02 Batch: WG1578225-1 Iron, Total ND 0.050 12/06/21 08:38 19,200.7 ΕW mg/l 1 12/02/21 14:15

**Prep Information** 

Digestion Method: EPA 3005A

| Parameter            | Result Qualifier      | Units     | RL      | MDL     | Dilution<br>Factor | Date<br>Prepared | Date<br>Analyzed | Analytical<br>Method | Analyst |
|----------------------|-----------------------|-----------|---------|---------|--------------------|------------------|------------------|----------------------|---------|
| Total Hardness by SM | 2340B - Mansfield Lal | b for sam | ple(s): | 01-02 E | Batch: WG1         | 1578225-1        |                  |                      |         |
| Hardness             | ND                    | mg/l      | 0.660   | NA      | 1                  | 12/02/21 14:15   | 12/06/21 12:24   | 19,200.7             | GD      |

**Prep Information** 

Digestion Method: EPA 3005A

| Parameter           | Result Qualifier          | Units   | RL      | MDL   | Dilution<br>Factor | Date<br>Prepared | Date<br>Analyzed | Analytical<br>Method | Analyst |
|---------------------|---------------------------|---------|---------|-------|--------------------|------------------|------------------|----------------------|---------|
| Total Metals - Mans | sfield Lab for sample(s): | 01 Bato | h: WG15 | 78227 | ·1                 |                  |                  |                      |         |
| Antimony, Total     | ND                        | mg/l    | 0.00400 |       | 1                  | 12/02/21 14:15   | 12/02/21 18:28   | 3,200.8              | PS      |
| Arsenic, Total      | ND                        | mg/l    | 0.00100 |       | 1                  | 12/02/21 14:15   | 12/02/21 18:28   | 3,200.8              | PS      |
| Cadmium, Total      | ND                        | mg/l    | 0.00020 |       | 1                  | 12/02/21 14:15   | 12/02/21 18:28   | 3,200.8              | PS      |
| Chromium, Total     | ND                        | mg/l    | 0.00100 |       | 1                  | 12/02/21 14:15   | 12/02/21 18:28   | 3,200.8              | PS      |
| Copper, Total       | ND                        | mg/l    | 0.00100 |       | 1                  | 12/02/21 14:15   | 12/02/21 18:28   | 3,200.8              | PS      |
| Lead, Total         | ND                        | mg/l    | 0.00100 |       | 1                  | 12/02/21 14:15   | 12/02/21 18:28   | 3,200.8              | PS      |
| Nickel, Total       | ND                        | mg/l    | 0.00200 |       | 1                  | 12/02/21 14:15   | 12/02/21 18:28   | 3,200.8              | PS      |
| Selenium, Total     | ND                        | mg/l    | 0.00500 |       | 1                  | 12/02/21 14:15   | 12/02/21 18:28   | 3,200.8              | PS      |
| Silver, Total       | ND                        | mg/l    | 0.00040 |       | 1                  | 12/02/21 14:15   | 12/02/21 18:28   | 3,200.8              | PS      |
| Zinc, Total         | ND                        | mg/l    | 0.01000 |       | 1                  | 12/02/21 14:15   | 12/02/21 18:28   | 3,200.8              | PS      |

**Prep Information** 

Digestion Method: EPA 3005A



L2165980

**Project Name:** 58 CHARLES STREET

ARLES STREET Lab Number:

**Project Number:** 6864.9.06 **Report Date:** 12/06/21

Method Blank Analysis Batch Quality Control

**Dilution Date Date** Analytical Method Analyst **Parameter Result Qualifier** Units RLMDL **Factor Prepared** Analyzed Batch: WG1578229-1 Total Metals - Mansfield Lab for sample(s): 01 Mercury, Total ND mg/l 0.00020 1 12/03/21 11:07 3,245.1 ΝB 12/02/21 14:24

**Prep Information** 

Digestion Method: EPA 245.1



# Lab Control Sample Analysis Batch Quality Control

**Project Name:** 58 CHARLES STREET

**Project Number:** 6864.9.06

Lab Number:

L2165980

Report Date:

| Parameter                                      | LCS<br>%Recovery | Qual         | LCSD<br>%Recovery | Qual   | %Recovery<br>Limits | RPD | Qual | RPD Limits |
|------------------------------------------------|------------------|--------------|-------------------|--------|---------------------|-----|------|------------|
| Total Metals - Mansfield Lab Associated sample | (s): 01-02 Bat   | ch: WG1578   | 3225-2            |        |                     |     |      |            |
| Iron, Total                                    | 105              |              | -                 |        | 85-115              | -   |      |            |
| Total Hardness by SM 2340B - Mansfield Lab As  | ssociated samp   | le(s): 01-02 | Batch: WG157      | 8225-2 |                     |     |      |            |
| Hardness                                       | 104              |              | -                 |        | 85-115              | -   |      |            |
| Total Metals - Mansfield Lab Associated sample | (s): 01 Batch:   | WG157822     | 7-2               |        |                     |     |      |            |
| Antimony, Total                                | 95               |              | -                 |        | 85-115              | -   |      |            |
| Arsenic, Total                                 | 104              |              | -                 |        | 85-115              | -   |      |            |
| Cadmium, Total                                 | 103              |              | -                 |        | 85-115              | -   |      |            |
| Chromium, Total                                | 106              |              | -                 |        | 85-115              | -   |      |            |
| Copper, Total                                  | 104              |              | -                 |        | 85-115              | -   |      |            |
| Lead, Total                                    | 101              |              | -                 |        | 85-115              | -   |      |            |
| Nickel, Total                                  | 96               |              | -                 |        | 85-115              | -   |      |            |
| Selenium, Total                                | 103              |              | -                 |        | 85-115              | -   |      |            |
| Silver, Total                                  | 105              |              | -                 |        | 85-115              | -   |      |            |
| Zinc, Total                                    | 98               |              | -                 |        | 85-115              | -   |      |            |
| Total Metals - Mansfield Lab Associated sample | (s): 01 Batch:   | WG157822     | 9-2               |        |                     |     |      |            |
| Mercury, Total                                 | 102              |              | -                 |        | 85-115              | -   |      |            |



## Matrix Spike Analysis Batch Quality Control

**Project Name:** 58 CHARLES STREET

Project Number: 6864.9.06

Lab Number:

L2165980

Report Date:

| arameter                     | Native<br>Sample  | MS<br>Added   | MS<br>Found  | MS<br>%Recovery | Qual    | MSD<br>Found | MSD<br>%Recovery | Recovery<br>Qual Limits | RPD Qual   | RPD<br>Limits |
|------------------------------|-------------------|---------------|--------------|-----------------|---------|--------------|------------------|-------------------------|------------|---------------|
| Total Metals - Mansfield Lab | Associated sam    | ple(s): 01-02 | 2 QC Batcl   | h ID: WG1578    | 225-3   | QC Sam       | ple: L2165980-0  | 01 Client ID: GW        | 1          |               |
| Iron, Total                  | 0.260             | 1             | 1.28         | 102             |         | -            | -                | 75-125                  | -          | 20            |
| Total Hardness by SM 2340E   | B - Mansfield Lal | o Associated  | d sample(s): | 01-02 QC Ba     | atch ID | : WG1578     | 225-3 QC Sar     | mple: L2165980-01       | Client ID: | GW            |
| Hardness                     | 461               | 66.2          | 552          | 138             | Q       | -            | -                | 75-125                  | -          | 20            |
| Total Metals - Mansfield Lab | Associated sam    | ple(s): 01    | QC Batch ID  | ): WG1578227    | '-3 C   | C Sample     | : L2165980-01    | Client ID: GW           |            |               |
| Antimony, Total              | ND                | 0.5           | 0.5858       | 117             |         | -            | -                | 70-130                  | -          | 20            |
| Arsenic, Total               | ND                | 0.12          | 0.1266       | 106             |         | -            | -                | 70-130                  | -          | 20            |
| Cadmium, Total               | ND                | 0.053         | 0.05472      | 103             |         | -            | -                | 70-130                  | -          | 20            |
| Chromium, Total              | 0.00509           | 0.2           | 0.2128       | 104             |         | -            | -                | 70-130                  | -          | 20            |
| Copper, Total                | 0.00465           | 0.25          | 0.2589       | 102             |         | -            | -                | 70-130                  | -          | 20            |
| Lead, Total                  | ND                | 0.53          | 0.5433       | 102             |         | -            | -                | 70-130                  | -          | 20            |
| Nickel, Total                | 0.00303           | 0.5           | 0.4760       | 94              |         | -            | -                | 70-130                  | -          | 20            |
| Selenium, Total              | ND                | 0.12          | 0.1256       | 105             |         | -            | -                | 70-130                  | -          | 20            |
| Silver, Total                | ND                | 0.05          | 0.05159      | 103             |         | -            | -                | 70-130                  | -          | 20            |
| Zinc, Total                  | 0.05800           | 0.5           | 0.5432       | 97              |         | -            | -                | 70-130                  | -          | 20            |
| Total Metals - Mansfield Lab | Associated sam    | ple(s): 01    | QC Batch ID  | ): WG1578229    | )-3 C   | C Sample     | : L2165498-01    | Client ID: MS Sa        | mple       |               |
| Mercury, Total               | ND                | 0.025         | 0.02284      | 91              |         | -            |                  | 70-130                  | -          | 20            |

# Lab Duplicate Analysis Batch Quality Control

**Project Name:** 58 CHARLES STREET

**Project Number:** 6864.9.06

Lab Number:

L2165980

Report Date:

| Parameter                                            | Native Sample        | Duplicate Sample       | Units      | RPD           | Qual     | RPD Limits  |
|------------------------------------------------------|----------------------|------------------------|------------|---------------|----------|-------------|
| otal Metals - Mansfield Lab Associated sample(s): 01 | I-02 QC Batch ID: WG | 1578225-4 QC Sample:   | L2165980-0 | 1 Client ID:  | GW       |             |
| Iron, Total                                          | 0.260                | 0.269                  | mg/l       | 3             |          | 20          |
| otal Hardness by SM 2340B - Mansfield Lab Associat   | ted sample(s): 01-02 | QC Batch ID: WG1578225 | -4 QC Sam  | nple: L21659  | 80-01 C  | ient ID: GW |
| Hardness                                             | 461                  | 482                    | mg/l       | 4             |          | 20          |
| otal Metals - Mansfield Lab Associated sample(s): 01 | QC Batch ID: WG15    | 78227-4 QC Sample: L2  | 165980-01  | Client ID: G\ | V        |             |
| Antimony, Total                                      | ND                   | ND                     | mg/l       | NC            |          | 20          |
| Arsenic, Total                                       | ND                   | ND                     | mg/l       | NC            |          | 20          |
| Cadmium, Total                                       | ND                   | ND                     | mg/l       | NC            |          | 20          |
| Chromium, Total                                      | 0.00509              | 0.00489                | mg/l       | 4             |          | 20          |
| Copper, Total                                        | 0.00465              | 0.00495                | mg/l       | 6             |          | 20          |
| Lead, Total                                          | ND                   | ND                     | mg/l       | NC            |          | 20          |
| Nickel, Total                                        | 0.00303              | 0.00309                | mg/l       | 2             |          | 20          |
| Selenium, Total                                      | ND                   | ND                     | mg/l       | NC            |          | 20          |
| Silver, Total                                        | ND                   | ND                     | mg/l       | NC            |          | 20          |
| Zinc, Total                                          | 0.05800              | 0.05992                | mg/l       | 3             |          | 20          |
| otal Metals - Mansfield Lab Associated sample(s): 01 | QC Batch ID: WG15    | 78229-4 QC Sample: L2  | 165498-01  | Client ID: DU | JP Sampl | е           |
| Mercury, Total                                       | ND                   | ND                     | mg/l       | NC            |          | 20          |



# INORGANICS & MISCELLANEOUS



**Project Name: 58 CHARLES STREET** 

**Project Number:** 6864.9.06 Lab Number:

L2165980

Report Date: 12/06/21

#### **SAMPLE RESULTS**

Lab ID: L2165980-01

Client ID: GW

Sample Location: CAMBRIDGE, MA

Date Collected: 12/01/21 08:30

Date Received: 12/01/21

Not Specified Field Prep:

Sample Depth:

Matrix: Water

| Parameter                | Result       | Qualifier | Units | RL    | MDL | Dilution<br>Factor | Date<br>Prepared | Date<br>Analyzed | Analytical<br>Method | Analyst |
|--------------------------|--------------|-----------|-------|-------|-----|--------------------|------------------|------------------|----------------------|---------|
| General Chemistry - Wes  | tborough Lab | )         |       |       |     |                    |                  |                  |                      |         |
| Solids, Total Suspended  | ND           |           | mg/l  | 5.0   | NA  | 1                  | -                | 12/02/21 12:00   | 121,2540D            | MD      |
| Cyanide, Total           | ND           |           | mg/l  | 0.005 |     | 1                  | 12/02/21 05:45   | 12/02/21 11:51   | 121,4500CN-CE        | CS      |
| Chlorine, Total Residual | ND           |           | mg/l  | 0.02  |     | 1                  | -                | 12/02/21 07:39   | 121,4500CL-D         | KA      |
| pH (H)                   | 7.8          |           | SU    | -     | NA  | 1                  | -                | 12/02/21 17:27   | 121,4500H+-B         | AS      |
| Nitrogen, Ammonia        | 2.22         |           | mg/l  | 0.075 |     | 1                  | 12/03/21 09:30   | 12/03/21 22:15   | 121,4500NH3-BH       | I AT    |
| TPH, SGT-HEM             | ND           |           | mg/l  | 4.00  |     | 1                  | 12/02/21 14:00   | 12/02/21 17:15   | 140,1664B            | NP      |
| Chromium, Hexavalent     | ND           |           | mg/l  | 0.010 |     | 1                  | 12/02/21 07:10   | 12/02/21 07:40   | 1,7196A              | KP      |
| Anions by Ion Chromatog  | raphy - West | borough   | Lab   |       |     |                    |                  |                  |                      |         |
| Chloride                 | 1510         |           | mg/l  | 25.0  |     | 50                 | -                | 12/04/21 22:23   | 44,300.0             | SH      |



Project Name: 58 CHARLES STREET Lab Number: L2165980

**Project Number:** 6864.9.06 **Report Date:** 12/06/21

**SAMPLE RESULTS** 

Lab ID: L2165980-02 Date Collected: 12/01/21 09:30

Client ID: LECHMERE CANAL Date Received: 12/01/21 Sample Location: CAMBRIDGE, MA Field Prep: Not Specified

Sample Depth:

Matrix: Water

| Parameter             | Result          | Qualifier | Units | RL    | MDL | Dilution<br>Factor | Date<br>Prepared | Date<br>Analyzed | Analytical<br>Method | Analyst |
|-----------------------|-----------------|-----------|-------|-------|-----|--------------------|------------------|------------------|----------------------|---------|
| General Chemistry - V | /estborough Lab |           |       |       |     |                    |                  |                  |                      |         |
| pH (H)                | 7.7             |           | SU    | -     | NA  | 1                  | -                | 12/02/21 17:27   | 121,4500H+-B         | AS      |
| Nitrogen, Ammonia     | 0.354           |           | mg/l  | 0.075 |     | 1                  | 12/03/21 09:30   | 12/03/21 22:16   | 121,4500NH3-BH       | AT      |



**Project Name:** 58 CHARLES STREET

Project Number: 6864.9.06

Lab Number:

L2165980

**Report Date:** 12/06/21

## Method Blank Analysis Batch Quality Control

| Parameter                | Result Qu          | ıalifier | Units        | RL       | MDL    | Dilution<br>Factor | Date<br>Prepared | Date<br>Analyzed | Analytical<br>Method | Analyst |
|--------------------------|--------------------|----------|--------------|----------|--------|--------------------|------------------|------------------|----------------------|---------|
| General Chemistry -      | - Westhorough Lah  | for sam  | nnle(s)· 01  | Batch:   | WG15   | 77991-1            |                  |                  |                      |         |
| Cyanide, Total           | ND                 | ioi saii | mg/l         | 0.005    |        | 1                  | 12/02/21 13:05   | 12/02/21 16:20   | 121,4500CN-CE        | E CS    |
| General Chemistry -      | - Westborough Lab  | for sam  | nple(s): 01  | Batch:   | WG15   | 78067-1            |                  |                  |                      |         |
| Chromium, Hexavalent     | ND                 |          | mg/l         | 0.010    |        | 1                  | 12/02/21 07:10   | 12/02/21 07:37   | 1,7196A              | KP      |
| General Chemistry -      | - Westborough Lab  | for sam  | nple(s): 01  | Batch:   | WG15   | 78071-1            |                  |                  |                      |         |
| Chlorine, Total Residual | ND                 |          | mg/l         | 0.02     |        | 1                  | -                | 12/02/21 07:39   | 121,4500CL-D         | KA      |
| General Chemistry -      | - Westborough Lab  | for sam  | nple(s): 01  | Batch:   | WG15   | 78205-1            |                  |                  |                      |         |
| TPH, SGT-HEM             | ND                 |          | mg/l         | 4.00     |        | 1                  | 12/02/21 14:00   | 12/02/21 17:15   | 140,1664B            | NP      |
| General Chemistry -      | Westborough Lab    | for sam  | nple(s): 01  | Batch:   | WG15   | 78233-1            |                  |                  |                      |         |
| Solids, Total Suspended  | ND                 |          | mg/l         | 5.0      | NA     | 1                  | -                | 12/02/21 12:00   | 121,2540D            | MD      |
| General Chemistry -      | Westborough Lab    | for sam  | nple(s): 01- | 02 Bat   | ch: WG | 1578866-1          |                  |                  |                      |         |
| Nitrogen, Ammonia        | ND                 |          | mg/l         | 0.075    |        | 1                  | 12/03/21 09:30   | 12/03/21 21:59   | 121,4500NH3-B        | H AT    |
| Anions by Ion Chror      | matography - Westb | orough   | Lab for sar  | mple(s): | 01 Ba  | atch: WG1          | 579329-1         |                  |                      |         |
| Chloride                 | ND                 |          | mg/l         | 0.500    |        | 1                  | -                | 12/04/21 13:37   | 44,300.0             | SH      |



# Lab Control Sample Analysis Batch Quality Control

**Project Name:** 58 CHARLES STREET

Project Number: 6864.9.06

Lab Number:

L2165980

Report Date:

| Parameter                           | LCS<br>%Recovery Q      | LCSD<br>ual %Recovery Qւ | %Recovery<br><u>ıal</u> Limits | RPD | Qual | RPD Limits |
|-------------------------------------|-------------------------|--------------------------|--------------------------------|-----|------|------------|
| General Chemistry - Westborough Lab | Associated sample(s): 0 | 1 Batch: WG1577991-2     |                                |     |      |            |
| Cyanide, Total                      | 99                      | -                        | 90-110                         | -   |      |            |
| General Chemistry - Westborough Lab | Associated sample(s): 0 | 1 Batch: WG1578067-2     |                                |     |      |            |
| Chromium, Hexavalent                | 102                     | -                        | 85-115                         | -   |      | 20         |
| General Chemistry - Westborough Lab | Associated sample(s): 0 | 1 Batch: WG1578071-2     |                                |     |      |            |
| Chlorine, Total Residual            | 96                      | -                        | 90-110                         | -   |      |            |
| General Chemistry - Westborough Lab | Associated sample(s): 0 | 1 Batch: WG1578205-2     |                                |     |      |            |
| ТРН                                 | 79                      | -                        | 64-132                         | -   |      | 34         |
| General Chemistry - Westborough Lab | Associated sample(s): 0 | 1 Batch: WG1578233-2     |                                |     |      |            |
| Solids, Total Suspended             | 100                     | -                        | 80-120                         | -   |      |            |
| General Chemistry - Westborough Lab | Associated sample(s): 0 | 1-02 Batch: WG1578419-1  |                                |     |      |            |
| рН                                  | 101                     | -                        | 99-101                         | -   |      | 5          |
| General Chemistry - Westborough Lab | Associated sample(s): 0 | 1-02 Batch: WG1578866-2  |                                |     |      |            |
| Nitrogen, Ammonia                   | 92                      | -                        | 80-120                         | -   |      | 20         |



# Lab Control Sample Analysis Batch Quality Control

**Project Name: 58 CHARLES STREET** 

Lab Number: L2165980

Project Number: 6864.9.06

Report Date:

| Parameter                                 | LCS<br>%Recovery         |          | CSD<br>covery     | %Recovery<br>Limits | RPD | RPD Limits |
|-------------------------------------------|--------------------------|----------|-------------------|---------------------|-----|------------|
| Anions by Ion Chromatography - Westboroug | gh Lab Associated sample | e(s): 01 | Batch: WG1579329- | -2                  |     |            |
| Chloride                                  | 98                       |          | -                 | 90-110              | -   |            |



## Matrix Spike Analysis Batch Quality Control

**Project Name:** 58 CHARLES STREET

Project Number: 6864.9.06

Lab Number:

L2165980

**Report Date:** 12/06/21

| Parameter                              | Native<br>Sample | MS<br>Added | MS<br>Found  | MS<br>%Recovery |             | MSD<br>ound | MSD<br>%Recovery Qual | Recovery<br>Limits | RPD Qua     | RPD<br>al Limits |
|----------------------------------------|------------------|-------------|--------------|-----------------|-------------|-------------|-----------------------|--------------------|-------------|------------------|
| General Chemistry - Westborou          | igh Lab Assoc    | ciated samp | ole(s): 01   | QC Batch ID: V  | WG157799    | 1-4         | QC Sample: L2164029   | 9-01 Client        | ID: MS Sar  | nple             |
| Cyanide, Total                         | 0.182            | 0.2         | 0.336        | 77              | Q           | -           | -                     | 90-110             | -           | 30               |
| General Chemistry - Westborou          | igh Lab Assoc    | ciated samp | ole(s): 01   | QC Batch ID: V  | VG157806    | 7-4         | QC Sample: L2165980   | 0-01 Client        | ID: GW      |                  |
| Chromium, Hexavalent                   | ND               | 0.1         | 0.099        | 99              |             | -           | -                     | 85-115             | -           | 20               |
| General Chemistry - Westborou          | igh Lab Assoc    | ciated samp | ole(s): 01   | QC Batch ID: V  | VG157807    | '1-4        | QC Sample: L2165980   | 0-01 Client        | ID: GW      |                  |
| Chlorine, Total Residual               | ND               | 0.25        | ND           | 0               | Q           | -           | -                     | 80-120             | -           | 20               |
| General Chemistry - Westborou          | igh Lab Assoc    | ciated samp | ole(s): 01   | QC Batch ID: V  | VG157820    | 5-4         | QC Sample: L2165838   | 3-01 Client        | ID: MS Sar  | nple             |
| TPH                                    | ND               | 19.8        | 10.6         | 53              | Q           | -           | -                     | 64-132             | -           | 34               |
| General Chemistry - Westborou          | igh Lab Assoc    | ciated samp | ole(s): 01-0 | 2 QC Batch II   | D: WG1578   | 8866-4      | QC Sample: L2163      | 882-02 Clie        | ent ID: MS  | Sample           |
| Nitrogen, Ammonia                      | 0.621            | 4           | 3.88         | 81              |             | -           | -                     | 80-120             | -           | 20               |
| Anions by Ion Chromatography<br>Sample | - Westboroug     | ıh Lab Asso | ociated san  | nple(s): 01 Q0  | C Batch ID: | : WG1       | 579329-3 QC Samp      | le: L2163869       | 0-01 Client | ID: MS           |
| Chloride                               | 125              | 40          | 166          | 103             |             | -           | -                     | 90-110             | -           | 18               |

# Lab Duplicate Analysis Batch Quality Control

**Project Name:** 58 CHARLES STREET

**Project Number:** 6864.9.06

Lab Number:

L2165980

Report Date:

| Parameter                                      | Nati                  | ve Sample       | Duplicate Sam      | nple Units  | RPD          | Qual         | RPD Limits     |
|------------------------------------------------|-----------------------|-----------------|--------------------|-------------|--------------|--------------|----------------|
| General Chemistry - Westborough Lab            | Associated sample(s): | 01 QC Batch     | n ID: WG1577991-3  | QC Sample:  | L2165980-01  | Client ID: C | SW .           |
| Cyanide, Total                                 |                       | ND              | ND                 | mg/l        | NC           |              | 30             |
| General Chemistry - Westborough Lab            | Associated sample(s): | 01 QC Batch     | n ID: WG1578067-3  | QC Sample:  | L2165980-01  | Client ID: C | SW .           |
| Chromium, Hexavalent                           |                       | ND              | ND                 | mg/l        | NC           |              | 20             |
| General Chemistry - Westborough Lab            | Associated sample(s): | 01 QC Batch     | n ID: WG1578071-3  | QC Sample:  | L2165980-01  | Client ID: C | SW .           |
| Chlorine, Total Residual                       |                       | ND              | ND                 | mg/l        | NC           |              | 20             |
| General Chemistry - Westborough Lab            | Associated sample(s): | 01 QC Batch     | n ID: WG1578205-3  | QC Sample:  | L2164370-01  | Client ID: D | OUP Sample     |
| TPH                                            |                       | ND              | ND                 | mg/l        | NC           |              | 34             |
| General Chemistry - Westborough Lab            | Associated sample(s): | 01 QC Batch     | n ID: WG1578233-3  | QC Sample:  | L2165668-01  | Client ID: D | OUP Sample     |
| Solids, Total Suspended                        |                       | 1500            | 1500               | mg/l        | 0            |              | 29             |
| General Chemistry - Westborough Lab            | Associated sample(s): | 01-02 QC Ba     | atch ID: WG1578419 | -2 QC Sampl | e: L2165520- | 01 Client ID | : DUP Sample   |
| рН                                             |                       | 8.2             | 8.2                | SU          | 0            |              | 5              |
| General Chemistry - Westborough Lab            | Associated sample(s): | 01-02 QC Ba     | atch ID: WG1578866 | -3 QC Sampl | e: L2163882- | 02 Client ID | : DUP Sample   |
| Nitrogen, Ammonia                              |                       | 0.621           | 0.552              | mg/l        | 12           |              | 20             |
| Anions by Ion Chromatography - Westb<br>Sample | orough Lab Associated | d sample(s): 01 | I QC Batch ID: WG  | 1579329-4 Q | C Sample: L2 | 2163869-01   | Client ID: DUP |
| Chloride                                       |                       | 125             | 126                | mg/l        | 1            |              | 18             |



Project Name: 58 CHARLES STREET

Lab Number: L2165980

 Project Number:
 6864.9.06

#### Sample Receipt and Container Information

Were project specific reporting limits specified?

**Cooler Information** 

Cooler Custody Seal

A Absent B Absent

| Container Info | ormation                      |        | Initial | Final | Temp  |      |        | Frozen    |                                                                                                                                                                                            |
|----------------|-------------------------------|--------|---------|-------|-------|------|--------|-----------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Container ID   | Container Type                | Cooler | рН      | pН    | deg C | Pres | Seal   | Date/Time | Analysis(*)                                                                                                                                                                                |
| L2165980-01A   | Vial unpreserved              | Α      | NA      |       | 2.6   | Υ    | Absent |           | SUB-ETHANOL(14)                                                                                                                                                                            |
| L2165980-01B   | Vial unpreserved              | Α      | NA      |       | 2.6   | Υ    | Absent |           | SUB-ETHANOL(14)                                                                                                                                                                            |
| L2165980-01C   | Vial unpreserved              | Α      | NA      |       | 2.6   | Υ    | Absent |           | SUB-ETHANOL(14)                                                                                                                                                                            |
| L2165980-01D   | Vial Na2S2O3 preserved        | Α      | NA      |       | 2.6   | Υ    | Absent |           | 624.1-RGP(7)                                                                                                                                                                               |
| L2165980-01E   | Vial Na2S2O3 preserved        | Α      | NA      |       | 2.6   | Υ    | Absent |           | 624.1-RGP(7)                                                                                                                                                                               |
| L2165980-01F   | Vial Na2S2O3 preserved        | Α      | NA      |       | 2.6   | Υ    | Absent |           | 624.1-RGP(7)                                                                                                                                                                               |
| L2165980-01G   | Vial Na2S2O3 preserved        | Α      | NA      |       | 2.6   | Υ    | Absent |           | 624.1-SIM-RGP(7)                                                                                                                                                                           |
| L2165980-01H   | Vial Na2S2O3 preserved        | Α      | NA      |       | 2.6   | Υ    | Absent |           | 624.1-SIM-RGP(7)                                                                                                                                                                           |
| L2165980-01I   | Vial Na2S2O3 preserved        | Α      | NA      |       | 2.6   | Υ    | Absent |           | 624.1-SIM-RGP(7)                                                                                                                                                                           |
| L2165980-01J   | Vial Na2S2O3 preserved        | Α      | NA      |       | 2.6   | Υ    | Absent |           | 504(14)                                                                                                                                                                                    |
| L2165980-01K   | Vial Na2S2O3 preserved        | Α      | NA      |       | 2.6   | Υ    | Absent |           | 504(14)                                                                                                                                                                                    |
| L2165980-01L   | Plastic 250ml NaOH preserved  | Α      | >12     | >12   | 2.6   | Υ    | Absent |           | TCN-4500(14)                                                                                                                                                                               |
| L2165980-01M   | Plastic 250ml HNO3 preserved  | A      | <2      | <2    | 2.6   | Y    | Absent |           | CD-2008T(180),NI-2008T(180),ZN-<br>2008T(180),HARDU(180),CU-2008T(180),FE-<br>UI(180),SE-2008T(180),HG-U(28),AG-<br>2008T(180),AS-2008T(180),CR-2008T(180),SB-<br>2008T(180),PB-2008T(180) |
| L2165980-01N   | Plastic 500ml H2SO4 preserved | Α      | <2      | <2    | 2.6   | Υ    | Absent |           | NH3-4500(28)                                                                                                                                                                               |
| L2165980-01O   | Plastic 500ml unpreserved     | Α      | 7       | 7     | 2.6   | Υ    | Absent |           | HEXCR-7196(1),CL-300(28),TRC-4500(1),PH-4500(.01)                                                                                                                                          |
| L2165980-01P   | Amber 1000ml H2SO4 preserved  | Α      | 7       | 7     | 2.6   | Υ    | Absent |           | SUB-PHENOL()                                                                                                                                                                               |
| L2165980-01Q   | Plastic 950ml unpreserved     | Α      | 7       | 7     | 2.6   | Υ    | Absent |           | TSS-2540(7)                                                                                                                                                                                |
| L2165980-01R   | Amber 1000ml HCl preserved    | В      | NA      |       | 3.1   | Υ    | Absent |           | TPH-1664(28)                                                                                                                                                                               |
| L2165980-01S   | Amber 1000ml HCI preserved    | В      | NA      |       | 3.1   | Υ    | Absent |           | TPH-1664(28)                                                                                                                                                                               |
| L2165980-01T   | Amber 1000ml Na2S2O3          | В      | 7       | 7     | 3.1   | Υ    | Absent |           | 625.1-SIM-RGP(7)                                                                                                                                                                           |



*Lab Number:* L2165980

Report Date: 12/06/21

Project Name: 58 CHARLES STREET

Project Number: 6864.9.06

| Container Info | rmation                       |        | Initial | Final | Temp  |      |        | Frozen    |                  |
|----------------|-------------------------------|--------|---------|-------|-------|------|--------|-----------|------------------|
| Container ID   | Container Type                | Cooler | рН      | pН    | deg C | Pres | Seal   | Date/Time | Analysis(*)      |
| L2165980-01U   | Amber 1000ml Na2S2O3          | В      | 7       | 7     | 3.1   | Υ    | Absent |           | 625.1-SIM-RGP(7) |
| L2165980-01V   | Amber 1000ml Na2S2O3          | В      | 7       | 7     | 3.1   | Υ    | Absent |           | PCB-608.3(365)   |
| L2165980-01W   | Amber 1000ml Na2S2O3          | В      | 7       | 7     | 3.1   | Υ    | Absent |           | PCB-608.3(365)   |
| L2165980-01X   | Amber 1000ml Na2S2O3          | В      | 7       | 7     | 3.1   | Υ    | Absent |           | 625.1-RGP(7)     |
| L2165980-01Y   | Amber 1000ml Na2S2O3          | В      | 7       | 7     | 3.1   | Υ    | Absent |           | 625.1-RGP(7)     |
| L2165980-02A   | Plastic 250ml H2SO4 preserved | Α      | <2      | <2    | 2.6   | Υ    | Absent |           | NH3-4500(28)     |
| L2165980-02B   | Plastic 250ml HNO3 preserved  | Α      | <2      | <2    | 2.6   | Υ    | Absent |           | HARDU(180)       |
| L2165980-02C   | Plastic 500ml unpreserved     | Α      | 7       | 7     | 2.6   | Υ    | Absent |           | PH-4500(.01)     |

Project Name: 58 CHARLES STREET Lab Number: L2165980

Project Number: 6864.9.06 Report Date: 12/06/21

#### **GLOSSARY**

#### **Acronyms**

**EMPC** 

DL - Detection Limit: This value represents the level to which target analyte concentrations are reported as estimated values, when those target analyte concentrations are quantified below the limit of quantitation (LOQ). The DL includes any adjustments from dilutions, concentrations or moisture content, where applicable. (DoD report formats only.)

from dilutions, concentrations of moisture content, where applicable. (DoD report formats only.)

EDL - Estimated Detection Limit: This value represents the level to which target analyte concentrations are reported as estimated values, when those target analyte concentrations are quantified below the reporting limit (RL). The EDL includes any adjustments from dilutions, concentrations or moisture content, where applicable. The use of EDLs is specific to the analysis

of PAHs using Solid-Phase Microextraction (SPME).

- Estimated Maximum Possible Concentration: The concentration that results from the signal present at the retention time of an

analyte when the ions meet all of the identification criteria except the ion abundance ratio criteria. An EMPC is a worst-case

estimate of the concentration.

EPA - Environmental Protection Agency.

LCS - Laboratory Control Sample: A sample matrix, free from the analytes of interest, spiked with verified known amounts of

analytes or a material containing known and verified amounts of analytes.

LCSD - Laboratory Control Sample Duplicate: Refer to LCS.

LFB - Laboratory Fortified Blank: A sample matrix, free from the analytes of interest, spiked with verified known amounts of

analytes or a material containing known and verified amounts of analytes.

LOD - Limit of Detection: This value represents the level to which a target analyte can reliably be detected for a specific analyte in a specific matrix by a specific method. The LOD includes any adjustments from dilutions, concentrations or moisture content,

where applicable. (DoD report formats only.)

LOQ - Limit of Quantitation: The value at which an instrument can accurately measure an analyte at a specific concentration. The LOQ includes any adjustments from dilutions, concentrations or moisture content, where applicable. (DoD report formats

only.)

Limit of Quantitation: The value at which an instrument can accurately measure an analyte at a specific concentration. The LOQ includes any adjustments from dilutions, concentrations or moisture content, where applicable. (DoD report formats

MDL - Method Detection Limit: This value represents the level to which target analyte concentrations are reported as estimated values, when those target analyte concentrations are quantified below the reporting limit (RL). The MDL includes any

adjustments from dilutions, concentrations or moisture content, where applicable.

MS - Matrix Spike Sample: A sample prepared by adding a known mass of target analyte to a specified amount of matrix sample for which an independent estimate of target analyte concentration is available. For Method 332.0, the spike recovery is calculated

using the native concentration, including estimated values.

MSD - Matrix Spike Sample Duplicate: Refer to MS.

NA - Not Applicable.

NC - Not Calculated: Term is utilized when one or more of the results utilized in the calculation are non-detect at the parameter's

reporting unit.

NDPA/DPA - N-Nitrosodiphenylamine/Diphenylamine.

NI - Not Ignitable.

NP - Non-Plastic: Term is utilized for the analysis of Atterberg Limits in soil.

NR - No Results: Term is utilized when 'No Target Compounds Requested' is reported for the analysis of Volatile or Semivolatile

Organic TIC only requests.

RL - Reporting Limit: The value at which an instrument can accurately measure an analyte at a specific concentration. The RL

includes any adjustments from dilutions, concentrations or moisture content, where applicable.

RPD - Relative Percent Difference: The results from matrix and/or matrix spike duplicates are primarily designed to assess the precision of analytical results in a given matrix and are expressed as relative percent difference (RPD). Values which are less

than five times the reporting limit for any individual parameter are evaluated by utilizing the absolute difference between the

values; although the RPD value will be provided in the report.

SRM - Standard Reference Material: A reference sample of a known or certified value that is of the same or similar matrix as the

associated field samples.

STLP - Semi-dynamic Tank Leaching Procedure per EPA Method 1315.

TEF - Toxic Equivalency Factors: The values assigned to each dioxin and furan to evaluate their toxicity relative to 2,3,7,8-TCDD.

TEQ - Toxic Equivalent: The measure of a sample's toxicity derived by multiplying each dioxin and furan by its corresponding TEF

and then summing the resulting values.

TIC - Tentatively Identified Compound: A compound that has been identified to be present and is not part of the target compound list (TCL) for the method and/or program. All TICs are qualitatively identified and reported as estimated concentrations.

Report Format: Data Usability Report



Project Name:58 CHARLES STREETLab Number:L2165980Project Number:6864.9.06Report Date:12/06/21

#### **Footnotes**

1 - The reference for this analyte should be considered modified since this analyte is absent from the target analyte list of the original method.

#### Terms

Analytical Method: Both the document from which the method originates and the analytical reference method. (Example: EPA 8260B is shown as 1,8260B.) The codes for the reference method documents are provided in the References section of the Addendum.

Difference: With respect to Total Oxidizable Precursor (TOP) Assay analysis, the difference is defined as the Post-Treatment value minus the Pre-Treatment value.

Final pH: As it pertains to Sample Receipt & Container Information section of the report, Final pH reflects pH of container determined after adjustment at the laboratory, if applicable. If no adjustment required, value reflects Initial pH.

Frozen Date/Time: With respect to Volatile Organics in soil, Frozen Date/Time reflects the date/time at which associated Reagent Water-preserved vials were initially frozen. Note: If frozen date/time is beyond 48 hours from sample collection, value will be reflected in 'bold'.

Initial pH: As it pertains to Sample Receipt & Container Information section of the report, Initial pH reflects pH of container determined upon receipt, if applicable.

PAH Total: With respect to Alkylated PAH analyses, the 'PAHs, Total' result is defined as the summation of results for all or a subset of the following compounds: Naphthalene, C1-C4 Naphthalenes, 2-Methylnaphthalene, 1-Methylnaphthalene, Biphenyl, Acenaphthylene, Acenaphthene, Fluorene, C1-C3 Fluorenes, Phenanthrene, C1-C4 Phenanthrenes/Anthracenes, Anthracene, Fluoranthene, Pyrene, C1-C4 Fluoranthenes/Pyrenes, Benz(a)anthracene, Chrysene, C1-C4 Chrysenes, Benzo(b)fluoranthene, Benzo(j)+(k)fluoranthene, Benzo(e)pyrene, Benzo(a)pyrene, Perylene, Indeno(1,2,3-cd)pyrene, Dibenz(ah)+(ac)anthracene, Benzo(g,h,i)perylene. If a 'Total' result is requested, the results of its individual components will also be reported.

PFAS Total: With respect to PFAS analyses, the 'PFAS, Total (5)' result is defined as the summation of results for: PFHpA, PFHxS, PFOA, PFNA and PFOS. In addition, the 'PFAS, Total (6)' result is defined as the summation of results for: PFHpA, PFHxS, PFOA, PFNA, PFDA and PFOS. For MassDEP DW compliance analysis only, the 'PFAS, Total (6)' result is defined as the summation of results at or above the RL. Note: If a 'Total' result is requested, the results of its individual components will also be reported.

The target compound Chlordane (CAS No. 57-74-9) is reported for GC ECD analyses. Per EPA, this compound "refers to a mixture of chlordane isomers, other chlorinated hydrocarbons and numerous other components." (Reference: USEPA Toxicological Review of Chlordane, In Support of Summary Information on the Integrated Risk Information System (IRIS), December 1997.)

Total: With respect to Organic analyses, a 'Total' result is defined as the summation of results for individual isomers or Aroclors. If a 'Total' result is requested, the results of its individual components will also be reported. This is applicable to 'Total' results for methods 8260, 8081 and 8082.

#### Data Qualifiers

- A Spectra identified as "Aldol Condensates" are byproducts of the extraction/concentration procedures when acetone is introduced in the process.
- The analyte was detected above the reporting limit in the associated method blank. Flag only applies to associated field samples that have detectable concentrations of the analyte at less than ten times (10x) the concentration found in the blank. For MCP-related projects, flag only applies to associated field samples that have detectable concentrations of the analyte at less than ten times (10x) the concentration found in the blank. For DOD-related projects, flag only applies to associated field samples that have detectable concentrations of the analyte at less than ten times (10x) the concentration found in the blank AND the analyte was detected above one-half the reporting limit (or above the reporting limit for common lab contaminants) in the associated method blank. For NJ-Air-related projects, flag only applies to associated field samples that have detectable concentrations of the analyte above the reporting limit. For NJ-related projects (excluding Air), flag only applies to associated field samples that have detectable concentrations of the analyte, which was detected above the reporting limit in the associated method blank or above five times the reporting limit for common lab contaminants (Phthalates, Acetone, Methylene Chloride, 2-Butanone).
- Co-elution: The target analyte co-elutes with a known lab standard (i.e. surrogate, internal standards, etc.) for co-extracted analyses.
- Concentration of analyte was quantified from diluted analysis. Flag only applies to field samples that have detectable concentrations of the analyte.
- E Concentration of analyte exceeds the range of the calibration curve and/or linear range of the instrument.
- F The ratio of quantifier ion response to qualifier ion response falls outside of the laboratory criteria. Results are considered to be an estimated maximum concentration.
- G The concentration may be biased high due to matrix interferences (i.e, co-elution) with non-target compound(s). The result should be considered estimated.
- H The analysis of pH was performed beyond the regulatory-required holding time of 15 minutes from the time of sample collection.
- I The lower value for the two columns has been reported due to obvious interference.
- J Estimated value. This represents an estimated concentration for Tentatively Identified Compounds (TICs).
- M Reporting Limit (RL) exceeds the MCP CAM Reporting Limit for this analyte.
- **ND** Not detected at the reporting limit (RL) for the sample.
- NJ Presumptive evidence of compound. This represents an estimated concentration for Tentatively Identified Compounds (TICs), where

Report Format: Data Usability Report



Project Name:58 CHARLES STREETLab Number:L2165980Project Number:6864.9.06Report Date:12/06/21

#### **Data Qualifiers**

the identification is based on a mass spectral library search.

- P The RPD between the results for the two columns exceeds the method-specified criteria.
- Q The quality control sample exceeds the associated acceptance criteria. For DOD-related projects, LCS and/or Continuing Calibration Standard exceedences are also qualified on all associated sample results. Note: This flag is not applicable for matrix spike recoveries when the sample concentration is greater than 4x the spike added or for batch duplicate RPD when the sample concentrations are less than 5x the RL. (Metals only.)
- **R** Analytical results are from sample re-analysis.
- **RE** Analytical results are from sample re-extraction.
- S Analytical results are from modified screening analysis.
- The surrogate associated with this target analyte has a recovery outside the QC acceptance limits. (Applicable to MassDEP DW Compliance samples only.)
- Z The batch matrix spike and/or duplicate associated with this target analyte has a recovery/RPD outside the QC acceptance limits. (Applicable to MassDEP DW Compliance samples only.)

Report Format: Data Usability Report



Project Name:58 CHARLES STREETLab Number:L2165980Project Number:6864.9.06Report Date:12/06/21

#### REFERENCES

- 1 Test Methods for Evaluating Solid Waste: Physical/Chemical Methods. EPA SW-846. Third Edition. Updates I VI, 2018.
- Methods for the Determination of Metals in Environmental Samples, Supplement I. EPA/600/R-94/111. May 1994.
- Methods for the Determination of Organic Compounds in Finished Drinking Water and Raw Source Water. EPA/600/4-88/039, Revised July 1991.
- 19 Inductively Coupled Plasma Atomic Emission Spectrometric Method for Trace Element Analysis of Water and Wastes. Appendix C, Part 136, 40 CFR (Code of Federal Regulations). July 1, 1999 edition.
- Methods for the Determination of Inorganic Substances in Environmental Samples, EPA/600/R-93/100, August 1993.
- 107 Alpha Analytical In-house calculation method.
- 121 Standard Methods for the Examination of Water and Wastewater. APHA-AWWA-WEF. Standard Methods Online.
- Method 608.3: Organochlorine Pesticides and PCBs by GC/HSD, EPA 821-R-16-009, December 2016.
- 128 Method 624.1: Purgeables by GC/MS, EPA 821-R-16-008, December 2016.
- Method 625.1: Base/Neutrals and Acids by GC/MS, EPA 821-R-16-007, December 2016.
- Method 1664,Revision B: N-Hexane Extractable Material (HEM; Oil & Grease) and Silica Gel Treated N-Hexane Extractable Material (SGT-HEM; Non-polar Material) by Extraction and Gravimetry, EPA-821-R-10-001, February 2010.

#### **LIMITATION OF LIABILITIES**

Alpha Analytical performs services with reasonable care and diligence normal to the analytical testing laboratory industry. In the event of an error, the sole and exclusive responsibility of Alpha Analytical shall be to re-perform the work at it's own expense. In no event shall Alpha Analytical be held liable for any incidental, consequential or special damages, including but not limited to, damages in any way connected with the use of, interpretation of, information or analysis provided by Alpha Analytical.

We strongly urge our clients to comply with EPA protocol regarding sample volume, preservation, cooling, containers, sampling procedures, holding time and splitting of samples in the field.



Alpha Analytical, Inc.
Facility: Company-wide

Department: Quality Assurance

Title: Certificate/Approval Program Summary

Published Date: 4/2/2021 1:14:23 PM

Revision 19

ID No.:17873

Page 1 of 1

#### **Certification Information**

#### The following analytes are not included in our Primary NELAP Scope of Accreditation:

#### Westborough Facility

EPA 624/624.1: m/p-xylene, o-xylene, Naphthalene

EPA 625/625.1: alpha-Terpineol

**EPA 8260C/8260D:** NPW: 1,2,4,5-Tetramethylbenzene; 4-Ethyltoluene, Azobenzene; SCM: lodomethane (methyl iodide), 1,2,4,5-Tetramethylbenzene;

4-Ethyltoluene.

EPA 8270D/8270E: NPW: Dimethylnaphthalene,1,4-Diphenylhydrazine, alpha-Terpineol; SCM: Dimethylnaphthalene,1,4-Diphenylhydrazine.

SM4500: NPW: Amenable Cyanide; SCM: Total Phosphorus, TKN, NO2, NO3.

#### Mansfield Facility

SM 2540D: TSS

EPA 8082A: NPW: PCB: 1, 5, 31, 87,101, 110, 141, 151, 153, 180, 183, 187.

EPA TO-15: Halothane, 2,4,4-Trimethyl-2-pentene, 2,4,4-Trimethyl-1-pentene, Thiophene, 2-Methylthiophene,

3-Methylthiophene, 2-Ethylthiophene, 1,2,3-Trimethylbenzene, Indan, Indene, 1,2,4,5-Tetramethylbenzene, Benzothiophene, 1-Methylnaphthalene.

Biological Tissue Matrix: EPA 3050B

#### The following analytes are included in our Massachusetts DEP Scope of Accreditation

#### Westborough Facility:

#### **Drinking Water**

EPA 300.0: Chloride, Nitrate-N, Fluoride, Sulfate; EPA 353.2: Nitrate-N, Nitrite-N; SM4500NO3-F: Nitrate-N, Nitrite-N; SM4500F-C, SM4500CN-CE,

EPA 180.1, SM2130B, SM4500CI-D, SM2320B, SM2540C, SM4500H-B, SM4500NO2-B

EPA 332: Perchlorate; EPA 524.2: THMs and VOCs; EPA 504.1: EDB, DBCP.

Microbiology: SM9215B; SM9223-P/A, SM9223B-Colilert-QT,SM9222D.

#### Non-Potable Water

SM4500H,B, EPA 120.1, SM2510B, SM2540C, SM2320B, SM4500CL-E, SM4500F-BC, SM4500NH3-BH: Ammonia-N and Kjeldahl-N, EPA 350.1: Ammonia-N, LACHAT 10-107-06-1-B: Ammonia-N, EPA 351.1, SM4500NO3-F, EPA 353.2: Nitrate-N, SM4500P-E, SM4500P-B, E, SM4500SO4-E, SM5220D, EPA 410.4, SM5210B, SM5310C, SM4500CL-D, EPA 1664, EPA 420.1, SM4500-CN-CE, SM2540D, EPA 300: Chloride, Sulfate, Nitrate. EPA 624.1: Volatile Halocarbons & Aromatics.

EPA 608.3: Chlordane, Toxaphene, Aldrin, alpha-BHC, beta-BHC, gamma-BHC, delta-BHC, Dieldrin, DDD, DDE, DDT, Endosulfan II, Endosulfan III, Endosulfan sulfate, Endrin, Endrin Aldehyde, Heptachlor, Heptachlor Epoxide, PCBs

EPA 625.1: SVOC (Acid/Base/Neutral Extractables), EPA 600/4-81-045: PCB-Oil.

Microbiology: SM9223B-Colilert-QT; Enterolert-QT, SM9221E, EPA 1600, EPA 1603, SM9222D.

#### Mansfield Facility:

#### **Drinking Water**

**EPA 200.7:** Al, Ba, Cd, Cr, Cu, Fe, Mn, Ni, Na, Ag, Ca, Zn. **EPA 200.8:** Al, Sb, As, Ba, Be, Cd, Cr, Cu, Pb, Mn, Ni, Se, Ag, TL, Zn. **EPA 245.1** Hg. **EPA 522, EPA 537.1.** 

#### Non-Potable Water

EPA 200.7: Al, Sb, As, Be, Cd, Ca, Cr, Co, Cu, Fe, Pb, Mg, Mn, Mo, Ni, K, Se, Ag, Na, Sr, TL, Ti, V, Zn.

EPA 200.8: Al, Sb, As, Be, Cd, Cr, Cu, Fe, Pb, Mn, Ni, K, Se, Ag, Na, TL, Zn.

EPA 245.1 Hg.

SM2340B

For a complete listing of analytes and methods, please contact your Alpha Project Manager.

Document Type: Form Pre-Qualtrax Document ID: 08-113

|                                                         | CHAIN OF                                                                                                                             | CUSTO             | DY             | PAGE 1 OF     | 1                            | Date                  | Rec'd   | in Lab:           | 16           | 210        | 12                                      | 4                       |                  | ALP             | на Ј     | ob #:                                  | La      | 2165 980                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | The same |
|---------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------|-------------------|----------------|---------------|------------------------------|-----------------------|---------|-------------------|--------------|------------|-----------------------------------------|-------------------------|------------------|-----------------|----------|----------------------------------------|---------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------|
| ALPH                                                    | A                                                                                                                                    | Project Infor     | mation         | 18574         |                              |                       |         | nform             | ation        | Data       | Deliv                                   | verab                   | les              |                 |          | forma                                  | 100     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |          |
| Westborough, MA                                         | Mansfield, MA                                                                                                                        | Decine None       | EO Chadas Ch   |               |                              |                       |         |                   |              | ⊠ E        |                                         |                         |                  | ⊠ s             | ame a    | Client                                 | info    | PO#:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 4        |
|                                                         | TEL: 508-822-9300<br>FAX: 508-822-3288                                                                                               | Project Name:     | 56 Charles St  | reet          |                              |                       | ADEx    | 9-31976           | 10000000     | A          | dd'l De                                 | 110 2 25 5              |                  | Ense M          | - N-100  | 5                                      |         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |          |
| Client Information                                      |                                                                                                                                      | Project Locatio   | n: Cambridge,  | MA            |                              |                       |         | rogram            | quire        | ment       | s/Rep                                   | ort L                   | imits            | Criter          | ia       |                                        | Sales.  | 145 COLONI RECENT                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |          |
| Client: McPhail Ass                                     |                                                                                                                                      | Project #: 6864   | .9.06          |               | - 10-                        | EPA                   | RGP     | -1.07             |              |            |                                         |                         |                  |                 |          | -                                      |         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |          |
| Address: 2269 Mas                                       | sachusetts Avenue                                                                                                                    | Project Manage    | er: K. Hanraha | in            |                              |                       |         | _                 | _            | E CEI      | _                                       |                         |                  |                 | 7.00     |                                        | NFID    | ENCE PROTOCOLS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 2        |
| Cambridge, MA 02                                        | 2140                                                                                                                                 | ALPHA Quote       | #:             |               |                              |                       |         |                   | □ No<br>⊠ No |            |                                         |                         | alytica<br>(Reas |                 |          | 1 - 12 - 12 - 12 - 12 - 12 - 12 - 12 - | rotocol | s) Required?                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |          |
| Phone: 978-273-65                                       | 29                                                                                                                                   | Turn-Around       | Time           |               |                              | AN                    | ALYS    | IS                |              |            |                                         |                         |                  |                 |          |                                        |         | T<br>O                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |          |
| Fax: 6178681423                                         |                                                                                                                                      | _ Standard        | ⊠ Rus          | h (ONLY IF PR | E-APPROVED)                  |                       | line o  |                   |              |            |                                         |                         |                  |                 |          |                                        |         | SAMPLE HANDLING A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |          |
| _Email: khanrahan@                                      | mcphailgeo.com                                                                                                                       |                   | 3 D            | AY TAT        |                              |                       |         |                   |              |            |                                         |                         |                  |                 |          |                                        |         | ☐ Done ☑ Not Needed                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |          |
|                                                         | been Previously analyzed by Alpha                                                                                                    | Due Date:         | Time:          |               |                              |                       |         |                   |              |            |                                         | (8)                     |                  |                 |          |                                        | h       | Lab to do                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |          |
| Fardness, PH<br>Sect A hoorganics:<br>Sect B NonHaloger | ecific Requirements/Comment<br>Ammonia, Chloride, TRC, TSS, C<br>nated VOCs: Total BTEX, Benzen<br>neters: TPH, Ethanol, MTBE, tert- | rVI, CrIII, Tot-R | S              | mples         | 25                           | RGP Metals (200.8)(A) |         | Ammonia (4500)(A) |              | 6), C! (A) |                                         | BTEX and Benzene (8260) | (F)              | SUB-ETHANOL (F) | HARDNESS | TEMPERATURE                            |         | Last value   Control   C |          |
| ALPHA Lab ID                                            | Sample ID                                                                                                                            | - E               | lection        | Sample        | Sampler's                    | Metal                 | æ       | onia (            | €            | r (7196),  | Œ                                       | and                     | TPH-1664 (F)     | ETHA            | IARD     | PERA                                   |         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |          |
| (Lab Use Only)                                          |                                                                                                                                      | Date              | Time           | Matrix        | Initials                     | RGP                   | TSS (A) | Amm               | N N          | HexCr      | 8260 (F)                                | BTEX                    | TPH-             | SUB-            | PH,      | TEME                                   |         | Sample Specific<br>Comments                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |          |
| 65980-DI                                                | GW                                                                                                                                   | 12/1/21           | 8:30           | GW            | HMS                          |                       | Ø       |                   |              | Ø          |                                         | Ø                       | $\boxtimes$      | ×               |          |                                        |         | 3 day rush OK -<br>SE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |          |
| -02                                                     | LECHMERE CANAL                                                                                                                       | 12/1/21           | 9:30           | sw            | HMS                          |                       |         | $\boxtimes$       |              |            |                                         |                         |                  |                 |          | $\boxtimes$                            |         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |          |
|                                                         |                                                                                                                                      |                   |                |               |                              |                       |         |                   |              |            |                                         |                         |                  |                 | 닏        |                                        |         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |          |
|                                                         |                                                                                                                                      |                   |                |               |                              | Щ                     | Ц       | 닏                 | 닏            | Ц          | 니                                       | 닏                       | Ц                |                 | 닏        | 닏                                      | 님       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |          |
|                                                         |                                                                                                                                      |                   |                |               | A Company                    | Ц                     | Щ       | Щ                 | Щ            | Ц          | Ц                                       | 닏                       |                  |                 | 닏        | 님                                      | 님       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |          |
|                                                         |                                                                                                                                      |                   |                |               |                              |                       | 닏       | 닏                 | 닏            | Ц          | Ц                                       | 님                       | 닏                | 님               | 님        | 님                                      | 님       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | _        |
|                                                         |                                                                                                                                      |                   |                |               |                              |                       | Ш       | Ц                 | Ш            | Ш          | Ш                                       | Ц                       | Ц                | Ш               | 닏        |                                        | 닏       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |          |
|                                                         |                                                                                                                                      |                   |                |               |                              |                       |         |                   |              | Ш          |                                         |                         | Ш                | Ш               | Ш        | Ш                                      | Ш       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |          |
|                                                         |                                                                                                                                      |                   |                |               |                              |                       |         |                   |              |            |                                         |                         |                  |                 |          |                                        |         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |          |
|                                                         |                                                                                                                                      |                   |                |               |                              |                       |         |                   |              |            |                                         |                         |                  |                 |          |                                        |         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |          |
| PLEASE ANSWER                                           | QUESTIONS ABOVE!                                                                                                                     |                   | 40             |               | ntainer Type<br>Preservative |                       |         |                   |              | 2<br>*     |                                         |                         |                  |                 |          |                                        |         | Please print clearly, legibly and completely. Samples can                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |          |
| IS VALLE                                                | PROJECT                                                                                                                              |                   | Rollne         | uished By:    | , readi valive               | D                     | ate/Tim | 0                 |              |            | Receiv                                  | ed By:                  |                  |                 | ī        | Date/Tir                               | ne.     | not be logged in and<br>turnaround time clock will not                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |          |
|                                                         |                                                                                                                                      | ZM                |                | 12-0          | 1                            | 12/1/                 | -       | 6:47              | hu           | 1          | 112000000000000000000000000000000000000 |                         | AA               | 1.              | 121      |                                        | 6:00    | start until any ambiguities are<br>resolved. All samples                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |          |
| FORM MC P                                               | or CT RCP?                                                                                                                           |                   | non July       | ARL           | -                            | 12/1                  | 170     | A DIEW            | 1            | M          |                                         | 11/1                    |                  | 0               | -        | /gci                                   |         | submitted are subject to<br>Alpha's Payment Terms.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |          |

|   | ALPHA                 |
|---|-----------------------|
| Á | ANALYTICAL            |
|   | World Class Chamistry |

## **Subcontract Chain of Custody**

| ANAL VI        |                                                        | T<br>5<br>C                    | ek Lab, Inc.<br>445 Horsehoe<br>ollinsville, IL 62           | Lake Road<br>2234-7425 |                                                | Alpha Job<br>L2165980 |                    |
|----------------|--------------------------------------------------------|--------------------------------|--------------------------------------------------------------|------------------------|------------------------------------------------|-----------------------|--------------------|
|                | Client Information                                     | AND SHAPE                      | Project In                                                   | formation              | Regulatory Req                                 | uirements/Report Li   | mits               |
| 1000           | Analytical Labs<br>Valkup Drive<br>prough, MA 01581-10 | Turnar                         | on: MA<br>ger: Melissa Gu<br>ound & Deliv<br>e: 12/06/21 (RU | verables Informatio    | State/Federal Program:<br>Regulatory Criteria: |                       |                    |
| Email: mgulli@ | 9.5010<br>Palphalab.com                                | Deliverable                    | e: 12/06/21 (RC<br>s:                                        | USH)                   |                                                |                       |                    |
|                |                                                        | Project Spec                   | ific Requirem                                                | ents and/or Repor      | t Requirements                                 |                       | THE REAL PROPERTY. |
|                |                                                        | Alpha Job Number on final repo |                                                              |                        | Report to include Method Blan                  | k, LCS/LCSD:          |                    |
| Additional Com | ments: Send all result                                 | ts/reports to subreports@alpha | lab.com 2 DAY                                                | / RUSH                 |                                                |                       |                    |
|                | Resource de la                                         |                                |                                                              |                        |                                                | Karpin o              |                    |
| Lab ID         | Client ID                                              | Collection<br>Date/Time        | Sample<br>Matrix                                             |                        | Analysis                                       |                       | Batch<br>QC        |
| æ<br>W         | GW                                                     | 12-01-21 08:30                 | WATER                                                        | Ethanol by EPA 1671 Re |                                                |                       |                    |
|                | Re                                                     | elinquished By:                |                                                              | Date/Time:             | Received By:                                   | Date/Time:            | 10,70              |
|                | <u>e</u>                                               | Cidean                         |                                                              | 12/2/21                |                                                |                       | 1000               |
| Form No: AL_su | bcoc                                                   |                                | 2004 10 10 10                                                |                        |                                                |                       |                    |



Monday, December 06, 2021

Attn: Melissa Gulli **Alpha Analytical Lab** 8 Walkup Drive Westborough, MA 01581

**Project ID:** L2165980 SDG ID: GCJ88782 Sample ID#s: CJ88782

This laboratory is in compliance with the NELAC requirements of procedures used except where indicated.

This report contains results for the parameters tested, under the sampling conditions described on the Chain Of Custody, as received by the laboratory. This report is incomplete unless all pages indicated in the pagination at the bottom of the page are included.

A scanned version of the COC form accompanies the analytical report and is an exact duplicate of the original.

If you are the client above and have any questions concerning this testing, please do not hesitate to contact Phoenix Client Services at ext.200. The contents of this report cannot be discussed with anyone other than the client listed above without their written consent.

Sincerely yours,

**Laboratory Director** 

**NELAC - #NY11301** 

CT Lab Registration #PH-0618 MA Lab Registration #M-CT007

ME Lab Registration #CT-007

NH Lab Registration #213693-A,B

NJ Lab Registration #CT-003 NY Lab Registration #11301

PA Lab Registration #68-03530

RI Lab Registration #63

**UT Lab Registration #CT00007** 



Environmental Laboratories, Inc. 587 East Middle Turnpike, P.O.Box 370, Manchester, CT 06045 Tel. (860) 645-1102 Fax (860) 645-0823

## Sample Id Cross Reference

December 06, 2021

SDG I.D.: GCJ88782

Project ID: L2165980

| Client Id | Lab Id  | Matrix |
|-----------|---------|--------|
| GW        | CJ88782 | WATER  |

Page 58 of 73 Page 2 of 7



#### Environmental Laboratories, Inc.

587 East Middle Turnpike, P.O.Box 370, Manchester, CT 06045 Tel. (860) 645-1102 Fax (860) 645-0823

**Analysis Report** 

December 06, 2021

FOR: Attn: Melissa Gulli

Alpha Analytical Lab 8 Walkup Drive

Westborough, MA 01581

Sample InformationCustody InformationDateTimeMatrix:WATERCollected by:12/01/218:30Location Code:ALPHAReceived by:LB12/02/2112:55

Rush Request: 24 Hour Analyzed by: see "By" below

P.O.#:

aboratory Data SDG ID: GCJ88782

Phoenix ID: CJ88782

Project ID: L2165980 Client ID: GW

RL/

Parameter Result **PQL** Units Dilution Date/Time Reference By **Phenolics** < 0.015 0.015 mg/L 1 12/03/21 MSF E420.4

RL/PQL=Reporting/Practical Quantitation Level ND=Not Detected BRL=Below Reporting Level

#### **Comments:**

If you are the client above and have any questions concerning this testing, please do not hesitate to contact Phoenix Client Services at ext.200. The contents of this report cannot be discussed with anyone other than the client listed above without their written consent.

Phyllis Shiller, Laboratory Director

December 06, 2021

Reviewed and Released by: Rashmi Makol, Project Manager



#### Environmental Laboratories, Inc.

587 East Middle Turnpike, P.O.Box 370, Manchester, CT 06045 Tel. (860) 645-1102 Fax (860) 645-0823

## QA/QC Report

December 06, 2021

### QA/QC Data

SDG I.D.: GCJ88782

| Parameter                    | Blank   | Blk<br>RL | Sample<br>Result | Dup<br>Result | Dup<br>RPD | LCS<br>% | LCSD<br>% | LCS<br>RPD | MS<br>% | MSD<br>% | MS<br>RPD | %<br>Rec<br>Limits | %<br>RPD<br>Limits |
|------------------------------|---------|-----------|------------------|---------------|------------|----------|-----------|------------|---------|----------|-----------|--------------------|--------------------|
| QA/QC Batch 602947 (mg/L), 0 | QC Samı | ole No: ( | CJ88810          | (CJ8878       | 32)        |          |           |            |         |          |           |                    |                    |
| Phenolics                    | BRL     | 0.015     | <0.015           | <0.015        | NC         | 98.9     |           |            | 92.0    |          |           | 90 - 110           | 20                 |

If there are any questions regarding this data, please call Phoenix Client Services at extension 200.

**RPD - Relative Percent Difference** 

LCS - Laboratory Control Sample

LCSD - Laboratory Control Sample Duplicate

MS - Matrix Spike

MS Dup - Matrix Spike Duplicate

NC - No Criteria

Intf - Interference

Phyllis/Shiller, Laboratory Director

December 06, 2021

# Sample Criteria Exceedances Report

GCJ88782 - ALPHA

Analysis Units RL Criteria Criteria 묍 Result Criteria Phoenix Analyte

Phoenix Laboratories does not assume responsibility for the data contained in this exceedance report. It is provided as an additional tool to identify requested criteria exceedences. All efforts are made to ensure the accuracy of the data (obtained from appropriate agencies). A lack of exceedence information does not necessarily suggest conformance to the criteria. It is ultimately the site professional's responsibility to determine appropriate compliance.

Criteria: None State: MA

Monday, December 06, 2021

\*\*\* No Data to Display \*\*\*

Acode

SampNo



## **Environmental Laboratories, Inc.**

587 East Middle Turnpike, P.O.Box 370, Manchester, CT 06045 Tel. (860) 645-1102 Fax (860) 645-0823



## **Analysis Comments**

December 06, 2021 SDG I.D.: GCJ88782

The following analysis comments are made regarding exceptions to criteria not already noted in the Analysis Report or QA/QC Report: None.

Page 62 of 73

7. EC

|                                                                                            |                                           | Sul                                                                    | ocontrac                                    | Subcontract Chain of Custody                                                                                           |                                                |                              |       |
|--------------------------------------------------------------------------------------------|-------------------------------------------|------------------------------------------------------------------------|---------------------------------------------|------------------------------------------------------------------------------------------------------------------------|------------------------------------------------|------------------------------|-------|
| ANAL TICAL                                                                                 |                                           | Phoer<br>587 E<br>Manch                                                | ix Environr<br>ast Middle '<br>nester, CT ( | Phoenix Environmental Laboratories<br>587 East Middle Turnpike<br>Manchester, CT 06040                                 |                                                | Alpha Job Number<br>L2165980 | ber   |
| Client l                                                                                   | Client Information                        | Ь                                                                      | Project Information                         | ormation                                                                                                               | Regulatory Requirements/Report Limits          | nts/Report Limits            |       |
| Client: Alpha Analytical Labs<br>Address: Eight Walkup Drive<br>Westborough, MA 01581-1019 | lical Labs<br>p Drive<br>n, MA 01581-1019 | Project Location: MA<br>Project Manager: Melissa Gulli                 | IA<br>Aelissa Gul                           | :                                                                                                                      | State/Federal Program:<br>Regulatory Criteria: |                              |       |
| Phone: 603.319.5010<br>Email: mgulii@alphalab.com                                          | 0<br>alab.com                             | I urnaround & Deliverabl<br>Due Date: 12/06/21 (RUSH)<br>Deliverables: | & Delive<br>/06/21 (RU                      | l urnaround & Deliverables Information<br>Due Date: 12/06/21 (RUSH)<br>ilverables:                                     |                                                |                              |       |
|                                                                                            |                                           | Project Specific Re                                                    | equireme                                    | ject Specific Requirements and/or Report Requirements                                                                  | ments                                          |                              |       |
| Refer                                                                                      | Reference following Alpha Job Number      | mber on final report/deliverables: L2165980                            | liverables:                                 |                                                                                                                        | Report to include Method Blank, LCS/LCSD:      | CSD:                         |       |
| Additional Comments                                                                        | s: Send all results/reports to s          | subreports@alphalab.c                                                  | om NPDE                                     | Additional Comments: Send all results/reports to subreports@alphalab.com NPDES RGP limits required- Use EPA method 420 | A method 420                                   |                              |       |
|                                                                                            |                                           |                                                                        |                                             |                                                                                                                        |                                                |                              |       |
| Lab ID                                                                                     | Client ID                                 | Collection<br>Date/Time                                                | Sample<br>Matrix                            | Analysis                                                                                                               |                                                | - OBa                        | Batch |
| 78 188                                                                                     | ow<br>Roch - 1<br>Ammer                   | 12-01-21 08:30                                                         | WATER                                       | Phenol                                                                                                                 |                                                | ·.                           |       |
|                                                                                            | Relingulshed.By                           | .k                                                                     |                                             | Date/Time:                                                                                                             | Received By:                                   | ≥                            |       |
|                                                                                            | 18 Jan                                    | Smile Spirit                                                           |                                             | 4140 (338                                                                                                              | COUNTY OF MINE                                 | 12/2/2/ 13                   | 13    |
| Form No: AL_subcoc                                                                         |                                           |                                                                        |                                             |                                                                                                                        |                                                |                              |       |

#### http://www.teklabinc.com/

December 06, 2021

Melissa Gulli
Alpha Analytical

Illinois 100226

Kansas E-10374

Louisiana 05002

145 Flanders Road
Westborough, MA 01581

Louisiana 05003
Oklahoma 9978

TEL: (603) 319-5010

FAX:

**RE:** L2165980 **WorkOrder:** 21120212

Dear Melissa Gulli:

TEKLAB, INC received 1 sample on 12/3/2021 9:15:00 AM for the analysis presented in the following report.

Samples are analyzed on an as received basis unless otherwise requested and documented. The sample results contained in this report relate only to the requested analytes of interest as directed on the chain of custody. NELAP accredited fields of testing are indicated by the letters NELAP under the Certification column. Unless otherwise documented within this report, Teklab Inc. analyzes samples utilizing the most current methods in compliance with 40CFR. All tests are performed in the Collinsville, IL laboratory unless otherwise noted in the Case Narrative.

All quality control criteria applicable to the test methods employed for this project have been satisfactorily met and are in accordance with NELAP except where noted. The following report shall not be reproduced, except in full, without the written approval of Teklab, Inc.

If you have any questions regarding these tests results, please feel free to call.

Sincerely,

Marvin L. Darling Project Manager (618)344-1004 ex 41 mdarling@teklabinc.com

Serial\_No:12062119:15

# **Report Contents**

# http://www.teklabinc.com/

| Client: Alpha Analytical | Work Order: 21120212   |
|--------------------------|------------------------|
| Client Project: L2165980 | Report Date: 06-Dec-21 |

# This reporting package includes the following:

| Cover Letter            | 1        |
|-------------------------|----------|
| Report Contents         | 2        |
| Definitions             | 3        |
| Case Narrative          | 5        |
| Accreditations          | 6        |
| Laboratory Results      | 7        |
| Quality Control Results | 8        |
| Receiving Check List    | 9        |
| Chain of Custody        | Appended |

### **Definitions**

#### http://www.teklabinc.com/

Client: Alpha Analytical Work Order: 21120212
Client Project: L2165980 Report Date: 06-Dec-21

#### Abbr Definition

- \* Analytes on report marked with an asterisk are not NELAP accredited
- CCV Continuing calibration verification is a check of a standard to determine the state of calibration of an instrument between recalibration.
- CRQL A Client Requested Quantitation Limit is a reporting limit that varies according to customer request. The CRQL may not be less than the MDL.
  - DF Dilution factor is the dilution performed during analysis only and does not take into account any dilutions made during sample preparation. The reported result is final and includes all dilution factors.
  - DNI Did not ignite
- DUP Laboratory duplicate is a replicate aliquot prepared under the same laboratory conditions and independently analyzed to obtain a measure of precision.
- ICV Initial calibration verification is a check of a standard to determine the state of calibration of an instrument before sample analysis is initiated.
- IDPH IL Dept. of Public Health
- LCS Laboratory control sample is a sample matrix, free from the analytes of interest, spiked with verified known amounts of analytes and analyzed exactly like a sample to establish intra-laboratory or analyst specific precision and bias or to assess the performance of all or a portion of the measurement system.
- LCSD Laboratory control sample duplicate is a replicate laboratory control sample that is prepared and analyzed in order to determine the precision of the approved test method. The acceptable recovery range is listed in the QC Package (provided upon request).
- MBLK Method blank is a sample of a matrix similar to the batch of associated sample (when available) that is free from the analytes of interest and is processed simultaneously with and under the same conditions as samples through all steps of the analytical procedures, and in which no target analytes or interferences should present at concentrations that impact the analytical results for sample analyses.
- MDL "The method detection limit is defined as the minimum measured concentration of a substance that can be reported with 99% confidence that the measured concentration is distinguishable from method blank results."
- MS Matrix spike is an aliquot of matrix fortified (spiked) with known quantities of specific analytes that is subjected to the entire analytical procedures in order to determine the effect of the matrix on an approved test method's recovery system. The acceptable recovery range is listed in the QC Package (provided upon request).
- MSD Matrix spike duplicate means a replicate matrix spike that is prepared and analyzed in order to determine the precision of the approved test method. The acceptable recovery range is listed in the QC Package (provided upon request).
- MW Molecular weight
- NC Data is not acceptable for compliance purposes
- ND Not Detected at the Reporting Limit
- NELAP NELAP Accredited
  - PQL Practical quantitation limit means the lowest level that can be reliably achieved within specified limits of precision and accuracy during routine laboratory operation conditions.
  - RL The reporting limit the lowest level that the data is displayed in the final report. The reporting limit may vary according to customer request or sample dilution. The reporting limit may not be less than the MDL.
  - RPD Relative percent difference is a calculated difference between two recoveries (ie. MS/MSD). The acceptable recovery limit is listed in the QC Package (provided upon request).
  - SPK The spike is a known mass of target analyte added to a blank sample or sub-sample; used to determine recovery deficiency or for other quality control purposes.
  - Surr Surrogates are compounds which are similar to the analytes of interest in chemical composition and behavior in the analytical process, but which are not normally found in environmental samples.
  - TIC Tentatively identified compound: Analytes tentatively identified in the sample by using a library search. Only results not in the calibration standard will be reported as tentatively identified compounds. Results for tentatively identified compounds that are not present in the calibration standard, but are assigned a specific chemical name based upon the library search, are calculated using total peak areas from reconstructed ion chromatograms and a response factor of one. The nearest Internal Standard is used for the calculation. The results of any TICs must be considered estimated, and are flagged with a "T". If the estimated result is above the calibration range it is flagged "ET"
- TNTC Too numerous to count ( > 200 CFU )

# **Definitions**

### http://www.teklabinc.com/

Client: Alpha Analytical Work Order: 21120212
Client Project: L2165980 Report Date: 06-Dec-21

# Qualifiers

- # Unknown hydrocarbon
- C RL shown is a Client Requested Quantitation Limit
- H Holding times exceeded
- J Analyte detected below quantitation limits
- ND Not Detected at the Reporting Limit
- S Spike Recovery outside recovery limits
- X Value exceeds Maximum Contaminant Level

- B Analyte detected in associated Method Blank
- E Value above quantitation range
- I Associated internal standard was outside method criteria
- M Manual Integration used to determine area response
- R RPD outside accepted recovery limits
- T TIC(Tentatively identified compound)

# **Case Narrative**

# http://www.teklabinc.com/

Client: Alpha Analytical Work Order: 21120212
Client Project: L2165980 Report Date: 06-Dec-21

Cooler Receipt Temp: 2.0 °C

# Locations

|         | Collinsville                | _       | Springfield                |         | Kansas City           |
|---------|-----------------------------|---------|----------------------------|---------|-----------------------|
| Address | 5445 Horseshoe Lake Road    | Address | 3920 Pintail Dr            | Address | 8421 Nieman Road      |
|         | Collinsville, IL 62234-7425 |         | Springfield, IL 62711-9415 |         | Lenexa, KS 66214      |
| Phone   | (618) 344-1004              | Phone   | (217) 698-1004             | Phone   | (913) 541-1998        |
| Fax     | (618) 344-1005              | Fax     | (217) 698-1005             | Fax     | (913) 541-1998        |
| Email   | jhriley@teklabinc.com       | Email   | KKlostermann@teklabinc.com | Email   | jhriley@teklabinc.com |
|         | Collinsville Air            | _       | Chicago                    |         |                       |
| Address | 5445 Horseshoe Lake Road    | Address | 1319 Butterfield Rd.       |         |                       |
|         | Collinsville, IL 62234-7425 |         | Downers Grove, IL 60515    |         |                       |
| Phone   | (618) 344-1004              | Phone   | (630) 324-6855             |         |                       |
| Fax     | (618) 344-1005              | Fax     |                            |         |                       |
| Email   | EHurley@teklabinc.com       | Email   | arenner@teklabinc.com      |         |                       |

# Accreditations

# http://www.teklabinc.com/

Client: Alpha Analytical Work Order: 21120212

Client Project: L2165980 Report Date: 06-Dec-21

| State     | Dept | Cert #  | NELAP | <b>Exp Date</b> | Lab          |
|-----------|------|---------|-------|-----------------|--------------|
| Illinois  | IEPA | 100226  | NELAP | 1/31/2022       | Collinsville |
| Kansas    | KDHE | E-10374 | NELAP | 4/30/2022       | Collinsville |
| Louisiana | LDEQ | 05002   | NELAP | 6/30/2022       | Collinsville |
| Louisiana | LDEQ | 05003   | NELAP | 6/30/2022       | Collinsville |
| Oklahoma  | ODEQ | 9978    | NELAP | 8/31/2022       | Collinsville |
| Arkansas  | ADEQ | 88-0966 |       | 3/14/2022       | Collinsville |
| Illinois  | IDPH | 17584   |       | 5/31/2023       | Collinsville |
| Kentucky  | UST  | 0073    |       | 1/31/2022       | Collinsville |
| Missouri  | MDNR | 00930   |       | 5/31/2023       | Collinsville |
| Missouri  | MDNR | 930     |       | 1/31/2022       | Collinsville |

Serial\_No:12062119:15

# **Laboratory Results**

# http://www.teklabinc.com/

Client: Alpha Analytical Work Order: 21120212
Client Project: L2165980 Report Date: 06-Dec-21

Lab ID: 21120212-001 Client Sample ID: GW

Matrix: AQUEOUS Collection Date: 12/01/2021 8:30

| Analyses            | Certification           | RL Q     | Qual Result   | Units      | DF       | Date Analyzed Batch      |
|---------------------|-------------------------|----------|---------------|------------|----------|--------------------------|
| EPA 600 1671A, PHAF | RMACEUTICAL MANUFACTURI | NG INDUS | TRY NON-PURGE | ABLE VOLAT | ILE ORGA | ANICS                    |
| Ethanol             | *                       | 20       | ND            | mg/L       | 1        | 12/03/2021 12:52 R303394 |

# **Quality Control Results**

# http://www.teklabinc.com/

Client: Alpha Analytical Work Order: 21120212
Client Project: L2165980 Report Date: 06-Dec-21

| <b>EPA 600 1671A, PHARMAC</b> | EUTICAL M | ANUF | ACTURING   | INDUSTF | RY NON-PURC | SEABLE VOI  | ATILE | OR         |               |            |
|-------------------------------|-----------|------|------------|---------|-------------|-------------|-------|------------|---------------|------------|
| Batch R303394 SampType        | e: MBLK   |      | Units mg/L |         |             |             |       |            |               |            |
| SampID: MBLK-120321           |           |      |            |         |             |             |       |            |               | Date       |
| Analyses                      | Cert      | RL   | Qual       | Result  | Spike       | SPK Ref Val | %REC  | Low Limit  | High Limit    | Analyzed   |
| Ethanol                       | *         | 20   |            | ND      |             |             |       |            |               | 12/03/2021 |
|                               |           |      |            |         |             |             |       |            |               |            |
| Batch R303394 SampType        | e: LCS    |      | Units mg/L |         |             |             |       |            |               |            |
| SampID: LCS-120321            |           |      |            |         |             |             |       |            |               | Date       |
| Analyses                      | Cert      | RL   | Qual       | Result  | Spike       | SPK Ref Val | %REC  | Low Limit  | High Limit    | Analyzed   |
| Ethanol                       | *         | 20   | •          | 270     | 250.0       | 0           | 108.8 | 70         | 132           | 12/03/2021 |
|                               |           |      |            |         |             |             |       |            |               |            |
| Batch R303394 SampType        | e: MS     |      | Units mg/L |         |             |             |       |            |               |            |
| SampID: 21120102-001AMS       |           |      |            |         |             |             |       |            |               | Date       |
| Analyses                      | Cert      | RL   | Qual       | Result  | Spike       | SPK Ref Val | %REC  | Low Limit  | High Limit    | Analyzed   |
| Ethanol                       | *         | 20   |            | 270     | 250.0       | 0           | 109.6 | 70         | 132           | 12/03/2021 |
|                               |           |      |            |         |             |             |       |            |               |            |
| Batch R303394 SampType        | e: MSD    |      | Units mg/L |         |             |             |       | RPD Lin    | nit <b>30</b> |            |
| SampID: 21120102-001AMSD      |           |      |            |         |             |             |       |            |               | Date       |
| Analyses                      | Cert      | RL   | Qual       | Result  | Spike       | SPK Ref Val | %REC  | RPD Ref Va | al %RPD       | Analyzed   |
| Ethanol                       | *         | 20   |            | 270     | 250.0       | 0           | 108.4 | 273.9      | 1.05          | 12/03/2021 |
|                               |           |      |            |         |             |             |       |            |               |            |

Serial\_No:12062119:15

# **Receiving Check List**

# http://www.teklabinc.com/

| Client: Alpha Analytical<br>Client Project: L2165980                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                            | Work Order: 21120212<br>Report Date: 06-Dec-21                                                                                                                                  |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Carrier: UPS  Completed by: On:  03-Dec-21  Marvin L. Darling                                                                                                                                                                                                                                                                                                                                                                                                                          | Received B<br>Reviewed<br>On:<br>03-Dec-21 | ed by:                                                                                                                                                                          |
| Pages to follow: Chain of custody 1  Shipping container/cooler in good condition? Type of thermal preservation? Chain of custody present? Chain of custody signed when relinquished and received? Chain of custody agrees with sample labels? Samples in proper container/bottle? Sample containers intact? Sufficient sample volume for indicated test? All samples received within holding time? Reported field parameters measured: Container/Temp Blank temperature in compliance? | None                                       | 0       No □       Not Present □       Temp °C       2.0         Ice ♥       Blue Ice □       Dry Ice □         No □       No □         No □       No □         No □       NA ♥ |
| When thermal preservation is required, samples are complian 0.1°C - 6.0°C, or when samples are received on ice the same Water – at least one vial per sample has zero headspace?  Water - TOX containers have zero headspace?  Water - pH acceptable upon receipt?  NPDES/CWA TCN interferences checked/treated in the field?  Any No responses received and the same compliance of the same compliance.                                                                               | Yes V Yes V Yes V Yes V                    | No ☐ No VOA vials ☐ No ☐ No TOX containers ✔ No ☐ NA ☐ No ☐ NA ✔                                                                                                                |

| Subcontract Chain of Custody  Tell able Inc.   | Pa                                                                                       |                                                                   |                                              |                                |                                                  | ر<br>ا       | 211202112        |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------|-------------------------------------------------------------------|----------------------------------------------|--------------------------------|--------------------------------------------------|--------------|------------------|
| Collection of the Analysis I and the Collection of the Collection  |                                                                                          |                                                                   | Subcontractive Lab, Inc.                     | ct Chain of Custody            |                                                  | Alpha Jo     | Alpha Job Number |
| Client Information       Project Location: MA Project Requirements and/or Report Requirements Project Specific Requirements and/or Report Requirements       State/ Mature Requirements         Reference following Alpha Job Number on final report/Geliverables: L2165980       Report to Image of Reports and Project Specific Requirements and/or Requirements       Report to Image of Report Requirements         All Comments: Send all results/reports to subreports@alphalab.com 2 DAY RUSH       DAY RUSH       DAY CG-2 ACG-2 ACG-3                                                                                                                                          | World Clas                                                                               | ŭ                                                                 | ollinsville, IL 622                          | :34-7425                       |                                                  | LZ165980     | 30               |
| Project Location: MA 01581-1019   Project Location: Manager: Melasa Gutif                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Client Information                                                                       |                                                                   | Project Info                                 | ormation                       | Regulatory Require                               | ments/Report | Limits           |
| Project Specific Requirements and/or Requirements  Reference following Alpha Job Number on final report/definenables: L2165980 Report Requirements  Reference following Alpha Job Number on final report/definenables: L2165980 Reports include Method Blank, LCS/LCC  Comments: Send all results/reports © alphalab.com 2 DAY RUSH 20 CTG 分HS MET Reports of L2012108:30 WATER Ethand by EPA 1671 Revision A  12-01:21 08:30 WATER Ethand by EPA 1671 Revision A  Refinquished By: Received By: Rece  | Client: Alpha Analytical Labs<br>Address: Eight Walkup Drive<br>Westborough, MA 01581-10 |                                                                   | on: MA<br>er: Melissa Gulli<br>ound & Delive | rables Information             | State/Federal Program:<br>Regulatory Criteria:   |              |                  |
| Reference following Alpha Job Number on final report/defiverables: L2163980 Report Requirements Comments: Send all results/reports to subreports@alphalab.com 2 DAY RUSH コウ LTGー3 VCE 今社会 からには Delection Sample Analysis Analysis 12-01-21 08:30 WATER Ethanol by EPA 1871 Revision A 12-01-21 08:30 WATER Ethanol by EPA 1871 Revision A Relinquished By:  Relinquished By: Date/Time: Received By: (2/2/2)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Phone: 603.319.5010<br>Email: mgulli@alphalab.com                                        | Due Date<br>Deliverables                                          | 9: 12/06/21 (RU:                             | SH)                            |                                                  |              |                  |
| Reference following Alpha Job Number on final report/deliverables: L2165860 Report to include Method Blank, LCS/LC or Collection and all results/reports to subreports@alphalab.com 2 DAY RUSH 20 LTG-2 LCE or Collection and the collection of the co | dis service                                                                              | Project Speci                                                     | fic Requireme                                | or Report Red                  | ements                                           |              |                  |
| Client ID   Collection   Sample   Analysis                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Additional Comments: Send all result                                                     | Alpha Job Number on final repo<br>ts/reports to subreports@alphal | irt/deliverables:<br>lab.com 2 DAY           | 980<br>20 LT                   | oort to include Method Blank, L. S. ICE 安托S msk. | CS/LCSD:     |                  |
| 2 -cc ( cw 12-cc 1 cw 12-01-21 06:30 WATER Ethanol by EPA 1671 Revision A    12-01-21 06:30 WATER   Ethanol by EPA 1671 Revision A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                          |                                                                   |                                              |                                | 13/3                                             | (2)          |                  |
| 2 -cc ( SW 12.01-21 08:30 WATER Ethanol by EPA 1671 Revision A  Relinquished By: Date/Lime: Received By: Color (222) Meaning (1924)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                          | Collection<br>Date/Time                                           | Sample<br>Matrix                             | Analysis                       |                                                  |              | Batch<br>QC      |
| Relinquished By:    Relinquished By:   Date/Time:   Received By:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | ) w-                                                                                     | 12-01-21 08:30                                                    | WATER                                        | Ethanol by EPA 1671 Revision A |                                                  |              |                  |
| Relinquished By: Date/Time: Received By: (2/2/2) Meaning A. 19-May # (4/5)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                          |                                                                   |                                              |                                |                                                  |              |                  |
| (c) dream (2/2) mouning d. 19chuy = (419)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Re                                                                                       | elinquished By:                                                   |                                              | Datę/Time:                     | Received By:                                     | Date/Time    | e:               |
| W-31                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                          | - 1 dre                                                           |                                              | 77                             | 1.19. luy = (                                    | 17/3/71      | 5100             |
| Form No: AL subcoc                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | ws.                                                                                      |                                                                   |                                              |                                |                                                  |              |                  |



#### ANALYTICAL REPORT

Lab Number: L2166864

Client: McPhail Associates

2269 Massachusetts Avenue

Cambridge, MA 02140

ATTN: Ambrose Donovan Phone: (617) 868-1420

Project Name: 58 CHARLES STREET

Project Number: 6864.9.06

Report Date: 12/08/21

The original project report/data package is held by Alpha Analytical. This report/data package is paginated and should be reproduced only in its entirety. Alpha Analytical holds no responsibility for results and/or data that are not consistent with the original.

Certifications & Approvals: MA (M-MA086), NH NELAP (2064), CT (PH-0574), IL (200077), ME (MA00086), MD (348), NJ (MA935), NY (11148), NC (25700/666), PA (68-03671), RI (LAO00065), TX (T104704476), VT (VT-0935), VA (460195), USDA (Permit #P330-17-00196).

Eight Walkup Drive, Westborough, MA 01581-1019 508-898-9220 (Fax) 508-898-9193 800-624-9220 - www.alphalab.com



**Project Name:** 58 CHARLES STREET

Project Number: 6864.9.06

 Lab Number:
 L2166864

 Report Date:
 12/08/21

| Alpha<br>Sample ID | Client ID | Matrix | Sample<br>Location | Collection<br>Date/Time | Receive Date |
|--------------------|-----------|--------|--------------------|-------------------------|--------------|
| L2166864-01        | INFLUENT  | WATER  | CAMBRIDGE, MA      | 12/06/21 12:00          | 12/06/21     |
| L2166864-02        | EFFLUENT  | WATER  | CAMBRIDGE, MA      | 12/06/21 12:10          | 12/06/21     |



L2166864

Lab Number:

Project Name: 58 CHARLES STREET

**Project Number:** 6864.9.06 **Report Date:** 12/08/21

#### **Case Narrative**

The samples were received in accordance with the Chain of Custody and no significant deviations were encountered during the preparation or analysis unless otherwise noted. Sample Receipt, Container Information, and the Chain of Custody are located at the back of the report.

Results contained within this report relate only to the samples submitted under this Alpha Lab Number and meet NELAP requirements for all NELAP accredited parameters unless otherwise noted in the following narrative. The data presented in this report is organized by parameter (i.e. VOC, SVOC, etc.). Sample specific Quality Control data (i.e. Surrogate Spike Recovery) is reported at the end of the target analyte list for each individual sample, followed by the Laboratory Batch Quality Control at the end of each parameter. Tentatively Identified Compounds (TICs), if requested, are reported for compounds identified to be present and are not part of the method/program Target Compound List, even if only a subset of the TCL are being reported. If a sample was re-analyzed or re-extracted due to a required quality control corrective action and if both sets of data are reported, the Laboratory ID of the re-analysis or re-extraction is designated with an "R" or "RE", respectively.

When multiple Batch Quality Control elements are reported (e.g. more than one LCS), the associated samples for each element are noted in the grey shaded header line of each data table. Any Laboratory Batch, Sample Specific % recovery or RPD value that is outside the listed Acceptance Criteria is bolded in the report. In reference to questions H (CAM) or 4 (RCP) when "NO" is checked, the performance criteria for CAM and RCP methods allow for some quality control failures to occur and still be within method compliance. In these instances, the specific failure is not narrated but noted in the associated QC Outlier Summary Report, located directly after the Case Narrative. QC information is also incorporated in the Data Usability Assessment table (Format 11) of our Data Merger tool, where it can be reviewed in conjunction with the sample result, associated regulatory criteria and any associated data usability implications.

Soil/sediments, solids and tissues are reported on a dry weight basis unless otherwise noted. Definitions of all data qualifiers and acronyms used in this report are provided in the Glossary located at the back of the report.

HOLD POLICY - For samples submitted on hold, Alpha's policy is to hold samples (with the exception of Air canisters) free of charge for 21 calendar days from the date the project is completed. After 21 calendar days, we will dispose of all samples submitted including those put on hold unless you have contacted your Alpha Project Manager and made arrangements for Alpha to continue to hold the samples. Air canisters will be disposed after 3 business days from the date the project is completed.

| Please contact Project Management at 800-624-9220 with any questions. |  |
|-----------------------------------------------------------------------|--|
|                                                                       |  |



Project Name: 58 CHARLES STREET Lab Number: L2166864

**Project Number:** 6864.9.06 **Report Date:** 12/08/21

### **Case Narrative (continued)**

Chlorine, Total Residual

The WG1579881-4 MS recovery, performed on L2166864-02, is outside the acceptance criteria for chlorine, total residual (0%); however, the associated LCS recovery is within criteria. No further action was taken.

I, the undersigned, attest under the pains and penalties of perjury that, to the best of my knowledge and belief and based upon my personal inquiry of those responsible for providing the information contained in this analytical report, such information is accurate and complete. This certificate of analysis is not complete unless this page accompanies any and all pages of this report.

Authorized Signature:

Title: Technical Director/Representative Date: 12/08/21

600 Jewson Kelly Stenstrom

# **METALS**



L2166864

12/08/21

**Project Name:** 58 CHARLES STREET

Project Number: 6864.9.06

**SAMPLE RESULTS** 

Lab ID: L2166864-01 Client ID: INFLUENT

Sample Location: CAMBRIDGE, MA

SAMPLE RESULTS

Date Collected: 12/06/21 12:00

Date Received: 12/06/21
Field Prep: Not Specified

Lab Number:

**Report Date:** 

Sample Depth:

Matrix: Water

| Result                       | Qualifier                                                              | Units                                                                                                       | RL                                                                                                                                                                           | MDL                                                                                                                                                                                                                                                                                                                            | Dilution<br>Factor                                                                                                                                                                                                                                            | Date<br>Prepared                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Date<br>Analyzed                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Prep<br>Method                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Analytical<br>Method                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Analyst |
|------------------------------|------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------|
| stiold Lab                   |                                                                        |                                                                                                             |                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |         |
| sileiu Lab                   |                                                                        |                                                                                                             |                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |         |
| ND                           |                                                                        | mg/l                                                                                                        | 0.00400                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                | 1                                                                                                                                                                                                                                                             | 12/07/21 13:5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 5 12/07/21 21:15                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | EPA 3005A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 3,200.8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | PS      |
| ND                           |                                                                        | mg/l                                                                                                        | 0.00100                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                | 1                                                                                                                                                                                                                                                             | 12/07/21 13:5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 5 12/07/21 21:15                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | EPA 3005A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 3,200.8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | PS      |
| ND                           |                                                                        | mg/l                                                                                                        | 0.00020                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                | 1                                                                                                                                                                                                                                                             | 12/07/21 13:5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 5 12/07/21 21:15                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | EPA 3005A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 3,200.8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | PS      |
| 0.00893                      |                                                                        | mg/l                                                                                                        | 0.00100                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                | 1                                                                                                                                                                                                                                                             | 12/07/21 13:5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 5 12/07/21 21:15                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | EPA 3005A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 3,200.8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | PS      |
| 0.00374                      |                                                                        | mg/l                                                                                                        | 0.00100                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                | 1                                                                                                                                                                                                                                                             | 12/07/21 13:5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 5 12/07/21 21:15                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | EPA 3005A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 3,200.8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | PS      |
| 0.787                        |                                                                        | mg/l                                                                                                        | 0.050                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                | 1                                                                                                                                                                                                                                                             | 12/07/21 13:5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 5 12/08/21 12:56                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | EPA 3005A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 19,200.7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | EW      |
| ND                           |                                                                        | mg/l                                                                                                        | 0.00100                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                | 1                                                                                                                                                                                                                                                             | 12/07/21 13:5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 5 12/07/21 21:15                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | EPA 3005A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 3,200.8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | PS      |
| ND                           |                                                                        | mg/l                                                                                                        | 0.00020                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                | 1                                                                                                                                                                                                                                                             | 12/07/21 14:57                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 7 12/08/21 07:56                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | EPA 245.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 3,245.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | AC      |
| 0.00502                      |                                                                        | mg/l                                                                                                        | 0.00200                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                | 1                                                                                                                                                                                                                                                             | 12/07/21 13:5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 5 12/07/21 21:15                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | EPA 3005A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 3,200.8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | PS      |
| ND                           |                                                                        | mg/l                                                                                                        | 0.00500                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                | 1                                                                                                                                                                                                                                                             | 12/07/21 13:5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 5 12/07/21 21:15                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | EPA 3005A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 3,200.8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | PS      |
| ND                           |                                                                        | mg/l                                                                                                        | 0.00040                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                | 1                                                                                                                                                                                                                                                             | 12/07/21 13:5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 5 12/07/21 21:15                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | EPA 3005A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 3,200.8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | PS      |
| 0.1647                       |                                                                        | mg/l                                                                                                        | 0.01000                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                | 1                                                                                                                                                                                                                                                             | 12/07/21 13:5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 5 12/07/21 21:15                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | EPA 3005A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 3,200.8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | PS      |
| SM 2340B                     | - Mansfield                                                            | d Lab                                                                                                       |                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |         |
| 476                          |                                                                        | mg/l                                                                                                        | 0.660                                                                                                                                                                        | NA                                                                                                                                                                                                                                                                                                                             | 1                                                                                                                                                                                                                                                             | 12/07/21 13:5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 5 12/08/21 12:56                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | EPA 3005A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 19,200.7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | EW      |
|                              |                                                                        |                                                                                                             |                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |         |
|                              |                                                                        |                                                                                                             |                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |         |
| <ul> <li>Mansfiel</li> </ul> | d Lab                                                                  |                                                                                                             |                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |         |
| ND                           |                                                                        | mg/l                                                                                                        | 0.010                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                | 1                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 12/07/21 21:15                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | NA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 107,-                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |         |
|                              | ND ND ND 0.00893 0.00374 0.787 ND ND 0.00502 ND ND 0.1647 SM 2340B 476 | Sfield Lab  ND  ND  ND  0.00893  0.00374  0.787  ND  ND  0.00502  ND  ND  0.1647  SM 2340B - Mansfield  476 | Sfield Lab  ND mg/l  ND mg/l  ND mg/l  0.00893 mg/l  0.00374 mg/l  0.787 mg/l  ND mg/l  ND mg/l  ND mg/l  O.00502 mg/l  ND mg/l  ND mg/l  SM 2340B - Mansfield Lab  476 mg/l | Sfield Lab  ND mg/l 0.00400  ND mg/l 0.00100  ND mg/l 0.00020  0.00893 mg/l 0.00100  0.00374 mg/l 0.00100  0.787 mg/l 0.050  ND mg/l 0.00100  ND mg/l 0.00020  ND mg/l 0.00020  ND mg/l 0.00200  ND mg/l 0.00500  SM 2340B - Mansfield Lab  476 mg/l 0.660 | Sfield Lab  ND mg/l 0.00400  ND mg/l 0.00100  ND mg/l 0.00020  0.00893 mg/l 0.00100  0.00374 mg/l 0.00100  0.787 mg/l 0.050  ND mg/l 0.00100  ND mg/l 0.00020  ND mg/l 0.00020  ND mg/l 0.00500  ND mg/l 0.00500  SM 2340B - Mansfield Lab  476 mg/l 0.660 NA | Result         Qualifier         Units         RL         MDL         Factor           Sfield Lab         ND         mg/l         0.00400          1           ND         mg/l         0.00100          1           ND         mg/l         0.00020          1           0.00893         mg/l         0.00100          1           0.00374         mg/l         0.00100          1           ND         mg/l         0.050          1           ND         mg/l         0.00100          1           ND         mg/l         0.00200          1           ND         mg/l         0.00500          1           ND         mg/l         0.00500          1           ND         mg/l         0.00040          1           SM 2340B - Mansfield Lab           476         mg/l         0.660         NA         1 | Result         Qualifier         Units         RL         MDL         Factor         Prepared           Sfield Lab           ND         mg/l         0.00400          1         12/07/21 13:58           ND         mg/l         0.00100          1         12/07/21 13:58           0.00893         mg/l         0.00100          1         12/07/21 13:58           0.0787         mg/l         0.050          1         12/07/21 13:58           ND         mg/l         0.00100          1         12/07/21 13:58           ND         mg/l         0.00100          1         12/07/21 13:58           ND         mg/l         0.00200          1         12/07/21 13:58           ND         mg/l         0.00200          1         12/07/21 13:58           ND         mg/l         0.00500          1         12/07/21 13:58           ND         mg/l         0.00500          1         12/07/21 13:58           ND         mg/l         0.0040          1         12/07/21 13:58           SM 2340B - Mansfield Lab <t< td=""><td>Result         Qualifier         Units         RL         MDL         Factor         Prepared         Analyzed           Sfield Lab           ND         mg/l         0.00400          1         12/07/21 13:55 12/07/21 21:15           ND         mg/l         0.00100          1         12/07/21 13:55 12/07/21 21:15           ND         mg/l         0.00020          1         12/07/21 13:55 12/07/21 21:15           0.00893         mg/l         0.00100          1         12/07/21 13:55 12/07/21 21:15           0.00374         mg/l         0.00100          1         12/07/21 13:55 12/07/21 21:15           0.787         mg/l         0.0050          1         12/07/21 13:55 12/07/21 21:15           ND         mg/l         0.00100          1         12/07/21 13:55 12/07/21 21:15           ND         mg/l         0.00200          1         12/07/21 13:55 12/07/21 21:15           ND         mg/l         0.00500          1         12/07/21 13:55 12/07/21 21:15           ND         mg/l         0.00040          1         12/07/21 13:55 12/07/21 21:15           ND         mg/l</td><td>Result         Qualifier         Units         RL         MDL         Factor         Prepared         Analyzed         Method           Sfield Lab           ND         mg/l         0.00400          1         12/07/21 13:55 12/07/21 21:15         EPA 3005A           ND         mg/l         0.00100          1         12/07/21 13:55 12/07/21 21:15         EPA 3005A           ND         mg/l         0.00020          1         12/07/21 13:55 12/07/21 21:15         EPA 3005A           0.00893         mg/l         0.00100          1         12/07/21 13:55 12/07/21 21:15         EPA 3005A           0.00374         mg/l         0.00100          1         12/07/21 13:55 12/07/21 21:15         EPA 3005A           ND         mg/l         0.050          1         12/07/21 13:55 12/07/21 21:15         EPA 3005A           ND         mg/l         0.00100          1         12/07/21 13:55 12/07/21 21:15         EPA 3005A           ND         mg/l         0.0020          1         12/07/21 13:55 12/07/21 21:15         EPA 3005A           ND         mg/l         0.00500          1         12/07/21 13:55 12/07/21 21:15</td><td>  ND</td></t<> | Result         Qualifier         Units         RL         MDL         Factor         Prepared         Analyzed           Sfield Lab           ND         mg/l         0.00400          1         12/07/21 13:55 12/07/21 21:15           ND         mg/l         0.00100          1         12/07/21 13:55 12/07/21 21:15           ND         mg/l         0.00020          1         12/07/21 13:55 12/07/21 21:15           0.00893         mg/l         0.00100          1         12/07/21 13:55 12/07/21 21:15           0.00374         mg/l         0.00100          1         12/07/21 13:55 12/07/21 21:15           0.787         mg/l         0.0050          1         12/07/21 13:55 12/07/21 21:15           ND         mg/l         0.00100          1         12/07/21 13:55 12/07/21 21:15           ND         mg/l         0.00200          1         12/07/21 13:55 12/07/21 21:15           ND         mg/l         0.00500          1         12/07/21 13:55 12/07/21 21:15           ND         mg/l         0.00040          1         12/07/21 13:55 12/07/21 21:15           ND         mg/l | Result         Qualifier         Units         RL         MDL         Factor         Prepared         Analyzed         Method           Sfield Lab           ND         mg/l         0.00400          1         12/07/21 13:55 12/07/21 21:15         EPA 3005A           ND         mg/l         0.00100          1         12/07/21 13:55 12/07/21 21:15         EPA 3005A           ND         mg/l         0.00020          1         12/07/21 13:55 12/07/21 21:15         EPA 3005A           0.00893         mg/l         0.00100          1         12/07/21 13:55 12/07/21 21:15         EPA 3005A           0.00374         mg/l         0.00100          1         12/07/21 13:55 12/07/21 21:15         EPA 3005A           ND         mg/l         0.050          1         12/07/21 13:55 12/07/21 21:15         EPA 3005A           ND         mg/l         0.00100          1         12/07/21 13:55 12/07/21 21:15         EPA 3005A           ND         mg/l         0.0020          1         12/07/21 13:55 12/07/21 21:15         EPA 3005A           ND         mg/l         0.00500          1         12/07/21 13:55 12/07/21 21:15 | ND      |



L2166864

Lab Number:

**Project Name:** 58 CHARLES STREET

**Project Number:** Report Date: 6864.9.06 12/08/21

**SAMPLE RESULTS** 

Lab ID: L2166864-02 Date Collected: 12/06/21 12:10 Client ID: **EFFLUENT** Date Received: 12/06/21 Sample Location: CAMBRIDGE, MA Field Prep: Not Specified

Sample Depth:

Matrix: Water

| Parameter           | Result     | Qualifier    | Units | RL      | MDL | Dilution<br>Factor | Date<br>Prepared | Date<br>Analyzed | Prep<br>Method | Analytical<br>Method | Analyst |
|---------------------|------------|--------------|-------|---------|-----|--------------------|------------------|------------------|----------------|----------------------|---------|
|                     |            |              |       |         |     |                    |                  |                  |                |                      |         |
| Total Metals - Mans | sfield Lab |              |       |         |     |                    |                  |                  |                |                      |         |
| Antimony, Total     | ND         |              | mg/l  | 0.00400 |     | 1                  | 12/07/21 13:55   | 5 12/07/21 22:08 | EPA 3005A      | 3,200.8              | PS      |
| Arsenic, Total      | ND         |              | mg/l  | 0.00100 |     | 1                  | 12/07/21 13:55   | 5 12/07/21 22:08 | EPA 3005A      | 3,200.8              | PS      |
| Cadmium, Total      | ND         |              | mg/l  | 0.00020 |     | 1                  | 12/07/21 13:55   | 5 12/07/21 22:08 | EPA 3005A      | 3,200.8              | PS      |
| Chromium, Total     | 0.00772    |              | mg/l  | 0.00100 |     | 1                  | 12/07/21 13:55   | 5 12/07/21 22:08 | EPA 3005A      | 3,200.8              | PS      |
| Copper, Total       | 0.00769    |              | mg/l  | 0.00100 |     | 1                  | 12/07/21 13:55   | 5 12/07/21 22:08 | EPA 3005A      | 3,200.8              | PS      |
| Iron, Total         | 0.540      |              | mg/l  | 0.050   |     | 1                  | 12/07/21 13:55   | 5 12/08/21 12:47 | EPA 3005A      | 19,200.7             | EW      |
| Lead, Total         | ND         |              | mg/l  | 0.00100 |     | 1                  | 12/07/21 13:55   | 5 12/07/21 22:08 | EPA 3005A      | 3,200.8              | PS      |
| Mercury, Total      | ND         |              | mg/l  | 0.00020 |     | 1                  | 12/07/21 14:57   | 7 12/08/21 07:40 | EPA 245.1      | 3,245.1              | AC      |
| Nickel, Total       | 0.00447    |              | mg/l  | 0.00200 |     | 1                  | 12/07/21 13:55   | 5 12/07/21 22:08 | EPA 3005A      | 3,200.8              | PS      |
| Selenium, Total     | ND         |              | mg/l  | 0.00500 |     | 1                  | 12/07/21 13:55   | 5 12/07/21 22:08 | EPA 3005A      | 3,200.8              | PS      |
| Silver, Total       | ND         |              | mg/l  | 0.00040 |     | 1                  | 12/07/21 13:55   | 5 12/07/21 22:08 | EPA 3005A      | 3,200.8              | PS      |
| Zinc, Total         | 0.1222     |              | mg/l  | 0.01000 |     | 1                  | 12/07/21 13:55   | 5 12/07/21 22:08 | EPA 3005A      | 3,200.8              | PS      |
| Total Hardness by   | SM 2340E   | 3 - Mansfiel | d Lab |         |     |                    |                  |                  |                |                      |         |
| Hardness            | 487        |              | mg/l  | 0.660   | NA  | 1                  | 12/07/21 13:55   | 5 12/08/21 12:47 | EPA 3005A      | 19,200.7             | EW      |
|                     |            |              |       |         |     |                    |                  |                  |                |                      |         |
|                     |            |              |       |         |     |                    |                  |                  |                |                      |         |
| General Chemistry   | - Mansfiel | ld Lab       |       |         |     |                    |                  |                  |                |                      |         |
| Chromium, Trivalent | ND         |              | mg/l  | 0.010   |     | 1                  |                  | 12/07/21 22:08   | NA             | 107,-                |         |



Project Name: 58 CHARLES STREET

**Project Number:** 6864.9.06

Lab Number:

L2166864

Report Date:

12/08/21

# Method Blank Analysis Batch Quality Control

| Parameter                | Result Qualifier     | Units   | RL        | MDL    | Dilution<br>Factor | Date<br>Prepared |                | Analytical<br>Method |    |
|--------------------------|----------------------|---------|-----------|--------|--------------------|------------------|----------------|----------------------|----|
| Total Metals - Mansfield | d Lab for sample(s): | 01-02 E | Batch: Wo | G15801 | 19-1               |                  |                |                      |    |
| Iron, Total              | ND                   | mg/l    | 0.050     |        | 1                  | 12/07/21 13:55   | 12/08/21 12:38 | 19,200.7             | EW |

**Prep Information** 

Digestion Method: EPA 3005A

| Parameter              | Result Qualifier    | Units     | RL      | MDL     | Dilution<br>Factor | Date<br>Prepared | Date<br>Analyzed | Analytical<br>Method | Analyst |
|------------------------|---------------------|-----------|---------|---------|--------------------|------------------|------------------|----------------------|---------|
| Total Hardness by SM 2 | 340B - Mansfield La | o for sam | ple(s): | 01-02 E | Batch: WG          | 1580119-1        |                  |                      |         |
| Hardness               | ND                  | mg/l      | 0.660   | NA      | 1                  | 12/07/21 13:55   | 12/08/21 12:38   | 19,200.7             | EW      |

**Prep Information** 

Digestion Method: EPA 3005A

| Parameter           | Result Qualifier        | Units     | RL        | MDL    | Dilution<br>Factor | Date<br>Prepared | Date<br>Analyzed | Analytical<br>Method | Analyst |
|---------------------|-------------------------|-----------|-----------|--------|--------------------|------------------|------------------|----------------------|---------|
| Total Metals - Mans | field Lab for sample(s) | : 01-02 E | Batch: Wo | G15801 | 20-1               |                  |                  |                      |         |
| Antimony, Total     | ND                      | mg/l      | 0.00400   |        | 1                  | 12/07/21 13:55   | 12/07/21 20:53   | 3,200.8              | PS      |
| Arsenic, Total      | ND                      | mg/l      | 0.00100   |        | 1                  | 12/07/21 13:55   | 12/07/21 20:53   | 3,200.8              | PS      |
| Cadmium, Total      | ND                      | mg/l      | 0.00020   |        | 1                  | 12/07/21 13:55   | 12/07/21 20:53   | 3,200.8              | PS      |
| Chromium, Total     | ND                      | mg/l      | 0.00100   |        | 1                  | 12/07/21 13:55   | 12/07/21 20:53   | 3,200.8              | PS      |
| Copper, Total       | ND                      | mg/l      | 0.00100   |        | 1                  | 12/07/21 13:55   | 12/07/21 20:53   | 3,200.8              | PS      |
| Lead, Total         | ND                      | mg/l      | 0.00100   |        | 1                  | 12/07/21 13:55   | 12/07/21 20:53   | 3,200.8              | PS      |
| Nickel, Total       | ND                      | mg/l      | 0.00200   |        | 1                  | 12/07/21 13:55   | 12/07/21 20:53   | 3,200.8              | PS      |
| Selenium, Total     | ND                      | mg/l      | 0.00500   |        | 1                  | 12/07/21 13:55   | 12/07/21 20:53   | 3,200.8              | PS      |
| Silver, Total       | ND                      | mg/l      | 0.00040   |        | 1                  | 12/07/21 13:55   | 12/07/21 20:53   | 3,200.8              | PS      |
| Zinc, Total         | ND                      | mg/l      | 0.01000   |        | 1                  | 12/07/21 13:55   | 12/07/21 20:53   | 3,200.8              | PS      |

**Prep Information** 

Digestion Method: EPA 3005A



**Project Name: 58 CHARLES STREET** 

Project Number: 6864.9.06

Lab Number:

L2166864

**Report Date:** 12/08/21

**Method Blank Analysis Batch Quality Control** 

| Parameter         | Result Qualifier           | Units | RL       | MDL    | Dilution<br>Factor | Date<br>Prepared |                | Analytica<br>Method |    |
|-------------------|----------------------------|-------|----------|--------|--------------------|------------------|----------------|---------------------|----|
| Total Metals - Ma | nsfield Lab for sample(s): | 01-02 | Batch: W | G15801 | 121-1              |                  |                |                     |    |
| Mercury, Total    | ND                         | mg/l  | 0.00020  |        | 1                  | 12/07/21 14:57   | 12/08/21 07:33 | 3,245.1             | AC |

**Prep Information** 

Digestion Method: EPA 245.1



# Lab Control Sample Analysis Batch Quality Control

**Project Name:** 58 CHARLES STREET

Project Number: 6864.9.06

Lab Number: L2166864

**Report Date:** 12/08/21

| Parameter                                      | LCS<br>%Recovery | Qual        | LCSD<br>%Recovery | Qual   | %Recovery<br>Limits | RPD | Qual | RPD Limits |
|------------------------------------------------|------------------|-------------|-------------------|--------|---------------------|-----|------|------------|
| Total Metals - Mansfield Lab Associated sample | (s): 01-02 Bato  | ch: WG1580  | 119-2             |        |                     |     |      |            |
| Iron, Total                                    | 103              |             | -                 |        | 85-115              | -   |      |            |
| Total Hardness by SM 2340B - Mansfield Lab A   | ssociated sample | e(s): 01-02 | Batch: WG158      | 0119-2 |                     |     |      |            |
| Hardness                                       | 107              |             | -                 |        | 85-115              | -   |      |            |
| Total Metals - Mansfield Lab Associated sample | (s): 01-02 Bato  | ch: WG1580  | 120-2             |        |                     |     |      |            |
| Antimony, Total                                | 92               |             | -                 |        | 85-115              | -   |      |            |
| Arsenic, Total                                 | 105              |             | -                 |        | 85-115              | -   |      |            |
| Cadmium, Total                                 | 104              |             | -                 |        | 85-115              | -   |      |            |
| Chromium, Total                                | 109              |             | -                 |        | 85-115              | -   |      |            |
| Copper, Total                                  | 106              |             | -                 |        | 85-115              | -   |      |            |
| Lead, Total                                    | 109              |             | -                 |        | 85-115              | -   |      |            |
| Nickel, Total                                  | 103              |             | -                 |        | 85-115              | -   |      |            |
| Selenium, Total                                | 100              |             | -                 |        | 85-115              | -   |      |            |
| Silver, Total                                  | 106              |             | -                 |        | 85-115              | -   |      |            |
| Zinc, Total                                    | 105              |             | -                 |        | 85-115              | -   |      |            |
| Total Metals - Mansfield Lab Associated sample | (s): 01-02 Bato  | ch: WG1580  | 121-2             |        |                     |     |      |            |
| Mercury, Total                                 | 93               |             | -                 |        | 85-115              | -   |      |            |



# Matrix Spike Analysis Batch Quality Control

**Project Name:** 58 CHARLES STREET

Project Number: 6864.9.06

Lab Number:

L2166864

Report Date:

| arameter                       | Native<br>Sample | MS<br>Added   | MS<br>Found | MS<br>%Recovery | Qual     | MSD<br>Found | MSD<br>%Recovery Q | Recovery<br>ual Limits | RPD Qual     | RPD<br>Limits |
|--------------------------------|------------------|---------------|-------------|-----------------|----------|--------------|--------------------|------------------------|--------------|---------------|
| Total Metals - Mansfield Lab A | Associated sam   | ple(s): 01-02 | QC Bato     | h ID: WG158     | 0119-3   | QC Sam       | ple: L2166864-01   | Client ID: INF         | LUENT        |               |
| Iron, Total                    | 0.787            | 1             | 1.80        | 101             |          | -            | -                  | 75-125                 | -            | 20            |
| Total Hardness by SM 2340B     | - Mansfield Lal  | o Associated  | sample(s):  | 01-02 QC I      | Batch ID | : WG1580     | 119-3 QC Sam       | ple: L2166864-0        | 1 Client ID: | INFLUEN       |
| Hardness                       | 476              | 66.2          | 547         | 107             |          | -            | -                  | 75-125                 | -            | 20            |
| Total Metals - Mansfield Lab A | Associated sam   | ple(s): 01-02 | QC Bato     | h ID: WG158     | 0120-3   | QC Sam       | ple: L2166864-01   | Client ID: INF         | LUENT        |               |
| Antimony, Total                | ND               | 0.5           | 0.5888      | 118             |          | -            | -                  | 70-130                 | -            | 20            |
| Arsenic, Total                 | ND               | 0.12          | 0.1240      | 103             |          | -            | -                  | 70-130                 | -            | 20            |
| Cadmium, Total                 | ND               | 0.053         | 0.05408     | 102             |          | -            | -                  | 70-130                 | -            | 20            |
| Chromium, Total                | 0.00893          | 0.2           | 0.2105      | 101             |          | -            | -                  | 70-130                 | -            | 20            |
| Copper, Total                  | 0.00374          | 0.25          | 0.2545      | 100             |          | -            | -                  | 70-130                 | -            | 20            |
| Lead, Total                    | ND               | 0.53          | 0.5539      | 104             |          | -            | -                  | 70-130                 | -            | 20            |
| Nickel, Total                  | 0.00502          | 0.5           | 0.4844      | 96              |          | -            | -                  | 70-130                 | -            | 20            |
| Selenium, Total                | ND               | 0.12          | 0.1157      | 96              |          | -            | -                  | 70-130                 | -            | 20            |
| Silver, Total                  | ND               | 0.05          | 0.05038     | 101             |          | -            | -                  | 70-130                 | -            | 20            |
| Zinc, Total                    | 0.1647           | 0.5           | 0.6564      | 98              |          | -            | -                  | 70-130                 | -            | 20            |
| Total Metals - Mansfield Lab A | Associated sam   | ple(s): 01-02 | QC Bato     | h ID: WG158     | 0121-3   | QC Sam       | ple: L2166864-02   | Client ID: EFI         | FLUENT       |               |
| Mercury, Total                 | ND               | 0.005         | 0.00439     | 88              |          | -            | -                  | 70-130                 | -            | 20            |

# Lab Duplicate Analysis Batch Quality Control

**Project Name:** 58 CHARLES STREET

**Project Number:** 6864.9.06

Lab Number:

L2166864

Report Date:

| Parameter                                               | Native Sample    | Duplicate Sample       | Units       | RPD        | Qual RPD         | Limits     |
|---------------------------------------------------------|------------------|------------------------|-------------|------------|------------------|------------|
| otal Metals - Mansfield Lab Associated sample(s): 01-02 | 2 QC Batch ID: \ | WG1580119-4 QC Sample: | L2166864-01 | Client ID: | INFLUENT         |            |
| Iron, Total                                             | 0.787            | 0.761                  | mg/l        | 3          |                  | 20         |
| otal Hardness by SM 2340B - Mansfield Lab Associated    | sample(s): 01-02 | QC Batch ID: WG1580119 | -4 QC Samp  | le: L2166  | 864-01 Client ID | : INFLUENT |
| Hardness                                                | 476              | 471                    | mg/l        | 1          |                  | 20         |
| otal Metals - Mansfield Lab Associated sample(s): 01-02 | 2 QC Batch ID: \ | WG1580120-4 QC Sample: | L2166864-01 | Client ID: | INFLUENT         |            |
| Antimony, Total                                         | ND               | ND                     | mg/l        | NC         |                  | 20         |
| Arsenic, Total                                          | ND               | ND                     | mg/l        | NC         |                  | 20         |
| Cadmium, Total                                          | ND               | ND                     | mg/l        | NC         |                  | 20         |
| Chromium, Total                                         | 0.00893          | 0.00830                | mg/l        | 7          |                  | 20         |
| Copper, Total                                           | 0.00374          | 0.00330                | mg/l        | 13         |                  | 20         |
| Lead, Total                                             | ND               | ND                     | mg/l        | NC         |                  | 20         |
| Nickel, Total                                           | 0.00502          | 0.00441                | mg/l        | 13         |                  | 20         |
| Selenium, Total                                         | ND               | ND                     | mg/l        | NC         |                  | 20         |
| Silver, Total                                           | ND               | ND                     | mg/l        | NC         |                  | 20         |
| Zinc, Total                                             | 0.1647           | 0.1533                 | mg/l        | 7          |                  | 20         |
| otal Metals - Mansfield Lab Associated sample(s): 01-02 | 2 QC Batch ID: \ | WG1580121-4 QC Sample: | L2166864-02 | Client ID: | EFFLUENT         |            |
| Mercury, Total                                          | ND               | ND                     | mg/l        | NC         |                  | 20         |



# INORGANICS & MISCELLANEOUS



**Project Name: 58 CHARLES STREET** 

**Project Number:** 6864.9.06 Lab Number:

L2166864

Report Date: 12/08/21

### **SAMPLE RESULTS**

Lab ID: L2166864-01

Client ID: **INFLUENT**  Date Collected:

12/06/21 12:00

Sample Location: CAMBRIDGE, MA

Date Received: Field Prep:

12/06/21 Not Specified

Sample Depth:

Matrix:

Water

| Parameter                | Result         | Qualifier | Units | RL    | MDL | Dilution<br>Factor | Date<br>Prepared | Date<br>Analyzed | Analytical<br>Method | Analyst |
|--------------------------|----------------|-----------|-------|-------|-----|--------------------|------------------|------------------|----------------------|---------|
| General Chemistry - We   | stborough Lab  |           |       |       |     |                    |                  |                  |                      |         |
| Solids, Total Suspended  | 11.            |           | mg/l  | 5.0   | NA  | 1                  | -                | 12/07/21 14:30   | 121,2540D            | JT      |
| Cyanide, Total           | ND             |           | mg/l  | 0.005 |     | 1                  | 12/07/21 06:30   | 12/07/21 10:57   | 121,4500CN-CE        | CS      |
| Chlorine, Total Residual | ND             |           | mg/l  | 0.02  |     | 1                  | -                | 12/07/21 00:25   | 121,4500CL-D         | KA      |
| pH (H)                   | 7.6            |           | SU    | -     | NA  | 1                  | -                | 12/07/21 10:16   | 121,4500H+-B         | KP      |
| Nitrogen, Ammonia        | 2.39           |           | mg/l  | 0.075 |     | 1                  | 12/07/21 04:01   | 12/07/21 19:52   | 121,4500NH3-BH       | I AT    |
| Chromium, Hexavalent     | ND             |           | mg/l  | 0.010 |     | 1                  | 12/07/21 06:25   | 12/07/21 06:48   | 1,7196A              | KP      |
| Anions by Ion Chromato   | graphy - Westh | orough    | Lab   |       |     |                    |                  |                  |                      |         |
| Chloride                 | 1530           |           | mg/l  | 125   |     | 250                | -                | 12/08/21 06:10   | 44,300.0             | AT      |



**Project Name:** 58 CHARLES STREET

Project Number: 6864.9.06

Lab Number: Report Date:

L2166864

12/08/21

**SAMPLE RESULTS** 

Lab ID: L2166864-02

Client ID: EFFLUENT Sample Location: CAMBRIDGE, MA

Date Collected:

12/06/21 12:10

Date Received: Field Prep:

12/06/21 Not Specified

Sample Depth:

Matrix: Water

| Parameter                | Result        | Qualifier | Units | RL    | MDL | Dilution<br>Factor | Date<br>Prepared | Date<br>Analyzed | Analytical<br>Method | Analyst |
|--------------------------|---------------|-----------|-------|-------|-----|--------------------|------------------|------------------|----------------------|---------|
| General Chemistry - We   | stborough Lab | )         |       |       |     |                    |                  |                  |                      |         |
| Solids, Total Suspended  | 12.           |           | mg/l  | 5.0   | NA  | 1                  | -                | 12/07/21 14:30   | 121,2540D            | JT      |
| Cyanide, Total           | ND            |           | mg/l  | 0.005 |     | 1                  | 12/07/21 06:30   | 12/07/21 10:58   | 121,4500CN-CE        | CS      |
| Chlorine, Total Residual | ND            |           | mg/l  | 0.02  |     | 1                  | -                | 12/07/21 00:25   | 121,4500CL-D         | KA      |
| pH (H)                   | 7.9           |           | SU    | -     | NA  | 1                  | -                | 12/07/21 10:16   | 121,4500H+-B         | KP      |
| Nitrogen, Ammonia        | 2.41          |           | mg/l  | 0.075 |     | 1                  | 12/07/21 04:01   | 12/07/21 19:53   | 121,4500NH3-BH       | H AT    |
| Chromium, Hexavalent     | ND            |           | mg/l  | 0.010 |     | 1                  | 12/07/21 06:25   | 12/07/21 06:48   | 1,7196A              | KP      |
| Anions by Ion Chromato   | graphy - West | borough   | Lab   |       |     |                    |                  |                  |                      |         |
| Chloride                 | 1490          |           | mg/l  | 125   |     | 250                | -                | 12/08/21 06:21   | 44,300.0             | AT      |



L2166864

Lab Number:

**Project Name:** 58 CHARLES STREET

**Project Number:** 6864.9.06 **Report Date:** 12/08/21

# Method Blank Analysis Batch Quality Control

| Parameter                | Result Qu       | ıalifier | Units     | RI     | L 1   | MDL   | Dilution<br>Factor | Date<br>Prepared | Date<br>Analyzed | Analytical<br>Method | Analyst |
|--------------------------|-----------------|----------|-----------|--------|-------|-------|--------------------|------------------|------------------|----------------------|---------|
| General Chemistry - W    | estborough Lab  | for sam  | ole(s): ( | 01-02  | Batc  | h: WG | 1579881-1          |                  |                  |                      |         |
| Chlorine, Total Residual | ND              |          | mg/l      | 0.     | 02    |       | 1                  | -                | 12/07/21 00:25   | 121,4500CL-D         | KA      |
| General Chemistry - W    | estborough Lab  | for sam  | ole(s): ( | 01-02  | Batc  | h: WG | 1579887-1          |                  |                  |                      |         |
| Nitrogen, Ammonia        | ND              |          | mg/l      | 0.0    | )75   |       | 1                  | 12/07/21 04:01   | 12/07/21 19:48   | 121,4500NH3-BH       | н ат    |
| General Chemistry - W    | estborough Lab  | for sam  | ole(s): ( | 01-02  | Batc  | h: WG | 1579897-1          |                  |                  |                      |         |
| Cyanide, Total           | ND              |          | mg/l      | 0.0    | 005   |       | 1                  | 12/07/21 06:30   | 12/07/21 10:36   | 121,4500CN-CE        | CS CS   |
| General Chemistry - W    | estborough Lab  | for sam  | ole(s): ( | 01-02  | Batc  | h: WG | 1579976-1          |                  |                  |                      |         |
| Chromium, Hexavalent     | ND              |          | mg/l      | 0.0    | 010   |       | 1                  | 12/07/21 06:25   | 12/07/21 06:45   | 1,7196A              | KP      |
| General Chemistry - W    | estborough Lab  | for sam  | ole(s): ( | 01-02  | Batc  | h: WG | 1580148-1          |                  |                  |                      |         |
| Solids, Total Suspended  | ND              |          | mg/l      | 5      | .0    | NA    | 1                  | -                | 12/07/21 14:30   | 121,2540D            | JT      |
| Anions by Ion Chromat    | ography - Westb | orough L | _ab for   | sample | e(s): | 01-02 | Batch: W           | G1580401-1       |                  |                      |         |
| Chloride                 | ND              |          | mg/l      | 0.5    | 500   |       | 1                  | -                | 12/07/21 17:15   | 44,300.0             | AT      |



# Lab Control Sample Analysis Batch Quality Control

**Project Name:** 58 CHARLES STREET

**Project Number:** 6864.9.06

Lab Number:

L2166864

Report Date:

| Parameter                            | LCS<br>%Recovery Q       | ual   | LCSD<br>%Recovery | Qual     | %Recovery<br>Limits | RPD | Qual | RPD Limits |
|--------------------------------------|--------------------------|-------|-------------------|----------|---------------------|-----|------|------------|
| General Chemistry - Westborough Lab  | Associated sample(s): 01 | 1-02  | Batch: WG15798    | 381-2    |                     |     |      |            |
| Chlorine, Total Residual             | 96                       |       | -                 |          | 90-110              | -   |      |            |
| General Chemistry - Westborough Lab  | Associated sample(s): 01 | 1-02  | Batch: WG15798    | 387-2    |                     |     |      |            |
| Nitrogen, Ammonia                    | 102                      |       | -                 |          | 80-120              | -   |      | 20         |
| General Chemistry - Westborough Lab  | Associated sample(s): 01 | 1-02  | Batch: WG15798    | 397-2    |                     |     |      |            |
| Cyanide, Total                       | 101                      |       | -                 |          | 90-110              | -   |      |            |
| General Chemistry - Westborough Lab  | Associated sample(s): 01 | 1-02  | Batch: WG15799    | 976-2    |                     |     |      |            |
| Chromium, Hexavalent                 | 104                      |       | -                 |          | 85-115              | -   |      | 20         |
| General Chemistry - Westborough Lab  | Associated sample(s): 01 | 1-02  | Batch: WG15801    | 104-1    |                     |     |      |            |
| рН                                   | 100                      |       | -                 |          | 99-101              | -   |      | 5          |
| General Chemistry - Westborough Lab  | Associated sample(s): 01 | 1-02  | Batch: WG15801    | 148-2    |                     |     |      |            |
| Solids, Total Suspended              | 99                       |       | -                 |          | 80-120              | -   |      |            |
| Anions by Ion Chromatography - Westb | orough Lab Associated s  | sampl | e(s): 01-02 Bato  | h: WG158 | 30401-2             |     |      |            |
| Chloride                             | 101                      |       | -                 |          | 90-110              | -   |      |            |



# Matrix Spike Analysis Batch Quality Control

**Project Name:** 58 CHARLES STREET

Project Number: 6864.9.06

Lab Number:

L2166864

Report Date:

| Parameter                           | Native<br>Sample | MS<br>Added | MS<br>Found   | MS<br>%Recovery | Qual    | MSD<br>Found | MSD<br>%Recovery | Qual   | Recove<br>Limits | •          |        | RPD<br>.imits |
|-------------------------------------|------------------|-------------|---------------|-----------------|---------|--------------|------------------|--------|------------------|------------|--------|---------------|
| General Chemistry - Westborou       | ugh Lab Assoc    | ciated samp | ole(s): 01-02 | QC Batch II     | D: WG15 | 79881-4      | QC Sample:       | L21668 | 364-02           | Client ID: | EFFLUE | NT            |
| Chlorine, Total Residual            | ND               | 0.25        | ND            | 0               | Q       | -            | -                |        | 80-120           | -          |        | 20            |
| General Chemistry - Westborou       | ugh Lab Asso     | ciated samp | ole(s): 01-02 | QC Batch II     | D: WG15 | 79887-4      | QC Sample:       | L21645 | 518-01           | Client ID: | MS Sam | ple           |
| Nitrogen, Ammonia                   | ND               | 4           | 3.74          | 94              |         | -            | -                |        | 80-120           | -          |        | 20            |
| General Chemistry - Westborou       | ugh Lab Asso     | ciated samp | ole(s): 01-02 | QC Batch II     | D: WG15 | 79897-4      | QC Sample:       | L21663 | 358-01           | Client ID: | MS Sam | ple           |
| Cyanide, Total                      | ND               | 0.2         | 0.181         | 90              |         | -            | -                |        | 90-110           | -          |        | 30            |
| General Chemistry - Westborou       | ugh Lab Asso     | ciated samp | ole(s): 01-02 | QC Batch II     | D: WG15 | 79976-4      | QC Sample:       | L21668 | 364-02           | Client ID: | EFFLUE | NT            |
| Chromium, Hexavalent                | ND               | 0.1         | 0.100         | 100             |         | -            | -                |        | 85-115           | -          |        | 20            |
| Anions by Ion Chromatography Sample | · - Westboroug   | jh Lab Asso | ociated samp  | ole(s): 01-02   | QC Bate | ch ID: WG    | 1580401-3        | QC Sar | mple: L21        | 65857-02   | Client | ID: MS        |
| Chloride                            | 327              | 100         | 438           | 111             | Q       | -            | -                |        | 90-110           | -          |        | 18            |

# Lab Duplicate Analysis Batch Quality Control

**Project Name:** 58 CHARLES STREET

**Project Number:** 6864.9.06

Lab Number:

L2166864

Report Date:

| Parameter                               | Nativ                | e Samp  | ole D        | uplicate Sample | Units      | RPD          | Qual       | RPD Limits       |
|-----------------------------------------|----------------------|---------|--------------|-----------------|------------|--------------|------------|------------------|
| General Chemistry - Westborough Lab As  | ssociated sample(s): | 01-02   | QC Batch ID: | WG1579881-3     | QC Sample: | L2166864-01  | Client ID: | INFLUENT         |
| Chlorine, Total Residual                |                      | ND      |              | ND              | mg/l       | NC           |            | 20               |
| General Chemistry - Westborough Lab As  | ssociated sample(s): | 01-02   | QC Batch ID: | WG1579887-3     | QC Sample: | L2164518-01  | Client ID: | DUP Sample       |
| Nitrogen, Ammonia                       |                      | ND      |              | 0.110           | mg/l       | NC           |            | 20               |
| General Chemistry - Westborough Lab As  | ssociated sample(s): | 01-02   | QC Batch ID: | WG1579897-3     | QC Sample: | L2166627-03  | Client ID: | DUP Sample       |
| Cyanide, Total                          |                      | ND      |              | ND              | mg/l       | NC           |            | 30               |
| General Chemistry - Westborough Lab As  | ssociated sample(s): | 01-02   | QC Batch ID: | WG1579976-3     | QC Sample: | L2166864-01  | Client ID: | INFLUENT         |
| Chromium, Hexavalent                    |                      | ND      |              | ND              | mg/l       | NC           |            | 20               |
| General Chemistry - Westborough Lab As  | ssociated sample(s): | 01-02   | QC Batch ID: | WG1580104-2     | QC Sample: | L2166817-01  | Client ID: | DUP Sample       |
| рН                                      |                      | 7.8     |              | 7.7             | SU         | 1            |            | 5                |
| General Chemistry - Westborough Lab As  | ssociated sample(s): | 01-02   | QC Batch ID: | WG1580148-3     | QC Sample: | L2166087-01  | Client ID: | DUP Sample       |
| Solids, Total Suspended                 |                      | 46      |              | 51              | mg/l       | 10           |            | 29               |
| Anions by Ion Chromatography - Westbord | ough Lab Associated  | sample( | (s): 01-02 C | C Batch ID: WG  | 1580401-4  | QC Sample: L | 2165857-0  | 2 Client ID: DUP |
| Chloride                                |                      | 327     |              | 326             | mg/l       | 0            |            | 18               |

**Project Name:** 58 CHARLES STREET

**Project Number:** 6864.9.06

Lab Number: L2166864
Report Date: 12/08/21

# Sample Receipt and Container Information

Were project specific reporting limits specified?

YES

**Cooler Information** 

Cooler Custody Seal

A Absent

| Container Info | rmation                       |        | Initial | Final | Temp  |      |        | Frozen    |                                                                                                                                                                                            |  |  |  |  |
|----------------|-------------------------------|--------|---------|-------|-------|------|--------|-----------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|--|
| Container ID   | Container Type                | Cooler | рН      | рН    | deg C | Pres | Seal   | Date/Time | Analysis(*)                                                                                                                                                                                |  |  |  |  |
| L2166864-01A   | Plastic 250ml HNO3 preserved  | Α      | <2      | <2    | 5.3   | Υ    | Absent |           | CD-2008T(180),NI-2008T(180),ZN-<br>2008T(180),CU-2008T(180),HARDU(180),FE-<br>UI(180),AS-2008T(180),SE-2008T(180),HG-<br>U(28),AG-2008T(180),CR-2008T(180),SB-<br>2008T(180),PB-2008T(180) |  |  |  |  |
| L2166864-01B   | Plastic 250ml NaOH preserved  | Α      | >12     | >12   | 5.3   | Υ    | Absent |           | TCN-4500(14)                                                                                                                                                                               |  |  |  |  |
| L2166864-01C   | Plastic 250ml H2SO4 preserved | Α      | <2      | <2    | 5.3   | Υ    | Absent |           | NH3-4500(28)                                                                                                                                                                               |  |  |  |  |
| L2166864-01D   | Plastic 250ml H2SO4 preserved | Α      | <2      | <2    | 5.3   | Υ    | Absent |           | NH3-4500(28)                                                                                                                                                                               |  |  |  |  |
| L2166864-01E   | Plastic 950ml unpreserved     | Α      | 7       | 7     | 5.3   | Υ    | Absent |           | CL-300(28),HEXCR-7196(1),TRC-4500(1),PH-4500(.01)                                                                                                                                          |  |  |  |  |
| L2166864-01F   | Plastic 950ml unpreserved     | Α      | 7       | 7     | 5.3   | Υ    | Absent |           | TSS-2540(7)                                                                                                                                                                                |  |  |  |  |
| L2166864-02A   | Plastic 250ml HNO3 preserved  | A      | <2      | <2    | 5.3   | Y    | Absent |           | CD-2008T(180),NI-2008T(180),ZN-<br>2008T(180),FE-UI(180),CU-<br>2008T(180),HARDU(180),AG-2008T(180),HG-<br>U(28),SE-2008T(180),AS-2008T(180),PB-<br>2008T(180),CR-2008T(180),SB-2008T(180) |  |  |  |  |
| L2166864-02B   | Plastic 250ml NaOH preserved  | Α      | >12     | >12   | 5.3   | Υ    | Absent |           | TCN-4500(14)                                                                                                                                                                               |  |  |  |  |
| L2166864-02C   | Plastic 250ml H2SO4 preserved | Α      | <2      | <2    | 5.3   | Υ    | Absent |           | NH3-4500(28)                                                                                                                                                                               |  |  |  |  |
| L2166864-02D   | Plastic 250ml H2SO4 preserved | Α      | <2      | <2    | 5.3   | Υ    | Absent |           | NH3-4500(28)                                                                                                                                                                               |  |  |  |  |
| L2166864-02E   | Plastic 950ml unpreserved     | Α      | 7       | 7     | 5.3   | Υ    | Absent |           | HEXCR-7196(1),CL-300(28),TRC-4500(1),PH-4500(.01)                                                                                                                                          |  |  |  |  |
| L2166864-02F   | Plastic 950ml unpreserved     | Α      | 7       | 7     | 5.3   | Υ    | Absent |           | TSS-2540(7)                                                                                                                                                                                |  |  |  |  |



Project Name: 58 CHARLES STREET Lab Number: L2166864

**Project Number:** 6864.9.06 **Report Date:** 12/08/21

#### **GLOSSARY**

#### **Acronyms**

**EPA** 

LOQ

MS

DL - Detection Limit: This value represents the level to which target analyte concentrations are reported as estimated values, when those target analyte concentrations are quantified below the limit of quantitation (LOQ). The DL includes any adjustments from dilutions, concentrations or moisture content, where applicable (DoD report formats only)

from dilutions, concentrations or moisture content, where applicable. (DoD report formats only.)

EDL - Estimated Detection Limit: This value represents the level to which target analyte concentrations are reported as estimated values, when those target analyte concentrations are quantified below the reporting limit (RL). The EDL includes any adjustments from dilutions, concentrations or moisture content, where applicable. The use of EDLs is specific to the analysis

of PAHs using Solid-Phase Microextraction (SPME).

EMPC - Estimated Maximum Possible Concentration: The concentration that results from the signal present at the retention time of an analyte when the ions meet all of the identification criteria except the ion abundance ratio criteria. An EMPC is a worst-case

estimate of the concentration.

Environmental Protection Agency.

LCS - Laboratory Control Sample: A sample matrix, free from the analytes of interest, spiked with verified known amounts of

analytes or a material containing known and verified amounts of analytes.

LCSD - Laboratory Control Sample Duplicate: Refer to LCS.

LFB - Laboratory Fortified Blank: A sample matrix, free from the analytes of interest, spiked with verified known amounts of analytes or a material containing known and verified amounts of analytes.

LOD - Limit of Detection: This value represents the level to which a target analyte can reliably be detected for a specific analyte in a specific matrix by a specific method. The LOD includes any adjustments from dilutions, concentrations or moisture content, where applicable. (DoD report formats only.)

- Limit of Quantitation: The value at which an instrument can accurately measure an analyte at a specific concentration. The LOQ includes any adjustments from dilutions, concentrations or moisture content, where applicable. (DoD report formats only )

Limit of Quantitation: The value at which an instrument can accurately measure an analyte at a specific concentration. The LOQ includes any adjustments from dilutions, concentrations or moisture content, where applicable. (DoD report formats only.)

MDL - Method Detection Limit: This value represents the level to which target analyte concentrations are reported as estimated values, when those target analyte concentrations are quantified below the reporting limit (RL). The MDL includes any adjustments from dilutions, concentrations or moisture content, where applicable.

 Matrix Spike Sample: A sample prepared by adding a known mass of target analyte to a specified amount of matrix sample for which an independent estimate of target analyte concentration is available. For Method 332.0, the spike recovery is calculated using the native concentration, including estimated values.

MSD - Matrix Spike Sample Duplicate: Refer to MS.

NA - Not Applicable.

NC - Not Calculated: Term is utilized when one or more of the results utilized in the calculation are non-detect at the parameter's

reporting unit.

NDPA/DPA - N-Nitrosodiphenylamine/Diphenylamine.

NI - Not Ignitable.

NP - Non-Plastic: Term is utilized for the analysis of Atterberg Limits in soil.

NR - No Results: Term is utilized when 'No Target Compounds Requested' is reported for the analysis of Volatile or Semivolatile

Organic TIC only requests.

RL - Reporting Limit: The value at which an instrument can accurately measure an analyte at a specific concentration. The RL

includes any adjustments from dilutions, concentrations or moisture content, where applicable.

RPD - Relative Percent Difference: The results from matrix and/or matrix spike duplicates are primarily designed to assess the precision of analytical results in a given matrix and are expressed as relative percent difference (RPD). Values which are less than five times the reporting limit for any individual parameter are evaluated by utilizing the absolute difference between the

values; although the RPD value will be provided in the report.

SRM - Standard Reference Material: A reference sample of a known or certified value that is of the same or similar matrix as the

associated field samples.

STLP - Semi-dynamic Tank Leaching Procedure per EPA Method 1315.

TEF - Toxic Equivalency Factors: The values assigned to each dioxin and furan to evaluate their toxicity relative to 2,3,7,8-TCDD.

TEQ - Toxic Equivalent: The measure of a sample's toxicity derived by multiplying each dioxin and furan by its corresponding TEF

and then summing the resulting values.

TIC - Tentatively Identified Compound: A compound that has been identified to be present and is not part of the target compound list (TCL) for the method and/or program. All TICs are qualitatively identified and reported as estimated concentrations.

Report Format: Data Usability Report



Project Name:58 CHARLES STREETLab Number:L2166864Project Number:6864.9.06Report Date:12/08/21

#### Footnotes

 The reference for this analyte should be considered modified since this analyte is absent from the target analyte list of the original method.

#### **Terms**

1

Analytical Method: Both the document from which the method originates and the analytical reference method. (Example: EPA 8260B is shown as 1,8260B.) The codes for the reference method documents are provided in the References section of the Addendum.

Difference: With respect to Total Oxidizable Precursor (TOP) Assay analysis, the difference is defined as the Post-Treatment value minus the Pre-Treatment value.

Final pH: As it pertains to Sample Receipt & Container Information section of the report, Final pH reflects pH of container determined after adjustment at the laboratory, if applicable. If no adjustment required, value reflects Initial pH.

Frozen Date/Time: With respect to Volatile Organics in soil, Frozen Date/Time reflects the date/time at which associated Reagent Water-preserved vials were initially frozen. Note: If frozen date/time is beyond 48 hours from sample collection, value will be reflected in 'bold'.

Initial pH: As it pertains to Sample Receipt & Container Information section of the report, Initial pH reflects pH of container determined upon receipt, if applicable.

PAH Total: With respect to Alkylated PAH analyses, the 'PAHs, Total' result is defined as the summation of results for all or a subset of the following compounds: Naphthalene, C1-C4 Naphthalenes, 2-Methylnaphthalene, 1-Methylnaphthalene, Biphenyl, Acenaphthylene, Acenaphthene, Fluorene, C1-C3 Fluorenes, Phenanthrene, C1-C4 Phenanthrenes/Anthracenes, Anthracene, Fluoranthene, Pyrene, C1-C4 Fluoranthenes/Pyrenes, Benz(a)anthracene, Chrysene, C1-C4 Chrysenes, Benzo(b)fluoranthene, Benzo(j)+(k)fluoranthene, Benzo(e)pyrene, Benzo(a)pyrene, Perylene, Indeno(1,2,3-cd)pyrene, Dibenz(ah)+(ac)anthracene, Benzo(g,h,i)perylene. If a 'Total' result is requested, the results of its individual components will also be reported.

PFAS Total: With respect to PFAS analyses, the 'PFAS, Total (5)' result is defined as the summation of results for: PFHpA, PFHxS, PFOA, PFNA and PFOS. In addition, the 'PFAS, Total (6)' result is defined as the summation of results for: PFHpA, PFHxS, PFOA, PFNA, PFDA and PFOS. For MassDEP DW compliance analysis only, the 'PFAS, Total (6)' result is defined as the summation of results at or above the RL. Note: If a 'Total' result is requested, the results of its individual components will also be reported.

The target compound Chlordane (CAS No. 57-74-9) is reported for GC ECD analyses. Per EPA, this compound "refers to a mixture of chlordane isomers, other chlorinated hydrocarbons and numerous other components." (Reference: USEPA Toxicological Review of Chlordane, In Support of Summary Information on the Integrated Risk Information System (IRIS), December 1997.)

Total: With respect to Organic analyses, a 'Total' result is defined as the summation of results for individual isomers or Aroclors. If a 'Total' result is requested, the results of its individual components will also be reported. This is applicable to 'Total' results for methods 8260, 8081 and 8082.

#### Data Qualifiers

- A Spectra identified as "Aldol Condensates" are byproducts of the extraction/concentration procedures when acetone is introduced in the process.
- The analyte was detected above the reporting limit in the associated method blank. Flag only applies to associated field samples that have detectable concentrations of the analyte at less than ten times (10x) the concentration found in the blank. For MCP-related projects, flag only applies to associated field samples that have detectable concentrations of the analyte at less than ten times (10x) the concentration found in the blank. For DOD-related projects, flag only applies to associated field samples that have detectable concentrations of the analyte at less than ten times (10x) the concentration found in the blank AND the analyte was detected above one-half the reporting limit (or above the reporting limit for common lab contaminants) in the associated method blank. For NJ-Air-related projects, flag only applies to associated field samples that have detectable concentrations of the analyte above the reporting limit. For NJ-related projects (excluding Air), flag only applies to associated field samples that have detectable concentrations of the analyte, which was detected above the reporting limit in the associated method blank or above five times the reporting limit for common lab contaminants (Phthalates, Acetone, Methylene Chloride, 2-Butanone).
- Co-elution: The target analyte co-elutes with a known lab standard (i.e. surrogate, internal standards, etc.) for co-extracted analyses.
- Concentration of analyte was quantified from diluted analysis. Flag only applies to field samples that have detectable concentrations of the analyte.
- E Concentration of analyte exceeds the range of the calibration curve and/or linear range of the instrument.
- F The ratio of quantifier ion response to qualifier ion response falls outside of the laboratory criteria. Results are considered to be an estimated maximum concentration.
- G The concentration may be biased high due to matrix interferences (i.e, co-elution) with non-target compound(s). The result should be considered estimated.
- H The analysis of pH was performed beyond the regulatory-required holding time of 15 minutes from the time of sample collection.
- I The lower value for the two columns has been reported due to obvious interference.
- J Estimated value. This represents an estimated concentration for Tentatively Identified Compounds (TICs).
- M Reporting Limit (RL) exceeds the MCP CAM Reporting Limit for this analyte.
- **ND** Not detected at the reporting limit (RL) for the sample.
- NJ Presumptive evidence of compound. This represents an estimated concentration for Tentatively Identified Compounds (TICs), where

Report Format: Data Usability Report



Project Name:58 CHARLES STREETLab Number:L2166864Project Number:6864.9.06Report Date:12/08/21

#### **Data Qualifiers**

the identification is based on a mass spectral library search.

- P The RPD between the results for the two columns exceeds the method-specified criteria.
- Q The quality control sample exceeds the associated acceptance criteria. For DOD-related projects, LCS and/or Continuing Calibration Standard exceedences are also qualified on all associated sample results. Note: This flag is not applicable for matrix spike recoveries when the sample concentration is greater than 4x the spike added or for batch duplicate RPD when the sample concentrations are less than 5x the RL. (Metals only.)
- **R** Analytical results are from sample re-analysis.
- **RE** Analytical results are from sample re-extraction.
- S Analytical results are from modified screening analysis.
- The surrogate associated with this target analyte has a recovery outside the QC acceptance limits. (Applicable to MassDEP DW Compliance samples only.)
- Z The batch matrix spike and/or duplicate associated with this target analyte has a recovery/RPD outside the QC acceptance limits. (Applicable to MassDEP DW Compliance samples only.)

Report Format: Data Usability Report



Project Name:58 CHARLES STREETLab Number:L2166864Project Number:6864.9.06Report Date:12/08/21

#### REFERENCES

- Test Methods for Evaluating Solid Waste: Physical/Chemical Methods. EPA SW-846. Third Edition. Updates I VI, 2018.
- Methods for the Determination of Metals in Environmental Samples, Supplement I. EPA/600/R-94/111. May 1994.
- 19 Inductively Coupled Plasma Atomic Emission Spectrometric Method for Trace Element Analysis of Water and Wastes. Appendix C, Part 136, 40 CFR (Code of Federal Regulations). July 1, 1999 edition.
- Methods for the Determination of Inorganic Substances in Environmental Samples, EPA/600/R-93/100, August 1993.
- 107 Alpha Analytical In-house calculation method.
- 121 Standard Methods for the Examination of Water and Wastewater. APHA-AWWA-WEF. Standard Methods Online.

### LIMITATION OF LIABILITIES

Alpha Analytical performs services with reasonable care and diligence normal to the analytical testing laboratory industry. In the event of an error, the sole and exclusive responsibility of Alpha Analytical shall be to re-perform the work at it's own expense. In no event shall Alpha Analytical be held liable for any incidental, consequential or special damages, including but not limited to, damages in any way connected with the use of, interpretation of, information or analysis provided by Alpha Analytical.

We strongly urge our clients to comply with EPA protocol regarding sample volume, preservation, cooling, containers, sampling procedures, holding time and splitting of samples in the field.



Alpha Analytical, Inc. Facility: Company-wide

Department: Quality Assurance

Title: Certificate/Approval Program Summary

ID No.:17873 Revision 19

Page 1 of 1

Published Date: 4/2/2021 1:14:23 PM

### Certification Information

#### The following analytes are not included in our Primary NELAP Scope of Accreditation:

#### Westborough Facility

EPA 624/624.1: m/p-xylene, o-xylene, Naphthalene

EPA 625/625.1: alpha-Terpineol

EPA 8260C/8260D: NPW: 1,2,4,5-Tetramethylbenzene; 4-Ethyltoluene, Azobenzene; SCM: Iodomethane (methyl iodide), 1,2,4,5-Tetramethylbenzene;

EPA 8270D/8270E: NPW: Dimethylnaphthalene,1,4-Diphenylhydrazine, alpha-Terpineol; SCM: Dimethylnaphthalene,1,4-Diphenylhydrazine.

SM4500: NPW: Amenable Cyanide; SCM: Total Phosphorus, TKN, NO2, NO3.

#### **Mansfield Facility**

**SM 2540D:** TSS

EPA 8082A: NPW: PCB: 1, 5, 31, 87,101, 110, 141, 151, 153, 180, 183, 187.

EPA TO-15: Halothane, 2,4,4-Trimethyl-2-pentene, 2,4,4-Trimethyl-1-pentene, Thiophene, 2-Methylthiophene,

3-Methylthiophene, 2-Ethylthiophene, 1,2,3-Trimethylbenzene, Indan, Indene, 1,2,4,5-Tetramethylbenzene, Benzothiophene, 1-Methylnaphthalene.

Biological Tissue Matrix: EPA 3050B

#### The following analytes are included in our Massachusetts DEP Scope of Accreditation

#### Westborough Facility:

#### **Drinking Water**

EPA 300.0: Chloride, Nitrate-N, Fluoride, Sulfate; EPA 353.2: Nitrate-N, Nitrite-N; SM4500NO3-F: Nitrate-N, Nitrite-N; SM4500F-C, SM4500CN-CE,

EPA 180.1, SM2130B, SM4500CI-D, SM2320B, SM2540C, SM4500H-B, SM4500NO2-B

EPA 332: Perchlorate; EPA 524.2: THMs and VOCs; EPA 504.1: EDB, DBCP.

Microbiology: SM9215B; SM9223-P/A, SM9223B-Colilert-QT,SM9222D.

#### Non-Potable Water

SM4500H,B, EPA 120.1, SM2510B, SM2540C, SM2320B, SM4500CL-E, SM4500F-BC, SM4500NH3-BH: Ammonia-N and Kjeldahl-N, EPA 350.1: Ammonia-N, LACHAT 10-107-06-1-B: Ammonia-N, EPA 351.1, SM4500NO3-F, EPA 353.2: Nitrate-N, SM4500P-E, SM4500P-B, E, SM4500SO4-E, SM5220D, EPA 410.4, SM5210B, SM5310C, SM4500CL-D, EPA 1664, EPA 420.1, SM4500-CN-CE, SM2540D, EPA 300: Chloride, Sulfate, Nitrate. EPA 624.1: Volatile Halocarbons & Aromatics,

EPA 608.3: Chlordane, Toxaphene, Aldrin, alpha-BHC, beta-BHC, gamma-BHC, delta-BHC, Dieldrin, DDD, DDE, DDT, Endosulfan II, Endosulfan II, Endosulfan sulfate, Endrin, Endrin Aldehyde, Heptachlor, Heptachlor Epoxide, PCBs

EPA 625.1: SVOC (Acid/Base/Neutral Extractables), EPA 600/4-81-045: PCB-Oil.

Microbiology: SM9223B-Colilert-QT; Enterolert-QT, SM9221E, EPA 1600, EPA 1603, SM9222D.

#### Mansfield Facility:

#### **Drinking Water**

EPA 200.7: Al, Ba, Cd, Cr, Cu, Fe, Mn, Ni, Na, Ag, Ca, Zn. EPA 200.8: Al, Sb, As, Ba, Be, Cd, Cr, Cu, Pb, Mn, Ni, Se, Ag, TL, Zn. EPA 245.1 Hg. EPA 522, EPA 537.1.

#### Non-Potable Water

EPA 200.7: Al, Sb, As, Be, Cd, Ca, Cr, Co, Cu, Fe, Pb, Mg, Mn, Mo, Ni, K, Se, Ag, Na, Sr, TL, Ti, V, Zn.

EPA 200.8: Al, Sb, As, Be, Cd, Cr, Cu, Fe, Pb, Mn, Ni, K, Se, Ag, Na, TL, Zn.

EPA 245.1 Hg

SM2340B

For a complete listing of analytes and methods, please contact your Alpha Project Manager.

Pre-Qualtrax Document ID: 08-113 Document Type: Form

|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | CHAIN OF                            | CUSTO             | ISTODY PAGE 1 OF 1 |               |                           | Date Rec'd in Lab: (2/6/2/            |                                      |           |                                               |               |                    |                 | 200                               | ALPHA Job#: [2] (68/64   |              |                              |                        |                                                           |             |  |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------|-------------------|--------------------|---------------|---------------------------|---------------------------------------|--------------------------------------|-----------|-----------------------------------------------|---------------|--------------------|-----------------|-----------------------------------|--------------------------|--------------|------------------------------|------------------------|-----------------------------------------------------------|-------------|--|
| ALPHA Proje                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                     |                   | roject Information |               |                           |                                       | Report Information Data Deliverables |           |                                               |               |                    |                 | les                               | Billing Information      |              |                              |                        |                                                           |             |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                     | TAL PERSON        | geot information   |               |                           |                                       | ☐ FAX ☑ EMAIL                        |           |                                               |               |                    |                 |                                   | Same as Client info PO#: |              |                              |                        |                                                           |             |  |
| Westborough, MA Mansfield, MA TEL: 508-898-9220 TEL: 508-822-9300 Project Name: 58 Charles                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                     |                   |                    | reet          |                           | ☑ ADEx □                              |                                      |           |                                               |               | Add'l Deliverables |                 |                                   |                          |              |                              |                        |                                                           |             |  |
| FAX: 508-698-9193 FAX: 508-822-3288  Client Information Project Location: Cambridge, MA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                     |                   |                    |               |                           | Regulatory Requirements/Report Limits |                                      |           |                                               |               |                    |                 |                                   |                          |              |                              |                        |                                                           |             |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Test Vi Tarresses                   |                   | INIC               |               | State/Fed Program EPA RGP |                                       |                                      |           |                                               |               |                    |                 | Criteria                          |                          |              |                              |                        |                                                           |             |  |
| Client: McPhail Ass<br>Address: 2269 Mas                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Project #: 6864<br>Project Manage   | consultation      |                    |               | THE RESIDENCE             | STATE OF THE PARTY.                   | ESUN                                 | IPTIV     | E CE                                          | RTAIN         | ITY-C              | T RE            | ASO                               | NABL                     | LE CO        | ONFID                        | ENCE PROTOCO           | LS                                                        |             |  |
| Toron or a commence of                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | UI SEE I                            | ALPHA Quote #     |                    |               |                           |                                       |                                      |           |                                               |               |                    |                 | _                                 | dical Methods Required?  |              |                              |                        |                                                           |             |  |
| Cambridge, MA 02<br>Phone: 978-273-65                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                     | Turn-Around       | TesAle CT NO       |               |                           |                                       |                                      |           | P (Reasonable Confidence Protocols) Required? |               |                    |                 |                                   |                          |              |                              |                        |                                                           |             |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 29                                  | 1000              | 32.2               |               |                           | ANA                                   | ALYS                                 | IS        |                                               |               |                    |                 |                                   |                          |              |                              |                        | SAMPLE HANDLING                                           | 0           |  |
| Fax: 6178681423                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 1.4                                 | _ Standard        |                    | h (ONLY IF PR | E-APPROVED)               |                                       |                                      |           |                                               |               |                    |                 |                                   |                          |              |                              |                        | Filtration                                                | Å           |  |
| Email: khanrahan@                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | remarks and the consequences of the | -                 | 48                 | hr            |                           |                                       |                                      | 87        |                                               |               | (B)                |                 |                                   |                          |              |                              |                        | ☐ Not Needed                                              | #           |  |
| The state of the s | been Previously analyzed by Alpha   | Due Date:         | Time:              |               |                           |                                       |                                      |           |                                               |               | MIS                |                 |                                   |                          |              |                              |                        | ☐ Lab to do  Preservation                                 | В           |  |
| Circle the following.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | ecific Requirements/Comment         | s/Detection Limit | ts:                |               |                           | 8                                     |                                      |           |                                               |               | sim                |                 |                                   | ω                        |              |                              |                        | ☐ Lab to do                                               | O T T L E S |  |
| SALINITY HARDI                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                     |                   |                    |               |                           | (200.8)(A)                            |                                      | €         |                                               | 3             | 1.4                |                 |                                   | 100                      |              |                              | Œ                      | (Please specify<br>below)                                 | LE          |  |
| Sect. A inorganics: Ammonia, Chloride, TRC,TSS,CrVI,CrIII, Tot-CN, RGP Metals                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                     |                   |                    | >             |                           | (20                                   |                                      | (4500)(A) |                                               | 0             | F) 624.1-simSIM    | (B)             | _                                 | ± N                      |              |                              | 호                      |                                                           | S           |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                     |                   |                    | . 0           |                           | RGP Metals                            |                                      | 8<br>(4   |                                               | HexCr (7196), | ű                  | 450             | 3 (C)                             | 52.1                     | (E)          | 臣                            | IĀ                     |                                                           | ja-         |  |
| ALPHA Lab ID                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Sample ID                           | Collection Sample |                    |               | Sampler's                 | M W                                   | 3                                    | Ammonia   | 3                                             | 5             | 624.1(B, C,        | Tphenol-420 (B) | 504-EDB (C)                       | 625.1/625.1SIM- (D,      | 808          | 1664                         | SUB-ETHANOL            |                                                           |             |  |
| (Lab Use Only)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | l.                                  | Date              | Time               | Matrix        | Initials                  | RGF                                   | TSS (A)                              | Amr       | 1CN                                           | Fex           | 624                | Tph             | 504                               | 625                      | PCB-608- (E) | TPH-1664-(F)                 | SUE                    | Sample Specific<br>Comments                               |             |  |
| 66869-01                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | INFLUENT                            | 12/6/21           | 12:00              | w             | KEH                       | $\boxtimes$                           | $\boxtimes$                          | Ø         | $\boxtimes$                                   | Ø             |                    |                 |                                   |                          | Ö            |                              |                        | 143600                                                    |             |  |
| -02                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | EFFLUENT                            | 12/6/21           | 12:10              | w             | KEH                       |                                       |                                      |           |                                               |               |                    |                 |                                   |                          |              |                              |                        | 1996                                                      |             |  |
| various files                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                     |                   |                    |               |                           |                                       |                                      |           |                                               |               |                    |                 |                                   |                          |              |                              |                        |                                                           |             |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                     |                   |                    |               |                           |                                       |                                      |           |                                               |               |                    |                 |                                   |                          |              |                              |                        |                                                           |             |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                     |                   |                    |               |                           |                                       |                                      |           |                                               |               |                    |                 |                                   | Ш                        |              |                              |                        |                                                           |             |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                     |                   |                    |               |                           |                                       |                                      |           |                                               |               |                    |                 |                                   | Ц                        |              |                              | ᄖ                      |                                                           |             |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                     |                   |                    |               |                           |                                       | ᆜ                                    |           | Ц                                             | Ц             | Ц                  | 브               |                                   | Ц                        | Щ            | IH                           | 닏                      |                                                           |             |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                     |                   |                    |               |                           |                                       |                                      | 닏         | 닏                                             | Ш             |                    | ᆜ               | 닏                                 | Щ                        |              | 111                          | 부                      |                                                           |             |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                     |                   |                    |               |                           | 14                                    | 브                                    | 片         | 님                                             | Ц             | Щ                  | 부               | 님                                 | 닏                        |              | 닏                            | 뷰                      |                                                           |             |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                     |                   |                    |               |                           |                                       |                                      | ш         |                                               | Ш             |                    | Ш               |                                   |                          |              | 111                          | 1-                     |                                                           |             |  |
| PLEASE ANSWER QUESTIONS ABOVE!                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                     |                   | Container Type     |               | *                         | •                                     | *                                    |           | •                                             | •             | *                  | •               |                                   |                          |              | Please print clearly, legibl | ly                     |                                                           |             |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                     |                   | Preservative       |               |                           | •                                     | •                                    |           |                                               |               |                    |                 | -                                 | Date/Time                |              |                              |                        | and completely. Samples can<br>not be logged in and       |             |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | PROJECT                             | 2 444             | Relinquished By:   |               |                           | -                                     | Date/Time Réceived By:               |           |                                               |               |                    |                 | 1                                 |                          |              |                              |                        | turnaround time clock will<br>start until any ambiguities |             |  |
| MA MCP or CT RCP?                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                     | 65                | A DIVIN            |               |                           | 12/0                                  | 121                                  | 13:0      | W                                             | 1.(X          | PUM                | Miles to        |                                   |                          | 12/6         | 1/2                          | 4.10                   | resolved. All samples<br>submitted are subject to         |             |  |
| FORM NO: 01-09(0<br>(nev, 39-JUL-07)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 007                                 | WI DEN AUG AITC   |                    |               |                           | FI                                    | 14                                   | 4 Cum -   |                                               |               |                    |                 | 72/G/21 904 Alpha's Payment Terms |                          |              |                              | Apria s Payment Terms. |                                                           |             |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                     |                   |                    |               |                           |                                       |                                      |           |                                               |               |                    |                 |                                   |                          |              |                              |                        |                                                           |             |  |



#### ANALYTICAL REPORT

Lab Number: L2167504

Client: McPhail Associates

2269 Massachusetts Avenue

Cambridge, MA 02140

ATTN: Ambrose Donovan Phone: (617) 868-1420

Project Name: 58 CHARLES STREET

Project Number: 6864.9.06

Report Date: 12/10/21

The original project report/data package is held by Alpha Analytical. This report/data package is paginated and should be reproduced only in its entirety. Alpha Analytical holds no responsibility for results and/or data that are not consistent with the original.

Certifications & Approvals: MA (M-MA086), NH NELAP (2064), CT (PH-0574), IL (200077), ME (MA00086), MD (348), NJ (MA935), NY (11148), NC (25700/666), PA (68-03671), RI (LAO00065), TX (T104704476), VT (VT-0935), VA (460195), USDA (Permit #P330-17-00196).

Eight Walkup Drive, Westborough, MA 01581-1019 508-898-9220 (Fax) 508-898-9193 800-624-9220 - www.alphalab.com



**Project Name:** 58 CHARLES STREET

Project Number: 6864.9.06

**Lab Number:** L2167504

**Report Date:** 12/10/21

| Alpha<br>Sample ID | Client ID | Matrix | Sample<br>Location | Collection<br>Date/Time | Receive Date |
|--------------------|-----------|--------|--------------------|-------------------------|--------------|
| L2167504-01        | INFLUENT  | WATER  | CAMBRIDGE, MA      | 12/08/21 09:15          | 12/08/21     |
| L2167504-02        | EFFLUENT  | WATER  | CAMBRIDGE, MA      | 12/08/21 09:30          | 12/08/21     |



L2167504

Lab Number:

Project Name: 58 CHARLES STREET

**Project Number:** 6864.9.06 **Report Date:** 12/10/21

#### **Case Narrative**

The samples were received in accordance with the Chain of Custody and no significant deviations were encountered during the preparation or analysis unless otherwise noted. Sample Receipt, Container Information, and the Chain of Custody are located at the back of the report.

Results contained within this report relate only to the samples submitted under this Alpha Lab Number and meet NELAP requirements for all NELAP accredited parameters unless otherwise noted in the following narrative. The data presented in this report is organized by parameter (i.e. VOC, SVOC, etc.). Sample specific Quality Control data (i.e. Surrogate Spike Recovery) is reported at the end of the target analyte list for each individual sample, followed by the Laboratory Batch Quality Control at the end of each parameter. Tentatively Identified Compounds (TICs), if requested, are reported for compounds identified to be present and are not part of the method/program Target Compound List, even if only a subset of the TCL are being reported. If a sample was re-analyzed or re-extracted due to a required quality control corrective action and if both sets of data are reported, the Laboratory ID of the re-analysis or re-extraction is designated with an "R" or "RE", respectively.

When multiple Batch Quality Control elements are reported (e.g. more than one LCS), the associated samples for each element are noted in the grey shaded header line of each data table. Any Laboratory Batch, Sample Specific % recovery or RPD value that is outside the listed Acceptance Criteria is bolded in the report. In reference to questions H (CAM) or 4 (RCP) when "NO" is checked, the performance criteria for CAM and RCP methods allow for some quality control failures to occur and still be within method compliance. In these instances, the specific failure is not narrated but noted in the associated QC Outlier Summary Report, located directly after the Case Narrative. QC information is also incorporated in the Data Usability Assessment table (Format 11) of our Data Merger tool, where it can be reviewed in conjunction with the sample result, associated regulatory criteria and any associated data usability implications.

Soil/sediments, solids and tissues are reported on a dry weight basis unless otherwise noted. Definitions of all data qualifiers and acronyms used in this report are provided in the Glossary located at the back of the report.

HOLD POLICY - For samples submitted on hold, Alpha's policy is to hold samples (with the exception of Air canisters) free of charge for 21 calendar days from the date the project is completed. After 21 calendar days, we will dispose of all samples submitted including those put on hold unless you have contacted your Alpha Project Manager and made arrangements for Alpha to continue to hold the samples. Air canisters will be disposed after 3 business days from the date the project is completed.

| Please contact Project Management at 800-624-9220 with any questions. |  |
|-----------------------------------------------------------------------|--|
|                                                                       |  |



Project Name: 58 CHARLES STREET Lab Number: L2167504

**Project Number:** 6864.9.06 **Report Date:** 12/10/21

#### **Case Narrative (continued)**

#### **Total Metals**

The WG1581032-3 MS recovery for silver (40%), performed on L2167504-01, recovered outside the 70-130% acceptance criteria. The result for this analyte is considered suspect due to either the heterogeneous nature of the sample or matrix interference.

I, the undersigned, attest under the pains and penalties of perjury that, to the best of my knowledge and belief and based upon my personal inquiry of those responsible for providing the information contained in this analytical report, such information is accurate and complete. This certificate of analysis is not complete unless this page accompanies any and all pages of this report.

Sebastian Corbin

Authorized Signature:

Title: Technical Director/Representative

ALPHA

Date: 12/10/21

### **METALS**



**Project Name:** 58 CHARLES STREET

Project Number: 6864.9.06

Lab Number:

Report Date:

L2167504

12/10/21

SAMPLE RESULTS

Lab ID: L2167504-01

Client ID: INFLUENT
Sample Location: CAMBRIDGE, MA

Date Collected: 12/08/21 09:15

Date Received: 12/08/21
Field Prep: Not Specified

Sample Depth:

Matrix: Water

| Parameter           | Result     | Qualifier   | Units | RL      | MDL | Dilution<br>Factor | Date<br>Prepared | Date<br>Analyzed | Prep<br>Method | Analytical<br>Method | Analyst |
|---------------------|------------|-------------|-------|---------|-----|--------------------|------------------|------------------|----------------|----------------------|---------|
|                     |            |             |       |         |     |                    |                  |                  |                |                      |         |
| Total Metals - Mans | field Lab  |             |       |         |     |                    |                  |                  |                |                      |         |
| Antimony, Total     | ND         |             | mg/l  | 0.00400 |     | 1                  | 12/09/21 08:33   | 12/09/21 14:59   | EPA 3005A      | 3,200.8              | PS      |
| Arsenic, Total      | ND         |             | mg/l  | 0.00100 |     | 1                  | 12/09/21 08:33   | 12/09/21 14:59   | EPA 3005A      | 3,200.8              | PS      |
| Cadmium, Total      | ND         |             | mg/l  | 0.00020 |     | 1                  | 12/09/21 08:33   | 12/09/21 14:59   | EPA 3005A      | 3,200.8              | PS      |
| Chromium, Total     | 0.00308    |             | mg/l  | 0.00100 |     | 1                  | 12/09/21 08:33   | 12/09/21 14:59   | EPA 3005A      | 3,200.8              | PS      |
| Copper, Total       | ND         |             | mg/l  | 0.00100 |     | 1                  | 12/09/21 08:33   | 12/09/21 14:59   | EPA 3005A      | 3,200.8              | PS      |
| Iron, Total         | 0.225      |             | mg/l  | 0.050   |     | 1                  | 12/09/21 08:33   | 12/10/21 10:51   | EPA 3005A      | 19,200.7             | SV      |
| Lead, Total         | ND         |             | mg/l  | 0.00100 |     | 1                  | 12/09/21 08:33   | 12/09/21 14:59   | EPA 3005A      | 3,200.8              | PS      |
| Mercury, Total      | ND         |             | mg/l  | 0.00020 |     | 1                  | 12/09/21 08:47   | 12/09/21 12:20   | EPA 245.1      | 3,245.1              | AC      |
| Nickel, Total       | ND         |             | mg/l  | 0.00200 |     | 1                  | 12/09/21 08:33   | 12/09/21 14:59   | EPA 3005A      | 3,200.8              | PS      |
| Selenium, Total     | ND         |             | mg/l  | 0.00500 |     | 1                  | 12/09/21 08:33   | 12/09/21 14:59   | EPA 3005A      | 3,200.8              | PS      |
| Silver, Total       | ND         |             | mg/l  | 0.00040 |     | 1                  | 12/09/21 08:33   | 12/09/21 14:59   | EPA 3005A      | 3,200.8              | PS      |
| Zinc, Total         | 0.05174    |             | mg/l  | 0.01000 |     | 1                  | 12/09/21 08:33   | 12/09/21 14:59   | EPA 3005A      | 3,200.8              | PS      |
| Total Hardness by S | SM 2340B   | - Mansfield | d Lab |         |     |                    |                  |                  |                |                      |         |
| Hardness            | 403        |             | mg/l  | 0.660   | NA  | 1                  | 12/09/21 08:33   | 12/10/21 10:51   | EPA 3005A      | 19,200.7             | SV      |
|                     |            |             | -     |         |     |                    |                  |                  |                |                      |         |
|                     |            |             |       |         |     |                    |                  |                  |                |                      |         |
| General Chemistry   | - Mansfiel | d Lab       |       |         |     |                    |                  |                  |                |                      |         |
| Chromium, Trivalent | ND         |             | mg/l  | 0.010   |     | 1                  |                  | 12/09/21 14:59   | NA             | 107,-                |         |



L2167504

Lab Number:

**Project Name:** 58 CHARLES STREET

**Project Number:** Report Date: 6864.9.06 12/10/21

**SAMPLE RESULTS** 

Lab ID: L2167504-02 Date Collected: 12/08/21 09:30 Client ID: **EFFLUENT** Date Received: 12/08/21

Sample Location: CAMBRIDGE, MA Field Prep: Not Specified

Sample Depth:

Matrix: Water

| Parameter           | Result     | Qualifier   | Units | RL      | MDL | Dilution<br>Factor | Date<br>Prepared | Date<br>Analyzed | Prep<br>Method | Analytical<br>Method | Analyst |
|---------------------|------------|-------------|-------|---------|-----|--------------------|------------------|------------------|----------------|----------------------|---------|
|                     |            |             |       |         |     |                    |                  |                  |                |                      |         |
| Total Metals - Mans | field Lab  |             |       |         |     |                    |                  |                  |                |                      |         |
| Antimony, Total     | ND         |             | mg/l  | 0.00400 |     | 1                  | 12/09/21 08:33   | 3 12/09/21 15:04 | EPA 3005A      | 3,200.8              | PS      |
| Arsenic, Total      | ND         |             | mg/l  | 0.00100 |     | 1                  | 12/09/21 08:33   | 3 12/09/21 15:04 | EPA 3005A      | 3,200.8              | PS      |
| Cadmium, Total      | ND         |             | mg/l  | 0.00020 |     | 1                  | 12/09/21 08:33   | 3 12/09/21 15:04 | EPA 3005A      | 3,200.8              | PS      |
| Chromium, Total     | 0.00340    |             | mg/l  | 0.00100 |     | 1                  | 12/09/21 08:33   | 3 12/09/21 15:04 | EPA 3005A      | 3,200.8              | PS      |
| Copper, Total       | 0.01060    |             | mg/l  | 0.00100 |     | 1                  | 12/09/21 08:33   | 3 12/09/21 15:04 | EPA 3005A      | 3,200.8              | PS      |
| Iron, Total         | 0.283      |             | mg/l  | 0.050   |     | 1                  | 12/09/21 08:33   | 3 12/10/21 10:46 | EPA 3005A      | 19,200.7             | SV      |
| Lead, Total         | 0.00343    |             | mg/l  | 0.00100 |     | 1                  | 12/09/21 08:33   | 3 12/09/21 15:04 | EPA 3005A      | 3,200.8              | PS      |
| Mercury, Total      | ND         |             | mg/l  | 0.00020 |     | 1                  | 12/09/21 08:47   | 12/09/21 11:57   | EPA 245.1      | 3,245.1              | AC      |
| Nickel, Total       | 0.00849    |             | mg/l  | 0.00200 |     | 1                  | 12/09/21 08:33   | 3 12/09/21 15:04 | EPA 3005A      | 3,200.8              | PS      |
| Selenium, Total     | ND         |             | mg/l  | 0.00500 |     | 1                  | 12/09/21 08:33   | 3 12/09/21 15:04 | EPA 3005A      | 3,200.8              | PS      |
| Silver, Total       | ND         |             | mg/l  | 0.00040 |     | 1                  | 12/09/21 08:33   | 3 12/09/21 15:04 | EPA 3005A      | 3,200.8              | PS      |
| Zinc, Total         | 0.07588    |             | mg/l  | 0.01000 |     | 1                  | 12/09/21 08:33   | 3 12/09/21 15:04 | EPA 3005A      | 3,200.8              | PS      |
| Total Hardness by S | SM 2340B   | - Mansfield | d Lab |         |     |                    |                  |                  |                |                      |         |
| Hardness            | 414        |             | mg/l  | 0.660   | NA  | 1                  | 12/09/21 08:33   | 3 12/10/21 10:46 | EPA 3005A      | 19,200.7             | SV      |
|                     |            |             |       |         |     |                    |                  |                  |                |                      |         |
|                     |            |             |       |         |     |                    |                  |                  |                |                      |         |
| General Chemistry   | - Mansfiel | d Lab       |       |         |     |                    |                  |                  |                |                      |         |
| Chromium, Trivalent | ND         |             | mg/l  | 0.010   |     | 1                  |                  | 12/09/21 15:04   | NA             | 107,-                |         |



Project Name: 58 CHARLES STREET

Project Number: 6864.9.06

Lab Number:

L2167504

**Report Date:** 12/10/21

# Method Blank Analysis Batch Quality Control

| Parameter                | Result Qualifier   | Units   | RL        | MDL    | Dilution<br>Factor | Date<br>Prepared |                | Analytical<br>Method |    |
|--------------------------|--------------------|---------|-----------|--------|--------------------|------------------|----------------|----------------------|----|
| Total Metals - Mansfield | Lab for sample(s): | 01-02 E | Batch: WO | G15810 | 000-1              |                  |                |                      |    |
| Mercury, Total           | ND                 | mg/l    | 0.00020   |        | 1                  | 12/09/21 08:47   | 12/09/21 11:50 | 3,245.1              | AC |

**Prep Information** 

Digestion Method: EPA 245.1

| Parameter             | Result Qualifier       | Units     | RL        | MDL    | Dilution<br>Factor | Date<br>Prepared | Date<br>Analyzed | Analytical<br>Method | Analyst |
|-----------------------|------------------------|-----------|-----------|--------|--------------------|------------------|------------------|----------------------|---------|
| Total Metals - Mansfi | eld Lab for sample(s): | : 01-02 E | Batch: W0 | G15810 | 32-1               |                  |                  |                      |         |
| Antimony, Total       | ND                     | mg/l      | 0.00400   |        | 1                  | 12/09/21 08:33   | 12/09/21 14:19   | 3,200.8              | PS      |
| Arsenic, Total        | ND                     | mg/l      | 0.00100   |        | 1                  | 12/09/21 08:33   | 12/09/21 14:19   | 3,200.8              | PS      |
| Cadmium, Total        | ND                     | mg/l      | 0.00020   |        | 1                  | 12/09/21 08:33   | 12/09/21 14:19   | 3,200.8              | PS      |
| Chromium, Total       | ND                     | mg/l      | 0.00100   |        | 1                  | 12/09/21 08:33   | 12/09/21 14:19   | 3,200.8              | PS      |
| Copper, Total         | ND                     | mg/l      | 0.00100   |        | 1                  | 12/09/21 08:33   | 12/09/21 14:19   | 3,200.8              | PS      |
| Lead, Total           | ND                     | mg/l      | 0.00100   |        | 1                  | 12/09/21 08:33   | 12/09/21 14:19   | 3,200.8              | PS      |
| Nickel, Total         | ND                     | mg/l      | 0.00200   |        | 1                  | 12/09/21 08:33   | 12/09/21 14:19   | 3,200.8              | PS      |
| Selenium, Total       | ND                     | mg/l      | 0.00500   |        | 1                  | 12/09/21 08:33   | 12/09/21 14:19   | 3,200.8              | PS      |
| Silver, Total         | ND                     | mg/l      | 0.00040   |        | 1                  | 12/09/21 08:33   | 12/09/21 14:19   | 3,200.8              | PS      |
| Zinc, Total           | ND                     | mg/l      | 0.01000   |        | 1                  | 12/09/21 08:33   | 12/09/21 14:19   | 3,200.8              | PS      |

**Prep Information** 

Digestion Method: EPA 3005A

| Parameter          | Result Qualifier          | Units   | RL       | MDL    | Dilution<br>Factor | Date<br>Prepared | Date<br>Analyzed | Analytical<br>Method |    |
|--------------------|---------------------------|---------|----------|--------|--------------------|------------------|------------------|----------------------|----|
| Total Metals - Man | sfield Lab for sample(s): | 01-02 E | Batch: W | G15810 | 34-1               |                  |                  |                      |    |
| Iron, Total        | ND                        | mg/l    | 0.050    |        | 1                  | 12/09/21 08:33   | 12/10/21 10:37   | 7 19,200.7           | SV |

**Prep Information** 

Digestion Method: EPA 3005A



**Project Name: 58 CHARLES STREET** 

Project Number: 6864.9.06

Lab Number:

L2167504

**Report Date:** 

12/10/21

**Method Blank Analysis Batch Quality Control** 

| Parameter            | Result Qualifier        | Units     | RL      | MDL     | Dilution<br>Factor | Date<br>Prepared | Date<br>Analyzed | Analytical<br>Method | Analyst |
|----------------------|-------------------------|-----------|---------|---------|--------------------|------------------|------------------|----------------------|---------|
| Total Hardness by SM | l 2340B - Mansfield Lat | o for sam | ple(s): | 01-02 E | Batch: WG          | 1581034-1        |                  |                      |         |
| Hardness             | ND                      | mg/l      | 0.660   | NA      | 1                  | 12/09/21 08:33   | 12/10/21 10:37   | 19,200.7             | SV      |

**Prep Information** 

Digestion Method: EPA 3005A



## Lab Control Sample Analysis Batch Quality Control

**Project Name:** 58 CHARLES STREET

Project Number: 6864.9.06

Lab Number: L2167504

**Report Date:** 12/10/21

| Parameter                                      | LCS<br>%Recovery | LCSD<br>Qual %Recovery | %Recovery<br>Qual Limits | RPD | Qual | RPD Limits |
|------------------------------------------------|------------------|------------------------|--------------------------|-----|------|------------|
| Total Metals - Mansfield Lab Associated sample | e(s): 01-02 Bato | h: WG1581000-2         |                          |     |      |            |
| Mercury, Total                                 | 89               | -                      | 85-115                   | -   |      |            |
| otal Metals - Mansfield Lab Associated sample  | e(s): 01-02 Bato | h: WG1581032-2         |                          |     |      |            |
| Antimony, Total                                | 87               | -                      | 85-115                   | -   |      |            |
| Arsenic, Total                                 | 96               | -                      | 85-115                   | -   |      |            |
| Cadmium, Total                                 | 96               | -                      | 85-115                   | -   |      |            |
| Chromium, Total                                | 100              | -                      | 85-115                   | -   |      |            |
| Copper, Total                                  | 96               | -                      | 85-115                   | -   |      |            |
| Lead, Total                                    | 92               | -                      | 85-115                   | -   |      |            |
| Nickel, Total                                  | 96               | -                      | 85-115                   | -   |      |            |
| Selenium, Total                                | 96               | -                      | 85-115                   | -   |      |            |
| Silver, Total                                  | 99               | -                      | 85-115                   | -   |      |            |
| Zinc, Total                                    | 96               | -                      | 85-115                   | -   |      |            |
| otal Metals - Mansfield Lab Associated sample  | e(s): 01-02 Bato | h: WG1581034-2         |                          |     |      |            |
| Iron, Total                                    | 99               | -                      | 85-115                   | -   |      |            |
| otal Hardness by SM 2340B - Mansfield Lab A    | ssociated sample | e(s): 01-02 Batch: WG1 | 581034-2                 |     |      |            |
| Hardness                                       | 101              | -                      | 85-115                   | -   |      |            |



### Matrix Spike Analysis Batch Quality Control

**Project Name:** 58 CHARLES STREET

Project Number: 6864.9.06

Lab Number: L2167504

**Report Date:** 12/10/21

| arameter                   | Native<br>Sample   | MS<br>Added    | MS<br>Found | MS<br>%Recovery | Qual     | MSD<br>Found | MSD<br>%Recovery Qu | Recovery<br>al Limits | RPD Qual   | RPD<br>Limits |
|----------------------------|--------------------|----------------|-------------|-----------------|----------|--------------|---------------------|-----------------------|------------|---------------|
| Total Metals - Mansfield L | ab Associated sam  | nple(s): 01-02 | QC Bato     | h ID: WG158     | 1000-3   | QC Sam       | ole: L2167504-02    | Client ID: EFF        | LUENT      |               |
| Mercury, Total             | ND                 | 0.005          | 0.00437     | 87              |          | -            | -                   | 70-130                | -          | 20            |
| Гotal Metals - Mansfield L | ab Associated sam  | nple(s): 01-02 | QC Bato     | h ID: WG158     | 1032-3   | QC Sam       | ole: L2167504-01    | Client ID: INF        | LUENT      |               |
| Antimony, Total            | ND                 | 0.5            | 0.4730      | 95              |          | -            | -                   | 70-130                | -          | 20            |
| Arsenic, Total             | ND                 | 0.12           | 0.1155      | 96              |          | -            | -                   | 70-130                | -          | 20            |
| Cadmium, Total             | ND                 | 0.053          | 0.05142     | 97              |          | -            | -                   | 70-130                | -          | 20            |
| Chromium, Total            | 0.00308            | 0.2            | 0.1950      | 96              |          | -            | -                   | 70-130                | -          | 20            |
| Copper, Total              | ND                 | 0.25           | 0.2357      | 94              |          | -            | -                   | 70-130                | -          | 20            |
| Lead, Total                | ND                 | 0.53           | 0.5213      | 98              |          | -            | -                   | 70-130                | -          | 20            |
| Nickel, Total              | ND                 | 0.5            | 0.4570      | 91              |          | -            | -                   | 70-130                | -          | 20            |
| Selenium, Total            | ND                 | 0.12           | 0.1104      | 92              |          | -            | -                   | 70-130                | -          | 20            |
| Silver, Total              | ND                 | 0.05           | 0.01991     | 40              | Q        | -            | -                   | 70-130                | -          | 20            |
| Zinc, Total                | 0.05174            | 0.5            | 0.5153      | 93              |          | -            | -                   | 70-130                | -          | 20            |
| otal Metals - Mansfield L  | _ab Associated sam | nple(s): 01-02 | QC Bato     | h ID: WG158     | 1034-3   | QC Sam       | ole: L2167504-01    | Client ID: INF        | LUENT      |               |
| Iron, Total                | 0.225              | 1              | 1.22        | 100             |          | -            | -                   | 75-125                | -          | 20            |
| otal Hardness by SM 23     | 40B - Mansfield La | b Associated   | sample(s):  | 01-02 QC E      | Batch ID | : WG15810    | 034-3 QC Sampl      | le: L2167504-01       | Client ID: | INFLUE        |
| Hardness                   | 403                | 66.2           | 464         | 92              |          | -            | -                   | 75-125                | -          | 20            |

## Lab Duplicate Analysis Batch Quality Control

**Project Name:** 58 CHARLES STREET

**Project Number:** 6864.9.06

Lab Number:

L2167504

Report Date:

12/10/21

| arameter                                                | Native Sample    | Duplicate Sample       | Units       | RPD        | Qual RP          | D Limits   |
|---------------------------------------------------------|------------------|------------------------|-------------|------------|------------------|------------|
| otal Metals - Mansfield Lab Associated sample(s): 01-02 | QC Batch ID: \   | WG1581000-4 QC Sample: | L2167504-02 | Client ID: | EFFLUENT         |            |
| Mercury, Total                                          | ND               | ND                     | mg/l        | NC         |                  | 20         |
| otal Metals - Mansfield Lab Associated sample(s): 01-02 | QC Batch ID: \   | WG1581032-4 QC Sample: | L2167504-01 | Client ID: | INFLUENT         |            |
| Antimony, Total                                         | ND               | ND                     | mg/l        | NC         |                  | 20         |
| Arsenic, Total                                          | ND               | ND                     | mg/l        | NC         |                  | 20         |
| Cadmium, Total                                          | ND               | ND                     | mg/l        | NC         |                  | 20         |
| Chromium, Total                                         | 0.00308          | 0.00309                | mg/l        | 0          |                  | 20         |
| Copper, Total                                           | ND               | 0.00213                | mg/l        | NC         |                  | 20         |
| Lead, Total                                             | ND               | ND                     | mg/l        | NC         |                  | 20         |
| Nickel, Total                                           | ND               | ND                     | mg/l        | NC         |                  | 20         |
| Selenium, Total                                         | ND               | ND                     | mg/l        | NC         |                  | 20         |
| Silver, Total                                           | ND               | ND                     | mg/l        | NC         |                  | 20         |
| Zinc, Total                                             | 0.05174          | 0.05232                | mg/l        | 1          |                  | 20         |
| otal Metals - Mansfield Lab Associated sample(s): 01-02 | QC Batch ID: \   | WG1581034-4 QC Sample: | L2167504-01 | Client ID: | INFLUENT         |            |
| Iron, Total                                             | 0.225            | 0.223                  | mg/l        | 1          |                  | 20         |
| otal Hardness by SM 2340B - Mansfield Lab Associated    | sample(s): 01-02 | QC Batch ID: WG1581034 | -4 QC Samp  | le: L2167  | 504-01 Client ID | : INFLUENT |
| Hardness                                                | 403              | 406                    | mg/l        | 1          |                  | 20         |



## INORGANICS & MISCELLANEOUS



**Project Name:** 58 CHARLES STREET

Project Number: 6864.9.06

Lab Number:

L2167504

**Report Date:** 12/10/21

#### **SAMPLE RESULTS**

Lab ID: L2167504-01 Client ID: INFLUENT

Sample Location: CAMBRIDGE, MA

Date Collected: 1

12/08/21 09:15

Date Received:

12/08/21

Field Prep:

Not Specified

Sample Depth:

Matrix:

Water

| Parameter                | Result C        | Qualifier Un | nits | RL    | MDL | Dilution<br>Factor | Date<br>Prepared | Date<br>Analyzed | Analytical<br>Method | Analyst |
|--------------------------|-----------------|--------------|------|-------|-----|--------------------|------------------|------------------|----------------------|---------|
| General Chemistry - We   | stborough Lab   |              |      |       |     |                    |                  |                  |                      |         |
| Solids, Total Suspended  | 12.             | m            | g/l  | 5.0   | NA  | 1                  | -                | 12/09/21 12:00   | 121,2540D            | MG      |
| Cyanide, Total           | 0.006           | m            | g/l  | 0.005 |     | 1                  | 12/09/21 05:20   | 12/09/21 14:27   | 121,4500CN-CE        | CS      |
| Chlorine, Total Residual | ND              | m            | g/l  | 0.02  |     | 1                  | -                | 12/09/21 08:58   | 121,4500CL-D         | KA      |
| pH (H)                   | 7.5             | S            | U    | -     | NA  | 1                  | -                | 12/08/21 22:11   | 121,4500H+-B         | AS      |
| Nitrogen, Ammonia        | 2.06            | m            | g/l  | 0.075 |     | 1                  | 12/09/21 02:14   | 12/09/21 20:44   | 121,4500NH3-BH       | I AT    |
| Chromium, Hexavalent     | ND              | m            | g/l  | 0.010 |     | 1                  | 12/09/21 08:50   | 12/09/21 09:06   | 1,7196A              | KP      |
| Anions by Ion Chromato   | graphy - Westbo | orough Lab   | )    |       |     |                    |                  |                  |                      |         |
| Chloride                 | 1380            | m            | g/l  | 50.0  |     | 100                | -                | 12/09/21 21:31   | 44,300.0             | AT      |



**Project Name:** 58 CHARLES STREET

Project Number: 6864.9.06

Lab Number:

L2167504

**Report Date:** 12/10/21

#### **SAMPLE RESULTS**

Lab ID: L2167504-02 Client ID: EFFLUENT

Sample Location: CAMBRIDGE, MA

Date Collected: 12/08/21 09:30 Date Received: 12/08/21

Field Prep: Not Specified

Sample Depth:

Matrix: Water

| Parameter                | Result        | Qualifier | Units | RL    | MDL | Dilution<br>Factor | Date<br>Prepared | Date<br>Analyzed | Analytical<br>Method | Analyst |
|--------------------------|---------------|-----------|-------|-------|-----|--------------------|------------------|------------------|----------------------|---------|
| General Chemistry - Wes  | stborough Lat | )         |       |       |     |                    |                  |                  |                      |         |
| Solids, Total Suspended  | ND            |           | mg/l  | 5.0   | NA  | 1                  | -                | 12/09/21 12:00   | 121,2540D            | MG      |
| Cyanide, Total           | 0.005         |           | mg/l  | 0.005 |     | 1                  | 12/09/21 05:20   | 12/09/21 14:29   | 121,4500CN-CE        | CS      |
| Chlorine, Total Residual | ND            |           | mg/l  | 0.02  |     | 1                  | -                | 12/09/21 08:58   | 121,4500CL-D         | KA      |
| pH (H)                   | 7.6           |           | SU    | -     | NA  | 1                  | -                | 12/08/21 22:11   | 121,4500H+-B         | AS      |
| Nitrogen, Ammonia        | 2.18          |           | mg/l  | 0.075 |     | 1                  | 12/09/21 02:14   | 12/09/21 20:45   | 121,4500NH3-BH       | H AT    |
| Chromium, Hexavalent     | ND            |           | mg/l  | 0.010 |     | 1                  | 12/09/21 08:50   | 12/09/21 09:07   | 1,7196A              | KP      |
| Anions by Ion Chromato   | graphy - Wes  | borough   | Lab   |       |     |                    |                  |                  |                      |         |
| Chloride                 | 1380          |           | mg/l  | 50.0  |     | 100                | -                | 12/09/21 21:42   | 44,300.0             | AT      |



**Project Name: 58 CHARLES STREET** 

Project Number: 6864.9.06

L2167504 **Report Date:** 12/10/21

Lab Number:

Method Blank Analysis Batch Quality Control

| Parameter                | Result Qual        | fier Units     | RL        | MDL     | Dilution<br>Factor | Date<br>Prepared | Date<br>Analyzed | Analytical<br>Method | Analyst |
|--------------------------|--------------------|----------------|-----------|---------|--------------------|------------------|------------------|----------------------|---------|
| General Chemistry - We   | estborough Lab for | sample(s): 0   | 1-02 Ba   | tch: WC | G1580890-1         |                  |                  |                      |         |
| Nitrogen, Ammonia        | ND                 | mg/l           | 0.075     |         | 1                  | 12/09/21 02:14   | 12/09/21 20:31   | 121,4500NH3-BI       | H AT    |
| General Chemistry - We   | estborough Lab for | sample(s): 0   | 1-02 Ba   | tch: WC | S1580934-1         |                  |                  |                      |         |
| Cyanide, Total           | ND                 | mg/l           | 0.005     |         | 1                  | 12/09/21 05:20   | 12/09/21 14:05   | 121,4500CN-CE        | CS CS   |
| General Chemistry - We   | estborough Lab for | sample(s): 0   | 1-02 Ba   | tch: WG | S1580983-1         |                  |                  |                      |         |
| Solids, Total Suspended  | ND                 | mg/l           | 5.0       | NA      | 1                  | -                | 12/09/21 12:00   | 121,2540D            | MG      |
| General Chemistry - We   | estborough Lab for | sample(s): 0   | 1-02 Ba   | tch: WG | 91581065-1         |                  |                  |                      |         |
| Chromium, Hexavalent     | ND                 | mg/l           | 0.010     |         | 1                  | 12/09/21 08:50   | 12/09/21 09:05   | 1,7196A              | KP      |
| General Chemistry - We   | estborough Lab for | sample(s): 0   | 1-02 Ba   | tch: WG | §1581070-1         |                  |                  |                      |         |
| Chlorine, Total Residual | ND                 | mg/l           | 0.02      |         | 1                  | -                | 12/09/21 08:58   | 121,4500CL-D         | KA      |
| Anions by Ion Chromato   | ography - Westbord | ough Lab for s | sample(s) | : 01-02 | Batch: W           | G1581380-1       |                  |                      |         |
| Chloride                 | ND                 | mg/l           | 0.500     |         | 1                  | -                | 12/09/21 10:23   | 44,300.0             | JT      |



## Lab Control Sample Analysis Batch Quality Control

**Project Name:** 58 CHARLES STREET

Project Number: 6864.9.06

Lab Number:

L2167504

Report Date:

12/10/21

| Parameter                            | LCS<br>%Recovery Qual       | LCSD<br>%Recovery Qual    | %Recovery<br>Limits | RPD | Qual | RPD Limits |
|--------------------------------------|-----------------------------|---------------------------|---------------------|-----|------|------------|
| General Chemistry - Westborough Lab  | Associated sample(s): 01-02 | Patch: WG1580885-1        |                     |     |      |            |
| рН                                   | 100                         | -                         | 99-101              | -   |      | 5          |
| General Chemistry - Westborough Lab  | Associated sample(s): 01-02 | Patch: WG1580890-2        |                     |     |      |            |
| Nitrogen, Ammonia                    | 102                         | -                         | 80-120              | -   |      | 20         |
| General Chemistry - Westborough Lab  | Associated sample(s): 01-02 | Patch: WG1580934-2        |                     |     |      |            |
| Cyanide, Total                       | 90                          | -                         | 90-110              | -   |      |            |
| General Chemistry - Westborough Lab  | Associated sample(s): 01-02 | Patch: WG1580983-2        |                     |     |      |            |
| Solids, Total Suspended              | 95                          | -                         | 80-120              | -   |      |            |
| General Chemistry - Westborough Lab  | Associated sample(s): 01-02 | Patch: WG1581065-2        |                     |     |      |            |
| Chromium, Hexavalent                 | 104                         | -                         | 85-115              | -   |      | 20         |
| General Chemistry - Westborough Lab  | Associated sample(s): 01-02 | 2 Batch: WG1581070-2      |                     |     |      |            |
| Chlorine, Total Residual             | 96                          | -                         | 90-110              | -   |      |            |
| Anions by Ion Chromatography - Westh | oorough Lab Associated sam  | ple(s): 01-02 Batch: WG15 | 581380-2            |     |      |            |
| Chloride                             | 96                          | -                         | 90-110              | -   |      |            |



## Matrix Spike Analysis Batch Quality Control

**Project Name:** 58 CHARLES STREET

Project Number: 6864.9.06

Lab Number:

L2167504

Report Date:

12/10/21

| Parameter                           | Native<br>Sample | MS<br>Added | MS<br>Found   | MS<br>%Recovery | MSD<br>Qual Found | MSD<br>%Recovery |          | ecovery<br>Limits | /<br>RPD  | RPD<br>Qual Limits |
|-------------------------------------|------------------|-------------|---------------|-----------------|-------------------|------------------|----------|-------------------|-----------|--------------------|
| General Chemistry - Westboro        | ugh Lab Asso     | ciated samp | ole(s): 01-02 | QC Batch II     | D: WG1580890-4    | QC Sample:       | L2166867 | 7-03 C            | lient ID: | MS Sample          |
| Nitrogen, Ammonia                   | 0.736            | 4           | 4.73          | 100             | -                 | -                |          | 80-120            | -         | 20                 |
| General Chemistry - Westboro        | ugh Lab Asso     | ciated samp | ole(s): 01-02 | QC Batch II     | D: WG1580934-4    | QC Sample:       | L2165443 | 3-01 C            | lient ID: | MS Sample          |
| Cyanide, Total                      | ND               | 0.2         | 0.204         | 102             | -                 | -                |          | 90-110            | -         | 30                 |
| General Chemistry - Westboro        | ugh Lab Asso     | ciated samp | ole(s): 01-02 | QC Batch II     | D: WG1581065-4    | QC Sample:       | L216750  | 1-02 C            | lient ID: | EFFLUENT           |
| Chromium, Hexavalent                | ND               | 0.1         | 0.105         | 105             | -                 | -                |          | 85-115            | -         | 20                 |
| General Chemistry - Westboro        | ugh Lab Asso     | ciated samp | ole(s): 01-02 | QC Batch II     | D: WG1581070-4    | QC Sample:       | L216734  | 3-02 C            | lient ID: | MS Sample          |
| Chlorine, Total Residual            | ND               | 0.25        | 0.28          | 112             | -                 | -                |          | 80-120            | -         | 20                 |
| Anions by Ion Chromatography Sample | / - Westborou    | gh Lab Asso | ociated samp  | ole(s): 01-02   | QC Batch ID: WG   | 31581380-3       | QC Samp  | le: L216          | 4731-07   | Client ID: M       |
| Chloride                            | 106              | 40          | 144           | 95              | -                 | -                |          | 90-110            | -         | 18                 |

## Lab Duplicate Analysis Batch Quality Control

**Project Name:** 58 CHARLES STREET

Project Number: 6864.9.06

 Lab Number:
 L2167504

 Report Date:
 12/10/21

| Parameter                                            | Native Samp          | ole D        | uplicate Sample | e Units      | RPD          | Qual       | RPD Limits       |
|------------------------------------------------------|----------------------|--------------|-----------------|--------------|--------------|------------|------------------|
| General Chemistry - Westborough Lab Associate        | ed sample(s): 01-02  | QC Batch ID: | WG1580885-2     | QC Sample:   | L2166930-01  | Client ID: | DUP Sample       |
| рН                                                   | 8.4                  |              | 8.3             | SU           | 1            |            | 5                |
| General Chemistry - Westborough Lab Associate        | ed sample(s): 01-02  | QC Batch ID: | WG1580890-3     | QC Sample:   | L2166867-03  | Client ID: | DUP Sample       |
| Nitrogen, Ammonia                                    | 0.736                |              | 0.749           | mg/l         | 2            |            | 20               |
| General Chemistry - Westborough Lab Associate        | ed sample(s): 01-02  | QC Batch ID: | WG1580934-3     | QC Sample:   | L2167366-01  | Client ID: | DUP Sample       |
| Cyanide, Total                                       | 0.016                |              | 0.016           | mg/l         | 1            |            | 30               |
| General Chemistry - Westborough Lab Associate        | ed sample(s): 01-02  | QC Batch ID: | WG1580983-3     | QC Sample:   | L2166657-01  | Client ID: | DUP Sample       |
| Solids, Total Suspended                              | 800                  |              | 1100            | mg/l         | 32           | Q          | 29               |
| General Chemistry - Westborough Lab Associate        | ed sample(s): 01-02  | QC Batch ID: | WG1581065-3     | QC Sample:   | L2167504-01  | Client ID: | INFLUENT         |
| Chromium, Hexavalent                                 | ND                   |              | ND              | mg/l         | NC           |            | 20               |
| General Chemistry - Westborough Lab Associate        | ed sample(s): 01-02  | QC Batch ID: | WG1581070-3     | QC Sample:   | L2167343-01  | Client ID: | DUP Sample       |
| Chlorine, Total Residual                             | 0.86                 |              | 0.83            | mg/l         | 4            |            | 20               |
| Anions by Ion Chromatography - Westborough La Sample | ab Associated sample | (s): 01-02 C | OC Batch ID: WG | i1581380-4 ( | QC Sample: L | 2164731-0  | 7 Client ID: DUP |
| Chloride                                             | 106                  |              | 106             | mg/l         | 0            |            | 18               |



Lab Number: L2167504

Report Date: 12/10/21

**Project Name:** 58 CHARLES STREET

Project Number: 6864.9.06

### Sample Receipt and Container Information

Were project specific reporting limits specified?

YES

**Cooler Information** 

Cooler Custody Seal

A Absent

| Container Information |                               |        | Initial | Final | Temp  |      |        | Frozen    |                                                                                                                                                                                            |
|-----------------------|-------------------------------|--------|---------|-------|-------|------|--------|-----------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Container ID          | Container Type                | Cooler | pН      | рН    | deg C | Pres | Seal   | Date/Time | Analysis(*)                                                                                                                                                                                |
| L2167504-01A          | Plastic 250ml HNO3 preserved  | Α      | <2      | <2    | 4.2   | Y    | Absent |           | CD-2008T(180),NI-2008T(180),ZN-<br>2008T(180),CU-2008T(180),HARDU(180),FE-<br>UI(180),SE-2008T(180),AS-2008T(180),HG-<br>U(28),AG-2008T(180),CR-2008T(180),PB-<br>2008T(180),SB-2008T(180) |
| L2167504-01B          | Plastic 250ml NaOH preserved  | Α      | >12     | >12   | 4.2   | Υ    | Absent |           | TCN-4500(14)                                                                                                                                                                               |
| L2167504-01C          | Plastic 500ml H2SO4 preserved | Α      | <2      | <2    | 4.2   | Υ    | Absent |           | NH3-4500(28)                                                                                                                                                                               |
| L2167504-01D          | Plastic 950ml unpreserved     | Α      | 7       | 7     | 4.2   | Υ    | Absent |           | HEXCR-7196(1),CL-300(28),TRC-4500(1),PH-4500(.01)                                                                                                                                          |
| L2167504-01E          | Plastic 950ml unpreserved     | Α      | 7       | 7     | 4.2   | Υ    | Absent |           | TSS-2540(7)                                                                                                                                                                                |
| L2167504-02A          | Plastic 250ml HNO3 preserved  | A      | <2      | <2    | 4.2   | Y    | Absent |           | CD-2008T(180),NI-2008T(180),ZN-<br>2008T(180),FE-UI(180),CU-<br>2008T(180),HARDU(180),HG-U(28),AG-<br>2008T(180),SE-2008T(180),AS-2008T(180),SB-<br>2008T(180),CR-2008T(180),PB-2008T(180) |
| L2167504-02B          | Plastic 250ml NaOH preserved  | Α      | >12     | >12   | 4.2   | Υ    | Absent |           | TCN-4500(14)                                                                                                                                                                               |
| L2167504-02C          | Plastic 500ml H2SO4 preserved | Α      | <2      | <2    | 4.2   | Υ    | Absent |           | NH3-4500(28)                                                                                                                                                                               |
| L2167504-02D          | Plastic 950ml unpreserved     | Α      | 7       | 7     | 4.2   | Υ    | Absent |           | CL-300(28),HEXCR-7196(1),TRC-4500(1),PH-4500(.01)                                                                                                                                          |
| L2167504-02E          | Plastic 950ml unpreserved     | Α      | 7       | 7     | 4.2   | Υ    | Absent |           | TSS-2540(7)                                                                                                                                                                                |



Project Name: 58 CHARLES STREET Lab Number: L2167504

**Project Number:** 6864.9.06 **Report Date:** 12/10/21

#### **GLOSSARY**

**Acronyms** 

LOQ

MS

DL - Detection Limit: This value represents the level to which target analyte concentrations are reported as estimated values, when those target analyte concentrations are quantified below the limit of quantitation (LOQ). The DL includes any adjustments

from dilutions, concentrations or moisture content, where applicable. (DoD report formats only.)

EDL - Estimated Detection Limit: This value represents the level to which target analyte concentrations are reported as estimated values, when those target analyte concentrations are quantified below the reporting limit (RL). The EDL includes any adjustments from dilutions, concentrations or moisture content, where applicable. The use of EDLs is specific to the analysis

of PAHs using Solid-Phase Microextraction (SPME).

EMPC - Estimated Maximum Possible Concentration: The concentration that results from the signal present at the retention time of an analyte when the ions meet all of the identification criteria except the ion abundance ratio criteria. An EMPC is a worst-case estimate of the concentration.

EPA - Environmental Protection Agency.

LCS - Laboratory Control Sample: A sample matrix, free from the analytes of interest, spiked with verified known amounts of

analytes or a material containing known and verified amounts of analytes.

LCSD - Laboratory Control Sample Duplicate: Refer to LCS.

LFB - Laboratory Fortified Blank: A sample matrix, free from the analytes of interest, spiked with verified known amounts of analytes or a material containing known and verified amounts of analytes.

LOD - Limit of Detection: This value represents the level to which a target analyte can reliably be detected for a specific analyte in a specific matrix by a specific method. The LOD includes any adjustments from dilutions, concentrations or moisture content, where applicable. (DoD report formats only.)

 - Limit of Quantitation: The value at which an instrument can accurately measure an analyte at a specific concentration. The LOQ includes any adjustments from dilutions, concentrations or moisture content, where applicable. (DoD report formats only.)

Limit of Quantitation: The value at which an instrument can accurately measure an analyte at a specific concentration. The LOQ includes any adjustments from dilutions, concentrations or moisture content, where applicable. (DoD report formats only.)

MDL - Method Detection Limit: This value represents the level to which target analyte concentrations are reported as estimated values, when those target analyte concentrations are quantified below the reporting limit (RL). The MDL includes any adjustments from dilutions, concentrations or moisture content, where applicable.

- Matrix Spike Sample: A sample prepared by adding a known mass of target analyte to a specified amount of matrix sample for which an independent estimate of target analyte concentration is available. For Method 332.0, the spike recovery is calculated using the native concentration, including estimated values.

MSD - Matrix Spike Sample Duplicate: Refer to MS.

NA - Not Applicable.

NC - Not Calculated: Term is utilized when one or more of the results utilized in the calculation are non-detect at the parameter's

reporting unit.

NDPA/DPA - N-Nitrosodiphenylamine/Diphenylamine.

NI - Not Ignitable.

NP - Non-Plastic: Term is utilized for the analysis of Atterberg Limits in soil.

NR - No Results: Term is utilized when 'No Target Compounds Requested' is reported for the analysis of Volatile or Semivolatile

Organic TIC only requests.

RL - Reporting Limit: The value at which an instrument can accurately measure an analyte at a specific concentration. The RL

includes any adjustments from dilutions, concentrations or moisture content, where applicable.

RPD - Relative Percent Difference: The results from matrix and/or matrix spike duplicates are primarily designed to assess the precision of analytical results in a given matrix and are expressed as relative percent difference (RPD). Values which are less than five times the reporting limit for any individual parameter are evaluated by utilizing the absolute difference between the

values; although the RPD value will be provided in the report.

SRM - Standard Reference Material: A reference sample of a known or certified value that is of the same or similar matrix as the

associated field samples.

STLP - Semi-dynamic Tank Leaching Procedure per EPA Method 1315.

TEF - Toxic Equivalency Factors: The values assigned to each dioxin and furan to evaluate their toxicity relative to 2,3,7,8-TCDD.

TEQ - Toxic Equivalent: The measure of a sample's toxicity derived by multiplying each dioxin and furan by its corresponding TEF

and then summing the resulting values.

TIC - Tentatively Identified Compound: A compound that has been identified to be present and is not part of the target compound list (TCL) for the method and/or program. All TICs are qualitatively identified and reported as estimated concentrations.

Report Format: Data Usability Report



Project Name:58 CHARLES STREETLab Number:L2167504Project Number:6864.9.06Report Date:12/10/21

#### **Footnotes**

1 - The reference for this analyte should be considered modified since this analyte is absent from the target analyte list of the original method.

#### **Terms**

Analytical Method: Both the document from which the method originates and the analytical reference method. (Example: EPA 8260B is shown as 1,8260B.) The codes for the reference method documents are provided in the References section of the Addendum.

Difference: With respect to Total Oxidizable Precursor (TOP) Assay analysis, the difference is defined as the Post-Treatment value minus the Pre-Treatment value.

Final pH: As it pertains to Sample Receipt & Container Information section of the report, Final pH reflects pH of container determined after adjustment at the laboratory, if applicable. If no adjustment required, value reflects Initial pH.

Frozen Date/Time: With respect to Volatile Organics in soil, Frozen Date/Time reflects the date/time at which associated Reagent Water-preserved vials were initially frozen. Note: If frozen date/time is beyond 48 hours from sample collection, value will be reflected in 'bold'.

Initial pH: As it pertains to Sample Receipt & Container Information section of the report, Initial pH reflects pH of container determined upon receipt, if applicable.

PAH Total: With respect to Alkylated PAH analyses, the 'PAHs, Total' result is defined as the summation of results for all or a subset of the following compounds: Naphthalene, C1-C4 Naphthalenes, 2-Methylnaphthalene, 1-Methylnaphthalene, Biphenyl, Acenaphthylene, Acenaphthene, Fluorene, C1-C3 Fluorenes, Phenanthrene, C1-C4 Phenanthrenes/Anthracenes, Anthracene, Fluoranthene, Pyrene, C1-C4 Fluoranthenes/Pyrenes, Benz(a)anthracene, Chrysene, C1-C4 Chrysenes, Benzo(b)fluoranthene, Benzo(j)+(k)fluoranthene, Benzo(e)pyrene, Benzo(a)pyrene, Perylene, Indeno(1,2,3-cd)pyrene, Dibenz(ah)+(ac)anthracene, Benzo(g,h,i)perylene. If a 'Total' result is requested, the results of its individual components will also be reported.

PFAS Total: With respect to PFAS analyses, the 'PFAS, Total (5)' result is defined as the summation of results for: PFHpA, PFHxS, PFOA, PFNA and PFOS. In addition, the 'PFAS, Total (6)' result is defined as the summation of results for: PFHpA, PFHxS, PFOA, PFNA, PFDA and PFOS. For MassDEP DW compliance analysis only, the 'PFAS, Total (6)' result is defined as the summation of results at or above the RL. Note: If a 'Total' result is requested, the results of its individual components will also be reported.

The target compound Chlordane (CAS No. 57-74-9) is reported for GC ECD analyses. Per EPA, this compound "refers to a mixture of chlordane isomers, other chlorinated hydrocarbons and numerous other components." (Reference: USEPA Toxicological Review of Chlordane, In Support of Summary Information on the Integrated Risk Information System (IRIS), December 1997.)

Total: With respect to Organic analyses, a 'Total' result is defined as the summation of results for individual isomers or Aroclors. If a 'Total' result is requested, the results of its individual components will also be reported. This is applicable to 'Total' results for methods 8260, 8081 and 8082.

#### Data Qualifiers

- A Spectra identified as "Aldol Condensates" are byproducts of the extraction/concentration procedures when acetone is introduced in the process.
- The analyte was detected above the reporting limit in the associated method blank. Flag only applies to associated field samples that have detectable concentrations of the analyte at less than ten times (10x) the concentration found in the blank. For MCP-related projects, flag only applies to associated field samples that have detectable concentrations of the analyte at less than ten times (10x) the concentrations of the analyte at less than ten times (10x) the concentrations of the analyte was detectable concentrations of the analyte at less than ten times (10x) the concentration found in the blank AND the analyte was detected above one-half the reporting limit (or above the reporting limit for common lab contaminants) in the associated method blank. For NJ-Air-related projects, flag only applies to associated field samples that have detectable concentrations of the analyte above the reporting limit. For NJ-related projects (excluding Air), flag only applies to associated field samples that have detectable concentrations of the analyte, which was detected above the reporting limit in the associated method blank or above five times the reporting limit for common lab contaminants (Phthalates, Acetone, Methylene Chloride, 2-Butanone).
- Co-elution: The target analyte co-elutes with a known lab standard (i.e. surrogate, internal standards, etc.) for co-extracted analyses.
- Concentration of analyte was quantified from diluted analysis. Flag only applies to field samples that have detectable concentrations of the analyte.
- E Concentration of analyte exceeds the range of the calibration curve and/or linear range of the instrument.
- F The ratio of quantifier ion response to qualifier ion response falls outside of the laboratory criteria. Results are considered to be an estimated maximum concentration.
- G The concentration may be biased high due to matrix interferences (i.e, co-elution) with non-target compound(s). The result should be considered estimated.
- H The analysis of pH was performed beyond the regulatory-required holding time of 15 minutes from the time of sample collection.
- I The lower value for the two columns has been reported due to obvious interference.
- J Estimated value. This represents an estimated concentration for Tentatively Identified Compounds (TICs).
- M Reporting Limit (RL) exceeds the MCP CAM Reporting Limit for this analyte.
- **ND** Not detected at the reporting limit (RL) for the sample.
- NJ Presumptive evidence of compound. This represents an estimated concentration for Tentatively Identified Compounds (TICs), where

Report Format: Data Usability Report



Project Name:58 CHARLES STREETLab Number:L2167504Project Number:6864.9.06Report Date:12/10/21

#### Data Qualifiers

the identification is based on a mass spectral library search.

- P The RPD between the results for the two columns exceeds the method-specified criteria.
- Q The quality control sample exceeds the associated acceptance criteria. For DOD-related projects, LCS and/or Continuing Calibration Standard exceedences are also qualified on all associated sample results. Note: This flag is not applicable for matrix spike recoveries when the sample concentration is greater than 4x the spike added or for batch duplicate RPD when the sample concentrations are less than 5x the RL. (Metals only.)
- **R** Analytical results are from sample re-analysis.
- **RE** Analytical results are from sample re-extraction.
- S Analytical results are from modified screening analysis.
- The surrogate associated with this target analyte has a recovery outside the QC acceptance limits. (Applicable to MassDEP DW Compliance samples only.)
- Z The batch matrix spike and/or duplicate associated with this target analyte has a recovery/RPD outside the QC acceptance limits. (Applicable to MassDEP DW Compliance samples only.)

Report Format: Data Usability Report



Project Name:58 CHARLES STREETLab Number:L2167504Project Number:6864.9.06Report Date:12/10/21

#### REFERENCES

- Test Methods for Evaluating Solid Waste: Physical/Chemical Methods. EPA SW-846. Third Edition. Updates I VI, 2018.
- Methods for the Determination of Metals in Environmental Samples, Supplement I. EPA/600/R-94/111. May 1994.
- 19 Inductively Coupled Plasma Atomic Emission Spectrometric Method for Trace Element Analysis of Water and Wastes. Appendix C, Part 136, 40 CFR (Code of Federal Regulations). July 1, 1999 edition.
- Methods for the Determination of Inorganic Substances in Environmental Samples, EPA/600/R-93/100, August 1993.
- 107 Alpha Analytical In-house calculation method.
- 121 Standard Methods for the Examination of Water and Wastewater. APHA-AWWA-WEF. Standard Methods Online.

#### LIMITATION OF LIABILITIES

Alpha Analytical performs services with reasonable care and diligence normal to the analytical testing laboratory industry. In the event of an error, the sole and exclusive responsibility of Alpha Analytical shall be to re-perform the work at it's own expense. In no event shall Alpha Analytical be held liable for any incidental, consequential or special damages, including but not limited to, damages in any way connected with the use of, interpretation of, information or analysis provided by Alpha Analytical.

We strongly urge our clients to comply with EPA protocol regarding sample volume, preservation, cooling, containers, sampling procedures, holding time and splitting of samples in the field.



Alpha Analytical, Inc. Facility: Company-wide

Department: Quality Assurance

Title: Certificate/Approval Program Summary

ID No.:17873 Revision 19

Published Date: 4/2/2021 1:14:23 PM

Page 1 of 1

#### Certification Information

#### The following analytes are not included in our Primary NELAP Scope of Accreditation:

#### Westborough Facility

EPA 624/624.1: m/p-xylene, o-xylene, Naphthalene

EPA 625/625.1: alpha-Terpineol

EPA 8260C/8260D: NPW: 1,2,4,5-Tetramethylbenzene; 4-Ethyltoluene, Azobenzene; SCM: Iodomethane (methyl iodide), 1,2,4,5-Tetramethylbenzene;

EPA 8270D/8270E: NPW: Dimethylnaphthalene,1,4-Diphenylhydrazine, alpha-Terpineol; SCM: Dimethylnaphthalene,1,4-Diphenylhydrazine.

SM4500: NPW: Amenable Cyanide; SCM: Total Phosphorus, TKN, NO2, NO3.

#### **Mansfield Facility**

**SM 2540D:** TSS

EPA 8082A: NPW: PCB: 1, 5, 31, 87,101, 110, 141, 151, 153, 180, 183, 187.

EPA TO-15: Halothane, 2,4,4-Trimethyl-2-pentene, 2,4,4-Trimethyl-1-pentene, Thiophene, 2-Methylthiophene,

3-Methylthiophene, 2-Ethylthiophene, 1,2,3-Trimethylbenzene, Indan, Indene, 1,2,4,5-Tetramethylbenzene, Benzothiophene, 1-Methylnaphthalene.

Biological Tissue Matrix: EPA 3050B

#### The following analytes are included in our Massachusetts DEP Scope of Accreditation

#### Westborough Facility:

#### **Drinking Water**

EPA 300.0: Chloride, Nitrate-N, Fluoride, Sulfate; EPA 353.2: Nitrate-N, Nitrite-N; SM4500NO3-F: Nitrate-N, Nitrite-N; SM4500F-C, SM4500CN-CE,

EPA 180.1, SM2130B, SM4500CI-D, SM2320B, SM2540C, SM4500H-B, SM4500NO2-B

EPA 332: Perchlorate; EPA 524.2: THMs and VOCs; EPA 504.1: EDB, DBCP.

Microbiology: SM9215B; SM9223-P/A, SM9223B-Colilert-QT,SM9222D.

#### Non-Potable Water

SM4500H,B, EPA 120.1, SM2510B, SM2540C, SM2320B, SM4500CL-E, SM4500F-BC, SM4500NH3-BH: Ammonia-N and Kjeldahl-N, EPA 350.1: Ammonia-N, LACHAT 10-107-06-1-B: Ammonia-N, EPA 351.1, SM4500NO3-F, EPA 353.2: Nitrate-N, SM4500P-E, SM4500P-B, E, SM4500SO4-E, SM5220D, EPA 410.4, SM5210B, SM5310C, SM4500CL-D, EPA 1664, EPA 420.1, SM4500-CN-CE, SM2540D, EPA 300: Chloride, Sulfate, Nitrate. EPA 624.1: Volatile Halocarbons & Aromatics,

EPA 608.3: Chlordane, Toxaphene, Aldrin, alpha-BHC, beta-BHC, gamma-BHC, delta-BHC, Dieldrin, DDD, DDE, DDT, Endosulfan II, Endosulfan II, Endosulfan sulfate, Endrin, Endrin Aldehyde, Heptachlor, Heptachlor Epoxide, PCBs

EPA 625.1: SVOC (Acid/Base/Neutral Extractables), EPA 600/4-81-045: PCB-Oil.

Microbiology: SM9223B-Colilert-QT; Enterolert-QT, SM9221E, EPA 1600, EPA 1603, SM9222D.

#### Mansfield Facility:

#### **Drinking Water**

EPA 200.7: Al, Ba, Cd, Cr, Cu, Fe, Mn, Ni, Na, Ag, Ca, Zn. EPA 200.8: Al, Sb, As, Ba, Be, Cd, Cr, Cu, Pb, Mn, Ni, Se, Ag, TL, Zn. EPA 245.1 Hg. EPA 522, EPA 537.1.

#### Non-Potable Water

EPA 200.7: Al, Sb, As, Be, Cd, Ca, Cr, Co, Cu, Fe, Pb, Mg, Mn, Mo, Ni, K, Se, Ag, Na, Sr, TL, Ti, V, Zn.

EPA 200.8: Al, Sb, As, Be, Cd, Cr, Cu, Fe, Pb, Mn, Ni, K, Se, Ag, Na, TL, Zn.

EPA 245.1 Hg

SM2340B

For a complete listing of analytes and methods, please contact your Alpha Project Manager.

Pre-Qualtrax Document ID: 08-113 Document Type: Form

| CHAIN OF CU                            |                                                                                                        |                       | DY                          | PAGE 1 OF       | 1                | Date                                                       | Rec'd   | in Lab:                              | 12                 | 108     | 1/2          | 1               | 1           | ALPHA Job#: L2167504                 |              |              |             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |               |  |
|----------------------------------------|--------------------------------------------------------------------------------------------------------|-----------------------|-----------------------------|-----------------|------------------|------------------------------------------------------------|---------|--------------------------------------|--------------------|---------|--------------|-----------------|-------------|--------------------------------------|--------------|--------------|-------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------|--|
| ALPHA                                  | A                                                                                                      | Project Inform        | Project Information         |                 |                  |                                                            |         | Report Information Data Deliverables |                    |         |              |                 |             |                                      | ng In        | forma        | tion        | Die la Bert                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |               |  |
|                                        | Mansfield, MA                                                                                          |                       |                             | # 00 W          |                  | FAX MAIL Same as Client info PO#:                          |         |                                      |                    |         |              |                 |             |                                      |              |              |             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |               |  |
| TEL: 508-898-9220                      | TEL: 508-822-9300                                                                                      | Project Name: 5       | 68 Charles Si               | reet            |                  | ⊠ /                                                        | ADEx    |                                      | Add'l Deliverables |         |              |                 |             |                                      |              |              |             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |               |  |
| Client Information                     | FAX: 508-822-3288                                                                                      | Project Location      | · Cambridge                 | MA              |                  | Regulatory Requirements/Report Limit                       |         |                                      |                    |         |              |                 | imits       | ts 4 Sylin September 1900 days the G |              |              |             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |               |  |
| Client: McPhail Ass                    | 000000000000000000000000000000000000000                                                                | territo-motor soon    |                             | , IVIA          |                  | State/Fed Program  EPA RGP                                 |         |                                      |                    |         |              |                 | Criter      | ia                                   |              |              |             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |               |  |
|                                        | McPhail Associates, LLC Project #: 6864.9.06 s: 2269 Massachusetts Avenue Project Manager: K. Hanrahan |                       |                             |                 |                  | MCP PRESUMPTIVE CERTAINTY-CT REASONABLE CONFIDENCE PROTOCO |         |                                      |                    |         |              |                 |             |                                      | DLS          |              |             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |               |  |
| Cambridge, MA 02140 ALPHA Quote #:     |                                                                                                        |                       |                             |                 | ⊠ Y              |                                                            |         | □ No                                 |                    |         |              | nalytica        |             |                                      |              |              |             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |               |  |
| Phone: 978-273-6529 Turn-Around Time   |                                                                                                        |                       |                             | _ Y             | ALYS             |                                                            | ⊠ No    | _                                    | Are (              | CT RCF  | (Reas        | onable          | Confid      | lence P                              | rotocol      | s) Required? | T           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |               |  |
| Fax: 6178681423                        |                                                                                                        | ☐ Standard            | Contraction (               | sh (ONLY IF PRE | APPROVED         | ANA                                                        | ALTS    | 15                                   |                    |         |              |                 |             |                                      |              |              |             | SAMPLE HANDLING                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | T             |  |
| Email: khanrahan@                      | mcphailgeo.com                                                                                         |                       | 48                          |                 | - NOVED          |                                                            |         |                                      |                    |         | 2000         |                 |             |                                      |              |              |             | Filtration  Done                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | A<br>L        |  |
|                                        | been Previously analyzed by Alpha                                                                      | Due Date:             | Time:                       |                 |                  |                                                            |         |                                      |                    |         | (B)          |                 |             |                                      |              |              |             | ☑ Not Needed<br>☐ Lab to do                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | *             |  |
| Other Project Spe                      | ecific Requirements/Commen                                                                             | ts/Detection Limit    | s:                          |                 |                  |                                                            |         |                                      |                    |         | 624.1-simSIM |                 |             |                                      |              |              |             | Preservation                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | B<br>0<br>T   |  |
| Circle the following                   |                                                                                                        |                       |                             |                 |                  | ₹                                                          |         | -                                    |                    | 3       | 1-si         |                 |             | ), E)                                |              |              | _           | ☐ Lab to do<br>(Please specify                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | I             |  |
| SALINITY HARDI<br>Sect. A inorganics:  | NESS (PH)<br>Ammonia, Chloride, TRC,TSS,Ci                                                             | rVI,CrIII, Tot-CN, RC | I,Crill, Tot-CN, RGP Metals |                 |                  |                                                            |         | 00                                   |                    | ō       | 624          | <u>@</u>        |             | ¥                                    |              |              | JL (F)      | below)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | E             |  |
|                                        |                                                                                                        |                       |                             |                 |                  | RGP Metals (200.8)(A)                                      |         | Ammonia (4500)(A)                    |                    | (7196), | C, F)        | 420 (           | 0           | 625.1/625.1SIM- (D,                  | (E)          | E            | SUB-ETHANOL |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |               |  |
| ALPHA Lab ID                           | Sample ID                                                                                              | Colle                 | Collection                  |                 | Sample Sampler's |                                                            | €       | Binor                                | 3                  | 2 8     | 1(B,         | Tphenol-420 (B) | 504-EDB (C) | 1/62                                 | 308-         | -664         | Ė           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 188           |  |
| (Lab Use Only)                         |                                                                                                        | Date                  | Time                        | Matrix          | Initials         | RGP                                                        | TSS (A) | Amn                                  | TCN (A)            | HexCr   | 624.1(B,     | Tphe            | 504-        | 625.                                 | PCB-608- (E) | TPH-1664-(F) | SUB         | Sample Specific<br>Comments                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 18            |  |
| 67534-01                               | INFLUENT                                                                                               | 12/8/21               | 9:15                        | w               | HMS              | $\boxtimes$                                                | Ø       |                                      | Ø                  | Ø       |              |                 |             |                                      |              |              |             | The control of the co | 5             |  |
| 02                                     | EFFLUENT                                                                                               | 12/8/21               | 9:30                        | W               | ZMH              |                                                            | X       | X                                    | X                  | X       |              |                 |             |                                      |              |              |             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 5             |  |
|                                        |                                                                                                        |                       |                             |                 |                  |                                                            |         |                                      |                    |         |              |                 |             |                                      |              |              |             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |               |  |
|                                        |                                                                                                        |                       |                             |                 |                  |                                                            |         |                                      |                    |         |              |                 |             |                                      |              | 닏            | 닏           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |               |  |
|                                        |                                                                                                        | _                     |                             |                 |                  | H                                                          | 片       | 무                                    | H                  | 무       | 무            | H               | H           | Η                                    | 부            | H            | 片           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |               |  |
|                                        |                                                                                                        | _                     |                             |                 | -                | H                                                          | H       | H                                    | 片                  | +       | 井            | 片               | H           | 片                                    | H            | 片            | 片           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | $\vdash$      |  |
|                                        |                                                                                                        |                       |                             |                 |                  | H                                                          | H       | H                                    | H                  | H       | H            | H               | H           | H                                    | H            | H            | 뉴           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | $\vdash$      |  |
|                                        |                                                                                                        |                       |                             |                 |                  |                                                            | Ē       | Ē                                    | i                  | ō       | ī            | $\overline{}$   | i           | ö                                    | i            | i            | i           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | $\vdash$      |  |
|                                        |                                                                                                        |                       |                             |                 |                  |                                                            |         |                                      |                    |         |              |                 |             |                                      |              |              |             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |               |  |
| PLEASE ANSWER QUESTIONS ABOVE!         |                                                                                                        |                       | Cor                         | ntainer Type    | -                |                                                            |         |                                      |                    |         |              | -               |             |                                      | -            |              |             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |               |  |
|                                        |                                                                                                        |                       |                             |                 | Preservative     | •                                                          |         | •                                    | *                  | ٠       | ٠            | (4)             | •           | *                                    | ٠            | -            | •           | Please print clearly, legit<br>and completely. Sample                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | aly<br>is can |  |
|                                        | PROJECT                                                                                                |                       | Relino                      | uished By:      |                  | -                                                          | te/Tim  |                                      | 1127               | Λ       | Receiv       | ed By           | 0           | 1                                    |              | ate/Tin      | ne          | not be logged in and<br>turnaround time clock wi<br>start until any ambiguitie                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |               |  |
|                                        | or CT RCP?                                                                                             | 10                    | not                         | 2.7             | Man              | 12/8                                                       | -       | _                                    | w                  | de      | m            | OI              | W J         | 270                                  | -            | 921          | Mi          | resolved. All samples<br>submitted are subject to                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 5.000         |  |
| FORM NO: 01-01(I)<br>(Nex. 30-358,-07) |                                                                                                        | uv.                   | Jan                         | A XK            | 46 13/1          | 10/                                                        | 17      | by                                   | 1                  | 1/2     |              | all             | X           |                                      | 10/9         | 9011         | 1.07        | Alpha's Payment Terms.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |               |  |
|                                        |                                                                                                        |                       |                             |                 |                  | 2                                                          |         | 7.11                                 |                    | /       |              |                 | 1)          |                                      |              |              |             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |               |  |



#### **APPENDIX E:**

#### BEST MANAGEMENT PRACTICE PLAN

A Notice of Intent for a Remediation General Permit (RGP) under the National Pollutant Discharge Elimination System (NPDES) has been submitted to the US Environmental Protection Agency (EPA) in anticipation of temporary construction dewatering that will occur during renovation activities at the property located at 58 Charles Street in Cambridge, Massachusetts. This Best Management Practices Plan (BMPP) has been prepared as an Appendix to the RGP application and will be posted at the site during the time period that temporary construction dewatering is occurring at the site.

#### **Water Treatment and Management**

During construction of the proposed foundation, dewatering effluent is anticipated to be pumped from extraction wells and localized sumps directly into a settling tank. The effluent will then flow through treatment systems and discharge through hoses or piping connected into the storm water drains located beneath subject site. Based upon a review of the City of Cambridge stormwater drainage plan, the above referenced stormwater drain ultimately discharges into the Lechmere Canal. Dewatering effluent treatment will consist of an 8,000-gallon settling tank with bag filters to remove suspended soil particulates, prior to off-site discharge.

#### **Discharge Monitoring and Compliance**

Regular sampling and testing will be conducted at the influent to the system and the treated effluent as required by the RGP. This includes laboratory testing required within days 1 and 3 of initial discharge and then weekly or monthly testing to be conducted through the end of the scheduled discharge.

Monitoring will include checking the condition of the treatment system, assessing the need for treatment system adjustments based on monitoring data, observing and recording daily flow rates and discharge quantities, and verifying the flow path of the discharged effluent.

The total monthly flow will be monitored by checking and documenting the flow through the flow meter to be installed on the system. Flow will be maintained below the "system design flow" by regularly monitoring flow and adjusting the amount of construction dewatering as needed. Monthly monitoring reports will be compiled and maintained at the site.

#### **System Maintenance**

A number of methods will be used to minimize the potential for violations during the term of this permit discharge. Scheduled regular maintenance of the treatment system will be conducted to verify proper operation. Regular maintenance will include checking the condition of the treatment system equipment such as the settling tanks, bag filters, hoses,



pumps, and flow meters. Equipment will be monitored daily for potential issues or unscheduled maintenance requirements.

Employees who have direct or indirect responsibility for ensuring compliance with the RGP will be trained by the Contractor.

#### **Miscellaneous Items**

It is anticipated that the erosion control measures and the nature of the site will minimize potential runoff to or from the site. The project specifications also include requirements for erosion control. Site security for the treatment system will be addressed within the overall site security plan.

No adverse effects on designated uses of surrounding surface water bodies is anticipated. The nearest surface water body is the Charles River which is located approximately 1,300 feet to the east of the subject site. Dewatering effluent will be pumped into a settling tank. Water within the settling tank will pumped through bag filters prior to discharge into the storm drains.

#### **Management of Treatment System Materials**

Dewatering effluent will be pumped directly to the treatment system from the excavation with use of hoses and localized sumps to minimize handling. The Contractor will establish staging areas for equipment or materials storage that may be possible sources of pollution away from any dewatering activities, to the extent practicable.

Sediment from the tank used in the treatment system will be characterized and removed from the site to an appropriate receiving facility, in accordance with applicable laws and regulations. Bag filters will be disposed of as necessary.