

January 6, 2021

89 Crawford Street

Leominster, Massachusetts 01453

Tel: 774.450.7177 Fax: 888.835.0617 www.lrt-llc.net

U.S. Environmental Protection Agency Office of Ecosystem Protection EPA/OEP RGP Applications Coordinator 5 Post Office Square, Suite 100 (OEP06-4) Boston, Massachusetts 02109-3912

Reference: Notice of Intent (NOI) - Remediation General Permit (RGP)

1600 Osgood Street

North Andover, Massachusetts

Dear Sir/Madam:

On behalf of JDC Demolition Company Inc. (JDC Demo), Lockwood Remediation Technologies, LLC (LRT) has prepared this Notice of Intent (NOI) requesting a determination of coverage under the United States Environmental Protection Agency's (EPA's) Remediation General Permit (RGP), pursuant EPA's National Pollutant Discharge Elimination System (NPDES) program. This NOI was prepared in accordance with the general requirements of the NPDES RGP and related guidance documentation provided by EPA. The completed NOI Form is provided in **Appendix A**.

Site Information

This NOI has been prepared for the management groundwater that will be generated during dewatering activities associated with site demolition of exiting below grade foundations located at 1600 Osgood Street North Andover, Massachusetts (the Site). This work will commence in the Spring 2021 and is anticipated to be completed within twelve months. A Locus Plan is provided as **Figure 1** and various Site Plans satisfying the requirements of RGP Appendix IV Part I.B and I.D are provided as **Figures 2A, 2B and 2C**.

Work Summary

The work includes the demolition of multiple buildings at the Site. Two buildings, Buildings 40 and 50, include deep below grade foundation elements. To remove these foundations, dewatering will be required to lower the groundwater table as work is being performed. Deep wells will be strategically placed around the excavation areas and electric submersible pumps will be placed in wells to depress the water table. The water generated during dewatering (Source water) will be pumped to a treatment system prior to discharge to the existing onsite storm drainage system. The drainage system discharges to the Merrimack River. Because of the phased work approach, two separate drainage structures will be utilized for the discharge. The first structure near Building 50 discharges directly to the Merrimack River at Outfall 001 and the second structure near Building 40 discharges to Outfall 002 to an unnamed waterbody which is a

tributary of the Merrimack. Please note that the dewatering and water treatment for Building 40 and Building 50 will be done at separate times. Drawings of the storm water drainage system, which depicts the path of water from the catch basins to the two outfalls, are provided on **Figure 2B and Figure 2C**. To characterize groundwater from the dewatering areas, LRT collected representative groundwater samples from an on-site monitoring well on December 15, 2020. The well is located approximately midway between the two dewatering areas and is depicted on **Figure 2A**. A sample of the receiving water (The Merrimack River) was also collected on December 15, 2020. The samples were analyzed for various parameters in accordance with the NPDES RGP Activity Category III-G.

Discharge and Receiving Surface Water Information

A summary of the analytical results is provided under Section 4 of the NOI Form within **Appendix A**, and copies of the laboratory data reports are provided in **Appendix B**. Concentrations of total suspended solids (TSS), and Metals (Chromium, Iron, Lead) were detected in groundwater at concentrations above the respective NPDES RGP Effluent Limitations. To meet these standards, Source water will undergo treatment that includes bag filtration and carbon filtration prior to discharge. It is assumed that these metals will be treated through settling and bag filtration; however, if metals still exceed the applicable effluent limitations, ion exchange media vessels will be added to the treatment train. Water treatment system details are provided below.

Water Treatment System

A water treatment system schematic is provided as **Figure 3**. Cutsheets of the system components, product information and Safety Data Sheets (SDS) are included in **Appendix C**.

Source water will be pumped to a treatment system with a design flow of up to 400 gallons per minute (gpm); the average effluent flow of the system is estimated to be 300 gpm, and the maximum flow will not exceed the design flow. Source water will enter one 18,000-gallon weir tank at the head of the system. From the weir tank, the water will be pumped to a multi-bag filter skid (with two multi-bag filter housings) and then pass through two carbon vessels plumbed in series. Each carbon vessel will contain reactivated liquid-phase carbon. Treated water will flow through a flow/totalizer meter prior to discharge into a storm drain that either directly or indirectly discharges to the Merrimack River.

If required, two ion exchange vessels (one with cation resin and one with anion resin) will be added to the treatment system and installed after the carbon vessels.

Consultation with Federal Services

LRT reviewed online electronic data viewers and databases from the Massachusetts Geographical Information System (MassGIS), the Massachusetts Division of Fisheries and Wildlife (MassWildlife; Natural Heritage and Endangered Species Program), and the U.S. National Parks Service Natural Historic Places (NPS). Based on this review, the Site and the point where the proposed discharge reaches the receiving surface water body are not located within an Area of Critical Environmental Concern (ACEC).

In addition, the Site and the proposed discharge point are not located within Habitats of Rare Wetland Wildlife, Habitats of Rare Species, Estimated Habitats of Rare Wildlife, or listed as a National Historic Place. Documentation is included in **Appendix D**.

Coverage under NPDES RGP

It is LRT's opinion that the proposed discharge is eligible for coverage under the NPDES RGP. On behalf of JDC Demolition Company Inc., we are requesting coverage under the NPDES RGP for the discharge of treated wastewater to the Merrimack River in support of construction dewatering activities that are to take place at 1600 Osgood Street.

The enclosed NOI form and supporting documents provide the required information about the Site, discharge, treatment system, receiving water, and consultation with state and federal agencies. For this project, JDC Demo is considered the Operator and has operational control over the construction plans and specifications, including the ability to make modifications to those plans and specifications.

Please feel free to contact us at 774-450-7177 if you have any questions or if you require additional information.

Sincerely,

Lockwood Remediation Technologies, LLC

Jacob Jennings

Jacob Jennings Staff Scientist John Henry

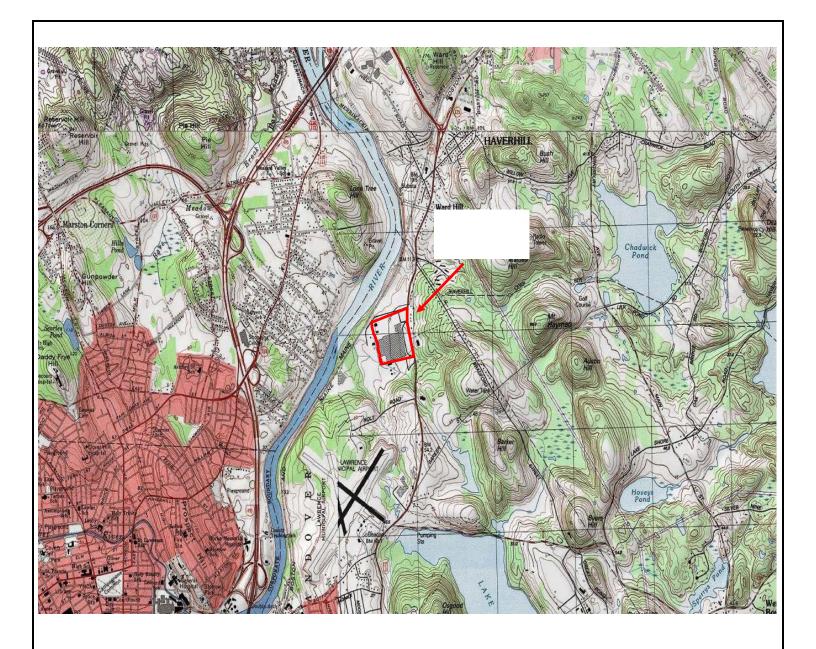
John Henry, PE Senior Project Manager

Encl: Figure 1 - Locus Plan

Figure 2A – General Site Plan Figure 2B – Site Plan Building 40 Figure 2C – Site Plan Building 50

Figure 3 - Water Treatment System Schematic

Appendix A - NOI Form Appendix B - Laboratory Data


Appendix C - Water Treatment System Cutsheets

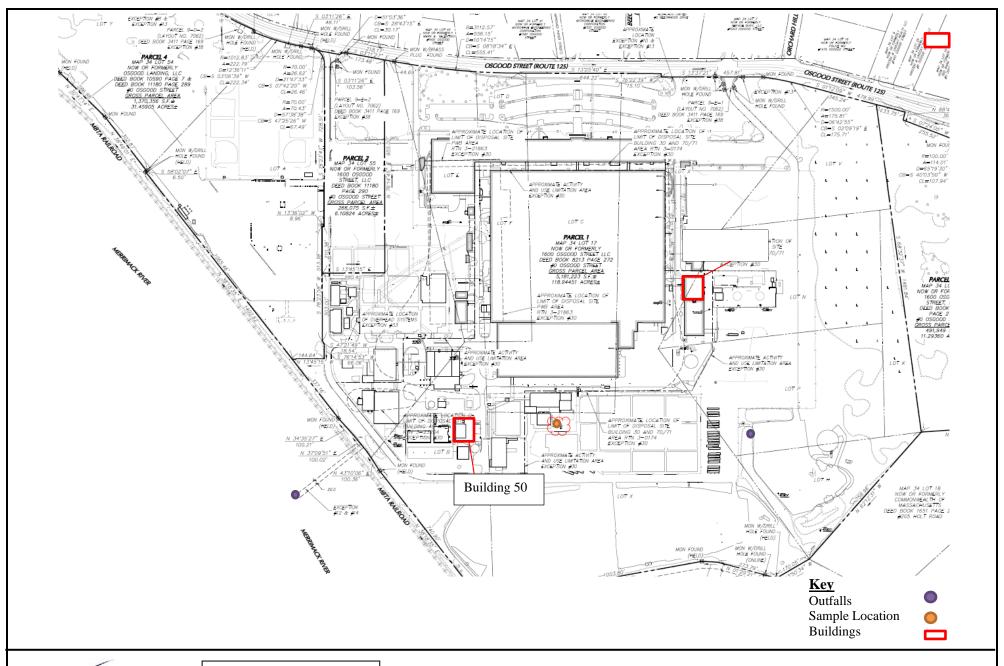
Appendix D - Supporting Information

cc:

Cathy Vakalopoulos – Mass DEP Chad Vincent – JDC Demolition

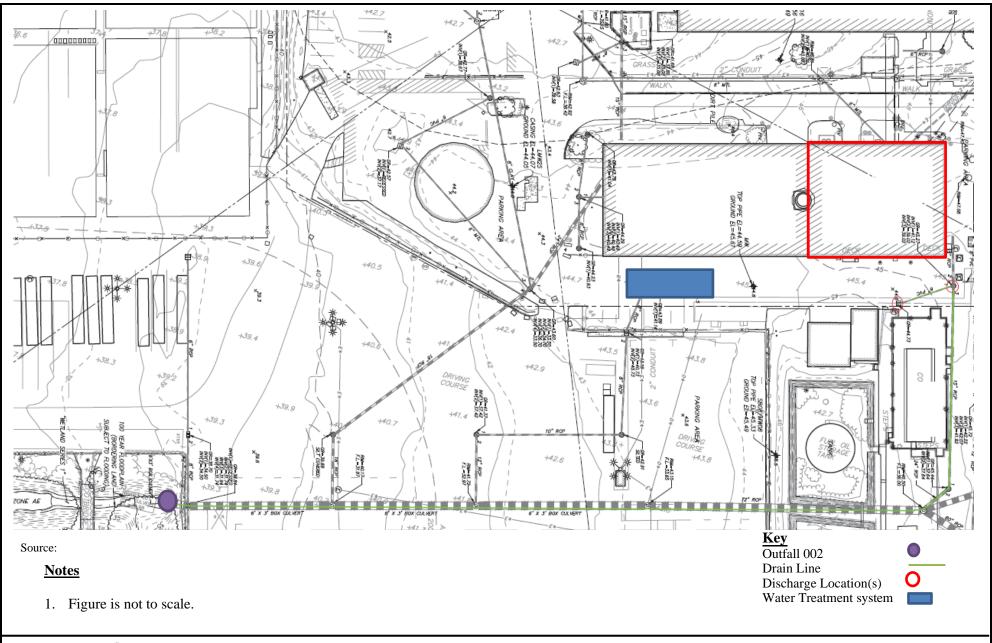
Notes:

1. Figure is not to scale



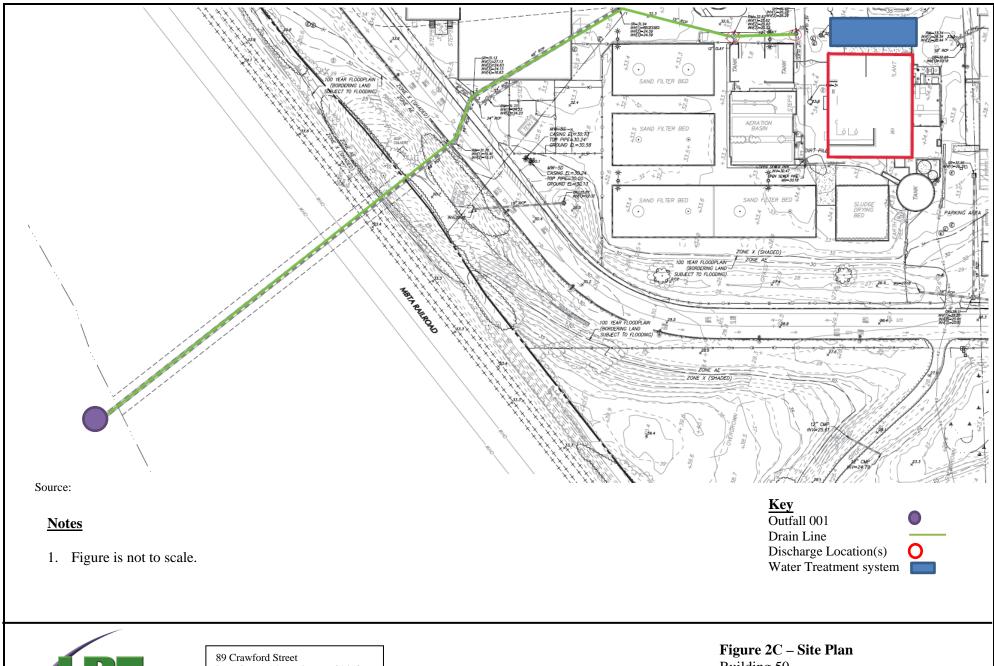
89 Crawford Street Leominster, Massachusetts 01453 Tel: 774.450.7177 Fax: 888.835.0617

www.lrt-llc.net


Figure 1 – Locus Plan 1600 Osgood Street North Andover, MA

89 Crawford Street Leominster, Massachusetts 01453 Tel: 774.450.7177

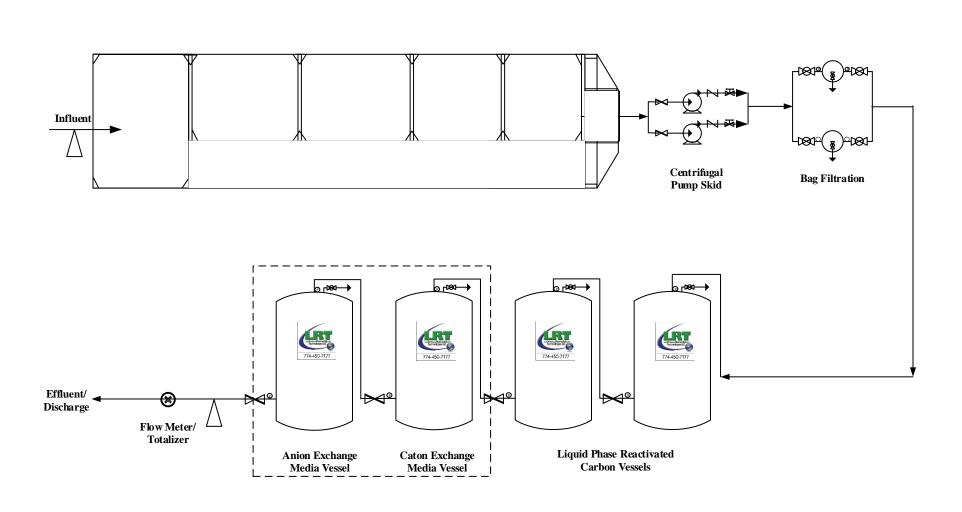
Tel: 774.450.7177 Fax: 888.835.0617 www.lrt-llc.net **Figure 2A – General Site Plan** 1600 Osgood Street North Andover, Massachusetts



89 Crawford Street Leominster, Massachusetts 01453 Tel: 774.450.7177

Tel: 774.450.7177 Fax: 888.835.0617 www.lrt-llc.net

Figure 2B – Site Plan Building 40 1600 Osgood Street


North Andover, Massachusetts

89 Crawford Street Leominster, Massachusetts 01453

Tel: 774.450.7177 Fax: 888.835.0617 www.lrt-llc.net Figure 2C – Site Plan
Building 50
1600 Osgood Street
North Andover, Massachusetts

Notes:

- 1.) Figure is not to scale
- 2.) System rated for 400 GPM

Key:	
Piping/Hose	
Sample Port	\triangleright
Ball Valve	1801
Butterfly Valve	\bowtie
Pressure Gauge	9
Check Valve	\sim
Gate Valve	lacktriangle
Contingency	

Lockwood Remediation Technologies, LLC 89 Crawford Street Leominster, MA 01453

Defice: 774-450-7177

CHECKED BY:

DESIGNED BY: LRT DRAWN BY: JHJ

DATE:

Water Treatment System Schematic

1600 Osgood Street North Andover, MA PROJECT No. 2-2137

II. Suggested Format for the Remediation General Permit Notice of Intent (NOI)

A. General site information:

1. Name of site:	Site address:							
	Street:							
	City:		State:	Zip:				
2. Site owner	Contact Person:							
	Telephone:	Email:						
	Mailing address:	l						
	Street:							
Owner is (check one): ☐ Federal ☐ State/Tribal ☐ Private ☐ Other; if so, specify:	City: State: Zip:							
3. Site operator, if different than owner	Contact Person:							
	Telephone: Email:							
	Mailing address:							
	Street:							
	City:		State:	Zip:				
4. NPDES permit number assigned by EPA:	5. Other regulatory program(s) that apply to the site (check all that apply):							
	☐ MA Chapter 21e; list RTN(s): ☐ CERC		CLA					
NPDES permit is (check all that apply: □ RGP □ DGP □ CGP	☐ NH Groundwater Management Permit or	☐ UIC Program						
☐ MSGP ☐ Individual NPDES permit ☐ Other; if so, specify:		☐ POTW Pretreatment						
L MISSI L Marriada M DES permit L Suici, ii so. seccir.	Groundwater Release Detection Permit:	□ CWA S						

В.	Receiving	water	information:	
----	-----------	-------	--------------	--

1. Name of receiving water(s):	waterbody identification of receiving water(waterbody identification of receiving water(s): Classif							
Receiving water is (check any that apply): □ Outstanding Resource Water □ Ocean Sanctuary □ territorial sea □ Wild and Scenic River									
2. Has the operator attached a location map in accord	ance with the instructions in B, above? (check one)	: □ Yes □ No							
Are sensitive receptors present near the site? (check of If yes, specify:	one): □ Yes □ No								
3. Indicate if the receiving water(s) is listed in the Stapollutants indicated. Also, indicate if a final TMDL i 4.6 of the RGP.									
4. Indicate the seven day-ten-year low flow (7Q10) o Appendix V for sites located in Massachusetts and A		the instructions in							
5. Indicate the requested dilution factor for the calcul accordance with the instructions in Appendix V for s									
6. Has the operator received confirmation from the ap If yes, indicate date confirmation received:	opropriate State for the 7Q10and dilution factor indi	cated? (check one): ☐ Yes ☐	No						
7. Has the operator attached a summary of receiving (check one): ☐ Yes ☐ No	water sampling results as required in Part 4.2 of the	RGP in accordance with the i	nstruction in Appendix VIII?						
C. Source water information:									
1. Source water(s) is (check any that apply):									
☐ Contaminated groundwater	☐ Contaminated surface water	☐ The receiving water	☐ Potable water; if so, indicate municipality or origin:						
Has the operator attached a summary of influent sampling results as required in Part 4.2 of the RGP	Has the operator attached a summary of influent sampling results as required in Part 4.2 of the	☐ A surface water other							
in accordance with the instruction in Appendix VIII? (check one):	RGP in accordance with the instruction in Appendix VIII? (check one):	than the receiving water; if so, indicate waterbody:	☐ Other; if so, specify:						
□ Yes □ No	□ Yes □ No								

2. Source water contaminants:	
a. For source waters that are contaminated groundwater or contaminated surface water, indicate are any contaminants present that are not included in	b. For a source water that is a surface water other than the receiving water, potable water or other, indicate any contaminants present at the maximum concentration in accordance
the RGP? (check one): ☐ Yes ☐ No If yes, indicate the contaminant(s) and the maximum concentration present in accordance with the instructions in Appendix VIII.	with the instructions in Appendix VIII? (check one): ☐ Yes ☐ No
3. Has the source water been previously chlorinated or otherwise contains resid	dual chlorine? (check one): □ Yes □ No
D. Discharge information	
1.The discharge(s) is a(n) (check any that apply): \Box Existing discharge \Box New	w discharge □ New source
Outfall(s):	Outfall location(s): (Latitude, Longitude)
Discharges enter the receiving water(s) via (check any that apply): □ Direct di	scharge to the receiving water □ Indirect discharge, if so, specify:
☐ A private storm sewer system ☐ A municipal storm sewer system If the discharge enters the receiving water via a private or municipal storm sew	ver system:
Has notification been provided to the owner of this system? (check one): ☐ Ye	es 🗆 No
Has the operator has received permission from the owner to use such system for obtaining permission:	or discharges? (check one): \square Yes \square No, if so, explain, with an estimated timeframe for
Has the operator attached a summary of any additional requirements the owner	of this system has specified? (check one): \square Yes \square No
Provide the expected start and end dates of discharge(s) (month/year):	
Indicate if the discharge is expected to occur over a duration of: \Box less than 1	2 months \square 12 months or more \square is an emergency discharge
Has the operator attached a site plan in accordance with the instructions in D, a	above? (check one): □ Yes □ No

2. Activity Category: (check all that apply)	3. Contamination Type Category: (check all that apply)					
	a. If Activity Category I or II: (check all that apply)					
	 □ A. Inorganics □ B. Non-Halogenated Volatile Organic □ C. Halogenated Volatile Organic Cor □ D. Non-Halogenated Semi-Volatile Organic □ E. Halogenated Semi-Volatile Organi □ F. Fuels Parameters 	mpounds Organic Compounds				
 □ I – Petroleum-Related Site Remediation □ II – Non-Petroleum-Related Site Remediation 	b. If Activity Category III, IV	V, V, VI, VII or VIII: (check either G or H)				
 □ III – Non-Petroleum-Related Site Remediation □ III – Contaminated Site Dewatering □ IV – Dewatering of Pipelines and Tanks □ V – Aquifer Pump Testing □ VI – Well Development/Rehabilitation □ VII – Collection Structure Dewatering/Remediation □ VIII – Dredge-Related Dewatering 	□ G. Sites with Known Contamination c. If Category III-G, IV-G, V-G, VI-G, VII-G or VIII-G: (check all that apply) □ A. Inorganics □ B. Non-Halogenated Volatile Organic Compounds □ C. Halogenated Volatile Organic Compounds □ D. Non-Halogenated Semi-Volatile Organic Compounds □ E. Halogenated Semi-Volatile Organic Compounds □ F. Fuels Parameters	□ H. Sites with Unknown Contamination d. If Category III-H, IV-H, V-H, VI-H, VII-H or VIII-H Contamination Type Categories A through F apply				

4. Influent and Effluent Characteristics

	Known	Known				Inf	luent	Effluent Lir	nitations
Parameter	or believed absent	or believed present	# of samples	Test method (#)	Detection limit (µg/l)	Daily maximum (µg/l)	Daily average (µg/l)	TBEL	WQBEL
A. Inorganics									
Ammonia								Report mg/L	
Chloride								Report µg/l	
Total Residual Chlorine								0.2 mg/L	
Total Suspended Solids								30 mg/L	
Antimony								206 μg/L	
Arsenic								104 μg/L	
Cadmium								10.2 μg/L	
Chromium III								323 µg/L	
Chromium VI								323 μg/L	
Copper								242 μg/L	
Iron								5,000 µg/L	
Lead								160 μg/L	
Mercury								0.739 μg/L	
Nickel								1,450 μg/L	
Selenium								235.8 μg/L	
Silver								35.1 μg/L	
Zinc								420 μg/L	
Cyanide								178 mg/L	
B. Non-Halogenated VOCs			•						
Total BTEX								100 μg/L	
Benzene								5.0 μg/L	
1,4 Dioxane								200 μg/L	
Acetone								7.97 mg/L	
Phenol								1,080 µg/L	

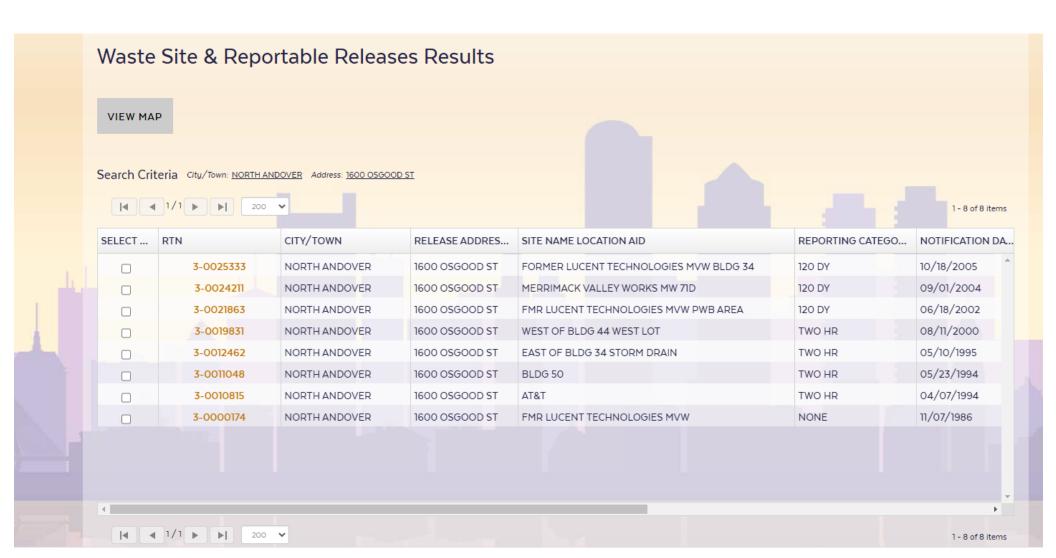
	Known	Known		_		Infl	luent	Effluent Lin	nitations
Parameter	or believed absent	or believed present	# of samples	Test method (#)	Detection limit (µg/l)	Daily maximum (µg/l)	Daily average (µg/l)	TBEL	WQBEL
C. Halogenated VOCs									
Carbon Tetrachloride								4.4 μg/L	
1,2 Dichlorobenzene								600 μg/L	
1,3 Dichlorobenzene								320 µg/L	
1,4 Dichlorobenzene								5.0 μg/L	
Total dichlorobenzene								763 µg/L in NH	
1,1 Dichloroethane								70 μg/L	
1,2 Dichloroethane								5.0 μg/L	
1,1 Dichloroethylene								3.2 µg/L	
Ethylene Dibromide								0.05 μg/L	
Methylene Chloride								4.6 μg/L	
1,1,1 Trichloroethane								200 μg/L	
1,1,2 Trichloroethane								5.0 μg/L	
Trichloroethylene								5.0 μg/L	
Tetrachloroethylene								5.0 μg/L	
cis-1,2 Dichloroethylene								70 μg/L	
Vinyl Chloride								2.0 μg/L	
D. Non-Halogenated SVO	Cs	_							
Total Phthalates								190 μg/L	
Diethylhexyl phthalate								101 μg/L	
Total Group I PAHs								1.0 μg/L	
Benzo(a)anthracene								_	
Benzo(a)pyrene								_	
Benzo(b)fluoranthene								<u> </u>	
Benzo(k)fluoranthene								As Total PAHs	
Chrysene								_	
Dibenzo(a,h)anthracene								_	
Indeno(1,2,3-cd)pyrene									

	Known	Known				Inf	luent	Effluent Lin	nitations
Parameter	or believed absent	or believed present	# of samples	Test method (#)	Detection limit (µg/l)	Daily maximum (µg/l)	Daily average (µg/l)	TBEL	WQBEL
Total Group II PAHs								100 μg/L	
Naphthalene								20 μg/L	
E. Halogenated SVOCs									
Total PCBs								0.000064 µg/L	
Pentachlorophenol								1.0 μg/L	
	1			•					
F. Fuels Parameters Total Petroleum		1	1	1		1 1		<u> </u>	
Hydrocarbons								5.0 mg/L	
Ethanol								Report mg/L	
Methyl-tert-Butyl Ether								70 μg/L	
tert-Butyl Alcohol								120 μg/L in MA 40 μg/L in NH	
tert-Amyl Methyl Ether								90 μg/L in MA 140 μg/L in NH	
Other (i.e., pH, temperatur	re, hardness,	salinity, LC	50, addition	al pollutar	ats present);	if so, specify:			

E. Treatment system information

1. Indicate the type(s) of treatment that will be applied to effluent prior to discharge: (check all that apply)	
☐ Adsorption/Absorption ☐ Advanced Oxidation Processes ☐ Air Stripping ☐ Granulated Activated Carbon ("GAC")/Liquid Phase Carbon Adsorption	
□ Ion Exchange □ Precipitation/Coagulation/Flocculation □ Separation/Filtration □ Other; if so, specify:	
2. Provide a written description of all treatment system(s) or processes that will be applied to the effluent prior to discharge.	
Identify each major treatment component (check any that apply):	
□ Fractionation tanks□ Equalization tank □ Oil/water separator □ Mechanical filter □ Media filter	
□ Chemical feed tank □ Air stripping unit □ Bag filter □ Other; if so, specify:	
Indicate if either of the following will occur (check any that apply):	
□ Chlorination □ De-chlorination	
3. Provide the design flow capacity in gallons per minute (gpm) of the most limiting component.	
Indicate the most limiting component:	
Is use of a flow meter feasible? (check one): □ Yes □ No, if so, provide justification:	
Provide the proposed maximum effluent flow in gpm.	
Provide the average effluent flow in gpm.	
Trovide the average erritaint now in gpin.	
If Activity Category IV applies, indicate the estimated total volume of water that will be discharged:	
4. Has the operator attached a schematic of flow in accordance with the instructions in E, above? (check one): ☐ Yes ☐ No	

F. Chemical and additive information

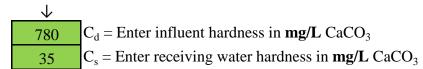

F. Chemical and additive information
1. Indicate the type(s) of chemical or additive that will be applied to effluent prior to discharge or that may otherwise be present in the discharge(s): (check all that apply)
□ Algaecides/biocides □ Antifoams □ Coagulants □ Corrosion/scale inhibitors □ Disinfectants □ Flocculants □ Neutralizing agents □ Oxidants □ Oxygen □
scavengers □ pH conditioners □ Bioremedial agents, including microbes □ Chlorine or chemicals containing chlorine □ Other; if so, specify:
2. Provide the following information for each chemical/additive, using attachments, if necessary:
a. Product name, chemical formula, and manufacturer of the chemical/additive; b. Purpose or use of the chemical/additive or remedial agent; c. Material Safety Data Sheet (MSDS) and Chemical Abstracts Service (CAS) Registry number for each chemical/additive; d. The frequency (hourly, daily, etc.), duration (hours, days), quantity (maximum and average), and method of application for the chemical/additive; e. Any material compatibility risks for storage and/or use including the control measures used to minimize such risks; and f. If available, the vendor's reported aquatic toxicity (NOAEL and/or LC50 in percent for aquatic organism(s)).
3. Has the operator attached an explanation which demonstrates that the addition of such chemicals/additives may be authorized under this general permit in accordance
with the instructions in F, above? (check one): \square Yes \square No; if no, has the operator attached data that demonstrates each of the 126 priority pollutants in CWA Section 307(a) and 40 CFR Part 423.15(j)(1) are non-detect in discharges with the addition of the proposed chemical/additive?
(check one): □ Yes □ No
G. Endangered Species Act eligibility determination
1. Indicate under which criterion the discharge(s) is eligible for coverage under this general permit:
□ FWS Criterion A : No endangered or threatened species or critical habitat are in proximity to the discharges or related activities or come in contact with the "action area".
□ FWS Criterion B : Formal or informal consultation with the FWS under section 7 of the ESA resulted in either a no jeopardy opinion (formal consultation) or a written concurrence by FWS on a finding that the discharges and related activities are "not likely to adversely affect" listed species or critical habitat (informal consultation). Has the operator completed consultation with FWS? (check one): □ Yes □ No; if no, is consultation underway? (check one): □
Yes □ No
□ FWS Criterion C : Using the best scientific and commercial data available, the effect of the discharges and related activities on listed species and critical habitat have been evaluated. Based on those evaluations, a determination is made by EPA, or by the operator and affirmed by EPA, that the discharges and related activities will have "no effect" on any federally threatened or endangered listed species or designated critical habitat under the jurisdiction of the
FWS. This determination was made by: (check one) \square the operator \square EPA \square Other; if so, specify:

□ NMFS Criterion : A determination made by EPA is affirmed by the operator that the discharges and related activities will have "no effect" or are "not likely to adversely affect" any federally threatened or endangered listed species or critical habitat under the jurisdiction of NMFS and will not result in any take of
listed species. Has the operator previously completed consultation with NMFS? (check one): ☐ Yes ☐ No
2. Has the operator attached supporting documentation of ESA eligibility in accordance with the instructions in Appendix I, and G, above? (check one): \square Yes \square No
Does the supporting documentation include any written concurrence or finding provided by the Services? (check one): ☐ Yes ☐ No; if yes, attach.
H. National Historic Preservation Act eligibility determination
1. Indicate under which criterion the discharge(s) is eligible for coverage under this general permit:
□ Criterion A : No historic properties are present. The discharges and discharge-related activities (e.g., BMPs) do not have the potential to cause effects on historic properties.
☐ Criterion B: Historic properties are present. Discharges and discharge related activities do not have the potential to cause effects on historic properties.
□ Criterion C : Historic properties are present. The discharges and discharge-related activities have the potential to have an effect or will have an adverse effect on historic properties.
2. Has the operator attached supporting documentation of NHPA eligibility in accordance with the instructions in H, above? (check one): ☐ Yes ☐ No
Does the supporting documentation include any written agreement with the State Historic Preservation Officer (SHPO), Tribal Historic Preservation Officer (TPHO), or
other tribal representative that outlines measures the operator will carry out to mitigate or prevent any adverse effects on historic properties? (check one): \Box Yes \Box No
I. Supplemental information
Describe any supplemental information being provided with the NOI. Include attachments if required or otherwise necessary.
Has the operator attached data, including any laboratory case narrative and chain of custody used to support the application? (check one): ☐ Yes ☐ No
Has the operator attached the certification requirement for the Best Management Practices Plan (BMPP)? (check one): ☐ Yes ☐ No

J. Certification requirement

I certify under penalty of law that this document and all attachments were prepared under my direction or supervision in accordance with a system designed to assure that qualified personnel properly gathered and evaluated the information submitted. Based on my inquiry of the person or persons who manage the system, or those persons directly responsible for gathering the information, the information submitted is, to the best of my knowledge and belief, true, accurate, and complete. I have no personal knowledge that the information submitted is other than true, accurate, and complete. I am aware that there are significant penalties for submitting false information, including the possibility of fine and imprisonment for knowing violations.				
A BMPP will be developed and maintained to meet the requirements BMPP certification statement: implemented on-site prior to the initiation of discharge	of this permit. Th	e BMPP will be		
Notification provided to the appropriate State, including a copy of this NOI, if required.	Check one: Yes	No 🗆		
Notification provided to the municipality in which the discharge is located, including a copy of this NOI, if requested.	Check one: Yes □	No 🔳		
Notification provided to the owner of a private or municipal storm sewer system, if such system is used for site discharges, including a copy of this NOI, if requested.	Check one: Yes 🗏	No □ NA □		
Permission obtained from the owner of a private or municipal storm sewer system, if such system is used for site discharges. If yes, attach additional conditions. If no, attach explanation and timeframe for obtaining permission.	Check one: Yes □	No □ NA ■		
Notification provided to the owner/operator of the area associated with activities covered by an additional discharge permit(s). Additional discharge permit is (check one): □ RGP □ DGP □ CGP □ MSGP □ Individual NPDES permit	Check one: Yes □	No □ NA ■		
☐ Other; if so, specify:	Check one. Tes L	NO LI MA		
Signature: Da	te: ^{1/6/21}			
Print Name and Title: Chad Vincent VP JDC Demolition Company, Inc.				

Enter number values in green boxes below


Enter values in the units specified

\downarrow	_
625	$Q_R = Enter upstream flow in MGD$
0.58	$Q_P = Enter discharge flow in MGD$
0	Downstream 7Q10

Enter a dilution factor, if other than zero

Enter values in the units specified

Enter receiving water concentrations in the units specified

\downarrow	_
7.7	pH in Standard Units
15	Temperature in °C
0.73	Ammonia in mg/L
35	Hardness in mg/L CaCO ₃
0	Salinity in ppt
0	Antimony in μg/L
0.92	Arsenic in µg/L
0	Cadmium in µg/L
2.5	Chromium III in µg/L
0	Chromium VI in µg/L
3	Copper in µg/L
1300	Iron in μg/L
3.1	Lead in µg/L
0	Mercury in μg/L
0	Nickel in μg/L
0	Selenium in µg/L
0	Silver in µg/L
18	Zinc in µg/L

Enter influent concentrations in the units specified

\perp	_
0	TRC in µg/L
0	Ammonia in mg/L
0	Antimony in μg/L
23	Arsenic in μg/L
1.1	Cadmium in µg/L
450	Chromium III in µg/L
0	Chromium VI in µg/L
150	Copper in µg/L
100000	Iron in μg/L
78	Lead in µg/L
0	Mercury in µg/L
270	Nickel in µg/L
1.7	Selenium in µg/L
0	Silver in μg/L
250	Zinc in µg/L
0	Cyanide in µg/L
0	Phenol in µg/L
0	Carbon Tetrachloride in µg/L
2.35	Tetrachloroethylene in µg/L
0	Total Phthalates in µg/L
0	Diethylhexylphthalate in µg/L
0	Benzo(a)anthracene in µg/L
0	Benzo(a)pyrene in µg/L
0	Benzo(b)fluoranthene in µg/L
0	Benzo(k)fluoranthene in µg/L
0	Chrysene in µg/L
0	Dibenzo(a,h)anthracene in µg/L
0	Indeno(1,2,3-cd)pyrene in μ g/L
0	Methyl-tert butyl ether in μ g/L

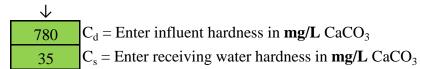
A. Inorganics	TBEL applies if bolded		WQBEL applies if bolded	
Ammonia	Report	mg/L		
Chloride	Report	μg/L		
Total Residual Chlorine	0.2	mg/L	11864	ug/I
Total Suspended Solids	30	•		μg/L
•		mg/L	690295	Л
Antimony	206	μg/L		μg/L
Arsenic	104	μg/L	9794	μg/L
Cadmium	10.2	$\mu g/L$	0.1261	μg/L
Chromium III	323	$\mu g/L$	37282.3	$\mu g/L$
Chromium VI	323	$\mu g/L$	12333.1	$\mu g/L$
Copper	242	$\mu g/L$	939.2	$\mu g/L$
Iron	5000	μg/L	1000	μg/L
Lead	160	μg/L	0.86	μg/L
Mercury	0.739	μg/L	977.07	μg/L
Nickel	1450	μg/L	23533.1	μg/L
Selenium	235.8		5392.9	
Silver		μg/L	693.8	μg/L
	35.1	μg/L		μg/L
Zinc	420	μg/L	34585.7	μg/L
Cyanide	178	mg/L	5608.6	μg/L
B. Non-Halogenated VOCs	100	77		
Total BTEX	100 5.0	μg/L α/I		
Benzene 1,4 Dioxane	200	μg/L μg/L		
Acetone	7970	μg/L μg/L		
Phenol	1,080	μg/L μg/L	323576	μg/L
C. Halogenated VOCs	_,-,	F-8' —		<i>F-6</i>
Carbon Tetrachloride	4.4	μg/L	1725.7	μg/L
1,2 Dichlorobenzene	600	$\mu g/L$		
1,3 Dichlorobenzene	320	$\mu g/L$		
1,4 Dichlorobenzene	5.0	$\mu g/L$		
Total dichlorobenzene		$\mu g/L$		
1,1 Dichloroethane	70	μ g/L		
1,2 Dichloroethane	5.0	μg/L		
1,1 Dichloroethylene	3.2	μg/L		
Ethylene Dibromide	0.05	μg/L		
Methylene Chloride	4.6 200	μg/L α/I		
1,1,1 Trichloroethane 1,1,2 Trichloroethane	5.0	μg/L		
Trichloroethylene	5.0 5.0	μg/L μg/L		
Tetrachloroethylene	5.0	μg/L μg/L	3559.3	μg/L
cis-1,2 Dichloroethylene	70	μg/L μg/L		MS/L
1.5 1,2 2101110100011,10110	7.0	M 5/ L		

Vinyl Chloride	2.0	$\mu g/L$		
D. Non-Halogenated SVOCs				
Total Phthalates	190	$\mu g/L$		μg/L
Diethylhexyl phthalate	101	μg/L	2372.9	$\mu g/L$
Total Group I Polycyclic				
Aromatic Hydrocarbons	1.0	μg/L		
Benzo(a)anthracene	1.0	μg/L	4.0986	$\mu g/L$
Benzo(a)pyrene	1.0	$\mu g/L$	4.0986	$\mu g/L$
Benzo(b)fluoranthene	1.0	$\mu g/L$	4.0986	$\mu g/L$
Benzo(k)fluoranthene	1.0	$\mu g/L$	4.0986	$\mu g/L$
Chrysene	1.0	μg/L	4.0986	$\mu g/L$
Dibenzo(a,h)anthracene	1.0	μg/L	4.0986	$\mu g/L$
Indeno(1,2,3-cd)pyrene	1.0	μg/L	4.0986	μg/L
Total Group II Polycyclic				
Aromatic Hydrocarbons	100	μg/L		
Naphthalene	20	μg/L		
E. Halogenated SVOCs				
Total Polychlorinated Biphenyls	0.000064	μg/L		
Pentachlorophenol	1.0	μg/L		
F. Fuels Parameters				
Total Petroleum Hydrocarbons	5.0	mg/L		
Ethanol	Report	mg/L		
Methyl-tert-Butyl Ether	70	$\mu g/L$	21572	$\mu g/L$
tert-Butyl Alcohol	120	μ g/L		
tert-Amyl Methyl Ether	90	$\mu g/L$		

MA Limits WQBEL Outfall 002

Lockwood Remediation Technologies LLC

Enter number values in green boxes below


Enter values in the units specified

\downarrow	
0.0026	$Q_R = Enter upstream flow in MGD$
0.58	$Q_P = Enter discharge flow in MGD$
0	Downstream 7Q10

Enter a dilution factor, if other than zero

Enter values in the units specified

Enter receiving water concentrations in the units specified

\downarrow	_
7.7	pH in Standard Units
15	Temperature in °C
0.73	Ammonia in mg/L
35	Hardness in mg/L CaCO ₃
0	Salinity in ppt
0	Antimony in µg/L
0.92	Arsenic in μg/L
0	Cadmium in µg/L
2.5	Chromium III in µg/L
0	Chromium VI in µg/L
3	Copper in µg/L
1300	Iron in μg/L
3.1	Lead in µg/L
0	Mercury in µg/L
0	Nickel in µg/L
0	Selenium in µg/L
0	Silver in µg/L
18	Zinc in µg/L

Enter influent concentrations in the units specified

\perp	_
0	TRC in µg/L
0	Ammonia in mg/L
0	Antimony in μg/L
23	Arsenic in μg/L
1.1	Cadmium in µg/L
450	Chromium III in µg/L
0	Chromium VI in µg/L
150	Copper in µg/L
100000	Iron in μg/L
78	Lead in µg/L
0	Mercury in µg/L
270	Nickel in µg/L
1.7	Selenium in µg/L
0	Silver in μg/L
250	Zinc in µg/L
0	Cyanide in µg/L
0	Phenol in µg/L
0	Carbon Tetrachloride in µg/L
2.35	Tetrachloroethylene in µg/L
0	Total Phthalates in µg/L
0	Diethylhexylphthalate in µg/L
0	Benzo(a)anthracene in µg/L
0	Benzo(a)pyrene in µg/L
0	Benzo(b)fluoranthene in µg/L
0	Benzo(k)fluoranthene in µg/L
0	Chrysene in µg/L
0	Dibenzo(a,h)anthracene in µg/L
0	Indeno(1,2,3-cd)pyrene in μ g/L
0	Methyl-tert butyl ether in μ g/L

	1.0			
A. Inorganics	TBEL applies if bolded		WQBEL applies if bolded	
Ammonia	Report	mg/L		
Chloride	Report	μg/L		
Total Residual Chlorine	0.2	mg/L	11	μg/L
Total Suspended Solids	30	mg/L		μg/L
Antimony	206	-	643	u α/I
Arsenic	104	μg/L	10	μg/L
		μg/L		μg/L
Cadmium	10.2	μg/L	1.2372	μg/L
Chromium III	323	μg/L	463.9	μg/L
Chromium VI	323	μg/L	11.5	μg/L
Copper	242	$\mu g/L$	54.0	$\mu g/L$
Iron	5000	$\mu g/L$	1000	$\mu g/L$
Lead	160	μg/L	43.42	μg/L
Mercury	0.739	μg/L	0.91	μg/L
Nickel	1450	μg/L	296.8	μg/L
Selenium	235.8	μg/L	5.0	μg/L
Silver	35.1	μg/L	129.2	μg/L
Zinc	420	μg/L	683.5	μg/L
Cyanide	178	mg/L	5.2	μg/L
B. Non-Halogenated VOCs		8		r-8 –
Total BTEX	100	μg/L		
Benzene	5.0	$\mu g/L$		
1,4 Dioxane	200	$\mu g/L$		
Acetone	7970	$\mu g/L$		
Phenol	1,080	μg/L	301	μg/L
C. Halogenated VOCs		(*	1.6	7
Carbon Tetrachloride	4.4	μg/L	1.6	μg/L
1,2 Dichlorobenzene	600 320	μg/L		
1,3 Dichlorobenzene 1,4 Dichlorobenzene	5.0	μg/L μg/L		
Total dichlorobenzene	5.0	μg/L μg/L		
1,1 Dichloroethane	70	μg/L μg/L		
1,2 Dichloroethane	5.0	μg/L		
1,1 Dichloroethylene	3.2	μg/L		
Ethylene Dibromide	0.05	μg/L		
Methylene Chloride	4.6	μg/L		
1,1,1 Trichloroethane	200	μg/L		
1,1,2 Trichloroethane	5.0	$\mu g/L$		
Trichloroethylene	5.0	$\mu g/L$		
Tetrachloroethylene	5.0	$\mu g/L$	3.3	$\mu g/L$
cis-1,2 Dichloroethylene	70	μg/L		

Vinyl Chloride	2.0	μg/L		
D. Non-Halogenated SVOCs				
Total Phthalates	190	μg/L		μg/L
Diethylhexyl phthalate	101	μg/L	2.2	μg/L
Total Group I Polycyclic				
Aromatic Hydrocarbons	1.0	μg/L		
Benzo(a)anthracene	1.0	μg/L	0.0038	$\mu g/L$
Benzo(a)pyrene	1.0	μg/L	0.0038	$\mu g/L$
Benzo(b)fluoranthene	1.0	μg/L	0.0038	$\mu g/L$
Benzo(k)fluoranthene	1.0	μg/L	0.0038	$\mu g/L$
Chrysene	1.0	μg/L	0.0038	$\mu g/L$
Dibenzo(a,h)anthracene	1.0	μg/L	0.0038	$\mu g/L$
Indeno(1,2,3-cd)pyrene	1.0	μg/L	0.0038	$\mu g/L$
Total Group II Polycyclic				
Aromatic Hydrocarbons	100	μg/L		
Naphthalene	20	μg/L		
E. Halogenated SVOCs				
Total Polychlorinated Biphenyls	0.000064	μg/L		
Pentachlorophenol	1.0	μg/L		
F. Fuels Parameters				
Total Petroleum Hydrocarbons	5.0	mg/L		
Ethanol	Report	mg/L		
Methyl-tert-Butyl Ether	70	μg/L	20	μg/L
tert-Butyl Alcohol	120	μg/L		
tert-Amyl Methyl Ether	90	μg/L		

Dilution Calculation Determination Lockwood Remediation Technologies LLC

From: Ruan, Xiaodan (DEP)
To: Jake Jennings

Cc: <u>Vakalopoulos, Catherine (DEP)</u>
Subject: RE: New Dilution Calcs

Date: Wednesday, December 30, 2020 5:56:15 PM

Hi Jake,

It was nice speaking to you earlier today.

The 7Q10 for the unnamed tributary where the Outfall 002 discharges to would be 0.00408 cfs, and the dilution factor would be 1.02.

Also, as you know, if this is not a *current* MCP site, then in addition to submitting the NOI to EPA, you need to apply with MassDEP and submit a \$500 fee (unless fee exempt, e.g., municipality) using the ePLACE. The instructions are located on this page: https://www.mass.gov/how-to/wm-15-npdes-general-permit-notice-of-intent. Technical assistant information is available on the front page of the ePLACE application webpage.

Please let me know if you have any questions.

Happy New Year! Xiaodan

From: Jake Jennings < JJennings@lrt-llc.net>
Sent: Tuesday, December 29, 2020 2:31 PM

To: Ruan, Xiaodan (DEP) < xiaodan.ruan@mass.gov>

Subject: RE: New Dilution Calcs

CAUTION: This email originated from a sender outside of the Commonwealth of Massachusetts mail system. Do not click on links or open attachments unless you recognize the sender and know the content is safe.

Hi Xiaodon.

I Hope you had a nice holiday! Sorry for the delayed response I'm available all day tomorrow to discuss this. Let me know what time you are free to talk or give me a call at 508-930-9812 anytime.

Thank you,

Jake

Lockwood Remediation Technologies, LLC

89 Crawford Street Leominster, MA 01453 O: 774.450.7177 F: 888.835.0617

M: 508.930.9812 jjennings@lrt-llc.net

From: Ruan, Xiaodan (DEP) < xiaodan.ruan@state.ma.us>

Sent: Wednesday, December 23, 2020 9:34 PM

To: Jake Jennings < <u>JJennings@Irt-llc.net</u>>; Vakalopoulos, Catherine (DEP)

<<u>catherine.vakalopoulos@state.ma.us</u>> **Cc:** John Henry <<u>ihenry@lrt-llc.net</u>>

Subject: RE: New Dilution Calcs

Hi Jake,

There is a USGS gage station USGS 01100000 upstream of the proposed outfall location (see the snapshot of the StreamStats below). The 7Q10 and drainage area at the USGS 01100000 are 930 cfs and 4635 mi2 (https://streamstatsags.cr.usgs.gov/gagepages/html/01100000.htm).

According to your description in the below email and the previous email (attached here), there are two proposed outfalls. The outfall 001 directly discharges to the Merrimack River, and outfall 002 discharges to an unnamed stream that drains to the Merrimack River.

To determine the 7Q10 of the Merrimack River at Outfall 001, the approach I am using here is to multiply the 7Q10 at the USGS 01100000 by a ratio of the outfall drainage area and the gage drainage area. The drainage area of the outfall is 4830 mi2.

7Q10 @ Outfall 001 = 7Q10 @USGS gage * (Area @ outfall 001 / Area @ USGS gage) = 930 cfs * (4830/4635) = 967 cfs = 625 MGD

Design flow = 400 gpm = 0.58 MGD

Dilution Factor at outfall 001 = (0.58 + 625)/0.58 = 1079

For outfall 002, based on the information provided in your previous email (attached), the discharge first goes to the unnamed tributary, which has a 7Q10 of 0.00408 cfs according to the StreamStats. In this case, I think the receiving water should be the unnamed tributary. But I would like to speak to you to understand the situation better. Also, I want to confirm this with Cathy, and she will be out of the office until Monday.

Please let me know if we can have a phone call anytime Monday - Wednesday.

I hope you have a lovely holiday! Regards, Xiaodan

From: Jake Jennings < JJennings@Irt-Ilc.net >

Sent: Wednesday, December 23, 2020 12:28 PM

To: Ruan, Xiaodan (DEP) < <u>xiaodan.ruan@mass.gov</u>>; Vakalopoulos, Catherine (DEP)

<<u>catherine.vakalopoulos@mass.gov</u>> **Cc:** John Henry <<u>jhenry@lrt-llc.net</u>>

Subject: New Dilution Calcs

CAUTION: This email originated from a sender outside of the Commonwealth of Massachusetts mail system. Do not click on links or open attachments unless you recognize the sender and know the content is safe.

Hi Cathy and Xiaodan,

I am trying to determine the dilution calcs for the below project and I am having trouble with Stream Stats. The basin for the Merrimack River is out of range for the program. I have attached what the program gave me but I think it is wrong. Any help you can provide is greatly appreciated.

Please see attached dilution calcs and streamstats report for 1600 Osgood Street for you review and approval.

The project:

1600 Osgood Street North Andover, MA

We plan to discharge to 2 separate outfalls in the Merrimack river (MA84A-04) Class B. The outfalls will be used at different times but will each receive a maximum flow of 400 gpm.

The 7 Day 10 Year flow value from the stream stats report is 365 cfs and the calculated dilution factor is 444.17.

Have a great holiday!

Thank you,

Jake Jennings

Lockwood Remediation Technologies, LLC

89 Crawford Street Leominster, MA 01453 O: 774.450.7177

F: 888.835.0617 M: 978.751.5431 jjennings@lrt-llc.net

Appendix B Laboratory Data Lockwood Remediation Technologies LLC

December 31, 2020

John Henry Lockwood Remediation Technologies, LLC 89 Crawford Street Leominster, MA 01453

Project Location: 1600 Osgood St.

Client Job Number: Project Number: 2-2137

Laboratory Work Order Number: 20L0887

Keny K. Mille

Enclosed are results of analyses for samples received by the laboratory on December 16, 2020. If you have any questions concerning this report, please feel free to contact me.

Sincerely,

Kerry K. McGee Project Manager

Table of Contents

Sample Summary	4
Case Narrative	5
Sample Results	8
20L0887-01	8
20L0887-02	17
Sample Preparation Information	19
QC Data	21
Volatile Organic Compounds by GC/MS	21
B273078	21
Semivolatile Organic Compounds by GC/MS	23
B273270	23
Semivolatile Organic Compounds by - GC/MS	24
B273158	24
Polychlorinated Biphenyls By GC/ECD	28
B273089	28
Metals Analyses (Total)	29
B273164	29
B273165	29
B273201	30
Conventional Chemistry Parameters by EPA/APHA/SW-846 Methods (Total)	31
B273029	31
B273038	31
B273059	31
B273112	31
B273331	32

Table of Contents (continued)

B273396	32
Drinking Water Organics EPA 504.1	33
B273121	33
Dual Column RPD Report	34
Flag/Qualifier Summary	38
Certifications	39
Chain of Custody/Sample Receipt	43

REPORT DATE: 12/31/2020

39 Spruce Street * East Longmeadow, MA 01028 * FAX 413/525-6405 * TEL. 413/525-2332

Lockwood Remediation Technologies, LLC

89 Crawford Street

PURCHASE ORDER NUMBER: 2-2137

Leominster, MA 01453 ATTN: John Henry

PROJECT NUMBER: 2-2137

ANALYTICAL SUMMARY

WORK ORDER NUMBER: 20L0887

The results of analyses performed on the following samples submitted to CON-TEST, a Pace Analytical Laboratory, are found in this report.

PROJECT LOCATION: 1600 Osgood St.

FIELD SAMPLE #	LAB ID:	MATRIX	SAMPLE DESCRIPTION	TEST	SUB LAB
Influent	20L0887-01	Ground Water		608.3	
				624.1	
				625.1	
				EPA 1664B	
				EPA 200.7	
				EPA 200.8	
				EPA 245.1	
				EPA 300.0	
				EPA 350.1	
				EPA 504.1	
				SM21-22 2540D	
				SM21-22 3500 Cr B	
				SM21-22 4500 CL G	
				SM21-22 4500 CN E	MA M-MA-086/CT
					PH-0574/NY11148
				Tri Chrome Calc.	
Receiving Water	20L0887-02	Ground Water		EPA 200.7	
				EPA 200.8	
				EPA 245.1	
				EPA 350.1	
				SM21-22 3500 Cr B	
				Tri Chrome Calc.	

CASE NARRATIVE SUMMARY

All reported results are within defined laboratory quality control objectives unless listed below or otherwise qualified in this report.

REVISED REPORT - 12/31/2020 - Ethanol addded per clients request.

624.1

Qualifications:

V-05

Continuing calibration verification (CCV) did not meet method specifications and was biased on the low side for this compound.

Analyte & Samples(s) Qualified:

Ethanol

20L0887-01[Influent], B273078-BLK1, B273078-BS1, S055560-CCV1

625.1

Qualifications:

L-04

Laboratory fortified blank/laboratory control sample recovery and duplicate recovery are outside of control limits. Reported value for this compound is likely to be biased on the low side. Analyte & Samples(s) Qualified:

Benzidine

20L0887-01[Influent], B273158-BLK1, B273158-BS1, B273158-BSD1

L-07

Either laboratory fortified blank/laboratory control sample or duplicate recovery is outside of control limits, but the other is within limits. RPD between the two LFB/LCS results is within method specified criteria.

Analyte & Samples(s) Qualified:

2-Chloronaphthalene

B273158-BSD1

N-Nitrosodimethylamine

B273158-BSD1

R-05

Laboratory fortified blank duplicate RPD is outside of control limits. Reduced precision is anticipated for any reported value for this compound

Analyte & Samples(s) Qualified:

Benzidine

20L0887-01[Influent], B273158-BLK1, B273158-BS1, B273158-BSD1

S-07

One associated surrogate standard recovery is outside of control limits but the other(s) is/are within limits. All recoveries are > 10%.

Analyte & Samples(s) Qualified:

2,4,6-Tribromophenol

20L0887-01[Influent]

V-04

Initial calibration did not meet method specifications. Compound was calibrated using a response factor where %RSD is outside of method specified criteria. Reported result is estimated. Analyte & Samples(s) Qualified:

Benzidine

20L0887-01[Influent], B273158-BLK1, B273158-BS1, B273158-BSD1, S055667-CCV1, S055675-CCV1

V-05

Continuing calibration verification (CCV) did not meet method specifications and was biased on the low side for this compound.

Analyte & Samples(s) Qualified:

20L0887-01[Influent], B273158-BLK1, B273158-BS1, B273158-BSD1, S055667-CCV1, S055675-CCV1

The results of analyses reported only relate to samples submitted to Con-Test, a Pace Analytical Laboratory, for testing.

I certify that the analyses listed above, unless specifically listed as subcontracted, if any, were performed under my direction according to the approved methodologies listed in this document, and that based upon my inquiry of those individuals immediately responsible for obtaining the information, the material contained in this report is, to the best of my knowledge and belief, accurate and complete.

Lisa A. Worthington

Project Location: 1600 Osgood St. Sample Description: Work Order: 20L0887

Date Received: 12/16/2020
Field Sample #: Influent

Sampled: 12/16/2020 07:00

102

70-130

Sample ID: 20L0887-01
Sample Matrix: Ground Water

4-Bromofluorobenzene

Volatile Or	ganic Comp	ounds by	GC/MS
-------------	------------	----------	-------

Analyte	Results	RL	DL	Units	Dilution	Flag/Qual	Method	Date Prepared	Date/Time Analyzed	Analyst
Acetone	<3.79	50.0	3.79	μg/L	1		624.1	12/18/20	12/19/20 3:43	LBD
tert-Amyl Methyl Ether (TAME)	< 0.140	0.500	0.140	μg/L	1		624.1	12/18/20	12/19/20 3:43	LBD
Benzene	< 0.180	1.00	0.180	μg/L	1		624.1	12/18/20	12/19/20 3:43	LBD
Bromodichloromethane	< 0.160	2.00	0.160	μg/L	1		624.1	12/18/20	12/19/20 3:43	LBD
Bromoform	< 0.460	2.00	0.460	μg/L	1		624.1	12/18/20	12/19/20 3:43	LBD
Bromomethane	<1.38	5.00	1.38	μg/L	1		624.1	12/18/20	12/19/20 3:43	LBD
tert-Butyl Alcohol (TBA)	<4.17	20.0	4.17	μg/L	1		624.1	12/18/20	12/19/20 3:43	LBD
Carbon Tetrachloride	< 0.110	2.00	0.110	μg/L	1		624.1	12/18/20	12/19/20 3:43	LBD
Chlorobenzene	< 0.150	2.00	0.150	μg/L	1		624.1	12/18/20	12/19/20 3:43	LBD
Chlorodibromomethane	< 0.210	2.00	0.210	μg/L	1		624.1	12/18/20	12/19/20 3:43	LBD
Chloroethane	< 0.360	2.00	0.360	μg/L	1		624.1	12/18/20	12/19/20 3:43	LBD
Chloroform	< 0.170	2.00	0.170	μg/L	1		624.1	12/18/20	12/19/20 3:43	LBD
Chloromethane	< 0.450	2.00	0.450	μg/L	1		624.1	12/18/20	12/19/20 3:43	LBD
1,2-Dichlorobenzene	< 0.160	2.00	0.160	μg/L	1		624.1	12/18/20	12/19/20 3:43	LBD
1,3-Dichlorobenzene	< 0.120	2.00	0.120	μg/L	1		624.1	12/18/20	12/19/20 3:43	LBD
1,4-Dichlorobenzene	< 0.130	2.00	0.130	μg/L	1		624.1	12/18/20	12/19/20 3:43	LBD
1,2-Dichloroethane	< 0.410	2.00	0.410	μg/L	1		624.1	12/18/20	12/19/20 3:43	LBD
1,1-Dichloroethane	< 0.160	2.00	0.160	μg/L	1		624.1	12/18/20	12/19/20 3:43	LBD
1,1-Dichloroethylene	< 0.320	2.00	0.320	μg/L	1		624.1	12/18/20	12/19/20 3:43	LBD
trans-1,2-Dichloroethylene	< 0.310	2.00	0.310	μg/L	1		624.1	12/18/20	12/19/20 3:43	LBD
1,2-Dichloropropane	< 0.200	2.00	0.200	μg/L	1		624.1	12/18/20	12/19/20 3:43	LBD
cis-1,3-Dichloropropene	< 0.130	2.00	0.130	μg/L	1		624.1	12/18/20	12/19/20 3:43	LBD
1,4-Dioxane	<22.5	50.0	22.5	$\mu g/L$	1		624.1	12/18/20	12/19/20 3:43	LBD
trans-1,3-Dichloropropene	< 0.230	2.00	0.230	μg/L	1		624.1	12/18/20	12/19/20 3:43	LBD
Ethanol	<10.5	50.0	10.5	μg/L	1	V-05	624.1	12/18/20	12/19/20 3:43	LBD
Ethylbenzene	0.130	2.00	0.130	μg/L	1	J	624.1	12/18/20	12/19/20 3:43	LBD
Methyl tert-Butyl Ether (MTBE)	< 0.250	2.00	0.250	μg/L	1		624.1	12/18/20	12/19/20 3:43	LBD
Methylene Chloride	< 0.340	5.00	0.340	μg/L	1		624.1	12/18/20	12/19/20 3:43	LBD
1,1,2,2-Tetrachloroethane	< 0.220	2.00	0.220	μg/L	1		624.1	12/18/20	12/19/20 3:43	LBD
Tetrachloroethylene	2.35	2.00	0.180	$\mu \text{g}/L$	1		624.1	12/18/20	12/19/20 3:43	LBD
Toluene	0.660	1.00	0.140	μg/L	1	J	624.1	12/18/20	12/19/20 3:43	LBD
1,1,1-Trichloroethane	< 0.200	2.00	0.200	μg/L	1		624.1	12/18/20	12/19/20 3:43	LBD
1,1,2-Trichloroethane	< 0.160	2.00	0.160	μg/L	1		624.1	12/18/20	12/19/20 3:43	LBD
Trichloroethylene	< 0.240	2.00	0.240	$\mu g/L$	1		624.1	12/18/20	12/19/20 3:43	LBD
Trichlorofluoromethane (Freon 11)	< 0.330	2.00	0.330	$\mu g/L$	1		624.1	12/18/20	12/19/20 3:43	LBD
Vinyl Chloride	< 0.450	2.00	0.450	$\mu g/L$	1		624.1	12/18/20	12/19/20 3:43	LBD
m+p Xylene	0.480	2.00	0.300	$\mu g/L$	1	J	624.1	12/18/20	12/19/20 3:43	LBD
o-Xylene	0.170	1.00	0.170	$\mu g/L$	1	J	624.1	12/18/20	12/19/20 3:43	LBD
Surrogates		% Reco	very	Recovery Limits		Flag/Qual				_
1,2-Dichloroethane-d4		83.3		70-130					12/19/20 3:43	_
Toluene-d8		95.4		70-130					12/19/20 3:43	

12/19/20 3:43

12/19/20 12/22/20 20:31

CLA

Analyte

39 Spruce Street * East Longmeadow, MA 01028 * FAX 413/525-6405 * TEL. 413/525-2332

Semivolatile Organic Compounds by GC/MS

Project Location: 1600 Osgood St. Sample Description: Work Order: 20L0887

Date Received: 12/16/2020

Field Sample #: Influent

Sampled: 12/16/2020 07:00

Results

< 0.016

< 0.012

< 0.015

< 0.012

< 0.44

1.0

0.44

Sample ID: 20L0887-01
Sample Matrix: Ground Water

Benzo(a)anthracene (SIM)

Benzo(b)fluoranthene (SIM)

Benzo(k)fluoranthene (SIM)

Bis(2-ethylhexyl)phthalate (SIM)

Benzo(a)pyrene (SIM)

						Date	Date/Time	
RL	DL	Units	Dilution	Flag/Qual	Method	Prepared	Analyzed	Analyst
0.051	0.016	μg/L	1		625.1	12/19/20	12/22/20 20:31	CLA
0.10	0.012	$\mu g/L$	1		625.1	12/19/20	12/22/20 20:31	CLA
0.051	0.015	$\mu g/L$	1		625.1	12/19/20	12/22/20 20:31	CLA
0.20	0.012	μg/L	1		625.1	12/19/20	12/22/20 20:31	CLA

625.1

Phenol-d6 (SIM)		30.7		15-110					12/22/20 20:31	
2-Fluorophenol (SIM)		38.7		15-110					12/22/20 20:31	
Surrogates		% Reco	very	Recovery Limits		Flag/Qual				
Pentachlorophenol (SIM)	< 0.34	1.0	0.34	μg/L	1		625.1	12/19/20	12/22/20 20:31	CLA
Indeno(1,2,3-cd)pyrene (SIM)	< 0.018	0.10	0.018	μg/L	1		625.1	12/19/20	12/22/20 20:31	CLA
Dibenz(a,h)anthracene (SIM)	< 0.017	0.10	0.017	$\mu g/L$	1		625.1	12/19/20	12/22/20 20:31	CLA
Chrysene (SIM)	< 0.015	0.20	0.015	$\mu g/L$	1		625.1	12/19/20	12/22/20 20:31	CLA

 $\mu g/L$

Nitrobenzene-d5 73.2 30-130 12/22/20 20:31 2-Fluorobiphenyl 72.6 30-130 12/22/20 20:31 2,4,6-Tribromophenol (SIM) 101 15-110 12/22/20 20:31 p-Terphenyl-d14 90.5 30-130 12/22/20 20:31

Project Location: 1600 Osgood St. Sample Description: Work Order: 20L0887

Date Received: 12/16/2020
Field Sample #: Influent

Sampled: 12/16/2020 07:00

Sample ID: 20L0887-01
Sample Matrix: Ground Water

Semivolatile Organic Compounds by - GC/MS

Semivolatile Organic Compounds by - GC/MS										
							Date	Date/Time		
Analyte	Results	RL	Units	Dilution	Flag/Qual	Method	Prepared	Analyzed	Analyst	
Acenaphthene	<5.10	5.10	μg/L	1		625.1	12/19/20	12/21/20 19:53	BGL	
Acenaphthylene	<5.10	5.10	μg/L	1		625.1	12/19/20	12/21/20 19:53	BGL	
Anthracene	<5.10	5.10	μg/L	1		625.1	12/19/20	12/21/20 19:53	BGL	
Benzidine	<20.4	20.4	$\mu g/L$	1	V-04, V-05, L-04, R-05	625.1	12/19/20	12/21/20 19:53	BGL	
Benzo(g,h,i)perylene	<5.10	5.10	$\mu g/L$	1		625.1	12/19/20	12/21/20 19:53	BGL	
4-Bromophenylphenylether	<10.2	10.2	$\mu g/L$	1		625.1	12/19/20	12/21/20 19:53	BGL	
Butylbenzylphthalate	<10.2	10.2	$\mu g/L$	1		625.1	12/19/20	12/21/20 19:53	BGL	
4-Chloro-3-methylphenol	<10.2	10.2	μg/L	1		625.1	12/19/20	12/21/20 19:53	BGL	
Bis(2-chloroethyl)ether	<10.2	10.2	$\mu g/L$	1		625.1	12/19/20	12/21/20 19:53	BGL	
Bis(2-chloroisopropyl)ether	<10.2	10.2	$\mu g/L$	1		625.1	12/19/20	12/21/20 19:53	BGL	
2-Chloronaphthalene	<10.2	10.2	$\mu g/L$	1		625.1	12/19/20	12/21/20 19:53	BGL	
2-Chlorophenol	<10.2	10.2	$\mu g/L$	1		625.1	12/19/20	12/21/20 19:53	BGL	
4-Chlorophenylphenylether	<10.2	10.2	$\mu g/L$	1		625.1	12/19/20	12/21/20 19:53	BGL	
Di-n-butylphthalate	<10.2	10.2	$\mu g/L$	1		625.1	12/19/20	12/21/20 19:53	BGL	
1,3-Dichlorobenzene	<5.10	5.10	$\mu g/L$	1		625.1	12/19/20	12/21/20 19:53	BGL	
1,4-Dichlorobenzene	<5.10	5.10	$\mu g/L$	1		625.1	12/19/20	12/21/20 19:53	BGL	
1,2-Dichlorobenzene	<5.10	5.10	$\mu g/L$	1		625.1	12/19/20	12/21/20 19:53	BGL	
3,3-Dichlorobenzidine	<10.2	10.2	$\mu g/L$	1		625.1	12/19/20	12/21/20 19:53	BGL	
2,4-Dichlorophenol	<10.2	10.2	μg/L	1		625.1	12/19/20	12/21/20 19:53	BGL	
Diethylphthalate	<10.2	10.2	μg/L	1		625.1	12/19/20	12/21/20 19:53	BGL	
2,4-Dimethylphenol	<10.2	10.2	μg/L	1		625.1	12/19/20	12/21/20 19:53	BGL	
Dimethylphthalate	<10.2	10.2	μg/L	1		625.1	12/19/20	12/21/20 19:53	BGL	
4,6-Dinitro-2-methylphenol	<10.2	10.2	μg/L	1		625.1	12/19/20	12/21/20 19:53	BGL	
2,4-Dinitrophenol	<10.2	10.2	μg/L	1		625.1	12/19/20	12/21/20 19:53	BGL	
2,4-Dinitrotoluene	<10.2	10.2	μg/L	1		625.1	12/19/20	12/21/20 19:53	BGL	
2,6-Dinitrotoluene	<10.2	10.2	μg/L	1		625.1	12/19/20	12/21/20 19:53	BGL	
Di-n-octylphthalate	<10.2	10.2	μg/L	1		625.1	12/19/20	12/21/20 19:53	BGL	
1,2-Diphenylhydrazine/Azobenzene	<10.2	10.2	μg/L	1		625.1	12/19/20	12/21/20 19:53	BGL	
Bis(2-Ethylhexyl)phthalate	<10.2	10.2	μg/L	1		625.1	12/19/20	12/21/20 19:53	BGL	
Fluoranthene	<5.10	5.10	μg/L	1		625.1	12/19/20	12/21/20 19:53	BGL	
Fluorene	<5.10	5.10	μg/L	1		625.1	12/19/20	12/21/20 19:53	BGL	
Hexachlorobenzene	<10.2	10.2	μg/L	1		625.1	12/19/20	12/21/20 19:53	BGL	
Hexachlorobutadiene	<10.2	10.2	μg/L	1		625.1	12/19/20	12/21/20 19:53	BGL	
Hexachlorocyclopentadiene	<10.2	10.2	μg/L	1		625.1	12/19/20	12/21/20 19:53	BGL	
Hexachloroethane	<10.2	10.2	μg/L	1		625.1	12/19/20	12/21/20 19:53	BGL	
Isophorone	<10.2	10.2	μg/L	1		625.1	12/19/20	12/21/20 19:53	BGL	
Naphthalene	<5.10	5.10	μg/L	1		625.1	12/19/20	12/21/20 19:53	BGL	
Nitrobenzene	<10.2	10.2	μg/L	1		625.1	12/19/20	12/21/20 19:53	BGL	
2-Nitrophenol	<10.2	10.2	μg/L	1		625.1	12/19/20	12/21/20 19:53	BGL	
4-Nitrophenol	<10.2	10.2	μg/L	1		625.1	12/19/20	12/21/20 19:53	BGL	
N-Nitrosodimethylamine	<10.2	10.2	μg/L	1		625.1	12/19/20	12/21/20 19:53	BGL	
N-Nitrosodi-n-propylamine	<10.2	10.2	μg/L	1		625.1	12/19/20	12/21/20 19:53	BGL	
2-Methylnaphthalene	<5.10	5.10	μg/L	1		625.1	12/19/20	12/21/20 19:53	BGL	
<i>y</i> .	2.10		~ G~	•			-3/1/20		_ 52	

Project Location: 1600 Osgood St. Sample Description: Work Order: 20L0887

Date Received: 12/16/2020
Field Sample #: Influent

Sampled: 12/16/2020 07:00

Sample ID: 20L0887-01
Sample Matrix: Ground Water

Semivolatile	Organic Co	mnounds by .	- GC/MS

							Date	Date/Time	
Analyte	Results	RL	Units	Dilution	Flag/Qual	Method	Prepared	Analyzed	Analyst
Phenanthrene	<5.10	5.10	μg/L	1		625.1	12/19/20	12/21/20 19:53	BGL
2-Methylphenol	<10.2	10.2	$\mu g/L$	1		625.1	12/19/20	12/21/20 19:53	BGL
Phenol	<10.2	10.2	$\mu g/L$	1		625.1	12/19/20	12/21/20 19:53	BGL
3/4-Methylphenol	<20.4	20.4	$\mu g/L$	1		625.1	12/19/20	12/21/20 19:53	BGL
Pyrene	< 5.10	5.10	$\mu g/L$	1		625.1	12/19/20	12/21/20 19:53	BGL
1,2,4-Trichlorobenzene	< 5.10	5.10	$\mu g/L$	1		625.1	12/19/20	12/21/20 19:53	BGL
2,4,6-Trichlorophenol	<10.2	10.2	$\mu g/L$	1		625.1	12/19/20	12/21/20 19:53	BGL
Surrogates		% Recovery	Recovery Limit	s	Flag/Qual				
2-Fluorophenol		47.3	15-110					12/21/20 19:53	
Phenol-d6		37.7	15-110					12/21/20 19:53	
Nitrobenzene-d5		68.6	30-130					12/21/20 19:53	
2-Fluorobiphenyl		78.5	30-130					12/21/20 19:53	
2,4,6-Tribromophenol		111 *	15-110		S-07			12/21/20 19:53	
p-Terphenyl-d14		88.0	30-130					12/21/20 19:53	

Project Location: 1600 Osgood St. Sample Description: Work Order: 20L0887

Date Received: 12/16/2020
Field Sample #: Influent

Sampled: 12/16/2020 07:00

Sample ID: 20L0887-01
Sample Matrix: Ground Water

Polychlorinated Bi	phenyls By	GC/ECD

								Date	Date/Time	
Analyte	Results	RL	DL	Units	Dilution	Flag/Qual	Method	Prepared	Analyzed	Analyst
Aroclor-1016 [1]	< 0.0920	0.100	0.0920	μg/L	1		608.3	12/18/20	12/21/20 12:52	TG
Aroclor-1221 [1]	< 0.0805	0.100	0.0805	μg/L	1		608.3	12/18/20	12/21/20 12:52	TG
Aroclor-1232 [1]	< 0.0995	0.100	0.0995	μg/L	1		608.3	12/18/20	12/21/20 12:52	TG
Aroclor-1242 [1]	< 0.0865	0.100	0.0865	μg/L	1		608.3	12/18/20	12/21/20 12:52	TG
Aroclor-1248 [1]	< 0.0950	0.100	0.0950	μg/L	1		608.3	12/18/20	12/21/20 12:52	TG
Aroclor-1254 [1]	< 0.0525	0.100	0.0525	μg/L	1		608.3	12/18/20	12/21/20 12:52	TG
Aroclor-1260 [1]	< 0.0980	0.100	0.0980	μg/L	1		608.3	12/18/20	12/21/20 12:52	TG
Surrogates		% Reco	very	Recovery Limit	s	Flag/Qual				
Decachlorobiphenyl [1]		57.5		30-150					12/21/20 12:52	
Decachlorobiphenyl [2]		57.7		30-150					12/21/20 12:52	
Tetrachloro-m-xylene [1]		80.3		30-150					12/21/20 12:52	
Tetrachloro-m-xylene [2]		83.5		30-150					12/21/20 12:52	

Project Location: 1600 Osgood St. Sample Description: Work Order: 20L0887

Date Received: 12/16/2020
Field Sample #: Influent

Sampled: 12/16/2020 07:00

Sample ID: 20L0887-01
Sample Matrix: Ground Water

Metals Analyses (Total)

Analyte	Results	RL	DL	Units	Dilution	Flag/Qual	Method	Date Prepared	Date/Time Analyzed	Analyst
-			DL		Dilution	riag/Quai				
Antimony	ND	1.0		μg/L	1		EPA 200.8	12/19/20	12/22/20 14:40	MJH
Arsenic	23	0.80		$\mu g/L$	1		EPA 200.8	12/19/20	12/22/20 14:40	MJH
Cadmium	1.1	0.20		$\mu g/L$	1		EPA 200.8	12/19/20	12/22/20 14:40	MJH
Chromium	450	1.0		$\mu g/L$	1		EPA 200.8	12/19/20	12/22/20 14:40	MJH
Chromium, Trivalent	0.45			mg/L	1		Tri Chrome Calc.	12/19/20	12/22/20 14:40	MJH
Copper	150	1.0		$\mu g/L$	1		EPA 200.8	12/19/20	12/22/20 14:40	MJH
Iron	100	0.10		mg/L	2		EPA 200.7	12/19/20	12/21/20 22:34	AJL
Lead	78	0.50		$\mu g/L$	1		EPA 200.8	12/19/20	12/22/20 14:40	MJH
Mercury	ND	0.00010		mg/L	1		EPA 245.1	12/21/20	12/21/20 13:24	CJV
Nickel	270	5.0		$\mu g/L$	1		EPA 200.8	12/19/20	12/22/20 14:40	MJH
Selenium	1.7	5.0	1.6	$\mu g/L$	1	J	EPA 200.8	12/19/20	12/22/20 14:40	MJH
Silver	ND	0.20		$\mu g/L$	1		EPA 200.8	12/19/20	12/22/20 14:40	MJH
Zinc	250	10		$\mu g/L$	1		EPA 200.8	12/19/20	12/22/20 14:40	MJH
Hardness	780	1.4		mg/L	1		EPA 200.7	12/19/20	12/21/20 13:25	AJL

Project Location: 1600 Osgood St.

Sample Description:

Work Order: 20L0887

Date Received: 12/16/2020 Field Sample #: Influent

Sampled: 12/16/2020 07:00

Sample ID: 20L0887-01
Sample Matrix: Ground Water

Conventional Chemistry Parameters by EPA/APHA/SW-846 Methods (Total)

								Date	Date/Time	
Analyte	Results	RL	DL	Units	Dilution	Flag/Qual	Method	Prepared	Analyzed	Analyst
Ammonia as N	ND	0.10		mg/L	1		EPA 350.1	12/22/20	12/23/20 8:01	MMH
Chloride	400	10		mg/L	10		EPA 300.0	12/18/20	12/18/20 18:02	EC
Chlorine, Residual	ND	0.020		mg/L	1		SM21-22 4500 CL G	12/16/20	12/16/20 22:45	DJM
Hexavalent Chromium	ND	0.0040		mg/L	1		SM21-22 3500 Cr B	12/16/20	12/16/20 21:00	CB2
Total Suspended Solids	14000	50		mg/L	1		SM21-22 2540D	12/18/20	12/18/20 13:00	LL
Silica Gel Treated HEM (SGT-HEM)	ND	7.0		mg/L	1		EPA 1664B	12/23/20	12/23/20 9:10	LL

Project Location: 1600 Osgood St. Sample Description: Work Order: 20L0887

Date Received: 12/16/2020
Field Sample #: Influent

Sampled: 12/16/2020 07:00

Sample ID: 20L0887-01
Sample Matrix: Ground Water

Drinking Water Organics EPA 504.1

								Date	Date/Time	
Analyte	Results	RL	DL	Units	Dilution	Flag/Qual	Method	Prepared	Analyzed	Analyst
1,2-Dibromoethane (EDB) (1)	ND	0.019	0.012	$\mu g/L$	1		EPA 504.1	12/18/20	12/18/20 22:21	JMB
Surrogates		% Reco	very	Recovery Limits	S	Flag/Qual				
1,3-Dibromopropane (1)		102		70-130					12/18/20 22:21	

Project Location: 1600 Osgood St. Sample Description: Work Order: 20L0887

Date Received: 12/16/2020
Field Sample #: Influent

Sampled: 12/16/2020 07:00

Sample ID: 20L0887-01
Sample Matrix: Ground Water

Conventional Chemistry Parameters by EPA/APHA/SW-846 Methods (Total)

									Date	Date/Time	
	Analyte	Results	RL	DL	Units	Dilution	Flag/Qual	Method	Prepared	Analyzed	Analyst
Cyanide		ND	0.005	0.001	mg/L	1		SM21-22 4500 CN E		12/29/20 0:00	AAL

Work Order: 20L0887

39 Spruce Street * East Longmeadow, MA 01028 * FAX 413/525-6405 * TEL. 413/525-2332

Project Location: 1600 Osgood St. Sample Description:

Date Received: 12/16/2020
Field Sample #: Receiving Water

Sampled: 12/16/2020 07:00

Sample ID: 20L0887-02
Sample Matrix: Ground Water

Metals Analyses (Total)

					,					
Analyte	Results	RL	DL	Units	Dilution	Flag/Qual	Method	Date Prepared	Date/Time Analyzed	Analyst
Antimony	ND	1.0		μg/L	1		EPA 200.8	12/19/20	12/22/20 14:43	МЈН
Arsenic	0.92	0.80		μg/L	1		EPA 200.8	12/19/20	12/22/20 14:43	МЈН
Cadmium	ND	0.20		μg/L	1		EPA 200.8	12/19/20	12/22/20 14:43	MJH
Chromium	2.5	1.0		$\mu g/L$	1		EPA 200.8	12/19/20	12/22/20 14:43	MJH
Chromium, Trivalent	0.0025			mg/L	1		Tri Chrome Calc.	12/19/20	12/22/20 14:43	MJH
Copper	3.0	1.0		$\mu g/L$	1		EPA 200.8	12/19/20	12/22/20 14:43	MJH
Iron	1.3	0.050		mg/L	1		EPA 200.7	12/19/20	12/21/20 13:31	AJL
Lead	3.1	0.50		$\mu g/L$	1		EPA 200.8	12/19/20	12/22/20 14:43	MJH
Mercury	ND	0.00010		mg/L	1		EPA 245.1	12/21/20	12/21/20 13:26	CJV
Nickel	ND	5.0		μg/L	1		EPA 200.8	12/19/20	12/22/20 14:43	MJH
Selenium	ND	5.0	1.6	$\mu g/L$	1		EPA 200.8	12/19/20	12/22/20 14:43	MJH
Silver	ND	0.20		$\mu g/L$	1		EPA 200.8	12/19/20	12/22/20 14:43	MJH
Zinc	18	10		$\mu g/L$	1		EPA 200.8	12/19/20	12/22/20 14:43	MJH
Hardness	35	1.4		mg/L	1		EPA 200.7	12/19/20	12/21/20 13:31	AJL

Project Location: 1600 Osgood St. Sample Description: Work Order: 20L0887

Date Received: 12/16/2020
Field Sample #: Receiving Water

Sampled: 12/16/2020 07:00

Sample ID: 20L0887-02
Sample Matrix: Ground Water

Conventional Chemistry Parameters by EPA/APHA/SW-846 Methods (Total)

								Date	Date/Time	
Analyte	Results	RL	DL	Units	Dilution	Flag/Qual	Method	Prepared	Analyzed	Analyst
Ammonia as N	0.73	0.10		mg/L	1		EPA 350.1	12/22/20	12/23/20 8:02	MMH
Hexavalent Chromium	ND	0.0040		mg/L	1		SM21-22 3500 Cr B	12/16/20	12/16/20 21:00	CB2

Sample Extraction Data

Prep Method: SW-846 3510C	Analytical Method: 608.3
---------------------------	--------------------------

Lab Number [Field ID]	Batch	Initial [mL]	Final [mL]	Date
20L0887-01 [Influent]	B273089	1000	5.00	12/18/20

Prep Method: SW-846 5030B Analytical Method: 624.1

Lab Number [Field ID]	Batch	Initial [mL]	Final [mL]	Date
20L0887-01 [Influent]	B273078	5	5.00	12/18/20

Prep Method: SW-846 3510C Analytical Method: 625.1

Lab Number [Field ID]	Batch	Initial [mL]	Final [mL]	Date
20L0887-01 [Influent]	B273158	980	1.00	12/19/20

Prep Method: SW-846 3510C Analytical Method: 625.1

Lab Number [Field ID]	Batch	Initial [mL]	Final [mL]	Date
20L0887-01 [Influent]	B273270	980	1.00	12/19/20

EPA 1664B

Lab Number [Field ID]	Batch	Initial [mL]	Date
20L0887-01 [Influent]	B273396	200	12/23/20

Prep Method: EPA 200.7 Analytical Method: EPA 200.7

Lab Number [Field ID]	Batch	Initial [mL]	Final [mL]	Date
20L0887-01 [Influent]	B273165	50.0	50.0	12/19/20
20L0887-01 [Influent]	B273165	50.0		12/19/20
20L0887-02 [Receiving Water]	B273165	50.0	50.0	12/19/20
20L0887-02 [Receiving Water]	B273165	50.0		12/19/20

Prep Method: EPA 200.8 Analytical Method: EPA 200.8

Lab Number [Field ID]	Batch	Initial [mL]	Final [mL]	Date
20L0887-01 [Influent]	B273164	50.0	50.0	12/19/20
20L0887-02 [Receiving Water]	B273164	50.0	50.0	12/19/20

Prep Method: EPA 245.1 Analytical Method: EPA 245.1

Lab Number [Field ID]	Batch	Initial [mL]	Final [mL]	Date
20L0887-01 [Influent]	B273201	6.00	6.00	12/21/20
20L0887-02 [Receiving Water]	B273201	6.00	6.00	12/21/20

Prep Method: EPA 300.0 Analytical Method: EPA 300.0

Lab Number [Field ID]	Batch	Initial [mL]	Final [mL]	Date

Sample Extraction Data

Prep Method: EPA 300.0	Analytical Method: EPA 300.0
------------------------	------------------------------

Lab Number [Field ID]	Batch	Initial [mL]	Final [mL]	Date
20L0887-01 [Influent]	B273112	10.0	10.0	12/18/20

EPA 350.1

Lab Number [Field ID]	Batch	Initial [mL]	Final [mL]	Date
20L0887-01 [Influent]	B273331	100	100	12/22/20
20L0887-02 [Receiving Water]	B273331	100	100	12/22/20

Prep Method: EPA 504 water Analytical Method: EPA 504.1

Lab Number [Field ID]	Batch	Initial [mL]	Final [mL]	Date
20L0887-01 [Influent]	B273121	36.0	35.0	12/18/20

SM21-22 2540D

Lab Number [Field ID]	Batch	Initial [mL]	Date
20L0887-01 [Influent]	B273059	10.0	12/18/20

SM21-22 3500 Cr B

Lab Number [Field ID]	Batch	Initial [mL]	Final [mL]	Date
20L0887-01 [Influent]	B273029	50.0	50.0	12/16/20
20L0887-02 [Receiving Water]	B273029	50.0	50.0	12/16/20

SM21-22 4500 CL G

Lab Number [Field ID]	Batch	Initial [mL]	Final [mL]	Date
20L0887-01 [Influent]	B273038	100	100	12/16/20

Prep Method: EPA 200.8 Analytical Method: Tri Chrome Calc.

Lab Number [Field ID]	Batch	Initial [mL]	Date
20L0887-01 [Influent]	B273164	50.0	12/19/20
20L0887-02 [Receiving Water]	B273164	50.0	12/19/20

QUALITY CONTROL

Spike

Source

%REC

RPD

Volatile Organic Compounds by GC/MS - Quality Control

Reporting

Analyte	Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Notes
Batch B273078 - SW-846 5030B										
Blank (B273078-BLK1)				Prepared: 12	/18/20 Anal	yzed: 12/19/2	20			
Acetone	ND	50.0	μg/L							
tert-Amyl Methyl Ether (TAME)	ND	0.500	$\mu g/L$							
Benzene	ND	1.00	$\mu g/L$							
Bromodichloromethane	ND	2.00	$\mu g/L$							
Bromoform	ND	2.00	$\mu g/L$							
Bromomethane	ND	2.00	$\mu g/L$							
tert-Butyl Alcohol (TBA)	ND	20.0	$\mu g/L$							
Carbon Tetrachloride	ND	2.00	$\mu g/L$							
Chlorobenzene	ND	2.00	$\mu g/L$							
Chlorodibromomethane	ND	2.00	$\mu g/L$							
Chloroethane	ND	2.00	$\mu g/L$							
Chloroform	ND	2.00	$\mu \text{g}/L$							
Chloromethane	ND	2.00	$\mu g/L$							
1,2-Dichlorobenzene	ND	2.00	$\mu g/L$							
1,3-Dichlorobenzene	ND	2.00	$\mu \text{g}/L$							
1,4-Dichlorobenzene	ND	2.00	$\mu \text{g/L}$							
1,2-Dichloroethane	ND	2.00	$\mu \text{g}/L$							
1,1-Dichloroethane	ND	2.00	$\mu \text{g}/L$							
1,1-Dichloroethylene	ND	2.00	$\mu \text{g/L}$							
trans-1,2-Dichloroethylene	ND	2.00	$\mu \text{g/L}$							
1,2-Dichloropropane	ND	2.00	$\mu g/L$							
eis-1,3-Dichloropropene	ND	2.00	$\mu g/L$							
1,4-Dioxane	ND	50.0	μg/L							
trans-1,3-Dichloropropene	ND	2.00	μg/L							
Ethanol	ND	50.0	$\mu \text{g/L}$							V-05
Ethylbenzene	ND	2.00	μg/L							
Methyl tert-Butyl Ether (MTBE)	ND	2.00	μg/L							
Methylene Chloride	ND	5.00	μg/L							
1,1,2,2-Tetrachloroethane	ND	2.00	μg/L							
Tetrachloroethylene	ND	2.00	μg/L							
Toluene	ND	1.00	μg/L							
1,1,1-Trichloroethane	ND	2.00	μg/L							
1,1,2-Trichloroethane	ND	2.00	μg/L							
Trichloroethylene	ND	2.00	μg/L							
Trichlorofluoromethane (Freon 11)	ND	2.00	μg/L							
Vinyl Chloride	ND	2.00	μg/L							
m+p Xylene	ND	2.00	μg/L							
o-Xylene	ND	1.00	μg/L							
Surrogate: 1,2-Dichloroethane-d4	21.6		$\mu g/L$	25.0		86.2	70-130			
Surrogate: Toluene-d8	23.2		$\mu g/L$	25.0		93.0	70-130			
Surrogate: 4-Bromofluorobenzene	25.1		$\mu g/L$	25.0		101	70-130			
LCS (B273078-BS1)				Prepared: 12	/18/20 Anal	*				
Acetone	170	50.0	μg/L	200		85.8	70-160			
tert-Amyl Methyl Ether (TAME)	16	0.500	$\mu g\!/\!L$	20.0		79.6	70-130			
Benzene	16	1.00	μg/L	20.0		82.2	65-135			
Bromodichloromethane	19	2.00	μg/L	20.0		96.8	65-135			
Bromoform	24	2.00	$\mu \text{g}/L$	20.0		121	70-130			
Bromomethane	16	2.00	$\mu \text{g/L}$	20.0		79.0	15-185			
tert-Butyl Alcohol (TBA)	190	20.0	$\mu \text{g/L}$	200		94.0	40-160			
Carbon Tetrachloride	18	2.00	$\mu \text{g}/L$	20.0		90.5	70-130			
Chlorobenzene	21	2.00	$\mu g/L$	20.0		103	65-135			

QUALITY CONTROL

Volatile Organic Compounds by GC/MS - Quality Control

Analyte	Result	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Notes
Batch B273078 - SW-846 5030B										
LCS (B273078-BS1)				Prepared: 12	2/18/20 Analy	zed: 12/19/2	20			
Chlorodibromomethane	21	2.00	μg/L	20.0		107	70-135			
Chloroethane	17	2.00	μg/L	20.0		83.4	40-160			
Chloroform	17	2.00	μg/L	20.0		87.2	70-135			
Chloromethane	6.0	2.00	μg/L	20.0		30.0	20-205			
1,2-Dichlorobenzene	18	2.00	μg/L	20.0		90.5	65-135			
1,3-Dichlorobenzene	18	2.00	μg/L	20.0		92.4	70-130			
1,4-Dichlorobenzene	18	2.00	μg/L	20.0		89.6	65-135			
1,2-Dichloroethane	20	2.00	μg/L	20.0		100	70-130			
1,1-Dichloroethane	18	2.00	μg/L	20.0		89.3	70-130			
1,1-Dichloroethylene	19	2.00	μg/L	20.0		93.2	50-150			
trans-1,2-Dichloroethylene	17	2.00	μg/L	20.0		85.2	70-130			
1,2-Dichloropropane	20	2.00	μg/L	20.0		99.6	35-165			
cis-1,3-Dichloropropene	17	2.00	μg/L	20.0		85.2	25-175			
1,4-Dioxane	200	50.0	μg/L	200		101	40-130			
trans-1,3-Dichloropropene	18	2.00	μg/L	20.0		91.6	50-150			
Ethanol	150	50.0	μg/L	200		73.8	40-160			V-05
Ethylbenzene	20	2.00	$\mu g/L$	20.0		98.9	60-140			
Methyl tert-Butyl Ether (MTBE)	17	2.00	μg/L	20.0		85.1	70-130			
Methylene Chloride	15	5.00	μg/L	20.0		73.8	60-140			
1,1,2,2-Tetrachloroethane	20	2.00	μg/L	20.0		100	60-140			
Tetrachloroethylene	22	2.00	μg/L	20.0		112	70-130			
Toluene	18	1.00	μg/L	20.0		90.2	70-130			
1,1,1-Trichloroethane	19	2.00	μg/L	20.0		93.4	70-130			
1,1,2-Trichloroethane	21	2.00	μg/L	20.0		103	70-130			
Trichloroethylene	19	2.00	μg/L	20.0		94.7	65-135			
Trichlorofluoromethane (Freon 11)	16	2.00	μg/L	20.0		78.2	50-150			
Vinyl Chloride	13	2.00	μg/L	20.0		66.2	5-195			
m+p Xylene	40	2.00	$\mu g/L$	40.0		101	70-130			
o-Xylene	20	1.00	$\mu g/L$	20.0		100	70-130			
Surrogate: 1,2-Dichloroethane-d4	20.6		μg/L	25.0		82.4	70-130			
Surrogate: Toluene-d8	24.0		μg/L	25.0		96.1	70-130			
Surrogate: 4-Bromofluorobenzene	25.6		μg/L	25.0		102	70-130			

QUALITY CONTROL

Semivolatile Organic Compounds by GC/MS - Quality Control

Analyte	Result	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Notes
Batch B273270 - SW-846 3510C										
LCS (B273270-BS1)				Prepared: 12	2/19/20 Analy	/zed: 12/23/2	20			
Benzo(a)anthracene (SIM)	43.6	1.0	μg/L	50.0	<u> </u>	87.2	33-143			
Benzo(a)pyrene (SIM)	41.0	2.0	μg/L	50.0		82.0	17-163			
Benzo(b)fluoranthene (SIM)	47.0	1.0	μg/L	50.0		94.0	24-159			
Benzo(k)fluoranthene (SIM)	43.4	4.0	$\mu g/L$	50.0		86.7	11-162			
Bis(2-ethylhexyl)phthalate (SIM)	50.7	20	$\mu g/L$	50.0		101	8-158			
Chrysene (SIM)	41.7	4.0	μg/L	50.0		83.5	17-168			
Dibenz(a,h)anthracene (SIM)	42.2	2.0	μg/L	50.0		84.3	10-227			
Indeno(1,2,3-cd)pyrene (SIM)	42.6	2.0	μg/L	50.0		85.3	10-171			
Pentachlorophenol (SIM)	27.7	20	$\mu g/L$	50.0		55.3	14-176			
Surrogate: 2-Fluorophenol	85.5		μg/L	200		42.7	15-110			
Surrogate: 2-Fluorophenol (SIM)	86.2		$\mu g/L$	200		43.1	15-110			
Surrogate: Phenol-d6	65.7		$\mu g/L$	200		32.8	15-110			
Surrogate: Phenol-d6 (SIM)	62.5		$\mu g/L$	200		31.3	15-110			
Surrogate: Nitrobenzene-d5	71.6		$\mu g/L$	100		71.6	30-130			
Surrogate: 2-Fluorobiphenyl	83.2		$\mu g/L$	100		83.2	30-130			
Surrogate: 2,4,6-Tribromophenol	124		$\mu g/L$	140		88.4	15-110			
Surrogate: 2,4,6-Tribromophenol (SIM)	141		$\mu g/L$	140		100	15-110			
Surrogate: p-Terphenyl-d14	69.2		μg/L	100		69.2	30-130			
LCS Dup (B273270-BSD1)				Prepared: 12	2/19/20 Analy	zed: 12/23/2	20			
Benzo(a)anthracene (SIM)	45.2	1.0	μg/L	50.0		90.4	33-143	3.65	53	
Benzo(a)pyrene (SIM)	42.7	2.0	μg/L	50.0		85.4	17-163	3.97	72	
Benzo(b)fluoranthene (SIM)	48.7	1.0	μg/L	50.0		97.4	24-159	3.59	71	
Benzo(k)fluoranthene (SIM)	45.5	4.0	$\mu g/L$	50.0		91.0	11-162	4.82	63	
Bis(2-ethylhexyl)phthalate (SIM)	52.6	20	$\mu g/L$	50.0		105	8-158	3.68	82	
Chrysene (SIM)	43.3	4.0	$\mu g/L$	50.0		86.6	17-168	3.72	87	
Dibenz(a,h)anthracene (SIM)	43.7	2.0	$\mu g/L$	50.0		87.4	10-227	3.54	126	
ndeno(1,2,3-cd)pyrene (SIM)	44.3	2.0	$\mu g/L$	50.0		88.5	10-171	3.73	99	
Pentachlorophenol (SIM)	30.1	20	$\mu g/L$	50.0		60.1	14-176	8.32	86	
Surrogate: 2-Fluorophenol	89.7		μg/L	200		44.8	15-110			
Surrogate: 2-Fluorophenol (SIM)	89.6		$\mu g/L$	200		44.8	15-110			
Surrogate: Phenol-d6	70.8		$\mu g/L$	200		35.4	15-110			
Surrogate: Phenol-d6 (SIM)	63.7		$\mu g/L$	200		31.9	15-110			
Surrogate: Nitrobenzene-d5	78.2		$\mu g/L$	100		78.2	30-130			
Surrogate: 2-Fluorobiphenyl	87.1		$\mu g/L$	100		87.1	30-130			
Surrogate: 2,4,6-Tribromophenol	136		$\mu g/L$	140		97.2	15-110			
Surrogate: 2,4,6-Tribromophenol (SIM)	144		$\mu g/L$	140		103	15-110			
Surrogate: p-Terphenyl-d14	74.3		μg/L	100		74.3	30-130			

QUALITY CONTROL

Semivolatile Organic Compounds by - GC/MS - Quality Control

		D		C. 1			0/DEC		DDD	
Analyte	Result	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Notes
Batch B273158 - SW-846 3510C										
Blank (B273158-BLK1)				Prepared: 12	2/19/20 Anal	yzed: 12/21/2	20			
Acenaphthene	ND	5.00	μg/L	* ****						
Acenaphthylene	ND	5.00	μg/L							
Anthracene	ND ND	5.00	μg/L							
Benzidine	ND	20.0	μg/L							L-04, R-05, V-04, V-05
Benzo(g,h,i)perylene	ND	5.00	$\mu g/L$							V-03
4-Bromophenylphenylether	ND	10.0	$\mu g/L$							
Butylbenzylphthalate	ND	10.0	$\mu g/L$							
4-Chloro-3-methylphenol	ND	10.0	$\mu g/L$							
Bis(2-chloroethyl)ether	ND	10.0	$\mu g/L$							
Bis(2-chloroisopropyl)ether	ND	10.0	μg/L							
2-Chloronaphthalene	ND	10.0	μg/L							
2-Chlorophenol	ND	10.0	μg/L							
4-Chlorophenylphenylether	ND	10.0	μg/L							
Di-n-butylphthalate	ND	10.0	μg/L							
1,3-Dichlorobenzene	ND	5.00	μg/L							
1,4-Dichlorobenzene	ND ND	5.00	μg/L μg/L							
1,2-Dichlorobenzene	ND ND	5.00	μg/L							
3,3-Dichlorobenzidine		10.0	μg/L μg/L							
2,4-Dichlorophenol	ND	10.0	μg/L μg/L							
Diethylphthalate	ND	10.0	μg/L μg/L							
2,4-Dimethylphenol	ND									
	ND	10.0	μg/L							
Dimethylphthalate	ND	10.0	μg/L							
4,6-Dinitro-2-methylphenol	ND	10.0	μg/L							
2,4-Dinitrophenol	ND	10.0	μg/L							
2,4-Dinitrotoluene	ND	10.0	μg/L							
2,6-Dinitrotoluene	ND	10.0	μg/L							
Di-n-octylphthalate	ND	10.0	μg/L							
1,2-Diphenylhydrazine/Azobenzene	ND	10.0	μg/L							
Bis(2-Ethylhexyl)phthalate	ND	10.0	$\mu g/L$							
Fluoranthene	ND	5.00	$\mu g/L$							
Fluorene	ND	5.00	$\mu g/L$							
Hexachlorobenzene	ND	10.0	$\mu g/L$							
Hexachlorobutadiene	ND	10.0	$\mu g/L$							
Hexachlorocyclopentadiene	ND	10.0	$\mu g/L$							
Hexachloroethane	ND	10.0	$\mu g/L$							
Isophorone	ND	10.0	μg/L							
Naphthalene	ND	5.00	μg/L							
Nitrobenzene	ND	10.0	μg/L							
2-Nitrophenol	ND	10.0	μg/L							
4-Nitrophenol	ND	10.0	μg/L							
N-Nitrosodimethylamine	ND	10.0	μg/L							
N-Nitrosodi-n-propylamine	ND ND	10.0	μg/L μg/L							
2-Methylnaphthalene	ND ND	5.00	μg/L μg/L							
Phenanthrene	ND ND	5.00	μg/L μg/L							
2-Methylphenol		10.0	μg/L μg/L							
Phenol	ND	10.0	μg/L μg/L							
3/4-Methylphenol	ND									
• •	ND	20.0	μg/L							
Pyrene	ND	5.00	μg/L							
1,2,4-Trichlorobenzene	ND	5.00	μg/L							
2,4,6-Trichlorophenol	ND	10.0	μg/L							
Surrogate: 2-Fluorophenol	102		$\mu g/L$	200		50.9	15-110			

QUALITY CONTROL

Semivolatile Organic Compounds by - GC/MS - Quality Control

Analyte	Result	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Notes
· ·	Kesuit	Limit	Onits	LEVEI	Result	/UKEC	PHHIIS	KFD	Lillit	110105
Batch B273158 - SW-846 3510C				Dranged, 12	2/19/20 Analy	rad: 12/21/2	0			
Blank (B273158-BLK1)	77.7		/T		2/19/20 Allary					
Surrogate: Phenol-d6 Surrogate: Nitrobenzene-d5	77.7 74.8		μg/L μg/L	200 100		38.9 74.8	15-110 30-130			
Surrogate: 2-Fluorobiphenyl	77.0		μg/L μg/L	100		77.0	30-130			
Surrogate: 2,4,6-Tribromophenol	144		μg/L μg/L	140		102	15-110			
Surrogate: p-Terphenyl-d14	88.7		μg/L	100		88.7	30-130			
LCS (B273158-BS1)					2/19/20 Analy	zed: 12/21/2	0			
Acenaphthene	40.9	5.00	μg/L	50.0	-,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	81.7	47-145			
Acenaphthylene	39.8	5.00	μg/L	50.0		79.7	33-145			
Anthracene	40.6	5.00	μg/L	50.0		81.2	27-133			
Benzidine	8.17	20.0	μg/L	100		8.17 *	40-140			V-04, V-05, L-04,
Benzo(g,h,i)perylene	47.9	5.00	μg/L	50.0		95.7	10-219			R-05
4-Bromophenylphenylether	37.6	10.0	μg/L μg/L	50.0		75.1	53-127			
Butylbenzylphthalate	40.0	10.0	μg/L μg/L	50.0		80.0	10-152			
4-Chloro-3-methylphenol	41.5	10.0	μg/L μg/L	50.0		83.1	22-147			
Bis(2-chloroethyl)ether	33.4	10.0	μg/L μg/L	50.0		66.7	12-158			
Bis(2-chloroisopropyl)ether	35.2	10.0	μg/L	50.0		70.3	36-166			
2-Chloronaphthalene	33.6	10.0	μg/L	50.0		67.2	60-120			
2-Chlorophenol	36.4	10.0	μg/L	50.0		72.8	23-134			
4-Chlorophenylphenylether	38.8	10.0	μg/L	50.0		77.6	25-154			
Di-n-butylphthalate	38.9	10.0	μg/L	50.0		77.8	10-120			
1,3-Dichlorobenzene	30.2	5.00	μg/L	50.0		60.4	10-172			
1,4-Dichlorobenzene	31.1	5.00	μg/L	50.0		62.2	20-124			
1,2-Dichlorobenzene	31.9	5.00	μg/L	50.0		63.8	32-129			
3,3-Dichlorobenzidine	42.7	10.0	μg/L	100		42.7	10-262			
2,4-Dichlorophenol	41.4	10.0	μg/L	50.0		82.7	39-135			
Diethylphthalate	39.0	10.0	μg/L	50.0		78.0	10-120			
2,4-Dimethylphenol	36.8	10.0	μg/L	50.0		73.7	32-120			
Dimethylphthalate	38.5	10.0	μg/L	50.0		77.0	10-120			
4,6-Dinitro-2-methylphenol	44.5	10.0	μg/L	50.0		89.0	10-181			
2,4-Dinitrophenol	51.2	10.0	μg/L	50.0		102	10-191			
2,4-Dinitrotoluene	43.3	10.0	μg/L	50.0		86.5	39-139			
2,6-Dinitrotoluene	43.2	10.0	μg/L	50.0		86.4	50-158			
Di-n-octylphthalate	38.4	10.0	μg/L	50.0		76.7	4-146			
1,2-Diphenylhydrazine/Azobenzene	35.3	10.0	μg/L	50.0		70.5	40-140			
Bis(2-Ethylhexyl)phthalate	39.5	10.0	μg/L	50.0		79.1	8-158			
Fluoranthene	40.4	5.00	μg/L	50.0		80.7	26-137			
Fluorene	41.1	5.00	μg/L	50.0		82.1	59-121			
Hexachlorobenzene	40.1	10.0	μg/L	50.0		80.2	10-152			
Hexachlorobutadiene	33.5	10.0	μg/L	50.0		67.0	24-120			
Hexachlorocyclopentadiene	36.0	10.0	μg/L	50.0		72.1	40-140			
Hexachloroethane	30.1	10.0	μg/L	50.0		60.2	40-120			
Isophorone	40.1	10.0	μg/L	50.0		80.2	21-196			
Naphthalene	36.3	5.00	μg/L	50.0		72.7	21-133			
Nitrobenzene	35.0	10.0	μg/L	50.0		70.1	35-180			
2-Nitrophenol	44.3	10.0	$\mu g/L$	50.0		88.6	29-182			
4-Nitrophenol	23.2	10.0	$\mu g\!/\!L$	50.0		46.3	10-132			
N-Nitrosodimethylamine	20.4	10.0	μg/L	50.0		40.7	40-140			
N-Nitrosodi-n-propylamine	35.6	10.0	μg/L	50.0		71.3	10-230			
2-Methylnaphthalene	42.4	5.00	μg/L	50.0		84.8	40-140			
Phenanthrene	40.2	5.00	μg/L	50.0		80.3	54-120			
2-Methylphenol	36.2	10.0	$\mu g/L$	50.0		72.5	40-140			

QUALITY CONTROL

Semivolatile Organic Compounds by - GC/MS - Quality Control

Analyte	Result	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Notes
Batch B273158 - SW-846 3510C		<u> </u>							,	
LCS (B273158-BS1)				Prepared: 12	2/19/20 Analy	zed: 12/21/	20			
Phenol	18.0	10.0	μg/L	50.0		36.1	5-120			
3/4-Methylphenol	34.9	20.0	$\mu \text{g}/L$	50.0		69.9	40-140			
Pyrene	39.5	5.00	$\mu \text{g}/L$	50.0		79.0	52-120			
1,2,4-Trichlorobenzene	34.6	5.00	$\mu g/L$	50.0		69.1	44-142			
2,4,6-Trichlorophenol	42.5	10.0	$\mu \text{g}/L$	50.0		85.1	37-144			
Surrogate: 2-Fluorophenol	111		μg/L	200		55.3	15-110			
Surrogate: Phenol-d6	86.7		μg/L	200		43.4	15-110			
Surrogate: Nitrobenzene-d5	76.0		μg/L	100		76.0	30-130			
Surrogate: 2-Fluorobiphenyl	82.1		μg/L	100		82.1	30-130			
Surrogate: 2,4,6-Tribromophenol	153		μg/L	140		109	15-110			
Surrogate: p-Terphenyl-d14	87.6		$\mu g/L$	100		87.6	30-130			
LCS Dup (B273158-BSD1)				Prepared: 12	2/19/20 Analy	zed: 12/21/	20			
Acenaphthene	35.4	5.00	μg/L	50.0		70.8	47-145	14.3	48	
Acenaphthylene	33.8	5.00	$\mu g/L$	50.0		67.7	33-145	16.3	74	
Anthracene	35.4	5.00	$\mu g/L$	50.0		70.8	27-133	13.6	66	
Benzidine	5.20	20.0	$\mu \text{g/L}$	100		5.20 *	40-140	44.4	* 30	L-04, R-05, V-04, V-05
Benzo(g,h,i)perylene	40.8	5.00	$\mu \text{g/L}$	50.0		81.6	10-219	15.9	97	
4-Bromophenylphenylether	33.1	10.0	$\mu \text{g/L}$	50.0		66.2	53-127	12.7	43	
Butylbenzylphthalate	34.5	10.0	$\mu \text{g/L}$	50.0		69.0	10-152	14.7	60	
4-Chloro-3-methylphenol	36.4	10.0	μg/L	50.0		72.9	22-147	13.1	73	
Bis(2-chloroethyl)ether	28.6	10.0	$\mu \text{g/L}$	50.0		57.1	12-158	15.5	108	
Bis(2-chloroisopropyl)ether	29.8	10.0	μg/L	50.0		59.7	36-166	16.3	76	
2-Chloronaphthalene	27.2	10.0	μg/L	50.0		54.4 *	60-120	21.1	24	L-07
2-Chlorophenol	31.1	10.0	μg/L	50.0		62.3	23-134	15.7	61	
4-Chlorophenylphenylether	33.3	10.0	μg/L	50.0		66.5	25-158	15.4	61	
Di-n-butylphthalate	33.7	10.0	μg/L	50.0		67.4	10-120	14.3	47	
1,3-Dichlorobenzene	24.3	5.00	μg/L	50.0		48.5	10-172	21.7	30	
1,4-Dichlorobenzene	24.7	5.00	μg/L	50.0		49.4	20-124	23.1	30	
1,2-Dichlorobenzene	26.2	5.00	μg/L	50.0		52.4	32-129	19.5	30	
3,3-Dichlorobenzidine	37.0	10.0	μg/L	100		37.0	10-262	14.4	108	
2,4-Dichlorophenol	35.2	10.0	μg/L	50.0		70.5	39-135	16.0	50	
Diethylphthalate	33.9	10.0	μg/L	50.0		67.8	10-120	14.0	100	
2,4-Dimethylphenol	30.5	10.0	μg/L	50.0		61.0	32-120	18.9	58	
Dimethylphthalate	33.6	10.0	μg/L	50.0		67.2	10-120	13.5	183	
4,6-Dinitro-2-methylphenol	39.2	10.0	μg/L	50.0		78.5	10-181	12.5	203	
2,4-Dinitrophenol	45.0	10.0	μg/L	50.0		90.1	10-191	12.9	132	
2,4-Dinitrotoluene	37.7	10.0	μg/L	50.0		75.4	39-139	13.8	42	
2,6-Dinitrotoluene	37.4	10.0	μg/L	50.0		74.7	50-158	14.5	48	
Di-n-octylphthalate	32.2	10.0	μg/L	50.0		64.4	4-146	17.5	69	
1,2-Diphenylhydrazine/Azobenzene	31.4	10.0	μg/L	50.0		62.8	40-140	11.6	30	
Bis(2-Ethylhexyl)phthalate	33.9	10.0	μg/L	50.0		67.8	8-158	15.4	82	
Fluoranthene	35.5	5.00	μg/L	50.0		71.1	26-137	12.7	66	
Fluorene	35.5	5.00	μg/L	50.0		71.1	59-121	14.4	38	
Hexachlorobenzene	35.1	10.0	μg/L	50.0		70.3	10-152	13.2	55	
Hexachlorobutadiene	27.0	10.0	μg/L	50.0		53.9	24-120	21.6	62	
Hexachlorocyclopentadiene	29.6	10.0	μg/L	50.0		59.3	40-140	19.5	30	
Hexachloroethane	24.6	10.0	μg/L	50.0		49.3	40-120	19.9	52	
Isophorone	33.9	10.0	μg/L	50.0		67.8	21-196	16.8	93	
Naphthalene	33.9 29.6	5.00	μg/L μg/L	50.0		59.3	21-133	20.3	65	
Nitrobenzene	29.6	10.0	μg/L μg/L	50.0		58.8	35-180	17.5	62	
2-Nitrophenol		10.0	μg/L μg/L	50.0		73.0	29-182	19.4	55	
	36.5	10.0	MP/L	50.0		13.0	27-102	17.7		Page 26 of 4

Page 26 of 44

QUALITY CONTROL

Semivolatile Organic Compounds by - GC/MS - Quality Control

		Reporting		Spike	Source		%REC		RPD	
Analyte	Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Notes
Batch B273158 - SW-846 3510C										
LCS Dup (B273158-BSD1)				Prepared: 12	2/19/20 Anal	yzed: 12/21/2	20			
4-Nitrophenol	21.3	10.0	μg/L	50.0		42.6	10-132	8.41	131	
N-Nitrosodimethylamine	17.8	10.0	$\mu g/L$	50.0		35.7 *	40-140	13.1	30	L-07
N-Nitrosodi-n-propylamine	31.0	10.0	$\mu g/L$	50.0		62.0	10-230	13.9	87	
2-Methylnaphthalene	35.3	5.00	$\mu g/L$	50.0		70.7	40-140	18.2	30	
Phenanthrene	35.2	5.00	$\mu g/L$	50.0		70.4	54-120	13.2	39	
2-Methylphenol	32.3	10.0	$\mu g/L$	50.0		64.7	40-140	11.4	30	
Phenol	16.0	10.0	$\mu g/L$	50.0		32.0	5-120	12.1	64	
3/4-Methylphenol	31.0	20.0	$\mu g/L$	50.0		61.9	40-140	12.1	30	
Pyrene	34.7	5.00	$\mu g/L$	50.0		69.4	52-120	13.0	49	
1,2,4-Trichlorobenzene	28.3	5.00	$\mu g/L$	50.0		56.5	44-142	20.0	50	
2,4,6-Trichlorophenol	36.6	10.0	$\mu g/L$	50.0		73.2	37-144	15.0	58	
Surrogate: 2-Fluorophenol	95.7		μg/L	200		47.9	15-110			
Surrogate: Phenol-d6	76.0		μg/L	200		38.0	15-110			
Surrogate: Nitrobenzene-d5	65.4		μg/L	100		65.4	30-130			
Surrogate: 2-Fluorobiphenyl	69.1		μg/L	100		69.1	30-130			
Surrogate: 2,4,6-Tribromophenol	129		μg/L	140		92.0	15-110			
Surrogate: p-Terphenyl-d14	75.0		μg/L	100		75.0	30-130			

QUALITY CONTROL

Polychlorinated Biphenyls By GC/ECD - Quality Control

Analyte	Result	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Notes
Batch B273089 - SW-846 3510C						,,,,,,,				
Blank (B273089-BLK1)				Prepared: 12	2/18/20 Anal	yzed: 12/21/2	20			
Aroclor-1016	ND	0.100	μg/L	•	<u> </u>	<u> </u>				
Aroclor-1016 [2C]	ND	0.100	μg/L							
Aroclor-1221	ND	0.100	μg/L							
Aroclor-1221 [2C]	ND	0.100	μg/L							
Aroclor-1232	ND	0.100	$\mu g/L$							
Aroclor-1232 [2C]	ND	0.100	$\mu g/L$							
Aroclor-1242	ND	0.100	$\mu g/L$							
Aroclor-1242 [2C]	ND	0.100	$\mu g/L$							
Aroclor-1248	ND	0.100	μg/L							
Aroclor-1248 [2C]	ND	0.100	μg/L							
Aroclor-1254	ND	0.100	μg/L							
Aroclor-1254 [2C]	ND	0.100	μg/L							
Aroclor-1260	ND	0.100	μg/L							
Aroclor-1260 [2C]	ND	0.100	$\mu g/L$							
Surrogate: Decachlorobiphenyl	0.974		μg/L	1.00		97.4	30-150			
Surrogate: Decachlorobiphenyl [2C]	0.945		$\mu g/L$	1.00		94.5	30-150			
Surrogate: Tetrachloro-m-xylene	0.916		$\mu g/L$	1.00		91.6	30-150			
Surrogate: Tetrachloro-m-xylene [2C]	0.906		$\mu g/L$	1.00		90.6	30-150			
LCS (B273089-BS1)				Prepared: 12	2/18/20 Anal	yzed: 12/21/2	20			
Aroclor-1016	0.481	0.200	μg/L	0.500		96.2	50-140			
Aroclor-1016 [2C]	0.477	0.200	μg/L	0.500		95.4	50-140			
Aroclor-1260	0.458	0.200	μg/L	0.500		91.6	8-140			
Aroclor-1260 [2C]	0.450	0.200	$\mu g/L$	0.500		90.0	8-140			
Surrogate: Decachlorobiphenyl	1.90		μg/L	2.00		95.1	30-150			
Surrogate: Decachlorobiphenyl [2C]	1.86		$\mu g/L$	2.00		92.9	30-150			
Surrogate: Tetrachloro-m-xylene	1.75		$\mu g/L$	2.00		87.6	30-150			
Surrogate: Tetrachloro-m-xylene [2C]	1.76		$\mu g/L$	2.00		88.0	30-150			
LCS Dup (B273089-BSD1)				Prepared: 12	2/18/20 Anal	yzed: 12/21/2	20			
Aroclor-1016	0.458	0.200	μg/L	0.500		91.6	50-140	4.88		
Aroclor-1016 [2C]	0.448	0.200	$\mu g/L$	0.500		89.6	50-140	6.28		
Aroclor-1260	0.423	0.200	$\mu g/L$	0.500		84.7	8-140	7.84		
Aroclor-1260 [2C]	0.414	0.200	$\mu g/L$	0.500		82.9	8-140	8.27		
Surrogate: Decachlorobiphenyl	1.69		μg/L	2.00		84.7	30-150			
Surrogate: Decachlorobiphenyl [2C]	1.66		$\mu g/L$	2.00		82.9	30-150			
Surrogate: Tetrachloro-m-xylene	1.62		$\mu g/L$	2.00		81.0	30-150			
Surrogate: Tetrachloro-m-xylene [2C]	1.66		μg/L	2.00		82.8	30-150			

QUALITY CONTROL

Metals Analyses (Total) - Quality Control

	.	Reporting		Spike	Source	A/PEG	%REC	222	RPD	27.
Analyte	Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Notes
atch B273164 - EPA 200.8										
Blank (B273164-BLK1)				Prepared: 12	2/19/20 Anal	yzed: 12/22/2	20			
Antimony	ND	1.0	$\mu g \! / \! L$							
Arsenic	ND	0.80	$\mu g/L$							
Cadmium	ND	0.20	$\mu g/L$							
Chromium	ND	1.0	$\mu g/L$							
Copper	ND	1.0	$\mu g/L$							
Lead	ND	0.50	$\mu g/L$							
Nickel	ND	5.0	$\mu g/L$							
Selenium	ND	5.0	$\mu g/L$							
Silver	ND	0.20	$\mu g/L$							
Zinc	ND	10	$\mu g/L$							
.CS (B273164-BS1)				Prepared: 12	2/19/20 Anal	yzed: 12/22/2	20			
Antimony	465	10	μg/L	500		93.1	85-115			
Arsenic	484	8.0	μg/L	500		96.9	85-115			
Cadmium	487	2.0	μg/L	500		97.4	85-115			
Chromium	473	10	μg/L	500		94.6	85-115			
Copper	951	10	μg/L	1000		95.1	85-115			
Lead	474	5.0	μg/L	500		94.8	85-115			
Nickel	477	50	μg/L	500		95.3	85-115			
Selenium	476	50	μg/L	500		95.2	85-115			
Silver	451	2.0	μg/L	500		90.3	85-115			
Zinc	955	100	μg/L	1000		95.5	85-115			
LCS Dup (B273164-BSD1)				Prepared: 12	2/19/20 Anal	vzed: 12/22/2	20			
Antimony	465	10	μg/L	500		93.0	85-115	0.0503	20	
Arsenic	479	8.0	μg/L	500		95.9	85-115	1.01	20	
Cadmium	489	2.0	μg/L	500		97.8	85-115	0.421	20	
Chromium	476	10	μg/L	500		95.1	85-115	0.527	20	
Copper	955	10	μg/L	1000		95.5	85-115	0.360	20	
Lead	933 472	5.0	μg/L μg/L	500		94.4	85-115	0.435	20	
Nickel	480	50	μg/L	500		96.0	85-115	0.713	20	
Selenium		50	μg/L μg/L	500		95.1	85-115	0.0436	20	
Silver	476	2.0	μg/L μg/L	500		90.7	85-115	0.425	20	
Zinc	453 954	100	μg/L μg/L	1000		95.4	85-115	0.423	20	
Batch B273165 - EPA 200.7										
							_			
Blank (B273165-BLK1)	177	0.050	mg/L	Prepared: 12	2/19/20 Anal	yzed: 12/21/2	20			
Iron Hardness	ND		-							
Hardness	ND	1.4	mg/L							
LCS (B273165-BS1)					2/19/20 Anal	-				
ron	4.12	0.050	mg/L	4.00		103	85-115			
Hardness	27	1.4	mg/L	26.4		101	85-115			

QUALITY CONTROL

Metals Analyses (Total) - Quality Control

Analyte	Result	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Notes
Batch B273165 - EPA 200.7										
LCS Dup (B273165-BSD1)				Prepared: 12	/19/20 Anal	yzed: 12/21/2	20			
Iron	4.08	0.050	mg/L	4.00		102	85-115	0.946	20	
Hardness	26	1.4	mg/L	26.4		99.3	85-115	1.30	20	
Batch B273201 - EPA 245.1										
Blank (B273201-BLK1)				Prepared & A	Analyzed: 12	/21/20				
Mercury	ND	0.00010	mg/L							
LCS (B273201-BS1)				Prepared & A	Analyzed: 12	/21/20				
Mercury	0.00398	0.00010	mg/L	0.00400		99.5	85-115			
LCS Dup (B273201-BSD1)				Prepared & A	Analyzed: 12	/21/20				
Mercury	0.00426	0.00010	mg/L	0.00400		107	85-115	6.92	20	

QUALITY CONTROL

Conventional Chemistry Parameters by EPA/APHA/SW-846 Methods (Total) - Quality Control

		Reporting		Spike	Source		%REC		RPD	
Analyte	Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Notes
Batch B273029 - SM21-22 3500 Cr B										
Blank (B273029-BLK1)				Prepared &	Analyzed: 12	/16/20				
Hexavalent Chromium	ND	0.0040	mg/L							
LCS (B273029-BS1)				Prepared &	Analyzed: 12	/16/20				
Hexavalent Chromium	0.10	0.0040	mg/L	0.100		101	90-115			
LCS Dup (B273029-BSD1)				Prepared &	Analyzed: 12	/16/20				
Hexavalent Chromium	0.10	0.0040	mg/L	0.100		104	90-115	2.48	11	
Batch B273038 - SM21-22 4500 CL G										
Blank (B273038-BLK1)				Prepared &	Analyzed: 12	/16/20				
Chlorine, Residual	ND	0.020	mg/L							
LCS (B273038-BS1)				Prepared &	Analyzed: 12	/16/20				
Chlorine, Residual	0.66	0.020	mg/L	0.641		102	85.3-130			
LCS Dup (B273038-BSD1)				Prepared &	Analyzed: 12	/16/20				
Chlorine, Residual	0.67	0.020	mg/L	0.641		105	85.3-130	2.33	13.6	
Duplicate (B273038-DUP1)	Sour	ce: 20L0887-	01	Prepared &	Analyzed: 12	/16/20				
Chlorine, Residual	ND	0.020	mg/L		NE)		NC	29.4	
Matrix Spike (B273038-MS1)	Sour	ce: 20L0887-	01	Prepared &	Analyzed: 12	/16/20				
Chlorine, Residual	0.26	0.020	mg/L	0.300	NE	85.8	10-169			
Batch B273059 - SM21-22 2540D										
Blank (B273059-BLK1)				Prepared &	Analyzed: 12	/18/20				
Total Suspended Solids	ND	2.5	mg/L							
LCS (B273059-BS1)				Prepared &	Analyzed: 12	/18/20				
Total Suspended Solids	190	10	mg/L	200		95.0	57.4-123			
Batch B273112 - EPA 300.0										
Blank (B273112-BLK1)				Prepared &	Analyzed: 12	/18/20				
Chloride	ND	1.0	mg/L							
LCS (B273112-BS1)				Prepared &	Analyzed: 12	/18/20				
Chloride	10		mg/L	10.0		101	90-110			

QUALITY CONTROL

Conventional Chemistry Parameters by EPA/APHA/SW-846 Methods (Total) - Quality Control

	D 1:	Reporting	T T *:	Spike	Source	N/DEC	%REC	DDD	RPD	N.
Analyte	Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Notes
Batch B273112 - EPA 300.0										
LCS Dup (B273112-BSD1)				Prepared &	Analyzed: 12/	18/20				
Chloride	10		mg/L	10.0		101	90-110	0.511	20	
Batch B273331 - EPA 350.1										
Blank (B273331-BLK1)				Prepared: 12	/22/20 Analy	zed: 12/23/2	20			
Ammonia as N	ND	0.10	mg/L							
LCS (B273331-BS1)				Prepared: 12	/22/20 Analy	zed: 12/23/2	20			
Ammonia as N	1.9	0.10	mg/L	2.00		96.6	90-110			
LCS Dup (B273331-BSD1)				Prepared: 12	/22/20 Analy	zed: 12/23/2	20			
Ammonia as N	2.0	0.10	mg/L	2.00		100	90-110	3.41	20	
Batch B273396 - EPA 1664B										
Blank (B273396-BLK1)				Prepared &	Analyzed: 12/	/23/20				
Silica Gel Treated HEM (SGT-HEM)	ND	1.4	mg/L							
LCS (B273396-BS1)				Prepared &	Analyzed: 12/	23/20				
Silica Gel Treated HEM (SGT-HEM)	8.7		mg/L	10.0		87.0	64-132			
Duplicate (B273396-DUP1)	Sou	ırce: 20L0887-0	01	Prepared &	Analyzed: 12/	23/20				
Silica Gel Treated HEM (SGT-HEM)	ND	7.0	mg/L		ND			NC	18	
Matrix Spike (B273396-MS1)	Sou	ırce: 20L0887-0	01	Prepared &	Analyzed: 12/	23/20				
Silica Gel Treated HEM (SGT-HEM)	65	14	mg/L	100	ND	65.0	64-132			

QUALITY CONTROL

Drinking Water Organics EPA 504.1 - Quality Control

Analyte	Result	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Notes
Batch B273121 - EPA 504 water										
Blank (B273121-BLK1)	Prepared & Analyzed: 12/18/20									
1,2-Dibromoethane (EDB)	ND	0.021	μg/L							
Surrogate: 1,3-Dibromopropane	1.10		μg/L	1.06		104	70-130			
LCS (B273121-BS1)	Prepared & Analyzed: 12/18/20									
1,2-Dibromoethane (EDB)	0.230	0.021	μg/L	0.260		88.4	70-130			
Surrogate: 1,3-Dibromopropane	1.06		μg/L	1.04		102	70-130			
LCS Dup (B273121-BSD1)	Prepared & Analyzed: 12/18/20									
1,2-Dibromoethane (EDB)	0.221	0.021	μg/L	0.257		86.0	70-130	3.87		
Surrogate: 1,3-Dibromopropane	1.11		μg/L	1.03		108	70-130			

IDENTIFICATION SUMMARY FOR SINGLE COMPONENT ANALYTES

608.3

Lab Sample ID:	B273089-BS1		Date(s) Analyzed:	12/21/2020	12/21/202	20
Instrument ID (1):			Instrument ID (2):			
GC Column (1):	ID:	(mm)	GC Column (2):		ID:	(mm)

ANALYTE	COL	RT	RT WI	NDOW	CONCENTRATION	%RPD
7.10.11.2	002	111	FROM	TO	OONOLIVITUUTION	/01111 15
Aroclor-1016	1	0.000	0.000	0.000	0.481	
	2	0.000	0.000	0.000	0.477	0.6
Aroclor-1260	1	0.000	0.000	0.000	0.458	
	2	0.000	0.000	0.000	0.450	2.2

IDENTIFICATION SUMMARY FOR SINGLE COMPONENT ANALYTES

LCS	Dup	

608.3

Lab Sample ID:	B273089-BSD1		Date(s) Analyzed:	12/21/2020	12/21/2	2020
Instrument ID (1):			Instrument ID (2):			
GC Column (1):	ID:	(mm)	GC Column (2):		ID:	(mm)

ANALYTE	COL	RT	RT WI	NDOW	CONCENTRATION	%RPD
7,10,12172	OOL	111	FROM	TO	OONOLIVITUUTOIV	
Aroclor-1016	1	0.000	0.000	0.000	0.458	
	2	0.000	0.000	0.000	0.448	2.6
Aroclor-1260	1	0.000	0.000	0.000	0.423	
	2	0.000	0.000	0.000	0.414	1.4

IDENTIFICATION SUMMARY FOR SINGLE COMPONENT ANALYTES

LCS		

EPA 504.1

La	b Sample ID: B27	B273121-BS1			Date(s) Analyzed: 12/18/2020		12/18/2020	
Instrument ID (1):			In	strument ID	(2):			
G	C Column (1):	ID:	(m	nm) G	C Column (2	2):	ID:	(mm
	ANALYTE	COL	RT	RT WI	NDOW	CONCENTRATION	%RPD	
				FROM	TO			
	1.2-Dibromoethane (EDB)	1	3 261	0.000	0.000	0.230		

IDENTIFICATION SUMMARY FOR SINGLE COMPONENT ANALYTES

LCS Dup	

EPA 504.1

La	b Sample ID: B273	B273121-BSD1			Date(s) Analyzed: 12/18/2020		12/18/2020	
Instrument ID (1):			In	strument ID	(2):			
G	C Column (1):	ID:	(m	nm) G	C Column (2	2):	ID:	(mm
	ANALYTE	COL	RT	RT WI	NDOW	CONCENTRATION	%RPD	
	, <u> </u>			FROM	ТО		701 11 2	
	1.2-Dibromoethane (FDB)	1	3 261	0.000	0.000	0.221		

FLAG/QUALIFIER SUMMARY

*	QC result is outside of established limits.
†	Wide recovery limits established for difficult compound.
‡	Wide RPD limits established for difficult compound.
#	Data exceeded client recommended or regulatory level
ND	Not Detected
RL	Reporting Limit is at the level of quantitation (LOQ)
DL	Detection Limit is the lower limit of detection determined by the MDL study
MCL	Maximum Contaminant Level
	Percent recoveries and relative percent differences (RPDs) are determined by the software using values in the calculation which have not been rounded.
	No results have been blank subtracted unless specified in the case narrative section.
J	Detected but below the Reporting Limit (lowest calibration standard); therefore, result is an estimated concentration (CLP J-Flag).
L-04	Laboratory fortified blank/laboratory control sample recovery and duplicate recovery are outside of control limits. Reported value for this compound is likely to be biased on the low side.
L-07	Either laboratory fortified blank/laboratory control sample or duplicate recovery is outside of control limits, but the other is within limits. RPD between the two LFB/LCS results is within method specified criteria.
R-05	Laboratory fortified blank duplicate RPD is outside of control limits. Reduced precision is anticipated for any reported value for this compound.
S-07	One associated surrogate standard recovery is outside of control limits but the other(s) is/are within limits. All recoveries are > 10%.
V-04	Initial calibration did not meet method specifications. Compound was calibrated using a response factor where %RSD is outside of method specified criteria. Reported result is estimated.
V-05	Continuing calibration verification (CCV) did not meet method specifications and was biased on the low side for this compound.

CERTIFICATIONS

Certified Analyses included in this Report

Analyte	Certifications
608.3 in Water	
Aroclor-1016	CT,MA,NH,NY,RI,NC,ME,VA
Aroclor-1016 [2C]	CT,MA,NH,NY,RI,NC,ME,VA
Aroclor-1221	CT,MA,NH,NY,RI,NC,ME,VA
Aroclor-1221 [2C]	CT,MA,NH,NY,RI,NC,ME,VA
Aroclor-1232	CT,MA,NH,NY,RI,NC,ME,VA
Aroclor-1232 [2C]	CT,MA,NH,NY,RI,NC,ME,VA
Aroclor-1242	CT,MA,NH,NY,RI,NC,ME,VA
Aroclor-1242 [2C]	CT,MA,NH,NY,RI,NC,ME,VA
Aroclor-1248	CT,MA,NH,NY,RI,NC,ME,VA
Aroclor-1248 [2C]	CT,MA,NH,NY,RI,NC,ME,VA
Aroclor-1254	CT,MA,NH,NY,RI,NC,ME,VA
Aroclor-1254 [2C]	CT,MA,NH,NY,RI,NC,ME,VA
Aroclor-1260	CT,MA,NH,NY,RI,NC,ME,VA
Aroclor-1260 [2C]	CT,MA,NH,NY,RI,NC,ME,VA
624.1 in Water	
Acetone	CT,NY,MA,NH
tert-Amyl Methyl Ether (TAME)	MA
Benzene	CT,NY,MA,NH,RI,NC,ME,VA
Bromodichloromethane	CT,NY,MA,NH,RI,NC,ME,VA
Bromoform	CT,NY,MA,NH,RI,NC,ME,VA
Bromomethane	CT,NY,MA,NH,RI,NC,ME,VA
tert-Butyl Alcohol (TBA)	NY,MA
Carbon Tetrachloride	CT,NY,MA,NH,RI,NC,ME,VA
Chlorobenzene	CT,NY,MA,NH,RI,NC,ME,VA
Chlorodibromomethane	CT,NY,MA,NH,RI,NC,ME,VA
Chloroethane	CT,NY,MA,NH,RI,NC,ME,VA
Chloroform	CT,NY,MA,NH,RI,NC,ME,VA
Chloromethane	CT,NY,MA,NH,RI,NC,ME,VA
1,2-Dichlorobenzene	CT,NY,MA,NH,RI,NC,ME,VA
1,3-Dichlorobenzene	CT,NY,MA,NH,RI,NC,ME,VA
1,4-Dichlorobenzene	CT,NY,MA,NH,RI,NC,ME,VA
1,2-Dichloroethane	CT,NY,MA,NH,RI,NC,ME,VA
1,1-Dichloroethane	CT,NY,MA,NH,RI,NC,ME,VA
1,1-Dichloroethylene	CT,NY,MA,NH,RI,NC,ME,VA
trans-1,2-Dichloroethylene	CT,NY,MA,NH,RI,NC,ME,VA
1,2-Dichloropropane	CT,NY,MA,NH,RI,NC,ME,VA
cis-1,3-Dichloropropene	CT,NY,MA,NH,RI,NC,ME,VA
1,4-Dioxane	MA
trans-1,3-Dichloropropene	CT,NY,MA,NH,RI,NC,ME,VA
Ethanol	NY,MA,NH
Ethylbenzene	CT,NY,MA,NH,RI,NC,ME,VA
Methyl tert-Butyl Ether (MTBE)	NY,MA,NH,NC
Methylene Chloride	CT,NY,MA,NH,RI,NC,ME,VA
Naphthalene	NY,MA,NC
1,1,2,2-Tetrachloroethane	CT,NY,MA,NH,RI,NC,ME,VA
Tetrachloroethylene	CT,NY,MA,NH,RI,NC,ME,VA

CERTIFICATIONS

Certified Analyses included in this Report

Certified Analyses included in this Report Analyte	Certifications
624.1 in Water	
	CENNAMA NILIDINGMENA
Toluene	CT,NY,MA,NH,RI,NC,ME,VA
1,2,4-Trichlorobenzene	MA,NC
1,1,1-Trichloroethane	CT,NY,MA,NH,RI,NC,ME,VA
1,1,2-Trichloroethane	CT,NY,MA,NH,RI,NC,ME,VA
Trichloroethylene	CT,NY,MA,NH,RI,NC,ME,VA
Trichlorofluoromethane (Freon 11)	CT,NY,MA,NH,RI,NC,ME,VA
Vinyl Chloride	CT,NY,MA,NH,RI,NC,ME,VA
m+p Xylene	CT,NY,MA,NH,RI,NC
o-Xylene	CT,NY,MA,NH,RI,NC
625.1 in Water	
Acenaphthene	CT,MA,NH,NY,NC,RI,ME,VA
Acenaphthylene	CT,MA,NH,NY,NC,RI,ME,VA
Anthracene	CT,MA,NH,NY,NC,RI,ME,VA
Benzidine	CT,MA,NH,NY,NC,RI,ME,VA
Benzo(g,h,i)perylene	CT,MA,NH,NY,NC,RI,ME,VA
4-Bromophenylphenylether	CT,MA,NH,NY,NC,RI,ME,VA
Butylbenzylphthalate	CT,MA,NH,NY,NC,RI,ME,VA
4-Chloro-3-methylphenol	CT,MA,NH,NY,NC,RI,VA
Bis(2-chloroethyl)ether	CT,MA,NH,NY,NC,RI,ME,VA
Bis(2-chloroisopropyl)ether	CT,MA,NH,NY,NC,RI,ME,VA
2-Chloronaphthalene	CT,MA,NH,NY,NC,RI,ME,VA
2-Chlorophenol	CT,MA,NH,NY,NC,RI,ME,VA
4-Chlorophenylphenylether	CT,MA,NH,NY,NC,RI,ME,VA
Di-n-butylphthalate	CT,MA,NH,NY,NC,RI,ME,VA
1,3-Dichlorobenzene	MA,NC
1,4-Dichlorobenzene	MA,NC
1,2-Dichlorobenzene	MA,NC
3,3-Dichlorobenzidine	CT,MA,NH,NY,NC,RI,ME,VA
2,4-Dichlorophenol	CT,MA,NH,NY,NC,RI,ME,VA
Diethylphthalate	CT,MA,NH,NY,NC,RI,ME,VA
2,4-Dimethylphenol	CT,MA,NH,NY,NC,RI,ME,VA
Dimethylphthalate	CT,MA,NH,NY,NC,RI,ME,VA
4,6-Dinitro-2-methylphenol	CT,MA,NH,NY,NC,RI,ME,VA
2,4-Dinitrophenol	CT,MA,NH,NY,NC,RI,ME,VA
2,4-Dinitrotoluene	CT,MA,NH,NY,NC,RI,ME,VA
2,6-Dinitrotoluene	CT,MA,NH,NY,NC,RI,ME,VA
Di-n-octylphthalate	CT,MA,NH,NY,NC,RI,ME,VA
1,2-Diphenylhydrazine/Azobenzene	NC
Bis(2-Ethylhexyl)phthalate	CT,MA,NH,NY,NC,RI,ME,VA
Fluoranthene	CT,MA,NH,NY,NC,RI,ME,VA
Fluorene	CT,MA,NH,NY,NC,RI,ME,VA
Hexachlorobenzene	CT,MA,NH,NY,NC,RI,ME,VA
Hexachlorobutadiene	CT,MA,NH,NY,NC,RI,ME,VA
Hexachlorocyclopentadiene	CT,MA,NH,NY,NC,RI,ME,VA
Hexachloroethane	CT,MA,NH,NY,NC,RI,ME,VA
Isophorone	CT,MA,NH,NY,NC,RI,ME,VA
r constant	

CERTIFICATIONS

Certified Analyses included in this Report

Analyte	Certifications	
625.1 in Water		
Naphthalene	CT,MA,NH,NY,NC,RI,ME,VA	
Nitrobenzene	CT,MA,NH,NY,NC,RI,ME,VA	
2-Nitrophenol	CT,MA,NH,NY,NC,RI,ME,VA	
4-Nitrophenol	CT,MA,NH,NY,NC,RI,ME,VA	
N-Nitrosodimethylamine	CT,MA,NH,NY,NC,RI,ME,VA	
N-Nitrosodi-n-propylamine	CT,MA,NH,NY,NC,RI,ME,VA	
2-Methylnaphthalene	NC	
Phenanthrene	CT,MA,NH,NY,NC,RI,ME,VA	
2-Methylphenol	NY,NC	
Phenol	CT,MA,NH,NY,NC,RI,ME,VA	
3/4-Methylphenol	NY,NC	
Pyrene	CT,MA,NH,NY,NC,RI,ME,VA	
1,2,4-Trichlorobenzene	CT,MA,NH,NY,NC,RI,ME,VA	
2,4,6-Trichlorophenol	CT,MA,NH,NY,NC,RI,ME,VA	
2-Fluorophenol	NC	
2-Fluorophenol	NC,VA	
Phenol-d6	VA	
Nitrobenzene-d5	VA	
EPA 200.7 in Water		
Iron	CT,MA,NH,NY,RI,NC,ME,VA	
Hardness	CT,MA,NH,NY,RI,VA	
EPA 200.8 in Water		
Antimony	CT,MA,NH,NY,RI,NC,ME,VA	
Arsenic	CT,MA,NH,NY,RI,NC,ME,VA	
Cadmium	CT,MA,NH,NY,RI,NC,ME,VA	
Chromium	CT,MA,NH,NY,RI,NC,ME,VA	
Copper	CT,MA,NH,NY,RI,NC,ME,VA	
Lead	CT,MA,NH,NY,RI,NC,ME,VA	
Nickel	CT,MA,NH,NY,RI,NC,ME,VA	
Selenium	CT,MA,NH,NY,RI,NC,ME,VA	
Silver	CT,MA,NH,NY,RI,NC,ME,VA	
Zinc	CT,MA,NH,NY,RI,NC,ME,VA	
EPA 245.1 in Water		
Mercury	CT,MA,NH,RI,NY,NC,ME,VA	
EPA 300.0 in Water		
Chloride	NC,NY,MA,VA,ME,NH,CT,RI	
EPA 350.1 in Water		
Ammonia as N	NC,NY,MA,NH,RI,ME,VA	
SM21-22 2540D in Water		
Total Suspended Solids	CT,MA,NH,NY,RI,NC,ME,VA	
SM21-22 3500 Cr B in Water		
Hexavalent Chromium	NY,CT,NH,RI,ME,VA,NC	
SM21-22 4500 CL G in Water		
Chlorine, Residual	CT,MA,RI,ME	

CERTIFICATIONS

Certified Analyses included in this Report

Analyte Certifications

SM21-22 4500 CN E in Water

Cyanide

CT,MA,NH,NY,RI,NC,ME,VA

Con-Test, a Pace Environmental Laboratory, operates under the following certifications and accreditations:

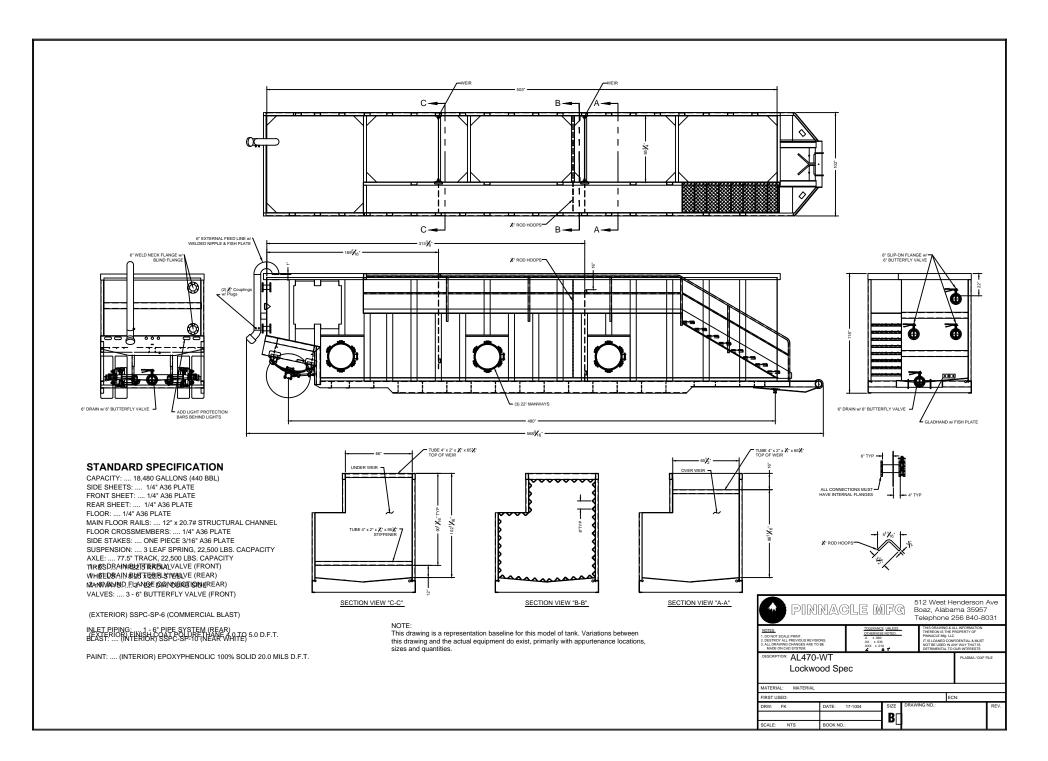
Code	Description	Number	Expires
AIHA	AIHA-LAP, LLC - ISO17025:2017	100033	03/1/2022
MA	Massachusetts DEP	M-MA100	06/30/2021
CT	Connecticut Department of Publilc Health	PH-0567	09/30/2021
NY	New York State Department of Health	10899 NELAP	04/1/2021
NH-S	New Hampshire Environmental Lab	2516 NELAP	02/5/2021
RI	Rhode Island Department of Health	LAO00112	12/30/2020
NC	North Carolina Div. of Water Quality	652	12/31/2020
NJ	New Jersey DEP	MA007 NELAP	06/30/2021
FL	Florida Department of Health	E871027 NELAP	06/30/2021
VT	Vermont Department of Health Lead Laboratory	LL720741	07/30/2021
ME	State of Maine	MA00100	06/9/2021
VA	Commonwealth of Virginia	460217	12/14/2021
NH-P	New Hampshire Environmental Lab	2557 NELAP	09/6/2021
VT-DW	Vermont Department of Health Drinking Water	VT-255716	06/12/2021
NC-DW	North Carolina Department of Health	25703	07/31/2021
PA	Commonwealth of Pennsylvania DEP	68-05812	06/30/2021
MI	Dept. of Env, Great Lakes, and Energy	9100	09/6/2021

Meschaer delias sames sy) (a) (d) y y y y y (d) (d) y d) (a) (b) (b) (b) (b) Preservation Codes: ' Matrix Codes: GW = Ground Water WW = Waste Water DW = Drinking Water .= Sodium Hydroxide B = Sodium Bisulfate 5 = Summa Canister 3 Container Codes: A = Amber Glass 0 = Other (please 0 = Other (please 0 = Other (please Non Soxhlet = Sulfuric Acid PCB ONLY Page__1__ of__1_ Soxhlet T = Tedlar Bag N = Nitric Acid Preservation Code O Field Filtered O Field Filtered M = Methanol G = Glass P = Plastic ST = Sterile O Lab to Filter O Lab to Filter Container Code S = Soil SL = Sludge SOL = Solid **Thiosulfate** ≈ Sodium # of Containers define) / = Vial define) 모 = Iced A = Air Please use the following codes to indicate possible sample concentration within the Conc IV muimondD × × 803 × NELAC and AIRA-LAP, LLC Accredited Chromatogram

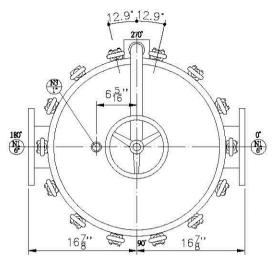
AIHA-LAP,LLC H - High; M - Medium; L - Low; C - Clean; U - Unknown SSI × AIHA-LAP,LLC www.contastisbs.com 39 Spruce Street East Longmeadow, MA 01028 ⋖ HdJ PCB's ANALYSIS REQUESTED s,ooy-imag × Code column above: Other × 5,00/ Syanide × Doc # 381 Rev 1_03242017 Cu, Fe, Pb, Hg, Ni, Se, Ag, Zn) WRTA Total Metals (Sb, As, Cd, Cr III, × Ω LBC CT RCP Required RCP Certification Form Required MA MCP Required MCP Certification Form Required Chloride × MWRA MA State DW Required School MBTA Special Requirements 5 8 8 \supset jjennings@lrt-llc.net ihenry@lrt-llc.net http://www.contestlabs.com 'Matrix Code CHAIN OF CUSTODY RECORD <u></u>8 ჴ Partition level Municipality Brownfield 5-day # CISMd 10-Day 3-Day 4-Day EXCEL Grab 21 J CLP Like Data Pkg Required: × Composite Socrame to a William Brook Strangers > PDF Government Date/Time Email To: 3.5 Oue Date: 7.8 Ending ormat: Federal Other: 7-Day 2-Day l-Day Ċţţ Project Entity PHRW 7.3 Beginning Date/Time Other Samples are for NPDES RGP Parameters. 万万万 Lockwood Remediation Technologies 20,000 Email: info@contestlabs.com Client Sample ID / Description Phone: 413-525-2332 Date/Time: Address: 89 Crawford Street, Leominster, MA 01453 Fax: 413-525-6405 Date/Time: Date/Time: sate/Time: até/Time: Date/Time: Ra Receiving Water $\overline{\omega}$ N S Project Names 1500 Osgood Street サイニョ Con-Test Quote Name/Number: c.{ O LEGENTION ANALYTICAL LABORATORY Project Manager: john Henry Relinquished by: (signature) (signature quished by: (signature Phone: (774) 450-7177 Received by: (signature) (signature) ved by: (signature) Project Number: 2-2137 Con-Test Work Order# Company Name: nvoice Recipient: Project Location: Sampled By: comments: Page 43 of 44

Table of Contents

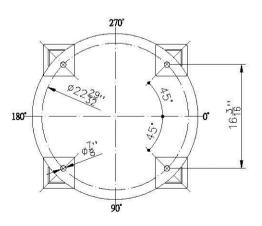
I Have Not Confirmed Sample Container
Numbers With Lab Staff Before Relinquishing
Over Samples_____



Doc# 277 Rev 5 2017


Login Sample Receipt Checklist - (Rejection (Criteria Listing - Using Acceptance Policy) Any False
Statement will be brought to the a	ttention of the Client - State True or False

Client _	<u> </u>								
Receive	ed By	Mill		Date	Bille	DO	Time	655	
How were the	•	In Cooler	T	No Cooler		On Ice	<u> </u>	No Ice	
receive	ed?	Direct from Sam	pling	,		- Ambient		Melted Ice	
Were sampl	loc within		By Gun#	2		Actual Ten	nn - Z Z		
Temperatur		T	By Blank #			Actual Ten			•
· ·		eal Intact?	- Na	We	re Sample	s Tampered		nla	
	•	nguished?				ree With Sa		T	
Are ther	e broken/l	eaking/loose caps	on any sam	ples?	F				
Is COC in ink				•	nples recei	ved within h	olding time?	<u> </u>	
Did COC inc		Client		Analysis	T		ler Name	F	
pertinent Info	rmation?	Project		ID's		Collection	Dates/Times	T	
		d out and legible?		-		-	•		
Are there Lab	to Filters?	?			Who was	s notified?			
Are there Rus	hes?		F		Who was	s notified?	**************************************		
Are there Sho	rt Holds?				Who was	s notified?	(assie		
is there enoug	-								
ls there Heads	space whe	ere applicable?	<u></u>		MS/MSD?	F			
Proper Media/			_T		ls splitting	samples red	quired?	F	
Were trip blan			F		On COC?	F	_		
Do all samples	s have the	proper pH?		Acid	T		Base	7	
Viels I		Carriginers:	#			#			
Unp-		1 Liter Amb.	C_{α}	1 Liter F	Plastic	ì	16 oz .	Amb.	
HCL-	3	500 mL Amb.		500 mL	Plastic		8oz Aml	b/Clear	
Meoh-		250 mL Amb.		250 mL		1)	4oz Aml	o/Clear	
Bisulfate-		Flashpoint		Col./Ba			2oz Amł	o/Clear	
DI-		Other Glass		Other F			Enco	ore	
Thiosulfate- Sulfuric-	3	SOC Kit Perchlorate		Plastic			Frozen:		
Sulfulic-		reichiorate		Ziplo	ick				
Andrew Control of the				Unused M	ledia				
EE	#	Containes:	#			A			- 1
Jnp- -ICL-		1 Liter Amb.		1 Liter F			16 oz A		
Meoh-		500 mL Amb.		500 mL			8oz Amb		
Bisulfate-		250 mL Amb. Col./Bacteria		250 mL l			4oz Amb		
Ol-		Other Plastic		Flashp			2oz Amb		
hiosulfate-		SOC Kit		Other C Plastic			Enco	ore	
Sulfuric-		Perchlorate		Ziplo			Frozen:		
comments:	L			<u> </u>					
Cont o	lo he	ex charme or	Recel	Wing Wo	Her Sa W 121	mple bed	cause no	ne of th	€



567 (1) 99112 13 (8) 0.D.ø26" 615° $36\frac{7}{32}$ " 2 INLET OUTLET \(\frac{\hat{N}^2}{6}\) NI (15) N4 18 DRAIN NPT. 67" SIDE VIEW

TOP VIEW

ANCHOR

BILL OF MATERIALS (QUANTITY PER UNIT)

CUSTOMER DESIGN 150 PSIG 90 "C DESTINATION MAX. A.W.P. 150 PSIG 90 "C CUST. P.O. HYDROSTATIC TESTED 225 PSIG CUST. P.O. HYDROSTATIC TESTED 225 PSIG CUST. P.O. CODE N.B. N.B. NO. DESCRIPTION MATERIAL UNIT QUAN. PART NO. 1 FILTER COVER 304 1 1 3 GASKET EPDM 1 4 LEG WELDMENT 304 4 4 5 DAVIT HANDWHEEL 304 1 4 5 DAVIT ARM 304 1 1 4 8 SEPARATE PLATE 304 1 1 4 1 1 4 1	PROD	ORDERS.O W	IFG. SERI	AL NO.					
DESTINATION MAX. A.W.P. 150 PSIG 90 ℃ CUST. P.O. HYDROSTATIC TESTED 225 PSIG CUST.EQUIP CODE CODE CODE STAMP N.B. NO OF UNITS SCH SHIP DATE WEIGHT EMPTY KG. FULL KG NO. DESCRIPTION MATERIAL UNIT QUAN. PART NO. 1 FILTER COVER 304 1 2 FILTER SHELL 304 1 3 GASKET EPDM 1 4 LEG WELDMENT 304 4 5 DAVIT HANDWHEEL 304 1 6 DAVIT SCREW 304 1 7 DAVIT ARM 304 1 8 SEPARATE PLATE 304 1 9 EYENUT 304 14 10 WASHER 304 14 12 BOLT SUPPORT 304 14 13 BASKET 304 6 14 BAG-LOCK DEVICE 304 6 15 INLET 6" ANSI 150B RF 304 1 16 OUTLET 6" ANSI 150B RF 304 1	CUSTO	DMERD	ESIGN	150	_ PSIG	90 .C			
CUST.EQUIP CODE N.B	1								
CUST.EQUIP CODE N.B	CUST.	P.O. H	HYDROST/	ATIC TE	STED _2	225_ PSIG			
CODE STAMP	1								
NO OF UNITS SCH SHIP DATE WEIGHT EMPTY KG. FULL KG NO. DESCRIPTION MATERIAL UNIT QUAN. PART NO. 1 FILTER COVER 304 1 1 2 FILTER SHELL 304 1 1 3 GASKET EPDM 1 1 4 LEG WELDMENT 304 4 1 5 DAVIT HANDWHEEL 304 1 1 6 DAVIT SCREW 304 1 1 7 DAVIT ARM 304 1 1 8 SEPARATE PLATE 304 1 1 9 EYENUT 304 14 1 10 WASHER 304 14 1 12 BOLT SUPPORT 304 14 13 BASKET 304 6 14 BAG-LOCK DEVICE 304 6 15 INLET 6" ANSI 150B RF 304 1	0001.								
WEIGHT EMPTY KG. FULL KG NO. DESCRIPTION MATERIAL UNIT QUAN. PART NO. 1 FILTER COVER 304 1 1 2 FILTER SHELL 304 1 1 3 GASKET EPDM 1 1 4 LEG WELDMENT 304 4 4 5 DAVIT HANDWHEEL 304 1 1 6 DAVIT SCREW 304 1 1 7 DAVIT ARM 304 1 1 8 SEPARATE PLATE 304 1 1 9 EYENUT 304 14 1 10 WASHER 304 14 1 11 EYEBOLT 304 14 1 12 BOLT SUPPORT 304 6 1 13 BASKET 304 6 1 14 BAG—LOCK DEVICE 304 6 15 <td< td=""><td>NO O</td><td></td><td></td><td></td><td></td><td>N.D</td></td<>	NO O					N.D			
NO. DESCRIPTION MATERIAL UNIT QUAN. PART NO. 1 FILTER COVER 304 1 1 2 FILTER SHELL 304 1 1 3 GASKET EPDM 1 1 4 LEG WELDMENT 304 4 4 5 DAVIT HANDWHEEL 304 1 1 6 DAVIT SCREW 304 1 1 7 DAVIT ARM 304 1 1 8 SEPARATE PLATE 304 1 1 9 EYENUT 304 14 1 10 WASHER 304 14 14 11 EYEBOLT 304 14 1 12 BOLT SUPPORT 304 14 1 13 BASKET 304 6 1 14 BAG—LOCK DEVICE 304 6 15 INLET 6" ANSI 150B RF 304 1									
1 FILTER COVER 304 1 2 FILTER SHELL 304 1 3 GASKET EPDM 1 4 LEG WELDMENT 304 4 5 DAVIT HANDWHEEL 304 1 6 DAVIT SCREW 304 1 7 DAVIT ARM 304 1 8 SEPARATE PLATE 304 1 9 EYENUT 304 14 10 WASHER 304 14 11 EYEBOLT 304 14 12 BOLT SUPPORT 304 14 13 BASKET 304 6 14 BAG-LOCK DEVICE 304 6 15 INLET 6" ANSI 150B RF 304 1 16 OUTLET 6" ANSI 150B RF 304 1 17 VENT NPT 1" 304 1	WEIGH	T EMPTY KG.	FULL		_ KG				
2 FILTER SHELL 304 1 3 GASKET EPDM 1 4 LEG WELDMENT 304 4 5 DAVIT HANDWHEEL 304 1 6 DAVIT SCREW 304 1 7 DAVIT ARM 304 1 8 SEPARATE PLATE 304 1 9 EYENUT 304 14 10 WASHER 304 14 11 EYEBOLT 304 14 11 EYEBOLT 304 14 12 BOLT SUPPORT 304 14 13 BASKET 304 6 14 BAG-LOCK DEVICE 304 6 15 INLET 6" ANSI 150B RF 304 1 17 VENT NPT 1" 304 1	NO.	DESCRIPTION	MATERIAL	UNIT	QUAN.	PART NO.			
3 GASKET EPDM 1 4 LEG WELDMENT 304 4 5 DAVIT HANDWHEEL 304 1 6 DAVIT SCREW 304 1 7 DAVIT ARM 304 1 8 SEPARATE PLATE 304 1 9 EYENUT 304 14 10 WASHER 304 14 11 EYEBOLT 304 14 12 BOLT SUPPORT 304 14 13 BASKET 304 6 14 BAG-LOCK DEVICE 304 6 15 INLET 6" ANSI 150B RF 304 1 16 OUTLET 6" ANSI 150B RF 304 1 17 VENT NPT 1" 304 1	1	FILTER COVER	304		1				
4 LEG WELDMENT 304 4 5 DAVIT HANDWHEEL 304 1 6 DAVIT SCREW 304 1 7 DAVIT ARM 304 1 8 SEPARATE PLATE 304 1 9 EYENUT 304 14 10 WASHER 304 14 11 EYEBOLT 304 14 12 BOLT SUPPORT 304 14 13 BASKET 304 6 14 BAG-LOCK DEVICE 304 6 15 INLET 6" ANSI 150B RF 304 1 16 OUTLET 6" ANSI 150B RF 304 1 17 VENT NPT 1" 304 1	2	FILTER SHELL	304		1				
5 DAVIT HANDWHEEL 304 1 6 DAVIT SCREW 304 1 7 DAVIT ARM 304 1 8 SEPARATE PLATE 304 1 9 EYENUT 304 14 10 WASHER 304 14 11 EYEBOLT 304 14 12 BOLT SUPPORT 304 14 13 BASKET 304 6 14 BAG-LOCK DEVICE 304 6 15 INLET 6" ANSI 150B RF 304 1 16 OUTLET 6" ANSI 150B RF 304 1 17 VENT NPT 1" 304 1	3	GASKET	EPDM	hoon yangan yangan ya	1				
6 DAVIT SCREW 304 1 7 DAVIT ARM 304 1 8 SEPARATE PLATE 304 1 9 EYENUT 304 14 10 WASHER 304 14 11 EYEBOLT 304 14 12 BOLT SUPPORT 304 14 13 BASKET 304 6 14 BAG-LOCK DEVICE 304 6 15 INLET 6" ANSI 150B RF 304 1 16 OUTLET 6" ANSI 150B RF 304 1 17 VENT NPT 1" 304 1	4	LEG WELDMENT	304		4				
7 DAVIT ARM 304 1 8 SEPARATE PLATE 304 1 9 EYENUT 304 14 10 WASHER 304 14 11 EYEBOLT 304 14 12 BOLT SUPPORT 304 14 13 BASKET 304 6 14 BAG-LOCK DEVICE 304 6 15 INLET 6" ANSI 150B RF 304 1 16 OUTLET 6" ANSI 150B RF 304 1 17 VENT NPT 1" 304 1	5	DAVIT HANDWHEEL	304		1				
8 SEPARATE PLATE 304 1 9 EYENUT 304 14 10 WASHER 304 14 11 EYEBOLT 304 14 12 BOLT SUPPORT 304 14 13 BASKET 304 6 14 BAG-LOCK DEVICE 304 6 15 INLET 6" ANSI 150B RF 304 1 16 OUTLET 6" ANSI 150B RF 304 1 17 VENT NPT 1" 304 1	6	DAVIT SCREW	304		1				
9 EYENUT 304 14 10 WASHER 304 14 11 EYEBOLT 304 14 12 BOLT SUPPORT 304 14 13 BASKET 304 6 14 BAG-LOCK DEVICE 304 6 15 INLET 6" ANSI 150B RF 304 1 16 OUTLET 6" ANSI 150B RF 304 1 17 VENT NPT 1" 304 1	7	DAVIT ARM	304		1				
10 WASHER 304 14 11 EYEBOLT 304 14 12 BOLT SUPPORT 304 14 13 BASKET 304 6 14 BAG-LOCK DEVICE 304 6 15 INLET 6" ANSI 150B RF 304 1 16 OUTLET 6" ANSI 150B RF 304 1 17 VENT NPT 1" 304 1	8	SEPARATE PLATE	304		1				
11 EYEBOLT 304 14 12 BOLT SUPPORT 304 14 13 BASKET 304 6 14 BAG-LOCK DEVICE 304 6 15 INLET 6" ANSI 150B RF 304 1 16 OUTLET 6" ANSI 150B RF 304 1 17 VENT NPT 1" 304 1	9	EYENUT	304		14				
12 BOLT SUPPORT 304 14 13 BASKET 304 6 14 BAG-LOCK DEVICE 304 6 15 INLET 6" ANSI 150B RF 304 1 16 OUTLET 6" ANSI 150B RF 304 1 17 VENT NPT 1" 304 1	10	WASHER	304		14				
13 BASKET 304 6 14 BAG-LOCK DEVICE 304 6 15 INLET 6" ANSI 150B RF 304 1 16 OUTLET 6" ANSI 150B RF 304 1 17 VENT NPT 1" 304 1	11	EYEBOLT	304		14				
14 BAC-LOCK DEVICE 304 6 15 INLET 6" ANSI 150B RF 304 1 16 OUTLET 6" ANSI 150B RF 304 1 17 VENT NPT 1" 304 1	12	BOLT SUPPORT	304		14				
15 INLET 6" ANSI 150B RF 304 1 16 OUTLET 6" ANSI 150B RF 304 1 17 VENT NPT 1" 304 1	13	BASKET	304		6				
16 OUTLET 6" ANSI 150B RF 304 1 17 VENT NPT 1" 304 1	14	BAG-LOCK DEVICE	304		6				
17 VENT NPT 1" 304 1	15	INLET 6" ANSI 150B RF	304		1				
	16	OUTLET 6" ANSI 150B RF	304		1				
18 DRAIN NPT 1" 304 1	17	VENT NPT 1"	304		1				
	18	DRAIN NPT 1"	304		1				

Lockwood Remediation Technologies, LLC 89 Crawford Street Leominster, MA

NAME		REV: A
Multi-Bag Filter Ve	ssel	SCALE: NONE
PROJECT NO.	ORDER NO.	ITEM NO.
DATE:	LINIT	

Polyester Liquid Filter Bag

Features

- * Polyester liquid bag filter are available with a carbon steel ring, stainless steel ring or plastic flanges.
- * Heavy-duty handle eases installation and removal
- * Metal ring sewn into bag top for increased durability and positive sealing
- * Wide array of media fibers to meet needed temperature and micron specifications

Applications

Polyester liquid filter bags can be used in the filtering of a wide array of industrial and commercial process fluids

Sizes

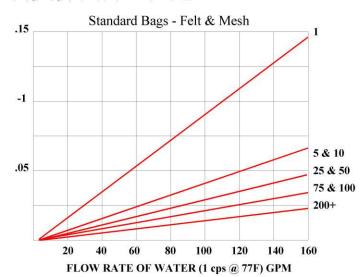
Our liquid filter bags are available for all common liquid bag housings. Dimensions range from 4.12" diameter X 8" length thru 9" diameter X 32" length.

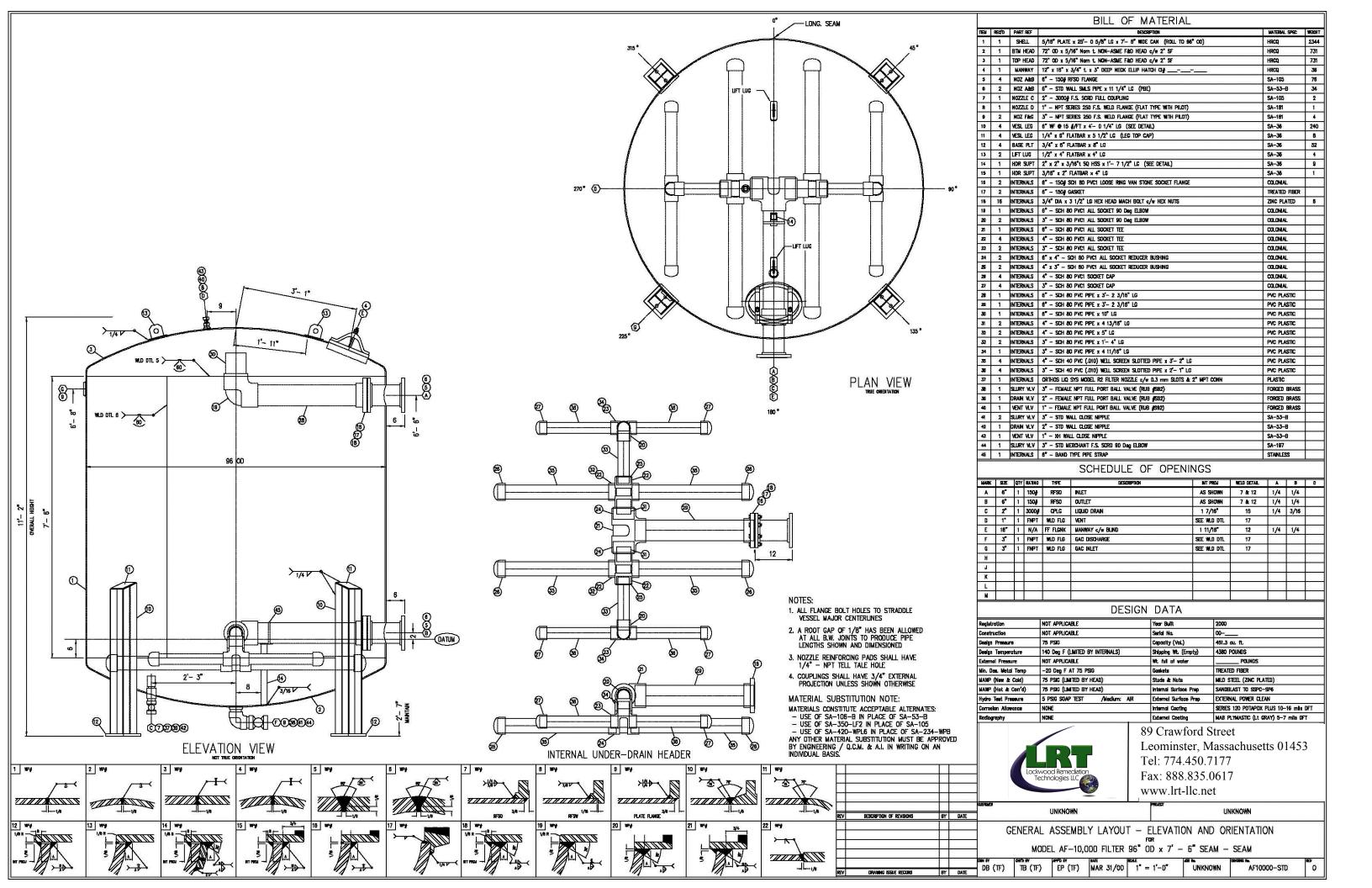
Micron Ratings

Available fibers range from 1 to 1500 microns

Options

- * Bag finish or covers for strict migration requirements.
- * Plastic top O.E.M. replacements
- * Multi-layered filtering capabilities for higher dirt holding capacities


Optional Filter Media


Felt: Nomex, Polyester, Polypropylene

Monofilament: Nylon, Polyester, Polypropylene

Multifilament: Nylon, Polyester

Polypropylene: Oil Removal

89 Crawford Street

Leominster, Massachusetts 01453

Tel: 774.450.7177 Fax: 888.835.0617 www.lrt-llc.net

FILTRATION MEDIA: 8x30 RE-ACTIVATED CARBON 4x10 RE-ACTIVATED CARBON

GENERAL DESCRIPTION

Select Re-Activated carbon from domestic sources is quality screened during our purchasing process for activity, density and fines. The use of re-activated carbon is recommended as a lower cost alternative for most sites where drinking water quality is not necessary. In many cases our re-activated carbon meets and exceeds imported virgin carbon. In addition all carbon either sold by itself or installed in our filtration units traced by lot number to the installation or sale.

8x30 (Liquid Phase) Standard Specifications:	Standard	Value
lodine Number	ASTM D-4607	800 Minimum
Moisture Content	ASTM D-2867	5% Maximum (as packed)
Particle Size	ASTM D-2862	8x30 US Mesh
Ash		10% Maximum
Total Surface Area (N2BET)		1050 Minimum
Pore Volume (cc/g)		0.75

4*10 (Vapor Phase) Standard Specifications:	Standard	Value
Carbon Tetrachloride Activity Level	ASTM D-3467	40 Minimum
Moisture Content	ASTM D-2867	5% Maximum (as packed)
Particle Size	ASTM D-2862	4x10 US Mesh
Ash		10% Maximum
Total Surface Area (N2BET)		1050 Minimum
Pore Volume (cc/g)		0.75

RESINTECH CGS is a sodium form standard crosslinked gel strong acid cation resin. *CGS* is optimized for residential applications that require good regeneration efficiency and high capacity. *RESINTECH CGS* is intended for use in all residential and commercial softening applications that do not have significant amounts of chlorine in the feedwater. *CGS* is supplied in the sodium form.

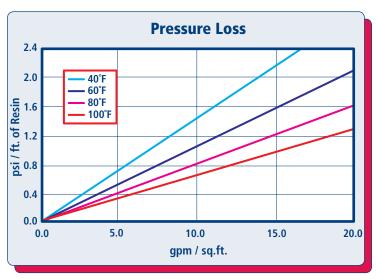
FEATURES & BENEFITS

RESIDENTIAL SOFTENING APPLICATIONS

Resin parameters are optimized for residential softeners

LOW COLOR THROW

SUPERIOR PHYSICAL STABILITY


93% plus sphericity and high crush strengths together with carefully controlled particle distribution provides long life and low pressure drop

COMPLIES WITH US FDA REGULATIONS

Conforms to paragraph 21CFR173.25 of the Food Additives Regulations of the US FDA

Prior to first use for potable water, resin should be backwashed for a minimum of 20 minutes, followed by 10 bed volumes of downflow rinse.

HYDRAULIC PROPERTIES

The graph above shows the expected pressure loss of *ResinTech CGS* per foot of bed depth as a function of flow rate at various temperatures.

BACKWASH

The graph above shows the expansion characteristics of *ResinTech CGS* as a function of flow rate at various temperatures.

RESINTECH® CGS

PHYSICAL PROPERTIES

Polymer Structure Styrene/DVB

Polymer Type Gel

Functional Group Sulfonic Acid Physical Form Spherical beads

Ionic Form as shipped Sodium

Total Capacity

Sodium form >1.8 meq/mL

Water Retention

Sodium form 40 to 52 percent

Approximate Shipping Weight

Sodium form 50 lbs./cu.ft.

Screen Size Distribution (U.S. mesh) 16 to 50

Maximum Fines Content (<50 mesh) 1 percent

Minimum Sphericity 90 percent

Uniformity Coefficient 1.6 approx.

Resin Color Amber

Note: Physical properties can be certified on a per lot basis, available upon request

SUGGESTED OPERATING CONDITIONS

Maximum continuous temperature

Sodium form 250°F

Minimum bed depth 24 inches

Backwash expansion 25 to 50 percent

Maximum pressure loss 25 psi
Operating pH range 0 to 14 SU

Regenerant Concentration

Salt cycle 10 to 15 percent NaCl Regenerant level 4 to 15 lbs./cu.ft. Regenerant flow rate. 0.5 to 1.5 gpm/cu.ft.

Regenerant contact time >20 minutes

Displacement flow rate

Displacement volume

10 to 15 gallons/cu.ft.

Rinse flow rate

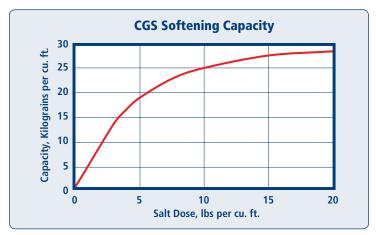
Same as service flow

Rinse volume

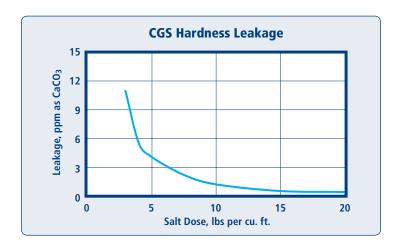
35 to 60 gallons/cu.ft.

Service flow rate

1 to 10 gpm/cu.ft.


Note: These guidelines describe average low risk operating conditions. They are not intended to be absolute minimums or maximums.

For operation outside these guidelines, contact ResinTech Technical Support


APPLICATIONS

SOFTENING

RESINTECH CGS is a standard crosslinked cation resin optimized for residential and commercial applications. This type of resin is easier to regenerate than the higher crosslinked resins. CGS has marginal resistance to chlorine and other oxidants and is not ideal for high temperature and other high stress applications.

Capacity and leakage data are based on the following: 2:1 Ca:Mg ratio, 500 ppm TDS as CaCO3, 0.2% hardness in the salt and 10% brine concentration applied co-currently through the resin over 30 minutes. No engineering downgrade has been applied.

East Coast - West Berlin, NJ p:856.768.9600 • Midwest - Chicago, IL p:708.777.1167 • West Coast - Los Angeles, CA p:323.262.1600

RESINTECH SBG1 is a high capacity, shock resistant, gelular, Type 1, strongly basic anion exchange resin supplied in the chloride or hydroxide form as moist, tough, uniform, spherical beads. *RESINTECH SBG1* is intended for use in all types of deionization systems and chemical processing applications. It is similar to *RESINTECH SBG1P* but has a higher volumetric capacity and exhibits lower TOC leach rates. This makes it the better performer in single use applications such as in cartridge deionization and when high levels of regeneration are used such as in polishing mixed beds. On the other hand, *RESINTECH SBG1P* is more resistant to organic fouling and gives higher operating capacities at low regeneration levels such as those used in make up demineralizers.

FEATURES & BENEFITS

COMPLIES WITH FDA REGULATIONS FOR POTABLE WATER APPLICATIONS.

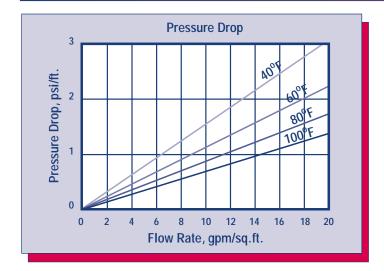
Conforms to paragraph 21CFR173.125 of the Food Additives Regulations of the F.D.A.*

HIGH TOTAL CAPACITY

Provides longer run lengths in single use applications or where high levels of regeneration are used such as in mixed bed polishers, cartridge demineralizers.

UNIFORM PARTICLE SIZE

16 to plus 50 mesh range; gives a LOWER PRESSURE DROP while maintaining SUPERIOR KINETICS.


SUPERIOR PHYSICAL STABILITY

LOWER TOC LEACH RATE

Makes it ideal for polishing mixed beds in wafer washing and other high purity water polishing applications.

*For potable water applications, the resin must be properly pre-treated, usually by multiple exhaustion and regeneration cycles, to ensure compliance with extractable levels.

HYDRAULIC PROPERTIES

The graph above shows the expected pressure loss per foot of bed depth as a function of flow rate, at various temperatures.

BACKWASH

After each cycle the resin bed should be backwashed at a rate that expands the bed 50 to 75 percent. This will remove any foreign matter and reclassify the bed. The graph above shows the expansion characteristics of *RESINTECH SBG1* in the sodium form.

RESINTECH® SBG1

PHYSICAL PROPERTIES

Polymer Structure

Functional Group

R-N-(CH₃)₃+Cl⁻

Ionic Form, as shipped

Physical Form

Styrene Crosslinked with DVB

R-N-(CH₃)₃+Cl⁻

Chloride or Hydroxide

Tough, Spherical Beads

Screen Size Distribution 16 to 50
+16 mesh (U.S. Std) < 5 percent
-50 mesh (U.S. Std) < 1 percent

PH Range 0 to 14

Sphericity > 93 percent

Uniformity Coefficient Approx. 1.6

Water Retention

Chloride Form 43 to 50 percent Hydroxide Form Approx. 53 to 60 percent

Solubility Insoluble

Approximate Shipping Weight

CI Form 44 lbs/cu.ft.
OH Form 41 lbs/cu.ft.
Swelling CI- to OH- 18 to 25 percent

Total Capacity

CI Form 1.45 meq/ml min OH Form 1.15 meq/ml min

SUGGESTED OPERATING CONDITIONS

Maximum Continuous Temperature

Hydroxide Form 140° F alt Form 170° F Minimum Bed Depth 24 inches

Backwash Rate 50 to 75 percent Bed Expansion

Regenerant Concentration* 2 to 6 percent
Regenerant Flow Rate 0.25 to 1.0 gpm/cu.ft.
Regenerant Contact Time At least 40 Minutes
Regenerant Level 4 to 10 pounds/cu.ft.

Displacement Rinse Rate Same as Regenerant Flow Rate

Displacement Rinse Volume 10 to 15 gals/cu.ft.
Fast Rinse Rate Same as Service Flow Rate

Fast Rinse Volume 35 to 60 gals/cu.ft.

Service Flow Rates

Polishing Mixed Beds 3 to 15 gpm/cu.ft. Non-Polishing Apps. 2 to 4 gpm/cu.ft.

OPERATING CAPACITY

The operating capacity of *RESINTECH SBG1* for a variety of acids at various regeneration levels when treating an influent with a concentration 500 ppm, expressed as $CaCO_3$ is shown in the following table:

Pounds	Capacity Kilograms per cubic foot									
NaOH/ft ³	HCI	H ₂ SO ₄	H_2SiO_3	H_2CO_3						
4	11.3	14.0	14.7	18.6						
6	12.8	16.3	17.3	19.8						
8	14.3	13.3	19.5	21.6						
10	15.5	20.0	22.2	22.2						

APPLICATIONS

DEMINERALIZATION – RESINTECH SBG1 is highly recommended for use in mixed bed demineralizers, wherever complete ion removal; superior physical and osmotic stability and low TOC leachables are required such as in wafer fabrication and other ultrapure applications.

RESINTECH SBG1 has high total capacity and low swelling on regeneration and provides maximum operating capacity in cartridge deionization applications. It is ideal for single use applications such as precious metal recovery, radwaste disposal and purification of toxic waste streams.

Highly crosslinked Type 1, styrenic anion exchangers have greater thermal and oxidation resistance than other types of strong base resins. They can be operated and regenerated at higher temperatures. The combination of lower porosity, high total capacity and Type 1 functionality make *RESINTECH SBG1* the resin of choice when water temperatures exceed 85°F and where the combination of carbon dioxide, borate and silica exceed 40% of the total anions.

RESINTECH SBG1P and RESINTECH SBG1 are quite similar; the difference between them is the degree of porosity. RESINTECH SBG1P has greater porosity that gives it faster kinetics, and greater ability to reversibly sorb slow moving ions such as Naturally occurring Organic Matter (NOM). At lower regeneration levels and where chlorides make up a substantial portion of the anion load, or where the removal and elution of naturally occurring organics is of concern RESINTECH SBG1P, SBACR or SBG2 should be considered. At the higher regeneration levels used in mixed bed polishers RESINTECH SBG1 provides higher capacity, and the lowest possible TOC leach rates.

*CAUTION:DO NOT MIX ION EXCHANGE RESIN WITH STRONG OXIDIZING AGENTS. Nitric acid and other strong oxidizing agents can cause explosive reactions when mixed with organic materials, such as ion exchange resins.

Material Safety Data Sheets (MSDS) are available for all ResinTech Inc.products. To obtain a copy, contact your local ResinTech sales representative or our corporate headquarters. They contain important health and safety information. That information may be needed to protect your employees and customers from any known health and safety hazards associated with our products. We recommend that you secure and study the pertinent MSDS for our products and any other products being used These suggestions and data are based on information we believe to be reliable. They are offered in good faith. However we do not make any guarantee or warranty. We caution against using these products in an unsafe manner or in violation of any patents; further we assume no liability for the consequences of any such actions.

GROOVED & SMOOTH-END FLOWMETER MODEL MG/MS100 SPECIFICATIONS

PERFORMANCE

ACCURACY/REPEATABILITY: ±2% of reading

guaranteed throughout full range. ±1% over reduced

range. Repeatability 0.25% or better. RANGE: (see dimensions chart below) HEAD LOSS: (see dimensions chart below)

MAXIMUM TEMPERATURE: (Standard Construction)

160°F constant

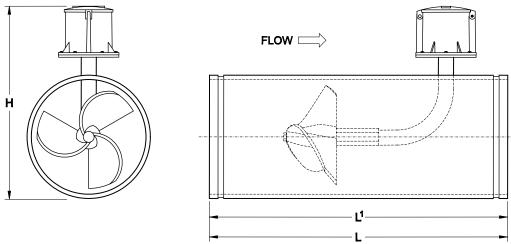
PRESSURE RATING: 150 psi

MATERIALS

TUBE: Epoxy-coated carbon steel.

BEARING ASSEMBLY: Impeller shaft is 316 stainless steel.

Ball bearings are 440C stainless steel.

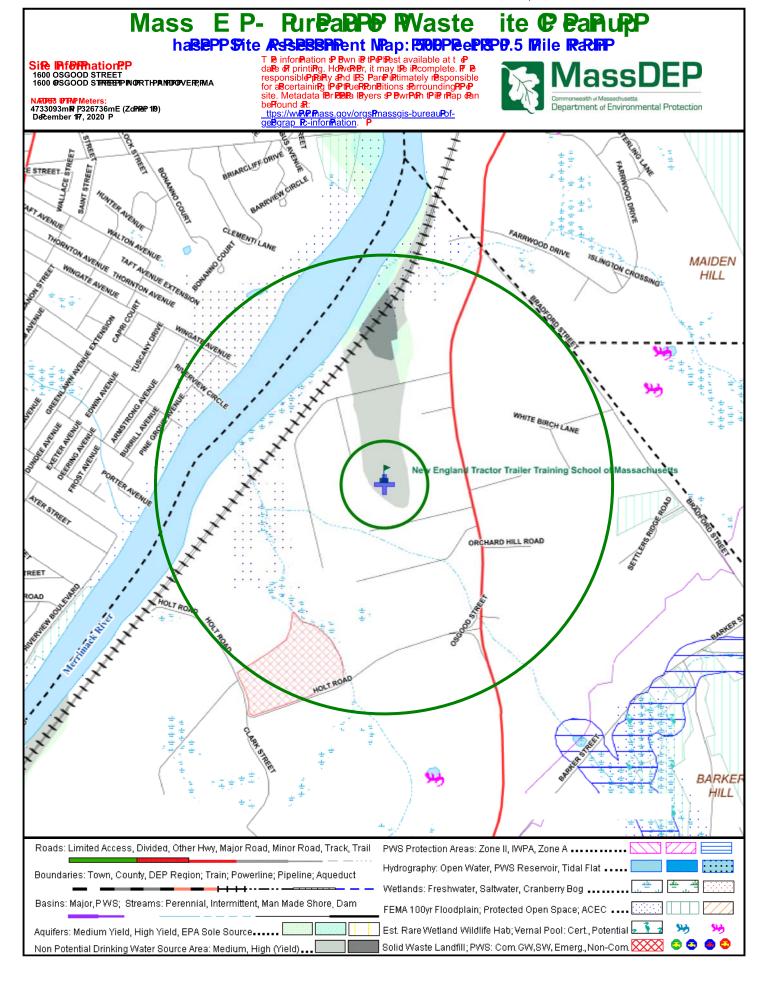

<u>MAGNETS</u>: (Permanent type) Cast or sintered alnico <u>BEARING HOUSING</u>: Brass; Stainless Steel optional <u>IMPELLER</u>: Impellers are manufactured of high-impact plastic, retaining their shape and accuracy over the life of the meter. High temperature impeller is optional.

REGISTER: An instantaneous flowrate indicator and six-digit straight-reading totalizer are standard. The register is hermetically sealed within a die cast aluminum case. This protective housing includes a domed acrylic lens and hinged lens cover with locking hasp.

COATING: Fusion-bonded epoxy

OPTIONS

- Forward/reverse flow measurement
- High temperature construction
- "Over Run" bearing assembly for higher-than-normal flowrates
- Electronic Propeller Meter available in all sizes of this model
- A complete line of flow recording/control instrumentation
- Straightening vanes and register extensions available
- · Certified calibration test results


McCrometer reserves the right to change design or specifications without notice.
--

MG100 / MS100			DIMENSIONS										
Meter Size (inches)	2	2 1/2	3	4	6	8	10	12	14	16	18	20	24
Maximum Flow U.S. GPM	250	250	250	600	1200	1500	1800	2500	3000	4000	5000	6000	8500
Minimum Flow U.S. GPM	40	40	40	50	90	100	125	150	250	275	400	475	700
Head Loss in Inches at Max. Flow	29.50	29.50	29.50	23.00	17.00	6.75	3.75	2.75	2.00	1.75	1.50	1.25	1.00
Shipping Weight, lbs.			17	40	54	68	87	106	140	144	172	181	223
H (inches)	* 5	See	10.9	12.78	13.84	14.84	16.91	18.90	20.53	22.53	25.53	26.53	30.53
L (inches) MG100	Spe	ecial	13	20	20	20	20	20	20	22	22	22	22
L1 (inches) MS100	N	ote	13	20	22	22	22	22	22	24	24	24	24
O.D. of Meter Tube			3.50	4.500	6.625	8.625	10.750	12.750	14.00	16.00	18.00	20.00	24.00

*Special Note—Reducing fittings incorporating grooves are supplied to adapt the 3-inch model to smaller line sizes.

Larger flowmeters on special order.

Appendix D Supporting Information Lockwood Remediation Technologies LLC

Documentation of the Results of the ESA Eligibility Determination:

Using information in Appendix II of the NPDES RGP, the project is eligible for coverage under this general permit under FWS Criterion C. This project is located in Essex County. No designated critical habitats were listed in the project area.

An Endangered Species Consultation was conducted on the U.S. Fish & Wildlife Service New England Field Office ECOS IPaC webpage for the Site:

• The Northern long-eared bat was listed as "Threatened" in Essex County

Based upon a discussion with the U.S. Fish & Wildlife Service (USFWS), temporary dewatering activities at the site are not expected to impact the Northern Long-eared Bat.

Northern long-eared bats spend winter hibernating in caves and mines. They use areas in various sized caves or mines with constant temperatures, high humidity, and no air currents. During the summer, northern long-eared bats roost singly or in colonies underneath bark, in cavities or in crevices of both live trees and snags (dead trees). There are no caves and mines located at the site. There are no trees in the immediate vicinity of the site; and tree removal is not part of the scope of work related to this Notice of Intent. Therefore, temporary dewatering activities will have "no impact" to the Northern Long-eared Bat.

United States Department of the Interior

FISH AND WILDLIFE SERVICE

New England Ecological Services Field Office 70 Commercial Street, Suite 300 Concord, NH 03301-5094 Phone: (603) 223-2541 Fax: (603) 223-0104

http://www.fws.gov/newengland

In Reply Refer To: December 16, 2020

Consultation Code: 05E1NE00-2021-SLI-0752

Event Code: 05E1NE00-2021-E-02261 Project Name: 1600 Osgood Street

Subject: List of threatened and endangered species that may occur in your proposed project

location, and/or may be affected by your proposed project

To Whom It May Concern:

The enclosed species list identifies threatened, endangered, proposed and candidate species, as well as proposed and final designated critical habitat, that may occur within the boundary of your proposed project and/or may be affected by your proposed project. The species list fulfills the requirements of the U.S. Fish and Wildlife Service (Service) under section 7(c) of the Endangered Species Act (Act) of 1973, as amended (16 U.S.C. 1531 *et seq.*).

New information based on updated surveys, changes in the abundance and distribution of species, changed habitat conditions, or other factors could change this list. Please feel free to contact us if you need more current information or assistance regarding the potential impacts to federally proposed, listed, and candidate species and federally designated and proposed critical habitat. Please note that under 50 CFR 402.12(e) of the regulations implementing section 7 of the Act, the accuracy of this species list should be verified after 90 days. This verification can be completed formally or informally as desired. The Service recommends that verification be completed by visiting the ECOS-IPaC website at regular intervals during project planning and implementation for updates to species lists and information. An updated list may be requested through the ECOS-IPaC system by completing the same process used to receive the enclosed list.

The purpose of the Act is to provide a means whereby threatened and endangered species and the ecosystems upon which they depend may be conserved. Under sections 7(a)(1) and 7(a)(2) of the Act and its implementing regulations (50 CFR 402 *et seq.*), Federal agencies are required to utilize their authorities to carry out programs for the conservation of threatened and endangered species and to determine whether projects may affect threatened and endangered species and/or designated critical habitat.

A Biological Assessment is required for construction projects (or other undertakings having similar physical impacts) that are major Federal actions significantly affecting the quality of the human environment as defined in the National Environmental Policy Act (42 U.S.C. 4332(2) (c)). For projects other than major construction activities, the Service suggests that a biological evaluation similar to a Biological Assessment be prepared to determine whether the project may affect listed or proposed species and/or designated or proposed critical habitat. Recommended contents of a Biological Assessment are described at 50 CFR 402.12.

If a Federal agency determines, based on the Biological Assessment or biological evaluation, that listed species and/or designated critical habitat may be affected by the proposed project, the agency is required to consult with the Service pursuant to 50 CFR 402. In addition, the Service recommends that candidate species, proposed species and proposed critical habitat be addressed within the consultation. More information on the regulations and procedures for section 7 consultation, including the role of permit or license applicants, can be found in the "Endangered Species Consultation Handbook" at:

http://www.fws.gov/endangered/esa-library/pdf/TOC-GLOS.PDF

Please be aware that bald and golden eagles are protected under the Bald and Golden Eagle Protection Act (16 U.S.C. 668 *et seq.*), and projects affecting these species may require development of an eagle conservation plan (http://www.fws.gov/windenergy/eagle_guidance.html). Additionally, wind energy projects should follow the wind energy guidelines (http://www.fws.gov/windenergy/) for minimizing impacts to migratory birds and bats.

Guidance for minimizing impacts to migratory birds for projects including communications towers (e.g., cellular, digital television, radio, and emergency broadcast) can be found at: http://www.fws.gov/migratorybirds/CurrentBirdIssues/Hazards/towers/towers.htm; http://www.towerkill.com; and http://www.fws.gov/migratorybirds/CurrentBirdIssues/Hazards/towers/comtow.html.

We appreciate your concern for threatened and endangered species. The Service encourages Federal agencies to include conservation of threatened and endangered species into their project planning to further the purposes of the Act. Please include the Consultation Tracking Number in the header of this letter with any request for consultation or correspondence about your project that you submit to our office.

Attachment(s):

Official Species List

Official Species List

This list is provided pursuant to Section 7 of the Endangered Species Act, and fulfills the requirement for Federal agencies to "request of the Secretary of the Interior information whether any species which is listed or proposed to be listed may be present in the area of a proposed action".

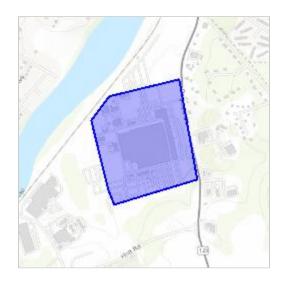
This species list is provided by:

New England Ecological Services Field Office 70 Commercial Street, Suite 300 Concord, NH 03301-5094 (603) 223-2541

Project Summary

Consultation Code: 05E1NE00-2021-SLI-0752

Event Code: 05E1NE00-2021-E-02261


Project Name: 1600 Osgood Street

Project Type: Water Withdrawal / Depletion

Project Description: Construction Dewatering

Project Location:

Approximate location of the project can be viewed in Google Maps: https://www.google.com/maps/place/42.73097663471946N71.11645067232263W

Counties: Essex, MA

Endangered Species Act Species

There is a total of 1 threatened, endangered, or candidate species on this species list.

Species on this list should be considered in an effects analysis for your project and could include species that exist in another geographic area. For example, certain fish may appear on the species list because a project could affect downstream species.

IPaC does not display listed species or critical habitats under the sole jurisdiction of NOAA Fisheries¹, as USFWS does not have the authority to speak on behalf of NOAA and the Department of Commerce.

See the "Critical habitats" section below for those critical habitats that lie wholly or partially within your project area under this office's jurisdiction. Please contact the designated FWS office if you have questions.

1. <u>NOAA Fisheries</u>, also known as the National Marine Fisheries Service (NMFS), is an office of the National Oceanic and Atmospheric Administration within the Department of Commerce.

Mammals

NAME

Northern Long-eared Bat Myotis septentrionalis

Threatened

No critical habitat has been designated for this species. Species profile: https://ecos.fws.gov/ecp/species/9045

Critical habitats

THERE ARE NO CRITICAL HABITATS WITHIN YOUR PROJECT AREA UNDER THIS OFFICE'S JURISDICTION.

<u>Documentation of the National Historic Preservation Act Eligibility Determination:</u>

As part of this permit, a determination was made as to whether there were any historic properties or places listed on the national register in the path of the discharge or in the vicinity of the construction of treatment systems or BMPs related to the discharge. A search on the Massachusetts Cultural Resource Information System Database and the National Register of Historic Places found no properties are located on or near the project route. In addition, construction and dewatering / water treatment work will be conducted on and along the roadway and will not impact surrounding areas. Therefore, the proposed discharge will not have the potential to cause effects on historical properties.

Massachusetts Cultural Resource Information System MACRIS

MACRIS Search Results

Search Criteria: Town(s): North Andover; Street No: 1600; Street Name: Osgood St; Resource Type(s): Area, Building, Burial Ground, Object, Structure;

Inv. No. Property Name Street Town Year

Wednesday, December 16, 2020 Page 1 of 1