

13 October 2020 File No. 134283-002

US Environmental Protection Agency Office of Ecosystem Protection 5 Post Office Square – Suite 100 (OEP06-01) Boston, MA 02109-3912

Attention: EPA/OEP RGP Applications Coordinator

Subject: Notice of Intent (NOI)

NPDES RGP Temporary Construction Dewatering

MIT Schwarzman College of Computing – STV-4 Steam Utility Replacement

Cambridge, Massachusetts

Ladies and Gentlemen:

On behalf of our client, Massachusetts Institute of Technology (MIT), and in accordance with the National Pollutant Discharge Elimination System (NPDES) Remediation General Permit (RGP) in Massachusetts, MAG910000, this letter submits a Notice of Intent (NOI) and the applicable documentation as required by the US Environmental Protection Agency (EPA) for temporary construction site dewatering under the RGP. Haley & Aldrich, Inc. (Haley & Aldrich) has prepared this submission to facilitate off-site discharge of temporary dewatering during the utility structure replacement work at the future Building 45 construction site. The project site ("Site") is located on Vassar Street in Cambridge, Massachusetts as shown on Figure 1. The Site is located within the MIT campus and is most recently occupied by the Building 44 (MIT Cyclotron building), which is currently undergoing demolition.

SITE CONDITIONS

The site is a paved parking area immediately north of Building 44. The site is bordered to the north by an active rail line, to the east by the Brain and Cognitive Sciences Building (Building 46), and to the west by the MIT Central Utility Plant. The site contains several utility distribution lines connecting to the Central Utility Plant. The site's ground surface is primarily flat ranging from El. 18 to El. 20 Cambridge City Base (CCB).

Proposed Development

The sitework is the replacement of a steam line that runs through the area parallel to and north of Building 44 and an associated utility structure (Figure 2). The steam utility is being replaced as part of enabling phase work for the proposed Schwarzman College of Computing Building to be constructed at

the site following the demolition of Building 44. Bottom of excavation in the work area is expected to terminate approximately 10 feet below ground surface (ft bgs), which is approximately 3 ft below anticipated groundwater level previously reported in the work area.

Historical Site Usage

Historic maps indicate the area of land now occupied by the MIT campus was previously marshland in the Charles River Basin. Plans to fill and develop this portion of the marshland began as early as 1840 with the acquisition of titles to the land and culminated in 1881. Land filling began with the construction of a portion of a granite sea wall in 1883. By 1899, filling of the entire future MIT campus had been completed. MIT purchased the land in 1912 and began construction of the Main Campus buildings in 1913. Construction of the Main Campus buildings was completed by 1916 at which time the school moved across the Charles River from its original Back Bay campus location. A campus building was present at the site beginning in 1950 until it was replaced with Building 44 in 1962 and the site has not changed in use since that time.

Site Characterization and Regulatory Status

As part of due diligence activities in preparation for site redevelopment, Haley & Aldrich conducted a subsurface investigation in July and August 2020 to assess soil and groundwater conditions. Soil and groundwater testing conducted at the site to date have indicated that low levels of total lead, and polycyclic aromatic hydrocarbons (PAHs) were identified comingled in urban fill soil in excess of applicable Massachusetts Contingency Plan (MCP) RCS-1 Reportable Concentrations. The site is underlain by urban fill, comprised of varying amounts of cinders and ash, containing chemical constituents, including petroleum hydrocarbons (TPH), metals, and PAHs, at levels typical of urban fill and this area of Cambridge. The constituents detected in site soil are attributable to historic site uses and filling consistent with the presence of coal and coal ash.

A 120-day Reportable Condition exists at the site in soil, for which a Release Notification Form (RNF) was submitted on 5 October 2020 to meet the requirements of the MCP. MassDEP subsequently assigned Release Tracking Number (RTN) 3-36513to the site. Because this site is a MCP Disposal Site, a dewatering permit from MassDEP is not required.

GROUNDWATER QUALITY DATA

Site Groundwater Quality Data

Groundwater conditions at the site were determined by measurements obtained during the groundwater sampling event from the observation well identified as HA20-E3(OW). The location of the well is shown on Figure 2. The elevation of the groundwater at the site, as measured in the HA20-E3 observation well and as estimated during boring advancement, ranged from between El. 10.4 to 9.95 (9.3 to 9.8 ft bgs). Previous test pits in the work area by others observed depth to groundwater in the work area of approximately 7 ft bgs.

Site-specific groundwater analytical data was obtained by Haley & Aldrich, Inc. from a groundwater sampling event on 10 September 2020. Observation well HA20-E3(OW) was sampled for EPA 2017 NPDES RGP parameters and submitted to Alpha Analytical Laboratories of Westborough, Massachusetts. The analytical results indicated most parameters were non-detect, including Group I PAHs, TPH, BTEX, and PCBs. Very low levels of fuel parameters and inorganic compounds were detected. The recent groundwater analyses did not detect concentrations of chemical constituents above applicable MCP reportable concentrations or NPDES RGP discharge criteria.

A summary of the groundwater chemical analytical data is provided in Table I. Copies of the laboratory data reports are provided in Appendix F.

Receiving Water Quality Information and Dilution Factor

The receiving water is the Charles River Basin which flows to the east toward the Charles River Dam. Receiving water quality data, collected by Haley & Aldrich on 10 September 2020, was used in support of this NOI. The sample, designated as "Outfall-20200910", was submitted to Alpha for analysis of hardness, total metals, and ammonia. Receiving water temperature and pH was obtained in the field and is noted on the effluent limitations input calculation page in Appendix C. The approximate location of the receiving water sample is shown on Figure 2.

The seven day-ten-year flow (7Q10) of the receiving water was established using the U.S. Geological Survey (USGS) StreamStats program and confirmed by Massachusetts Department of Environmental Protection (MassDEP) on 18 September 2020. The StreamStats Report, Dilution Factor calculations, and MassDEP confirmation of the 7Q10 and DF are included in Appendix C.

Copies of the "EnterData" and "FreshwaterResults" tabs from the excel file provided as an additional resource by EPA are included in Appendix C. The effluent limitations calculated are included for reference in Table I.

Dewatering System and Off-site Discharge

Dewatering will be conducted from sumps or well points located inside or adjacent to the excavation. Dewatering is currently anticipated to begin in October 2020 and is anticipated to be required for less than 12 months. On average, we estimate effluent discharge rates of about 25 gallons per minute (gpm), with occasional peak flows of approximately 100 gpm during significant precipitation events.

Prior to discharge, collected watering will be routed through a sedimentation tank and bag filter, at a minimum, to remove suspended solids and undissolved chemical constituents associated with the fill soils (metals and PAHs), as shown in the Proposed Treatment System Schematic included in Figure 3 herein. Construction dewatering under this RGP will include piping and discharging to storm drains located within and near the Site. The storm drains travel a short distance south and discharge directly into the Charles River. The proposed outfall location on the Charles River is a City of Cambridge Outfall #D08OF0010. The discharge route is shown on Figure 2, Proposed Dewatering Discharge Route.

A Best Management Practices Plan (BMPP), which outlines the proposed discharge operations covered under the RGP, will be available at the Site and is not being submitted with this NOI.

DETERMINATION OF ENDANGERED SPECIES ACT ELIGIBILITY

According to the guidelines outlined in Appendix I of the 2017 NPDES RGP, a preliminary determination for the action area associated with this project was established using the U.S. Fish and Wildlife Service (FWS) Information, Planning, and Conservation (IPAC) online system; a copy of the determination is attached in Appendix D. Based on the results of the determination, the project and action area are considered to meet FWS Criterion A as no listed species or critical habitat have been established to be present within the project action area.

DOCUMENTATION OF NATIONAL HISTORIC PRESERVATION ACT ELIGIBILITY REQUIREMENTS

Based on a review of the resources provided by the U.S. National Register of Historic Places and a review of the Massachusetts Cultural Resource Information System (MACRIS), no historic properties have been established to be present at the project site, and discharges and discharge-related activities are not considered to have the potential to affect historic properties. The discharge is considered to meet Criterion A. Documentation is included in Appendix E.

SUPPLEMENTAL INFORMATION

Owner and Operator Information

Owner/Operator:

Massachusetts Institute of Technology 77 Massachusetts Avenue Building NW23-100 Cambridge, Massachusetts 02139-4307

Contact: Seth Kinderman

Appendices

The completed "Suggested Notice of Intent" (NOI) form as provided in the RGP is enclosed in Appendix A. The Site owner is MIT, who will hire a subcontractor to conduct the Site work, including the dewatering activities and will serve as the Operator. Haley & Aldrich, Inc. (Haley & Aldrich) will monitor the Contractor's dewatering activities on behalf of MIT. In accordance with the requirements for this NOI submission, MIT as owner and United Civil as the construction manager are listed as co-permittees for this NPDES RGP, and therefore both have signed the NOI form.

Discharge calculations to determine the dilution factor based on 7-day 10-year low flow values are included in Appendix B. Chemicals and additives information to be potentially used for the treatment system is included in Appendix C (pending submission of a Notice of Change for EPA review and approval). Appendices D and E include the Endangered Species Act Documentation and National Register of Historic Places, respectively. Copies of the groundwater testing laboratory results are provided in Appendix F.

CLOSING

Thank you very much for your consideration. Please feel free to contact us should you wish to discuss the information contained herein or if you need additional information.

Sincerely yours,

HALEY & ALDRICH, INC.

Kimberly Scalise Senior Geologist Todd R. Butler, P.E. Project Manager

Joel S. Mooney, P.E., LSP Principal | Senior Vice President

Attachments:

Table I - Summary of Groundwater Data

Figure 1 – Site Locus

Figure 2 – Proposed Dewatering Discharge Route

Figure 3 – Proposed Treatment System Schematic

Appendix A – Notice of Intent (NOI) for Remediation General Permit (RGP)

Appendix B – Discharge Calculations

Appendix C – Chemicals and Additives

Appendix D – Endangered Species Act Documentation

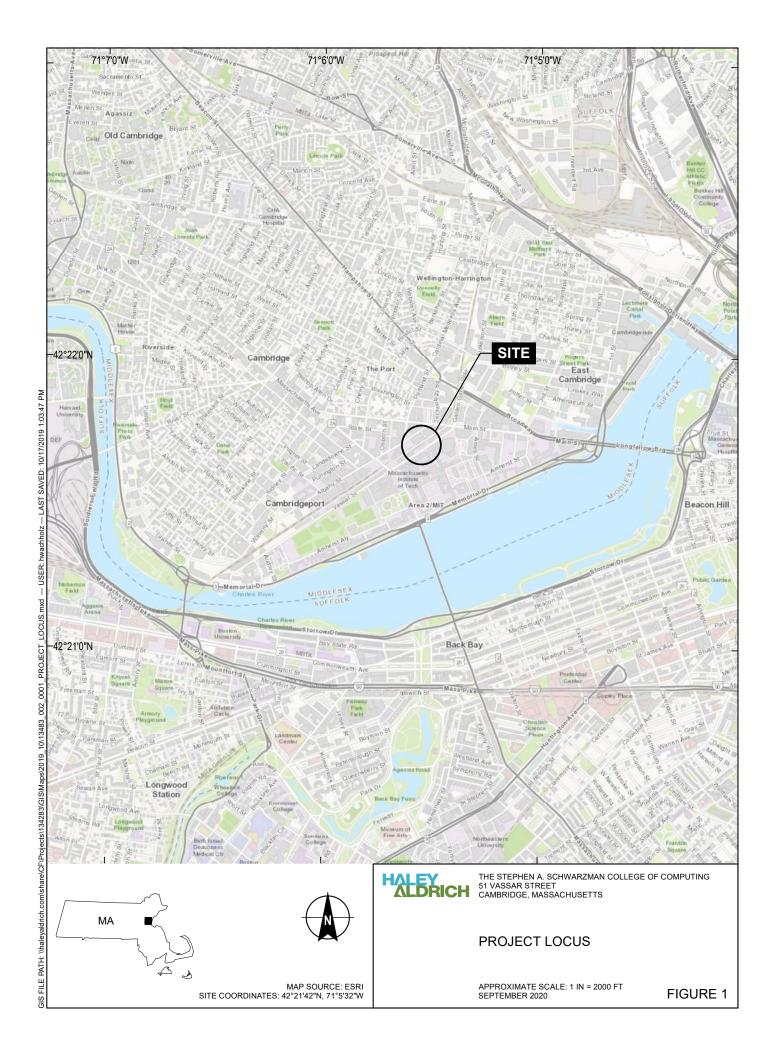
Appendix E – National Register of Historic Places and Massachusetts Historical Commission Documentation

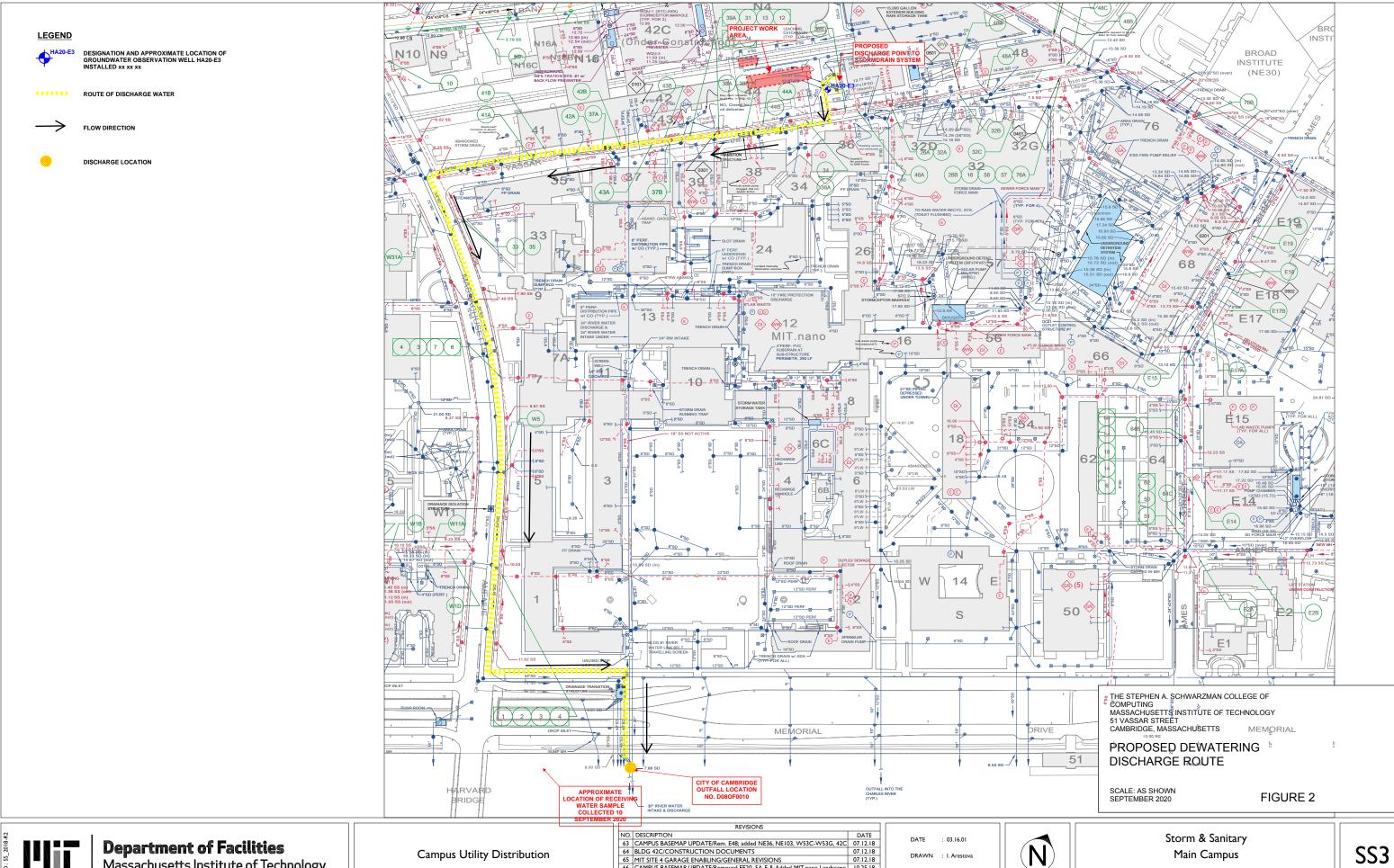
Appendix F – Laboratory Data Reports

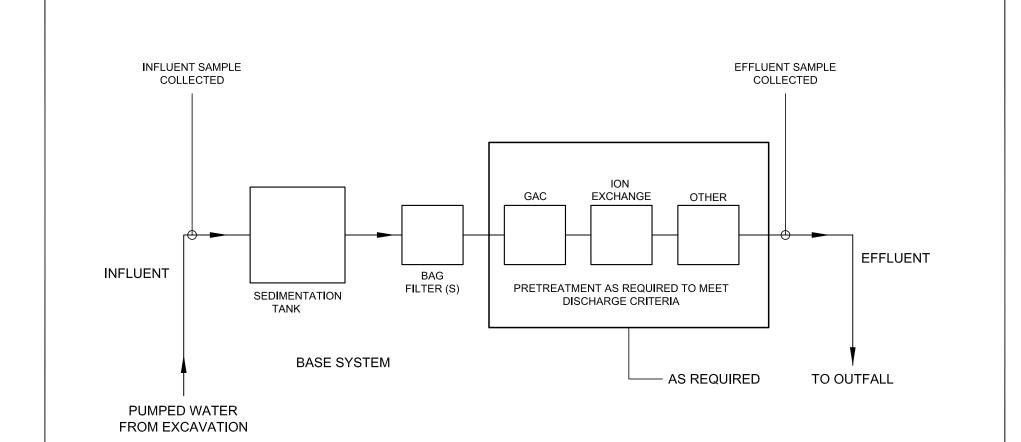
c: MIT Facilities: Phyllis Carter, Travis Wanat, Seth Kinderman

\haleyaldrich.com\share\CF\Projects\134283\002 Design Phase\NPDES NOI\Text\2020-1013-HAI-MIT SCC-RGP NOI-F.docx

TABLE I SUMMARY OF GROUNDWATER DATA MIT SCHWARZMAN COLLEGE OF COMPUTING CAMBRIDGE, MA FILE NO. 134283


Precharacterization Grid			1	
		Level		T
Location Name		2017 NPDES	HA20-E3	OUTFALL
Sample Name Sample Date		RGP Site-Specific	HA20-E3-20200910 09/10/2020	OUTFALL-20200910 09/10/2020
Lab Sample ID		Criteria	L2037651-01	L2037651-02
·			2203703101	2203703202
Volatile Organic Compounds (ug/L) 1,1,1-Trichloroethane	4000	200	ND (2)	_
1,1,2-Trichloroethane	900	5	ND (2)	-
1,1-Dichloroethane	2000	70	ND (1.5)	-
1,1-Dichloroethene	80	3.2	ND (1)	-
1,2-Dibromoethane (Ethylene Dibromide)	2	0.05	ND (0.01)	-
1,2-Dichlorobenzene	2000	600	ND (5)	-
1,2-Dichloroethane	5	5	ND (1.5)	=
1,3-Dichlorobenzene	6000	320	ND (5)	=
1,4-Dichlorobenzene	60	5	ND (5)	-
Acetone	50000	7970	ND (10)	-
Benzene	1000	5	ND (1)	-
Carbon tetrachloride	2	4.4	ND (1)	-
cis-1,2-Dichloroethene	20	70	ND (1)	-
Ethylbenzene	5000	NA	ND (1)	-
m,p-Xylenes Methyl Tert Butyl Ether	NA 5000	NA 70	ND (2) ND (10)	-
Methylene chloride	2000	4.6	ND (10)	_
o-Xylene	NA NA	NA	ND (1)	-
Tert-Amyl Methyl Ether (TAME)	NA	90	ND (20)	-
Tert-Butyl Alcohol (tert-Butanol)	NA	NA	ND (100)	-
Tetrachloroethene	50	5	ND (1)	-
Toluene	40000	NA	ND (1)	-
Trichloroethene	5	5	ND (1)	-
Vinyl chloride	2	2	ND (1)	-
Xylene (total)	3000	NA	ND (1)	-
Total BTEX	NA	100	ND	-
SUM of Volatile Organic Compounds	NA	NA	ND	-
Volatile Organic Compounds SIM (ug/L)				
1,4-Dioxane	6000	200	ND (50)	<u> </u>
,				
Semi-Volatile Organic Compounds (ug/L) bis(2-Ethylhexyl)phthalate	50000	101	ND (2.2)	_
Butyl benzylphthalate	10000	NA	ND (2.2) ND (5)	
Diethyl phthalate	9000	NA NA	ND (5)	_
Dimethyl phthalate	50000	NA	ND (5)	-
Di-n-butylphthalate	5000	NA	ND (5)	-
Di-n-octyl phthalate	100000	NA	ND (5)	-
Total Phthalates	NA	190	ND	-
Semi-Volatile Organic Compounds (SIM) (ug/L)				
Acenaphthene	6000	NA	ND (0.1)	-
Acenaphthylene	40	NA	ND (0.1)	-
Anthracene	30	NA	ND (0.1)	-
Benzo(a)anthracene	1000	1	ND (0.1)	-
Benzo(a)pyrene	500	1	ND (0.1)	-
Benzo(b)fluoranthene	400	1	ND (0.1)	-
Benzo(g,h,i)perylene	20	NA	ND (0.1)	-
Benzo(k)fluoranthene	100	1	ND (0.1)	-
Chrysene	70	1	ND (0.1)	-
Dibenz(a,h)anthracene	40	1	ND (0.1)	-
Fluoranthene	200	NA	0.1	-
Fluorene	40	NA	ND (0.1)	-
Indeno(1,2,3-cd)pyrene	100 700	1 20	ND (0.1)	-
Naphthalene Pentachlorophenol	200	1	13.2 ND (1)	-
Phenanthrene	10000	NA	0.267	_
		NA	ND (0.1)	-
	20			
Pyrene	20 NA	1		-
		1 100	ND 13.567	-
Pyrene SUM of Group I PAHs	NA		ND	- - ND
Pyrene SUM of Group I PAHs SUM of Group II PAHs SUM of Semi-Volatile Organic Compounds (SIM)	NA NA	100	ND 13.567	- - ND
Pyrene SUM of Group I PAHs SUM of Group II PAHs SUM of Semi-Volatile Organic Compounds (SIM) Total Petroleum Hydrocarbons (ug/L)	NA NA NA	100 NA	ND 13.567 13.567	- - ND
Pyrene SUM of Group I PAHs SUM of Group II PAHs SUM of Semi-Volatile Organic Compounds (SIM) Total Petroleum Hydrocarbons (ug/L) Petroleum hydrocarbons	NA NA	100	ND 13.567	- - ND
Pyrene SUM of Group I PAHs SUM of Group II PAHs SUM of Semi-Volatile Organic Compounds (SIM) Total Petroleum Hydrocarbons (ug/L) Petroleum hydrocarbons Inorganic Compounds (ug/L)	NA NA NA 5000	100 NA 5000	ND 13.567 13.567 ND (4400)	-
Pyrene SUM of Group I PAHs SUM of Group II PAHs SUM of Semi-Volatile Organic Compounds (SIM) Total Petroleum Hydrocarbons (ug/L) Petroleum hydrocarbons Inorganic Compounds (ug/L) Antimony, Total	NA NA NA 5000	100 NA 5000	ND 13.567 13.567 ND (4400)	- ND (20)
Pyrene SUM of Group I PAHs SUM of Group II PAHs SUM of Semi-Volatile Organic Compounds (SIM) Total Petroleum Hydrocarbons (ug/L) Petroleum hydrocarbons Inorganic Compounds (ug/L) Antimony, Total Arsenic, Total	NA NA NA 5000	100 NA 5000	ND 13.567 13.567 ND (4400) ND (20) 6.02	- ND (20) ND (5)
Pyrene SUM of Group I PAHs SUM of Group II PAHs SUM of Semi-Volatile Organic Compounds (SIM) Total Petroleum Hydrocarbons (ug/L) Petroleum hydrocarbons Inorganic Compounds (ug/L) Antimony, Total Arsenic, Total Cadmium, Total	NA NA NA 5000 8000 900 4	100 NA 5000 206 104 10.2	ND 13.567 13.567 ND (4400) ND (20) 6.02 ND (1)	- ND (20) ND (5) ND (1)
Pyrene SUM of Group I PAHs SUM of Group II PAHs SUM of Semi-Volatile Organic Compounds (SIM) Total Petroleum Hydrocarbons (ug/L) Petroleum hydrocarbons Inorganic Compounds (ug/L) Antimony, Total Arsenic, Total Cadmium, Total Chromium, Total	NA NA NA 5000 8000 900 4 300	100 NA 5000 206 104 10.2 NA	ND 13.567 13.567 ND (4400) ND (20) 6.02 ND (1) ND (5)	- ND (20) ND (5) ND (1) ND (5)
Pyrene SUM of Group I PAHs SUM of Group II PAHs SUM of Semi-Volatile Organic Compounds (SIM) Total Petroleum Hydrocarbons (ug/L) Petroleum hydrocarbons Inorganic Compounds (ug/L) Antimony, Total Arsenic, Total Cadmium, Total	NA NA NA 5000 8000 900 4	100 NA 5000 206 104 10.2	ND 13.567 13.567 ND (4400) ND (20) 6.02 ND (1)	- ND (20) ND (5) ND (1)
Pyrene SUM of Group I PAHs SUM of Group II PAHs SUM of Semi-Volatile Organic Compounds (SIM) Total Petroleum Hydrocarbons (ug/L) Petroleum hydrocarbons Inorganic Compounds (ug/L) Antimony, Total Arsenic, Total Cadmium, Total Chromium, Total Chromium III (Trivalent)	NA NA NA 5000 8000 900 4 300 600	100 NA 5000 206 104 10.2 NA 323	ND 13.567 13.567 ND (4400) ND (20) 6.02 ND (1) ND (5) ND (10)	- ND (20) ND (5) ND (1) ND (5) ND (10)
Pyrene SUM of Group I PAHs SUM of Group II PAHs SUM of Semi-Volatile Organic Compounds (SIM) Total Petroleum Hydrocarbons (ug/L) Petroleum hydrocarbons Inorganic Compounds (ug/L) Antimony, Total Arsenic, Total Cadmium, Total Chromium, Total Chromium, III (Trivalent) Chromium VI (Hexavalent), Dissolved	NA NA NA 5000 8000 900 4 300 600 300	100 NA 5000 206 104 10.2 NA 323 323	ND 13.567 13.567 ND (4400) ND (20) 6.02 ND (1) ND (5) ND (10) ND (10)	- ND (20) ND (5) ND (1) ND (5) ND (10) ND (10)
Pyrene SUM of Group I PAHs SUM of Group II PAHs SUM of Semi-Volatile Organic Compounds (SIM) Total Petroleum Hydrocarbons (ug/L) Petroleum hydrocarbons Inorganic Compounds (ug/L) Antimony, Total Arsenic, Total Cadmium, Total Chromium, Total Chromium, II (Trivalent) Chromium III (Trivalent) Chromium VI (Hexavalent), Dissolved Copper, Total	NA NA NA 5000 8000 900 4 300 600 300 100000	100 NA 5000 206 104 10.2 NA 323 323 242	ND 13.567 13.567 ND (4400) ND (20) 6.02 ND (1) ND (5) ND (10) ND (10) ND (5)	- ND (20) ND (5) ND (1) ND (5) ND (10) ND (10)
Pyrene SUM of Group I PAHs SUM of Group II PAHs SUM of Semi-Volatile Organic Compounds (SIM) Total Petroleum Hydrocarbons (ug/L) Petroleum hydrocarbons Inorganic Compounds (ug/L) Antimony, Total Arsenic, Total Cadmium, Total Chromium, Total Chromium III (Trivalent) Chromium VI (Hexavalent), Dissolved Copper, Total Cyanide, Physiologically Available, Total	NA NA NA 5000 8000 900 4 300 600 300 100000 NA	100 NA 5000 206 104 10.2 NA 323 323 242 NA	ND 13.567 13.567 ND (4400) ND (20) 6.02 ND (1) ND (5) ND (10) ND (10) ND (5) ND (5)	- ND (20) ND (5) ND (1) ND (5) ND (10) ND (10)
Pyrene SUM of Group I PAHs SUM of Group II PAHs SUM of Semi-Volatile Organic Compounds (SIM) Total Petroleum Hydrocarbons (ug/L) Petroleum hydrocarbons Inorganic Compounds (ug/L) Antimony, Total Arsenic, Total Cadmium, Total Chromium, Total Chromium III (Trivalent) Chromium VI (Hexavalent), Dissolved Copper, Total Cyanide, Physiologically Available, Total Cyanide (free), Total Hardness, Total Iron, Total	NA NA NA 5000 8000 900 4 300 600 300 100000 NA NA NA	100 NA 5000 206 104 10.2 NA 323 323 242 NA NA NA S000	ND 13.567 13.567 ND (4400) ND (20) 6.02 ND (1) ND (5) ND (10) ND (5) ND (10) ND (5) ND (2) 159000 568	ND (20) ND (5) ND (1) ND (5) ND (10) ND (10) ND (30) ND (5) 387000 109
Pyrene SUM of Group I PAHs SUM of Group I PAHs SUM of Semi-Volatile Organic Compounds (SIM) Total Petroleum Hydrocarbons (ug/L) Petroleum hydrocarbons Inorganic Compounds (ug/L) Antimony, Total Arsenic, Total Cadmium, Total Chromium, Total Chromium III (Trivalent) Chromium VI (Hexavalent), Dissolved Copper, Total Cyanide, Physiologically Available, Total Cyanide (free), Total Hardness, Total Iron, Total Lead, Total Lead, Total	NA NA NA S000 8000 900 4 300 600 300 100000 NA NA NA NA	100 NA 5000 206 104 10.2 NA 323 323 242 NA NA NA 5000 160	ND 13.567 13.567 ND (4400) ND (20) 6.02 ND (1) ND (5) ND (10) ND (5) ND (20) 568 ND (5)	ND (20) ND (5) ND (1) ND (5) ND (10) ND (10) ND (5) 387000 109 ND (5)
Pyrene SUM of Group I PAHs SUM of Group II PAHs SUM of Semi-Volatile Organic Compounds (SIM) Total Petroleum Hydrocarbons (ug/L) Petroleum hydrocarbons Inorganic Compounds (ug/L) Antimony, Total Arsenic, Total Cadmium, Total Chromium, Total Chromium, Total Chromium III (Trivalent) Chromium VI (Hexavalent), Dissolved Copper, Total Cyanide, Physiologically Available, Total Cyanide (free), Total Hardness, Total Iron, Total Lead, Total Lead, Total Mercury, Total	NA NA NA S000 8000 900 4 300 600 300 100000 NA NA NA NA 10 20	100 NA 5000 206 104 10.2 NA 323 323 242 NA NA NA 5000 160 0.739	ND 13.567 13.567 ND (4400) ND (20) 6.02 ND (1) ND (5) ND (10) ND (5) ND (5) ND (5) ND (5) ND (2) 159000 568 ND (5) ND (5) ND (5) ND (5) ND (5)	- ND (20) ND (5) ND (1) ND (5) ND (10) ND (10) ND (5) 387000 109 ND (5) ND (5) ND (5)
Pyrene SUM of Group I PAHs SUM of Group II PAHs SUM of Semi-Volatile Organic Compounds (SIM) Total Petroleum Hydrocarbons (ug/L) Petroleum hydrocarbons Inorganic Compounds (ug/L) Antimony, Total Arsenic, Total Cadmium, Total Chromium, Total Chromium III (Trivalent) Chromium VI (Hexavalent), Dissolved Copper, Total Cyanide, Physiologically Available, Total Cyanide (free), Total Hardness, Total Iron, Total Lead, Total Mercury, Total Mercury, Total Nickel, Total	NA N	100 NA 5000 206 104 10.2 NA 323 323 242 NA NA NA 5000 160 0.739 1450	ND 13.567 13.567 ND (4400) ND (20) 6.02 ND (1) ND (5) ND (10) ND (5) ND (2) 159000 568 ND (5) ND (5) ND (5) ND (5) ND (5) ND (2)	- ND (20) ND (5) ND (1) ND (5) ND (10) ND (10) ND (5) 387000 109 ND (5) ND (5) ND (0.2) ND (10)
Pyrene SUM of Group I PAHs SUM of Group II PAHs SUM of Semi-Volatile Organic Compounds (SIM) Total Petroleum Hydrocarbons (ug/L) Petroleum hydrocarbons Inorganic Compounds (ug/L) Antimony, Total Arsenic, Total Cadmium, Total Chromium, Total Chromium III (Trivalent) Chromium IV (Hexavalent), Dissolved Copper, Total Cyanide, Physiologically Available, Total Cyanide (free), Total Hardness, Total Iron, Total Lead, Total Mercury, Total Nickel, Total Selenium, Total	NA N	100 NA 5000 206 104 10.2 NA 323 323 242 NA NA 5000 160 0.739 1450 235.8	ND 13.567 13.567 ND (4400) ND (20) 6.02 ND (1) ND (5) ND (10) ND (5) ND (2) 159000 568 ND (5) ND (5) ND (5) ND (5) ND (5) ND (2) 159000 568 ND (5)	- ND (20) ND (5) ND (1) ND (5) ND (10) ND (10) ND (5) 387000 109 ND (5) ND (5) ND (0.2) ND (10) ND (25)
Pyrene SUM of Group I PAHs SUM of Group II PAHs SUM of Semi-Volatile Organic Compounds (SIM) Total Petroleum Hydrocarbons (ug/L) Petroleum hydrocarbons Inorganic Compounds (ug/L) Antimony, Total Arsenic, Total Cadmium, Total Chromium, Total Chromium III (Trivalent) Chromium VI (Hexavalent), Dissolved Copper, Total Cyanide, Physiologically Available, Total Cyanide (free), Total Hardness, Total Iron, Total Lead, Total Mercury, Total Nickel, Total Selenium, Total Selenium, Total Silver, Total	NA N	100 NA 5000 206 104 10.2 NA 323 323 242 NA NA NA 160 0.739 1450 235.8 35.1	ND 13.567 13.567 ND (4400) ND (20) 6.02 ND (1) ND (5) ND (10) ND (5) ND (2) 159000 568 ND (5)	- ND (20) ND (5) ND (1) ND (5) ND (10) ND (10) ND (5) 387000 109 ND (5) ND (5) ND (0.2) ND (10) ND (25) ND (25)
Pyrene SUM of Group I PAHs SUM of Group II PAHs SUM of Semi-Volatile Organic Compounds (SIM) Total Petroleum Hydrocarbons (ug/L) Petroleum hydrocarbons Inorganic Compounds (ug/L) Antimony, Total Arsenic, Total Cadmium, Total Chromium, Total Chromium III (Trivalent) Chromium VI (Hexavalent), Dissolved Copper, Total Cyanide, Physiologically Available, Total Cyanide (free), Total Hardness, Total Iron, Total Lead, Total Mercury, Total Nickel, Total Selenium, Total Selenium, Total Silver, Total	NA N	100 NA 5000 206 104 10.2 NA 323 323 242 NA NA 5000 160 0.739 1450 235.8	ND 13.567 13.567 ND (4400) ND (20) 6.02 ND (1) ND (5) ND (10) ND (5) ND (2) 159000 568 ND (5) ND (5) ND (5) ND (5) ND (5) ND (2) 159000 568 ND (5)	- ND (20) ND (5) ND (1) ND (5) ND (10) ND (10) ND (5) 387000 109 ND (5) ND (5) ND (0.2) ND (10) ND (25)
Pyrene SUM of Group I PAHs SUM of Group II PAHs SUM of Semi-Volatile Organic Compounds (SIM) Total Petroleum Hydrocarbons (ug/L) Petroleum hydrocarbons Inorganic Compounds (ug/L) Antimony, Total Arsenic, Total Cadmium, Total Chromium, Total Chromium III (Trivalent) Chromium VI (Hexavalent), Dissolved Copper, Total Cyanide, Physiologically Available, Total Cyanide (free), Total Hardness, Total Iron, Total Lead, Total Mercury, Total Nickel, Total Selenium, Total Silver, Total Zinc, Total Zinc, Total Zinc, Total	NA NA NA S000 8000 900 4 300 600 300 100000 NA NA NA O NA O O O O O O O O O O O O O	100 NA 5000 206 104 10.2 NA 323 323 242 NA NA 000 160 0.739 1450 235.8 35.1 420	ND 13.567 13.567 ND (4400) ND (20) 6.02 ND (1) ND (5) ND (10) ND (5) ND (2) 159000 568 ND (5)	ND (20) ND (5) ND (1) ND (5) ND (10) ND (10) ND (5) 387000 109 ND (5) ND (5) ND (0.2) ND (10) ND (25) ND (22) ND (20) ND (25)
Pyrene SUM of Group I PAHs SUM of Group II PAHs SUM of Semi-Volatile Organic Compounds (SIM) Total Petroleum Hydrocarbons (ug/L) Petroleum hydrocarbons Inorganic Compounds (ug/L) Antimony, Total Arsenic, Total Cadmium, Total Chromium, Total Chromium III (Trivalent) Chromium VI (Hexavalent), Dissolved Copper, Total Cyanide, Physiologically Available, Total Cyanide (free), Total Hardness, Total Iron, Total Lead, Total Mercury, Total Nickel, Total Selenium, Total Selenium, Total Silver, Total Zinc, Total Other PH (lab), Total (pH units)	NA NA NA S000 8000 900 4 300 600 300 100000 NA NA NA NA O O O O O O O O O O O O O O	100 NA 5000 206 104 10.2 NA 323 323 242 NA NA NA 5000 160 0.739 1450 235.8 35.1 420	ND 13.567 13.567 13.567 ND (4400) ND (20) 6.02 ND (1) ND (5) ND (10) ND (5) ND (5) ND (2) 159000 568 ND (5) ND (0.2) ND (10) ND (25) ND (20) ND (50)	- ND (20) ND (5) ND (1) ND (5) ND (10) ND (10) ND (5) 387000 109 ND (5) ND (0.2) ND (10) ND (25) ND (20) ND (25) ND (2) ND (50)
Pyrene SUM of Group I PAHs SUM of Group I PAHs SUM of Semi-Volatile Organic Compounds (SIM) Total Petroleum Hydrocarbons (ug/L) Petroleum hydrocarbons Inorganic Compounds (ug/L) Antimony, Total Arsenic, Total Cadmium, Total Chromium, Total Chromium III (Trivalent) Chromium VI (Hexavalent), Dissolved Copper, Total Cyanide, Physiologically Available, Total Cyanide (free), Total Hardness, Total Iron, Total Lead, Total Mercury, Total Nickel, Total Silver, Total Silver, Total Silver, Total Cother pH (lab), Total (pH units) Ammonia, Total (ug/L)	NA NA NA NA S000 8000 900 4 300 600 300 100000 NA NA NA NA O 20 200 100 7 900 NA NA NA	100 NA 5000 206 104 10.2 NA 323 323 242 NA NA NA 5000 160 0.739 1450 235.8 35.1 420 NA Report	ND 13.567 13.567 13.567 ND (4400) ND (20) 6.02 ND (1) ND (5) ND (10) ND (5) ND (5) ND (2) 159000 568 ND (5) ND (0.2) ND (10) ND (25) ND (25) ND (25) ND (25) ND (27) ND (39)	ND (20) ND (5) ND (1) ND (5) ND (10) ND (10) ND (5) 387000 109 ND (5) ND (5) ND (0.2) ND (10) ND (25) ND (22) ND (20) ND (25)
Pyrene SUM of Group I PAHS SUM of Group I PAHS SUM of Semi-Volatile Organic Compounds (SIM) Total Petroleum Hydrocarbons (ug/L) Petroleum hydrocarbons Inorganic Compounds (ug/L) Antimony, Total Arsenic, Total Cadmium, Total Chromium, Total Chromium III (Trivalent) Chromium VI (Hexavalent), Dissolved Copper, Total Cyanide, Physiologically Available, Total Cyanide (free), Total Hardness, Total Iron, Total Lead, Total Mercury, Total Nickel, Total Selenium, Total Silver, Total Zinc, Total Other pH (lab), Total (pH units) Ammonia, Total (ug/L) Chloride, Total (ug/L)	NA NA NA S000 8000 900 4 300 600 300 100000 NA NA NA 10 20 200 100 7 900 NA NA NA	100 NA 5000 206 104 10.2 NA 323 323 242 NA NA NA 5000 160 0.739 1450 235.8 35.1 420 NA Report Report	ND 13.567 13.567 13.567 ND (4400) ND (20) 6.02 ND (1) ND (5) ND (10) ND (5) ND (5) ND (2) 159000 568 ND (5) ND (0.2) ND (10) ND (25) ND (25) ND (25) ND (25) ND (27) ND (50)	- ND (20) ND (5) ND (1) ND (5) ND (10) ND (10) ND (5) 387000 109 ND (5) ND (0.2) ND (10) ND (25) ND (20) ND (25) ND (2) ND (50)
Pyrene SUM of Group I PAHs SUM of Group II PAHs SUM of Semi-Volatile Organic Compounds (SIM) Total Petroleum Hydrocarbons (ug/L) Petroleum hydrocarbons Inorganic Compounds (ug/L) Antimony, Total Arsenic, Total Cadmium, Total Chromium, Total Chromium, Total Chromium III (Trivalent) Chromium VI (Hexavalent), Dissolved Copper, Total Cyanide, Physiologically Available, Total Cyanide (free), Total Hardness, Total Iron, Total Lead, Total Mercury, Total Mickel, Total Selenium, Total Silver, Total Zilver, Total Other PH (lab), Total (pH units) Ammonia, Total (ug/L) Chloride, Total (ug/L) Chloride, Total (ug/L) Chlorine, residual, Total (ug/L)	NA NA NA S000 8000 900 4 300 600 300 100000 NA NA NA 10 20 200 100 7 900 NA	100 NA 5000 206 104 10.2 NA 323 323 242 NA NA 5000 160 0.739 1450 235.8 35.1 420 NA Report Report 200	ND 13.567 13.567 13.567 ND (4400) ND (20) 6.02 ND (1) ND (5) ND (10) ND (5) ND (2) 159000 568 ND (5) ND (0.2) ND (10) ND (25) ND (25) ND (2) ND (50) 7 397 731000 ND (20)	- ND (20) ND (5) ND (1) ND (5) ND (10) ND (10) ND (5) 387000 109 ND (5) ND (0.2) ND (10) ND (25) ND (20) ND (25) ND (2) ND (50)
Pyrene SUM of Group I PAHs SUM of Group I PAHs SUM of Semi-Volatile Organic Compounds (SIM) Total Petroleum Hydrocarbons (ug/L) Petroleum hydrocarbons Inorganic Compounds (ug/L) Antimony, Total Arsenic, Total Cadmium, Total Chromium, Total Chromium III (Trivalent) Chromium VI (Hexavalent), Dissolved Copper, Total Cyanide, Physiologically Available, Total Cyanide (free), Total Hardness, Total Iron, Total Lead, Total Mercury, Total Nickel, Total Selenium, Total Silver, Total Zinc, Total Other pH (lab), Total (pH units) Ammonia, Total (ug/L) Chlorine, residual, Total (ug/L) Cyanide, Total (ug/L)	NA NA NA S000 8000 900 4 300 600 300 100000 NA NA NA 10 20 200 100 7 900 NA	100 NA 5000 206 104 10.2 NA 323 323 242 NA NA S000 160 0.739 1450 235.8 35.1 420 NA Report Report 200 178	ND 13.567 13.567 13.567 ND (4400) ND (20) 6.02 ND (1) ND (5) ND (10) ND (5) ND (2) 159000 568 ND (5) ND (2) ND (10) ND (2) ND (2) ND (2) ND (5) ND (2) ND (50)	- ND (20) ND (5) ND (1) ND (5) ND (10) ND (10) ND (5) 387000 109 ND (5) ND (0.2) ND (10) ND (25) ND (20) ND (25) ND (2) ND (50)
Pyrene SUM of Group I PAHs SUM of Group I PAHs SUM of Semi-Volatile Organic Compounds (SIM) Total Petroleum Hydrocarbons (ug/L) Petroleum hydrocarbons Inorganic Compounds (ug/L) Antimony, Total Arsenic, Total Cadmium, Total Chromium, Total Chromium III (Trivalent) Chromium VI (Hexavalent), Dissolved Copper, Total Cyanide, Physiologically Available, Total Cyanide (free), Total Hardness, Total Iron, Total Lead, Total Mercury, Total Selenium, Total Silver, Total Silver, Total Zinc, Total Other pH (lab), Total (pH units) Ammonia, Total (ug/L) Chlorine, residual, Total (ug/L) Cyanide, Total (ug/L) Cyanide, Total (ug/L) Cyanide, Total (ug/L) Cyanide, Total (ug/L) Total Phenols (ug/L)	NA NA NA S000 8000 900 4 300 600 300 100000 NA	100 NA 5000 206 104 10.2 NA 323 323 242 NA NA 5000 160 0.739 1450 235.8 35.1 420 NA Report Report 200 178 1080	ND 13.567 13.567 13.567 ND (4400) ND (20) 6.02 ND (1) ND (5) ND (10) ND (5) ND (5) ND (2) 159000 568 ND (5) ND (0.2) ND (10) ND (25) ND (2) ND (50) 7 397 731000 ND (20) ND (20) ND (5) ND (20) ND (5) ND (20) ND (5) ND (30)	ND (20) ND (5) ND (1) ND (5) ND (10) ND (10) ND (5) 387000 109 ND (5) ND (0.2) ND (10) ND (25) ND (2) ND (2) ND (50) 7.9 121
Pyrene SUM of Group I PAHs SUM of Group I PAHs SUM of Semi-Volatile Organic Compounds (SIM) Total Petroleum Hydrocarbons (ug/L) Petroleum hydrocarbons Inorganic Compounds (ug/L) Antimony, Total Arsenic, Total Cadmium, Total Chromium, Total Chromium III (Trivalent) Chromium VI (Hexavalent), Dissolved Copper, Total Cyanide, Physiologically Available, Total Cyanide (free), Total Hardness, Total Iron, Total Lead, Total Mercury, Total Nickel, Total Selenium, Total Silver, Total Zinc, Total Other pH (lab), Total (pH units) Ammonia, Total (ug/L) Chlorine, residual, Total (ug/L) Cyanide, Total (ug/L)	NA NA NA S000 8000 900 4 300 600 300 100000 NA NA NA 10 20 200 100 7 900 NA	100 NA 5000 206 104 10.2 NA 323 323 242 NA NA S000 160 0.739 1450 235.8 35.1 420 NA Report Report 200 178	ND 13.567 13.567 13.567 ND (4400) ND (20) 6.02 ND (1) ND (5) ND (10) ND (5) ND (2) 159000 568 ND (5) ND (2) ND (10) ND (25) ND (2) ND (20) ND (20) ND (50)	ND (20) ND (5) ND (1) ND (5) ND (10) ND (10) ND (5) 387000 109 ND (5) ND (0.2) ND (10) ND (25) ND (20) ND (25) ND (2) ND (50)
Pyrene SUM of Group I PAHs SUM of Group II PAHs SUM of Semi-Volatile Organic Compounds (SIM) Total Petroleum Hydrocarbons (ug/L) Petroleum hydrocarbons Inorganic Compounds (ug/L) Antimony, Total Arsenic, Total Cadmium, Total Chromium, Total Chromium III (Trivalent) Chromium VI (Hexavalent), Dissolved Copper, Total Cyanide, Physiologically Available, Total Cyanide (free), Total Hardness, Total Iron, Total Lead, Total Mercury, Total Nickel, Total Silver, Total Silver, Total Zinc, Total Other pH (lab), Total (ug/L) Chloride, Total (ug/L) Cyanide, Total (ug/L) Cyanide, Total (ug/L) Total Phenols (ug/L) Total Suspended Solids (TSS) (ug/L) Pesticides and PCBs (ug/L)	NA NA NA NA S000 8000 900 4 300 600 300 100000 NA NA NA NA 10 20 200 100 7 900 NA	100 NA 5000 206 104 10.2 NA 323 323 242 NA NA 5000 160 0.739 1450 235.8 35.1 420 NA Report Report 200 178 1080 30000	ND 13.567 13.567 13.567 ND (4400) ND (20) 6.02 ND (1) ND (5) ND (10) ND (5) ND (5) ND (2) 159000 568 ND (5) ND (2) ND (10) ND (25) ND (2) ND (20) ND (20) ND (50) 7 397 731000 ND (20) ND (5) ND (20) ND (5) ND (30) 6100	ND (20) ND (5) ND (1) ND (5) ND (10) ND (10) ND (5) 387000 109 ND (5) ND (0.2) ND (10) ND (25) ND (2) ND (2) ND (50) 7.9 121
Pyrene SUM of Group I PAHs SUM of Group I PAHs SUM of Semi-Volatile Organic Compounds (SIM) Total Petroleum Hydrocarbons (ug/L) Petroleum hydrocarbons Inorganic Compounds (ug/L) Antimony, Total Arsenic, Total Cadmium, Total Chromium, Total Chromium III (Trivalent) Chromium VI (Hexavalent), Dissolved Copper, Total Cyanide, Physiologically Available, Total Cyanide (free), Total Hardness, Total Iron, Total Lead, Total Mercury, Total Selenium, Total Silver, Total Silver, Total Other pH (lab), Total (pH units) Ammonia, Total (ug/L) Chlorine, residual, Total (ug/L) Cyanide, Total (ug/L) Total Phenols (ug/L) Total Suspended Solids (TSS) (ug/L) Pesticides and PCBs (ug/L) Aroclor-1016 (PCB-1016)	NA NA NA NA S000 8000 900 4 300 600 300 100000 NA	100 NA 5000 206 104 10.2 NA 323 323 242 NA NA NA 5000 160 0.739 1450 235.8 35.1 420 NA Report Report 200 178 1080 30000	ND 13.567 13.567 13.567 ND (4400) ND (20) 6.02 ND (1) ND (5) ND (10) ND (5) ND (5) ND (2) 159000 568 ND (5) ND (0.2) ND (10) ND (25) ND (2) ND (50) 7 397 731000 ND (20) ND (20) ND (5) ND (20) ND (5) ND (20) ND (5) ND (20) ND (5) ND (30) 6100	ND (20) ND (5) ND (1) ND (5) ND (10) ND (10) ND (5) 387000 109 ND (5) ND (0.2) ND (10) ND (25) ND (2) ND (2) ND (50) 7.9 121
Pyrene SUM of Group I PAHs SUM of Group I PAHs SUM of Semi-Volatile Organic Compounds (SIM) Total Petroleum Hydrocarbons (ug/L) Petroleum hydrocarbons Inorganic Compounds (ug/L) Antimony, Total Arsenic, Total Cadmium, Total Chromium, Total Chromium III (Trivalent) Chromium VI (Hexavalent), Dissolved Copper, Total Cyanide, Physiologically Available, Total Cyanide (free), Total Iron, Total Lead, Total Mercury, Total Nickel, Total Silver, Total Silver, Total Silver, Total Other pH (lab), Total (pH units) Ammonia, Total (ug/L) Chloride, Total (ug/L) Chlorine, residual, Total (ug/L) Total Phenols (ug/L) Total Suspended Solids (TSS) (ug/L) Pesticides and PCBs (ug/L) Aroclor-1016 (PCB-1016) Aroclor-1221 (PCB-1221)	NA NA NA NA S000 8000 900 4 300 600 300 100000 NA	100 NA 5000 206 104 10.2 NA 323 323 242 NA NA NA 5000 160 0.739 1450 235.8 35.1 420 NA Report Report Report 200 178 1080 30000 NA NA	ND 13.567 13.567 13.567 ND (4400) ND (20) 6.02 ND (1) ND (5) ND (10) ND (5) ND (2) 159000 568 ND (5) ND (2) 159000 568 ND (5) ND (2) ND (20) ND (20) ND (20) ND (20) ND (50) 7 397 731000 ND (20) ND (20) ND (50) ND (5) ND (30) 6100	ND (20) ND (5) ND (1) ND (5) ND (10) ND (10) ND (5) 387000 109 ND (5) ND (0.2) ND (10) ND (25) ND (2) ND (50) 7.9 121
Pyrene SUM of Group I PAHS SUM of Group I PAHS SUM of Semi-Volatile Organic Compounds (SIM) Total Petroleum Hydrocarbons (ug/L) Petroleum hydrocarbons Inorganic Compounds (ug/L) Antimony, Total Arsenic, Total Cadmium, Total Chromium, Total Chromium III (Trivalent) Chromium VI (Hexavalent), Dissolved Copper, Total Cyanide, Physiologically Available, Total Cyanide, Physiologically Available, Total Cyanide (free), Total Hardness, Total Iron, Total Lead, Total Mercury, Total Silver, Total Silver, Total Silver, Total Zinc, Total Other pH (lab), Total (pH units) Ammonia, Total (ug/L) Chlorine, residual, Total (ug/L) Cyanide, Total (ug/L) Total Phenols (ug/L) Total Suspended Solids (TSS) (ug/L) Pesticides and PCBs (ug/L) Aroclor-1016 (PCB-1016) Aroclor-1212 (PCB-1221) Aroclor-1232 (PCB-1232)	NA NA NA NA S000 8000 900 4 300 600 300 100000 NA NA NA NA NA 10 20 200 100 7 900 NA	100 NA 5000 206 104 10.2 NA 323 323 242 NA NA NA 5000 160 0.739 1450 235.8 35.1 420 NA Report Report 200 178 1080 30000 NA NA NA	ND 13.567 13.567 13.567 ND (4400) ND (20) 6.02 ND (1) ND (5) ND (10) ND (5) ND (5) ND (5) ND (2) 159000 568 ND (5) ND (0.2) ND (10) ND (25) ND (25) ND (20) ND (50) 7 397 731000 ND (20) ND (50) ND (5) ND (0.25) ND (0.25) ND (0.25)	ND (20) ND (5) ND (1) ND (5) ND (10) ND (10) ND (5) 387000 109 ND (5) ND (0.2) ND (10) ND (25) ND (2) ND (50) 7.9 121
Pyrene SUM of Group I PAHs SUM of Group I PAHs SUM of Semi-Volatile Organic Compounds (SIM) Total Petroleum Hydrocarbons (ug/L) Petroleum hydrocarbons Inorganic Compounds (ug/L) Antimony, Total Arsenic, Total Cadmium, Total Chromium, Total Chromium III (Trivalent) Chromium VI (Hexavalent), Dissolved Copper, Total Cyanide, Physiologically Available, Total Cyanide (free), Total Hardness, Total Iron, Total Lead, Total Mercury, Total Silver, Total Silver, Total Silver, Total Jinc, Total Jinc, Total Chhorine, residual, Total (ug/L) Chlorine, residual, Total (ug/L) Total Phenols (ug/L) Total Suspended Solids (TSS) (ug/L) Pesticides and PCBs (ug/L) Aroclor-1221 (PCB-1221) Aroclor-1222 (PCB-1232) Aroclor-1224 (PCB-1242)	NA NA NA NA S000 8000 900 4 300 600 300 100000 NA NA NA NA 10 20 200 100 7 900 NA	100 NA 5000 206 104 10.2 NA 323 323 242 NA NA 5000 160 0.739 1450 235.8 35.1 420 NA Report Report 200 178 1080 30000 NA NA NA NA	ND 13.567 13.567 13.567 ND (4400) ND (20) 6.02 ND (1) ND (5) ND (10) ND (5) ND (5) ND (2) 159000 568 ND (5) ND (0.2) ND (10) ND (25) ND (20) ND (50) 7 397 731000 ND (50) 7 397 731000 ND (20) ND (5) ND (30) 6100 ND (0.25) ND (0.25) ND (0.25) ND (0.25) ND (0.25)	ND (20) ND (5) ND (1) ND (5) ND (10) ND (10) ND (5) 387000 109 ND (5) ND (0.2) ND (10) ND (25) ND (2) ND (50) 7.9 121
Pyrene SUM of Group I PAHs SUM of Group II PAHs SUM of Semi-Volatile Organic Compounds (SIM) Total Petroleum Hydrocarbons (ug/L) Petroleum hydrocarbons Inorganic Compounds (ug/L) Antimony, Total Arsenic, Total Cadmium, Total Chromium, Total Chromium III (Trivalent) Chromium VI (Hexavalent), Dissolved Copper, Total Cyanide, Physiologically Available, Total Cyanide (free), Total Hardness, Total Iron, Total Lead, Total Mercury, Total Nickel, Total Selenium, Total Silver, Total Zinc, Total Other DH (lab), Total (pH units) Ammonia, Total (ug/L) Chloride, Total (ug/L) Cyanide, Total (ug/L) Total Suspended Solids (TSS) (ug/L) Pesticides and PCBs (ug/L) Aroclor-1221 (PCB-1221) Aroclor-1232 (PCB-1232) Aroclor-1242 (PCB-1242) Aroclor-1248 (PCB-1242) Aroclor-1242 (PCB-1242) Aroclor-1242 (PCB-1242)	NA NA NA NA NA S000 8000 900 4 300 600 300 100000 NA	100 NA 5000 206 104 10.2 NA 323 323 242 NA NA NA 5000 160 0.739 1450 235.8 35.1 420 NA Report Report 200 178 1080 30000 NA	ND 13.567 13.567 13.567 ND (4400) ND (20) 6.02 ND (1) ND (5) ND (10) ND (5) ND (2) 159000 568 ND (5) ND (0.2) ND (10) ND (25) ND (20) ND (50) 7 397 731000 ND (20) ND (50) ND (30) 6100 ND (0.25) ND (0.25) ND (0.25) ND (0.25) ND (0.25)	ND (20) ND (5) ND (1) ND (5) ND (10) ND (10) ND (5) 387000 109 ND (5) ND (0.2) ND (10) ND (25) ND (2) ND (50) 7.9 121
Pyrene SUM of Group I PAHs SUM of Group I PAHs SUM of Semi-Volatile Organic Compounds (SIM) Total Petroleum Hydrocarbons (ug/L) Petroleum hydrocarbons Inorganic Compounds (ug/L) Antimony, Total Arsenic, Total Cadmium, Total Chromium, Total Chromium III (Trivalent) Chromium VI (Hexavalent), Dissolved Copper, Total Cyanide, Physiologically Available, Total Cyanide (free), Total Hardness, Total Iron, Total Lead, Total Mercury, Total Nickel, Total Silver, Total Silver, Total Zinc, Total Other pH (lab), Total (pH units) Ammonia, Total (ug/L) Chlorine, residual, Total (ug/L) Cyanide, Total (ug/L) Total Suspended Solids (TSS) (ug/L) Pesticides and PCBs (ug/L) Aroclor-1232 (PCB-1232) Aroclor-1242 (PCB-1248) Aroclor-1244 (PCB-1248) Aroclor-1254 (PCB-1248) Aroclor-1254 (PCB-1254)	NA NA NA NA S000 8000 900 4 300 600 300 100000 NA	100 NA 5000 206 104 10.2 NA 323 323 242 NA NA NA 5000 160 0.739 1450 235.8 35.1 420 NA Report Report 200 178 1080 30000 NA	ND 13.567 13.567 13.567 ND (4400) ND (20) 6.02 ND (1) ND (5) ND (10) ND (5) ND (5) ND (2) 159000 568 ND (5) ND (0.2) ND (10) ND (25) ND (2) ND (50) 7 397 731000 ND (20) ND (5) ND (30) 6100 ND (0.25)	ND (20) ND (5) ND (1) ND (5) ND (10) ND (10) ND (5) 387000 109 ND (5) ND (0.2) ND (10) ND (25) ND (2) ND (50) 7.9 121
Pyrene SUM of Group I PAHS SUM of Group I PAHS SUM of Semi-Volatile Organic Compounds (SIM) Total Petroleum Hydrocarbons (ug/L) Petroleum hydrocarbons Inorganic Compounds (ug/L) Antimony, Total Arsenic, Total Chromium, Total Chromium, Total Chromium III (Trivalent) Chromium VI (Hexavalent), Dissolved Copper, Total Cyanide, Physiologically Available, Total Cyanide (free), Total Hardness, Total Iron, Total Lead, Total Mercury, Total Mickel, Total Selenium, Total Silver, Total Zinc, Total Other Ph (lab), Total (pH units) Ammonia, Total (ug/L) Chloride, Total (ug/L) Chlorine, residual, Total (ug/L) Total Phenols (ug/L) Total Suspended Solids (TSS) (ug/L) Pesticides and PCBs (ug/L) Aroclor-1221 (PCB-1221) Aroclor-1232 (PCB-1232) Aroclor-1248 (PCB-1248)	NA NA NA NA NA S000 8000 900 4 300 600 300 100000 NA	100 NA 5000 206 104 10.2 NA 323 323 242 NA NA NA 5000 160 0.739 1450 235.8 35.1 420 NA Report Report 200 178 1080 30000 NA	ND 13.567 13.567 13.567 ND (4400) ND (20) 6.02 ND (1) ND (5) ND (10) ND (5) ND (2) 159000 568 ND (5) ND (0.2) ND (10) ND (25) ND (20) ND (50) 7 397 731000 ND (20) ND (50) ND (30) 6100 ND (0.25) ND (0.25) ND (0.25) ND (0.25) ND (0.25)	ND (20) ND (5) ND (1) ND (5) ND (10) ND (10) ND (5) 387000 109 ND (5) ND (0.2) ND (10) ND (25) ND (2) ND (50) 7.9 121
Pyrene SUM of Group I PAHs SUM of Group II PAHs SUM of Semi-Volatile Organic Compounds (SIM) Total Petroleum Hydrocarbons (ug/L) Petroleum hydrocarbons Inorganic Compounds (ug/L) Antimony, Total Arsenic, Total Cadmium, Total Chromium, Total Chromium III (Trivalent) Chromium VI (Hexavalent), Dissolved Copper, Total Cyanide, Physiologically Available, Total Cyanide (free), Total Hardness, Total Iron, Total Lead, Total Mercury, Total Nickel, Total Selenium, Total Silver, Total Zinc, Total Other PH (lab), Total (pH units) Ammonia, Total (ug/L) Chloride, Total (ug/L) Cyanide, Total (ug/L) Total Suspended Solids (TSS) (ug/L) Pesticides and PCBs (ug/L) Aroclor-1232 (PCB-1242) Aroclor-1232 (PCB-1242) Aroclor-1248 (PCB-1248)	NA NA NA NA NA S000 8000 900 4 300 600 300 100000 NA	100 NA 5000 206 104 10.2 NA 323 323 242 NA NA NA 5000 160 0.739 1450 235.8 35.1 420 NA Report Report 200 178 1080 30000 NA	ND 13.567 13.567 13.567 ND (4400) ND (20) 6.02 ND (1) ND (5) ND (10) ND (5) ND (2) 159000 568 ND (5) ND (0.2) ND (10) ND (25) ND (20) ND (50) 7 397 731000 ND (20) ND (50) ND (30) 6100 ND (0.25) ND (0.25) ND (0.25) ND (0.25) ND (0.25)	ND (20) ND (5) ND (1) ND (5) ND (10) ND (10) ND (5) 387000 109 ND (5) ND (0.2) ND (10) ND (25) ND (2) ND (50) 7.9 121


${\bf ABBREVIATIONS:}$


- -: Not analyzed
- ug/I: micrograms per liter
- NA: Not Applicable ND (2.5): $\overset{\circ}{\text{Result}}$ not detected above reporting limit (shown in parentheses) SU: Standard Units

NOTES:

- 1. Analytes detected in at least one sample are reported herein. For a complete list of analytes see the laboratory data sheets.
- 3. Blue bold values indicate an exceedance of the applicable site-specific 2017 RGP Criteria.
- 2. **Bold** values indicate an exceedance of applicable 2014 RCGW-2 Concentrations.

LEGEND:

NOTE:

DETAILS OF TREATMENT SYSTEM MAY VARY FROM SYSTEM INDICATED ABOVE. SPECIFIC MEANS AND METHODS OF TREATMENT TO BE SELECTED BY CONTRACTOR. WATER WILL BE TREATED TO MEET REQUIRED EFFLUENT STANDARDS.

SCHWARZMAN COLLEGE OF COMPUTING STV-4 STEAM UTILITY REPLACEMENT MASSACHUSETTS INSTITUTE OF TECHNOLOGY CAMBRIDGE, MASSACHUSETTS

PROPOSED
TREATMENT SYSTEM
SCHEMATIC

SCALE: NONE SEPTEMBER 2020

FIGURE 3

APPENDIX A

Notice of Intent (NOI) for Remediation General Permit (RGP)

II. Suggested Format for the Remediation General Permit Notice of Intent (NOI)

A. General site information:

1. Name of site:	Site address: 51 Vassar Street						
Massachusetts Institute of Technology - Stephen A. Schwarzman College of Computing	Street:						
	City: Cambridge		State: MA	^{Zip:} 02142			
Site owner Massachusetts Institute of Technology	Contact Person: Seth Kinderman						
Wassachasetts mattate of Teermology	Telephone: 617-258-6221	Email: skii	nderm@mit	.edu			
	Mailing address: 77 Massachusetts Avenue, Bldg	NW23-10	0				
	Street:						
Owner is (check one): □ Federal □ State/Tribal ■ Private ■ Other; if so, specify: Institution	City: Cambridge		State: MA	Zip: 02139			
3. Site operator, if different than owner	Contact Person: KYLE BOUTHILLIER						
United Civil	Telephone: 978-304-1597	Email: kbc	outhillier@u	nited-civil.com			
	Mailing address:						
	Street: 30 Log Bridge Road, Bldg 100						
	City: Middleton		State: MA	Zip: 01949			
4. NPDES permit number assigned by EPA:	5. Other regulatory program(s) that apply to the site	(check all th	at apply):				
N/A	■ MA Chapter 21e; list RTN(s):	□ CERCL	LΑ				
	3-36513	□ UIC Pro	ogram				
NPDES permit is (check all that apply: ■ RGP □ DGP □ CGP	□ NH Groundwater Management Permit or	□ POTW	Pretreatment	t			
☐ MSGP ☐ Individual NPDES permit ☐ Other; if so, specify:	Groundwater Release Detection Permit:	□ CWA S	Section 404				

municipality or origin:

■ Other; if so, specify:

construction site dewatering

☐ A surface water other

so, indicate waterbody:

than the receiving water; if

R	Receiving	water	inform	nation•
υ.	Receiving	water	IIIIOI II	iauvii.

Has the operator attached a summary of influent

in accordance with the instruction in Appendix

VIII? (check one):

■ Yes □ No

sampling results as required in Part 4.2 of the RGP

B. Receiving water information:						
1. Name of receiving water(s):	Waterbody identification of receiving water(s): Classi	fication of receiving water(s):			
Charles River	MA72-38	Class E	3			
Receiving water is (check any that apply): □ Outstand	nding Resource Water □ Ocean Sanctuary □ territori	al sea □ Wild and Scenic	River			
•	lance with the instructions in B, above? (check one):	■ Yes □ No				
Are sensitive receptors present near the site? (check If yes, specify:	one): □ Yes ■ No					
pollutants indicated. Also, indicate if a final TMDL	ate's Integrated List of Waters (i.e., CWA Section 30: s available for any of the indicated pollutants. For mo MA Integrated List and all uses are considered impaire	ore information, contact the	e appropriate State as noted in Part			
4. Indicate the seven day-ten-year low flow (7Q10) of Appendix V for sites located in Massachusetts and A	of the receiving water determined in accordance with appendix VI for sites located in New Hampshire.	the instructions in	29.2			
	lation of water quality-based effluent limitations (WC ites in Massachusetts and Appendix VI for sites in No.		132.04			
If yes, indicate date confirmation received: 18 Septem		. ,				
(check one): ■ Yes □ No	water sampling results as required in Part 4.2 of the F	GP in accordance with the	e instruction in Appendix VIII?			
C. Source water information:						
1. Source water(s) is (check any that apply):						
☐ Contaminated groundwater	☐ Contaminated surface water	minated surface water				

Has the operator attached a summary of influent

sampling results as required in Part 4.2 of the

RGP in accordance with the instruction in

Appendix VIII? (check one):

□ Yes □ No

2. Source water contaminants: Fluoranthene, Naphthalene, phenanthrene,	arsenic, iron					
a. For source waters that are contaminated groundwater or contaminated surface water, indicate are any contaminants present that are not included in	b. For a source water that is a surface water other than the receiving water, potable water or other, indicate any contaminants present at the maximum concentration in accordance					
the RGP? (check one): Yes No If yes, indicate the contaminant(s) and the maximum concentration present in accordance with the instructions in Appendix VIII.	with the instructions in Appendix VIII? (check one): □ Yes □ No					
3. Has the source water been previously chlorinated or otherwise contains resid	dual chlorine? (check one): □ Yes ■ No					
D. Discharge information						
1.The discharge(s) is a(n) (check any that apply): □ Existing discharge ■ New	v discharge □ New source					
Outfall(s): CITY OF CAMBRIDGE OUTFALL LOCATION NO. D08OF0010	Outfall location(s): (Latitude, Longitude) Approx. 42.35509, -71.09036 (Refer to Figure 2 of Haley & Aldrich Letter)					
Discharges enter the receiving water(s) via (check any that apply): □ Direct di	scharge to the receiving water Indirect discharge, if so, specify:					
☐ A private storm sewer system ■ A municipal storm sewer system If the discharge enters the receiving water via a private or municipal storm sew	ver system:					
Has notification been provided to the owner of this system? (check one): \blacksquare Ye	es 🗆 No					
Has the operator has received permission from the owner to use such system for discharges? (check one): ☐ Yes ■ No, if so, explain, with an estimated timeframe for obtaining permission: City of Cambridge application for dewatering discharge submitted concurrently with NPDES NOI						
Has the operator attached a summary of any additional requirements the owner	of this system has specified? (check one): □ Yes □ No					
Provide the expected start and end dates of discharge(s) (month/year): Octobe	er 2020 - April 2021					
Indicate if the discharge is expected to occur over a duration of: ■ less than 1	2 months □ 12 months or more □ is an emergency discharge					
Has the operator attached a site plan in accordance with the instructions in D, a	above? (check one): ■ Yes □ No					

2. Activity Category: (check all that apply)	3. Contamination Type Category: (check all that apply)				
	a. If Activity Categ	gory I or II: (check all that apply)			
	 □ A. Inorganics □ B. Non-Halogenated Volatile Organi □ C. Halogenated Volatile Organic Cor □ D. Non-Halogenated Semi-Volatile Organi □ E. Halogenated Semi-Volatile Organi □ F. Fuels Parameters 	Compounds ile Organic Compounds			
☐ I – Petroleum-Related Site Remediation ☐ II – Non-Petroleum-Related Site Remediation	b. If Activity Category III, IV	V, V, VI, VII or VIII: (check either G or H)			
 ■ III – Contaminated Site Dewatering □ IV – Dewatering of Pipelines and Tanks □ V – Aquifer Pump Testing 	G. Sites with Known Contamination	☐ H. Sites with Unknown Contamination			
☐ VI – Well Development/Rehabilitation ☐ VII – Collection Structure Dewatering/Remediation	c. If Category III-G, IV-G, V-G, VI-G, VII-G or VIII-G: (check all that apply)				
□ VIII – Dredge-Related Dewatering	 ■ A. Inorganics □ B. Non-Halogenated Volatile Organic Compounds ■ C. Halogenated Volatile Organic Compounds ■ D. Non-Halogenated Semi-Volatile Organic Compounds □ E. Halogenated Semi-Volatile Organic Compounds 	d. If Category III-H, IV-H, V-H, VI-H, VII-H or VIII-H Contamination Type Categories A through F apply			
	☐ F. Fuels Parameters				

4. Influent and Effluent Characteristics

	Known	Known				Int	luent	Effluent Li	mitations
Parameter	or believed absent	or believed present	# of samples	Test method (#)	Detection limit (µg/l)	Daily maximum (µg/l)	Daily average (µg/l)	TBEL	WQBEL
A. Inorganics									
Ammonia		✓	1 +	4500NH3+		0.397 +	0.397	Report mg/L	
Chloride		/	1 +	300.0		.731 +	.731 +	Report µg/l	
Total Residual Chlorine	✓		1 +	4500CL-F+	0.02	<0.02	<0.02	0.2 mg/L	50
Total Suspended Solids		/	1 +	2540D +	5 +	<5 +	<5 +	30 mg/L	
Antimony	· /		1 +	3,200.8	20 +	<20	<20 +	206 μg/L	761
Arsenic		1	1 +	3,200.8 +	5 +	6.02	6.02	104 μg/L	12 +
Cadmium	✓		1 +	3,200.8 +	1 +	<1 +	<1 +	10.2 μg/L	0.5280
Chromium III	· /		1 +	107,- +	10 +	<10 +	<10 +	323 μg/L	177.2 +
Chromium VI	1		1 +	7196A +	10 +	<10 +	<10	323 μg/L	13.6
Copper	·		1 +	3,200.8 +	5 +	<5 +	<5	242 μg/L	19.6
Iron		✓	1 +	3,200.8 +	50 +	568 +	568 +	5,000 μg/L	1168
Lead	·		1 +	3,200.8 +	5 +	<5 +	<5	160 μg/L	8.86
Mercury	·		1 +	3,245.1	0.2	<0.2	<0.2	0.739 μg/L	1.08
Nickel	· /		1 +	3,200.8 +	10 +	<10 +	<10	1,450 μg/L	109.2
Selenium	V		1 +	3,200.8	25 +	<25 +	<25	235.8 μg/L	5.9
Silver	✓		1 +	3,200.8	2 +	<2 +	<2 +	35.1 μg/L	14.2
Zinc	· /		1 +	3,200.8 +	50 +	<50 +	<50 +	420 μg/L	251.0
Cyanide	V		1 +	4500CN-T	0.005	<0.005	<0.005	178 mg/L	6.2
B. Non-Halogenated VOCs	S								
Total BTEX	✓		1 +	NA +				100 μg/L	
Benzene	/		1 +	624.1 +		<l +<="" td=""><td><l +<="" td=""><td>5.0 μg/L</td><td></td></l></td></l>	<l +<="" td=""><td>5.0 μg/L</td><td></td></l>	5.0 μg/L	
1,4 Dioxane	✓		1 +	624.1-SII	50 +	<50 +	<50 +	200 μg/L	
Acetone	✓		1 +	624.1	10 +	<10 +	<10 +	7.97 mg/L	
Phenol	1	_	1 +	4,420.1	30 +	<30 +	<30 +	1,080 µg/L	357

	Known	Known		_		Inf	luent	Effluent Li	mitations
Parameter	or believed absent	or believed present	# of samples	Test method (#)	Detection limit (µg/l)	Daily maximum (µg/l)	Daily average (µg/l)	TBEL	WQBEL
C. Halogenated VOCs									
Carbon Tetrachloride	1		1 +	624.1 +	1.0 +	<1 +	<l +<="" td=""><td>4.4 μg/L</td><td>1.9 +</td></l>	4.4 μg/L	1.9 +
1,2 Dichlorobenzene	✓		1 +	624.1 +	5 +	<5 +	<5 +	600 μg/L	
1,3 Dichlorobenzene	✓		1 +	624.1 +	5 +	<5	<5 +	320 μg/L	
1,4 Dichlorobenzene	1		1 +	624.1 +	5 +		<5 +	5.0 μg/L	
Total dichlorobenzene	1		1 +	+	5 +	<5 +	<5 +	763 μg/L in NH	
1,1 Dichloroethane	✓		1 +	624.1			<1.5	70 μg/L	
1,2 Dichloroethane	*		1 +	624.1 +	1.5	<1.5	<1.5	5.0 μg/L	
1,1 Dichloroethylene	1		1 +	624.1	1 +		<1 +	$3.2~\mu g/L$	
Ethylene Dibromide	1		1 +	624.1	0.01	<0.01	<0.01	0.05 μg/L	
Methylene Chloride	✓		1 +	624.1	1 +	<1 +	<l +<="" td=""><td>4.6 μg/L</td><td></td></l>	4.6 μg/L	
1,1,1 Trichloroethane	✓		1 +	624.1 +	2 +	<2 +	<2 +	200 μg/L	
1,1,2 Trichloroethane	✓		1 +	624.1 +	1.5	<1.5	<1.5	5.0 μg/L	
Trichloroethylene	1		1 +	624.1	1 +	<1 +	<1 +	5.0 μg/L	
Tetrachloroethylene	1		1 +	624.1	1 +	<1 +	<l +<="" td=""><td>5.0 μg/L</td><td>3.9</td></l>	5.0 μg/L	3.9
cis-1,2 Dichloroethylene	✓		1 +	624.1	1 +	<l +<="" td=""><td><1 +</td><td>70 μg/L</td><td></td></l>	<1 +	70 μg/L	
Vinyl Chloride	1		1 +	624.1	1 +	<1 +	<l +<="" td=""><td>2.0 μg/L</td><td></td></l>	2.0 μg/L	
D. Non-Halogenated SVOCs	1								
Total Phthalates			1 +					190 μg/L	
Diethylhexyl phthalate	✓		1 +	625.1	2.2	<2.2 +	<2.2	101 μg/L	2.6
Total Group I PAHs	✓		1 +	625.1-SIN+	0.1	<0.1	<0.1	1.0 μg/L	
Benzo(a)anthracene	√		1 +	625.1-SIN+		<0.1 +	<0.1		0.0045
Benzo(a)pyrene	✓		1 +	625.1-SIN+	0.1	<0.1 +	<0.1		0.0045
Benzo(b)fluoranthene	✓		1 +	625.1-SIN+	0.1	<0.1	<0.1		0.0045
Benzo(k)fluoranthene	√		1 #	625.1-SII	0.1	<0.1	<0.1	As Total PAHs	0.0045
Chrysene	1		1 +	625.1-SII 🛊	0.1 +	<0.1 +	<0.1		0.0045 +
Dibenzo(a,h)anthracene	✓		1 #	625.1-SII	0.1 +	<0.1 +	<0.1 +		0.0045 +
Indeno(1,2,3-cd)pyrene	✓		1 +	625.1-SIN+	0.1		<0.1 +		0.0045

	Known	Known				Inf	Influent Effluent Limitations		
Parameter	or believed absent	or believed present	# of samples	Test method (#)	Detection limit (µg/l)	Daily maximum (µg/l)	Daily average (µg/l)	TBEL	WQBEL
Total Group II PAHs	· /		1 +	625.1-SIN	0.1	13.567	13.567	100 μg/L	
Naphthalene		1	1 +	625.1-SII	0.100 +	13.2 +	13.2	20 μg/L	
E. Halogenated SVOCs									
Total PCBs	· /		1 +	608.3	0.2	<0.2	<0.2	0.000064 μg/L	
Pentachlorophenol	1		1 #				<0.1 +	1.0 μg/L	
F. Fuels Parameters									
Total Petroleum Hydrocarbons	/		1 +		4.4 +		<4.4	5.0 mg/L	
Ethanol	✓		1 +				<20 +	Report mg/L	
Methyl-tert-Butyl Ether	/		1 +	624.1	10 +	<10 +	<10	70 μg/L	24 +
tert-Butyl Alcohol	✓		1 +	624.1 +	100 +	<100 +	<100	120 μg/L in MA 40 μg/L in NH	
tert-Amyl Methyl Ether	✓		1 +	624.1 +	20 +	<20 +	<20 +	90 μg/L in MA 140 μg/L in NH	
Other (i.e., pH, temperate	ıre, hardness,	salinity, LC	C ₅₀ , addition	ıal pollutan	ts present);	if so, specify:			
Phenanthrene	+	✓	1 +	625.1-SIN	0.100 +	0.267	0.267		
Fluoranthene	+	✓	1 +				0.1		
Hardness, Total	+	✓	1 +			159000 +	159000 +		
рН	+	✓	1 +	4500H+-I	NA +	7 +	7 +		
1,2,4-Trimethylbenzene	+	<u> </u>	54 +	978260C +	600 +	+	0 +		
1.3.5-Trimethylbenzene	+	✓	54 +	978260C +	600 +	0 +	0 +		
2-Butanone (Methyl Ethyl	+	✓	54 +	978260C +	31 +	0 +	0 +		
sec-Butvlbenzene	+	✓	54 +	978260C ±	600 +	0 ±	0 ±		
Bromodichloromethane	+	✓	54 +	978260C +	600 +	0 +	0 +		
Cvmene	#	✓	54 +	978260C +	600 +		0 +		
n-Butvlbenzene	+	/	54 +	978260C +	600 +	0 +	0 +		
n-Propylbenzene		✓	54 +	978260C +	600 +	0 +	0 +		
Acenaphthene	+	✓	55 +	978270D+	270 +	+	0 +		

Detected in		Known or	Vnown or				Influ	ent	Effluent L	imitations
Soil or Groundwater?	Parameter	believed absent	Known or believed present	# of samples	Test method (#)	Detection limit (ug/l)	Daily Maximum (ug/l)	Daily average (ug/l)	TBEL	WQBEL
SOIL	Carbon disulfide		V	54	978260C	600	0	0		
SOIL	Barium		V	55	976010C	444	0	0		
SOIL	Beryllium			55	976010C	536	0	0		
SOIL	Thallium			55	976010C	5530	0	0		
SOIL	Vanadium			55	976010C	444	0	0		
SOIL	Acenaphthylene			55	978270D	300	0	0		
SOIL	Anthracene		V	55	978270D	220	0	0		
SOIL	2-Methylnaphthalene		V	55	18270D-SI	140	0	0		
SOIL	Sulfur		$\sqrt{}$	55	1601D	140	0	0		
SOIL	TCLP Lead		V	8	1601D	500	0	0		

E. Treatment system information

1. Indicate the type(s) of treatment that will be applied to effluent prior to discharge: (check all that apply)	
□ Adsorption/Absorption □ Advanced Oxidation Processes □ Air Stripping ■ Granulated Activated Carbon ("GAC")/Liquid Phase Carbon Adsorption ■ Ion Exchange □ Precipitation/Coagulation/Flocculation ■ Separation/Filtration ■ Other; if so, specify: Applied as necessary to meet effluent discharge criteria.	
2. Provide a written description of all treatment system(s) or processes that will be applied to the effluent prior to discharge. Influent - Frac. tank - bag filters - additional treatment as needed to meet effluent discharge criteria. See attached Figure 3 for schematic drawing of treatment system	
Identify each major treatment component (check any that apply):	
■ Fractionation tanks□ Equalization tank □ Oil/water separator □ Mechanical filter □ Media filter	
☐ Chemical feed tank ☐ Air stripping unit ■ Bag filter ■ Other; if so, specify: GAC, Ion Exchange and other treatments as needed to meet discharge criteria	
Indicate if either of the following will occur (check any that apply): □ Chlorination □ De-chlorination	
3. Provide the design flow capacity in gallons per minute (gpm) of the most limiting component. Indicate the most limiting component: Is use of a flow meter feasible? (check one): ■ Yes □ No, if so, provide justification:	
Provide the proposed maximum effluent flow in gpm.	100
Provide the average effluent flow in gpm.	25
If Activity Category IV applies, indicate the estimated total volume of water that will be discharged:	NA
4. Has the operator attached a schematic of flow in accordance with the instructions in E, above? (check one): ■ Yes □ No	

F. Chemical and additive information

1. Indicate the type(s) of chemical or additive that will be applied to effluent prior to discharge or that may otherwise be present in the discharge(s): (check all that apply)
□ Algaecides/biocides □ Antifoams □ Coagulants □ Corrosion/scale inhibitors □ Disinfectants □ Flocculants □ Neutralizing agents □ Oxidants □ Oxygen □
scavengers □ pH conditioners □ Bioremedial agents, including microbes □ Chlorine or chemicals containing chlorine ■ Other; if so, specify:
pH conditioners may be added to the treatment system if necessary to meet effluent limits, in which case a Notice of Change (NOC) will be submitted to the EPA for review and approval.
2. Provide the following information for each chemical/additive, using attachments, if necessary:
a. Product name, chemical formula, and manufacturer of the chemical/additive; b. Purpose or use of the chemical/additive or remedial agent; c. Material Safety Data Sheet (MSDS) and Chemical Abstracts Service (CAS) Registry number for each chemical/additive; d. The frequency (hourly, daily, etc.), duration (hours, days), quantity (maximum and average), and method of application for the chemical/additive; e. Any material compatibility risks for storage and/or use including the control measures used to minimize such risks; and f. If available, the vendor's reported aquatic toxicity (NOAEL and/or LC50 in percent for aquatic organism(s)).
3. Has the operator attached an explanation which demonstrates that the addition of such chemicals/additives may be authorized under this general permit in accordance
with the instructions in F, above? (check one): \blacksquare Yes \square No; if no, has the operator attached data that demonstrates each of the 126 priority pollutants in CWA Section 307(a) and 40 CFR Part 423.15(j)(1) are non-detect in discharges with the addition of the proposed chemical/additive?
(check one): ☐ Yes ☐ No
G. Endangered Species Act eligibility determination
1. Indicate under which criterion the discharge(s) is eligible for coverage under this general permit:
■ FWS Criterion A: No endangered or threatened species or critical habitat are in proximity to the discharges or related activities or come in contact with the "action area".
□ FWS Criterion B : Formal or informal consultation with the FWS under section 7 of the ESA resulted in either a no jeopardy opinion (formal consultation) or a written concurrence by FWS on a finding that the discharges and related activities are "not likely to adversely affect" listed species or critical habitat
(informal consultation). Has the operator completed consultation with FWS? (check one): ☐ Yes ☐ No; if no, is consultation underway? (check one): ☐
Yes □ No
□ FWS Criterion C: Using the best scientific and commercial data available, the effect of the discharges and related activities on listed species and critical habitat have been evaluated. Based on those evaluations, a determination is made by EPA, or by the operator and affirmed by EPA, that the discharges and related activities will have "no effect" on any federally threatened or endangered listed species or designated critical habitat under the jurisdiction of the
FWS. This determination was made by: (check one) \square the operator \square EPA \square Other; if so, specify:

□ NMFS Criterion: A determination made by EPA is affirmed by the operator that the discharges and related activities will have "no effect" or are "not likely to adversely affect" any federally threatened or endangered listed species or critical habitat under the jurisdiction of NMFS and will not result in any take of listed species. Has the operator previously completed consultation with NMFS? (check one): □ Yes □ No
2. Has the operator attached supporting documentation of ESA eligibility in accordance with the instructions in Appendix I, and G, above? (check one): ■ Yes □ No
Does the supporting documentation include any written concurrence or finding provided by the Services? (check one): ☐ Yes ■ No; if yes, attach.
H. National Historic Preservation Act eligibility determination
1. Indicate under which criterion the discharge(s) is eligible for coverage under this general permit:
■ Criterion A: No historic properties are present. The discharges and discharge-related activities (e.g., BMPs) do not have the potential to cause effects on historic properties.
☐ Criterion B: Historic properties are present. Discharges and discharge related activities do not have the potential to cause effects on historic properties.
☐ Criterion C: Historic properties are present. The discharges and discharge-related activities have the potential to have an effect or will have an adverse effect on historic properties.
2. Has the operator attached supporting documentation of NHPA eligibility in accordance with the instructions in H, above? (check one): ■ Yes □ No
Does the supporting documentation include any written agreement with the State Historic Preservation Officer (SHPO), Tribal Historic Preservation Officer (TPHO), or
other tribal representative that outlines measures the operator will carry out to mitigate or prevent any adverse effects on historic properties? (check one): Yes No
I. Supplemental information
Describe any supplemental information being provided with the NOI. Include attachments if required or otherwise necessary.
Refer to attached Haley & Aldrich, Inc. letter
Has the operator attached data, including any laboratory case narrative and chain of custody used to support the application? (check one): ■ Yes □ No
Has the operator attached the certification requirement for the Best Management Practices Plan (BMPP)? (check one): ■ Yes □ No

J. Certification requirement

I certify under penalty of law that this document and all attachments were prepared under my direction or supervision in accordance with a system designed to assure that qualified personnel properly gathered and evaluated the information submitted. Based on my inquiry of the person or persons who manage the system, or those persons directly responsible for gathering the information, the information submitted is, to the best of my knowledge and belief, true, accurate, and complete. I have no personal knowledge that the information submitted is other than true, accurate, and complete. I am aware that there are significant penalties for submitting false information, including the possibility of fine and imprisonment for knowing violations. A BMPP meeting the requirements of this general permit will be implemented at the site. BMPP certification statement: Notification provided to the appropriate State, including a copy of this NOI, if required. Check one: Yes ■ No □ Notification provided to the municipality in which the discharge is located, including a copy of this NOI, if requested. Check one: Yes □ No ■ Notification provided to the owner of a private or municipal storm sewer system, if such system is used for site Check one: Yes ■ No □ NA □ discharges, including a copy of this NOI, if requested. Permission obtained from the owner of a private or municipal storm sewer system, if such system is used for site discharges. If yes, attach additional conditions. If no, attach explanation and timeframe for obtaining permission. Check one: Yes ■ No □ NA □ Notification provided to the owner/operator of the area associated with activities covered by an additional discharge permit(s). Additional discharge permit is (check one): □ RGP □ DGP □ CGP □ MSGP □ Individual NPDES permit Check one: Yes □ No □ NA ■ ☐ Other; if so, specify: Signature: 10/08/2020

Print Name and Title: Kyle Bouthillier, Construction Manager, United Civil

MAG910000 NHG910000

J. Certification requirement

	I certify under penalty of law that this document and all attachments were prepared under my direction or supervision in a that qualified personnel properly gathered and evaluated the information submitted. Based on my inquiry of the person or persons directly responsible for gathering the information, the information submitted is, to the best of my knowledge and be no personal knowledge that the information submitted is other than true, accurate, and complete. I am aware that there are information, including the possibility of fine and imprisonment for knowing violations.	persons who manage i elief, true, accurate, a	the system, or those nd complete. I have
	A BMPP meeting the requirements of this general permit will be imple BMPP certification statement:	emented at the si	te.
	Notification provided to the appropriate State, including a copy of this NOI, if required.	Check one: Yes ■	No □
	Notification provided to the municipality in which the discharge is located, including a copy of this NOI, if requested.	Check one: Yes □	No ■
	Notification provided to the owner of a private or municipal storm sewer system, if such system is used for site discharges, including a copy of this NOI, if requested. Permission obtained from the owner of a private or municipal storm sewer system, if such system is used for site		
	discharges. If yes, attach additional conditions. If no, attach explanation and timeframe for obtaining permission.	Check one: Yes	No U NA U
	Notification provided to the owner/operator of the area associated with activities covered by an additional discharge permit(s). Additional discharge permit is (check one): RGP DGP RGP RGP Individual NPDES permit Other; if so, specify:	Check one: Yes □	No □ NA ■
Sig	nature: Louis D. Berardins, Dat	· 10/11/	20
Pri	nt Name and Title: Louis DiBerardinis, Director EHS Office, MIT		

APPENDIX B

Discharge Calculations

StreamStats Report-MIT SCC at Charles River

Region ID: MA

Workspace ID: MA20200917145229107000

Clicked Point (Latitude, Longitude): 42.35548, -71.08895

Time: 2020-09-17 10:52:48 -0400

Basin Characteristics			
Parameter Code	Parameter Description	Value	Unit
DRNAREA	Area that drains to a point on a stream	307	square miles
BSLDEM250	Mean basin slope computed from 1:250K DEM	2.34	percent
DRFTPERSTR	Area of stratified drift per unit of stream length	0.25	square mile per mile
MAREGION	Region of Massachusetts 0 for Eastern 1 for Western	0	dimensionless

Low-Flow Statistics Parameters[Statewide Low Flow WRIR00 4135]						
Parameter Code	Parameter Name	Value	Units	Min Limit	Max Limit	
DRNAREA	Drainage Area	307	square miles	1.61	149	
BSLDEM250	Mean Basin Slope from 250K DEM	2.34	percent	0.32	24.6	
DRFTPERSTR	Stratified Drift per Stream Length	0.25	square mile per mile	0	1.29	
MAREGION	Massachusetts Region	0	dimensionless	0	1	

Low-Flow Statistics Disclaimers[Statewide Low Flow WRIR00 4135]

One or more of the parameters is outside the suggested range. Estimates were extrapolated with unknown errors

Low-Flow Statistics Flow Report[Statewide Low Flow WRIR00 4135]

Statistic	Value	Unit
7 Day 2 Year Low Flow	57.2	ft^3/s
7 Day 10 Year Low Flow	29.2	ft^3/s

Low-Flow Statistics Citations

Ries, K.G., III,2000, Methods for estimating low-flow statistics for Massachusetts streams: U.S. Geological Survey Water Resources Investigations Report 00-4135, 81 p. (http://pubs.usgs.gov/wri/wri004135/)

USGS Data Disclaimer: Unless otherwise stated, all data, metadata and related materials are considered to satisfy the quality standards relative to the purpose for which the data were collected. Although these data and associated metadata have been reviewed for accuracy and completeness and approved for release by the U.S. Geological Survey (USGS), no warranty expressed or implied is made regarding the display or utility of the data for other purposes, nor on all computer systems, nor shall the act of distribution constitute any such warranty.

USGS Software Disclaimer: This software has been approved for release by the U.S. Geological Survey (USGS). Although the software has been subjected to rigorous review, the USGS reserves the right to update the software as needed pursuant to further analysis and review. No warranty, expressed or implied, is made by the USGS or the U.S. Government as to the functionality of the software and related material nor shall the fact of release constitute any such warranty. Furthermore, the software is released on condition that neither the USGS nor the U.S. Government shall be held liable for any damages resulting from its authorized or unauthorized use.

USGS Product Names Disclaimer: Any use of trade, firm, or product names is for descriptive purposes only and does not imply endorsement by the U.S. Government.

Application Version: 4.4.0

HALEY & ALDRIC	CH, INC.			CALC	JLATIONS	ı	ILE NO.	13428	3	
CLIENT PROJECT SUBJECT	MASSACHUSETTS MIT SCHWARZMA DILUTION FACTOR	N COLLEGE	OF COMPUTING			[SHEET DATE COMPUTED BY CHECKED BY	1 17-Sep-20 KTM XR	of	1
PURPOSE:	Calculate Dilution	Factor (DF)	for project based on 7 E)ay 10 Y	ear (7Q10) Low Flow	values.				
APPROACH:	Calculate DF based MGD.	d on EPA fo	rmula $(Q_S + Q_D)/Q_D$, whe	ere Q _s is	7Q10 in million gallo	ns per d	ay (MGD) and ${\sf Q}_{\sf D}$ is d	ischarge flow i	า	
ASSUMPTIONS:	 7Q10 is 29.2 cfs A conversion of A discharge flow 	7.48 is used	d to convert cubic feet to	o gallon	s					
CALCULATIONS: 7Q10 Low Flow										
Q _S =	= 29.2 ft ³ sec	Х	7.48 gallons ft ³	Х	<u>86,400 sec</u> day	Х	<u>1 MG</u> 1,000,000 gallons			
Q _S =	18.87 MGD									
Discharge Flowr	ate (Q _D)									
Q _D =	100 gallons min	Х	<u>1,440 min</u> day	Х	<u>1 MG</u> 1,000,000 gallons					
Q _D =	= 0.144 MGD									
Dilution Factor (•									
DF =	<u>Q, + Qn</u> QD	= 18	<u>.87 MGD + 0.144 MGD</u> 0.144 MGD	=	132.04					
CONCLUSION	The dilution factor discharge flowrate		oject is calculated to be	132.04	based on the provided	d 7Q10 l	ow flow value and			

Scalise, Kimberly

From: Ruan, Xiaodan (DEP) <xiaodan.ruan@state.ma.us>

Sent: Friday, September 18, 2020 5:21 PM **To:** Munz, Keila; Vakalopoulos, Catherine (DEP)

Cc: Scalise, Kimberly

Subject: RE: NPDES RGP Application - 7Q10 + Dilution Factor - MIT SCC

CAUTION: External Email

Hi Keila,

I checked your calculation, and the 7Q10 of 29.2 cfs and the DF of 132.04 for the proposed project at MIT Stephen A. Schwarzman College of Computing in Cambridge, with a design flow of 100 gpm are correct.

Here is water quality information in assisting you in filling out the NOI:

Waterbody and ID: Charles River (MA72-38) within Charles River Watershed

Classification: B

Outstanding Resource Water?: no

State's most recent Integrated List is located here: https://www.epa.gov/sites/production/files/2020-01/documents/2016-ma-303d-list-report.pdf, search for "MA72-38" to see the causes of impairments.

TMDLs: There are two TMDLs (pathogen and nutrient) for this segment

Also, if this is not a *current* MCP site, then in addition to submitting the NOI to EPA, you need to apply with MassDEP and submit a \$500 fee (unless fee exempt, e.g., municipality). Please note that beginning on June 30, 2020, MassDEP has started using ePLACE, an online application submittal process where you will set up a user ID and be able to submit NOIs for various projects as well as pay by credit card. The instructions are located on this page: https://www.mass.gov/how-to/wm-15-npdes-general-permit-notice-of-intent. If this is your first time using ePLACE, technical assistant information is available on the ePLACE application webpage.

Please let me know if you have any questions.

Xiaodan

From: Munz, Keila <KMunz@haleyaldrich.com> Sent: Friday, September 18, 2020 12:57 PM

To: Vakalopoulos, Catherine (DEP) <catherine.vakalopoulos@mass.gov>

Cc: Ruan, Xiaodan (DEP) <xiaodan.ruan@mass.gov>; Scalise, Kimberly <KScalise@haleyaldrich.com>

Subject: FW: NPDES RGP Application - 7Q10 + Dilution Factor - MIT SCC

CAUTION: This email originated from a sender outside of the Commonwealth of Massachusetts mail system. Do not click on links or open attachments unless you recognize the sender and know the content is safe.

Hello Cathy,

Attached here are our StreamStats reports detailing the 7 Day 10 Year (7Q10) low flow value for our project (listed below) along with the dilution factor calculations for your review and confirmation. This project is down the street from another

site, MIT Wright Brothers Wind Tunnel, that we submitted a NPDES RGP Application for last year, and discharges to the same area. The proposed maximum effluent flow is 100 gpm, however we expect closer to 50 GPM for the typical daily flow. Can you please confirm these values are appropriate for our project?

Project:

MIT Stephen A. Schwarzman College of Computing Cambridge, MA Discharge will be to the Charles River near the Mass. Ave Bridge, via City of Cambridge stormwater outfall

Thanks!

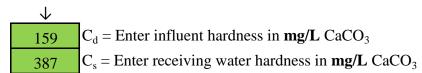
Keila T. MunzEnvironmental Scientist

Haley & Aldrich, Inc. 465 Medford Street | Suite 2200 Boston, MA 02129

T: (617) 886-7590

www.haleyaldrich.com

Enter number values in green boxes below


Enter values in the units specified

\downarrow	_
18.87	$Q_R = Enter upstream flow in MGD$
100	Q_P = Enter discharge flow in MGD
0	Downstream 7Q10

Enter a dilution factor, if other than zero

Enter values in the units specified

Enter receiving water concentrations in the units specified

\downarrow	_
7.9	pH in Standard Units
	Temperature in °C
0.121	Ammonia in mg/L
387	Hardness in mg/L CaCO ₃
0	Salinity in ppt
0	Antimony in μg/L
0	Arsenic in µg/L
0	Cadmium in µg/L
0	Chromium III in µg/L
0	Chromium VI in µg/L
0	Copper in µg/L
109	Iron in μg/L
0	Lead in µg/L
0	Mercury in μg/L
0	Nickel in μg/L
0	Selenium in µg/L
0	Silver in µg/L
0	Zinc in µg/L

Enter **influent** concentrations in the units specified

$\overline{}$	•
0	TRC in µg/L
0.397	Ammonia in mg/L
0	Antimony in μg/L
6.02	Arsenic in μg/L
0	Cadmium in µg/L
0	Chromium III in µg/L
0	Chromium VI in µg/L
0	Copper in µg/L
568	Iron in μg/L
0	Lead in µg/L
0	Mercury in μg/L
0	Nickel in µg/L
0	Selenium in µg/L
0	Silver in μg/L
0	Zinc in µg/L
0	Cyanide in µg/L
0	Phenol in μg/L
0	Carbon Tetrachloride in µg/L
0	Tetrachloroethylene in µg/L
0	Total Phthalates in µg/L
0	Diethylhexylphthalate in µg/L
0	Benzo(a)anthracene in µg/L
0	Benzo(a)pyrene in µg/L
0	Benzo(b)fluoranthene in µg/L
0	Benzo(k)fluoranthene in µg/L
0	Chrysene in µg/L
0	Dibenzo(a,h)anthracene in µg/L
0	Indeno(1,2,3-cd)pyrene in μg/L
0	Methyl-tert butyl ether in μg/L

Notes:

Freshwater: Q_R equal to the 7Q10; enter alternate Q_R if approved by the State; enter 0 if no dilution factor Saltwater (estuarine and marine): enter Q_R if approved by the State; enter 0 if no entry Discharge flow is equal to the design flow or 1 MGD, whichever is less Only if approved by State as the entry for Q_R ; leave 0 if no entry

Saltwater (estuarine and marine): only if approved by the State Leave 0 if no entry

Freshwater only

pH, temperature, and ammonia required for all discharges Hardness required for freshwater $Salinity\ required\ for\ saltwater\ (estuarine\ and\ marine)$ Metals required for all discharges if present and if dilution factor is > 1 Enter 0 if non-detect or testing not required

if >1 sample, enter maximum if >10 samples, may enter 95th percentile Enter 0 if non-detect or testing not required

A. Inorganics	TBEL applies if	bolded	WQBEL applies if bolded		
Ammonia	Report	mg/L			
Chloride	Report	μg/L			
Total Residual Chlorine	0.2	mg/L	13	μg/L	
Total Suspended Solids	30	_		μg/L	
Antimony Antimony		mg/L	 761		
•	206	μg/L		μg/L	
Arsenic	104	μg/L	12	μg/L	
Cadmium	10.2	μg/L	0.5280	μg/L	
Chromium III	323	$\mu g/L$	177.2	$\mu g/L$	
Chromium VI	323	$\mu g/L$	13.6	$\mu g/L$	
Copper	242	μg/L	19.6	μg/L	
Iron	5000	μg/L	1168	μg/L	
Lead	160	μg/L	8.86	μg/L	
Mercury	0.739	μg/L	1.08	μg/L	
Nickel	1450	μg/L μg/L	109.2	μg/L	
Selenium	235.8		5.9		
		μg/L		μg/L	
Silver	35.1	μg/L	14.2	μg/L	
Zinc	420	μg/L	251.0	μg/L	
Cyanide	178	mg/L	6.2	μg/L	
B. Non-Halogenated VOCs	400	7.			
Total BTEX	100	μg/L			
Benzene 1,4 Dioxane	5.0 200	μg/L μg/L			
Acetone	7970	μg/L μg/L			
Phenol	1,080	μg/L	357	μg/L	
C. Halogenated VOCs	·	. 0		, 0	
Carbon Tetrachloride	4.4	$\mu g/L$	1.9	$\mu g/L$	
1,2 Dichlorobenzene	600	μg/L			
1,3 Dichlorobenzene	320	μg/L			
1,4 Dichlorobenzene	5.0	μg/L			
Total dichlorobenzene		μg/L			
1,1 Dichloroethane	70	μg/L			
1,2 Dichloroethane	5.0	μg/L			
1,1 Dichloroethylene	3.2	μg/L			
Ethylene Dibromide	0.05	μg/L			
Methylene Chloride	4.6	μg/L			
1,1,1 Trichloroethane	200 5.0	μg/L			
1,1,2 Trichloroethane	5.0 5.0	μg/L			
Trichloroethylene Tetrachloroethylene	5.0 5.0	μg/L μg/L	3.9	ua/I	
1 cu acmorocury iche	3.0	μg/L	3.7	μg/L	

cis-1,2 Dichloroethylene	70	μg/L		
Vinyl Chloride	2.0	μg/L		
D. Non-Halogenated SVOCs				
Total Phthalates	190	μg/L		$\mu g/L$
Diethylhexyl phthalate	101	μg/L	2.6	$\mu g/L$
Total Group I Polycyclic				
Aromatic Hydrocarbons	1.0	$\mu g/L$		
Benzo(a)anthracene	1.0	$\mu g/L$	0.0045	$\mu g/L$
Benzo(a)pyrene	1.0	μg/L	0.0045	$\mu g/L$
Benzo(b)fluoranthene	1.0	μg/L	0.0045	$\mu g/L$
Benzo(k)fluoranthene	1.0	μg/L	0.0045	$\mu g/L$
Chrysene	1.0	μg/L	0.0045	$\mu g/L$
Dibenzo(a,h)anthracene	1.0	μg/L	0.0045	$\mu g/L$
Indeno(1,2,3-cd)pyrene	1.0	μg/L	0.0045	$\mu g/L$
Total Group II Polycyclic				
Aromatic Hydrocarbons	100	μg/L		
Naphthalene	20	μg/L		
E. Halogenated SVOCs				
Total Polychlorinated Biphenyls	0.000064	μg/L		
Pentachlorophenol	1.0	μg/L		
F. Fuels Parameters				
Total Petroleum Hydrocarbons	5.0	mg/L		
Ethanol	Report	mg/L		
Methyl-tert-Butyl Ether	70	μg/L	24	$\mu g/L$
tert-Butyl Alcohol	120	μg/L		
tert-Amyl Methyl Ether	90	μg/L		

Compliance Level applies if shown

 $\mu g/L$

--- $\mu g/L$

--- μg/L

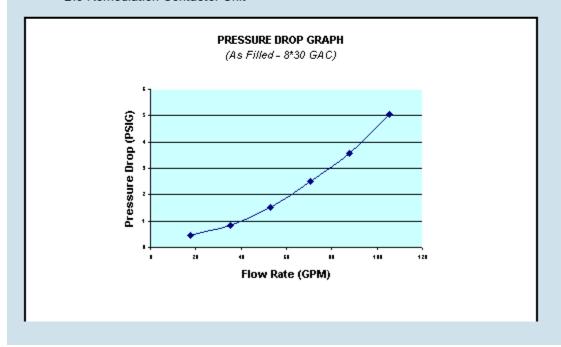
0.5 $\mu g/L$

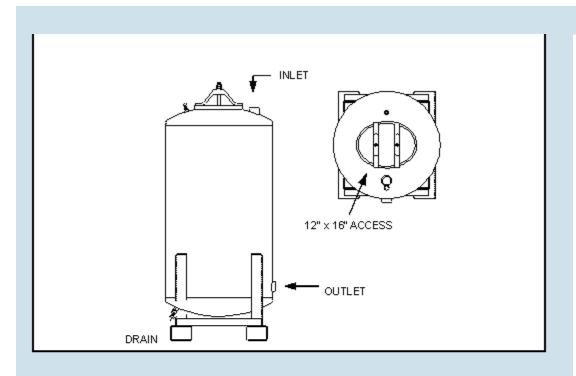
APPENDIX C

Chemicals and Additives

89 Crawford Street

Leominster, Massachusetts 01453


Tel: 774.450.7177 Fax: 888.835.0617 www.lrt-llc.net


HPAF SERIES FILTERS MODEL HPAF-2000

The HPAF-2000 filter is a media filter vessel designed to treat liquid streams. While the typical design application is a activated carbon adsorbtion unit, the filter can easily accommodate many medias. Some applications include:

- · Dissolved Organic Removal (Activated Carbon)
- Suspended Solids Removal (Sand Filter)
- · Dissolved Minerals (Softener Resin)
- Oil and Grease Removal (Organo-Clays)
- · Dissolved and Precipitated Metals Removal
- · Special Organics (Resin/Carbon Blend)
- · Catalytic Reactor (Chlorine and Peroxide Removal)
- . Bio-Remediation Contactor Unit

	HPAF-2000 S	PECIFICATIONS	
Overall Height	8'6"	Vessel/Internal Piping Materials	CS (SA-36) / SCH 40 PVC
Diameter	48"	Internal Coating	Polyamide Epoxy Resin
Inlet / Outlet (FNPT)	3"	External Coating	Epoxy Mastic
Drain / Vent (FNPT)	3/4" / 1/2"	Maximum Pressure / Temp	75 PSIG / 140° F
GAC Fill (lbs)	2,000	Cross Sectional Bed Area	12.5 FT ²
Shipping / Operational Weight (lbs)	3,020/6,775	Bed Depth/Volume	5.5 FT / 68.7 FT ³

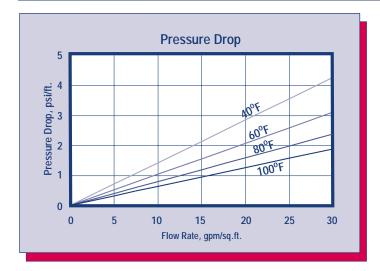
RESINTECH CGS is a high purity, light colored, high capacity, gel type sulfonated polystyrene cation resin supplied in the sodium form as moist, tough uniform spherical beads. *ResinTech CGS* specifically is intended for use in all water softening applications, including beverages, potable water and water used for food processing. It's high capacity and high DVB content provide long life and good chlorine resistance in all potable water applications. (It is also available as a dark colored product *ResinTech CGS-BL* with identical properties.)

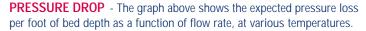
FEATURES & BENEFITS

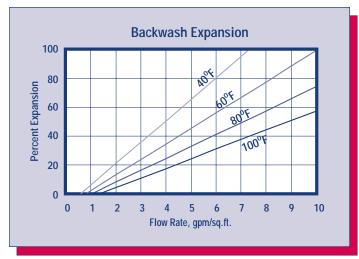
- COMPLIES WITH FDA REGULATIONS FOR POTABLE WATER APPLICATIONS
 Conforms to paragraph 21CFR173.25 of the Food Additives Regulations of the F.D.A.*
- EXCELLENT REGENERATION EFFICIENCY
 Virtually the same operating capacity as premium grade ResinTech CG8-BL
- NSF/ANSI-61 VALIDATED

UNIFORM PARTICLE SIZE

16 to plus 50 mesh range; gives a LOWER PRESSURE DROP while maintaining SUPERIOR KINETICS.


SUPERIOR PHYSICAL STABILITY


90% plus sphericity and high crush strengths together with a very uniform particle size provide greater resistance to bead breakage while maintaining low pressure drops.


LOW COLOR THROW

*For potable water applications, the resin must be properly pre-treated, usually by multiple exhaustion and regeneration cycles, to insure compliance with extractable levels.

HYDRAULIC PROPERTIES

BACKWASH - After each cycle the resin bed should be backwashed at a rate that expands the bed 50 to 75 percent. This will remove any foreign matter and reclassify the bed. The graph above shows the expansion characteristics of *RESINTECH CGS* in the sodium form.

RESINTECH® CGS

PHYSICAL PROPERTIES

Polymer Structure Styrene Crosslinked with DVB Functional Group R-(SO₃)⁻M⁺

Ionic Form, as shipped Sodium

Physical Form Tough, Spherical Beads

Screen Size Distribution
+16 mesh (U.S. Std)
-50 mesh (U.S. Std)

PH Range
90+ percent

16 to 50

< 5 percent

< 1 percent

90+ percent

Sphericity 90+ percent
Uniformity Coefficient Approx. 1.6
Water Retention

Sodium Form 48 to 54 percent Solubility Insoluble

Shipping Weight

Sodium Form 48 lbs./cu.ft. Total Capacity

Sodium Form 1.8 meg/ml min

SUGGESTED OPERATING CONDITIONS

Maximum Temperature
Sodium Form 250⁰ F

Minimum Bed Depth 24 inches
Backwash Rate 50 to 75% Bed Expansion

Regenerant (NaCl or KCl)

Service Flow Rate

Concentration 10 to 15 percent 0.5 to 1.5 gpm/cu.ft. Flow Rate Contact Time > 20 minutes Level 4 to 15 pounds/cu.ft. Displacement Rate Same as Regen Flow Rate Volume 10 to 15 gallons/cu.ft. Same as Service Flow Rate Fast Rinse Rate 35 to 60 gallons/cu.ft. Volume

2 to 10 gpm/cu.ft.

OPERATING CAPACITY

Sodium Chloride (NaCl) Regeneration

The sodium cycle operating capacity of $RESINTECH\ CGS$ for hardness removal at various regeneration levels with an influent calcium/magnesium ratio of 2/1 and a hardness level of 500 ppm, as $CaCO_3$, is shown in the following table:

Pounds NaOH/cu.ft.	Capacity Kilograins/cu.ft.
5	20.0
7.5	25.4
10	29.0
15	33.0

Potassium Chloride (KCI) Regeneration

The potassium cycle operating capacity of $RESINTECH\ CGS$ for hardness removal at various regeneration levels with an influent calcium/magnesium ratio of 2/1 and a hardness level of 500 ppm, as $CaCO_3$, is shown in the following table:

Pounds NaOH/cu.ft.	Capacity Kilograins/cu.ft.
5	16.6
7.5	21.8
10	26.6
15	31.2

APPLICATIONS

Softening

RESINTECH CGS is ideally suited for industrial, commercial, or residential softening applications where free chlorine is not present because of its high capacity, uniform particle size and good physical stability.

*CAUTION:DO NOT MIX ION EXCHANGE RESIN WITH STRONG OXIDIZING AGENTS. Nitric acid and other strong oxidizing agents can cause explosive reactions when mixed with organic materials, such as ion exchange resins.

Material Safety Data Sheets (MSDS) are available for all ResinTech Inc.products. To obtain a copy. contact your local ResinTech sales representative or our corporate headquarters. They contain important health and safety information. That information may be needed to protect your employees and customers from any known health and safety hazards associated with our products. We recommend that you secure and study the pertinent MSDS for our products and any other products being used These suggestions and data are based on information we believe to be reliable. They are offered in good faith. However we do not make any guarantee or warranty. We caution against using these products in an unsafe manner or in violation of any patents; further we assume no liability for the consequences of any such actions.

RESINTECH SBG1 is a high capacity, shock resistant, gelular, Type 1, strongly basic anion exchange resin supplied in the chloride or hydroxide form as moist, tough, uniform, spherical beads. *RESINTECH SBG1* is intended for use in all types of deionization systems and chemical processing applications. It is similar to *RESINTECH SBG1P* but has a higher volumetric capacity and exhibits lower TOC leach rates. This makes it the better performer in single use applications such as in cartridge deionization and when high levels of regeneration are used such as in polishing mixed beds. On the other hand, *RESINTECH SBG1P* is more resistant to organic fouling and gives higher operating capacities at low regeneration levels such as those used in make up demineralizers.

FEATURES & BENEFITS

COMPLIES WITH FDA REGULATIONS FOR POTABLE WATER APPLICATIONS.

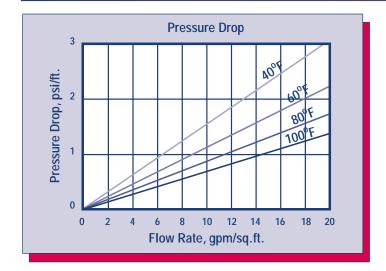
Conforms to paragraph 21CFR173.125 of the Food Additives Regulations of the F.D.A.*

HIGH TOTAL CAPACITY

Provides longer run lengths in single use applications or where high levels of regeneration are used such as in mixed bed polishers, cartridge demineralizers.

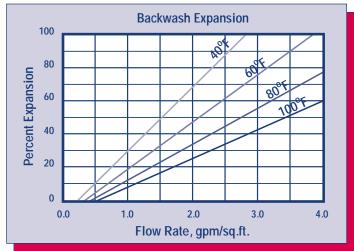
UNIFORM PARTICLE SIZE

16 to plus 50 mesh range; gives a LOWER PRESSURE DROP while maintaining SUPERIOR KINETICS.


SUPERIOR PHYSICAL STABILITY

LOWER TOC LEACH RATE

Makes it ideal for polishing mixed beds in wafer washing and other high purity water polishing applications.


*For potable water applications, the resin must be properly pre-treated, usually by multiple exhaustion and regeneration cycles, to ensure compliance with extractable levels.

HYDRAULIC PROPERTIES

The graph above shows the expected pressure loss per foot of bed depth as a function of flow rate, at various temperatures.

BACKWASH

After each cycle the resin bed should be backwashed at a rate that expands the bed 50 to 75 percent. This will remove any foreign matter and reclassify the bed. The graph above shows the expansion characteristics of *ResinTech SBG1* in the sodium form.

RESINTECH® SBG1

PHYSICAL PROPERTIES

 $\begin{array}{lll} \mbox{Polymer Structure} & \mbox{Styrene Crosslinked with DVB} \\ \mbox{Functional Group} & \mbox{R-N-(CH}_3)_3^+ \mbox{Cl}^- \\ \mbox{Ionic Form, as shipped} & \mbox{Chloride or Hydroxide} \\ \mbox{Physical Form} & \mbox{Tough, Spherical Beads} \end{array}$

Screen Size Distribution 16 to 50
+16 mesh (U.S. Std) < 5 percent
-50 mesh (U.S. Std) < 1 percent

PH Range 0 to 14

Sphericity > 93 percent

Uniformity Coefficient Approx. 1.6

Water Retention

Chloride Form 43 to 50 percent Hydroxide Form Approx. 53 to 60 percent

Solubility Insoluble

Approximate Shipping Weight

CI Form 44 lbs/cu.ft.

OH Form 41 lbs/cu.ft.

Swelling CI- to OH- 18 to 25 percent

Total Capacity

CI Form 1.45 meq/ml min OH Form 1.15 meq/ml min

SUGGESTED OPERATING CONDITIONS

Maximum Continuous Temperature

Hydroxide Form 140° F alt Form 170° F Minimum Bed Depth 24 inches

Backwash Rate 50 to 75 percent Bed Expansion

Regenerant Concentration* 2 to 6 percent
Regenerant Flow Rate 0.25 to 1.0 gpm/cu.ft.
Regenerant Contact Time At least 40 Minutes
Regenerant Level 4 to 10 pounds/cu.ft.

Displacement Rinse Rate Same as Regenerant Flow Rate

Displacement Rinse Volume 10 to 15 gals/cu.ft.
Fast Rinse Rate Same as Service Flow Rate

Fast Rinse Volume 35 to 60 gals/cu.ft.

rast killse volume 35

Service Flow Rates

Polishing Mixed Beds 3 to 15 gpm/cu.ft. Non-Polishing Apps. 2 to 4 gpm/cu.ft.

OPERATING CAPACITY

The operating capacity of *RESINTECH SBG1* for a variety of acids at various regeneration levels when treating an influent with a concentration 500 ppm, expressed as $CaCO_3$ is shown in the following table:

Pounds	Cap	acity Kilogra	ms per cubic	foot
NaOH/ft ³	HCI	H ₂ SO ₄	H_2SiO_3	H_2CO_3
4	11.3	14.0	14.7	18.6
6	12.8	16.3	17.3	19.8
8	14.3	13.3	19.5	21.6
10	15.5	20.0	22.2	22.2

APPLICATIONS

DEMINERALIZATION – RESINTECH SBG1 is highly recommended for use in mixed bed demineralizers, wherever complete ion removal; superior physical and osmotic stability and low TOC leachables are required such as in wafer fabrication and other ultrapure applications.

RESINTECH SBG1 has high total capacity and low swelling on regeneration and provides maximum operating capacity in cartridge deionization applications. It is ideal for single use applications such as precious metal recovery, radwaste disposal and purification of toxic waste streams.

Highly crosslinked Type 1, styrenic anion exchangers have greater thermal and oxidation resistance than other types of strong base resins. They can be operated and regenerated at higher temperatures. The combination of lower porosity, high total capacity and Type 1 functionality make *RESINTECH SBG1* the resin of choice when water temperatures exceed 85°DF and where the combination of carbon dioxide, borate and silica exceed 40% of the total anions.

RESINTECH SBG1P and RESINTECH SBG1 are quite similar; the difference between them is the degree of porosity. RESINTECH SBG1P has greater porosity that gives it faster kinetics, and greater ability to reversibly sorb slow moving ions such as Naturally occurring Organic Matter (NOM). At lower regeneration levels and where chlorides make up a substantial portion of the anion load, or where the removal and elution of naturally occurring organics is of concern RESINTECH SBG1P, SBACR or SBG2 should be considered. At the higher regeneration levels used in mixed bed polishers RESINTECH SBG1 provides higher capacity, and the lowest possible TOC leach rates.

*CAUTION:DO NOT MIX ION EXCHANGE RESIN WITH STRONG OXIDIZING AGENTS. Nitric acid and other strong oxidizing agents can cause explosive reactions when mixed with organic materials, such as ion exchange resins.

Material Safety Data Sheets (MSDS) are available for all ResinTech Inc.products. To obtain a copy, contact your local ResinTech sales representative or our corporate headquarters. They contain important health and safety information. That information may be needed to protect your employees and customers from any known health and safety hazards associated with our products. We recommend that you secure and study the pertinent MSDS for our products and any other products being used These suggestions and data are based on information we believe to be reliable. They are offered in good faith. However we do not make any guarantee or warranty. We caution against using these products in an unsafe manner or in violation of any patents; further we assume no liability for the consequences of any such actions.

Safety Data Sheet

Product Names: SBG1, SBG1-HP, SBG1-UPS, SBG1-C, SBG1-F, SBMP1, SBMP1-UPS, GP-SBA, SBG1P, SBG1P-UPS

(Type I Strong Base Anion Exchange Resin Chloride Form)
Effective date 31 March 2015

Section 1: Identification

10	Product Names	Design Teach CDC1	CDC1 UD C	SBG1-UPS, SBG1-C.
1a	Floudet Names	Resilitecti SBG I.	300 I-HF, 3	30G1-UP3, 30G1-C,

SBG1-F, SBMP1, SBMP1-UPS, GP-SBA, SBG1P,

SBG1P-UPS

1b Common Name Type I Strong base anion resin in the chloride form.

1c Intended use All general purpose anion exchanges for general use

including salt form and demineralization.

1d Manufacturer ResinTech, Inc.

Address 160 Cooper Road,

West Berlin, NJ 08091 USA

Phone 856-768-9600

Email ixresin@resintech.com

Section 2: Hazard Identification

2a Hazard classification Not hazardous or dangerous

Product Hazard Rating	Scale
Health = 0	0 = Negligible
Fire = 1	1 = Slight
Reactivity = 0	2 = Moderate
Special – N/A	3 = High
	4 = Extreme

2b Product description White, yellow, or orange colored solid beads

approximately 0.6 mm diameter with little or no odor.

2c Precautions for use Safety glasses and gloves recommended.

Slipping hazard if spilled.

2c Potential health effects Will cause eye irritation.

Will cause skin skin irritation.

Ingestion is not likely to pose a health risk.

2d Environmental effects This product may alter the pH of any water that

contacts it.

Section 2A: Hazard classification UN OSHA globally harmonized system

WARNING

(contains ion exchange resin)

H320: Causes eye irritation

Precautionary Statements

P264: Wash hands thoroughly after handling.

P280: Wear protective gloves/protective clothing/eye protection/face protection

P305+351+338: IF IN EYES: Rinse cautiously with water for several minutes. Remove contact

lenses if present and easy to do – continue rinsing.

P333+313: If skin irritation or a rash occurs: Get medical advice/attention.

P337+313: If eye irritation persists get medical advice/attention.

P403+233: Store in a well-ventilated place. Keep container tightly closed.

P411: Store at temperatures not exceeding 50 °C/ 122 °F.

Please refer to the safety data sheet for additional information regarding this product

ResinTech, Inc. 160 Cooper Road West Berlin, NJ 08091-9234 856 768-9600 Ixresin@resintech.com

Section 3: Composition/Information on Ingredients	Section 3: Com	position/ li	nformation	on Ingredients
---	-----------------------	--------------	------------	----------------

3a Chemical name Trimethylamine functionalized chloromethylated copolymer of polystyrene in the chloride form.

3b Ingredients

> Trimethylamine functionalized Chloromethlyated copolymer of Styrene and divinylbenzene in the

Chloride form

CAS# 60177-39-1 (35 - 65%)

Water CAS# 7732-18-5 (35 – 65%)

Section 4: First Aid Measures

4a	Inhalation	No adverse effects expected- normal use of p	product
T a	IIIIalalion	The adverse effects expected-fibrillar use of p	,

does not produce odors or vapors.

4b Skin Wash with soap and water- seek medical attention if a

rash develops.

Wash immediately with water-seek attention if Eye contact 4c

discomfort continues.

Ingestion No adverse effects expected for small amounts, larger 4d

amounts can cause stomach irritation. Seek medical

attention if discomfort occurs.

Section 5: Fire Fighting Measures

5a Flammability NFPA Fire ra	ıtina = 1
------------------------------	-----------

Extinguishing media Water, CO2, foam, dry powder. 5b

Fire fighting Procedures Follow general fire fighting procedures indicated in the 5c

work place. Seek medical attention if discomfort

continues.

Protective Equipment MSHA/NIOSH approved self-contained breathing 5d

gear, full protective clothing.

Combustion Products Carbon oxides and other toxic gasses and vapors. 5e

5f Unusual Hazards Product is not combustible until moisture is removed.

Resin begins to burn at approximately 230° C. Auto

ignition can occur above 500° C.

Section 6: Accidental Release Measures Personal Precautions Keep people away, spilled resin can be a slipping 6a hazard, wear gloves and safety glasses to minimize skin or eye contact. **Incompatible Chemicals** Strong oxidants can create risk of combustion 6b products similar to burning, exposure to strong bases can cause a rapid temperature increase. 6c **Environmental Precautions** Keep out of public sewers and waterways. Use plastic or paper containers, unlined metal **Containment Materials** 6d containers not recommended. Methods of Clean-up Sweep up material and transfer to containers. 6e

Section 7: Handling and Storage

7a	Handling	Avoid prolonged skin contact. Keep resin moist and avoid allowing resin to completely dry.
7b	Storage	Store in a cool dry place (0° to 45° C) in the original shipping container. This product is thermally sensitive and will have reduced shelf life if subjected to extended periods of time at temperatures exceeding 50° C. Although freezing does not usually damage ion exchange resins, avoid repeated freeze thaw cycles.
7c	TSCA considerations	Ion exchange resins should be listed on the TSCA Inventory in compliance with State and Federal Regulations.

Section 8: Exposure Controls/Personal Protection

8a	OSHA exposure limits	None noted.
8b	Engineering Controls	Provide adequate ventilation.
8c	Personal Protection Measures Eye Protection Respiratory Protection Protective Gloves	Safety glasses or goggles. Not required for normal use. Not required for limited exposure but recommended for extended contact.

Section 9: Physical and Chemical Properties

Appearance Amber, yellow, or red beads approx. 0.6 mm

diameter.

Flammability or explosive limits Flammable above 500° C

Odor Little or no odor

Physical State Solid

Vapor pressure Not available
Odor threshold Not available
Vapor density Not available

pH Near neutral (6 to 8 typical)

Relative density Approx 710 grams/Liter

Melting point/freezing point Does not melt, freezes at approx. 0 C

Solubility Insoluble in water and most solvents

Boiling point Does not boil
Flash point Approx 500° C

Evaporation rate Does not evaporate

Partition Coefficient (n-octonol/water)

Auto-ignition temperature

Approx 500° C

Decomposition temperature

Above 230° C

Viscosity

Not applicable

Section 10: Stability and Reactivity

10a Stability Stable under normal conditions.

10b Conditions to Avoid Heat, exposure to strong oxidants.

10c Hazardous by-products Trimethylamine, charred polystyrene, aromatic acids

and hydrocarbons, organic amines, nitrogen oxides,

carbon oxides, chlorinated hydrocarbons,

10d Incompatible materials Strong oxidizing agents, e.g. nitric acid

(such as HNO₃)

10e Hazardous Polymerization Does not occur

11a Likely Routes of Exposure Oral, skin or eye contact.

11b Effects of exposure

Delayed None known.
Immediate (acute) None known.
Chronic None known.

11c Toxicity Measures

Skin Adsorption
Unlikely, some transfer of acidity is possible.
Ingestion
Oral toxicity believed to be low but no LD50 has

been established.

Inhalation Unknown, vapors are very unlikely due to physical

properties (insoluble solid).

11d Toxicity Symptoms

Skin Adsorption Mild Rash.

Ingestion Indigestion or general malaise.

Inhalation Unknown.

11e Carcinogenicity None known

Section 12: Ecological information

12a Eco toxicity Not acutely harmful to plant or animal life.

12b Mobility Insoluble, acidity or causticity may escape if wet.

12c Biodegradability Not biodegradable.

12d Bioaccumulation Insignificant.

12e Other adverse effects Not Harmful to the environment.

Section 13: Disposal Considerations

13a General considerations Material is non-hazardous. However, unused material

can cause a pH change when wetted.

13b Disposal Containers Most plastic and paper containers are suitable. Avoid

use of unlined metal containers.

13c Disposal methods No specific method necessary.

13d Sewage Disposal Not recommended.

13e Precautions for incineration May release trimethylamine and toxic vapors when

burned.

13f Precautions for landfills Resins used to remove hazardous materials may then

become hazardous mixtures

Section 14: Transportation Information

14a Transportation Class Not classified as a dangerous good for transport by

land, sea, or air.

14b TDG Not regulated.

14c IATA Not regulated.

14d DOT (49 CFR 172.101) Not Regulated.

Section 15: Regulatory Information

15a CERCLA Not regulated

15b SARA Title III Not regulated

15c Clean Air act Not regulated

15d Clean Water Act Not regulated

15e TSCA Not regulated

15f Canadian Regulations

WHMIS Not a controlled product

TDG Not regulated

15g Mexican Regulations Not Dangerous

Section 16: Other Information

This information is based on our present knowledge. However, this shall not constitute a guarantee for any specific product features. Regulatory requirements are subject to change and may differ from one location to another. It is the buyer's responsibility to ensure that their activities comply with federal, state, and local laws.

16a Date of Revision 31 March 2015

Lockwood Remediation Technologies, LLC

One Controller for the Broadest Range of Sensors.

Choose from 30 digital and analog sensor families for up to 17 di:erent parameters.

Maximum Versatility

The sc200 controller allows the use of digital and analog sensors, either alone or in combination, to provide compatibility with Hach's broad range of sensors, eliminating the need for dedicated, parameter-specific controllers.

Ease of Use and Confidence in Results

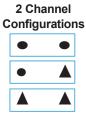
Large, high-resolution, transreflective display provides optimal viewing resolution in any lighting condition. Guided calibration procedures in 19 languages minimize complexity and reduce operator error. Password-protected SD card reader o:ers a simple solution for data download and transfer. Visual warning system provides critical alerts.

Wide Variety of Communication Options

Utilize two to five analog outputs to transmit primary and secondary values for each sensor, or integrate Hach sensors and analyzers into MODBUS RS232/RS485, Profibus® DP, and HART networks.

Password protected SD card reader offers a simple solution for data download and transfer, and sc200 and digital sensor configuration file duplication and backup.

Controller Comparison


	Previous I	Models		
Features	sc100™ Controller	GLI53 Controller	sc200™ Controller	Benefits
Display	64 x 128 pixels 33 x 66 mm (1.3 x 2.6 in.)	64 x 128 pixels 33 x 66 mm (1.3 x 2.6 in.)	160 x 240 pixels 48 x 68 mm (1.89 x 2.67 in.) Transreflective	 Improved user interface— 50% bigger Easier to read in daylight and sunlight
Data Management	irDA Port/PDA Service Cable	N/A	SD Card Service Cable	Simplifies data transfer Standardized accessories/ max compatibility
Sensor Inputs	2 Max Direct Digital Analog via External Gateway	2 Max Analog Depending on Parameter	2 Max Digital and/or Analog with Sensor Card	Simplifies analog sensor connectionsWorks with analog and digital sensors
Analog Inputs	N/A	N/A	1 Analog Input Signal Analog 4-20mA Card	 Enables non-sc analyzer monitoring Accepts mA signals from other analyzers for local display Consolidates analog mA signals to a digital output
4-20 mA Outputs	2 Standard	2 Standard	2 Standard Optional 3 Additional	Total of five (5) 4-20 mA outputs allows multiple mA outputs per sensor input
Digital Communication	MODBUS RS232/RS485 Profibus DP V1.0	HART	MODBUS RS232/RS485 Profibus DP V1.0 HART7.2	Unprecedented combination of sensor breadth and digital communication options

sc200™ Universal Controller

Choose from Hach's Broad Range of Digital and Analog Sensors							
Parameter	Sensor	Digital or Analog					
Ammonia	AMTAX™ sc, NH4D sc, AISE sc, AN-ISE sc	•					
Chlorine	CLF10 sc, CLT10 sc, 9184 sc	•					
Chlorine Dioxide	9185 sc	•					
Conductivity	GLI 3400 Contacting, GLI 3700 Inductive	A					
Dissolved Oxygen	LDO® Model 2, 5740 sc	•					
Dissolved Oxygen	5500	A					
Flow	U53, F53 Sensors	A					
Nitrate	NITRATAX™ sc, NO3D sc, NISE sc, AN-ISE sc	•					
Oil in Water	FP360 sc	•					
Organics	UVAS sc	•					
Ozone	9187 sc	•					
pH/ORP	pHD	•					
pH/ORP	pHD, pH Combination, LCP						
Phosphate	PHOSPHAX™ sc	•					
Sludge Level	SONATAX™ sc	•					
Suspended Solids	SOLITAX™ sc, TSS sc	•					
Turbidity	1720E, FT660 sc, SS7 sc, ULTRATURB sc, SOLITAX sc, TSS sc	•					
Ultra Pure Conductivity	8310, 8311, 8312, 8315, 8316, 8317 Contacting	A					
Ultra Pure pH/ORP	8362						

● = Digital ▲ = Analog

Connect up to two of any of the sensors listed above, in any combination, to meet your application needs. The diagrams below demonstrate the potential configurations. Operation of analog sensors requires the controller to be equipped with the appropriate sensor module. Contact Hach Technical Support for help with selecting the appropriate module.

1 Channel
Configurations

Specifications*

Dimensions (H x W x

D)

(144 mm x 144 mm x 181 mm)

Display

backlighting, transreflective

Display Size

1.9 x 2.7 in. (48 mm x 68 mm)

Display Resolution Weight

Power Requirements

(Voltage)

Power Requirements

(Hz)

Operating **Temperature Range**

Analog Outputs

Analog Output

Functional Mode

Security Levels Mounting **Configurations**

Enclosure Rating Conduit Openings Relay: Operational

Mode

5.7 in x 5.7 in x 7.1 in

Graphic dot matrix LCD with LED

240 x 160 pixels

3.75 lbs. (1.70 kg)

100 - 240 V AC, 24 V DC

50/60 Hz

-20 to 60 °C, 0 to 95% RH non-condensing

Two (Five with optional expansion

module) to isolated current outputs, max 550 Ω , Accuracy: ± 0.1% of FS (20mA) at 25 °C, \pm 0.5% of FS over -20 °C to 60 °C range

Operational Mode: measurement

or calculated value

Linear, Logarithmic, Bi-linear, PID

2 password-protected levels Wall, pole, and panel mounting

NEMA 4X/IP66 1/2 in NPT Conduit

Primaryorsecondary

measurement, calculated value (dual channel only) or timer

Relay Functions

Communication

Scheduler (Timer), Alarm, Feeder Control, Event Control, Pulse Width Modulation, Frequency Control,

and Warning

Four electromechanical SPDT Relays

(Form C) contacts, 1200 W, 5 A

MODBUS RS232/RS485, PROFIBUS DPV1, or HART 7.2

optional

Memory Backup

Electrical Certifications Flash memory

EMC

CE compliant for conducted and radiated emissions:

- CISPR 11 (Class A limits)

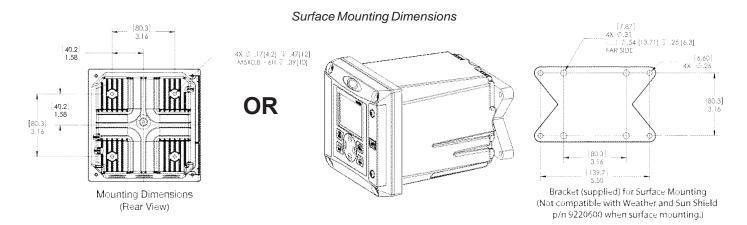
- EMC Immunity EN 61326-1 (Industrial limits)

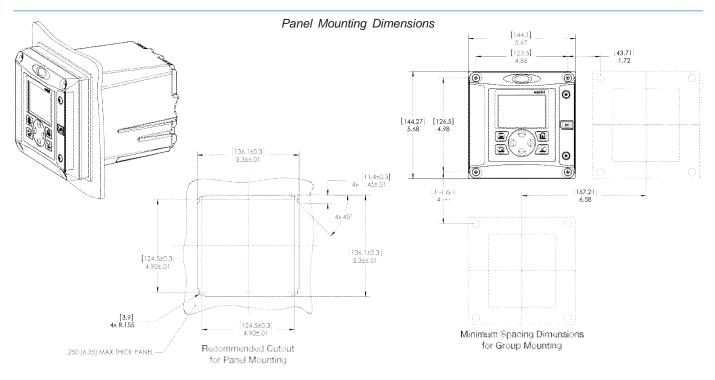
Safety

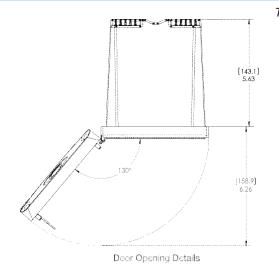
cETLus safety mark for:

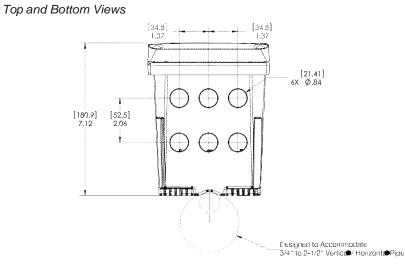
- General Locations per ANSI/UL 61010-1 & CAN/CSA C22.2. No. 61010-1

- Hazardous Location Class I, Division 2, Groups A,B,C & D (Zone 2, Group IIC) per FM 3600 / FM 3611 & CSA C22.2 No. 213 M1987 with approved options and appropriately rated Class I, Division 2 or Zone 2 sensors


cULus safety mark


- General Locations per UL 61010-1 & CAN/CSA C22.2. No. 61010-1


*Subject to change without notice.


sc200™ Universal Controller

Dimensions

DW

PW

Lockwood Remediation Technologies, LLC

3/4-inch Combination pH and ORP Sensor Kits

Use the Digital Gateway to make any Hach analog combination pH or ORP sensor compatible with the Hach sc1000 Controller.

Digital combination pH and ORP sensors are available in convertible, insertion, and sanitary mounting styles. Choose from rugged dome electrodes or "easy-to-clean" flat glass electrodes.

Features and Benefits

Low Price—High Performance

These combination sensors are designed for specialty applications for immersion or in-line mounting. The reference cell features a double-junction design for extended service life, and a built-in solution ground. The body is molded from chemically-resistant Ryton® or PVDF, and the reference junction is coaxial porous Teflon®. All sensors are rated 0 to 105°C up to 100 psig, and have integral 4.5 m (15 ft.) cables with tinned leads. The PC-series (for pH) and RC-series (for ORP) combination sensors are ideal for measuring mild and aggressive media.

Special Electrode Configurations

Sensors with rugged dome electrodes, "easy-to-clean" flat glass electrodes, and even HF (hydrofluoric acid) resistant glass electrodes are available for a wide variety of process solutions.

Temperature Compensation Element Option

The PC-series combination pH sensors are available with or without a Pt 1000 ohm RTD temperature element. The RC-series combination ORP sensors are supplied without a temperature element.

Versatile Mounting Styles

Sensors are available in three mounting styles—convertible, insertion, and sanitary. Please turn to page 3 for more information.

Full-Featured "Plug and Play" Hach sc Digital Controllers

There are no complicated wiring or set up procedures with any Hach sc controller. Just plug in any combination of Hach digital sensors and it's ready to use—it's "plug and play."

One or multiple sensors—The sc controller family allows you to receive data from up to eight Hach digital sensors in any combination using a single controller.

Communications—Multiple alarm/control schemes are available using the relays and PID control outputs. Available communications include analog 4-20 mA, digital MODBUS[®] (RS485 and RS232) or Profibus DP protocols. (Other digital protocols are available. Contact your Hach representative for details.)

Data logger—A built-in data logger collects measurement data, calibration, verification points, and alarm history.

 $DW = drinking \ water \ WW = wastewater \ municipal \ PW = pure \ water / power$ $IW = industrial \ water \ E = environmental \ C = collections \ FB = food \ and \ beverage$

Specifications*

Most pH applications fall in the 2.5-12.5 pH range. General purpose pH glass electrodes perform well in this range. Some industrial applications require accurate measurements and control at pH values below 2 or above 12. Consult Hach Technical Support for details on these applications.

Combination pH Sensors

Measuring Range

0 to 14 pH

Accuracy

Less than 0.1 pH under reference conditions

Temperature Range

0 to 105°C (32 to 221°F)

Flow Rate

0 to 2 m/s (0 to 6.6 ft./s); non-abrasive

Pressure Range

0 to 6.9 bar at 100°C (0 to 100 psig at 212°F)

Signal Transmission Distance

100 m (328 ft.) when used with the Hach Digital Gateway and a Hach sc Digital Controller.

1000 m (3280 ft.) when used with the Hach Digital Gateway, Termination Box, and a Hach sc Digital Controller.

Sensor Cable

Integral coaxial cable (plus two conductors for temperature compensator option); 4.5 m (15 ft.) long

Wetted Materials

Convertible style: Ryton® body (glass filled)

Insertion style: PVDF body (Kynar®)

Sanitary style: 316 stainless steel sleeved PVDF body

Common materials for all sensor styles include PTFE Teflon double junction, glass process electrode, and Viton® O-rings

Warranty

90 days

Combination ORP Sensors

Measuring Range

-2000 to +2000 millivolts

Accuracy

Limited to calibration solution accuracy (± 20 mV)

Temperature Range

0 to 105°C (32 to 221°F)

Flow Rate

0 to 2 m/s (0 to 6.6 ft./s); non-abrasive

Pressure Range

0 to 6.9 bar at 100°C (0 to 100 psig at 212°F)

Signal Transmission Distance

100 m (328 ft.) when used with the Hach Digital Gateway and a Hach sc Digital Controller.

1000 m (3280 ft.) when used with the Hach Digital Gateway, Termination Box, and a Hach sc Digital Controller.

Sensor Cable

Integral coaxial cable; 4.5 m (15 ft.) long; terminated with stripped and tinned wires

Wetted Materials

Convertible style: Ryton® body (glass filled)

Insertion style: PVDF body (Kynar®)

Common materials for all sensor styles include PTFE Teflon double junction, glass with platinum process electrode, and $Viton^{\circledR}$ O-rings

Warranty

90 days

*Specifications subject to change without notice.

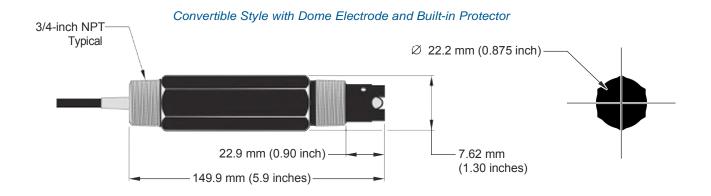
Ryton® is a registered trademark of Phillips 66 Co.; Viton® is a registered trademark of E.I. DuPont de Nemours + Co.; Kynar® is a registered trademark of Pennwalt Corp.

Engineering Specifications

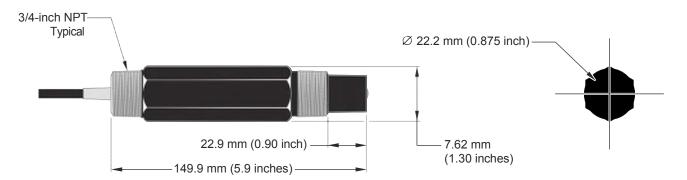
- The pH sensor shall be available in convertible, insertion or sanitary styles. The ORP sensor shall be available in only convertible or insertion styles.
- 2. The convertible style sensor shall have a Ryton[®] body. The insertion style sensor shall have a PVDF body. The sanitary style sensor shall have a 316 stainless steel sleeved PVDF body. Common materials for all sensor styles shall include a PTFE Teflon[®] double junction, and Viton[®] O-rings. The pH sensor shall have a glass pH electrode. The ORP sensor shall have a platinum ORP electrode.
- The convertible style pH sensor shall be available with or without a built-in Pt 1000 ohm RTD temperature element. Insertion and sanitary style pH sensors shall have a built-in Pt 1000 ohm RTD temperature element. Convertible and insertion style ORP sensors shall not have a built-in temperature element.
- The sensor shall communicate via MODBUS[®] RS-485 to a Hach sc Digital Controller.
- The sensor shall be Hach Company Model PC sc or PC-series for pH measurement or Model PC sc or RC-series for ORP measurement.

Dimensions

Convertible Style Sensor


The convertible style sensor has a Ryton[®] body that features 3/4-inch NPT threads on both ends. The sensor can be directly mounted into a standard 3/4-inch pipe tee for flow-through mounting or fastened onto the end of a pipe for immersion mounting. The convertible style sensor enables inventory consolidation, thereby reducing associated costs. Mounting tees and immersion mounting hardware are offered in a variety of materials to suit application requirements.

Insertion Style Sensor


Insertion style sensors feature a longer, non-threaded PVDF body with two Viton® O-rings, providing a seal when used with the optional Hach insertion mount hardware assembly. This ball valve hardware enables sensor insertion and retraction from a pipe or vessel without having to stop the process flow.

Sanitary Style Sensor

The sanitary style sensor, offered for pH measurement, has a 316 stainless steel-sleeved PVDF body with a 2-inch flange. The sensor mates to a standard 2-inch Tri-Clover fitting. The optional Hach sanitary mounting hardware includes a standard 2-inch sanitary tee, sanitary clamp, and Viton[®] sanitary gasket.

Convertible Style with Flat Electrode

Lockwood Remediation Technologies, LLC

The Pulsatron Series A Plus offers manual function controls over stroke length and stroke rate as standard with the option to select external pace for automatic control.

Ten distinct models are available, having pressure capabilities to 250 PSIG (17 BAR) @ 12 GPO (1.9 lph), and flow capacities to 58 GPO (9.1 lph) @ 100 PSIG (7.0 BAR), with a standard turndown ratio of 100:1, and optional ratio of 1000:1. Metering performance is reproducible to within \pm 3% of maximum capacity.

Features

- Manual Control by on-line adjustable stroke rate and stroke length.
- Highly Reliable timing circuit.
- Circuit Protection against voltage and current upsets.
- Solenoid Protection by thermal overload with autoreset.
- Water Resistant, for outdoor and indoor applications.
- Internally Dampened To Reduce Noise.
- Guided Ball Check Valve Systems, to reduce back flow and enhance outstanding priming characteristics.
- Few Moving Parts and Wall Mountable.
- Safe & Easy Priming with durable leak-free bleed valve assembly (standard).
- Optional Control: External pace with auto/manual selection.

Controls

Manual Stroke Rate

Manual Stroke Length

External Pacing-Optional

External Pace With Stop-Optional (125 SPM only)

Controls Options								
Facture	Standard	Optional						
Feature	Configuration	Configuration ¹						
External Pacing		Auto / Manual Selection /						
External Pace w/ Stop		Auto / Manual Selection 2						
(125SPMonly)								
Manual Stroke Rate	10:1 Ratio	100:1 Raio						
Manual Stroke Length	10:1 Ratio	10:1 Ratio						
Total Turndown Ratio	1001 Ratio	1000:1 Ratio						

Note 1:On S2,S3 & S4 sizes only.

Note 2:Not available on 1000:1turndown pumps.

Operating Benefits

- Reliable metering performance.
- Rated "hot" for continuous duty.
- · High viscosity capability.
- Leak-free, sealless, liquid end.

Aftermarket

- KOPkits
- Gauges
- Dampeners
- Pressure Relief Valves
- Tanks
- Pre-Engineered Systems
 - Process Controllers

(PULSAblue, MicroVision)

Series A Plus Electronic Metering Pumps

Lockwood Remediation Technologies, LLC

Series A Plus

Specifications and Model Selection

	MODEL		LBC2	LB02	LBC3	LB03	LB04	LB64	LBC4	LBS2	LBS3	LBS4
Capacity		GPH	0.25	025	0.42	0.50	1.00	125	2.00	0.50	1.38	2.42
nominal		GPO	6	6	10	12	24	30	48	12	33	58
(max.)		LPH	0.9	0.9	1.6	1.9	3.8	4.7	7.6	1.9	5.2	9.14
Pressure ³ (max.)	GFPP,PVDF,316SS or PVC <;Ncode) wTFE Seats) PVC (V code) Vton or CSPE Seats IDegas Liquid End	PSIG	250 (17) 150 (10)	150 (10)	250 (17)	150 (10)	100 (7)	100 (7)	50 (33)	250 (17) 150 (10)	150 (10)	100(7)
Connections:		Tubina Pioina	114'DX 38' OD 318'DX 112' OD 114'FNPT					114	I'D X 318' O[)		
Strokes/Minute		SPM	25						,	250		

Note 3: Pumps with rated pressure above 150 PSI will be de-rated to 150 PSI Max.when selecting certain valve options, see Price Book for details.

Engineering Data

Pump Head Materials Available: **GFPPL**

PVC PVDF 316 SS

PTFE-faced CSPE-backed Diaphragm:

Check Valves Materials Available:

Seats/0-Rings: **PTFE**

> **CSPE** Viton

Balls: Ceramic

PTFE 316 SS

Alloy C

GFPPL Fittings Materials Available:

PVC PVDF

Bleed Valve: Same as fitting and check valve

selected, except 316SS

hjection Valve & Foot Valve Assy: Same as fitting and check valve

selected

ClearPVC Tubing:

White PF

Important: Material Code - GFPPL=Glass-filled Polypropylene, PVC=Polyvinyl Chloride, PE=Polyethylene, PVDF=Polyvinylidene Fluoride, CSPE=Generic formulation of Hypalon, a registered trademark of E.I. DuPont Company. Viton is a registered trademark of E.I. DuPont Company. PVC wetted end recommended for sodium hypochlorite.

Engineering Data

Reproducibility: +/- 3% at maximum capacty

Viscosity Max CPS: 1000 CPS Stroke Frequency Max SPM: 125 / 250 by Model Stroke Frequency Turn-Down Ratio: 10:1/100:1 by Model

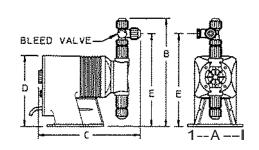
Stroke Length Turn-Down Ratio:

Power Input: 115 VAC/50-60 HZ/1 ph 230 VAC/50-60 HZ/1 ph

Average Current Draw:

@ 115 VAC; Amps: 0.6 Amps @ 230 VAC; Amps: 0.3 Amps 130 Watts Peak hout Power: 50 Watts Average Input Power @ Max SPM:

Custom Engineered Designs-Pre-Engineered Systems

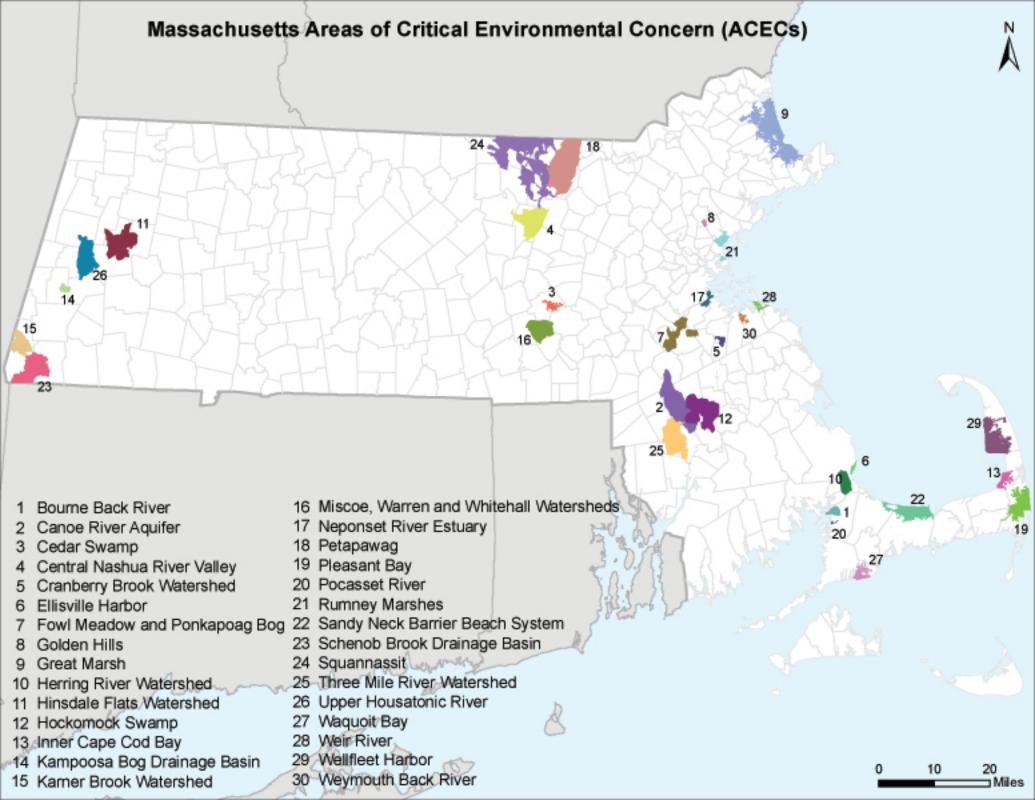


Pre-Engineered Systems Pulsafeeder's Pre-Engineered Systems are designed to provide complete chemical feed solutions for all electronic metering applications. From stand alone simplex pH control applications to full-featured, redundant sodium hypochlorite disinfection metering, these rugged fabricated assemblies offer turnkey simplicity and industrial-grade durability. The UV-stabilized, high-grade HOPE frame offers maximum chemical compatibility and structural rigidity. Each system is factory assembled and hydrostatically tested prior to shipment.

Dimensions

Series A PLUS Dimensions (inches)									
	Shipping								
Model No.	Α	В	С	D	Е	Weight			
LB02 IS2	5.0	9.6	9.5	6.5	8.2	10			
LBC2	5.0	9.9	9.5	6.5	8.5	10			
LBC3	5.0	9.9	9.5	6.5	8.5	10			
LB03 IS3	5.0	9.9	9.5	6.5	8.5	10			
LB0 \$ 4	5.0	9.9	9.5	6.5	8.5	10			
LB64	5.0	9.9	9.5	6.5	8.5	10			
LBC4	5.0	9.9	9.5	6.5	8.5	10			


NOTE: hches X2.54 cm



APPENDIX D

Endangered Species Act Documentation

FEDERALLY LISTED ENDANGERED AND THREATENED SPECIES IN MASSACHUSETTS

COUNTY	SPECIES	FEDERAL STATUS	GENERAL LOCATION/HABITAT	TOWNS	
	Piping Plover	Threatened	Coastal Beaches	All Towns	
	Roseate Tern	Endangered	Coastal beaches and the Atlantic Ocean	All Towns	
	Northeastern beach tiger beetle	Threatened	Coastal Beaches	Chatham	
Barnstable	Sandplain gerardia	Endangered	Open areas with sandy soils.	Sandwich and Falmouth.	
	Northern Red- bellied Cooter	Endangered	Inland Ponds and Rivers	Bourne (north of the Cape Cod Canal)	
	Red Knot ¹	Threatened	Coastal Beaches and Rocky Shores, sand and mud flats	Coastal Towns	
	Northern Long- eared Bat	Threatened Final 4(d) Rule	Winter- mines and caves, Summer – wide variety of forested habitats	Statewide	
	Bog Turtle	Threatened	Wetlands	Egremont and Sheffield	
Berkshire	Northern Long- eared Bat	Threatened Final 4(d) Rule	Winter- mines and caves, Summer – wide variety of forested habitats	Statewide	
	Piping Plover	Threatened	Coastal Beaches	Fairhaven, Dartmouth, Westport	
	Roseate Tern	Endangered	Coastal beaches and the Atlantic Ocean	Fairhaven, New Bedford, Dartmouth, Westport	
Bristol	Northern Red- bellied Cooter	Endangered	Inland Ponds and Rivers	Taunton	
	Red Knot ¹	Threatened	Coastal Beaches and Rocky Shores, sand and mud flats	Coastal Towns	
	Northern Long- eared Bat	Threatened Final 4(d) Rule	Winter- mines and caves, Summer – wide variety of forested habitats	Statewide	
	Roseate Tern	Endangered	Coastal beaches and the Atlantic Ocean	All Towns	
	Piping Plover	Threatened	Coastal Beaches	All Towns	
	Northeastern beach tiger beetle	Threatened	Coastal Beaches	Aquinnah and Chilmark	
Dukes	Sandplain gerardia	Endangered	Open areas with sandy soils.	West Tisbury	
	Red Knot ¹	Threatened	Coastal Beaches and Rocky Shores, sand and mud flats	Coastal Towns	
	Northern Long- eared Bat	Threatened Final 4(d) Rule	Winter- mines and caves, Summer – wide variety of forested habitats	Statewide	

FEDERALLY LISTED ENDANGERED AND THREATENED SPECIES IN MASSACHUSETTS

COUNTY	SPECIES	FEDERAL STATUS	GENERAL LOCATION/HABITAT	TOWNS
	Small whorled Pogonia	Threatened	Forests with somewhat poorly drained soils and/or a seasonally high water table	Gloucester, Essex and Manchester
Essex	Piping Plover	Threatened	Coastal Beaches	Gloucester, Essex, Ipswich, Rowley, Revere, Newbury, Newburyport and Salisbury
	Red Knot ¹	Threatened	Coastal Beaches and Rocky Shores, sand and mud flats	Coastal Towns
	Northern Long- eared Bat	Threatened Final 4(d) Rule	Winter- mines and caves, Summer – wide variety of forested habitats	Statewide
	Northeastern bulrush	Endangered	Wetlands	Montague, Warwick
Franklin	Dwarf wedgemussel	Endangered	Mill River	Whately
	Northern Long- eared Bat	Threatened Final 4(d) Rule	Winter- mines and caves, Summer – wide variety of forested habitats	Statewide
	Small whorled Pogonia	Threatened	Forests with somewhat poorly drained soils and/or a seasonally high water table	Hadley
	Puritan tiger beetle	Threatened	Sandy beaches along the Connecticut River	Northampton and Hadley
Hampshire	Dwarf wedgemussel	Endangered	Rivers and Streams.	Hatfield, Amherst and Northampton
	Northern Long- eared Bat	Threatened Final 4(d) Rule	Winter- mines and caves, Summer – wide variety of forested habitats	Statewide
	Small whorled Pogonia	Threatened	Forests with somewhat poorly drained soils and/or a seasonally high water table	Southwick
Hampden	Northern Long- eared Bat	Threatened Final 4(d) Rule	Winter- mines and caves, Summer – wide variety of forested habitats	Statewide
	Small whorled Pogonia	Threatened	Forests with somewhat poorly drained soils and/or a seasonally high water table	Groton
Middlesex	Northern Long- eared Bat	Threatened Final 4(d) Rule	Winter- mines and caves, Summer – wide variety of forested habitats	Statewide
	Piping Plover	Threatened	Coastal Beaches	Nantucket
	Roseate Tern	Endangered	Coastal beaches and the Atlantic Ocean	Nantucket
Nantucket	American burying beetle	Endangered	Upland grassy meadows	Nantucket
	Red Knot ¹	Threatened	Coastal Beaches and Rocky Shores, sand and mud flats	Coastal Towns
	Northern Long- eared Bat	Threatened Final 4(d) Rule	Winter- mines and caves, Summer – wide variety of forested habitats	Statewide

FEDERALLY LISTED ENDANGERED AND THREATENED SPECIES IN MASSACHUSETTS

COUNTY	SPECIES	FEDERAL STATUS	GENERAL LOCATION/HABITAT	TOWNS	
	Piping Plover	Threatened	Coastal Beaches	Scituate, Marshfield, Duxbury, Plymouth, Wareham and Mattapoisett	
	Northern Red- bellied Cooter	Endangered	Inland Ponds and Rivers	Kingston, Middleborough, Carver, Plymouth, Bourne, Wareham, Halifax, and Pembroke	
Plymouth	Roseate Tern	Endangered	Coastal beaches and the Atlantic Ocean	Plymouth, Marion, Wareham, and Mattapoisett.	
	Red Knot ¹	Threatened	Coastal Beaches and Rocky Shores, sand and mud flats	Coastal Towns	
	Northern Long- eared Bat	Threatened Final 4(d) Rule	Winter- mines and caves, Summer – wide variety of forested habitats	Statewide	
	Piping Plover	Threatened	Coastal Beaches	Revere, Winthrop	
Suffolk	Red Knot ¹	Threatened	Coastal Beaches and Rocky Shores, sand and mud flats	Coastal Towns	
	Northern Long- eared Bat	Threatened Final 4(d) Rule	Winter- mines and caves, Summer – wide variety of forested habitats	Statewide	
	Small whorled Pogonia	Threatened	Forests with somewhat poorly drained soils and/or a seasonally high water table	Leominster	
Worcester	Northern Long- eared Bat	Threatened Final 4(d) Rule	Winter- mines and caves, Summer – wide variety of forested habitats	Statewide	

¹Migratory only, scattered along the coast in small numbers

- -Eastern cougar and gray wolf are considered extirpated in Massachusetts.
- -Endangered gray wolves are not known to be present in Massachusetts, but dispersing individuals from source populations in Canada may occur statewide.
- -Critical habitat for the Northern Red-bellied Cooter is present in Plymouth County.

Rare species viewer

Town	Common Name	Scientific Name	Taxonomic Group	MESA Status	Most Recent Obs.
CAMBRIDGE	American Bittern	Botaurus lentiginosus	Bird	Endangered	1906
CAMBRIDGE	American Sea-blite	Suaeda calceoliformis	Vascular Plant	Special Concern	1912
CAMBRIDGE	Andrews' Bottle Gentian	Gentiana andrewsii	Vascular Plant	Endangered	2017
CAMBRIDGE	Barn Owl	Tyto alba	Bird	Special Concern	Historic
CAMBRIDGE	Blue-spotted Salamander (complex)	Ambystoma laterale pop. 1	Amphibian	Special Concern	1917
CAMBRIDGE	Bridle Shiner	Notropis bifrenatus	Fish	Special Concern	1928
CAMBRIDGE	Britton's Violet	Viola brittoniana	Vascular Plant	Threatened	1843
CAMBRIDGE	Common Gallinule	Gallinula galeata	Bird	Special Concern	1890
CAMBRIDGE	Eastern Box Turtle	Terrapene carolina	Reptile	Special Concern	1892
CAMBRIDGE	Eastern Pondmussel	Ligumia nasuta	Mussel	Special Concern	1941
CAMBRIDGE	Eastern Spadefoot	Scaphiopus holbrookii	Amphibian	Threatened	1892
CAMBRIDGE	Engelmann's Flatsedge	Cyperus engelmannii	Vascular Plant	Threatened	2008
CAMBRIDGE	Fries' Pondweed	Potamogeton friesii	Vascular Plant	Endangered	1880
CAMBRIDGE	Imperial Moth	Eacles imperialis	Butterfly/Moth	Threatened	Historic
CAMBRIDGE	Lake Quillwort	Isoetes lacustris	Vascular Plant	Endangered	Historic
CAMBRIDGE	Least Bittern	Ixobrychus exilis	Bird	Endangered	1890
CAMBRIDGE	Long's Bulrush	Scirpus longii	Vascular Plant	Threatened	1913
CAMBRIDGE	New England Medicinal Leech	Macrobdella sestertia	Segmented Worm	Special Concern	1800s
CAMBRIDGE	Pale Green Orchid	Platanthera flava var. herbiola	Vascular Plant	Threatened	Historic
CAMBRIDGE	Peregrine Falcon	Falco peregrinus	Bird	Threatened	2019
CAMBRIDGE	Sedge Wren	Cistothorus platensis	Bird	Endangered	1840
CAMBRIDGE	Slender Woodland Sedge	Carex gracilescens	Vascular Plant	Endangered	1891
CAMBRIDGE	Twelve-spotted Tiger Beetle	Cicindela duodecimguttata	Beetle	Special Concern	1932
CAMBRIDGE	Wood Turtle	Glyptemys insculpta	Reptile	Special Concern	Historic

List provided by Mass.gov (https://www.mass.gov/service-details/rare-species-viewer), accessed 9/18/2020.

IPaC U.S. Fish & Wildlife Service

IPaC resource list

This report is an automatically generated list of species and other resources such as critical habitat (collectively referred to as *trust resources*) under the U.S. Fish and Wildlife Service's (USFWS) jurisdiction that are known or expected to be on or near the project area referenced below. The list may also include trust resources that occur outside of the project area, but that could potentially be directly or indirectly affected by activities in the project area. However, determining the likelihood and extent of effects a project may have on trust resources typically requires gathering additional site-specific (e.g., vegetation/species surveys) and project-specific (e.g., magnitude and timing of proposed activities) information.

Below is a summary of the project information you provided and contact information for the USFWS office(s) with jurisdiction in the defined project area. Please read the introduction to each section that follows (Endangered Species, Migratory Birds, USFWS Facilities, and NWI Wetlands) for additional information applicable to the trust resources addressed in that section.

Location

Middlesex County, Massachusetts

Local office

New England Ecological Services Field Office

(603) 223-2541

(603) 223-0104

70 Commercial Street, Suite 300 Concord, NH 03301-5094

http://www.fws.gov/newengland

Endangered species

This resource list is for informational purposes only and does not constitute an analysis of project level impacts.

The primary information used to generate this list is the known or expected range of each species. Additional areas of influence (AOI) for species are also considered. An AOI includes areas outside of the species range if the species could be indirectly affected by activities in that area (e.g., placing a dam upstream of a fish population, even if that fish does not occur at the dam site, may indirectly impact the species by reducing or eliminating water flow downstream). Because species can move, and site conditions can change, the species on this list are not guaranteed to be found on or near the project area. To fully determine any potential effects to species, additional site-specific and project-specific information is often required.

Section 7 of the Endangered Species Act **requires** Federal agencies to "request of the Secretary information whether any species which is listed or proposed to be listed may be present in the area of such proposed action" for any project that is conducted, permitted, funded, or licensed by any Federal agency. A letter from the local office and a species list which fulfills this requirement can **only** be obtained by requesting an official species list from either the Regulatory Review section in IPaC (see directions below) or from the local field office directly.

For project evaluations that require USFWS concurrence/review, please return to the IPaC website and request an official species list by doing the following:

- 1. Draw the project location and click CONTINUE.
- 2. Click DEFINE PROJECT.
- 3. Log in (if directed to do so).
- 4. Provide a name and description for your project.
- 5. Click REQUEST SPECIES LIST.

Listed species¹ and their critical habitats are managed by the <u>Ecological Services Program</u> of the U.S. Fish and Wildlife Service (USFWS) and the fisheries division of the National Oceanic and Atmospheric Administration (NOAA Fisheries²).

Species and critical habitats under the sole responsibility of NOAA Fisheries are **not** shown on this list. Please contact <u>NOAA</u> <u>Fisheries</u> for <u>species under their jurisdiction</u>.

- 1. Species listed under the <u>Endangered Species Act</u> are threatened or endangered; IPaC also shows species that are candidates, or proposed, for listing. See the <u>listing status page</u> for more information.
- 2. <u>NOAA Fisheries</u>, also known as the National Marine Fisheries Service (NMFS), is an office of the National Oceanic and Atmospheric Administration within the Department of Commerce.

THERE ARE NO ENDANGERED SPECIES EXPECTED TO OCCUR AT THIS LOCATION.

Migratory birds

Certain birds are protected under the Migratory Bird Treaty Act $\frac{1}{2}$ and the Bald and Golden Eagle Protection Act $\frac{2}{3}$.

Any person or organization who plans or conducts activities that may result in impacts to migratory birds, eagles, and their habitats should follow appropriate regulations and consider implementing appropriate conservation measures, as described <u>below</u>.

- 1. The Migratory Birds Treaty Act of 1918.
- 2. The Bald and Golden Eagle Protection Act of 1940.

Additional information can be found using the following links:

- Birds of Conservation Concern http://www.fws.gov/birds/management/managed-species/birds-of-conservation-concern.php
- Measures for avoiding and minimizing impacts to birds http://www.fws.gov/birds/management/project-assessment-tools-and-guidance/

conservation-measures.php

• Nationwide conservation measures for birds <u>http://www.fws.gov/migratorybirds/pdf/management/nationwidestandardconservationmeasures.pdf</u>

The birds listed below are birds of particular concern either because they occur on the <u>USFWS Birds of Conservation Concern</u> (BCC) list or warrant special attention in your project location. To learn more about the levels of concern for birds on your list and how this list is generated, see the FAQ <u>below</u>. This is not a list of every bird you may find in this location, nor a guarantee that every bird on this list will be found in your project area. To see exact locations of where birders and the general public have sighted birds in and around your project area, visit the <u>E-bird data mapping tool</u> (Tip: enter your location, desired date range and a species on your list). For projects that occur off the Atlantic Coast, additional maps and models detailing the relative occurrence and abundance of bird species on your list are available. Links to additional information about Atlantic Coast birds, and other important information about your migratory bird list, including how to properly interpret and use your migratory bird report, can be found <u>below</u>.

For guidance on when to schedule activities or implement avoidance and minimization measures to reduce impacts to migratory birds on your list, click on the PROBABILITY OF PRESENCE SUMMARY at the top of your list to see when these birds are most likely to be present and breeding in your project area.

NAME

BREEDING SEASON (IF A BREEDING SEASON IS INDICATED FOR A BIRD ON YOUR LIST, THE BIRD MAY BREED IN YOUR PROJECT AREA SOMETIME WITHIN THE TIMEFRAME SPECIFIED, WHICH IS A VERY LIBERAL ESTIMATE OF THE DATES INSIDE WHICH THE BIRD BREEDS ACROSS ITS ENTIRE RANGE.

"BREEDS ELSEWHERE" INDICATES THAT THE BIRD DOES NOT LIKELY BREED IN YOUR PROJECT AREA.)

Bald Eagle Haliaeetus leucocephalus

This is not a Bird of Conservation Concern (BCC) in this area, but warrants attention because of the Eagle Act or for potential susceptibilities in offshore areas from certain types of development or activities.

https://ecos.fws.gov/ecp/species/1626

Breeds Oct 15 to Aug 31

Black-billed Cuckoo Coccyzus erythropthalmus

This is a Bird of Conservation Concern (BCC) throughout its range in the continental USA and Alaska.

https://ecos.fws.gov/ecp/species/9399

Breeds May 15 to Oct 10

Bobolink Dolichonyx oryzivorus

This is a Bird of Conservation Concern (BCC) throughout its range in the continental USA and Alaska.

Breeds May 20 to Jul 31

Canada Warbler Cardellina canadensis

This is a Bird of Conservation Concern (BCC) throughout its range in the continental USA and Alaska.

Breeds May 20 to Aug 10

Cerulean Warbler Dendroica cerulea

This is a Bird of Conservation Concern (BCC) throughout its range in the continental USA and Alaska

https://ecos.fws.gov/ecp/species/2974

Breeds Apr 29 to Jul 20

Dunlin Calidris alpina arcticola

This is a Bird of Conservation Concern (BCC) only in particular Bird Conservation Regions (BCRs) in the continental USA

Breeds elsewhere

Evening Grosbeak Coccothraustes vespertinus

This is a Bird of Conservation Concern (BCC) throughout its range in the continental USA and Alaska.

Breeds elsewhere

Kentucky Warbler Oporornis formosus

This is a Bird of Conservation Concern (BCC) throughout its range in the continental USA and Alaska.

Breeds Apr 20 to Aug 20

Lesser Yellowlegs Tringa flavipes

This is a Bird of Conservation Concern (BCC) throughout its range in the continental USA and Alaska

https://ecos.fws.gov/ecp/species/9679

Breeds elsewhere

Nelson's Sparrow Ammodramus nelsoni

This is a Bird of Conservation Concern (BCC) throughout its range in the continental USA and Alaska.

Breeds May 15 to Sep 5

Prairie Warbler Dendroica discolor

This is a Bird of Conservation Concern (BCC) throughout its range in the continental USA and Alaska.

Breeds May 1 to Jul 31

Prothonotary Warbler Protonotaria citrea

This is a Bird of Conservation Concern (BCC) throughout its range in the continental USA and Alaska.

Breeds Apr 1 to Jul 31

Red-headed Woodpecker Melanerpes erythrocephalus

This is a Bird of Conservation Concern (BCC) throughout its range in the continental USA and Alaska.

Breeds May 10 to Sep 10

Red-throated Loon Gavia stellata

This is a Bird of Conservation Concern (BCC) throughout its range in the continental USA and Alaska.

Breeds elsewhere

Rusty Blackbird Euphagus carolinus

This is a Bird of Conservation Concern (BCC) throughout its range in the continental USA and Alaska.

Breeds elsewhere

Semipalmated Sandpiper Calidris pusilla

This is a Bird of Conservation Concern (BCC) throughout its range in the continental USA and Alaska.

Breeds elsewhere

Snowy Owl Bubo scandiacus

This is a Bird of Conservation Concern (BCC) throughout its range in the continental USA and Alaska.

Breeds elsewhere

Wood Thrush Hylocichla mustelina

This is a Bird of Conservation Concern (BCC) throughout its range in the continental USA and Alaska.

Breeds May 10 to Aug 31

Probability of Presence Summary

The graphs below provide our best understanding of when birds of concern are most likely to be present in your project area. This information can be used to tailor and schedule your project activities to avoid or minimize impacts to birds. Please make sure you read and understand the FAQ "Proper Interpretation and Use of Your Migratory Bird Report" before using or attempting to interpret this report.

Probability of Presence (■)

Each green bar represents the bird's relative probability of presence in the 10km grid cell(s) your project overlaps during a particular week of the year. (A year is represented as 12 4-week months.) A taller bar indicates a higher probability of species presence. The survey effort (see below) can be used to establish a level of confidence in the presence score. One can have higher

confidence in the presence score if the corresponding survey effort is also high.

How is the probability of presence score calculated? The calculation is done in three steps:

- 1. The probability of presence for each week is calculated as the number of survey events in the week where the species was detected divided by the total number of survey events for that week. For example, if in week 12 there were 20 survey events and the Spotted Towhee was found in 5 of them, the probability of presence of the Spotted Towhee in week 12 is 0.25.
- 2. To properly present the pattern of presence across the year, the relative probability of presence is calculated. This is the probability of presence divided by the maximum probability of presence across all weeks. For example, imagine the probability of presence in week 20 for the Spotted Towhee is 0.05, and that the probability of presence at week 12 (0.25) is the maximum of any week of the year. The relative probability of presence on week 12 is 0.25/0.25 = 1; at week 20 it is 0.05/0.25 = 0.2.
- 3. The relative probability of presence calculated in the previous step undergoes a statistical conversion so that all possible values fall between 0 and 10, inclusive. This is the probability of presence score.

To see a bar's probability of presence score, simply hover your mouse cursor over the bar.

Breeding Season (

Yellow bars denote a very liberal estimate of the time-frame inside which the bird breeds across its entire range. If there are no yellow bars shown for a bird, it does not breed in your project area.

Survey Effort (|)

Vertical black lines superimposed on probability of presence bars indicate the number of surveys performed for that species in the 10km grid cell(s) your project area overlaps. The number of surveys is expressed as a range, for example, 33 to 64 surveys.

To see a bar's survey effort range, simply hover your mouse cursor over the bar.

No Data (-)

A week is marked as having no data if there were no survey events for that week.

Survey Timeframe

Surveys from only the last 10 years are used in order to ensure delivery of currently relevant information. The exception to this is areas off the Atlantic coast, where bird returns are based on all years of available data, since data in these areas is currently much more sparse.

					- (■ proba	bility of pre	esence =	breeding s	eason sı	urvey effort	– no data
SPECIES	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP	OCT	NOV	DEC
Bald Eagle Non-BCC Vulnerable (This is not a Bird of Conservation Concern (BCC) in this area, but warrants attention because of the Eagle Act or for potential susceptibilities in offshore areas from certain types of development or activities.)	·····	-	5	HH	1111	####	++++	++++	++++	++++	++++	1111
Black-billed Cuckoo BCC Rangewide (CON) (This is a Bird of Conservation Concern (BCC) throughout its range in the continental USA and Alaska.)	++++	++++	++++	+++#	+ +	++++	++++	++++	++++	##++	++++	++++
Bobolink BCC Rangewide (CON) (This is a Bird of Conservation Concern (BCC) throughout its range in the continental USA and Alaska.)	++++	++++	++++	++++	+‡1	++++	++++	++++	++++	## ++	++++	++++
Canada Warbler BCC Rangewide (CON) (This is a Bird of Conservation Concern (BCC) throughout its range in the continental USA and Alaska.)	++++	++++	++++	++++	++	++++	++++	 +•	** ++	++++	++++	++++
Cerulean Warbler BCC Rangewide (CON) (This is a Bird of Conservation Concern (BCC) throughout its range in the continental USA and Alaska.)	++++	++++	++++	+++#	 	++++	++++	++++	+++•	++++	++++	++++

Dunlin BCC - BCR (This is a Bird of Conservation Concern (BCC) only in particular Bird Conservation Regions (BCRs in the continental USA)	•	++++	++++	++++	++++	++++	++++	++++	++++	++++	++++	++++
Evening Grosbeak BCC Rangewide (CON) (This is a Bird of Conservation Concern (BCC) throughout its range in the continental USA and Alaska.)	++++	++++	++++	++++	++++	++++	++++	++++	++++	++++	+ +++	++++
Kentucky Warbler BCC Rangewide (CON) (This is a Bird of Conservation Concern (BCC) throughout its range in the continental USA and Alaska.)	++++	++++	++++	++##	++++	++++	++++	++++	++++	++++	++++	++++
Lesser Yellowlegs BCC Rangewide (CON) (This is a Bird of Conservation Concern (BCC) throughout its range in the continental USA and Alaska.)	++++	++++	++++	++++	++++	++++	+++•	+#+#	++++	+ +++	++++	++++
Nelson's Sparrow BCC Rangewide (CON) (This is a Bird of Conservation Concern (BCC) throughout its range in the continental USA and Alaska.)	++++	++++	++++	++++	+###	1111	1111	####	 +++	****	+(11)	++++
Prairie Warbler BCC Rangewide (CON) (This is a Bird of Conservation Concern (BCC) throughout its range in the continental USA and Alaska.)	++++	++++	++++	++••	###1	++++	 	1111	+++	+ +++	++++	++++
Prothonotary Warbler BCC Rangewide (CON) (This is a Bird of Conservation Concern (BCC) throughout its range in the continental USA and Alaska.)	++++	++++	++++	1111		IIII	TID	++++	++++	++++	++++	++++
SPECIES	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP	OCT	NOV	DEC
Red-headed Woodpecker BCC Rangewide (CON) (This is a Bird of Conservation Concern (BCC) throughout its range in the continental USA and Alaska.)	++++	++++	1111	++++	++++	++++	++++	++++	##++	++++	++++	++••
Red-throated Loon BCC Rangewide (CON) (This is a Bird of Conservation Concern (BCC) throughout its range in the continental USA and Alaska.)	++++	++++	# #+#	+ +++	++++	++++	++++	++++	++++	++++	++++	* +++
Rusty Blackbird BCC Rangewide (CON) (This is a Bird of Conservation Concern (BCC) throughout its range in the continental USA and Alaska.)	++++	++++	++++	++++	++++	++++	++++	++++	++++	++++	** †+	++++
Semipalmated Sandpiper BCC Rangewide (CON) (This is a Bird of Conservation Concern (BCC) throughout its range in the continental USA and Alaska.)	++++	++++	++++	++++	++++	++++	+++•	####	* ++++	++++	++++	++++
Snowy Owl BCC Rangewide (CON) (This is a Bird of Conservation Concern (BCC) throughout its range in the continental USA and Alaska.)	++ ++	+++•	++++	+ +++	++++	++++	++++	++++	++++	++++	++++	++++

Wood Thrush
BCC Rangewide (CON) (This is a Bird of Conservation
Concern (BCC) throughout

Tell me more about conservation measures I can implement to avoid or minimize impacts to migratory birds.

Nationwide Conservation Measures describes measures that can help avoid and minimize impacts to all birds at any location year round. Implementation of these measures is particularly important when birds are most likely to occur in the project area. When birds may be breeding in the area, identifying the locations of any active nests and avoiding their destruction is a very helpful impact minimization measure. To see when birds are most likely to occur and be breeding in your project area, view the Probability of Presence Summary. Additional measures and/or permits may be advisable depending on the type of activity you are conducting and the type of infrastructure or bird species present on your project site.

What does IPaC use to generate the migratory birds potentially occurring in my specified location?

The Migratory Bird Resource List is comprised of USFWS <u>Birds of Conservation Concern (BCC)</u> and other species that may warrant special attention in your project location.

The migratory bird list generated for your project is derived from data provided by the <u>Avian Knowledge Network (AKN)</u>. The AKN data is based on a growing collection of <u>survey</u>, <u>banding</u>, <u>and citizen science datasets</u> and is queried and filtered to return a list of those birds reported as occurring in the 10km grid cell(s) which your project intersects, and that have been identified as warranting special attention because they are a BCC species in that area, an eagle (<u>Eagle Act</u> requirements may apply), or a species that has a particular vulnerability to offshore activities or development.

Again, the Migratory Bird Resource list includes only a subset of birds that may occur in your project area. It is not representative of all birds that may occur in your project area. To get a list of all birds potentially present in your project area, please visit the AKN Phenology Tool.

What does IPaC use to generate the probability of presence graphs for the migratory birds potentially occurring in my specified location?

The probability of presence graphs associated with your migratory bird list are based on data provided by the <u>Avian Knowledge Network (AKN)</u>. This data is derived from a growing collection of <u>survey</u>, <u>banding</u>, <u>and citizen science datasets</u>.

Probability of presence data is continuously being updated as new and better information becomes available. To learn more about how the probability of presence graphs are produced and how to interpret them, go the Probability of Presence Summary and then click on the "Tell me about these graphs" link.

How do I know if a bird is breeding, wintering, migrating or present year-round in my project area?

To see what part of a particular bird's range your project area falls within (i.e. breeding, wintering, migrating or year-round), you may refer to the following resources: The Cornell Lab of Ornithology All About Birds Bird Guide, or (if you are unsuccessful in locating the bird of interest there), the Cornell Lab of Ornithology Neotropical Birds guide. If a bird on your migratory bird species list has a breeding season associated with it, if that bird does occur in your project area, there may be nests present at some point within the timeframe specified. If "Breeds elsewhere" is indicated, then the bird likely does not breed in your project area.

What are the levels of concern for migratory birds?

its range in the continental USA and Alaska.)

Migratory birds delivered through IPaC fall into the following distinct categories of concern:

- 1. "BCC Rangewide" birds are <u>Birds of Conservation Concern</u> (BCC) that are of concern throughout their range anywhere within the USA (including Hawaii, the Pacific Islands, Puerto Rico, and the Virgin Islands);
- 2. "BCC BCR" birds are BCCs that are of concern only in particular Bird Conservation Regions (BCRs) in the continental USA; and
- 3. "Non-BCC Vulnerable" birds are not BCC species in your project area, but appear on your list either because of the <u>Eagle Act</u> requirements (for eagles) or (for non-eagles) potential susceptibilities in offshore areas from certain types of development or activities (e.g. offshore energy development or longline fishing).

Although it is important to try to avoid and minimize impacts to all birds, efforts should be made, in particular, to avoid and minimize impacts to the birds on this list, especially eagles and BCC species of rangewide concern. For more information on conservation measures you can implement to help avoid and minimize migratory bird impacts and requirements for eagles, please see the FAQs for these topics.

Details about birds that are potentially affected by offshore projects

For additional details about the relative occurrence and abundance of both individual bird species and groups of bird species within your project area off the Atlantic Coast, please visit the Northeast Ocean Data Portal. The Portal also offers data and information about other taxa besides birds that may be helpful to you in your project review. Alternately, you may download the bird model results files underlying the portal maps through the NOAA NCCOS Integrative Statistical Modeling and Predictive Mapping of Marine Bird Distributions and Abundance on the Atlantic Outer Continental Shelf project webpage.

Bird tracking data can also provide additional details about occurrence and habitat use throughout the year, including migration. Models relying on survey data may not include this information. For additional information on marine bird tracking data, see the <u>Diving Bird Study</u> and the <u>nanotag studies</u> or contact <u>Caleb Spiegel</u> or <u>Pam Loring</u>.

What if I have eagles on my list?

If your project has the potential to disturb or kill eagles, you may need to obtain a permit to avoid violating the Eagle Act should such impacts occur.

Proper Interpretation and Use of Your Migratory Bird Report

The migratory bird list generated is not a list of all birds in your project area, only a subset of birds of priority concern. To learn more about how your list is generated, and see options for identifying what other birds may be in your project area, please see the FAQ "What does IPaC use to generate the migratory birds potentially occurring in my specified location". Please be aware this report provides the "probability of presence" of birds within the 10 km grid cell(s) that overlap your project; not your exact project footprint. On the graphs provided, please also look carefully at the survey effort (indicated by the black vertical bar) and for the existence of the "no data" indicator (a red horizontal bar). A high survey effort is the key component. If the survey effort is high, then the probability of presence score can be viewed as more dependable. In contrast, a low survey effort bar or no data bar means a lack of data and, therefore, a lack of certainty about presence of the species. This list is not perfect; it is simply a starting point for identifying what birds of concern have the potential to be in your project area, when they might be there, and if they might be breeding (which means nests might be present). The list helps you know what to look for to confirm presence, and helps guide you in knowing when to implement conservation measures to avoid or minimize potential impacts from your project activities, should presence be confirmed. To learn more about conservation measures, visit the FAQ "Tell me about conservation measures I can implement to avoid or minimize impacts to migratory birds" at the bottom of your migratory bird trust resources page.

Facilities

National Wildlife Refuge lands

Any activity proposed on lands managed by the <u>National Wildlife Refuge</u> system must undergo a 'Compatibility Determination' conducted by the Refuge. Please contact the individual Refuges to discuss any questions or concerns.

THERE ARE NO REFUGE LANDS AT THIS LOCATION.

Fish hatcheries

THERE ARE NO FISH HATCHERIES AT THIS LOCATION.

Wetlands in the National Wetlands Inventory

Impacts to <u>NWI wetlands</u> and other aquatic habitats may be subject to regulation under Section 404 of the Clean Water Act, or other State/Federal statutes.

For more information please contact the Regulatory Program of the local U.S. Army Corps of Engineers District.

THERE ARE NO KNOWN WETLANDS AT THIS LOCATION.

Data limitations

The Service's objective of mapping wetlands and deepwater habitats is to produce reconnaissance level information on the location, type and size of these resources. The maps are prepared from the analysis of high altitude imagery. Wetlands are identified based on vegetation, visible hydrology and geography. A margin of error is inherent in the use of imagery; thus, detailed on-the-ground inspection of any particular site may result in revision of the wetland boundaries or classification established through image analysis.

The accuracy of image interpretation depends on the quality of the imagery, the experience of the image analysts, the amount and quality of the collateral data and the amount of ground truth verification work conducted. Metadata should be consulted to determine the date of the source imagery used and any mapping problems.

Wetlands or other mapped features may have changed since the date of the imagery or field work. There may be occasional differences in polygon boundaries or classifications between the information depicted on the map and the actual conditions on site.

Data exclusions

Certain wetland habitats are excluded from the National mapping program because of the limitations of aerial imagery as the primary data source used to detect wetlands. These habitats include seagrasses or submerged aquatic vegetation that are found in the intertidal and subtidal zones of estuaries and nearshore coastal waters. Some deepwater reef communities (coral or tuberficid worm reefs) have also been excluded from the inventory. These habitats, because of their depth, go undetected by aerial imagery.

Data precautions

Federal, state, and local regulatory agencies with jurisdiction over wetlands may define and describe wetlands in a different manner than that used in this inventory. There is no attempt, in either the design or products of this inventory, to define the limits of proprietary jurisdiction of any Federal, state, or local government or to establish the geographical scope of the regulatory programs of government agencies. Persons intending to engage in activities involving modifications within or adjacent to wetland areas should seek the advice of appropriate federal, state, or local agencies concerning specified agency regulatory programs and proprietary jurisdictions that may affect such activities.

APPENDIX E

National Register of Historic Places and Massachusetts Historical Commission Documentation

Massachusetts Cultural Resource Information System MACRIS

MHC Home | MACRIS Home

Results

Get Results in Report Format

OPDF OSpreadsheet

Below are the results of your search, using the following search criteria:

Town(s): Cambridge

Street No: 51

Street Name: VASSAR St

Resource Type(s): Area, Building, Burial Ground, Object, Structure For more information about this page and how to use it, <u>click here</u>

No Results Found.

New Search — Same Town(s)

Previous

MHC Home | MACRIS Home

Massachusetts Cultural Resource Information System MACRIS

MACRIS Search Results

Search Criteria: Town(s): Cambridge; Street Name: VASSAR St; Resource Type(s): Area, Building, Burial Ground, Object, Structure;

Inv. No.	Property Name	Street	Town	Year
CAM.360	Metropolitan Supply Company Warehouse	269 Vassar St	Cambridge	1948
CAM.361	Hovey, F. A. and Company Warehouse	271-275 Vassar St	Cambridge	c 1940
CAM.362	Metropolitan Supply Company Warehouse	277-287 Vassar St	Cambridge	1939
CAM.363	Metropolitan Supply Company Warehouse	289-293 Vassar St	Cambridge	1939

Thursday, September 17, 2020 Page 1 of 1

Massachusetts Cultural Resource Information System MACRIS

MACRIS Search Results

Search Criteria: Town(s): Cambridge; Street Name: Massachusetts Ave; Resource Type(s): Area, Building, Burial Ground, Object, Structure;

nv. No.	Property Name	Street	Town	Year
CAM.635	Holmes Block II - Green Block	2-14 Central Sq	Cambridge	1798
CAM.102	First Parish Church, Unitarian	1-3 Church St	Cambridge	1833
CAM.910	Fitchburg Railroad Signal Bridge	Fitchburg Railroad	Cambridge	c 1930
CAM.177	Old Cambridge Baptist Church	398 Harvard St	Cambridge	1867
CAM.260	M. I. T. Alumni Swimming Pool Building	Massachusetts Ave	Cambridge	1940
CAM.261	Kresge Auditorium	Massachusetts Ave	Cambridge	1953
CAM.262	M. I. T. Chapel	Massachusetts Ave	Cambridge	1954
CAM.901	Harvard Square Subway Kiosk	Massachusetts Ave	Cambridge	1928
CAM.905	Massachusetts Avenue Bridge over Conrail	Massachusetts Ave	Cambridge	1900
CAM.916	Central Square Subway Station	Massachusetts Ave	Cambridge	1912
CAM.921	Harvard Bridge	Massachusetts Ave	Cambridge	r 1890
CAM.938	Cambridge Common	Massachusetts Ave	Cambridge	1631
CAM.939	Cambridge Common South Traffic Island	Massachusetts Ave	Cambridge	1976
CAM.945	Burying Ground Fence	Massachusetts Ave	Cambridge	1891
CAM.946	Flagstaff Park	Massachusetts Ave	Cambridge	1913
CAM.947	North Little Common	Massachusetts Ave	Cambridge	c 1858
CAM.949	Central Square Street Pattern	Massachusetts Ave	Cambridge	c 1630
CAM.334	Cambridge Armory	120 Massachusetts Ave	Cambridge	1902
CAM.332	Metropolitan Storage Warehouse	134 Massachusetts Ave	Cambridge	1895
CAM.1366	New England Confectionery Company Factory	250 Massachusetts Ave	Cambridge	1927
CAM.612	Lamson, The	351-355 Massachusetts Ave	Cambridge	1907
CAM.614	Lafayette Square Fire Station	380 Massachusetts Ave	Cambridge	1893
CAM.613	Shell Gas Station	385 Massachusetts Ave	Cambridge	1948
CAM.615	Salvation Army - Cambridge Citadel	400-402 Massachusetts Ave	Cambridge	1968
CAM.604		401-409 Massachusetts Ave	Cambridge	1966
CAM.603	Taylor, William A. House and Shop	411-413 Massachusetts Ave	Cambridge	1887
CAM.602	Barkin and Gorfinkle Building	415-429 Massachusetts Ave	Cambridge	1925

nv. No.	Property Name	Street	Town	Year
CAM.616	Kennedy, Frank A. Store	424 Massachusetts Ave	Cambridge	1896
CAM.617	Kutz, Issac Store	428 Massachusetts Ave	Cambridge	c 1910
AM.229	Kennedy, The	430-442 Massachusetts Ave	Cambridge	1890
AM.601	Robbins Building	433-447 Massachusetts Ave	Cambridge	1923
CAM.619	Blanchard Building	448-450 Massachusetts Ave	Cambridge	c 1886
CAM.324	South Row	452-458 Massachusetts Ave	Cambridge	1807
CAM.1393	Dana Row - South Row	452-458 Massachusetts Ave	Cambridge	2003
AM.599	Rogers, F. W. and G. M. Building	453-457 Massachusetts Ave	Cambridge	1885
CAM.620	Freedman Building	460-464 Massachusetts Ave	Cambridge	1933
AM.598	McDonald's Restaurant	463-467 Massachusetts Ave	Cambridge	1974
CAM.621	Central Square Realty Trust Building	468-480 Massachusetts Ave	Cambridge	1929
CAM.597	Moller's Furniture Store	485 Massachusetts Ave	Cambridge	1926
CAM.622	Longfellow, The	492-498 Massachusetts Ave	Cambridge	1893
CAM.596	Kane's Furniture Store	493-507 Massachusetts Ave	Cambridge	1916
CAM.625	Burger King Restaraunt	506 Massachusetts Ave	Cambridge	1970
AM.1394	Hovey, Phineas Building	512-514 Massachusetts Ave	Cambridge	1842
AM.595	Central Trust Building	515-527 Massachusetts Ave	Cambridge	1927
AM.627	Miller Store	520 Massachusetts Ave	Cambridge	1924
AM.628	Rosenwald Realty Corporation Building	522-526 Massachusetts Ave	Cambridge	1928
AM.230	Odd Fellows Hall	536 Massachusetts Ave	Cambridge	1884
AM.629	Clark - Lamb Building	546-550 Massachusetts Ave	Cambridge	c 1873
AM.630	Albani Building	552-566 Massachusetts Ave	Cambridge	1925
AM.592	Bullock, Charles Building	567-569 Massachusetts Ave	Cambridge	1859
AM.591	Central Square Theater	571-577 Massachusetts Ave	Cambridge	1917
AM.631	Ginsberg Building - Harvard Bazar	572-590 Massachusetts Ave	Cambridge	1913
AM.590	Morse, Asa P. Building	579-587 Massachusetts Ave	Cambridge	1893
AM.589	Cambridgeport National Bank Building	593-597 Massachusetts Ave	Cambridge	1869
CAM.632	Manhattan Market - Purity Supreme Super Market	596-610 Massachusetts Ave	Cambridge	1899
AM.588	Morse, Asa Second Building	599-601 Massachusetts Ave	Cambridge	1905
AM.587	Fisk and Coleman Building	603-605 Massachusetts Ave	Cambridge	1892
AM.633	Prospect House	614-620 Massachusetts Ave	Cambridge	1869
AM.586	Corcoran, John H. Building	615-627 Massachusetts Ave	Cambridge	1927
AM.634	Holmes Block I	624-638 Massachusetts Ave	Cambridge	1915
AM.1395	New Holmes Block	624-638 Massachusetts Ave	Cambridge	1998
AM.585	Woolworth, F. W. Building	633-641 Massachusetts Ave	Cambridge	1950
AM.584	Watriss Building	643-649 Massachusetts Ave	Cambridge	1880
AM.583	Dowse, Thomas House	653-655 Massachusetts Ave	Cambridge	1814

Thursday, September 17, 2020 Page 2 of 4

nv. No.	Property Name	Street	Town	Year
CAM.581	New England Gas and Electric Association II Bldg	671-675 Massachusetts Ave	Cambridge	1966
CAM.642	Central Square Building	674 Massachusetts Ave	Cambridge	1926
CAM.643	Chamberlain - Hyde Building	684-688 Massachusetts Ave	Cambridge	1869
CAM.580	Cambridgeport Savings Bank	689 Massachusetts Ave	Cambridge	1904
CAM.644	Dana Building	692-698 Massachusetts Ave	Cambridge	1872
CAM.645	Southwick Building	700-706 Massachusetts Ave	Cambridge	1908
CAM.646	Norris Building	710-720 Massachusetts Ave	Cambridge	1916
CAM.579	Cambridge Electric Light Building	719 Massachusetts Ave	Cambridge	1912
CAM.647	Thayer Building I	722-724 Massachusetts Ave	Cambridge	1863
CAM.648	Thayer Building II	728-730 Massachusetts Ave	Cambridge	1868
CAM.578	Southwick Building	731-751 Massachusetts Ave	Cambridge	1896
CAM.649	Dobbins and Draper Store	736-750 Massachusetts Ave	Cambridge	1922
CAM.650	Dobbins and Draper Store	736-750 Massachusetts Ave	Cambridge	1922
CAM.231	Cambridge Mutual Fire Insurance Company Building	763 Massachusetts Ave	Cambridge	1888
CAM.232	Central Square Post Office	770 Massachusetts Ave	Cambridge	1933
CAM.233	Cambridge City Hall	795 Massachusetts Ave	Cambridge	1889
CAM.651	Cambridge Senior Center	800-806 Massachusetts Ave	Cambridge	1925
CAM.652	Young Men's Christian Association Building	820-830 Massachusetts Ave	Cambridge	1896
CAM.1396	Brusch Medical Center	825-831 Massachusetts Ave	Cambridge	1951
CAM.653	Saint Peter's Episcopal Church	834 Massachusetts Ave	Cambridge	1867
CAM.654	Modern Manor Apartments	842-864 Massachusetts Ave	Cambridge	1925
CAM.900	Houghton Beech Tree	1000 Massachusetts Ave	Cambridge	
CAM.1127	Brentford Hall	1137 Massachusetts Ave	Cambridge	1899
CAM.1128	Dunham, Israel Houses	1156-1166 Massachusetts Ave	Cambridge	1858
CAM.1129		1168 Massachusetts Ave	Cambridge	c 1892
CAM.1130		1170-1174 Massachusetts Ave	Cambridge	c 1849
CAM.1131	Longfellow Court	1200 Massachusetts Ave	Cambridge	1916
CAM.1132	Gulf Gas Station	1201 Massachusetts Ave	Cambridge	1940
CAM.1133		1206 Massachusetts Ave	Cambridge	1965
CAM.1134		1208-1210 Massachusetts Ave	Cambridge	1842
CAM.1135	Quincy Hall	1218 Massachusetts Ave	Cambridge	1891
CAM.1136		1230 Massachusetts Ave	Cambridge	1907
CAM.1137		1234-1238 Massachusetts Ave	Cambridge	c 1894
CAM.1138	Hamden Hall	1246-1260 Massachusetts Ave	Cambridge	1902
CAM.1139	A. D. Club	1268-1270 Massachusetts Ave	Cambridge	1899
CAM.1140	Niles Building	1280 Massachusetts Ave	Cambridge	1984

Thursday, September 17, 2020 Page 3 of 4

nv. No.	Property Name	Street	Town	Year
CAM.234	Fairfax, The	1300-1306 Massachusetts Ave	Cambridge	1869
AM.1141	Fairfax - Hilton Block	1310-1312 Massachusetts Ave	Cambridge	1883
AM.1142	Fairfax - Hilton Block	1316 Massachusetts Ave	Cambridge	1885
AM.235	Porcellian Club	1320-1324 Massachusetts Ave	Cambridge	1890
AM.1143	Manter Hall	1325 Massachusetts Ave	Cambridge	1885
AM.236	Wadsworth House	1341 Massachusetts Ave	Cambridge	1726
AM.237	Holyoke Center	1350 Massachusetts Ave	Cambridge	1961
AM.1144	Cambridge Savings Bank	1372-1376 Massachusetts Ave	Cambridge	1923
AM.1145	Read, Joseph Stacey House	1380-1382 Massachusetts Ave	Cambridge	c 1783
AM.1146	Bartlett, Joseph House	1384-1392 Massachusetts Ave	Cambridge	c 1800
AM.1147	Harvard Coop Society	1400 Massachusetts Ave	Cambridge	1924
AM.1148	Harvard Coop Society	1408-1410 Massachusetts Ave	Cambridge	1956
AM.1149	Harvard Trust Company	1414 Massachusetts Ave	Cambridge	1923
AM.1150	College House	1420-1442 Massachusetts Ave	Cambridge	1832
AM.342	Gannett House	1511 Massachusetts Ave	Cambridge	1838
AM.343	Hemenway Gymnasium	1517 Massachusetts Ave	Cambridge	1938
AM.344	Hastings Hall	1519 Massachusetts Ave	Cambridge	1888
AM.345	Harvard Epworth Methodist Church	1555 Massachusetts Ave	Cambridge	1891
AM.1334	Francis - Allyn House	1564 Massachusetts Ave	Cambridge	1831
AM.1333	Sawin - Cobb - Wilson House	1626 Massachusetts Ave	Cambridge	1868
AM.238	Saunders, Charles Hicks House	1627 Massachusetts Ave	Cambridge	1862
AM.239	Montrose, The	1648 Massachusetts Ave	Cambridge	1898
AM.240	Dunvegan, The	1654 Massachusetts Ave	Cambridge	1898
AM.241	Worcester, Frederick House	1734 Massachusetts Ave	Cambridge	1886
AM.242	North Avenue Congregational Church	1803 Massachusetts Ave	Cambridge	1845
AM.243	Lovell Block	1853 Massachusetts Ave	Cambridge	1882
AM.1385	Cambridge Masonic Temple	1950 Massachusetts Ave	Cambridge	1910
AM.244	Saint James Episcopal Church	1991 Massachusetts Ave	Cambridge	1888
AM.245	Henderson Carriage Repository	2067-2089 Massachusetts Ave	Cambridge	1892
AM.246	Cornerstone Baptist Church	2114 Massachusetts Ave	Cambridge	1854
AM.247	Mead, Alpheus House	2200 Massachusetts Ave	Cambridge	1867
AM.248	Snow, Daniel House	2210 Massachusetts Ave	Cambridge	1868
AM.249	McLean, Isaac House	2218 Massachusetts Ave	Cambridge	1894
AM.250	Farwell, R. H. Double House	2222-2224 Massachusetts Ave	Cambridge	1891
AM.251	Saint John's Roman Catholic Church	2270 Massachusetts Ave	Cambridge	1904
AM.1390		2557 Massachusetts Ave	Cambridge	
AM.593	Powers, Hannah - Ginsberg, Harris Building	7-15 Norfolk St	Cambridge	c 1894

Thursday, September 17, 2020 Page 4 of 4

APPENDIX F

Laboratory Data Reports

ANALYTICAL REPORT

Lab Number: L2037651

Client: Haley & Aldrich, Inc.

465 Medford Street, Suite 2200 Charlestown, MA 02129-1400

ATTN: Todd Butler
Phone: (617) 886-7424

Project Name: MIT-SCC

Project Number: 134283-002 Report Date: 09/15/20

The original project report/data package is held by Alpha Analytical. This report/data package is paginated and should be reproduced only in its entirety. Alpha Analytical holds no responsibility for results and/or data that are not consistent with the original.

Certifications & Approvals: MA (M-MA086), NH NELAP (2064), CT (PH-0574), IL (200077), ME (MA00086), MD (348), NJ (MA935), NY (11148), NC (25700/666), PA (68-03671), RI (LAO00065), TX (T104704476), VT (VT-0935), VA (460195), USDA (Permit #P330-17-00196).

Eight Walkup Drive, Westborough, MA 01581-1019 508-898-9220 (Fax) 508-898-9193 800-624-9220 - www.alphalab.com

Project Name: MIT-SCC
Project Number: 134283-002

Lab Number: L2037651 **Report Date:** 09/15/20

Alpha Sample ID	Client ID	Matrix	Sample Location	Collection Date/Time	Receive Date
L2037651-01	HA20-E3	WATER	VASSAR STREET, CAMBRIDGE, MA	09/10/20 12:00	09/10/20
L2037651-02	OUTFALL	WATER	VASSAR STREET, CAMBRIDGE, MA	09/10/20 13:20	09/10/20
L2037651-03	TRIP BLANK	WATER	VASSAR STREET, CAMBRIDGE, MA	09/10/20 11:00	09/10/20

Project Name:MIT-SCCLab Number:L2037651Project Number:134283-002Report Date:09/15/20

Case Narrative

The samples were received in accordance with the Chain of Custody and no significant deviations were encountered during the preparation or analysis unless otherwise noted. Sample Receipt, Container Information, and the Chain of Custody are located at the back of the report.

Results contained within this report relate only to the samples submitted under this Alpha Lab Number and meet NELAP requirements for all NELAP accredited parameters unless otherwise noted in the following narrative. The data presented in this report is organized by parameter (i.e. VOC, SVOC, etc.). Sample specific Quality Control data (i.e. Surrogate Spike Recovery) is reported at the end of the target analyte list for each individual sample, followed by the Laboratory Batch Quality Control at the end of each parameter. Tentatively Identified Compounds (TICs), if requested, are reported for compounds identified to be present and are not part of the method/program Target Compound List, even if only a subset of the TCL are being reported. If a sample was re-analyzed or re-extracted due to a required quality control corrective action and if both sets of data are reported, the Laboratory ID of the re-analysis or re-extraction is designated with an "R" or "RE", respectively.

When multiple Batch Quality Control elements are reported (e.g. more than one LCS), the associated samples for each element are noted in the grey shaded header line of each data table. Any Laboratory Batch, Sample Specific % recovery or RPD value that is outside the listed Acceptance Criteria is bolded in the report. In reference to questions H (CAM) or 4 (RCP) when "NO" is checked, the performance criteria for CAM and RCP methods allow for some quality control failures to occur and still be within method compliance. In these instances, the specific failure is not narrated but noted in the associated QC Outlier Summary Report, located directly after the Case Narrative. QC information is also incorporated in the Data Usability Assessment table (Format 11) of our Data Merger tool, where it can be reviewed in conjunction with the sample result, associated regulatory criteria and any associated data usability implications.

Soil/sediments, solids and tissues are reported on a dry weight basis unless otherwise noted. Definitions of all data qualifiers and acronyms used in this report are provided in the Glossary located at the back of the report.

HOLD POLICY - For samples submitted on hold, Alpha's policy is to hold samples (with the exception of Air canisters) free of charge for 21 calendar days from the date the project is completed. After 21 calendar days, we will dispose of all samples submitted including those put on hold unless you have contacted your Alpha Project Manager and made arrangements for Alpha to continue to hold the samples. Air canisters will be disposed after 3 business days from the date the project is completed.

Please contact Project Management at 800-624-9220 with any questions.	

Project Name:MIT-SCCLab Number:L2037651Project Number:134283-002Report Date:09/15/20

Case Narrative (continued)

Report Submission

September 15, 2020: This final report includes the results of all requested analyses.

September 14, 2020: This is a preliminary report.

The analysis of Glycol was subcontracted. A copy of the laboratory report is included as an addendum. Please note: This data is only available in PDF format and is not available on Data Merger.

Sample Receipt

L2037651-03: A sample identified as "TRIP BLANK" was received; however, analysis was not requested.

Total Metals

L2037651-01 and -02 (all samples): The sample has elevated detection limits for all elements, with the exception of iron and mercury, due to the dilution required by the high concentrations of non-target elements.

Cyanide, Total

WG1408840: A Laboratory Duplicate was prepared with the sample batch, however, the native sample required re-analysis; therefore, the result could not be reported.

I, the undersigned, attest under the pains and penalties of perjury that, to the best of my knowledge and belief and based upon my personal inquiry of those responsible for providing the information contained in this analytical report, such information is accurate and complete. This certificate of analysis is not complete unless this page accompanies any and all pages of this report.

Jufani Morrissey-Tiffani Morrissey

Authorized Signature:

Title: Technical Director/Representative

ALPHA

Date: 09/15/20

ORGANICS

VOLATILES

Project Name: MIT-SCC Lab Number: L2037651

Project Number: 134283-002 **Report Date:** 09/15/20

SAMPLE RESULTS

Lab ID: L2037651-01 Date Collected: 09/10/20 12:00

Client ID: HA20-E3 Date Received: 09/10/20 Sample Location: VASSAR STREET, CAMBRIDGE, MA Field Prep: Refer to COC

Sample Depth:

Matrix: Water
Analytical Method: 128,624.1
Analytical Date: 09/12/20 09:29

Analyst: KJD

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
Volatile Organics by GC/MS - Wes	tborough Lab					
Methylene chloride	ND		ug/l	1.0		1
1,1-Dichloroethane	ND		ug/l	1.5		1
Carbon tetrachloride	ND		ug/l	1.0		1
1,1,2-Trichloroethane	ND		ug/l	1.5		1
Tetrachloroethene	ND		ug/l	1.0		1
1,2-Dichloroethane	ND		ug/l	1.5		1
1,1,1-Trichloroethane	ND		ug/l	2.0		1
Benzene	ND		ug/l	1.0		1
Toluene	ND		ug/l	1.0		1
Ethylbenzene	ND		ug/l	1.0		1
Vinyl chloride	ND		ug/l	1.0		1
1,1-Dichloroethene	ND		ug/l	1.0		1
cis-1,2-Dichloroethene	ND		ug/l	1.0		1
Trichloroethene	ND		ug/l	1.0		1
1,2-Dichlorobenzene	ND		ug/l	5.0		1
1,3-Dichlorobenzene	ND		ug/l	5.0		1
1,4-Dichlorobenzene	ND		ug/l	5.0		1
p/m-Xylene	ND		ug/l	2.0		1
o-xylene	ND		ug/l	1.0		1
Xylenes, Total	ND		ug/l	1.0		1
Acetone	ND		ug/l	10		1
Methyl tert butyl ether	ND		ug/l	10		1
Tert-Butyl Alcohol	ND		ug/l	100		1
Tertiary-Amyl Methyl Ether	ND		ug/l	20		1

Project Name: MIT-SCC Lab Number: L2037651

Project Number: 134283-002 **Report Date:** 09/15/20

SAMPLE RESULTS

Lab ID: L2037651-01 Date Collected: 09/10/20 12:00

Client ID: HA20-E3 Date Received: 09/10/20

Sample Location: VASSAR STREET, CAMBRIDGE, MA Field Prep: Refer to COC

Sample Depth:

Parameter Result Qualifier Units RL MDL Dilution Factor

Volatile Organics by GC/MS - Westborough Lab

Surrogate	% Recovery	Qualifier	Acceptance Criteria	
Pentafluorobenzene	100		60-140	
Fluorobenzene	96		60-140	
4-Bromofluorobenzene	102		60-140	

Project Name: MIT-SCC Lab Number: L2037651

Project Number: 134283-002 **Report Date:** 09/15/20

SAMPLE RESULTS

Lab ID: L2037651-01 Date Collected: 09/10/20 12:00

Client ID: HA20-E3 Date Received: 09/10/20 Sample Location: VASSAR STREET, CAMBRIDGE, MA Field Prep: Refer to COC

Sample Depth:

Matrix: Water

Analytical Method: 128,624.1-SIM Analytical Date: 09/12/20 09:29

Analyst: KJD

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
Volatile Organics by GC/MS-SIM - Westk	orough Lab					
1,4-Dioxane	ND		ug/l	50		1
Surrogate			% Recovery	Qualifier		eptance riteria

Surrogate	% Recovery	Acceptance Qualifier Criteria	
Fluorobenzene	99	60-140	
4-Bromofluorobenzene	104	60-140	

Project Name: MIT-SCC Lab Number: L2037651

Project Number: 134283-002 **Report Date:** 09/15/20

SAMPLE RESULTS

Lab ID: L2037651-01 Date Collected: 09/10/20 12:00

Client ID: HA20-E3 Date Received: 09/10/20

Sample Location: VASSAR STREET, CAMBRIDGE, MA Field Prep: Refer to COC

Sample Depth:

Matrix: Water Extraction Method: EPA 504.1
Analytical Method: 14,504.1 Extraction Date: 09/11/20 13:26

Analytical Date: 09/11/20 15:32

Analyst: AMM

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	Column
Microextractables by GC - Westborough Lab							
1,2-Dibromoethane	ND		ug/l	0.010		1	В

Project Name: MIT-SCC Lab Number: L2037651

Project Number: 134283-002 **Report Date:** 09/15/20

Method Blank Analysis Batch Quality Control

Analytical Method: 14,504.1 Extraction Method: EPA 504.1

Analytical Date: 09/11/20 14:38 Extraction Date: 09/11/20 13:26

Analyst: AMM

Parameter	Result	Qualifier	Units	RL	MDL	
Microextractables by GC - Westb	oorough Lab fo	or sample(s)	: 01	Batch: WG140	8929-1	
1,2-Dibromoethane	ND		ug/l	0.010		В

Project Name: MIT-SCC Lab Number: L2037651

Project Number: 134283-002 **Report Date:** 09/15/20

Method Blank Analysis Batch Quality Control

Analytical Method: 128,624.1-SIM Analytical Date: 09/12/20 08:52

Analyst: MKS

Parameter	Result	Qualifier	Units		RL	MDL	
Volatile Organics by GC/MS-SIM -	Westborough	Lab for s	ample(s):	01	Batch:	WG1409385-4	
1,4-Dioxane	ND		ug/l		50		

		Acceptance)
Surrogate	%Recovery	Qualifier Criteria	
Fluorobenzene	100	60-140	
4-Bromofluorobenzene	111	60-140	

Project Name: MIT-SCC Lab Number: L2037651

Project Number: 134283-002 **Report Date:** 09/15/20

Method Blank Analysis Batch Quality Control

Analytical Method: 128,624.1 Analytical Date: 09/12/20 08:52

Analyst: MKS

arameter	Result	Qualifier Unit	s	RL	MDL
olatile Organics by GC/MS -	Westborough Lab	for sample(s):	01	Batch:	WG1409389-4
Methylene chloride	ND	ug	/I	1.0	
1,1-Dichloroethane	ND	ug	/I	1.5	
Carbon tetrachloride	ND	ug	/I	1.0	
1,1,2-Trichloroethane	ND	ug	/I	1.5	
Tetrachloroethene	ND	ug	/I	1.0	
1,2-Dichloroethane	ND	ug	/I	1.5	
1,1,1-Trichloroethane	ND	ug	/I	2.0	
Benzene	ND	ug	/I	1.0	
Toluene	ND	ug	/I	1.0	
Ethylbenzene	ND	ug	/I	1.0	
Vinyl chloride	ND	ug	/I	1.0	
1,1-Dichloroethene	ND	ug	/I	1.0	
cis-1,2-Dichloroethene	ND	ug	/I	1.0	
Trichloroethene	ND	ug	/I	1.0	
1,2-Dichlorobenzene	ND	ug	/I	5.0	
1,3-Dichlorobenzene	ND	ug	/I	5.0	
1,4-Dichlorobenzene	ND	ug	/I	5.0	
p/m-Xylene	ND	ug	/I	2.0	
o-xylene	ND	ug	/I	1.0	
Xylenes, Total	ND	ug	/I	1.0	
Acetone	ND	ug	/I	10	
Methyl tert butyl ether	ND	ug	/I	10	
Tert-Butyl Alcohol	ND	ug	/I	100	
Tertiary-Amyl Methyl Ether	ND	ug	/I	20	

Project Name: MIT-SCC Lab Number: L2037651

> Method Blank Analysis Batch Quality Control

Analytical Method: 128,624.1 Analytical Date: 09/12/20 08:52

Analyst: MKS

Parameter Result Qualifier Units RL MDL

Volatile Organics by GC/MS - Westborough Lab for sample(s): 01 Batch: WG1409389-4

		Ac	ceptance
Surrogate	%Recovery	Qualifier	Criteria
D	404		00.440
Pentafluorobenzene	101		60-140
Fluorobenzene	99		60-140
4-Bromofluorobenzene	97		60-140

Project Name: MIT-SCC Lab Number:

L2037651

Project Number:

134283-002

Report Date:

09/15/20

Parameter	LCS %Recovery	Qual	LCSD %Recovery	Qual	%Recovery Limits	RPD	Qual	RPD Limits	Column
Microextractables by GC - Westborough Lab	Associated sam	ple(s): 01	Batch: WG1408	3929-2					
1,2-Dibromoethane	106		-		80-120	-			В

Lab Number:

L2037651

09/15/20

Project Number:

Project Name:

134283-002

MIT-SCC

Report Date:

Parameter	LCS %Recovery	Qual	LCSD %Recovery	Qual	%Recovery Limits	RPD	Qual	RPD Limits	
Volatile Organics by GC/MS-SIM - Westbor	ough Lab Associa	ted sample(s)	: 01 Batch:	WG140938	5-3				
1,4-Dioxane	110		-		60-140	-		20	

Surrogate	LCS %Recovery G	LCSD Qual %Recovery	Qual	Acceptance Criteria
Fluorobenzene 4-Bromofluorobenzene	101 109			60-140 60-140

Project Name: MIT-SCC

Project Number: 134283-002

Lab Number: L2037651

Report Date: 09/15/20

Parameter	LCS %Recovery		CSD covery Qual	%Recovery Limits	RPD	RP Qual Lim	
Volatile Organics by GC/MS - Westborough	Lab Associated	sample(s): 01 Bate	ch: WG1409389-3	3			
Methylene chloride	95		-	60-140	-	28	3
1,1-Dichloroethane	95		-	50-150	-	49)
Carbon tetrachloride	95		-	70-130	-	4	
1,1,2-Trichloroethane	100		-	70-130	-	4:	5
Tetrachloroethene	100		-	70-130	-	39)
1,2-Dichloroethane	100		-	70-130	-	49)
1,1,1-Trichloroethane	100		-	70-130	-	36	3
Benzene	100		-	65-135	-	6	
Toluene	105		-	70-130	-	4	
Ethylbenzene	100		-	60-140	•	69	3
Vinyl chloride	80		-	5-195	-	66	3
1,1-Dichloroethene	90		-	50-150	-	32	2
cis-1,2-Dichloroethene	110		-	60-140	-	30)
Trichloroethene	90		-	65-135	-	48	3
1,2-Dichlorobenzene	95		-	65-135	-	5	7
1,3-Dichlorobenzene	90		-	70-130	-	4:	3
1,4-Dichlorobenzene	90		-	65-135	-	5	7
p/m-Xylene	92		-	60-140	-	30)
o-xylene	90		-	60-140	-	30)
Acetone	96		-	40-160	-	30)
Methyl tert butyl ether	90		-	60-140	-	30)
Tert-Butyl Alcohol	100		-	60-140	-	30)
Tertiary-Amyl Methyl Ether	90		-	60-140	-	30)

Lab Number: L2037651

Project Number: 134283-002 Report Date:

09/15/20

LCSD LCS %Recovery RPD %Recovery %Recovery Limits Parameter Qual Qual Limits RPD Qual

Volatile Organics by GC/MS - Westborough Lab Associated sample(s): 01 Batch: WG1409389-3

Surrogate	LCS %Recovery Qual	LCSD %Recovery Qua	Acceptance Criteria
Pentafluorobenzene	102		60-140
Fluorobenzene	98		60-140
4-Bromofluorobenzene	97		60-140

Project Name:

MIT-SCC

Matrix Spike Analysis Batch Quality Control

Project Name: MIT-SCC **Project Number:** 134283-002

Lab Number:

L2037651

Report Date:

09/15/20

Parameter	Native Sample	MS Added	MS Found %	MS Recovery	Qual	MSD Found	MSD %Recovery	Recove Qual Limit	•	RPD Qual Limit	s Column
Microextractables by GC	- Westborough Lab	Associat	ed sample(s): 01	QC Batch	ID: WG1	408929-3	QC Sample: I	L2036508-01	Client ID: I	MS Sample	
1,2-Dibromoethane	ND	0.244	0.301	124	Q	-	-	80-120	-	20	В
1,2-Dibromo-3-chloropropane	ND	0.244	0.265	109		-	-	80-120	-	20	В
1,2,3-Trichloropropane	ND	0.244	0.218	90		-	-	80-120	-	20	В

SEMIVOLATILES

Project Name: MIT-SCC Lab Number: L2037651

Project Number: 134283-002 **Report Date:** 09/15/20

SAMPLE RESULTS

Lab ID: L2037651-01 Date Collected: 09/10/20 12:00

Client ID: HA20-E3 Date Received: 09/10/20

Sample Location: VASSAR STREET, CAMBRIDGE, MA Field Prep: Refer to COC

Sample Depth:

Matrix: Water Extraction Method: EPA 625.1
Analytical Method: 129,625.1 Extraction Date: 09/11/20 02:13

Analytical Date: 09/11/20 20:34

Analyst: JG

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
Semivolatile Organics by GC/MS - V	Westborough Lab					
Bis(2-ethylhexyl)phthalate	ND		ug/l	2.20		1
Butyl benzyl phthalate	ND		ug/l	5.00		1
Di-n-butylphthalate	ND		ug/l	5.00		1
Di-n-octylphthalate	ND		ug/l	5.00		1
Diethyl phthalate	ND		ug/l	5.00		1
Dimethyl phthalate	ND		ug/l	5.00		1

Surrogate	% Recovery	Acceptance Qualifier Criteria
Nitrobenzene-d5	116	42-122
2-Fluorobiphenyl	85	46-121
4-Terphenyl-d14	92	47-138

Project Name: MIT-SCC Lab Number: L2037651

Project Number: 134283-002 **Report Date:** 09/15/20

SAMPLE RESULTS

Lab ID: L2037651-01 Date Collected: 09/10/20 12:00

Client ID: HA20-E3 Date Received: 09/10/20

Sample Location: VASSAR STREET, CAMBRIDGE, MA Field Prep: Refer to COC

Sample Depth:

Matrix: Water Extraction Method: EPA 625.1

Analytical Method: 129,625.1-SIM Extraction Date: 09/11/20 02:17

Analytical Date: 09/11/20 17:30

Analyst: DV

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	
Semivolatile Organics by GC/MS-	SIM - Westborough La	ab					
Acenaphthene	ND		ug/l	0.100		1	
Fluoranthene	0.100		ug/l	0.100		1	
Naphthalene	13.2		ug/l	0.100		1	
Benzo(a)anthracene	ND		ug/l	0.100		1	
Benzo(a)pyrene	ND		ug/l	0.100		1	
Benzo(b)fluoranthene	ND		ug/l	0.100		1	
Benzo(k)fluoranthene	ND		ug/l	0.100		1	
Chrysene	ND		ug/l	0.100		1	
Acenaphthylene	ND		ug/l	0.100		1	
Anthracene	ND		ug/l	0.100		1	
Benzo(ghi)perylene	ND		ug/l	0.100		1	
Fluorene	ND		ug/l	0.100		1	
Phenanthrene	0.267		ug/l	0.100		1	
Dibenzo(a,h)anthracene	ND		ug/l	0.100		1	
Indeno(1,2,3-cd)pyrene	ND		ug/l	0.100		1	
Pyrene	ND		ug/l	0.100		1	
Pentachlorophenol	ND		ug/l	1.00		1	

Surrogate	% Recovery	Acceptance Qualifier Criteria	
2-Fluorophenol	51	25-87	
Phenol-d6	39	16-65	
Nitrobenzene-d5	80	42-122	
2-Fluorobiphenyl	78	46-121	
2,4,6-Tribromophenol	92	45-128	
4-Terphenyl-d14	79	47-138	

Project Name: MIT-SCC Lab Number: L2037651

Project Number: 134283-002 **Report Date:** 09/15/20

Method Blank Analysis Batch Quality Control

 Analytical Method:
 129,625.1
 Extraction Method:
 EPA 625.1

 Analytical Date:
 09/11/20 17:51
 Extraction Date:
 09/11/20 02:13

Analyst: JG

Parameter	Result	Qualifier	Units	RL	MDL	
Semivolatile Organics by GC/MS - V	Vestborough	Lab for sa	ample(s):	01 Batch:	WG1408646-1	
Bis(2-ethylhexyl)phthalate	ND		ug/l	2.20		
Butyl benzyl phthalate	ND		ug/l	5.00		
Di-n-butylphthalate	ND		ug/l	5.00		
Di-n-octylphthalate	ND		ug/l	5.00		
Diethyl phthalate	ND		ug/l	5.00		
Dimethyl phthalate	ND		ug/l	5.00		

		Acceptance		
Surrogate	%Recovery	Qualifier Criteria		
Nitrobenzene-d5	112	42-122		
2-Fluorobiphenyl	81	46-121		
4-Terphenyl-d14	86	47-138		

Project Name: Lab Number: MIT-SCC L2037651 **Project Number:** 134283-002

Report Date: 09/15/20

Method Blank Analysis Batch Quality Control

Analytical Method: 129,625.1-SIM Extraction Method: EPA 625.1 Analytical Date: 09/11/20 16:24 09/11/20 02:17 **Extraction Date:**

Analyst: DV

Parameter	Result	Qualifier	Units	RL	MDL	
Semivolatile Organics by GC/MS	S-SIM - Westbo	rough Lab	for sample	e(s): 01	Batch: WG14086	647-1
Acenaphthene	ND		ug/l	0.100		
Fluoranthene	ND		ug/l	0.100		
Naphthalene	ND		ug/l	0.100		
Benzo(a)anthracene	ND		ug/l	0.100		
Benzo(a)pyrene	ND		ug/l	0.100		
Benzo(b)fluoranthene	ND		ug/l	0.100		
Benzo(k)fluoranthene	ND		ug/l	0.100		
Chrysene	ND		ug/l	0.100		
Acenaphthylene	ND		ug/l	0.100		
Anthracene	ND		ug/l	0.100		
Benzo(ghi)perylene	ND		ug/l	0.100		
Fluorene	ND		ug/l	0.100		
Phenanthrene	ND		ug/l	0.100		
Dibenzo(a,h)anthracene	ND		ug/l	0.100		
Indeno(1,2,3-cd)pyrene	ND		ug/l	0.100		
Pyrene	ND		ug/l	0.100		
Pentachlorophenol	ND		ug/l	1.00		

Surrogate	%Recovery Qua	Acceptance difier Criteria
2-Fluorophenol	49	25-87
Phenol-d6	37	16-65
Nitrobenzene-d5	78	42-122
2-Fluorobiphenyl	77	46-121
2,4,6-Tribromophenol	86	45-128
4-Terphenyl-d14	78	47-138

Project Name: MIT-SCC

Lab Number:

L2037651

Project Number: 134283-002

Report Date:

Parameter	LCS %Recovery	Qual	LCSD %Recovery	Qual	%Recovery Limits	RPD	Qual	RPD Limits	
Semivolatile Organics by GC/MS - Westborou	gh Lab Associa	ated sample(s)	: 01 Batch:	WG1408646-	2				
Bis(2-ethylhexyl)phthalate	105		-		29-137	-		82	
Butyl benzyl phthalate	91		-		1-140	-		60	
Di-n-butylphthalate	88		-		8-120	-		47	
Di-n-octylphthalate	104		-		19-132	-		69	
Diethyl phthalate	85		-		1-120	-		100	
Dimethyl phthalate	81		-		1-120	-		183	

Surrogate	LCS %Recovery Qual	LCSD %Recovery Qual	Acceptance Criteria
Nitrobenzene-d5	113		42-122
2-Fluorobiphenyl	80		46-121
4-Terphenyl-d14	83		47-138

Project Name: MIT-SCC

Project Number:

134283-002

Lab Number: L2037651

Report Date: 09/15/20

rameter	LCS %Recovery 0	LCSD Qual %Recovery	%Recovery Qual Limits	RPD	RPD Qual Limits
emivolatile Organics by GC/MS-SIM - Wes	tborough Lab Assoc	iated sample(s): 01 Batc	ch: WG1408647-2		
Acenaphthene	75	-	60-132	-	30
Fluoranthene	80	-	43-121	-	30
Naphthalene	74	-	36-120	-	30
Benzo(a)anthracene	79	-	42-133	-	30
Benzo(a)pyrene	77	-	32-148	-	30
Benzo(b)fluoranthene	78	-	42-140	-	30
Benzo(k)fluoranthene	82	-	25-146	-	30
Chrysene	76	-	44-140	-	30
Acenaphthylene	83	-	54-126	-	30
Anthracene	80	-	43-120	-	30
Benzo(ghi)perylene	72	-	1-195	-	30
Fluorene	78	-	70-120	-	30
Phenanthrene	76	-	65-120	-	30
Dibenzo(a,h)anthracene	76	-	1-200	-	30
Indeno(1,2,3-cd)pyrene	77	-	1-151	-	30
Pyrene	80	-	70-120	-	30
Pentachlorophenol	85	-	38-152	-	30

Project Name: MIT-SCC

134283-002

Lab Number: L2037651

Report Date: 09/15/20

LCS LCSD %Recovery RPD Parameter %Recovery Qual %Recovery Qual Limits RPD Qual Limits

Semivolatile Organics by GC/MS-SIM - Westborough Lab Associated sample(s): 01 Batch: WG1408647-2

Surrogate	LCS %Recovery Qual %	LCSD Recovery Qual	Acceptance Criteria
2-Fluorophenol	49		25-87
Phenol-d6	38		16-65
Nitrobenzene-d5	76		42-122
2-Fluorobiphenyl	74		46-121
2,4,6-Tribromophenol	86		45-128
4-Terphenyl-d14	75		47-138

Project Number:

PCBS

Serial_No:09152015:27

09/11/20

Cleanup Date:

Project Name:MIT-SCCLab Number:L2037651Project Number:134283-002Report Date:09/15/20

SAMPLE RESULTS

Lab ID: L2037651-01 Date Collected: 09/10/20 12:00

Client ID: HA20-E3 Date Received: 09/10/20 Sample Location: VASSAR STREET, CAMBRIDGE, MA Field Prep: Refer to COC

Sample Depth:

Matrix: Water Extraction Method: EPA 608.3
Analytical Method: 127,608.3
Analytical Date: 09/11/20 10:56
Extraction Date: 09/11/20 00:32
Cleanup Method: EPA 3665A

Analyst: CW Cleanup Date: 09/11/20 Cleanup Method: EPA 3660B

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	Column
Polychlorinated Biphenyls by	GC - Westborough Lab						
Aroclor 1016	ND		ug/l	0.250		1	Α
Aroclor 1221	ND		ug/l	0.250		1	Α
Aroclor 1232	ND		ug/l	0.250		1	Α
Aroclor 1242	ND		ug/l	0.250		1	Α
Aroclor 1248	ND		ug/l	0.250		1	Α
Aroclor 1254	ND		ug/l	0.250		1	Α
Aroclor 1260	ND		ua/l	0.200		1	Α

		Acceptance		
Surrogate	% Recovery	Qualifier	Criteria	Column
2,4,5,6-Tetrachloro-m-xylene	63		37-123	В
Decachlorobiphenyl	57		38-114	В
2,4,5,6-Tetrachloro-m-xylene	61		37-123	Α
Decachlorobiphenyl	51		38-114	Α

Project Name: MIT-SCC Lab Number: L2037651

Project Number: 134283-002 **Report Date:** 09/15/20

Method Blank Analysis Batch Quality Control

Analytical Method: 127,608.3 Analytical Date: 09/11/20 11:27

Analyst: CW

Extraction Method: EPA 608.3
Extraction Date: 09/11/20 00:32
Cleanup Method: EPA 3665A
Cleanup Date: 09/11/20
Cleanup Method: EPA 3660B
Cleanup Date: 09/11/20

Parameter	Result	Qualifier	Units	RL	MDL	Column
Polychlorinated Biphenyls by GC - V	Vestborough	Lab for s	ample(s):	01 Batch:	WG1408626	-1
Aroclor 1016	ND		ug/l	0.250		Α
Aroclor 1221	ND		ug/l	0.250		Α
Aroclor 1232	ND		ug/l	0.250		Α
Aroclor 1242	ND		ug/l	0.250		Α
Aroclor 1248	ND		ug/l	0.250		Α
Aroclor 1254	ND		ug/l	0.250		Α
Aroclor 1260	ND		ug/l	0.200		Α

		Acceptance			
Surrogate	%Recovery Qualifi	er Criteria	Column		
0.450 Tatachlara a adam	00	07.400			
2,4,5,6-Tetrachloro-m-xylene	68	37-123	В		
Decachlorobiphenyl	60	38-114	В		
2,4,5,6-Tetrachloro-m-xylene	65	37-123	Α		
Decachlorobiphenyl	55	38-114	Α		

Project Name: MIT-SCC

Lab Number:

L2037651

Project Number: 134283-002

Report Date:

Davamatan	LCS	Overl	LCSD %Recoverv	0	%Recovery	222	0	RPD	0-1
Parameter	%Recovery	Qual	76Recovery	Qual	Limits	RPD	Qual	Limits	Column
Polychlorinated Biphenyls by GC - Westl	borough Lab Associa	ted sample(s)	: 01 Batch:	WG1408626	-2				
Aroclor 1016	73		-		50-140	-		36	Α
Aroclor 1260	62		-		8-140	-		38	А

Surrogate	LCS %Recovery Qua	LCSD I %Recovery Qual	Acceptance Criteria Column
2,4,5,6-Tetrachloro-m-xylene	67		37-123 B
Decachlorobiphenyl	58		38-114 B
2,4,5,6-Tetrachloro-m-xylene	65		37-123 A
Decachlorobiphenyl	53		38-114 A

METALS

09/10/20 12:00

Date Collected:

Project Name:MIT-SCCLab Number:L2037651Project Number:134283-002Report Date:09/15/20

SAMPLE RESULTS

Lab ID: L2037651-01

Client ID: HA20-E3 Date Received: 09/10/20 Sample Location: VASSAR STREET, CAMBRIDGE, MA Field Prep: Refer to COC

Sample Depth:

Matrix: Water

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	Date Prepared	Date Analyzed	Prep Method	Analytical Method	Analyst
T	<i>c</i>										
Total Metals - Mans	sfield Lab										
Antimony, Total	ND		mg/l	0.02000		5	09/11/20 12:1	5 09/14/20 10:37	EPA 3005A	3,200.8	AM
Arsenic, Total	0.00602		mg/l	0.00500		5	09/11/20 12:1	5 09/14/20 10:37	EPA 3005A	3,200.8	AM
Cadmium, Total	ND		mg/l	0.00100		5	09/11/20 12:1	5 09/14/20 10:37	EPA 3005A	3,200.8	AM
Chromium, Total	ND		mg/l	0.00500		5	09/11/20 12:1	5 09/14/20 10:37	EPA 3005A	3,200.8	AM
Copper, Total	ND		mg/l	0.00500		5	09/11/20 12:1	5 09/14/20 10:37	EPA 3005A	3,200.8	AM
Iron, Total	0.568		mg/l	0.050		1	09/11/20 12:1	5 09/11/20 18:34	EPA 3005A	19,200.7	GD
Lead, Total	ND		mg/l	0.00500		5	09/11/20 12:1	5 09/14/20 10:37	EPA 3005A	3,200.8	AM
Mercury, Total	ND		mg/l	0.00020		1	09/11/20 12:4	3 09/11/20 17:00	EPA 245.1	3,245.1	AL
Nickel, Total	ND		mg/l	0.01000		5	09/11/20 12:1	5 09/14/20 10:37	EPA 3005A	3,200.8	AM
Selenium, Total	ND		mg/l	0.02500		5	09/11/20 12:1	5 09/14/20 10:37	EPA 3005A	3,200.8	AM
Silver, Total	ND		mg/l	0.00200		5	09/11/20 12:1	5 09/14/20 10:37	EPA 3005A	3,200.8	AM
Zinc, Total	ND		mg/l	0.05000		5	09/11/20 12:1	5 09/14/20 10:37	EPA 3005A	3,200.8	AM
Total Hardness by	SM 2340E	B - Mansfiel	d Lab								
Hardness	159		mg/l	0.660	NA	1	09/11/20 12:1	5 09/11/20 18:34	EPA 3005A	19,200.7	GD
General Chemistry	- Mansfiel	ld Lab									
Chromium, Trivalent	ND		mg/l	0.010		1		09/14/20 10:37	NA	107,-	

09/10/20 13:20

Date Collected:

Project Name:MIT-SCCLab Number:L2037651Project Number:134283-002Report Date:09/15/20

SAMPLE RESULTS

Lab ID: L2037651-02 Client ID: OUTFALL

Client ID: OUTFALL Date Received: 09/10/20 Sample Location: VASSAR STREET, CAMBRIDGE, MA Field Prep: Not Specified

Sample Depth:

Matrix: Water

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	Date Prepared	Date Analyzed	Prep Method	Analytical Method	Analyst
Total Metals - Mans	sfield I ah										
Antimony, Total	ND		mg/l	0.02000		5	00/44/20 42:4	5 09/14/20 10:48	EDA 2005A	3,200.8	AM
•	ND									3,200.8	
Arsenic, Total			mg/l	0.00500		5		5 09/14/20 10:48		•	AM
Cadmium, Total	ND		mg/l	0.00100		5	09/11/20 12:1	5 09/14/20 10:48	EPA 3005A	3,200.8	AM
Chromium, Total	ND		mg/l	0.00500		5	09/11/20 12:1	5 09/14/20 10:48	EPA 3005A	3,200.8	AM
Copper, Total	ND		mg/l	0.00500		5	09/11/20 12:1	5 09/14/20 10:48	EPA 3005A	3,200.8	AM
Iron, Total	0.109		mg/l	0.050		1	09/11/20 12:1	5 09/11/20 19:34	EPA 3005A	19,200.7	GD
Lead, Total	ND		mg/l	0.00500		5	09/11/20 12:1	5 09/14/20 10:48	EPA 3005A	3,200.8	AM
Mercury, Total	ND		mg/l	0.00020		1	09/11/20 12:4	3 09/11/20 16:47	EPA 245.1	3,245.1	AL
Nickel, Total	ND		mg/l	0.01000		5	09/11/20 12:1	5 09/14/20 10:48	EPA 3005A	3,200.8	AM
Selenium, Total	ND		mg/l	0.02500		5	09/11/20 12:1	5 09/14/20 10:48	EPA 3005A	3,200.8	AM
Silver, Total	ND		mg/l	0.00200		5	09/11/20 12:1	5 09/14/20 10:48	EPA 3005A	3,200.8	AM
Zinc, Total	ND		mg/l	0.05000		5	09/11/20 12:1	5 09/14/20 10:48	EPA 3005A	3,200.8	AM
Total Hardness by	SM 2340E	B - Mansfiel	d Lab								
Hardness	387		mg/l	0.660	NA	1	09/11/20 12:1	5 09/11/20 19:34	EPA 3005A	19,200.7	GD
General Chemistry	- Mansfie	ld Lab									
Chromium, Trivalent	ND		mg/l	0.010		1		09/14/20 10:48	NA	107,-	

Serial_No:09152015:27

Project Name: Lab Number: MIT-SCC **Project Number:** 134283-002

L2037651 **Report Date:** 09/15/20

Method Blank Analysis Batch Quality Control

Parameter	Result Qualifier	Units	RL	MDL	Dilution Factor	Date Prepared	Date Analyzed	Analytical Method	Analyst
Total Metals - Mansfi	eld Lab for sample(s)	: 01-02 E	Batch: W0	G14088	31-1				
Antimony, Total	ND	mg/l	0.00400		1	09/11/20 12:15	09/14/20 08:56	3,200.8	AM
Arsenic, Total	ND	mg/l	0.00100		1	09/11/20 12:15	09/14/20 08:56	3,200.8	AM
Cadmium, Total	ND	mg/l	0.00020		1	09/11/20 12:15	09/14/20 08:56	3,200.8	AM
Chromium, Total	ND	mg/l	0.00100		1	09/11/20 12:15	09/14/20 08:56	3,200.8	AM
Copper, Total	ND	mg/l	0.00100		1	09/11/20 12:15	09/14/20 08:56	3,200.8	AM
Lead, Total	ND	mg/l	0.00100		1	09/11/20 12:15	09/14/20 08:56	3,200.8	AM
Nickel, Total	ND	mg/l	0.00200		1	09/11/20 12:15	09/14/20 08:56	3,200.8	AM
Selenium, Total	ND	mg/l	0.00500		1	09/11/20 12:15	09/14/20 08:56	3,200.8	AM
Silver, Total	ND	mg/l	0.00040		1	09/11/20 12:15	09/14/20 08:56	3,200.8	AM
Zinc, Total	ND	mg/l	0.01000		1	09/11/20 12:15	09/14/20 08:56	3,200.8	AM

Prep Information

Digestion Method: EPA 3005A

Parameter	Result Qualifier	Units	RL	MDL	Dilution Factor	Date Prepared	Date Analyzed	Analytical Method	Analyst
Total Metals - Mansfie	ld Lab for sample(s):	01-02 E	Batch: Wo	G14088	35-1				
Iron, Total	ND	mg/l	0.050		1	09/11/20 12:15	09/11/20 19:07	19,200.7	GD

Prep Information

Digestion Method: EPA 3005A

Parameter	Result Qualifier	Units	RL	MDL	Dilution Factor	Date Prepared	Date Analyzed	Analytical Method	Analyst
Total Hardness by SM	2340B - Mansfield Lal	b for sam	nple(s):	01-02 E	Batch: WG	1408835-1			
Hardness	ND	mg/l	0.660	NA	1	09/11/20 12:15	09/11/20 19:07	19,200.7	GD

Prep Information

Digestion Method: EPA 3005A

Serial_No:09152015:27

Project Name: Lab Number: MIT-SCC L2037651 Project Number: 134283-002

Report Date: 09/15/20

Method Blank Analysis Batch Quality Control

Parameter	Result Qualifier	Units	RL	MDL	Dilution Factor	Date Prepared	Date Analyzed	Analytica Method	l Analyst
Total Metals - Mansfield Lab for sample(s): 01-02 Batch: WG1408838-1									
Mercury, Total	ND	mg/l	0.00020		1	09/11/20 12:43	09/11/20 16:41	3,245.1	AL

Prep Information

Digestion Method: EPA 245.1

Project Name: MIT-SCC
Project Number: 134283-002

Lab Number:

L2037651

Report Date:

Parameter	LCS %Recovery	LCSD Qual %Recovery	%Recovery Qual Limits	RPD	Qual	RPD Limits
Total Metals - Mansfield Lab Associated sample	(s): 01-02 Bato	ch: WG1408831-2				
Antimony, Total	94	-	85-115	-		
Arsenic, Total	102	-	85-115	-		
Cadmium, Total	106	-	85-115	-		
Chromium, Total	101	-	85-115	-		
Copper, Total	104	-	85-115	-		
Lead, Total	106	-	85-115	-		
Nickel, Total	95	-	85-115	-		
Selenium, Total	103	-	85-115	-		
Silver, Total	103	-	85-115	-		
Zinc, Total	110	-	85-115	-		
Total Metals - Mansfield Lab Associated sample	(s): 01-02 Bato	ch: WG1408835-2				
Iron, Total	102	-	85-115	-		
Total Hardness by SM 2340B - Mansfield Lab A	ssociated sample	e(s): 01-02 Batch: WG1408	835-2			
Hardness	106	-	85-115	-		
Total Metals - Mansfield Lab Associated sample	(s): 01-02 Bato	ch: WG1408838-2				
Mercury, Total	101	-	85-115	-		

Matrix Spike Analysis Batch Quality Control

Project Name: MIT-SCC
Project Number: 134283-002

Lab Number: L2037651

Report Date: 09/15/20

arameter	Native Sample	MS Added	MS Found	MS %Recovery	Qual	MSD Found	MSD %Recovery Qu	Recovery ıal Limits	RPD (RPD Qual Limits
Гotal Metals - Mansfield Lab	b Associated san	nple(s): 01-02	QC Bat	ch ID: WG140	8831-3	QC Sam	ple: L2037651-01	Client ID: HA	20-E3	
Antimony, Total	ND	0.5	0.5672	113		-	-	70-130	-	20
Arsenic, Total	0.00602	0.12	0.1323	105		-	-	70-130	-	20
Cadmium, Total	ND	0.051	0.05537	108		-	-	70-130	-	20
Chromium, Total	ND	0.2	0.2020	101		-	-	70-130	-	20
Copper, Total	ND	0.25	0.2603	104		-	-	70-130	-	20
Lead, Total	ND	0.51	0.5495	108		-	-	70-130	-	20
Nickel, Total	ND	0.5	0.4888	98		-	-	70-130	-	20
Selenium, Total	ND	0.12	0.1261	105		-	-	70-130	-	20
Silver, Total	ND	0.05	0.05335	107		-	-	70-130	-	20
Zinc, Total	ND	0.5	0.5468	109		-	-	70-130	-	20
otal Metals - Mansfield Lab	b Associated san	nple(s): 01-02	QC Bat	ch ID: WG140	8835-3	QC Sam	ple: L2037651-01	Client ID: HA	20-E3	
Iron, Total	0.568	1	1.59	102		-	-	75-125	-	20
otal Hardness by SM 2340	DB - Mansfield La	b Associated	sample(s)	: 01-02 QC E	Batch ID	: WG1408	835-3 QC Samp	ole: L2037651-0	1 Clier	nt ID: HA20-E3
Hardness	159	66.2	224	98		-	-	75-125	-	20
Total Metals - Mansfield Lat	b Associated san	nple(s): 01-02	QC Bat	ch ID: WG140	8838-3	QC Sam	ple: L2037651-02	Client ID: OU	TFALL	
Mercury, Total	ND	0.005	0.00488	98		-	-	70-130	-	20

Lab Duplicate Analysis Batch Quality Control

Project Name: MIT-SCC **Project Number:** 134283-002

Lab Number:

L2037651

Report Date: 09/15/20

Parameter	Native Sample	Duplicate Sample	Units	RPD	Qual	RPD Limits
Total Metals - Mansfield Lab Associated sample(s): 01-02	QC Batch ID: \	WG1408831-4 QC Sample:	L2037651-01	Client ID:	HA20-E3	
Antimony, Total	ND	ND	mg/l	NC		20
Arsenic, Total	0.00602	0.00625	mg/l	4		20
Cadmium, Total	ND	ND	mg/l	NC		20
Chromium, Total	ND	ND	mg/l	NC		20
Copper, Total	ND	ND	mg/l	NC		20
Lead, Total	ND	ND	mg/l	NC		20
Nickel, Total	ND	ND	mg/l	NC		20
Selenium, Total	ND	ND	mg/l	NC		20
Silver, Total	ND	ND	mg/l	NC		20
Zinc, Total	ND	ND	mg/l	NC		20
Total Metals - Mansfield Lab Associated sample(s): 01-02	QC Batch ID: \	WG1408835-4 QC Sample:	L2037651-01	Client ID:	HA20-E3	
Iron, Total	0.568	0.559	mg/l	2		20
Total Hardness by SM 2340B - Mansfield Lab Associated	sample(s): 01-02	QC Batch ID: WG1408835	-4 QC Samp	le: L20376	651-01 Clie	ent ID: HA20-E3
Hardness	159	156	mg/l	2		20
Total Metals - Mansfield Lab Associated sample(s): 01-02	QC Batch ID: \	WG1408838-4 QC Sample:	L2037651-02	Client ID:	OUTFALL	
Mercury, Total	ND	ND	mg/l	NC		20

INORGANICS & MISCELLANEOUS

Serial_No:09152015:27

Project Name: MIT-SCC Lab Number: L2037651

Project Number: 134283-002 Report Date: 09/15/20

SAMPLE RESULTS

Lab ID: L2037651-01 Date Collected: 09/10/20 12:00

Client ID: HA20-E3 Date Received: 09/10/20

Sample Location: VASSAR STREET, CAMBRIDGE, MA Field Prep: Refer to COC

Sample Depth:

Matrix: Water

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	Date Prepared	Date Analyzed	Analytical Method	Analyst
General Chemistry - Wes	stborough La	ıb								
Solids, Total Suspended	6.1		mg/l	5.0	NA	1	-	09/11/20 07:30	121,2540D	JT
Cyanide, Total	ND		mg/l	0.005		1	09/11/20 11:10	09/11/20 15:49	121,4500CN-CE	AG
Cyanide, Free	ND		ug/l	2.00		1	09/11/20 16:00	09/11/20 22:17	109,9016	AT
Cyanide, Physiologically Available	ND		mg/l	0.005		1	09/14/20 10:35	09/14/20 13:20	64,9014(M)	AG
Chlorine, Total Residual	ND		mg/l	0.02		1	-	09/10/20 23:24	121,4500CL-D	AS
pH (H)	7.0		SU	-	NA	1	-	09/10/20 20:57	121,4500H+-B	AS
Nitrogen, Ammonia	0.397		mg/l	0.075		1	09/11/20 03:25	09/11/20 21:45	121,4500NH3-BH	I AT
TPH, SGT-HEM	ND		mg/l	4.40		1.1	09/11/20 20:00	09/11/20 22:00	74,1664A	TL
Phenolics, Total	ND		mg/l	0.030		1	09/11/20 05:20	09/11/20 09:14	4,420.1	MV
Chromium, Hexavalent	ND		mg/l	0.010		1	09/10/20 22:55	09/10/20 23:24	1,7196A	СВ
Anions by Ion Chromatog	graphy - Wes	stborough	Lab							
Chloride	731.		mg/l	25.0		50	-	09/12/20 00:21	44,300.0	SH

Serial_No:09152015:27

Project Name: Lab Number: MIT-SCC L2037651 **Project Number:** 09/15/20 134283-002

Report Date:

SAMPLE RESULTS

Lab ID: Date Collected: L2037651-02 09/10/20 13:20 Client ID: OUTFALL Date Received: 09/10/20

Not Specified Sample Location: VASSAR STREET, CAMBRIDGE, MA Field Prep:

Sample Depth:

Matrix: Water

Parameter	Result Q	ualifier Unit	s RL	MDL	Dilution Factor	Date Prepared	Date Analyzed	Analytical Method	Analyst
General Chemistry - We	estborough Lab								
pH (H)	7.9	SU	-	NA	1	-	09/10/20 20:57	121,4500H+-B	AS
Nitrogen, Ammonia	0.121	mg/l	0.075		1	09/11/20 03:25	09/11/20 21:48	121,4500NH3-BH	I AT
Chromium, Hexavalent	ND	mg/l	0.010		1	09/10/20 22:55	09/10/20 23:25	1,7196A	СВ

Project Name: MIT-SCC
Project Number: 134283-002

Lab Number: L2037651 **Report Date:** 09/15/20

Method Blank Analysis Batch Quality Control

Parameter	Result Qu	ualifier	Units		RL	MDL	Dilution Factor	Date Prepared	Date Analyzed	Analytical Method	Analyst
General Chemistry - \	Westborough Lab	for sam	ple(s):	01-	02 Ba	tch: V	VG1408613-1				
Nitrogen, Ammonia	ND		mg/l		0.075		1	09/11/20 03:25	09/11/20 21:34	121,4500NH3-BI	H AT
General Chemistry - \	Westborough Lab	for sam	ple(s):	01-	02 Ba	tch: V	VG1408614-1				
Chromium, Hexavalent	ND		mg/l		0.010		1	09/10/20 22:55	09/10/20 23:22	1,7196A	СВ
General Chemistry - \	Westborough Lab	for sam	ple(s):	01	Batch	: WG	1408618-1				
Chlorine, Total Residual	ND		mg/l		0.02		1	-	09/10/20 23:24	121,4500CL-D	AS
General Chemistry - \	Westborough Lab	for sam	ple(s):	01	Batch	: WG	1408680-1				
Phenolics, Total	ND		mg/l		0.030		1	09/11/20 05:20	09/11/20 09:07	4,420.1	MV
General Chemistry - \	Westborough Lab	for sam	ple(s):	01	Batch	: WG	1408691-1				
Solids, Total Suspended	ND		mg/l		5.0	NA	. 1	-	09/11/20 07:30	121,2540D	JT
General Chemistry - \	Westborough Lab	for sam	ple(s):	01	Batch	: WG	1408840-1				
Cyanide, Total	ND		mg/l		0.005		1	09/10/20 18:00	09/11/20 15:38	121,4500CN-CE	E AG
General Chemistry - \	Westborough Lab	for sam	ple(s):	01	Batch	: WG	1408980-1				
TPH, SGT-HEM	ND		mg/l		4.00		1	09/11/20 20:00	09/11/20 22:00	74,1664A	TL
General Chemistry - \	Westborough Lab	for sam	ple(s):	01	Batch	: WG	1409003-1				
Cyanide, Free	ND		ug/l		2.00		1	09/11/20 16:00	09/11/20 22:12	109,9016	АТ
Anions by Ion Chroma	atography - Westb	orough	_ab_fo	r saı	mple(s)	: 01	Batch: WG1	409099-1			
Chloride	ND		mg/l		0.500		1	-	09/11/20 17:23	44,300.0	SH
General Chemistry - \	Westborough Lab	for sam	ple(s):	01	Batch	: WG	1409554-1				
Cyanide, Physiologically Ava	ilable ND		mg/l		0.005		1	09/14/20 10:35	09/14/20 13:10	64,9014(M)	AG

Project Name: MIT-SCC

Project Number: 134283-002

Lab Number:

L2037651

Report Date:

Parameter	LCS %Recovery Q	LCSD ual %Recovery	Qual	%Recovery Limits	RPD	Qual	RPD Limits
General Chemistry - Westborough Lab	Associated sample(s): 0	1-02 Batch: WG140	8589-1				
рН	100	-		99-101	-		5
General Chemistry - Westborough Lab	Associated sample(s): 0	1-02 Batch: WG140	08613-2				
Nitrogen, Ammonia	102	-		80-120	-		20
General Chemistry - Westborough Lab	Associated sample(s): 0	1-02 Batch: WG140)8614-2				
Chromium, Hexavalent	104	-		85-115	-		20
General Chemistry - Westborough Lab	Associated sample(s): 0	1 Batch: WG14086	18-2				
Chlorine, Total Residual	104	-		90-110	-		
General Chemistry - Westborough Lab	Associated sample(s): 0	1 Batch: WG14086	80-2				
Phenolics, Total	99	-		70-130	-		
General Chemistry - Westborough Lab	Associated sample(s): 0	1 Batch: WG14086	91-2				
Solids, Total Suspended	109	-		80-120	-		
General Chemistry - Westborough Lab	Associated sample(s): 0	1 Batch: WG14088	40-2				
Cyanide, Total	97	-		90-110			

Project Name: MIT-SCC **Project Number:**

134283-002

Lab Number:

L2037651

Report Date:

Parameter	LCS %Recovery	LCSD %Recovery	%Recovery Limits	RPD	RPD Limits
General Chemistry - Westborough Lab	Associated sample(s): 01	Batch: WG1408980-2			
ТРН	87	-	64-132	-	34
General Chemistry - Westborough Lab	Associated sample(s): 01	Batch: WG1409003-2			
Cyanide, Free	97	-	75-125	-	
Anions by Ion Chromatography - Westb	oorough Lab Associated sa	mple(s): 01 Batch: WG14	09099-2		
Chloride	101	-	90-110	-	
General Chemistry - Westborough Lab	Associated sample(s): 01	Batch: WG1409554-2			
Cyanide, Physiologically Available	90	-	80-120	-	
General Chemistry - Westborough Lab	Associated sample(s): 01	Batch: WG1409554-3			
Cyanide, Physiologically Available	1	-	0-10	-	

Matrix Spike Analysis Batch Quality Control

Project Name: MIT-SCC
Project Number: 134283-002

Lab Number:

L2037651

Report Date:

arameter	Native Sample	MS Added	MS Found	MS %Recovery	MSD Qual Found	MSD %Recovery Qual	Recovery Limits RF	RPD PD Qual Limits
General Chemistry - Westboro	ough Lab Asso	ciated samp	le(s): 01-0	2 QC Batch	ID: WG1408613-	4 QC Sample: L2037	7651-01 Client I	D: HA20-E3
Nitrogen, Ammonia	0.397	4	4.23	96	-	-	80-120 -	20
General Chemistry - Westboro	ough Lab Asso	ciated samp	le(s): 01-0	2 QC Batch	ID: WG1408614-	4 QC Sample: L2037	7651-01 Client I	D: HA20-E3
Chromium, Hexavalent	ND	0.1	0.104	104		-	85-115 -	20
General Chemistry - Westboro	ough Lab Asso	ciated samp	le(s): 01	QC Batch ID:	WG1408618-4	QC Sample: L203765	1-01 Client ID:	HA20-E3
Chlorine, Total Residual	ND	0.25	0.20	80		-	80-120 -	20
General Chemistry - Westboro	ough Lab Asso	ciated samp	le(s): 01	QC Batch ID:	WG1408680-4	QC Sample: L203721	1-02 Client ID:	MS Sample
Phenolics, Total	ND	0.4	0.42	105		-	70-130 -	20
General Chemistry - Westboro	ough Lab Asso	ciated samp	le(s): 01	QC Batch ID:	WG1408840-4	QC Sample: L2037163	3-01 Client ID:	MS Sample
Cyanide, Total	ND	0.2	0.106	53	Q -	-	90-110 -	30
General Chemistry - Westboro	ough Lab Asso	ciated samp	le(s): 01	QC Batch ID:	WG1408980-4	QC Sample: L203765	1-01 Client ID:	HA20-E3
TPH	ND	20.6	14.4	70		-	64-132 -	34
General Chemistry - Westboro	ough Lab Asso	ciated samp	le(s): 01	QC Batch ID:	WG1409003-3	QC Sample: L203676	0-09 Client ID:	MS Sample
Cyanide, Free	ND	50	37.1	74		-	70-130 -	20
Anions by Ion Chromatography	y - Westborou	gh Lab Asso	ciated san	nple(s): 01 C	QC Batch ID: WG	1409099-3 QC Samp	le: L2037537-03	Client ID: MS
Chloride	12.6	4	16.0	85	Q -	-	90-110 -	18
General Chemistry - Westboro	ough Lab Asso	ciated samp	le(s): 01	QC Batch ID:	WG1409554-5	QC Sample: L203765	1-01 Client ID:	HA20-E3
Cyanide, Physiologically Available	ND	0.2	0.185	92	-	-	75-125 -	20

Lab Duplicate Analysis Batch Quality Control

Project Name: MIT-SCC **Project Number:** 134283-002

Lab Number:

L2037651

Report Date:

Parameter	Nati	ve Sam	ple	Duplicate Samp	le Units	RPD	Qual	RPD Limits
General Chemistry - Westborough Lab	Associated sample(s):	01-02	QC Batch	ID: WG1408589-2	QC Sample	e: L2037651-0	02 Client ID:	OUTFALL
pH (H)		7.9		7.9	SU	0		5
General Chemistry - Westborough Lab	Associated sample(s):	01-02	QC Batch	ID: WG1408613-3	QC Sample	e: L2037651-0	01 Client ID:	HA20-E3
Nitrogen, Ammonia		0.397		0.404	mg/l	2		20
General Chemistry - Westborough Lab	Associated sample(s):	01-02	QC Batch	ID: WG1408614-3	QC Sample	e: L2037651-0	01 Client ID:	HA20-E3
Chromium, Hexavalent		ND		ND	mg/l	NC		20
General Chemistry - Westborough Lab	Associated sample(s):	01 Q0	C Batch ID:	WG1408618-3	QC Sample: L	.2037651-01	Client ID: H	A20-E3
Chlorine, Total Residual		ND		ND	mg/l	NC		20
General Chemistry - Westborough Lab	Associated sample(s):	01 Q0	C Batch ID:	WG1408680-3	QC Sample: L	.2037211-02	Client ID: D	UP Sample
Phenolics, Total		ND		ND	mg/l	NC		20
General Chemistry - Westborough Lab	Associated sample(s):	01 Q0	Batch ID:	WG1408691-3	QC Sample: L	.2037152-01	Client ID: D	UP Sample
Solids, Total Suspended		76		78	mg/l	3		29
General Chemistry - Westborough Lab	Associated sample(s):	01 Q0	Batch ID:	WG1408980-3	QC Sample: L	.2037039-01	Client ID: D	UP Sample
TPH		ND		ND	mg/l	NC		34
General Chemistry - Westborough Lab	Associated sample(s):	01 Q0	Batch ID:	WG1409003-4	QC Sample: L	.2036760-09	Client ID: D	UP Sample
Cyanide, Free		ND		ND	ug/l	NC		20
Anions by Ion Chromatography - Westb Sample	orough Lab Associated	d sample	e(s): 01 Q	C Batch ID: WG1	409099-4 Q0	C Sample: L2	037537-03	Client ID: DUP
Chloride		12.6		12.5	mg/l	1		18

Lab Duplicate Analysis

Batch Quality Control

Lab Number:

L2037651 09/15/20

Report Date:

Parameter	Native Sample	Duplicate Samp	ole Units	RPD	RPD Limits
General Chemistry - Westborough Lab Associated sa	mple(s): 01 QC Batch ID:	WG1409554-4	QC Sample: L2037	651-01 Client	ID: HA20-E3
Cyanide, Physiologically Available	ND	ND	mg/l	NC	20

Project Name:

MIT-SCC

Project Number: 134283-002

Serial_No:09152015:27

Lab Number: L2037651

Report Date: 09/15/20

Sample Receipt and Container Information

Were project specific reporting limits specified?

MIT-SCC

YES

Cooler Information

Container Information

Project Name:

Cooler Custody Seal

A Absent

Project Number: 134283-002

Container Info	rmation		Initial	Final	Temp			Frozen	
Container ID	Container Type	Cooler	рН	pН	deg C	Pres	Seal	Date/Time	Analysis(*)
L2037651-01A	Vial Na2S2O3 preserved	Α	NA		2.5	Υ	Absent		624.1-SIM-RGP(7),624.1-RGP(7)
L2037651-01A1	Vial Na2S2O3 preserved	Α	NA		2.5	Υ	Absent		624.1-SIM-RGP(7),624.1-RGP(7)
L2037651-01B	Vial Na2S2O3 preserved	Α	NA		2.5	Υ	Absent		624.1-SIM-RGP(7),624.1-RGP(7)
L2037651-01B1	Vial Na2S2O3 preserved	Α	NA		2.5	Υ	Absent		624.1-SIM-RGP(7),624.1-RGP(7)
L2037651-01C	Vial Na2S2O3 preserved	Α	NA		2.5	Υ	Absent		624.1-SIM-RGP(7),624.1-RGP(7)
L2037651-01D	Vial Na2S2O3 preserved	Α	NA		2.5	Υ	Absent		624.1-SIM-RGP(7),624.1-RGP(7)
L2037651-01E	Vial Na2S2O3 preserved	Α	NA		2.5	Υ	Absent		504(14)
L2037651-01F	Vial Na2S2O3 preserved	Α	NA		2.5	Υ	Absent		504(14)
L2037651-01G	Vial unpreserved	Α	NA		2.5	Υ	Absent		SUB-ETHANOL(14)
L2037651-01G1	Vial unpreserved	Α	NA		2.5	Υ	Absent		SUB-ETHANOL(14)
L2037651-01H	Vial unpreserved	Α	NA		2.5	Υ	Absent		SUB-ETHANOL(14)
L2037651-01I	Plastic 250ml unpreserved	Α	7	7	2.5	Υ	Absent		CL-300(28),HEXCR-7196(1),TRC-4500(1),PH-4500(.01)
L2037651-01J	Plastic 250ml NaOH preserved	Α	>12	>12	2.5	Υ	Absent		PACN(14)
L2037651-01K	Plastic 250ml NaOH preserved	Α	>12	>12	2.5	Υ	Absent		TCN-4500(14),FCN-9016(14)
L2037651-01L	Plastic 250ml HNO3 preserved	Α	<2	<2	2.5	Υ	Absent		HOLD-METAL-DISSOLVED(180)
L2037651-01M	Plastic 250ml HNO3 preserved	Α	<2	<2	2.5	Y	Absent		CD-2008T(180),NI-2008T(180),ZN- 2008T(180),HARDU(180),CU-2008T(180),FE- UI(180),AS-2008T(180),HG-U(28),AG- 2008T(180),SE-2008T(180),SB-2008T(180),CR- 2008T(180),PB-2008T(180)
L2037651-01N	Plastic 500ml H2SO4 preserved	Α	<2	<2	2.5	Υ	Absent		NH3-4500(28)
L2037651-01O	Plastic 950ml unpreserved	Α	7	7	2.5	Υ	Absent		CL-300(28),HEXCR-7196(1),TRC-4500(1),PH-4500(.01)
L2037651-01P	Plastic 950ml unpreserved	Α	7	7	2.5	Υ	Absent		TSS-2540(7)
L2037651-01Q	Amber 950ml H2SO4 preserved	Α	<2	<2	2.5	Υ	Absent		TPHENOL-420(28)

Serial_No:09152015:27

Lab Number: L2037651

Report Date: 09/15/20

Container Info	rmation		Initial	Final	Temp			Frozen	
Container ID	Container Type	Cooler	рН	рН	deg C	Pres	Seal	Date/Time	Analysis(*)
L2037651-01R	Amber 1000ml HCl preserved	Α	NA		2.5	Υ	Absent		TPH-1664(28)
L2037651-01S	Amber 1000ml HCI preserved	Α	NA		2.5	Υ	Absent		TPH-1664(28)
L2037651-01T	Amber 1000ml Na2S2O3	Α	7	7	2.5	Υ	Absent		PCB-608.3(365)
L2037651-01U	Amber 1000ml Na2S2O3	Α	7	7	2.5	Υ	Absent		PCB-608.3(365)
L2037651-01V	Amber 1000ml Na2S2O3	Α	7	7	2.5	Υ	Absent		PCB-608.3(365)
L2037651-01W	Amber 1000ml Na2S2O3	Α	7	7	2.5	Υ	Absent		625.1-RGP(7),625.1-SIM-RGP(7)
L2037651-01X	Amber 1000ml Na2S2O3	Α	7	7	2.5	Υ	Absent		625.1-RGP(7),625.1-SIM-RGP(7)
L2037651-01Y	Amber 1000ml Na2S2O3	Α	7	7	2.5	Υ	Absent		625.1-RGP(7),625.1-SIM-RGP(7)
L2037651-02A	Plastic 250ml unpreserved	Α	7	7	2.5	Υ	Absent		HEXCR-7196(1),PH-4500(.01)
L2037651-02B	Plastic 250ml HNO3 preserved	Α	<2	<2	2.5	Υ	Absent		CD-2008T(180),NI-2008T(180),ZN- 2008T(180),FE-UI(180),CU- 2008T(180),HARDU(180),AG-2008T(180),SE- 2008T(180),AS-2008T(180),HG-U(28),SB- 2008T(180),CR-2008T(180),PB-2008T(180)
L2037651-02C	Plastic 500ml H2SO4 preserved	Α	<2	<2	2.5	Υ	Absent		NH3-4500(28)
L2037651-03A	Vial Na2S2O3 preserved	Α	NA		2.5	Υ	Absent		ARCHIVE()
L2037651-03B	Vial Na2S2O3 preserved	Α	NA		2.5	Υ	Absent		ARCHIVE()

Project Name:

Project Number: 134283-002

MIT-SCC

Project Name: Lab Number: MIT-SCC L2037651 **Project Number:** 134283-002 **Report Date:** 09/15/20

GLOSSARY

Acronyms

EDL

LOD

LOQ

MS

DL - Detection Limit: This value represents the level to which target analyte concentrations are reported as estimated values, when those target analyte concentrations are quantified below the limit of quantitation (LOQ). The DL includes any adjustments

from dilutions, concentrations or moisture content, where applicable. (DoD report formats only.)

- Estimated Detection Limit: This value represents the level to which target analyte concentrations are reported as estimated values, when those target analyte concentrations are quantified below the reporting limit (RL). The EDL includes any adjustments from dilutions, concentrations or moisture content, where applicable. The use of EDLs is specific to the analysis of PAHs using Solid-Phase Microextraction (SPME).

EMPC - Estimated Maximum Possible Concentration: The concentration that results from the signal present at the retention time of an analyte when the ions meet all of the identification criteria except the ion abundance ratio criteria. An EMPC is a worst-case estimate of the concentration.

EPA Environmental Protection Agency.

LCS - Laboratory Control Sample: A sample matrix, free from the analytes of interest, spiked with verified known amounts of analytes or a material containing known and verified amounts of analytes.

LCSD Laboratory Control Sample Duplicate: Refer to LCS.

LFB - Laboratory Fortified Blank: A sample matrix, free from the analytes of interest, spiked with verified known amounts of analytes or a material containing known and verified amounts of analytes.

- Limit of Detection: This value represents the level to which a target analyte can reliably be detected for a specific analyte in a specific matrix by a specific method. The LOD includes any adjustments from dilutions, concentrations or moisture content, where applicable. (DoD report formats only.)

- Limit of Quantitation: The value at which an instrument can accurately measure an analyte at a specific concentration. The LOQ includes any adjustments from dilutions, concentrations or moisture content, where applicable. (DoD report formats

Limit of Quantitation: The value at which an instrument can accurately measure an analyte at a specific concentration. The LOQ includes any adjustments from dilutions, concentrations or moisture content, where applicable. (DoD report formats

MDI - Method Detection Limit: This value represents the level to which target analyte concentrations are reported as estimated values, when those target analyte concentrations are quantified below the reporting limit (RL). The MDL includes any adjustments from dilutions, concentrations or moisture content, where applicable.

> - Matrix Spike Sample: A sample prepared by adding a known mass of target analyte to a specified amount of matrix sample for which an independent estimate of target analyte concentration is available. For Method 332.0, the spike recovery is calculated using the native concentration, including estimated values.

MSD - Matrix Spike Sample Duplicate: Refer to MS.

NA - Not Applicable.

NC - Not Calculated: Term is utilized when one or more of the results utilized in the calculation are non-detect at the parameter's

reporting unit.

NDPA/DPA - N-Nitrosodiphenylamine/Diphenylamine.

NI - Not Ignitable.

NP - Non-Plastic: Term is utilized for the analysis of Atterberg Limits in soil.

RL- Reporting Limit: The value at which an instrument can accurately measure an analyte at a specific concentration. The RL

includes any adjustments from dilutions, concentrations or moisture content, where applicable.

- Relative Percent Difference: The results from matrix and/or matrix spike duplicates are primarily designed to assess the RPD precision of analytical results in a given matrix and are expressed as relative percent difference (RPD). Values which are less

than five times the reporting limit for any individual parameter are evaluated by utilizing the absolute difference between the

values; although the RPD value will be provided in the report. SRM - Standard Reference Material: A reference sample of a known or certified value that is of the same or similar matrix as the

associated field samples.

STLP - Semi-dynamic Tank Leaching Procedure per EPA Method 1315.

- Toxic Equivalency Factors: The values assigned to each dioxin and furan to evaluate their toxicity relative to 2,3,7,8-TCDD.

TEO - Toxic Equivalent: The measure of a sample's toxicity derived by multiplying each dioxin and furan by its corresponding TEF

and then summing the resulting values.

TIC - Tentatively Identified Compound: A compound that has been identified to be present and is not part of the target compound list (TCL) for the method and/or program. All TICs are qualitatively identified and reported as estimated concentrations.

Footnotes

Report Format: Data Usability Report

Project Name:MIT-SCCLab Number:L2037651Project Number:134283-002Report Date:09/15/20

 The reference for this analyte should be considered modified since this analyte is absent from the target analyte list of the original method.

Terms

1

Analytical Method: Both the document from which the method originates and the analytical reference method. (Example: EPA 8260B is shown as 1,8260B.) The codes for the reference method documents are provided in the References section of the Addendum.

Difference: With respect to Total Oxidizable Precursor (TOP) Assay analysis, the difference is defined as the Post-Treatment value minus the Pre-Treatment value.

Final pH: As it pertains to Sample Receipt & Container Information section of the report, Final pH reflects pH of container determined after adjustment at the laboratory, if applicable. If no adjustment required, value reflects Initial pH.

Frozen Date/Time: With respect to Volatile Organics in soil, Frozen Date/Time reflects the date/time at which associated Reagent Water-preserved vials were initially frozen. Note: If frozen date/time is beyond 48 hours from sample collection, value will be reflected in 'bold'.

Initial pH: As it pertains to Sample Receipt & Container Information section of the report, Initial pH reflects pH of container determined upon receipt, if applicable.

PAH Total: With respect to Alkylated PAH analyses, the 'PAHs, Total' result is defined as the summation of results for all or a subset of the following compounds: Naphthalene, C1-C4 Naphthalenes, 2-Methylnaphthalene, 1-Methylnaphthalene, Biphenyl, Acenaphthylene, Acenaphthene, Fluorene, C1-C3 Fluorenes, Phenanthrene, C1-C4 Phenanthrenes/Anthracenes, Anthracene, Fluoranthene, Pyrene, C1-C4 Fluoranthenes/Pyrenes, Benza(a)anthracene, Chrysene, C1-C4 Chrysenes, Benzo(b)fluoranthene, Benzo(j)+(k)fluoranthene, Benzo(e)pyrene, Benzo(a)pyrene, Perylene, Indeno(1,2,3-cd)pyrene, Dibenz(ah)+(ac)anthracene, Benzo(g,h,i)perylene. If a 'Total' result is requested, the results of its individual components will also be reported.

PFAS Total: With respect to PFAS analyses, the 'PFAS, Total (5)' result is defined as the summation of results for: PFHpA, PFHxS, PFOA, PFNA and PFOS. If a 'Total' result is requested, the results of its individual components will also be reported.

The target compound Chlordane (CAS No. 57-74-9) is reported for GC ECD analyses. Per EPA, this compound "refers to a mixture of chlordane isomers, other chlorinated hydrocarbons and numerous other components." (Reference: USEPA Toxicological Review of Chlordane, In Support of Summary Information on the Integrated Risk Information System (IRIS), December 1997.)

Total: With respect to Organic analyses, a 'Total' result is defined as the summation of results for individual isomers or Aroclors. If a "Total' result is requested, the results of its individual components will also be reported. This is applicable to 'Total' results for methods 8260, 8081 and 8082.

Data Qualifiers

- A Spectra identified as "Aldol Condensates" are byproducts of the extraction/concentration procedures when acetone is introduced in the process.
- The analyte was detected above the reporting limit in the associated method blank. Flag only applies to associated field samples that have detectable concentrations of the analyte at less than ten times (10x) the concentration found in the blank. For MCP-related projects, flag only applies to associated field samples that have detectable concentrations of the analyte at less than ten times (10x) the concentration found in the blank. For DOD-related projects, flag only applies to associated field samples that have detectable concentrations of the analyte at less than ten times (10x) the concentration found in the blank AND the analyte was detected above one-half the reporting limit (or above the reporting limit for common lab contaminants) in the associated method blank. For NJ-Air-related projects, flag only applies to associated field samples that have detectable concentrations of the analyte above the reporting limit. For NJ-related projects (excluding Air), flag only applies to associated field samples that have detectable concentrations of the analyte, which was detected above the reporting limit in the associated method blank or above five times the reporting limit for common lab contaminants (Phthalates, Acetone, Methylene Chloride, 2-Butanone).
- Co-elution: The target analyte co-elutes with a known lab standard (i.e. surrogate, internal standards, etc.) for co-extracted analyses.
- Concentration of analyte was quantified from diluted analysis. Flag only applies to field samples that have detectable concentrations
 of the analyte.
- E Concentration of analyte exceeds the range of the calibration curve and/or linear range of the instrument.
- F The ratio of quantifier ion response to qualifier ion response falls outside of the laboratory criteria. Results are considered to be an estimated maximum concentration.
- G The concentration may be biased high due to matrix interferences (i.e, co-elution) with non-target compound(s). The result should be considered estimated.
- H The analysis of pH was performed beyond the regulatory-required holding time of 15 minutes from the time of sample collection.
- ${f I}$ The lower value for the two columns has been reported due to obvious interference.
- J Estimated value. This represents an estimated concentration for Tentatively Identified Compounds (TICs).
- M Reporting Limit (RL) exceeds the MCP CAM Reporting Limit for this analyte.
- **ND** Not detected at the reporting limit (RL) for the sample.
- NJ Presumptive evidence of compound. This represents an estimated concentration for Tentatively Identified Compounds (TICs), where the identification is based on a mass spectral library search.
- P The RPD between the results for the two columns exceeds the method-specified criteria.
- Q The quality control sample exceeds the associated acceptance criteria. For DOD-related projects, LCS and/or Continuing Calibration

Report Format: Data Usability Report

Project Name:MIT-SCCLab Number:L2037651Project Number:134283-002Report Date:09/15/20

Data Qualifiers

Standard exceedences are also qualified on all associated sample results. Note: This flag is not applicable for matrix spike recoveries when the sample concentration is greater than 4x the spike added or for batch duplicate RPD when the sample concentrations are less than 5x the RL. (Metals only.)

- **R** Analytical results are from sample re-analysis.
- $\boldsymbol{RE} \quad$ Analytical results are from sample re-extraction.
- S Analytical results are from modified screening analysis.

Report Format: Data Usability Report

Project Name:MIT-SCCLab Number:L2037651Project Number:134283-002Report Date:09/15/20

REFERENCES

- 1 Test Methods for Evaluating Solid Waste: Physical/Chemical Methods. EPA SW-846. Third Edition. Updates I VI, 2018.
- Methods for the Determination of Metals in Environmental Samples, Supplement I. EPA/600/R-94/111. May 1994.
- 4 Methods for Chemical Analysis of Water and Wastes. EPA 600/4-79-020. Revised March 1983.
- Methods for the Determination of Organic Compounds in Finished Drinking Water and Raw Source Water. EPA/600/4-88/039, Revised July 1991.
- 19 Inductively Coupled Plasma Atomic Emission Spectrometric Method for Trace Element Analysis of Water and Wastes. Appendix C, Part 136, 40 CFR (Code of Federal Regulations). July 1, 1999 edition.
- Methods for the Determination of Inorganic Substances in Environmental Samples, EPA/600/R-93/100, August 1993.
- Quality Assurance and Quality Control Requirements and Performance Standards for SW-846 Methods. MADEP BWSC. WSC-CAM-IIA (Revision 4), WSC-CAM-V C (Revision 2), WSC-CAM-IIIA (Revision 5). August 2004.
- Method 1664, Revision A: N-Hexane Extractable Material (HEM; Oil & Grease) and Silica Gel Treated N-Hexane Extractable Material (SGT-HEM; Non-polar Material) by Extraction and Gravimetry, EPA-821-R-98-002, February 1999.
- 107 Alpha Analytical In-house calculation method.
- Test Methods for Evaluating Solid Waste: Physical/Chemical Methods. EPA SW-846. Revision 0, June 2010.
- 121 Standard Methods for the Examination of Water and Wastewater. APHA-AWWA-WEF. Standard Methods Online.
- Method 608.3: Organochlorine Pesticides and PCBs by GC/HSD, EPA 821-R-16-009, December 2016.
- 128 Method 624.1: Purgeables by GC/MS, EPA 821-R-16-008, December 2016.
- Method 625.1: Base/Neutrals and Acids by GC/MS, EPA 821-R-16-007, December 2016.

LIMITATION OF LIABILITIES

Alpha Analytical performs services with reasonable care and diligence normal to the analytical testing laboratory industry. In the event of an error, the sole and exclusive responsibility of Alpha Analytical shall be to re-perform the work at it's own expense. In no event shall Alpha Analytical be held liable for any incidental, consequential or special damages, including but not limited to, damages in any way connected with the use of, interpretation of, information or analysis provided by Alpha Analytical.

We strongly urge our clients to comply with EPA protocol regarding sample volume, preservation, cooling, containers, sampling procedures, holding time and splitting of samples in the field.

Serial_No:09152015:27

Alpha Analytical, Inc. Facility: Company-wide

Published Date: 4/28/2020 9:42:21 AM Department: Quality Assurance Title: Certificate/Approval Program Summary

Page 1 of 1

ID No.:17873

Revision 17

Certification Information

The following analytes are not included in our Primary NELAP Scope of Accreditation:

Westborough Facility

EPA 624/624.1: m/p-xylene, o-xylene, Naphthalene

EPA 8260C: NPW: 1,2,4,5-Tetramethylbenzene; 4-Ethyltoluene, Azobenzene; SCM: lodomethane (methyl iodide), 1,2,4,5-Tetramethylbenzene; 4-Ethyltoluene

EPA 8270D: NPW: Dimethylnaphthalene,1,4-Diphenylhydrazine; SCM: Dimethylnaphthalene,1,4-Diphenylhydrazine.

SM4500: NPW: Amenable Cyanide; SCM: Total Phosphorus, TKN, NO2, NO3.

Mansfield Facility

SM 2540D: TSS

EPA 8082A: NPW: PCB: 1, 5, 31, 87,101, 110, 141, 151, 153, 180, 183, 187.

EPA TO-15: Halothane, 2,4,4-Trimethyl-2-pentene, 2,4,4-Trimethyl-1-pentene, Thiophene, 2-Methylthiophene,

3-Methylthiophene, 2-Ethylthiophene, 1,2,3-Trimethylbenzene, Indan, Indene, 1,2,4,5-Tetramethylbenzene, Benzothiophene, 1-Methylnaphthalene.

EPA TO-12 Non-methane organics

EPA 3C Fixed gases

Biological Tissue Matrix: EPA 3050B

The following analytes are included in our Massachusetts DEP Scope of Accreditation

Westborough Facility:

Drinking Water

EPA 300.0: Chloride, Nitrate-N, Fluoride, Sulfate; EPA 353.2: Nitrate-N, Nitrite-N; SM4500NO3-F: Nitrate-N, Nitrite-N; SM4500F-C, SM4500CN-CE, EPA 180.1, SM2130B, SM4500CI-D, SM2320B, SM2540C, SM4500H-B, SM4500NO2-B

EPA 332: Perchlorate; EPA 524.2: THMs and VOCs; EPA 504.1: EDB, DBCP.

Microbiology: SM9215B; SM9223-P/A, SM9223B-Colilert-QT,SM9222D.

Non-Potable Water

SM4500H,B, EPA 120.1, SM2510B, SM2540C, SM2320B, SM4500CL-E, SM4500F-BC, SM4500NH3-BH: Ammonia-N and Kjeldahl-N, EPA 350.1: Ammonia-N, LACHAT 10-107-06-1-B: Ammonia-N, EPA 351.1, SM4500NO3-F, EPA 353.2: Nitrate-N, SM4500P-E, SM4500P-B, E, SM4500SO4-E, SM5220D, EPA 410.4, SM5210B, SM5310C, SM4500CL-D, EPA 1664, EPA 420.1, SM4500-CN-CE, SM2540D, EPA 300: Chloride, Sulfate, Nitrate. **EPA 624.1**: Volatile Halocarbons & Aromatics,

EPA 608.3: Chlordane, Toxaphene, Aldrin, alpha-BHC, beta-BHC, gamma-BHC, delta-BHC, Dieldrin, DDD, DDE, DDT, Endosulfan II, Endosulfan II, Endosulfan sulfate, Endrin, Endrin Aldehyde, Heptachlor, Heptachlor Epoxide, PCBs

EPA 625.1: SVOC (Acid/Base/Neutral Extractables), EPA 600/4-81-045: PCB-Oil.

Microbiology: SM9223B-Colilert-QT; Enterolert-QT, SM9221E, EPA 1600, EPA 1603.

Mansfield Facility:

Drinking Water

EPA 200.7: Al, Ba, Cd, Cr, Cu, Fe, Mn, Ni, Na, Ag, Ca, Zn. EPA 200.8: Al, Sb, As, Ba, Be, Cd, Cr, Cu, Pb, Mn, Ni, Se, Ag, TL, Zn. EPA 245.1 Hg. EPA 522.

Non-Potable Water

EPA 200.7: Al, Sb, As, Be, Cd, Ca, Cr, Co, Cu, Fe, Pb, Mg, Mn, Mo, Ni, K, Se, Ag, Na, Sr, TL, Ti, V, Zn.

EPA 200.8: Al, Sb, As, Be, Cd, Cr, Cu, Fe, Pb, Mn, Ni, K, Se, Ag, Na, TL, Zn.

EPA 245.1 Hg.

SM2340B

For a complete listing of analytes and methods, please contact your Alpha Project Manager.

Document Type: Form

Pre-Qualtrax Document ID: 08-113

Дірна	CHAIN OF CUSTODY	Service Centers Brewer, ME 04412 Portsmoo 07430 Albany, NY 12205 Tonawanda, NY 14150 Holmes	uth, NH 03801 Ma , PA 19043	hwah, NJ	Page	1			ate I	Rec'o	1	7/10	5/2	0		ALPHA JOB# 1203765	7)
Westborough, MA 01581 8 Walkup Dr.	Mansfield, MA 02048 320 Forbes Blvd	Project Information	and the	THE T	1000			Delive	rable:	5						Billing Information	
TEL: 508-898-9220	TEL: 508-822-9300	Project Name:		MIT	- SCC				Email				Fax			Same as Client Info	0)
FAX: 508-898-9193	FAX: 508-822-3288	Project Location:	V	assar Street	, Cambrid	ge, MA		1	EQuI:	S (1 F	ile)		EQui	S (4 F	ile)	PO#	
H&A Information		Project #		1342	283-002				Other								
H&A Client: MIT		(Use Project name as Pro	oject #)					Regula	atory	Requi	reme	nts (P	rogran	n/Crite	ria)	Disposal Site Information	TOL
H&A Address: 465 Med	ford St, #220	Project Manager:		T.	Butler			MA	MCP F	RCS-1						Please identify below location of	of
Boston, MA 02129		ALPHAQuote #:		1	2002			1								applicable disposal facilities.	
H&A Phone: 6178867	400	Turn-Around Time	Se Trim		1			1								Disposal Facility:	
H&A Fax:		Standard	8	Due Date:				1								NJ N	Υ
H&A Email: kscalise(@haleyaldrich.com	Rush (only if pre approved)		# of Days:	2			Note: S	Select :	State fr	om m	enu & k	dentify	criteria.		Other:	
These samples have bee	n previously analyzed	by Alpha						ANA	LYSI	S						Sample Filtration	Ţ
Other project specific re	P Total NPDES Met	nts: lease refer to Alpha Quote als = Sb, As, Cd, Cr, Cu, Fo		Se, Ag, Zn				10 8	Ethanol by 1671	Ammonia Nitrogen - SM 4500	Dissolved NPDES Metals	Total Hardness	Total NPDES Metals, + Hex Cr + Tri Cr	-	Cyanide +	Lab to do Preservation Lab to do	t a I B
								NPDES RGP + CL-	ano	onia SM	N P	교	I NPC	200	Avail	(Please Specify below)	
ALPHA Lab ID	I		Colle	ction	Sample	Sampler	T	S	E	E	Solve	P	t t		Fre	/0	2
(Lab Use Only)	Si	ample ID	Date	Time	Matrix	Initials	Depth	1g		<	Diss		Ĕ		1	Sample Specific Comments	2 8
37651-01	HA20-E3		9/19/2020	1200	aq	MJD		x	x	x	x	×		x	x	1. HOLD, field filtered 2	78
-02	Outfall		17	1320	019	MJD	_			x		x	×	×		Temp:	3
				1	1	1											
						-50					Т					2 Trip Blanks	2
MANAGEMENT OF THE STATE OF THE								\Box								@1100	
							$\overline{}$	\Box				\top		T			
								\Box							1	31 TOTAL	
Preservative Code: A = None B = HCI C = HNO ₃ D = H ₂ SO ₄	Container Code P = Plastic A = Amber Glass V = Vial G = Glass B = Bacteria Cup	Westboro: Certification N Mansfield: Certification N		5	-	ntainer Ty										Please print clearly, legibly an bompletely. Samples can not to in and turnaround time clock start until any ambiguities are Alpha Analytical's services unde Chain of Custody shall be perfor	be logged will not resolved or this
E = NaOH F = MeOH G = NaHSO ₄ H = Na ₂ S ₂ O ₃ K/E = Zn Ac/NaOH O = Other	C = Cube O = Other E = Encore D = BOD Bottle	Relinquished By: 9/10/2			1620 Mel		eceived By: DICK 1946 MRV		po	<i>c</i>	Date/Time 9/10/70 /LoZO 9/10/Do AIS		20	accordance with terms and conditions within Blanket Service Agreement# 2019- 22-Alpha Analytical by and between Hale & Aldrich, Inc., its subsidiaries and			
Document ID: 20455 Rev 3 (1/7/2019)																

AP ACCREC

September 15, 2020

Melissa Gulli Alpha Analytical 145 Flanders Road Westborough, MA 01581 TEL: (603) 319-5010

FAX:

RE: L2037651 **WorkOrder:** 20090770

Dear Melissa Gulli:

TEKLAB, INC received 1 sample on 9/14/2020 8:40:00 AM for the analysis presented in the following report.

Samples are analyzed on an as received basis unless otherwise requested and documented. The sample results contained in this report relate only to the requested analytes of interest as directed on the chain of custody. NELAP accredited fields of testing are indicated by the letters NELAP under the Certification column. Unless otherwise documented within this report, Teklab Inc. analyzes samples utilizing the most current methods in compliance with 40CFR. All tests are performed in the Collinsville, IL laboratory unless otherwise noted in the Case Narrative.

All quality control criteria applicable to the test methods employed for this project have been satisfactorily met and are in accordance with NELAP except where noted. The following report shall not be reproduced, except in full, without the written approval of Teklab, Inc.

If you have any questions regarding these tests results, please feel free to call.

Sincerely,

Marvin L. Darling Project Manager

(618)344-1004 ex 41

mdarling@teklabinc.com

Mowin L. Darling II

Report Contents

http://www.teklabinc.com/

Client: Alpha Analytical Work Order: 20090770
Client Project: L2037651 Report Date: 15-Sep-2020

This reporting package includes the following:

Cover Letter	1
Report Contents	2
Definitions	3
Case Narrative	4
Accreditations	5
Laboratory Results	6
Quality Control Results	7
Receiving Check List	8
Chain of Custody	Appended

Definitions

http://www.teklabinc.com/

Client: Alpha Analytical Work Order: 20090770

Client Project: L2037651 Report Date: 15-Sep-2020

Abbr Definition

- * Analytes on report marked with an asterisk are not NELAP accredited
- CCV Continuing calibration verification is a check of a standard to determine the state of calibration of an instrument between recalibration.
- CRQL A Client Requested Quantitation Limit is a reporting limit that varies according to customer request. The CRQL may not be less than the MDL.
 - DF Dilution factor is the dilution performed during analysis only and does not take into account any dilutions made during sample preparation. The reported result is final and includes all dilution factors.
 - DNI Did not ignite
- DUP Laboratory duplicate is a replicate aliquot prepared under the same laboratory conditions and independently analyzed to obtain a measure of precision.
- ICV Initial calibration verification is a check of a standard to determine the state of calibration of an instrument before sample analysis is initiated.
- IDPH IL Dept. of Public Health
- LCS Laboratory control sample is a sample matrix, free from the analytes of interest, spiked with verified known amounts of analytes and analyzed exactly like a sample to establish intra-laboratory or analyst specific precision and bias or to assess the performance of all or a portion of the measurement system.
- LCSD Laboratory control sample duplicate is a replicate laboratory control sample that is prepared and analyzed in order to determine the precision of the approved test method. The acceptable recovery range is listed in the QC Package (provided upon request).
- MBLK Method blank is a sample of a matrix similar to the batch of associated sample (when available) that is free from the analytes of interest and is processed simultaneously with and under the same conditions as samples through all steps of the analytical procedures, and in which no target analytes or interferences should present at concentrations that impact the analytical results for sample analyses.
- MDL "The method detection limit is defined as the minimum measured concentration of a substance that can be reported with 99% confidence that the measured concentration is distinguishable from method blank results."
- MS Matrix spike is an aliquot of matrix fortified (spiked) with known quantities of specific analytes that is subjected to the entire analytical procedures in order to determine the effect of the matrix on an approved test method's recovery system. The acceptable recovery range is listed in the QC Package (provided upon request).
- MSD Matrix spike duplicate means a replicate matrix spike that is prepared and analyzed in order to determine the precision of the approved test method. The acceptable recovery range is listed in the QC Package (provided upon request).
- MW Molecular weight
- ND Not Detected at the Reporting Limit

NELAP NELAP Accredited

- PQL Practical quantitation limit means the lowest level that can be reliably achieved within specified limits of precision and accuracy during routine laboratory operation conditions.
 - RL The reporting limit the lowest level that the data is displayed in the final report. The reporting limit may vary according to customer request or sample dilution. The reporting limit may not be less than the MDL.
- RPD Relative percent difference is a calculated difference between two recoveries (ie. MS/MSD). The acceptable recovery limit is listed in the QC Package (provided upon request).
- SPK The spike is a known mass of target analyte added to a blank sample or sub-sample; used to determine recovery deficiency or for other quality control purposes
- Surr Surrogates are compounds which are similar to the analytes of interest in chemical composition and behavior in the analytical process, but which are not normally found in environmental samples.
- TIC Tentatively identified compound: Analytes tentatively identified in the sample by using a library search. Only results not in the calibration standard will be reported as tentatively identified compounds. Results for tentatively identified compounds that are not present in the calibration standard, but are assigned a specific chemical name based upon the library search, are calculated using total peak areas from reconstructed ion chromatograms and a response factor of one. The nearest Internal Standard is used for the calculation. The results of any TICs must be considered estimated, and are flagged with a "T". If the estimated result is above the calibration range it is flagged "ET"
- TNTC Too numerous to count (> 200 CFU)

Qualifiers

- # Unknown hydrocarbon
- C RL shown is a Client Requested Quantitation Limit
- H Holding times exceeded
- J Analyte detected below quantitation limits
- ND Not Detected at the Reporting Limit
- S Spike Recovery outside recovery limits
- X Value exceeds Maximum Contaminant Level

- B Analyte detected in associated Method Blank
- E Value above quantitation range
- I Associated internal standard was outside method criteria
- M Manual Integration used to determine area response
- R RPD outside accepted recovery limits
- T TIC(Tentatively identified compound)

Case Narrative

http://www.teklabinc.com/

Work Order: 20090770

Report Date: 15-Sep-2020

Cooler Receipt Temp: 9.0 °C

Client Project: L2037651

Client: Alpha Analytical

Locations

	Collinsville		Springfield		Kansas City
Address	5445 Horseshoe Lake Road	Address	3920 Pintail Dr	Address	8421 Nieman Road
	Collinsville, IL 62234-7425		Springfield, IL 62711-9415		Lenexa, KS 66214
Phone	(618) 344-1004	Phone	(217) 698-1004	Phone	(913) 541-1998
Fax	(618) 344-1005	Fax	(217) 698-1005	Fax	(913) 541-1998
Email	jhriley@teklabinc.com	Email	KKlostermann@teklabinc.com	Email	jhriley@teklabinc.com
	Collinsville Air		Chicago		
Address	5445 Horseshoe Lake Road	Address	1319 Butterfield Rd.		
	Collinsville, IL 62234-7425		Downers Grove, IL 60515		
Phone	(618) 344-1004	Phone	(630) 324-6855		
Fax	(618) 344-1005	Fax			
Email	EHurley@teklabinc.com	Email	arenner@teklabinc.com		

Accreditations

http://www.teklabinc.com/

Client: Alpha Analytical Work Order: 20090770

Client Project: L2037651 Report Date: 15-Sep-2020

State	Dept	Cert #	NELAP	Exp Date	Lab	
Illinois	IEPA	100226	NELAP	1/31/2021	Collinsville	
Kansas	KDHE	E-10374	NELAP	4/30/2021	Collinsville	
Louisiana	LDEQ	05002	NELAP	6/30/2021	Collinsville	
Louisiana	LDEQ	05003	NELAP	6/30/2021	Collinsville	
Oklahoma	ODEQ	9978	NELAP	8/31/2021	Collinsville	
Arkansas	ADEQ	88-0966		3/14/2021	Collinsville	
Illinois	IDPH	17584		5/31/2021	Collinsville	
Kentucky	UST	0073		1/31/2021	Collinsville	
Missouri	MDNR	00930		5/31/2021	Collinsville	
Missouri	MDNR	930		1/31/2022	Collinsville	

Laboratory Results

http://www.teklabinc.com/

Client: Alpha Analytical Work Order: 20090770

Client Project: L2037651 Report Date: 15-Sep-2020

Matrix: AQUEOUS Collection Date: 09/10/2020 12:00

	Analyses	Certification	RL (Qual	Result	Units	DF	Date Analyzed	Batch	
EPA 600 1671A, PHARMACEUTICAL MANUFACTURING INDUSTRY NON-PURGEABLE VOLATILE ORGANICS										
Ethanol		*	20		ND	mg/L	1	09/14/2020 19:17	R281509	

Quality Control Results

http://www.teklabinc.com/

Client: Alpha Analytical Work Order: 20090770

Client Project: L2037651 Report Date: 15-Sep-2020

EPA 600 1671A, PI	HARMACEU	TICAL MA	NUFA	ACTURING I	NDUSTRY N	ON-PURG	EABLE VOL	ATILE O	RG		
	SampType:			Units mg/L							
SampID: MBLK-0914	120										Date
Analyses		Cert	RL	Qual	Result	Spike	SPK Ref Val	%REC	Low Limit	High Limit	Analyzed
Ethanol		*	20		ND						09/14/2020
Batch R281509	SampType:	LCS		Units mg/L							
SampID: LCS-09142	0										Date
Analyses		Cert	RL	Qual	Result	Spike	SPK Ref Val	%REC	Low Limit	High Limit	Analyzed
Ethanol		*	20		110	100.0	0	105.2	70	132	09/14/2020
Batch R281509	SampType:	MS		Units mg/L							
SampID: 20090368-0	003AMS										Date
Analyses		Cert	RL	Qual	Result	Spike	SPK Ref Val	%REC	Low Limit	High Limit	Analyzed
Ethanol		*	20		120	100.0	0	119.1	70	132	09/14/2020
Doores	SampType:	MSD		Units mg/L					RPD Lin	nit 30	
Batch R281509											
Batch R281509 SampID: 20090368-0	003AMSD										Date
	003AMSD	Cert	RL	Qual	Result	Spike	SPK Ref Val	%REC	RPD Ref V	al %RPD	Date Analyzed

Elizabeth A. Hurley

14-Sep-2020

Receiving Check List

http://www.teklabinc.com/

Client: Alpha Analytical

Client Project: L2037651

Report Date: 15-Sep-2020

Carrier: UPS

Received By: AMD

Reviewed by: Eliyabh & Hurley
On:
On:
On:
On:

Amber M. Dilallo

Pages to follow: Chain of custody 1	Extra pages included	0			
Shipping container/cooler in good condition?	Yes 🗹	No 🗌	Not Present	☐ Temp °C	9.0
Type of thermal preservation?	None	Ice 🗹	Blue Ice	☐ Dry Ice	
Chain of custody present?	Yes 🗹	No 🗌			
Chain of custody signed when relinquished and received?	Yes 🗹	No 🗌			
Chain of custody agrees with sample labels?	Yes 🗹	No 🗌			
Samples in proper container/bottle?	Yes 🗹	No 🗌			
Sample containers intact?	Yes 🗹	No 🗌			
Sufficient sample volume for indicated test?	Yes 🗹	No 🗌			
All samples received within holding time?	Yes 🗹	No 🗌			
Reported field parameters measured:	Field	Lab 🗌	NA	✓	
Container/Temp Blank temperature in compliance?	Yes	No 🗹			
When thermal preservation is required, samples are compliant 0.1°C - 6.0°C, or when samples are received on ice the same		between			
Water – at least one vial per sample has zero headspace?	Yes 🗹	No	No VOA vials [
Water - TOX containers have zero headspace?	Yes	No 🗌	No TOX containers	✓	
Water - pH acceptable upon receipt?	Yes 🗹	No 🗌	NA		
NPDES/CWA TCN interferences checked/treated in the field?	Yes	No 🗌	NA	✓	
Any No responses n	nust be detailed belo	ow or on the	coc.		

The sample was out of temperature compliance upon receipt. Per Melissa Gulli, proceed with analysis. - adilallo - 9/14/2020 8:50:02 AM

Subcontract Chain of Custody

Tek Lab, Inc. 5445 Horsehoe Lake Road Collinsville, IL 62234-7425

Alpha Job Number L2037651

	· · · · · · · · · · · · · · · · · · ·	i e e e e e e e e e e e e e e e e e e e
Client Information	Project Information	Regulatory Requirements/Report Limits
Client: Alpha Analytical Labs Address: Eight Walkup Drive Westborough, MA 01581-1019	Project Location: MA Project Manager: Melissa Gulli	State/Federal Program:
Westbolough, MA 01561-1019	Turnaround & Deliverables Information	Regulatory Criteria: RCS-1-14;S1/G1-14
Phone: 603.319.5010 Email: mgulli@alphalab.com	Due Date: 09/15/20 (RUSH) Deliverables:	

Project Specific Requirements and/or Report Requirements

Reference following Alpha Job Number on final report/deliverables: L2037651 Report to include Method Blank, LCS/LCSD:

Additional Comments: Send all results/reports to subreports@alphalab.com

Lab ID	Client ID	Collection Date/Time	Sample Matrix	Analysis	Batch QC
20070770-001	HA20-E3	09-10-20 12:00	WATER	Ethanol by EPA 1671 Revision A	
				ONEDAYTAT	
MHENDE	Relinquished E	By:		Date/Time: Received By: Date/Time	:
128 HEAT 176	Mrs Cilvea	Ш		9/4/20 Octours 19/4/10	840
Form No: AL_subcoc					