

April 30, 2020

U.S. Environmental Protection Agency 5 Post Office Square, Suite 100 Mail Code OEP06-4 Boston, MA 02109-3912 ATTN: Remediation General Permit NOI Processing

Re: Notice of Intent for Remediation General Permit 263 Monsignor O'Brien Highway, Cambridge, MA 1 McGrath Highway, Somerville, MA CDW Project # 1476.10

To Whom It May Concern:

CDW Consultants, Inc. (CDW) is submitting this Notice of Intent (NOI) on behalf of Somerbridge Hotel, LLC for a Remediation General Permit (RGP) under EPA's National Pollutants Discharge Elimination System (NPDES) program. The RGP is required to discharge groundwater encountered during construction activities for development of a new hotel at the above-referenced site.

Construction activities will take place on a property which consists of two parcels of land (the "Site"), one in Cambridge, MA and one in Somerville, MA, totaling approximately 0.75 acres (32,670 square feet). The parcel at 263 Monsignor O'Brien Highway is shown on the City of Cambridge Assessor's Maps as Parcel 7-35 and is also known as 241 and 245 Monsignor O'Brien Highway. The second parcel is known as Parcel 115-B-8 on the City of Somerville Assessor's Maps, and is located at 1 McGrath Highway in Somerville, MA. The property is listed as a disposal site under the Massachusetts Contingency Plan and has been listed as one since December 1993 and again in February 1995 with the Massachusetts Department of Environmental Protection (MassDEP) under Release Tracking Number (RTN) 3-10317 and 3-10852, respectively. Known contaminants in groundwater at the Site include non-chlorinated volatile organic compounds (VOCs), petroleum hydrocarbons, and polycyclic aromatic hydrocarbons (PAHs), poly-chlorinated biphenyl's (PCB's), and heavy metals. The VOCs, petroleum, and PCB's were likely attributed to the historical use of reconditioning used metal drums which included cleaning, rinsing, and repainting the barrels. In addition, a portion of the site served as a gasoline station starting in 1967 until approximately 1988. The dewatering is occurring in conjunction with a Release Abatement Measure (RAM) and EPA TSCA Risk Based Cleanup Plan to manage contaminated soils during excavations for the building foundations and utilities.

To obtain more updated groundwater quality, CDW collected groundwater samples for VOCs, total metals, total petroleum hydrocarbons (TPH), polychlorinated biphenyls (PCBs), total phenols, chloride, total cyanide, total suspended solids (TSS), total residual chlorine (TRC), trivalent chromium, hexavalent chromium, 1,4-dioxane, EDB, and semi-volatile organic compounds (SVOCs) (Table 1). Our proposed groundwater treatment system for this project consists of a frac tank and bag filters to remove suspended solids along with dual carbon treatment units, and ion resin exchange filter and a cartridge filter before entering a catch basin in Monsignor O'Brien Highway and ultimately discharging to the Charles River. Dewatering will be intermittent and will not be encountered at all locations during construction.

CDW reviewed online databases including the Massachusetts Division of Fisheries and Wildlife (NHESP), Massachusetts Geographical Information Systems (MassGIS), Cambridge GIS Viewer, and Massachusetts Cultural Resource Information Viewer (MACRIS). Based on these findings, the Site and the location of proposed discharge, do not appear to be located within an Area of Critical Environmental Concern (Appendix A). Historical Site information from MACRIS showed that there is a historical location listed at the Site, a Boston and Lowell Railroad Retaining Wall from the 19th century. At this time, CDW's opinion is that dewatering of the Site will not affect the retaining wall (Appendix C).

In addition to the NOI application form, we have attached:

- Figure 1A: Water Flow Schematic and Discharge Location
- Figure 1B: Water Flow Schematic and Discharge Location
- Figure 2: Water Treatment System Schematic
- Figure 3: MassDEP Priority Resource Map
- Appendix A: Endangered Species Act Documentation
- Appendix B: StreamStats Flow Statistics Report
- Appendix C: Massachusetts Cultural Resource Information Report
- Appendix D: Effluent Limitations Calculations

Table 1: Influent & Effluent Data Table

- Contest Analytical Influent Data Report
- Contest Analytical Effluent Data Report

Please call if you have any further questions.

Very truly yours, CDW CONSULTANTS, INC.

Mul lik

Shelby Amsel

Environmental Scientist

cc: Massachusetts Department of Environmental Protection Division of Watershed Management 205B Lowell Street, Wilmington MA, 01887

II. Suggested Format for the Remediation General Permit Notice of Intent (NOI)

A. General site information:

1. Name of site:	Site address:						
	Street:						
	City:	State:	Zip:				
2. Site owner	Contact Person:						
	Telephone:	Telephone: Email:					
	Mailing address:	l					
	Street:						
Owner is (check one): □ Federal □ State/Tribal □ Private □ Other; if so, specify:	City:	State:	Zip:				
3. Site operator, if different than owner	Contact Person:						
	Telephone:	Email:					
	Mailing address:						
	Street:						
	City:		State:	Zip:			
4. NPDES permit number assigned by EPA:	5. Other regulatory program(s) that apply to the site (check all that apply):						
	☐ MA Chapter 21e; list RTN(s):	□ CERCI	₋ A				
NPDES permit is (check all that apply: □ RGP □ DGP □ CGP	NIII Crown dwystar Managamant Damnit ar	□ UIC Pro	•				
☐ MSGP ☐ Individual NPDES permit ☐ Other; if so, specify:	☐ NH Groundwater Management Permit or Groundwater Release Detection Permit:	☐ POTW Pretreatment					
		☐ CWA Section 404					

VIII? (check one):

□ Yes □ No

B. Receiving water information:			Ü		
1. Name of receiving water(s):	Waterbody identification of receiving water	(s): Classifi	cation of receiving water(s):		
Receiving water is (check any that apply): □ Outsta	nding Resource Water □ Ocean Sanctuary □ territo	rial sea □ Wild and Scenic R	iver		
2. Has the operator attached a location map in accord	dance with the instructions in B, above? (check one)	: □ Yes □ No			
Are sensitive receptors present near the site? (check If yes, specify:	one): □ Yes □ No				
3. Indicate if the receiving water(s) is listed in the St pollutants indicated. Also, indicate if a final TMDL 4.6 of the RGP.					
4. Indicate the seven day-ten-year low flow (7Q10) of Appendix V for sites located in Massachusetts and A		n the instructions in			
5. Indicate the requested dilution factor for the calcu accordance with the instructions in Appendix V for s					
6. Has the operator received confirmation from the a If yes, indicate date confirmation received:		, ,			
7. Has the operator attached a summary of receiving (check one): ☐ Yes ☐ No	water sampling results as required in Part 4.2 of the	RGP in accordance with the	instruction in Appendix VIII?		
C. Source water information:					
1. Source water(s) is (check any that apply):					
☐ Contaminated groundwater	☐ Contaminated surface water	☐ The receiving water	☐ Potable water; if so, indicate		
Has the operator attached a summary of influent sampling results as required in Part 4.2 of the RGP	Has the operator attached a summary of influent sampling results as required in Part 4.2 of the	☐ A surface water other	municipality or origin:		
in accordance with the instruction in Appendix RGP in accordance with the instruction in RGP in accordance with the instruction in NHUM (1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1					

Appendix VIII? (check one):

□ Yes □ No

2. Source water contaminants:	
a. For source waters that are contaminated groundwater or contaminated surface water, indicate are any contaminants present that are not included in	b. For a source water that is a surface water other than the receiving water, potable water or other, indicate any contaminants present at the maximum concentration in accordance
the RGP? (check one): ☐ Yes ☐ No If yes, indicate the contaminant(s) and the maximum concentration present in accordance with the instructions in Appendix VIII.	with the instructions in Appendix VIII? (check one): □ Yes □ No
3. Has the source water been previously chlorinated or otherwise contains resid	dual chlorine? (check one): □ Yes □ No
D. Discharge information	
1. The discharge(s) is a(n) (check any that apply): \Box Existing discharge \Box New	w discharge □ New source
Outfall(s):	Outfall location(s): (Latitude, Longitude)
Discharges enter the receiving water(s) via (check any that apply): □ Direct di	scharge to the receiving water \Box Indirect discharge, if so, specify:
☐ A private storm sewer system ☐ A municipal storm sewer system If the discharge enters the receiving water via a private or municipal storm sew	ver system:
Has notification been provided to the owner of this system? (check one): \square Ye	
Has the operator has received permission from the owner to use such system for obtaining permission:	or discharges? (check one): □ Yes □ No, if so, explain, with an estimated timeframe for
Has the operator attached a summary of any additional requirements the owner	of this system has specified? (check one): \square Yes \square No
Provide the expected start and end dates of discharge(s) (month/year):	
Indicate if the discharge is expected to occur over a duration of: ☐ less than 1	2 months \square 12 months or more \square is an emergency discharge
Has the operator attached a site plan in accordance with the instructions in D, a	above? (check one): □ Yes □ No

2. Activity Category: (check all that apply)	3. Contamination Type Category: (check all that apply)				
	a. If Activity Category I or II: (check all that apply)				
□ I – Petroleum-Related Site Remediation	 □ A. Inorganics □ B. Non-Halogenated Volatile Organic Compounds □ C. Halogenated Volatile Organic Compounds □ D. Non-Halogenated Semi-Volatile Organic Compounds □ E. Halogenated Semi-Volatile Organic Compounds □ F. Fuels Parameters 				
☐ II – Non-Petroleum-Related Site Remediation	b. If Activity Category III, IV, V, VI, VII or VIII: (check either G or H)				
 □ III – Contaminated Site Dewatering □ IV – Dewatering of Pipelines and Tanks □ V – Aquifer Pump Testing □ VI – Well Development/Rehabilitation □ VII – Collection Structure Dewatering/Remediation □ VIII – Dredge-Related Dewatering 	□ G. Sites with Known Contamination c. If Category III-G, IV-G, V-G, VI-G, VII-G or VIII-G: (check all that apply) □ A. Inorganics □ B. Non-Halogenated Volatile Organic Compounds □ C. Halogenated Volatile Organic Compounds □ D. Non-Halogenated Semi-Volatile Organic Compounds □ D. Halogenated Semi-Volatile Organic Compounds □ E. Halogenated Semi-Volatile Organic Compounds □ F. Fuels Parameters	☐ H. Sites with Unknown Contamination d. If Category III-H, IV-H, V-H, VI-H, VII-H or VIII-H Contamination Type Categories A through F apply			

4. Influent and Effluent Characteristics

	Known	Known				Infl	uent	Effluent Limitations	
Parameter	or believed absent	or believed present	# of samples	Test method (#)	Detection limit (µg/l)	Daily maximum (μg/l)	Daily average (µg/l)	TBEL	WQBEL
A. Inorganics									
Ammonia								Report mg/L	
Chloride								Report μg/l	
Total Residual Chlorine								0.2 mg/L	
Total Suspended Solids								30 mg/L	
Antimony								206 μg/L	
Arsenic								104 μg/L	
Cadmium								10.2 μg/L	
Chromium III								323 μg/L	
Chromium VI								323 μg/L	
Copper								242 μg/L	
Iron								5,000 μg/L	
Lead								160 μg/L	
Mercury								0.739 μg/L	
Nickel								1,450 μg/L	
Selenium								235.8 μg/L	
Silver								35.1 μg/L	
Zinc								420 μg/L	
Cyanide								178 mg/L	
B. Non-Halogenated VOCs	· S							-	
Total BTEX								100 μg/L	
Benzene								5.0 μg/L	
1,4 Dioxane								200 μg/L	
Acetone								7.97 mg/L	
Phenol								1,080 μg/L	

	Known	Known		_		Influent		Effluent Limitations	
Parameter	or believed absent	or believed present	# of samples	Test method (#)	Detection limit (µg/l)	Daily maximum (µg/l)	Daily average (µg/l)	TBEL	WQBEL
C. Halogenated VOCs									
Carbon Tetrachloride								4.4 μg/L	
1,2 Dichlorobenzene								600 μg/L	
1,3 Dichlorobenzene								320 μg/L	
1,4 Dichlorobenzene								5.0 μg/L	
Total dichlorobenzene								763 μg/L in NH	
1,1 Dichloroethane								70 μg/L	
1,2 Dichloroethane								5.0 μg/L	
1,1 Dichloroethylene								3.2 μg/L	
Ethylene Dibromide								0.05 μg/L	
Methylene Chloride								4.6 μg/L	
1,1,1 Trichloroethane								200 μg/L	
1,1,2 Trichloroethane								5.0 μg/L	
Trichloroethylene								5.0 μg/L	
Tetrachloroethylene								5.0 μg/L	
cis-1,2 Dichloroethylene								70 μg/L	
Vinyl Chloride								2.0 μg/L	
D. Non-Halogenated SVOC	`s								
Total Phthalates								190 μg/L	
Diethylhexyl phthalate								101 μg/L	
Total Group I PAHs								1.0 μg/L	
Benzo(a)anthracene									
Benzo(a)pyrene]	
Benzo(b)fluoranthene									
Benzo(k)fluoranthene								As Total PAHs	
Chrysene									
Dibenzo(a,h)anthracene									
Indeno(1,2,3-cd)pyrene]	

	Known	Known		_	Influent	luent	Effluent Limitations		
Parameter	or believed absent	or believed present	# of samples	Test method (#)	Detection limit (µg/l)	Daily maximum (µg/l)	Daily average (μg/l)	TBEL	WQBEL
Total Group II PAHs								100 μg/L	
Naphthalene								20 μg/L	
E. Halogenated SVOCs									
Total PCBs								0.000064 μg/L	
Pentachlorophenol								1.0 μg/L	
E E . l. D									
F. Fuels Parameters Total Petroleum									
Hydrocarbons								5.0 mg/L	
Ethanol								Report mg/L	
Methyl-tert-Butyl Ether								70 μg/L	
tert-Butyl Alcohol								120 μg/L in MA 40 μg/L in NH	
tert-Amyl Methyl Ether								90 μg/L in MA 140 μg/L in NH	
Other (i.e., pH, temperatu	re, hardness,	salinity, LC	50, addition	al pollutar	nts present);	if so, specify:			
									90 ug/L

E. Treatment system information

1. Indicate the type(s) of treatment that will be applied to effluent prior to discharge: (check all that apply)				
☐ Adsorption/Absorption ☐ Advanced Oxidation Processes ☐ Air Stripping ☐ Granulated Activated Carbon ("GAC")/Liquid Phase Carbon Adsorption				
\square Ion Exchange \square Precipitation/Coagulation/Flocculation \square Separation/Filtration \square Other; if so, specify:				
2. Provide a written description of all treatment system(s) or processes that will be applied to the effluent prior to discharge.				
Groundwater encountered during excavation activities will be pumped into a water treatment system prior to offside discharge. The first element of the water treatment system where solids will settle out. Water is gravity fed from the weir tank into a fractionation tank and then pumped through bag filtration, liquid phase reactivated carbon, cation and exchange, and finally cartridge filtration.				
Identify each major treatment component (check any that apply):				
☐ Fractionation tanks☐ Equalization tank ☐ Oil/water separator ☐ Mechanical filter ☐ Media filter				
☐ Chemical feed tank ☐ Air stripping unit ☐ Bag filter ☐ Other; if so, specify:				
Indicate if either of the following will occur (check any that apply):				
☐ Chlorination ☐ De-chlorination				
3. Provide the design flow capacity in gallons per minute (gpm) of the most limiting component.				
Indicate the most limiting component:				
Is use of a flow meter feasible? (check one): □ Yes □ No, if so, provide justification:				
Provide the proposed maximum effluent flow in gpm.				
Provide the average effluent flow in gpm.				
If Activity Category IV applies, indicate the estimated total volume of water that will be discharged:				
4. Has the operator attached a schematic of flow in accordance with the instructions in E, above? (check one): □ Yes □ No				

F. Chemical and additive information

1. Indicate the type(s) of chemical or additive that will be applied to effluent prior to discharge or that may otherwise be present in the discharge(s): (check all that apply)
□ Algaecides/biocides □ Antifoams □ Coagulants □ Corrosion/scale inhibitors □ Disinfectants □ Flocculants □ Neutralizing agents □ Oxidants □ Oxygen □
scavengers □ pH conditioners □ Bioremedial agents, including microbes □ Chlorine or chemicals containing chlorine □ Other; if so, specify:
2. Provide the following information for each chemical/additive, using attachments, if necessary:
a. Product name, chemical formula, and manufacturer of the chemical/additive;
b. Purpose or use of the chemical/additive or remedial agent;
c. Material Safety Data Sheet (MSDS) and Chemical Abstracts Service (CAS) Registry number for each chemical/additive;
d. The frequency (hourly, daily, etc.), duration (hours, days), quantity (maximum and average), and method of application for the chemical/additive;
e. Any material compatibility risks for storage and/or use including the control measures used to minimize such risks; and f. If available, the vendor's reported aquatic toxicity (NOAEL and/or LC50 in percent for aquatic organism(s)).
1. If available, the vehicle steported aquatic toxicity (NOAEL and/of LC30 in percent for aquatic organism(s)).
3. Has the operator attached an explanation which demonstrates that the addition of such chemicals/additives may be authorized under this general permit in accordance
with the instructions in F, above? (check one): \square Yes \square No; if no, has the operator attached data that demonstrates each of the 126 priority pollutants in CWA Section
307(a) and 40 CFR Part 423.15(j)(1) are non-detect in discharges with the addition of the proposed chemical/additive?
(check one): ☐ Yes ☐ No
G. Endangered Species Act eligibility determination
1. Indicate under which criterion the discharge(s) is eligible for coverage under this general permit:
□ FWS Criterion A: No endangered or threatened species or critical habitat are in proximity to the discharges or related activities or come in contact with the
"action area".
□ FWS Criterion B : Formal or informal consultation with the FWS under section 7 of the ESA resulted in either a no jeopardy opinion (formal consultation)
or a written concurrence by FWS on a finding that the discharges and related activities are "not likely to adversely affect" listed species or critical habitat
(informal consultation). Has the operator completed consultation with FWS? (check one): ☐ Yes ☐ No; if no, is consultation underway? (check one): ☐
Yes □ No
☐ FWS Criterion C: Using the best scientific and commercial data available, the effect of the discharges and related activities on listed species and critical
habitat have been evaluated. Based on those evaluations, a determination is made by EPA, or by the operator and affirmed by EPA, that the discharges and
related activities will have "no effect" on any federally threatened or endangered listed species or designated critical habitat under the jurisdiction of the
FWS. This determination was made by: (check one) \square the operator \square EPA \square Other; if so, specify:

□ NMFS Criterion: A determination made by EPA is affirmed by the operator that the discharges and related activities will have "no effect" or are "not likely to adversely affect" any federally threatened or endangered listed species or critical habitat under the jurisdiction of NMFS and will not result in any take of
listed species. Has the operator previously completed consultation with NMFS? (check one): ☐ Yes ☐ No
2. Has the operator attached supporting documentation of ESA eligibility in accordance with the instructions in Appendix I, and G, above? (check one): Yes No
Does the supporting documentation include any written concurrence or finding provided by the Services? (check one): \square Yes \square No; if yes, attach.
H. National Historic Preservation Act eligibility determination
1. Indicate under which criterion the discharge(s) is eligible for coverage under this general permit:
☐ Criterion A: No historic properties are present. The discharges and discharge-related activities (e.g., BMPs) do not have the potential to cause effects on
historic properties.
□ Criterion B: Historic properties are present. Discharges and discharge related activities do not have the potential to cause effects on historic properties.
□ Criterion C: Historic properties are present. The discharges and discharge-related activities have the potential to have an effect or will have an adverse
effect on historic properties.
2. Has the operator attached supporting documentation of NHPA eligibility in accordance with the instructions in H, above? (check one): □ Yes □ No
Does the supporting documentation include any written agreement with the State Historic Preservation Officer (SHPO), Tribal Historic Preservation Officer (TPHO), or
other tribal representative that outlines measures the operator will carry out to mitigate or prevent any adverse effects on historic properties? (check one): \square Yes \square No
I. Supplemental information
Describe any supplemental information being provided with the NOI. Include attachments if required or otherwise necessary.
Has the operator attached data, including any laboratory case narrative and chain of custody used to support the application? (check one): ☐ Yes ☐ No
Has the operator attached the certification requirement for the Best Management Practices Plan (BMPP)? (check one): ☐ Yes ☐ No

Signature:

Date: 4.27.2020

J. Certification requirement

I certify under penalty of law that this document and all attachments were prepared under my direction or supervision in accordance with a system designed to assure that qualified personnel properly gathered and evaluated the information submitted. Based on my inquiry of the person or persons who manage the system, or those persons directly responsible for gathering the information, the information submitted is, to the best of my knowledge and belief, true, accurate, and complete. I have no personal knowledge that the information submitted is other than true, accurate, and complete. I am aware that there are significant penalties for submitting false information, including the possibility of fine and imprisonment for knowing violations. A BMPP will be developed and implemented that meets the requirements of this general permit. BMPP certification statement: Notification provided to the appropriate State, including a copy of this NOI, if required. Check one: Yes I No B Notification provided to the municipality in which the discharge is located, including a copy of this NOI, if requested, Check one: Yes . Notification provided to the owner of a private or municipal storm sewer system, if such system is used for site Check one: Yes No No NA discharges, including a copy of this NOI, if requested. Permission obtained from the owner of a private or municipal storm sewer system, if such system is used for site discharges. If yes, attach additional conditions. If no, attach explanation and timeframe for obtaining permission. Check one: Yes □ No ■ NA □ Notification provided to the owner/operator of the area associated with activities covered by an additional discharge permit(s). Additional discharge permit is (check one): □ RGP □ DGP □ CGP □ MSGP □ Individual NPDES permit Check one: Yes □ No □ NA ■ ☐ Other; if so, specify:

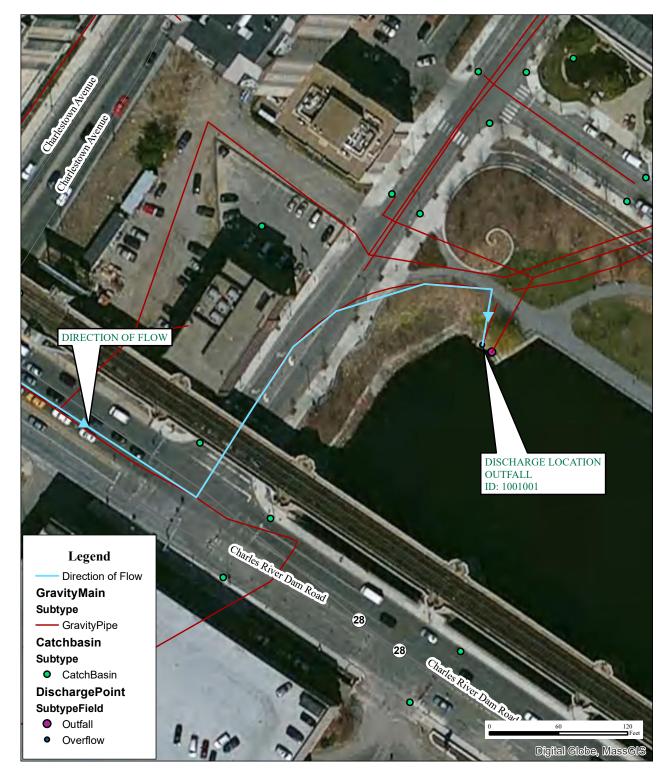
Print Name and Title John Stebbins - Owner's Representative, Somerbridge Hotel LLC

FIGURES

CDW CONSULTANTS, INC.

263 MONSIGNOUR HIGHWAY 1 MCGRATH HIGHWAY CAMBRIDGE, MA Figure 1A - Water Flow Schematic & Discharge Location Map

SOURCE: MASSGIS SCALE:1 inch = 633 feet


SOURCE: MASSGIS

CDW CONSULTANTS, INC.

263 MONSIGNOUR HIGHWAY 1 MCGRATH HIGHWAY CAMBRIDGE, MA Figure 1B - Water Flow Schematic & Discharge Location Map

SCALE:1 inch = 67 feet

CDW CONSULTANTS, INC.

263 MONSIGNOUR HIGHWAY 1 MCGRATH HIGHWAY CAMBRIDGE, MA

CAMBRIDGE, MA Figure 1C - Water Flow Schematic & Discharge Location Map

SCALE:1 inch = 83 feet

SOURCE: MASSGIS

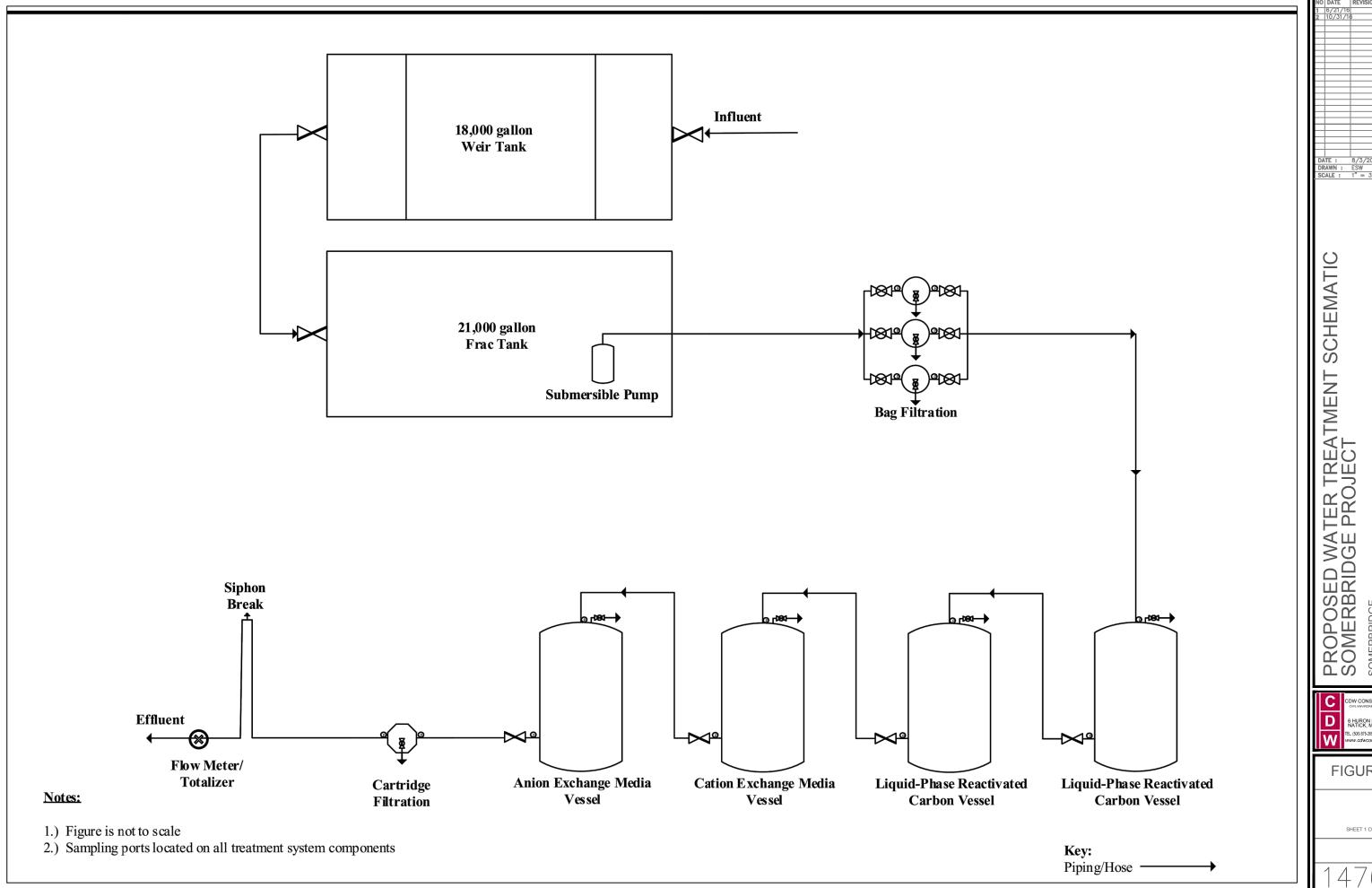
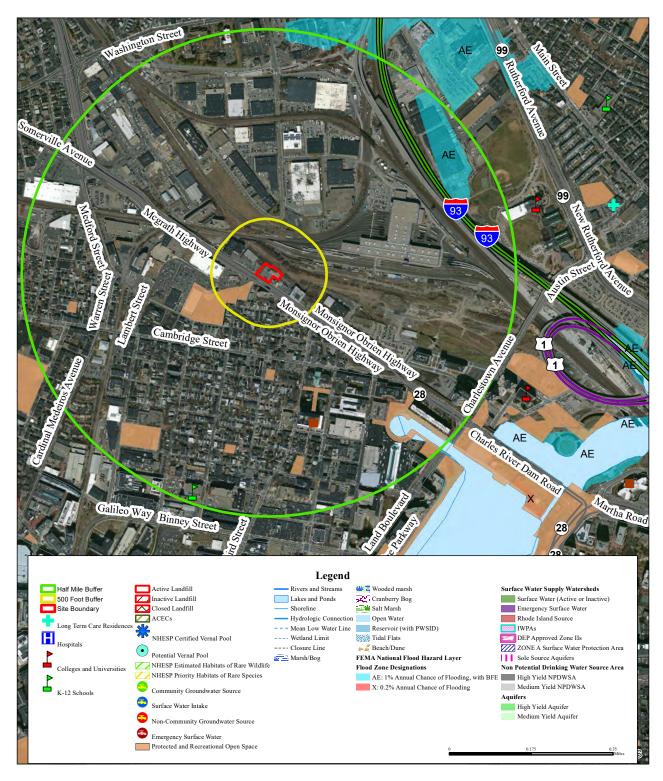



FIGURE 2

CDW CONSULTANTS, INC.

263 MONSIGNOUR HIGHWAY 1 MCGRATH HIGHWAY CAMBRIDGE, MA

Figure 3 - Priority Resource Areas Map

SOURCE: MASSGIS SCALE: 1 inch = 1,083 feet

APPENDIX A ENDANGERED SPECIES ACT DOCUMENTATION

United States Department of the Interior

FISH AND WILDLIFE SERVICE

New England Ecological Services Field Office 70 Commercial Street, Suite 300 Concord, NH 03301-5094 Phone: (603) 223-2541 Fax: (603) 223-0104

http://www.fws.gov/newengland

In Reply Refer To: April 23, 2020

Consultation Code: 05E1NE00-2020-SLI-2295

Event Code: 05E1NE00-2020-E-06766

Project Name: 245-263 Monsignour Highway - Somerbridge

Subject: List of threatened and endangered species that may occur in your proposed project

location, and/or may be affected by your proposed project

To Whom It May Concern:

The enclosed species list identifies threatened, endangered, proposed and candidate species, as well as proposed and final designated critical habitat, that may occur within the boundary of your proposed project and/or may be affected by your proposed project. The species list fulfills the requirements of the U.S. Fish and Wildlife Service (Service) under section 7(c) of the Endangered Species Act (Act) of 1973, as amended (16 U.S.C. 1531 *et seq.*).

New information based on updated surveys, changes in the abundance and distribution of species, changed habitat conditions, or other factors could change this list. Please feel free to contact us if you need more current information or assistance regarding the potential impacts to federally proposed, listed, and candidate species and federally designated and proposed critical habitat. Please note that under 50 CFR 402.12(e) of the regulations implementing section 7 of the Act, the accuracy of this species list should be verified after 90 days. This verification can be completed formally or informally as desired. The Service recommends that verification be completed by visiting the ECOS-IPaC website at regular intervals during project planning and implementation for updates to species lists and information. An updated list may be requested through the ECOS-IPaC system by completing the same process used to receive the enclosed list.

The purpose of the Act is to provide a means whereby threatened and endangered species and the ecosystems upon which they depend may be conserved. Under sections 7(a)(1) and 7(a)(2) of the Act and its implementing regulations (50 CFR 402 *et seq.*), Federal agencies are required to utilize their authorities to carry out programs for the conservation of threatened and endangered species and to determine whether projects may affect threatened and endangered species and/or designated critical habitat.

A Biological Assessment is required for construction projects (or other undertakings having similar physical impacts) that are major Federal actions significantly affecting the quality of the human environment as defined in the National Environmental Policy Act (42 U.S.C. 4332(2) (c)). For projects other than major construction activities, the Service suggests that a biological evaluation similar to a Biological Assessment be prepared to determine whether the project may affect listed or proposed species and/or designated or proposed critical habitat. Recommended contents of a Biological Assessment are described at 50 CFR 402.12.

If a Federal agency determines, based on the Biological Assessment or biological evaluation, that listed species and/or designated critical habitat may be affected by the proposed project, the agency is required to consult with the Service pursuant to 50 CFR 402. In addition, the Service recommends that candidate species, proposed species and proposed critical habitat be addressed within the consultation. More information on the regulations and procedures for section 7 consultation, including the role of permit or license applicants, can be found in the "Endangered Species Consultation Handbook" at:

http://www.fws.gov/endangered/esa-library/pdf/TOC-GLOS.PDF

Please be aware that bald and golden eagles are protected under the Bald and Golden Eagle Protection Act (16 U.S.C. 668 *et seq.*), and projects affecting these species may require development of an eagle conservation plan (http://www.fws.gov/windenergy/eagle_guidance.html). Additionally, wind energy projects should follow the wind energy guidelines (http://www.fws.gov/windenergy/) for minimizing impacts to migratory birds and bats.

Guidance for minimizing impacts to migratory birds for projects including communications towers (e.g., cellular, digital television, radio, and emergency broadcast) can be found at: http://www.fws.gov/migratorybirds/CurrentBirdIssues/Hazards/towers/towers.htm; http://www.towerkill.com; and http://www.fws.gov/migratorybirds/CurrentBirdIssues/Hazards/towers/comtow.html.

We appreciate your concern for threatened and endangered species. The Service encourages Federal agencies to include conservation of threatened and endangered species into their project planning to further the purposes of the Act. Please include the Consultation Tracking Number in the header of this letter with any request for consultation or correspondence about your project that you submit to our office.

Attachment(s):

Official Species List

Official Species List

This list is provided pursuant to Section 7 of the Endangered Species Act, and fulfills the requirement for Federal agencies to "request of the Secretary of the Interior information whether any species which is listed or proposed to be listed may be present in the area of a proposed action".

This species list is provided by:

New England Ecological Services Field Office 70 Commercial Street, Suite 300 Concord, NH 03301-5094 (603) 223-2541

Project Summary

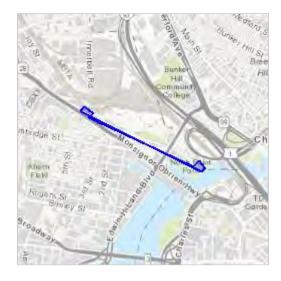
Consultation Code: 05E1NE00-2020-SLI-2295

Event Code: 05E1NE00-2020-E-06766

Project Name: 245-263 Monsignour Highway - Somerbridge

Project Type: DEVELOPMENT

Project Description: Construction activities will take place on a 0.75 acre (32,670 square feet)


parcel known as 245-263 Monsignor Highway that is listed as a disposal site under the Massachusetts Contingency Plan. The property has been listed as a disposal site since December 1993 and again in February 1995

with the Massachusetts Department of Environmental Protection (MassDEP) under Release Tracking Number (RTN) 3-10317 and 3-10852, respectively. Known contaminants in groundwater at the Site include non-chlorinated volatile organic compounds (VOCs), petroleum hydrocarbons, and polycyclic aromatic hydrocarbons (PAHs), polychlorinated biphenyl's (PCB's), and heavy metals. The VOCs, petroleum, and PCB's were attributed to the historical use of reconditioning used metal drums which included cleaning, rinsing, and repainting the barrels. In addition, the site served as a gasoline station starting in 1967 until approximately 1988. The dewatering is occurring in conjunction with a Release Abatement Measure (RAM) to manage contaminated soils during

excavations for the building foundations and utilities.

Project Location:

Approximate location of the project can be viewed in Google Maps: https://www.google.com/maps/place/42.373805083000065N71.08134346635725W

Counties: Middlesex, MA

Endangered Species Act Species

There is a total of 0 threatened, endangered, or candidate species on this species list.

Species on this list should be considered in an effects analysis for your project and could include species that exist in another geographic area. For example, certain fish may appear on the species list because a project could affect downstream species.

IPaC does not display listed species or critical habitats under the sole jurisdiction of NOAA Fisheries¹, as USFWS does not have the authority to speak on behalf of NOAA and the Department of Commerce.

See the "Critical habitats" section below for those critical habitats that lie wholly or partially within your project area under this office's jurisdiction. Please contact the designated FWS office if you have questions.

1. <u>NOAA Fisheries</u>, also known as the National Marine Fisheries Service (NMFS), is an office of the National Oceanic and Atmospheric Administration within the Department of Commerce.

Critical habitats

THERE ARE NO CRITICAL HABITATS WITHIN YOUR PROJECT AREA UNDER THIS OFFICE'S JURISDICTION.

APPENDIX B STREAMSTATS FLOW STATISTICS REPORT

4/28/2020 StreamStats

StreamStats Report

Region ID: MA

Workspace ID: MA20200428135457239000

Clicked Point (Latitude, Longitude): 42.35249, -71.10669

Time: 2020-04-28 09:55:14 -0400

Basin Characteristics			
Parameter Code	Parameter Description	Value	Unit
DRNAREA	Area that drains to a point on a stream	283	square miles
BSLDEM250	Mean basin slope computed from 1:250K DEM	2.329	percent
DRFTPERSTR	Area of stratified drift per unit of stream length	0.23	square mile per mile
MAREGION	Region of Massachusetts 0 for Eastern 1 for Western	0	dimensionless
ELEV	Mean Basin Elevation	200	feet
LC06STOR	Percentage of water bodies and wetlands determined from the NLCD 2006	13.11	percent

https://streamstats.usgs.gov/ss/

4/28/2020 StreamStats

Low-Flow Statistics Parameters[Statewide Low Flow WRIR00 4135]

Parameter Code	Parameter Name	Value	Units	Min Limit	Max Limit
DRNAREA	Drainage Area	283	square miles	1.61	149
BSLDEM250	Mean Basin Slope from 250K DEM	2.329	percent	0.32	24.6
DRFTPERSTR	Stratified Drift per Stream Length	0.23	square mile per mile	0	1.29
MAREGION	Massachusetts Region	0	dimensionless	0	1

Low-Flow Statistics Disclaimers[Statewide Low Flow WRIR00 4135]

One or more of the parameters is outside the suggested range. Estimates were extrapolated with unknown errors

Low-Flow Statistics Flow Report[Statewide Low Flow WRIR00 4135]

Statistic	Value	Unit
7 Day 2 Year Low Flow	49.6	ft^3/s
7 Day 10 Year Low Flow	24.7	ft^3/s

Low-Flow Statistics Citations

Ries, K.G., III,2000, Methods for estimating low-flow statistics for Massachusetts streams: U.S. Geological Survey Water Resources Investigations Report 00-4135, 81 p. (http://pubs.usgs.gov/wri/wri004135/)

Peak-Flow Statistics Parameters[Peak Statewide 2016 5156]

Parameter Code	Parameter Name	Value	Units	Min Limit	Max Limit
DRNAREA	Drainage Area	283	square miles	0.16	512
ELEV	Mean Basin Elevation	200	feet	80.6	1948
LC06STOR	Percent Storage from NLCD2006	13.11	percent	0	32.3

Peak-Flow Statistics Flow Report[Peak Statewide 2016 5156]

PII: Prediction Interval-Lower, PIu: Prediction Interval-Upper, SEp: Standard Error of Prediction, SE: Standard Error (other -- see report)

Statistic	Value	Unit	PII	Plu	SEp
2 Year Peak Flood	3030	ft^3/s	1550	5940	42.3
5 Year Peak Flood	4740	ft^3/s	2390	9410	43.4

https://streamstats.usgs.gov/ss/

4/28/2020 StreamStats

Statistic	Value	Unit	PII	Plu	SEp
10 Year Peak Flood	6030	ft^3/s	2970	12200	44.7
25 Year Peak Flood	7840	ft^3/s	3740	16500	47.1
50 Year Peak Flood	9330	ft^3/s	4310	20200	49.4
100 Year Peak Flood	10900	ft^3/s	4860	24300	51.8
200 Year Peak Flood	12500	ft^3/s	5440	28800	54.1
500 Year Peak Flood	14800	ft^3/s	6150	35800	57.6

Peak-Flow Statistics Citations

Zarriello, P.J.,2017, Magnitude of flood flows at selected annual exceedance probabilities for streams in Massachusetts: U.S. Geological Survey Scientific Investigations Report 2016-5156, 99 p. (https://dx.doi.org/10.3133/sir20165156)

USGS Data Disclaimer: Unless otherwise stated, all data, metadata and related materials are considered to satisfy the quality standards relative to the purpose for which the data were collected. Although these data and associated metadata have been reviewed for accuracy and completeness and approved for release by the U.S. Geological Survey (USGS), no warranty expressed or implied is made regarding the display or utility of the data for other purposes, nor on all computer systems, nor shall the act of distribution constitute any such warranty.

USGS Software Disclaimer: This software has been approved for release by the U.S. Geological Survey (USGS). Although the software has been subjected to rigorous review, the USGS reserves the right to update the software as needed pursuant to further analysis and review. No warranty, expressed or implied, is made by the USGS or the U.S. Government as to the functionality of the software and related material nor shall the fact of release constitute any such warranty. Furthermore, the software is released on condition that neither the USGS nor the U.S. Government shall be held liable for any damages resulting from its authorized or unauthorized use.

USGS Product Names Disclaimer: Any use of trade, firm, or product names is for descriptive purposes only and does not imply endorsement by the U.S. Government.

Application Version: 4.3.11

https://streamstats.usgs.gov/ss/

APPENDIX C MASSACHUSETTS CULTURAL RESOURCE INFORMATION REPORT

Massachusetts Cultural Resource Information System MACRIS

MACRIS Search Results

Search Criteria: Town(s): Cambridge; Place: Lechmere Square;

Inv. No.	Property Name	Street	Town	Year
CAM.B	Lockhart, William L. and Company Coffin Factory		Cambridge	
CAM.914	Lechmere Square Streetcar Station	Cambridge St	Cambridge	1922
CAM.913	East Cambridge Viaduct - Lechmere Viaduct	O'Brien Hwy	Cambridge	1910
CAM.9020	Boston and Lowell Railroad Retaining Wall	O'Brien Hwy	Cambridge	c 1857
CAM.349	Lockhart, William L. Coffin Factory Warehouse	195-199 O'Brien Hwy	Cambridge	1873
CAM.348	Lockhart, William L. Coffin Factory Main Building	201 O'Brien Hwy	Cambridge	r 1870
CAM.272	Lockart, William L. Company Building	209 O'Brien Hwy	Cambridge	c 1859
CAM.1400	Morrell, John and Company Branch House	221 O'Brien Hwy	Cambridge	1929
CAM.1399	Whitehead Metal Products Company	225 O'Brien Hwy	Cambridge	1929

Wednesday, April 22, 2020 Page 1 of 1

Massachusetts Cultural Resource Information System

Scanned Record Cover Page

Inventory No: CAM.9020

Historic Name: Boston and Lowell Railroad Retaining Wall

Common Name:

Address: O'Brien Hwy

City/Town: Cambridge

Village/Neighborhood: East Cambridge; Lechmere Square

Local No: 1A-XL Year Constructed: c 1857

Architect(s):

Architectural Style(s):

Use(s): Other Engineering; Other Rail Related

Significance: Engineering; Transportation

Area(s):

Designation(s):

Building Materials(s):

The Massachusetts Historical Commission (MHC) has converted this paper record to digital format as part of ongoing projects to scan records of the Inventory of Historic Assets of the Commonwealth and National Register of Historic Places nominations for Massachusetts. Efforts are ongoing and not all inventory or National Register records related to this resource may be available in digital format at this time.

The MACRIS database and scanned files are highly dynamic; new information is added daily and both database records and related scanned files may be updated as new information is incorporated into MHC files. Users should note that there may be a considerable lag time between the receipt of new or updated records by MHC and the appearance of related information in MACRIS. Users should also note that not all source materials for the MACRIS database are made available as scanned images. Users may consult the records, files and maps available in MHC's public research area at its offices at the State Archives Building, 220 Morrissey Boulevard, Boston, open M-F, 9-5.

Users of this digital material acknowledge that they have read and understood the MACRIS Information and Disclaimer (http://mhc-macris.net/macrisdisclaimer.htm)

Data available via the MACRIS web interface, and associated scanned files are for information purposes only. THE ACT OF CHECKING THIS DATABASE AND ASSOCIATED SCANNED FILES DOES NOT SUBSTITUTE FOR COMPLIANCE WITH APPLICABLE LOCAL, STATE OR FEDERAL LAWS AND REGULATIONS. IF YOU ARE REPRESENTING A DEVELOPER AND/OR A PROPOSED PROJECT THAT WILL REQUIRE A PERMIT, LICENSE OR FUNDING FROM ANY STATE OR FEDERAL AGENCY YOU MUST SUBMIT A PROJECT NOTIFICATION FORM TO MHC FOR MHC'S REVIEW AND COMMENT. You can obtain a copy of a PNF through the MHC web site (www.sec.state.ma.us/mhc) under the subject heading "MHC Forms."

Commonwealth of Massachusetts
Massachusetts Historical Commission
220 Morrissey Boulevard, Boston, Massachusetts 02125
www.sec.state.ma.us/mhc

This file was accessed on: Wednesday, April 22, 2020 at 5:18: PM

FORM F – STRUCTURE

MASSACHUSETTS HISTORICAL COMMISSION MASSACHUSETTS ARCHIVES BUILDING 220 Morrissey Boulevard BOSTON, MASSACHUSETTS 02125

Photograph

Topographic or Assessor's Map

See attached Continuation Sheet

Recorded by John J. Daly

Organization: PAL, Pawtucket, RI Date (month / year) January, 2011

> RECEIVED **APR 22 2011** MASS. HIST. COMM.

Assessor's Number	USGS Quad	Area(s)	Form Number
Cambridge: 1A-XL Somerville:Map	Boston South Boston North		CAM.9020 / SMV.945
112-N/A			7 01010.940

Town Somerville / Cambridge

Place (neighborhood or village) Brickbottom, Lechmere Point

Ownershin

Address or Location Monsignor O'Brien Highway Cambridge, McGrath Highway and Chestnut Street, Somerville.

Name Boston & Lowell Railroad Retaining Wall Public

Private

hoot or chin	nound
_ boat or ship	pound
_ canal	powderhouse
_ carousel	street
dam	tower
_ fort	tunnel
_ gate	<u>X</u> wall
_ kiln	windmill
lighthouse	

Date of Construction 1857-1868/1883-1900

Source Directors of the Boston and Lowell RR 1856, 1857; Maycock 1988; Sanborn Map Co. 1900.

Architect, Engineer or Designer

Boston & Lowell RR, Fitchburg Railroad

Materials Granite and Concrete

Alterations (with dates)

Concrete replacement (1922), addition of concrete walls for sidings (1922, 1930)

Condition Good

Moved X no yes Date

Acreage Not applicable

Setting The railroad right-of-way is flanked to the south by 19th and 20th century light industrial and commercial buildings and flanked to the north by the MBTA's Boston Engine Terminal.

INVENTORY FORM F CONTINUATION SHEET

MASSACHUSETTS HISTORICAL COMMISSION 220 MORRISSEY BOULEVARD, BOSTON, MASSACHUSETTS 02125

CAMBRIDGE / SOMERVILLE

MONSIGNOR O'BRIEN HWY/ MCGRATH HWY & CHESTNUT ST

Area(s) Form No.

		CAM.9020/ SMV.945
--	--	-------------------

Recommended for listing in the National Register of Historic Places. If checked, you must attach a completed National Register Criteria Statement form.	

Use as much space as necessary to complete the following entries, allowing text to flow onto additional continuation sheets.

DESIGN ASSESSMENT

Describe important design features and evaluate in terms of other structures within the community.

The Boston & Lowell Railroad Retaining Wall (Retaining Wall) is a simple stone masonry and concrete gravity structure that defines the southern edge of the former Boston & Lowell Railroad's raised earth fill roadbed. The wall extends across the Cambridge-Somerville municipal boundary and runs roughly parallel to and north of Monsignor O'Brien/McGrath Highway (formerly Bridge Street/Somerville Avenue) within the Lechmere Point neighborhood of Cambridge and the Somerville's Brickbottom neighborhood. In Cambridge, the wall and right-of-way is flanked by the MBTA's Boston Engine Terminal (formerly the Boston & Maine Railroad Boston Engine Terminal) to the north and by early twentieth-century light industrial properties organized along Bridge Street to the south. In Somerville, the right of way is flanked to the northeast by late twentieth century light industrial properties that occupy the former Asylum Yard of the Boston & Maine Railroad (the B&M). To the southwest are additional light industrial properties. There is no retaining wall on the north side of the right-of way.

The Retaining Wall begins at a point about 125 feet (ft) north of the Third Street-Monsignor O'Brien Intersection in Cambridge and proceeds for a distance of approximately 2,600 ft to a terminus about 200 ft northeast of the Poplar Street-Chestnut Street intersection in Somerville. The retaining wall and earth fill roadbed rise to a maximum height of approximately 15 ft at the Red Bridge abutments (MHC No. SMV.905). The wall and fill are bisected near their midpoint by the right-of-way of the MBTA Fitchburg Line (formerly the Fitchburg Railroad), just northwest of the Cambridge-Somerville boundary.

The Boston & Lowell right-of-way was formerly carried over that of the Fitchburg on the so-called Red Bridge, the superstructure of which is now demolished. The railroad right-of-way along the wall ranges from 30 to 100 ft in width and formerly accommodated as many as five tracks in some locations. Most of the rail and ties have been removed, excepting two tracks to the north of the former Red Bridge crossing and fragments of track behind the <u>John Morrell & Company Branch House</u> (221 Monsignor O'Brien Highway, CAM.1400).

The Retaining Wall is constructed with stone masonry and concrete in a variety of structural configurations that are typical of the periods in which they were built and represent common railroad solutions to a mundane engineering problem. These different wall segments are described moving from east to west along the structure.

Between Third Street and the John Morrell & Company Branch House is a 35 foot-long section of 0-4 foot-high wall that is of circa 1930 construction. This concrete structure utilizes precast concrete cribbing joined by buttresses that are reinforced with pairs of railroad rail. The rails project from the tops of the buttresses and retain an upper wall course of sawn timbers. The wall is topped by concrete coping. A short piece of this wall is also present on the west side of the Whitehead Metal Products Company building at 225 Monsignor O'Brien Highway, CAM.1399).

Beginning at the point west of the Whitehead Metal building referenced above, and continuing for a distance of 150 ft, is a circa 1855-1868 stone masonry wall. This random-laid, mortared, split-faced wall has a moderate batter and utilizes tabular and irregular stones ranging from 6 inches to several feet in length and width. The majority of the stones are granite, but many of the smaller 6-12 inch stones are Cambridge argillite, a locally-sourced, slate-like stone. The wall is topped with a single course of larger, 2-3 foot-long capstones, which are now topped by concrete coping. Closely-spaced, 0.75 inch diameter drill marks are visible on many of the blocks. Within this section of wall is a brick arch tunnel between Sciarappa (formerly Fourth Street) and Third streets. This substructure is 9 feet tall and 13 feet wide to the outside of the brickwork, with a 10 ft wide and 7.5 foot-high

INVENTORY FORM F CONTINUATION SHEET

MASSACHUSETTS HISTORICAL COMMISSION 220 MORRISSEY BOULEVARD, BOSTON, MASSACHUSETTS 02125

CAMBRIDGE / SOMERVILLE

MONSIGNOR O'BRIEN HWY/ MCGRATH HWY & CHESTNUT ST

Area(s) Form No.

CAM.9020/ SMV.945

opening. The brick arch barrel rises from irregular split granite impost blocks that establish a spring line about 2 ft above grade. The tunnel is now filled with earth and its entry is closed with a mortared concrete block wall.

Just to the east of the building at 245 McGrath Highway, the above-described wall transitions into a vertical stone masonry wall with different materials and workmanship. This wall, which continues about 500 ft to a point near the Red Bridge abutment, consists of unevenly-coursed, mortared tabular and square blocks of split-faced granite topped with 1 ft-high concrete coping. The blocks range from 2-9 ft in length and 1-2 ft in height. Leveling courses of 2-6 inch chink stones are often laid between the courses of blocks. Behind 245 McGrath Highway, the wall projects south to form an abutment for a now-missing trestle. Adjacent to the Red Bridge abutment at 51 McGrath Highway in Somerville, approximately 75 ft of stone wall are now covered by an early twentieth century concrete retaining wall that widened the right-of-way for an industrial siding.

The two Red Bridge abutments are approximately 140 ft long. Abutments walls for the southern three spans are composed of massive 2-3 ft-long blocks of evenly-coursed, quarry-faced granite ashlar masonry, topped with a row of larger 3-4 ft long blocks. The northern two spans are plank-formed reinforced concrete. The abutments have been topped across their entire width with concrete bridge seats. The steel bridge superstructure is now missing.

West of the west bridge abutment, the coursed granite masonry described above continues for a distance of approximately 150 ft until it terminates at the A & P Grocery Warehouse and Bakery (3-25 Fitchburg Street SMV.664) in Somerville. From this point to its terminus at Poplar Street, the wall is entirely concrete. This section of wall has a variety of textures and retains impressions and fragments of other structures, indicating that it has likely evolved through a series of industrial occupations.

HISTORICAL NARRATIVE

Explain the history of the structure and how it relates to the development of the community.

The Boston & Lowell/Boston and Maine Railroad Retaining Wall and associated fill is a stone masonry and concrete structure whose appearance and configuration reflect the intensive and shifting transportation-related and industrial activities of East Cambridge and Somerville over a 95-year span from 1835 to 1930. The product of multiple land-making and railroad improvement projects, as well as twentieth century alterations for and/or by abutting industrial landowners; the wall and its associated fill traverse the former Miller's River channel and pass through the formerly working class neighborhoods of Lechmere Point and Brickbottom. This documentation focuses primarily on the oldest portions of wall flanking and to the east of the former bridge of the Boston & Lowell over the Fitchburg Railroad (a/k/a the Red Bridge, see the form for MHC No. SMV.905). The fill and retaining walls west of this crossing are discussed, but in less detail.

The origins of the Boston & Lowell Railroad Wall date to 1830, when the Boston & Lowell Railroad was chartered. This company was the first steam-powered railroad to be organized in New England and came after the two earliest American experiments with steam-powered railroads; the Delaware and Hudson Canal Company's operation of the *Sturbridge Lion* in 1829 and the running of the *Tom Thumb* on the Baltimore & Ohio Railroad in 1830. The founding investors and charter board members of the corporation; most notably Patrick Tracy Jackson, Kirk Boott, and William Appleton; were also founding investors for the textile city of Lowell and held interests in the textile mills there. The railroad was expressly designed to carry freight and passengers between Boston and the mills at Lowell. The engineer for the line was James F. Baldwin, son of the famous Loammi Baldwin, who had designed the Middlesex Canal (Douglas 1992:20–25; Karr 1995:204).

The 26 mile-long railroad opened in 1835. Baldwin's surveyed route focused on achieving a direct and efficient route between Boston and Lowell. This necessitated a heavy preliminary investment to construct the deep cuts and fills necessary to achieve favorable grades and alignments for trains. Provision was also made at the outset for a second track (installed 1841). After leaving its Boston depot in the West End, the Boston & Lowell crossed the Charles River via a wood trestle into East Cambridge at Lechmere Point, ran parallel to and just northeast of Monsignor O'Brien Highway/McGrath Highway (formerly the Northern Artery, formerly Bridge Street and Somerville Avenue); then across Miller's River (now filled), which was then open water

MASSACHUSETTS HISTORICAL COMMISSION 220 MORRISSEY BOULEVARD, BOSTON, MASSACHUSETTS 02125

CAMBRIDGE / SOMERVILLE

MONSIGNOR O'BRIEN HWY/ MCGRATH HWY & CHESTNUT ST

Area(s) Form No.

CAM.9020/ SMV.945

between present-day Third Street and Rufo Road. The waterway defined the boundary between Cambridge to the south and east and Somerville to the north and west. It is likely that the approaches and parts of the actual Miller's River crossing were made on fill, with only a short wood trestle section allowing for flow of the tidal Miller's River. After passing into Somerville, the line crossed Washington Street at grade before entering cuts along the northeastern slopes of Prospect and Central Hills (Draper 1852; Karr 1995:204; Kennedy 1951a:57, 62; Kennedy 1951b:86; Massachusetts General Court 1832:12; Maycock 1988; Merchant's Magazine and Commercial Review 1861:14; New Hampshire Statesman and State Journal 1833; Stott 1988; Waters 1836).

The second important step in the evolution of the wall and fill came in 1842. In that year, the Fitchburg Railroad was chartered to construct a line from Charlestown to Fitchburg. This route reached Waltham in 1843 and Fitchburg in 1845. The railroad traversed the tidal flats along the Miller's River's northern bank in Somerville on a built-up embankment, crossed the Boston & Lowell at grade via a shared alignment, and then followed the upper reaches of the Miller's River. The Fitchburg and Boston & Lowell railroads quickly eliminated the shared alignment in 1845, replacing it with a simple crossing at grade circa 1844-1846 (Boyton 1846; The Daily Atlas 1844; Karr 1995:201–204; Walling 1854).

The growing success of both railroads made the grade crossing of the Boston & Lowell and Fitchburg an increasingly difficult traffic management challenge. In 1856, the two railroads agreed to eliminate the grade crossing by raising the Boston & Lowell onto a wood bridge and by lowering the Fitchburg. This structure, which in later iterations would come to be known as the Red Bridge, was begun the same year and completed in 1857. The total cost expended by the Boston & Lowell was \$23,550.72 and was broken down as follows in the railroad's annual report: "Grading-\$10,965.58; Masonry-\$4,032.66; Bridges-\$3,955.68; Superstructure-\$3,551.60; Engineering and Agencies-\$1,045.20" (Directors of the Boston and Lowell Railroad 1858:5-6, 13). The Fitchburg did not report its outlay for the project. As the line item for masonry indicates, erection of the bridge required construction of abutments and wingwalls to stabilize the fill to the east and west of the bridge (Directors of the Fitchburg Railroad Company 1858, 1859; Samuels and Kimball 1897:93).

The extant random-laid stone masonry and associated brick tunnel between Sciarappa Street (formerly Fourth Street) and Third Street in Cambridge likely dates to circa 1855-1868, and may be a product of the bridge construction in 1857 or nearby industrial activity during the same period. The wall's location loosely conforms to that of the Bay State Glass Works, which had begun operations in 1849 south of the railroad on Bridge Street. In 1855, the glass company acquired a triangular piece of made land between the railroad and the Miller's River proceeded to expand its premises along both sides of the railroad embankment. The glass factory buildings directly abutted the railroad's property line and the proprietors tunneled beneath the embankment to allow circulation through the premises. The first of these tunnel structures is identified near the end of Sciarappa Street on an 1868 map, where a "bridge" is adjacent to a coal pile along the Miller's River in the approximate location of the current tunnel beneath the embankment. The label probably referenced a railroad bridge over the tunnel; as the difference in elevation between the glass works and the railroad grade would have made the alternative impractical. Later maps show a second tunnel further to the east near the end of Third Street. Any remnants of this tunnel are now obscured by the behind the industrial buildings of the John Morrell & Company Branch House and Whitehead Metal Products Company at 221 and 225 Monsignor O'Brien Highway. The glassworks ceased operations in 1873. Most of the buildings were demolished by 1888 and replaced with lumber yards and coal wharves, although the main factory building survived into the twentieth century.

The distinct shift in the wall's workmanship to the east of 245 Monsignor O'Brien Highway probably represents the structure's approximate western terminus at the Miller's River channel and the western edge of the glass works (Franklin View Company 1877; Maycock 1988:188; Sanborn Map Company 1888; 1900; Sanborn Map Company 1868, reproduced in Maycock 1988:188).

Maps from 1860-1880 show the continuing evolution of the area at the nexus of the railroad and Miller's River. West of the Red Bridge, the embankment was extended to Washington Street in 1862 when the Boston & Lowell eliminated its Washington Street grade crossing. No wall-building was recorded in the vicinity of this crossing, however. Upstream of the Boston &

MASSACHUSETTS HISTORICAL COMMISSION 220 MORRISSEY BOULEVARD, BOSTON, MASSACHUSETTS 02125

CAMBRIDGE / SOMERVILLE

MONSIGNOR O'BRIEN HWY/ MCGRATH HWY & CHESTNUT ST

Area(s) Form No.

	CAM.9020/	SMV.945
--	-----------	---------

Lowell's river crossing, the Miller's River had devolved into a polluted quagmire as residential sewage and industrial byproducts overwhelmed the waterway. After studies and lawsuits, in 1874 the cities of Cambridge and Somerville filled in the basin upstream of the railroad. Aerial lithographs show that with an open crossing of the river no longer needed, the Boston & Lowell's bridge over the waterway was converted to fill, although this fact was not recorded in the railroad's annual reports for the period (Maycock 1988:205; Samuels and Kimball 1897:119).

In 1883, the Fitchburg and Boston & Lowell railroads again collaborated on improving the intersection of their two railroads. The Boston & Lowell constructed a new, longer and wider pin-connected iron through truss bridge to replace the original wood structure. In the process, they widened their right-of way on the bridge and approach fills to three tracks and the Fitchburg widened its railway to four tracks. A circa 1889 photograph of the bridge shows the new structure with stone abutments and wingwalls, and the current granite ashlar abutment walls are likely products of this bridge reconstruction. However, these walls did not extend into Cambridge to meet the existing wall at Sciarappa Street. Photographs taken between 1886 and 1894 to document an experimental street railway system adjacent to the Boston & Lowell tracks west of Sciarappa Street show the neighboring embankment to be sloping fill. By 1900, however, insurance maps indicate that the wall had been continued westward from its previous terminus at or near Sciarappa Street to the Red Bridge crossing. Based on the identical materials and workmanship of this portion of wall west of the Red Bridge crossing, both of these portions of wall are of the same historical origins. The reason for this expansion of the wall cannot be determined, although the increased presence of industrial occupants along the railroad may have been a factor (Anon 1889; Directors of the Boston and Lowell Railroad 1883, 1884; Directors of the Fitchburg Railroad Company 1883:8; Maycock 1988:80-81; Sanborn Map Company 1900).

Additional modifications have been made to the walls in the early twentieth century. In 1887, the Boston & Maine Railroad (the B&M) had taken control of the Boston & Lowell Railroad, then designated the Southern Division, and later the New Hampshire Division. The B&M also leased the entire Fitchburg system in 1900. The B&M became the dominant northern New England railroad and controlled all of the railroad infrastructure in and out of Boston to either side of the Miller's River. Over the next 40 years, the railroad demolished the McLane Insane Asylum on the north side of the Miller's River and the industries in Cambridge along Bridge Street south of the river. In their stead, the B&M built a massive freight yard complex and engine servicing facility. The Boston & Lowell Railroad embankment was widened to five tracks across both the Red Bridge and the Washington Street Bridge. Both of these bridges were reconstructed between 1925 and 1928 to accommodate the two new tracks. The stone bridge abutments of the Red Bridge were expanded to the northeast with concrete to accommodate the additional two tracks (B&M Railroad 1955:15; Boston Daily Advertiser 1892; BPL 1930; Bromley 1895; G.W. Bromley & Co.1930; Harlow 1946: 332–335, 338; Karr 1995:227–228; Maycock 1988; Scott 1987).

The wall's original termination point west of the Red Bridge is unknown. Concrete walls have replaced any stone work that may have been present at the A&P Grocery Warehouse and Bakery (3-25 Fitchburg Street) in Somerville and along the remainder of the wall to its terminus near Poplar Street. This presumably occurred during the construction of the warehouse in 1919. Circa 1922, a section of the fill immediately east of the Red Bridge was expanded to the south and a reinforced concrete wall was constructed to accommodate an industrial siding. Between Sciarappa and Third Streets in Cambridge, the roadbed was expanded south circa 1930 to accommodate a siding at the John Morrell & Company Branch House and Whitehead Metal Products Company.

The short sections of concrete crib retaining wall west of the Whitehead building and East of the Morrell building were presumably constructed at this time (Adams, Jones, and Stuart 2010a, 2010b; G.W. Bromley & Co. 1930; Sanborn Map Company 1933).

The B&M carried heavy passenger and freight traffic in the Boston area until ca. 1950, when automobile and truck competition began to taking the railroad's market share. The Boston & Main declared insolvency in 1970. The MBTA purchased the former Boston & Lowell and Fitchburg lines, including the section of right-of-way at the location of the wall, in 1976 (Karr 1995:18, 201–204, 231–235).

ĽT.

CAMBRIDGE /
SOMERVILLE

MONSIGNOR O'BRIEN HWY/ MCGRATH HWY & CHESTNUT ST

Area(s) Form No.

CAM.9020/ SMV.945

MASSACHUSETTS HISTORICAL COMMISSION 220 Morrissey Boulevard, Boston, Massachusetts 02125

BIBLIOGRAPHY and/or REFERENCES

Adams, Virginia H., Carey L. Jones, and Quinn R. Stuart

2010a John Morrell and Company Branch House. Massachusetts Historical Commission Form B – Building Form. On file, Massachusetts Historical Commission, Boston, MA.

2010b Whitehead Metal Products Company. Massachusetts Historical Commission Form B – Building Form. On file, Massachusetts Historical Commission, Boston, MA.

Anon.

1889 Railroad Grade Crossing Photo Album. On file, Boston Public Library, Boston, MA.

Boston Daily Advertiser

1871 The Fitchburg Railroad Company. *Boston Daily Advertiser* Issue 27, February 1, 1871.

Boston and Maine Railroad

1955 Railroading on the Boston and Maine. Self-published.

Boston Public Library (BPL)

1930 Boston & Maine Freight Yard in Somerville. Boston Public Library Prints Department, Boston, MA.

Boynton, George W.

A New And Complete Map of the City of Boston, With Part of Charlestown, Cambridge & Roxbury. N. Dearborn, Boston, MA. Collection of Norman B. Leventhal Map Center at the Boston Public Library.

Bromley, George W., and Walter S. Bromley

Atlas of the City of Somerville, Massachusetts from Actual Survey and Official Plans. G.W. Bromley and Co., Philadelphia, PA.

Daily Atlas

1844 Charlestown Branch Railroad. *The Daily Atlas* Issue 278, May 23, 1844:column F.

Directors of the Boston and Lowell Railroad

- 1856 Report of the Directors of the Boston and Lowell Railroad for the Year Ending November 30, 1856. J.H. Eastburn's Press, Boston, MA.
- 1857 Report of the Directors of the Boston and Lowell Railroad for the Year Ending September 30, 1857. J.H. Eastburn's Press, Boston, MA.
- Report of the Directors of the Boston and Lowell Railroad for the Year Ending September 30, 1858. J.H. Eastburn's Press, Boston, MA.
- 1883 Report of the Directors of the Boston & Lowell Railroad Corporation for the Year 1883. Vox Populi Press: Huse, Goodwin & Co., Lowell, MA.
- 1884 Report of the Diectors of the Boston & Lowell Railroad Corporation for the Year 1884. Vox Populi Press: Huse, Goodwin & Co., Lowell, MA.

MASSACHUSETTS HISTORICAL COMMISSION

220 Morrissey Boulevard, Boston, Massachusetts 02125

CAMBRIDGE / SOMERVILLE

Monsignor O'Brien Hwy/ McGrath Hwy & Chestnut St

Area(s) Form No.

CAM.9020/ SMV.945

Directors of the Fitchburg Railroad Company

- 1858 Sixteenth Annual Report of the Fitchburg Railroad Company. January, 1858. Boston, MA.
- 1859 Seventeenth Annual Report of the Fitchburg Railroad Company. January, 1859. Boston, MA.
- 1883 Forty-First Annual Report of the Directors of the Fitchburg Railroad Company. Franklin Press: Rand, Avery, & Company, Boston, MA.

Douglas, George H.

1992 All Aboard! The Railroad in American Life. Marlow & Company, New York, NY.

Draper, Martin Jr.

1852 Map of Somerville, Mass. J.T. Powers & Co., Boston, MA.

Franklin View Company

1877 *City of Cambridge, Mass.* Franklin View Company, Boston, MA. Collection of Norman B. Leventhal Map Center at the Boston Public Library.

G.W. Bromley & Co.

1930 Atlas of the City of Cambridge, Massachusetts. G.W. Bromley & Co., Philadelphia, PA.

Harlow, Alvin F.

1946 Steelways of New England. Creative Age Press, Inc., New York, NY.

Hopkins, G.M.

1873 Atlas of the City of Cambridge, Middlesex Co., Massachusetts. G.M. Hopkins & Co., Philadelphia, PA.

Karr, Ronald Dale

1995 The Rail Lines of Southern New England. Branch Line Press, Pepperell, MA.

Kennedy, Charles J.

- 1951a The Early Business History of Four Massachusetts Railroads-I. *Bulletin of the Business Historical Society* Volume 25, Number 1, March 1951:52–72.
- 1951b The Early Business History of Four Massachusetts Railroads-II. *Bulletin of the Business Historical Society* Volume 25, Number 2, June 1951:84–98.

Massachusetts General Court (MGC)

Act of March 5, 1832. Chapter LXXXVII. Boston & Maine Railroad System. Statutes Relating to Boston & Lowell Railroad and Leased Lines. Volume 1. Rand Avery Supply Co., Boston, MA.

Maycock, Susan E.

1988 Survey of Architectural History in Cambridge: East Cambridge. Cambridge Historical Commission, Cambridge, MA.

Merchant's Magazine and Commercial Review

1861 The Rail-road System of Massachusetts. *Merchant's Magazine and Commercial Review* Volume XLV, No. II, August 1861:113–130.

MASSACHUSETTS HISTORICAL COMMISSION

220 Morrissey Boulevard, Boston, Massachusetts 02125

CAMBRIDGE / SOMERVILLE

MONSIGNOR O'BRIEN HWY/ MCGRATH HWY & CHESTNUT ST

Area(s) Form No.

CAM.9020/ SMV.945

New Hampshire Statesman and State Journal

1833 The Boston and Lowell Rail Road [sic]. New Hampshire Statesman and State Journal Issue 36, January 19, 1833.

Samuels, Edward A., and Henry H. Kimball (editors)

1897 *Somerville, Past and Present.* Samuels and Kimball, Boston, MA.

Sanborn Map Company

- 1888 Insurance Map of Cambridge, Massachusetts. Sanborn Map Company, New York, New York.
- 1900 Insurance Map of Cambridge, Massachusetts. Sanborn Map Company, New York, New York.
- 1933 Insurance Map of Somerville, Massachusetts. Sanborn Map Company, New York, New York.

Scott, Charles

Historic Structure Inventory Form for B&M Bridge No. 1.32. McGinley Hart & Associates, Somerville, MA. On file, Massachusetts Historical Commission, Boston, MA

Stott, Peter

Historic Structure Inventory Form for Bridge No. 5.11 over the Mystic River. McGinley Hart & Associates, Somerville, MA. On file, Massachusetts Historical Commission, Boston, MA.

Walling, H.F.

1854 *Map of the City of Cambridge, Middlesex County, Massachusetts*. George L. Dix, Boston, MA. Collection of Norman B. Leventhal Map Center at the Boston Public Library.

Waters, Henry C.

1836 A Plan & Profile of the Boston & Lowell Railroad. Pendleton's Lithography, Boston. On file, Boston Public Library, Boston, MA.

National Register Assessment

The Boston & Lowell Railroad Retaining Wall incorporates surviving substructures associated with the early history of the railroad and the Bay State Glass Works. The Boston & Lowell was a significant and pioneering early New England transportation company; while the Bay State Glass Works was one of several Cambridge and Somerville glass companies operating in the third quarter of the nineteenth century. The wall includes a variety of vernacular stone masonry construction techniques that are typical of such railroad-related structures for their respective periods. These variations in materials and workmanship indirectly demonstrate the evolution of the geography and industrial and transportation uses of the Miller's River basin area in East Cambridge and the Brickbottom neighborhood of Somerville. Although the wall's construction and history are noteworthy in these contexts, the structure does not rise to the level of National Register eligibility.

CAM.9020/ SMV.945

Area(s) Form No.

INVENTORY FORM F CONTINUATION SHEET

MASSACHUSETTS HISTORICAL COMMISSION 220 Morrissey Boulevard, Boston, Massachusetts 02125

PROPERTY MAP

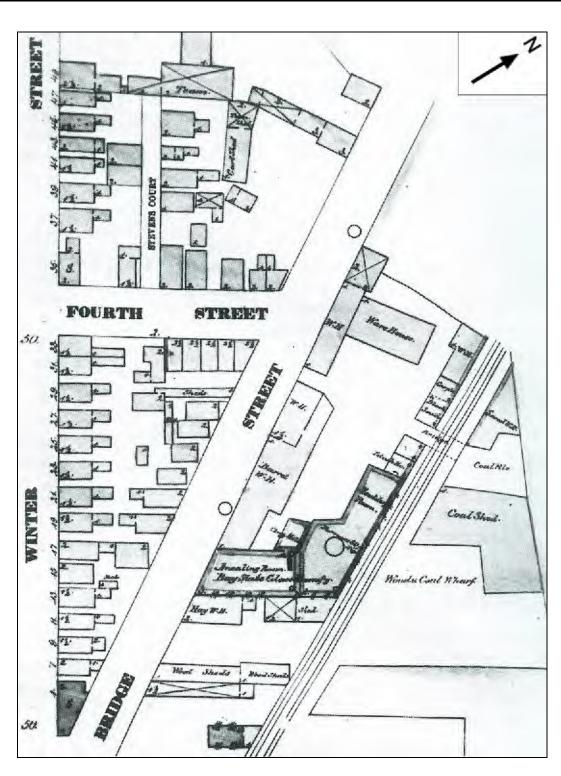
Continuation sheet 8

MASSACHUSETTS HISTORICAL COMMISSION 220 Morrissey Boulevard, Boston, Massachusetts 02125

CAMBRIDGE / SOMERVILLE

MONSIGNOR O'BRIEN HWY/ MCGRATH HWY & CHESTNUT ST

Area(s) Form No.


HISTORICAL MAPS AND PHOTOGRAPHS

1854 Map of Cambridge and Somerville showing the Boston & Lowell crossing of Miller's River and the Fitchburg Railroad. At upper left a broken line indicates the former location of the Fitchburg's right-of-way, which was later straightened to the alignment shown. The Bay State Glass Works have taken possession of a lot at the end of Fourth Street (source: Walling 1854).

MASSACHUSETTS HISTORICAL COMMISSION 220 Morrissey Boulevard, Boston, Massachusetts 02125

CAM.9020/ SMV.945

1868 insurance map of Cambridge showing the Boston & Lowell RR bridge over the Bay State Glass Works underpass/tunnel, which is still extant (source: Sanborn Map Company 1868, reproduced in Maycock 1988:188).

MASSACHUSETTS HISTORICAL COMMISSION

220 Morrissey Boulevard, Boston, Massachusetts 02125

CAMBRIDGE / SOMERVILLE

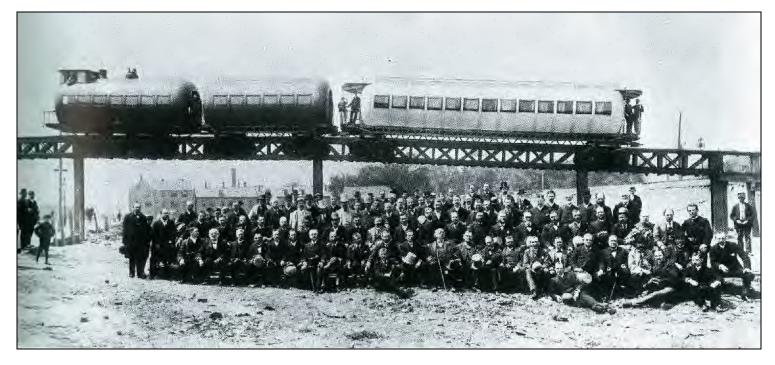
MONSIGNOR O'BRIEN HWY/ MCGRATH HWY & CHESTNUT ST

Area(s) Form No.

CAM.9020/ SMV.945

1879 "bird's eye" lithograph of Cambridge (at left) and Somerville (at right) showing the Boston and Lowell RR (moving left to right) and the Fitchburg RR at the location of the retaining walls. The Miller's River has been filled to the north of the Boston & Lowell line, which is now located on a continuous embankment. The Bay State Glass Works are just left of the river (source:Bailey 1879).

Form No. Area(s)


MASSACHUSETTS HISTORICAL COMMISSION

220 Morrissey Boulevard, Boston, Massachusetts 02125

INVENTORY FORM F CONTINUATION SHEET

1886-1894 photo of the Meigs experimental railway in Cambridge, looking southeast from the south side of the Boston & Lowell railroad embankment. Bridge street is at far right and a remnant portion of the Bay State Glass Works is behind the fence at the left edge of the picture (source:Maycock 1988:81).

1887 photo of the Meigs experimental railway in Cambridge, looking northwest from the former Bay State Glass Works. The Boston & Lowell Railroad embankment is visible at the far right and Bridge Street is visible at the far left (source:Maycock 1988:81).

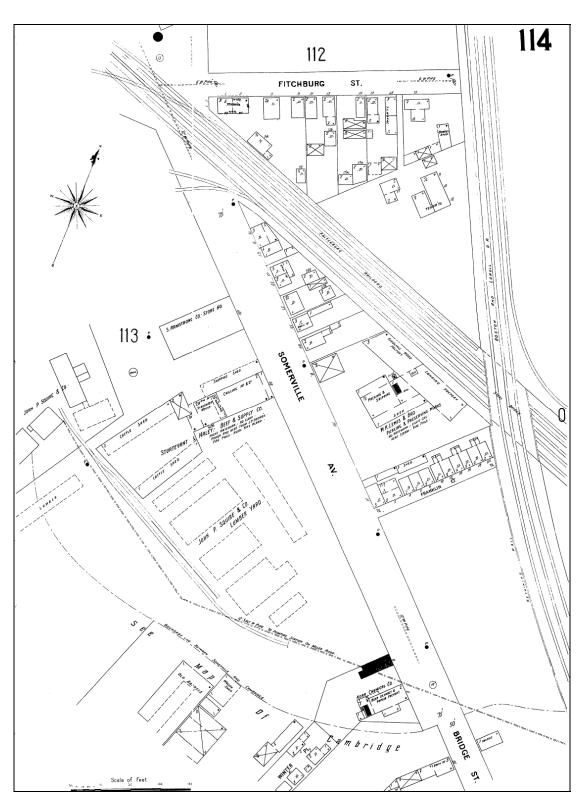

MASSACHUSETTS HISTORICAL COMMISSION 220 Morrissey Boulevard, Boston, Massachusetts 02125

CAMBRIDGE / SOMERVILLE

MONSIGNOR O'BRIEN HWY/ MCGRATH HWY & CHESTNUT ST

Area(s) Form No.

CAM.9020/ SMV.945

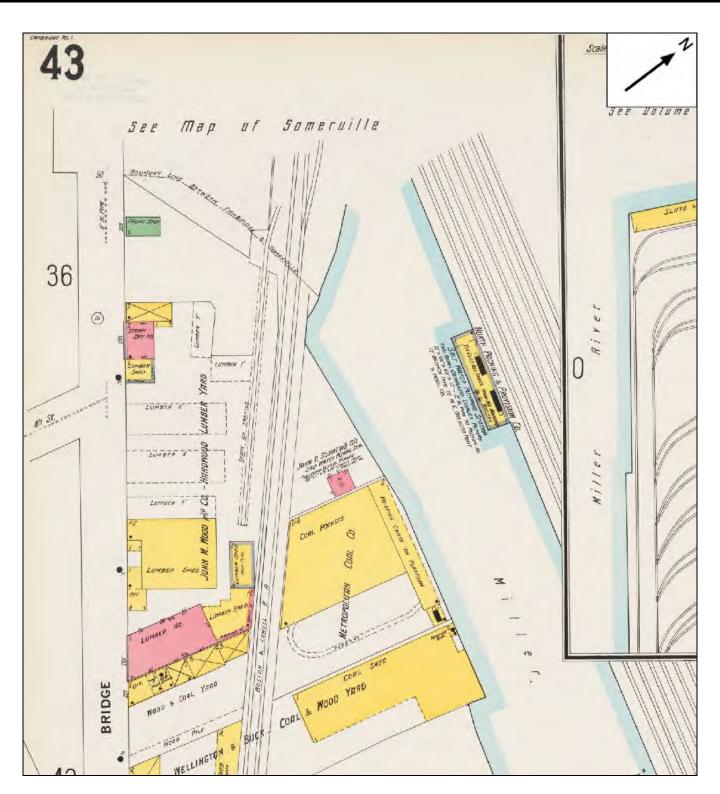


Circa 1889 photograph of the crossing of the Fitchburg Railroad and Somerville Avenue, looking east. The Red Bridge, built 1883, and walls of the Boston & Lowell are visible in the background (source:Anonymous 1889).

Form No. Area(s)

INVENTORY FORM F CONTINUATION SHEET

MASSACHUSETTS HISTORICAL COMMISSION 220 Morrissey Boulevard, Boston, Massachusetts 02125

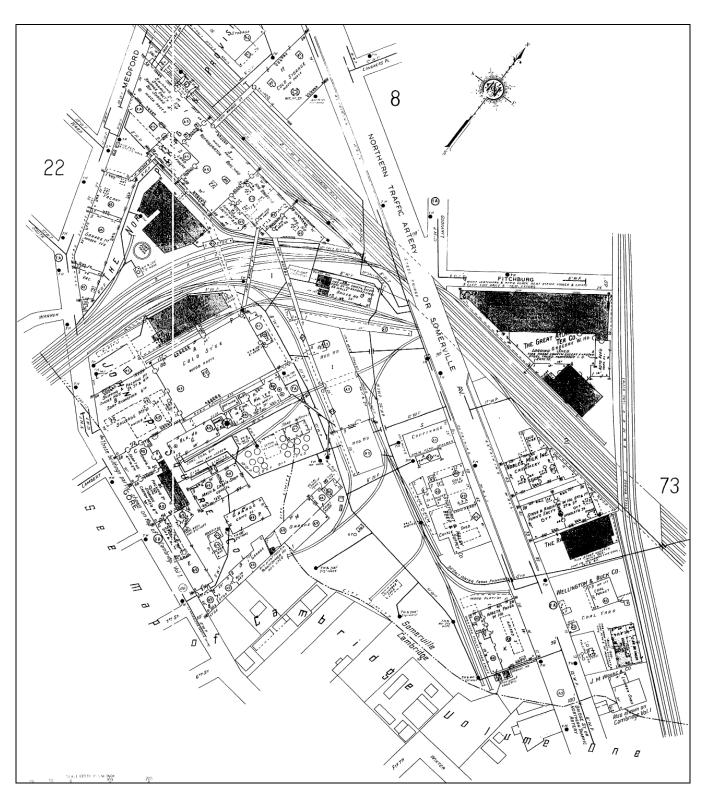

1900 Somerville insurance map showing the Boston & Lowell Railroad Retaining Wall at lower right, with the Red Bridge at center right (source: Sanborn Map Company 1900).

Form No. Area(s)

MASSACHUSETTS HISTORICAL COMMISSION

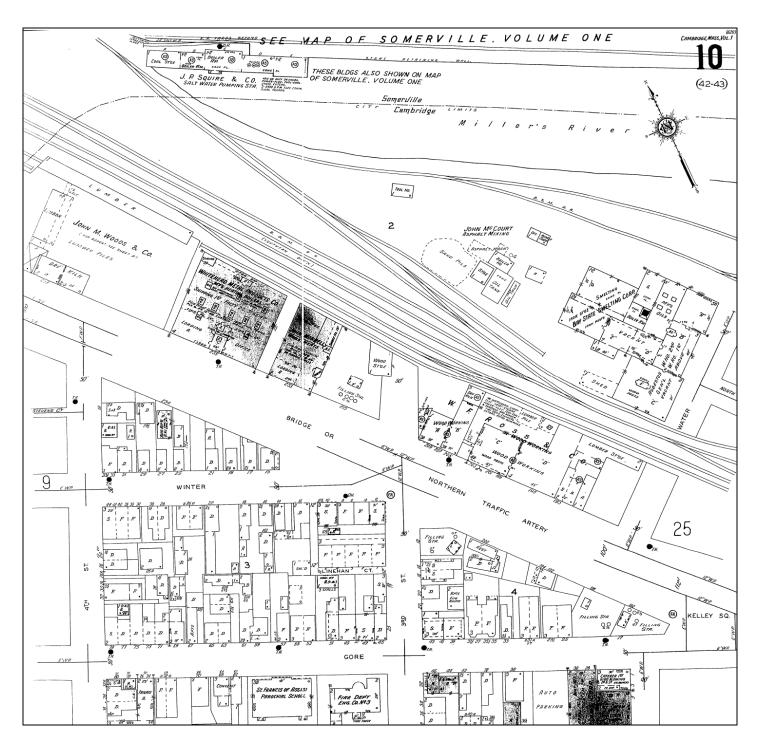
220 Morrissey Boulevard, Boston, Massachusetts 02125

INVENTORY FORM F CONTINUATION SHEET


1900 insurance map of Cambridge showing the Boston and Lowell RR right-of-way at the former location of the Bay State Glass Works (source: Sanborn Map Company 1900).

Area(s) Form No.

4 () E N


MASSACHUSETTS HISTORICAL COMMISSION 220 MORRISSEY BOULEVARD, BOSTON, MASSACHUSETTS 02125

INVENTORY FORM F CONTINUATION SHEET

1933 insurance map of Somerville showing the Red Bridge and the Boston & Lowell Railroad along the right edge of the image. The A&P Warehouse is at center right (source:Sanborn Map Company 1933).

MASSACHUSETTS HISTORICAL COMMISSION 220 Morrissey Boulevard, Boston, Massachusetts 02125

1934 Insurance map of Cambridge showing eastern portion of Boston & Lowell Railroad fill. John M. Woods & Co. occupies the former glass works parcel (source:Sanborn Map Company 1934).

Area(s) Form No.

CAM.9020/ SMV.945

MASSACHUSETTS HISTORICAL COMMISSION 220 Morrissey Boulevard, Boston, Massachusetts 02125

INVENTORY FORM F CONTINUATION SHEET

PHOTOGRAPHS

Photograph 1. Circa 1855-1868 section of Boston & Lowell RR retaining wall and tunnel at former site of Bay State Glass Factory in Cambridge.

Photograph 2. Circa 1930 section of concrete crib retaining wall on east side of 21 O'Brien Highway.

Area(s) Form No.

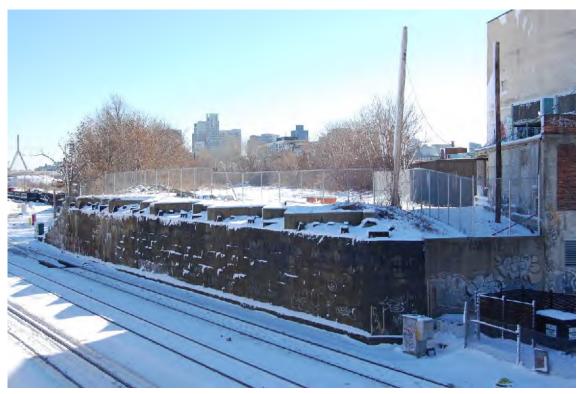
(3) 1 OIIII 140.

MASSACHUSETTS HISTORICAL COMMISSION

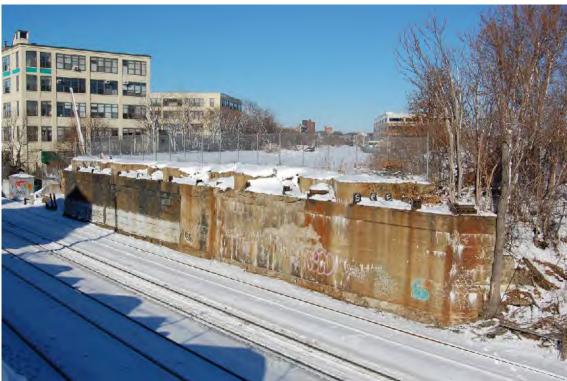
220 Morrissey Boulevard, Boston, Massachusetts 02125

INVENTORY FORM F CONTINUATION SHEET

Photograph 3. Circa 1855-1868 Bay State Glass Works tunnel in the Boston & Lowell RR Retaining Wall.


Photograph 4. Circa 1883-1900 retaining wall behind 245 McGrath Highway in Somerville.

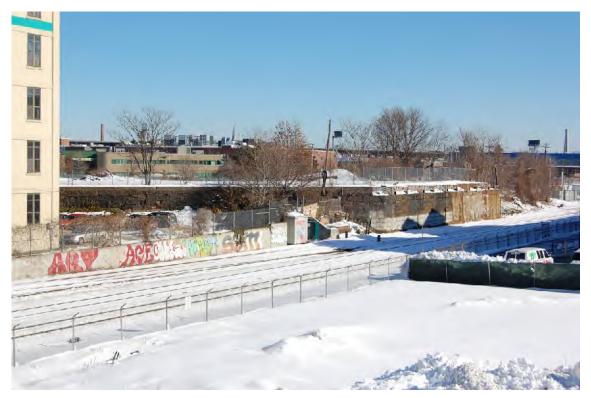
Form No. Area(s)


MASSACHUSETTS HISTORICAL COMMISSION 220 Morrissey Boulevard, Boston, Massachusetts 02125

INVENTORY FORM F CONTINUATION SHEET

CAM.9020/ SMV.945

Photograph 5. East abutment of the Red Bridge in Somerville, with the MBTA Fitchburg line in the foreground. Stone portions of the abutment at right are from 1883, concrete portions at the left are from 1925. The concrete portion at far right was added in 1922 for an industrial siding.


Photograph 6. West abutment of the Red Bridge in Somerville, looking west, with the MBTA Fitchburg Line in foreground. Portion of wall at left is from 1883, portion of wall at right is from 1925.

Area(s) Form No.

MASSACHUSETTS HISTORICAL COMMISSION 220 Morrissey Boulevard, Boston, Massachusetts 02125

INVENTORY FORM F CONTINUATION SHEET

CAM.9020/ SMV.945

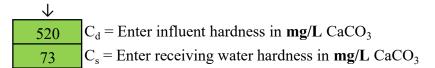
Photograph 7. View of west abutment of Red Bridge and adjacent retaining wall, looking northeast in Somerville. This retaining wall is circa

1883-1900.

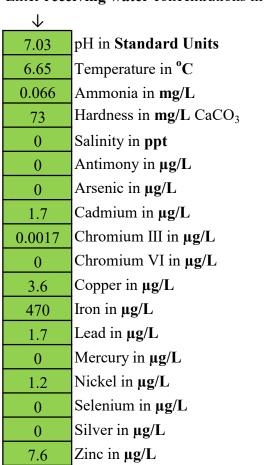
Photograph 8.
Circa 1883-1900 Boston & Lowell RR Retaining Wall on east side of the A&P Grocery
Warehouse and Bakery (3-25 Fitchburg St) in Somerville.

APPENDIX D EFFLUENT LIMITATIONS CALCULATIONS

Enter number values in green boxes below


Enter values in the units specified

\downarrow	
15.9629	Q_R = Enter upstream flow in MGD
0.144	Q_P = Enter discharge flow in MGD
0	Downstream 7Q10


Enter a dilution factor, if other than zero

Enter values in the units specified

Enter receiving water concentrations in the units specified

Notes:

Freshwater: Q_R equal to the 7Q10; enter alternate Q_R if approved by the State; enter 0 if no dilution factor approved Saltwater (estuarine and marine): enter Q_R if approved by the State; enter 0 if no entry Discharge flow is equal to the design flow or 1 MGD, whichever is less Only if approved by State as the entry for Q_R ; leave 0 if no entry

Saltwater (estuarine and marine): only if approved by the State Leave 0 if no entry

Freshwater only

pH, temperature, and ammonia required for all discharges
Hardness required for freshwater
Salinity required for saltwater (estuarine and marine)
Metals required for all discharges if present and if dilution factor is > 1
Enter 0 if non-detect or testing not required

Enter **influent** concentrations in the units specified

	_
0	TRC in μ g /L
0.974	Ammonia in mg /L
0	Antimony in μg/L
8.8	Arsenic in μg/L
0.055	Cadmium in μg /L
1.3	Chromium III in µg/L
0	Chromium VI in µg/L
4.7	Copper in µg/L
16000	Iron in μg/L
1.6	Lead in μg/L
0	Mercury in μg/L
5.5	Nickel in μg/L
0	Selenium in μg/L
0	Silver in μg/L
12	Zinc in μg/L
2	Cyanide in μg/L
66	Phenol in μg/L
0	Carbon Tetrachloride in µg/L
0	Tetrachloroethylene in μg/L
0	Total Phthalates in μg/L
0	Diethylhexylphthalate in μg/L
0	Benzo(a)anthracene in μg/L
0	Benzo(a)pyrene in μg/L
0	Benzo(b)fluoranthene in μg/L
0	Benzo(k)fluoranthene in μg/L
0	Chrysene in μg/L
0	Dibenzo(a,h)anthracene in μg/L
0	Indeno(1,2,3-cd)pyrene in μg/L
0	Methyl-tert butyl ether in μ g/L

if >1 sample, enter maximum if >10 samples, may enter 95th percentile Enter 0 if non-detect or testing not required

RGP Diluton Factor Calculations

EPA Dilution Factor (DF) formula: (Qs+Qd)/Qd = DF Qs is 7Q10 in million gallons per day (MGD) and Qd is discharge flow rate in MGD

7Q10 = 24.7 cubic feet per second

1 cubic foot = 7.48 gallons

discharge flow rate = 100 gallons per minute

RGP Diluton Factor Calculations

WQBELs

EPA Downstream hardness (Cr) = (QdCd+QsCs)/Qr

Cr = Downstream hardness in mg/L

 $Qd = Discharge flow in MGD & 0.144 \\ Cd = Discharge hardness is mg/L & 520 \\ Qs = Upstream flow (7Q10) in MGD & 15.9629184 \\ Cs = Upstream hardness in mg/L & 73 \\$

Qr = Downstream receiving

water flow in MGD = Qd+Qs 16.1069184

 $Cr = \frac{QdCd + QsCs}{Qd+Qs} = \frac{0.144 \frac{MGD}{MGD} \times 520 \frac{mg}{L} + 18.87 \frac{MGD}{MGD} \times 73 \frac{r}{L}}{0.144 \frac{MGD}{MGD} + 18.87 \frac{MGD}{MGD}} = 77 \frac{mg}{L}$

Dilution Factor 132.0

Dilution Factor	132.0						
A. Inorganics	TBEL applies if	bolded	WQBEL applies i	f bolded	Compliance Level applies if shown		
Ammonia	Report	mg/L			**		
Chloride	Report	μg/L					
Total Residual Chlorine	0.2	mg/L	1453	μg/L		μg/L	
Total Suspended Solids	30	mg/L		P8 2		r8-	
Antimony	206	μg/L	84512	μg/L			
Arsenic	104	μg/L μg/L	1320	μg/L μg/L			
Cadmium	10.2		29.2700				
Chromium III	323	μg/L	9126.7	μg/L			
Chromium VI		μg/L	1509.9	μg/L			
	323	μg/L	506.8	μg/L			
Copper	242	μg/L		μg/L			
Iron	5000	μg/L	70456	μg/L			
Lead	160	μg/L	75.38	μg/L			
Mercury	0.739	μg/L	119.62	μg/L			
Nickel	1450	μg/L	5327.1	μg/L			
Selenium	235.8	μg/L	660.2	μg/L			
Silver	35.1	$\mu g/L$	314.4	μg/L			
Zinc	420	$\mu g/L$	11596.9	$\mu g/L$			
Cyanide	178	mg/L	686.7	μg/L		$\mu g/L$	
B. Non-Halogenated VOCs	100	/*					
Total BTEX Benzene	100 5.0	μg/L					
1,4 Dioxane	200	μg/L μg/L					
Acetone	7970	μg/L μg/L					
Phenol	1,080	μg/L	39615	μg/L			
C. Halogenated VOCs							
Carbon Tetrachloride	4.4	μg/L	211.3	μg/L			
1,2 Dichlorobenzene1,3 Dichlorobenzene	600 320	μg/L					
1,4 Dichlorobenzene	5.0	μg/L μg/L					
Total dichlorobenzene		μg/L μg/L					
1,1 Dichloroethane	70	μg/L					
1,2 Dichloroethane	5.0	$\mu g/L$					
1,1 Dichloroethylene	3.2	μg/L					
Ethylene Dibromide	0.05	μg/L					
Methylene Chloride 1,1,1 Trichloroethane	4.6 200	μg/L μg/L					
1,1,2 Trichloroethane	5.0	μg/L μg/L					
Trichloroethylene	5.0	μg/L					
Tetrachloroethylene	5.0	$\mu g/L$	435.8	$\mu g/L$			
cis-1,2 Dichloroethylene	70	μg/L					
Vinyl Chloride	2.0	μg/L					
D. Non-Halogenated SVOCs							
Total Phthalates	190	μg/L		μg/L			
Diethylhexyl phthalate	101	μg/L	290.5	μg/L			
Total Group I Polycyclic							
Aromatic Hydrocarbons	1.0	μg/L		/T		/T	
Benzo(a)anthracene	1.0 1.0	μg/L	0.5018 0.5018	μg/L		μg/L	
Benzo(a)pyrene Benzo(b)fluoranthene	1.0	μg/L μg/L	0.5018	μg/L μg/L		μg/L μg/L	
Benzo(k)fluoranthene	1.0	μg/L	0.5018	μg/L		μg/L	
Chrysene	1.0	μg/L	0.5018	μg/L		μg/L	
Dibenzo(a,h)anthracene	1.0	$\mu g/L$	0.5018	μg/L		$\mu g/L$	
Indeno(1,2,3-cd)pyrene	1.0	μg/L	0.5018	μg/L		μg/L	
Total Group II Polycyclic Aromatic Hydrocarbons	100	u a/I					
Naphthalene	20	μg/L μg/L					
E. Halogenated SVOCs		FB 2					
Total Polychlorinated Biphenyls							
•	0.000064	μg/L			0.5	μg/L	
Pentachlorophenol E. Fuels Parameters	1.0	μg/L					
F. Fuels Parameters Total Petroleum Hydrocarbons	5.0	mg/L					
Ethanol	Report	mg/L					
Methyl-tert-Butyl Ether	70	μg/L	2641	μg/L			
tert-Butyl Alcohol	120	μg/L		-			
tert-Amyl Methyl Ether	90	$\mu g/L$					

TABLE 1

	Reportable Co	Reportable Concentrations (RCs) MCP - Method 1 Cleanup Standards		lards	SAMPLING LOCATION				
	RCGW-1	RCGW-2	GW-1	GW-2	GW-3	UCL	CDW-2/MW	E180-MW	HW #1
Sampling Date							Influent 1/21/2020	Influent 1/21/2020	Effluent 4/2/2020
Depth to Water							7.5	8.8	4/2/2020
Depth to Bottom							15	15	-
Well Size PCBs Method 608.3 (µg/L)							2"	2"	-
PCB 1016	0.5	5	0.5	5	10	100	ND (0.205)	ND (0.200)	ND (0.200)
PCB 1221 PCB 1232	0.5 0.5	5 5	0.5 0.5	5 5	10 10	100 100	ND (0.205) ND (0.205)	ND (0.200) ND (0.200)	ND (0.200) ND (0.200)
PCB 1232 PCB 1242	0.5	5	0.5	5	10	100	ND (0.205) ND (0.205)	ND (0.200) ND (0.200)	ND (0.200) ND (0.200)
PCB 1248	0.5	5	0.5	5	10	100	0.313	0.352	ND (0.200)
PCB 1254 PCB 1260	0.5 0.5	5 5	0.5 0.5	5	10 10	100 100	0.363 ND (0.205)	0.252 ND (0.200)	ND (0.200) ND (0.200)
VOCs 624.1 (µg/L)							ì	112 (0.200)	112 (0.200)
ACETONE TERT-AMYL METHYL ETHER	6300	50000	6300	50000	50000	100000	ND (250)	ND (50.0)	ND (50.0)
BENZENE	~ 5	1000	~ 5	1000	10000	100000	ND (2.50) 69.6	ND (0.500) 1.79	ND (0.500) ND (1.00)
TERT-BUTYL ALCOHOL	1000	10000	~	~	~	~	ND (100)	ND (20.0)	ND (20.0)
CARBON TETRACHLORIDE	2	2	5	2	5000	50000	ND (10.0)	ND (2.00)	ND (2.00)
1,2-DICHLOROBENZENE 1,3-DICHLOROBENZENE	600 100	2000 6000	600 100	8000 6000	2000 50000	80000 100000	ND (10.0) ND (10.0)	ND (2.00) ND (2.00)	ND (2.00) ND (2.00)
1,4-DICHLOROBENZENE	5	60	5	60	8000	80000	ND (10.0)	ND (2.00)	ND (2.00)
1,2-DICHLOROETHANE	5	5	5	5	20000	100000	ND (10.0)	ND (2.00)	ND (2.00)
CIS-1,2-DICHLOROETHYLENE 1,1-DICHLOROETHANE	20 70	20 2000	70 70	20 2000	50000 20000	100000 100000	ND (5.00) ND (10.0)	ND (1.00) ND (2.00)	ND (1.00) ND (2.00)
1,1-DICHLOROETHYLENE	7	80	7	80	30000	100000	ND (10.0)	ND (2.00)	ND (2.00)
1,4-DIOXANE	0.3	6000	0.3	6000	50000	100000	ND (250)	ND (50.0)	ND (50.0)
ETHANOL ETHYLBENZENE	700	~ 5000	~ 700	20000	5000	100000	ND (250) 86.8	ND (50.0) 6.98	ND (50.0) ND (2.00)
METHYL TERT-BUTYL ETHER (MTBE)	70	5000	70	50000	50000	100000	1.5	ND (2.00)	ND (2.00)
METHYLENE CHLORIDE	5	2000	5	2000	50000	100000	ND (25.0)	ND (5.00)	ND (5.00)
TETRACHLOROETHYLENE TOLUENE	5 1000	50 40000	5 1000	50 50000	30000 40000	100000 100000	ND (10.0) 501	ND (2.00) 22.8	ND (2.00) ND (1.00)
1,1,1-TRICHLOROETHANE	200	4000	200	4000	20000	100000	ND (10.0)	ND (2.00)	ND (1.00) ND (2.00)
1,1,2-TRICHLOROETHANE	5	900	5	900	50000	100000	ND (10.0)	ND (2.00)	ND (2.00)
TRICHLOROETHYLENE	5	5	5	5	5000	50000	ND (10.0)	ND (2.00)	ND (2.00)
VINYL CHLORIDE M/P-XYLENE	2 3000	2 3000	2 10000	3000	50000 5000	100000 100000	ND (10.0) 520	ND (2.00) 45.2	ND (2.00) ND (2.00)
O-XYLENE	3000	3000	10000	3000	5000	100000	261	19.1	ND (1.00)
Group 1 SVOCs 625.1(1) (µg/L) ACENAPHTHENE	20	6000	20		10000	100000	ND (5.00)	ND (5.00)	ND (5.00)
ACENAPHTHENE ACENAPHTHYLENE	30	40	30	10000	40	100000	ND (5.00)	ND (5.00) ND (5.00)	ND (5.00) ND (5.00)
ANTHRACENE	30	30	60	~	30	600	ND (5.00)	ND (5.00)	ND (5.00)
BENZO(G,H,I)PERYLENE	20 1000	20 10000	50 ~	~	20	500	ND (5.00)	ND (5.00)	ND (5.00)
BUTYLBENZYLPHTHALATE DI-N-BUTYLPHTHALATE	500	5000	~	~	~	~ ~	ND (10.0) ND (10.0)	ND (10.0) ND (10.0)	ND (10.0) ND (10.0)
DIETHYLPHTHALATE	2000	9000	2000	50000	9000	100000	ND (10.0)	ND (10.0)	ND (10.0)
DIMETHYLPHTHALATE	300	50000	300	50000	50000	100000	ND (10.0)	ND (10.0)	ND (10.0)
DI-N-OCTYLPHTHALATE BIS(2-ETHYLHEXYL)PHTHALATE	10000 6	100000 50000	~ 6	~ ~	50000	100000	ND (10.0) ND (10.0)	ND (10.0) ND (10.0)	ND (10.0) ND (10.0)
FLUORANTHENE	90	200	90	~	200	2000	ND (5.00)	ND (5.00)	ND (5.00)
FLUORENE	30	40	30	~	40	400	ND (5.00)	ND (5.00)	ND (5.00)
NAPHTHALENE PHENANTHRENE	140 40	700 10000	140 40	700 ~	20000 10000	100000 100000	10.6 ND (5.00)	ND (5.00) ND (5.00)	ND (5.00) ND (5.00)
PYRENE	20	20	60	~	20	600	ND (5.00)	ND (5.00)	ND (5.00)
Group 2 SVOCs 625.1(2) (µg/L)		1000			1000	10000	NID (0.050)	NID (0.050)	ND (0.050)
BENZO(A)ANTHRACENE BENZO(A)PYRENE	1 0.2	1000 500	1 0.2	~	1000 500	10000 5000	ND (0.050) ND (0.10)	ND (0.050) ND (0.10)	ND (0.050) ND (0.10)
BENZO(B)FLUORANTHENE	1	400	1	~	400	4000	ND (0.050)	ND (0.050)	0.016
BENZO(K)FLUORANTHENE	1	100	1	~	100	1000	ND (0.20)	ND (0.20)	ND (0.20)
CHRYSENE DIBENZ(A,H)ANTHRACENE	2 0.5	70 40	2 0.5	~ ~	70 40	700 400	ND (0.20) ND (0.10)	ND (0.20) ND (0.10)	ND (0.20) ND (0.10)
INDENO(1,2,3-CD)PYRENE	0.5	100	0.5	~	100	1000	ND (0.10)	ND (0.10)	ND (0.10)
PENTACHLOROPHENOL EPA 1664B (mg/L)	1	200	1	~	200	2000	ND (1.0)	ND (1.0)	ND (1.0)
SILICA GEL TREATED HEM (SGT-HEM)	~	~	~	~	~	~	ND (1.6)	ND (2.8)	0.80
EPA 200.7 (mg/L) Metals Digestion									
HARDNESS IRON	~ ~	~	~ ~	~	~ ~	~ ~	300 16	520 13	73 0.47
EPA 200.8 (µg/L) Metals Digestion							10	13	0.17
ANTIMONY	6	8000	6	~	8000	80000	ND (1.0)	ND (1.0)	ND (1.0)
ARSENIC CADMIUM	10 4	900 4	10 5	~ ~	900 4	9000 50	8.8 0.055	0.94 ND (0.20)	ND (0.80) ND (0.20)
CHROMIUM	100	300	100	~	300	3000	0.89	1.3	1.7
COPPER	10000	100000	~	~	~	~	2.4	4.7	3.6
LEAD NICKEL	10 100	10 200	15 100	~ ~	10 200	150 2000	1.2 3.6	1.6 5.5	1.7 1.2
SELENIUM	50	100	50	~	100	1000	ND (5.0)	1.8	ND (5.0)
SILVER	7	7	100	~	7	1000	ND (0.20)	ND (0.20)	ND (0.20)
ZINC EPA 245.1 (mg/L) Metals Digestion	900	900	5000	~	900	50000	6.1	12	7.6
MERCURY	0.002	0.02	0.002	~	0.02	0.2	ND (0.00010)	ND (0.00010)	ND (0.00010)
EPA 300.0 (mg/L)							150	250	190
CHLORIDE EPA 420.1 (mg/L)	~	~	~	~	~	~	150	250	180
PHENOL	~	~	1	50	2	~	ND (0.050)	0.066	ND (0.050)
EPA 504.1 (µg/L) 1,2-DIBROMOETHANE (EDB)	0.02	2	0.02	2	50000	100000	ND (0.019)	ND (0.020)	ND (0.021)
SM19-22 4500 NH3 C (mg/L)	0.02	2	0.02		50000	100000	112 (0.019)	112 (0.020)	110 (0.021)
AMMONIA AS N	1	10	~	~	~	~	0.974	0.422	0.066
SM21-22 2540D (mg/L)									

NPDES RGP Laboratory Analysis 245-263 Monsignor Highway Cambridge, MA

SM21-22 3500 Cr B (mg/L) CHROMIUM +6	0.1	0.3	0.1	~	0.3	3	ND (0.0040)	ND (0.0040)	ND (0.0040)
SM21-22 4500 CL G (mg/L)									
CHLORINE, RESIDUAL	~	~	~	~	~	~	0.33	0.45	0.079
SM21-22 4500 CN E (mg/L)									
CYANIDE	0.03	0.03	0.2	~	0.03	2	0.002	0.002	ND (0.005)
Tri Chrome Calc. (mg/L) Metals Digestion									
CHROMIUM +3	0.1	0.6	0.1	~	0.6	6	0.00089	0.0013	0.0017
NOTES: 1. Bolded values exceed the Method 1 Cleanup Standards. 2. ND = Not detected above the lab reporting limits shown in parenthesis. 3. NT = Not tested. 4. ~= No Method 1 Standard or UCL available 5. Shaded values exceed the MCP Reportable Concentrations (RCs).									

CONTEST ANALYTICAL INFLUENT DATA REPORT JANUARY 28, 2020

January 28, 2020

Alan Sundquist CDW Consultants, Inc. 6 Huron Drive Natick, MA 01760

Project Location: Cambridge/ Somerville

Client Job Number: Project Number: 1476

Laboratory Work Order Number: 20A0917

Michelle Koch

Enclosed are results of analyses for samples received by the laboratory on January 21, 2020. If you have any questions concerning this report, please feel free to contact me.

Sincerely,

Michelle M. Koch Project Manager

Table of Contents

Sample Summary	4
Case Narrative	5
Sample Results	7
20A0917-01	7
20A0917-02	15
20A0917-03	23
Sample Preparation Information	24
QC Data	26
Volatile Organic Compounds by GC/MS	26
B250552	26
Semivolatile Organic Compounds by GC/MS	28
B250982	28
Semivolatile Organic Compounds by - GC/MS	29
B250896	29
Polychlorinated Biphenyls By GC/ECD	31
B250894	31
Metals Analyses (Total)	32
B250693	32
B250694	33
B250779	33
Conventional Chemistry Parameters by EPA/APHA/SW-846 Methods (Total)	35
B250525	35
B250526	35
B250534	35
B250758	36

Table of Contents (continued)

B250873	36
B250875	36
Drinking Water Organics EPA 504.1	38
B250685	38
Dual Column RPD Report	39
Flag/Qualifier Summary	41
Certifications	42
Chain of Custody/Sample Receipt	45

CDW Consultants, Inc. 6 Huron Drive Natick, MA 01760

ATTN: Alan Sundquist

REPORT DATE: 1/28/2020

PURCHASE ORDER NUMBER:

PROJECT NUMBER: 1476

ANALYTICAL SUMMARY

WORK ORDER NUMBER: 20A0917

The results of analyses performed on the following samples submitted to the CON-TEST Analytical Laboratory are found in this report.

PROJECT LOCATION: Cambridge/ Somerville

CDW-2/MW	FIELD SAMPLE #	LAB ID:	MATRIX	SAMPLE DESCRIPTION	TEST	SUB LAB
625.1 FEA 20.7 FEA 20.7 FEA 20.8 FEA 245.1 FEA 20.1 FEA 20.0 FEA 245.1 FEA 20.1	CDW-2/MW	20A0917-01	Ground Water		608.3	
EPA 1664B					624.1	
EPA 200.7 EPA 200.8 EPA 20.8 EPA 20.8 EPA 245.1 EPA 300.0 EPA 426.1 EPA 300.0 EPA 420.1 EPA 300.1 EPA 300.1 EPA 420.1 EPA 504.1 EPA 200.7 EPA 20					625.1	
EPA 200.8 EPA 245.1 EPA 300.0 EPA 245.1 EPA 300.0 EPA 420.1 EPA 504.1 EPA 200.7 EPA 200.7 EPA 200.7 EPA 200.7 EPA 200.8 EPA 245.1 EPA 200.1 EPA					EPA 1664B	
FPA 245.1 FPA 504.1 FPA					EPA 200.7	
EPA 300 0 EPA 420 1 EPA 504 1 EPA					EPA 200.8	
EPA 420.1 EPA 504.1 EPA 500.0 EPA 420.1 EPA 450.1 EPA 450.1 EPA 450.1 EPA 450.1 EPA 504.1 EPA					EPA 245.1	
EPA 504.1 SM19-22 4500 NH3 C					EPA 300.0	
SM1-22 4500 NH3 C					EPA 420.1	
PH-0574/NY11148 PH-0574/NY11148 SM21-22 \$500 CT B SM21-22					EPA 504.1	
SM21-22 2540D CI SM21-22 2540D SM21					SM19-22 4500 NH3 C	
SM21-22 4500 CL G SM21					SM21-22 2540D	
SM21-22 4500 CN E					SM21-22 3500 Cr B	
PH-0574/NY11148 PH-0574/NY					SM21-22 4500 CL G	
E180-MW 20A0917-02 Ground Water 608.3					SM21-22 4500 CN E	
624.1 625.1 EPA 1664B EPA 200.7 EPA 200.8 EPA 245.1 EPA 300.0 EPA 420.1 EPA 504.1 SM19-22 4500 NH3 C MA M-MA-086/CT PH-0574/NY11148 SM21-22 4500 CN E SM21-22 4500 CN E MA M-MA-086/CT PH-0574/NY11148 Tri Chrome Calc.					Tri Chrome Calc.	
625.1 EPA 1664B EPA 200.7 EPA 200.8 EPA 245.1 EPA 300.0 EPA 420.1 EPA 504.1 SM19-22 4500 NH3 C MA M-MA-086/CT PH-0574/NY11148 Tri Chrome Calc.	E180-MW	20A0917-02	Ground Water		608.3	
EPA 1664B EPA 200.7 EPA 200.8 EPA 245.1 EPA 300.0 EPA 420.1 EPA 504.1 SM19-22 4500 NH3 C SM21-22 2540D SM21-22 2540D SM21-22 4500 CL G SM21-22 4500 CN E SM21-22 4500 CN E MA M-MA-086/CT PH-0574/NY11148 Tri Chrome Calc.					624.1	
EPA 200.7 EPA 200.8 EPA 245.1 EPA 300.0 EPA 420.1 EPA 504.1 SM19-22 4500 NH3 C SM19-22 2540D SM21-22 2540D SM21-22 3500 Cr B SM21-22 4500 CL G SM21-22 4500 CN E MA M-MA-086/CT PH-0574/NY11148 Tri Chrome Calc.					625.1	
EPA 200.8 EPA 245.1 EPA 300.0 EPA 420.1 EPA 504.1 SM19-22 4500 NH3 C MA M-MA-086/CT PH-0574/NY11148 SM21-22 2540D SM21-22 3500 Cr B SM21-22 4500 CL G SM21-22 4500 CN E MA M-MA-086/CT PH-0574/NY11148 Tri Chrome Calc.					EPA 1664B	
EPA 245.1 EPA 300.0 EPA 420.1 EPA 504.1 SM19-22 4500 NH3 C MA M-MA-086/CT PH-0574/NY11148 SM21-22 2540D SM21-22 3500 Cr B SM21-22 4500 CL G SM21-22 4500 CN E MA M-MA-086/CT PH-0574/NY11148 Tri Chrome Calc.					EPA 200.7	
EPA 300.0 EPA 420.1 EPA 504.1 SM19-22 4500 NH3 C MA M-MA-086/CT PH-0574/NY11148 SM21-22 2540D SM21-22 3500 Cr B SM21-22 4500 CL G SM21-22 4500 CN E MA M-MA-086/CT PH-0574/NY11148 Tri Chrome Calc.					EPA 200.8	
EPA 420.1 EPA 504.1 SM19-22 4500 NH3 C SM21-22 2540D SM21-22 3500 Cr B SM21-22 4500 CL G SM21-22 4500 CN E MA M-MA-086/CT PH-0574/NY11148 Tri Chrome Calc.					EPA 245.1	
EPA 504.1 SM19-22 4500 NH3 C MA M-MA-086/CT PH-0574/NY11148 SM21-22 2540D SM21-22 3500 Cr B SM21-22 4500 CL G SM21-22 4500 CN E MA M-MA-086/CT PH-0574/NY11148 Tri Chrome Calc.					EPA 300.0	
SM19-22 4500 NH3 C MA M-MA-086/CT PH-0574/NY11148 SM21-22 2540D SM21-22 3500 Cr B SM21-22 4500 CL G SM21-22 4500 CN E MA M-MA-086/CT PH-0574/NY11148 Tri Chrome Calc.					EPA 420.1	
PH-0574/NY11148 SM21-22 2540D SM21-22 3500 Cr B SM21-22 4500 CL G SM21-22 4500 CN E MA M-MA-086/CT PH-0574/NY11148 Tri Chrome Calc.					EPA 504.1	
SM21-22 3500 Cr B SM21-22 4500 CL G SM21-22 4500 CN E MA M-MA-086/CT PH-0574/NY11148 Tri Chrome Calc.					SM19-22 4500 NH3 C	
SM21-22 4500 CL G SM21-22 4500 CN E MA M-MA-086/CT PH-0574/NY11148 Tri Chrome Calc.					SM21-22 2540D	
SM21-22 4500 CN E MA M-MA-086/CT PH-0574/NY11148 Tri Chrome Calc.					SM21-22 3500 Cr B	
PH-0574/NY11148 Tri Chrome Calc.					SM21-22 4500 CL G	
					SM21-22 4500 CN E	
Trip Blankw 20A0917-03 Trip Blank Water 624.1					Tri Chrome Calc.	
	Trip Blankw	20A0917-03	Trip Blank Water		624.1	

CASE NARRATIVE SUMMARY

All reported results are within defined laboratory quality control objectives unless listed below or otherwise qualified in this report.

624.1

Qualifications:

L-01

Laboratory fortified blank /laboratory control sample recovery outside of control limits. Data validation is not affected since all results are "not detected" for all samples in this batch for this compound and bias is on the high side. Analyte & Samples(s) Qualified:

Ethanol

B250552-BS1

Vinyl Chloride

B250552-BS1

RL-11

Elevated reporting limit due to high concentration of target compounds.

Analyte & Samples(s) Qualified:

20A0917-01[CDW-2/MW]

EPA 1664B

Qualifications:

MS-07

Matrix spike recovery is outside of control limits. Analysis is in control based on laboratory fortified blank recovery. Possibility of sample matrix effects that lead to low bias for reported result or non-homogeneous sample aliquot cannot be eliminated.

Analyte & Samples(s) Qualified:

Silica Gel Treated HEM (SGT-HEN

20A0917-01[CDW-2/MW], B250873-MS1

SM21-22 3500 Cr B

Qualifications:

MS-07

Matrix spike recovery is outside of control limits. Analysis is in control based on laboratory fortified blank recovery. Possibility of sample matrix effects that lead to low bias for reported result or non-homogeneous sample aliquot cannot be eliminated.

Analyte & Samples(s) Qualified:

Hexavalent Chromium

20A0917-02[E180-MW], B250525-MS2, B250525-MSD2

SM21-22 4500 CL G

Qualifications:

MS-11

Matrix spike recovery outside of control limits. Possibility of sample matrix effects that lead to a high bias for reported result or non-homogeneous sample aliquots cannot be eliminated.

Analyte & Samples(s) Qualified:

Chlorine, Residual

20A0917-01[CDW-2/MW], B250526-MS1

Z-01

SM 4500 CL G test had a calibration point outside of acceptable back calculated recovery. Reanalysis yielded similar non-conformance.

Analyte & Samples(s) Qualified:

Chlorine, Residual

20A0917-01[CDW-2/MW], 20A0917-02[E180-MW], B250526-BLK1, B250526-BS1, B250526-BSD1, B250526-DUP1, B250526-DUP2, B250526-MS1

The results of analyses reported only relate to samples submitted to the Con-Test Analytical Laboratory for testing.

I certify that the analyses listed above, unless specifically listed as subcontracted, if any, were performed under my direction according to the approved methodologies listed in this document, and that based upon my inquiry of those individuals immediately responsible for obtaining the information, the material contained in this report is, to the best of my knowledge and belief, accurate and complete.

Tod E. Kopyscinski Laboratory Director

Project Location: Cambridge/ Somerville Sample Description: Work Order: 20A0917

Date Received: 1/21/2020
Field Sample #: CDW-2/MW

Sampled: 1/21/2020 10:00

95.9

Sample ID: 20A0917-01
Sample Matrix: Ground Water

4-Bromofluorobenzene

Sample Flags: RL-11		Volatile Organic Compounds by GC/MS								
								Date	Date/Time	
Analyte	Results	RL	DL	Units	Dilution	Flag/Qual	Method	Prepared	Analyzed	Analyst
Acetone	<19.0	250	19.0	μg/L	5		624.1	1/22/20	1/22/20 22:46	EEH
tert-Amyl Methyl Ether (TAME)	< 0.700	2.50	0.700	$\mu g/L$	5		624.1	1/22/20	1/22/20 22:46	EEH
Benzene	69.6	5.00	0.900	$\mu g/L$	5		624.1	1/22/20	1/22/20 22:46	EEH
tert-Butyl Alcohol (TBA)	<20.8	100	20.8	$\mu g/L$	5		624.1	1/22/20	1/22/20 22:46	EEH
Carbon Tetrachloride	< 0.550	10.0	0.550	$\mu g/L$	5		624.1	1/22/20	1/22/20 22:46	EEH
1,2-Dichlorobenzene	< 0.800	10.0	0.800	$\mu g/L$	5		624.1	1/22/20	1/22/20 22:46	EEH
1,3-Dichlorobenzene	< 0.600	10.0	0.600	$\mu g/L$	5		624.1	1/22/20	1/22/20 22:46	EEH
1,4-Dichlorobenzene	< 0.650	10.0	0.650	$\mu g/L$	5		624.1	1/22/20	1/22/20 22:46	EEH
1,2-Dichloroethane	< 2.05	10.0	2.05	$\mu g/L$	5		624.1	1/22/20	1/22/20 22:46	EEH
cis-1,2-Dichloroethylene	< 0.650	5.00	0.650	$\mu g/L$	5		624.1	1/22/20	1/22/20 22:46	EEH
1,1-Dichloroethane	< 0.800	10.0	0.800	$\mu g/L$	5		624.1	1/22/20	1/22/20 22:46	EEH
1,1-Dichloroethylene	<1.60	10.0	1.60	$\mu g/L$	5		624.1	1/22/20	1/22/20 22:46	EEH
1,4-Dioxane	<112	250	112	$\mu g/L$	5		624.1	1/22/20	1/22/20 22:46	EEH
Ethanol	<52.7	250	52.7	$\mu g/L$	5		624.1	1/22/20	1/22/20 22:46	EEH
Ethylbenzene	86.8	10.0	0.650	$\mu g/L$	5		624.1	1/22/20	1/22/20 22:46	EEH
Methyl tert-Butyl Ether (MTBE)	1.50	10.0	1.25	$\mu g/L$	5	J	624.1	1/22/20	1/22/20 22:46	EEH
Methylene Chloride	<1.70	25.0	1.70	$\mu g/L$	5		624.1	1/22/20	1/22/20 22:46	EEH
Tetrachloroethylene	< 0.900	10.0	0.900	$\mu g/L$	5		624.1	1/22/20	1/22/20 22:46	EEH
Toluene	501	5.00	0.700	$\mu g/L$	5		624.1	1/22/20	1/22/20 22:46	EEH
1,1,1-Trichloroethane	<1.00	10.0	1.00	$\mu g/L$	5		624.1	1/22/20	1/22/20 22:46	EEH
1,1,2-Trichloroethane	< 0.800	10.0	0.800	$\mu g/L$	5		624.1	1/22/20	1/22/20 22:46	EEH
Trichloroethylene	<1.20	10.0	1.20	$\mu g/L$	5		624.1	1/22/20	1/22/20 22:46	EEH
Vinyl Chloride	<2.25	10.0	2.25	$\mu g/L$	5		624.1	1/22/20	1/22/20 22:46	EEH
m+p Xylene	520	10.0	1.50	$\mu g/L$	5		624.1	1/22/20	1/22/20 22:46	EEH
o-Xylene	261	5.00	0.850	$\mu g/L$	5		624.1	1/22/20	1/22/20 22:46	EEH
Surrogates		% Reco	very	Recovery Limits	s	Flag/Qual				
1,2-Dichloroethane-d4		102		70-130					1/22/20 22:46	
Toluene-d8		99.3		70-130					1/22/20 22:46	

70-130

1/22/20 22:46

Project Location: Cambridge/ Somerville Sample Description: Work Order: 20A0917

Date Received: 1/21/2020

Field Sample #: CDW-2/MW

Sampled: 1/21/2020 10:00

Sample ID: 20A0917-01
Sample Matrix: Ground Water

Semivolatile Organic Compounds by GC/MS	5
---	---

Analyte	Results	RL	DL	Units	Dilution	Flag/Qual	Method	Date Prepared	Date/Time Analyzed	Analyst
Benzo(a)anthracene (SIM)	< 0.016	0.050	0.016	μg/L	1		625.1	1/27/20	1/28/20 11:46	IMR
Benzo(a)pyrene (SIM)	< 0.012	0.10	0.012	μg/L	1		625.1	1/27/20	1/28/20 11:46	IMR
Benzo(b)fluoranthene (SIM)	< 0.015	0.050	0.015	μg/L	1		625.1	1/27/20	1/28/20 11:46	IMR
Benzo(k)fluoranthene (SIM)	< 0.012	0.20	0.012	μg/L	1		625.1	1/27/20	1/28/20 11:46	IMR
Chrysene (SIM)	< 0.015	0.20	0.015	μg/L	1		625.1	1/27/20	1/28/20 11:46	IMR
Dibenz(a,h)anthracene (SIM)	< 0.017	0.10	0.017	μg/L	1		625.1	1/27/20	1/28/20 11:46	IMR
Indeno(1,2,3-cd)pyrene (SIM)	< 0.018	0.10	0.018	μg/L	1		625.1	1/27/20	1/28/20 11:46	IMR
Pentachlorophenol (SIM)	< 0.33	1.0	0.33	μg/L	1		625.1	1/27/20	1/28/20 11:46	IMR
Surrogates		% Reco	very	Recovery Limit	s	Flag/Qual				
2-Fluorophenol (SIM)		38.4		15-110					1/28/20 11:46	
Phenol-d6 (SIM)		31.2		15-110					1/28/20 11:46	
Nitrobenzene-d5		61.4		30-130					1/28/20 11:46	
2-Fluorobiphenyl		59.4		30-130					1/28/20 11:46	
2,4,6-Tribromophenol (SIM)		74.8		15-110					1/28/20 11:46	
p-Terphenyl-d14		57.2		30-130					1/28/20 11:46	

Project Location: Cambridge/ Somerville Sample Description: Work Order: 20A0917

Date Received: 1/21/2020
Field Sample #: CDW-2/MW

Sampled: 1/21/2020 10:00

83.3

87.1

Sample ID: 20A0917-01
Sample Matrix: Ground Water

2,4,6-Tribromophenol

p-Terphenyl-d14

			Semivol	atile Organic Cor	npounds by	- GC/MS				
Analyte	Results	RL	DL	Units	Dilution	Flag/Qual	Method	Date Prepared	Date/Time Analyzed	Analyst
Acenaphthene	< 0.231	5.00	0.231	μg/L	1		625.1	1/27/20	1/28/20 12:40	BGL
Acenaphthylene	< 0.231	5.00	0.231	$\mu g/L$	1		625.1	1/27/20	1/28/20 12:40	BGL
Anthracene	< 0.202	5.00	0.202	$\mu g/L$	1		625.1	1/27/20	1/28/20 12:40	BGL
Benzo(g,h,i)perylene	< 0.396	5.00	0.396	$\mu g/L$	1		625.1	1/27/20	1/28/20 12:40	BGL
Butylbenzylphthalate	< 0.295	10.0	0.295	$\mu g/L$	1		625.1	1/27/20	1/28/20 12:40	BGL
Di-n-butylphthalate	< 0.458	10.0	0.458	$\mu g/L$	1		625.1	1/27/20	1/28/20 12:40	BGL
Diethylphthalate	< 0.225	10.0	0.225	$\mu g/L$	1		625.1	1/27/20	1/28/20 12:40	BGL
Dimethylphthalate	< 0.307	10.0	0.307	$\mu g/L$	1		625.1	1/27/20	1/28/20 12:40	BGL
Di-n-octylphthalate	< 0.522	10.0	0.522	$\mu g/L$	1		625.1	1/27/20	1/28/20 12:40	BGL
Bis(2-Ethylhexyl)phthalate	< 0.519	10.0	0.519	$\mu g/L$	1		625.1	1/27/20	1/28/20 12:40	BGL
Fluoranthene	< 0.297	5.00	0.297	$\mu g/L$	1		625.1	1/27/20	1/28/20 12:40	BGL
Fluorene	< 0.245	5.00	0.245	$\mu g/L$	1		625.1	1/27/20	1/28/20 12:40	BGL
Naphthalene	10.6	5.00	0.442	$\mu g/L$	1		625.1	1/27/20	1/28/20 12:40	BGL
Phenanthrene	< 0.287	5.00	0.287	$\mu g/L$	1		625.1	1/27/20	1/28/20 12:40	BGL
Pyrene	< 0.255	5.00	0.255	$\mu g/L$	1		625.1	1/27/20	1/28/20 12:40	BGL
Surrogates		% Reco	very	Recovery Limits		Flag/Qual				
2-Fluorophenol		45.3		15-110					1/28/20 12:40	
Phenol-d6		31.6		15-110					1/28/20 12:40	
Nitrobenzene-d5		75.0		30-130					1/28/20 12:40	
2-Fluorobiphenyl		103		30-130					1/28/20 12:40	

15-110

30-130

1/28/20 12:40

1/28/20 12:40

Project Location: Cambridge/ Somerville Sample Description: Work Order: 20A0917

Date Received: 1/21/2020 Field Sample #: CDW-2/MW

Sampled: 1/21/2020 10:00

Sample ID: 20A0917-01
Sample Matrix: Ground Water

Polychlorinated	Biphenyls	By GC/ECD
1 ory chilor mateu	Diplicity	D) GC/LCD

								Date	Date/Time	
Analyte	Results	RL	DL	Units	Dilution	Flag/Qual	Method	Prepared	Analyzed	Analyst
Aroclor-1016 [1]	< 0.189	0.205	0.189	$\mu g/L$	1		608.3	1/27/20	1/28/20 13:32	AYH
Aroclor-1221 [1]	< 0.165	0.205	0.165	$\mu g/L$	1		608.3	1/27/20	1/28/20 13:32	AYH
Aroclor-1232 [1]	< 0.204	0.205	0.204	$\mu g/L$	1		608.3	1/27/20	1/28/20 13:32	AYH
Aroclor-1242 [1]	< 0.177	0.205	0.177	$\mu g/L$	1		608.3	1/27/20	1/28/20 13:32	AYH
Aroclor-1248 [1]	0.313	0.205	0.195	$\mu g/L$	1		608.3	1/27/20	1/28/20 13:32	AYH
Aroclor-1254 [2]	0.363	0.205	0.108	$\mu g/L$	1		608.3	1/27/20	1/28/20 13:32	AYH
Aroclor-1260 [1]	< 0.201	0.205	0.201	$\mu g/L$	1		608.3	1/27/20	1/28/20 13:32	AYH

Surrogates	% Recovery	Recovery Limits	Flag/Qual	
Decachlorobiphenyl [1]	56.7	30-150		1/28/20 13:32
Decachlorobiphenyl [2]	63.6	30-150		1/28/20 13:32
Tetrachloro-m-xylene [1]	67.2	30-150		1/28/20 13:32
Tetrachloro-m-xylene [2]	77.9	30-150		1/28/20 13:32

Project Location: Cambridge/ Somerville Sample Description: Work Order: 20A0917

Date Received: 1/21/2020

Field Sample #: CDW-2/MW

Sampled: 1/21/2020 10:00

Sample ID: 20A0917-01
Sample Matrix: Ground Water

Metals Analyses (Total)

					,					
Analyte	Results	RL	DL	Units	Dilution	Flag/Qual	Method	Date Prepared	Date/Time Analyzed	Analyst
Antimony	ND	1.0	0.35	μg/L	1		EPA 200.8	1/23/20	1/24/20 11:52	QNW
Arsenic	8.8	0.80	0.64	μg/L	1		EPA 200.8	1/23/20	1/24/20 11:52	QNW
Cadmium	0.055	0.20	0.038	μg/L	1	J	EPA 200.8	1/23/20	1/24/20 11:52	QNW
Chromium	0.89	1.0	0.24	$\mu g/L$	1	J	EPA 200.8	1/23/20	1/24/20 11:52	QNW
Chromium, Trivalent	0.00089			mg/L	1		Tri Chrome Calc.	1/23/20	1/24/20 11:52	QNW
Copper	2.4	1.0	0.87	$\mu g/L$	1		EPA 200.8	1/23/20	1/24/20 11:52	QNW
Iron	16	0.050	0.038	mg/L	1		EPA 200.7	1/23/20	1/24/20 12:47	MJH
Lead	1.2	0.50	0.085	$\mu g/L$	1		EPA 200.8	1/23/20	1/24/20 11:52	QNW
Mercury	ND	0.00010	0.000034	mg/L	1		EPA 245.1	1/24/20	1/28/20 9:25	CJV
Nickel	3.6	5.0	0.62	$\mu g/L$	1	J	EPA 200.8	1/23/20	1/24/20 11:52	QNW
Selenium	ND	5.0	1.6	$\mu g/L$	1		EPA 200.8	1/23/20	1/24/20 11:52	QNW
Silver	ND	0.20	0.18	$\mu g/L$	1		EPA 200.8	1/23/20	1/24/20 13:27	QNW
Zinc	6.1	10	2.3	$\mu g/L$	1	J	EPA 200.8	1/23/20	1/24/20 11:52	QNW
Hardness	300			mg/L	5		EPA 200.7	1/23/20	1/24/20 13:42	MJH

Project Location: Cambridge/ Somerville Sample Description: Work Order: 20A0917

Date Received: 1/21/2020

Field Sample #: CDW-2/MW

Sampled: 1/21/2020 10:00

Sample ID: 20A0917-01
Sample Matrix: Ground Water

Conventional Chemistry Parameters by EPA/APHA/SW-846 Methods (Total)

								Date	Date/Time	
Analyte	Results	RL	DL	Units	Dilution	Flag/Qual	Method	Prepared	Analyzed	Analyst
Chloride	150	10	3.0	mg/L	10		EPA 300.0	1/24/20	1/24/20 12:07	IS
Chlorine, Residual	0.33	0.20	0.15	mg/L	10	MS-11, Z-01	SM21-22 4500 CL G	1/21/20	1/21/20 20:10	KMV
Hexavalent Chromium	ND	0.0040		mg/L	1		SM21-22 3500 Cr B	1/21/20	1/21/20 20:00	KMV
Phenol	ND	0.050	0.050	mg/L	1		EPA 420.1	1/27/20	1/28/20 11:30	LL
Total Suspended Solids	35	1.0	0.41	mg/L	1		SM21-22 2540D	1/22/20	1/22/20 13:15	LL
Silica Gel Treated HEM (SGT-HEM)	ND	1.6	0.37	mg/L	1	MS-07	EPA 1664B	1/27/20	1/27/20 11:30	LL

Project Location: Cambridge/ Somerville Sample Description: Work Order: 20A0917

Date Received: 1/21/2020

Field Sample #: CDW-2/MW

Sampled: 1/21/2020 10:00

Sample ID: 20A0917-01
Sample Matrix: Ground Water

Drinking Water Organics EPA 504.1

								Date	Date/Time	
Analyte	Results	RL	DL	Units	Dilution	Flag/Qual	Method	Prepared	Analyzed	Analyst
1,2-Dibromoethane (EDB) (1)	ND	0.019	0.012	μg/L	1		EPA 504.1	1/23/20	1/23/20 23:22	JMB
Surrogates		% Reco	very	Recovery Limit	ts	Flag/Qual				
1,3-Dibromopropane (1)		104		70-130					1/23/20 23:22	
1.3-Dibromopropane (2)		95.7		70-130					1/23/20 23:22	

Project Location: Cambridge/ Somerville Sample Description: Work Order: 20A0917

Date Received: 1/21/2020

Field Sample #: CDW-2/MW

Sampled: 1/21/2020 10:00

Sample ID: 20A0917-01
Sample Matrix: Ground Water

Conventional Chemistry Parameters by EPA/APHA/SW-846 Methods (Total)

									Date	Date/Time	
	Analyte	Results	RL	DL	Units	Dilution	Flag/Qual	Method	Prepared	Analyzed	Analyst
Ammonia as N		0.974	0.075	0.024	mg/L	1		SM19-22 4500 NH3 C		1/27/20 21:25	AAL
Cyanide		0.002	0.005	0.001	mg/L	1		SM21-22 4500 CN E		1/24/20 11:56	AAL

Project Location: Cambridge/ Somerville Sample Description: Work Order: 20A0917

Date Received: 1/21/2020
Field Sample #: E180-MW

Sampled: 1/21/2020 11:00

Sample ID: 20A0917-02
Sample Matrix: Ground Water

Volatile Organic Compounds by	GC/MS	

Analyte	Results	RL	DL	Units	Dilution	Flag/Qual	Method	Date Prepared	Date/Time Analyzed	Analyst
Acetone	<3.79	50.0	3.79	μg/L	1	riag/Quai	624.1	1/22/20	1/22/20 22:17	EEH
tert-Amyl Methyl Ether (TAME)	<0.140	0.500	0.140	μg/L μg/L	1		624.1	1/22/20	1/22/20 22:17	EEH
Benzene	1.79	1.00	0.140	μg/L μg/L	1		624.1	1/22/20	1/22/20 22:17	EEH
tert-Butyl Alcohol (TBA)	<4.17	20.0	4.17	μg/L μg/L	1		624.1	1/22/20	1/22/20 22:17	EEH
Carbon Tetrachloride	<0.110	2.00	0.110	μg/L μg/L	1		624.1	1/22/20	1/22/20 22:17	EEH
1,2-Dichlorobenzene	<0.110	2.00			1		624.1	1/22/20	1/22/20 22:17	EEH
1,3-Dichlorobenzene			0.160	μg/L	-					
·	<0.120	2.00	0.120	μg/L	1		624.1	1/22/20	1/22/20 22:17	EEH
1,4-Dichlorobenzene	< 0.130	2.00	0.130	μg/L	1		624.1	1/22/20	1/22/20 22:17	EEH
1,2-Dichloroethane	< 0.410	2.00	0.410	$\mu g/L$	1		624.1	1/22/20	1/22/20 22:17	EEH
cis-1,2-Dichloroethylene	< 0.130	1.00	0.130	$\mu g/L$	1		624.1	1/22/20	1/22/20 22:17	EEH
1,1-Dichloroethane	< 0.160	2.00	0.160	$\mu g/L$	1		624.1	1/22/20	1/22/20 22:17	EEH
1,1-Dichloroethylene	< 0.320	2.00	0.320	$\mu g/L$	1		624.1	1/22/20	1/22/20 22:17	EEH
1,4-Dioxane	<22.5	50.0	22.5	$\mu g/L$	1		624.1	1/22/20	1/22/20 22:17	EEH
Ethanol	<10.5	50.0	10.5	$\mu g/L$	1		624.1	1/22/20	1/22/20 22:17	EEH
Ethylbenzene	6.98	2.00	0.130	$\mu g/L$	1		624.1	1/22/20	1/22/20 22:17	EEH
Methyl tert-Butyl Ether (MTBE)	< 0.250	2.00	0.250	$\mu g/L$	1		624.1	1/22/20	1/22/20 22:17	EEH
Methylene Chloride	< 0.340	5.00	0.340	$\mu g/L$	1		624.1	1/22/20	1/22/20 22:17	EEH
Tetrachloroethylene	< 0.180	2.00	0.180	$\mu g/L$	1		624.1	1/22/20	1/22/20 22:17	EEH
Toluene	22.8	1.00	0.140	$\mu g/L$	1		624.1	1/22/20	1/22/20 22:17	EEH
1,1,1-Trichloroethane	< 0.200	2.00	0.200	$\mu g/L$	1		624.1	1/22/20	1/22/20 22:17	EEH
1,1,2-Trichloroethane	< 0.160	2.00	0.160	μg/L	1		624.1	1/22/20	1/22/20 22:17	EEH
Trichloroethylene	< 0.240	2.00	0.240	μg/L	1		624.1	1/22/20	1/22/20 22:17	EEH
Vinyl Chloride	< 0.450	2.00	0.450	μg/L	1		624.1	1/22/20	1/22/20 22:17	EEH
m+p Xylene	45.2	2.00	0.300	μg/L	1		624.1	1/22/20	1/22/20 22:17	EEH
o-Xylene	19.1	1.00	0.170	$\mu g/L$	1		624.1	1/22/20	1/22/20 22:17	EEH
Surrogates		% Reco	very	Recovery Limits	1	Flag/Qual				
1.2-Dichloroethane-d4		101		70-130					1/22/20 22:17	

Surrogates	% Recovery	Recovery Limits	Flag/Qual	
1,2-Dichloroethane-d4	101	70-130		1/22/20 22:17
Toluene-d8	98.5	70-130		1/22/20 22:17
4-Bromofluorobenzene	97.4	70-130		1/22/20 22:17

Project Location: Cambridge/ Somerville Sample Description: Work Order: 20A0917

Date Received: 1/21/2020 Field Sample #: E180-MW

Sampled: 1/21/2020 11:00

Sample ID: 20A0917-02
Sample Matrix: Ground Water

Semivolatile Organic (Compounds by	GC/MS
------------------------	--------------	-------

Analyte	Results	RL	DL	Units	Dilution	Flag/Qual	Method	Date Prepared	Date/Time Analyzed	Analyst
Benzo(a)anthracene (SIM)	< 0.016	0.050	0.016	μg/L	1		625.1	1/27/20	1/28/20 12:15	IMR
Benzo(a)pyrene (SIM)	< 0.012	0.10	0.012	μg/L	1		625.1	1/27/20	1/28/20 12:15	IMR
Benzo(b)fluoranthene (SIM)	< 0.015	0.050	0.015	μg/L	1		625.1	1/27/20	1/28/20 12:15	IMR
Benzo(k)fluoranthene (SIM)	< 0.012	0.20	0.012	μg/L	1		625.1	1/27/20	1/28/20 12:15	IMR
Chrysene (SIM)	< 0.015	0.20	0.015	μg/L	1		625.1	1/27/20	1/28/20 12:15	IMR
Dibenz(a,h)anthracene (SIM)	< 0.017	0.10	0.017	μg/L	1		625.1	1/27/20	1/28/20 12:15	IMR
Indeno(1,2,3-cd)pyrene (SIM)	< 0.018	0.10	0.018	μg/L	1		625.1	1/27/20	1/28/20 12:15	IMR
Pentachlorophenol (SIM)	< 0.33	1.0	0.33	$\mu g/L$	1		625.1	1/27/20	1/28/20 12:15	IMR
Surrogates		% Reco	very	Recovery Limit	s	Flag/Qual				
2-Fluorophenol (SIM)		35.7		15-110					1/28/20 12:15	
Phenol-d6 (SIM)		30.0		15-110					1/28/20 12:15	
Nitrobenzene-d5		56.2		30-130					1/28/20 12:15	
2-Fluorobiphenyl		52.5		30-130					1/28/20 12:15	
2,4,6-Tribromophenol (SIM)		68.6		15-110					1/28/20 12:15	
p-Terphenyl-d14		53.0		30-130					1/28/20 12:15	

Analyte

39 Spruce Street * East Longmeadow, MA 01028 * FAX 413/525-6405 * TEL. 413/525-2332

Project Location: Cambridge/ Somerville Sample Description: Work Order: 20A0917

Date Received: 1/21/2020

Field Sample #: E180-MW

Sampled: 1/21/2020 11:00

Results

< 0.231

< 0.231

< 0.202

< 0.396

< 0.295

< 0.458

< 0.225

< 0.307

< 0.522

< 0.519

< 0.297

< 0.245

< 0.442

< 0.287

< 0.255

5.00

5.00

5.00

0.442

0.287

0.255

Sample ID: 20A0917-02
Sample Matrix: Ground Water

Acenaphthene

Anthracene

Acenaphthylene

Benzo(g,h,i)perylene

Butylbenzylphthalate

Di-n-butylphthalate

Diethylphthalate

Dimethylphthalate

Di-n-octylphthalate

Fluoranthene

Naphthalene

Phenanthrene

Fluorene

Pyrene

Bis(2-Ethylhexyl)phthalate

	Semivolati	ile Organic C	ompounds by -					
						Date	Date/Time	
RL	DL	Units	Dilution	Flag/Qual	Method	Prepared	Analyzed	Analyst
5.00	0.231	$\mu g/L$	1		625.1	1/27/20	1/28/20 13:04	BGL
5.00	0.231	$\mu g/L$	1		625.1	1/27/20	1/28/20 13:04	BGL
5.00	0.202	$\mu g/L$	1		625.1	1/27/20	1/28/20 13:04	BGL
5.00	0.396	$\mu g/L$	1		625.1	1/27/20	1/28/20 13:04	BGL
10.0	0.295	$\mu g/L$	1		625.1	1/27/20	1/28/20 13:04	BGL
10.0	0.458	$\mu g/L$	1		625.1	1/27/20	1/28/20 13:04	BGL
10.0	0.225	$\mu g/L$	1		625.1	1/27/20	1/28/20 13:04	BGL
10.0	0.307	$\mu g/L$	1		625.1	1/27/20	1/28/20 13:04	BGL
10.0	0.522	$\mu g/L$	1		625.1	1/27/20	1/28/20 13:04	BGL
10.0	0.519	$\mu g/L$	1		625.1	1/27/20	1/28/20 13:04	BGL
5.00	0.297	$\mu g/L$	1		625.1	1/27/20	1/28/20 13:04	BGL
5.00	0.245	$\mu g/L$	1		625.1	1/27/20	1/28/20 13:04	BGL

625.1

625.1

625.1

1/27/20

1/27/20

1/27/20

1/28/20 13:04

1/28/20 13:04

1/28/20 13:04

BGL

BGL

BGL

Surrogates	% Recovery	Recovery Limits	Flag/Qual	
2-Fluorophenol	42.8	15-110		1/28/20 13:04
Phenol-d6	33.0	15-110		1/28/20 13:04
Nitrobenzene-d5	70.8	30-130		1/28/20 13:04
2-Fluorobiphenyl	92.6	30-130		1/28/20 13:04
2,4,6-Tribromophenol	79.7	15-110		1/28/20 13:04
p-Terphenyl-d14	84.8	30-130		1/28/20 13:04

1

1

μg/L

 $\mu g/L$

 $\mu g/L$

Project Location: Cambridge/ Somerville Sample Description: Work Order: 20A0917

Date Received: 1/21/2020
Field Sample #: E180-MW

Sampled: 1/21/2020 11:00

Sample ID: 20A0917-02
Sample Matrix: Ground Water

Polychlorinated Biphenyls By GC/ECI	
	١.

								Date	Date/Time	
Analyte	Results	RL	DL	Units	Dilution	Flag/Qual	Method	Prepared	Analyzed	Analyst
Aroclor-1016 [1]	< 0.184	0.200	0.184	$\mu g/L$	1		608.3	1/27/20	1/28/20 13:44	AYH
Aroclor-1221 [1]	< 0.161	0.200	0.161	$\mu g/L$	1		608.3	1/27/20	1/28/20 13:44	AYH
Aroclor-1232 [1]	< 0.199	0.200	0.199	$\mu g/L$	1		608.3	1/27/20	1/28/20 13:44	AYH
Aroclor-1242 [1]	< 0.173	0.200	0.173	$\mu g/L$	1		608.3	1/27/20	1/28/20 13:44	AYH
Aroclor-1248 [1]	0.352	0.200	0.190	$\mu g/L$	1		608.3	1/27/20	1/28/20 13:44	AYH
Aroclor-1254 [1]	0.252	0.200	0.105	$\mu g/L$	1		608.3	1/27/20	1/28/20 13:44	AYH
Aroclor-1260 [1]	< 0.196	0.200	0.196	$\mu g/L$	1		608.3	1/27/20	1/28/20 13:44	AYH

Surrogates	% Recovery	Recovery Limits	Flag/Qual	
Decachlorobiphenyl [1]	48.4	30-150		1/28/20 13:44
Decachlorobiphenyl [2]	54.1	30-150		1/28/20 13:44
Tetrachloro-m-xylene [1]	62.9	30-150		1/28/20 13:44
Tetrachloro-m-xylene [2]	73.7	30-150		1/28/20 13:44

Project Location: Cambridge/ Somerville Sample Description: Work Order: 20A0917

Date Received: 1/21/2020
Field Sample #: E180-MW

Sampled: 1/21/2020 11:00

Sample ID: 20A0917-02
Sample Matrix: Ground Water

Metal	e Ana	lvses (Totall

								Date	Date/Time	
Analyte	Results	RL	DL	Units	Dilution	Flag/Qual	Method	Prepared	Analyzed	Analyst
Antimony	ND	1.0	0.35	μg/L	1		EPA 200.8	1/23/20	1/24/20 11:55	QNW
Arsenic	0.94	0.80	0.64	$\mu g/L$	1		EPA 200.8	1/23/20	1/24/20 11:55	QNW
Cadmium	ND	0.20	0.038	$\mu g/L$	1		EPA 200.8	1/23/20	1/24/20 11:55	QNW
Chromium	1.3	1.0	0.24	$\mu g/L$	1		EPA 200.8	1/23/20	1/24/20 11:55	QNW
Chromium, Trivalent	0.0013			mg/L	1		Tri Chrome Calc.	1/23/20	1/24/20 11:55	QNW
Copper	4.7	1.0	0.87	$\mu g/L$	1		EPA 200.8	1/23/20	1/24/20 11:55	QNW
Iron	13	0.050	0.038	mg/L	1		EPA 200.7	1/23/20	1/24/20 12:52	MJH
Lead	1.6	0.50	0.085	$\mu g/L$	1		EPA 200.8	1/23/20	1/24/20 11:55	QNW
Mercury	ND	0.00010	0.000034	mg/L	1		EPA 245.1	1/24/20	1/28/20 9:28	CJV
Nickel	5.5	5.0	0.62	$\mu g/L$	1		EPA 200.8	1/23/20	1/24/20 11:55	QNW
Selenium	1.8	5.0	1.6	$\mu g/L$	1	J	EPA 200.8	1/23/20	1/24/20 11:55	QNW
Silver	ND	0.20	0.18	$\mu g/L$	1		EPA 200.8	1/23/20	1/24/20 13:29	QNW
Zinc	12	10	2.3	$\mu g/L$	1		EPA 200.8	1/23/20	1/24/20 11:55	QNW
Hardness	520			mg/L	5		EPA 200.7	1/23/20	1/24/20 13:47	MJH

Project Location: Cambridge/ Somerville Sample Description: Work Order: 20A0917

Date Received: 1/21/2020
Field Sample #: E180-MW

Sampled: 1/21/2020 11:00

Sample ID: 20A0917-02
Sample Matrix: Ground Water

Conventional Chemistry Parameters by EPA/APHA/SW-846 Methods (Total)

								Date	Date/Time	
Analyte	Results	RL	DL	Units	Dilution	Flag/Qual	Method	Prepared	Analyzed	Analyst
Chloride	250	10	3.0	mg/L	10		EPA 300.0	1/24/20	1/24/20 12:23	IS
Chlorine, Residual	0.45	0.20	0.15	mg/L	10	Z-01	SM21-22 4500 CL G	1/21/20	1/21/20 20:10	KMV
Hexavalent Chromium	ND	0.0040		mg/L	1	MS-07	SM21-22 3500 Cr B	1/21/20	1/21/20 20:00	KMV
Phenol	0.066	0.050	0.050	mg/L	1		EPA 420.1	1/27/20	1/28/20 11:30	LL
Total Suspended Solids	860	6.7	2.7	mg/L	1		SM21-22 2540D	1/22/20	1/22/20 13:15	LL
Silica Gel Treated HEM (SGT-HEM)	ND	2.8	0.64	mg/L	1		EPA 1664B	1/27/20	1/27/20 11:30	LL

Project Location: Cambridge/ Somerville Sample Description: Work Order: 20A0917

Date Received: 1/21/2020
Field Sample #: E180-MW

Sampled: 1/21/2020 11:00

Sample ID: 20A0917-02
Sample Matrix: Ground Water

Drinking Water Organics EPA 504.1

								Date	Date/Time	
Analyte	Results	RL	DL	Units	Dilution	Flag/Qual	Method	Prepared	Analyzed	Analyst
1,2-Dibromoethane (EDB) (1)	ND	0.020	0.012	μg/L	1		EPA 504.1	1/23/20	1/23/20 23:45	JMB
Surrogates		% Reco	very	Recovery Limit	s	Flag/Qual				
1,3-Dibromopropane (1)		110		70-130					1/23/20 23:45	
1,3-Dibromopropane (2)		110		70-130					1/23/20 23:45	

Project Location: Cambridge/ Somerville Sample Description: Work Order: 20A0917

Date Received: 1/21/2020
Field Sample #: E180-MW

Sampled: 1/21/2020 11:00

Sample ID: 20A0917-02
Sample Matrix: Ground Water

Conventional Chemistry Parameters by EPA/APHA/SW-846 Methods (Total)

									Date	Date/Time	
	Analyte	Results	RL	DL	Units	Dilution	Flag/Qual	Method	Prepared	Analyzed	Analyst
Ammonia as N		0.422	0.075	0.024	mg/L	1		SM19-22 4500 NH3 C		1/27/20 21:26	AAL
Cyanide		0.002	0.005	0.001	mg/L	1		SM21-22 4500 CN E		1/24/20 11:59	AAL

Project Location: Cambridge/ Somerville Sample Description: Work Order: 20A0917

Date Received: 1/21/2020

Field Sample #: Trip Blankw

Sampled: 1/21/2020 00:00

Sample ID: 20A0917-03
Sample Matrix: Trip Blank Water

Volatil	e Organic	Compound	s by	GC/MS	
---------	-----------	----------	------	-------	--

								Date	Date/Time	
Analyte	Results	RL	DL	Units	Dilution	Flag/Qual	Method	Prepared	Analyzed	Analyst
Acetone	< 3.79	50.0	3.79	$\mu g/L$	1		624.1	1/22/20	1/22/20 17:26	EEH
tert-Amyl Methyl Ether (TAME)	< 0.140	0.500	0.140	$\mu g/L$	1		624.1	1/22/20	1/22/20 17:26	EEH
Benzene	< 0.180	1.00	0.180	$\mu g/L$	1		624.1	1/22/20	1/22/20 17:26	EEH
tert-Butyl Alcohol (TBA)	<4.17	20.0	4.17	$\mu g/L$	1		624.1	1/22/20	1/22/20 17:26	EEH
Carbon Tetrachloride	< 0.110	2.00	0.110	$\mu g/L$	1		624.1	1/22/20	1/22/20 17:26	EEH
1,2-Dichlorobenzene	< 0.160	2.00	0.160	$\mu g/L$	1		624.1	1/22/20	1/22/20 17:26	EEH
1,3-Dichlorobenzene	< 0.120	2.00	0.120	$\mu g/L$	1		624.1	1/22/20	1/22/20 17:26	EEH
1,4-Dichlorobenzene	< 0.130	2.00	0.130	$\mu g/L$	1		624.1	1/22/20	1/22/20 17:26	EEH
1,2-Dichloroethane	< 0.410	2.00	0.410	$\mu g/L$	1		624.1	1/22/20	1/22/20 17:26	EEH
cis-1,2-Dichloroethylene	< 0.130	1.00	0.130	$\mu g/L$	1		624.1	1/22/20	1/22/20 17:26	EEH
1,1-Dichloroethane	< 0.160	2.00	0.160	$\mu g/L$	1		624.1	1/22/20	1/22/20 17:26	EEH
1,1-Dichloroethylene	< 0.320	2.00	0.320	$\mu g/L$	1		624.1	1/22/20	1/22/20 17:26	EEH
1,4-Dioxane	<22.5	50.0	22.5	$\mu g/L$	1		624.1	1/22/20	1/22/20 17:26	EEH
Ethanol	<10.5	50.0	10.5	$\mu g/L$	1		624.1	1/22/20	1/22/20 17:26	EEH
Ethylbenzene	< 0.130	2.00	0.130	$\mu g/L$	1		624.1	1/22/20	1/22/20 17:26	EEH
Methyl tert-Butyl Ether (MTBE)	< 0.250	2.00	0.250	$\mu g/L$	1		624.1	1/22/20	1/22/20 17:26	EEH
Methylene Chloride	< 0.340	5.00	0.340	$\mu g/L$	1		624.1	1/22/20	1/22/20 17:26	EEH
Tetrachloroethylene	< 0.180	2.00	0.180	$\mu g/L$	1		624.1	1/22/20	1/22/20 17:26	EEH
Toluene	< 0.140	1.00	0.140	$\mu g/L$	1		624.1	1/22/20	1/22/20 17:26	EEH
1,1,1-Trichloroethane	< 0.200	2.00	0.200	$\mu g/L$	1		624.1	1/22/20	1/22/20 17:26	EEH
1,1,2-Trichloroethane	< 0.160	2.00	0.160	$\mu g/L$	1		624.1	1/22/20	1/22/20 17:26	EEH
Trichloroethylene	< 0.240	2.00	0.240	$\mu g/L$	1		624.1	1/22/20	1/22/20 17:26	EEH
Vinyl Chloride	< 0.450	2.00	0.450	$\mu g/L$	1		624.1	1/22/20	1/22/20 17:26	EEH
m+p Xylene	< 0.300	2.00	0.300	$\mu g/L$	1		624.1	1/22/20	1/22/20 17:26	EEH
o-Xylene	< 0.170	1.00	0.170	$\mu g/L$	1		624.1	1/22/20	1/22/20 17:26	EEH
Surrogates		% Reco	very	Recovery Limits	1	Flag/Qual				
1,2-Dichloroethane-d4		101		70-130					1/22/20 17:26	

Surrogates	% Recovery	Recovery Limits	Flag/Qual	
1,2-Dichloroethane-d4	101	70-130		1/22/20 17:26
Toluene-d8	98.8	70-130		1/22/20 17:26
4-Bromofluorobenzene	94.7	70-130		1/22/20 17:26

Sample Extraction Data

Prep Method:	SW-846	3510C-	-608.3
--------------	--------	--------	--------

Lab Number [Field ID]	Batch	Initial [mL]	Final [mL]	Date
20A0917-01 [CDW-2/MW] 20A0917-02 [E180-MW]	B250894 B250894	975 1000	10.0 10.0	01/27/20 01/27/20
20A0917-02 [E180-WW]	D230074	1000	10.0	01/27/20

Prep Method: SW-846 5030B-624.1

Lab Number [Field ID]	Batch	Initial [mL]	Final [mL]	Date
20A0917-01 [CDW-2/MW]	B250552	1	5.00	01/22/20
20A0917-02 [E180-MW]	B250552	5	5.00	01/22/20
20A0917-03 [Trip Blankw]	B250552	5	5.00	01/22/20

Prep Method: SW-846 3510C-625.1

Lab Number [Field ID]	Batch	Initial [mL]	Final [mL]	Date
20A0917-01 [CDW-2/MW]	B250896	1000	1.00	01/27/20
20A0917-02 [E180-MW]	B250896	1000	1.00	01/27/20

Prep Method: SW-846 3510C-625.1

Lab Number [Field ID]	Batch	Initial [mL]	Final [mL]	Date
20A0917-01 [CDW-2/MW]	B250982	1000	1.00	01/27/20
20A0917-02 [E180-MW]	B250982	1000	1.00	01/27/20

EPA 1664B

Lab Number [Field ID]	Batch	Initial [mL]	Date
20A0917-01 [CDW-2/MW]	B250873	850	01/27/20
20A0917-02 [E180-MW]	B250873	500	01/27/20

Prep Method: EPA 200.7-EPA 200.7

Lab Number [Field ID]	Batch	Initial [mL]	Final [mL]	Date
20A0917-01 [CDW-2/MW]	B250694	50.0	50.0	01/23/20
20A0917-01 [CDW-2/MW]	B250694	50.0		01/23/20
20A0917-02 [E180-MW]	B250694	50.0	50.0	01/23/20
20A0917-02 [E180-MW]	B250694	50.0		01/23/20

Prep Method: EPA 200.8-EPA 200.8

Lab Number [Field ID]	Batch	Initial [mL]	Final [mL]	Date
20A0917-01 [CDW-2/MW]	B250693	50.0	50.0	01/23/20
20A0917-02 [E180-MW]	B250693	50.0	50.0	01/23/20

Prep Method: EPA 245.1-EPA 245.1

Lab Number [Field ID]	Batch	Initial [mL]	Final [mL]	Date	
20A0917-01 [CDW-2/MW]	B250779	6.00	6.00	01/24/20	

Sample Extraction Data

Prep Method:	EPA	245.1	-EPA	245.1
--------------	------------	-------	------	-------

Lab Number [Field ID]	Batch	Initial [mL]	Final [mL]	Date
20A0917-02 [E180-MW]	B250779	6.00	6.00	01/24/20

Prep Method: EPA 300.0-EPA 300.0

Lab Number [Field ID]	Batch	Initial [mL]	Final [mL]	Date
20A0917-01 [CDW-2/MW]	B250758	10.0	10.0	01/24/20
20A0917-02 [E180-MW]	B250758	10.0	10.0	01/24/20

EPA 420.1

Lab Number [Field ID]	Batch	Initial [mL]	Final [mL]	Date
20A0917-01 [CDW-2/MW]	B250875	50.0	50.0	01/27/20
20A0917-02 [E180-MW]	B250875	50.0	50.0	01/27/20

Prep Method: EPA 504 water-EPA 504.1

Lab Number [Field ID]	Batch	Initial [mL]	Final [mL]	Date
20A0917-01 [CDW-2/MW]	B250685	36.4	35.0	01/23/20
20A0917-02 [E180-MW]	B250685	35.6	35.0	01/23/20

SM21-22 2540D

Lab Number [Field ID]	Batch	Initial [mL]	Date
20A0917-01 [CDW-2/MW]	B250534	500	01/22/20
20A0917-02 [E180-MW]	B250534	75.0	01/22/20

SM21-22 3500 Cr B

Lab Number [Field ID]	Batch	Initial [mL]	Final [mL]	Date
20A0917-01 [CDW-2/MW]	B250525	50.0	50.0	01/21/20
20A0917-02 [E180-MW]	B250525	50.0	50.0	01/21/20

SM21-22 4500 CL G

Lab Number [Field ID]	Batch	Initial [mL]	Final [mL]	Date
20A0917-01 [CDW-2/MW]	B250526	100	100	01/21/20
20A0917-02 [E180-MW]	B250526	100	100	01/21/20

Prep Method: EPA 200.8-Tri Chrome Calc.

Lab Number [Field ID]	Batch	Initial [mL]	Date
20A0917-01 [CDW-2/MW]	B250693	50.0	01/23/20
20A0917-02 [E180-MW]	B250693	50.0	01/23/20

QUALITY CONTROL

Spike

Source

%REC

RPD

Volatile Organic Compounds by GC/MS - Quality Control

Reporting

Analyte	Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Notes
Batch B250552 - SW-846 5030B										
Blank (B250552-BLK1)				Prepared &	Analyzed: 01	/22/20				
Acetone	ND	50.0	μg/L							
ert-Amyl Methyl Ether (TAME)	ND	0.500	$\mu g \! / \! L$							
Benzene	ND	1.00	$\mu g \! / \! L$							
tert-Butyl Alcohol (TBA)	ND	20.0	$\mu g \! / \! L$							
Carbon Tetrachloride	ND	2.00	$\mu g \! / \! L$							
1,2-Dichlorobenzene	ND	2.00	$\mu g \! / \! L$							
1,3-Dichlorobenzene	ND	2.00	$\mu g/L$							
1,4-Dichlorobenzene	ND	2.00	μg/L							
1,2-Dichloroethane	ND	2.00	$\mu g/L$							
cis-1,2-Dichloroethylene	ND	1.00	$\mu g/L$							
1,1-Dichloroethane	ND	2.00	$\mu g/L$							
1,1-Dichloroethylene	ND	2.00	$\mu g/L$							
1,4-Dioxane	ND	50.0	μg/L							
Ethanol	ND	50.0	μg/L							
Ethylbenzene	ND	2.00	μg/L							
Methyl tert-Butyl Ether (MTBE)	ND	2.00	μg/L							
Methylene Chloride	ND	5.00	μg/L							
Tetrachloroethylene	ND	2.00	μg/L							
Coluene	ND	1.00	μg/L							
,1,1-Trichloroethane	ND	2.00	μg/L							
,1,2-Trichloroethane	ND	2.00	μg/L							
richloroethylene	ND	2.00	μg/L							
/inyl Chloride	ND	2.00	μg/L							
n+p Xylene	ND	2.00	μg/L							
o-Xylene	ND	1.00	μg/L							
Surrogate: 1,2-Dichloroethane-d4	25.1		$\mu g/L$	25.0		100	70-130			
Surrogate: Toluene-d8	24.6		μg/L	25.0		98.6	70-130			
Surrogate: 4-Bromofluorobenzene	23.3		μg/L	25.0		93.4	70-130			
LCS (B250552-BS1)				Prepared &	Analyzed: 01					
Acetone	250	50.0	μg/L	200		126	70-160			
ert-Amyl Methyl Ether (TAME)	16	0.500	μg/L	20.0		80.0	70-130			
Benzene	18	1.00	μg/L	20.0		87.7	65-135			
ert-Butyl Alcohol (TBA)	160	20.0	μg/L	200		82.4	40-160			
Carbon Tetrachloride	21	2.00	μg/L	20.0		103	70-130			
,2-Dichlorobenzene	19	2.00	μg/L	20.0		97.0	65-135			
,3-Dichlorobenzene	20	2.00	μg/L	20.0		101	70-130			
,4-Dichlorobenzene	19	2.00	μg/L	20.0		97.2	65-135			
,2-Dichloroethane	20	2.00	μg/L	20.0		101	70-130			
tis-1,2-Dichloroethylene	20	1.00	μg/L	20.0		100	70-130			
,1-Dichloroethane	20	2.00	μg/L	20.0		99.5	70-130			
,1-Dichloroethylene	22	2.00	μg/L	20.0		108	50-150			
,4-Dioxane	210	50.0	μg/L	200		103	40-130			
Ethanol	370	50.0	μg/L	200		183 *	40-160			L-01
Ethylbenzene	20	2.00	μg/L	20.0		101	60-140			
Methyl tert-Butyl Ether (MTBE)	20	2.00	μg/L	20.0		102	70-130			
Methylene Chloride	21	5.00	μg/L	20.0		104	60-140			
Tetrachloroethylene	20	2.00	μg/L	20.0		98.7	70-130			
Toluene	19	1.00	μg/L	20.0		97.2	70-130			
,1,1-Trichloroethane	20	2.00	μg/L	20.0		99.8	70-130			
1,1,2-Trichloroethane	19	2.00	μg/L	20.0		96.6	70-130			
Trichloroethylene	19	2.00	μg/L	20.0		95.8	65-135			

QUALITY CONTROL

Volatile Organic Compounds by GC/MS - Quality Control

Analyte	Result	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Notes
Batch B250552 - SW-846 5030B										
LCS (B250552-BS1)				Prepared &	Analyzed: 01	/22/20				
Vinyl Chloride	61	2.00	μg/L	20.0		304 *	5-195			L-01
m+p Xylene	40	2.00	μg/L	40.0		101	70-130			
o-Xylene	20	1.00	$\mu \text{g/L}$	20.0		101	70-130			
Surrogate: 1,2-Dichloroethane-d4	26.1		μg/L	25.0		104	70-130			
Surrogate: Toluene-d8	24.8		$\mu g/L$	25.0		99.4	70-130			
Surrogate: 4-Bromofluorobenzene	24.4		$\mu g/L$	25.0		97.6	70-130			

QUALITY CONTROL

Semivolatile Organic Compounds by GC/MS - Quality Control

Analyte	Result	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Notes
Batch B250982 - SW-846 3510C										
Blank (B250982-BLK1)				Prepared: 01	/27/20 Analy	yzed: 01/28/2	20			
Benzo(a)anthracene (SIM)	ND	0.050	μg/L							
Benzo(a)pyrene (SIM)	ND	0.10	$\mu g/L$							
Benzo(b)fluoranthene (SIM)	ND	0.050	$\mu g/L$							
Benzo(k)fluoranthene (SIM)	ND	0.20	$\mu g/L$							
Chrysene (SIM)	ND	0.20	$\mu g/L$							
Dibenz(a,h)anthracene (SIM)	ND	0.10	$\mu g/L$							
Indeno(1,2,3-cd)pyrene (SIM)	ND	0.10	$\mu g/L$							
Pentachlorophenol (SIM)	ND	1.0	$\mu g/L$							
Surrogate: 2-Fluorophenol (SIM)	92.8		μg/L	200		46.4	15-110			
Surrogate: Phenol-d6 (SIM)	71.9		μg/L	200		36.0	15-110			
Surrogate: Nitrobenzene-d5	72.0		μg/L	100		72.0	30-130			
Surrogate: 2-Fluorobiphenyl	66.0		μg/L	100		66.0	30-130			
Surrogate: 2,4,6-Tribromophenol (SIM)	162		μg/L	200		81.2	15-110			
Surrogate: p-Terphenyl-d14	66.5		$\mu g/L$	100		66.5	30-130			
LCS (B250982-BS1)				Prepared: 01	/27/20 Analy	yzed: 01/28/2	20			
Benzo(a)anthracene (SIM)	42.4	1.0	μg/L	50.0		84.8	33-143			
Benzo(a)pyrene (SIM)	43.1	2.0	μg/L	50.0		86.1	17-163			
Benzo(b)fluoranthene (SIM)	47.0	1.0	μg/L	50.0		94.1	24-159			
Benzo(k)fluoranthene (SIM)	46.0	4.0	μg/L	50.0		92.0	11-162			
Chrysene (SIM)	42.6	4.0	μg/L	50.0		85.2	17-168			
Dibenz(a,h)anthracene (SIM)	44.2	2.0	μg/L	50.0		88.4	10-227			
Indeno(1,2,3-cd)pyrene (SIM)	42.3	2.0	μg/L	50.0		84.6	10-171			
Pentachlorophenol (SIM)	37.1	20	μg/L	50.0		74.1	14-176			
Surrogate: 2-Fluorophenol (SIM)	103		μg/L	200		51.6	15-110			
Surrogate: Phenol-d6 (SIM)	79.6		$\mu g/L$	200		39.8	15-110			
Surrogate: Nitrobenzene-d5	77.2		μg/L	100		77.2	30-130			
Surrogate: 2-Fluorobiphenyl	80.3		μg/L	100		80.3	30-130			
Surrogate: 2,4,6-Tribromophenol (SIM)	193		μg/L	200		96.4	15-110			
Surrogate: p-Terphenyl-d14	67.6		$\mu g/L$	100		67.6	30-130			
LCS Dup (B250982-BSD1)				Prepared: 01	/27/20 Analy	yzed: 01/28/2	20			
Benzo(a)anthracene (SIM)	37.6	1.0	μg/L	50.0		75.2	33-143	11.9	53	
Benzo(a)pyrene (SIM)	38.2	2.0	μg/L	50.0		76.4	17-163	12.0	72	
Benzo(b)fluoranthene (SIM)	41.7	1.0	μg/L	50.0		83.3	24-159	12.1	71	
Benzo(k)fluoranthene (SIM)	41.0	4.0	$\mu g/L$	50.0		82.0	11-162	11.5	63	
Chrysene (SIM)	38.1	4.0	μg/L	50.0		76.2	17-168	11.3	87	
Dibenz(a,h)anthracene (SIM)	39.1	2.0	μg/L	50.0		78.3	10-227	12.1	126	
Indeno(1,2,3-cd)pyrene (SIM)	37.2	2.0	μg/L	50.0		74.4	10-171	12.8	99	
Pentachlorophenol (SIM)	31.7	20	μg/L	50.0		63.4	14-176	15.7	86	
Surrogate: 2-Fluorophenol (SIM)	96.2		μg/L	200		48.1	15-110			
Surrogate: Phenol-d6 (SIM)	72.7		μg/L	200		36.3	15-110			
Surrogate: Nitrobenzene-d5	65.9		μg/L	100		65.9	30-130			
Surrogate: 2-Fluorobiphenyl	69.6		μg/L	100		69.6	30-130			
Surrogate: 2,4,6-Tribromophenol (SIM)	170		μg/L	200		85.0	15-110			
Surrogate: p-Terphenyl-d14	60.3		μg/L	100		60.3	30-130			

QUALITY CONTROL

Semivolatile Organic Compounds by - GC/MS - Quality Control

Analyte	Result	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Notes
Batch B250896 - SW-846 3510C										
Blank (B250896-BLK1)				Prepared: 01	/27/20 Analy	yzed: 01/28/2	20			
Acenaphthene	ND	5.00	μg/L							
Acenaphthylene	ND	5.00	$\mu g/L$							
Anthracene	ND	5.00	$\mu g/L$							
Benzo(g,h,i)perylene	ND	5.00	$\mu g/L$							
Butylbenzylphthalate	ND	10.0	$\mu g/L$							
Di-n-butylphthalate	ND	10.0	$\mu g/L$							
Diethylphthalate	ND	10.0	$\mu g/L$							
Dimethylphthalate	ND	10.0	$\mu g/L$							
Di-n-octylphthalate	ND	10.0	$\mu g/L$							
Bis(2-Ethylhexyl)phthalate	ND	10.0	$\mu g/L$							
Fluoranthene	ND	5.00	$\mu g/L$							
Fluorene	ND	5.00	$\mu g/L$							
Naphthalene	ND	5.00	μg/L							
Phenanthrene	ND	5.00	μg/L							
Pyrene	ND	5.00	$\mu g/L$							
Surrogate: 2-Fluorophenol	106		μg/L	200		53.0	15-110			
Surrogate: Phenol-d6	77.0		μg/L	200		38.5	15-110			
Surrogate: Nitrobenzene-d5	76.4		μg/L	100		76.4	30-130			
Surrogate: 2-Fluorobiphenyl	96.6		μg/L	100		96.6	30-130			
Surrogate: 2,4,6-Tribromophenol	166		μg/L	200		83.1	15-110			
Surrogate: p-Terphenyl-d14	82.0		$\mu g/L$	100		82.0	30-130			
LCS (B250896-BS1)				Prepared: 01	/27/20 Analy	yzed: 01/28/2	20			
Acenaphthene	42.0	5.00	μg/L	50.0		84.0	47-145			
Acenaphthylene	41.4	5.00	$\mu g/L$	50.0		82.8	33-145			
Anthracene	43.5	5.00	$\mu g/L$	50.0		87.0	27-133			
Benzo(g,h,i)perylene	42.5	5.00	$\mu g/L$	50.0		85.0	10-219			
Butylbenzylphthalate	38.8	10.0	$\mu g/L$	50.0		77.6	10-152			
Di-n-butylphthalate	41.1	10.0	$\mu g/L$	50.0		82.2	10-120			
Diethylphthalate	43.4	10.0	$\mu g/L$	50.0		86.8	10-120			
Dimethylphthalate	43.2	10.0	$\mu g/L$	50.0		86.3	10-120			
Di-n-octylphthalate	40.5	10.0	$\mu g/L$	50.0		81.1	4-146			
Bis(2-Ethylhexyl)phthalate	41.1	10.0	$\mu g/L$	50.0		82.3	8-158			
Fluoranthene	44.4	5.00	$\mu g/L$	50.0		88.8	26-137			
Fluorene	45.2	5.00	$\mu g/L$	50.0		90.3	59-121			
Naphthalene	36.7	5.00	$\mu g/L$	50.0		73.5	21-133			
Phenanthrene	43.5	5.00	$\mu g/L$	50.0		86.9	54-120			
Pyrene	37.8	5.00	μg/L	50.0		75.6	52-120			
Surrogate: 2-Fluorophenol	111		μg/L	200		55.3	15-110			
Surrogate: Phenol-d6	86.4		μg/L	200		43.2	15-110			
Surrogate: Nitrobenzene-d5	81.0		μg/L	100		81.0	30-130			
Surrogate: 2-Fluorobiphenyl	103		$\mu g/L$	100		103	30-130			
Surrogate: 2,4,6-Tribromophenol	212		$\mu g/L$	200		106	15-110			
Surrogate: p-Terphenyl-d14	81.1		μg/L	100		81.1	30-130			

QUALITY CONTROL

Semivolatile Organic Compounds by - GC/MS - Quality Control

Analyte	Result	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Notes
Batch B250896 - SW-846 3510C										
LCS Dup (B250896-BSD1)				Prepared: 01	/27/20 Analy	yzed: 01/28/2	20			
Acenaphthene	37.3	5.00	μg/L	50.0		74.7	47-145	11.8	48	
Acenaphthylene	36.5	5.00	$\mu g/L$	50.0		73.0	33-145	12.6	74	
Anthracene	40.4	5.00	$\mu g/L$	50.0		80.7	27-133	7.42	66	
Benzo(g,h,i)perylene	38.5	5.00	$\mu g/L$	50.0		76.9	10-219	10.0	97	
Butylbenzylphthalate	37.0	10.0	$\mu g/L$	50.0		73.9	10-152	4.83	60	
Di-n-butylphthalate	39.4	10.0	$\mu g/L$	50.0		78.7	10-120	4.30	47	
Diethylphthalate	40.0	10.0	$\mu g/L$	50.0		80.0	10-120	8.18	100	
Dimethylphthalate	39.2	10.0	$\mu g/L$	50.0		78.3	10-120	9.72	183	
Di-n-octylphthalate	37.6	10.0	$\mu g/L$	50.0		75.3	4-146	7.39	69	
Bis(2-Ethylhexyl)phthalate	38.4	10.0	$\mu g/L$	50.0		76.8	8-158	6.81	82	
Fluoranthene	41.8	5.00	$\mu g/L$	50.0		83.6	26-137	6.13	66	
Fluorene	40.7	5.00	$\mu g/L$	50.0		81.3	59-121	10.5	38	
Naphthalene	33.5	5.00	$\mu g/L$	50.0		67.0	21-133	9.23	65	
Phenanthrene	40.2	5.00	$\mu g/L$	50.0		80.3	54-120	7.89	39	
Pyrene	35.3	5.00	$\mu g/L$	50.0		70.6	52-120	6.87	49	
Surrogate: 2-Fluorophenol	109		μg/L	200		54.7	15-110			
Surrogate: Phenol-d6	80.6		$\mu g/L$	200		40.3	15-110			
Surrogate: Nitrobenzene-d5	74.8		μg/L	100		74.8	30-130			
Surrogate: 2-Fluorobiphenyl	93.0		μg/L	100		93.0	30-130			
Surrogate: 2,4,6-Tribromophenol	191		μg/L	200		95.4	15-110			
Surrogate: p-Terphenyl-d14	75.1		μg/L	100		75.1	30-130			

QUALITY CONTROL

Polychlorinated Biphenyls By GC/ECD - Quality Control

Prepared 1/27/20 Analyzed 1/28/20 Security	Analyte	Result	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Notes
Arcelor-1016 ND	Batch B250894 - SW-846 3510C										
Arcelor-1016 [2C] ND 0.200 µg.L	Blank (B250894-BLK1)				Prepared: 01	/27/20 Analy	yzed: 01/28/2	20			
Arcolor-1221 ND 0.200 μg1. Arcolor-1221 [CC] ND 0.200 μg1. Arcolor-1232 [CC] ND 0.200 μg1. Arcolor-1232 [CC] ND 0.200 μg1. Arcolor-1232 [CC] ND 0.200 μg1. Arcolor-1242 ND 0.200 μg1. Arcolor-1243 ND 0.200 μg1. Arcolor-1248 ICC] ND 0.200 μg1. Arcolor-1249 [CC] ND 0.200 μg1. Arcolor-1249 [CC] ND 0.200 μg1. Arcolor-1249 [CC] ND 0.200 μg1. Arcolor-1240 [CC] ND 0.200 μg1. Arcolor-1260 [CC] ND 0.200 μg1. Arcolor-126	Aroclor-1016	ND	0.200	μg/L							
Aroclor-1221 [2C] ND 0.200 µg/L Aroclor-1232 ND 0.200 µg/L Aroclor-1232 ND 0.200 µg/L Aroclor-1242 ND 0.200 µg/L Aroclor-1242 ND 0.200 µg/L Aroclor-1248 [C] ND 0.200 µg/L Aroclor-1248 [C] ND 0.200 µg/L Aroclor-1248 [C] ND 0.200 µg/L Aroclor-1248 [C] ND 0.200 µg/L Aroclor-1250 ND 0.200 µg/L Aroclor-1260 ND 0.200 ND 0.	Aroclor-1016 [2C]	ND	0.200	$\mu g/L$							
Arcolor-1232 (C) ND 0.200 μg/L Arcolor-1242 (C) ND 0.200 μg/L Arcolor-1242 (C) ND 0.200 μg/L Arcolor-1242 (C) ND 0.200 μg/L Arcolor-1248 (C) ND 0.200 μg/L Arcolor-1248 (C) ND 0.200 μg/L Arcolor-1248 (C) ND 0.200 μg/L Arcolor-1246 (C) ND 0.200 μg/L Arcolor-1260 (C) ND 0.200 μg/L 0.200 (C) ND 0	Aroclor-1221	ND	0.200	$\mu g/L$							
Aroclor-1232 [2C] ND 0.200 µg/L Aroclor-1242 ND 0.200 µg/L Aroclor-1242 ND 0.200 µg/L Aroclor-1248 ND 0.200 µg/L Aroclor-1254 ND 0.200 µg/L Aroclor-1254 ND 0.200 µg/L Aroclor-1260 ND 0.200 µg/L Surrogate: Decachlorobiphenyl [2C] 1.41 µg/L 2.00 62.1 30-150 Surrogate: Decachlorobiphenyl [2C] 1.41 µg/L 2.00 61.9 30-150 Surrogate: Etrachloro-m-xylene [2C] 1.47 µg/L 2.00 61.9 30-150 Surrogate: Etrachloro-m-xylene [2C] 1.47 µg/L 2.00 61.9 30-150 Surrogate: Decachlorobiphenyl [2C] 1.48 µg/L 2.00 61.9 30-150 Surrogate: Decachlorobiphenyl [2C] 1.49 µg/L 2.00 61.9 30-150 Surrogate: Decachlorobiphenyl [2C] 1.40 µg/L 0.500 70.0 8.140 Aroclor-1260 0.357 0.200 µg/L 0.500 72.4 50-140 Aroclor-1260 0.357 0.200 µg/L 0.500 72.4 50-140 Aroclor-1260 0.357 0.200 µg/L 0.500 73.9 8-140 Surrogate: Decachlorobiphenyl [2C] 1.46 µg/L 2.00 64.5 30-150 Surrogate: Decachlorobiphenyl [2C] 1.47 µg/L 2.00 64.5 30-150 Surrogate: Decachlorobiphenyl [2C] 1.48 µg/L 2.00 69.2 30-150 Surrogate: Decachlorobiphenyl [2C] 1.48 µg/L 2.00 69.2 30-150 Surrogate: Tetrachloro-m-xylene [2C] 1.38 µg/L 2.00 69.2 30-150 LCS Dup (B25084-BSD1) **Prepared: 01/27/20 Analyzed: 01/28/2 **LCS Dup (B25084-BSD1) **Prepared: 01/27/20 Analyzed: 01/28/2 **LCS Dup (B25084-BSD1) **Prepared: 01/27/20 Analyzed: 01/28/2 **LCS Dup (B25084-BSD1) **Prepared: 01/27/20 Analyzed: 01/28/2 **LCS Dup (B25084-BSD1) **Prepared: 01/27/20 Analyzed: 01/28/2 **LCS Dup (B25084-BSD1) **Prepared: 01/27/20 Analyzed: 01/28/2 **LCS Dup (B25084-BSD1) **Prepared: 01/27/20 Analyzed: 01/28/2 **LCS Dup (B25084-BSD1) **Prepared: 01/27/20 Analyzed: 01/28/2 **LCS Dup (B25084-BSD1) **Prepared: 01/27/20 Analyzed: 01/28/2 **LCS Dup (B25084-BSD1) **Prepared: 01/27/20 Analyzed: 01/28/2 **LCS Dup (B25084-BSD1) **Prepared: 01/27/20 Analyzed: 01/28/2 **LCS Dup (B25084-BSD1) **Prepared: 01/27	Aroclor-1221 [2C]	ND	0.200	$\mu g/L$							
Arcolor-1242 ND 0.200 μg/L Arcolor-1242 RC ND 0.200 μg/L Arcolor-1248 ND 0.200 μg/L Arcolor-1246 RC ND 0.200 μg/L Arcolor-1240 RC ND 0.200 μg/L Arcolor-1260 ND 0.200 μg/L Arcolor-1260 ND 0.200 μg/L Arcolor-1260 ND 0.200 μg/L Arcolor-1260 RC ND 0.200 RG Arcolor-1260 RC RC RC Arcolor-1260 RC	Aroclor-1232	ND	0.200	$\mu g/L$							
Aroclor-1242 [2C] ND 0.200 μg/L Aroclor-1248 ND 0.200 μg/L Aroclor-1248 (2C) ND 0.200 μg/L Aroclor-1248 (2C) ND 0.200 μg/L Aroclor-1248 (2C) ND 0.200 μg/L Aroclor-1249 (2C) ND 0.200 μg/L Aroclor-1249 (2C) ND 0.200 μg/L Aroclor-1240 (2C) ND 0.200 μg/L Aroclor-1240 (2C) ND 0.200 μg/L Aroclor-1254 (2C) ND 0.200 μg/L Aroclor-1260 (2C) ND 0.200 μg/L Surrogate: Decachlorobiphenyl (2C) 1.41 μg/L 2.00 62.1 30-150 Surrogate: Tetrachloro-m-xylene (2C) 1.47 μg/L 2.00 61.9 30-150 Surrogate: Tetrachloro-m-xylene (2C) 1.47 μg/L 2.00 61.9 30-150 Surrogate: Tetrachloro-m-xylene (2C) 1.47 μg/L 2.00 77.3 3 30-150 LCS (B250894-BS1)	Aroclor-1232 [2C]	ND	0.200	$\mu g/L$							
Aroclor-1248 ND	Aroclor-1242	ND	0.200	$\mu g/L$							
Aroclor-1248 [2C] ND 0,200 μg/L Aroclor-1254 (2C) ND 0,200 μg/L Aroclor-1260 (2C) ND 0,200 μg/L Aroclor-1260 (2C) ND 0,200 μg/L Surrogate: Decachlorobiphenyl (2C) 1,41 μg/L 2,00 62,1 30-150 Surrogate: Tetrachloro-m-xylene 1,24 μg/L 2,00 61,9 30-150 Surrogate: Tetrachloro-m-xylene 2C] 1,47 μg/L 2,00 73,3 30-150 LCS (825894-881) γργγγγγγγγγγγγγγγγγγγγγγγγγγγγγγγγγγγ	Aroclor-1242 [2C]	ND	0.200	$\mu g/L$							
Arcolor-1254 ND 0.200 μg/L Arcolor-1254 CD ND 0.200 μg/L Arcolor-1260 ND 0.200 μg/L Surrogate: Decachlorobiphenyl CD 1.41 μg/L 2.00 62.1 30-150 Surrogate: Decachlorobiphenyl CD 1.41 μg/L 2.00 61.9 30-150 Surrogate: Tetrachloro-m-xylene 1.24 μg/L 2.00 73.3 30-150 Surrogate: Tetrachloro-m-xylene CD 1.47 μg/L 2.00 73.3 30-150 LCS (B256894-BS1) Prepared: 01/27/20 Analyzed: 01/28/20 Arcolor-1260 0.357 0.200 μg/L 0.500 71.5 50-140 Arcolor-1260 0.350 0.200 μg/L 0.500 72.4 50-140 Arcolor-1260 0.350 0.200 μg/L 0.500 72.4 50-140 Arcolor-1260 0.350 0.200 μg/L 0.500 72.9 30-150 Surrogate: Decachlorobiphenyl CD 1.46 μg/L 2.00 64.5 30-150 Surrogate: Decachlorobiphenyl CD 1.46 μg/L 2.00 69.2 30-150 LCS burgate: Decachlorobiphenyl CD 1.46 μg/L 2.00 69.2 30-150 LCS burgate: Tetrachloro-m-xylene 1.17 μg/L 2.00 69.2 30-150 LCS burgate: Tetrachloro-m-xylene 1.17 μg/L 2.00 69.2 30-150 LCS burgate: Tetrachloro-m-xylene 0.350 0.200 μg/L 0.500 72.5 50-140 0.196 Arcolor-1016 CD 0.362 0.200 μg/L 0.500 72.5 50-140 0.196 Arcolor-1016 CD 0.364 0.200 μg/L 0.500 72.5 50-140 0.196 Arcolor-1260 0	Aroclor-1248	ND	0.200								
Aroclor-1254 [2C] ND 0.200 µg/L Aroclor-1260 [2C] ND 0.200 µg/L Aroclor-1260 [2C] ND 0.200 µg/L Surrogate: Decachlorobiphenyl [2C] 1.41 µg/L 2.00 62.1 30-150 Surrogate: Decachloro-m-xylene 1.24 µg/L 2.00 61.9 30-150 Surrogate: Tetrachloro-m-xylene [2C] 1.47 µg/L 2.00 73.3 30-150 LCS (B250894-BS1) *** **Prepared: 01/27/20 Analyzed: 01/28/20** Aroclor-1016 0.357 0.200 µg/L 0.500 71.5 50-140 Aroclor-1260 [2C] 0.362 0.200 µg/L 0.500 73.9 8-140 Aroclor-1260 [2C] 0.370 0.200 µg/L 0.500 73.9 8-140 Aroclor-1260 [2C] 0.370 0.200 µg/L 0.500 73.9 8-140 Surrogate: Decachlorobiphenyl [2C] 1.46 µg/L 2.00 64.5 30-150 Surrogate: Decachlorobiphenyl [2C] 1.46 µg/L 2.00 73.9 8-140 Surrogate: Decachlorobiphenyl [2C] 1.46 µg/L 2.00 72.9 30-150 Surrogate: Tetrachloro-m-xylene 1.17 µg/L 2.00 64.5 30-150 Surrogate: Tetrachloro-m-xylene [2C] 1.38 µg/L 2.00 72.9 30-150 **LCS Dup (B250894-BSD1)** **Prepared: 01/27/20 Analyzed: 01/28/20** **Aroclor-1016 0.350 0.200 µg/L 0.500 72.9 30-150 **LCS Dup (B250894-BSD1)** **Prepared: 01/27/20 Analyzed: 01/28/20** **Aroclor-1016 0.350 0.350 0.200 µg/L 0.500 72.9 8-140 0.196 **Aroclor-1016 0.350 0.375 0.200 µg/L 0.500 72.9 8-140 0.196 **Aroclor-10260 0.364 0.200 µg/L 0.500 75.1 8-140 1.60 **Surrogate: Decachlorobiphenyl 0.364 0.200 µg/L 0.500 75.1 8-140 1.60 **Surrogate: Decachlorobiphenyl 1.44 µg/L 2.00 72.1 30-150 **Surrogate: Decachlorobiphenyl 1.44 µg/L 2.00 72.1 30-150 **Surrogate: Decachlorobiphenyl 1.44 µg/L 2.00 82.2 30-150 **Surrogate: Decachlorobiphenyl 1.44 µg/L 2.00 82.2 30-150 **Surrogate: Decachlorobiphenyl 1.44 µg/L 2.00 82.2 30-150	Aroclor-1248 [2C]	ND	0.200	$\mu g/L$							
Aroclor-1260 ND 0.200 µg/L	Aroclor-1254	ND	0.200	$\mu g/L$							
ND 0.200 µg/L 2.00 62.1 30-150 30-	Aroclor-1254 [2C]	ND	0.200	$\mu g/L$							
Surrogate: Decachlorobiphenyl 1.24	Aroclor-1260	ND	0.200	$\mu g/L$							
Surrogate: Decachlorobiphenyl [2C] 1.41	Aroclor-1260 [2C]	ND	0.200	$\mu \text{g/L}$							
Surrogate: Tetrachloro-m-xylene 1.24 µg/L 2.00 61.9 30-150 Surrogate: Tetrachloro-m-xylene 2C 1.47 µg/L 2.00 73.3 30-150 LCS (B250894-BS1)	Surrogate: Decachlorobiphenyl	1.24		μg/L	2.00		62.1	30-150			
National Control Con	Surrogate: Decachlorobiphenyl [2C]	1.41		$\mu g/L$	2.00		70.4	30-150			
Prepared: 01/27/20 Analyzed: 01/28/20	Surrogate: Tetrachloro-m-xylene	1.24		$\mu g/L$	2.00		61.9	30-150			
Arcolor-1016	Surrogate: Tetrachloro-m-xylene [2C]	1.47		μg/L	2.00		73.3	30-150			
Aroclor-1016 [2C] 0.362 0.200 µg/L 0.500 72.4 50-140 Aroclor-1260 0.350 0.200 µg/L 0.500 70.0 8-140 Aroclor-1260 [2C] 0.370 0.200 µg/L 0.500 73.9 8-140 Surrogate: Decachlorobiphenyl [2C] 1.46 µg/L 2.00 64.5 30-150 Surrogate: Tetrachloro-m-xylene [2C] 1.38 µg/L 2.00 58.6 30-150 Surrogate: Tetrachloro-m-xylene [2C] 1.38 µg/L 2.00 69.2 30-150 LCS Dup (B250894-BSD1) Prepared: 01/27/20 Analyzed: 01/28/2 Aroclor-1016 [2C] 0.362 0.200 µg/L 0.500 72.9 8-140 0.196 Aroclor-1260 [2C] 0.364 0.200 µg/L 0.500 72.5 50-140 0.196 Aroclor-1260 [2C] 0.375 0.200 µg/L 0.500 72.9 8-140 4.04 Aroclor-1260 [2C] 0.375 0.200 µg/L 0.500 75.1 8-140 1.60 Surrogate: Decachlorobiphenyl [2C] 1.44 µg/L 2.00 72.1 30-150 Surrogate: Decachlorobiphenyl [2C] 1.64 µg/L 2.00 82.2 30-150 Surrogate: Decachlorobiphenyl [2C] 1.64 µg/L 2.00 82.2 30-150 Surrogate: Tetrachloro-m-xylene 1.22 µg/L 2.00 60.9 30-150	LCS (B250894-BS1)				Prepared: 01	/27/20 Analy	yzed: 01/28/2	20			
Aroclor-1260 0.350 0.200 μg/L μg/L 0.500 70.0 8-140 Aroclor-1260 [2C] 0.370 0.200 μg/L 0.500 73.9 8-140 Surrogate: Decachlorobiphenyl 1.29 μg/L 2.00 64.5 30-150 Surrogate: Decachlorobiphenyl [2C] 1.46 μg/L 2.00 58.6 30-150 Surrogate: Tetrachloro-m-xylene 1.17 μg/L 2.00 69.2 30-150 Surrogate: Tetrachloro-m-xylene [2C] 1.38 μg/L 2.00 69.2 30-150 LCS Dup (B250894-BSD1) Prepared: 01/27/20 Analyzed: 01/28/20 Aroclor-1016 [2C] 0.362 0.200 μg/L 0.500 70.0 50-140 2.15 Aroclor-1260 [2C] 0.364 0.200 μg/L 0.500 72.5 50-140 1.60 Surrogate: Decachlorobiphenyl 1.44 μg/L 2.00	Aroclor-1016	0.357	0.200	μg/L	0.500		71.5	50-140			
Aroclor-1260 [2C] 0.370 0.200 μg/L 0.500 73.9 8-140 Surrogate: Decachlorobiphenyl 1.29 μg/L 2.00 64.5 30-150 Surrogate: Decachlorobiphenyl [2C] 1.46 μg/L 2.00 72.9 30-150 Surrogate: Tetrachloro-m-xylene 1.17 μg/L 2.00 58.6 30-150 Surrogate: Tetrachloro-m-xylene [2C] 1.38 μg/L 2.00 69.2 30-150 LCS Dup (B250894-BSD1) Prepared: 01/27/20 Analyzed: 01/28/20 LCS Dup (B250894-BSD1) Prepared: 01/27/20 Analyzed: 01/28/20 Aroclor-1016 [2C] 0.362 0.200 μg/L 0.500 70.0 50-140 2.15 Aroclor-1260 0.364 0.200 μg/L 0.500 72.5 50-140 0.196 Aroclor-1260 [2C] 0.375 0.200 μg/L 0.500 72.9 8-140 4.04 Aroclor-1260 [2C] 0.375 0.200 μg/L 0.500 75.1 8-140 1.60 Surrogate: Decachlorobiphenyl 1.44 μg/L 2.00 72.1 30-150 Surrogate: Decachlorobiphenyl [2C] 1.64 μg/L 2.00 82.2 30-150 Surrogate: Tetrachloro-m-xylene 1.22 μg/L 2.00 60.9 30-150	Aroclor-1016 [2C]	0.362	0.200	$\mu g/L$	0.500		72.4	50-140			
Surrogate: Decachlorobiphenyl 1.29	Aroclor-1260	0.350	0.200	$\mu g/L$	0.500		70.0	8-140			
Surrogate: Decachlorobiphenyl [2C]	Aroclor-1260 [2C]	0.370	0.200	$\mu \text{g}/L$	0.500		73.9	8-140			
Surrogate: Tetrachloro-m-xylene 1.17	Surrogate: Decachlorobiphenyl	1.29		μg/L	2.00		64.5	30-150			
Surrogate: Tetrachloro-m-xylene [2C] 1.38 μg/L 2.00 69.2 30-150 LCS Dup (B250894-BSD1) Prepared: 01/27/20 Analyzed: 01/28/20 Aroclor-1016 0.350 0.200 μg/L 0.500 70.0 50-140 2.15 Aroclor-1016 [2C] 0.362 0.200 μg/L 0.500 72.5 50-140 0.196 Aroclor-1260 0.364 0.200 μg/L 0.500 72.9 8-140 4.04 Aroclor-1260 [2C] 0.375 0.200 μg/L 0.500 75.1 8-140 1.60 Surrogate: Decachlorobiphenyl 1.44 μg/L 2.00 72.1 30-150 Surrogate: Decachloro-m-xylene 1.22 μg/L 2.00 60.9 30-150	Surrogate: Decachlorobiphenyl [2C]	1.46		$\mu g/L$	2.00		72.9	30-150			
LCS Dup (B250894-BSD1) Prepared: 01/27/20 Analyzed: 01/28/20 Arcolor-1016 0.350 0.200 μg/L 0.500 70.0 50-140 2.15 Arcolor-1016 [2C] 0.362 0.200 μg/L 0.500 72.5 50-140 0.196 Arcolor-1260 0.364 0.200 μg/L 0.500 72.9 8-140 4.04 Arcolor-1260 [2C] 0.375 0.200 μg/L 0.500 75.1 8-140 1.60 Surrogate: Decachlorobiphenyl 1.44 μg/L 2.00 72.1 30-150 Surrogate: Decachloro-m-xylene 1.22 μg/L 2.00 60.9 30-150	Surrogate: Tetrachloro-m-xylene	1.17		$\mu g/L$	2.00		58.6	30-150			
Aroclor-1016 0.350 0.200 μg/L 0.500 70.0 50-140 2.15 Aroclor-1016 [2C] 0.362 0.200 μg/L 0.500 72.5 50-140 0.196 Aroclor-1260 0.364 0.200 μg/L 0.500 72.9 8-140 4.04 Aroclor-1260 [2C] 0.375 0.200 μg/L 0.500 75.1 8-140 1.60 Surrogate: Decachlorobiphenyl 1.44 μg/L 2.00 72.1 30-150 Surrogate: Decachloro-m-xylene 1.22 μg/L 2.00 60.9 30-150	Surrogate: Tetrachloro-m-xylene [2C]	1.38		$\mu g/L$	2.00		69.2	30-150			
Aroclor-1016 [2C] 0.362 0.200 μg/L 0.500 72.5 50-140 0.196 Aroclor-1260 0.364 0.200 μg/L 0.500 72.9 8-140 4.04 Aroclor-1260 [2C] 0.375 0.200 μg/L 0.500 75.1 8-140 1.60 Surrogate: Decachlorobiphenyl 1.44 μg/L 2.00 72.1 30-150 Surrogate: Decachlorobiphenyl [2C] 1.64 μg/L 2.00 82.2 30-150 Surrogate: Tetrachloro-m-xylene 1.22 μg/L 2.00 60.9 30-150	LCS Dup (B250894-BSD1)				Prepared: 01	/27/20 Analy	yzed: 01/28/2	20			
Aroclor-1260 0.364 0.200 μg/L 0.500 72.9 8-140 4.04 Aroclor-1260 [2C] 0.375 0.200 μg/L 0.500 75.1 8-140 1.60 Surrogate: Decachlorobiphenyl 1.44 μg/L 2.00 72.1 30-150 Surrogate: Decachlorobiphenyl [2C] 1.64 μg/L 2.00 82.2 30-150 Surrogate: Tetrachloro-m-xylene 1.22 μg/L 2.00 60.9 30-150	Aroclor-1016	0.350	0.200	μg/L	0.500		70.0	50-140	2.15		
Aroclor-1260 0.364 0.200 μg/L 0.500 72.9 8-140 4.04 Aroclor-1260 [2C] 0.375 0.200 μg/L 0.500 75.1 8-140 1.60 Surrogate: Decachlorobiphenyl 1.44 μg/L 2.00 72.1 30-150 Surrogate: Decachlorobiphenyl [2C] 1.64 μg/L 2.00 82.2 30-150 Surrogate: Tetrachloro-m-xylene 1.22 μg/L 2.00 60.9 30-150	Aroclor-1016 [2C]	0.362	0.200	$\mu g/L$	0.500		72.5	50-140	0.196		
Aroclor-1260 [2C] 0.375 0.200 μg/L 0.500 75.1 8-140 1.60 Surrogate: Decachlorobiphenyl 1.44 μg/L 2.00 72.1 30-150 Surrogate: Decachlorobiphenyl [2C] 1.64 μg/L 2.00 82.2 30-150 Surrogate: Tetrachloro-m-xylene 1.22 μg/L 2.00 60.9 30-150	Aroclor-1260		0.200	$\mu g/L$	0.500		72.9	8-140	4.04		
Surrogate: Decachlorobiphenyl [2C] 1.64 μg/L 2.00 82.2 30-150 Surrogate: Tetrachloro-m-xylene 1.22 μg/L 2.00 60.9 30-150	Aroclor-1260 [2C]		0.200	$\mu \text{g}/L$	0.500		75.1	8-140	1.60		
Surrogate: Decachlorobiphenyl [2C] 1.64 $\mu g/L$ 2.00 82.2 30-150 Surrogate: Tetrachloro-m-xylene 1.22 $\mu g/L$ 2.00 60.9 30-150	Surrogate: Decachlorobiphenyl	1.44		μg/L	2.00		72.1	30-150			
Surrogate: Tetrachloro-m-xylene 1.22 µg/L 2.00 60.9 $30-150$	Surrogate: Decachlorobiphenyl [2C]	1.64			2.00		82.2	30-150			
	Surrogate: Tetrachloro-m-xylene	1.22			2.00		60.9	30-150			
	Surrogate: Tetrachloro-m-xylene [2C]	1.43			2.00		71.5	30-150			

QUALITY CONTROL

Metals Analyses (Total) - Quality Control

		Reporting		Spike	Source		%REC		RPD	
Analyte	Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Notes
Satch B250693 - EPA 200.8										
slank (B250693-BLK1)				Prepared: 01	/23/20 Analy	yzed: 01/24/2	20			
Antimony	ND	1.0	$\mu g/L$							
arsenic	ND	0.80	$\mu g/L$							
Cadmium	ND	0.20	$\mu \text{g/L}$							
Chromium	ND	1.0	$\mu \text{g/L}$							
Copper	ND	1.0	$\mu \text{g/L}$							
ead	0.10	0.50	$\mu \text{g/L}$							J
lickel	ND	5.0	μg/L							
elenium	ND	5.0	$\mu \text{g/L}$							
ilver	ND	0.20	$\mu g \! / \! L$							
nc	ND	10	$\mu g/L$							
CS (B250693-BS1)				Prepared: 01	/23/20 Analy	yzed: 01/24/2	20			
ntimony	546	10	μg/L	500		109	85-115			
rsenic	551	8.0	$\mu \text{g/L}$	500		110	85-115			
admium	555	2.0	$\mu \text{g}/L$	500		111	85-115			
hromium	537	10	$\mu \text{g/L}$	500		107	85-115			
opper	1070	10	$\mu \text{g/L}$	1000		107	85-115			
ead	545	5.0	μg/L	500		109	85-115			
ickel	557	50	$\mu g/L$	500		111	85-115			
elenium	545	50	$\mu g/L$	500		109	85-115			
ilver	464	2.0	$\mu g \! / \! L$	500		92.8	85-115			
inc	1070	100	$\mu g/L$	1000		107	85-115			
CS Dup (B250693-BSD1)				Prepared: 01	/23/20 Analy	yzed: 01/24/2	20			
ntimony	506	10	μg/L	500		101	85-115	7.54	20	
rsenic	499	8.0	$\mu \text{g/L}$	500		99.8	85-115	9.88	20	
admium	515	2.0	$\mu g/L$	500		103	85-115	7.54	20	
hromium	498	10	μg/L	500		99.6	85-115	7.53	20	
opper	984	10	$\mu g/L$	1000		98.4	85-115	8.59	20	
ead	505	5.0	μg/L	500		101	85-115	7.78	20	
lickel	514	50	μg/L	500		103	85-115	8.14	20	
elenium	502	50	μg/L	500		100	85-115	8.25	20	
ilver	477	2.0	$\mu g/L$	500		95.5	85-115	2.86	20	
inc	982	100	$\mu g/L$	1000		98.2	85-115	8.49	20	
ouplicate (B250693-DUP1)	Sour	ce: 20A0917-	01	Prepared: 01	/23/20 Analy	yzed: 01/24/2	20			
ntimony	ND	1.0	μg/L		ND)		NC	20	
rsenic	8.55	0.80	$\mu \text{g}/L$		8.84			3.43	20	
admium	0.0612	0.20	$\mu \text{g}/L$		0.0546			11.5	20	J
hromium	0.814	1.0	$\mu \text{g}/L$		0.891			9.12	20	J
opper	2.45	1.0	$\mu g \! / \! L$		2.39			2.64	20	
ead	1.24	0.50	μg/L		1.24			0.125	20	
ickel	3.40	5.0	μg/L		3.57			4.84	20	J
elenium	ND	5.0	μg/L		ND			NC	20	
ilver	ND	0.20	μg/L		ND			NC	20	
inc	6.24	10	μg/L		6.09			2.46	20	J

QUALITY CONTROL

Metals Analyses (Total) - Quality Control

Marit Spike (#250693-MS1)	Analyte	Result	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Notes
Namency 507 10 μg/L 500 ND 101 70-130 NS Namency 523 8.0 μg/L 500 8.3 103 70-130 NS Namency 516 2.0 μg/L 500 ND 103 70-130 NS Namency 516 2.0 μg/L 500 ND 101 70-130 NS Namency 500 ND 101 70-130 NS Namency 500 NS Nam	Batch B250693 - EPA 200.8										
Second S	Matrix Spike (B250693-MS1)	Sou	rce: 20A0917-	01	Prepared: 01	/23/20 Analy	zed: 01/24/2	20			
Seminar Sin	Antimony	507	10	μg/L	500	ND	101	70-130			
Chromium	Arsenic	523	8.0	$\mu g/L$	500	8.84	103	70-130			
Support	Cadmium	516	2.0	μg/L	500	ND	103	70-130			
Seed	Chromium	506	10	$\mu g/L$	500	ND	101	70-130			
Selection Sign Sign pg/L Sign ND 104 70-130 104	Copper	982	10	$\mu g/L$	1000	ND	98.2	70-130			
Selentium	Lead	511	5.0	$\mu g/L$	500	1.24	102	70-130			
Silver 465 2.0 µg/L 500 ND 93.1 70-130 100	Nickel	519	50	$\mu g/L$	500	ND	104	70-130			
### Bink (B250694-BLK1) ***Toro ND 0.050 mg/L	Selenium	515	50	$\mu g/L$	500	ND	103	70-130			
Prepared: 01/23/20 Analyzed: 01/24/20	Silver	465	2.0	$\mu g/L$	500	ND	93.1	70-130			
Prepared: 01/23/20 Analyzed: 01/24/20	Zinc	993	100	$\mu g/L$	1000	ND	99.3	70-130			
ND 0.050 mg/L CCS (B250694-BS1) Prepared: 01/23/20 Analyzed: 01/24/20 Prepared: 01/24/20 Analyzed: 01/24/20 Prepared: 01/24/20 Analyzed: 01/24/20 Prepared: 01/24/20 Analyzed: 01/28/20	Batch B250694 - EPA 200.7										
	Blank (B250694-BLK1)				Prepared: 01	/23/20 Analy	zed: 01/24/2	20			
No	Iron	ND	0.050	mg/L							
Prepared: 01/23/20 Analyzed: 01/24/20	LCS (B250694-BS1)				Prepared: 01	/23/20 Analy	zed: 01/24/2	20			
Source S	Iron	3.95	0.050	mg/L	4.00		98.6	85-115			
Duplicate (B250694-DUP1) Source: 20A0917-01 Prepared: 01/23/20 Analyzed: 01/24/20 ron 15.7 0.050 mg/L 15.7 0.0465 20 Matrix Spike (B250694-MS1) Source: 20A0917-01 Prepared: 01/23/20 Analyzed: 01/24/20	LCS Dup (B250694-BSD1)				Prepared: 01	/23/20 Analy	zed: 01/24/2	20			
15.7 0.050 mg/L 15.7 0.0465 20	Iron	3.98	0.050	mg/L	4.00		99.4	85-115	0.772	20	
Matrix Spike (B250694-MS1) Source: 20A0917-01 Prepared: 01/23/20 Analyzed: 01/24/20 Ton 19.7 0.050 mg/L 4.00 15.7 102 70-130 Batch B250779-EPA 245.1 Blank (B250779-BLK1) ND 0.00010 mg/L CS (B250779-BS1) Mercury 0.00396 0.00010 mg/L Prepared: 01/24/20 Analyzed: 01/28/20 Prepared: 01/24/20 Analyzed: 01/28/20 Prepared: 01/24/20 Analyzed: 01/28/20 Analyzed: 01/28/20 Prepared: 01/24/20 Analyzed: 01/28/20 Prepared: 01/24/20 Analyzed: 01/28/20 Prepared: 01/24/20 Analyzed: 01/28/20 Prepared: 01/24/20 Analyzed: 01/28/20	Duplicate (B250694-DUP1)	Sou	rce: 20A0917-	01	Prepared: 01	/23/20 Analy	zed: 01/24/2	20			
Tron 19.7 0.050 mg/L 4.00 15.7 102 70-130 Batch B250779 - EPA 245.1 Blank (B250779-BLK1) Prepared: 01/24/20 Analyzed: 01/28/20 Mercury ND 0.00010 mg/L CS (B250779-BS1) Prepared: 01/24/20 Analyzed: 01/28/20 Mercury 0.00396 0.00010 mg/L 0.00400 99.1 85-115 CCS Dup (B250779-BSD1) Prepared: 01/24/20 Analyzed: 01/28/20 Mercury 0.00399 0.00010 mg/L 0.00400 99.7 85-115 0.542 20 Duplicate (B250779-DUP1) Source: 20A0917-01 Prepared: 01/24/20 Analyzed: 01/28/20	Iron	15.7	0.050	mg/L		15.7			0.0465	20	
Satch B250779 - EPA 245.1 Prepared: 01/24/20 Analyzed: 01/28/20 Mercury ND 0.00010 mg/L CS (B250779-BS1) Prepared: 01/24/20 Analyzed: 01/28/20 Mercury 0.00396 0.00010 mg/L 0.00400 99.1 85-115 CS Dup (B250779-BSD1) Prepared: 01/24/20 Analyzed: 01/28/20 Mercury 0.00399 0.00010 mg/L 0.00400 99.7 85-115 0.542 20 Duplicate (B250779-DUP1) Source: 20A0917-01 Prepared: 01/24/20 Analyzed: 01/28/20	Matrix Spike (B250694-MS1)	Sou	rce: 20A0917-	01	Prepared: 01	/23/20 Analy	zed: 01/24/2	20			
Prepared: 01/24/20 Analyzed: 01/28/20 Mercury ND 0.00010 mg/L LCS (B250779-BS1) Prepared: 01/24/20 Analyzed: 01/28/20 Mercury 0.00396 0.00010 mg/L 0.00400 99.1 85-115 LCS Dup (B250779-BSD1) Prepared: 01/24/20 Analyzed: 01/28/20 Mercury 0.00399 0.00010 mg/L 0.00400 99.7 85-115 0.542 20 Duplicate (B250779-DUP1) Source: 20A0917-01 Prepared: 01/24/20 Analyzed: 01/28/20	Iron	19.7	0.050	mg/L	4.00	15.7	102	70-130			
Mercury ND 0.00010 mg/L LCS (B250779-BS1) Prepared: 01/24/20 Analyzed: 01/28/20 Mercury 0.00396 0.00010 mg/L 0.00400 99.1 85-115 LCS Dup (B250779-BSD1) Prepared: 01/24/20 Analyzed: 01/28/20 Mercury 0.00399 0.00010 mg/L 0.00400 99.7 85-115 0.542 20 Duplicate (B250779-DUP1) Source: 20A0917-01 Prepared: 01/24/20 Analyzed: 01/28/20	Batch B250779 - EPA 245.1										
Prepared: 01/24/20 Analyzed: 01/28/20	Blank (B250779-BLK1)				Prepared: 01	/24/20 Analy	zed: 01/28/2	20			
Mercury 0.00396 0.00010 mg/L 0.00400 99.1 85-115 LCS Dup (B250779-BSD1) Prepared: 01/24/20 Analyzed: 01/28/20 Mercury 0.00399 0.00010 mg/L 0.00400 99.7 85-115 0.542 20 Duplicate (B250779-DUP1) Source: 20A0917-01 Prepared: 01/24/20 Analyzed: 01/28/20	Mercury	ND	0.00010	mg/L							
LCS Dup (B250779-BSD1) Prepared: 01/24/20 Analyzed: 01/28/20 Mercury 0.00399 0.00010 mg/L 0.00400 99.7 85-115 0.542 20 Duplicate (B250779-DUP1) Source: 20A0917-01 Prepared: 01/24/20 Analyzed: 01/28/20	LCS (B250779-BS1)				Prepared: 01	/24/20 Analy	zed: 01/28/2	20			
Mercury 0.00399 0.00010 mg/L 0.00400 99.7 85-115 0.542 20 Ouplicate (B250779-DUP1) Source: 20A0917-01 Prepared: 01/24/20 Analyzed: 01/28/20	Mercury	0.00396	0.00010	mg/L	0.00400		99.1	85-115			
Duplicate (B250779-DUP1) Source: 20A0917-01 Prepared: 01/24/20 Analyzed: 01/28/20	LCS Dup (B250779-BSD1)				Prepared: 01	/24/20 Analy	zed: 01/28/2	20			
	Mercury	0.00399	0.00010	mg/L	0.00400		99.7	85-115	0.542	20	
Mercury ND 0.00010 mg/L ND NC 30	Duplicate (B250779-DUP1)	Sou		01	Prepared: 01	/24/20 Analy	zed: 01/28/2	20			
	Mercury	ND	0.00010	mg/L		ND			NC	30	

QUALITY CONTROL

Metals Analyses (Total) - Quality Control

		Reporting		Spike	Source		%REC		RPD	
Analyte	Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Notes

Batch B250779 - EPA 245.1

Matrix Spike (B250779-MS1)	Source	: 20A0917-0	1	Prepared: 01/24/20) Analyz	ed: 01/28/2	20
Mercury	0.00385	0.00010	mg/L	0.00400	ND	96.3	75-125

QUALITY CONTROL

Conventional Chemistry Parameters by EPA/APHA/SW-846 Methods (Total) - Quality Control

Analyte	Result	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Notes
-	100011	2t								- 10000
Batch B250525 - SM21-22 3500 Cr B				n :-		1/21/20				
Blank (B250525-BLK1)		0.00:-		Prepared &	Analyzed: 0	1/21/20				
Hexavalent Chromium	ND	0.0040	mg/L							
LCS (B250525-BS1)				Prepared &	Analyzed: 0	1/21/20				
Hexavalent Chromium	0.099	0.0040	mg/L	0.100		99.2	83.9-121			
LCS Dup (B250525-BSD1)				Prepared &	Analyzed: 0	1/21/20				
Hexavalent Chromium	0.10	0.0040	mg/L	0.100		102	83.9-121	2.64	10	
Matrix Spike (B250525-MS2)	Sou	rce: 20A0917-	02	Prepared &	Analyzed: 0	1/21/20				
Hexavalent Chromium	ND	0.0040	mg/L	0.100	NI	D *	\$ 25.5-193			MS-07
Matrix Spike Dup (B250525-MSD2)	Sou	rce: 20A0917-	02	Prepared &	Analyzed: 0	1/21/20				
Hexavalent Chromium	0.0062	0.0040	mg/L	0.100	NI	D 6.24 *	* 25.5-193		20	MS-07
Batch B250526 - SM21-22 4500 CL G										
Blank (B250526-BLK1)				Prepared &	Analyzed: 0	1/21/20				
Chlorine, Residual	ND	0.020	mg/L							Z-01
LCS (B250526-BS1)				Prepared &	Analyzed: 0	1/21/20				
Chlorine, Residual	1.4	0.020	mg/L	1.28		107	66.3-134			Z-01
LCS Dup (B250526-BSD1)				Prepared &	Analyzed: 0	1/21/20				
Chlorine, Residual	1.4	0.020	mg/L	1.28		108	66.3-134	1.22	9.96	Z-01
Duplicate (B250526-DUP1)	Sou	rce: 20A0917-	01	Prepared &	Analyzed: 0	1/21/20				
Chlorine, Residual	0.37	0.20	mg/L		0.3	3		12.1	32.5	Z-01
Duplicate (B250526-DUP2)	Sou	rce: 20A0917-	02	Prepared &	Analyzed: 0	1/21/20				
Chlorine, Residual	0.58	0.20	mg/L		0.4	5		24.4	32.5	Z-01
Matrix Spike (B250526-MS1)	Sou	rce: 20A0917-	01	Prepared &	Analyzed: 0	1/21/20				
Chlorine, Residual	6.8	0.20	mg/L	1.00	0.3	3 651 *	10-167			MS-11, Z-0
Batch B250534 - SM21-22 2540D										
Blank (B250534-BLK1)				Prepared &	Analyzed: 0	1/22/20				
Total Suspended Solids	ND	2.5	mg/L							
LCS (B250534-BS1)				Prepared &	Analyzed: 0	1/22/20				
Total Suspended Solids	206	10	mg/L	200	-	103	57.6-118			

QUALITY CONTROL

Conventional Chemistry Parameters by EPA/APHA/SW-846 Methods (Total) - Quality Control

Analyte	Result	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Notes
	Result	Limit	Ollits	Level	Result	70KEC	Lillits	KI D	Lillit	Notes
Batch B250758 - EPA 300.0										
Blank (B250758-BLK1)				Prepared &	Analyzed: 01	/24/20				
Chloride	ND	1.0	mg/L							
LCS (B250758-BS1)				Prepared & A	Analyzed: 01	/24/20				
Chloride	4.7	1.0	mg/L	5.00		93.3	90-110			
LCS Dup (B250758-BSD1)				Prepared &	Analyzed: 01	/24/20				
Chloride	4.7	1.0	mg/L	5.00		93.5	90-110	0.212	20	
Batch B250873 - EPA 1664B										
Blank (B250873-BLK1)				Prepared &	Analyzed: 01	/27/20				
Silica Gel Treated HEM (SGT-HEM)	ND	1.4	mg/L							
LCS (B250873-BS1)				Prepared &	Analyzed: 01	/27/20				
Silica Gel Treated HEM (SGT-HEM)	9.6		mg/L	10.0		96.0	64-132			
Duplicate (B250873-DUP1)	Sour	ce: 20A0917-	02	Prepared &	Analyzed: 01	/27/20				
Silica Gel Treated HEM (SGT-HEM)	ND	2.8	mg/L		NE)		NC	18	
MRL Check (B250873-MRL1)				Prepared &	Analyzed: 01	/27/20				
Silica Gel Treated HEM (SGT-HEM)	1.10	1.4	mg/L	1.40		78.6	0-200			J
MRL Check (B250873-MRL2)				Prepared &	Analyzed: 01	/27/20				
Silica Gel Treated HEM (SGT-HEM)	1.20	1.4	mg/L	1.40		85.7	0-200			J
Matrix Spike (B250873-MS1)	Sour	ce: 20A0917-	01	Prepared &	Analyzed: 01	/27/20				
Silica Gel Treated HEM (SGT-HEM)	53	14	mg/L	100	NE	53.0 *	64-132			MS-07
Batch B250875 - EPA 420.1										
Blank (B250875-BLK1)				Prepared: 01	/27/20 Anal	yzed: 01/28/	20			
Phenol	ND	0.050	mg/L	-						
LCS (B250875-BS1)				Prepared: 01	/27/20 Anal	yzed: 01/28/	20			
Phenol	0.62	0.050	mg/L	0.500		124	72.4-125			
LCS Dup (B250875-BSD1)				Prepared: 01	/27/20 Anal	yzed: 01/28/	20			
Phenol	0.61	0.050	mg/L	0.500		123	72.4-125	1.34	11.1	
MRL Check (B250875-MRL1)				Prepared: 01	/27/20 Anal	yzed: 01/28/	20			
Phenol	ND	0.050	mg/L	0.0500		·	0-200			

QUALITY CONTROL

Conventional Chemistry Parameters by EPA/APHA/SW-846 Methods (Total) - Quality Control

Analyte	Result	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Notes
Batch B250875 - EPA 420.1										
MRL Check (B250875-MRL2)				Prepared: 01	/27/20 Analy	yzed: 01/28/2	0			
Phenol	ND	0.050	mg/L	0.0500			0-200			
Matrix Spike (B250875-MS1)	Sour	ce: 20A0917-0)2	Prepared: 01	/27/20 Analy	yzed: 01/28/2	0			
Phenol	0.48	0.050	mg/L	0.500	0.066	82.9	10-156			

QUALITY CONTROL

Drinking Water Organics EPA 504.1 - Quality Control

Analyte	Result	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Notes
Analyte	Result	Lillit	Units	Level	Result	70KEC	Lillits	KrD	LIIIII	Notes
Batch B250685 - EPA 504 water										
Blank (B250685-BLK1)				Prepared & A	Analyzed: 01	/23/20				
1,2-Dibromoethane (EDB)	ND	0.021	μg/L							
1,2-Dibromoethane (EDB) [2C]	ND	0.021	$\mu \text{g/L}$							
Surrogate: 1,3-Dibromopropane	1.05		μg/L	1.05		101	70-130			
Surrogate: 1,3-Dibromopropane [2C]	1.06		$\mu g/L$	1.05		101	70-130			
LCS (B250685-BS1)				Prepared & A	Analyzed: 01	/23/20				
1,2-Dibromoethane (EDB)	0.171	0.021	μg/L	0.182		93.7	70-130			
1,2-Dibromoethane (EDB) [2C]	0.177	0.021	$\mu g/L$	0.182		97.1	70-130			
Surrogate: 1,3-Dibromopropane	1.00		μg/L	1.04		96.2	70-130			
Surrogate: 1,3-Dibromopropane [2C]	1.01		$\mu g/L$	1.04		97.3	70-130			
LCS Dup (B250685-BSD1)				Prepared & A	Analyzed: 01	/23/20				
1,2-Dibromoethane (EDB)	0.170	0.021	μg/L	0.181		93.7	70-130	0.415		
1,2-Dibromoethane (EDB) [2C]	0.187	0.021	$\mu \text{g/L}$	0.181		103	70-130	5.85		
Surrogate: 1,3-Dibromopropane	0.988		μg/L	1.04		95.4	70-130			
Surrogate: 1,3-Dibromopropane [2C]	1.04		$\mu g/L$	1.04		100	70-130			
MRL Check (B250685-MRL1)				Prepared & A	Analyzed: 01	/23/20				
1,2-Dibromoethane (EDB)	0.0218	0.021	μg/L	0.0208		105	0-200			
1,2-Dibromoethane (EDB) [2C]	0.0187	0.021	$\mu g/L$	0.0208		90.0	0-200			J
Surrogate: 1,3-Dibromopropane	1.08		μg/L	1.04		104	70-130			
Surrogate: 1,3-Dibromopropane [2C]	1.12		$\mu g/L$	1.04		108	70-130			
MRL Check (B250685-MRL2)				Prepared & A	Analyzed: 01	/23/20				
1,2-Dibromoethane (EDB)	0.0271	0.021	μg/L	0.0208		130	0-200			
1,2-Dibromoethane (EDB) [2C]	0.0260	0.021	$\mu g/L$	0.0208		125	0-200			
Surrogate: 1,3-Dibromopropane	1.06		μg/L	1.04		102	70-130			
Surrogate: 1,3-Dibromopropane [2C]	1.09		$\mu g/L$	1.04		104	70-130			

IDENTIFICATION SUMMARY FOR SINGLE COMPONENT ANALYTES

CDW-2/MW

608.3

Lab Sample ID:	20A0917-01	_	Date(s) Analyzed:	01/28/2020	01/28	/2020
Instrument ID (1):			Instrument ID (2):			
GC Column (1):	ID:	(mm)	GC Column (2):		ID:	(mm

ANALYTE	COL	RT	RT WINDOW		CONCENTRATION	%RPD
7.10/12112	OOL	111	FROM	TO	CONCENTIVITION	70111 13
Aroclor-1248	1	0.000	0.000	0.000	0.313	
	2	0.000	0.000	0.000	0.380	20.3
Aroclor-1254	1	0.000	0.000	0.000	0.387	
	2	0.000	0.000	0.000	0.363	7.2

IDENTIFICATION SUMMARY FOR SINGLE COMPONENT ANALYTES

80-MW
••

608.3

Lab Sample ID:	20A0917-02		Date(s) Analyzed:	01/28/2020	01/28	/2020
Instrument ID (1):			Instrument ID (2):			
GC Column (1):	ID:	(mm)	GC Column (2):		ID:	(mm)

ANALYTE	COL	RT	RT WINDOW		CONCENTRATION	%RPD
/ WALTE	OOL	111	FROM	TO	OONOLIVITORION	701 N D
Aroclor-1248	1	0.000	0.000	0.000	0.352	
	2	0.000	0.000	0.000	0.451	25.2
Aroclor-1254	1	0.000	0.000	0.000	0.252	
	2	0.000	0.000	0.000	0.269	7.3

FLAG/QUALIFIER SUMMARY

*	OC result is outside of established limits.
†	Wide recovery limits established for difficult compound.
‡	Wide RPD limits established for difficult compound.
#	Data exceeded client recommended or regulatory level
ND	Not Detected
RL	Reporting Limit is at the level of quantitation (LOQ)
DL	Detection Limit is the lower limit of detection determined by the MDL study
MCL	Maximum Contaminant Level
	Percent recoveries and relative percent differences (RPDs) are determined by the software using values in the calculation which have not been rounded.
	No results have been blank subtracted unless specified in the case narrative section.
J	Detected but below the Reporting Limit (lowest calibration standard); therefore, result is an estimated concentration (CLP J-Flag).
L-01	Laboratory fortified blank /laboratory control sample recovery outside of control limits. Data validation is not affected since all results are "not detected" for all samples in this batch for this compound and bias is on the high
MS-07	side. Matrix spike recovery is outside of control limits. Analysis is in control based on laboratory fortified blank recovery. Possibility of sample matrix effects that lead to low bias for reported result or non-homogeneous sample aliquot cannot be eliminated.
MS-11	Matrix spike recovery outside of control limits. Possibility of sample matrix effects that lead to a high bias for reported result or non-homogeneous sample aliquots cannot be eliminated.
RL-11	Elevated reporting limit due to high concentration of target compounds.
Z-01	SM 4500 CL G test had a calibration point outside of acceptable back calculated recovery. Reanalysis yielded similar non-conformance.

CERTIFICATIONS

Certified Analyses included in this Report

Analyte	Certifications	
608.3 in Water		
Aroclor-1016	CT MA NILI NV DI NIC ME VA	
	CT,MA,NH,NY,RI,NC,ME,VA	
Aroclor-1016 [2C] Aroclor-1221	CT,MA,NH,NY,RI,NC,ME,VA	
	CT,MA,NH,NY,RI,NC,ME,VA	
Aroclor-1221 [2C]	CT,MA,NH,NY,RI,NC,ME,VA	
Aroclor-1232	CT,MA,NH,NY,RI,NC,ME,VA	
Aroclor-1232 [2C]	CT,MA,NH,NY,RI,NC,ME,VA	
Aroclor-1242	CT,MA,NH,NY,RI,NC,ME,VA	
Arcelor-1242 [2C]	CT,MA,NH,NY,RI,NC,ME,VA	
Arcelor 1248	CT,MA,NH,NY,RI,NC,ME,VA	
Aroclor-1248 [2C]	CT,MA,NH,NY,RI,NC,ME,VA	
Aroclor-1254	CT,MA,NH,NY,RI,NC,ME,VA	
Aroclor-1254 [2C]	CT,MA,NH,NY,RI,NC,ME,VA	
Aroclor-1260	CT,MA,NH,NY,RI,NC,ME,VA	
Aroclor-1260 [2C]	CT,MA,NH,NY,RI,NC,ME,VA	
624.1 in Water		
Acetone	CT,NY,MA,NH	
tert-Amyl Methyl Ether (TAME)	MA	
Benzene	CT,NY,MA,NH,RI,NC,ME,VA	
tert-Butyl Alcohol (TBA)	NY,MA	
Carbon Tetrachloride	CT,NY,MA,NH,RI,NC,ME,VA	
1,2-Dichlorobenzene	CT,NY,MA,NH,RI,NC,ME,VA	
1,3-Dichlorobenzene	CT,NY,MA,NH,RI,NC,ME,VA	
1,4-Dichlorobenzene	CT,NY,MA,NH,RI,NC,ME,VA	
1,2-Dichloroethane	CT,NY,MA,NH,RI,NC,ME,VA	
cis-1,2-Dichloroethylene	NY,MA	
1,1-Dichloroethane	CT,NY,MA,NH,RI,NC,ME,VA	
1,1-Dichloroethylene	CT,NY,MA,NH,RI,NC,ME,VA	
1,4-Dioxane	MA	
Ethanol	NY,MA,NH	
Ethylbenzene	CT,NY,MA,NH,RI,NC,ME,VA	
Methyl tert-Butyl Ether (MTBE)	NY,MA,NH,NC	
Methylene Chloride	CT,NY,MA,NH,RI,NC,ME,VA	
Naphthalene	NY,MA,NC	
Tetrachloroethylene	CT,NY,MA,NH,RI,NC,ME,VA	
Toluene	CT,NY,MA,NH,RI,NC,ME,VA	
1,1,1-Trichloroethane	CT,NY,MA,NH,RI,NC,ME,VA	
1,1,2-Trichloroethane	CT,NY,MA,NH,RI,NC,ME,VA	
Trichloroethylene	CT,NY,MA,NH,RI,NC,ME,VA	
Vinyl Chloride	CT,NY,MA,NH,RI,NC,ME,VA	
m+p Xylene	CT,NY,MA,NH,RI,NC	
o-Xylene	CT,NY,MA,NH,RI,NC	
625.1 in Water		
Acenaphthene	CT,MA,NH,NY,NC,RI,ME,VA	
Acenaphthylene	CT,MA,NH,NY,NC,RI,ME,VA	
Anthracene	CT,MA,NH,NY,NC,RI,ME,VA	
Benzo(g,h,i)perylene	CT,MA,NH,NY,NC,RI,ME,VA	

CERTIFICATIONS

Certified Analyses included in this Report

SM21-22 3500 Cr B in Water

Analyte	Certifications
625.1 in Water	
Butylbenzylphthalate	CT,MA,NH,NY,NC,RI,ME,VA
Di-n-butylphthalate	CT,MA,NH,NY,NC,RI,ME,VA
1,3-Dichlorobenzene	MA,NC
1,4-Dichlorobenzene	MA,NC
1,2-Dichlorobenzene	MA,NC
Diethylphthalate	CT,MA,NH,NY,NC,RI,ME,VA
Dimethylphthalate	CT,MA,NH,NY,NC,RI,ME,VA
Di-n-octylphthalate	CT,MA,NH,NY,NC,RI,ME,VA
Bis(2-Ethylhexyl)phthalate	CT,MA,NH,NY,NC,RI,ME,VA
Fluoranthene	CT,MA,NH,NY,NC,RI,ME,VA
Fluorene	CT,MA,NH,NY,NC,RI,ME,VA
Naphthalene	CT,MA,NH,NY,NC,RI,ME,VA
Phenanthrene	CT,MA,NH,NY,NC,RI,ME,VA
Phenol	CT,MA,NH,NY,NC,RI,ME,VA
Pyrene	CT,MA,NH,NY,NC,RI,ME,VA
2-Fluorophenol	NC
2-Fluorophenol	NC,VA
Phenol-d6	VA
Nitrobenzene-d5	VA
EPA 200.7 in Water	
Iron	CT,MA,NH,NY,RI,NC,ME,VA
Hardness	CT,MA,NH,NY,RI,VA
EPA 200.8 in Water	
Antimony	CT,MA,NH,NY,RI,NC,ME,VA
Arsenic	CT,MA,NH,NY,RI,NC,ME,VA
Cadmium	CT,MA,NH,NY,RI,NC,ME,VA
Chromium	CT,MA,NH,NY,RI,NC,ME,VA
Copper	CT,MA,NH,NY,RI,NC,ME,VA
Lead	CT,MA,NH,NY,RI,NC,ME,VA
Nickel	CT,MA,NH,NY,RI,NC,ME,VA
Selenium	CT,MA,NH,NY,RI,NC,ME,VA
Silver	CT,MA,NH,NY,RI,NC,ME,VA
Zinc	CT,MA,NH,NY,RI,NC,ME,VA
EPA 245.1 in Water	
Mercury	CT,MA,NH,RI,NY,NC,ME,VA
EPA 300.0 in Water	
Chloride	NC,NY,MA,VA,ME,NH,CT,RI
EPA 420.1 in Water	
Phenol	CT,MA,NH,NY,RI,NC,ME,VA
SM19-22 4500 NH3 C in Water	
Ammonia as N	NY,MA,CT,RI,VA,NC,ME
SM21-22 2540D in Water	
	CT MA NILI NIV DI NIC ME VA
Total Suspended Solids	CT,MA,NH,NY,RI,NC,ME,VA

CERTIFICATIONS

Certified Analyses included in this Report

Analyte Certifications

SM21-22 3500 Cr B in Water

Hexavalent Chromium NY,CT,NH,RI,ME,VA,NC

SM21-22 4500 CL G in Water

Chlorine, Residual CT,MA,RI,ME

SM21-22 4500 CN E in Water

Cyanide CT,MA,NH,NY,RI,NC,ME,VA

 $The \ CON\text{-}TEST \ Environmental \ Laboratory \ operates \ under the following \ certifications \ and \ accreditations:$

Code	Description	Number	Expires
AIHA	AIHA-LAP, LLC - ISO17025:2017	100033	03/1/2022
MA	Massachusetts DEP	M-MA100	06/30/2020
CT	Connecticut Department of Publilc Health	PH-0567	09/30/2021
NY	New York State Department of Health	10899 NELAP	04/1/2020
NH-S	New Hampshire Environmental Lab	2516 NELAP	02/5/2020
RI	Rhode Island Department of Health	LAO00112	12/30/2020
NC	North Carolina Div. of Water Quality	652	12/31/2020
NJ	New Jersey DEP	MA007 NELAP	06/30/2020
FL	Florida Department of Health	E871027 NELAP	06/30/2020
VT	Vermont Department of Health Lead Laboratory	LL015036	07/30/2020
ME	State of Maine	2011028	06/9/2021
VA	Commonwealth of Virginia	460217	12/14/2020
NH-P	New Hampshire Environmental Lab	2557 NELAP	09/6/2020
VT-DW	Vermont Department of Health Drinking Water	VT-255716	06/12/2020
NC-DW	North Carolina Department of Health	25703	07/31/2020
PA	Commonwealth of Pennsylvania DEP	68-05812	06/30/2020

allli						http://www.contestlabs.com				Doc # 381 Rev 2_06262019															
	On-test®	Ph	none: 413-525-2	1332				CHAR	of custo	DY RECO	RD	39 Spruce Street East Longmeadow, MA 01028						Page / of 2							
	19 0 A 0 5		x: 413-525-640			Ř		artunia fia	ie.		0.00		ong meadow							rage or					
MMK		7 En	nail: info@conte	stlabs.com		700y 5 A	The second secon	10-Day		O	COMMENTAL COMPANY (SECTION ASSESSMENT)	ield Filt	vsumanaian2424/2014/82			Т	Ī		1	T	1				² Preservation Code
	CON	ONSU	LTANTS	INC		PFAS 10-Day	(std)	Due Date	2:	0		Lab to Fi	ilter		~			+		1	†				Courser Use Only
Address:	HURON	ORIVE	NATICA	CMA	<u></u>			Required			Orthog		e Carroller	4	E .		Ś	. 3	3 .				8		Total Number Of:
	98 875		A	77 3 =		1-Day		3-Day		0	F	Field Filt	ered	CA COATINGOUS COORDINGS	35.0	ZOL	6	1	3		W		1:		and the second second
Desirable			966			2-Day		4-Day		0		Lab to Fi	ilter		Q	Ž	4 %	6 6	٥		1	\	3	١, ا	VIÁLS
Project Numb		106 <i>E [</i>	SOMERY	WE					955.52	STREET CALCULATION					3	2	ΔΙ	• [3	B	3	Ă	GLASS
Project Manag		<u> </u>				Format:									PLASTIC										
	te Name/Number:	SUND 4	0157	······································		Other:								_		3	~	, l	1	15	00	١.	3	1	BACTERIA
Invoice Recipi						1	a Pkg Required		9	. ⊔.					3	. 1	1 '	2 3	1664 1664 2540 C				15.	`]	ENCORE
Sampled By:	MOBRI	z., 1 ,	c 0 0			Email To:	ASUNDA	<u>eust c</u>	CONC	DING	ILTA	NTS.	COM		MEJ	双	3	夏 ピ		12	2	3		'Y	
Acres services	on-Test		s. Ausel	(23050 x 2305) V (2000)	to get a company	<i>5π,</i> 52#:	MOBRI		CON	CONS	ULT	4275	· Cary		3	3	₹ .	3 2	1 3	S	(2)	ર્	3	S	
	rk Order#		t Sample ID / Desc	ription	Beginning Date/Time	Ending Date/Time	COMP/GRAB	Matrix Code	Conc Code	VIALS	GLASS	PLASTIC	BACTERIA	ENCORE	404	HARONES	ETHANDL	2 1	1 6	12	18	¥	Q.	HE	Glassware in the fridge? Y / N
2 (20) (20) (20)	<u> </u>	COW-	-2/MN		1/21/20	1000	6	GUI	U	6	9	5			X	V	X)		X	X	X	X	V	X	Glassware in freezer? Y / N
		E180	D-MW		, ,	1100	ı)	13	1)						X	Ŷ.	X 3	À	×	×	×	X		X	Prepackaged Cooler? Y / N
																							ADVA.		*Contest is not responsible for
																\neg		1	1	 					missing samples from prepacked
									<u> </u>					 			_		╅	-	-		_		coolers
		 										 													1 Matrix Codes:
														-						1				- 1	GW = Ground Water WW = Waste Water
															П		_	1		1-				\neg	DW = Drinking Water
													 	-				-	-	╂					A = Air
																						1].	S = Soil SL = Sludge
		4	· · · · · · · · · · · · · · · · · · ·																						SOL = Solid
		V ///														$\neg \uparrow$		_	1	1	1		-+	\dashv	O = Other (please define)
Relinquished	(signature)	4/	Date/Time		Client Com	ments:	WEST /	Pacsi		<u>ነ</u>		<u> </u>	4 0 10 1							<u> </u>				_	GETHIEF
11.0	_///	//	1/21/3				WES!	02316	SLE	VER	-41	οN.	UMI	13		\sim	, ,	_						1	
Received by: (signature)	#	Date/Time	17	* 0.			A					Jan.			1	6	يرا		1.	NL			-	² Preservation Codes:
Relinguished b	GA14	non	171-00	16	·PU	ASE H	bnor	RUOTI	=0 P	RICE	F	OR	TOB			, ,		5	\mathcal{A}^{ρ}	Man	•			- [l = Iced H = HCL
nematrineo u	y: (signature)	15.	Date/Time	1/45	JEI (Edi	e. علوزو اد	prement.				ecial Re								1810au - 1865 1880		7/80			_	M = Methanol
Received by	signetu(re)	7/10	Datable	16									MA MCP Required			uired Please use the following codes to indicate					.	N = Nitric Acid			
KALS	MALIN	i BB i	1/0//2	1649								MCP Certification Form Required po			possibl	e samp	le con	centra	ation v	vithin	the Co	onc	S = Sulfuric Acid B = Sodium Bisulfate		
elingui hed	f: kilyfelure/	7. Tr	D/te/Time:				·						DCD C	CT RCF			u uc		Code c					[X = Sodium Hydroxide
May	UH HU	UNK	1/2/20	182	, Assessed to the Control of the Con	L		 					RCP Certific	cation For	m Kegi	urred	H - Hig	, , <i>,</i> ,		ח; ኒ - Inknov		u - Cl	ean; {	บ -	T = Sodium Thiosulfate
Received by	signature	16 00 -	Date Time:										МА	State DW	Requir	red			_					1	O = Other (please
Relinguished b		6,3,1	1 200	100	Shire			PWSID #								W	NE	LAC an	d AlH/	4-LAP	LLG	Accres	lited		define)
veradablea B	y, (signature)		Date/Time:		Project Ent	•	· · · · · · ·											Market Market	Othe	? Γ	TO SHEET WAS	10012000000	nesisten EEEE	CAN (SB)	PCB ONLY
Received by: (signature)		Dato/Time:			Government		Municipal	lity			MWRA			WR	TA					Chron	natogr	am		Soxhlet
ucircu bj. (e.g.oco.cj		Date/Time:			Federal City		21 3				School								1*****	AIHA-				Non Soxhlet
		TD 4.46		<u>-</u>		City		Brownfie		<u> </u>		MBTA	l,,,												
Per cl	ient - run	IB 1/2	22/20 mn	nk; pei	r client	call - ji	ust run I	KGP I	Vietais	TOT	IAL	Discl	aimer: Co	on-Test l	Labs i	s not i	respon	sible f	or an	v omi	itted i	inform	nation	n on t	the Chain of Custody. The
g bnlv 1	/22/2020	hardr	iess 1/2	23/2020	mmk				Chain	of Custod	dy is a le	gal de	ocume	nt tha	t mus	t be c	omple	ete ai	nd ac	curate	e and	d is used to determine wha			
()												anaiys	es the lab	poratory	will p	pertor	m. An	v miss	ing in	torma	ation	is not	the I	labor	atory's responsibility. Cor. O.
<u>රා</u>												lest va	lues your	partner	ship o	on eac	h proj	ect an	d will	try t	o assi	st wi	th mis	ssing	information but will and
읔												Ī						hel	d acc	ounta	ble.			,	Ý.
47														·									<u> </u>		Contents
																							j		nts
																			í		0,				

nts

*Contest is not responsible for missing samples from prepacked Glassware in freezer? Y / N Prepackaged Cooler? Y / N Glassware in the fridge? Total Number Of: Courier Use Only Page 2 of 2 Z > coolers Preservation Code BACTERIA GLASS... PLASTIC VIALS ENCORE 2)=2 Coolaps ANALYSIS REQUESTED Doc # 381 Rev 2_06262019 BELSNOCLONG BESSAR LY OLOXANE SZZ REV VOC LNGGESZZ PLOVC LNGGEST X X X X K K K K K East Longmeadow, MA 01028 Metrix Conc Code VIALS GLASS PLASTIC BACTERIA ENCORE ASUNDAUIST & CONCONSULTANTS, COM 39 Spruce Street EXCEL Field Filtered Field Filtered Lab to Filter Lab to Filter CHAIN OF CUSTODY RECORD K 0 0 0 0 4 C http://www.contestlabs.com 8 Due Date: 10-Day £ 3-Day 4-Day 3 COMP/GRAB S CLP Like Data Pkg Required: = PFAS 10-Day (std) 7-50AY Ending Date/Time Email To: 000/ 100 Format: Other: 1-Day -Day Beginning Date/Time 12/20 Phone: 508 975 2057

Row 246,066 - RP6

Project Location: CAMM4,066 | Som ERVICE Email: info@contestlabs.com 6 HYRON ORIVE NATICK MA Client Sample ID / Description Phone: 413-525-2332 CONCONTURANT INC CON-2/MW Fax: 413-525-6405 CE180-MW Project Number: 147. Project Manager: ALAN SUNOQUIST

FLAMO5

MMK

Address:

CON-LEST

Con-Test Quote Name/Numbe

nvoice Recipient: ampled By:

Work Order# Con-Test

										Table of Conten
Matrix Codes: GW = Ground Water GW = Brinking Water DW = Drinking Water A = Air S = Soil SL = Sludge SOL = Solid	O = Other (please define)	2 Preservation Codes: 1 = 1ced H = HCL	M = Methanol N = Nitric Acid S = Sulfanic Acid	B = Sodium Bisulfate X = Sodium Hydroxide	T = Sodium Thiosulfate	define)		PCB ONLY Soxhlet	Non Soxhlet	or the Chain of Custody. The nd is used to determine wha oratory's responsibility. Coing information, but will not I
			Please use the following codes to indicate	possible sample concentration within the Conc Code column above:	H - High; M - Medium; L - Low; C - Clean; U - Unknown		NELAC and Alida LAP, LLC Accredited	Other Chromatogram	AIHA-LAP,LLC	Disclaimer: Con-Test Labs is not responsible for any omitted information on the Chain of Custody. The Chain of Custody is a legal document that must be complete and accurate and is used to determine wha analyses the laboratory will perform. Any missing information is not the laboratory's responsibility. Con Test values your partnership on each project and will try to assist with missing information, but will not lest values your partnership on each project and will try to assist with missing information, but will not lest values your partnership on each project and will try to assist with missing information.
						MA State DW Required	NELACA	WRTA		st Labs is not responsible I legal document that mus ory will perform. Any miss nership on each project an
	DESIBLE DEFECTION LIMITS	= Fak Jab	Requirements. MA A	MCP Certification Form Required CT RCP Required	RCP Certification Form Required	MA State		MWRA	School MBTA	Disclaimer: Con-Te Chain of Custody is a analyses the laborate Test values your part
	BLE DETECTI	quited PRICE FOR JOB	Special					ılity	□ □ □	
	LOWEST POSSI		Secretary Secret				# CISMH	nt 📋 Municípality	21 J Brownfield	
	Client Comments:	* Pregse	745 Vine and William 18	2			Designat Entitle	Government	Federal	
	Date/Time:	Date/Time: 16/7	1 12/2/16	150 Tate / Time 6 45	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	Date/Time:	Date/Time:	79167	Date/Time:	
	www.elefature)		And Market	"Tell shop	" What well cally	ignature /	Signature)		ignature}	
	Relinquished by	Receivedov: (sig	neindustied by	Weeking 1	Relinginshed in	Received by (s	Religanished by:		Received by: (signature)	Page 46 of 47

I Have Not Confirmed Sample Container
Numbers With Lab Staff Before Relinquishing
Over Samples_____

Doc# 277 Rev 5 2017

Login Sample Receipt Checklist - (Rejection Criteria Listing - Using Acceptance Policy) Any False
Statement will be brought to the attention of the Client - State True or False

Client	(17)	w consultant	<u> </u>		······································				****
Receiv	ed By	<u> </u>		Date	lialla	<u> </u>	Time	<u> 1730</u>	
How were th	ne samples	In Cooler	T	No Cooler		On Ice	T	No Ice	
receiv	/ed?	Direct from Samp	olina	•		- Ambient		Melted Ice	
			By Gun #	2		Actual Tem	p- 2.6, 3	_ 2_4	
Were samp		T	•				-		-
Temperatu			By Blank #			Actual Tem			-
	Custody Se		<u>nbe</u>	We	re Sample	s lampered	with?	nia PFF	•
	COC Relin	•	T	Does	s Chain Ag	ree With Sa	mples? 🚄	R T F	-
		eaking/loose caps	on any sam	ples?		_			
Is COC in in			•		nples recei		olding time?		_
Did COC i		Client	ľ	Analysis			er Name		,
pertinent Inf		Project	<u> </u>	ID's		Collection	Dates/Time:	sl	_
•		fout and legible?							
Are there La		•	<u> </u>		-	s notified?			-
Are there Ru	ishes?		_ F		Who wa	s notified?			_
Are there Sh	ort Holds?		F		Who wa	s notified?			<u>-</u>
Is there enou	ugh Volume	?	T						
is there Hea	dspace whe	ere applicabl e ?	F		MS/MSD?		_	u-genin	
Proper Medi	a/Container	s Used?			Is splitting	samples rec	quired?	t	_
W e re trip bla	anks receive	ed?	T		On COC?	<u> </u>	_		
Do all sampl	es have th e	proper pH?		Acid	11549_	-			
Vials	#	Containers:	#			#			#
Unp-		1 Liter Amb.	و)	1 Liter		如之中		z Amb.	
HCL-	14	500 mL Amb.		500 mL				mb/Clear	
Meoh-		250 mL Amb.	<u>2</u>	250 mL		6		mb/Clear	
Bisulfate-		Flashpoint		Col./Ba				mb/Clear	
DI-		Other Glass	······	Other I				ncore	<u></u>
Thiosulfate-		SOC Kit		Plastic			Frozen:		
Sulfuric-		Perchlorate		Ziple	ock				
				Unused I	Vledia				
Vials	#	Containers:	#			#			#
Unp-		1 Liter Amb.		1 Liter			<u> </u>	z Amb.	
HCL-		500 mL Amb.		500 mL			<u> </u>	mb/Clear	
Meoh-		250 mL Amb.	v	250 mL				mb/Clear	
Bisulfate-		Col./Bacteria		Flash			 	mb/Clear	
DI-		Other Plastic		Other			<u> </u>	ncore	
Thiosulfate-		SOC Kit		Plastic	····		Frozen:		
Sulfuric-		Perchlorate		Ziplo	ock				
Comments:									

Two trip blanks received, were not on chain.

CONTEST ANALYTICAL EFFLUENT DATA REPORT APRIL 27, 2020

April 27, 2020

Alan Sundquist CDW Consultants, Inc. 6 Huron Drive Natick, MA 01760

Project Location: Sommerbridge

Client Job Number: Project Number: 1476

Laboratory Work Order Number: 20D0783

Michelle Koch

Enclosed are results of analyses for samples received by the laboratory on April 20, 2020. If you have any questions concerning this report, please feel free to contact me.

Sincerely,

Michelle M. Koch Project Manager

Table of Contents

Sample Summary	4
Case Narrative	5
Sample Results	6
20D0783-01	6
20D0783-02	14
Sample Preparation Information	15
QC Data	17
Volatile Organic Compounds by GC/MS	17
B256625	17
Semivolatile Organic Compounds by GC/MS	20
B256787	20
Semivolatile Organic Compounds by - GC/MS	21
B256708	21
Polychlorinated Biphenyls By GC/ECD	23
B256883	23
Metals Analyses (Total)	24
B256713	24
B256719	24
B256720	24
Conventional Chemistry Parameters by EPA/APHA/SW-846 Methods (Total)	26
B256614	26
B256615	26
B256619	26
B256688	26
B256743	27

Table of Contents (continued)

B256778	27
Drinking Water Organics EPA 504.1	28
B256739	28
Flag/Qualifier Summary	29
Certifications	30
Chain of Custody/Sample Receipt	33

CDW Consultants, Inc. 6 Huron Drive

REPORT DATE: 4/27/2020

Natick, MA 01760 ATTN: Alan Sundquist

PURCHASE ORDER NUMBER:

PROJECT NUMBER: 1476

ANALYTICAL SUMMARY

WORK ORDER NUMBER: 20D0783

The results of analyses performed on the following samples submitted to the CON-TEST Analytical Laboratory are found in this report.

PROJECT LOCATION: Sommerbridge

FIELD SAMPLE #	LAB ID:	MATRIX	SAMPLE DESCRIPTION	TEST	SUB LAB
HW #1	20D0783-01	Ground Water		608.3	
				624.1	
				625.1	
				EPA 1664B	
				EPA 200.7	
				EPA 200.8	
				EPA 245.1	
				EPA 300.0	
				EPA 420.1	
				EPA 504.1	
				SM19-22 4500 NH3 C	MA M-MA-086/CT PH-0574/NY11148
				SM21-22 2540D	
				SM21-22 3500 Cr B	
				SM21-22 4500 CL G	
				SM21-22 4500 CN E	MA M-MA-086/CT PH-0574/NY11148
				Tri Chrome Calc.	
Trip Blank	20D0783-02	Trip Blank Water		624.1	

CASE NARRATIVE SUMMARY

All reported results are within defined laboratory quality control objectives unless listed below or otherwise qualified in this report.

EPA 200.8

Qualifications:

R-04

Duplicate relative percent difference (RPD) is a less useful indicator of sample precision for sample results that are <5 times the reporting

limit (RL).
Analyte & Samples(s) Qualified:

20D0783-01[HW #1], B256720-DUP1

SM21-22 4500 CL G

Qualifications:

Analyte is found in the associated laboratory blank as well as in the sample.

Analyte & Samples(s) Qualified:

Chlorine, Residual

20D0783-01[HW #1], B256615-BS1, B256615-BSD1, B256615-DUP1, B256615-MS1

Z-01

Test SM 4500 CL G had a calibrate point outside of acceptable back calculated recovery. Reanalysis yielded similar non-conformance.

Analyte & Samples(s) Qualified:

Chlorine, Residual

20D0783-01[HW #1], B256615-BLK1, B256615-BS1, B256615-BSD1, B256615-DUP1, B256615-MS1

The results of analyses reported only relate to samples submitted to the Con-Test Analytical Laboratory for testing. I certify that the analyses listed above, unless specifically listed as subcontracted, if any, were performed under my direction according to the approved methodologies listed in this document, and that based upon my inquiry of those individuals immediately responsible for obtaining the information, the material contained in this report is, to the

Jua Watthustan

Technical Representative

best of my knowledge and belief, accurate and complete.

Project Location: Sommerbridge Sample Description: Work Order: 20D0783

Date Received: 4/20/2020
Field Sample #: HW #1

Sampled: 4/20/2020 09:00

Volatile Organic Compounds by	GC/MS	

								Date	Date/Time	
Analyte	Results	RL	DL	Units	Dilution	Flag/Qual	Method	Prepared	Analyzed	Analyst
Acetone	<3.79	50.0	3.79	$\mu g/L$	1		624.1	4/21/20	4/21/20 11:17	MFF
tert-Amyl Methyl Ether (TAME)	< 0.140	0.500	0.140	$\mu g/L$	1		624.1	4/21/20	4/21/20 11:17	MFF
Benzene	< 0.180	1.00	0.180	$\mu g/L$	1		624.1	4/21/20	4/21/20 11:17	MFF
tert-Butyl Alcohol (TBA)	<4.17	20.0	4.17	$\mu g/L$	1		624.1	4/21/20	4/21/20 11:17	MFF
Carbon Tetrachloride	< 0.110	2.00	0.110	$\mu g/L$	1		624.1	4/21/20	4/21/20 11:17	MFF
1,2-Dichlorobenzene	< 0.160	2.00	0.160	$\mu g/L$	1		624.1	4/21/20	4/21/20 11:17	MFF
1,3-Dichlorobenzene	< 0.120	2.00	0.120	$\mu g/L$	1		624.1	4/21/20	4/21/20 11:17	MFF
1,4-Dichlorobenzene	< 0.130	2.00	0.130	$\mu g/L$	1		624.1	4/21/20	4/21/20 11:17	MFF
1,2-Dichloroethane	< 0.410	2.00	0.410	$\mu g/L$	1		624.1	4/21/20	4/21/20 11:17	MFF
cis-1,2-Dichloroethylene	< 0.130	1.00	0.130	$\mu g/L$	1		624.1	4/21/20	4/21/20 11:17	MFF
1,1-Dichloroethane	< 0.160	2.00	0.160	$\mu g/L$	1		624.1	4/21/20	4/21/20 11:17	MFF
1,1-Dichloroethylene	< 0.320	2.00	0.320	$\mu g/L$	1		624.1	4/21/20	4/21/20 11:17	MFF
1,4-Dioxane	<22.5	50.0	22.5	$\mu g/L$	1		624.1	4/21/20	4/21/20 11:17	MFF
Ethanol	<10.5	50.0	10.5	$\mu g/L$	1		624.1	4/21/20	4/21/20 11:17	MFF
Ethylbenzene	< 0.130	2.00	0.130	$\mu g/L$	1		624.1	4/21/20	4/21/20 11:17	MFF
Methyl tert-Butyl Ether (MTBE)	< 0.250	2.00	0.250	$\mu g/L$	1		624.1	4/21/20	4/21/20 11:17	MFF
Methylene Chloride	< 0.340	5.00	0.340	$\mu g/L$	1		624.1	4/21/20	4/21/20 11:17	MFF
Tetrachloroethylene	< 0.180	2.00	0.180	$\mu g/L$	1		624.1	4/21/20	4/21/20 11:17	MFF
Toluene	< 0.140	1.00	0.140	$\mu g/L$	1		624.1	4/21/20	4/21/20 11:17	MFF
1,1,1-Trichloroethane	< 0.200	2.00	0.200	$\mu g/L$	1		624.1	4/21/20	4/21/20 11:17	MFF
1,1,2-Trichloroethane	< 0.160	2.00	0.160	$\mu g/L$	1		624.1	4/21/20	4/21/20 11:17	MFF
Trichloroethylene	< 0.240	2.00	0.240	$\mu g/L$	1		624.1	4/21/20	4/21/20 11:17	MFF
Vinyl Chloride	< 0.450	2.00	0.450	$\mu g/L$	1		624.1	4/21/20	4/21/20 11:17	MFF
m+p Xylene	< 0.300	2.00	0.300	$\mu g/L$	1		624.1	4/21/20	4/21/20 11:17	MFF
o-Xylene	< 0.170	1.00	0.170	$\mu g/L$	1		624.1	4/21/20	4/21/20 11:17	MFF
Surrogates		% Reco	very	Recovery Limits	5	Flag/Qual	-	_	•	

Surrogates	% Recovery	Recovery Limits	Flag/Qual	
1,2-Dichloroethane-d4	107	70-130		4/21/20 11:17
Toluene-d8	93.6	70-130		4/21/20 11:17
4-Bromofluorobenzene	90.0	70-130		4/21/20 11:17

Project Location: Sommerbridge Sample Description: Work Order: 20D0783

Date Received: 4/20/2020
Field Sample #: HW #1

Sampled: 4/20/2020 09:00

	D 1	D.	D.	***	D11 41	FI. (0. 1	35 (1. 1	Date	Date/Time	
Analyte	Results	RL	DL	Units	Dilution	Flag/Qual	Method	Prepared	Analyzed	Analyst
Benzo(a)anthracene (SIM)	< 0.016	0.050	0.016	μg/L	1		625.1	4/22/20	4/26/20 13:43	IMR
Benzo(a)pyrene (SIM)	< 0.012	0.10	0.012	μg/L	1		625.1	4/22/20	4/26/20 13:43	IMR
Benzo(b)fluoranthene (SIM)	0.016	0.050	0.015	$\mu g/L$	1	J	625.1	4/22/20	4/26/20 13:43	IMR
Benzo(k)fluoranthene (SIM)	< 0.012	0.20	0.012	$\mu g/L$	1		625.1	4/22/20	4/26/20 13:43	IMR
Chrysene (SIM)	< 0.015	0.20	0.015	$\mu g/L$	1		625.1	4/22/20	4/26/20 13:43	IMR
Dibenz(a,h)anthracene (SIM)	< 0.017	0.10	0.017	$\mu g/L$	1		625.1	4/22/20	4/26/20 13:43	IMR
Indeno(1,2,3-cd)pyrene (SIM)	< 0.018	0.10	0.018	$\mu g/L$	1		625.1	4/22/20	4/26/20 13:43	IMR
Pentachlorophenol (SIM)	< 0.33	1.0	0.33	$\mu g/L$	1		625.1	4/22/20	4/26/20 13:43	IMR
Surrogates		% Reco	very	Recovery Limits	s	Flag/Qual				
2-Fluorophenol (SIM)		38.3		15-110					4/26/20 13:43	
Phenol-d6 (SIM)		31.0		15-110					4/26/20 13:43	
Nitrobenzene-d5		64.1		30-130					4/26/20 13:43	
2-Fluorobiphenyl		56.3		30-130					4/26/20 13:43	
2,4,6-Tribromophenol (SIM)		75.5		15-110					4/26/20 13:43	
p-Terphenyl-d14		61.8		30-130					4/26/20 13:43	

Date

Date/Time

39 Spruce Street * East Longmeadow, MA 01028 * FAX 413/525-6405 * TEL. 413/525-2332

Semivolatile Organic Compounds by - GC/MS

Project Location: Sommerbridge Work Order: 20D0783 Sample Description:

Date Received: 4/20/2020 Field Sample #: HW #1

Sampled: 4/20/2020 09:00

DL	Units	Dilution	Flag/Qual	Method	P
0.231	μg/L	1		625.1	
0.221	/T	1		(25.1	

Analyte	Results	RL	DL	Units	Dilution	Flag/Qual	Method	Prepared	Analyzed	Analyst
Acenaphthene	< 0.231	5.00	0.231	μg/L	1		625.1	4/22/20	4/24/20 23:18	KLB
Acenaphthylene	< 0.231	5.00	0.231	$\mu g/L$	1		625.1	4/22/20	4/24/20 23:18	KLB
Anthracene	< 0.202	5.00	0.202	$\mu g/L$	1		625.1	4/22/20	4/24/20 23:18	KLB
Benzo(g,h,i)perylene	< 0.396	5.00	0.396	$\mu g/L$	1		625.1	4/22/20	4/24/20 23:18	KLB
Butylbenzylphthalate	< 0.295	10.0	0.295	$\mu g/L$	1		625.1	4/22/20	4/24/20 23:18	KLB
Di-n-butylphthalate	< 0.458	10.0	0.458	$\mu g/L$	1		625.1	4/22/20	4/24/20 23:18	KLB
Diethylphthalate	< 0.225	10.0	0.225	$\mu g/L$	1		625.1	4/22/20	4/24/20 23:18	KLB
Dimethylphthalate	< 0.307	10.0	0.307	$\mu g/L$	1		625.1	4/22/20	4/24/20 23:18	KLB
Di-n-octylphthalate	< 0.522	10.0	0.522	$\mu g/L$	1		625.1	4/22/20	4/24/20 23:18	KLB
Bis(2-Ethylhexyl)phthalate	< 0.519	10.0	0.519	$\mu g/L$	1		625.1	4/22/20	4/24/20 23:18	KLB
Fluoranthene	< 0.297	5.00	0.297	$\mu g/L$	1		625.1	4/22/20	4/24/20 23:18	KLB
Fluorene	< 0.245	5.00	0.245	$\mu g/L$	1		625.1	4/22/20	4/24/20 23:18	KLB
Naphthalene	< 0.442	5.00	0.442	$\mu g/L$	1		625.1	4/22/20	4/24/20 23:18	KLB
Phenanthrene	< 0.287	5.00	0.287	$\mu g/L$	1		625.1	4/22/20	4/24/20 23:18	KLB
Pyrene	< 0.255	5.00	0.255	μg/L	1		625.1	4/22/20	4/24/20 23:18	KLB

Surrogates	% Recovery	Recovery Limits	Flag/Qual	
2-Fluorophenol	41.0	15-110		4/24/20 23:18
Phenol-d6	32.2	15-110		4/24/20 23:18
Nitrobenzene-d5	63.8	30-130		4/24/20 23:18
2-Fluorobiphenyl	79.0	30-130		4/24/20 23:18
2,4,6-Tribromophenol	76.8	15-110		4/24/20 23:18
p-Terphenyl-d14	85.0	30-130		4/24/20 23:18

Project Location: Sommerbridge Sample Description: Work Order: 20D0783

Date Received: 4/20/2020
Field Sample #: HW #1

Sampled: 4/20/2020 09:00

Polychlorinated Biphenyls By GC/ECI	
	١.

								Date	Date/Time	
Analyte	Results	RL	DL	Units	Dilution	Flag/Qual	Method	Prepared	Analyzed	Analyst
Aroclor-1016 [1]	< 0.184	0.200	0.184	μg/L	1		608.3	4/24/20	4/24/20 15:51	AYH
Aroclor-1221 [1]	< 0.161	0.200	0.161	$\mu g/L$	1		608.3	4/24/20	4/24/20 15:51	AYH
Aroclor-1232 [1]	< 0.199	0.200	0.199	$\mu g/L$	1		608.3	4/24/20	4/24/20 15:51	AYH
Aroclor-1242 [1]	< 0.173	0.200	0.173	$\mu g/L$	1		608.3	4/24/20	4/24/20 15:51	AYH
Aroclor-1248 [1]	< 0.190	0.200	0.190	$\mu g/L$	1		608.3	4/24/20	4/24/20 15:51	AYH
Aroclor-1254 [1]	< 0.105	0.200	0.105	$\mu g/L$	1		608.3	4/24/20	4/24/20 15:51	AYH
Aroclor-1260 [1]	< 0.196	0.200	0.196	μg/L	1		608.3	4/24/20	4/24/20 15:51	AYH
		0/ D		D I '4		El /O l				

Surrogates	% Recovery	Recovery Limits	Flag/Qual	
Decachlorobiphenyl [1]	92.9	30-150		4/24/20 15:51
Decachlorobiphenyl [2]	94.4	30-150		4/24/20 15:51
Tetrachloro-m-xylene [1]	77.1	30-150		4/24/20 15:51
Tetrachloro-m-xylene [2]	79.3	30-150		4/24/20 15:51

Sample Description: Work Order: 20D0783

Project Location: Sommerbridge
Date Received: 4/20/2020
Field Sample #: HW #1

Sampled: 4/20/2020 09:00

Sample ID: 20D0783-01
Sample Matrix: Ground Water

Metals Analyses (Total)

								Date	Date/Time	
Analyte	Results	RL	DL	Units	Dilution	Flag/Qual	Method	Prepared	Analyzed	Analyst
Antimony	ND	1.0	0.35	μg/L	1		EPA 200.8	4/22/20	4/22/20 16:35	МЈН
Arsenic	ND	0.80	0.64	$\mu g/L$	1		EPA 200.8	4/22/20	4/22/20 16:35	MJH
Cadmium	ND	0.20	0.038	$\mu g/L$	1		EPA 200.8	4/22/20	4/22/20 16:35	MJH
Chromium	1.7	1.0	0.92	$\mu g/L$	1	R-04	EPA 200.8	4/22/20	4/22/20 16:35	MJH
Chromium, Trivalent	0.0017			mg/L	1		Tri Chrome Calc.	4/22/20	4/22/20 17:39	MJH
Copper	3.6	1.0	0.87	$\mu g/L$	1		EPA 200.8	4/22/20	4/22/20 16:35	MJH
Iron	0.47	0.050	0.042	mg/L	1		EPA 200.7	4/22/20	4/22/20 16:35	MJH
Lead	1.7	0.50	0.085	$\mu g/L$	1		EPA 200.8	4/22/20	4/22/20 16:35	MJH
Mercury	ND	0.00010	0.000034	mg/L	1		EPA 245.1	4/22/20	4/23/20 11:24	CJV
Nickel	1.2	5.0	0.62	μg/L	1	J	EPA 200.8	4/22/20	4/22/20 16:35	MJH
Selenium	ND	5.0	1.6	$\mu g/L$	1		EPA 200.8	4/22/20	4/22/20 16:35	MJH
Silver	ND	0.20	0.18	μg/L	1		EPA 200.8	4/22/20	4/22/20 16:35	MJH
Zinc	7.6	10	2.3	μg/L	1	J	EPA 200.8	4/22/20	4/22/20 16:35	MJH
Hardness	73	1.4		mg/L	1		EPA 200.7	4/22/20	4/22/20 16:35	MJH

Sample Description: Work Order: 20D0783

Project Location: Sommerbridge
Date Received: 4/20/2020
Field Sample #: HW #1

Sampled: 4/20/2020 09:00

Sample ID: 20D0783-01
Sample Matrix: Ground Water

Conventional Chemistry Parameters by EPA/APHA/SW-846 Methods (Total)

								Date	Date/Time	
Analyte	Results	RL	DL	Units	Dilution	Flag/Qual	Method	Prepared	Analyzed	Analyst
Chloride	180	5.0	0.68	mg/L	5		EPA 300.0	4/22/20	4/22/20 19:28	KMV
Chlorine, Residual	0.079	0.020	0.015	mg/L	1	Z-01, B	SM21-22 4500 CL G	4/20/20	4/20/20 18:45	AWA/KMV
Hexavalent Chromium	ND	0.0040		mg/L	1		SM21-22 3500 Cr B	4/20/20	4/20/20 19:15	AWA
Phenol	ND	0.050	0.050	mg/L	1		EPA 420.1	4/23/20	4/24/20 11:55	LL
Total Suspended Solids	3.0	0.83	0.34	mg/L	1		SM21-22 2540D	4/22/20	4/22/20 10:20	LL
Silica Gel Treated HEM (SGT-HEM)	0.80	1.4	0.68	mg/L	1	J	EPA 1664B	4/21/20	4/21/20 10:20	LL

Project Location: Sommerbridge Sample Description: Work Order: 20D0783

Date Received: 4/20/2020
Field Sample #: HW #1

Sampled: 4/20/2020 09:00

Sample ID: 20D0783-01
Sample Matrix: Ground Water

Drinking Water Organics EPA 504.1

								Date	Date/Time	
Analyte	Results	RL	DL	Units	Dilution	Flag/Qual	Method	Prepared	Analyzed	Analyst
1,2-Dibromoethane (EDB) (1)	ND	0.021	0.013	μg/L	1		EPA 504.1	4/22/20	4/23/20 0:42	JMB
Surrogates		% Recov	very	Recovery Limit	s	Flag/Qual				
1.2 Dibromonronono (1)		05.4		70.120					4/22/20 0.42	

Project Location: Sommerbridge Sample Description: Work Order: 20D0783

Date Received: 4/20/2020
Field Sample #: HW #1

Sampled: 4/20/2020 09:00

Sample ID: 20D0783-01
Sample Matrix: Ground Water

Conventional Chemistry Parameters by EPA/APHA/SW-846 Methods (Total)

									Date	Date/Time	
An	nalyte	Results	RL	DL	Units	Dilution	Flag/Qual	Method	Prepared	Analyzed	Analyst
Ammonia as N		0.066	0.075	0.024	mg/L	1		SM19-22 4500 NH3 C		4/22/20 0:00	AAL
Cvanide		ND	0.005	0.001	mg/I	1		SM21-22 4500 CN E		4/22/20 0:00	ΔΔΙ

Project Location: Sommerbridge Sample Description: Work Order: 20D0783

Date Received: 4/20/2020 Field Sample #: Trip Blank

Sampled: 4/20/2020 00:00

Sample ID: 20D0783-02 Sample Matrix: Trip Blank Water

Volatile	Organic	Compounds	by	GC/MS
----------	---------	-----------	----	-------

								Date	Date/Time	
Analyte	Results	RL	DL	Units	Dilution	Flag/Qual	Method	Prepared	Analyzed	Analyst
Acetone	<3.79	50.0	3.79	$\mu g/L$	1		624.1	4/21/20	4/21/20 10:53	MFF
tert-Amyl Methyl Ether (TAME)	< 0.140	0.500	0.140	$\mu g/L$	1		624.1	4/21/20	4/21/20 10:53	MFF
Benzene	< 0.180	1.00	0.180	$\mu g/L$	1		624.1	4/21/20	4/21/20 10:53	MFF
tert-Butyl Alcohol (TBA)	<4.17	20.0	4.17	$\mu g/L$	1		624.1	4/21/20	4/21/20 10:53	MFF
Carbon Tetrachloride	< 0.110	2.00	0.110	$\mu g/L$	1		624.1	4/21/20	4/21/20 10:53	MFF
1,2-Dichlorobenzene	< 0.160	2.00	0.160	$\mu g/L$	1		624.1	4/21/20	4/21/20 10:53	MFF
1,3-Dichlorobenzene	< 0.120	2.00	0.120	$\mu g/L$	1		624.1	4/21/20	4/21/20 10:53	MFF
1,4-Dichlorobenzene	< 0.130	2.00	0.130	μg/L	1		624.1	4/21/20	4/21/20 10:53	MFF
1,2-Dichloroethane	< 0.410	2.00	0.410	μg/L	1		624.1	4/21/20	4/21/20 10:53	MFF
cis-1,2-Dichloroethylene	< 0.130	1.00	0.130	$\mu g/L$	1		624.1	4/21/20	4/21/20 10:53	MFF
1,1-Dichloroethane	< 0.160	2.00	0.160	μg/L	1		624.1	4/21/20	4/21/20 10:53	MFF
1,1-Dichloroethylene	< 0.320	2.00	0.320	μg/L	1		624.1	4/21/20	4/21/20 10:53	MFF
1,4-Dioxane	<22.5	50.0	22.5	$\mu g/L$	1		624.1	4/21/20	4/21/20 10:53	MFF
Ethanol	<10.5	50.0	10.5	μg/L	1		624.1	4/21/20	4/21/20 10:53	MFF
Ethylbenzene	< 0.130	2.00	0.130	μg/L	1		624.1	4/21/20	4/21/20 10:53	MFF
Methyl tert-Butyl Ether (MTBE)	< 0.250	2.00	0.250	μg/L	1		624.1	4/21/20	4/21/20 10:53	MFF
Methylene Chloride	< 0.340	5.00	0.340	$\mu g/L$	1		624.1	4/21/20	4/21/20 10:53	MFF
Tetrachloroethylene	< 0.180	2.00	0.180	$\mu g/L$	1		624.1	4/21/20	4/21/20 10:53	MFF
Toluene	< 0.140	1.00	0.140	μg/L	1		624.1	4/21/20	4/21/20 10:53	MFF
1,1,1-Trichloroethane	< 0.200	2.00	0.200	μg/L	1		624.1	4/21/20	4/21/20 10:53	MFF
1,1,2-Trichloroethane	< 0.160	2.00	0.160	$\mu g/L$	1		624.1	4/21/20	4/21/20 10:53	MFF
Trichloroethylene	< 0.240	2.00	0.240	μg/L	1		624.1	4/21/20	4/21/20 10:53	MFF
Vinyl Chloride	< 0.450	2.00	0.450	μg/L	1		624.1	4/21/20	4/21/20 10:53	MFF
m+p Xylene	< 0.300	2.00	0.300	μg/L	1		624.1	4/21/20	4/21/20 10:53	MFF
o-Xylene	< 0.170	1.00	0.170	μg/L	1		624.1	4/21/20	4/21/20 10:53	MFF
Surrogates		% Reco	very	Recovery Limits	.	Flag/Qual				
1,2-Dichloroethane-d4		110		70-130					4/21/20 10:53	

Surrogates	% Recovery	Recovery Limits	Flag/Qual	
1,2-Dichloroethane-d4	110	70-130		4/21/20 10:53
Toluene-d8	96.2	70-130		4/21/20 10:53
4-Bromofluorobenzene	87.5	70-130		4/21/20 10:53

Sample Extraction Data

		Sample Extraction	Data		
Prep Method: SW-846 3510C Analytical Method: 608.3					
Lab Number [Field ID]	Batch	Initial [mL]	Final [mL]	Date	
20D0783-01RE1 [HW #1]	B256883	1000	10.0	04/24/20	
Prep Method: SW-846 5030B Analytical Method: 624.1					
Lab Number [Field ID]	Batch	Initial [mL]	Final [mL]	Date	
20D0783-01 [HW #1] 20D0783-02 [Trip Blank]	B256625 B256625	5 5	5.00 5.00	04/21/20 04/21/20	
Prep Method: SW-846 3510C Analytical Method: 625.1					
Lab Number [Field ID]	Batch	Initial [mL]	Final [mL]	Date	
20D0783-01 [HW #1]	B256708	1000	1.00	04/22/20	
Prep Method: SW-846 3510C Analytical Method: 625.1					
Lab Number [Field ID]	Batch	Initial [mL]	Final [mL]	Date	
20D0783-01 [HW #1]	B256787	1000	1.00	04/22/20	
EPA 1664B					
Lab Number [Field ID]	Batch	Initial [mL]		Date	
20D0783-01 [HW #1]	B256619	1000		04/21/20	
Prep Method: EPA 200.7 Analytical Method: EPA 200.7					
Lab Number [Field ID]	Batch	Initial [mL]	Final [mL]	Date	
20D0783-01 [HW #1] 20D0783-01 [HW #1]	B256719 B256719	50.0 50.0	50.0	04/22/20 04/22/20	
Prep Method: EPA 200.8 Analytical Method: EPA 200.8					
Lab Number [Field ID]	Batch	Initial [mL]	Final [mL]	Date	
20D0783-01 [HW #1]	B256720	50.0	50.0	04/22/20	
Prep Method: EPA 245.1 Analytical Method: EPA 245.1					
Lab Number [Field ID]	Batch	Initial [mL]	Final [mL]	Date	
20D0783-01 [HW #1]	B256713	6.00	6.00	04/22/20	
Prep Method: EPA 300.0 Analytical Method: EPA 300.0					
Lab Number [Field ID]	Batch	Initial [mL]	Final [mL]	Date	
20D0783-01 [HW #1]	B256743	10.0	10.0	04/22/20	

Sample Extraction Data

EPA 420.1

Lab Number [Field ID]	Batch	Initial [mL]	Final [mL]	Date	
20D0783-01 [HW #1]	B256778	50.0	50.0	04/23/20	
Prep Method: EPA 504 water Analytical Met	hod: EPA 504.1				
Lab Number [Field ID]	Batch	Initial [mL]	Final [mL]	Date	
20D0783-01 [HW #1]	B256739	32.8	35.0	04/22/20	
SM21-22 2540D					
Lab Number [Field ID]	Batch	Initial [mL]		Date	
20D0783-01 [HW #1]	B256688	600		04/22/20	
SM21-22 3500 Cr B					
Lab Number [Field ID]	Batch	Initial [mL]	Final [mL]	Date	
20D0783-01 [HW #1]	B256614	50.0	50.0	04/20/20	
SM21-22 4500 CL G					
Lab Number [Field ID]	Batch	Initial [mL]	Final [mL]	Date	
20D0783-01 [HW #1]	B256615	100	100	04/20/20	
Prep Method: EPA 200.8 Analytical Method:	Tri Chrome Calc.				
Lab Number [Field ID]	Batch	Initial [mL]		Date	
20D0783-01 [HW #1]	B256720	50.0		04/22/20	

QUALITY CONTROL

Spike

Source

%REC

RPD

Volatile Organic Compounds by GC/MS - Quality Control

Reporting

Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Notes
			Prepared & A	Analyzed: 04	/21/20				
ND	50.0	μg/L							
ND	0.500	$\mu g/L$							
ND	1.00	$\mu g/L$							
ND	20.0	$\mu g/L$							
ND	2.00	$\mu g/L$							
ND	2.00	$\mu g/L$							
ND	2.00	$\mu g/L$							
ND	2.00	μg/L							
ND	2.00	$\mu g/L$							
ND	1.00	$\mu g/L$							
ND	2.00	$\mu g/L$							
ND	2.00	$\mu g/L$							
ND	50.0	μg/L							
ND	50.0	$\mu g/L$							
ND	2.00	$\mu g/L$							
ND	2.00	$\mu g/L$							
ND	5.00	μg/L							
ND	2.00	μg/L							
ND	1.00	μg/L							
ND	2.00	μg/L							
ND	2.00	μg/L							
ND	2.00								
ND	2.00	μg/L							
ND	2.00	μg/L							
ND	1.00	μg/L							
27.7		$\mu g/L$	25.0		111	70-130			
23.8		μg/L	25.0		95.4	70-130			
22.2		μg/L	25.0		88.8	70-130			
				Analyzed: 04	/21/20				
190	50.0	μg/L	200		93.7	70-160			
18	0.500	μg/L	20.0		90.4	70-130			
20	1.00		20.0		101	65-135			
180			200		88.4	40-160			
19			20.0		92.6	70-130			
21			20.0		106				
22					109				
					103				
17									
19		μg/L			97.2				
21									
	2.00	μg/L	20.0						
		·~	_						
210	50.0	μg/L	200		105	40-130			
210 140	50.0 50.0	$\mu g/L$	200		68.5	40-160			
210 140 21	50.0 50.0 2.00	μg/L μg/L	200 20.0		68.5 106	40-160 60-140			
210 140 21 19	50.0 50.0 2.00 2.00	μg/L μg/L μg/L	200 20.0 20.0		68.5 106 96.8	40-160 60-140 70-130			
210 140 21 19 20	50.0 50.0 2.00 2.00 5.00	μg/L μg/L μg/L μg/L	200 20.0 20.0 20.0		68.5 106 96.8 99.4	40-160 60-140 70-130 60-140			
210 140 21 19 20 22	50.0 50.0 2.00 2.00 5.00 2.00	μg/L μg/L μg/L μg/L μg/L	200 20.0 20.0 20.0 20.0		68.5 106 96.8 99.4 110	40-160 60-140 70-130 60-140 70-130			
210 140 21 19 20 22 21	50.0 50.0 2.00 2.00 5.00 2.00 1.00	μg/L μg/L μg/L μg/L μg/L μg/L	200 20.0 20.0 20.0 20.0 20.0		68.5 106 96.8 99.4 110	40-160 60-140 70-130 60-140 70-130 70-130			
210 140 21 19 20 22	50.0 50.0 2.00 2.00 5.00 2.00	μg/L μg/L μg/L μg/L μg/L	200 20.0 20.0 20.0 20.0		68.5 106 96.8 99.4 110	40-160 60-140 70-130 60-140 70-130			
	ND N	ND 50.0 ND 0.500 ND 1.00 ND 20.0 ND 2.00 ND 50.0 ND 50.0 ND 2.00 ND 1.00 ND 2.00 ND 1.00 ND 2.00 ND 1.00 ND 2.00 ND 1.00 ND 2.00 ND 2.00 ND 1.00 1.00 1.00 1.00 27.7 23.8 22.2 190 50.0 18 0.500 20 1.00 180 20.0 19 2.00 21 2.00 21 2.00 21 2.00 17 2.00 19 1.00 21 2.00	ND 50.0	Result Limit Units Level	Result Limit Units Level Result	Result	Result	Result	Result

QUALITY CONTROL

Volatile Organic Compounds by GC/MS - Quality Control

Analyte	Result	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Notes
	Result	Dimit	0.1110	20101	resuit	, under	2		2	1.5005
Batch B256625 - SW-846 5030B										
LCS (B256625-BS1)				Prepared &	Analyzed: 04/2	21/20				
Vinyl Chloride	14	2.00	μg/L	20.0		69.2	5-195			
m+p Xylene	46	2.00	μg/L	40.0		116	70-130			
o-Xylene	21	1.00	μg/L	20.0		106	70-130			
Surrogate: 1,2-Dichloroethane-d4	21.5		$\mu g/L$	25.0		86.1	70-130			
Surrogate: Toluene-d8	26.1		$\mu g/L$	25.0		104	70-130			
Surrogate: 4-Bromofluorobenzene	27.4		$\mu g/L$	25.0		110	70-130			
Matrix Spike (B256625-MS1)	Sou	rce: 20D0783-	01	Prepared &	Analyzed: 04/2	21/20				
Acetone	88	50.0	μg/L	100	ND	88.0	70-130			
tert-Amyl Methyl Ether (TAME)	9.0	0.500	μg/L	10.0	ND	89.8	70-130			
Benzene	12	1.00	μg/L	10.0	ND	119	37-151			
tert-Butyl Alcohol (TBA)	90	20.0	μg/L	100	ND	89.6	70-130			
Carbon Tetrachloride	11	2.00	μg/L	10.0	ND	112	70-140			
1,2-Dichlorobenzene	11	2.00	μg/L	10.0	ND	105	18-190			
1,3-Dichlorobenzene	11	2.00	μg/L	10.0	ND	113	59-156			
1,4-Dichlorobenzene	10	2.00	μg/L	10.0	ND	104	18-190			
1,2-Dichloroethane	9.5	2.00	μg/L	10.0	ND	95.0	49-155			
cis-1,2-Dichloroethylene	11	1.00	μg/L	10.0	ND	109	70-130			
1,1-Dichloroethane	12	2.00	μg/L	10.0	ND	125	59-155			
1,1-Dichloroethylene	12	2.00	μg/L	10.0	ND	118	20-234			
1,4-Dioxane	110	50.0	μg/L	100	ND	112	70-130			
Ethanol Ethydhongono	97	50.0	μg/L	100	ND	97.2	70-130			
Ethylbenzene Methyl tert-Butyl Ether (MTBE)	11	2.00 2.00	μg/L μg/L	10.0	ND	114	37-162			
Methylene Chloride	10	5.00		10.0	ND	104 106	70-130			
Tetrachloroethylene	11	2.00	μg/L μg/L	10.0 10.0	ND ND	129	20-221 64-148			
Toluene	13 12	1.00	μg/L μg/L	10.0	ND ND	118	47-150			
1,1,1-Trichloroethane	12	2.00	μg/L μg/L	10.0	ND ND	114	52-162			
1,1,2-Trichloroethane	11	2.00	μg/L	10.0	ND ND	113	52-150			
Trichloroethylene	11	2.00	μg/L	10.0	ND	108	70-157			
Vinyl Chloride	9.5	2.00	μg/L	10.0	ND	95.2	20-251			
m+p Xylene	24	2.00	μg/L	20.0	ND	119	70-130			
o-Xylene	11	1.00	μg/L	10.0	ND	107	70-130			
	23.1				1110	92.3	70-130			
Surrogate: 1,2-Dichloroethane-d4 Surrogate: Toluene-d8			μg/L	25.0		92.3 105	70-130			
Surrogate: 101uene-a8 Surrogate: 4-Bromofluorobenzene	26.3 26.6		μg/L μg/L	25.0 25.0		105	70-130 70-130			
_					. 1 1000		70-130			
Matrix Spike Dup (B256625-MSD1)		rce: 20D0783-			Analyzed: 04/2		70 120	4.70	20	
Acetone tert Amyl Methyd Ether (TAME)	92	50.0	μg/L	100	ND	92.3	70-130	4.78	30	
tert-Amyl Methyl Ether (TAME) Benzene	9.0	0.500	μg/L	10.0	ND	89.5	70-130	0.335	30	
tert-Butyl Alcohol (TBA)	12	1.00 20.0	μg/L μg/L	10.0	ND	115	37-151 70-130	3.16	61	
Carbon Tetrachloride	100	2.00	μg/L μg/L	100 10.0	ND	100	70-130	11.3	30 41	
1,2-Dichlorobenzene	11	2.00	μg/L μg/L	10.0	ND ND	110 107	70-140 18-190	2.44	57	
1,2-Dichlorobenzene	11	2.00	μg/L μg/L		ND ND	107	18-190 59-156	1.32 0.443	43	
1,4-Dichlorobenzene	11	2.00	μg/L μg/L	10.0 10.0	ND ND	107	18-190	2.76	43 57	
1,2-Dichloroethane	11 9.2	2.00	μg/L μg/L	10.0	ND ND	92.3	49-155	2.88	49	
cis-1,2-Dichloroethylene	9.2 11	1.00	μg/L μg/L	10.0	ND ND	106	70-130	2.51	30	
1,1-Dichloroethane	11	2.00	μg/L μg/L	10.0	ND ND	120	59-155	3.51	40	
.,. 2.001000111110	12						20-234	5.11	32	
1 1-Dichloroethylene	11	/ (10)								
1,1-Dichloroethylene 1,4-Dioxane	11 120	2.00 50.0	μg/L μg/L	10.0 100	ND ND	112 120	70-130	6.47	30	

Surrogate: 4-Bromofluorobenzene

39 Spruce Street * East Longmeadow, MA 01028 * FAX 413/525-6405 * TEL. 413/525-2332

QUALITY CONTROL

Volatile Organic Compounds by GC/MS - Quality Control

		Reporting		Spike	Source		%REC		RPD	
Analyte	Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Notes
Batch B256625 - SW-846 5030B										
Matrix Spike Dup (B256625-MSD1)	Source: 20D0783-01 Pre			Prepared &	Analyzed: 04/2	21/20				
Ethylbenzene	11	2.00	μg/L	10.0	ND	110	37-162	2.77	63	
Methyl tert-Butyl Ether (MTBE)	10	2.00	$\mu g/L$	10.0	ND	104	70-130	0.192	20	
Methylene Chloride	12	5.00	$\mu g \! / \! L$	10.0	ND	117	20-221	9.65	28	
Tetrachloroethylene	13	2.00	μg/L	10.0	ND	126	64-148	2.35	39	
Гoluene	12	1.00	μg/L	10.0	ND	117	47-150	0.850	41	
1,1,1-Trichloroethane	11	2.00	μg/L	10.0	ND	108	52-162	4.97	36	
1,1,2-Trichloroethane	11	2.00	$\mu g/L$	10.0	ND	113	52-150	0.177	45	
Γrichloroethylene	11	2.00	μg/L	10.0	ND	106	70-157	2.06	48	
Vinyl Chloride	9.4	2.00	μg/L	10.0	ND	94.1	20-251	1.16	66	
n+p Xylene	23	2.00	$\mu \text{g/L}$	20.0	ND	115	70-130	3.33	20	
o-Xylene	10	1.00	$\mu \text{g}/L$	10.0	ND	104	70-130	2.94	20	
Surrogate: 1,2-Dichloroethane-d4	23.0		μg/L	25.0		91.9	70-130			
Surrogate: Toluene-d8	26.6		$\mu g/L$	25.0		106	70-130			

 $\mu g/L$

25.0

105

70-130

26.2

QUALITY CONTROL

Semivolatile Organic Compounds by GC/MS - Quality Control

Analyte	Result	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Notes
Batch B256787 - SW-846 3510C										
Blank (B256787-BLK1)				Prepared & A	Analyzed: 04.	/23/20				
Benzo(a)anthracene (SIM)	ND	0.050	μg/L							
Benzo(a)pyrene (SIM)	ND	0.10	μg/L							
Benzo(b)fluoranthene (SIM)	ND	0.050	μg/L							
Benzo(k)fluoranthene (SIM)	ND	0.20	μg/L							
Chrysene (SIM)	ND	0.20	μg/L							
Dibenz(a,h)anthracene (SIM)	ND	0.10	μg/L							
Indeno(1,2,3-cd)pyrene (SIM)	ND	0.10	μg/L							
Pentachlorophenol (SIM)	ND	1.0	μg/L							
				200		22.4	15 110			
Surrogate: 2-Fluorophenol (SIM)	66.7		μg/L	200		33.4	15-110			
Surrogate: Phenol-d6 (SIM) Surrogate: Nitrobenzene-d5	52.6 52.9		μg/L	200 100		26.3 52.9	15-110 30-130			
=			μg/L							
Surrogate: 2-Fluorobiphenyl	49.1		μg/L	100		49.1	30-130 15-110			
Surrogate: 2,4,6-Tribromophenol (SIM) Surrogate: p-Terphenyl-d14	128 55.6		μg/L μα/Ι	200 100		64.0 55.6	30-130			
Surrogate: p-1erpnenyi-d14	33.0		μg/L	100		33.0	30-130			
LCS (B256787-BS1)				Prepared & A	Analyzed: 04	/23/20				
Benzo(a)anthracene (SIM)	38.4	1.0	μg/L	50.0		76.8	33-143			
Benzo(a)pyrene (SIM)	40.3	2.0	μg/L	50.0		80.6	17-163			
Benzo(b)fluoranthene (SIM)	43.6	1.0	μg/L	50.0		87.2	24-159			
Benzo(k)fluoranthene (SIM)	38.9	4.0	μg/L	50.0		77.9	11-162			
Chrysene (SIM)	37.8	4.0	μg/L	50.0		75.6	17-168			
Dibenz(a,h)anthracene (SIM)	43.7	2.0	μg/L	50.0		87.4	10-227			
Indeno(1,2,3-cd)pyrene (SIM)	45.2	2.0	μg/L	50.0		90.4	10-171			
Pentachlorophenol (SIM)	31.1	20	μg/L	50.0		62.3	14-176			
Surrogate: 2-Fluorophenol (SIM)	77.0		$\mu g/L$	200		38.5	15-110			
Surrogate: Phenol-d6 (SIM)	63.7		$\mu g/L$	200		31.8	15-110			
Surrogate: Nitrobenzene-d5	63.3		$\mu g/L$	100		63.3	30-130			
Surrogate: 2-Fluorobiphenyl	67.5		$\mu g/L$	100		67.5	30-130			
Surrogate: 2,4,6-Tribromophenol (SIM)	175		$\mu g/L$	200		87.3	15-110			
Surrogate: p-Terphenyl-d14	61.7		$\mu g/L$	100		61.7	30-130			
LCS Dup (B256787-BSD1)				Prepared & A	Analyzed: 04	/23/20				
Benzo(a)anthracene (SIM)	36.9	1.0	μg/L	50.0		73.9	33-143	3.93	53	
Benzo(a)pyrene (SIM)	38.6	2.0	μg/L	50.0		77.3	17-163	4.26	72	
Benzo(b)fluoranthene (SIM)	41.9	1.0	μg/L	50.0		83.8	24-159	3.97	71	
Benzo(k)fluoranthene (SIM)	37.6	4.0	μg/L	50.0		75.3	11-162	3.40	63	
Chrysene (SIM)	36.3	4.0	μg/L	50.0		72.6	17-168	4.05	87	
Dibenz(a,h)anthracene (SIM)	41.8	2.0	μg/L	50.0		83.7	10-227	4.30	126	
Indeno(1,2,3-cd)pyrene (SIM)	43.3	2.0	$\mu g/L$	50.0		86.6	10-171	4.25	99	
Pentachlorophenol (SIM)	30.6	20	μg/L	50.0		61.3	14-176	1.62	86	
Surrogate: 2-Fluorophenol (SIM)	76.4		μg/L	200		38.2	15-110			
Surrogate: Phenol-d6 (SIM)	62.2		μg/L	200		31.1	15-110			
Surrogate: Nitrobenzene-d5	63.6		μg/L	100		63.6	30-130			
Surrogate: 2-Fluorobiphenyl	62.2		μg/L	100		62.2	30-130			
Surrogate: 2,4,6-Tribromophenol (SIM)	164		μg/L	200		81.9	15-110			
Surrogate: p-Terphenyl-d14	58.5		μg/L	100		58.5	30-130			

QUALITY CONTROL

Semivolatile Organic Compounds by - GC/MS - Quality Control

Analyte	Result	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Notes
Batch B256708 - SW-846 3510C										
Blank (B256708-BLK1)				Prepared: 04	/22/20 Analy	yzed: 04/23/2	20			
Acenaphthene	ND	5.00	$\mu g/L$							
Acenaphthylene	ND	5.00	$\mu g/L$							
Anthracene	ND	5.00	$\mu g/L$							
Benzo(g,h,i)perylene	ND	5.00	$\mu g/L$							
Butylbenzylphthalate	ND	10.0	$\mu g/L$							
Di-n-butylphthalate	ND	10.0	$\mu g/L$							
Diethylphthalate	ND	10.0	$\mu g/L$							
Dimethylphthalate	ND	10.0	$\mu g/L$							
Di-n-octylphthalate	ND	10.0	$\mu g/L$							
Bis(2-Ethylhexyl)phthalate	ND	10.0	$\mu g/L$							
Fluoranthene	ND	5.00	$\mu g/L$							
Fluorene	ND	5.00	$\mu g/L$							
Naphthalene	ND	5.00	$\mu g/L$							
Phenanthrene	ND	5.00	$\mu g \! / \! L$							
Pyrene	ND	5.00	$\mu g/L$							
Surrogate: 2-Fluorophenol	82.6		μg/L	200		41.3	15-110			
Surrogate: Phenol-d6	63.4		$\mu g/L$	200		31.7	15-110			
Surrogate: Nitrobenzene-d5	62.0		$\mu g/L$	100		62.0	30-130			
Surrogate: 2-Fluorobiphenyl	79.7		$\mu g/L$	100		79.7	30-130			
Surrogate: 2,4,6-Tribromophenol	155		$\mu g/L$	200		77.7	15-110			
Surrogate: p-Terphenyl-d14	78.2		$\mu g/L$	100		78.2	30-130			
LCS (B256708-BS1)				Prepared: 04	1/22/20 Analy	yzed: 04/23/2	20			
Acenaphthene	31.9	5.00	μg/L	50.0		63.8	47-145			
Acenaphthylene	32.6	5.00	$\mu g/L$	50.0		65.2	33-145			
Anthracene	37.7	5.00	$\mu g/L$	50.0		75.5	27-133			
Benzo(g,h,i)perylene	35.7	5.00	$\mu g/L$	50.0		71.4	10-219			
Butylbenzylphthalate	33.3	10.0	$\mu g/L$	50.0		66.5	10-152			
Di-n-butylphthalate	37.8	10.0	$\mu g/L$	50.0		75.6	10-120			
Diethylphthalate	35.8	10.0	$\mu g/L$	50.0		71.6	10-120			
Dimethylphthalate	36.5	10.0	$\mu g/L$	50.0		73.0	10-120			
Di-n-octylphthalate	41.1	10.0	$\mu g/L$	50.0		82.2	4-146			
Bis(2-Ethylhexyl)phthalate	35.8	10.0	$\mu g/L$	50.0		71.6	8-158			
Fluoranthene	39.7	5.00	$\mu g/L$	50.0		79.4	26-137			
Fluorene	36.5	5.00	$\mu g/L$	50.0		73.0	59-121			
Naphthalene	29.1	5.00	$\mu g/L$	50.0		58.2	21-133			
Phenanthrene	37.3	5.00	μg/L	50.0		74.7	54-120			
Pyrene	32.8	5.00	$\mu g/L$	50.0		65.5	52-120			
Surrogate: 2-Fluorophenol	84.7		μg/L	200		42.4	15-110			
Surrogate: Phenol-d6	67.5		μg/L	200		33.8	15-110			
Surrogate: Nitrobenzene-d5	65.1		μg/L	100		65.1	30-130			
Surrogate: 2-Fluorobiphenyl	85.9		μg/L	100		85.9	30-130			
Surrogate: 2,4,6-Tribromophenol	160		μg/L	200		80.0	15-110			
Surrogate: p-Terphenyl-d14	73.4		μg/L	100		73.4	30-130			

QUALITY CONTROL

Semivolatile Organic Compounds by - GC/MS - Quality Control

Analyte	Result	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Notes
Batch B256708 - SW-846 3510C										
.CS Dup (B256708-BSD1)				Prepared: 04	/22/20 Analy	yzed: 04/23/2	20			
cenaphthene	31.8	5.00	μg/L	50.0		63.6	47-145	0.283	48	
cenaphthylene	32.3	5.00	$\mu g/L$	50.0		64.7	33-145	0.862	74	
anthracene	37.0	5.00	$\mu g/L$	50.0		73.9	27-133	2.09	66	
Benzo(g,h,i)perylene	34.4	5.00	$\mu g/L$	50.0		68.8	10-219	3.68	97	
Butylbenzylphthalate	34.3	10.0	$\mu g/L$	50.0		68.6	10-152	3.11	60	
Di-n-butylphthalate	37.5	10.0	$\mu g/L$	50.0		75.0	10-120	0.770	47	
Diethylphthalate	35.2	10.0	$\mu g/L$	50.0		70.5	10-120	1.55	100	
Dimethylphthalate	35.9	10.0	$\mu g/L$	50.0		71.8	10-120	1.63	183	
Di-n-octylphthalate	38.4	10.0	$\mu g/L$	50.0		76.7	4-146	6.87	69	
sis(2-Ethylhexyl)phthalate	36.0	10.0	$\mu g/L$	50.0		72.0	8-158	0.473	82	
luoranthene	39.0	5.00	$\mu g/L$	50.0		78.0	26-137	1.78	66	
luorene	36.3	5.00	$\mu g/L$	50.0		72.7	59-121	0.467	38	
Japhthalene	30.2	5.00	$\mu g/L$	50.0		60.4	21-133	3.68	65	
henanthrene	37.2	5.00	$\mu g/L$	50.0		74.4	54-120	0.429	39	
yrene	33.6	5.00	$\mu g/L$	50.0		67.1	52-120	2.44	49	
urrogate: 2-Fluorophenol	87.2		μg/L	200		43.6	15-110			
urrogate: Phenol-d6	68.9		$\mu g/L$	200		34.4	15-110			
urrogate: Nitrobenzene-d5	66.8		$\mu g/L$	100		66.8	30-130			
urrogate: 2-Fluorobiphenyl	84.0		$\mu g/L$	100		84.0	30-130			
urrogate: 2,4,6-Tribromophenol	152		$\mu g/L$	200		76.2	15-110			
urrogate: p-Terphenyl-d14	72.0		μg/L	100		72.0	30-130			

QUALITY CONTROL

Polychlorinated Biphenyls By GC/ECD - Quality Control

Analyte	Result	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Notes
Batch B256883 - SW-846 3510C										
Blank (B256883-BLK1)				Prepared & A	Analyzed: 04	/24/20				
Aroclor-1016	ND	0.200	μg/L							
Aroclor-1016 [2C]	ND	0.200	$\mu g/L$							
Aroclor-1221	ND	0.200	$\mu g/L$							
Aroclor-1221 [2C]	ND	0.200	$\mu g/L$							
Aroclor-1232	ND	0.200	$\mu g/L$							
Aroclor-1232 [2C]	ND	0.200	$\mu g/L$							
Aroclor-1242	ND	0.200	$\mu g/L$							
Aroclor-1242 [2C]	ND	0.200	$\mu g/L$							
Aroclor-1248	ND	0.200	$\mu g/L$							
Aroclor-1248 [2C]	ND	0.200	$\mu g \! / \! L$							
Aroclor-1254	ND	0.200	$\mu g/L$							
Aroclor-1254 [2C]	ND	0.200	$\mu g/L$							
Aroclor-1260	ND	0.200	$\mu g/L$							
Aroclor-1260 [2C]	ND	0.200	$\mu \text{g/L}$							
Surrogate: Decachlorobiphenyl	1.82		μg/L	2.00		90.8	30-150			
Surrogate: Decachlorobiphenyl [2C]	1.77		$\mu g/L$	2.00		88.3	30-150			
Surrogate: Tetrachloro-m-xylene	1.69		$\mu g/L$	2.00		84.4	30-150			
Surrogate: Tetrachloro-m-xylene [2C]	1.67		$\mu g/L$	2.00		83.5	30-150			
LCS (B256883-BS1)				Prepared & A	Analyzed: 04	/24/20				
Aroclor-1016	0.473	0.200	μg/L	0.500		94.6	50-140			
Aroclor-1016 [2C]	0.491	0.200	$\mu g/L$	0.500		98.2	50-140			
Aroclor-1260	0.466	0.200	$\mu g/L$	0.500		93.1	8-140			
Aroclor-1260 [2C]	0.474	0.200	$\mu g/L$	0.500		94.8	8-140			
Surrogate: Decachlorobiphenyl	1.80		μg/L	2.00		90.2	30-150			
Surrogate: Decachlorobiphenyl [2C]	1.78		μg/L	2.00		88.9	30-150			
Surrogate: Tetrachloro-m-xylene	1.65		$\mu g/L$	2.00		82.4	30-150			
Surrogate: Tetrachloro-m-xylene [2C]	1.64		$\mu g/L$	2.00		82.1	30-150			
LCS Dup (B256883-BSD1)				Prepared & A	Analyzed: 04	/24/20				
Aroclor-1016	0.476	0.200	μg/L	0.500		95.2	50-140	0.689		
Aroclor-1016 [2C]	0.496	0.200	μg/L	0.500		99.1	50-140	0.963		
Aroclor-1260	0.466	0.200	μg/L	0.500		93.1	8-140	0.0451		
Aroclor-1260 [2C]	0.472	0.200	μg/L	0.500		94.4	8-140	0.387		
Surrogate: Decachlorobiphenyl	1.84		μg/L	2.00		92.2	30-150			
Surrogate: Decachlorobiphenyl [2C]	1.83		μg/L	2.00		91.6	30-150			
Surrogate: Tetrachloro-m-xylene	1.67		$\mu g/L$	2.00		83.3	30-150			
Surrogate: Tetrachloro-m-xylene [2C]	1.68		$\mu g/L$	2.00		84.0	30-150			

QUALITY CONTROL

Metals Analyses (Total) - Quality Control

Analyte	Result	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Notes
Batch B256713 - EPA 245.1										
Blank (B256713-BLK1)				Prepared: 04	/22/20 Analy	zed: 04/23/	20			
Mercury	ND	0.00010	mg/L							
LCS (B256713-BS1)				Prepared: 04	/22/20 Analy	zed: 04/23/	20			
Mercury	0.00376	0.00010	mg/L	0.00400		94.0	85-115			
LCS Dup (B256713-BSD1)				Prepared: 04	/22/20 Analy	zed: 04/23/	20			
Mercury	0.00393	0.00010	mg/L	0.00400	,,,	98.3	85-115	4.44	20	
D. P. 4 (B25(712 DUB1)		200.0502			/22/20		20			
Duplicate (B256713-DUP1) Mercury		0.00010	mg/L	Prepared: 04	/22/20 Analy ND		20	NC	30	
vicicuity	ND	0.00010	mg/L		ND			NC	30	
Matrix Spike (B256713-MS1)	Sou	rce: 20D0783-			/22/20 Analy					
Mercury	0.00359	0.00010	mg/L	0.00400	ND	89.7	75-125			
Batch B256719 - EPA 200.7										
Blank (B256719-BLK1)				Prepared &	Analyzed: 04/	/22/20				
ron	ND	0.050	mg/L							
Hardness	ND	1.4	mg/L							
LCS (B256719-BS1)				Prepared &	Analyzed: 04/	22/20				
Iron	4.08	0.050	mg/L	4.00		102	85-115			
Hardness	27	1.4	mg/L	26.4		102	85-115			
LCS Dup (B256719-BSD1)				Prepared &	Analyzed: 04/	/22/20				
Iron	4.16	0.050	mg/L	4.00		104	85-115	1.90	20	
Hardness	27	1.4	mg/L	26.4		103	85-115	1.07	20	
Duplicate (B256719-DUP1)	Sou	rce: 20D0783-	01	Prepared &	Analyzed: 04/	/22/20				
Iron	0.465	0.050	mg/L		0.468			0.670	20	
Hardness	73	1.4	mg/L		73			0.991		
Matrix Spike (B256719-MS1)	Sou	rce: 20D0783-	01	Prepared &	Analyzed: 04/	22/20				
Iron	4.68	0.050	mg/L	4.00	0.468	105	70-130			
Hardness	100	1.4	mg/L	26.4	73	104	70-130			
Batch B256720 - EPA 200.8										
Blank (B256720-BLK1)				Prepared &	Analyzed: 04/	/22/20				
Antimony	ND	1.0	μg/L							
Arsenic	ND	0.80	μg/L							
Cadmium	ND	0.20	μg/L							
Chromium	ND	1.0	μg/L							
Copper	ND	1.0	μg/L							
Lead	ND	0.50	μg/L							
Nickel	ND	5.0	μg/L							
Selenium	ND	5.0	μg/L							
Silver	ND	0.20	μg/L							
Zinc	ND	10	μg/L							

QUALITY CONTROL

Metals Analyses (Total) - Quality Control

Analyte	Result	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Notes
-	Result	Liiiit	Omts	Pevel	Result	/OKEC	Limits	KFD	PHIII	ivotes
Batch B256720 - EPA 200.8										
LCS (B256720-BS1)		10	/T		Analyzed: 04/		05.115			
Antimony	486	10	μg/L	500		97.3	85-115			
Arsenic	489	8.0	μg/L	500		97.8	85-115			
Cadmium	505	2.0	μg/L	500		101	85-115			
Chromium	511	10	μg/L	500		102	85-115			
Copper	983	10	μg/L	1000		98.3	85-115			
Lead Nickel	493	5.0	μg/L	500		98.6	85-115			
	502	50	μg/L	500		100	85-115			
Selenium	476	50	μg/L	500		95.1	85-115			
Silver	513	2.0	μg/L	500		103	85-115			
Zinc	969	100	μg/L	1000		96.9	85-115			
LCS Dup (B256720-BSD1)				Prepared &	Analyzed: 04/	22/20				
Antimony	494	10	μg/L	500		98.8	85-115	1.50	20	
Arsenic	497	8.0	$\mu \text{g/L}$	500		99.5	85-115	1.74	20	
Cadmium	509	2.0	$\mu \text{g/L}$	500		102	85-115	0.767	20	
Chromium	519	10	$\mu g/L$	500		104	85-115	1.56	20	
Copper	1010	10	$\mu g/L$	1000		101	85-115	2.86	20	
Lead	507	5.0	$\mu g/L$	500		101	85-115	2.74	20	
Nickel	508	50	$\mu g/L$	500		102	85-115	1.17	20	
Selenium	487	50	$\mu g/L$	500		97.4	85-115	2.33	20	
Silver	514	2.0	$\mu g/L$	500		103	85-115	0.153	20	
Zinc	981	100	$\mu g/L$	1000		98.1	85-115	1.16	20	
Duplicate (B256720-DUP1)	Sour	rce: 20D0783-	01	Prepared &	Analyzed: 04/2	22/20				
Antimony	ND	1.0	μg/L		ND			NC	20	
Arsenic	ND	0.80	$\mu g/L$		ND			NC	20	
Cadmium	ND	0.20	$\mu g/L$		ND			NC	20	
Chromium	1.41	1.0	$\mu g/L$		1.74			20.9	* 20	R-04
Copper	3.55	1.0	$\mu g/L$		3.56			0.142	20	
Lead	1.75	0.50	$\mu g/L$		1.75			0.447	20	
Nickel	1.18	5.0	$\mu g/L$		1.21			2.41	20	J
Selenium	ND	5.0	$\mu g/L$		ND			NC	20	
Silver	ND	0.20	$\mu g/L$		ND			NC	20	
Zinc	7.50	10	$\mu g/L$		7.59			1.24	20	J
Matrix Spike (B256720-MS1)	Sour	rce: 20D0783-	01	Prepared &	Analyzed: 04/	22/20				
Antimony	505	10	μg/L	500	ND	101	70-130			
Arsenic	505	8.0	$\mu g/L$	500	ND	101	70-130			
Cadmium	517	2.0	μg/L	500	ND	103	70-130			
Chromium	515	10	μg/L	500	ND	103	70-130			
Copper	1010	10	μg/L	1000	ND	101	70-130			
ead	512	5.0	μg/L	500	1.75	102	70-130			
		50	μg/L	500	ND	101	70-130			
lickel	2012				1,10					
	505 487		μg/L	500	ND	97.5	70-130			
Nickel Selenium Silver	505 487 514	50 2.0	μg/L μg/L	500 500	ND ND	97.5 103	70-130 70-130			

QUALITY CONTROL

Conventional Chemistry Parameters by EPA/APHA/SW-846 Methods (Total) - Quality Control

Analyte	Result	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Notes
Batch B256614 - SM21-22 3500 Cr B									<u> </u>	
Blank (B256614-BLK1)				Prepared & A	Analyzed: 04	/20/20				
Hexavalent Chromium	ND	0.0040	mg/L	-	· · · · · · · · · · · · · · · · · · ·					
LCS (B256614-BS1)				Prepared & A	Analyzed: 04	/20/20				
Hexavalent Chromium	0.10	0.0040	mg/L	0.100		104	83.9-121			
LCS Dup (B256614-BSD1)				Prepared & A	Analyzed: 04	/20/20				
Hexavalent Chromium	0.10	0.0040	mg/L	0.100		104	83.9-121	0.00	10	
Matrix Spike (B256614-MS1)	Sou	rce: 20D0783-	01	Prepared & A	Analyzed: 04	/20/20				
Hexavalent Chromium	0.090	0.0040	mg/L	0.100	ND		25.5-193			
Matrix Spike Dup (B256614-MSD1)	Son	rce: 20D0783-	01	Prepared & A	Analyzed: 04	/20/20				
Hexavalent Chromium	0.091	0.0040	mg/L	0.100	ND		25.5-193	1.41	20	
Batch B256615 - SM21-22 4500 CL G										
Blank (B256615-BLK1)				Prepared & A	Analyzed: 04	/20/20				
Chlorine, Residual	0.036	0.020	mg/L							Z-01
LCS (B256615-BS1)				Prepared & A	Analyzed: 04	/20/20				
Chlorine, Residual	1.4	0.020	mg/L	1.28		112	66.3-134			Z-01, B
LCS Dup (B256615-BSD1)				Prepared & A	Analyzed: 04	/20/20				
Chlorine, Residual	1.3	0.020	mg/L	1.28		104	66.3-134	7.74	9.96	Z-01, B
Duplicate (B256615-DUP1)	Sou	rce: 20D0783-	01	Prepared & A	Analyzed: 04	/20/20				
Chlorine, Residual	0.075	0.020	mg/L		0.079	ı		5.54	32.5	Z-01, B
Matrix Spike (B256615-MS1)	Sou	rce: 20D0783-	01	Prepared & A	Analyzed: 04	/20/20				
Chlorine, Residual	0.93	0.020	mg/L	1.00		85.1	10-167			Z-01, B
Batch B256619 - EPA 1664B										
Blank (B256619-BLK1)				Prepared & A	Analyzed: 04	/21/20				
Silica Gel Treated HEM (SGT-HEM)	ND	1.4	mg/L							
LCS (B256619-BS1)				Prepared & A	Analyzed: 04	/21/20				
Silica Gel Treated HEM (SGT-HEM)	11		mg/L	10.0		107	64-132			
Batch B256688 - SM21-22 2540D										
Blank (B256688-BLK1)				Prepared & A	Analyzed: 04	/22/20				
Total Suspended Solids	ND	2.5	mg/L							

QUALITY CONTROL

Conventional Chemistry Parameters by EPA/APHA/SW-846 Methods (Total) - Quality Control

		Reporting		Spike	Source		%REC		RPD	
Analyte	Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Notes
Batch B256688 - SM21-22 2540D										
LCS (B256688-BS1)				Prepared &	Analyzed: 04	/22/20				
Total Suspended Solids	184	10	mg/L	200		92.0	57.6-118			
Batch B256743 - EPA 300.0										
Blank (B256743-BLK1)				Prepared &	Analyzed: 04	/22/20				
Chloride	ND	1.0	mg/L							
LCS (B256743-BS1)				Prepared &	Analyzed: 04	/22/20				
Chloride	4.7	1.0	mg/L	5.00		94.7	90-110			
LCS Dup (B256743-BSD1)				Prepared &	Analyzed: 04	/22/20				
Chloride	4.8	1.0	mg/L	5.00		95.7	90-110	1.06	20	
Batch B256778 - EPA 420.1										
Blank (B256778-BLK1)				Prepared: 04	/23/20 Anal	yzed: 04/24/	20			
Phenol	ND	0.050	mg/L							
LCS (B256778-BS1)				Prepared: 04	/23/20 Anal	yzed: 04/24/	20			
Phenol	0.51	0.050	mg/L	0.500		103	72.4-125			
LCS Dup (B256778-BSD1)				Prepared: 04	/23/20 Anal	yzed: 04/24/	20			
Phenol	0.54	0.050	mg/L	0.500		107	72.4-125	4.27	11.1	
Duplicate (B256778-DUP1)	Sou	rce: 20D0783-	01	Prepared: 04	/23/20 Anal	yzed: 04/24/	20			
Phenol	ND	0.050	mg/L		NE)		NC	48.3	

QUALITY CONTROL

Drinking Water Organics EPA 504.1 - Quality Control

		Reporting		Spike	Source		%REC		RPD		
Analyte	Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Notes	
Batch B256739 - EPA 504 water											
Blank (B256739-BLK1)				Prepared &	Analyzed: 04	/22/20					
1,2-Dibromoethane (EDB)	ND	0.021	μg/L								
Surrogate: 1,3-Dibromopropane	0.989		$\mu g/L$	1.04		95.1	70-130				
LCS (B256739-BS1)				Prepared & Analyzed: 04/22/20							
1,2-Dibromoethane (EDB)	0.245	0.020	μg/L	0.252		97.2	70-130				
Surrogate: 1,3-Dibromopropane	1.02		μg/L	1.01		101	70-130				
LCS (B256739-BS2)				Prepared &	Analyzed: 04	/22/20					
1,2-Dibromoethane (EDB)	0.235	0.020	μg/L	0.248		94.8	70-130				
Surrogate: 1,3-Dibromopropane	0.950		μg/L	0.993		95.7	70-130				
LCS Dup (B256739-BSD1)				Prepared &	Analyzed: 04	/22/20					
1,2-Dibromoethane (EDB)	0.258	0.021	μg/L	0.257		100	70-130	4.87			
Surrogate: 1,3-Dibromopropane	0.998		$\mu g/L$	1.03		97.2	70-130				
LCS Dup (B256739-BSD2)				Prepared &	Analyzed: 04	/22/20					
1,2-Dibromoethane (EDB)	0.241	0.020	μg/L	0.254		94.8	70-130	2.27			
Surrogate: 1,3-Dibromopropane	1.00		μg/L	1.02		98.7	70-130				
MRL Check (B256739-MRL1)				Prepared &	Analyzed: 04	/22/20					
1,2-Dibromoethane (EDB)	0.0248	0.021	μg/L	0.0206		120	0-200				
Surrogate: 1,3-Dibromopropane	0.992		μg/L	1.03		96.1	70-130				
MRL Check (B256739-MRL2)				Prepared: 04	/22/20 Anal	yzed: 04/23/2	20				
1,2-Dibromoethane (EDB)	0.0219	0.021	μg/L	0.0209		105	0-200				
Surrogate: 1,3-Dibromopropane	1.02		μg/L	1.04		97.4	70-130				
Matrix Spike (B256739-MS1)	Sou	rce: 20D0783-	-01	Prepared: 04	/22/20 Anal	yzed: 04/23/2	20				
1,2-Dibromoethane (EDB)	0.234	0.019	μg/L	0.242	ND	96.8	65-135				
Surrogate: 1,3-Dibromopropane	0.936		μg/L	0.968		96.6	70-130				

FLAG/QUALIFIER SUMMARY

*	QC result is outside of established limits.
†	Wide recovery limits established for difficult compound.
‡	Wide RPD limits established for difficult compound.
#	Data exceeded client recommended or regulatory level
ND	Not Detected
RL	Reporting Limit is at the level of quantitation (LOQ)
DL	Detection Limit is the lower limit of detection determined by the MDL study
MCL	Maximum Contaminant Level
	Percent recoveries and relative percent differences (RPDs) are determined by the software using values in the calculation which have not been rounded.
	No results have been blank subtracted unless specified in the case narrative section.
В	Analyte is found in the associated laboratory blank as well as in the sample.
J	Detected but below the Reporting Limit (lowest calibration standard); therefore, result is an estimated concentration (CLP J-Flag).
R-04	Duplicate relative percent difference (RPD) is a less useful indicator of sample precision for sample results that are <5 times the reporting limit (RL).
Z-01	Test SM 4500 CL G had a calibrate point outside of acceptable back calculated recovery. Reanalysis yielded similar non-conformance.

CERTIFICATIONS

Certified Analyses included in this Report

Analyte	Certifications	
608.3 in Water		
Aroclor-1016	CT,MA,NH,NY,RI,NC,ME,VA	
Aroclor-1016 [2C]	CT,MA,NH,NY,RI,NC,ME,VA	
Aroclor-1221	CT,MA,NH,NY,RI,NC,ME,VA	
Aroclor-1221 [2C]	CT,MA,NH,NY,RI,NC,ME,VA	
Aroclor-1221 [20] Aroclor-1232	CT,MA,NH,NY,RI,NC,ME,VA	
Aroclor-1232 [2C]	CT,MA,NH,NY,RI,NC,ME,VA	
Aroclor-1242	CT,MA,NH,NY,RI,NC,ME,VA	
Aroclor-1242 [2C]	CT,MA,NH,NY,RI,NC,ME,VA	
Aroclor-1248	CT,MA,NH,NY,RI,NC,ME,VA	
Aroclor-1248 [2C]	CT,MA,NH,NY,RI,NC,ME,VA	
Aroclor-1254	CT,MA,NH,NY,RI,NC,ME,VA	
Aroclor-1254 [2C]	CT,MA,NH,NY,RI,NC,ME,VA	
Aroclor-1260	CT,MA,NH,NY,RI,NC,ME,VA	
Aroclor-1260 [2C]	CT,MA,NH,NY,RI,NC,ME,VA	
624.1 in Water		
Acetone	CT,NY,MA,NH	
tert-Amyl Methyl Ether (TAME)	MA	
Benzene	CT,NY,MA,NH,RI,NC,ME,VA	
tert-Butyl Alcohol (TBA)	NY,MA	
Carbon Tetrachloride	CT,NY,MA,NH,RI,NC,ME,VA	
1,2-Dichlorobenzene	CT,NY,MA,NH,RI,NC,ME,VA	
1,3-Dichlorobenzene	CT,NY,MA,NH,RI,NC,ME,VA	
1,4-Dichlorobenzene	CT,NY,MA,NH,RI,NC,ME,VA	
1,2-Dichloroethane	CT,NY,MA,NH,RI,NC,ME,VA	
cis-1,2-Dichloroethylene	NY,MA	
1,1-Dichloroethane	CT,NY,MA,NH,RI,NC,ME,VA	
1,1-Dichloroethylene	CT,NY,MA,NH,RI,NC,ME,VA	
1,4-Dioxane	MA	
Ethanol	NY,MA,NH	
Ethylbenzene	CT,NY,MA,NH,RI,NC,ME,VA	
Methyl tert-Butyl Ether (MTBE)	NY,MA,NH,NC	
Methylene Chloride	CT,NY,MA,NH,RI,NC,ME,VA	
Naphthalene	NY,MA,NC	
Tetrachloroethylene	CT,NY,MA,NH,RI,NC,ME,VA	
Toluene	CT,NY,MA,NH,RI,NC,ME,VA	
1,1,1-Trichloroethane	CT,NY,MA,NH,RI,NC,ME,VA	
1,1,2-Trichloroethane	CT,NY,MA,NH,RI,NC,ME,VA	
Trichloroethylene	CT,NY,MA,NH,RI,NC,ME,VA	
Vinyl Chloride	CT,NY,MA,NH,RI,NC,ME,VA	
m+p Xylene	CT,NY,MA,NH,RI,NC	
o-Xylene	CT,NY,MA,NH,RI,NC	
625.1 in Water		
Acenaphthene	CT,MA,NH,NY,NC,RI,ME,VA	
Acenaphthylene	CT,MA,NH,NY,NC,RI,ME,VA	
Anthracene	CT,MA,NH,NY,NC,RI,ME,VA	
Benzo(g,h,i)perylene	CT,MA,NH,NY,NC,RI,ME,VA	
Zemo(B,ii,i)per jacite	Cagara aya taaya taya toga taya taaba	

CERTIFICATIONS

Certified Analyses included in this Report

Analyte	Certifications
625.1 in Water	
	CT MA NIH NIV NC DI ME VA
Butylbenzylphthalate Di-n-butylphthalate	CT,MA,NH,NY,NC,RI,ME,VA CT,MA,NH,NY,NC,RI,ME,VA
1,3-Dichlorobenzene	MA,NC
1,4-Dichlorobenzene	MA,NC
1,2-Dichlorobenzene	MA,NC
Diethylphthalate	CT,MA,NH,NY,NC,RI,ME,VA
Dimethylphthalate	CT,MA,NH,NY,NC,RI,ME,VA
Di-n-octylphthalate	CT,MA,NH,NY,NC,RI,ME,VA
Bis(2-Ethylhexyl)phthalate	CT,MA,NH,NY,NC,RI,ME,VA
Fluoranthene	CT,MA,NH,NY,NC,RI,ME,VA
Fluorene	CT,MA,NH,NY,NC,RI,ME,VA
Naphthalene	CT,MA,NH,NY,NC,RI,ME,VA
Phenanthrene	CT,MA,NH,NY,NC,RI,ME,VA
Phenol	CT,MA,NH,NY,NC,RI,ME,VA
Pyrene	CT,MA,NH,NY,NC,RI,ME,VA
2-Fluorophenol	NC
2-Fluorophenol	NC,VA
Phenol-d6	VA
Nitrobenzene-d5	VA
EPA 200.7 in Water	
Iron	CT,MA,NH,NY,RI,NC,ME,VA
Hardness	CT,MA,NH,NY,RI,VA
EPA 200.8 in Water	
Antimony	CT,MA,NH,NY,RI,NC,ME,VA
Arsenic	CT,MA,NH,NY,RI,NC,ME,VA
Cadmium	CT,MA,NH,NY,RI,NC,ME,VA
Chromium	CT,MA,NH,NY,RI,NC,ME,VA
Copper	CT,MA,NH,NY,RI,NC,ME,VA
Lead	CT,MA,NH,NY,RI,NC,ME,VA
Nickel	CT,MA,NH,NY,RI,NC,ME,VA
Selenium	CT,MA,NH,NY,RI,NC,ME,VA
Silver	CT,MA,NH,NY,RI,NC,ME,VA
Zinc	CT,MA,NH,NY,RI,NC,ME,VA
EPA 245.1 in Water	
Mercury	CT,MA,NH,RI,NY,NC,ME,VA
EPA 300.0 in Water	
Chloride	NC,NY,MA,VA,ME,NH,CT,RI
EPA 420.1 in Water	
Phenol	CT,MA,NH,NY,RI,NC,ME,VA
SM19-22 4500 NH3 C in Water	
Ammonia as N	NY,MA,CT,RI,VA,NC,ME
SM21-22 2540D in Water	
	CTMA NHANYDI NG ME VA
Total Suspended Solids	CT,MA,NH,NY,RI,NC,ME,VA
SM21-22 3500 Cr B in Water	

CERTIFICATIONS

Certified Analyses included in this Report

Analyte Certifications

SM21-22 3500 Cr B in Water

Hexavalent Chromium NY,CT,NH,RI,ME,VA,NC

SM21-22 4500 CL G in Water

Chlorine, Residual CT,MA,RI,ME

SM21-22 4500 CN E in Water

Cyanide CT,MA,NH,NY,RI,NC,ME,VA

The CON-TEST Environmental Laboratory operates under the following certifications and accreditations:

Code	Description	Number	Expires
AIHA	AIHA-LAP, LLC - ISO17025:2017	100033	03/1/2022
MA	Massachusetts DEP	M-MA100	06/30/2020
CT	Connecticut Department of Publilc Health	PH-0567	09/30/2021
NY	New York State Department of Health	10899 NELAP	04/1/2021
NH-S	New Hampshire Environmental Lab	2516 NELAP	02/5/2021
RI	Rhode Island Department of Health	LAO00112	12/30/2020
NC	North Carolina Div. of Water Quality	652	12/31/2020
NJ	New Jersey DEP	MA007 NELAP	06/30/2020
FL	Florida Department of Health	E871027 NELAP	06/30/2020
VT	Vermont Department of Health Lead Laboratory	LL015036	07/30/2020
ME	State of Maine	2011028	06/9/2021
VA	Commonwealth of Virginia	460217	12/14/2020
NH-P	New Hampshire Environmental Lab	2557 NELAP	09/6/2020
VT-DW	Vermont Department of Health Drinking Water	VT-255716	06/12/2020
NC-DW	North Carolina Department of Health	25703	07/31/2020
PA	Commonwealth of Pennsylvania DEP	68-05812	06/30/2020

http://www.contestlabs.com

Dec # 291 Pey 2 04242040

(con-test	Phone	: 413-525-2332				CHAIN	TOF CUSTO	DY RECO	IRD		ice Street ngmeadow	. 114 040		, ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,		,00202	017						Page of
ANALYTICAL LABORATORY		13-525-6405		R	duested forma	elline kilo	ie.		Dissolv		s Samples		120		,	ANAL	YSIS	REOU	ESTE)			rage or
STOCKANDOCKETPOWER Committee to the state of	Email:	info@contestlabs.com	_	Z-Day <	7 0	10-Day		0	Skehellen ket Welflich (17)	Field Filte	***************************************	and the second				T	T			<u> </u>	1	T	² Preservation Code
Company Name	CDL	J CENSULTI	1 N TS	PFAS 10-Day	(std)	Due Date	<u>:</u>	0		Lab to Fil	lter						十	_	<u> </u>		Τ,		Collect Big Only
Address: 6 HUR	1000 Di	2 WATICH	۷		Rush-Approval	Required			Ortho	antospinak	: Samples					١٨		٦,	w	3		1	Total Number Of:
	- 875-	2657		1-Day		3-Day		0	1	Field Filte	red				- 1	V		ဂ်		IJ ,	ا (
Protest Name		WRIZRING		2-Day		4-Day		0		Lab to Fili	ter		80			-]		2	27/1	검소	<u>ظار</u> '	1	VIALS
	MONSE	CNEUR H.	Shwan				Data Dell						0		V	?		2	71177	3		ر, لا	GLASS
Project Number: 14				Format:			PDF	X			EXCEL	X	0		33	8			7 (۱ (g C	13	PLASTIC
Project Manager: A L n Con-Test Quote Name/Number:	<u>1~) c</u>	<u>~D3~,~)</u>		Other:				-					~		Ŋ	3		1	ď		7 15	د ار	BACTERIA
Invoice Recipient:				-1	a Pkg Required:				۰		11.		B		5	1	7	Ş	١,	H,		0	ENCORE
	~~ D5v	v 2 3 3		Email To: Fax To #:	(5 md	> ~ ***	-5 -0	<u> </u>	<u> ۲۷ د</u>		HAN	7	, , ,	V Y	3	12	Ŋ	0	\$ \\	10	7 2	7 🗸)
Con-Test Work Order#		ple ID / Description	Beginning Date/Time	Ending Date/Time	COMP/GRAB	¹ Matrix Code	Conc Code	VIALS	GLASS	Ī	BACTERIA	ENCORE	8	M	HARD	19	27	7	gmmc.	100	-1 1	700	(Japontara in the federal)
	HW	#/	4/20/2	L 9:20	6	w	U						λ	/	λ,	٦	7	ر ح	1	1 ×	\ \	\	Glassware in freezer? Y / N
																		<u> </u>	1	Ť	Ť	Ť	Prepackaged Cooler? Y / N
																			_	1	T	†	*Contest is not responsible for
															1				—			1	missing samples from prepacked coolers
												1						\top	1	T	1		
															7				+	1	1	†	Matrix Codes: GW = Ground Water
																1	\dashv	\top	+	╁┈	+-	+	WW = Waste Water DW = Drinking Water
									<u> </u>	-					—		-	-	+	+	-	╁	A = Air S = Soil
			†			 			ļ							-		_	-	╀	_	+	SL = Sludge SOL = Solid
						-										-	_	\dashv		-	-		0 = Other (please
Relinquished by: (signature)	nA	Date/Time:	Client Com	ments:		<u> </u>	1															<u> </u>	define)
1550		1//																					
Received by: Signature	ahl	Date/Time:																					² <u>Preservation Codes</u> : I = Iced
Relinquisted by: (signature)	7/11/2	Date/Time:		oloaVL mit Re			ATO STATE OF THE S		emierikalisaki			Part distriction of the	STRANSSYNI	RECOVER REPORT									H = HCL
1806 918	14/20	1735	ЖA			X			eenlike	quireme		MA MCI	- Rem	ured									M = Methanol N = Nitric Acid
Received by (signature)	11/	Date/Time:			*******		71111111		***************************************	A	4CP Certifle				Ple	ease us ble sai	se the	follow	ing coo	es to	indica	te Conc	S = Sulfuric Acid
Tell My	4,594	20150 178										CT RG			p 000.	J J			าก abo		n are	conc	B = Sodium Bisulfate X = Sodium Hydroxide
Relinquished by: (signature)	<i>a</i> *	Date/Time:	-07			ļ				F	RCP Certific	cation For	m Req	uired	H - H	ligh; M	l - Mec		- Low	C - 0	Clean;	, U -	T = Sodium
Received by: (signature)		Date/Time:	-															Unkn	iown				Thiosulfate O = Other (please
			Cüher			PW510 #					AAA.	State DW	Kedm	೯೮೮		ie wa	Mark (12.54 AV	P, LLC	September 1		PENANTINA	define)
Relinquished by: (signature)		Date/Time:	Project Ent	ity		L											100000	ther		Auto			PCB ONLY
Received by: (signature)		Data (Times	_	Government		Municipal	lity			MWRA	[]]	WR	TA.					Chro	omato	gram		Soxhlet
(Signature)		Date/Time:		Federal City		21 J Brownfie	I.d			School MBTA	ļ 90%								AlH	A-LAP	,LLC		Non Soxhlet
r call with client	t - run sa	ame tests th	at we r							T													
										Discla Chain	aimer: Co of Custoo	on-Test dv is a le	Labsi Poald	is not	respo	onsibl hat m	e for	any o	mitted	infol	rmati	ion on	the Chain of Custody. The and is used to determine wha
ans - do not ru d std low), O&G	SGT-F	IFM 1664 ri	in met	als ner	project	and				analyse	es the lat	oratory	will p	perfor	rm. A	Any m	issing	infor	matio	n is n	ot the	e labo	pratory's responsibility. Cor O
3 TR per client -		,		alo poi	project,	ana				Test val	lues your	partne	rship (on ead	ch pr				y to as itable.		vith n	nissing	g information, but will not I
of 35	7/2 1/20	,						2111		<u></u>									, world				Contents
35																							nter
Ш																							ıts

I Have Not Confirmed Sample Container
Numbers With Lab Staff Before Relinquishing
Over Samples_____

Client

Doc# 277 Rev 5 2017

Login Sample Receipt Checklist - (Rejection Criteria Listing - Using Acceptance Policy) Any False Statement will be brought to the attention of the Client - State True or False

	eu by	<u> </u>		Date	710010	40	ı ime	1735	
How were th	•	In Cooler		No Cooler		On Ice	7	No Ice	
receiv	ved?	Direct from Samp	oling			Ambient		Melted Ice	
Were sam	alee within		By Gun #	.5		Actual Tem	p-4,9,5,0	7	
Temperatu		1	By Blank #			Actual Tem			
•	Custody S	eal Intact?	in la		ra Samala	s Tampered	· · · · · · · · · · · · · · · · · · ·		
	COC Relin		- Ma	•	-	ree With Sa		-nja-	
		eaking/loose caps	On any sam		S Offalli Agi	ee wiiii 38	inbies:	i	
Is COC in in			On only Som	•	onice recei	uad within h	olding time?		
Did COC ii	-	Client	·	Analysis	T		er Name		
pertinent Inf		Project		ID's	<u> </u>	-	Dates/Times		
· ·		d out and legible?		,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,		Concollon	Dates/Times		
Are there La		-			Who was	s notified?			
Are there Ru		•				s notified?			
Are there Sh			- L			notified?	Kotic		
Is there enou		.?			vviio vvas	inounica:	Nemc		
	-	ere applicable?			MS/MSD?	F			
Proper Media	respective and the second		TO SECTION AND ADDRESS OF THE PARTY OF THE P			samples rec	uired?		
Were trip bla					On COC?		lanca:		
Do all sample				Acid	AT 2		Base	12	
		F - F - F - F		-	PILE			1	
\$#_1_ 1	7		term of the second						
Vials	#	ontainers:	#	4	Dissila	#	40	0 b	#
Unp-	# 300000	1 Liter Amb.	14	1 Liter		2		Amb.	#
Unp- HCL-	#	1 Liter Amb. 500 mL Amb.		500 mL	Plastic		8oz Am	ıb/Clear	#
Unp- HCL- Meoh-	#	1 Liter Amb. 500 mL Amb. 250 mL Amb.		500 mL 250 mL	Plastic Plastic		8oz Am 4oz Am	b/Clear b/Clear	#
Unp- HCL- Meoh- Bisulfate-	#	1 Liter Amb. 500 mL Amb. 250 mL Amb. Flashpoint		500 mL 250 mL Col./Ba	Plastic Plastic ecteria		8oz Am 4oz Am 2oz Am	b/Clear b/Clear b/Clear	#
Unp- HCL- Meoh- Bisulfate- DI-	#	1 Liter Amb. 500 mL Amb. 250 mL Amb. Fleshpoint Other Glass		500 mL 250 mL Col./Ba Other F	Plastic Plastic acteria Plastic		8oz Am 4oz Am 2oz Am Enc	b/Clear b/Clear	#
Unp- HCL- Meoh- Bisulfate-	11	1 Liter Amb. 500 mL Amb. 250 mL Amb. Flashpoint		500 mL 250 mL Col./Ba Other F Plastic	Plastic Plastic ecteria Plastic Bag		8oz Am 4oz Am 2oz Am	b/Clear b/Clear b/Clear	#
Unp- HCL- Meoh- Bisulfate- DI- Thiosulfate-	11	1 Liter Amb. 500 mL Amb. 250 mL Amb. Flashpoint Other Glass SOC Kit		500 mL 250 mL Col./Ba Other F Plastic Zipk	Plastic Plastic acteria Plastic Bag ack		8oz Am 4oz Am 2oz Am Enc	b/Clear b/Clear b/Clear	#
Unp- HCL- Meoh- Bisulfate- DI- Thiosulfate- Sulfuric-	11	1 Liter Amb. 500 mL Amb. 250 mL Amb. Flashpoint Other Glass SOC Kit Perchlorate	14	500 mL 250 mL Col./Ba Other F Plastic	Plastic Plastic acteria Plastic Bag ack	4	8oz Am 4oz Am 2oz Am Enc	b/Clear b/Clear b/Clear	#
Unp- HCL- Meoh- Bisulfate- DI- Thiosulfate- Sulfuric-	1	1 Liter Amb. 500 mL Amb. 250 mL Amb. Flashpoint Other Glass SOC Kit Perchlorate Containers:		500 mL 250 mL Col./Ba Other F Plastic Zipk	Plastic Plastic ecteria Plastic Bag ock Media		8oz Am 4oz Am 2oz Am End Frozen:	b/Clear b/Clear b/Clear core	#
Unp- HCL- Meoh- Bisulfate- DI- Thiosulfate- Sulfuric-	#	1 Liter Amb. 500 mL Amb. 250 mL Amb. Flashpoint Other Glass SOC Kit Perchlorate	14	500 mL 250 mL Col./Ba Other F Plastic Ziplo Unused N	Plastic Plastic ecteria Plastic Bag ock Media	4	8oz Am 4oz Am 2oz Am Enc Frozen:	ab/Clear ab/Clear ab/Clear core	#
Unp- HCL- Meoh- Bisulfate- DI- Thiosulfate- Sulfuric- Vials Unp-	#	1 Liter Amb. 500 mL Amb. 250 mL Amb. Flashpoint Other Glass SOC Kit Perchlorate Containers: 1 Liter Amb.	14	500 mL 250 mL Col./Ba Other F Plastic Ziple Unused M 1 Liter F 500 mL	Plastic Plastic ecteria Plastic Bag ock Media Plastic Plastic	4	8oz Am 4oz Am 2oz Am End Frozen:	Amb.	#
Unp- HCL- Meoh- Bisulfate- DI- Thiosulfate- Sulfuric- Vials Unp- HCL- Meoh- Bisulfate-	#	1 Liter Amb. 500 mL Amb. 250 mL Amb. Flashpoint Other Glass SOC Kit Perchlorate Containers: 1 Liter Amb. 500 mL Amb.	14	500 mL 250 mL Col./Ba Other F Plastic Ziple Unused N 1 Liter F 500 mL 250 mL	Plastic Plastic ecteria Plastic Bag ock Media Plastic Plastic Plastic Plastic	4	8oz Am 4oz Am 2oz Am Enc Frozen: 16 oz 8oz Am 4oz Am	Amb.	#
Unp- HCL- Meoh- Bisulfate- DI- Thiosulfate- Sulfuric- Vials Unp- HCL- Meoh- Bisulfate- DI-	#	1 Liter Amb. 500 mL Amb. 250 mL Amb. Flashpoint Other Glass SOC Kit Perchlorate Containers: 1 Liter Amb. 500 mL Amb. 250 mL Amb.	14	500 mL 250 mL Col./Ba Other F Plastic Ziple Unused M 1 Liter F 500 mL	Plastic Plastic Plastic Bag Dock Media Plastic Plastic Plastic Plastic Point	4	8oz Am 4oz Am 2oz Am Enc Frozen: 16 oz 8oz Am 4oz Am	Amb. b/Clear b/Clear core	#
Unp- HCL- Meoh- Bisulfate- DI- Thiosulfate- Sulfuric- Vials Unp- HCL- Meoh- Bisulfate- DI- Thiosulfate- DI- Thiosulfate-	#	1 Liter Amb. 500 mL Amb. 250 mL Amb. Flashpoint Other Glass SOC Kit Perchlorate Containers: 1 Liter Amb. 500 mL Amb. 250 mL Amb. Col./Bacteria	14	500 mL 250 mL Col./Ba Other F Plastic Ziple Unused M 1 Liter F 500 mL 250 mL Flash	Plastic Plastic ecteria Plastic Bag ock Media Plastic Plastic Plastic Plastic Plastic Plastic Plastic Plastic	4	8oz Am 4oz Am 2oz Am Enc Frozen: 16 oz 8oz Am 4oz Am 2oz Am	Amb. b/Clear b/Clear core	#
Unp- HCL- Meoh- Bisulfate- DI- Thiosulfate- Sulfuric- Vials Unp- HCL- Meoh- Bisulfate- DI- Thiosulfate- Sulfuric-	#	1 Liter Amb. 500 mL Amb. 250 mL Amb. Flashpoint Other Glass SOC Kit Perchlorate Containers: 1 Liter Amb. 500 mL Amb. 250 mL Amb. Col./Bacteria Other Plastic	14	500 mL 250 mL Col./Ba Other F Plastic Ziple Unused M 1 Liter F 500 mL 250 mL Flash Other G	Plastic Plastic Coteria Plastic Coteria Plastic Coteria Plastic Coteria Plastic	4	8oz Am 4oz Am 2oz Am Enc Frozen: 16 oz 8oz Am 4oz Am 2oz Am Enc	Amb. b/Clear b/Clear core	#
Unp- HCL- Meoh- Bisulfate- DI- Thiosulfate- Sulfuric- Vials Unp- HCL- Meoh- Bisulfate- DI-	*	1 Liter Amb. 500 mL Amb. 250 mL Amb. Flashpoint Other Glass SOC Kit Perchlorate Containers: 1 Liter Amb. 500 mL Amb. 250 mL Amb. Col./Bacteria Other Plastic SOC Kit	14	500 mL 250 mL Col./Ba Other F Plastic Ziple Unused M 1 Liter F 500 mL 250 mL Flash Other G Plastic	Plastic Plastic Coteria Plastic Coteria Plastic Coteria Plastic Coteria Plastic	4	8oz Am 4oz Am 2oz Am Enc Frozen: 16 oz 8oz Am 4oz Am 2oz Am Enc	Amb. b/Clear b/Clear core	# # **