

NOTICE OF INTENT FOR DISCHARGE PURSUANT TO MASSACHUSETTS REMEDIATION GENERAL PERMIT MAG910000

SCAPE BOYLSTON

BOSTON, MASSACHUSETTS

APRIL 3, 2020

Prepared For:

United States Environmental Protection Agency
Office of Ecosystem Protection
5 Post Office Square, Suite 100
Mail Code OEP06-01
Boston, MA 02109-3912

On Behalf Of:

Suffolk Construction

PROJECT NO. 6546

2269 Massachusetts Avenue Cambridge, MA 02140 www.mcphailgeo.com (617) 868-1420

April 3, 2020

United States Environmental Protection Agency Office of Ecosystem Protection 5 Post Office Square, Suite 100 Mail Code OEP06-01 Boston, MA 02109-3912

Attention: EPA/OEP RGP Applications Coordinator

Reference: SCAPE Boylston, 1252-1270 Boylston Street; Boston, Massachusetts

Notice of Intent for Temporary Construction Dewatering Discharge;

Massachusetts Remediation General Permit MAG910000

Ladies and Gentlemen:

Enclosed herein is our Notice of Intent for Temporary Construction Dewatering Discharge for the proposed SCAPE Boylston Project to be located at 1252-1270 Boylston Street in Boston, Massachusetts. These services were performed and this permit application was prepared with the authorization of our client, SCAPE Boylston, LLC.

We trust that the above satisfies your present requirements. Should you have any questions or comments concerning the above, please do not hesitate to contact us.

Very truly yours,

McPHAIL ASSOCIATES, LLC

Benjamin E. Downing, P.E.

N:\Working Documents\Reports\6546 RGP 040320.docx

William J. Burns, L.S.P.

BED/wjb

CONTENTS:

1.0 - INTRODUCTION	1
1.1 - GENERAL	1
1.2 - APPLICANT/OPEATOR	
1.3 – SITE OWNER	
2.0 - SITE AND PROJECT DESCRIPTION	2
2.1 - EXISTING SITE CONDITIONS	2
2.2 - PROPOSED DEVELOPMENT	2
2.3 - SITE ENVIRONMENTAL SETTING AND SURROUNDING HISTORICAL PLACES	3
2.4 - SITE AND RELEASE HISTORY	
3.0 - CONSTRUCTION SITE DEWATERING AND TREATMENT	4
3.1 - SITE DEWATERING DETAILS	
3.2 - SUMMARY OF GROUNDWATER ANALYSIS	
3.3 - GROUNDWATER TREATMENT	6
4 0 - SUMMARY AND CONCLUSIONS	6

FIGURES:

FIGURE 1: PROJECT LOCATION PLAN

FIGURE 2: SUBSURFACE EXPLORATION PLAN

FIGURE 3: STORM DRAIN DISCHARGE FLOW PATH PLAN

FIGURE 4: SCHEMATIC OF TREATMENT SYSTEM

TABLES:

TABLE 1: LABORATORY ANALYTICAL RESULTS - GROUNDWATER

TABLE 2: LABORATORY ANALYTICAL RESULTS - ADDITIONAL GW TESTING

TABLE 3: LABORATORY ANALYTICAL RESULTS - RECEIVING WATER

APPENDICES:

APPENDIX A: LIMITATIONS

APPENDIX B: NOTICE OF INTENT TRANSMITTAL FORM

APPENDIX C: ADDITIONAL NOI SUPPORT INFORMATION

APPENDIX D: LABORATORY ANALYTICAL DATA - GROUNDWATER

APPENDIX E: LABORATORY ANALYTICAL DATA - ADDITIONAL GROUNDWATER

APPENDIX F: LABORATORY ANALYTICAL DATA - SURFACE WATER

APPENDIX G: BEST MANAGEMENT PRACTICE PLAN

1.0 - INTRODUCTION

1.1 - GENERAL

In accordance with the provisions of the Remediation General Permit MAG910000 that has been prepared for the Commonwealth of Massachusetts, the following is a summary of the site and groundwater quality information in support of a Notice of Intent for the temporary discharge of groundwater into the Charles River via the City of Boston municipal storm drain system. The temporary discharge of construction dewatering will occur as part of the work associated with the proposed SCAPE Boylston development to be located at 1252-1270 Boylston Street in Boston, Massachusetts (subject site). Refer to **Figure 1**, Project Location Plan for the general site locus.

These services were performed and this permit application was prepared with the authorization of our client, SCAPE Boylston, LLC. These services are subject to the limitations contained in **Appendix A**.

The required Notice of Intent Form contained in the RGP permit and Boston Water & Sewer Dewatering Discharge Permit Application are included in **Appendix B**. This project is considered Activity Category III-G as defined in the RGP. Based on the activity category, and in accordance with the RGP, contamination Type A: Inorganics, Type B: Non-Halogenated Volatile Organic Compounds (VOCs), Type D: Non-Halogenated Semi-Volatile Organic Compounds (SVOCs), and Type F: Fuel Parameters as defined in Table 2 of the RGP apply. Water Quality Based Effluent Limitations (WQBELs) were calculated in accordance with Appendix V of the RGP for the parameters detected.

1.2 - APPLICANT/OPEATOR

The applicant for the Notice of Intent-Remediation General Permit is:

Suffolk Construction 65 Allerton Street Boston, MA 02119

Attention: Ted Davenport, Senior Project Manager

Tel: 617-517-3529

Email: tdavenport@suffolk.com

1.3 - SITE OWNER

SCAPE Boylston, LLC 22 Boston Wharf Road, 7th Floor Boston, MA 02210

Attention: David Hunt

Tel: 978-979-2065

Email: david.hunt@scape.com

2.0 - SITE AND PROJECT DESCRIPTION

2.1 - EXISTING SITE CONDITIONS

The 1252-1270 Boylston Street site occupies an approximate 33,585 square-foot plan area which fronts onto Boylston Street to the north and is bounded to the east by a Sunoco gas station located at 1250 Boylston Street, to the west by a residential building known as The Veridian located at 1282 Boylston Street, and to the south by Private Alley 937.

The site is occupied by two (2), 3-story concrete/masonry buildings which occupy the majority of the property. On the Boylston Street side, the buildings consist of 2 stories above-grade with 1 below-grade level. Existing ground surface on the east side of the site slopes downward from north to south such that the rear of the buildings consists of 3 stories above-grade. It is understood that the basements of the existing buildings extend out beneath the sidewalk along Boylston Street. There is paved parking space located along Public Alley 937 on the rear of the buildings.

Existing ground surface on the Boylston Street side of the property is at approximately Elevation +19.5 and ground surface on the private alley side of the property is at approximately Elevation +13.5. The limits of the subject site are shown on the enclosed **Figure 2**.

2.2 - PROPOSED DEVELOPMENT

It is understood that the proposed development includes the demolition of the existing buildings followed by the construction of a 2-level podium structure on the 1270 Boylston Street parcel which will be connected to a C-shaped 11- to 15-story residential tower with a mechanical penthouse on the 1252-1268 Boylston Street parcel. The above-grade construction will be concrete framed and will occupy an approximate 23,000 square-foot plan area.

One (1) to two (2) levels of below-grade space will extend below the proposed podium and tower structures and will occupy an approximate 23,500 square-foot rectangular plan area. The lowest level slab will be located at Elevation -4, which corresponds to depths of approximately 23.5 to 17.5 feet below ground surface.

2.3 – SITE ENVIRONMENTAL SETTING AND SURROUNDING HISTORICAL PLACES

Based on an on-line edition of the Massachusetts Geographic Information Systems MassDEP MCP Numerical Ranking System Map, the subject site is not located within the boundaries of a Sole Source Aquifer, Potentially Productive Aquifer or within a Zone II, Interim Wellhead Protection Area as defined by the Massachusetts Department of Environmental Protection. Further, there are no public drinking water supply wells, no Areas of Critical Environmental Concern, no fish habitats, no habitats of Species of Special Concern or Threatened or Endangered Species within specified distances of the subject site.

The Resource Map indicates that there are no water bodies or wetland areas at the subject site. The closest body of water is the Back Bay Fens located approximately 450 feet to the southeast of the subject site. No areas designated as solid waste sites (landfills) are noted as being located within 1,000 feet of the site. A copy of the Massachusetts DEP Phase I Site Assessment Map is included in **Appendix C**.

A review of information provided by the U.S. Fish and Wildlife Service in an Information for Planning and Conservation (IPaC) Trust Resource Report for the project site did not identify the presence of threatened or endangered species at or in the vicinity of the discharge location and/or discharge outfall. Further, the Trust Resource Report did not identify the presence of a critical habitat in the vicinity of the discharge outfall and/or discharge location. Based upon the above, the site is considered a Criterion A pursuant to Appendix IV of the RGP. A copy of the IPaC Trust Resource Report and U.S. Fish and Wildlife Service's Nationwide Standard Conservation Measures are included in **Appendix C**.

The subject site is not listed on the State or National Register of Historical Places. The nearest locations that are listed on the State Register of Historical Places are the Sumner Apartment Building located approximately 125 feet southwest of the site, the H.C. Birburie Town Houses located approximately 200 feet to the south of the site, and the Back Bay Fens Victory Garden located approximately 350 feet to the east of the site. Copies of the State of Massachusetts MACRIS reports are included in **Appendix C**.

As further discussed below, treated construction dewatering effluent will be discharged into the City of Boston dedicated storm drain system that flows into the Charles River. The dewatering of groundwater at the subject site will be temporary and intermittent. Groundwater discharged as part of the proposed project will be controlled and monitored. Treatment systems will consist of temporary structures. Therefore, based on the anticipated duration of construction dewatering and the location of its discharge into the Charles River, construction dewatering activities are not considered to affect the historical elements of the nearby historical listings. Hence, the site meets Permit Eligibility Criterion B in accordance with Appendix III of the RGP.

2.4 - SITE AND RELEASE HISTORY

Based on the available records, the subject site was undeveloped prior to the late 1910s. The existing 1252-1268 Boylston Street building was constructed in 1923 and was utilized as an auto sales & service center until at least 1957. Various shops, restaurants, office spaces, and a bowling alley have also occupied the building since it was constructed.

The existing 1270 Boylston Street building was constructed in 1919 and has been utilized for catering and/or as a restaurant space since that time.

MCP Release History

In 2019, results of laboratory analyses identified Reportable Concentrations of petroleum compounds, VOCs, and SVOCs in soil and/or groundwater at the subject site. A Release Notification Form (RNF) was submitted to the DEP on behalf of the site owner on April 19, 2019 and Release Tracking Number (RTN) 3-35573 was assigned to the site.

With regards to soil, a Reportable Concentration of 2-methylnaphthalne was identified in fill material in an isolated area on the northern edge of the site. Reportable Concentrations of VOCs and petroleum compounds were identified in samples of the natural alluvial sand deposit obtained from the central and southwestern portions of the site.

The Reportable Concentrations of petroleum compounds in groundwater were identified in samples obtained from monitoring wells located within the southwestern corner of the site.

3.0 - CONSTRUCTION SITE DEWATERING AND TREATMENT

3.1 - SITE DEWATERING DETAILS

Groundwater was observed at the subject site ranging from about Elevation +6.3 to Elevation +8.2, which corresponds to depths ranging from approximately 6 to 13 feet below ground surface.

Excavations for the below-grade space will extend to approximately Elevation -8, which corresponds to depths ranging from 27.5 to 21.5 feet below ground surface. Below-grade construction of the proposed development will be conducted as a mass excavation within a continuously interlocking steel sheet pile perimeter which will create a temporary groundwater cut off during construction. It is anticipated that the rate of construction dewatering to facilitate excavation will be on the order of 100 gallons per minute (gpm). This estimate does not include surface run-off which will be removed from the excavation during periods of precipitation.

Given the extent of excavation, temporary on-site collection and recharge of groundwater is not feasible as part of the proposed construction activities. As a result, construction dewatering will require the discharge of collected groundwater into the municipal storm drain system under the requested Remediation General Permit.

A review of available subgrade utility plans provided by the Boston Water and Sewer Commission indicates that stormwater is collected within catch basins along Boylston Street and connects to the stormwater drain system. The stormwater drains beneath this portion of Boylston Street run west before shifting north beneath Jersey Street, northeast beneath Brookline Avenue, north beneath Deerfield Street, and then run under Storrow Drive and eventually discharge into the Charles River at SDO 042. The location of the relevant stormwater catch basin in relation to the subject site is indicated on **Figure 2**. The flow path of the discharge is shown in plans provided by the Boston Water and Sewer Commission which is included in **Figure 3**.

3.2 - SUMMARY OF GROUNDWATER ANALYSIS

In February 2020, McPhail Associates, LLC obtained one (1) sample of groundwater at the subject site from monitoring well MA-3 (OW). The groundwater sample was submitted to a certified laboratory for analysis for the presence of compounds required to be tested for under the EPA's Remediation General Permit (RGP) application, including total suspended solids (TSS), pH, total residual chlorine, cyanide, ammonia, total petroleum hydrocarbons (TPH), volatile organic compounds (VOCs) including total benzene, toluene, ethylbenzene and xylenes (BTEX), semi-volatile organic compounds (SVOCs), and total recoverable metals. Analytical results of the testing of the above referenced groundwater sample that was obtained in February 2020 are summarized on the enclosed **Table 1**, and laboratory data is included in **Appendix D**. In addition, additional groundwater testing was performed at the subject site as part of a due diligence assessment in early 2019 and as part of MCP compliance efforts in March 2020, the results of which are included on the enclosed **Table 2** and laboratory data is included in **Appendix E**.

An upstream surface water sample was obtained from the Charles River (42° 21′ 05″ N, 71° 05′ 57″ W) in March 2020 and analyzed for the presence of pH, total metals, hardness and ammonia nitrogen. The approximate location of sample collection is indicated on the enclosed **Figure 3**, analytical test results are included on the enclosed **Table 3**, and laboratory data is included in **Appendix F**.

A Dilution Factor (DF) was calculated for the detected levels of metals pursuant to the procedure contained in RGP MAG910000, Appendix V. The purpose of the DF calculation is to establish Total Recoverable Limits for metals, taking into consideration the anticipated dilution of the detected analyte upon discharge into the Charles River. The calculated DF was then used to find the appropriate Dilution Range Concentrations (DRCs) contained in MAG910000, Appendix IV. The Minimum Flow Rate calculated by the USGS Streamstats GIS database at the location of discharge into the Charles River for 7 consecutive days with a recurrence interval of 10 years (7Q10 flow) is 15.9 MGD thus resulting in a DF of 111.4 assuming a design flow rate of 100 GPM.

In summary, groundwater testing performed at the subject site has detected concentrations of iron, cyanide, total BTEX compounds, benzene, MTBE and Tert-Butyl Alcohol which exceed the applicable Water Quality Based Effluent Limitations contained in Table 2 of

Section 2.1 of the RGP. Additionally, the detected concentrations of Total BTEX, benzene MTBE and Tert-Butyl Alcohol exceed the applicable technology based effluent limitations contained in Table 2 of Section 2.1 of the RGP. The detected concentrations of the tested constituents detected in the on-site groundwater and surface water samples are further summarized in the MA Limits book tables that are included in **Appendix C**. It is anticipated that the construction dewatering treatment system that is discussed below, which includes granular activated carbon will reduce concentrations of BTEX, MTBE and Tert-Butyl Alcohol in the effluent to below the applicable TBELs.

In accordance with the RGP, and given that the subject site is a listed DEP release site, the proposed dewatering associated with this permit application is considered Contaminated/Formerly Contaminated Site Dewatering (Category III). Given that the site contamination is considered "Known", this project is considered Activity Category III-G as defined in the RGP. Based on the activity category, and in accordance with the RGP, contamination Type A: Inorganics, Type B: Non-Halogenated VOCs, and Type F: Fuel Parameters as defined in Table 2 of the RGP apply.

3.3 - GROUNDWATER TREATMENT

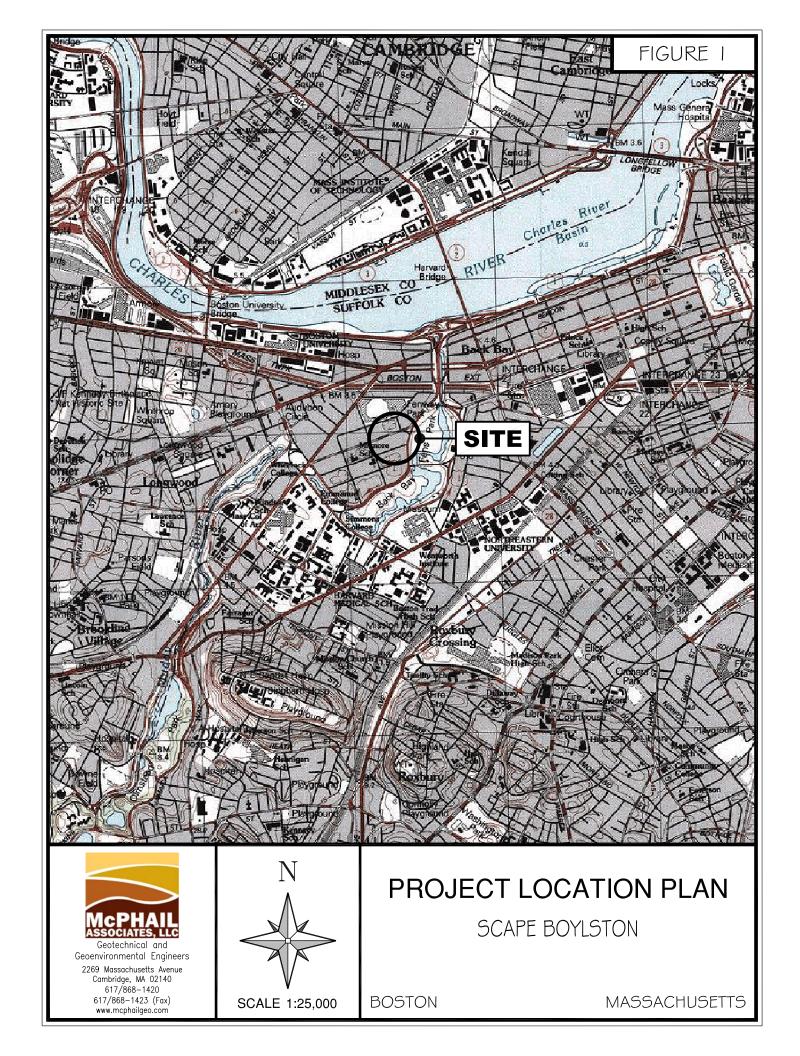
Based upon the anticipated rates of construction dewatering in conjunction with the results of the above referenced groundwater analyses, it is our opinion that a treatment system consisting of an approximately 20,000-gallon capacity settling tank, bag filters, granular activated carbon (GAC) filters in series is necessary to meet the effluent limitations of the RGP. These treatment components will be used to settle out particulate matter containing inorganic compounds and lower concentrations of dissolved petroleum related constituents in the effluent to meet the applicable discharge limits established by the US EPA prior to discharge. If the results of compliance monitoring indicate elevated concentrations of metals in the effluent an ion resin exchange filter may be added as additional component to the treatment system. In addition, if increased pH levels are detected in the effluent (such as during the placement of concrete for the foundation system) carbon dioxide gas for pH adjustment will be utilized, if necessary, as construction activities at the subject site transition from excavation to installation of concrete footings. If the addition of concrete requires a pH conditioner to meet permit effluent limitations or applicable water quality standards, a Notice of Change (NOC) will be filed on behalf of the operator with the specific laboratory data sheets and necessary information attached.

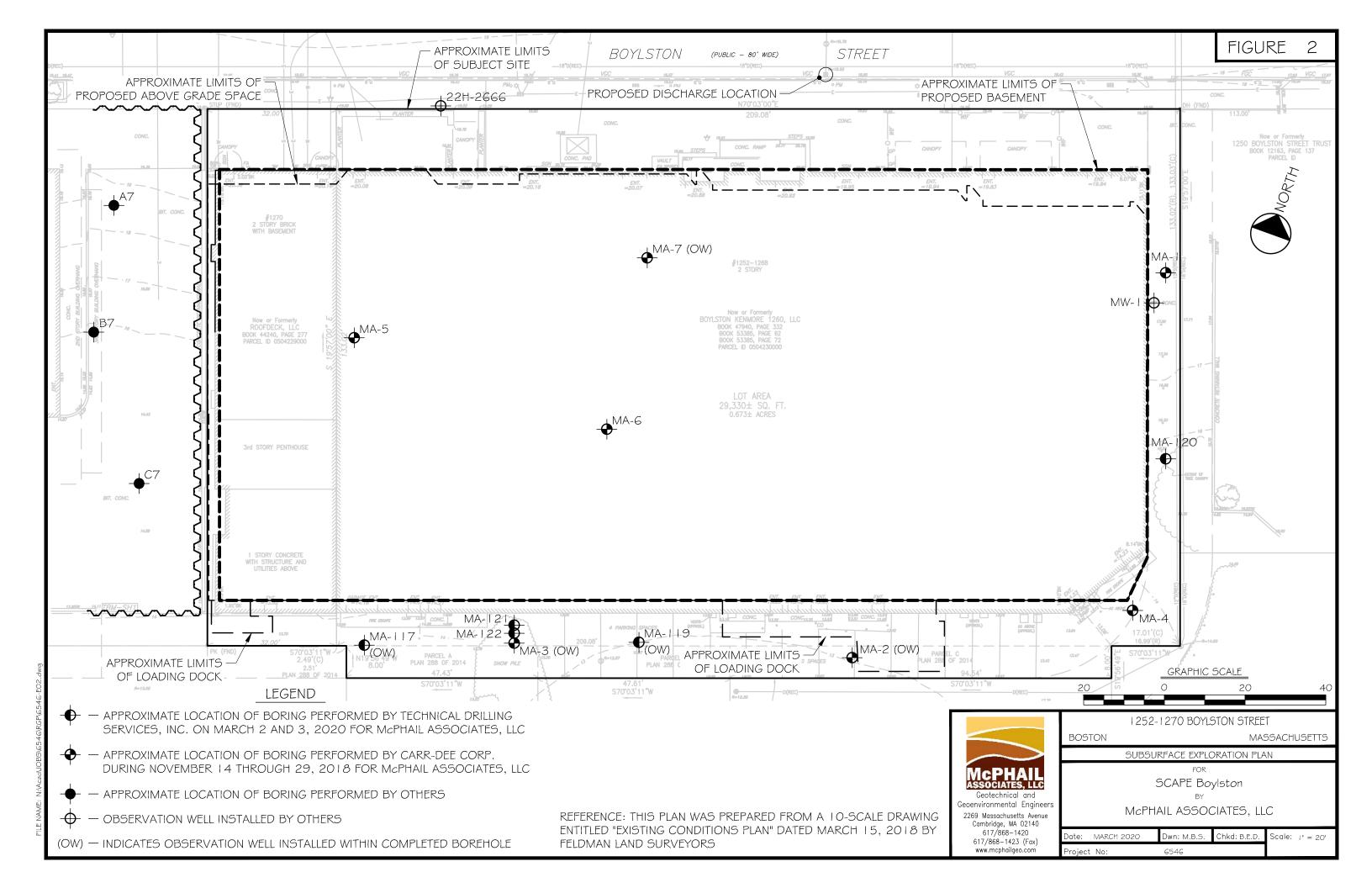
A schematic of the treatment system is shown on **Figure 4**.

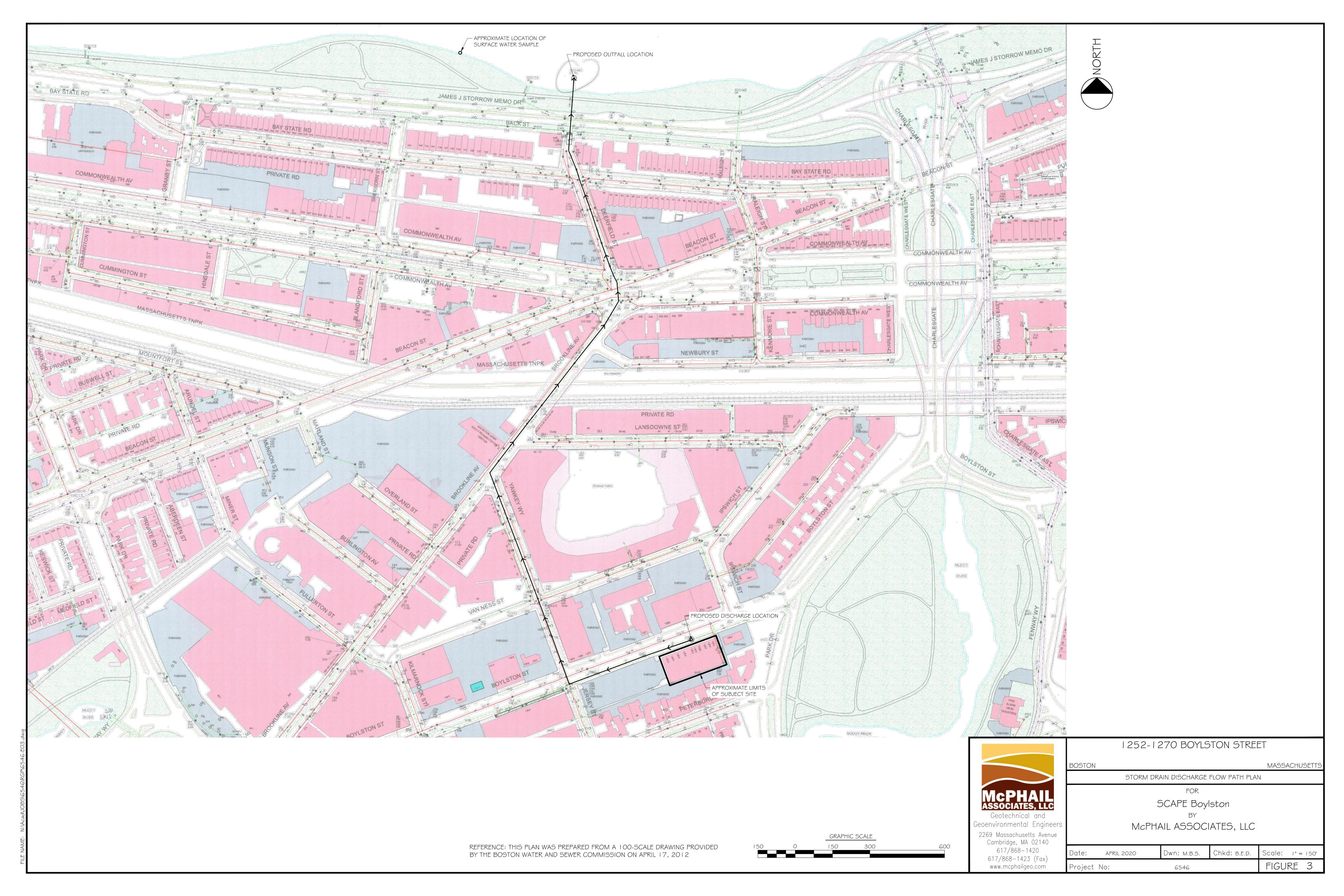
A Best Management Practices Plan (BMPP) has been prepared as **Appendix G** to the RGP and will be posted at the site during the time period that temporary construction dewatering is occurring at the site.

4.0 - SUMMARY AND CONCLUSIONS

The purpose of this report is to summarize site environmental conditions and groundwater data to support a Notice of Intent to discharge under the Remediation General Permit, for




the off-site discharge of dewatered groundwater which will be encountered during the redevelopment of the subject site. The groundwater testing results reported in this application have been provided to the site owner.


Based on the results of the above referenced groundwater analyses, treatment of construction dewatering effluent will be necessary to meet the discharge limits for inorganic compounds and petroleum related constituents such as total BTEX, MTBE, and Tert-Butyl Alcohol established by the US EPA prior to off-site discharge. The proposed construction dewatering effluent treatment system will consist of a 20,000-gallon capacity settling tank, bag filters, granular activated carbon (GAC) filters and, if required, pH adjustment tank and ion resin media filters in series in order to meet the discharge limits established by the RGP. However, should the effluent monitoring results identify concentrations of contaminants that are in excess of the limits established by the RGP, additional mitigative measures will be implemented to meet the allowable discharge limits.

FIGURES

Date: MARCH 2020

Project No:

617/868-1423 (Fax) www.mcphailgeo.com

Dwn: M.B.S.

6546

Scale: N.T.S.

TABLES

Table 1 Laboratory Analytical Resuts - Groundwater

SCAPE Boylston Boston, MA Project No. 6289

LOCATION SAMPLING DATE LAB SAMPLE ID	Water Quality Based Effluent Limitation	Technology Based Effluent Limitation	MA-3 (OW) 2/14/2020 L2006971-01
SAMPLE TYPE		Limitation	Groundwater
A. Inorganics (ug/l)			
Nitrogen, Ammonia	Reporting	Reporting	7040
Chloride	Reporting	Reporting	1210000
Chlorine, Total Residual	11	200	ND(20)
Solids, Total Suspended	3000	30000	17000
pH (H)	6.5-8.3	6.5-8.3	6.8
Hardness Total	640	206	375000
Antimony, Total Arsenic, Total	10	104	ND(4) ND(1)
Cadmium, Total	0.25	10.2	ND(0.2)
Chromium, Total	0.23	10.2	3.07
Chromium, Trivalent	74	323	ND(10)
Chromium, Hexavalent	11	323	ND(10)
Copper, Total	9	242	1.59
Iron, Total	1000	5000	4820
Lead, Total	2.5	160	ND(1)
Mercury, Total	0.77	0.739	ND(0.2)
Nickel, Total	52	1450	ND(2)
Selenium, Total	5	235.8	ND(5)
Silver, Total	3.2	35.1 420	ND(0.4)
Zinc, Total Cyanide, Total	120 5.2	178	ND(10) 13
B. Non-Halogenated Volatile			13
Total BTEX	100	100	141
Benzene	5	5	110
Toluene	-		13
Ethylbenzene			8.6
p/m-Xylene			9.4
o-xylene			ND(2.5)
1,4-Dioxane	200	200	ND(250)
Acetone	7.97	7.97	ND(25)
Phenolics, Total D. Non-Halogenated Semi-\	300	1080	ND(30)
Bis(2-ethylhexyl)phthalate	olatile Organic Con	npounas (ug/1)	ND(2.2)
Butyl benzyl phthalate			ND(2.2) ND(5)
Di-n-butylphthalate	Sum = 3	Sum = 190	ND(5)
Di-n-octylphthalate	Ju J		ND(5)
Diethyl phthalate			ND(5)
Dimethyl phthalate	2.2	101	ND(5)
Total Group I PAHs	As Individual PAHs	1	ND
Benzo(a)anthracene	0.0038		ND(0.1)
Benzo(a)pyrene	0.0038		ND(0.1)
Benzo(b)fluoranthene	0.0038	As Total Group I	ND(0.1)
Benzo(k)fluoranthene	0.0038	PAHs	ND(0.1)
Chrysene Dibenzo(a,h)anthracene	0.0038 0.0038		ND(0.1) ND(0.1)
Indeno(1,2,3-cd)pyrene	0.0038		ND(0.1)
Total Group II PAHs	100	100	0.37
Acenaphthene			ND(0.1)
Acenaphthylene	1		ND(0.1)
Anthracene	As Total Group II	As Total Group II	ND(0.1)
Benzo(ghi)perylene	PAHs including	PAHs including	ND(0.1)
Fluoranthene	Naphthalene	Naphthalene	ND(0.1)
Fluorene			ND(0.1)
Phenanthrene	22		ND(0.1)
Naphthalene	20	20	0.37
Pyrene			ND(0.1)
F. Fuels Parameters (ug/l) TPH, SGT-HEM	5000	5000	ND(4000)
Ethanol	Reporting	Reporting	ND(4000) ND(20000)
Methyl tert butyl ether	20	70	42
Tert-Butyl Alcohol	120	120	810

TABLE 2 LABORATORY ANALYTICAL RESULTS - ADDITIONAL GW TESTING

SCAPE Boston Boston, Massachusetts Project No. 6546

	DCCW 2								
LOCATION	RCGW-2	MW-1	MA-2 (OW)	MA-3 (OW)	MA-3 (OW)	MA-3 (OW)	MW-7 (OW)	MA-117 (OW)	MA-119 (OW)
SAMPLING DATE	Reporting Standards	1/7/2019	2/4/2019	1/7/2019	3/29/2019	3/9/2020	1/7/2019	3/9/2020	3/9/2020
LAB SAMPLE ID	2014	L1900731-01		L1900731-02		L2010509-01		L2010509-02	L2010509-03
SAMPLE TYPE	2014	Groundwater	Groundwater	Groundwater	Groundwater	WATER	Groundwater	WATER	WATER
MCP Dissolved Metals (ug/l) Antimony, Dissolved	0000			ND(50)					
	8000	-	-		-	-	-	-	-
Arsenic, Dissolved Beryllium, Dissolved	900 200	<u>-</u> -	-	ND(5) ND(5)	-	<u>-</u>	-	-	-
Cadmium, Dissolved	4	-	-	ND(3) ND(4)	-		_	-	-
Chromium, Dissolved	300	-	-	ND(4) ND(10)	-		-	-	-
Copper, Dissolved	100000	-	<u>-</u>	ND(10)	-		<u>-</u>		-
Lead, Dissolved	100000	-		ND(10)	-		_	-	_
Mercury, Dissolved	20	-	_	ND(0.2)	-		_	_	_
Nickel, Dissolved	200	-	_	ND(0.2)	-	_	_	-	-
Selenium, Dissolved	100	-	_	ND(10)	-	_	_	-	-
Silver, Dissolved	7	-	_	ND(7)	-	_	_	-	_
Thallium, Dissolved	3000	_	_	ND(20)	-	_	_	-	_
Zinc, Dissolved	900	-	-	ND(50)	-	_	-	-	-
MCP Volatile Organics* (ug/l)				112 (00)					
Chlorobenzene	200	ND(1)	ND(1)	ND(10)	-	-	18	-	-
Benzene	1000	ND(0.5)	6.4	100	-	-	ND(0.5)	-	-
Toluene	40000	ND(1)	1.2	11	-	-	ND(1)	-	-
Ethylbenzene	5000	ND(1)	ND(1)	12	-	-	ND(1)	-	-
Methyl tert butyl ether	5000	ND(2)	29	35	-	-	2.5	-	-
p/m-Xylene	3000	ND(2)	2.8	ND(20)	-	-	ND(2)	-	-
Xylenes, Total	3000	ND(1)	2.8	ND(10)	-	-	ND(1)	-	-
Isopropylbenzene	100000	ND(2)	7.6	38	-	-	ND(2)	-	-
n-Propylbenzene	10000	ND(2)	7.3	37	-	-	ND(2)	-	-
SUM		ND	56.6	233	-	-	20.5	-	-
Extractable Petroleum Hydrocarbo	ns with Targe	t Analytes (ug/	(I)						
C9-C18 Aliphatics	5000	ND(100)	-	ND(100)	-	ND(100)	ND(100)	ND(100)	131
C19-C36 Aliphatics	50000	ND(100)	-	ND(100)	-	ND(100)	ND(100)	ND(100)	ND(100)
C11-C22 Aromatics	5000	ND(100)	-	ND(100)	-	ND(100)	ND(100)	ND(100)	106
Naphthalene	700	ND(10)	-	ND(10)	-	-	ND(10)	-	-
2-Methylnaphthalene	2000	ND(10)	-	ND(10)	-	-	ND(10)	-	-
Acenaphthylene	40	ND(10)	-	ND(10)	-	-	ND(10)	-	=
Acenaphthene	10000	ND(10)	-	ND(10)	-	-	ND(10)	-	-
Fluorene	40	ND(10)	-	ND(10)	-	-	ND(10)	-	-
Phenanthrene	10000	ND(10)	-	ND(10)	-	-	ND(10)	-	-
Anthracene	30	ND(10)	-	ND(10)	-	-	ND(10)	-	-
Fluoranthene	200	ND(10) ND(10)	-	ND(10) ND(10)	-	-	ND(10) ND(10)	-	-
Pyrene Benzo(a)anthracene	1000	ND(10) ND(10)	-	ND(10) ND(10)	-		ND(10) ND(10)	-	-
Chrysene	70	ND(10)	<u>-</u>	ND(10)	-	<u>-</u>	ND(10)	-	-
Benzo(b)fluoranthene	400	ND(10)	<u>-</u>	ND(10)	-	<u> </u>	ND(10)	-	-
Benzo(k)fluoranthene	100	ND(10)	-	ND(10)	-	<u> </u>	ND(10)	-	_
Benzo(a)pyrene	500	ND(10)	-	ND(10)	-	_	ND(10)	-	-
Indeno(1,2,3-cd)Pvrene	100	ND(10)	-	ND(10)	-	_	ND(10)	-	-
Dibenzo(a,h)anthracene	40	ND(10)	_	ND(10)	-	_	ND(10)	-	-
Benzo(ghi)perylene	20	ND(10)	-	ND(10)	-	_	ND(10)	-	_
Volatile Petroleum Hydrocarbons v				(=0)			(=0)		
C9-C10 Aromatics	4000	ND(50)	192	335	ND(500)	ND(1000)	ND(50)	ND(1000)	ND(1000)
C5-C8 Aliphatics	3000	78.8	758	4550	5520	5910	78.2	7040	7910
C9-C12 Aliphatics	5000	ND(50)	73.1	174	654	ND(1000)	ND(50)	ND(1000)	1120
Benzene	1000	-	-	-	-	145	-	116	ND(20)
Toluene	40000	-	-	-	-	ND(20)	-	ND(20)	ND(20)
Ethylbenzene	5000	-	-	-	-	ND(20)	-	ND(20)	190
p/m-Xylene	3000	-	-	-	-	ND(20)	-	ND(20)	ND(20)
o-Xylene	3000	-	-	-	-	ND(20)	-	ND(20)	ND(20)
Methyl tert butyl ether	5000	-	-	-	-	ND(30)	-	ND(30)	ND(30)
Naphthalene	700	-	-	-	-	ND(40)	-	ND(40)	ND(40)

Table 3 Laboratory Analytical Resuts - Receiving Water

SCAPE Boylston Boston, MA Project No. 6289

LOCATION SAMPLING DATE LAB SAMPLE ID SAMPLE TYPE	2002 EPA - Freshwater Aquatic Life Chronic Criteria	CHARLES RIVER-BU 3/11/2020 L2011007-01 WATER
A. Inorganics (ug/l)		
Nitrogen, Ammonia		ND(75)
Chloride	230000	152000
pH (H)		7.4
Hardness		71000
Antimony, Total		ND(4)
Arsenic, Total	150	ND(1)
Cadmium, Total	0.25	ND(0.2)
Chromium, Total		ND(1)
Chromium, Trivalent	74	ND(10)
Chromium, Hexavalent	11	ND(10)
Copper, Total		2.04
Iron, Total	1000	526
Lead, Total	2.5	2.82
Mercury, Total	0.77	ND(0.2)
Nickel, Total	52	ND(2)
Selenium, Total	5	ND(5)
Silver, Total		ND(0.4)
Zinc, Total	120	13.02

APPENDIX A:

LIMITATIONS

LIMITATIONS

The purpose of this report is to present the results of testing of groundwater samples obtained from on-site monitoring wells in connection with the development of the SCAPE Boylston project to be located at 1252-1270 Boylston Street in Boston, Massachusetts, in support of an application for approval of construction site dewatering discharge into surface waters of the Commonwealth of Massachusetts under EPA's Massachusetts Remediation General Permit MAG910000.

The observations were made under the conditions stated in this report. The conclusions presented above were based on these observations. If variations in the nature and extent of subsurface conditions between the spaced subsurface explorations become evident in the future, it will be necessary to re-evaluate the conclusions presented herein after performing on-site observations and noting the characteristics of any variations.

The conclusions submitted in this report are based in part upon laboratory test data obtained from analysis of groundwater samples, and are contingent upon their validity. The data have been reviewed, and interpretations have been made in the text. It should also be noted that fluctuations in the types and levels of contaminants and variations in their flow paths may occur due to changes in seasonal water table, past practices used at the site, and other factors.

Laboratory analyses have been performed for specific constituents during the course of this assessment, as described in the text.

This report and application have been prepared on behalf of and for the exclusive use of Suffolk Construction and SCAPE Boylston, LLC. This report and the findings contained herein shall not, in whole or in part, be disseminated or conveyed to any other party, other than submission to relevant governmental agencies, nor used in whole or in part by any other party without the prior written consent of McPhail Associates, LLC.

APPENDIX B: NOTICE OF INTENT TRANSMITTAL FORM

II. Suggested Format for the Remediation General Permit Notice of Intent (NOI)

A. General site information:

1. Name of site:	Site address: 1252-1270 Boylston Street						
SCAPE Boylston	Street:						
	City: Boston		State: MA	^{Zip:} 02215			
2. Site owner SCAPE Boylston, LLC	Contact Person: David Hunt CAPE Boylston, LLC						
Oor ii E Boylolon, EEO	Telephone: 978-979-2065	Email: dav	vid.hunt@sc	cape.com			
	Mailing address:						
	Street: 22 Boston Wharf Road, 7th Floor						
Owner is (check one): ☐ Federal ☐ State/Tribal ■ Private ☐ Other; if so, specify:	City: Boston		State: MA	Zip: 02210			
3. Site operator, if different than owner	Contact Person: Ted Davenport						
Suffolk Construction	Telephone: 617-517-3529	Email: tda	venport@si	uffolk.com			
	Mailing address:						
	Street: 65 Allerton Street						
	City: Boston		State: MA	Zip: 02119			
4. NPDES permit number assigned by EPA:	5. Other regulatory program(s) that apply to the site	(check all th	at apply):				
	■ MA Chapter 21e; list RTN(s): 3-35573	□ CERCL	.A				
NDDES request is (sheet all that apply) DCD DCD CCD		□ UIC Pro	ogram				
NPDES permit is (check all that apply: ■ RGP □ DGP □ CGP □ MSGP □ Individual NPDES permit □ Other; if so, specify:	☐ NH Groundwater Management Permit or Groundwater Release Detection Permit:	☐ POTW Pretreatment					
MSOI I marviduai NFDES permit II Outer, ii so, specity.	Ground water resease Detection Fermit.	□ CWA S	ection 404				

B. Receiving water inform	mation:
---------------------------	---------

B. Receiving water information:			
1. Name of receiving water(s):	Waterbody identification of receiving water(s):	Class	ification of receiving water(s):
Charles River	MA72-038	В	
Receiving water is (check any that apply): □ Outstanding	Resource Water □ Ocean Sanctuary □ territorial sea □	Wild and Scenic	River
2. Has the operator attached a location map in accordance	with the instructions in B, above? (check one): ■ Yes □	l No	
Are sensitive receptors present near the site? (check one): If yes, specify:	□ Yes ■ No		
3. Indicate if the receiving water(s) is listed in the State's I pollutants indicated. Also, indicate if a final TMDL is avail 4.6 of the RGP.		nation, contact th	
4. Indicate the seven day-ten-year low flow (7Q10) of the Appendix V for sites located in Massachusetts and Appendix	· ·	ctions in	24.7 cfs
5. Indicate the requested dilution factor for the calculation accordance with the instructions in Appendix V for sites in	1 ,		111.4
6. Has the operator received confirmation from the appropriate yes, indicate date confirmation received: 4/2/20	riate State for the 7Q10and dilution factor indicated? (ch	eck one): Yes	s □ No
7. Has the operator attached a summary of receiving water	sampling results as required in Part 4.2 of the RGP in ac	cordance with the	ne instruction in Appendix VIII?
(check one): ■ Yes □ No			
C. Source water information:			
1 Source water(s) is (check any that apply):			

1. Source water(s) is (check any that apply):			
■ Contaminated groundwater	☐ Contaminated surface water	☐ The receiving water	☐ Potable water; if so, indicate municipality or origin:
Has the operator attached a summary of influent sampling results as required in Part 4.2 of the RGP	Has the operator attached a summary of influent sampling results as required in Part 4.2 of the	☐ A surface water other	
in accordance with the instruction in Appendix VIII? (check one):	RGP in accordance with the instruction in Appendix VIII? (check one):	than the receiving water; if so, indicate waterbody:	☐ Other; if so, specify:
■ Yes □ No	□ Yes □ No		

2. Source water contaminants: BTEX, MTBE, tert-amyl methyl ether, C5-C	8 Aliphatics
a. For source waters that are contaminated groundwater or contaminated surface water, indicate are any contaminants present that are not included in	b. For a source water that is a surface water other than the receiving water, potable water or other, indicate any contaminants present at the maximum concentration in accordance
the RGP? (check one): ☐ Yes ■ No If yes, indicate the contaminant(s) and the maximum concentration present in accordance with the instructions in Appendix VIII.	with the instructions in Appendix VIII? (check one): □ Yes □ No
3. Has the source water been previously chlorinated or otherwise contains resid	dual chlorine? (check one): ☐ Yes ■ No
D. Discharge information	
1. The discharge(s) is a(n) (check any that apply): □ Existing discharge ■ New	w discharge □ New source
Outfall(s): SDO 042	Outfall location(s): (Latitude, Longitude) 42.351111, -71.097500
Discharges enter the receiving water(s) via (check any that apply): □ Direct di	ischarge to the receiving water ■ Indirect discharge, if so, specify:
Discharge indirectly into the Charles River through BWSC system	
☐ A private storm sewer system ■ A municipal storm sewer system If the discharge enters the receiving water via a private or municipal storm sew	ver system:
Has notification been provided to the owner of this system? (check one): ■ Ye	•
Has the operator has received permission from the owner to use such system for obtaining permission: Upon approval of this NOI	or discharges? (check one): ☐ Yes ■ No, if so, explain, with an estimated timeframe for
Has the operator attached a summary of any additional requirements the owner See Appe	r of this system has specified? (check one): ■ Yes □ No endix B for further information
Provide the expected start and end dates of discharge(s) (month/year):	prary Treatment System 06/2020 - 06/2021
Indicate if the discharge is expected to occur over a duration of: less than 1	2 months \square 12 months or more \square is an emergency discharge
Has the operator attached a site plan in accordance with the instructions in D,	above? (check one): ■ Yes □ No

2. Activity Category: (check all that apply)	3. Contamination Type Category: (check	c all that apply)
	a. If Activity Categ	gory I or II: (check all that apply)
	 □ A. Inorganics □ B. Non-Halogenated Volatile Organi □ C. Halogenated Volatile Organic Cor □ D. Non-Halogenated Semi-Volatile Organi □ E. Halogenated Semi-Volatile Organi □ F. Fuels Parameters 	mpounds Organic Compounds
☐ I – Petroleum-Related Site Remediation ☐ II – Non-Petroleum-Related Site Remediation	b. If Activity Category III, IV	V, V, VI, VII or VIII: (check either G or H)
 III – Contaminated Site Dewatering IV – Dewatering of Pipelines and Tanks V – Aquifer Pump Testing VI – Well Development/Rehabilitation VII – Collection Structure Dewatering/Remediation VIII – Dredge-Related Dewatering 	 ■ G. Sites with Known Contamination c. If Category III-G, IV-G, V-G, VI-G, VII-G or VIII-G: (check all that apply) ■ A. Inorganics ■ B. Non-Halogenated Volatile Organic Compounds 	☐ H. Sites with Unknown Contamination d. If Category III-H, IV-H, V-H, VI-H, VII-H or
	 □ C. Halogenated Volatile Organic Compounds □ D. Non-Halogenated Semi-Volatile Organic Compounds □ E. Halogenated Semi-Volatile Organic Compounds ■ F. Fuels Parameters 	VIII-H Contamination Type Categories A through F apply

4. Influent and Effluent Characteristics

Known		or or believed					luent	Effluent Limitations	
Parameter or believed	# of samples		Test method (#)	Detection limit (µg/l)	Daily maximum (µg/l)	Daily average (µg/l)	TBEL	WQBEL	
A. Inorganics									
Ammonia		✓	1 +	121,4500+	75 +	7040 +	7040 +	Report mg/L	
Chloride		✓	1 +	443000 +	l	1210000 +	1210000 ±	Report μg/l	
Total Residual Chlorine	✓		1 +	121,4500 +		<dl td="" ±<=""><td><dl td="" ±<=""><td>0.2 mg/L</td><td></td></dl></td></dl>	<dl td="" ±<=""><td>0.2 mg/L</td><td></td></dl>	0.2 mg/L	
Total Suspended Solids		✓	1 +	1212540I+				30 mg/L	
Antimony	✓		1 +	1,6020A +		<dl +<="" td=""><td></td><td>206 μg/L</td><td></td></dl>		206 μg/L	
Arsenic	✓		1 +	1,6020A +		<dl +<="" td=""><td></td><td>104 μg/L</td><td></td></dl>		104 μg/L	
Cadmium	✓		1 +	1,6020A +		<dl +<="" td=""><td></td><td>10.2 μg/L</td><td></td></dl>		10.2 μg/L	
Chromium III	1		1 +	1,6020A +	10 +	<dl td="" ±<=""><td><dl td="" ±<=""><td>323 μg/L</td><td></td></dl></td></dl>	<dl td="" ±<=""><td>323 μg/L</td><td></td></dl>	323 μg/L	
Chromium VI	✓		1 +	1,6020A +	10 +	<dl +<="" td=""><td><dl +<="" td=""><td>323 μg/L</td><td></td></dl></td></dl>	<dl +<="" td=""><td>323 μg/L</td><td></td></dl>	323 μg/L	
Copper	✓		1 +	1,6020A +	1 +	1.59 +	1.59	242 μg/L	
Iron		✓	1 +	19200.7 +	50 +	4820 +	4820 +	5,000 μg/L	
Lead	✓		1 +	1,6020A +	1 +	<dl +<="" td=""><td><dl +<="" td=""><td>160 μg/L</td><td></td></dl></td></dl>	<dl +<="" td=""><td>160 μg/L</td><td></td></dl>	160 μg/L	
Mercury	1		1 +	3,245.1 +	0.2	<dl +<="" td=""><td><dl +<="" td=""><td>0.739 μg/L</td><td></td></dl></td></dl>	<dl +<="" td=""><td>0.739 μg/L</td><td></td></dl>	0.739 μg/L	
Nickel	✓		1 +	1,6020A +	2 +	<dl +<="" td=""><td><dl +<="" td=""><td>1,450 μg/L</td><td></td></dl></td></dl>	<dl +<="" td=""><td>1,450 μg/L</td><td></td></dl>	1,450 μg/L	
Selenium	✓		1 +	1,6020A +	5 +	<dl +<="" td=""><td><dl +<="" td=""><td>235.8 μg/L</td><td></td></dl></td></dl>	<dl +<="" td=""><td>235.8 μg/L</td><td></td></dl>	235.8 μg/L	
Silver	✓		1 +	1,6020A +	0.4	<dl +<="" td=""><td><dl +<="" td=""><td>35.1 μg/L</td><td></td></dl></td></dl>	<dl +<="" td=""><td>35.1 μg/L</td><td></td></dl>	35.1 μg/L	
Zinc	✓		1 +	1,6020A +	10 +	<dl +<="" td=""><td><dl +<="" td=""><td>420 μg/L</td><td></td></dl></td></dl>	<dl +<="" td=""><td>420 μg/L</td><td></td></dl>	420 μg/L	
Cyanide		✓	1 +	121,4500 +	5 +	13 +	13 +	178 mg/L	
B. Non-Halogenated VOC	s								
Total BTEX		1	1 +	128,624.1+	2.5 +	141 +	141	100 μg/L	
Benzene		1	1 +	128,624.1+	2.5 +	110 +	110 +	5.0 μg/L	
1,4 Dioxane	✓		1 +	128,624.1+	250 +	<di. +<="" td=""><td><dl +<="" td=""><td>200 μg/L</td><td></td></dl></td></di.>	<dl +<="" td=""><td>200 μg/L</td><td></td></dl>	200 μg/L	
Acetone	✓		1 +	128.624.1+		<dl +<="" td=""><td></td><td>7.97 mg/L</td><td></td></dl>		7.97 mg/L	
Phenol	v		1 +	128,624.1+		<dl +<="" td=""><td></td><td>1,080 μg/L</td><td></td></dl>		1,080 μg/L	

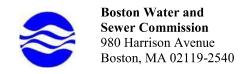
Parameter or believed bel	Known	Known Known			Detection	In	fluent	Effluent Limitations	
	or believed present	# of samples	# of samples Test method (#)		Daily maximum (µg/l)	Daily average (µg/l)	TBEL	WQBEL	
C. Halogenated VOCs									
Carbon Tetrachloride	/		0	H				4.4 μg/L	
1,2 Dichlorobenzene	✓			+				600 μg/L	
1,3 Dichlorobenzene	1			H				320 μg/L	
1,4 Dichlorobenzene	✓			+				5.0 μg/L	
Total dichlorobenzene	1		0	H				763 μg/L in NH	
1,1 Dichloroethane	✓		0	H				70 μg/L	
1,2 Dichloroethane	·		0	H				5.0 μg/L	
1,1 Dichloroethylene	~		0	H				3.2 μg/L	
Ethylene Dibromide	1		0	F				0.05 μg/L	
Methylene Chloride	·		0	ł				4.6 μg/L	
1,1,1 Trichloroethane	1		0	+				200 μg/L	
1,1,2 Trichloroethane	·		0	ł				5.0 μg/L	
Trichloroethylene	·		0	+				5.0 μg/L	
Tetrachloroethylene	1		0	+				5.0 μg/L	
cis-1,2 Dichloroethylene	·		0	+				70 μg/L	
Vinyl Chloride	✓		0	+				2.0 μg/L	
D. Non-Halogenated SVOC	Te.								
Total Phthalates	√		1	18270D-\$+	5.0 +	<dl td="" ■<=""><td><dl +<="" td=""><td>190 μg/L</td><td></td></dl></td></dl>	<dl +<="" td=""><td>190 μg/L</td><td></td></dl>	190 μg/L	
Diethylhexyl phthalate	✓			18270D-5+		<dl td="" ±<=""><td><dl td="" ±<=""><td>101 μg/L</td><td></td></dl></td></dl>	<dl td="" ±<=""><td>101 μg/L</td><td></td></dl>	101 μg/L	
Total Group I PAHs	·			18270D-5+		<dl +<="" td=""><td></td><td>1.0 μg/L</td><td></td></dl>		1.0 μg/L	
Benzo(a)anthracene	✓			18270D-S		<dl td="" ±<=""><td></td><td></td><td></td></dl>			
Benzo(a)pyrene	✓			18270D-\$+					
Benzo(b)fluoranthene	✓			18270D-5+	1				
Benzo(k)fluoranthene	1			18270D-\$+				As Total PAHs	
Chrysene	/			18270D-S+		<dl td="" ±<=""><td>100</td><td></td><td></td></dl>	100		
Dibenzo(a,h)anthracene	1			18270D-S					
Indeno(1,2,3-cd)pyrene	✓			18270D-5+		<dl +<="" td=""><td></td><td></td><td></td></dl>			

	Known or believed absent	Known or believed present	# of samples	Test method (#)	Detection limit (µg/l)	Influent		Effluent Limitations	
Parameter						Daily maximum (µg/l)	Daily average (μg/l)	TBEL	WQBEL
Total Group II PAHs	✓		1 +	18270D-5+	0.10	7.1 E	7.1 +	100 μg/L	
Naphthalene	✓		1 +	129,625.1+	0.1			20 μg/L	
E. Halogenated SVOCs									
Total PCBs	✓		0 +	127,608.3+				0.000064 μg/L	
Pentachlorophenol	√		0 +					1.0 μg/L	
F. Fuels Parameters Total Petroleum			_	_		_		5.0 /1	
Hydrocarbons		✓	1 #	74,1664A+	4000 +	<dl< td=""><td><di. +<="" td=""><td>5.0 mg/L</td><td></td></di.></td></dl<>	<di. +<="" td=""><td>5.0 mg/L</td><td></td></di.>	5.0 mg/L	
Ethanol	✓		1 +	600.1671 +	20000 ±		<dl +<="" td=""><td>Report mg/L</td><td></td></dl>	Report mg/L	
Methyl-tert-Butyl Ether		✓	1 +	1,8260C +	25 +	42	42 +	70 μg/L	
tert-Butyl Alcohol		✓	1 #	1,8260C ±	250 +	810	810 +	120 μg/L in MA 40 μg/L in NH	
tert-Amyl Methyl Ether	1		1 #	1,8260C ±	50 +	<dl< td=""><td><di. +<="" td=""><td>90 μg/L in MA 140 μg/L in NH</td><td></td></di.></td></dl<>	<di. +<="" td=""><td>90 μg/L in MA 140 μg/L in NH</td><td></td></di.>	90 μg/L in MA 140 μg/L in NH	
Other (i.e., pH, temperature	, hardness,	salinity, LC	C ₅₀ , addition	al pollutan	ts present);	if so, specify:			
pH - Influent +		1	1 +				6.8 +		
Hardness - Influent		✓	1 +		660 +		375000 +		
C5-C8 Aliphatics +		✓	8	131,VPH+	10000 +	7910 H	3980 +		
						1			
pH - Receiving Water +		✓	1 +	121,4500+			7.4		
Hardness - Receiving Water		✓	1 +			71000			
Temp - Receiving Water +		✓	1 +			5 C			
				-					
				+					
	1	1	1	I	ĺ	İ			

E. Treatment system information

1. Indicate the type(s) of treatment that will be applied to effluent prior to discharge: (check all that apply)	
□ Adsorption/Absorption □ Advanced Oxidation Processes □ Air Stripping ■ Granulated Activated Carbon ("GAC")/Liquid Phase Carbon Adsorption □ Ion Exchange □ Precipitation/Coagulation/Flocculation ■ Separation/Filtration □ Other; if so, specify:	
2. Provide a written description of all treatment system(s) or processes that will be applied to the effluent prior to discharge. Settling tank, bag filters, and granulated activated carbon filter. If necessary to meet discharge limits, pH adjustment or ion media resin vessels will be added	
Identify each major treatment component (check any that apply):	
■ Fractionation tanks□ Equalization tank □ Oil/water separator □ Mechanical filter □ Media filter	
☐ Chemical feed tank ☐ Air stripping unit ■ Bag filter ■ Other; if so, specify: GAC filters	
Indicate if either of the following will occur (check any that apply): □ Chlorination □ De-chlorination	
3. Provide the design flow capacity in gallons per minute (gpm) of the most limiting component. Indicate the most limiting component: Frac Tank Is use of a flow meter feasible? (check one): ■ Yes □ No, if so, provide justification:	100
Provide the proposed maximum effluent flow in gpm.	100
Provide the average effluent flow in gpm.	15
If Activity Category IV applies, indicate the estimated total volume of water that will be discharged:	
4. Has the operator attached a schematic of flow in accordance with the instructions in E, above? (check one): ■ Yes □ No	

F. Chemical and additive information


1. Indicate the type(s) of chemical or additive that will be applied to effluent prior to discharge or that may otherwise be present in the discharge(s): (check all that apply)				
☐ Algaecides/biocides ☐ Antifoams ☐ Coagulants ☐ Corrosion/scale inhibitors ☐ Disinfectants ☐ Flocculants ☐ Neutralizing agents ☐ Oxidants ☐ Oxygen ☐				
scavengers □ pH conditioners □ Bioremedial agents, including microbes □ Chlorine or chemicals containing chlorine □ Other; if so, specify: n/a				
2. Provide the following information for each chemical/additive, using attachments, if necessary:				
a. Product name, chemical formula, and manufacturer of the chemical/additive; b. Purpose or use of the chemical/additive or remedial agent; c. Material Safety Data Sheet (MSDS) and Chemical Abstracts Service (CAS) Registry number for each chemical/additive; d. The frequency (hourly, daily, etc.), duration (hours, days), quantity (maximum and average), and method of application for the chemical/additive; e. Any material compatibility risks for storage and/or use including the control measures used to minimize such risks; and f. If available, the vendor's reported aquatic toxicity (NOAEL and/or LC50 in percent for aquatic organism(s)).				
3. Has the operator attached an explanation which demonstrates that the addition of such chemicals/additives may be authorized under this general permit in accordance				
with the instructions in F, above? (check one): \square Yes \square No; if no, has the operator attached data that demonstrates each of the 126 priority pollutants in CWA Section 307(a) and 40 CFR Part 423.15(j)(1) are non-detect in discharges with the addition of the proposed chemical/additive?				
(check one): ☐ Yes ☐ No				
G. Endangered Species Act eligibility determination				
1. Indicate under which criterion the discharge(s) is eligible for coverage under this general permit:				
■ FWS Criterion A: No endangered or threatened species or critical habitat are in proximity to the discharges or related activities or come in contact with the "action area".				
□ FWS Criterion B : Formal or informal consultation with the FWS under section 7 of the ESA resulted in either a no jeopardy opinion (formal consultation) or a written concurrence by FWS on a finding that the discharges and related activities are "not likely to adversely affect" listed species or critical habitat				
(informal consultation). Has the operator completed consultation with FWS? (check one): ☐ Yes ☐ No; if no, is consultation underway? (check one): ☐				
Yes □ No				
□ FWS Criterion C : Using the best scientific and commercial data available, the effect of the discharges and related activities on listed species and critical habitat have been evaluated. Based on those evaluations, a determination is made by EPA, or by the operator and affirmed by EPA, that the discharges and related activities will have "no effect" on any federally threatened or endangered listed species or designated critical habitat under the jurisdiction of the				
FWS. This determination was made by: (check one) \square the operator \square EPA \square Other; if so, specify:				

□ NMFS Criterion: A determination made by EPA is affirmed by the operator that the discharges and related activities will have "no effect" or are "not likely to adversely affect" any federally threatened or endangered listed species or critical habitat under the jurisdiction of NMFS and will not result in any take of
listed species. Has the operator previously completed consultation with NMFS? (check one): ■ Yes □ No
2. Has the operator attached supporting documentation of ESA eligibility in accordance with the instructions in Appendix I, and G, above? (check one): Yes No
Does the supporting documentation include any written concurrence or finding provided by the Services? (check one): ■ Yes □ No; if yes, attach.
II National III dania Duomanation Astaliai bilita datannia di a
 H. National Historic Preservation Act eligibility determination 1. Indicate under which criterion the discharge(s) is eligible for coverage under this general permit:
☐ Criterion A: No historic properties are present. The discharges and discharge-related activities (e.g., BMPs) do not have the potential to cause effects on historic properties.
■ Criterion B: Historic properties are present. Discharges and discharge related activities do not have the potential to cause effects on historic properties.
☐ Criterion C : Historic properties are present. The discharges and discharge-related activities have the potential to have an effect or will have an adverse effect on historic properties.
2. Has the operator attached supporting documentation of NHPA eligibility in accordance with the instructions in H, above? (check one): ■ Yes □ No
Does the supporting documentation include any written agreement with the State Historic Preservation Officer (SHPO), Tribal Historic Preservation Officer (TPHO), or
other tribal representative that outlines measures the operator will carry out to mitigate or prevent any adverse effects on historic properties? (check one): Yes No
outer tribus representative that eatines the operator win early out to intrigate or prevent any adverse effects on instante properties. (enter one).
I. Supplemental information
Describe any supplemental information being provided with the NOI. Include attachments if required or otherwise necessary.
FWS Supporting Information
Has the operator attached data, including any laboratory case narrative and chain of custody used to support the application? (check one): ■ Yes □ No
Has the operator attached the certification requirement for the Best Management Practices Plan (BMPP)? (check one): ■ Yes □ No

J. Certification requirement

	I certify under penalty of law that this document and all attachments were prepared under my direction or supervision in a that qualified personnel properly gathered and evaluated the information submitted. Based on my inquiry of the person or persons directly responsible for gathering the information, the information submitted is, to the best of my knowledge and be no personal knowledge that the information submitted is other than true, accurate, and complete. I am aware that there are information, including the possibility of fine and imprisonment for knowing violations.	persons who manage the system, or those elief, true, accurate, and complete. I have
	A BMPP Statement has been implemented in accordance with good 6 BMPP certification statement: Part 2.5 of the RGP.	engineering practices following
	Notification provided to the appropriate State, including a copy of this NOI, if required.	Check one: Yes ■ No □
	Notification provided to the municipality in which the discharge is located, including a copy of this NOI, if requested.	Check one: Yes ■ No □
	Notification provided to the owner of a private or municipal storm sewer system, if such system is used for site discharges, including a copy of this NOI, if requested.	Check one: Yes ■ No □ NA □
	Permission obtained from the owner of a private or municipal storm sewer system, if such system is used for site discharges. If yes, attach additional conditions. If no, attach explanation and timeframe for obtaining permission.	Check one: Yes □ No ■ NA □
	Notification provided to the owner/operator of the area associated with activities covered by an additional discharge permit(s). Additional discharge permit is (check one): ■ RGP □ DGP □ CGP □ MSGP □ Individual NPDES permit □ Other; if so, specify:	Check one: Yes □ No ■ NA □
Sig	mature: 1 Dat	e: 3/31/20

Print Name and Title: Ted Davenport, Senior Project Manager

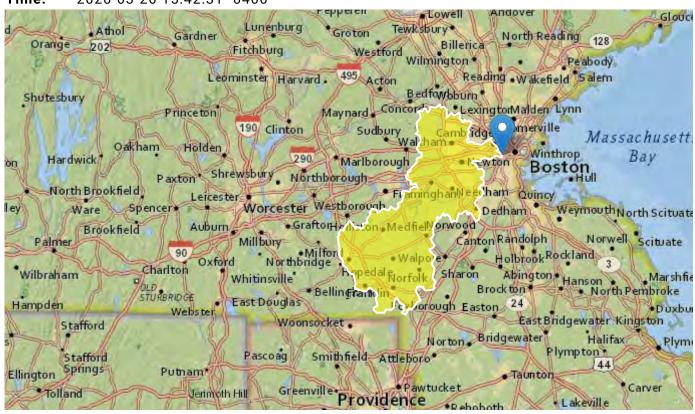
DEWATERING DISCHARGE PERMIT APPLICATION

OWNER / AUTHORIZED APPLICANT PROVIDE	E INFORMATION HERE:
Company Name: Suffolk Construction	Address: 65 Allerton Street, Boston, MA 02119
Phone Number: 617-517-3529	Fax number:
Contact person name: Ted Davenport	Title: _ Senior Project Manager
Cell number: 774-277-0799	Email address: tdavenport@suffolk.com
Permit Request (check one): New Application	n □ Permit Extension □ Other (Specify):
Owner's Information (if different from above):	Pouleton II C
Owner of property being dewatered: SCAPE E	Soyision, LLC
Owner's mailing address: 22 Boston Wharf Roa MA 02210	ad, 7th Floor, Boston, Phone number: 978-979-2065
Location of Discharge & Proposed Treatment S	System(s):
Street number and name: 1252-1270 Boyls	ston St Neighborhood Fenway
Discharge is to a: ☐ Sanitary Sewer ☐ Combir	ned Sewer Storm Drain □ Other (specify):
Describe Proposed Pre-Treatment System(s): Fra	ac Tank, Bag Filters, GAC
BWSC Outfall No. SDO 042 Rece	
Temporary Discharges (Provide Anticipated Dates Groundwater Remediation Utility/Manhole Pumping X Accumulated Surface Water	s of Discharge): From 6/2020 To 6/2021 Tank Removal/Installation Test Pipe Hydrogeologic Testing To 6/2021 To 6/2021 To 6/2021 To 6/2021
Permanent Discharges □ Foundation Drainage □ Accumulated Surface Water □ Non-contact/Uncontaminated Process	□ Crawl Space/Footing Drain □ Non-contact/Uncontaminated Cooling □ Other;
number, size, make and start reading. Note. All discharges 2. If discharging to a sanitary or combined sewer, attach a c 3. If discharging to a separate storm drain, attach a copy of a so other relevant information. 4. Dewatering Drainage Permit will be denied or revoked if	nd the location of the point of discharge (i.e. the sewer pipe or catch basin). Include meter type, meter ges to the Commission's sewer system will be assessed current sewer charges. copy of MWRA's Sewer Use Discharge permit or application. EPA's NPDES Permit or NOI application, or NPDES Permit exclusion letter for the discharge, as we fapplicant fails to obtain the necessary permits from MWRA or EPA. d Sewer Commission
Engineering Cust 980 Harrison Ave	tomer Services enue, Boston, MA 02119 uttle, Engineering Customer Service @bwsc.org
Signature of Authorized Representative for Property Owne	er: Date: 3/31/20

APPENDIX C: ADDITIONAL NOI SUPPORT INFORMATION

MassDEP - Bureau of Waste Site Cleanup Phase 1 Site Assessment Map: 500 feet & 0.5 Mile Radii The information shown is the best available at the date of printing. However, it may be incomplete. The responsible party and LSP are ultimately responsible for ascertaining the true conditions surrounding the site. Metadata for data layers shown on this map can be found to the state. Site Information: SCAPE BOYLSTON, LLC 1260 BOYLSTON STREET BOSTON, MA NAD83 UTM Meters: 4690187mN , 327357mE (Zone: 19) March 30, 2020 be found at: Department of Environmental Protection https://www.mass.gov/orgs/massgis-bureau-of-CHARLES RIVER WAVERLY STREET AND THE New England College of Opton PUBLIC ALLEY NO 427 BLIC ALLEY NO BACKSTREET BAYSTA ROAD BAY STATE ROAD BAY STATE ROAD BACK B Boston University Contraction of the Party of the BOYLSTON ST 2 Boston Architectural Coll EUSTON STREET NEWBURY STREET NEWBURY STREET PSWICH STREET, 1771-172 (11) t School OVERLAND STREET Berklee Coll ge of Music No soy Boston Arts Academy cvatory at Berklee HALLS POND BURBANK STREET PUBLIC ALLEY NO 8 QUEENSBERRY STREET YMPHONY ROAD JC ALLEY! elock Colleg ons College Sin Colleg Northeastern Univer Simmons Colle Professiona School of the um of STREE orth Institute of Tech ard Univ H 500 m 1000 ft MISSION PARK DRIVE Our Lady of Perpetual Help Mission Ge ch Cente Roads: Limited Access, Divided, Other Hwy, Major Road, Minor Road, Track, Trail PWS Protection Areas: Zone II, IWPA, Zone A ... Hydrography: Open Water, PWS Reservoir, Tidal Flat Boundaries: Town, County, DEP Region; Train; Powerline; Pipeline; Aqueduct Wetlands: Freshwater, Saltwater, Cranberry Bog .. Basins: Major, PWS; Streams: Perennial, Intermittent, Man Made Shore, Dam FEMA 100yr Floodplain; Protected Open Space; ACEC . Est. Rare Wetland Wildlife Hab; Vernal Pool: Cert., Potential Aquifers: Medium Yield, High Yield, EPA Sole Source... Solid Waste Landfill; PWS: Com.GW,SW, Emerg., Non-Com. Non Potential Drinking Water Source Area: Medium, High (Yield).

3/26/2020 StreamStats


StreamStats Report - Charles River BU Boathouse

Region ID: MA

Workspace ID: MA20200326194215279000

Clicked Point (Latitude, Longitude): 42.35304, -71.09796

Time: 2020-03-26 15:42:31 -0400

Parameter	Davamatas Dagasintian	Value	IImia
Code	Parameter Description	value	Unit
DRNAREA	Area that drains to a point on a stream	283	square miles
BSLDEM250	Mean basin slope computed from 1:250K DEM	2.327	percent
DRFTPERSTR	Area of stratified drift per unit of stream length	0.23	square mile per mile
MAREGION	Region of Massachusetts 0 for Eastern 1 for Western	0	dimensionless

3/26/2020 StreamStats

Low-Flow Statistics Parameters[Statewide Low Flow WRIR00 4135]

Parameter Code	Parameter Name	Value	Units	Min Limit	Max Limit
DRNAREA	Drainage Area	283	square miles	1.61	149
BSLDEM250	Mean Basin Slope from 250K DEM	2.327	percent	0.32	24.6
DRFTPERSTR	Stratified Drift per Stream Length	0.23	square mile per mile	0	1.29
MAREGION	Massachusetts Region	0	dimensionless	0	1

Low-Flow Statistics Disclaimers[Statewide Low Flow WRIR00 4135]

One or more of the parameters is outside the suggested range. Estimates were extrapolated with unknown errors

Low-Flow Statistics Flow Report[Statewide Low Flow WRIR00 4135]

Statistic	Value	Unit
7 Day 2 Year Low Flow	49.6	ft^3/s
7 Day 10 Year Low Flow	24.7	ft^3/s

Low-Flow Statistics Citations

Ries, K.G., III,2000, Methods for estimating low-flow statistics for Massachusetts streams: U.S. Geological Survey Water Resources Investigations Report 00-4135, 81 p. (http://pubs.usgs.gov/wri/wri004135/)

USGS Data Disclaimer: Unless otherwise stated, all data, metadata and related materials are considered to satisfy the quality standards relative to the purpose for which the data were collected. Although these data and associated metadata have been reviewed for accuracy and completeness and approved for release by the U.S. Geological Survey (USGS), no warranty expressed or implied is made regarding the display or utility of the data for other purposes, nor on all computer systems, nor shall the act of distribution constitute any such warranty.

USGS Software Disclaimer: This software has been approved for release by the U.S. Geological Survey (USGS). Although the software has been subjected to rigorous review, the USGS reserves the right to update the software as needed pursuant to further analysis and review. No warranty, expressed or implied, is made by the USGS or the U.S. Government as to the functionality of the software and related material nor shall the fact of release constitute any such warranty. Furthermore, the software is released on condition that neither the USGS nor the U.S. Government shall be held liable for any damages resulting from its authorized or unauthorized use.

3/26/2020 StreamStats

USGS Product Names Disclaimer: Any use of trade, firm, or product names is for descriptive purposes only and does not imply endorsement by the U.S. Government.

Application Version: 4.3.11

Enter number values in green boxes based on the instructions to the right

Enter values in the units specified

\downarrow	_
15.9	Q_R = Enter upstream flow in MGD
0.144	Q_P = Enter discharge flow in MGD
0	Downstream 7Q10

Enter a dilution factor for saltwater receiving water (this box does not apply to freshwater receiving waters)

Enter values in the units specified

375	C_d = Enter influent hardness in mg/L CaCO ₃
71	C _s = Enter receiving water hardness in mg/L CaCO ₃

Enter receiving water concentrations in the units specified

\downarrow	8	Impaired for metals?
7.4	pH in Standard Units	\downarrow
5	Temperature in ^o C	
0	Ammonia in mg/L	
71	Hardness in mg/L CaCO)3
0	Salinity in ppt	
0	Antimony in μg/L	no
0	Arsenic in μg/L	no
0	Cadmium in µg/L	yes
0	Chromium III in μg/L	yes
0	Chromium VI in µg/L	yes
2.04	Copper in µg/L	yes
526	Iron in μg/L	yes
2.82	Lead in μg/L	yes
0	Mercury in μg/L	yes
0	Nickel in μg/L	yes
0	Selenium in μg/L	yes
0	Silver in μg/L	yes
13.02	Zinc in μg/L	yes

Enter influent concentrations in the units specified

	<u>.</u>
0	TRC in μg/L
7.04	Ammonia in mg/L
0	Antimony in μg/L
0	Arsenic in μg/L
0	Cadmium in μg/L
3.07	Chromium III in µg/L
0	Chromium VI in μg/L
1.59	Copper in µg/L
4820	Iron in μg/L
0	Lead in μg/L
0	Mercury in μg/L
0	Nickel in μg/L
0	Selenium in μg/L
0	Silver in μg/L
0	Zinc in μg/L
13	Cyanide in µg/L
0	Phenol in μg/L
0	Carbon Tetrachloride in µg/L
0	Tetrachloroethylene in μg/L
0	Total Phthalates in μg/L
0	Diethylhexylphthalate in μg/L
0	Benzo(a)anthracene in µg/L
0	Benzo(a)pyrene in µg/L
0	Benzo(b)fluoranthene in μg/L
0	Benzo(k)fluoranthene in μg/L
0	Chrysene in µg/L
0	Dibenzo(a,h)anthracene in μg/L
0	Indeno(1,2,3-cd)pyrene in μg/L

Notes: Revised 1-24-20

Freshwater: leave 0 unless 7Q10 or alternate Q_R <u>AND</u> a dilution factor >1 approved by the State; Saltwater (estuarine and marine): leave 0 unless QR approved by the State Enter the design flow or 1 MGD, whichever is less (100 gpm design flow = 0.144 MGD and is entered by default) Leave 0 unless Q_R approved by the State

Freshwater: leave 0

Saltwater (estuarine and marine): leave 0 unless DF approved by the State

Applies to freshwater receiving waters only

pH, temperature, and ammonia required for all discharges Hardness required for freshwater

Salinity required for saltwater (estuarine and marine)

Metals required for all discharges if detected in the influent and if dilution factor approved by State

Enter 0 if non-detect or testing not required

If receiving water is not listed as impaired for metals in State 303(d) List, change to "no" using dropdown

if >1 sample, enter maximum influent measurement

if >10 samples, may enter 95th percentile of influent measurements using EPA's Technical Support Document for Water Quality-based Toxics Control

Enter 0 if non-detect or testing not required

United States Department of the Interior

FISH AND WILDLIFE SERVICE

New England Ecological Services Field Office 70 Commercial Street, Suite 300 Concord, NH 03301-5094 Phone: (603) 223-2541 Fax: (603) 223-0104

http://www.fws.gov/newengland

In Reply Refer To: March 30, 2020

Consultation Code: 05E1NE00-2020-SLI-1915

Event Code: 05E1NE00-2020-E-05734

Project Name: SCAPE Boylston

Subject: List of threatened and endangered species that may occur in your proposed project

location, and/or may be affected by your proposed project

To Whom It May Concern:

The enclosed species list identifies threatened, endangered, proposed and candidate species, as well as proposed and final designated critical habitat, that may occur within the boundary of your proposed project and/or may be affected by your proposed project. The species list fulfills the requirements of the U.S. Fish and Wildlife Service (Service) under section 7(c) of the Endangered Species Act (Act) of 1973, as amended (16 U.S.C. 1531 *et seq.*).

New information based on updated surveys, changes in the abundance and distribution of species, changed habitat conditions, or other factors could change this list. Please feel free to contact us if you need more current information or assistance regarding the potential impacts to federally proposed, listed, and candidate species and federally designated and proposed critical habitat. Please note that under 50 CFR 402.12(e) of the regulations implementing section 7 of the Act, the accuracy of this species list should be verified after 90 days. This verification can be completed formally or informally as desired. The Service recommends that verification be completed by visiting the ECOS-IPaC website at regular intervals during project planning and implementation for updates to species lists and information. An updated list may be requested through the ECOS-IPaC system by completing the same process used to receive the enclosed list.

The purpose of the Act is to provide a means whereby threatened and endangered species and the ecosystems upon which they depend may be conserved. Under sections 7(a)(1) and 7(a)(2) of the Act and its implementing regulations (50 CFR 402 *et seq.*), Federal agencies are required to utilize their authorities to carry out programs for the conservation of threatened and endangered species and to determine whether projects may affect threatened and endangered species and/or designated critical habitat.

A Biological Assessment is required for construction projects (or other undertakings having similar physical impacts) that are major Federal actions significantly affecting the quality of the human environment as defined in the National Environmental Policy Act (42 U.S.C. 4332(2) (c)). For projects other than major construction activities, the Service suggests that a biological evaluation similar to a Biological Assessment be prepared to determine whether the project may affect listed or proposed species and/or designated or proposed critical habitat. Recommended contents of a Biological Assessment are described at 50 CFR 402.12.

If a Federal agency determines, based on the Biological Assessment or biological evaluation, that listed species and/or designated critical habitat may be affected by the proposed project, the agency is required to consult with the Service pursuant to 50 CFR 402. In addition, the Service recommends that candidate species, proposed species and proposed critical habitat be addressed within the consultation. More information on the regulations and procedures for section 7 consultation, including the role of permit or license applicants, can be found in the "Endangered Species Consultation Handbook" at:

http://www.fws.gov/endangered/esa-library/pdf/TOC-GLOS.PDF

Please be aware that bald and golden eagles are protected under the Bald and Golden Eagle Protection Act (16 U.S.C. 668 *et seq.*), and projects affecting these species may require development of an eagle conservation plan (http://www.fws.gov/windenergy/eagle_guidance.html). Additionally, wind energy projects should follow the wind energy guidelines (http://www.fws.gov/windenergy/) for minimizing impacts to migratory birds and bats.

Guidance for minimizing impacts to migratory birds for projects including communications towers (e.g., cellular, digital television, radio, and emergency broadcast) can be found at: http://www.fws.gov/migratorybirds/CurrentBirdIssues/Hazards/towers/towers.htm; http://www.towerkill.com; and http://www.fws.gov/migratorybirds/CurrentBirdIssues/Hazards/towers/comtow.html.

We appreciate your concern for threatened and endangered species. The Service encourages Federal agencies to include conservation of threatened and endangered species into their project planning to further the purposes of the Act. Please include the Consultation Tracking Number in the header of this letter with any request for consultation or correspondence about your project that you submit to our office.

Attachment(s):

Official Species List

Official Species List

This list is provided pursuant to Section 7 of the Endangered Species Act, and fulfills the requirement for Federal agencies to "request of the Secretary of the Interior information whether any species which is listed or proposed to be listed may be present in the area of a proposed action".

This species list is provided by:

New England Ecological Services Field Office 70 Commercial Street, Suite 300 Concord, NH 03301-5094 (603) 223-2541

Project Summary

Consultation Code: 05E1NE00-2020-SLI-1915

Event Code: 05E1NE00-2020-E-05734

Project Name: SCAPE Boylston

Project Type: DEVELOPMENT

Project Description: 1252 to 1270 Boylston Street

Project Location:

Approximate location of the project can be viewed in Google Maps: https://www.google.com/maps/place/42.3447952632813N71.09596507738519W

Counties: Suffolk, MA

Endangered Species Act Species

There is a total of 0 threatened, endangered, or candidate species on this species list.

Species on this list should be considered in an effects analysis for your project and could include species that exist in another geographic area. For example, certain fish may appear on the species list because a project could affect downstream species.

IPaC does not display listed species or critical habitats under the sole jurisdiction of NOAA Fisheries¹, as USFWS does not have the authority to speak on behalf of NOAA and the Department of Commerce.

See the "Critical habitats" section below for those critical habitats that lie wholly or partially within your project area under this office's jurisdiction. Please contact the designated FWS office if you have questions.

1. <u>NOAA Fisheries</u>, also known as the National Marine Fisheries Service (NMFS), is an office of the National Oceanic and Atmospheric Administration within the Department of Commerce.

Critical habitats

THERE ARE NO CRITICAL HABITATS WITHIN YOUR PROJECT AREA UNDER THIS OFFICE'S JURISDICTION.

Massachusetts Cultural Resource Information System MACRIS

MACRIS Search Results

Search Criteria: Town(s): Boston; Place: Fenway; Street Name: Boylston; Resource Type(s): Area, Building, Burial Ground, Object, Structure;

Inv. No.	Property Name	Street	Town	Year
BOS.9273	Boylston Street Bridge	Boylston St	Boston	1880
BOS.9274	O'Reily, John Boyle Memorial	Boylston St	Boston	1896
BOS.9285	Mother's Rest Children's Playground	Boylston St	Boston	
BOS.9644	Boylston Street Subway Tunnel	Boylston St	Boston	1914
BOS.7353	Church of the Redemption (Universalist)	1103 Boylston St	Boston	1923
BOS.7354	Fenmore Apartments	1109 Boylston St	Boston	1914
BOS.7355	Fenmore Apartments	1111 Boylston St	Boston	1914
BOS.7351	Fritz-Carlton Hotel - Bostonian Hotel	1136-1150 Boylston St	Boston	1901
BOS.7352	Massachusetts Historical Society Building	1154 Boylston St	Boston	1899
BOS.7518	State Street Trust Company Building	130-132 Massachusetts Ave	Boston	1902
BOS.9276	Back Bay Fens Victory Garden	Park Dr	Boston	c 1940

Monday, March 30, 2020 Page 1 of 1

Massachusetts Cultural Resource Information System MACRIS

MACRIS Search Results

Search Criteria: Town(s): Boston; Street Name: peterborough; Resource Type(s): Area, Building, Burial Ground, Object, Structure;

Inv. No.	Property Name	Street	Town	Year
BOS.7578	Church of the Disciples	Peterborough St	Boston	1904
BOS.7570	Birburie, H. C. Town House	22 Peterborough St	Boston	1903
BOS.7571	Birburie, H. C. Town House	24 Peterborough St	Boston	1903
BOS.7572	Birburie, H. C. Town House	26 Peterborough St	Boston	1903
BOS.7338	Birburie, H. C. Town House	28 Peterborough St	Boston	1903
BOS.7573	Birburie, H. C. Town House	30 Peterborough St	Boston	1903
BOS.7574	Birburie, H. C. Town House	32 Peterborough St	Boston	1903
BOS.7575	Sumner Apartment Building	35-45 Peterborough St	Boston	1915
BOS.7576	Stuart Apartment Building	36-46 Peterborough St	Boston	1915
BOS.7577	Millmore, Martin Public School	85 Peterborough St	Boston	1929
BOS.7579	Peterborough Chambers Apartment Building	131 Peterborough St	Boston	1911

Monday, March 30, 2020 Page 1 of 1

Benjamin Downing

From: Ruan, Xiaodan (DEP) < xiaodan.ruan@state.ma.us>

Sent: Friday, April 03, 2020 1:25 AM

To: Benjamin Downing

Cc: Vakalopoulos, Catherine (DEP)

Subject: Re: SCAPE Boylston - RGP Dilution Factor

Hi Benjamin,

Thank you for update the design flow. I can confirm your dilution factor calculation for this proposed discharge for the SCAPE Boylston project at 1252-1270 Boylston Street Boston to the Charles River is correct.

Here is some information to use in the NOI:

Waterbody ID: MA72-38 Classification: B(CSO)

Outstanding Resource Water?: no

State's most recent Integrated List is located here: https://www.mass.gov/files/documents/2020/01/07/16ilwplist.pdf, search for "MA72-38" to see the causes of impairments.

TMDLs: there are 2 approved TMDLs for this segment (pathogens and phosphorus)

As the site is listed as a *current* MCP site, you do not need to apply with MassDEP.

Thanks, Xiaodan

From: Benjamin Downing <BDowning@mcphailgeo.com>

Sent: Thursday, April 2, 2020 8:08 AM

To: Vakalopoulos, Catherine (DEP); Ruan, Xiaodan (DEP) **Subject:** RE: SCAPE Boylston - RGP Dilution Factor

CAUTION: This email originated from a sender outside of the Commonwealth of Massachusetts mail system. Do not click on links or open attachments unless you recognize the sender and know the content is safe.

Good morning Xiaodon,

I was double checking my calculations this morning and the maximum flow rate is actually going to be 100 gpm. Please review these updated dilution factor calcs instead:

7Q10 for Charles River: 24.7 cfs = 15.9 MGD

Design flow: 100 gpm = 0.144 MGDDF = (15.9 + 0.144)/0.144 = 111.4

Can you please confirm if this DF is acceptable? Thank you.

Ben

Benjamin E. Downing, P.E.

APPENDIX D: LABORATORY ANALYTICAL DATA - GROUNDWATER

ANALYTICAL REPORT

Lab Number: L2006971

Client: McPhail Associates

2269 Massachusetts Avenue

Cambridge, MA 02140

ATTN: Ambrose Donovan Phone: (617) 868-1420

Project Name: SCAPE BOYLSTON

Project Number: 6546.9.T7

Report Date: 02/26/20

The original project report/data package is held by Alpha Analytical. This report/data package is paginated and should be reproduced only in its entirety. Alpha Analytical holds no responsibility for results and/or data that are not consistent with the original.

Certifications & Approvals: MA (M-MA086), NH NELAP (2064), CT (PH-0574), IL (200077), ME (MA00086), MD (348), NJ (MA935), NY (11148), NC (25700/666), PA (68-03671), RI (LAO00065), TX (T104704476), VT (VT-0935), VA (460195), USDA (Permit #P330-17-00196).

Eight Walkup Drive, Westborough, MA 01581-1019 508-898-9220 (Fax) 508-898-9193 800-624-9220 - www.alphalab.com

Project Name: SCAPE BOYLSTON

Project Number: 6546.9.T7

Lab Number:

L2006971

Report Date:

02/26/20

Alpha Sample ID Client ID Matrix Sample Location Date/Time Receive Date

L2006971-01 MA-3 (OW) GROUNDWATER BOSTON, MA 02/14/20 10:00 02/14/20

L2006971

Lab Number:

Project Name: SCAPE BOYLSTON

Project Number: 6546.9.T7 Report Date: 02/26/20

Case Narrative

The samples were received in accordance with the Chain of Custody and no significant deviations were encountered during the preparation or analysis unless otherwise noted. Sample Receipt, Container Information, and the Chain of Custody are located at the back of the report.

Results contained within this report relate only to the samples submitted under this Alpha Lab Number and meet NELAP requirements for all NELAP accredited parameters unless otherwise noted in the following narrative. The data presented in this report is organized by parameter (i.e. VOC, SVOC, etc.). Sample specific Quality Control data (i.e. Surrogate Spike Recovery) is reported at the end of the target analyte list for each individual sample, followed by the Laboratory Batch Quality Control at the end of each parameter. Tentatively Identified Compounds (TICs), if requested, are reported for compounds identified to be present and are not part of the method/program Target Compound List, even if only a subset of the TCL are being reported. If a sample was re-analyzed or re-extracted due to a required quality control corrective action and if both sets of data are reported, the Laboratory ID of the re-analysis or re-extraction is designated with an "R" or "RE", respectively.

When multiple Batch Quality Control elements are reported (e.g. more than one LCS), the associated samples for each element are noted in the grey shaded header line of each data table. Any Laboratory Batch, Sample Specific % recovery or RPD value that is outside the listed Acceptance Criteria is bolded in the report. In reference to questions H (CAM) or 4 (RCP) when "NO" is checked, the performance criteria for CAM and RCP methods allow for some quality control failures to occur and still be within method compliance. In these instances, the specific failure is not narrated but noted in the associated QC Outlier Summary Report, located directly after the Case Narrative. QC information is also incorporated in the Data Usability Assessment table (Format 11) of our Data Merger tool, where it can be reviewed in conjunction with the sample result, associated regulatory criteria and any associated data usability implications.

Soil/sediments, solids and tissues are reported on a dry weight basis unless otherwise noted. Definitions of all data qualifiers and acronyms used in this report are provided in the Glossary located at the back of the report.

HOLD POLICY - For samples submitted on hold, Alpha's policy is to hold samples (with the exception of Air canisters) free of charge for 21 calendar days from the date the project is completed. After 21 calendar days, we will dispose of all samples submitted including those put on hold unless you have contacted your Alpha Project Manager and made arrangements for Alpha to continue to hold the samples. Air canisters will be disposed after 3 business days from the date the project is completed.

Please contact Project Management at 800-624-9220 with any questions.					

Project Name: SCAPE BOYLSTON Lab Number: L2006971

Project Number: 6546.9.T7 Report Date: 02/26/20

Case Narrative (continued)

Report Submission

February 26, 2020: This final report includes the results of all requested analyses.

February 21, 2020: This is a preliminary report.

The analysis of Ethanol was subcontracted. A copy of the laboratory report is included as an addendum.

Please note: This data is only available in PDF format and is not available on Data Merger.

Sample Receipt

The analyses performed were specified by the client.

L2006971-01: The sample was received above the appropriate pH for the Total Phenol - EPA 420.1 analysis.

The laboratory added additional H2SO4 to a pH <2.

Volatile Organics by Method 624

L2006971-01: The sample has elevated detection limits due to the dilution required by the elevated concentrations of non-target compounds in the sample.

Volatile Organics by SIM

L2006971-01: The sample has an elevated detection limit due to the dilution required by the elevated concentrations of non-target compounds in the sample.

L2006971-01: The surrogate recovery is above the acceptance criteria for fluorobenzene (151%). Since the sample was non-detect for all target analytes, re-analysis was not required.

The surrogate recovery for the WG1341949-3 LCS, associated with L2006971-01, is above the acceptance criteria for fluorobenzene (242%). The associated LCS spike compound(s) are within overall acceptance criteria, therefore, no further action was taken.

I, the undersigned, attest under the pains and penalties of perjury that, to the best of my knowledge and belief and based upon my personal inquiry of those responsible for providing the information contained in this analytical report, such information is accurate and complete. This certificate of analysis is not complete unless this page accompanies any and all pages of this report.

Jufani Morrissey-Tiffani Morrissey

Authorized Signature:

Title: Technical Director/Representative

ALPHA

Date: 02/26/20

ORGANICS

VOLATILES

Project Name: SCAPE BOYLSTON

Project Number: 6546.9.T7

SAMPLE RESULTS

Lab Number: L2006971

Report Date: 02/26/20

Lab ID: L2006971-01 D

Client ID: MA-3 (OW) Sample Location: BOSTON, MA

02/14/20 10:00 Date Received: 02/14/20 Field Prep: Not Specified

Date Collected:

Sample Depth:

Matrix: Groundwater Analytical Method: 128,624.1 Analytical Date: 02/20/20 01:25

Analyst: GT

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
Volatile Organics by GC/MS - Westborough Lab						
Methylene chloride	ND		ug/l	2.5		2.5
1,1-Dichloroethane	ND		ug/l	3.8		2.5
Carbon tetrachloride	ND		ug/l	2.5		2.5
1,1,2-Trichloroethane	ND		ug/l	3.8		2.5
Tetrachloroethene	ND		ug/l	2.5		2.5
1,2-Dichloroethane	ND		ug/l	3.8		2.5
1,1,1-Trichloroethane	ND		ug/l	5.0		2.5
Benzene	110		ug/l	2.5		2.5
Toluene	13		ug/l	2.5		2.5
Ethylbenzene	8.6		ug/l	2.5		2.5
Vinyl chloride	ND		ug/l	2.5		2.5
1,1-Dichloroethene	ND		ug/l	2.5		2.5
cis-1,2-Dichloroethene	ND		ug/l	2.5		2.5
Trichloroethene	ND		ug/l	2.5		2.5
1,2-Dichlorobenzene	ND		ug/l	12		2.5
1,3-Dichlorobenzene	ND		ug/l	12		2.5
1,4-Dichlorobenzene	ND		ug/l	12		2.5
p/m-Xylene	9.4		ug/l	5.0		2.5
o-xylene	ND		ug/l	2.5		2.5
Xylenes, Total	9.4		ug/l	2.5		2.5
Acetone	ND		ug/l	25		2.5
Methyl tert butyl ether	42		ug/l	25		2.5
Tert-Butyl Alcohol	810		ug/l	250		2.5
Tertiary-Amyl Methyl Ether	ND		ug/l	50		2.5

Project Name: SCAPE BOYLSTON Lab Number: L2006971

Project Number: 6546.9.T7 **Report Date:** 02/26/20

SAMPLE RESULTS

Lab ID: L2006971-01 D Date Collected: 02/14/20 10:00

Client ID: MA-3 (OW) Date Received: 02/14/20 Sample Location: BOSTON, MA Field Prep: Not Specified

Sample Depth:

Parameter Result Qualifier Units RL MDL Dilution Factor

Volatile Organics by GC/MS - Westborough Lab

Surrogate	% Recovery	Qualifier	Acceptance Criteria	
Pentafluorobenzene	99		60-140	
Fluorobenzene	98		60-140	
4-Bromofluorobenzene	85		60-140	

Project Name: SCAPE BOYLSTON Lab Number: L2006971

Project Number: 6546.9.T7 **Report Date:** 02/26/20

SAMPLE RESULTS

Lab ID: L2006971-01 D Date Collected: 02/14/20 10:00

Client ID: MA-3 (OW) Date Received: 02/14/20 Sample Location: BOSTON, MA Field Prep: Not Specified

Sample Depth:

Matrix: Groundwater
Analytical Method: 128,624.1-SIM
Analytical Date: 02/18/20 14:46

Analyst: GT

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
Volatile Organics by GC/MS-SIM -	Westborough Lab					
1,4-Dioxane	ND		ug/l	250		5
Surrogate			% Recovery	Qualifier		eptance riteria

Surrogate	% Recovery	Qualifier	Acceptance Criteria
luorobenzene	151	Q	60-140
4-Bromofluorobenzene	102		60-140

Project Name: SCAPE BOYLSTON Lab Number: L2006971

Project Number: 6546.9.T7 **Report Date:** 02/26/20

Method Blank Analysis Batch Quality Control

Analytical Method: 128,624.1-SIM Analytical Date: 02/18/20 13:00

Analyst: GT

Parameter	Result	Qualifier	Units		RL	MDL	
Volatile Organics by GC/MS-SIM - \	Westborough	Lab for s	ample(s):	01	Batch:	WG1341949-4	
1,4-Dioxane	ND		ug/l		50		

		Acceptance					
Surrogate	%Recovery Qualific	er Criteria					
Fluorobenzene	115	60-140					
4-Bromofluorobenzene	133	60-140					

Project Name: SCAPE BOYLSTON

Project Number: 6546.9.T7

Lab Number: L2006971

Report Date: 02/26/20

Method Blank Analysis Batch Quality Control

Analytical Method: 128,624.1 Analytical Date: 02/19/20 16:43

Analyst: GT

Parameter	Result	Qualifier Units	RL	MDL
Volatile Organics by GC/MS - V	Westborough Lab	for sample(s): 01	Batch:	WG1341980-8
Methylene chloride	ND	ug/l	1.0	
1,1-Dichloroethane	ND	ug/l	1.5	
Carbon tetrachloride	ND	ug/l	1.0	
1,1,2-Trichloroethane	ND	ug/l	1.5	
Tetrachloroethene	ND	ug/l	1.0	
1,2-Dichloroethane	ND	ug/l	1.0	
1,1,1-Trichloroethane	ND	ug/l	2.0	
Benzene	ND	ug/l	1.0	
Toluene	ND	ug/l	1.0	
Ethylbenzene	ND	ug/l	1.0	
Vinyl chloride	ND	ug/l	1.0	
1,1-Dichloroethene	ND	ug/l	1.0	
cis-1,2-Dichloroethene	ND	ug/l	1.0	
Trichloroethene	ND	ug/l	1.0	
1,2-Dichlorobenzene	ND	ug/l	5.0	
1,3-Dichlorobenzene	ND	ug/l	5.0	
1,4-Dichlorobenzene	ND	ug/l	5.0	
p/m-Xylene	ND	ug/l	2.0	
o-xylene	ND	ug/l	1.0	
Xylenes, Total	ND	ug/l	1.0	
Acetone	ND	ug/l	10	
Methyl tert butyl ether	ND	ug/l	10	
Tert-Butyl Alcohol	ND	ug/l	100	
Tertiary-Amyl Methyl Ether	ND	ug/l	20	

Project Name: SCAPE BOYLSTON Lab Number: L2006971

Project Number: 6546.9.T7 **Report Date:** 02/26/20

Method Blank Analysis
Batch Quality Control

Analytical Method: 128,624.1 Analytical Date: 02/19/20 16:43

Analyst: GT

ParameterResultQualifierUnitsRLMDLVolatile Organics by GC/MS - Westborough Lab for sample(s):01Batch:WG1341980-8

		Acceptance
Surrogate	%Recovery Qualif	ier Criteria
Pentafluorobenzene	94	60-140
Fluorobenzene	94	60-140
4-Bromofluorobenzene	83	60-140

Lab Control Sample Analysis

Batch Quality Control

Lab Number: L2006971

Report Date:

02/26/20

Project Name: SCAPE BOYLSTON **Project Number:** 6546.9.T7

LCSD LCS %Recovery RPD %Recovery %Recovery Parameter Qual Qual Limits RPD Qual Limits Volatile Organics by GC/MS-SIM - Westborough Lab Associated sample(s): 01 Batch: WG1341949-3 100 60-140 20 1,4-Dioxane

Surrogate	LCS %Recovery	Qual	LCSD %Recovery	Qual	Acceptance Criteria
Fluorobenzene 4-Bromofluorobenzene	242 116	Q			60-140 60-140

Lab Control Sample Analysis Batch Quality Control

Project Name: SCAPE BOYLSTON

Project Number: 6546.9.T7

Lab Number: L2006971

Report Date: 02/26/20

Parameter	LCS %Recovery		CSD covery	Qual	%Recovery Limits	RPD	Qual	RPD Limits
Volatile Organics by GC/MS - Westborough	Lab Associated	sample(s): 01 Bate	ch: WG13	341980-7				
Methylene chloride	85		-		60-140	-		28
1,1-Dichloroethane	85		-		50-150	-		49
Carbon tetrachloride	95		-		70-130	-		41
1,1,2-Trichloroethane	95		-		70-130	-		45
Tetrachloroethene	90		-		70-130	-		39
1,2-Dichloroethane	95		-		70-130	-		49
1,1,1-Trichloroethane	95		-		70-130	-		36
Benzene	90		-		65-135	-		61
Toluene	95		-		70-130	-		41
Ethylbenzene	80		-		60-140	-		63
Vinyl chloride	85		-		5-195	-		66
1,1-Dichloroethene	90		-		50-150	-		32
cis-1,2-Dichloroethene	85		-		60-140	-		30
Trichloroethene	90		-		65-135	-		48
1,2-Dichlorobenzene	80		-		65-135	-		57
1,3-Dichlorobenzene	75		-		70-130	-		43
1,4-Dichlorobenzene	75		-		65-135	-		57
p/m-Xylene	82		-		60-140	-		30
o-xylene	75		-		60-140	-		30
Acetone	130		-		40-160	-		30
Methyl tert butyl ether	105		-		60-140	-		30
Tert-Butyl Alcohol	130		-		60-140	-		30
Tertiary-Amyl Methyl Ether	95		-		60-140	-		30

Lab Control Sample Analysis Batch Quality Control

SCAPE BOYLSTON

Batch Quality Cont

Lab Number: L2006971

Project Number: 6546.9.T7 **Report Date:** 02/26/20

LCS LCSD %Recovery RPD Parameter %Recovery Qual %Recovery Qual Limits RPD Qual Limits

Volatile Organics by GC/MS - Westborough Lab Associated sample(s): 01 Batch: WG1341980-7

Surrogate	LCS %Recovery Qual	LCSD %Recovery	Qual	Acceptance Criteria
Pentafluorobenzene	101			60-140
Fluorobenzene	98			60-140
4-Bromofluorobenzene	83			60-140

Project Name:

SEMIVOLATILES

Project Name: SCAPE BOYLSTON Lab Number: L2006971

Project Number: 6546.9.T7 **Report Date:** 02/26/20

SAMPLE RESULTS

Lab ID:L2006971-01Date Collected:02/14/20 10:00Client ID:MA-3 (OW)Date Received:02/14/20Sample Location:BOSTON, MAField Prep:Not Specified

Sample Depth:

Analytical Date:

Matrix: Groundwater Extraction Method: EPA 625.1
Analytical Method: 129,625.1 Extraction Date: 02/17/20 00:26

Analyst: SZ

02/20/20 16:45

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor			
Semivolatile Organics by GC/MS - Westborough Lab									
Bis(2-ethylhexyl)phthalate	ND		ug/l	2.2		1			
Butyl benzyl phthalate	ND		ug/l	5.0		1			
Di-n-butylphthalate	ND		ug/l	5.0		1			
Di-n-octylphthalate	ND		ug/l	5.0		1			
Diethyl phthalate	ND		ug/l	5.0		1			
Dimethyl phthalate	ND		ua/l	5.0		1			

Surrogate	% Recovery	Qualifier	Acceptance Criteria
Nitrobenzene-d5	45		42-122
2-Fluorobiphenyl	50		46-121
4-Terphenyl-d14	51		47-138

L2006971

Project Name: SCAPE BOYLSTON Lab Number:

Project Number: 6546.9.T7 **Report Date:** 02/26/20

SAMPLE RESULTS

Lab ID:L2006971-01Date Collected:02/14/20 10:00Client ID:MA-3 (OW)Date Received:02/14/20Sample Location:BOSTON, MAField Prep:Not Specified

Sample Depth:

Matrix: Groundwater Extraction Method: EPA 625.1
Analytical Method: 129,625.1-SIM Extraction Date: 02/17/20 00:29

Analytical Date: 02/18/20 17:03

Analyst: DV

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor			
Semivolatile Organics by GC/MS-SIM - Westborough Lab									
Acenaphthene	ND		ug/l	0.10		1			
Fluoranthene	ND		ug/l	0.10		1			
Naphthalene	0.37		ug/l	0.10		1			
Benzo(a)anthracene	ND		ug/l	0.10		1			
Benzo(a)pyrene	ND		ug/l	0.10		1			
Benzo(b)fluoranthene	ND		ug/l	0.10		1			
Benzo(k)fluoranthene	ND		ug/l	0.10		1			
Chrysene	ND		ug/l	0.10		1			
Acenaphthylene	ND		ug/l	0.10		1			
Anthracene	ND		ug/l	0.10		1			
Benzo(ghi)perylene	ND		ug/l	0.10		1			
Fluorene	ND		ug/l	0.10		1			
Phenanthrene	ND		ug/l	0.10		1			
Dibenzo(a,h)anthracene	ND		ug/l	0.10		1			
Indeno(1,2,3-cd)pyrene	ND		ug/l	0.10		1			
Pyrene	ND		ug/l	0.10		1			
Pentachlorophenol	ND		ug/l	1.0		1			

Surrogate	% Recovery	Acceptance Qualifier Criteria
2-Fluorophenol	53	25-87
Phenol-d6	43	16-65
Nitrobenzene-d5	88	42-122
2-Fluorobiphenyl	69	46-121
2,4,6-Tribromophenol	78	45-128
4-Terphenyl-d14	74	47-138

L2006971

Lab Number:

Project Name: SCAPE BOYLSTON

Project Number: Report Date: 6546.9.T7

02/26/20

Method Blank Analysis Batch Quality Control

Analytical Method: 129,625.1 Analytical Date: 02/19/20 13:51

Analyst: JG Extraction Method: EPA 625.1 02/17/20 00:26 Extraction Date:

Parameter	Result	Qualifier	Units	R	L	MDL	
Semivolatile Organics by GC/MS - V	Vestborough	Lab for sa	ample(s):	01 I	Batch:	WG1341281-1	
Bis(2-ethylhexyl)phthalate	ND		ug/l	2.	2		
Butyl benzyl phthalate	ND		ug/l	5.	0		
Di-n-butylphthalate	ND		ug/l	5.	0		
Di-n-octylphthalate	ND		ug/l	5.	0		
Diethyl phthalate	ND		ug/l	5.	0		
Dimethyl phthalate	ND		ug/l	5.	0		

		Acceptance			
Surrogate	%Recovery	Qualifier C	Criteria		
Nitrobenzene-d5	83	4	2-122		
2-Fluorobiphenyl	82	4	6-121		
4-Terphenyl-d14	79	4	7-138		

L2006971

Lab Number:

Project Name: SCAPE BOYLSTON

Project Number: 6546.9.T7 **Report Date:** 02/26/20

Method Blank Analysis Batch Quality Control

Analytical Method: 129,625.1-SIM Analytical Date: 02/18/20 11:58

Analyst: DV

Extraction Method: EPA 625.1
Extraction Date: 02/17/20 00:29

arameter	Result	Qualifier	Units	RL		MDL
emivolatile Organics by GC/N	1S-SIM - Westbo	rough Lab f	or sample(s)	: 01	Batch:	WG1341283-1
Acenaphthene	ND		ug/l	0.10		
Fluoranthene	ND		ug/l	0.10		
Naphthalene	ND		ug/l	0.10		
Benzo(a)anthracene	ND		ug/l	0.10		
Benzo(a)pyrene	ND		ug/l	0.10		
Benzo(b)fluoranthene	ND		ug/l	0.10		
Benzo(k)fluoranthene	ND		ug/l	0.10		
Chrysene	ND		ug/l	0.10		
Acenaphthylene	ND		ug/l	0.10		
Anthracene	ND		ug/l	0.10		
Benzo(ghi)perylene	ND		ug/l	0.10		
Fluorene	ND		ug/l	0.10		
Phenanthrene	ND		ug/l	0.10		
Dibenzo(a,h)anthracene	ND		ug/l	0.10		
Indeno(1,2,3-cd)pyrene	ND		ug/l	0.10		
Pyrene	ND		ug/l	0.10		
Pentachlorophenol	ND		ug/l	1.0		

Surrogate	%Recovery	Acceptance Qualifier Criteria
2-Fluorophenol	61	25-87
Phenol-d6	50	16-65
Nitrobenzene-d5	98	42-122
2-Fluorobiphenyl	76	46-121
2,4,6-Tribromophenol	70	45-128
4-Terphenyl-d14	85	47-138

Lab Control Sample Analysis Batch Quality Control

Project Name: SCAPE BOYLSTON

Project Number: 6546.9.T7

Lab Number:

L2006971

Report Date:

02/26/20

Parameter	LCS %Recovery	Qual	LCSD %Recovery	Qual	%Recovery Limits	RPD	Qual	RPD Limits	
Semivolatile Organics by GC/MS - Westboroo	ıgh Lab Associa	ited sample(s)	: 01 Batch:	WG134128	1-2				
Bis(2-ethylhexyl)phthalate	103		-		29-137	-		82	
Butyl benzyl phthalate	108		-		1-140	-		60	
Di-n-butylphthalate	93		-		8-120	-		47	
Di-n-octylphthalate	95		-		19-132	-		69	
Diethyl phthalate	94		-		1-120	-		100	
Dimethyl phthalate	90		-		1-120	-		183	

Surrogate	LCS %Recovery Qual	LCSD %Recovery Qual	Acceptance Criteria
Nitrobenzene-d5	85		42-122
2-Fluorobiphenyl	79		46-121
4-Terphenyl-d14	104		47-138

Lab Control Sample Analysis Batch Quality Control

Project Name: SCAPE BOYLSTON

Project Number: 6546.9.T7

Lab Number: L2006971

Report Date: 02/26/20

arameter	LCS %Recovery Qua	LCSD %Recovery	%Recovery Qual Limits	RPD	RPD Qual Limits
Semivolatile Organics by GC/MS-SIM - Wes	stborough Lab Associate	ed sample(s): 01 Batch	n: WG1341283-2		
Acenaphthene	88	-	60-132	-	30
Fluoranthene	93	-	43-121	-	30
Naphthalene	82	-	36-120	-	30
Benzo(a)anthracene	99	-	42-133	-	30
Benzo(a)pyrene	101	-	32-148	-	30
Benzo(b)fluoranthene	103	-	42-140	-	30
Benzo(k)fluoranthene	94	-	25-146	-	30
Chrysene	90	-	44-140	-	30
Acenaphthylene	76	-	54-126	-	30
Anthracene	100	-	43-120	-	30
Benzo(ghi)perylene	94	-	1-195	-	30
Fluorene	87	•	70-120	-	30
Phenanthrene	95	-	65-120	-	30
Dibenzo(a,h)anthracene	96	-	1-200	-	30
Indeno(1,2,3-cd)pyrene	98	-	1-151	-	30
Pyrene	91	-	70-120	-	30
Pentachlorophenol	88	-	38-152	-	30

Lab Control Sample Analysis

Batch Quality Control

Lab Number: L2006971

Project Number: 6546.9.T7

Report Date: 02/26/20

LCSD LCS %Recovery RPD %Recovery %Recovery Limits Limits Parameter Qual Qual RPD Qual

Semivolatile Organics by GC/MS-SIM - Westborough Lab Associated sample(s): 01 Batch: WG1341283-2

Surrogate	LCS %Recovery Qual %	LCSD 6Recovery Qual	Acceptance Criteria
2-Fluorophenol	64		25-87
Phenol-d6	53		16-65
Nitrobenzene-d5	103		42-122
2-Fluorobiphenyl	72		46-121
2,4,6-Tribromophenol	81		45-128
4-Terphenyl-d14	83		47-138

Project Name:

SCAPE BOYLSTON

METALS

Project Name:SCAPE BOYLSTONLab Number:L2006971Project Number:6546.9.77Report Date:02/26/20

SAMPLE RESULTS

Lab ID:L2006971-01Date Collected:02/14/20 10:00Client ID:MA-3 (OW)Date Received:02/14/20Sample Location:BOSTON, MAField Prep:Not Specified

Sample Depth:

Matrix: Groundwater

						Dilution	Date	Date	Prep	Analytical	
Parameter	Result	Qualifier	Units	RL	MDL	Factor	Prepared	Analyzed	Method	Method	Analyst
Total Metals - Man	sfield Lab										
Antimony, Total	ND		mg/l	0.00400		1	02/18/20 18:03	3 02/18/20 23:10	EPA 3005A	3,200.8	MG
Arsenic, Total	ND		mg/l	0.00100		1	02/18/20 18:03	3 02/18/20 23:10	EPA 3005A	3,200.8	MG
Cadmium, Total	ND		mg/l	0.00020		1	02/18/20 18:03	3 02/18/20 23:10	EPA 3005A	3,200.8	MG
Chromium, Total	0.00307		mg/l	0.00100		1	02/18/20 18:03	3 02/18/20 23:10	EPA 3005A	3,200.8	MG
Copper, Total	0.00159		mg/l	0.00100		1	02/18/20 18:03	3 02/18/20 23:10	EPA 3005A	3,200.8	MG
Iron, Total	4.82		mg/l	0.050		1	02/18/20 18:03	3 02/20/20 10:42	EPA 3005A	19,200.7	LC
Lead, Total	ND		mg/l	0.00100		1	02/18/20 18:03	3 02/18/20 23:10	EPA 3005A	3,200.8	MG
Mercury, Total	ND		mg/l	0.00020		1	02/19/20 15:36	6 02/19/20 20:20	EPA 245.1	3,245.1	AL
Nickel, Total	ND		mg/l	0.00200		1	02/18/20 18:03	3 02/18/20 23:10	EPA 3005A	3,200.8	MG
Selenium, Total	ND		mg/l	0.00500		1	02/18/20 18:03	3 02/18/20 23:10	EPA 3005A	3,200.8	MG
Silver, Total	ND		mg/l	0.00040		1	02/18/20 18:03	3 02/18/20 23:10	EPA 3005A	3,200.8	MG
Zinc, Total	ND		mg/l	0.01000		1	02/18/20 18:03	3 02/18/20 23:10	EPA 3005A	3,200.8	MG
Total Hardness by	SM 2340E	B - Mansfiel	d Lab								
Hardness	375		mg/l	0.660	NA	1	02/18/20 18:03	3 02/20/20 10:42	EPA 3005A	19,200.7	LC
General Chemistry	- Mansfiel	ld Lab									
Chromium, Trivalent	ND		mg/l	0.010		1		02/18/20 23:10	NA	107,-	
Omonium, mvaiem	IND		1119/1	0.010		'		02/10/20 20.10	14/-1	,	

Project Name: SCAPE BOYLSTON

Project Number: 6546.9.T7

Lab Number:

L2006971

Report Date:

02/26/20

Method Blank Analysis Batch Quality Control

Parameter	Result Qualifier	Units	RL	MDL	Dilution Factor	Date Prepared	Date Analyzed	Analytica Method	
Total Metals - Mansfield	Lab for sample(s):	01 Batch	n: WG13	341571-	-1				
Mercury, Total	ND	mg/l	0.0002		1	02/19/20 15:36	02/19/20 19:18	3,245.1	AL

Prep Information

Digestion Method: EPA 245.1

Parameter	Result Qualifier	Units	RL	MDL	Dilution Factor	Date Prepared	Date Analyzed	Analytical Method	Analyst
Total Metals - Mansf	rield Lab for sample(s):	01 Bato	h: WG13	41832-	-1				
Antimony, Total	ND	mg/l	0.00400		1	02/18/20 17:18	02/18/20 21:49	3,200.8	MG
Arsenic, Total	ND	mg/l	0.00100		1	02/18/20 17:18	02/18/20 21:49	3,200.8	MG
Cadmium, Total	ND	mg/l	0.00020		1	02/18/20 17:18	02/18/20 21:49	3,200.8	MG
Chromium, Total	ND	mg/l	0.00100		1	02/18/20 17:18	02/18/20 21:49	3,200.8	MG
Copper, Total	ND	mg/l	0.00100		1	02/18/20 17:18	02/18/20 21:49	3,200.8	MG
Lead, Total	ND	mg/l	0.00100		1	02/18/20 17:18	02/18/20 21:49	3,200.8	MG
Nickel, Total	ND	mg/l	0.00200		1	02/18/20 17:18	02/18/20 21:49	3,200.8	MG
Selenium, Total	ND	mg/l	0.00500		1	02/18/20 17:18	02/18/20 21:49	3,200.8	MG
Silver, Total	ND	mg/l	0.00040		1	02/18/20 17:18	02/18/20 21:49	3,200.8	MG
Zinc, Total	ND	mg/l	0.01000		1	02/18/20 17:18	02/18/20 21:49	3,200.8	MG

Prep Information

Digestion Method: EPA 3005A

Parameter	Result Qualifier	Units	RL	MDL	Dilution Factor	Date Prepared	Date Analyzed	Analytical Method	
Total Metals - Mansfiel	ld Lab for sample(s):	01 Batch	n: WG13	342255-	1				
Iron, Total	ND	mg/l	0.050		1	02/18/20 18:03	02/20/20 10:15	19,200.7	LC

Prep Information

Digestion Method: EPA 3005A

Project Name: SCAPE BOYLSTON

Project Number: 6546.9.T7

Lab Number:

L2006971

Report Date:

02/26/20

Method Blank Analysis Batch Quality Control

Parameter	Result Qualifier	Units	RL	MDL	Dilution Factor	Date Prepared	Date Analyzed	Analytical Method	I Analyst
Total Hardness by SM	2340B - Mansfield La	b for sam	nple(s): (01 Bate	ch: WG134	2255-1			
Hardness	ND	mg/l	0.660	NA	1	02/18/20 18:03	02/20/20 10:15	19,200.7	LC

Prep Information

Digestion Method: EPA 3005A

Lab Control Sample Analysis Batch Quality Control

Project Name: SCAPE BOYLSTON

Project Number: 6546.9.T7

Lab Number: L2006971

Report Date: 02/26/20

Parameter	LCS %Recovery	LCSD Qual %Recovery	%Recovery Qual Limits	RPD	Qual	RPD Limits
Total Metals - Mansfield Lab Associated sample	e(s): 01 Batch: Wo	G1341571-2				
Mercury, Total	95	-	85-115	-		
Total Metals - Mansfield Lab Associated sampl	e(s): 01 Batch: W	G1341832-2				
Antimony, Total	104	-	85-115	-		
Arsenic, Total	107	-	85-115	-		
Cadmium, Total	108	-	85-115	-		
Chromium, Total	101	-	85-115	-		
Copper, Total	99	-	85-115	-		
Lead, Total	107	-	85-115	-		
Nickel, Total	104	-	85-115	-		
Selenium, Total	114	-	85-115	-		
Silver, Total	98	-	85-115	-		
Zinc, Total	113	-	85-115	-		
Total Metals - Mansfield Lab Associated sampl	e(s): 01 Batch: W	G1342255-2				
Iron, Total	98	-	85-115	-		
Total Hardness by SM 2340B - Mansfield Lab	Associated sample(s	s): 01 Batch: WG1342255-2	2			
Hardness	90	-	85-115	-		

Matrix Spike Analysis Batch Quality Control

Project Name: SCAPE BOYLSTON

Project Number: 6546.9.T7

Lab Number: L2006971

Report Date: 02/26/20

arameter	Native Sample	MS Added	MS Found %	MS %Recovery	Qua	MSD Found	MSD %Recovery	Recovery Qual Limits	RPD	Qual	RPD Limits
Γotal Metals - Mansfield La	ab Associated sam	nple(s): 01	QC Batch ID): WG134157	1-3	QC Sample:	L2006519-01	Client ID: MS S	ample		
Mercury, Total	0.0025	0.005	0.0075	100		-	-	70-130	-		20
Total Metals - Mansfield La	ab Associated sam	nple(s): 01	QC Batch ID): WG134157	1-5	QC Sample:	L2006519-02	Client ID: MS S	ample		
Mercury, Total	ND	0.005	0.0044	88		-	-	70-130	-		20
Total Metals - Mansfield La	ab Associated sam	ple(s): 01	QC Batch ID): WG134183	2-3	QC Sample:	L2006407-01	Client ID: MS S	ample		
Antimony, Total	ND	0.5	0.4866	97		-	-	70-130	-		20
Arsenic, Total	ND	0.12	0.1173	98		-	-	70-130	-		20
Cadmium, Total	ND	0.051	0.05148	101		-	-	70-130	-		20
Chromium, Total	0.00223	0.2	0.1931	95		-	-	70-130	-		20
Copper, Total	0.01245	0.25	0.2495	95		-	-	70-130	-		20
Lead, Total	ND	0.51	0.5213	102		-	-	70-130	-		20
Nickel, Total	ND	0.5	0.4858	97		-	-	70-130	-		20
Selenium, Total	ND	0.12	0.1107	92		-	-	70-130	-		20
Silver, Total	ND	0.05	0.04653	93		-	-	70-130	-		20
Zinc, Total	ND	0.5	0.5166	103		-	-	70-130	-		20
otal Metals - Mansfield La	ab Associated sam	nple(s): 01	QC Batch ID): WG134225	5-3	QC Sample:	L2000002-135	Client ID: MS	Sample		
Iron, Total	0.146	1	1.12	97		-	-	75-125	-		20
Total Hardness by SM 234	40B - Mansfield La	b Associate	ed sample(s):	01 QC Bato	h ID:	WG1342255	-3 QC Samp	le: L2000002-135	Client	ID: M	S Sample
Hardness	84.4	66.2	139	82		-	-	75-125	-		20

Lab Duplicate Analysis Batch Quality Control

Project Name: SCAPE BOYLSTON

Project Number: 6546.9.T7

 Lab Number:
 L2006971

 Report Date:
 02/26/20

Parameter	Native Sample Dup	licate Sample	Units	RPD	Qual	RPD Limits
Total Metals - Mansfield Lab Associated sample(s): 01	QC Batch ID: WG1341571-4	QC Sample: L2	2006519-01	Client ID:	DUP Sample	
Mercury, Total	0.0025	0.0027	mg/l	6		20
Total Metals - Mansfield Lab Associated sample(s): 01	QC Batch ID: WG1341571-6	QC Sample: L2	2006519-02	Client ID:	DUP Sample	
Mercury, Total	ND	ND	mg/l	NC		20
Total Metals - Mansfield Lab Associated sample(s): 01	QC Batch ID: WG1341832-4	QC Sample: L2	2006407-01	Client ID:	DUP Sample	
Antimony, Total	ND	ND	mg/l	NC		20
Arsenic, Total	ND	ND	mg/l	NC		20
Cadmium, Total	ND	ND	mg/l	NC		20
Chromium, Total	0.00223	0.00252	mg/l	12		20
Copper, Total	0.01245	0.01268	mg/l	2		20
Lead, Total	ND	ND	mg/l	NC		20
Nickel, Total	ND	ND	mg/l	NC		20
Selenium, Total	ND	ND	mg/l	NC		20
Silver, Total	ND	ND	mg/l	NC		20
Zinc, Total	ND	ND	mg/l	NC		20
Total Metals - Mansfield Lab Associated sample(s): 01	QC Batch ID: WG1342255-4	QC Sample: L2	2000002-135	Client ID:	DUP Sample	
Iron, Total	0.146	0.143	mg/l	2		20
Total Hardness by SM 2340B - Mansfield Lab Associate	d sample(s): 01 QC Batch ID	: WG1342255-4	QC Sample	e: L200000	02-135 Client	ID: DUP Sample
Hardness	84.4	83.3	mg/l	1		20

INORGANICS & MISCELLANEOUS

Project Name: SCAPE BOYLSTON

Project Number: 6546.9.T7 Lab Number:

L2006971

Report Date: 02/26/20

SAMPLE RESULTS

Lab ID: L2006971-01 Client ID: MA-3 (OW) Sample Location: BOSTON, MA Date Collected:

02/14/20 10:00

Date Received:

02/14/20

Field Prep:

Not Specified

Sample Depth:

Matrix:

Groundwater

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	Date Prepared	Date Analyzed	Analytical Method	Analyst
General Chemistry - Wes	stborough La	b								
Solids, Total Suspended	17.		mg/l	5.0	NA	1	-	02/17/20 10:01	121,2540D	EM
Cyanide, Total	0.013		mg/l	0.005		1	02/16/20 14:50	02/17/20 14:36	121,4500CN-CE	LH
Chlorine, Total Residual	ND		mg/l	0.02		1	-	02/15/20 09:00	121,4500CL-D	MA
pH (H)	6.8		SU	-	NA	1	-	02/14/20 20:00	121,4500H+-B	JW
Nitrogen, Ammonia	7.04		mg/l	0.075		1	02/16/20 13:58	02/17/20 21:01	121,4500NH3-BH	H AT
TPH, SGT-HEM	ND		mg/l	4.00		1	02/17/20 16:30	02/17/20 21:30	74,1664A	ML
Phenolics, Total	ND		mg/l	0.030		1	02/18/20 05:05	02/18/20 09:46	4,420.1	MV
Chromium, Hexavalent	ND		mg/l	0.010		1	02/14/20 20:30	02/14/20 21:31	1,7196A	JW
Anions by Ion Chromatog	graphy - Wes	tborough	Lab							
Chloride	1210		mg/l	25.0		50	-	02/14/20 23:23	44,300.0	AT

L2006971

Lab Number:

Project Name: SCAPE BOYLSTON

Project Number: 6546.9.T7 **Report Date:** 02/26/20

Method Blank Analysis Batch Quality Control

Parameter	Result Qu	ualifier	Units	RL	MDL	Dilution Factor	Date Prepared	Date Analyzed	Analytical Method	Analyst
General Chemistry -	Westborough Lab	for sam	ple(s): 01	Batch:	WG13	40999-1				
Chromium, Hexavalent	ND		mg/l	0.010		1	02/14/20 20:30	02/14/20 21:26	1,7196A	JW
Anions by Ion Chron	natography - Westb	orough	Lab for sar	nple(s):	01 B	atch: WG1	341009-1			
Chloride	ND		mg/l	0.500		1	-	02/14/20 17:11	44,300.0	АТ
General Chemistry -	Westborough Lab	for sam	ple(s): 01	Batch:	WG13	41099-1				
Chlorine, Total Residual	ND		mg/l	0.02		1	-	02/15/20 09:00	121,4500CL-D	MA
General Chemistry -	Westborough Lab	for sam	ple(s): 01	Batch:	WG13	41226-1				
Nitrogen, Ammonia	ND		mg/l	0.075		1	02/16/20 13:58	02/17/20 20:41	121,4500NH3-BI	Н АТ
General Chemistry -	Westborough Lab	for sam	ple(s): 01	Batch:	WG13	41245-1				
Cyanide, Total	ND		mg/l	0.005		1	02/16/20 14:50	02/17/20 14:14	121,4500CN-CE	. LH
General Chemistry -	Westborough Lab	for sam	ple(s): 01	Batch:	WG13	41310-1				
Solids, Total Suspended	ND		mg/l	5.0	NA	1	-	02/17/20 10:01	121,2540D	EM
General Chemistry -	Westborough Lab	for sam	ple(s): 01	Batch:	WG13	41553-1				
TPH, SGT-HEM	ND		mg/l	4.00		1	02/17/20 16:30	02/17/20 21:30	74,1664A	ML
General Chemistry -	Westborough Lab	for sam	ple(s): 01	Batch:	WG13	41666-1				
Phenolics, Total	ND		mg/l	0.030		1	02/18/20 05:05	02/18/20 09:39	4,420.1	MV

Lab Control Sample Analysis Batch Quality Control

Project Name: SCAPE BOYLSTON

Project Number: 6546.9.T7

Lab Number: L2006971

Report Date: 02/26/20

Parameter	LCS %Recovery Qua	LCSD al %Recovery c	%Recovery lual Limits	RPD	Qual	RPD Limits
General Chemistry - Westborough Lab	Associated sample(s): 01	Batch: WG1340989-1				
рН	101	-	99-101	-		5
General Chemistry - Westborough Lab	Associated sample(s): 01	Batch: WG1340999-2				
Chromium, Hexavalent	97	-	85-115	-		20
Anions by Ion Chromatography - Westb	orough Lab Associated sa	imple(s): 01 Batch: WG	1341009-2			
Chloride	97	-	90-110	-		
General Chemistry - Westborough Lab	Associated sample(s): 01	Batch: WG1341099-2				
Chlorine, Total Residual	96	-	90-110	-		
General Chemistry - Westborough Lab	Associated sample(s): 01	Batch: WG1341226-2				
Nitrogen, Ammonia	93	-	80-120	-		20
General Chemistry - Westborough Lab	Associated sample(s): 01	Batch: WG1341245-2				
Cyanide, Total	99	-	90-110	-		
General Chemistry - Westborough Lab	Associated sample(s): 01	Batch: WG1341553-2				
ТРН	90	-	64-132	-		34

Lab Control Sample Analysis Batch Quality Control

Project Name: SCAPE BOYLSTON

Project Number: 6546.9.T7

Lab Number:

L2006971

Report Date:

02/26/20

Parameter	LCS %Recovery	LCSD %Recovery	%Recovery Limits	RPD	RPD Limits
General Chemistry - Westborough Lab	Associated sample(s): 01	Batch: WG1341666-2			
Phenolics, Total	81	-	70-130	-	

Matrix Spike Analysis Batch Quality Control

Project Name: SCAPE BOYLSTON

Project Number: 6546.9.T7

Lab Number: L2006971

Report Date: 02/26/20

Parameter	Native Sample	MS Added	MS Found	MS %Recovery	MSD Qual Found	MSD %Recovery Qual	Recovery Limits I	RPD Qual	RPD Limits
General Chemistry - Westborou	gh Lab Asso	ciated samp	le(s): 01	QC Batch ID: V	VG1340999-4	QC Sample: L2006971	-01 Client ID	: MA-3 (OW)
Chromium, Hexavalent	ND	0.1	0.093	93	-	-	85-115	-	20
Anions by Ion Chromatography Sample	- Westboroug	gh Lab Asso	ciated sar	mple(s): 01 QC	Batch ID: WG	1341009-3 QC Sampl	e: L2006713-0	4 Client ID	MS
Chloride	17.9	4	21.2	83	Q -	-	90-110	-	18
General Chemistry - Westborou	gh Lab Asso	ciated samp	le(s): 01	QC Batch ID: V	VG1341099-4	QC Sample: L2006765	-02 Client ID	: MS Sample	Э
Chlorine, Total Residual	ND	0.25	0.23	92	-	-	80-120	-	20
General Chemistry - Westborou	gh Lab Asso	ciated samp	le(s): 01	QC Batch ID: V	VG1341226-4	QC Sample: L2006734	-01 Client ID	: MS Sample	€
Nitrogen, Ammonia	1.77	4	5.51	94	-	-	80-120	-	20
General Chemistry - Westborou	gh Lab Asso	ciated samp	le(s): 01	QC Batch ID: V	VG1341245-4	QC Sample: L2006740	-02 Client ID	: MS Sample	€
Cyanide, Total	ND	0.2	0.201	100	-	-	90-110	-	30
General Chemistry - Westborou	gh Lab Asso	ciated samp	le(s): 01	QC Batch ID: V	VG1341553-4	QC Sample: L2006633	-02 Client ID	: MS Sample	Э
TPH	ND	20	16.3	82	-	-	64-132	-	34
General Chemistry - Westborou	gh Lab Asso	ciated samp	le(s): 01	QC Batch ID: V	VG1341666-4	QC Sample: L2006971	-01 Client ID	: MA-3 (OW)
Phenolics, Total	ND	0.4	0.38	94	-	-	70-130	-	20

Lab Duplicate Analysis Batch Quality Control

Project Name: SCAPE BOYLSTON

Project Number: 6546.9.T7

Lab Number: L2006971

Report Date: 02/26/20

Parameter	Nati	ve Sample	e	Duplicate Sam	ple Unit	s RPD) Qual	RPD Limits
General Chemistry - Westborough Lab A	Associated sample(s):	01 QC E	Batch ID:	WG1340989-2	QC Sample:	L2006819-05	Client ID:	DUP Sample
рН		6.5		6.4	SU	2		5
General Chemistry - Westborough Lab A	Associated sample(s):	01 QC E	Batch ID:	WG1340999-3	QC Sample:	L2006971-01	Client ID:	MA-3 (OW)
Chromium, Hexavalent		ND		ND	mg/l	NC		20
Anions by Ion Chromatography - Westbor	rough Lab Associated	l sample(s): 01 Q	C Batch ID: WG	1341009-4	QC Sample: L	2006713-04	4 Client ID: DUP
Chloride		17.9		17.9	mg/l	0		18
General Chemistry - Westborough Lab A	Associated sample(s):	01 QC E	Batch ID:	WG1341099-3	QC Sample:	L2006765-01	Client ID:	DUP Sample
Chlorine, Total Residual		0.73		0.72	mg/l	1		20
General Chemistry - Westborough Lab A	Associated sample(s):	01 QC E	Batch ID:	WG1341226-3	QC Sample:	L2006734-01	Client ID:	DUP Sample
Nitrogen, Ammonia		1.77		1.74	mg/l	2		20
General Chemistry - Westborough Lab A	Associated sample(s):	01 QC E	Batch ID:	WG1341245-3	QC Sample:	L2006740-01	Client ID:	DUP Sample
Cyanide, Total		ND		ND	mg/l	NC		30
General Chemistry - Westborough Lab A	Associated sample(s):	01 QC E	Batch ID:	WG1341310-2	QC Sample:	L2006930-01	Client ID:	DUP Sample
Solids, Total Suspended		64		60	mg/l	6		29
General Chemistry - Westborough Lab A	Associated sample(s):	01 QC E	Batch ID:	WG1341553-3	QC Sample:	L2006633-01	Client ID:	DUP Sample
TPH		ND		ND	mg/l	NC		34
General Chemistry - Westborough Lab A	Associated sample(s):	01 QC E	Batch ID:	WG1341666-3	QC Sample:	L2006971-01	Client ID:	MA-3 (OW)
Phenolics, Total		ND		ND	mg/l	NC		20

Lab Number: L2006971 SCAPE BOYLSTON

Project Number: 6546.9.T7 **Report Date:** 02/26/20

Sample Receipt and Container Information

Were project specific reporting limits specified?

YES

Cooler Information

Project Name:

Custody Seal Cooler

Α Absent

Container Info	ormation		Initial	Final	Temp			Frozen	
Container ID	Container Type	Cooler	pН	рН		Pres	Seal	Date/Time	Analysis(*)
L2006971-01A	Vial Na2S2O3 preserved	Α	NA		2.7	Υ	Absent		624.1-RGP(7),624.1-SIM-RGP(7)
L2006971-01B	Vial Na2S2O3 preserved	Α	NA		2.7	Υ	Absent		624.1-RGP(7),624.1-SIM-RGP(7)
L2006971-01C	Vial Na2S2O3 preserved	Α	NA		2.7	Υ	Absent		624.1-RGP(7),624.1-SIM-RGP(7)
L2006971-01D	Vial Na2S2O3 preserved	Α	NA		2.7	Υ	Absent		624.1-RGP(7),624.1-SIM-RGP(7)
L2006971-01E	Vial Na2S2O3 preserved	Α	NA		2.7	Υ	Absent		624.1-RGP(7),624.1-SIM-RGP(7)
L2006971-01F	Vial Na2S2O3 preserved	Α	NA		2.7	Υ	Absent		624.1-RGP(7),624.1-SIM-RGP(7)
L2006971-01H	Vial unpreserved	Α	NA		2.7	Υ	Absent		SUB-ETHANOL(14)
L2006971-01I	Vial unpreserved	Α	NA		2.7	Υ	Absent		SUB-ETHANOL(14)
L2006971-01J	Vial unpreserved	Α	NA		2.7	Υ	Absent		SUB-ETHANOL(14)
L2006971-01K	Plastic 250ml NaOH preserved	Α	>12	>12	2.7	Υ	Absent		TCN-4500(14)
L2006971-01L	Plastic 250ml HNO3 preserved	A	<2	<2	2.7	Y	Absent		CD-2008T(180),NI-2008T(180),ZN- 2008T(180),CU-2008T(180),HARDU(180),FE- UI(180),AG-2008T(180),SE-2008T(180),HG- U(28),AS-2008T(180),CR-2008T(180),PB- 2008T(180),SB-2008T(180)
L2006971-01M	Plastic 500ml H2SO4 preserved	Α	<2	<2	2.7	Υ	Absent		NH3-4500(28)
L2006971-01N	Plastic 950ml unpreserved	Α	7	7	2.7	Y	Absent		HEXCR-7196(1),CL-300(28),TRC-4500(1),PH-4500(.01)
L2006971-01O	Plastic 950ml unpreserved	Α	7	7	2.7	Υ	Absent		TSS-2540(7)
L2006971-01P	Amber 950ml H2SO4 preserved	Α	5	<2	2.7	N	Absent		TPHENOL-420(28)
L2006971-01Q	Amber 1000ml Na2S2O3	Α	7	7	2.7	Υ	Absent		625.1-RGP(7),625.1-SIM-RGP(7)
L2006971-01R	Amber 1000ml Na2S2O3	Α	7	7	2.7	Υ	Absent		625.1-RGP(7),625.1-SIM-RGP(7)
L2006971-01S	Amber 1000ml Na2S2O3	Α	7	7	2.7	Υ	Absent		625.1-RGP(7),625.1-SIM-RGP(7)
L2006971-01T	Amber 1000ml Na2S2O3	Α	7	7	2.7	Υ	Absent		625.1-RGP(7),625.1-SIM-RGP(7)
L2006971-01U	Amber 1000ml HCl preserved	Α	NA		2.7	Υ	Absent		TPH-1664(28)
L2006971-01V	Amber 1000ml HCl preserved	Α	NA		2.7	Υ	Absent		TPH-1664(28)

Lab Number: L2006971

Report Date: 02/26/20

Container Information Initial Final Temp Frozen

Container ID Container Type Cooler pH pH deg C Pres Seal Date/Time Analysis(*)

Project Name:

Project Number: 6546.9.T7

SCAPE BOYLSTON

Project Name: Lab Number: SCAPE BOYLSTON L2006971

Project Number: 6546.9.T7 **Report Date:** 02/26/20

GLOSSARY

Acronyms

EPA

LOD

DL - Detection Limit: This value represents the level to which target analyte concentrations are reported as estimated values, when those target analyte concentrations are quantified below the limit of quantitation (LOQ). The DL includes any adjustments from dilutions, concentrations or moisture content, where applicable. (DoD report formats only.)

EDL

- Estimated Detection Limit: This value represents the level to which target analyte concentrations are reported as estimated values, when those target analyte concentrations are quantified below the reporting limit (RL). The EDL includes any adjustments from dilutions, concentrations or moisture content, where applicable. The use of EDLs is specific to the analysis

of PAHs using Solid-Phase Microextraction (SPME).

EMPC - Estimated Maximum Possible Concentration: The concentration that results from the signal present at the retention time of an analyte when the ions meet all of the identification criteria except the ion abundance ratio criteria. An EMPC is a worst-case

estimate of the concentration.

LCS - Laboratory Control Sample: A sample matrix, free from the analytes of interest, spiked with verified known amounts of

analytes or a material containing known and verified amounts of analytes.

LCSD Laboratory Control Sample Duplicate: Refer to LCS.

Environmental Protection Agency.

LFB - Laboratory Fortified Blank: A sample matrix, free from the analytes of interest, spiked with verified known amounts of

analytes or a material containing known and verified amounts of analytes.

- Limit of Detection: This value represents the level to which a target analyte can reliably be detected for a specific analyte in a specific matrix by a specific method. The LOD includes any adjustments from dilutions, concentrations or moisture content,

where applicable. (DoD report formats only.)

LOQ - Limit of Quantitation: The value at which an instrument can accurately measure an analyte at a specific concentration. The LOQ includes any adjustments from dilutions, concentrations or moisture content, where applicable. (DoD report formats

Limit of Quantitation: The value at which an instrument can accurately measure an analyte at a specific concentration. The LOQ includes any adjustments from dilutions, concentrations or moisture content, where applicable. (DoD report formats

MDI - Method Detection Limit: This value represents the level to which target analyte concentrations are reported as estimated values, when those target analyte concentrations are quantified below the reporting limit (RL). The MDL includes any

adjustments from dilutions, concentrations or moisture content, where applicable.

MS - Matrix Spike Sample: A sample prepared by adding a known mass of target analyte to a specified amount of matrix sample for which an independent estimate of target analyte concentration is available. For Method 332.0, the spike recovery is calculated using the native concentration, including estimated values.

MSD - Matrix Spike Sample Duplicate: Refer to MS.

NA - Not Applicable.

NC - Not Calculated: Term is utilized when one or more of the results utilized in the calculation are non-detect at the parameter's

reporting unit.

NDPA/DPA - N-Nitrosodiphenylamine/Diphenylamine.

NI - Not Ignitable.

NP - Non-Plastic: Term is utilized for the analysis of Atterberg Limits in soil.

RL- Reporting Limit: The value at which an instrument can accurately measure an analyte at a specific concentration. The RL

includes any adjustments from dilutions, concentrations or moisture content, where applicable.

- Relative Percent Difference: The results from matrix and/or matrix spike duplicates are primarily designed to assess the RPD

precision of analytical results in a given matrix and are expressed as relative percent difference (RPD). Values which are less than five times the reporting limit for any individual parameter are evaluated by utilizing the absolute difference between the

values; although the RPD value will be provided in the report.

SRM - Standard Reference Material: A reference sample of a known or certified value that is of the same or similar matrix as the

associated field samples.

STLP - Semi-dynamic Tank Leaching Procedure per EPA Method 1315.

- Toxic Equivalency Factors: The values assigned to each dioxin and furan to evaluate their toxicity relative to 2,3,7,8-TCDD.

TEO - Toxic Equivalent: The measure of a sample's toxicity derived by multiplying each dioxin and furan by its corresponding TEF

and then summing the resulting values.

TIC - Tentatively Identified Compound: A compound that has been identified to be present and is not part of the target compound list (TCL) for the method and/or program. All TICs are qualitatively identified and reported as estimated concentrations.

Footnotes

Data Usability Report

Report Format:

Project Name:SCAPE BOYLSTONLab Number:L2006971Project Number:6546.9.77Report Date:02/26/20

 The reference for this analyte should be considered modified since this analyte is absent from the target analyte list of the original method.

Terms

1

Analytical Method: Both the document from which the method originates and the analytical reference method. (Example: EPA 8260B is shown as 1,8260B.) The codes for the reference method documents are provided in the References section of the Addendum.

Difference: With respect to Total Oxidizable Precursor (TOP) Assay analysis, the difference is defined as the Post-Treatment value minus the Pre-Treatment value.

Final pH: As it pertains to Sample Receipt & Container Information section of the report, Final pH reflects pH of container determined after adjustment at the laboratory, if applicable. If no adjustment required, value reflects Initial pH.

Frozen Date/Time: With respect to Volatile Organics in soil, Frozen Date/Time reflects the date/time at which associated Reagent Water-preserved vials were initially frozen. Note: If frozen date/time is beyond 48 hours from sample collection, value will be reflected in 'bold'.

Initial pH: As it pertains to Sample Receipt & Container Information section of the report, Initial pH reflects pH of container determined upon receipt, if applicable.

PAH Total: With respect to Alkylated PAH analyses, the 'PAHs, Total' result is defined as the summation of results for all or a subset of the following compounds: Naphthalene, C1-C4 Naphthalenes, 2-Methylnaphthalene, 1-Methylnaphthalene, Biphenyl, Acenaphthylene, Acenaphthene, Fluorene, C1-C3 Fluorenes, Phenanthrene, C1-C4 Phenanthrenes/Anthracenes, Anthracene, Fluoranthene, Pyrene, C1-C4 Fluoranthenes/Pyrenes, Benza(a)anthracene, Chrysene, C1-C4 Chrysenes, Benzo(b)fluoranthene, Benzo(j)+(k)fluoranthene, Benzo(e)pyrene, Benzo(a)pyrene, Perylene, Indeno(1,2,3-cd)pyrene, Dibenz(ah)+(ac)anthracene, Benzo(g,h,i)perylene. If a 'Total' result is requested, the results of its individual components will also be reported.

PFAS Total: With respect to PFAS analyses, the 'PFAS, Total (5)' result is defined as the summation of results for: PFHpA, PFHxS, PFOA, PFNA and PFOS. If a 'Total' result is requested, the results of its individual components will also be reported.

The target compound Chlordane (CAS No. 57-74-9) is reported for GC ECD analyses. Per EPA, this compound "refers to a mixture of chlordane isomers, other chlorinated hydrocarbons and numerous other components." (Reference: USEPA Toxicological Review of Chlordane, In Support of Summary Information on the Integrated Risk Information System (IRIS), December 1997.)

Total: With respect to Organic analyses, a 'Total' result is defined as the summation of results for individual isomers or Aroclors. If a 'Total' result is requested, the results of its individual components will also be reported. This is applicable to 'Total' results for methods 8260, 8081 and 8082.

Data Qualifiers

- A Spectra identified as "Aldol Condensates" are byproducts of the extraction/concentration procedures when acetone is introduced in the process.
- The analyte was detected above the reporting limit in the associated method blank. Flag only applies to associated field samples that have detectable concentrations of the analyte at less than ten times (10x) the concentration found in the blank. For MCP-related projects, flag only applies to associated field samples that have detectable concentrations of the analyte at less than ten times (10x) the concentrations of the analyte at less than ten times (10x) the concentrations of the analyte was detectable concentrations of the analyte at less than ten times (10x) the concentration found in the blank AND the analyte was detected above one-half the reporting limit (or above the reporting limit for common lab contaminants) in the associated method blank. For NJ-Air-related projects, flag only applies to associated field samples that have detectable concentrations of the analyte above the reporting limit. For NJ-related projects (excluding Air), flag only applies to associated field samples that have detectable concentrations of the analyte, which was detected above the reporting limit in the associated method blank or above five times the reporting limit for common lab contaminants (Phthalates, Acetone, Methylene Chloride, 2-Butanone).
- Co-elution: The target analyte co-elutes with a known lab standard (i.e. surrogate, internal standards, etc.) for co-extracted analyses.
- Concentration of analyte was quantified from diluted analysis. Flag only applies to field samples that have detectable concentrations
 of the analyte.
- E Concentration of analyte exceeds the range of the calibration curve and/or linear range of the instrument.
- G The concentration may be biased high due to matrix interferences (i.e, co-elution) with non-target compound(s). The result should be considered estimated.
- H The analysis of pH was performed beyond the regulatory-required holding time of 15 minutes from the time of sample collection.
- I The lower value for the two columns has been reported due to obvious interference.
- J Estimated value. This represents an estimated concentration for Tentatively Identified Compounds (TICs).
- $\label{eq:main_equation} \textbf{M} \qquad \text{-Reporting Limit (RL) exceeds the MCP CAM Reporting Limit for this analyte.}$
- **ND** Not detected at the reporting limit (RL) for the sample.
- NJ Presumptive evidence of compound. This represents an estimated concentration for Tentatively Identified Compounds (TICs), where the identification is based on a mass spectral library search.
- ${f P}$ The RPD between the results for the two columns exceeds the method-specified criteria.
- Q -The quality control sample exceeds the associated acceptance criteria. For DOD-related projects, LCS and/or Continuing Calibration Standard exceedences are also qualified on all associated sample results. Note: This flag is not applicable for matrix spike recoveries when the sample concentration is greater than 4x the spike added or for batch duplicate RPD when the sample concentrations are less

Report Format: Data Usability Report

Project Name:SCAPE BOYLSTONLab Number:L2006971Project Number:6546.9.T7Report Date:02/26/20

Data Qualifiers

than 5x the RL. (Metals only.)

 \boldsymbol{R} — Analytical results are from sample re-analysis.

RE - Analytical results are from sample re-extraction.

S - Analytical results are from modified screening analysis.

Report Format: Data Usability Report

Project Name:SCAPE BOYLSTONLab Number:L2006971Project Number:6546.9.T7Report Date:02/26/20

REFERENCES

- Test Methods for Evaluating Solid Waste: Physical/Chemical Methods. EPA SW-846. Third Edition. Updates I IV, 2007.
- Methods for the Determination of Metals in Environmental Samples, Supplement I. EPA/600/R-94/111. May 1994.
- 4 Methods for Chemical Analysis of Water and Wastes. EPA 600/4-79-020. Revised March 1983.
- 19 Inductively Coupled Plasma Atomic Emission Spectrometric Method for Trace Element Analysis of Water and Wastes. Appendix C, Part 136, 40 CFR (Code of Federal Regulations). July 1, 1999 edition.
- Methods for the Determination of Inorganic Substances in Environmental Samples, EPA/600/R-93/100, August 1993.
- Method 1664,Revision A: N-Hexane Extractable Material (HEM; Oil & Grease) and Silica Gel Treated N-Hexane Extractable Material (SGT-HEM; Non-polar Material) by Extraction and Gravimetry, EPA-821-R-98-002, February 1999.
- 107 Alpha Analytical In-house calculation method.
- 121 Standard Methods for the Examination of Water and Wastewater. APHA-AWWA-WEF. Standard Methods Online.
- 128 Method 624.1: Purgeables by GC/MS, EPA 821-R-16-008, December 2016.
- Method 625.1: Base/Neutrals and Acids by GC/MS, EPA 821-R-16-007, December 2016.

LIMITATION OF LIABILITIES

Alpha Analytical performs services with reasonable care and diligence normal to the analytical testing laboratory industry. In the event of an error, the sole and exclusive responsibility of Alpha Analytical shall be to re-perform the work at it's own expense. In no event shall Alpha Analytical be held liable for any incidental, consequential or special damages, including but not limited to, damages in any way connected with the use of, interpretation of, information or analysis provided by Alpha Analytical.

We strongly urge our clients to comply with EPA protocol regarding sample volume, preservation, cooling, containers, sampling procedures, holding time and splitting of samples in the field.

Alpha Analytical, Inc. Facility: Company-wide

Department: Quality Assurance

Title: Certificate/Approval Program Summary

ID No.:17873 Revision 16

Page 1 of 1

Published Date: 2/17/2020 10:46:05 AM

Certification Information

The following analytes are not included in our Primary NELAP Scope of Accreditation:

Westborough Facility

EPA 624/624.1: m/p-xylene, o-xylene

EPA 8260C: NPW: 1,2,4,5-Tetramethylbenzene; 4-Ethyltoluene, Azobenzene; SCM: lodomethane (methyl iodide), 1,2,4,5-Tetramethylbenzene; 4-

Ethyltoluene

EPA 8270D: NPW: Dimethylnaphthalene,1,4-Diphenylhydrazine; SCM: Dimethylnaphthalene,1,4-Diphenylhydrazine.

SM4500: NPW: Amenable Cyanide; SCM: Total Phosphorus, TKN, NO2, NO3.

Mansfield Facility

SM 2540D: TSS

EPA 8082A: NPW: PCB: 1, 5, 31, 87,101, 110, 141, 151, 153, 180, 183, 187.

EPA TO-15: Halothane, 2,4,4-Trimethyl-2-pentene, 2,4,4-Trimethyl-1-pentene, Thiophene, 2-Methylthiophene,

3-Methylthiophene, 2-Ethylthiophene, 1,2,3-Trimethylbenzene, Indan, Indene, 1,2,4,5-Tetramethylbenzene, Benzothiophene, 1-Methylnaphthalene.

EPA TO-12 Non-methane organics

EPA 3C Fixed gases

Biological Tissue Matrix: EPA 3050B

The following analytes are included in our Massachusetts DEP Scope of Accreditation

Westborough Facility:

Drinking Water

EPA 300.0: Chloride, Nitrate-N, Fluoride, Sulfate; EPA 353.2: Nitrate-N, Nitrite-N; SM4500NO3-F: Nitrate-N, Nitrite-N; SM4500F-C, SM4500CN-CE,

EPA 180.1, SM2130B, SM4500CI-D, SM2320B, SM2540C, SM4500H-B, SM4500NO2-B

EPA 332: Perchlorate; EPA 524.2: THMs and VOCs; EPA 504.1: EDB, DBCP.

Microbiology: SM9215B; SM9223-P/A, SM9223B-Colilert-QT,SM9222D.

Non-Potable Water

SM4500H,B, EPA 120.1, SM2510B, SM2540C, SM2320B, SM4500CL-E, SM4500F-BC, SM4500NH3-BH: Ammonia-N and Kjeldahl-N, EPA 350.1: Ammonia-N, LACHAT 10-107-06-1-B: Ammonia-N, EPA 351.1, SM4500NO3-F, EPA 353.2: Nitrate-N, SM4500P-E, SM4500P-B, E, SM4500SO4-E, SM5220D, EPA 410.4, SM5210B, SM5310C, SM4500CL-D, EPA 1664, EPA 420.1, SM4500-CN-CE, SM2540D, EPA 300: Chloride, Sulfate, Nitrate.

EPA 624.1: Volatile Halocarbons & Aromatics,

EPA 608.3: Chlordane, Toxaphene, Aldrin, alpha-BHC, beta-BHC, gamma-BHC, delta-BHC, Dieldrin, DDD, DDE, DDT, Endosulfan II, Endosulfan II, Endosulfan sulfate, Endrin, Endrin Aldehyde, Heptachlor, Heptachlor Epoxide, PCBs

EPA 625.1: SVOC (Acid/Base/Neutral Extractables), EPA 600/4-81-045: PCB-Oil.

Microbiology: SM9223B-Colilert-QT; Enterolert-QT, SM9221E, EPA 1600, EPA 1603.

Mansfield Facility:

Drinking Water

EPA 200.7: Al, Ba, Cd, Cr, Cu, Fe, Mn, Ni, Na, Ag, Ca, Zn. EPA 200.8: Al, Sb, As, Ba, Be, Cd, Cr, Cu, Pb, Mn, Ni, Se, Ag, TL, Zn. EPA 245.1 Hg. EPA 522.

Non-Potable Water

EPA 200.7: Al, Sb, As, Be, Cd, Ca, Cr, Co, Cu, Fe, Pb, Mg, Mn, Mo, Ni, K, Se, Ag, Na, Sr, TL, Ti, V, Zn.

EPA 200.8: Al, Sb, As, Be, Cd, Cr, Cu, Fe, Pb, Mn, Ni, K, Se, Ag, Na, TL, Zn.

EPA 245.1 Hg.

SM2340B

For a complete listing of analytes and methods, please contact your Alpha Project Manager.

Document Type: Form

Pre-Qualtrax Document ID: 08-113

	CHAIN OF	CUSTO	ΟY	PAGE 1 OF	1	Date	Rec'd	in Lab:	21	171	2			ALPI	HA J	ob #:	12	vo6971	
ALPHA		Project Inform	nation			_	ort Ir					erab		Billir				ESPACIO L	
ANALYTICA							FAX			□ E	MAIL			⊠ s	ame as	Client	info	PO #:	
Westborough, MA M	Mansfield, MA	Project Name: S	CARE Revi	l-t		⊠.	ADEx			□ A	dd'i Dei	liverabl	es					7.	
	°EL: 508-822-9300 FAX: 508-822-3288	Project Name: S	CAPE BOY	iston		Reg	gulato	ry Re	quire	ment	s/Rep	ort L	imits	9,110		TIE.	*	THE REPORT OF	
Client Information	on the same of the	Project Location	: Boston, M	A			e/Fed P	111						Criteri	a		_		-
Client: McPhail Ass	ociates, LLC	Project #: 6546.9	9.T7					1			300	H	250			W.	iner)	The both	86
Address: 2269 Mas	sachusetts Avenue	Project Manager	: BED			-													
Cambridge, MA 021	140	ALPHA Quote #				_	00.00			_						_			5.2
Phone: (617) 868-1	420	Turn-Around	Time			AN	ALYS	IS						_	-			SAMPLE HANDLING	O T
Fax:		Standard Standard	□ Ru	ISh (ONLY IF PR	E-APPROVED													Filtration	A
Email: bdowning@r	ncphailgeo.com											(B)						☐ Not Needed	#
☐ These samples have t	been Previously analyzed by Alpha	Due Date:	Time:	-										PAHs				Lab to do	B 0
Other Project Spe	ecific Requirements/Commer	nts/Detection Limits	32			3		2000		_		826		P.				☐ Lab to do	O T T
Circle the following						0.8)		€		Cl- (A)		ene		∞ _			(F)	(Please specify below)	E
Sect. A inorganics:	Ammonia, Chloride, TRC, TSS, C	CrVI, CrIII, Tot-CN, RG	SP Metals			(20		200		s). C	Œ	Senz		roup	(ii)	Œ	Ν̈́		S
B- Non-Hal- VOC- 8	260, 8260-SIM, Tot. Phenol) Se PCB's, PCP(8270/8270-SIM)/F	TPH 8260 Sub-Eth	i04			RGP Metals (200.8) (A)	2	Ammonia (4500 (A))	~	(7196).	C)	BTEX and Benzene (8260)	504-EDB (C)	625 - (D) -Group	PCB-608- (E)	TPH-1664-(F)	SUB-ETHANOL		
ALPHA Lab ID	Sample ID	Colle		Sample	Sampler's	<u>0,</u>	TSS-(A)	Б	TCN (A)	HexCr	8260 (B,	EX	4-ED	2 - (B-6(1 ±	9		
(Lab Use Only)	225000000000	Date	Time	Matrix	Initials	S.	TS	A	2	H	82	BT	20	62	PC	ㅂ	SU	Sample Specific Comments	
06971-01	MA-3 (OW)	02/14/20	10:00	GW	EKC	\boxtimes			\boxtimes	\boxtimes				\boxtimes		\boxtimes			121
		50																	
ONION NEEDLE								닏			닏	브			Ц		닏		
LA BACK THE				7	-		님	님	H		님	井	님	H	ᆜ	무	片		-
						H	H	片	님	님	님	井	Η	님	H	H			
		_		-	+		H	片	H	님	님	井	님	님	무	_	H		-
AZIONIS VIII							H	片	H	+	님	+	Η	H	\exists	Н	H		
					1	-	H	H	H	H	님	금	금	H	H	H	H		
					1		H	H	H	-	님	H	=	H			H		+
				C	ontainer Type	Р	P	Р	Р	Р	v	v	_	Α.	-	A	v		1000
					Preservative	С	A	D	E	A	В	В	-	н		В	В	Please print clearly, legil and completely. Sample	
			Relin	nquished By:		D	ate/Tim	e			Receiv	ed By:			0	ate/Tin	ne	not be logged in and turnaround time clock wi	W24/1///
		EK	C. /	C.Berrara and C.		02/14	/20	12:00	1	nla	la	A	AA		211	0702-037	630	start until any ambiguitie resolved. All samples	es are
FORM NO 91-91(LHU)		a	habit	AAI	,	2/19		230	4	lon	erl	lig.		302	HI	41	830	submitted are subject to Alpha's Payment Terms	
(res. 5-JANI-12)								52	-			1			8.5				422

			Subcontr	act Chain of Cus	stody	T		
ALPI		Te 54 Co	k Lab, Inc. 45 Horsehoe Illinsville, IL 6				Alpha Job Number L2006971	
	Client Information	est fine extend the	Project Ir	nformation	Regu	l latory Requireme	nts/Report Lim	nits
Client: Alpha A Address: Eight V Westbo	Analytical Labs Valkup Drive orough, MA 01581-1019	Project Location Project Manage Turnard	n: MA er: Melissa Gu	SELECTED STATES	State/Feder	al Program:	моронали	
Phone: 603.31 Email: mgulli@	9.5010 @alphalab.com	Due Date Deliverables		9				Lister !
		Project Specif	ic Requirem	nents and/or Repo	rt Requirements			
	Reference following Alpha Job	Number on final repor	t/deliverables	: L2006971	Report to include	Method Blank, LCS/	LCSD:	
Additional Com	ments: Send all results/reports	to subreports@alphala	ab.com					
	ENTERNAL PROPERTY.			Diese Colonia				
Lab ID	Client ID	Collection Date/Time	Sample Matrix		Analysis			Batch QC
	MA-3 (OW)	02-14-20 10:00	WATER	Ethanol by EPA 1671 R	evision A			
	Relinquish	ed By:		Date/Time:	Received By	:	Date/Time:	
	-	7		2/17/20				
		0						
Form No: AL_su	ibcoc							

AP ACCREC

February 25, 2020

Melissa Gulli Alpha Analytical 145 Flanders Road Westborough, MA 01581 TEL: (603) 319-5010

FAX:

RE: L2006971 **WorkOrder:** 20020979

Dear Melissa Gulli:

TEKLAB, INC received 1 sample on 2/18/2020 9:20:00 AM for the analysis presented in the following report.

Samples are analyzed on an as received basis unless otherwise requested and documented. The sample results contained in this report relate only to the requested analytes of interest as directed on the chain of custody. NELAP accredited fields of testing are indicated by the letters NELAP under the Certification column. Unless otherwise documented within this report, Teklab Inc. analyzes samples utilizing the most current methods in compliance with 40CFR. All tests are performed in the Collinsville, IL laboratory unless otherwise noted in the Case Narrative.

All quality control criteria applicable to the test methods employed for this project have been satisfactorily met and are in accordance with NELAP except where noted. The following report shall not be reproduced, except in full, without the written approval of Teklab, Inc.

If you have any questions regarding these tests results, please feel free to call.

Sincerely,

Marvin L. Darling Project Manager

(618)344-1004 ex 41

mdarling@teklabinc.com

Mowin L. Darling II

Report Contents

http://www.teklabinc.com/

Client: Alpha Analytical Work Order: 20020979
Client Project: L2006971 Report Date: 25-Feb-2020

This reporting package includes the following:

Cover Letter	1
Report Contents	2
Definitions	3
Case Narrative	4
Accreditations	5
Laboratory Results	6
Quality Control Results	7
Receiving Check List	8
Chain of Custody	Appended

Definitions

http://www.teklabinc.com/

Client: Alpha Analytical Work Order: 20020979

Client Project: L2006971 Report Date: 25-Feb-2020

Abbr Definition

- * Analytes on report marked with an asterisk are not NELAP accredited
- CCV Continuing calibration verification is a check of a standard to determine the state of calibration of an instrument between recalibration.
- CRQL A Client Requested Quantitation Limit is a reporting limit that varies according to customer request. The CRQL may not be less than the MDL.
 - DF Dilution factor is the dilution performed during analysis only and does not take into account any dilutions made during sample preparation. The reported result is final and includes all dilution factors.
 - DNI Did not ignite
- DUP Laboratory duplicate is a replicate aliquot prepared under the same laboratory conditions and independently analyzed to obtain a measure of precision.
- ICV Initial calibration verification is a check of a standard to determine the state of calibration of an instrument before sample analysis is initiated.
- IDPH IL Dept. of Public Health
- LCS Laboratory control sample is a sample matrix, free from the analytes of interest, spiked with verified known amounts of analytes and analyzed exactly like a sample to establish intra-laboratory or analyst specific precision and bias or to assess the performance of all or a portion of the measurement system.
- LCSD Laboratory control sample duplicate is a replicate laboratory control sample that is prepared and analyzed in order to determine the precision of the approved test method. The acceptable recovery range is listed in the QC Package (provided upon request).
- MBLK Method blank is a sample of a matrix similar to the batch of associated sample (when available) that is free from the analytes of interest and is processed simultaneously with and under the same conditions as samples through all steps of the analytical procedures, and in which no target analytes or interferences should present at concentrations that impact the analytical results for sample analyses.
- MDL "The method detection limit is defined as the minimum measured concentration of a substance that can be reported with 99% confidence that the measured concentration is distinguishable from method blank results."
- MS Matrix spike is an aliquot of matrix fortified (spiked) with known quantities of specific analytes that is subjected to the entire analytical procedures in order to determine the effect of the matrix on an approved test method's recovery system. The acceptable recovery range is listed in the QC Package (provided upon request).
- MSD Matrix spike duplicate means a replicate matrix spike that is prepared and analyzed in order to determine the precision of the approved test method. The acceptable recovery range is listed in the QC Package (provided upon request).
- MW Molecular weight
- ND Not Detected at the Reporting Limit

NELAP NELAP Accredited

- PQL Practical quantitation limit means the lowest level that can be reliably achieved within specified limits of precision and accuracy during routine laboratory operation conditions.
 - RL The reporting limit the lowest level that the data is displayed in the final report. The reporting limit may vary according to customer request or sample dilution. The reporting limit may not be less than the MDL.
- RPD Relative percent difference is a calculated difference between two recoveries (ie. MS/MSD). The acceptable recovery limit is listed in the QC Package (provided upon request).
- SPK The spike is a known mass of target analyte added to a blank sample or sub-sample; used to determine recovery deficiency or for other quality control purposes.
- Surr Surrogates are compounds which are similar to the analytes of interest in chemical composition and behavior in the analytical process, but which are not normally found in environmental samples.
- TIC Tentatively identified compound: Analytes tentatively identified in the sample by using a library search. Only results not in the calibration standard will be reported as tentatively identified compounds. Results for tentatively identified compounds that are not present in the calibration standard, but are assigned a specific chemical name based upon the library search, are calculated using total peak areas from reconstructed ion chromatograms and a response factor of one. The nearest Internal Standard is used for the calculation. The results of any TICs must be considered estimated, and are flagged with a "T". If the estimated result is above the calibration range it is flagged "ET"
- TNTC Too numerous to count (> 200 CFU)

Qualifiers

- # Unknown hydrocarbon
- C RL shown is a Client Requested Quantitation Limit
- H Holding times exceeded
- J Analyte detected below quantitation limits
- ND Not Detected at the Reporting Limit
- S Spike Recovery outside recovery limits
- X Value exceeds Maximum Contaminant Level

- B Analyte detected in associated Method Blank
- E Value above quantitation range
- I Associated internal standard was outside method criteria
- M Manual Integration used to determine area response
- R RPD outside accepted recovery limits
- T TIC(Tentatively identified compound)

Case Narrative

http://www.teklabinc.com/

Client: Alpha Analytical Work Order: 20020979

Client Project: L2006971 Report Date: 25-Feb-2020

Cooler Receipt Temp: 2.0 °C

Locations

	Collinsville		Springfield		Kansas City
Address	5445 Horseshoe Lake Road	Address	3920 Pintail Dr	Address	8421 Nieman Road
	Collinsville, IL 62234-7425		Springfield, IL 62711-9415		Lenexa, KS 66214
Phone	(618) 344-1004	Phone	(217) 698-1004	Phone	(913) 541-1998
Fax	(618) 344-1005	Fax	(217) 698-1005	Fax	(913) 541-1998
Email	jhriley@teklabinc.com	Email	KKlostermann@teklabinc.com	Email	jhriley@teklabinc.com
	Collinsville Air		Chicago		
Address	5445 Horseshoe Lake Road	Address	1319 Butterfield Rd.		
	Collinsville, IL 62234-7425		Downers Grove, IL 60515		
Phone	(618) 344-1004	Phone	(630) 324-6855		
Fax	(618) 344-1005	Fax			
Email	EHurley@teklabinc.com	Email	arenner@teklabinc.com		

Accreditations

http://www.teklabinc.com/

Client: Alpha Analytical Work Order: 20020979

Client Project: L2006971 Report Date: 25-Feb-2020

State	Dept	Cert #	NELAP	Exp Date	Lab
Illinois	IEPA	100226	NELAP	3/3/2020	Collinsville
Kansas	KDHE	E-10374	NELAP	4/30/2020	Collinsville
Louisiana	LDEQ	166493	NELAP	6/30/2020	Collinsville
Louisiana	LDEQ	166578	NELAP	6/30/2020	Collinsville
Oklahoma	ODEQ	9978	NELAP	8/31/2020	Collinsville
Arkansas	ADEQ	88-0966		3/14/2021	Collinsville
Illinois	IDPH	17584		5/31/2021	Collinsville
Kentucky	UST	0073		1/31/2020	Collinsville
Missouri	MDNR	00930		5/31/2021	Collinsville
Missouri	MDNR	930		1/31/2022	Collinsville
Tennessee	TDEC	04905		3/3/2020	Collinsville

Laboratory Results

http://www.teklabinc.com/

Client: Alpha Analytical Work Order: 20020979

Client Project: L2006971 Report Date: 25-Feb-2020

Lab ID: 20020979-001 Client Sample ID: MA-3 (OW)

Matrix: AQUEOUS Collection Date: 02/14/2020 10:00

	Analyses	Certification	RL Qua	Result	Units	DF	Date Analyzed	Batch
EPA 600 1	671A, PHARMACE	UTICAL MANUFACTU	RING INDUSTRY	NON-PURGE	ABLE VOLA	ATILE OR	GANICS	
Ethanol		*	20	ND	mg/L	1	02/19/2020 13:18	R273169

Quality Control Results

http://www.teklabinc.com/

Client: Alpha Analytical Work Order: 20020979

Client Project: L2006971 Report Date: 25-Feb-2020

EPA 600 1671A, P	HARMACEU	TICAL	MANUF	ACTURING IN	DUSTRY	NON-F	URGEABLE	VOLATI	ILE ORG		
Batch R273169	SampType:	MBLK		Units mg/L							
SampID: MBLK-021	920										Date
Analyses			RL	Qual	Result	Spike	SPK Ref Val	%REC	Low Limit	High Limit	Analyzed
Ethanol			20		ND						02/19/2020
Batch R273169	SampType:	LCS		Units mg/L							
SampID: LCS-02192	20										Date
Analyses			RL	Qual	Result	Spike	SPK Ref Val	%REC	Low Limit	High Limit	Analyzed
Ethanol			20		220	250.0	0	87.2	70	132	02/19/2020
Batch R273169	SampType:	MS		Units mg/L							
SampID: 20020982-	-002AMS										Date
Analyses			RL	Qual	Result	Spike	SPK Ref Val	%REC	Low Limit	High Limit	Analyzed
Ethanol			20		240	250.0	0	95.8	70	132	02/19/2020
Batch R273169	SampType:	MSD		Units mg/L					RPD	Limit 30	
SampID: 20020982-	-002AMSD										Date
Analyses			RL	Qual	Result	Spike	SPK Ref Val	%REC	RPD Ref \	/al %RPD	Analyzed
Ethanol			20		240	250.0	0	94.5	239.5	1.37	02/19/2020

NA 🗸

NPDES/CWA TCN interferences checked/treated in the field?

Receiving Check List

http://www.teklabinc.com/

Work Order: 20020979 Client: Alpha Analytical Client Project: L2006971 Report Date: 25-Feb-2020 Carrier: UPS Received By: AH Elizabeth a Hurley (matter Reviewed by: Completed by: On: On: 18-Feb-2020 18-Feb-2020 Amanda R. Ham Elizabeth A. Hurley Extra pages included 0 Pages to follow: Chain of custody Shipping container/cooler in good condition? Yes 🗸 No Not Present Temp °C 2.0 Type of thermal preservation? Ice 🗹 Blue Ice None Dry Ice Chain of custody present? **V** No 🗀 Yes **V** Chain of custody signed when relinquished and received? Yes No L **V** Chain of custody agrees with sample labels? No 🗀 Yes **V** Samples in proper container/bottle? Yes No 🗀 **V** Sample containers intact? Yes No Sufficient sample volume for indicated test? Yes ~ No **V** No 🗌 All samples received within holding time? Yes NA 🗸 Field Lab 🗌 Reported field parameters measured: Yes 🗹 No 🗌 Container/Temp Blank temperature in compliance? When thermal preservation is required, samples are compliant with a temperature between 0.1°C - 6.0°C, or when samples are received on ice the same day as collected. Yes 🗸 No VOA vials Water – at least one vial per sample has zero headspace? No 🗀 No 🗌 No TOX containers Water - TOX containers have zero headspace? Yes Yes 🗹 No 🗌 Water - pH acceptable upon receipt?

Yes

Any No responses must be detailed below or on the COC.

No 🗌

Page 8 of 8

ΔLPHA
ANALYTICAL
World Class Chamistry:

Subcontract Chain of Custody

Tek Lab, Inc. 5445 Horsehoe Lake Road Collinsville, IL 62234-7425

Alpha Job Number

L2006971 **Client Information Project Information** Regulatory Requirements/Report Limits Client: Alpha Analytical Labs Address: Eight Walkup Drive Westborough, MA 01581-1019 Project Location: MA Project Manager: Melissa Gulli State/Federal Program: Regulatory Criteria: **Turnaround & Deliverables Information** Phone: 603.319.5010 Email: mgulli@alphalab.com Due Date: Deliverables: Project Specific Requirements and/or Report Requirements Reference following Alpha Job Number on final report/deliverables: L2006971 Report to include Method Blank, LCS/LCSD: Additional Comments: Send all results/reports to subreports@alphalab.com Collection Date/Time Sample Matrix Batch QC Lab ID Client ID Analysis 200079-001 MA-3 (OW) 02-14-20 10:00 WATER Ethanol by EPA 1671 Revision A DO LTG3 ice Relinguished By: Date/Time: Received By: Date/Time: 2/11/20 0920

Form No: AL subcoc

APPENDIX E:

LABORATORY ANALYTICAL DATA – ADDITIONAL GROUNDWATER

ANALYTICAL REPORT

Lab Number: L1900731

Client: McPhail Associates

2269 Massachusetts Avenue

Cambridge, MA 02140

ATTN: Ambrose Donovan Phone: (617) 868-1420

Project Name: SCAPE BOSTON

Project Number: 6546.9.00

Report Date: 01/11/19

The original project report/data package is held by Alpha Analytical. This report/data package is paginated and should be reproduced only in its entirety. Alpha Analytical holds no responsibility for results and/or data that are not consistent with the original.

Certifications & Approvals: MA (M-MA086), NH NELAP (2064), CT (PH-0574), IL (200077), ME (MA00086), MD (348), NJ (MA935), NY (11148), NC (25700/666), PA (68-03671), RI (LAO00065), TX (T104704476), VT (VT-0935), VA (460195), USDA (Permit #P330-17-00196).

Eight Walkup Drive, Westborough, MA 01581-1019 508-898-9220 (Fax) 508-898-9193 800-624-9220 - www.alphalab.com

Project Number: 6546.9.00

Lab Number: L1900731 **Report Date:** 01/11/19

Alpha Sample ID	Client ID	Matrix	Sample Location	Collection Date/Time	Receive Date
L1900731-01	MW-1	GROUNDWATER	BOSTON, MA	01/07/19 11:00	01/07/19
L1900731-02	MA-3 (OW)	GROUNDWATER	BOSTON, MA	01/07/19 09:15	01/07/19
L1900731-03	MW-7 (OW)	GROUNDWATER	BOSTON, MA	01/07/19 12:15	01/07/19

Project Name: SCAPE BOSTON Lab Number: L1900731

Project Number: 6546.9.00 **Report Date:** 01/11/19

MADEP MCP Response Action Analytical Report Certification

This form provides certifications for all samples performed by MCP methods. Please refer to the Sample Results and Container Information sections of this report for specification of MCP methods used for each analysis. The following questions pertain only to MCP Analytical Methods.

An af	firmative response to questions A through F is required for "Presumptive Certainty" status	
Α	Were all samples received in a condition consistent with those described on the Chain-of-Custody, properly preserved (including temperature) in the field or laboratory, and prepared/analyzed within method holding times?	YES
В	Were the analytical method(s) and all associated QC requirements specified in the selected CAM protocol(s) followed?	YES
С	Were all required corrective actions and analytical response actions specified in the selected CAM protocol(s) implemented for all identified performance standard non-conformances?	YES
D	Does the laboratory report comply with all the reporting requirements specified in CAM VII A, "Quality Assurance and Quality Control Guidelines for the Acquisition and Reporting of Analytical Data?"	YES
E a.	VPH, EPH, and APH Methods only: Was each method conducted without significant modification(s)? (Refer to the individual method(s) for a list of significant modifications).	YES
E b.	APH and TO-15 Methods only: Was the complete analyte list reported for each method?	N/A
F	Were all applicable CAM protocol QC and performance standard non-conformances identified and evaluated in a laboratory narrative (including all "No" responses to Questions A through E)?	YES

A res	sponse to questions G, H and I is required for "Presumptive Certainty" status	
G	Were the reporting limits at or below all CAM reporting limits specified in the selected CAM protocol(s)?	NO
Н	Were all QC performance standards specified in the CAM protocol(s) achieved?	NO
I	Were results reported for the complete analyte list specified in the selected CAM protocol(s)?	NO

For any questions answered "No", please refer to the case narrative section on the following page(s).

Please note that sample matrix information is located in the Sample Results section of this report.

Project Name:SCAPE BOSTONLab Number:L1900731Project Number:6546.9.00Report Date:01/11/19

Case Narrative

The samples were received in accordance with the Chain of Custody and no significant deviations were encountered during the preparation or analysis unless otherwise noted. Sample Receipt, Container Information, and the Chain of Custody are located at the back of the report.

Results contained within this report relate only to the samples submitted under this Alpha Lab Number and meet NELAP requirements for all NELAP accredited parameters unless otherwise noted in the following narrative. The data presented in this report is organized by parameter (i.e. VOC, SVOC, etc.). Sample specific Quality Control data (i.e. Surrogate Spike Recovery) is reported at the end of the target analyte list for each individual sample, followed by the Laboratory Batch Quality Control at the end of each parameter. Tentatively Identified Compounds (TICs), if requested, are reported for compounds identified to be present and are not part of the method/program Target Compound List, even if only a subset of the TCL are being reported. If a sample was re-analyzed or re-extracted due to a required quality control corrective action and if both sets of data are reported, the Laboratory ID of the re-analysis or re-extraction is designated with an "R" or "RE", respectively. When multiple Batch Quality Control elements are reported (e.g. more than one LCS), the associated samples for each element are noted in the grey shaded header line of each data table. Any Laboratory Batch, Sample Specific % recovery or RPD value that is outside the listed Acceptance Criteria is bolded in the report. All specific QC information is also incorporated in the Data Usability format of our Data Merger tool where it can be reviewed along with any associated usability implications. Soil/sediments, solids and tissues are reported on a dry weight basis unless otherwise noted. Definitions of all data qualifiers and acronyms used in this report are provided in the Glossary located at the back of the report.

In reference to questions H (CAM) or 4 (RCP) when "NO" is checked, the performance criteria for CAM and RCP methods allow for some quality control failures to occur and still be within method compliance. In these instances the specific failure is not narrated but noted in the associated QC table. The information is also incorporated in the Data Usability format of our Data Merger tool where it can be reviewed along with any associated usability implications.

Please see the associated ADEx data file for a comparison of laboratory reporting limits that were achieved with the regulatory Numerical Standards requested on the Chain of Custody.

HOLD POLICY

For samples submitted on hold, Alpha's policy is to hold samples (with the exception of Air canisters) free of charge for 21 calendar days from the date the project is completed. After 21 calendar days, we will dispose of all samples submitted including those put on hold unless you have contacted your Client Service Representative and made arrangements for Alpha to continue to hold the samples. Air canisters will be disposed after 3 business days from the date the project is completed.

Please	contact	Client S	services a	at 800	-624-9220	with	any	questions.	

Project Name:SCAPE BOSTONLab Number:L1900731Project Number:6546.9.00Report Date:01/11/19

Case Narrative (continued)

MCP Related Narratives

Volatile Organics

L1900731-02: The sample has elevated detection limits due to the dilution required by the elevated concentrations of non-target compounds in the sample.

In reference to question G:

L1900731-02: One or more of the target analytes did not achieve the requested CAM reporting limits. In reference to question H:

The initial calibration, associated with L1900731-01 through -03, did not meet the method required minimum response factor on the lowest calibration standard for 1,4-dioxane (0.0028), as well as the average response

factor for 1,4-dioxane.

The continuing calibration standard, associated with L1900731-01 through -03, is outside the acceptance criteria for several compounds; however, it is within overall method allowances. A copy of the continuing calibration standard is included as an addendum to this report.

VPH

In reference to question I:

All samples were analyzed for a subset of MCP analytes per client request.

EPH

In reference to question G:

One or more of the target analytes did not achieve the requested CAM reporting limits.

Metals

In reference to question G:

One or more of the target analytes did not achieve the requested CAM reporting limits.

In reference to question I:

All samples were analyzed for a subset of MCP analytes per client request.

I, the undersigned, attest under the pains and penalties of perjury that, to the best of my knowledge and belief and based upon my personal inquiry of those responsible for providing the information contained in this analytical report, such information is accurate and complete. This certificate of analysis is not complete unless this page accompanies any and all pages of this report.

Custen Walker Cristin Walker

Authorized Signature:

Title: Technical Director/Representative

ΔLPHA

Date: 01/11/19

ORGANICS

VOLATILES

L1900731

01/07/19 11:00

Not Specified

01/07/19

Project Name: SCAPE BOSTON

Project Number: 6546.9.00

SAMPLE RESULTS

Lab Number:

Date Collected:

Date Received:

Field Prep:

Report Date: 01/11/19

Lab ID: L1900731-01 Client ID: MW-1

Sample Location: BOSTON, MA

Sample Depth:

Matrix: Groundwater Analytical Method: 97,8260C Analytical Date: 01/08/19 11:37

Analyst: MKS

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
MCP Volatile Organics - Westboroug	h Lab					
Methylene chloride	ND		ug/l	2.0		1
1,1-Dichloroethane	ND		ug/l	1.0		1
Chloroform	ND		ug/l	1.0		1
Carbon tetrachloride	ND		ug/l	1.0		1
1,2-Dichloropropane	ND		ug/l	1.0		1
Dibromochloromethane	ND		ug/l	1.0		1
1,1,2-Trichloroethane	ND		ug/l	1.0		1
Tetrachloroethene	ND		ug/l	1.0		1
Chlorobenzene	ND		ug/l	1.0		1
Trichlorofluoromethane	ND		ug/l	2.0		1
1,2-Dichloroethane	ND		ug/l	1.0		1
1,1,1-Trichloroethane	ND		ug/l	1.0		1
Bromodichloromethane	ND		ug/l	1.0		1
trans-1,3-Dichloropropene	ND		ug/l	0.40		1
cis-1,3-Dichloropropene	ND		ug/l	0.40		1
1,3-Dichloropropene, Total	ND		ug/l	0.40		1
1,1-Dichloropropene	ND		ug/l	2.0		1
Bromoform	ND		ug/l	2.0		1
1,1,2,2-Tetrachloroethane	ND		ug/l	1.0		1
Benzene	ND		ug/l	0.50		1
Toluene	ND		ug/l	1.0		1
Ethylbenzene	ND		ug/l	1.0		1
Chloromethane	ND		ug/l	2.0		1
Bromomethane	ND		ug/l	2.0		1
Vinyl chloride	ND		ug/l	1.0		1
Chloroethane	ND		ug/l	2.0		1
1,1-Dichloroethene	ND		ug/l	1.0		1
trans-1,2-Dichloroethene	ND		ug/l	1.0		1

Project Name: Lab Number: SCAPE BOSTON L1900731

Project Number: Report Date: 6546.9.00 01/11/19

SAMPLE RESULTS

Lab ID: L1900731-01 Date Collected: 01/07/19 11:00

Client ID: Date Received: 01/07/19 MW-1

Sample Location: Field Prep: Not Specified BOSTON, MA

Sample Depth:

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
MCP Volatile Organics - Westborough Lab						
Trichloroethene	ND		ug/l	1.0		1
1,2-Dichlorobenzene	ND		ug/l	1.0		1
1,3-Dichlorobenzene	ND		ug/l	1.0		1
1,4-Dichlorobenzene	ND		ug/l	1.0		1
Methyl tert butyl ether	ND		ug/l	2.0		1
p/m-Xylene	ND		ug/l	2.0		1
o-Xylene	ND		ug/l	1.0		1
Xylene (Total)	ND		ug/l	1.0		1
cis-1,2-Dichloroethene	ND		ug/l	1.0		1
1,2-Dichloroethene (total)	ND		ug/l	1.0		1
Dibromomethane	ND		ug/l	2.0		1
1,2,3-Trichloropropane	ND		ug/l	2.0		1
Styrene	ND		ug/l	1.0		1
Dichlorodifluoromethane	ND		ug/l	2.0		1
Acetone	ND		ug/l	5.0		1
Carbon disulfide	ND		ug/l	2.0		1
2-Butanone	ND		ug/l	5.0		1
4-Methyl-2-pentanone	ND		ug/l	5.0		1
2-Hexanone	ND		ug/l	5.0		1
Bromochloromethane	ND		ug/l	2.0		1
Tetrahydrofuran	ND		ug/l	2.0		1
2,2-Dichloropropane	ND		ug/l	2.0		1
1,2-Dibromoethane	ND		ug/l	2.0		1
1,3-Dichloropropane	ND		ug/l	2.0		1
1,1,1,2-Tetrachloroethane	ND		ug/l	1.0		1
Bromobenzene	ND		ug/l	2.0		1
n-Butylbenzene	ND		ug/l	2.0		1
sec-Butylbenzene	ND		ug/l	2.0		1
tert-Butylbenzene	ND		ug/l	2.0		1
o-Chlorotoluene	ND		ug/l	2.0		1
p-Chlorotoluene	ND		ug/l	2.0		1
1,2-Dibromo-3-chloropropane	ND		ug/l	2.0		1
Hexachlorobutadiene	ND		ug/l	0.60		1
Isopropylbenzene	ND		ug/l	2.0		1
p-Isopropyltoluene	ND		ug/l	2.0		1
Naphthalene	ND		ug/l	2.0		1
n-Propylbenzene	ND		ug/l	2.0		1

Project Name:SCAPE BOSTONLab Number:L1900731

Project Number: 6546.9.00 **Report Date:** 01/11/19

SAMPLE RESULTS

Lab ID: L1900731-01 Date Collected: 01/07/19 11:00

Client ID: MW-1 Date Received: 01/07/19
Sample Location: BOSTON, MA Field Prep: Not Specified

Sample Depth:

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	
MCP Volatile Organics - Westbord	ough Lab						
1,2,3-Trichlorobenzene	ND		ug/l	2.0		1	
1,2,4-Trichlorobenzene	ND		ug/l	2.0		1	
1,3,5-Trimethylbenzene	ND		ug/l	2.0		1	
1,2,4-Trimethylbenzene	ND		ug/l	2.0		1	
Ethyl ether	ND		ug/l	2.0		1	
Isopropyl Ether	ND		ug/l	2.0		1	
Ethyl-Tert-Butyl-Ether	ND		ug/l	2.0		1	
Tertiary-Amyl Methyl Ether	ND		ug/l	2.0		1	
1,4-Dioxane	ND		ug/l	250		1	

Surrogate	% Recovery	Acceptance Qualifier Criteria	
1,2-Dichloroethane-d4	108	70-130	
Toluene-d8	91	70-130	
4-Bromofluorobenzene	96	70-130	
Dibromofluoromethane	107	70-130	

01/07/19 09:15

Project Name: SCAPE BOSTON

Project Number: 6546.9.00

SAMPLE RESULTS

Lab Number: L1900731

Report Date: 01/11/19

Lab ID: L1900731-02 D

Client ID: MA-3 (OW) Sample Location: BOSTON, MA Date Received: 01/07/19 Field Prep: Not Specified

Date Collected:

Sample Depth:

Matrix: Groundwater Analytical Method: 97,8260C Analytical Date: 01/08/19 12:10

Analyst: MKS

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
MCP Volatile Organics - Westborough Lab						
Methylene chloride	ND		ug/l	20		10
1,1-Dichloroethane	ND		ug/l	10		10
Chloroform	ND		ug/l	10		10
Carbon tetrachloride	ND		ug/l	10		10
1,2-Dichloropropane	ND		ug/l	10		10
Dibromochloromethane	ND		ug/l	10		10
1,1,2-Trichloroethane	ND		ug/l	10		10
Tetrachloroethene	ND		ug/l	10		10
Chlorobenzene	ND		ug/l	10		10
Trichlorofluoromethane	ND		ug/l	20		10
1,2-Dichloroethane	ND		ug/l	10		10
1,1,1-Trichloroethane	ND		ug/l	10		10
Bromodichloromethane	ND		ug/l	10		10
trans-1,3-Dichloropropene	ND		ug/l	4.0		10
cis-1,3-Dichloropropene	ND		ug/l	4.0		10
1,3-Dichloropropene, Total	ND		ug/l	4.0		10
1,1-Dichloropropene	ND		ug/l	20		10
Bromoform	ND		ug/l	20		10
1,1,2,2-Tetrachloroethane	ND		ug/l	10		10
Benzene	100		ug/l	5.0		10
Toluene	11		ug/l	10		10
Ethylbenzene	12		ug/l	10		10
Chloromethane	ND		ug/l	20		10
Bromomethane	ND		ug/l	20		10
Vinyl chloride	ND		ug/l	10		10
Chloroethane	ND		ug/l	20		10
1,1-Dichloroethene	ND		ug/l	10		10
trans-1,2-Dichloroethene	ND		ug/l	10		10

Project Name: SCAPE BOSTON Lab Number: L1900731

Project Number: 6546.9.00 **Report Date:** 01/11/19

SAMPLE RESULTS

Lab ID: L1900731-02 D Date Collected: 01/07/19 09:15

Client ID: MA-3 (OW) Date Received: 01/07/19
Sample Location: BOSTON, MA Field Prep: Not Specified

Sample Depth:

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
MCP Volatile Organics - Westborough Lab						
Trichloroethene	ND		ug/l	10		10
1,2-Dichlorobenzene	ND		ug/l	10		10
1,3-Dichlorobenzene	ND		ug/l	10		10
1,4-Dichlorobenzene	ND		ug/l	10		10
Methyl tert butyl ether	35		ug/l	20		10
p/m-Xylene	ND		ug/l	20		10
o-Xylene	ND		ug/l	10		10
Xylene (Total)	ND		ug/l	10		10
cis-1,2-Dichloroethene	ND		ug/l	10		10
1,2-Dichloroethene (total)	ND		ug/l	10		10
Dibromomethane	ND		ug/l	20		10
1,2,3-Trichloropropane	ND		ug/l	20		10
Styrene	ND		ug/l	10		10
Dichlorodifluoromethane	ND		ug/l	20		10
Acetone	ND		ug/l	50		10
Carbon disulfide	ND		ug/l	20		10
2-Butanone	ND		ug/l	50		10
4-Methyl-2-pentanone	ND		ug/l	50		10
2-Hexanone	ND		ug/l	50		10
Bromochloromethane	ND		ug/l	20		10
Tetrahydrofuran	ND		ug/l	20		10
2,2-Dichloropropane	ND		ug/l	20		10
1,2-Dibromoethane	ND		ug/l	20		10
1,3-Dichloropropane	ND		ug/l	20		10
1,1,1,2-Tetrachloroethane	ND		ug/l	10		10
Bromobenzene	ND		ug/l	20		10
n-Butylbenzene	ND		ug/l	20		10
sec-Butylbenzene	ND		ug/l	20		10
tert-Butylbenzene	ND		ug/l	20		10
o-Chlorotoluene	ND		ug/l	20		10
p-Chlorotoluene	ND		ug/l	20		10
1,2-Dibromo-3-chloropropane	ND		ug/l	20		10
Hexachlorobutadiene	ND		ug/l	6.0		10
Isopropylbenzene	38		ug/l	20		10
p-Isopropyltoluene	ND		ug/l	20		10
Naphthalene	ND		ug/l	20		10
n-Propylbenzene	37		ug/l	20		10

Project Name: SCAPE BOSTON Lab Number: L1900731

Project Number: 6546.9.00 **Report Date:** 01/11/19

SAMPLE RESULTS

Lab ID: L1900731-02 D Date Collected: 01/07/19 09:15

Client ID: MA-3 (OW) Date Received: 01/07/19
Sample Location: BOSTON, MA Field Prep: Not Specified

Sample Depth:

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
MCP Volatile Organics - Westborough Lab)					
4.2.2 Tricklershormen	ND		//	20		40
1,2,3-Trichlorobenzene	ND		ug/l	20		10
1,2,4-Trichlorobenzene	ND		ug/l	20		10
1,3,5-Trimethylbenzene	ND		ug/l	20		10
1,2,4-Trimethylbenzene	ND		ug/l	20		10
Ethyl ether	ND		ug/l	20		10
Isopropyl Ether	ND		ug/l	20		10
Ethyl-Tert-Butyl-Ether	ND		ug/l	20		10
Tertiary-Amyl Methyl Ether	ND		ug/l	20		10
1,4-Dioxane	ND		ug/l	2500		10

Surrogate	% Recovery	Acceptance Qualifier Criteria	
1,2-Dichloroethane-d4	110	70-130	
Toluene-d8	97	70-130	
4-Bromofluorobenzene	100	70-130	
Dibromofluoromethane	106	70-130	

01/07/19 12:15

Project Name: SCAPE BOSTON

Project Number: 6546.9.00

SAMPLE RESULTS

Lab Number: L1900731

Report Date: 01/11/19

Lab ID: L1900731-03

Client ID: MW-7 (OW) Sample Location: BOSTON, MA Date Received: 01/07/19
Field Prep: Not Specified

Date Collected:

Sample Depth:

Matrix: Groundwater
Analytical Method: 97,8260C
Analytical Date: 01/08/19 11:03

Analyst: MKS

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
MCP Volatile Organics - Westborough Lab						
Methylene chloride	ND		ug/l	2.0		1
1,1-Dichloroethane	ND		ug/l	1.0		1
Chloroform	ND		ug/l	1.0		1
Carbon tetrachloride	ND		ug/l	1.0		1
1,2-Dichloropropane	ND		ug/l	1.0		1
Dibromochloromethane	ND		ug/l	1.0		1
1,1,2-Trichloroethane	ND		ug/l	1.0		1
Tetrachloroethene	ND		ug/l	1.0		1
Chlorobenzene	18		ug/l	1.0		1
Trichlorofluoromethane	ND		ug/l	2.0		1
1,2-Dichloroethane	ND		ug/l	1.0		1
1,1,1-Trichloroethane	ND		ug/l	1.0		1
Bromodichloromethane	ND		ug/l	1.0		1
trans-1,3-Dichloropropene	ND		ug/l	0.40		1
cis-1,3-Dichloropropene	ND		ug/l	0.40		1
1,3-Dichloropropene, Total	ND		ug/l	0.40		1
1,1-Dichloropropene	ND		ug/l	2.0		1
Bromoform	ND		ug/l	2.0		1
1,1,2,2-Tetrachloroethane	ND		ug/l	1.0		1
Benzene	ND		ug/l	0.50		1
Toluene	ND		ug/l	1.0		1
Ethylbenzene	ND		ug/l	1.0		1
Chloromethane	ND		ug/l	2.0		1
Bromomethane	ND		ug/l	2.0		1
Vinyl chloride	ND		ug/l	1.0		1
Chloroethane	ND		ug/l	2.0		1
1,1-Dichloroethene	ND		ug/l	1.0		1
trans-1,2-Dichloroethene	ND		ug/l	1.0		1

L1900731

Project Name: SCAPE BOSTON Lab Number:

Project Number: 6546.9.00 **Report Date:** 01/11/19

SAMPLE RESULTS

Lab ID: L1900731-03 Date Collected: 01/07/19 12:15

Client ID: MW-7 (OW) Date Received: 01/07/19
Sample Location: BOSTON, MA Field Prep: Not Specified

Sample Depth:

Parameter	Result	Qualifier Units	RL	MDL	Dilution Factor	
MCP Volatile Organics - Westboro	ough Lab					
Trichloroethene	ND	ug/l	1.0		1	
1,2-Dichlorobenzene	ND	ug/l	1.0		1	
1,3-Dichlorobenzene	ND	ug/l	1.0		1	
1,4-Dichlorobenzene	ND	ug/l	1.0		1	
Methyl tert butyl ether	2.5	ug/l	2.0		1	
p/m-Xylene	ND	ug/l	2.0		1	
o-Xylene	ND	ug/l	1.0		1	
Xylene (Total)	ND	ug/l	1.0		1	
cis-1,2-Dichloroethene	ND	ug/l	1.0		1	
1,2-Dichloroethene (total)	ND	ug/l	1.0		1	
Dibromomethane	ND	ug/l	2.0		1	
1,2,3-Trichloropropane	ND	ug/l	2.0		1	
Styrene	ND	ug/l	1.0		1	
Dichlorodifluoromethane	ND	ug/l	2.0		1	
Acetone	ND	ug/l	5.0		1	
Carbon disulfide	ND	ug/l	2.0		1	
2-Butanone	ND	ug/l	5.0		1	
4-Methyl-2-pentanone	ND	ug/l	5.0		1	
2-Hexanone	ND	ug/l	5.0		1	
Bromochloromethane	ND	ug/l	2.0		1	
Tetrahydrofuran	ND	ug/l	2.0		1	
2,2-Dichloropropane	ND	ug/l	2.0		1	
1,2-Dibromoethane	ND	ug/l	2.0		1	
1,3-Dichloropropane	ND	ug/l	2.0		1	
1,1,1,2-Tetrachloroethane	ND	ug/l	1.0		1	
Bromobenzene	ND	ug/l	2.0		1	
n-Butylbenzene	ND	ug/l	2.0		1	
sec-Butylbenzene	ND	ug/l	2.0		1	
tert-Butylbenzene	ND	ug/l	2.0		1	
o-Chlorotoluene	ND	ug/l	2.0		1	
p-Chlorotoluene	ND	ug/l	2.0		1	
1,2-Dibromo-3-chloropropane	ND	ug/l	2.0		1	
Hexachlorobutadiene	ND	ug/l	0.60		1	
Isopropylbenzene	ND	ug/l	2.0		1	
p-Isopropyltoluene	ND	ug/l	2.0		1	
Naphthalene	ND	ug/l	2.0		1	
n-Propylbenzene	ND	ug/l	2.0		1	

Project Name:SCAPE BOSTONLab Number:L1900731

Project Number: 6546.9.00 **Report Date:** 01/11/19

SAMPLE RESULTS

Lab ID: L1900731-03 Date Collected: 01/07/19 12:15

Client ID: MW-7 (OW) Date Received: 01/07/19
Sample Location: BOSTON, MA Field Prep: Not Specified

Sample Depth:

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	
MCP Volatile Organics - Westbore	ough Lab						
1,2,3-Trichlorobenzene	ND		ug/l	2.0		1	
1,2,4-Trichlorobenzene	ND		ug/l	2.0		1	
1,3,5-Trimethylbenzene	ND		ug/l	2.0		1	
1,2,4-Trimethylbenzene	ND		ug/l	2.0		1	
Ethyl ether	ND		ug/l	2.0		1	
Isopropyl Ether	ND		ug/l	2.0		1	
Ethyl-Tert-Butyl-Ether	ND		ug/l	2.0		1	
Tertiary-Amyl Methyl Ether	ND		ug/l	2.0		1	
1,4-Dioxane	ND		ug/l	250		1	

Surrogate	% Recovery	Acceptance Qualifier Criteria	
1,2-Dichloroethane-d4	110	70-130	
Toluene-d8	90	70-130	
4-Bromofluorobenzene	102	70-130	
Dibromofluoromethane	115	70-130	

Project Number: 6546.9.00

Lab Number: L1900731

Report Date: 01/11/19

Method Blank Analysis Batch Quality Control

Analytical Method: 97,8260C Analytical Date: 97,8260C 01/08/19 06:02

Analyst: MM

Parameter	Result	Qualifier	Units	RI	L MDL
MCP Volatile Organics	- Westborough Lab for	sample(s):	01-03	Batch:	WG1195657-5
Methylene chloride	ND		ug/l	2.0	0
1,1-Dichloroethane	ND		ug/l	1.0	
Chloroform	ND		ug/l	1.0	0
Carbon tetrachloride	ND		ug/l	1.0	0
1,2-Dichloropropane	ND		ug/l	1.0	
Dibromochloromethane	ND		ug/l	1.0	
1,1,2-Trichloroethane	ND		ug/l	1.0	
Tetrachloroethene	ND		ug/l	1.0	
Chlorobenzene	ND		ug/l	1.0	0
Trichlorofluoromethane	ND		ug/l	2.0	0
1,2-Dichloroethane	ND		ug/l	1.0	
1,1,1-Trichloroethane	ND		ug/l	1.0	0
Bromodichloromethane	ND		ug/l	1.0	0
trans-1,3-Dichloropropene	ND		ug/l	0.4	
cis-1,3-Dichloropropene	ND		ug/l	0.4	k0
1,3-Dichloropropene, Total	ND		ug/l	0.4	k0
1,1-Dichloropropene	ND		ug/l	2.0	0
Bromoform	ND		ug/l	2.0	0
1,1,2,2-Tetrachloroethane	ND		ug/l	1.0	0
Benzene	ND		ug/l	0.5	60
Toluene	ND		ug/l	1.0	0
Ethylbenzene	ND		ug/l	1.0	0
Chloromethane	ND		ug/l	2.0	0
Bromomethane	ND		ug/l	2.0	0
Vinyl chloride	ND		ug/l	1.0	0
Chloroethane	ND		ug/l	2.0	0
1,1-Dichloroethene	ND		ug/l	1.0	0
trans-1,2-Dichloroethene	ND		ug/l	1.0	0
Trichloroethene	ND		ug/l	1.0	0
			-		

Project Number: 6546.9.00

Lab Number: L1900731

01/11/19

Report Date:

Method Blank Analysis Batch Quality Control

Analytical Method: 97,8260C Analytical Date: 97,8260C 01/08/19 06:02

Analyst: MM

arameter	Result	Qualifier	Units	RI	L MDL
CP Volatile Organics	- Westborough Lab for	sample(s):	01-03	Batch:	WG1195657-5
1,2-Dichlorobenzene	ND		ug/l	1.0)
1,3-Dichlorobenzene	ND		ug/l	1.0)
1,4-Dichlorobenzene	ND		ug/l	1.0)
Methyl tert butyl ether	ND		ug/l	2.0)
p/m-Xylene	ND		ug/l	2.0)
o-Xylene	ND		ug/l	1.0)
Xylene (Total)	ND		ug/l	1.0)
cis-1,2-Dichloroethene	ND		ug/l	1.0)
1,2-Dichloroethene (total)	ND		ug/l	1.0)
Dibromomethane	ND		ug/l	2.0)
1,2,3-Trichloropropane	ND		ug/l	2.0)
Styrene	ND		ug/l	1.0)
Dichlorodifluoromethane	ND		ug/l	2.0)
Acetone	ND		ug/l	5.0)
Carbon disulfide	ND		ug/l	2.0)
2-Butanone	ND		ug/l	5.0)
4-Methyl-2-pentanone	ND		ug/l	5.0)
2-Hexanone	ND		ug/l	5.0)
Bromochloromethane	ND		ug/l	2.0)
Tetrahydrofuran	ND		ug/l	2.0)
2,2-Dichloropropane	ND		ug/l	2.0)
1,2-Dibromoethane	ND		ug/l	2.0)
1,3-Dichloropropane	ND		ug/l	2.0)
1,1,1,2-Tetrachloroethane	ND		ug/l	1.0)
Bromobenzene	ND		ug/l	2.0)
n-Butylbenzene	ND		ug/l	2.0)
sec-Butylbenzene	ND		ug/l	2.0)
tert-Butylbenzene	ND		ug/l	2.0)
o-Chlorotoluene	ND		ug/l	2.0)

Project Number: 6546.9.00

Lab Number: L1900731

Report Date: 01/11/19

Method Blank Analysis Batch Quality Control

Analytical Method: 97,8260C Analytical Date: 97,8260C 01/08/19 06:02

Analyst: MM

Parameter	Result	Qualifier	Units	RL	MDL	
MCP Volatile Organics - Westborou	gh Lab for	sample(s):	01-03	Batch: WG1	195657-5	
p-Chlorotoluene	ND		ug/l	2.0		
1,2-Dibromo-3-chloropropane	ND		ug/l	2.0		
Hexachlorobutadiene	ND		ug/l	0.60		
Isopropylbenzene	ND		ug/l	2.0		
p-Isopropyltoluene	ND		ug/l	2.0		
Naphthalene	ND		ug/l	2.0		
n-Propylbenzene	ND		ug/l	2.0		
1,2,3-Trichlorobenzene	ND		ug/l	2.0		
1,2,4-Trichlorobenzene	ND		ug/l	2.0		
1,3,5-Trimethylbenzene	ND		ug/l	2.0		
1,2,4-Trimethylbenzene	ND		ug/l	2.0		
Ethyl ether	ND		ug/l	2.0		
Isopropyl Ether	ND		ug/l	2.0		
Ethyl-Tert-Butyl-Ether	ND		ug/l	2.0		
Tertiary-Amyl Methyl Ether	ND		ug/l	2.0		
1,4-Dioxane	ND		ug/l	250		

		Acceptance	•
Surrogate	%Recovery	Qualifier Criteria	
1,2-Dichloroethane-d4	103	70-130	
Toluene-d8	93	70-130	
4-Bromofluorobenzene	97	70-130	
Dibromofluoromethane	112	70-130	

Project Name: SCAPE BOSTON

Project Number: 6546.9.00

Lab Number: L1900731

arameter	LCS %Recovery	Qual	LCSD %Recovery	Qual	%Recovery Limits	RPD	RPD Qual Limits	
MCP Volatile Organics - Westborough Lab	Associated samp	ole(s): 01-03	Batch: WG119	5657-3	WG1195657-4			
Methylene chloride	110		110		70-130	0	20	
1,1-Dichloroethane	100		100		70-130	0	20	
Chloroform	110		110		70-130	0	20	
Carbon tetrachloride	120		120		70-130	0	20	
1,2-Dichloropropane	94		88		70-130	7	20	
Dibromochloromethane	98		100		70-130	2	20	
1,1,2-Trichloroethane	86		86		70-130	0	20	
Tetrachloroethene	99		97		70-130	2	20	
Chlorobenzene	91		96		70-130	5	20	
Trichlorofluoromethane	120		120		70-130	0	20	
1,2-Dichloroethane	110		110		70-130	0	20	
1,1,1-Trichloroethane	120		120		70-130	0	20	
Bromodichloromethane	110		110		70-130	0	20	
trans-1,3-Dichloropropene	92		94		70-130	2	20	
cis-1,3-Dichloropropene	100		100		70-130	0	20	
1,1-Dichloropropene	100		100		70-130	0	20	
Bromoform	99		100		70-130	1	20	
1,1,2,2-Tetrachloroethane	78		85		70-130	9	20	
Benzene	96		95		70-130	1	20	
Toluene	88		90		70-130	2	20	
Ethylbenzene	92		92		70-130	0	20	
Chloromethane	83		82		70-130	1	20	
Bromomethane	110		110		70-130	0	20	

Project Name: SCAPE BOSTON

Project Number: 6546.9.00

Lab Number: L1900731

Parameter	LCS %Recovery	Qual	LCSD %Recovery	Qual	%Recovery Limits	RPD	RPD Qual Limits	
MCP Volatile Organics - Westborough Lab	Associated samp	ole(s): 01-03	Batch: WG119	5657-3	WG1195657-4			
Vinyl chloride	100		99		70-130	1	20	
Chloroethane	110		110		70-130	0	20	
1,1-Dichloroethene	110		110		70-130	0	20	
trans-1,2-Dichloroethene	110		110		70-130	0	20	
Trichloroethene	110		100		70-130	10	20	
1,2-Dichlorobenzene	86		95		70-130	10	20	
1,3-Dichlorobenzene	87		95		70-130	9	20	
1,4-Dichlorobenzene	88		94		70-130	7	20	
Methyl tert butyl ether	110		110		70-130	0	20	
p/m-Xylene	90		90		70-130	0	20	
o-Xylene	95		95		70-130	0	20	
cis-1,2-Dichloroethene	110		100		70-130	10	20	
Dibromomethane	100		100		70-130	0	20	
1,2,3-Trichloropropane	82		86		70-130	5	20	
Styrene	90		95		70-130	5	20	
Dichlorodifluoromethane	110		100		70-130	10	20	
Acetone	110		110		70-130	0	20	
Carbon disulfide	100		100		70-130	0	20	
2-Butanone	91		92		70-130	1	20	
4-Methyl-2-pentanone	76		78		70-130	3	20	
2-Hexanone	83		85		70-130	2	20	
Bromochloromethane	110		110		70-130	0	20	
Tetrahydrofuran	80		81		70-130	1	20	

Project Name: SCAPE BOSTON

Project Number: 6546.9.00

Lab Number: L1900731

Parameter	LCS %Recovery	Qual	LCSD %Recovery	Qual	%Recovery Limits	RPD	RPD Qual Limits	
MCP Volatile Organics - Westborough Lab	Associated samp	ple(s): 01-03	Batch: WG119	5657-3	WG1195657-4			
2,2-Dichloropropane	120		120		70-130	0	20	
1,2-Dibromoethane	94		92		70-130	2	20	
1,3-Dichloropropane	84		88		70-130	5	20	
1,1,1,2-Tetrachloroethane	100		99		70-130	1	20	
Bromobenzene	92		98		70-130	6	20	
n-Butylbenzene	76		81		70-130	6	20	
sec-Butylbenzene	82		89		70-130	8	20	
tert-Butylbenzene	87		90		70-130	3	20	
o-Chlorotoluene	84		89		70-130	6	20	
p-Chlorotoluene	84		90		70-130	7	20	
1,2-Dibromo-3-chloropropane	80		91		70-130	13	20	
Hexachlorobutadiene	94		93		70-130	1	20	
Isopropylbenzene	88		92		70-130	4	20	
p-Isopropyltoluene	82		89		70-130	8	20	
Naphthalene	77		84		70-130	9	20	
n-Propylbenzene	83		88		70-130	6	20	
1,2,3-Trichlorobenzene	80		92		70-130	14	20	
1,2,4-Trichlorobenzene	84		91		70-130	8	20	
1,3,5-Trimethylbenzene	83		91		70-130	9	20	
1,2,4-Trimethylbenzene	82		90		70-130	9	20	
Ethyl ether	100		110		70-130	10	20	
Isopropyl Ether	89		90		70-130	1	20	
Ethyl-Tert-Butyl-Ether	100		100		70-130	0	20	

Project Name: SCAPE BOSTON

Project Number: 6546.9.00

Lab Number: L1900731

Parameter	LCS %Recovery	Qual	LCSD %Recovery	Qual	%Recovery Limits	RPD		PD nits
MCP Volatile Organics - Westborough Lab	Associated samp	le(s): 01-03	Batch: WG119	95657-3 V	VG1195657-4			
Tertiary-Amyl Methyl Ether	100		100		70-130	0	2	20
1,4-Dioxane	104		94		70-130	10	2	20

Surrogate	LCS %Recovery Qual	LCSD %Recovery Qual	Acceptance Criteria
1,2-Dichloroethane-d4	108	102	70-130
Toluene-d8	92	93	70-130
4-Bromofluorobenzene	95	101	70-130
Dibromofluoromethane	115	111	70-130

PETROLEUM HYDROCARBONS

Project Name: Lab Number: SCAPE BOSTON L1900731

Project Number: 6546.9.00 **Report Date:** 01/11/19

SAMPLE RESULTS

Lab ID: L1900731-01 Date Collected: 01/07/19 11:00

Client ID: MW-1

Date Received: 01/07/19 BOSTON, MA Field Prep: Sample Location: Not Specified

Sample Depth:

Matrix: Groundwater Analytical Method: 131, VPH-18-2.1 Analytical Date: 01/09/19 10:28

Analyst: ΜZ

Restek, RTX-502.2, Trap: EST, Carbopack B/Carboxen 1000&1001 Analytical Column:

105m, 0.53ID, 3um

Quality Control Information

Condition of sample received: Satisfactory

Aqueous Preservative: Laboratory Provided Preserved

Container Received on Ice

Sample Temperature upon receipt:

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
Volatile Petroleum Hydrocarbons - V	Vestborough Lab					
C5-C8 Aliphatics	78.8		ug/l	50.0		1
C9-C12 Aliphatics	ND		ug/l	50.0		1
C9-C10 Aromatics	ND		ug/l	50.0		1
C5-C8 Aliphatics, Adjusted	78.8		ug/l	50.0		1
C9-C12 Aliphatics, Adjusted	ND		ug/l	50.0		1

	Acceptance				
Surrogate	% Recovery	Qualifier	Criteria		
2,5-Dibromotoluene-PID	97		70-130		
2,5-Dibromotoluene-FID	113		70-130		

Project Name: SCAPE BOSTON Lab Number: L1900731

Project Number: 6546.9.00 **Report Date:** 01/11/19

SAMPLE RESULTS

Lab ID: L1900731-01 Date Collected: 01/07/19 11:00

Client ID: MW-1 Date Received: 01/07/19

Sample Location: BOSTON, MA Field Prep: Not Specified

Sample Depth:

Matrix:GroundwaterExtraction Method:EPA 3510CAnalytical Method:98,EPH-04-1.1Extraction Date:01/08/19 07:41Analytical Date:01/09/19 20:57Cleanup Method1:EPH-04-1

Analyst: DG Cleanup Date1: 01/09/19

Quality Control Information

Condition of sample received: Satisfactory

Aqueous Preservative: Laboratory Provided Preserved

Sample Temperature upon receipt: Container Received on Ice

Sample Extraction method: Extracted Per the Method

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor				
Extractable Petroleum Hydrocarbons - Westborough Lab										
C9-C18 Aliphatics	ND		ug/l	100		1				
C19-C36 Aliphatics	ND		ug/l	100		1				
C11-C22 Aromatics	ND		ug/l	100		1				
C11-C22 Aromatics, Adjusted	ND		ug/l	100		1				
Naphthalene	ND		ug/l	10.0		1				
2-Methylnaphthalene	ND		ug/l	10.0		1				
Acenaphthylene	ND		ug/l	10.0		1				
Acenaphthene	ND		ug/l	10.0		1				
Fluorene	ND		ug/l	10.0		1				
Phenanthrene	ND		ug/l	10.0		1				
Anthracene	ND		ug/l	10.0		1				
Fluoranthene	ND		ug/l	10.0		1				
Pyrene	ND		ug/l	10.0		1				
Benzo(a)anthracene	ND		ug/l	10.0		1				
Chrysene	ND		ug/l	10.0		1				
Benzo(b)fluoranthene	ND		ug/l	10.0		1				
Benzo(k)fluoranthene	ND		ug/l	10.0		1				
Benzo(a)pyrene	ND		ug/l	10.0		1				
Indeno(1,2,3-cd)Pyrene	ND		ug/l	10.0		1				
Dibenzo(a,h)anthracene	ND		ug/l	10.0		1				
Benzo(ghi)perylene	ND		ug/l	10.0		1				

Project Name: SCAPE BOSTON Lab Number: L1900731

Project Number: 6546.9.00 **Report Date:** 01/11/19

SAMPLE RESULTS

Lab ID: L1900731-01 Date Collected: 01/07/19 11:00

Client ID: MW-1 Date Received: 01/07/19
Sample Location: BOSTON, MA Field Prep: Not Specified

Sample Depth:

Parameter Result Qualifier Units RL MDL Dilution Factor

Extractable Petroleum Hydrocarbons - Westborough Lab

	Acceptance					
Surrogate	% Recovery	Qualifier	Criteria			
Chloro-Octadecane	60		40-140			
o-Terphenyl	91		40-140			
2-Fluorobiphenyl	104		40-140			
2-Bromonaphthalene	97		40-140			

Satisfactory

Project Name: SCAPE BOSTON Lab Number: L1900731

Project Number: 6546.9.00 **Report Date:** 01/11/19

SAMPLE RESULTS

Lab ID: L1900731-02 Date Collected: 01/07/19 09:15

Client ID: MA-3 (OW) Date Received: 01/07/19
Sample Location: BOSTON, MA Field Prep: Not Specified

Sample Depth:

Matrix:GroundwaterExtraction Method:EPA 3510CAnalytical Method:98,EPH-04-1.1Extraction Date:01/08/19 07:41Analytical Date:01/09/19 21:42Cleanup Method1:EPH-04-1

Analyst: DG Cleanup Date1: 01/09/19

Quality Control Information

Condition of sample received:

Aqueous Preservative: Laboratory Provided Preserved

Sample Temperature upon receipt:

Container

Received on Ice

Sample Extraction method: Extracted Per the Method

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor			
Extractable Petroleum Hydrocarbons - Westborough Lab									
C9-C18 Aliphatics	ND		ug/l	100		1			
C19-C36 Aliphatics	ND		ug/l	100		1			
C11-C22 Aromatics	ND		ug/l	100		1			
C11-C22 Aromatics, Adjusted	ND		ug/l	100		1			
Naphthalene	ND		ug/l	10.0		1			
2-Methylnaphthalene	ND		ug/l	10.0		1			
Acenaphthylene	ND		ug/l	10.0		1			
Acenaphthene	ND		ug/l	10.0		1			
Fluorene	ND		ug/l	10.0		1			
Phenanthrene	ND		ug/l	10.0		1			
Anthracene	ND		ug/l	10.0		1			
Fluoranthene	ND		ug/l	10.0		1			
Pyrene	ND		ug/l	10.0		1			
Benzo(a)anthracene	ND		ug/l	10.0		1			
Chrysene	ND		ug/l	10.0		1			
Benzo(b)fluoranthene	ND		ug/l	10.0		1			
Benzo(k)fluoranthene	ND		ug/l	10.0		1			
Benzo(a)pyrene	ND		ug/l	10.0		1			
Indeno(1,2,3-cd)Pyrene	ND		ug/l	10.0		1			
Dibenzo(a,h)anthracene	ND		ug/l	10.0		1			
Benzo(ghi)perylene	ND		ug/l	10.0		1			

Project Name: SCAPE BOSTON Lab Number: L1900731

Project Number: 6546.9.00 **Report Date:** 01/11/19

SAMPLE RESULTS

Lab ID: L1900731-02 Date Collected: 01/07/19 09:15

Client ID: MA-3 (OW) Date Received: 01/07/19
Sample Location: BOSTON, MA Field Prep: Not Specified

Sample Depth:

Parameter Result Qualifier Units RL MDL Dilution Factor

Extractable Petroleum Hydrocarbons - Westborough Lab

	Acceptance				
Surrogate	% Recovery	Qualifier	Criteria		
Chloro-Octadecane	59		40-140		
o-Terphenyl	89		40-140		
2-Fluorobiphenyl	97		40-140		
2-Bromonaphthalene	89		40-140		

Project Name: SCAPE BOSTON Lab Number: L1900731

Project Number: 6546.9.00 **Report Date:** 01/11/19

SAMPLE RESULTS

Lab ID: L1900731-02 D Date Collected: 01/07/19 09:15

Client ID: MA-3 (OW) Date Received: 01/07/19
Sample Location: BOSTON, MA Field Prep: Not Specified

Sample Depth:

Matrix: Groundwater
Analytical Method: 131,VPH-18-2.1
Analytical Date: 01/09/19 11:49

Analyst: MZ

Trap: EST, Carbopack B/Carboxen 1000&1001 Analytical Column: Restek, RTX-502.2,

105m, 0.53ID, 3um

Quality Control Information

Condition of sample received: Satisfactory

Aqueous Preservative: Laboratory Provided Preserved

Container Received on Ice

Sample Temperature upon receipt: Received of

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
Volatile Petroleum Hydrocarbons	- Westborough Lab					
C5-C8 Aliphatics	4680		ug/l	100		2
C9-C12 Aliphatics	532		ug/l	100		2
C9-C10 Aromatics	335		ug/l	100		2
C5-C8 Aliphatics, Adjusted	4550		ug/l	100		2
C9-C12 Aliphatics, Adjusted	174		ug/l	100		2

Surrogate	% Recovery	Qualifier	Acceptance Criteria	
2,5-Dibromotoluene-PID	105		70-130	
2,5-Dibromotoluene-FID	121		70-130	

Project Name: SCAPE BOSTON Lab Number: L1900731

Project Number: 6546.9.00 **Report Date:** 01/11/19

SAMPLE RESULTS

Lab ID: L1900731-03 Date Collected: 01/07/19 12:15

Client ID: MW-7 (OW) Date Received: 01/07/19
Sample Location: BOSTON, MA Field Prep: Not Specified

Sample Depth:

Matrix: Groundwater
Analytical Method: 131,VPH-18-2.1
Analytical Date: 01/09/19 11:09

Analyst: MZ

Trap: EST, Carbopack B/Carboxen 1000&1001 Analytical Column: Restek, RTX-502.2,

105m, 0.53ID, 3um

Quality Control Information

Condition of sample received: Satisfactory

Aqueous Preservative: Laboratory Provided Preserved

Container Received on Ice

Sample Temperature upon receipt:

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
Volatile Petroleum Hydrocarbons	- Westborough Lab					
C5-C8 Aliphatics	78.2		ug/l	50.0		1
C9-C12 Aliphatics	ND		ug/l	50.0		1
C9-C10 Aromatics	ND		ug/l	50.0		1
C5-C8 Aliphatics, Adjusted	78.2		ug/l	50.0		1
C9-C12 Aliphatics, Adjusted	ND		ug/l	50.0		1

Surrogate	% Recovery	Qualifier	Acceptance Criteria	
2,5-Dibromotoluene-PID	100		70-130	
2,5-Dibromotoluene-FID	116		70-130	

Project Name: SCAPE BOSTON Lab Number: L1900731

Project Number: 6546.9.00 **Report Date:** 01/11/19

SAMPLE RESULTS

Lab ID: L1900731-03 Date Collected: 01/07/19 12:15

Client ID: MW-7 (OW) Date Received: 01/07/19
Sample Location: BOSTON, MA Field Prep: Not Specified

Sample Depth:

Sample Temperature upon receipt:

Matrix:GroundwaterExtraction Method:EPA 3510CAnalytical Method:98,EPH-04-1.1Extraction Date:01/08/19 07:41Analytical Date:01/09/19 22:27Cleanup Method1:EPH-04-1

Analyst: DG Cleanup Date1: 01/09/19

Quality Control Information

Condition of sample received: Satisfactory

Aqueous Preservative: Laboratory Provided Preserved

Container Received on Ice

Sample Extraction method: Extracted Per the Method

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
Extractable Petroleum Hydrocarbo	ns - Westborough La	ab				
C9-C18 Aliphatics	ND		ug/l	100		1
C19-C36 Aliphatics	ND		ug/l	100		1
C11-C22 Aromatics	ND		ug/l	100		1
C11-C22 Aromatics, Adjusted	ND		ug/l	100		1
Naphthalene	ND		ug/l	10.0		1
2-Methylnaphthalene	ND		ug/l	10.0		1
Acenaphthylene	ND		ug/l	10.0		1
Acenaphthene	ND		ug/l	10.0		1
Fluorene	ND		ug/l	10.0		1
Phenanthrene	ND		ug/l	10.0		1
Anthracene	ND		ug/l	10.0		1
Fluoranthene	ND		ug/l	10.0		1
Pyrene	ND		ug/l	10.0		1
Benzo(a)anthracene	ND		ug/l	10.0		1
Chrysene	ND		ug/l	10.0		1
Benzo(b)fluoranthene	ND		ug/l	10.0		1
Benzo(k)fluoranthene	ND		ug/l	10.0		1
Benzo(a)pyrene	ND		ug/l	10.0		1
Indeno(1,2,3-cd)Pyrene	ND		ug/l	10.0		1
Dibenzo(a,h)anthracene	ND		ug/l	10.0		1
Benzo(ghi)perylene	ND		ug/l	10.0		1

Project Name: SCAPE BOSTON Lab Number: L1900731

Project Number: 6546.9.00 **Report Date:** 01/11/19

SAMPLE RESULTS

Lab ID: L1900731-03 Date Collected: 01/07/19 12:15

Client ID: MW-7 (OW) Date Received: 01/07/19
Sample Location: BOSTON, MA Field Prep: Not Specified

Sample Depth:

Parameter Result Qualifier Units RL MDL Dilution Factor

Extractable Petroleum Hydrocarbons - Westborough Lab

	Acceptance						
Surrogate	% Recovery	Qualifier	Criteria				
Chloro-Octadecane	68		40-140				
o-Terphenyl	85		40-140				
2-Fluorobiphenyl	94		40-140				
2-Bromonaphthalene	84		40-140				

Project Number: 6546.9.00

Lab Number: L1900731

Report Date: 01/11/19

Method Blank Analysis Batch Quality Control

Analytical Method: 98,EPH-04-1.1 Analytical Date: 01/08/19 00:54

Analyst: DG

Extraction Method: EPA 3510C
Extraction Date: 01/07/19 16:16
Cleanup Method: EPH-04-1
Cleanup Date: 01/07/19

arameter	Result	Qualifier	Units	RL	MDL	•
extractable Petroleum Hydroca	rbons - Westbo	rough Lab	for sample(s):	01-03	Batch:	WG1195470-1
C9-C18 Aliphatics	ND		ug/l	100		
C19-C36 Aliphatics	ND		ug/l	100		
C11-C22 Aromatics	ND		ug/l	100		
C11-C22 Aromatics, Adjusted	ND		ug/l	100		
Naphthalene	ND		ug/l	10.0		
2-Methylnaphthalene	ND		ug/l	10.0		
Acenaphthylene	ND		ug/l	10.0		
Acenaphthene	ND		ug/l	10.0		
Fluorene	ND		ug/l	10.0		
Phenanthrene	ND		ug/l	10.0		
Anthracene	ND		ug/l	10.0		
Fluoranthene	ND		ug/l	10.0		
Pyrene	ND		ug/l	10.0		
Benzo(a)anthracene	ND		ug/l	10.0		
Chrysene	ND		ug/l	10.0		
Benzo(b)fluoranthene	ND		ug/l	10.0		
Benzo(k)fluoranthene	ND		ug/l	10.0		
Benzo(a)pyrene	ND		ug/l	10.0		
Indeno(1,2,3-cd)Pyrene	ND		ug/l	10.0		
Dibenzo(a,h)anthracene	ND		ug/l	10.0		
Benzo(ghi)perylene	ND		ug/l	10.0		

	Acceptance					
Surrogate	%Recovery	Qualifier Criteria				
Chloro-Octadecane	57	40-140				
o-Terphenyl	61	40-140				
2-Fluorobiphenyl	71	40-140				
2-Bromonaphthalene	65	40-140				

L1900731

Lab Number:

Project Name: SCAPE BOSTON

Project Number: 6546.9.00 **Report Date:** 01/11/19

Method Blank Analysis Batch Quality Control

Batch Quality C

131,VPH-18-2.1

01/09/19 09:48

Analyst: MZ

Analytical Method:

Analytical Date:

arameter	Result	Qualifier	Units	RL		MDL
olatile Petroleum Hydrocarbo	ns - Westboroug	h Lab for s	sample(s):	01-03	Batch:	WG1196093-4
C5-C8 Aliphatics	ND		ug/l	50.0		
C9-C12 Aliphatics	ND		ug/l	50.0		
C9-C10 Aromatics	ND		ug/l	50.0		
C5-C8 Aliphatics, Adjusted	ND		ug/l	50.0		
C9-C12 Aliphatics, Adjusted	ND		ug/l	50.0		

	Acceptance				
Surrogate	%Recovery Qualifi	er Criteria			
2,5-Dibromotoluene-PID	93	70-130			
2,5-Dibromotoluene-FID	107	70-130			

Project Name: SCAPE BOSTON

Project Number: 6546.9.00

Lab Number: L1900731

arameter	LCS %Recovery	Qual	LCSD %Recovery	Qual	%Recovery Limits	/ RPD	RPD Qual Limits	
xtractable Petroleum Hydrocarbons - Westl	oorough Lab As	sociated sample	e(s): 01-03	Batch: WG	31195470-2 W	VG1195470-3		
C9-C18 Aliphatics	74		77		40-140	4	25	
C19-C36 Aliphatics	80		80		40-140	0	25	
C11-C22 Aromatics	83		78		40-140	6	25	
Naphthalene	62		60		40-140	3	25	
2-Methylnaphthalene	63		61		40-140	3	25	
Acenaphthylene	70		68		40-140	3	25	
Acenaphthene	70		69		40-140	1	25	
Fluorene	75		72		40-140	4	25	
Phenanthrene	81		75		40-140	8	25	
Anthracene	81		75		40-140	8	25	
Fluoranthene	83		76		40-140	9	25	
Pyrene	83		76		40-140	9	25	
Benzo(a)anthracene	80		74		40-140	8	25	
Chrysene	84		79		40-140	6	25	
Benzo(b)fluoranthene	84		76		40-140	10	25	
Benzo(k)fluoranthene	82		77		40-140	6	25	
Benzo(a)pyrene	80		74		40-140	8	25	
Indeno(1,2,3-cd)Pyrene	78		72		40-140	8	25	
Dibenzo(a,h)anthracene	81		78		40-140	4	25	
Benzo(ghi)perylene	72		70		40-140	3	25	
Nonane (C9)	55		58		30-140	5	25	
Decane (C10)	62		64		40-140	3	25	
Dodecane (C12)	66		69		40-140	4	25	

Project Name: SCAPE BOSTON

Project Number: 6546.9.00

Lab Number: L1900731

Parameter	LCS %Recovery	Qual	LCSD %Recovery	Qua	%Recove al Limits	-	Qual	RPD Limits	
Extractable Petroleum Hydrocarbons - Wes	stborough Lab As	ssociated sample	e(s): 01-03	Batch:	WG1195470-2	WG1195470-3			
Tetradecane (C14)	68		73		40-140	7		25	
Hexadecane (C16)	72		75		40-140	4		25	
Octadecane (C18)	75		75		40-140	0		25	
Nonadecane (C19)	76		75		40-140	1		25	
Eicosane (C20)	76		75		40-140	1		25	
Docosane (C22)	76		74		40-140	3		25	
Tetracosane (C24)	75		74		40-140	1		25	
Hexacosane (C26)	74		73		40-140	1		25	
Octacosane (C28)	73		72		40-140	1		25	
Triacontane (C30)	74		73		40-140	1		25	
Hexatriacontane (C36)	79		78		40-140	1		25	

Surrogate	LCS %Recovery Qual	LCSD %Recovery Qual	Acceptance Criteria
Chloro-Octadecane	59	59	40-140
o-Terphenyl	72	66	40-140
2-Fluorobiphenyl	77	72	40-140
2-Bromonaphthalene	70	66	40-140
% Naphthalene Breakthrough	0	0	
% 2-Methylnaphthalene Breakthrough	0	0	

Project Name: SCAPE BOSTON

Project Number: 6546.9.00

Lab Number: L1900731

Report Date: 01/11/19

Parameter	LCS %Recovery	LCSD Qual %Recovery	%Recovery Qual Limits	RPD	RPD Qual Limits
Volatile Petroleum Hydrocarbons - Wes	stborough Lab Associated	d sample(s): 01-03 Batch	: WG1196093-2 WG11960	93-3	
C5-C8 Aliphatics	109	104	70-130	5	25
C9-C12 Aliphatics	108	105	70-130	3	25
C9-C10 Aromatics	94	91	70-130	3	25
Benzene	94	91	70-130	3	25
Toluene	84	81	70-130	3	25
Ethylbenzene	96	93	70-130	3	25
p/m-Xylene	96	93	70-130	3	25
o-Xylene	95	92	70-130	3	25
Methyl tert butyl ether	96	93	70-130	3	25
Naphthalene	96	95	70-130	1	25
1,2,4-Trimethylbenzene	94	91	70-130	3	25
Pentane	108	105	70-130	3	25
2-Methylpentane	109	105	70-130	4	25
2,2,4-Trimethylpentane	112	108	70-130	4	25
n-Nonane	106	102	30-130	4	25
n-Decane	112	109	70-130	3	25
n-Butylcyclohexane	106	103	70-130	3	25

Surrogate	LCS %Recovery Qua	LCSD I %Recovery Qual	Acceptance Criteria
2,5-Dibromotoluene-PID	98	95	70-130
2,5-Dibromotoluene-FID	112	109	70-130

METALS

Serial_No:01111912:22

Project Name:SCAPE BOSTONLab Number:L1900731Project Number:6546.9.00Report Date:01/11/19

SAMPLE RESULTS

 Lab ID:
 L1900731-02
 Date Collected:
 01/07/19 09:15

 Client ID:
 MA-3 (OW)
 Date Received:
 01/07/19

 Sample Location:
 BOSTON, MA
 Field Prep:
 Not Specified

Sample Depth:

Matrix: Groundwater

Analyst	Analytical Method	Prep Method	Date Analyzed	Date Prepared	Dilution Factor	MDL	RL	Units	Qualifier	Result	Parameter
									sfield Lab	tals - Man	MCP Dissolved Met
LC	97,6010D	EPA 3005A	01/09/19 22:49	01/09/19 15:14	1		0.050	mg/l		ND	Antimony, Dissolved
LC	97,6010D	EPA 3005A	01/09/19 22:49	01/09/19 15:14	1		0.005	mg/l		ND	Arsenic, Dissolved
LC	97,6010D	EPA 3005A	01/09/19 22:49	01/09/19 15:14	1		0.005	mg/l		ND	Beryllium, Dissolved
LC	97,6010D	EPA 3005A	01/09/19 22:49	01/09/19 15:14	1		0.004	mg/l		ND	Cadmium, Dissolved
LC	97,6010D	EPA 3005A	01/09/19 22:49	01/09/19 15:14	1		0.010	mg/l		ND	Chromium, Dissolved
LC	97,6010D	EPA 3005A	01/09/19 22:49	01/09/19 15:14	1		0.010	mg/l		ND	Copper, Dissolved
LC	97,6010D	EPA 3005A	01/09/19 22:49	01/09/19 15:14	1		0.010	mg/l		ND	Lead, Dissolved
MG	97,7470A	EPA 7470A	01/09/19 18:34	01/09/19 10:34	1		0.0002	mg/l		ND	Mercury, Dissolved
LC	97,6010D	EPA 3005A	01/09/19 22:49	01/09/19 15:14	1		0.025	mg/l		ND	Nickel, Dissolved
LC	97,6010D	EPA 3005A	01/09/19 22:49	01/09/19 15:14	1		0.010	mg/l		ND	Selenium, Dissolved
LC	97,6010D	EPA 3005A	01/09/19 22:49	01/09/19 15:14	1		0.007	mg/l		ND	Silver, Dissolved
LC	97,6010D	EPA 3005A	01/09/19 22:49	01/09/19 15:14	1		0.020	mg/l		ND	Thallium, Dissolved
LC	97,6010D	EPA 3005A	01/09/19 22:49	01/09/19 15:14	1		0.050	mg/l		ND	Zinc, Dissolved
	97,6010E 97,6010E 97,6010E 97,6010E 97,6010E 97,6010E	EPA 3005A EPA 3005A EPA 3005A EPA 7470A EPA 3005A EPA 3005A EPA 3005A EPA 3005A	01/09/19 22:49 01/09/19 22:49 01/09/19 22:49 01/09/19 18:34 01/09/19 22:49 01/09/19 22:49 01/09/19 22:49	01/09/19 15:14 01/09/19 15:14 01/09/19 15:14 01/09/19 10:34 01/09/19 15:14 01/09/19 15:14 01/09/19 15:14	1 1 1 1 1 1 1		0.010 0.010 0.010 0.0002 0.025 0.010 0.007	mg/l mg/l mg/l mg/l mg/l mg/l mg/l mg/l		ND	Chromium, Dissolved Copper, Dissolved Lead, Dissolved Mercury, Dissolved Nickel, Dissolved Selenium, Dissolved Silver, Dissolved Thallium, Dissolved

Serial_No:01111912:22

Project Name: SCAPE BOSTON

Project Number: 6546.9.00

Lab Number:

L1900731

Report Date:

01/11/19

Method Blank Analysis Batch Quality Control

Parameter	Result Qualifier	Units	RL	MDL	Dilution Factor	Date Prepared		Analytical Method	
MCP Dissolved Metals	- Mansfield Lab for s	ample(s):	02 Bato	ch: Wo	G1196010-1				
Mercury, Dissolved	ND	mg/l	0.0002		1	01/09/19 10:34	01/09/19 18:29	97,7470A	MG

Prep Information

Digestion Method: EPA 7470A

Parameter	Result Quali	fier Units	RL	MDL	Dilution Factor	Date Prepared	Date Analyzed	Analytical Method	Analyst
MCP Dissolved Metals	- Mansfield Lab	for sample(s)	: 02 E	Batch: W	G1196087-1				
Antimony, Dissolved	ND	mg/l	0.050)	1	01/09/19 15:14	01/09/19 21:27	97,6010D	LC
Arsenic, Dissolved	ND	mg/l	0.005	5	1	01/09/19 15:14	01/09/19 21:27	97,6010D	LC
Beryllium, Dissolved	ND	mg/l	0.005	5	1	01/09/19 15:14	01/09/19 21:27	97,6010D	LC
Cadmium, Dissolved	ND	mg/l	0.004	1	1	01/09/19 15:14	01/09/19 21:27	97,6010D	LC
Chromium, Dissolved	ND	mg/l	0.010)	1	01/09/19 15:14	01/09/19 21:27	97,6010D	LC
Copper, Dissolved	ND	mg/l	0.010)	1	01/09/19 15:14	01/09/19 21:27	97,6010D	LC
Lead, Dissolved	ND	mg/l	0.010)	1	01/09/19 15:14	01/09/19 21:27	97,6010D	LC
Nickel, Dissolved	ND	mg/l	0.025	5	1	01/09/19 15:14	01/09/19 21:27	97,6010D	LC
Selenium, Dissolved	ND	mg/l	0.010)	1	01/09/19 15:14	01/09/19 21:27	97,6010D	LC
Silver, Dissolved	ND	mg/l	0.007	7	1	01/09/19 15:14	01/09/19 21:27	97,6010D	LC
Thallium, Dissolved	ND	mg/l	0.020)	1	01/09/19 15:14	01/09/19 21:27	97,6010D	LC
Zinc, Dissolved	ND	mg/l	0.050)	1	01/09/19 15:14	01/09/19 21:27	97,6010D	LC

Prep Information

Digestion Method: EPA 3005A

Project Name: SCAPE BOSTON

Project Number: 6546.9.00

Lab Number: L1900731

Report Date: 01/11/19

Parameter	LCS %Recovery	Qual	LCSD %Recovery	Qual	%Recovery Limits	RPD	Qual	RPD Limits
MCP Dissolved Metals - Mansfield Lab Asso	ociated sample(s): 02	Batch: W	G1196010-2	WG1196010-3				
Mercury, Dissolved	89		95		80-120	7		20
MCP Dissolved Metals - Mansfield Lab Asso	ociated sample(s): 02	Batch: Wo	G1196087-2	WG1196087-3				
Antimony, Dissolved	92		95		80-120	3		20
Arsenic, Dissolved	102		107		80-120	5		20
Beryllium, Dissolved	93		95		80-120	2		20
Cadmium, Dissolved	104		107		80-120	3		20
Chromium, Dissolved	96		98		80-120	2		20
Copper, Dissolved	94		95		80-120	1		20
Lead, Dissolved	100		102		80-120	2		20
Nickel, Dissolved	95		96		80-120	1		20
Selenium, Dissolved	106		107		80-120	1		20
Silver, Dissolved	99		99		80-120	0		20
Thallium, Dissolved	98		100		80-120	2		20
Zinc, Dissolved	102		103		80-120	1		20

Serial_No:01111912:22

Project Name: SCAPE BOSTON

Project Number: 6546.9.00

Lab Number: L1900731 Report Date: 01/11/19

Sample Receipt and Container Information

Were project specific reporting limits specified?

YES

Cooler Information

Container Information

Custody Seal Cooler

Α Absent

Container Information		rmation		Initial	Final	Temp			Frozen			
	Container ID	Container Type	Cooler	рH	рН	deg C	Pres	Seal	Date/Time	Analysis(*)		
	L1900731-01A	Vial HCl preserved	Α	NA		4.0	Υ	Absent		VPH-18(14),MCP-8260-10(14)		
	L1900731-01B	Vial HCl preserved	Α	NA		4.0	Υ	Absent		VPH-18(14),MCP-8260-10(14)		
	L1900731-01C	Vial HCl preserved	Α	NA		4.0	Υ	Absent		VPH-18(14),MCP-8260-10(14)		
	L1900731-01D	Amber 1000ml HCl preserved	Α	<2	<2	4.0	Υ	Absent		EPH-DELUX-10(14)		
	L1900731-01E	Amber 1000ml HCl preserved	Α	<2	<2	4.0	Υ	Absent		EPH-DELUX-10(14)		
	L1900731-02A	Vial HCl preserved	Α	NA		4.0	Υ	Absent		VPH-18(14),MCP-8260-10(14)		
	L1900731-02B	Vial HCl preserved	Α	NA		4.0	Υ	Absent		VPH-18(14),MCP-8260-10(14)		
	L1900731-02C	Vial HCl preserved	Α	NA		4.0	Υ	Absent		VPH-18(14),MCP-8260-10(14)		
	L1900731-02D	Plastic 500ml unpreserved	Α	7	7	4.0	Υ	Absent		-		
	L1900731-02E	Amber 1000ml HCl preserved	Α	<2	<2	4.0	Υ	Absent		EPH-DELUX-10(14)		
	L1900731-02F	Amber 1000ml HCl preserved	Α	<2	<2	4.0	Υ	Absent		EPH-DELUX-10(14)		
	L1900731-02X	Plastic 250ml HNO3 preserved Filtrates	Α	NA		4.0	Y	Absent		MCP-CD-6010S-10(180),MCP-7470S-10(28),MCP-AG-6010S-10(180),MCP-TL-6010S-10(180),MCP-ZN-6010S-10(180),MCP-AS-6010S-10(180),MCP-CR-6010S-10(180),MCP-BE-6010S-10(180),MCP-SB-6010S-10(180),MCP-PB-6010S-10(180),MCP-DE-6010S-10(180),MCP-DE-6010S-10(180),MCP-DE-6010S-10(180),MCP-DE-6010S-10(180),MCP-SE-6010S-10(180)		
	L1900731-03A	Vial HCl preserved	Α	NA		4.0	Υ	Absent		VPH-18(14),MCP-8260-10(14)		
	L1900731-03B	Vial HCl preserved	Α	NA		4.0	Υ	Absent		VPH-18(14),MCP-8260-10(14)		
	L1900731-03C	Vial HCl preserved	Α	NA		4.0	Υ	Absent		VPH-18(14),MCP-8260-10(14)		
	L1900731-03D	Amber 1000ml HCl preserved	Α	<2	<2	4.0	Υ	Absent		EPH-DELUX-10(14)		
	L1900731-03E	Amber 1000ml HCl preserved	Α	<2	<2	4.0	Υ	Absent		EPH-DELUX-10(14)		

Project Name: Lab Number: SCAPE BOSTON L1900731

Project Number: 6546.9.00 **Report Date:** 01/11/19

GLOSSARY

Acronyms

EDL - Estimated Detection Limit: This value represents the level to which target analyte concentrations are reported as estimated values, when those target analyte concentrations are quantified below the reporting limit (RL). The EDL includes any

adjustments from dilutions, concentrations or moisture content, where applicable. The use of EDLs is specific to the analysis

of PAHs using Solid-Phase Microextraction (SPME).

EMPC - Estimated Maximum Possible Concentration: The concentration that results from the signal present at the retention time of an

analyte when the ions meet all of the identification criteria except the ion abundance ratio criteria. An EMPC is a worst-case

estimate of the concentration.

EPA - Environmental Protection Agency.

LCS - Laboratory Control Sample: A sample matrix, free from the analytes of interest, spiked with verified known amounts of

analytes or a material containing known and verified amounts of analytes.

LCSD - Laboratory Control Sample Duplicate: Refer to LCS.

LFB - Laboratory Fortified Blank: A sample matrix, free from the analytes of interest, spiked with verified known amounts of

analytes or a material containing known and verified amounts of analytes.

MDL - Method Detection Limit: This value represents the level to which target analyte concentrations are reported as estimated values, when those target analyte concentrations are quantified below the reporting limit (RL). The MDL includes any

adjustments from dilutions, concentrations or moisture content, where applicable.

MS - Matrix Spike Sample: A sample prepared by adding a known mass of target analyte to a specified amount of matrix sample for

which an independent estimate of target analyte concentration is available.

MSD - Matrix Spike Sample Duplicate: Refer to MS.

NA Not Applicable.

NC - Not Calculated: Term is utilized when one or more of the results utilized in the calculation are non-detect at the parameter's

reporting unit.

NDPA/DPA - N-Nitrosodiphenylamine/Diphenylamine.

NI - Not Ignitable.

NP - Non-Plastic: Term is utilized for the analysis of Atterberg Limits in soil.

RL - Reporting Limit: The value at which an instrument can accurately measure an analyte at a specific concentration. The RL

includes any adjustments from dilutions, concentrations or moisture content, where applicable.

RPD - Relative Percent Difference: The results from matrix and/or matrix spike duplicates are primarily designed to assess the

precision of analytical results in a given matrix and are expressed as relative percent difference (RPD). Values which are less than five times the reporting limit for any individual parameter are evaluated by utilizing the absolute difference between the

values; although the RPD value will be provided in the report.

SRM - Standard Reference Material: A reference sample of a known or certified value that is of the same or similar matrix as the

associated field samples.

STLP - Semi-dynamic Tank Leaching Procedure per EPA Method 1315.

TEF - Toxic Equivalency Factors: The values assigned to each dioxin and furan to evaluate their toxicity relative to 2,3,7,8-TCDD.

TEO - Toxic Equivalent: The measure of a sample is toxicity derived by multiplying each dioxin and furan by its corresponding TEF

and then summing the resulting values.

TIC - Tentatively Identified Compound: A compound that has been identified to be present and is not part of the target compound

list (TCL) for the method and/or program. All TICs are qualitatively identified and reported as estimated concentrations.

Footnotes

- The reference for this analyte should be considered modified since this analyte is absent from the target analyte list of the original method.

Terms

Analytical Method: Both the document from which the method originates and the analytical reference method. (Example: EPA 8260B is shown as 1,8260B.) The codes for the reference method documents are provided in the References section of the Addendum.

Final pH: As it pertains to Sample Receipt & Container Information section of the report, Final pH reflects pH of container determined after adjustment at the laboratory, if applicable. If no adjustment required, value reflects Initial pH.

Frozen Date/Time: With respect to Volatile Organics in soil, Frozen Date/Time reflects the date/time at which associated Reagent Waterpreserved vials were initially frozen. Note: If frozen date/time is beyond 48 hours from sample collection, value will be reflected in 'bold'.

Initial pH: As it pertains to Sample Receipt & Container Information section of the report, Initial pH reflects pH of container determined upon receipt, if applicable.

Total: With respect to Organic analyses, a 'Total' result is defined as the summation of results for individual isomers or Aroclors. If a 'Total' result is requested, the results of its individual components will also be reported. This is applicable to 'Total' results for methods 8260, 8081 and 8082.

Report Format: Data Usability Report

Project Name:SCAPE BOSTONLab Number:L1900731Project Number:6546.9.00Report Date:01/11/19

Data Qualifiers

- A Spectra identified as "Aldol Condensation Product".
- The analyte was detected above the reporting limit in the associated method blank. Flag only applies to associated field samples that have detectable concentrations of the analyte at less than ten times (10x) the concentration found in the blank. For MCP-related projects, flag only applies to associated field samples that have detectable concentrations of the analyte at less than ten times (10x) the concentration found in the blank. For DOD-related projects, flag only applies to associated field samples that have detectable concentrations of the analyte at less than ten times (10x) the concentration found in the blank AND the analyte was detected above one-half the reporting limit (or above the reporting limit for common lab contaminants) in the associated method blank. For NJ-Air-related projects, flag only applies to associated field samples that have detectable concentrations of the analyte above the reporting limit. For NJ-related projects (excluding Air), flag only applies to associated field samples that have detectable concentrations of the analyte, which was detected above the reporting limit in the associated method blank or above five times the reporting limit for common lab contaminants (Phthalates, Acetone, Methylene Chloride, 2-Butanone).
- Co-elution: The target analyte co-elutes with a known lab standard (i.e. surrogate, internal standards, etc.) for co-extracted analyses.
- Concentration of analyte was quantified from diluted analysis. Flag only applies to field samples that have detectable concentrations
 of the analyte.
- E Concentration of analyte exceeds the range of the calibration curve and/or linear range of the instrument.
- G The concentration may be biased high due to matrix interferences (i.e, co-elution) with non-target compound(s). The result should be considered estimated.
- H The analysis of pH was performed beyond the regulatory-required holding time of 15 minutes from the time of sample collection.
- I The lower value for the two columns has been reported due to obvious interference.
- M Reporting Limit (RL) exceeds the MCP CAM Reporting Limit for this analyte.
- NJ Presumptive evidence of compound. This represents an estimated concentration for Tentatively Identified Compounds (TICs), where the identification is based on a mass spectral library search.
- P The RPD between the results for the two columns exceeds the method-specified criteria.
- Q The quality control sample exceeds the associated acceptance criteria. For DOD-related projects, LCS and/or Continuing Calibration Standard exceedences are also qualified on all associated sample results. Note: This flag is not applicable for matrix spike recoveries when the sample concentration is greater than 4x the spike added or for batch duplicate RPD when the sample concentrations are less than 5x the RL. (Metals only.)
- R Analytical results are from sample re-analysis.
- **RE** Analytical results are from sample re-extraction.
- S Analytical results are from modified screening analysis.
- J Estimated value. This represents an estimated concentration for Tentatively Identified Compounds (TICs).
- ND Not detected at the reporting limit (RL) for the sample.

Report Format: Data Usability Report

Project Name:SCAPE BOSTONLab Number:L1900731Project Number:6546.9.00Report Date:01/11/19

REFERENCES

97 EPA Test Methods (SW-846) with QC Requirements & Performance Standards for the Analysis of EPA SW-846 Methods under the Massachusetts Contingency Plan, WSC-CAM-IIA, IIB, IIIA, IIIB, IIIC, IIID, VA, VB, VC, VIA, VIB, VIIIA and VIIIB, July 2010.

- 98 Method for the Determination of Extractable Petroleum Hydrocarbons (EPH), MassDEP, May 2004, Revision 1.1 with QC Requirements & Performance Standards for the Analysis of EPH under the Massachusetts Contingency Plan, WSC-CAM-IVB, July 2010.
- Method for the Determination of Volatile Petroleum Hydrocarbons (VPH), MassDEP, February 2018, Revision 2.1 with QC Requirements & Performance Standards for the Analysis of VPH under the Massachusetts Contingency Plan, WSC-CAM-IVA, June 1, 2018.

LIMITATION OF LIABILITIES

Alpha Analytical performs services with reasonable care and diligence normal to the analytical testing laboratory industry. In the event of an error, the sole and exclusive responsibility of Alpha Analytical shall be to re-perform the work at it's own expense. In no event shall Alpha Analytical be held liable for any incidental, consequential or special damages, including but not limited to, damages in any way connected with the use of, interpretation of, information or analysis provided by Alpha Analytical.

We strongly urge our clients to comply with EPA protocol regarding sample volume, preservation, cooling, containers, sampling procedures, holding time and splitting of samples in the field.

Serial_No:01111912:22

Alpha Analytical, Inc. Facility: Company-wide

Department: Quality Assurance

Title: Certificate/Approval Program Summary

Published Date: 10/9/2018 4:58:19 PM

ID No.:17873

Revision 12

Page 1 of 1

Certification Information

The following analytes are not included in our Primary NELAP Scope of Accreditation:

Westborough Facility

EPA 624/624.1: m/p-xylene, o-xylene

EPA 8260C: NPW: 1,2,4,5-Tetramethylbenzene; 4-Ethyltoluene, Azobenzene; SCM: lodomethane (methyl iodide), Methyl methacrylate, 1,2,4,5-

Tetramethylbenzene: 4-Ethyltoluene

EPA 8270D: NPW: Dimethylnaphthalene,1,4-Diphenylhydrazine; SCM: Dimethylnaphthalene,1,4-Diphenylhydrazine.

EPA 6860: SCM: Perchlorate

SM4500: NPW: Amenable Cyanide; SCM: Total Phosphorus, TKN, NO2, NO3.

Mansfield Facility SM 2540D: TSS

EPA 8082A: NPW: PCB: 1, 5, 31, 87,101, 110, 141, 151, 153, 180, 183, 187.

EPA TO-15: Halothane, 2,4,4-Trimethyl-2-pentene, 2,4,4-Trimethyl-1-pentene, Thiophene, 2-Methylthiophene,

3-Methylthiophene, 2-Ethylthiophene, 1,2,3-Trimethylbenzene, Indan, Indene, 1,2,4,5-Tetramethylbenzene, Benzothiophene, 1-Methylnaphthalene.

Biological Tissue Matrix: EPA 3050B

The following analytes are included in our Massachusetts DEP Scope of Accreditation

Westborough Facility:

Drinking Water

EPA 300.0: Chloride, Nitrate-N, Fluoride, Sulfate; EPA 353.2: Nitrate-N, Nitrite-N; SM4500NO3-F: Nitrate-N, Nitrite-N; SM4500F-C, SM4500CN-CE,

EPA 180.1, SM2130B, SM4500CI-D, SM2320B, SM2540C, SM4500H-B

EPA 332: Perchlorate; EPA 524.2: THMs and VOCs; EPA 504.1: EDB, DBCP.

Microbiology: SM9215B; SM9223-P/A, SM9223B-Colilert-QT,SM9222D.

Non-Potable Water

SM4500H,B, EPA 120.1, SM2510B, SM2540C, SM2320B, SM4500CL-E, SM4500F-BC, SM4500NH3-BH: Ammonia-N and Kjeldahl-N, EPA 350.1: Ammonia-N, LACHAT 10-107-06-1-B: Ammonia-N, EPA 351.1, SM4500NO3-F, EPA 353.2: Nitrate-N, SM4500P-E, SM4500P-B, E, SM4500SO4-E, SM5220D, EPA 410.4, SM5210B, SM5310C, SM4500CL-D, EPA 1664, EPA 420.1, SM4500-CN-CE, SM2540D, EPA 300: Chloride, Sulfate, Nitrate. EPA 624.1: Volatile Halocarbons & Aromatics,

EPA 608.3: Chlordane, Toxaphene, Aldrin, alpha-BHC, beta-BHC, gamma-BHC, delta-BHC, Dieldrin, DDD, DDE, DDT, Endosulfan II, Endosulfan II,

Endosulfan sulfate, Endrin, Endrin Aldehyde, Heptachlor, Heptachlor Epoxide, PCBs EPA 625.1: SVOC (Acid/Base/Neutral Extractables), EPA 600/4-81-045: PCB-Oil.

Microbiology: SM9223B-Colilert-QT; Enterolert-QT, SM9221E, EPA 1600, EPA 1603.

Mansfield Facility:

Drinking Water

EPA 200.7: Al, Ba, Cd, Cr, Cu, Fe, Mn, Ni, Na, Ag, Ca, Zn. EPA 200.8: Al, Sb, As, Ba, Be, Cd, Cr, Cu, Pb, Mn, Ni, Se, Ag, TL, Zn. EPA 245.1 Hg. EPA 522.

Non-Potable Water

EPA 200.7: Al, Sb, As, Be, Cd, Ca, Cr, Co, Cu, Fe, Pb, Mg, Mn, Mo, Ni, K, Se, Ag, Na, Sr, TL, Ti, V, Zn.

EPA 200.8: Al, Sb, As, Be, Cd, Cr, Cu, Fe, Pb, Mn, Ni, K, Se, Ag, Na, TL, Zn.

EPA 245.1 Hg.

SM2340B

For a complete listing of analytes and methods, please contact your Alpha Project Manager.

Pre-Qualtrax Document ID: 08-113 Document Type: Form

ALPHA		OF CUS			PAGE_	or1		Da	te Re	ec'd i	n Lat):	1	17	he	1		ALP	HA Jo		87	31	
6 Walkup Drive	320 Forbes Blvd	93	Project Inform			75		9000			PROPERTY	on - Da	ata De	livera	bles			100000		nforma			2
Westboro, MA 01: Tel: 508-898-922	0 Tel: 508-622-9300		Project Name:	-		Soster		7/	DEx		01	EMAIL						□ Sa	me as (Client info	٥	PO #:	
Client Information		THE P	Project Location:	Bo	ston	14														ments		300 VIII.	
Client: McPhail As	ssociates, LLC	F	Project #: (16.90	3		☐ Yes	Z No	Matri	Spike		ed on the	nis SDG	? (Req	uired f	or MC	P Inor	ganics)	elytical M	ethods		
Address: 2269 Massa	chusetts Avenue	F	Project Manager:		BED				Ø-No				nfo Req	uired fo	Metals	& EP	H with	Targe	ts)				
Cambridg	e, MA 02140	1	ALPHA Quote #:						er Stat							Cri	teria _						
Phone: (617) 868-1-	420		Turn-Around	Time	10,00	Walte.	UK R								8241				П				100
Email: bdawing	@McPhailgeo.com	m	Terrescondo de la companya della companya della companya de la companya della com		annann neamhna	DOWN HIERON WITH	ar.	1						-0.00	O RCRA8	Z							
	ject Information:		Date Due:	□ KO2H	(only confirmed	f pre-approved	9	Je [≤				23	un.	RA8	D RC	F.		8					o T
Run TCLP (if trig	gered) Nomenclature: B-1							Soil Assessment Package IV (less VOC)	CI 8260	Total Solids	C: D PAH	EPH: Ranges Only	H: ☐ Ranges & Targets Ranges Only	TOTAL METALS: DIRCRAS	DISSOLVED METALS:	METALS: Total Sb,Be,Ni,TI,V,Zn	PCBs Pesticides	Section A Inorganics			Fill D Pro	AMPLE INFO tration Field Lab to do eservation Lab to do	AL # BOTT
ALPHA Lab ID (Lab Use Only)	Sample ID)	Sample Depth	Material	Colle Date	ction Time	Sampler Initials	soil A	VOC	otal	SVOC:	EPH.	VPH:	OTA PP	SSIO PF	/ET/	D PC	RGP			-	Sample Comments	E
00731-01	MW-1		Бери	6W	117/19	1100	Tre	0,0	X	-	U)	X	X	-0	Li ya.	_	-	-	\vdash		- 3	ample Comments	5
0 , 1 , 1					1	11	1		-				~					\vdash	\vdash	1	+		F
or	MA-3 CO	(J				915			X			X	X		X						t	abelto	6
O3	MA-760	~)		L	V	1215	V		X			7	*								\pm		7
																					\pm		
Container Type A=Amber glass	Preservative A=None		on A Inorganics : Chloride, TRC, TSS	S, CrVI, C	rill, Total	C	ontainer Type		V			A	V		P				H		\pm		\pm
B=Bacteria cup C=Cube	B=HCI C=HNO ₃	Cyanide, To	otal RGP Metals Relinquisi	ned By:	waterowa 2017	De	Preservative	-	13			Rece	P ved By		A				Date	Time			
D=BOD bottle E=Encore	D=H ₂ SO ₄ E=NaOH	7	~ C	-		1/7/1	fe/Time 9 14∞	ļ.,,			_(*EP					1.	1	PP	100	All samples	
G=Glass O=Other	F=MeOH G=NaHSO ₄	(00				1/7/19	ARIUS	MC	hall A	Assoc	AA	secure L pic	sampl k-up/	e stora /-	ge for I	100	itory	*:	16	15		submitted ar	
P=Plastic V=Vial Sample Material F=Fil S=Sand O=Organics C=Clay	H=Na ₃ S ₂ O ₃ I=Ascorbix Acid J=NH ₄ Cl K=Zn Acetate O=Other		Associates secu Laboratory			17		1 1			11.	u	1		1/-	7/1	9	1	753	*	8	subject to Alpha's Term and Condition See reverse sid	ns ns.
N=Natural T=Till GM=Glaciomarine GW=Groundwater																						DOC ID: 25188 Rev (11/28/2017)	0.0

Method Blank Summary Form 4 VOLATILES

Client : McPhail Associates Lab Number : L1900731
Project Name : SCAPE BOSTON Project Number : 6546.9.00
Lab Sample ID : WG1195657-5 Lab File ID : VJ190108A08

Instrument ID : JACK Matrix : WATER

Analysis Date : 01/08/19 06:02

Client Sample No.	Lab Sample ID	Analysis Date	
WG1195657-3LCS	WG1195657-3	01/08/19 04:22	
WG1195657-4LCSD	WG1195657-4	01/08/19 04:55	
MW-7 (OW)	L1900731-03	01/08/19 11:03	
MW-1	L1900731-01	01/08/19 11:37	
MA-3 (OW)	L1900731-02D	01/08/19 12:10	

Continuing Calibration Form 7

Client : McPhail Associates Lab Number : L1900731 **Project Name** : SCAPE BOSTON Project Number : 6546.9.00 Calibration Date : 01/08/19 04:22

Instrument ID : JACK

Lab File ID : VJ190108A02 Init. Calib. Date(s) : 12/06/18 12/07/18 Init. Calib. Times Sample No : WG1195657-2 : 22:48 02:43

Channel

Compound	Ave. RRF	RRF	Min RRF	%D	Max %D	Area%	Dev(mi
Fluorobenzene	1	1	-	0	20	65	0
Dichlorodifluoromethane	0.385	0.411	-	-6.8	20	63	0
Chloromethane	0.451	0.375	-	16.9	20	59	.02
Vinyl chloride	0.451	0.466	-	-3.3	20	63	0
Bromomethane	0.231	0.26	-	-12.6	20	83	0
Chloroethane	0.244	0.277	-	-13.5	20	68	0
Trichlorofluoromethane	0.6	0.752	-	-25.3*	20	73	0
Ethyl ether	0.177	0.185	-	-4.5	20	68	0
1,1-Dichloroethene	0.332	0.362	-	-9	20	71	0
Carbon disulfide	0.866	0.91	-	-5.1	20	71	0
Methylene chloride	0.358	0.409	-	-14.2	20	74	0
Acetone	10	11.358	-	-13.6	20	68	0
trans-1,2-Dichloroethene	0.362	0.385	-	-6.4	20	71	0
Methyl tert-butyl ether	0.916	1.026	-	-12	20	70	0
Diisopropyl ether	1.373	1.225	-	10.8	20	58	0
1,1-Dichloroethane	0.788	0.793	-	-0.6	20	66	0
Ethyl tert-butyl ether	1.205	1.252	-	-3.9	20	66	0
cis-1,2-Dichloroethene	0.423	0.449	-	-6.1	20	71	0
2,2-Dichloropropane	0.658	0.811	-	-23.3*	20	80	0
Bromochloromethane	0.181	0.198	-	-9.4	20	72	0
Chloroform	0.769	0.83	-	-7.9	20	73	0
Carbon tetrachloride	0.597	0.723	-	-21.1*	20	78	0
Tetrahydrofuran	0.104	0.083	-	20.2*	20	52	0
Dibromofluoromethane	0.238	0.273	-	-14.7	20	75	0
1,1,1-Trichloroethane	0.693	0.8	-	-15.4	20	73	0
2-Butanone	0.129	0.117	-	9.3	20	58	0
1,1-Dichloropropene	0.624	0.644	-	-3.2	20	69	0
Benzene	1.812	1.745	-	3.7	20	67	0
tert-Amyl methyl ether	1.077	1.12	-	-4	20	69	0
1,2-Dichloroethane-d4	0.321	0.346	-	-7.8	20	68	0
1,2-Dichloroethane	0.558	0.635	-	-13.8	20	74	0
Trichloroethene	0.439	0.468	-	-6.6	20	71	0
Dibromomethane	0.218	0.228	-	-4.6	20	69	0
1,2-Dichloropropane	0.433	0.405	-	6.5	20	64	0
Bromodichloromethane	0.568	0.618	-	-8.8	20	73	0
1,4-Dioxane	0.00294	0.00304*	-	-3.4	20	66	0
cis-1,3-Dichloropropene	0.7	0.72	-	-2.9	20	69	0
Chlorobenzene-d5	1	1	-	0	20	77	0
Toluene-d8	1.3	1.191	-	8.4	20	70	0
Toluene	1.437	1.264	-	12	20	67	0
4-Methyl-2-pentanone	0.139	0.106	-	23.7*	20	57	0
Tetrachloroethene	0.643	0.639	-	0.6	20	77	0
trans-1,3-Dichloropropene	0.795	0.734	-	7.7	20	73	0
1,1,2-Trichloroethane	0.348	0.301	<u> </u>	13.5	20	68	0
Chlorodibromomethane	0.476	0.467	<u> </u>	1.9	20	77	0

^{*} Value outside of QC limits.

Continuing Calibration Form 7

Client : McPhail Associates Lab Number : L1900731
Project Name : SCAPE BOSTON Project Number : 6546.9.00
Instrument ID : IACK

Instrument ID : JACK Calibration Date : 01/08/19 04:22

Channel:

Compound	Ave. RRF	RRF	Min RRF	%D	Max %D	Area%	Dev(min)
1,3-Dichloropropane	0.746	0.631	-	15.4	20	64	0
1,2-Dibromoethane	0.416	0.391	-	6	20	73	0
2-Hexanone	0.255	0.213	-	16.5	20	64	0
Chlorobenzene	1.556	1.415	-	9.1	20	71	0
Ethylbenzene	2.818	2.604	-	7.6	20	72	0
1,1,1,2-Tetrachloroethane	0.55	0.551	-	-0.2	20	79	0
p/m Xylene	1.284	1.133	-	11.8	20	68	0
o Xylene	1.042	0.975	-	6.4	20	75	0
Styrene	1.711	1.552	-	9.3	20	70	0
1,4-Dichlorobenzene-d4	1	1	-	0	20	83	0
Bromoform	0.528	0.521	-	1.3	20	84	0
Isopropylbenzene	5.591	4.912	-	12.1	20	74	0
4-Bromofluorobenzene	0.933	0.889	-	4.7	20	78	0
Bromobenzene	1.195	1.099	-	8	20	81	0
n-Propylbenzene	6.206	5.135	-	17.3	20	70	0
1,1,2,2-Tetrachloroethane	0.897	0.705	-	21.4*	20	65	0
2-Chlorotoluene	4.097	3.432	-	16.2	20	72	0
1,3,5-Trimethylbenzene	4.284	3.574	-	16.6	20	72	0
1,2,3-Trichloropropane	0.777	0.634	-	18.4	20	65	0
4-Chlorotoluene	3.761	3.165	-	15.8	20	72	0
tert-Butylbenzene	3.723	3.255	-	12.6	20	75	0
1,2,4-Trimethylbenzene	4.026	3.305	-	17.9	20	70	0
sec-Butylbenzene	5.157	4.219	-	18.2	20	69	0
p-Isopropyltoluene	4.378	3.583	-	18.2	20	70	0
1,3-Dichlorobenzene	2.289	1.995	-	12.8	20	73	0
1,4-Dichlorobenzene	2.269	1.987	-	12.4	20	76	0
n-Butylbenzene	3.347	2.543	-	24*	20	64	0
1,2-Dichlorobenzene	2.077	1.779	-	14.3	20	73	0
1,2-Dibromo-3-chloropropan	0.142	0.113	-	20.4*	20	73	0
Hexachlorobutadiene	0.454	0.429	-	5.5	20	77	0
1,2,4-Trichlorobenzene	0.957	0.809	-	15.5	20	72	0
Naphthalene	1.718	1.329	-	22.6*	20	69	0
1,2,3-Trichlorobenzene	0.824	0.655	-	20.5*	20	67	0

^{*} Value outside of QC limits.

ANALYTICAL REPORT

Lab Number: L1904415

Client: McPhail Associates

2269 Massachusetts Avenue

Cambridge, MA 02140

ATTN: Ambrose Donovan Phone: (617) 868-1420

Project Name: SCAPE BOSTON

Project Number: 6546.9.00

Report Date: 02/06/19

The original project report/data package is held by Alpha Analytical. This report/data package is paginated and should be reproduced only in its entirety. Alpha Analytical holds no responsibility for results and/or data that are not consistent with the original.

Certifications & Approvals: MA (M-MA086), NH NELAP (2064), CT (PH-0574), IL (200077), ME (MA00086), MD (348), NJ (MA935), NY (11148), NC (25700/666), PA (68-03671), RI (LAO00065), TX (T104704476), VT (VT-0935), VA (460195), USDA (Permit #P330-17-00196).

Eight Walkup Drive, Westborough, MA 01581-1019 508-898-9220 (Fax) 508-898-9193 800-624-9220 - www.alphalab.com

Project Number: 6546.9.00

Lab Number:

L1904415

Report Date:

02/06/19

Alpha Sample ID	Client ID	Matrix	Sample Location	Collection Date/Time	Receive Date
L1904415-01	MA-2 (OW)	GROUNDWATER	BOSTON, MA	02/04/19 11:00	02/04/19

Project Name: Lab Number: SCAPE BOSTON L1904415

Project Number: 6546.9.00 **Report Date:** 02/06/19

MADEP MCP Response Action Analytical Report Certification

This form provides certifications for all samples performed by MCP methods. Please refer to the Sample Results and Container Information sections of this report for specification of MCP methods used for each analysis. The following questions pertain only to MCP Analytical Methods.

A	Were all samples received in a condition consistent with those described on the Chain-of-Custody, properly preserved (including temperature) in the field or laboratory, and prepared/analyzed within method holding times?	YES
В	Were the analytical method(s) and all associated QC requirements specified in the selected CAM protocol(s) followed?	YES
С	Were all required corrective actions and analytical response actions specified in the selected CAM protocol(s) implemented for all identified performance standard non-conformances?	YES
D	Does the laboratory report comply with all the reporting requirements specified in CAM VII A, "Quality Assurance and Quality Control Guidelines for the Acquisition and Reporting of Analytical Data?"	YES
E a.	VPH, EPH, and APH Methods only: Was each method conducted without significant modification(s)? (Refer to the individual method(s) for a list of significant modifications).	YES
E b.	APH and TO-15 Methods only: Was the complete analyte list reported for each method?	N/A
F	Were all applicable CAM protocol QC and performance standard non-conformances identified and evaluated in a laboratory narrative (including all "No" responses to Questions A through E)?	YES

A re	sponse to questions G, H and I is required for "Presumptive Certainty" status	
G	Were the reporting limits at or below all CAM reporting limits specified in the selected CAM protocol(s)?	YES
Н	Were all QC performance standards specified in the CAM protocol(s) achieved?	NO
ı	Were results reported for the complete analyte list specified in the selected CAM protocol(s)?	NO

For any questions answered "No", please refer to the case narrative section on the following page(s).

Please note that sample matrix information is located in the Sample Results section of this report.

Project Name:SCAPE BOSTONLab Number:L1904415Project Number:6546.9.00Report Date:02/06/19

Case Narrative

The samples were received in accordance with the Chain of Custody and no significant deviations were encountered during the preparation or analysis unless otherwise noted. Sample Receipt, Container Information, and the Chain of Custody are located at the back of the report.

Results contained within this report relate only to the samples submitted under this Alpha Lab Number and meet NELAP requirements for all NELAP accredited parameters unless otherwise noted in the following narrative. The data presented in this report is organized by parameter (i.e. VOC, SVOC, etc.). Sample specific Quality Control data (i.e. Surrogate Spike Recovery) is reported at the end of the target analyte list for each individual sample, followed by the Laboratory Batch Quality Control at the end of each parameter. Tentatively Identified Compounds (TICs), if requested, are reported for compounds identified to be present and are not part of the method/program Target Compound List, even if only a subset of the TCL are being reported. If a sample was re-analyzed or re-extracted due to a required quality control corrective action and if both sets of data are reported, the Laboratory ID of the re-analysis or re-extraction is designated with an "R" or "RE", respectively.

When multiple Batch Quality Control elements are reported (e.g. more than one LCS), the associated samples for each element are noted in the grey shaded header line of each data table. Any Laboratory Batch, Sample Specific % recovery or RPD value that is outside the listed Acceptance Criteria is bolded in the report. In reference to questions H (CAM) or 4 (RCP) when "NO" is checked, the performance criteria for CAM and RCP methods allow for some quality control failures to occur and still be within method compliance. In these instances, the specific failure is not narrated but noted in the associated QC Outlier Summary Report, located directly after the Case Narrative. QC information is also incorporated in the Data Usability Assessment table (Format 11) of our Data Merger tool, where it can be reviewed in conjunction with the sample result, associated regulatory criteria and any associated data usability implications.

Soil/sediments, solids and tissues are reported on a dry weight basis unless otherwise noted. Definitions of all data qualifiers and acronyms used in this report are provided in the Glossary located at the back of the report.

HOLD POLICY - For samples submitted on hold, Alpha's policy is to hold samples (with the exception of Air canisters) free of charge for 21 calendar days from the date the project is completed. After 21 calendar days, we will dispose of all samples submitted including those put on hold unless you have contacted your Alpha Project Manager and made arrangements for Alpha to continue to hold the samples. Air canisters will be disposed after 3 business days from the date the project is completed.

Please contact Project Management at 800-624-9220 with any questions.	

Project Name:SCAPE BOSTONLab Number:L1904415Project Number:6546.9.00Report Date:02/06/19

Case Narrative (continued)

MCP Related Narratives

Volatile Organics

In reference to question H:

The initial calibration, associated with L1904415-01, did not meet the method required minimum response factor on the lowest calibration standard for 2-butanone (0.0851), 4-methyl-2-pentanone (0.0666), and 1,4-dioxane (0.0016), as well as the average response factor for 2-butanone, 4-methyl-2-pentanone, and 1,4-dioxane.

The continuing calibration standard, associated with L1904415-01, is outside the acceptance criteria for several compounds; however, it is within overall method allowances. A copy of the continuing calibration standard is included as an addendum to this report.

VPH

In reference to question I:

All samples were analyzed for a subset of MCP analytes per client request.

I, the undersigned, attest under the pains and penalties of perjury that, to the best of my knowledge and belief and based upon my personal inquiry of those responsible for providing the information contained in this analytical report, such information is accurate and complete. This certificate of analysis is not complete unless this page accompanies any and all pages of this report.

Authorized Signature:

Title: Technical Director/Representative Date: 02/06/19

Melissa Cripps Melissa Cripps

QC OUTLIER SUMMARY REPORT

Project Name: SCAPE BOSTON

Lab Number:

L1904415

Project Number: 6546.9.00

Report Date:

02/06/19

Client ID (Native ID)	Lab ID	Parameter	QC Type	(%)	(%)	Samples	Assessment
Organics - Westborough Lab							
Batch QC	WG1204150-3	2,2-Dichloropropane	LCS	140	70-130	01	potential high bias
Batch QC	WG1204150-4	Acetone	LCSD	27	20	01	non-directional bias
Batch QC	WG1204150-4	2,2-Dichloropropane	LCSD	140	70-130	01	potential high bias
Batch QC	WG1204150-4	1,4-Dioxane	LCSD	28	20	01	non-directional bias
Batch QC	WG1204150-4	1,4-Dioxane	LCSD	68	70-130	01	potential low bias
	Batch QC Batch QC Batch QC Batch QC	Batch QC WG1204150-3 Batch QC WG1204150-4 Batch QC WG1204150-4 Batch QC WG1204150-4	Batch QC WG1204150-3 2,2-Dichloropropane Batch QC WG1204150-4 Acetone Batch QC WG1204150-4 2,2-Dichloropropane Batch QC WG1204150-4 1,4-Dioxane	Batch QC WG1204150-3 2,2-Dichloropropane LCS Batch QC WG1204150-4 Acetone LCSD Batch QC WG1204150-4 2,2-Dichloropropane LCSD Batch QC WG1204150-4 1,4-Dioxane LCSD	Batch QC WG1204150-3 2,2-Dichloropropane LCS 140 Batch QC WG1204150-4 Acetone LCSD 27 Batch QC WG1204150-4 2,2-Dichloropropane LCSD 140 Batch QC WG1204150-4 1,4-Dioxane LCSD 28	Organics - Westborough Lab Batch QC WG1204150-3 2,2-Dichloropropane LCS 140 70-130 Batch QC WG1204150-4 Acetone LCSD 27 20 Batch QC WG1204150-4 2,2-Dichloropropane LCSD 140 70-130 Batch QC WG1204150-4 1,4-Dioxane LCSD 28 20	Organics - Westborough Lab WG1204150-3 2,2-Dichloropropane LCS 140 70-130 01 Batch QC WG1204150-4 Acetone LCSD 27 20 01 Batch QC WG1204150-4 2,2-Dichloropropane LCSD 140 70-130 01 Batch QC WG1204150-4 1,4-Dioxane LCSD 28 20 01

ORGANICS

VOLATILES

02/04/19 11:00

Project Name: SCAPE BOSTON

Project Number: 6546.9.00

SAMPLE RESULTS

Lab Number: L1904415

Report Date: 02/06/19

Lab ID: L1904415-01 Date Collected:

Client ID: Date Received: 02/04/19 MA-2 (OW) Sample Location: Field Prep: Not Specified BOSTON, MA

Sample Depth:

Matrix: Groundwater Analytical Method: 97,8260C Analytical Date: 02/06/19 06:50

Analyst: MM

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
MCP Volatile Organics - Westborough Lab						
Methylene chloride	ND		ug/l	2.0		1
1,1-Dichloroethane	ND		ug/l	1.0		1
Chloroform	ND		ug/l	1.0		1
Carbon tetrachloride	ND		ug/l	1.0		1
1,2-Dichloropropane	ND		ug/l	1.0		1
Dibromochloromethane	ND		ug/l	1.0		1
1,1,2-Trichloroethane	ND		ug/l	1.0		1
Tetrachloroethene	ND		ug/l	1.0		1
Chlorobenzene	ND		ug/l	1.0		1
Trichlorofluoromethane	ND		ug/l	2.0		1
1,2-Dichloroethane	ND		ug/l	1.0		1
1,1,1-Trichloroethane	ND		ug/l	1.0		1
Bromodichloromethane	ND		ug/l	1.0		1
trans-1,3-Dichloropropene	ND		ug/l	0.40		1
cis-1,3-Dichloropropene	ND		ug/l	0.40		1
1,3-Dichloropropene, Total	ND		ug/l	0.40		1
1,1-Dichloropropene	ND		ug/l	2.0		1
Bromoform	ND		ug/l	2.0		1
1,1,2,2-Tetrachloroethane	ND		ug/l	1.0		1
Benzene	6.4		ug/l	0.50		1
Toluene	1.2		ug/l	1.0		1
Ethylbenzene	ND		ug/l	1.0		1
Chloromethane	ND		ug/l	2.0		1
Bromomethane	ND		ug/l	2.0		1
Vinyl chloride	ND		ug/l	1.0		1
Chloroethane	ND		ug/l	2.0		1
1,1-Dichloroethene	ND		ug/l	1.0		1
trans-1,2-Dichloroethene	ND		ug/l	1.0		1

Project Name: SCAPE BOSTON Lab Number: L1904415

Project Number: 6546.9.00 **Report Date:** 02/06/19

SAMPLE RESULTS

Lab ID: L1904415-01 Date Collected: 02/04/19 11:00

Client ID: MA-2 (OW) Date Received: 02/04/19
Sample Location: BOSTON, MA Field Prep: Not Specified

Sample Depth:

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
MCP Volatile Organics - Westborough Lab						
Trichloroethene	ND		ug/l	1.0		1
1,2-Dichlorobenzene	ND		ug/l	1.0		1
1,3-Dichlorobenzene	ND		ug/l	1.0		1
1,4-Dichlorobenzene	ND		ug/l	1.0		1
Methyl tert butyl ether	29		ug/l	2.0		1
p/m-Xylene	2.8		ug/l	2.0		1
o-Xylene	ND		ug/l	1.0		1
Xylenes, Total	2.8		ug/l	1.0		1
cis-1,2-Dichloroethene	ND		ug/l	1.0		1
1,2-Dichloroethene, Total	ND		ug/l	1.0		1
Dibromomethane	ND		ug/l	2.0		1
1,2,3-Trichloropropane	ND		ug/l	2.0		1
Styrene	ND		ug/l	1.0		1
Dichlorodifluoromethane	ND		ug/l	2.0		1
Acetone	ND		ug/l	5.0		1
Carbon disulfide	ND		ug/l	2.0		1
Methyl ethyl ketone	ND		ug/l	5.0		1
Methyl isobutyl ketone	ND		ug/l	5.0		1
2-Hexanone	ND		ug/l	5.0		1
Bromochloromethane	ND		ug/l	2.0		1
Tetrahydrofuran	ND		ug/l	2.0		1
2,2-Dichloropropane	ND		ug/l	2.0		1
1,2-Dibromoethane	ND		ug/l	2.0		1
1,3-Dichloropropane	ND		ug/l	2.0		1
1,1,1,2-Tetrachloroethane	ND		ug/l	1.0		1
Bromobenzene	ND		ug/l	2.0		1
n-Butylbenzene	ND		ug/l	2.0		1
sec-Butylbenzene	2.3		ug/l	2.0		1
tert-Butylbenzene	ND		ug/l	2.0		1
o-Chlorotoluene	ND		ug/l	2.0		1
p-Chlorotoluene	ND		ug/l	2.0		1
1,2-Dibromo-3-chloropropane	ND		ug/l	2.0		1
Hexachlorobutadiene	ND		ug/l	0.60		1
Isopropylbenzene	7.6		ug/l	2.0		1
p-Isopropyltoluene	ND		ug/l	2.0		1
Naphthalene	ND		ug/l	2.0		1
n-Propylbenzene	7.3		ug/l	2.0		1

Project Name: SCAPE BOSTON Lab Number: L1904415

Project Number: 6546.9.00 **Report Date:** 02/06/19

SAMPLE RESULTS

Lab ID: L1904415-01 Date Collected: 02/04/19 11:00

Client ID: MA-2 (OW) Date Received: 02/04/19
Sample Location: BOSTON, MA Field Prep: Not Specified

Sample Depth:

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	
MCP Volatile Organics - Westbore	ough Lab						
1,2,3-Trichlorobenzene	ND		ug/l	2.0		1	
1,2,4-Trichlorobenzene	ND		ug/l	2.0		1	
1,3,5-Trimethylbenzene	ND		ug/l	2.0		1	
1,2,4-Trimethylbenzene	ND		ug/l	2.0		1	
Diethyl ether	ND		ug/l	2.0		1	
Diisopropyl Ether	ND		ug/l	2.0		1	
Ethyl-Tert-Butyl-Ether	ND		ug/l	2.0		1	
Tertiary-Amyl Methyl Ether	ND		ug/l	2.0		1	
1,4-Dioxane	ND		ug/l	250		1	

Surrogate	% Recovery	Acceptance Qualifier Criteria	
1,2-Dichloroethane-d4	115	70-130	
Toluene-d8	97	70-130	
4-Bromofluorobenzene	95	70-130	
Dibromofluoromethane	101	70-130	

Project Number: 6546.9.00

Lab Number: L1904415

Report Date: 02/06/19

Method Blank Analysis Batch Quality Control

Analytical Method: 97,8260C Analytical Date: 97,8260C 02/06/19 06:25

Analyst: MM

Parameter	Result	Qualifier	Units		RL	MDL
MCP Volatile Organics	- Westborough Lab for	sample(s):	01	Batch:	WG1	204150-5
Methylene chloride	ND		ug/l		2.0	
1,1-Dichloroethane	ND		ug/l		1.0	
Chloroform	ND		ug/l		1.0	
Carbon tetrachloride	ND		ug/l		1.0	
1,2-Dichloropropane	ND		ug/l		1.0	
Dibromochloromethane	ND		ug/l		1.0	
1,1,2-Trichloroethane	ND		ug/l		1.0	
Tetrachloroethene	ND		ug/l		1.0	
Chlorobenzene	ND		ug/l		1.0	
Trichlorofluoromethane	ND		ug/l		2.0	
1,2-Dichloroethane	ND		ug/l		1.0	
1,1,1-Trichloroethane	ND		ug/l		1.0	
Bromodichloromethane	ND		ug/l		1.0	
trans-1,3-Dichloropropene	ND		ug/l		0.40	
cis-1,3-Dichloropropene	ND		ug/l		0.40	
1,3-Dichloropropene, Total	ND		ug/l		0.40	
1,1-Dichloropropene	ND		ug/l		2.0	
Bromoform	ND		ug/l		2.0	
1,1,2,2-Tetrachloroethane	ND		ug/l		1.0	
Benzene	ND		ug/l		0.50	
Toluene	ND		ug/l		1.0	
Ethylbenzene	ND		ug/l		1.0	
Chloromethane	ND		ug/l		2.0	
Bromomethane	ND		ug/l		2.0	
Vinyl chloride	ND		ug/l		1.0	
Chloroethane	ND		ug/l		2.0	
1,1-Dichloroethene	ND		ug/l		1.0	
trans-1,2-Dichloroethene	ND		ug/l		1.0	
Trichloroethene	ND		ug/l		1.0	

Project Number: 6546.9.00

Lab Number: L1904415

Report Date: 02/06/19

Method Blank Analysis Batch Quality Control

Analytical Method: 97,8260C Analytical Date: 97,8260C 02/06/19 06:25

Analyst: MM

arameter	Result Quali	fier Units	RL	MDL	
ICP Volatile Organics	- Westborough Lab for sample	e(s): 01 Batch:	: WG12	204150-5	
1,2-Dichlorobenzene	ND	ug/l	1.0		
1,3-Dichlorobenzene	ND	ug/l	1.0		
1,4-Dichlorobenzene	ND	ug/l	1.0		
Methyl tert butyl ether	ND	ug/l	2.0		
p/m-Xylene	ND	ug/l	2.0		
o-Xylene	ND	ug/l	1.0		
Xylenes, Total	ND	ug/l	1.0		
cis-1,2-Dichloroethene	ND	ug/l	1.0		
1,2-Dichloroethene, Total	ND	ug/l	1.0		
Dibromomethane	ND	ug/l	2.0		
1,2,3-Trichloropropane	ND	ug/l	2.0		
Styrene	ND	ug/l	1.0		
Dichlorodifluoromethane	ND	ug/l	2.0		
Acetone	ND	ug/l	5.0		
Carbon disulfide	ND	ug/l	2.0		
Methyl ethyl ketone	ND	ug/l	5.0		
Methyl isobutyl ketone	ND	ug/l	5.0		
2-Hexanone	ND	ug/l	5.0		
Bromochloromethane	ND	ug/l	2.0		
Tetrahydrofuran	ND	ug/l	2.0		
2,2-Dichloropropane	ND	ug/l	2.0		
1,2-Dibromoethane	ND	ug/l	2.0		
1,3-Dichloropropane	ND	ug/l	2.0		
1,1,1,2-Tetrachloroethane	ND	ug/l	1.0		
Bromobenzene	ND	ug/l	2.0		
n-Butylbenzene	ND	ug/l	2.0		
sec-Butylbenzene	ND	ug/l	2.0		
tert-Butylbenzene	ND	ug/l	2.0		
o-Chlorotoluene	ND	ug/l	2.0		

Project Number: 6546.9.00

Lab Number: L1904415

Report Date: 02/06/19

Method Blank Analysis Batch Quality Control

Analytical Method: 97,8260C Analytical Date: 02/06/19 06:25

Analyst: MM

Parameter	Result	Qualifier	Unit	s	RL	MDL
MCP Volatile Organics - Westborou	gh Lab for	sample(s):	01	Batch:	WG12	204150-5
p-Chlorotoluene	ND		ug	/I	2.0	<u></u>
1,2-Dibromo-3-chloropropane	ND		ug		2.0	
Hexachlorobutadiene	ND		ug	/I	0.60	
Isopropylbenzene	ND		ug	/I	2.0	
p-Isopropyltoluene	ND		ug	/I	2.0	
Naphthalene	ND		ug	/I	2.0	
n-Propylbenzene	ND		ug	/I	2.0	
1,2,3-Trichlorobenzene	ND		ug	/I	2.0	
1,2,4-Trichlorobenzene	ND		ug	/I	2.0	
1,3,5-Trimethylbenzene	ND		ug	/I	2.0	
1,2,4-Trimethylbenzene	ND		ug	/I	2.0	
Diethyl ether	ND		ug	/I	2.0	
Diisopropyl Ether	ND		ug	/I	2.0	
Ethyl-Tert-Butyl-Ether	ND		ug	/I	2.0	
Tertiary-Amyl Methyl Ether	ND		ug	/I	2.0	
1,4-Dioxane	ND		ug	/I	250	

		Acceptance			
Surrogate	%Recovery	Qualifier Criteria			
1,2-Dichloroethane-d4	101	70-130			
Toluene-d8	93	70-130			
4-Bromofluorobenzene	87	70-130			
Dibromofluoromethane	105	70-130			

Project Name: SCAPE BOSTON

Project Number: 6546.9.00

Lab Number: L1904415

Parameter	LCS %Recovery	Qual	LCSD %Recovery	Qual	%Recovery Limits	RPD	RPD Qual Limits
MCP Volatile Organics - Westborough La	b Associated samp	ole(s): 01	Batch: WG120415	50-3 WG1	204150-4		
Methylene chloride	110		110		70-130	0	20
1,1-Dichloroethane	110		120		70-130	9	20
Chloroform	120		120		70-130	0	20
Carbon tetrachloride	120		120		70-130	0	20
1,2-Dichloropropane	100		100		70-130	0	20
Dibromochloromethane	92		95		70-130	3	20
1,1,2-Trichloroethane	94		94		70-130	0	20
Tetrachloroethene	100		100		70-130	0	20
Chlorobenzene	95		96		70-130	1	20
Trichlorofluoromethane	120		120		70-130	0	20
1,2-Dichloroethane	120		120		70-130	0	20
1,1,1-Trichloroethane	130		130		70-130	0	20
Bromodichloromethane	120		120		70-130	0	20
trans-1,3-Dichloropropene	97		98		70-130	1	20
cis-1,3-Dichloropropene	110		110		70-130	0	20
1,1-Dichloropropene	120		120		70-130	0	20
Bromoform	87		87		70-130	0	20
1,1,2,2-Tetrachloroethane	82		83		70-130	1	20
Benzene	110		110		70-130	0	20
Toluene	96		95		70-130	1	20
Ethylbenzene	99		99		70-130	0	20
Chloromethane	84		84		70-130	0	20
Bromomethane	100		95		70-130	5	20

Project Name: SCAPE BOSTON

Project Number: 6546.9.00

Lab Number: L1904415

Parameter	LCS %Recovery	Qual	LCSD %Recovery	Qual	%Recovery Limits	RPD	Qual	RPD Limits
MCP Volatile Organics - Westborough Lab	Associated samp	ole(s): 01	Batch: WG120415	50-3 WG12	04150-4			
Vinyl chloride	100		100		70-130	0		20
Chloroethane	110		100		70-130	10		20
1,1-Dichloroethene	110		99		70-130	11		20
trans-1,2-Dichloroethene	110		110		70-130	0		20
Trichloroethene	120		110		70-130	9		20
1,2-Dichlorobenzene	88		91		70-130	3		20
1,3-Dichlorobenzene	90		89		70-130	1		20
1,4-Dichlorobenzene	85		91		70-130	7		20
Methyl tert butyl ether	120		120		70-130	0		20
p/m-Xylene	100		95		70-130	5		20
o-Xylene	95		95		70-130	0		20
cis-1,2-Dichloroethene	120		110		70-130	9		20
Dibromomethane	110		120		70-130	9		20
1,2,3-Trichloropropane	84		82		70-130	2		20
Styrene	90		90		70-130	0		20
Dichlorodifluoromethane	99		100		70-130	1		20
Acetone	110		84		70-130	27	Q	20
Carbon disulfide	100		110		70-130	10		20
Methyl ethyl ketone	90		84		70-130	7		20
Methyl isobutyl ketone	84		83		70-130	1		20
2-Hexanone	70		74		70-130	6		20
Bromochloromethane	120		130		70-130	8		20
Tetrahydrofuran	91		87		70-130	4		20

Project Name: SCAPE BOSTON

Project Number: 6546.9.00

Lab Number: L1904415

Parameter	LCS %Recovery	Qual	LCSD %Recovery	Qual	%Recovery Limits	RPD	RPD Qual Limits
MCP Volatile Organics - Westborough Lab	Associated samp	ole(s): 01	Batch: WG12041	50-3 WG1	1204150-4		
2,2-Dichloropropane	140	Q	140	Q	70-130	0	20
1,2-Dibromoethane	92		90		70-130	2	20
1,3-Dichloropropane	94		94		70-130	0	20
1,1,1,2-Tetrachloroethane	94		96		70-130	2	20
Bromobenzene	92		91		70-130	1	20
n-Butylbenzene	87		90		70-130	3	20
sec-Butylbenzene	89		91		70-130	2	20
tert-Butylbenzene	86		90		70-130	5	20
o-Chlorotoluene	90		92		70-130	2	20
p-Chlorotoluene	88		90		70-130	2	20
1,2-Dibromo-3-chloropropane	82		86		70-130	5	20
Hexachlorobutadiene	95		100		70-130	5	20
Isopropylbenzene	89		90		70-130	1	20
p-Isopropyltoluene	87		89		70-130	2	20
Naphthalene	76		79		70-130	4	20
n-Propylbenzene	88		90		70-130	2	20
1,2,3-Trichlorobenzene	84		88		70-130	5	20
1,2,4-Trichlorobenzene	88		89		70-130	1	20
1,3,5-Trimethylbenzene	87		90		70-130	3	20
1,2,4-Trimethylbenzene	89		90		70-130	1	20
Diethyl ether	96		100		70-130	4	20
Diisopropyl Ether	100		100		70-130	0	20
Ethyl-Tert-Butyl-Ether	110		110		70-130	0	20

Project Name: SCAPE BOSTON

Project Number: 6546.9.00

Lab Number:

L1904415

Report Date:

02/06/19

Parameter	LCS %Recovery	Qual	LCSD %Recovery	Qual	%Recovery Limits	RPD	Qual	RPD Limits	
MCP Volatile Organics - Westborough Lab	Associated samp	le(s): 01 E	Batch: WG12041	50-3 WG1	204150-4				
Tertiary-Amyl Methyl Ether	110		110		70-130	0		20	
1,4-Dioxane	90		68	Q	70-130	28	Q	20	

Surrogate	LCS %Recovery Qual	LCSD %Recovery Qual	Acceptance Criteria
1,2-Dichloroethane-d4	104	110	70-130
Toluene-d8	93	93	70-130
4-Bromofluorobenzene	97	99	70-130
Dibromofluoromethane	107	106	70-130

PETROLEUM HYDROCARBONS

Project Name: SCAPE BOSTON Lab Number: L1904415

Project Number: 6546.9.00 **Report Date:** 02/06/19

SAMPLE RESULTS

Lab ID: L1904415-01 Date Collected: 02/04/19 11:00

Client ID: MA-2 (OW) Date Received: 02/04/19
Sample Location: BOSTON, MA Field Prep: Not Specified

Sample Depth:

Matrix: Groundwater
Analytical Method: 131,VPH-18-2.1
Analytical Date: 02/05/19 16:51

Analyst: MZ

Trap: EST, Carbopack B/Carboxen 1000&1001 Analytical Column: Restek, RTX-502.2,

105m, 0.53ID, 3um

Quality Control Information

Condition of sample received: Satisfactory

Aqueous Preservative: Laboratory Provided Preserved

Container Received on Ice

Sample Temperature upon receipt:

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
Volatile Petroleum Hydrocarbons - W	estborough Lab					
C5-C8 Aliphatics	787		ug/l	50.0		1
C9-C12 Aliphatics	267		ug/l	50.0		1
C9-C10 Aromatics	192		ug/l	50.0		1
C5-C8 Aliphatics, Adjusted	758		ug/l	50.0		1
C9-C12 Aliphatics, Adjusted	73.1		ug/l	50.0		1

			Acceptance	
Surrogate	% Recovery	Qualifier	Criteria	
2,5-Dibromotoluene-PID	104		70-130	
2,5-Dibromotoluene-FID	107		70-130	

Project Name: SCAPE BOSTON Lab Number: L1904415

Project Number: 6546.9.00 **Report Date:** 02/06/19

Method Blank Analysis Batch Quality Control

Analytical Method: 131,VPH-18-2.1 Analytical Date: 02/05/19 12:42

Analyst: MKS

Parameter	Result	Qualifier	Units	RL	MDL	
olatile Petroleum Hydrocarbo	ns - Westboroug	h Lab for s	ample(s):	01 Batch:	WG1204165-4	
C5-C8 Aliphatics	ND		ug/l	50.0		
C9-C12 Aliphatics	ND		ug/l	50.0		
C9-C10 Aromatics	ND		ug/l	50.0		
C5-C8 Aliphatics, Adjusted	ND		ug/l	50.0		
C9-C12 Aliphatics, Adjusted	ND		ug/l	50.0		

		Acceptance
Surrogate	%Recovery Qua	lifier Criteria
2,5-Dibromotoluene-PID	91	70-130
2,5-Dibromotoluene-FID	98	70-130

Project Name: SCAPE BOSTON

Project Number: 6546.9.00

Lab Number: L1904415

arameter	LCS %Recovery	Qual	LCSD %Recovery	Qual	%Recovery Limits	RPD	Qual	RPD Limits
olatile Petroleum Hydrocarbons - Westboro	ugh Lab Assoc	ated sample(s):	01 Batch:	WG1204165-2	2 WG1204165-3			
C5-C8 Aliphatics	98		99		70-130	1		25
C9-C12 Aliphatics	116		121		70-130	4		25
C9-C10 Aromatics	108		109		70-130	1		25
Benzene	95		95		70-130	0		25
Toluene	99		100		70-130	1		25
Ethylbenzene	106		106		70-130	0		25
p/m-Xylene	105		106		70-130	1		25
o-Xylene	104		105		70-130	1		25
Methyl tert butyl ether	97		98		70-130	0		25
Naphthalene	100		100		70-130	0		25
1,2,4-Trimethylbenzene	108		109		70-130	1		25
Pentane	88		88		70-130	0		25
2-Methylpentane	102		103		70-130	1		25
2,2,4-Trimethylpentane	103		104		70-130	1		25
n-Nonane	112		113		30-130	1		25
n-Decane	119		120		70-130	1		25
n-Butylcyclohexane	118		118		70-130	0		25

Surrogate	LCS %Recovery Qua	LCSD I %Recovery Qual	Acceptance Criteria
2,5-Dibromotoluene-PID	105	105	70-130
2,5-Dibromotoluene-FID	110	112	70-130

Serial_No:02061917:18

Lab Number: L1904415

Report Date: 02/06/19

Sample Receipt and Container Information

Were project specific reporting limits specified?

SCAPE BOSTON

Cooler Information

Project Name:

Cooler Custody Seal

A Absent

Project Number: 6546.9.00

Container Info	ormation		Initial	Final	Temp			Frozen	
Container ID	Container Type	Cooler	pН	pН	deg C	Pres	Seal	Date/Time	Analysis(*)
L1904415-01A	Vial HCl preserved	Α	NA		4.0	Υ	Absent		MCP-8260-10(14)
L1904415-01B	Vial HCl preserved	Α	NA		4.0	Υ	Absent		MCP-8260-10(14)
L1904415-01C	Vial HCl preserved	Α	NA		4.0	Υ	Absent		VPH-18(14)
L1904415-01D	Vial HCl preserved	Α	NA		4.0	Υ	Absent		VPH-18(14)

Project Name: SCAPE BOSTON Lab Number: L1904415

Project Number: 6546.9.00 **Report Date:** 02/06/19

GLOSSARY

Acronyms

EDL - Estimated Detection Limit: This value represents the level to which target analyte concentrations are reported as estimated values, when those target analyte concentrations are quantified below the reporting limit (RL). The EDL includes any

adjustments from dilutions, concentrations or moisture content, where applicable. The use of EDLs is specific to the analysis

of PAHs using Solid-Phase Microextraction (SPME).

EMPC - Estimated Maximum Possible Concentration: The concentration that results from the signal present at the retention time of an

analyte when the ions meet all of the identification criteria except the ion abundance ratio criteria. An EMPC is a worst-case

estimate of the concentration.

EPA - Environmental Protection Agency.

LCS - Laboratory Control Sample: A sample matrix, free from the analytes of interest, spiked with verified known amounts of

analytes or a material containing known and verified amounts of analytes.

LCSD - Laboratory Control Sample Duplicate: Refer to LCS.

LFB - Laboratory Fortified Blank: A sample matrix, free from the analytes of interest, spiked with verified known amounts of

analytes or a material containing known and verified amounts of analytes.

MDL - Method Detection Limit: This value represents the level to which target analyte concentrations are reported as estimated values, when those target analyte concentrations are quantified below the reporting limit (RL). The MDL includes any

values, when those target analyte concentrations are quantified below the reporting limit (RL). The MDL includes any adjustments from dilutions, concentrations or moisture content, where applicable.

adjustments from dilutions, concentrations of moisture content, where applicable

MS - Matrix Spike Sample: A sample prepared by adding a known mass of target analyte to a specified amount of matrix sample for

which an independent estimate of target analyte concentration is available.

MSD - Matrix Spike Sample Duplicate: Refer to MS.

NA - Not Applicable.

NC - Not Calculated: Term is utilized when one or more of the results utilized in the calculation are non-detect at the parameter's

reporting unit.

NDPA/DPA - N-Nitrosodiphenylamine/Diphenylamine.

NI - Not Ignitable.

NP - Non-Plastic: Term is utilized for the analysis of Atterberg Limits in soil.

RL - Reporting Limit: The value at which an instrument can accurately measure an analyte at a specific concentration. The RL

includes any adjustments from dilutions, concentrations or moisture content, where applicable.

RPD - Relative Percent Difference: The results from matrix and/or matrix spike duplicates are primarily designed to assess the

precision of analytical results in a given matrix and are expressed as relative percent difference (RPD). Values which are less than five times the reporting limit for any individual parameter are evaluated by utilizing the absolute difference between the

values; although the RPD value will be provided in the report.

SRM - Standard Reference Material: A reference sample of a known or certified value that is of the same or similar matrix as the

associated field samples.

STLP - Semi-dynamic Tank Leaching Procedure per EPA Method 1315.

TEF - Toxic Equivalency Factors: The values assigned to each dioxin and furan to evaluate their toxicity relative to 2,3,7,8-TCDD.

TEQ - Toxic Equivalent: The measure of a sample's toxicity derived by multiplying each dioxin and furan by its corresponding TEF

and then summing the resulting values.

TIC - Tentatively Identified Compound: A compound that has been identified to be present and is not part of the target compound

list (TCL) for the method and/or program. All TICs are qualitatively identified and reported as estimated concentrations.

Footnotes

- The reference for this analyte should be considered modified since this analyte is absent from the target analyte list of the original method.

Terms

Analytical Method: Both the document from which the method originates and the analytical reference method. (Example: EPA 8260B is shown as 1,8260B.) The codes for the reference method documents are provided in the References section of the Addendum.

Final pH: As it pertains to Sample Receipt & Container Information section of the report, Final pH reflects pH of container determined after adjustment at the laboratory, if applicable. If no adjustment required, value reflects Initial pH.

Frozen Date/Time: With respect to Volatile Organics in soil, Frozen Date/Time reflects the date/time at which associated Reagent Water-preserved vials were initially frozen. Note: If frozen date/time is beyond 48 hours from sample collection, value will be reflected in 'bold'.

Initial pH: As it pertains to Sample Receipt & Container Information section of the report, Initial pH reflects pH of container determined upon receipt, if applicable.

PFAS Total: With respect to PFAS analyses, the 'PFAS, Total (5)' result is defined as the summation of results for: PFHpA, PFHxS, PFOA, PFNA and PFOS. If a 'Total' result is requested, the results of its individual components will also be reported.

Total: With respect to Organic analyses, a 'Total' result is defined as the summation of results for individual isomers or Aroclors. If a 'Total'

Report Format: Data Usability Report

Project Name:SCAPE BOSTONLab Number:L1904415Project Number:6546.9.00Report Date:02/06/19

result is requested, the results of its individual components will also be reported. This is applicable to 'Total' results for methods 8260, 8081 and 8082.

Data Qualifiers

- A Spectra identified as "Aldol Condensation Product".
- The analyte was detected above the reporting limit in the associated method blank. Flag only applies to associated field samples that have detectable concentrations of the analyte at less than ten times (10x) the concentration found in the blank. For MCP-related projects, flag only applies to associated field samples that have detectable concentrations of the analyte at less than ten times (10x) the concentrations of the analyte at less than ten times (10x) the concentrations of the analyte at less than ten times (10x) the concentration found in the blank AND the analyte was detectable concentrations of the reporting limit (or above the reporting limit for common lab contaminants) in the associated method blank. For NJ-Air-related projects, flag only applies to associated field samples that have detectable concentrations of the analyte above the reporting limit. For NJ-related projects (excluding Air), flag only applies to associated field samples that have detectable concentrations of the analyte, which was detected above the reporting limit in the associated method blank or above five times the reporting limit for common lab contaminants (Phthalates, Acetone, Methylene Chloride, 2-Butanone).
- Co-elution: The target analyte co-elutes with a known lab standard (i.e. surrogate, internal standards, etc.) for co-extracted analyses.
- Concentration of analyte was quantified from diluted analysis. Flag only applies to field samples that have detectable concentrations
 of the analyte.
- E Concentration of analyte exceeds the range of the calibration curve and/or linear range of the instrument.
- G The concentration may be biased high due to matrix interferences (i.e, co-elution) with non-target compound(s). The result should be considered estimated.
- H The analysis of pH was performed beyond the regulatory-required holding time of 15 minutes from the time of sample collection.
- The lower value for the two columns has been reported due to obvious interference.
- J Estimated value. This represents an estimated concentration for Tentatively Identified Compounds (TICs).
- M Reporting Limit (RL) exceeds the MCP CAM Reporting Limit for this analyte.
- ND Not detected at the reporting limit (RL) for the sample.
- **NJ** Presumptive evidence of compound. This represents an estimated concentration for Tentatively Identified Compounds (TICs), where the identification is based on a mass spectral library search.
- P The RPD between the results for the two columns exceeds the method-specified criteria.
- Q The quality control sample exceeds the associated acceptance criteria. For DOD-related projects, LCS and/or Continuing Calibration Standard exceedences are also qualified on all associated sample results. Note: This flag is not applicable for matrix spike recoveries when the sample concentration is greater than 4x the spike added or for batch duplicate RPD when the sample concentrations are less than 5x the RL. (Metals only.)
- **R** Analytical results are from sample re-analysis.
- **RE** Analytical results are from sample re-extraction.
- S Analytical results are from modified screening analysis.

Report Format: Data Usability Report

Serial_No:02061917:18

Project Name:SCAPE BOSTONLab Number:L1904415Project Number:6546.9.00Report Date:02/06/19

REFERENCES

97 EPA Test Methods (SW-846) with QC Requirements & Performance Standards for the Analysis of EPA SW-846 Methods under the Massachusetts Contingency Plan, WSC-CAM-IIA, IIB, IIIA, IIIB, IIIC, IIID, VA, VB, VC, VIA, VIB, VIIIA and VIIIB, July 2010.

Method for the Determination of Volatile Petroleum Hydrocarbons (VPH), MassDEP, February 2018, Revision 2.1 with QC Requirements & Performance Standards for the Analysis of VPH under the Massachusetts Contingency Plan, WSC-CAM-IVA, June 1, 2018.

LIMITATION OF LIABILITIES

Alpha Analytical performs services with reasonable care and diligence normal to the analytical testing laboratory industry. In the event of an error, the sole and exclusive responsibility of Alpha Analytical shall be to re-perform the work at it's own expense. In no event shall Alpha Analytical be held liable for any incidental, consequential or special damages, including but not limited to, damages in any way connected with the use of, interpretation of, information or analysis provided by Alpha Analytical.

We strongly urge our clients to comply with EPA protocol regarding sample volume, preservation, cooling, containers, sampling procedures, holding time and splitting of samples in the field.

Serial_No:02061917:18

Alpha Analytical, Inc. Facility: Company-wide

Department: Quality Assurance

Title: Certificate/Approval Program Summary

ID No.:17873 Revision 12

Published Date: 10/9/2018 4:58:19 PM

Page 1 of 1

Certification Information

The following analytes are not included in our Primary NELAP Scope of Accreditation:

Westborough Facility

EPA 624/624.1: m/p-xylene, o-xylene

EPA 8260C: NPW: 1,2,4,5-Tetramethylbenzene; 4-Ethyltoluene, Azobenzene; SCM: lodomethane (methyl iodide), Methyl methacrylate, 1,2,4,5-

Tetramethylbenzene: 4-Ethyltoluene

EPA 8270D: NPW: Dimethylnaphthalene,1,4-Diphenylhydrazine; SCM: Dimethylnaphthalene,1,4-Diphenylhydrazine.

EPA 6860: SCM: Perchlorate

SM4500: NPW: Amenable Cyanide; SCM: Total Phosphorus, TKN, NO2, NO3.

Mansfield Facility SM 2540D: TSS

EPA 8082A: NPW: PCB: 1, 5, 31, 87,101, 110, 141, 151, 153, 180, 183, 187.

EPA TO-15: Halothane, 2,4,4-Trimethyl-2-pentene, 2,4,4-Trimethyl-1-pentene, Thiophene, 2-Methylthiophene,

3-Methylthiophene, 2-Ethylthiophene, 1,2,3-Trimethylbenzene, Indan, Indene, 1,2,4,5-Tetramethylbenzene, Benzothiophene, 1-Methylnaphthalene.

Biological Tissue Matrix: EPA 3050B

The following analytes are included in our Massachusetts DEP Scope of Accreditation

Westborough Facility:

Drinking Water

EPA 300.0: Chloride, Nitrate-N, Fluoride, Sulfate; EPA 353.2: Nitrate-N, Nitrite-N; SM4500NO3-F: Nitrate-N, Nitrite-N; SM4500F-C, SM4500CN-CE,

EPA 180.1, SM2130B, SM4500CI-D, SM2320B, SM2540C, SM4500H-B

EPA 332: Perchlorate; EPA 524.2: THMs and VOCs; EPA 504.1: EDB, DBCP.

Microbiology: SM9215B; SM9223-P/A, SM9223B-Colilert-QT,SM9222D.

Non-Potable Water

SM4500H,B, EPA 120.1, SM2510B, SM2540C, SM2320B, SM4500CL-E, SM4500F-BC, SM4500NH3-BH: Ammonia-N and Kjeldahl-N, EPA 350.1: Ammonia-N, LACHAT 10-107-06-1-B: Ammonia-N, EPA 351.1, SM4500NO3-F, EPA 353.2: Nitrate-N, SM4500P-E, SM4500P-B, E, SM4500SO4-E, SM5220D, EPA 410.4, SM5210B, SM5310C, SM4500CL-D, EPA 1664, EPA 420.1, SM4500-CN-CE, SM2540D, EPA 300: Chloride, Sulfate, Nitrate. EPA 624.1: Volatile Halocarbons & Aromatics,

EPA 608.3: Chlordane, Toxaphene, Aldrin, alpha-BHC, beta-BHC, gamma-BHC, delta-BHC, Dieldrin, DDD, DDE, DDT, Endosulfan II, Endosulfan II,

Endosulfan sulfate, Endrin, Endrin Aldehyde, Heptachlor, Heptachlor Epoxide, PCBs

EPA 625.1: SVOC (Acid/Base/Neutral Extractables), EPA 600/4-81-045: PCB-Oil.

Microbiology: SM9223B-Colilert-QT; Enterolert-QT, SM9221E, EPA 1600, EPA 1603.

Mansfield Facility:

Drinking Water

EPA 200.7: Al, Ba, Cd, Cr, Cu, Fe, Mn, Ni, Na, Ag, Ca, Zn. EPA 200.8: Al, Sb, As, Ba, Be, Cd, Cr, Cu, Pb, Mn, Ni, Se, Ag, TL, Zn. EPA 245.1 Hg. EPA 522.

Non-Potable Water

EPA 200.7: Al, Sb, As, Be, Cd, Ca, Cr, Co, Cu, Fe, Pb, Mg, Mn, Mo, Ni, K, Se, Ag, Na, Sr, TL, Ti, V, Zn.

EPA 200.8: Al, Sb, As, Be, Cd, Cr, Cu, Fe, Pb, Mn, Ni, K, Se, Ag, Na, TL, Zn.

EPA 245.1 Hg.

SM2340B

For a complete listing of analytes and methods, please contact your Alpha Project Manager.

Pre-Qualtrax Document ID: 08-113 Document Type: Form

ALPHA	CHAIN				PAGE	orl				c'd ii		100	-		1/1	9		SI		191		45	
8 Walkup Drive Westboro, MA 01	320 Forbes Blvd 581 Mansfeld, MA 02048		Project Inform Project Name:	ation SCA	AE A	ston	H CONTRACTOR	100	port DEx	Infor		on - Da	ata De	livera	bles					nforma Client info		0#:	
Address: 2269 Massa Cambridg	ssociates, LLC achusetts Avenue le, MA 02140		Project Manager: ALPHA Quote #:	Bos 46, B	9,00 ES			☐ Yes ☐ Yes	No No No	MA M Matrix GW1 NPDE	Spike Stand	nalytical Requir tards (In	Metho ed on ti	is nis SDG		Yes Cuired for & EPH	No or MCF	CT RO	CP Ana janics)	ments lytical Me	ethods		
☐ Run TCLP (if trig	@McPhailgeo.cor oject Information:	- [Standard Date Due:		(only confirmed if	pre-approved	ar)	Assessment Package IV VOC)	☐ 8260	Total Solids	∴ □ PAH	EPH: ☐ Ranges & Targets ☐ Ranges Only	H: C Ranges & Targets Ranges Only	TOTAL METALS: DIRCRAS	DISSOLVED METALS: © RCRA8	ALS: Total Sb,Be,NI,TI,V,Zn	Bs 🗆 Pesticides	RGP Section A Inorganics	1PH Standows		Filtro G F G L Pres	APLE INFO ation ield ab to do servation ab to do	TOTAL . BOTT
ALPHA Lab ID (Lab Use Only)	. Sample ID		Sample Depth	Material	Collec	tion Time	Sampler Initials	Soil A	VOC:	Total	SVOC:	EPH:	VPH:	TOTA	DISS(METALS:	D PCBs	RGP	3		Sa	mple Comments	E
0445-0	MA-2 (0D))::		GW	2/4/19	1100	Tox		X										X				7
																							H
Container Type A*Amber glass B*Bacteria cup C=Cube D=BOD bollie E=Encore G=Glass O=Other P=Plastic V=Vial Sample Material F=Fill S*Sand O=Organics C*Clay	Preservative A=None B=HCI C=HNO ₃ D=H ₂ SO ₄ E=NaOH F=MeOH G=NaHSO ₄ H=Na ₂ S ₂ O ₃ I=Ascorbix Acid J=NH ₄ CI K=Za Acetale O=Other	Ammonia, Cyanide, 1	ion A Inorganics: Chloride, TRC, TS: otal RGP Metals Relinquis iii Associates sec laboratory	bed By:		2/4/	ontainer Type Preservative pte/Time // // /1	McF	Phail /	Assoc	iates :	secure	samplick-up		ge for I	Ad		2/4		Time 16:3	a	All samples submitted ar subject to Alpha's Term nd Condition see reverse sid	ns ns.
N=Natural T=Till GM=Glaciomarine GW=Groundwater																					1	DOC ID: 25188 Rev (11/28/2017)	0

Method Blank Summary Form 4 VOLATILES

Client : McPhail Associates Lab Number : L1904415
Project Name : SCAPE BOSTON Project Number : 6546.9.00
Lab Sample ID : WG1204150-5 Lab File ID : V16190206A08

Instrument ID : VOA116

Matrix : WATER Analysis Date : 02/06/19 06:25

Client Sample No.	Lab Sample ID	Analysis Date	
WG1204150-3LCS	WG1204150-3	02/06/19 03:27	
WG1204150-4LCSD	WG1204150-4	02/06/19 03:53	
MA-2 (OW)	L1904415-01	02/06/19 06:50	

08:28

Continuing Calibration Form 7

Init. Calib. Times

: 05:29

Client : McPhail Associates Lab Number : L1904415
Project Name : SCAPE BOSTON Project Number : 6546.9.00

Channel:

: WG1204150-2

Sample No

Compound	Ave. RRF	RRF	Min RRF	%D	Max %D	Area%	Dev(min)
Fluorobenzene	1	1	-	0	20	66	0
Dichlorodifluoromethane	0.293	0.292	-	0.3	20	64	0
Chloromethane	0.357	0.298	-	16.5	20	57	0
Vinyl chloride	0.296	0.307	-	-3.7	20	71	0
Bromomethane	0.153	0.154	-	-0.7	20	78	0
Chloroethane	0.145	0.156	-	-7.6	20	72	0
Trichlorofluoromethane	0.386	0.453	-	-17.4	20	75	0
Ethyl ether	0.097	0.093	-	4.1	20	65	0
1,1-Dichloroethene	0.182	0.198	-	-8.8	20	70	0
Carbon disulfide	0.553	0.566	-	-2.4	20	68	0
Methylene chloride	0.198	0.218	-	-10.1	20	77	0
Acetone	10	10.96	-	-9.6	20	66	0
trans-1,2-Dichloroethene	0.205	0.227	-	-10.7	20	76	0
Methyl tert-butyl ether	0.494	0.582	-	-17.8	20	76	0
Diisopropyl ether	0.756	0.787	-	-4.1	20	68	0
1,1-Dichloroethane	0.423	0.483	-	-14.2	20	73	0
Ethyl tert-butyl ether	0.678	0.756	-	-11.5	20	71	0
cis-1,2-Dichloroethene	0.223	0.259	-	-16.1	20	77	0
2,2-Dichloropropane	0.367	0.498	-	-35.7*	20	90	0
Bromochloromethane	0.086	0.106	-	-23.3*	20	74	0
Chloroform	0.412	0.495	-	-20.1*	20	81	0
Carbon tetrachloride	0.361	0.44	-	-21.9*	20	79	0
Tetrahydrofuran	10	9.129	-	8.7	20	60	0
Dibromofluoromethane	0.259	0.278	-	-7.3	20	69	0
1,1,1-Trichloroethane	0.387	0.51	-	-31.8*	20	83	0
2-Butanone	0.074	0.067*	-	9.5	20	59	0
1,1-Dichloropropene	0.319	0.384	-	-20.4*	20	79	0
Benzene	0.87	0.963	-	-10.7	20	76	0
tert-Amyl methyl ether	0.559	0.624	-	-11.6	20	77	0
1,2-Dichloroethane-d4	0.357	0.37	-	-3.6	20	66	0
1,2-Dichloroethane	0.322	0.381		-18.3	20	77	0
Trichloroethene	0.225	0.263	-	-16.9	20	78	0
Dibromomethane	0.11	0.119	-	-8.2	20	71	0
1,2-Dichloropropane	0.231	0.231	-	0	20	70	0
Bromodichloromethane	0.314	0.374	-	-19.1	20	79	0
1,4-Dioxane	0.00153	0.00138*		9.8	20	57	0
cis-1,3-Dichloropropene	0.366	0.418	-	-14.2	20	78	0
Chlorobenzene-d5	1	1	-	0	20	78	0
Toluene-d8	1.27	1.18		7.1	20	73	0
Toluene	0.689	0.661	-	4.1	20	77	0
4-Methyl-2-pentanone	0.079	0.066*	-	16.5	20	67	0
Tetrachloroethene	0.29	0.296	<u> </u>	-2.1	20	81	0
trans-1,3-Dichloropropene	0.451	0.437		3.1	20	77	
			-				0
1,1,2-Trichloroethane	0.175	0.165	-	5.7	20	71	0
Chlorodibromomethane	0.271	0.248	•	8.5	20	73	0

^{*} Value outside of QC limits.

Continuing Calibration Form 7

Client : McPhail Associates Lab Number : L1904415
Project Name : SCAPE BOSTON Project Number : 6546.9.00
Instrument ID : VOA116 Calibration Date : 02/06/19 03:27

Channel:

Compound	Ave. RRF	RRF	Min RRF	%D	Max %D	Area%	Dev(min
1,3-Dichloropropane	0.395	0.37	-	6.3	20	71	0
1,2-Dibromoethane	0.209	0.193	-	7.7	20	72	0
2-Hexanone	0.149	0.105	-	29.5*	20	55	0
Chlorobenzene	0.726	0.689	-	5.1	20	75	0
Ethylbenzene	1.344	1.335	-	0.7	20	78	0
1,1,1,2-Tetrachloroethane	0.274	0.258	-	5.8	20	72	0
p/m Xylene	0.511	0.504	-	1.4	20	78	0
o Xylene	0.492	0.466	-	5.3	20	76	0
Styrene	0.82	0.735	-	10.4	20	73	0
1,4-Dichlorobenzene-d4	1	1	-	0	20	85	0
Bromoform	0.319	0.277	-	13.2	20	77	0
Isopropylbenzene	2.917	2.59	-	11.2	20	77	0
4-Bromofluorobenzene	1.083	1.045	-	3.5	20	83	0
Bromobenzene	0.599	0.549	-	8.3	20	81	0
n-Propylbenzene	3.334	2.927	-	12.2	20	77	0
1,1,2,2-Tetrachloroethane	0.48	0.394	-	17.9	20	69	0
2-Chlorotoluene	2.203	1.991	-	9.6	20	79	0
1,3,5-Trimethylbenzene	2.286	1.993	-	12.8	20	76	0
1,2,3-Trichloropropane	0.446	0.376	-	15.7	20	73	0
4-Chlorotoluene	2.021	1.784	-	11.7	20	76	0
tert-Butylbenzene	1.989	1.713	-	13.9	20	74	0
1,2,4-Trimethylbenzene	2.267	2.022	-	10.8	20	77	0
sec-Butylbenzene	2.789	2.492	-	10.6	20	75	0
p-Isopropyltoluene	2.434	2.113	-	13.2	20	76	0
1,3-Dichlorobenzene	1.141	1.033	-	9.5	20	78	0
1,4-Dichlorobenzene	1.111	0.949	-	14.6	20	75	0
n-Butylbenzene	2.132	1.854	-	13	20	78	0
1,2-Dichlorobenzene	1.024	0.904	-	11.7	20	76	0
1,2-Dibromo-3-chloropropan	0.073	0.059	-	19.2	20	68	0
Hexachlorobutadiene	0.237	0.225	-	5.1	20	84	0
1,2,4-Trichlorobenzene	0.624	0.55	-	11.9	20	78	0
Naphthalene	1.496	1.134	-	24.2*	20	66	0
1,2,3-Trichlorobenzene	0.557	0.47	-	15.6	20	75	0

^{*} Value outside of QC limits.

ANALYTICAL REPORT

Lab Number: L1912751

Client: McPhail Associates

2269 Massachusetts Avenue

Cambridge, MA 02140

ATTN: Ambrose Donovan Phone: (617) 868-1420

Project Name: SCAPE BOSTON

Project Number: 6546.9.00

Report Date: 04/03/19

The original project report/data package is held by Alpha Analytical. This report/data package is paginated and should be reproduced only in its entirety. Alpha Analytical holds no responsibility for results and/or data that are not consistent with the original.

Certifications & Approvals: MA (M-MA086), NH NELAP (2064), CT (PH-0574), IL (200077), ME (MA00086), MD (348), NJ (MA935), NY (11148), NC (25700/666), PA (68-03671), RI (LAO00065), TX (T104704476), VT (VT-0935), VA (460195), USDA (Permit #P330-17-00196).

Eight Walkup Drive, Westborough, MA 01581-1019 508-898-9220 (Fax) 508-898-9193 800-624-9220 - www.alphalab.com

Project Name: SCAPE BOSTON

Project Number: 6546.9.00

Lab Number:

L1912751

Report Date:

04/03/19

Alpha Sample ID			Sample Location	Collection Date/Time	Receive Date
L1912751-01	MA-3 (OW)	GROUNDWATER	BOSTON, MA	03/29/19 11:15	03/29/19

Project Name: SCAPE BOSTON Lab Number: L1912751

Project Number: 6546.9.00 **Report Date:** 04/03/19

MADEP MCP Response Action Analytical Report Certification

This form provides certifications for all samples performed by MCP methods. Please refer to the Sample Results and Container Information sections of this report for specification of MCP methods used for each analysis. The following questions pertain only to MCP Analytical Methods.

An af	firmative response to questions A through F is required for "Presumptive Certainty" status	
A	Were all samples received in a condition consistent with those described on the Chain-of-Custody, properly preserved (including temperature) in the field or laboratory, and prepared/analyzed within method holding times?	YES
В	Were the analytical method(s) and all associated QC requirements specified in the selected CAM protocol(s) followed?	YES
С	Were all required corrective actions and analytical response actions specified in the selected CAM protocol(s) implemented for all identified performance standard non-conformances?	YES
D	Does the laboratory report comply with all the reporting requirements specified in CAM VII A, "Quality Assurance and Quality Control Guidelines for the Acquisition and Reporting of Analytical Data?"	YES
E a.	VPH, EPH, and APH Methods only: Was each method conducted without significant modification(s)? (Refer to the individual method(s) for a list of significant modifications).	YES
E b.	APH and TO-15 Methods only: Was the complete analyte list reported for each method?	N/A
F	Were all applicable CAM protocol QC and performance standard non-conformances identified and evaluated in a laboratory narrative (including all "No" responses to Questions A through E)?	YES

A res	sponse to questions G, H and I is required for "Presumptive Certainty" status	
G	Were the reporting limits at or below all CAM reporting limits specified in the selected CAM protocol(s)?	NO
н	Were all QC performance standards specified in the CAM protocol(s) achieved?	YES
ı	Were results reported for the complete analyte list specified in the selected CAM protocol(s)?	NO

For any questions answered "No", please refer to the case narrative section on the following page(s).

Please note that sample matrix information is located in the Sample Results section of this report.

Project Name: SCAPE BOSTON Lab Number: L1912751
Project Number: 6546.9.00 Report Date: 04/03/19

Case Narrative

The samples were received in accordance with the Chain of Custody and no significant deviations were encountered during the preparation or analysis unless otherwise noted. Sample Receipt, Container Information, and the Chain of Custody are located at the back of the report.

Results contained within this report relate only to the samples submitted under this Alpha Lab Number and meet NELAP requirements for all NELAP accredited parameters unless otherwise noted in the following narrative. The data presented in this report is organized by parameter (i.e. VOC, SVOC, etc.). Sample specific Quality Control data (i.e. Surrogate Spike Recovery) is reported at the end of the target analyte list for each individual sample, followed by the Laboratory Batch Quality Control at the end of each parameter. Tentatively Identified Compounds (TICs), if requested, are reported for compounds identified to be present and are not part of the method/program Target Compound List, even if only a subset of the TCL are being reported. If a sample was re-analyzed or re-extracted due to a required quality control corrective action and if both sets of data are reported, the Laboratory ID of the re-analysis or re-extraction is designated with an "R" or "RE", respectively.

When multiple Batch Quality Control elements are reported (e.g. more than one LCS), the associated samples for each element are noted in the grey shaded header line of each data table. Any Laboratory Batch, Sample Specific % recovery or RPD value that is outside the listed Acceptance Criteria is bolded in the report. In reference to questions H (CAM) or 4 (RCP) when "NO" is checked, the performance criteria for CAM and RCP methods allow for some quality control failures to occur and still be within method compliance. In these instances, the specific failure is not narrated but noted in the associated QC Outlier Summary Report, located directly after the Case Narrative. QC information is also incorporated in the Data Usability Assessment table (Format 11) of our Data Merger tool, where it can be reviewed in conjunction with the sample result, associated regulatory criteria and any associated data usability implications.

Soil/sediments, solids and tissues are reported on a dry weight basis unless otherwise noted. Definitions of all data qualifiers and acronyms used in this report are provided in the Glossary located at the back of the report.

HOLD POLICY - For samples submitted on hold, Alpha's policy is to hold samples (with the exception of Air canisters) free of charge for 21 calendar days from the date the project is completed. After 21 calendar days, we will dispose of all samples submitted including those put on hold unless you have contacted your Alpha Project Manager and made arrangements for Alpha to continue to hold the samples. Air canisters will be disposed after 3 business days from the date the project is completed.

Please contact Project Management at 800-624-9220 with any questions.	

Serial_No:04031917:50

Project Name: SCAPE BOSTON Lab Number: L1912751

Project Number: 6546.9.00 **Report Date:** 04/03/19

Case Narrative (continued)

MCP Related Narratives

VPH

In reference to question G:

L1912751-01: One or more of the target analytes did not achieve the requested CAM reporting limits.

In reference to question I:

All samples were analyzed for a subset of MCP analytes per client request.

I, the undersigned, attest under the pains and penalties of perjury that, to the best of my knowledge and belief and based upon my personal inquiry of those responsible for providing the information contained in this analytical report, such information is accurate and complete. This certificate of analysis is not complete unless this page accompanies any and all pages of this report.

Wichelle M. Morris

Authorized Signature:

Title: Technical Director/Representative

Date: 04/03/19

QC OUTLIER SUMMARY REPORT

Project Name: SCAPE BOSTON

Lab Number:

L1912751

Project Number: 6546.9.00

Report Date:

04/03/19

Recovery/RPD QC Limits Associated Data Quality
Method Client ID (Native ID) Lab ID Parameter QC Type (%) (%) Samples Assessment

There are no QC Outliers associated with this report.

ORGANICS

PETROLEUM HYDROCARBONS

Serial_No:04031917:50

Project Name: SCAPE BOSTON Lab Number: L1912751

Project Number: 6546.9.00 **Report Date:** 04/03/19

SAMPLE RESULTS

Lab ID: L1912751-01 D Date Collected: 03/29/19 11:15

Client ID: MA-3 (OW) Date Received: 03/29/19
Sample Location: BOSTON, MA Field Prep: Not Specified

Sample Depth:

Matrix: Groundwater
Analytical Method: 131,VPH-18-2.1
Analytical Date: 04/03/19 11:21

Analyst: MKS

Trap: EST, Carbopack B/Carboxen 1000&1001 Analytical Column: Restek, RTX-502.2,

105m, 0.53ID, 3um

Quality Control Information

Condition of sample received: Satisfactory

Aqueous Preservative: Laboratory Provided Preserved

Container Received on Ice

Sample Temperature upon receipt:

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
Volatile Petroleum Hydrocarbons	- Westborough Lab					
C5-C8 Aliphatics	5720		ug/l	500		10
C9-C12 Aliphatics	654		ug/l	500		10
C9-C10 Aromatics	ND		ug/l	500		10
C5-C8 Aliphatics, Adjusted	5520		ug/l	500		10
C9-C12 Aliphatics, Adjusted	654		ug/l	500		10

Surrogate	% Recovery	Qualifier	Acceptance Criteria	
2,5-Dibromotoluene-PID	104		70-130	
2,5-Dibromotoluene-FID	109		70-130	

L1912751

Lab Number:

Project Name: SCAPE BOSTON

Project Number: 6546.9.00 **Report Date:** 04/03/19

Method Blank Analysis Batch Quality Control

Analytical Method: 131,VPH-18-2.1 Analytical Date: 04/03/19 10:00

Analyst: MKS

Parameter	Result	Qualifier	Units	RL	MDL	
Volatile Petroleum Hydrocarbons -	Westborough	Lab for s	ample(s):	01 Batch:	WG1222623-4	
C5-C8 Aliphatics	ND		ug/l	50.0		
C9-C12 Aliphatics	ND		ug/l	50.0		
C9-C10 Aromatics	ND		ug/l	50.0		
C5-C8 Aliphatics, Adjusted	ND		ug/l	50.0		
C9-C12 Aliphatics, Adjusted	ND		ug/l	50.0		

		Acceptance
Surrogate	%Recovery Qualif	ier Criteria
2,5-Dibromotoluene-PID	98	70-130
2,5-Dibromotoluene-FID	102	70-130

Lab Control Sample Analysis Batch Quality Control

Project Name: SCAPE BOSTON

Project Number: 6546.9.00

Lab Number:

L1912751

Report Date:

04/03/19

arameter	LCS %Recovery	Qual	LCSD %Recovery	% Qual	Recovery Limits	RPD	Qual	RPD Limits
platile Petroleum Hydrocarbons - West	borough Lab Associa	ated sample(s)	: 01 Batch:	WG1222623-2	WG1222623-3			
C5-C8 Aliphatics	103		105		70-130	2		25
C9-C12 Aliphatics	104		107		70-130	3		25
C9-C10 Aromatics	97		101		70-130	4		25
Benzene	99		103		70-130	4		25
Toluene	99		104		70-130	5		25
Ethylbenzene	103		107		70-130	4		25
p/m-Xylene	100		104		70-130	4		25
o-Xylene	98		102		70-130	4		25
Methyl tert butyl ether	107		112		70-130	5		25
Naphthalene	98		103		70-130	5		25
1,2,4-Trimethylbenzene	97		101		70-130	4		25
Pentane	100		103		70-130	3		25
2-Methylpentane	103		107		70-130	4		25
2,2,4-Trimethylpentane	105		108		70-130	3		25
n-Nonane	108		112		30-130	4		25
n-Decane	96		100		70-130	3		25
n-Butylcyclohexane	107		111		70-130	4		25

Surrogate	LCS %Recovery Qua	LCSD al %Recovery	Acceptance Qual Criteria
2,5-Dibromotoluene-PID	93	98	70-130
2,5-Dibromotoluene-FID	97	102	70-130

Serial_No:04031917:50

Project Name: SCAPE BOSTON Lab Number: L1912751

Project Number: 6546.9.00 **Report Date:** 04/03/19

Sample Receipt and Container Information

Were project specific reporting limits specified?

Cooler Information

Cooler Custody Seal

A Absent

Container Info	rmation		Initial	Final	Temp			Frozen	
Container ID	Container Type	Cooler	pН	pН	deg C	Pres	Seal	Date/Time	Analysis(*)
L1912751-01A	Vial HCI preserved	Α	NA		2.5	Υ	Absent		VPH-18(14)
L1912751-01B	Vial HCl preserved	Α	NA		2.5	Υ	Absent		VPH-18(14)
L1912751-01C	Vial HCl preserved	Α	NA		2.5	Υ	Absent		VPH-18(14)

Project Name: Lab Number: SCAPE BOSTON L1912751

Project Number: Report Date: 6546.9.00 04/03/19

GLOSSARY

Acronyms

EDL

LCSD

LOD

DL - Detection Limit: This value represents the level to which target analyte concentrations are reported as estimated values, when those target analyte concentrations are quantified below the limit of quantitation (LOQ). The DL includes any adjustments from dilutions, concentrations or moisture content, where applicable. (DoD report formats only.)

- Estimated Detection Limit: This value represents the level to which target analyte concentrations are reported as estimated values, when those target analyte concentrations are quantified below the reporting limit (RL). The EDL includes any adjustments from dilutions, concentrations or moisture content, where applicable. The use of EDLs is specific to the analysis of PAHs using Solid-Phase Microextraction (SPME).

EMPC - Estimated Maximum Possible Concentration: The concentration that results from the signal present at the retention time of an

analyte when the ions meet all of the identification criteria except the ion abundance ratio criteria. An EMPC is a worst-case estimate of the concentration.

EPA Environmental Protection Agency.

LCS - Laboratory Control Sample: A sample matrix, free from the analytes of interest, spiked with verified known amounts of

analytes or a material containing known and verified amounts of analytes.

 Laboratory Control Sample Duplicate: Refer to LCS. LFB - Laboratory Fortified Blank: A sample matrix, free from the analytes of interest, spiked with verified known amounts of

analytes or a material containing known and verified amounts of analytes.

- Limit of Detection: This value represents the level to which a target analyte can reliably be detected for a specific analyte in a specific matrix by a specific method. The LOD includes any adjustments from dilutions, concentrations or moisture content,

where applicable. (DoD report formats only.)

LOQ - Limit of Quantitation: The value at which an instrument can accurately measure an analyte at a specific concentration. The LOQ includes any adjustments from dilutions, concentrations or moisture content, where applicable. (DoD report formats

Limit of Quantitation: The value at which an instrument can accurately measure an analyte at a specific concentration. The LOQ includes any adjustments from dilutions, concentrations or moisture content, where applicable. (DoD report formats

MDI - Method Detection Limit: This value represents the level to which target analyte concentrations are reported as estimated values, when those target analyte concentrations are quantified below the reporting limit (RL). The MDL includes any

adjustments from dilutions, concentrations or moisture content, where applicable.

MS - Matrix Spike Sample: A sample prepared by adding a known mass of target analyte to a specified amount of matrix sample for which an independent estimate of target analyte concentration is available. For Method 332.0, the spike recovery is calculated

using the native concentration, including estimated values.

MSD - Matrix Spike Sample Duplicate: Refer to MS.

NA - Not Applicable.

NC - Not Calculated: Term is utilized when one or more of the results utilized in the calculation are non-detect at the parameter's

reporting unit.

NDPA/DPA - N-Nitrosodiphenylamine/Diphenylamine.

NI - Not Ignitable.

NP - Non-Plastic: Term is utilized for the analysis of Atterberg Limits in soil.

RL- Reporting Limit: The value at which an instrument can accurately measure an analyte at a specific concentration. The RL

includes any adjustments from dilutions, concentrations or moisture content, where applicable.

- Relative Percent Difference: The results from matrix and/or matrix spike duplicates are primarily designed to assess the precision of analytical results in a given matrix and are expressed as relative percent difference (RPD). Values which are less than five times the reporting limit for any individual parameter are evaluated by utilizing the absolute difference between the

values; although the RPD value will be provided in the report.

SRM - Standard Reference Material: A reference sample of a known or certified value that is of the same or similar matrix as the

associated field samples.

STLP - Semi-dynamic Tank Leaching Procedure per EPA Method 1315.

- Toxic Equivalency Factors: The values assigned to each dioxin and furan to evaluate their toxicity relative to 2,3,7,8-TCDD.

TEO - Toxic Equivalent: The measure of a sample's toxicity derived by multiplying each dioxin and furan by its corresponding TEF

and then summing the resulting values.

TIC - Tentatively Identified Compound: A compound that has been identified to be present and is not part of the target compound

list (TCL) for the method and/or program. All TICs are qualitatively identified and reported as estimated concentrations.

Footnotes

RPD

Report Format: Data Usability Report

Project Name:SCAPE BOSTONLab Number:L1912751Project Number:6546.9.00Report Date:04/03/19

1 - The reference for this analyte should be considered modified since this analyte is absent from the target analyte list of the original method.

Terms

Analytical Method: Both the document from which the method originates and the analytical reference method. (Example: EPA 8260B is shown as 1,8260B.) The codes for the reference method documents are provided in the References section of the Addendum.

Final pH: As it pertains to Sample Receipt & Container Information section of the report, Final pH reflects pH of container determined after adjustment at the laboratory, if applicable. If no adjustment required, value reflects Initial pH.

Frozen Date/Time: With respect to Volatile Organics in soil, Frozen Date/Time reflects the date/time at which associated Reagent Water-preserved vials were initially frozen. Note: If frozen date/time is beyond 48 hours from sample collection, value will be reflected in 'bold'.

Initial pH: As it pertains to Sample Receipt & Container Information section of the report, Initial pH reflects pH of container determined upon receipt, if applicable.

PFAS Total: With respect to PFAS analyses, the 'PFAS, Total (5)' result is defined as the summation of results for: PFHpA, PFHxS, PFOA, PFNA and PFOS. If a 'Total' result is requested, the results of its individual components will also be reported.

Total: With respect to Organic analyses, a 'Total' result is defined as the summation of results for individual isomers or Aroclors. If a 'Total' result is requested, the results of its individual components will also be reported. This is applicable to 'Total' results for methods 8260, 8081 and 8082.

Data Qualifiers

- A Spectra identified as "Aldol Condensation Product".
- The analyte was detected above the reporting limit in the associated method blank. Flag only applies to associated field samples that have detectable concentrations of the analyte at less than ten times (10x) the concentration found in the blank. For MCP-related projects, flag only applies to associated field samples that have detectable concentrations of the analyte at less than ten times (10x) the concentration found in the blank. For DOD-related projects, flag only applies to associated field samples that have detectable concentrations of the analyte at less than ten times (10x) the concentration found in the blank AND the analyte was detected above one-half the reporting limit (or above the reporting limit for common lab contaminants) in the associated method blank. For NJ-Air-related projects, flag only applies to associated field samples that have detectable concentrations of the analyte above the reporting limit. For NJ-related projects (excluding Air), flag only applies to associated field samples that have detectable concentrations of the analyte, which was detected above the reporting limit in the associated method blank or above five times the reporting limit for common lab contaminants (Phthalates, Acetone, Methylene Chloride, 2-Butanone).
- Co-elution: The target analyte co-elutes with a known lab standard (i.e. surrogate, internal standards, etc.) for co-extracted analyses.
- Concentration of analyte was quantified from diluted analysis. Flag only applies to field samples that have detectable concentrations of the analyte.
- E Concentration of analyte exceeds the range of the calibration curve and/or linear range of the instrument.
- G The concentration may be biased high due to matrix interferences (i.e, co-elution) with non-target compound(s). The result should be considered estimated.
- H The analysis of pH was performed beyond the regulatory-required holding time of 15 minutes from the time of sample collection.
- The lower value for the two columns has been reported due to obvious interference.
- J Estimated value. This represents an estimated concentration for Tentatively Identified Compounds (TICs).
- M Reporting Limit (RL) exceeds the MCP CAM Reporting Limit for this analyte.
- **ND** Not detected at the reporting limit (RL) for the sample.
- NJ Presumptive evidence of compound. This represents an estimated concentration for Tentatively Identified Compounds (TICs), where the identification is based on a mass spectral library search.
- ${f P}$ The RPD between the results for the two columns exceeds the method-specified criteria.
- Q The quality control sample exceeds the associated acceptance criteria. For DOD-related projects, LCS and/or Continuing Calibration Standard exceedences are also qualified on all associated sample results. Note: This flag is not applicable for matrix spike recoveries when the sample concentration is greater than 4x the spike added or for batch duplicate RPD when the sample concentrations are less than 5x the RL. (Metals only.)
- R Analytical results are from sample re-analysis.
- **RE** Analytical results are from sample re-extraction.
- S Analytical results are from modified screening analysis.

Report Format: Data Usability Report

Serial_No:04031917:50

Project Name:SCAPE BOSTONLab Number:L1912751Project Number:6546.9.00Report Date:04/03/19

REFERENCES

Method for the Determination of Volatile Petroleum Hydrocarbons (VPH), MassDEP, February 2018, Revision 2.1 with QC Requirements & Performance Standards for the Analysis of VPH under the Massachusetts Contingency Plan, WSC-CAM-IVA, June 1, 2018.

LIMITATION OF LIABILITIES

Alpha Analytical performs services with reasonable care and diligence normal to the analytical testing laboratory industry. In the event of an error, the sole and exclusive responsibility of Alpha Analytical shall be to re-perform the work at it's own expense. In no event shall Alpha Analytical be held liable for any incidental, consequential or special damages, including but not limited to, damages in any way connected with the use of, interpretation of, information or analysis provided by Alpha Analytical.

We strongly urge our clients to comply with EPA protocol regarding sample volume, preservation, cooling, containers, sampling procedures, holding time and splitting of samples in the field.

Serial_No:04031917:50

Alpha Analytical, Inc. Facility: Company-wide

Department: Quality Assurance

Title: Certificate/Approval Program Summary

ID No.:17873 Revision 12

Published Date: 10/9/2018 4:58:19 PM

Page 1 of 1

Certification Information

The following analytes are not included in our Primary NELAP Scope of Accreditation:

Westborough Facility

EPA 624/624.1: m/p-xylene, o-xylene

EPA 8260C: NPW: 1,2,4,5-Tetramethylbenzene; 4-Ethyltoluene, Azobenzene; SCM: lodomethane (methyl iodide), Methyl methacrylate, 1,2,4,5-

Tetramethylbenzene: 4-Ethyltoluene

EPA 8270D: NPW: Dimethylnaphthalene,1,4-Diphenylhydrazine; SCM: Dimethylnaphthalene,1,4-Diphenylhydrazine.

EPA 6860: SCM: Perchlorate

SM4500: NPW: Amenable Cyanide; SCM: Total Phosphorus, TKN, NO2, NO3.

Mansfield Facility SM 2540D: TSS

EPA 8082A: NPW: PCB: 1, 5, 31, 87,101, 110, 141, 151, 153, 180, 183, 187.

EPA TO-15: Halothane, 2,4,4-Trimethyl-2-pentene, 2,4,4-Trimethyl-1-pentene, Thiophene, 2-Methylthiophene,

3-Methylthiophene, 2-Ethylthiophene, 1,2,3-Trimethylbenzene, Indan, Indene, 1,2,4,5-Tetramethylbenzene, Benzothiophene, 1-Methylnaphthalene.

Biological Tissue Matrix: EPA 3050B

The following analytes are included in our Massachusetts DEP Scope of Accreditation

Westborough Facility:

Drinking Water

EPA 300.0: Chloride, Nitrate-N, Fluoride, Sulfate; EPA 353.2: Nitrate-N, Nitrite-N; SM4500NO3-F: Nitrate-N, Nitrite-N; SM4500F-C, SM4500CN-CE,

EPA 180.1, SM2130B, SM4500CI-D, SM2320B, SM2540C, SM4500H-B

EPA 332: Perchlorate; EPA 524.2: THMs and VOCs; EPA 504.1: EDB, DBCP.

Microbiology: SM9215B; SM9223-P/A, SM9223B-Colilert-QT,SM9222D.

Non-Potable Water

SM4500H,B, EPA 120.1, SM2510B, SM2540C, SM2320B, SM4500CL-E, SM4500F-BC, SM4500NH3-BH: Ammonia-N and Kjeldahl-N, EPA 350.1: Ammonia-N, LACHAT 10-107-06-1-B: Ammonia-N, EPA 351.1, SM4500NO3-F, EPA 353.2: Nitrate-N, SM4500P-E, SM4500P-B, E, SM4500SO4-E, SM5220D, EPA 410.4, SM5210B, SM5310C, SM4500CL-D, EPA 1664, EPA 420.1, SM4500-CN-CE, SM2540D, EPA 300: Chloride, Sulfate, Nitrate. EPA 624.1: Volatile Halocarbons & Aromatics,

EPA 608.3: Chlordane, Toxaphene, Aldrin, alpha-BHC, beta-BHC, gamma-BHC, delta-BHC, Dieldrin, DDD, DDE, DDT, Endosulfan II, Endosulfan II, Endosulfan sulfate, Endrin, Endrin Aldehyde, Heptachlor, Heptachlor Epoxide, PCBs

EPA 625.1: SVOC (Acid/Base/Neutral Extractables), EPA 600/4-81-045: PCB-Oil.

Microbiology: SM9223B-Colilert-QT; Enterolert-QT, SM9221E, EPA 1600, EPA 1603.

Mansfield Facility:

Drinking Water

EPA 200.7: Al, Ba, Cd, Cr, Cu, Fe, Mn, Ni, Na, Ag, Ca, Zn. EPA 200.8: Al, Sb, As, Ba, Be, Cd, Cr, Cu, Pb, Mn, Ni, Se, Ag, TL, Zn. EPA 245.1 Hg. EPA 522.

Non-Potable Water

EPA 200.7: Al, Sb, As, Be, Cd, Ca, Cr, Co, Cu, Fe, Pb, Mg, Mn, Mo, Ni, K, Se, Ag, Na, Sr, TL, Ti, V, Zn.

EPA 200.8: Al, Sb, As, Be, Cd, Cr, Cu, Fe, Pb, Mn, Ni, K, Se, Ag, Na, TL, Zn.

EPA 245.1 Hg.

SM2340B

For a complete listing of analytes and methods, please contact your Alpha Project Manager.

Pre-Qualtrax Document ID: 08-113 Document Type: Form

Дерна	CHA	IN OF CU			PAGE	of(-	Da	ite R	ec'd i	n La	b:	3/	29	119			ALP	HA Jo	ob#:	LI	912751	
8 Walkup Drive	320 Forbes Blvd		Project Inform	men reader				4 5 60				on - D	ata De	elivera	bles	40	une e	100	1000	nform	natio	n	
Westboro, MA 0 Tel: 508-898-92			Project Name:	SCA	AE Bos	ton		194	ADEx		0	EMAIL						□ Sa	ne as C	Client in	nfo	PO #:	
Client Information		LEWS AV	Project Location	Bos	ton, MA										roject		CHERT						
Client: McPhail A	Associates, LLC		Project #: 6	546	9.00			☐ Yes	S No	MA N Matri	MCP A k Spiki	nalytica e Requi	Metho red on t	ds his SD0	37 (Req) Yes uired f	for MC	P Inorg	CP Ana janics)	alytical N	Metho	ds	
Address: 2269 Mass	achusetts Avenue		Project Manager	_	ED			☐ Yes	S D No	GW1	Stan	dards (i	nfo Req	juired fo	r Metals	& EP	H with	Target	s)				
Cambride	ge, MA 02140		ALPHA Quote #:					O Oth	er Sta	NPD te /Fed	ES RO	3P gram				Cri	teria_						
Phone: (617) 868-	1420		Turn-Around	Time	Carrier 1	STAN	S colle		П	Г		П								\neg	П	THE PARTY OF THE P	
Email: blownin	g @McPhailgeo	.com				100 Mg 50	Section of	1							RA8	u2				1.1	ŀ	SELECTION AS	
	oject Information		☐ Standard Date Due:	□ RUSH	(only confirmed if	pre-approved	10	2					1990	SA8	D RCRA8	Ι,ν.							0
☐ Run TCLP (if tris	ggered)	· L	Date Due.					assment Package C)	□ 8260	spi	SVOC: D PAH	PH: ☐ Ranges & Targets Ranges Only	VPH: ☐ Ranges & Targets Kanges Only	TOTAL METALS: D RCRAB	DISSOLVED METALS: C	: Total Sb,Be,NI,TI,V,Zn	☐ Pesticides	Section A Inorganics				SAMPLE INFO Filtration Field Lab to do Preservation	TAL # 80.
Sample "Sample II ALPHA Lab ID			r - 5 -					Assess VOC)		Sol	ö	□ egre	o g	AL N	OL!	ALS	SB.	Sec				☐ Lab to do	Ť
(Lab Use Only)	Sample) ID	Sampl Depth	Material	Collec	Time	Sampler Initials	Soil /	VOC	Total Solids	SVO	EPH D	E &	100	SSIG P C	METALS:	O PCBs	RGP			- 1	Sample Comments	E
12757 - 01	MA-3 (04)	Barrier Co.	GW	3/29/19	1115	The						X						\Box	\neg	\neg	Campio Communic	3
								T				\vdash	/						\Box	\top	\neg		T
														- 1		5.			\vdash	\rightarrow	1		+
100								1											\vdash	\rightarrow	_		+
			17	1															\vdash	\rightarrow	-		+
7				+															\vdash	1	\dashv		+
			-	_				-			\vdash	_	_				-		\vdash	\rightarrow	-		+
				_				-		_	-	-	_				-		\vdash	+	\dashv		+
				+-				-				-	-		-		-			\rightarrow	\dashv		+
				+-								-	-	-		-	-			+	\dashv	-	+
Container Type	Preservative	RGP Secti	on A Inorganics : Chloride, TRC, TS	S CAN C	till Total	Co	entainer Type												\vdash	\dashv			t
A=Amber glass B=Bacteria cup	A=None B=HCI		otal RGP Metals		in, rotar		Preservative												-				
C=Cube D=BOD bottle	C=HNO ₃ D=H ₂ SO ₄	7	Relinquis	hed By:	_	2/23	15/15/L	تن	2	-	2	Rece	ved By		_			-	Date/1				
E=Encore G=Glass	E=NaOH F=MeOH		->-2		> 2		22		hail A	Associ	ates			e stora	ge for la	abora	tory				\neg	All samples	
O=Other P=Plastic	G=NaHSO ₄ H=Na ₂ S ₂ O ₃	McPhai	l Associates sec			2/2/	1111	1	0	- 1	()	pic	k-up		11		_	-/	./.	16	,	submitted a subject to	е
V=Vial Sample Material	I=Ascorbix Acid J=NH₄CI	10	laborator	/ pick-up	44.	729/19		0	21	nd	20	m	in		AA		_		5-11111111	161	\neg	Alpha's Tern	15
F=Fill S=Sand O=Organics C=Clay	K=Zn Acetate O=Other	45	uden	ien	AAL	3/29/9	(745	-						_	-	_		3/	9/1	9 17	75	and Condition See reverse si	
N=Natural T=Till GM=Glaciomarine GW=Groundwater																			•	-2.3		DOC ID: 25188 Rer (11/28/2017)	0

ANALYTICAL REPORT

Lab Number: L2010509

Client: McPhail Associates

2269 Massachusetts Avenue

Cambridge, MA 02140

ATTN: Ambrose Donovan Phone: (617) 868-1420

Project Name: SCAPE BOYLSTON

Project Number: 6546.9.10

Report Date: 03/13/20

The original project report/data package is held by Alpha Analytical. This report/data package is paginated and should be reproduced only in its entirety. Alpha Analytical holds no responsibility for results and/or data that are not consistent with the original.

Certifications & Approvals: MA (M-MA086), NH NELAP (2064), CT (PH-0574), IL (200077), ME (MA00086), MD (348), NJ (MA935), NY (11148), NC (25700/666), PA (68-03671), RI (LAO00065), TX (T104704476), VT (VT-0935), VA (460195), USDA (Permit #P330-17-00196).

Eight Walkup Drive, Westborough, MA 01581-1019 508-898-9220 (Fax) 508-898-9193 800-624-9220 - www.alphalab.com

Project Name: SCAPE BOYLSTON

Project Number: 6546.9.10

 Lab Number:
 L2010509

 Report Date:
 03/13/20

Alpha Sample ID	Client ID	Matrix	Sample Location	Collection Date/Time	Receive Date
L2010509-01	MA-3 (OW)	WATER	BOSTON, MA	03/09/20 12:30	03/09/20
L2010509-02	MA-117 (OW)	WATER	BOSTON, MA	03/09/20 11:30	03/09/20
L2010509-03	MA-119 (OW)	WATER	BOSTON, MA	03/09/20 13:40	03/09/20

Project Name: SCAPE BOYLSTON Lab Number: L2010509

Project Number: 6546.9.10 **Report Date:** 03/13/20

MADEP MCP Response Action Analytical Report Certification

This form provides certifications for all samples performed by MCP methods. Please refer to the Sample Results and Container Information sections of this report for specification of MCP methods used for each analysis. The following questions pertain only to MCP Analytical Methods.

An af	firmative response to questions A through F is required for "Presumptive Certainty" status	
A	Were all samples received in a condition consistent with those described on the Chain-of-Custody, properly preserved (including temperature) in the field or laboratory, and prepared/analyzed within method holding times?	YES
В	Were the analytical method(s) and all associated QC requirements specified in the selected CAM protocol(s) followed?	YES
С	Were all required corrective actions and analytical response actions specified in the selected CAM protocol(s) implemented for all identified performance standard non-conformances?	YES
D	Does the laboratory report comply with all the reporting requirements specified in CAM VII A, "Quality Assurance and Quality Control Guidelines for the Acquisition and Reporting of Analytical Data?"	YES
E a.	VPH, EPH, and APH Methods only: Was each method conducted without significant modification(s)? (Refer to the individual method(s) for a list of significant modifications).	YES
E b.	APH and TO-15 Methods only: Was the complete analyte list reported for each method?	N/A
F	Were all applicable CAM protocol QC and performance standard non-conformances identified and evaluated in a laboratory narrative (including all "No" responses to Questions A through E)?	YES

A re	sponse to questions G, H and I is required for "Presumptive Certainty" status	
G	Were the reporting limits at or below all CAM reporting limits specified in the selected CAM protocol(s)?	NO
Н	Were all QC performance standards specified in the CAM protocol(s) achieved?	YES
I	Were results reported for the complete analyte list specified in the selected CAM protocol(s)?	NO

For any questions answered "No", please refer to the case narrative section on the following page(s).

Please note that sample matrix information is located in the Sample Results section of this report.

Project Name: SCAPE BOYLSTON Lab Number: L2010509

Project Number: 6546.9.10 Report Date: 03/13/20

Case Narrative

The samples were received in accordance with the Chain of Custody and no significant deviations were encountered during the preparation or analysis unless otherwise noted. Sample Receipt, Container Information, and the Chain of Custody are located at the back of the report.

Results contained within this report relate only to the samples submitted under this Alpha Lab Number and meet NELAP requirements for all NELAP accredited parameters unless otherwise noted in the following narrative. The data presented in this report is organized by parameter (i.e. VOC, SVOC, etc.). Sample specific Quality Control data (i.e. Surrogate Spike Recovery) is reported at the end of the target analyte list for each individual sample, followed by the Laboratory Batch Quality Control at the end of each parameter. Tentatively Identified Compounds (TICs), if requested, are reported for compounds identified to be present and are not part of the method/program Target Compound List, even if only a subset of the TCL are being reported. If a sample was re-analyzed or re-extracted due to a required quality control corrective action and if both sets of data are reported, the Laboratory ID of the re-analysis or re-extraction is designated with an "R" or "RE", respectively.

When multiple Batch Quality Control elements are reported (e.g. more than one LCS), the associated samples for each element are noted in the grey shaded header line of each data table. Any Laboratory Batch, Sample Specific % recovery or RPD value that is outside the listed Acceptance Criteria is bolded in the report. In reference to questions H (CAM) or 4 (RCP) when "NO" is checked, the performance criteria for CAM and RCP methods allow for some quality control failures to occur and still be within method compliance. In these instances, the specific failure is not narrated but noted in the associated QC Outlier Summary Report, located directly after the Case Narrative. QC information is also incorporated in the Data Usability Assessment table (Format 11) of our Data Merger tool, where it can be reviewed in conjunction with the sample result, associated regulatory criteria and any associated data usability implications.

Soil/sediments, solids and tissues are reported on a dry weight basis unless otherwise noted. Definitions of all data qualifiers and acronyms used in this report are provided in the Glossary located at the back of the report.

HOLD POLICY - For samples submitted on hold, Alpha's policy is to hold samples (with the exception of Air canisters) free of charge for 21 calendar days from the date the project is completed. After 21 calendar days, we will dispose of all samples submitted including those put on hold unless you have contacted your Alpha Project Manager and made arrangements for Alpha to continue to hold the samples. Air canisters will be disposed after 3 business days from the date the project is completed.

Please contact Project Management at 800-624-9220 with any questions.	

Serial_No:03132018:30

L2010509

Project Name: SCAPE BOYLSTON Lab Number:

Project Number: 6546.9.10 **Report Date:** 03/13/20

Case Narrative (continued)

MCP Related Narratives

EPH

In reference to question I:

All samples were analyzed for a subset of MCP analytes per client request.

VPH

In reference to question G:

L2010509-01 through -03: One or more of the target analytes did not achieve the requested CAM reporting limits.

I, the undersigned, attest under the pains and penalties of perjury that, to the best of my knowledge and belief and based upon my personal inquiry of those responsible for providing the information contained in this analytical report, such information is accurate and complete. This certificate of analysis is not complete unless this page accompanies any and all pages of this report.

Jufani Morrissey-Tiffani Morrissey

Authorized Signature:

Title: Technical Director/Representative

Date: 03/13/20

QC OUTLIER SUMMARY REPORT

Project Name: SCAPE BOYLSTON

Lab Number:

L2010509

Project Number: 6546.9.10

Report Date:

03/13/20

Recovery/RPD QC Limits Associated Data Quality
Method Client ID (Native ID) Lab ID Parameter QC Type (%) (%) Samples Assessment

There are no QC Outliers associated with this report.

ORGANICS

PETROLEUM HYDROCARBONS

Serial_No:03132018:30

Project Name: SCAPE BOYLSTON Lab Number: L2010509

Project Number: 6546.9.10 **Report Date:** 03/13/20

SAMPLE RESULTS

Lab ID: L2010509-01 Date Collected: 03/09/20 12:30

Client ID: MA-3 (OW) Date Received: 03/09/20 Sample Location: BOSTON, MA Field Prep: Not Specified

Sample Depth:

Matrix: Water Extraction Method: EPA 3510C

Analytical Method: 135,EPH-19-2.1 Extraction Date: 03/10/20 15:53
Analytical Date: 03/11/20 12:17 Cleanup Method1: EPH-04-1

Analyst: MEO Cleanup Date1: 03/11/20

Quality Control Information

Condition of sample received: Satisfactory

Aqueous Preservative: Laboratory Provided Preserved

Sample Temperature upon receipt: Container Received on Ice

Sample Extraction method: Extracted Per the Method

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor			
Extractable Petroleum Hydrocarbons - Westborough Lab									
C9-C18 Aliphatics	ND		ug/l	100		1			
C19-C36 Aliphatics	ND		ug/l	100		1			
C11-C22 Aromatics	ND		ug/l	100		1			
C11-C22 Aromatics, Adjusted	ND		ug/l	100		1			

			Acceptance	
Surrogate	% Recovery	Qualifier	Criteria	
Chloro-Octadecane	54		40-140	
o-Terphenyl	54		40-140	
2-Fluorobiphenyl	59		40-140	
2-Bromonaphthalene	61		40-140	

Serial_No:03132018:30

Project Name: SCAPE BOYLSTON Lab Number: L2010509

Project Number: 6546.9.10 **Report Date:** 03/13/20

SAMPLE RESULTS

Lab ID: L2010509-01 D Date Collected: 03/09/20 12:30

Client ID: MA-3 (OW) Date Received: 03/09/20 Sample Location: BOSTON, MA Field Prep: Not Specified

Sample Depth:

Matrix: Water

Analytical Method: 131,VPH-18-2.1 Analytical Date: 03/11/20 15:57

Analyst: BAD

Trap: EST, Carbopack B/Carboxen 1000&1001 Analytical Column: Restek, RTX-502.2,

105m, 0.53ID, 3um

Quality Control Information

Condition of sample received: Satisfactory

Aqueous Preservative: Laboratory Provided Preserved

Container Received on Ice

Sample Temperature upon receipt:

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
Volatile Petroleum Hydrocarbons -	Westborough Lab					
C5-C8 Aliphatics	6050		ug/l	1000		10
C9-C12 Aliphatics	ND		ug/l	1000		10
C9-C10 Aromatics	ND		ug/l	1000		10
C5-C8 Aliphatics, Adjusted	5910		ug/l	1000		10
C9-C12 Aliphatics, Adjusted	ND		ug/l	1000		10
Benzene	145		ug/l	20.0		10
Toluene	ND		ug/l	20.0		10
Ethylbenzene	ND		ug/l	20.0		10
p/m-Xylene	ND		ug/l	20.0		10
o-Xylene	ND		ug/l	20.0		10
Methyl tert butyl ether	ND		ug/l	30.0		10
Naphthalene	ND		ug/l	40.0		10

Surrogate	Acceptance			
	% Recovery	Qualifier	Criteria	
2,5-Dibromotoluene-PID	106		70-130	
2,5-Dibromotoluene-FID	101		70-130	

Project Name: SCAPE BOYLSTON Lab Number: L2010509

Project Number: 6546.9.10 **Report Date:** 03/13/20

SAMPLE RESULTS

Lab ID: L2010509-02 Date Collected: 03/09/20 11:30

Client ID: MA-117 (OW) Date Received: 03/09/20 Sample Location: BOSTON, MA Field Prep: Not Specified

Sample Depth:

Matrix: Water Extraction Method: EPA 3510C

Analytical Method: 135,EPH-19-2.1 Extraction Date: 03/10/20 15:53
Analytical Date: 03/11/20 12:56 Cleanup Method1: EPH-04-1

Analyst: MEO Cleanup Date1: 03/11/20

Quality Control Information

Condition of sample received: Satisfactory

Aqueous Preservative:

Laboratory Provided Preserved

Sample Temperature upon receipt:

Container
Received on Ice

Sample Extraction method: Extracted Per the Method

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
Extractable Petroleum Hydrocarbo	ons - Westborough La	ab				
C9-C18 Aliphatics	ND		ug/l	100		1
C19-C36 Aliphatics	ND		ug/l	100		1
C11-C22 Aromatics	ND		ug/l	100		1
C11-C22 Aromatics, Adjusted	ND		ug/l	100		1

			Acceptance	
Surrogate	% Recovery	Qualifier	Criteria	
Chloro-Octadecane	57		40-140	
o-Terphenyl	63		40-140	
2-Fluorobiphenyl	67		40-140	
2-Bromonaphthalene	70		40-140	

Project Name: SCAPE BOYLSTON Lab Number: L2010509

Project Number: 6546.9.10 **Report Date:** 03/13/20

SAMPLE RESULTS

Lab ID: L2010509-02 D Date Collected: 03/09/20 11:30

Client ID: MA-117 (OW) Date Received: 03/09/20 Sample Location: BOSTON, MA Field Prep: Not Specified

Sample Depth:

Matrix: Water

Analytical Method: 131,VPH-18-2.1 Analytical Date: 03/11/20 16:27

Analyst: BAD

Trap: EST, Carbopack B/Carboxen 1000&1001 Analytical Column: Restek, RTX-502.2,

105m, 0.53ID, 3um

Quality Control Information

Condition of sample received: Satisfactory

Aqueous Preservative: Laboratory Provided Preserved

Container Received on Ice

Sample Temperature upon receipt:

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
Volatile Petroleum Hydrocarbons -	Westborough Lab					
C5-C8 Aliphatics	7160		ug/l	1000		10
C9-C12 Aliphatics	ND		ug/l	1000		10
C9-C10 Aromatics	ND		ug/l	1000		10
C5-C8 Aliphatics, Adjusted	7040		ug/l	1000		10
C9-C12 Aliphatics, Adjusted	ND		ug/l	1000		10
Benzene	116		ug/l	20.0		10
Toluene	ND		ug/l	20.0		10
Ethylbenzene	ND		ug/l	20.0		10
p/m-Xylene	ND		ug/l	20.0		10
o-Xylene	ND		ug/l	20.0		10
Methyl tert butyl ether	ND		ug/l	30.0		10
Naphthalene	ND		ug/l	40.0		10

	Acceptance					
Surrogate	% Recovery	Qualifier	Criteria			
2,5-Dibromotoluene-PID	105		70-130			
2,5-Dibromotoluene-FID	98		70-130			

Project Name: SCAPE BOYLSTON Lab Number: L2010509

Project Number: 6546.9.10 **Report Date:** 03/13/20

SAMPLE RESULTS

Lab ID: L2010509-03 Date Collected: 03/09/20 13:40

Client ID: MA-119 (OW) Date Received: 03/09/20 Sample Location: BOSTON, MA Field Prep: Not Specified

Sample Depth:

Matrix: Water Extraction Method: EPA 3510C

Analytical Method: 135,EPH-19-2.1 Extraction Date: 03/10/20 15:53
Analytical Date: 03/11/20 13:34 Cleanup Method1: EPH-04-1

Analyst: MEO Cleanup Date1: 03/11/20

Quality Control Information

Condition of sample received: Satisfactory

Aqueous Preservative:

Laboratory Provided Preserved

Sample Temperature upon receipt: Container Received on Ice

Sample Extraction method: Extracted Per the Method

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor		
Extractable Petroleum Hydrocarbons - Westborough Lab								
C9-C18 Aliphatics	131		ug/l	100		1		
C19-C36 Aliphatics	ND		ug/l	100		1		
C11-C22 Aromatics	106		ug/l	100		1		
C11-C22 Aromatics, Adjusted	106		ug/l	100		1		

			Acceptance	
Surrogate	% Recovery	Qualifier	Criteria	
Chloro-Octadecane	55		40-140	
o-Terphenyl	67		40-140	
2-Fluorobiphenyl	74		40-140	
2-Bromonaphthalene	77		40-140	

Project Name: SCAPE BOYLSTON Lab Number: L2010509

Project Number: 6546.9.10 **Report Date:** 03/13/20

SAMPLE RESULTS

Lab ID: L2010509-03 D Date Collected: 03/09/20 13:40

Client ID: MA-119 (OW) Date Received: 03/09/20 Sample Location: BOSTON, MA Field Prep: Not Specified

Sample Depth:

Matrix: Water

Analytical Method: 131,VPH-18-2.1 Analytical Date: 03/11/20 16:57

Analyst: BAD

Trap: EST, Carbopack B/Carboxen 1000&1001 Analytical Column: Restek, RTX-502.2,

105m, 0.53ID, 3um

Quality Control Information

Condition of sample received: Satisfactory

Aqueous Preservative: Laboratory Provided Preserved

Container Received on Ice

Sample Temperature upon receipt:

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
Volatile Petroleum Hydrocarbons	- Westborough Lab					
C5-C8 Aliphatics	7910		ug/l	1000		10
C9-C12 Aliphatics	1310		ug/l	1000		10
C9-C10 Aromatics	ND		ug/l	1000		10
C5-C8 Aliphatics, Adjusted	7910		ug/l	1000		10
C9-C12 Aliphatics, Adjusted	1120		ug/l	1000		10
Benzene	ND		ug/l	20.0		10
Toluene	ND		ug/l	20.0		10
Ethylbenzene	190		ug/l	20.0		10
p/m-Xylene	ND		ug/l	20.0		10
o-Xylene	ND		ug/l	20.0		10
Methyl tert butyl ether	ND		ug/l	30.0		10
Naphthalene	ND		ug/l	40.0		10

	Acceptance					
Surrogate	% Recovery	Qualifier	Criteria			
2,5-Dibromotoluene-PID	103		70-130			
2,5-Dibromotoluene-FID	98		70-130			

Project Name: SCAPE BOYLSTON

Project Number: Report Date: 6546.9.10

03/13/20

L2010509

Lab Number:

Method Blank Analysis Batch Quality Control

Analytical Method: 135,EPH-19-2.1 Analytical Date: 03/11/20 09:05

Analyst: MEO

Extraction Method: EPA 3510C Extraction Date: 03/10/20 15:53 Cleanup Method: EPH-04-1 Cleanup Date: 03/11/20

Parameter	Result	Qualifier	Units	RL	MDL
Extractable Petroleum Hydrocarbons	s - Westbord	ough Lab f	or sample(s):	01-03	Batch: WG1349415-1
C9-C18 Aliphatics	ND		ug/l	100	
C19-C36 Aliphatics	ND		ug/l	100	
C11-C22 Aromatics	ND		ug/l	100	
C11-C22 Aromatics, Adjusted	ND		ug/l	100	

		Acceptance	
Surrogate	%Recovery Qualifie	r Criteria	
Chloro-Octadecane	51	40-140	
o-Terphenyl	55	40-140	
2-Fluorobiphenyl	61	40-140	
2-Bromonaphthalene	62	40-140	

L2010509

Lab Number:

Project Name: SCAPE BOYLSTON

Project Number: 6546.9.10 **Report Date:** 03/13/20

Method Blank Analysis Batch Quality Control

Analytical Method: 131,VPH-18-2.1 Analytical Date: 03/11/20 13:12

Analyst: BAD

Parameter	Result	Qualifier	Units	RL		MDL
Volatile Petroleum Hydrocarbons -	Westborough	Lab for	sample(s):	01-03	Batch:	WG1350483-4
C5-C8 Aliphatics	ND		ug/l	100		
C9-C12 Aliphatics	ND		ug/l	100		
C9-C10 Aromatics	ND		ug/l	100		
C5-C8 Aliphatics, Adjusted	ND		ug/l	100		
C9-C12 Aliphatics, Adjusted	ND		ug/l	100		
Benzene	ND		ug/l	2.00		
Toluene	ND		ug/l	2.00		
Ethylbenzene	ND		ug/l	2.00		
p/m-Xylene	ND		ug/l	2.00		
o-Xylene	ND		ug/l	2.00		
Methyl tert butyl ether	ND		ug/l	3.00		
Naphthalene	ND		ug/l	4.00		

		Acceptance			
Surrogate	%Recovery	Qualifier Criteria			
2,5-Dibromotoluene-PID	90	70-130			
2,5-Dibromotoluene-FID	84	70-130			

Project Name: SCAPE BOYLSTON

Project Number: 6546.9.10

Lab Number: L2010509

Parameter	LCS %Recovery	Qual	LCSD %Recovery	%Recovery Qual Limits	RPD	RPD Qual Limits	
Extractable Petroleum Hydrocarbons - Westbe	orough Lab As	sociated samp	ole(s): 01-03 Ba	atch: WG1349415-2 WC	G1349415-3		
C9-C18 Aliphatics	57		57	40-140	0	25	
C19-C36 Aliphatics	67		72	40-140	7	25	
C11-C22 Aromatics	73		74	40-140	1	25	
Naphthalene	60		62	40-140	3	25	
2-Methylnaphthalene	65		68	40-140	5	25	
Acenaphthylene	67		69	40-140	3	25	
Acenaphthene	70		73	40-140	4	25	
Fluorene	69		71	40-140	3	25	
Phenanthrene	72		73	40-140	1	25	
Anthracene	74		75	40-140	1	25	
Fluoranthene	72		72	40-140	0	25	
Pyrene	74		74	40-140	0	25	
Benzo(a)anthracene	73		73	40-140	0	25	
Chrysene	78		78	40-140	0	25	
Benzo(b)fluoranthene	71		71	40-140	0	25	
Benzo(k)fluoranthene	74		74	40-140	0	25	
Benzo(a)pyrene	71		70	40-140	1	25	
Indeno(1,2,3-cd)Pyrene	68		69	40-140	1	25	
Dibenzo(a,h)anthracene	72		73	40-140	1	25	
Benzo(ghi)perylene	65		65	40-140	0	25	

Project Name: SCAPE BOYLSTON Lab Number:

L2010509

Project Number: 6546.9.10

Report Date:

03/13/20

	LCS		LCSD		%Recovery			RPD
Parameter	%Recovery	Qual	%Recovery	Qual	Limits	RPD	Qual	Limits

Extractable Petroleum Hydrocarbons - Westborough Lab Associated sample(s): 01-03 Batch: WG1349415-2 WG1349415-3

Surrogate	LCS %Recovery Qu	LCSD al %Recovery	Acceptance Qual Criteria
	, ,	, , , , , , , , , , , , , , , , , , ,	
Chloro-Octadecane	60	64	40-140
o-Terphenyl	68	71	40-140
2-Fluorobiphenyl	70	73	40-140
2-Bromonaphthalene	73	76	40-140
% Naphthalene Breakthrough	0	0	
% 2-Methylnaphthalene Breakthrough	0	0	

Project Name: SCAPE BOYLSTON

Project Number: 6546.9.10

Lab Number: L2010509

Parameter	LCS %Recovery (LCSD Qual %Recovery	%Recovery Qual Limits	RPD	RPD Qual Limits
Volatile Petroleum Hydrocarbons - Wes	tborough Lab Associated	d sample(s): 01-03 Batc	h: WG1350483-2 WG13504	83-3	
C5-C8 Aliphatics	107	107	70-130	0	25
C9-C12 Aliphatics	105	105	70-130	0	25
C9-C10 Aromatics	108	106	70-130	2	25
Benzene	112	111	70-130	1	25
Toluene	111	109	70-130	2	25
Ethylbenzene	110	109	70-130	1	25
p/m-Xylene	110	108	70-130	2	25
o-Xylene	109	107	70-130	2	25
Methyl tert butyl ether	115	113	70-130	2	25
Naphthalene	107	105	70-130	2	25
1,2,4-Trimethylbenzene	108	106	70-130	2	25
Pentane	112	110	70-130	2	25
2-Methylpentane	108	107	70-130	1	25
2,2,4-Trimethylpentane	106	105	70-130	1	25
n-Nonane	107	106	30-130	1	25
n-Decane	103	102	70-130	1	25
n-Butylcyclohexane	107	106	70-130	1	25

Surrogate	LCS %Recovery Qua	LCSD al %Recovery Qual	Acceptance Criteria
2,5-Dibromotoluene-PID	100	98	70-130
2,5-Dibromotoluene-FID	94	92	70-130

Project Name: SCAPE BOYLSTON Lab Number: L2010509

Project Number: 6546.9.10 **Report Date:** 03/13/20

Sample Receipt and Container Information

Were project specific reporting limits specified?

Cooler Information

Cooler Custody Seal

B Absent

Container Info	rmation		Initial	Final	Temp			Frozen	
Container ID	Container Type	Cooler	рН	рН	deg C	Pres	Seal	Date/Time	Analysis(*)
L2010509-01A	Vial HCI preserved	В	NA		3.7	Υ	Absent		VPH-DELUX-18(14)
L2010509-01B	Vial HCl preserved	В	NA		3.7	Υ	Absent		VPH-DELUX-18(14)
L2010509-01C	Vial HCl preserved	В	NA		3.7	Υ	Absent		VPH-DELUX-18(14)
L2010509-01D	Amber 1000ml HCl preserved	В	<2	<2	3.7	Υ	Absent		EPH-20(14)
L2010509-01E	Amber 1000ml HCl preserved	В	<2	<2	3.7	Υ	Absent		EPH-20(14)
L2010509-02A	Vial HCl preserved	В	NA		3.7	Υ	Absent		VPH-DELUX-18(14)
L2010509-02B	Vial HCl preserved	В	NA		3.7	Υ	Absent		VPH-DELUX-18(14)
L2010509-02C	Vial HCl preserved	В	NA		3.7	Υ	Absent		VPH-DELUX-18(14)
L2010509-02D	Amber 1000ml HCl preserved	В	<2	<2	3.7	Υ	Absent		EPH-20(14)
L2010509-02E	Amber 1000ml HCl preserved	В	<2	<2	3.7	Υ	Absent		EPH-20(14)
L2010509-03A	Vial HCl preserved	В	NA		3.7	Υ	Absent		VPH-DELUX-18(14)
L2010509-03B	Vial HCl preserved	В	NA		3.7	Υ	Absent		VPH-DELUX-18(14)
L2010509-03C	Vial HCl preserved	В	NA		3.7	Υ	Absent		VPH-DELUX-18(14)
L2010509-03D	Amber 1000ml HCl preserved	В	<2	<2	3.7	Υ	Absent		EPH-20(14)
L2010509-03E	Amber 1000ml HCl preserved	В	<2	<2	3.7	Υ	Absent		EPH-20(14)

Project Name: Lab Number: SCAPE BOYLSTON L2010509

Project Number: 6546.9.10 **Report Date:** 03/13/20

GLOSSARY

Acronyms

EDL

LOQ

MS

DL - Detection Limit: This value represents the level to which target analyte concentrations are reported as estimated values, when those target analyte concentrations are quantified below the limit of quantitation (LOQ). The DL includes any adjustments

from dilutions, concentrations or moisture content, where applicable. (DoD report formats only.)

- Estimated Detection Limit: This value represents the level to which target analyte concentrations are reported as estimated values, when those target analyte concentrations are quantified below the reporting limit (RL). The EDL includes any adjustments from dilutions, concentrations or moisture content, where applicable. The use of EDLs is specific to the analysis

of PAHs using Solid-Phase Microextraction (SPME).

EMPC - Estimated Maximum Possible Concentration: The concentration that results from the signal present at the retention time of an analyte when the ions meet all of the identification criteria except the ion abundance ratio criteria. An EMPC is a worst-case estimate of the concentration.

EPA Environmental Protection Agency.

LCS - Laboratory Control Sample: A sample matrix, free from the analytes of interest, spiked with verified known amounts of analytes or a material containing known and verified amounts of analytes.

LCSD Laboratory Control Sample Duplicate: Refer to LCS.

LFB - Laboratory Fortified Blank: A sample matrix, free from the analytes of interest, spiked with verified known amounts of analytes or a material containing known and verified amounts of analytes.

LOD - Limit of Detection: This value represents the level to which a target analyte can reliably be detected for a specific analyte in a specific matrix by a specific method. The LOD includes any adjustments from dilutions, concentrations or moisture content, where applicable. (DoD report formats only.)

> - Limit of Quantitation: The value at which an instrument can accurately measure an analyte at a specific concentration. The LOQ includes any adjustments from dilutions, concentrations or moisture content, where applicable. (DoD report formats

> Limit of Quantitation: The value at which an instrument can accurately measure an analyte at a specific concentration. The LOQ includes any adjustments from dilutions, concentrations or moisture content, where applicable. (DoD report formats

MDI - Method Detection Limit: This value represents the level to which target analyte concentrations are reported as estimated values, when those target analyte concentrations are quantified below the reporting limit (RL). The MDL includes any adjustments from dilutions, concentrations or moisture content, where applicable.

> - Matrix Spike Sample: A sample prepared by adding a known mass of target analyte to a specified amount of matrix sample for which an independent estimate of target analyte concentration is available. For Method 332.0, the spike recovery is calculated using the native concentration, including estimated values.

MSD - Matrix Spike Sample Duplicate: Refer to MS.

NA - Not Applicable.

NC - Not Calculated: Term is utilized when one or more of the results utilized in the calculation are non-detect at the parameter's

reporting unit.

NDPA/DPA - N-Nitrosodiphenylamine/Diphenylamine.

NI - Not Ignitable.

NP - Non-Plastic: Term is utilized for the analysis of Atterberg Limits in soil.

RL- Reporting Limit: The value at which an instrument can accurately measure an analyte at a specific concentration. The RL

includes any adjustments from dilutions, concentrations or moisture content, where applicable.

- Relative Percent Difference: The results from matrix and/or matrix spike duplicates are primarily designed to assess the RPD precision of analytical results in a given matrix and are expressed as relative percent difference (RPD). Values which are less

than five times the reporting limit for any individual parameter are evaluated by utilizing the absolute difference between the values; although the RPD value will be provided in the report.

SRM - Standard Reference Material: A reference sample of a known or certified value that is of the same or similar matrix as the

associated field samples.

STLP - Semi-dynamic Tank Leaching Procedure per EPA Method 1315.

- Toxic Equivalency Factors: The values assigned to each dioxin and furan to evaluate their toxicity relative to 2,3,7,8-TCDD.

TEO - Toxic Equivalent: The measure of a sample's toxicity derived by multiplying each dioxin and furan by its corresponding TEF

and then summing the resulting values.

TIC - Tentatively Identified Compound: A compound that has been identified to be present and is not part of the target compound list (TCL) for the method and/or program. All TICs are qualitatively identified and reported as estimated concentrations.

Footnotes

Report Format: Data Usability Report

Project Name:SCAPE BOYLSTONLab Number:L2010509Project Number:6546.9.10Report Date:03/13/20

 The reference for this analyte should be considered modified since this analyte is absent from the target analyte list of the original method.

Terms

1

Analytical Method: Both the document from which the method originates and the analytical reference method. (Example: EPA 8260B is shown as 1,8260B.) The codes for the reference method documents are provided in the References section of the Addendum.

Difference: With respect to Total Oxidizable Precursor (TOP) Assay analysis, the difference is defined as the Post-Treatment value minus the Pre-Treatment value.

Final pH: As it pertains to Sample Receipt & Container Information section of the report, Final pH reflects pH of container determined after adjustment at the laboratory, if applicable. If no adjustment required, value reflects Initial pH.

Frozen Date/Time: With respect to Volatile Organics in soil, Frozen Date/Time reflects the date/time at which associated Reagent Water-preserved vials were initially frozen. Note: If frozen date/time is beyond 48 hours from sample collection, value will be reflected in 'bold'.

Initial pH: As it pertains to Sample Receipt & Container Information section of the report, Initial pH reflects pH of container determined upon receipt, if applicable.

PAH Total: With respect to Alkylated PAH analyses, the 'PAHs, Total' result is defined as the summation of results for all or a subset of the following compounds: Naphthalene, C1-C4 Naphthalenes, 2-Methylnaphthalene, 1-Methylnaphthalene, Biphenyl, Acenaphthylene, Acenaphthene, Fluorene, C1-C3 Fluorenes, Phenanthrene, C1-C4 Phenanthrenes/Anthracenes, Anthracene, Fluoranthene, Pyrene, C1-C4 Fluoranthenes/Pyrenes, Benza(a)anthracene, Chrysene, C1-C4 Chrysenes, Benzo(b)fluoranthene, Benzo(j)+(k)fluoranthene, Benzo(e)pyrene, Benzo(a)pyrene, Perylene, Indeno(1,2,3-cd)pyrene, Dibenz(ah)+(ac)anthracene, Benzo(g,h,i)perylene. If a 'Total' result is requested, the results of its individual components will also be reported.

PFAS Total: With respect to PFAS analyses, the 'PFAS, Total (5)' result is defined as the summation of results for: PFHpA, PFHxS, PFOA, PFNA and PFOS. If a 'Total' result is requested, the results of its individual components will also be reported.

The target compound Chlordane (CAS No. 57-74-9) is reported for GC ECD analyses. Per EPA, this compound "refers to a mixture of chlordane isomers, other chlorinated hydrocarbons and numerous other components." (Reference: USEPA Toxicological Review of Chlordane, In Support of Summary Information on the Integrated Risk Information System (IRIS), December 1997.)

Total: With respect to Organic analyses, a 'Total' result is defined as the summation of results for individual isomers or Aroclors. If a 'Total' result is requested, the results of its individual components will also be reported. This is applicable to 'Total' results for methods 8260, 8081 and 8082.

Data Qualifiers

- A Spectra identified as "Aldol Condensates" are byproducts of the extraction/concentration procedures when acetone is introduced in the process.
- The analyte was detected above the reporting limit in the associated method blank. Flag only applies to associated field samples that have detectable concentrations of the analyte at less than ten times (10x) the concentration found in the blank. For MCP-related projects, flag only applies to associated field samples that have detectable concentrations of the analyte at less than ten times (10x) the concentrations of the analyte at less than ten times (10x) the concentrations of the analyte was detectable concentrations of the analyte at less than ten times (10x) the concentration found in the blank AND the analyte was detected above one-half the reporting limit (or above the reporting limit for common lab contaminants) in the associated method blank. For NJ-Air-related projects, flag only applies to associated field samples that have detectable concentrations of the analyte above the reporting limit. For NJ-related projects (excluding Air), flag only applies to associated field samples that have detectable concentrations of the analyte, which was detected above the reporting limit in the associated method blank or above five times the reporting limit for common lab contaminants (Phthalates, Acetone, Methylene Chloride, 2-Butanone).
- Co-elution: The target analyte co-elutes with a known lab standard (i.e. surrogate, internal standards, etc.) for co-extracted analyses.
- Concentration of analyte was quantified from diluted analysis. Flag only applies to field samples that have detectable concentrations
 of the analyte.
- E Concentration of analyte exceeds the range of the calibration curve and/or linear range of the instrument.
- G The concentration may be biased high due to matrix interferences (i.e, co-elution) with non-target compound(s). The result should be considered estimated.
- H The analysis of pH was performed beyond the regulatory-required holding time of 15 minutes from the time of sample collection.
- I The lower value for the two columns has been reported due to obvious interference.
- J Estimated value. This represents an estimated concentration for Tentatively Identified Compounds (TICs).
- $\label{eq:main_equation} \textbf{M} \qquad \text{-Reporting Limit (RL) exceeds the MCP CAM Reporting Limit for this analyte.}$
- **ND** Not detected at the reporting limit (RL) for the sample.
- NJ Presumptive evidence of compound. This represents an estimated concentration for Tentatively Identified Compounds (TICs), where the identification is based on a mass spectral library search.
- ${f P}$ The RPD between the results for the two columns exceeds the method-specified criteria.
- Q -The quality control sample exceeds the associated acceptance criteria. For DOD-related projects, LCS and/or Continuing Calibration Standard exceedences are also qualified on all associated sample results. Note: This flag is not applicable for matrix spike recoveries when the sample concentration is greater than 4x the spike added or for batch duplicate RPD when the sample concentrations are less

Report Format: Data Usability Report

Project Name:SCAPE BOYLSTONLab Number:L2010509Project Number:6546.9.10Report Date:03/13/20

Data Qualifiers

than 5x the RL. (Metals only.)

 \boldsymbol{R} — Analytical results are from sample re-analysis.

RE - Analytical results are from sample re-extraction.

S - Analytical results are from modified screening analysis.

Report Format: Data Usability Report

Project Name:SCAPE BOYLSTONLab Number:L2010509Project Number:6546.9.10Report Date:03/13/20

REFERENCES

Method for the Determination of Volatile Petroleum Hydrocarbons (VPH), MassDEP, February 2018, Revision 2.1 with QC Requirements & Performance Standards for the Analysis of VPH under the Massachusetts Contingency Plan, WSC-CAM-IVA, June 1, 2018.

Method for the Determination of Extractable Petroleum Hydrocarbons (EPH), MassDEP, December 2019, Revision 2.1 with QC Requirements & Performance Standards for the Analysis of EPH under the Massachusetts Contingency Plan, WSC-CAM-IVB, March 1, 2020.

LIMITATION OF LIABILITIES

Alpha Analytical performs services with reasonable care and diligence normal to the analytical testing laboratory industry. In the event of an error, the sole and exclusive responsibility of Alpha Analytical shall be to re-perform the work at it's own expense. In no event shall Alpha Analytical be held liable for any incidental, consequential or special damages, including but not limited to, damages in any way connected with the use of, interpretation of, information or analysis provided by Alpha Analytical.

We strongly urge our clients to comply with EPA protocol regarding sample volume, preservation, cooling, containers, sampling procedures, holding time and splitting of samples in the field.

Alpha Analytical, Inc. Facility: Company-wide

Department: Quality Assurance

Title: Certificate/Approval Program Summary

ID No.:17873 Revision 16

Published Date: 2/17/2020 10:46:05 AM

Page 1 of 1

Certification Information

The following analytes are not included in our Primary NELAP Scope of Accreditation:

Westborough Facility

EPA 624/624.1: m/p-xylene, o-xylene

EPA 8260C: NPW: 1,2,4,5-Tetramethylbenzene; 4-Ethyltoluene, Azobenzene; SCM: lodomethane (methyl iodide), 1,2,4,5-Tetramethylbenzene; 4-

Ethyltoluene

EPA 8270D: NPW: Dimethylnaphthalene,1,4-Diphenylhydrazine; SCM: Dimethylnaphthalene,1,4-Diphenylhydrazine.

SM4500: NPW: Amenable Cyanide; SCM: Total Phosphorus, TKN, NO2, NO3.

Mansfield Facility

SM 2540D: TSS

EPA 8082A: NPW: PCB: 1, 5, 31, 87,101, 110, 141, 151, 153, 180, 183, 187.

EPA TO-15: Halothane, 2,4,4-Trimethyl-2-pentene, 2,4,4-Trimethyl-1-pentene, Thiophene, 2-Methylthiophene,

3-Methylthiophene, 2-Ethylthiophene, 1,2,3-Trimethylbenzene, Indan, Indene, 1,2,4,5-Tetramethylbenzene, Benzothiophene, 1-Methylnaphthalene.

EPA TO-12 Non-methane organics

EPA 3C Fixed gases

Biological Tissue Matrix: EPA 3050B

The following analytes are included in our Massachusetts DEP Scope of Accreditation

Westborough Facility:

Drinking Water

EPA 300.0: Chloride, Nitrate-N, Fluoride, Sulfate; EPA 353.2: Nitrate-N, Nitrite-N; SM4500NO3-F: Nitrate-N, Nitrite-N; SM4500F-C, SM4500CN-CE,

EPA 180.1, SM2130B, SM4500CI-D, SM2320B, SM2540C, SM4500H-B, SM4500NO2-B

EPA 332: Perchlorate; EPA 524.2: THMs and VOCs; EPA 504.1: EDB, DBCP.

Microbiology: SM9215B; SM9223-P/A, SM9223B-Colilert-QT,SM9222D.

Non-Potable Water

SM4500H,B, EPA 120.1, SM2510B, SM2540C, SM2320B, SM4500CL-E, SM4500F-BC, SM4500NH3-BH: Ammonia-N and Kjeldahl-N, EPA 350.1: Ammonia-N, LACHAT 10-107-06-1-B: Ammonia-N, EPA 351.1, SM4500NO3-F, EPA 353.2: Nitrate-N, SM4500P-E, SM4500P-B, E, SM4500SO4-E, SM5220D, EPA 410.4, SM5210B, SM5310C, SM4500CL-D, EPA 1664, EPA 420.1, SM4500-CN-CE, SM2540D, EPA 300: Chloride, Sulfate, Nitrate.

EPA 624.1: Volatile Halocarbons & Aromatics,

EPA 608.3: Chlordane, Toxaphene, Aldrin, alpha-BHC, beta-BHC, gamma-BHC, delta-BHC, Dieldrin, DDD, DDE, DDT, Endosulfan II, Endosulfan II, Endosulfan sulfate, Endrin, Endrin Aldehyde, Heptachlor, Heptachlor Epoxide, PCBs

EPA 625.1: SVOC (Acid/Base/Neutral Extractables), EPA 600/4-81-045: PCB-Oil.

Microbiology: SM9223B-Colilert-QT; Enterolert-QT, SM9221E, EPA 1600, EPA 1603.

Mansfield Facility:

Drinking Water

EPA 200.7: Al, Ba, Cd, Cr, Cu, Fe, Mn, Ni, Na, Ag, Ca, Zn. EPA 200.8: Al, Sb, As, Ba, Be, Cd, Cr, Cu, Pb, Mn, Ni, Se, Ag, TL, Zn. EPA 245.1 Hg. EPA 522.

Non-Potable Water

EPA 200.7: Al, Sb, As, Be, Cd, Ca, Cr, Co, Cu, Fe, Pb, Mg, Mn, Mo, Ni, K, Se, Ag, Na, Sr, TL, Ti, V, Zn.

EPA 200.8: Al, Sb, As, Be, Cd, Cr, Cu, Fe, Pb, Mn, Ni, K, Se, Ag, Na, TL, Zn.

EPA 245.1 Hg.

SM2340B

For a complete listing of analytes and methods, please contact your Alpha Project Manager.

Document Type: Form

Pre-Qualtrax Document ID: 08-113

ДРНА	۸.	N OF CUS	TODY		PAGE_			Da	ite Re	ec'd i	n Lal	o:	3/9	1/2	0			ALPI	HA Job	#:/	2010509
8 Walkup Drive Westboro, MA 0 Tel: 508-898-92		120	roject Inform roject Name:		SCAPE	Boyls	ton		port ADEx			on - D	ata De	livera	bles			Bil	ling In ne as Ci	formati	on PO#:
Client Information Client: McPhail A Address: 2269 Mass	Associates, LLC	P	rojeci Location.	B05	ton, M	A		Yes	S D No	MA N Matrix GW1	ICP A Spike Stand	nalytical Requir lards (Ir	Method ed on the	is is SDG		Yes uired f	No or MCI	CT RO	anics)	ients tical Meth	ods
Cambridg Phone: (617) 868-1	ge, MA 02140	A	LPHA Quote #:		All of the same			□ Oth	No ner Stat	te /Fed	Prog	ram				_ Crit	teria _			_	
Email: bolownin	@McPhailgeo.co		Turn-Around Standard Date Due:	The state of the s	(only confirmed	if pre-approved	0	ment Package IV	90		АН	EPH: D Ranges & Targets	ges & Targets nly	TOTAL METALS: DIRCRAB DI PP13 DI MCP 14	METALS: D'RCRA8 I MCP 14	METALS: Total Sb,Be,Ni,TI,V,Zn	Pesticides	A Inorganics			SAMPLE INFO Filtration ☐ Field ☐ Lab to do
Sample "Sample ID ALPHA Lab ID (Lab Use Only) 0509-01	O" Nomenclature: B- Sample I	D	Sample Depth	Material	Colle Date	Time	Sampler Initials	Soil Assessr (less VOC)	VOC: 🗆 8260	Total Solids	SVOC: □ PAH	EPH: 🗅 Rai Kanges Or	VPH: MRan	TOTAL MET	DISSOLVED METALS:	METALS: To	O PCBs O	RGP Section			Preservation Lab to do Sample Comments
	MA-3 (0L			GW	3/1/20	1230	The					X	X								
-02	MA-117 (04	/)		60		1130						X	X							+	
-0.3	MA-119 (0:	v)		6W	V	1345	V					X	X								
Container Type A=Amber glass B=Bacteria cup C=Cube D=BOD bottle E=Encore G=Glass O=Other P=Plastic V=Vial Sample Material F=Fill S=Sand O=Organics C=Clay N=Natural T=Till OM=Claschemarics	Preservative A=None B=HCI C=HNO ₃ D=H ₂ SO ₄ E=NaOH F=MeOH G=NaHSO ₄ H=Na ₂ S ₂ O ₃ I=Ascorbix Acid J=NH ₄ CI K=Zn Acetate O=Other	Ammonia, C Cyanide, Tol	Associates seculaboratory	aed By: eTw ure samp pick-up	_	3/9/	ntainer Type Preservative e/Time ZU / 4	_	Phail A	Associ		ecure		stora	J Za ge for la	aborat	tory		Date/Ti	me EW	All samples submitted are subject to Alpha's Terms and Conditions See reverse side
GM=Glaciomarine GW=Groundwater Je 26 of 26																					DOC ID: 25188 Rev (11/28/2017)

APPENDIX F: LABORATORY ANALYTICAL DATA – SURFACE WATER

ANALYTICAL REPORT

Lab Number: L2011007

Client: McPhail Associates

2269 Massachusetts Avenue

Cambridge, MA 02140

ATTN: Ambrose Donovan Phone: (617) 868-1420

Project Name: SCAPE BOSTON

Project Number: 6546.9.T7

Report Date: 03/17/20

The original project report/data package is held by Alpha Analytical. This report/data package is paginated and should be reproduced only in its entirety. Alpha Analytical holds no responsibility for results and/or data that are not consistent with the original.

Certifications & Approvals: MA (M-MA086), NH NELAP (2064), CT (PH-0574), IL (200077), ME (MA00086), MD (348), NJ (MA935), NY (11148), NC (25700/666), PA (68-03671), RI (LAO00065), TX (T104704476), VT (VT-0935), VA (460195), USDA (Permit #P330-17-00196).

Eight Walkup Drive, Westborough, MA 01581-1019 508-898-9220 (Fax) 508-898-9193 800-624-9220 - www.alphalab.com

Project Name: SCAPE BOSTON

Project Number: 6546.9.T7

Lab Number:

L2011007

Report Date:

03/17/20

Alpha Sample ID L2011007-01

Client ID

CHARLES RIVER-BU

Matrix WATER Sample Location

Location BOSTON, MA Collection Date/Time

03/11/20 13:30

Receive Date

03/11/20

Project Name: SCAPE BOSTON Lab Number: L2011007

Project Number: 6546.0.T7

Project Number: 6546.0.T7

Project Number: 6546.9.T7 Report Date: 03/17/20

Case Narrative

The samples were received in accordance with the Chain of Custody and no significant deviations were encountered during the preparation or analysis unless otherwise noted. Sample Receipt, Container Information, and the Chain of Custody are located at the back of the report.

Results contained within this report relate only to the samples submitted under this Alpha Lab Number and meet NELAP requirements for all NELAP accredited parameters unless otherwise noted in the following narrative. The data presented in this report is organized by parameter (i.e. VOC, SVOC, etc.). Sample specific Quality Control data (i.e. Surrogate Spike Recovery) is reported at the end of the target analyte list for each individual sample, followed by the Laboratory Batch Quality Control at the end of each parameter. Tentatively Identified Compounds (TICs), if requested, are reported for compounds identified to be present and are not part of the method/program Target Compound List, even if only a subset of the TCL are being reported. If a sample was re-analyzed or re-extracted due to a required quality control corrective action and if both sets of data are reported, the Laboratory ID of the re-analysis or re-extraction is designated with an "R" or "RE", respectively.

When multiple Batch Quality Control elements are reported (e.g. more than one LCS), the associated samples for each element are noted in the grey shaded header line of each data table. Any Laboratory Batch, Sample Specific % recovery or RPD value that is outside the listed Acceptance Criteria is bolded in the report. In reference to questions H (CAM) or 4 (RCP) when "NO" is checked, the performance criteria for CAM and RCP methods allow for some quality control failures to occur and still be within method compliance. In these instances, the specific failure is not narrated but noted in the associated QC Outlier Summary Report, located directly after the Case Narrative. QC information is also incorporated in the Data Usability Assessment table (Format 11) of our Data Merger tool, where it can be reviewed in conjunction with the sample result, associated regulatory criteria and any associated data usability implications.

Soil/sediments, solids and tissues are reported on a dry weight basis unless otherwise noted. Definitions of all data qualifiers and acronyms used in this report are provided in the Glossary located at the back of the report.

HOLD POLICY - For samples submitted on hold, Alpha's policy is to hold samples (with the exception of Air canisters) free of charge for 21 calendar days from the date the project is completed. After 21 calendar days, we will dispose of all samples submitted including those put on hold unless you have contacted your Alpha Project Manager and made arrangements for Alpha to continue to hold the samples. Air canisters will be disposed after 3 business days from the date the project is completed.

I, the undersigned, attest under the pains and penalties of perjury that, to the best of my knowledge and belief and based upon my personal inquiry of those responsible for providing the information contained in this analytical report, such information is accurate and complete. This certificate of analysis is not complete unless this page accompanies any and all pages of this report.

Cattlin Wallet Caitlin Walukevich

Authorized Signature:

Title: Technical Director/Representative

Please contact Project Management at 800-624-9220 with any questions.

Date: 03/17/20

METALS

03/11/20 13:30

Date Collected:

Project Name: Lab Number: SCAPE BOSTON L2011007 **Project Number:** 03/17/20

Report Date: 6546.9.T7

SAMPLE RESULTS

Lab ID: L2011007-01

Client ID: **CHARLES RIVER-BU** Date Received: 03/11/20 Field Prep: Not Specified

Sample Location: BOSTON, MA

Sample Depth:

Matrix: Water

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	Date Prepared	Date Analyzed	Prep Method	Analytical Method	Analyst
Total Metals - Mans	stiold Lab										
Total Metals - Maris	sileiu Lab										
Antimony, Total	ND		mg/l	0.00400		1	03/12/20 19:1	6 03/13/20 13:37	EPA 3005A	3,200.8	AM
Arsenic, Total	ND		mg/l	0.00100		1	03/12/20 19:1	6 03/13/20 13:37	EPA 3005A	3,200.8	AM
Cadmium, Total	ND		mg/l	0.00020		1	03/12/20 19:1	6 03/13/20 13:37	EPA 3005A	3,200.8	AM
Chromium, Total	ND		mg/l	0.00100		1	03/12/20 19:1	6 03/13/20 13:37	EPA 3005A	3,200.8	AM
Copper, Total	0.00204		mg/l	0.00100		1	03/12/20 19:1	6 03/13/20 13:37	EPA 3005A	3,200.8	AM
Iron, Total	0.526		mg/l	0.050		1	03/12/20 19:1	6 03/16/20 20:39	EPA 3005A	19,200.7	LC
Lead, Total	0.00282		mg/l	0.00100		1	03/12/20 19:1	6 03/13/20 13:37	EPA 3005A	3,200.8	AM
Mercury, Total	ND		mg/l	0.00020		1	03/12/20 19:1	9 03/13/20 11:02	EPA 245.1	3,245.1	GD
Nickel, Total	ND		mg/l	0.00200		1	03/12/20 19:1	6 03/13/20 13:37	EPA 3005A	3,200.8	AM
Selenium, Total	ND		mg/l	0.00500		1	03/12/20 19:1	6 03/13/20 13:37	EPA 3005A	3,200.8	AM
Silver, Total	ND		mg/l	0.00040		1	03/12/20 19:1	6 03/13/20 13:37	EPA 3005A	3,200.8	AM
Zinc, Total	0.01302		mg/l	0.01000		1	03/12/20 19:1	6 03/13/20 13:37	EPA 3005A	3,200.8	AM
Total Hardness by	SM 2340B	- Mansfiel	d Lab								
Hardness	71.0		mg/l	0.660	NA	1	03/12/20 19:1	6 03/16/20 20:39	EPA 3005A	19,200.7	LC
General Chemistry	 Mansfiel 	d Lab									
Chromium, Trivalent	ND		mg/l	0.010		1		03/13/20 13:37	NA	107,-	

Project Name: SCAPE BOSTON

Project Number: 6546.9.T7

Lab Number:

L2011007

Report Date: 03/17/20

Method Blank Analysis Batch Quality Control

Parameter	Result Qualifier	Units	RL	MDL	Dilution Factor	Date Prepared	Date Analyzed	Analytical Method	Analyst
Total Metals - Mansf	field Lab for sample(s):	01 Bato	h: WG13	350388	-1				
Antimony, Total	ND	mg/l	0.00400		1	03/12/20 19:16	03/13/20 12:21	3,200.8	AM
Arsenic, Total	ND	mg/l	0.00100		1	03/12/20 19:16	03/13/20 12:21	3,200.8	AM
Cadmium, Total	ND	mg/l	0.00020		1	03/12/20 19:16	03/13/20 12:21	3,200.8	AM
Chromium, Total	ND	mg/l	0.00100		1	03/12/20 19:16	03/13/20 12:21	3,200.8	AM
Copper, Total	ND	mg/l	0.00100		1	03/12/20 19:16	03/13/20 12:21	3,200.8	AM
Lead, Total	ND	mg/l	0.00100		1	03/12/20 19:16	03/13/20 12:21	3,200.8	AM
Nickel, Total	ND	mg/l	0.00200		1	03/12/20 19:16	03/13/20 12:21	3,200.8	AM
Selenium, Total	ND	mg/l	0.00500		1	03/12/20 19:16	03/13/20 12:21	3,200.8	AM
Silver, Total	ND	mg/l	0.00040		1	03/12/20 19:16	03/13/20 12:21	3,200.8	AM
Zinc, Total	ND	mg/l	0.01000		1	03/12/20 19:16	03/13/20 12:21	3,200.8	AM

Prep Information

Digestion Method: EPA 3005A

Parameter	Result Qualifier	Units	RL	MDL	Dilution Factor	Date Prepared	Date Analyzed	Analytical Method	
Total Metals - Mansfi	ield Lab for sample(s):	01 Batc	h: WG13	350395-	1				
Mercury, Total	ND	mg/l	0.00020		1	03/12/20 19:19	03/13/20 10:36	3,245.1	GD

Prep Information

Digestion Method: EPA 245.1

Parameter	Result Qualifier	Units	RL	MDL	Dilution Factor	Date Prepared	Date Analyzed	Analytical Method	Analyst		
Total Metals - Mansfield Lab for sample(s): 01 Batch: WG1350436-1											
Iron, Total	ND	mg/l	0.050		1	03/12/20 19:16	03/16/20 19:39	19,200.7	LC		

Prep Information

Digestion Method: EPA 3005A

Project Name: SCAPE BOSTON

Project Number: 6546.9.T7

Lab Number:

L2011007

Report Date:

03/17/20

Method Blank Analysis Batch Quality Control

Parameter	Result Qualifier	Units	RL	MDL	Dilution Factor	Date Prepared	Date Analyzed	Analytical Method	Analyst
Total Hardness by SM 2	340B - Mansfield Lat	o for sam	ple(s): 0	01 Bato	h: WG135	0436-1			
Hardness	ND	mg/l	0.660	NA	1	03/12/20 19:16	03/16/20 19:39	19,200.7	LC

Prep Information

Digestion Method: EPA 3005A

Project Name: SCAPE BOSTON

Project Number: 6546.9.T7

Lab Number: L2011007

Parameter	LCS %Recovery	LCSD Qual %Recovery	%Recovery Qual Limits	RPD	Qual	RPD Limits
Total Metals - Mansfield Lab Associated samp	e(s): 01 Batch: V	VG1350388-2				
Antimony, Total	86	-	85-115	-		
Arsenic, Total	108	-	85-115	-		
Cadmium, Total	106	-	85-115	-		
Chromium, Total	100	-	85-115	-		
Copper, Total	96	-	85-115	-		
Lead, Total	108	-	85-115	-		
Nickel, Total	101	-	85-115	-		
Selenium, Total	111	-	85-115	-		
Silver, Total	105	-	85-115	-		
Zinc, Total	112	-	85-115	-		
Total Metals - Mansfield Lab Associated samp	e(s): 01 Batch: V	VG1350395-2				
Mercury, Total	104	-	85-115	-		
Total Metals - Mansfield Lab Associated samp	e(s): 01 Batch: V	VG1350436-2				
Iron, Total	109	-	85-115	-		
Total Hardness by SM 2340B - Mansfield Lab	Associated sample	e(s): 01 Batch: WG135043	36-2			
Hardness	106	-	85-115	-		

Matrix Spike Analysis Batch Quality Control

Project Name: SCAPE BOSTON

Project Number: 6546.9.T7

Lab Number: L2011007

arameter	Native Sample	MS Added	MS Found	MS %Recovery	Qua	MSD al Found	MSD %Recovery		covery imits	RPD	RPD Qual Limits
Гotal Metals - Mansfield La	b Associated san	nple(s): 01	QC Batch I	D: WG135038	8-3	QC Sample	: L2010800-01	Client ID	: MS Sa	ample	
Antimony, Total	ND	0.5	0.4450	89		-	-	7	70-130	-	20
Arsenic, Total	ND	0.12	0.1311	109		-	-	7	70-130	-	20
Cadmium, Total	0.00036	0.051	0.05792	113		-	-	7	70-130	-	20
Chromium, Total	ND	0.2	0.1963	98		-	-	7	70-130	-	20
Copper, Total	0.00156	0.25	0.2382	95		-	-	7	70-130	-	20
Lead, Total	ND	0.51	0.5545	109		-	-	7	70-130	-	20
Nickel, Total	0.1157	0.5	0.6220	101		-	-	7	70-130	-	20
Selenium, Total	ND	0.12	0.1560	130		-	-	7	70-130	-	20
Silver, Total	ND	0.05	0.05296	106		-	-	7	70-130	-	20
Zinc, Total	0.04521	0.5	0.6204	115		-	-	7	70-130	-	20
otal Metals - Mansfield La	b Associated sam	nple(s): 01	QC Batch I	D: WG135039	5-3	QC Sample	: L2010800-02	Client ID	: MS Sa	ample	
Mercury, Total	ND	0.005	0.00526	105		-	-	7	70-130	-	20
otal Metals - Mansfield La	b Associated sam	nple(s): 01	QC Batch I	D: WG135043	6-3	QC Sample	: L2010800-01	Client ID	: MS Sa	ample	
Iron, Total	0.616	1	1.69	107		-	-	7	75-125	-	20
Fotal Hardness by SM 2340	0B - Mansfield La	b Associate	ed sample(s)	: 01 QC Bato	ch ID:	WG1350436	-3 QC Samp	ole: L20108	300-01	Client	ID: MS Sample
Hardness	595	66.2	662	101		-	-	7	75-125	-	20

Lab Duplicate Analysis Batch Quality Control

Project Name: SCAPE BOSTON

Project Number: 6546.9.T7

Lab Number:

L2011007

Parameter	Native Sample	Duplicate Sample	e Units	RPD	Qual	RPD Limits
Total Metals - Mansfield Lab Associated sample(s): 01	QC Batch ID: WG	1350388-4 QC Sample:	L2010800-01	Client ID:	DUP Sample	
Antimony, Total	ND	ND	mg/l	NC		20
Arsenic, Total	ND	ND	mg/l	NC		20
Cadmium, Total	0.00036	0.00034	mg/l	6		20
Copper, Total	0.00156	0.00144	mg/l	8		20
Lead, Total	ND	ND	mg/l	NC		20
Nickel, Total	0.1157	0.1127	mg/l	3		20
Selenium, Total	ND	ND	mg/l	NC		20
Silver, Total	ND	ND	mg/l	NC		20
Zinc, Total	0.04521	0.04043	mg/l	11		20
Total Metals - Mansfield Lab Associated sample(s): 01	QC Batch ID: WG	1350395-4 QC Sample:	L2010800-02	Client ID:	DUP Sample	
Mercury, Total	ND	ND	mg/l	NC		20
Total Metals - Mansfield Lab Associated sample(s): 01	QC Batch ID: WG	1350436-4 QC Sample:	L2010800-01	Client ID:	DUP Sample	
Iron, Total	0.616	0.594	mg/l	4		20
Total Hardness by SM 2340B - Mansfield Lab Associate	d sample(s): 01 Q	C Batch ID: WG1350436	6-4 QC Sampl	e: L20108	00-01 Client ID	: DUP Sample
Hardness	595	576	mg/l	3		20

INORGANICS & MISCELLANEOUS

Project Name: SCAPE BOSTON

Project Number: 6546.9.T7

Lab Number:

L2011007

Report Date: 03/17/20

SAMPLE RESULTS

Lab ID: L2011007-01

Client ID: CHARLES RIVER-BU

Sample Location: BOSTON, MA

Date Collected:

03/11/20 13:30

Date Received:

03/11/20

Field Prep:

Not Specified

Sample Depth:

Matrix: Water

Parameter	Result Q	ualifier Units	RL	MDL	Dilution Factor	Date Prepared	Date Analyzed	Analytical Method	Analyst
General Chemistry - Wes	stborough Lab								
pH (H)	7.4	SU	-	NA	1	-	03/12/20 10:18	121,4500H+-B	JA
Nitrogen, Ammonia	ND	mg/l	0.075		1	03/12/20 03:14	03/12/20 21:42	121,4500NH3-BH	AT
Chromium, Hexavalent	ND	mg/l	0.010		1	03/12/20 06:00	03/12/20 07:32	1,7196A	СВ
Anions by Ion Chromato	graphy - Westbo	rough Lab							
Chloride	152.	mg/l	12.5		25	-	03/12/20 08:21	44,300.0	JT

L2011007

Project Name: SCAPE BOSTON

Project Number: 6546.9.T7 **Report Date:**

03/17/20

Lab Number:

Method Blank Analysis Batch Quality Control

Parameter	Result Qualifi	er Units	RL	MDL	Dilution Factor	Date Prepared	Date Analyzed	Analytical Method	Analyst
General Chemistry - Wes	stborough Lab for s	sample(s): 01	Batch:	WG13	350000-1				
Nitrogen, Ammonia	ND	mg/l	0.075		1	03/12/20 03:14	03/12/20 21:36	121,4500NH3-BI	н ат
General Chemistry - Wes	stborough Lab for s	sample(s): 01	Batch:	WG13	350088-1				
Chromium, Hexavalent	ND	mg/l	0.010		1	03/12/20 06:00	03/12/20 07:26	1,7196A	СВ
Anions by Ion Chromato	graphy - Westborou	igh Lab for sai	mple(s):	: 01 B	atch: WG1	350894-1			
Chloride	ND	mg/l	0.500		1	-	03/12/20 07:57	44,300.0	JT

Project Name: SCAPE BOSTON

Project Number: 6546.9.T7

Lab Number: L2011007

Parameter	LCS %Recovery Q	LCSD ual %Recovery	% Qual	Recovery Limits	RPD	Qual	RPD Limits
General Chemistry - Westborough Lab A	ssociated sample(s): 01	Batch: WG1350000)-2				
Nitrogen, Ammonia	96	-		80-120	-		20
General Chemistry - Westborough Lab A	ssociated sample(s): 01	Batch: WG1350088	3-2				
Chromium, Hexavalent	104	-		85-115	-		20
General Chemistry - Westborough Lab A	ssociated sample(s): 01	Batch: WG1350131	I-1				
рН	100	-		99-101	-		5
Anions by Ion Chromatography - Westbor	ough Lab Associated s	sample(s): 01 Batch:	WG1350894-2				
Chloride	105	-		90-110	-		

Matrix Spike Analysis Batch Quality Control

Project Name: SCAPE BOSTON

Project Number: 6546.9.T7

Lab Number:

L2011007

Report Date:

03/17/20

Parameter	Native Sample	MS Added	MS Found	MS %Recovery	MS Qual Fo	SD und	MSD %Recovery		Recovery Limits	RPD	RPI Qual Limi	
General Chemistry - Westbord	ough Lab Asso	ciated samp	le(s): 01	QC Batch ID: V	NG1350000-	-4 (QC Sample: L20)10703-	04 Client	ID: MS	Sample	
Nitrogen, Ammonia	0.119	4	3.71	90		-	-		80-120	-	20)
General Chemistry - Westbord	ough Lab Asso	ciated samp	le(s): 01	QC Batch ID: V	NG1350088-	-4 (QC Sample: L20)11007-	01 Client	ID: CH	ARLES RIV	ER-BI
Chromium, Hexavalent	ND	0.1	0.098	98		-	-		85-115	-	20)
Anions by Ion Chromatograph Sample	y - Westboroug	gh Lab Asso	ciated san	nple(s): 01 Q0	C Batch ID: \	NG13	350894-3 QC	Sample	: L2011009)-01 C	lient ID: MS	3
Chloride	651	100	727	76	Q	-	-		90-110	-	18	3

Lab Duplicate Analysis Batch Quality Control

Project Name: SCAPE BOSTON

Project Number: 6546.9.T7

Lab Number:

L2011007

Parameter	Native Sample	Duplicate Sample	<u>Units</u>	RPD	Qual	RPD Limits
General Chemistry - Westborough Lab Associa	ted sample(s): 01 QC Batch ID:	WG1350000-3 Q	C Sample: L2010	703-04(Client ID: DUF	Sample
Nitrogen, Ammonia	0.119	ND	mg/l	NC		20
General Chemistry - Westborough Lab Associa	ted sample(s): 01 QC Batch ID:	WG1350088-3 Q	C Sample: L2011	007-01(Client ID: CHA	RLES RIVER-BU
Chromium, Hexavalent	ND	ND	mg/l	NC		20
General Chemistry - Westborough Lab Associa	ted sample(s): 01 QC Batch ID:	WG1350131-2 Q	C Sample: L2010	876-01(Client ID: DUF	Sample
рН	7.1	7.0	SU	1		5
Anions by Ion Chromatography - Westborough L Sample	ab Associated sample(s): 01 (QC Batch ID: WG135	50894-4 QC San	nple: L20	011009-01 Cli	ent ID: DUP
Chloride	651	648 mg/l		0		18

SCAPE BOSTON Lab Number: L2011007 Project Number: 6546.9.T7

Report Date: 03/17/20

Sample Receipt and Container Information

YES Were project specific reporting limits specified?

Cooler Information

Project Name:

Custody Seal Cooler

Α Absent

Container Information			Initial	Final	Temp			Frozen	
Container ID	Container Type	Cooler	рН	pН	deg C	Pres	Seal	Date/Time	Analysis(*)
L2011007-01A	Plastic 250ml HNO3 preserved	Α	<2	<2	5.2	Y	Absent		CD-2008T(180),NI-2008T(180),ZN- 2008T(180),CU-2008T(180),FE- UI(180),HARDU(180),AG-2008T(180),AS- 2008T(180),HG-U(28),SE-2008T(180),CR- 2008T(180),PB-2008T(180),SB-2008T(180)
L2011007-01B	Plastic 250ml H2SO4 preserved	Α	<2	<2	5.2	Υ	Absent		NH3-4500(28)
L2011007-01C	Plastic 500ml unpreserved	Α	7	7	5.2	Υ	Absent		CL-300(28),HEXCR-7196(1),PH-4500(.01)

L2011007

Project Name: Lab Number: SCAPE BOSTON

Project Number: 6546.9.T7 **Report Date:** 03/17/20

GLOSSARY

Acronyms

EPA

LCSD

LOD

LOQ

MSD

DL - Detection Limit: This value represents the level to which target analyte concentrations are reported as estimated values, when those target analyte concentrations are quantified below the limit of quantitation (LOQ). The DL includes any adjustments

from dilutions, concentrations or moisture content, where applicable. (DoD report formats only.)

EDL - Estimated Detection Limit: This value represents the level to which target analyte concentrations are reported as estimated values, when those target analyte concentrations are quantified below the reporting limit (RL). The EDL includes any adjustments from dilutions, concentrations or moisture content, where applicable. The use of EDLs is specific to the analysis

of PAHs using Solid-Phase Microextraction (SPME).

EMPC - Estimated Maximum Possible Concentration: The concentration that results from the signal present at the retention time of an analyte when the ions meet all of the identification criteria except the ion abundance ratio criteria. An EMPC is a worst-case

estimate of the concentration.

Environmental Protection Agency.

LCS - Laboratory Control Sample: A sample matrix, free from the analytes of interest, spiked with verified known amounts of

analytes or a material containing known and verified amounts of analytes.

 Laboratory Control Sample Duplicate: Refer to LCS. LFB

- Laboratory Fortified Blank: A sample matrix, free from the analytes of interest, spiked with verified known amounts of analytes or a material containing known and verified amounts of analytes.

- Limit of Detection: This value represents the level to which a target analyte can reliably be detected for a specific analyte in a specific matrix by a specific method. The LOD includes any adjustments from dilutions, concentrations or moisture content,

where applicable. (DoD report formats only.)

- Limit of Quantitation: The value at which an instrument can accurately measure an analyte at a specific concentration. The LOQ includes any adjustments from dilutions, concentrations or moisture content, where applicable. (DoD report formats

Limit of Quantitation: The value at which an instrument can accurately measure an analyte at a specific concentration. The LOQ includes any adjustments from dilutions, concentrations or moisture content, where applicable. (DoD report formats

MDI - Method Detection Limit: This value represents the level to which target analyte concentrations are reported as estimated values, when those target analyte concentrations are quantified below the reporting limit (RL). The MDL includes any

adjustments from dilutions, concentrations or moisture content, where applicable.

MS - Matrix Spike Sample: A sample prepared by adding a known mass of target analyte to a specified amount of matrix sample for which an independent estimate of target analyte concentration is available. For Method 332.0, the spike recovery is calculated

using the native concentration, including estimated values.

- Matrix Spike Sample Duplicate: Refer to MS.

NA - Not Applicable.

NC - Not Calculated: Term is utilized when one or more of the results utilized in the calculation are non-detect at the parameter's

reporting unit.

NDPA/DPA - N-Nitrosodiphenylamine/Diphenylamine.

NI - Not Ignitable.

NP - Non-Plastic: Term is utilized for the analysis of Atterberg Limits in soil.

RL- Reporting Limit: The value at which an instrument can accurately measure an analyte at a specific concentration. The RL

includes any adjustments from dilutions, concentrations or moisture content, where applicable.

- Relative Percent Difference: The results from matrix and/or matrix spike duplicates are primarily designed to assess the RPD

precision of analytical results in a given matrix and are expressed as relative percent difference (RPD). Values which are less than five times the reporting limit for any individual parameter are evaluated by utilizing the absolute difference between the

values; although the RPD value will be provided in the report.

SRM - Standard Reference Material: A reference sample of a known or certified value that is of the same or similar matrix as the

associated field samples.

STLP - Semi-dynamic Tank Leaching Procedure per EPA Method 1315.

- Toxic Equivalency Factors: The values assigned to each dioxin and furan to evaluate their toxicity relative to 2,3,7,8-TCDD.

TEO - Toxic Equivalent: The measure of a sample's toxicity derived by multiplying each dioxin and furan by its corresponding TEF

and then summing the resulting values.

TIC - Tentatively Identified Compound: A compound that has been identified to be present and is not part of the target compound

list (TCL) for the method and/or program. All TICs are qualitatively identified and reported as estimated concentrations.

Footnotes

Report Format: Data Usability Report

Project Name:SCAPE BOSTONLab Number:L2011007Project Number:6546.9.T7Report Date:03/17/20

 The reference for this analyte should be considered modified since this analyte is absent from the target analyte list of the original method.

Terms

1

Analytical Method: Both the document from which the method originates and the analytical reference method. (Example: EPA 8260B is shown as 1,8260B.) The codes for the reference method documents are provided in the References section of the Addendum.

Difference: With respect to Total Oxidizable Precursor (TOP) Assay analysis, the difference is defined as the Post-Treatment value minus the Pre-Treatment value.

Final pH: As it pertains to Sample Receipt & Container Information section of the report, Final pH reflects pH of container determined after adjustment at the laboratory, if applicable. If no adjustment required, value reflects Initial pH.

Frozen Date/Time: With respect to Volatile Organics in soil, Frozen Date/Time reflects the date/time at which associated Reagent Water-preserved vials were initially frozen. Note: If frozen date/time is beyond 48 hours from sample collection, value will be reflected in 'bold'.

Initial pH: As it pertains to Sample Receipt & Container Information section of the report, Initial pH reflects pH of container determined upon receipt, if applicable.

PAH Total: With respect to Alkylated PAH analyses, the 'PAHs, Total' result is defined as the summation of results for all or a subset of the following compounds: Naphthalene, C1-C4 Naphthalenes, 2-Methylnaphthalene, 1-Methylnaphthalene, Biphenyl, Acenaphthylene, Acenaphthene, Fluorene, C1-C3 Fluorenes, Phenanthrene, C1-C4 Phenanthrenes/Anthracenes, Anthracene, Fluoranthene, Pyrene, C1-C4 Fluoranthenes/Pyrenes, Benza(a)anthracene, Chrysene, C1-C4 Chrysenes, Benzo(b)fluoranthene, Benzo(j)+(k)fluoranthene, Benzo(e)pyrene, Benzo(a)pyrene, Perylene, Indeno(1,2,3-cd)pyrene, Dibenz(ah)+(ac)anthracene, Benzo(g,h,i)perylene. If a 'Total' result is requested, the results of its individual components will also be reported.

PFAS Total: With respect to PFAS analyses, the 'PFAS, Total (5)' result is defined as the summation of results for: PFHpA, PFHxS, PFOA, PFNA and PFOS. If a 'Total' result is requested, the results of its individual components will also be reported.

The target compound Chlordane (CAS No. 57-74-9) is reported for GC ECD analyses. Per EPA, this compound "refers to a mixture of chlordane isomers, other chlorinated hydrocarbons and numerous other components." (Reference: USEPA Toxicological Review of Chlordane, In Support of Summary Information on the Integrated Risk Information System (IRIS), December 1997.)

Total: With respect to Organic analyses, a 'Total' result is defined as the summation of results for individual isomers or Aroclors. If a 'Total' result is requested, the results of its individual components will also be reported. This is applicable to 'Total' results for methods 8260, 8081 and 8082.

Data Qualifiers

- A Spectra identified as "Aldol Condensates" are byproducts of the extraction/concentration procedures when acetone is introduced in the process.
- The analyte was detected above the reporting limit in the associated method blank. Flag only applies to associated field samples that have detectable concentrations of the analyte at less than ten times (10x) the concentration found in the blank. For MCP-related projects, flag only applies to associated field samples that have detectable concentrations of the analyte at less than ten times (10x) the concentrations of the analyte at less than ten times (10x) the concentrations of the analyte was detectable concentrations of the analyte at less than ten times (10x) the concentration found in the blank AND the analyte was detected above one-half the reporting limit (or above the reporting limit for common lab contaminants) in the associated method blank. For NJ-Air-related projects, flag only applies to associated field samples that have detectable concentrations of the analyte above the reporting limit. For NJ-related projects (excluding Air), flag only applies to associated field samples that have detectable concentrations of the analyte, which was detected above the reporting limit in the associated method blank or above five times the reporting limit for common lab contaminants (Phthalates, Acetone, Methylene Chloride, 2-Butanone).
- C Co-elution: The target analyte co-elutes with a known lab standard (i.e. surrogate, internal standards, etc.) for co-extracted
- Concentration of analyte was quantified from diluted analysis. Flag only applies to field samples that have detectable concentrations
 of the analyte.
- E Concentration of analyte exceeds the range of the calibration curve and/or linear range of the instrument.
- G The concentration may be biased high due to matrix interferences (i.e, co-elution) with non-target compound(s). The result should be considered estimated.
- H The analysis of pH was performed beyond the regulatory-required holding time of 15 minutes from the time of sample collection.
- I The lower value for the two columns has been reported due to obvious interference.
- J Estimated value. This represents an estimated concentration for Tentatively Identified Compounds (TICs).
- M Reporting Limit (RL) exceeds the MCP CAM Reporting Limit for this analyte.
- **ND** Not detected at the reporting limit (RL) for the sample.
- NJ Presumptive evidence of compound. This represents an estimated concentration for Tentatively Identified Compounds (TICs), where the identification is based on a mass spectral library search.
- ${f P}$ The RPD between the results for the two columns exceeds the method-specified criteria.
- Q -The quality control sample exceeds the associated acceptance criteria. For DOD-related projects, LCS and/or Continuing Calibration Standard exceedences are also qualified on all associated sample results. Note: This flag is not applicable for matrix spike recoveries when the sample concentration is greater than 4x the spike added or for batch duplicate RPD when the sample concentrations are less

Report Format: Data Usability Report

Project Name:SCAPE BOSTONLab Number:L2011007Project Number:6546.9.T7Report Date:03/17/20

Data Qualifiers

than 5x the RL. (Metals only.)

 \boldsymbol{R} — Analytical results are from sample re-analysis.

RE - Analytical results are from sample re-extraction.

S - Analytical results are from modified screening analysis.

Report Format: Data Usability Report

Project Name:SCAPE BOSTONLab Number:L2011007Project Number:6546.9.T7Report Date:03/17/20

REFERENCES

- Test Methods for Evaluating Solid Waste: Physical/Chemical Methods. EPA SW-846. Third Edition. Updates I IV, 2007.
- Methods for the Determination of Metals in Environmental Samples, Supplement I. EPA/600/R-94/111. May 1994.
- 19 Inductively Coupled Plasma Atomic Emission Spectrometric Method for Trace Element Analysis of Water and Wastes. Appendix C, Part 136, 40 CFR (Code of Federal Regulations). July 1, 1999 edition.
- Methods for the Determination of Inorganic Substances in Environmental Samples, EPA/600/R-93/100, August 1993.
- 107 Alpha Analytical In-house calculation method.
- 121 Standard Methods for the Examination of Water and Wastewater. APHA-AWWA-WEF. Standard Methods Online.

LIMITATION OF LIABILITIES

Alpha Analytical performs services with reasonable care and diligence normal to the analytical testing laboratory industry. In the event of an error, the sole and exclusive responsibility of Alpha Analytical shall be to re-perform the work at it's own expense. In no event shall Alpha Analytical be held liable for any incidental, consequential or special damages, including but not limited to, damages in any way connected with the use of, interpretation of, information or analysis provided by Alpha Analytical.

We strongly urge our clients to comply with EPA protocol regarding sample volume, preservation, cooling, containers, sampling procedures, holding time and splitting of samples in the field.

Alpha Analytical, Inc. Facility: Company-wide

Department: Quality Assurance

Title: Certificate/Approval Program Summary

Serial_No:03172010:51

ID No.:17873 Revision 16

Page 1 of 1

Published Date: 2/17/2020 10:46:05 AM

Certification Information

The following analytes are not included in our Primary NELAP Scope of Accreditation:

Westborough Facility

EPA 624/624.1: m/p-xylene, o-xylene

EPA 8260C: NPW: 1,2,4,5-Tetramethylbenzene; 4-Ethyltoluene, Azobenzene; SCM: lodomethane (methyl iodide), 1,2,4,5-Tetramethylbenzene; 4-

Ethyltoluene

EPA 8270D: NPW: Dimethylnaphthalene,1,4-Diphenylhydrazine; SCM: Dimethylnaphthalene,1,4-Diphenylhydrazine.

SM4500: NPW: Amenable Cyanide; SCM: Total Phosphorus, TKN, NO2, NO3.

Mansfield Facility

SM 2540D: TSS

EPA 8082A: NPW: PCB: 1, 5, 31, 87,101, 110, 141, 151, 153, 180, 183, 187.

EPA TO-15: Halothane, 2,4,4-Trimethyl-2-pentene, 2,4,4-Trimethyl-1-pentene, Thiophene, 2-Methylthiophene,

3-Methylthiophene, 2-Ethylthiophene, 1,2,3-Trimethylbenzene, Indan, Indene, 1,2,4,5-Tetramethylbenzene, Benzothiophene, 1-Methylnaphthalene.

EPA TO-12 Non-methane organics

EPA 3C Fixed gases

Biological Tissue Matrix: EPA 3050B

The following analytes are included in our Massachusetts DEP Scope of Accreditation

Westborough Facility:

Drinking Water

EPA 300.0: Chloride, Nitrate-N, Fluoride, Sulfate; EPA 353.2: Nitrate-N, Nitrite-N; SM4500NO3-F: Nitrate-N, Nitrite-N; SM4500F-C, SM4500CN-CE,

EPA 180.1, SM2130B, SM4500CI-D, SM2320B, SM2540C, SM4500H-B, SM4500NO2-B

EPA 332: Perchlorate; EPA 524.2: THMs and VOCs; EPA 504.1: EDB, DBCP.

Microbiology: SM9215B; SM9223-P/A, SM9223B-Colilert-QT,SM9222D.

Non-Potable Water

SM4500H,B, EPA 120.1, SM2510B, SM2540C, SM2320B, SM4500CL-E, SM4500F-BC, SM4500NH3-BH: Ammonia-N and Kjeldahl-N, EPA 350.1: Ammonia-N, LACHAT 10-107-06-1-B: Ammonia-N, EPA 351.1, SM4500NO3-F, EPA 353.2: Nitrate-N, SM4500P-E, SM4500P-B, E, SM4500SO4-E, SM5220D, EPA 410.4, SM5210B, SM5310C, SM4500CL-D, EPA 1664, EPA 420.1, SM4500-CN-CE, SM2540D, EPA 300: Chloride, Sulfate, Nitrate.

EPA 624.1: Volatile Halocarbons & Aromatics,

EPA 608.3: Chlordane, Toxaphene, Aldrin, alpha-BHC, beta-BHC, gamma-BHC, delta-BHC, Dieldrin, DDD, DDE, DDT, Endosulfan II, Endosulfan II, Endosulfan sulfate, Endrin, Endrin Aldehyde, Heptachlor, Heptachlor Epoxide, PCBs

EPA 625.1: SVOC (Acid/Base/Neutral Extractables), EPA 600/4-81-045: PCB-Oil.

Microbiology: SM9223B-Colilert-QT; Enterolert-QT, SM9221E, EPA 1600, EPA 1603.

Mansfield Facility:

Drinking Water

EPA 200.7: Al, Ba, Cd, Cr, Cu, Fe, Mn, Ni, Na, Ag, Ca, Zn. EPA 200.8: Al, Sb, As, Ba, Be, Cd, Cr, Cu, Pb, Mn, Ni, Se, Ag, TL, Zn. EPA 245.1 Hg. EPA 522.

Non-Potable Water

EPA 200.7: Al, Sb, As, Be, Cd, Ca, Cr, Co, Cu, Fe, Pb, Mg, Mn, Mo, Ni, K, Se, Ag, Na, Sr, TL, Ti, V, Zn.

EPA 200.8: Al, Sb, As, Be, Cd, Cr, Cu, Fe, Pb, Mn, Ni, K, Se, Ag, Na, TL, Zn.

EPA 245.1 Hg.

SM2340B

For a complete listing of analytes and methods, please contact your Alpha Project Manager.

Pre-Qualtrax Document ID: 08-113 Document Type: Form

	CHAIN OF	CUSTO	DY	PAGE 1 O	F 1	Date	Rec'd	in Lab:	2	111	2	2	Y E	ALPHA Job #: L20 1007					7
ALPHA	\	Project Inform	nation		100	Rep	ort Ir	nform	ation	Data	Deliv	erab	les	Billir	ng Inf	orma	tion		
ANALY TIO	7	No. of the last								□ E	MAIL			⊠ Sa	ame as	Client	info	PO #:	
Westborough, MA	Mansfield, MA	Project Name: S	CAPE Boyl	ston			ADEx	- deferred		100	dd'i Dei	0.00001180							
TEL: 508-898-9220 FAX: 508-898-9193	TEL: 508-822-9300 FAX: 508-822-3288	139	- 79 					rogram	quire	ment	s/Rep	ort L	imits	Criteria					
Client Informat	ion	Project Location	: Boston, M	A			ES RG							Griena					
Client: McPhail As	sociates, LLC	Project #: 6546.9.T7					松耳是是是他们的原始的								Ŋ.				
Address: 2269 Ma	ssachusetts Avenue	Project Manager: BED															_		
Cambridge, MA 02	2140	ALPHA Quote #	:			ANALYSIS						_	_	_	_			T	
Phone: (617) 868-	1420	Turn-Around	Time	4011		AN	ALTS	13										SAMPLE HANDLING	TOTA
Fax:	5. 4.00	Standard																Filtration □ Done	Å
Email: bdowning@	mcphailgeo.com	Due Date: Time:										(B)						☐ Not Needed ☐ Lab to do	*
The state of the s	e been Previously analyzed by Alpha	A CONTRACTOR OF THE CONTRACTOR										(8260)		PAHs				Preservation	0
Other Project Specific Requirements/Comments/Detection Limits: Circle the following if required:					(A)				3		e (82		8 =			_	☐ Lab to do (Please specify	01118	
SALINITY HARDNESS PH			8.00		8		ㅎ	525	zen		- dn			(F)	below)	S			
Sect. A inorganics B- Non-Hal- VOC-	Ammonia, Chloride, TRC, TSS, Cr 8260, 8260-SIM, Tot, Phenol Sec	RC,TSS,CrVI,CrIII, Tot-CN, RGP Metals Phenol Sect C- VOC- 8260 & 504		sls (Z	SS	Ammonia (4500 (A))		(7196),	C, F)	BTEX and Benzene	0	625 - (D) -Group I	(E)	TPH-1664-(F)	ETHANOL				
D: 625 (PAHs): E	PCB's, PCP(8270/8270-SIM): F-T	PH, 8260, Sub-Eth	anol			Met	pH/hardness	onia	3	r (71		(and	504-EDB (C)	0	PCB-608- (E)	1664	ĒŦ		
ALPHA Lab ID (Lab Use Only)	Sample ID	Date	Time	Sample Matrix	Sample Sampler's Matrix Initials	RGP Metals (200.8) (A)	Į,	HE,	TCN (A)	HexCr	8260 (B,	3TE)	504-E	325 -	SG	Į.	SUB-	Sample Specific Comments	13
1007-01	Charles River - BU	277775	1:30	10070000	IMS	100						\Box			П				3
1001-01	Charles Kiver - DC	1115	, ,-		+113				H		님	뉘	౼	H	Ħ	H	H		
								i	i	$\overline{}$					ō				
To the office of																			
V. P.																			
							무	님	님	님	님	부	ᆜ	무	닏	片	님		
						H	H	뷰	片	님	님	屵	님	무	님	님	片		
					_	片	片	片	H	님	님	片	Η	井	片	H	H		-
					Container Time	Р	Р	P	Р	P	<u> </u>				-	A			1110
					Preservative	С	A	D	E	A	В	В	/2 	н		В	В	Please print clearly, legit and completely. Sample	
	Relinquished By:			Date/Time Received By:					Date/Time				not be logged in and turnaround time clock wi	II not					
In Buna			3/1/20 2:00 frig			frise			3/11/20 2:0			2:00	start until any ambiguitie resolved. All samples	s are					
FORM NO OTHER PAR 3/11		3/11 1730	3/1	12	1615	Ma	hele	" A	W.			3/11		1615	submitted are subject to Alpha's Payment Terms.				
(MV. 3-264-12)	FORM NO. 01-45(1-NJ) (wv. 5-JNN-12)						aco				20	e- 3x1/1/2/780							

APPENDIX G: BEST MANAGEMENT PRACTICE PLAN

BEST MANAGEMENT PRACTICES PLAN

A Notice of Intent for a Remediation General Permit (RGP) under the National Pollutant Discharge Elimination System (NPDES) has been submitted to the US Environmental Protection Agency (EPA) in anticipation of temporary construction dewatering that will occur during development of the SCAPE Boylston project in Boston, Massachusetts. This Best Management Practices Plan (BMPP) has been prepared as an Appendix to the RGP and will be posted at the site during the time period that temporary construction dewatering is occurring at the site.

Water Treatment and Management

During construction of the proposed building foundation, dewatering effluent is anticipated to be pumped from localized sumps and trenches within the excavation directly into a settling tank. Dewatering effluent treatment will consist of a settling tank, bag filters to remove suspended soil particulates, granular activated carbon filters and, if required, ion resin media vessels prior to off-site discharge. pH adjustment will be conducted, if necessary, through the addition of hydrochloric acid, caustic soda and carbon dioxide. The effluent will then flow through the necessary treatment systems and discharge through hoses or piping connected into the storm water drains located beneath Boylston Street, Jersey Street, Brookline Avenue, and Deerfield Street. Based upon a review of the Boston Water and Sewer Commission stormwater drainage plan, the above referenced stormwater drain system ultimately discharges into the Charles River at outfall SDO 042.

Discharge Monitoring and Compliance

Regular sampling and testing will be conducted at the influent to the system and the treated effluent as required by the RGP. During the first week of discharge, the operator must sample the untreated influent and treated effluent two times: one (1) sample of untreated influent and one (1) sample of treated effluent be collected on the first day of discharge, and one (1) sample of untreated influent and one (1) sample of treated effluent must be collected on one additional non-consecutive day within the first week of discharge. Samples must be analyzed in accordance with 40 CFR §136 unless otherwise specified by the RGP, with a maximum 5-day turnaround time and results must be reviewed no more than 48 hours from receipt of the results of each sampling event. After the first week, samples may be analyzed with up to a ten (10)-day turnaround time and results must be reviewed no more than 72 hours from receipt of the results. If the treatment system is operating as designed and achieving the effluent limitations outlined in the RGP, on-going sampling shall

be conducted weekly for three (3) additional weeks beginning no earlier than 24 hours following initial sampling, and monthly as described below. Any adjustments/reductions in monitoring frequency must be approved by EPA in writing.

In accordance with Part 4.1 of the RGP, the operator must perform routine monthly monitoring for both influent and effluent beginning no more than 30 days following the completion of the sampling requirements for new discharges or discharges that have been interrupted. The routine monthly monitoring is to be conducted through the end of the scheduled discharge. The routine monthly monitoring must continue for five (5) consecutive months prior to submission of any request for modification of monitoring frequency.

Dewatering activity for the Site is classified as Category III-G: Sites with Known Contamination. Monitoring shall include analysis of influent and effluent samples for the presence of: pH and inorganics as listed in the RGP including: ammonia, chloride, total residual chlorine, total suspended solids, antimony, arsenic, cadmium, chromium III, chromium VI, copper, lead, mercury, nickel, selenium, silver, zinc and cyanide. Additional monitoring for VOCs and/or fuel parameters will be performed as required by the terms of the RGP authorization.

Monitoring will include checking the condition of the treatment system, assessing the need for treatment system adjustments based on monitoring data, observing and recording daily flow rates and discharge quantities, and verifying the flow path of the discharged effluent.

The total monthly flow will be monitored by checking and documenting the flow through the flow meter to be installed on the system. Flow will be maintained below the "system design flow" by regularly monitoring flow and adjusting the amount of construction dewatering as needed. Monthly monitoring reports will be compiled and maintained at the site.

System Maintenance

A number of methods will be used to minimize the potential for violations during the term of this permit discharge. Scheduled regular maintenance and periodic cleaning of the treatment system will be conducted to verify proper operation and shall be conducted in accordance with Section 1.11 of the project earthwork specifications. Regular maintenance will include checking the condition of the treatment system equipment such as the settling tanks, bag filters, hoses, pumps, and flow meters. Equipment will be monitored daily for potential matters and unscheduled maintenance requirements.

Employees who have direct or indirect responsibility for ensuring compliance with the RGP will be trained by the Contractor.

Miscellaneous Items

It is anticipated that the erosion control measures and the nature of the site will minimize potential runoff to or from the site. The project specifications also include requirements for

erosion control. Site security for the treatment system will be addressed within the overall site security plan.

No adverse effects on designated uses of surrounding surface water bodies is anticipated. The nearest surface water body is the Back Bay Fens which is located approximately 450 feet to the southeast of the subject site. Dewatering effluent will be pumped into a settling tank. Water within the settling tank will pumped through bag filters, GAC filters and, as necessary, ion exchange chambers prior to discharge into the storm drains.

Management of Treatment System Materials

Dewatering effluent will be pumped directly into the treatment system from the excavation with use of hoses and localized sumps to minimize handling. The Contractor will establish staging areas for equipment or materials storage that may be possible sources of pollution away from any dewatering activities, to the extent practicable.

Sediment from the tank used in the treatment system will be characterized and removed from the site to an appropriate receiving facility, in accordance with applicable laws and regulations. Bag and ion filters will be replaced/disposed of as necessary.