

Proactive by Design

GEOTECHNICAL

ENVIRONMENTAL

WATER

CONSTRUCTION MANAGEMENT

249 Vanderbilt Avenue Norwood, MA 02062 T: 781.278.3700 F: 781.278.5701 F: 781.278.5702 www.gza.com

July 22, 2020 File No. 02.0174659.00

United States Environmental Protection Agency – Region 1 1 Congress Street, Suite 1100 Boston, Massachusetts 02114-2023

Attention: Ms. Shauna Little

Re: Submittal of Notice of Intent (NOI)

Remediation General Permit (RGP)

Rustcraft Road Sewer Improvement Project

Dedham, Massachusetts

Dear Ms. Little:

GZA GeoEnvironmental, Inc. (GZA), on behalf the Town of Dedham is submitting the attached Notice of Intent (NOI; Appendix A) for a Remediation General Permit (RGP) for the Rustcraft Road Sewer Improvement Project (the Site). The NOI and RGP are required for dewatering activities due to the presence of a Massachusetts Department of Environmental Protection (MassDEP) disposal site located near a portion of the project area with documented impacts of inorganics and semi-volatile organic compounds to groundwater.

BACKGROUND

The scope of work includes construction of approximately 4,900 linear feet of 10-inch DI force main, 3 force main cleanout manholes, 1 air release valve, replacing existing pumps, and increasing all 6-inch DI piping, valves and appurtenances to 10-inch DI piping, valves and appurtenances at the Rustcraft Road pump station.

The work also includes the removal, segregation, and disposal of impacted materials to be determined, if encountered.

A portion of the Site is subject to a Massachusetts Contingency Plan (MCP) Utility Release Abatement Measure (URAM). The RGP is associated with the portion of the site being managed under the URAM, MassDEP Release Tracking Number (RTN) 3-36237. Based on reviewed information, the identified impacts to soil and groundwater in the area of the URAM include lead, iron, arsenic and trichloroethylene.

NOTICE OF INTENT

GZA is submitting this NOI to request authorization for dewatered groundwater from the Site to be discharged to a wetland following treatment. The wetland drains to an unknown culverted stream, ultimately discharging to the Charles River.

A Best Management Practices Plan (BMPP), meeting the requirements of the RGP, has been prepared and will be posted at the Site and implemented during the time-period that temporary dewatering is occurring at the Site.

This NOI application includes the following items:

- Laboratory analytical results of the influent source and receiving water are included as Appendix B;
- Calculation sheets for establishing effluent limitations are included as Appendix C;
- Review of Areas of Critical Environmental Concern (ACEC) indicate that the proposed discharge does not go
 to an ACEC. Review of Federally Listed Endangered and Threatened Species in Massachusetts indicate that a
 Northern Long-eared Bat habitat is located state-wide but is not likely to be present at the Site. Review of
 the U.S. Fish and Wildlife's online Information for Planning and Consultation (IPaC) service, indicates that
 federally listed species were not likely to be present within the action area of site activities (see Appendix D);
- Review of the Massachusetts Geographic Information Systems (MassGIS) DEP Priority Resources Map of Dedham shows that there are no ACECs and no habitats for Species of Special Concern or Threatened or Endangered Species within 500 feet of the subject site. Therefore, permit eligibility meets "Criterion A";
- Review of the electronic Massachusetts Cultural Resource Information System database, made available
 through Massachusetts Historical Commission, found that the are no properties listed or eligible for listing on
 the National Registry of Historic Places under the National Historic Preservation Act. Therefore, there will be
 no impact associated with this discharge to such properties. The documentation of this review can be found
 in Appendix E.

Please do not hesitate to contact the undersigned at (781) 278-3700 if you have any questions or require further information.

Very truly yours,

GZA GEOENVIRONMENTAL, INC.

William Davis

Assistant Project Manager

Adam C. Swederskas Senior Project Manager

Enclosures:

Figures: Figure 1 - Site Locus Map

Celan C. Lucdes le

Figure 2 – Site Drainage Plan

Figure 3 – Groundwater Treatment System Process Flow Diagram

Figure 4 – Site Scoring Map Showing 500 Foot & ½ Mile Radii

Figure 5 – Site Plan

Appendices: Appendix A - Notice of Intent Form

Appendix B – Influent and Receiving Water Laboratory Analytical Reports

Appendix C – Calculation Sheets for Effluent Limitations

Appendix D – ACEC and Federally Listed Endangered and Threatened Species in Massachusetts Evaluation

Appendix E – MACRIS Search Results

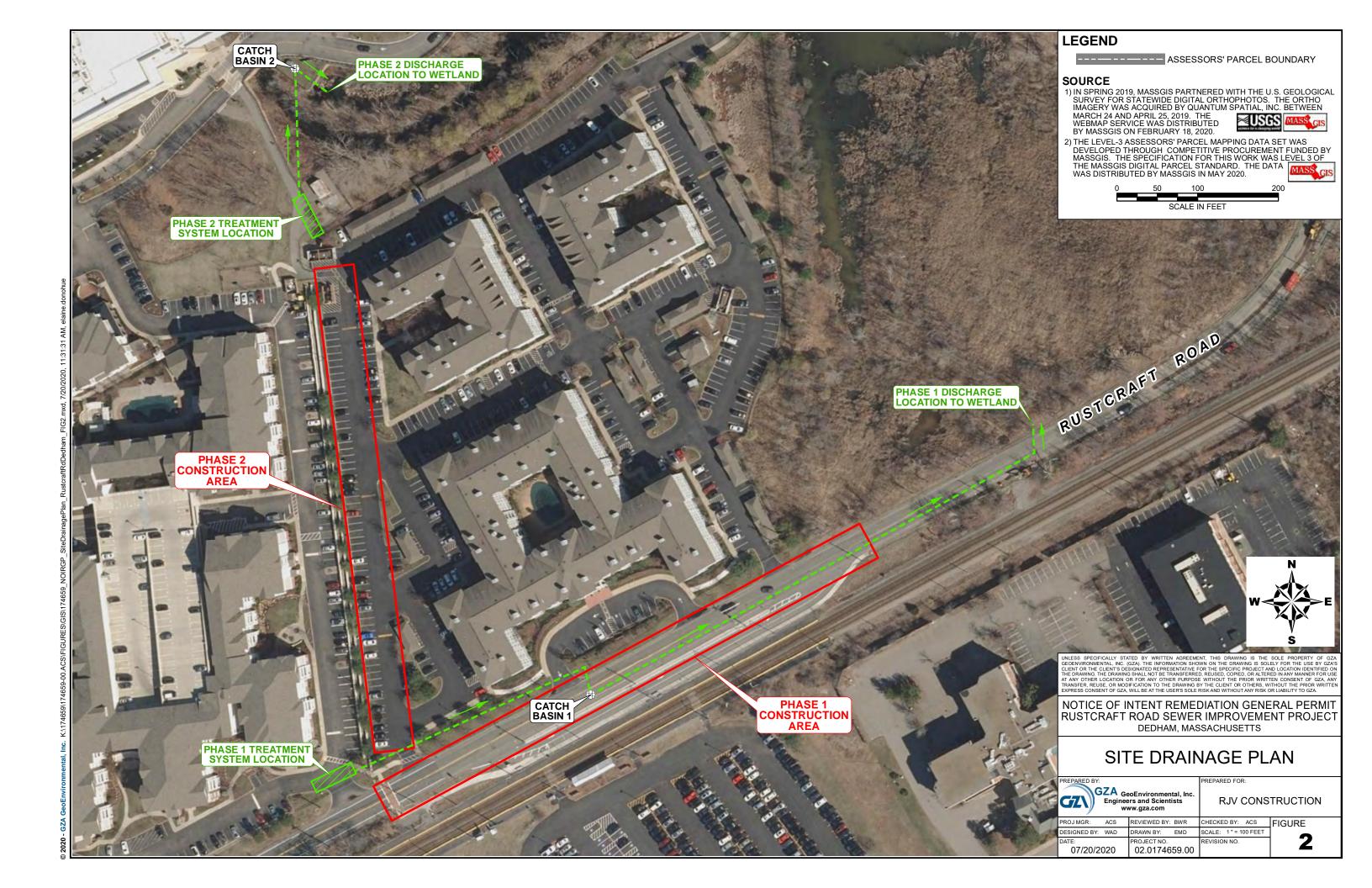

K:\174659\174659-00.ACS\RGP\Cover Letter\NOI Cover Letter July2020.docx

FIGURE 1Site Locus Map

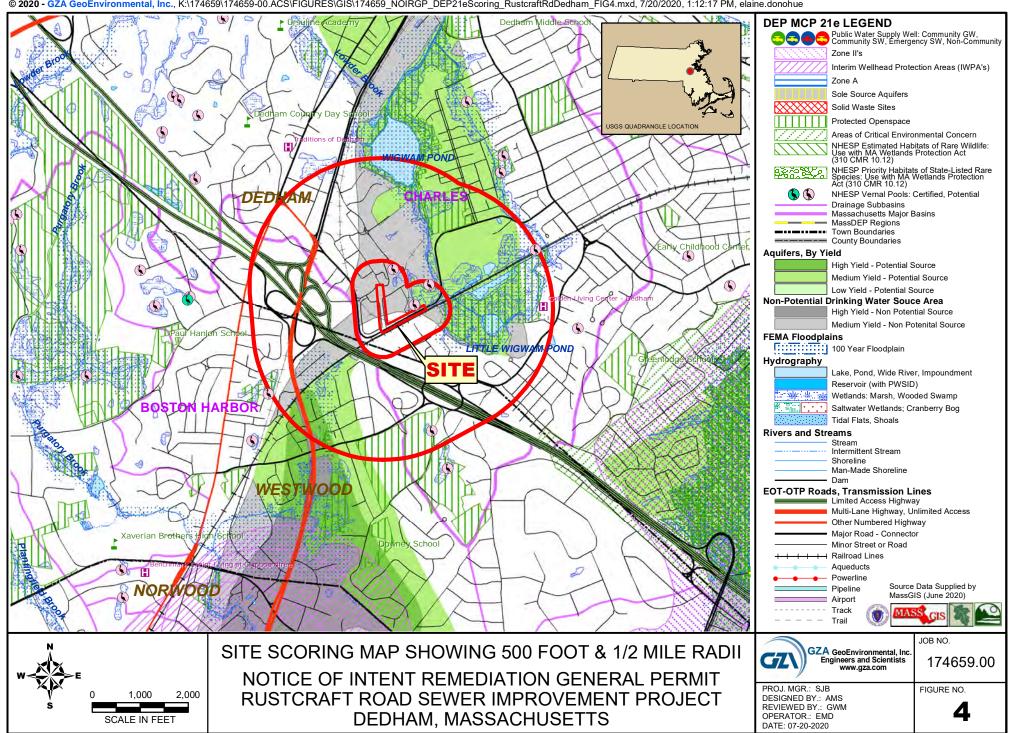
FIGURE 2Site Drainage Plan

FIGURE 3

Groundwater Treatment System Process Flow Diagram

UNLESS SPECIFICALLY STATED BY WRITTEN AGREEMENT, THIS DRAWING IS THE SOLE PROPERTY OF GZA GEOENWIRONMENTAL, INC. (GZA). THE INFORMATION SHOWN ON THE DRAWING IS SOLELY FOR USE BY GZA CLIENT OR THE CLIENT'S DESIGNATED REPRESENTATIVE FOR THE SPECIFIC PROJECT AND LOCATION IDENTIFIED ON THE DRAWING. THE DRAWING SHALL NOT BE TRANSFERRED, REUSED, COPIED, OR ALTERED IN ANY MANNER FOR USE AT ANY OTHER LOCATION OR FOR ANY OTHER PURPOSE WITHOUT THE PRIOR WRITTEN CONSENT OF GZA. ANY TRANSFER, REUSE, OR MODIFICATION TO THE DRAWING BY THE CLIENT OR OTHERS, WITHOUT THE PRIOR WRITTEN CONSENT OF GZA. ANY TRANSFER, REUSE, OR MODIFICATION TO THE DRAWING BY THE CLIENT OR OTHERS, WITHOUT THE PRIOR WRITTEN CONSENT OF GZA. ANY TRANSFER, REUSE, OR MODIFICATION TO THE DRAWING BY THE CLIENT OR OTHERS, WITHOUT THE PRIOR WRITTEN CONSENT OF GZA. ANY TRANSFER, REUSE, OR MODIFICATION TO THE DRAWING BY THE CLIENT OR OTHERS, WITHOUT THE PRIOR WRITTEN CONSENT OF GZA. ANY TRANSFER REUSE.

NOTICE OF INTENT REMEDIATION GENERAL PERMIT RUSTCRAFT ROAD SEWER IMPROVEMENT PROJECT DEDHAM, MASSACHUSETTS


TREATMENT SYSTEM PROCESS FLOW DIAGRAM

PREPARED BY:		PREPARED FOR:	
Engine	Environmental, Inc. ers and Scientists ww.gza.com	RJV CONS	TRUCTION
PROJ MGR: ACS	REVIEWED BY: BWR	CHECKED BY: ACS	FIGURE
DESIGNED BY: WAD	DRAWN BY: EMD	SCALE: N.T.S.	2
DATE: 07-20-2020	PROJECT NO. 02.0174659.00	REVISION NO.	3

FIGURE 4

Site Scoring Map 500 Foot and ½ Mile Radii

FIGURE 5 Site Plan

SK-01: PROJECT AREA SKETCH

NOTE: SKETCH IS FOR GRAPHICAL PURPOSES ONLY, ALL LOCATIONS ARE APPROXIMATE AND NOT TO SCALE.

APPENDIX A

NOTICE OF INTENT FORM

II. Suggested Format for the Remediation General Permit Notice of Intent (NOI)

A. General site information:

1. Name of site:	Site address:							
	Street:							
	City:		State:	Zip:				
2. Site owner	Contact Person:							
	Telephone:	Email:						
	Mailing address:							
	Street:							
Owner is (check one): ☐ Federal ☐ State/Tribal ☐ Private ☐ Other; if so, specify:	City:	State:	Zip:					
3. Site operator, if different than owner	Contact Person:							
	Telephone: Email:							
	Mailing address:							
	Street:							
	City:		State:	Zip:				
4. NPDES permit number assigned by EPA:	5. Other regulatory program(s) that apply to the site	(check all th	at apply):					
	☐ MA Chapter 21e; list RTN(s): ☐ CERC		CLA					
NPDES permit is (check all that apply: \square RGP \square DGP \square CGP	☐ NH Groundwater Management Permit or	☐ UIC Program						
☐ MSGP ☐ Individual NPDES permit ☐ Other; if so, specify:	Groundwater Release Detection Permit:	☐ POTW Pretreatment						
· · · · · · · · · · · · · · · · · · ·		☐ CWA Section 404						

B	Receiving water information:
1	Name of receiving water(s).

1. Name of receiving water(s):	g water(s): Waterbody identification of receiving water(s): Classification of receiving water(s)								
Receiving water is (check any that apply): □ Outstar	nding Resource Water □ Ocean Sanctuary □ territo	rial sea □ Wild and Scenic Ri	ver						
2. Has the operator attached a location map in accord	lance with the instructions in B, above? (check one)	: □ Yes □ No							
Are sensitive receptors present near the site? (check of the sensitive receptors) that is the sensitive receptors present near the site?	one): □ Yes □ No								
3. Indicate if the receiving water(s) is listed in the Stapollutants indicated. Also, indicate if a final TMDL i 4.6 of the RGP.									
	4. Indicate the seven day-ten-year low flow (7Q10) of the receiving water determined in accordance with the instructions in Appendix V for sites located in Massachusetts and Appendix VI for sites located in New Hampshire.								
	5. Indicate the requested dilution factor for the calculation of water quality-based effluent limitations (WQBELs) determined in accordance with the instructions in Appendix V for sites in Massachusetts and Appendix VI for sites in New Hampshire.								
6. Has the operator received confirmation from the a If yes, indicate date confirmation received:7. Has the operator attached a summary of receiving	-								
(check one): ☐ Yes ☐ No									
C. Source water information:									
1. Source water(s) is (check any that apply):									
☐ Contaminated groundwater	☐ Contaminated surface water	☐ The receiving water	☐ Potable water; if so, indicate municipality or origin:						
Has the operator attached a summary of influent sampling results as required in Part 4.2 of the RGP	Has the operator attached a summary of influent sampling results as required in Part 4.2 of the	☐ A surface water other							
in accordance with the instruction in Appendix VIII? (check one):			☐ Other; if so, specify:						
□ Yes □ No	□ Yes □ No								

2. Source water contaminants:	
a. For source waters that are contaminated groundwater or contaminated surface water, indicate are any contaminants present that are not included in	b. For a source water that is a surface water other than the receiving water, potable water or other, indicate any contaminants present at the maximum concentration in accordance
the RGP? (check one): ☐ Yes ☐ No If yes, indicate the contaminant(s) and the maximum concentration present in accordance with the instructions in Appendix VIII.	with the instructions in Appendix VIII? (check one): □ Yes □ No
3. Has the source water been previously chlorinated or otherwise contains resid	dual chlorine? (check one): □ Yes □ No
D. Discharge information	
1.The discharge(s) is a(n) (check any that apply): \Box Existing discharge \Box New	w discharge □ New source
Outfall(s):	Outfall location(s): (Latitude, Longitude)
Discharges enter the receiving water(s) via (check any that apply): □ Direct di	scharge to the receiving water \Box Indirect discharge, if so, specify:
☐ A private storm sewer system ☐ A municipal storm sewer system If the discharge enters the receiving water via a private or municipal storm sew	ver system:
Has notification been provided to the owner of this system? (check one): ☐ Ye	•
Has the operator has received permission from the owner to use such system for obtaining permission:	or discharges? (check one): \square Yes \square No, if so, explain, with an estimated timeframe for
Has the operator attached a summary of any additional requirements the owner	of this system has specified? (check one): \square Yes \square No
Provide the expected start and end dates of discharge(s) (month/year):	
Indicate if the discharge is expected to occur over a duration of: \Box less than 1	2 months □ 12 months or more □ is an emergency discharge
Has the operator attached a site plan in accordance with the instructions in D, a	above? (check one): Yes No

2. Activity Category: (check all that apply)	3. Contamination Type Category: (check all that apply)				
	a. If Activity Category I or II: (check all that apply)				
	 □ A. Inorganics □ B. Non-Halogenated Volatile Organic □ C. Halogenated Volatile Organic Cor □ D. Non-Halogenated Semi-Volatile Organic □ E. Halogenated Semi-Volatile Organi □ F. Fuels Parameters 	mpounds Organic Compounds			
 □ I – Petroleum-Related Site Remediation □ II – Non-Petroleum-Related Site Remediation 	b. If Activity Category III, IV, V, VI, VII or VIII: (check either G or H)				
 □ III – Non-Petroleum-Related Site Remediation □ III – Contaminated Site Dewatering □ IV – Dewatering of Pipelines and Tanks □ V – Aquifer Pump Testing □ VI – Well Development/Rehabilitation □ VII – Collection Structure Dewatering/Remediation □ VIII – Dredge-Related Dewatering 	□ G. Sites with Known Contamination c. If Category III-G, IV-G, V-G, VI-G, VII-G or VIII-G: (check all that apply) □ A. Inorganics □ B. Non-Halogenated Volatile Organic Compounds □ C. Halogenated Volatile Organic Compounds □ D. Non-Halogenated Semi-Volatile Organic Compounds □ E. Halogenated Semi-Volatile Organic Compounds □ F. Fuels Parameters	□ H. Sites with Unknown Contamination d. If Category III-H, IV-H, V-H, VI-H, VII-H or VIII-H Contamination Type Categories A through F apply			

4. Influent and Effluent Characteristics

	Known	Known		75 5 4	5	Infl	uent	Effluent Lir	nitations
Parameter	or believed absent	or believed present	# of samples	Test method (#)	Detection limit (µg/l)	Daily maximum (µg/l)	Daily average (µg/l)	TBEL	WQBEL
A. Inorganics									
Ammonia								Report mg/L	
Chloride								Report µg/l	
Total Residual Chlorine								0.2 mg/L	
Total Suspended Solids								30 mg/L	
Antimony								206 μg/L	
Arsenic								104 μg/L	
Cadmium								10.2 μg/L	
Chromium III								323 μg/L	
Chromium VI								323 μg/L	
Copper								242 μg/L	
Iron								5,000 μg/L	
Lead								160 μg/L	
Mercury								0.739 μg/L	
Nickel								1,450 μg/L	
Selenium								235.8 μg/L	
Silver								35.1 μg/L	
Zinc								420 μg/L	
Cyanide								178 mg/L	
B. Non-Halogenated VOCs	3								
Total BTEX								100 μg/L	
Benzene								5.0 μg/L	
1,4 Dioxane								200 μg/L	
Acetone								7.97 mg/L	
Phenol								1,080 µg/L	

	Known	Known		_	_	Inf	luent	Effluent Lin	nitations
Parameter	or believed absent	or believed present	# of samples	mothod limit		Daily maximum (µg/l)	Daily average (µg/l)	TBEL	WQBEL
C. Halogenated VOCs									
Carbon Tetrachloride								4.4 μg/L	
1,2 Dichlorobenzene								600 μg/L	
1,3 Dichlorobenzene								320 μg/L	
1,4 Dichlorobenzene								5.0 μg/L	
Total dichlorobenzene								763 µg/L in NH	
1,1 Dichloroethane								70 μg/L	
1,2 Dichloroethane								5.0 μg/L	
1,1 Dichloroethylene								3.2 µg/L	
Ethylene Dibromide								0.05 μg/L	
Methylene Chloride								4.6 μg/L	
1,1,1 Trichloroethane								200 μg/L	
1,1,2 Trichloroethane								5.0 μg/L	
Trichloroethylene								5.0 μg/L	
Tetrachloroethylene								5.0 μg/L	
cis-1,2 Dichloroethylene								70 μg/L	
Vinyl Chloride								2.0 μg/L	
D. Non-Halogenated SVO	Cs								
Total Phthalates								190 μg/L	
Diethylhexyl phthalate								101 μg/L	
Total Group I PAHs								1.0 μg/L	
Benzo(a)anthracene								_	
Benzo(a)pyrene								_	
Benzo(b)fluoranthene								_	
Benzo(k)fluoranthene								As Total PAHs	
Chrysene								_	
Dibenzo(a,h)anthracene								_	
Indeno(1,2,3-cd)pyrene									

	Known	Known				Inf	luent	Effluent Lin	nitations
Parameter	or believed absent	or believed present	# of samples	Test method (#)	Detection limit (µg/l)	Daily maximum (µg/l)	Daily average (µg/l)	TBEL	WQBEL
Total Group II PAHs								100 μg/L	
Naphthalene								20 μg/L	
E. Halogenated SVOCs									
Total PCBs								0.000064 µg/L	
Pentachlorophenol								1.0 μg/L	
	1			•					
F. Fuels Parameters Total Petroleum		1	1	1		1 1		<u> </u>	
Hydrocarbons								5.0 mg/L	
Ethanol								Report mg/L	
Methyl-tert-Butyl Ether								70 μg/L	
tert-Butyl Alcohol								120 μg/L in MA 40 μg/L in NH	
tert-Amyl Methyl Ether								90 μg/L in MA 140 μg/L in NH	
Other (i.e., pH, temperatur	re, hardness,	salinity, LC	50, addition	al pollutar	ats present);	if so, specify:			

E. Treatment system information

1. Indicate the type(s) of treatment that will be applied to effluent prior to discharge: (check all that apply)	
☐ Adsorption/Absorption ☐ Advanced Oxidation Processes ☐ Air Stripping ☐ Granulated Activated Carbon ("GAC")/Liquid Phase Carbon Adsorption	
☐ Ion Exchange ☐ Precipitation/Coagulation/Flocculation ☐ Separation/Filtration ☐ Other; if so, specify:	
2. Provide a written description of all treatment system(s) or processes that will be applied to the effluent prior to discharge.	
Identify each major treatment component (check any that apply):	
☐ Fractionation tanks☐ Equalization tank ☐ Oil/water separator ☐ Mechanical filter ☐ Media filter	
☐ Chemical feed tank ☐ Air stripping unit ☐ Bag filter ☐ Other; if so, specify:	
Indicate if either of the following will occur (check any that apply):	
□ Chlorination □ De-chlorination	
3. Provide the design flow capacity in gallons per minute (gpm) of the most limiting component.	
Indicate the most limiting component:	
Is use of a flow meter feasible? (check one): \square Yes \square No, if so, provide justification:	
Provide the proposed maximum effluent flow in gpm.	
Trovide the proposed maximum errident now in gpin.	
Provide the average effluent flow in gpm.	
If Activity Category IV applies, indicate the estimated total volume of water that will be discharged:	
4. Has the operator attached a schematic of flow in accordance with the instructions in E, above? (check one): ☐ Yes ☐ No	

F. Chemical and additive information

r. Chemical and additive information
1. Indicate the type(s) of chemical or additive that will be applied to effluent prior to discharge or that may otherwise be present in the discharge(s): (check all that apply)
□ Algaecides/biocides □ Antifoams □ Coagulants □ Corrosion/scale inhibitors □ Disinfectants □ Flocculants □ Neutralizing agents □ Oxidants □ Oxygen □
scavengers □ pH conditioners □ Bioremedial agents, including microbes □ Chlorine or chemicals containing chlorine □ Other; if so, specify:
2. Provide the following information for each chemical/additive, using attachments, if necessary:
a. Product name, chemical formula, and manufacturer of the chemical/additive; b. Purpose or use of the chemical/additive or remedial agent; c. Material Safety Data Sheet (MSDS) and Chemical Abstracts Service (CAS) Registry number for each chemical/additive; d. The frequency (hourly, daily, etc.), duration (hours, days), quantity (maximum and average), and method of application for the chemical/additive; e. Any material compatibility risks for storage and/or use including the control measures used to minimize such risks; and f. If available, the vendor's reported aquatic toxicity (NOAEL and/or LC50 in percent for aquatic organism(s)).
3. Has the operator attached an explanation which demonstrates that the addition of such chemicals/additives may be authorized under this general permit in accordance
with the instructions in F, above? (check one): \square Yes \square No; if no, has the operator attached data that demonstrates each of the 126 priority pollutants in CWA Section 307(a) and 40 CFR Part 423.15(j)(1) are non-detect in discharges with the addition of the proposed chemical/additive?
(check one): □ Yes □ No
G. Endangered Species Act eligibility determination
1. Indicate under which criterion the discharge(s) is eligible for coverage under this general permit:
□ FWS Criterion A : No endangered or threatened species or critical habitat are in proximity to the discharges or related activities or come in contact with the "action area".
□ FWS Criterion B : Formal or informal consultation with the FWS under section 7 of the ESA resulted in either a no jeopardy opinion (formal consultation) or a written concurrence by FWS on a finding that the discharges and related activities are "not likely to adversely affect" listed species or critical habitat
(informal consultation). Has the operator completed consultation with FWS? (check one): ☐ Yes ☐ No; if no, is consultation underway? (check one): ☐
Yes □ No
□ FWS Criterion C : Using the best scientific and commercial data available, the effect of the discharges and related activities on listed species and critical habitat have been evaluated. Based on those evaluations, a determination is made by EPA, or by the operator and affirmed by EPA, that the discharges and related activities will have "no effect" on any federally threatened or endangered listed species or designated critical habitat under the jurisdiction of the
FWS. This determination was made by: (check one) \square the operator \square EPA \square Other; if so, specify:

□ NMFS Criterion : A determination made by EPA is affirmed by the operator that the discharges and related activities will have "no effect" or are "not likely to adversely affect" any federally threatened or endangered listed species or critical habitat under the jurisdiction of NMFS and will not result in any take of
listed species. Has the operator previously completed consultation with NMFS? (check one): ☐ Yes ☐ No
2. Has the operator attached supporting documentation of ESA eligibility in accordance with the instructions in Appendix I, and G, above? (check one): \square Yes \square No
Does the supporting documentation include any written concurrence or finding provided by the Services? (check one): ☐ Yes ☐ No; if yes, attach.
H. National Historic Preservation Act eligibility determination
1. Indicate under which criterion the discharge(s) is eligible for coverage under this general permit:
□ Criterion A : No historic properties are present. The discharges and discharge-related activities (e.g., BMPs) do not have the potential to cause effects on historic properties.
☐ Criterion B: Historic properties are present. Discharges and discharge related activities do not have the potential to cause effects on historic properties.
□ Criterion C : Historic properties are present. The discharges and discharge-related activities have the potential to have an effect or will have an adverse effect on historic properties.
2. Has the operator attached supporting documentation of NHPA eligibility in accordance with the instructions in H, above? (check one): ☐ Yes ☐ No
Does the supporting documentation include any written agreement with the State Historic Preservation Officer (SHPO), Tribal Historic Preservation Officer (TPHO), or
other tribal representative that outlines measures the operator will carry out to mitigate or prevent any adverse effects on historic properties? (check one): \Box Yes \Box No
I. Supplemental information
Describe any supplemental information being provided with the NOI. Include attachments if required or otherwise necessary.
Has the operator attached data, including any laboratory case narrative and chain of custody used to support the application? (check one): ☐ Yes ☐ No
Has the operator attached the certification requirement for the Best Management Practices Plan (BMPP)? (check one): ☐ Yes ☐ No

J. Certification requirement

I certify under penalty of law that this document and all attachments were prepared under my direction or supervision in a that qualified personnel properly gathered and evaluated the information submitted. Based on my inquiry of the person or persons directly responsible for gathering the information, the information submitted is, to the best of my knowledge and be no personal knowledge that the information submitted is other than true, accurate, and complete. I am aware that there are information, including the possibility of fine and imprisonment for knowing violations.	persons who manage t elief, true, accurate, a	the system, or those nd complete. I have
BMPP certification statement:		
Notification provided to the appropriate State, including a copy of this NOI, if required.	Check one: Yes □	No □
Notification provided to the municipality in which the discharge is located, including a copy of this NOI, if requested.	Check one: Yes □	No □
Notification provided to the owner of a private or municipal storm sewer system, if such system is used for site discharges, including a copy of this NOI, if requested. Permission obtained from the owner of a private or municipal storm sewer system, if such system is used for site	Check one: Yes □	
discharges. If yes, attach additional conditions. If no, attach explanation and timeframe for obtaining permission.	Check one: Yes □	No □ NA □
Notification provided to the owner/operator of the area associated with activities covered by an additional discharge permit(s). Additional discharge permit is (check one): \square RGP \square DGP \square CGP \square MSGP \square Individual NPDES permit \square Other; if so, specify:	Check one: Yes □	No □ NA □
Signature: Dat	e:	
Print Name and Title:		

APPENDIX BLABORATORY ANALYTICAL REPORTS

Wednesday, June 24, 2020

Attn: Adam Swederskas GZA GeoEnvironmental Inc 249 Vanderbilt Ave Norwood, MA 02062

Project ID: RUSTCRAFT RD

SDG ID: GCG16249

Sample ID#s: CG16249 - CG16250

This laboratory is in compliance with the NELAC requirements of procedures used except where indicated.

This report contains results for the parameters tested, under the sampling conditions described on the Chain Of Custody, as received by the laboratory. This report is incomplete unless all pages indicated in the pagination at the bottom of the page are included.

A scanned version of the COC form accompanies the analytical report and is an exact duplicate of the original.

If you are the client above and have any questions concerning this testing, please do not hesitate to contact Phoenix Client Services at ext.200. The contents of this report cannot be discussed with anyone other than the client listed above without their written consent.

Sincerely yours,

Phyllis/Shiller

Laboratory Director

NELAC - #NY11301

CT Lab Registration #PH-0618

MA Lab Registration #M-CT007 ME Lab Registration #CT-007

NH Lab Registration #213693-A,B

NJ Lab Registration #CT-003 NY Lab Registration #11301

PA Lab Registration #68-03530 RI Lab Registration #63

UT Lab Registration #CT00007

VT Lab Registration #VT11301

587 East Middle Turnpike, P.O.Box 370, Manchester, CT 06045 Tel. (860) 645-1102 Fax (860) 645-0823

SDG Comments

June 24, 2020

SDG I.D.: GCG16249

8260 Analysis:

1,2-Dibromoethane doesn't meet GW-1 criteria, this compound is analyzed by GC/FID to achieve this criteria.

Phoenix reporting levels may exceed those referenced in the CAM protocol. Please refer to criteria sheet for comparisons to requested MCP standards.

Sample CG16249 was received past hold time for Chromium, Hexavalent (SM3500CRB).

587 East Middle Turnpike, P.O.Box 370, Manchester, CT 06045 Tel. (860) 645-1102 Fax (860) 645-0823

Sample Id Cross Reference

June 24, 2020

SDG I.D.: GCG16249

Project ID: RUSTCRAFT RD

Client Id	Lab Id	Matrix
MW-106	CG16249	GROUND WATER
RW-1	CG16250	SURFACE WATER

587 East Middle Turnpike, P.O.Box 370, Manchester, CT 06045 Tel. (860) 645-1102 Fax (860) 645-0823

Analysis Report

June 24, 2020

FOR: Attn: Adam Swederskas GZA GeoEnvironmental Inc

> 249 Vanderbilt Ave Norwood, MA 02062

Sample Information

GROUND WATER Matrix:

Location Code: GZA-MA Rush Request:

72 Hour

174659 P.O.#:

Collected by: Received by:

Laboratory Data

Custody Information

В

06/16/20 06/17/20

Date

<u>Time</u> 12:00 16:57

Analyzed by:

see "By" below

SDG ID: GCG16249

Phoenix ID: CG16249

RUSTCRAFT RD Project ID:

		RL/					
Parameter	Result	PQL	Units	Dilution	Date/Time	Ву	Reference
Silver	< 0.001	0.001	mg/L	1	06/18/20	TH	SW6010D
Arsenic	0.008	0.004	mg/L	1	06/18/20	TH	SW6010D
Barium	0.109	0.002	mg/L	1	06/18/20	TH	SW6010D
Cadmium	< 0.001	0.001	mg/L	1	06/18/20	TH	SW6010D
Chromium	0.004	0.001	mg/L	1	06/18/20	TH	SW6010D
Copper	0.012	0.005	mg/L	1	06/18/20	TH	SW6010D
Iron	16.9	0.010	mg/L	1	06/18/20	TH	SW6010D
Hardness (CaCO3)	133	0.1	mg/L	1	06/19/20		E200.7
Mercury	< 0.0002	0.0002	mg/L	1	06/18/20	RS	SW7470A
Nickel	0.003	0.001	mg/L	1	06/19/20	TH	SW6010D
Lead	0.015	0.002	mg/L	1	06/18/20	TH	SW6010D
Antimony	< 0.005	0.005	mg/L	1	06/18/20	TH	SW6010D
Selenium	< 0.010	0.010	mg/L	1	06/18/20	TH	SW6010D
Trivalent Chromium	0.004	0.001	mg/L	1	06/18/20		Calculation
Zinc	0.027	0.004	mg/L	1	06/18/20	TH	SW6010D
Chloride	536	60.0	mg/L	20	06/19/20	TB	SM4500CLE-11
Chlorine Residual	< 0.02	0.02	mg/L	1	06/17/20 18:43	0	SM4500CI-G-00
Chromium, Hexavalent	< 0.01	0.01	mg/L	1	06/17/20 18:25	0	SM3500CRB-11
Ammonia as Nitrogen	1.20	0.05	mg/L	1	06/19/20	KDB	E350.1
Phenolics	< 0.015	0.015	mg/L	1	06/22/20	MSF	E420.4
pH	7.85	1.00	pH Units	1	06/18/20 19:54	AP/EG	SM4500-H B-11
Total Cyanide	< 0.010	0.010	mg/L	1	06/23/20	O/GD	SW9010C/SW9012B
O&G, Non-polar Material	< 1.5	1.5	mg/L	1	06/19/20	MSF	E1664A
Total Suspended Solids	100	10	mg/L	2	06/18/20	QH	SM 2540D-11
Mercury Digestion	Completed				06/18/20	VT/VT	SW7470A
PCB Extraction	Completed				06/17/20		SW3510C
Semi-Volatile Extraction	Completed				06/18/20	P/AK	SW3520C
Semi-Volatile Extraction	Completed				06/17/20	P/AK	SW3520C

Project ID: RUSTCRAFT RD Phoenix I.D.: CG16249

Parameter	Result	RL/ PQL	Units	Dilution	Date/Time	Ву	
Total Metals Digestion	Completed				06/17/20	AG	
Polychlorinated Biphen	vls						
PCB-1016	ND	0.23	ug/L	1	06/18/20	SC	SW8082A
PCB-1221	ND	0.23	ug/L	1	06/18/20	SC	SW8082A
PCB-1232	ND	0.23	ug/L	1	06/18/20	SC	SW8082A
PCB-1242	ND	0.23	ug/L	1	06/18/20	SC	SW8082A
PCB-1248	ND	0.23	ug/L	1	06/18/20	SC	SW8082A
PCB-1254	ND	0.23	ug/L	1	06/18/20	SC	SW8082A
PCB-1260	ND	0.23	ug/L	1	06/18/20	SC	SW8082A
PCB-1262	ND	0.23	ug/L	1	06/18/20	SC	SW8082A
PCB-1268	ND	0.23	ug/L	1	06/18/20	SC	SW8082A
QA/QC Surrogates							
% DCBP (Surrogate Rec)	50		%	1	06/18/20	SC	30 - 150 %
% DCBP (Surrogate Rec) (Confirmation)	53		%	1	06/18/20	SC	30 - 150 %
% TCMX (Surrogate Rec)	66		%	1	06/18/20	SC	30 - 150 %
% TCMX (Surrogate Rec) (Confirmation)	72		%	1	06/18/20	SC	30 - 150 %
1,2-Dibromoethane (EDB)	ND	0.02	ug/L	1	06/19/20	CG	SW8011
<u>Volatiles</u>							
1,1,1,2-Tetrachloroethane	ND	1.0	ug/L	1	06/19/20	MH	SW8260C
1,1,1-Trichloroethane	ND	1.0	ug/L	1	06/19/20	MH	SW8260C
1,1,2,2-Tetrachloroethane	ND	0.50	ug/L	1	06/19/20	MH	SW8260C
1,1,2-Trichloroethane	ND	1.0	ug/L	1	06/19/20	MH	SW8260C
1,1-Dichloroethane	ND	1.0	ug/L	1	06/19/20	MH	SW8260C
1,1-Dichloroethene	ND	1.0	ug/L	1	06/19/20	MH	SW8260C
1,1-Dichloropropene	ND	1.0	ug/L	1	06/19/20	MH	SW8260C
1,2,3-Trichlorobenzene	ND	1.0	ug/L	1	06/19/20	MH	SW8260C
1,2,3-Trichloropropane	ND	1.0	ug/L	1	06/19/20	MH	SW8260C
1,2,4-Trichlorobenzene	ND	1.0	ug/L	1	06/19/20	MH	SW8260C
1,2,4-Trimethylbenzene	ND	1.0	ug/L	1	06/19/20	MH	SW8260C
1,2-Dibromo-3-chloropropane	ND	1.0	ug/L	1	06/19/20	MH	SW8260C
1,2-Dibromoethane	ND	1.0	ug/L	1	06/19/20	MH	SW8260C
1,2-Dichlorobenzene	ND	1.0	ug/L	1	06/19/20	MH	SW8260C
1,2-Dichloroethane	ND	0.60	ug/L	1	06/19/20	MH	SW8260C
1,2-Dichloropropane	ND	1.0	ug/L	1	06/19/20	MH	SW8260C
1,3,5-Trimethylbenzene	ND	1.0	ug/L	1	06/19/20	MH	SW8260C
1,3-Dichlorobenzene	ND	1.0	ug/L	1	06/19/20	MH	SW8260C
1,3-Dichloropropane	ND	1.0	ug/L	1	06/19/20	MH	SW8260C
1,4-Dichlorobenzene	ND	1.0	ug/L	1	06/19/20	MH	SW8260C
2,2-Dichloropropane	ND	1.0	ug/L	1	06/19/20	MH	SW8260C
2-Chlorotoluene	ND	1.0	ug/L	1	06/19/20	MH	SW8260C
2-Hexanone	ND	5.0	ug/L	1	06/19/20	MH	SW8260C
2-Isopropyltoluene	ND	1.0	ug/L	1	06/19/20	MH	SW8260C
4-Chlorotoluene	ND	1.0	ug/L	1	06/19/20	MH	SW8260C
4-Methyl-2-pentanone	ND	5.0	ug/L	1	06/19/20	MH	SW8260C
Acetone	ND	25	ug/L	1	06/19/20	MH	SW8260C
Acrylonitrile	ND	1.0	ug/L	1	06/19/20	MH	SW8260C
Benzene	ND	0.70	ug/L	1	06/19/20	МН	SW8260C

Project ID: RUSTCRAFT RD

Parameter	Result	RL/ PQL	Units	Dilution	Date/Time	Βv	
						Ву	011/0000
Bromobenzene	ND	1.0	ug/L	1	06/19/20	MH	SW8260C
Bromochloromethane	ND	1.0	ug/L	1	06/19/20	MH	SW8260C
Bromodichloromethane	ND	0.50	ug/L	1	06/19/20	MH	SW8260C
Bromoform	ND	1.0	ug/L	1	06/19/20	MH	SW8260C
Bromomethane	ND	1.0	ug/L	1	06/19/20	MH	SW8260C
Carbon Disulfide	ND	5.0	ug/L	1	06/19/20	MH	SW8260C
Carbon tetrachloride	ND	1.0	ug/L	1	06/19/20	MH	SW8260C
Chlorobenzene	ND	1.0	ug/L	1	06/19/20	MH	SW8260C
Chloroethane	ND	1.0	ug/L	1	06/19/20	MH	SW8260C
Chloroform	ND	1.0	ug/L	1	06/19/20	MH	SW8260C
Chloromethane	ND	1.0	ug/L	1	06/19/20	MH	SW8260C
cis-1,2-Dichloroethene	ND	1.0	ug/L	1	06/19/20	МН	SW8260C
cis-1,3-Dichloropropene	ND	0.40	ug/L	1	06/19/20	МН	SW8260C
Dibromochloromethane	ND	0.50	ug/L	1	06/19/20	МН	SW8260C
Dibromomethane	ND	1.0	ug/L	1	06/19/20	MH	SW8260C
Dichlorodifluoromethane	ND	1.0	ug/L	1	06/19/20	МН	SW8260C
Ethylbenzene	ND	1.0	ug/L	1	06/19/20	MH	SW8260C
Hexachlorobutadiene	ND	0.40	ug/L	1	06/19/20	MH	SW8260C
Isopropylbenzene	ND	1.0	ug/L	1	06/19/20	MH	SW8260C
m&p-Xylene	ND	1.0	ug/L	1	06/19/20	MH	SW8260C
Methyl ethyl ketone	ND	5.0	ug/L	1	06/19/20	MH	SW8260C
Methyl t-butyl ether (MTBE)	ND	1.0	ug/L	1	06/19/20	MH	SW8260C
Methylene chloride	ND	1.0	ug/L	1	06/19/20	MH	SW8260C
Naphthalene	ND	1.0	ug/L	1	06/19/20	MH	SW8260C
n-Butylbenzene	ND	1.0	ug/L	1	06/19/20	MH	SW8260C
n-Propylbenzene	ND	1.0	ug/L	1	06/19/20	MH	SW8260C
o-Xylene	ND	1.0	ug/L	1	06/19/20	MH	SW8260C
p-Isopropyltoluene	ND	1.0	ug/L	1	06/19/20	MH	SW8260C
sec-Butylbenzene	ND	1.0	ug/L	1	06/19/20	MH	SW8260C
Styrene	ND	1.0	ug/L	1	06/19/20	MH	SW8260C
tert-Butylbenzene	ND	1.0	ug/L	1	06/19/20	MH	SW8260C
Tetrachloroethene	ND	1.0	ug/L	1	06/19/20	MH	SW8260C
Tetrahydrofuran (THF)	ND	2.5	ug/L	1	06/19/20	MH	SW8260C
Toluene	ND	1.0	ug/L	1	06/19/20	MH	SW8260C
Total Xylenes	ND	1.0	ug/L	1	06/19/20	MH	SW8260C
trans-1,2-Dichloroethene	ND	1.0	ug/L	1	06/19/20	MH	SW8260C
trans-1,3-Dichloropropene	ND	0.40	ug/L	1	06/19/20	MH	SW8260C
trans-1,4-dichloro-2-butene	ND	5.0	ug/L	1	06/19/20	MH	SW8260C
Trichloroethene	ND	1.0	ug/L	1	06/19/20	МН	SW8260C
Trichlorofluoromethane	ND	1.0	ug/L	1	06/19/20	МН	SW8260C
Trichlorotrifluoroethane	ND	1.0	ug/L	1	06/19/20	МН	SW8260C
Vinyl chloride	ND	1.0	ug/L	1	06/19/20	МН	SW8260C
QA/QC Surrogates			-				
% 1,2-dichlorobenzene-d4	99		%	1	06/19/20	МН	70 - 130 %
% Bromofluorobenzene	95		%	1	06/19/20	МН	70 - 130 %
% Dibromofluoromethane	91		%	1	06/19/20	МН	70 - 130 %
% Toluene-d8	100		%	1	06/19/20	МН	70 - 130 %
Ethanol	ND	400	ug/L	1	06/19/20	МН	SW8260C

Project ID: RUSTCRAFT RD

Parameter	Result	RL/ PQL	Units	Dilution	Date/Time	Ву	
Tert-amyl-methyl-ether	ND	1.0	ug/L	1	06/19/20	MH	SW8260C
Tert-butyl alcohol	ND	50	ug/L	1	06/19/20	МН	SW8260C
<u>Semivolatiles</u>							
1,2,4,5-Tetrachlorobenzene	ND	3.3	ug/L	1	06/22/20	WB	SW8270D
1,2,4-Trichlorobenzene	ND	4.7	ug/L	1	06/22/20	WB	SW8270D
1,2-Dichlorobenzene	ND	2.4	ug/L	1	06/22/20	WB	SW8270D
1,2-Diphenylhydrazine	ND	4.7	ug/L	1	06/22/20	WB	SW8270D
1,3-Dichlorobenzene	ND	2.4	ug/L	1	06/22/20	WB	SW8270D
1,4-Dichlorobenzene	ND	2.4	ug/L	1	06/22/20	WB	SW8270D
2,4,5-Trichlorophenol	ND	0.94	ug/L	1	06/22/20	WB	SW8270D
2,4,6-Trichlorophenol	ND	0.94	ug/L	1	06/22/20	WB	SW8270D
2,4-Dichlorophenol	ND	0.94	ug/L	1	06/22/20	WB	SW8270D
2,4-Dimethylphenol	ND	0.94	ug/L	1	06/22/20	WB	SW8270D
2,4-Dinitrophenol	ND	0.94	ug/L	1	06/22/20	WB	SW8270D
2,4-Dinitrotoluene	ND	4.7	ug/L	1	06/22/20	WB	SW8270D
2,6-Dinitrotoluene	ND	4.7	ug/L	1	06/22/20	WB	SW8270D
2-Chloronaphthalene	ND	4.7	ug/L	1	06/22/20	WB	SW8270D
2-Chlorophenol	ND	0.94	ug/L	1	06/22/20	WB	SW8270D
2-Methylphenol (o-cresol)	ND	0.94	ug/L	1	06/22/20	WB	SW8270D
2-Nitroaniline	ND	4.7	ug/L	1	06/22/20	WB	SW8270D
2-Nitrophenol	ND	0.94	ug/L	1	06/22/20	WB	SW8270D
3&4-Methylphenol (m&p-cresol)	ND	9.4	ug/L	1	06/22/20	WB	SW8270D
3,3'-Dichlorobenzidine	ND	4.7	ug/L	1	06/22/20	WB	SW8270D
3-Nitroaniline	ND	4.7	ug/L	1	06/22/20	WB	SW8270D
4,6-Dinitro-2-methylphenol	ND	0.94	ug/L	1	06/22/20	WB	SW8270D
4-Bromophenyl phenyl ether	ND	4.7	ug/L	1	06/22/20	WB	SW8270D
4-Chloro-3-methylphenol	ND	0.94	ug/L	1	06/22/20	WB	SW8270D
4-Chloroaniline	ND	4.7	ug/L	1	06/22/20	WB	SW8270D
4-Chlorophenyl phenyl ether	ND	0.94	ug/L	1	06/22/20	WB	SW8270D
4-Nitroaniline	ND	4.7	ug/L	1	06/22/20	WB	SW8270D
4-Nitrophenol	ND	0.94	ug/L	1	06/22/20	WB	SW8270D
Acetophenone	ND	4.7	ug/L	1	06/22/20	WB	SW8270D
Aniline	ND	4.7	ug/L	1	06/22/20	WB	SW8270D
Benzidine	ND	4.7	ug/L	1	06/22/20	WB	SW8270D
Benzoic acid	ND	47	ug/L	1	06/22/20	WB	SW8270D
Benzyl butyl phthalate	ND	4.7	ug/L	1	06/22/20	WB	SW8270D
Bis(2-chloroethoxy)methane	ND	4.7	ug/L	1	06/22/20	WB	SW8270D
Bis(2-chloroethyl)ether	ND	0.94	ug/L	1	06/22/20	WB	SW8270D
Bis(2-chloroisopropyl)ether	ND	4.7	ug/L	1	06/22/20	WB	SW8270D
Bis(2-ethylhexyl)phthalate	ND	0.94	ug/L	1	06/22/20	WB	SW8270D
Carbazole	ND	4.7	ug/L	1	06/22/20	WB	SW8270D
Dibenzofuran	ND	4.7	ug/L	1	06/22/20	WB	SW8270D
Diethyl phthalate	ND	4.7	ug/L ug/L	1	06/22/20	WB	SW8270D SW8270D
	ND	4.7	ug/L ug/L	1	06/22/20	WB	SW8270D SW8270D
Dimethylphthalate	ND	4.7	ug/L ug/L	1	06/22/20	WB	SW8270D SW8270D
Di-n-butylphthalate	ND	4. <i>1</i> 4.7	ug/L ug/L	1	06/22/20	WB	SW8270D SW8270D
Di-n-octylphthalate	ND ND	4.7 0.94		1	06/22/20	WB	SW8270D SW8270D
Hexachloroethane	ND ND	0.94 4.7	ug/L	1	06/22/20	WB	
Isophorone			ug/L	1			SW8270D
N-Nitrosodi-n-propylamine	ND	4.7	ug/L	1	06/22/20	WB	SW8270D

D	D 16	RL/	112	Direction of	D. t. /Time	ъ.	
Parameter	Result	PQL	Units	Dilution	Date/Time	Ву	
N-Nitrosodiphenylamine	ND	4.7	ug/L	1	06/22/20	WB	SW8270D
Pentachloronitrobenzene	ND	2.4	ug/L	1	06/22/20	WB	SW8270D
Phenol	ND	0.94	ug/L	1	06/22/20	WB	SW8270D
QA/QC Surrogates							
% 2,4,6-Tribromophenol	81		%	1	06/22/20	WB	15 - 110 %
% 2-Fluorobiphenyl	72		%	1	06/22/20	WB	30 - 130 %
% 2-Fluorophenol	51		%	1	06/22/20	WB	15 - 110 %
% Nitrobenzene-d5	67		%	1	06/22/20	WB	30 - 130 %
% Phenol-d5	51		%	1	06/22/20	WB	15 - 110 %
% Terphenyl-d14	68		%	1	06/22/20	WB	30 - 130 %
Semivolatiles (SIM)							
2-Methylnaphthalene	ND	0.47	ug/L	1	06/22/20	WB	SW8270D (SIM)
Acenaphthene	ND	0.47	ug/L	1	06/22/20	WB	SW8270D (SIM)
Acenaphthylene	ND	0.09	ug/L	1	06/22/20	WB	SW8270D (SIM)
Anthracene	ND	0.09	ug/L	1	06/22/20	WB	SW8270D (SIM)
Benz(a)anthracene	ND	0.09	ug/L	1	06/22/20	WB	SW8270D (SIM)
Benzo(a)pyrene	ND	0.19	ug/L	1	06/22/20	WB	SW8270D (SIM)
Benzo(b)fluoranthene	ND	0.09	ug/L	1	06/22/20	WB	SW8270D (SIM)
Benzo(ghi)perylene	0.08	0.02	ug/L	1	06/22/20	WB	SW8270D (SIM)
Benzo(k)fluoranthene	ND	0.09	ug/L	1	06/22/20	WB	SW8270D (SIM)
Chrysene	0.08	0.05	ug/L	1	06/22/20	WB	SW8270D (SIM)
Dibenz(a,h)anthracene	ND	0.02	ug/L	1	06/22/20	WB	SW8270D (SIM)
Fluoranthene	ND	0.47	ug/L	1	06/22/20	WB	SW8270D (SIM)
Fluorene	ND	0.09	ug/L	1	06/22/20	WB	SW8270D (SIM)
Hexachlorobenzene	ND	0.47	ug/L	1	06/22/20	WB	SW8270D (SIM)
Hexachlorobutadiene	ND	0.47	ug/L	1	06/22/20	WB	SW8270D (SIM)
Hexachlorocyclopentadiene	ND	0.47	ug/L	1	06/22/20	WB	SW8270D (SIM)
Indeno(1,2,3-cd)pyrene	ND	0.09	ug/L	1	06/22/20	WB	SW8270D (SIM)
Naphthalene	ND	0.47	ug/L	1	06/22/20	WB	SW8270D (SIM)
Nitrobenzene	ND	0.47	ug/L	1	06/22/20	WB	SW8270D (SIM)
N-Nitrosodimethylamine	ND	0.47	ug/L	1	06/22/20	WB	SW8270D (SIM)
Pentachlorophenol	ND	0.47	ug/L	1	06/22/20	WB	SW8270D (SIM)
Phenanthrene	ND	0.47	ug/L	1	06/22/20	WB	SW8270D (SIM)
Pyrene	0.12	0.07	ug/L	1	06/22/20	WB	SW8270D (SIM)
Pyridine	ND	0.47	ug/L	1	06/22/20	WB	SW8270D (SIM)
QA/QC Surrogates							
% 2,4,6-Tribromophenol	75		%	1	06/22/20	WB	15 - 110 %
% 2-Fluorobiphenyl	58		%	1	06/22/20	WB	40 - 140 %
% 2-Fluorophenol	54		%	1	06/22/20	WB	15 - 110 %
% Nitrobenzene-d5	77		%	1	06/22/20	WB	40 - 140 %
% Phenol-d5	57		%	1	06/22/20	WB	15 - 110 %
% Terphenyl-d14	69		%	1	06/22/20	WB	40 - 140 %
1,4-dioxane							
1,4-dioxane	ND	0.20	ug/l	1	06/19/20	AW	SW8270DSIM
QA/QC Surrogates			~ 5 ,.	•			
% 1,4-dioxane-d8	87		%	1	06/19/20	AW	40 - 140 %
Extraction for 1,4-Dioxane	Completed			-	06/18/20	S/S	-
,	,						

Project ID: RUSTCRAFT RD Phoenix I.D.: CG16249

Client ID: MW-106

RL/

Parameter Result PQL Units Dilution Date/Time By

RL/PQL=Reporting/Practical Quantitation Level ND=Not Detected BRL=Below Reporting Level QA/QC Surrogates: Surrogates are compounds (preceeded with a %) added by the lab to determine analysis efficiency. Surrogate results(%) listed in the report are not "detected" compounds.

Comments:

The regulatory hold time for Chlorine is immediately. This Chlorine was performed in the laboratory and may be considered outside of hold-time.

8260 Analysis:

1,4-Dioxane doesn't meet GW-1 criteria, this compound is analyzed by 8270SIM to achieve this criteria.

Per 1.4.6 of EPA method 8270D, 1,2-Diphenylhydrazine is unstable and readily converts to Azobenzene. Azobenzene is used for the calibration of 1,2-Diphenylhydrazine.

The regulatory hold time for pH is immediately. This pH was performed in the laboratory and may be considered outside of hold-time.

If you are the client above and have any questions concerning this testing, please do not hesitate to contact Phoenix Client Services at ext.200. The contents of this report cannot be discussed with anyone other than the client listed above without their written consent.

Phyllis Shiller, Laboratory Director

June 24, 2020

Reviewed and Released by: Rashmi Makol, Project Manager

587 East Middle Turnpike, P.O.Box 370, Manchester, CT 06045 Tel. (860) 645-1102 Fax (860) 645-0823

Analysis Report

June 24, 2020

FOR: Attn: Adam Swederskas

see "By" below

GZA GeoEnvironmental Inc

249 Vanderbilt Ave Norwood, MA 02062

Sample Information

Matrix: SURFACE WATER

Location Code: GZA-MA Rush Request: 72 Hour

P.O.#: 174659

Laboratory Data

Custody Information

В

Collected by:

Received by:

Analyzed by:

SDG ID: GCG16249

<u>Time</u>

9:45

16:57

Phoenix ID: CG16250

Date

06/16/20

06/17/20

Project ID: RUSTCRAFT RD

		RL/					
Parameter	Result	PQL	Units	Dilution	Date/Time	Ву	Reference
Silver	< 0.001	0.001	mg/L	1	06/18/20	TH	SW6010D
Arsenic	< 0.004	0.004	mg/L	1	06/18/20	TH	SW6010D
Cadmium	< 0.001	0.001	mg/L	1	06/18/20	TH	SW6010D
Chromium	< 0.001	0.001	mg/L	1	06/18/20	TH	SW6010D
Copper	0.005	0.005	mg/L	1	06/18/20	TH	SW6010D
Iron	0.452	0.010	mg/L	1	06/18/20	TH	E200.7
Hardness (CaCO3)	80.4	0.1	mg/L	1	06/19/20		E200.7
Mercury	< 0.0002	0.0002	mg/L	1	06/18/20	RS	SW7470A
Nickel	0.001	0.001	mg/L	1	06/19/20	TH	SW6010D
Lead	< 0.002	0.002	mg/L	1	06/18/20	TH	SW6010D
Antimony	< 0.005	0.005	mg/L	1	06/18/20	TH	SW6010D
Selenium	< 0.010	0.010	mg/L	1	06/18/20	TH	SW6010D
Zinc	0.012	0.004	mg/L	1	06/18/20	TH	SW6010D
Ammonia as Nitrogen	< 0.05	0.05	mg/L	1	06/19/20	KDB	E350.1
Mercury Digestion	Completed				06/18/20	VT/VT	SW7470A
Total Metals Digestion	Completed				06/17/20	AG	

Project ID: RUSTCRAFT RD Phoenix I.D.: CG16250

Client ID: RW-1

RL/

Parameter Result PQL Units Dilution Date/Time By

RL/PQL=Reporting/Practical Quantitation Level ND=Not Detected BRL=Below Reporting Level

Comments:

If you are the client above and have any questions concerning this testing, please do not hesitate to contact Phoenix Client Services at ext.200. The contents of this report cannot be discussed with anyone other than the client listed above without their written consent.

Phyllis Shiller, Laboratory Director

June 24, 2020

Reviewed and Released by: Rashmi Makol, Project Manager

587 East Middle Turnpike, P.O.Box 370, Manchester, CT 06045 Tel. (860) 645-1102 Fax (860) 645-0823

QA/QC Report

June 24, 2020

Additional: LCS acceptance range is 80-120% MS acceptance range 75-125%.

QA/QC Data

SDG I.D.: GCG16249

% Sample Dup Dup LCS **LCSD** LCS MS MSD MS Rec RPD Blank RL Result Result RPD **RPD RPD** Limits Limits Parameter % % % QA/QC Batch 534066 (mg/L), QC Sample No: CG15592 (CG16249, CG16250) BRL 0.0002 <0.0002 <0.0002 Mercury - Water 104 75 - 125 30 Comment: Additional Mercury criteria: LCS acceptance range for waters is 80-120% and for soils is 75-125% QA/QC Batch 533991 (mg/L), QC Sample No: CG15898 (CG16249, CG16250) ICP Metals - Aqueous BRL 0.005 < 0.005 < 0.005 NC 101 100 1.0 100 80 - 120 Antimony 20 Arsenic **BRL** 0.004 < 0.004 < 0.004 NC 96.3 95.7 0.6 96.3 80 - 120 20 1.30 **BRL** 0.002 0.079 0.078 101 101 0.0 100 80 - 120 Barium 20 Cadmium **BRL** 0.001 < 0.001 < 0.001 NC 98.3 98.0 0.3 94.8 80 - 120 20 Chromium **BRL** 0.001 < 0.001 < 0.001 NC 100 99.1 0.9 100 80 - 120 20 0.005 < 0.005 < 0.005 NC 101 80 - 120 Copper **BRL** 100 101 1.0 20 99.5 0.010 99.5 0.0 103 80 - 120 Iron **BRL** 3.33 3.35 0.60 20 **BRL** 0.002 < 0.002 < 0.002 NC 96.0 95.4 0.6 95.1 80 - 120 20 Lead Nickel BRL 0.001 < 0.001 < 0.001 NC 99.5 99.6 0.1 97.2 80 - 120 20 **BRL** 0.010 < 0.010 < 0.010 NC 94.1 93.4 0.7 92.4 80 - 120 20 Selenium Silver **BRL** 0.001 < 0.001 < 0.001 NC 99.6 99.0 0.6 99.7 80 - 120 20 Zinc BRL 0.004 < 0.004 < 0.004 NC 98.3 80 - 120 20 98.3 0.0 97.1

Environmental Laboratories, Inc. 587 East Middle Turnpike, P.O.Box 370, Manchester, CT 06045 Tel. (860) 645-1102 Fax (860) 645-0823

QA/QC Report

OA/OC Data

June 24, 2020				<u>QA/(</u>	<u> 2C E</u>	<u> Data</u>				SDG I	.D.: 0	GCG16	249
Parameter	Blank	Blk RL	Sample Result	Dup Result	Dup RPD	LCS %	LCSD %	LCS RPD	MS %	MSD %	MS RPD	% Rec Limits	% RPD Limits
QA/QC Batch 534557 (mg/L), Q	C Samp	ole No: (CG16095	(CG162	249)								
Total Cyanide Comment:	BRL	0.010	0.029	0.030	NC	101			104			90 - 110	30
Additional soil criteria LCS accepta	nce ran	ge is 80-	120% MS	acceptan	ce range	75-12	5%.						
QA/QC Batch 534048 (mg/L), Q													
O&G, Non-polar Material Comment:	BRL	1.4	<1.4	<1.4	NC	92.0			89.0			85 - 115	20
Additional: LCS acceptance range	is 85-11	5% MS a	acceptance	e range 7	'5-125%								
QA/QC Batch 534045 (mg/L), Q Oil and Grease by EPA 1664A	C Samp BRL	ole No: (1.4	CG14566 <1.4	(CG162 <1.4	249) NC	96.0			91.0			85 - 115	20
Comment:	75 4050	,											
Additional: MS acceptance range			004/400	(001/0									
QA/QC Batch 534055 (mg/L), Q Total Suspended Solids	C Samp BRL	ole No: (2.5	JG16100 19	18 (CG162	(49) NC	99.0						85 - 115	
QA/QC Batch 534254 (pH), QC						77.0						03 - 113	
pH	Sample	NO. CC	7.74	7.90	2.00	98.8						85 - 115	20
Comment:				,,,,	2.00	70.0							
Additional: LCS acceptance range	is 85-11	5% MS a	acceptance	e range 7	'5-125%								
QA/QC Batch 534002 (mg/L), Q	C Samp	ole No: (CG15845	(CG162	249)								
Chromium, Hexavalent Comment:	BRL	0.01	<0.01	<0.01	NC	103			113			90 - 110	30
Additional Hexavalent Chromium of	riteria: L	CS acce	ptance rar	nge for wa	iters is 9	0-110%	and MS	accepta	nce ran	ge is 85-	115%.		
QA/QC Batch 534360 (mg/L), Q	C Samp	ole No: (CG15506	(CG162	249)								
Chloride	BRL	3.0	18.0	18.6	3.30	98.6			103			90 - 110	20
QA/QC Batch 534065 (mg/L), Q				•)						
Ammonia as Nitrogen	BRL	0.05	<0.10	<0.10	NC	92.7			106			90 - 110	20
QA/QC Batch 534247 (mg/L), Q Phenolics		ole No: (0.015			249) NC	100			103			90 - 110	20
QA/QC Batch 534003 (mg/L), Q	C Samp	ole No: (CG15528	(CG162	249)								
Chlorine Residual	BRL	0.02	< 0.02	<0.02	NC	87.1							

Environmental Laboratories, Inc. 587 East Middle Turnpike, P.O.Box 370, Manchester, CT 06045 Tel. (860) 645-1102 Fax (860) 645-0823

QA/QC Report

June 24, 2020

QA/QC Data

SDG I.D.: GCG16249

Parameter	Blank	Blk RL		LCS %	LCSD %	LCS RPD	MS %	MSD %	MS RPD	% Rec Limits	% RPD Limits
QA/QC Batch 534058 (ug/L), QC	C Samn	le No: CG15904	(CG16249)								
EDB and DBCP Analysis			(0010217)								
1,2-Dibromoethane (EDB)	ND	0.01		94	95	1.1	93	94	1.1	70 - 130	25
QA/QC Batch 534432 (ug/L), QC			(CC16240)	74	73		75	7-7		70 - 130	25
			(CG10249)								
EDB and DBCP Analysis											
1,2-Dibromoethane (EDB)	ND	0.01		101	103	2.0	98	96	2.1	70 - 130	25
QA/QC Batch 533978 (ug/L), QC			(CG16249)								
Polychlorinated Biphenyls	<u> - Gro</u>	<u>und Water</u>									
PCB-1016	ND	0.050		96	99	3.1				40 - 140	20
PCB-1221	ND	0.050								40 - 140	20
PCB-1232	ND	0.050								40 - 140	20
PCB-1242	ND	0.050								40 - 140	20
PCB-1248	ND	0.050								40 - 140	20
PCB-1254	ND	0.050								40 - 140	20
PCB-1260	ND	0.050		107	114	6.3				40 - 140	20
PCB-1262	ND	0.050								40 - 140	20
PCB-1268	ND	0.050		0.4	0.7	4.0				40 - 140	20
% DCBP (Surrogate Rec)	74	%		96	97	1.0				30 - 150	20
% DCBP (Surrogate Rec) (Confirm	63	%		83	82	1.2				30 - 150	20
% TCMX (Surrogate Rec) % TCMX (Surrogate Rec) (Confirm	65 59	% %		103 95	104 95	1.0 0.0				30 - 150 30 - 150	20 20
Comment:	39	70		90	90	0.0				30 - 130	20
	rformod	incteed of a matrix	, aniles and matrix	, anilea de	ınliaata						
A LCS and LCS Duplicate were pe			•	с ѕріке ас	aplicate.						
QA/QC Batch 534161 (ug/L), QC		le No: CG16166	(CG16249)								
Semivolatiles - Ground W	<u>ater</u>										
1,2,4,5-Tetrachlorobenzene	ND	3.5		74	68	8.5				40 - 140	20
1,2,4-Trichlorobenzene	ND	3.5		76	74	2.7				40 - 140	20
1,2-Dichlorobenzene	ND	1.0		66	69	4.4				40 - 140	20
1,2-Diphenylhydrazine	ND	1.6		82	72	13.0				40 - 140	20
1,3-Dichlorobenzene	ND	1.0		66	69	4.4				40 - 140	20
1,4-Dichlorobenzene	ND	1.0		65	68	4.5				40 - 140	20
2,4,5-Trichlorophenol	ND	1.0		95	85	11.1				30 - 130	20
2,4,6-Trichlorophenol	ND	1.0		92	84	9.1				30 - 130	20
2,4-Dichlorophenol	ND	1.0		82	78	5.0				30 - 130	20
2,4-Dimethylphenol 2,4-Dinitrophenol	ND ND	1.0 1.0		84 101	77 94	8.7 7.2				30 - 130 30 - 130	20 20
2,4-Dinitrotoluene	ND ND	3.5		97	94 85	13.2				40 - 140	20
2,4-Dinitrotoluene	ND ND	3.5		97 91	82	10.4				40 - 140	20
2-Chloronaphthalene	ND	3.5		82	75	8.9				40 - 140	20
2-Chlorophenol	ND	1.0		69	71	2.9				30 - 130	20
2-Methylphenol (o-cresol)	ND	1.0		71	73	2.8				30 - 130	20
=				, ,	. 0	0					

SDG I.D.: GCG16249

% % Blk LCS **LCSD** LCS MS MSD **RPD** MS Rec Blank RL % **RPD** % % RPD Limits Limits % Parameter 2-Nitroaniline ND 3.5 127 104 19.9 40 - 140 20 2-Nitrophenol ND 1.0 76 75 1.3 30 - 130 20 30 - 130 3&4-Methylphenol (m&p-cresol) ND 1.0 78 75 3.9 20 3,3'-Dichlorobenzidine ND 5.0 79 55 35.8 40 - 140 20 3-Nitroaniline ND 5.0 112 73 42.2 40 - 140 20 4,6-Dinitro-2-methylphenol ND 1.0 102 94 8.2 30 - 130 20 4-Bromophenyl phenyl ether ND 3.5 86 71 19.1 40 - 140 20 4-Chloro-3-methylphenol ND 1.0 88 81 30 - 130 8.3 20 4-Chloroaniline ND 88 19 129.0 40 - 140 20 3.5 l.r 4-Chlorophenyl phenyl ether ND 1.0 84 71 16.8 40 - 140 20 4-Nitroaniline ND 5.0 93 82 12.6 40 - 140 20 72 ND 1.0 93 25.5 4-Nitrophenol 30 - 130 20 Acetophenone ND 3.5 71 69 2.9 40 - 140 20 ND Aniline 3.5 72 47 42.0 40 - 140 20 Benzidine ND 4.5 94 <10 NC 40 - 140 20 ı Benzoic acid ND 10 81 71 13.2 30 - 130 20 ND 93 Benzyl butyl phthalate 1.5 63 38.5 40 - 140 20 Bis(2-chloroethoxy)methane ND 3.5 80 74 7.8 40 - 140 20 ND 1.0 65 Bis(2-chloroethyl)ether 65 0.0 40 - 140 20 Bis(2-chloroisopropyl)ether ND 1.0 59 58 1.7 40 - 140 20 Bis(2-ethylhexyl)phthalate ND 1.5 94 33 96.1 40 - 140 20 I,r 91 Carbazole ND 5.0 80 12.9 40 - 140 20 ND 3.5 75 Dibenzofuran 84 11.3 40 - 140 20 Diethyl phthalate ND 1.5 90 77 15.6 40 - 140 20 Dimethylphthalate ND 1.5 88 78 12.0 40 - 140 20 ND 89 Di-n-butylphthalate 1.5 68 26.8 40 - 140 20 Di-n-octylphthalate ND 1.5 100 33 100.8 40 - 140 20 l,r ND Hexachloroethane 3.5 67 68 1.5 20 40 - 140 ND 3.5 76 68 Isophorone 11.1 40 - 140 20 N-Nitrosodi-n-propylamine ND 3.5 73 70 4.2 40 - 140 20 N-Nitrosodiphenylamine 91 78 ND 3.5 15.4 40 - 140 20 Pentachloronitrobenzene ND 5.0 59 86 37.2 40 - 140 20 Phenol ND 1.0 66 57 14.6 30 - 130 20 77 74 % 2,4,6-Tribromophenol % 87 12.2 15 - 110 20 % 2-Fluorobiphenyl 72 % 73 66 10.1 30 - 130 20 % 2-Fluorophenol 63 % 57 59 3.4 15 - 110 20 % Nitrobenzene-d5 70 % 64 65 1.6 30 - 130 20 % Phenol-d5 67 % 59 55 7.0 15 - 110 20

A LCS and LCS Duplicate were performed instead of a matrix spike and matrix spike duplicate.

%

Additional 8270 criteria: 10% of compounds can be outside of acceptance criteria as long as recovery is at least 10%. (Acid surrogates acceptance range for aqueous samples: 10-110%, for soils 30-130%)

30

84

94.7

QA/QC Batch 534156 (ug/l), QC Sample No: CG16572 (CG16249)

82

% Terphenyl-d14

Comment:

1,4-dioxane	ND	0.20	91	73	22.0	NC	NC	NC	40 - 140	30
% 1,4-dioxane-d8	68	%	78	68	13.7	74	78	5.3	40 - 140	30
QA/QC Batch 534007 (ug/L), QC	Sampl	e No: CG15375 (CG16249)								
Semivolatiles by SIM, PAH	- Gro	ound Water								
2-Methylnaphthalene	ND	0.50	48	55	13.6				40 - 140	20
Acenaphthene	ND	0.50	65	68	4.5				40 - 140	20

30 - 130

20

SDG I.D.: GCG16249

40 - 140

40 - 140

40 - 140

40 - 140

40 - 140

40 - 140

40 - 140

20

20

20

20

20

20

20

% % Blk **LCSD RPD** LCS LCS MS **MSD** MS Rec Blank RL **RPD** % % RPD Limits Limits % % Parameter ND 0.10 67 70 Acenaphthylene 4.4 40 - 140 20 Anthracene ND 0.10 71 75 5.5 40 - 140 20 Benz(a)anthracene ND 0.05 84 82 2.4 40 - 140 20 86 ND 81 40 - 140 20 Benzo(a)pyrene 0.20 6.0 Benzo(b)fluoranthene ND 0.07 95 87 8.8 40 - 140 20 Benzo(ghi)perylene ND 0.02 64 64 40 - 140 20 0.0 Benzo(k)fluoranthene ND 0.10 67 67 0.0 40 - 140 20 ND 73 70 Chrysene 0.05 4.2 40 - 140 20 Dibenz(a,h)anthracene 77 74 ND 0.02 4.0 40 - 140 20 Fluoranthene ND 0.50 73 76 4.0 40 - 140 20 Fluorene ND 0.10 67 68 1.5 40 - 140 20

72

57

79

78

54

61

74

0.0

21.4

3.9

3.9

7.7

25.9

2.7

72

46

76

75

50

47

72

Additional 8270 criteria: 10% of compounds can be outside of acceptance criteria as long as recovery is at least 10%. (Acid surrogates acceptance range for aqueous samples: 10-110%, for soils 30-130%)

QA/QC Batch 534161 (ug/L), QC Sample No: CG16166 (CG16249)

ND

ND

ND

ND

58

59

77

0.10

0.50

0.06

0.07

%

%

%

Indeno(1,2,3-cd)pyrene

Naphthalene

Phenanthrene

% 2-Fluorobiphenyl

% Nitrobenzene-d5

% Terphenyl-d14

Comment:

Pyrene

Semivolatiles (SIM) - Ground Water 2-Methylnaphthalene ND 0.50 73 65 11.6 40 - 140 20 Acenaphthene ND 0.50 81 70 14.6 40 - 140 20 ND 0.50 83 72 Acenaphthylene 14.2 40 - 140 20 Anthracene ND 0.50 84 70 18.2 40 - 140 20 ND Benz(a)anthracene 0.50 146 65 76.8 40 - 140 20 1,r ND 0.50 96 35 93.1 Benzo(a)pyrene 40 - 140 20 I,r Benzo(b)fluoranthene ND 0.50 110 42 89.5 40 - 140 20 r ND 31 Benzo(ghi)perylene 0.50 87 94.9 40 - 140 20 I,r Benzo(k)fluoranthene ND 0.50 75 28 91.3 40 - 140 20 I,r ND 0.50 121 54 Chrysene 76.6 40 - 140 20 33 Dibenz(a,h)anthracene ND 0.50 101 101.5 40 - 140 20 1,r ND Fluoranthene 0.50 89 32.7 64 40 - 140 20 72 Fluorene ND 0.50 84 15.4 40 - 140 20 Hexachlorobenzene ND 0.50 75 42 56.4 40 - 140 20 Hexachlorobutadiene ND 0.50 82 70 15.8 40 - 140 20 Hexachlorocyclopentadiene ND 0.50 28 30 6.9 40 - 140 20 1 ND 0.50 99 33 100.0 Indeno(1,2,3-cd)pyrene 40 - 140 20 I,r Naphthalene ND 0.50 77 70 9.5 40 - 140 20 Nitrobenzene ND 0.50 77 78 1.3 40 - 140 20 N-Nitrosodimethylamine ND 0.05 49 61 21.8 40 - 140 20 77 Pentachlorophenol ND 0.50 92 17.8 40 - 140 20 ND 93 77 Phenanthrene 0.50 18.8 40 - 140 20 ND 92 Pyrene 0.50 66 32.9 40 - 140 20 **Pyridine** ND 0.50 59 <10 NC 40 - 140 20 ı 73 90 77 % 2,4,6-Tribromophenol % 15.6 15 - 110 20 59 58 % 2-Fluorobiphenyl % 12.9 40 - 140 20 66 % 2-Fluorophenol 62 % 58 60 15 - 110 20 3.4 % Nitrobenzene-d5 71 % 79 73 7.9 40 - 140 20 % Phenol-d5 65 % 64 56 13.3 15 - 110 20

SDG I.D.: GCG16249

% % RPD Blk LCS LCSD LCS MS MSD MS Rec Blank RL % % RPD % % RPD Limits Limits Parameter % Terphenyl-d14 82 91 34 91.2 % 40 - 140 20

Comment:

A LCS and LCS Duplicate were performed instead of a matrix spike and matrix spike duplicate.

Additional 8270 criteria: 10% of compounds can be outside of acceptance criteria as long as recovery is at least 10%. (Acid surrogates acceptance range for aqueous samples: 10-110%, for soils 30-130%)

QA/QC Batch 534487 (ug/L), QC Sample No: CG15615 (CG16249)

Volatiles -	Ground	Water
-------------	--------	-------

Volatiles - Ground Water								
1,1,1,2-Tetrachloroethane	ND	1.0	86	85	1.2	70 -	130	30
1,1,1-Trichloroethane	ND	1.0	85	86	1.2	70 -	130	30
1,1,2,2-Tetrachloroethane	ND	0.50	88	86	2.3	70 -	130	30
1,1,2-Trichloroethane	ND	1.0	80	81	1.2	70 -	130	30
1,1-Dichloroethane	ND	1.0	87	89	2.3	70 -	130	30
1,1-Dichloroethene	ND	1.0	90	92	2.2	70 -	130	30
1,1-Dichloropropene	ND	1.0	84	85	1.2	70 -	130	30
1,2,3-Trichlorobenzene	ND	1.0	84	83	1.2	70 -	130	30
1,2,3-Trichloropropane	ND	1.0	81	81	0.0	70 -	130	30
1,2,4-Trichlorobenzene	ND	1.0	84	81	3.6	70 -	130	30
1,2,4-Trimethylbenzene	ND	1.0	87	87	0.0	70 -	130	30
1,2-Dibromo-3-chloropropane	ND	1.0	94	94	0.0	70 -	130	30
1,2-Dibromoethane	ND	1.0	84	84	0.0	70 -	130	30
1,2-Dichlorobenzene	ND	1.0	83	83	0.0	70 -	130	30
1,2-Dichloroethane	ND	1.0	85	83	2.4	70 -	130	30
1,2-Dichloropropane	ND	1.0	88	88	0.0	70 -	130	30
1,3,5-Trimethylbenzene	ND	1.0	88	88	0.0	70 -	130	30
1,3-Dichlorobenzene	ND	1.0	83	83	0.0	70 -	130	30
1,3-Dichloropropane	ND	1.0	82	83	1.2	70 -	130	30
1,4-Dichlorobenzene	ND	1.0	82	82	0.0	70 -	130	30
2,2-Dichloropropane	ND	1.0	85	86	1.2	70 -	130	30
2-Chlorotoluene	ND	1.0	84	85	1.2	70 -	130	30
2-Hexanone	ND	5.0	91	90	1.1	40 -	160	30
2-Isopropyltoluene	ND	1.0	101	102	1.0	70 -	130	30
4-Chlorotoluene	ND	1.0	82	83	1.2	70 -	130	30
4-Methyl-2-pentanone	ND	5.0	97	93	4.2	40 -	160	30
Acetone	ND	5.0	102	86	17.0	40 -	160	30
Acrylonitrile	ND	5.0	107	106	0.9	70 -	130	30
Benzene	ND	0.70	88	90	2.2	70 -	130	30
Bromobenzene	ND	1.0	84	84	0.0	70 -		30
Bromochloromethane	ND	1.0	83	84	1.2	70 -		30
Bromodichloromethane	ND	0.50	93	91	2.2	70 -		30
Bromoform	ND	1.0	108	107	0.9	70 -		30
Bromomethane	ND	1.0	107	109	1.9	40 -		30
Carbon Disulfide	ND	1.0	122	124	1.6	70 -		30
Carbon tetrachloride	ND	1.0	87	89	2.3	70 -		30
Chlorobenzene	ND	1.0	84	84	0.0	70 -		30
Chloroethane	ND	1.0	111	112	0.9	70 -		30
Chloroform	ND	1.0	82	84	2.4	70 -		30
Chloromethane	ND	1.0	94	95	1.1	40 -		30
cis-1,2-Dichloroethene	ND	1.0	84	86	2.4	70 -		30
cis-1,3-Dichloropropene	ND	0.40	100	103	3.0	70 -		30
Dibromochloromethane	ND	0.50	98	99	1.0	70 -		30
Dibromomethane	ND	1.0	83	81	2.4	70 -		30
Dichlorodifluoromethane	ND	1.0	112	112	0.0	40 -	160	30

SDG I.D.: GCG16249

Parameter	Blank	BIk RL		LCS %	LCSD %	LCS RPD	MS %	MSD %	MS RPD	% Rec Limits	% RPD Limits
Ethylbenzene	ND	1.0		88	90	2.2				70 - 130	30
Hexachlorobutadiene	ND	0.40		92	89	3.3				70 - 130	30
Isopropylbenzene	ND	1.0		86	87	1.2				70 - 130	30
m&p-Xylene	ND	1.0		85	86	1.2				70 - 130	30
Methyl ethyl ketone	ND	5.0		104	109	4.7				40 - 160	30
Methyl t-butyl ether (MTBE)	ND	1.0		97	98	1.0				70 - 130	30
Methylene chloride	ND	1.0		87	89	2.3				70 - 130	30
Naphthalene	ND	1.0		87	84	3.5				70 - 130	30
n-Butylbenzene	ND	1.0		91	92	1.1				70 - 130	30
n-Propylbenzene	ND	1.0		88	89	1.1				70 - 130	30
o-Xylene	ND	1.0		86	88	2.3				70 - 130	30
p-Isopropyltoluene	ND	1.0		91	92	1.1				70 - 130	30
sec-Butylbenzene	ND	1.0		96	95	1.0				70 - 130	30
Styrene	ND	1.0		87	88	1.1				70 - 130	30
tert-Butylbenzene	ND	1.0		88	90	2.2				70 - 130	30
Tetrachloroethene	ND	1.0		80	81	1.2				70 - 130	30
Tetrahydrofuran (THF)	ND	2.5		89	91	2.2				70 - 130	30
Toluene	ND	1.0		86	87	1.2				70 - 130	30
trans-1,2-Dichloroethene	ND	1.0		90	90	0.0				70 - 130	30
trans-1,3-Dichloropropene	ND	0.40		83	83	0.0				70 - 130	30
trans-1,4-dichloro-2-butene	ND	5.0		116	114	1.7				70 - 130	30
Trichloroethene	ND	1.0		81	83	2.4				70 - 130	30
Trichlorofluoromethane	ND	1.0		103	103	0.0				70 - 130	30
Trichlorotrifluoroethane	ND	1.0		92	92	0.0				70 - 130	30
Vinyl chloride	ND	1.0		108	109	0.9				70 - 130	30
% 1,2-dichlorobenzene-d4	97	%		101	100	1.0				70 - 130	30
% Bromofluorobenzene	96	%		103	103	0.0				70 - 130	30
% Dibromofluoromethane	98	%		94	94	0.0				70 - 130	30
% Toluene-d8 Comment:	95	%		101	101	0.0				70 - 130	30
A LCS and LCS Duplicate were	performed	instead of a matrix	x spike and matrix	spike dı	uplicate.						
Additional 8260 criteria: 10% of QA/QC Batch 534484 (ug/L),	•		-	ria as Ior	ng as rec	overy is	10%.				

Oxygenates - Ground Water

Ethanol	ND	200	130	125	3.9	147	125	16.2	70 - 130	30	m
tert-amyl methyl ether	ND	10	105	104	1.0	99	110	10.5	70 - 130	30	
tert-butyl alcohol	ND	25	99	105	5.9	106	101	4.8	70 - 130	30	
Comment:											

A blank MS/MSD was analyzed with this batch.

If there are any questions regarding this data, please call Phoenix Client Services at extension 200.

RPD - Relative Percent Difference

LCS - Laboratory Control Sample

LCSD - Laboratory Control Sample Duplicate

MS - Matrix Spike

MS Dup - Matrix Spike Duplicate

NC - No Criteria

Intf - Interference

Phyllis/Shiller, Laboratory Director

June 24, 2020

I = This parameter is outside laboratory LCS/LCSD specified recovery limits.
m = This parameter is outside laboratory MS/MSD specified recovery limits.
r = This parameter is outside laboratory RPD specified recovery limits.

Wednesday, June 24, 2020

Sample Criteria Exceedances Report GCG16249 - GZA-MA

Criteria: MA: S1 State: MA

RL Analysis SampNo Acode Phoenix Analyte Criteria Result RL Criteria Units

Phoenix Laboratories does not assume responsibility for the data contained in this exceedance report. It is provided as an additional tool to identify requested criteria exceedences. All efforts are made to ensure the accuracy of the data (obtained from appropriate agencies). A lack of exceedence information does not necessarily suggest conformance to the criteria. It is ultimately the site professional's responsibility to determine appropriate compliance.

^{***} No Data to Display ***

		Ма	ssDE	P Analyt	ical P	rotocol Ce	rtific	ation Forn	n		
Labo	ratory Na	ame: Phoe	nix En	vironmenta	l Labora	atories, Inc.	Proje	ect #:			
Proje	ect Locati	ion: RUS	ГCRАF	TRD			RTN:				
This F	orm provid	les certificati	ons for	the following	data set	: [list Laborato	ry San	nple ID Number	(s)]		
CG162	249, CG162	50									
Matric	es: 🗸 Gro	oundwater/Sur	face Wa	ter Soil	/Sedimen	t Drinkin	g Wate	r 🗌 Air	_ o	ther:	
CAM	Protocol (check all th	at app	y below)							
8260 V CAM II		7470/7471 H CAM III B	g ✓	MassDEP VF CAM IV A	PH	8081 Pesticides CAM V B		7196 Hex Cr CAM VI B		MassD CAM IX	EP APH (A 📗
8270 S CAM II		7010 Metals CAM III C		MassDEP EF CAM IV B	РН	8151 Herbicide CAM V C	s	8330 Explosives CAM VIII A		TO-15 CAM IX	
6010 M CAM II		6020 Metals CAM III D		8082 PCB CAM V A		9012 Total Cyanide/PAC CAM V1 A		6860 Perchlorat CAM VIII B	e		
	Affirmat	ive respons	es to q	uestions A	through	F are require	d for	"Presumptive	Certai	inty" s	tatus
Α	Chain-of-0	Custody, pro	perly p	reserved (in	cluding to	nt with those on emperature*) in the policy of the policy	n the f	ield or		Yes	☑ No
В		analytical m CAM protoco			sociated	QC requireme	nts sp	ecified in the	✓	Yes	□ No
С		CAM protoco				l response act atified performa			✓ ,	Yes	□No
D	CAM VII A		ssuranc	e and Quali		orting requiren ol Guidelines f			✓,	Yes	□No
E a. VPH, EPH, and APH Methods only: Was each method conducted without significant modification(s)? (refer to the individual method(s) for a list of significant											
	modifications). b. APH and TO-15 methods only: Was the complete analyte list reported for each method?										
F	F Were all applicable CAM protocol QC and performance standard non-conformances identified and evaluated in a laboratory narrative (including all "No" responses to Questions A through E)? ✓ Yes □ No										
Responses to questions G, H and I below is required for "Presumptive Certainty" status											
G											
	Data User Note: Data that achieve "Presumptive Certainty" status may not necessarily meet the data usability and representativeness requirements described in 310 CMR 40. 1056(2)(k) and WSC-07-350										
Н		QC performa ons: SVOA,				he CAM proto	col(s) a	achieved?		Yes	✓ No
l	Were resu protocol(s	s)?				t specified in th				Yes	✓ No
respor	nsible for o	d, attest unde	r the pa	ins and pen	alties of p	perjury that, bas	sed up	nboratory narrativon my personal report is, to the	inqui		
							ate: \	Wednesday, J	lune 2	24, 202	20
	orized	Rw	المدراد	i Nock	ما			Rashmi Mako			
Sign	ature: -	. 😘	. , ,,,,,,		~	– Posi	tion: F	Project Manag	ger		

587 East Middle Turnpike, P.O.Box 370, Manchester, CT 06045 Tel. (860) 645-1102 Fax (860) 645-0823

MCP Certification Report

June 24, 2020 SDG I.D.: GCG16249

SDG Comments

Metals Analysis:

The client requested a site specific list of elements which is shorter than the 6010 MCP list.

504.1

Were all QA/QC performance criteria specified in the MADEP document CAM achieved? Yes.

Instrument:

CHEM35 06/19/20-1

Chelsey Guerette, Chemist 06/19/20

CG16249 (1X)

The initial calibration (CHEM35/504tcp_0616): RSD for the compound list was less than 20% except for the following compounds: None.

The continuing calibration %D for the compound list was less than 15% except for the following compounds:None.

QC (Batch Specific):

Batch 534058 (CG15904)

CG16249

All LCS recoveries were within 70 - 130 with the following exceptions: None.

All LCSD recoveries were within 70 - 130 with the following exceptions: None.

All LCS/LCSD RPDs were less than 25% with the following exceptions: None.

Batch 534432 (CG17807)

CG16249

All LCS recoveries were within 70 - 130 with the following exceptions: None.

All LCSD recoveries were within 70 - 130 with the following exceptions: None.

All LCS/LCSD RPDs were less than 25% with the following exceptions: None.

I attest under the pains and penalties of perjury that, based upon my inquiry of those individuals immediately responsible for obtaining the information, the material contained in this report is, to the best of my knowledge and belief, accurate and complete.

Cyanide Narration

Were all QA/QC performance criteria specified in the MADEP document CAM achieved? Yes.

Instrument:

LACHAT 06/23/20-1

Dustin Harrison, Greg Danielewski, Chemist 06/23/20

CG16249

The samples were distilled in accordance with the method.

The initial calibration met criteria.

The calibration check standards (ICV,CCV) were within 15% of true value and were analyzed at a frequencey of one per ten samples.

The continuing calibration blanks (ICB,CCB) had concentrations less than the reporting level.

The method blank, laboratory control sample (LCS), and matrix spike were distilled with the samples.

587 East Middle Turnpike, P.O.Box 370, Manchester, CT 06045 Tel. (860) 645-1102 Fax (860) 645-0823

MCP Certification Report

June 24, 2020 SDG I.D.: GCG16249

Cyanide Narration

QC (Batch Specific):

Batch 534557 (CG16095)

CG16249

All LCS recoveries were within 90 - 110 with the following exceptions: None.

Additional soil criteria LCS acceptance range is 80-120% MS acceptance range 75-125%.

I attest under the pains and penalties of perjury that, based upon my inquiry of those individuals immediately responsible for obtaining the information, the material contained in this report is, to the best of my knowledge and belief, accurate and complete.

Hexavalent Chromium (Aqueous)

Were all QA/QC performance criteria specified in the MADEP document CAM achieved? Yes.

Instrument:

BECKMAN DU720 06/17/20-1 Dustin Harrison, Chemist 06/17/20

CG16249

The initial calibration met all criteria including a standard run at the reporting level.

All calibration verification standards (ICV, CCV) met criteria.

All calibration blank verification standards (ICB, CCB) met criteria.

QC (Batch Specific):

Batch 534002 (CG15845)

CG16249

All LCS recoveries were within 90 - 110 with the following exceptions: None.

Additional Hexavalent Chromium criteria: LCS acceptance range for waters is 90-110% and MS acceptance range is 85-115%.

I attest under the pains and penalties of perjury that, based upon my inquiry of those individuals immediately responsible for obtaining the information, the material contained in this report is, to the best of my knowledge and belief, accurate and complete.

Mercury Narration

Were all QA/QC performance criteria specified in the analytical method achieved? Yes.

Instrument:

MERLIN 06/18/20 07:25 Rick Schweitzer, Chemist 06/18/20

CG16249, CG16250

The method preparation blank, ICB, and CCBs contain all of the acids and reagents as the samples.

The initial calibration met all criteria including a standard run at or below the reporting level.

All calibration verification standards (ICV, CCV) met criteria.

All calibration blank verification standards (ICB, CCB) met criteria.

The matrix spike sample is used to identify spectral interference for each batch of samples, if within 85-115%, no interference is observed and no further action is taken.

The following Initial Calibration Verification (ICV) compounds did not meet criteria: None.

The following Continuing Calibration Verification (CCV) compounds did not meet criteria: None.

587 East Middle Turnpike, P.O.Box 370, Manchester, CT 06045 Tel. (860) 645-1102 Fax (860) 645-0823

Certification Report

June 24, 2020 SDG I.D.: GCG16249

Mercury Narration

QC (Batch Specific):

Batch 534066 (CG15592)

CG16249, CG16250

All LCS recoveries were within 75 - 125 with the following exceptions: None.

Additional Mercury criteria: LCS acceptance range for waters is 80-120% and for soils is 75-125%

ICP Metals Narration

Were all QA/QC performance criteria specified in the analytical method achieved? Yes.

Instrument:

BLUE 06/18/20 08:51

Tina Hall, Chemist 06/18/20

CG16249, CG16250

The initial calibration met criteria.

The continuing calibration standards met criteria for all the elements reported. The linear range is defined daily by the calibration range.

The continuing calibration blanks were less than the reporting level for the elements reported.

The ICSA and ICSAB were analyzed at the beginning and end of the run and were within criteria. The linear range is defined daily by the calibration range.

The following Initial Calibration Verification (ICV) compounds did not meet criteria: None.

The following Continuing Calibration Verification (CCV) compounds did not meet criteria: None.

The following ICP Interference Check (ICSAB) compounds did not meet criteria: None.

QC (Batch Specific):

Batch 533991 (CG15898)

CG16249, CG16250

All LCS recoveries were within 80 - 120 with the following exceptions: None.

All LCSD recoveries were within 80 - 120 with the following exceptions: None.

All LCS/LCSD RPDs were less than 20% with the following exceptions: None.

Additional: LCS acceptance range is 80-120% MS acceptance range 75-125%.

LACHAT

Were all QA/QC performance criteria specified in the MADEP document CAM achieved? Yes.

Instrument:

LACHAT 06/19/20-1

Thomas Budz, Chemist 06/19/20

CG16249

The initial calibration met all criteria including a standard run at the reporting level.

All method verification standards and blanks met criteria.

QC (Batch Specific):

Batch 534360 (CG15506)

CG16249

587 East Middle Turnpike, P.O.Box 370, Manchester, CT 06045 Tel. (860) 645-1102 Fax (860) 645-0823

MCP Certification Report

June 24, 2020 SDG I.D.: GCG16249

LACHAT

All LCS recoveries were within 90 - 110 with the following exceptions: None.

I attest under the pains and penalties of perjury that, based upon my inquiry of those individuals immediately responsible for obtaining the information, the material contained in this report is, to the best of my knowledge and belief, accurate and complete.

NITROGEN

Were all QA/QC performance criteria specified in the MADEP document CAM achieved? Yes.

Instrument:

LACHAT 06/19/20-1 Kandi Della Bella, Chemist 06/19/20

CG16249, CG16250

The initial calibration met all criteria including a standard run at the reporting level.

All method verification standards and blanks met criteria.

QC (Batch Specific):

Batch 534065 (CG14231)

CG16249, CG16250

All LCS recoveries were within 85 - 115 with the following exceptions: None.

Additional criteria: LCS acceptance range for waters is 85-115% and for soils is 75-125%. MS acceptance range is 75-125%.

I attest under the pains and penalties of perjury that, based upon my inquiry of those individuals immediately responsible for obtaining the information, the material contained in this report is, to the best of my knowledge and belief, accurate and complete.

PCB Narration

Were all QA/QC performance criteria specified in the MADEP document CAM achieved? Yes.

Instrument:

<u>AU-ECD8 06/18/20-1</u> Saadia Chudary, Chemist 06/18/20

CG16249 (1X)

The initial calibration (PC601Al) RSD for the compound list was less than 20% except for the following compounds: None. The initial calibration (PC601Bl) RSD for the compound list was less than 20% except for the following compounds: None.

The continuing calibration %D for the compound list was less than 15% except for the following compounds:None.

QC (Batch Specific):

Batch 533978 (CG13924)

CG16249

All LCS recoveries were within 40 - 140 with the following exceptions: None.

All LCSD recoveries were within 40 - 140 with the following exceptions: None.

All LCS/LCSD RPDs were less than 20% with the following exceptions: None.

A LCS and LCS Duplicate were performed instead of a matrix spike and matrix spike duplicate.

I attest under the pains and papalties of perium that based upon my inquiry of these individuals immediately responsible for

587 East Middle Turnpike, P.O.Box 370, Manchester, CT 06045 Tel. (860) 645-1102 Fax (860) 645-0823

MCP Certification Report

June 24, 2020 SDG I.D.: GCG16249

PCB Narration

obtaining the information, the material contained in this report is, to the best of my knowledge and belief, accurate and complete.

PHENOLS

Were all QA/QC performance criteria specified in the MADEP document CAM achieved? Yes.

Instrument:

LACHAT 06/22/20-1

CG16249

The initial calibration met all criteria including a standard run at the reporting level.

All method verification standards and blanks met criteria.

QC (Batch Specific):

Batch 534247 (CG16069)

CG16249

All LCS recoveries were within 90 - 110 with the following exceptions: None.

I attest under the pains and penalties of perjury that, based upon my inquiry of those individuals immediately responsible for obtaining the information, the material contained in this report is, to the best of my knowledge and belief, accurate and complete.

SVOA Narration

Were all QA/QC performance criteria specified in the MADEP document CAM achieved? No.

QC Batch 534161 (Samples: CG16249): ----

The LCS and/or the LCSD recovery is below the method criteria. All of the other QC is acceptable, therefore no significant bias is suspected. (4-Chloroaniline, Benzidine, Bis(2-ethylhexyl)phthalate, Di-n-octylphthalate)

The LCS/LCSD RPD exceeds the method criteria for one or more analytes, but these analytes were not reported in the sample(s) so no variability is suspected. (3,3"-Dichlorobenzidine, 3-Nitroaniline, 4-Chloroaniline, 4-Nitrophenol, Aniline, Benzyl butyl phthalate, Bis(2-ethylhexyl)phthalate, Di-n-butylphthalate, Di-n-octylphthalate, Pentachloronitrobenzene)

The LCS/LCSD RPD exceeds the method criteria for one or more surrogates, therefore there may be variability in the reported result. (% Terphenyl-d14)

Instrument:

CHEM07 06/22/20-1

Wes Bryon, Chemist 06/22/20

CG16249 (1X)

For 8270 full list, the DDT breakdown and pentachlorophenol & benzidine peak tailing were evaluated in the DFTPP tune and were found to be in control.

For 8270 BN list, benzidine peak tailing was evaluated in the DFTPP tune and was found to be in control.

Initial Calibration Evaluation (CHEM07/7_SPLIT_0612):

100% of target compounds met criteria.

587 East Middle Turnpike, P.O.Box 370, Manchester, CT 06045 Tel. (860) 645-1102 Fax (860) 645-0823

MCP Certification Report

June 24, 2020 SDG I.D.: GCG16249

SVOA Narration

The following compounds had %RSDs >20%: None.

The following compounds did not meet recommended response factors: 2-Nitrophenol 0.067 (0.1)

The following compounds did not meet a minimum response factors: None.

Continuing Calibration Verification (CHEM07/0622_03-7_SPLIT_0612) (MCP Compliance):

Internal standard areas were within 50 to 200% of the initial calibration with the following exceptions: None.

99% of target compounds met criteria.

The following compounds did not meet % deviation criteria: None.

The following compounds did not meet maximum % deviations: None.

The following compounds did not meet recommended response factors: 2-Nitrophenol 0.066 (0.1)

The following compounds did not meet minimum response factors: None.

QC (Batch Specific):

Batch 534161 (CG16166)

CG16249

All LCS recoveries were within 40 - 140 with the following exceptions: None.

All LCSD recoveries were within 40 - 140 with the following exceptions: 4-Chloroaniline(19%), Benzidine(<10%), Bis(2-ethylhexyl)phthalate(33%), Di-n-octylphthalate(33%)

All LCS/LCSD RPDs were less than 20% with the following exceptions: % Terphenyl-d14(94.7%), 3,3'-Dichlorobenzidine(35.8%), 3-Nitroaniline(42.2%), 4-Chloroaniline(129.0%), 4-Nitrophenol(25.5%), Aniline(42.0%), Benzyl butyl phthalate(38.5%), Bis(2-ethylhexyl)phthalate(96.1%), Di-n-butylphthalate(26.8%), Di-n-octylphthalate(100.8%), Pentachloronitrobenzene(37.2%)

A LCS and LCS Duplicate were performed instead of a matrix spike and matrix spike duplicate.

Additional 8270 criteria: 10% of compounds can be outside of acceptance criteria as long as recovery is at least 10%. (Acid surrogates acceptance range for aqueous samples: 10-110%, for soils 30-130%)

I attest under the pains and penalties of perjury that, based upon my inquiry of those individuals immediately responsible for obtaining the information, the material contained in this report is, to the best of my knowledge and belief, accurate and complete.

SVOA-Dioxane

Were all QA/QC performance criteria specified in the MADEP document CAM achieved? Yes.

Instrument:

CHEM22 06/19/20-1

Adam Werner, Chemist 06/19/20

CG16249 (1X)

Initial Calibration Evaluation (CHEM22/DIOX_0303):

100% of target compounds met criteria.

The following compounds had %RSDs >20%: None.

The following compounds did not meet recommended response factors: None.

The following compounds did not meet a minimum response factors: None.

Continuing Calibration Verification (CHEM22/0619 04-DIOX 0303) (MCP Compliance):

Internal standard areas were within 50 to 200% of the initial calibration with the following exceptions: None.

100% of target compounds met criteria.

The following compounds did not meet % deviation criteria: None.

The following compounds did not meet maximum % deviations: None.

The following compounds did not meet recommended response factors: None.

587 East Middle Turnpike, P.O.Box 370, Manchester, CT 06045 Tel. (860) 645-1102 Fax (860) 645-0823

MCP Certification Report

June 24, 2020 SDG I.D.: GCG16249

SVOA-Dioxane

The following compounds did not meet minimum response factors: None.

QC (Batch Specific):

Batch 534156 (CG16572)

CG16249

All LCS recoveries were within 40 - 140 with the following exceptions: None. All LCSD recoveries were within 40 - 140 with the following exceptions: None. All LCS/LCSD RPDs were less than 30% with the following exceptions: None.

I attest under the pains and penalties of perjury that, based upon my inquiry of those individuals immediately responsible for obtaining the information, the material contained in this report is, to the best of my knowledge and belief, accurate and complete.

SVOASIM Narration

587 East Middle Turnpike, P.O.Box 370, Manchester, CT 06045 Tel. (860) 645-1102 Fax (860) 645-0823

MCP Certification Report

June 24, 2020 SDG I.D.: GCG16249

SVOASIM Narration

Were all QA/QC performance criteria specified in the MADEP document CAM achieved? No.

QC Batch 534007 (Samples: CG16249): -----

The LCS/LCSD RPD exceeds the method criteria for one or more analytes, but these analytes were not reported in the sample(s) so no variability is suspected. (Naphthalene)

The LCS/LCSD RPD exceeds the method criteria for one or more surrogates, therefore there may be variability in the reported result. (% Nitrobenzene-d5)

QC Batch 534161 (Samples: CG16249): -----

One or more analytes is below the method criteria. A low bias for these analytes is possible. (Hexachlorocyclopentadiene)

One or more surrogates is outside of criteria. (% Terphenyl-d14)

The LCS and/or the LCSD recovery is above the upper range for one or more analytes that were not reported in the sample(s), therefore no significant bias is suspected. (Benz(a)anthracene)

The LCS and/or the LCSD recovery is below the method criteria. All of the other QC is acceptable, therefore no significant bias is suspected. (Benzo(a)pyrene, Benzo(ghi)perylene, Benzo(k)fluoranthene, Dibenz(a,h)anthracene, Indeno(1,2,3-cd)pyrene, Pyridine)

The LCS/LCSD RPD exceeds the method criteria for one or more analytes, but these analytes were not reported in the sample(s) so no variability is suspected. (Benz(a)anthracene, Benzo(a)pyrene, Benzo(b)fluoranthene, Benzo(b)fluoranthene, Dibenz(a,h)anthracene, Fluoranthene, Hexachlorobenzene, Indeno(1,2,3-cd)pyrene, N-Nitrosodimethylamine)

The LCS/LCSD RPD exceeds the method criteria for one or more analytes, therefore there may be variability in the reported result. (Benzo(ghi)perylene, Chrysene, Pyrene)

The LCS/LCSD RPD exceeds the method criteria for one or more surrogates, therefore there may be variability in the reported result. (% Terphenyl-d14)

Instrument:

<u>CHEM27 06/21/20-1</u> Matt Richard, Chemist 06/21/20

CG16249 (1X)

For 8270 BN list, benzidine peak tailing was evaluated in the DFTPP tune and was found to be in control.

Initial Calibration Evaluation (CHEM27/27 SIM18 0604):

100% of target compounds met criteria.

The following compounds had %RSDs >20%: None.

The following compounds did not meet recommended response factors: None.

The following compounds did not meet a minimum response factors: None.

Continuing Calibration Verification (CHEM27/0621 03-27 SIM18 0604) (MCP Compliance):

Internal standard areas were within 50 to 200% of the initial calibration with the following exceptions: None.

587 East Middle Turnpike, P.O.Box 370, Manchester, CT 06045 Tel. (860) 645-1102 Fax (860) 645-0823

MCP Certification Report

June 24, 2020 SDG I.D.: GCG16249

SVOASIM Narration

94% of target compounds met criteria.

The following compounds did not meet % deviation criteria: None.

The following compounds did not meet maximum % deviations: None.

The following compounds did not meet recommended response factors: None.

The following compounds did not meet minimum response factors: None.

QC (Batch Specific):

Batch 534007 (CG15375)

CG16249

All LCS recoveries were within 40 - 140 with the following exceptions: None.

All LCSD recoveries were within 40 - 140 with the following exceptions: None.

All LCS/LCSD RPDs were less than 20% with the following exceptions: % Nitrobenzene-d5(25.9%), Naphthalene(21.4%) Additional 8270 criteria: 10% of compounds can be outside of acceptance criteria as long as recovery is at least 10%. (Acid surrogates acceptance range for aqueous samples: 10-110%, for soils 30-130%)

Batch 534161 (CG16166)

CG16249

All LCS recoveries were within 40 - 140 with the following exceptions: Benz(a)anthracene(146%), Hexachlorocyclopentadiene(28%)

All LCSD recoveries were within 40 - 140 with the following exceptions: % Terphenyl-d14(34%), Benzo(a)pyrene(35%), Benzo(ghi)perylene(31%), Benzo(k)fluoranthene(28%), Dibenz(a,h)anthracene(33%), Hexachlorocyclopentadiene(30%), Indeno(1,2,3-cd)pyrene(33%), Pyridine(<10%)

All LCS/LCSD RPDs were less than 20% with the following exceptions: % Terphenyl-d14(91.2%), Benz(a)anthracene(76.8%), Benzo(a)pyrene(93.1%), Benzo(b)fluoranthene(89.5%), Benzo(ghi)perylene(94.9%), Benzo(k)fluoranthene(91.3%), Chrysene(76.6%), Dibenz(a,h)anthracene(101.5%), Fluoranthene(32.7%), Hexachlorobenzene(56.4%), Indeno(1,2,3-cd)pyrene(100.0%), N-Nitrosodimethylamine(21.8%), Pyrene(32.9%)

A LCS and LCS Duplicate were performed instead of a matrix spike and matrix spike duplicate.

Additional 8270 criteria: 10% of compounds can be outside of acceptance criteria as long as recovery is at least 10%. (Acid surrogates acceptance range for aqueous samples: 10-110%, for soils 30-130%)

I attest under the pains and penalties of perjury that, based upon my inquiry of those individuals immediately responsible for obtaining the information, the material contained in this report is, to the best of my knowledge and belief, accurate and complete.

VOA Narration

Were all QA/QC performance criteria specified in the MADEP document CAM achieved? Yes.

Instrument:

CHEM17 06/19/20-1

Michael Hahn, Chemist 06/19/20

CG16249 (1X)

Chem 17 is a 25ml purge instrument. The laboratory minimum response factor is set at 0.01 instead of 0.05 for the 25ml purge instruments.

EPA method 8260D Table 4 supports this approach.

Initial Calibration Evaluation (CHEM17/VT-061820):

94% of target compounds met criteria.

The following compounds had %RSDs >20%: 1,2-Dibromo-3-chloropropane 33% (20%), Acetone 32% (20%), Bromoform 27%

587 East Middle Turnpike, P.O.Box 370, Manchester, CT 06045 Tel. (860) 645-1102 Fax (860) 645-0823

MCP Certification Report

June 24, 2020 SDG I.D.: GCG16249

VOA Narration

(20%), Tetrahydrofuran (THF) 27% (20%), trans-1,4-dichloro-2-butene 23% (20%)

The following compounds did not meet Table 4 recommended minimum response factors: 1,2-Dibromo-3-chloropropane 0.030 (0.05), 2-Hexanone 0.055 (0.1), 4-Methyl-2-pentanone 0.059 (0.1), Acetone 0.030 (0.1), Acrylonitrile 0.033 (0.05), Bromoform 0.062 (0.1), Methyl ethyl ketone 0.035 (0.1), Tetrachloroethene 0.188 (0.2), Tetrahydrofuran (THF) 0.025 (0.05), trans-1,4-dichloro-2-butene 0.046 (0.05)

The following compounds did not meet the minimum response factor of 0.05: 1,2-Dibromo-3-chloropropane 0.030 (0.05), Acetone 0.030 (0.05), Acrylonitrile 0.033 (0.05), Methyl ethyl ketone 0.035 (0.05), Tetrahydrofuran (THF) 0.025 (0.05), trans-1,4-dichloro-2-butene 0.046 (0.05)

Continuing Calibration Verification (CHEM17/0619 02-VT-061820) (MCP Compliance):

Internal standard areas were within 50 to 200% of the initial calibration with the following exceptions: None.

99% of target compounds met criteria.

The following compounds did not meet % deviation criteria: None.

The following compounds did not meet maximum % deviations: None.

The following compounds did not meet Table 4 recommended minimum response factors: 1,1,2,2-Tetrachloroethane 0.281 (0.3), 1,2-Dibromo-3-chloropropane 0.030 (0.05), 2-Hexanone 0.049 (0.1), 4-Methyl-2-pentanone 0.057 (0.1), Acetone 0.024 (0.1), Acrylonitrile 0.035 (0.05), Bromoform 0.079 (0.1), Methyl ethyl ketone 0.033 (0.1), Tetrachloroethene 0.175 (0.2), Tetrahydrofuran (THF) 0.021 (0.05), trans-1,4-dichloro-2-butene 0.045 (0.05)

The following compounds did not meet the minimum MCP response factor of 0.05: 1,2-Dibromo-3-chloropropane 0.030 (0.05), 2-Hexanone 0.055 (0.05), Acetone 0.030 (0.05), Acrylonitrile 0.033 (0.05), Methyl ethyl ketone 0.035 (0.05), Tetrahydrofuran (THF) 0.025 (0.05), trans-1,4-dichloro-2-butene 0.046 (0.05)

QC (Batch Specific):

Batch 534487 (CG15615) CHEM17 6/19/2020-1

CG16249(1X)

All LCS recoveries were within 70 - 130 with the following exceptions: None.

All LCSD recoveries were within 70 - 130 with the following exceptions: None.

All LCS/LCSD RPDs were less than 30% with the following exceptions: None.

A LCS and LCS Duplicate were performed instead of a matrix spike and matrix spike duplicate.

Additional 8260 criteria: 10% of compounds can be outside of acceptance criteria as long as recovery is 10%.

I attest under the pains and penalties of perjury that, based upon my inquiry of those individuals immediately responsible for obtaining the information, the material contained in this report is, to the best of my knowledge and belief, accurate and complete.

VOA-OXY Narration

Were all QA/QC performance criteria specified in the MADEP document CAM achieved? Yes.

Instrument:

CHEM17 06/19/20-1 Michael Hahn, Chemist 06/19/20

CG16249 (1X)

Initial Calibration Evaluation (CHEM17/OXY061820):

90% of target compounds met criteria.

The following compounds had %RSDs >20%: Ethanol 30% (20%)

The following compounds did not meet recommended response factors: None.

The following compounds did not meet a minimum response factors: None.

587 East Middle Turnpike, P.O.Box 370, Manchester, CT 06045 Tel. (860) 645-1102 Fax (860) 645-0823

MCP Certification Report

June 24, 2020 SDG I.D.: GCG16249

VOA-OXY Narration

Continuing Calibration Verification (CHEM17/0619 02-OXY061820) (MCP Compliance):

Internal standard areas were within 50 to 200% of the initial calibration with the following exceptions: None.

100% of target compounds met criteria.

The following compounds did not meet % deviation criteria: None.

The following compounds did not meet maximum % deviations: None.

The following compounds did not meet recommended response factors: None.

The following compounds did not meet minimum response factors: None.

QC (Batch Specific):

Batch 534484 (CG16249) CHEM17 6/19/2020-1

CG16249(1X)

All LCS recoveries were within 70 - 130 with the following exceptions: None.

All LCSD recoveries were within 70 - 130 with the following exceptions: None.

All LCS/LCSD RPDs were less than 30% with the following exceptions: None.

A blank MS/MSD was analyzed with this batch.

I attest under the pains and penalties of perjury that, based upon my inquiry of those individuals immediately responsible for obtaining the information, the material contained in this report is, to the best of my knowledge and belief, accurate and complete.

Holem Surdersyas Octob. (Co) SURCHARGE APPLIES This section MUST be Phoenix Std Report er: Yes No Tier II Checklist
Full Data Package' <u>ت</u> ة Bottle Quantities. completed with Data Delivery/Contact Options: Data Package Data Format

K Excel

PDF

GIS/Kev GIS/Key Pg EQUIS Other ç Q Ā. K 8-1 GW-1 S-1 GW-2 S-1 GW-3 S-2 GW-1 S-2 GW-2 S-2 GW-3 S-3 GW-1 S-3 GW-2 S-3 GW-3 Project P.O: ■ MWRA eSMART Coolant Temp RUSHUALLY FOR 174659 Pro ANOM SWEDLYSDAS AND MADEMUK Phone: Email: State where samples were collected: MA MCP Certification SW Protection ☐ GW-1 GW-2 37477 Silver in TO AND Residential DEC 587 East Middle Turnpike, P.O. Box 370, Manchester, CT 06040 SW Protection GW Protection GA Mobility **GB** Mobility ☐ RCP Cert Fax (860) 645-0823 I/O DEC CHAIN OF CUSTODY RECORD Client Services (860) 645-8726 DIJI SSMOOTH Comm/Industrial GB Leachability メメメメア GA Leachability Direct Exposure Direct Exposure GA-GW Objectives (Residential) Objectives GB-GW Email: info@phoenixlabs.com Report to: Invoice to: QUOTE# Project: Analysis Request 300 1.5 * SURCHARGE APPLIES Comments, Special Requirements or Regulations:

Mekals: An himany, Arsenic, Calminalli +1V Turnsround Time: x 01.00 algore Standard 1 Day*
2 Days*
3 Days*
K Standard 2/20 5v |*aliata*| 9.45| Time 0/10 Date: Matrix Code:

DW=Drinking Water GW=Ground Water SW=Surface Water WW=Waste Water RW=Raw Water SE=Sediment SL=Sludge S=Soil SD=Soild W=Wipe OIL=Oil B=Bulk L=Liquid X = _____(Other) Date: copper, lead, Meding, NICKEL, SHENIUM, Date 6-17 GOODY, COUNTYHAI tion - Identification Sample Matrix ₹ W Norwood, M.A. 03000 Environmental Laboratories, Inc. ccepted by: Customer Sample Identification Siver, ZMC, Iran 401-187 1-XX PHOENIX USE ONLY SAMPLE # Customer: 57791 Address: (67,50 Sampler's Signature

Appendix IV – Part 1 – NOI Page_18 of 24 – 21 of H

MAG910000 NHG910000 4. Influent and Effluent Characteristics

WQBEL 1 i ì ł ; 1 Effluent Limitations 1,450 µg/L Report mg/L Report µg/l $0.739~\mu g/L$ 35.1 µg/L 10.2 µg/L 5,000 µg/L 235.8 µg/L 420 µg/L 323 µg/l. 323 µg/L 242 µg/l. 1,080 µg/l. 0.2 mg/L 30 mg/l. 104 µg/L 160 µg/L 5.0 µg/L 200 µg/L 7.97 mg/L 178 mg/L 100 µg/L 206 µg/l. TBEL Daily average (µg/l) Influent Daily maximum (µg/l) Detection limit (µg/l) Test method € samples believed present Known or believed absent Known B. Non-Halogenated VOCs Total Residual Chlorine Total Suspended Solids Parameter A. Inorganics Chromium VI Chromium III Total BTEX 1,4 Dioxane Cadmium Ammonia Antimony Mercury Selenium Cyanide Chloride Benzene Copper Acetone Arsenic Nickel Phenol Silver Lead Zinc iron

GC6 16249

MAG910000 NHG910000

Appendix IV - Part I - NOI - Page 19 of 24 - 3CC 4

	Known	Known				Inf	Influent	Effluent Limitations	nitations
Parameter	or believed absent	or believed present	# of samples	Test method (#)	Detection limit (μg/l)	Daily maximum (µg/l)	Daily average (µg∕l)	TBEL	WQBEL
C. Halogenated VOCs									
Carbon Tetrachloride								4.4 µg/L	
1,2 Dichlorobenzene								7/8n 009	1
1,3 Dichlorobenzene								320 µg/l.	1
1,4 Dichlorobenzene								5.0 µg/L	i
Total dichlorobenzene								763 µg/L, in NH	1
1,1 Dichloroethane								70 µg/L	1
1,2 Dichloroethane								5.0 µg/l.	í
1,1 Dichloroethylene								3.2 µg/L	1
Ethylene Dibromide								0.05 µg/L	i
Methylene Chloride								4.6 µg/L	ì
1,1,1 Trichloroethane								200 µg/L	:
1,1,2 Trichloroethane								5.0 µg/L	
Trichlorocthylene								5.0 µg/L	
Tetrachloroethylene								5.0 µg/l.	
cis-1,2 Dichloroethylene								70 µg/L	÷
Vinyl Chloride								2.0 µg/I,	
D. Non-Halogenated SVOCs				! :					
Total Phthalates								190 µg/L	
Diethylhexyl phthalate								101 µg/L	
Total Group I PAHs								1.0 µg/l.	-
Benzo(a)anthracene									
Benzo(a)pyrene									
Benzo(b)fluoranthene									
Benzo(k)fluoranthene					-			As Total PAHs	
Chryscne									
Dibenzo(a,h)anthracene									
Indeno(1,2,3-cd)pyrene									

GCG 16249

MAG910000 NHG910000

Appendix IV – Part I – NOI Page 20 of 24 4 GR 4

	Кломп	Known	i			Inf	Influent	Effluent Limitations	nitations
Parameter	o.	jo ,	# of	Test	Detection limit	Daily	Daily		
	believed	believed present	samples	#)	(hg/l)	maximum (µg/l)	average (μg/l)	TBEL	WQBEL
Total Group II PAHs								1/g# 001	-
Naphthalene								20 μg/L	1
E. Halogenated SVOCs									
Total PCBs								0.000064 µg/L	
Pentachlorophenol		i						1.0 µg/L	
F. Fuels Parameters									
Total Petroleum Hydrocarbons		_						5.0 mg/L	
Ethanol								Report mg/L	1
Methyl-tert-Butyl Ether								70 µg/1.	
tert-Butyl Alcohol								120 µg/L in MA 40 µg/L in NH	!
tert-Amyl Methyl Ether								90 μg/L in MA 140 μg/L in NH	
Other (i.e., pH, temperature, hardness, salinity, LCso, additional pollutants present); if so, specify:	, hardness,	salinity, LC	so, addition	al pollutant	s present); i	f so, specify:			
				i					
		į			:				

Makrina Nolan

From: Makrina Nolan

Sent: Thursday, June 18, 2020 2:53 PM

To: <u>aswederskas@gza.com</u>

Subject: Rustcraft Rd

Attachments: GCG16249-ChainofCustody-1.pdf

Good afternoon,

We received your samples yesterday, with regards to the attached chain. Unfortunately, sample "MW-106" was received past hold for HexChrome. This sample will be analyzed for HexChrome and reported to you past hold with a comment on the report to reflect this.

Please let me know if you have any questions.

Thank you,

Makrina Nolan Client Services –Project Manager Drinking Water Specialist Phoenix Environmental Labs 587 Middle Turnpike East Manchester, CT

Direct Line: 860-645-3219

Website: www.phoenixlabs.com

APPENDIX CCALCULATION SHEETS FOR EFFLUENT LIMITATIONS

Enter number values in green boxes below

Enter values in the units specified

\downarrow	_
0	Q_R = Enter upstream flow in MGD
0.144	Q_P = Enter discharge flow in MGD
0	Downstream 7Q10

Enter a dilution factor, if other than zero

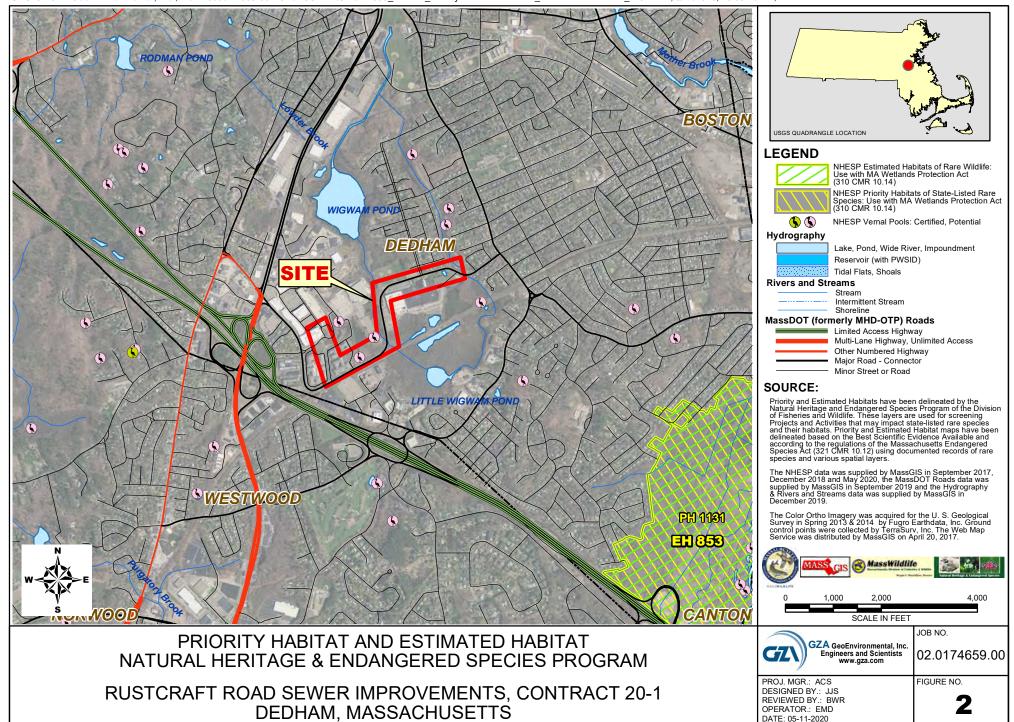
Enter values in the units specified

Enter receiving water concentrations in the units specified

	_
7.4	pH in Standard Units
17.4	Temperature in °C
0	Ammonia in mg/L
80.4	Hardness in mg/L CaCO ₃
0	Salinity in ppt
0	Antimony in μg/L
0	Arsenic in μg/L
0	Cadmium in µg/L
0	Chromium III in µg/L
0	Chromium VI in µg/L
5	Copper in µg/L
452	Iron in μg/L
0	Lead in μg/L
0	Mercury in μg/L
1	Nickel in μg/L
0	Selenium in µg/L
0	Silver in μg/L
12	Zinc in μg/L

Enter influent concentrations in the units specified

\downarrow	
0	TRC in µg/L
1.2	Ammonia in mg /L
0	Antimony in μg/L
8	Arsenic in μg/L
0	Cadmium in µg/L
4	Chromium III in μg/L
0	Chromium VI in µg/L
12	Copper in µg/L
16900	Iron in μg/L
15	Lead in μg/L
0	Mercury in μg/L
3	Nickel in µg/L
0	Selenium in μg/L
0	Silver in μg/L
27	Zinc in µg/L
0	Cyanide in µg/L
0	Phenol in μg/L
0	Carbon Tetrachloride in µg/L
0	Tetrachloroethylene in μg/L
0	Total Phthalates in μg/L
0	Diethylhexylphthalate in μg/L
0	Benzo(a)anthracene in µg/L
0	Benzo(a)pyrene in μg/L
0	Benzo(b)fluoranthene in μg/L
0	Benzo(k)fluoranthene in µg/L
0.08	Chrysene in µg/L
0	Dibenzo(a,h)anthracene in μg/L
0	Indeno(1,2,3-cd)pyrene in µg/L
0	Methyl-tert butyl ether in μg/L


A. Inorganics	Inorganics TBEL applies if bolded		d WQBEL applies if bolded		
Ammonia	Report	mg/L			
Chloride	Report	mg/L μg/L			
Total Residual Chlorine	0.2		11	u o /I	
		mg/L		μg/L	
Total Suspended Solids	30	mg/L	(40)	17	
Antimony	206	μg/L	640	μg/L	
Arsenic	104	μg/L	10	μg/L	
Cadmium	10.2	$\mu g/L$	0.3343	μg/L	
Chromium III	323	μg/L	108.9	μg/L	
Chromium VI	323	μg/L	11.4	μg/L	
Copper	242	μg/L	11.9	μg/L	
Iron	5000	μg/L	1000	μg/L	
Lead	160	μg/L	4.57	μg/L	
Mercury	0.739	μg/L	0.91	μg/L	
Nickel	1450	μg/L	66.4	μg/L	
Selenium	235.8	μg/L	5.0	μg/L	
Silver	35.1	μg/L	6.2	μg/L	
Zinc	420	μg/L	152.6	μg/L	
Cyanide	178	mg/L	5.2	μg/L	
B. Non-Halogenated VOCs		υ		10	
Total BTEX	100	$\mu g/L$			
Benzene	5.0	μg/L			
1,4 Dioxane	200	μg/L	575		
Acetone	7970	μg/L			
Phenol	1,080	μg/L	300	μg/L	
C. Halogenated VOCs		17	1.6	/7	
Carbon Tetrachloride	4.4	μg/L	1.6	μg/L	
1,2 Dichlorobenzene	600 320	μg/L	255 250		
1,3 Dichlorobenzene	5.0	μg/L	750 marka		
1,4 Dichlorobenzene Total dichlorobenzene	5.0	μg/L μg/L			
1,1 Dichloroethane	70	μg/L μg/L			
1,2 Dichloroethane	5.0	μg/L μg/L			
1,1 Dichloroethylene	3.2	μg/L μg/L			
Ethylene Dibromide	0.05	μg/L	-		
Methylene Chloride	4.6	μg/L			
1,1,1 Trichloroethane	200	μg/L	-		
1,1,2 Trichloroethane	5.0	μg/L	-5355		
Trichloroethylene	5.0	μg/L			
Tetrachloroethylene	5.0	μg/L	3.3	μ g/L	
cis-1,2 Dichloroethylene	70	μg/L	(man		

Vinyl Chloride	2.0	μ g/L		
D. Non-Halogenated SVOCs				
Total Phthalates	190	μg/L	222	μg/L
Diethylhexyl phthalate	101	μg/L	2.2	μg/L
Total Group I Polycyclic		. 0		
Aromatic Hydrocarbons	1.0	μg/L		
Benzo(a)anthracene	1.0	μg/L	0.0038	μg/L
Benzo(a)pyrene	1.0	μg/L	0.0038	μg/L
Benzo(b)fluoranthene	1.0	μg/L	0.0038	μg/L
Benzo(k)fluoranthene	1.0	μg/L	0.0038	μg/L
Chrysene	1.0	μg/L	0.0038	μg/L
Dibenzo(a,h)anthracene	1.0	μg/L	0.0038	μg/L
Indeno(1,2,3-cd)pyrene	1.0	μg/L	0.0038	μg/L
Total Group II Polycyclic				
Aromatic Hydrocarbons	100	μg/L		
Naphthalene	20	μg/L		
E. Halogenated SVOCs				
Total Polychlorinated Biphenyls	0.000064	a/I		
D (11 1 1 1	1.0	μg/L		
Pentachlorophenol	1.0	μg/L	200	
F. Fuels Parameters	<i>5</i> 0	/T		
Total Petroleum Hydrocarbons	5.0	mg/L	****	
Ethanol	Report	mg/L	20	/T
Methyl-tert-Butyl Ether	70	μg/L	20	μg/L
tert-Butyl Alcohol	120	μg/L	NO.	
tert-Amyl Methyl Ether	90	μg/L		

APPENDIX D

ACEC AND FEDERALLY LISTED ENDANGERED AND THREATENED SPECIES IN MASSACHUSETTS EVALUATION

United States Department of the Interior

FISH AND WILDLIFE SERVICE

New England Ecological Services Field Office 70 Commercial Street, Suite 300 Concord, NH 03301-5094 Phone: (603) 223-2541 Fax: (603) 223-0104

http://www.fws.gov/newengland

July 09, 2020

In Reply Refer To:

Consultation Code: 05E1NE00-2020-SLI-3220

Event Code: 05E1NE00-2020-E-09805

Project Name: Rustcraft Road Sewer Improvements

Subject: List of threatened and endangered species that may occur in your proposed project

location, and/or may be affected by your proposed project

To Whom It May Concern:

The enclosed species list identifies threatened, endangered, proposed and candidate species, as well as proposed and final designated critical habitat, that may occur within the boundary of your proposed project and/or may be affected by your proposed project. The species list fulfills the requirements of the U.S. Fish and Wildlife Service (Service) under section 7(c) of the Endangered Species Act (Act) of 1973, as amended (16 U.S.C. 1531 *et seq.*).

New information based on updated surveys, changes in the abundance and distribution of species, changed habitat conditions, or other factors could change this list. Please feel free to contact us if you need more current information or assistance regarding the potential impacts to federally proposed, listed, and candidate species and federally designated and proposed critical habitat. Please note that under 50 CFR 402.12(e) of the regulations implementing section 7 of the Act, the accuracy of this species list should be verified after 90 days. This verification can be completed formally or informally as desired. The Service recommends that verification be completed by visiting the ECOS-IPaC website at regular intervals during project planning and implementation for updates to species lists and information. An updated list may be requested through the ECOS-IPaC system by completing the same process used to receive the enclosed list.

The purpose of the Act is to provide a means whereby threatened and endangered species and the ecosystems upon which they depend may be conserved. Under sections 7(a)(1) and 7(a)(2) of the Act and its implementing regulations (50 CFR 402 *et seq.*), Federal agencies are required to utilize their authorities to carry out programs for the conservation of threatened and endangered species and to determine whether projects may affect threatened and endangered species and/or designated critical habitat.

A Biological Assessment is required for construction projects (or other undertakings having similar physical impacts) that are major Federal actions significantly affecting the quality of the human environment as defined in the National Environmental Policy Act (42 U.S.C. 4332(2) (c)). For projects other than major construction activities, the Service suggests that a biological evaluation similar to a Biological Assessment be prepared to determine whether the project may affect listed or proposed species and/or designated or proposed critical habitat. Recommended contents of a Biological Assessment are described at 50 CFR 402.12.

If a Federal agency determines, based on the Biological Assessment or biological evaluation, that listed species and/or designated critical habitat may be affected by the proposed project, the agency is required to consult with the Service pursuant to 50 CFR 402. In addition, the Service recommends that candidate species, proposed species and proposed critical habitat be addressed within the consultation. More information on the regulations and procedures for section 7 consultation, including the role of permit or license applicants, can be found in the "Endangered Species Consultation Handbook" at:

http://www.fws.gov/endangered/esa-library/pdf/TOC-GLOS.PDF

Please be aware that bald and golden eagles are protected under the Bald and Golden Eagle Protection Act (16 U.S.C. 668 *et seq.*), and projects affecting these species may require development of an eagle conservation plan (http://www.fws.gov/windenergy/eagle_guidance.html). Additionally, wind energy projects should follow the wind energy guidelines (http://www.fws.gov/windenergy/) for minimizing impacts to migratory birds and bats.

Guidance for minimizing impacts to migratory birds for projects including communications towers (e.g., cellular, digital television, radio, and emergency broadcast) can be found at: http://www.fws.gov/migratorybirds/CurrentBirdIssues/Hazards/towers/towers.htm; http://www.towerkill.com; and http://www.fws.gov/migratorybirds/CurrentBirdIssues/Hazards/towers/comtow.html.

We appreciate your concern for threatened and endangered species. The Service encourages Federal agencies to include conservation of threatened and endangered species into their project planning to further the purposes of the Act. Please include the Consultation Tracking Number in the header of this letter with any request for consultation or correspondence about your project that you submit to our office.

Attachment(s):

Official Species List

Official Species List

This list is provided pursuant to Section 7 of the Endangered Species Act, and fulfills the requirement for Federal agencies to "request of the Secretary of the Interior information whether any species which is listed or proposed to be listed may be present in the area of a proposed action".

This species list is provided by:

New England Ecological Services Field Office 70 Commercial Street, Suite 300 Concord, NH 03301-5094 (603) 223-2541

Project Summary

Consultation Code: 05E1NE00-2020-SLI-3220

Event Code: 05E1NE00-2020-E-09805

Project Name: Rustcraft Road Sewer Improvements

Project Type: LAND - RESTORATION / ENHANCEMENT

Project Description: Sewer Improvements

Project Location:

Approximate location of the project can be viewed in Google Maps: https://www.google.com/maps/place/42.229256156190466N71.17198437494082W

Counties: Norfolk, MA

Endangered Species Act Species

There is a total of 1 threatened, endangered, or candidate species on this species list.

Species on this list should be considered in an effects analysis for your project and could include species that exist in another geographic area. For example, certain fish may appear on the species list because a project could affect downstream species.

IPaC does not display listed species or critical habitats under the sole jurisdiction of NOAA Fisheries¹, as USFWS does not have the authority to speak on behalf of NOAA and the Department of Commerce.

See the "Critical habitats" section below for those critical habitats that lie wholly or partially within your project area under this office's jurisdiction. Please contact the designated FWS office if you have questions.

1. <u>NOAA Fisheries</u>, also known as the National Marine Fisheries Service (NMFS), is an office of the National Oceanic and Atmospheric Administration within the Department of Commerce.

Mammals

NAME STATUS

Northern Long-eared Bat Myotis septentrionalis

Threatened

No critical habitat has been designated for this species. Species profile: https://ecos.fws.gov/ecp/species/9045

Critical habitats

THERE ARE NO CRITICAL HABITATS WITHIN YOUR PROJECT AREA UNDER THIS OFFICE'S JURISDICTION.

ATTACHMENT 6

Evaluation of Long-Eared Bat Habitat

Rustcraft Road

Dedham, Massachusetts

The northern long-eared bat (*Myotis septentrionalis*) has a federal status of Threatened and a state status of Endangered within Massachusetts.

The northern long-eared bat is a migratory species which utilizes a variety of habitats during the year depending on the season. Between early November and April, this species hibernates in crevices in portions of caves and abandoned mine shafts which have high humidity, constant temperatures, and little air flow. Individuals tend to return to the same hibernaculum from year to year although they are also known to sometimes use other hibernacula. Hibernacula are generally located within approximately 35 miles of summer foraging habitat. Between April and October, northern long-eared bats roost and forage in forested areas. Preferred roost sites include clusters of large, live or dead, hardwood trees with cavities or peeling bark. Preferred foraging sites include wooded areas around vernal pools or small ponds or along streams. Thus, transitional zones between forested uplands and wetlands represent prime summer roosting and foraging habitat.

The parcel along Rustcraft Road in Dedham Massachusetts is located within a busy and densely developed area. There are active town streets along the boundaries of the Site associated with both the Legacy Place shopping complex and an MBTA facility. The project will occur within the boundaries of the street for the improvement of the existing sewer network. The developed areas and the regular disturbances from noise from traffic along town streets make this area a poor habitat for northern long-eared bats. It is unlikely that this species utilizes this area.

APPENDIX EMACRIS SEARCH RESULTS

Massachusetts Cultural Resource Information System MACRIS

MACRIS Search Results

Search Criteria: Town(s): Dedham; Street Name: Rustcraft; Resource Type(s): Building, Burial Ground, Structure;

Inv. No. Property Name Street Town Year

Wednesday, July 8, 2020 Page 1 of 1