

Groundwater & Environmental Services, Inc.

1 Park Drive, Suite 8 Westford, MA 01886

T. 800.221.6119

June 25, 2020

Via Electronic Mail: NPDES.Generalpermits@epa.gov; Little.Shauna@epa.gov

Ms. Shauna Little
U.S. Environmental Protection Agency
Remediation General Permit NOI Processing
5 Post Office Square, Suite 100
Mail Code OEP06-4
Boston, Massachusetts 02109-3912

Re: EPA Remediation General Permit Notice of Intent

Roy Bros., Inc.
764 Boston Road
Billerica, Massachusetts 01821
MassDEP Site No. 3-0236
(and Linked MassDEP RTNs 3-32406 and 3-35266)

Dear Ms. Little:

Groundwater & Environmental Services, Inc. (GES), on behalf of Roy Bros., Inc. (Roy Bros.), has prepared this EPA Remediation General Permit (RGP) Notice of Intent (NOI) submittal for the above-referenced location (the Site). The RGP NOI submittal is provided as **Attachment A**. The Site property encompasses three parcels. The developed portion of the property encompasses approximately 4.78 acres (Tax Assessor's Map 90, Parcel 25). Improvements at the parcel include a 17,786-square foot, one-story, slab-on-grade building (without a basement) with steel frame and concrete block construction. The building contains offices, two truck wash bays, and a truck repair bay. Most of the active portion of this parcel from the property entrance (located along the Allen Road intersection with Boston Road) to the building is paved with asphalt. An undeveloped, unpaved parcel to the east of the main operations encompasses approximately 2.6 acres (Tax Assessor's Map 90, Parcel 217), and consists of a historically filled area that extends east into wetlands associated with the Shawsheen River. A third undeveloped parcel consisting of 0.376 acres (Tax Assessor's Map 90, Parcel 24) is located near Boston Road.

Roy Bros. operated as a bulk chemical hauler at the subject property since approximately 1948. In August 2017, under a leasing arrangement, Dana Companies of Avenel, New Jersey (a national firm) assumed operations at the Roy Bros., Inc. facility. The location now operates as Dana Transport, Inc. The property continues to be owned by Roy Bros. Current operations consist of hauling of liquid and dry industrial chemicals, truck washing and vehicle maintenance.

Truck washing bays in the building contain two floor drains reportedly connected to a 200-gallon holding tank from which wastewater is pumped directly to a wastewater treatment facility at the rear of the building. Treated wastewater is discharged to the municipal sewer system under an approved permit with the Town of Billerica. The property is serviced by municipal water and sewer, and overhead electric. A 25,000-gallon diesel above ground storage tank (AST) located near the eastern corner of the building is used to power steam boilers used to heat the building.

According to the Town of Billerica Official Zoning Map, dated October 11, 2016, the main developed parcel owned by Roy Bros., Inc. is zoned as "Industrial." Land use in the vicinity beyond the Roy Bros., Inc. parcels is generally commercial and residential. Abutting residential properties are located along Allen Road to the west and Devonshire Drive to the north. Abutting undeveloped properties, designated as conservation land, are located to the east and southeast.

Soil and groundwater beneath the Site have been impacted by several historic releases of phthalates, petroleum and chlorinated compounds. Records indicate that, before the connection to the municipal sewer system in 1981, wastewater from the truck washing operations was reportedly discharged to unlined infiltration lagoons. In the 1980's, MassDEP required soil, groundwater, and waste stream sampling related to discharges to the lagoons and surface impoundments that had previously operated at the Site. The Site was initially assigned MassDEP Site No. 3-0236, and was on MassDEP's list of Confirmed Disposal Sites in January 1987. Multiple environmental investigations have been conducted since that time. The most recent reports to MassDEP included a Revised Phase II Comprehensive Site Assessment (CSA) submitted in January 2015, a Revised Phase II CSA Addendum submitted in August 2019 and a Revised Phase III RAP Addendum submitted in February 2020.

The former Western Lagoon area is the focus of the current remediation. A former 25,000-gallon diesel underground storage tank (UST) was also once located west of the building in this general area. On October 29, 2018, light non-aqueous liquid (LNAPL) was detected at a thickness of 3.12 inches in monitoring well MW-20S located just downgradient of the former Western Lagoon area and RTN 3-35266 was assigned to this condition. The LNAPL consisted primarily of petroleum and phthalates. A limited subsurface investigation was implemented in August 2019 to evaluate the nature and extent of impacts. Soil samples collected at the time of excavation confirmed the presence of petroleum and phthalates in soil, which are considered the constituents of concern for the former Western Lagoon area.

Excavation of petroleum and phthalate impacted soil is proposed during upcoming remedial activities at the Site. It is anticipated that proposed excavation and temporary dewatering and groundwater treatment activities will be initiated at the Site in July/August 2020 upon receipt of Authorization of the RGP. Proposed remediation activities are being performed at the Site under an Immediate Response Action (IRA) Plan Modification for RTN 3-35266 submitted to MassDEP on June 12, 2020, in accordance with the Massachusetts Contingency Plan (MCP) 310 CMR 40.0000.

This Notice of Intent is being submitted in order to obtain a permit for the short term (temporary) discharge of treated groundwater to surface water. Based on available information groundwater has been measured at the Site at depths ranging from approximately 1.5 feet to 8 feet below grade. Therefore, it is anticipated that dewatering activities and corresponding treatment of such using a temporary groundwater treatment system will be necessary to depress the groundwater table at the Site during subsurface excavation activities. A Site Location Map is provided as **Figure 1** and an Expanded Site Layout is provided as **Figure 2**. The attached Site Location Map (**Figure 1**) depicts the subject property with respect to surrounding topography and the Site Layout (**Figure 2**) depicts pertinent Site features. The attached MADEP Bureau of Waste Site Cleanup (BWSC) Phase 1 Site Assessment Map provided as **Figure 3** depicts surface water features and sensitive receptors located within an approximate 500 foot radius and half-mile radius of the Site.

GROUNDWATER TREATMENT SYSTEM DESIGN

The proposed groundwater treatment system to be located on-Site shall consist of an electric submersible pump which will pump groundwater from a temporary dewatering sump or well set within the excavation area to two (2) 21,000-gallon fractionation (frac) tanks for settling and temporary storage. Recovered groundwater shall be pumped from the frac tank using a submersible pump through bag filters to remove particulates and then through two (2) 2,000-pound capacity liquid phase granular activated carbon adsorption (LGAC) vessels plumbed in series. The treated groundwater will pass through a flow meter and flow totalizer prior to being discharged to a storm drain catch basin located to the immediate south along Allen Road or a storm drain catch basin located to the immediate south along Boston Road (Route 3A).

Information provided by the Town of Billerica Department of Public Works (DPW) indicates that the storm drain catch basins in front of the site is connected to the underground stormwater drainage system beneath Boston Road and discharges to the wetlands adjacent to the Shawsheen freshwater surface water, located approximately 675 feet east of the Site.

A process flow diagram of the proposed groundwater treatment system is provided as **Figure 4**. The proposed treated water discharge location to catch basins adjacent to the Site is shown on **Figure 5**, **Figure 6**, and **Figure 7**.

The average flow rate of the treated water discharge from the system to the storm drain system is anticipated to be between 50 and 100 gallons per minute (gpm). The pumping capacity of the groundwater treatment system is 100 gpm based upon the capacity of the submersible pumps. The groundwater treatment system shall be inspected, monitored, and sampled by or under the direction of a Grade II Wastewater Treatment Plant Operator as required in accordance with the RGP. Groundwater samples shall be collected from the influent and effluent (treated water) prior to discharge for analysis by a Massachusetts-certified laboratory for contaminants of concern and any additional monitoring parameters required by the RGP. In addition, groundwater samples shall also be collected from the midpoint (between LGAC units) for analysis by a Massachusetts-certified laboratory to further monitor the groundwater treatment system for potential break through of the liquid phase carbon.

GROUNDWATER AND SURFACE WATER PRE-CHARACTERIZATION ANALYSIS

Groundwater samples were collected on March 25, 2020 from on-Site monitoring wells MW-11S and MW-20S for RGP parameters. The March 2020 samples were submitted to Eurofins TestAmerica (TestAmerica) under chain-of-custody protocol and analyzed for select RGP parameters including ammonia, chloride, total suspended solids (TSS), total residual chlorine (TRC), hardness, total metals, cyanide, volatile organic compounds (VOCs), semi-VOCs (SVOCs)/ polycyclic aromatic hydrocarbons (PAHs), polychlorinated biphenyls (PCBs), and total petroleum hydrocarbons (TPH) via the corresponding EPA methodologies. Refer to the laboratory analytical report included in Attachment B for details of the RGP parameters, EPA methodologies and groundwater analytical results. The temperature of groundwater sample MW-11S was field measured at 6.7 degrees Celsius, and pH was field measured at 5.47 standard units (SU). The temperature of groundwater sample MW-20S was field measured at 7.6 degrees Celsius, and the pH was field measured at 5.72 SU. In addition, a surface water sample identified as SW-1 was collected from the receiving water in the Shawsheen River at the storm drain outfall. The surface water sample SW-1 was submitted to TestAmerica under chainof-custody for select RGP parameters including total metals, ammonia, and hardness. The temperature of the surface water was field measured at 7.4 degrees Celsius, and pH was field measured at 6.86 SU.

The groundwater analytical results for untreated/ unfiltered groundwater samples collected from monitoring wells MW-11S and MW-20S on March 25, 2020 for RGP parameters are summarized in the enclosed RGP NOI data summary section (**Attachment A**).

The RGP effluent limitations were obtained from the RGP Table 2 Chemical-Specific Effluent Limitations for Category I — Petroleum Related Site Remediation, found at (https://www.epa.gov/npdes-permits/remediation-general-permit-rgp-massachusetts-new-hampshire). Based on the proposed discharge location, a dilution factor of 1 has been used. The surface water sample SW-1 analytical results are presented in the laboratory analytical report (**Attachment B**).

Referring to the NOI data summary included in **Attachment A**, the analytical results for the untreated/ unfiltered groundwater samples (MW-11S and MW-20S) detected TSS, iron, total phthalates, diethylhexyl phthalate, Total Group I PAHs, Total Group 2 PAHs, total petroleum hydrocarbons (TPH), and total benzene, toluene, ethylbenzene and xylenes (BTEX) concentrations above the corresponding EPA RGP technology-based effluent limitation (TBEL) and/or water quality-based effluent limitation (WQBEL) available for this report. These exceedances of RGP effluent limitations in the untreated groundwater sample (MW-11S and MW-20S) are most likely attributable to silt and residual LNAPL in the unfiltered groundwater sample and not representative of actual groundwater (soluble) concentrations. However, it is anticipated that the proposed groundwater treatment system will reduce concentrations of TSS, iron, total phthalates, diethylhexyl phthalate, Total Group I PAHs, Total Group II PAHs, and total BTEX below available RGP effluent limitations in treated groundwater prior to discharge. Based on available information, TSS, total BTEX, total iron, total phthalates, diethylhexyl phthalate,

TPH, Total Group I PAHs, and Total Group II PAHs should be subject to monitoring requirements.

RECEIVING WATERS INFORMATION

The receiving water for the treated groundwater discharge is wetlands adjacent to the Shawsheen River freshwater surface water, located approximately 765 feet east of the Site. GES consulted the United States Geological Survey (USGS) StreamStats program (https://streamstats.usgs.gov/ss/) to determine the 7Q10 flow rate at the discharge location. USGS provided the enclosed StreamStats Report for the proposed discharge point (located at 42.534777N, -71.23366W) at the drainage system outfall in the Shawsheen River located to the southeast of the Site in Billerica, MA. Data obtained from the StreamStats Flow Statistics Report indicates that the calculated 7Q10 flow rate for this area basin is 2.21 cubic feet per second (cfs). A copy of the USGS StreamStats Report is provided in **Attachment C**. The approximate location of the discharge outfall into the Shawsheen River is shown on **Figures 5** and **6**.

RECEIVING WATER CLASSIFICATION

According to the Massachusetts Surface Water Quality Standards, the Shawsheen River surface water where the proposed drainage system outfall is located is designated as Class B surface water body suitable as habitat for fish and aquatic wildlife, and for primary and secondary contact recreation. The Shawsheen River is not an Outstanding Resource Water according information provided by the MADEP.

THREATENED OR ENDANGERED SPECIES OR CRITICAL HABITAT

According to the Massachusetts Geographic Information Systems (MassGIS) and online MassDEP Phase 1 Site Assessment Map (http://maps.massgis.state.ma.us/images/dep/mcp/mcp.htm) and Natural Heritage Endangered Species Program (NHESP) online maps, no Priority Habitat of Rare Species or Estimated Habitats of Rare Wildlife are located within the work area or at the proposed groundwater discharge location. Also, the MassGIS map does not depict any Areas of Critical Environmental Concern on the Site or within one-half mile of the Site. Copies of the MADEP Phase 1 Site Assessment Map (Figure 3) is attached and the NHESP maps are provided as Attachment D.

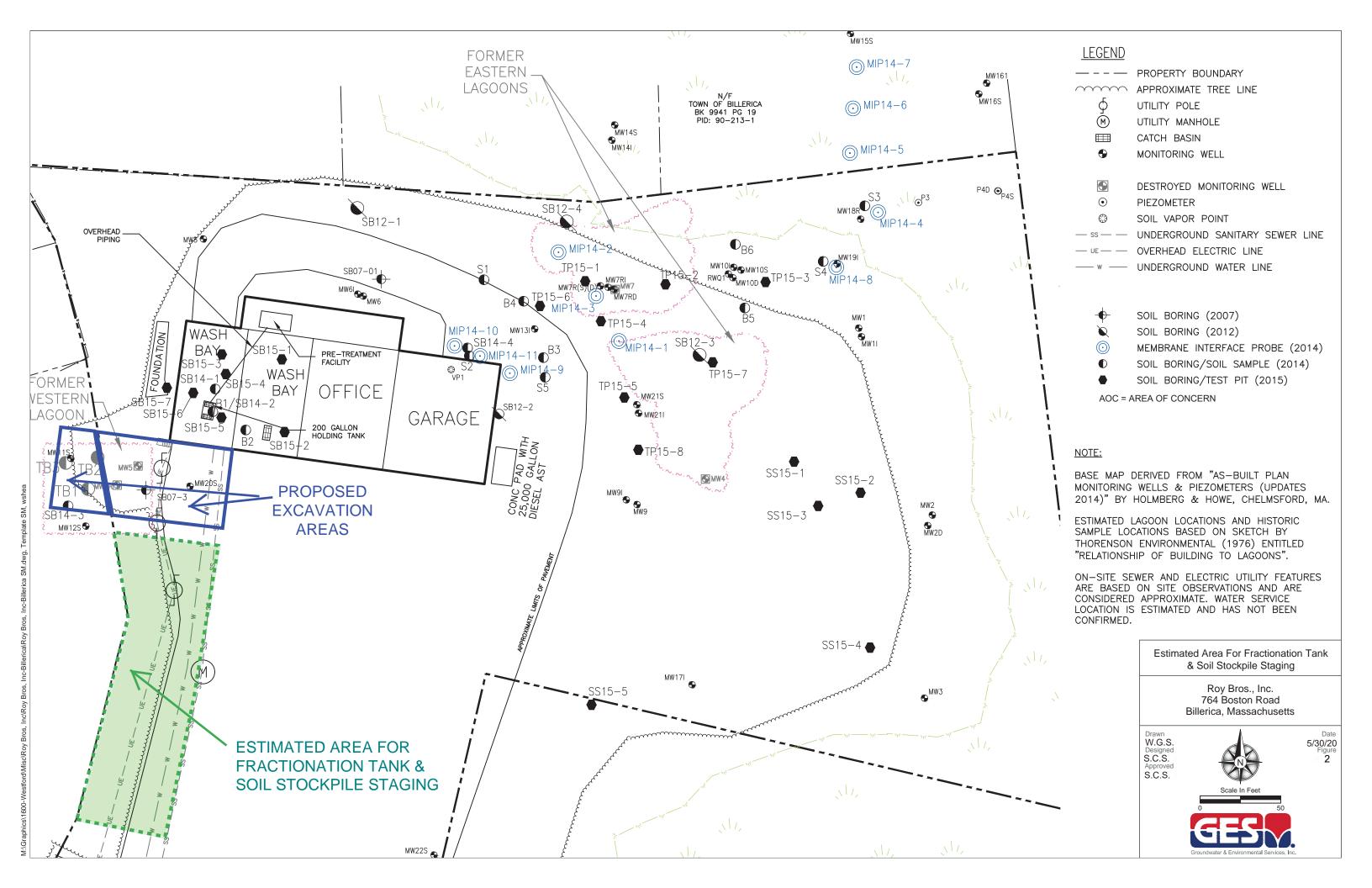
As part of the Endangered Species Act eligibility determination, GES contacted the United States Department of the Interior, Fish and Wildlife Services (FWS) and requested a list of threatened and endangered species that may occur in the proposed project location and/or that may be affected by the proposed project. The FWS provided the requested list which indicates that Northern Long-eared Bats were identified. The discharge activities are not likely to impact the Northern Long-eared Bats. Therefore, the proposed project discharge meets FWS Criterion B. A copy of the FWS letter is included in **Attachment E**.

EPA RGP NOI 764 Boston Road Billerica, MA

REVIEW OF NATIONAL REGISTER OF HISTORIC PLACES

A listing of Historic Places within the Town of Billerica was obtained from the Massachusetts Cultural Resources Information System (MACRIS) online database (http://mhc-macris.net/) on April 6, 2020. A copy of the MACRIS historic places report is provided as **Attachment F**. The database indicates that numerous historic places are located in the Town of Billerica. Referring to **Attachment F**, the 577 Boston Road property located approximately 1.3 miles northwest of the Site is a historic property. The 577 Boston Road historic property appears to be the closest historic property to the Site. However, the project does not involve the demolition or rehabilitation of any of the historic places identified in the database. Also, historic properties are not affected by the discharge or identified in the path of the discharges regulated by this permit, and are not identified where installation or construction of treatment systems or best management practices to control such discharges are planned.

Should you have any questions regarding this application, please contact Meghan Proia at 800-221-6119, extension 3589.


Sincerely,

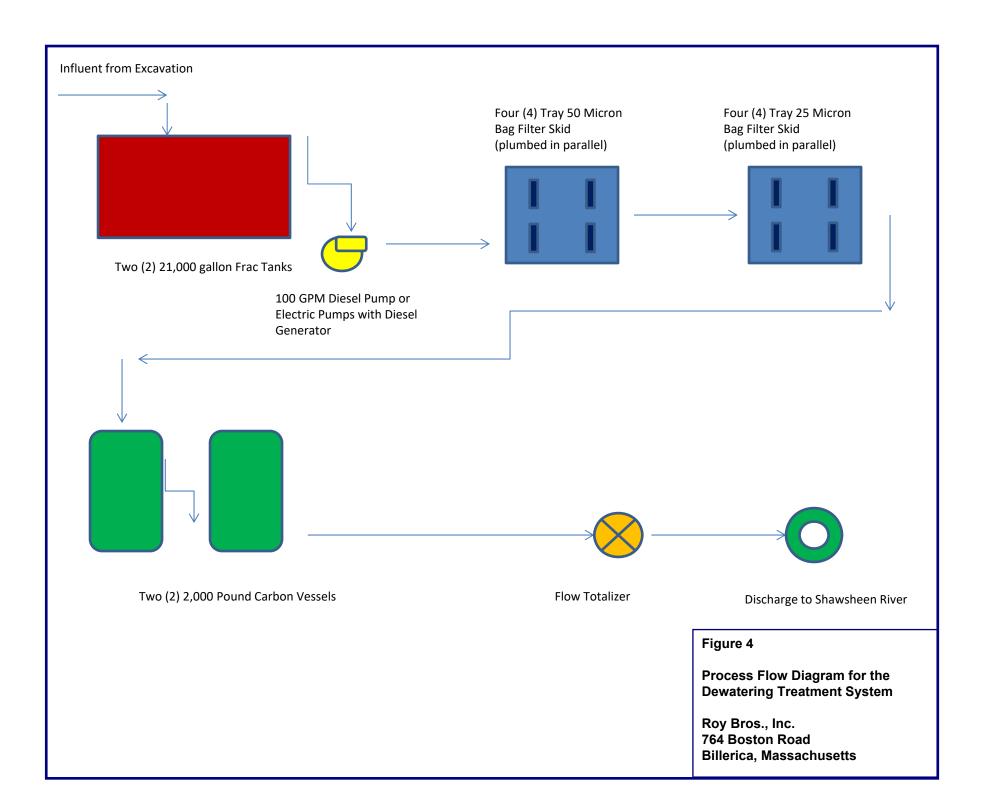
Groundwater & Environmental Services, Inc.

Meghan D. Proia, PE Senior Engineer Stefan C. Sokol, LSP Principal Environmental Scientist EPA RGP NOI 764 Boston Road Billerica, MA

Figures

MassDEP - Bureau of Waste Site Cleanup

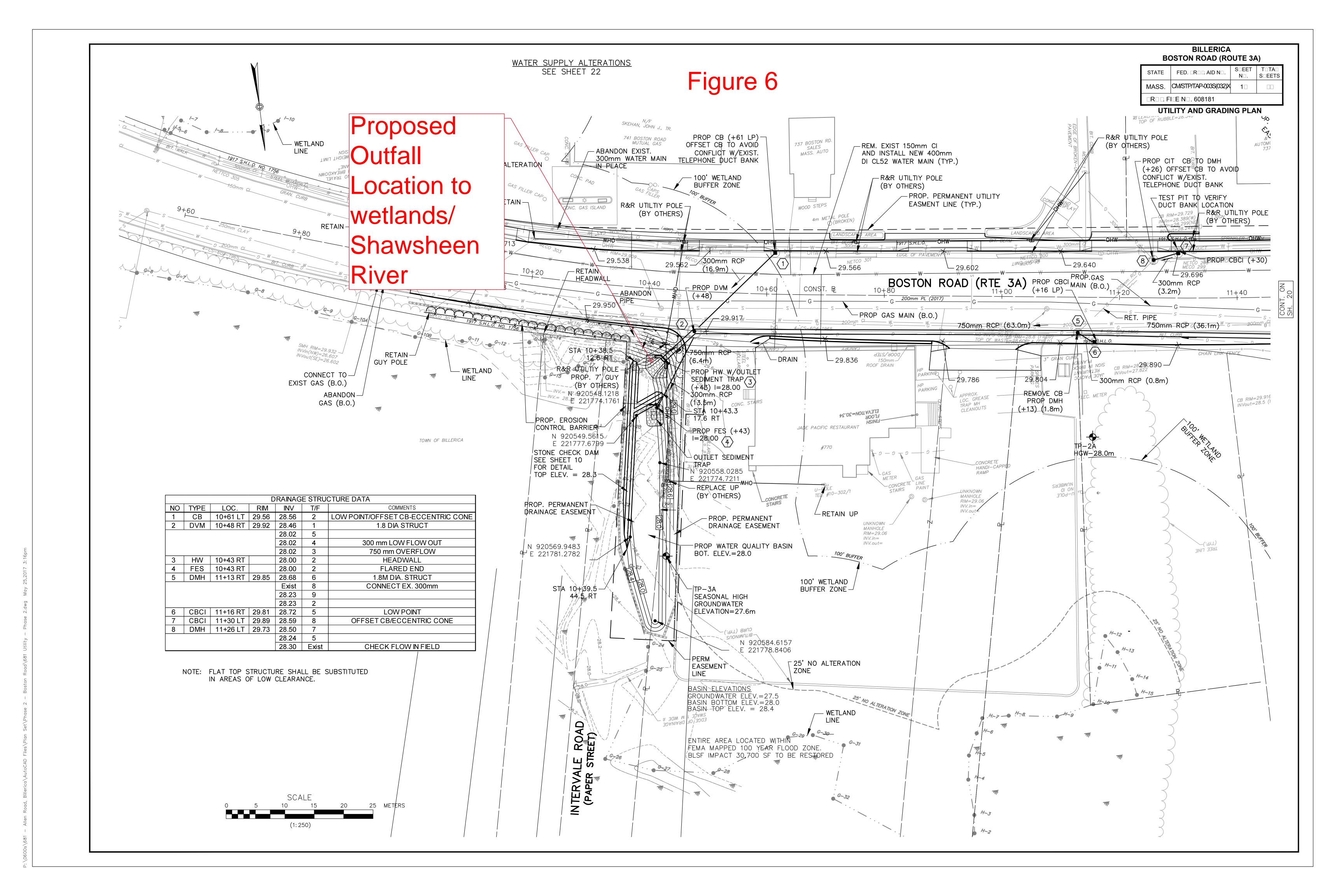
Phase 1 Site Assessment Map: 500 feet & 0.5 Mile Radii

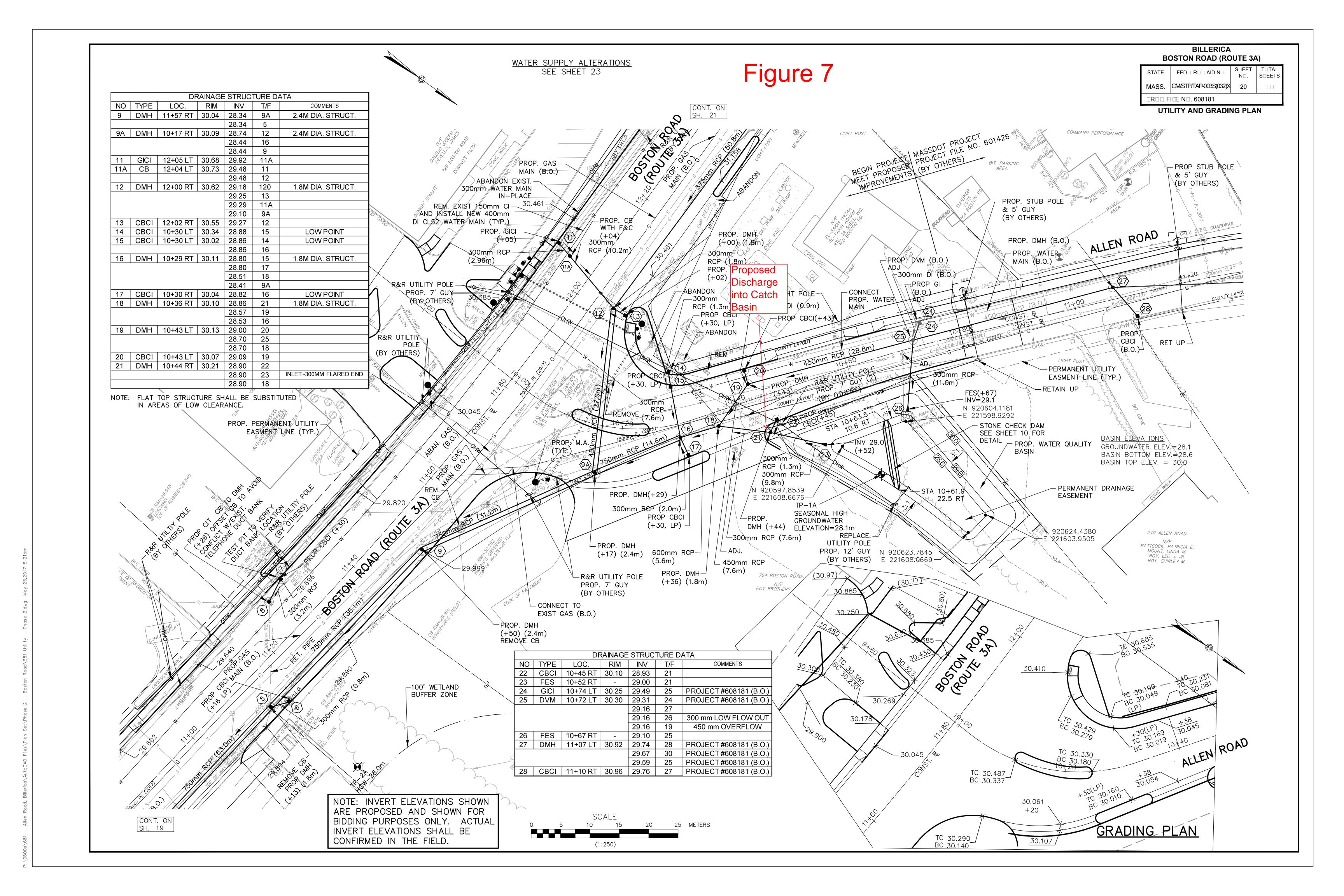

Site Information: ROY BROS., INC. 764 BOSTON RD BILLERICA, MA 3-00000236

3-000000236 NAD83 UTM Meters: 4711646mN , 316242mE (Zone: 19) June 5, 2020 The information shown is the best available at the date of printing. However, it may be incomplete. The responsible party and LSP are ultimately responsible for ascertaining the true conditions surrounding the site. Metadata for data layers shown on this map can be found at:

https://www.mass.gov/orgs/massgis-bureau-of-

MINTON ROAD ALLEN ROAD N ROAD ROAD DANIEL FINN CIRCLE THE PINES RURAL AVENUE HEAVENLY WAY WIERVALE ROAD NANKSIDE D UTOPIA ROAD ALLEN ROAD NEIGHBORLY WAY ROAD EACH STRE BEAR BOAD ROAD TREMLETT ROAD MEADE ROAD PINEHURST ARTRIDGE ROA SEMMOLE ROAD PUTNAM PINEGROVE AVENUE ELL CARCLE GREENVILLE ST PARTRIDGE ROAD ROAD TREET WEATHERVANE ROAD OK ROAD WILDBROOK ROAD SURREY LANE COMMUNITY ROAD हें ARGONNE ROAD COLLEEN CIRCL SESAME STREET 500 m 1000 ft SHALLOO ROAD Roads: Limited Access, Divided, Other Hwy, Major Road, Minor Road, Track, Trail PWS Protection Areas: Zone II, IWPA, Zone A Hydrography: Open Water, PWS Reservoir, Tidal Flat ... Boundaries: Town, County, DEP Region; Train; Powerline; Pipeline; Aqueduct Wetlands: Freshwater, Saltwater, Cranberry Bog Basins: Major, PWS; Streams: Perennial, Intermittent, Man Made Shore, Dam FEMA 100yr Floodplain; Protected Open Space; ACEC ... Est. Rare Wetland Wildlife Hab; Vernal Pool: Cert., Potential 🗷 Aquifers: Medium Yield, High Yield, EPA Sole Source..... Solid Waste Landfill; PWS: Com.GW,SW, Emerg., Non-Com. 💢 😂 🤤 Non Potential Drinking Water Source Area: Medium, High (Yield).




Figure 5

Imagery ©2020 MassGIS, Commonwealth of Massachusetts EOEA, Maxar Technologies, Map data ©2020

100 ft ∟

EPA RGP NOI 764 Boston Road Billerica, MA

Attachment A - RGP NOI Form

II. Suggested Format for the Remediation General Permit Notice of Intent (NOI)

A. General site information:

1. Name of site:	Site address:						
Roy Bros., Inc.	Street: 764 Boston Road						
	City: Billerica		State: MA	Zip: 01821			
2. Site owner	Contact Person: Deborah Roy						
Roy Bros., Inc.	Telephone: 978-667-2489	Email: r	oybrosbill	@aol.com			
	Mailing address:						
	Street: P.O. Box 855						
Owner is (check one): ☐ Federal ☐ State/Tribal ☒ Private ☐ Other; if so, specify:	City: Billerica		State: MA	Zip: 01821			
3. Site operator, if different than owner	Contact Person: Meghan Proia, PE						
Groundwater & Environmental Services, Inc.	Telephone: 800-220-6119 x3589	proia@gesonline.com					
	Mailing address:						
	Street: 1 Park Drive, Suite 8						
	City: Westford		State: MA	Zip: 01886			
4. NPDES permit number assigned by EPA:	5. Other regulatory program(s) that apply to the site	(check all the	at apply):				
	☑ MA Chapter 21e; list RTN(s):	□ CERCL	LΑ				
NPDES permit is (check all that apply: \square RGP \square DGP \square CGP	3-0236; 3-32406; 3-35266	☐ UIC Program					
☐ MSGP ☐ Individual NPDES permit ☐ Other; if so, specify:	☐ NH Groundwater Management Permit or Groundwater Release Detection Permit:	☐ POTW Pretreatment					
individual Ni DES permit in Other, it so, specify.		☐ CWA Section 404					

B. Receiving water information:									
1. Name of receiving water(s):	Waterbody identification of receiving water(s):	Classi	fication of receiving water(s):						
Shawsheen River	MA83-17	Class B S	urface Water						
Receiving water is (check any that apply): □ Outstanding Resource Water □ Ocean Sanctuary □ territorial sea □ Wild and Scenic River									
2. Has the operator attached a location map in accordance	with the instructions in B, above? (check one): X Yes [□ No							
Are sensitive receptors present near the site? (check one): If yes, specify:	∑ Yes □ No								
3. Indicate if the receiving water(s) is listed in the State's Integrated List of Waters (i.e., CWA Section 303(d)). Include which designated uses are impaired, and any pollutants indicated. Also, indicate if a final TMDL is available for any of the indicated pollutants. For more information, contact the appropriate State as noted in Part 4.6 of the RGP. Impairment cause and pollutants: Dissolved Oxygen, E. Coli (TMDL #2587), Fecal Coliform (TMDL #2587)									
4. Indicate the seven day-ten-year low flow (7Q10) of the Appendix V for sites located in Massachusetts and Appendix		actions in	2.21 cfs						
	5. Indicate the requested dilution factor for the calculation of water quality-based effluent limitations (WQBELs) determined in accordance with the instructions in Appendix V for sites in Massachusetts and Appendix VI for sites in New Hampshire.								
6. Has the operator received confirmation from the appropriate State for the 7Q10and dilution factor indicated? (check one): ☐ Yes ☒ No If yes, indicate date confirmation received:									
7. Has the operator attached a summary of receiving water sampling results as required in Part 4.2 of the RGP in accordance with the instruction in Appendix VIII?									
(check one): Yes □ No									
C. Source water information:									
1 Source water(s) is (check any that annly)									

1. Source water(s) is (check any that apply):			
☒ Contaminated groundwater	☐ Contaminated surface water	☐ The receiving water	☐ Potable water; if so, indicate municipality or origin:
Has the operator attached a summary of influent sampling results as required in Part 4.2 of the RGP	Has the operator attached a summary of influent sampling results as required in Part 4.2 of the	☐ A surface water other	
in accordance with the instruction in Appendix VIII? (check one):	RGP in accordance with the instruction in Appendix VIII? (check one):	than the receiving water; if so, indicate waterbody:	☐ Other; if so, specify:
▼ Yes □ No	□ Yes □ No		

2. Source water contaminants: Historical use of the site						
a. For source waters that are contaminated groundwater or contaminated surface water, indicate are any contaminants present that are not included in	b. For a source water that is a surface water other than the receiving water, potable water or other, indicate any contaminants present at the maximum concentration in accordance					
the RGP? (check one): ☐ Yes ☒ No If yes, indicate the contaminant(s) and the maximum concentration present in accordance with the instructions in Appendix VIII.	with the instructions in Appendix VIII? (check one): □ Yes □ No					
3. Has the source water been previously chlorinated or otherwise contains resid	dual chlorine? (check one): □ Yes 🙀 No					
D. Discharge information						
1.The discharge(s) is a(n) (check any that apply): □ Existing discharge \(\mathbb{Z} \) Nev	w discharge □ New source					
Outfall(s): Proposed discharge to a catch basin drains into the Shawsheen River surface water located east of the site near the Boston Road/Route 3A bridge. See attached figure for approximate outfall location. Outfall location(s): (Latitude, Longitude) Approximate outfall location: Latitude: 42.53504 Longitude: -71.23482						
Discharges enter the receiving water(s) via (check any that apply): Direct discharge is proposed to a storm drain catch basin that discharge						
□ A private storm sewer system ☒ A municipal storm sewer system If the discharge enters the receiving water via a private or municipal storm sewer system: Has notification been provided to the owner of this system? (check one): ☒ Yes ☐ No On 3/16/20, the Town of Billerica DPW confirmed the storm drainage outfall location. A DPW permit will be obtained prior to discharge. Has the operator has received permission from the owner to use such system for discharges? (check one): ☐ Yes ☒ No, if so, explain, with an estimated timeframe for						
obtaining permission: Authorization to be obtained from Town of Billerica DPW pending EPA RGP authorization. Has the operator attached a summary of any additional requirements the owner of this system has specified? (check one): Yes No A DPW permit will be obtained once the RGP is obtained, prior to discharge.						
Provide the expected start and end dates of discharge(s) (month/year): Augu	st 2020 - total duration: 3 weeks					
Indicate if the discharge is expected to occur over a duration of: 反 less than 1	2 months □ 12 months or more □ is an emergency discharge					
Has the operator attached a site plan in accordance with the instructions in D, a	above? (check one): ☒ Yes □ No					

2. Activity Category: (check all that apply)	3. Contamination Type Category: (check all that apply)				
	a. If Activity Category I or II: (check all that apply)				
	 ☒ A. Inorganics ☒ B. Non-Halogenated Volatile Organic Compounds ☒ C. Halogenated Volatile Organic Compounds ☒ D. Non-Halogenated Semi-Volatile Organic Compounds ☒ E. Halogenated Semi-Volatile Organic Compounds ☒ F. Fuels Parameters 				
 I − Petroleum-Related Site Remediation II − Non-Petroleum-Related Site Remediation 	b. If Activity Category III, IV, V, VI, VII or VIII: (check either G or H)				
☐ III – Contaminated Site Dewatering ☐ IV – Dewatering of Pipelines and Tanks	☐ G. Sites with Known Contamination	☐ H. Sites with Unknown Contamination			
 □ V – Aquifer Pump Testing □ VI – Well Development/Rehabilitation □ VII – Collection Structure Dewatering/Remediation 	c. If Category III-G, IV-G, V-G, VI-G, VII-G or VIII-G: (check all that apply)				
□ VIII – Dredge-Related Dewatering	 □ A. Inorganics □ B. Non-Halogenated Volatile Organic Compounds □ C. Halogenated Volatile Organic Compounds □ D. Non-Halogenated Semi-Volatile Organic Compounds □ E. Halogenated Semi-Volatile Organic Compounds □ F. Fuels Parameters 	d. If Category III-H, IV-H, V-H, VI-H, VII-H or VIII-H Contamination Type Categories A through F apply			

4. Influent and Effluent Characteristics

	Known	Known		- TED - 1	D	Inf	luent	Effluent Limitations	
Parameter	or believed absent		# of samples Test method (#)	Detection limit (µg/l)	Daily maximum (µg/l)	Daily average (µg/l)	TBEL	WQBEL	
A. Inorganics									
Ammonia		X	2	4500NH3H	0.100 mg/L	0.776 mg/L	0.461 mg/L	Report mg/L	
Chloride		X	2	300.0	1.40 mg/L	121 mg/L	100.35 mg/L	Report μg/l	
Total Residual Chlorine	X		2	4500ClF	0.0720 mg/L	<0.0720 mg/L	0.0720 mg/L	0.2 mg/L	11 ug/L
Total Suspended Solids		X	2	SM2540D	12.5 mg/L	114 mg/L	94 mg/L	30 mg/L	30 mg/L
Antimony	X		2	200.7	5.30 ug/L	<5.30 ug/L	0 ug/L	206 μg/L	640 ug/L
Arsenic	х		2	200.7	6.20 ug/L	11.7 ug/L	5.85 ug/L	104 μg/L	10 ug/L
Cadmium		Х	2	200.7	1.00 ug/L	9.35 ug/L	4.675 ug/L	10.2 μg/L	0.25 ug/L
Chromium III	X							323 μg/L	
Chromium VI	X							323 μg/L	
Copper		X	2	200.7	1.80 ug/L	3.70 ug/L	1.85 ug/L	242 μg/L	9 ug/L
Iron		X	2	200.7	17.0 ug/L	20,100 ug/L	16,600 ug/L	5,000 μg/L	1,000 ug/L
Lead	x		2	200.7	3.90 ug/L	<3.90 ug/L	0 ug/L	160 μg/L	2.5 ug/L
Mercury		X	2	245.1	0.0910 ug/L	0.150 ug/L	0.075 ug/L	0.739 μg/L	0.77 ug/L
Nickel		X	2	200.7	2.10 ug/L	14.7 ug/L	7.35 ug/L	1,450 μg/L	52 ug/L
Selenium	x		2	200.7	9.90 ug/L	<9.90 ug/L	0 ug/L	235.8 μg/L	5.0 ug/L
Silver		X	2	200.7	0.600 ug/L	1.06 ug/L	0.53 ug/L	35.1 μg/L	3.2 ug/L
Zinc		X	2	200.7	7.00 ug/L	27.4 ug/L	20.45 ug/L	420 μg/L	120 ug/L
Cyanide	x		2	335.4	0.00400 mg/I	. <0.00400 mg/	L 0 mg/L	178 mg/L	5.2 ug/L
B. Non-Halogenated VOCs									
Total BTEX		X	2	624.1	0.597 ug/L	137.12 ug/L	68.56 ug/L	100 μg/L	
Benzene	X		2	624.1	1.19 ug/L	<1.19 ug/L	0 ug/L	5.0 μg/L	
1,4 Dioxane	X		2	522	0.0640 ug/L	<0.0640 ug/L	0 ug/L	200 μg/L	
Acetone	X		2	624.1	3.96 ug/L	<3.96 ug/L	0 ug/L	7.97 mg/L	
Phenol		X	2	625.1	62.2 ug/L	<62.2 ug/L	31.1 ug/L	1,080 µg/L	300 ug/L

	Known	Known		-	Detection limit (µg/l)	Influent		Effluent Limitations	
	or believed absent	or believed present	# of samples	Test method (#)		Daily maximum (µg/l)	Daily average (µg/l)	TBEL	WQBEL
C. Halogenated VOCs									
Carbon Tetrachloride	X		2	624.1	1.02 ug/L	<1.02 ug/L	0 ug/L	4.4 μg/L	1.6 ug/L
1,2 Dichlorobenzene		Х	2	624.1	0.889 ug/L	3.20 ug/L	1.60 ug/L	600 μg/L	
1,3 Dichlorobenzene	X		2	624.1	1.09 ug/L	<1.09 ug/L	0 ug/L	320 μg/L	
1,4 Dichlorobenzene	X		2	624.1	1.02 ug/L	<1.02 ug/L	0 ug/L	5.0 μg/L	
Total dichlorobenzene		X	2	624.1	0.889 ug/L	3.20 ug/L	1.60 ug/L	763 μg/L in NH	
1,1 Dichloroethane	X		2	624.1	1.18 ug/L	<1.18 ug/L	0.59 ug/L	70 μg/L	
1,2 Dichloroethane	X		2	624.1	1.21 ug/L	<1.21 ug/L	0.605 ug/L	5.0 μg/L	
1,1 Dichloroethylene	X		2	624.1	1.71 ug/L	<1.71 ug/L	0.855 ug/L	3.2 μg/L	
Ethylene Dibromide	X		2	624.1	1.00 ug/L	<1.00 ug/L	0 ug/L	0.05 μg/L	
Methylene Chloride	X		2	624.1	1.63 ug/L	<1.63 ug/L	0.815 ug/L	4.6 μg/L	
1,1,1 Trichloroethane	X		2	624.1	0.770 ug/I	<0.770 ug/L	0 ug/L	200 μg/L	
1,1,2 Trichloroethane	X		2	624.1	0.965 ug/L	<0.965 ug/L	0 ug/L	5.0 μg/L	
Frichloroethylene	X		2	624.1	1.19 ug/L	<1.19 ug/L	0.595 ug/L	5.0 μg/L	
Гetrachloroethylene	X		2	624.1	0.678 ug/L	<0.678 ug/L	0 ug/L	5.0 μg/L	
cis-1,2 Dichloroethylene	X		2	624.1	1.15 ug/L	<1.15 ug/L	0.575 ug/L	70 μg/L	
Vinyl Chloride	X		2	624.1	1.49 ug/L	<1.49 ug/L	0.745 ug/L	2.0 μg/L	
D. Non-Halogenated SVO	Cs								
Total Phthalates		X	2	625.1	72.3 ug/L	2.96 ug/L	2328 ug/L	190 μg/L	
Diethylhexyl phthalate		X	2	625.1	50.9 ug/L	4170 ug/L	2086 ug/L	101 μg/L	2.2 ug/L
Total Group I PAHs	X		2	625.1	64.8 ug/L	<64.8 ug/L	33.05 ug/L	1.0 μg/L	
Benzo(a)anthracene	X		2	625.1	29.6 ug/L	<29.6 ug/L	15.096 ug/L	1.5	0.0038 ug/L
Benzo(a)pyrene	X		2	625.1	34.1 ug/L	<34.1 ug/L	17.391 ug/L	1	0.0038 ug/L
Benzo(b)fluoranthene	X		2	625.1	71.7 ug/L	<71.7 ug/L	36.57 ug/L	1	0.0038 ug/L
Benzo(k)fluoranthene	x		2	625.1	33.7 ug/L	<33.7 ug/L	17.187 ug/L	As Total PAHs	0.0038 ug/L
Chrysene	X		2	625.1	45.4 ug/L	<0.45.4 ug/L	23.15 ug/L	1	0.0038 ug/L
Dibenzo(a,h)anthracene	X		2	625.1	36.9 ug/L	<36.9 ug/L	18.819 ug/L	1	0.0038 ug/L
Indeno(1,2,3-cd)pyrene	X		2	625.1	64.8 ug/L	<64.8 ug/L	33.05 ug/L	1	0.0038 ug/L

	Known	Known				Inf	luent	Effluent Lin	nitations
Parameter	or believed absent	or believed present	# of samples	Test method (#)	Detection limit (µg/l)	Daily maximum (µg/l)	Daily average (μg/l)	TBEL	WQBEL
Total Group II PAHs		X	2	625.1	53.8 ug/L	104.1 ug/L	52.05 ug/L	100 μg/L	
Naphthalene	X		2	625.1	56.7 ug/L	<56.7	28.915 ug/L	20 μg/L	
E. Halogenated SVOCs									
Total PCBs	X		2	608.3	0.0370 ug/L	<0.0370 ug/L	0 ug/L	0.000064 μg/L	
Pentachlorophenol		Х	2	8270D SIM	7.71 ug/L	0.232 ug/L	3.971 ug/L	1.0 μg/L	
F. Fuels Parameters									
Total Petroleum Hydrocarbons		X	2	1664A	1.4 mg/L	73.5 mg/L	37.45 mg/L	5.0 mg/L	
Ethanol	X		2	8260C	60.1 ug/L	<60.1 ug/L	0 ug/L	Report mg/L	
Methyl-tert-Butyl Ether	X		2	8260C	0.465 ug/L	<0.465 ug/L	0 ug/L	70 μg/L	20 ug/L
tert-Butyl Alcohol	x		2	8260C	8.28 ug/L	<8.28 ug/L	0 ug/L	120 μg/L in MA 40 μg/L in NH	
tert-Amyl Methyl Ether	х		2	8260C	0.453 ug/L	<0.453 ug/L	0 ug/L	90 μg/L in MA 140 μg/L in NH	
Other (i.e., pH, temperatur	o hardnoss	colinity I C	's addition	aal nallutan	ts prosont).	if so specify:			
Temperature (groundwater)	e, naruness,	sammy, LC	2	lai ponutan	ts present),	7.6 deg C	7.15 deg C		
pH (groundwater)			2			5.72 SU	5.60 SU		
Temperature (surface water)			1			7.4 deg C	7.4 deg C		
pH (surface water)			1			6.86 SU	6.86 SU		
<u> </u>									

E. Treatment system information

1. Indicate the type(s) of treatment that will be applied to effluent prior to discharge: (check all that apply)	
☐ Adsorption/Absorption ☐ Advanced Oxidation Processes ☐ Air Stripping ☒ Granulated Activated Carbon ("GAC")/Liquid Phase Carbon Adsorption	
☐ Ion Exchange ☐ Precipitation/Coagulation/Flocculation Ď Separation/Filtration ☐ Other; if so, specify:	
See below written description of the proposed treatment system.	
2. Provide a written description of all treatment system(s) or processes that will be applied to the effluent prior to discharge.	
An electric submersible pump will pump groundwater from a temporary excavation dewatering sump to a 21,000-gallon fractionation (frac) tank. Recovered groundwater bag filters to remove particulates and two 2,000-pound liquid phase granular activated carbon (LGAC) units plumbed in series. The treated groundwater shall be discharge storm drain catch basin located in front of the site property. The storm drain discharges to the Shawsheen River freshwater surface water located approximately 0.25 miles	ed into a nearby
Identify each major treatment component (check any that apply):	
☑ Fractionation tanks ☐ Equalization tank ☐ Oil/water separator ☐ Mechanical filter ☐ Media filter	
☐ Chemical feed tank ☐ Air stripping unit ☒ Bag filter ☒ Other; if so, specify: The proposed treatment system will also include liquid phase granular activated caunits and a flow meter/totalizer.	arbon (LGAC)
Indicate if either of the following will occur (check any that apply):	
☐ Chlorination ☐ De-chlorination	
3. Provide the design flow capacity in gallons per minute (gpm) of the most limiting component.	
Indicate the most limiting component:	
Is use of a flow meter feasible? (check one): ☼ Yes □ No, if so, provide justification:	
Provide the proposed maximum effluent flow in gpm.	100
Provide the average effluent flow in gpm.	50
If Activity Category IV applies, indicate the estimated total volume of water that will be discharged:	
4. Has the operator attached a schematic of flow in accordance with the instructions in E, above? (check one): ■ Yes □ No	

F. Chemical and additive information

r. Chemical and additive information
1. Indicate the type(s) of chemical or additive that will be applied to effluent prior to discharge or that may otherwise be present in the discharge(s): (check all that apply)
□ Algaecides/biocides □ Antifoams □ Coagulants □ Corrosion/scale inhibitors □ Disinfectants □ Flocculants □ Neutralizing agents □ Oxidants □ Oxygen □
scavengers □ pH conditioners □ Bioremedial agents, including microbes □ Chlorine or chemicals containing chlorine □ Other; if so, specify: Not applicable
2. Provide the following information for each chemical/additive, using attachments, if necessary:
a. Product name, chemical formula, and manufacturer of the chemical/additive; b. Purpose or use of the chemical/additive or remedial agent; c. Material Safety Data Sheet (MSDS) and Chemical Abstracts Service (CAS) Registry number for each chemical/additive; d. The frequency (hourly, daily, etc.), duration (hours, days), quantity (maximum and average), and method of application for the chemical/additive; e. Any material compatibility risks for storage and/or use including the control measures used to minimize such risks; and f. If available, the vendor's reported aquatic toxicity (NOAEL and/or LC50 in percent for aquatic organism(s)).
3. Has the operator attached an explanation which demonstrates that the addition of such chemicals/additives may be authorized under this general permit in accordance
with the instructions in F, above? (check one): \square Yes \square No; if no, has the operator attached data that demonstrates each of the 126 priority pollutants in CWA Section 307(a) and 40 CFR Part 423.15(j)(1) are non-detect in discharges with the addition of the proposed chemical/additive?
(check one): ☐ Yes ☐ No
G. Endangered Species Act eligibility determination
1. Indicate under which criterion the discharge(s) is eligible for coverage under this general permit:
□ FWS Criterion A: No endangered or threatened species or critical habitat are in proximity to the discharges or related activities or come in contact with the "action area".
▼ FWS Criterion B: Formal or informal consultation with the FWS under section 7 of the ESA resulted in either a no jeopardy opinion (formal consultation) or a written concurrence by FWS on a finding that the discharges and related activities are "not likely to adversely affect" listed species or critical habitat (informal consultation). Has the operator completed consultation with FWS? (check one): ▼ Yes □ No; if no, is consultation underway? (check one): □
Yes □ No
□ FWS Criterion C : Using the best scientific and commercial data available, the effect of the discharges and related activities on listed species and critical habitat have been evaluated. Based on those evaluations, a determination is made by EPA, or by the operator and affirmed by EPA, that the discharges and related activities will have "no effect" on any federally threatened or endangered listed species or designated critical habitat under the jurisdiction of the
FWS. This determination was made by: (check one) \square the operator \square EPA \square Other; if so, specify:

□ NMFS Criterion: A determination made by EPA is affirmed by the operator that the discharges and related activities will have "no effect" or are "not likely to adversely affect" any federally threatened or endangered listed species or critical habitat under the jurisdiction of NMFS and will not result in any take of
listed species. Has the operator previously completed consultation with NMFS? (check one): □ Yes □ No
2. Has the operator attached supporting documentation of ESA eligibility in accordance with the instructions in Appendix I, and G, above? (check one): 🗵 Yes 🗆 No
Does the supporting documentation include any written concurrence or finding provided by the Services? (check one): □ Yes □ No; if yes, attach.
Boes the supporting documentation include any written concurrence of finding provided by the services. (effect one). 1 163 170, 11 yes, attach.
H. National Historic Preservation Act eligibility determination
1. Indicate under which criterion the discharge(s) is eligible for coverage under this general permit:
☐ Criterion A: No historic properties are present. The discharges and discharge-related activities (e.g., BMPs) do not have the potential to cause effects on historic properties.
☐ Criterion B: Historic properties are present. Discharges and discharge related activities do not have the potential to cause effects on historic properties.
☐ Criterion C : Historic properties are present. The discharges and discharge-related activities have the potential to have an effect or will have an adverse effect on historic properties.
2. Has the operator attached supporting documentation of NHPA eligibility in accordance with the instructions in H, above? (check one): ☐ Yes ☒ No
Does the supporting documentation include any written agreement with the State Historic Preservation Officer (SHPO), Tribal Historic Preservation Officer (TPHO), or
other tribal representative that outlines measures the operator will carry out to mitigate or prevent any adverse effects on historic properties? (check one): \square Yes \square No
other tribal representative that outlines measures the operator will carry out to mitigate of prevent any adverse effects on historic properties: (check one).
I. Supplemental information
Describe any supplemental information being provided with the NOI. Include attachments if required or otherwise necessary.
Please see attached figures, data tables, laboratory analytical reports, and supporting documentation for supplemental information.
Has the operator attached data, including any laboratory case narrative and chain of custody used to support the application? (check one): ☐ Yes ☐ No
Has the operator attached the certification requirement for the Best Management Practices Plan (BMPP)? (check one): ☐ Yes ☐ No

J. Certification requirement

I certify under penalty of law that this document and all attachments were prepared under my direction or supervision in accordance with a system designed to assure that qualified personnel properly gathered and evaluated the information submitted. Based on my inquiry of the person or persons who manage the system, or those persons directly responsible for gathering the information, the information submitted is, to the best of my knowledge and belief, true, accurate, and complete. I have no personal knowledge that the information submitted is other than true, accurate, and complete. I am aware that there are significant penalties for submitting false information, including the possibility of fine and imprisonment for knowing violations.							
A Best Management Practices Plan (BMPP) has been prepared for the deward copy will be maintained on-site.	atering system/discharge and a						
Notification provided to the appropriate State, including a copy of this NOI, if required.	Check one: Yes ☒ No □						
Notification provided to the municipality in which the discharge is located, including a copy of this NOI, if requested. Billerica DPW was informed of the proposed discharge to the storm drain system on 3/16/20. Authorization from the DPW will be obtained	Check one: Yes ⊠ No □ d after authorization from EPA.						
Notification provided to the owner of a private or municipal storm sewer system, if such system is used for site discharges, including a copy of this NOI, if requested. Permission obtained from the owner of a private or municipal storm sewer system, if such system is used for site discharges. If yes, attach additional conditions. If no, attach explanation and timeframe for obtaining permission.	Check one: Yes □ No □ NA □ Check one: Yes □ No □ NA □						
Notification provided to the owner/operator of the area associated with activities covered by an additional discharge	Check one: Yes 🗆 No 🗆 NA 🗆						
permit(s). Additional discharge permit is (check one): □ RGP □ DGP □ CGP □ MSGP □ Individual NPDES permit □ Other; if so, specify:	Check one: Yes □ No □ NA □						
Signature: Date: 6/25/2020							
Print Name and Title: Meghan D. Proia, PE / Senior Engineer							

EPA RGP NOI 764 Boston Road Billerica, MA

Attachment B – Laboratory Analytical Report

ANALYTICAL REPORT

Eurofins TestAmerica, Edison 777 New Durham Road Edison, NJ 08817 Tel: (732)549-3900

Laboratory Job ID: 460-205843-1 Client Project/Site: Billerica, MA

Revision: 1

For:

Groundwater & Environmental Services Inc One Park Drive Suite 8 Westford, Massachusetts 01886

Attn: Stefan Sokol

Authorized for release by: 4/22/2020 1:03:27 PM

Lauren Evans, Project Management Assistant I (615)301-5034

lauren.evans@testamericainc.com

..... Links

Review your project results through

Total Access

Have a Question?

Visit us at: www.testamericainc.com

The test results in this report meet all 2003 NELAC and 2009 TNI requirements for accredited parameters, exceptions are noted in this report. This report may not be reproduced except in full, and with written approval from the laboratory. For questions please contact the Project Manager at the e-mail address or telephone number listed on this page.

This report has been electronically signed and authorized by the signatory. Electronic signature is intended to be the legally binding equivalent of a traditionally handwritten signature.

Results relate only to the items tested and the sample(s) as received by the laboratory.

Table of Contents

Cover Page	1
Table of Contents	2
Definitions/Glossary	3
Case Narrative	4
Detection Summary	6
Client Sample Results	8
Surrogate Summary	19
QC Sample Results	21
QC Association Summary	39
Lab Chronicle	44
Certification Summary	46
Method Summary	50
Sample Summary	51
Chain of Custody	52
Receipt Checklists	61

Definitions/Glossary

Client: Groundwater & Environmental Services Inc

Project/Site: Billerica, MA

Job ID: 460-205843-1

Qualifiers

GC/MS VOA

J Result is less than the RL but greater than or equal to the MDL and the concentration is an approximate value.

GC/MS Semi VOA

Qualifier Qualifier Description

LCS or LCSD is outside acceptance limits.

H Sample was prepped or analyzed beyond the specified holding time

J Result is less than the RL but greater than or equal to the MDL and the concentration is an approximate value.

X Surrogate recovery exceeds control limits

GC Semi VOA

Qualifier Qualifier Description

X Surrogate recovery exceeds control limits

Metals

Qualifier Qualifier Description

[^] ICV,CCV,ICB,CCB, ISA, ISB, CRI, CRA, DLCK or MRL standard: Instrument related QC is outside acceptance limits.

J Result is less than the RL but greater than or equal to the MDL and the concentration is an approximate value.

General Chemistry

Qualifier Qualifier Description

Field parameter with a holding time of 15 minutes. Test performed by laboratory at client's request.

Glossary

Abbreviation	These commonly	used abbreviations may	or may r	not be n	resent in this rep	ort.

Eisted under the "D" column to designate that the result is reported on a dry weight basis

%R Percent Recovery
CFL Contains Free Liquid
CNF Contains No Free Liquid

DER Duplicate Error Ratio (normalized absolute difference)

Dil Fac Dilution Factor

DL Detection Limit (DoD/DOE)

DL, RA, RE, IN Indicates a Dilution, Re-analysis, Re-extraction, or additional Initial metals/anion analysis of the sample

DLC Decision Level Concentration (Radiochemistry)

EDL Estimated Detection Limit (Dioxin)
LOD Limit of Detection (DoD/DOE)
LOQ Limit of Quantitation (DoD/DOE)

MDA Minimum Detectable Activity (Radiochemistry)
MDC Minimum Detectable Concentration (Radiochemistry)

MDL Method Detection Limit
ML Minimum Level (Dioxin)

NC Not Calculated

ND Not Detected at the reporting limit (or MDL or EDL if shown)

PQL Practical Quantitation Limit

QC Quality Control

RER Relative Error Ratio (Radiochemistry)

RL Reporting Limit or Requested Limit (Radiochemistry)

RPD Relative Percent Difference, a measure of the relative difference between two points

TEF Toxicity Equivalent Factor (Dioxin)
TEQ Toxicity Equivalent Quotient (Dioxin)

Eurofins TestAmerica, Edison

Δ

Ţ

6

7

8

40

11

14

Case Narrative

Client: Groundwater & Environmental Services Inc

Project/Site: Billerica, MA

Job ID: 460-205843-1

Job ID: 460-205843-1

Laboratory: Eurofins TestAmerica, Edison

Narrative

Job Narrative 460-205843-1

Revised Report

This report has been revised to adjust the Volatiles and Semivolatiles analyte lists as well as change the sample ID for 460-205843-1, per client request. This revision replaces the original report provided on 4/9/20 at 5:00 pm.

Comments

No additional comments.

Receipt

The samples were received on 3/26/2020 10:00 AM; the samples arrived in good condition, properly preserved and, where required, on ice. The temperature of the cooler at receipt was 1.0° C.

Receipt Exceptions

No analysis methods were applied to sample MW-20S. The client confirmed that the same analysis should be run for this sample as was marked for MW-11S.

GC/MS VOA

Method 624.1: The following sample was diluted to bring the concentration of target analytes within the calibration range: MW-20S (460-205843-3). Elevated reporting limits (RLs) are provided.

No additional analytical or quality issues were noted, other than those described above or in the Definitions/Glossary page.

GC/MS Semi VOA

Method 8270D SIM: The laboratory control sample duplicate (LCSD) for preparation batch 460-684079 and analytical batch 460-684053 recovered outside control limits for the following analytes: Indeno[1,2,3-cd]pyrene. These analytes were biased high in the LCSD and were not detected in the associated samples; therefore, the data have been reported.

Method 8270D SIM: The continuing calibration verification (CCV) analyzed in batch 460-684386 was outside the method criteria for the following analyte(s): Benzo[a]pyrene. A CCV standard at or below the reporting limit (RL) was analyzed with the affected samples and found to be acceptable. As indicated in the reference method, sample analysis may proceed; however, any detection for the affected analyte(s) is considered estimated.

Method 8270D SIM: The following sample was diluted to bring the concentration of target analytes within the calibration range: MW-20S (460-205843-3). Elevated reporting limits (RLs) are provided.

Method 8270D SIM: Four surrogates are used for this analysis. The laboratory's SOP allows one of these surrogates to be outside acceptance criteria without performing re-extraction/re-analysis. The following sample contained an allowable number of surrogate compounds outside limits: MW-11S (460-205843-2). These results have been reported and qualified.

Method 625.1: The following sample was diluted to bring the concentration of target analytes within the calibration range: MW-20S (460-205843-3). Elevated reporting limits (RLs) are provided.

Method 625.1: The following sample required a dilution due to the nature of the sample matrix: MW-20S (460-205843-3). Because of this dilution, the surrogate spike concentration in the sample was reduced to a level where the recovery calculation does not provide useful information.

No additional analytical or quality issues were noted, other than those described above or in the Definitions/Glossary page.

GC Semi VOA

Method 608.3: The continuing calibration verification (CCV) associated with batch 460-684055 recovered above the upper control limit for DDE and Endrin. The samples associated with this CCV were non-detects for the affected analytes; therefore, the data have been reported.

3

4

5

6

Q

9

10

12

13

Case Narrative

Client: Groundwater & Environmental Services Inc

Project/Site: Billerica, MA

Job ID: 460-205843-1

Job ID: 460-205843-1 (Continued)

Laboratory: Eurofins TestAmerica, Edison (Continued)

Method 608.3: The DCB Decachlorobiphenyl surrogate recovery for the following samples was outside acceptance limits (high biased) on the confirmation column due to matrix interference: MW-20S (460-205843-3). The recovery is within acceptance limits on the other column, indicating that the extraction process was in control.

Method 300.0: The following samples were diluted to bring the concentration of target analytes within the calibration range: MW-11S (460-205843-2) and MW-20S (460-205843-3). Elevated reporting limits (RLs) are provided.

No additional analytical or quality issues were noted, other than those described above or in the Definitions/Glossary page.

Metals

Method 200.7 Rev 4.4: The initial calibration verification (ICV) result for batch 680-613384 was above the upper control limit for Antimony. Sample results were non-detects, and have been reported as qualified data.

No additional analytical or quality issues were noted, other than those described above or in the Definitions/Glossary page.

General Chemistry

Method 1664A: Analysis for Hexane Extractable Material (HEM) was performed for the following sample: MW-11S (460-205843-2). Since the HEM result(s) was below the reporting limit (RL), the result(s) for Silica Gel Treated - Hexane Extractable Material (SGT-HEM) was reported as a non-detect. All HEM quality control criteria were met.

Method 4500 NH3 H: The reference method requires samples to be preserved to a pH of <2.0. The following sample(s) was received with insufficient preservation at a pH of 7.0. The sample(s) was preserved to the appropriate pH in the laboratory with conc. sulfuric acid.

No additional analytical or quality issues were noted, other than those described above or in the Definitions/Glossary page.

Organic Prep

No analytical or quality issues were noted, other than those described in the Definitions/Glossary page.

VOA Prep

No analytical or quality issues were noted, other than those described in the Definitions/Glossary page.

4

_

7

10

11

13

14

Client: Groundwater & Environmental Services Inc

Project/Site: Billerica, MA

Client Sample ID: SW-1

Lab Sample ID: 460-205843-1

Job ID: 460-205843-1

Analyte	Result	Qualifier	RL	MDL	Unit	Dil Fac	Method	Prep Type
Iron	341		50.0	17.0	ug/L	1	200.7 Rev 4.4	Total/NA
Silver	0.983	J	10.0	0.600	ug/L	1	200.7 Rev 4.4	Total/NA
Zinc	7.77	J	20.0	7.00	ug/L	1	200.7 Rev 4.4	Total/NA
Hardness	60.0		5.00	5.00	mg/L	1	SM 2340C	Total/NA
pH	7.0	HF	0.1	0.1	SU	1	SM 4500 H+ B	Total/NA
Temperature	22.4	HF	0.1	0.1	Degrees C	1	SM 4500 H+ B	Total/NA

Client Sample ID: MW-11S

		-		
Lab	Sami	ole	ID:	460-205843-2

Analyte	Result	Qualifier	RL	MDL	Unit	Dil Fac	D	Method	Prep Type
Bis(2-ethylhexyl) phthalate	2.96	H	2.00	1.02	ug/L		_	625.1	Total/NA
Benzo[a]anthracene	0.0200	J	0.0500	0.0156	ug/L	1		8270D SIM	Total/NA
Pentachlorophenol	0.232		0.200	0.154	ug/L	1		8270D SIM	Total/NA
Chloride	79.7		12.0	1.40	mg/L	100		300.0	Total/NA
Cadmium	9.35		5.00	1.00	ug/L	1		200.7 Rev 4.4	Total/NA
Copper	3.70	J	20.0	1.80	ug/L	1		200.7 Rev 4.4	Total/NA
Iron	20100		50.0	17.0	ug/L	1		200.7 Rev 4.4	Total/NA
Nickel	14.7	J	40.0	2.10	ug/L	1		200.7 Rev 4.4	Total/NA
Zinc	27.4		20.0	7.00	ug/L	1		200.7 Rev 4.4	Total/NA
Mercury	0.150	J	0.200	0.0910	ug/L	1		245.1	Total/NA
Ammonia (as N)	0.145		0.100	0.0340	mg/L	1		4500 NH3 H	Total/NA
Total Suspended Solids	114		12.5	12.5	mg/L	1		SM 2540D	Total/NA

Client Sample ID: MW-20S

Lab Sample ID: 460-205843-3

onent cample ib. www.z						Lub Ot	4111	pic ib. 400	
Analyte	Result	Qualifier	RL	MDL	Unit	Dil Fac	D	Method	Prep Type
Chloroform	2.56	J	10.0	1.08	ug/L		_	624.1	Total/NA
1,2-Dichlorobenzene	3.20	J	10.0	0.889	ug/L	2		624.1	Total/NA
Ethylbenzene	112		10.0	0.930	ug/L	2		624.1	Total/NA
Isopropylbenzene	6.93	J	10.0	1.02	ug/L	2		624.1	Total/NA
4-Isopropyltoluene	9.64	J	10.0	1.08	ug/L	2		624.1	Total/NA
m-Xylene & p-Xylene	23.5		20.0	2.16	ug/L	2		624.1	Total/NA
Naphthalene	137		10.0	0.218	ug/L	2		624.1	Total/NA
n-Butylbenzene	6.69	J	20.0	0.642	ug/L	2		624.1	Total/NA
N-Propylbenzene	8.58	J	20.0	0.592	ug/L	2		624.1	Total/NA
o-Xylene	1.62	J	10.0	0.857	ug/L	2		624.1	Total/NA
sec-Butylbenzene	8.29	J	20.0	0.638	ug/L	2		624.1	Total/NA
1,2,4-Trimethylbenzene	74.9		10.0	1.04	ug/L	2		624.1	Total/NA
1,3,5-Trimethylbenzene	18.0	J	20.0	0.888	ug/L	2		624.1	Total/NA
Bis(2-ethylhexyl) phthalate	4170	Н	100	50.9	ug/L	50		625.1	Total/NA
Di-n-octyl phthalate	483	JH	500	72.3	ug/L	50		625.1	Total/NA
2-Methylnaphthalene	111	JН	500	54.8	ug/L	50		625.1	Total/NA
Phenanthrene	63.6	JH	500	29.0	ug/L	50		625.1	Total/NA
Acenaphthene	17.7		2.50	0.710	ug/L	50		8270D SIM	Total/NA
Benzo[a]anthracene	1.47	J	2.50	0.780	ug/L	50		8270D SIM	Total/NA
Acenaphthylene	4.35		2.50	0.730	ug/L	50		8270D SIM	Total/NA
Fluorene	31.8		2.50	0.590	ug/L	50		8270D SIM	Total/NA
Phenanthrene	50.0		2.50	1.10	ug/L	50		8270D SIM	Total/NA
Pyrene	4.59		2.50	1.57	ug/L	50		8270D SIM	Total/NA
Chloride	121		12.0	1.40	mg/L	100		300.0	Total/NA
Arsenic	11.7	J	20.0	6.20	ug/L	1		200.7 Rev 4.4	Total/NA
Iron	13100		50.0	17.0	ug/L	1		200.7 Rev 4.4	Total/NA

This Detection Summary does not include radiochemical test results.

Eurofins TestAmerica, Edison

3

4

6

8

10

12

1 A

1 5

Detection Summary

Client: Groundwater & Environmental Services Inc

Project/Site: Billerica, MA

Client Sample ID: MW-20S (Continued)

Lab Sar

Lab Sample ID: 460-205843-3

Job ID: 460-205843-1

Analyte	Result	Qualifier	RL	MDL	Unit	Dil Fac	D	Method	Prep Type
Silver	1.06	J	10.0	0.600	ug/L	1	_	200.7 Rev 4.4	Total/NA
Zinc	13.5	J	20.0	7.00	ug/L	1		200.7 Rev 4.4	Total/NA
HEM	52.8		5.0	1.4	mg/L	1		1664A	Total/NA
SGT-HEM	20.7		5.0	1.4	mg/L	1		1664A	Total/NA
Ammonia (as N)	0.776		0.100	0.0340	mg/L	1		4500 NH3 H	Total/NA
Total Suspended Solids	74.0		12.5	12.5	mg/L	1		SM 2540D	Total/NA

3

4

9

10

12

1 /

Client Sample Results

Client: Groundwater & Environmental Services Inc

Project/Site: Billerica, MA

Client Sample ID: SW-1 Lab Sample ID: 460-205843-1

Date Collected: 03/25/20 12:45 **Matrix: Water** Date Received: 03/26/20 10:00

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Antimony	ND	^	20.0	5.30	ug/L		03/29/20 11:36	03/30/20 22:16	1
Arsenic	ND		20.0	6.20	ug/L		03/29/20 11:36	03/30/20 22:16	1
Cadmium	ND		5.00	1.00	ug/L		03/29/20 11:36	03/30/20 22:16	1
Copper	ND		20.0	1.80	ug/L		03/29/20 11:36	03/30/20 22:16	1
Iron	341		50.0	17.0	ug/L		03/29/20 11:36	03/30/20 22:16	1
Lead	ND		10.0	3.90	ug/L		03/29/20 11:36	03/30/20 22:16	1
Nickel	ND		40.0	2.10	ug/L		03/29/20 11:36	03/30/20 22:16	1
Selenium	ND		20.0	9.90	ug/L		03/29/20 11:36	03/30/20 22:16	1
Silver	0.983	J	10.0	0.600	ug/L		03/29/20 11:36	03/30/20 22:16	1
Zinc	7.77	J	20.0	7.00	ug/L		03/29/20 11:36	03/30/20 22:16	1
Analyte Mercury	Result ND	Qualifier	0.200	MDL 0.0910		_ D	Prepared 04/03/20 12:34	Analyzed 04/03/20 14:09	Dil Fac
General Chemistry									
Analyta	Result	Qualifier	RL	MDI	Unit	D	Prepared	Analyzed	Dil Fac
Analyte									
Ammonia (as N)	ND		0.100	0.0340	-			03/31/20 10:48	1
					-			03/31/20 10:48 03/26/20 11:10	1 1
Ammonia (as N)	ND ND	Qualifier	0.100	0.0340 8.14	-	D	Prepared		1 1 Dil Fac
Ammonia (as N) Cr (VI)	ND ND		0.100	0.0340 8.14 RL	ug/L	_ D	Prepared	03/26/20 11:10	1
Ammonia (as N) Cr (VI) Analyte	ND ND Result		0.100 10.0 RL	0.0340 8.14 RL 10.0	ug/L Unit	_ D	Prepared	03/26/20 11:10 Analyzed	1
Ammonia (as N) Cr (VI) Analyte Cr (III)	ND ND Result ND	Qualifier	0.100 10.0 RL 10.0	0.0340 8.14 RL 10.0	ug/L Unit ug/L mg/L	_ D	Prepared	03/26/20 11:10 Analyzed 04/06/20 16:49	1

Job ID: 460-205843-1

Client Sample Results

Client: Groundwater & Environmental Services Inc Job ID: 460-205843-1

Project/Site: Billerica, MA

Client Sample ID: MW-11S

Lab Sample ID: 460-205843-2 Date Collected: 03/25/20 11:15

Matrix: Water

Date Received: 03/26/20 10:00

Analyte	Result Qualifier	RL _	MDL		D	Prepared	Analyzed	Dil F
Acetone	ND	25.0		ug/L			03/30/20 12:47	
Benzene	ND	5.00	0.597	-			03/30/20 12:47	
Bromobenzene	ND	10.0	0.438	-			03/30/20 12:47	
Bromoform	ND	5.00	0.469	-			03/30/20 12:47	
Bromomethane	ND	5.00	1.19	ug/L			03/30/20 12:47	
2-Butanone (MEK)	ND	25.0	1.76	ug/L			03/30/20 12:47	
Carbon disulfide	ND	5.00	0.287	ug/L			03/30/20 12:47	
Carbon tetrachloride	ND	5.00	0.511	ug/L			03/30/20 12:47	
Chlorobenzene	ND	5.00	0.476	ug/L			03/30/20 12:47	
Chlorobromomethane	ND	5.00	0.715	ug/L			03/30/20 12:47	
Chlorodibromomethane	ND	5.00	0.414	ug/L			03/30/20 12:47	
Chloroethane	ND	5.00	0.873	ug/L			03/30/20 12:47	
Chloroform	ND	5.00	0.542	ug/L			03/30/20 12:47	
Chloromethane	ND	5.00	0.636	ug/L			03/30/20 12:47	
2-Chlorotoluene	ND	5.00	0.328	-			03/30/20 12:47	
4-Chlorotoluene	ND	5.00	0.273	-			03/30/20 12:47	
cis-1,2-Dichloroethene	ND	5.00	0.573	-			03/30/20 12:47	
cis-1,3-Dichloropropene	ND	5.00	0.331	_			03/30/20 12:47	
1,2-Dibromo-3-Chloropropane	ND	5.00	0.620	ū			03/30/20 12:47	
Dibromomethane	ND	5.00	0.534	-			03/30/20 12:47	
1,2-Dichlorobenzene	ND	5.00	0.445	-			03/30/20 12:47	
1,3-Dichlorobenzene	ND	5.00	0.543	-			03/30/20 12:47	
1,4-Dichlorobenzene	ND	5.00	0.508	-			03/30/20 12:47	
Dichlorobromomethane	ND	5.00	0.537	-			03/30/20 12:47	
Dichlorodifluoromethane	ND	5.00	0.277	-			03/30/20 12:47	
1,1-Dichloroethane	ND	5.00	0.589	-			03/30/20 12:47	
1,2-Dichloroethane	ND	5.00	0.603	-			03/30/20 12:47	
1,1-Dichloroethene	ND	5.00	0.855	-			03/30/20 12:47	
1,2-Dichloropropane	ND	5.00	0.612	-			03/30/20 12:47	
1,3-Dichloropropane	ND	5.00	0.516	-			03/30/20 12:47	
	ND		0.329	•			03/30/20 12:47	
2,2-Dichloropropane	ND ND	5.00		-				
1,1-Dichloropropene		5.00	0.790	-			03/30/20 12:47	
1,4-Dioxane	ND	200	15.1	-			03/30/20 12:47	
Ethylbenzene	ND ND	5.00	0.465	-			03/30/20 12:47	
Ethylene Dibromide		5.00	0.502	-			03/30/20 12:47	
Ethyl ether	ND	5.00	0.339				03/30/20 12:47	
Hexachlorobutadiene	ND	10.0	0.578				03/30/20 12:47	
2-Hexanone	ND	25.0		ug/L			03/30/20 12:47	
sopropylbenzene	ND	5.00	0.511				03/30/20 12:47	
sopropyl ether	ND	5.00	0.351	_			03/30/20 12:47	
1-Isopropyltoluene	ND	5.00	0.541	-			03/30/20 12:47	
Methylene Chloride	ND	5.00	0.815	-			03/30/20 12:47	
1-Methyl-2-pentanone (MIBK)	ND	25.0		ug/L			03/30/20 12:47	
Methyl tert-butyl ether	ND	5.00	0.354	-			03/30/20 12:47	
n-Xylene & p-Xylene	ND	10.0	1.08	ug/L			03/30/20 12:47	
Naphthalene	ND	5.00	0.109	ug/L			03/30/20 12:47	
n-Butylbenzene	ND	10.0	0.321	-			03/30/20 12:47	
N-Propylbenzene	ND	10.0	0.296	ug/L			03/30/20 12:47	

Eurofins TestAmerica, Edison

Project/Site: Billerica, MA

Client Sample ID: MW-11S

Date Collected: 03/25/20 11:15 Date Received: 03/26/20 10:00 Lab Sample ID: 460-205843-2

Matrix: Water

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
sec-Butylbenzene	ND		10.0	0.319	ug/L			03/30/20 12:47	1
Styrene	ND		5.00	0.382	ug/L			03/30/20 12:47	1
tert-Butylbenzene	ND		10.0	0.544	ug/L			03/30/20 12:47	1
1,1,1,2-Tetrachloroethane	ND		5.00	0.495	ug/L			03/30/20 12:47	1
1,1,2,2-Tetrachloroethane	ND		5.00	0.259	ug/L			03/30/20 12:47	1
Tetrachloroethene	ND		5.00	0.339	ug/L			03/30/20 12:47	1
Tetrahydrofuran	ND		25.0	2.19	ug/L			03/30/20 12:47	1
Toluene	ND		5.00	0.454	ug/L			03/30/20 12:47	1
trans-1,2-Dichloroethene	ND		5.00	0.589	ug/L			03/30/20 12:47	1
trans-1,3-Dichloropropene	ND		5.00	0.442	ug/L			03/30/20 12:47	1
1,2,3-Trichlorobenzene	ND		5.00	0.414	ug/L			03/30/20 12:47	1
1,2,4-Trichlorobenzene	ND		5.00	0.391	ug/L			03/30/20 12:47	1
1,1,1-Trichloroethane	ND		5.00	0.385	ug/L			03/30/20 12:47	1
1,1,2-Trichloroethane	ND		5.00	0.482	ug/L			03/30/20 12:47	1
Trichloroethene	ND		5.00	0.597	ug/L			03/30/20 12:47	1
Trichlorofluoromethane	ND		5.00	0.449	ug/L			03/30/20 12:47	1
1,2,3-Trichloropropane	ND		5.00	0.207	ug/L			03/30/20 12:47	1
1,2,4-Trimethylbenzene	ND		5.00	0.522	ug/L			03/30/20 12:47	1
1,3,5-Trimethylbenzene	ND		10.0	0.444	ug/L			03/30/20 12:47	1
Vinyl chloride	ND		5.00	0.747	ug/L			03/30/20 12:47	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
4-Bromofluorobenzene (Surr)	111		76 - 123			-		03/30/20 12:47	1
Dibromofluoromethane (Surr)	105		75 - 123					03/30/20 12:47	1
1,2-Dichloroethane-d4 (Surr)	100		68 - 130					03/30/20 12:47	1
Toluene-d8 (Surr)	93		77 - 120					03/30/20 12:47	1

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Ethanol	ND		200	60.1	ug/L			03/27/20 15:25	1
t-Butyl alcohol	ND		5.00	8.28	ug/L			03/27/20 15:25	1
Methyl tert-butyl ether	ND		0.500	0.465	ug/L			03/27/20 15:25	1
Tert-amyl methyl ether	ND		0.500	0.453	ug/L			03/27/20 15:25	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
4-Bromofluorobenzene	110		76 - 120			•		03/27/20 15:25	1
Dibromofluoromethane (Surr)	107		77 - 124					03/27/20 15:25	1
1,2-Dichloroethane-d4 (Surr)	97		75 - 123					03/27/20 15:25	1
Toluene-d8 (Surr)	104		80 - 120					03/27/20 15:25	1

Method: 522 - 1,4 Dioxai	ne (GC/MS SIM)								
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
1,4-Dioxane	ND		0.200	0.0640	ug/L		03/30/20 14:45	04/02/20 08:05	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
1,4-Dioxane-d8 (Surr)	95		46 - 130				03/30/20 14:45	04/02/20 08:05	1

Method: 625.1 - Semivolatile O	rganic Con	npounds (GC/MS)						
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Acenaphthene	ND	H	10.0	1.08	ug/L		04/18/20 08:24	04/19/20 03:22	1
Acenaphthylene	ND	Н	10.0	0.823	ug/L		04/18/20 08:24	04/19/20 03:22	1

Client: Groundwater & Environmental Services Inc Job ID: 460-205843-1

Project/Site: Billerica, MA

Client Sample ID: MW-11S

Date Collected: 03/25/20 11:15 Date Received: 03/26/20 10:00

Lab Sample ID: 460-205843-2

Matrix: Water

Method: 625.1 - Semivolatil Analyte		Qualifier	RL		Unit	D	Prepared	Analyzed	Dil Fac
Acetophenone	ND	H	10.0	2.53	ug/L		04/18/20 08:24	04/19/20 03:22	1
Aniline	ND	Н	10.0	1.14	ug/L		04/18/20 08:24	04/19/20 03:22	1
Anthracene	ND	Н	10.0	0.634	ug/L		04/18/20 08:24	04/19/20 03:22	1
Benzo[a]anthracene	ND	Н	1.00	0.592	ug/L		04/18/20 08:24	04/19/20 03:22	1
Benzo[a]pyrene	ND	Н	1.00	0.682	ug/L		04/18/20 08:24	04/19/20 03:22	1
Benzo[b]fluoranthene	ND	Н	2.00	1.43	ug/L		04/18/20 08:24	04/19/20 03:22	1
Benzo[g,h,i]perylene	ND	Н	10.0	1.31	ug/L		04/18/20 08:24	04/19/20 03:22	1
Benzo[k]fluoranthene	ND	Н	1.00	0.674	ug/L		04/18/20 08:24	04/19/20 03:22	1
Bis(2-chloroethoxy)methane	ND	Н	10.0	0.640	_		04/18/20 08:24	04/19/20 03:22	1
Bis(2-chloroethyl)ether	ND	Н	1.00	0.688	ug/L		04/18/20 08:24	04/19/20 03:22	1
bis (2-chloroisopropyl) ether	ND	Н	10.0	0.629	•		04/18/20 08:24	04/19/20 03:22	1
Bis(2-ethylhexyl) phthalate	2.96	н	2.00	1.02	-		04/18/20 08:24	04/19/20 03:22	1
4-Bromophenyl phenyl ether	ND		10.0	0.745	-		04/18/20 08:24	04/19/20 03:22	1
Butyl benzyl phthalate	ND	Н	10.0	0.854			04/18/20 08:24	04/19/20 03:22	1
4-Chloroaniline	ND		10.0		ug/L			04/19/20 03:22	1
2-Chloronaphthalene	ND		10.0		ug/L			04/19/20 03:22	1
Chrysene	ND		2.00	0.907	•			04/19/20 03:22	· · · · · · · · 1
Dibenz(a,h)anthracene	ND		1.00	0.738	-			04/19/20 03:22	1
Dibenzofuran	ND		10.0	1.10	-			04/19/20 03:22	1
1,2-Dichlorobenzene	ND		10.0	1.34	-			04/19/20 03:22	1
1,3-Dichlorobenzene	ND	Н	10.0	2.03	-			04/19/20 03:22	1
1,4-Dichlorobenzene		Н	10.0	1.27	-			04/19/20 03:22	1
3,3'-Dichlorobenzidine	ND	 H	10.0	1.58	-			04/19/20 03:22	
Diethyl phthalate	ND	Н	10.0	0.976	-			04/19/20 03:22	1
Dimethyl phthalate	ND	Н	10.0	0.766	-			04/19/20 03:22	1
Di-n-butyl phthalate	ND	. ' ' H	10.0	0.753	-			04/19/20 03:22	
2,4-Dinitrotoluene	ND	Н	2.00		ug/L			04/19/20 03:22	1
2,6-Dinitrotoluene	ND		2.00	0.534	-			04/19/20 03:22	1
Di-n-octyl phthalate		. '.' H	10.0		ug/L			04/19/20 03:22	
1,4-Dioxane		Н	10.0	1.58	_			04/19/20 03:22	1
Fluoranthene	ND		10.0	0.842	-			04/19/20 03:22	1
Fluorene	ND		10.0	0.912	-			04/19/20 03:22	
Hexachlorobenzene		Н	1.00	0.909	-			04/19/20 03:22	1
Hexachlorobutadiene	ND ND	Н	1.00	0.438	-			04/19/20 03:22	1
Hexachloroethane		 Н	2.00		ug/L			04/19/20 03:22	1
		Н			_				1
Indeno[1,2,3-cd]pyrene	ND ND		2.00	1.30	_			04/19/20 03:22	-
Isophorone 2 Methylpaphthalone			10.0	0.798	ug/L ug/L			04/19/20 03:22	1
2-Methylnaphthalene	ND ND		10.0					04/19/20 03:22	1
Naphthalene	ND		2.00		ug/L			04/19/20 03:22	1
Nitrobenzene	ND		2.00		ug/L			04/19/20 03:22	1
Phenanthrene	ND		10.0	0.580	-			04/19/20 03:22	1
Pyrene	ND		10.0		ug/L			04/19/20 03:22	1
1,2,4-Trichlorobenzene	ND		2.00		ug/L			04/19/20 03:22	
Pentachlorophenol	ND		20.0		ug/L			04/19/20 03:22	1
Phenol	ND	Н	10.0	1.24	ug/L		04/18/20 08:24	04/19/20 03:22	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
2-Fluorobiphenyl	91		44 - 129				04/18/20 08:24	04/19/20 03:22	1
Nitrobenzene-d5	93		15 - 314				04/18/20 08:24	04/19/20 03:22	1

Client: Groundwater & Environmental Services Inc

Project/Site: Billerica, MA

DCB Decachlorobiphenyl

Client Sample ID: MW-11S

Lab Sample ID: 460-205843-2 Date Collected: 03/25/20 11:15 **Matrix: Water**

Date Received: 03/26/20 10:00

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Acenaphthene	ND		0.0500	0.0142	ug/L		03/27/20 09:24	03/27/20 18:37	1
Benzo[a]anthracene	0.0200	J	0.0500	0.0156	ug/L		03/27/20 09:24	03/27/20 18:37	1
Benzo[a]pyrene	ND		0.0500	0.0216	ug/L		03/27/20 09:24	03/27/20 18:37	1
Benzo[b]fluoranthene	ND		0.0500	0.0240	ug/L		03/27/20 09:24	03/27/20 18:37	1
Benzo[g,h,i]perylene	ND		0.0500	0.0351	ug/L		03/27/20 09:24	03/27/20 18:37	1
Acenaphthylene	ND		0.0500	0.0146	ug/L		03/27/20 09:24	03/27/20 18:37	1
Benzo[k]fluoranthene	ND		0.0500	0.0278	ug/L		03/27/20 09:24	03/27/20 18:37	1
Bis(2-chloroethyl)ether	ND		0.0300	0.0260	ug/L		03/27/20 09:24	03/27/20 18:37	1
Anthracene	ND		0.0500	0.00920	ug/L		03/27/20 09:24	03/27/20 18:37	1
Dibenz(a,h)anthracene	ND		0.0500	0.0200	ug/L		03/27/20 09:24	03/27/20 18:37	1
Hexachlorobenzene	ND		0.0200	0.0131	ug/L		03/27/20 09:24	03/27/20 18:37	1
Indeno[1,2,3-cd]pyrene	ND	*	0.0500	0.0362	ug/L		03/27/20 09:24	03/27/20 18:37	1
Pentachlorophenol	0.232		0.200	0.154	ug/L		03/27/20 09:24	03/27/20 18:37	1
Chrysene	ND		0.0500	0.0299	ug/L		03/27/20 09:24	03/27/20 18:37	1
Fluorene	ND		0.0500	0.0118	ug/L		03/27/20 09:24	03/27/20 18:37	1
Phenanthrene	ND		0.0500	0.0219	ug/L		03/27/20 09:24	03/27/20 18:37	1
Pyrene	ND		0.0500	0.0314	ug/L		03/27/20 09:24	03/27/20 18:37	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
2-Fluorobiphenyl	91		25 - 124				03/27/20 09:24	03/27/20 18:37	1
Nitrobenzene-d5	133		41 - 144				03/27/20 09:24	03/27/20 18:37	1
2,4,6-Tribromophenol	154	X	40 - 140				03/27/20 09:24	03/27/20 18:37	1

Method: 608.3 - Organoch						_			
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Aroclor 1016	ND		1.00	0.0300	ug/L		03/26/20 15:14	03/27/20 10:16	1
Aroclor 1221	ND		1.00	0.0300	ug/L		03/26/20 15:14	03/27/20 10:16	1
Aroclor 1232	ND		1.00	0.0300	ug/L		03/26/20 15:14	03/27/20 10:16	1
Aroclor 1242	ND		1.00	0.0300	ug/L		03/26/20 15:14	03/27/20 10:16	1
Aroclor 1248	ND		1.00	0.0300	ug/L		03/26/20 15:14	03/27/20 10:16	1
Aroclor 1254	ND		1.00	0.0370	ug/L		03/26/20 15:14	03/27/20 10:16	1
Aroclor 1260	ND		1.00	0.0370	ug/L		03/26/20 15:14	03/27/20 10:16	1
Aroclor 1262	ND		1.00	0.0370	ug/L		03/26/20 15:14	03/27/20 10:16	1
Aroclor 1268	ND		1.00	0.0370	ug/L		03/26/20 15:14	03/27/20 10:16	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
Tetrachloro-m-xylene	60		10 - 150				03/26/20 15:14	03/27/20 10:16	1
Tetrachloro-m-xylene	82		10 - 150				03/26/20 15:14	03/27/20 10:16	1
DCB Decachlorobiphenyl	37		10 - 150				03/26/20 15:14	03/27/20 10:16	1

Method: 300.0 - Anions	s, Ion Chromatogra	phy							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Chloride	79.7		12.0	1.40	mg/L			03/29/20 18:22	100
- Method: 200.7 Rev 4.4	- Metals (ICP)								
Analyte	• •	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Antimony	ND	^	20.0	5.30	ug/L		03/29/20 11:36	03/30/20 22:21	1
Arsenic	ND		20.0	6.20	ug/L		03/29/20 11:36	03/30/20 22:21	1
Cadmium	9.35		5.00	1.00	ug/L		03/29/20 11:36	03/30/20 22:21	1
Copper	3.70	J	20.0	1.80	ug/L		03/29/20 11:36	03/30/20 22:21	1

10 - 150

Eurofins TestAmerica, Edison

03/26/20 15:14 03/27/20 10:16

Page 12 of 64

Job ID: 460-205843-1

Client: Groundwater & Environmental Services Inc

Project/Site: Billerica, MA

Total Suspended Solids

Client Sample ID: MW-11S Lab Sample ID: 460-205843-2 **Matrix: Water**

Date Collected: 03/25/20 11:15 Date Received: 03/26/20 10:00

114

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Iron	20100		50.0	17.0	ug/L		03/29/20 11:36	03/30/20 22:21	1
Lead	ND		10.0	3.90	ug/L		03/29/20 11:36	03/30/20 22:21	1
Nickel	14.7	J	40.0	2.10	ug/L		03/29/20 11:36	03/30/20 22:21	1
Selenium	ND		20.0	9.90	ug/L		03/29/20 11:36	03/30/20 22:21	1
Silver	ND		10.0	0.600	ug/L		03/29/20 11:36	03/30/20 22:21	1
Zinc	27.4		20.0	7.00	ug/L		03/29/20 11:36	03/30/20 22:21	1
Method: 245.1 - Mercury (C'Analyte Mercury	•	Qualifier J	0.200	MDL 0.0910	Unit ug/L	D	Prepared 04/03/20 12:34	Analyzed 04/03/20 14:10	Dil Fac
General Chemistry									
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
HEM	ND		5.0	1.4	mg/L			04/06/20 08:39	1
SGT-HEM	ND		5.0	1.4	mg/L			04/06/20 08:39	1
Cyanide, Total	ND		0.0100	0.00400	mg/L		04/07/20 12:02	04/07/20 15:06	1
Ammonia (as N)	0.145		0.100	0.0340	mg/L			04/06/20 17:32	1
Chlorine, Total Residual	ND	HF	0.400	0.0720	mg/L			04/03/20 18:20	1
Analyte	Result	Qualifier	RL	RL	Unit	D	Prepared	Analyzed	Dil Fac

12.5

12.5 mg/L

Job ID: 460-205843-1

03/28/20 09:21

Client: Groundwater & Environmental Services Inc

Project/Site: Billerica, MA

Client Sample ID: MW-20S

Lab Sample ID: 460-205843-3

Matrix: Water

Job ID: 460-205843-1

Date Collected: 03/25/20 12:05 Date Received: 03/26/20 10:00

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fa
Acetone	ND		50.0	3.96	ug/L			03/30/20 13:11	
Benzene	ND		10.0	1.19	ug/L			03/30/20 13:11	
Bromobenzene	ND		20.0	0.875	ug/L			03/30/20 13:11	
Bromoform	ND		10.0	0.937	ug/L			03/30/20 13:11	
Bromomethane	ND		10.0	2.38	ug/L			03/30/20 13:11	
2-Butanone (MEK)	ND		50.0	3.52	ug/L			03/30/20 13:11	
Carbon disulfide	ND		10.0	0.574	ug/L			03/30/20 13:11	
Carbon tetrachloride	ND		10.0	1.02	ug/L			03/30/20 13:11	
Chlorobenzene	ND		10.0	0.951	-			03/30/20 13:11	
Chlorobromomethane	ND		10.0	1.43	-			03/30/20 13:11	
Chlorodibromomethane	ND		10.0	0.828				03/30/20 13:11	
Chloroethane	ND		10.0		ug/L			03/30/20 13:11	
Chloroform	2.56	J	10.0		ug/L			03/30/20 13:11	
Chloromethane	ND		10.0	1.27	-			03/30/20 13:11	
2-Chlorotoluene	ND		10.0	0.656	-			03/30/20 13:11	
4-Chlorotoluene	ND		10.0	0.546	-			03/30/20 13:11	
cis-1,2-Dichloroethene	ND		10.0	1.15	-			03/30/20 13:11	
cis-1,3-Dichloropropene	ND		10.0	0.662	_			03/30/20 13:11	
1,2-Dibromo-3-Chloropropane	ND		10.0		ug/L			03/30/20 13:11	
Dibromomethane	ND		10.0		ug/L			03/30/20 13:11	
1,2-Dichlorobenzene	3.20		10.0	0.889	_			03/30/20 13:11	
1,3-Dichlorobenzene	ND		10.0	1.09	ū			03/30/20 13:11	
1,4-Dichlorobenzene	ND		10.0		ug/L			03/30/20 13:11	
Dichlorobromomethane	ND		10.0		ug/L			03/30/20 13:11	
Dichlorodifluoromethane	ND		10.0	0.554	-			03/30/20 13:11	
1,1-Dichloroethane	ND		10.0		ug/L			03/30/20 13:11	
1,2-Dichloroethane	ND		10.0		ug/L			03/30/20 13:11	
1,1-Dichloroethene	ND		10.0		ug/L			03/30/20 13:11	
1,2-Dichloropropane	ND		10.0	1.22	-			03/30/20 13:11	
1,3-Dichloropropane	ND		10.0	1.03	-			03/30/20 13:11	
2,2-Dichloropropane	ND		10.0	0.658	-			03/30/20 13:11	
1,1-Dichloropropene	ND		10.0	1.58	-			03/30/20 13:11	
1,4-Dioxane	ND		400	30.2	•			03/30/20 13:11	
Ethylbenzene	112		10.0	0.930	-			03/30/20 13:11	
Ethylene Dibromide	ND		10.0		ug/L			03/30/20 13:11	
Ethyl ether	ND		10.0	0.678	-			03/30/20 13:11	
Hexachlorobutadiene	ND		20.0		ug/L			03/30/20 13:11	
2-Hexanone	ND ND		50.0		ug/L ug/L			03/30/20 13:11	
Isopropylbenzene	6.93		10.0		ug/L ug/L			03/30/20 13:11	
Isopropylidenzene Isopropyl ether	ND		10.0	0.702	-			03/30/20 13:11	
• • •			10.0						
4-Isopropyltoluene Methylene Chloride	9.64 ND	J	10.0		ug/L ug/L			03/30/20 13:11 03/30/20 13:11	
-	ND ND				"				
4-Methyl-2-pentanone (MIBK)	ND ND		50.0 10.0		ug/L			03/30/20 13:11	
Methyl tert-butyl ether				0.708	-			03/30/20 13:11	
m-Xylene & p-Xylene	23.5		20.0		ug/L			03/30/20 13:11	
Naphthalene	137		10.0	0.218	-			03/30/20 13:11	
n-Butylbenzene	6.69		20.0	0.642	-			03/30/20 13:11	
N-Propylbenzene o-Xylene	8.58 1.62		20.0	0.592 0.857				03/30/20 13:11 03/30/20 13:11	

Project/Site: Billerica, MA

Client Sample ID: MW-20S Date Collected: 03/25/20 12:05 Lab Sample ID: 460-205843-3

Matrix: Water

Date	Received:	03/26/20	10:00
Date	Received.	03/20/20	10.00

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
sec-Butylbenzene	8.29	J	20.0	0.638	ug/L			03/30/20 13:11	2
Styrene	ND		10.0	0.764	ug/L			03/30/20 13:11	2
tert-Butylbenzene	ND		20.0	1.09	ug/L			03/30/20 13:11	2
1,1,1,2-Tetrachloroethane	ND		10.0	0.991	ug/L			03/30/20 13:11	2
1,1,2,2-Tetrachloroethane	ND		10.0	0.518	ug/L			03/30/20 13:11	2
Tetrachloroethene	ND		10.0	0.678	ug/L			03/30/20 13:11	2
Tetrahydrofuran	ND		50.0	4.38	ug/L			03/30/20 13:11	2
Toluene	ND		10.0	0.909	ug/L			03/30/20 13:11	2
trans-1,2-Dichloroethene	ND		10.0	1.18	ug/L			03/30/20 13:11	2
trans-1,3-Dichloropropene	ND		10.0	0.884	ug/L			03/30/20 13:11	2
1,2,3-Trichlorobenzene	ND		10.0	0.827	ug/L			03/30/20 13:11	2
1,2,4-Trichlorobenzene	ND		10.0	0.781	ug/L			03/30/20 13:11	2
1,1,1-Trichloroethane	ND		10.0	0.770	ug/L			03/30/20 13:11	2
1,1,2-Trichloroethane	ND		10.0	0.965	ug/L			03/30/20 13:11	2
Trichloroethene	ND		10.0	1.19	ug/L			03/30/20 13:11	2
Trichlorofluoromethane	ND		10.0	0.898	ug/L			03/30/20 13:11	2
1,2,3-Trichloropropane	ND		10.0	0.414	ug/L			03/30/20 13:11	2
1,2,4-Trimethylbenzene	74.9		10.0	1.04	ug/L			03/30/20 13:11	2
1,3,5-Trimethylbenzene	18.0	J	20.0	0.888	ug/L			03/30/20 13:11	2
Vinyl chloride	ND		10.0	1.49	ug/L			03/30/20 13:11	2
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
4-Bromofluorobenzene (Surr)	115		76 - 123			=		03/30/20 13:11	2
Dibromofluoromethane (Surr)	103		75 - 123					03/30/20 13:11	2
1,2-Dichloroethane-d4 (Surr)	98		68 - 130					03/30/20 13:11	2
Toluene-d8 (Surr)	92		77 - 120					03/30/20 13:11	2

Analyte	Result Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Ethanol	ND ND	200	60.1	ug/L			03/27/20 15:46	1
t-Butyl alcohol	ND	5.00	8.28	ug/L			03/27/20 15:46	1
Methyl tert-butyl ether	ND	0.500	0.465	ug/L			03/27/20 15:46	1
Tert-amyl methyl ether	ND	0.500	0.453	ug/L			03/27/20 15:46	1
Surrogate	%Recovery Qualifier	Limits				Prepared	Analyzed	Dil Fac

Surrogate	%Recovery	Qualifier	Limits	Prepared	Analyzed	Dil Fac
4-Bromofluorobenzene	116		76 - 120		03/27/20 15:46	1
Dibromofluoromethane (Surr)	106		77 - 124		03/27/20 15:46	1
1,2-Dichloroethane-d4 (Surr)	96		75 - 123		03/27/20 15:46	1
Toluene-d8 (Surr)	103		80 - 120		03/27/20 15:46	1

Method: 522 -	1,4 Dioxane	(GC/MS SIM)
---------------	-------------	-------------

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
1,4-Dioxane	ND		0.200	0.0640	ug/L		03/30/20 14:45	04/02/20 08:19	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
1,4-Dioxane-d8 (Surr)	101		46 - 130				03/30/20 14:45	04/02/20 08:19	1

Method: 625.1 - Semivolatile Organic Compounds (GC/MS)	Method: 625.	- Semivolatile	Organic Com	pounds (GC/MS)
--	--------------	----------------	--------------------	----------------

Analyte	_	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Acenaphthene	ND	Н	500	53.8	ug/L		04/18/20 08:24	04/20/20 07:04	50
Acenaphthylene	ND	Н	500	41.2	ug/L		04/18/20 08:24	04/20/20 07:04	50

Client: Groundwater & Environmental Services Inc

Project/Site: Billerica, MA

Client Sample ID: MW-20S

Date Collected: 03/25/20 12:05 Date Received: 03/26/20 10:00 Lab Sample ID: 460-205843-3

Matrix: Water

Job ID: 460-205843-1

Method: 625.1 - Semivolatil Analyte		Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Acetophenone	ND	H	500	127	ug/L		04/18/20 08:24	04/20/20 07:04	50
Aniline	ND	Н	500	57.2	ug/L		04/18/20 08:24	04/20/20 07:04	50
Anthracene	ND	Н	500	31.7	ug/L		04/18/20 08:24	04/20/20 07:04	50
Benzo[a]anthracene	ND	Н	50.0	29.6	ug/L		04/18/20 08:24	04/20/20 07:04	50
Benzo[a]pyrene	ND	Н	50.0		ug/L		04/18/20 08:24	04/20/20 07:04	50
Benzo[b]fluoranthene	ND	Н	100		ug/L		04/18/20 08:24	04/20/20 07:04	50
Benzo[g,h,i]perylene	ND	Н	500		ug/L		04/18/20 08:24	04/20/20 07:04	50
Benzo[k]fluoranthene	ND		50.0		ug/L		04/18/20 08:24	04/20/20 07:04	50
Bis(2-chloroethoxy)methane	ND	Н	500		ug/L			04/20/20 07:04	50
Bis(2-chloroethyl)ether	ND	Н	50.0		ug/L		04/18/20 08:24	04/20/20 07:04	50
bis (2-chloroisopropyl) ether	ND		500		ug/L		04/18/20 08:24	04/20/20 07:04	50
Bis(2-ethylhexyl) phthalate	4170		100		ug/L			04/20/20 07:04	50
4-Bromophenyl phenyl ether	ND	H	500		ug/L			04/20/20 07:04	50
Butyl benzyl phthalate	ND		500		ug/L			04/20/20 07:04	50
4-Chloroaniline	ND		500		ug/L			04/20/20 07:04	50
2-Chloronaphthalene	ND		500		ug/L			04/20/20 07:04	50
Chrysene	ND		100		ug/L			04/20/20 07:04	50
Dibenz(a,h)anthracene	ND		50.0		ug/L			04/20/20 07:04	50
Dibenzofuran	ND		500		ug/L			04/20/20 07:04	50
1,2-Dichlorobenzene	ND		500		ug/L			04/20/20 07:04	50
1,3-Dichlorobenzene	ND	Н	500		ug/L			04/20/20 07:04	50
1,4-Dichlorobenzene	ND ND	Н	500		ug/L			04/20/20 07:04	50
3,3'-Dichlorobenzidine	ND	· ' ' · H	500		ug/L			04/20/20 07:04	50
,	ND ND	Н	500		ug/L ug/L			04/20/20 07:04	50
Diethyl phthalate	ND ND	Н	500		ug/L ug/L			04/20/20 07:04	50
Dimethyl phthalate	ND	. '.' H	500					04/20/20 07:04	50
Di-n-butyl phthalate	ND ND	Н	100		ug/L ug/L			04/20/20 07:04	50
2,4-Dinitrotoluene	ND ND	Н	100		_			04/20/20 07:04	
2,6-Dinitrotoluene					ug/L				50
Di-n-octyl phthalate	483	JH	500		ug/L			04/20/20 07:04	50
1,4-Dioxane	ND		500		ug/L			04/20/20 07:04	50
Fluoranthene	ND		500	42.1	ug/L			04/20/20 07:04	50
Fluorene	ND	H	500		ug/L			04/20/20 07:04	50
Hexachlorobenzene	ND	H	50.0		ug/L			04/20/20 07:04	50
Hexachlorobutadiene	ND	H	50.0		ug/L			04/20/20 07:04	50
Hexachloroethane	ND	H	100		ug/L			04/20/20 07:04	50
Indeno[1,2,3-cd]pyrene	ND	H	100	64.8	_			04/20/20 07:04	50
Isophorone	ND		500		ug/L			04/20/20 07:04	50
2-Methylnaphthalene		JH	500		ug/L			04/20/20 07:04	50
Naphthalene	ND		100		ug/L			04/20/20 07:04	50
Nitrobenzene	ND		100		ug/L			04/20/20 07:04	50
Phenanthrene	63.6		500		ug/L			04/20/20 07:04	50
Pyrene	ND		500		ug/L			04/20/20 07:04	50
1,2,4-Trichlorobenzene	ND	Н	100		ug/L			04/20/20 07:04	50
Pentachlorophenol	ND		1000		ug/L			04/20/20 07:04	50
Phenol	ND	Н	500	62.2	ug/L		04/18/20 08:24	04/20/20 07:04	50
Surrogate	%Recovery		Limits				Prepared	Analyzed	Dil Fac
2-Fluorobiphenyl	0	X	44 - 129				04/18/20 08:24	04/20/20 07:04	50
Nitrobenzene-d5	0	X	15 - 314				04/18/20 08:24	04/20/20 07:04	50

Eurofins TestAmerica, Edison

_

_

5

7

9

11

13

Client: Groundwater & Environmental Services Inc

Project/Site: Billerica, MA

DCB Decachlorobiphenyl

Client Sample ID: MW-20S Lab Sample ID: 460-205843-3

Date Collected: 03/25/20 12:05 **Matrix: Water**

Date Received: 03/26/20 10:00

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Acenaphthene	17.7		2.50	0.710	ug/L		03/27/20 09:24	03/29/20 04:18	50
Benzo[a]anthracene	1.47	J	2.50	0.780	ug/L		03/27/20 09:24	03/29/20 04:18	50
Benzo[a]pyrene	ND		2.50	1.08	ug/L		03/27/20 09:24	03/29/20 04:18	50
Benzo[b]fluoranthene	ND		2.50	1.20	ug/L		03/27/20 09:24	03/29/20 04:18	50
Benzo[g,h,i]perylene	ND		2.50	1.76	ug/L		03/27/20 09:24	03/29/20 04:18	50
Acenaphthylene	4.35		2.50	0.730	ug/L		03/27/20 09:24	03/29/20 04:18	50
Benzo[k]fluoranthene	ND		2.50	1.39	ug/L		03/27/20 09:24	03/29/20 04:18	50
Bis(2-chloroethyl)ether	ND		1.50	1.30	ug/L		03/27/20 09:24	03/29/20 04:18	50
Anthracene	ND		2.50	0.460	ug/L		03/27/20 09:24	03/29/20 04:18	50
Dibenz(a,h)anthracene	ND		2.50	1.00	ug/L		03/27/20 09:24	03/29/20 04:18	50
Hexachlorobenzene	ND		1.00	0.655	ug/L		03/27/20 09:24	03/29/20 04:18	50
Indeno[1,2,3-cd]pyrene	ND	*	2.50	1.81	ug/L		03/27/20 09:24	03/29/20 04:18	50
Pentachlorophenol	ND		10.0	7.71	ug/L		03/27/20 09:24	03/29/20 04:18	50
Chrysene	ND		2.50	1.50	ug/L		03/27/20 09:24	03/29/20 04:18	50
Fluorene	31.8		2.50	0.590	ug/L		03/27/20 09:24	03/29/20 04:18	50
Phenanthrene	50.0		2.50	1.10	ug/L		03/27/20 09:24	03/29/20 04:18	50
Pyrene	4.59		2.50	1.57	ug/L		03/27/20 09:24	03/29/20 04:18	50
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
2-Fluorobiphenyl	90		25 - 124				03/27/20 09:24	03/29/20 04:18	50
Nitrobenzene-d5	110		41 - 144				03/27/20 09:24	03/29/20 04:18	50
2,4,6-Tribromophenol	90		40 - 140				03/27/20 09:24	03/29/20 04:18	50

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Aroclor 1016	ND		1.00	0.0300	ug/L		03/28/20 18:35	03/30/20 09:54	1
Aroclor 1221	ND		1.00	0.0300	ug/L		03/28/20 18:35	03/30/20 09:54	1
Aroclor 1232	ND		1.00	0.0300	ug/L		03/28/20 18:35	03/30/20 09:54	1
Aroclor 1242	ND		1.00	0.0300	ug/L		03/28/20 18:35	03/30/20 09:54	1
Aroclor 1248	ND		1.00	0.0300	ug/L		03/28/20 18:35	03/30/20 09:54	1
Aroclor 1254	ND		1.00	0.0370	ug/L		03/28/20 18:35	03/30/20 09:54	1
Aroclor 1260	ND		1.00	0.0370	ug/L		03/28/20 18:35	03/30/20 09:54	1
Aroclor 1262	ND		1.00	0.0370	ug/L		03/28/20 18:35	03/30/20 09:54	1
Aroclor 1268	ND		1.00	0.0370	ug/L		03/28/20 18:35	03/30/20 09:54	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
Tetrachloro-m-xylene	14		10 - 150				03/28/20 18:35	03/30/20 09:54	1
Tetrachloro-m-xylene	63		10 - 150				03/28/20 18:35	03/30/20 09:54	1
DCB Decachlorobiphenyl	567	X	10 - 150				03/28/20 18:35	03/30/20 09:54	1

Method: 300.0 - Anions, lo	n Chromatogra	phy							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Chloride	121		12.0	1.40	mg/L			03/29/20 18:37	100
Method: 200.7 Rev 4.4 - Me	etals (ICP)								
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Antimony	ND	^	20.0	5.30	ug/L		03/29/20 11:36	03/30/20 22:25	1
Arsenic	11.7	J	20.0	6.20	ug/L		03/29/20 11:36	03/30/20 22:25	1
Cadmium	ND		5.00	1.00	ug/L		03/29/20 11:36	03/30/20 22:25	1
Copper	ND		20.0	1.80	ug/L		03/29/20 11:36	03/30/20 22:25	1

10 - 150

135

Eurofins TestAmerica, Edison

03/28/20 18:35 03/30/20 09:54

Page 17 of 64

Job ID: 460-205843-1

Client: Groundwater & Environmental Services Inc

Project/Site: Billerica, MA

Client Sample ID: MW-20S Lab Sample ID: 460-205843-3

Date Collected: 03/25/20 12:05
Date Received: 03/26/20 10:00

Matrix: Water

Job ID: 460-205843-1

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Iron	13100		50.0	17.0	ug/L		03/29/20 11:36	03/30/20 22:25	1
Lead	ND		10.0	3.90	ug/L		03/29/20 11:36	03/30/20 22:25	1
Nickel	ND		40.0	2.10	ug/L		03/29/20 11:36	03/30/20 22:25	1
Selenium	ND		20.0	9.90	ug/L		03/29/20 11:36	03/30/20 22:25	1
Silver	1.06	J	10.0	0.600	ug/L		03/29/20 11:36	03/30/20 22:25	1
Zinc	13.5	J	20.0	7.00	ug/L		03/29/20 11:36	03/30/20 22:25	1
Method: 245.1 - Mercury (CV	'AA)								
Analyte	•	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Mercury	ND		0.200	0.0910	ug/L		04/03/20 12:34	04/03/20 14:12	1
General Chemistry									
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
HEM	52.8		5.0	1.4	mg/L			04/06/20 08:39	1
SGT-HEM	20.7		5.0	1.4	mg/L			04/06/20 08:39	1
Cyanide, Total	ND		0.0100	0.00400	mg/L		04/07/20 12:02	04/07/20 15:07	1
Ammonia (as N)	0.776		0.100	0.0340	mg/L			03/31/20 10:49	1
Chlorine, Total Residual	ND	HF	0.400	0.0720	mg/L			04/03/20 18:25	1
Analyte	Result	Qualifier	RL	RL	Unit	D	Prepared	Analyzed	Dil Fac
Total Suspended Solids	74.0		12.5	12.5	mg/L			03/28/20 09:21	1

3

4

6

8

9

10

12

Job ID: 460-205843-1

Method: 624.1 - Volatile Organic Compounds (GC/MS)

Matrix: Water Prep Type: Total/NA

			Percent Surrogate Recovery (Acceptance Limits)					
		BFB	DBFM	DCA	TOL			
Lab Sample ID	Client Sample ID	(76-123)	(75-123)	(68-130)	(77-120)			
460-205843-2	MW-11S	111	105	100	93			
460-205843-3	MW-20S	115	103	98	92			
LCS 480-523464/6	Lab Control Sample	111	102	94	96			
MB 480-523464/8	Method Blank	108	100	96	93			
Surrogato Logand								

Surrogate Legend

BFB = 4-Bromofluorobenzene (Surr)

DBFM = Dibromofluoromethane (Surr)

DCA = 1,2-Dichloroethane-d4 (Surr)

TOL = Toluene-d8 (Surr)

Method: 8260C - Volatile Organic Compounds (GC/MS)

Matrix: Water Prep Type: Total/NA

		Percent Surrogate Recovery (Acceptance Limit					
		BFB	DBFM	DCA	TOL		
Lab Sample ID	Client Sample ID	(76-120)	(77-124)	(75-123)	(80-120)		
460-205843-2	MW-11S	110	107	97	104		
460-205843-3	MW-20S	116	106	96	103		
LCS 460-684033/4	Lab Control Sample	110	107	99	101		
LCSD 460-684033/5	Lab Control Sample Dup	111	105	97	102		
MB 460-684033/8	Method Blank	110	106	96	105		

Surrogate Legend

BFB = 4-Bromofluorobenzene

DBFM = Dibromofluoromethane (Surr)

DCA = 1,2-Dichloroethane-d4 (Surr)

TOL = Toluene-d8 (Surr)

Method: 522 - 1,4 Dioxane (GC/MS SIM)

Matrix: Water Prep Type: Total/NA

			Percent Surrogate Recovery (Acceptance Limits)
		DXE	
Lab Sample ID	Client Sample ID	(46-130)	
460-205843-2	MW-11S	95	
460-205843-3	MW-20S	101	
LLCS 200-153707/2-A	Lab Control Sample	99	
LLCSD 200-153707/3-A	Lab Control Sample Dup	94	
MB 200-153707/1-A	Method Blank	100	
Surrogate Legend			
DXE = 1,4-Dioxane-d8	(Surr)		

Method: 625.1 - Semivolatile Organic Compounds (GC/MS)

Matrix: Water Prep Type: Total/NA

-			Pe
		FBP	NBZ
Lab Sample ID	Client Sample ID	(44-129)	(15-314)
460-205843-2	MW-11S	91	93
460-205843-3	MW-20S	0 X	0 X

Eurofins TestAmerica, Edison

Page 19 of 64

2

_

0

Q

9

10

12

13

Job ID: 460-205843-1

Method: 625.1 - Semivolatile Organic Compounds (GC/MS) (Continued)

Matrix: Water Prep Type: Total/NA

		Perc					
		FBP	NBZ				
Lab Sample ID	Client Sample ID	(44-129)	(15-314)				
LCS 460-688463/2-A	Lab Control Sample	93	102				
LCSD 460-688463/3-A	Lab Control Sample Dup	88	95				
MB 460-688463/1-A	Method Blank	69	76				
Surrogate Legend							

FBP = 2-Fluorobiphenyl

NBZ = Nitrobenzene-d5

Method: 8270D SIM - Semivolatile Organic Compounds (GC/MS SIM)

Matrix: Water Prep Type: Total/NA

		Percent Surrogate					
		FBP	NBZ	TBP			
Lab Sample ID	Client Sample ID	(25-124)	(41-144)	(40-140)			
460-205843-2	MW-11S	91	133	154 X			
460-205843-3	MW-20S	90	110	90			
LCS 460-684079/2-A	Lab Control Sample	93	112	115			
LCSD 460-684079/3-A	Lab Control Sample Dup	89	117	127			
MB 460-684079/1-A	Method Blank	77	96	96			

FBP = 2-Fluorobiphenyl

NBZ = Nitrobenzene-d5

TBP = 2,4,6-Tribromophenol

Method: 608.3 - Organochlorine Pesticides/PCBs in Water

Matrix: Water Prep Type: Total/NA

			Percent Surrogate Recovery (Acceptance I						
		TCX1	TCX2	DCBP1	DCBP2				
Lab Sample ID	Client Sample ID	(10-150)	(10-150)	(10-150)	(10-150)				
460-205843-2	MW-11S	82	60	37	37				
460-205843-3	MW-20S	63	14	135	567 X				
LCS 460-683908/4-A	Lab Control Sample	72	72	43	46				
LCS 460-684395/4-A	Lab Control Sample	74	72	29	29				
LCSD 460-683908/5-A	Lab Control Sample Dup	76	78	48	52				
LCSD 460-684395/5-A	Lab Control Sample Dup	73	70	45	46				
MB 460-683908/1-A	Method Blank	62	66	51	51				
MB 460-684395/1-A	Method Blank	70	71	36	34				

Surrogate Legend

TCX = Tetrachloro-m-xylene

DCBP = DCB Decachlorobiphenyl

QC Sample Results

Client: Groundwater & Environmental Services Inc

Project/Site: Billerica, MA

Job ID: 460-205843-1

Method: 624.1 - Volatile Organic Compounds (GC/MS)

Lab Sample ID: MB 480-523464/8

Matrix: Water

Analysis Batch: 523464

Client Sample ID: Method Blank

	Prep Type: To							
Prepared	Analyzed	Dil Fac						
	03/30/20 11:40	1						
	03/30/20 11:40	1						
	03/30/20 11:40	1						
	03/30/20 11:40	1						
	03/30/20 11:40	1						
	03/30/20 11:40	1						
	00/00/00 44 40							

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fa
Acetone	ND		25.0	1.98	ug/L		-	03/30/20 11:40	
Benzene	ND		5.00	0.597	ug/L			03/30/20 11:40	
Bromobenzene	ND		10.0	0.438	-			03/30/20 11:40	
Bromoform	ND		5.00	0.469	ug/L			03/30/20 11:40	
Bromomethane	ND		5.00	1.19	ug/L			03/30/20 11:40	
2-Butanone (MEK)	ND		25.0	1.76	ug/L			03/30/20 11:40	
Carbon disulfide	ND		5.00	0.287	-			03/30/20 11:40	
Carbon tetrachloride	ND		5.00	0.511	_			03/30/20 11:40	
Chlorobenzene	ND		5.00	0.476	-			03/30/20 11:40	
Chlorobromomethane	ND		5.00	0.715	-			03/30/20 11:40	
Chlorodibromomethane	ND		5.00	0.414	-			03/30/20 11:40	
Chloroethane	ND		5.00	0.873	-			03/30/20 11:40	
Chloroform	ND		5.00	0.542	-			03/30/20 11:40	
Chloromethane	ND		5.00	0.636	-			03/30/20 11:40	
2-Chlorotoluene	ND		5.00	0.328	-			03/30/20 11:40	
4-Chlorotoluene	ND		5.00	0.273	-			03/30/20 11:40	
cis-1,2-Dichloroethene	ND		5.00	0.573	-			03/30/20 11:40	
cis-1,3-Dichloropropene	ND		5.00	0.331	-			03/30/20 11:40	
1,2-Dibromo-3-Chloropropane	ND		5.00	0.620	-			03/30/20 11:40	
Dibromomethane	ND		5.00	0.534	-			03/30/20 11:40	
1.2-Dichlorobenzene	ND		5.00	0.445	-			03/30/20 11:40	
1,3-Dichlorobenzene	ND		5.00	0.543	-			03/30/20 11:40	
1,4-Dichlorobenzene	ND		5.00	0.508	-			03/30/20 11:40	
Dichlorobromomethane	ND ND		5.00	0.537	-			03/30/20 11:40	
Dichlorodifluoromethane	ND		5.00	0.337	-			03/30/20 11:40	
1,1-Dichloroethane	ND ND		5.00	0.589	-			03/30/20 11:40	
1,2-Dichloroethane	ND ND		5.00	0.603	-			03/30/20 11:40	
				0.855	-				
1,1-Dichloroethene	ND		5.00 5.00	0.612	-			03/30/20 11:40	
1,2-Dichloropropane	ND ND		5.00	0.612	-			03/30/20 11:40	
1,3-Dichloropropane					-			03/30/20 11:40	
2,2-Dichloropropane	ND		5.00	0.329	-			03/30/20 11:40	
1,1-Dichloropropene	ND		5.00	0.790	-			03/30/20 11:40	
1,4-Dioxane	ND		200		ug/L			03/30/20 11:40	
Ethylbenzene	ND		5.00	0.465	-			03/30/20 11:40	
Ethylene Dibromide	ND		5.00	0.502	-			03/30/20 11:40	
Ethyl ether	ND		5.00	0.339				03/30/20 11:40	
Hexachlorobutadiene	ND		10.0	0.578				03/30/20 11:40	
2-Hexanone	ND		25.0		ug/L			03/30/20 11:40	
Isopropylbenzene	ND		5.00	0.511	-			03/30/20 11:40	
Isopropyl ether	ND		5.00	0.351				03/30/20 11:40	
4-Isopropyltoluene	ND		5.00	0.541	-			03/30/20 11:40	
Methylene Chloride	ND		5.00	0.815	-			03/30/20 11:40	
4-Methyl-2-pentanone (MIBK)	ND		25.0	1.29				03/30/20 11:40	
Methyl tert-butyl ether	ND		5.00	0.354	-			03/30/20 11:40	
m-Xylene & p-Xylene	ND		10.0		ug/L			03/30/20 11:40	
Naphthalene	ND		5.00	0.109	•			03/30/20 11:40	
n-Butylbenzene	ND		10.0	0.321	ug/L			03/30/20 11:40	
N-Propylbenzene	ND		10.0	0.296	ug/L			03/30/20 11:40	

Project/Site: Billerica, MA

Method: 624.1 - Volatile Organic Compounds (GC/MS) (Continued)

Lab Sample ID: MB 480-523464/8

Matrix: Water

Analysis Batch: 523464

Client Sample ID: Method Blank

Prep Type: Total/NA

	MB	MB							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
o-Xylene	ND		5.00	0.428	ug/L			03/30/20 11:40	
sec-Butylbenzene	ND		10.0	0.319	ug/L			03/30/20 11:40	•
Styrene	ND		5.00	0.382	ug/L			03/30/20 11:40	
tert-Butylbenzene	ND		10.0	0.544	ug/L			03/30/20 11:40	
1,1,1,2-Tetrachloroethane	ND		5.00	0.495	ug/L			03/30/20 11:40	•
1,1,2,2-Tetrachloroethane	ND		5.00	0.259	ug/L			03/30/20 11:40	
Tetrachloroethene	ND		5.00	0.339	ug/L			03/30/20 11:40	•
Tetrahydrofuran	ND		25.0	2.19	ug/L			03/30/20 11:40	•
Toluene	ND		5.00	0.454	ug/L			03/30/20 11:40	
trans-1,2-Dichloroethene	ND		5.00	0.589	ug/L			03/30/20 11:40	
trans-1,3-Dichloropropene	ND		5.00	0.442	ug/L			03/30/20 11:40	
1,2,3-Trichlorobenzene	ND		5.00	0.414	ug/L			03/30/20 11:40	•
1,2,4-Trichlorobenzene	ND		5.00	0.391	ug/L			03/30/20 11:40	•
1,1,1-Trichloroethane	ND		5.00	0.385	ug/L			03/30/20 11:40	
1,1,2-Trichloroethane	ND		5.00	0.482	ug/L			03/30/20 11:40	•
Trichloroethene	ND		5.00	0.597	ug/L			03/30/20 11:40	
Trichlorofluoromethane	ND		5.00	0.449	ug/L			03/30/20 11:40	•
1,2,3-Trichloropropane	ND		5.00	0.207	ug/L			03/30/20 11:40	•
1,2,4-Trimethylbenzene	ND		5.00	0.522	ug/L			03/30/20 11:40	•
1,3,5-Trimethylbenzene	ND		10.0	0.444	ug/L			03/30/20 11:40	•
Vinyl chloride	ND		5.00	0.747	ug/L			03/30/20 11:40	•

MB MB

Surrogate	%Recovery	Qualifier	Limits	Prepared	Analyzed	Dil Fac
4-Bromofluorobenzene (Surr)	108		76 - 123		03/30/20 11:40	1
Dibromofluoromethane (Surr)	100		75 - 123		03/30/20 11:40	1
1,2-Dichloroethane-d4 (Surr)	96		68 - 130		03/30/20 11:40	1
Toluene-d8 (Surr)	93		77 - 120		03/30/20 11:40	1

Lab Sample ID: LCS 480-523464/6

Matrix: Water

Analysis Batch: 523464

Client Sample	ID: Lab (Control	Sample
	Prep	Type: 1	otal/NA

	Spike	LCS	LCS				%Rec.	
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits	
Acetone	100	124.2		ug/L		124	21 - 161	
Benzene	20.0	21.01		ug/L		105	37 - 151	
Bromobenzene	20.0	18.37		ug/L		92	77 - 123	
Bromoform	20.0	15.54		ug/L		78	45 - 169	
Bromomethane	20.0	21.56		ug/L		108	1 - 242	
2-Butanone (MEK)	100	106.7		ug/L		107	57 - 140	
Carbon disulfide	20.0	21.95		ug/L		110	49 - 145	
Carbon tetrachloride	20.0	19.11		ug/L		96	70 - 140	
Chlorobenzene	20.0	19.02		ug/L		95	37 - 160	
Chlorobromomethane	20.0	21.41		ug/L		107	72 - 130	
Chlorodibromomethane	20.0	16.87		ug/L		84	53 - 149	
Chloroethane	20.0	21.97		ug/L		110	14 - 230	
Chloroform	20.0	20.90		ug/L		105	51 - 138	
Chloromethane	20.0	17.02		ug/L		85	1 - 273	
2-Chlorotoluene	20.0	19.32		ug/L		97	72 - 126	

QC Sample Results

Spike

LCS LCS

Client: Groundwater & Environmental Services Inc

Project/Site: Billerica, MA

Job ID: 460-205843-1

Method: 624.1 - Volatile Organic Compounds (GC/MS) (Continued)

Lab Sample ID: LCS 480-523464/6

Matrix: Water

1,2,3-Trichlorobenzene

1,2,4-Trichlorobenzene

1,1,1-Trichloroethane

1,1,2-Trichloroethane

Trichlorofluoromethane

Trichloroethene

Analysis Batch: 523464

Client Sample ID: Lab Control Sample

%Rec.

Prep Type: Total/NA

Analyte	Added	Result Qualif	ier Unit	D %Rec	Limits	
4-Chlorotoluene	20.0	19.63	ug/L	98	76 - 120	
cis-1,2-Dichloroethene	20.0	20.95	ug/L	105	50 - 150	
cis-1,3-Dichloropropene	20.0	19.56	ug/L	98	1 - 227	
1,2-Dibromo-3-Chloropropane	20.0	18.26	ug/L	91	44 - 138	
Dibromomethane	20.0	21.11	ug/L	106	50 ₋ 150	
1,2-Dichlorobenzene	20.0	18.61	ug/L	93	18 - 190	
1,3-Dichlorobenzene	20.0	18.75	ug/L	94	59 - 156	
1,4-Dichlorobenzene	20.0	18.72	ug/L	94	18 - 190	
Dichlorobromomethane	20.0	19.57	ug/L	98	35 - 155	
Dichlorodifluoromethane	20.0	14.91	ug/L	75	59 ₋ 135	
1,1-Dichloroethane	20.0	22.01	ug/L	110	59 ₋ 155	
1,2-Dichloroethane	20.0	20.83	ug/L	104	49 - 155	
1,1-Dichloroethene	20.0	22.22	ug/L	111	1 - 234	
1,2-Dichloropropane	20.0	20.86	ug/L	104	1 - 210	
1,3-Dichloropropane	20.0	18.93	ug/L	95	72 ₋ 126	
2,2-Dichloropropane	20.0	19.92	ug/L	100	50 - 150	
1,1-Dichloropropene	20.0	22.35	ug/L	112	50 - 150	
1,4-Dioxane	400	571.9	ug/L	143	10 - 208	
Ethylbenzene	20.0	19.41	ug/L	97	37 - 162	
Ethylene Dibromide	20.0	17.97	ug/L	90	77 - 124	
Ethyl ether	20.0	20.84	ug/L	104	62 - 140	
Hexachlorobutadiene	20.0	20.75	ug/L	104	56 - 127	
2-Hexanone	100	95.56	ug/L	96	50 ₋ 150	
Isopropylbenzene	20.0	19.40	ug/L	97	68 - 133	
4-Isopropyltoluene	20.0	19.41	ug/L	97	68 - 132	
Methylene Chloride	20.0	20.21	ug/L	101	1 - 221	
4-Methyl-2-pentanone (MIBK)	100	93.47	ug/L	93	50 - 150	
Methyl tert-butyl ether	20.0	20.96	ug/L	105	78 - 118	
m-Xylene & p-Xylene	20.0	18.70	ug/L	94	79 - 120	
Naphthalene	20.0	20.86	ug/L	104	48 - 134	
n-Butylbenzene	20.0	19.86	ug/L	99	59 - 135	
N-Propylbenzene	20.0	19.42	ug/L	97	65 - 136	
o-Xylene	20.0	19.00	ug/L	95	79 - 120	
sec-Butylbenzene	20.0	19.60	ug/L	98	62 - 135	
Styrene	20.0	18.77	ug/L	94	50 - 150	
tert-Butylbenzene	20.0	19.30	ug/L	96	50 ₋ 150	
1,1,1,2-Tetrachloroethane	20.0	17.25	ug/L	86	50 - 150	
1,1,2,2-Tetrachloroethane	20.0	18.52	ug/L	93	46 - 157	
Tetrachloroethene	20.0	19.40	ug/L	97	64 - 148	
Tetrahydrofuran	40.0	43.17	ug/L	108	47 - 144	
Toluene	20.0	18.75	ug/L	94	47 - 150	
trans-1,2-Dichloroethene	20.0	21.67	ug/L	108	54 - 156	
trans-1,3-Dichloropropene	20.0	16.75	ug/L	84	17 - 183	

Eurofins TestAmerica, Edison

48 - 130

56 - 128

52 - 162

52 - 150

71 - 157

17 - 181

106

100

100

92

105

114

20.0

20.0

20.0

20.0

20.0

20.0

21.29

20.06

19.93

18.47

21.02

22.78

ug/L

ug/L

ug/L

ug/L

ug/L

ug/L

Project/Site: Billerica, MA

Job ID: 460-205843-1

Method: 624.1 - Volatile Organic Compounds (GC/MS) (Continued)

Lab Sample ID: LCS 480-523464/6

Matrix: Water

Analysis Batch: 523464

Client Sample ID: Lab Control Sample

Prep Type: Total/NA

LCS LCS Spike %Rec. Added Result Qualifier Unit Analyte D %Rec Limits 1,2,3-Trichloropropane 20.0 18.20 91 50 - 150 ug/L 1,2,4-Trimethylbenzene 20.0 18.96 ug/L 95 70 - 130 1,3,5-Trimethylbenzene 20.0 19.13 ug/L 96 69 - 132 Vinyl chloride 20.0 19.72 99 1 - 251 ug/L

LCS LCS

Surrogate	%Recovery	Qualifier	Limits
4-Bromofluorobenzene (Surr)	111		76 - 123
Dibromofluoromethane (Surr)	102		75 - 123
1,2-Dichloroethane-d4 (Surr)	94		68 - 130
Toluene-d8 (Surr)	96		77 - 120

Method: 8260C - Volatile Organic Compounds (GC/MS)

Lab Sample ID: MB 460-684033/8

Matrix: Water

Analysis Batch: 684033

Client Sample ID: Method Blank

Prep Type: Total/NA

MB MB

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac	;
Ethanol	ND		200	60.1	ug/L			03/27/20 08:51	1	
t-Butyl alcohol	ND		5.00	8.28	ug/L			03/27/20 08:51	1	
Methyl tert-butyl ether	ND		0.500	0.465	ug/L			03/27/20 08:51	1	
Tert-amyl methyl ether	ND		0.500	0.453	ug/L			03/27/20 08:51	1	

MB MB

Surrogate	%Recovery	Qualifier	Limits	Prepared	Analyzed	Dil Fac
4-Bromofluorobenzene	110		76 - 120		03/27/20 08:51	1
Dibromofluoromethane (Surr)	106		77 - 124		03/27/20 08:51	1
1,2-Dichloroethane-d4 (Surr)	96		75 - 123		03/27/20 08:51	1
Toluene-d8 (Surr)	105		80 - 120		03/27/20 08:51	1

Lab Sample ID: LCS 460-684033/4

Matrix: Water

Analysis Batch: 684033

Client Sample ID: Lab Control Sample Prep Type: Total/NA

	Spike	LCS	LCS				%Rec.	
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits	
Ethanol	800	784.1		ug/L		98	24 - 150	
t-Butyl alcohol	200	193.6		ug/L		97	67 - 126	
Methyl tert-butyl ether	20.0	18.25		ug/L		91	65 - 131	
Tert-amyl methyl ether	20.0	18.32		ua/L		92	65 - 128	

LCS LCS

Surrogate	%Recovery	Qualifier	Limits
4-Bromofluorobenzene	110		76 - 120
Dibromofluoromethane (Surr)	107		77 - 124
1,2-Dichloroethane-d4 (Surr)	99		75 ₋ 123
Toluene-d8 (Surr)	101		80 - 120

Eurofins TestAmerica, Edison

4/22/2020 (Rev. 1)

Project/Site: Billerica, MA

Job ID: 460-205843-1

Method: 8260C - Volatile Organic Compounds (GC/MS) (Continued)

Lab Sample ID: LCSD 460-684033/5

Matrix: Water

Analysis Batch: 684033

Client Sample	ID: Lab	Control	Sample Dup
		Prep Ty	/pe: Total/NA

Client Sample ID: Lab Control Sample

Client Sample ID: Lab Control Sample Dup

/ interjoin Datom Co 1000									
•	Spike	LCSD	LCSD				%Rec.		RPD
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits	RPD	Limit
Ethanol	800	825.1		ug/L		103	24 - 150	5	30
t-Butyl alcohol	200	192.6		ug/L		96	67 - 126	1	30
Methyl tert-butyl ether	20.0	18.10		ug/L		91	65 - 131	1	30
Tert-amyl methyl ether	20.0	17.30		ug/L		86	65 - 128	6	30

	LCSD	LCSD	
Surrogate	%Recovery	Qualifier	Limits
4-Bromofluorobenzene	111		76 - 120
Dibromofluoromethane (Surr)	105		77 - 124
1,2-Dichloroethane-d4 (Surr)	97		75 - 123
Toluene-d8 (Surr)	102		80 - 120

Method: 522 - 1,4 Dioxane (GC/MS SIM)

Lab Sample ID: MB 200-153707/1-A **Client Sample ID: Method Blank Matrix: Water** Prep Type: Total/NA Prep Batch: 153707

Analysis Batch: 153789

MB MB Result Qualifier Dil Fac Analyte RL**MDL** Unit Prepared Analyzed 1,4-Dioxane 0.200 03/30/20 14:45 04/02/20 07:52 0.0640 ug/L ND

MB MB %Recovery

Surrogate Qualifier Limits Prepared Analyzed Dil Fac 1,4-Dioxane-d8 (Surr) 100 46 - 130 03/30/20 14:45 04/02/20 07:52

Lab Sample ID: LLCS 200-153707/2-A

Matrix: Water Prep Type: Total/NA Analysis Batch: 153789 Prep Batch: 153707

LLCS LLCS Spike %Rec. Added Result Qualifier Limits Analyte Unit D %Rec 0.200 0.2234 1,4-Dioxane 112 50 - 150 ug/L

LLCS LLCS Surrogate %Recovery Qualifier Limits 1,4-Dioxane-d8 (Surr) 46 - 130 99

Lab Sample ID: LLCSD 200-153707/3-A

Matrix: Water

Prep Type: Total/NA Analysis Batch: 153789 Prep Batch: 153707 LLCSD LLCSD RPD Spike %Rec. Analyte Added Result Qualifier Unit %Rec Limits RPD Limit 1.4-Dioxane 0.200 0.1999 J ug/L 100 50 - 150

LLCSD LLCSD Limits Surrogate %Recovery Qualifier 1,4-Dioxane-d8 (Surr) 94 46 - 130

QC Sample Results

Client: Groundwater & Environmental Services Inc

Project/Site: Billerica, MA

Job ID: 460-205843-1

Method: 625.1 - Semivolatile Organic Compounds (GC/MS)

Lab Sample ID: MB 460-688463/1-A

Matrix: Water

Analysis Batch: 688396

Client Sample ID: Method Blank
Prep Type: Total/NA
Prep Batch: 688463

Analysis Batch: 688396	MR	МВ						Prep Batch:	000403
Analyte		Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Acenaphthene	ND		10.0	1.08	ug/L			04/18/20 20:45	
Acenaphthylene	ND		10.0	0.823	-			04/18/20 20:45	1
Acetophenone	ND		10.0		ug/L			04/18/20 20:45	1
Aniline	ND		10.0		ug/L			04/18/20 20:45	
Anthracene	ND		10.0	0.634	-			04/18/20 20:45	-
Benzo[a]anthracene	ND		1.00	0.592	-			04/18/20 20:45	,
Benzo[a]pyrene	ND		1.00	0.682	-			04/18/20 20:45	
	ND ND		2.00		-			04/18/20 20:45	
Benzo[b]fluoranthene					ug/L				1
Benzo[g,h,i]perylene	ND		10.0		ug/L			04/18/20 20:45	1
Benzo[k]fluoranthene	ND		1.00	0.674	•			04/18/20 20:45	1
Bis(2-chloroethoxy)methane	ND		10.0	0.640	-			04/18/20 20:45	1
Bis(2-chloroethyl)ether	ND		1.00	0.688				04/18/20 20:45	1
bis (2-chloroisopropyl) ether	ND		10.0		ug/L			04/18/20 20:45	1
Bis(2-ethylhexyl) phthalate	ND		2.00		ug/L			04/18/20 20:45	1
4-Bromophenyl phenyl ether	ND		10.0	0.745	-		04/18/20 08:24	04/18/20 20:45	1
Butyl benzyl phthalate	ND		10.0	0.854	-		04/18/20 08:24	04/18/20 20:45	1
4-Chloroaniline	ND		10.0	1.88	ug/L		04/18/20 08:24	04/18/20 20:45	1
2-Chloronaphthalene	ND		10.0	1.18	ug/L		04/18/20 08:24	04/18/20 20:45	1
Chrysene	ND		2.00	0.907	ug/L		04/18/20 08:24	04/18/20 20:45	1
Dibenz(a,h)anthracene	ND		1.00	0.738	ug/L		04/18/20 08:24	04/18/20 20:45	1
Dibenzofuran	ND		10.0	1.10	ug/L		04/18/20 08:24	04/18/20 20:45	1
1,2-Dichlorobenzene	ND		10.0	1.34	ug/L		04/18/20 08:24	04/18/20 20:45	1
1,3-Dichlorobenzene	ND		10.0	2.03	ug/L		04/18/20 08:24	04/18/20 20:45	1
1,4-Dichlorobenzene	ND		10.0		ug/L		04/18/20 08:24	04/18/20 20:45	1
3,3'-Dichlorobenzidine	ND		10.0		ug/L		04/18/20 08:24	04/18/20 20:45	1
Diethyl phthalate	ND		10.0	0.976	_		04/18/20 08:24	04/18/20 20:45	1
Dimethyl phthalate	ND		10.0	0.766	•		04/18/20 08:24	04/18/20 20:45	1
Di-n-butyl phthalate	ND		10.0	0.753				04/18/20 20:45	
2,4-Dinitrotoluene	ND		2.00		ug/L			04/18/20 20:45	1
2,6-Dinitrotoluene	ND		2.00	0.534	-			04/18/20 20:45	1
Di-n-octyl phthalate	ND		10.0		ug/L			04/18/20 20:45	
1,4-Dioxane	ND		10.0		ug/L			04/18/20 20:45	-
Fluoranthene	ND		10.0	0.842	-			04/18/20 20:45	,
Fluorene	ND		10.0	0.842	-			04/18/20 20:45	
Hexachlorobenzene	ND ND		1.00	0.909	-			04/18/20 20:45	,
					-				
Hexachlorobutadiene	ND		1.00	0.438				04/18/20 20:45	1
Hexachloroethane	ND		2.00		ug/L			04/18/20 20:45	1
Indeno[1,2,3-cd]pyrene	ND		2.00		ug/L			04/18/20 20:45	1
Isophorone	ND		10.0	0.798	-			04/18/20 20:45	1
2-Methylnaphthalene	ND		10.0		ug/L			04/18/20 20:45	1
Naphthalene	ND		2.00		ug/L			04/18/20 20:45	1
Nitrobenzene	ND		2.00		ug/L			04/18/20 20:45	1
Phenanthrene	ND		10.0	0.580	-		04/18/20 08:24	04/18/20 20:45	1
Pyrene	ND		10.0	1.64	ug/L		04/18/20 08:24	04/18/20 20:45	1
1,2,4-Trichlorobenzene	ND		2.00	1.26	ug/L		04/18/20 08:24	04/18/20 20:45	1
Pentachlorophenol	ND		20.0	3.05	ug/L		04/18/20 08:24	04/18/20 20:45	1
Phenol	ND		10.0	1.24	ug/L		04/18/20 08:24	04/18/20 20:45	1

_

5

Ė

6

8

10

12

13

Job ID: 460-205843-1

Method: 625.1 - Semivolatile Organic Compounds (GC/MS) (Continued)

Lab Sample ID: MB 460-688463/1-A

Matrix: Water

Analysis Batch: 688396

Client Sample ID: Method Blank

Prep Type: Total/NA

Prep Batch: 688463

	IVID	IVID				
Surrogate	%Recovery	Qualifier	Limits	Prepared	Analyzed	Dil Fac
2-Fluorobiphenyl	69		44 - 129	04/18/20 08:24	04/18/20 20:45	1
Nitrobenzene-d5	76		15 - 314	04/18/20 08:24	04/18/20 20:45	1

Lab Sample ID: LCS 460-688463/2-A **Client Sample ID: Lab Control Sample**

Matrix: Water

Prep Type: Total/NA

Acceaphthene	Analysis Batch: 688396	Spike	LCS	LCS				Prep Batch: 68846 %Rec.
Acenaphthene 80.0 70.29 ug/L 88 47.135 Acenaphthylene 80.0 72.34 ug/L 90 33.145 Acetophenone 80.0 70.74 ug/L 88 60.140 Anline 80.0 60.86 ug/L 76 60.140 Anline 80.0 60.86 ug/L 98 27.133 Benzolgalpathracene 80.0 78.22 ug/L 101 33.143 Benzolginorene 80.0 73.34 ug/L 92 17.163 Benzolginuarathene 80.0 86.91 ug/L 109 0.1.219 Benzolginuarathene 80.0 86.91 ug/L 104 11.162 Benzolginuarathene 80.0 86.91 <th>Analyte</th> <th>•</th> <th></th> <th></th> <th>Unit</th> <th>D</th> <th>%Rec</th> <th></th>	Analyte	•			Unit	D	%Rec	
Acetaphthylene 80.0 72.34 ug/L 90 33.145 Acetaphenone 80.0 70.74 ug/L 76 60.140 Anthracene 80.0 68.86 ug/L 98 27.133 Benzolajhtracene 80.0 80.72 ug/L 99 27.133 Benzolpilluoranthene 80.0 73.34 ug/L 92 17.163 Benzolpilluoranthene 80.0 78.25 ug/L 98 24.159 Benzolpilluoranthene 80.0 86.91 ug/L 104 111.162 Benzolpilluoranthene 80.0 86.91 ug/L 104 111.162 Benzolpilluoranthene 80.0 72.14 ug/L 90 33.184 Benzolpilluoranthene 80.0 72.31 ug/L 90 32.186 Benzolpilluoranthene 80.0 72.34 ug/L 90 33.184 Benzolpilluoranthene 80.0 72.31 ug/L 90 33.184 Benzolpilluoranthene		80.0	70.29		ug/L		88	47 - 135
Acetophenone 80.0 70.74 ug/L 88 60.14d Aniline 80.0 76.22 ug/L 78 60.14d Antiliracene 80.0 78.22 ug/L 98 27.133 Benzo(alphracene 80.0 80.72 ug/L 191 33.143 Benzo(phyrene 80.0 78.25 ug/L 98 24.159 Benzo(philorenthene 80.0 86.91 ug/L 90 24.159 Benzo(philorenthene) 80.0 86.91 ug/L 90 01.219 Benzo(philorenthoxy)methane 80.0 86.91 ug/L 90 33.184 Bis(2-chlorenthy)lether 80.0 72.33 ug/L 90 12.158 Bis(2-chlorenthy)lether 80.0 77.83 ug/L 90 12.158 Bis(2-chlorenthy)lether 80.0 77.83 ug/L 97 8.158 Bis(2-chlorenthy)lether 80.0 77.83 ug/L 94 53.127 Bis(2-chlorenthy)lether	Acenaphthylene	80.0	72.34		-		90	33 - 145
Anthracene 80.0 78.22 ug/L 98 27.133 Benzo(alpathracene 80.0 80.72 ug/L 101 33.143 Benzo(alphyrene 80.0 73.34 ug/L 92 17.163 Benzo(plituoranthene 80.0 78.25 ug/L 98 24.159 Benzo(plituoranthene 80.0 66.91 ug/L 104 11.162 Bis(2-chloroethoxy)methane 80.0 72.14 ug/L 90 33.184 Bis(2-chloroethy)ether 80.0 72.33 ug/L 81 36.166 Bis(2-chloroethy)pether 80.0 64.82 ug/L 81 36.166 Bis(2-chloroethy)pether 80.0 77.83 ug/L 91 33.127 Bis(2-chloroethy)pethalate 80.0 77.83 ug/L 97 8.158 4-Bromophenyl phenyl ether 80.0 77.96 ug/L 94 53.127 Butyl benzyl phthalate 80.0 76.76 ug/L 96 01.152		80.0	70.74				88	60 - 140
Anthracene 80.0 78.22 ug/L 98 27. 133 Benzo[a]anthracene 80.0 80.72 ug/L 92 17. 163 Benzo[a]byrene 80.0 73.34 ug/L 92 17. 163 Benzo[b]fluoranthene 80.0 78.25 ug/L 198 24. 159 Benzo[k]hilperylene 80.0 82.94 ug/L 104 11. 162 Bis(2-chloroethoxy)methane 80.0 72.14 ug/L 90 33. 184 Bis(2-chloroethy)ether 80.0 77.83 ug/L 90 12. 158 Bis(2-chloroethy)bether 80.0 77.83 ug/L 90 12. 158 Bis(2-chloroethy)bether 80.0 77.83 ug/L 91 4.66 Bis(2-chloroethy)bether 80.0 77.83 ug/L 91 4.53. 1227 Bis(2-chloroethy)bether 80.0 77.83 ug/L 94 53. 1227 Buty bernyl phthalate 80.0 76.76 ug/L 49 60. 1.152	Aniline	80.0	60.86		ug/L		76	60 - 140
Benzo(a)pyrene 80.0 73.34 ug/L 92 17.163 Benzo(gh)fluoranthene 80.0 86.91 ug/L 198 24.159 Benzo(gh)fluoranthene 80.0 86.94 ug/L 104 11.162 Benzo(k)fluoranthene 80.0 82.94 ug/L 90 33.184 Bis(2-chloroethroxy)methane 80.0 72.14 ug/L 90 32.184 Bis(2-chloroethyl)ether 80.0 72.33 ug/L 90 32.184 Bis(2-chloroethyl)ether 80.0 78.83 ug/L 97 8.158 bis(2-chloroethyl)ether 80.0 77.83 ug/L 97 8.158 4-Bromophenyl phenyl ether 80.0 77.63 ug/L 94 53.127 Bist(2-chlyrexyl) phthalate 80.0 77.676 ug/L 94 53.127 4-Bromophenyl ether 80.0 76.76 ug/L 89 60.140 2-Chloroantine 80.0 77.676 ug/L 89 60.140	Anthracene	80.0	78.22				98	27 - 133
Benzo(b)fluoranthene 80.0 78.25 ug/L 98 24.159 Benzo(g), h)perylene 80.0 86.91 ug/L 109 0.1.219 Benzo(g), h)perylene 80.0 82.94 ug/L 104 11.162 Bis(2-chloroethoxy)methane 80.0 72.14 ug/L 90 33.184 Bis(2-chloroethyl)ether 80.0 64.82 ug/L 81 36.166 Bis(2-chloroethyl)phenyl ether 80.0 77.83 ug/L 97 8.158 4-Bromophenyl phenyl pether 80.0 74.96 ug/L 94 53.127 Biyly benzyl phthalate 80.0 76.76 ug/L 96 0.1152 4-Bromophenyl phenyl phenyl ether 80.0 76.76 ug/L 98 60.140 Biyly benzyl phthalate 80.0 76.6 ug/L 94 53.127 4-Bromophenyl phenyl phenyl ether 80.0 76.76 ug/L 89 60.140 1-biyly phthalate 80.0 76.76 ug/L 86	Benzo[a]anthracene	80.0	80.72		ug/L		101	33 - 143
Benzo(gh.i)perylene 80.0 86.91 ug/L 109 0.1.219 Benzo(ghilucranthene 80.0 82.94 ug/L 104 11.162 Bis(2-chloroethxy)methane 80.0 72.14 ug/L 90 33.184 Bis(2-chloroisopropyl) ether 80.0 64.82 ug/L 81 36.166 Bis(2-chloroisopropyl) ether 80.0 64.82 ug/L 97 8.158 4-Bromophenyl phenyl ether 80.0 74.96 ug/L 94 45.127 Butyl benzyl phthalate 80.0 76.76 ug/L 96 0.1.152 4-Chloronalline 80.0 76.76 ug/L 96 0.1.52 4-Chloronalphthalene 80.0 76.76 ug/L 96 0.1.152 4-Chloronalphthalene 80.0 76.76 ug/L 96 0.1.152 4-Chloronalphthalene 80.0 86.50 ug/L 109 17.168 Dibenzefura 80.0 87.26 ug/L 113 0.1.227 <t< td=""><td>Benzo[a]pyrene</td><td>80.0</td><td>73.34</td><td></td><td>ug/L</td><td></td><td>92</td><td>17 - 163</td></t<>	Benzo[a]pyrene	80.0	73.34		ug/L		92	17 - 163
Benzokifiluoranthene 80.0 82.94 ug/L 104 11.162 Bis(2-chloroethoxy)methane 80.0 72.14 ug/L 90 33.184 Bis(2-chloroethoxy)methane 80.0 72.33 ug/L 90 12.158 Bis(2-chloroethy)ether 80.0 64.82 ug/L 81 36-166 Bis(2-ethylhexyl) phthalate 80.0 77.83 ug/L 97 8.158 4-Bromophenyl phenyl ether 80.0 74.96 ug/L 96 0.1.52 4-Bromophenyl phenyl phthalate 80.0 76.76 ug/L 96 0.1.52 4-Bromophenyl phenyl phthalate 80.0 77.33 ug/L 89 60.140 2-Chlororaphthalene 80.0 68.50 ug/L 186 60-120 Chrysene 80.0 87.26 ug/L 113 0.1.227 Dibenzofuran 80.0 74.76 ug/L 93 60.140 1,2-Dichlorobenzene 80.0 59.48 ug/L 71 25.101	Benzo[b]fluoranthene	80.0	78.25		ug/L		98	24 - 159
Bis(2-chloroethoxy)methane 80.0 72.14 ug/L 90 33.184 Bis(2-chloroethy)lether 80.0 72.33 ug/L 90 12.158 Bis(2-chloroispropyl) ether 80.0 64.82 ug/L 81 36.166 Bis(2-chloroispropyl) pther 80.0 64.82 ug/L 97 8.158 Bis(2-chloroispropyl) pther 80.0 77.83 ug/L 97 8.158 Bis(2-chloroispropyl) pther) 80.0 74.96 ug/L 94 53.127 Butyl benzyl phthalate 80.0 76.76 ug/L 96 0.1.152 Butyl benzyl phthalate 80.0 76.76 ug/L 98 60.140 C-Chloronaphthalene 80.0 68.50 ug/L 86 60.120 Chrysene 80.0 87.26 ug/L 109 17.168 Dibenz(a,h)anthracene 80.0 87.26 ug/L 113 01.227 Dibenzofuran 80.0 74.76 ug/L 93 60.140 L-2-Dichlorobenzene 80.0 59.48 ug/L 14 25.101 L-2-Dichlorobenzene 80.0 56.89 ug/L 71 25.101 L-2-Dichlorobenzene 80.0 56.89 ug/L 70 27.101 S-3'-Dichlorobenzene 80.0 70.67 ug/L 88 0.1.120 Dimethyl phthalate 80.0 70.67 ug/L 88 0.1.120 Dimethyl phthalate 80.0 70.67 ug/L 88 0.1.120 Dimethyl phthalate 80.0 74.47 ug/L 93 1.120 Di-n-butyl phthalate 80.0 74.47 ug/L 93 1.120 Di-n-butyl phthalate 80.0 74.47 ug/L 93 1.120 Di-n-butyl phthalate 80.0 74.47 ug/L 93 3.1.120 Di-n-butyl phthalate 80.0 74.47 ug/L 93 3.1.120 Di-n-butyl phthalate 80.0 66.02 ug/L 33 4.146 1.4-Dioxane 80.0 39.14 ug/L 49 27.70 Fluoranthene 80.0 78.60 ug/L 93 59.121 Hexachlorobenzene 80.0 85.11 ug/L 106 0.1.152 Hexachlorobenzene 80.0 85.01 ug/L 106 0.1.152 Hexachlorobenzene 80.0 85.00 ug/L 106 0.1.152 Hexachlorobenzene 80.0 88.50 ug/L 111 0.1.171 Isophorone 80.0 68.81 ug/L 86 21.196	Benzo[g,h,i]perylene	80.0	86.91		ug/L		109	0.1 - 219
Bis (2-chloroethyl)ether 80.0 72.33 ug/L 90 12.158 bis (2-chloroisopropyl) ether 80.0 64.82 ug/L 81 36.166 Bis (2-chlylhexyl) phthalate 80.0 77.83 ug/L 97 8.158 4-Bromophenyl phenyl ether 80.0 77.96 ug/L 94 53.127 Butyl benzyl phthalate 80.0 76.76 ug/L 96 0.1.152 4-Chloroanliline 80.0 76.76 ug/L 89 60.140 2-Chloroanphthalene 80.0 87.26 ug/L 89 60.140 2-Chloroanphthalene 80.0 87.26 ug/L 109 17.168 Dibenz(a, h)anthracene 80.0 87.26 ug/L 113 0.1.227 Dibenzofuran 80.0 74.76 ug/L 93 60.140 1,2-Dichlorobenzene 80.0 59.48 ug/L 74 25.101 1,3-Dichlorobenzene 80.0 56.189 ug/L 17 02.7101	Benzo[k]fluoranthene	80.0	82.94		ug/L		104	11 - 162
bis (2-chloroisopropyl) ether 80.0 64.82 ug/L 81 36-166 Bis(2-ethylhexyl) phthalate 80.0 77.83 ug/L 97 8.158 4-Bromophenyl phenyl ether 80.0 74.96 ug/L 94 53.127 Butyl benzyl phthalate 80.0 76.76 ug/L 96 0.1.152 4-Chloroanline 80.0 71.33 ug/L 89 60.140 2-Chloronaphthalene 80.0 68.50 ug/L 109 17.168 Dibenz(a,h)anthracene 80.0 87.26 ug/L 109 17.168 Dibenz(bran 80.0 74.76 ug/L 113 0.1.227 Dibenzofuran 80.0 74.76 ug/L 113 0.1.227 Dibenzofuran 80.0 59.48 ug/L 113 0.1.227 Dibenzofuran 80.0 56.89 ug/L 71 25.101 1,3-Dichlorobenzene 80.0 56.12 ug/L 70 27.101 3,3-Dichloroben	Bis(2-chloroethoxy)methane	80.0	72.14		ug/L		90	33 - 184
Bis(2-ethylhexyl) phthalate 80.0 77.83 ug/L 97 8.158 4-Bromophenyl phenyl ether 80.0 74.96 ug/L 94 53.127 Butyl benzyl phthalate 80.0 76.76 ug/L 96 0.1.152 4-Chloroaniline 80.0 71.33 ug/L 89 60.140 2-Chloronaphthalene 80.0 87.26 ug/L 109 17.168 Dibenz(a,h)anthracene 80.0 90.46 ug/L 193 60.140 Dibenzofuran 80.0 74.76 ug/L 193 60.140 1,2-Dichlorobenzene 80.0 59.48 ug/L 19 17.261 1,3-Dichlorobenzene 80.0 56.89 ug/L 70 27.101 3,3-Dichlorobenzene 80.0 56.89 ug/L 117 0.1.262 Diethyl phthalate 80.0 70.67 ug/L 117 0.1.262 Dien-butyl phthalate 80.0 75.17 ug/L 93 1.120 Di-n-	Bis(2-chloroethyl)ether	80.0	72.33		ug/L		90	12 - 158
Bis(2-ethylhexyl) phthalate 80.0 77.83 ug/L 97 8.158 4-Bromophenyl phenyl ether 80.0 74.96 ug/L 94 53.127 Butyl benzyl phthalate 80.0 76.76 ug/L 96 0.1.152 4-Chloroaniline 80.0 71.33 ug/L 89 60.140 2-Chloronaphthalene 80.0 87.26 ug/L 109 17.168 Dibenz(a,h)anthracene 80.0 90.46 ug/L 193 16.120 Dibenzofuran 80.0 74.76 ug/L 193 60.140 1,2-Dichlorobenzene 80.0 59.48 ug/L 74 25.101 1,3-Dichlorobenzene 80.0 56.89 ug/L 70 27.101 3,3-Dichlorobenzene 80.0 56.19 ug/L 117 0.1.262 Diethyl phthalate 80.0 70.67 ug/L 117 0.1.262 Dien-butyl phthalate 80.0 75.17 ug/L 93 1.120 Di-n-	bis (2-chloroisopropyl) ether	80.0	64.82		ug/L		81	36 - 166
Butyl benzyl phthalate 80.0 76.76 ug/L 96 0.1.152 4-Chloroaniline 80.0 71.33 ug/L 89 60.140 2-Chloronaphthalene 80.0 68.50 ug/L 86 60.120 Chrysene 80.0 87.26 ug/L 109 17.188 Dibenz(a,h)anthracene 80.0 90.46 ug/L 93 60.140 1,2-Dichlorobenzene 80.0 74.76 ug/L 74 25.101 1,3-Dichlorobenzene 80.0 59.48 ug/L 71 25.101 1,4-Dichlorobenzene 80.0 56.12 ug/L 70 27.101 3,3-Dichlorobenzidine 80.0 56.12 ug/L 70 27.101 3,3'-Dichlorobenzidine 80.0 70.67 ug/L 88 0.1.120 Direntyl phthalate 80.0 75.17 ug/L 93 1.120 Direntyl phthalate 80.0 74.47 ug/L 93 1.120 2,-Dinitrotoluene	Bis(2-ethylhexyl) phthalate	80.0	77.83				97	8 - 158
4-Chloroanhithalene 80.0 71.33 ug/L 89 60.140 2-Chloronaphthalene 80.0 68.50 ug/L 86 60-120 Chrysene 80.0 87.26 ug/L 109 17.168 Dibenz(a,h)anthracene 80.0 90.46 ug/L 113 0.1-227 Dibenzofuran 80.0 74.76 ug/L 93 60-140 1,2-Dichlorobenzene 80.0 59.48 ug/L 74 25-101 1,3-Dichlorobenzene 80.0 56.89 ug/L 71 25-101 1,4-Dichlorobenzidine 80.0 56.89 ug/L 10 27-101 3,3'-Dichlorobenzidine 80.0 93.94 ug/L 117 0.1-262 Diethyl phthalate 80.0 75.17 ug/L 88 0.1-120 Di-n-butyl phthalate 80.0 75.17 ug/L 93 1-120 2,4-Dinitrotoluene 80.0 91.38 ug/L 114 39-139 2,6-Dinitrotoluene 80.0 81.88 ug/L 114 39-139 2,6-Din	4-Bromophenyl phenyl ether	80.0	74.96		ug/L		94	53 - 127
4-Chloroaphthalene 80.0 71.33 ug/L 89 60 - 140 2-Chloronaphthalene 80.0 68.50 ug/L 86 60 - 120 Chrysene 80.0 87.26 ug/L 109 17 - 168 Dibenz(a,h)anthracene 80.0 90.46 ug/L 113 0.1 - 227 Dibenzofuran 80.0 74.76 ug/L 93 60 - 140 1,2-Dichlorobenzene 80.0 59.48 ug/L 74 25 - 101 1,3-Dichlorobenzene 80.0 56.89 ug/L 71 25 - 101 1,4-Dichlorobenzidine 80.0 56.12 ug/L 70 27 - 101 3,3'-Dichlorobenzidine 80.0 70.67 ug/L 117 0.1 - 262 Diethyl phthalate 80.0 75.17 ug/L 88 0.1 - 120 Di-n-butyl phthalate 80.0 75.17 ug/L 93 1 - 120 2,4-Dinitrotoluene 80.0 91.38 ug/L 114 39 - 139 2,6-Dinitrotoluene 80.0 81.88 ug/L 114 39 - 139	Butyl benzyl phthalate	80.0	76.76		ug/L		96	0.1 - 152
Chrysene 80.0 87.26 ug/L 109 17.168 Dibenz(a,h)anthracene 80.0 90.46 ug/L 113 0.1.227 Dibenzofuran 80.0 74.76 ug/L 93 60.140 1,2-Dichlorobenzene 80.0 59.48 ug/L 74 25.101 1,3-Dichlorobenzene 80.0 56.89 ug/L 70 27.101 3,3-Dichlorobenzidine 80.0 56.12 ug/L 70 27.101 3,3'-Dichlorobenzidine 80.0 93.94 ug/L 117 0.1.262 Diethyl phthalate 80.0 70.67 ug/L 88 0.1.120 Dimethyl phthalate 80.0 75.17 ug/L 94 0.1.120 Di-n-butyl phthalate 80.0 74.47 ug/L 93 1.120 2,6-Dinitrotoluene 80.0 81.88 ug/L 10 50.158 Di-n-octyl phthalate 80.0 81.88 ug/L 10 50.158 Di-n-octyl phthalate	4-Chloroaniline	80.0	71.33				89	60 - 140
Dibenz(a,h)anthracene 80.0 90.46 ug/L 113 0.1 - 227 Dibenzofuran 80.0 74.76 ug/L 93 60 - 140 1,2-Dichlorobenzene 80.0 59.48 ug/L 74 25 - 101 1,3-Dichlorobenzene 80.0 56.89 ug/L 70 27 - 101 3,3'-Dichlorobenzidine 80.0 56.89 ug/L 70 27 - 101 3,3'-Dichlorobenzidine 80.0 93.94 ug/L 117 0.1 - 262 Diethyl phthalate 80.0 70.67 ug/L 88 0.1 - 120 Diemethyl phthalate 80.0 75.17 ug/L 94 0.1 - 120 Di-n-butyl phthalate 80.0 74.47 ug/L 93 1 - 120 2,4-Dinitrotoluene 80.0 91.38 ug/L 114 39 - 139 2,6-Dinitrotoluene 80.0 81.88 ug/L 102 50 - 158 Di-n-octyl phthalate 80.0 39.14 ug/L 49 27 - 70	2-Chloronaphthalene	80.0	68.50		ug/L		86	60 - 120
Dibenzofuran 80.0 74.76 ug/L 93 60 - 140 1,2-Dichlorobenzene 80.0 59.48 ug/L 74 25 - 101 1,3-Dichlorobenzene 80.0 56.89 ug/L 71 25 - 101 1,4-Dichlorobenzene 80.0 56.12 ug/L 70 27 - 101 3,3'-Dichlorobenzidine 80.0 93.94 ug/L 117 0.1 - 262 Diethyl phthalate 80.0 70.67 ug/L 88 0.1 - 120 Dimethyl phthalate 80.0 75.17 ug/L 94 0.1 - 120 Dimethyl phthalate 80.0 75.17 ug/L 94 0.1 - 120 Dimethyl phthalate 80.0 74.47 ug/L 93 1 - 120 2,4-Dinitrotoluene 80.0 91.38 ug/L 114 39 - 139 2,6-Dinitrotoluene 80.0 81.88 ug/L 102 50 - 158 Di-n-octyl phthalate 80.0 39.14 ug/L 49 27 - 70	Chrysene	80.0	87.26		ug/L		109	17 - 168
Dibenzofuran 80.0 74.76 ug/L 93 60 - 140 1,2-Dichlorobenzene 80.0 59.48 ug/L 74 25 - 101 1,3-Dichlorobenzene 80.0 56.89 ug/L 71 25 - 101 1,4-Dichlorobenzene 80.0 56.12 ug/L 70 27 - 101 3,3'-Dichlorobenzidine 80.0 93.94 ug/L 117 0.1 - 262 Diethyl phthalate 80.0 70.67 ug/L 88 0.1 - 120 Dimethyl phthalate 80.0 75.17 ug/L 94 0.1 - 120 Dimethyl phthalate 80.0 74.47 ug/L 93 1 - 120 2,4-Dinitrotoluene 80.0 91.38 ug/L 114 39 - 139 2,6-Dinitrotoluene 80.0 81.88 ug/L 102 50 - 158 Di-n-octyl phthalate 80.0 39.14 ug/L 49 27 - 70 Fluoranthene 80.0 78.60 ug/L 49 27 - 70 Fluorant	Dibenz(a,h)anthracene	80.0	90.46		ug/L		113	0.1 - 227
1,3-Dichlorobenzene 80.0 56.89 ug/L 71 25 - 101 1,4-Dichlorobenzene 80.0 56.12 ug/L 70 27 - 101 3,3'-Dichlorobenzidine 80.0 93.94 ug/L 117 0.1 - 262 Diethyl phthalate 80.0 70.67 ug/L 88 0.1 - 120 Dimethyl phthalate 80.0 75.17 ug/L 94 0.1 - 120 Di-n-butyl phthalate 80.0 74.47 ug/L 93 1 - 120 2,4-Dinitrotoluene 80.0 91.38 ug/L 114 39 - 139 2,6-Dinitrotoluene 80.0 81.88 ug/L 102 50 - 158 Di-n-octyl phthalate 80.0 66.02 ug/L 83 4 - 146 1,4-Dioxane 80.0 66.02 ug/L 83 4 - 146 1,4-Dioxane 80.0 78.60 ug/L 49 27 - 70 Fluoranthene 80.0 74.55 ug/L 93 59 - 121 Hexachlorobenzene 80.0 85.11 ug/L 106 0.1 - 152	Dibenzofuran	80.0	74.76				93	60 - 140
1,4-Dichlorobenzene 80.0 56.12 ug/L 70 27 - 101 3,3'-Dichlorobenzidine 80.0 93.94 ug/L 117 0.1 - 262 Diethyl phthalate 80.0 70.67 ug/L 88 0.1 - 120 Dimethyl phthalate 80.0 75.17 ug/L 94 0.1 - 120 Di-n-butyl phthalate 80.0 74.47 ug/L 93 1 - 120 2,4-Dinitrotoluene 80.0 91.38 ug/L 114 39 - 139 2,6-Dinitrotoluene 80.0 81.88 ug/L 102 50 - 158 Di-n-octyl phthalate 80.0 66.02 ug/L 83 4 - 146 1,4-Dioxane 80.0 39.14 ug/L 49 27 - 70 Fluoranthene 80.0 78.60 ug/L 98 26 - 137 Fluorene 80.0 74.55 ug/L 93 59 - 121 Hexachlorobenzene 80.0 85.11 ug/L 106 0.1 - 152 Hexachlorobthane 80.0 50.20 ug/L 63 40 - 120	1,2-Dichlorobenzene	80.0	59.48		ug/L		74	25 - 101
3,3'-Dichlorobenzidine 80.0 93.94 ug/L 117 0.1 - 262 Diethyl phthalate 80.0 70.67 ug/L 88 0.1 - 120 Dimethyl phthalate 80.0 75.17 ug/L 94 0.1 - 120 Di-n-butyl phthalate 80.0 74.47 ug/L 93 1 - 120 2,4-Dinitrotoluene 80.0 91.38 ug/L 114 39 - 139 2,6-Dinitrotoluene 80.0 81.88 ug/L 102 50 - 158 Di-n-octyl phthalate 80.0 66.02 ug/L 83 4 - 146 1,4-Dioxane 80.0 39.14 ug/L 49 27 - 70 Fluoranthene 80.0 78.60 ug/L 98 26 - 137 Fluorene 80.0 74.55 ug/L 93 59 - 121 Hexachlorobenzene 80.0 85.11 ug/L 106 0.1 - 152 Hexachlorobthane 80.0 56.09 ug/L 70 24 - 120 Hexachlorothane 80.0 88.50 ug/L 63 40 - 120 Inde	1,3-Dichlorobenzene	80.0	56.89		ug/L		71	25 - 101
Diethyl phthalate 80.0 70.67 ug/L 88 0.1 - 120 Dimethyl phthalate 80.0 75.17 ug/L 94 0.1 - 120 Di-n-butyl phthalate 80.0 74.47 ug/L 93 1 - 120 2,4-Dinitrotoluene 80.0 91.38 ug/L 114 39 - 139 2,6-Dinitrotoluene 80.0 81.88 ug/L 102 50 - 158 Di-n-octyl phthalate 80.0 66.02 ug/L 83 4 - 146 1,4-Dioxane 80.0 39.14 ug/L 49 27 - 70 Fluoranthene 80.0 78.60 ug/L 98 26 - 137 Fluorene 80.0 74.55 ug/L 93 59 - 121 Hexachlorobenzene 80.0 85.11 ug/L 106 0.1 - 152 Hexachloroethane 80.0 56.09 ug/L 63 40 - 120 Indeno[1,2,3-cd]pyrene 80.0 88.50 ug/L 111 0.1 - 171 Isophorone	1,4-Dichlorobenzene	80.0	56.12		ug/L		70	27 - 101
Dimethyl phthalate 80.0 75.17 ug/L 94 0.1 - 120 Di-n-butyl phthalate 80.0 74.47 ug/L 93 1 - 120 2,4-Dinitrotoluene 80.0 91.38 ug/L 114 39 - 139 2,6-Dinitrotoluene 80.0 81.88 ug/L 102 50 - 158 Di-n-octyl phthalate 80.0 66.02 ug/L 83 4 - 146 1,4-Dioxane 80.0 39.14 ug/L 49 27 - 70 Fluoranthene 80.0 78.60 ug/L 98 26 - 137 Fluorene 80.0 74.55 ug/L 93 59 - 121 Hexachlorobenzene 80.0 85.11 ug/L 106 0.1 - 152 Hexachloroethane 80.0 56.09 ug/L 70 24 - 120 Indeno[1,2,3-cd]pyrene 80.0 88.50 ug/L 111 0.1 - 171 Isophorone 80.0 68.81 ug/L 86 21 - 196	3,3'-Dichlorobenzidine	80.0	93.94				117	0.1 - 262
Di-n-butyl phthalate 80.0 74.47 ug/L 93 1 - 120 2,4-Dinitrotoluene 80.0 91.38 ug/L 114 39 - 139 2,6-Dinitrotoluene 80.0 81.88 ug/L 102 50 - 158 Di-n-octyl phthalate 80.0 66.02 ug/L 83 4 - 146 1,4-Dioxane 80.0 39.14 ug/L 49 27 - 70 Fluoranthene 80.0 78.60 ug/L 98 26 - 137 Fluorene 80.0 74.55 ug/L 93 59 - 121 Hexachlorobenzene 80.0 85.11 ug/L 106 0.1 - 152 Hexachlorobthadiene 80.0 56.09 ug/L 70 24 - 120 Hexachloroethane 80.0 50.20 ug/L 63 40 - 120 Indeno[1,2,3-cd]pyrene 80.0 88.50 ug/L 111 0.1 - 171 Isophorone 80.0 68.81 ug/L 86 21 - 196	Diethyl phthalate	80.0	70.67		ug/L		88	0.1 - 120
2,4-Dinitrotoluene 80.0 91.38 ug/L 114 39 - 139 2,6-Dinitrotoluene 80.0 81.88 ug/L 102 50 - 158 Di-n-octyl phthalate 80.0 66.02 ug/L 83 4 - 146 1,4-Dioxane 80.0 39.14 ug/L 49 27 - 70 Fluoranthene 80.0 78.60 ug/L 98 26 - 137 Fluorene 80.0 74.55 ug/L 93 59 - 121 Hexachlorobenzene 80.0 85.11 ug/L 106 0.1 - 152 Hexachlorobutadiene 80.0 56.09 ug/L 70 24 - 120 Hexachloroethane 80.0 50.20 ug/L 63 40 - 120 Indeno[1,2,3-cd]pyrene 80.0 88.50 ug/L 111 0.1 - 171 Isophorone 80.0 68.81 ug/L 86 21 - 196	Dimethyl phthalate	80.0	75.17		ug/L		94	0.1 - 120
2,4-Dinitrotoluene 80.0 91.38 ug/L 114 39 - 139 2,6-Dinitrotoluene 80.0 81.88 ug/L 102 50 - 158 Di-n-octyl phthalate 80.0 66.02 ug/L 83 4 - 146 1,4-Dioxane 80.0 39.14 ug/L 49 27 - 70 Fluoranthene 80.0 78.60 ug/L 98 26 - 137 Fluorene 80.0 74.55 ug/L 93 59 - 121 Hexachlorobenzene 80.0 85.11 ug/L 106 0.1 - 152 Hexachlorobutadiene 80.0 56.09 ug/L 70 24 - 120 Hexachloroethane 80.0 50.20 ug/L 63 40 - 120 Indeno[1,2,3-cd]pyrene 80.0 88.50 ug/L 111 0.1 - 171 Isophorone 80.0 68.81 ug/L 86 21 - 196	Di-n-butyl phthalate	80.0	74.47		ug/L		93	1 - 120
Di-n-octyl phthalate 80.0 66.02 ug/L 83 4 - 146 1,4-Dioxane 80.0 39.14 ug/L 49 27 - 70 Fluoranthene 80.0 78.60 ug/L 98 26 - 137 Fluorene 80.0 74.55 ug/L 93 59 - 121 Hexachlorobenzene 80.0 85.11 ug/L 106 0.1 - 152 Hexachlorobutadiene 80.0 56.09 ug/L 70 24 - 120 Hexachloroethane 80.0 50.20 ug/L 63 40 - 120 Indeno[1,2,3-cd]pyrene 80.0 88.50 ug/L 111 0.1 - 171 Isophorone 80.0 68.81 ug/L 86 21 - 196	2,4-Dinitrotoluene	80.0	91.38				114	39 - 139
1,4-Dioxane 80.0 39.14 ug/L 49 27 - 70 Fluoranthene 80.0 78.60 ug/L 98 26 - 137 Fluorene 80.0 74.55 ug/L 93 59 - 121 Hexachlorobenzene 80.0 85.11 ug/L 106 0.1 - 152 Hexachlorobutadiene 80.0 56.09 ug/L 70 24 - 120 Hexachloroethane 80.0 50.20 ug/L 63 40 - 120 Indeno[1,2,3-cd]pyrene 80.0 88.50 ug/L 111 0.1 - 171 Isophorone 80.0 68.81 ug/L 86 21 - 196	2,6-Dinitrotoluene	80.0	81.88		ug/L		102	50 - 158
Fluoranthene 80.0 78.60 ug/L 98 26 - 137 Fluorene 80.0 74.55 ug/L 93 59 - 121 Hexachlorobenzene 80.0 85.11 ug/L 106 0.1 - 152 Hexachlorobutadiene 80.0 56.09 ug/L 70 24 - 120 Hexachloroethane 80.0 50.20 ug/L 63 40 - 120 Indeno[1,2,3-cd]pyrene 80.0 88.50 ug/L 111 0.1 - 171 Isophorone 80.0 68.81 ug/L 86 21 - 196	Di-n-octyl phthalate	80.0	66.02		ug/L		83	4 - 146
Fluorene 80.0 74.55 ug/L 93 59 - 121 Hexachlorobenzene 80.0 85.11 ug/L 106 0.1 - 152 Hexachlorobutadiene 80.0 56.09 ug/L 70 24 - 120 Hexachloroethane 80.0 50.20 ug/L 63 40 - 120 Indeno[1,2,3-cd]pyrene 80.0 88.50 ug/L 111 0.1 - 171 Isophorone 80.0 68.81 ug/L 86 21 - 196	1,4-Dioxane	80.0	39.14		ug/L		49	27 - 70
Hexachlorobenzene 80.0 85.11 ug/L 106 0.1 - 152 Hexachlorobutadiene 80.0 56.09 ug/L 70 24 - 120 Hexachloroethane 80.0 50.20 ug/L 63 40 - 120 Indeno[1,2,3-cd]pyrene 80.0 88.50 ug/L 111 0.1 - 171 Isophorone 80.0 68.81 ug/L 86 21 - 196	Fluoranthene	80.0	78.60		ug/L		98	26 - 137
Hexachlorobutadiene 80.0 56.09 ug/L 70 24 - 120 Hexachloroethane 80.0 50.20 ug/L 63 40 - 120 Indeno[1,2,3-cd]pyrene 80.0 88.50 ug/L 111 0.1 - 171 Isophorone 80.0 68.81 ug/L 86 21 - 196	Fluorene	80.0	74.55		ug/L		93	59 - 121
Hexachlorobutadiene 80.0 56.09 ug/L 70 24 - 120 Hexachloroethane 80.0 50.20 ug/L 63 40 - 120 Indeno[1,2,3-cd]pyrene 80.0 88.50 ug/L 111 0.1 - 171 Isophorone 80.0 68.81 ug/L 86 21 - 196	Hexachlorobenzene	80.0	85.11		ug/L		106	0.1 - 152
Hexachloroethane 80.0 50.20 ug/L 63 40 - 120 Indeno[1,2,3-cd]pyrene 80.0 88.50 ug/L 111 0.1 - 171 Isophorone 80.0 68.81 ug/L 86 21 - 196	Hexachlorobutadiene	80.0	56.09				70	24 - 120
Isophorone 80.0 68.81 ug/L 86 21 - 196	Hexachloroethane	80.0	50.20				63	40 - 120
Isophorone 80.0 68.81 ug/L 86 21 - 196	Indeno[1,2,3-cd]pyrene	80.0	88.50		ug/L		111	0.1 - 171
2-Methylnaphthalene 80.0 67.24 ug/L 84 60 - 140	Isophorone	80.0			-		86	21 - 196
	2-Methylnaphthalene	80.0	67.24		ug/L		84	60 - 140

QC Sample Results

Client: Groundwater & Environmental Services Inc

Project/Site: Billerica, MA

Job ID: 460-205843-1

Method: 625.1 - Semivolatile Organic Compounds (GC/MS) (Continued)

Lab Sample ID: LCS 460-688463/2-A

Matrix: Water

Analysis Batch: 688396

Client Sample ID: Lab Control Sample

Prep Type: Total/NA

Prep Batch: 688463

	Spike	LCS LCS	5		%Rec.
Analyte	Added	Result Qua	alifier Unit	D %Rec	Limits
Naphthalene	80.0	67.54	ug/L	84	21 - 133
Nitrobenzene	80.0	81.78	ug/L	102	35 - 180
Phenanthrene	80.0	78.27	ug/L	98	54 - 120
Pyrene	80.0	76.95	ug/L	96	52 - 120
1,2,4-Trichlorobenzene	80.0	63.47	ug/L	79	44 - 142

LCS LCS

Surrogate	%Recovery	Qualifier	Limits
2-Fluorobiphenyl	93		44 - 129
Nitrobenzene-d5	102		15 - 314

Client Sample ID: Lab Control Sample Dup

Lab Sample ID: LCSD 460-688463/3-A

Matrix: Water							Prep Ty		
Analysis Batch: 688396	Spike	LCSD	LCSD				Prep Ba	atcn: 6	88463 RPD
Analyte	Added		Qualifier	Unit	D	%Rec	Limits	RPD	Limit
Acenaphthene	80.0	56.93		ug/L		71	47 - 135	21	48
Acenaphthylene	80.0	58.58		ug/L		73	33 - 145	21	74
Acetophenone	80.0	57.28		ug/L		72	60 - 140	21	50
Aniline	80.0	48.28		ug/L		60	60 - 140	23	50
Anthracene	80.0	62.89		ug/L		79	27 - 133	22	66
Benzo[a]anthracene	80.0	64.79		ug/L		81	33 - 143	22	53
Benzo[a]pyrene	80.0	58.25		ug/L		73	17 - 163	23	72
Benzo[b]fluoranthene	80.0	62.07		ug/L		78	24 - 159	23	71
Benzo[g,h,i]perylene	80.0	70.75		ug/L		88	0.1 - 219	20	97
Benzo[k]fluoranthene	80.0	65.58		ug/L		82	11 - 162	23	63
Bis(2-chloroethoxy)methane	80.0	58.14		ug/L		73	33 - 184	21	54
Bis(2-chloroethyl)ether	80.0	58.61		ug/L		73	12 - 158	21	108
bis (2-chloroisopropyl) ether	80.0	51.81		ug/L		65	36 - 166	22	76
Bis(2-ethylhexyl) phthalate	80.0	64.11		ug/L		80	8 - 158	19	82
4-Bromophenyl phenyl ether	80.0	61.13		ug/L		76	53 - 127	20	43
Butyl benzyl phthalate	80.0	63.21		ug/L		79	0.1 - 152	19	60
4-Chloroaniline	80.0	55.33		ug/L		69	60 - 140	25	50
2-Chloronaphthalene	80.0	55.45		ug/L		69	60 - 120	21	24
Chrysene	80.0	70.73		ug/L		88	17 - 168	21	87
Dibenz(a,h)anthracene	80.0	72.62		ug/L		91	0.1 - 227	22	126
Dibenzofuran	80.0	60.75		ug/L		76	60 - 140	21	50
1,2-Dichlorobenzene	80.0	48.42		ug/L		61	25 - 101	21	50
1,3-Dichlorobenzene	80.0	46.57		ug/L		58	25 - 101	20	50
1,4-Dichlorobenzene	80.0	46.51		ug/L		58	27 - 101	19	50
3,3'-Dichlorobenzidine	80.0	74.36		ug/L		93	0.1 - 262	23	108
Diethyl phthalate	80.0	59.04		ug/L		74	0.1 - 120	18	100
Dimethyl phthalate	80.0	60.84		ug/L		76	0.1 - 120	21	183
Di-n-butyl phthalate	80.0	61.48		ug/L		77	1 - 120	19	47
2,4-Dinitrotoluene	80.0	75.98		ug/L		95	39 - 139	18	42
2,6-Dinitrotoluene	80.0	67.25		ug/L		84	50 - 158	20	48
Di-n-octyl phthalate	80.0	55.12		ug/L		69	4 - 146	18	69
1,4-Dioxane	80.0	37.24		ug/L		47	27 - 70	5	50
Fluoranthene	80.0	64.00		ug/L		80	26 - 137	20	66

Job ID: 460-205843-1

Method: 625.1 - Semivolatile Organic Compounds (GC/MS) (Continued)

Lab Sample ID: LCSD 460-688463/3-A

Matrix: Water

Analysis Batch: 688396

Client Sample ID: Lab Control Sample Dup

Prep Type: Total/NA Prep Batch: 688463

	Spike	LCSD	LCSD				%Rec.		RPD
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits	RPD	Limit
Fluorene	80.0	60.67		ug/L		76	59 - 121	21	38
Hexachlorobenzene	80.0	68.55		ug/L		86	0.1 - 152	22	55
Hexachlorobutadiene	80.0	45.02		ug/L		56	24 - 120	22	62
Hexachloroethane	80.0	41.07		ug/L		51	40 - 120	20	52
Indeno[1,2,3-cd]pyrene	80.0	72.61		ug/L		91	0.1 - 171	20	99
Isophorone	80.0	56.19		ug/L		70	21 - 196	20	93
2-Methylnaphthalene	80.0	55.05		ug/L		69	60 - 140	20	50
Naphthalene	80.0	53.64		ug/L		67	21 - 133	23	65
Nitrobenzene	80.0	67.39		ug/L		84	35 - 180	19	62
Phenanthrene	80.0	63.08		ug/L		79	54 - 120	22	39
Pyrene	80.0	63.21		ug/L		79	52 - 120	20	49
1,2,4-Trichlorobenzene	80.0	52.26		ug/L		65	44 - 142	19	50

LCSD LCSD

 Surrogate
 %Recovery
 Qualifier
 Limits

 2-Fluorobiphenyl
 88
 44 - 129

 Nitrobenzene-d5
 95
 15 - 314

Method: 8270D SIM - Semivolatile Organic Compounds (GC/MS SIM)

Lab Sample ID: MB 460-684079/1-A

Matrix: Water

Analysis Batch: 684053

Client Sample ID: Method Blank
Prep Type: Total/NA

Prep Batch: 684079

7 maryolo Batom 00-1000								I TOP Batom	00-1010
-	MB	MB							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Acenaphthene	ND		0.0500	0.0142	ug/L		03/27/20 09:24	03/27/20 17:34	1
Benzo[a]anthracene	ND		0.0500	0.0156	ug/L		03/27/20 09:24	03/27/20 17:34	1
Benzo[a]pyrene	ND		0.0500	0.0216	ug/L		03/27/20 09:24	03/27/20 17:34	1
Benzo[b]fluoranthene	ND		0.0500	0.0240	ug/L		03/27/20 09:24	03/27/20 17:34	1
Benzo[g,h,i]perylene	ND		0.0500	0.0351	ug/L		03/27/20 09:24	03/27/20 17:34	1
Acenaphthylene	ND		0.0500	0.0146	ug/L		03/27/20 09:24	03/27/20 17:34	1
Benzo[k]fluoranthene	ND		0.0500	0.0278	ug/L		03/27/20 09:24	03/27/20 17:34	1
Bis(2-chloroethyl)ether	ND		0.0300	0.0260	ug/L		03/27/20 09:24	03/27/20 17:34	1
Anthracene	ND		0.0500	0.00920	ug/L		03/27/20 09:24	03/27/20 17:34	1
Dibenz(a,h)anthracene	ND		0.0500	0.0200	ug/L		03/27/20 09:24	03/27/20 17:34	1
Hexachlorobenzene	ND		0.0200	0.0131	ug/L		03/27/20 09:24	03/27/20 17:34	1
Indeno[1,2,3-cd]pyrene	ND		0.0500	0.0362	ug/L		03/27/20 09:24	03/27/20 17:34	1
Pentachlorophenol	ND		0.200	0.154	ug/L		03/27/20 09:24	03/27/20 17:34	1
Chrysene	ND		0.0500	0.0299	ug/L		03/27/20 09:24	03/27/20 17:34	1
Fluorene	ND		0.0500	0.0118	ug/L		03/27/20 09:24	03/27/20 17:34	1
Phenanthrene	ND		0.0500	0.0219	ug/L		03/27/20 09:24	03/27/20 17:34	1
Pyrene	ND		0.0500	0.0314	ug/L		03/27/20 09:24	03/27/20 17:34	1
	MB	MD							

Surrogate	%Recovery Qualifier	Limits	Prepared	Analyzed	Dil Fac
2-Fluorobiphenyl	77	25 - 124	03/27/20 09:24	03/27/20 17:34	1
Nitrobenzene-d5	96	41 - 144	03/27/20 09:24	03/27/20 17:34	1
2,4,6-Tribromophenol	96	40 - 140	03/27/20 09:24	03/27/20 17:34	1

Eurofins TestAmerica, Edison

_

5

5

0

8

10

12

14

15

Job ID: 460-205843-1

Method: 8270D SIM - Semivolatile Organic Compounds (GC/MS SIM) (Continued)

Lab Sample ID: LCS 460-684079/2-A

Matrix: Water

Analysis Batch: 684053

Client Sample ID: Lab Control Sample

Prep '	Type: T	otal/NA
Prep	Batch:	684079
0/ -		

, =								-
	Spike	LCS	LCS				%Rec.	
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits	
Acenaphthene	0.800	0.6754		ug/L		84	29 - 131	_
Benzo[a]anthracene	0.800	0.8993		ug/L		112	44 - 150	
Benzo[a]pyrene	0.800	0.7774		ug/L		97	38 - 139	
Benzo[b]fluoranthene	0.800	0.7767		ug/L		97	32 - 148	
Acenaphthylene	0.800	0.7248		ug/L		91	10 - 150	
Bis(2-chloroethyl)ether	0.800	0.8789		ug/L		110	49 - 143	
Anthracene	0.800	0.8478		ug/L		106	37 - 149	
Hexachlorobenzene	0.800	0.7319		ug/L		91	10 - 135	
Pentachlorophenol	1.60	1.573		ug/L		98	10 - 150	
Chrysene	0.800	0.9455		ug/L		118	52 - 150	
Fluorene	0.800	0.7508		ug/L		94	23 - 150	
Phenanthrene	0.800	0.9045		ug/L		113	18 ₋ 150	
Pyrene	0.800	0.9360		ug/L		117	45 - 150	

LCS LCS

Surrogate	%Recovery Qualifier	Limits
2-Fluorobiphenyl	93	25 - 124
Nitrobenzene-d5	112	41 - 144
2,4,6-Tribromophenol	115	40 - 140

Client Sample ID: Lab Control Sample Dup

Prep Type: Total/NA Prep Batch: 684079

Lab Sample ID: LCSD 460-684079/3-A **Matrix: Water**

Analysis Batch: 684053

Alialysis Dalcii. 004000							Fieb Do	alcii. O	34U / 3
	Spike	LCSD	LCSD				%Rec.		RPD
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits	RPD	Limit
Acenaphthene	0.800	0.8112		ug/L		101	29 - 131	18	30
Benzo[a]anthracene	0.800	0.9789		ug/L		122	44 - 150	8	30
Benzo[a]pyrene	0.800	0.8534		ug/L		107	38 - 139	9	30
Benzo[b]fluoranthene	0.800	0.8841		ug/L		111	32 - 148	13	30
Acenaphthylene	0.800	0.7585		ug/L		95	10 - 150	5	30
Bis(2-chloroethyl)ether	0.800	1.043		ug/L		130	49 - 143	17	30
Anthracene	0.800	0.9121		ug/L		114	37 - 149	7	30
Hexachlorobenzene	0.800	0.7918		ug/L		99	10 - 135	8	30
Pentachlorophenol	1.60	1.784		ug/L		111	10 - 150	13	30
Chrysene	0.800	1.078		ug/L		135	52 - 150	13	30
Fluorene	0.800	0.7935		ug/L		99	23 - 150	6	30
Phenanthrene	0.800	0.9579		ug/L		120	18 - 150	6	30
Pyrene	0.800	1.058		ug/L		132	45 - 150	12	30

,	CCD	LCSD
L	CSD	LCSD

Surrogate	%Recovery Qualifi	ier Limits
2-Fluorobiphenyl	89	25 - 124
Nitrobenzene-d5	117	41 - 144
2,4,6-Tribromophenol	127	40 - 140

Method: 608.3 - Organochlorine Pesticides/PCBs in Water

MR MR

Lab Sample ID: MB 460-683908/1-A

Matrix: Water

Analysis Batch: 684055

Client Sample ID: Method Blank

Prep Type: Total/NA

Prep Batch: 683908

	IVID	IVID							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Aroclor 1016	ND		1.00	0.0300	ug/L		03/26/20 15:14	03/27/20 08:06	1
Aroclor 1016	ND		1.00	0.0300	ug/L		03/26/20 15:14	03/27/20 08:06	1
Aroclor 1221	ND		1.00	0.0300	ug/L		03/26/20 15:14	03/27/20 08:06	1
Aroclor 1221	ND		1.00	0.0300	ug/L		03/26/20 15:14	03/27/20 08:06	1
Aroclor 1232	ND		1.00	0.0300	ug/L		03/26/20 15:14	03/27/20 08:06	1
Aroclor 1232	ND		1.00	0.0300	ug/L		03/26/20 15:14	03/27/20 08:06	1
Aroclor 1242	ND		1.00	0.0300	ug/L		03/26/20 15:14	03/27/20 08:06	1
Aroclor 1242	ND		1.00	0.0300	ug/L		03/26/20 15:14	03/27/20 08:06	1
Aroclor 1248	ND		1.00	0.0300	ug/L		03/26/20 15:14	03/27/20 08:06	1
Aroclor 1248	ND		1.00	0.0300	ug/L		03/26/20 15:14	03/27/20 08:06	1
Aroclor 1254	ND		1.00	0.0370	ug/L		03/26/20 15:14	03/27/20 08:06	1
Aroclor 1254	ND		1.00	0.0370	ug/L		03/26/20 15:14	03/27/20 08:06	1
Aroclor 1260	ND		1.00	0.0370	ug/L		03/26/20 15:14	03/27/20 08:06	1
Aroclor 1260	ND		1.00	0.0370	ug/L		03/26/20 15:14	03/27/20 08:06	1
Aroclor 1262	ND		1.00	0.0370	ug/L		03/26/20 15:14	03/27/20 08:06	1
Aroclor 1262	ND		1.00	0.0370	ug/L		03/26/20 15:14	03/27/20 08:06	1
Aroclor 1268	ND		1.00	0.0370	ug/L		03/26/20 15:14	03/27/20 08:06	1
Aroclor 1268	ND		1.00	0.0370	ug/L		03/26/20 15:14	03/27/20 08:06	1

MB MB

Surrogate	%Recovery	Qualifier	Limits	Prepared	Analyzed	Dil Fac
Tetrachloro-m-xylene	66	-	10 - 150	03/26/20 15:14	03/27/20 08:06	1
Tetrachloro-m-xylene	62		10 - 150	03/26/20 15:14	03/27/20 08:06	1
DCB Decachlorobiphenyl	51		10 - 150	03/26/20 15:14	03/27/20 08:06	1
DCB Decachlorobiphenyl	51		10 - 150	03/26/20 15:14	03/27/20 08:06	1

Lab Sample ID: LCS 460-683908/4-A

Lab Sample ID: LCSD 460-683908/5-A

Matrix: Water

Matrix: Water

Analysis Batch: 684055

Client Sample ID: Lab Control Sample Prep Type: Total/NA

Prep Batch: 683908

	Spike	LCS	LCS				%Rec.		
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits		
Aroclor 1016	4.00	3.242		ug/L		81	50 - 140		
Aroclor 1016	4.00	3.322		ug/L		83	50 - 140		
Aroclor 1260	4.00	2.771		ug/L		69	8 - 140		
Aroclor 1260	4.00	2.832		ug/L		71	8 - 140		

LCS LCS

Surrogate	%Recovery	Qualifier	Limits
Tetrachloro-m-xylene	72		10 - 150
Tetrachloro-m-xylene	72		10 - 150
DCB Decachlorobiphenyl	46		10 - 150
DCB Decachlorobiphenyl	43		10 - 150

Client Sample ID: Lab Control Sample Dup

Prep Type: Total/NA

Analysis Batch: 684055							Prep Ba	atch: 683908		
-	Spike	LCSD	LCSD				%Rec.		RPD	
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits	RPD	Limit	
Aroclor 1016	4.00	3.611		ug/L		90	50 - 140	11	36	
Aroclor 1016	4.00	3.547		ug/L		89	50 ₋ 140	7	36	

Eurofins TestAmerica, Edison

Project/Site: Billerica, MA

Job ID: 460-205843-1

Method: 608.3 - Organochlorine Pesticides/PCBs in Water (Continued)

Lab Sample ID: LCSD 460-683908/5-A

Matrix: Water

Analysis Batch: 684055

Client Sample ID: Lab Control Sample Dup

Prep Type: Total/NA **Prep Batch: 683908**

LCSD LCSD Spike %Rec. **RPD** Added Result Qualifier Unit Limits RPD Limit Analyte D %Rec Aroclor 1260 4.00 3.215 80 8 - 140 15 ug/L Aroclor 1260 4.00 3.433 ug/L 86 8 - 140 19

45 45

LCSD LCSD Surrogate %Recovery Qualifier Limits 10 - 150 Tetrachloro-m-xylene 78 Tetrachloro-m-xylene 76 10 - 150 52 10 - 150 DCB Decachlorobiphenyl DCB Decachlorobiphenyl 48 10 - 150

Lab Sample ID: MB 460-684395/1-A **Client Sample ID: Method Blank**

Matrix: Water

Analysis Batch: 684552

Prep Type: Total/NA

Prep Batch: 684395

Analysis balch: 604552						Prep Batch:	004393		
	MB	MB							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Aroclor 1016	ND		1.00	0.0300	ug/L		03/28/20 18:35	03/30/20 07:53	1
Aroclor 1016	ND		1.00	0.0300	ug/L		03/28/20 18:35	03/30/20 07:53	1
Aroclor 1221	ND		1.00	0.0300	ug/L		03/28/20 18:35	03/30/20 07:53	1
Aroclor 1221	ND		1.00	0.0300	ug/L		03/28/20 18:35	03/30/20 07:53	1
Aroclor 1232	ND		1.00	0.0300	ug/L		03/28/20 18:35	03/30/20 07:53	1
Aroclor 1232	ND		1.00	0.0300	ug/L		03/28/20 18:35	03/30/20 07:53	1
Aroclor 1242	ND		1.00	0.0300	ug/L		03/28/20 18:35	03/30/20 07:53	1
Aroclor 1242	ND		1.00	0.0300	ug/L		03/28/20 18:35	03/30/20 07:53	1
Aroclor 1248	ND		1.00	0.0300	ug/L		03/28/20 18:35	03/30/20 07:53	1
Aroclor 1248	ND		1.00	0.0300	ug/L		03/28/20 18:35	03/30/20 07:53	1
Aroclor 1254	ND		1.00	0.0370	ug/L		03/28/20 18:35	03/30/20 07:53	1
Aroclor 1254	ND		1.00	0.0370	ug/L		03/28/20 18:35	03/30/20 07:53	1
Aroclor 1260	ND		1.00	0.0370	ug/L		03/28/20 18:35	03/30/20 07:53	1
Aroclor 1260	ND		1.00	0.0370	ug/L		03/28/20 18:35	03/30/20 07:53	1
Aroclor 1262	ND		1.00	0.0370	ug/L		03/28/20 18:35	03/30/20 07:53	1
Aroclor 1262	ND		1.00	0.0370	ug/L		03/28/20 18:35	03/30/20 07:53	1
Aroclor 1268	ND		1.00	0.0370	ug/L		03/28/20 18:35	03/30/20 07:53	1

MB MB

ND

Surrogate	%Recovery	Qualifier	Limits	Prepared	Analyzed	Dil Fac
Tetrachloro-m-xylene	71		10 - 150	03/28/20 18:35	03/30/20 07:53	1
Tetrachloro-m-xylene	70		10 - 150	03/28/20 18:35	03/30/20 07:53	1
DCB Decachlorobiphenyl	34		10 - 150	03/28/20 18:35	03/30/20 07:53	1
DCB Decachlorobiphenyl	36		10 - 150	03/28/20 18:35	03/30/20 07:53	1

1.00

0.0370 ug/L

Lab Sample ID: LCS 460-684395/4-A

Matrix: Water

Aroclor 1268

Analysis Batch: 684552

Client Sample ID: Lab Control Sample	
Prep Type: Total/NA	
Prep Batch: 684395	

03/28/20 18:35 03/30/20 07:53

-	Spike	LCS	LCS				%Rec.
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits
Aroclor 1016	4.00	3.162		ug/L		79	50 - 140
Aroclor 1016	4.00	3.391		ug/L		85	50 - 140
Aroclor 1260	4.00	2.353		ug/L		59	8 - 140
Aroclor 1260	4.00	2.507		ug/L		63	8 - 140

Job ID: 460-205843-1

Method: 608.3 - Organochlorine Pesticides/PCBs in Water (Continued)

Lab Sample ID: LCS 460-684395/4-A **Matrix: Water**

Analysis Batch: 684552

Client Sample ID: Lab Control Sample Prep Type: Total/NA

Prep Batch: 684395

LCS LCS %Recovery Qualifier Limits Surrogate Tetrachloro-m-xylene 72 10 - 150 Tetrachloro-m-xylene 74 10 - 150 DCB Decachlorobiphenyl 29 10 - 150 DCB Decachlorobiphenyl 29 10 - 150

Client Sample ID: Lab Control Sample Dup

Matrix: Water

Analysis Batch: 684552

Lab Sample ID: LCSD 460-684395/5-A

Prep Type: Total/NA **Prep Batch: 684395**

	Spike	LCSD	LCSD				%Rec.		RPD	
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits	RPD	Limit	
Aroclor 1016	4.00	3.535		ug/L		88	50 - 140	11	36	
Aroclor 1016	4.00	3.618		ug/L		90	50 - 140	6	36	
Aroclor 1260	4.00	2.694		ug/L		67	8 - 140	13	45	
Aroclor 1260	4.00	2.897		ug/L		72	8 - 140	14	45	
	Aroclor 1016 Aroclor 1016 Aroclor 1260	Analyte Added Aroclor 1016 4.00 Aroclor 1016 4.00 Aroclor 1260 4.00	Analyte Added Result Aroclor 1016 4.00 3.535 Aroclor 1016 4.00 3.618 Aroclor 1260 4.00 2.694	Analyte Added Aroclor 1016 Result 4.00 Qualifier Aroclor 1016 4.00 3.535 Aroclor 1016 4.00 3.618 Aroclor 1260 4.00 2.694	Analyte Added Result Qualifier Unit Aroclor 1016 4.00 3.535 ug/L Aroclor 1016 4.00 3.618 ug/L Aroclor 1260 4.00 2.694 ug/L	Analyte Added Result Qualifier Unit D Aroclor 1016 4.00 3.535 ug/L Aroclor 1016 4.00 3.618 ug/L Aroclor 1260 4.00 2.694 ug/L	Analyte Added Result Qualifier Unit D %Rec Aroclor 1016 4.00 3.535 ug/L 88 Aroclor 1016 4.00 3.618 ug/L 90 Aroclor 1260 4.00 2.694 ug/L 67	Analyte Added Result 4.00 Qualifier 3.535 Unit Unit Unit Unit Unit Unit Unit Unit	Analyte Added Result 4.00 Qualifier 3.535 Unit Unit Unit Unit Unit Unit Unit Unit	Analyte Added Result Qualifier Unit D %Rec Very Rec Mark Limits RPD Limit Aroclor 1016 4.00 3.535 ug/L 88 50 - 140 11 36 Aroclor 1016 4.00 3.618 ug/L 90 50 - 140 6 36 Aroclor 1260 4.00 2.694 ug/L 67 8 - 140 13 45

LCSD LCSD

Surrogate	%Recovery	Qualifier	Limits
Tetrachloro-m-xylene	70		10 - 150
Tetrachloro-m-xylene	73		10 - 150
DCB Decachlorobiphenyl	46		10 - 150
DCB Decachlorobiphenyl	45		10 - 150

Method: 300.0 - Anions, Ion Chromatography

Lab Sample ID: MB 460-684460/3 **Client Sample ID: Method Blank Matrix: Water** Prep Type: Total/NA

Analysis Batch: 684460

MB MB

Analyte Result Qualifier RL **MDL** Unit Prepared Analyzed Dil Fac Chloride 0.120 03/29/20 13:54 $\overline{\mathsf{ND}}$ 0.0140 mg/L

Lab Sample ID: LCS 460-684460/5

Client Sample ID: Lab Control Sample Prep Type: Total/NA

Matrix: Water

Analysis Batch: 684460

	Spike	LCS	LCS				%Rec.	
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits	
Chloride	 1.50	1.509		mg/L		101	90 - 110	

Lab Sample ID: LCSD 460-684460/6 Client Sample ID: Lab Control Sample Dup Prep Type: Total/NA

Matrix: Water

Analysis Batch: 684460

-	Spike	LCSD	LCSD				%Rec.		RPD
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits	RPD	Limit
Chloride	1.50	1.500		mg/L		100	90 - 110	1	15

Method: 200.7 Rev 4.4 - Metals (ICP)

Lab Sample ID: MB 680-613122/1-A

Matrix: Water

Analysis Batch: 613384

Client Sample ID: Method Blank

Prep Type: Total/NA

Prep Type: Total/NA **Prep Batch: 613122**

Client Sample ID: Lab Control Sample

99

99

99

101

101

100

85 - 115

85 - 115

85 - 115

85 - 115

85 - 115

85 - 115

Client Sample ID: Method Blank

-	MB	MB							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Antimony	ND	^	20.0	5.30	ug/L		03/29/20 11:36	03/30/20 21:21	1
Arsenic	ND		20.0	6.20	ug/L		03/29/20 11:36	03/30/20 21:21	1
Cadmium	ND		5.00	1.00	ug/L		03/29/20 11:36	03/30/20 21:21	1
Copper	ND		20.0	1.80	ug/L		03/29/20 11:36	03/30/20 21:21	1
Iron	ND		50.0	17.0	ug/L		03/29/20 11:36	03/30/20 21:21	1
Lead	ND		10.0	3.90	ug/L		03/29/20 11:36	03/30/20 21:21	1
Nickel	ND		40.0	2.10	ug/L		03/29/20 11:36	03/30/20 21:21	1
Selenium	ND		20.0	9.90	ug/L		03/29/20 11:36	03/30/20 21:21	1
Silver	ND		10.0	0.600	ug/L		03/29/20 11:36	03/30/20 21:21	1
Zinc	ND		20.0	7.00	ug/L		03/29/20 11:36	03/30/20 21:21	1

Lab Sample ID: LCS 680-613122/2-A

Matrix: Water

Analyte **Antimony** Arsenic Cadmium Chromium Copper Iron Lead

Magnesium

Nickel

Silver

Zinc

Selenium

Analysis Batch: 613384

Snika	1.00	1.00				Prep Batch: 613122
•			Unit	D	%Rec	%Rec. Limits
50.0			ug/L		104	85 - 115
100	103.2		ug/L		103	85 ₋ 115
50.0	52.57		ug/L		105	85 - 115
100	99.88		ug/L		100	85 - 115
100	96.91		ug/L		97	85 - 115
5010	4964		ug/L		99	85 ₋ 115
	100 50.0 100 100	Added Result 50.0 51.92 100 103.2 50.0 52.57 100 99.88 100 96.91	Added Result Qualifier 50.0 51.92 ^ 100 103.2 _ 50.0 52.57 _ 100 99.88 _ 100 96.91 _	Added Result Qualifier Unit 50.0 51.92 ^ ug/L 100 103.2 ug/L 50.0 52.57 ug/L 100 99.88 ug/L 100 96.91 ug/L	Added Result Qualifier Unit D 50.0 51.92 ^ ug/L 100 103.2 ug/L 50.0 52.57 ug/L 100 99.88 ug/L 100 96.91 ug/L	Added Result Qualifier Unit D %Rec 50.0 51.92 ^ ug/L 104 100 103.2 ug/L 103 50.0 52.57 ug/L 105 100 99.88 ug/L 100 100 96.91 ug/L 97

450.0

4947

98.60

101.6

50.36

100.6

LCS LCS

ug/L

ug/L

ug/L

ug/L

ug/L

ug/L

Method: 245.1 - Mercury (CVAA)

Lab Sample ID: MB 460-685503/1-A

Matrix: Water Prep Type: Total/NA **Prep Batch: 685503 Analysis Batch: 685563** MB MB

454

5010

99.5

100

50.0

101

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Mercury	ND		0.200	0.0910	ug/L		04/03/20 12:34	04/03/20 13:58	1

Lab Sample ID: LCS 460-685503/2-A

Matrix: Water

Analysis Batch: 685563

Miai	yolo	Datell.	000000	

Analyte	Add	d Result	Qualifier	Unit	D	%Rec	Limits
Mercury	1.	0 1.018		ug/L	_	102	85 - 115

Spike

%Rec.

Client Sample ID: Lab Control Sample

Eurofins TestAmerica, Edison

Prep Type: Total/NA

Prep Batch: 685503

Prep Type: Total/NA

Prep Type: Total/NA

Prep Type: Total/NA

Prep Type: Total/NA

Prep Batch: 686162

Prep Type: Total/NA

Prep Batch: 686162

Prep Type: Total/NA

Prep Type: Total/NA

Client Sample ID: Method Blank

Client Sample ID: Lab Control Sample

Client Sample ID: Lab Control Sample Dup

Client Sample ID: Method Blank

Client Sample ID: Lab Control Sample

%Rec

%Rec.

Limits

90 - 110

Client Sample ID: Method Blank

Client Sample ID: Lab Control Sample

Client: Groundwater & Environmental Services Inc Project/Site: Billerica, MA

Method: 1664A - HEM and SGT-HEM

Lab Sample ID: MB 460-685884/1

Matrix: Water

Analysis Batch: 685884 MR MR

Analyte Result Qualifier RL **MDL** Unit Prepared Analyzed Dil Fac HEM 5.0 1.4 mg/L 04/06/20 08:02 $\overline{\mathsf{ND}}$ 04/06/20 08:02 SGT-HEM ND 5.0 1.4 mg/L

Lab Sample ID: LCS 460-685884/2

Matrix: Water

Analysis Batch: 685884

Spike LCS LCS %Rec. Added Limits Analyte Result Qualifier Unit D %Rec HEM 40.0 37.40 93 78 - 114 mg/L SGT-HEM 20.0 17.20 mg/L 86 64 - 132

Lab Sample ID: LCSD 460-685884/3

Matrix: Water

Analysis Batch: 685884

LCSD LCSD **RPD** Spike %Rec. Added Result Qualifier Limits RPD Limit Analyte Unit D %Rec HEM 40.0 37.90 mg/L 95 78 - 114 18 20.0 87 SGT-HEM 17.40 mg/L 64 - 13234

Method: 335.4 - Cyanide, Total

Lab Sample ID: MB 460-686162/1-A

Matrix: Water

Analysis Batch: 686191

MB MB

Analyte Result Qualifier

RL **MDL** Unit Prepared Analyzed Dil Fac Cyanide, Total 0.0100 0.00400 mg/L 04/07/20 12:02 04/07/20 14:58

Spike

Added

0.100

LCS LCS

0.09870

Result Qualifier

Unit

mg/L

Lab Sample ID: LCS 460-686162/2-A

Matrix: Water

Analyte

Analysis Batch: 686191

Cyanide, Total Method: 4500 NH3 H - Ammonia

Lab Sample ID: MB 460-684792/42

Matrix: Water

Analysis Batch: 684792

MR MR

MDL Unit Analyte Result Qualifier Prepared Analyzed Dil Fac Ammonia (as N) ND 0.100 0.0340 mg/L 03/31/20 09:58

Lab Sample ID: LCS 460-684792/43

Matrix: Water

Analysis Batch: 684792

Spike LCS LCS %Rec. Analyte Added Result Qualifier Unit D %Rec Limits Ammonia (as N) 2.00 1.990 mg/L 100 89 - 113

Job ID: 460-205843-1

Prep Type: Total/NA

Client Sample ID: SW-1

Client Sample ID: SW-1

Prep Type: Total/NA

Prep Type: Total/NA

Client Sample ID: Method Blank

Client Sample ID: Lab Control Sample

Client Sample ID: Method Blank

Client Sample ID: Lab Control Sample

Client Sample ID: Lab Control Sample

Method: 4500 NH3 H - Ammonia (Continued)

Lab Sample ID: MB 460-686034/12

Matrix: Water

Analysis Batch: 686034

MB MB

Result Qualifier RL **MDL** Unit Analyzed Dil Fac Analyte Prepared Ammonia (as N) 0.100 0.0340 mg/L 04/06/20 16:52 $\overline{\mathsf{ND}}$

Lab Sample ID: LCS 460-686034/13

Matrix: Water

Analysis Batch: 686034

LCS LCS %Rec. Spike Analyte Added Result Qualifier Unit D %Rec Limits Ammonia (as N) 2.00 2.000 mg/L 100 89 - 113

Method: 7196A - Chromium, Hexavalent

Lab Sample ID: MB 460-683820/9

Matrix: Water

Analysis Batch: 683820

MB MB

Analyte Result Qualifier RL MDL Unit Prepared Analyzed Dil Fac Cr (VI) $\overline{\mathsf{ND}}$ 10.0 8.14 ug/L 03/26/20 09:10

Lab Sample ID: LCSSRM 460-683820/10

Matrix: Water

Analysis Batch: 683820

Spike LCSSRM LCSSRM %Rec. Added **Analyte** Result Qualifier Unit D %Rec Limits Cr (VI) 77.8 78.14 ug/L 100.4 84.2 - 114. 5

Lab Sample ID: LCSSRM 460-683820/11

Matrix: Water

Analysis Batch: 683820

%Rec. Spike LCSSRM LCSSRM Analyte Added Result Qualifier %Rec Unit Limits 84.2 - 114. Cr (VI) 77.8 78.14 100.4 ug/L 5

Lab Sample ID: 460-205843-1 MS

Matrix: Water

Analysis Batch: 683820

Sample Sample Spike MS MS %Rec. Result Qualifier Added Analyte Result Qualifier Unit D %Rec Limits Cr (VI) ND 30.0 30.93 ug/L 103 85 - 115

Lab Sample ID: 460-205843-1 DU

Matrix: Water

Analysis Batch: 683820

DU DU Sample Sample **RPD** Result Qualifier Result Qualifier D Analyte Unit **RPD** Limit Cr (VI) ND ND ug/L

Project/Site: Billerica, MA

Method: SM 2340C - Hardness, Total (mg/l as CaC03)

Matrix: Water

Analysis Batch: 686416

Lab Sample ID: MB 460-686416/1

MB MB

Analyte Result Qualifier RL **RL** Unit Analyzed Dil Fac Prepared Hardness 5.00 5.00 mg/L 04/08/20 12:11 $\overline{\mathsf{ND}}$

Lab Sample ID: LCSSRM 460-686416/2

Matrix: Water

Analysis Batch: 686416

Analyte Hardness

Spike Added 246 LCSSRM LCSSRM Result Qualifier 240.0

Unit mg/L

D %Rec 97.6

Prep Type: Total/NA

Dil Fac

Job ID: 460-205843-1

Prep Type: Total/NA

Prep Type: Total/NA

Client Sample ID: Method Blank

Client Sample ID: Lab Control Sample

%Rec.

Limits

85.0 - 115. 0

Client Sample ID: Method Blank

Method: SM 2540D - Solids, Total Suspended (TSS)

Lab Sample ID: MB 460-684334/1

Matrix: Water

Analysis Batch: 684334

MB MB

MB MB Result Qualifier

ND

Analyte Result Qualifier **Total Suspended Solids** $\overline{\mathsf{ND}}$

Lab Sample ID: LCSSRM 460-684334/2

Matrix: Water

Analysis Batch: 684334

Analyte Total Suspended Solids

Lab Sample ID: 460-205843-2 DU

Matrix: Water

Analysis Batch: 684334

Analyte

Sample Sample Result Qualifier **Total Suspended Solids** 114

Method: SM 4500 CI F - Chlorine, Residual

Lab Sample ID: MB 460-685600/1

Matrix: Water

Analysis Batch: 685600

Analyte Chlorine, Total Residual

Lab Sample ID: LCSSRM 460-685600/2 **Matrix: Water**

Analysis Batch: 685600

Analyte Chlorine, Total Residual

Spike

Added

59.2

RL 2.50

2.50 mg/L

LCSSRM LCSSRM

DU DU

114.0

Result Qualifier

MDL Unit

0.0720 mg/L

LCSSRM LCSSRM

1.340

Result Qualifier

60.00

Result Qualifier

RL Unit

Unit

mg/L

Unit

mg/L

Unit

mg/L

D

Prepared

103.1

03/28/20 09:21

Prepared

Client Sample ID: Lab Control Sample Prep Type: Total/NA

Analyzed

%Rec. D %Rec Limits 101.4 79.2 - 113

Client Sample ID: MW-11S

Prep Type: Total/NA

RPD

D RPD Limit

Client Sample ID: Method Blank

Prep Type: Total/NA

Dil Fac

Analyzed

04/03/20 18:00

Client Sample ID: Lab Control Sample

Prep Type: Total/NA

%Rec. %Rec Limits

83.1 - 113.

RL

0.400

Spike

Added

1.30

QC Sample Results

Client: Groundwater & Environmental Services Inc

Project/Site: Billerica, MA

Client Sample ID: Lab Control Sample

Method: SM 4500 H+ B - pH

Lab Sample ID: MB 460-686154/2

Matrix: Water

Analysis Batch: 686154

Client Sample ID: Method Blank Prep Type: Total/NA

MB MB Analyte Result Qualifier RL **RL** Unit Prepared Analyzed Dil Fac $\overline{\rm pH}$ 0.1 SU 0.1 04/07/20 10:15 6.1 0.1 0.1 Degrees C 04/07/20 10:15 Temperature 23.3

Lab Sample ID: LCSSRM 460-686154/3

Matrix: Water

Analysis Batch: 686154

LCSSRM LCSSRM Spike %Rec. Analyte Added Result Qualifier Unit D %Rec Limits pН 5.67 5.7 SU 100.5 96.5 - 103. 5

Client Sample ID: SW-1 Lab Sample ID: 460-205843-1 DU **Matrix: Water** Prep Type: Total/NA

Analysis Batch: 686154

Alialysis Dalcii. 000134									
-	Sample	Sample	DU	DU				RPD	
Analyte	Result	Qualifier	Result	Qualifier	Unit	D	RPD	Limit	
pH	7.0	HF	7.1		SU	_	 0.3	10	
Temperature	22.4	HF	22.0		Degrees C		0		

Job ID: 460-205843-1

Prep Type: Total/NA

QC Association Summary

Client: Groundwater & Environmental Services Inc

Project/Site: Billerica, MA

Job ID: 460-205843-1

GC/MS VOA

Analysis Batch: 523464

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
460-205843-2	MW-11S	Total/NA	Water	624.1	
460-205843-3	MW-20S	Total/NA	Water	624.1	
MB 480-523464/8	Method Blank	Total/NA	Water	624.1	
LCS 480-523464/6	Lab Control Sample	Total/NA	Water	624.1	

Analysis Batch: 684033

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
460-205843-2	MW-11S	Total/NA	Water	8260C	
460-205843-3	MW-20S	Total/NA	Water	8260C	
MB 460-684033/8	Method Blank	Total/NA	Water	8260C	
LCS 460-684033/4	Lab Control Sample	Total/NA	Water	8260C	
LCSD 460-684033/5	Lab Control Sample Dup	Total/NA	Water	8260C	

GC/MS Semi VOA

Prep Batch: 153707

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
460-205843-2	MW-11S	Total/NA	Water	522	
460-205843-3	MW-20S	Total/NA	Water	522	
MB 200-153707/1-A	Method Blank	Total/NA	Water	522	
LLCS 200-153707/2-A	Lab Control Sample	Total/NA	Water	522	
LLCSD 200-153707/3-A	Lab Control Sample Dup	Total/NA	Water	522	

Analysis Batch: 153789

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
460-205843-2	MW-11S	Total/NA	Water	522	153707
460-205843-3	MW-20S	Total/NA	Water	522	153707
MB 200-153707/1-A	Method Blank	Total/NA	Water	522	153707
LLCS 200-153707/2-A	Lab Control Sample	Total/NA	Water	522	153707
LLCSD 200-153707/3-A	Lab Control Sample Dup	Total/NA	Water	522	153707

Analysis Batch: 684053

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
460-205843-2	MW-11S	Total/NA	Water	8270D SIM	684079
MB 460-684079/1-A	Method Blank	Total/NA	Water	8270D SIM	684079
LCS 460-684079/2-A	Lab Control Sample	Total/NA	Water	8270D SIM	684079
LCSD 460-684079/3-A	Lab Control Sample Dup	Total/NA	Water	8270D SIM	684079

Prep Batch: 684079

Lab Sample ID 460-205843-2 460-205843-3	Client Sample ID MW-11S MW-20S	Prep Type Total/NA Total/NA	Matrix Water Water	Method 3510C 3510C	Prep Batch
MB 460-684079/1-A	Method Blank	Total/NA	Water	3510C	
LCS 460-684079/2-A	Lab Control Sample	Total/NA	Water	3510C	
LCSD 460-684079/3-A	Lab Control Sample Dup	Total/NA	Water	3510C	

Analysis Batch: 684386

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
460-205843-3	MW-20S	Total/NA	Water	8270D SIM	684079

Eurofins TestAmerica, Edison

Page 39 of 64

Project/Site: Billerica, MA

Job ID: 460-205843-1

GC/MS Semi VOA

Analysis Batch: 688396

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
460-205843-2	MW-11S	Total/NA	Water	625.1	688463
MB 460-688463/1-A	Method Blank	Total/NA	Water	625.1	688463
LCS 460-688463/2-A	Lab Control Sample	Total/NA	Water	625.1	688463
LCSD 460-688463/3-A	Lab Control Sample Dup	Total/NA	Water	625.1	688463

Prep Batch: 688463

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
460-205843-2	MW-11S	Total/NA	Water	625	
460-205843-3	MW-20S	Total/NA	Water	625	
MB 460-688463/1-A	Method Blank	Total/NA	Water	3510C	
LCS 460-688463/2-A	Lab Control Sample	Total/NA	Water	3510C	
LCSD 460-688463/3-A	Lab Control Sample Dup	Total/NA	Water	3510C	

Analysis Batch: 688654

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
460-205843-3	MW-20S	Total/NA	Water	625.1	688463

GC Semi VOA

Prep Batch: 683908

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
460-205843-2	MW-11S	Total/NA	Water	608	
MB 460-683908/1-A	Method Blank	Total/NA	Water	608	
LCS 460-683908/4-A	Lab Control Sample	Total/NA	Water	608	
LCSD 460-683908/5-A	Lab Control Sample Dup	Total/NA	Water	608	

Analysis Batch: 684055

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
460-205843-2	MW-11S	Total/NA	Water	608.3	683908
MB 460-683908/1-A	Method Blank	Total/NA	Water	608.3	683908
LCS 460-683908/4-A	Lab Control Sample	Total/NA	Water	608.3	683908
LCSD 460-683908/5-A	Lab Control Sample Dup	Total/NA	Water	608.3	683908

Prep Batch: 684395

Lab Sample ID 460-205843-3	Client Sample ID MW-20S	Prep Type Total/NA	Matrix Water	Method 608	Prep Batch
MB 460-684395/1-A	Method Blank	Total/NA	Water	608	
LCS 460-684395/4-A	Lab Control Sample	Total/NA	Water	608	
LCSD 460-684395/5-A	Lab Control Sample Dup	Total/NA	Water	608	

Analysis Batch: 684552

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
460-205843-3	MW-20S	Total/NA	Water	608.3	684395
MB 460-684395/1-A	Method Blank	Total/NA	Water	608.3	684395
LCS 460-684395/4-A	Lab Control Sample	Total/NA	Water	608.3	684395
LCSD 460-684395/5-	A Lab Control Sample Dup	Total/NA	Water	608.3	684395

HPLC/IC

Analysis Batch: 684460

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
460-205843-2	MW-11S	Total/NA	Water	300.0	

Eurofins TestAmerica, Edison

Page 40 of 64

Project/Site: Billerica, MA

Job ID: 460-205843-1

HPLC/IC (Continued)

Analysis Batch: 684460 (Continued)

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
460-205843-3	MW-20S	Total/NA	Water	300.0	
MB 460-684460/3	Method Blank	Total/NA	Water	300.0	
LCS 460-684460/5	Lab Control Sample	Total/NA	Water	300.0	
LCSD 460-684460/6	Lab Control Sample Dup	Total/NA	Water	300.0	

Metals

Prep Batch: 613122

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
460-205843-1	SW-1	Total/NA	Water	200.7-1994 R4.4	
460-205843-2	MW-11S	Total/NA	Water	200.7-1994 R4.4	
460-205843-3	MW-20S	Total/NA	Water	200.7-1994 R4.4	
MB 680-613122/1-A	Method Blank	Total/NA	Water	200.7-1994 R4.4	
LCS 680-613122/2-A	Lab Control Sample	Total/NA	Water	200.7-1994 R4.4	

Analysis Batch: 613384

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
460-205843-1	SW-1	Total/NA	Water	200.7 Rev 4.4	613122
460-205843-2	MW-11S	Total/NA	Water	200.7 Rev 4.4	613122
460-205843-3	MW-20S	Total/NA	Water	200.7 Rev 4.4	613122
MB 680-613122/1-A	Method Blank	Total/NA	Water	200.7 Rev 4.4	613122
LCS 680-613122/2-A	Lab Control Sample	Total/NA	Water	200.7 Rev 4.4	613122

Prep Batch: 685503

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
460-205843-1	SW-1	Total/NA	Water	245.1	
460-205843-2	MW-11S	Total/NA	Water	245.1	
460-205843-3	MW-20S	Total/NA	Water	245.1	
MB 460-685503/1-A	Method Blank	Total/NA	Water	245.1	
LCS 460-685503/2-A	Lab Control Sample	Total/NA	Water	245.1	

Analysis Batch: 685563

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
460-205843-1	SW-1	Total/NA	Water	245.1	685503
460-205843-2	MW-11S	Total/NA	Water	245.1	685503
460-205843-3	MW-20S	Total/NA	Water	245.1	685503
MB 460-685503/1-A	Method Blank	Total/NA	Water	245.1	685503
LCS 460-685503/2-A	Lab Control Sample	Total/NA	Water	245.1	685503

General Chemistry

Analysis Batch: 683820

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
460-205843-1	SW-1	Total/NA	Water	7196A	_
MB 460-683820/9	Method Blank	Total/NA	Water	7196A	
LCSSRM 460-683820/10	Lab Control Sample	Total/NA	Water	7196A	
LCSSRM 460-683820/11	Lab Control Sample	Total/NA	Water	7196A	
460-205843-1 MS	SW-1	Total/NA	Water	7196A	
460-205843-1 DU	SW-1	Total/NA	Water	7196A	

Project/Site: Billerica, MA

Job ID: 460-205843-1

General Chemistry

Analysis Batch: 684334

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
460-205843-2	MW-11S	Total/NA	Water	SM 2540D	
460-205843-3	MW-20S	Total/NA	Water	SM 2540D	
MB 460-684334/1	Method Blank	Total/NA	Water	SM 2540D	
LCSSRM 460-684334/2	Lab Control Sample	Total/NA	Water	SM 2540D	
460-205843-2 DU	MW-11S	Total/NA	Water	SM 2540D	

Analysis Batch: 684792

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
460-205843-1	SW-1	Total/NA	Water	4500 NH3 H	
460-205843-3	MW-20S	Total/NA	Water	4500 NH3 H	
MB 460-684792/42	Method Blank	Total/NA	Water	4500 NH3 H	
LCS 460-684792/43	Lab Control Sample	Total/NA	Water	4500 NH3 H	

Analysis Batch: 685600

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
460-205843-2	MW-11S	Total/NA	Water	SM 4500 CI F	
460-205843-3	MW-20S	Total/NA	Water	SM 4500 CI F	
MB 460-685600/1	Method Blank	Total/NA	Water	SM 4500 CI F	
LCSSRM 460-685600/2	Lab Control Sample	Total/NA	Water	SM 4500 CI F	

Analysis Batch: 685884

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
460-205843-2	MW-11S	Total/NA	Water	1664A	_
460-205843-3	MW-20S	Total/NA	Water	1664A	
MB 460-685884/1	Method Blank	Total/NA	Water	1664A	
LCS 460-685884/2	Lab Control Sample	Total/NA	Water	1664A	
LCSD 460-685884/3	Lab Control Sample Dup	Total/NA	Water	1664A	

Analysis Batch: 686012

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
460-205843-1	SW-1	Total/NA	Water	7196A	

Analysis Batch: 686034

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
460-205843-2	MW-11S	Total/NA	Water	4500 NH3 H	
MB 460-686034/12	Method Blank	Total/NA	Water	4500 NH3 H	
LCS 460-686034/13	Lab Control Sample	Total/NA	Water	4500 NH3 H	

Analysis Batch: 686154

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
460-205843-1	SW-1	Total/NA	Water	SM 4500 H+ B	
MB 460-686154/2	Method Blank	Total/NA	Water	SM 4500 H+ B	
LCSSRM 460-686154/3	Lab Control Sample	Total/NA	Water	SM 4500 H+ B	
460-205843-1 DU	SW-1	Total/NA	Water	SM 4500 H+ B	

Prep Batch: 686162

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
460-205843-2	MW-11S	Total/NA	Water	Distill/CN	
460-205843-3	MW-20S	Total/NA	Water	Distill/CN	
MB 460-686162/1-A	Method Blank	Total/NA	Water	Distill/CN	
LCS 460-686162/2-A	Lab Control Sample	Total/NA	Water	Distill/CN	

Eurofins TestAmerica, Edison

Page 42 of 64

4/22/2020 (Rev. 1)

QC Association Summary

Client: Groundwater & Environmental Services Inc

Project/Site: Billerica, MA

Job ID: 460-205843-1

General Chemistry

Analysis Batch: 686191

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
460-205843-2	MW-11S	Total/NA	Water	335.4	686162
460-205843-3	MW-20S	Total/NA	Water	335.4	686162
MB 460-686162/1-A	Method Blank	Total/NA	Water	335.4	686162
LCS 460-686162/2-A	Lab Control Sample	Total/NA	Water	335.4	686162

Analysis Batch: 686416

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
460-205843-1	SW-1	Total/NA	Water	SM 2340C	
MB 460-686416/1	Method Blank	Total/NA	Water	SM 2340C	
LCSSRM 460-686416/2	Lab Control Sample	Total/NA	Water	SM 2340C	

7-2000-0-1

3

4

5

8

9

10

14

15

Project/Site: Billerica, MA

Client Sample ID: SW-1

Date Collected: 03/25/20 12:45 Date Received: 03/26/20 10:00

Client: Groundwater & Environmental Services Inc

Lab Sample ID: 460-205843-1

Matrix: Water

	Batch	Batch		Dilution	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	200.7-1994 R4.4			613122	03/29/20 11:36	AJR	TAL SAV
Total/NA	Analysis	200.7 Rev 4.4		1	613384	03/30/20 22:16	BCB	TAL SAV
Total/NA	Prep	245.1			685503	04/03/20 12:34	RBS	TAL EDI
Total/NA	Analysis	245.1		1	685563	04/03/20 14:09	RBS	TAL EDI
Total/NA	Analysis	4500 NH3 H		1	684792	03/31/20 10:48	AJP	TAL EDI
Total/NA	Analysis	7196A		1	686012	04/06/20 16:49	TJW	TAL EDI
Total/NA	Analysis	7196A		1	683820	03/26/20 11:10	RAK	TAL EDI
Total/NA	Analysis	SM 2340C		1	686416	04/08/20 12:11	IAA	TAL EDI
Total/NA	Analysis	SM 4500 H+ B		1	686154	04/07/20 10:19	YAH	TAL EDI

Client Sample ID: MW-11S

Date Collected: 03/25/20 11:15

Date Received: 03/26/20 10:00

Lab Sample ID: 460-205843-2

Matrix: Water

	Batch	Batch		Dilution	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
Total/NA	Analysis	624.1			523464	03/30/20 12:47	WJD	TAL BUF
Total/NA	Analysis	8260C		1	684033	03/27/20 15:25	SZD	TAL EDI
Total/NA	Prep	522			153707	03/30/20 14:45	MJW	TAL BUF
Total/NA	Analysis	522		1	153789	04/02/20 08:05	K1P	TAL BUF
Total/NA	Prep	625			688463	04/18/20 08:24	DXD	TAL EDI
Total/NA	Analysis	625.1		1	688396	04/19/20 03:22	P1M	TAL EDI
Total/NA	Prep	3510C			684079	03/27/20 09:24	DXD	TAL EDI
Total/NA	Analysis	8270D SIM		1	684053	03/27/20 18:37	MDJ	TAL EDI
Total/NA	Prep	608			683908	03/26/20 15:14	OXG	TAL EDI
Total/NA	Analysis	608.3		1	684055	03/27/20 10:16	SAK	TAL EDI
Total/NA	Analysis	300.0		100	684460	03/29/20 18:22	VMI	TAL EDI
Total/NA	Prep	200.7-1994 R4.4			613122	03/29/20 11:36	AJR	TAL SAV
Total/NA	Analysis	200.7 Rev 4.4		1	613384	03/30/20 22:21	BCB	TAL SAV
Total/NA	Prep	245.1			685503	04/03/20 12:34	RBS	TAL EDI
Total/NA	Analysis	245.1		1	685563	04/03/20 14:10	RBS	TAL EDI
Total/NA	Analysis	1664A		1	685884	04/06/20 08:39	AAA	TAL EDI
Total/NA	Prep	Distill/CN			686162	04/07/20 12:02	IAA	TAL ED
Total/NA	Analysis	335.4		1	686191	04/07/20 15:06	AJP	TAL EDI
Total/NA	Analysis	4500 NH3 H		1	686034	04/06/20 17:32	AJP	TAL EDI
Total/NA	Analysis	SM 2540D		1	684334	03/28/20 09:21	AAP	TAL ED

Client Sample ID: MW-20S

Analysis

SM 4500 CI F

Total/NA

Date Collected: 03/25/20 12:05

Date Received: 03/26/20 10:00

Lab Sample ID: 460-205843-3 **Matrix: Water**

TAL EDI

	Batch	Batch		Dilution	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
Total/NA	Analysis	624.1			523464	03/30/20 13:11	WJD	TAL BUF

685600 04/03/20 18:20 HTV

Lab Chronicle

Client: Groundwater & Environmental Services Inc

Project/Site: Billerica, MA

Client Sample ID: MW-20S

Lab Sample ID: 460-205843-3

Date Collected: 03/25/20 12:05 **Matrix: Water** Date Received: 03/26/20 10:00

	Batch	Batch		Dilution	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
Total/NA	Analysis	8260C		1	684033	03/27/20 15:46	SZD	TAL EDI
Total/NA	Prep	522			153707	03/30/20 14:45	MJW	TAL BUR
Total/NA	Analysis	522		1	153789	04/02/20 08:19	K1P	TAL BUR
Total/NA	Prep	625			688463	04/18/20 08:24	DXD	TAL EDI
Total/NA	Analysis	625.1		50	688654	04/20/20 07:04	YAH	TAL EDI
Total/NA	Prep	3510C			684079	03/27/20 09:24	DXD	TAL EDI
Total/NA	Analysis	8270D SIM		50	684386	03/29/20 04:18	YAH	TAL EDI
Total/NA	Prep	608			684395	03/28/20 18:35	OXG	TAL EDI
Total/NA	Analysis	608.3		1	684552	03/30/20 09:54	SAK	TAL EDI
Total/NA	Analysis	300.0		100	684460	03/29/20 18:37	VMI	TAL EDI
Total/NA	Prep	200.7-1994 R4.4			613122	03/29/20 11:36	AJR	TAL SAV
Total/NA	Analysis	200.7 Rev 4.4		1	613384	03/30/20 22:25	BCB	TAL SAV
Total/NA	Prep	245.1			685503	04/03/20 12:34	RBS	TAL EDI
Total/NA	Analysis	245.1		1	685563	04/03/20 14:12	RBS	TAL EDI
Total/NA	Analysis	1664A		1	685884	04/06/20 08:39	AAA	TAL EDI
Total/NA	Prep	Distill/CN			686162	04/07/20 12:02	IAA	TAL EDI
Total/NA	Analysis	335.4		1	686191	04/07/20 15:07	AJP	TAL EDI
Total/NA	Analysis	4500 NH3 H		1	684792	03/31/20 10:49	AJP	TAL EDI
Total/NA	Analysis	SM 2540D		1	684334	03/28/20 09:21	AAP	TAL EDI
Total/NA	Analysis	SM 4500 CI F		1	685600	04/03/20 18:25	HTV	TAL EDI

Laboratory References:

TAL BUF = Eurofins TestAmerica, Buffalo, 10 Hazelwood Drive, Amherst, NY 14228-2298, TEL (716)691-2600

TAL BUR = Eurofins TestAmerica, Burlington, 30 Community Drive, Suite 11, South Burlington, VT 05403, TEL (802)660-1990

TAL EDI = Eurofins TestAmerica, Edison, 777 New Durham Road, Edison, NJ 08817, TEL (732)549-3900

TAL SAV = Eurofins TestAmerica, Savannah, 5102 LaRoche Avenue, Savannah, GA 31404, TEL (912)354-7858

Job ID: 460-205843-1

Client: Groundwater & Environmental Services Inc

Project/Site: Billerica, MA

Job ID: 460-205843-1

Laboratory: Eurofins TestAmerica, Edison

All accreditations/certifications held by this laboratory are listed. Not all accreditations/certifications are applicable to this report.

Authority	Program	Identification Number	Expiration Date
Connecticut	State	PH-0200	09-30-20
DE Haz. Subst. Cleanup Act (HSCA)	State	<cert no.=""></cert>	12-31-21
Georgia	State	12028 (NJ)	06-30-20
Massachusetts	State	M-NJ312	06-30-20
New Jersey	NELAP	12028	06-30-20
New York	NELAP	11452	04-01-21
Pennsylvania	NELAP	68-00522	02-28-21
Rhode Island	State	LAO00132	12-31-20
USDA	US Federal Programs	P330-18-00135	05-03-21

Laboratory: Eurofins TestAmerica, Buffalo

All accreditations/certifications held by this laboratory are listed. Not all accreditations/certifications are applicable to this report.

Authority	Program	Identification Number	Expiration Date
Arkansas DEQ	State	88-0686	07-06-20
California	State	2931	04-01-20
Connecticut	State	PH-0568	09-30-20
Florida	NELAP	E87672	06-30-20
Georgia	State	10026 (NY)	03-31-20
Georgia (DW)	State	956	03-31-20
Illinois	NELAP	200003	09-30-20
lowa	State	374	02-28-21
Kansas	NELAP	E-10187	01-31-20 *
Kentucky (DW)	State	90029	12-31-20
Kentucky (UST)	State	30	03-31-20
Kentucky (WW)	State	KY90029	12-31-20
Louisiana	NELAP	02031	06-30-20
Maine	State	NY00044	12-04-20
Maryland	State	294	03-31-20
Massachusetts	State	M-NY044	06-30-20
Michigan	State	9937	03-31-20
Minnesota	NELAP	1524384	12-31-20
New Hampshire	NELAP	2337	11-18-20
New Jersey	NELAP	NY455	06-30-20
New York	NELAP	10026	04-01-20
North Dakota	State	R-176	03-31-20
Oklahoma	State	9421	09-01-20
Oregon	NELAP	NY200003	06-10-20
Pennsylvania	NELAP	68-00281	07-31-20
Rhode Island	State	LAO00328	12-30-20
Tennessee	State	02970	03-31-20
Texas	NELAP	T104704412-18-10	08-01-20
USDA	US Federal Programs	P330-18-00039	02-06-21
Virginia	NELAP	460185	09-14-20
Washington	State	C784	02-11-21
Wisconsin	State	998310390	08-31-20

^{*} Accreditation/Certification renewal pending - accreditation/certification considered valid.

Client: Groundwater & Environmental Services Inc

Project/Site: Billerica, MA

Job ID: 460-205843-1

Laboratory: Eurofins TestAmerica, Burlington

All accreditations/certifications held by this laboratory are listed. Not all accreditations/certifications are applicable to this report.

Authority	Program	Identification Number	Expiration Date
ANAB	Dept. of Defense ELAP	L2336	02-25-23
Connecticut	State	PH-0751	09-30-21
DE Haz. Subst. Cleanup Act (HSCA)	State	N/A	05-15-20
Florida	NELAP	E87467	06-30-20
Minnesota	NELAP	050-999-436	12-31-20
New Hampshire	NELAP	2006	12-18-20
New Jersey	NELAP	VT972	06-30-20
New York	NELAP	10391	04-01-21
Rhode Island	State	LAO00298	12-30-20
US Fish & Wildlife	US Federal Programs	058448	07-31-20
USDA	US Federal Programs	P330-17-00272	08-09-20
Vermont	State	VT4000	12-31-20
Virginia	NELAP	460209	12-14-20

3

4

5

9

10

11

13

14

Client: Groundwater & Environmental Services Inc

Project/Site: Billerica, MA

Job ID: 460-205843-1

Laboratory: Eurofins TestAmerica, Savannah

All accreditations/certifications held by this laboratory are listed. Not all accreditations/certifications are applicable to this report.

Authority	Program AFCEE	Identification Number SAVLAB	Expiration Dat
Alabama	State	41450	06-30-20
Alaska	State	GA00006	06-30-20
Alaska (UST)	State	17-016	09-30-20
ANAB	Dept. of Defense ELAP	L2463	09-22-22
ANAB	ISO/IEC 17025	L2463.01	09-22-22
Arizona	State	AZ0808	12-14-20
Arkansas DEQ	State	19-015-0	02-02-21
California	State	2939	06-30-20
Colorado	State	GA00006	12-31-20
Connecticut	State	PH-0161	03-31-21
Florida	NELAP	E87052	06-30-20
GA Dept. of Agriculture	State Program	N/A	06-12-20
Georgia	State	E87052	06-30-20
Georgia (DW)	State	803	06-30-20
Guam	State	19-007R	04-17-20
Hawaii	State	<pre><cert no.=""></cert></pre>	06-30-20
Illinois	NELAP	004547	11-30-20
Indiana	State	C-GA-02	06-30-20
lowa	State	353	06-30-20
Kansas	State NELAP	553 E-10322	10-15-20
	State		12-31-21
Kentucky (DW)		KY90084	
Kentucky (UST)	State	<cert no.=""></cert>	06-30-20
Kentucky (WW)	State	KY90084	12-31-20
Louisiana	NELAP	02011	06-30-20
Louisiana (DW)	State	LA009	12-31-20
Maine	State	GA00006	09-26-20
Maryland	State	250	12-31-20
Massachusetts	State	M-GA006	06-30-20
Michigan	State	9925	06-30-20
Mississippi	State	<cert no.=""></cert>	06-30-20
Nebraska	State	NE-OS-7-04	06-30-20
New Hampshire	NELAP	2096	05-29-20
New Jersey	NELAP	GA769	06-30-20
New Mexico	State	GA00006	06-30-20
North Carolina (DW)	State	13701	07-31-20
North Carolina (WW/SW)	State	269	12-31-20
Oklahoma -	State	9984	08-31-20
Pennsylvania	NELAP	68-00474	06-30-20
Puerto Rico	State	GA00006	01-01-21
South Carolina	State	98001	06-30-20
Tennessee	State	02961	06-30-20
Texas	NELAP	T1047004185-19-14	11-30-20
Texas	TCEQ Water Supply	T104704185	06-30-20
US Fish & Wildlife	US Federal Programs	LE058448-0	07-31-20
USDA	US Federal Programs	P330-18-00313	10-29-21
Virginia	NELAP	10509	06-14-20
Washington	State	C805	06-10-20
West Virginia (DW)	State	9950C	12-31-20
West Virginia DEP	State	094	07-31-20

6

8

9

11

12

14

Client: Groundwater & Environmental Services Inc

Project/Site: Billerica, MA

Job ID: 460-205843-1

Laboratory: Eurofins TestAmerica, Savannah (Continued)

All accreditations/certifications held by this laboratory are listed. Not all accreditations/certifications are applicable to this report.

Authority	Program	Identification Number	Expiration Date
Wisconsin	State	999819810	08-31-20
Wyoming	State	8TMS-L	06-30-20

3

4

5

7

9

11

12

14

Method Summary

Client: Groundwater & Environmental Services Inc

Project/Site: Billerica, MA

624.1 Volatile Organic Compounds (GC/MS) 40CFR136A 8260C Volatile Organic Compounds (GC/MS) SW846 522 1,4 Dioxane (GC/MS SIM) EPA 625.1 Semivolatile Organic Compounds (GC/MS) 40CFR136A 8270D SIM Semivolatile Organic Compounds (GC/MS SIM) SW846 608.3 Organochlorine Pesticides/PCBs in Water 40CFR136A 300.0 Anions, Ion Chromatography MCAWW 205.7 Rev 4.4 Metals (ICP) 40CFR136A 245.1 Mercury (CVAA) EPA 1664A HEM and SGT-HEM 1664A 335.4 Cyanide, Total MCAWW 4500 NH3 H Ammonia SM 7196A Chromium, Hexavalent SW846 7196A Chromium, Trivalent (Colorimetric) SW846 SM 2540C Hardness, Total (mg/l as CaC03) SM SM 4500 Cl F Chlorine, Residual SM SM 4500 Cl F Chlorine, Residual SM SM 4500 H+ B pH SM 200,7-1994 R4.4 Preparation, Mercury E	Laboratory	Protocol	P	Method Description	Method
22 1,4 Dioxane (GC/MS SIM) EPA 225.1 Semivolatile Organic Compounds (GC/MS) 40CFR136A 2270D SIM Semivolatile Organic Compounds (GC/MS SIM) SW846 008.3 Organochlorine Pesticides/PCBs in Water 40CFR136A 000.0 Anions, lon Chromatography MCAWW 00.7 Rev 4.4 Metals (ICP) 40CFR136A 445.1 Mercury (CVAA) EPA 445.1 Mercury (CVAA) EPA 664A HEM and SGT-HEM 1664A 35.4 Cyanide, Total MCAWW 500 NH3 H Ammonia SM 4196A Chromium, Hexavalent SW846 504 2340C Hardness, Total (mg/l as CaC03) SM 504 2540D Solids, Total Suspended (TSS) SM 504 4500 Cl F Chlorine, Residual SM 504 4500 H B pH SM 507 00.7-1994 R4.4 Preparation, Mercury EPA 4551 Preparation, Mercury EPA 4510C Liquid-Liquid Extraction (Separatory Funnel) SW846 6030C Purge and Trap SW846 6	TAL BUF	40CFR136A	4	Volatile Organic Compounds (GC/MS)	24.1
25.1 Semivolatile Organic Compounds (GC/MS) 40CFR136A 270D SIM Semivolatile Organic Compounds (GC/MS SIM) SW846 08.3 Organochlorine Pesticides/PCBs in Water 40CFR136A 00.0 Anions, Ion Chromatography MCAWW 00.7 Rev 4.4 Metals (ICP) 40CFR136A 45.1 Mercury (CVAA) EPA 664A HEM and SGT-HEM 1664A 35.4 Cyanide, Total MCAWW 500 NH3 H Ammonia SM 196A Chromium, Hexavalent SW846 196A Chromium, Trivalent (Colorimetric) SW846 196A Chlorine, Residual SM 196A Chlorine, Residual SM 196A Chlorine, Residual <t< td=""><td>TAL EDI</td><td>SW846</td><td>S</td><td>Volatile Organic Compounds (GC/MS)</td><td>260C</td></t<>	TAL EDI	SW846	S	Volatile Organic Compounds (GC/MS)	260C
270D SIM Semivolatile Organic Compounds (GC/MS SIM) SW846 08.3 Organochlorine Pesticides/PCBs in Water 40CFR136A 00.0 Anions, Ion Chromatography MCAWW 00.7 Rev 4.4 Metals (ICP) 40CFR136A 45.1 Mercury (CVAA) EPA 664A HEM and SGT-HEM 1664A 35.4 Cyanide, Total MCAWW 500 NH3 H Ammonia SM 196A Chromium, Hexavalent SW846 196A Chromium, Trivalent (Colorimetric) SW846 196A Chromium, Trivalent (Colorimetric) SW846 196A Chromium, Trivalent (Seponated (TSS) SM 196A Chromium, Trivalent (Colorimetric) SW846 196A Chromium, Trivalent (Seponated (TSS) SM 196A Chromium, Trivalent (Seponated (TSS) SM 196A Chromium, Trivalent (Seponated (TSS) SM 196A Solids, Total Suspended (TSS) SM 196A Solids, Total Suspended (TSS) SM 196A SM SM	TAL BUR	EPA	E	1,4 Dioxane (GC/MS SIM)	22
08.3 Organochlorine Pesticides/PCBs in Water 40CFR136A 00.0 Anions, Ion Chromatography MCAWW 00.7 Rev 4.4 Metals (ICP) 40CFR136A 45.1 Mercury (CVAA) EPA 664A HEM and SGT-HEM 1664A 35.4 Cyanide, Total MCAWW 500 NH3 H Ammonia SM 196A Chromium, Hexavalent SW846 196A Chromium, Trivalent (Colorimetric) SW846 M 2340C Hardness, Total (mg/l as CaC03) SM M 2540D Solids, Total Suspended (TSS) SM M 4500 Cl F Chlorine, Residual SM M 4500 H+ B pH SM M 4500 H+ B pH SM M 545.1 Preparation, Total Metals EPA 45.1 Preparation, Mercury EPA 510C Liquid-Liquid Extraction (Separatory Funnel) SW846 030C Purge and Trap SW846 22 Solid-Phase Extraction (Separatory Funnel) 40CFR136A	TAL EDI	40CFR136A	40	Semivolatile Organic Compounds (GC/MS)	25.1
00.0 Anions, Ion Chromatography MCAWW 00.7 Rev 4.4 Metals (ICP) 40CFR136A 45.1 Mercury (CVAA) EPA 664A HEM and SGT-HEM 1664A 35.4 Cyanide, Total MCAWW 500 NH3 H Ammonia SM 196A Chromium, Hexavalent SW846 196A Chromium, Trivalent (Colorimetric) SW846 M 2340C Hardness, Total (mg/l as CaC03) SM M 2540D Solids, Total Suspended (TSS) SM M 4500 Cl F Chlorine, Residual SM M 4500 H+ B pH SM M 4501 H+ B pH SW M 501 H+ B pH SW M 4501 H+ B pH SW M 501 H+	TAL EDI	SW846	S	Semivolatile Organic Compounds (GC/MS SIM)	270D SIM
00.7 Rev 4.4 Metals (ICP) 40CFR136A 45.1 Mercury (CVAA) EPA 664A HEM and SGT-HEM 1664A 35.4 Cyanide, Total MCAWW 500 NH3 H Ammonia SM 196A Chromium, Hexavalent SW846 196A Chromium, Trivalent (Colorimetric) SW846 M 2340C Hardness, Total (mg/l as CaC03) SM M 2540D Solids, Total Suspended (TSS) SM M 4500 Cl F Chlorine, Residual SM M 4500 H+ B pH SM 00.7-1994 R4.4 Preparation, Total Metals EPA 45.1 Preparation, Mercury EPA 510C Liquid-Liquid Extraction (Separatory Funnel) SW846 030C Purge and Trap SW846 022 Solid-Phase Extraction (SPE) EPA 08 Liquid-Liquid Extraction (Separatory Funnel) 40CFR136A	TAL EDI	40CFR136A	40	Organochlorine Pesticides/PCBs in Water	08.3
45.1 Mercury (CVAA) EPA 664A HEM and SGT-HEM 1664A 35.4 Cyanide, Total MCAWW 500 NH3 H Ammonia SM 196A Chromium, Hexavalent SW846 196A Chromium, Trivalent (Colorimetric) SW846 M 2340C Hardness, Total (mg/l as CaC03) SM M 2540D Solids, Total Suspended (TSS) SM M 4500 CI F Chlorine, Residual SM M 4500 H+ B pH SM 00.7-1994 R4.4 Preparation, Total Metals EPA 45.1 Preparation, Mercury EPA 510C Liquid-Liquid Extraction (Separatory Funnel) SW846 030C Purge and Trap SW846 22 Solid-Phase Extraction (SPE) EPA 08 Liquid-Liquid Extraction (Separatory Funnel) 40CFR136A	TAL EDI	MCAWW	M	Anions, Ion Chromatography	00.0
664A HEM and SGT-HEM 1664A 35.4 Cyanide, Total MCAWW 500 NH3 H Ammonia SM 196A Chromium, Hexavalent SW846 196A Chromium, Trivalent (Colorimetric) SW846 M 2340C Hardness, Total (mg/l as CaC03) SM M 2540D Solids, Total Suspended (TSS) SM M 4500 Cl F Chlorine, Residual SM M 4500 H+ B pH SM 00.7-1994 R4.4 Preparation, Total Metals EPA 45.1 Preparation, Mercury EPA 510C Liquid-Liquid Extraction (Separatory Funnel) SW846 030C Purge and Trap SW846 22 Solid-Phase Extraction (SPE) EPA 08 Liquid-Liquid Extraction (Separatory Funnel) 40CFR136A	TAL SAV	40CFR136A	40	Metals (ICP)	00.7 Rev 4.4
35.4 Cyanide, Total MCAWW 500 NH3 H Ammonia SM 196A Chromium, Hexavalent SW846 196A Chromium, Trivalent (Colorimetric) SW846 IM 2340C Hardness, Total (mg/l as CaC03) SM IM 2540D Solids, Total Suspended (TSS) SM IM 4500 Cl F Chlorine, Residual SM IM 4500 H+ B pH SM IM 4500 H+ B pH SM IM 4501 H+ B pH SW IM 4501 H+ B pH	TAL EDI	EPA	E	Mercury (CVAA)	45.1
500 NH3 H Ammonia SM 196A Chromium, Hexavalent SW846 196A Chromium, Trivalent (Colorimetric) SW846 197A SSW846 SW846 197A SSW846 SW846 197A SW846 SW846	TAL EDI	1664A	16	HEM and SGT-HEM	664A
196A Chromium, Hexavalent SW846 196A Chromium, Trivalent (Colorimetric) SW846 196A Chromium, Trivalent (Colorimetric) SW846 5M 2340C Hardness, Total (mg/l as CaC03) SM 5M 2540D Solids, Total Suspended (TSS) SM 5M 4500 CI F Chlorine, Residual SM 6M 4500 H+ B pH SM 00.7-1994 R4.4 Preparation, Total Metals EPA 45.1 Preparation, Mercury EPA 510C Liquid-Liquid Extraction (Separatory Funnel) SW846 030C Purge and Trap SW846 22 Solid-Phase Extraction (SPE) EPA 08 Liquid-Liquid Extraction (Separatory Funnel) 40CFR136A	TAL EDI	MCAWW	M	Cyanide, Total	35.4
196A Chromium, Trivalent (Colorimetric) SW846 5M 2340C Hardness, Total (mg/l as CaC03) SM 5M 2540D Solids, Total Suspended (TSS) SM 5M 4500 CI F Chlorine, Residual SM 5M 4500 H+ B pH SM 6M 4500 H+ B pH SM 6M 4501 H+ B Preparation, Total Metals EPA 45.1 Preparation, Mercury EPA 510C Liquid-Liquid Extraction (Separatory Funnel) SW846 030C Purge and Trap SW846 22 Solid-Phase Extraction (SPE) EPA 08 Liquid-Liquid Extraction (Separatory Funnel) 40CFR136A	TAL EDI	SM	S	Ammonia	500 NH3 H
SM 2340C Hardness, Total (mg/l as CaC03) SM SM 2540D Solids, Total Suspended (TSS) SM SM 4500 Cl F Chlorine, Residual SM SM 4500 H+ B pH SM 00.7-1994 R4.4 Preparation, Total Metals EPA 45.1 Preparation, Mercury EPA 510C Liquid-Liquid Extraction (Separatory Funnel) SW846 030C Purge and Trap SW846 22 Solid-Phase Extraction (SPE) EPA 08 Liquid-Liquid Extraction (Separatory Funnel) 40CFR136A	TAL EDI	SW846	S	Chromium, Hexavalent	196A
M 2540D Solids, Total Suspended (TSS) SM M 4500 CI F Chlorine, Residual SM M 4500 H+ B pH SM 00.7-1994 R4.4 Preparation, Total Metals EPA 45.1 Preparation, Mercury EPA 510C Liquid-Liquid Extraction (Separatory Funnel) SW846 030C Purge and Trap SW846 22 Solid-Phase Extraction (SPE) EPA 08 Liquid-Liquid Extraction (Separatory Funnel) 40CFR136A	TAL EDI	SW846	S	Chromium, Trivalent (Colorimetric)	196A
M 4500 CI F Chlorine, Residual SM M 4500 H+ B pH SM 00.7-1994 R4.4 Preparation, Total Metals EPA 45.1 Preparation, Mercury EPA 510C Liquid-Liquid Extraction (Separatory Funnel) SW846 030C Purge and Trap SW846 22 Solid-Phase Extraction (SPE) EPA 08 Liquid-Liquid Extraction (Separatory Funnel) 40CFR136A	TAL EDI	SM	S	Hardness, Total (mg/l as CaC03)	M 2340C
M 4500 H+ B pH SM 00.7-1994 R4.4 Preparation, Total Metals EPA 45.1 Preparation, Mercury EPA 510C Liquid-Liquid Extraction (Separatory Funnel) SW846 030C Purge and Trap SW846 22 Solid-Phase Extraction (SPE) EPA 08 Liquid-Liquid Extraction (Separatory Funnel) 40CFR136A	TAL EDI	SM	S	Solids, Total Suspended (TSS)	M 2540D
00.7-1994 R4.4 Preparation, Total Metals EPA 45.1 Preparation, Mercury EPA 510C Liquid-Liquid Extraction (Separatory Funnel) SW846 030C Purge and Trap SW846 22 Solid-Phase Extraction (SPE) EPA 08 Liquid-Liquid Extraction (Separatory Funnel) 40CFR136A	TAL EDI	SM	S	Chlorine, Residual	M 4500 CI F
45.1 Preparation, Mercury EPA 510C Liquid-Liquid Extraction (Separatory Funnel) SW846 030C Purge and Trap SW846 22 Solid-Phase Extraction (SPE) EPA 08 Liquid-Liquid Extraction (Separatory Funnel) 40CFR136A	TAL EDI	SM	S	pH	M 4500 H+ B
510C Liquid-Liquid Extraction (Separatory Funnel) SW846 030C Purge and Trap SW846 22 Solid-Phase Extraction (SPE) EPA 08 Liquid-Liquid Extraction (Separatory Funnel) 40CFR136A	TAL SAV	EPA	E	Preparation, Total Metals	00.7-1994 R4.4
030CPurge and TrapSW84622Solid-Phase Extraction (SPE)EPA08Liquid-Liquid Extraction (Separatory Funnel)40CFR136A	TAL EDI	EPA	E	Preparation, Mercury	45.1
Solid-Phase Extraction (SPE) EPA Liquid-Liquid Extraction (Separatory Funnel) 40CFR136A	TAL EDI	SW846	S	Liquid-Liquid Extraction (Separatory Funnel)	510C
08 Liquid-Liquid Extraction (Separatory Funnel) 40CFR136A	TAL EDI	SW846	S	Purge and Trap	030C
	TAL BUR	EPA	E	Solid-Phase Extraction (SPE)	22
<u> </u>	TAL EDI	40CFR136A	40	Liquid-Liquid Extraction (Separatory Funnel)	08
25 Liquid-Liquid Extraction 40CFR136A	TAL EDI	40CFR136A	40	Liquid-Liquid Extraction	25
istill/CN Distillation, Cyanide None	TAL EDI	None	N	Distillation, Cyanide	istill/CN

Protocol References:

1664A = EPA-821-98-002

40CFR136A = "Methods for Organic Chemical Analysis of Municipal Industrial Wastewater", 40CFR, Part 136, Appendix A, October 26, 1984 and subsequent revisions.

EPA = US Environmental Protection Agency

MCAWW = "Methods For Chemical Analysis Of Water And Wastes", EPA-600/4-79-020, March 1983 And Subsequent Revisions.

None = None

SM = "Standard Methods For The Examination Of Water And Wastewater"

SW846 = "Test Methods For Evaluating Solid Waste, Physical/Chemical Methods", Third Edition, November 1986 And Its Updates.

Laboratory References:

TAL BUF = Eurofins TestAmerica, Buffalo, 10 Hazelwood Drive, Amherst, NY 14228-2298, TEL (716)691-2600

TAL BUR = Eurofins TestAmerica, Burlington, 30 Community Drive, Suite 11, South Burlington, VT 05403, TEL (802)660-1990

TAL EDI = Eurofins TestAmerica, Edison, 777 New Durham Road, Edison, NJ 08817, TEL (732)549-3900

TAL SAV = Eurofins TestAmerica, Savannah, 5102 LaRoche Avenue, Savannah, GA 31404, TEL (912)354-7858

Job ID: 460-205843-1

Sample Summary

Client: Groundwater & Environmental Services Inc

Project/Site: Billerica, MA

Job ID: 460-205843-1

Lab Sample ID	Client Sample ID	Matrix	Collected	Received	As
460-205843-1	SW-1	Water	03/25/20 12:45	03/26/20 10:00	
460-205843-2	MW-11S	Water	03/25/20 11:15	03/26/20 10:00	
460-205843-3	MW-20S	Water	03/25/20 12:05	03/26/20 10:00	

4

9

10

13

14

Evans, Lauren

From: Meghan Proia <MProia@gesonline.com>
Sent: Thursday, March 26, 2020 3:52 PM

To: Evans, Lauren; Local: Northeast Region General Mail; Stefan Sokol

Subject: RE: *Please see below* Eurofins TestAmerica Sample Login Confirmation files from

460-205843 Billerica, MA

EXTERNAL EMAIL*

Hi Lauren,

Yes, please run the same analyses for both MW-11S and MW-20S. Oxygenates by 8260 is fine.

Thanks, Meghan

Meghan Proia, PE

Senior Engineer

Office: 800.220.6119 ext. 3589

Mobile: 724.967.4444

Follow Us: Website | LinkedIn | Twitter

Success Through Safety.

Licensed PE in CT, MA, NH, RI, VT

From: Lauren Evans < lauren.evans@testamericainc.com>

Sent: Thursday, March 26, 2020 4:50 PM

To: Meghan Proia <MProia@gesonline.com>; Local: Northeast Region General Mail <NERegion@gesonline.com>; Stefan Solval @gesonline.com>; Stefan Solval @ges

Sokol <SSokol@gesonline.com>

Subject: *Please see below* Eurofins TestAmerica Sample Login Confirmation files from 460-205843 Billerica, MA

Importance: High

CAUTION: This email originated from outside your organization. Exercise caution when opening attachments or clicking links, especially from unknown senders.

Hello,

Attached, please find the Sample Confirmation files for job 460-205843; Billerica, MA **Please note that sample MW-20S was not marked on the chain for any analyses - as we received the same containers for this sample as for sample MW-11S, I've added the same analyses as were requested for MW-11S. Please confirm

4

5

0

8

10

13

14

that this is accurate.

Additionally, per my email on Tuesday, we can run the oxygenates by 8260 if that's acceptable to you. It looks like 524 is also an option through Eurofins Lancaster. Please confirm method you prefer and we'll get those added. Limits and analytes are attached for review - please let me know if you have any questions.**

Please feel free to contact me if you have any questions.

Thank you.

Lauren R Evans

Project Manager Assistant

TestAmerica Laboratories, Inc

Phone: 615-301-5034

E-mail: <u>lauren.evans@testamericainc.com</u>

www.eurofinsus.com | www.testamericainc.com

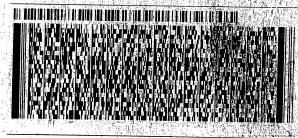
Reference: [460-923512] Attachments: 2

Please let us know if we met your expectations by rating the service you received from Eurofins TestAmerica on this project by visiting our website at: Project Feedback

TAKE NOTE: This E-Mail came from outside of GES. Please consider the sender and nature of email before responding back to, clicking on any links or opening any attachments. If it appears suspicious delete it immediately.

Confidentiality Notice: This transmission (including any attachments) may contain confidential information belonging to Groundwater & Environmental Services, Inc. and is intended only for the use of the party or entity to which it is addressed. If you are not the intended recipient, you are hereby notified that any disclosure, copying, distribution, retention or the taking of action in reliance on the contents of this transmission is strictly prohibited; provided, however, the prohibition against disclosure shall not apply if the transmission is required by law to be disclosed by a governmental intended party as a public record. If you have received this transmission in error, please immediately notify the sender and erase all information and attachments. Thank You.

* WARNING - EXTERNAL: This email originated from outside of Eurofins TestAmerica. Do not click any links or open any attachments unless you trust the sender and know that the content is safe!


-

Custody Seals Intact: Custody Seal No.:	Relingulated by	Relinquished by:	Relinquished by:	Empty Kit Relinquished by:	Deliverable Requested: I, II, III, IV, Other (specify)	Skin Initant	Possible Hazard Identification					5	-		SW-1 (USSI SIM Rings) to outsell		Sample Identification		Sider	Project Name: Billerica, MA	ssokol@gesonline.com	Prone: 800-221-6119	MA, 01886	Westford	One Park Drive Suite 8	Groundwater & Environmental Services Inc	Stefan Sokol	Client Information	Edison, NJ 08817 Phone: 732-549-3900 Fax: 732-549-3679	Eurofins TestAmerica, Edison	1 2 3 4 5 7
	Date/Time:	Date/ime/	Date/Tirle:			Poison B Unknown						nelloh	X/2/2	1	06/198	V	Sample Date		SSOW#:	48020741	ORG #: 1116	Purchase Order		TAI Requested (days):	out one made and		Phone	Sampler V2/		1	9
	00	-	12	Date:								1005	301	1110	13461	X	Time	Sample				Requested	ł	ays):	90.			Sowya		Chain of Custody Record	
	1000		7			Radiological						3	^	2	6	Preserva	G=grab)	Sample Type (C=comp,				THU						1	000	f Clie	3
	Company	Company	Company										Water	Water	Water	Preservation Code:	BT-Tosue, A-Air	Matrix (www.to-nate Ownerhite)									laure	Evans.	9	1	4
Cooler Temperature(s) "C and Other	Received by:	Recoked by:	Received by	Time:	Special Instructions/QC Requirements	300	Sample Disposal (A fee may be								XXX	X D Z	Pe 20	eld Filtere erform MS 0.8 - (MOD) 96A_CR3 -	MSD (res o	r No)	t				Analysis Rec	lauren.evans@testamericainc.com	s, Lauren R	-	0	
and Other Remarks:	Date/Time	Date/Time	Date/Time	Method of Sripment		Disposal By Lab	assessed if samples a		-																	Requested			C173	DSIO	
Ver: 01/16/2019	Company	Company	3-25-21 12/21 J.			Archive For Months	ger than 1 m										1	Special Instructions Note:	ALC: UNDER COLUMN	Other	K-EDTA	Ascorbic Ac 28		- Zn Acetate - Naric Acid		evation (Page 2 of 2	480-143938-32080.2 Page:	COC No.	eurofins Environment Testing	7-

Possible Hazard Identification Non-Hazard Flammable Skin Imitant Poison B Deliverable Requested: I, II, III, IV, Other (specify) Empty Kit Relinquished by: Date/lime: Relinquished by: Date/lime: Date/lime:	ard Identification ard Flammable Skin Irritant Poissequested: I, II, III, IV, Other (specify) inquished by:	tiffication ☐Skin Irritant ☐Poise 3: 1, II, III, IV, Other (specify) d by:	ant 🗆	Identification Flammable Skin Irritant ssted: I, II, III, IV, Other (specify)	ie Skin Irritant 🗆						MW-205	mu-115 3/	SW-1 (Upgreen newest & outfall) 3	11 4000 - 44 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	Sample lather thanks we got agline co- and some to be set to a see some seem and seems	Site: SSO	Project Name: Project Name: 480	sonline.com	Phone: 800 - 221-6119 × 3252 Pur	State, Zp: MA, 01886	City: TAT	Address: One Park Drive Suite 8	Company: Groundwater & Environmental Services Inc	Stefan Sokol	ormation	ax: 732-549-3679	Eurofins TestAmerica, Edison 777 New Durham Road	2 3 4 5 6 7 8
36	36	20				Unknown					3/25/20	3/55/20	36/20	X	Sample Date	SSOW#:	Project #: 48020741	WO# ORG #: 1116	PO#: 16/6/17/16/20G Purchase Order Requested		TAT Requested (days):	Due Date Requested:		080	Sampler: V21 Szw	,		
£			1315	Date:		П					1205	7:5	1245	X	Sample Time				Requested		ys):	Ä		19	sofus	Halli C		1:
1000	1000					Radiological					8	9	8	Preserva	Sample Type (C=comp, G=grab)				11116							oi cus		1
Company	111	Company	Company								Water	Water	Water	Preservation Code:	- E									E-Mait laurer	Lab PM: Evans,	Citalli of Custody Record		1
Rec		Rec	Rec	Time:	Specia	Sampl						×	Z X	X S	Field Filtered S Perform MS/M: SM4500_NH3_H	SD (Y	es or	-	(0)					E-Mail: lauren.evans@testamericainc.com	ns, Lauren R	ecor		
Received by:		Received by:	Received by:		Special Instructions/QC Requirements	Sample Disposal (A						×		z	300_ORGFM_28 2540D - Total Su	D, 450	10_CI_	711155						gtestame	70	-		
		1	0		ons/QC							×		0	200.7_CWA, 245	.1							An	ricainc.c				
			0		Require	fee may be assessed if samples	0_3 = 1				_	X X		N	524.2_Preserved	0.00			d VOC	8			nalysis	om			ı	
		1	-		ments:	be asse		-			-	×		Z	608.3_PREC, 82 624.1_PREC - Co		muno.	ist					Requested		Ω		ı	
		V		Metho		assessed if san Disposal By Lab						7.		В	335.4 - Cyanide,	W0050	-						ested		Carrie Tra	10	1	
D		Da	Da	Method of Shipment		fsamı	+	+		+	-	X		A	522 - 1,4 Dioxan 8260C_LL - Etha								1		N	50	3	
Date/Time:		Date/Time	Data/Time:	ment		oles a	+		0=1			W.	4	D	2340C, 245.1	iiloi by	0200								(S	1	1	
653			24			re ret						滑	¥	z	7196A, SM4500_	H+									0	1 2	ś	
		- 1	12			etained Ion Archive For						×		A	Total Number	-			IOT	1 m o	0 00 2	, P		ע ס	0.4		1	
		1	13			are retained longer than 1 month) Archive For Mont								V	Special In	Other:	L-EDA		cd d		B - NaOH C - Zn Acetate	Preservation Codes:	Jab #:	Page: Page 1 of 2	COC No: 480-143938-32080.1		eurofins	
Company	Company	Company	Compagn			month) Months									Special Instructions/Note:		Z - other (specify)	U - Acetone V - MCAA	K - NBZSZO3 S - HZSO4 T - TSP Dodecahydrate	P - Na2O4S Q - Na2SO3	N - None O - AsNaO2	des:			380.1	stAmerica	1/2	

ORIGIN ID:LDJA (732) 548-3900 SAMPLE RECEIVING EUROFINS TESTAMERICA EDISON 777 NEW DURHAM ROAD

SAMPLE CUSTODY **TEST AMERICA BURLINGTON** 30 COMMUNITY DRIVE

TRK# 1161 6400 4376

XO BTVA

05403 vi_us BTV

FedEx Express

Eurofins TestAmerica, Edison							Seurofine	fine
777 New Durham Road Edison, NJ 08817 Dhane, 733, 540, 3000, Eav., 733, 540, 3670	Chair	of Cus	Chain of Custody Record	cord			•	Environment Testing TestAmerica
Client Information (Sub Contract 1 ah)	Sampler:		Lab PM: Fvans	Lab PM: Evans Tauren R		Carrier Tracking No(s):	COC No:	3.1
Client Contact:	Phone:		E-Mail:	E-Mail:		State of Origin:	Page:	
Snipping/receiving			laurer	n.evans@testamericainc.con		nassachusetts	Page 1 of	
TestAmerica Laboratories, Inc.				Acciedians Neguied (See	illote).		460-205843-1	43-1
Address: 10 Hazelwood Drive, ,	Due Date Requested: 4/7/2020			,	Analysis Requested	lested	Preservat	73
City: Amherst	TAT Requested (days):						A - HCL B - NaOH C - Zn Acel	
State, Zip: NY, 14228-2298				ojui			D - Nitric Acid E - NaHSO4	cid P - Na2O4S 4 Q - Na2SO3
Phone: 716-691-2600(Tel) 716-691-7991(Fax)	PO #:						G - Amchio	
Email:	WO#:			(0)	_			
Project Name: Dillogon MA	Project #:			N 10 8				W - pH 4-5 Z - other (specify)
Site:	SSOW#:			D (Yes			of the r.	
		Sample	Matrix	EC\624 WZ\WZ			мрег о	
Samble Identification - Client ID (Lab ID)	Sample Date Time		(W=water, S=solid, O=waste/oil, RT=Tiesue A=Air)	moheq Figure 1 Figure			InM IstoT	Special Instructions/Note:
		1	ation Code:	X				
MW-11S (460-205843-2)	3/25/20 Fastern	10 E	Water	×			3	
MW-20S (460-205843-3)	3/25/20 12:05		Water	×			60	
	Eastern	E						
		-						
		-						
		-				+		
		-						
		-						
Note: Since laboratory accreditations are subject to change, Eurofins TestAmerica places the ownership of method, analyte & accreditation compliance upon out subcontract laboratory accreditation in the State of Origin listed above for analysis/tests/mairx being analyzed. The samples must be shipped back to the Eurofins TestAmerica laboratory or other instructions will be provided. Any changes to accreditation status should be brought to Eurofins TestAmerica attention immediately. If all requested accreditations are current to date, return the signed Chain of Custody attesting to said complicance to Eurofins TestAmerica.	rica places the ownership of meth rix being analyzed, the samples m to date, return the signed Chain o	od, analyte & acc list be shipped ba Custody attestin	reditation compliants to the Eurofins g to said complica	nce upon out subcontract lab TestAmerica laboratory or of	oratories. This sampl	e shipment is forwarde e provided. Any chang	ad under chain-of-custody. If	the laboratory does not currently ould be brought to Eurofins
Possible Hazard Identification				Sample Disposal	(A fee may be a	ssessed if sampl	Sample Disposal (A fee may be assessed if samples are retained longer than 1 month)	r than 1 month)
Unconfirmed				Return To Client	lient	Disposal By Lab	Archive For	Months
Deliverable Requested: I, II, III, IV, Other (specify)	Primary Deliverable Rank: 2	nk: 2		Special Instructions/QC Requirements:	s/QC Requiremer			
Empty Kit Relinquished by:	Date:			Time:	11	Method of Shipment:	nent:	
Relinquished by:	190/8	18) or	Majano a	Received by:	Jan Von	1 INC	Date/Time: 63127126	120 Common 120
Relinquished by:	Date/Time:		Company	Received by:		Date	Date/Time: /	Company
Relinquished by:	Date/Time:		Company	Received by:			Date/Time:	Сотрапу
Custody Seals Intact: Custody Seal No.:				Cooler Temperatur	Cooler Temperature(s) °C and Other Remarks:	marks: Z	J 2 1 井 h	
								Ver: 01/16/2019

Chain of Custody Record

Eurofins TestAmerica, Edison

777 New Durham Road

Edison, NJ 08817

Environment Testing

🔆 eurofins

Carrier Tracking No(s) Phone: 732-549-3900 Fax: 732-549-3679

becoming accreditations are subject to change, Eurofins TestAmerica places the ownership of method, analyte & accreditation compliance upon out subcontract laboratories. This sample shipment is forwarded under chain-of-custody. If the laboratory does not number the single analyzed, the samples must be shipped back to the Eurofins TestAmerica laboratory or other instructions will be provided. Any changes to accreditation status should be brought to Eurofins TestAmerica estAmerica attention immediately. If all requested accreditations are current to date, return the signed Chain of Custody attesting to said complicance to Eurofins TestAmerica. Ver: 01/16/2019 M - Hexane
N - None
O - AeNaO2
P - Na2O4S
O - Na2O4S
R - Na2SO3
S - H2SO4
T - TSP Dodecahyd Special Instructions/Note: Z - other (specify) U - Acetone V - MCAA W - pH 4-5 Months Sample Disposal (A fee may be assessed if samples are retained longer than 1 month)

Return To Client Disposal By Lab Archive For Mon Preservation Codes A - HCL B - NaOH C - Zn Acetate D - Nitric Acid F - MaOH G - Amchlor H - Ascorbic Acid 460-205843-1 000 460-57794.1 Page 1 of 1 I - Ice J - DI Water K - EDTA L - EDA Total Number of containers 3-27-20 Massachusetts State of Origin: **Analysis Requested** Sooler Temperature(s) °C and Other Remarks: Special Instructions/QC Requirements: lauren.evans@testamericainc.com Return To Client eceived by eceived by Evans, Lauren R × × 200.7_CWA/200.7_P_TOT (MOD) Custom Metals List Perform MS/MSD (Yes or No) ime E-Mail. BT=Tissue, A=Air) Preservation Code: Water Water Matrix Water Company Sample (C=comb, G=grab) Type Primary Deliverable Rank: 2 Eastern 11:15 Eastern 12:05 Sample Eastern Time (AT Requested (days): Due Date Requested: 4/7/2020 Sample Date 3/25/20 3/25/20 3/25/20 48020741 Date/Time: phone: Deliverable Requested: I, II, III, IV, Other (specify) Client Information (Sub Contract Lab) Custody Seal No. Sample Identification - Client ID (Lab ID) 912-354-7858(Tel) 912-352-0165(Fax) Possible Hazard Identification TestAmerica Laboratories, Inc. Empty Kit Relinquished by: MW-20S (460-205843-3) Custody Seals Intact: MW-11S (460-205843-2) 5102 LaRoche Avenue, 5W-1 (460-205843-1) A Yes A No Shipping/Receiving nquished by. iquished by inquished by Billerica, MA State, Zip: GA, 31404 Savannah

Job Number: 460-205843-1

Login Number: 205843

List Number: 1

Creator: Breton, Jayson J

List Source: Eurofins TestAmerica, Edison

Question	Answer	Comment
Radioactivity wasn't checked or is = background as measured by a survey meter.</td <td>N/A</td> <td></td>	N/A	
The cooler's custody seal, if present, is intact.	True	
Sample custody seals, if present, are intact.	True	
The cooler or samples do not appear to have been compromised or tampered with.	True	
Samples were received on ice.	True	
Cooler Temperature is acceptable.	True	
Cooler Temperature is recorded.	True	
COC is present.	True	
COC is filled out in ink and legible.	True	
COC is filled out with all pertinent information.	False	Analyses listed on COC; individual samples not designated for specific analyses
Is the Field Sampler's name present on COC?	True	
There are no discrepancies between the containers received and the COC.	True	
Samples are received within Holding Time (excluding tests with immediate HTs)	True	
Sample containers have legible labels.	True	
Containers are not broken or leaking.	True	
Sample collection date/times are provided.	True	
Appropriate sample containers are used.	True	
Sample bottles are completely filled.	True	
Sample Preservation Verified.	True	
There is sufficient vol. for all requested analyses, incl. any requested MS/MSDs	True	
Containers requiring zero headspace have no headspace or bubble is <6mm (1/4").	True	
Multiphasic samples are not present.	True	
Samples do not require splitting or compositing.	False	Sample splitting required for subcontract purposes.
Residual Chlorine Checked.	N/A	

Job Number: 460-205843-1

Login Number: 205843

List Number: 2

Creator: Yeager, Brian A

List Source: Eurofins TestAmerica, Buffalo

List Creation: 03/27/20 11:47 AM

Question	Answer	Comment
Radioactivity either was not measured or, if measured, is at or below background	True	
The cooler's custody seal, if present, is intact.	True	
The cooler or samples do not appear to have been compromised or tampered with.	True	
Samples were received on ice.	True	
Cooler Temperature is acceptable.	True	
Cooler Temperature is recorded.	True	2.4 ice ir gun #1
COC is present.	True	
COC is filled out in ink and legible.	True	
COC is filled out with all pertinent information.	True	
Is the Field Sampler's name present on COC?	True	
There are no discrepancies between the sample IDs on the containers and the COC.	True	
Samples are received within Holding Time (Excluding tests with immediate HTs)	True	
Sample containers have legible labels.	True	
Containers are not broken or leaking.	True	
Sample collection date/times are provided.	True	
Appropriate sample containers are used.	True	
Sample bottles are completely filled.	True	
Sample Preservation Verified	True	
There is sufficient vol. for all requested analyses, incl. any requested MS/MSDs	True	
VOA sample vials do not have headspace or bubble is <6mm (1/4") in diameter.	True	
If necessary, staff have been informed of any short hold time or quick TAT needs	True	
Multiphasic samples are not present.	True	
Samples do not require splitting or compositing.	True	
Sampling Company provided.	True	
Samples received within 48 hours of sampling.	True	
Samples requiring field filtration have been filtered in the field.	True	
Chlorine Residual checked.	True	

Job Number: 460-205843-1

Login Number: 205843

List Number: 4

Creator: Khudaier, Zahraa

List Source: Eurofins TestAmerica, Burlington

List Creation: 03/28/20 12:26 PM

Cieator. Miludaler, Zamaa		
Question	Answer	Comment
Radioactivity wasn't checked or is = background as measured by a survey meter.</td <td>N/A</td> <td>Lab does not accept radioactive samples.</td>	N/A	Lab does not accept radioactive samples.
The cooler's custody seal, if present, is intact.	N/A	Not present
Sample custody seals, if present, are intact.	True	
The cooler or samples do not appear to have been compromised or tampered with.	True	
Samples were received on ice.	True	
Cooler Temperature is acceptable.	True	
Cooler Temperature is recorded.	True	0.6°C
COC is present.	True	
COC is filled out in ink and legible.	True	
COC is filled out with all pertinent information.	True	
Is the Field Sampler's name present on COC?	True	
There are no discrepancies between the containers received and the COC.	True	
Samples are received within Holding Time (excluding tests with immediate HTs)	True	
Sample containers have legible labels.	True	
Containers are not broken or leaking.	True	
Sample collection date/times are provided.	True	
Appropriate sample containers are used.	True	
Sample bottles are completely filled.	N/A	
Sample Preservation Verified.	True	
There is sufficient vol. for all requested analyses, incl. any requested MS/MSDs	True	
Containers requiring zero headspace have no headspace or bubble is <6mm (1/4").	True	
Multiphasic samples are not present.	True	
Samples do not require splitting or compositing.	True	
Residual Chlorine Checked.	N/A	

Job Number: 460-205843-1

Login Number: 205843 List Source: Eurofins TestAmerica, Savannah List Number: 3

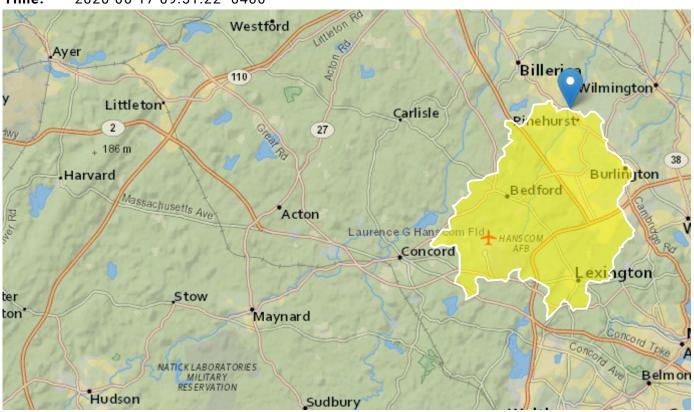
List Creation: 03/27/20 11:59 AM

Creator: Sims, Robert D

orcator. Onno, respect b		
Question	Answer	Comment
Radioactivity wasn't checked or is = background as measured by a survey meter.</td <td>N/A</td> <td></td>	N/A	
The cooler's custody seal, if present, is intact.	True	
Sample custody seals, if present, are intact.	True	
The cooler or samples do not appear to have been compromised or tampered with.	True	
Samples were received on ice.	True	
Cooler Temperature is acceptable.	True	
Cooler Temperature is recorded.	True	
COC is present.	True	
COC is filled out in ink and legible.	True	
COC is filled out with all pertinent information.	True	
Is the Field Sampler's name present on COC?	N/A	
There are no discrepancies between the containers received and the COC.	True	
Samples are received within Holding Time (excluding tests with immediate HTs)	True	
Sample containers have legible labels.	True	
Containers are not broken or leaking.	True	
Sample collection date/times are provided.	True	
Appropriate sample containers are used.	True	
Sample bottles are completely filled.	True	
Sample Preservation Verified.	N/A	
There is sufficient vol. for all requested analyses, incl. any requested MS/MSDs	True	
Containers requiring zero headspace have no headspace or bubble is <6mm (1/4").	True	
Multiphasic samples are not present.	True	
Samples do not require splitting or compositing.	True	
Residual Chlorine Checked.	N/A	

Attachment C – StreamStats Flow Statistics Report

6/17/2020 StreamStats


StreamStats Report

Region ID: MA

Workspace ID: MA20200617135104989000

Clicked Point (Latitude, Longitude): 42.53477, -71.23366

Time: 2020-06-17 09:51:22 -0400

Basin Characteristics				
Parameter Code	Parameter Description	Value	Unit	
DRNAREA	Area that drains to a point on a stream	31.2	square miles	
BSLDEM250	Mean basin slope computed from 1:250K DEM	1.854	percent	
DRFTPERSTR	Area of stratified drift per unit of stream length	0.32	square mile per mile	
MAREGION	Region of Massachusetts 0 for Eastern 1 for Western	0	dimensionless	

6/17/2020 StreamStats

Low-Flow Statistics Parameters[Statewide Low Flow WRIR00 4135]

Parameter Code	Parameter Name	Value	Units	Min Limit	Max Limit
DRNAREA	Drainage Area	31.2	square miles	1.61	149
BSLDEM250	Mean Basin Slope from 250K DEM	1.854	percent	0.32	24.6
DRFTPERSTR	Stratified Drift per Stream Length	0.32	square mile per mile	0	1.29
MAREGION	Massachusetts Region	0	dimensionless	0	1

Low-Flow Statistics Flow Report[Statewide Low Flow WRIR00 4135]

PII: Prediction Interval-Lower, PIu: Prediction Interval-Upper, SEp: Standard Error of Prediction, SE: Standard Error (other -- see report)

Statistic	Value	Unit	PII	Plu	SE	SEp
7 Day 2 Year Low Flow	4.74	ft^3/s	1.47	14.7	49.5	49.5
7 Day 10 Year Low Flow	2.21	ft^3/s	0.555	8.2	70.8	70.8

Low-Flow Statistics Citations

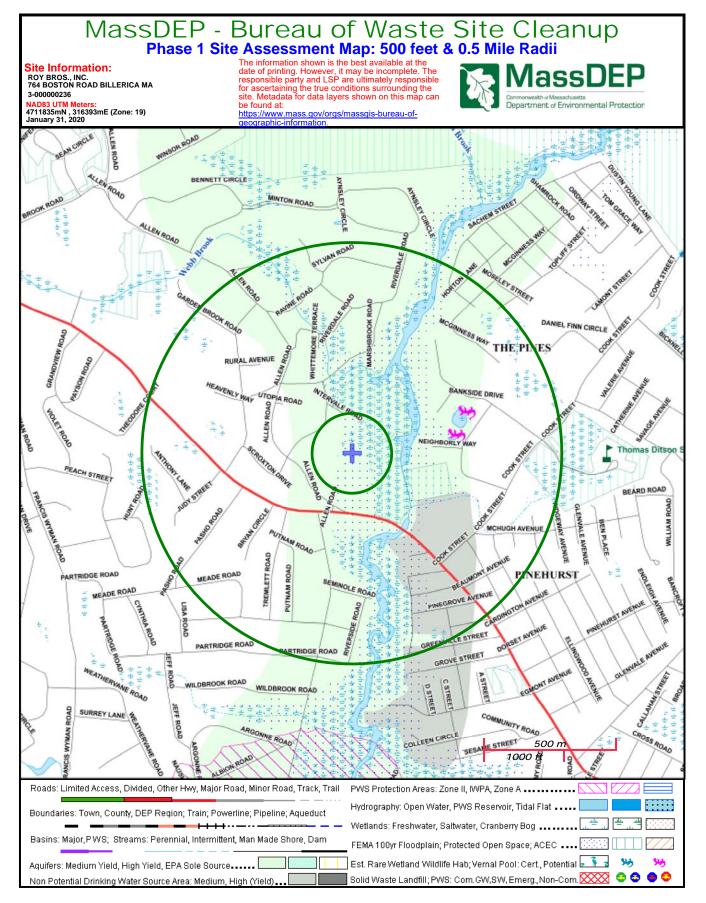
Ries, K.G., III,2000, Methods for estimating low-flow statistics for Massachusetts streams: U.S. Geological Survey Water Resources Investigations Report 00-4135, 81 p. (http://pubs.usgs.gov/wri/wri004135/)

USGS Data Disclaimer: Unless otherwise stated, all data, metadata and related materials are considered to satisfy the quality standards relative to the purpose for which the data were collected. Although these data and associated metadata have been reviewed for accuracy and completeness and approved for release by the U.S. Geological Survey (USGS), no warranty expressed or implied is made regarding the display or utility of the data for other purposes, nor on all computer systems, nor shall the act of distribution constitute any such warranty.

USGS Software Disclaimer: This software has been approved for release by the U.S. Geological Survey (USGS). Although the software has been subjected to rigorous review, the USGS reserves the right to update the software as needed pursuant to further analysis and review. No warranty, expressed or implied, is made by the USGS or the U.S. Government as to the functionality of the software and related material nor shall the fact of release constitute any such warranty. Furthermore, the software is released on condition that neither the USGS nor the U.S. Government shall be held liable for any damages resulting from its authorized or unauthorized use.

USGS Product Names Disclaimer: Any use of trade, firm, or product names is for descriptive purposes only and does not imply endorsement by the U.S. Government.

Application Version: 4.3.11


6/17/2020 StreamStats

Attachment D – MassDEP Phase 1 Site Assessment Map and NHESP Map

Attachment D – MassDEP Phase 1 Site Assessment Map and NHESP Map

Attachment E – US Department of the Interior, Fish and Wildlife Services (FWS) Threatened or Endangered Species or Critical Habitat Letter

United States Department of the Interior

FISH AND WILDLIFE SERVICE

New England Ecological Services Field Office 70 Commercial Street, Suite 300 Concord, NH 03301-5094 Phone: (603) 223-2541 Fax: (603) 223-0104

http://www.fws.gov/newengland

In Reply Refer To: June 25, 2020

Consultation Code: 05E1NE00-2020-SLI-3067

Event Code: 05E1NE00-2020-E-09348 Project Name: Roy Bros., Inc, Billerica, MA

Subject: List of threatened and endangered species that may occur in your proposed project

location, and/or may be affected by your proposed project

To Whom It May Concern:

The enclosed species list identifies threatened, endangered, proposed and candidate species, as well as proposed and final designated critical habitat, that may occur within the boundary of your proposed project and/or may be affected by your proposed project. The species list fulfills the requirements of the U.S. Fish and Wildlife Service (Service) under section 7(c) of the Endangered Species Act (Act) of 1973, as amended (16 U.S.C. 1531 *et seq.*).

New information based on updated surveys, changes in the abundance and distribution of species, changed habitat conditions, or other factors could change this list. Please feel free to contact us if you need more current information or assistance regarding the potential impacts to federally proposed, listed, and candidate species and federally designated and proposed critical habitat. Please note that under 50 CFR 402.12(e) of the regulations implementing section 7 of the Act, the accuracy of this species list should be verified after 90 days. This verification can be completed formally or informally as desired. The Service recommends that verification be completed by visiting the ECOS-IPaC website at regular intervals during project planning and implementation for updates to species lists and information. An updated list may be requested through the ECOS-IPaC system by completing the same process used to receive the enclosed list.

The purpose of the Act is to provide a means whereby threatened and endangered species and the ecosystems upon which they depend may be conserved. Under sections 7(a)(1) and 7(a)(2) of the Act and its implementing regulations (50 CFR 402 *et seq.*), Federal agencies are required to utilize their authorities to carry out programs for the conservation of threatened and endangered species and to determine whether projects may affect threatened and endangered species and/or designated critical habitat.

A Biological Assessment is required for construction projects (or other undertakings having similar physical impacts) that are major Federal actions significantly affecting the quality of the human environment as defined in the National Environmental Policy Act (42 U.S.C. 4332(2) (c)). For projects other than major construction activities, the Service suggests that a biological evaluation similar to a Biological Assessment be prepared to determine whether the project may affect listed or proposed species and/or designated or proposed critical habitat. Recommended contents of a Biological Assessment are described at 50 CFR 402.12.

Event Code: 05E1NE00-2020-E-09348

If a Federal agency determines, based on the Biological Assessment or biological evaluation, that listed species and/or designated critical habitat may be affected by the proposed project, the agency is required to consult with the Service pursuant to 50 CFR 402. In addition, the Service recommends that candidate species, proposed species and proposed critical habitat be addressed within the consultation. More information on the regulations and procedures for section 7 consultation, including the role of permit or license applicants, can be found in the "Endangered Species Consultation Handbook" at:

http://www.fws.gov/endangered/esa-library/pdf/TOC-GLOS.PDF

Please be aware that bald and golden eagles are protected under the Bald and Golden Eagle Protection Act (16 U.S.C. 668 *et seq.*), and projects affecting these species may require development of an eagle conservation plan (http://www.fws.gov/windenergy/eagle_guidance.html). Additionally, wind energy projects should follow the wind energy guidelines (http://www.fws.gov/windenergy/) for minimizing impacts to migratory birds and bats.

Guidance for minimizing impacts to migratory birds for projects including communications towers (e.g., cellular, digital television, radio, and emergency broadcast) can be found at: http://www.fws.gov/migratorybirds/CurrentBirdIssues/Hazards/towers/towers.htm; http://www.towerkill.com; and http://www.fws.gov/migratorybirds/CurrentBirdIssues/Hazards/towers/comtow.html.

We appreciate your concern for threatened and endangered species. The Service encourages Federal agencies to include conservation of threatened and endangered species into their project planning to further the purposes of the Act. Please include the Consultation Tracking Number in the header of this letter with any request for consultation or correspondence about your project that you submit to our office.

Attachment(s):

Official Species List

Official Species List

This list is provided pursuant to Section 7 of the Endangered Species Act, and fulfills the requirement for Federal agencies to "request of the Secretary of the Interior information whether any species which is listed or proposed to be listed may be present in the area of a proposed action".

This species list is provided by:

New England Ecological Services Field Office 70 Commercial Street, Suite 300 Concord, NH 03301-5094 (603) 223-2541

Project Summary

Consultation Code: 05E1NE00-2020-SLI-3067

Event Code: 05E1NE00-2020-E-09348

Project Name: Roy Bros., Inc, Billerica, MA

Project Type: SPILL / RELEASE

Project Description: Short term (less than 2 months) remediation of petroleum-impacted soil

and groundwater at 764 Boston Road, Billerica, MA. Soil excavation, dewatering, groundwater treatment and discharge is proposed to a storm drain that discharges to local surface water under an EPA RGP. Proposed remediation and discharge is anticipated to be completed in less than 8 weeks. No trees will be removed or effected by the proposed work.

Project Location:

Approximate location of the project can be viewed in Google Maps: https://www.google.com/maps/place/42.53573778641054N71.23665431263956W

Counties: Middlesex, MA

Endangered Species Act Species

There is a total of 1 threatened, endangered, or candidate species on this species list.

Species on this list should be considered in an effects analysis for your project and could include species that exist in another geographic area. For example, certain fish may appear on the species list because a project could affect downstream species.

IPaC does not display listed species or critical habitats under the sole jurisdiction of NOAA Fisheries¹, as USFWS does not have the authority to speak on behalf of NOAA and the Department of Commerce.

See the "Critical habitats" section below for those critical habitats that lie wholly or partially within your project area under this office's jurisdiction. Please contact the designated FWS office if you have questions.

1. <u>NOAA Fisheries</u>, also known as the National Marine Fisheries Service (NMFS), is an office of the National Oceanic and Atmospheric Administration within the Department of Commerce.

Mammals

NAME STATUS

Northern Long-eared Bat Myotis septentrionalis

Threatened

No critical habitat has been designated for this species. Species profile: https://ecos.fws.gov/ecp/species/9045

Critical habitats

THERE ARE NO CRITICAL HABITATS WITHIN YOUR PROJECT AREA UNDER THIS OFFICE'S JURISDICTION.

United States Department of the Interior

FISH AND WILDLIFE SERVICE

New England Ecological Services Field Office 70 Commercial Street, Suite 300 Concord, NH 03301-5094 Phone: (603) 223-2541 Fax: (603) 223-0104

http://www.fws.gov/newengland

IPaC Record Locator: 308-21130017 April 06, 2020

Subject: Consistency letter for the 'Roy Bros., Inc, Billerica, MA' project indicating that any take of the northern long-eared bat that may occur as a result of the Action is not prohibited under the ESA Section 4(d) rule adopted for this species at 50 CFR

§17.40(o).

Dear Meghan Proia:

The U.S. Fish and Wildlife Service (Service) received on April 06, 2020 your effects determination for the 'Roy Bros., Inc, Billerica, MA' (the Action) using the northern long-eared bat (*Myotis septentrionalis*) key within the Information for Planning and Consultation (IPaC) system. You indicated that no Federal agencies are involved in funding or authorizing this Action. This IPaC key assists users in determining whether a non-Federal action may cause "take" of the northern long-eared bat that is prohibited under the Endangered Species Act of 1973 (ESA) (87 Stat.884, as amended; 16 U.S.C. 1531 et seq.).

Based upon your IPaC submission, any take of the northern long-eared bat that may occur as a result of the Action is not prohibited under the ESA Section 4(d) rule adopted for this species at 50 CFR §17.40(o). Unless the Service advises you within 30 days of the date of this letter that your IPaC-assisted determination was incorrect, this letter verifies that the Action is not likely to result in unauthorized take of the northern long-eared bat.

Please report to our office any changes to the information about the Action that you entered into IPaC, the results of any bat surveys conducted in the Action area, and any dead, injured, or sick northern long-eared bats that are found during Action implementation.

If your Action proceeds as described and no additional information about the Action's effects on species protected under the ESA becomes available, no further coordination with the Service is required with respect to the northern long-eared bat.

[1] Take means to harass, harm, pursue, hunt, shoot, wound, kill, trap, capture, or collect, or to attempt to engage in any such conduct [ESA Section 3(19)].

Action Description

You provided to IPaC the following name and description for the subject Action.

1. Name


Roy Bros., Inc, Billerica, MA

2. Description

The following description was provided for the project 'Roy Bros., Inc, Billerica, MA':

Short term (less than 2 months) remediation of petroleum-impacted soil and groundwater at 764 Boston Road, Billerica, MA. Soil excavation, dewatering, groundwater treatment and discharge is proposed to a storm drain that discharges to local surface water under an EPA RGP. Proposed remediation and discharge is anticipated to be completed in less than 8 weeks. No trees will be removed or effected by the proposed work.

Approximate location of the project can be viewed in Google Maps: https://www.google.com/maps/place/42.53573778641054N71.23665431263956W

Determination Key Result

This non-Federal Action may affect the northern long-eared bat; however, any take of this species that may occur incidental to this Action is not prohibited under the final 4(d) rule at 50 CFR §17.40(o).

Determination Key Description: Northern Long-eared Bat 4(d) Rule

This key was last updated in IPaC on **May 15, 2017**. Keys are subject to periodic revision.

This key is intended for actions that may affect the threatened northern long-eared bat.

The purpose of the key for non-Federal actions is to assist determinations as to whether proposed actions are excepted from take prohibitions under the northern long-eared bat 4(d) rule.

If a non-Federal action may cause prohibited take of northern long-eared bats or other ESA-listed animal species, we recommend that you coordinate with the Service.

Determination Key Result

Based upon your IPaC submission, any take of the northern long-eared bat that may occur as a result of the Action is not prohibited under the ESA Section 4(d) rule adopted for this species at 50 CFR §17.40(o).

Qualification Interview

- Is the action authorized, funded, or being carried out by a Federal agency?

 No
- 2. Will your activity purposefully **Take** northern long-eared bats? *No*
- Is the project action area located wholly outside the White-nose Syndrome Zone?
 Automatically answered
 No
- 4. Have you contacted the appropriate agency to determine if your project is near a known hibernaculum or maternity roost tree?

Location information for northern long-eared bat hibernacula is generally kept in state Natural Heritage Inventory databases – the availability of this data varies state-by-state. Many states provide online access to their data, either directly by providing maps or by providing the opportunity to make a data request. In some cases, to protect those resources, access to the information may be limited. A web page with links to state Natural Heritage Inventory databases and other sources of information on the locations of northern long-eared bat roost trees and hibernacula is available at www.fws.gov/midwest/endangered/mammals/nleb/nhisites.html.

Yes

5. Will the action affect a cave or mine where northern long-eared bats are known to hibernate (i.e., hibernaculum) or could it alter the entrance or the environment (physical or other alteration) of a hibernaculum?

No

6. Will the action involve Tree Removal?

No

Project Questionnaire

If the project includes forest conversion, report the appropriate acreages below. Otherwise, type '0' in questions 1-3.

Estimated total acres of forest conversion:
 If known, estimated acres of forest conversion from April 1 to October 31
 If known, estimated acres of forest conversion from June 1 to July 31

If the project includes timber harvest, report the appropriate acreages below. Otherwise, type '0' in questions 4-6.

- 4. Estimated total acres of timber harvest *0*
- 5. If known, estimated acres of timber harvest from April 1 to October 31 $\it 0$
- 6. If known, estimated acres of timber harvest from June 1 to July 31 *0*

If the project includes prescribed fire, report the appropriate acreages below. Otherwise, type '0' in questions 7-9.

- 7. Estimated total acres of prescribed fire *0*
- 8. If known, estimated acres of prescribed fire from April 1 to October 31 $\it 0$
- 9. If known, estimated acres of prescribed fire from June 1 to July 31 σ

If the project includes new wind turbines, report the megawatts of wind capacity below. Otherwise, type '0' in question 10.

10. What is the estimated wind capacity (in megawatts) of the new turbine(s)? θ

Attachment F – MACRIS Historic Places Report

Attachment F – MACRIS Historic Places Report

Massachusetts Cultural Resource Information System MACRIS

MACRIS Search Results

Search Criteria: Town(s): Billerica; Street Name: Boston; Resource Type(s): Area, Building, Burial Ground, Object, Structure;

Inv. No.	Property Name	Street	Town	Year
BIL.314		95 Boston Post Rd	Billerica	c 1960
BIL.901	World War I and II Monument	Boston Rd	Billerica	c 1948
BIL.902	Billerica Meeting House Site Memorial	Boston Rd	Billerica	1901
BIL.903	Civil War Soldiers' Memorial	Boston Rd	Billerica	1873
BIL.904	Naval Cannon Monument	Boston Rd	Billerica	1907
BIL.905	Kohlrausch, Charles H. Memorial Fountain	Boston Rd	Billerica	1912
BIL.906	Stone Road Marker	Boston Rd	Billerica	
BIL.907	Billerica Town Common Bandstand	Boston Rd	Billerica	1890
BIL.912	Boston Road Bridge over Concord River	Boston Rd	Billerica	1920
BIL.919	Boston Road Bridge over Shawsheen River	Boston Rd	Billerica	1915
BIL.945	Billerica World War I and II Memorial	Boston Rd	Billerica	2004
BIL.965	Billerica Town Common	Boston Rd	Billerica	1655
BIL.130	Stearns, Joseph House	179 Boston Rd	Billerica	c 1825
BIL.131	Stearns, Sarah House	186 Boston Rd	Billerica	c 1848
BIL.132	Billerica Town Water Supply Pumping Station	250 Boston Rd	Billerica	1898
BIL.137	Mason, William D. House	314 Boston Rd	Billerica	1842
BIL.304	Robinson, James P. House	317 Boston Rd	Billerica	1910
BIL.13	Walnuts, The	327 Boston Rd	Billerica	1873
BIL.157	Shed, John House	329 Boston Rd	Billerica	c 1727
BIL.158	Farmer, Oliver House	336 Boston Rd	Billerica	c 1760
BIL.156	Fitch, David W. House	341 Boston Rd	Billerica	1886
BIL.155	Cole, Elmer E Allen, Arthur E. House	345 Boston Rd	Billerica	1886
BIL.154	Pillsbury, Dr. Harlin House	349 Boston Rd	Billerica	c 1875
BIL.153	Sanborn, William F. House	357 Boston Rd	Billerica	1869
BIL.48		367 Boston Rd	Billerica	c 1870
BIL.49	Chandler, H. P. House	371 Boston Rd	Billerica	c 1870
BIL.50	Foster, John D. House	373 Boston Rd	Billerica	c 1900
Monday, Apr	il 6, 2020			Page 1 of

lnv. No.	Property Name	Street	Town	Year
BIL.160	Baldwin, John House	376 Boston Rd	Billerica	c 1700
BIL.51	Foster, Dudley House	377 Boston Rd	Billerica	1838
BIL.52	Locke, Joseph House	381 Boston Rd	Billerica	1811
BIL.47		388 Boston Rd	Billerica	r 1880
BIL.46	Howe School	390 Boston Rd	Billerica	1852
BIL.44	Danforth, Ensign Jonathan Jr. House	396 Boston Rd	Billerica	1682
3IL.43	Richardson, John A. House	398 Boston Rd	Billerica	c 1885
3IL.42	Richardson, John O. House	400 Boston Rd	Billerica	c 1885
BIL.71	Martin's Block	403-405 Boston Rd	Billerica	c 1875
BIL.41	Preston, Marshall House	404 Boston Rd	Billerica	1822
3IL.297	Lyons, Thomas F. Building	406-408 Boston Rd	Billerica	c 1914
3IL.72	Richardson, Capt. William House	409 Boston Rd	Billerica	1822
3IL.73		411 Boston Rd	Billerica	c 1800
3IL.25	Faulkner, Luther W. House	414 Boston Rd	Billerica	1833
3IL.295		428 Boston Rd	Billerica	c 1925
3IL.294		430 Boston Rd	Billerica	c 1928
BIL.23	Abbott, James House	432 Boston Rd	Billerica	1796
BIL.22	Central Block	438 Boston Rd	Billerica	1894
BIL.76	Page, Arza House	447 Boston Rd	Billerica	1840
BIL.194	Heald, Benjamin K. House	475 Boston Rd	Billerica	c 1845
3IL.196		520 Boston Rd	Billerica	c 1840
3IL.195		524 Boston Rd	Billerica	c 1850
3IL.197	Hamlet, William - Farley, Caleb House	562 Boston Rd	Billerica	r 1680
3IL.198		577 Boston Rd	Billerica	r 1680

Monday, April 6, 2020 Page 2 of 2