

Proactive by Design

GEOTECHNICAL

ENVIRONMENTAL

LCOLOGIC

WATER

CONSTRUCTION MANAGEMENT

249 Vanderbilt Avenue Norwood, MA 02062 T: 781.278.3700 F: 781.278.5701 F: 781.278.5702 www.gza.com

May 4, 2020 File No. 02.0174198.00

United States Environmental Protection Agency – Region 1 1 Congress Street, Suite 1100 Boston, Massachusetts 02114-2023

Attention: Ms. Shauna Little

Re: Submittal of Notice of Intent (NOI)
Remediation General Permit

4 Birnie Avenue

Springfield, Massachusetts

Dear Ms. Little:

GZA GeoEnvironmental, Inc. (GZA), on behalf of our Client, the Massachusetts Department of Transportation (MassDOT), is submitting the attached Notice of Intent (NOI) form (Appendix A) for a Remediation General Permit (RGP) for the 4 Birnie Avenue Project (the Site). The NOI and RGP are required for dewatering activities due to the presence of a Massachusetts Department of Environmental Protection (MassDEP) disposal site near a portion of the project area with documented petroleum-related impacts to groundwater.

This NOI and RGP submittal are subject to the limitations included in Appendix A.

BACKGROUND

The Project includes the construction of a pedestrian walkway under the Connecticut River Railroad trestle in order to provide a safe pedestrian connection between the Brightwood and North End neighborhoods in Springfield and more specifically between the Chestnut Middle School area in Brightwood and the Birnie Avenue/Main Street area in the North End.

A portion of the Site is subject to a Massachusetts Contingency Plan (MCP) Activity and Use Limitation (AUL). The AUL is associated with MassDEP in place under Release Tracking Number (RTN) 1-11927. Project activities occurring in the area of the AUL are being conducted under a MCP Release Abatement Measure (RAM) Plan. Based on reviewed information, the identified impacts to soil and groundwater in the area of the AUL include extractable and volatile petroleum hydrocarbons (EPH and VPH).

NOTICE OF INTENT

GZA is submitting this NOI to request authorization for dewatered groundwater from the Site to be discharged to the existing stormwater drainage system following treatment. Treated groundwater will be discharged to a storm drain located on Plainfield Street, ultimately discharging to the Connecticut River. A BMPP meeting the requirements of the RGP has been prepared and will be posted at the Site and implemented during the time-period that temporary dewatering is occurring at the Site.

This NOI application includes the following items:

- Laboratory analytical results of the influent source and receiving water are included as Appendix B;
- Calculation sheets for establishing effluent limitations and MassDEP's approval of 7Q10 are included as Appendix C;
- Review of Areas of Critical Environmental Concern indicate that the proposed discharge is not to an ACEC.
 Review of Federally Listed Endangered and Threatened Species in Massachusetts indicate that the Northern
 Long-eared Bat is located state-wide. However, this species is not likely to be present at the Site Additionally,
 the discharge does not impact habitat. Review of the US Fish and Wildlife's online Information for Planning
 and Consultation (IPaC) service, indicates that federally listed species were not likely to be present within the
 action area of site activities (see Appendix D);
- Review of the Massachusetts Geographic Information Systems (MassGIS) DEP Priority Resources Map of Waltham shows that there are no ACECs and no habitats for Species of Special Concern or Threatened or Endangered Species within 500 feet of the subject site (Figure 4). Therefore, permit eligibility meets "Criterion A"; and
- Review of the electronic Massachusetts Cultural Resource Information System database, made available
 through Massachusetts Historical Commission, found that the are no properties listed or eligible for listing on
 the National Registry of Historic Places under the National Historic Preservation Act. Therefore, there will be
 no impact associated with this discharge to such properties. The documentation of this review can be found
 in Appendix E.

Please do not hesitate to contact the undersigned at (781) 278-3700 if you have any questions or require further information.

Very truly yours, GZA GEOENVIRONMENTAL, INC.

William Davis

Assistant Project Manager

Neal Carey, LSP
Consultant Reviewer

Scott Ollerhead Project Manager

Enclosures:

Figures: Figure 1 - Site Locus Map

Figure 2 – Site Plan

Figure 3 – Discharge Outfall Location Plan

Figure 4 – Groundwater Treatment System Process Flow Diagram

Figure 5 – Site Scoring Map Showing 500 Foot & ½ Mile Radii

Appendices: Appendix A - Notice of Intent Form

Appendix B – Influent and Receiving Water Laboratory Analytical Reports

Appendix C – Calculation Sheets for Effluent Limitations

Appendix D – ACEC and Federally Listed Endangered and Threatened Species in Massachusetts Evaluation

Appendix E – MACRIS Search Results

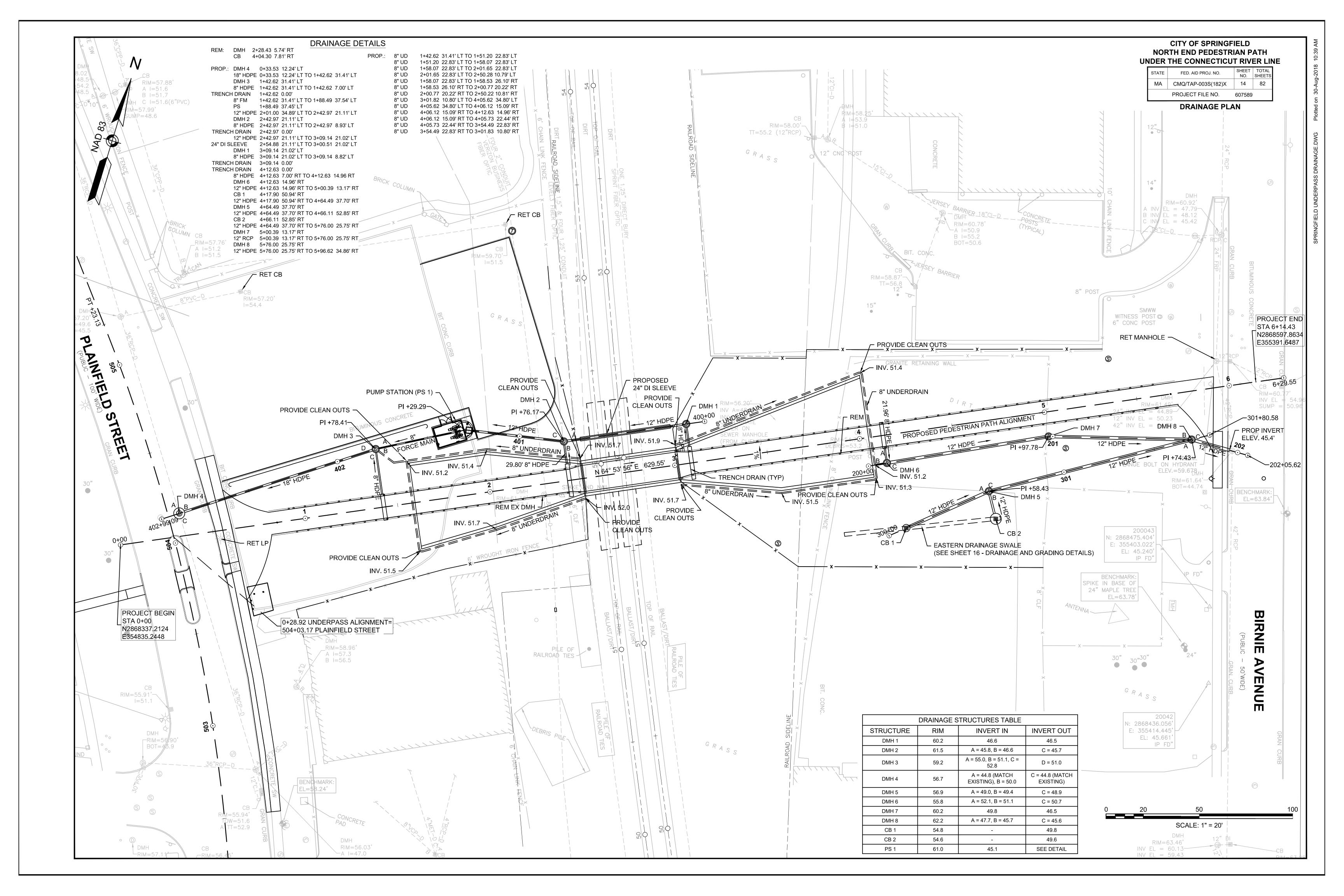

K:\174198\174198-00.SMO\RGP\NOI Cover Letter May2020.docx

FIGURE 1Site Locus Map

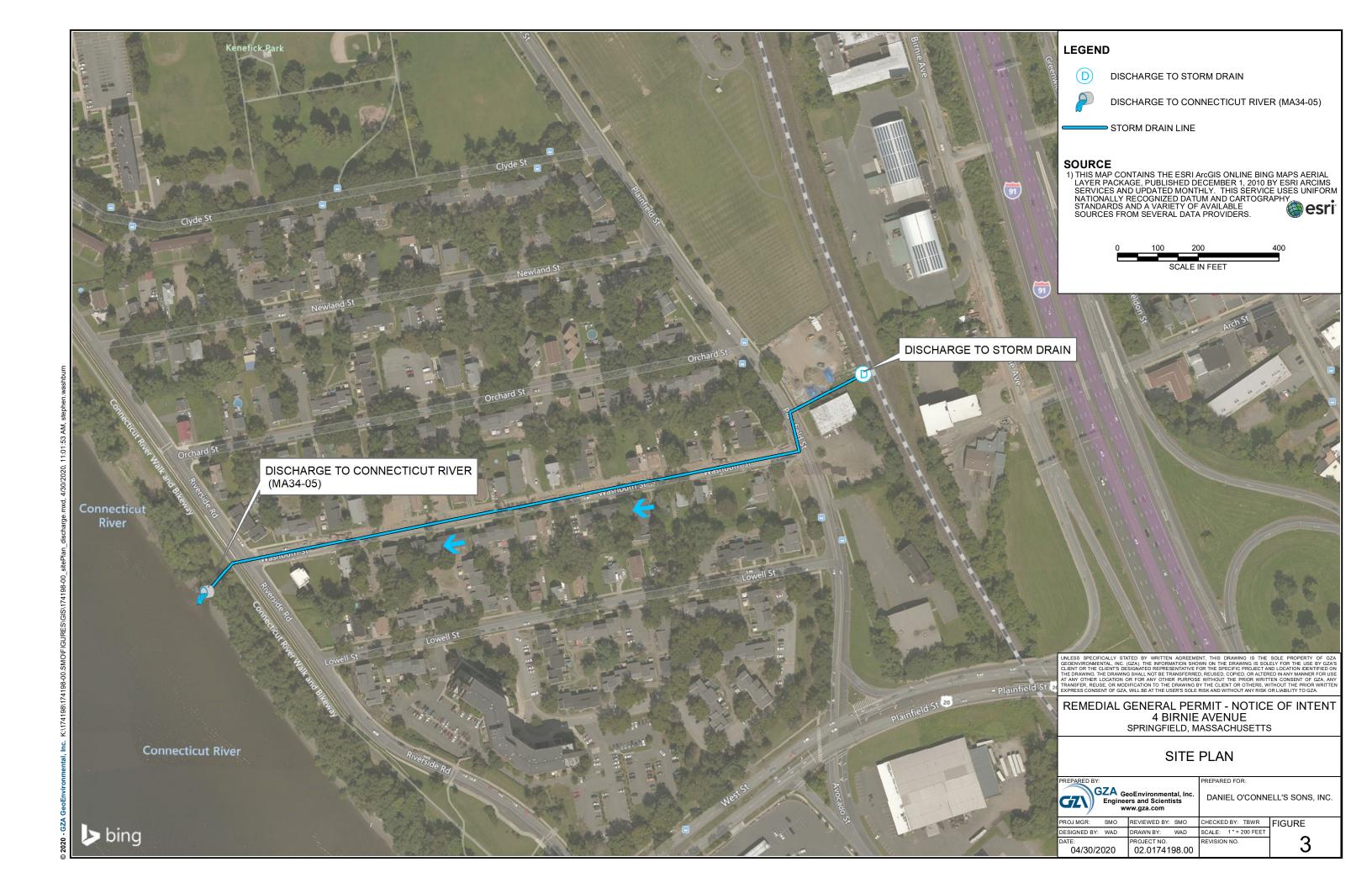

FIGURE 2 Site Plan

FIGURE 3

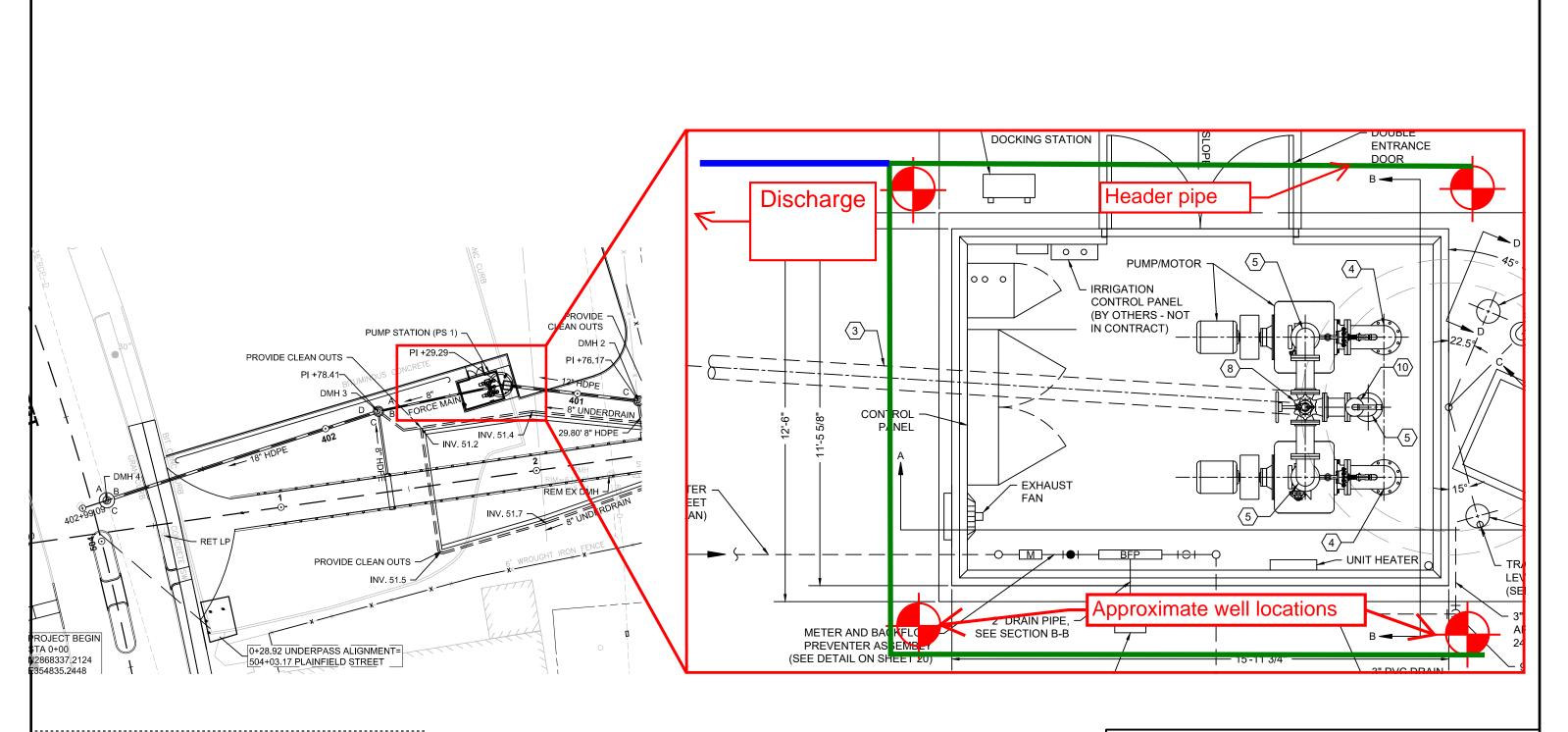

Discharge Outfall Location Plan

FIGURE 4

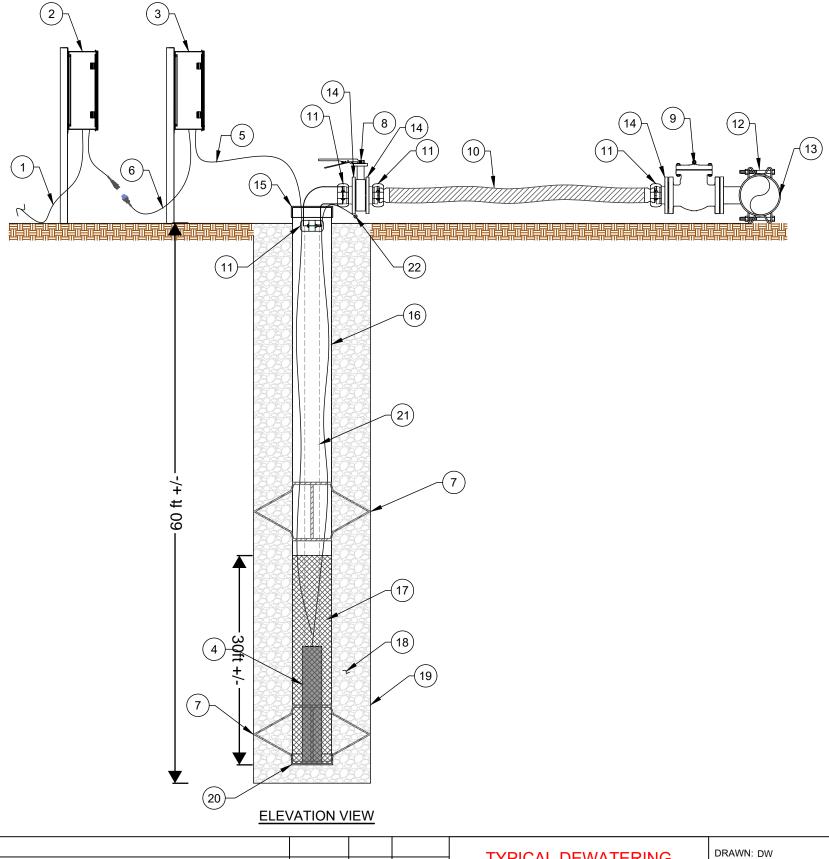
Groundwater Treatment System Process Flow Diagram

Notes:

- 1. Background image used for reference only.
- 2. Well and wellpoint locations are approximate and are subject to field adjustment.
- 3. Wells will be developed and cleaned and the discharge will be verified to be clean prior to discharge.

MDOT HD North End Pump Station

Springfield, Massachusetts Dewatering System Plan View



Drawn By: DW

Date: 7/01/19

DWG

			MATERIAL LIST BELOW LIST IS TYPICAL; MATERIAL SUBSTITUTIONS MADE AS APPROPRIATE							
NO.	QTY.	U.O.M	EQUIPMENT							
1	1	EA	ECTRICAL DISTRIBUTION CABLE (BY OTHERS)							
2	1	EA	JUNCTION BOX w/ 30AMP WEATHER TIGHT TWISTLOCK CONNECTOR (BY OTHERS)							
3	1	EA	PUMP CONTROL BOX							
4	1	EA	SUBMERSIBLE TURBINE PUMP (10HP , 460V, 3 PHASE)							
5	1	EA	PUMP CABLE							
6	1	EA	PIGTAIL W/ 30AMP WEATHER TIGHT TWISTLOCK PLUG- TO CONNECT CONTROL BOX TO JUNCTION BOX- FOR UP TO 15HP @460V							
7	-	EA	CENTRALIZER (AS REQUIRED)							
8	1	EA	BUTTERFLY VALVE, SUPPORTED TO PREVENT EXCESS WEIGHT ON ELBOW							
9	1	EA	FLANGED CHECK VALVE							
10	1	LF	HOSE,							
11	4	EA	COUPLING							
12	1	EA	STEEL TAPPING SLEEVE							
13	1	EA	DISCHARGE PIPE							
14	3	EA	FLANGE X GROOVE ADAPTER							
15	1	EA	WELL CAP,							
16	1	EA	PVC CASING (8-12")							
17	1	EA	WELLSCREEN (8-12")							
18	1	EA	WELLPACK (2s filter sand or similar)							
19	1	EA	BOREHOLE (24-32")							
20	1	EA	PVC BOTTOM CAP							
21	1	EA	RISER PIPE-							
22	1	EA	SAFETY CABLE FOR PUMP RETRIEVAL							

GRIFFIN DEWATERING L.L.C.

GRIFFIN

5306 CLINTON DRIVE HOUSTON, TX 77020 TEL: (713) 676-8000

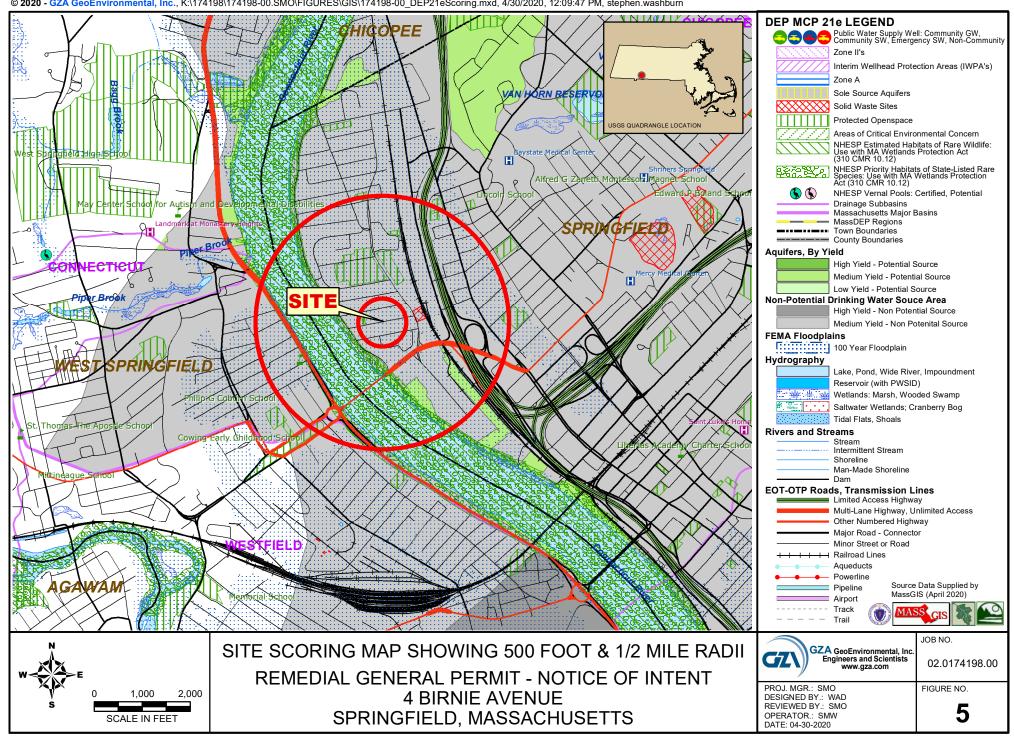
FAX: (713) 676-8080

E MAIL: griffin@griffindewatering.com WEBSITE: www.griffindewatering.com

REV.	DESCRIPTION	DATE	BY	APPVD.			
This drawing is the property of Griffin Dewatering Corporation and its associated companies and is intended only for its sole or authorized use. It may contain proprietary, public or authorized third party information. Any alteration of this drawing is prohibited, without the express, written consent of an authorized representative of Griffin Dewatering Corporation.							

TYPICAL DEWATERING **WELL DETAIL**

SCALE: N.T.S.


DWG: 02

DATE: 7/1/19 TYPICAL DEWATERING WELLS w/6" AND LARGER DISCHARGE

FIGURE 5

Site Scoring Map 500 Foot and ½ Mile Radii

APPENDIX A

NOTICE OF INTENT FORM

II. Suggested Format for the Remediation General Permit Notice of Intent (NOI)

A. General site information:

1. Name of site:	Site address:						
	Street:						
	City:		State:	Zip:			
2. Site owner	Contact Person:						
	Telephone:	Email:					
	Mailing address:						
	Street:						
Owner is (check one): ☐ Federal ☐ State/Tribal ☐ Private ☐ Other; if so, specify:	City:		State:	Zip:			
3. Site operator, if different than owner	Contact Person:						
	Telephone:	Email:					
	Mailing address:						
	Street:						
	City:		State:	Zip:			
4. NPDES permit number assigned by EPA:	5. Other regulatory program(s) that apply to the site (check all that apply):						
	☐ MA Chapter 21e; list RTN(s): ☐ CERC		LA				
NPDES permit is (check all that apply: \square RGP \square DGP \square CGP	☐ NH Groundwater Management Permit or	☐ UIC Program					
☐ MSGP ☐ Individual NPDES permit ☐ Other; if so, specify:	Groundwater Release Detection Permit:	☐ POTW Pretreatment					
· · · · · · · · · · · · · · · · · · ·		☐ CWA Section 404					

B	Receiving water information:
1	Name of receiving water(s).

1. Name of receiving water(s):	Waterbody identification of receiving water	(s): Classific	ation of receiving water(s):						
Receiving water is (check any that apply): □ Outstar	nding Resource Water □ Ocean Sanctuary □ territo	rial sea □ Wild and Scenic Ri	ver						
2. Has the operator attached a location map in accord	lance with the instructions in B, above? (check one)	: □ Yes □ No							
Are sensitive receptors present near the site? (check of the sensitive receptors) that is the sensitive receptors present near the site?	one): □ Yes □ No								
3. Indicate if the receiving water(s) is listed in the Stapollutants indicated. Also, indicate if a final TMDL in 4.6 of the RGP.									
4. Indicate the seven day-ten-year low flow (7Q10) of the receiving water determined in accordance with the instructions in Appendix V for sites located in Massachusetts and Appendix VI for sites located in New Hampshire.									
5. Indicate the requested dilution factor for the calculaccordance with the instructions in Appendix V for s									
6. Has the operator received confirmation from the a If yes, indicate date confirmation received:7. Has the operator attached a summary of receiving	-								
(check one): ☐ Yes ☐ No									
C. Source water information:									
1. Source water(s) is (check any that apply):									
☐ Contaminated groundwater	☐ Contaminated surface water	☐ The receiving water	☐ Potable water; if so, indicate municipality or origin:						
Has the operator attached a summary of influent	Has the operator attached a summary of influent	☐ A surface water other							
sampling results as required in Part 4.2 of the RGP in accordance with the instruction in Appendix VIII? (check one): sampling results as required in Part 4.2 of the RGP in accordance with the instruction in Appendix VIII? (check one): sampling results as required in Part 4.2 of the RGP in accordance with the instruction in Appendix VIII? (check one):									
□ Yes □ No	□ Yes □ No								

2. Source water contaminants:	
a. For source waters that are contaminated groundwater or contaminated surface water, indicate are any contaminants present that are not included in	b. For a source water that is a surface water other than the receiving water, potable water or other, indicate any contaminants present at the maximum concentration in accordance
the RGP? (check one): ☐ Yes ☐ No If yes, indicate the contaminant(s) and the maximum concentration present in accordance with the instructions in Appendix VIII.	with the instructions in Appendix VIII? (check one): □ Yes □ No
3. Has the source water been previously chlorinated or otherwise contains resid	dual chlorine? (check one): ☐ Yes ☐ No
D. Discharge information	
1.The discharge(s) is a(n) (check any that apply): \Box Existing discharge \Box New	w discharge □ New source
Outfall(s):	Outfall location(s): (Latitude, Longitude)
Discharges enter the receiving water(s) via (check any that apply): □ Direct di	scharge to the receiving water \Box Indirect discharge, if so, specify:
☐ A private storm sewer system ☐ A municipal storm sewer system If the discharge enters the receiving water via a private or municipal storm sew	ver system:
Has notification been provided to the owner of this system? (check one): □ You	•
Has the operator has received permission from the owner to use such system for obtaining permission:	or discharges? (check one): \square Yes \square No, if so, explain, with an estimated timeframe for
Has the operator attached a summary of any additional requirements the owner	of this system has specified? (check one): \square Yes \square No
Provide the expected start and end dates of discharge(s) (month/year):	
Indicate if the discharge is expected to occur over a duration of: \Box less than 1	2 months □ 12 months or more □ is an emergency discharge
Has the operator attached a site plan in accordance with the instructions in D, a	above? (check one): Yes No

2. Activity Category: (check all that apply)	3. Contamination Type Category: (check all that apply)				
	a. If Activity Categ	ory I or II: (check all that apply)			
	 □ A. Inorganics □ B. Non-Halogenated Volatile Organic □ C. Halogenated Volatile Organic Cor □ D. Non-Halogenated Semi-Volatile Organic □ E. Halogenated Semi-Volatile Organi □ F. Fuels Parameters 	mpounds Organic Compounds			
 □ I – Petroleum-Related Site Remediation □ II – Non-Petroleum-Related Site Remediation 	b. If Activity Category III, IV	V, V, VI, VII or VIII: (check either G or H)			
 □ III – Non-Petroleum-Related Site Remediation □ III – Contaminated Site Dewatering □ IV – Dewatering of Pipelines and Tanks □ V – Aquifer Pump Testing □ VI – Well Development/Rehabilitation □ VII – Collection Structure Dewatering/Remediation □ VIII – Dredge-Related Dewatering 	□ G. Sites with Known Contamination c. If Category III-G, IV-G, V-G, VI-G, VII-G or VIII-G: (check all that apply) □ A. Inorganics □ B. Non-Halogenated Volatile Organic Compounds □ C. Halogenated Volatile Organic Compounds □ D. Non-Halogenated Semi-Volatile Organic Compounds □ E. Halogenated Semi-Volatile Organic Compounds □ F. Fuels Parameters	□ H. Sites with Unknown Contamination d. If Category III-H, IV-H, V-H, VI-H, VII-H or VIII-H Contamination Type Categories A through F apply			

4. Influent and Effluent Characteristics

	Known	Known				Infl	uent	Effluent Limitations		
Parameter	or believed absent	or believed present	# of samples	Test method (#)	Detection limit (µg/l)	Daily maximum (µg/l)	Daily average (µg/l)	TBEL	WQBEL	
A. Inorganics										
Ammonia								Report mg/L		
Chloride								Report µg/l		
Total Residual Chlorine								0.2 mg/L		
Total Suspended Solids								30 mg/L		
Antimony								206 μg/L		
Arsenic								104 μg/L		
Cadmium								10.2 μg/L		
Chromium III								323 μg/L		
Chromium VI								323 μg/L		
Copper								242 μg/L		
Iron								5,000 μg/L		
Lead								160 μg/L		
Mercury								0.739 μg/L		
Nickel								1,450 μg/L		
Selenium								235.8 μg/L		
Silver								35.1 μg/L		
Zinc								420 μg/L		
Cyanide								178 mg/L		
B. Non-Halogenated VOCs	3									
Total BTEX								100 μg/L		
Benzene								5.0 μg/L		
1,4 Dioxane								200 μg/L		
Acetone								7.97 mg/L		
Phenol								1,080 µg/L		

	Known	Known		Inf	luent	Effluent Limitations	
Parameter	or believed absent present # of samples # of samples Test method		TBEL	WQBEL			
C. Halogenated VOCs							
Carbon Tetrachloride						4.4 μg/L	
1,2 Dichlorobenzene						600 μg/L	
1,3 Dichlorobenzene						320 μg/L	
1,4 Dichlorobenzene						5.0 μg/L	
Total dichlorobenzene						763 µg/L in NH	
1,1 Dichloroethane						70 μg/L	
1,2 Dichloroethane						5.0 μg/L	
1,1 Dichloroethylene						3.2 µg/L	
Ethylene Dibromide						0.05 μg/L	
Methylene Chloride						4.6 μg/L	
1,1,1 Trichloroethane						200 μg/L	
1,1,2 Trichloroethane						5.0 μg/L	
Trichloroethylene						5.0 μg/L	
Tetrachloroethylene						5.0 μg/L	
cis-1,2 Dichloroethylene						70 μg/L	
Vinyl Chloride						2.0 μg/L	
D. Non-Halogenated SVO	Cs						
Total Phthalates						190 μg/L	
Diethylhexyl phthalate						101 μg/L	
Total Group I PAHs						1.0 μg/L	
Benzo(a)anthracene						_	
Benzo(a)pyrene						_	
Benzo(b)fluoranthene						_	
Benzo(k)fluoranthene						As Total PAHs	
Chrysene						_	
Dibenzo(a,h)anthracene						_	
Indeno(1,2,3-cd)pyrene							

	Known	Known				Influent		Effluent Limitations		
Parameter	or believed absent	or believed present	# of samples	Test method (#)	Detection limit (µg/l)	Daily maximum (µg/l)	Daily average (µg/l)	TBEL	WQBEL	
Total Group II PAHs								100 μg/L		
Naphthalene								20 μg/L		
E. Halogenated SVOCs										
Total PCBs								0.000064 µg/L		
Pentachlorophenol								1.0 μg/L		
	1			•						
F. Fuels Parameters Total Petroleum	<u> </u>	1	1	1		1 1		<u> </u>		
Hydrocarbons								5.0 mg/L		
Ethanol								Report mg/L		
Methyl-tert-Butyl Ether								70 μg/L		
tert-Butyl Alcohol								120 μg/L in MA 40 μg/L in NH		
tert-Amyl Methyl Ether								90 μg/L in MA 140 μg/L in NH		
Other (i.e., pH, temperatur	re, hardness,	salinity, LC	50, addition	al pollutar	ats present);	if so, specify:				

E. Treatment system information

1. Indicate the type(s) of treatment that will be applied to effluent prior to discharge: (check all that apply)	
☐ Adsorption/Absorption ☐ Advanced Oxidation Processes ☐ Air Stripping ☐ Granulated Activated Carbon ("GAC")/Liquid Phase Carbon Adsorption	
☐ Ion Exchange ☐ Precipitation/Coagulation/Flocculation ☐ Separation/Filtration ☐ Other; if so, specify:	
2. Provide a written description of all treatment system(s) or processes that will be applied to the effluent prior to discharge.	
Identify each major treatment component (check any that apply):	
☐ Fractionation tanks☐ Equalization tank ☐ Oil/water separator ☐ Mechanical filter ☐ Media filter	
☐ Chemical feed tank ☐ Air stripping unit ☐ Bag filter ☐ Other; if so, specify:	
Indicate if either of the following will occur (check any that apply):	
□ Chlorination □ De-chlorination	
3. Provide the design flow capacity in gallons per minute (gpm) of the most limiting component.	
Indicate the most limiting component:	
Is use of a flow meter feasible? (check one): \square Yes \square No, if so, provide justification:	
Provide the proposed maximum effluent flow in gpm.	
Trovide the proposed maximum errident now in gpin.	
Provide the average effluent flow in gpm.	
If Activity Category IV applies, indicate the estimated total volume of water that will be discharged:	
4. Has the operator attached a schematic of flow in accordance with the instructions in E, above? (check one): ☐ Yes ☐ No	

F. Chemical and additive information

r. Chemical and additive information
1. Indicate the type(s) of chemical or additive that will be applied to effluent prior to discharge or that may otherwise be present in the discharge(s): (check all that apply)
□ Algaecides/biocides □ Antifoams □ Coagulants □ Corrosion/scale inhibitors □ Disinfectants □ Flocculants □ Neutralizing agents □ Oxidants □ Oxygen □
scavengers □ pH conditioners □ Bioremedial agents, including microbes □ Chlorine or chemicals containing chlorine □ Other; if so, specify:
2. Provide the following information for each chemical/additive, using attachments, if necessary:
a. Product name, chemical formula, and manufacturer of the chemical/additive; b. Purpose or use of the chemical/additive or remedial agent; c. Material Safety Data Sheet (MSDS) and Chemical Abstracts Service (CAS) Registry number for each chemical/additive; d. The frequency (hourly, daily, etc.), duration (hours, days), quantity (maximum and average), and method of application for the chemical/additive; e. Any material compatibility risks for storage and/or use including the control measures used to minimize such risks; and f. If available, the vendor's reported aquatic toxicity (NOAEL and/or LC50 in percent for aquatic organism(s)).
3. Has the operator attached an explanation which demonstrates that the addition of such chemicals/additives may be authorized under this general permit in accordance
with the instructions in F, above? (check one): \square Yes \square No; if no, has the operator attached data that demonstrates each of the 126 priority pollutants in CWA Section 307(a) and 40 CFR Part 423.15(j)(1) are non-detect in discharges with the addition of the proposed chemical/additive?
(check one): □ Yes □ No
G. Endangered Species Act eligibility determination
1. Indicate under which criterion the discharge(s) is eligible for coverage under this general permit:
□ FWS Criterion A : No endangered or threatened species or critical habitat are in proximity to the discharges or related activities or come in contact with the "action area".
□ FWS Criterion B : Formal or informal consultation with the FWS under section 7 of the ESA resulted in either a no jeopardy opinion (formal consultation) or a written concurrence by FWS on a finding that the discharges and related activities are "not likely to adversely affect" listed species or critical habitat
(informal consultation). Has the operator completed consultation with FWS? (check one): ☐ Yes ☐ No; if no, is consultation underway? (check one): ☐
Yes □ No
□ FWS Criterion C : Using the best scientific and commercial data available, the effect of the discharges and related activities on listed species and critical habitat have been evaluated. Based on those evaluations, a determination is made by EPA, or by the operator and affirmed by EPA, that the discharges and related activities will have "no effect" on any federally threatened or endangered listed species or designated critical habitat under the jurisdiction of the
FWS. This determination was made by: (check one) \square the operator \square EPA \square Other; if so, specify:

□ NMFS Criterion : A determination made by EPA is affirmed by the operator that the discharges and related activities will have "no effect" or are "not likely to adversely affect" any federally threatened or endangered listed species or critical habitat under the jurisdiction of NMFS and will not result in any take of
listed species. Has the operator previously completed consultation with NMFS? (check one): ☐ Yes ☐ No
2. Has the operator attached supporting documentation of ESA eligibility in accordance with the instructions in Appendix I, and G, above? (check one): \square Yes \square No
Does the supporting documentation include any written concurrence or finding provided by the Services? (check one): Yes No; if yes, attach.
H. National Historic Preservation Act eligibility determination
1. Indicate under which criterion the discharge(s) is eligible for coverage under this general permit:
□ Criterion A : No historic properties are present. The discharges and discharge-related activities (e.g., BMPs) do not have the potential to cause effects on historic properties.
☐ Criterion B: Historic properties are present. Discharges and discharge related activities do not have the potential to cause effects on historic properties.
□ Criterion C : Historic properties are present. The discharges and discharge-related activities have the potential to have an effect or will have an adverse effect on historic properties.
2. Has the operator attached supporting documentation of NHPA eligibility in accordance with the instructions in H, above? (check one): ☐ Yes ☐ No
Does the supporting documentation include any written agreement with the State Historic Preservation Officer (SHPO), Tribal Historic Preservation Officer (TPHO), or
other tribal representative that outlines measures the operator will carry out to mitigate or prevent any adverse effects on historic properties? (check one): \Box Yes \Box No
I. Supplemental information
Describe any supplemental information being provided with the NOI. Include attachments if required or otherwise necessary.
Has the operator attached data, including any laboratory case narrative and chain of custody used to support the application? (check one): \square Yes \square No
Has the operator attached the certification requirement for the Best Management Practices Plan (BMPP)? (check one): ☐ Yes ☐ No

J. Certification requirement

I certify under penalty of law that this document and all attachments were prepared under my direction or supervision in accordance with a system designed to assure that qualified personnel properly gathered and evaluated the information submitted. Based on my inquiry of the person or persons who manage the system, or those persons directly responsible for gathering the information, the information submitted is, to the best of my knowledge and belief, true, accurate, and complete. I have no personal knowledge that the information submitted is other than true, accurate, and complete. I am aware that there are significant penalties for submitting false information, including the possibility of fine and imprisonment for knowing violations.									
BMPP certification statement	A BMPP meeting the requirements of this general permit will be impled discharge.	emented upon in	itiation of the						
Notification provided to the a	ppropriate State, including a copy of this NOI, if required.	Check one: Yes ■	No 🗆						
Notification provided to the n	nunicipality in which the discharge is located, including a copy of this NOI, if requested.	Check one: Yes ■	No 🗆						
Notification provided to the o discharges, including a copy of	owner of a private or municipal storm sewer system, if such system is used for site	Check one: Yes	No 🗆 NA 🗆						
Permission obtained from the	owner of a private or municipal storm sewer system, if such system is used for site tional conditions. If no, attach explanation and timeframe for obtaining permission.	Check one: Yes ■	No □ NA □						
Notification provided to the owner/operator of the area associated with activities covered by an additional discharge									
permit(s). Additional discharge	ge permit is (check one): RGP DGP CGP MSGP Individual NPDES permit	Check one: Yes	No ■ NA □						
☐ Other; if so, specify:									
gnature:	Da	May 7, 2020 ite:							

Print Name and Title: John Donoghue, District Two Construction Engineer MassD

APPENDIX BLABORATORY ANALYTICAL REPORTS

Thursday, April 30, 2020

Attn: Mr. Scott Ollerhead GZA GeoEnvironmental Inc 249 Vanderbilt Ave Norwood, MA 02062

Project ID: 174198 SDG ID: GCF57711

Sample ID#s: CF57711 - CF57712, CF57886

This laboratory is in compliance with the NELAC requirements of procedures used except where indicated.

This report contains results for the parameters tested, under the sampling conditions described on the Chain Of Custody, as received by the laboratory. This report is incomplete unless all pages indicated in the pagination at the bottom of the page are included.

A scanned version of the COC form accompanies the analytical report and is an exact duplicate of the original.

Enclosed are revised Analysis Report pages. Please replace and discard the original pages. If you are the client above and have any questions concerning this testing, please do not hesitate to contact Phoenix Client Services at ext.200. The contents of this report cannot be discussed with anyone other than the client listed above without their written consent.

Sincerely yours,

Phyllis/Shiller

Laboratory Director

NELAC - #NY11301 CT Lab Registration #PH-0618 MA Lab Registration #M-CT007 ME Lab Registration #CT-007 NH Lab Registration #213693-A,B NJ Lab Registration #CT-003 NY Lab Registration #11301 PA Lab Registration #68-03530 RI Lab Registration #63 UT Lab Registration #CT00007 VT Lab Registration #VT11301

587 East Middle Turnpike, P.O.Box 370, Manchester, CT 06045 Tel. (860) 645-1102 Fax (860) 645-0823

SDG Comments

April 30, 2020

SDG I.D.: GCF57711

Phoenix reporting levels may exceed those referenced in the CAM protocol. Please refer to criteria sheet for comparisons to requested MCP standards.

Version 2: Per client request Phthalates were added on.

Version 3: Per client request additional compounds were added on.

587 East Middle Turnpike, P.O.Box 370, Manchester, CT 06045 Tel. (860) 645-1102 Fax (860) 645-0823

Sample Id Cross Reference

April 30, 2020

SDG I.D.: GCF57711

Project ID: 174198

Client Id	Lab Id	Matrix
MW-1	CF57711	WATER
CT-R1	CF57712	WATER
ТВ	CF57886	WATER

587 East Middle Turnpike, P.O.Box 370, Manchester, CT 06045 Tel. (860) 645-1102 Fax (860) 645-0823

Analysis Report

April 30, 2020

FOR: Attn: Mr. Scott Ollerhead

GZA GeoEnvironmental Inc

249 Vanderbilt Ave Norwood, MA 02062

Sample Information Custody Information Date <u>Time</u> WATER Collected by: 03/27/20 11:10 Matrix: Received by: Location Code: GZA-MA LB 03/27/20 14:16 Standard see "By" below

Rush Request: Standard Analyzed by: see "By" P.O.#:

Laboratory Data

SDG ID: GCF57711

Phoenix ID: CF57711

Project ID: 174198 Client ID: MW-1

		RL/					
Parameter	Result	PQL	Units	Dilution	Date/Time	Ву	Reference
Silver	< 0.001	0.001	mg/L	1	03/31/20	EK	SW6010D/E200.7
Arsenic	< 0.004	0.004	mg/L	1	03/31/20	EK	SW6010D/E200.7
Cadmium	< 0.001	0.001	mg/L	1	03/31/20	EK	SW6010D/E200.7
Chromium	0.005	0.001	mg/L	1	03/31/20	EK	SW6010D/E200.7
Copper	< 0.005	0.005	mg/L	1	03/31/20	EK	SW6010D/E200.7
Iron	9.18	0.010	mg/L	1	03/31/20	EK	SW6010D/E200.7
Hardness (CaCO3)	45.3	0.1	mg/L	1	04/01/20		E200.7
Mercury	< 0.0002	0.0002	mg/L	1	03/31/20	RS	SW7470/E245.1
Nickel	0.010	0.001	mg/L	1	03/31/20	TH	SW6010D/E200.7
Lead	< 0.002	0.002	mg/L	1	03/31/20	EK	SW6010D/E200.7
Antimony	< 0.005	0.005	mg/L	1	03/31/20	EK	SW6010D/E200.7
Selenium	< 0.010	0.010	mg/L	1	03/31/20	EK	SW6010D/E200.7
Trivalent Chromium	0.005	0.001	mg/L	1	03/31/20		Calculation
Zinc	0.021	0.004	mg/L	1	03/31/20	EK	SW6010D/E200.7
Chloride	< 3.0	3.0	mg/L	1	03/27/20	TB	SM4500CLE-11
Chlorine Residual	< 0.02	0.02	mg/L	1	03/27/20 18:55	0	SM4500Cl-G-00
Chromium, Hexavalent	< 0.01	0.01	mg/L	1	03/27/20 18:33	0	SM3500CRB-11
Ammonia as Nitrogen	< 0.05	0.05	mg/L	1	03/31/20	KDB	E350.1
Oil and Grease by EPA 1664A	< 1.4	1.4	mg/L	1	03/30/20	MSF	EPA 1664
Phenolics	< 0.015	0.015	mg/L	1	03/30/20	MSF	E420.4
Total Cyanide	< 0.010	0.010	mg/L	1	03/31/20	EG	SM 4500 CN-11
Total Suspended Solids	22	5.0	mg/L	1	03/30/20	ARG	SM 2540D-11
Mercury Digestion	Completed				03/30/20	3/RA/LS/	RSW7470/245.1
PCB Extraction	Completed				03/27/20	С	E608.3
Semi-Volatile Extraction	Completed				03/31/20	P/AK	E625.1
Total Metals Digestion	Completed				03/30/20	AG	

Project ID: 174198 Phoenix I.D.: CF57711

Client ID: MW-1

Client ID. MWV-1		RL/						
Parameter	Result	PQL	Units	Dilution	Date/Time	Ву	Reference	
Polychlorinated Biphenyls								
PCB-1016	ND	0.048	ug/L	1	03/31/20	SC	E608.3	
PCB-1221	ND	0.048	ug/L	1	03/31/20	SC	E608.3	
PCB-1232	ND	0.048	ug/L	1	03/31/20	SC	E608.3	
PCB-1242	ND	0.048	ug/L	1	03/31/20	SC	E608.3	
PCB-1248	ND	0.048	ug/L	1	03/31/20	SC	E608.3	
PCB-1254	ND	0.048	ug/L	1	03/31/20	SC	E608.3	
PCB-1260	ND	0.048	ug/L	1	03/31/20	SC	E608.3	
PCB-1262	ND	0.048	ug/L	1	03/31/20	SC	E608.3	
PCB-1268	ND	0.048	ug/L	1	03/31/20	SC	E608.3	
QA/QC Surrogates								
% DCBP	66		%	1	03/31/20	SC	30 - 150 %	
% DCBP (Confirmation)	69		%	1	03/31/20	SC	30 - 150 %	
% TCMX	66		%	1	03/31/20	SC	30 - 150 %	
% TCMX (Confirmation)	64		%	1	03/31/20	SC	30 - 150 %	
1,2-Dibromoethane (EDB)	ND	0.01	ug/L	1	03/30/20	CG	E504.1	
Acrolein, Acrylonitrile,	2 CEVE							
2-Chloroethyl vinyl ether	ND	5.0	ug/L	1	03/27/20	МН	E624.1 As is	
Acrolein	ND	5.0	ug/L	1	03/27/20	MH	E624.1 As is	
Acrylonitrile	ND	5.0	ug/L	1	03/27/20	МН	E624.1 As is	
<u>Volatiles</u>								
1,1,1-Trichloroethane	ND	0.50	ug/L	1	03/27/20	МН	E624.1	
1,1,2,2-tetrachloroethane	ND	0.50	ug/L	1	03/27/20	МН	E624.1	
1,1,2-Trichloroethane	ND	0.50	ug/L	1	03/27/20	МН	E624.1	
1,1-Dichloroethane	ND	0.50	ug/L	1	03/27/20	МН	E624.1	
1,1-Dichloroethene	ND	0.50	ug/L	1	03/27/20	МН	E624.1	
1,2-Dichlorobenzene	ND	0.50	ug/L	1	03/27/20	МН	E624.1	
1,2-Dichloroethane	ND	0.50	ug/L	1	03/27/20	МН	E624.1	
1,2-Dichloropropane	ND	0.50	ug/L	1	03/27/20	МН	E624.1	
1,3-Dichlorobenzene	ND	0.50	ug/L	1	03/27/20	МН	E624.1	
1,4-Dichlorobenzene	ND	0.50	ug/L	1	03/27/20	МН	E624.1	
Benzene	ND	0.50	ug/L	1	03/27/20	МН	E624.1	
Bromodichloromethane	ND	0.50	ug/L	1	03/27/20	МН	E624.1	
Bromoform	ND	0.50	ug/L	1	03/27/20	МН	E624.1	
Bromomethane	ND	0.50	ug/L	1	03/27/20	МН	E624.1	
Carbon tetrachloride	ND	0.50	ug/L	1	03/27/20	МН	E624.1	
Chlorobenzene	ND	0.50	ug/L	1	03/27/20	МН	E624.1	
Chloroethane	ND	0.50	ug/L	1	03/27/20	МН	E624.1	
Chloroform	ND	0.50	ug/L	1	03/27/20	МН	E624.1	
Chloromethane	ND	0.50	ug/L	1	03/27/20	МН	E624.1	
cis-1,2-Dichloroethene	ND	0.50	ug/L	1	03/27/20	МН	E624.1	
cis-1,3-Dichloropropene	ND	0.40	ug/L	1	03/27/20	MH	E624.1	
Dibromochloromethane	ND	0.50	ug/L	1	03/27/20	MH	E624.1	
Ethylbenzene	ND	0.50	ug/L	1	03/27/20	MH	E624.1	
m&p-Xylene	ND	0.50	ug/L	1	03/27/20	MH	E624.1	
Methyl tert-butyl ether (MTBE)	ND	1.0	ug/L	1	03/27/20	МН	E624.1	

Project ID: 174198 Client ID: MW-1

Parameter	Result	RL/ PQL	Units	Dilution	Date/Time	Ву	Reference	
Methylene chloride	ND	0.50	ug/L	1	03/27/20	MH	E624.1	
o-Xylene	ND	0.50	ug/L	1	03/27/20	МН	E624.1	
Tetrachloroethene	ND	0.50	ug/L	1	03/27/20	МН	E624.1	
Toluene	ND	0.50	ug/L	1	03/27/20	МН	E624.1	
trans-1,2-Dichloroethene	ND	0.50	ug/L	1	03/27/20	MH	E624.1	
trans-1,3-Dichloropropene	ND	0.40	ug/L	1	03/27/20	MH	E624.1	
Trichloroethene	ND	0.50	ug/L	1	03/27/20	MH	E624.1	
Trichlorofluoromethane	ND	0.50	ug/L	1	03/27/20	MH	E624.1	
Vinyl chloride	ND	0.50	ug/L	1	03/27/20	MH	E624.1	
QA/QC Surrogates								
% 1,2-dichlorobenzene-d4	102		%	1	03/27/20	MH	70 - 130 %	
% Bromofluorobenzene	98		%	1	03/27/20	MH	70 - 130 %	
% Dibromofluoromethane	99		%	1	03/27/20	MH	70 - 130 %	
% Toluene-d8	112		%	1	03/27/20	МН	70 - 130 %	
1,4-dioxane								
1,4-dioxane	ND	100	ug/l	1	03/27/20	НМ	SW8260C	7
QA/QC Surrogates								
% 1,2-dichlorobenzene-d4	102		%	1	03/27/20	HM	70 - 130 %	7
% Bromofluorobenzene	98		%	1	03/27/20	HM	70 - 130 %	7
% Dibromofluoromethane	99		%	1	03/27/20	HM	70 - 130 %	7
% Toluene-d8	112		%	1	03/27/20	НМ	70 - 130 %	7
Ethanol	ND	400	ug/L	1	03/27/20	НМ	E624.1	
Tert amyl methyl ether	ND	1.0	ug/L	1	03/27/20	НМ	E624.1	
Tert-butyl alcohol	ND	10	ug/L	1	03/27/20	НМ	E624.1	
Semivolatiles, PAH's								
2-Methylnaphthalene	ND	0.10	ug/L	1	04/03/20	WB	E625.1 SIM	
Acenaphthene	ND	0.10	ug/L	1	04/03/20	WB	E625.1 SIM	
Acenaphthylene	ND	0.10	ug/L	1	04/03/20	WB	E625.1 SIM	
Anthracene	ND	0.10	ug/L	1	04/03/20	WB	E625.1 SIM	
Benz(a)anthracene	ND	0.05	ug/L	1	04/03/20	WB	E625.1 SIM	
Benzo(a)pyrene	ND	0.10	ug/L	1	04/03/20	WB	E625.1 SIM	
Benzo(b)fluoranthene	ND	0.05	ug/L	1	04/03/20	WB	E625.1 SIM	
Benzo(ghi)perylene	ND	0.10	ug/L	1	04/03/20	WB	E625.1 SIM	
Benzo(k)fluoranthene	ND	0.10	ug/L	1	04/03/20	WB	E625.1 SIM	
Chrysene	ND	0.10	ug/L	1	04/03/20	WB	E625.1 SIM	
Dibenz(a,h)anthracene	ND	0.02	ug/L	1	04/03/20	WB	E625.1 SIM	
Fluoranthene	ND	0.10	ug/L	1	04/03/20	WB	E625.1 SIM	
Fluorene	ND	0.10	ug/L	1	04/03/20	WB	E625.1 SIM	
Indeno(1,2,3-cd)pyrene	ND	0.10	ug/L	1	04/03/20	WB	E625.1 SIM	
Naphthalene	ND	0.10	ug/L	1	04/03/20	WB	E625.1 SIM	
Phenanthrene	ND	0.05	ug/L	1	04/03/20	WB	E625.1 SIM	
Pyrene	ND	0.10	ug/L	1	04/03/20	WB	E625.1 SIM	
QA/QC Surrogates					0.4/0.0/0.7		00 1005	
% 2-Fluorobiphenyl	68		%	1	04/03/20	WB	30 - 130 %	
% Nitrobenzene-d5	62		%	1	04/03/20	WB	15 - 130 %	
% Terphenyl-d14	82		%	1	04/03/20	WB	30 - 130 %	

Project ID: 174198 Phoenix I.D.: CF57711

Client ID: MW-1

Parameter	Result	RL/ PQL	Units	Dilution	Date/Time	Ву	Reference
<u>Phthalates</u>							
Benzyl butyl phthalate	ND	3.5	ug/L	1	04/03/20	WB	SW8270D
Bis(2-ethylhexyl)phthalate	ND	3.5	ug/L	1	04/03/20	WB	SW8270D
Diethyl phthalate	ND	3.5	ug/L	1	04/03/20	WB	SW8270D
Dimethyl phthalate	ND	3.5	ug/L	1	04/03/20	WB	SW8270D
Di-n-butyl phthalate	ND	3.5	ug/L	1	04/03/20	WB	SW8270D
Di-n-octyl phthalate	ND	3.5	ug/L	1	04/03/20	WB	SW8270D
Pentachlorophenol	ND	1.0	ug/L	1	04/03/20	WB	SW8270D

^{7 =} This parameter is not certified by MA for this matrix.

RL/PQL=Reporting/Practical Quantitation Level ND=Not Detected BRL=Below Reporting Level

QA/QC Surrogates: Surrogates are compounds (preceeded with a %) added by the lab to determine analysis efficiency. Surrogate results(%) listed in the report are not "detected" compounds.

Comments:

The regulatory hold time for Chlorine is immediately. This Chlorine was performed in the laboratory and may be considered outside of hold-time.

Per 1.4.6 of EPA method 8270D, 1,2-Diphenylhydrazine is unstable and readily converts to Azobenzene. Azobenzene is used for the calibration of 1,2-Diphenylhydrazine.

8260 Analysis:

1,4-Dioxane doesn't meet GW-1 criteria, this compound is analyzed by 8270SIM to achieve this criteria.

If you are the client above and have any questions concerning this testing, please do not hesitate to contact Phoenix Client Services at ext.200. The contents of this report cannot be discussed with anyone other than the client listed above without their written consent.

Phyllis Shiller, Laboratory Director

April 30, 2020

Reviewed and Released by: Rashmi Makol, Project Manager

587 East Middle Turnpike, P.O.Box 370, Manchester, CT 06045 Tel. (860) 645-1102 Fax (860) 645-0823

Analysis Report

April 30, 2020

FOR: Attn: Mr. Scott Ollerhead

GZA GeoEnvironmental Inc

249 Vanderbilt Ave Norwood, MA 02062

Sample InformationCustody InformationDateTimeMatrix:WATERCollected by:03/27/2011:10Location Code:GZA-MAReceived by:LB03/27/2014:16

Rush Request: Standard Analyzed by: see "By" below

Laboratory Data

SDG ID: GCF57711

Phoenix ID: CF57712

Project ID: 174198 Client ID: CT-R1

P.O.#:

		RL/					
Parameter	Result	PQL	Units	Dilution	Date/Time	Ву	Reference
Silver	< 0.002	0.002	mg/L	1	03/31/20	EK	SW6010D/E200.7
Arsenic	< 0.004	0.004	mg/L	1	03/31/20	EK	SW6010D/E200.7
Cadmium	< 0.001	0.001	mg/L	1	03/31/20	EK	SW6010D/E200.7
Chromium	0.011	0.001	mg/L	1	03/31/20	EK	SW6010D/E200.7
Copper	0.017	0.005	mg/L	1	03/31/20	EK	SW6010D/E200.7
Iron	7.14	0.010	mg/L	1	03/31/20	EK	SW6010D/E200.7
Hardness (CaCO3)	38.3	0.1	mg/L	1	04/01/20		E200.7
Mercury	< 0.0002	0.0002	mg/L	1	03/31/20	RS	SW7470/E245.1
Nickel	0.015	0.001	mg/L	1	03/31/20	EK	SW6010D/E200.7
Lead	0.006	0.002	mg/L	1	03/31/20	EK	SW6010D/E200.7
Antimony	< 0.005	0.005	mg/L	1	03/31/20	EK	SW6010D/E200.7
Selenium	< 0.010	0.010	mg/L	1	03/31/20	EK	SW6010D/E200.7
Zinc	0.037	0.004	mg/L	1	03/31/20	EK	SW6010D/E200.7
Mercury Digestion	Completed				03/30/20	3/RA/LS	/RSW7470/245.1
Total Metals Digestion	Completed				03/30/20	AG	

Project ID: 174198 Phoenix I.D.: CF57712

Client ID: CT-R1

RL/

Parameter Result PQL Units Dilution Date/Time By Reference

RL/PQL=Reporting/Practical Quantitation Level ND=Not Detected BRL=Below Reporting Level

Comments:

The regulatory hold time for Chlorine is immediately. This Chlorine was performed in the laboratory and may be considered outside of hold-time.

If you are the client above and have any questions concerning this testing, please do not hesitate to contact Phoenix Client Services at ext.200. The contents of this report cannot be discussed with anyone other than the client listed above without their written consent.

Phyllis Shiller, Laboratory Director

April 30, 2020

Reviewed and Released by: Rashmi Makol, Project Manager

587 East Middle Turnpike, P.O.Box 370, Manchester, CT 06045 Tel. (860) 645-1102 Fax (860) 645-0823

Analysis Report

April 30, 2020

FOR: Attn: Scott Ollerhead

GZA GeoEnvironmental Inc

249 Vanderbilt Ave Norwood, MA 02062

Matrix: WATER Collected by: 03/27/20

Location Code: GZA-MA Received by: SW 03/27/20 14:16

Rush Request: Standard Analyzed by: see "By" below

ND

0.50

P.O.#:

Laboratory Data

SDG ID: GCF57711

Phoenix ID: CF57886

Project ID: 174198 Client ID: TB

Parameter	Result	RL/ PQL	Units	Dilution	Date/Time	Ву	Reference
Volatiles							
1,1,1-Trichloroethane	ND	0.50	ug/L	1	03/27/20	МН	E624.1
1,1,2,2-tetrachloroethane	ND	0.50	ug/L	1	03/27/20	МН	E624.1
1,1,2-Trichloroethane	ND	0.50	ug/L	1	03/27/20	МН	E624.1
1,1-Dichloroethane	ND	0.50	ug/L	1	03/27/20	МН	E624.1
1,1-Dichloroethene	ND	0.50	ug/L	1	03/27/20	MH	E624.1
1,2-Dichlorobenzene	ND	0.50	ug/L	1	03/27/20	МН	E624.1
1,2-Dichloroethane	ND	0.50	ug/L	1	03/27/20	MH	E624.1
1,2-Dichloropropane	ND	0.50	ug/L	1	03/27/20	MH	E624.1
1,3-Dichlorobenzene	ND	0.50	ug/L	1	03/27/20	MH	E624.1
1,4-Dichlorobenzene	ND	0.50	ug/L	1	03/27/20	MH	E624.1
Benzene	ND	0.50	ug/L	1	03/27/20	MH	E624.1
Bromodichloromethane	ND	0.50	ug/L	1	03/27/20	MH	E624.1
Bromoform	ND	0.50	ug/L	1	03/27/20	MH	E624.1
Bromomethane	ND	0.50	ug/L	1	03/27/20	MH	E624.1
Carbon tetrachloride	ND	0.50	ug/L	1	03/27/20	MH	E624.1
Chlorobenzene	ND	0.50	ug/L	1	03/27/20	MH	E624.1
Chloroethane	ND	0.50	ug/L	1	03/27/20	MH	E624.1
Chloroform	ND	0.50	ug/L	1	03/27/20	MH	E624.1
Chloromethane	ND	0.50	ug/L	1	03/27/20	MH	E624.1
cis-1,2-Dichloroethene	ND	0.50	ug/L	1	03/27/20	MH	E624.1
cis-1,3-Dichloropropene	ND	0.40	ug/L	1	03/27/20	MH	E624.1
Dibromochloromethane	ND	0.50	ug/L	1	03/27/20	MH	E624.1
Ethylbenzene	ND	0.50	ug/L	1	03/27/20	MH	E624.1
m&p-Xylene	ND	0.50	ug/L	1	03/27/20	MH	E624.1
Methyl tert-butyl ether (MTBE)	ND	1.0	ug/L	1	03/27/20	MH	E624.1

ug/L

03/27/20

MH E624.1

Methylene chloride

Project ID: 174198 Phoenix I.D.: CF57886

Client ID: TB

	RL/					
Result	PQL	Units	Dilution	Date/Time	Ву	Reference
ND	0.50	ug/L	1	03/27/20	МН	E624.1
ND	0.50	ug/L	1	03/27/20	MH	E624.1
ND	0.50	ug/L	1	03/27/20	MH	E624.1
ND	0.50	ug/L	1	03/27/20	MH	E624.1
ND	0.40	ug/L	1	03/27/20	MH	E624.1
ND	0.50	ug/L	1	03/27/20	MH	E624.1
ND	0.50	ug/L	1	03/27/20	MH	E624.1
ND	0.50	ug/L	1	03/27/20	MH	E624.1
101		%	1	03/27/20	MH	70 - 130 %
99		%	1	03/27/20	MH	70 - 130 %
96		%	1	03/27/20	MH	70 - 130 %
98		%	1	03/27/20	МН	70 - 130 %
	ND 99	Result PQL ND 0.50 ND 0.50 ND 0.50 ND 0.40 ND 0.50 ND 0.50 ND 0.50 ND 0.50 101 99 96 96	Result PQL Units ND 0.50 ug/L ND 0.50 ug/L ND 0.50 ug/L ND 0.40 ug/L ND 0.50 ug/L 99 % 96 %	Result PQL Units Dilution ND 0.50 ug/L 1 ND 0.50 ug/L 1 ND 0.50 ug/L 1 ND 0.40 ug/L 1 ND 0.50 ug/L 1 ND 0.50 ug/L 1 ND 0.50 ug/L 1 ND 0.50 ug/L 1 101 % 1 99 % 1 96 % 1	Result PQL Units Dilution Date/Time ND 0.50 ug/L 1 03/27/20 99 % 1 03/27/20 96 % 1 03/27/20	Result PQL Units Dilution Date/Time By ND 0.50 ug/L 1 03/27/20 MH ND 0.50 ug/L 1 03/27/20 MH ND 0.50 ug/L 1 03/27/20 MH ND 0.40 ug/L 1 03/27/20 MH ND 0.50 ug/L 1 03/27/20 MH 101 % 1 03/27/20 MH 99 % 1 03/27/20 MH 96 % 1 03/27/20 MH

RL/PQL=Reporting/Practical Quantitation Level ND=Not Detected BRL=Below Reporting Level QA/QC Surrogates: Surrogates are compounds (preceeded with a %) added by the lab to determine analysis efficiency. Surrogate results(%) listed in the report are not "detected" compounds.

Comments:

TRIP BLANK INCLUDED.

If you are the client above and have any questions concerning this testing, please do not hesitate to contact Phoenix Client Services at ext.200. The contents of this report cannot be discussed with anyone other than the client listed above without their written consent.

Phyllis Shiller, Laboratory Director

April 30, 2020

Reviewed and Released by: Rashmi Makol, Project Manager

587 East Middle Turnpike, P.O.Box 370, Manchester, CT 06045 Tel. (860) 645-1102 Fax (860) 645-0823

QA/QC Report

April 30, 2020

QA/QC Data

Parameter	Blank	Blk RL	Sample Result	Dup Result	Dup RPD	LCS %	LCSD %	LCS RPD	MS %	MSD %	MS RPD	% Rec Limits	% RPD Limits	
QA/QC Batch 524404 (mg/L), (QC Samp	ole No: (CF51083	(CF5771	1, CF5	57712)								
Mercury - Water	BRL	0.0002	< 0.0005	<0.0005	NC	89.4			71.5			75 - 125	30	m
Comment:														
Additional Mercury criteria: LCS a	acceptanc	e range f	or waters	is 80-1209	% and fo	or soils is	s 75-1259	%						
QA/QC Batch 524535 (mg/L), (QC Samp	ole No: 0	CF58144	(CF5771	1, CF5	7712)								
ICP Metals - Aqueous														
Antimony	BRL	0.005	< 0.005	< 0.005	NC	104	104	0.0	102			80 - 120	20	
Arsenic	BRL	0.004	0.004	< 0.004	NC	102	103	1.0	101			80 - 120	20	
Cadmium	BRL	0.001	< 0.001	< 0.001	NC	104	105	1.0	101			80 - 120	20	
Chromium	BRL	0.001	0.001	0.001	NC	103	104	1.0	101			80 - 120	20	
Copper	BRL	0.005	< 0.005	< 0.005	NC	103	102	1.0	100			80 - 120	20	
Iron	BRL	0.010	0.062	0.056	10.2	103	103	0.0	102			80 - 120	20	
Lead	BRL	0.002	< 0.002	< 0.002	NC	99.0	100	1.0	96.2			80 - 120	20	
Nickel	BRL	0.001	< 0.001	< 0.001	NC	102	102	0.0	98.4			80 - 120	20	
Selenium	BRL	0.010	< 0.010	< 0.010	NC	97.3	98.0	0.7	95.5			80 - 120	20	
Silver	BRL	0.001	< 0.001	< 0.001	NC	99.8	99.5	0.3	96.7			80 - 120	20	
Zinc	BRL	0.004	0.009	0.009	NC	101	101	0.0	98.9			80 - 120	20	
Comment:														
Additional: LCS acceptance rang	e is 80-12	0% MS a	cceptance	e range 7	5-125%									

 $m = This\ parameter\ is\ outside\ laboratory\ MS/MSD\ specified\ recovery\ limits.$

587 East Middle Turnpike, P.O.Box 370, Manchester, CT 06045 Tel. (860) 645-1102 Fax (860) 645-0823

QA/QC Report

April 30, 2020

QA/QC Data

Parameter	Blank	Blk RL	Sample Result	Dup Result	Dup RPD	LCS %	LCSD %	LCS RPD	MS %	MSD %	MS RPD	% Rec Limits	RPD Limits	
QA/QC Batch 524541 (mg/L), C	C Samp	ole No:	CF55900	(CF577	11)									
Total Cyanide Comment:	BRL	0.010	0.257	0.246	4.40	89.3			101			90 - 110	30	1
Additional soil criteria LCS accepta	ance ran	ge is 80-	120% MS	acceptan	ce range	75-12	5%.							
QA/QC Batch 524418 (mg/L), C	C Samp	ole No:	CF57616	(CF577	11)									
Oil and Grease by EPA 1664A Comment:	BRL	1.4				98.0	97.0	1.0				85 - 115	20	
Additional: MS acceptance range	75-125%	,).												
QA/QC Batch 524416 (mg/L), C	C Samp	ole No:	CF57711	(CF577	11)									
Total Suspended Solids	BRL	2.5	22	25	NC	97.0						85 - 115		
QA/QC Batch 524328 (mg/L), C	C Samp	ole No:	CF58097	(CF577	11)									
Chromium, Hexavalent Comment:	BRL	0.01	<0.01	<0.01	NC	101			107			90 - 110	30	
Additional Hexavalent Chromium	criteria: L	CS acce	ptance rar	nge for wa	iters is 9	0-110%	and MS	accepta	nce ran	ge is 85-1	15%.			
QA/QC Batch 524320 (mg/L), C	C Samp	ole No:	CF57054	(CF577	11)									
Chloride	BRL .	3.0	33.2	32.1	3.40	99.2			104			90 - 110	20	
QA/QC Batch 524420 (mg/L), C	C Samp	ole No:	CF58097	(CF577	11)									
Ammonia as Nitrogen	BRL	0.05	< 0.05	< 0.05	NC	95.1			97.0			90 - 110	20	
QA/QC Batch 524399 (mg/L), C	C Samp	ole No:	CF57711	(CF577	11)									
Phenolics	BRL	0.015	< 0.015	< 0.015	NC	96.0			103			90 - 110	20	
QA/QC Batch 524330 (mg/L), C	C Samp	ole No:	CF57615	(CF577	11)									
Chlorine Residual	BRL	0.02	<0.01	<0.02	NC	98.4								

I = This parameter is outside laboratory LCS/LCSD specified recovery limits.

Environmental Laboratories, Inc. 587 East Middle Turnpike, P.O.Box 370, Manchester, CT 06045 Tel. (860) 645-1102 Fax (860) 645-0823

QA/QC Report

April 30, 2020

QA/QC Data

Parameter	Blank	BIk RL	LCS %	LCSD %	LCS RPD	MS %	MSD %	MS RPD	% Rec Limits	% RPD Limits
QA/QC Batch 524413 (ug/L), Q0	C Samp	le No: CF57390 (CF57711)								
EDB and DBCP Analysis	- Wate	<u>er</u>								
1,2-Dibromoethane (EDB)	ND	0.01	100	99	1.0	103	101	2.0	70 - 130	25
QA/QC Batch 524342 (ug/L), Q0	C Samp	le No: CF56925 (CF57711)								
Polychlorinated Biphenyls	s - Wat	<u>ter</u>								
PCB-1016	ND	0.050	81	82	1.2				50 - 140	20
PCB-1221	ND	0.050							15 - 178	20
PCB-1232	ND	0.050							10 - 200	20
PCB-1242	ND	0.050							39 - 150	20
PCB-1248 PCB-1254	ND	0.050							38 - 158 29 - 140	20 20
PCB-1254 PCB-1260	ND ND	0.050 0.050	91	90	1.1				10 - 140	20
PCB-1262	ND	0.050	71	70	1.1				40 - 140	20
PCB-1268	ND	0.050							40 - 140	20
% DCBP (Surrogate Rec)	67	%	76	75	1.3				30 - 150	20
% DCBP (Surrogate Rec) (Confirm	68	%	78	79	1.3				30 - 150	20
% TCMX (Surrogate Rec)	67	%	76	73	4.0				30 - 150	20
% TCMX (Surrogate Rec) (Confirm Comment:	67	%	76	73	4.0				30 - 150	20
A LCS and LCS Duplicate were pe	erformed	instead of a matrix spike and matrix	spike du	uplicate.						
QA/QC Batch 524671 (ug/L), Q0	C Samp	le No: CF58991 (CF57711)								
Semivolatiles (SIM) - Wat	<u>er</u>									
2-Methylnaphthalene	ND	0.50	70	69	1.4				30 - 130	20
Acenaphthene	ND	0.50	96	95	1.0				60 - 132	48
Acenaphthylene	ND	0.50	90	89	1.1				54 - 126	74
Anthracene	ND	0.50	91	91	0.0				43 - 120	66
Benz(a)anthracene	ND	0.50	95	94	1.1				42 - 133	53
Benzo(a)pyrene	ND	0.50	85	85	0.0				32 - 148	72
Benzo(b)fluoranthene Benzo(ghi)perylene	ND ND	0.50 0.50	93 93	92 91	1.1 2.2				42 - 140 10 - 195	71 97
Benzo(k)fluoranthene	ND	0.50	93 120	119	0.8				25 - 146	63
Chrysene	ND	0.50	96	94	2.1				44 - 140	87
Dibenz(a,h)anthracene	ND	0.50	94	93	1.1				10 - 200	126
Fluoranthene	ND	0.50	91	93	2.2				43 - 121	66
Fluorene	ND	0.50	99	97	2.0				70 - 120	38
Indeno(1,2,3-cd)pyrene	ND	0.50	82	82	0.0				10 - 151	99
Naphthalene	ND	0.50	72	71	1.4				36 - 120	65
Phenanthrene	ND	0.50	85	84	1.2				65 - 120	39
Pyrene	ND	0.50	97	100	3.0				70 - 120	49
% 2-Fluorobiphenyl	64	%	80	80	0.0				30 - 130	20
% Nitrobenzene-d5	59	%	79	81	2.5				15 - 130	20
% Terphenyl-d14	67	%	80	83	3.7				30 - 130	20

QA/QC Data

SDG I.D.: GCF57711

% % Blk LCS LCSD LCS MS **MSD** MS Rec **RPD** Blank RL % % **RPD** % % RPD Limits Limits Parameter Comment: Additional 8270 criteria: 10% of compounds can be outside of acceptance criteria as long as recovery is at least 10%. (Acid surrogates acceptance range for aqueous samples: 10-110%, for soils 30-130%) QA/QC Batch 524671 (ug/L), QC Sample No: CF58991 (CF57711) Semivolatiles - Water Benzyl butyl phthalate ND 1.5 100 98 2.0 10 - 140 60 Bis(2-ethylhexyl)phthalate ND 1.5 104 100 3.9 29 - 137 82 Diethyl phthalate ND 1.5 98 97 1.0 10 - 120 100 1.5 ND 95 92 183 Dimethylphthalate 3.2 10 - 120 Di-n-butylphthalate ND 1.5 97 97 0.0 8 - 120 47 1.5 ND 105 102 2.9 Di-n-octylphthalate 19 - 132 69 Pentachlorophenol ND 3.5 104 103 1.0 38 - 152 86 QA/QC Batch 528044 (ug/L), QC Sample No: CF57711 (CF57711) Volatiles - Water 1,1,1-Trichloroethane 99 ND 1.0 98 1.0 113 107 5.5 70 - 130 30 ND 0.50 1,1,2,2-Tetrachloroethane 101 105 3.9 115 114 0.9 70 - 130 30 ND 1.0 91 103 12.4 117 105 70 - 130 1.1.2-Trichloroethane 10.8 30 1,1-Dichloroethane ND 1.0 98 100 2.0 115 109 5.4 70 - 130 30 ND 103 1,1-Dichloroethene 1.0 104 1.0 120 116 3.4 70 - 130 30 ND 1.0 98 102 4.0 114 110 1,2-Dichlorobenzene 3.6 70 - 130 30 95 ND 1.0 104 9.0 119 107 10.6 1,2-Dichloroethane 70 - 130 30 92 1,2-Dichloropropane ND 1.0 104 12.2 119 105 12.5 70 - 130 30 ND 103 105 120 1,3-Dichlorobenzene 1.0 1.9 114 5.1 70 - 130 30 1.4-Dichlorobenzene ND 1.0 97 98 1.0 112 107 4.6 70 - 130 30 ND 92 91 1,4-dioxane 100 1.1 103 98 5.0 40 - 160 30 2 chlorethyl vinyl ether ND 1.0 109 122 11.3 140 124 12.1 70 - 130 30 m Acrolein ND 5.0 98 99 1.0 113 111 1.8 70 - 130 30 6.9 Acrylonitrile ND 5.0 98 105 110 110 0.0 70 - 130 30 Benzene ND 0.70 101 109 7.6 126 112 11.8 70 - 130 30 ND Bromodichloromethane 0.50 99 109 9.6 123 113 8.5 70 - 130 30 Bromoform ND 122 1.0 110 117 6.2 126 3.2 70 - 130 30 ND 1.2 95 93 Bromomethane 1.0 82 83 2.1 40 - 160 30 Carbon tetrachloride ND 1.0 101 102 1.0 120 113 6.0 70 - 130 30 ND 1.0 98 101 3.0 110 Chlorobenzene 114 3.6 70 - 130 30 Chloroethane ND 1.0 90 96 6.5 118 109 7.9 70 - 130 30 ND 98 98 Chloroform 1.0 0.0 115 108 6.3 70 - 130 30 Chloromethane ND 1.0 93 94 1.1 108 100 7.7 40 - 160 30 cis-1,2-Dichloroethene ND 1.0 99 100 1.0 112 110 1.8 70 - 130 30 ND 96 106 9.9 120 108 cis-1,3-Dichloropropene 0.40 10.5 70 - 130 30 Dibromochloromethane ND 0.50 108 112 3.6 123 119 3.3 70 - 130 30 ND 70 - 130 Ethylbenzene 1.0 105 106 0.9 120 115 4.3 30 ND 105 107 1.9 122 m&p-Xylene 1.0 116 5.0 70 - 130 30 Methyl t-butyl ether (MTBE) ND 1.0 95 98 3.1 110 108 1.8 70 - 130 30 87 87 95 Methylene chloride ND 1.0 0.0 100 5.1 70 - 130 30 ND 108 1.9 124 o-Xylene 1.0 106 117 5.8 70 - 130 30 Tetrachloroethene ND 1.0 94 100 6.2 117 105 10.8 70 - 130 30 ND 99 Toluene 1.0 109 9.6 125 112 11.0 70 - 130 30 ND 1.0 100 101 1.0 117 111 70 - 130 30 trans-1,2-Dichloroethene 5.3 trans-1,3-Dichloropropene ND 100 10.4 125 70 - 130 0.40 111 112 11.0 30 3.7 Trichloroethene ND 1.0 96 96 0.0 110 106 70 - 130 30 95 Trichlorofluoromethane ND 1.0 94 1.1 112 107 4.6 70 - 13030 Vinyl chloride ND 1.0 99 100 1.0 116 109 6.2 70 - 130 30

QA/QC Data

SDG I.D.: GCF57711

Parameter	Blank	Blk RL	LCS %	LCSD %	LCS RPD	MS %	MSD %	MS RPD	% Rec Limits	% RPD Limits
% 1,2-dichlorobenzene-d4	100	%	101	100	1.0	100	101	1.0	70 - 130	30
% Bromofluorobenzene	98	%	101	102	1.0	102	101	1.0	70 - 130	30
% Dibromofluoromethane	97	%	97	96	1.0	98	95	3.1	70 - 130	30
% Toluene-d8	102	%	97	104	7.0	107	98	8.8	70 - 130	30
Comment:										
Additional 8260 criteria: 10% of	f compounds	s can be ou	tside of acceptance criteria as l	ong as rec	overy is	10%.				
QA/QC Batch 524455 (ug/L),	QC Samp	le No: CF	57711 (CF57711, CF57886)	J						
Volatiles - Water			(
1,1,1-Trichloroethane	ND	1.0	98	99	1.0	113	107	5.5	70 - 130	20
1,1,2,2-Tetrachloroethane	ND	0.50	101	105	3.9	115	114	0.9	60 - 140	20
1,1,2-Trichloroethane	ND	1.0	91	103	12.4	117	105	10.8	70 - 130	20
1,1-Dichloroethane	ND	1.0	98	100	2.0	115	109	5.4	70 - 130	20
1,1-Dichloroethene	ND	1.0	103	104	1.0	120	116	3.4	50 - 150	20
1,2-Dichlorobenzene	ND	1.0	98	102	4.0	114	110	3.6	65 - 135	20
1,2-Dichloroethane	ND	1.0	95	104	9.0	119	107	10.6	70 - 130	20
1,2-Dichloropropane	ND	1.0	92	104	12.2	119	105	12.5	35 - 165	20
1,3-Dichlorobenzene	ND	1.0	103	105	1.9	120	114	5.1	70 - 130	20
1,4-Dichlorobenzene	ND	1.0	97	98	1.0	112	107	4.6	65 - 135	20
1,4-dioxane	ND	100	92	91	1.1	103	98	5.0	70 - 130	30
2 chlorethyl vinyl ether	ND	1.0	109	122	11.3	140	124	12.1	10 - 200	20
Acrolein	ND	5.0	98	99	1.0	113	111	1.8	70 - 130	20
Acrylonitrile	ND	5.0	98	105	6.9	110	110	0.0	70 - 130	20
Benzene	ND	0.70	101	109	7.6	126	112	11.8	65 - 135	20
Bromodichloromethane	ND	0.50	99	109	9.6	123	113	8.5	65 - 135	20
Bromoform	ND	1.0	110	117	6.2	126	122	3.2	70 - 130	20
Bromomethane	ND	1.0	82	83	1.2	95	93	2.1	15 - 185	20
Carbon tetrachloride	ND	1.0	101	102	1.0	120	113	6.0	70 - 130	20
Chlorobenzene	ND	1.0	98	101	3.0	114	110	3.6	65 - 135	20
Chloroethane	ND	1.0	90	96	6.5	118	109	7.9	40 - 160	20
Chloroform	ND	1.0	98	98	0.0	115	108	6.3	70 - 135	20
Chloromethane	ND	1.0	93	94	1.1	108	100	7.7	10 - 200	20
cis-1,2-Dichloroethene	ND	1.0	99	100	1.0	112	110	1.8	70 - 130	20
cis-1,3-Dichloropropene	ND	0.40	96	106	9.9	120	108	10.5	25 - 175	20
Dibromochloromethane	ND	0.50	108		3.6	123	119	3.3	70 - 135	20
Ethylbenzene	ND	1.0	105	106	0.9	120	115	4.3	60 - 140	20
m&p-Xylene	ND	1.0	105	107	1.9	122	116	5.0	70 - 130	30
Methyl t-butyl ether (MTBE)	ND	1.0	95	98	3.1	110	108	1.8	70 - 130	30
Methylene chloride	ND	1.0	87	87	0.0	100	95	5.1	60 - 140	20
o-Xylene	ND	1.0	106	108	1.9	124	117	5.8	70 - 130	30
Tetrachloroethene	ND	1.0	94	100	6.2	117	105	10.8	70 - 130	20
Toluene	ND	1.0	99	109	9.6	125	112	11.0	70 - 130	20
trans-1,2-Dichloroethene	ND	1.0	100	101	1.0	117	111	5.3	70 - 130	20
trans-1,3-Dichloropropene	ND	0.40	100		10.4	125	112	11.0	50 - 150	20
Trichloroethene	ND	1.0	96	96	0.0	110	106	3.7	65 - 135	20
Trichlorofluoromethane	ND	1.0	94	95	1.1	112	107	4.6	50 - 150	20
Vinyl chloride	ND	1.0	99	100	1.0	116	109	6.2	10 - 195	20
% 1,2-dichlorobenzene-d4	100	%	101	100	1.0	100	101	1.0	70 - 130	30
% Bromofluorobenzene	98	%	101	102	1.0	102	101	1.0	70 - 130	30
% Dibromofluoromethane	97	%	97	96	1.0	98	95	3.1	70 - 130	30
% Toluene-d8	102	%	97	104	7.0	107	98	8.8	70 - 130	30
Comment:	102	,0	,,,	104	,.0	.07	70	0.0	. 5 100	
A LL L A 40/440D										

A blank MS/MSD was analyzed with this batch.

QA/QC Data

Parameter	Blank	Blk RL	LCS %	LCSD %	LCS RPD	MS %	MSD %	MS RPD	% Rec Limits	% RPD Limits
QA/QC Batch 524464 (ug/	/L), QC Samp	le No: CF56899 (CF57711)								
Oxygenates - Water										
Ethanol	ND	200	94	89	5.5	87	103	16.8	70 - 130	30
tert-amyl methyl ether	ND	10	93	97	4.2	108	106	1.9	70 - 130	30
tert-butyl alcohol	ND	25	85	88	3.5	108	105	2.8	70 - 130	30
Comment:										
A blank MS/MSD was analy	zed with this ba	itch.								

m = This parameter is outside laboratory MS/MSD specified recovery limits.

If there are any questions regarding this data, please call Phoenix Client Services at extension 200.

RPD - Relative Percent Difference

LCS - Laboratory Control Sample

LCSD - Laboratory Control Sample Duplicate

MS - Matrix Spike

MS Dup - Matrix Spike Duplicate

NC - No Criteria

Intf - Interference

Phyllis/Shiller, Laboratory Director

SDG I.D.: GCF57711

April 30, 2020

Thursday, April 30, 2020

Criteria: MA: CAM, GW1

Sample Criteria Exceedances Report GCF57711 - GZA-MA

State: MA

SampNo	Acode	Phoenix Analyte	Criteria	Result	RL	Criteria	Criteria	Units
CF57711	\$624ADD	Acrylonitrile	MA / CAM Protocol / VOA AQ RL	ND	5.0		2	ug/L
CF57711	\$DIOX_WMR	1,4-dioxane	MA / CMR 310.40.1600 / GW-1 (mg/l)	ND	100	3	3	ug/l
CF57711	\$DIOX_WMR	1,4-dioxane	MA / GROUNDWATER STANDARDS / GW-1	ND	100	0.3	0.3	ug/l

Phoenix Laboratories does not assume responsibility for the data contained in this exceedance report. It is provided as an additional tool to identify requested criteria exceedences. All efforts are made to ensure the accuracy of the data (obtained from appropriate agencies). A lack of exceedence information does not necessarily suggest conformance to the criteria. It is ultimately the site professional's responsibility to determine appropriate compliance.

RΙ

Analysis

MassDEP Analytical Protocol Certification Form												
Laboratory Name: Phoenix Environmental Laboratories, Inc. Project #:												
Proje	ect Locati	ion: 1741	98		F	RTN:						
This F	orm provid	les certificati	ons for	the following data set	: [list Laborator	y San	nple ID Number((s)]				
CF577	711, CF5771	2, CF57886										
Matric	es: Gro	undwater/Sur	face Wa	ater Soil/Sedimen	t Drinking	Wate	r 🗌 Air	✓ 0	ther:	WATER, W		
	-	check all th					1					
8260 V CAM II		7470/7471 H	g V	MassDEP VPH CAM IV A	8081 Pesticides CAM V B		7196 Hex Cr CAM VI B		MassE CAM I	DEP APH X A		
	270 SVOC 7010 Metals MassDEP EPH 8151 Herbicides 8330 Explosives TO-15 VOC CAM III C CAM IV B CAM V C CAM VIII A CAM IX B											
	6010 Metals CAM III A GOOD Metals CAM III D SOURCE STANDARD STANDA											
	Affirmati	ive respons	es to q	uestions A through	F are required	d for	"Presumptive	Certai	inty" s	status		
Α	Chain-of-0	Custody, pro	perly p	a condition consiste reserved (including tallyzed with method ha	emperature*) in	the f	ield or	✓,	Yes	□ No		
В		analytical m CAM protoco		s) and all associated owed?	QC requiremen	its sp	ecified in the	V	Yes	□No		
С		CAM protoco		actions and analytica plemented for all ider				✓ ,	Yes	□No		
D	CAM VII A		ssuran	omply with all the repose and Quality Control Data"?				✓ ,	Yes	□No		
Ш	significant modificati	t modification ons).	n(s)? (ods only: Was each refer to the individual	method(s) for a	a list (of significant		Yes	□No		
	method?			only: Was the compl		•	ted for each		Yes	□ No		
F	conforma		ed and	tocol QC and perforn evaluated in a labora rough E)?			ling all "No"	✓ ,	Yes	□ No		
	Resp	onses to q	uestio	ns G, H and I below	is required for	"Pre	sumptive Cer	tainty'	' statu	IS		
G		reporting lim CAM protoco		r below all CAM repo	orting limits spe	cified	in the		Yes	☑ No		
				resumptive Certainty" cribed in 310 CMR 40.				data u	sability	and and		
Н	See Secti	on: Cyanide	Narrati						Yes	✓ No		
l	Were resu protocol(s)?		complete analyte lis					Yes	✓ No		
All negative responses must be addressed in an attached laboratory narrative. I, the undersigned, attest under the pains and penalties of perjury that, based upon my personal inquiry of those responsible for obtaining the information, the material contained in this analytical report is, to the best of my knowledge and belief, accurate and complete.												
					Da	ate: 7	Γhursday, Apr	il 30, :	2020			
	orized	RM	المدر	i Waka	Printed Nar	me: F	Rashmi Makol					
Sign	Authorized Signature: Printed Name: Rashmi Makol Position: Project Manager											

587 East Middle Turnpike, P.O.Box 370, Manchester, CT 06045 Tel. (860) 645-1102 Fax (860) 645-0823

MCP Certification Report

April 30, 2020 SDG I.D.: GCF57711

SDG Comments

Metals Analysis:

The client requested a site specific list of elements which is shorter than the 6010 MCP list.

Phoenix reporting levels may exceed those referenced in the CAM protocol. Please refer to criteria sheet for comparisons to requested MCP standards.

The client requested volatiles by 624 and semi-volatiles PAHs by 625. The MCP narrative is provided at the request of the client.

504.1

Were all QA/QC performance criteria specified in the MADEP document CAM achieved? Yes.

Instrument:

CHEM35 03/30/20-1

Chelsey Guerette, Chemist 03/30/20

CF57711 (1X)

The initial calibration (CHEM35/504tcp_0330): RSD for the compound list was less than 20% except for the following compounds: None.

The continuing calibration %D for the compound list was less than 15% except for the following compounds:None.

QC (Batch Specific):

Batch 524413 (CF57390)

CF57711

All LCS recoveries were within 70 - 130 with the following exceptions: None.

All LCSD recoveries were within 70 - 130 with the following exceptions: None.

All LCS/LCSD RPDs were less than 25% with the following exceptions: None.

I attest under the pains and penalties of perjury that, based upon my inquiry of those individuals immediately responsible for obtaining the information, the material contained in this report is, to the best of my knowledge and belief, accurate and complete.

Cyanide Narration

Were all QA/QC performance criteria specified in the MADEP document CAM achieved? No.

QC Batch 524541 (Samples: CF57711): -----

The LCS and/or the LCSD recovery is below the method criteria. All of the other QC is acceptable, therefore no significant bias is suspected. (Total Cyanide)

Instrument:

LACHAT 03/31/20-1

Eric Geyer, Chemist 03/31/20

CF57711

The samples were distilled in accordance with the method.

The initial calibration met criteria.

The calibration check standards (ICV,CCV) were within 15% of true value and were analyzed at a frequencey of one per ten samples.

The continuing calibration blanks (ICB,CCB) had concentrations less than the reporting level.

587 East Middle Turnpike, P.O.Box 370, Manchester, CT 06045 Tel. (860) 645-1102 Fax (860) 645-0823

MCP Certification Report

April 30, 2020 SDG I.D.: GCF57711

Cyanide Narration

The method blank, laboratory control sample (LCS), and matrix spike were distilled with the samples.

QC (Batch Specific):

Batch 524541 (CF55900)

CF57711

All LCS recoveries were within 90 - 110 with the following exceptions: Total Cyanide(89.3%) Additional soil criteria LCS acceptance range is 80-120% MS acceptance range 75-125%.

I attest under the pains and penalties of perjury that, based upon my inquiry of those individuals immediately responsible for obtaining the information, the material contained in this report is, to the best of my knowledge and belief, accurate and complete.

Hexavalent Chromium (Aqueous)

Were all QA/QC performance criteria specified in the MADEP document CAM achieved? Yes.

Instrument:

BECKMAN DU720 03/27/20-1 Dustin Harrison, Chemist 03/27/20

CF57711

The initial calibration met all criteria including a standard run at the reporting level.

All calibration verification standards (ICV, CCV) met criteria.

All calibration blank verification standards (ICB, CCB) met criteria.

QC (Batch Specific):

Batch 524328 (CF58097)

CF57711

All LCS recoveries were within 90 - 110 with the following exceptions: None.

Additional Hexavalent Chromium criteria: LCS acceptance range for waters is 90-110% and MS acceptance range is 85-115%.

I attest under the pains and penalties of perjury that, based upon my inquiry of those individuals immediately responsible for obtaining the information, the material contained in this report is, to the best of my knowledge and belief, accurate and complete.

Mercury Narration

Were all QA/QC performance criteria specified in the analytical method achieved? Yes.

Instrument:

MERLIN 03/31/20 07:13

Rick Schweitzer, Chemist 03/31/20

CF57711, CF57712

The method preparation blank, ICB, and CCBs contain all of the acids and reagents as the samples.

The initial calibration met all criteria including a standard run at or below the reporting level.

All calibration verification standards (ICV, CCV) met criteria.

All calibration blank verification standards (ICB, CCB) met criteria.

587 East Middle Turnpike, P.O.Box 370, Manchester, CT 06045 Tel. (860) 645-1102 Fax (860) 645-0823

Certification Report

April 30, 2020 SDG I.D.: GCF57711

Mercury Narration

The matrix spike sample is used to identify spectral interference for each batch of samples, if within 85-115%, no interference is observed and no further action is taken.

The following Initial Calibration Verification (ICV) compounds did not meet criteria: None.

The following Continuing Calibration Verification (CCV) compounds did not meet criteria: None.

QC (Batch Specific):

Batch 524404 (CF51083)

CF57711, CF57712

All LCS recoveries were within 75 - 125 with the following exceptions: None.

Additional Mercury criteria: LCS acceptance range for waters is 80-120% and for soils is 75-125%

ICP Metals Narration

Were all QA/QC performance criteria specified in the analytical method achieved? Yes.

Instrument:

BLUE 03/30/20 11:26

Emily Kolominskaya, Tina Hall, Chemist 03/30/20

CF57711, CF57712

The initial calibration met criteria.

The continuing calibration standards met criteria for all the elements reported. The linear range is defined daily by the calibration range.

The continuing calibration blanks were less than the reporting level for the elements reported.

The ICSA and ICSAB were analyzed at the beginning and end of the run and were within criteria. The linear range is defined daily by the calibration range.

The following Initial Calibration Verification (ICV) compounds did not meet criteria: None.

The following Continuing Calibration Verification (CCV) compounds did not meet criteria: None.

The following ICP Interference Check (ICSAB) compounds did not meet criteria: None.

QC (Batch Specific):

Batch 524535 (CF58144)

CF57711, CF57712

All LCS recoveries were within 80 - 120 with the following exceptions: None.

All LCSD recoveries were within 80 - 120 with the following exceptions: None.

All LCS/LCSD RPDs were less than 20% with the following exceptions: None.

Additional: LCS acceptance range is 80-120% MS acceptance range 75-125%.

LACHAT

Were all QA/QC performance criteria specified in the MADEP document CAM achieved? Yes.

Instrument:

LACHAT 03/27/20-1

Thomas Budz, Chemist 03/27/20

CF57711

The initial calibration met all criteria including a standard run at the reporting level.

All method verification standards and blanks met criteria.

587 East Middle Turnpike, P.O.Box 370, Manchester, CT 06045 Tel. (860) 645-1102 Fax (860) 645-0823

MCP Certification Report

April 30, 2020 SDG I.D.: GCF57711

LACHAT

QC (Batch Specific):

Batch 524320 (CF57054)

CF57711

All LCS recoveries were within 90 - 110 with the following exceptions: None.

I attest under the pains and penalties of perjury that, based upon my inquiry of those individuals immediately responsible for obtaining the information, the material contained in this report is, to the best of my knowledge and belief, accurate and complete.

NITROGEN

Were all QA/QC performance criteria specified in the MADEP document CAM achieved? Yes.

Instrument:

LACHAT 03/31/20-1

Kandi Della Bella, Chemist 03/31/20

CF57711

The initial calibration met all criteria including a standard run at the reporting level.

All method verification standards and blanks met criteria.

QC (Batch Specific):

Batch 524420 (CF58097)

CF57711

All LCS recoveries were within 85 - 115 with the following exceptions: None.

Additional criteria: LCS acceptance range for waters is 85-115% and for soils is 75-125%. MS acceptance range is 75-125%.

I attest under the pains and penalties of perjury that, based upon my inquiry of those individuals immediately responsible for obtaining the information, the material contained in this report is, to the best of my knowledge and belief, accurate and complete.

PCB 608 Narration

Were all QA/QC performance criteria specified in the MADEP document CAM achieved? Yes.

Instrument:

AU-ECD1 03/30/20-1

Saadia Chudary, Chemist 03/30/20

CF57711 (1X)

The initial calibration (WW220AI) RSE for the compound list was less than 15% except for the following compounds: None. The initial calibration (WW220BI) RSE for the compound list was less than 15% except for the following compounds: None. The continuing calibration %RSD for the compound list was less than 15% except for the following compounds: None.

QC (Batch Specific):

Batch 524342 (CF56925)

CF57711

All LCS recoveries were within 40 - 140 with the following exceptions: None.

587 East Middle Turnpike, P.O.Box 370, Manchester, CT 06045 Tel. (860) 645-1102 Fax (860) 645-0823

MCP Certification Report

April 30, 2020 SDG I.D.: GCF57711

PCB 608 Narration

All LCSD recoveries were within 40 - 140 with the following exceptions: None. All LCS/LCSD RPDs were less than 20% with the following exceptions: None.

A LCS and LCS Duplicate were performed instead of a matrix spike and matrix spike duplicate.

I attest under the pains and penalties of perjury that, based upon my inquiry of those individuals immediately responsible for obtaining the information, the material contained in this report is, to the best of my knowledge and belief, accurate and complete.

PHENOLS

Were all QA/QC performance criteria specified in the MADEP document CAM achieved? Yes.

Instrument:

LACHAT 03/30/20-1

CF57711

The initial calibration met all criteria including a standard run at the reporting level.

All method verification standards and blanks met criteria.

QC (Batch Specific):

Batch 524399 (CF57711)

CF57711

All LCS recoveries were within 90 - 110 with the following exceptions: None.

I attest under the pains and penalties of perjury that, based upon my inquiry of those individuals immediately responsible for obtaining the information, the material contained in this report is, to the best of my knowledge and belief, accurate and complete.

SVOA Narration

Were all QA/QC performance criteria specified in the MADEP document CAM achieved? Yes.

Instrument:

CHEM28 04/02/20-2

Adam Werner, Chemist 04/02/20

CF57711 (1X)

For 8270 full list, the DDT breakdown and pentachlorophenol & benzidine peak tailing were evaluated in the DFTPP tune and were found to be in control.

For 8270 BN list, benzidine peak tailing was evaluated in the DFTPP tune and was found to be in control.

Initial Calibration Evaluation (CHEM28/28_SPLIT_0327):

100% of target compounds met criteria.

The following compounds had %RSDs >20%: None.

The following compounds did not meet recommended response factors: None.

The following compounds did not meet a minimum response factors: None.

Continuing Calibration Verification (CHEM28/0402 31-28 SPLIT 0327) (MCP Compliance):

Internal standard areas were within 50 to 200% of the initial calibration with the following exceptions: None.

99% of target compounds met criteria.

587 East Middle Turnpike, P.O.Box 370, Manchester, CT 06045 Tel. (860) 645-1102 Fax (860) 645-0823

MCP Certification Report

April 30, 2020 SDG I.D.: GCF57711

SVOA Narration

The following compounds did not meet % deviation criteria: None.

The following compounds did not meet maximum % deviations: None.

The following compounds did not meet recommended response factors: None.

The following compounds did not meet minimum response factors: None.

I attest under the pains and penalties of perjury that, based upon my inquiry of those individuals immediately responsible for obtaining the information, the material contained in this report is, to the best of my knowledge and belief, accurate and complete.

SVOA 625

Were all QA/QC performance criteria specified in the MADEP document CAM achieved? Yes.

Instrument:

CHEM28 04/02/20-1 A

Adam Werner, Chemist 04/02/20

CF57711 (1X)

Initial Calibration Evaluation (CHEM28/28_SPLIT_0327):

100% of target compounds met criteria.

The following compounds had %RSDs >35%: None.

The following compounds did not meet a minimum response factors: None.

Continuing Calibration Verification (CHEM28/0402_31-28_SPLIT_0327) (MCP Compliance):

Internal standard areas were within 50 to 200% of the initial calibration with the following exceptions: None.

100% of target compounds met criteria.

The following compounds did not meet % deviation criteria: None.

The following compounds did not meet minimum response factors: None.

QC (Batch Specific):

Batch 524671 (CF58991)

CF57711

All LCS recoveries were within 30 - 130 with the following exceptions: None.

All LCSD recoveries were within 30 - 130 with the following exceptions: None.

All LCS/LCSD RPDs were less than 20% with the following exceptions: None.

Additional 8270 criteria: 10% of compounds can be outside of acceptance criteria as long as recovery is at least 10%. (Acid surrogates acceptance range for aqueous samples: 10-110%, for soils 30-130%)

I attest under the pains and penalties of perjury that, based upon my inquiry of those individuals immediately responsible for obtaining the information, the material contained in this report is, to the best of my knowledge and belief, accurate and complete.

VOA Narration

Were all QA/QC performance criteria specified in the MADEP document CAM achieved? Yes.

Instrument:

CHEM23 03/27/20-1

Harry Mullin, Chemist 03/27/20

CF57711 (1X)

Initial Calibration Evaluation (CHEM23/VOA23_032020):

587 East Middle Turnpike, P.O.Box 370, Manchester, CT 06045 Tel. (860) 645-1102 Fax (860) 645-0823

MCP Certification Report

April 30, 2020 SDG I.D.: GCF57711

VOA Narration

98% of target compounds met criteria.

The following compounds had %RSDs >20%: Bromomethane 33% (20%)

The following compounds did not meet Table 4 recommended minimum response factors: None.

The following compounds did not meet the minimum response factor of 0.05: None.

Continuing Calibration Verification (CHEM23/0327_03-VOA23_032020) (MCP Compliance):

Internal standard areas were within 50 to 200% of the initial calibration with the following exceptions: None.

97% of target compounds met criteria.

The following compounds did not meet % deviation criteria: None.

The following compounds did not meet maximum % deviations: None.

The following compounds did not meet Table 4 recommended minimum response factors: None.

The following compounds did not meet the minimum MCP response factor of 0.05: None.

QC (Batch Specific):

Batch 528044 (CF57711) CHEM23 3/27/2020-1

CF57711(1X)

All LCS recoveries were within 70 - 130 with the following exceptions: None.

All LCSD recoveries were within 70 - 130 with the following exceptions: None.

All LCS/LCSD RPDs were less than 30% with the following exceptions: None.

Additional 8260 criteria: 10% of compounds can be outside of acceptance criteria as long as recovery is 10%.

I attest under the pains and penalties of perjury that, based upon my inquiry of those individuals immediately responsible for obtaining the information, the material contained in this report is, to the best of my knowledge and belief, accurate and complete.

VOA-624

Were all QA/QC performance criteria specified in the MADEP document CAM achieved? Yes.

Instrument:

CHEM23 03/27/20-1 Michael Hahn, Chemist 03/27/20

CF57711 (1X), CF57886 (1X)

Initial Calibration Evaluation (CHEM23/VOA23 032020):

100% of target compounds met criteria.

The following compounds had %RSDs >35%: None.

The following compounds did not meet recommended response factors: None.

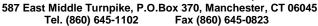
The following compounds did not meet a minimum response factors: None.

Continuing Calibration Verification (CHEM23/0327_03-VOA23_032020):

Internal standard areas were within 50 to 200% of the initial calibration with the following exceptions: None.

99% of target compounds met criteria.

The following compounds did not meet maximum % deviations: None.


The following compounds did not meet recommended response factors: None.

The following compounds did not meet minimum response factors: None.

QC (Batch Specific):

Batch 524455 (CF57711) CHEM23 3/27/2020-1

MCP Certification Report

April 30, 2020 SDG I.D.: GCF57711

VOA-624

CF57711(1X), CF57886(1X)

All LCS recoveries were within critiera with the following exceptions: None.

All LCSD recoveries were within critiera with the following exceptions: None.

All LCS/LCSD RPDs were within criteria with the following exceptions: None.

A blank MS/MSD was analyzed with this batch.

Additional VOA Criteria: The 624 recovery criteria for the MS is different than the LCS, which is reported above.

I attest under the pains and penalties of perjury that, based upon my inquiry of those individuals immediately responsible for obtaining the information, the material contained in this report is, to the best of my knowledge and belief, accurate and complete.

VOA-OXY Narration

Were all QA/QC performance criteria specified in the MADEP document CAM achieved? Yes.

Instrument:

CHEM23 03/27/20-1

Michael Hahn, Chemist 03/27/20

CF57711 (1X)

Initial Calibration Evaluation (CHEM23/OXY0320):

100% of target compounds met criteria.

The following compounds had %RSDs >20%: None.

The following compounds did not meet recommended response factors: None.

The following compounds did not meet a minimum response factors: None.

Continuing Calibration Verification (CHEM23/0327_03-OXY0320) (MCP Compliance):

Internal standard areas were within 50 to 200% of the initial calibration with the following exceptions: None.

100% of target compounds met criteria.

The following compounds did not meet % deviation criteria: None.

The following compounds did not meet maximum % deviations: None.

The following compounds did not meet recommended response factors: None.

The following compounds did not meet minimum response factors: None.

QC (Batch Specific):

Batch 524464 (CF56899)

CHEM23 3/27/2020-1

CF57711(1X)

All LCS recoveries were within 70 - 130 with the following exceptions: None.

All LCSD recoveries were within 70 - 130 with the following exceptions: None.

All LCS/LCSD RPDs were less than 30% with the following exceptions: None.

A blank MS/MSD was analyzed with this batch.

I attest under the pains and penalties of perjury that, based upon my inquiry of those individuals immediately responsible for obtaining the information, the material contained in this report is, to the best of my knowledge and belief, accurate and complete.

Coolant: PRK CE PS No Data Delivery/Contact Options: Scott Oly chood OFTA CON Project P.O: This section MUST be completed with Bottle Quantities.	+ 100 1 100 1 100 100 100 100 100 100 10	The state of the s	Data Format Excel Clinical Collection Data Package Cline I Checklist Full Data Package* Tier II Checklist Cline I Checklist Cother Surcharge APPLIES
Proj		Soll C	MCP Certification GW-1 GW-2 GW-3 S-1 GW-2 GW-3 S-2 GW-1 S-2 GW-2 S-3 GW-3 S-3 GW-1 S-3 GW-3 S-3 GW-3 S-4 GW-2 S-4 GW-3 S-5 GW-3 S-5 GW-3 S-6 GW-3 S-7 GW-3 S-7 GW-3 S-7 GW-3 S-7 GW-3 S-8 GW-3 S-8 GW-3 SW Protection
Sex Cha			MA MA MA MA MA MA MA MA
CHAIN OF CUSTODY RECORD 587 East Middle Tumpike, P.O. Box 370, Manchester, CT 06040 Email: info@phoenixlabs.com Fax (860) 645-0823 Client Services (860) 645-8726 Project: ITHIGS Report to: Scott Olly (Nod + Aly Invoice to: DUOTE #	1 18 10	X X X X	10.00
CH/S87 East Midc	Date: Date: Waste Water W=Wipe OIL=Oil	Time Sampled A 11:16 X X 11:16 X	Date: Time: 207 19:00 Turnaround Time: 1 Day* 2 Days* 2 Days* 3 Days* C Standard Other • SURCHARGE APPLIES
ratories, Inc.	Information - Identification Date: ater SW=Surface Water WW=W; Sludge S=Soil SD=Soild W=W (Other)	Sample Date Matrix Sampled Watrix Matrix Mat	taus cut
Labo TAP Pri v	Sampler's Signature Matrix Code: Due: Due: Due: Due: Diversity Code: Diversity	CT - RA	Relipquished by CHITK COMMents, Special Requirements or Regulations: MATUMIL AC CALICAL AC CALICAL AC CALICAL AC CALICAL AC CALICAL ACT CALICAL CALICAL ACT CALICAL CALI
Environmental Customer: Address:	Sampler's Signature Matrix Code: DW=Drinking Water RW=Raw Water SE B=Bulk L=Liquid X	SAMPLE# SAMPLE# ST713 ST713 ST713	Relinquishlad by Comments, Special Require WATAMI - AC CA CA CA

Page 29 of 32

<mo>scott Ollerhead <Scott.Ollerhead@gza.com> From:

Friday, March 27, 2020 01:39 PM :quəç

Lori Bailey :oT

Subject: Alyssa Chadwick :22

RE: Metals for Project 174198

Hi Lori,

Zinc, Iron Antimony, Arsenic, Cadmium, Chromium III and VI, Copper, Lead, Mercury, Nickel, Selenium, Silver,

Please run the following metals on both samples:

Please call with any questions.

Scott

Lyguks'

Contractor Services Division Scott M. Ollerhead

GZA | 249 Vanderbilt Avenue | Norwood, MA 02062

0: 781.278.5727 | C: 781.603.9880 | scott.ollerhead@gza.com | www.gza.com |

GEOTECHNICAL | EVOINGONMENTAL | ECOLOGICAL | WATER | CONSTRUCTION MANAGEMENT

Known for excellence. Built on trust.

From: Lori Bailey < lori@phoenixlabs.com>

Importance: High Subject: Metals for Project 174198 <moo.szg@beadrallO.ttoo2> beadrallO ttoo2 :oT Sent: Friday, March 27, 2020 1:33 PM

Good afternoon Scott,

Can you please let me know what metals you need for the samples submitted today for the above mentioned project?

Thank you, Lori

587 East Middle Turnpike Phoenix Environmental Laboratories Client Services Representative Lori Bailey

Manchester, CT 06040

Krystal Delgado

From: Krystal Delgado
Friday, March 27, 2020 3:34 PM
'Scott Ollerbead@gza.com'

To: 'Scott.Ollerhead@gza.com' Stott.Ollerhead@gza.com'

Ітрогалсе: Нідh

Good Afternoon,

In reference to project mentioned above, for sample ID "CT. R1" we received an NAOH bottle instead of an HNO3. We can still run the analysis if you would like us to proceed.

Please let me know.

Thank you

Krystal Delgado-

Phoenix Environmental Laboratories 587 East Middle Tpke.
Manchester, CT o6040
krystald@phoenixlabs.com

PH: 860-645-0823

Loreen Fay

From: Loreen Fay

Sent: Tuesday, April 28, 2020 3:14 PM

To: Alyssa Chadwick

Subject: RE: Phthlates on CF57711

Hi Alyssa-

We can add all except for TPH. We would need more sample to run that test. Thanks-Loreen

Loreen Fay

Executive Assistant to the Vice President

Client Services - Project Manager

Phoenix Environmental Laboratories, Inc.

587 East Middle Turnpike Manchester, CT 06040 Ph: 860-645-3513

Fax: 860-645-0823 www.phoenixlabs.com

From: Alyssa Chadwick [mailto:Alyssa.Chadwick@gza.com]

Sent: Tuesday, April 28, 2020 11:27 AM

To: Loreen Fay

Subject: RE: Phthlates on CF57711

Hi Loreen,

A few more analytes that I was hopeful that you would be able to report based on the data that you have. Please let me know if we can get an updated report to include the following:

Pentachlorophenol Total petroleum hydrocarbons Ethanol tert-Butyl alcohol tert-Amyl methyl ether

Thank you,

Aly

From: Loreen Fay < loreen@phoenixlabs.com>

Sent: Friday, April 17, 2020 11:56 AM

To: Alyssa Chadwick < Alyssa.Chadwick@gza.com >

Subject: Phthlates on CF57711

Alyssa-

We are able to report the compounds from the PAH run. A revised report will print today, and will be posted to the website upon review. thanks-Loreen

Loreen Fay
Executive Assistant to the Vice President
Client Services - Project Manager
Phoenix Environmental Laboratories, Inc.
587 East Middle Turnpike
Manchester, CT 06040
Ph: 860-645-3513

Fax: 860-645-0823 www.phoenixlabs.com

This electronic message is intended to be viewed only by the individual or entity to which it is addressed and may contain privileged and/or confidential information intended for the exclusive use of the addressee(s). If you are not the intended recipient, please be aware that any disclosure, printing, copying, distribution or use of this information is prohibited. If you have received this message in error, please notify the sender immediately and destroy this message and its attachments from your system.

For information about GZA GeoEnvironmental, Inc. and its services, please visit our website at www.qza.com.

Monday, April 06, 2020

Attn: Mr. Scott Ollerhead GZA GeoEnvironmental Inc 249 Vanderbilt Ave Norwood, MA 02062

Project ID: 174198 SDG ID: GCF57711

Sample ID#s: CF57711 - CF57712, CF57886

This laboratory is in compliance with the NELAC requirements of procedures used except where indicated.

This report contains results for the parameters tested, under the sampling conditions described on the Chain Of Custody, as received by the laboratory. This report is incomplete unless all pages indicated in the pagination at the bottom of the page are included.

A scanned version of the COC form accompanies the analytical report and is an exact duplicate of the original.

If you are the client above and have any questions concerning this testing, please do not hesitate to contact Phoenix Client Services at ext.200. The contents of this report cannot be discussed with anyone other than the client listed above without their written consent.

Sincerely yours,

Phyllis/Shiller

Laboratory Director

NELAC - #NY11301

CT Lab Registration #PH-0618

MA Lab Registration #M-CT007 ME Lab Registration #CT-007

NH Lab Registration #213693-A,B

NJ Lab Registration #CT-003 NY Lab Registration #11301 PA Lab Registration #68-03530 RI Lab Registration #63

UT Lab Registration #CT00007

VT Lab Registration #VT11301

587 East Middle Turnpike, P.O.Box 370, Manchester, CT 06045 Tel. (860) 645-1102 Fax (860) 645-0823

SDG Comments

April 06, 2020

SDG I.D.: GCF57711

Phoenix reporting levels may exceed those referenced in the CAM protocol. Please refer to criteria sheet for comparisons to requested MCP standards.

587 East Middle Turnpike, P.O.Box 370, Manchester, CT 06045 Tel. (860) 645-1102 Fax (860) 645-0823

Sample Id Cross Reference

April 06, 2020

SDG I.D.: GCF57711

Project ID: 174198

Client Id	Lab Id	Matrix
MW-1	CF57711	WATER
CT-R1	CF57712	WATER
ТВ	CF57886	WATER

587 East Middle Turnpike, P.O.Box 370, Manchester, CT 06045 Tel. (860) 645-1102 Fax (860) 645-0823

Analysis Report

April 06, 2020

FOR: Attn: Mr. Scott Ollerhead

GZA GeoEnvironmental Inc

249 Vanderbilt Ave Norwood, MA 02062

Sample Information Custody Information Date <u>Time</u> WATER Collected by: 03/27/20 11:10 Matrix: Received by: Location Code: GZA-MA LB 03/27/20 14:16 Rush Request: Standard Analyzed by: see "By" below

P.O.#:

Laboratory Data

SDG ID: GCF57711 Phoenix ID: CF57711

Project ID: 174198 Client ID: MW-1

		RL/						
Parameter	Result	PQL	Uni	ts Dilu	ution	Date/Time	Ву	Reference
Silver	< 0.001	0.001	mg.	/L	1	03/31/20	EK	SW6010D/E200.7
Arsenic	< 0.004	0.004	mg	/L	1	03/31/20	EK	SW6010D/E200.7
Cadmium	< 0.001	0.001	mg	/L	1	03/31/20	EK	SW6010D/E200.7
Chromium	0.005	0.001	mg	/L	1	03/31/20	EK	SW6010D/E200.7
Copper	< 0.005	0.005	mg	/L	1	03/31/20	EK	SW6010D/E200.7
Iron	9.18	0.010	mg	/L	1	03/31/20	EK	SW6010D/E200.7
Hardness (CaCO3)	45.3	0.1	mg	/L	1	04/01/20		E200.7
Mercury	< 0.0002	0.0002	mg	/L	1	03/31/20	RS	SW7470/E245.1
Nickel	0.010	0.001	mg	/L	1	03/31/20	TH	SW6010D/E200.7
Lead	< 0.002	0.002	mg	/L	1	03/31/20	EK	SW6010D/E200.7
Antimony	< 0.005	0.005	mg	/L	1	03/31/20	EK	SW6010D/E200.7
Selenium	< 0.010	0.010	mg	/L	1	03/31/20	EK	SW6010D/E200.7
Trivalent Chromium	0.005	0.001	mg	/L	1	03/31/20		Calculation
Zinc	0.021	0.004	mg	/L	1	03/31/20	EK	SW6010D/E200.7
Chloride	< 3.0	3.0	mg	/L	1	03/27/20	TB	SM4500CLE-11
Chlorine Residual	< 0.02	0.02	mg	/L	1	03/27/20 18:55	0	SM4500Cl-G-00
Chromium, Hexavalent	< 0.01	0.01	mg	/L	1	03/27/20 18:33	0	SM3500CRB-11
Ammonia as Nitrogen	< 0.05	0.05	mg	/L	1	03/31/20	KDB	E350.1
Oil and Grease by EPA 1664A	< 1.4	1.4	mg	/L	1	03/30/20	MSF	EPA 1664
Phenolics	< 0.015	0.015	mg	/L	1	03/30/20	MSF	E420.4
Total Cyanide	< 0.010	0.010	mg	/L	1	03/31/20	EG	SM 4500 CN-11
Total Suspended Solids	22	5.0	mg	/L	1	03/30/20	ARG	SM 2540D-11
Mercury Digestion	Completed					03/30/20	S/RA/LS/	RSW7470/245.1
PCB Extraction	Completed					03/27/20	С	E608.3
Semi-Volatile Extraction	Completed					03/31/20	P/AK	E625.1
Total Metals Digestion	Completed					03/30/20	AG	

Project ID: 174198 Phoenix I.D.: CF57711

Client ID: MW-1

Parameter	Result	RL/ PQL	Units	Dilution	Date/Time	Ву	Reference
Polychlorinated Bipheny	<u>ıls</u>						
PCB-1016	ND	0.048	ug/L	1	03/31/20	SC	E608.3
PCB-1221	ND	0.048	ug/L	1	03/31/20	SC	E608.3
PCB-1232	ND	0.048	ug/L	1	03/31/20	SC	E608.3
PCB-1242	ND	0.048	ug/L	1	03/31/20	SC	E608.3
PCB-1248	ND	0.048	ug/L	1	03/31/20	SC	E608.3
PCB-1254	ND	0.048	ug/L	1	03/31/20	SC	E608.3
PCB-1260	ND	0.048	ug/L	1	03/31/20	SC	E608.3
PCB-1262	ND	0.048	ug/L	1	03/31/20	SC	E608.3
PCB-1268	ND	0.048	ug/L	1	03/31/20	SC	E608.3
QA/QC Surrogates							
% DCBP	66		%	1	03/31/20	SC	30 - 150 %
% DCBP (Confirmation)	69		%	1	03/31/20	SC	30 - 150 %
% TCMX	66		%	1	03/31/20	SC	30 - 150 %
% TCMX (Confirmation)	64		%	1	03/31/20	SC	30 - 150 %
1,2-Dibromoethane (EDB)	ND	0.01	ug/L	1	03/30/20	CG	E504.1
Acrolein, Acrylonitrile, 2	CEVE						
2-Chloroethyl vinyl ether	ND	5.0	ug/L	1	03/27/20	МН	E624.1 As is
Acrolein	ND	5.0	ug/L	1	03/27/20	МН	E624.1 As is
Acrylonitrile	ND	5.0	ug/L	1	03/27/20	МН	E624.1 As is
<u>Volatiles</u>							
1,1,1-Trichloroethane	ND	0.50	ug/L	1	03/27/20	МН	E624.1
1,1,2,2-tetrachloroethane	ND	0.50	ug/L	1	03/27/20	MH	E624.1
1,1,2-Trichloroethane	ND	0.50	ug/L	1	03/27/20	МН	E624.1
1,1-Dichloroethane	ND	0.50	ug/L	1	03/27/20	МН	E624.1
1,1-Dichloroethene	ND	0.50	ug/L	1	03/27/20	MH	E624.1
1,2-Dichlorobenzene	ND	0.50	ug/L	1	03/27/20	MH	E624.1
1,2-Dichloroethane	ND	0.50	ug/L	1	03/27/20	MH	E624.1
1,2-Dichloropropane	ND	0.50	ug/L	1	03/27/20	MH	E624.1
1,3-Dichlorobenzene	ND	0.50	ug/L	1	03/27/20	MH	E624.1
1,4-Dichlorobenzene	ND	0.50	ug/L	1	03/27/20	MH	E624.1
Benzene	ND	0.50	ug/L	1	03/27/20	MH	E624.1
Bromodichloromethane	ND	0.50	ug/L	1	03/27/20	MH	E624.1
Bromoform	ND	0.50	ug/L	1	03/27/20	MH	E624.1
Bromomethane	ND	0.50	ug/L	1	03/27/20	MH	E624.1
Carbon tetrachloride	ND	0.50	ug/L	1	03/27/20	MH	E624.1
Chlorobenzene	ND	0.50	ug/L	1	03/27/20	MH	E624.1
Chloroethane	ND	0.50	ug/L	1	03/27/20	MH	E624.1
Chloroform	ND	0.50	ug/L	1	03/27/20	MH	E624.1
Chloromethane	ND	0.50	ug/L	1	03/27/20	MH	E624.1
cis-1,2-Dichloroethene	ND	0.50	ug/L	1	03/27/20	MH	E624.1
cis-1,3-Dichloropropene	ND	0.40	ug/L	1	03/27/20	MH	E624.1
Dibromochloromethane	ND	0.50	ug/L	1	03/27/20	MH	E624.1
Ethylbenzene	ND	0.50	ug/L	1	03/27/20	MH	E624.1
m&p-Xylene	ND	0.50	ug/L	1	03/27/20	MH	E624.1
Methyl tert-butyl ether (MTBE)	ND	1.0	ug/L	1	03/27/20	MH	E624.1

Client ID: MW-1

		RL/					
Parameter	Result	PQL	Units	Dilution	Date/Time	Ву	Reference
Methylene chloride	ND	0.50	ug/L	1	03/27/20	МН	E624.1
o-Xylene	ND	0.50	ug/L	1	03/27/20	MH	E624.1
Tetrachloroethene	ND	0.50	ug/L	1	03/27/20	MH	E624.1
Toluene	ND	0.50	ug/L	1	03/27/20	MH	E624.1
trans-1,2-Dichloroethene	ND	0.50	ug/L	1	03/27/20	MH	E624.1
trans-1,3-Dichloropropene	ND	0.40	ug/L	1	03/27/20	MH	E624.1
Trichloroethene	ND	0.50	ug/L	1	03/27/20	MH	E624.1
Trichlorofluoromethane	ND	0.50	ug/L	1	03/27/20	MH	E624.1
Vinyl chloride	ND	0.50	ug/L	1	03/27/20	MH	E624.1
QA/QC Surrogates							
% 1,2-dichlorobenzene-d4	102		%	1	03/27/20	MH	70 - 130 %
% Bromofluorobenzene	98		%	1	03/27/20	MH	70 - 130 %
% Dibromofluoromethane	99		%	1	03/27/20	MH	70 - 130 %
% Toluene-d8	112		%	1	03/27/20	МН	70 - 130 %
Semivolatiles, PAH's							
2-Methylnaphthalene	ND	0.10	ug/L	1	04/03/20	WB	E625.1 SIM
Acenaphthene	ND	0.10	ug/L	1	04/03/20	WB	E625.1 SIM
Acenaphthylene	ND	0.10	ug/L	1	04/03/20	WB	E625.1 SIM
Anthracene	ND	0.10	ug/L	1	04/03/20	WB	E625.1 SIM
Benz(a)anthracene	ND	0.05	ug/L	1	04/03/20	WB	E625.1 SIM
Benzo(a)pyrene	ND	0.10	ug/L	1	04/03/20	WB	E625.1 SIM
Benzo(b)fluoranthene	ND	0.05	ug/L	1	04/03/20	WB	E625.1 SIM
Benzo(ghi)perylene	ND	0.10	ug/L	1	04/03/20	WB	E625.1 SIM
Benzo(k)fluoranthene	ND	0.10	ug/L	1	04/03/20	WB	E625.1 SIM
Chrysene	ND	0.10	ug/L	1	04/03/20	WB	E625.1 SIM
Dibenz(a,h)anthracene	ND	0.02	ug/L	1	04/03/20	WB	E625.1 SIM
Fluoranthene	ND	0.10	ug/L	1	04/03/20	WB	E625.1 SIM
Fluorene	ND	0.10	ug/L	1	04/03/20	WB	E625.1 SIM
Indeno(1,2,3-cd)pyrene	ND	0.10	ug/L	1	04/03/20	WB	E625.1 SIM
Naphthalene	ND	0.10	ug/L	1	04/03/20	WB	E625.1 SIM
Phenanthrene	ND	0.05	ug/L	1	04/03/20	WB	E625.1 SIM
Pyrene	ND	0.10	ug/L	1	04/03/20	WB	E625.1 SIM
QA/QC Surrogates							
% 2-Fluorobiphenyl	68		%	1	04/03/20	WB	30 - 130 %
% Nitrobenzene-d5	62		%	1	04/03/20	WB	15 - 130 %
% Terphenyl-d14	82		%	1	04/03/20	WB	30 - 130 %

Project ID: 174198 Phoenix I.D.: CF57711

Client ID: MW-1

RL/

Parameter Result PQL Units Dilution Date/Time By Reference

RL/PQL=Reporting/Practical Quantitation Level ND=Not Detected BRL=Below Reporting Level QA/QC Surrogates: Surrogates are compounds (preceeded with a %) added by the lab to determine analysis efficiency. Surrogate results(%) listed in the report are not "detected" compounds.

Comments:

The regulatory hold time for Chlorine is immediately. This Chlorine was performed in the laboratory and may be considered outside of hold-time.

Per 1.4.6 of EPA method 8270D, 1,2-Diphenylhydrazine is unstable and readily converts to Azobenzene. Azobenzene is used for the calibration of 1,2-Diphenylhydrazine.

If you are the client above and have any questions concerning this testing, please do not hesitate to contact Phoenix Client Services at ext.200. The contents of this report cannot be discussed with anyone other than the client listed above without their written consent.

Phyllis Shiller, Laboratory Director

April 06, 2020

Reviewed and Released by: Rashmi Makol, Project Manager

587 East Middle Turnpike, P.O.Box 370, Manchester, CT 06045 Tel. (860) 645-1102 Fax (860) 645-0823

Analysis Report

April 06, 2020

FOR: Attn: Mr. Scott Ollerhead

GZA GeoEnvironmental Inc

249 Vanderbilt Ave Norwood, MA 02062

Sample InformationCustody InformationDateTimeMatrix:WATERCollected by:03/27/2011:10Location Code:GZA-MAReceived by:LB03/27/2014:16

Rush Request: Standard Analyzed by: see "By" below

Laboratory Data

SDG ID: GCF57711

Phoenix ID: CF57712

Project ID: 174198 Client ID: CT-R1

P.O.#:

		RL/					
Parameter	Result	PQL	Units	Dilution	Date/Time	Ву	Reference
Silver	< 0.002	0.002	mg/L	1	03/31/20	EK	SW6010D/E200.7
Arsenic	< 0.004	0.004	mg/L	1	03/31/20	EK	SW6010D/E200.7
Cadmium	< 0.001	0.001	mg/L	1	03/31/20	EK	SW6010D/E200.7
Chromium	0.011	0.001	mg/L	1	03/31/20	EK	SW6010D/E200.7
Copper	0.017	0.005	mg/L	1	03/31/20	EK	SW6010D/E200.7
Iron	7.14	0.010	mg/L	1	03/31/20	EK	SW6010D/E200.7
Hardness (CaCO3)	38.3	0.1	mg/L	1	04/01/20		E200.7
Mercury	< 0.0002	0.0002	mg/L	1	03/31/20	RS	SW7470/E245.1
Nickel	0.015	0.001	mg/L	1	03/31/20	EK	SW6010D/E200.7
Lead	0.006	0.002	mg/L	1	03/31/20	EK	SW6010D/E200.7
Antimony	< 0.005	0.005	mg/L	1	03/31/20	EK	SW6010D/E200.7
Selenium	< 0.010	0.010	mg/L	1	03/31/20	EK	SW6010D/E200.7
Zinc	0.037	0.004	mg/L	1	03/31/20	EK	SW6010D/E200.7
Mercury Digestion	Completed				03/30/20	3/RA/LS	/RSW7470/245.1
Total Metals Digestion	Completed				03/30/20	AG	

Project ID: 174198 Phoenix I.D.: CF57712

Client ID: CT-R1

RL/

Parameter Result PQL Units Dilution Date/Time By Reference

RL/PQL=Reporting/Practical Quantitation Level ND=Not Detected BRL=Below Reporting Level

Comments:

The regulatory hold time for Chlorine is immediately. This Chlorine was performed in the laboratory and may be considered outside of hold-time.

If you are the client above and have any questions concerning this testing, please do not hesitate to contact Phoenix Client Services at ext.200. The contents of this report cannot be discussed with anyone other than the client listed above without their written consent.

Phyllis Shiller, Laboratory Director

April 06, 2020

Reviewed and Released by: Rashmi Makol, Project Manager

587 East Middle Turnpike, P.O.Box 370, Manchester, CT 06045 Tel. (860) 645-1102 Fax (860) 645-0823

Analysis Report

April 06, 2020

FOR: Attn: Scott Ollerhead

GZA GeoEnvironmental Inc

249 Vanderbilt Ave Norwood, MA 02062

Matrix: WATER Collected by: 03/27/20

Location Code: GZA-MA Received by: SW 03/27/20 14:16

Rush Request: Standard Analyzed by: see "By" below

P.O.#: Laboratory Data

SDG ID: GCF57711

Phoenix ID: CF57886

Project ID: 174198 Client ID: TB

RL/

Parameter	Result	PQL	Units	Dilution	Date/Time	Ву	Reference
Volatiles							
1,1,1-Trichloroethane	ND	0.50	ug/L	1	03/27/20	МН	E624.1
1,1,2,2-tetrachloroethane	ND	0.50	ug/L	1	03/27/20	МН	E624.1
1,1,2-Trichloroethane	ND	0.50	ug/L	1	03/27/20	МН	E624.1
1,1-Dichloroethane	ND	0.50	ug/L	1	03/27/20	МН	E624.1
1,1-Dichloroethene	ND	0.50	ug/L	1	03/27/20	МН	E624.1
1,2-Dichlorobenzene	ND	0.50	ug/L	1	03/27/20	МН	E624.1
1,2-Dichloroethane	ND	0.50	ug/L	1	03/27/20	МН	E624.1
1,2-Dichloropropane	ND	0.50	ug/L	1	03/27/20	МН	E624.1
1,3-Dichlorobenzene	ND	0.50	ug/L	1	03/27/20	МН	E624.1
1,4-Dichlorobenzene	ND	0.50	ug/L	1	03/27/20	МН	E624.1
Benzene	ND	0.50	ug/L	1	03/27/20	МН	E624.1
Bromodichloromethane	ND	0.50	ug/L	1	03/27/20	МН	E624.1
Bromoform	ND	0.50	ug/L	1	03/27/20	МН	E624.1
Bromomethane	ND	0.50	ug/L	1	03/27/20	МН	E624.1
Carbon tetrachloride	ND	0.50	ug/L	1	03/27/20	МН	E624.1
Chlorobenzene	ND	0.50	ug/L	1	03/27/20	МН	E624.1
Chloroethane	ND	0.50	ug/L	1	03/27/20	МН	E624.1
Chloroform	ND	0.50	ug/L	1	03/27/20	МН	E624.1
Chloromethane	ND	0.50	ug/L	1	03/27/20	МН	E624.1
cis-1,2-Dichloroethene	ND	0.50	ug/L	1	03/27/20	МН	E624.1
cis-1,3-Dichloropropene	ND	0.40	ug/L	1	03/27/20	МН	E624.1
Dibromochloromethane	ND	0.50	ug/L	1	03/27/20	МН	E624.1
Ethylbenzene	ND	0.50	ug/L	1	03/27/20	МН	E624.1
m&p-Xylene	ND	0.50	ug/L	1	03/27/20	МН	E624.1
Methyl tert-butyl ether (MTBE)	ND	1.0	ug/L	1	03/27/20	МН	E624.1
Methylene chloride	ND	0.50	ug/L	1	03/27/20	МН	E624.1

Project ID: 174198 Phoenix I.D.: CF57886

Client ID: TB

	RL/					
Result	PQL	Units	Dilution	Date/Time	Ву	Reference
ND	0.50	ug/L	1	03/27/20	МН	E624.1
ND	0.50	ug/L	1	03/27/20	MH	E624.1
ND	0.50	ug/L	1	03/27/20	MH	E624.1
ND	0.50	ug/L	1	03/27/20	MH	E624.1
ND	0.40	ug/L	1	03/27/20	MH	E624.1
ND	0.50	ug/L	1	03/27/20	MH	E624.1
ND	0.50	ug/L	1	03/27/20	MH	E624.1
ND	0.50	ug/L	1	03/27/20	MH	E624.1
101		%	1	03/27/20	MH	70 - 130 %
99		%	1	03/27/20	MH	70 - 130 %
96		%	1	03/27/20	MH	70 - 130 %
98		%	1	03/27/20	МН	70 - 130 %
	ND ND ND ND ND ND ND ND ND 99	Result PQL ND 0.50 ND 0.50 ND 0.50 ND 0.40 ND 0.50 ND 0.50 ND 0.50 ND 0.50 101 99 96 96	Result PQL Units ND 0.50 ug/L ND 0.50 ug/L ND 0.50 ug/L ND 0.40 ug/L ND 0.50 ug/L 99 % 96 %	Result PQL Units Dilution ND 0.50 ug/L 1 ND 0.50 ug/L 1 ND 0.50 ug/L 1 ND 0.40 ug/L 1 ND 0.50 ug/L 1 ND 0.50 ug/L 1 ND 0.50 ug/L 1 ND 0.50 ug/L 1 101 % 1 99 % 1 96 % 1	Result PQL Units Dilution Date/Time ND 0.50 ug/L 1 03/27/20 101 % 1 03/27/20 99 % 1 03/27/20 96 % 1 03/27/20	Result PQL Units Dilution Date/Time By ND 0.50 ug/L 1 03/27/20 MH ND 0.50 ug/L 1 03/27/20 MH ND 0.50 ug/L 1 03/27/20 MH ND 0.40 ug/L 1 03/27/20 MH ND 0.50 ug/L 1 03/27/20 MH 101 % 1 03/27/20 MH

RL/PQL=Reporting/Practical Quantitation Level ND=Not Detected BRL=Below Reporting Level QA/QC Surrogates: Surrogates are compounds (preceeded with a %) added by the lab to determine analysis efficiency. Surrogate results(%) listed in the report are not "detected" compounds.

Comments:

TRIP BLANK INCLUDED.

If you are the client above and have any questions concerning this testing, please do not hesitate to contact Phoenix Client Services at ext.200. The contents of this report cannot be discussed with anyone other than the client listed above without their written consent.

Phyllis Shiller, Laboratory Director

April 06, 2020

Reviewed and Released by: Rashmi Makol, Project Manager

587 East Middle Turnpike, P.O.Box 370, Manchester, CT 06045 Tel. (860) 645-1102 Fax (860) 645-0823

QA/QC Report

April 06, 2020

QA/QC Data

Parameter	Blank	BIk RL	Sample Result	Dup Result	Dup RPD	LCS %	LCSD %	LCS RPD	MS %	MSD %	MS RPD	% Rec Limits	% RPD Limits	
QA/QC Batch 524404 (mg/L),	QC Samp	ole No: (CF51083	(CF5771	1, CF5	7712)								
Mercury - Water	BRL	0.0002	< 0.0005	< 0.0005	NC	89.4			71.5			75 - 125	30	m
Comment:														
Additional Mercury criteria: LCS a	acceptanc	e range f	or waters	is 80-1209	% and fo	or soils is	s 75-1259	%						
QA/QC Batch 524535 (mg/L), (QC Samp	ole No: 0	CF58144	(CF5771	1, CF5	7712)								
ICP Metals - Aqueous														
Antimony	BRL	0.005	< 0.005	< 0.005	NC	104	104	0.0	102			80 - 120	20	
Arsenic	BRL	0.004	0.004	< 0.004	NC	102	103	1.0	101			80 - 120	20	
Cadmium	BRL	0.001	< 0.001	< 0.001	NC	104	105	1.0	101			80 - 120	20	
Chromium	BRL	0.001	0.001	0.001	NC	103	104	1.0	101			80 - 120	20	
Copper	BRL	0.005	< 0.005	< 0.005	NC	103	102	1.0	100			80 - 120	20	
Iron	BRL	0.010	0.062	0.056	10.2	103	103	0.0	102			80 - 120	20	
Lead	BRL	0.002	< 0.002	< 0.002	NC	99.0	100	1.0	96.2			80 - 120	20	
Nickel	BRL	0.001	< 0.001	< 0.001	NC	102	102	0.0	98.4			80 - 120	20	
Selenium	BRL	0.010	< 0.010	< 0.010	NC	97.3	98.0	0.7	95.5			80 - 120	20	
Silver	BRL	0.001	< 0.001	< 0.001	NC	99.8	99.5	0.3	96.7			80 - 120	20	
Zinc	BRL	0.004	0.009	0.009	NC	101	101	0.0	98.9			80 - 120	20	
Comment:														
Additional: LCS acceptance rang	e is 80-12	0% MS a	cceptance	e range 7	5-125%									

 $m = This\ parameter\ is\ outside\ laboratory\ MS/MSD\ specified\ recovery\ limits.$

587 East Middle Turnpike, P.O.Box 370, Manchester, CT 06045 Tel. (860) 645-1102 Fax (860) 645-0823

QA/QC Report

April 06, 2020

QA/QC Data

Parameter	Blank	Blk RL	Sample Result	Dup Result	Dup RPD	LCS %	LCSD %	LCS RPD	MS %	MSD %	MS RPD	% Rec Limits	% RPD Limits	
QA/QC Batch 524541 (mg/L), C	C Samp	ole No:	CF55900	(CF577	11)									
Total Cyanide Comment:	BRL	0.010	0.257	0.246	4.40	89.3			101			90 - 110	30	I
Additional soil criteria LCS accept	ance ran	ge is 80-	120% MS	acceptan	ce range	75-12	5%.							
QA/QC Batch 524418 (mg/L), C	2C Samp	ole No:	CF57616	(CF577	11)									
Oil and Grease by EPA 1664A Comment:	BRL	1.4				98.0	97.0	1.0				85 - 115	20	
Additional: MS acceptance range	75-125%	, o.												
QA/QC Batch 524416 (mg/L), C	C Samp	ole No:	CF57711	(CF577	11)									
Total Suspended Solids	BRL	2.5	22	25	NC	97.0						85 - 115		
QA/QC Batch 524328 (mg/L), C	C Samp	ole No:	CF58097	(CF577	11)									
Chromium, Hexavalent Comment:	BRL	0.01	<0.01	<0.01	NC	101			107			90 - 110	30	
Additional Hexavalent Chromium	criteria: L	CS acce	ptance rar	nge for wa	iters is 9	0-110%	and MS	accepta	nce ran	ge is 85-1	15%.			
QA/QC Batch 524320 (mg/L), C	C Samp	ole No:	CF57054	(CF577	11)									
Chloride	BRL	3.0	33.2	32.1	3.40	99.2			104			90 - 110	20	
QA/QC Batch 524420 (mg/L), C	C Samp	ole No:	CF58097	(CF577	11)									
Ammonia as Nitrogen	BRL	0.05	< 0.05	< 0.05	NC	95.1			97.0			90 - 110	20	
QA/QC Batch 524399 (mg/L), C	C Samp	ole No:	CF57711	(CF577	11)									
Phenolics	BRL	0.015	< 0.015	< 0.015	NC	96.0			103			90 - 110	20	
QA/QC Batch 524330 (mg/L), C	C Samp	ole No:	CF57615	(CF577	11)									
Chlorine Residual	BRL	0.02	<0.01	<0.02	NC	98.4								

I = This parameter is outside laboratory LCS/LCSD specified recovery limits.

587 East Middle Turnpike, P.O.Box 370, Manchester, CT 06045 Tel. (860) 645-1102 Fax (860) 645-0823

QA/QC Report

April 06, 2020

QA/QC Data

SDG I.D.: GCF57711

71pm 00, 2020							3001	.D C		
Parameter	Blank	Blk RL	LCS %	LCSD %	LCS RPD	MS %	MSD %	MS RPD	% Rec Limits	% RPD Limits
QA/QC Batch 524413 (ug/L), Q0	C Samp	le No: CF57390 (CF57711)								
EDB and DBCP Analysis	•									
1,2-Dibromoethane (EDB)	ND	0.01	100	99	1.0	103	101	2.0	70 - 130	25
QA/QC Batch 524342 (ug/L), Q0	C Samp	le No: CF56925 (CF57711)								
Polychlorinated Biphenyls	•									
PCB-1016	ND	0.050	81	82	1.2				50 - 140	20
PCB-1221	ND	0.050	0.	02					15 - 178	20
PCB-1232	ND	0.050							10 - 200	20
PCB-1242	ND	0.050							39 - 150	20
PCB-1248	ND	0.050							38 - 158	20
PCB-1254	ND	0.050							29 - 140	20
PCB-1260	ND	0.050	91	90	1.1				10 - 140	20
PCB-1262	ND	0.050							40 - 140	20
PCB-1268	ND	0.050							40 - 140	20
% DCBP (Surrogate Rec)	67	%	76	75	1.3				30 - 150	20
% DCBP (Surrogate Rec) (Confirm	68	%	78	79	1.3				30 - 150	20
% TCMX (Surrogate Rec)	67	%	76	73	4.0				30 - 150	20
% TCMX (Surrogate Rec) (Confirm Comment:	67	%	76	73	4.0				30 - 150	20
A LCS and LCS Duplicate were pe		•	ix spike dı	uplicate.						
QA/QC Batch 524671 (ug/L), QC	-	le No: CF58991 (CF57711)								
Semivolatiles (SIM) - Wat	<u>er</u>									
2-Methylnaphthalene	ND	0.50	70	69	1.4				30 - 130	20
Acenaphthene	ND	0.50	96	95	1.0				60 - 132	48
Acenaphthylene	ND	0.50	90	89	1.1				54 - 126	74
Anthracene	ND	0.50	91	91	0.0				43 - 120	66
Benz(a)anthracene	ND	0.50	95	94	1.1				42 - 133	53
Benzo(a)pyrene	ND	0.50	85	85	0.0				32 - 148	72
Benzo(b)fluoranthene	ND	0.50	93	92	1.1				42 - 140	71
Benzo(ghi)perylene	ND	0.50	93	91	2.2				10 - 195	97
Benzo(k)fluoranthene	ND	0.50	120	119	8.0				25 - 146	63
Chrysene	ND	0.50	96	94	2.1				44 - 140	87
Dibenz(a,h)anthracene	ND	0.50	94	93	1.1				10 - 200	126
Fluoranthene	ND	0.50	91	93	2.2				43 - 121	66
Fluorene	ND	0.50	99	97	2.0				70 - 120	38
Indeno(1,2,3-cd)pyrene	ND	0.50	82	82	0.0				10 - 151	99
Naphthalene	ND	0.50	72	71	1.4				36 - 120	65
Phenanthrene	ND	0.50	85	84	1.2				65 - 120	39
Pyrene % 2 Elyarahinhanyl	ND	0.50	97	100	3.0				70 - 120	49
% 2-Fluorobiphenyl	64 50	%	80 70	80	0.0				30 - 130	20
% Nitrobenzene-d5 % Terphenyl-d14	59 67	% %	79 80	81 83	2.5 3.7				15 - 130	20
70 Telphenyi-uT4	07	/0	δU	03	ა./				30 - 130	20

QA/QC Data SDG I.D.: GCF57711 LCS LCSD LCS MS MSD MS Rec RPD % % RPD Limits Limits

		Blk	LCS	LCSD	LCS	MS	MSD	MS	% Rec	% RPD	
Parameter	Blank	RL	%	%	RPD	%	%	RPD	Limits	Limits	
Comment:											
Additional 8270 criteria: 10% of co acceptance range for aqueous sar	mpounds mples: 10	can be outside of acceptance crite -110%, for soils 30-130%)	ria as Ior	ng as rec	overy is	at least	10%. (Ad	cid surro	ogates		
QA/QC Batch 524671 (ug/L), Q	C Sampl	e No: CF58991 (CF57711)									
Semivolatiles - Water											
1,2,4-Trichlorobenzene	ND	3.5	81	78	3.8				57 - 130	50	
1,2-Dichlorobenzene	ND	1.0	78	74	5.3				30 - 130	20	
1,2-Diphenylhydrazine	ND	1.6	90	87	3.4				30 - 130	20	
1,3-Dichlorobenzene	ND	1.0	81	76	6.4				46 - 154	20	
1,4-Dichlorobenzene	ND	1.0	78	74	5.3				30 - 130	20	
2,4,5-Trichlorophenol	ND	1.0	96	94	2.1				30 - 130	20	
2,4,6-Trichlorophenol	ND	1.0	96	92	4.3				52 - 129	58	
2,4-Dichlorophenol	ND	1.0	84	81	3.6				53 - 122	50	
2,4-Dimethylphenol	ND	1.0	86	86	0.0				42 - 120	58	
2,4-Dinitrophenol	ND	1.0	88	84	4.7				10 - 173	132	
2,4-Dinitrotoluene	ND	3.5	101	99	2.0				48 - 127	42	
2,6-Dichlorophenol	ND	10	79	77	2.6				30 - 130	20	
2,6-Dinitrotoluene	ND	3.5	100	96	4.1				68 - 137	48	
2-Chloronaphthalene	ND	3.5	85	83	2.4				65 - 120	24	
2-Chlorophenol	ND	1.0	83	78	6.2				36 - 120	61	
2-Methylnaphthalene	ND	3.5	78	76	2.6				30 - 130	20	
2-Methylphenol (o-cresol)	ND	1.0	87	80	8.4				30 - 130	20	
2-Nitroaniline	ND	3.5	188	184	2.2				30 - 130	20	1
2-Nitrophenol	ND	1.0	90	87	3.4				45 - 167	55	•
3&4-Methylphenol (m&p-cresol)	ND	1.0	99	93	6.3				30 - 130	20	
3,3'-Dichlorobenzidine	ND	5.0	72	66	8.7				8 - 213	108	
3-Nitroaniline	ND	5.0	113	104	8.3				30 - 130	20	
4,6-Dinitro-2-methylphenol	ND	1.0	98	97	1.0				30 - 130	20	
4-Bromophenyl phenyl ether	ND	3.5	90	91	1.1				65 - 120	43	
4-Chloro-3-methylphenol	ND	1.0	91	90	1.1				41 - 128	73	
4-Chloroaniline	ND	3.5	78	69	12.2				30 - 130	20	
4-Chlorophenyl phenyl ether	ND	1.0	89	86	3.4				38 - 145	61	
4-Nitroaniline	ND	5.0	97	94	3.1				30 - 130	20	
4-Nitrophenol	ND	1.0	112	113	0.9				13 - 129	131	
Anthracene	ND	1.5	90	89	1.1				43 - 120	66	
Benzidine	ND	4.5	39	72	59.5				30 - 130	20	r
Benzoic acid	ND	10	61	43	34.6				30 - 130	20	r
Benzyl Alcohol	ND	5.0	93	90	3.3				30 - 130	20	•
Benzyl butyl phthalate	ND	1.5	100	98	2.0				10 - 140	60	
Bis(2-chloroethoxy)methane	ND	3.5	77	76	1.3				49 - 165	54	
Bis(2-chloroethyl)ether	ND	1.0	72	68	5.7				43 - 126	108	
Bis(2-chloroisopropyl)ether	ND	1.0	65	61	6.3				63 - 139	76	1
Bis(2-ethylhexyl)phthalate	ND	1.5	104	100	3.9				29 - 137	82	
Dibenzofuran	ND	3.5	88	84	4.7				30 - 130	20	
Diethyl phthalate	ND	1.5	98	97	1.0				10 - 120	100	
Dimethylphthalate	ND	1.5	95	92	3.2				10 - 120	183	
Di-n-butylphthalate	ND	1.5	97	97	0.0				8 - 120	47	
Di-n-octylphthalate	ND	1.5	105	102	2.9				19 - 132	69	
Fluoranthene	ND	1.5	92	92	0.0				43 - 121	66	
Fluorene	ND	1.5	92	90	2.2				70 - 120	38	
Hexachloroethane	ND	3.5	80	76	5.1				55 - 120	52	
Isophorone	ND	3.5	81	80	1.2				47 - 180	93	
- »p		- -	٠.								

QA/QC Data

SDG I.D.: GCF57711

Parameter	Blank	BIk RL	LCS %	LCSD %	LCS RPD	MS %	MSD %	MS RPD	% Rec Limits	% RPD Limits
Naphthalene	ND	1.5	78	75	3.9				36 - 120	65
N-Nitrosodi-n-propylamine	ND	3.5	83	78	6.2				14 - 198	87
N-Nitrosodiphenylamine	ND	3.5	81	80	1.2				30 - 130	20
Phenol	ND	1.0	78	73	6.6				17 - 120	64
Pyrene	ND	1.5	95	93	2.1				70 - 120	49
% 2,4,6-Tribromophenol	98	%	111	107	3.7				15 - 130	20
% 2-Fluorobiphenyl	65	%	76	76	0.0				30 - 130	20
% 2-Fluorophenol	57	%	67	62	7.8				10 - 130	20
% Nitrobenzene-d5	65	%	76	71	6.8				15 - 130	20
% Phenol-d5	32	%	70	66	5.9				10 - 130	20
% Terphenyl-d14	82	%	88	89	1.1				30 - 130	20
QA/QC Batch 524455 (ug/L), QC										
Volatiles - Water		(,							
1,1,1-Trichloroethane	ND	1.0	98	99	1.0	113	107	5.5	70 - 130	20
1,1,2,2-Tetrachloroethane	ND	0.50	101	105	3.9	115	114	0.9	60 - 140	20
1,1,2-Trichloroethane	ND	1.0	91	103	12.4	117	105	10.8	70 - 130	20
1,1-Dichloroethane	ND	1.0	98	100	2.0	115	109	5.4	70 - 130	20
1,1-Dichloroethene	ND	1.0	103	104	1.0	120	116	3.4	50 - 150	20
1,2-Dichlorobenzene	ND	1.0	98	102	4.0	114	110	3.6	65 - 135	20
1,2-Dichloroethane	ND	1.0	95	104	9.0	119	107	10.6	70 - 130	20
1,2-Dichloropropane	ND	1.0	92	104	12.2	119	105	12.5	35 - 165	20
1,3-Dichlorobenzene	ND	1.0	103	105	1.9	120	114	5.1	70 - 130	20
1,4-Dichlorobenzene	ND	1.0	97	98	1.0	112	107	4.6	65 - 135	20
2 chlorethyl vinyl ether	ND	1.0	109	122	11.3	140	124	12.1	10 - 200	20
Acrolein	ND	5.0	98	99	1.0	113	111	1.8	70 - 130	20
Acrylonitrile	ND	5.0	98	105	6.9	110	110	0.0	70 - 130	20
Benzene	ND	0.70	101	109	7.6	126	112	11.8	65 - 135	20
Bromodichloromethane	ND	0.50	99	109	9.6	123	113	8.5	65 - 135	20
Bromoform	ND	1.0	110	117	6.2	126	122	3.2	70 - 130	20
Bromomethane	ND	1.0	82	83	1.2	95	93	2.1	15 - 185	20
Carbon tetrachloride	ND	1.0	101	102	1.0	120	113	6.0	70 - 130	20
Chlorobenzene	ND	1.0	98	101	3.0	114	110	3.6	65 - 135	20
Chloroethane	ND	1.0	90	96	6.5	118	109	7.9	40 - 160	20
Chloroform	ND	1.0	98	98	0.0	115	108	6.3	70 - 135	20
Chloromethane	ND	1.0	93	94	1.1	108	100	7.7	10 - 200	20
cis-1,2-Dichloroethene	ND	1.0	99	100	1.0	112	110	1.8	70 - 130	20
cis-1,3-Dichloropropene	ND	0.40	96	106	9.9	120	108	10.5	25 - 175	20
Dibromochloromethane	ND	0.50	108	112	3.6	123	119	3.3	70 - 135	20
Ethylbenzene	ND	1.0	105	106	0.9	120	115	4.3	60 - 140	20
m&p-Xylene	ND	1.0	105	107	1.9	122	116	5.0	70 - 130	30
Methyl t-butyl ether (MTBE)	ND	1.0	95	98	3.1	110	108	1.8	70 - 130	30
Methylene chloride	ND	1.0	87	87	0.0	100	95	5.1	60 - 140	20
o-Xylene	ND	1.0	106	108	1.9	124	117	5.8	70 - 130	30
Tetrachloroethene	ND	1.0	94	100	6.2	117	105	10.8	70 - 130	20
Toluene	ND	1.0	99	109	9.6	125	112	11.0	70 - 130	20
trans-1,2-Dichloroethene	ND	1.0	100	101	1.0	117	111	5.3	70 - 130	20
trans-1,3-Dichloropropene	ND	0.40	100	111	10.4	125	112	ນ.ນ 11.0	50 - 150	20
Trichloroethene	ND	1.0	96	96	0.0	110	106	3.7	65 - 135	20
Trichlorofluoromethane	ND	1.0	96 94	96 95	1.1	112	106	3.7 4.6	50 - 150	20
	ND ND	1.0	94 99	95 100	1.1	116	107	4.6 6.2	10 - 195	20
Vinyl chloride % 1,2-dichlorobenzene-d4	100	1.0 %	99 101	100	1.0	100	109	1.0	70 - 130	30
% 1,2-dichlorobenzene-d4 % Bromofluorobenzene	98	% %	101	100	1.0	100	101	1.0	70 - 130 70 - 130	30
70 DI OMONIQUI ODENZENE	70	/0	101	102	1.0	102	101	1.0	70 - 130	30

QA/QC Data

Parameter	Blank	Blk RL	LCS %	LCSD %	LCS RPD	MS %	MSD %	MS RPD	% Rec Limits	% RPD Limits
% Dibromofluoromethane	97	%	97	96	1.0	98	95	3.1	70 - 130	30
% Toluene-d8	102	%	97	104	7.0	107	98	8.8	70 - 130	30
Comment:										
A blank MS/MSD was analyze	d with this ba	itch.								

 $[\]label{eq:local_local_local} I = \mbox{This parameter is outside laboratory LCS/LCSD specified recovery limits.} \\ r = \mbox{This parameter is outside laboratory RPD specified recovery limits.}$

If there are any questions regarding this data, please call Phoenix Client Services at extension 200.

RPD - Relative Percent Difference

LCS - Laboratory Control Sample

LCSD - Laboratory Control Sample Duplicate

MS - Matrix Spike

MS Dup - Matrix Spike Duplicate

NC - No Criteria

Intf - Interference

Phyllis/Shiller, Laboratory Director

SDG I.D.: GCF57711

April 06, 2020

Monday, April 06, 2020

Criteria: MA: CAM, GW1

Sample Criteria Exceedances Report GCF57711 - GZA-MA

State: MA

State:	MA						RL	Analysis
SampNo	Acode	Phoenix Analyte	Criteria	Result	RL	Criteria	Criteria	Units
CF57711	\$624ADD	Acrylonitrile	MA / CAM Protocol / VOA AQ RL	ND	5.0		2	ug/L

Phoenix Laboratories does not assume responsibility for the data contained in this exceedance report. It is provided as an additional tool to identify requested criteria exceedences. All efforts are made to ensure the accuracy of the data (obtained from appropriate agencies). A lack of exceedence information does not necessarily suggest conformance to the criteria. It is ultimately the site professional's responsibility to determine appropriate compliance.

MassDEP Analytical Protocol Certification Form											
Laboratory Name: Phoenix Environmental Laboratories, Inc. Project #:											
Proje	ct Locati	ion: 1741	98		F	RTN:					
This F	This Form provides certifications for the following data set: [list Laboratory Sample ID Number(s)]										
CF577	CF57711, CF57712, CF57886										
Matric	es: Gro	undwater/Sur	face Wa	ater Soil/Sedimen	t Drinking	Wate	r 🗌 Air	✓ 0	ther:	WATER, W	
CAM	Protocol (check all th									
8260 V CAM II		7470/7471 H	g V	MassDEP VPH CAM IV A	8081 Pesticides CAM V B		7196 Hex Cr CAM VI B		MassE CAM I	DEP APH X A	
8270 S CAM II		7010 Metals CAM III C		MassDEP EPH CAM IV B	8151 Herbicides CAM V C		8330 Explosives CAM VIII A		TO-15 CAM I		
6010 M CAM II		6020 Metals CAM III D		8082 PCB CAM V A	9012 Total Cyanide/PAC CAM V1 A		6860 Perchlorat CAM VIII B	е			
	Affirmat	ive respons	es to q	uestions A through	F are required	d for	"Presumptive	Certai	nty" s	status	
Α	Chain-of-0	Custody, pro	perly p	a condition consiste reserved (including to llyzed with method ho	emperature*) in	the f	eld or	✓,	Yes	□ No	
В		analytical m CAM protoco		s) and all associated owed?	QC requiremen	its sp	ecified in the	V	Yes	□No	
С		CAM protoco		actions and analytica plemented for all ider				✓ ,	Yes	□No	
D	CAM VII A		ssuran	omply with all the repo ce and Quality Contro ata"?				✓ ,	Yes	□No	
Ш		t modification		ods only: Was each refer to the individual					Yes	□No	
	b. APH a method?	nd TO-15 m	ethods	only: Was the compl	ete analyte list	repor	ted for each		Yes	□ No	
F	conforma		ed and	tocol QC and perforn evaluated in a labora rough E)?			ling all "No"	•	Yes	□ No	
	Res	onses to q	uestio	ns G, H and I below	is required for	"Pre	sumptive Cer	tainty'	' statu	IS	
G		reporting lim CAM protoco		r below all CAM repo	orting limits spe	cified	in the		Yes	☑ No	
				resumptive Certainty" cribed in 310 CMR 40.				data u	sability	and and	
Н	See Secti	on: Cyanide	Narrati		-				Yes	✓ No	
I	Were resu protocol(s)?		complete analyte lis					Yes	✓ No	
		d, attest unde	r the pa	esponses must be addr ains and penalties of p tion, the material cont	perjury that, base	ed up	on my personal	inqui			
		te and comp				-	- ,			J	
					Da	ate: N	Monday, April	06, 20	020		
	orized	Rw	بيديالا	i Waka	Printed Nar	ne: F	Rashmi Makol				
Sign	Authorized Signature: Printed Name: Rashmi Makol Position: Project Manager										

587 East Middle Turnpike, P.O.Box 370, Manchester, CT 06045 Tel. (860) 645-1102 Fax (860) 645-0823

MCP Certification Report

April 06, 2020 SDG I.D.: GCF57711

SDG Comments

Metals Analysis:

The client requested a site specific list of elements which is shorter than the 6010 MCP list.

Phoenix reporting levels may exceed those referenced in the CAM protocol. Please refer to criteria sheet for comparisons to requested MCP standards.

The client requested volatiles by 624 and semi-volatiles PAHs by 625. The MCP narrative is provided at the request of the client.

504.1

Were all QA/QC performance criteria specified in the MADEP document CAM achieved? Yes.

Instrument:

CHEM35 03/30/20-1

Chelsey Guerette, Chemist 03/30/20

CF57711 (1X)

The initial calibration (CHEM35/504tcp_0330): RSD for the compound list was less than 20% except for the following compounds: None.

The continuing calibration %D for the compound list was less than 15% except for the following compounds:None.

QC (Batch Specific):

Batch 524413 (CF57390)

CF57711

All LCS recoveries were within 70 - 130 with the following exceptions: None.

All LCSD recoveries were within 70 - 130 with the following exceptions: None.

All LCS/LCSD RPDs were less than 25% with the following exceptions: None.

I attest under the pains and penalties of perjury that, based upon my inquiry of those individuals immediately responsible for obtaining the information, the material contained in this report is, to the best of my knowledge and belief, accurate and complete.

Cyanide Narration

Were all QA/QC performance criteria specified in the MADEP document CAM achieved? No.

QC Batch 524541 (Samples: CF57711): -----

The LCS and/or the LCSD recovery is below the method criteria. All of the other QC is acceptable, therefore no significant bias is suspected. (Total Cyanide)

Instrument:

LACHAT 03/31/20-1

Eric Geyer, Chemist 03/31/20

CF57711

The samples were distilled in accordance with the method.

The initial calibration met criteria.

The calibration check standards (ICV,CCV) were within 15% of true value and were analyzed at a frequencey of one per ten samples.

The continuing calibration blanks (ICB,CCB) had concentrations less than the reporting level.

587 East Middle Turnpike, P.O.Box 370, Manchester, CT 06045 Tel. (860) 645-1102 Fax (860) 645-0823

MCP Certification Report

April 06, 2020 SDG I.D.: GCF57711

Cyanide Narration

The method blank, laboratory control sample (LCS), and matrix spike were distilled with the samples.

QC (Batch Specific):

Batch 524541 (CF55900)

CF57711

All LCS recoveries were within 90 - 110 with the following exceptions: Total Cyanide(89.3%) Additional soil criteria LCS acceptance range is 80-120% MS acceptance range 75-125%.

I attest under the pains and penalties of perjury that, based upon my inquiry of those individuals immediately responsible for obtaining the information, the material contained in this report is, to the best of my knowledge and belief, accurate and complete.

Hexavalent Chromium (Aqueous)

Were all QA/QC performance criteria specified in the MADEP document CAM achieved? Yes.

Instrument:

BECKMAN DU720 03/27/20-1 Dustin Harrison, Chemist 03/27/20

CF57711

The initial calibration met all criteria including a standard run at the reporting level.

All calibration verification standards (ICV, CCV) met criteria.

All calibration blank verification standards (ICB, CCB) met criteria.

QC (Batch Specific):

Batch 524328 (CF58097)

CF57711

All LCS recoveries were within 90 - 110 with the following exceptions: None.

Additional Hexavalent Chromium criteria: LCS acceptance range for waters is 90-110% and MS acceptance range is 85-115%.

I attest under the pains and penalties of perjury that, based upon my inquiry of those individuals immediately responsible for obtaining the information, the material contained in this report is, to the best of my knowledge and belief, accurate and complete.

Mercury Narration

Were all QA/QC performance criteria specified in the analytical method achieved? Yes.

Instrument:

MERLIN 03/31/20 07:13

Rick Schweitzer, Chemist 03/31/20

CF57711, CF57712

The method preparation blank, ICB, and CCBs contain all of the acids and reagents as the samples.

The initial calibration met all criteria including a standard run at or below the reporting level.

All calibration verification standards (ICV, CCV) met criteria.

All calibration blank verification standards (ICB, CCB) met criteria.

587 East Middle Turnpike, P.O.Box 370, Manchester, CT 06045 Tel. (860) 645-1102 Fax (860) 645-0823

Certification Report

April 06, 2020 SDG I.D.: GCF57711

Mercury Narration

The matrix spike sample is used to identify spectral interference for each batch of samples, if within 85-115%, no interference is observed and no further action is taken.

The following Initial Calibration Verification (ICV) compounds did not meet criteria: None.

The following Continuing Calibration Verification (CCV) compounds did not meet criteria: None.

QC (Batch Specific):

Batch 524404 (CF51083)

CF57711, CF57712

All LCS recoveries were within 75 - 125 with the following exceptions: None.

Additional Mercury criteria: LCS acceptance range for waters is 80-120% and for soils is 75-125%

ICP Metals Narration

Were all QA/QC performance criteria specified in the analytical method achieved? Yes.

Instrument:

BLUE 03/30/20 11:26

Emily Kolominskaya, Tina Hall, Chemist 03/30/20

CF57711, CF57712

The initial calibration met criteria.

The continuing calibration standards met criteria for all the elements reported. The linear range is defined daily by the calibration range.

The continuing calibration blanks were less than the reporting level for the elements reported.

The ICSA and ICSAB were analyzed at the beginning and end of the run and were within criteria. The linear range is defined daily by the calibration range.

The following Initial Calibration Verification (ICV) compounds did not meet criteria: None.

The following Continuing Calibration Verification (CCV) compounds did not meet criteria: None.

The following ICP Interference Check (ICSAB) compounds did not meet criteria: None.

QC (Batch Specific):

Batch 524535 (CF58144)

CF57711, CF57712

All LCS recoveries were within 80 - 120 with the following exceptions: None.

All LCSD recoveries were within 80 - 120 with the following exceptions: None.

All LCS/LCSD RPDs were less than 20% with the following exceptions: None.

Additional: LCS acceptance range is 80-120% MS acceptance range 75-125%.

LACHAT

Were all QA/QC performance criteria specified in the MADEP document CAM achieved? Yes.

Instrument:

LACHAT 03/27/20-1

Thomas Budz, Chemist 03/27/20

CF57711

The initial calibration met all criteria including a standard run at the reporting level.

All method verification standards and blanks met criteria.

587 East Middle Turnpike, P.O.Box 370, Manchester, CT 06045 Tel. (860) 645-1102 Fax (860) 645-0823

MCP Certification Report

April 06, 2020 SDG I.D.: GCF57711

LACHAT

QC (Batch Specific):

Batch 524320 (CF57054)

CF57711

All LCS recoveries were within 90 - 110 with the following exceptions: None.

I attest under the pains and penalties of perjury that, based upon my inquiry of those individuals immediately responsible for obtaining the information, the material contained in this report is, to the best of my knowledge and belief, accurate and complete.

NITROGEN

Were all QA/QC performance criteria specified in the MADEP document CAM achieved? Yes.

Instrument:

LACHAT 03/31/20-1

Kandi Della Bella, Chemist 03/31/20

CF57711

The initial calibration met all criteria including a standard run at the reporting level.

All method verification standards and blanks met criteria.

QC (Batch Specific):

Batch 524420 (CF58097)

CF57711

All LCS recoveries were within 85 - 115 with the following exceptions: None.

Additional criteria: LCS acceptance range for waters is 85-115% and for soils is 75-125%. MS acceptance range is 75-125%.

I attest under the pains and penalties of perjury that, based upon my inquiry of those individuals immediately responsible for obtaining the information, the material contained in this report is, to the best of my knowledge and belief, accurate and complete.

PCB 608 Narration

Were all QA/QC performance criteria specified in the MADEP document CAM achieved? Yes.

Instrument:

AU-ECD1 03/30/20-1

Saadia Chudary, Chemist 03/30/20

CF57711 (1X)

The initial calibration (WW220AI) RSE for the compound list was less than 15% except for the following compounds: None. The initial calibration (WW220BI) RSE for the compound list was less than 15% except for the following compounds: None. The continuing calibration %RSD for the compound list was less than 15% except for the following compounds: None.

QC (Batch Specific):

Batch 524342 (CF56925)

CF57711

All LCS recoveries were within 40 - 140 with the following exceptions: None.

587 East Middle Turnpike, P.O.Box 370, Manchester, CT 06045 Tel. (860) 645-1102 Fax (860) 645-0823

MCP Certification Report

April 06, 2020 SDG I.D.: GCF57711

PCB 608 Narration

All LCSD recoveries were within 40 - 140 with the following exceptions: None. All LCS/LCSD RPDs were less than 20% with the following exceptions: None.

A LCS and LCS Duplicate were performed instead of a matrix spike and matrix spike duplicate.

I attest under the pains and penalties of perjury that, based upon my inquiry of those individuals immediately responsible for obtaining the information, the material contained in this report is, to the best of my knowledge and belief, accurate and complete.

PHENOLS

Were all QA/QC performance criteria specified in the MADEP document CAM achieved? Yes.

Instrument:

LACHAT 03/30/20-1

CF57711

The initial calibration met all criteria including a standard run at the reporting level.

All method verification standards and blanks met criteria.

QC (Batch Specific):

Batch 524399 (CF57711)

CF57711

All LCS recoveries were within 90 - 110 with the following exceptions: None.

I attest under the pains and penalties of perjury that, based upon my inquiry of those individuals immediately responsible for obtaining the information, the material contained in this report is, to the best of my knowledge and belief, accurate and complete.

SVOA 625

Were all QA/QC performance criteria specified in the MADEP document CAM achieved? Yes.

Instrument:

CHEM28 04/02/20-1

Adam Werner, Chemist 04/02/20

CF57711 (1X)

Initial Calibration Evaluation (CHEM28/28_SPLIT_0327):

100% of target compounds met criteria.

The following compounds had %RSDs >35%: None.

The following compounds did not meet a minimum response factors: None.

Continuing Calibration Verification (CHEM28/0402_31-28_SPLIT_0327) (MCP Compliance):

Internal standard areas were within 50 to 200% of the initial calibration with the following exceptions: None.

100% of target compounds met criteria.

The following compounds did not meet % deviation criteria: None.

The following compounds did not meet minimum response factors: None.

QC (Batch Specific):

587 East Middle Turnpike, P.O.Box 370, Manchester, CT 06045 Tel. (860) 645-1102 Fax (860) 645-0823

MCP Certification Report

April 06, 2020 SDG I.D.: GCF57711

SVOA 625

Batch 524671 (CF58991)

CF57711

All LCS recoveries were within 30 - 130 with the following exceptions: 2-Nitroaniline(188%)

All LCSD recoveries were within 30 - 130 with the following exceptions: 2-Nitroaniline(184%), Bis(2-chloroisopropyl)ether(61%)

All LCS/LCSD RPDs were less than 20% with the following exceptions: Benzidine(59.5%), Benzoic acid(34.6%)

Additional 8270 criteria: 10% of compounds can be outside of acceptance criteria as long as recovery is at least 10%. (Acid surrogates acceptance range for aqueous samples: 10-110%, for soils 30-130%)

I attest under the pains and penalties of perjury that, based upon my inquiry of those individuals immediately responsible for obtaining the information, the material contained in this report is, to the best of my knowledge and belief, accurate and complete.

VOA-624

Were all QA/QC performance criteria specified in the MADEP document CAM achieved? Yes.

Instrument:

CHEM23 03/27/20-1

Michael Hahn, Chemist 03/27/20

CF57711 (1X), CF57886 (1X)

Initial Calibration Evaluation (CHEM23/VOA23_032020):

100% of target compounds met criteria.

The following compounds had %RSDs >35%: None.

The following compounds did not meet recommended response factors: None.

The following compounds did not meet a minimum response factors: None.

Continuing Calibration Verification (CHEM23/0327_03-VOA23_032020):

Internal standard areas were within 50 to 200% of the initial calibration with the following exceptions: None.

99% of target compounds met criteria.

The following compounds did not meet maximum % deviations: None.

The following compounds did not meet recommended response factors: None.

The following compounds did not meet minimum response factors: None.

QC (Batch Specific):

Batch 524455 (CF57711)

CHEM23 3/27/2020-1

CF57711(1X), CF57886(1X)

All LCS recoveries were within critiera with the following exceptions: None.

All LCSD recoveries were within critiera with the following exceptions: None.

All LCS/LCSD RPDs were within criteria with the following exceptions: None.

A blank MS/MSD was analyzed with this batch.

Additional VOA Criteria: The 624 recovery criteria for the MS is different than the LCS, which is reported above.

I attest under the pains and penalties of perjury that, based upon my inquiry of those individuals immediately responsible for obtaining the information, the material contained in this report is, to the best of my knowledge and belief, accurate and complete.

PK C ICE No	Scott Olectical (262A.Con	This section MUST be	completed with Bottle Quantities.	12 10 10 10 10 10 10 10 10 10 10 10 10 10	Silver Ander		A					Data Format	Excel PDF	GIS/Key	Other Data Package	Full Data Package*	Phoenix Std Report	* SURCHARGE APPLIES	
Coolant. IPK V ICE X Temp (C °C Pg or	Fax: Phone: Scott Oll	Project F				07/110 CM	50						MCP Certification MWRA eSMART		S-1 GW-2		SW Protection	were collected: MA	
/ RECORD	0, Manchester, CT 06040 Fax (860) 645-0823 645-8726	174198 Scott-cllvmod+ Alussa Gradwick			100 M		- × × ×					티	RCP Cert	GW Protection	GA Mobility	Residential DEC	i/c DEC	Sta	
CHAIN OF CUSTODY RECORD	587 East Middle Turnpike, P.O. Box 370, Manchester, CT 06040 Email: info@phoenixlabs.com Fax (860) 645-0823 Client Services (860) 645-8726	Project: 17	200	Analysis Request	A CONTRACTOR OF THE PARTY OF TH	1888 S	X	×				2	(Residential) Direct Exposure	(Comm/Industrial) Direct Exposure		y" GB Leachability	ys* GA-GW ys* Objectives	Other GB-GW SURCHARGE APPLIES Objectives	
	587 East I Inc.	comental	ÓĐƠCO	lentification Date:	se Water WW= Waste Water SD= Solid W= Wipe OIL= Oil	Sample Date Time Matrix Sampled Sampled	9.5	N 3/37 11.45				Date:	450	SA W	Turnaround Time:	- Days	3 Days*		
NETA TERY	Environmental Laboratories, I.	GZA GEOFENINOMENTAL	Nenucael, MA	Monte and Information - Identification	DW=Drinking Water GW=Ground Water SW=Surface Water WW=Waste Water RW=Raw Water SE=Sediment SL=Sludge S=Soil SD=Soild W=Wipe OIL=0 B=Bulk L=Liquid X =(Other)	Customer Sample S Identification M		CT-121	18			Accepted by:			Comments, Special Requirements or Regulations:		CA/OC WITH COPORT	Oscaryto run total metalscat	THAT WAT VA
	Environme	Customer: Address:		Sampler's Signature	DW=Drinking Water RW=Raw Water SE B=Bulk L=Liquid X =	PHOENIX USE ONLY SAMPLE #	5771	5773	87713	5+8816		Relinquished by	W Chell	15	Comments, Special Require	No vo	CA/C	Olcayto	\

587 East Middle Turnpike, P.O.Box 370, Manchester, CT 06045 Tel. (860) 645-1102 Fax (860) 645-0823

Analysis Report

April 22, 2020

FOR: Attn: Mr. Scott Ollerhead

GZA GeoEnvironmental Inc

249 Vanderbilt Ave Norwood, MA 02062

Sample InformationCustody InformationDateTimeMatrix:SURFACE WATERCollected by:04/21/209:30Location Code:GZA-MAReceived by:B04/21/2015:22

Rush Request: 24 Hour Analyzed by: see "By" below

Laboratory Data

SDG ID: GCF76485

Phoenix ID: CF76485

Project ID: 174198 Client ID: CTR-2

RL/

ParameterResultPQLUnitsDilutionDate/TimeByReferenceAmmonia as Nitrogen0.130.05mg/L104/22/20KDB/ARG E350.1

RL/PQL=Reporting/Practical Quantitation Level ND=Not Detected BRL=Below Reporting Level

Comments:

If you are the client above and have any questions concerning this testing, please do not hesitate to contact Phoenix Client Services at ext.200. The contents of this report cannot be discussed with anyone other than the client listed above without their written consent.

Phyllis Shiller, Laboratory Director

April 22, 2020

Official Report Release To Follow

Ver 1 Page 1 of 1

Wednesday, April 22, 2020

Sample Criteria Exceedances Report

Criteria: MA: CAM, GW1
State: MA

GCF76485 - GZA-MA

State: MA

RL Analysis
SampNo Acode Phoenix Analyte Criteria Units
Result RL Criteria Units

Phoenix Laboratories does not assume responsibility for the data contained in this exceedance report. It is provided as an additional tool to identify requested criteria exceedences. All efforts are made to ensure the accuracy of the data (obtained from appropriate agencies). A lack of exceedence information does not necessarily suggest conformance to the criteria. It is ultimately the site professional's responsibility to determine appropriate compliance.

Page 1 of 1

^{***} No Data to Display ***

Cooler: PK Ves No No Temp Zooler Pg of Data Delivery/Contact Options:	Project P.O: This section MUST be completed with Bottle Quantities.	0001 1000 1000 1000 1000 1000 1000 100	CONITO STATE					Data Format			S-1 GW-3 Dat	S-3 GW-3	* SURCHARGE APPLIES
Fax: Dail	Scott-cyllengual + Pytssa (hadwick	CHILL SO	0740					CI MA MCP Certification	GW Protection	SW Protection GW-2	GB Mobility S-2 GW-1		State where samples were collected:
CHAIN OF CUSTODY RECORD 587 East Middle Tumpike, P.O. Box 370, Manchester, CT 06040 Email: info@phoenixlabs.com Fax (860) 645-0823 Client Services (860) 645-8726	Project: 134 Report to: 504 Invoice to: auote#	Analysis Request	Time Sampled					Time: RI (Residential)	1 (53) DE	Direct Exposure GA Leachability	Ime:	3 Days* GA-GW Standard Objectives	Other GB-GW *SURCHARGE APPLIES Objectives
	Accountated rough And Costles	Surface Water WW=Waste Watersoil SD=Solid W=Wipe OIL=	Sample Date T	43				by: Date:	<i>h</i>				ns.
PHOFINIX Environmental Laboratories, Inc	Address: 249 Vandurbitt PNAMOOD MA C	Sampler's Signature Date: HDA Matrix Code: Date: DW=Drinking Water SE=Sediment SL=Sludge S=Soil SD=Soild W=Wipe OIL=Oil Collection X = (Other)	Customer Sample SAMPLE # Identification	200				Relinquished by: Accepted by	Sam Sam)	alacw. Report.		

APPENDIX CCALCULATION SHEETS FOR EFFLUENT LIMITATIONS

DILUTION FACTOR CALCULATIONS

NOTICE OF INTENT FOR THE REMEDIATION GENERAL PERMIT North End Pedestrian Underpass Project, Springfield, Massachusetts

$$DF = \frac{Q_d + Q_s}{Q_d}$$

Where.

DF = Dilution Factor

 Q_d = Maximum Flow Rate of the Discharge in million gallons per day (MGD)

 Q_s = Receiving Water 7Q10 Flow (MGD) where,

7Q10 = Minimum Flow (MGD) for 7 Consecutive Days with a Recurrence Interval of 10 Years.

 $Q_d = 694.4 \text{ gpm} = 1.0 \text{ MGD}$

 $Q_s = 2,398 \text{ cfs} = 1,549.86 \text{ MGD}$ (7Q10 provided by MassDEP in email dated 4/16/2020)

$$\therefore DF = \frac{Q_d + Q_s}{Q_d} = \frac{1.0 + 1,549.86}{1.0} = 1,550.86$$

C:\Users\william.davis\Desktop\SPringfield RGP\DF Calculations 694.4 gpm.docx

William Davis

From:

Vakalopoulos, Catherine (DEP) < catherine.vakalopoulos@state.ma.us>

Sent:

Tuesday, April 28, 2020 2:17 PM

To:

William Davis; Little, Shauna

Cc:

Scott Ollerhead

Subject:

Re: Dilution Factor Calculation, Dilution Factor Table Draft and 7Q10 Approval, North

End Pedestrian Underpass Project, Springfield, Massachusetts

Hi Bill,

Your dilution factor calculation is correct and go ahead and round up to 1551. Again, I apologize for the delay. I've been dealing with a new computer with major problems.

Cathy

Cathy Vakalopoulos, Massachusetts Department of Environmental Protection

1 Winter St., Boston, MA 02108, 617-348-4026 Please consider the environment before printing this e-mail

From: William Davis < william.davis@gza.com> Sent: Wednesday, April 22, 2020 1:23 PM To: Vakalopoulos, Catherine (DEP); Little, Shauna

Cc: Scott Ollerhead

Subject: Dilution Factor Calculation, Dilution Factor Table Draft and 7Q10 Approval, North End Pedestrian Underpass

Project, Springfield, Massachusetts

CAUTION: This email originated from a sender outside of the Commonwealth of Massachusetts mail system. Do not click on links or open attachments unless you recognize the sender and know the content is safe.

Hello Catherine,

Per the 2017 RGP issued by EPA, the dilution factor, calculated for the receiving water to which the treated effluent from our construction dewatering project discharges, requires state review and formal approval prior to submission of the NOI to EPA.

The 7Q10 was determined using the 7Q10 provided by Xiaodan Ruan, who calculated the 7Q10 for the location of the proposed discharge on the CT River using the USGS SWToolbox. The 7Q10 of 2,398 cfs was provided to me in an email dated 4/16/2020.

The proposed discharge maximum flow rate is 694.4 GPM or 1 MGD. The average flowrate is expected to be less than this.

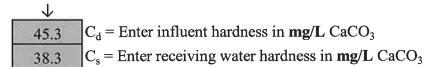
Attachments:

- 1. Dilution Factor Calculation
- 2. Pdf of the draft effluent limitations table (fillable table from RGP website)

Please let me know if you need any further information to process this request.

Thank you,

Enter number values in green boxes below


Enter values in the units specified

<u> </u>	
1549.86	Q_R = Enter upstream flow in MGD
i	$Q_P = $ Enter discharge flow in MGD
0	Downstream 7Q10

Enter a dilution factor, if other than zero

Enter values in the units specified

Enter receiving water concentrations in the units specified

	-:
7.61	pH in Standard Units
3.3	Temperature in ^o C
0	Ammonia in mg/L
0	Hardness in mg/L CaCO ₃
0	Salinity in ppt
0	Antimony in μg/L
0	Arsenic in μg/L
0	Cadmium in μg/L
11	Chromium III in µg/L
0	Chromium VI in µg/L
17	Copper in µg/L
7140	Iron in μg/L
6	Lead in μg/L
0	Mercury in μg/L
15	Nickel in μg/L
0	Selenium in µg/L
0	Silver in μg/L
37	Zinc in μg/L

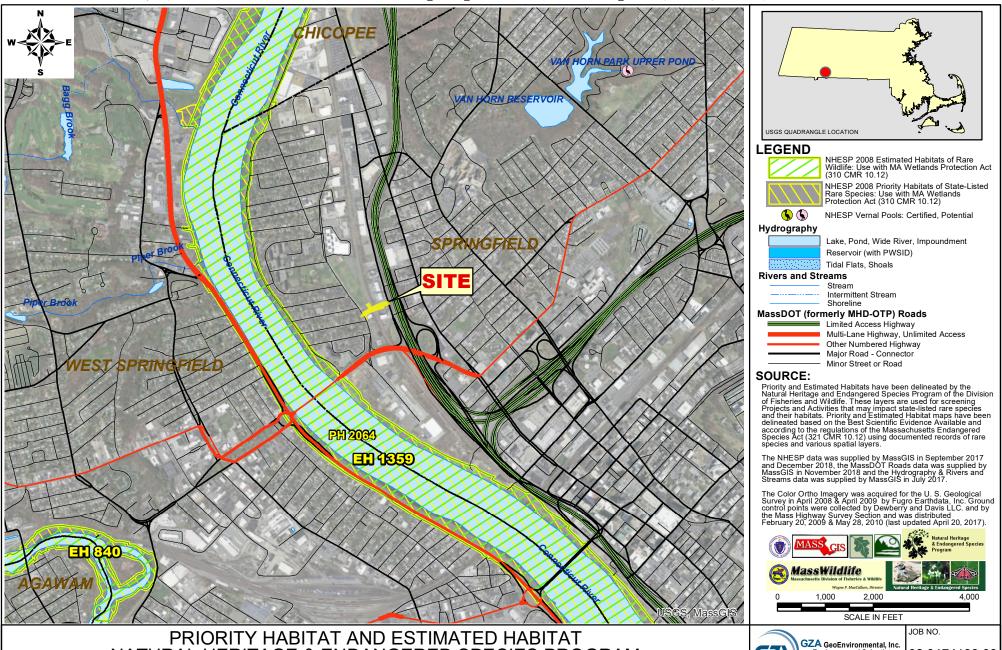
Notes:

Freshwater: critical low flow equal to the 7Q10; enter alternate low flow if approved by the State Saltwater (estuarine and marine): enter critical low flow if approved by the State; enter 0 if no entry Discharge flow is equal to the design flow or 1 MGD, whichever is less Optional entry for Q_r ; leave 0 if no entry

Saltwater (estuarine and marine): only if approved by the State Leave 0 if no entry

pH, temperature, and ammonia required for all discharges
Hardness required for freshwater
Salinity required for saltwater (estuarine and marine)
Metals required for all discharges if present and if dilution factor is > 1
Enter 0 if non-detect or testing not required

1550.9


A. Inorganics	TBEL applies if	bolded	WQBEL applies if bolded				
Ammonia	Report	mg/L	:202				
Chloride	Report	μg/L	***				
Total Residual Chlorine	0.2	mg/L	17059	μg/L			
Total Suspended Solids	30	mg/L	17037	µБ/ D			
Antimony	206	-	992550	ua/I			
•		μg/L	15509	μg/L			
Arsenic	104	μg/L		μg/L			
Cadmium	10.2	μg/L	206.1422	μg/L			
Chromium III	323	μg/L	43857.4	μg/L			
Chromium VI	323	μg/L	17733.3	μg/L			
Copper	242	μg/L	4.1	μg/L			
Iron	5000	μg/L	1000	μg/L			
Lead	160	μg/L	0.94	μg/L			
Mercury	0.739	μg/L	1404.90	μg/L			
Nickel	1450	μg/L	12674.5	μg/L			
Selenium	235.8	μg/L	7754.3	μg/L			
Silver	35.1	μg/L	1126.6	μg/L			
Zinc	420	μg/L	25064.6	μg/L			
Cyanide	178	mg/L	8064.5	μg/L			
B. Non-Halogenated VOCs		δ		, 0			
Total BTEX	100	μg/L	(
Benzene	5.0	μg/L	-				
1,4 Dioxane	200	μg/L	## ## P				
Acetone	7970	μg/L	1222				
Phenol	1,080	μg/L	465258	μg/L			
C. Halogenated VOCs		17	0.401.4	/1			
Carbon Tetrachloride	4.4	μg/L	2481.4	μg/L			
1,2 Dichlorobenzene	600	μg/L	<u> </u>				
1,3 Dichlorobenzene	320 5.0	μg/L	1				
1,4 Dichlorobenzene Total dichlorobenzene	5.0	μg/L μg/L					
1,1 Dichloroethane	7 0	μg/L μg/L					
1,2 Dichloroethane	5.0	μg/L μg/L	(S1004)				
1,1 Dichloroethylene	3.2	μg/L μg/L	1224				
Ethylene Dibromide	0.05	μg/L	I===)				
Methylene Chloride	4.6	μg/L	(555)				
1,1,1 Trichloroethane	200	μg/L	-				
1,1,2 Trichloroethane	5.0	μg/L) <u></u>				
Trichloroethylene	5.0	μg/L	(222)				
Tetrachloroethylene	5.0	$\mu g/L$	5117.8	μ g/L			
cis-1,2 Dichloroethylene	70	μg/L	(888)				

Vinyl Chloride	2.0	μ g/L		
D. Non-Halogenated SVOCs				
Total Phthalates	190	μg/L	***	μg/L
Diethylhexyl phthalate	101	μg/L	3411.9	μ g/L
Total Group I Polycyclic				
Aromatic Hydrocarbons	1.0	μg/L		
Benzo(a)anthracene	1.0	μg/L	5.8933	$\mu g/L$
Benzo(a)pyrene	1.0	μg/L	5.8933	μg/L
Benzo(b)fluoranthene	1.0	μg/L	5.8933	μg/L
Benzo(k)fluoranthene	1.0	μg/L	5.8933	μg/L
Chrysene	1.0	μg/L	5.8933	μg/L
Dibenzo(a,h)anthracene	1.0	μg/L	5.8933	μg/L
Indeno(1,2,3-cd)pyrene	1.0	μg/L	5.8933	μg/L
Total Group II Polycyclic				
Aromatic Hydrocarbons	100	μg/L		
Naphthalene	20	μg/L		
E. Halogenated SVOCs				
Total Polychlorinated Biphenyls	0.000064	μg/L		
Pentachlorophenol	1.0	μg/L		
F. Fuels Parameters				
Total Petroleum Hydrocarbons	5.0	mg/L		
Ethanol	Report	mg/L		
Methyl-tert-Butyl Ether	70	μg/L	31017	μg/L
tert-Butyl Alcohol	120	μ g/L	Gara.	
tert-Amyl Methyl Ether	90	μg/L	(484)	

APPENDIX D

ACEC AND FEDERALLY LISTED ENDANGERED AND THREATENED SPECIES IN MASSACHUSETTS EVALUATION

NATURAL HERITAGE & ENDANGERED SPECIES PROGRAM

NORTH END PEDESTRIAN PATH UNDER THE CONNECTICUT RIVER LINE

(BRIDGE No. S-24-044)

SPRINGFIELD, MASSACHUSETTS

GZA GeoEnvironmental, Inc. Engineers and Scientists www.gza.com

02.0174198.00

PROJ. MGR.: SMO DESIGNED BY.: JJS REVIEWED BY.: BWR OPERATOR.: EMD DATE: 05-14-2019 FIGURE NO.

United States Department of the Interior

FISH AND WILDLIFE SERVICE

New England Ecological Services Field Office 70 Commercial Street, Suite 300 Concord, NH 03301-5094 Phone: (603) 223-2541 Fax: (603) 223-0104

http://www.fws.gov/newengland

In Reply Refer To: April 23, 2020

Consultation Code: 05E1NE00-2020-SLI-2299

Event Code: 05E1NE00-2020-E-06774

Project Name: 4 Birdie Avenue

Subject: List of threatened and endangered species that may occur in your proposed project

location, and/or may be affected by your proposed project

To Whom It May Concern:

The enclosed species list identifies threatened, endangered, proposed and candidate species, as well as proposed and final designated critical habitat, that may occur within the boundary of your proposed project and/or may be affected by your proposed project. The species list fulfills the requirements of the U.S. Fish and Wildlife Service (Service) under section 7(c) of the Endangered Species Act (Act) of 1973, as amended (16 U.S.C. 1531 *et seq.*).

New information based on updated surveys, changes in the abundance and distribution of species, changed habitat conditions, or other factors could change this list. Please feel free to contact us if you need more current information or assistance regarding the potential impacts to federally proposed, listed, and candidate species and federally designated and proposed critical habitat. Please note that under 50 CFR 402.12(e) of the regulations implementing section 7 of the Act, the accuracy of this species list should be verified after 90 days. This verification can be completed formally or informally as desired. The Service recommends that verification be completed by visiting the ECOS-IPaC website at regular intervals during project planning and implementation for updates to species lists and information. An updated list may be requested through the ECOS-IPaC system by completing the same process used to receive the enclosed list.

The purpose of the Act is to provide a means whereby threatened and endangered species and the ecosystems upon which they depend may be conserved. Under sections 7(a)(1) and 7(a)(2) of the Act and its implementing regulations (50 CFR 402 *et seq.*), Federal agencies are required to utilize their authorities to carry out programs for the conservation of threatened and endangered species and to determine whether projects may affect threatened and endangered species and/or designated critical habitat.

A Biological Assessment is required for construction projects (or other undertakings having similar physical impacts) that are major Federal actions significantly affecting the quality of the human environment as defined in the National Environmental Policy Act (42 U.S.C. 4332(2) (c)). For projects other than major construction activities, the Service suggests that a biological evaluation similar to a Biological Assessment be prepared to determine whether the project may affect listed or proposed species and/or designated or proposed critical habitat. Recommended contents of a Biological Assessment are described at 50 CFR 402.12.

If a Federal agency determines, based on the Biological Assessment or biological evaluation, that listed species and/or designated critical habitat may be affected by the proposed project, the agency is required to consult with the Service pursuant to 50 CFR 402. In addition, the Service recommends that candidate species, proposed species and proposed critical habitat be addressed within the consultation. More information on the regulations and procedures for section 7 consultation, including the role of permit or license applicants, can be found in the "Endangered Species Consultation Handbook" at:

http://www.fws.gov/endangered/esa-library/pdf/TOC-GLOS.PDF

Please be aware that bald and golden eagles are protected under the Bald and Golden Eagle Protection Act (16 U.S.C. 668 *et seq.*), and projects affecting these species may require development of an eagle conservation plan (http://www.fws.gov/windenergy/eagle_guidance.html). Additionally, wind energy projects should follow the wind energy guidelines (http://www.fws.gov/windenergy/) for minimizing impacts to migratory birds and bats.

Guidance for minimizing impacts to migratory birds for projects including communications towers (e.g., cellular, digital television, radio, and emergency broadcast) can be found at: http://www.fws.gov/migratorybirds/CurrentBirdIssues/Hazards/towers/towers.htm; http://www.towerkill.com; and http://www.fws.gov/migratorybirds/CurrentBirdIssues/Hazards/towers/comtow.html.

We appreciate your concern for threatened and endangered species. The Service encourages Federal agencies to include conservation of threatened and endangered species into their project planning to further the purposes of the Act. Please include the Consultation Tracking Number in the header of this letter with any request for consultation or correspondence about your project that you submit to our office.

Attachment(s):

Official Species List

Official Species List

This list is provided pursuant to Section 7 of the Endangered Species Act, and fulfills the requirement for Federal agencies to "request of the Secretary of the Interior information whether any species which is listed or proposed to be listed may be present in the area of a proposed action".

This species list is provided by:

New England Ecological Services Field Office 70 Commercial Street, Suite 300 Concord, NH 03301-5094 (603) 223-2541

Project Summary

Consultation Code: 05E1NE00-2020-SLI-2299

Event Code: 05E1NE00-2020-E-06774


Project Name: 4 Birdie Avenue

Project Type: DEVELOPMENT

Project Description: Pedestrian underpass project

Project Location:

Approximate location of the project can be viewed in Google Maps: https://www.google.com/maps/place/42.11383352946156N72.60796521971287W

Counties: Hampden, MA

Endangered Species Act Species

There is a total of 0 threatened, endangered, or candidate species on this species list.

Species on this list should be considered in an effects analysis for your project and could include species that exist in another geographic area. For example, certain fish may appear on the species list because a project could affect downstream species.

IPaC does not display listed species or critical habitats under the sole jurisdiction of NOAA Fisheries¹, as USFWS does not have the authority to speak on behalf of NOAA and the Department of Commerce.

See the "Critical habitats" section below for those critical habitats that lie wholly or partially within your project area under this office's jurisdiction. Please contact the designated FWS office if you have questions.

1. <u>NOAA Fisheries</u>, also known as the National Marine Fisheries Service (NMFS), is an office of the National Oceanic and Atmospheric Administration within the Department of Commerce.

Critical habitats

THERE ARE NO CRITICAL HABITATS WITHIN YOUR PROJECT AREA UNDER THIS OFFICE'S JURISDICTION.

APPENDIX EMACRIS SEARCH RESULTS

Massachusetts Cultural Resource Information System MACRIS

MHC Home | MACRIS Home

Results

Get Results in Report Format ○ PDF Spreadsheet

Below are the results of your search, using the following search criteria:

Town(s): Springfield Street No: 4

Street Name: Birnie Ave

Resource Type(s): Area, Building, Burial Ground, Object, Structure For more information about this page and how to use it, click here

No Results Found.

New Search New Search — Same Town(s) Previous

MHC Home | MACRIS Home