

N-0998-11-13 December 1, 2017 Updated October 4, 2019

Ms. Shauna Little
United States Environmental Protection Agency – Region 1
1 Congress Street, Suite 1100
Boston, Massachusetts 02114-2023

Re: Submittal of Notice of Intent (NOI) Remediation General Permit (RGP)
Construction Dewatering
Winter Pond
Winchester, Massachusetts 01890
MAG910759

Dear Ms. Little:

On behalf of NSTAR Electric Company d/b/a Eversource Energy (Eversource), Tighe & Bond, Inc. (Tighe & Bond) has prepared this Notice of Intent (NOI) application for a National Pollutant Discharge Elimination System (NPDES) Remediation General Permit (RGP) for the proposed construction dewatering activities conducted during installation of a new below grade electric transmission line and associated manholes along Woodside Road in Winchester (the Site). A copy of the previous NOI is included in Appendix A. The limits of the Site are shown on the Aerial Dewatering Site Plan (Figure 1) and the Massachusetts Geographic Information Systems (MassGIS) Priority Resource Map (Figure 2) in Appendix B.

The purpose of this NOI is to facilitate the change in operator status from the existing contractor, BOND Brothers to the new operator, the Middlesex Corporation (Middlesex). A Notice of Termination for the former operator (Bond Brothers) has been filed.

As there is a need to treat and discharge water generated from the construction dewatering activities, the enclosed NOI form provides required information on general Site conditions, proposed treatment systems, discharge locations, receiving water, and laboratory analytical results from pre-discharge sampling and surface water sampling. The proposed treatment systems are shown on Figure 3 (Process Flow Diagram) in Appendix B. The excavation dewatering and discharge of treated groundwater are scheduled to resume in October 2019 and end in December 2020.

Dewatered groundwater at the Site will be treated by a groundwater treatment system before being discharged to on-site catch basins and into a stormwater drainage system managed by the Town of Winchester. All stormwater drainage systems subject to this RGP discharge to the Winter Pond. Post treatment discharge rates will range from 50 gallons per minute (GPM) to 150 GPM.

Project Background

The overall project involves the installation of 7.7 miles of new electric transmission line and 19 manholes between Mystic Substation 250 in Charlestown, Massachusetts to the Woburn Substation 211 in Woburn Massachusetts. The proposed electrical transmission line trench will measure approximately three feet wide and will be installed at an approximate depth of five feet below ground surface (BGS). The manholes will be approximately 10 feet wide, by

25 feet long and 10 feet deep. Initial pre-characterization efforts have indicated that the average depth to groundwater at the Site is approximately seven feet BGS. Property uses along the project route are residential.

This RGP Permit Application is for the discharge of treated groundwater to the Winchester stormwater drainage system and ultimately to Winter Pond.

Groundwater Characterization

To characterize groundwater along the proposed route of construction, groundwater samples were collected from groundwater monitoring wells MW-36 and MW-37 in January 2017. The groundwater samples were submitted for laboratory analysis for Environmental Protection Agency (EPA) RGP parameters. The laboratory analytical results are summarized in Table 1 included in Appendix E. A copy of the laboratory analytical report is included in Appendix F. Laboratory analytical results were compared to the RGP Technology Based Effluent Limitations (TBEL) and Water Quality Based Effluent Limit (WQBEL). The WQBEL were calculated in accordance with Appendix V for sites in Massachusetts, of the RGP permit.

Contaminants of concern are analytes that exceeded either the TBEL or WQBEL. Contaminants of concern detected in MW-36 and MW-37 included group I polyaromatic hydrocarbons (PAHs), bis (2-Ethylhexyl) phthalate (DEHP), lead, iron, copper, chloride, ammonia and total suspended solids (TSS). DEHP is commonly associated with PVC and is most likely associated with the monitoring well installation. Since these monitoring wells were installed adjacent to a roadway, the chloride is most likely associated with road salting during the winter months.

Receiving Water Characterization

Winter Pond (waterbody identification MA71-047) is classified as a Class B impaired water body and is listed in the 303(d) Impaired Waterbodies Document. Dilution factors for sites discharging to freshwater ponds or lakes waters is assumed to be zero (1:1) in accordance with *Appendix V: Dilution Factor and Effluent Limitation Calculations for Massachusetts* of the NPDES RGP.

As required by the NPDES RGP a surface water sample was collected prior to discharging and analyzed for contaminants of concern that were present in the effluent samples from the monitoring wells discussed above. Surface water samples were collected in November 2017 and sent for laboratory analysis of metals detected in the effluent samples and ammonia, hexavalent chromium, pH and hardness. The surface water sample was collected at Winter Pond near the potential outfall location, the sampling location is shown on Figure 1 (Aerial Dewatering Site Plan) in Appendix B. Contaminants of concern detected in the samples include copper, iron, zinc and ammonia.

Treatment System

Dewatered groundwater at the Site will be treated by a mobile system before being discharged to on-Site catch basins and into a stormwater drainage system managed by the Town of Winchester stormwater drainage system ultimately discharging to the Aberjona River. A list of the proposed stormwater outfall, including location, latitude/longitude coordinates, municipality and system owner is provided in Appendix A.

Mobile Treatment System

Depending on the level of treatment required and discharge flow rate, the mobile treatment system will be mounted on two 30-foot mobile trailers. The mounted treatment system could consist of a flocculant tube, particulate filter units, bag filters and/or granular activated carbon (GAC)/clay filter, as shown on Figure 3 in Appendix B "Process Flow Diagram". Based on effluent monitoring results, the treatment system or flow rate will be modified to comply with the effluent limits. The Safety Data Sheets (SDS) associated with the treatment system are provided in Appendix H.

Flow Rate (GPM)	Proposed Treatment System
0-50	TSS treatment via a silt/pipe sock or bag filter
50-150	Two 30-foot trailer with particulate filter units, bag filters and/or GAC/clay filter. Coagulants/flocculants

Chemical & Additives Information

Based on groundwater samples collected from the Site and in order to achieve effluent limitations for the groundwater, coagulants/ flocculants have been added to the treatment system. Information for the coagulants/ flocculants as required in Part 2.5.2.g.iii of the RGP is provided below. Please note, the product name, chemical abstract service (CAS) number, chemical formula, and manufacturer of the chemical/additives are provided in the SDS included in Appendix H.

To achieve effluent limitations specifically for TSS, coagulants/flocculants as part of the HaloKlear Dual Polymer System (DBP) have been added to the treatment system design. The DPS uses a sequence of coagulation (DBP-2100) and flocculation (GEL-Floc) treatment reactions to remove particles from the influent. The coagulant will neutralize the electrical charges which make particles suspended in solution, and the flocculant will collect the particles so they can agglomerate. Agglomerates will then settle out of solution in the following fractionation tanks and/or bag filters prior to effluent discharge. Through the removal of suspended solids within the water stream, it is anticipated that metals adsorbed to soil particles will also settle out and the metals concentrations in the effluent will decrease.

The DPS uses a sequence of polymers that perform coagulation and flocculation reactions. Both the coagulant (DBP-2100) and flocculant (GEL-Floc) are dry powders integrated into the treatment system as socks, placed within the flocculant tube. The socks continually dose as the influent flows through the tube; therefore, the method of application is in-line discharge prior to water entering the fractionation tanks. Each sock doses at 200 parts per million (ppm) for a flow of 150 GPM. Since flow through the sock is 150 GPM, the maximum concentration would be 200 ppm per minute. Since the dosing is dependent on flow through the treatment system, the frequency and duration at which influent is exposed to the coagulant/flocculant is continuous flow, whenever dewatering is occurring. The coagulant/flocculant will be added at a constant dosage rate of 200 ppm per minute. The treatment system will be operated for a maximum of 8 hours per day for a maximum daily concentration of 288,000 ppm per day.

Required Statements

As required in Part 2.5.3.d.ii, the addition of coagulants/flocculants as proposed for this treatment system:

1) Will not add any pollutants in concentrations which exceed permit effluent limitations;

- 2) Will not exceed any applicable water quality standards;
- 3) Will not add any pollutants that would justify the application of permit conditions that are different from or absent in this permit.

Chemicals included in the DPS are naturally derived and 100% biodegradable. The coagulant (DBP-2100) is a dry powder formulated from a plant-based protein, and the flocculant (GEL-Floc) is made from chitosan lactate, which is made from crustacean exoskeletons. Additionally, the chemical combinations proposed as part of the coagulant/flocculants passed fish kill studies.

Best Management Practices Plan

Tighe & Bond designed a Best Management Practices Plan (BMPP) for the groundwater extraction and treatment systems for the Site. The BMPP meeting the requirement of the RGP will be developed and implemented upon initiation of the discharge.

Owner and Operator

Owner

NSTAR Electric Company d/b/a Eversource Dean S. Bebis 247 Station Drive Westwood, MA 02090

Operator

Middlesex Corporation Jose Nieto 1 Spectacle Pond Road Littleton, MA 01460

Notice of Intent

Preparation of this NOI has included a review of the literature pertaining to Areas of Critical Environmental Concern (ACEC), Endangered Species Act (ESA), and the National Historic Preservation Act (NHPA), as documented below:

- Review of a MassGIS Priority Resources Map, Figure 2, shows the Site is not within an ACEC;
- Review of the "Federally Listed Endangered and Threatened Species in Massachusetts" (Appendix C) found that there are two listed species in Middlesex County. The first species is the whorled pogonia which prefers forest habitat, and the second species is the Northern Long-Eared bat, which prefers mines and caves in the winter and forested habitats in the summer. The small whorled pogonia is found in the Groton area while the Northern Long-Eared bat is found statewide. As the Site is not in Groton, the small whorled pogonia will not be affected from construction activities or from the proposed discharges. The project area consists of an asphalt roadway that borders a residential area. No vegetation will be disturbed during construction activities. No known hibernacula or maternity roost trees are located within the project area. As a result, it is the opinion of Tighe & Bond that the habitats for Northern Long-Eared bat will not be disturbed during construction activities. Additionally, the discharge will not affect any trees.
- According to United States Fish and Wildlife Services (USFWS) Information, Planning and Conservation (IPaC) tool there are no critical habitats within the Site. USFWS confirmed there are no critical habitats in the area and confirmed permit eligibility meets "Criterion A."
 - Additionally, according to the MassGIS Priority Resource Map, no NHESP Priority Habitats for Rare Species or Estimated Habitats for Rare Wildlife, were

present within half a mile downstream of the discharge location. Therefore, permit eligibility meets "Criterion A."

- An electronic review of the Massachusetts Cultural Resource Information System database (Appendix D), made available through the Massachusetts Historical Commission, found no historical areas along Woodside Avenue in Winchester, Massachusetts. Discharges and discharge related activities do not have the potential to cause effects on any historic properties. Therefore, permit eligibility meets "Criterion A."
- Groundwater samples were collected from on-site groundwater monitoring wells MW-36 and MW-37 in January 2017. The groundwater samples were submitted for laboratory analysis for RGP parameters. Laboratory analytical results were compared to Table 1: Parameters, Required Minimum Levels (MLs), and Common Test Methods, used for selecting sufficiently sensitive test methods for RGP NOI preparation. Although some of the laboratory analytical results do not meet the requirements set in Table 1, it is the opinion of Tighe & Bond that data collected meets the Existing Data Substitution, as specified in the RGP Part 4, Section 5. The laboratory analytical results are summarized in Table 1 included in Appendix E. Copies of the laboratory analytical reports are included in Appendix F. Laboratory analytical results were compared to the RGP TBEL and WQBEL to determine the applicable effluent limitations for the Project Site.
- A surface water sample was collected from Winter Pond at the potential outfall location in November 2017. The surface water sample was submitted for laboratory analysis of RGP parameters that were detected in the effluent samples. The laboratory analytical results are summarized in Table 2 included in Appendix F. Laboratory analytical results were compared to the RGP TBEL or WQBEL.

The proposed treatment systems have been designed to reduce contaminants of concern to below the applicable effluent limits. Effluent compliance monitoring will be conducted on a monthly basis and the effluent samples submitted for environmental laboratory analysis of the parameters specified in EPA Authorization MAG910759, dated December 20, 2017. A copy of the EPA authorization is included in Appendix G. Additionally, the flow rate, pH and turbidity levels will be monitored in the field and recorded.

If you need any additional information or assistance on this project, please do not hesitate to contact Bryan Gammons at (508) 304-6366 or Michael Martin at (508) 304-6355 at your convenience.

Very truly yours,

TIGHE & BOND, INC.

Bryan O. Gammons

Senior Environmental Scientist

Michael E. Martin Project Manager

Enclosures

Copy: Michael Zylich, Eversource Dean Bebis, Eversource

Jose Nieto, Middlesex Corporation

MassDEP, Division of Watershed Management

MassDEP, Boston

List of Appendices

Appendix A Notice of Intent

Appendix B Figures

Appendix C Federally Endangered Species in Massachusetts, USFWS Consultation Letter

Appendix D Massachusetts Cultural Resources Information System Report

Appendix E WQBEL Calculations

Groundwater Summary Table 1 Surface Water Summary Table 2

Appendix F Laboratory Analytical Results
Appendix G EPA Authorization MAG910759

Appendix H SDS and Diagrams for Treatment System

List of Figures

Figure 1	Aerial Dewatering Site Plan
Figure 2	MassDEP Priority Resource Map

Figure 3 Process Flow Diagrams

APPENDIX A

II. Suggested Format for the Remediation General Permit Notice of Intent (NOI)

A. General site information:

1. Name of site:	Site address:						
	Street:						
	City:		State:	Zip:			
2. Site owner	Contact Person:						
	Telephone:	Email:					
	Mailing address:						
	Street:						
Owner is (check one): ☐ Federal ☐ State/Tribal ☐ Private ☐ Other; if so, specify:	City:	State:	Zip:				
3. Site operator, if different than owner	Contact Person:						
	Telephone: Email:						
	Mailing address:						
	Street:						
	City:		State:	Zip:			
4. NPDES permit number assigned by EPA:	5. Other regulatory program(s) that apply to the site (check all that apply):						
	☐ MA Chapter 21e; list RTN(s):	□ CERCL	.A				
NPDES permit is (check all that apply: \square RGP \square DGP \square CGP	☐ NH Groundwater Management Permit or	☐ UIC Program					
☐ MSGP ☐ Individual NPDES permit ☐ Other; if so, specify:	Groundwater Release Detection Permit:	□ POTW Pretreatment					
		⊔ CWAS	CWA Section 404				

В.	Receiving water information:	:
1 N	lame of receiving water(s).	

1. Name of receiving water(s):	Waterbody identification of receiving water	(s): Classific	cation of receiving water(s):							
Receiving water is (check any that apply): \Box Outstar	nding Resource Water □ Ocean Sanctuary □ territor	rial sea □ Wild and Scenic R	iver							
2. Has the operator attached a location map in accord	lance with the instructions in B, above? (check one)	: □ Yes □ No								
Are sensitive receptors present near the site? (check of If yes, specify:	one): □ Yes □ No									
3. Indicate if the receiving water(s) is listed in the Stapollutants indicated. Also, indicate if a final TMDL i 4.6 of the RGP.										
4. Indicate the seven day-ten-year low flow (7Q10) of the receiving water determined in accordance with the instructions in Appendix V for sites located in Massachusetts and Appendix VI for sites located in New Hampshire.										
5. Indicate the requested dilution factor for the calculaccordance with the instructions in Appendix V for s										
6. Has the operator received confirmation from the a If yes, indicate date confirmation received:	ppropriate State for the 7Q10and dilution factor indi	cated? (check one): ☐ Yes ☐	l No							
7. Has the operator attached a summary of receiving	water sampling results as required in Part 4.2 of the	RGP in accordance with the	instruction in Appendix VIII?							
(check one): □ Yes □ No										
C. Source water information:										
1. Source water(s) is (check any that apply):										
☐ Contaminated groundwater	☐ Contaminated surface water	☐ The receiving water	☐ Potable water; if so, indicate municipality or origin:							
Has the operator attached a summary of influent	Has the operator attached a summary of influent	☐ A surface water other								
sampling results as required in Part 4.2 of the RGP in accordance with the instruction in Appendix VIII? (check one):	sampling results as required in Part 4.2 of the RGP in accordance with the instruction in Appendix VIII? (check one):	than the receiving water; if so, indicate waterbody:	☐ Other; if so, specify:							
□ Yes □ No	□ Yes □ No									

2. Source water contaminants:	
a. For source waters that are contaminated groundwater or contaminated surface water, indicate are any contaminants present that are not included in	b. For a source water that is a surface water other than the receiving water, potable water or other, indicate any contaminants present at the maximum concentration in accordance
the RGP? (check one): ☐ Yes ☐ No If yes, indicate the contaminant(s) and the maximum concentration present in accordance with the instructions in Appendix VIII.	with the instructions in Appendix VIII? (check one): □ Yes □ No
3. Has the source water been previously chlorinated or otherwise contains resid	dual chlorine? (check one): ☐ Yes ☐ No
D. Discharge information	
1.The discharge(s) is a(n) (check any that apply): \Box Existing discharge \Box New	w discharge □ New source
Outfall(s):	Outfall location(s): (Latitude, Longitude)
Discharges enter the receiving water(s) via (check any that apply): □ Direct di	scharge to the receiving water \Box Indirect discharge, if so, specify:
☐ A private storm sewer system ☐ A municipal storm sewer system If the discharge enters the receiving water via a private or municipal storm sew	ver system:
Has notification been provided to the owner of this system? (check one): ☐ Ye	•
Has the operator has received permission from the owner to use such system for obtaining permission:	or discharges? (check one): \square Yes \square No, if so, explain, with an estimated timeframe for
Has the operator attached a summary of any additional requirements the owner	of this system has specified? (check one): \square Yes \square No
Provide the expected start and end dates of discharge(s) (month/year):	
Indicate if the discharge is expected to occur over a duration of: \Box less than 1	2 months □ 12 months or more □ is an emergency discharge
Has the operator attached a site plan in accordance with the instructions in D, a	above? (check one): Yes No

2. Activity Category: (check all that apply)	3. Contamination Type Category: (check all that apply)					
	a. If Activity Category I or II: (check all that apply)					
	 □ A. Inorganics □ B. Non-Halogenated Volatile Organic □ C. Halogenated Volatile Organic Cor □ D. Non-Halogenated Semi-Volatile Organic □ E. Halogenated Semi-Volatile Organi □ F. Fuels Parameters 	mpounds Organic Compounds				
 □ I – Petroleum-Related Site Remediation □ II – Non-Petroleum-Related Site Remediation 	b. If Activity Category III, IV	V, V, VI, VII or VIII: (check either G or H)				
 □ III – Non-Petroleum-Related Site Remediation □ III – Contaminated Site Dewatering □ IV – Dewatering of Pipelines and Tanks □ V – Aquifer Pump Testing □ VI – Well Development/Rehabilitation □ VII – Collection Structure Dewatering/Remediation □ VIII – Dredge-Related Dewatering 	□ G. Sites with Known Contamination c. If Category III-G, IV-G, V-G, VI-G, VII-G or VIII-G: (check all that apply) □ A. Inorganics □ B. Non-Halogenated Volatile Organic Compounds □ C. Halogenated Volatile Organic Compounds □ D. Non-Halogenated Semi-Volatile Organic Compounds □ E. Halogenated Semi-Volatile Organic Compounds □ F. Fuels Parameters	□ H. Sites with Unknown Contamination d. If Category III-H, IV-H, V-H, VI-H, VII-H or VIII-H Contamination Type Categories A through F apply				

4. Influent and Effluent Characteristics

	Known	Known		75 5 4	5	Infl	uent	Effluent Limitations	
Parameter	or believed absent	or believed present	# of samples	Test method (#)	Detection limit (µg/l)	Daily maximum (µg/l)	Daily average (µg/l)	TBEL	WQBEL
A. Inorganics									
Ammonia								Report mg/L	
Chloride								Report µg/l	
Total Residual Chlorine								0.2 mg/L	
Total Suspended Solids								30 mg/L	
Antimony								206 μg/L	
Arsenic								104 μg/L	
Cadmium								10.2 μg/L	
Chromium III								323 μg/L	
Chromium VI								323 μg/L	
Copper								242 μg/L	
Iron								5,000 μg/L	
Lead								160 μg/L	
Mercury								0.739 μg/L	
Nickel								1,450 μg/L	
Selenium								235.8 μg/L	
Silver								35.1 μg/L	
Zinc								420 μg/L	
Cyanide								178 mg/L	
B. Non-Halogenated VOCs	3								
Total BTEX								100 μg/L	
Benzene								5.0 μg/L	
1,4 Dioxane								200 μg/L	
Acetone								7.97 mg/L	
Phenol								1,080 µg/L	

	Known	Known		_	_	Inf	luent	Effluent Lin	nitations
Parameter	or believed absent	or believed present	# of samples	Test method (#)	Detection limit (µg/l)	Daily maximum (µg/l)	Daily average (µg/l)	TBEL	WQBEL
C. Halogenated VOCs									
Carbon Tetrachloride								4.4 μg/L	
1,2 Dichlorobenzene								600 μg/L	
1,3 Dichlorobenzene								320 μg/L	
1,4 Dichlorobenzene								5.0 μg/L	
Total dichlorobenzene								763 µg/L in NH	
1,1 Dichloroethane								70 μg/L	
1,2 Dichloroethane								5.0 μg/L	
1,1 Dichloroethylene								3.2 µg/L	
Ethylene Dibromide								0.05 μg/L	
Methylene Chloride								4.6 μg/L	
1,1,1 Trichloroethane								200 μg/L	
1,1,2 Trichloroethane								5.0 μg/L	
Trichloroethylene								5.0 μg/L	
Tetrachloroethylene								5.0 μg/L	
cis-1,2 Dichloroethylene								70 μg/L	
Vinyl Chloride								2.0 μg/L	
D. Non-Halogenated SVO	Cs								
Total Phthalates								190 μg/L	
Diethylhexyl phthalate								101 μg/L	
Total Group I PAHs								1.0 μg/L	
Benzo(a)anthracene								_	
Benzo(a)pyrene								_	
Benzo(b)fluoranthene								_	
Benzo(k)fluoranthene								As Total PAHs	
Chrysene								_	
Dibenzo(a,h)anthracene								_	
Indeno(1,2,3-cd)pyrene									

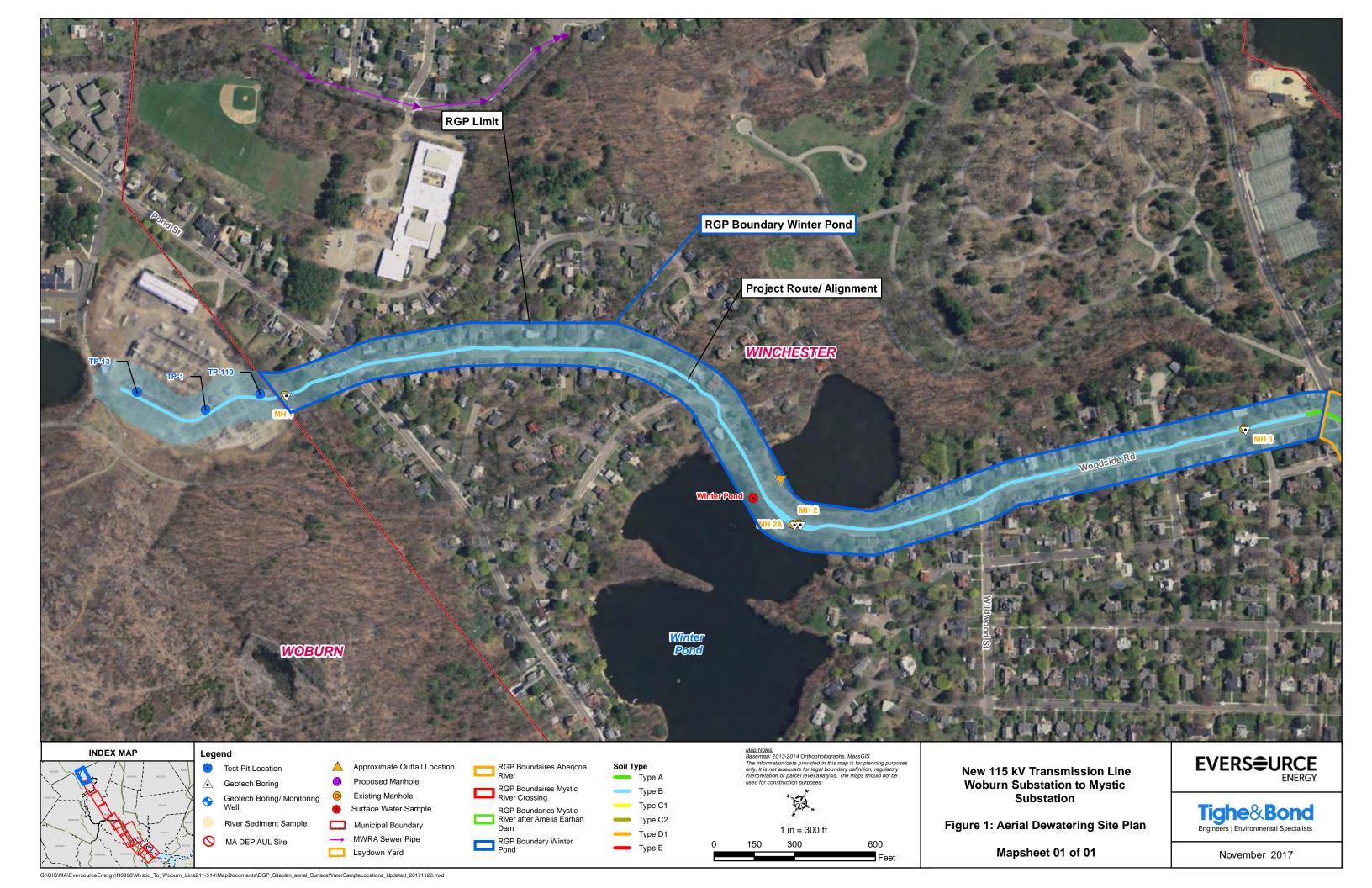
	Known	Known				Inf	luent	Effluent Lin	nitations
Parameter	or believed absent	or believed present	# of samples	Test method (#)	Detection limit (µg/l)	Daily maximum (µg/l)	Daily average (µg/l)	TBEL	WQBEL
Total Group II PAHs								100 μg/L	
Naphthalene								20 μg/L	
E. Halogenated SVOCs									
Total PCBs								0.000064 µg/L	
Pentachlorophenol								1.0 μg/L	
	1			•					
F. Fuels Parameters Total Petroleum		1	1	1		1 1		<u> </u>	
Hydrocarbons								5.0 mg/L	
Ethanol								Report mg/L	
Methyl-tert-Butyl Ether								70 μg/L	
tert-Butyl Alcohol								120 μg/L in MA 40 μg/L in NH	
tert-Amyl Methyl Ether								90 μg/L in MA 140 μg/L in NH	
Other (i.e., pH, temperatur	re, hardness,	salinity, LC	50, addition	al pollutar	ats present);	if so, specify:			

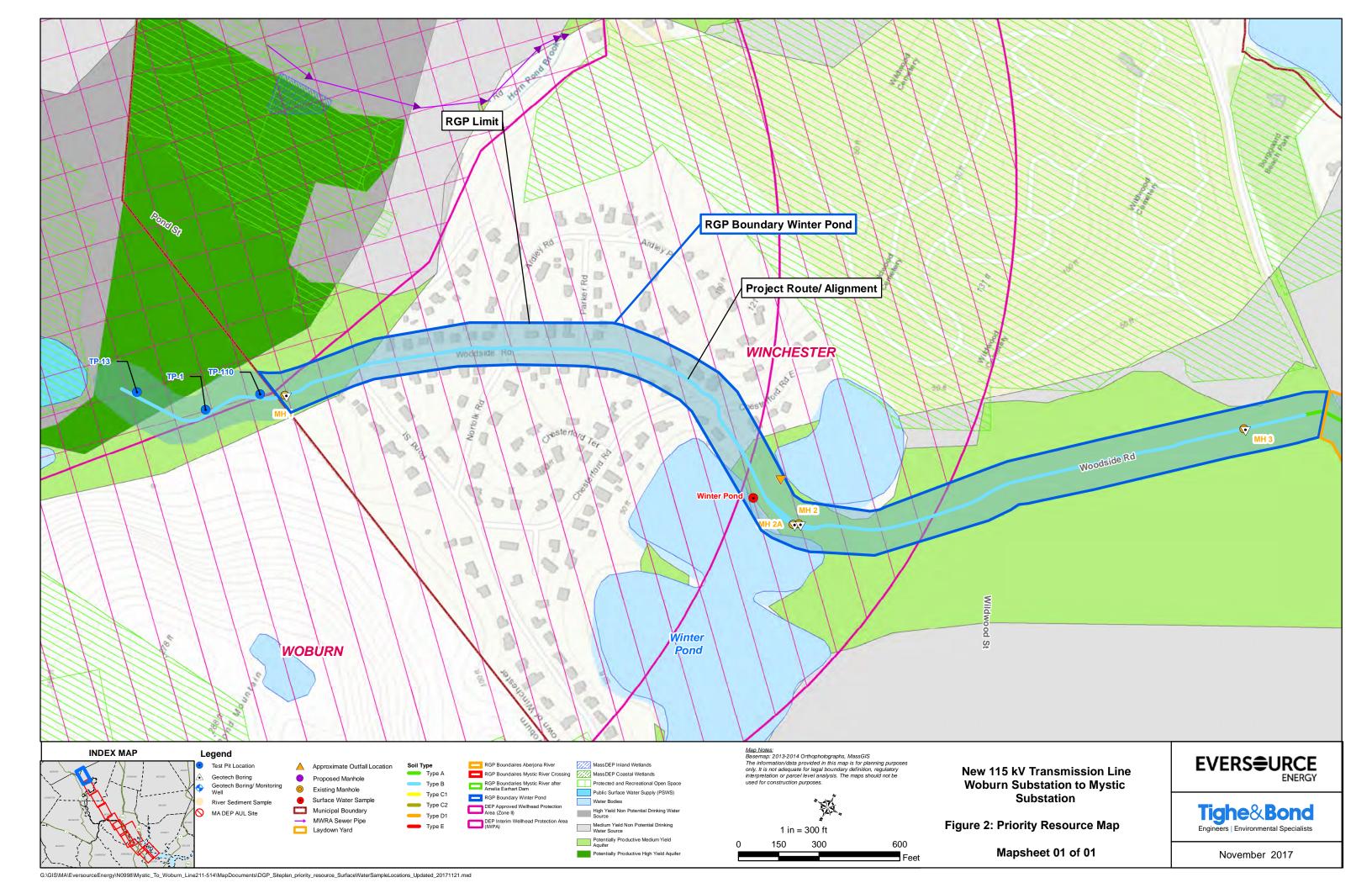
E. Treatment system information

1. Indicate the type(s) of treatment that will be applied to effluent prior to discharge: (check all that apply)	
☐ Adsorption/Absorption ☐ Advanced Oxidation Processes ☐ Air Stripping ☐ Granulated Activated Carbon ("GAC")/Liquid Phase Carbon Adsorption	
☐ Ion Exchange ☐ Precipitation/Coagulation/Flocculation ☐ Separation/Filtration ☐ Other; if so, specify:	
2. Provide a written description of all treatment system(s) or processes that will be applied to the effluent prior to discharge.	
Identify each major treatment component (check any that apply):	
☐ Fractionation tanks☐ Equalization tank ☐ Oil/water separator ☐ Mechanical filter ☐ Media filter	
☐ Chemical feed tank ☐ Air stripping unit ☐ Bag filter ☐ Other; if so, specify:	
Indicate if either of the following will occur (check any that apply):	
□ Chlorination □ De-chlorination	
3. Provide the design flow capacity in gallons per minute (gpm) of the most limiting component.	
Indicate the most limiting component:	
Is use of a flow meter feasible? (check one): \square Yes \square No, if so, provide justification:	
Provide the proposed maximum effluent flow in gpm.	
Trovide the proposed maximum errident now in gpin.	
Provide the average effluent flow in gpm.	
If Activity Category IV applies, indicate the estimated total volume of water that will be discharged:	
4. Has the operator attached a schematic of flow in accordance with the instructions in E, above? (check one): ☐ Yes ☐ No	

F. Chemical and additive information

r. Chemical and additive information
1. Indicate the type(s) of chemical or additive that will be applied to effluent prior to discharge or that may otherwise be present in the discharge(s): (check all that apply)
□ Algaecides/biocides □ Antifoams □ Coagulants □ Corrosion/scale inhibitors □ Disinfectants □ Flocculants □ Neutralizing agents □ Oxidants □ Oxygen □
scavengers □ pH conditioners □ Bioremedial agents, including microbes □ Chlorine or chemicals containing chlorine □ Other; if so, specify:
2. Provide the following information for each chemical/additive, using attachments, if necessary:
a. Product name, chemical formula, and manufacturer of the chemical/additive; b. Purpose or use of the chemical/additive or remedial agent; c. Material Safety Data Sheet (MSDS) and Chemical Abstracts Service (CAS) Registry number for each chemical/additive; d. The frequency (hourly, daily, etc.), duration (hours, days), quantity (maximum and average), and method of application for the chemical/additive; e. Any material compatibility risks for storage and/or use including the control measures used to minimize such risks; and f. If available, the vendor's reported aquatic toxicity (NOAEL and/or LC50 in percent for aquatic organism(s)).
3. Has the operator attached an explanation which demonstrates that the addition of such chemicals/additives may be authorized under this general permit in accordance
with the instructions in F, above? (check one): \square Yes \square No; if no, has the operator attached data that demonstrates each of the 126 priority pollutants in CWA Section 307(a) and 40 CFR Part 423.15(j)(1) are non-detect in discharges with the addition of the proposed chemical/additive?
(check one): □ Yes □ No
G. Endangered Species Act eligibility determination
1. Indicate under which criterion the discharge(s) is eligible for coverage under this general permit:
□ FWS Criterion A : No endangered or threatened species or critical habitat are in proximity to the discharges or related activities or come in contact with the "action area".
□ FWS Criterion B : Formal or informal consultation with the FWS under section 7 of the ESA resulted in either a no jeopardy opinion (formal consultation) or a written concurrence by FWS on a finding that the discharges and related activities are "not likely to adversely affect" listed species or critical habitat
(informal consultation). Has the operator completed consultation with FWS? (check one): ☐ Yes ☐ No; if no, is consultation underway? (check one): ☐
Yes □ No
□ FWS Criterion C : Using the best scientific and commercial data available, the effect of the discharges and related activities on listed species and critical habitat have been evaluated. Based on those evaluations, a determination is made by EPA, or by the operator and affirmed by EPA, that the discharges and related activities will have "no effect" on any federally threatened or endangered listed species or designated critical habitat under the jurisdiction of the
FWS. This determination was made by: (check one) \square the operator \square EPA \square Other; if so, specify:


J. Certification requirement


I certify under penalty of law that this document and all attachments were prepared under my direction or supervision in act that qualified personnel properly gathered and evaluated the information submitted. Based on my inquiry of the person or persons directly responsible for gathering the information, the information submitted is, to the best of my knowledge and be no personal knowledge that the information submitted is other than true, accurate, and complete. I am aware that there are information, including the possibility of fine and imprisonment for knowing violations.	persons who manage the system, or those elief, true, accurate, and complete. I have
BMPP certification statement: A BMPP meeting the requirements of this general per and implemented upon initiation of discharge.	rmit will be developed
Notification provided to the appropriate State, including a copy of this NOI, if required.	Check one: Yes ☒ No □
Notification provided to the municipality in which the discharge is located, including a copy of this NOI, if requested.	Check one: Yes ⊠ No □
Notification provided to the owner of a private or municipal storm sewer system, if such system is used for site discharges, including a copy of this NOI, if requested.	Check one: Yes ⊠ No □ NA □
Permission obtained from the owner of a private or municipal storm sewer system, if such system is used for site discharges. If yes, attach additional conditions. If no, attach explanation and timeframe for obtaining permission.	Check one: Yes ⋈ No □ NA □
Notification provided to the owner/operator of the area associated with activities covered by an additional discharge	
$permit(s). \ Additional \ discharge \ permit \ is \ (check \ one): \ \Box \ RGP \ \Box \ DGP \ \Box \ MSGP \ \ \Box \ Individual \ NPDES \ permit$	Check one: Yes \square No \square NA \square
☐ Other; if so, specify:	
Signature: Jew 3/1	e: 10/3/19
Print Name and Title: Dean Bebis, Environmental Compliance Specialist	

Ī	Certification	requirement
v.	Columbianon	1 cquii cincii

I certify under penalty of law that this document and all attachments were prepared under my direction or supervision in act that qualified personnel properly gathered and evaluated the information submitted. Based on my inquiry of the person or persons directly responsible for gathering the information, the information submitted is, to the best of my knowledge and be no personal knowledge that the information submitted is other than true, accurate, and complete. I am aware that there are information, including the possibility of fine and imprisonment for knowing violations.	persons who manage the system, or those elief, true, accurate, and complete. I have
BMPP certification statement: A BMPP meeting the requirements of this general peranders and implemented upon initiation of discharge.	rmit will be developed
Notification provided to the appropriate State, including a copy of this NOI, if required.	Check one: Yes ⊠ No □
Notification provided to the municipality in which the discharge is located, including a copy of this NOI, if requested.	Check one: Yes ⊠ No □
Notification provided to the owner of a private or municipal storm sewer system, if such system is used for site discharges, including a copy of this NOI, if requested.	Check one: Yes ⊠ No □ NA □
Permission obtained from the owner of a private or municipal storm sewer system, if such system is used for site discharges. If yes, attach additional conditions. If no, attach explanation and timeframe for obtaining permission.	Check one: Yes ⊠ No □ NA □
Notification provided to the owner/operator of the area associated with activities covered by an additional discharge permit(s). Additional discharge permit is (check one): RGP DGP CGP MSGP Individual NPDES permit Other; if so specify	Check one: Yes □ No □ NA □
Signature: Multur O	te: 10/4/19
Print Name and Title: Jose Nieto, Project Manager	

APPENDIX B

- MUST BE REMOVED FROM TRAILER DURING OPERATION.
- 2. MUD BOX MUST BE EMPTIED PRIOR LOADING ONTO TRAILER AND REMAIN EMPTIED DURING TRANSPORT FOR PROJECT RELOCATION.

proprietary	s, information and data contained herein is and is submitted in confidence and shall closed, used or duplicated in whole or in	Fluid	tou illitudio	7800 N. DALLAS PARKWAY, SUIT PLANO, TX 75024-4087	E 500	
be returne Receipt of	purposes whatsoever without prior written from United Rentals. This document shall d to United Rentals on its demand. this document shall be deemed to be an of the conditions specified herein.	TITLE: TREATMENT SYSTEM 150 GPM PROCESS FLOW DIAGRAM				
SHEET S	IZE: MATERIAL:	CUSTOMER: MIDDLESEX COR	RP .		BRANCH:	BOS
⊢ B	FINISH:	DWG BY: M. BROOKS	DATE: 09-10-18	SCALE: _	SHEET: 1	OF: 1
11" x 1		CKD BY: M. SCOPELLETI	DATE: 09-10-18	DWG No: SKF5387		REV: _

APPENDIX C

FEDERALLY LISTED ENDANGERED AND THREATENED SPECIES IN MASSACHUSETTS

COUNTY	SPECIES	FEDERAL STATUS	GENERAL LOCATION/HABITAT	TOWNS
Essex	Small whorled Pogonia	Threatened	Forests with somewhat poorly drained soils and/or a seasonally high water table	Gloucester, Essex and Manchester
	Piping Plover	Threatened	Coastal Beaches	Gloucester, Essex, Ipswich, Rowley, Revere, Newbury, Newburyport and Salisbury
	Red Knot ¹	Threatened	Coastal Beaches and Rocky Shores, sand and mud flats	Coastal Towns
	Northern Long- eared Bat	Threatened Final 4(d) Rule	Winter- mines and caves, Summer – wide variety of forested habitats	Statewide
	Northeastern bulrush	Endangered	Wetlands	Montague, Warwick
Franklin	Dwarf wedgemussel	Endangered	Mill River	Whately
	Northern Long- eared Bat	Threatened Final 4(d) Rule	Winter- mines and caves, Summer – wide variety of forested habitats	Statewide
	Small whorled Pogonia	Threatened	Forests with somewhat poorly drained soils and/or a seasonally high water table	Hadley
	Puritan tiger beetle	Threatened	Sandy beaches along the Connecticut River	Northampton and Hadley
Hampshire	Dwarf wedgemussel	Endangered	Rivers and Streams.	Hatfield, Amherst and Northampton
	Northern Long- eared Bat	Threatened Final 4(d) Rule	Winter- mines and caves, Summer – wide variety of forested habitats	Statewide
Hampden	Small whorled Pogonia	Threatened	Forests with somewhat poorly drained soils and/or a seasonally high water table	Southwick
	Northern Long- eared Bat	Threatened Final 4(d) Rule	Winter- mines and caves, Summer – wide variety of forested habitats	Statewide
26111	Small whorled Pogonia	Threatened	Forests with somewhat poorly drained soils and/or a seasonally high water table	Groton
Middlesex	Northern Long- eared Bat	Threatened Final 4(d) Rule	Winter- mines and caves, Summer – wide variety of forested habitats	Statewide
	Piping Plover	Threatened	Coastal Beaches	Nantucket
	Roseate Tern	Endangered	Coastal beaches and the Atlantic Ocean	Nantucket
Nantucket	American burying beetle	Endangered	Upland grassy meadows	Nantucket
	Red Knot ¹	Threatened	Coastal Beaches and Rocky Shores, sand and mud flats	Coastal Towns
	Northern Long- eared Bat	Threatened Final 4(d) Rule	Winter- mines and caves, Summer – wide variety of forested habitats	Statewide

United States Department of the Interior

FISH AND WILDLIFE SERVICE

New England Ecological Services Field Office 70 Commercial Street, Suite 300 Concord, NH 03301-5094 Phone: (603) 223-2541 Fax: (603) 223-0104

http://www.fws.gov/newengland

October 17, 2017

In Reply Refer To:

Consultation Code: 05E1NE00-2018-SLI-0163

Event Code: 05E1NE00-2018-E-00412

Project Name: Mystic to Woburn - 115 kV UG Transmission Line

Subject: List of threatened and endangered species that may occur in your proposed project

location, and/or may be affected by your proposed project

To Whom It May Concern:

The enclosed species list identifies threatened, endangered, proposed and candidate species, as well as proposed and final designated critical habitat, that may occur within the boundary of your proposed project and/or may be affected by your proposed project. The species list fulfills the requirements of the U.S. Fish and Wildlife Service (Service) under section 7(c) of the Endangered Species Act (Act) of 1973, as amended (16 U.S.C. 1531 et seq.).

New information based on updated surveys, changes in the abundance and distribution of species, changed habitat conditions, or other factors could change this list. Please feel free to contact us if you need more current information or assistance regarding the potential impacts to federally proposed, listed, and candidate species and federally designated and proposed critical habitat. Please note that under 50 CFR 402.12(e) of the regulations implementing section 7 of the Act, the accuracy of this species list should be verified after 90 days. This verification can be completed formally or informally as desired. The Service recommends that verification be completed by visiting the ECOS-IPaC website at regular intervals during project planning and implementation for updates to species lists and information. An updated list may be requested through the ECOS-IPaC system by completing the same process used to receive the enclosed list.

The purpose of the Act is to provide a means whereby threatened and endangered species and the ecosystems upon which they depend may be conserved. Under sections 7(a)(1) and 7(a)(2) of the Act and its implementing regulations (50 CFR 402 et seq.), Federal agencies are required to utilize their authorities to carry out programs for the conservation of threatened and endangered species and to determine whether projects may affect threatened and endangered species and/or designated critical habitat.

A Biological Assessment is required for construction projects (or other undertakings having similar physical impacts) that are major Federal actions significantly affecting the quality of the

human environment as defined in the National Environmental Policy Act (42 U.S.C. 4332(2) (c)). For projects other than major construction activities, the Service suggests that a biological evaluation similar to a Biological Assessment be prepared to determine whether the project may affect listed or proposed species and/or designated or proposed critical habitat. Recommended contents of a Biological Assessment are described at 50 CFR 402.12.

If a Federal agency determines, based on the Biological Assessment or biological evaluation, that listed species and/or designated critical habitat may be affected by the proposed project, the agency is required to consult with the Service pursuant to 50 CFR 402. In addition, the Service recommends that candidate species, proposed species and proposed critical habitat be addressed within the consultation. More information on the regulations and procedures for section 7 consultation, including the role of permit or license applicants, can be found in the "Endangered Species Consultation Handbook" at:

http://www.fws.gov/endangered/esa-library/pdf/TOC-GLOS.PDF

Please be aware that bald and golden eagles are protected under the Bald and Golden Eagle Protection Act (16 U.S.C. 668 et seq.), and projects affecting these species may require development of an eagle conservation plan

(http://www.fws.gov/windenergy/eagle_guidance.html). Additionally, wind energy projects should follow the wind energy guidelines (http://www.fws.gov/windenergy/) for minimizing impacts to migratory birds and bats.

Guidance for minimizing impacts to migratory birds for projects including communications towers (e.g., cellular, digital television, radio, and emergency broadcast) can be found at: http://www.fws.gov/migratorybirds/CurrentBirdIssues/Hazards/towers/towers.htm; http://www.towerkill.com; and

http://www.fws.gov/migratorybirds/CurrentBirdIssues/Hazards/towers/comtow.html.

We appreciate your concern for threatened and endangered species. The Service encourages Federal agencies to include conservation of threatened and endangered species into their project planning to further the purposes of the Act. Please include the Consultation Tracking Number in the header of this letter with any request for consultation or correspondence about your project that you submit to our office.

Attachment(s):

Official Species List

Official Species List

This list is provided pursuant to Section 7 of the Endangered Species Act, and fulfills the requirement for Federal agencies to "request of the Secretary of the Interior information whether any species which is listed or proposed to be listed may be present in the area of a proposed action".

This species list is provided by:

New England Ecological Services Field Office 70 Commercial Street, Suite 300 Concord, NH 03301-5094 (603) 223-2541

Project Summary

Consultation Code: 05E1NE00-2018-SLI-0163

Event Code: 05E1NE00-2018-E-00412

Project Name: Mystic to Woburn - 115 kV UG Transmission Line

Project Type: ** OTHER **

Project Description: This project includes the management of excavation groundwater during

the installation of approximately 4.23 miles of a new underground 115 kV

electrical transmission line and manholes.

Project Location:

Approximate location of the project can be viewed in Google Maps: https://www.google.com/maps/place/42.43961099802177N71.13352130056799W

Counties: Middlesex, MA

Endangered Species Act Species

There is a total of 1 threatened, endangered, or candidate species on this species list. Species on this list should be considered in an effects analysis for your project and could include species that exist in another geographic area. For example, certain fish may appear on the species list because a project could affect downstream species. See the "Critical habitats" section below for those critical habitats that lie wholly or partially within your project area under this office's jurisdiction. Please contact the designated FWS office if you have questions.

Mammals

NAME STATUS

Northern Long-eared Bat *Myotis septentrionalis*No critical habitat has been designated for this species.

Threatened

Species profile: https://ecos.fws.gov/ecp/species/9045

Critical habitats

There are no critical habitats within your project area under this office's jurisdiction.

APPENDIX D

Massachusetts Cultural Resource Information System MACRIS

MACRIS Search Results

Search Criteria: Town(s): Winchester; Street Name: Woodside Rd; Resource Type(s): Area, Building, Burial Ground, Object, Structure;

Inv. No. Property Name Street Town Year

Thursday, November 9, 2017 Page 1 of 1

20 Black Brook Road Aquinnah, MA 02535

Tribal Historic Preservation Office Wampanoag Tribe of Gay Head (Aquinnah)

Office (508)645-9265 Fax (508)645-3790

April 5, 2017

Daniel P. Rukakoski 53 South Hampton Road Westfield, MA, 01085-5308 DPRukakoski@tighebond.com

Re: Mystic-Woburn Transmission Line ProjectN-099811-04(5200)

Dear Daniel P. Rukakoski,

The Wampanoag Tribe of Gay Head (Aquinnah) (WTGHA) Tribal Historic Preservation Office (THPO) has received notification of your project form dated. Once reviewed we will notify you of further action which may include any of the following;

- No further comments on the project
- An initial site visit will be scheduled
- Monitoring will be required at a rate of \$55.00 per hour in addition to mileage at the current federal rate paid by the proponent (Third party consultants must provide proponent billing information)
- Any archeological surveying may be monitored and requires two weeks advance notice of said survey.

Should you have any questions or concerns please feel free to contact me at bettina@wampanoagtribe.net
The THPO department would like to thank you for adhering to the Section 106 regulations of the National Historic Preservation Act.

In the spirit of Preservation,

Bettina M. Washington

Bettina M. Washington Tribal Historic Preservation Officer

The COMMONWEALTH OF MASSACHUSETTS BOARD OF UNDERWATER ARCHAEOLOGICAL RESOURCES

EXECUTIVE OFFICE OF ENERGY AND ENVIRONMENTAL AFFAIRS 251 Causeway Street, Suite 800, Boston, MA 02114-2136

Tel. (617) 626-1141 Fax (617) 626-1240 Web Site: www.mass.gov/eea/agencies/czm/buar/

March 29, 2017

Mr. Daniel P. Rukakoski Tighe & Bond, Inc. 53 Southampton Road Westfield, MA 01085-5308

RE: Mystic-Woburn Transmission Line Project, Bacon Street, Aberjona River, Winchester, MA

Dear Mr.Rukakoski,

The staff of the Massachusetts Board of Underwater Archaeological Resources has reviewed the above referenced project's SHPO/THPO Notification Form and supporting materials submitted by Tighe & Bond, Inc., on behalf of Evesource Energy. We offer the following comments.

The Board has conducted a preliminary review of its files and secondary literature sources to identify known and potential submerged cultural resources in the proposed project area. No record of any underwater archaeological resources was found. The Board notes, however, the area may be generally archaeologically sensitive given its riparian landscape and associated features. topographical setting is strongly associated with the presence of prehistoric archaeological deposits. However, much of the Aberjona River has undergone extensive prior disturbance and land modification activities (dredging, channelization, landscaping, etc.) which have significantly reduced integrity and/or preservation for submerged cultural resources. The Board finds the project unlikely to adversely affect submerged cultural resources.

However, should heretofore-unknown submerged cultural resources be encountered during the course of the project, the Board expects that the project's sponsor will take steps to limit adverse affects and notify the Board and the Massachusetts Historical Commission, as well as other appropriate agencies, immediately in accordance with the Board's Policy Guidance for the Discovery of Unanticipated Archaeological Resources.

The Board appreciates the opportunity to provide these comments as part of the review process. Should you have any questions regarding this letter, please do not hesitate to contact me at the address above, by email at victor.mastone@state.ma.us, or by telephone at (617) 626-1141.

Sincerely,

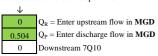
Victor T. Mastone

the Mil

Director

/vtm

Cc: Brona Simon, MHC


Ramona Peters, MWT (via email attachment)

Bettina Washington, WTGH/A (via email attachment)

APPENDIX E

Enter number values in green boxes below

Enter values in the units specified

Enter a dilution factor, if other than zero

Enter values in the units specified

\downarrow	
142	C_d = Enter influent hardness in mg/L CaCO ₃
30.5	C _s = Enter receiving water hardness in mg/L CaCO ₃

Enter receiving water concentrations in the units specified

\downarrow	_
6.66	pH in Standard Units
17.7	Temperature in °C
0.14	Ammonia in mg/L
30.5	Hardness in mg/L CaCO
0	Salinity in ppt
0	Antimony in µg/L
0	Arsenic in µg/L
0	Cadmium in µg/L
0	Chromium III in µg/L
0	Chromium VI in µg/L
2.1	Copper in µg/L
223	Iron in µg/L
0	Lead in µg/L
0	Mercury in µg/L
0	Nickel in µg/L
0	Selenium in µg/L
0	Silver in µg/L
12.3	Zinc in µg/L

Enter influent concentrations in the units specified

\downarrow	<u>-</u>
0	TRC in µg/L
0.64	Ammonia in mg/L
0	Antimony in µg/L
7.8	Arsenic in µg/L
0.1	Cadmium in µg/L
12	Chromium III in µg/L
0	Chromium VI in µg/L
14.2	Copper in µg/L
3100	Iron in µg/L
9	Lead in μg/L
0	Mercury in μg/L
1.5	Nickel in μg/L
0	Selenium in µg/L
0.09	Silver in µg/L
62	Zinc in µg/L
0	Cyanide in µg/L
0	Phenol in µg/L
0	Carbon Tetrachloride in µg/L
0	Tetrachloroethylene in µg/L
6.99	Total Phthalates in µg/L
3.07	Diethylhexylphthalate in µg/L
0.26	Benzo(a)anthracene in µg/L
0.29	Benzo(a)pyrene in µg/L
0.37	Benzo(b)fluoranthene in µg/L
0.14	Benzo(k)fluoranthene in µg/L
0.35	Chrysene in µg/L
0.05	Dibenzo(a,h)anthracene in µg/L
0.22	Indeno(1,2,3-cd)pyrene in µg/L
0.7	Methyl-tert butyl ether in $\mu g/L$

Notes:

Freshwater: Q_R equal to the 7Q10; enter alternate Q_R if approved by the State; enter 0 if no dilution factor approved Saltwater (estuarine and marine): enter Q_R if approved by the State; enter 0 if no entry Discharge flow is equal to the design flow or 1 MGD, whichever is less Only if approved by State as the entry for Q_R ; leave 0 if no entry

Saltwater (estuarine and marine): only if approved by the State Leave 0 if no entry

Freshwater only

pH, temperature, and ammonia required for all discharges Hardness required for freshwater $Salimity\ required\ for\ saltwater\ (estuarine\ and\ marine)$ Metals required for all discharges if present and if dilution factor is >1 Enter 0 if non-detect or testing not required

if >1 sample, enter maximum

if $> \! 10$ samples, may enter 95th percentile

Enter 0 if non-detect or testing not required

Dilution Factor 1.0

A. Inorganics	TBEL applies if bolded		WQBEL applies if bolded		Compliance Level applies if shown	
Ammonia	Report	mg/L				
Chloride	Report	μg/L				
Total Residual Chlorine	0.2	mg/L	11	μg/L	50	μg/L
Total Suspended Solids	30	mg/L		μg/L	30	μg/L
Antimony		-	640			
•	206	μg/L		μg/L		
Arsenic	104	μg/L	10	μg/L		
Cadmium	10.2	$\mu g/L$	0.3509	μg/L		
Chromium III	323	$\mu g/L$	114.8	μg/L		
Chromium VI	323	$\mu g/L$	11.4	μg/L		
Copper	242	$\mu g/L$	12.6	$\mu g/L$		
Iron	5000	$\mu g/L$	1000	$\mu g/L$		
Lead	160	μg/L	4.97	μg/L		
Mercury	0.739	μg/L	0.91	μg/L		
Nickel	1450	μg/L	70.2	μg/L		
Selenium	235.8	μg/L	5.0	μg/L		
Silver	35.1	μg/L	6.9	μg/L		
Zinc			161.3			
	420	μg/L		μg/L		æ
Cyanide B. Non-Halogenated VOCs	178	mg/L	5.2	μg/L		μg/L
Total BTEX	100	μg/L				
Benzene	5.0	μg/L				
1,4 Dioxane	200	μg/L				
Acetone	7970	$\mu g/L$				
Phenol	1,080	μg/L	300	μg/L		
C. Halogenated VOCs Carbon Tetrachloride	4.4	ца/І	1.6	ис/Т		
1,2 Dichlorobenzene	600	μg/L μg/L	1.0	μg/L		
1,3 Dichlorobenzene	320	μg/L				
1,4 Dichlorobenzene	5.0	μg/L				
Total dichlorobenzene		$\mu g/L$				
1,1 Dichloroethane	70	μg/L				
1,2 Dichloroethane	5.0	μg/L				
1,1 Dichloroethylene Ethylene Dibromide	3.2 0.05	μg/L μg/L				
Methylene Chloride	4.6	μg/L μg/L				
1,1,1 Trichloroethane	200	μg/L				
1,1,2 Trichloroethane	5.0	$\mu g/L$				
Trichloroethylene	5.0	μg/L				
Tetrachloroethylene	5.0	μg/L	3.3	μg/L		
cis-1,2 Dichloroethylene Vinyl Chloride	70 2.0	μg/L μg/L				
D. Non-Halogenated SVOCs	2.0	μg/L				
Total Phthalates	190	μg/L		μg/L		
Diethylhexyl phthalate	101	μg/L	2.2	μg/L		
Total Group I Polycyclic	4.0	~				
Aromatic Hydrocarbons Benzo(a)anthracene	1.0 1.0	μg/L	0.0038	ца/І	0.1	μg/L
Benzo(a)antnracene Benzo(a)pyrene	1.0	μg/L μg/L	0.0038	μg/L μg/L	0.1	μg/L μg/L
Benzo(b)fluoranthene	1.0	μg/L μg/L	0.0038	μg/L μg/L	0.1	μg/L μg/L
Benzo(k)fluoranthene	1.0	μg/L	0.0038	μg/L	0.1	μg/L
Chrysene	1.0	$\mu g/L$	0.0038	$\mu g/L$	0.1	$\mu g/L$
Dibenzo(a,h)anthracene	1.0	$\mu g/L$	0.0038	μg/L	0.1	μg/L
Indeno(1,2,3-cd)pyrene	1.0	μg/L	0.0038	μg/L	0.1	μg/L
Total Group II Polycyclic Aromatic Hydrocarbons	100	μg/L				
Naphthalene	20	μg/L μg/L				
E. Halogenated SVOCs	-	1.6				
Total Polychlorinated Biphenyls	0.000064	$\mu g/L$			0.5	$\mu g/L$
Pentachlorophenol	1.0	$\mu g/L$				
F. Fuels Parameters	5.0	п				
Total Petroleum Hydrocarbons Ethanol	5.0 Report	mg/L mg/L				
Methyl-tert-Butyl Ether	70	mg/L μg/L	20	μg/L		
tert-Butyl Alcohol	120	μg/L μg/L		r6/2		
tert-Amyl Methyl Ether	90	μg/L				

TABLE 1 **Groundwater Results**

Groundwater Results Eversource: Woburn - Mystic				Wedgeme	edgemere Crossing			
Analytical Test	Sample Identification Sample Date	Effluent Limitation	MW-37 1/11/2017	MW-37 FF 1/11/2017	MW-36 1/11/2017	MW-36 FF 1/11/2017		
TPH - mg/L	ТРН	5	ND (5)	ND (5)	ND (5)	ND (5)		
Total PAHs Group I - ug/L	Benzo(a)Anthracene	0.0038	0.26	0.04	ND (0.05)	ND (0.05)		
	Benzo(a)Pyrene	0.0038	0.29	0.03	ND (0.05)	ND (0.05)		
	Benzo(b)Fluoranthene	0.0038	0.37	0.04	ND (0.05)	ND (0.05)		
	Benzo(k)Fluoranthene Chrysene	0.0038 0.0038	0.14 0.35	ND (0.05) 0.04	ND (0.05) ND (0.05)	ND (0.05) ND (0.05)		
	Dibenzo(a,h)Anthracene	0.0038	0.05	ND (0.05)	ND (0.05)	ND (0.05)		
	Indeno(1,2,3-cd)Pyrene	0.0038	0.22	0.02	ND (0.05)	ND (0.05)		
	Total PAHs Group I	1.0	1.68	0.17	ND	ND		
Total PAHs Group II - ug/L	Acenaphthene Acenaphthylene	NE NE	0.21 0.10	0.14 ND (0.19)	ND (0.19) ND (0.19)	ND (0.19) ND (0.19)		
	Anthracene	NE	0.23	0.05	ND (0.19)	ND (0.19)		
	Benzo(ghi)Perylene	NE	0.21	0.02	ND (0.19)	ND (0.19)		
	Fluoranthene	NE	0.78	0.11	ND (0.19)	ND (0.19)		
	Fluorene Naphthalene	NE 20	0.34 0.11	0.07 0.11	ND (0.19) ND (0.19)	ND (0.19) ND (0.19)		
	Phenanthrene	NE	0.85	0.16	ND (0.19)	ND (0.19)		
	Pyrene	NE	0.76	0.10	ND (0.19)	ND (0.19)		
	Total PAHs Group II	100	3.59	0.76	ND	ND		
Phthalates - ug/L	Butylbenzylphthalate	NE	0.31	0.36	0.34	0.43		
	Bis (2-Ethylhexyl) Phthalate Diethylphthalate	2.2 NE	3.07 0.29	3.00 0.27	2.72 ND (2.34)	2.02 3.85		
	Dimethylphthalate	NE	NA	NA	NA NA	NA		
	Di-n-butylphthalate	NE	0.19	0.43	ND (2.34)	0.69		
	Di-n-octylphthalate	NE 100	ND (2.34)	ND (2.34)	ND (2.34)	ND (2.34)		
	Total Phthalates	190	3.86	4.06	3.06	6.99		
SVOCs - ug/L	Pentachlorophenol All Other SVOCs	1.0 NE	ND (0.84) < c/s	ND (0.84) < c/s	ND (0.84) < c/s	ND (0.84) < c/s		
Motals us/								
Metals- ug/L	Antimony Arsenic	206 104	ND (5.0) 7.8	ND (5.0) 3.8	ND (5.0) ND (5.0)	ND (5.0) ND (5.0)		
	Barium	NE	108	131	81.1	72.0		
	Beryllium	NE	0.3	0.3	0.1	ND (5.0)		
	Cadmium Chromium	10.2 NE	0.10 11.6	0.05 2.9	ND (0.50) 2.8	0.03 ND (10.0)		
	Chromium III	323	12.0	ND (10)	ND (10)	ND (10.0) ND (10)		
	Lead	4.97	9.0	ND (2.5)	ND (2.5)	ND (2.5)		
	Mercury	0.739	ND (0.20)	ND (0.20)	ND (0.20)	ND (0.20)		
	Nickel Selenium	1,450 235.8	1.5 ND (5.0)	ND (10.0) ND (5.0)	ND (10.0) ND (5.0)	ND (10.0) ND (5.0)		
	Silver	35.1	0.09	ND (0.20)	ND (0.20)	ND (0.20)		
	Thallium	NE	ND (1.0)	ND (1.0)	ND (1.0)	ND (1.0)		
	Vanadium	NE	2.8	ND (10.0)	1.1	ND (10.0)		
	Zinc Iron	420 1,000	62 3,100	20.5 1,650	18.8 505	18.9 89.6		
	Copper	12.6	14.2	4.2	3.3	ND (5)		
Ethanol - ug/L	Ethanol	Report	ND (10)	ND (10)	ND (10)	ND (10)		
1,2-Dibromoethane - ug/L	1,2-Dibroethane (EDB)	0.05	ND (0.015)	ND (0.015)	ND (0.015)	ND (0.015)		
1,4-Dioxane - ug/L	1,4-Dioxane	200	ND (500)	ND (500)	ND (500)	ND (500)		
PCB - ug/L	Aroclor-1016	NE	ND (0.09)	ND (0.09)	ND (0.09)	ND (0.09)		
. 05 46/ -	Aroclor-1221	NE	ND (0.09)	ND (0.09)	ND (0.09)	ND (0.09)		
	Aroclor-1232	NE	ND (0.09)	ND (0.09)	ND (0.09)	ND (0.09)		
	Aroclor-1242	NE NE	ND (0.09)	ND (0.09)	ND (0.09)	ND (0.09)		
	Aroclor-1248 Aroclor-1254	NE NE	ND (0.09) ND (0.09)	ND (0.09) ND (0.09)	ND (0.09) ND (0.09)	ND (0.09) ND (0.09)		
	Aroclor-1260	NE	ND (0.09)	ND (0.09)	ND (0.09)	ND (0.09)		
	Aroclor-1262	NE	ND (0.09)	ND (0.09)	ND (0.09)	ND (0.09)		
	Aroclor-1268 Total PCBs	NE 0.00064	ND (0.09) ND	ND (0.09) ND	ND (0.09) ND	ND (0.09) ND		
VOCs - ug/L	tert-Butyl Alcohol (TBA) tert-Amyl Methyl Ether (TAME)	120 90	ND (25.0) ND (1.0)	ND (25.0) ND (1.0)	ND (25.0) ND (1.0)	ND (25.0) ND (1.0)		
	Napthalene	NE	0.4	0.4	0.20	0.20		
	Carbon Tetrachloride	4.4	ND (1.0)	ND (1.0)	ND (1.0)	ND (1.0)		
	1,2 Dichlorobenzene (o-DCB) 1,3 Dichlorobenzene (m-DCB)	600 320	ND (1.0) ND (1.0)	ND (1.0) ND (1.0)	ND (1.0) ND (1.0)	ND (1.0) ND (1.0)		
	1,4 Dicholorbenzene (p-DCB)	5.0	ND (1.0)	ND (1.0)	ND (1.0)	ND (1.0)		
	1,1 Dichloroethane (DCA)	70.0	ND (1.0)	ND (1.0)	ND (1.0)	ND (1.0)		
	1,2 Dichloroethane (DCA) 1,1 Dichloroethene (DCE)	5.0 3.2	ND (1.0) ND (1.0)	ND (1.0) ND (1.0)	ND (1.0) ND (1.0)	ND (1.0) ND (1.0)		
	sec-Butylbenzene	NE	ND (1.0) ND (1.0)	ND (1.0) ND (1.0)	ND (1.0) ND (1.0)	ND (1.0) ND (1.0)		
	tert-Butyl Ethyl Ether (TBEE)	NE	ND (1.0)	ND (1.0)	ND (1.0)	ND (1.0)		
	cis-1,2 Dichloroethene (DCE)	70	ND (1.0)	ND (1.0)	ND (1.0)	ND (1.0)		
	Methylene Chloride Tetrachloroethene (PCE)	4.6 5.0	0.20 ND (1.0)	ND (2.0) ND (1.0)	ND (2.0) ND (1.0)	ND (2.0) ND (1.0)		
	1,1,1 Trichloro-ethane (TCA)	200	ND (1.0)	ND (1.0)	ND (1.0)	ND (1.0)		
	1,1,2 Trichloro-ethane (TCA)	5.0	ND (1.0)	ND (1.0)	ND (1.0)	ND (1.0)		
	Trichloroethene (TCE) Methyl tert-Butyl Ether (MtBE)	5.0 70	ND (1.0) 0.70	ND (1.0) 0.60	ND (1.0) ND (1.0)	ND (1.0) ND (1.0)		
	Acetone	7,970	ND (1.0)	ND (10)	ND (10)	ND (10)		
	Vinyl Chloride	2.0	ND (1.0)	ND (1.0)	ND (1.0)	ND (1.0)		
BTEX - ug/L	Benzene	5.0	0.20	0.20	0.10 ND (1.0)	ND (1.0)		
	Toluene Ethylbenzene	NE NE	0.20 0.20	0.20 0.20	ND (1.0) ND (1.0)	0.10 ND (1.0)		
	Total Xylenes	NE	0.80	0.70	ND (2.0)	ND (1.0)		
	Total BTEX	100	1.40	1.30	0.10	0.10		
Classical Chemistry	Chloride (mg/L) Ammonia (mg/L)	Report Report	200 0.64	240 0.61	100 ND (0.10)	70 ND (0.1)		
		323	ND (10)	ND (10)	ND (0.10)	ND (0.1) ND (10)		
	Hexavalent Chromium (ug/L)	323						
	Total Cyanide (ug/L)	178	ND (5.00)	ND (5.00)	ND (5.00)	ND (5.00)		
	Total Cyanide (ug/L) Phenols (ug/L)	178 1,080	ND (5.00) ND (100)	ND (100)	ND (100)	ND (100)		
	Total Cyanide (ug/L)	178	ND (5.00)					

Notes: VOCs = Volatile Organic Compounds

 $SVOCs = Semi-Volatile\ Organic\ Compounds$

 $TPH = Total\ Petroleum\ Hydrocarbons$

PCBs = Polychlorinated biphenyls
mg/L= milligrams per kilogram (ppm)
ug/L= micrograms per kilogram (ppb)
< xx = not detected above the indicated laboratory method detection limit

c/s = compound specific NE = Not Established NA = Not Analyzed

ND = Not Detected

* - Effluent limits from NPDES General Permit for Remediation Activity Discharges DRAFT at https://www3.epa.gov/region1/npdes/remediation/2016DraftPermit.pdf
Red text = exceeds effluent

TABLE 2
Surface Water Results

Eversource: Woburn - Mystic

Analytical Test	Sample Identification	Effluent Limitation	Winter Pond
	Sample Date		11/15/2017
Metals (ug/L)	Arsenic	104	ND(2.5)
	Cadmium	10.2	ND(2)
	Chromium	NE	ND(4)
	Chromium III	323	ND(10)
	Copper	12.6	2.1
	Iron	1,000	223
	Lead	4.97	ND(4)
	Nickel	1,450	ND(4)
	Silver	35.1	ND(1)
	Zinc	420	12.3
Classical Chemistry	Ammonia as N (mg/L)	Report	0.14
	Hexavalent Chromium (ug/L)	323	ND(10)
	рН	NE	6.66
	Hardness (ug/L)	NE	30,500

Notes:

mg/L= milligrams per kilogram (ppm)

ug/L= micrograms per kilogram (ppb)

NE = Not Established

NA = Not Analyzed

ND = Not Detected

 $^{^*}$ - Effluent limits from NPDES General Permit for Remediation Activity Discharges DRAFT at https://www3.epa.gov/region1/npdes/remediation/2016DraftPermit.pdf

APPENDIX F

The Microbiology Division of Thielsch Engineering, Inc.

CERTIFICATE OF ANALYSIS

Michael Martin Tighe & Bond 4 Barlows Landing Road, Unit 15 Pocasset, MA 02559

RE: Woburn to Mystic - RGP/MCP (N-0998-11-13) ESS Laboratory Work Order Number: 1701214

This signed Certificate of Analysis is our approved release of your analytical results. These results are only representative of sample aliquots received at the laboratory. ESS Laboratory expects its clients to follow all regulatory sampling guidelines. Beginning with this page, the entire report has been paginated. This report should not be copied except in full without the approval of the laboratory. Samples will be disposed of thirty days after the final report has been delivered. If you have any questions or concerns, please feel free to call our Customer Service Department.

Laurel Stoddard

Laboratory Director

REVIEWED

By ESS Laboratory at 5:56 pm, Jan 20, 2017

Analytical Summary

The project as described above has been analyzed in accordance with the ESS Quality Assurance Plan. This plan utilizes the following methodologies: US EPA SW-846, US EPA Methods for Chemical Analysis of Water and Wastes per 40 CFR Part 136, APHA Standard Methods for the Examination of Water and Wastewater, American Society for Testing and Materials (ASTM), and other recognized methodologies. The analyses with these noted observations are in conformance to the Quality Assurance In chromatographic analysis, manual integration is frequently used instead of automated integration because it produces more accurate results.

The test results present in this report are in compliance with TNI and relative state tandards, and/or client Quality Assurance Project Plans (QAPP). The laboratory has reviewed the following: Sample Preservations, Hold Times, Initial Calibrations, Continuing Calibrations, Method Blanks, Blank Spikes, Blank Spike Duplicates, Duplicates, Matrix Spikes, Matrix Spike Duplicates, Surrogates and Internal Standards. Any results which were found to be outside of the recommended ranges stated in our SOPs will be noted in the Project Narrative.

Subcontracted Analyses

RI Analytical Laboratories, Inc. - Warwick,

Chloride

RI

The Microbiology Division of Thielsch Engineering, Inc.

CERTIFICATE OF ANALYSIS

Client Name: Tighe & Bond

Client Project ID: Woburn to Mystic - RGP/MCP ESS Laboratory Work Order: 1701214

SAMPLE RECEIPT

The following samples were received on January 11, 2017 for the analyses specified on the enclosed Chain of Custody Record.

To achieve CAM compliance for MCP data, ESS Laboratory has reviewed all QA/QC Requirements and Performance Standards listed in each method. Holding times and preservation have also been reviewed. All CAM requirements have been performed and achieved unless noted in the project narrative.

Each method has been set-up in the laboratory to reach required MCP standards. The methods for aqueous VOA and Soil Methanol VOA have known limitations for certain analytes. The regulatory standards may not be achieved due to these limitations. In addition, for all methods, matrix interferences, dilutions, and %Solids may elevate method reporting limits above regulatory standards. ESS Laboratory can provide, upon request, a Data Checker (regulatory standard comparison spreadsheet) electronic deliverable which will highlight these exceedances.

<u>Lab Number</u> 1701214-01	Sample Name MW-37	<u>Matrix</u> Ground Water	Analysis §, 1664A, 2540D, 420.1, 4500 CN CE, 4500 NH3 G,
1701214-02	MW-37 FF	Ground Water	4500-C1 E, 6010C, 7010, 7196A, 7470A, 8011, 8015, 8082A, 8260B, 8270D SIM §, 1664A, 2540D, 420.1, 4500 CN CE, 4500 NH3 G, 4500-C1 E, 6010C, 7010, 7196A, 7470A, 8011,
1701214-03	MW-36	Ground Water	8015, 8082A, 8260B, 8270D SIM §, 1664A, 2540D, 420.1, 4500 CN CE, 4500 NH3 G, 4500-C1 E, 6010C, 7010, 7196A, 7470A, 8011,
1701214-04	MW-36 FF	Ground Water	8015, 8082A, 8260B, 8270D SIM §, 1664A, 2540D, 420.1, 4500 CN CE, 4500 NH3 G, 4500-C1 E, 6010C, 7010, 7196A, 7470A, 8011,
1701214-05	MW-505B FF	Ground Water	8015, 8082A, 8260B, 8270D SIM §, 1664A, 2540D, 4500 CN CE, 4500 NH3 G, 4500-C1 E, 6010C, 7010, 7196A, 7470A, 8011,
1701214-06	MW-505B	Ground Water	8015, 8082A, 8260B, 8270D SIM 6010C, 7010, 7470A

The Microbiology Division of Thielsch Engineering, Inc.

CERTIFICATE OF ANALYSIS

Client Name: Tighe & Bond

Client Project ID: Woburn to Mystic - RGP/MCP ESS Laboratory Work Order: 1701214

PROJECT NARRATIVE

1701214-01	Present in Method Blank (B).
	Naphthalene
1701214-02	Present in Method Blank (B).
	Naphthalene
1701214-03	Present in Method Blank (B).
	Naphthalene
1701214-04	Present in Method Blank (B).
	Naphthalene
8270D(SIM) Semi	i-Volatile Organic Compounds
1701214-01	Present in Method Blank (B).
	bis(2-Ethylhexyl)phthalate, Butylbenzylphthalate
1701214-02	Present in Method Blank (B).
	bis(2-Ethylhexyl)phthalate, Butylbenzylphthalate
1701214-03	Present in Method Blank (B).
	bis(2-Ethylhexyl)phthalate, Butylbenzylphthalate
1701214-04	Present in Method Blank (B).
	bis(2-Ethylhexyl)phthalate, Butylbenzylphthalate
1701214-05	Present in Method Blank (B).
	bis(2-Ethylhexyl)phthalate, Butylbenzylphthalate
1701214-05	Surrogate recovery(ies) above upper control limit (S+).
	2,4,6-Tribromophenol (131% @ 15-110%)
C7A0148-TUN1	Benzidine tailing factor >2.
C7A0164-CCV1	Continuing Calibration %Diff/Drift is above control limit (CD+).
	Butylbenzylphthalate (22% @ %), Di-n-octylphthalate (28% @ %)
CA71116-BS1	Blank Spike recovery is above upper control limit (B+).
	bis(2-Ethylhexyl)phthalate (146% @ 40-140%)
CA71116-BSD1	Blank Spike recovery is above upper control limit (B+).
	bis(2-Ethylhexyl)phthalate (143% @ 40-140%)
CA71116-BSD1	Relative percent difference for duplicate is outside of criteria (D+).
	Naphthalene (21% @ 20%)
Total Metals	
1701214-01	Present in Method Blank (B).
	Zinc
1701214-02	Present in Method Blank (B).
	Zinc
1701214-03	Present in Method Blank (B).
	Iron, Zinc
1701214 04	Dungant in Mathad Dlauk (D)

Iron, Zinc

Present in Method Blank (B).

1701214-04

Service

Present in Method Blank (B).

BAL Laboratory

The Microbiology Division of Thielsch Engineering, Inc.

CERTIFICATE OF ANALYSIS

Client Name: Tighe & Bond

1701214-05

Client Project ID: Woburn to Mystic - RGP/MCP ESS Laboratory Work Order: 1701214

Zinc

1701214-06 **Present in Method Blank (B).**

Zinc

No other observations noted.

End of Project Narrative.

DATA USABILITY LINKS

Definitions of Quality Control Parameters

Semivolatile Organics Internal Standard Information

Semivolatile Organics Surrogate Information

Volatile Organics Internal Standard Information

Volatile Organics Surrogate Information

EPH and VPH Alkane Lists

185 Frances Avenue, Cranston, RI 02910-2211

2211 Tel: 401-461-7181 Dependability • Quality

Fax: 401-461-4486

http://www.ESSLaboratory.com

Service

The Microbiology Division of Thielsch Engineering, Inc.

CERTIFICATE OF ANALYSIS

Client Name: Tighe & Bond

Client Project ID: Woburn to Mystic - RGP/MCP ESS Laboratory Work Order: 1701214

CURRENT SW-846 METHODOLOGY VERSIONS

Analytical Methods

1010A - Flashpoint

6010C - ICP

6020A - ICP MS

7010 - Graphite Furnace

7196A - Hexavalent Chromium

7470A - Aqueous Mercury

7471B - Solid Mercury

8011 - EDB/DBCP/TCP

8015C - GRO/DRO

8081B - Pesticides

8082A - PCB

8100M - TPH

8151A - Herbicides

8260B - VOA

8270D - SVOA

8270D SIM - SVOA Low Level

9014 - Cyanide

9038 - Sulfate

9040C - Aqueous pH

9045D - Solid pH (Corrosivity)

9050A - Specific Conductance

9056A - Anions (IC)

9060A - TOC

9095B - Paint Filter

MADEP 04-1.1 - EPH / VPH

Prep Methods

3005A - Aqueous ICP Digestion

3020A - Aqueous Graphite Furnace / ICP MS Digestion

3050B - Solid ICP / Graphite Furnace / ICP MS Digestion

3060A - Solid Hexavalent Chromium Digestion

3510C - Separatory Funnel Extraction

3520C - Liquid / Liquid Extraction

3540C - Manual Soxhlet Extraction

3541 - Automated Soxhlet Extraction

3546 - Microwave Extraction

3580A - Waste Dilution

5030B - Aqueous Purge and Trap

5030C - Aqueous Purge and Trap

5035 - Solid Purge and Trap

SW846 Reactivity Methods 7.3.3.2 (Reactive Cyanide) and 7.3.4.1 (Reactive Sulfide) have been withdrawn by EPA. These methods are reported per client request and are not NELAP accredited.

The Microbiology Division of Thielsch Engineering, Inc.

CERTIFICATE OF ANALYSIS

Client Name: Tighe & Bond

accurate and complete.

Client Project ID: Woburn to Mystic - RGP/MCP ESS Laboratory Work Order: 1701214

MassDEP Analytical Protocol Certification Form

	N	MADEP RTI	N: .				_					
This	form	provides cer	tifica	tion for the follow	wing da	ıta set: 1701214-01 tl	roug	gh 1701214-06				
Mat	rices:	(X) Ground	Wate	er/Surface Water		() Soil/Sediment	() Drinking Water	() Air	() Other:		
CA	M Pro	otocol (chec	k all	that apply below	·):							
(X)	8260 CAM		()	7470/7471 Hg CAM III B	()	MassDEP VPH CAM IV A	() 8081 Pesticides CAM V B	(X)	7196 Hex Cr CAM VI B	` /	MassDEP APH CAM IX A
(X)	8270 CAM	SVOC II B	(X)	7010 Metals CAM III C	()	MassDEP EPH CAM IV B	() 8151 Herbicides CAM V C	()	8330 Explosives CAM VIII A	` /	TO-15 VOC CAM IX B
(X)	6010 CAM	Metals III A	()	6020 Metals CAM III D	(X)	8082 PCB CAM V A	() 6860 Perchlorate CAM VIII B	(X)	9014 Total Cyanic CAM VI A	de/PA0	C
			A	ffirmative respo	nses to	questions A throug	h F	are required for ''Pr	esumptiv	ve Certainty'' stati	us	
A		-						on the Chain-of-Custo		•		Yes (X) No ()
В	_	the analytica	-					/analyzed within meth ed in the selected CAN		~		Yes (x) No ()
С		_				cal response actions a	_	fied in the selected CA	AM proto	col(s)		Yes (x) No ()
D	Does	the laborator	ry rep	ort comply with	all the	reporting requiremen	s spe	ecified in the CAM VI		ılity		$\operatorname{Yes}(\mathbf{x}) \operatorname{No}()$
Е						method conducted want modifications).	ithou	t significant modificat	tion(s)? (l	Refer		Yes () No ()
				•		plete analyte list repo						Yes () No ()
F					-	Formance standard no ponses to Questions A		nformances identified ough E)?	and evalu	ıated		Yes (X) No ()
				Responses to	Ouesti	ons G, H and I belov	v are	required for '"Presur	mptive Ce	ertainty'' status		
G	Were	the reporting	g limi	-				n the selected CAM p	_	•		Yes (X) No ()*
					_	-		necessarily meet the d	ata usabi	lity and		
11						O CMR 40. 1056 (2)(k)						Vag () Na (17)*
H I				•		n the CAM protocol(s ist specified in the se						Yes () No (x)* Yes () No (x)*
-		-		-	-	attached laboratory						163 () 140 (A)
I, t	he un	dersigned, a	uttest	under the pains	and p	enalties of perjury t	hat, l	based upon my perso report is, to the best o	_			2

Signature: January 20, 2017 Date: Printed Name: Laurel Stoddard Position: Laboratory Director

185 Frances Avenue, Cranston, RI 02910-2211

Tel: 401-461-7181

Fax: 401-461-4486 Service

The Microbiology Division of Thielsch Engineering, Inc.

CERTIFICATE OF ANALYSIS

Client Name: Tighe & Bond

Client Project ID: Woburn to Mystic - RGP/MCP

Client Sample ID: MW-37 Date Sampled: 01/11/17 10:20

Percent Solids: N/A

reiceilt soilus. IN/A

ESS Laboratory Work Order: 1701214 ESS Laboratory Sample ID: 1701214-01

Sample Matrix: Ground Water

Units: ug/L

Extraction Method: 3005A

Total Metals

Analyte	Results (MRL)	MDL	Method	<u>Limit</u>	<u>DF</u>	Analys	t Analyzed	I/V	F/V	Batch
Antimony	ND (5.0)	0.6	7010		1	KJK	01/17/17 22:22	50	25	CA71146
Arsenic	7.8 (5.0)	0.4	7010		1	KJK	01/14/17 15:59	50	25	CA71146
Barium	108 (25.0)	1.5	6010C		1	KJK	01/13/17 3:39	50	25	CA71146
Beryllium	J 0.3 (0.5)	0.1	6010C		1	KJK	01/13/17 3:39	50	25	CA71146
Cadmium	J 0.1 (0.5)	0.03	7010		1	KJK	01/17/17 15:53	50	25	CA71146
Chromium	11.6 (10.0)	1.5	6010C		1	KJK	01/13/17 3:39	50	25	CA71146
Chromium III	12 (10)		6010C		1	JLK	01/13/17 3:39	1	1	[CALC]
Copper	14.2 (5.0)	2.0	6010C		1	KJK	01/13/17 3:39	50	25	CA71146
Iron	3100 (50.0)	11.5	6010C		1	KJK	01/13/17 3:39	50	25	CA71146
Lead	9.0 (2.5)	0.5	7010		1	KJK	01/14/17 22:07	50	25	CA71146
Mercury	ND (0.20)	0.12	7470A		1	MJV	01/13/17 12:48	20	40	CA71147
Nickel	J 1.5 (10.0)	1.0	6010C		1	KJK	01/13/17 3:39	50	25	CA71146
Selenium	ND (5.0)	0.6	7010		1	KJK	01/15/17 3:36	50	25	CA71146
Silver	J 0.09 (0.2)	0.08	7010		1	KJK	01/17/17 18:59	50	25	CA71146
Thallium	ND (1.0)	0.5	7010		1	KJK	01/14/17 18:42	50	25	CA71146
Vanadium	J 2.8 (10.0)	1.0	6010C		1	KJK	01/13/17 3:39	50	25	CA71146
Zinc	B 62.0 (25.0)	4.5	6010C		1	KJK	01/13/17 3:39	50	25	CA71146

The Microbiology Division of Thielsch Engineering, Inc.

CERTIFICATE OF ANALYSIS

Client Name: Tighe & Bond

Client Project ID: Woburn to Mystic - RGP/MCP

Client Sample ID: MW-37 Date Sampled: 01/11/17 10:20

Percent Solids: N/A Initial Volume: 1070 Final Volume: 1

Extraction Method: 3510C

ESS Laboratory Work Order: 1701214 ESS Laboratory Sample ID: 1701214-01

Sample Matrix: Ground Water

Units: ug/L Analyst: SMR

Prepared: 1/13/17 9:30 Cleanup Method: 3665A

8082A Polychlorinated Biphenyls (PCB)

<u>Analyte</u>	Results (MRL)	MDL	Method	<u>Limit</u>	<u>DF</u>	Analyzed	Sequence	Batch
Aroclor 1016	ND (0.09)	0.03	8082A		1	01/13/17 13:47		CA71203
Aroclor 1221	ND (0.09)	0.03	8082A		1	01/13/17 13:47		CA71203
Aroclor 1232	ND (0.09)	0.03	8082A		1	01/13/17 13:47		CA71203
Aroclor 1242	ND (0.09)	0.03	8082A		1	01/13/17 13:47		CA71203
Aroclor 1248	ND (0.09)	0.03	8082A		1	01/13/17 13:47		CA71203
Aroclor 1254	ND (0.09)	0.03	8082A		1	01/13/17 13:47		CA71203
Aroclor 1260	ND (0.09)	0.03	8082A		1	01/13/17 13:47		CA71203
Aroclor 1262	ND (0.09)	0.03	8082A		1	01/13/17 13:47		CA71203
Aroclor 1268	ND (0.09)	0.03	8082A		1	01/13/17 13:47		CA71203
		%Recovery	Qualifier	Limits				
Surrogate: Decachlorobiphenyl		60 %		30-150				
Surrogate: Decachlorobiphenyl [2C]		62 %		30-150				
Surrogate: Tetrachloro-m-xylene		62 %		30-150				
Surrogate: Tetrachloro-m-xylene [2C]		68 %		30-150				

185 Frances Avenue, Cranston, RI 02910-2211

Tel: 401-461-7181

Fax: 401-461-4486

The Microbiology Division of Thielsch Engineering, Inc.

CERTIFICATE OF ANALYSIS

Client Name: Tighe & Bond

Client Project ID: Woburn to Mystic - RGP/MCP

Client Sample ID: MW-37 Date Sampled: 01/11/17 10:20

Percent Solids: N/A
Initial Volume: 5
Final Volume: 5

Extraction Method: 5030B

ESS Laboratory Work Order: 1701214 ESS Laboratory Sample ID: 1701214-01

Sample Matrix: Ground Water

Units: ug/L Analyst: MD

8260B Volatile Organic Compounds

Analyte	Results (MRL)	MDL	Method	<u>Limit</u>	<u>DF</u>	Analyzed	Sequence	Batch
1,1,1-Trichloroethane	ND (1.0)	0.2	8260B		1	01/12/17 18:19	C7A0161	CA71231
1,1,2-Trichloroethane	ND (1.0)	0.2	8260B		1	01/12/17 18:19	C7A0161	CA71231
1,1-Dichloroethane	ND (1.0)	0.2	8260B		1	01/12/17 18:19	C7A0161	CA71231
1,1-Dichloroethene	ND (1.0)	0.3	8260B		1	01/12/17 18:19	C7A0161	CA71231
1,2-Dibromoethane	ND (1.0)	0.2	8260B		1	01/12/17 18:19	C7A0161	CA71231
1,2-Dichlorobenzene	ND (1.0)	0.1	8260B		1	01/12/17 18:19	C7A0161	CA71231
1,2-Dichloroethane	ND (1.0)	0.2	8260B		1	01/12/17 18:19	C7A0161	CA71231
1,3-Dichlorobenzene	ND (1.0)	0.2	8260B		1	01/12/17 18:19	C7A0161	CA71231
1,4-Dichlorobenzene	ND (1.0)	0.1	8260B		1	01/12/17 18:19	C7A0161	CA71231
1,4-Dioxane - Screen	ND (500)	190	8260B		1	01/12/17 18:19	C7A0161	CA71231
Acetone	ND (10.0)	2.7	8260B		1	01/12/17 18:19	C7A0161	CA71231
Benzene	J 0.2 (1.0)	0.1	8260B		1	01/12/17 18:19	C7A0161	CA71231
Carbon Tetrachloride	ND (1.0)	0.1	8260B		1	01/12/17 18:19	C7A0161	CA71231
cis-1,2-Dichloroethene	ND (1.0)	0.2	8260B		1	01/12/17 18:19	C7A0161	CA71231
Ethylbenzene	J 0.2 (1.0)	0.1	8260B		1	01/12/17 18:19	C7A0161	CA71231
Methyl tert-Butyl Ether	J 0.7 (1.0)	0.3	8260B		1	01/12/17 18:19	C7A0161	CA71231
Methylene Chloride	J 0.2 (2.0)	0.2	8260B		1	01/12/17 18:19	C7A0161	CA71231
Naphthalene	B, J 0.4 (1.0)	0.2	8260B		1	01/12/17 18:19	C7A0161	CA71231
Tertiary-amyl methyl ether	ND (1.0)	0.2	8260B		1	01/12/17 18:19	C7A0161	CA71231
Tertiary-butyl Alcohol	ND (25.0)	10.0	8260B		1	01/12/17 18:19	C7A0161	CA71231
Tetrachloroethene	ND (1.0)	0.2	8260B		1	01/12/17 18:19	C7A0161	CA71231
Toluene	J 0.2 (1.0)	0.1	8260B		1	01/12/17 18:19	C7A0161	CA71231
Trichloroethene	ND (1.0)	0.2	8260B		1	01/12/17 18:19	C7A0161	CA71231
Vinyl Chloride	ND (1.0)	0.2	8260B		1	01/12/17 18:19	C7A0161	CA71231
Xylene O	J 0.2 (1.0)	0.1	8260B		1	01/12/17 18:19	C7A0161	CA71231
Xylene P,M	J 0.6 (2.0)	0.2	8260B		1	01/12/17 18:19	C7A0161	CA71231

 %Recovery
 Qualifier
 Limits

 Surrogate: 1,2-Dichloroethane-d4
 104 %
 70-130

 Surrogate: 4-Bromofluorobenzene
 96 %
 70-130

 Surrogate: Dibromofluoromethane
 98 %
 70-130

 Surrogate: Toluene-d8
 103 %
 70-130

185 Frances Avenue, Cranston, RI 02910-2211

Tel: 401-461-7181

Fax: 401-461-4486

The Microbiology Division of Thielsch Engineering, Inc.

CERTIFICATE OF ANALYSIS

Client Name: Tighe & Bond

Client Project ID: Woburn to Mystic - RGP/MCP

Client Sample ID: MW-37 Date Sampled: 01/11/17 10:20

Percent Solids: N/A Initial Volume: 1070 Final Volume: 0.25

Extraction Method: 3510C

ESS Laboratory Work Order: 1701214 ESS Laboratory Sample ID: 1701214-01

Sample Matrix: Ground Water

Units: ug/L Analyst: VSC

Prepared: 1/12/17 10:15

8270D(SIM) Semi-Volatile Organic Compounds

Analyte	Results (MRL)	<u>MDL</u>	Method	<u>Limit</u>	<u>DF</u>	Analyzed	Sequence	Batch
Acenaphthene	0.21 (0.19)	0.04	8270D SIM		1	01/12/17 22:03	C7A0164	CA71116
Acenaphthylene	J 0.10 (0.19)	0.03	8270D SIM		1	01/12/17 22:03	C7A0164	CA71116
Anthracene	0.23 (0.19)	0.03	8270D SIM		1	01/12/17 22:03	C7A0164	CA71116
Benzo(a)anthracene	0.26 (0.05)	0.01	8270D SIM		1	01/12/17 22:03	C7A0164	CA71116
Benzo(a)pyrene	0.29 (0.05)	0.01	8270D SIM		1	01/12/17 22:03	C7A0164	CA71116
Benzo(b)fluoranthene	0.37 (0.05)	0.02	8270D SIM		1	01/12/17 22:03	C7A0164	CA71116
Benzo(g,h,i)perylene	0.21 (0.19)	0.02	8270D SIM		1	01/12/17 22:03	C7A0164	CA71116
Benzo(k)fluoranthene	0.14 (0.05)	0.02	8270D SIM		1	01/12/17 22:03	C7A0164	CA71116
bis(2-Ethylhexyl)phthalate	B 3.07 (2.34)	0.19	8270D SIM		1	01/12/17 22:03	C7A0164	CA71116
Butylbenzylphthalate	B, J 0.31 (2.34)	0.19	8270D SIM		1	01/12/17 22:03	C7A0164	CA71116
Chrysene	0.35 (0.05)	0.01	8270D SIM		1	01/12/17 22:03	C7A0164	CA71116
Dibenzo(a,h)Anthracene	0.05 (0.05)	0.02	8270D SIM		1	01/12/17 22:03	C7A0164	CA71116
Diethylphthalate	J 0.29 (2.34)	0.19	8270D SIM		1	01/12/17 22:03	C7A0164	CA71116
Dimethylphthalate	ND (2.34)	0.19	8270D SIM		1	01/12/17 22:03	C7A0164	CA71116
Di-n-butylphthalate	J 0.19 (2.34)	0.19	8270D SIM		1	01/12/17 22:03	C7A0164	CA71116
Di-n-octylphthalate	ND (2.34)	0.19	8270D SIM		1	01/12/17 22:03	C7A0164	CA71116
Fluoranthene	0.78 (0.19)	0.02	8270D SIM		1	01/12/17 22:03	C7A0164	CA71116
Fluorene	0.34 (0.19)	0.03	8270D SIM		1	01/12/17 22:03	C7A0164	CA71116
Indeno(1,2,3-cd)Pyrene	0.22 (0.05)	0.02	8270D SIM		1	01/12/17 22:03	C7A0164	CA71116
Naphthalene	J 0.11 (0.19)	0.04	8270D SIM		1	01/12/17 22:03	C7A0164	CA71116
Pentachlorophenol	ND (0.84)	0.30	8270D SIM		1	01/19/17 1:59	C7A0164	CA71116
Phenanthrene	0.85 (0.19)	0.04	8270D SIM		1	01/12/17 22:03	C7A0164	CA71116
Pyrene	0.76 (0.19)	0.02	8270D SIM		1	01/12/17 22:03	C7A0164	CA71116

	%Recovery	Qualifier	Limits
Surrogate: 1,2-Dichlorobenzene-d4	46 %		30-130
Surrogate: 2,4,6-Tribromophenol	108 %		15-110
Surrogate: 2-Fluorobiphenyl	77 %		30-130
Surrogate: Nitrobenzene-d5	76 %		30-130
Surrogate: p-Terphenyl-d14	93 %		30-130

185 Frances Avenue, Cranston, RI 02910-2211

Tel: 401-461-7181

Fax: 401-461-4486

The Microbiology Division of Thielsch Engineering, Inc.

CERTIFICATE OF ANALYSIS

Client Name: Tighe & Bond

Client Project ID: Woburn to Mystic - RGP/MCP

Client Sample ID: MW-37 Date Sampled: 01/11/17 10:20

Percent Solids: N/A

ESS Laboratory Work Order: 1701214 ESS Laboratory Sample ID: 1701214-01

Sample Matrix: Ground Water

Classical Chemistry

Analyte Ammonia as N	Results (MRL) 0.64 (0.10)	<u>MDL</u>	Method 4500 NH3 G	<u>Limit</u>	<u>DF</u>	Analys	<u>Analyzed</u> 01/16/17 17:19	Units mg/L	Batch CA71301
Chloride	200 (10.0)		§		1	SUB	01/13/17 19:51	mg/L	CA71826
Hexavalent Chromium	ND (10)		7196A		1	JLK	01/11/17 21:00	ug/L	CA71144
Phenols	ND (100)	30	420.1		1	JLK	01/13/17 17:00	ug/L	CA71336
Total Cyanide (LL)	ND (5.00)	1.80	4500 CN CE		1	EEM	01/13/17 11:40	ug/L	CA71317
Total Petroleum Hydrocarbon	ND (5)		1664A		1	CRR	01/16/17 14:42	mg/L	CA71306
Total Residual Chlorine	ND (10)		4500-Cl E		1	JLK	01/11/17 20:08	ug/L	CA71143
Total Suspended Solids	164000 (10000)		2540D		1	JLK	01/12/17 18:08	ug/L	CA71229

The Microbiology Division of Thielsch Engineering, Inc.

CERTIFICATE OF ANALYSIS

Client Name: Tighe & Bond

Client Project ID: Woburn to Mystic - RGP/MCP

Client Sample ID: MW-37 Date Sampled: 01/11/17 10:20

Percent Solids: N/A Initial Volume: 35 Final Volume: 2

Extraction Method: 504/8011

ESS Laboratory Work Order: 1701214 ESS Laboratory Sample ID: 1701214-01

Sample Matrix: Ground Water

Units: ug/L Analyst: JXS

Prepared: 1/13/17 12:00

8011 1,2-Dibromoethane / 1,2-Dibromo-3-chloropropane

Analyte 1,2-Dibromoethane	Results (MRL) ND (0.015)	MDL 0.005	Method 8011	<u>Limit</u>	<u>DF</u>	Analyst JXS	Analyzed 01/13/17 18:35	<u>Sequence</u>	Batch CA71322
	%	Recovery	Qualifier	Limits					
Surrogate: Pentachloroethane		110 %		30-150					

185 Frances Avenue, Cranston, RI 02910-2211

2211 Tel: 401-461-7181 Dependability • Quality

Fax: 401-461-4486 ◆ Service

The Microbiology Division of Thielsch Engineering, Inc.

CERTIFICATE OF ANALYSIS

Client Name: Tighe & Bond

Client Project ID: Woburn to Mystic - RGP/MCP

Client Sample ID: MW-37 Date Sampled: 01/11/17 10:20

Percent Solids: N/A
Initial Volume: 1
Final Volume: 1

Extraction Method: No Prep

ESS Laboratory Work Order: 1701214 ESS Laboratory Sample ID: 1701214-01

Sample Matrix: Ground Water

Units: mg/L Analyst: DPS

Prepared: 1/12/17 14:30

Alcohol Scan by GC/FID

AnalyteResults (MRL)MDLMethodLimitDFAnalystAnalyzedSequenceBatchEthanolND (10)80151DPS01/13/17 16:56CA71246

185 Frances Avenue, Cranston, RI 02910-2211

11 Tel: 401-461-7181

Fax: 401-461-4486 ◆ Service

The Microbiology Division of Thielsch Engineering, Inc.

CERTIFICATE OF ANALYSIS

Client Name: Tighe & Bond

Client Project ID: Woburn to Mystic - RGP/MCP

Client Sample ID: MW-37 FF Date Sampled: 01/11/17 10:50

Percent Solids: N/A

ESS Laboratory Work Order: 1701214 ESS Laboratory Sample ID: 1701214-02

Sample Matrix: Ground Water

Units: ug/L

Extraction Method: 3005A

Total Metals

Analyte	Results (MRL)	MDL	Method	<u>Limit</u>	<u>DF</u>	Analys	t Analyzed	I/V	F/V	Batch
Antimony	ND (5.0)	0.6	7010		1	KJK	01/17/17 22:28	50	25	CA71146
Arsenic	J 3.8 (5.0)	0.4	7010		1	KJK	01/14/17 16:05	50	25	CA71146
Barium	131 (25.0)	1.5	6010C		1	KJK	01/13/17 3:43	50	25	CA71146
Beryllium	J 0.3 (0.5)	0.1	6010C		1	KJK	01/13/17 3:43	50	25	CA71146
Cadmium	J 0.05 (0.5)	0.03	7010		1	KJK	01/17/17 15:59	50	25	CA71146
Chromium	J 2.9 (10.0)	1.5	6010C		1	KJK	01/13/17 3:43	50	25	CA71146
Chromium III	ND (10)		6010C		1	JLK	01/13/17 3:43	1	1	[CALC]
Copper	J 4.2 (5.0)	2.0	6010C		1	KJK	01/13/17 3:43	50	25	CA71146
Iron	1650 (50.0)	11.5	6010C		1	KJK	01/13/17 3:43	50	25	CA71146
Lead	ND (2.5)	0.5	7010		1	KJK	01/14/17 22:12	50	25	CA71146
Mercury	ND (0.20)	0.12	7470A		1	MJV	01/13/17 12:50	20	40	CA71147
Nickel	ND (10.0)	1.0	6010C		1	KJK	01/13/17 3:43	50	25	CA71146
Selenium	ND (5.0)	0.6	7010		1	KJK	01/15/17 3:41	50	25	CA71146
Silver	ND (0.2)	0.08	7010		1	KJK	01/17/17 19:04	50	25	CA71146
Thallium	ND (1.0)	0.5	7010		1	KJK	01/14/17 18:47	50	25	CA71146
Vanadium	ND (10.0)	1.0	6010C		1	KJK	01/13/17 3:43	50	25	CA71146
Zinc	B , J 20.5 (25.0)	4.5	6010C		1	KJK	01/13/17 3:43	50	25	CA71146

The Microbiology Division of Thielsch Engineering, Inc.

CERTIFICATE OF ANALYSIS

Client Name: Tighe & Bond

Client Project ID: Woburn to Mystic - RGP/MCP

Client Sample ID: MW-37 FF Date Sampled: 01/11/17 10:50

Percent Solids: N/A
Initial Volume: 1070

Final Volume: 1

Extraction Method: 3510C

ESS Laboratory Work Order: 1701214 ESS Laboratory Sample ID: 1701214-02

Sample Matrix: Ground Water

Units: ug/L Analyst: SMR

Prepared: 1/13/17 9:30 Cleanup Method: 3665A

8082A Polychlorinated Biphenyls (PCB)

<u>Analyte</u>	Results (MRL)	MDL	Method	<u>Limit</u>	<u>DF</u>	Analyzed	Sequence	Batch
Aroclor 1016	ND (0.09)	0.03	8082A		1	01/13/17 14:06		CA71203
Aroclor 1221	ND (0.09)	0.03	8082A		1	01/13/17 14:06		CA71203
Aroclor 1232	ND (0.09)	0.03	8082A		1	01/13/17 14:06		CA71203
Aroclor 1242	ND (0.09)	0.03	8082A		1	01/13/17 14:06		CA71203
Aroclor 1248	ND (0.09)	0.03	8082A		1	01/13/17 14:06		CA71203
Aroclor 1254	ND (0.09)	0.03	8082A		1	01/13/17 14:06		CA71203
Aroclor 1260	ND (0.09)	0.03	8082A		1	01/13/17 14:06		CA71203
Aroclor 1262	ND (0.09)	0.03	8082A		1	01/13/17 14:06		CA71203
Aroclor 1268	ND (0.09)	0.03	8082A		1	01/13/17 14:06		CA71203
		%Recovery	Qualifier	Limits				
Surrogate: Decachlorobiphenyl		66 %		30-150				
Surrogate: Decachlorobiphenyl [2C]		72 %		30-150				
Surrogate: Tetrachloro-m-xylene		68 %		30-150				
Surrogate: Tetrachloro-m-xylene [2C]		71 %		30-150				

185 Frances Avenue, Cranston, RI 02910-2211

211 Tel: 401-461-7181

Fax: 401-461-4486

The Microbiology Division of Thielsch Engineering, Inc.

CERTIFICATE OF ANALYSIS

Client Name: Tighe & Bond

Client Project ID: Woburn to Mystic - RGP/MCP

Client Sample ID: MW-37 FF Date Sampled: 01/11/17 10:50

Percent Solids: N/A Initial Volume: 5 Final Volume: 5

Extraction Method: 5030B

ESS Laboratory Work Order: 1701214 ESS Laboratory Sample ID: 1701214-02

Sample Matrix: Ground Water

Units: ug/L Analyst: MD

8260B Volatile Organic Compounds

Analyte	Results (MRL)	MDL	Method	<u>Limit</u>	<u>DF</u>	Analyzed	Sequence	Batch
1,1,1-Trichloroethane	ND (1.0)	0.2	8260B		1	01/12/17 18:46	C7A0161	CA71231
1,1,2-Trichloroethane	ND (1.0)	0.2	8260B		1	01/12/17 18:46	C7A0161	CA71231
1,1-Dichloroethane	ND (1.0)	0.2	8260B		1	01/12/17 18:46	C7A0161	CA71231
1,1-Dichloroethene	ND (1.0)	0.3	8260B		1	01/12/17 18:46	C7A0161	CA71231
1,2-Dibromoethane	ND (1.0)	0.2	8260B		1	01/12/17 18:46	C7A0161	CA71231
1,2-Dichlorobenzene	ND (1.0)	0.1	8260B		1	01/12/17 18:46	C7A0161	CA71231
1,2-Dichloroethane	ND (1.0)	0.2	8260B		1	01/12/17 18:46	C7A0161	CA71231
1,3-Dichlorobenzene	ND (1.0)	0.2	8260B		1	01/12/17 18:46	C7A0161	CA71231
1,4-Dichlorobenzene	ND (1.0)	0.1	8260B		1	01/12/17 18:46	C7A0161	CA71231
1,4-Dioxane - Screen	ND (500)	190	8260B		1	01/12/17 18:46	C7A0161	CA71231
Acetone	ND (10.0)	2.7	8260B		1	01/12/17 18:46	C7A0161	CA71231
Benzene	J 0.2 (1.0)	0.1	8260B		1	01/12/17 18:46	C7A0161	CA71231
Carbon Tetrachloride	ND (1.0)	0.1	8260B		1	01/12/17 18:46	C7A0161	CA71231
cis-1,2-Dichloroethene	ND (1.0)	0.2	8260B		1	01/12/17 18:46	C7A0161	CA71231
Ethylbenzene	J 0.2 (1.0)	0.1	8260B		1	01/12/17 18:46	C7A0161	CA71231
Methyl tert-Butyl Ether	J 0.6 (1.0)	0.3	8260B		1	01/12/17 18:46	C7A0161	CA71231
Methylene Chloride	ND (2.0)	0.2	8260B		1	01/12/17 18:46	C7A0161	CA71231
Naphthalene	B, J 0.4 (1.0)	0.2	8260B		1	01/12/17 18:46	C7A0161	CA71231
Tertiary-amyl methyl ether	ND (1.0)	0.2	8260B		1	01/12/17 18:46	C7A0161	CA71231
Tertiary-butyl Alcohol	ND (25.0)	10.0	8260B		1	01/12/17 18:46	C7A0161	CA71231
Tetrachloroethene	ND (1.0)	0.2	8260B		1	01/12/17 18:46	C7A0161	CA71231
Toluene	J 0.2 (1.0)	0.1	8260B		1	01/12/17 18:46	C7A0161	CA71231
Trichloroethene	ND (1.0)	0.2	8260B		1	01/12/17 18:46	C7A0161	CA71231
Vinyl Chloride	ND (1.0)	0.2	8260B		1	01/12/17 18:46	C7A0161	CA71231
Xylene O	J 0.2 (1.0)	0.1	8260B		1	01/12/17 18:46	C7A0161	CA71231
Xylene P,M	J 0.5 (2.0)	0.2	8260B		1	01/12/17 18:46	C7A0161	CA71231

 %Recovery
 Qualifier
 Limits

 Surrogate: 1,2-Dichloroethane-d4
 103 %
 70-130

 Surrogate: 4-Bromofluorobenzene
 96 %
 70-130

 Surrogate: Dibromofluoromethane
 100 %
 70-130

 Surrogate: Toluene-d8
 102 %
 70-130

185 Frances Avenue, Cranston, RI 02910-2211

Tel: 401-461-7181

Fax: 401-461-4486 • Service

The Microbiology Division of Thielsch Engineering, Inc.

CERTIFICATE OF ANALYSIS

Client Name: Tighe & Bond

Client Project ID: Woburn to Mystic - RGP/MCP

Client Sample ID: MW-37 FF Date Sampled: 01/11/17 10:50

Percent Solids: N/A Initial Volume: 1070 Final Volume: 0.25

Extraction Method: 3510C

ESS Laboratory Work Order: 1701214 ESS Laboratory Sample ID: 1701214-02

Sample Matrix: Ground Water

Units: ug/L Analyst: VSC

Prepared: 1/12/17 10:15

8270D(SIM) Semi-Volatile Organic Compounds

Analyte	Results (MRL)	MDL	Method	<u>Limit</u>	<u>DF</u>	Analyzed	Sequence	Batch
Acenaphthene	J 0.14 (0.19)	0.04	8270D SIM		1	01/12/17 22:51	C7A0164	CA71116
Acenaphthylene	ND (0.19)	0.03	8270D SIM		1	01/12/17 22:51	C7A0164	CA71116
Anthracene	J 0.05 (0.19)	0.03	8270D SIM		1	01/12/17 22:51	C7A0164	CA71116
Benzo(a)anthracene	J 0.04 (0.05)	0.01	8270D SIM		1	01/12/17 22:51	C7A0164	CA71116
Benzo(a)pyrene	J 0.03 (0.05)	0.01	8270D SIM		1	01/12/17 22:51	C7A0164	CA71116
Benzo(b)fluoranthene	J 0.04 (0.05)	0.02	8270D SIM		1	01/12/17 22:51	C7A0164	CA71116
Benzo(g,h,i)perylene	J 0.02 (0.19)	0.02	8270D SIM		1	01/12/17 22:51	C7A0164	CA71116
Benzo(k)fluoranthene	ND (0.05)	0.02	8270D SIM		1	01/12/17 22:51	C7A0164	CA71116
bis(2-Ethylhexyl)phthalate	B 3.00 (2.34)	0.19	8270D SIM		1	01/12/17 22:51	C7A0164	CA71116
Butylbenzylphthalate	B, J 0.36 (2.34)	0.19	8270D SIM		1	01/12/17 22:51	C7A0164	CA71116
Chrysene	J 0.04 (0.05)	0.01	8270D SIM		1	01/12/17 22:51	C7A0164	CA71116
Dibenzo(a,h)Anthracene	ND (0.05)	0.02	8270D SIM		1	01/12/17 22:51	C7A0164	CA71116
Diethylphthalate	J 0.27 (2.34)	0.19	8270D SIM		1	01/12/17 22:51	C7A0164	CA71116
Dimethylphthalate	ND (2.34)	0.19	8270D SIM		1	01/12/17 22:51	C7A0164	CA71116
Di-n-butylphthalate	J 0.43 (2.34)	0.19	8270D SIM		1	01/12/17 22:51	C7A0164	CA71116
Di-n-octylphthalate	ND (2.34)	0.19	8270D SIM		1	01/12/17 22:51	C7A0164	CA71116
Fluoranthene	J 0.11 (0.19)	0.02	8270D SIM		1	01/12/17 22:51	C7A0164	CA71116
Fluorene	J 0.07 (0.19)	0.03	8270D SIM		1	01/12/17 22:51	C7A0164	CA71116
Indeno(1,2,3-cd)Pyrene	J 0.02 (0.05)	0.02	8270D SIM		1	01/12/17 22:51	C7A0164	CA71116
Naphthalene	J 0.11 (0.19)	0.04	8270D SIM		1	01/12/17 22:51	C7A0164	CA71116
Pentachlorophenol	ND (0.84)	0.30	8270D SIM		1	01/19/17 2:48	C7A0164	CA71116
Phenanthrene	J 0.16 (0.19)	0.04	8270D SIM		1	01/12/17 22:51	C7A0164	CA71116
Pyrene	J 0.10 (0.19)	0.02	8270D SIM		1	01/12/17 22:51	C7A0164	CA71116

	%Recovery	Qualifier	Limits
Surrogate: 1,2-Dichlorobenzene-d4	55 %		30-130
Surrogate: 2,4,6-Tribromophenol	108 %		15-110
Surrogate: 2-Fluorobiphenyl	83 %		30-130
Surrogate: Nitrobenzene-d5	84 %		30-130
Surrogate: p-Terphenyl-d14	91 %		30-130

185 Frances Avenue, Cranston, RI 02910-2211

Tel: 401-461-7181

Fax: 401-461-4486

The Microbiology Division of Thielsch Engineering, Inc.

CERTIFICATE OF ANALYSIS

Client Name: Tighe & Bond

Client Project ID: Woburn to Mystic - RGP/MCP

Client Sample ID: MW-37 FF Date Sampled: 01/11/17 10:50

Percent Solids: N/A

ESS Laboratory Work Order: 1701214 ESS Laboratory Sample ID: 1701214-02

Sample Matrix: Ground Water

Classical Chemistry

Analyte Ammonia as N	Results (MRL) 0.61 (0.10)	<u>MDL</u>	Method 4500 NH3 G	<u>Limit</u>	<u>DF</u>	Analyst JLK	Analyzed 01/16/17 17:23	Units mg/L	Batch CA71301
Chloride	240 (10.0)		§		1	SUB	01/13/17 20:05	mg/L	CA71826
Hexavalent Chromium	ND (10)		7196A		1	JLK	01/11/17 21:00	ug/L	CA71144
Phenols	ND (100)	30	420.1		1	JLK	01/13/17 17:00	ug/L	CA71336
Total Cyanide (LL)	ND (5.00)	1.80	4500 CN CE		1	EEM	01/13/17 11:40	ug/L	CA71317
Total Petroleum Hydrocarbon	ND (5)		1664A		1	CRR	01/16/17 14:42	mg/L	CA71306
Total Residual Chlorine	ND (10)		4500-Cl E		1	JLK	01/11/17 20:08	ug/L	CA71143
Total Suspended Solids	13000 (5000)		2540D		1	JLK	01/12/17 18:08	ug/L	CA71229

The Microbiology Division of Thielsch Engineering, Inc.

CERTIFICATE OF ANALYSIS

Client Name: Tighe & Bond

Client Project ID: Woburn to Mystic - RGP/MCP

Client Sample ID: MW-37 FF Date Sampled: 01/11/17 10:50

Percent Solids: N/A Initial Volume: 35 Final Volume: 2

Extraction Method: 504/8011

ESS Laboratory Work Order: 1701214 ESS Laboratory Sample ID: 1701214-02

Sample Matrix: Ground Water

Units: ug/L Analyst: JXS

Prepared: 1/13/17 12:00

8011 1,2-Dibromoethane / 1,2-Dibromo-3-chloropropane

Analyte 1,2-Dibromoethane	<u>Results (MRL)</u> ND (0.015)	MDL 0.005	<u>Method</u> 8011	<u>Limit</u>	<u>DF</u>	Analyst JXS	Analyzed 01/13/17 19:04	<u>Sequence</u>	Batch CA71322
	%	Recovery	Qualifier	Limits					
Surrogate: Pentachloroethane		108 %		30-150					

185 Frances Avenue, Cranston, RI 02910-2211

Tel: 401-461-7181 Dependability

Quality

Fax: 401-461-4486

Service

The Microbiology Division of Thielsch Engineering, Inc.

CERTIFICATE OF ANALYSIS

Client Name: Tighe & Bond

Client Project ID: Woburn to Mystic - RGP/MCP

Client Sample ID: MW-37 FF Date Sampled: 01/11/17 10:50

Percent Solids: N/A
Initial Volume: 1
Final Volume: 1

Extraction Method: No Prep

ESS Laboratory Work Order: 1701214 ESS Laboratory Sample ID: 1701214-02

Sample Matrix: Ground Water

Units: mg/L Analyst: DPS

Prepared: 1/12/17 14:30

Alcohol Scan by GC/FID

AnalyteResults (MRL)MDLMethodLimitDFAnalystAnalyzedSequenceBatchEthanolND (10)80151DPS01/13/17 17:19CA71246

185 Frances Avenue, Cranston, RI 02910-2211

1 Tel: 401-461-7181

Fax: 401-461-4486

◆ Service

http://www.ESSLaboratory.com

Dependability ◆ Quality ◆

The Microbiology Division of Thielsch Engineering, Inc.

CERTIFICATE OF ANALYSIS

Client Name: Tighe & Bond

Client Project ID: Woburn to Mystic - RGP/MCP

Client Sample ID: MW-36 Date Sampled: 01/11/17 11:20

Percent Solids: N/A

ESS Laboratory Work Order: 1701214 ESS Laboratory Sample ID: 1701214-03

Sample Matrix: Ground Water

Units: ug/L

Extraction Method: 3005A

Total Metals

Analyte	Results (MRL)	MDL	Method	<u>Limit</u>	DF	Analys		I/V	F/V	Batch
Antimony	ND (5.0)	0.6	7010		1	KJK	01/17/17 22:34	50	25	CA71146
Arsenic	ND (5.0)	0.4	7010		1	KJK	01/14/17 16:11	50	25	CA71146
Barium	81.1 (25.0)	1.5	6010C		1	KJK	01/13/17 3:47	50	25	CA71146
Beryllium	J 0.1 (0.5)	0.1	6010C		1	KJK	01/13/17 3:47	50	25	CA71146
Cadmium	ND (0.5)	0.03	7010		1	KJK	01/17/17 16:05	50	25	CA71146
Chromium	J 2.8 (10.0)	1.5	6010C		1	KJK	01/13/17 3:47	50	25	CA71146
Chromium III	ND (10)		6010C		1	JLK	01/13/17 3:47	1	1	[CALC]
Copper	J 3.3 (5.0)	2.0	6010C		1	KJK	01/13/17 3:47	50	25	CA71146
Iron	B 505 (50.0)	11.5	6010C		1	KJK	01/13/17 3:47	50	25	CA71146
Lead	ND (2.5)	0.5	7010		1	KJK	01/14/17 22:30	50	25	CA71146
Mercury	ND (0.20)	0.12	7470A		1	MJV	01/13/17 12:52	20	40	CA71147
Nickel	ND (10.0)	1.0	6010C		1	KJK	01/13/17 3:47	50	25	CA71146
Selenium	ND (5.0)	0.6	7010		1	KJK	01/15/17 3:47	50	25	CA71146
Silver	ND (0.2)	0.08	7010		1	KJK	01/17/17 19:10	50	25	CA71146
Thallium	ND (1.0)	0.5	7010		1	KJK	01/14/17 18:53	50	25	CA71146
Vanadium	J 1.1 (10.0)	1.0	6010C		1	KJK	01/13/17 3:47	50	25	CA71146
Zinc	B, J 18.8 (25.0)	4.5	6010C		1	KJK	01/13/17 3:47	50	25	CA71146

The Microbiology Division of Thielsch Engineering, Inc.

CERTIFICATE OF ANALYSIS

Client Name: Tighe & Bond

Client Project ID: Woburn to Mystic - RGP/MCP

Client Sample ID: MW-36 Date Sampled: 01/11/17 11:20

Percent Solids: N/A Initial Volume: 1070 Final Volume: 1

Extraction Method: 3510C

ESS Laboratory Work Order: 1701214 ESS Laboratory Sample ID: 1701214-03

Sample Matrix: Ground Water

Units: ug/L Analyst: SMR

Prepared: 1/13/17 9:30 Cleanup Method: 3665A

8082A Polychlorinated Biphenyls (PCB)

<u>Analyte</u>	Results (MRL)	MDL	Method	<u>Limit</u>	DF	Analyzed	Sequence	Batch
Aroclor 1016	ND (0.09)	0.03	8082A		1	01/13/17 14:25		CA71203
Aroclor 1221	ND (0.09)	0.03	8082A		1	01/13/17 14:25		CA71203
Aroclor 1232	ND (0.09)	0.03	8082A		1	01/13/17 14:25		CA71203
Aroclor 1242	ND (0.09)	0.03	8082A		1	01/13/17 14:25		CA71203
Aroclor 1248	ND (0.09)	0.03	8082A		1	01/13/17 14:25		CA71203
Aroclor 1254	ND (0.09)	0.03	8082A		1	01/13/17 14:25		CA71203
Aroclor 1260	ND (0.09)	0.03	8082A		1	01/13/17 14:25		CA71203
Aroclor 1262	ND (0.09)	0.03	8082A		1	01/13/17 14:25		CA71203
Aroclor 1268	ND (0.09)	0.03	8082A		1	01/13/17 14:25		CA71203
		%Recovery	Qualifier	Limits				
Surrogate: Decachlorobiphenyl		54 %		30-150				
Surrogate: Decachlorobiphenyl [2C]		56 %		30-150				
Surrogate: Tetrachloro-m-xylene		67 %		30-150				
Surrogate: Tetrachloro-m-xylene [2C]		69 %		30-150				

185 Frances Avenue, Cranston, RI 02910-2211

11 Tel: 401-461-7181

Fax: 401-461-4486

The Microbiology Division of Thielsch Engineering, Inc.

CERTIFICATE OF ANALYSIS

Client Name: Tighe & Bond

Client Project ID: Woburn to Mystic - RGP/MCP

Client Sample ID: MW-36 Date Sampled: 01/11/17 11:20

Percent Solids: N/A Initial Volume: 5 Final Volume: 5

Extraction Method: 5030B

ESS Laboratory Work Order: 1701214 ESS Laboratory Sample ID: 1701214-03

Sample Matrix: Ground Water

Units: ug/L Analyst: MD

8260B Volatile Organic Compounds

Analyte 1,1,1-Trichloroethane	Results (MRL) ND (1.0)	$\frac{\mathbf{MDL}}{0.2}$	Method 8260B	<u>Limit</u>	<u>DF</u>	Analyzed 01/12/17 19:13	Sequence C7A0161	Batch CA71231
1,1,2-Trichloroethane	ND (1.0)	0.2	8260B		1	01/12/17 19:13	C7A0161	CA71231
1,1-Dichloroethane	ND (1.0)	0.2	8260B		1	01/12/17 19:13	C7A0161	CA71231
1,1-Dichloroethene	ND (1.0)	0.3	8260B		1	01/12/17 19:13	C7A0161	CA71231
1,2-Dibromoethane	ND (1.0)	0.2	8260B		1	01/12/17 19:13	C7A0161	CA71231
1,2-Dichlorobenzene	ND (1.0)	0.1	8260B		1	01/12/17 19:13	C7A0161	CA71231
1,2-Dichloroethane	ND (1.0)	0.2	8260B		1	01/12/17 19:13	C7A0161	CA71231
1,3-Dichlorobenzene	ND (1.0)	0.2	8260B		1	01/12/17 19:13	C7A0161	CA71231
1,4-Dichlorobenzene	ND (1.0)	0.1	8260B		1	01/12/17 19:13	C7A0161	CA71231
1,4-Dioxane - Screen	ND (500)	190	8260B		1	01/12/17 19:13	C7A0161	CA71231
Acetone	ND (10.0)	2.7	8260B		1	01/12/17 19:13	C7A0161	CA71231
Benzene	J 0.1 (1.0)	0.1	8260B		1	01/12/17 19:13	C7A0161	CA71231
Carbon Tetrachloride	ND (1.0)	0.1	8260B		1	01/12/17 19:13	C7A0161	CA71231
cis-1,2-Dichloroethene	ND (1.0)	0.2	8260B		1	01/12/17 19:13	C7A0161	CA71231
Ethylbenzene	ND (1.0)	0.1	8260B		1	01/12/17 19:13	C7A0161	CA71231
Methyl tert-Butyl Ether	ND (1.0)	0.3	8260B		1	01/12/17 19:13	C7A0161	CA71231
Methylene Chloride	ND (2.0)	0.2	8260B		1	01/12/17 19:13	C7A0161	CA71231
Naphthalene	B , J 0.2 (1.0)	0.2	8260B		1	01/12/17 19:13	C7A0161	CA71231
Tertiary-amyl methyl ether	ND (1.0)	0.2	8260B		1	01/12/17 19:13	C7A0161	CA71231
Tertiary-butyl Alcohol	ND (25.0)	10.0	8260B		1	01/12/17 19:13	C7A0161	CA71231
Tetrachloroethene	ND (1.0)	0.2	8260B		1	01/12/17 19:13	C7A0161	CA71231
Toluene	ND (1.0)	0.1	8260B		1	01/12/17 19:13	C7A0161	CA71231
Trichloroethene	ND (1.0)	0.2	8260B		1	01/12/17 19:13	C7A0161	CA71231
Vinyl Chloride	ND (1.0)	0.2	8260B		1	01/12/17 19:13	C7A0161	CA71231
Xylene O	ND (1.0)	0.1	8260B		1	01/12/17 19:13	C7A0161	CA71231
Xylene P,M	ND (2.0)	0.2	8260B		1	01/12/17 19:13	C7A0161	CA71231
		%Recovery	Qualifier	Limits				
Surrogate: 1,2-Dichloroethane-d4		104 %		70-130				
Surrogate: 4-Bromofluorobenzene		93 %		70-130				

 Surrogate: 1,2-Dichloroethane-d4
 104 %
 70-130

 Surrogate: 4-Bromofluorobenzene
 93 %
 70-130

 Surrogate: Dibromofluoromethane
 101 %
 70-130

 Surrogate: Toluene-d8
 100 %
 70-130

185 Frances Avenue, Cranston, RI 02910-2211

Tel: 401-461-7181

Fax: 401-461-4486

The Microbiology Division of Thielsch Engineering, Inc.

CERTIFICATE OF ANALYSIS

Client Name: Tighe & Bond

Client Project ID: Woburn to Mystic - RGP/MCP

Client Sample ID: MW-36 Date Sampled: 01/11/17 11:20

Percent Solids: N/A Initial Volume: 1070 Final Volume: 0.25

Extraction Method: 3510C

ESS Laboratory Work Order: 1701214 ESS Laboratory Sample ID: 1701214-03

Sample Matrix: Ground Water

Units: ug/L Analyst: VSC

Prepared: 1/12/17 10:15

8270D(SIM) Semi-Volatile Organic Compounds

Analyte Acenaphthene	Results (MRL)	MDL 0.04	Method 8270D SIM	<u>Limit</u>	<u>DF</u>	<u>Analyzed</u> 01/12/17 23:41	Sequence C7A0164	Batch CA71116
Acenaphthylene	ND (0.19) ND (0.19)	0.04	8270D SIM 8270D SIM		1	01/12/17 23:41	C7A0164 C7A0164	CA71116 CA71116
Anthracene	ND (0.19) ND (0.19)	0.03	8270D SIM 8270D SIM		1	01/12/17 23:41	C7A0164	CA71116
Benzo(a)anthracene	ND (0.19) ND (0.05)	0.03	8270D SIM		1	01/12/17 23:41	C7A0164	CA71116
Benzo(a)pyrene	ND (0.05)	0.01	8270D SIM		1	01/12/17 23:41	C7A0164	CA71116
Benzo(b)fluoranthene	ND (0.05)	0.02	8270D SIM		1	01/12/17 23:41	C7A0164	CA71116
Benzo(g,h,i)perylene	ND (0.19)	0.02	8270D SIM		1	01/12/17 23:41	C7A0164	CA71116
Benzo(k)fluoranthene	ND (0.19) ND (0.05)	0.02	8270D SIM		1	01/12/17 23:41	C7A0164	CA71116
bis(2-Ethylhexyl)phthalate	B 2.72 (2.34)	0.02	8270D SIM 8270D SIM		1	01/12/17 23:41	C7A0164	CA71116
Butylbenzylphthalate	` /	0.19	8270D SIM 8270D SIM		1	01/12/17 23:41	C7A0164	CA71116
	B, J 0.34 (2.34)							
Chrysene	ND (0.05)	0.01	8270D SIM		1	01/12/17 23:41	C7A0164	CA71116
Dibenzo(a,h)Anthracene	ND (0.05)	0.02	8270D SIM		1	01/12/17 23:41	C7A0164	CA71116
Diethylphthalate	ND (2.34)	0.19	8270D SIM		1	01/12/17 23:41	C7A0164	CA71116
Dimethylphthalate	ND (2.34)	0.19	8270D SIM		1	01/12/17 23:41	C7A0164	CA71116
Di-n-butylphthalate	ND (2.34)	0.19	8270D SIM		1	01/12/17 23:41	C7A0164	CA71116
Di-n-octylphthalate	ND (2.34)	0.19	8270D SIM		1	01/12/17 23:41	C7A0164	CA71116
Fluoranthene	ND (0.19)	0.02	8270D SIM		1	01/12/17 23:41	C7A0164	CA71116
Fluorene	ND (0.19)	0.03	8270D SIM		1	01/12/17 23:41	C7A0164	CA71116
Indeno(1,2,3-cd)Pyrene	ND (0.05)	0.02	8270D SIM		1	01/12/17 23:41	C7A0164	CA71116
Naphthalene	ND (0.19)	0.04	8270D SIM		1	01/12/17 23:41	C7A0164	CA71116
Pentachlorophenol	ND (0.84)	0.30	8270D SIM		1	01/19/17 5:10	C7A0164	CA71116
Phenanthrene	ND (0.19)	0.04	8270D SIM		1	01/12/17 23:41	C7A0164	CA71116
Pyrene	ND (0.19)	0.02	8270D SIM		1	01/12/17 23:41	C7A0164	CA71116

	%Recovery	Qualifier	Limits
Surrogate: 1,2-Dichlorobenzene-d4	61 %		30-130
Surrogate: 2,4,6-Tribromophenol	75 %		15-110
Surrogate: 2-Fluorobiphenyl	85 %		30-130
Surrogate: Nitrobenzene-d5	79 %		30-130
Surrogate: p-Terphenyl-d14	97 %		30-130

185 Frances Avenue, Cranston, RI 02910-2211

Tel: 401-461-7181

Fax: 401-461-4486

The Microbiology Division of Thielsch Engineering, Inc.

CERTIFICATE OF ANALYSIS

Client Name: Tighe & Bond

Client Project ID: Woburn to Mystic - RGP/MCP

Client Sample ID: MW-36 Date Sampled: 01/11/17 11:20

Percent Solids: N/A

ESS Laboratory Work Order: 1701214 ESS Laboratory Sample ID: 1701214-03

Sample Matrix: Ground Water

Classical Chemistry

Analyte Ammonia as N	Results (MRL) ND (0.10)	<u>MDL</u>	Method 4500 NH3 G	<u>Limit</u>	<u>DF</u>	Analysi JLK	<u>Analyzed</u> 01/16/17 17:20	Units mg/L	Batch CA71301
Chloride	100 (10.0)		§		1	SUB	01/13/17 20:19	mg/L	CA71826
Hexavalent Chromium	ND (10)		7196A		1	JLK	01/11/17 21:00	ug/L	CA71144
Phenols	ND (100)	30	420.1		1	JLK	01/13/17 17:00	ug/L	CA71336
Total Cyanide (LL)	ND (5.00)	1.80	4500 CN CE		1	EEM	01/13/17 11:40	ug/L	CA71317
Total Petroleum Hydrocarbon	ND (5)		1664A		1	CRR	01/16/17 14:42	mg/L	CA71306
Total Residual Chlorine	ND (10)		4500-Cl E		1	JLK	01/11/17 20:08	ug/L	CA71143
Total Suspended Solids	116000 (5000)		2540D		1	JLK	01/12/17 18:08	ug/L	CA71229

The Microbiology Division of Thielsch Engineering, Inc.

CERTIFICATE OF ANALYSIS

Client Name: Tighe & Bond

Client Project ID: Woburn to Mystic - RGP/MCP

Client Sample ID: MW-36 Date Sampled: 01/11/17 11:20

Percent Solids: N/A Initial Volume: 35 Final Volume: 2

Extraction Method: 504/8011

ESS Laboratory Work Order: 1701214 ESS Laboratory Sample ID: 1701214-03

Sample Matrix: Ground Water

Units: ug/L Analyst: JXS

Prepared: 1/13/17 12:00

8011 1,2-Dibromoethane / 1,2-Dibromo-3-chloropropane

Analyte 1,2-Dibromoethane	Results (MRL) ND (0.015)	MDL 0.005	<u>Method</u> 8011	<u>Limit</u>	<u>DF</u>	Analyst JXS	Analyzed 01/13/17 19:32	Sequence	Batch CA71322
	9/6	Recovery	Qualifier	Limits					
Surrogate: Pentachloroethane		124 %		30-150					

185 Frances Avenue, Cranston, RI 02910-2211

Tel: 401-461-7181 Dependability

Quality

Fax: 401-461-4486 Service

The Microbiology Division of Thielsch Engineering, Inc.

CERTIFICATE OF ANALYSIS

Client Name: Tighe & Bond

Client Project ID: Woburn to Mystic - RGP/MCP

Client Sample ID: MW-36 Date Sampled: 01/11/17 11:20

Percent Solids: N/A Initial Volume: 1 Final Volume: 1

Extraction Method: No Prep

ESS Laboratory Work Order: 1701214 ESS Laboratory Sample ID: 1701214-03

Sample Matrix: Ground Water

Units: mg/L Analyst: DPS

Prepared: 1/12/17 14:30

Alcohol Scan by GC/FID

Analyte Results (MRL) **MDL** Method **Limit** Analyst Analyzed **Sequence Batch** Ethanol 8015 DPS 01/13/17 17:42 CA71246 ND (10)

185 Frances Avenue, Cranston, RI 02910-2211

Tel: 401-461-7181 Dependability Quality Fax: 401-461-4486

http://www.ESSLaboratory.com

Service

The Microbiology Division of Thielsch Engineering, Inc.

CERTIFICATE OF ANALYSIS

Client Name: Tighe & Bond

Client Project ID: Woburn to Mystic - RGP/MCP

Client Sample ID: MW-36 FF Date Sampled: 01/11/17 11:50

Percent Solids: N/A

ESS Laboratory Work Order: 1701214 ESS Laboratory Sample ID: 1701214-04

Sample Matrix: Ground Water

Units: ug/L

Extraction Method: 3005A

Total Metals

Analyte	Results (MRL)	MDL	Method	<u>Limit</u>	<u>DF</u>	Analys	<u>Analyzed</u>	I/V	F/V	Batch
Antimony	ND (5.0)	0.6	7010		1	KJK	01/17/17 22:39	50	25	CA71146
Arsenic	ND (5.0)	0.4	7010		1	KJK	01/14/17 16:17	50	25	CA71146
Barium	72.0 (25.0)	1.5	6010C		1	KJK	01/13/17 3:51	50	25	CA71146
Beryllium	ND (0.5)	0.1	6010C		1	KJK	01/13/17 3:51	50	25	CA71146
Cadmium	J 0.03 (0.5)	0.03	7010		1	KJK	01/17/17 16:11	50	25	CA71146
Chromium	ND (10.0)	1.5	6010C		1	KJK	01/13/17 3:51	50	25	CA71146
Chromium III	ND (10)		6010C		1	JLK	01/13/17 3:51	1	1	[CALC]
Copper	ND (5.0)	2.0	6010C		1	KJK	01/13/17 3:51	50	25	CA71146
Iron	B 89.6 (50.0)	11.5	6010C		1	KJK	01/13/17 3:51	50	25	CA71146
Lead	ND (2.5)	0.5	7010		1	KJK	01/14/17 22:36	50	25	CA71146
Mercury	ND (0.20)	0.12	7470A		1	MJV	01/13/17 12:54	20	40	CA71147
Nickel	ND (10.0)	1.0	6010C		1	KJK	01/13/17 3:51	50	25	CA71146
Selenium	ND (5.0)	0.6	7010		1	KJK	01/15/17 3:53	50	25	CA71146
Silver	ND (0.2)	0.08	7010		1	KJK	01/17/17 19:16	50	25	CA71146
Thallium	ND (1.0)	0.5	7010		1	KJK	01/14/17 18:59	50	25	CA71146
Vanadium	ND (10.0)	1.0	6010C		1	KJK	01/13/17 3:51	50	25	CA71146
Zinc	B, J 18.9 (25.0)	4.5	6010C		1	KJK	01/13/17 3:51	50	25	CA71146

The Microbiology Division of Thielsch Engineering, Inc.

CERTIFICATE OF ANALYSIS

Client Name: Tighe & Bond

Client Project ID: Woburn to Mystic - RGP/MCP

Client Sample ID: MW-36 FF Date Sampled: 01/11/17 11:50

Percent Solids: N/A Initial Volume: 1070

Final Volume: 1

Extraction Method: 3510C

ESS Laboratory Work Order: 1701214 ESS Laboratory Sample ID: 1701214-04

Sample Matrix: Ground Water

Units: ug/L Analyst: SMR

Prepared: 1/13/17 9:30 Cleanup Method: 3665A

8082A Polychlorinated Biphenyls (PCB)

<u>Analyte</u>	Results (MRL)	MDL	Method	<u>Limit</u>	<u>DF</u>	Analyzed	Sequence	Batch
Aroclor 1016	ND (0.09)	0.03	8082A		1	01/13/17 14:44		CA71203
Aroclor 1221	ND (0.09)	0.03	8082A		1	01/13/17 14:44		CA71203
Aroclor 1232	ND (0.09)	0.03	8082A		1	01/13/17 14:44		CA71203
Aroclor 1242	ND (0.09)	0.03	8082A		1	01/13/17 14:44		CA71203
Aroclor 1248	ND (0.09)	0.03	8082A		1	01/13/17 14:44		CA71203
Aroclor 1254	ND (0.09)	0.03	8082A		1	01/13/17 14:44		CA71203
Aroclor 1260	ND (0.09)	0.03	8082A		1	01/13/17 14:44		CA71203
Aroclor 1262	ND (0.09)	0.03	8082A		1	01/13/17 14:44		CA71203
Aroclor 1268	ND (0.09)	0.03	8082A		1	01/13/17 14:44		CA71203
		%Recovery	Qualifier	Limits				
Surrogate: Decachlorobiphenyl		76 %		30-150				
Surrogate: Decachlorobiphenyl [2C]		81 %		30-150				
Surrogate: Tetrachloro-m-xylene		64 %		30-150				
Surrogate: Tetrachloro-m-xylene [2C]		67 %		30-150				

The Microbiology Division of Thielsch Engineering, Inc.

CERTIFICATE OF ANALYSIS

Client Name: Tighe & Bond

Client Project ID: Woburn to Mystic - RGP/MCP

Client Sample ID: MW-36 FF Date Sampled: 01/11/17 11:50

Percent Solids: N/A
Initial Volume: 5
Final Volume: 5

Extraction Method: 5030B

ESS Laboratory Work Order: 1701214 ESS Laboratory Sample ID: 1701214-04

Sample Matrix: Ground Water

Units: ug/L Analyst: MD

8260B Volatile Organic Compounds

Analyte	Results (MRL)	MDL	Method	<u>Limit</u>	<u>DF</u>	Analyzed	Sequence	Batch
1,1,1-Trichloroethane	ND (1.0)	0.2	8260B		1	01/12/17 19:39	C7A0161	CA71231
1,1,2-Trichloroethane	ND (1.0)	0.2	8260B		1	01/12/17 19:39	C7A0161	CA71231
1,1-Dichloroethane	ND (1.0)	0.2	8260B		1	01/12/17 19:39	C7A0161	CA71231
1,1-Dichloroethene	ND (1.0)	0.3	8260B		1	01/12/17 19:39	C7A0161	CA71231
1,2-Dibromoethane	ND (1.0)	0.2	8260B		1	01/12/17 19:39	C7A0161	CA71231
1,2-Dichlorobenzene	ND (1.0)	0.1	8260B		1	01/12/17 19:39	C7A0161	CA71231
1,2-Dichloroethane	ND (1.0)	0.2	8260B		1	01/12/17 19:39	C7A0161	CA71231
1,3-Dichlorobenzene	ND (1.0)	0.2	8260B		1	01/12/17 19:39	C7A0161	CA71231
1,4-Dichlorobenzene	ND (1.0)	0.1	8260B		1	01/12/17 19:39	C7A0161	CA71231
1,4-Dioxane - Screen	ND (500)	190	8260B		1	01/12/17 19:39	C7A0161	CA71231
Acetone	ND (10.0)	2.7	8260B		1	01/12/17 19:39	C7A0161	CA71231
Benzene	ND (1.0)	0.1	8260B		1	01/12/17 19:39	C7A0161	CA71231
Carbon Tetrachloride	ND (1.0)	0.1	8260B		1	01/12/17 19:39	C7A0161	CA71231
cis-1,2-Dichloroethene	ND (1.0)	0.2	8260B		1	01/12/17 19:39	C7A0161	CA71231
Ethylbenzene	ND (1.0)	0.1	8260B		1	01/12/17 19:39	C7A0161	CA71231
Methyl tert-Butyl Ether	ND (1.0)	0.3	8260B		1	01/12/17 19:39	C7A0161	CA71231
Methylene Chloride	ND (2.0)	0.2	8260B		1	01/12/17 19:39	C7A0161	CA71231
Naphthalene	B , J 0.2 (1.0)	0.2	8260B		1	01/12/17 19:39	C7A0161	CA71231
Tertiary-amyl methyl ether	ND (1.0)	0.2	8260B		1	01/12/17 19:39	C7A0161	CA71231
Tertiary-butyl Alcohol	ND (25.0)	10.0	8260B		1	01/12/17 19:39	C7A0161	CA71231
Tetrachloroethene	ND (1.0)	0.2	8260B		1	01/12/17 19:39	C7A0161	CA71231
Toluene	J 0.1 (1.0)	0.1	8260B		1	01/12/17 19:39	C7A0161	CA71231
Trichloroethene	ND (1.0)	0.2	8260B		1	01/12/17 19:39	C7A0161	CA71231
Vinyl Chloride	ND (1.0)	0.2	8260B		1	01/12/17 19:39	C7A0161	CA71231
Xylene O	ND (1.0)	0.1	8260B		1	01/12/17 19:39	C7A0161	CA71231
Xylene P,M	ND (2.0)	0.2	8260B		1	01/12/17 19:39	C7A0161	CA71231
	9	6Recovery	Qualifier	Limits				

 Surrogate: 1,2-Dichloroethane-d4
 99 %
 70-130

 Surrogate: 4-Bromofluorobenzene
 95 %
 70-130

 Surrogate: Dibromofluoromethane
 99 %
 70-130

 Surrogate: Toluene-d8
 101 %
 70-130

185 Frances Avenue, Cranston, RI 02910-2211

Tel: 401-461-7181

Fax: 401-461-4486

The Microbiology Division of Thielsch Engineering, Inc.

CERTIFICATE OF ANALYSIS

Client Name: Tighe & Bond

Client Project ID: Woburn to Mystic - RGP/MCP

Client Sample ID: MW-36 FF Date Sampled: 01/11/17 11:50

Percent Solids: N/A Initial Volume: 1070 Final Volume: 0.25

Extraction Method: 3510C

ESS Laboratory Work Order: 1701214 ESS Laboratory Sample ID: 1701214-04

Sample Matrix: Ground Water

Units: ug/L Analyst: VSC

Prepared: 1/12/17 10:15

8270D(SIM) Semi-Volatile Organic Compounds

Analyte	Results (MRL)	MDL	Method	<u>Limit</u>	<u>DF</u>	Analyzed	Sequence	Batch
Acenaphthene	ND (0.19)	0.04	8270D SIM		1	01/13/17 0:31	C7A0164	CA71116
Acenaphthylene	ND (0.19)	0.03	8270D SIM		1	01/13/17 0:31	C7A0164	CA71116
Anthracene	ND (0.19)	0.03	8270D SIM		1	01/13/17 0:31	C7A0164	CA71116
Benzo(a)anthracene	ND (0.05)	0.01	8270D SIM		1	01/13/17 0:31	C7A0164	CA71116
Benzo(a)pyrene	ND (0.05)	0.01	8270D SIM		1	01/13/17 0:31	C7A0164	CA71116
Benzo(b)fluoranthene	ND (0.05)	0.02	8270D SIM		1	01/13/17 0:31	C7A0164	CA71116
Benzo(g,h,i)perylene	ND (0.19)	0.02	8270D SIM		1	01/13/17 0:31	C7A0164	CA71116
Benzo(k)fluoranthene	ND (0.05)	0.02	8270D SIM		1	01/13/17 0:31	C7A0164	CA71116
bis(2-Ethylhexyl)phthalate	B, J 2.02 (2.34)	0.19	8270D SIM		1	01/13/17 0:31	C7A0164	CA71116
Butylbenzylphthalate	B, J 0.43 (2.34)	0.19	8270D SIM		1	01/13/17 0:31	C7A0164	CA71116
Chrysene	ND (0.05)	0.01	8270D SIM		1	01/13/17 0:31	C7A0164	CA71116
Dibenzo(a,h)Anthracene	ND (0.05)	0.02	8270D SIM		1	01/13/17 0:31	C7A0164	CA71116
Diethylphthalate	3.85 (2.34)	0.19	8270D SIM		1	01/13/17 0:31	C7A0164	CA71116
Dimethylphthalate	ND (2.34)	0.19	8270D SIM		1	01/13/17 0:31	C7A0164	CA71116
Di-n-butylphthalate	J 0.69 (2.34)	0.19	8270D SIM		1	01/13/17 0:31	C7A0164	CA71116
Di-n-octylphthalate	ND (2.34)	0.19	8270D SIM		1	01/13/17 0:31	C7A0164	CA71116
Fluoranthene	ND (0.19)	0.02	8270D SIM		1	01/13/17 0:31	C7A0164	CA71116
Fluorene	ND (0.19)	0.03	8270D SIM		1	01/13/17 0:31	C7A0164	CA71116
Indeno(1,2,3-cd)Pyrene	ND (0.05)	0.02	8270D SIM		1	01/13/17 0:31	C7A0164	CA71116
Naphthalene	ND (0.19)	0.04	8270D SIM		1	01/13/17 0:31	C7A0164	CA71116
Pentachlorophenol	ND (0.84)	0.30	8270D SIM		1	01/19/17 5:59	C7A0164	CA71116
Phenanthrene	ND (0.19)	0.04	8270D SIM		1	01/13/17 0:31	C7A0164	CA71116
Pyrene	ND (0.19)	0.02	8270D SIM		1	01/13/17 0:31	C7A0164	CA71116

	%Recovery	Qualifier	Limits
Surrogate: 1,2-Dichlorobenzene-d4	65 %		30-130
Surrogate: 2,4,6-Tribromophenol	87 %		15-110
Surrogate: 2-Fluorobiphenyl	83 %		30-130
Surrogate: Nitrobenzene-d5	80 %		30-130
Surrogate: p-Terphenyl-d14	92 %		30-130

185 Frances Avenue, Cranston, RI 02910-2211

Tel: 401-461-7181

Fax: 401-461-4486

The Microbiology Division of Thielsch Engineering, Inc.

CERTIFICATE OF ANALYSIS

Client Name: Tighe & Bond

Client Project ID: Woburn to Mystic - RGP/MCP

Client Sample ID: MW-36 FF Date Sampled: 01/11/17 11:50

Percent Solids: N/A

ESS Laboratory Work Order: 1701214 ESS Laboratory Sample ID: 1701214-04

Sample Matrix: Ground Water

Classical Chemistry

Analyte Ammonia as N	Results (MRL) ND (0.10)	MDL	Method 4500 NH3 G	<u>Limit</u>	<u>DF</u>	Analyst JLK	Analyzed 01/16/17 17:20	Units mg/L	Batch CA71301
Chloride	100 (10.0)		§		1	SUB	01/13/17 20:33	mg/L	CA71826
Hexavalent Chromium	ND (10)		7196A		1	JLK	01/11/17 21:00	ug/L	CA71144
Phenols	ND (100)	30	420.1		1	JLK	01/13/17 17:00	ug/L	CA71336
Total Cyanide (LL)	ND (5.00)	1.80	4500 CN CE		1	EEM	01/13/17 11:40	ug/L	CA71317
Total Petroleum Hydrocarbon	ND (5)		1664A		1	CRR	01/16/17 14:42	mg/L	CA71306
Total Residual Chlorine	ND (10)		4500-Cl E		1	JLK	01/11/17 20:08	ug/L	CA71143
Total Suspended Solids	ND (5000)		2540D		1	JLK	01/12/17 18:08	ug/L	CA71229

The Microbiology Division of Thielsch Engineering, Inc.

CERTIFICATE OF ANALYSIS

Client Name: Tighe & Bond

Client Project ID: Woburn to Mystic - RGP/MCP

Client Sample ID: MW-36 FF Date Sampled: 01/11/17 11:50

Percent Solids: N/A Initial Volume: 35 Final Volume: 2

Extraction Method: 504/8011

ESS Laboratory Work Order: 1701214 ESS Laboratory Sample ID: 1701214-04

Sample Matrix: Ground Water

Units: ug/L Analyst: JXS

Prepared: 1/13/17 12:00

8011 1,2-Dibromoethane / 1,2-Dibromo-3-chloropropane

Analyte 1,2-Dibromoethane	<u>Results (MRL)</u> ND (0.015)	MDL 0.005	<u>Method</u> 8011	<u>Limit</u>	<u>DF</u>	Analyst JXS	Analyzed 01/13/17 20:00	<u>Sequence</u>	Batch CA71322
	9%	Recovery	Qualifier	Limits					
Surrogate: Pentachloroethane		107 %		30-150					

185 Frances Avenue, Cranston, RI 02910-2211

Tel: 401-461-7181 Dependability

Quality

Fax: 401-461-4486 Service

The Microbiology Division of Thielsch Engineering, Inc.

CERTIFICATE OF ANALYSIS

Client Name: Tighe & Bond

Client Project ID: Woburn to Mystic - RGP/MCP

Client Sample ID: MW-36 FF Date Sampled: 01/11/17 11:50

Percent Solids: N/A Initial Volume: 1 Final Volume: 1

Extraction Method: No Prep

ESS Laboratory Work Order: 1701214 ESS Laboratory Sample ID: 1701214-04

Sample Matrix: Ground Water

Units: mg/L Analyst: DPS

Prepared: 1/12/17 14:30

Alcohol Scan by GC/FID

Analyte Results (MRL) **MDL** Method **Limit** Analyst Analyzed **Sequence Batch** Ethanol 8015 DPS 01/13/17 18:04 CA71246 ND (10)

185 Frances Avenue, Cranston, RI 02910-2211

Tel: 401-461-7181 Dependability

Fax: 401-461-4486 Service

The Microbiology Division of Thielsch Engineering, Inc.

%REC

RPD

CERTIFICATE OF ANALYSIS

Client Name: Tighe & Bond

Client Project ID: Woburn to Mystic - RGP/MCP ESS Laboratory Work Order: 1701214

Quality Control Data

Spike

Source

Analyte	Result	MRL	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	KPD Limit	Qualifie
			Total Met							
atch CA71144 - [CALC]										
Blank Chromium III	ND	10	ug/L							
			49/2							
Chromium III	ND		ug/L							
.CS Dup Chromium III	ND		ug/L							
	ND ND		ug/L							
Batch CA71146 - 3005A										
Blank										
antimony	ND	5.0	ug/L							
Arsenic	ND	5.0	ug/L							
Barium	ND	25.0	ug/L							
Beryllium	ND	0.5	ug/L							
Cadmium	ND	0.5	ug/L							
Chromium	ND	10.0	ug/L							
Chromium III	ND	10	ug/L							
Copper	ND	5.0	ug/L							
ron	31.6	50.0	ug/L							J
ead	ND	2.5	ug/L							
Nickel	ND	10.0	ug/L							
Selenium	ND	5.0	ug/L							
Silver	ND	0.2	ug/L							
Thallium	ND	1.0	ug/L							
/anadium	ND	10.0	ug/L							,
Zinc	7.3	25.0	ug/L							J
.cs										
antimony	237	125	ug/L	250.0		95	80-120			
Arsenic	280	125	ug/L	250.0		112	80-120			
Barium Beryllium	256	25.0	ug/L	250.0		102 99	80-120			
Cadmium	24.7 121	0.5 250	ug/L	25.00 125.0		99 97	80-120 80-120			J
Chromium	257	10.0	ug/L ug/L	250.0		103	80-120			J
Chromium III	257	10.0		230.0		103	00-120			
Copper	243	5.0	ug/L ug/L	250.0		97	80-120			
ron	1290	50.0	ug/L ug/L	1250		103	80-120			
.ead	281	62.5	ug/L	250.0		113	80-120			
lickel	256	10.0	ug/L	250.0		102	80-120			
Selenium	459	125	ug/L	500.0		92	80-120			
Silver	109	25.0	ug/L	125.0		87	80-120			
	281	25.0	ug/L	250.0		113	80-120			
/anadium	253	10.0	ug/L	250.0		101	80-120			
Zinc	246	25.0	ug/L	250.0		98	80-120			
LCS Dup										
Antimony	229	125	ug/L	250.0		92	80-120	3	20	
Arsenic	267	125	ug/L	250.0		107	80-120	5	20	

The Microbiology Division of Thielsch Engineering, Inc.

%REC

RPD

CERTIFICATE OF ANALYSIS

Client Name: Tighe & Bond

Client Project ID: Woburn to Mystic - RGP/MCP ESS Laboratory Work Order: 1701214

Quality Control Data

Spike

Source

Analyte	Result	MRL	Units	Level	Result	%REC	Limits	RPD	Limit	Qualifie
			Total Met	als						
atch CA71146 - 3005A										
Barium	243	25.0	ug/L	250.0		97	80-120	5	20	
Beryllium	23.5	0.5	ug/L	25.00		94	80-120	5	20	
Cadmium	114	250	ug/L	125.0		91	80-120	6	20	J
Chromium	243	10.0	ug/L	250.0		97	80-120	6	20	
Chromium III	243	10	ug/L							
Copper	230	5.0	ug/L	250.0		92	80-120	5	20	
ron	1190	50.0	ug/L	1250		95	80-120	8	20	
ead	273	62.5	ug/L	250.0		109	80-120	3	20	
lickel	243	10.0	ug/L	250.0		97	80-120	5	20	
elenium	438	125	ug/L	500.0		88	80-120	5	20	
ilver	104	25.0	ug/L	125.0		83	80-120	5	20	
hallium	274	25.0	ug/L	250.0		110	80-120	3	20	
anadium	240	10.0	ug/L	250.0		96	80-120	5	20	
inc	234	25.0	ug/L	250.0		94	80-120	5	20	
atch CA71147 - 245.1/7470A										
lank										
1ercury	ND	0.20	ug/L							
cs										
1ercury	6.34	0.20	ug/L	6.000		106	80-120			
CS Dup										
lercury	6.26	0.20	ug/L	6.000		104	80-120	1	20	
atch CA71203 - 3510C										
Blank										
roclor 1016	ND	0.05	ug/L							
roclor 1221	ND	0.05	ug/L							
roclor 1232	ND	0.05	ug/L							
roclor 1242	ND	0.05	ug/L							
roclor 1248	ND	0.05	ug/L							
roclor 1254	ND	0.05	ug/L							
roclor 1260	ND	0.05	ug/L							
roclor 1262	ND	0.05	ug/L							
roclor 1268	ND	0.05	ug/L							
	0.0373		ua/l	0.05000		<i>75</i>	30-150			
Surrogate: Decachlorobiphenyl	0.0378		ug/L ug/L	0.05000		73 68	30-150 30-150			
Surrogate: Decachlorobiphenyl [2C]	0.0282		ug/L ug/L	0.05000		56	30-150 30-150			
Surrogate: Tetrachloro-m-xylene	0.0282		ug/L ug/L	0.05000		50 73	<i>30-150</i> <i>30-150</i>			
Surrogate: Tetrachloro-m-xylene [2C]	0.0303		ug/L	0.03000		/3	JU-13U			
cs										
roclor 1016	0.92	0.05	ug/L	1.000		92	40-140			
Aroclor 1260	0.84	0.05	ug/L	1.000		84	40-140			
Surrogate: Decachlorobiphenyl	0.0407		ug/L	0.05000		81	30-150			
185 Frances Aven	ue, Cranston, RI 029	10-2211 Т	Tel: 401-461-7	181 Fa	nx: 401-461	-4486	http://www	.ESSLabor	ratory.com	
100 1141100011101	,,, 02)		/	,						

The Microbiology Division of Thielsch Engineering, Inc.

CERTIFICATE OF ANALYSIS

Client Name: Tighe & Bond

Client Project ID: Woburn to Mystic - RGP/MCP ESS Laboratory Work Order: 1701214

Quality Control Data

				Spike	Source		%REC		RPD	
Analyte	Result	MRL	Units	Level	Result	%REC	Limits	RPD	Limit	Qualifier

8082A Polychlorinated Biphenyls (PCB)

Batch CA71203 - 3510C									
Surrogate: Decachlorobiphenyl [2C]	0.0384		ug/L	0.05000	77	30-150			
Surrogate: Tetrachloro-m-xylene	0.0345		ug/L	0.05000	69	30-150			
Surrogate: Tetrachloro-m-xylene [2C]	0.0394		ug/L	0.05000	<i>79</i>	30-150			
LCS Dup									
Aroclor 1016	0.98	0.05	ug/L	1.000	98	40-140	5	20	
Aroclor 1260	0.86	0.05	ug/L	1.000	86	40-140	3	20	
Surrogate: Decachlorobiphenyl	0.0477		ug/L	0.05000	95	30-150			
Surrogate: Decachlorobiphenyl [2C]	0.0448		ug/L	0.05000	90	30-150			
Surrogate: Tetrachloro-m-xylene	0.0388		ug/L	0.05000	<i>78</i>	30-150			
Surrogate: Tetrachloro-m-xylene [2C]	0.0449		ug/L	0.05000	90	30-150			

8260B Volatile Organic Compounds

Batch CA71231 - 5030B							
Blank							
1,1,1-Trichloroethane	ND	1.0	ug/L				
1,1,2-Trichloroethane	ND	1.0	ug/L				
1,1-Dichloroethane	ND	1.0	ug/L				
1,1-Dichloroethene	ND	1.0	ug/L				
1,2-Dibromoethane	ND	1.0	ug/L				
1,2-Dichlorobenzene	ND	1.0	ug/L				
1,2-Dichloroethane	ND	1.0	ug/L				
1,3-Dichlorobenzene	ND	1.0	ug/L				
1,4-Dichlorobenzene	ND	1.0	ug/L				
1,4-Dioxane - Screen	ND	500	ug/L				
Acetone	ND	10.0	ug/L				
Benzene	ND	1.0	ug/L				
Carbon Tetrachloride	ND	1.0	ug/L				
cis-1,2-Dichloroethene	ND	1.0	ug/L				
Ethylbenzene	ND	1.0	ug/L				
Methyl tert-Butyl Ether	ND	1.0	ug/L				
Methylene Chloride	ND	2.0	ug/L				
Naphthalene	0.4	1.0	ug/L				J
Tertiary-amyl methyl ether	ND	1.0	ug/L				
Tertiary-butyl Alcohol	ND	25.0	ug/L				
Tetrachloroethene	ND	1.0	ug/L				
Toluene	ND	1.0	ug/L				
Trichloroethene	ND	1.0	ug/L				
Vinyl Chloride	ND	1.0	ug/L				
Xylene O	ND	1.0	ug/L				
Xylene P,M	ND	2.0	ug/L				
Surrogate: 1,2-Dichloroethane-d4	24.2		ug/L	25.00	97	70-130	
Surrogate: 4-Bromofluorobenzene	23.8		ug/L	25.00	95	70-130	
Surrogate: Dibromofluoromethane	24.5		ug/L	25.00	98	70-130	

185 Frances Avenue, Cranston, RI 02910-2211

Tel: 401-461-7181

Quality

Dependability

Fax: 401-461-4486 ◆ Service

The Microbiology Division of Thielsch Engineering, Inc.

CERTIFICATE OF ANALYSIS

Client Name: Tighe & Bond

Client Project ID: Woburn to Mystic - RGP/MCP ESS Laboratory Work Order: 1701214

Quality Control Data

				Spike	Source		%REC		RPD	
Analyte	Result	MRL	Units	Level	Result	%REC	Limits	RPD	Limit	Qualifier

8260B Volatile Organic Compounds

Batch CA71231 - 5030B								
C	25.7	ug/L	25.00	103	70-130			
Surrogate: Toluene-d8	25.7		25.00		70 150			
LCS			10.00		70.400			
1,1,1-Trichloroethane	9.4	ug/L	10.00	94	70-130			
1,1,2-Trichloroethane	8.4	ug/L	10.00	84	70-130			
1,1-Dichloroethane	9.4	ug/L	10.00	94	70-130			
1,1-Dichloroethene	10.8	ug/L	10.00	108	70-130			
1,2-Dibromoethane	9.0	ug/L	10.00	90	70-130			
1,2-Dichlorobenzene	8.2	ug/L	10.00	82	70-130			
1,2-Dichloroethane	9.7	ug/L	10.00	97	70-130			
1,3-Dichlorobenzene	8.6	ug/L	10.00	86	70-130			
1,4-Dichlorobenzene	8.6	ug/L	10.00	86	70-130			
1,4-Dioxane - Screen	0.0	ug/L	200.0		0-332			
Acetone	48.2	ug/L	50.00	96	70-130			
Benzene	9.4	ug/L	10.00	94	70-130			
Carbon Tetrachloride	8.8	ug/L	10.00	88	70-130			
cis-1,2-Dichloroethene	9.6	ug/L	10.00	96	70-130			
Ethylbenzene	9.5	ug/L	10.00	95	70-130			
Methyl tert-Butyl Ether	10.1	ug/L	10.00	101	70-130			
Methylene Chloride	9.6	ug/L	10.00	96	70-130			
Naphthalene	9.5	ug/L	10.00	95	70-130			
Tertiary-amyl methyl ether	9.7	ug/L	10.00	97	70-130			
Tertiary-butyl Alcohol	50.1	ug/L	50.00	100	70-130			
Tetrachloroethene	8.6	ug/L	10.00	86	70-130			
Toluene	9.5	ug/L	10.00	95	70-130			
Trichloroethene	9.1	ug/L	10.00	91	70-130			
Vinyl Chloride	8.9	ug/L	10.00	89	70-130			
Xylene O	9.0	ug/L	10.00	90	70-130			
	19.2							
Xylene P,M		ug/L	20.00	96	70-130			
Surrogate: 1,2-Dichloroethane-d4	26.0	ug/L	25.00	104	70-130			
Surrogate: 4-Bromofluorobenzene	23.1	ug/L	25.00	93	70-130			
Surrogate: Dibromofluoromethane	24.8	ug/L	25.00	99	70-130			
Surrogate: Toluene-d8	25.1	ug/L	25.00	100	70-130			
LCS Dup								
1,1,1-Trichloroethane	9.2	ug/L	10.00	92	70-130	2	25	
1,1,2-Trichloroethane	8.0	ug/L	10.00	80	70-130	6	25	
1,1-Dichloroethane	9.4	ug/L	10.00	94	70-130	0.3	25	
1,1-Dichloroethene	10.5	ug/L	10.00	105	70-130	3	25	
1,2-Dibromoethane	8.6	ug/L	10.00	86	70-130	4	25	
1,2-Dichlorobenzene	8.0	ug/L	10.00	80	70-130	3	25	
1,2-Dichloroethane	9.5	ug/L	10.00	95	70-130	2	25	
1,3-Dichlorobenzene	8.0	ug/L	10.00	80	70-130	8	25	
1,4-Dichlorobenzene	8.4	ug/L	10.00	84	70-130	3	25	
1,4-Dioxane - Screen	0.0	ug/L	200.0		0-332		200	
Acetone	49.6	ug/L	50.00	99	70-130	3	25	
		5.						

185 Frances Avenue, Cranston, RI 02910-2211

2211 Tel: 401-461-7181
Dependability ♦ Quality

Fax: 401-461-4486 ◆ Service

The Microbiology Division of Thielsch Engineering, Inc.

CERTIFICATE OF ANALYSIS

Client Name: Tighe & Bond

Client Project ID: Woburn to Mystic - RGP/MCP ESS Laboratory Work Order: 1701214

Quality Control Data

Analyte	Result	MRL	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Qualifier
		8260B Vol	atile Organi	c Compoi	unds					

Batch CA71231 - 5030B								
Benzene	9.4	ug/L	10.00	94	70-130	0.1	25	
Carbon Tetrachloride	8.6	ug/L	10.00	86	70-130	2	25	
cis-1,2-Dichloroethene	9.8	ug/L	10.00	98	70-130	2	25	
Ethylbenzene	9.6	ug/L	10.00	96	70-130	0.8	25	
Methyl tert-Butyl Ether	10.5	ug/L	10.00	105	70-130	3	25	
Methylene Chloride	9.7	ug/L	10.00	97	70-130	1	25	
Naphthalene	9.2	ug/L	10.00	92	70-130	3	25	
Tertiary-amyl methyl ether	9.5	ug/L	10.00	95	70-130	3	25	
Tertiary-butyl Alcohol	44.2	ug/L	50.00	88	70-130	13	25	
Tetrachloroethene	8.6	ug/L	10.00	86	70-130	0.5	25	
Toluene	9.2	ug/L	10.00	92	70-130	3	25	
Trichloroethene	9.0	ug/L	10.00	90	70-130	0.9	25	
Vinyl Chloride	8.4	ug/L	10.00	84	70-130	5	25	
Xylene O	8.7	ug/L	10.00	87	70-130	4	25	
Xylene P,M	18.7	ug/L	20.00	93	70-130	3	25	
Surrogate: 1,2-Dichloroethane-d4	25.8	ug/L	25.00	103	70-130			
Surrogate: 4-Bromofluorobenzene	23.4	ug/L	25.00	94	70-130			
Surrogate: Dibromofluoromethane	25.3	ug/L	25.00	101	70-130			
Surrogate: Toluene-d8	25.1	ug/L	25.00	100	70-130			

8270D(SIM) Semi-Volatile Organic Compounds

Batch CA71116 - 3510C				
Blank				
Acenaphthene	ND	0.20	ug/L	
Acenaphthylene	ND	0.20	ug/L	
Anthracene	ND	0.20	ug/L	
Benzo(a)anthracene	ND	0.05	ug/L	
Benzo(a)pyrene	ND	0.05	ug/L	
Benzo(b)fluoranthene	ND	0.05	ug/L	
Benzo(g,h,i)perylene	ND	0.20	ug/L	
Benzo(k)fluoranthene	ND	0.05	ug/L	
bis(2-Ethylhexyl)phthalate	2.37	2.50	ug/L	
Butylbenzylphthalate	0.32	2.50	ug/L	
Chrysene	ND	0.05	ug/L	
Dibenzo(a,h)Anthracene	ND	0.05	ug/L	
Diethylphthalate	ND	2.50	ug/L	
Dimethylphthalate	ND	2.50	ug/L	
Di-n-butylphthalate	ND	2.50	ug/L	
Di-n-octylphthalate	0.26	2.50	ug/L	
Fluoranthene	ND	0.20	ug/L	
Fluorene	ND	0.20	ug/L	
Indeno(1,2,3-cd)Pyrene	ND	0.05	ug/L	
Naphthalene	ND	0.20	ug/L	
Pentachlorophenol	ND	0.90	ug/L	
Phenanthrene	ND	0.20	ug/L	

185 Frances Avenue, Cranston, RI 02910-2211

Fax: 401-461-4486

The Microbiology Division of Thielsch Engineering, Inc.

%REC

RPD

CERTIFICATE OF ANALYSIS

Client Name: Tighe & Bond

Client Project ID: Woburn to Mystic - RGP/MCP ESS Laboratory Work Order: 1701214

Quality Control Data

Spike

Source

Analyte	Result	MRL	Units	Level	Result	%REC	Limits	RPD	Limit	Qualifier
	827	'0D(SIM) Ser	mi-Volatile (Organic C	ompound	S				
Batch CA71116 - 3510C										
Pyrene	ND	0.20	ug/L							
Surrogate: 1,2-Dichlorobenzene-d4	0.791		ug/L	2.500		32	30-130			
Surrogate: 2,4,6-Tribromophenol	2.97		ug/L	3.750		<i>79</i>	15-110			
Surrogate: 2-Fluorobiphenyl	1.22		ug/L	2.500		49	30-130			
Surrogate: Nitrobenzene-d5	1.42		ug/L	2.500		<i>57</i>	30-130			
Surrogate: p-Terphenyl-d14	2.24		ug/L	2.500		90	30-130			
cs										
cenaphthene	2.51	0.20	ug/L	4.000		63	40-140			
cenaphthylene	2.18	0.20	ug/L	4.000		54	40-140			
nthracene	2.90	0.20	ug/L	4.000		73	40-140			
Benzo(a)anthracene	3.23	0.05	ug/L	4.000		81	40-140			
Benzo(a)pyrene	3.24	0.05	ug/L	4.000		81	40-140			
Benzo(b)fluoranthene	3.19	0.05	ug/L	4.000		80	40-140			
Benzo(g,h,i)perylene	3.23	0.20	ug/L	4.000		81	40-140			
enzo(k)fluoranthene	3.07	0.05	ug/L	4.000		77	40-140			
is(2-Ethylhexyl)phthalate	5.83	2.50	ug/L	4.000		146	40-140			B+
utylbenzylphthalate	4.39	2.50	ug/L	4.000		110	40-140			
hrysene	3.47	0.05	ug/L	4.000		87	40-140			
ibenzo(a,h)Anthracene	3.03	0.05	ug/L	4.000		76	40-140			
iethylphthalate	3.24	2.50	ug/L	4.000		81	40-140			
imethylphthalate	2.93	2.50	ug/L	4.000		73	40-140			
vi-n-butylphthalate	3.33	2.50	ug/L	4.000		83	40-140			
vi-n-octylphthalate	3.99	2.50	ug/L	4.000		100	40-140			
luoranthene	3.28	0.20	ug/L	4.000		82	40-140			
luorene	2.81	0.20	ug/L	4.000		70	40-140			
ndeno(1,2,3-cd)Pyrene	3.14	0.05	ug/L	4.000		78	40-140			
laphthalene	1.61	0.20	ug/L	4.000		40	40-140			
entachlorophenol	3.98	0.90	ug/L	4.000		100	30-130			
henanthrene	2.88	0.20	ug/L	4.000		72	40-140			
yrene	3.64	0.20	ug/L	4.000		91	40-140			
	0.754	0.20	ug/L	2.500		30	30-130			
Surrogate: 1,2-Dichlorobenzene-d4	3.65		ug/L	3.750		97	<i>15-110</i>			
Surrogate: 2,4,6-Tribromophenol	1.40		ug/L	2.500		<i>56</i>	30-130			
Surrogate: 2-Fluorobiphenyl	1.40		ug/L	2.500		<i>56</i>	30-130			
Surrogate: Nitrobenzene-d5	2.48		ug/L	2.500		99	30-130			
Surrogate: p-Terphenyl-d14	27.0		49,2	2.500						
CS Dup	2.00	0.20		4.000		75	40.140	17	20	
cenaphthene	2.99	0.20	ug/L	4.000		75 64	40-140	17	20	
cenaphthylene	2.57	0.20	ug/L	4.000		64	40-140	17	20	
nthracene	3.10	0.20	ug/L	4.000		77	40-140	7	20	
denzo(a)anthracene	3.32	0.05	ug/L	4.000		83	40-140	3	20	
denzo(a)pyrene	3.40	0.05	ug/L	4.000		85	40-140	5	20	
denzo(b)fluoranthene	3.48	0.05	ug/L	4.000		87	40-140	9	20	
enzo(g,h,i)perylene	3.43	0.20	ug/L	4.000		86	40-140	6	20	
enzo(k)fluoranthene	3.32	0.05	ug/L	4.000		83	40-140	8	20	
is(2-Ethylhexyl)phthalate	5.73	2.50	ug/L	4.000		143	40-140	2	20	B+

185 Frances Avenue, Cranston, RI 02910-2211

2211 Tel: 401-461-7181
Dependability ♦ Quality

Fax: 401-461-4486 ◆ Service

The Microbiology Division of Thielsch Engineering, Inc.

CERTIFICATE OF ANALYSIS

Client Name: Tighe & Bond

Client Project ID: Woburn to Mystic - RGP/MCP ESS Laboratory Work Order: 1701214

Quality Control Data

				Spike	Source		%REC		RPD	
Analyte	Result	MRL	Units	Level	Result	%REC	Limits	RPD	Limit	Qualifie
	827	'0D(SIM) Ser	mi-Volatile (Organic C	ompound	s				
atch CA71116 - 3510C										
Butylbenzylphthalate	4.62	2.50	ug/L	4.000		115	40-140	5	20	
Chrysene	3.63	0.05	ug/L	4.000		91	40-140	4	20	
Dibenzo(a,h)Anthracene	3.20	0.05	ug/L	4.000		80	40-140	6	20	
Diethylphthalate	3.59	2.50	ug/L	4.000		90	40-140	10	20	
Dimethylphthalate	3.31	2.50	ug/L	4.000		83	40-140	12	20	
Di-n-butylphthalate	3.49	2.50	ug/L	4.000		87	40-140	5	20	
Di-n-octylphthalate	4.22	2.50	ug/L	4.000		105	40-140	6	20	
Fluoranthene	3.40	0.20	ug/L	4.000		85	40-140	4	20	
Fluorene	3.20	0.20	ug/L	4.000		80	40-140	13	20	
Indeno(1,2,3-cd)Pyrene	3.35	0.05	ug/L	4.000		84	40-140	6	20	
Naphthalene	1.98	0.20	ug/L	4.000		49	40-140	21	20	D+
Pentachlorophenol	4.13	0.90	ug/L	4.000		103	30-130	4	20	
Phenanthrene	3.03	0.20	ug/L	4.000		76	40-140	5	20	
Pyrene	3.76	0.20	ug/L	4.000		94	40-140	3	20	
Surrogate: 1,2-Dichlorobenzene-d4	0.979		ug/L	2.500		39	30-130			
Surrogate: 2,4,6-Tribromophenol	3.78		ug/L	3.750		101	15-110			
Surrogate: 2-Fluorobiphenyl	1.67		ug/L	2.500		67	30-130			
Surrogate: Nitrobenzene-d5	1.73		ug/L	2.500		69	30-130			
Surrogate: p-Terphenyl-d14	2.55		ug/L	2.500		102	30-130			
		Cl	assical Che	mistry						
Batch CA71143 - General Preparation										
Blank										
Total Residual Chlorine	ND	10	ug/L							
LCS										
Total Residual Chlorine	2		mg/L	1.800		100	85-115			
Batch CA71144 - General Preparation										
Blank										
Hexavalent Chromium	ND	10	ug/L							
LCS										
Hexavalent Chromium	0.5		mg/L	0.4998		99	90-110			
LCS Dup										
Hexavalent Chromium	0.5		mg/L	0.4998		99	90-110	0.2	20	
Batch CA71229 - General Preparation										
Blank										
Total Suspended Solids	ND	5000	ug/L							
LCS										
Total Suspended Solids	64		mg/L	68.70		93	80-120			
Batch CA71301 - NH4 Prep										
Blank										
Ammonia as N	ND	0.10	mg/L							

The Microbiology Division of Thielsch Engineering, Inc.

CERTIFICATE OF ANALYSIS

Client Name: Tighe & Bond

Client Project ID: Woburn to Mystic - RGP/MCP ESS Laboratory Work Order: 1701214

Quality Control Data

				Spike	Source		%REC		RPD	
Analyte	Result	MRL	Units	Level	Result	%REC	Limits	RPD	Limit	Qualifie
		Cla	assical Che	mistry						
Batch CA71301 - NH4 Prep										
Ammonia as N	0.10	0.10	mg/L	0.09994		98	80-120			
LCS										
Ammonia as N	1.11	0.10	mg/L	0.9994		112	80-120			
Batch CA71306 - General Preparation										
Blank										
Total Petroleum Hydrocarbon	ND	5	mg/L							
LCS										
Total Petroleum Hydrocarbon	15	5	mg/L	19.38		78	66-114			
Batch CA71317 - TCN Prep										
Blank										
Fotal Cyanide (LL)	ND	5.00	ug/L							
LCS										
Total Cyanide (LL)	21.1	5.00	ug/L	20.06		105	90-110			
LCS										
Total Cyanide (LL)	149	5.00	ug/L	150.4		99	90-110			
.CS Dup										
Total Cyanide (LL)	148	5.00	ug/L	150.4		98	90-110	0.6	20	
Batch CA71336 - General Preparation										
Blank										
Phenols	ND	100	ug/L							
.cs										
Phenols	116	100	ug/L	100.0		116	80-120			
LCS										
Phenols	997	100	ug/L	1000		100	80-120			
	8011 1,2	-Dibromoeth	ane / 1,2-[Dibromo-3	-chloropr	opane				
Batch CA71322 - 504/8011										
Blank										
,2-Dibromoethane	ND	0.015	ug/L							
1,2-Dibromoethane [2C]	ND	0.015	ug/L							
Surrogate: Pentachloroethane	0.162		ug/L	0.2000		81	30-150			
Surrogate: Pentachloroethane [2C]	0.151		ug/L	0.2000		76	30-150			
LCS										
1,2-Dibromoethane	0.200	0.015	ug/L	0.2000		100	60-140			
1,2-Dibromoethane [2C]	0.190	0.015	ug/L	0.2000		95	70-130			
Ciwanata i Dantaahlanath	0.167		ug/L	0.2000		83	30-150			
			ug/L ug/L	0.2000		83 81	30-150 30-150			
	0.107		~9, L	5.200			-0 100			
Surrogate: Pentachloroethane [2C]	0.162									
Surrogate: Pentachloroethane Surrogate: Pentachloroethane [2C] LCS 1 2-Dibromoethane		0.015	ua/l	0 08000		105	60-140			
Surrogate: Pentachloroethane [2C]	0.084 0.057	0.015 0.015	ug/L ug/L	0.08000		105 72	60-140 70-130			

Page 50 of 62

The Microbiology Division of Thielsch Engineering, Inc.

CERTIFICATE OF ANALYSIS

Client Name: Tighe & Bond

Client Project ID: Woburn to Mystic - RGP/MCP ESS Laboratory Work Order: 1701214

Quality Control Data

				Spike	Source		%REC		RPD	
Analyte	Result	MRL	Units	Level	Result	%REC	Limits	RPD	Limit	Qualifier
	8011 1,2	-Dibromoeth	nane / 1,2-l	Dibromo-3	-chloropr	opane				
Batch CA71322 - 504/8011										
Surrogate: Pentachloroethane	0.0704		ug/L	0.08000		88	30-150			
Surrogate: Pentachloroethane [2C]	0.0674		ug/L	0.08000		84	30-150			
		Alco	hol Scan by	/ GC/FID						
Batch CA71246 - No Prep										
Blank										
Ethanol	ND	10	mg/L							
ıcs										
Ethanol	948	10	mg/L	1000		95	60-140			
LCS Dup										
Ethanol	854	10	ma/L	1000		85	60-140	10	30	

The Microbiology Division of Thielsch Engineering, Inc.

CERTIFICATE OF ANALYSIS

Client Name: Tighe & Bond

Client Project ID: Woburn to Mystic - RGP/MCP ESS Laboratory Work Order: 1701214

	Notes and Definitions
U	Analyte included in the analysis, but not detected
S+	Surrogate recovery(ies) above upper control limit (S+).
J	Reported between MDL and MRL
D+	Relative percent difference for duplicate is outside of criteria (D+).
D	Diluted.
CD+	Continuing Calibration %Diff/Drift is above control limit (CD+).
BT	Benzidine tailing factor >2.
B+	Blank Spike recovery is above upper control limit (B+).
В	Present in Method Blank (B).
ND	Analyte NOT DETECTED at or above the MRL (LOQ), LOD for DoD Reports, MDL for J-Flagged Analytes
dry	Sample results reported on a dry weight basis
RPD	Relative Percent Difference
MDL	Method Detection Limit
MRL	Method Reporting Limit
LOD	Limit of Detection
LOQ	Limit of Quantitation
DL	Detection Limit
I/V	Initial Volume
F/V	Final Volume
e	Subcontracted analysis: see attached report

Subcontracted analysis; see attached report

1 Range result excludes concentrations of surrogates and/or internal standards eluting in that range.

2 Range result excludes concentrations of target analytes eluting in that range. 3 Range result excludes the concentration of the C9-C10 aromatic range.

Results reported as a mathematical average. Avg

NR No Recovery Calculated Analyte [CALC]

SUB Subcontracted analysis; see attached report

185 Frances Avenue, Cranston, RI 02910-2211

Tel: 401-461-7181

Fax: 401-461-4486

http://www.ESSLaboratory.com

Page 52 of 62

The Microbiology Division of Thielsch Engineering, Inc.

CERTIFICATE OF ANALYSIS

Client Name: Tighe & Bond

Client Project ID: Woburn to Mystic - RGP/MCP ESS Laboratory Work Order: 1701214

ESS LABORATORY CERTIFICATIONS AND ACCREDITATIONS

ENVIRONMENTAL

Rhode Island Potable and Non Potable Water: LAI00179 http://www.health.ri.gov/find/labs/analytical/ESS.pdf

Connecticut Potable and Non Potable Water, Solid and Hazardous Waste: PH-0750 http://www.ct.gov/dph/lib/dph/environmental health/environmental laboratories/pdf/OutofStateCommercialLaboratories.pdf

Maine Potable and Non Potable Water, and Solid and Hazardous Waste: RI00002 http://www.maine.gov/dhhs/mecdc/environmental-health/dwp/partners/labCert.shtml

Massachusetts Potable and Non Potable Water: M-RI002 http://public.dep.state.ma.us/Labcert/Labcert.aspx

New Hampshire (NELAP accredited) Potable and Non Potable Water, Solid and Hazardous Waste: 2424 http://des.nh.gov/organization/divisions/water/dwgb/nhelap/index.htm

New York (NELAP accredited) Non Potable Water, Solid and Hazardous Waste: 11313 http://www.wadsworth.org/labcert/elap/comm.html

New Jersey (NELAP accredited) Non Potable Water, Solid and Hazardous Waste: RI006 http://datamine2.state.nj.us/DEP OPRA/OpraMain/pi main?mode=pi by site&sort order=PI NAMEA&Select+a+Site:=58715

United States Department of Agriculture Soil Permit: P330-12-00139

Pennsylvania: 68-01752

http://www.dep.pa.gov/Business/OtherPrograms/Labs/Pages/Laboratory-Accreditation-Program.aspx

185 Frances Avenue, Cranston, RI 02910-2211

Tel: 401-461-7181

Fax: 401-461-4486

LABORATORY REPORT

ESS Laboratory Attn: Mr. Shawn Morrell 185 Frances Avenue Cranston, RI 02910-2211 Date Received: **Date Reported:** P.O. Number

1/12/2017 1/17/2017 B02406

Work Order #: 1701-00787

Project Name: PROJECT: 1701214

Enclosed are the analytical results and Chain of Custody for your project referenced above. The sample(s) were analyzed by our Warwick, RI laboratory unless noted otherwise. When applicable, indication of sample analysis at our Hudson, MA laboratory and/or subcontracted results are noted and subcontracted reports are enclosed in their entirety.

All samples were analyzed within the established guidelines of US EPA approved methods with all requirements met, unless otherwise noted at the end of a given sample's analytical results or in a case narrative.

The Detection Limit is defined as the lowest level that can be reliably achieved during routine laboratory conditions.

These results only pertain to the samples submitted for this Work Order # and this report shall not be reproduced except in its entirety.

We certify that the following results are true and accurate to the best of our knowledge. If you have questions or need further assistance, please contact our Customer Service Department.

Approved by:

Yihai Ding

Technical Director

Laboratory Certification Numbers (as applicable to sample's origin state): Warwick RI * RI LAI00033, MA M-RI015, CT PH-0508, ME RI00015, NH 2070, NY 11726 Hudson MA * M-MA1117, RI LAO00319

R.I. Analytical Laboratories, Inc.

Laboratory Report

ESS Laboratory

Work Order #: 1701-00787

Project Name: PROJECT: 1701214

Sample Number:

001

Sample Description:

1701214-01

Sample Type:

GRAB

Sample Date / Time:

1/11/2017 @ 10:20

PARAMETER

SAMPLE

DET.

METHOD UNITS

DATE/TIME

ANALYST ANALYZED

Chloride

200

RESULTS

LIMIT 10 mg/l

EPA 300.0

1/13/2017 19:51 AEG

Sample Number:

002

Sample Description:

1701214-02

Sample Type:

GRAB

Sample Date / Time:

1/11/2017 @ 10:50

PARAMETER

SAMPLE DET.

10

10

RESULTS

mg/l

METHOD

DATE/TIME

ANALYZED

ANALYST

Chloride

240

LIMIT UNITS

EPA 300.0

1/13/2017 20:05 AEG

Sample Number:

003

Sample Description:

1701214-03

Sample Type:

PARAMETER

Chloride

GRAB

Sample Date / Time:

1/11/2017 @ 11:20

100

SAMPLE DET.

RESULTS

LIMIT

UNITS

mg/l

METHOD EPA 300.0

DATE/TIME **ANALYZED**

1/13/2017

ANALYST AEG

Sample Number:

004

Sample Description:

1701214-04

Sample Type:

PARAMETER

GRAB

Sample Date / Time:

1/11/2017 @ 11:50

SAMPLE RESULTS DET. **LIMIT**

UNITS

METHOD

DATE/TIME

ANALYST ANALYZED

20:19

Chloride

100

10

mg/l

EPA 300.0

1/13/2017 20:33 AEG

R.I. Analytical Laboratories, Inc.

Laboratory Report

ESS Laboratory

Work Order #: 1701-00787

Project Name: PROJECT: 1701214

Sample Number:

005

Sample Description:

1701214-05

Sample Type:

GRAB

Sample Date / Time:

1/11/2017 @ 08:30

PARAMETER

SAMPLE

RESULTS

DET. LIMIT

UNITS METHOD

DATE/TIME ANALYZED

ANALYST

Chloride

70

10

mg/l EPA 300.0

1/13/2017 20:47

AEG

ESS Laboratory 1701-00787 1/17/17

-Method Blanks Results-

Parameter	Units	Results	Date Analyzed
Chloride	mg/l	<1.0	1/13/2017

-LCS/LCS Duplicate Data Results-

Parameter	Spike Conc	LCS Conc	LCS % Rec	LCS Dup Conc	LCS DUP % Rec	% RPD	Date Analyzed
Chloride	10.0	9.37	94				1/13/2017

(•									-					
ESS La	ESS Laboratory		RIAL		CH	CHAIN OF CUSTODY	CUST	ODY		ESS Lab#	¥ 1701214	214			
Division of 1	Division of Thielsch Engineering, Inc.	ineering, Inc.		Tum Time	DUE 1/18/17	17							•	***************************************	
185 Frances	s Avenue,Cra	185 Frances Avenue, Cranston RI 02910-2211	0-2211	Regulatory State:		MA RI CT NH NJ NY ME Other	NY ME O	Other		Reportir	Reporting Limits - EPA KGP Appendix VI	ra rgi	Appen	> >	
Tel. (401)46	31-7181 Fax	Tel. (401)461-7181 Fax (401)461-4486	တ္	Is this project for any		of the following:(please circle)	Sle)								I
www.esslab	www.esslaboratory.com			MA-MCP	Navy USACE	USACE CT DEP (Other	RGP		Ele	Electonic Deliverables <u>Excel*</u> Access PDF	bles Excel	Access F	ř.	
Co. Name		ESS Laboratory		Project#		Project Name		1701214							T
Contact Person		Shawn Morrell		Proj. Location						sisy					
Address			City, State			Zip		PO#		len	0.				on model
								B02406	9	A	008				
Tel.	ext 3083		email:	smorrell@thielsch.com	ielsch.com						ер әр				2014
ESS Lab ID	Date	Collection Time	Grab -G Composite-C	Matrix	Sample ID	le ID	Pres Code	# of Containers	Type of Container	Vol of Container	Chlori				
	1/11/17	1020		В	1701214-01	14-01	-	-	۵		×				
	1/11/17	1050		GW	1701214-02	14-02	-	-	۵		×				1
	1/11/17	1120		GW	1701214-03	14-03	-	-	۵		×				T
	1/11/17	1150		GW	1701214-04	14-04	1	-	<u>a</u>		×				
	1/11/17	0830		ВW	1701214-05	14-05	1	-	А		×				ĺ
															T
Container Type: P-I	Poly G-Glass AG-A	Container Type: P-Poly G-Glass AG-Amber Glass S-Sterile V-VOA	-VOA		Matrix: S-Soil SI	Matrix: S-Soil SD-Solid D-Sludge WW-Wastewater GW-Groundwater SW-Surface Water DW-Drinking Water O-Oil W-Wipes F-Filter	V-Wastewater	GW-Groundwa	ter SW-Surfac	≫ Water DW-E	rinking Water O.	-Oil W-Wipes	F-Filter		
Cooler Present	sent	Yes	₽,	Internal Use Only	Only	Preservation Code: 1-NP, 2-HCl, 3-H2SO4, 4-HNO3, 5-NaOH, 6-MeOH, 7-Asorbic Acid, 8-ZnAct, 9Na2S2O3	1-NP, 2-HC	J, 3-H2SO4, 4	1-HNO3, 5-N	аОН, 6-МеО	1, 7-Asorbic Ac	id, 8-ZnAct, 9	Na2S203_		
Seals Intact	tYes	No NA:		[] Pickup		Sampled by:									T
Cooler Tem	Cooler Temperature: 0,5°C	3.5°C		[] Technician_	an	Comments:			Ą.	ovide ES	*Provide ESS Deliverables	ables			
Reinfluighed by: (5	Reliniuished by: (Signature, Dale & Time)	ne) Q.D7	Received by: (Sign	Received by: (Signature, Date & Time)	_	CO: 6	Relinquished	Reiinquished by: (Signature, Date & Time)	Date & Time)		Received by: (Signature, Date & Time)	nature, Date &	Time)		
Reinquished by: (\$	Reinquished by: (Signature, Date & Time)	ne)	Received by: (Sigr	Received by: (Signature, Date & Time)			Relinquished	Relinquished by: (Signature, Date & Time)	Date & Time)		Received by: (Signature, Date & Time)	nature, Date &	Time)		

Please fax to the laboratory all changes to Chain of Custody
Report Method Blank & Laboratory Control Sample Results

1701-00187

* By circling MA-MCP, client acknowledges sampels were collected in accordance with MADEP CAM VIIA

ESS Laboratory Sample and Cooler Receipt Checklist

	•	
Client: Tighe & Bond - KPB/TB/MM	ESS Project ID:1701214	
	Date Received:1/11/2017	
Shipped/Delivered Via: ESS Courier	Project Due Date:1/18/2017	
	Days for Project: 5 Day	
Air bill manifest present? No NA NA	6. Does COC match bottles?	Yes
Were custody seals present?	7. Is COC complete and correct?	Yes
3. Is radiation count <100 CPM? Yes	8. Were samples received intact?	Yes
4. Is a Cooler Present? Yes	9. Were labs informed about short holds & rushes?	(No / NA
Temp: 5.8 Iced with: Ice Yes	10. Were any analyses received outside of hold time?	Yes (No
5. Was COC signed and dated by client? Yes		
11. Any Subcontracting needed? ESS Sample IDs: 1-5 Analysis: TAT: 5 day	12. Were VOAs received?a. Air bubbles in aqueous VOAs?b. Does methanol cover soil completely?	Yes / No Yes / No / YA
13. Are the samples properly preserved? a. If metals preserved upon receipt: b. Low Level VOA vials frozen: Sample Receiving Notes:	Time: By: Time: By:	=
14. Was there a need to contact Project Manager?	Yes (No) Yes / No Time:	

Sample Number	Container ID	Proper Container	Air Bubbles Present	Sufficient Volume	Container Type	Preservative	Re		(Cyanide a esticides)	and 608
01	98457	Yes	No	Yes	VOA Vial - HCI	HCI				
01	98458	Yes	No	Yes	VOA Vial - HCl	HCI				
01	98459	Yes	No	Yes	VOA Vial - HCI	HĊI				
01	98472	Yes	No	Yes	VOA Vial - Unpres	NP				
01	98473	Yes	No	Yes	VOA Vial - Unpres	NP				
01	98474	Yes	No	Yes	VOA Vial - Unpres	NP				
01	98484	Yes	NA	Yes	1L Amber - Unpres	NP				
01	98485	Yes	NA	Yes	1L Amber - Unpres	NP				
01	98494	Yes	NA	Yes	1L Amber - H2SO4	H2SO4				
01	98495	Yes	NA	Yes	1L Amber - H2SO4	H2SO4				
01	98500	Yes	NA	Yes	1L Poly - Unpres	NP				
01	98505	Yes	NA	Yes	500 mL Poly - H2SO4	H2SO4				
01	98510	Yes	ΝA	Yes	250 mL Poly - HNO3	HNO3				
01	98515	Yes	NA	Yes	250 mL Poly - NaOH	NaOH рн	>12	RL	Vulin	1812
01	98520	Yes	NA	Yes	250 mL Poly - Unpres	NP			1.1	_
01	98525	Yes	NA	Yes	250 mL Poly - Unpres	NP				
02	98454	Yes	No	Yes	VOA Vial - HCI	HC1				
02	98455	Yes	No	Yes	VOA Vial - HCl	HCI				
02	98456	Yes	No	Yes	VOA Vial - HCI	HCI				
02	98469	Yes	No	Yes	VOA Vial - Unpres	NP				
02	98470	Yes	No	Yes	VOA Vial - Unpres	NP				
02	98471	Yes	No	Yes	VOA Vial - Unpres	NP				
02	98482	Yes	NA	Yes	1L Amber - Unpres	NP				
02	98483	Yes	NA	Yes	1L Amber - Unpres	NP				

ESS Laboratory Sample and Cooler Receipt Checklist

Client: _	Tig	ne & Bond	- KPB/TB/MI	<u></u>		oject ID:	17012 1/11/20		
_		.,		V		eceived: H2SO4	1/11/20		
12	98492	Yes	NA	Yes	1L Amber - H2SO4				
2	98493	Yes	NA	Yes	1L Amber - H2SO4	H2SO4			
2	98499	Yes	NA	Yes	1L Poly - Unpres	NP			
2	98504	Yes	NA	Yes	500 mL Poly - H2SO4	H2SO4			
2	98509	Yes	NA	Yes	250 mL Poly - HNO3	HNO3		. 11	
2	98514	Yes	NA	Yes	250 mL Poly - NaOH	NaOH	PH > (Z	er 1/11/17	- / :
2	98519	Yes	NA	Yes	250 mL Poly - Unpres	NP		• •	
2	98524	Yes	NA	Yes	250 mL Poly - Unpres	NP			
		Yes	No	Yes	VOA Vial - HCI	HCI			
3	98451				VOA Vial - HCI	HCI			
3	98452	Yes	No	Yes		HCI			
3	98453	Yes	No	Yes	VOA Vial - HCI				
3	98466	Yes	No	Yes	VOA Vial - Unpres	NP			
3	98467	Yes	No	Yes	VOA Vial - Unpres	NP			
3	98468	Yes	No	Yes	VOA Vial - Unpres	NP			
3	98480	Yes	NA	Yes	1L Amber - Unpres	NP			
3	98481	Yes	NA	Yes	1L Amber - Unpres	NP			
	98490	Yes	NA	Yes	1L Amber - H2SO4	H2SQ4			
3				Yes	1L Amber - H2SO4	H2SO4			
3	98491	Yes	NA			NP			
3	98498	Yes	NA	Yes	1L Poly - Unpres				
3	98503	Yes	NA	Yes	500 mL Poly - H2SO4	H2SO4			
3	98508	Yes	NA	Yes	250 mL Poly - HNO3	HNO3	51 < Hg	ما المام	
3	98513	Yes	NA	Yes	250 mL Poly - NaOH	NaOH	14 5	פנ ו/יי/וז	(81
3	98518	Yes	NA	Yes	250 mL Poly - Unpres	NP		•	
3	98523	Yes	NA	Yes	250 mL Poly - Unpres	NP			
	98448	Yes	No	Yes	VOA Vial - HCI	HCI			
4				Yes	VOA Vial - HCI	HCI			
4	98449	Yes	No No			HCI			
4	98450	Yes	No	Yes	VOA Vial - HCI				
4	98463	Yes	No	Yes	VOA Vial - Unpres	NP			
4	98464	Yes	No	Yes	VOA Vial - Unpres	NP			
4	98465	Yes	No	Yes	VOA Vial - Unpres	NP			
4	98478	Yes	NA	Yes	1L Amber - Unpres	NP			
4	98479	Yes	NA	Yes	1L Amber - Unpres	NP			
		Yes	NA	Yes	1L Amber - H2SO4	H2SO4			
14	98488				1L Amber - H2SO4	H2SO4			
4	98489	Yes	NA	Yes		NP			
4	98497	Yes	NA	Yes	1L Poly - Unpres				
4	98502	Yes	NA	Yes	500 mL Poly - H2SO4	H2SO4			
4	98507	Yes	NA	Yes	250 mL Poly - HNO3	HNO3			
4	98512	Yes	NA	Yes	250 mL Poly - NaOH	NaOH	pH >12	ac 1/4/17 18	12
4	98517	Yes	NA	Yes	250 mL Poly - Unpres	NP		•	
4	98522	Yes	NA	Yes	250 mL Poly - Unpres	NP			
5	98445	Yes	No	Yes	VOA Vial - HCI	HCI			
			No	Yes	VOA Vial - HCI	HCI			
5	98446	Yes				HCI			
5	98447	Yes	No	Yes	VOA Vial - HCI	NP			
5	98460	Yes	No	Yes	VOA Vial - Unpres				
5	98461	Yes	No	Yes	VOA Vial - Unpres	NP			
5	98462	Yes	No	Yes	VOA Vial - Unpres	NP			
15	98476	Yes	NA	Yes	1L Amber - Unpres	NP			
5	98477	Yes	NA	Yes	1L Amber - Unpres	NP			
	98486	Yes	NA	Yes	1L Amber - H2SO4	H2SO4			
5					1L Poly - Unpres	NP			
)5	98496	Yes	NA	Yes		H2SO4			
)5	98501	Yes	NA	Yes	500 mL Poly - H2SO4				
15	98506	Yes	NA	Yes	250 mL Poly - HNO3	HNO3		1/11/12 1812	
5	98511	Yes	NA	Yes	250 mL Poly - NaOH	NaOH	pH >12	101 Ellis	
	98516	Yes	NA	Yes	250 mL Poly - Unpres	NP			
				Yes	250 mL Poly - Unpres	NP			
					250 mL Poly - HNO3	HNO3			
05 05 06 Review barcode	98521 98475	Yes Yes	NA NA		250 mL Poly - Unpres	NP			
		1			,				
pleted	· U	1	A-		Date & Time:	117 18	اكـ		
By:		1-p-	_		_ <u> </u>				
	10	レー			Date & Time: 1////	17 18	750		
ewed		∼ .	7 (Date of time.	· · · · · · · · · · · · · · · · · · ·	<u> </u>		
ewed y: vered	gre.	^ -),— _				850		

Company Name	ESS Laboratory				HAIN OF CUS	ESS	ESS Lab# 1701214	7.14		
Sample Type Sample day: Project Parties and Containers Ballon Barries Barries Ballon Barries Barries Ballon Barries Barries Ballon Barries Ba	ngine. Crans	<i>ering, Inc.</i> ston RI 0291 ¹	0	Turn Time: Regulatory State:	S day Rush:		V	ff hmits (Prewix	(////
Part	Fax (4	401) 461-44E	16	Is th	ils project for any of the following	: Remediation		☐Excel cifiy) → £versow	u ZDD	
10 10 10 10 10 10 10 10	2 Pm 7	any Name	P	Project # N: 09 9 1-1	Project	21/18		17 %V		
Collection Fax Number D S Belos 520 174	Contra	(b) S		Ore UNIV	Are Address			'3' 2V		
Collection Sample Native D S BLOF SAT TYLE Sample 10	000		M AS	ate	Spoods Code	# Od	η 10,10	2014 2014 2014 2014 2014	and 19	9+2;
Collection Sample Matrix	Numk)er	FAX	Jumber	D 5 BCh 5 Trans	70	310 Town			 O
170		Collection Time	Sample Type	Sample Matrix	Sample	<u> </u>	MY SI SI	1 S / 2 / 2 / 2 / 2 / 2 / 2 / 2 / 2 / 2 /	PCB,	EDB
1/20	├	2018	9	P19	7.		 		×	×
1720	-	1050					 		×	×
150		0211			MW - 36		×		×	×
1400 1500		05//	>	>	MW/36, PF	Brender Brende	X		×	×
100 100		144	1111		mu/ 505 31	117		111111111111111111111111111111111111111	1	
1000 1000	_	630	*	-		FF	X		×	×
## AG-Amber Glass B-BOD Bottle G-Glass P-Poly S-Sterile V-Vial O-Other as		300	9	BW	MW- sns	8		X		
Haboratory Use Only Sampled by: (Signature, Date & Time) (Signature, Date & Time) Hondressever 2 +tCl 3+B20D Bottle G-Glass P-Poly S-Sterile V-Vial O-Other ag										
Laboratory Use Only Laboratory Use Only Sampled by: (Signature, Date & Time) (Signature, Date & Time) AG-Amber Glass B-BOD Bottle G-Glass P-Poly S-Sterile V-Vial O-Other By ag ag Number of Containers: 35 Number of										
AG-Amber Glass B-BOD Bottle G-Glass P-Poly S-Sterile V-Vial O-Other ag ag B-BOD Bottle G-Glass P-Poly S-Sterile V-Vial O-Other Aumber of Containers: Ag B-BOD Bottle G-Glass P-Poly S-Sterile V-Vial O-Other B-NH4CI 10-DiH2O 11-Other Aumber of Containers: Ag B-BOD Bottle B B-BO										
1. Thon Preserved 2-HCl 3-H2SO4 4-HNO3 5-NaOH 6-Memanol 7-Na2S2O3 8-2nAoa, NaOH 9-NH4Cl 1bDl H2O 11-Chnar Number of Containers: 75 Laboratory Use Only Sampled by: Comments: Please specify "Other" preservative and contain analysis added per MEM 1/12/17 mkm - not enough volume for analysis added per MEM 1/12/17 mkm - not enough volume for in the final is a sampled by: (Signature, Date & Time) Please specify "Other" preservative and contain analysis added per MEM 1/12/17 mkm - not enough volume for in the final is a sampled by: (Signature, Date & Time) Please Signature, Date & Tim			AG-Amber Glass	D Bottle	P-Poly S-Sterile	O-Other	8			
Laboratory Use Only Comments: Sampled by: Comments: Please specify "Other" preservative and contain analysis added per MEM 1/12/17 mkm - not enough volume for analysis added per MEM 1/12/17 mkm - not enough volume for in the form of the fill		I-Non Preserve:	2-HCI 3-H2SO4	5-NaOH	7-Na2S2O3	9-NH4CI 10-DI H2O 11-C				
Laboratory Use Only Comments: Please specify "Other" preservative and contain analysis added per MEM 1/12/17 mkm - not enough volume for S.8 °C Figinature, Date & Time) Figinature, Date & Time) Figinature, Date & Time) Received By: (Signature, Date & Time) Received By: (Signature, Date & Time) Relinquished By: (Signature, Date & Time)						Number of Contain				_
Comments: Please specify "Other" preservative and contain analysis added per MEM 1/12/17 mkm - not enough volume for Signature, Date & Time) Received By: (Signature, Date & Time) Relinquished By: (Signature, Date & Time) Received By: (Signature, Date & Time) Received By: (Signature, Date & Time) Relinquished By: (Signature		Laborator	y Use Only		Sampled by: MM			: 		
5.8 °C Figurature, Date & Time) Received By: (Signature, Date & Time) Received By: (Signature, Date & Time) Relinquished By: (Signature, Date & Time)	Cooler Present:	Væ				Please specify "	Other" preservative ar	id containers types in this spa	906	
F. (Signature, Date & Time) Received By: (Signature, Date & Time) Received By: (Signature, Date & Time) Relinquished By: (Signature, Date & Time) Relinquished By: (Signature, Date & Time) Relinquished By: (Signature, Date & Time)	1				added per		not enough volum		W-505B FF	
Received By: (Signature, Date & Time) Relinquished By: (Signature, Date & Time) Relinquished By: (Signature, Date & Time) Received By: (Signature, Date & Time) Relinquished By: (Signature, Date & Time) Relinquished By: (Signature, Date & Time)	<u>ن</u> و:	5,8	၁့				i		j	
72 77 1/11/17 1500 Relinquished By: (Signature, Date & Time) Relinquished By: (Signature, Date & Time) Relinquished By: (Signature, Date & Time)	by: (S	ignature, Da	ite & Time)	Received By:	(Signature, Date & Time)	Relinquished By: (Signa	iture, Date & Time)	Received By: (Signatur	e, Date & Time	
Received By: (Signature, Date & Time) Relinquished By: (Signature, Date & Time) R		1/11/1		H				人に中	<u>_</u>	
	d by: (S	ignature, Da	ite & Time)	Received By:	(Signature, Date & Time)	Refinquished By: (Signa	iture, Date & Time)	Received By: (Signatur	e, Date & Time	
								J		

Comments	ESS Laboratory			0	CHAIN OF CUSTODY	<u>.</u>	ESS Lab # 1701214	7.14	
Sample Type Sample Matrix Sample Type Sample Use Only Comments: Received By: (Signature, Date & Time)	h Engined ue. Crans	ning, Inc. ton RI 02910		Turn Time:	Sday	Re	l l	FF hmits	1///
Project Name Proj	31 Fax (4 y.com	01) 461-448	- <u> </u>	Is th	ils project for any of the followin	: Remediation		TEXCE dify) → Everson	
Comments	Comp	any Name	7	N: 0498-11-1	Willer	7			
Comments	in Conta	ct Person		Ore UNIV	Are Addre		ciel	·' 3 '; _W	
Collection Sample Type Sample Matrix Sample ID	\$00 \$00 \$00 \$00 \$00 \$00 \$00 \$00 \$00 \$00		M DSt	ate	Zip Code	# Od) p U	20 M	
Collection Sample Native Sample Native Sample ID	one Numb	er	FAX	umber	D 5 Bels 5 Tryle 1	nd.	37° 1011111 2011111	10 10 10 10 10 10 10 10 10 10 10 10 10 1	
1/20		Sollection Time	Sample Type	Sample Matrix	Sample	OI 9	AT PM	多社の人の大き	
1750 W W 36 F K K K K K K K K K	├	2018	9	(PM	1		X		
1120	 	10501					<u> </u>		
150	_	1120			MW - 36		\\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\	+ + + + + + + + + + + + + + + + + + +	
1-1400 Preserved 2-4C 3-42504 4-11403 5-4304 6-5(ass P-Poly S-Sterile V-Vial O-Other Please specify "Other preservative and containers types in this space	_	05//	>	>	MW/31, PF		X		
\$3.0	```	744	7777	77//	MW- 606 BL	1		(2) (2) (1) (1) (1) (1) (1) (1) (1) (1) (1) (1	
300 C BW WW - S S S S S S S S S S	7	830	-	\	MW-505B	FF	X		
E. AG-Amber Glass B-BOD Bottle G-Glass P-Poly S-Sterile V-Vial O-Other as a sage and containers types in this space. Laboratory Use Only Laboratory Use Only Comments: Please specify "Other" preservative and containers types in this space. Signature, Date & Time) Received By: (Signature, Date & Time) Relinquished By: (Signature, Date & Time) Received By: (Signature, Date & Time) Received By: (Signature, Date & Time) Received By: (Signature, Date & Time) Relinquished By: (Signature, Date & Time) Received By: (Signature, Date & Time) Relinquished By: (Signature, Date & Time) Received By: (Signature, Date & Time) Received By: (Signature, Date & Time) Relinquished By: (Signature, Date & Time) Received By: (Signature, Date & Time) Relinquished By: (Signature, Date & Time) Received By		BOU	9	BW	NW-505	B		X	
Caboratory Use Only Sampled by: Signature, Date & Time) Received By: (Signature, Date & Time) Received By: (Signatur									
E: AG-Amber Glass B-BOD Bottle G-Glass P-Poly S-Sterile V-Vial O-Other as									
Comments: AG-Amber Glass B-BOD Bottle G-Glass P-Poly S-Sterile V-Vial O-Other ag ag									
Laboratory Use Only Laboratory Use Only Comments: Sampled by: (Signature, Date & Time) Received By: (Signature, Date & Time) Received By: (Signature, Date & Time) Received By: (Signature, Date & Time) Relinquished By: (Signature, Date & Time) Received By: (Signature, Date & Time) Received By: (Signature, Date & Time) Received By: (Signature, Date & Time) Relinquished By: (Signature, Date & Time) Relinquished By: (Signature, Date & Time) Relinquished By: (Signature, Date & Time)			AG-Amber Glass	D Bottle	P-Poly S-Sterile	Vial 0-Other	8		
Laboratory Use Only Laboratory Use Only Sampled by: Comments: Please specify "Other" preservative and containers types in this space S. 8 °C Signature. Date & Time) Received By: (Signature, Date & Time)		-Non Preserved	2-HCI 3-H2SO4	5-NaOH	7-Na2S2O3	Ž 6			
Laboratory Use Only Comments: Please specify "Other" preservative and containers types in this space S. 8 °C Signature, Date & Time) Felinquished By: (Signature, Date & Time) Received By: (Signature, Date & Time) Relinquished By: (Signature, Date & Time) Received By: (Signature, Date & Time) Received By: (Signature, Date & Time) Received By: (Signature, Date & Time)						Number of Contai			
S. 8 °C Signature, Date & Time) Figure 1/11 7 242 Received By: (Signature, Date & Time) Figure 1/11 7 242 Received By: (Signature, Date & Time) Relinquished By: (Signature, Date & Time) Relinquished By: (Signature, Date & Time) Received By: (Signature, Date & Time) Received By: (Signature, Date & Time) Received By: (Signature, Date & Time)		Laboraton	y Use Only		Sampled by: M			Ē	
Received By: (Signature, Date & Time) Relinquished By: (Signature, Date & Time) Relinquished By: (Signature, Date & Time) Received By: (Signature, Date & Time)	Cooler Present: Seals Intact:					Please specify	"Other" preservative ar	d containers types in this space	
72 7 11/1 /5 00 Relinquished By: (Signature, Date & Time) Relinquished By: (Signature, Date	ature. shed by: (S	J, X gnature, Da	te & Time)	Received By: ((Signature, Date & Time)	Relinquished By: (Sign	ature, Date & Time)	Received By: (Signature, Date & Tir	ne)
Received By: (Signature, Date & Time) Relinquished By: (Signature, Date & Time)		(1/1//	·	A	į.	CAN !		_	ų
	thed by: (S	ignature, Da	_ լ	Received By:	(Signature, Date & Time)	Relinquished By: (Sign	ature, Date & Time)	Received By: (Signature, Date & Tir	ne)

The Microbiology Division of Thielsch Engineering, Inc.

CERTIFICATE OF ANALYSIS

Michael Martin Tighe & Bond 4 Barlows Landing Road, Unit 15 Pocasset, MA 02559

RE: Woburn to Mystic - RGP (N-998-11)

ESS Laboratory Work Order Number: 1711482

This signed Certificate of Analysis is our approved release of your analytical results. These results are only representative of sample aliquots received at the laboratory. ESS Laboratory expects its clients to follow all regulatory sampling guidelines. Beginning with this page, the entire report has been paginated. This report should not be copied except in full without the approval of the laboratory. Samples will be disposed of thirty days after the final report has been delivered. If you have any questions or concerns, please feel free to call our Customer Service Department.

Laurel Stoddard Laboratory Director REVIEWED

By ESS Laboratory at 2:25 pm, Nov 20, 2017

Analytical Summary

The project as described above has been analyzed in accordance with the ESS Quality Assurance Plan. This plan utilizes the following methodologies: US EPA SW-846, US EPA Methods for Chemical Analysis of Water and Wastes per 40 CFR Part 136, APHA Standard Methods for the Examination of Water and Wastewater, American Society for Testing and Materials (ASTM), and other recognized methodologies. The analyses with these noted observations are in conformance to the Quality Assurance Plan. In chromatographic analysis, manual integration is frequently used instead of automated integration because it produces more accurate results.

The test results present in this report are in compliance with TNI and relative state standards, and/or client Quality Assurance Project Plans (QAPP). The laboratory has reviewed the following: Sample Preservations, Hold Times, Initial Calibrations, Continuing Calibrations, Method Blanks, Blank Spikes, Blank Spike Duplicates, Duplicates, Matrix Spikes, Matrix Spike Duplicates, Surrogates and Internal Standards. Any results which were found to be outside of the recommended ranges stated in our SOPs will be noted in the Project Narrative.

The Microbiology Division of Thielsch Engineering, Inc.

CERTIFICATE OF ANALYSIS

Client Name: Tighe & Bond

Client Project ID: Woburn to Mystic - RGP ESS Laboratory Work Order: 1711482

SAMPLE RECEIPT

The following samples were received on November 15, 2017 for the analyses specified on the enclosed Chain of Custody Record.

The samples and analyses listed below were analyzed in accordance with the 2017 Remediation General Permit under the National Pollutant Discharge Elimination System (NPDES).

ESS Laboratory is unable to achieve the required detection limit of 0.4 mg/L for Ethanol for the RGP permit. We have also been unable to procure a subcontract laboratory that is able to achieve this limit. The data for Ethanol has been reported using our current method reporting limit.

Lab Number	Sample Name	<u>Matrix</u>	<u>Analysis</u>
1711482-01	Mystic at Winter	Surface Water	200.7, 3113B, 350.1, 3500Cr B-2009, 9040
1711482-02	Mystic	Surface Water	200.7, 3113B, 350.1, 3500Cr B-2009, 9040
1711482-03	Mystic Crossing	Surface Water	200.7, 3113B, 350.1, 3500Cr B-2009, 9040
1711482-04	Aberjona	Surface Water	200.7, 3113B, 350.1, 3500Cr B-2009, 9040
1711482-05	Winter Pond	Surface Water	200.7, 3113B, 350.1, 3500Cr B-2009, 9040
1711482-06	Mystic at Boston Inner	Surface Water	200.7, 2520B, 3113B, 350.1, 3500Cr B-2009, 9040
1711482-07	Mystic at Laydown	Surface Water	200.7, 3113B, 350.1, 3500Cr B-2009, 9040

The Microbiology Division of Thielsch Engineering, Inc.

CERTIFICATE OF ANALYSIS

Client Name: Tighe & Bond

Client Project ID: Woburn to Mystic - RGP ESS Laboratory Work Order: 1711482

PROJECT NARRATIVE

Total Metals

1711482-06 <u>Elevated Method Reporting Limits due to sample matrix (EL).</u>

Cadmium, Copper, Nickel

1711482-07 <u>Elevated Method Reporting Limits due to sample matrix (EL).</u>

Cadmium, Copper, Nickel

No other observations noted.

End of Project Narrative.

DATA USABILITY LINKS

To ensure you are viewing the most current version of the documents below, please clear your internet cookies for www.ESSLaboratory.com. Consult your IT Support personnel for information on how to clear your internet cookies.

Definitions of Quality Control Parameters

Semivolatile Organics Internal Standard Information

Semivolatile Organics Surrogate Information

Volatile Organics Internal Standard Information

Volatile Organics Surrogate Information

EPH and VPH Alkane Lists

185 Frances Avenue, Cranston, RI 02910-2211

Tel: 401-461-7181

Dependability

Fax: 401-461-4486

The Microbiology Division of Thielsch Engineering, Inc.

CERTIFICATE OF ANALYSIS

Client Name: Tighe & Bond

Client Project ID: Woburn to Mystic - RGP ESS Laboratory Work Order: 1711482

CURRENT SW-846 METHODOLOGY VERSIONS

Analytical Methods

1010A - Flashpoint

6010C - ICP

6020A - ICP MS

7010 - Graphite Furnace

7196A - Hexavalent Chromium

7470A - Aqueous Mercury

7471B - Solid Mercury

8011 - EDB/DBCP/TCP

8015C - GRO/DRO

8081B - Pesticides

8082A - PCB

8100M - TPH

8151A - Herbicides

8260B - VOA

8270D - SVOA

8270D SIM - SVOA Low Level

9014 - Cyanide

9038 - Sulfate

9040C - Aqueous pH

9045D - Solid pH (Corrosivity)

9050A - Specific Conductance

9056A - Anions (IC)

9060A - TOC

9095B - Paint Filter

MADEP 04-1.1 - EPH / VPH

Prep Methods

3005A - Aqueous ICP Digestion

3020A - Aqueous Graphite Furnace / ICP MS Digestion

3050B - Solid ICP / Graphite Furnace / ICP MS Digestion

3060A - Solid Hexavalent Chromium Digestion

3510C - Separatory Funnel Extraction

3520C - Liquid / Liquid Extraction

3540C - Manual Soxhlet Extraction

3541 - Automated Soxhlet Extraction

3546 - Microwave Extraction

3580A - Waste Dilution

5030B - Aqueous Purge and Trap

5030C - Aqueous Purge and Trap

5035 - Solid Purge and Trap

SW846 Reactivity Methods 7.3.3.2 (Reactive Cyanide) and 7.3.4.1 (Reactive Sulfide) have been withdrawn by EPA. These methods are reported per client request and are not NELAP accredited.

Dependability

The Microbiology Division of Thielsch Engineering, Inc.

CERTIFICATE OF ANALYSIS

Client Name: Tighe & Bond

Client Project ID: Woburn to Mystic - RGP

Client Sample ID: Winter Pond Date Sampled: 11/15/17 08:30

Percent Solids: N/A

ESS Laboratory Work Order: 1711482 ESS Laboratory Sample ID: 1711482-05

Sample Matrix: Surface Water

Units: ug/L

Extraction Method: 3005A/200.7

Total Metals

Analyte	Results (MRL)	MDL	Method	<u>Limit</u>	<u>DF</u>	Analyst	Analyzed	<u>I/V</u>	F/V	Batch
Arsenic	ND (2.5)		3113B		5	KJK	11/19/17 2:30	100	10	CK71531
Cadmium	ND (2.00)		200.7		2	KJK	11/16/17 16:25	100	10	CK71531
Chromium	ND (4.0)		200.7		2	KJK	11/16/17 16:25	100	10	CK71531
Chromium III	ND (10.0)		200.7		2	JLK	11/16/17 16:25	1	1	[CALC]
Copper	2.1 (2.0)		200.7		2	KJK	11/16/17 16:25	100	10	CK71531
Hardness	30500 (824)		200.7		10	KJK	11/16/17 15:20	1	1	[CALC]
Iron	223 (100)		200.7		10	KJK	11/16/17 15:20	100	10	CK71531
Lead	ND (4.0)		200.7		2	KJK	11/16/17 16:25	100	10	CK71531
Nickel	ND (4.0)		200.7		2	KJK	11/16/17 16:25	100	10	CK71531
Silver	ND (1.0)		200.7		2	KJK	11/16/17 16:25	100	10	CK71531
Zinc	12.3 (10.0)		200.7		2	KJK	11/16/17 16:25	100	10	CK71531

The Microbiology Division of Thielsch Engineering, Inc.

CERTIFICATE OF ANALYSIS

Client Name: Tighe & Bond

Client Project ID: Woburn to Mystic - RGP

Client Sample ID: Winter Pond Date Sampled: 11/15/17 08:30

Percent Solids: N/A

ESS Laboratory Work Order: 1711482 ESS Laboratory Sample ID: 1711482-05

Sample Matrix: Surface Water

Classical Chemistry

Analyte Ammonia as N	Results (MRL) 0.14 (0.10)	MDL Method 350.1	<u>Limit</u>	<u>DF</u>	Analyst EEM	Analyzed 11/17/17 14:50	Units mg/L	Batch CK71613
Hexavalent Chromium	ND (10.0)	3500Cr B-2009		1	JLK	11/15/17 20:47	ug/L	CK71546
рН	6.66 (N/A)	9040		1	BCA	11/15/17 21:40	S.U.	CK71549
pH Sample Temp	Aqueous pH measure	d in water at 17.7 °C. (N/A)						

The Microbiology Division of Thielsch Engineering, Inc.

Qualifier

RPD

Limit

CERTIFICATE OF ANALYSIS

Client Name: Tighe & Bond

Analyte

Chromium III

Client Project ID: Woburn to Mystic - RGP

Result

MRL

ESS Laboratory Work Order: 1711482

%REC

%REC

Limits

RPD

Quality Control Data

Units

Spike

Level

Source

Result

			Total Met	als					
Batch CK71531 - 3005A/200.7									
Blank									
Arsenic	ND	0.5	ug/L						
Cadmium	ND	1.00	ug/L						
Chromium	ND	2.0	ug/L						
Chromium III	ND	2.00	ug/L						
Copper	ND	1.0	ug/L						
lardness	ND	82.4	ug/L						
ron	ND	10.0	ug/L						
ead	ND	0.2	ug/L						
ead	ND	2.0	ug/L						
ickel	ND	2.0	ug/L						
ilver	ND	0.5	ug/L						
inc	ND	5.0	ug/L						
cs									
rsenic	44.8	12.5	ug/L	50.00	90	85-115			
admium	23.6	1.00	ug/L	25.00	94	85-115			
hromium	48.9	2.0	ug/L	50.00	98	85-115			
hromium III	48.9	2.00	ug/L						
opper	52.4	1.0	ug/L	50.00	105	85-115			
ardness	3260	82.4	ug/L						
on	239	10.0	ug/L	250.0	96	85-115			
ead	45.3	5.0	ug/L	50.00	91	85-115			
ead	49.7	2.0	ug/L	50.00	99	85-115			
ickel	48.8	2.0	ug/L	50.00	98	85-115			
ilver	26.1	0.5	ug/L	25.00	104	85-115			
inc	51.7	5.0	ug/L	50.00	103	85-115			
CS Dup									
rsenic	48.5	12.5	ug/L	50.00	97	85-115	8	20	
admium	23.4	1.00	ug/L	25.00	94	85-115	0.7	20	
hromium	48.7	2.0	ug/L ug/L	50.00	9 4 97	85-115 85-115	0.7	20	
hromium III	48.7	2.00	ug/L ug/L	50.00	21	05.113	т.	20	
opper	52.0	1.0	ug/L ug/L	50.00	104	85-115	0.8	20	
ardness	3210	82.4	ug/L ug/L	50.00	107	05.113	0.0	20	
on	237	10.0	ug/L ug/L	250.0	95	85-115	0.8	20	
on ead	47.5	5.0	ug/L ug/L	50.00	95 95	85-115	5	20	
ead	49.8	2.0	ug/L ug/L	50.00	100	85-115	0.02	20	
ickel	48.2	2.0	ug/L ug/L	50.00	96	85-115	1	20	
lver	26.0	0.5	ug/L ug/L	25.00	104	85-115 85-115	0.2	20	
inc	53.8	5.0	ug/L ug/L	50.00	104	85-115	4	20	
	55.6	3.0	ug/L	30.00	100	03-113	4	20	
atch CK71546 - [CALC]									
lank									
hromium III	ND	10.0	ug/L						

ND

ug/L

The Microbiology Division of Thielsch Engineering, Inc.

CERTIFICATE OF ANALYSIS

Client Name: Tighe & Bond

Salinity

Client Project ID: Woburn to Mystic - RGP ESS Laboratory Work Order: 1711482

Quality Control Data

		- Euchin								
				Spike	Source		%REC	_	RPD	
Analyte	Result	MRL	Units	Level	Result	%REC	Limits	RPD	Limit	Qualifier
			Total Met	als						
Batch CK71546 - [CALC]										
LCS Dup										
Chromium III	ND		ug/L							
		Cl	assical Che	mistry						
Batch CK71546 - General Preparation										
Blank										
Hexavalent Chromium	ND	10.0	ug/L							
LCS										
Hexavalent Chromium	0.503		mg/L	0.4998		101	90-110			
LCS Dup										
Hexavalent Chromium	0.516		mg/L	0.4998		103	90-110	3	20	
Batch CK71613 - NH4 Prep										
Blank										
Ammonia as N	ND	0.10	mg/L							
LCS										
Ammonia as N	0.08	0.10	mg/L	0.09994		81	80-120			
ıcs										
Ammonia as N	1.02	0.10	mg/L	0.9994		102	80-120			
Batch CK71644 - General Preparation										
LCS										

ppt

1.000

1.0

85-115

The Microbiology Division of Thielsch Engineering, Inc.

CERTIFICATE OF ANALYSIS

Client Name: Tighe & Bond

Client Project ID: Woburn to Mystic - RGP ESS Laboratory Work Order: 1711482

Notes and Definitions

	Notes and Definitions
Z16d	Aqueous pH measured in water at 17.7 °C.
Z16c	Aqueous pH measured in water at 17.6 °C.
Z16b	Aqueous pH measured in water at 17.4 °C.
Z16a	Aqueous pH measured in water at 17.2 °C.
Z16	Aqueous pH measured in water at 17.1 °C.
U	Analyte included in the analysis, but not detected
EL	Elevated Method Reporting Limits due to sample matrix (EL).
D	Diluted.
ND	Analyte NOT DETECTED at or above the MRL (LOQ), LOD for DoD Reports, MDL for J-Flagged Analytes
dry	Sample results reported on a dry weight basis
RPD	Relative Percent Difference
MDL	Method Detection Limit
MRL	Method Reporting Limit
LOD	Limit of Detection
LOQ	Limit of Quantitation
DL	Detection Limit
I/V	Initial Volume
F/V	Final Volume
§	Subcontracted analysis; see attached report
1	Range result excludes concentrations of surrogates and/or internal standards eluting in that range.
2	Range result excludes concentrations of target analytes eluting in that range.
3	Range result excludes the concentration of the C9-C10 aromatic range.
Avg	Results reported as a mathematical average.

Results reported as a mathematical average. Avg

NR No Recovery [CALC] Calculated Analyte

SUB Subcontracted analysis; see attached report

RLReporting Limit

EDL Estimated Detection Limit

185 Frances Avenue, Cranston, RI 02910-2211

Tel: 401-461-7181

Fax: 401-461-4486

The Microbiology Division of Thielsch Engineering, Inc.

CERTIFICATE OF ANALYSIS

Client Name: Tighe & Bond

Client Project ID: Woburn to Mystic - RGP ESS Laboratory Work Order: 1711482

ESS LABORATORY CERTIFICATIONS AND ACCREDITATIONS

ENVIRONMENTAL

Rhode Island Potable and Non Potable Water: LAI00179 http://www.health.ri.gov/find/labs/analytical/ESS.pdf

Connecticut Potable and Non Potable Water, Solid and Hazardous Waste: PH-0750 http://www.ct.gov/dph/lib/dph/environmental_health/environmental_laboratories.pdf

Maine Potable and Non Potable Water, and Solid and Hazardous Waste: RI00002 http://www.maine.gov/dhhs/mecdc/environmental-health/dwp/partners/labCert.shtml

Massachusetts Potable and Non Potable Water: M-RI002 http://public.dep.state.ma.us/Labcert/Labcert.aspx

New Hampshire (NELAP accredited) Potable and Non Potable Water, Solid and Hazardous Waste: 2424 http://des.nh.gov/organization/divisions/water/dwgb/nhelap/index.htm

New York (NELAP accredited) Non Potable Water, Solid and Hazardous Waste: 11313 http://www.wadsworth.org/labcert/elap/comm.html

New Jersey (NELAP accredited) Non Potable Water, Solid and Hazardous Waste: RI006 http://datamine2.state.nj.us/DEP_OPRA/OpraMain/pi_main?mode=pi_by_site&sort_order=PI_NAMEA&Select+a+Site:=58715

United States Department of Agriculture Soil Permit: P330-12-00139

Pennsylvania: 68-01752 http://www.dep.pa.gov/Business/OtherPrograms/Labs/Pages/Laboratory-Accreditation-Program.aspx

185 Frances Avenue, Cranston, RI 02910-2211

Tel: 401-461-7181

Fax: 401-461-4486

ESS Laboratory Sample and Cooler Receipt Checklist

Client: Tighe & Bond - KPB/TB/MM Shipped/Delivered Via: ESS Courier 1. Air bill manifest present? No Air No.: NA	ESS Project ID: 1711482 Date Received: 11/15/2017 Project Due Date: 11/17/2017 Days for Project: 2 Day 6. Does COC match bottles?	Yes
2. Were custody seals present? No 3. Is radiation count <100 CPM? 4. Is a Cooler Present? Temp: 0.4 Iced with: Ice 5. Was COC signed and dated by client? Yes	 7. Is COC complete and correct? 8. Were samples received intact? 9. Were labs informed about <u>short holds & rushes</u>? 10. Were any analyses received outside of hold time? 	Yes Yes Yes No / NA Yes No
11. Any Subcontracting needed? ESS Sample IDs: Analysis: TAT:	12. Were VOAs received? a. Air bubbles in aqueous VOAs? b. Does methanol cover soil completely?	Yes / No Yes / No Yes / No / NA
13. Are the samples properly preserved? a. If metals preserved upon receipt: b. Low Level VOA vials frozen: Date: Date: Date:	Time: By: Time: By:	_
14. Was there a need to contact Project Manager? a. Was there a need to contact the client? Who was contacted? Date:	Time: By:	

Sample Number	Container ID	Proper Container	Air Bubbles Present	Sufficient Volume	Container Type	Preservative	Record pH (Cyanide and 608 Pesticides)
01	182550	Yes	NA	Yes	500 mL Poly - H2SO4	H2SO4	
01	182557	Yes	NA	Yes	250 mL Poly - HNO3	HNO3	
01	182570	Yes	NΑ	Yes	250 mL Poly - Unpres	NP	
01	182571	Yes	NA	Yes	250 mL Poly - Unpres	NP	
01	182578	Yes	NA	Yes	250 mL Amber - Unpres	NP	
02	182549	Yes	NA	Yes	500 mL Poly - H2SO4	H2SO4	
02	182556	Yes	NA	Yes	250 mL Poly - HNO3	HNO3	
02	182568	Yes	NA	Yes	250 mL Poly - Unpres	NP	
02	182569	Yes	NA	Yes	250 mL Poly - Unpres	ΝP	
02	182577	Yes	NA	Yes	250 mL Amber - Unpres	NP	
03	182548	Yes	NA	Yes	500 mL Poly - H2SO4	H2SO4	
03	182555	Yes	NA	Yes	250 mL Poly - HNO3	HNO3	
03	182566	Yes	NA	Yes	250 mL Poly - Unpres	NP	
03	182567	Yes	NA	Yes	250 mL Poly - Unpres	NP	
03	182576	Yes	NA	Yes	250 mL Amber - Unpres	NP	
04	182547	Yes	NA	Yes	500 mL Poly - H2SO4	H2SO4	
04	182554	Yes	NA	Yes	250 mL Poly - HNO3	HNO3	
04	182564	Yes	NA	Yes	250 mL Poly - Unpres	NP	
04	182565	Yes	NA	Yes	250 mL Poly - Unpres	NP	
04	182575	Yes	NA	Yes	250 mL Amber - Unpres	NP	
05	182546	Yes	NA	Yes	500 mL Poly - H2SO4	H2SO4	
05	182553	Yes	NA	Yes	250 mL Poly - HNO3	HNO3	
05	182562	Yes	NA	Yes	250 mL Poly - Unpres	NP	
05	182563	Yes	NA	Yes	250 mL Poly - Unpres	NP	

ESS Laboratory Sample and Cooler Receipt Checklist

Client:	Tighe & Bond - KPB/TB/MM				ESS Pro	oject ID:	171 <u>1482</u>						
					Date Re	eceived:	11/15/2017						
05	182574	Yes	NA	Yes	250 mL Amber - Unpres	NP							
06	182545	Yes	NA	Yes	500 mL Poly - H2SO4	H2SO4							
06	182552	Yes	NA	Yes	250 mL Poly - HNO3	HNO3							
06	182560	Yes	NA	Yes	250 mL Poly - Unpres	NP							
06	182561	Yes	NA	Yes	250 mL Poly - Unpres	NP							
06	182573	Yes	NA	Yes	250 mL Amber - Unpres	NP							
07	182544	Yes	NA	Yes	500 mL Poly - H2SO4	H2SO4							
07	182551	Yes	NA	Yes	250 mL Poly - HNO3	HNO3							
07	182558	Yes	NA	Yes	250 mL Poly - Unpres	NP							
07	182559	Yes	NA	Yes	250 mL Poly - Unpres	NP							
07	182572	Yes	NA	Yes	250 mL Amber - Unpres	NP							
1.0		1			_								
nd Review	م الم				Yes)/ No								
ve barcode	labels on do	rect contail	ners?		(res)/NO								
Completed		<i> \\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\</i>			۔ ایرا۔	- 1000							
By:					Date & Time:///_//) 170 <u>/</u>							
Reviewed By:			4		Date & Time:	ورهد را	1						
Delivered	- +	<i>>1</i> (.	} _			ال عود	a						
Ву:		\(\)	~			11 000	-						

ESS L	aborator	У		c	ESS La	b #		5	11 \	83)											
	f Thielsch Eng	_		Turn Time	5-Day	Rush	2-Day	Reporti	ina		' /	[[00	_								
		ranston RI 029	10	Regulatory State			,	Limit								GW-	1					
		x (401) 461-44	86	Is thi	Is this project for any of the following?: Electonic Limit Checker Standard E							Exce	Excel									
www.essla	aboratory.com			OCT RCP	Delivera	Deliverables ☑Other (Please Specify →) pdf																
		mpany Name ghe & Bond		Project # N-998-11		Project Nan lystic to Wot																
	Co	ntact Person		11 000 11	Addres	<u>.s</u>																
		ean Bebis			1 University						- 1											
				tate MA	Zip Code 02090	е	PO#	Analysis							_							
1	elephone Nu			lumber	02030 E	- `		, l				_	=									
	(508) 654-04			1		dsbebis@tighebond.com				Sec		≥	ic	ium	niur	e			_			
ESS Lab	Collection Date	Collection Time	Sample Type	Sample Matrix	Sample ID				Hd	Hardness	Cr+6	NH4 Salinity	Arsenic	Cadmium	Chromium III	Copper	Iron	Lead	Nickel	Silver	Zinc	
01	11-15-17	10:00	Grab	Surface Water		Mystic a	at Winter		Х	X	Х	X	Х	Х	Х	Х	Х	Х	Х		X	
02	11-15-17	10:30	Grab	Surface Water		Му	stic		X	X	X	X	X	Х	Х	X	Х	Х	Х		X	
03	11-15-17	9:30	Grab	Surface Water	ater Mystic Crossing					Х	Х	Х	Х	Х	Х	Х	Х	Х	Х		Х	
04	11-15-17	9:00	Grab	Surface Water	er Aberjona					X	Х	X	X	Х	Х	X	Х	Х	Х	Х	Х	
05	11-15-17	8:30	Grab	Surface Water	er Winter Pond					X	Х	X	Х	Х	Х	Х	Х	Х	Х	Х	X	
06	11-15-17	11:30	Grab	Surface Water			Х		Х	х х	Х	Х	Х	X	Х	Х	Х		X			
07	11-15-17	11:00	Grab	Surface Water		Mystic at	Laydown		X	Х	X	X	X	Х	Х	X	Х	Х	Х		Х	
					F																	
			tte AG-Amber Glas		C-Cubitainer G - G		ner P-Poly S-S	Sterile V-Vial														
			-2.5 gal 3-250 ml				9-4 oz 10-8 o	z 11-Other*				_										
Presei	vation Code:	1-Non Preserved	2-HCI 3-H2SO4	4-HNO3 5-NaOH 6-M	ethanol 7-Na2S2O3			H2O 11-Other*			_											
					ı		of Containers p	er Sample:														\perp
		Laboratory	y Use Only		Sampled by :	Colleen Br	rothers															
Coole	Present:		//C		Comments:		Please s	specify "Othe	r" pr	eserv	ative	and c	ontai	ners	type	s in	this	spa	се			
	s Intact:	/	95																			
Cooler T	emperature:	0.47	°C /		Eversource Pricing		1							1								
					(Signature, Date & T	Γime)	Relinquished	By: (Signature	, Dat	e & T	ime)		R	Recei	ved E	Зу: (8	Signa	ature	, Dat	e & -	Time)	
CollewEB rother "1:15-17				D W	5/17/10	5.00	NI CE	5/2	1	7:0	0	(9/	W	l	ulis	5/17)	185	5	
Re	linquished by:	(Signature, Da	ite & Time)	Received By: ((Signature, Date & T	Γime)	Relinquished	By: /Signature	, Dat	e & T	ime)		R	Recei	ved E	Зу: (Signa	ature	, Dat	e & -	Time)	
				,						1												

APPENDIX G

UNITED STATES ENVIRONMENTAL PROTECTION AGENCY

Region 1 5 Post Office Square, Suite 100 BOSTON, MA 02109-3912

VIA EMAIL

December 20, 2017

Michael Zylich Eversource Energy 247 Station Drive, SE270 Westwood, MA 02090 michael.zylich@eversource.com

Re: Authorization to discharge under the Remediation General Permit (RGP) – Authorization #MAG910759, for the Eversource Electrical Transmission Line Project site located in Winchester, MA

Dear Mr. Zylich:

Based on the review of a Notice of Intent (NOI) dated November 29, 2017 submitted by Tighe & Bond, Inc. for the site referenced above, the U.S. Environmental Protection Agency, Region 1 (EPA) hereby authorizes NSTAR Electric Company d/b/a Eversource Energy, as the named owner, and as a named operator and co-permittee with Bond Brothers, to discharge from this site in accordance with the provisions of the RGP. Since this site has discharges to different receiving waters, separate authorizations have been issued. Discharges via the City of Winchester storm sewer system¹ to Winter Pond (MA71-047) are authorized by the number listed above. Discharges from this site to Mystic River (MA71-02) are subject to authorization #MAG910761. The effective date of coverage is the date of this authorization letter.

Enclosed with this RGP authorization to discharge is a summary of the applicable parameters and effluent limitations for your activity category III, contaminated site dewatering discharge. A dilution factor of zero (i.e., 1:1), was used in calculating effluent limits applicable to the proposed discharge from this site. Please note that this summary does not represent the complete requirements of the RGP. Operators must comply with all of the applicable requirements of the RGP, including influent and effluent monitoring, record keeping, and reporting requirements. For the complete general permit, see EPA's RGP website.²

This EPA general permit and authorization to discharge will expire on **April 8, 2022**, or upon Notice of Termination (NOT), whichever occurs first. However, in accordance with Part 5.3 of the general permit, your permit coverage will be administratively continued until issuance of a new RGP. Please note that you must submit a NOT within thirty (30) days of the termination of the discharge. You have reported your discharges are expected to terminate December 2019. Because your discharge is expected to last

¹ The operator is responsible for obtaining permission to discharge to this system, prior to initiating discharges. EPA's authorization to discharge does not convey any such permission.

² https://www.epa.gov/npdes-permits/remediation-general-permit-rgp-massachusetts-new-hampshire.

twelve (12) months or more, you are subject to discharge monitoring requirements that begin **January 1, 2019**. See Part 4.6 and 5.2 of the RGP, and Appendix IV, Part 3 for more information regarding reporting requirements.

Please ensure that sufficiently sensitive test methods are used for all sample analyses conducted for this permit. To be considered sufficiently sensitive, test methods must achieve MLs for analysis for a given parameter that is no greater than the effluent limitation for that parameter, unless otherwise specified in the RGP for that parameter. Where no effluent limitation applies, EPA has provided the ML required with the enclosed summary. Where a compliance level applies, EPA has specified the compliance level and provided the ML required with the enclosed summary.

Thank you in advance for your cooperation in this matter. Please contact Shauna Little at (617) 918-1989 or little.shauna@epa.gov, if you have any questions.

Sincerely,

Thelma Murphy, Chief

Shelma Marphy

Storm Water and Construction Permits Section

Enclosure

cc:

Rick McKanas, Bond Brothers, via email

Gary W.T. Hedman, LSP, Tighe & Bond, Inc., via email

Michael E. Martin, Tighe & Bond, Inc., via email

Cathy Vakalopoulos, MassDEP, via email

City of Winchester, Department of Public Works, via email

GENERAL PERMIT FOR REMEDIATION ACTIVITY DISCHARGES

Table 1: Authorization Information

Permit Number	MAG910759
Receiving Water	Winter Pond
Outfall Number	Outfall 001 to City of Winchester
Monitoring Frequency	See Part 4.1.2 of the RGP
Donauting Dogwinsment	See Part 4.6.1 of the RGP;
Reporting Requirement	NetDMR requirements begin Jan 1, 2019

Table 2: Chemical-Specific Effluent Limitations and Monitor-Only Requirements¹

Parameter	Effluent Limitation
A. Inorganics	
Ammonia ²	Report mg/L
Chloride ³	Report µg/L
Total Suspended Solids	30 mg/L
Antimony ⁴	206 μg/L
Arsenic ⁴	104 μg/L
Cadmium ⁴	10.2 μg/L
Chromium III ⁴	323 μg/L
Chromium VI ⁴	323 μg/L
Copper ⁴	12.6 μg/L
Iron ⁴	$1,000~\mu g/L$
Lead ⁴	4.97 μg/L
Mercury ⁴	0.739 μg/L
Nickel ⁴	$1{,}450~\mu\mathrm{g/L}$
Selenium ⁴	235.8 μg/L
Silver ⁴	35.1 μg/L
Zinc ⁴	420 μg/L
B. Non-Halogenated Volatile Organic Compounds	
Total BTEX	$100~\mu g/L$
Benzene	$5.0\mu \mathrm{g/L}$
C. Halogenated Volatile Organic Compounds	
Methylene Chloride	$4.6\mu g/L$
D. Non-Halogenated Semi-Volatile Organic Compounds	
Total Phthalates	190 μg/L
Diethylhexyl Phthalate	2.2 μg/L
Total Group I Polycyclic Aromatic Hydrocarbons ⁵	$1.0\mu \mathrm{g/L}$
Benzo(a)anthracene ⁵	$0.0038\mu g/L$
Benzo(a)pyrene ⁵	$0.0038\mu g/L$
Benzo(b)fluoranthene ⁵	$0.0038\mu g/L$
Benzo(k)fluoranthene ⁵	$0.0038\mu g/L$
Chrysene ⁵	$0.0038\mu g/L$
Dibenzo(a,h)anthracene ⁵	$0.0038\mu g/L$
Indeno(1,2,3-cd)pyrene ⁵	$0.0038\mu g/L$
Total Group II Polycyclic Aromatic Hydrocarbons	$100~\mu g/L$

F. Fuels Parameters	
Methyl-tert-Butyl Ether	70 μg/L

Table 2 Notes:

Table 3: Effluent Flow Limitation

Effluent Flow	Effluent Limitation
Emuent Flow	0.504 MGD

Table 3 Notes

Table 4: pH Limitations for Discharges in Massachusetts

Receiving Water Class	Effluent Limitation
Freshwater	6.5 to 8.3 SU

Table 4 Notes

¹ The following abbreviations are used in Table 2, above:

^a mg/L = milligrams per liter

 $^{^{}b}$ µg/L = micrograms per liter

² The minimum level (ML) for analysis of ammonia must be less than or equal to 0.1 mg/L.

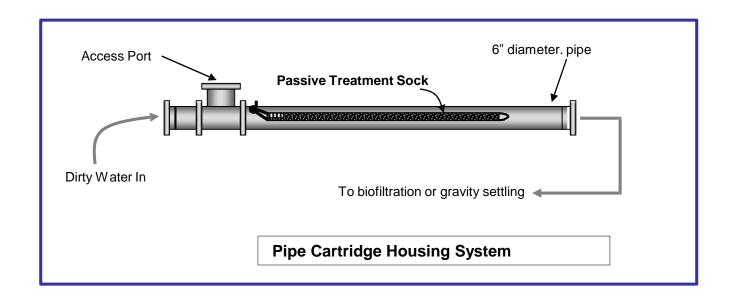
³ The ML for analysis of chloride must be less than or equal to 230 mg/L.

⁴ The limitation for this parameter is on the basis of total recoverable metal in the water column.

 $^{^5}$ The compliance level for group I polycyclic aromatic hydrocarbons (PAHs) is 0.1 $\mu g/L$. The ML for analysis of group I PAHs must be less than or equal to 0.1 $\mu g/L$.

¹ The following abbreviations are used in Table 3, above:

^a MGD = million gallons per day


¹ The following abbreviations are used in Table 4, above:

^a SU = standard units

APPENDIX H

How to Use the Passive Treatment Sock

Passive Treatment Sock 1-lb.

Specifications:

Length 36 Inches

Width: 5 in. diameter

Fabric: Woven polypropylene

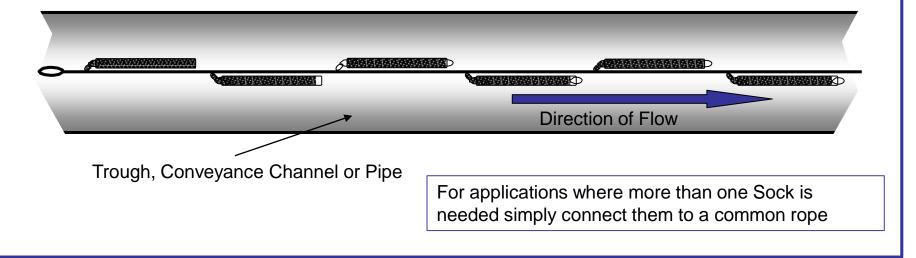
Chitosan: 1.0 lb (dry weight)

Treatment: 100,000 gal. @ 1 mg/L

Passive Treatment Sock 2-lb.

Specifications:

Length 72 Inches

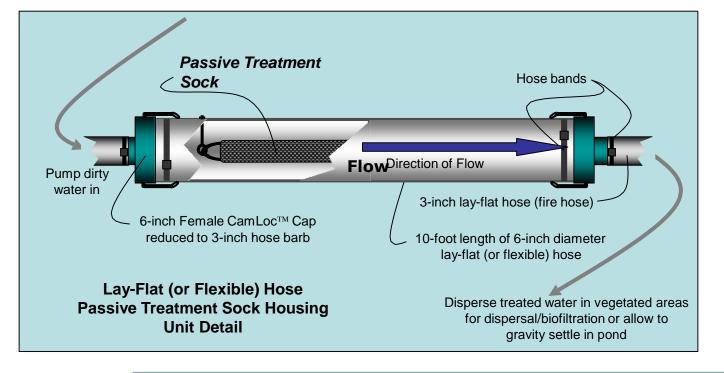

Width: 5 in. diameter

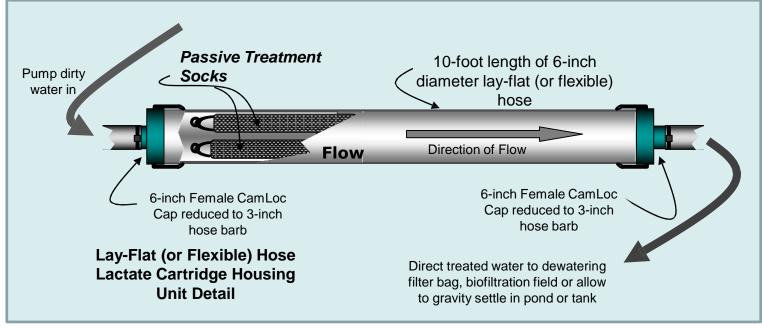
Fabric: Woven polypropylene

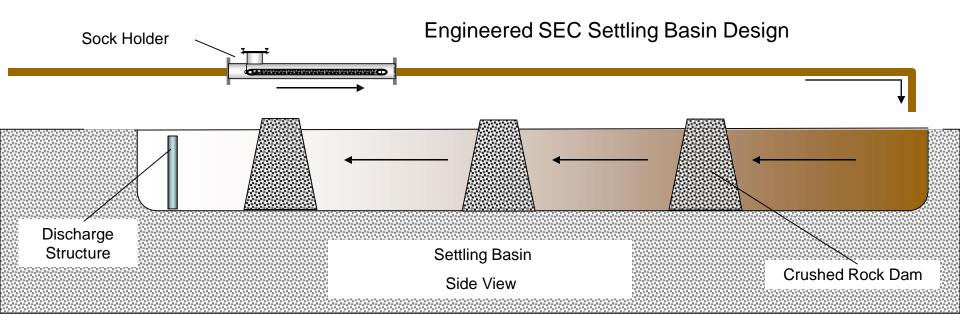

Chitosan: 2.0 lb (dry weight)

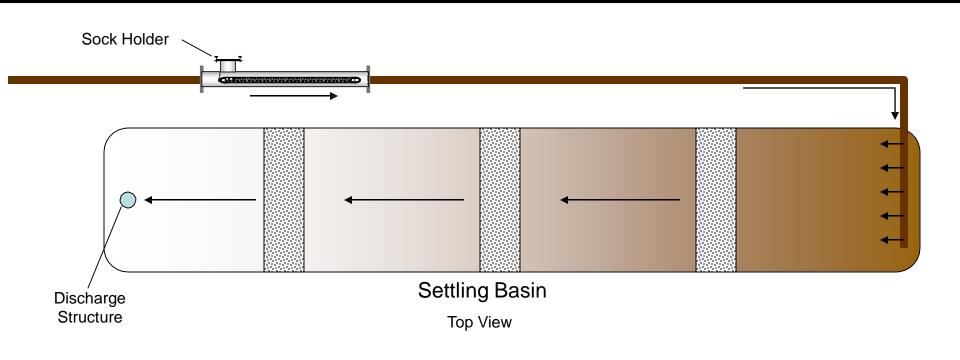
Treatment: 200,000 gal. @ 1 mg/L

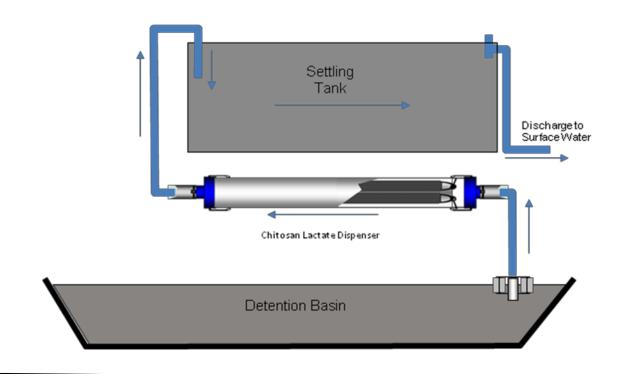
Passive Treatment Socks Connected to a Common Rope Tether in Series

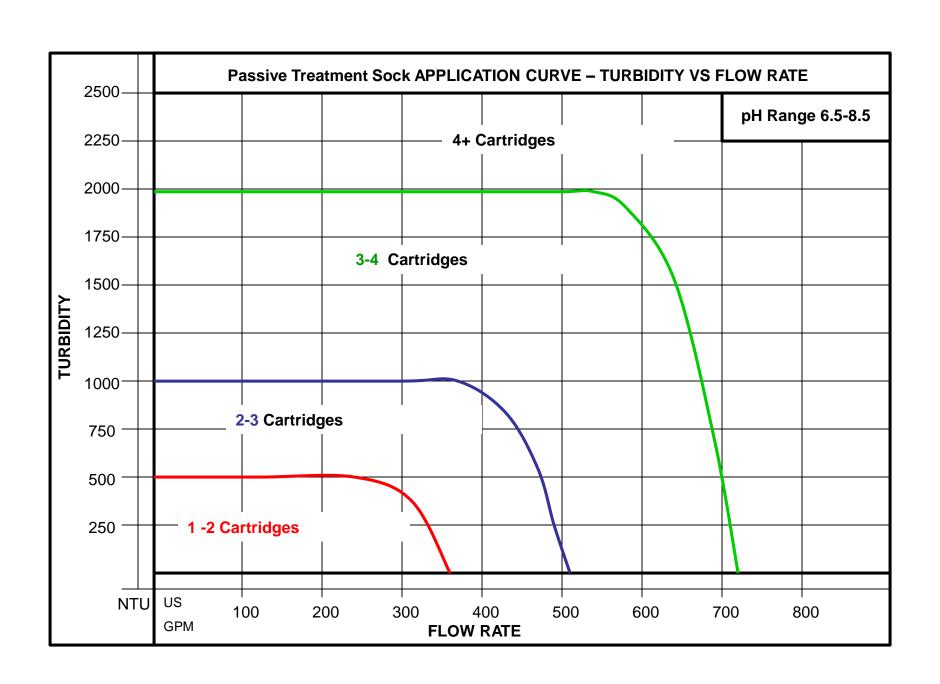



Passive Treatment Socks Connected to a Common Rope Tether in Parallel




Trough, Conveyance Channel or Pipe


For wide channel installation simply connect Socks in parallel



HaloKlear

PRODUCT FACTS

DUAL PRODUCT SYSTEM

WE'VE NEVER KILLED A FISH!

Clean Water. Naturally.

Description

HaloKlear's All-Natural Water Treatment System
The Dual Product System (DPS) is quickly gaining national and international recognition as the premier all-natural stormwater treatment solution, providing unparalleled performance and reliable results in an array of projects across the globe. HaloKlear DPS uses biodegradable, natural flocculants that perform on a wide array of soil types and pH ranges. In contrast to other products on the market, the HaloKlear Dual Product System creates dense flocs with great shear strength and a low water content that settle very quickly. Solids can be efficiently removed from the water column – increasing performance and productivity while keeping costs low. In addition, HaloKlear DPS is extremely flexible with a successful track record in active, passive, and semi-passive deployment.

GREEN FOR LESS

Don't just clean the water, clean the environment Our chemistries are less toxic when water is returned to its natural environment. All of HaloKlear's products exhibit exceptionally low toxicity, and the **Dual Product System** has been proven to have zero toxicity.* No bioaccumulation concerns exist when and where HaloKlear products are used, and our products are 100% biodegradable through enzymatic activity.

* Third-party toxicity testing concluded that no fish were killed by the Dual Product System (DPS) when both parts were used in combination of following Best Management Practices.

Product Benefits

- · Biodegradable natural flocculants
- Effective on a wide range of pH conditions and soil types
- Functions in active, semi-passive and passive applications
- · Effective in fresh water and salt water
- Works with existing equipment of a part of a customized product
- Capable of trapping hydrocarbons, metals and nutrients
- Increases performance and productivity while keeping costs low

Part One

LBP-2101 = Liquid
DBP-2100 = Dry socks
DBP-2100 MB = Loose, dry
DPS DC-1 = Dry concentrate
for making down into liquid**

Part Two

LiquiFloc = Liquid

GelFloc = Dry socks

GelFloc MB = Loose, dry

DPS DC-2 = Dry concentrate

for making down into liquid**

For additional information contact Dober at:

(800) 323-4983

info@dober.com

www.dober.com/water treatment

^{**}Not available in the North American market

BakerCorp Water Treatment Technology

Product Description (Dual Polymer Passive Treatment System)

DBP-2100 FS (Green product, very low toxicity) is a dry product most effective when used in conjunction with (**PTS**) chitosan lactate as part of a Dual Polymer System (DPS) to maximize floc size. This natural biopolymer is 100 percent biodegradable through simple natural enzymatic activity, leaving you no bioaccumulation concern. Currently being used in active, passive treatment systems. **(Dose & mix DBP-2100 first then add Chitosan lactate powder)**

Gel-Floc PTS Our Passive Treatment Sock product is an organic water clarifier made from high quality chitosan lactate flake and placed within a permeable fabric. It slowly dissolves as the water flows over and through the cartridge. Once in solution, the chitosan flocculates suspended sediment particles which settle and can be filtered out. This natural biopolymer is 100 percent biodegradable through simple natural enzymatic activity, leaving no bioaccumulation concern. Currently being used in construction, industrial, municipal, and log yard water treatment systems.

acc. to OSHA HCS

1 IDENTIFICATION

Product identifier

Product form : Substance

Product name : HaloKlear DBP-2100 Socks

Chemical name : Xanthan Gum
CAS No : 11138-66-2
Product code : 210014

· Relevant identified uses of the substance or mixture and uses advised against

Uses of the substance/mixture : Flocculant

· Manufacturer/Supplier:

Sound Environmental Concepts

22726 102nd Ave SE, Woodinville, WA 98077

1 (206) 730 - 5376

ray@soundenvirocon.com

- · Information department: Product safety department
- · Telephone number:
 - + 1 (206) 730 5376
- · Information department: Product safety department
- · Emergency telephone number: +1 (800) 424-9300 (24 Hours)

During normal opening times: +1 (425) 881-6464

CHEMTREC (Domestic, North America) +1-703-527-3887 CHEMTREC (International, collect calls accepted)

2 HAZARD(S) IDENTIFICATION

 Classification of the substance or mixture GHS-US Classification

Not classified

Trade Name: HaloKlear DBP-2100 Socks

2 HAZARD(S) IDENTIFICATION CONTD.

Label Elements
 GHS-US Labelling
 No labeling applicable

· Other hazards

Other hazards not contributing to

the classification

: May form combustible dust concentrations in air. May cause eye irritation.

Unknown acute toxicity (GHS-US)

Not applicable

3 COMPOSITION/INFORMATION ON INGREDIENTS

Substance

Substance type : Mono-constituent

Name : HaloKlear DBP-2100 Socks

CAS No : 11138-66-2

Fulltext of H-statements: see section 16

Mixture
Not applicable

4 FIRST AID MEASURES

· Description of first aid measures

First-aid measures general : Never give anything by mouth to an unconscious

person. If you feel unwell, seek medical advice (show

the label where possible).

First-aid measures after inhalation

First-aid measures after skin contact

: Allow breathing of fresh air. Allow the victim to rest.

 $: Removed \ affected \ clothing \ and \ wash \ all \ exposed \ skin$

area with mild soap and water, followed by warm

water rinse.

First-aid measures after eye contact : Rinse immediately with plenty of water. Obtain

medical attention if pain, blinking or redness

persist.

First-aid measures after ingestion

: Rinse mouth. Do NOT induce vomiting. Obtain

emergency medical attention.

Trade Name: HaloKlear DBP-2100 Socks

4 FIRST AID MEASURES

· Most important symptoms and effects, both acute and delayed

Symptoms/Injuries after eye contact : Not expected to present a significant hazard under

anticipated conditions of normal use.

 $\cdot\,$ Indication of any immediate medical attention and special treatment needed

No additional information available

5 FIRE-FIGHTING MEASURES

· Extinguishing media

Suitable extinguished media : Foam. Dry powder. Carbon dioxide. Water spray. Sand.

Unsuitable extinguishing media : Do not use a heavy water stream.

· Special hazards arising from the substance or mixture

Reactivity : The product is non-reactive under normal conditions

of use, storage and transport.

Advice for firefighters

Firefighting instructions : Exercise caution when fighting any chemical fire.

Eliminate all ignition sources if safe to do so.

Use water spray of fog for cooling exposed containers.

Protection during firefighting : Do not enter fire area without proper protective

equipment, including respiratory protection.

Other information : Spills produce extremely slippery surfaces. Avoid dust

formation.

6 ACCIDENTAL RELEASE MEASURES

· Personal precautions, protective equipment and emergency procedures

· For non-emergency personnel

Emergency procedures : Evacuate unnecessary personnel.

· For emergency responders

Protective equipment : Equip cleanup crew with proper protection.

Emergency procedures : Ventilate area

Environmental precautions

Prevent entry to sewers and public waters. Notify authorities if liquid enters sewers or public waters.

Trade Name: HaloKlear DBP-2100 Socks

6 ACCIDENTAL RELEASE MEASURES

· Personal precautions, protective equipment and emergency procedures

General measures : Use special care to avoid static electric charges.

For non-emergency personnel

Emergency procedures : Evacuate unnecessary personnel.

For emergency responders

Protective equipment : Equip cleanup crew with proper protection.

Emergency procedures : Ventilate area.

Environmental precautions

Prevent entry to sewers and public waters. Notify authorities if liquid enters sewers or public waters.

· Methods and material for containment and cleaning up

Methods of cleaning up : On land, sweep or shovel into suitable containers.

Minimize generation of dust. Store away from other

materials.

· Reference to other sections

See Section 8. Exposure controls and personal protection.

7 HANDLING AND STORAGE

· Precautions for safe handling

Precautions for safe handling : Wash hands and other exposed areas with mild soap

and water before eating, drinking or smoking and leaving work. Provide good ventilation in process area

to prevent formation of vapor. No smoking.

· Conditions for safe storage, including and incompatibles

Storage conditions : Keep only in the original container in a cool, well-

ventilated place. Keep container closed when not in use.

Incompatible products : Oxidizing agent.
Incompatible materials : Sources of ignition.

Specific end use(s)

No additional information available

8 EXPOSURE CONTROLS/PERSONAL PROTECTION

Control parameters

HaloKlear DBP-2100 Socks

ACGIH : Not applicable
OSHA : Not applicable

Trade Name: HaloKlear DBP-2100 Socks

8 EXPOSURE CONTROLS/PERSONAL PROTECTION

Exposure controls

Personal protective equipment : Avoid all unnecessary exposure.

Hand protection : Wear protective gloves/protective clothing/eye

protection/face protection protective gloves.

Eye protection : Chemical goggles or safety glasses.

Respiratory protection : Use a property fitted, particulate filter respirator

complying with an approved standard if a risk

assessment indicates this necessary. Respirator selection must be based on known or anticipated exposure levels, the hazards of the product and the safe working limits

of the selected respirator.

Other information : Do not eat, drink or smoke during use.

9 PHYSICAL AND CHEMICAL PROPERTIES

Information on basic physical and chemical properties

Physical state : Solid

Color : White to tan
Odor : odorless

Odour threshold : No data available

pH : approximately neutral (1% solution)

Relative evaporation rate : No data available Melting point : No data available Freezing point : No data available : No data available Boiling point : No data available Flash point Auto-ignition temperature : No data available Decomposition temperature : No data available Flammability (solid, gas) : No data available Vapor pressure : No data available Relative vapor density : No data available : No data available Relative density Solubility : Water: 100 % Log Pow : No data available Log Kow : No data available Viscosity, kinematic : No data available

Trade Name: HaloKlear DBP-2100 Socks

9 PHYSICAL AND CHEMICAL PROPERTIES

Viscosity, dynamic : No data available
Explosive properties : No data available
Oxidizing properties : No data available
Explosive limits : No data available

· Other Information

No additional information available

10 STABILITY AND REACTIVITY

· Reactivity

The product is non-reactive under normal conditions of use, storage and transport.

· Chemical stability

Stable under normal conditions.

· Possibility of hazardous reactions

No dangerous reactions known under normal conditions of use.

· Conditions to avoid

Avoid dust formation.

· Incompatible materials

Oxidizing agent.

· Hazardous decomposition products

Thermal decomposition generates: Carbon dioxide. Carbon monoxide. Fume.

11 TOXICOLOGICAL INFORMATION

· Information on toxicological effects

Acute toxicity : Not classified Skin corrosion/irritation : Not classified

pH: approximately neutral (1% solution)

Serious eye damage/irritation : Not classified

pH: approximately neutral (1% solution)

Respiratory or skin sensitization : Not classified
Germ cell mutagenicity : Not classified
Carcinogenicity : Not classified
Reproductive toxicity : Not classified
Specific target organ toxicity : Not classified

(single exposure)

Trade Name: HaloKlear DBP-2100 Socks

11 TOXICOLOGICAL INFORMATION

Specific target organ toxicity

: Not classified

(repeated exposure)

Aspiration hazard

: Not classified

Potential adverse human health

effects and symptoms : Based on available data, the classification criteria are

not met.

12 ECOLOGICAL INFORMATION

· Toxicity

HaloKlear DBP-2100 Socks (11138-66-2)

LC50 fish 1 491 mg/l Rainbow Trout; 96 hour

· Persistence and degradability

HaloKlear DBP-2100 Socks (11138-66-2)

Persistence and degradability The product is biodegradable

· Bioaccumulative potential

HaloKlear DBP-2100 Socks (11138-66-2)

Bioaccumulative potential Inherently biodegradable

· Mobility in soil

HaloKlear DBP-2100 Socks (11138-66-2)

Mobility in soil Not available

· Other adverse effects

Effect on Global warming : No known ecological damaged caused by this product.

Other information : No other effects known.

13 DISPOSAL CONSIDERATIONS

· Waste treatment methods

Waste disposal recommendations : Dispose of contents/container in accordance with

Licensed collector's sorting instructions.

Ecology – waste materials : None known.

Trade Name: HaloKlear DBP-2100 Socks

14 TRANSPORT INFORMATION

UN-No. (DOT):: Non RegulatedUN-No. (IMDG):: Non RegulatedUN-No. (IATA):: Non Regulated

· UN proper shipping name

Proper Shipping Name (DOT): : Not applicable
Proper Shipping Name (IMDG): : Not applicable
Proper Shipping Name (IATA): : Not applicable

Transport hazard class(es)

Transport hazard class(es) (DOT): : Not applicable
Transport hazard class(es) (IMDG): : Not applicable
Transport hazard class(es) (IATA): : Not applicable

Packing group

Packing group (DOT): : Not applicable
Packing group (IMDG): : Not applicable
Packing group (IATA): : Not applicable

· Environmental hazards

Marine pollutant(IMDG): : No Marine pollutant(IATA): : No

15 REGULATORY INFORMATION

US Federal regulations

All components of this product are listed, or excluded from listing, on the United States Environmental Protection Agency ToxicSubstances Control Act (TSCA) inventory.

This product or mixture does not contain a toxic chemical or chemicals in excess of the applicable de minimis concentration as specified in 40 CFR §372.38(a) subject to the reporting requirements of section 313 of Title III of the Superfund Amendments and Reauthorization Act of 1986 and 40 CFR Part 372.

· International Regulations

Canada

Aluminum chloride hydroxide sulfate (39290-78-3)

No additional information available

Trade Name: HaloKlear DBP-2100 Socks

15 REGULATORY INFORMATION

· US State regulations

California Proposition 65 - This product does not contain any substances known to the state of California to cause cancer, developmental and/or reproductive harm.

16 OTHER INFORMATION

Other information: : None

NFPA health hazard : 0 - Exposure under fire conditions would offer no

hazard beyond that of ordinary combustible

materials.

NFPA fire hazard : 0 - Materials that will not burn.

NFPA reactivity : 0 - Normally stable, even under fire exposure

conditions, and are not reactive with water.

NFPA specific hazard : NA - Not Applicable

HMIS III Rating

Health : 0 - No significant risk to health

Flammability : 0
Physical : 0
Personal Protection : B

acc. to OSHA HCS

1 IDENTIFICATION

· Product identifier

· Trade name: HaloKlear: Gel-Floc

- · Details of the supplier of the safety data sheet
- · Manufacturer/Supplier:

Sound Environmental Concepts 22726 102nd Ave SE, Woodinville, WA 98077 1 (206) 730 - 5376 ray@soundenvirocon.com

- · Information department: Product safety department
- · Telephone number:
 - + 1 (206) 730 5376
- · Information department: Product safety department
- · Emergency telephone number: +1 (800) 424-9300 (24 Hours)

During normal opening times: +1 (425) 881-6464

CHEMTREC (Domestic, North America) +1-703-527-3887 CHEMTREC (International, collect calls accepted)

2 HAZARD(S) IDENTIFICATION

· Classification of the substance or mixture

The product is not classified according to the Globally Harmonized System (GHS).

.....

• Classification according to Directive 67/548/EEC or Directive 1999/45/EC *Not applicable*. Information concerning particular hazards for human and environment:

The product does not have to be labeled due to the calculation procedure of international guidelines Classification system:

The classification was made according to the latest editions of international substances lists, and expanded upon from company and literature data.

Trade Name: HaloKlear: Gel-Floc

2 HAZARD(S) IDENTIFICATION CONTD.

- · Label elements
- · Labelling according to EU guidelines:

Observe the general safety regulations when handling chemicals. The product is not subject to identification regulations according to directives on hazardous materials.

- · Classification System
 - NFPA ratings (scale 0 4)
 - · Health = 0
 - · Fire = 0
 - · Reactivity = 0

- · HMIS-ratings (scale 0 4)
 - · Health = 0
 - · Fire = 0
 - · Reactivity = 0

- Other hazards
- · Results of PBT and vPvB assessment
- · PBT: Not applicable
- · vPvB: Not applicable

3 COMPOSITION/INFORMATION ON INGREDIENTS

· Chemical characterization: Mixtures

• **Description:** *Mixture of the substances listed below with nonhazardous additions.*

· Dangerous components: Void

4 FIRST-AID MEASURES

- · Description of first aid measures
- · General information: No special measures required.
- · **After inhalation:** Supply fresh air; consult doctor in case of complaints.
- · **After skin contact:** Generally the product does not irritate the skin.
- · After eye contact: Rinse opened eye for several minutes under running water.
- · After swallowing: If symptoms persist consult doctor.

Trade Name: HaloKlear: Gel-Floc

4 FIRST AID MEASURES CONTD.

- · Information for doctor:
- Most important symptoms and effects, both acute and delayed *No further relevant information available.*
- · Indication of any immediate medical attention and special treatment needed No further relevant information available

5 FIRE-FIGHTING MEASURES

- · Extinguishing media
- **Suitable extinguishing agents:** *CO2, extinguishing powder or water spray. Fight larger fires with water spray or alcohol resistant foam.*
- · Special hazards arising from the substance or mixture *No further relevant information available.*
- · Advice for firefighters
- · Protective equipment: No special measures required.

6 ACCIDENTAL RELEASE MEASURES

- · Personal precautions, protective equipment and emergency procedures Not required.
- · Environmental precautions: Do not allow to enter sewers/ surface or ground
- · Methods and material for containment and cleaning up: Pick up mechanically
- · Reference to other sections

See Section 7 for information on safe handling.

See Section 8 for information on personal protection equipment.

See Section 13 for disposal information.

7 HANDLING AND STORAGE

- · Handling:
- Precautions for safe handling No special measures required.
- · Information about protection against explosions and fires: No special measures required.
- · Conditions for safe storage, including any incompatibilities
- Storage:
- · Requirements to be met by storerooms and receptacles: No special requirements.
- · Information about storage in one common storage facility: Not required.
- · Further information about storage conditions: None.
- Specific end use(s) Water flocculent

Trade Name: HaloKlear: Gel-Floc

8 EXPOSURE CONTROLS/PERSONAL PROTECTION CONTD.

- · Additional information about design of technical systems: No further data; see item 7.
- · Control parameters
- Components with limit values that require monitoring at the workplace:
 The product does not contain any relevant quantities of materials with critical values that have to be monitored at the workplace.
- · Additional information: The lists that were valid during the creation were used a basis.
- · Exposure controls
- · Personal protective equipment:
- General protective and hygienic measures:

The usual precautionary measures for handling chemicals should be followed.

- · Breathing equipment: Not required.
- Protection of hands:

The glove material has to be impermeable and resistant to the product/ the substance/ the preparation. Due to missing tests no recommendation to the glove material can be given for the product/ the preparation/ the chemical mixture. Selection of the glove material on consideration of the penetration times, rates of diffusion and the degradation

Material of gloves

The selection of the suitable gloves does not only depend on the material, but also on further marks of quality and varies from manufacturer to manufacturer. As the product is a preparation of several substances, the resistance of the glove material can't be calculated in advance and has therefore to be checked prior to the application.

Penetration time of glove material

The exact break through time has to be found out by the manufacturer of the protective gloves and has to be observed.

• **Eye protection:** *Not required.*

9 PHYSICAL AND CHEMICAL PROPERTIES

- · Information on basic physical and chemical properties
- · General Information
- Appearance:

Form: PowderColor: Whitish

Odor: Product specificOdour threshold: Not determined

pH-value at 20 °C (68 °F):

Not applicable

Trade Name: HaloKlear: Gel-Floc

Kinematic:

9 PHYSICAL AND CHEMICAL PROPERTIES CONTD. · Change in condition Melting point/Melting range: Undetermined Boiling point/Boiling range: > 999 °C (> 1830 °F) · Flash point: Not applicable · Flammability (solid, gaseous): Not determined · Ignition temperature: · Decomposition temperature: Not determined · Auto igniting: Product is not selfigniting · Danger of explosion: Product does not present an explosion hazard.\ · Explosion limits: Lower: Not determined **Upper:** Not determined · Vapor pressure at 20 °C (68 °F): Not applicable Density at 20 °C (68 °F): Not determined · Relative density Not determined · Vapour density Not applicable · Evaporation rate Not applicable · Solubility in / Miscibility with Insoluble Water: · Partition coefficient (n-octanol/water): Not determined · Viscosity: **Dynamic:** Not applicable

Not applicable

Trade Name: HaloKlear: Gel-Floc

9 PHYSICAL AND CHEMICAL PROPERTIES CONTD.

· Solvent content:

Organic solvents: 0.0 % Solids content: 100.0%

• **Other information** No further relevant information available.

10 STABILITY AND REACTIVITY

- Reactivity
- · Chemical stability
- Thermal decomposition / conditions to be avoided: No decomposition if used according to specifications.
- · Possibility of hazardous reactions *No dangerous reactions known.*
- · Conditions to avoid No further relevant information available.
- · Incompatible materials: No further relevant information available.
- · Hazardous decomposition products: No dangerous decomposition products known.

11 TOXICOLOGICAL INFORMATION

- · Information on toxicological effects
- · Acute toxicity:
- · Primary irritant effect:
- · on the skin: No irritant effect.
- · on the eye: No irritating effect.
- · Sensitization: No sensitizing effects known.
- · Additional toxicological information:

The product is not subject to classification according to internally approved calculation methods for preparations:

When used and handled according to specifications, the product does not have any harmful effects according to our experience and the information provided to us.

Carcinogenic categories

• IARC (International Agency for Research on Cancer)

None of the ingredients is listed.

· NTP (National Toxicology Program)

None of the ingredients is listed.

Trade Name: HaloKlear: Gel-Floc

11 TOXICOLOGICAL INFORMATION CONTD.

OSHA-Ca (Occupational Safety & Health Administration)
 None of the ingredients is listed.

12 ECOLOGICAL INFORMATION

- · Toxicity
- · Aquatic toxicity: No further relevant information available.
- · Persistence and degradability No further relevant information available.
- · Behavior in environmental systems:
- · **Bioaccumulative potential** *No further relevant information available.*
- · Mobility in soil No further relevant information available.
- · Additional ecological information:
- General notes: Water hazard class 1 (self-assessment): Slightly hazardous for water.
 Do not allow undiluted product or large quantities of it to reach ground water, water course or sewage system.
- · Results of PBT and vPvB assessment
- · **PBT:** Not applicable.
- · **vPvB:** Not applicable.
- · Other adverse effects No further relevant information available.

13 DISPOSAL CONSIDERATIONS

- · Waste treatment methods
- · **Recommendation:** *Smaller quantities can be disposed of with household waste.*
- · Uncleaned packaging:
- **Recommendation:** *Disposal must be made according to official regulations.*

14 TRANSPORT INFORMATION

Not regulated

- · UN-Number
- · DOT, IMDG, IATA

· UN proper shipping name

· DOT, IMDG, IATA Not regulated

Trade Name: HaloKlear: Gel-Floc

Transport hazard class(es)	
DOT, IMDG, IATA	
Class	Not regulated
Packing group	
DOT, IMDG, IATA	Not regulated
Special precautions for user	Not applicable
Transport in bulk according to Annex II of	
MARPOL73/78 and the IBC Code	Not applicable
UN "Model Regulation":	-
Safety, health and environmental regulati	ons/legislation specific for the substance
Safety, health and environmental regulati Sara Section 355 (extremely hazardous substant None of the ingredients are listed.	ons/legislation specific for the substance
Safety, health and environmental regulati Sara Section 355 (extremely hazardous substan	ons/legislation specific for the substance
Safety, health and environmental regulati Sara Section 355 (extremely hazardous substant None of the ingredients are listed. Section 313 (Specific toxic chemical listing None of the ingredients are listed.	ons/legislation specific for the substance
Safety, health and environmental regulati Sara Section 355 (extremely hazardous substan None of the ingredients are listed. Section 313 (Specific toxic chemical listing	ons/legislation specific for the substance
Safety, health and environmental regulati Sara Section 355 (extremely hazardous substant None of the ingredients are listed. Section 313 (Specific toxic chemical listing None of the ingredients are listed. TSCA (Toxic Substances Control Act):	ons/legislation specific for the substance
Safety, health and environmental regulati Sara Section 355 (extremely hazardous substant None of the ingredients are listed. Section 313 (Specific toxic chemical listing None of the ingredients are listed. TSCA (Toxic Substances Control Act): All ingredients are listed.	ons/legislation specific for the substance
Safety, health and environmental regulati Sara Section 355 (extremely hazardous substan None of the ingredients are listed. Section 313 (Specific toxic chemical listing None of the ingredients are listed. TSCA (Toxic Substances Control Act): All ingredients are listed. Proposition 65	ons/legislation specific for the substance
Safety, health and environmental regulati Sara Section 355 (extremely hazardous substant None of the ingredients are listed. Section 313 (Specific toxic chemical listing None of the ingredients are listed. TSCA (Toxic Substances Control Act): All ingredients are listed. Proposition 65 Chemicals known to cause cancer:	ons/legislation specific for the substance ces):

Trade Name: HaloKlear: Gel-Floc

15 REGULATORY INFORMATION CONTD.

· Chemicals known to cause developmental toxicity:

None of the ingredients are listed.

- · Carcinogenic categories
- EPA (Environmental Protection Agency)

 None of the ingredients are listed.
- TLV (Threshold Limit Value established by ACGIH)
 None of the ingredients are listed.
- NIOSH-Ca (National Institute for Occupational Safety and Health)

 None of the ingredients are listed.
- Product related hazard informations:

Observe the general safety regulations when handling chemicals. The product is not subject to identification regulations according to directives on hazardous materials.

· Chemical safety assessment: A Chemical Safety Assessment has not been carried out.

16 OTHER INFORMATION

This information is based on our present knowledge. However, this shall not constitute a guarantee for any specific product features and shall not establish a legally valid contractual relationship.

- **Department issuing SDS:** *Environment protection department.*
- · Contact: Mrs. Jackson

Date of preparation / last revision 02/09/2015 / - Present

· Abbreviations and acronyms:

ADR: Accord européen sur le transport des marchandises dangereuses par Route (European Agreement concerning the International

Carriage of Dangerous Goods by Road)

IMDG: International Maritime Code for Dangerous Goods

DOT: US Department of Transportation

IATA: International Air Transport Association

ACGIH: American Conference of Governmental Industrial Hygienists EINECS: European Inventory of Existing Commercial Chemical Substances

ELINCS: European List of Notified Chemical Substances

Trade Name: HaloKlear: Gel-Floc

16 OTHER INFORMATION CONTD.

CAS: Chemical Abstracts Service (division of the American Chemical Society)

NFPA: National Fire Protection Association (USA)

HMIS: Hazardous Materials Identification System (USA)