

N-0998-11-13 December 1, 2017 Updated October 9, 2019

Ms. Shauna Little
United States Environmental Protection Agency – Region 1
1 Congress Street, Suite 1100
Boston, Massachusetts 02114-2023

Re: Submittal of Notice of Intent (NOI) Remediation General Permit (RGP)
Operator Modification
Construction Dewatering
Lower Mystic River Dam to the Amelia Earhart Dam
Medford, Massachusetts 01890
MAG910761

Dear Ms. Little:

On behalf of NSTAR Electric Company d/b/a Eversource Energy (Eversource), Tighe & Bond, Inc. (Tighe & Bond) has prepared this Notice of Intent (NOI) application for a National Pollutant Discharge Elimination System (NPDES) Remediation General Permit (RGP) for the proposed construction dewatering activities conducted during installation of a new below grade electric transmission line and associated manholes along Winthrop Street, South Street, Main Street and Mystic Ave. in Medford and Somerville, to the border with the City of Boston (the Site). A copy of the previous NOI is included in Appendix A. The limits of the Site are shown on the Aerial Dewatering Site Plan (Figure 1) and the Massachusetts Geographic Information Systems (MassGIS) Priority Resource Map (Figure 2) in Appendix B.

The purpose of this NOI is to facilitate the change in operator status to add another contractor, the Middlesex Corporation (Middlesex) to the existing permit. Based on a discussion with Ms. Little, a NOI submission was required to facilitate the process.

As there is a need to treat and discharge water generated from the construction dewatering activities, the enclosed NOI form provides required information on general Site conditions, proposed treatment systems, discharge locations, receiving water, and laboratory analytical results from pre-discharge sampling and surface water sampling. The proposed treatment systems are shown on Figure 3 (Process Flow Diagram) in Appendix B. The excavation dewatering and discharge of treated groundwater are scheduled to resume in October 2019 and end in December 2020.

Dewatered groundwater at the Site will be treated by a groundwater treatment system before being discharged to on-site catch basins and into a stormwater drainage system managed by the City of Medford. All stormwater drainage systems subject to this RGP discharge to the Mystic River upstream the Amelia Earhart Dam. Post treatment discharge rates will range from 25 gallons per minute (GPM) to 150 GPM.

Project Background

The overall project involves the installation of 7.7 miles of new electric transmission line and 19 manholes between Mystic Substation 250 in Charlestown, Massachusetts to the Woburn Substation 211 in Woburn Massachusetts. The proposed electrical transmission line trench

will measure approximately three feet wide and will be installed at an approximate depth of five feet below ground surface (BGS). The manholes will be approximately 10 feet wide, by 25 feet long and 10 feet deep. Initial pre-characterization efforts have indicated that the average depth to groundwater at the Site is approximately seven feet BGS. Property uses along the project route are primarily commercial and residential.

This RGP Permit Application is for the discharge of treated groundwater to the City of Medford stormwater drainage system and ultimately to the Mystic River.

MCP History

During the pre-construction soil assessment activities, concentrations of lead and polycyclic aromatic hydrocarbons (PAHs) were detected in soil samples B-52, B-65, B-66, B-70, B-76 MH-17 and MH-18 above the respective Massachusetts Department of Environmental Protection (MassDEP) Reportable Concentration (RCS-1/RCS-2) values.

On September 14, 2017, Tighe & Bond, on behalf of Eversource, submitted a Utility-related Abatement Measure (URAM) Notification Report to MassDEP under Release Tracking Number (RTN) 3-34457. The URAM details measures implemented to manage excess soils and groundwater generated during the installation of the new underground electric transmission line and electric manholes along Mystic Ave. Boundaries of the URAM are shown on Figure 1 in Appendix B.

Groundwater Characterization

To characterize groundwater along the proposed route of construction, groundwater samples were collected from groundwater monitoring wells MW-102 and MW-103 in January 2017 and MW-15 and MW-17 in September 2017. The groundwater samples were submitted for laboratory analysis for Environmental Protection Agency (EPA) RGP parameters. The laboratory analytical results are summarized in Table 1 included in Appendix E. A copy of the laboratory analytical report is included in Appendix F. Laboratory analytical results were compared to the RGP Technology Based Effluent Limitations (TBEL) and Water Quality Based Effluent Limit (WQBEL).

Contaminants of concern are analytes that exceeded either the TBEL or WQBEL. Contaminants of concern detected in at least one of the monitoring wells MW-102, MW-103, MW-505A, MW-15 and MW-17 include, group I PAHs, iron, and total suspended solids (TSS). Since these monitoring wells were installed either adjacent to or within a roadway, chloride detected in groundwater samples is likely associated with road salting during the winter months.

Receiving Water Characterization

Mystic River (waterbody identification MA71-02) after the Lower Mystic Dam and before the Amelia Earhart Dam, is classified as a Class B impaired water body and is listed in the 303(d) Impaired Waterbodies Document. According to the United States Geologic Survey's StreamStats online application, the 7Q10 value at Mystic River was calculated at 2.27 million gallons per day (MGD).

As required by the NPDES RGP surface water samples were collected prior to discharging and analyzed for contaminants of concern that were present in the effluent samples from the monitoring wells discussed above. Surface water samples were collected in November 2017 and sent for laboratory analysis of metals detected in the groundwater samples, ammonia, hexavalent chromium, pH and hardness. Four surface water samples were

collected along the Mystic River within a quarter mile of potential outfall locations and are shown on Figure 1 (Aerial Dewatering Site Plan) in Appendix B.

Treatment System

Dewatered groundwater at the Site will be treated by a mobile system before being discharged to on-Site catch basins and into a stormwater drainage system managed by the Town of Winchester stormwater drainage system ultimately discharging to the Aberjona River. A list of the proposed stormwater outfall, including location, latitude/longitude coordinates, municipality and system owner is provided in Appendix A.

Mobile Treatment System

Depending on the level of treatment required and discharge flow rate, the mobile treatment system will be mounted on two 30-foot mobile trailers. The mounted treatment system could consist of a flocculant tube, particulate filter units, bag filters and/or granular activated carbon (GAC)/clay filter, as shown on Figure 3 in Appendix B "Process Flow Diagram". Based on effluent monitoring results, the treatment system or flow rate will be modified to comply with the effluent limits. The Safety Data Sheets (SDS) associated with the treatment system are provided in Appendix H.

Flow Rate (GPM)	Proposed Treatment System
0-50	TSS treatment via a silt/pipe sock or bag filter
50-150	Two 30-foot trailer with particulate filter units, bag filters and/or GAC/clay filter. Coagulants/flocculants

Chemical & Additives Information

Based on groundwater samples collected from the Site and in order to achieve effluent limitations for the groundwater, coagulants/ flocculants have been added to the treatment system. Information for the coagulants/ flocculants as required in Part 2.5.2.g.iii of the RGP is provided below. Please note, the product name, chemical abstract service (CAS) number, chemical formula, and manufacturer of the chemical/additives are provided in the SDS included in Appendix H.

To achieve effluent limitations specifically for TSS, coagulants/flocculants as part of the HaloKlear Dual Polymer System (DBP) have been added to the treatment system design. The DPS uses a sequence of coagulation (DBP-2100) and flocculation (GEL-Floc) treatment reactions to remove particles from the influent. The coagulant will neutralize the electrical charges which make particles suspended in solution, and the flocculant will collect the particles so they can agglomerate. Agglomerates will then settle out of solution in the following fractionation tanks and/or bag filters prior to effluent discharge. Through the removal of suspended solids within the water stream, it is anticipated that metals adsorbed to soil particles will also settle out and the metals concentrations in the effluent will decrease.

The DPS uses a sequence of polymers that perform coagulation and flocculation reactions. Both the coagulant (DBP-2100) and flocculant (GEL-Floc) are dry powders integrated into the treatment system as socks, placed within the flocculant tube. The socks continually dose as the influent flows through the tube; therefore, the method of application is in-line discharge prior to water entering the fractionation tanks. Each sock doses at 200 parts per million (ppm) for a flow of 150 GPM. Since flow through the sock is 150 GPM, the maximum concentration would be 200 ppm per minute. Since the dosing is dependent on flow through the treatment system, the frequency and duration at which influent is exposed to the

coagulant/flocculant is continuous flow, whenever dewatering is occurring. The coagulant/flocculant will be added at a constant dosage rate of 200 ppm per minute. The treatment system will be operated for a maximum of 8 hours per day for a maximum daily concentration of 288,000 ppm per day.

Required Statements

As required in Part 2.5.3.d.ii, the addition of coagulants/flocculants as proposed for this treatment system:

- 1) Will not add any pollutants in concentrations which exceed permit effluent limitations;
- 2) Will not exceed any applicable water quality standards;
- 3) Will not add any pollutants that would justify the application of permit conditions that are different from or absent in this permit.

Chemicals included in the DPS are naturally derived and 100% biodegradable. The coagulant (DBP-2100) is a dry powder formulated from a plant-based protein, and the flocculant (GEL-Floc) is made from chitosan lactate, which is made from crustacean exoskeletons. Additionally, the chemical combinations proposed as part of the coagulant/flocculants passed fish kill studies.

Best Management Practices Plan

Tighe & Bond designed a Best Management Practices Plan (BMPP) for the groundwater extraction and treatment systems for the Site. The BMPP meeting the requirement of the RGP will be developed and implemented upon initiation of the discharge.

Owner and Operator

Owner

NSTAR Electric Company d/b/a Eversource Dean S. Bebis 247 Station Drive Westwood, MA 02090

Operator

Middlesex Corporation Jose Nieto 1 Spectacle Pond Road Littleton, MA 01460

Notice of Intent

Preparation of this NOI has included a review of the literature pertaining to Areas of Critical Environmental Concern (ACEC), Endangered Species Act (ESA), and the National Historic Preservation Act (NHPA), as documented below:

- Review of a MassGIS Priority Resource Map, Figure 2, shows the Site is not within an ACEC;
- Review of the "Federally Listed Endangered and Threatened Species in Massachusetts" (Appendix C) found that there are two listed species in Middlesex County. The first species is the whorled pogonia which prefers forest habitat, and the second species is the northern long-eared bat, which prefers mines and caves in the winter and forested habitats in the summer. The small whorled pogonia is found in the Groton area while the northern long-eared bat is found statewide. As the Site is not in Groton, the small whorled pogonia will not be affected from construction activities or from the proposed discharges. The project area consists of an asphalt roadway that borders residential and commercial areas. No vegetation will be

disturbed during construction activities. As a result, it is the opinion of Tighe & Bond that the habitats for northern long-eared bat will not be disturbed during construction activities. Additionally, the discharge is to the Mystic River and ultimately Boston Inner Harbor which is not a habitat where the northern long-eared bat exists.

- According to United States Fish and Wildlife Services (USFWS) Information, Planning and Conservation (IPaC) tool there are no critical habitats within the Site. USFWS confirmed there are no critical habitats in the area and confirmed permit eligibility meets "Criterion A."
 - Additionally, according to the MassGIS Priority Resource Map, no NHESP Priority Habitats for Rare Species or Estimated Habitats for Rare Wildlife, were present within half a mile downstream of the discharge location. Therefore, permit eligibility meets "Criterion A."
- As shown on the map generated by the MassGIS online viewer (Figure 2), no ACECs or Estimated Habitats of Rare Wildlife areas are located within half a mile downstream of the discharge location.
- An electronic review of the Massachusetts Cultural Resource Information System database (Appendix D), made available through the Massachusetts Historical Commission, found several historical areas along Winthrop Street, South Street, Main Street and a portion of Mystic Ave in Medford, Massachusetts. Discharges and discharge related activities do not have the potential to cause effects on these historic properties as the discharge activities are limited to the roadway and will go through already existing drainage systems. Therefore, permit eligibility meets "Criterion B."
- Groundwater samples were collected from on-Site groundwater monitoring wells MW-102 and MW-103, in January 2017 and MW-15 and MW-17 in September 2017. The groundwater samples were submitted for laboratory analysis for RGP parameters. Laboratory analytical results were compared to *Table 1: Parameters, Required Minimum Levels (MLs), and Common Test Methods, used for selecting sufficiently sensitive test methods for RGP NOI preparation*. Although some of the laboratory analytical results do not meet the requirements set in Table 1, it is the opinion of Tighe & Bond that data collected meets the Existing Data Substitution, as specified in the RGP Part 4, Section 5. The laboratory analytical results are summarized in Table 1 included in Appendix E. Copies of the laboratory analytical reports are included in Appendix F. Laboratory analytical results were compared to the RGP TBEL and WQBEL to determine the applicable effluent limitations for the Project Site.
- Surface water samples were collected from Mystic River within a quarter mile of the
 potential outfall locations in November 2017. The surface water samples were
 submitted for laboratory analysis of RGP parameters that were detected in the
 effluent samples. The laboratory analytical results are summarized in the Table 2
 included in Appendix E. A copy of the laboratory analytical report is included in
 Appendix F.

Based on the critical low flow (7Q10) value of the receiving water, 2.27 MGD and the proposed maximum discharge rate of up to 150 GPM (0.288 MGD), a dilution factor of 8.88 was established for this permit and was verified by the Massachusetts Department of Environmental Protection (MassDEP) on July 19, 2019 and included Appendix E. The 7Q10 value was calculated using the United States Geologic Survey's StreamStats online application, and the dilution factor was calculated as instructed by the EPA *Dilution Factor and Effluent Limitation Calculations for Massachusetts*, Appendix V.

The proposed treatment systems have been designed to reduce contaminants of concern to below the applicable effluent limits. Effluent compliance monitoring will be conducted on a monthly basis and the effluent samples submitted for environmental laboratory analysis of the parameters specified in EPA Authorization MAG910761, dated December 20, 2017. A copy of the EPA authorization is included in Appendix G. Additionally, the flow rate, pH and turbidity levels will be monitored in the field and recorded. If you need any additional information or assistance on this project, please do not hesitate to contact Bryan Gammons at (508) 304-6366 or Michael Martin at (508) 304-6355 at your convenience.

Very truly yours,

TIGHE & BOND, INC.

Bryan O. Gammons

Senior Environmental Scientist

Michael E. Martin Project Manager

Enclosures

Copy: Michael Zylich, Eversource Dean Bebis, Eversource

Jose Nieto, Middlesex Corporation

MassDEP, Division of Watershed Management

MassDEP, Boston

List of Appendices

Appendix A Notice of Intent

Appendix B Figures

Appendix C Federally Endangered Species in Massachusetts, USFWS Consultation Letter

Appendix D Massachusetts Cultural Resources Information System Report

Appendix E MassDEP Dilution Factor Confirmation

WOBEL Calculations

Groundwater Summary Table 1 Surface Water Summary Table 2

Appendix F Laboratory Analytical Results
Appendix G EPA Authorization MAG910761
Appendix H Treatment SDS and Diagrams

List of Figures

Figure 1	Aerial Dewatering Site Plan
Figure 2	MassDEP Priority Resource Map
Figure 3	Process Flow Diagrams

- 6 -

APPENDIX A

II. Suggested Format for the Remediation General Permit Notice of Intent (NOI)

A. General site information:

1. Name of site:	Site address:						
	Street:						
	City:		State:	Zip:			
2. Site owner	Contact Person:						
	Telephone:	Email:					
	Mailing address:						
	Street:						
Owner is (check one): ☐ Federal ☐ State/Tribal ☐ Private ☐ Other; if so, specify:	City:		State:	Zip:			
3. Site operator, if different than owner	Contact Person:						
	Telephone:						
	Mailing address:						
	Street:						
	City:		State:	Zip:			
4. NPDES permit number assigned by EPA:	5. Other regulatory program(s) that apply to the site (check all that apply):						
	\square MA Chapter 21e; list RTN(s): \square CERC		.A				
NPDES permit is (check all that apply: \square RGP \square DGP \square CGP	☐ NH Groundwater Management Permit or	☐ UIC Program					
☐ MSGP ☐ Individual NPDES permit ☐ Other; if so, specify:	Groundwater Release Detection Permit:	□ POTW Pretreatment					
		☐ CWA Section 404					

В.	Receiving water information:	:
1 N	lame of receiving water(s).	

1. Name of receiving water(s):	Waterbody identification of receiving water	(s): Classific	cation of receiving water(s):							
Receiving water is (check any that apply): \Box Outstar	nding Resource Water □ Ocean Sanctuary □ territor	rial sea □ Wild and Scenic R	iver							
2. Has the operator attached a location map in accord	lance with the instructions in B, above? (check one)	: □ Yes □ No								
Are sensitive receptors present near the site? (check of If yes, specify:	one): □ Yes □ No									
3. Indicate if the receiving water(s) is listed in the Stapollutants indicated. Also, indicate if a final TMDL it 4.6 of the RGP.										
	4. Indicate the seven day-ten-year low flow (7Q10) of the receiving water determined in accordance with the instructions in Appendix V for sites located in Massachusetts and Appendix VI for sites located in New Hampshire.									
5. Indicate the requested dilution factor for the calculaccordance with the instructions in Appendix V for s										
6. Has the operator received confirmation from the a If yes, indicate date confirmation received:	ppropriate State for the 7Q10and dilution factor indi	cated? (check one): ☐ Yes ☐	l No							
7. Has the operator attached a summary of receiving	water sampling results as required in Part 4.2 of the	RGP in accordance with the	instruction in Appendix VIII?							
(check one): ☐ Yes ☐ No										
C. Source water information:										
1. Source water(s) is (check any that apply):										
☐ Contaminated groundwater	☐ Contaminated surface water	☐ The receiving water	☐ Potable water; if so, indicate municipality or origin:							
Has the operator attached a summary of influent	Has the operator attached a summary of influent	☐ A surface water other								
sampling results as required in Part 4.2 of the RGP in accordance with the instruction in Appendix VIII? (check one):	sampling results as required in Part 4.2 of the RGP in accordance with the instruction in Appendix VIII? (check one):	than the receiving water; if so, indicate waterbody:	☐ Other; if so, specify:							
□ Yes □ No	□ Yes □ No									

2. Source water contaminants:					
a. For source waters that are contaminated groundwater or contaminated surface water, indicate are any contaminants present that are not included in	b. For a source water that is a surface water other than the receiving water, potable water or other, indicate any contaminants present at the maximum concentration in accordance				
the RGP? (check one): ☐ Yes ☐ No If yes, indicate the contaminant(s) and the maximum concentration present in accordance with the instructions in Appendix VIII.	with the instructions in Appendix VIII? (check one): □ Yes □ No				
3. Has the source water been previously chlorinated or otherwise contains resid	dual chlorine? (check one): ☐ Yes ☐ No				
D. Discharge information					
1.The discharge(s) is a(n) (check any that apply): \Box Existing discharge \Box New	w discharge □ New source				
Outfall(s): Outfall location(s): (Latitude, Longitude)					
Discharges enter the receiving water(s) via (check any that apply): □ Direct di	scharge to the receiving water \Box Indirect discharge, if so, specify:				
☐ A private storm sewer system ☐ A municipal storm sewer system If the discharge enters the receiving water via a private or municipal storm sew	ver system:				
Has notification been provided to the owner of this system? (check one): ☐ Ye	•				
Has the operator has received permission from the owner to use such system for obtaining permission:	or discharges? (check one): \square Yes \square No, if so, explain, with an estimated timeframe for				
Has the operator attached a summary of any additional requirements the owner	of this system has specified? (check one): \square Yes \square No				
Provide the expected start and end dates of discharge(s) (month/year):					
Indicate if the discharge is expected to occur over a duration of: \Box less than 1	2 months □ 12 months or more □ is an emergency discharge				
Has the operator attached a site plan in accordance with the instructions in D, a	above? (check one): Yes No				

2. Activity Category: (check all that apply)	3. Contamination Type Category: (check all that apply)					
	a. If Activity Categ	ory I or II: (check all that apply)				
	 □ A. Inorganics □ B. Non-Halogenated Volatile Organic □ C. Halogenated Volatile Organic Cor □ D. Non-Halogenated Semi-Volatile Organic □ E. Halogenated Semi-Volatile Organi □ F. Fuels Parameters 	mpounds Organic Compounds				
 □ I – Petroleum-Related Site Remediation □ II – Non-Petroleum-Related Site Remediation 	b. If Activity Category III, IV	V, V, VI, VII or VIII: (check either G or H)				
 □ III – Non-Petroleum-Related Site Remediation □ III – Contaminated Site Dewatering □ IV – Dewatering of Pipelines and Tanks □ V – Aquifer Pump Testing □ VI – Well Development/Rehabilitation □ VII – Collection Structure Dewatering/Remediation □ VIII – Dredge-Related Dewatering 	□ G. Sites with Known Contamination c. If Category III-G, IV-G, V-G, VI-G, VII-G or VIII-G: (check all that apply) □ A. Inorganics □ B. Non-Halogenated Volatile Organic Compounds □ C. Halogenated Volatile Organic Compounds □ D. Non-Halogenated Semi-Volatile Organic Compounds □ E. Halogenated Semi-Volatile Organic Compounds □ F. Fuels Parameters	□ H. Sites with Unknown Contamination d. If Category III-H, IV-H, V-H, VI-H, VII-H or VIII-H Contamination Type Categories A through F apply				

4. Influent and Effluent Characteristics

	Known	Known		75 5 4	Detection	Infl	uent	Effluent Lir	nitations
Parameter	or believed absent	or believed present	# of samples	Test method (#)	Detection limit (µg/l)	Daily maximum (µg/l)	Daily average (µg/l)	TBEL	WQBEL
A. Inorganics									
Ammonia								Report mg/L	
Chloride								Report µg/l	
Total Residual Chlorine								0.2 mg/L	
Total Suspended Solids								30 mg/L	
Antimony								206 μg/L	
Arsenic								104 μg/L	
Cadmium								10.2 μg/L	
Chromium III								323 μg/L	
Chromium VI								323 μg/L	
Copper								242 μg/L	
Iron								5,000 μg/L	
Lead								160 μg/L	
Mercury								0.739 μg/L	
Nickel								1,450 μg/L	
Selenium								235.8 μg/L	
Silver								35.1 μg/L	
Zinc								420 μg/L	
Cyanide								178 mg/L	
B. Non-Halogenated VOCs	3		•						
Total BTEX								100 μg/L	
Benzene								5.0 μg/L	
1,4 Dioxane								200 μg/L	
Acetone								7.97 mg/L	
Phenol								1,080 µg/L	

	Known	Known		_	_	Inf	luent	Effluent Lin	nitations
Parameter	or believed absent	or believed present	# of samples	Test method (#)	Detection limit (µg/l)	Daily maximum (µg/l)	Daily average (µg/l)	TBEL	WQBEL
C. Halogenated VOCs									
Carbon Tetrachloride								4.4 μg/L	
1,2 Dichlorobenzene								600 μg/L	
1,3 Dichlorobenzene								320 μg/L	
1,4 Dichlorobenzene								5.0 μg/L	
Total dichlorobenzene								763 µg/L in NH	
1,1 Dichloroethane								70 μg/L	
1,2 Dichloroethane								5.0 μg/L	
1,1 Dichloroethylene								3.2 µg/L	
Ethylene Dibromide								0.05 μg/L	
Methylene Chloride								4.6 μg/L	
1,1,1 Trichloroethane								200 μg/L	
1,1,2 Trichloroethane								5.0 μg/L	
Trichloroethylene								5.0 μg/L	
Tetrachloroethylene								5.0 μg/L	
cis-1,2 Dichloroethylene								70 μg/L	
Vinyl Chloride								2.0 μg/L	
D. Non-Halogenated SVO	Cs								
Total Phthalates								190 μg/L	
Diethylhexyl phthalate								101 μg/L	
Total Group I PAHs								1.0 μg/L	
Benzo(a)anthracene								_	
Benzo(a)pyrene								_	
Benzo(b)fluoranthene								_	
Benzo(k)fluoranthene								As Total PAHs	
Chrysene								_	
Dibenzo(a,h)anthracene								_	
Indeno(1,2,3-cd)pyrene									

	Known	Known				Inf	luent	Effluent Lin	nitations
Parameter	or believed absent	or believed present	# of samples	Test method (#)	Detection limit (µg/l)	Daily maximum (µg/l)	Daily average (µg/l)	TBEL	WQBEL
Total Group II PAHs								100 μg/L	
Naphthalene								20 μg/L	
E. Halogenated SVOCs									
Total PCBs								0.000064 µg/L	
Pentachlorophenol								1.0 μg/L	
	1			•					
F. Fuels Parameters Total Petroleum		1	1	1		1 1		<u> </u>	
Hydrocarbons								5.0 mg/L	
Ethanol								Report mg/L	
Methyl-tert-Butyl Ether								70 μg/L	
tert-Butyl Alcohol								120 μg/L in MA 40 μg/L in NH	
tert-Amyl Methyl Ether								90 μg/L in MA 140 μg/L in NH	
Other (i.e., pH, temperatur	re, hardness,	salinity, LC	50, addition	al pollutar	ats present);	if so, specify:			

E. Treatment system information

1. Indicate the type(s) of treatment that will be applied to effluent prior to discharge: (check all that apply)	
☐ Adsorption/Absorption ☐ Advanced Oxidation Processes ☐ Air Stripping ☐ Granulated Activated Carbon ("GAC")/Liquid Phase Carbon Adsorption	
☐ Ion Exchange ☐ Precipitation/Coagulation/Flocculation ☐ Separation/Filtration ☐ Other; if so, specify:	
2. Provide a written description of all treatment system(s) or processes that will be applied to the effluent prior to discharge.	
Identify each major treatment component (check any that apply):	
☐ Fractionation tanks☐ Equalization tank ☐ Oil/water separator ☐ Mechanical filter ☐ Media filter	
☐ Chemical feed tank ☐ Air stripping unit ☐ Bag filter ☐ Other; if so, specify:	
Indicate if either of the following will occur (check any that apply):	
□ Chlorination □ De-chlorination	
3. Provide the design flow capacity in gallons per minute (gpm) of the most limiting component.	
Indicate the most limiting component:	
Is use of a flow meter feasible? (check one): \square Yes \square No, if so, provide justification:	
Provide the proposed maximum effluent flow in gpm.	
Trovide the proposed maximum errident now in gpin.	
Provide the average effluent flow in gpm.	
If Activity Category IV applies, indicate the estimated total volume of water that will be discharged:	
4. Has the operator attached a schematic of flow in accordance with the instructions in E, above? (check one): ☐ Yes ☐ No	

F. Chemical and additive information

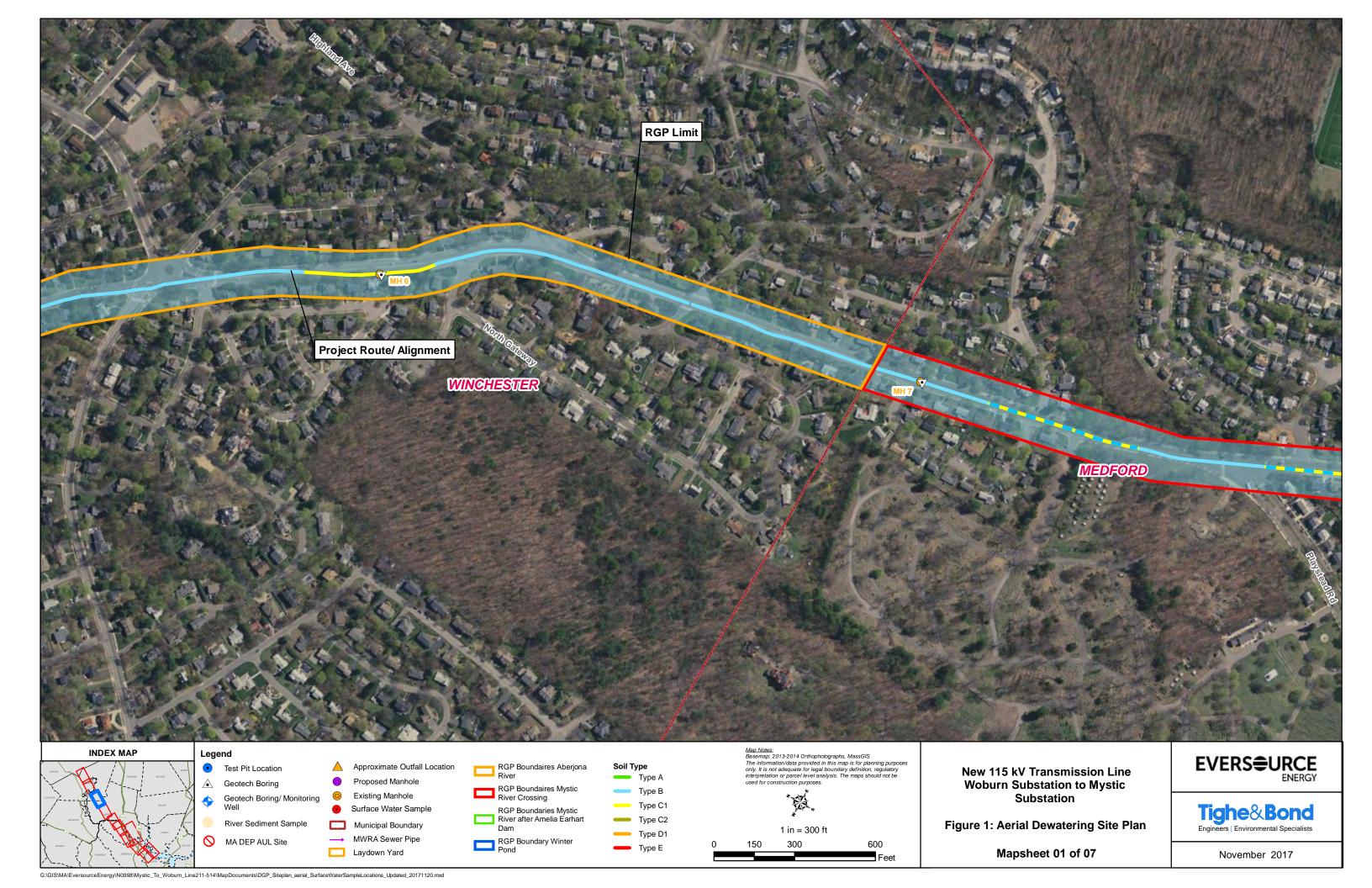
r. Chemical and additive information
1. Indicate the type(s) of chemical or additive that will be applied to effluent prior to discharge or that may otherwise be present in the discharge(s): (check all that apply)
□ Algaecides/biocides □ Antifoams □ Coagulants □ Corrosion/scale inhibitors □ Disinfectants □ Flocculants □ Neutralizing agents □ Oxidants □ Oxygen □
scavengers □ pH conditioners □ Bioremedial agents, including microbes □ Chlorine or chemicals containing chlorine □ Other; if so, specify:
2. Provide the following information for each chemical/additive, using attachments, if necessary:
a. Product name, chemical formula, and manufacturer of the chemical/additive; b. Purpose or use of the chemical/additive or remedial agent; c. Material Safety Data Sheet (MSDS) and Chemical Abstracts Service (CAS) Registry number for each chemical/additive; d. The frequency (hourly, daily, etc.), duration (hours, days), quantity (maximum and average), and method of application for the chemical/additive; e. Any material compatibility risks for storage and/or use including the control measures used to minimize such risks; and f. If available, the vendor's reported aquatic toxicity (NOAEL and/or LC50 in percent for aquatic organism(s)).
3. Has the operator attached an explanation which demonstrates that the addition of such chemicals/additives may be authorized under this general permit in accordance
with the instructions in F, above? (check one): \square Yes \square No; if no, has the operator attached data that demonstrates each of the 126 priority pollutants in CWA Section 307(a) and 40 CFR Part 423.15(j)(1) are non-detect in discharges with the addition of the proposed chemical/additive?
(check one): □ Yes □ No
G. Endangered Species Act eligibility determination
1. Indicate under which criterion the discharge(s) is eligible for coverage under this general permit:
□ FWS Criterion A : No endangered or threatened species or critical habitat are in proximity to the discharges or related activities or come in contact with the "action area".
□ FWS Criterion B : Formal or informal consultation with the FWS under section 7 of the ESA resulted in either a no jeopardy opinion (formal consultation) or a written concurrence by FWS on a finding that the discharges and related activities are "not likely to adversely affect" listed species or critical habitat
(informal consultation). Has the operator completed consultation with FWS? (check one): ☐ Yes ☐ No; if no, is consultation underway? (check one): ☐
Yes □ No
□ FWS Criterion C : Using the best scientific and commercial data available, the effect of the discharges and related activities on listed species and critical habitat have been evaluated. Based on those evaluations, a determination is made by EPA, or by the operator and affirmed by EPA, that the discharges and related activities will have "no effect" on any federally threatened or endangered listed species or designated critical habitat under the jurisdiction of the
FWS. This determination was made by: (check one) \square the operator \square EPA \square Other; if so, specify:

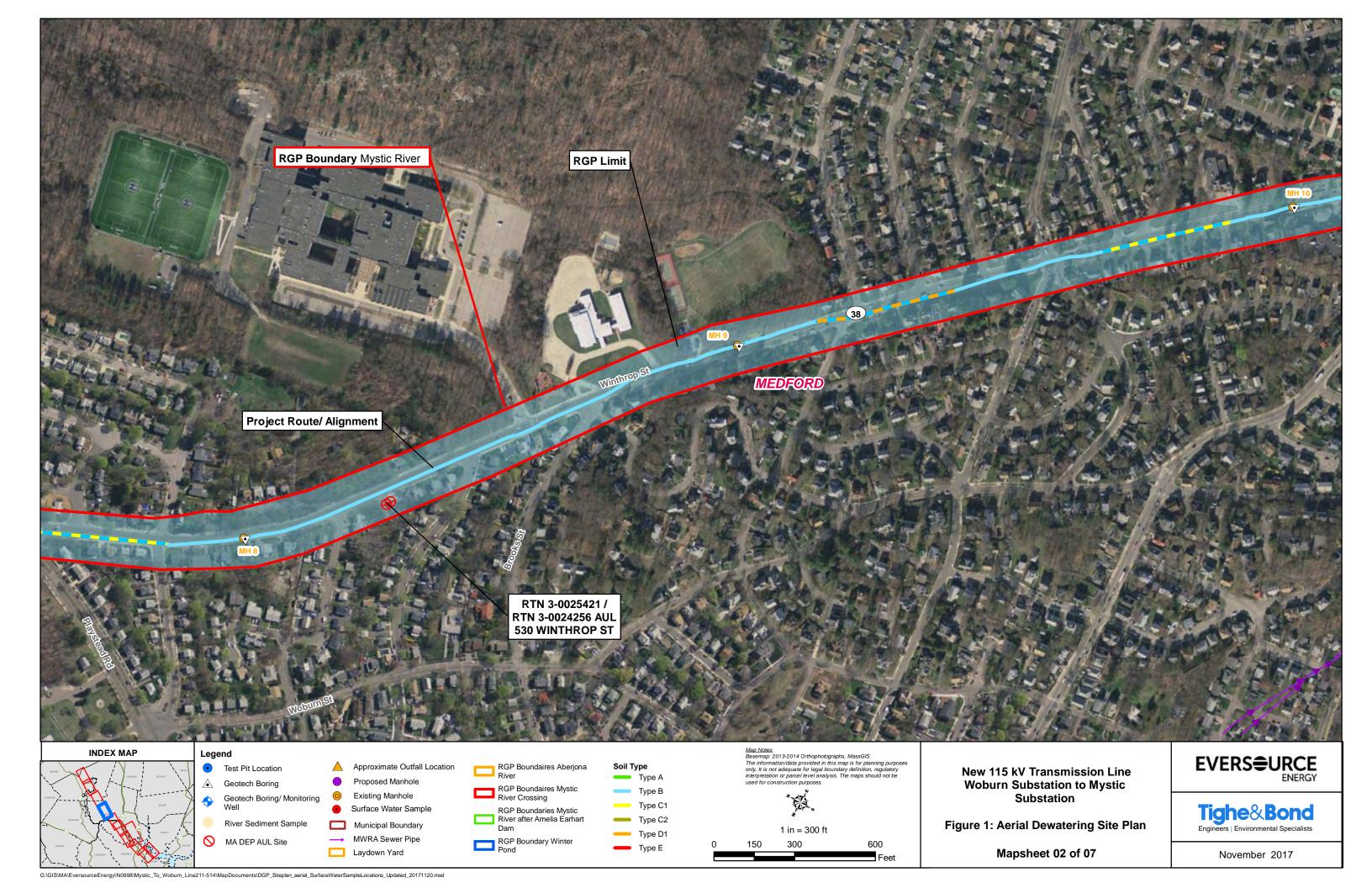
□ NMFS Criterion : A determination made by EPA is affirmed by the operator that the discharges and related activities will have "no effect" or are "not likely to adversely affect" any federally threatened or endangered listed species or critical habitat under the jurisdiction of NMFS and will not result in any take of
listed species. Has the operator previously completed consultation with NMFS? (check one): ☐ Yes ☐ No
2. Has the operator attached supporting documentation of ESA eligibility in accordance with the instructions in Appendix I, and G, above? (check one): \square Yes \square No
Does the supporting documentation include any written concurrence or finding provided by the Services? (check one): Yes No; if yes, attach.
H. National Historic Preservation Act eligibility determination
1. Indicate under which criterion the discharge(s) is eligible for coverage under this general permit:
□ Criterion A : No historic properties are present. The discharges and discharge-related activities (e.g., BMPs) do not have the potential to cause effects on historic properties.
☐ Criterion B: Historic properties are present. Discharges and discharge related activities do not have the potential to cause effects on historic properties.
□ Criterion C : Historic properties are present. The discharges and discharge-related activities have the potential to have an effect or will have an adverse effect on historic properties.
2. Has the operator attached supporting documentation of NHPA eligibility in accordance with the instructions in H, above? (check one): ☐ Yes ☐ No
Does the supporting documentation include any written agreement with the State Historic Preservation Officer (SHPO), Tribal Historic Preservation Officer (TPHO), or
other tribal representative that outlines measures the operator will carry out to mitigate or prevent any adverse effects on historic properties? (check one): \square Yes \square No
I. Supplemental information
Describe any supplemental information being provided with the NOI. Include attachments if required or otherwise necessary.
Has the operator attached data, including any laboratory case narrative and chain of custody used to support the application? (check one): \square Yes \square No
Has the operator attached the certification requirement for the Best Management Practices Plan (BMPP)? (check one): ☐ Yes ☐ No

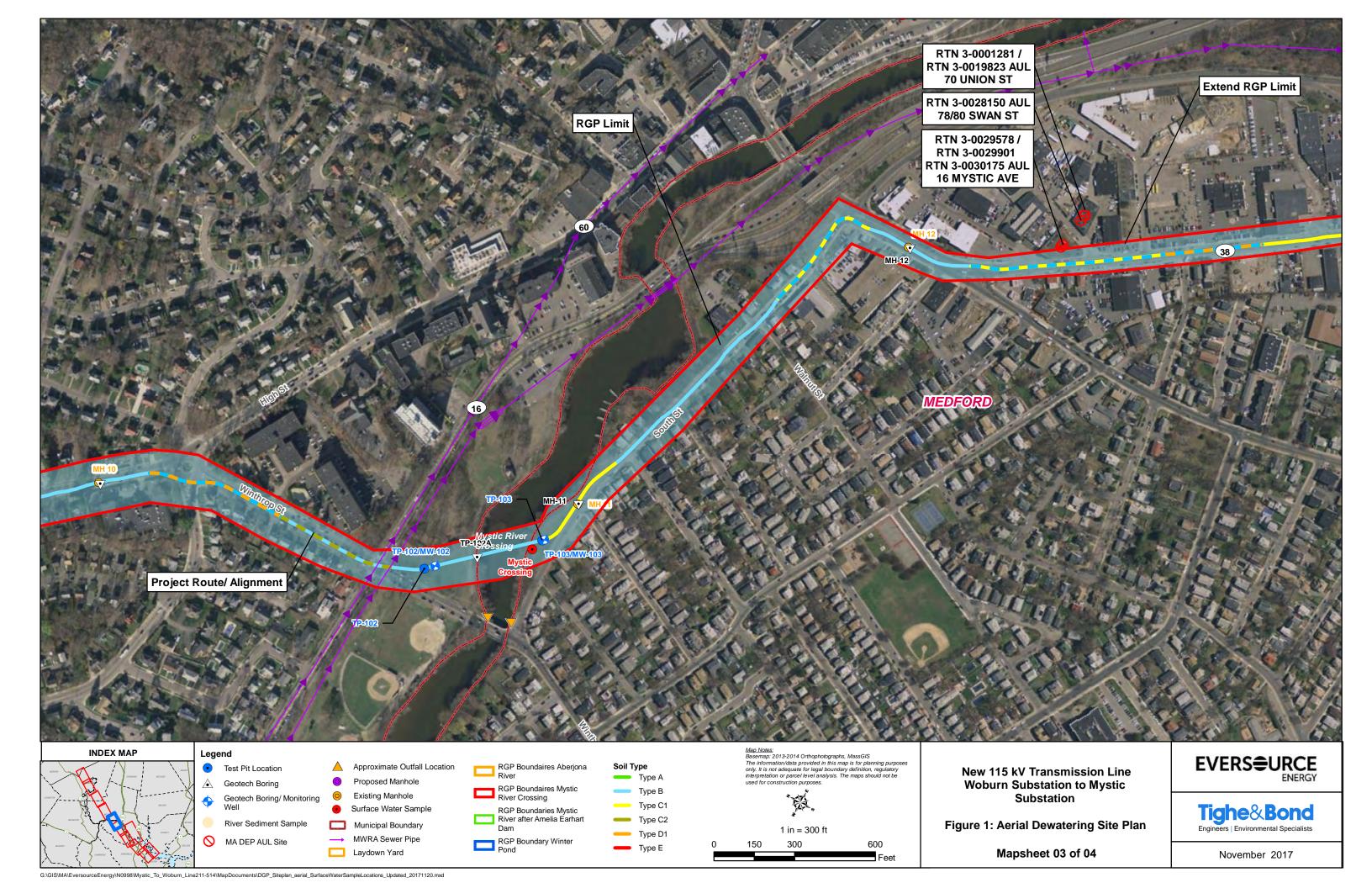
J. Certification requirement

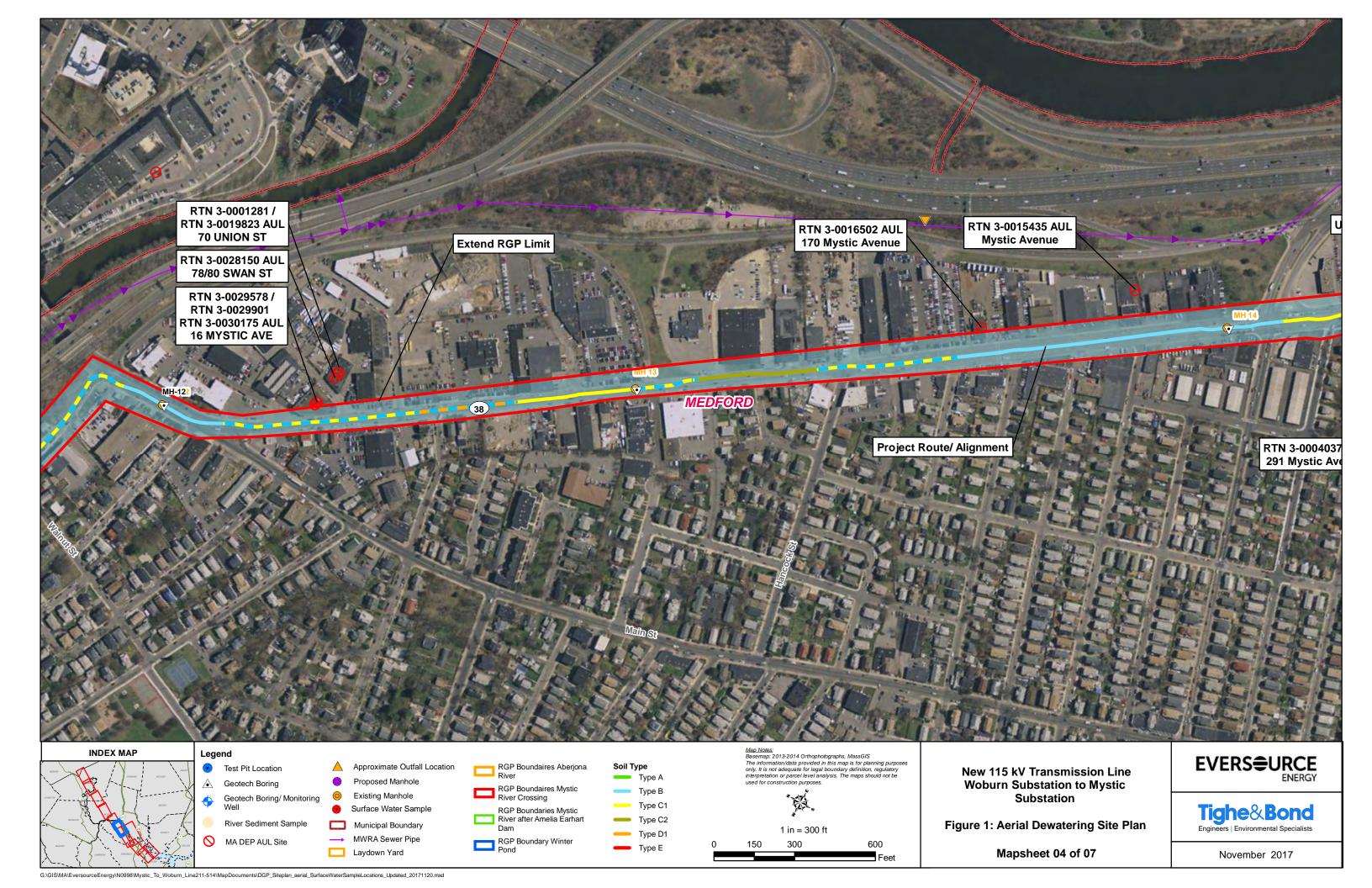
I certify under penalty of law that this document and all attachments were prepared under my direction or supervision in accordance with a system designed to assure that qualified personnel properly gathered and evaluated the information submitted. Based on my inquiry of the person or persons who manage the system, or those persons directly responsible for gathering the information, the information submitted is, to the best of my knowledge and belief, true, accurate, and complete. I have no personal knowledge that the information submitted is other than true, accurate, and complete. I am aware that there are significant penalties for submitting false information, including the possibility of fine and imprisonment for knowing violations.					
BMPP certification statement: A BMPP meeting the requirements of this general permit will be developed and implemented upon initiation of discharge.					
Notification provided to the appropriate State, including a copy of this NOI, if required.	Check one: Yes ⊠ No □				
Notification provided to the municipality in which the discharge is located, including a copy of this NOI, if requested.	Check one: Yes ⊠ No □				
Notification provided to the owner of a private or municipal storm sewer system, if such system is used for site discharges, including a copy of this NOI, if requested. Permission obtained from the owner of a private or municipal storm sewer system, if such system is used for site	Check one: Yes ⊠ No □ NA □				
discharges. If yes, attach additional conditions. If no, attach explanation and timeframe for obtaining permission.	Check one: Yes ☒ No ☐ NA ☐				
Notification provided to the owner/operator of the area associated with activities covered by an additional discharge permit(s). Additional discharge permit is (check one): \square RGP \square DGP \square CGP \square MSGP \square Individual NPDES permit \square Other; if so, specify:	Check one: Yes □ No □ NA □				
nature: Date:					
Print Name and Title: Dean Bebis, Environmental Compliance Specialist					

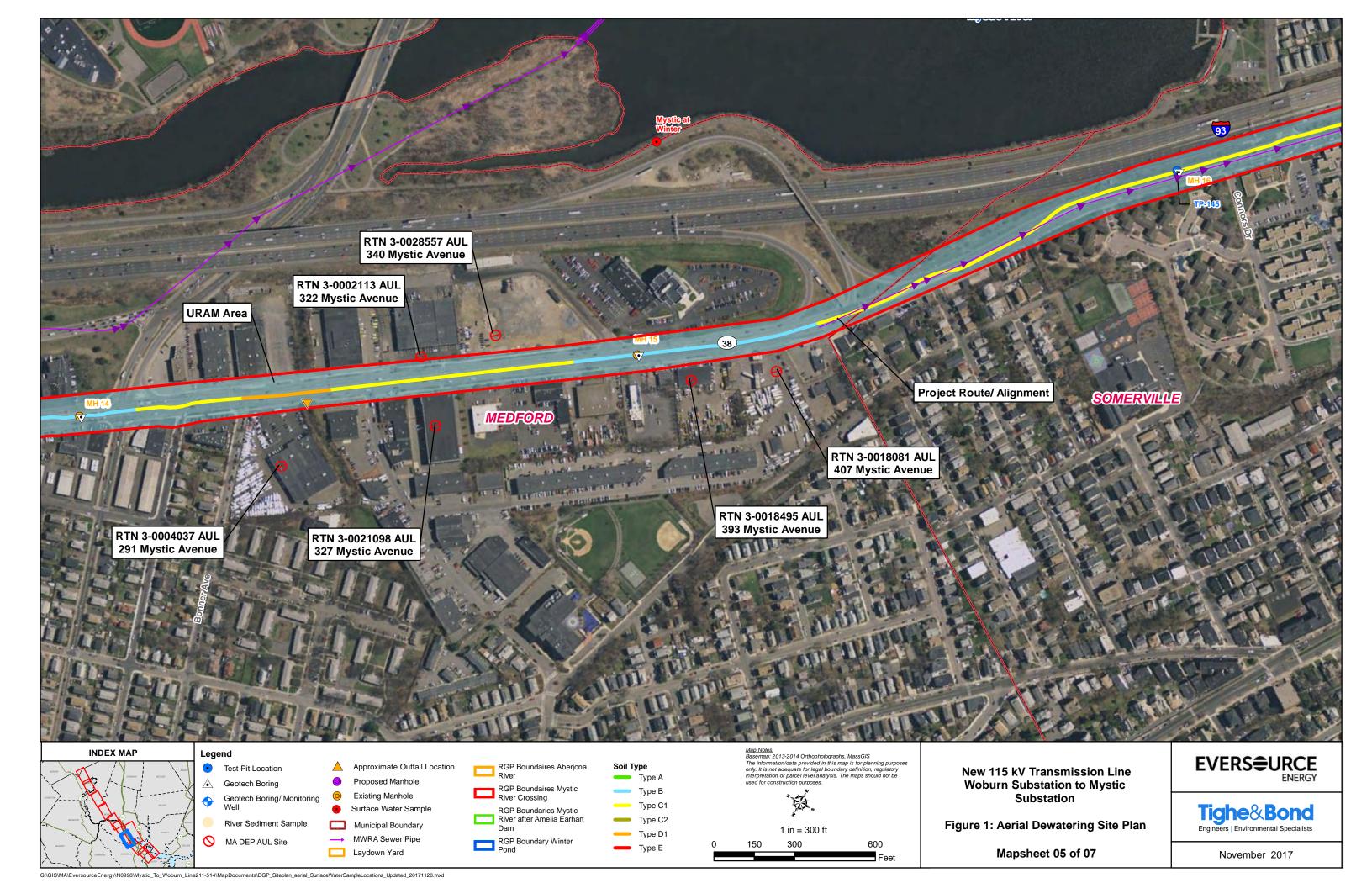
J. Certification requirement

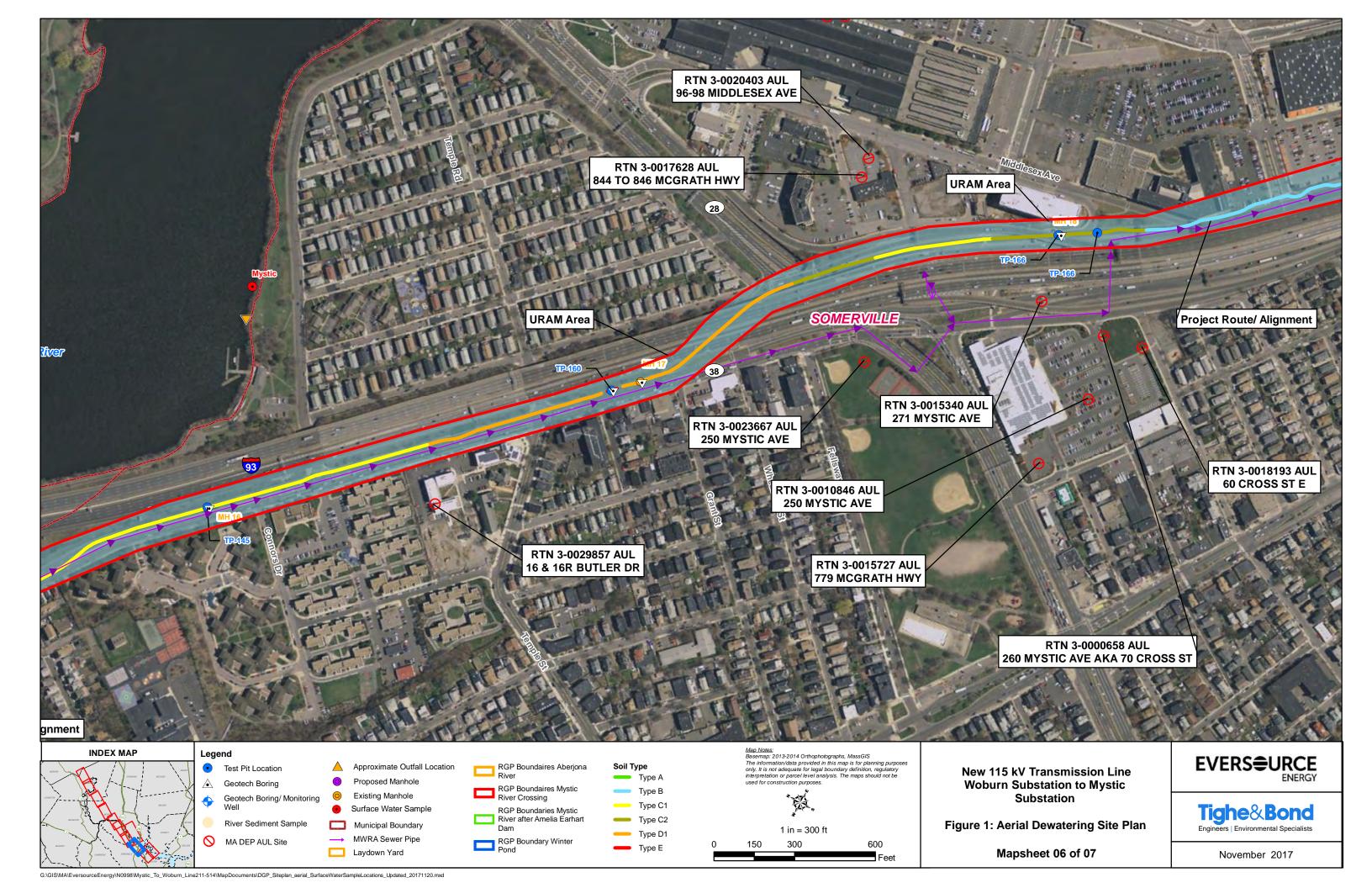

I certify under penalty of law that this document and all attachments were prepared under my direction or supervision in accordance with a system designed to assure that qualified personnel properly gathered and evaluated the information submitted. Based on my inquiry of the person or persons who manage the system, or those persons directly responsible for gathering the information, the information submitted is, to the best of my knowledge and belief, true, accurate, and complete. I have no personal knowledge that the information submitted is other than true, accurate, and complete. I am aware that there are significant penalties for submitting false information, including the possibility of fine and imprisonment for knowing violations.						
BMPP certification statement: A BMPP meeting the requirements of this general permit will be developed and implemented upon initiation of discharge.						
Notification provided to the appropriate State, including a copy of this NOI, if required.	Check one: Yes ⊠	No □				
Notification provided to the municipality in which the discharge is located, including a copy of this NOI, if requested.	Check one: Yes ☒	No □				
Notification provided to the owner of a private or municipal storm sewer system, if such system is used for site discharges, including a copy of this NOI, if requested. Permission obtained from the owner of a private or municipal storm sewer system, if such system is used for site discharges. If yes, attach additional conditions. If no, attach explanation and timeframe for obtaining permission.	Check one: Yes ☒ Check one: Yes ☒					
Notification provided to the owner/operator of the area associated with activities covered by an additional discharge	Check one. Tes M	NO L NA L				
permit(s). Additional discharge permit is (check one): \square RGP \square DGP \square CGP \square MSGP \square Individual NPDES permit \square Other; if so, specify:	Check one: Yes □	No □ NA □				
Signature: Date	te:					
Print Name and Title: Jose Nieto, Project Manager						

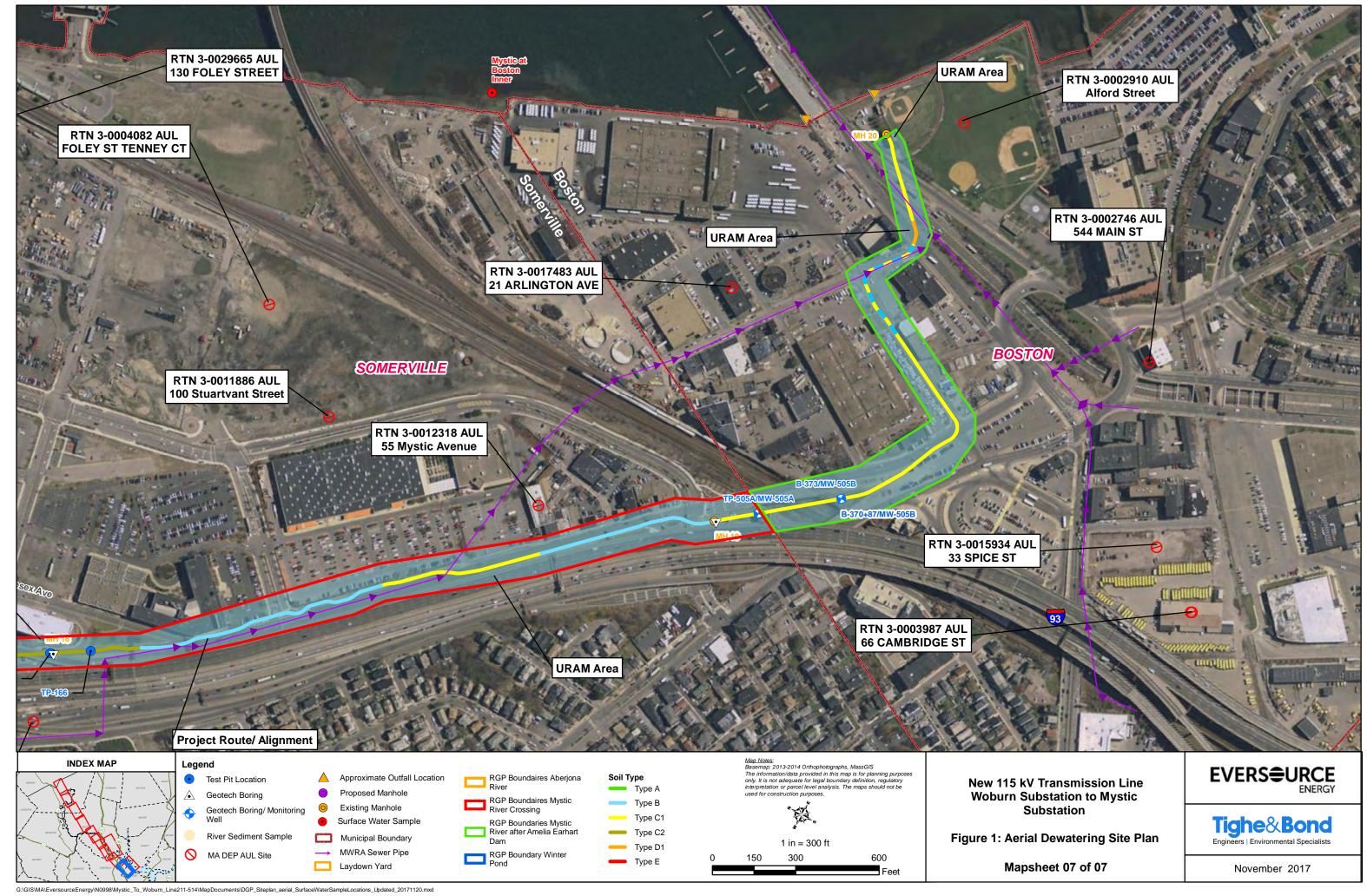


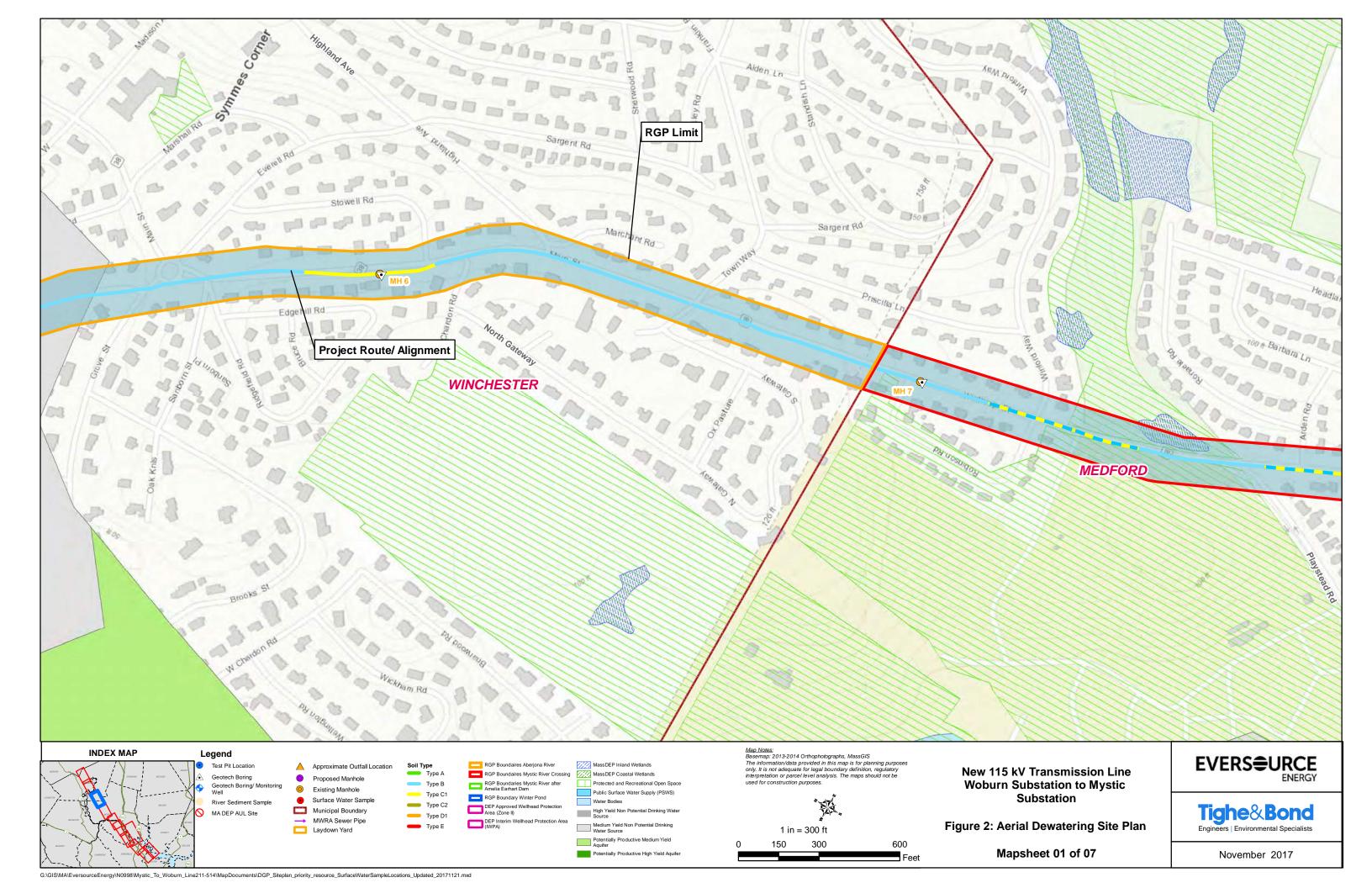

Eversource – Mystic to Woburn 115 kV Transmission Line Mystic River Outfall Summary Lower Mystic River to Amelia Earhart Dam							
Outfall Location	Latitude	Longitude	Municipality	Jurisdiction			
Mystic River at Winthrop Street	42.417885	-71.118161	Medford	Medford			
Mystic River at South Street	42.417607	-71.117774	Medford	Medford			
Mystic River at 4054 Mystic Valley Parkway	42.404058	-71.086283	Medford	Medford			
Two Penny Brook Outfall at 170 Mystic Avenue	42.410702	-71.103739	Medford	MassDOT			
Winter Brook Out at 291 Mystic Avenue	42.404810	-71.100970	Medford	MassDOT			
Mystic River at Mystic Valley Parkway	42.405623	-71.096701	Medford	MassDOT			
Mystic River at Shore Drive	42.398615	-71.08590	Somerville	Somerville			
Mystic River at Fellsway	42.398249	-71.083513	Somerville	Somerville			

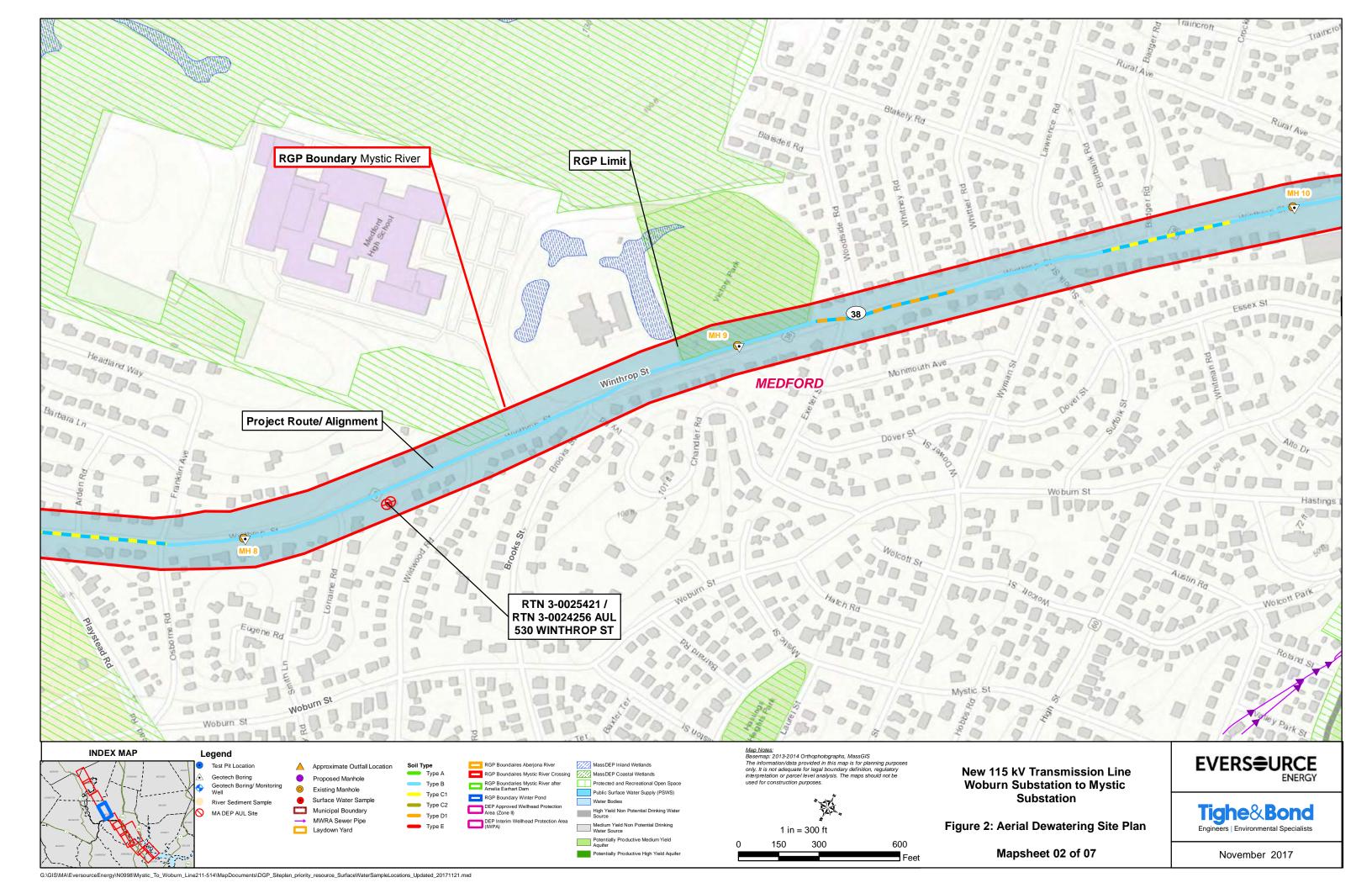

J:\N\N0998 NSTAR\Woburn to Mystic\Soil & GW Management\GW\RGP - DGP\NOI RGP\RGP Fillable NOI\Lower Mystic Dam to Amelia Earhart Dam\Outfall Summary.doc

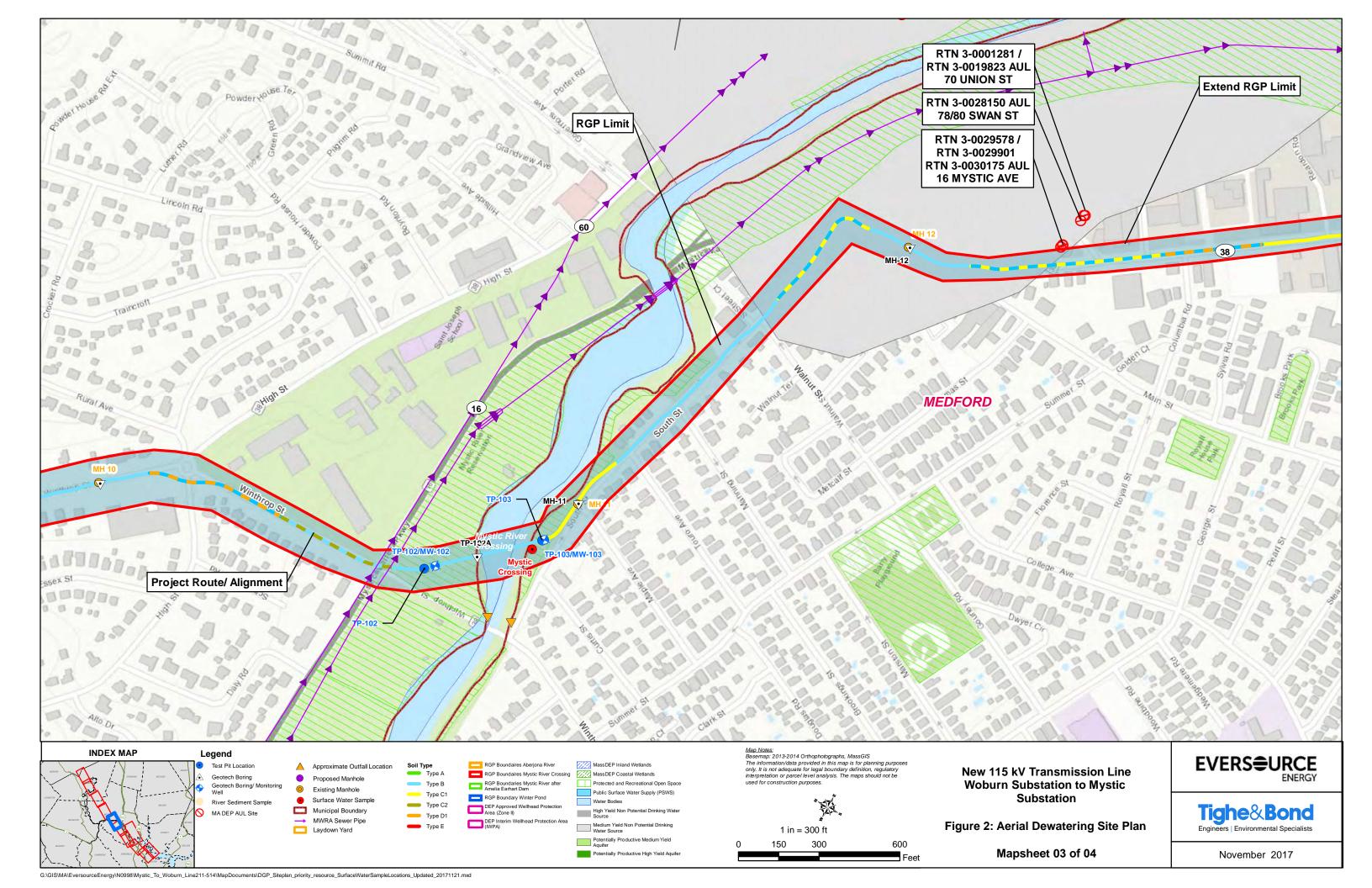

APPENDIX B



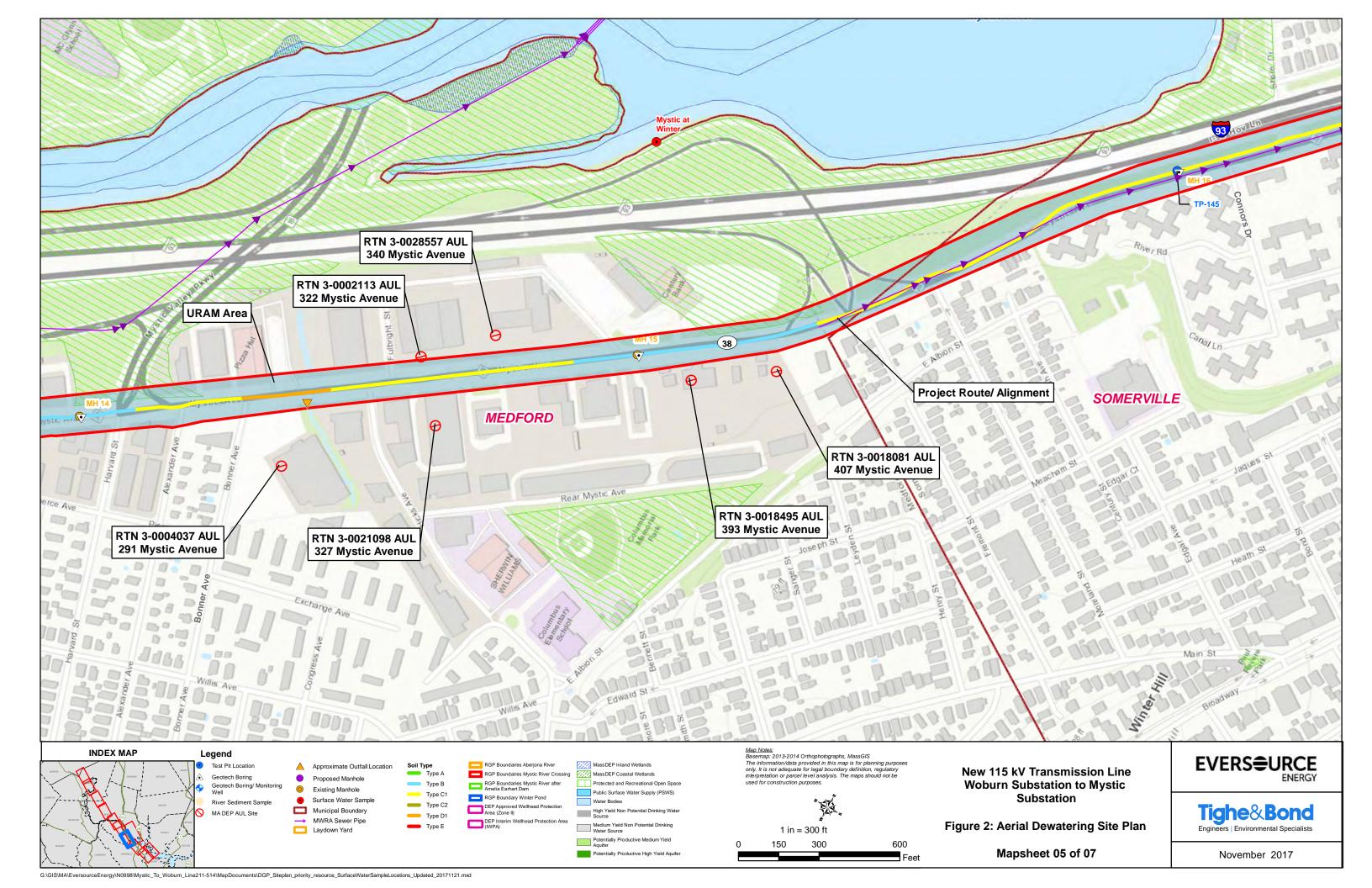


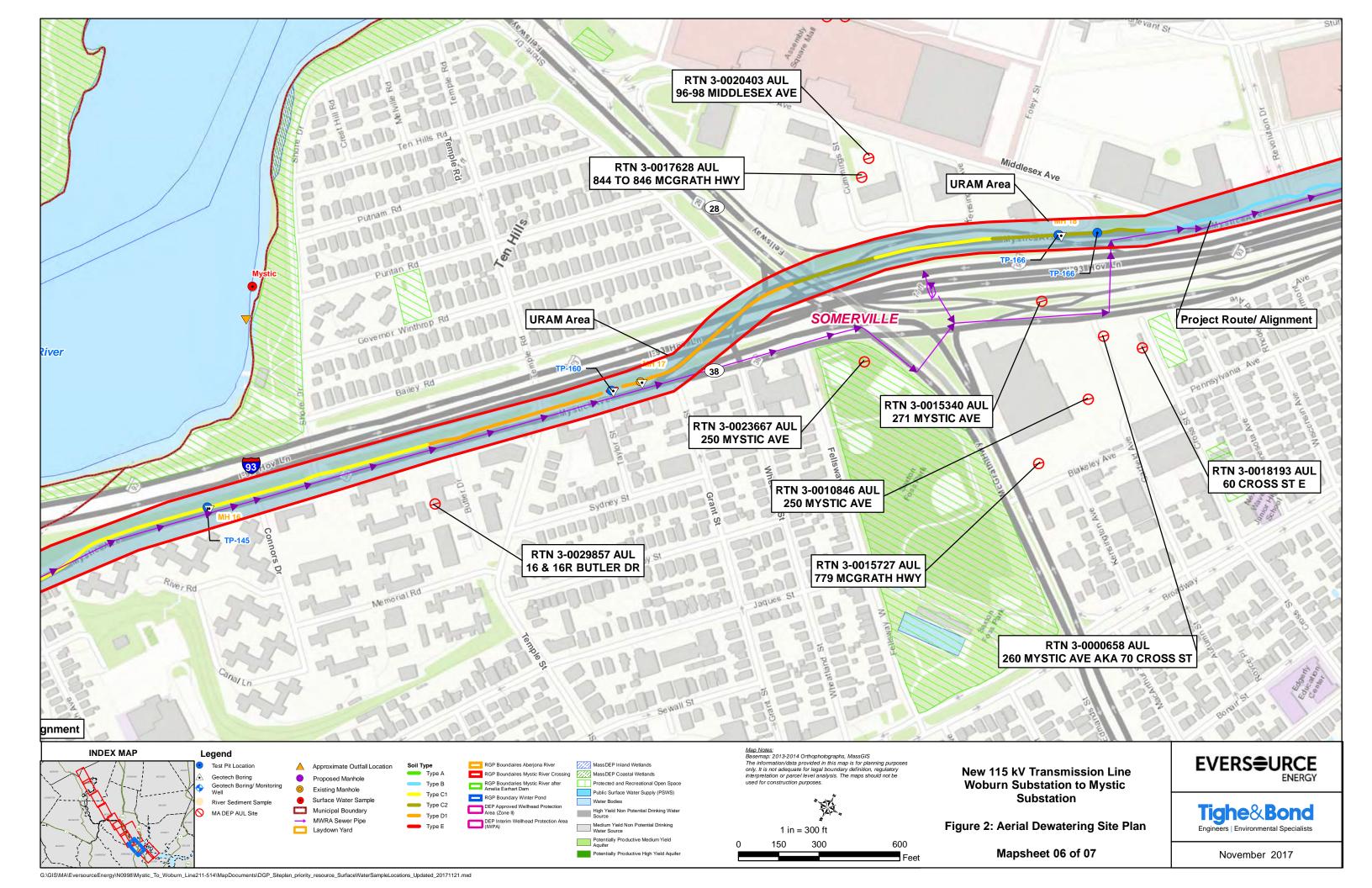


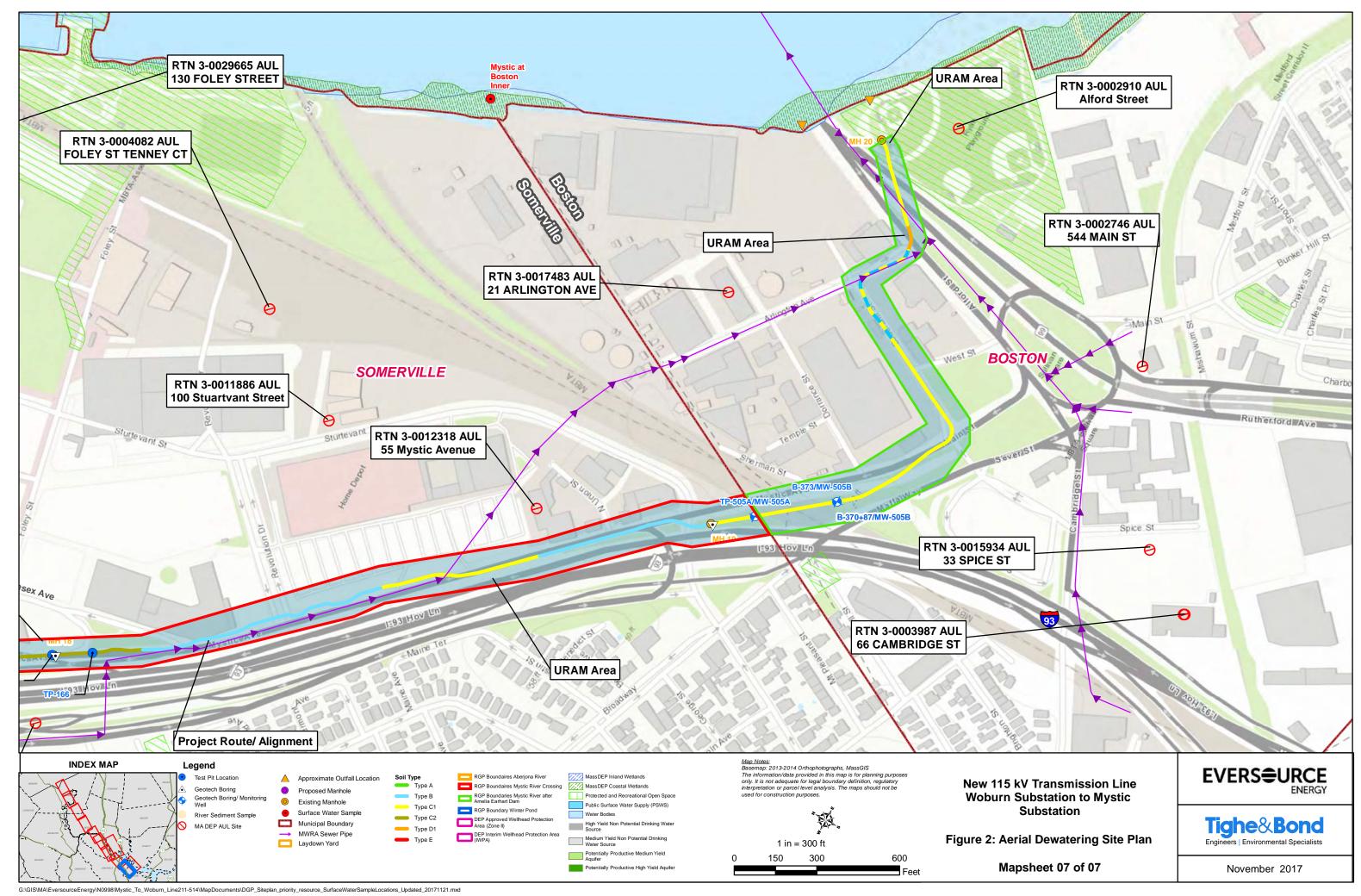












 MUD BOX MUST BE EMPTIED PRIOR LOADING ONTO TRAILER AND REMAIN EMPTIED DURING TRANSPORT FOR PROJECT RELOCATION.

The designs, information and data contained herein is proprietary and is submitted in confidence and shall not be disclosed, used or duplicated in whole or in	Fluid		7800 N. DALLAS PARKWAY, SUIT PLANO, TX 75024-4087	E 500
part for any purposes whatsoever without prior writer permission from United Rentals. This document shall be returned to United Rentals on its demand. Receipt of this document shall be deemed to be an acceptance of the conditions specified herein.	TREATMENT STSTEM 190 GPM			
SHEET SIZE: MATERIAL:	CUSTOMER: MIDDLESEX COF	₹ P		BRANCH: BOS
B FINISH:	DWG BY: M. BROOKS	DATE: 09-10-18	SCALE: _	SHEET: 1 OF: 1
11" x 17"	CKD BY: M. SCOPELLETI	DATE: 09-10-18	DWG No: SKF5387	REV: _

APPENDIX C

FEDERALLY LISTED ENDANGERED AND THREATENED SPECIES IN MASSACHUSETTS

COUNTY	SPECIES	FEDERAL STATUS	GENERAL LOCATION/HABITAT	TOWNS
	Small whorled Pogonia	Threatened	Forests with somewhat poorly drained soils and/or a seasonally high water table	Gloucester, Essex and Manchester
Essex	Piping Plover	Threatened	Coastal Beaches	Gloucester, Essex, Ipswich, Rowley, Revere, Newbury, Newburyport and Salisbury
	Red Knot ¹	Threatened	Coastal Beaches and Rocky Shores, sand and mud flats	Coastal Towns
	Northern Long- eared Bat	Threatened Final 4(d) Rule	Winter- mines and caves, Summer – wide variety of forested habitats	Statewide
	Northeastern bulrush	Endangered	Wetlands	Montague, Warwick
Franklin	Dwarf wedgemussel	Endangered	Mill River	Whately
	Northern Long- eared Bat	Threatened Final 4(d) Rule	Winter- mines and caves, Summer – wide variety of forested habitats	Statewide
	Small whorled Pogonia	Threatened	Forests with somewhat poorly drained soils and/or a seasonally high water table	Hadley
	Puritan tiger beetle	Threatened	Sandy beaches along the Connecticut River	Northampton and Hadley
Hampshire	Dwarf wedgemussel	Endangered	Rivers and Streams.	Hatfield, Amherst and Northampton
	Northern Long- eared Bat	Threatened Final 4(d) Rule	Winter- mines and caves, Summer – wide variety of forested habitats	Statewide
**	Small whorled Pogonia	Threatened	Forests with somewhat poorly drained soils and/or a seasonally high water table	Southwick
Hampden	Northern Long- eared Bat	Threatened Final 4(d) Rule	Winter- mines and caves, Summer – wide variety of forested habitats	Statewide
26111	Small whorled Pogonia	Threatened	Forests with somewhat poorly drained soils and/or a seasonally high water table	Groton
Middlesex	Northern Long- eared Bat	Threatened Final 4(d) Rule	Winter- mines and caves, Summer – wide variety of forested habitats	Statewide
	Piping Plover	Threatened	Coastal Beaches	Nantucket
	Roseate Tern	Endangered	Coastal beaches and the Atlantic Ocean	Nantucket
Nantucket	American burying beetle	Endangered	Upland grassy meadows	Nantucket
	Red Knot ¹	Threatened	Coastal Beaches and Rocky Shores, sand and mud flats	Coastal Towns
	Northern Long- eared Bat	Threatened Final 4(d) Rule	Winter- mines and caves, Summer – wide variety of forested habitats	Statewide

United States Department of the Interior

FISH AND WILDLIFE SERVICE

New England Ecological Services Field Office 70 Commercial Street, Suite 300 Concord, NH 03301-5094 Phone: (603) 223-2541 Fax: (603) 223-0104

http://www.fws.gov/newengland

In Reply Refer To: October 17, 2017

Consultation Code: 05E1NE00-2018-SLI-0163

Event Code: 05E1NE00-2018-E-00412

Project Name: Mystic to Woburn - 115 kV UG Transmission Line

Subject: List of threatened and endangered species that may occur in your proposed project

location, and/or may be affected by your proposed project

To Whom It May Concern:

The enclosed species list identifies threatened, endangered, proposed and candidate species, as well as proposed and final designated critical habitat, that may occur within the boundary of your proposed project and/or may be affected by your proposed project. The species list fulfills the requirements of the U.S. Fish and Wildlife Service (Service) under section 7(c) of the Endangered Species Act (Act) of 1973, as amended (16 U.S.C. 1531 et seq.).

New information based on updated surveys, changes in the abundance and distribution of species, changed habitat conditions, or other factors could change this list. Please feel free to contact us if you need more current information or assistance regarding the potential impacts to federally proposed, listed, and candidate species and federally designated and proposed critical habitat. Please note that under 50 CFR 402.12(e) of the regulations implementing section 7 of the Act, the accuracy of this species list should be verified after 90 days. This verification can be completed formally or informally as desired. The Service recommends that verification be completed by visiting the ECOS-IPaC website at regular intervals during project planning and implementation for updates to species lists and information. An updated list may be requested through the ECOS-IPaC system by completing the same process used to receive the enclosed list.

The purpose of the Act is to provide a means whereby threatened and endangered species and the ecosystems upon which they depend may be conserved. Under sections 7(a)(1) and 7(a)(2) of the Act and its implementing regulations (50 CFR 402 et seq.), Federal agencies are required to utilize their authorities to carry out programs for the conservation of threatened and endangered species and to determine whether projects may affect threatened and endangered species and/or designated critical habitat.

A Biological Assessment is required for construction projects (or other undertakings having similar physical impacts) that are major Federal actions significantly affecting the quality of the

human environment as defined in the National Environmental Policy Act (42 U.S.C. 4332(2) (c)). For projects other than major construction activities, the Service suggests that a biological evaluation similar to a Biological Assessment be prepared to determine whether the project may affect listed or proposed species and/or designated or proposed critical habitat. Recommended contents of a Biological Assessment are described at 50 CFR 402.12.

If a Federal agency determines, based on the Biological Assessment or biological evaluation, that listed species and/or designated critical habitat may be affected by the proposed project, the agency is required to consult with the Service pursuant to 50 CFR 402. In addition, the Service recommends that candidate species, proposed species and proposed critical habitat be addressed within the consultation. More information on the regulations and procedures for section 7 consultation, including the role of permit or license applicants, can be found in the "Endangered Species Consultation Handbook" at:

http://www.fws.gov/endangered/esa-library/pdf/TOC-GLOS.PDF

Please be aware that bald and golden eagles are protected under the Bald and Golden Eagle Protection Act (16 U.S.C. 668 et seq.), and projects affecting these species may require development of an eagle conservation plan

(http://www.fws.gov/windenergy/eagle_guidance.html). Additionally, wind energy projects should follow the wind energy guidelines (http://www.fws.gov/windenergy/) for minimizing impacts to migratory birds and bats.

Guidance for minimizing impacts to migratory birds for projects including communications towers (e.g., cellular, digital television, radio, and emergency broadcast) can be found at: http://www.fws.gov/migratorybirds/CurrentBirdIssues/Hazards/towers/towers.htm; http://www.towerkill.com; and

http://www.fws.gov/migratorybirds/CurrentBirdIssues/Hazards/towers/comtow.html.

We appreciate your concern for threatened and endangered species. The Service encourages Federal agencies to include conservation of threatened and endangered species into their project planning to further the purposes of the Act. Please include the Consultation Tracking Number in the header of this letter with any request for consultation or correspondence about your project that you submit to our office.

Attachment(s):

Official Species List

Official Species List

This list is provided pursuant to Section 7 of the Endangered Species Act, and fulfills the requirement for Federal agencies to "request of the Secretary of the Interior information whether any species which is listed or proposed to be listed may be present in the area of a proposed action".

This species list is provided by:

New England Ecological Services Field Office 70 Commercial Street, Suite 300 Concord, NH 03301-5094 (603) 223-2541

Project Summary

Consultation Code: 05E1NE00-2018-SLI-0163

Event Code: 05E1NE00-2018-E-00412

Project Name: Mystic to Woburn - 115 kV UG Transmission Line

Project Type: ** OTHER **

Project Description: This project includes the management of excavation groundwater during

the installation of approximately 4.23 miles of a new underground 115 kV

electrical transmission line and manholes.

Project Location:

Approximate location of the project can be viewed in Google Maps: https://www.google.com/maps/place/42.43961099802177N71.13352130056799W

Counties: Middlesex, MA

Endangered Species Act Species

There is a total of 1 threatened, endangered, or candidate species on this species list. Species on this list should be considered in an effects analysis for your project and could include species that exist in another geographic area. For example, certain fish may appear on the species list because a project could affect downstream species. See the "Critical habitats" section below for those critical habitats that lie wholly or partially within your project area under this office's jurisdiction. Please contact the designated FWS office if you have questions.

Mammals

NAME STATUS

Northern Long-eared Bat *Myotis septentrionalis*No critical habitat has been designated for this species.

Threatened

Species profile: https://ecos.fws.gov/ecp/species/9045

Critical habitats

There are no critical habitats within your project area under this office's jurisdiction.

APPENDIX D

20 Black Brook Road Aquinnah, MA 02535

Tribal Historic Preservation Office Wampanoag Tribe of Gay Head (Aquinnah)

Office (508)645-9265 Fax (508)645-3790

April 5, 2017

Daniel P. Rukakoski 53 South Hampton Road Westfield, MA, 01085-5308 DPRukakoski@tighebond.com

Re: Mystic-Woburn Transmission Line ProjectN-099811-04(5200)

Dear Daniel P. Rukakoski,

The Wampanoag Tribe of Gay Head (Aquinnah) (WTGHA) Tribal Historic Preservation Office (THPO) has received notification of your project form dated. Once reviewed we will notify you of further action which may include any of the following;

- No further comments on the project
- An initial site visit will be scheduled
- Monitoring will be required at a rate of \$55.00 per hour in addition to mileage at the current federal rate paid by the proponent (Third party consultants must provide proponent billing information)
- Any archeological surveying may be monitored and requires two weeks advance notice of said survey.

Should you have any questions or concerns please feel free to contact me at bettina@wampanoagtribe.net
The THPO department would like to thank you for adhering to the Section 106 regulations of the National Historic Preservation Act.

In the spirit of Preservation,

Bettina M. Washington

Bettina M. Washington Tribal Historic Preservation Officer

The COMMONWEALTH OF MASSACHUSETTS BOARD OF UNDERWATER ARCHAEOLOGICAL RESOURCES

EXECUTIVE OFFICE OF ENERGY AND ENVIRONMENTAL AFFAIRS 251 Causeway Street, Suite 800, Boston, MA 02114-2136

Tel. (617) 626-1141 Fax (617) 626-1240 Web Site: www.mass.gov/eea/agencies/czm/buar/

March 29, 2017

Mr. Daniel P. Rukakoski Tighe & Bond, Inc. 53 Southampton Road Westfield, MA 01085-5308

RE: Mystic-Woburn Transmission Line Project, Bacon Street, Aberjona River, Winchester, MA

Dear Mr.Rukakoski,

The staff of the Massachusetts Board of Underwater Archaeological Resources has reviewed the above referenced project's SHPO/THPO Notification Form and supporting materials submitted by Tighe & Bond, Inc., on behalf of Evesource Energy. We offer the following comments.

The Board has conducted a preliminary review of its files and secondary literature sources to identify known and potential submerged cultural resources in the proposed project area. No record of any underwater archaeological resources was found. The Board notes, however, the area may be generally archaeologically sensitive given its riparian landscape and associated features. topographical setting is strongly associated with the presence of prehistoric archaeological deposits. However, much of the Aberjona River has undergone extensive prior disturbance and land modification activities (dredging, channelization, landscaping, etc.) which have significantly reduced integrity and/or preservation for submerged cultural resources. The Board finds the project unlikely to adversely affect submerged cultural resources.

However, should heretofore-unknown submerged cultural resources be encountered during the course of the project, the Board expects that the project's sponsor will take steps to limit adverse affects and notify the Board and the Massachusetts Historical Commission, as well as other appropriate agencies, immediately in accordance with the Board's Policy Guidance for the Discovery of Unanticipated Archaeological Resources.

The Board appreciates the opportunity to provide these comments as part of the review process. Should you have any questions regarding this letter, please do not hesitate to contact me at the address above, by email at victor.mastone@state.ma.us, or by telephone at (617) 626-1141.

Sincerely,

Victor T. Mastone

the Mil

Director

/vtm

Cc: Brona Simon, MHC

Ramona Peters, MWT (via email attachment)

Bettina Washington, WTGH/A (via email attachment)

APPENDIX E

Eversource Project Mystic-Woburn Transmission Project US EPA RGP Dilution Factor Calculations

Receiving Water	Receiving Water Effluent Discharge Flow (MGD)		Dilution Factor	
Mystic River	0.288	2.27	8.88	

$$DF = \frac{QD + QS}{QD}$$

Where:

DF = Dilution Factor

QD = Effluent Discharge Flow Rate (MGD)

QS = 7Q10 Stream Flow Rate (MGD)

MGD = Million Gallons per Day

Bryan Gammons

From: Ruan, Xiaodan (DEP) <xiaodan.ruan@state.ma.us>

Sent: Friday, July 19, 2019 2:08 PM

To: Bryan Gammons; Vakalopoulos, Catherine (DEP)

Cc: Bebis, Dean S; Michael E. Martin; Zylich, Michael J (Michael.Zylich@eversource.com)

Subject: RE: Notice of Change - RGP Permit No. MAG910761

Thank you Bryan for the reply.

I can confirm that the 7Q10 value of 2.27 MGD and the dilution factor of 8.88 for this discharge with a design flow of 0.288 MGD is correct.

Please let me know if you have any questions.

Thanks, Xiaodan

From: Bryan Gammons [mailto:BGammons@TigheBond.com]

Sent: Friday, July 19, 2019 1:23 PM

To: Ruan, Xiaodan (DEP); Vakalopoulos, Catherine (DEP)

Cc: Bebis, Dean S; Michael E. Martin; Zylich, Michael J (Michael.Zylich@eversource.com)

Subject: RE: Notice of Change - RGP Permit No. MAG910761

Good afternoon Xiaodan,

The design flow has changed and we are submitting a Notice of Change to the EPA with the lower flow rate.

Let me know if you have any other questions.

Best Regards,

Bryan

Bryan Gammons | Senior Environmental Scientist

Tighe & Bond | 120 Front Street – Suite 7| Worcester, MA 01608 | T. 508.304.6366 **www.tighebond.com** | Follow us on: <u>Twitter Facebook LinkedIn</u>

Tighe&Bond

From: Ruan, Xiaodan (DEP) < xiaodan.ruan@state.ma.us>

Sent: Friday, July 19, 2019 1:15 PM

To: Vakalopoulos, Catherine (DEP) <catherine.vakalopoulos@state.ma.us>

Cc: Bryan Gammons <BGammons@TigheBond.com>; Bebis, Dean S <dean.bebis@eversource.com>; Michael E. Martin <MEMartin@tigheBond.com>; Zylich, Michael J (Michael.Zylich@eversource.com) <Michael.Zylich@eversource.com>

Subject: RE: Notice of Change - RGP Permit No. MAG910761

[Caution - External Sender]

Hi Bryan,

My question is, has the design flow of the system changed?

Thanks. Xiaodan

From: Vakalopoulos, Catherine (DEP) **Sent:** Friday, July 19, 2019 10:23 AM

To: Ruan, Xiaodan (DEP)

Cc: Bryan Gammons; Bebis, Dean S; Michael E. Martin; Zylich, Michael J (Michael.Zylich@eversource.com)

Subject: FW: Notice of Change - RGP Permit No. MAG910761

Hi Xiaodan, Do you have time to look at this today? Thanks, Cathy

Cathy Vakalopoulos, Massachusetts Department of Environmental Protection 1 Winter St., Boston, MA 02108, 617-348-4026

A Please consider the environment before printing this e-mail

From: Bryan Gammons [mailto:BGammons@TigheBond.com]

Sent: Tuesday, July 16, 2019 1:26 PM **To:** Vakalopoulos, Catherine (DEP)

Cc: Bebis, Dean S; Michael E. Martin; Zylich, Michael J (Michael.Zylich@eversource.com)

Subject: Notice of Change - RGP Permit No. MAG910761

Project: Mystic to Woburn Transmission and Distribution Line Project

RGP Permit No. MAG910761 Subject: Filing a Notice of Change

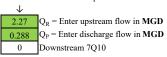
Good afternoon Cathy,

In November 2017 we submitted 7Q10 values and dilution factors for confirmation with MassDEP in support of an RGP application for the Eversource- Mystic to Woburn underground transmission line project. During construction dewatering activities it has been determined that the dewatering system works at optimal performance at a lower discharge rate.

Since the change in effluent flow will decrease the daily maximum effluent flow by more than 25%, we are required under the RGP to submit a Notice of Change. As part of the Notice of Change we are looking to confirm the new 7Q10 value and dilution factor calculated for the Mystic River. The 7Q10 value has been recorded from USGS StreamStats. Attached please find the calculations.

Please let us know if you have any questions, Best Regards, Bryan

Bryan Gammons | Senior Environmental Scientist


Tighe & Bond | 120 Front Street - Suite 7| Worcester, MA 01608 | T. 508.304.6366

www.tighebond.com | Follow us on: Twitter Facebook LinkedIn

Tiahe&Bond

Enter number values in green boxes below

Enter values in the units specified

Enter a dilution factor, if other than zero

Enter values in the units specified

\downarrow	_
426	C_d = Enter influent hardness in mg/L CaCO ₃
221	C _s = Enter receiving water hardness in mg/L CaCO ₃

Enter receiving water concentrations in the units specified

\downarrow	_
7.46	pH in Standard Units
17.4	Temperature in °C
0.45	Ammonia in mg/L
221	Hardness in mg/L CaCO
0	Salinity in ppt
0	Antimony in μg/L
0	Arsenic in μg/L
0	Cadmium in µg/L
0	Chromium III in µg/L
0	Chromium VI in μg/L
0	Copper in µg/L
274	Iron in μg/L
0	Lead in μg/L
0	Mercury in μg/L
0	Nickel in μg/L
0	Selenium in μg/L
0	Silver in μg/L
11.1	Zinc in μg/L

Enter influent concentrations in the units specified

0	TRC in μg/L
9.09	Ammonia in mg/L
0	Antimony in μg/L
7.8	Arsenic in μg/L
0.99	Cadmium in μg/L
16.7	Chromium III in µg/L
0	Chromium VI in µg/L
62.8	Copper in μg/L
32000	Iron in μg/L
73.7	Lead in μg/L
0	Mercury in μg/L
23.2	Nickel in μg/L
0	Selenium in μg/L
0.09	Silver in μg/L
771	Zinc in μg/L
0	Cyanide in μg/L
0	Phenol in μg/L
0	Carbon Tetrachloride in μg/L
1.4	Tetrachloroethylene in μg/L
30.85	Total Phthalates in μg/L
24	Diethylhexylphthalate in μg/L
0.26	Benzo(a)anthracene in μg/L
0.29	Benzo(a)pyrene in μg/L
0.37	Benzo(b)fluoranthene in μg/L
0.14	Benzo(k)fluoranthene in μg/L
0.35	Chrysene in µg/L
0.05	Dibenzo(a,h)anthracene in μg/L
0.22	Indeno(1,2,3-cd)pyrene in μg/L
29.2	Methyl-tert butyl ether in μg/L

Dilution Factor 5.3

Dilution Factor	5.3					
A. Inorganics	TBEL applies if	bolded	WQBEL applies	if bolded	Compliance Level	
A. morganics Ammonia	Donaut				applies if shown	
Chloride	Report	mg/L				
Total Residual Chlorine	Report	μg/L		/T		ar.
	0.2	mg/L	58	μg/L		μg/L
Total Suspended Solids	30	mg/L	2202			
Antimony	206	μg/L	3383	μg/L		
Arsenic	104	μg/L	53	μg/L		
Cadmium	10.2	μg/L	2.9017	μg/L		
Chromium III	323	μg/L	995.6	μg/L		
Chromium VI	323	μg/L	60.4	μg/L		
Copper	242	μg/L	111.5	μg/L		
Iron	5000	μg/L	4111	$\mu g/L$		
Lead	160	μg/L	56.70	$\mu g/L$		
Mercury	0.739	μg/L	4.79	$\mu g/L$		
Nickel	1450	μg/L	618.3	$\mu g/L$		
Selenium	235.8	μg/L	26.4	μg/L		
Silver	35.1	μg/L	103.3	$\mu g/L$		
Zinc	420	$\mu g/L$	1374.5	$\mu g/L$		
Cyanide	178	mg/L	27.5	$\mu g/L$		μg/L
B. Non-Halogenated VOCs	100	/T				
Total BTEX Benzene	100 5.0	μg/L μg/L				
1,4 Dioxane	200	μg/L μg/L				
Acetone	7970	μg/L				
Phenol	1,080	$\mu g/L$	1586	$\mu g/L$		
C. Halogenated VOCs		_		_		
Carbon Tetrachloride	4.4	μg/L	8.5	μg/L		
1,2 Dichlorobenzene 1,3 Dichlorobenzene	600 320	μg/L μg/L				
1,4 Dichlorobenzene	5.0	μg/L μg/L				
Total dichlorobenzene		μg/L				
1,1 Dichloroethane	70	$\mu g/L$				
1,2 Dichloroethane	5.0	μg/L				
1,1 Dichloroethylene	3.2	μg/L				
Ethylene Dibromide Methylene Chloride	0.05 4.6	μg/L μg/L				
1,1,1 Trichloroethane	200	μg/L μg/L				
1,1,2 Trichloroethane	5.0	μg/L				
Trichloroethylene	5.0	$\mu g/L$				
Tetrachloroethylene	5.0	μg/L	17.4	μg/L		
cis-1,2 Dichloroethylene Vinyl Chloride	70 2.0	μg/L μg/L				
•	2.0	μg/L				
D. Non-Halogenated SVOCs						
Total Phthalates	190	μg/L		$\mu g/L$		
Diethylhexyl phthalate	101	μg/L	11.6	$\mu g/L$		
Total Group I Polycyclic Aromatic Hydrocarbons	1.0	μg/L				
Benzo(a)anthracene	1.0	μg/L μg/L	0.0201	μg/L	0.1	μg/L
Benzo(a)pyrene	1.0	μg/L	0.0201	μg/L	0.1	μg/L
Benzo(b)fluoranthene	1.0	$\mu g/L$	0.0201	$\mu g/L$	0.1	$\mu g/L$
Benzo(k)fluoranthene	1.0	μg/L	0.0201	μg/L	0.1	μg/L
Chrysene	1.0 1.0	μg/L μg/L	0.0201 0.0201	μg/L μg/L	0.1 0.1	μg/L
Dibenzo(a,h)anthracene Indeno(1,2,3-cd)pyrene	1.0	μg/L μg/L	0.0201	μg/L μg/L	0.1	μg/L μg/L
Total Group II Polycyclic	1.0	rs 2	0.0201	F6 2	0.1	rs 2
Aromatic Hydrocarbons	100	μg/L				
Naphthalene	20	μg/L				
E. Halogenated SVOCs						
Total Polychlorinated Biphenyls	0.000064	μg/L			0.5	ug/I
Pentachlorophenol	1.0	μg/L μg/L			0.5	μg/L
F. Fuels Parameters		rb 2				
Total Petroleum Hydrocarbons	5.0	mg/L				
Ethanol	Report	mg/L				
Methyl-tert-Butyl Ether	70	μg/L	106	μg/L		
tert-Butyl Alcohol tert-Amyl Methyl Ether	120 90	μg/L μg/L				
con runyi wieniyi Eulei	70	µg/L				

TABLE 1

Eversource: Woburn - Mystic					ic Ave	
Analytical Test	Sample Identification Sample Date	Effluent Limitation	MW-15 9/14/2017	MW-15F 9/14/2017	MW-17 9/15/2017	MW-17F 9/15/2017
		_				
ГРН - mg/L	TPH	5	ND (5)	ND (5)	ND (5)	ND (5)
Total PAHs Group I - ug/L	Benzo(a)Anthracene	0.0338/0.1(1)	ND(0.05)	ND(0.05)	0.07	ND(0.05)
	Benzo(a)Pyrene	0.0338/0.1(1)	ND(0.05)	ND(0.05)	0.08	ND(0.05)
	Benzo(b)Fluoranthene	0.0338/0.1(1)	ND(0.05)	ND(0.05)	0.12	ND(0.05)
	Benzo(k)Fluoranthene	0.0338/0.1(1)	ND(0.05)	ND(0.05)	ND(0.05)	ND(0.05)
	Chrysene	0.0338/0.1(1)	ND(0.05)	ND(0.05)	0.08	ND(0.05)
	Dibenzo(a,h)Anthracene	0.0338/0.1(1)	ND(0.05)	ND(0.05)	ND(0.05)	ND(0.05)
	Indeno(1,2,3-cd)Pyrene	0.0338/0.1(1)	ND(0.05)	ND(0.05)	0.08	ND(0.05)
	Total PAHs Group I	1.0	ND	ND	0.43	ND
Fotal PAHs Group II - ug/L	Acenaphthene	NE	ND(0.19)	ND(0.19)	0.23	ND(0.19)
	Acenaphthylene	NE	ND(0.19)	ND(0.19)	ND(0.19)	ND(0.19)
	Anthracene	NE	ND(0.19)	ND(0.19)	ND(0.19)	ND(0.19)
	Benzo(ghi)Perylene	NE	ND(0.19)	ND(0.19)	ND(0.19)	ND(0.19)
	Fluoranthene	NE	ND(0.19)	ND(0.19)	ND(0.19)	ND(0.19)
	Fluorene Naphthalene	NE 20	ND(0.19) ND(0.19)	ND(0.19) ND(0.19)	ND(0.19) ND(0.19)	ND(0.19) ND(0.19)
	Phenanthrene	NE NE	ND(0.19)	ND(0.19)	ND(0.19)	ND(0.19)
	Pyrene	NE	ND(0.19)	ND(0.19)	ND(0.19)	ND(0.19)
	Total PAHs Group II	100	ND	ND	0.23	ND
Phthalates - ug/L	Butylbenzylphthalate	NE	ND(2.34)	ND(2.34)	ND(2.34)	ND(2.34)
ittilalates - ug/L	Bis (2-Ethylhexyl) Phthalate	101	ND(2.34) ND(1.87)	ND(2.34) ND(1.87)	2.27	ND(2.34)
	Diethylphthalate	NE	ND(2.34)	ND(2.34)	ND(2.34)	ND(2.34)
	Di-n-butylphthalate	NE	ND(2.34)	ND(2.34)	ND(2.34)	ND(2.34)
	Di-n-octylphthalate	NE	ND(2.34)	ND(2.34)	ND(2.34)	ND(2.34)
	Total Phthalates	190	ND	ND	2.27	ND
SVOCs - ug/L	Pentachlorophenol All Other SVOCs	1.0 NE	ND(0.84) <c s<="" td=""><td>ND(0.84) <c s<="" td=""><td>ND(0.84) <c s<="" td=""><td>ND(0.84) <c s<="" td=""></c></td></c></td></c></td></c>	ND(0.84) <c s<="" td=""><td>ND(0.84) <c s<="" td=""><td>ND(0.84) <c s<="" td=""></c></td></c></td></c>	ND(0.84) <c s<="" td=""><td>ND(0.84) <c s<="" td=""></c></td></c>	ND(0.84) <c s<="" td=""></c>
	7.11. 04.11.01. 07.0003		.0,5	-0/5	-0/5	
Metals- ug/L	Antimony	206	ND (10.0)	ND (10.0)	ND (10.0)	ND (10.0)
	Arsenic	104	ND (3.0)	ND (3.0)	ND (3.0)	ND (3.0)
	Cadmium Chromium	10.2 323	ND (0.15) ND (4.0)	ND (0.15) ND (4.0)	ND (0.15) ND (4.0)	0.26 6.3
	Chromium III	323	ND (4.0) ND (10.0)	ND (4.0) ND (10.0)	ND (4.0) ND (10.0)	ND (10.0)
	Lead	160	ND (3.0)	ND (3.0)	ND (3.0)	73.7
	Mercury	0.739	ND (0.200)	ND (0.200)	ND (0.200)	ND (0.200
	Nickel	1,450	ND (4.0)	ND (4.0)	ND (4.0)	ND (4.0)
	Selenium	235.8	ND (6.0)	ND (6.0)	ND (6.0)	ND (6.0)
	Silver Thallium	35.1 NE	ND (1.0)	ND (1.0)	ND (1.0)	ND (1.0)
	Vanadium	NE NE	-	-	-	-
	Zinc	420	ND (10.0)	ND (10.0)	ND (10.0)	77.5
	Iron	5,000	7,750	5,970	14,900	32,000
	Copper	242	ND (2.0)	ND (2.0)	2.2	26.7
Ethanol - ug/L	Ethanol	Report	ND (10)	ND (10)	ND (10)	ND (10)
1,2-Dibromothane - ug/L	1,2-Dibromothane (EDB)	0.05	ND (0.015)	ND (0.015)	ND (0.015)	ND (0.015
1,4-Dioxane - ug/L	1,4-Dioxane	200	0.396	0.397	ND (0.250)	ND (0.250)
PCB - ug/L	Aroclor-1016	NE	ND (0.09)	ND (0.09)	ND (0.09)	ND (0.09)
CB - ug/L	Aroclor-1016 Aroclor-1221	NE NE	ND (0.09) ND (0.09)	ND (0.09) ND (0.09)	ND (0.09) ND (0.09)	ND (0.09)
	Aroclor-1232	NE	ND (0.09)	ND (0.09)	ND (0.09)	ND (0.09)
	Aroclor-1242	NE	ND (0.09)	ND (0.09)	ND (0.09)	ND (0.09)
	Aroclor-1248	NE	ND (0.09)	ND (0.09)	ND (0.09)	ND (0.09)
		NE	ND (0.09)	ND (0.09)	ND (0.09)	ND (0.09)
	Aroclor-1254	142				NID (0.00)
	Aroclor-1260	NE	ND (0.09)	ND (0.09)	ND (0.09)	, ,
	Aroclor-1260 Aroclor-1262	NE NE	ND (0.09)	ND (0.09)	ND (0.09)	ND (0.09)
	Aroclor-1260 Aroclor-1262 Aroclor-1268	NE NE NE	ND (0.09) ND (0.09)	ND (0.09) ND (0.09)	ND (0.09) ND (0.09)	ND (0.09) ND (0.09)
	Aroclor-1260 Aroclor-1262	NE NE	ND (0.09)	ND (0.09)	ND (0.09)	ND (0.09)
/OCs - ug/L	Aroclor-1260 Aroclor-1262 Aroclor-1268 Total PCBs tert-Butyl Alcohol (TBA)	NE NE NE 0.000064/0.5 ⁽¹⁾	ND (0.09) ND (0.09) ND ND	ND (0.09) ND (0.09) ND 40.9	ND (0.09) ND (0.09) ND ND (25.0)	ND (25.0)
/OCs - ug/L	Aroclor-1260 Aroclor-1262 Aroclor-1268 Total PCBs tert-Butyl Alcohol (TBA) tert-Amyl Methyl Ether (TAME)	NE NE NE 0.000064/0.5 ⁽¹⁾ 120 90	ND (0.09) ND (0.09) ND 45.7 ND (1.0)	ND (0.09) ND (0.09) ND 40.9 ND (1.0)	ND (0.09) ND (0.09) ND ND (25.0) ND (1.0)	ND (0.09) ND (0.09) ND ND (25.0) ND (1.0)
/OCs - ug/L	Aroclor-1260 Aroclor-1262 Aroclor-1268 Total PCBs tert-Butyl Alcohol (TBA) tert-Amyl Methyl Ether (TAME) Napthalene	NE NE NE 0.000064/0.5 ⁽¹⁾ 120 90 20	ND (0.09) ND (0.09) ND 45.7 ND (1.0) ND (0.5)	ND (0.09) ND (0.09) ND 40.9 ND (1.0) ND (0.5)	ND (0.09) ND (0.09) ND ND (25.0) ND (1.0) ND (0.5)	ND (0.09) ND (0.09) ND ND (25.0) ND (1.0) ND (0.5)
/OCs - ug/L	Aroclor-1260 Aroclor-1262 Aroclor-1268 Total PCBs tert-Butyl Alcohol (TBA) tert-Amyl Methyl Ether (TAME) Napthalene Carbon Tetrachloride	NE NE 0.000064/0.5 ⁽¹⁾ 120 90 20 4.4	ND (0.09) ND (0.09) ND 45.7 ND (1.0) ND (0.5) ND (0.3)	ND (0.09) ND (0.09) ND 40.9 ND (1.0) ND (0.5) ND (0.3)	ND (0.09) ND (0.09) ND ND (25.0) ND (1.0) ND (0.5) ND (0.3)	ND (0.09) ND (0.09) ND ND (25.0) ND (1.0) ND (0.5) ND (0.3)
/OCs - ug/L	Aroclor-1260 Aroclor-1262 Aroclor-1268 Total PCBs tert-Butyl Alcohol (TBA) tert-Amyl Methyl Ether (TAME) Napthalene	NE NE NE 0.000064/0.5 ⁽¹⁾ 120 90 20	ND (0.09) ND (0.09) ND 45.7 ND (1.0) ND (0.5)	ND (0.09) ND (0.09) ND 40.9 ND (1.0) ND (0.5)	ND (0.09) ND (0.09) ND ND (25.0) ND (1.0) ND (0.5)	ND (0.09) ND (0.09) ND ND (25.0) ND (1.0) ND (0.5)
/OCs - ug/L	Aroclor-1260 Aroclor-1262 Aroclor-1268 Total PCBs tert-Butyl Alcohol (TBA) tert-Amyl Methyl Ether (TAME) Napthalene Carbon Tetrachloride 1,2 Dichlorobenzene (o-DCB)	NE NE 0.000064/0.5 ⁽¹⁾ 120 90 20 4.4 600	ND (0.09) ND (0.09) ND 45.7 ND (1.0) ND (0.5) ND (0.3) ND (0.5)	ND (0.09) ND (0.09) ND 40.9 ND (1.0) ND (0.5) ND (0.3) ND (0.5)	ND (0.09) ND (0.09) ND ND (25.0) ND (1.0) ND (0.5) ND (0.3) ND (0.5)	ND (0.09) ND (0.09) ND ND (25.0) ND (1.0) ND (0.5) ND (0.3) ND (0.5)
/OCs - ug/L	Aroclor-1260 Aroclor-1262 Aroclor-1268 Total PCBs tert-Butyl Alcohol (TBA) tert-Amyl Methyl Ether (TAME) Napthalene Carbon Tetrachloride 1,2 Dichlorobenzene (o-DCB) 1,3 Dichlorobenzene (m-DCB)	NE NE 0.000064/0.5 ⁽¹⁾ 120 90 20 4.4 600 320	ND (0.09) ND (0.09) ND 45.7 ND (1.0) ND (0.5) ND (0.3) ND (0.5) ND (0.5)	ND (0.09) ND (0.09) ND 40.9 ND (1.0) ND (0.5) ND (0.3) ND (0.5) ND (0.5)	ND (0.09) ND (0.09) ND ND (25.0) ND (1.0) ND (0.5) ND (0.3) ND (0.5) ND (0.5)	ND (0.09) ND (0.09) ND (25.0) ND (1.0) ND (0.5) ND (0.3) ND (0.5) ND (0.5)
/OCs - ug/L	Aroclor-1260 Aroclor-1262 Aroclor-1268 Total PCBs tert-Butyl Alcohol (TBA) tert-Amyl Methyl Ether (TAME) Napthalene Carbon Tetrachloride 1,2 Dichlorobenzene (o-DCB) 1,3 Dichlorobenzene (m-DCB) 1,4 Dicholorbenzene (p-DCB) 1,1 Dichloroethane (DCA) 1,2 Dichloroethane (DCA)	NE NE 0.000064/0.5 ⁽¹⁾ 120 90 20 4.4 600 320 5.0 70.0 5.0	ND (0.09) ND (0.09) ND (1.0) 45.7 ND (1.0) ND (0.5) ND (0.5) ND (0.5) ND (0.5) ND (0.5) ND (0.5)	ND (0.09) ND (0.09) ND (0.09) ND (1.0) ND (0.5) ND (0.5) ND (0.5) ND (0.5) ND (0.5) ND (0.5) ND (0.5)	ND (0.09) ND (0.09) ND (0.09) ND (1.0) ND (1.0) ND (0.5) ND (0.5) ND (0.5) ND (0.5) ND (0.5) ND (0.5)	ND (0.09) ND (0.09) ND (0.09) ND (1.0) ND (1.0) ND (0.5) ND (0.5) ND (0.5) ND (0.5) ND (0.5) ND (0.5)
/OCs - ug/L	Aroclor-1260 Aroclor-1262 Aroclor-1268 Total PCBs tert-Butyl Alcohol (TBA) tert-Amyl Methyl Ether (TAME) Napthalene Carbon Tetrachloride 1,2 Dichlorobenzene (o-DCB) 1,3 Dichlorobenzene (m-DCB) 1,4 Dicholorbenzene (p-DCB) 1,1 Dichloroethane (DCA) 1,2 Dichloroethane (DCA) 1,1 Dichloroethane (DCA) 1,1 Dichloroethane (DCA) 1,1 Dichloroethane (DCA)	NE NE 0.000064/0.5 ⁽¹⁾ 120 90 20 4.4 600 320 5.0 70.0 5.0 3.2	ND (0.09) ND (0.09) ND 45.7 ND (1.0) ND (0.5) ND (0.3) ND (0.5) ND (0.5) ND (0.5) ND (0.5)	ND (0.09) ND (0.09) ND 40.9 ND (1.0) ND (0.5) ND (0.5) ND (0.5) ND (0.5) ND (0.5) ND (0.5)	ND (0.09) ND (0.09) ND (25.0) ND (1.0) ND (0.5) ND (0.5) ND (0.5) ND (0.5) ND (0.5) ND (0.5)	ND (0.09) ND (0.09) ND (0.09) ND (1.0) ND (1.0) ND (0.5) ND (0.5) ND (0.5) ND (0.5) ND (0.5) ND (0.5)
/OCs - ug/L	Aroclor-1260 Aroclor-1262 Aroclor-1268 Total PCBs tert-Butyl Alcohol (TBA) tert-Amyl Methyl Ether (TAME) Napthalene Carbon Tetrachloride 1,2 Dichlorobenzene (o-DCB) 1,3 Dichlorobenzene (m-DCB) 1,4 Dichloroethane (DCA) 1,2 Dichloroethane (DCA) 1,1 Dichloroethane (DCA) 1,1 Dichloroethene (DCC) sec-Butylbenzene	NE NE 0.000064/0.5 ⁽¹⁾ 120 90 20 4.4 600 320 5.0 70.0 5.0 3.2 NE	ND (0.09) ND (0.09) ND (1.0) 45.7 ND (1.0) ND (0.5) ND (0.5) ND (0.5) ND (0.5) ND (0.5) ND (0.5)	ND (0.09) ND (0.09) ND (0.09) ND (1.0) ND (0.5) ND (0.5) ND (0.5) ND (0.5) ND (0.5) ND (0.5) ND (0.5)	ND (0.09) ND (0.09) ND (0.09) ND (1.0) ND (1.0) ND (0.5) ND (0.5) ND (0.5) ND (0.5) ND (0.5) ND (0.5)	ND (0.09) ND (0.09) ND (0.09) ND (1.0) ND (1.0) ND (0.5) ND (0.5) ND (0.5) ND (0.5) ND (0.5) ND (0.5)
/OCs - ug/L	Aroclor-1260 Aroclor-1262 Aroclor-1268 Total PCBs tert-Butyl Alcohol (TBA) tert-Amyl Methyl Ether (TAME) Napthalene Carbon Tetrachloride 1,2 Dichlorobenzene (o-DCB) 1,3 Dichlorobenzene (m-DCB) 1,4 Dichlorotenzene (p-DCB) 1,1 Dichloroethane (DCA) 1,2 Dichloroethane (DCA) 1,1 Dichloroethene (DCE) sec-Butylbenzene tert-Butyl Ethyl Ether (TBEE)	NE NE 0.000064/0.5 ⁽¹⁾ 120 90 20 4.4 600 320 5.0 70.0 5.0 3.2 NE NE	ND (0.09) ND (0.09) ND (0.09) ND (0.09) ND (0.09) ND (0.5) ND (0.5) ND (0.5) ND (0.5) ND (0.5) ND (0.5) ND (0.5)	ND (0.09) ND (0.09) ND (1.0) ND (1.0) ND (0.5) ND (0.5) ND (0.5) ND (0.5) ND (0.5) ND (0.5)	ND (0.09) ND (0.09) ND (25.0) ND (1.0) ND (0.5) ND (0.5) ND (0.5) ND (0.5) ND (0.5) ND (0.5) ND (0.5) ND (0.5)	ND (0.09) ND (0.09) ND (0.09) ND (1.0) ND (1.0) ND (0.5) ND (0.5) ND (0.5) ND (0.5) ND (0.5) ND (0.5)
/OCs - ug/L	Aroclor-1260 Aroclor-1262 Aroclor-1268 Total PCBs tert-Butyl Alcohol (TBA) tert-Amyl Methyl Ether (TAME) Napthalene Carbon Tetrachloride 1,2 Dichlorobenzene (o-DCB) 1,3 Dichlorobenzene (m-DCB) 1,4 Dichloroethane (DCA) 1,2 Dichloroethane (DCA) 1,1 Dichloroethane (DCA) 1,1 Dichloroethene (DCC) sec-Butylbenzene	NE NE 0.000064/0.5 ⁽¹⁾ 120 90 20 4.4 600 320 5.0 70.0 5.0 3.2 NE	ND (0.09) ND (0.09) ND (1.0) 45.7 ND (1.0) ND (0.5) ND (0.5) ND (0.5) ND (0.5) ND (0.5) ND (0.5)	ND (0.09) ND (0.09) ND (0.09) ND (1.0) ND (0.5) ND (0.5) ND (0.5) ND (0.5) ND (0.5) ND (0.5) ND (0.5)	ND (0.09) ND (0.09) ND (0.09) ND (1.0) ND (1.0) ND (0.5) ND (0.5) ND (0.5) ND (0.5) ND (0.5) ND (0.5)	ND (0.09) ND (0.09) ND (0.09) ND (1.0) ND (1.0) ND (0.5) ND (0.5) ND (0.5) ND (0.5) ND (0.5) ND (0.5)
/OCs - ug/L	Aroclor-1260 Aroclor-1262 Aroclor-1268 Total PCBs tert-Butyl Alcohol (TBA) tert-Amyl Methyl Ether (TAME) Napthalene Carbon Tetrachloride 1,2 Dichlorobenzene (o-DCB) 1,3 Dichlorobenzene (m-DCB) 1,4 Dicholorbenzene (p-DCB) 1,1 Dichloroethane (DCA) 1,2 Dichloroethane (DCA) 1,2 Dichloroethene (DCE) sec-Butylbenzene tert-Butyl Ethyl Ether (TBEE) cis-1,2 Dichloroethene (DCE)	NE NE 0.000064/0.5 ⁽¹⁾ 120 90 20 4.4 600 320 5.0 70.0 5.0 8.2 NE NE	ND (0.09) ND (0.09) ND (1.0) 45.7 ND (1.0) ND (0.5) ND (0.5) ND (0.5) ND (0.5) ND (0.5) ND (0.5) ND (0.5) ND (0.5) ND (0.5)	ND (0.09) ND (0.09) ND (1.0) ND (1.0) ND (0.5) ND (0.5) ND (0.5) ND (0.5) ND (0.5) ND (0.5) ND (0.5) ND (0.5) ND (0.5) ND (0.5)	ND (0.09) ND (0.09) ND (0.09) ND (1.0) ND (0.5) ND (0.5) ND (0.5) ND (0.5) ND (0.5) ND (0.5) ND (0.5) ND (0.5) ND (0.5) ND (0.5)	ND (0.09) ND (0.09) ND (0.09) ND (1.0) ND (1.0) ND (0.5)
/OCs - ug/L	Aroclor-1260 Aroclor-1262 Aroclor-1268 Total PCBs tert-Butyl Alcohol (TBA) tert-Amyl Methyl Ether (TAME) Napthalene Carbon Tetrachloride 1,2 Dichlorobenzene (o-DCB) 1,3 Dichlorobenzene (m-DCB) 1,4 Dichlorotenzene (m-DCB) 1,1 Dichlorotethane (DCA) 1,2 Dichlorotethane (DCA) 1,1 Dichlorotethene (DCE) sec-Butylbenzene tert-Butyl Ethyl Ether (TBEE) cis-1,2 Dichlorotethene (DCE) Methylene Chloride Tetrachlorotethene (PCE) 1,1,1 Trichloro-ethane (PCC)	NE NE 0.000064/0.5 ⁽¹⁾ 120 90 20 4.4 600 320 5.0 70.0 5.0 3.2 NE NE 70 4.6 5.0 200	ND (0.09) ND (0.09) ND (1.0) ND (1.0) ND (0.5) ND (0.5)	ND (0.09) ND (0.09) ND (0.09) ND (1.0) ND (0.5) ND (0.5)	ND (0.09) ND (0.09) ND (0.09) ND (1.0) ND (1.0) ND (0.5) ND (0.5)	ND (0.09) ND (0.09) ND (0.09) ND (1.0) ND (1.0) ND (0.5)
/OCs - ug/L	Aroclor-1260 Aroclor-1262 Aroclor-1268 Total PCBs tert-Butyl Alcohol (TBA) tert-Amyl Methyl Ether (TAME) Napthalene Carbon Tetrachloride 1,2 Dichlorobenzene (o-DCB) 1,3 Dichlorobenzene (m-DCB) 1,4 Dichlorobenzene (m-DCB) 1,1 Dichloroethane (DCA) 1,2 Dichloroethane (DCA) 1,2 Dichloroethene (DCE) sec-Butylbenzene tert-Butyl Ethyl Ether (TBEE) cis-1,2 Dichloroethene (DCE) Methylene Chloride Tetrachloroethene (PCE) 1,1,1 Trichloro-ethane (TCA) 1,1,2 Trichloro-ethane (TCA)	NE NE 0.000064/0.5 ⁽¹⁾ 120 90 20 4.4 600 320 5.0 70.0 5.0 70.0 5.0 4.6 5.0 200 5.0	ND (0.09) ND (0.09) ND (1.09) ND (2.5) ND (0.5) ND (0.5)	ND (0.09) ND (0.09) ND (1.0) ND (1.0) ND (0.5) ND (0.5)	ND (0.09) ND (0.09) ND (0.09) ND (1.0) ND (0.5) ND (0.5)	ND (0.09) ND (0.09) ND (0.09) ND (0.09) ND (1.0) ND (0.5)
/OCs - ug/L	Aroclor-1260 Aroclor-1262 Aroclor-1268 Total PCBs tert-Butyl Alcohol (TBA) tert-Amyl Methyl Ether (TAME) Napthalene Carbon Tetrachloride 1,2 Dichlorobenzene (o-DCB) 1,3 Dichlorobenzene (m-DCB) 1,4 Dicholorbenzene (m-DCB) 1,1 Dichloroethane (DCA) 1,2 Dichloroethane (DCA) 1,2 Dichloroethane (DCE) sec-Butylbenzene tert-Butyl Ethyl Ether (TBEE) cis-1,2 Dichloroethene (DCE) Methylene Chloride Tetrachloroethene (PCE) 1,1,1 Trichloro-ethane (TCA) 1,1,2 Trichloro-ethane (TCA) Trichloroethene (TCA)	NE NE 0.000064/0.5 ⁽¹⁾ 120 90 20 4.4 600 320 5.0 70.0 5.0 3.2 NE NE 70 4.6 5.0 200 5.0 5.0	ND (0.09) ND (0.09) ND (1.09) ND (45.7 ND (1.0) ND (0.5) ND (0.5)	ND (0.09) ND (0.09) ND (0.09) ND (1.0) ND (0.5) ND (0.5)	ND (0.09) ND (0.09) ND (0.09) ND (1.0) ND (0.5) ND (0.5)	ND (0.09) ND (0.09) ND (0.09) ND (1.0) ND (1.0) ND (0.5)
/OCs - ug/L	Aroclor-1260 Aroclor-1262 Aroclor-1268 Total PCBs tert-Butyl Alcohol (TBA) tert-Amyl Methyl Ether (TAME) Napthalene Carbon Tetrachloride 1,2 Dichlorobenzene (o-DCB) 1,3 Dichlorobenzene (m-DCB) 1,4 Dichlorobenzene (m-DCB) 1,1 Dichloroethane (DCA) 1,2 Dichloroethane (DCA) 1,1 Dichloroethene (DCE) sec-Butylbenzene tert-Butyl Ethyl Ether (TBEE) cis-1,2 Dichloroethene (DCE) Methylene Chloride Tetrachloroethene (PCE) 1,1,1 Trichloro-ethane (TCA) 1,1,2 Trichloro-ethane (TCA) Trichloroethene (TCE) Methyl tert-Butyl Ether (MtBE)	NE NE NE 0.000064/0.5 ⁽¹⁾ 120 90 20 4.4 600 320 5.0 70.0 5.0 3.2 NE NE 70 4.6 5.0 200 5.0 5.0 70.0	ND (0.09) ND (0.09) ND (1.0) ND (0.5) ND (0.5)	ND (0.09) ND (0.09) ND (1.0) ND (0.5) ND (0.5)	ND (0.09) ND (0.09) ND (1.0) ND (1.0) ND (0.5) ND (0.5)	ND (0.09) ND (0.09) ND (0.09) ND (1.0) ND (0.5)
/OCs - ug/L	Aroclor-1260 Aroclor-1262 Aroclor-1268 Total PCBs tert-Butyl Alcohol (TBA) tert-Amyl Methyl Ether (TAME) Napthalene Carbon Tetrachloride 1,2 Dichlorobenzene (o-DCB) 1,3 Dichlorobenzene (m-DCB) 1,4 Dicholorbenzene (m-DCB) 1,1 Dichloroethane (DCA) 1,2 Dichloroethane (DCA) 1,2 Dichloroethane (DCE) sec-Butylbenzene tert-Butyl Ethyl Ether (TBEE) cis-1,2 Dichloroethene (DCE) Methylene Chloride Tetrachloroethene (PCE) 1,1,1 Trichloro-ethane (TCA) 1,1,2 Trichloro-ethane (TCA) Trichloroethene (TCA)	NE NE 0.000064/0.5 ⁽¹⁾ 120 90 20 4.4 600 320 5.0 70.0 5.0 3.2 NE NE 70 4.6 5.0 200 5.0 5.0	ND (0.09) ND (0.09) ND (1.09) ND (45.7 ND (1.0) ND (0.5) ND (0.5)	ND (0.09) ND (0.09) ND (0.09) ND (1.0) ND (0.5) ND (0.5)	ND (0.09) ND (0.09) ND (0.09) ND (1.0) ND (0.5) ND (0.5)	ND (0.09) ND (0.09) ND (0.09) ND (1.0) ND (1.0) ND (0.5)
	Aroclor-1260 Aroclor-1262 Aroclor-1268 Total PCBs tert-Butyl Alcohol (TBA) tert-Amyl Methyl Ether (TAME) Napthalene Carbon Tetrachloride 1,2 Dichlorobenzene (o-DCB) 1,3 Dichlorobenzene (m-DCB) 1,4 Dichlorobenzene (m-DCB) 1,1 Dichloroethane (DCA) 1,2 Dichloroethane (DCA) 1,2 Dichloroethane (DCA) 1,2 Dichloroethene (DCE) sec-Butylbenzene tert-Butyl Ethyl Ether (TBEE) cis-1,2 Dichloroethene (DCE) Methylene Chloride Tetrachloroethene (PCE) 1,1,1 Trichloro-ethane (TCA) 1,1,2 Trichloro-ethane (TCA) Trichloroethene (TCE) Methyl tert-Butyl Ether (MtBE) Acetone Vinyl Chloride	NE NE 0.000064/0.5 ⁽¹⁾ 120 90 20 4.4 600 320 5.0 70.0 5.0 3.2 NE NE NE 70 4.6 5.0 200 5.0 70 7,970 2.0	ND (0.09) ND (0.09) ND (0.09) ND (1.0) ND (0.5) ND (0.5)	ND (0.09) ND (0.09) ND (0.09) ND (1.0) ND (0.5) ND (0.5)	ND (0.09) ND (0.09) ND (0.09) ND (1.0) ND (0.5) ND (0.5)	ND (0.09) ND (0.09) ND (0.09) ND (1.0) ND (1.0) ND (0.5)
/OCs - ug/L STEX - ug/L	Aroclor-1260 Aroclor-1262 Aroclor-1268 Total PCBs tert-Butyl Alcohol (TBA) tert-Amyl Methyl Ether (TAME) Napthalene Carbon Tetrachloride 1,2 Dichlorobenzene (o-DCB) 1,3 Dichlorobenzene (m-DCB) 1,4 Dichlorobenzene (m-DCB) 1,1 Dichloroethane (DCA) 1,2 Dichloroethane (DCA) 1,1 Dichloroethane (DCA) 1,1 Dichloroethene (DCE) sec-Butylbenzene tert-Butyl Ethyl Ether (TBEE) cis-1,2 Dichloroethene (DCE) Methylene Chloride Tetrachloroethene (PCE) 1,1,1 Trichloro-ethane (TCA) 1,1,2 Trichloro-ethane (TCA) Trichloroethene (TCE) Methyl tert-Butyl Ether (MtBE) Acetone Vinyl Chloride Benzene	NE NE NE 0.000064/0.5 ⁽¹⁾ 120 90 20 4.4 600 320 5.0 70.0 5.0 3.2 NE NE 70 4.6 5.0 200 5.0 70,7970 2.0	ND (0.09) ND (0.09) ND (0.09) ND (1.0) ND (0.5)	ND (0.09) ND (0.09) ND (0.09) ND (1.0) ND (0.5)	ND (0.09) ND (0.09) ND (0.09) ND (1.0) ND (0.5)	ND (0.09) ND (0.09) ND (0.09) ND (1.0) ND (1.0) ND (0.5)
	Aroclor-1260 Aroclor-1262 Aroclor-1268 Total PCBs tert-Butyl Alcohol (TBA) tert-Amyl Methyl Ether (TAME) Napthalene Carbon Tetrachloride 1,2 Dichlorobenzene (o-DCB) 1,3 Dichlorobenzene (m-DCB) 1,4 Dichlorobenzene (m-DCB) 1,1 Dichloroethane (DCA) 1,2 Dichloroethane (DCA) 1,2 Dichloroethane (DCE) sec-Butylbenzene tert-Butyl Ethyl Ether (TBEE) cis-1,2 Dichloroethene (DCE) Methylene Chloride Tetrachloroethene (PCE) 1,1,1 Trichloro-ethane (TCA) 1,1,2 Trichloro-ethane (TCA) Trichloroethene (TCE) Methyl tert-Butyl Ether (MtBE) Acetone Vinyl Chloride Benzene Toluene	NE NE O.000064/0.5 ⁽¹⁾ 120 90 20 4.4 600 320 5.0 70.0 5.0 3.2 NE NE 70 4.6 5.0 200 5.0 70 7,970 2.0 5.0 NE	ND (0.09) ND (0.09) ND (1.0) ND (2.5) ND (0.5)	ND (0.09) ND (0.09) ND (0.09) ND (1.0) ND (0.5)	ND (0.09) ND (0.09) ND (0.09) ND (1.0) ND (1.0) ND (0.5)	ND (0.09) ND (0.09) ND (0.09) ND (0.09) ND (1.0) ND (0.5)
	Aroclor-1260 Aroclor-1262 Aroclor-1268 Total PCBs tert-Butyl Alcohol (TBA) tert-Amyl Methyl Ether (TAME) Napthalene Carbon Tetrachloride 1,2 Dichlorobenzene (o-DCB) 1,3 Dichlorobenzene (m-DCB) 1,4 Dichlorobenzene (m-DCB) 1,1 Dichloroethane (DCA) 1,2 Dichloroethane (DCA) 1,2 Dichloroethane (DCA) 1,2 Dichloroethene (DCE) sec-Butylbenzene tert-Butyl Ethyl Ether (TBEE) cis-1,2 Dichloroethene (DCE) Methylene Chloride Tetrachloroethene (PCE) 1,1,1 Trichloro-ethane (TCA) 1,1,2 Trichloro-ethane (TCA) Trichloroethene (TCE) Methyl tert-Butyl Ether (MtBE) Acetone Vinyl Chloride Benzene Toluene Ethylbenzene	NE NE O.000064/0.5 ⁽¹⁾ 120 90 20 4.4 600 320 5.0 70.0 5.0 3.2 NE NE 70 4.6 5.0 200 5.0 70 7,970 2.0 5.0 NE NE NE	ND (0.09) ND (0.09) ND (0.09) ND (1.0) ND (0.5)	ND (0.09) ND (0.09) ND (0.09) ND (1.0) ND (0.5)	ND (0.09) ND (0.09) ND (0.09) ND (1.0) ND (1.0) ND (0.5)	ND (0.09) ND (0.09) ND (0.09) ND (0.09) ND (0.10) ND (0.5)
	Aroclor-1260 Aroclor-1262 Aroclor-1268 Total PCBs tert-Butyl Alcohol (TBA) tert-Amyl Methyl Ether (TAME) Napthalene Carbon Tetrachloride 1,2 Dichlorobenzene (o-DCB) 1,3 Dichlorobenzene (m-DCB) 1,4 Dichlorobenzene (m-DCB) 1,1 Dichloroethane (DCA) 1,2 Dichloroethane (DCA) 1,2 Dichloroethane (DCE) sec-Butylbenzene tert-Butyl Ethyl Ether (TBEE) cis-1,2 Dichloroethene (DCE) Methylene Chloride Tetrachloroethene (PCE) 1,1,1 Trichloro-ethane (TCA) 1,1,2 Trichloro-ethane (TCA) Trichloroethene (TCE) Methyl tert-Butyl Ether (MtBE) Acetone Vinyl Chloride Benzene Toluene	NE NE O.000064/0.5 ⁽¹⁾ 120 90 20 4.4 600 320 5.0 70.0 5.0 3.2 NE NE 70 4.6 5.0 200 5.0 70 7,970 2.0 5.0 NE	ND (0.09) ND (0.09) ND (1.0) ND (2.5) ND (0.5)	ND (0.09) ND (0.09) ND (0.09) ND (1.0) ND (0.5)	ND (0.09) ND (0.09) ND (0.09) ND (1.0) ND (1.0) ND (0.5)	ND (0.09) ND (0.09) ND (0.09) ND (0.09) ND (0.10) ND (0.5)
BTEX - ug/L	Aroclor-1260 Aroclor-1262 Aroclor-1268 Total PCBs tert-Butyl Alcohol (TBA) tert-Amyl Methyl Ether (TAME) Napthalene Carbon Tetrachloride 1,2 Dichlorobenzene (o-DCB) 1,3 Dichlorobenzene (m-DCB) 1,4 Dichlorobenzene (m-DCB) 1,1 Dichloroethane (DCA) 1,2 Dichloroethane (DCA) 1,2 Dichloroethane (DCB) sec-Butylbenzene tert-Butyl Ethyl Ether (TBEE) cis-1,2 Dichloroethene (DCE) Methylene Chloride Tetrachloroethene (PCE) 1,1,1 Trichloro-ethane (TCA) 1,1,2 Trichloro-ethane (TCA) Trichloroethene (TCE) Methyl tert-Butyl Ether (MtBE) Acetone Vinyl Chloride Benzene Toluene Ethylbenzene Total Xylenes Total BTEX	NE NE NE 0.000064/0.5 ⁽¹⁾ 120 90 20 4.4 600 320 5.0 70.0 5.0 3.2 NE NE 70 4.6 5.0 200 5.0 70 7,970 2.0 NE	ND (0.09) ND (0.09) ND (1.0) ND (2.5) ND (0.5)	ND (0.09) ND (0.09) ND (0.09) ND (1.0) ND (0.5)	ND (0.09) ND (0.09) ND (0.09) ND (1.0) ND (1.0) ND (0.5)	ND (0.09) ND (0.09) ND (0.09) ND (0.09) ND (1.0) ND (0.5)
	Aroclor-1260 Aroclor-1262 Aroclor-1268 Total PCBs tert-Butyl Alcohol (TBA) tert-Amyl Methyl Ether (TAME) Napthalene Carbon Tetrachloride 1,2 Dichlorobenzene (o-DCB) 1,3 Dichlorobenzene (m-DCB) 1,4 Dichlorobenzene (m-DCB) 1,1 Dichloroethane (DCA) 1,2 Dichloroethane (DCA) 1,2 Dichloroethane (DCE) sec-Butylbenzene tert-Butyl Ether (TBEE) cis-1,2 Dichloroethene (DCE) Methylene Chloride Tetrachloroethene (PCE) 1,1,1 Trichloro-ethane (TCA) 1,1,2 Trichloro-ethane (TCA) Trichloroethene (TCE) Methyl tert-Butyl Ether (MtBE) Acetone Vinyl Chloride Benzene Toluene Ethylbenzene Total Xylenes Total BTEX Chloride (mg/L)	NE NE NE 0.000064/0.5 ⁽¹⁾ 120 90 20 4.4 600 320 5.0 70.0 5.0 3.2 NE NE 70 4.6 5.0 200 5.0 70 7,970 2.0 5.0 NE NE NE NE RE 100 Report	ND (0.09) ND (0.09) ND (0.09) ND (1.0) ND (0.5)	ND (0.09) ND (0.09) ND (0.09) ND (1.0) ND (0.5)	ND (0.09) ND (0.09) ND (0.09) ND (0.09) ND (1.0) ND (0.5)	ND (0.09) ND (0.09) ND (0.09) ND (0.09) ND (0.10) ND (0.5)
BTEX - ug/L	Aroclor-1260 Aroclor-1262 Aroclor-1268 Total PCBs tert-Butyl Alcohol (TBA) tert-Amyl Methyl Ether (TAME) Napthalene Carbon Tetrachloride 1,2 Dichlorobenzene (o-DCB) 1,3 Dichlorobenzene (m-DCB) 1,4 Dichlorobenzene (m-DCB) 1,1 Dichloroethane (DCA) 1,1 Dichloroethane (DCA) 1,1 Dichloroethene (DCE) sec-Butylbenzene tert-Butyl Ethyl Ether (TBEE) cis-1,2 Dichloroethene (DCE) Methylene Chloride Tetrachloroethene (PCE) 1,1,1 Trichloro-ethane (TCA) 1,1,2 Trichloro-ethane (TCA) Trichloroethene (TCE) Methyl tert-Butyl Ether (MtBE) Acetone Vinyl Chloride Benzene Toluene Ethylbenzene Total Xylenes Total BTEX Chloride (mg/L) Ammonia (mg/L)	NE NE NE 0.000064/0.5 ⁽¹⁾ 120 90 20 4.4 600 320 5.0 70.0 5.0 3.2 NE NE 70 4.6 5.0 200 5.0 70 7,970 2.0 NE	ND (0.09) ND (0.09) ND (0.09) ND (1.00) ND (0.5)	ND (0.09) ND (0.09) ND (0.09) ND (0.09) ND (0.09) ND (0.5)	ND (0.09) ND (0.09) ND (0.09) ND (0.09) ND (0.09) ND (0.10) ND (0.5)	ND (0.09) ND (0.09) ND (0.09) ND (0.09) ND (1.0) ND (0.5)
BTEX - ug/L	Aroclor-1260 Aroclor-1262 Aroclor-1268 Total PCBs tert-Butyl Alcohol (TBA) tert-Amyl Methyl Ether (TAME) Napthalene Carbon Tetrachloride 1,2 Dichlorobenzene (o-DCB) 1,3 Dichlorobenzene (m-DCB) 1,4 Dichlorobenzene (m-DCB) 1,1 Dichloroethane (DCA) 1,1 Dichloroethane (DCA) 1,1 Dichloroethane (DCA) 1,1 Dichloroethene (DCE) sec-Butylbenzene tert-Butyl Ethyl Ether (TBEE) cis-1,2 Dichloroethene (DCE) Methylene Chloride Tetrachloroethene (PCE) 1,1,1 Trichloro-ethane (TCA) 1,1,2 Trichloro-ethane (TCA) Trichloroethene (TCE) Methyl tert-Butyl Ether (MtBE) Acetone Vinyl Chloride Benzene Toluene Ethylbenzene Total Xylenes Total BTEX Chloride (mg/L) Ammonia (mg/L) Hardness (ug/L)	NE NE NE 0.000064/0.5 ⁽¹⁾ 120 90 20 4.4 600 320 5.0 70.0 5.0 3.2 NE NE 70 4.6 5.0 200 5.0 70 7,970 2.0 NE NE NE NE RE NE RE RE NE RE	ND (0.09) ND (0.09) ND (0.09) ND (1.0) ND (0.5)	ND (0.09) ND (0.09) ND (0.09) ND (1.0) ND (0.5)	ND (0.09) ND (0.09) ND (0.09) ND (0.09) ND (1.0) ND (0.5)	ND (0.09) ND (0.09) ND (0.09) ND (0.09) ND (1.0) ND (0.5)
STEX - ug/L	Aroclor-1260 Aroclor-1262 Aroclor-1268 Total PCBs tert-Butyl Alcohol (TBA) tert-Amyl Methyl Ether (TAME) Napthalene Carbon Tetrachloride 1,2 Dichlorobenzene (o-DCB) 1,3 Dichlorobenzene (m-DCB) 1,4 Dichlorobenzene (m-DCB) 1,1 Dichloroethane (DCA) 1,1 Dichloroethane (DCA) 1,1 Dichloroethene (DCE) sec-Butylbenzene tert-Butyl Ethyl Ether (TBEE) cis-1,2 Dichloroethene (DCE) Methylene Chloride Tetrachloroethene (PCE) 1,1,1 Trichloro-ethane (TCA) 1,1,2 Trichloro-ethane (TCA) Trichloroethene (TCE) Methyl tert-Butyl Ether (MtBE) Acetone Vinyl Chloride Benzene Toluene Ethylbenzene Total Xylenes Total BTEX Chloride (mg/L) Ammonia (mg/L)	NE NE NE 0.000064/0.5 ⁽¹⁾ 120 90 20 4.4 600 320 5.0 70.0 5.0 3.2 NE NE 70 4.6 5.0 200 5.0 70 7,970 2.0 5.0 NE NE NE NE RE 100 Report	ND (0.09) ND (0.09) ND (0.09) ND (1.0) ND (0.5)	ND (0.09) ND (0.09) ND (0.09) ND (0.09) ND (0.09) ND (0.5)	ND (0.09) ND (0.09) ND (0.09) ND (1.0) ND (1.0) ND (0.5)	ND (0.09) ND (0.09) ND (0.09) ND (0.09) ND (1.0) ND (0.5)
STEX - ug/L	Aroclor-1260 Aroclor-1262 Aroclor-1268 Total PCBs tert-Butyl Alcohol (TBA) tert-Amyl Methyl Ether (TAME) Napthalene Carbon Tetrachloride 1,2 Dichlorobenzene (o-DCB) 1,3 Dichlorobenzene (m-DCB) 1,4 Dichlorobenzene (m-DCB) 1,1 Dichloroethane (DCA) 1,2 Dichloroethane (DCA) 1,2 Dichloroethane (DCE) sec-Butylbenzene tert-Butyl Ethyl Ether (TBEE) cis-1,2 Dichloroethene (DCE) Methylene Chloride Tetrachloroethene (PCE) 1,1,1 Trichloro-ethane (TCA) 1,1,2 Trichloro-ethane (TCA) Trichloroethene (TCE) Methyl tert-Butyl Ether (MtBE) Acetone Vinyl Chloride Benzene Toluene Ethylbenzene Total Xylenes Total BTEX Chloride (mg/L) Ammonia (mg/L) Hardness (ug/L) Hexavalent Chromium (ug/L)	NE NE NE O.000064/0.5 ⁽¹⁾ 120 90 20 4.4 600 320 5.0 70.0 5.0 3.2 NE NE 70 4.6 5.0 200 5.0 70 7,970 2.0 S.0 NE	ND (0.09) ND (0.09) ND (0.09) ND (1.0) ND (0.5)	ND (0.09) ND (0.09) ND (0.09) ND (0.09) ND (1.0) ND (0.5)	ND (0.09) ND (0.09) ND (0.09) ND (0.09) ND (1.0) ND (0.5)	ND (0.09) ND (0.09) ND (0.09) ND (0.09) ND (0.10) ND (0.5)

Italics = Reporting Limit Exceeds RGP Limit

Red text = exceeds RGP limit

FW- Freshwater

Notes:

1: The second standard is the compliance level

VOCs = Volatile Organic Compounds

SVOCs = Semi-Volatile Organic Compounds

THH = Total Petroleum Hydrocarbons

PCBs = Polychlorinated biphenyls

mg/L= milligrams per kilogram (ppm)

ug/L= micrograms per kilogram (ppm)

< xx = not detected above the indicated laboratory method detection limit

c/s = compound specific

NE = Not Established

NA = Not Analyzed

ND = Not Detected

* - Effluent limits calculated using the US EPA's Dilution Factor and Effluent Limitation Calculations for Massachusetts Form (Appendix V)

Red text = exceeds RGP limit Red text = exceeds RGP limit

TABLE 2 **Surface Water Results** Eversource: Woburn - Mystic

Analytical Test	Sample Identification	Effluent Limitation	Mystic Crossing	Mystic at Winter	Mystic	Mystic at Laydown
	Sample Date		11/15/2017	11/15/2017	11/15/2017	11/15/2017
Metals (ug/L)	Arsenic	104	ND(2.5)	ND(2.5)	ND(2.5)	ND(5)
	Cadmium	10.2	ND(2)	ND(2)	ND(2)	ND(10)
	Chromium	NE	ND(4)	ND(4)	ND(4)	ND(20)
	Chromium III	323	ND(10)	ND(10)	ND(10)	ND(20)
	Copper	242	ND(2)	ND(2)	ND(2)	ND(10)
	Iron	3,111	134	251	121	274
	Lead	60.04	ND(4)	ND(4)	ND(4)	ND(2)
	Nickel	1,450	ND(4)	ND(4)	ND(4)	ND(20)
	Silver	35.1	NA	NA	NA	NA
	Zinc	420	11.1	10.9	10.2	ND(50)
Classical Chemistry	Ammonia as N (mg/L)	Report	0.35	0.45	0.27	0.28
	Hexavalent Chromium (ug/L)	323	ND(10)	ND(10)	ND(10)	ND(10)
	рН	NE	7.13	7.25	7.36	7.46
	Hardness (ug/L)	NE	147,000	184,000	181,000	221,000

Notes:

mg/L= milligrams per kilogram (ppm)

ug/L= micrograms per kilogram (ppb)

NE = Not Established

NA = Not Analyzed

ND = Not Detected *- EJJIUENT IIMITS FROM NYDES GENERAL PERMIT FOR REMEALATION ACTIVITY

Discharges DRAFT at

https://www2 ena anu/region1/nndes/remediation/2016DraftPermit ndf

APPENDIX F

The Microbiology Division of Thielsch Engineering, Inc.

CERTIFICATE OF ANALYSIS

Michael Martin Tighe & Bond 4 Barlows Landing Road, Unit 15 Pocasset, MA 02559

RE: Woburn to Mystic - RGP (N-0998-11-13) ESS Laboratory Work Order Number: 1709460

This signed Certificate of Analysis is our approved release of your analytical results. These results are only representative of sample aliquots received at the laboratory. ESS Laboratory expects its clients to follow all regulatory sampling guidelines. Beginning with this page, the entire report has been paginated. This report should not be copied except in full without the approval of the laboratory. Samples will be disposed of thirty days after the final report has been delivered. If you have any questions or concerns, please feel free to call our Customer Service Department.

Laurel Stoddard Laboratory Director REVIEWED

By ESS Laboratory at 5:37 pm, Sep 26, 2017

Analytical Summary

The project as described above has been analyzed in accordance with the ESS Quality Assurance Plan. This plan utilizes the following methodologies: US EPA SW-846, US EPA Methods for Chemical Analysis of Water and Wastes per 40 CFR Part 136, APHA Standard Methods for the Examination of Water and Wastewater, American Society for Testing and Materials (ASTM), and other recognized methodologies. The analyses with these noted observations are in conformance to the Quality Assurance In chromatographic analysis, manual integration is frequently used instead of integration because it produces more accurate results.

The test results present in this report are in compliance with TNI and relative state standards, and/or client Quality Assurance Project Plans (QAPP). The laboratory has reviewed the following: Sample Preservations, Hold Times, Initial Calibrations, Continuing Calibrations, Method Blanks, Blank Spikes, Blank Spike Duplicates, Duplicates, Matrix Spikes, Matrix Spike Duplicates, Surrogates and Internal Standards. Any results which were found to be outside of the recommended ranges stated in our SOPs will be noted in the Project Narrative.

Page 1 of 53

The Microbiology Division of Thielsch Engineering, Inc.

CERTIFICATE OF ANALYSIS

Client Name: Tighe & Bond

Client Project ID: Woburn to Mystic - RGP ESS Laboratory Work Order: 1709460

SAMPLE RECEIPT

The following samples were received on September 15, 2017 for the analyses specified on the enclosed Chain of Custody Record.

The samples and analyses listed below were analyzed in accordance with the 2017 Remediation General Permit under the National Pollutant Discharge Elimination System (NPDES).

ESS Laboratory is unable to achieve the required detection limit of 0.4 mg/L for Ethanol for the RGP permit. We have also been unable to procure a subcontract laboatory that is able to achieve this limit. The data for Ethanol has been reported using our current method reporting limit.

Lab Number	Sample Name	Matrix	<u>Analysis</u>
1709460-01	MW-15	Ground Water	1664A, 200.7, 245.1, 2540D, 300.0, 3113B, 350.1,
			3500Cr B-2009, 420.1, 4500 CN CE, 4500Cl D,
			504.1, 524.2, 608, 625 SIM, 8270D SIM, ASTM
			D3695
1709460-02	MW-15F	Ground Water	1664A, 200.7, 245.1, 2540D, 300.0, 3113B, 350.1,
			3500Cr B-2009, 420.1, 4500 CN CE, 4500Cl D,
			504.1, 524.2, 608, 625 SIM, 8270D SIM, ASTM
			D3695
1709460-03	MW-17	Ground Water	1664A, 200.7, 245.1, 2540D, 300.0, 3113B, 350.1,
			3500Cr B-2009, 420.1, 4500 CN CE, 4500Cl D,
			504.1, 524.2, 608, 625 SIM, 8270D SIM, ASTM
			D3695
1709460-04	MW-17F	Ground Water	1664A, 200.7, 245.1, 2540D, 300.0, 3113B, 350.1,
			3500Cr B-2009, 420.1, 4500 CN CE, 4500Cl D,
			504.1, 524.2, 608, 625 SIM, 8270D SIM, ASTM
			D3695

The Microbiology Division of Thielsch Engineering, Inc.

CERTIFICATE OF ANALYSIS

Client Name: Tighe & Bond

Client Project ID: Woburn to Mystic - RGP ESS Laboratory Work Order: 1709460

PROJECT NARRATIVE

625(SIM) Semi-Volatile Organic Compounds

1709460-01 <u>Surrogate recovery(ies) above upper control limit (S+).</u>

2,4,6-Tribromophenol (244% @ 15-110%)

1709460-02 Surrogate recovery(ies) above upper control limit (S+).

2,4,6-Tribromophenol (245% @ 15-110%)

1709460-03 <u>Surrogate recovery(ies) above upper control limit (S+).</u>

2,4,6-Tribromophenol (189% @ 15-110%)

1709460-04 <u>Surrogate recovery(ies) above upper control limit (S+).</u>

2,4,6-Tribromophenol (180% @ 15-110%)

C7I0284-CCV1 Continuing Calibration %Diff/Drift is above control limit (CD+).

2,4,6-Tribromophenol (57% @ 20%), Di-n-octylphthalate (31% @ 20%)

C7I0284-TUN1 Benzidine tailing factor >2.

C7I0284-TUN1 Pentachlorophenol tailing factor > 2.

CI71812-BS2 Blank Spike recovery is above upper control limit (B+).

2,4,6-Tribromophenol (173% @ 15-110%)

CI71812-BSD2 Blank Spike recovery is above upper control limit (B+).

2,4,6-Tribromophenol (199% @ 15-110%)

8270D(SIM) Semi-Volatile Organic Compounds w/ Isotope Dilution

C7I0298-TUN1 Benzidine tailing factor >2.

Classical Chemistry

1709460-01 The maximum holding time listed in 40 CFR Part 136 Table II for pH, Dissolved Oxygen, Sulfite and

Residual Chlorine is fifteen minutes.

1709460-02 The maximum holding time listed in 40 CFR Part 136 Table II for pH, Dissolved Oxygen, Sulfite and

Residual Chlorine is fifteen minutes.

1709460-03 The maximum holding time listed in 40 CFR Part 136 Table II for pH, Dissolved Oxygen, Sulfite and

Residual Chlorine is fifteen minutes.

1709460-04 The maximum holding time listed in 40 CFR Part 136 Table II for pH, Dissolved Oxygen, Sulfite and

Residual Chlorine is fifteen minutes.

Total Metals

CI71971-BSD1 Blank Spike recovery is above upper control limit (B+).

Lead (116% @ 85-115%)

No other observations noted.

End of Project Narrative.

The Microbiology Division of Thielsch Engineering, Inc.

CERTIFICATE OF ANALYSIS

Client Name: Tighe & Bond

Client Project ID: Woburn to Mystic - RGP ESS Laboratory Work Order: 1709460

DATA USABILITY LINKS

To ensure you are viewing the most current version of the documents below, please clear your internet cookies for www.ESSLaboratory.com. Consult your IT Support personnel for information on how to clear your internet cookies.

Definitions of Quality Control Parameters

Semivolatile Organics Internal Standard Information

Semivolatile Organics Surrogate Information

Volatile Organics Internal Standard Information

Volatile Organics Surrogate Information

EPH and VPH Alkane Lists

CURRENT SW-846 METHODOLOGY VERSIONS

Analytical Methods

1010A - Flashpoint

6010C - ICP

6020A - ICP MS

7010 - Graphite Furnace

7196A - Hexavalent Chromium

7470A - Aqueous Mercury

7471B - Solid Mercury

8011 - EDB/DBCP/TCP

8015C - GRO/DRO

8081B - Pesticides

8082A - PCB

8100M - TPH

8151A - Herbicides

8260B - VOA

8270D - SVOA

8270D SIM - SVOA Low Level

9014 - Cyanide

9038 - Sulfate

9040C - Aqueous pH

9045D - Solid pH (Corrosivity)

9050A - Specific Conductance

9056A - Anions (IC)

9060A - TOC

9095B - Paint Filter

MADEP 04-1.1 - EPH / VPH

Prep Methods

3005A - Aqueous ICP Digestion

3020A - Aqueous Graphite Furnace / ICP MS Digestion

3050B - Solid ICP / Graphite Furnace / ICP MS Digestion

3060A - Solid Hexavalent Chromium Digestion

3510C - Separatory Funnel Extraction

3520C - Liquid / Liquid Extraction

3540C - Manual Soxhlet Extraction

3541 - Automated Soxhlet Extraction

3546 - Microwave Extraction

3580A - Waste Dilution

5030B - Aqueous Purge and Trap

5030C - Aqueous Purge and Trap

5035 - Solid Purge and Trap

SW846 Reactivity Methods 7.3.3.2 (Reactive Cyanide) and 7.3.4.1 (Reactive Sulfide) have been withdrawn by EPA. These methods are reported per client request and are not NELAP accredited.

The Microbiology Division of Thielsch Engineering, Inc.

CERTIFICATE OF ANALYSIS

Client Name: Tighe & Bond

Client Project ID: Woburn to Mystic - RGP

Client Sample ID: MW-15 Date Sampled: 09/14/17 21:00

Percent Solids: N/A

ESS Laboratory Work Order: 1709460 ESS Laboratory Sample ID: 1709460-01

Sample Matrix: Ground Water

Units: ug/L

Extraction Method: 245.1/7470A

Total Metals

Analyte	Results (MRL)	MDL Method	<u>l Limit</u> <u>D</u>	F Analys	t Analyzed	<u>I/V</u>	F/V	Batch
Antimony	ND (10.0)	200.7		1 KJK	09/20/17 21:42	50	10	CI71971
Arsenic	ND (3.0)	3113B		3 KJK	09/21/17 9:26	50	10	CI71971
Cadmium	ND (0.15)	3113B		3 KJK	09/21/17 23:35	50	10	CI71971
Chromium	ND (4.0)	200.7		1 KJK	09/20/17 21:42	50	10	CI71971
Chromium III	ND (10.0)	200.7		1 JLK	09/20/17 21:42	1	1	[CALC]
Copper	ND (2.0)	200.7		1 KJK	09/26/17 8:55	100	20	CI72503
Hardness	309000 (165)	200.7		1 KJK	09/20/17 21:42	1	1	[CALC]
Iron	7750 (20.0)	200.7		1 KJK	09/20/17 21:42	50	10	CI71971
Lead	ND (3.0)	3113B		3 KJK	09/21/17 17:53	50	10	CI71971
Mercury	ND (0.200)	245.1		1 MJV	09/19/17 0:15	20	40	CI71847
Nickel	ND (4.0)	200.7		1 KJK	09/20/17 21:42	50	10	CI71971
Selenium	ND (6.0)	3113B		3 KJK	09/21/17 12:37	50	10	CI71971
Silver	ND (1.0)	200.7		1 KJK	09/20/17 21:42	50	10	CI71971
Zinc	ND (10.0)	200.7		1 KJK	09/20/17 21:42	50	10	CI71971

Page 5 of 53

The Microbiology Division of Thielsch Engineering, Inc.

CERTIFICATE OF ANALYSIS

Client Name: Tighe & Bond

Client Project ID: Woburn to Mystic - RGP

Client Sample ID: MW-15 Date Sampled: 09/14/17 21:00

Percent Solids: N/A Initial Volume: 25 Final Volume: 25

Extraction Method: 524.2

ESS Laboratory Work Order: 1709460 ESS Laboratory Sample ID: 1709460-01

Sample Matrix: Ground Water

Units: ug/L Analyst: DMC

524.2 Volatile Organic Compounds

<u>Analyte</u>	Results (MRL)	MDL	Method	<u>Limit</u>	DF	Analyzed	Sequence	Batch
1,1,1-Trichloroethane	ND (0.5)		524.2		1	09/19/17 14:59	C7I0303	CI71930
1,1,2-Trichloroethane	ND (0.5)		524.2		1	09/19/17 14:59	C7I0303	CI71930
1,1-Dichloroethane	ND (0.5)		524.2		1	09/19/17 14:59	C7I0303	CI71930
1,1-Dichloroethene	ND (0.5)		524.2		1	09/19/17 14:59	C7I0303	CI71930
1,2-Dichlorobenzene	ND (0.5)		524.2		1	09/19/17 14:59	C7I0303	CI71930
1,2-Dichloroethane	ND (0.5)		524.2		1	09/19/17 14:59	C7I0303	CI71930
1,3-Dichlorobenzene	ND (0.5)		524.2		1	09/19/17 14:59	C7I0303	CI71930
1,4-Dichlorobenzene	ND (0.5)		524.2		1	09/19/17 14:59	C7I0303	CI71930
Acetone	ND (5.0)		524.2		1	09/19/17 14:59	C7I0303	CI71930
Benzene	ND (0.5)		524.2		1	09/19/17 14:59	C7I0303	CI71930
Carbon Tetrachloride	ND (0.3)		524.2		1	09/19/17 14:59	C7I0303	CI71930
cis-1,2-Dichloroethene	ND (0.5)		524.2		1	09/19/17 14:59	C7I0303	CI71930
Ethylbenzene	ND (0.5)		524.2		1	09/19/17 14:59	C7I0303	CI71930
Methyl tert-Butyl Ether	29.2 (0.5)		524.2		1	09/19/17 14:59	C7I0303	CI71930
Methylene Chloride	ND (0.5)		524.2		1	09/19/17 14:59	C7I0303	CI71930
Naphthalene	ND (0.5)		524.2		1	09/19/17 14:59	C7I0303	CI71930
Tertiary-amyl methyl ether	ND (1.0)		524.2		1	09/19/17 14:59	C7I0303	CI71930
Tertiary-butyl Alcohol	45.7 (25.0)		524.2		1	09/19/17 14:59	C7I0303	CI71930
Tetrachloroethene	ND (0.5)		524.2		1	09/19/17 14:59	C7I0303	CI71930
Toluene	ND (0.5)		524.2		1	09/19/17 14:59	C7I0303	CI71930
Trichloroethene	ND (0.5)		524.2		1	09/19/17 14:59	C7I0303	CI71930
Vinyl Chloride	ND (0.2)		524.2		1	09/19/17 14:59	C7I0303	CI71930
Xylene O	ND (0.5)		524.2		1	09/19/17 14:59	C7I0303	CI71930
Xylene P,M	ND (0.5)		524.2		1	09/19/17 14:59	C7I0303	CI71930

%Recovery Qualifier Limits

 Surrogate: 1,2-Dichlorobenzene-d4
 120 %
 80-120

 Surrogate: 4-Bromofluorobenzene
 99 %
 80-120

The Microbiology Division of Thielsch Engineering, Inc.

CERTIFICATE OF ANALYSIS

Client Name: Tighe & Bond

Client Project ID: Woburn to Mystic - RGP

Client Sample ID: MW-15 Date Sampled: 09/14/17 21:00

Percent Solids: N/A Initial Volume: 1070 Final Volume: 1

Extraction Method: 3510C

ESS Laboratory Work Order: 1709460 ESS Laboratory Sample ID: 1709460-01

Sample Matrix: Ground Water

Units: ug/L Analyst: CAD

Prepared: 9/19/17 10:08

608 Polychlorinated Biphenyls (PCB)

Analyte	Results (MRL)	MDL	Method	<u>Limit</u>	<u>DF</u>	Analyzed	Sequence	Batch
Aroclor 1016	ND (0.09)		608		1	09/19/17 11:36		CI71810
Aroclor 1221	ND (0.09)		608		1	09/19/17 11:36		CI71810
Aroclor 1232	ND (0.09)		608		1	09/19/17 11:36		CI71810
Aroclor 1242	ND (0.09)		608		1	09/19/17 11:36		CI71810
Aroclor 1248	ND (0.09)		608		1	09/19/17 11:36		CI71810
Aroclor 1254	ND (0.09)		608		1	09/19/17 11:36		CI71810
Aroclor 1260	ND (0.09)		608		1	09/19/17 11:36		CI71810
Aroclor 1262	ND (0.09)		608		1	09/19/17 11:36		CI71810
Aroclor 1268	ND (0.09)		608		1	09/19/17 11:36		CI71810
		%Recovery	Qualifier	Limits				
Surrogate: Decachlorobiphenyl		69 %		30-150				
Surrogate: Decachlorobiphenyl [2C]		77 %		30-150				
Surrogate: Tetrachloro-m-xylene		74 %		30-150				
Surrogate: Tetrachloro-m-xylene [2C]		77 %		30-150				

The Microbiology Division of Thielsch Engineering, Inc.

CERTIFICATE OF ANALYSIS

Client Name: Tighe & Bond

Client Project ID: Woburn to Mystic - RGP

Client Sample ID: MW-15 Date Sampled: 09/14/17 21:00

Percent Solids: N/A Initial Volume: 1070 Final Volume: 0.25

Extraction Method: 3510C

ESS Laboratory Work Order: 1709460 ESS Laboratory Sample ID: 1709460-01

Sample Matrix: Ground Water

Units: ug/L Analyst: IBM

Prepared: 9/18/17 15:21

625(SIM) Semi-Volatile Organic Compounds

Analyte	Results (MRL)	MDL	Method	<u>Limit</u>	<u>DF</u>	Analyzed	Sequence	Batch
Acenaphthene	ND (0.19)		625 SIM		1	09/19/17 0:35	C7I0284	CI71812
Acenaphthylene	ND (0.19)		625 SIM		1	09/19/17 0:35	C7I0284	CI71812
Anthracene	ND (0.19)		625 SIM		1	09/19/17 0:35	C7I0284	CI71812
Benzo(a)anthracene	ND (0.05)		625 SIM		1	09/19/17 0:35	C7I0284	CI71812
Benzo(a)pyrene	ND (0.05)		625 SIM		1	09/19/17 0:35	C7I0284	CI71812
Benzo(b)fluoranthene	ND (0.05)		625 SIM		1	09/19/17 0:35	C7I0284	CI71812
Benzo(g,h,i)perylene	ND (0.19)		625 SIM		1	09/19/17 0:35	C7I0284	CI71812
Benzo(k)fluoranthene	ND (0.05)		625 SIM		1	09/19/17 0:35	C7I0284	CI71812
bis(2-Ethylhexyl)phthalate	ND (1.87)		625 SIM		1	09/19/17 0:35	C7I0284	CI71812
Butylbenzylphthalate	ND (2.34)		625 SIM		1	09/19/17 0:35	C7I0284	CI71812
Chrysene	ND (0.05)		625 SIM		1	09/19/17 0:35	C7I0284	CI71812
Dibenzo(a,h)Anthracene	ND (0.05)		625 SIM		1	09/19/17 0:35	C7I0284	CI71812
Diethylphthalate	ND (2.34)		625 SIM		1	09/19/17 0:35	C7I0284	CI71812
Dimethylphthalate	ND (2.34)		625 SIM		1	09/19/17 0:35	C7I0284	CI71812
Di-n-butylphthalate	ND (2.34)		625 SIM		1	09/19/17 0:35	C7I0284	CI71812
Di-n-octylphthalate	ND (2.34)		625 SIM		1	09/19/17 0:35	C7I0284	CI71812
Fluoranthene	ND (0.19)		625 SIM		1	09/19/17 0:35	C7I0284	CI71812
Fluorene	ND (0.19)		625 SIM		1	09/19/17 0:35	C7I0284	CI71812
Indeno(1,2,3-cd)Pyrene	ND (0.05)		625 SIM		1	09/19/17 0:35	C7I0284	CI71812
Naphthalene	ND (0.19)		625 SIM		1	09/19/17 0:35	C7I0284	CI71812
Pentachlorophenol	ND (0.84)		625 SIM		1	09/19/17 0:35	C7I0284	CI71812
Phenanthrene	ND (0.19)		625 SIM		1	09/19/17 0:35	C7I0284	CI71812
Pyrene	ND (0.19)		625 SIM		1	09/19/17 0:35	C7I0284	CI71812
-		%Recovery	Qualifier	Limits				

	MCCOVCIY	Qualifici	LIIIICS
Surrogate: 1,2-Dichlorobenzene-d4	62 %		30-130
Surrogate: 2,4,6-Tribromophenol	244 %	S+	15-110
Surrogate: 2-Fluorobiphenyl	84 %		30-130
Surrogate: Nitrobenzene-d5	93 %		30-130
Surrogate: p-Terphenyl-d14	79 %		30-130

Quality

The Microbiology Division of Thielsch Engineering, Inc.

CERTIFICATE OF ANALYSIS

Client Name: Tighe & Bond

Client Project ID: Woburn to Mystic - RGP

Client Sample ID: MW-15 Date Sampled: 09/14/17 21:00

Percent Solids: N/A Initial Volume: 500 Final Volume: 0.5

Extraction Method: 3535A

ESS Laboratory Work Order: 1709460 ESS Laboratory Sample ID: 1709460-01

Sample Matrix: Ground Water

Units: ug/L Analyst: VSC

Prepared: 9/18/17 18:00

8270D(SIM) Semi-Volatile Organic Compounds w/ Isotope Dilution

Analyte 1,4-Dioxane	Results (MRL) 0.396 (0.250)	<u>MDL</u>	Method 8270D SIM	<u>Limit</u>	<u>DF</u>	<u>Analyzed</u> 09/19/17 10:35	Sequence C7I0291	Batch CI71856
	%	Recovery	Qualifier	Limits				
Surrogate: 1,4-Dioxane-d8		39 %		15-115				

185 Frances Avenue, Cranston, RI 02910-2211

Tel: 401-461-7181

Fax: 401-461-4486

http://www.ESSLaboratory.com

The Microbiology Division of Thielsch Engineering, Inc.

CERTIFICATE OF ANALYSIS

Client Name: Tighe & Bond

Client Project ID: Woburn to Mystic - RGP

Client Sample ID: MW-15 Date Sampled: 09/14/17 21:00

Percent Solids: N/A

ESS Laboratory Work Order: 1709460 ESS Laboratory Sample ID: 1709460-01

Sample Matrix: Ground Water

Classical Chemistry

Analyte Ammonia as N	Results (MRL) 9.09 (0.50)	MDL <u>Method</u> 350.1	<u>Limit</u>	<u>DF</u> 5	Analyst JLK	Analyzed 09/18/17 20:04	Units mg/L	Batch CI71804
Chloride	902 (250)	300.0		500	EEM	09/19/17 13:44	mg/L	CI71909
Hexavalent Chromium	ND (10.0)	3500Cr B-2009		1	JLK	09/15/17 20:49	ug/L	CI71551
Phenols	ND (100)	420.1		1	JLK	09/18/17 19:45	ug/L	CI71841
Total Cyanide (LL)	ND (5.00)	4500 CN CE		1	EEM	09/19/17 12:35	ug/L	CI71910
Total Petroleum Hydrocarbon	ND (5)	1664A		1	LAB	09/19/17 16:25	mg/L	CI71830
Total Residual Chlorine	ND (20.0)	4500C1 D		1	JLK	09/15/17 21:35	ug/L	CI71549
Total Suspended Solids	13 (5)	2540D		1	JLK	09/19/17 20:52	mg/L	CI71946

The Microbiology Division of Thielsch Engineering, Inc.

CERTIFICATE OF ANALYSIS

Client Name: Tighe & Bond

Client Project ID: Woburn to Mystic - RGP

Client Sample ID: MW-15 Date Sampled: 09/14/17 21:00

Percent Solids: N/A Initial Volume: 35 Final Volume: 2

Extraction Method: 504/8011

ESS Laboratory Work Order: 1709460 ESS Laboratory Sample ID: 1709460-01

Sample Matrix: Ground Water

Units: ug/L Analyst: IBM

Prepared: 9/20/17 10:10

504.1 1,2-Dibromoethane / 1,2-Dibromo-3-chloropropane

Analyte 1,2-Dibromoethane	Results (MRL) ND (0.015)	<u>MDL</u>	Method 504.1	<u>Limit</u>	<u>DF</u>	<u>Analyzed</u> 09/20/17 13:07	<u>Sequence</u>	Batch CI72021
	9.	%Recovery	Qualifier	Limits				
Surrogate: Pentachloroethane		83 %		30-150				
Surrogate: Pentachloroethane [2C]		67 %		30-150				

The Microbiology Division of Thielsch Engineering, Inc.

CERTIFICATE OF ANALYSIS

Client Name: Tighe & Bond

Client Project ID: Woburn to Mystic - RGP

Client Sample ID: MW-15 Date Sampled: 09/14/17 21:00

Percent Solids: N/A Initial Volume: 1 Final Volume: 1

Extraction Method: No Prep

ESS Laboratory Work Order: 1709460 ESS Laboratory Sample ID: 1709460-01

Sample Matrix: Ground Water

Units: mg/L Analyst: ZLC

Prepared: 9/19/17 9:18

Alcohol Scan by GC/FID

AnalyteResults (MRL)MDLMethodLimitDFAnalystAnalyzedSequenceBatchEthanolND (10)ASTM D36951ZLC09/19/17 13:29CI71906

185 Frances Avenue, Cranston, RI 02910-2211

Tel: 401-461-7181

Fax: 401-461-4486

http://www.ESSLaboratory.com

The Microbiology Division of Thielsch Engineering, Inc.

CERTIFICATE OF ANALYSIS

Client Name: Tighe & Bond

Client Project ID: Woburn to Mystic - RGP

Client Sample ID: MW-15F Date Sampled: 09/14/17 22:00

Percent Solids: N/A

ESS Laboratory Work Order: 1709460 ESS Laboratory Sample ID: 1709460-02

Sample Matrix: Ground Water

Units: ug/L

Extraction Method: 245.1/7470A

Total Metals

<u>Analyte</u>	Results (MRL)	MDL Metho	<u>d Limit DI</u>			<u>I/V</u>	F/V	Batch
Antimony	ND (10.0)	200.7	1	KJK	09/20/17 21:47	50	10	CI71971
Arsenic	ND (3.0)	3113B	3	KJK	09/21/17 9:32	50	10	CI71971
Cadmium	ND (0.15)	3113B	3	KJK	09/21/17 23:47	50	10	CI71971
Chromium	ND (4.0)	200.7	1	KJK	09/20/17 21:47	50	10	CI71971
Chromium III	ND (10.0)	200.7	1	JLK	09/20/17 21:47	1	1	[CALC]
Copper	ND (2.0)	200.7	1	KJK	09/26/17 9:01	100	20	CI72503
Hardness	322000 (165)	200.7	1	KJK	09/20/17 21:47	1	1	[CALC]
Iron	5970 (20.0)	200.7	1	KJK	09/20/17 21:47	50	10	CI71971
Lead	ND (3.0)	3113B	3	KJK	09/21/17 17:58	50	10	CI71971
Mercury	ND (0.200)	245.1	1	MJV	09/19/17 0:17	20	40	CI71847
Nickel	ND (4.0)	200.7	1	KJK	09/20/17 21:47	50	10	CI71971
Selenium	ND (6.0)	3113B	3	KJK	09/21/17 12:43	50	10	CI71971
Silver	ND (1.0)	200.7	1	KJK	09/20/17 21:47	50	10	CI71971
Zinc	ND (10.0)	200.7	1	KJK	09/20/17 21:47	50	10	CI71971

The Microbiology Division of Thielsch Engineering, Inc.

CERTIFICATE OF ANALYSIS

Client Name: Tighe & Bond

Client Project ID: Woburn to Mystic - RGP

Client Sample ID: MW-15F Date Sampled: 09/14/17 22:00

Percent Solids: N/A Initial Volume: 25 Final Volume: 25

Extraction Method: 524.2

ESS Laboratory Work Order: 1709460 ESS Laboratory Sample ID: 1709460-02

Sample Matrix: Ground Water

Units: ug/L Analyst: DMC

524.2 Volatile Organic Compounds

Analyte	Results (MRL)	MDL	Method	<u>Limit</u>	<u>DF</u>	Analyzed	Sequence	Batch
1,1,1-Trichloroethane	ND (0.5)		524.2		1	09/18/17 18:36	C7I0274	CI71838
1,1,2-Trichloroethane	ND (0.5)		524.2		1	09/18/17 18:36	C7I0274	CI71838
1,1-Dichloroethane	ND (0.5)		524.2		1	09/18/17 18:36	C7I0274	CI71838
1,1-Dichloroethene	ND (0.5)		524.2		1	09/18/17 18:36	C7I0274	CI71838
1,2-Dichlorobenzene	ND (0.5)		524.2		1	09/18/17 18:36	C7I0274	CI71838
1,2-Dichloroethane	ND (0.5)		524.2		1	09/18/17 18:36	C7I0274	CI71838
1,3-Dichlorobenzene	ND (0.5)		524.2		1	09/18/17 18:36	C7I0274	CI71838
1,4-Dichlorobenzene	ND (0.5)		524.2		1	09/18/17 18:36	C7I0274	CI71838
Acetone	ND (5.0)		524.2		1	09/18/17 18:36	C7I0274	CI71838
Benzene	ND (0.5)		524.2		1	09/18/17 18:36	C7I0274	CI71838
Carbon Tetrachloride	ND (0.3)		524.2		1	09/18/17 18:36	C7I0274	CI71838
cis-1,2-Dichloroethene	ND (0.5)		524.2		1	09/18/17 18:36	C7I0274	CI71838
Ethylbenzene	ND (0.5)		524.2		1	09/18/17 18:36	C7I0274	CI71838
Methyl tert-Butyl Ether	26.2 (0.5)		524.2		1	09/18/17 18:36	C7I0274	CI71838
Methylene Chloride	ND (0.5)		524.2		1	09/18/17 18:36	C7I0274	CI71838
Naphthalene	ND (0.5)		524.2		1	09/18/17 18:36	C7I0274	CI71838
Tertiary-amyl methyl ether	ND (1.0)		524.2		1	09/18/17 18:36	C7I0274	CI71838
Tertiary-butyl Alcohol	40.9 (25.0)		524.2		1	09/18/17 18:36	C7I0274	CI71838
Tetrachloroethene	ND (0.5)		524.2		1	09/18/17 18:36	C7I0274	CI71838
Toluene	ND (0.5)		524.2		1	09/18/17 18:36	C7I0274	CI71838
Trichloroethene	ND (0.5)		524.2		1	09/18/17 18:36	C7I0274	CI71838
Vinyl Chloride	ND (0.2)		524.2		1	09/18/17 18:36	C7I0274	CI71838
Xylene O	ND (0.5)		524.2		1	09/18/17 18:36	C7I0274	CI71838
Xylene P,M	ND (0.5)		524.2		1	09/18/17 18:36	C7I0274	CI71838

%Recovery Qualifier Limits
Surrogate: 1,2-Dichlorobenzene-d4 111 % 80-1.

 Surrogate: 1,2-Dichlorobenzene-d4
 111 %
 80-120

 Surrogate: 4-Bromofluorobenzene
 101 %
 80-120

The Microbiology Division of Thielsch Engineering, Inc.

CERTIFICATE OF ANALYSIS

Client Name: Tighe & Bond

Client Project ID: Woburn to Mystic - RGP

Client Sample ID: MW-15F Date Sampled: 09/14/17 22:00

Percent Solids: N/A Initial Volume: 1070 Final Volume: 1

Extraction Method: 3510C

ESS Laboratory Work Order: 1709460 ESS Laboratory Sample ID: 1709460-02

Sample Matrix: Ground Water

Units: ug/L Analyst: CAD

Prepared: 9/19/17 10:08

608 Polychlorinated Biphenyls (PCB)

Analyte	Results (MRL)	MDL	Method	<u>Limit</u>	<u>DF</u>	Analyzed	Sequence	Batch
Aroclor 1016	ND (0.09)		608		1	09/19/17 11:54		CI71810
Aroclor 1221	ND (0.09)		608		1	09/19/17 11:54		CI71810
Aroclor 1232	ND (0.09)		608		1	09/19/17 11:54		CI71810
Aroclor 1242	ND (0.09)		608		1	09/19/17 11:54		CI71810
Aroclor 1248	ND (0.09)		608		1	09/19/17 11:54		CI71810
Aroclor 1254	ND (0.09)		608		1	09/19/17 11:54		CI71810
Aroclor 1260	ND (0.09)		608		1	09/19/17 11:54		CI71810
Aroclor 1262	ND (0.09)		608		1	09/19/17 11:54		CI71810
Aroclor 1268	ND (0.09)		608		1	09/19/17 11:54		CI71810
		%Recovery	Qualifier	Limits				
Surrogate: Decachlorobiphenyl		84 %		30-150				
Surrogate: Decachlorobiphenyl [2C]		94 %		30-150				
Surrogate: Tetrachloro-m-xylene		74 %		30-150				
Surrogate: Tetrachloro-m-xylene [2C]		76 %		30-150				

Fax: 401-461-4486

Service

The Microbiology Division of Thielsch Engineering, Inc.

CERTIFICATE OF ANALYSIS

Client Name: Tighe & Bond

Client Project ID: Woburn to Mystic - RGP

Client Sample ID: MW-15F Date Sampled: 09/14/17 22:00

Percent Solids: N/A Initial Volume: 1070 Final Volume: 0.25

4/17/22:00 Samj

Extraction Method: 3510C

ESS Laboratory Work Order: 1709460 ESS Laboratory Sample ID: 1709460-02

Sample Matrix: Ground Water

Units: ug/L Analyst: IBM

Prepared: 9/18/17 15:21

625(SIM) Semi-Volatile Organic Compounds

<u>Analyte</u>	Results (MRL)	MDL	Method	<u>Limit</u>	<u>DF</u>	Analyzed	Sequence	Batch
Acenaphthene	ND (0.19)		625 SIM		1	09/19/17 1:22	C7I0284	CI71812
Acenaphthylene	ND (0.19)		625 SIM		1	09/19/17 1:22	C7I0284	CI71812
Anthracene	ND (0.19)		625 SIM		1	09/19/17 1:22	C7I0284	CI71812
Benzo(a)anthracene	ND (0.05)		625 SIM		1	09/19/17 1:22	C7I0284	CI71812
Benzo(a)pyrene	ND (0.05)		625 SIM		1	09/19/17 1:22	C7I0284	CI71812
Benzo(b)fluoranthene	ND (0.05)		625 SIM		1	09/19/17 1:22	C7I0284	CI71812
Benzo(g,h,i)perylene	ND (0.19)		625 SIM		1	09/19/17 1:22	C7I0284	CI71812
Benzo(k)fluoranthene	ND (0.05)		625 SIM		1	09/19/17 1:22	C7I0284	CI71812
bis(2-Ethylhexyl)phthalate	ND (1.87)		625 SIM		1	09/19/17 1:22	C7I0284	CI71812
Butylbenzylphthalate	ND (2.34)		625 SIM		1	09/19/17 1:22	C7I0284	CI71812
Chrysene	ND (0.05)		625 SIM		1	09/19/17 1:22	C7I0284	CI71812
Dibenzo(a,h)Anthracene	ND (0.05)		625 SIM		1	09/19/17 1:22	C7I0284	CI71812
Diethylphthalate	ND (2.34)		625 SIM		1	09/19/17 1:22	C7I0284	CI71812
Dimethylphthalate	ND (2.34)		625 SIM		1	09/19/17 1:22	C7I0284	CI71812
Di-n-butylphthalate	ND (2.34)		625 SIM		1	09/19/17 1:22	C7I0284	CI71812
Di-n-octylphthalate	ND (2.34)		625 SIM		1	09/19/17 1:22	C7I0284	CI71812
Fluoranthene	ND (0.19)		625 SIM		1	09/19/17 1:22	C7I0284	CI71812
Fluorene	ND (0.19)		625 SIM		1	09/19/17 1:22	C7I0284	CI71812
Indeno(1,2,3-cd)Pyrene	ND (0.05)		625 SIM		1	09/19/17 1:22	C7I0284	CI71812
Naphthalene	ND (0.19)		625 SIM		1	09/19/17 1:22	C7I0284	CI71812
Pentachlorophenol	ND (0.84)		625 SIM		1	09/19/17 1:22	C7I0284	CI71812
Phenanthrene	ND (0.19)		625 SIM		1	09/19/17 1:22	C7I0284	CI71812
Pyrene	ND (0.19)		625 SIM		1	09/19/17 1:22	C7I0284	CI71812

	MCCOVERY	Qualifici	LIIIICS
Surrogate: 1,2-Dichlorobenzene-d4	68 %		30-130
Surrogate: 2,4,6-Tribromophenol	245 %	S+	15-110
Surrogate: 2-Fluorobiphenyl	88 %		30-130
Surrogate: Nitrobenzene-d5	99 %		30-130
Surrogate: p-Terphenyl-d14	89 %		30-130

Service

The Microbiology Division of Thielsch Engineering, Inc.

CERTIFICATE OF ANALYSIS

Client Name: Tighe & Bond

Client Project ID: Woburn to Mystic - RGP

Client Sample ID: MW-15F Date Sampled: 09/14/17 22:00

Percent Solids: N/A Initial Volume: 500 Final Volume: 0.5

Extraction Method: 3535A

ESS Laboratory Work Order: 1709460 ESS Laboratory Sample ID: 1709460-02

Sample Matrix: Ground Water

Units: ug/L Analyst: VSC

Prepared: 9/18/17 18:00

8270D(SIM) Semi-Volatile Organic Compounds w/ Isotope Dilution

Analyte 1,4-Dioxane	Results (MRL) 0.397 (0.250)	<u>MDL</u>	Method 8270D SIM	<u>Limit</u>	<u>DF</u> 1	<u>Analyzed</u> 09/19/17 11:09	Sequence C7I0291	Batch CI71856
	%	Recovery	Qualifier	Limits				
Surrogate: 1,4-Dioxane-d8		31 %		15-115				

185 Frances Avenue, Cranston, RI 02910-2211

Tel: 401-461-7181

Fax: 401-461-4486

http://www.ESSLaboratory.com

The Microbiology Division of Thielsch Engineering, Inc.

CERTIFICATE OF ANALYSIS

Client Name: Tighe & Bond

Client Project ID: Woburn to Mystic - RGP

Client Sample ID: MW-15F Date Sampled: 09/14/17 22:00

Percent Solids: N/A

ESS Laboratory Work Order: 1709460 ESS Laboratory Sample ID: 1709460-02

Sample Matrix: Ground Water

Classical Chemistry

Analyte Ammonia as N	Results (MRL) 8.21 (0.50)	MDL Method 350.1	<u>Limit</u>	<u>DF</u> 5	Analyst JLK	Analyzed 09/18/17 20:04	Units mg/L	Batch CI71804
Chloride	536 (250)	300.0		500	EEM	09/19/17 14:01	mg/L	CI71909
Hexavalent Chromium	ND (10.0)	3500Cr B-2009		1	JLK	09/15/17 20:49	ug/L	CI71551
Phenols	ND (100)	420.1		1	JLK	09/18/17 19:45	ug/L	CI71841
Total Cyanide (LL)	ND (5.00)	4500 CN CE		1	EEM	09/19/17 12:35	ug/L	CI71910
Total Petroleum Hydrocarbon	ND (5)	1664A		1	LAB	09/19/17 16:25	mg/L	CI71830
Total Residual Chlorine	ND (20.0)	4500Cl D		1	JLK	09/15/17 21:35	ug/L	CI71549
Total Suspended Solids	8 (5)	2540D		1	JLK	09/19/17 20:52	mg/L	CI71946

The Microbiology Division of Thielsch Engineering, Inc.

CERTIFICATE OF ANALYSIS

Client Name: Tighe & Bond

Client Project ID: Woburn to Mystic - RGP

Client Sample ID: MW-15F Date Sampled: 09/14/17 22:00

Percent Solids: N/A Initial Volume: 35 Final Volume: 2

Extraction Method: 504/8011

ESS Laboratory Work Order: 1709460 ESS Laboratory Sample ID: 1709460-02

Sample Matrix: Ground Water

Units: ug/L Analyst: IBM

Prepared: 9/20/17 10:10

504.1 1,2-Dibromoethane / 1,2-Dibromo-3-chloropropane

Analyte 1,2-Dibromoethane	Results (MRL) ND (0.015)	MDL	Method 504.1	<u>Limit</u>	<u>DF</u> 1	Analyzed 09/20/17 13:34	Sequence	Batch CI72021
	9	%Recovery	Qualifier	Limits				
Surrogate: Pentachloroethane		<i>75</i> %		30-150				
Surrogate: Pentachloroethane [2C]		60 %		30-150				

The Microbiology Division of Thielsch Engineering, Inc.

CERTIFICATE OF ANALYSIS

Client Name: Tighe & Bond

Client Project ID: Woburn to Mystic - RGP

Client Sample ID: MW-15F Date Sampled: 09/14/17 22:00

Percent Solids: N/A Initial Volume: 1 Final Volume: 1

Extraction Method: No Prep

ESS Laboratory Work Order: 1709460 ESS Laboratory Sample ID: 1709460-02

Sample Matrix: Ground Water

Units: mg/L Analyst: ZLC

Prepared: 9/19/17 9:18

Alcohol Scan by GC/FID

AnalyteResults (MRL)MDLMethodLimitDFAnalystAnalyzedSequenceBatchEthanolND (10)ASTM D36951ZLC09/19/17 14:15CI71906

185 Frances Avenue, Cranston, RI 02910-2211

Tel: 401-461-7181

Fax: 401-461-4486

http://www.ESSLaboratory.com

The Microbiology Division of Thielsch Engineering, Inc.

CERTIFICATE OF ANALYSIS

Client Name: Tighe & Bond

Client Project ID: Woburn to Mystic - RGP

Client Sample ID: MW-17 Date Sampled: 09/15/17 00:00

Percent Solids: N/A

ESS Laboratory Work Order: 1709460 ESS Laboratory Sample ID: 1709460-03

Sample Matrix: Ground Water

Units: ug/L

Extraction Method: 245.1/7470A

Total Metals

<u>Analyte</u>	Results (MRL)	MDL Meth				<u>I/V</u>	F/V	Batch
Antimony	ND (10.0)	200.7	1	KJK	09/20/17 21:53	50	10	CI71971
Arsenic	ND (3.0)	31131	3	KJK	09/21/17 9:37	50	10	CI71971
Cadmium	ND (0.15)	31131	3	KJK	09/21/17 23:52	50	10	CI71971
Chromium	ND (4.0)	200.7	7 1	KJK	09/20/17 21:53	50	10	CI71971
Chromium III	ND (10.0)	200.7	7 1	JLK	09/20/17 21:53	1	1	[CALC]
Copper	2.2 (2.0)	200.7	7 1	KJK	09/26/17 9:06	100	20	CI72503
Hardness	277000 (499)	200.7	5	KJK	09/21/17 17:54	1	1	[CALC]
Iron	14900 (20.0)	200.7	7 1	KJK	09/20/17 21:53	50	10	CI71971
Lead	ND (3.0)	31131	3	KJK	09/21/17 18:16	50	10	CI71971
Mercury	ND (0.200)	245.1	1	MJV	09/19/17 0:20	20	40	CI71847
Nickel	ND (4.0)	200.7	7 1	KJK	09/20/17 21:53	50	10	CI71971
Selenium	ND (6.0)	31131	3	KJK	09/21/17 12:54	50	10	CI71971
Silver	ND (1.0)	200.7	7 1	KJK	09/20/17 21:53	50	10	CI71971
Zinc	ND (10.0)	200.7	7 1	KJK	09/20/17 21:53	50	10	CI71971

The Microbiology Division of Thielsch Engineering, Inc.

CERTIFICATE OF ANALYSIS

Client Name: Tighe & Bond

Client Project ID: Woburn to Mystic - RGP

Client Sample ID: MW-17 Date Sampled: 09/15/17 00:00

Percent Solids: N/A Initial Volume: 25 Final Volume: 25

Extraction Method: 524.2

ESS Laboratory Work Order: 1709460 ESS Laboratory Sample ID: 1709460-03

Sample Matrix: Ground Water

Units: ug/L Analyst: DMC

524.2 Volatile Organic Compounds

<u>Analyte</u>	Results (MRL)	MDL	Method	<u>Limit</u>	<u>DF</u>	Analyzed	Sequence	Batch
1,1,1-Trichloroethane	ND (0.5)		524.2		1	09/18/17 19:10	C7I0274	CI71838
1,1,2-Trichloroethane	ND (0.5)		524.2		1	09/18/17 19:10	C7I0274	CI71838
1,1-Dichloroethane	ND (0.5)		524.2		1	09/18/17 19:10	C7I0274	CI71838
1,1-Dichloroethene	ND (0.5)		524.2		1	09/18/17 19:10	C7I0274	CI71838
1,2-Dichlorobenzene	ND (0.5)		524.2		1	09/18/17 19:10	C7I0274	CI71838
1,2-Dichloroethane	ND (0.5)		524.2		1	09/18/17 19:10	C7I0274	CI71838
1,3-Dichlorobenzene	ND (0.5)		524.2		1	09/18/17 19:10	C7I0274	CI71838
1,4-Dichlorobenzene	ND (0.5)		524.2		1	09/18/17 19:10	C7I0274	CI71838
Acetone	ND (5.0)		524.2		1	09/18/17 19:10	C7I0274	CI71838
Benzene	ND (0.5)		524.2		1	09/18/17 19:10	C7I0274	CI71838
Carbon Tetrachloride	ND (0.3)		524.2		1	09/18/17 19:10	C7I0274	CI71838
cis-1,2-Dichloroethene	ND (0.5)		524.2		1	09/18/17 19:10	C7I0274	CI71838
Ethylbenzene	ND (0.5)		524.2		1	09/18/17 19:10	C7I0274	CI71838
Methyl tert-Butyl Ether	ND (0.5)		524.2		1	09/18/17 19:10	C7I0274	CI71838
Methylene Chloride	ND (0.5)		524.2		1	09/18/17 19:10	C7I0274	CI71838
Naphthalene	ND (0.5)		524.2		1	09/18/17 19:10	C7I0274	CI71838
Tertiary-amyl methyl ether	ND (1.0)		524.2		1	09/18/17 19:10	C7I0274	CI71838
Tertiary-butyl Alcohol	ND (25.0)		524.2		1	09/18/17 19:10	C7I0274	CI71838
Tetrachloroethene	ND (0.5)		524.2		1	09/18/17 19:10	C7I0274	CI71838
Toluene	ND (0.5)		524.2		1	09/18/17 19:10	C7I0274	CI71838
Trichloroethene	ND (0.5)		524.2		1	09/18/17 19:10	C7I0274	CI71838
Vinyl Chloride	ND (0.2)		524.2		1	09/18/17 19:10	C7I0274	CI71838
Xylene O	ND (0.5)		524.2		1	09/18/17 19:10	C7I0274	CI71838
Xylene P,M	ND (0.5)		524.2		1	09/18/17 19:10	C7I0274	CI71838

%Recovery Qualifier Limits
Surrogate: 1,2-Dichlorobenzene-d4 112 % 80-1

 Surrogate: 1,2-Dichlorobenzene-d4
 112 %
 80-120

 Surrogate: 4-Bromofluorobenzene
 104 %
 80-120

The Microbiology Division of Thielsch Engineering, Inc.

CERTIFICATE OF ANALYSIS

Client Name: Tighe & Bond

Client Project ID: Woburn to Mystic - RGP

Client Sample ID: MW-17 Date Sampled: 09/15/17 00:00

Percent Solids: N/A Initial Volume: 1070 Final Volume: 1

Extraction Method: 3510C

ESS Laboratory Work Order: 1709460 ESS Laboratory Sample ID: 1709460-03

Sample Matrix: Ground Water

Units: ug/L Analyst: CAD

Prepared: 9/19/17 10:08

608 Polychlorinated Biphenyls (PCB)

Analyte	Results (MRL)	MDL	Method	<u>Limit</u>	<u>DF</u>	Analyzed	Sequence	Batch
Aroclor 1016	ND (0.09)		608		1	09/19/17 12:13		CI71810
Aroclor 1221	ND (0.09)		608		1	09/19/17 12:13		CI71810
Aroclor 1232	ND (0.09)		608		1	09/19/17 12:13		CI71810
Aroclor 1242	ND (0.09)		608		1	09/19/17 12:13		CI71810
Aroclor 1248	ND (0.09)		608		1	09/19/17 12:13		CI71810
Aroclor 1254	ND (0.09)		608		1	09/19/17 12:13		CI71810
Aroclor 1260	ND (0.09)		608		1	09/19/17 12:13		CI71810
Aroclor 1262	ND (0.09)		608		1	09/19/17 12:13		CI71810
Aroclor 1268	ND (0.09)		608		1	09/19/17 12:13		CI71810
		%Recovery	Qualifier	Limits				
Surrogate: Decachlorobiphenyl		65 %		30-150				
Surrogate: Decachlorobiphenyl [2C]		70 %		30-150				
Surrogate: Tetrachloro-m-xylene		80 %		30-150				
Surrogate: Tetrachloro-m-xylene [2C]		85 %		30-150				

The Microbiology Division of Thielsch Engineering, Inc.

CERTIFICATE OF ANALYSIS

Client Name: Tighe & Bond

Client Project ID: Woburn to Mystic - RGP

Client Sample ID: MW-17 Date Sampled: 09/15/17 00:00

Percent Solids: N/A Initial Volume: 1070 Final Volume: 0.25

Extraction Method: 3510C

ESS Laboratory Work Order: 1709460 ESS Laboratory Sample ID: 1709460-03

Sample Matrix: Ground Water

Units: ug/L Analyst: IBM

Prepared: 9/18/17 15:21

625(SIM) Semi-Volatile Organic Compounds

Analyte	Results (MRL)	MDL	Method	<u>Limit</u>	<u>DF</u>	Analyzed	Sequence	Batch
Acenaphthene	0.23 (0.19)		625 SIM		1	09/19/17 2:11	C7I0284	CI71812
Acenaphthylene	ND (0.19)		625 SIM		1	09/19/17 2:11	C7I0284	CI71812
Anthracene	ND (0.19)		625 SIM		1	09/19/17 2:11	C7I0284	CI71812
Benzo(a)anthracene	0.07 (0.05)		625 SIM		1	09/19/17 2:11	C7I0284	CI71812
Benzo(a)pyrene	0.08 (0.05)		625 SIM		1	09/19/17 2:11	C7I0284	CI71812
Benzo(b)fluoranthene	0.12 (0.05)		625 SIM		1	09/19/17 2:11	C7I0284	CI71812
Benzo(g,h,i)perylene	ND (0.19)		625 SIM		1	09/19/17 2:11	C7I0284	CI71812
Benzo(k)fluoranthene	ND (0.05)		625 SIM		1	09/19/17 2:11	C7I0284	CI71812
bis(2-Ethylhexyl)phthalate	2.27 (1.87)		625 SIM		1	09/19/17 2:11	C7I0284	CI71812
Butylbenzylphthalate	ND (2.34)		625 SIM		1	09/19/17 2:11	C7I0284	CI71812
Chrysene	0.08 (0.05)		625 SIM		1	09/19/17 2:11	C7I0284	CI71812
Dibenzo(a,h)Anthracene	ND (0.05)		625 SIM		1	09/19/17 2:11	C7I0284	CI71812
Diethylphthalate	ND (2.34)		625 SIM		1	09/19/17 2:11	C7I0284	CI71812
Dimethylphthalate	ND (2.34)		625 SIM		1	09/19/17 2:11	C7I0284	CI71812
Di-n-butylphthalate	ND (2.34)		625 SIM		1	09/19/17 2:11	C7I0284	CI71812
Di-n-octylphthalate	ND (2.34)		625 SIM		1	09/19/17 2:11	C7I0284	CI71812
Fluoranthene	ND (0.19)		625 SIM		1	09/19/17 2:11	C7I0284	CI71812
Fluorene	ND (0.19)		625 SIM		1	09/19/17 2:11	C7I0284	CI71812
Indeno(1,2,3-cd)Pyrene	0.08 (0.05)		625 SIM		1	09/19/17 2:11	C7I0284	CI71812
Naphthalene	ND (0.19)		625 SIM		1	09/19/17 2:11	C7I0284	CI71812
Pentachlorophenol	ND (0.84)		625 SIM		1	09/19/17 2:11	C7I0284	CI71812
Phenanthrene	ND (0.19)		625 SIM		1	09/19/17 2:11	C7I0284	CI71812
Pyrene	ND (0.19)		625 SIM		1	09/19/17 2:11	C7I0284	CI71812
	9/	Recovery	Qualifier	Limits				

	%Recovery	Qualifier	LIIIILS
Surrogate: 1,2-Dichlorobenzene-d4	62 %		30-130
Surrogate: 2,4,6-Tribromophenol	189 %	<i>S+</i>	15-110
Surrogate: 2-Fluorobiphenyl	82 %		30-130
Surrogate: Nitrobenzene-d5	89 %		30-130
Surrogate: p-Terphenyl-d14	76 %		30-130

The Microbiology Division of Thielsch Engineering, Inc.

CERTIFICATE OF ANALYSIS

Client Name: Tighe & Bond

Client Project ID: Woburn to Mystic - RGP

Client Sample ID: MW-17 Date Sampled: 09/15/17 00:00

Percent Solids: N/A Initial Volume: 500 Final Volume: 0.5

Extraction Method: 3535A

ESS Laboratory Work Order: 1709460 ESS Laboratory Sample ID: 1709460-03

Sample Matrix: Ground Water

Units: ug/L Analyst: IBM

Prepared: 9/19/17 15:30

8270D(SIM) Semi-Volatile Organic Compounds w/ Isotope Dilution

Analyte 1,4-Dioxane	Results (MRL) ND (0.250)	<u>MDL</u>	Method 8270D SIM	<u>Limit</u>	<u>DF</u>	Analyzed 09/20/17 1:12	Sequence C7I0298	<u>Batch</u> CI71953
	%	6Recovery	Qualifier	Limits				
Surrogate: 1,4-Dioxane-d8		41 %		15-115				

185 Frances Avenue, Cranston, RI 02910-2211

Tel: 401-461-7181

Fax: 401-461-4486

http://www.ESSLaboratory.com

The Microbiology Division of Thielsch Engineering, Inc.

CERTIFICATE OF ANALYSIS

Client Name: Tighe & Bond

Client Project ID: Woburn to Mystic - RGP

Client Sample ID: MW-17 Date Sampled: 09/15/17 00:00

Percent Solids: N/A

ESS Laboratory Work Order: 1709460 ESS Laboratory Sample ID: 1709460-03

Sample Matrix: Ground Water

Classical Chemistry

Analyte Ammonia as N	Results (MRL) 1.56 (0.10)	MDL <u>Method</u> 350.1	<u>Limit</u>	<u>DF</u>	Analyst JLK	Analyzed 09/18/17 18:57	Units mg/L	Batch CI71804
Chloride	1730 (500)	300.0		1000	EEM	09/19/17 14:17	mg/L	CI71909
Hexavalent Chromium	ND (10.0)	3500Cr B-2009		1	JLK	09/15/17 20:49	ug/L	CI71551
Phenols	ND (100)	420.1		1	JLK	09/18/17 19:45	ug/L	CI71841
Total Cyanide (LL)	ND (5.00)	4500 CN CE		1	EEM	09/19/17 12:35	ug/L	CI71910
Total Petroleum Hydrocarbon	ND (5)	1664A		1	LAB	09/19/17 16:25	mg/L	CI71830
Total Residual Chlorine	ND (20.0)	4500Cl D		1	JLK	09/15/17 21:35	ug/L	CI71549
Total Suspended Solids	65 (5)	2540D		1	JLK	09/19/17 20:52	mg/L	CI71946

The Microbiology Division of Thielsch Engineering, Inc.

CERTIFICATE OF ANALYSIS

Client Name: Tighe & Bond

Client Project ID: Woburn to Mystic - RGP

Client Sample ID: MW-17 Date Sampled: 09/15/17 00:00

Percent Solids: N/A Initial Volume: 35 Final Volume: 2

Extraction Method: 504/8011

ESS Laboratory Work Order: 1709460 ESS Laboratory Sample ID: 1709460-03

Sample Matrix: Ground Water

Units: ug/L Analyst: IBM

Prepared: 9/20/17 15:05

504.1 1,2-Dibromoethane / 1,2-Dibromo-3-chloropropane

Analyte 1.2-Dibromoethane	Results (MRL) ND (0.015)	MDL	Method 504.1	<u>Limit</u>	<u>DF</u>	<u>Analyzed</u> 09/20/17 15:32	Sequence	Batch CI72021
1,2-Dioromoctiane		6Recovery	Oualifier	Limits	1	09/20/17 13.32		
Surrogate: Pentachloroethane	7	58 %	Quaimer	30-150				
Surrogate: Pentachloroethane [2C]		64 %		30-150				

The Microbiology Division of Thielsch Engineering, Inc.

CERTIFICATE OF ANALYSIS

Client Name: Tighe & Bond

Client Project ID: Woburn to Mystic - RGP

Client Sample ID: MW-17 Date Sampled: 09/15/17 00:00

Percent Solids: N/A Initial Volume: 1 Final Volume: 1

Extraction Method: No Prep

ESS Laboratory Work Order: 1709460 ESS Laboratory Sample ID: 1709460-03

Sample Matrix: Ground Water

Units: mg/L Analyst: ZLC

Prepared: 9/19/17 9:18

Alcohol Scan by GC/FID

Results (MRL) **MDL Analyte** Method <u>Limit</u> Analyst Analyzed **Sequence Batch** ASTM D3695 Ethanol 09/19/17 15:23 CI71906 ND (10)

185 Frances Avenue, Cranston, RI 02910-2211

Tel: 401-461-7181

Fax: 401-461-4486

http://www.ESSLaboratory.com

Dependability

The Microbiology Division of Thielsch Engineering, Inc.

CERTIFICATE OF ANALYSIS

Client Name: Tighe & Bond

Client Project ID: Woburn to Mystic - RGP

Client Sample ID: MW-17F Date Sampled: 09/15/17 01:00

Percent Solids: N/A

ESS Laboratory Work Order: 1709460 ESS Laboratory Sample ID: 1709460-04

Sample Matrix: Ground Water

Units: ug/L

Extraction Method: 245.1/7470A

Total Metals

Analyte	Results (MRL)	MDL Method	Limit 1	<u>DF</u>	Analyst	Analyzed	<u>I/V</u>	F/V	Batch
Antimony	ND (10.0)	200.7		1	KJK	09/20/17 22:08	50	10	CI71971
Arsenic	ND (3.0)	3113B		3	KJK	09/21/17 9:49	50	10	CI71971
Cadmium	0.26 (0.15)	3113B		3	KJK	09/21/17 23:58	50	10	CI71971
Chromium	6.3 (4.0)	200.7		1	KJK	09/20/17 22:08	50	10	CI71971
Chromium III	ND (10.0)	200.7		1	JLK	09/20/17 22:08	1	1	[CALC]
Copper	26.7 (4.0)	200.7		1	KJK	09/20/17 22:08	50	10	CI71971
Hardness	267000 (165)	200.7		1	KJK	09/20/17 22:08	1	1	[CALC]
Iron	32000 (20.0)	200.7		1	KJK	09/20/17 22:08	50	10	CI71971
Lead	73.7 (15.0)	3113B		15	KJK	09/21/17 18:45	50	10	CI71971
Mercury	ND (0.200)	245.1		1	MJV	09/19/17 0:22	20	40	CI71847
Nickel	ND (4.0)	200.7		1	KJK	09/20/17 22:08	50	10	CI71971
Selenium	ND (6.0)	3113B		3	KJK	09/21/17 13:00	50	10	CI71971
Silver	ND (1.0)	200.7		1	KJK	09/20/17 22:08	50	10	CI71971
Zinc	77.5 (10.0)	200.7		1	KJK	09/20/17 22:08	50	10	CI71971

Page 29 of 53

The Microbiology Division of Thielsch Engineering, Inc.

CERTIFICATE OF ANALYSIS

Client Name: Tighe & Bond

Client Project ID: Woburn to Mystic - RGP

Client Sample ID: MW-17F Date Sampled: 09/15/17 01:00

Percent Solids: N/A Initial Volume: 25 Final Volume: 25

Extraction Method: 524.2

ESS Laboratory Work Order: 1709460 ESS Laboratory Sample ID: 1709460-04

Sample Matrix: Ground Water

Units: ug/L Analyst: DMC

524.2 Volatile Organic Compounds

<u>Analyte</u>	Results (MRL)	MDL	Method	Limit	<u>DF</u>	Analyzed	Sequence	Batch
1,1,1-Trichloroethane	ND (0.5)		524.2	·	1	09/18/17 19:45	C7I0274	CI71838
1,1,2-Trichloroethane	ND (0.5)		524.2		1	09/18/17 19:45	C7I0274	CI71838
1,1-Dichloroethane	ND (0.5)		524.2		1	09/18/17 19:45	C7I0274	CI71838
1,1-Dichloroethene	ND (0.5)		524.2		1	09/18/17 19:45	C7I0274	CI71838
1,2-Dichlorobenzene	ND (0.5)		524.2		1	09/18/17 19:45	C7I0274	CI71838
1,2-Dichloroethane	ND (0.5)		524.2		1	09/18/17 19:45	C7I0274	CI71838
1,3-Dichlorobenzene	ND (0.5)		524.2		1	09/18/17 19:45	C7I0274	CI71838
1,4-Dichlorobenzene	ND (0.5)		524.2		1	09/18/17 19:45	C7I0274	CI71838
Acetone	ND (5.0)		524.2		1	09/18/17 19:45	C7I0274	CI71838
Benzene	ND (0.5)		524.2		1	09/18/17 19:45	C7I0274	CI71838
Carbon Tetrachloride	ND (0.3)		524.2		1	09/18/17 19:45	C7I0274	CI71838
cis-1,2-Dichloroethene	ND (0.5)		524.2		1	09/18/17 19:45	C7I0274	CI71838
Ethylbenzene	ND (0.5)		524.2		1	09/18/17 19:45	C7I0274	CI71838
Methyl tert-Butyl Ether	ND (0.5)		524.2		1	09/18/17 19:45	C7I0274	CI71838
Methylene Chloride	ND (0.5)		524.2		1	09/18/17 19:45	C7I0274	CI71838
Naphthalene	ND (0.5)		524.2		1	09/18/17 19:45	C7I0274	CI71838
Tertiary-amyl methyl ether	ND (1.0)		524.2		1	09/18/17 19:45	C7I0274	CI71838
Tertiary-butyl Alcohol	ND (25.0)		524.2		1	09/18/17 19:45	C7I0274	CI71838
Tetrachloroethene	ND (0.5)		524.2		1	09/18/17 19:45	C7I0274	CI71838
Toluene	ND (0.5)		524.2		1	09/18/17 19:45	C7I0274	CI71838
Trichloroethene	ND (0.5)		524.2		1	09/18/17 19:45	C7I0274	CI71838
Vinyl Chloride	ND (0.2)		524.2		1	09/18/17 19:45	C7I0274	CI71838
Xylene O	ND (0.5)		524.2		1	09/18/17 19:45	C7I0274	CI71838
Xylene P,M	ND (0.5)		524.2		1	09/18/17 19:45	C7I0274	CI71838

%Recovery Qualifier Limits
Surrogate: 1,2-Dichlorobenzene-d4 118 % 80-120

 Surrogate: 1,2-Dichlorobenzene-d4
 118 %
 80-120

 Surrogate: 4-Bromofluorobenzene
 103 %
 80-120

The Microbiology Division of Thielsch Engineering, Inc.

CERTIFICATE OF ANALYSIS

Client Name: Tighe & Bond

Client Project ID: Woburn to Mystic - RGP

Client Sample ID: MW-17F Date Sampled: 09/15/17 01:00

Percent Solids: N/A Initial Volume: 1070 Final Volume: 1

Extraction Method: 3510C

ESS Laboratory Work Order: 1709460 ESS Laboratory Sample ID: 1709460-04

Sample Matrix: Ground Water

Units: ug/L Analyst: CAD

Prepared: 9/19/17 10:08

608 Polychlorinated Biphenyls (PCB)

Analyte	Results (MRL)	MDL	Method	<u>Limit</u>	<u>DF</u>	Analyzed	Sequence	Batch
Aroclor 1016	ND (0.09)		608		1	09/19/17 12:32		CI71810
Aroclor 1221	ND (0.09)		608		1	09/19/17 12:32		CI71810
Aroclor 1232	ND (0.09)		608		1	09/19/17 12:32		CI71810
Aroclor 1242	ND (0.09)		608		1	09/19/17 12:32		CI71810
Aroclor 1248	ND (0.09)		608		1	09/19/17 12:32		CI71810
Aroclor 1254	ND (0.09)		608		1	09/19/17 12:32		CI71810
Aroclor 1260	ND (0.09)		608		1	09/19/17 12:32		CI71810
Aroclor 1262	ND (0.09)		608		1	09/19/17 12:32		CI71810
Aroclor 1268	ND (0.09)		608		1	09/19/17 12:32		CI71810
		%Recovery	Qualifier	Limits				
Surrogate: Decachlorobiphenyl		98 %		30-150				
Surrogate: Decachlorobiphenyl [2C]		107 %		30-150				
Surrogate: Tetrachloro-m-xylene		81 %		30-150				
Surrogate: Tetrachloro-m-xylene [2C]		81 %		30-150				

The Microbiology Division of Thielsch Engineering, Inc.

CERTIFICATE OF ANALYSIS

Client Name: Tighe & Bond

Client Project ID: Woburn to Mystic - RGP

Client Sample ID: MW-17F Date Sampled: 09/15/17 01:00

Percent Solids: N/A Initial Volume: 1070 Final Volume: 0.25

Extraction Method: 3510C

ESS Laboratory Work Order: 1709460 ESS Laboratory Sample ID: 1709460-04

Sample Matrix: Ground Water

Units: ug/L Analyst: IBM

Prepared: 9/18/17 15:21

625(SIM) Semi-Volatile Organic Compounds

Analyte Acenaphthene	Results (MRL) ND (0.19)	<u>MDL</u>	Method 625 SIM	<u>Limit</u>	<u>DF</u>	<u>Analyzed</u> 09/19/17 3:00	Sequence C7I0284	Batch CI71812
Acenaphthylene	ND (0.19)		625 SIM		1	09/19/17 3:00	C7I0284	CI71812
Anthracene	ND (0.19)		625 SIM		1	09/19/17 3:00	C7I0284	CI71812
Benzo(a)anthracene	ND (0.05)		625 SIM		1	09/19/17 3:00	C7I0284	CI71812
Benzo(a)pyrene	ND (0.05)		625 SIM		1	09/19/17 3:00	C7I0284	CI71812
Benzo(b)fluoranthene	ND (0.05)		625 SIM		1	09/19/17 3:00	C7I0284	CI71812
Benzo(g,h,i)perylene	ND (0.19)		625 SIM		1	09/19/17 3:00	C7I0284	CI71812
Benzo(k)fluoranthene	ND (0.05)		625 SIM		1	09/19/17 3:00	C7I0284	CI71812
bis(2-Ethylhexyl)phthalate	ND (1.87)		625 SIM		1	09/19/17 3:00	C7I0284	CI71812
Butylbenzylphthalate	ND (2.34)		625 SIM		1	09/19/17 3:00	C7I0284	CI71812
Chrysene	ND (0.05)		625 SIM		1	09/19/17 3:00	C7I0284	CI71812
Dibenzo(a,h)Anthracene	ND (0.05)		625 SIM		1	09/19/17 3:00	C7I0284	CI71812
Diethylphthalate	ND (2.34)		625 SIM		1	09/19/17 3:00	C7I0284	CI71812
Dimethylphthalate	ND (2.34)		625 SIM		1	09/19/17 3:00	C7I0284	CI71812
Di-n-butylphthalate	ND (2.34)		625 SIM		1	09/19/17 3:00	C7I0284	CI71812
Di-n-octylphthalate	ND (2.34)		625 SIM		1	09/19/17 3:00	C7I0284	CI71812
Fluoranthene	ND (0.19)		625 SIM		1	09/19/17 3:00	C7I0284	CI71812
Fluorene	ND (0.19)		625 SIM		1	09/19/17 3:00	C7I0284	CI71812
Indeno(1,2,3-cd)Pyrene	ND (0.05)		625 SIM		1	09/19/17 3:00	C7I0284	CI71812
Naphthalene	ND (0.19)		625 SIM		1	09/19/17 3:00	C7I0284	CI71812
Pentachlorophenol	ND (0.84)		625 SIM		1	09/19/17 3:00	C7I0284	CI71812
Phenanthrene	ND (0.19)		625 SIM		1	09/19/17 3:00	C7I0284	CI71812
Pyrene	ND (0.19)		625 SIM		1	09/19/17 3:00	C7I0284	CI71812
		%Recovery	Qualifier	Limits				
Surrogate: 1,2-Dichlorobenzene-d4		65 %		30-130				
Surrogate: 2,4,6-Tribromophenol		180 %	<i>S+</i>	15-110				
Surrogate: 2-Elugrahinhanyl								

	MECOVERY	Qualifici	LIIIILS
Surrogate: 1,2-Dichlorobenzene-d4	65 %		30-130
Surrogate: 2,4,6-Tribromophenol	180 %	<i>S+</i>	15-110
Surrogate: 2-Fluorobiphenyl	75 %		30-130
Surrogate: Nitrobenzene-d5	91 %		30-130
Surrogate: p-Terphenyl-d14	77 %		30-130

The Microbiology Division of Thielsch Engineering, Inc.

CERTIFICATE OF ANALYSIS

Client Name: Tighe & Bond

Client Project ID: Woburn to Mystic - RGP

Client Sample ID: MW-17F Date Sampled: 09/15/17 01:00

Percent Solids: N/A Initial Volume: 500 Final Volume: 0.5

Extraction Method: 3535A

ESS Laboratory Work Order: 1709460 ESS Laboratory Sample ID: 1709460-04

Sample Matrix: Ground Water

Units: ug/L Analyst: VSC

Prepared: 9/18/17 18:00

8270D(SIM) Semi-Volatile Organic Compounds w/ Isotope Dilution

Analyte 1,4-Dioxane	Results (MRL) ND (0.250)	<u>MDL</u>	Method 8270D SIM	<u>Limit</u>	<u>DF</u> 1	<u>Analyzed</u> 09/19/17 12:18	Sequence C7I0291	<u>Batch</u> CI71856
	9/	6Recovery	Qualifier	Limits				
Surrogate: 1,4-Dioxane-d8		28 %		15-115				

185 Frances Avenue, Cranston, RI 02910-2211

Tel: 401-461-7181

Dependability

Fax: 401-461-4486

http://www.ESSLaboratory.com

The Microbiology Division of Thielsch Engineering, Inc.

CERTIFICATE OF ANALYSIS

Client Name: Tighe & Bond

Client Project ID: Woburn to Mystic - RGP

Client Sample ID: MW-17F Date Sampled: 09/15/17 01:00

Percent Solids: N/A

ESS Laboratory Work Order: 1709460 ESS Laboratory Sample ID: 1709460-04

Sample Matrix: Ground Water

Classical Chemistry

Analyte Ammonia as N	Results (MRL) 1.76 (0.10)	MDL <u>Method</u> 350.1	<u>Limit</u>	<u>DF</u>	Analyst JLK	Analyzed 09/18/17 18:58	Units mg/L	Batch CI71804
Chloride	1770 (500)	300.0		1000	EEM	09/19/17 14:33	mg/L	CI71909
Hexavalent Chromium	ND (10.0)	3500Cr B-2009		1	JLK	09/15/17 20:49	ug/L	CI71551
Phenols	ND (100)	420.1		1	JLK	09/18/17 19:45	ug/L	CI71841
Total Cyanide (LL)	ND (5.00)	4500 CN CE		1	EEM	09/19/17 12:35	ug/L	CI71910
Total Petroleum Hydrocarbon	ND (5)	1664A		1	LAB	09/19/17 16:25	mg/L	CI71830
Total Residual Chlorine	ND (20.0)	4500Cl D		1	JLK	09/15/17 21:35	ug/L	CI71549
Total Suspended Solids	318 (10)	2540D		1	JLK	09/19/17 20:52	mg/L	CI71946

The Microbiology Division of Thielsch Engineering, Inc.

CERTIFICATE OF ANALYSIS

Client Name: Tighe & Bond

Client Project ID: Woburn to Mystic - RGP

Client Sample ID: MW-17F Date Sampled: 09/15/17 01:00

Percent Solids: N/A Initial Volume: 35 Final Volume: 2

Extraction Method: 504/8011

ESS Laboratory Work Order: 1709460 ESS Laboratory Sample ID: 1709460-04

Sample Matrix: Ground Water

Units: ug/L Analyst: IBM

Prepared: 9/20/17 10:10

504.1 1,2-Dibromoethane / 1,2-Dibromo-3-chloropropane

Analyte 1,2-Dibromoethane	Results (MRL) ND (0.015)	MDL	Method 504.1	<u>Limit</u>	<u>DF</u> 1	Analyzed 09/20/17 14:00	Sequence	Batch CI72021
	9	%Recovery	Qualifier	Limits				
Surrogate: Pentachloroethane		98 %		30-150				
Surrogate: Pentachloroethane [2C]		74 %		30-150				

The Microbiology Division of Thielsch Engineering, Inc.

CERTIFICATE OF ANALYSIS

Client Name: Tighe & Bond

Client Project ID: Woburn to Mystic - RGP

Client Sample ID: MW-17F Date Sampled: 09/15/17 01:00

Percent Solids: N/A Initial Volume: 1 Final Volume: 1

Extraction Method: No Prep

ESS Laboratory Work Order: 1709460 ESS Laboratory Sample ID: 1709460-04

Sample Matrix: Ground Water

Units: mg/L Analyst: ZLC

Prepared: 9/19/17 9:18

Alcohol Scan by GC/FID

AnalyteResults (MRL)MDLMethodLimitDFAnalystAnalyzedSequenceBatchEthanolND (10)ASTM D36951ZLC09/19/17 15:00CI71906

185 Frances Avenue, Cranston, RI 02910-2211

Tel: 401-461-7181

Fax: 401-461-4486

◆ Service

http://www.ESSLaboratory.com

The Microbiology Division of Thielsch Engineering, Inc.

CERTIFICATE OF ANALYSIS

Client Name: Tighe & Bond

Client Project ID: Woburn to Mystic - RGP ESS Laboratory Work Order: 1709460

Analyte	Result	MRL	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Qualifier
			Total Meta							
Blank Chromium III	ND	10.0	ua/l							
	IND	10.0	ug/L							
LCS	NB									
Chromium III	ND		ug/L							
LCS Dup										
Chromium III	ND		ug/L							
Batch CI71847 - 245.1/7470A										
Blank										
Mercury	ND	0.200	ug/L							
LCS										
Mercury	6.13	0.200	ug/L	6.000		102	85-115			
LCS Dup										
Mercury	6.02	0.200	ug/L	6.000		100	85-115	2	20	
Batch CI71971 - 245.1/7470A										
Blank										
Antimony	ND	10.0	ug/L							
Arsenic	ND	1.0	ug/L							
Cadmium	ND	0.05	ug/L							
Chromium	ND	4.0	ug/L							
Chromium III	ND	4.00	ug/L							
Copper	ND	4.0	ug/L							
Hardness	ND	165	ug/L							
Iron	ND	20.0	ug/L							
Lead	ND	1.0	ug/L							
Nickel	ND	4.0	ug/L							
Selenium	ND	2.0	ug/L							
Silver	ND	1.0	ug/L							
Zinc	ND	10.0	ug/L							
LCS										
Antimony	95.2	10.0	ug/L	100.0		95	85-115			
Arsenic	93.2	25.0	ug/L	100.0		93	85-115			
Changing	52.5	25.0	ug/L	50.00		105	85-115			
Chromium III	91.9 91.9	4.0	ug/L	100.0		92	85-115			
Chromium III Copper	91.9	4.00 4.0	ug/L ug/L	100.0		93	85-115			
Hardness	93.2 5980	165	ug/L ug/L	100.0		33	02-113			
Iron	5960 442	20.0	ug/L	500.0		88	85-115			
Lead	110	25.0	ug/L	100.0		110	85-115			
Nickel	94.5	4.0	ug/L	100.0		94	85-115			
Selenium	177	50.0	ug/L	200.0		89	85-115			
Silver	44.8	1.0	ug/L	50.00		90	85-115			
Zinc	95.1	10.0	ug/L	100.0		95	85-115			
LCS Dup			<u> </u>	-			-			

The Microbiology Division of Thielsch Engineering, Inc.

CERTIFICATE OF ANALYSIS

Client Name: Tighe & Bond

Client Project ID: Woburn to Mystic - RGP ESS Laboratory Work Order: 1709460

				Spike	Source		%REC		RPD	
Analyte	Result	MRL	Units	Level	Result	%REC	Limits	RPD	Limit	Qualifier
			Total Meta	als						
Batch CI71971 - 245.1/7470A										
Antimony	98.4	10.0	ug/L	100.0		98	85-115	3	20	
Arsenic	94.3	25.0	ug/L	100.0		94	85-115	1	20	
Cadmium	52.5	25.0	ug/L	50.00		105	85-115	0.01	20	
Chromium	95.0	4.0	ug/L	100.0		95	85-115	3	20	
Chromium III	95.0	4.00	ug/L							
Copper	96.2	4.0	ug/L	100.0		96	85-115	3	20	
Hardness	6300	165	ug/L							
ron	459	20.0	ug/L	500.0		92	85-115	4	20	
Lead	116	25.0	ug/L	100.0		116	85-115	5	20	B+
Nickel	97.9	4.0	ug/L	100.0		98	85-115	4	20	
Selenium	169	50.0	ug/L	200.0		85	85-115	5	20	
Silver	46.9	1.0	ug/L	50.00		94	85-115	4	20	
Zinc	99.0	10.0	ug/L	100.0		99	85-115	4	20	
Batch CI72503 - 3005A/200.7										
Blank										
Copper	ND	2.0	ug/L							
LCS										
Copper	93.2	2.0	ug/L	100.0		93	85-115			
CS Dup										
Copper	99.1	2.0	ug/L	100.0		99	85-115	6	20	
		524.2 Vol	atile Organi	c Compo	unds					
Batch CI71838 - 524.2										
Blank										
1,1,1-Trichloroethane	ND	0.5	ug/L							
1,1,2-Trichloroethane	ND	0.5	ug/L							
,1-Dichloroethane	ND	0.5	ug/L							
,1-Dichloroethene	ND	0.5	ug/L							
,2-Dichlorobenzene	ND	0.5	ug/L							
1,2-Dichloroethane	ND	0.5	ug/L							
1,3-Dichlorobenzene	ND	0.5	ug/L							
1,4-Dichlorobenzene	ND	0.5	ug/L							

1.4-Dichlorobenzene ND 0.5 ug/L Acetone ND 5.0 ug/L Benzene ND 0.5 ug/L Carbon Tetrachloride ND 0.3 ug/L cis-1,2-Dichloroethene ND0.5 ug/L Ethylbenzene ND 0.5 ug/L Methyl tert-Butyl Ether ND 0.5 ug/L Methylene Chloride ND 0.5 ug/L

185 Frances Avenue, Cranston, RI 02910-2211

Naphthalene

Toluene

Tertiary-amyl methyl ether

Tertiary-butyl Alcohol

Tetrachloroethene

ND 1.0 ug/L 25.0 ND ug/L ND 0.5 ug/L ND 0.5 ug/L

ND

Tel: 401-461-7181 Quality

ug/L

Fax: 401-461-4486 Service

http://www.ESSLaboratory.com

0.5

The Microbiology Division of Thielsch Engineering, Inc.

CERTIFICATE OF ANALYSIS

Client Name: Tighe & Bond

Client Project ID: Woburn to Mystic - RGP ESS Laboratory Work Order: 1709460

Analyte	Result	MRL	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Qualifier
, and , co	Nesuit					/UNLC	Liiilli	Ni D	Liillit	Qualified
		524.2 VOI	atile Organi	ic compoi	ınas					
Batch CI71838 - 524.2										
Trichloroethene	ND	0.5	ug/L							
Vinyl Chloride	ND	0.2	ug/L							
Xylene O	ND	0.5	ug/L							
Xylene P,M	ND	0.5	ug/L							
Surrogate: 1,2-Dichlorobenzene-d4	5.37		ug/L	5.000		107	80-120			
Surrogate: 4-Bromofluorobenzene	4.97		ug/L	5.000		99	80-120			
LCS										
1,1,1-Trichloroethane	10.5		ug/L	10.00		105	70-130			
1,1,2-Trichloroethane	10.2		ug/L	10.00		102	70-130			
1,1-Dichloroethane	9.9		ug/L	10.00		99	70-130			
1,1-Dichloroethene	10.7		ug/L	10.00		107	70-130			
1,2-Dichlorobenzene	10.0		ug/L	10.00		100	70-130			
1,2-Dichloroethane	10.2		ug/L	10.00		102	70-130			
1,3-Dichlorobenzene	10.0		ug/L	10.00		100	70-130			
1,4-Dichlorobenzene	10.1		ug/L	10.00		101	70-130			
Acetone	49.7		ug/L	50.00		99	70-130			
Benzene	9.9		ug/L	10.00		99	70-130			
Carbon Tetrachloride	10.6		ug/L	10.00		106	70-130			
cis-1,2-Dichloroethene	9.7		ug/L	10.00		97	70-130			
Ethylbenzene	9.8		ug/L	10.00		98	70-130			
Methyl tert-Butyl Ether	9.6		ug/L	10.00		96	70-130			
Methylene Chloride	9.9		ug/L	10.00		99	70-130			
Naphthalene	9.0		ug/L	10.00		90	70-130			
Tertiary-amyl methyl ether	9.8		ug/L	10.00		98	70-130			
Tertiary-butyl Alcohol	50.6		ug/L	50.00		101	70-130			
Tetrachloroethene	10.3		ug/L	10.00		103	70-130			
Toluene	9.8		ug/L	10.00		98	70-130			
Trichloroethene	10.3		ug/L	10.00		103	70-130			
Vinyl Chloride	8.9		ug/L	10.00		89	70-130			
Xylene O	9.9		ug/L	10.00		99	70-130			
Xylene P,M	18.7		ug/L	20.00		94	70-130			
Surrogate: 1,2-Dichlorobenzene-d4	5.42		ug/L	5.000		108	80-120			
Surrogate: 4-Bromofluorobenzene	5.26		ug/L	5.000		105	80-120			
LCS Dup										
1,1,1-Trichloroethane	10.3		ug/L	10.00		103	70-130	2	20	
1,1,2-Trichloroethane	10.6		ug/L	10.00		106	70-130	3	20	
1,1-Dichloroethane	9.9		ug/L	10.00		99	70-130	0.3	20	
1,1-Dichloroethene	10.4		ug/L	10.00		104	70-130	3	20	
1,2-Dichlorobenzene	10.4		ug/L	10.00		104	70-130	4	20	
1,2-Dichloroethane	10.7		ug/L	10.00		107	70-130	4	20	
1,3-Dichlorobenzene	10.5		ug/L	10.00		105	70-130	5	20	
1,4-Dichlorobenzene	10.5		ug/L	10.00		105	70-130	4	20	
Acetone	48.9		ug/L	50.00		98	70-130	2	20	
Benzene	10.0		ug/L	10.00		100	70-130	1	20	
Carbon Tetrachloride	10.1		ug/L	10.00		101	70-130	5	20	

The Microbiology Division of Thielsch Engineering, Inc.

CERTIFICATE OF ANALYSIS

Client Name: Tighe & Bond

Client Project ID: Woburn to Mystic - RGP ESS Laboratory Work Order: 1709460

A	5	MDI		Spike	Source	0/ 550	%REC	DDC	RPD	0 "0
Analyte	Result	MRL	Units	Level	Result	%REC	Limits	RPD	Limit	Qualifier
		524.2 Vol	atile Organi	ic Compou	unds					
Batch CI71838 - 524.2										
cis-1,2-Dichloroethene	10.1		ug/L	10.00		101	70-130	3	20	
Ethylbenzene	10.0		ug/L	10.00		100	70-130	2	20	
Methyl tert-Butyl Ether	10.2		ug/L	10.00		102	70-130	5	20	
Methylene Chloride	9.9		ug/L	10.00		99	70-130	0.4	20	
Naphthalene	9.5		ug/L	10.00		95	70-130	5	20	
Tertiary-amyl methyl ether	10.0		ug/L	10.00		100	70-130	2	20	
Tertiary-butyl Alcohol	54.2		ug/L	50.00		108	70-130	7	25	
Tetrachloroethene	10.3		ug/L	10.00		103	70-130	0.4	20	
Toluene	10.0		ug/L	10.00		100	70-130	2	20	
Trichloroethene	10.2		ug/L	10.00		102	70-130	0.4	20	
Vinyl Chloride	8.4		ug/L	10.00		84	70-130	6	20	
Xylene O	10.1		ug/L	10.00		101	70-130	2	20	
Xylene P,M	19.1		ug/L	20.00		95	70-130	2	20	
Surrogate: 1,2-Dichlorobenzene-d4	5.49		ug/L	5.000		110	80-120			
Surrogate: 4-Bromofluorobenzene	5.50		ug/L	5.000		110	80-120			
Batch CI71930 - 524.2										
Blank										
1,1,1-Trichloroethane	ND	0.5	ug/L							
1,1,2-Trichloroethane	ND	0.5	ug/L							
1,1-Dichloroethane	ND	0.5	ug/L							
1,1-Dichloroethene	ND	0.5	ug/L							
1,2-Dichlorobenzene	ND	0.5	ug/L							
1,2-Dichloroethane	ND	0.5	ug/L							
1,3-Dichlorobenzene	ND	0.5	ug/L							
1,4-Dichlorobenzene	ND	0.5	ug/L							
Acetone	ND	5.0	ug/L							
Benzene	ND	0.5	ug/L							
Carbon Tetrachloride	ND	0.3	ug/L							
cis-1,2-Dichloroethene	ND	0.5	ug/L							
Ethylbenzene	ND	0.5	ug/L							
Methyl tert-Butyl Ether	ND	0.5	ug/L							
Methylene Chloride	ND	0.5	ug/L							
Naphthalene	ND	0.5	ug/L							
Tertiary-amyl methyl ether	ND	1.0	ug/L							
Tertiary-butyl Alcohol	ND	25.0	ug/L							
Tetrachloroethene	ND	0.5	ug/L							
Toluene	ND	0.5	ug/L							
Trichloroethene	ND	0.5	ug/L							
Vinyl Chloride	ND	0.2	ug/L							
Xylene O	ND	0.5	ug/L							
Xylene P,M	ND	0.5	ug/L							
Surrogate: 1,2-Dichlorobenzene-d4	<i>5.45</i>		ug/L	5.000		109	80-120			
Surrogate: 4-Bromofluorobenzene	5.13		ug/L	5.000		103	80-120			
LCS										
1,1,1-Trichloroethane	11.0		ug/L	10.00		110	70-130			

The Microbiology Division of Thielsch Engineering, Inc.

CERTIFICATE OF ANALYSIS

Client Name: Tighe & Bond

Batch CI71930 - 524.2

Client Project ID: Woburn to Mystic - RGP ESS Laboratory Work Order: 1709460

				Spike	Source		%REC		RPD	
Analyte	Result	MRL	Units	Level	Result	%REC	Limits	RPD	Limit	Qualifier

524.2 Volatile	Organic	Compound	S
----------------	---------	----------	---

Batch C1/1930 - 524.2								
1,1,2-Trichloroethane	10.7	ug/L	10.00	107	70-130			
1,1-Dichloroethane	10.5	ug/L	10.00	105	70-130			
1,1-Dichloroethene	10.6	ug/L	10.00	106	70-130			
1,2-Dichlorobenzene	10.5	ug/L	10.00	105	70-130			
1,2-Dichloroethane	11.1	ug/L	10.00	111	70-130			
1,3-Dichlorobenzene	10.3	ug/L	10.00	103	70-130			
1,4-Dichlorobenzene	10.5	ug/L	10.00	105	70-130			
Acetone	46.3	ug/L	50.00	93	70-130			
Benzene	10.1	ug/L	10.00	101	70-130			
Carbon Tetrachloride	10.6	ug/L	10.00	106	70-130			
is-1,2-Dichloroethene	9.8	ug/L	10.00	98	70-130			
thylbenzene	9.7	ug/L	10.00	97	70-130			
lethyl tert-Butyl Ether	10.4	ug/L	10.00	104	70-130			
lethylene Chloride	9.9	ug/L	10.00	99	70-130			
laphthalene	8.0	ug/L	10.00	80	70-130			
ertiary-amyl methyl ether	10.0	ug/L	10.00	100	70-130			
ertiary-butyl Alcohol	57.2	ug/L	50.00	114	70-130			
etrachloroethene	10.5	ug/L	10.00	105	70-130			
oluene	9.6	ug/L	10.00	96	70-130			
richloroethene	10.4	ug/L	10.00	104	70-130			
inyl Chloride	8.7	ug/L	10.00	87	70-130			
ylene O	10.4	ug/L	10.00	104	70-130			
ylene P,M	19.0	ug/L	20.00	95	70-130			
Currogate: 1,2-Dichlorobenzene-d4	5.54	ug/L	5.000	111	80-120			
Surrogate: 4-Bromofluorobenzene	5.33	ug/L	5.000	107	80-120			
.CS Dup								
,1,1-Trichloroethane	10.6	ug/L	10.00	106	70-130	4	20	
,1,2-Trichloroethane	10.3	ug/L	10.00	103	70-130	4	20	
,1-Dichloroethane	9.9	ug/L	10.00	99	70-130	6	20	
,1-Dichloroethene	10.8	ug/L	10.00	108	70-130	2	20	
,2-Dichlorobenzene	10.5	ug/L	10.00	105	70-130	0.3	20	
,2-Dichloroethane	11.4	ug/L	10.00	114	70-130	3	20	
,3-Dichlorobenzene	10.7	ug/L	10.00	107	70-130	4	20	
,4-Dichlorobenzene	10.7	ug/L	10.00	107	70-130	2	20	
cetone	47.2	ug/L	50.00	94	70-130	2	20	
enzene	10.1	ug/L	10.00	101	70-130	0.2	20	
arbon Tetrachloride	10.5	ug/L	10.00	105	70-130	0.9	20	
is-1,2-Dichloroethene	9.9	ug/L	10.00	99	70-130	1	20	
thylbenzene	10.2	ug/L	10.00	102	70-130	4	20	
ethyl tert-Butyl Ether	10.5	ug/L	10.00	105	70-130	0.6	20	
ethylene Chloride	10.2	ug/L	10.00	102	70-130	3	20	
aphthalene	8.5	ug/L	10.00	85	70-130	6	20	
ertiary-amyl methyl ether	9.9	ug/L	10.00	99	70-130	2	20	
ertiary-butyl Alcohol	54.8	ug/L	50.00	110	70-130	4	25	
	31.0	~3/ -	20.00		.0 100	•		

The Microbiology Division of Thielsch Engineering, Inc.

CERTIFICATE OF ANALYSIS

Client Name: Tighe & Bond

Client Project ID: Woburn to Mystic - RGP

ESS Laboratory Work Order: 1709460

Quality Control Data

Analyta	DIL	MDI	11-2-	Spike	Source	0/ 050	%REC	DDD	RPD	Ou-1:6:
Analyte	Result	MRL	Units	Level	Result	%REC	Limits	RPD	Limit	Qualifier
		524.2 Vola	atile Organi	c Compoi	unds					
Batch CI71930 - 524.2										
Toluene	10.1		ug/L	10.00		101	70-130	5	20	
Trichloroethene	10.1		ug/L	10.00		101	70-130	2	20	
Vinyl Chloride	8.5		ug/L	10.00		85	70-130	3	20	
Kylene O	10.3		ug/L	10.00		103	70-130	0.3	20	
Xylene P,M	19.0		ug/L	20.00		95	70-130	0.3	20	
Surrogate: 1,2-Dichlorobenzene-d4	5.41		ug/L	5.000		108	80-120			
Surrogate: 4-Bromofluorobenzene	5.50		ug/L	5.000		110	80-120			
		608 Polych	lorinated B	iphenyls ((PCB)					
Batch CI71810 - 3510C										
Blank										
Aroclor 1016	ND	0.10	ug/L							
Aroclor 1016 [2C]	ND	0.10	ug/L							
Aroclor 1221	ND	0.10	ug/L							
Aroclor 1221 [2C]	ND	0.10	ug/L							
Aroclor 1232	ND	0.10	ug/L							
Aroclor 1232 [2C]	ND	0.10	ug/L							
Aroclor 1242	ND	0.10	ug/L							
Aroclor 1242 [2C]	ND	0.10	ug/L							
Aroclor 1248	ND	0.10	ug/L							
Aroclor 1248 [2C]	ND	0.10	ug/L							
Aroclor 1254	ND	0.10	ug/L							
Aroclor 1254 [2C]	ND	0.10	ug/L							
Aroclor 1260	ND	0.10	ug/L							
Aroclor 1260 [2C]	ND	0.10	ug/L							
Aroclor 1262	ND	0.10	ug/L							
Aroclor 1262 [2C]	ND	0.10	ug/L							
Aroclor 1268	ND	0.10	ug/L							
Aroclor 1268 [2C]	ND	0.10	ug/L							
Surrogate: Decachlorobiphenyl	0.0471		ug/L	0.05000		94	30-150			
Surrogate: Decachlorobiphenyl [2C]	0.0525		ug/L	0.05000		105	30-150			
Surrogate: Decachiorobiphenyi [2C] Surrogate: Tetrachloro-m-xylene	0.0370		ug/L	0.05000		74	30-150			
Surrogate: Tetrachloro-m-xylene [2C]	0.0400		ug/L	0.05000		80	30-150			
LCS										
Aroclor 1016	0.92	0.10	ug/L	1.000		92	40-140			
Aroclor 1016 [2C]	1.14	0.10	ug/L	1.000		114	40-140			
Aroclor 1260	0.98	0.10	ug/L	1.000		98	40-140			
Aroclor 1260 [2C]	1.06	0.10	ug/L	1.000		106	40-140			
Surrogate: Decachlorobiphenyl	0.0505		ug/L	0.05000		101	30-150			
Surrogate: Decachlorobiphenyl [2C]	0.0567		ug/L	0.05000		113	30-150			
Surrogate: Tetrachloro-m-xylene	0.0414		ug/L	0.05000		83	30-150			
Surrogate: Tetrachloro-m-xylene [2C]	0.0447		ug/L	0.05000		89	30-150			

LCS Dup

The Microbiology Division of Thielsch Engineering, Inc.

CERTIFICATE OF ANALYSIS

Client Name: Tighe & Bond

Client Project ID: Woburn to Mystic - RGP ESS Laboratory Work Order: 1709460

Quality Control Data

Analyte	Result	MRL	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Qualifier
, wear, ee	Result		lorinated B			, one c	Limb		Lime	Qualifici
Batch CI71810 - 3510C										
Aroclor 1016	0.97	0.10	ug/L	1.000		97	40-140	4	20	
Aroclor 1016 [2C]	1.13	0.10	ug/L	1.000		113	40-140	1	20	
Aroclor 1260	1.06	0.10	ug/L	1.000		106	40-140	8	20	
Aroclor 1260 [2C]	1.13	0.10	ug/L	1.000		113	40-140	6	20	
Surrogate: Decachlorobiphenyl	0.0488		ug/L	0.05000		98	30-150			
Surrogate: Decachlorobiphenyl [2C]	0.0542		ug/L	0.05000		108	30-150			
Surrogate: Tetrachloro-m-xylene	0.0388		ug/L	0.05000		78	30-150			
Surrogate: Tetrachloro-m-xylene [2C]	0.0408		ug/L	0.05000		82	30-150			
	62	25(SIM) Sem	i-Volatile O	rganic Co	mpounds					

Blank						
Acenaphthene	ND	0.20	ug/L			
Acenaphthylene	ND	0.20	ug/L			
Anthracene	ND	0.20	ug/L			
Benzo(a)anthracene	ND	0.05	ug/L			
Benzo(a)pyrene	ND	0.05	ug/L			
Benzo(b)fluoranthene	ND	0.05	ug/L			
Benzo(g,h,i)perylene	ND	0.20	ug/L			
Benzo(k)fluoranthene	ND	0.05	ug/L			
bis(2-Ethylhexyl)phthalate	ND	2.00	ug/L			
Butylbenzylphthalate	ND	2.50	ug/L			
Chrysene	ND	0.05	ug/L			
Dibenzo(a,h)Anthracene	ND	0.05	ug/L			
Diethylphthalate	ND	2.50	ug/L			
Dimethylphthalate	ND	2.50	ug/L			
Di-n-butylphthalate	ND	2.50	ug/L			
Di-n-octylphthalate	ND	2.50	ug/L			
Fluoranthene	ND	0.20	ug/L			
Fluorene	ND	0.20	ug/L			
Indeno(1,2,3-cd)Pyrene	ND	0.05	ug/L			
Naphthalene	ND	0.20	ug/L			
Pentachlorophenol	ND	0.90	ug/L			
Phenanthrene	ND	0.20	ug/L			
Pyrene	ND	0.20	ug/L			
Surrogate: 1,2-Dichlorobenzene-d4	1.76		ug/L	2.500	70	30-130
Surrogate: 2,4,6-Tribromophenol	4.00		ug/L	3.750	107	15-110
Surrogate: 2-Fluorobiphenyl	1.95		ug/L	2.500	<i>78</i>	30-130
Surrogate: Nitrobenzene-d5	2.32		ug/L	2.500	93	30-130
Surrogate: p-Terphenyl-d14	2.39		ug/L	2.500	96	30-130
LCS						
Acenaphthene	2.89	0.20	ug/L	4.000	72	40-140
Acenaphthylene	3.18	0.20	ug/L	4.000	80	40-140
Anthracene	3.23	0.20	ug/L	4.000	81	40-140

185 Frances Avenue, Cranston, RI 02910-2211

Tel: 401-461-7181 Dependability Quality Fax: 401-461-4486 Service

http://www.ESSLaboratory.com

The Microbiology Division of Thielsch Engineering, Inc.

CERTIFICATE OF ANALYSIS

Client Name: Tighe & Bond

Batch CI71812 - 3510C

Client Project ID: Woburn to Mystic - RGP ESS Laboratory Work Order: 1709460

				Spike	Source		%REC		RPD	
Analyte	Result	MRL	Units	Level	Result	%REC	Limits	RPD	Limit	Qualifier

625(SIM)	Semi-Volatile	Organic	Compounds
023(3111)	Jein Volucie	Or guille	Compounds

Batch C1/1812 - 3510C									
Benzo(a)anthracene	2.93	0.05	ug/L	4.000	73	40-140			
Benzo(a)pyrene	3.23	0.05	ug/L	4.000	81	40-140			
Benzo(b)fluoranthene	3.02	0.05	ug/L	4.000	76	40-140			
Benzo(g,h,i)perylene	2.74	0.20	ug/L	4.000	69	40-140			
Benzo(k)fluoranthene	3.12	0.05	ug/L	4.000	78	40-140			
bis(2-Ethylhexyl)phthalate	4.49	2.50	ug/L	4.000	112	40-140			
Butylbenzylphthalate	4.33	2.50	ug/L	4.000	108	40-140			
Chrysene	3.20	0.05	ug/L	4.000	80	40-140			
Dibenzo(a,h)Anthracene	2.73	0.05	ug/L	4.000	68	40-140			
Diethylphthalate	3.61	2.50	ug/L	4.000	90	40-140			
Dimethylphthalate	3.66	2.50	ug/L	4.000	91	40-140			
Di-n-butylphthalate	3.82	2.50	ug/L	4.000	95	40-140			
Di-n-octylphthalate	4.36	2.50	ug/L	4.000	109	40-140			
Fluoranthene	3.28	0.20	ug/L	4.000	82	40-140			
Fluorene	2.99	0.20	ug/L	4.000	75	40-140			
Indeno(1,2,3-cd)Pyrene	2.74	0.05	ug/L	4.000	68	40-140			
Naphthalene	2.34	0.20	ug/L	4.000	59	40-140			
Pentachlorophenol	3.25	0.90	ug/L	4.000	81	30-130			
Phenanthrene	3.14	0.20	ug/L	4.000	78	40-140			
Pyrene	3.64	0.20	ug/L	4.000	91	40-140			
	1.58	0.20	ug/L	2.500	63	30-130			
Surrogate: 1,2-Dichlorobenzene-d4	6.49		ug/L	3.750	173	15-110			<i>B</i> +
Surrogate: 2,4,6-Tribromophenol	2.10		ug/L	2.500	173 84	30-130			DŦ
Surrogate: 2-Fluorobiphenyl	2.11			2.500	84	30-130 30-130			
Surrogate: Nitrobenzene-d5	2.24		ug/L	2.500	89	30-130 30-130			
Surrogate: p-Terphenyl-d14	2.27		ug/L	2.300		30-130			
LCS Dup									
Acenaphthene	2.79	0.20	ug/L	4.000	70	40-140	4	20	
cenaphthylene	3.03	0.20	ug/L	4.000	76	40-140	5	20	
nthracene	3.19	0.20	ug/L	4.000	80	40-140	1	20	
Benzo(a)anthracene	2.63	0.05	ug/L	4.000	66	40-140	11	20	
Benzo(a)pyrene	2.80	0.05	ug/L	4.000	70	40-140	14	20	
Benzo(b)fluoranthene	2.88	0.05	ug/L	4.000	72	40-140	5	20	
Benzo(g,h,i)perylene	2.58	0.20	ug/L	4.000	65	40-140	6	20	
Senzo(k)fluoranthene	2.95	0.05	ug/L	4.000	74	40-140	5	20	
ois(2-Ethylhexyl)phthalate	3.81	2.50	ug/L	4.000	95	40-140	16	20	
Butylbenzylphthalate	3.78	2.50	ug/L	4.000	94	40-140	14	20	
Chrysene	2.82	0.05	ug/L	4.000	70	40-140	13	20	
Dibenzo(a,h)Anthracene	2.59	0.05	ug/L	4.000	65	40-140	5	20	
Diethylphthalate	3.61	2.50	ug/L	4.000	90	40-140	0.07	20	
Dimethylphthalate	3.54	2.50	ug/L	4.000	88	40-140	3	20	
Di-n-butylphthalate	3.84	2.50	ug/L	4.000	96	40-140	0.7	20	
Di-n-octylphthalate	4.00	2.50	ug/L	4.000	100	40-140	9	20	
Fluoranthene	3.18	0.20	ug/L	4.000	80	40-140	3	20	
Fluorene	2.95	0.20	ug/L	4.000	74	40-140	2	20	
Indeno(1,2,3-cd)Pyrene	2.58	0.05					6	20	

The Microbiology Division of Thielsch Engineering, Inc.

CERTIFICATE OF ANALYSIS

Client Name: Tighe & Bond

Client Project ID: Woburn to Mystic - RGP ESS Laboratory Work Order: 1709460

		Qualit	ty Cont	i Oi Da	ıld					
Analyte	Result	MRL	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Qualifier
	62	25(SIM) Sem	i-Volatile O	rganic Coi	mpounds					
Batch CI71812 - 3510C										
Naphthalene	2.35	0.20	ug/L	4.000		59	40-140	0.4	20	
Pentachlorophenol	3.44	0.90	ug/L	4.000		86	30-130	6	20	
Phenanthrene	3.16	0.20	ug/L	4.000		79	40-140	0.6	20	
Pyrene	3.02	0.20	ug/L	4.000		76	40-140	19	20	
Surrogate: 1,2-Dichlorobenzene-d4	1.60		ug/L	2.500		64	30-130			
Surrogate: 2,4,6-Tribromophenol	7.47		ug/L	3.750		199	15-110			B+
Surrogate: 2-Fluorobiphenyl	2.07		ug/L	2.500		83	30-130			
Surrogate: Nitrobenzene-d5	2.49		ug/L	2.500		100	30-130			
Surrogate: p-Terphenyl-d14	1.89		ug/L	2.500		<i>75</i>	30-130			
	8270D(SIM)	Semi-Volatile	Organic Co	ompounds	w/ Isoto	pe Dilutio	on			
Batch CI71856 - 3535A										
Blank										
1,4-Dioxane	ND	0.250	ug/L							
Surrogate: 1,4-Dioxane-d8	ND		ug/L	5.000		35	<i>15-115</i>			
LCS										
1,4-Dioxane	10.9	0.250	ug/L	10.00		109	40-140			
Surrogate: 1,4-Dioxane-d8	1.77		ug/L	5.000		35	15-115			
LCS Dup										
1,4-Dioxane	10.5	0.250	ug/L	10.00		105	40-140	4	20	
	2.03	0.230	ug/L	5.000		41	15-115	•	20	
Surrogate: 1,4-Dioxane-d8	2.03			3.000			15 115			
Batch CI71953 - 3535A										
Blank										
1,4-Dioxane	ND	0.250	ug/L							
Surrogate: 1,4-Dioxane-d8	ND		ug/L	5.000		40	<i>15-115</i>			
LCS										
1,4-Dioxane	10.5	0.250	ug/L	10.00		105	40-140			
Surrogate: 1,4-Dioxane-d8	2.56		ug/L	5.000		51	15-115			
LCS Dup										
1,4-Dioxane	11.3	0.250	ug/L	10.00		113	40-140	7	20	
	3.53	0.250	ug/L	5.000		71	15-115	•	20	
Surrogate: 1,4-Dioxane-d8	3.33	CI				71	13 113			
		CI	assical Che	illistry						
Batch CI71549 - General Preparation										
Total Residual Chlorine	ND	20.0	ug/L							
	NU	20.0	ug/L							
LCS	1.00		"	1.000		100	05.445			
Total Residual Chlorine Batch CI71551 - General Preparation	1.80		mg/L	1.800		100	85-115			
Blank	ND	10.0	11 = B							
Hexavalent Chromium	ND	10.0	ug/L							
LCS										

The Microbiology Division of Thielsch Engineering, Inc.

CERTIFICATE OF ANALYSIS

Client Name: Tighe & Bond

Client Project ID: Woburn to Mystic - RGP ESS Laboratory Work Order: 1709460

				Spike	Source		%REC		RPD	
Analyte	Result	MRL	Units	Level	Result	%REC	Limits	RPD	Limit	Qualifier
		Cl	assical Che	mistry						
Batch CI71551 - General Preparation										
Hexavalent Chromium	0.490		mg/L	0.4998		98	90-110			
LCS Dup										
Hexavalent Chromium	0.489		mg/L	0.4998		98	90-110	0.2	20	
Batch CI71804 - NH4 Prep										
Blank										
Ammonia as N	ND	0.10	mg/L							
LCS										
Ammonia as N	0.11	0.10	mg/L	0.09994		112	80-120			
LCS										
Ammonia as N	1.12	0.10	mg/L	0.9994		112	80-120			
Batch CI71830 - General Preparation										
Blank										
Total Petroleum Hydrocarbon	ND	5	mg/L							
LCS										
Total Petroleum Hydrocarbon	14	5	mg/L	19.38		71	66-114			
Batch CI71841 - General Preparation										
Blank										
Phenols	ND	100	ug/L							
LCS										
Phenols	92	100	ug/L	100.0		92	80-120			
LCS										
Phenols	998	100	ug/L	1000		100	80-120			
Batch CI71909 - General Preparation										
Blank										
Chloride	ND	0.5	mg/L							
LCS										
Chloride	2.5		mg/L	2.500		99	90-110			
Batch CI71910 - TCN Prep										
Blank										
Total Cyanide (LL)	ND	5.00	ug/L							
LCS										
Total Cyanide (LL)	21.0	5.00	ug/L	20.06		105	90-110			
LCS										
Total Cyanide (LL)	149	5.00	ug/L	150.4		99	90-110			
LCS Dup										
Total Cyanide (LL)	148	5.00	ug/L	150.4		98	90-110	0.7	20	
Batch CI71946 - General Preparation										
Blank										
Total Suspended Solids	ND	5	mg/L							
LCS										
185 Frances Avenue	e Cranston RI 029	10 2211 — Т	el: 401-461-7	191 Fo	v· 401-461-	1186	http://www	ESSI abor	entory com	

The Microbiology Division of Thielsch Engineering, Inc.

CERTIFICATE OF ANALYSIS

Client Name: Tighe & Bond

Client Project ID: Woburn to Mystic - RGP ESS Laboratory Work Order: 1709460

		•	,							
Analyte	Result	MRL	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Qualifier
		Cl	assical Che	mistry						
Batch CI71946 - General Preparation										
Total Suspended Solids	42		mg/L	43.50		97	80-120			
	504.1 1,2	2-Dibromoeth	nane / 1,2-l	Dibromo-3	3-chloropi	ropane				
Batch CI72021 - 504/8011										
Blank										
1,2-Dibromoethane	ND	0.015	ug/L							
1,2-Dibromoethane [2C]	ND	0.015	ug/L							
Surrogate: Pentachloroethane	0.166		ug/L	0.2000		83	30-150			
Surrogate: Pentachloroethane [2C]	0.124		ug/L	0.2000		62	30-150			
LCS										
1,2-Dibromoethane	0.087	0.015	ug/L	0.08000		108	70-130			
1,2-Dibromoethane [2C]	0.064	0.015	ug/L	0.08000		80	70-130			
Surrogate: Pentachloroethane	0.0992		ug/L	0.08000		124	30-150			
Surrogate: Pentachloroethane [2C]	0.0690		ug/L	0.08000		86	30-150			
LCS										
1,2-Dibromoethane	0.253	0.015	ug/L	0.2000		127	70-130			
1,2-Dibromoethane [2C]	0.188	0.015	ug/L	0.2000		94	70-130			
Surrogate: Pentachloroethane	0.259		ug/L	0.2000		129	30-150			
Surrogate: Pentachloroethane [2C]	0.202		ug/L	0.2000		101	30-150			
		Alco	hol Scan by	GC/FID						
Batch CI71906 - No Prep										
Blank										
Ethanol	ND	10	mg/L							
ıcs										
Ethanol	1230	10	mg/L	1007		122	60-140			
LCS Dup										
Ethanol	1240	10	mg/L	1007		123	60-140	0.6	30	

The Microbiology Division of Thielsch Engineering, Inc.

CERTIFICATE OF ANALYSIS

Client Name: Tighe & Bond

Client Project ID: Woburn to Mystic - RGP ESS Laboratory Work Order: 1709460

Notes and Definitions

U	Analyte included in the analysis, but not detected
S+	Surrogate recovery(ies) above upper control limit (S+).
PT	Pentachlorophenol tailing factor > 2.
HT	The maximum holding time listed in 40 CFR Part 136 Table II for pH, Dissolved Oxygen, Sulfite and Residual

Chlorine is fifteen minutes.

D Diluted.

CD+ Continuing Calibration %Diff/Drift is above control limit (CD+).

BT Benzidine tailing factor >2.

B+ Blank Spike recovery is above upper control limit (B+).

ND Analyte NOT DETECTED at or above the MRL (LOQ), LOD for DoD Reports, MDL for J-Flagged Analytes

dry Sample results reported on a dry weight basis

Relative Percent Difference **RPD** MDL Method Detection Limit MRL Method Reporting Limit Limit of Detection LOD Limit of Quantitation LOQ **Detection Limit** DL. I/V Initial Volume F/V Final Volume

Subcontracted analysis; see attached report

1 Range result excludes concentrations of surrogates and/or internal standards eluting in that range.

2 Range result excludes concentrations of target analytes eluting in that range. 3 Range result excludes the concentration of the C9-C10 aromatic range.

Avg Results reported as a mathematical average.

NR No Recovery
[CALC] Calculated Analyte

SUB Subcontracted analysis; see attached report

RL Reporting Limit

EDL Estimated Detection Limit

185 Frances Avenue, Cranston, RI 02910-2211

Tel: 401-461-7181

Fax: 401-461-4486

http://www.ESSLaboratory.com

The Microbiology Division of Thielsch Engineering, Inc.

CERTIFICATE OF ANALYSIS

Client Name: Tighe & Bond

Client Project ID: Woburn to Mystic - RGP ESS Laboratory Work Order: 1709460

ESS LABORATORY CERTIFICATIONS AND ACCREDITATIONS

ENVIRONMENTAL

Rhode Island Potable and Non Potable Water: LAI00179 http://www.health.ri.gov/find/labs/analytical/ESS.pdf

Connecticut Potable and Non Potable Water, Solid and Hazardous Waste: PH-0750 http://www.ct.gov/dph/lib/dph/environmental_health/environmental_laboratories/pdf/OutofStateCommercialLaboratories.pdf

Maine Potable and Non Potable Water, and Solid and Hazardous Waste: RI00002 http://www.maine.gov/dhhs/mecdc/environmental-health/dwp/partners/labCert.shtml

Massachusetts Potable and Non Potable Water: M-RI002 http://public.dep.state.ma.us/Labcert/Labcert.aspx

New Hampshire (NELAP accredited) Potable and Non Potable Water, Solid and Hazardous Waste: 2424 http://des.nh.gov/organization/divisions/water/dwgb/nhelap/index.htm

New York (NELAP accredited) Non Potable Water, Solid and Hazardous Waste: 11313 http://www.wadsworth.org/labcert/elap/comm.html

New Jersey (NELAP accredited) Non Potable Water, Solid and Hazardous Waste: RI006 http://datamine2.state.nj.us/DEP_OPRA/OpraMain/pi_main?mode=pi_by_site&sort_order=PI_NAMEA&Select+a+Site:=58715

United States Department of Agriculture Soil Permit: P330-12-00139

Pennsylvania: 68-01752 http://www.dep.pa.gov/Business/OtherPrograms/Labs/Pages/Laboratory-Accreditation-Program.aspx

ESS Laboratory Sample and Cooler Receipt Checklist

Client:	Ti	ghe & Bond	- KPB/TB/Mf	<u>M</u>			Project ID:	170946ს	
Shipped/D	elivered Via:		ESS Courler			Project I	Received: Due Date: or Project:		
	anifest prese			No		6. Does COC	match bottles?		Yes
2. Were cu	stody seals p	oresent?		No		7. Is COC con	nplete and correc	t ?	Yes
3. Is radiati	ion count <10	00 CPM?		Yes		8. Were samp	les received intac	ot?	Yes
	ler Present?			Yes		9. Were labs	informed about	short holds & rushes?	Yes No / NA
	5.8 C signed and	•		Yes		10. Were any	analyses receive	ed outside of hold time?	Yes (No)
	ocontracting s Sample IDs: Analysis: TAT:		Yes				As received? s in aqueous VOA anol cover soil co		Yes / No YNA
a. If metals	samples pro preserved u rel VOA vials	pon receipt:	L	Yes No Date:		_ Time:		Ву: Ву:	
	ceiving Notes			Date.				<u> </u>	
	re a need to		oject Manage client?	? Date:	Yes No Yes Ho	_ Time:		Ву:	
Sample Number	Container ID	Proper Container	Air Bubbles Present	Sufficient Volume	Contain	er Type	Preservative		vanide and 608
01	163895	Yes	NA	Yes	VOA VI	al - HCi	HCI		
01 01	163896 163915	Yes Yes	NA NA	Yes Yes		al - HCl	HCI		
01	163916	Yes	NA	Yes		r - Unpres r - Unpres	NP NP		
01	163917	Yes	NA	Yes		r - Unpres	NP		
01 01	163918 163919	Yes Yes	NA NA	Yes Yes		r - Unpres r - Unpres	NP NP		
01	163920	Yes	NA	Yes		r - Unpres	NP		
01	163927	Yes	NA	Yes	1L Ambe	r - Unpres	NP		
01	163928	Yes	NA	Yes		r - Unpres	NP		
01 01	163935	Yes	NA NA	Yes		r - H2SO4	H2SO4		
01 01	163936 163940	Yes Yes	NA NA	Yes Yes		r - H2SO4 - Unpres	H2SO4 NP		
01	163944	Yes	NA NA	Yes		- Oripres Bottle	NP		
01	163948	Yes	NA	Yes		ly - H2SO4	H2SO4		
01	163952	Yes	NA	Yes	500 mL Pc	oly - HNO3	HNO3		
01	163956	Yes	NA	Yes		ıly - Unpres	NP		
01	163960	Yes	NA	Yes		oly - HNO3	HNO3	,	
01	163964	Yes	NA	Yes		oly - NaOH	NaOH	ph>12 9/15/17 184	2 JA
01 01	163986 163987	Yes	No No	Yes		al-HCI	HCI		
01	163987 163988	Yes Yes	No No	Yes Yes		al - HCl al - HCl	HCI		
01	163989	Yes	No	Yes		ai - HCi al - HCl	HCI HCI		
		· - -							

ESS Laboratory Sample and Cooler Receipt Checklist

Client:_	Tig	ne & Bond	- KPB/TB/M	M		ESS Project ID: Date Received:				
.4	462000	Vaa	Na	Voc	VOA Vial - HCl	HCI	9/15/2017			
11	163990	Yes	No	Yes		HCI				
1	163991	Yes	No	Yes	VOA Vial - HCI					
1	163992	Yes	No	Yes	VOA Vial - HCI	HCI				
1	164041	Yes	NA	Yes	500 mL Poly - Unpres	NP				
2	163893	Yes	NA	Yes	VOA Vial - HCI	HCI				
2	163894	Yes	NA	Yes	VOA Vial - HCl	HCI				
2	163909	Yes	NA	Yes	1L Amber - Unpres	NP				
2	163910	Yes	NA	Yes	1L Amber - Unpres	NP				
2	163911	Yes	NA	Yes	1L Amber - Unpres	NΡ				
2	163912	Yes	NA	Yes	1L Amber - Unpres	NP				
2	163913	Yes	NA	Yes	1L Amber - Unpres	NP				
2	163914	Yes	NA	Yes	1L Amber - Unpres	NP				
			NA NA	Yes	1L Amber - Unpres	NP				
2	163925	Yes				NP				
2	163926	Yes	NA	Yes	1L Amber - Unpres					
2	163933	Yes	NA	Yes	1L Amber - H2SO4	H2SO4				
2	163934	Yes	NA	Yes	1L Amber - H2SO4	H2SO4				
2	163939	Yes	NA	Yes	1L Poly - Unpres	NP				
2	163943	Yes	NA	Yes	BOD Bottle	NP				
2	163947	Yes	NA	Yes	500 mL Poly - H2SO4	H2SO4				
2	163951	Yes	NA	Yes	500 mL Poly - HNO3	HNO3				
2	163955	Yes	NA	Yes	250 mL Poly - Unpres	NP				
2	163959	Yes	NA	Yes	250 mL Poly - HNO3	ниоз				
2	163963	Yes	NA NA	Yes	250 mL Poly - NaOH	NaOH	ph>12 9/15/17 1842			
					·•	HCI	pii- 12 0/10/11 /0/12			
2	163979	Yes	No	Yes	VOA Vial - HCI					
2	163980	Yes	No	Yes	VOA Vial - HCI	HCI				
2	163981	Yes	No	Yes	VOA Vial - HCI	HCI				
2	163982	Yes	No	Yes	VOA Vial - HCI	HCI				
2	163983	Yes	No	Yes	VOA Vial - HCl	HCI				
?	163984	Yes	No	Yes	VOA Vial - HCI	HCI				
2	163985	Yes	No	Yes	VOA Vial - HCI	HCI				
2	164040	Yes	NA	Yes	500 mL Poly - Unpres	NΡ				
3	163891	Yes	NA	Yes	VOA Vial - HCI	HCI				
3	163892	Yes	NA	Yes	VOA Vial - HCI	HCI				
3	163903	Yes	NA	Yes	1L Amber - Unpres	NP				
					•	NP				
3	163904	Yes	NA	Yes	1L Amber - Unpres	NP				
3	163905	Yes	NA	Yes	1L Amber - Unpres					
3	163906	Yes	NA	Yes	1L Amber - Unpres	NP				
3	163907	Yes	NA	Yes	1L Amber - Unpres	NP				
3	163908	Yes	NA	Yes	1L Amber - Unpres	NP				
3	163923	Yes	NA	Yes	1L Amber - Unpres	NP				
3	163924	Yes	NA	Yes	1L Amber - Unpres	NP				
3	163931	Yes	NA	Yes	1L Amber - H2SO4	H2SO4				
3	163932	Yes	NA	Yes	1L Amber - H2SO4	H2SQ4				
3	163938	Yes	NA	Yes	1L Poly - Unpres	NP				
3	163942	Yes	NA	Yes	BOD Bottle	NP				
			NA	Yes	500 mL Poly - H2SO4	H2SO4				
3	163946	Yes			-	HNQ3				
3	163950	Yes	NA NA	Yes	500 mL Poly - HNO3					
3	163954	Yes	NA	Yes	250 mL Poly - Unpres	NP				
3	163958	Yes	NA	Yes	250 mL Poly - HNO3	HNO3	_E. 40 0H 0H 7 10 H			
3	163962	Yes	NA	Yes	250 mL Poly - NaOH	NaOH	ph>12 9/15/17 1843			
3	163972	Yes	No	Yes	VOA Vial - HCI	HCI				
3	163973	Yes	No	Yes	VOA Vial - HCI	HCI				
3	163974	Yes	No	Yes	VOA Vial - HCI	HCI				
3	163975	Yes	No	Yes	VOA Vial - HCI	HCI				
3	163976	Yes	No	Yes	VOA Vial - HCl	HCI				
3	163977	Yes	No	Yes	VOA Vial - HCI	HCI				
				Yes	VOA Vial - HCI	HCI				
3	163978	Yes	No No			NP				
3	164039	Yes	NA	Yes	500 mL Poly - Unpres					
4	163889	Yes	NA	Yes	VOA Vial - HCI	HC1				
4	163890	Yes	NA	Yes	VOA Vial - HCI	HC1				
4	163897	Yes	NA	Yes	1L Amber - Unpres	NP				
14	163898	Yes	NA	Yes	1L Amber - Unpres	NP				
14	163899	Yes	NA	Yes	1L Amber - Unpres	NP				
14	163900	Yes	NA.	Yes	1L Amber - Unpres	NP				
					· · · · · · · · · · · · · · · · · · ·	NP				
)4	163901	Yes	NA	Yes	1L Amber - Unpres		•			
14	163902	Yes	NA	Yes	1L Amber - Unpres	NP	-			
)4	163921	Yes	NA	Yes	1L Amber - Unpres	NP				
14	163922	Yes	NA	Yes	1L Amber - Unpres	NP				
	163929	Yes	NA	Yes	1L Amber - H2SO4	H2SO4				

ESS Laboratory Sample and Cooler Receipt Checklist

Client:	Tig	the & Bond	- KPB/TB/N	1M	_ ESS Pr	1709460	
					Date R	eceived:	9/15/2017
04	163930	Yes	NA	Yes	1L Amber - H2SO4	H2SO4	
04	163937	Yes	NA	Yes	1L Poly - Unpres	NP	
04	163941	Yes	NA	Yes	BOD Bottle	NP	
04	163945	Yes	NA	Yes	500 mL Poly - H2SO4	H2SO4	
04	163949	Yes	NA	Yes	500 mL Poly - HNO3	HNO3	
04	163953	Yes	NA	Yes	250 mL Poly - Unpres	NP	
04	163957	Yes	NA	Yes	250 mL Poly - HNO3	HNO3	
04	163961	Yes	NA	Yes	250 mL Poly - NaOH	NaOH	ph>12 9/15/17 1842 JA
04	163965	Yes	No	Yes	VOA Vial - HCI	HCI	·
04	163966	Yes	No	Yes	VOA Vial - HCI	HCI	
04	163967	Yes	No	Yes	VOA Vial - HCI	HCI	
04	163968	Yes	Nο	Yes	VOA Vial - HCI	HCI	
04	163969	Yes	No	Yes	VOA Vial - HCI	HCI	
04	163970	Yes	No	Yes	VOA Vial - HCI	HCI	
04	163971	Yes	No	Yes	VOA Vial - HCI	HCI	•
04	164038	Yes	NA	Yes	500 mL Poly - Unpres	NP	
Review barcode mpleted By:	labels of to	nect contair	ners?		Yes / No Date & Time:	7 18	50
eviewed By:		L			Date & Time:	7 19.	20
elivered By:	()		9/18	1	2.ø

ESS Laboratory				CHAIN OF CUSTODY				ESS Lab # 109460													
Division of Thielsch Engineering, Inc.				Turn Time 5-Day Rush US-h 2				ting		200	<u></u>										
185 Frances Avenue, Cranston RI 02910				Regulatory State Massachusetts				Limits RGP													
Tel. (401) 461-7181 Fax (401) 461-4486				Is this project for any of the following?: OCT RCP				Electonic													
www.esslaboratory.com								Deliverables ☑Other (Please Specify →) Eversource E										EDD			
Company Name				Project #						1	ANAL	ISIS R	EQUE	ESTE) , [
Tighe and Bond Contact Person				N-0998-11-13 Woburn to Mystic Address				1_		6				1	1	£					- 1 1
Dean Bebis				1 Univerity Ave			/sis	SVOC 625	524	Chloride,	e l	Sen	metals	1	E I	۱.		व	3	3	
City			tate	Zip Code	Analysis	PAH PAH	5	5	lori	QX)	m m		É	8	20.1	thar	35	1			
_	Westwood			MA	02090		₹	M 4	9	onía,	is C	hav	3	664	HO.	TSS,	by 4	e, E	5	9	
Telephone Number FAX N			Number	Email Address dsbebis@tighebond.com			NS OF	9770	Ammo	Residual Chlorine	ossio .	s, #6p	TPH 1664	tent ch	₽.	Phenol by 420.1	1,4 Dioxane, Ethanol	15	75.		
ESS Lab	Collection Date	Collection Time	Sample Type	Sample Matrix	Sar		PCB 608	EDB,	distant	Total	Cyanide,	Hardness,	CrIII,	Hexava Cotal Order		u.	1,4	966	100		
1	9-14-17	9:00pm	So	w ·		+				\rightarrow	+		1	+			++	+	+		
2	9-14-17	10:000m	C	w	MW-15			X	X	X	X	X	1	X	X	(X	V	X	X	*	
3		12:00 to	G	(U)	Jum K	-15F		14	X	7	X	X	2 -	X 3	X	X	X	K	×	2	
4	9-15-17	1:00/9m	21	w	y my.			14		7	7	X	X	XY	4	X	7	X	' ×	1	
- 17					n w	-17F		14	X	+	X	5	Z >	X	K' >	4	7	+	34	*	\vdash
								-	-	-	\vdash	-	1	+	+	+			\rightarrow	+	\dashv
								+		-		-	_	_	+	+			\rightarrow	_	-
								+					\rightarrow	+	_	+			\dashv	_	\dashv
												_	\neg								
			tte AG-Amber Gla			Other P-Poly S-Ste		-						\perp	_	-					
Container Volume: 1-100 mL 2-2.5 gal 3-250 mL 4-300 mL 5 Preservation Code: 1-Non Preserved 2-HCl 3-H2SO4 4-HNO3 5-NaOH					mL 6-1L 7-VOA 8-2 oz		11-Other	_	-	_		_	_	_	-	+			_	_	
110301	vation code.	1-1011116361460	24101 5412304	4-HIVOS S-IVAON 0-M		er of Containers per		10	-	DA	m	20	1 0			+			\rightarrow	\rightarrow	-
		Labaratan	y Use Only			er or containers per	Sample.	111	H OK	50	11/1	-) -	10	14					\perp		-
1909 9		Laborator	ese Only	1000ars	Sampled by: DSB																
Cooler	Present:				Comments:	Please spe	ecify "Oth	er" p	reser	vativ	e an	d con	tain	ers t	ypes	in this	sspa	ice			
Seals	s Intact:	1/A			Say	mpres pr	1+ C	n	10	6	1	n.	FI	110	d						
Cooler Te	emperature:	111	°C 5-8-T.	> rem								km 9/				ample	date	9/15	/17		
					Pricing provided in Quote		98						1		1						
1 A	inquisned by:	(Signature, Da	-A-		(Signature, Date & Time)	Relinquished By	: (Signatur	e, Da	ite &	Time)	-/	R	cerv	By:	(Sign	ature	e, Dat	ie & T	ime)	
400	DOUEL	seoffo	y-15-17		9/11/7 11:07 -	99				25 (JAMMIN 9/5/17 1758											
Re	linquished by:	(Signature, Da	ite & Time)	Received By:	(Signature, Date & Time)	Relinquished By	:'(Signatur	e, Da	te &	Time)	Received By: (Signature, Date & Time)									
													/'								
				-																	

UNITED STATES ENVIRONMENTAL PROTECTION AGENCY

Region 1 5 Post Office Square, Suite 100 BOSTON, MA 02109-3912

VIA EMAIL

December 21, 2017

Michael Zylich
Eversource Energy
247 Station Drive, SE270
Westwood, MA 02090
michael.zylich@eversource.com

Re: Authorization to discharge under the Remediation General Permit (RGP) – Authorization #MAG910761, for the Eversource Electrical Transmission Line Project site located in Medford and Somerville, MA

Dear Mr. Zylich:

Based on the review of a Notice of Intent (NOI) dated November 29, 2017 submitted by Tighe & Bond, Inc. for the site referenced above, the U.S. Environmental Protection Agency, Region 1 (EPA) hereby authorizes NSTAR Electric Company d/b/a Eversource Energy, as the named owner, and as a named operator and co-permittee with Bond Brothers, to discharge in accordance with the provisions of the RGP from this site via the City of Medford, City of Somerville and/or the Massachusetts Department of Transportation (MassDOT) storm sewer systems to Mystic River (MA71-02). The authorization number is listed above. The effective date of coverage is the date of this authorization letter.

Enclosed with this RGP authorization to discharge is a summary of the applicable parameters and effluent limitations for your activity category III, contaminated site dewatering discharge. A dilution factor of 5.29, approved by the Massachusetts Department of Environmental Protection, was used in calculating effluent limits applicable to the proposed discharge from this site. Please note that this summary does not represent the complete requirements of the RGP. Operators must comply with all of the applicable requirements of the RGP, including influent and effluent monitoring, record keeping, and reporting requirements. For the complete general permit, see EPA's RGP website.² EPA notes that this site is authorized to use eight discharge locations associated with the City of Medford, City of Somerville and MassDOT storm sewer systems. To meet the requirements of the RGP, the effluent monitoring locations must be consistent with the discharge points from the stationary treatment system (Outfall 001) and the mobile treatment system (Outfall 002), prior to co-mingling with any other waste streams.

¹ The operator is responsible for obtaining permission to discharge to these systems, prior to initiating discharges. EPA's authorization to discharge does not convey any such permission.

² https://www.epa.gov/npdes-permits/remediation-general-permit-rgp-massachusetts-new-hampshire.

In accordance with Part 2.2.1 of the RGP and using the calculation methodology included in Appendix V, EPA corrected the calculated water quality-based effluent limitations (WQBELs) applicable to the proposed discharge. The cause of the calculation error was identified as the incorrect entry of the downstream flow and dilution factor in the fillable electronic format submitted with the NOI. This value was corrected according to the instructions in the fillable electronic format. The reason for these corrections is to determine the WQBELs that apply to the proposed discharge. Based on the revised calculations, your authorization to discharge includes revised WQBELs of 4,111 µg/L for total recoverable iron, 56.7 µg/L for total recoverable lead, and 0.0201 µg/L for benzo(a)anthracene, benzo(a)pyrene, benzo(b)fluoranthene, chrysene, and indeno(1,2,3-cd)pyrene. In addition, your authorization to discharge includes the following additional conditions:

- 1) Technology-based effluent limitations (TBELs) for benzene, 1,2 dichlorobenzene, methylene chloride, and tetrachloroethylene for Outfall 001 only. These additional TBELs are being required in accordance with Part 2.2.4 and Part 2.3.3.c of the RGP because you disclosed that these contaminants are present at the sites authorized under authorizations #MAG910758, #MAG910759 and/or #MAG910760, which will be discharged via Outfall 001 when influent is transferred from these sites to the stationary treatment system at this site.
- 2) WQBELs for diethylhexyl phthalate, benzo(k)fluoranthene, and dibenzo(a,h)anthracene for Outfall 001 only. These additional WQBELs are being required in accordance with Part 2.2.1 of the RGP based on the calculation methodology included in Appendix V because WQBELs apply when the influent concentrations of these parameters present at the sites authorized under authorization #MAG910758, #MAG910759 and/or #MAG910760 are discharged via Outfall 001 when influent is transferred from that site to the stationary treatment system at this site.
- 3) A TBEL for diethylhexyl phthalate for Outfall 002 only. This TBEL is being required in accordance with Part 2.1.1 of the RGP because this contaminant is present at this site.

This letter provides these additional conditions in writing. Monitoring for these parameters shall be conducted in conjunction with the monitoring required for the other parameters applicable in Part 2.1.1 of the RGP.

This EPA general permit and authorization to discharge will expire on **April 8, 2022**, or upon Notice of Termination (NOT), whichever occurs first. However, in accordance with Part 5.3 of the general permit, your permit coverage will be administratively continued until issuance of a new RGP. Please note that you must submit a NOT within thirty (30) days of the termination of the discharge. You have reported your discharges are expected to terminate December 2019. Because your discharge is expected to last twelve (12) months or more, you are subject to discharge monitoring requirements that begin **January 1, 2019**. See Part 4.6 and 5.2 of the RGP, and Appendix IV, Part 3 for more information regarding reporting requirements.

Please ensure that sufficiently sensitive test methods are used for all sample analyses conducted for this permit. To be considered sufficiently sensitive, test methods must achieve MLs for analysis for a given parameter that is no greater than the effluent limitation for that parameter, unless otherwise specified in the RGP for that parameter. Where no effluent limitation applies, EPA has provided the ML required with the enclosed summary. Where a compliance level applies, EPA has specified the compliance level and provided the ML required with the enclosed summary.

Thank you in advance for your cooperation in this matter. Please contact Shauna Little at (617) 918-1989 or little.shauna@epa.gov, if you have any questions.

Sincerely,

Thelma Murphy, Chief

Storm Water and Construction Permits Section

Melna / Huphy

Enclosure

cc: Rick McKanas, Bond Brothers, via email

Gary W.T. Hedman, LSP, Tighe & Bond, Inc., via email

Michael E. Martin, Tighe & Bond, Inc., via email

Cathy Vakalopoulos, MassDEP, via email

City of Medford, Department of Public Works, via email City of Somerville, Department of Public Works, via email

Massachusetts Department of Transportation

GENERAL PERMIT FOR REMEDIATION ACTIVITY DISCHARGES

Table 1: Authorization Information

Permit Number	MAG910761
Receiving Water	Mystic River
Outfall Number	Outfalls 001 and 002 to City of Medford, City
	of Somerville and/or MassDOT
Monitoring Frequency	See Part 4.1.2 of the RGP
Reporting Requirement	See Part 4.6.1 of the RGP;
	NetDMR requirements begin Jan 1, 2019

Table 2: Chemical-Specific Effluent Limitations and Monitor-Only Requirements¹

Parameter	Effluent Limitation
A. Inorganics	
Ammonia ²	Report mg/L
Chloride ³	Report μg/L
Total Suspended Solids	30 mg/L
Antimony ⁴	206 μg/L
Arsenic ⁴	104 μg/L
Cadmium ⁴	10.2 μg/L
Chromium III ⁴	323 μg/L
Chromium VI ⁴	323 μg/L
Copper ⁴	242 μg/L
Iron ⁴	4,111 μg/L
Lead ⁴	56.7 μg/L
Mercury ⁴	0.739 μg/L
Nickel ⁴	1,450 μg/L
Selenium ⁴	235.8 µg/L
Silver ⁴	35.1 µg/L
Zinc ⁴	420 µg/L
B. Non-Halogenated Volatile Organic Compounds	
Total BTEX	100 μg/L
Benzene – Outfall 001 Only	5.0 μg/L
1,4 Dioxane	$200~\mu \mathrm{g/L}$
Acetone	7.97 mg/L
C. Halogenated Volatile Organic Compounds	
1,2 Dichlorobenzene – Outfall 001 Only	600 μg/L
Methylene Chloride – Outfall 001 Only	4.6 μg/L
Tetrachloroethylene – Outfall 001 Only	5.0 μg/L
D. Non-Halogenated Semi-Volatile Organic Compounds	
Total Phthalates	190 μg/L
Diethylhexyl Phthalate – Outfall 001 Only	11.6 μg/L
Diethylhexyl Phthalate – Outfall 002 Only	101 μg/L
Total Group I Polycyclic Aromatic Hydrocarbons ⁵	1.0 μg/L
Benzo(a)anthracene ⁵	0.0201 μg/L
Benzo(a)pyrene ⁵	0.0201 μg/L
Benzo(b)fluoranthene ⁵	0.0201 μg/L

Benzo(k)fluoranthene ⁵ – Outfall 001 Only	0.0201 μg/L
Benzo(k)fluoranthene ⁵ – Outfall 002 Only	Report µg/L
Chrysene ⁵	0.0201 μg/L
Dibenzo(a,h)anthracene ⁵ – Outfall 001 Only	0.0201 μg/L
Dibenzo(a,h)anthracene ⁵ – Outfall 001 Only	Report µg/L
Indeno(1,2,3-cd)pyrene ⁵	0.0201 μg/L
Total Group II Polycyclic Aromatic Hydrocarbons	100 μg/L
F. Fuels Parameters	
Methyl-tert-Butyl Ether	70 μg/L
tert-Butyl Alcohol	120 μg/L

Table 2 Notes:

Table 3: Effluent Flow Limitation

Effluent Flow	Effluent Limitation
Elliuent Flow	0.504 MGD

Table 3 Notes

Table 4: pH Limitations for Discharges in Massachusetts

Receiving Water Class	Effluent Limitation
Freshwater	6.5 to 8.3 SU

Table 4 Notes

¹ The following abbreviations are used in Table 2, above:

^a mg/L = milligrams per liter

 $^{^{}b}$ µg/L = micrograms per liter

² The minimum level (ML) for analysis of ammonia must be less than or equal to 0.1 mg/L.

³ The ML for analysis of chloride must be less than or equal to 230 mg/L.

⁴ The limitation for this parameter is on the basis of total recoverable metal in the water column.

 $^{^5}$ The compliance level for group I polycyclic aromatic hydrocarbons (PAHs) is 0.1 $\mu g/L$. The ML for analysis of group I PAHs must be less than or equal to 0.1 $\mu g/L$.

¹ The following abbreviations are used in Table 3, above:

^a MGD = million gallons per day

¹ The following abbreviations are used in Table 4, above:

^a SU = standard units

UNITED STATES ENVIRONMENTAL PROTECTION AGENCY

Region 1 5 Post Office Square, Suite 100 BOSTON, MA 02109-3912

VIA EMAIL

December 21, 2017

Michael Zylich
Eversource Energy
247 Station Drive, SE270
Westwood, MA 02090
michael.zylich@eversource.com

Re: Authorization to discharge under the Remediation General Permit (RGP) – Authorization #MAG910761, for the Eversource Electrical Transmission Line Project site located in Medford and Somerville, MA

Dear Mr. Zylich:

Based on the review of a Notice of Intent (NOI) dated November 29, 2017 submitted by Tighe & Bond, Inc. for the site referenced above, the U.S. Environmental Protection Agency, Region 1 (EPA) hereby authorizes NSTAR Electric Company d/b/a Eversource Energy, as the named owner, and as a named operator and co-permittee with Bond Brothers, to discharge in accordance with the provisions of the RGP from this site via the City of Medford, City of Somerville and/or the Massachusetts Department of Transportation (MassDOT) storm sewer systems to Mystic River (MA71-02). The authorization number is listed above. The effective date of coverage is the date of this authorization letter.

Enclosed with this RGP authorization to discharge is a summary of the applicable parameters and effluent limitations for your activity category III, contaminated site dewatering discharge. A dilution factor of 5.29, approved by the Massachusetts Department of Environmental Protection, was used in calculating effluent limits applicable to the proposed discharge from this site. Please note that this summary does not represent the complete requirements of the RGP. Operators must comply with all of the applicable requirements of the RGP, including influent and effluent monitoring, record keeping, and reporting requirements. For the complete general permit, see EPA's RGP website.² EPA notes that this site is authorized to use eight discharge locations associated with the City of Medford, City of Somerville and MassDOT storm sewer systems. To meet the requirements of the RGP, the effluent monitoring locations must be consistent with the discharge points from the stationary treatment system (Outfall 001) and the mobile treatment system (Outfall 002), prior to co-mingling with any other waste streams.

¹ The operator is responsible for obtaining permission to discharge to these systems, prior to initiating discharges. EPA's authorization to discharge does not convey any such permission.

² https://www.epa.gov/npdes-permits/remediation-general-permit-rgp-massachusetts-new-hampshire.

In accordance with Part 2.2.1 of the RGP and using the calculation methodology included in Appendix V, EPA corrected the calculated water quality-based effluent limitations (WQBELs) applicable to the proposed discharge. The cause of the calculation error was identified as the incorrect entry of the downstream flow and dilution factor in the fillable electronic format submitted with the NOI. This value was corrected according to the instructions in the fillable electronic format. The reason for these corrections is to determine the WQBELs that apply to the proposed discharge. Based on the revised calculations, your authorization to discharge includes revised WQBELs of 4,111 µg/L for total recoverable iron, 56.7 µg/L for total recoverable lead, and 0.0201 µg/L for benzo(a)anthracene, benzo(a)pyrene, benzo(b)fluoranthene, chrysene, and indeno(1,2,3-cd)pyrene. In addition, your authorization to discharge includes the following additional conditions:

- 1) Technology-based effluent limitations (TBELs) for benzene, 1,2 dichlorobenzene, methylene chloride, and tetrachloroethylene for Outfall 001 only. These additional TBELs are being required in accordance with Part 2.2.4 and Part 2.3.3.c of the RGP because you disclosed that these contaminants are present at the sites authorized under authorizations #MAG910758, #MAG910759 and/or #MAG910760, which will be discharged via Outfall 001 when influent is transferred from these sites to the stationary treatment system at this site.
- 2) WQBELs for diethylhexyl phthalate, benzo(k)fluoranthene, and dibenzo(a,h)anthracene for Outfall 001 only. These additional WQBELs are being required in accordance with Part 2.2.1 of the RGP based on the calculation methodology included in Appendix V because WQBELs apply when the influent concentrations of these parameters present at the sites authorized under authorization #MAG910758, #MAG910759 and/or #MAG910760 are discharged via Outfall 001 when influent is transferred from that site to the stationary treatment system at this site.
- 3) A TBEL for diethylhexyl phthalate for Outfall 002 only. This TBEL is being required in accordance with Part 2.1.1 of the RGP because this contaminant is present at this site.

This letter provides these additional conditions in writing. Monitoring for these parameters shall be conducted in conjunction with the monitoring required for the other parameters applicable in Part 2.1.1 of the RGP.

This EPA general permit and authorization to discharge will expire on **April 8, 2022**, or upon Notice of Termination (NOT), whichever occurs first. However, in accordance with Part 5.3 of the general permit, your permit coverage will be administratively continued until issuance of a new RGP. Please note that you must submit a NOT within thirty (30) days of the termination of the discharge. You have reported your discharges are expected to terminate December 2019. Because your discharge is expected to last twelve (12) months or more, you are subject to discharge monitoring requirements that begin **January 1, 2019**. See Part 4.6 and 5.2 of the RGP, and Appendix IV, Part 3 for more information regarding reporting requirements.

Please ensure that sufficiently sensitive test methods are used for all sample analyses conducted for this permit. To be considered sufficiently sensitive, test methods must achieve MLs for analysis for a given parameter that is no greater than the effluent limitation for that parameter, unless otherwise specified in the RGP for that parameter. Where no effluent limitation applies, EPA has provided the ML required with the enclosed summary. Where a compliance level applies, EPA has specified the compliance level and provided the ML required with the enclosed summary.

Thank you in advance for your cooperation in this matter. Please contact Shauna Little at (617) 918-1989 or little.shauna@epa.gov, if you have any questions.

Sincerely,

Thelma Murphy, Chief

Storm Water and Construction Permits Section

Melna / Huphy

Enclosure

cc: Rick McKanas, Bond Brothers, via email

Gary W.T. Hedman, LSP, Tighe & Bond, Inc., via email

Michael E. Martin, Tighe & Bond, Inc., via email

Cathy Vakalopoulos, MassDEP, via email

City of Medford, Department of Public Works, via email City of Somerville, Department of Public Works, via email

Massachusetts Department of Transportation

GENERAL PERMIT FOR REMEDIATION ACTIVITY DISCHARGES

Table 1: Authorization Information

Permit Number	MAG910761
Receiving Water	Mystic River
Outfall Number	Outfalls 001 and 002 to City of Medford, City
	of Somerville and/or MassDOT
Monitoring Frequency	See Part 4.1.2 of the RGP
Reporting Requirement	See Part 4.6.1 of the RGP;
	NetDMR requirements begin Jan 1, 2019

Table 2: Chemical-Specific Effluent Limitations and Monitor-Only Requirements¹

Parameter	Effluent Limitation
A. Inorganics	
Ammonia ²	Report mg/L
Chloride ³	Report μg/L
Total Suspended Solids	30 mg/L
Antimony ⁴	206 μg/L
Arsenic ⁴	104 μg/L
Cadmium ⁴	10.2 μg/L
Chromium III ⁴	323 μg/L
Chromium VI ⁴	323 μg/L
Copper ⁴	242 μg/L
Iron ⁴	4,111 μg/L
Lead ⁴	56.7 μg/L
Mercury ⁴	0.739 μg/L
Nickel ⁴	1,450 μg/L
Selenium ⁴	235.8 µg/L
Silver ⁴	35.1 µg/L
Zinc ⁴	420 µg/L
B. Non-Halogenated Volatile Organic Compounds	
Total BTEX	100 μg/L
Benzene – Outfall 001 Only	5.0 μg/L
1,4 Dioxane	$200~\mu \mathrm{g/L}$
Acetone	7.97 mg/L
C. Halogenated Volatile Organic Compounds	
1,2 Dichlorobenzene – Outfall 001 Only	600 μg/L
Methylene Chloride – Outfall 001 Only	4.6 μg/L
Tetrachloroethylene – Outfall 001 Only	5.0 μg/L
D. Non-Halogenated Semi-Volatile Organic Compounds	
Total Phthalates	190 μg/L
Diethylhexyl Phthalate – Outfall 001 Only	11.6 μg/L
Diethylhexyl Phthalate – Outfall 002 Only	101 μg/L
Total Group I Polycyclic Aromatic Hydrocarbons ⁵	1.0 μg/L
Benzo(a)anthracene ⁵	0.0201 μg/L
Benzo(a)pyrene ⁵	0.0201 μg/L
Benzo(b)fluoranthene ⁵	0.0201 μg/L

Benzo(k)fluoranthene ⁵ – Outfall 001 Only	0.0201 μg/L
Benzo(k)fluoranthene ⁵ – Outfall 002 Only	Report µg/L
Chrysene ⁵	0.0201 μg/L
Dibenzo(a,h)anthracene ⁵ – Outfall 001 Only	0.0201 μg/L
Dibenzo(a,h)anthracene ⁵ – Outfall 001 Only	Report µg/L
Indeno(1,2,3-cd)pyrene ⁵	0.0201 μg/L
Total Group II Polycyclic Aromatic Hydrocarbons	100 μg/L
F. Fuels Parameters	
Methyl-tert-Butyl Ether	70 μg/L
tert-Butyl Alcohol	120 μg/L

Table 2 Notes:

Table 3: Effluent Flow Limitation

Effluent Flow	Effluent Limitation
Elliuent Flow	0.504 MGD

Table 3 Notes

Table 4: pH Limitations for Discharges in Massachusetts

Receiving Water Class	Effluent Limitation
Freshwater	6.5 to 8.3 SU

Table 4 Notes

¹ The following abbreviations are used in Table 2, above:

^a mg/L = milligrams per liter

 $^{^{}b}$ µg/L = micrograms per liter

² The minimum level (ML) for analysis of ammonia must be less than or equal to 0.1 mg/L.

³ The ML for analysis of chloride must be less than or equal to 230 mg/L.

⁴ The limitation for this parameter is on the basis of total recoverable metal in the water column.

 $^{^5}$ The compliance level for group I polycyclic aromatic hydrocarbons (PAHs) is 0.1 $\mu g/L$. The ML for analysis of group I PAHs must be less than or equal to 0.1 $\mu g/L$.

¹ The following abbreviations are used in Table 3, above:

^a MGD = million gallons per day

¹ The following abbreviations are used in Table 4, above:

^a SU = standard units

UNITED STATES ENVIRONMENTAL PROTECTION AGENCY

Region 1 5 Post Office Square, Suite 100 BOSTON, MA 02109-3912

VIA EMAIL

December 21, 2017

Rick McKanas Bond Brothers 145 Spring Street Everett, MA 02127 rmckanas@bondbrothers.com

Re: Authorization to discharge under the Remediation General Permit (RGP) – Authorization #MAG910761, for the Eversource Electrical Transmission Line Project site located in Medford and Somerville, MA

Dear Mr. McKanas:

Based on the review of a Notice of Intent (NOI) dated November 29, 2017 submitted by Tighe & Bond, Inc. for the site referenced above, the U.S. Environmental Protection Agency, Region 1 (EPA) hereby authorizes NSTAR Electric Company d/b/a Eversource Energy, as the named owner, and as a named operator and co-permittee with Bond Brothers, to discharge in accordance with the provisions of the RGP from this site via the City of Medford, City of Somerville and/or the Massachusetts Department of Transportation (MassDOT) storm sewer systems to Mystic River (MA71-02). The authorization number is listed above. The effective date of coverage is the date of this authorization letter.

Enclosed with this RGP authorization to discharge is a summary of the applicable parameters and effluent limitations for your activity category III, contaminated site dewatering discharge. A dilution factor of 5.29, approved by the Massachusetts Department of Environmental Protection, was used in calculating effluent limits applicable to the proposed discharge from this site. Please note that this summary does not represent the complete requirements of the RGP. Operators must comply with all of the applicable requirements of the RGP, including influent and effluent monitoring, record keeping, and reporting requirements. For the complete general permit, see EPA's RGP website.² EPA notes that this site is authorized to use eight discharge locations associated with the City of Medford, City of Somerville and the MassDOT storm sewer systems. To meet the requirements of the RGP, the effluent monitoring locations must be consistent with the discharge points from the stationary treatment system (Outfall 001) and the mobile treatment system (Outfall 002), prior to co-mingling with any other waste streams.

¹ The operator is responsible for obtaining permission to discharge to these systems, prior to initiating discharges. EPA's authorization to discharge does not convey any such permission.

² https://www.epa.gov/npdes-permits/remediation-general-permit-rgp-massachusetts-new-hampshire.

In accordance with Part 2.2.1 of the RGP and using the calculation methodology included in Appendix V, EPA corrected the calculated water quality-based effluent limitations (WQBELs) applicable to the proposed discharge. The cause of the calculation error was identified as the incorrect entry of the downstream flow and dilution factor in the fillable electronic format submitted with the NOI. This value was corrected according to the instructions in the fillable electronic format. The reason for these corrections is to determine the WQBELs that apply to the proposed discharge. Based on the revised calculations, your authorization to discharge includes revised WQBELs of 4,111 µg/L for total recoverable iron, 56.7 µg/L for total recoverable lead, and 0.0201 µg/L for benzo(a)anthracene, benzo(a)pyrene, benzo(b)fluoranthene, chrysene, and indeno(1,2,3-cd)pyrene. In addition, your authorization to discharge includes the following additional conditions:

- 1) Technology-based effluent limitations (TBELs) for benzene, 1,2 dichlorobenzene, methylene chloride, and tetrachloroethylene for Outfall 001 only. These additional TBELs are being required in accordance with Part 2.2.4 and Part 2.3.3.c of the RGP because you disclosed that these contaminants are present at the sites authorized under authorizations #MAG910758, #MAG910759 and/or #MAG910760, which will be discharged via Outfall 001 when influent is transferred from these sites to the stationary treatment system at this site.
- 2) WQBELs for diethylhexyl phthalate, benzo(k)fluoranthene, and dibenzo(a,h)anthracene for Outfall 001 only. These additional WQBELs are being required in accordance with Part 2.2.1 of the RGP based on the calculation methodology included in Appendix V because WQBELs apply when the influent concentrations of these parameters present at the sites authorized under authorization #MAG910758, #MAG910759 and/or #MAG910760 are discharged via Outfall 001 when influent is transferred from that site to the stationary treatment system at this site.
- 3) A TBEL for diethylhexyl phthalate for Outfall 002 only. This TBEL is being required in accordance with Part 2.1.1 of the RGP because this contaminant is present at this site.

This letter provides these additional conditions in writing. Monitoring for these parameters shall be conducted in conjunction with the monitoring required for the other parameters applicable in Part 2.1.1 of the RGP.

This EPA general permit and authorization to discharge will expire on **April 8, 2022**, or upon Notice of Termination (NOT), whichever occurs first. However, in accordance with Part 5.3 of the general permit, your permit coverage will be administratively continued until issuance of a new RGP. Please note that you must submit a NOT within thirty (30) days of the termination of the discharge. You have reported your discharges are expected to terminate December 2019. Because your discharge is expected to last twelve (12) months or more, you are subject to discharge monitoring requirements that begin **January 1, 2019**. See Part 4.6 and 5.2 of the RGP, and Appendix IV, Part 3 for more information regarding reporting requirements.

Please ensure that sufficiently sensitive test methods are used for all sample analyses conducted for this permit. To be considered sufficiently sensitive, test methods must achieve MLs for analysis for a given parameter that is no greater than the effluent limitation for that parameter, unless otherwise specified in the RGP for that parameter. Where no effluent limitation applies, EPA has provided the ML required with the enclosed summary. Where a compliance level applies, EPA has specified the compliance level and provided the ML required with the enclosed summary.

Thank you in advance for your cooperation in this matter. Please contact Shauna Little at (617) 918-1989 or little.shauna@epa.gov, if you have any questions.

Sincerely,

Thelma Murphy, Chief

Shefmallfurphy

Storm Water and Construction Permits Section

Enclosure

cc: Michael Zylich, Eversource Energy, via email

Gary W.T. Hedman, LSP, Tighe & Bond, Inc., via email

Michael E. Martin, Tighe & Bond, Inc., via email

Cathy Vakalopoulos, MassDEP, via email

City of Medford, Department of Public Works, via email City of Somerville, Department of Public Works, via email

Massachusetts Department of Transportation

GENERAL PERMIT FOR REMEDIATION ACTIVITY DISCHARGES

Table 1: Authorization Information

Permit Number	MAG910761
Receiving Water	Mystic River
Outfall Number	Outfalls 001 and 002 to City of Medford, City
	of Somerville and/or MassDOT
Monitoring Frequency	See Part 4.1.2 of the RGP
Reporting Requirement	See Part 4.6.1 of the RGP;
	NetDMR requirements begin Jan 1, 2019

Table 2: Chemical-Specific Effluent Limitations and Monitor-Only Requirements¹

Parameter	Effluent Limitation
A. Inorganics	
Ammonia ²	Report mg/L
Chloride ³	Report μg/L
Total Suspended Solids	30 mg/L
Antimony ⁴	206 μg/L
Arsenic ⁴	104 µg/L
Cadmium ⁴	10.2 μg/L
Chromium III ⁴	323 µg/L
Chromium VI ⁴	323 µg/L
Copper ⁴	242 µg/L
Iron ⁴	4,111 μg/L
Lead ⁴	56.7 μg/L
Mercury ⁴	0.739 μg/L
Nickel ⁴	1,450 µg/L
Selenium ⁴	235.8 μg/L
Silver ⁴	35.1 µg/L
Zinc ⁴	420 μg/L
B. Non-Halogenated Volatile Organic Compounds	
Total BTEX	100 μg/L
Benzene – Outfall 001 Only	$5.0~\mu \mathrm{g/L}$
1,4 Dioxane	200 μg/L
Acetone	7.97 mg/L
C. Halogenated Volatile Organic Compounds	
1,2 Dichlorobenzene – Outfall 001 Only	600 μg/L
Methylene Chloride – Outfall 001 Only	4.6 μg/L
Tetrachloroethylene – Outfall 001 Only	$5.0~\mu \mathrm{g/L}$
D. Non-Halogenated Semi-Volatile Organic Compounds	
Total Phthalates	190 μg/L
Diethylhexyl Phthalate- Outfall 001 Only	11.6 µg/L
Diethylhexyl Phthalate- Outfall 002 Only	101 µg/L
Total Group I Polycyclic Aromatic Hydrocarbons ⁵	1.0 µg/L
Benzo(a)anthracene ⁵	0.0201 μg/L
Benzo(a)pyrene ⁵	0.0201 μg/L
Benzo(b)fluoranthene ⁵	0.0201 μg/L

Benzo(k)fluoranthene ⁵ – Outfall 001 Only	0.0201 μg/L
Benzo(k)fluoranthene ⁵ – Outfall 002 Only	Report µg/L
Chrysene ⁵	0.0201 μg/L
Dibenzo(a,h)anthracene ⁵ – Outfall 001 Only	0.0201 μg/L
Dibenzo(a,h)anthracene ⁵ – Outfall 001 Only	Report µg/L
Indeno(1,2,3-cd)pyrene ⁵	0.0201 μg/L
Total Group II Polycyclic Aromatic Hydrocarbons	100 μg/L
F. Fuels Parameters	
Methyl-tert-Butyl Ether	70 μg/L
tert-Butyl Alcohol	120 μg/L

Table 2 Notes:

Table 3: Effluent Flow Limitation

Effluent Flow	Effluent Limitation
Elliuent Flow	0.504 MGD

Table 3 Notes

Table 4: pH Limitations for Discharges in Massachusetts

Receiving Water Class	Effluent Limitation				
Freshwater	6.5 to 8.3 SU				

Table 4 Notes

¹ The following abbreviations are used in Table 2, above:

^a mg/L = milligrams per liter

 $^{^{}b}$ µg/L = micrograms per liter

² The minimum level (ML) for analysis of ammonia must be less than or equal to 0.1 mg/L.

³ The ML for analysis of chloride must be less than or equal to 230 mg/L.

⁴ The limitation for this parameter is on the basis of total recoverable metal in the water column.

 $^{^5}$ The compliance level for group I polycyclic aromatic hydrocarbons (PAHs) is 0.1 $\mu g/L$. The ML for analysis of group I PAHs must be less than or equal to 0.1 $\mu g/L$.

¹ The following abbreviations are used in Table 3, above:

^a MGD = million gallons per day

¹ The following abbreviations are used in Table 4, above:

^a SU = standard units

N-0998-11-13 December 1, 2017

Ms. Shauna Little
United States Environmental Protection Agency – Region 1
1 Congress Street, Suite 1100
Boston, Massachusetts 02114-2023

Re: Submittal of Notice of Intent (NOI) Remediation General Permit (RGP)

Construction Dewatering Lower Mystic River Dam to the Amelia Earhart Dam Medford, Massachusetts 01890

Dear Ms. Little:

On behalf of NSTAR Electric Company d/b/a Eversource Energy (Eversource), Tighe & Bond, Inc. (Tighe & Bond) has prepared this Notice of Intent (NOI) application for a National Pollutant Discharge Elimination System (NPDES) Remediation General Permit (RGP) for the proposed construction dewatering activities conducted during installation of a new below grade electric transmission line and associated manholes along Winthrop Street, South Street, Main Street and Mystic Ave. in Medford and Somerville, to the border with the City of Boston (the Site). A copy of the NOI is included in Appendix A. The limits of the Site are shown on the Aerial Dewatering Site Plan (Figure 1) and the Massachusetts Geographic Information Systems (MassGIS) Priority Resource Map (Figure 2) in Appendix B.

As there is a need to treat and discharge water generated from the construction dewatering activities, the enclosed NOI form provides required information on general Site conditions, proposed treatment systems, discharge locations, receiving water, and laboratory analytical results from pre-discharge sampling and surface water sampling. The proposed treatment systems are shown on Figure 3 (Process Flow Diagram) in Appendix B. The excavation dewatering and discharge of treated groundwater are scheduled to begin in December 2017 and end in December 2019.

Dewatered groundwater at the Site will be treated by a mobile treatment system before being discharged to on-Site catch basins and into a stormwater drainage system managed by the City of Medford or will be transported to the laydown yard at 48 Commercial Street in Medford and discharged through the stormwater drainage system there. All stormwater drainage systems subject to this RGP discharge to the Mystic River upstream the Amelia Earhart Dam. Post treatment discharge rates will range from 25 gallons per minute (GPM) to 350 GPM.

Project Background

The overall project involves the installation of 7.7 miles of new electric transmission line and 19 manholes between Mystic Substation 250 in Charlestown, Massachusetts to the Woburn Substation 211 in Woburn Massachusetts. The proposed electrical transmission line trench will measure approximately three feet wide and will be installed at an approximate depth of five feet below ground surface (BGS). The manholes will be approximately 10 feet wide, by 25 feet long and 10 feet deep. Initial pre-characterization efforts have indicated that the average depth to groundwater at the Site is approximately seven feet BGS. Property uses along the project route are mixed commercial and residential.

This RGP Permit Application is for the discharge of treated groundwater to the Medford stormwater drainage system, other RGP NOIs are being filed concurrently for discharge of treated groundwater to alternative surface waters.

MCP History

During the pre-construction soil assessment activities, concentrations of lead and polycyclic aromatic hydrocarbons (PAHs) were detected in soil samples B-52, B-65, B-66, B-70, B-76 MH-17 and MH-18 above the respective Massachusetts Department of Environmental Protection (MassDEP) Reportable Concentration (RCS-1/RCS-2) values.

On September 14, 2017, Tighe & Bond, on behalf of Eversource, submitted a Utility-related Abatement Measure (URAM) Notification Report to MassDEP under Release Tracking Number (RTN) 3-34457. The URAM details measures implemented to manage excess soils and groundwater generated during the installation of the new underground electric transmission line and electric manholes along Mystic Ave. Boundaries of the URAM are shown on Figure 1 in Appendix B.

Groundwater Characterization

To characterize groundwater along the proposed route of construction, groundwater samples were collected from groundwater monitoring wells MW-102 and MW-103 in January 2017 and MW-15 and MW-17 in September 2017. The groundwater samples were submitted for laboratory analysis for Environmental Protection Agency (EPA) RGP parameters. The laboratory analytical results are summarized in Table 1 included in Appendix E. A copy of the laboratory analytical report is included in Appendix F. Laboratory analytical results were compared to the RGP Technology Based Effluent Limitations (TBEL) and Water Quality Based Effluent Limit (WQBEL).

Contaminants of concern are analytes that exceeded either the TBEL or WQBEL. Contaminants of concern detected in at least one of the monitoring wells MW-102, MW-103, MW-505A, MW-15 and MW-17 include, group I PAHs, iron, ammonia, chloride and total suspended solids (TSS). Since these monitoring wells were installed either adjacent to or within a roadway, chloride detected in groundwater samples is likely associated with road salting during the winter months.

Receiving Water Characterization

Mystic River (waterbody identification MA71-02) after the Lower Mystic Dam and before the Amelia Earhart Dam, is classified as a Class B impaired water body and is listed in the 303(d) Impaired Waterbodies Document. According to the United States Geologic Survey's StreamStats online application, the 7Q10 value at Mystic River was calculated at 2.16 million gallons per day (MGD).

As required by the NPDES RGP surface water samples were collected prior to discharging and analyzed for contaminants of concern that were present in the effluent samples from the monitoring wells discussed above. Surface water samples were collected in November 2017 and sent for laboratory analysis of metals detected in the groundwater samples, ammonia, hexavalent chromium, pH and hardness. Four surface water samples were collected along the Mystic River within a quarter mile of potential outfall locations and are shown on Figure 1 (Aerial Dewatering Site Plan) in Appendix B.

Treatment Systems

Dewatered groundwater at the Site will be treated by a mobile treatment system before being discharged to on-Site catch basins and into a stormwater drainage system managed

by either the City of Medford, City of Somerville or the Massachusetts Department of Transportation (MassDOT). A list of the proposed stormwater outfall, including location, latitude/longitude coordinates, municipality and system owner is provided in Appendix A.

Based on project demands, dewatered groundwater from the Winchester (Winter Pond and Aberjona River) and Boston (Mystic River/Boston Inner Harbor) may also be transported to a project Laydown yard located at 48 Commercial Street in Medford, Massachusetts and discharged to a catch basin adjacent to the laydown yard in Commercial Street in Medford. Separate RGP NOIs have been filed for Winter Pond (November 29, 2017), the Aberjona River (December 1, 2017) and Mystic River/Boston Inner Harbor (December 1, 2017).

The outfall from the temporary laydown yard discharges to the Mystic River. The stormwater outfall locations between the lower Mystic Lake Dam and the Amelia Earhart Dam that will discharge treated groundwater from the mobile treatment system to the Mystic River. The outfall locations for the mobile and stationary treatment systems are shown on Figure 1 (Aerial Dewatering Site Plan) in Appendix B. As required, the City of Medford, City of Somerville and MassDOT will be notified of the potential discharge activities and permission will be obtained prior to commencement of discharge.

Mobile Treatment System – Depending on the level of treatment required and discharge flow rate, the mobile treatment system will be mounted on either a 24 or 48-foot mobile trailer. The mounted treatment system will consist of a weir tank, particulate filter units, bag filters and/or granular activated carbon (GAC)/clay filter. Based on effluent monitoring results, the treatment system or flow rate will be modified to comply with the effluent limits.

Flow Rate (GPM)	Proposed Treatment System
0-50	TSS treatment via a silt/pipe sock or bag filter
50-150	24-foot trailer with particulate filter units, bag filters and/or GAC/clay filter
150-350	48-foot trailer weir tank, particulate filter units, bag filters and/or GAC/clay filter

Stationary Treatment System The stationary treatment system is composed of one or two 10,000-gallon fractionation tanks, one sand filter unit and two particulate filters, two GAC filters, and two clay vessels. Groundwater will be pumped from the excavation into a tanker truck and transported to the laydown yard located at 48 Commercial Street in Medford, Massachusetts. From the tank truck, the groundwater will be pumped into the fractionation tanks and then through a sand filter and particulate filter for the removal of solids, into the GAC filters and clay vessels to remove organics, and then through a particulate filter to remove any residual solids.

Best Management Practices Plan – Tighe & Bond designed a Best Management Practices Plan (BMPP) for the groundwater extraction and treatment systems for the Site. The BMPP meeting the requirement of the RGP will be developed and implemented upon initiation of the discharge.

Owner and Operator

Owner

NSTAR Electric Company d/b/a Eversource Michael J. Zylich 247 Station Drive Westwood, MA 02090

Operator

BOND Brothers Rich McKanas 145 Spring Street Everett, MA 02127

Notice of Intent

Preparation of this NOI has included a review of the literature pertaining to Areas of Critical Environmental Concern (ACEC), Endangered Species Act (ESA), and the National Historic Preservation Act (NHPA), as documented below:

- Review of a MassGIS Priority Resource Map, Figure 2, shows the Site is not within an ACEC:
- Review of the "Federally Listed Endangered and Threatened Species in Massachusetts" (Appendix C) found that there are two listed species in Middlesex County. The first species is the whorled pogonia which prefers forest habitat, and the second species is the northern long-eared bat, which prefers mines and caves in the winter and forested habitats in the summer. The small whorled pogonia is found in the Groton area while the northern long-eared bat is found statewide. As the Site is not in Groton, the small whorled pogonia will not be affected from construction activities or from the proposed discharges. The project area consists of an asphalt roadway that borders a residential area. No vegetation will be disturbed during construction activities. As a result, it is the opinion of Tighe & Bond that the habitats for northern long-eared bat will not be disturbed during construction activities. Additionally, the discharge is to the Mystic River which is not a habitat where the northern long-eared bat exists.
- According to United States Fish and Wildlife Services (USFWS) Information, Planning and Conservation (IPaC) tool there are no critical habitats within the Site. USFWS confirmed there are no critical habitats in the area and confirmed permit eligibility meets "Criterion A."
 - Additionally, according to the MassGIS Priority Resource Map, no NHESP Priority Habitats for Rare Species or Estimated Habitats for Rare Wildlife, were present within half a mile downstream of the discharge location. Therefore, permit eligibility meets "Criterion A."
- An electronic review of the Massachusetts Cultural Resource Information System database (Appendix D), made available through the Massachusetts Historical Commission, found several historical areas along Winthrop Street, South Street, Main Street and a portion of Mystic Ave in Medford, Massachusetts. Discharges and discharge related activities do not have the potential to cause effects on these historic properties as the discharge activities are limited to the roadway and will go through already existing drainage systems. Therefore, permit eligibility meets "Criterion B."
- Groundwater samples were collected from on-Site groundwater monitoring wells MW-102 and MW-103, in January 2017 and MW-15 and MW-17 in September 2017. The groundwater samples were submitted for laboratory analysis for RGP parameters. The laboratory analytical results are summarized in the Table 1 included in Appendix E. A copy of the laboratory analytical report is included in Appendix F. Laboratory analytical results were compared to the RGP TBEL and WQBEL.
- Surface water samples were collected from Mystic River within a quarter mile of the
 potential outfall locations in November 2017. The surface water samples were
 submitted for laboratory analysis of RGP parameters that were detected in the
 effluent samples. The laboratory analytical results are summarized in the Table 2
 included in Appendix E. A copy of the laboratory analytical report is included in
 Appendix F.

Based on the critical low flow (7Q10) value of the receiving water, 2.16 MGD and the proposed maximum discharge rate of up to 350 GPM (0.504 MGD), a dilution factor of 5.29 was established for this permit and was verified by the Massachusetts Department of Environmental Protection (MassDEP) on November 29, 2017 and included Appendix E. The 7Q10 value was calculated using the United States Geologic Survey's StreamStats online application, and the dilution factor was calculated as instructed by the EPA Dilution Factor and Effluent Limitation Calculations for Massachusetts, Appendix V.

The proposed treatment systems have been designed to reduce contaminants of concern to below the applicable effluent limits. Effluent compliance monitoring will be conducted on a monthly and the effluent samples submitted to a Massachusetts environmental laboratory for iron, Group I PAHs, TSS and pH analyses. Additionally, the flow rate, pH and turbidity levels will be monitored in the field and recorded.

If you need any additional information or assistance on this project, please do not hesitate to contact Michael E. Martin at (508) 564-7285 at your convenience.

Very truly yours,

TIGHE & BOND, INC.

Michael E. Martin

Hedman, LSP Project Manager Project Manager

Enclosures

Copy: Michael Zylich, Eversource Rich Mckansas, BOND

MassDEP, Division of Watershed Management

MassDEP, Boston

List of Appendices

Notice of Intent Appendix A

Appendix B **Figures**

Appendix C Federally Endangered Species in Massachusetts, USFWS Consultation Letter

Appendix D Massachusetts Cultural Resources Information System Report

Appendix E MassDEP Dilution Factor Confirmation

WQBEL Calculations

Groundwater Summary Table 1 Surface Water Summary Table 2

Appendix F Laboratory Analytical Results

List of Figures

Figure 1	Aerial Dewatering Site Plan
Figure 2	MassDEP Priority Resource Map

Figure 3 **Process Flow Diagrams**

APPENDIX A

II. Suggested Format for the Remediation General Permit Notice of Intent (NOI)

A. General site information:

1. Name of site:	Site address:					
	Street:					
	City:		State:	Zip:		
2. Site owner	Contact Person:					
	Telephone:	Email:				
	Mailing address:					
	Street:					
Owner is (check one): ☐ Federal ☐ State/Tribal ☐ Private ☐ Other; if so, specify:	City: State: Zip:					
3. Site operator, if different than owner	Contact Person:					
	Telephone:	Email:				
	Mailing address:					
	Street:					
	City:		State:	Zip:		
4. NPDES permit number assigned by EPA:	5. Other regulatory program(s) that apply to the site	(check all th	at apply):			
	☐ MA Chapter 21e; list RTN(s):	□ CERCL	.A			
NPDES permit is (check all that apply: \square RGP \square DGP \square CGP	☐ NH Groundwater Management Permit or	□ UIC Pro	•			
☐ MSGP ☐ Individual NPDES permit ☐ Other; if so, specify:	Groundwater Release Detection Permit:		Pretreatment	t		
· · · · · · · · · · · · · · · · · · ·		□ CWA S	ection 404			

B	Receiving water information:
1	Name of receiving water(s).

1. Name of receiving water(s):	Waterbody identification of receiving water	(s): Classific	ation of receiving water(s):
Receiving water is (check any that apply): □ Outstar	nding Resource Water □ Ocean Sanctuary □ territo	rial sea □ Wild and Scenic Ri	ver
2. Has the operator attached a location map in accord	lance with the instructions in B, above? (check one)	: □ Yes □ No	
Are sensitive receptors present near the site? (check of the sensitive receptors) that is the sensitive receptors present near the site?	one): □ Yes □ No		
3. Indicate if the receiving water(s) is listed in the Stapollutants indicated. Also, indicate if a final TMDL in 4.6 of the RGP.			
4. Indicate the seven day-ten-year low flow (7Q10) of Appendix V for sites located in Massachusetts and A		n the instructions in	
5. Indicate the requested dilution factor for the calculaccordance with the instructions in Appendix V for s			
6. Has the operator received confirmation from the a If yes, indicate date confirmation received:7. Has the operator attached a summary of receiving	-		
(check one): ☐ Yes ☐ No			
C. Source water information:			
1. Source water(s) is (check any that apply):			
☐ Contaminated groundwater	☐ Contaminated surface water	☐ The receiving water	☐ Potable water; if so, indicate municipality or origin:
Has the operator attached a summary of influent sampling results as required in Part 4.2 of the RGP	Has the operator attached a summary of influent sampling results as required in Part 4.2 of the	☐ A surface water other than the receiving water; if	
in accordance with the instruction in Appendix VIII? (check one):	☐ Other; if so, specify:		
□ Yes □ No	□ Yes □ No		

2. Source water contaminants:	
a. For source waters that are contaminated groundwater or contaminated surface water, indicate are any contaminants present that are not included in	b. For a source water that is a surface water other than the receiving water, potable water or other, indicate any contaminants present at the maximum concentration in accordance
the RGP? (check one): ☐ Yes ☐ No If yes, indicate the contaminant(s) and the maximum concentration present in accordance with the instructions in Appendix VIII.	with the instructions in Appendix VIII? (check one): □ Yes □ No
3. Has the source water been previously chlorinated or otherwise contains resid	dual chlorine? (check one): □ Yes □ No
D. Discharge information	
1.The discharge(s) is a(n) (check any that apply): \Box Existing discharge \Box New	w discharge □ New source
Outfall(s):	Outfall location(s): (Latitude, Longitude)
Discharges enter the receiving water(s) via (check any that apply): □ Direct di	scharge to the receiving water \Box Indirect discharge, if so, specify:
☐ A private storm sewer system ☐ A municipal storm sewer system If the discharge enters the receiving water via a private or municipal storm sew	ver system:
Has notification been provided to the owner of this system? (check one): ☐ Ye	•
Has the operator has received permission from the owner to use such system for obtaining permission:	or discharges? (check one): \square Yes \square No, if so, explain, with an estimated timeframe for
Has the operator attached a summary of any additional requirements the owner	of this system has specified? (check one): \square Yes \square No
Provide the expected start and end dates of discharge(s) (month/year):	
Indicate if the discharge is expected to occur over a duration of: \Box less than 1	2 months □ 12 months or more □ is an emergency discharge
Has the operator attached a site plan in accordance with the instructions in D, a	above? (check one): Yes No

2. Activity Category: (check all that apply)	3. Contamination Type Category: (check	all that apply)		
	a. If Activity Categ	ory I or II: (check all that apply)		
	 □ A. Inorganics □ B. Non-Halogenated Volatile Organic Compounds □ C. Halogenated Volatile Organic Compounds □ D. Non-Halogenated Semi-Volatile Organic Compounds □ E. Halogenated Semi-Volatile Organic Compounds □ F. Fuels Parameters 			
 □ I – Petroleum-Related Site Remediation □ II – Non-Petroleum-Related Site Remediation 	b. If Activity Category III, IV	V, V, VI, VII or VIII: (check either G or H)		
 □ III – Non-Petroleum-Related Site Remediation □ III – Contaminated Site Dewatering □ IV – Dewatering of Pipelines and Tanks □ V – Aquifer Pump Testing □ VI – Well Development/Rehabilitation □ VII – Collection Structure Dewatering/Remediation □ VIII – Dredge-Related Dewatering 	□ G. Sites with Known Contamination c. If Category III-G, IV-G, V-G, VI-G, VII-G or VIII-G: (check all that apply) □ A. Inorganics □ B. Non-Halogenated Volatile Organic Compounds □ C. Halogenated Volatile Organic Compounds □ D. Non-Halogenated Semi-Volatile Organic Compounds □ E. Halogenated Semi-Volatile Organic Compounds □ F. Fuels Parameters	□ H. Sites with Unknown Contamination d. If Category III-H, IV-H, V-H, VI-H, VII-H or VIII-H Contamination Type Categories A through F apply		

4. Influent and Effluent Characteristics

Parameter or or believed believed	Known	Known		_		Infl	uent	Effluent Limitations	
	or believed present	or # of samples	Test method (#)	Detection limit (µg/l)	Daily maximum (µg/l)	Daily average (µg/l)	TBEL	WQBEL	
A. Inorganics									
Ammonia								Report mg/L	
Chloride								Report µg/l	
Total Residual Chlorine								0.2 mg/L	
Total Suspended Solids								30 mg/L	
Antimony								206 μg/L	
Arsenic								104 μg/L	
Cadmium								10.2 μg/L	
Chromium III								323 μg/L	
Chromium VI								323 μg/L	
Copper								242 μg/L	
Iron								5,000 μg/L	
Lead								160 μg/L	
Mercury								0.739 μg/L	
Nickel								1,450 μg/L	
Selenium								235.8 μg/L	
Silver								35.1 μg/L	
Zinc								420 μg/L	
Cyanide								178 mg/L	
B. Non-Halogenated VOCs	3		•						
Total BTEX								100 μg/L	
Benzene								5.0 μg/L	
1,4 Dioxane								200 μg/L	
Acetone								7.97 mg/L	
Phenol								1,080 µg/L	

	Known	Known Known		Inf	luent	Effluent Limitations	
Parameter	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	average	TBEL	WQBEL			
C. Halogenated VOCs							
Carbon Tetrachloride						4.4 μg/L	
1,2 Dichlorobenzene						600 μg/L	
1,3 Dichlorobenzene						320 μg/L	
1,4 Dichlorobenzene						5.0 μg/L	
Total dichlorobenzene						763 µg/L in NH	
1,1 Dichloroethane						70 μg/L	
1,2 Dichloroethane						5.0 μg/L	
1,1 Dichloroethylene						3.2 µg/L	
Ethylene Dibromide						0.05 μg/L	
Methylene Chloride						4.6 μg/L	
1,1,1 Trichloroethane						200 μg/L	
1,1,2 Trichloroethane						5.0 μg/L	
Trichloroethylene						5.0 μg/L	
Tetrachloroethylene						5.0 μg/L	
cis-1,2 Dichloroethylene						70 μg/L	
Vinyl Chloride						2.0 μg/L	
D. Non-Halogenated SVO	Cs						
Total Phthalates						190 μg/L	
Diethylhexyl phthalate						101 μg/L	
Total Group I PAHs						1.0 μg/L	
Benzo(a)anthracene						_	
Benzo(a)pyrene						_	
Benzo(b)fluoranthene						_	
Benzo(k)fluoranthene						As Total PAHs	
Chrysene						_	
Dibenzo(a,h)anthracene						_	
Indeno(1,2,3-cd)pyrene							

Parameter		Known	# of samples	Test method (#)	Detection limit (µg/l)	Influent		Effluent Limitations	
						Daily maximum (µg/l)	Daily average (µg/l)	TBEL	WQBEL
Total Group II PAHs								100 μg/L	
Naphthalene								20 μg/L	
E. Halogenated SVOCs									
Total PCBs								0.000064 μg/L	
Pentachlorophenol								1.0 µg/L	
	1			•					
F. Fuels Parameters Total Petroleum		1	1			1			
Hydrocarbons								5.0 mg/L	
Ethanol								Report mg/L	
Methyl-tert-Butyl Ether								70 μg/L	
tert-Butyl Alcohol								120 μg/L in MA 40 μg/L in NH	
tert-Amyl Methyl Ether								90 μg/L in MA 140 μg/L in NH	
Other (i.e., pH, temperatur	re, hardness,	salinity, LC	50, addition	al pollutar	ats present);	if so, specify:			

E. Treatment system information

1. Indicate the type(s) of treatment that will be applied to effluent prior to discharge: (check all that apply)	
☐ Adsorption/Absorption ☐ Advanced Oxidation Processes ☐ Air Stripping ☐ Granulated Activated Carbon ("GAC")/Liquid Phase Carbon Adsorption	
☐ Ion Exchange ☐ Precipitation/Coagulation/Flocculation ☐ Separation/Filtration ☐ Other; if so, specify:	
2. Provide a written description of all treatment system(s) or processes that will be applied to the effluent prior to discharge.	
Identify each major treatment component (check any that apply):	
☐ Fractionation tanks☐ Equalization tank ☐ Oil/water separator ☐ Mechanical filter ☐ Media filter	
☐ Chemical feed tank ☐ Air stripping unit ☐ Bag filter ☐ Other; if so, specify:	
Indicate if either of the following will occur (check any that apply):	
□ Chlorination □ De-chlorination	
3. Provide the design flow capacity in gallons per minute (gpm) of the most limiting component.	
Indicate the most limiting component:	
Is use of a flow meter feasible? (check one): \square Yes \square No, if so, provide justification:	
Provide the proposed maximum effluent flow in gpm.	
Trovide the proposed maximum errident now in gpin.	
Provide the average effluent flow in gpm.	
If Activity Category IV applies, indicate the estimated total volume of water that will be discharged:	
4. Has the operator attached a schematic of flow in accordance with the instructions in E, above? (check one): ☐ Yes ☐ No	

F. Chemical and additive information

r. Chemical and additive information
1. Indicate the type(s) of chemical or additive that will be applied to effluent prior to discharge or that may otherwise be present in the discharge(s): (check all that apply)
□ Algaecides/biocides □ Antifoams □ Coagulants □ Corrosion/scale inhibitors □ Disinfectants □ Flocculants □ Neutralizing agents □ Oxidants □ Oxygen □
scavengers □ pH conditioners □ Bioremedial agents, including microbes □ Chlorine or chemicals containing chlorine □ Other; if so, specify:
2. Provide the following information for each chemical/additive, using attachments, if necessary:
a. Product name, chemical formula, and manufacturer of the chemical/additive; b. Purpose or use of the chemical/additive or remedial agent; c. Material Safety Data Sheet (MSDS) and Chemical Abstracts Service (CAS) Registry number for each chemical/additive; d. The frequency (hourly, daily, etc.), duration (hours, days), quantity (maximum and average), and method of application for the chemical/additive; e. Any material compatibility risks for storage and/or use including the control measures used to minimize such risks; and f. If available, the vendor's reported aquatic toxicity (NOAEL and/or LC50 in percent for aquatic organism(s)).
3. Has the operator attached an explanation which demonstrates that the addition of such chemicals/additives may be authorized under this general permit in accordance
with the instructions in F, above? (check one): \square Yes \square No; if no, has the operator attached data that demonstrates each of the 126 priority pollutants in CWA Section 307(a) and 40 CFR Part 423.15(j)(1) are non-detect in discharges with the addition of the proposed chemical/additive?
(check one): □ Yes □ No
G. Endangered Species Act eligibility determination
1. Indicate under which criterion the discharge(s) is eligible for coverage under this general permit:
□ FWS Criterion A : No endangered or threatened species or critical habitat are in proximity to the discharges or related activities or come in contact with the "action area".
□ FWS Criterion B : Formal or informal consultation with the FWS under section 7 of the ESA resulted in either a no jeopardy opinion (formal consultation) or a written concurrence by FWS on a finding that the discharges and related activities are "not likely to adversely affect" listed species or critical habitat
(informal consultation). Has the operator completed consultation with FWS? (check one): ☐ Yes ☐ No; if no, is consultation underway? (check one): ☐
Yes □ No
□ FWS Criterion C : Using the best scientific and commercial data available, the effect of the discharges and related activities on listed species and critical habitat have been evaluated. Based on those evaluations, a determination is made by EPA, or by the operator and affirmed by EPA, that the discharges and related activities will have "no effect" on any federally threatened or endangered listed species or designated critical habitat under the jurisdiction of the
FWS. This determination was made by: (check one) \square the operator \square EPA \square Other; if so, specify:

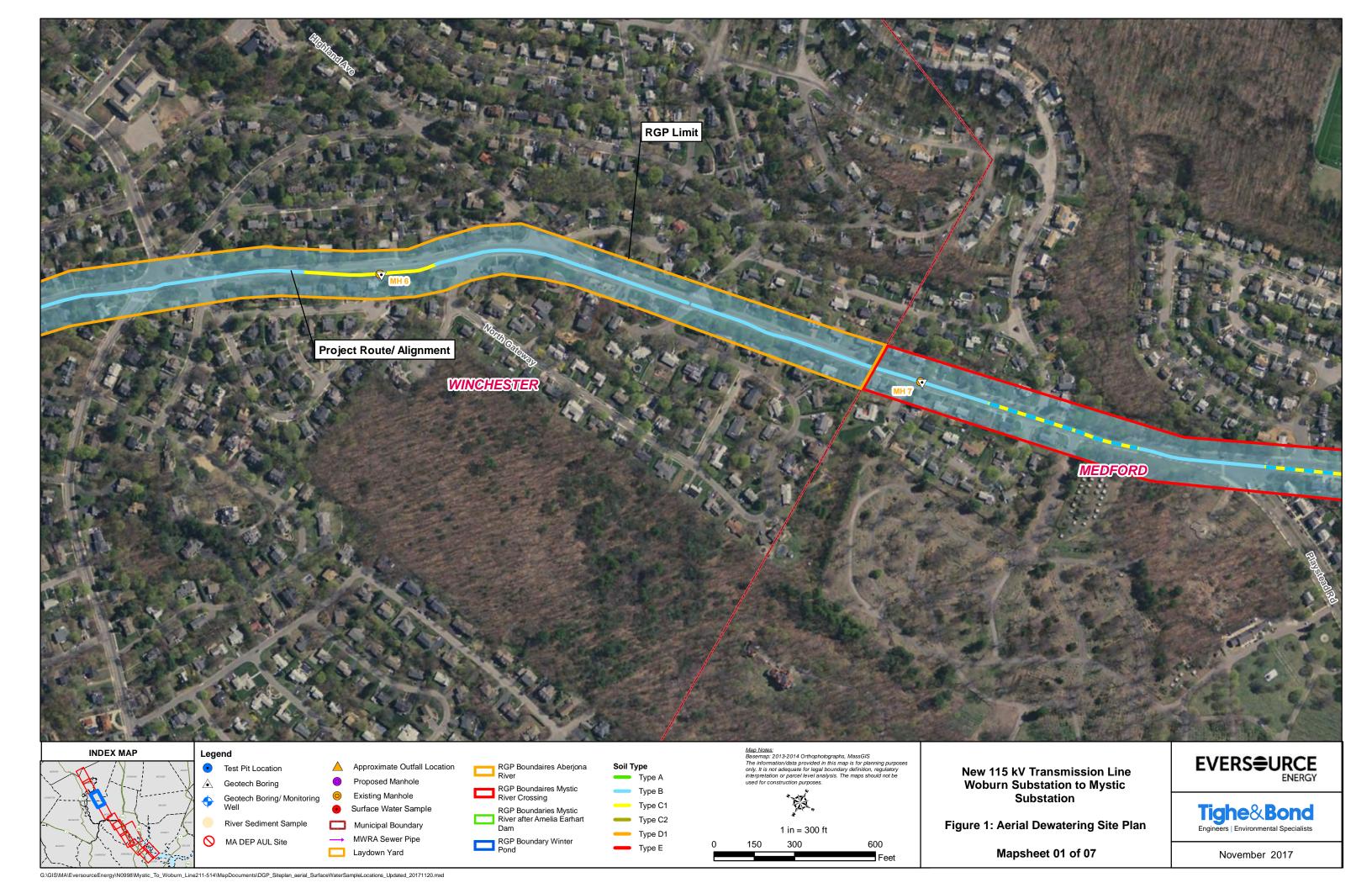
□ NMFS Criterion : A determination made by EPA is affirmed by the operator that the discharges and related activities will have "no effect" or are "not likely to adversely affect" any federally threatened or endangered listed species or critical habitat under the jurisdiction of NMFS and will not result in any take of
listed species. Has the operator previously completed consultation with NMFS? (check one): ☐ Yes ☐ No
2. Has the operator attached supporting documentation of ESA eligibility in accordance with the instructions in Appendix I, and G, above? (check one): \square Yes \square No
Does the supporting documentation include any written concurrence or finding provided by the Services? (check one): Yes No; if yes, attach.
H. National Historic Preservation Act eligibility determination
1. Indicate under which criterion the discharge(s) is eligible for coverage under this general permit:
□ Criterion A : No historic properties are present. The discharges and discharge-related activities (e.g., BMPs) do not have the potential to cause effects on historic properties.
☐ Criterion B: Historic properties are present. Discharges and discharge related activities do not have the potential to cause effects on historic properties.
□ Criterion C : Historic properties are present. The discharges and discharge-related activities have the potential to have an effect or will have an adverse effect on historic properties.
2. Has the operator attached supporting documentation of NHPA eligibility in accordance with the instructions in H, above? (check one): ☐ Yes ☐ No
Does the supporting documentation include any written agreement with the State Historic Preservation Officer (SHPO), Tribal Historic Preservation Officer (TPHO), or
other tribal representative that outlines measures the operator will carry out to mitigate or prevent any adverse effects on historic properties? (check one): \Box Yes \Box No
I. Supplemental information
Describe any supplemental information being provided with the NOI. Include attachments if required or otherwise necessary.
Has the operator attached data, including any laboratory case narrative and chain of custody used to support the application? (check one): \square Yes \square No
Has the operator attached the certification requirement for the Best Management Practices Plan (BMPP)? (check one): ☐ Yes ☐ No

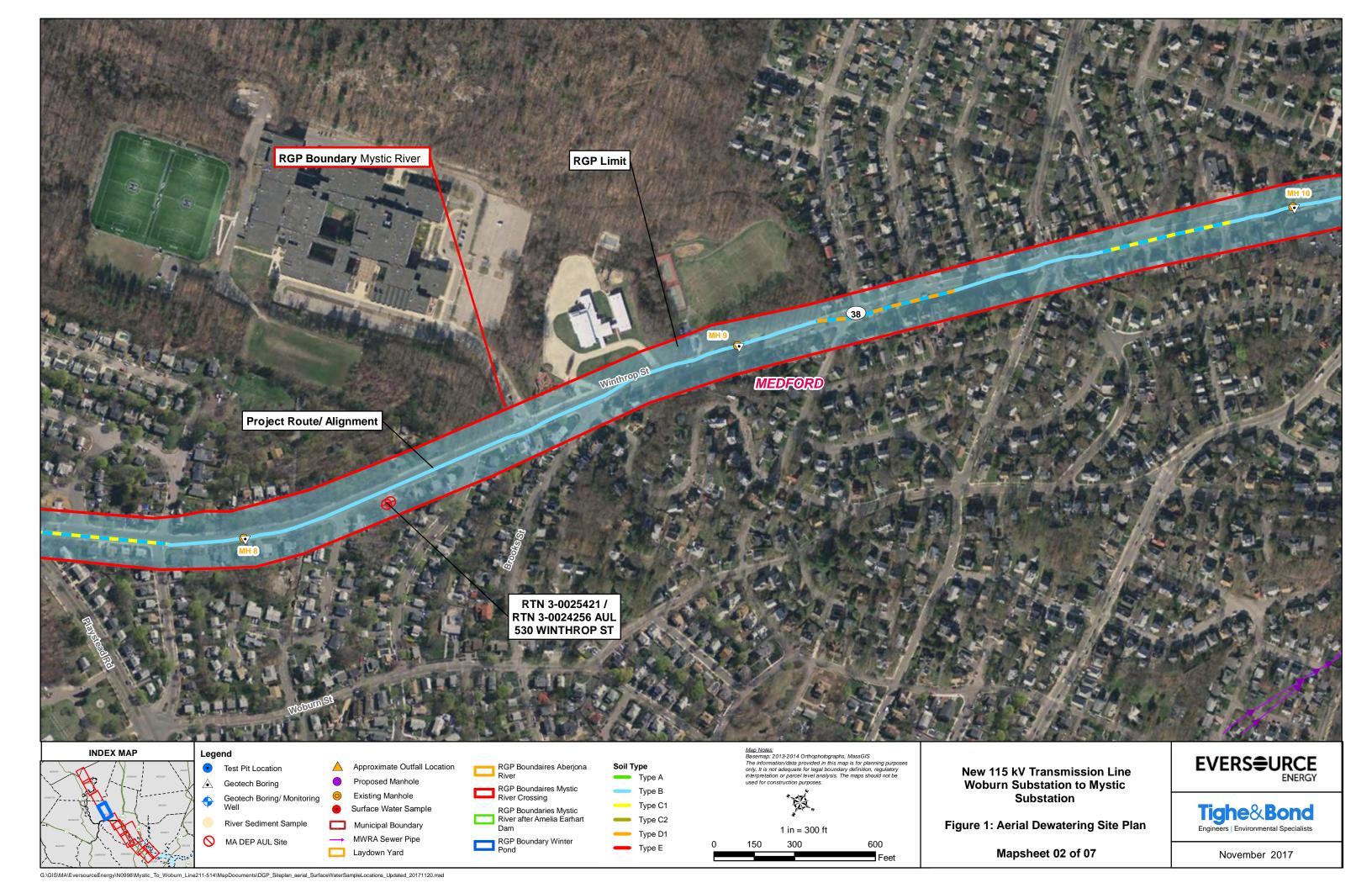
J. Certification requirement

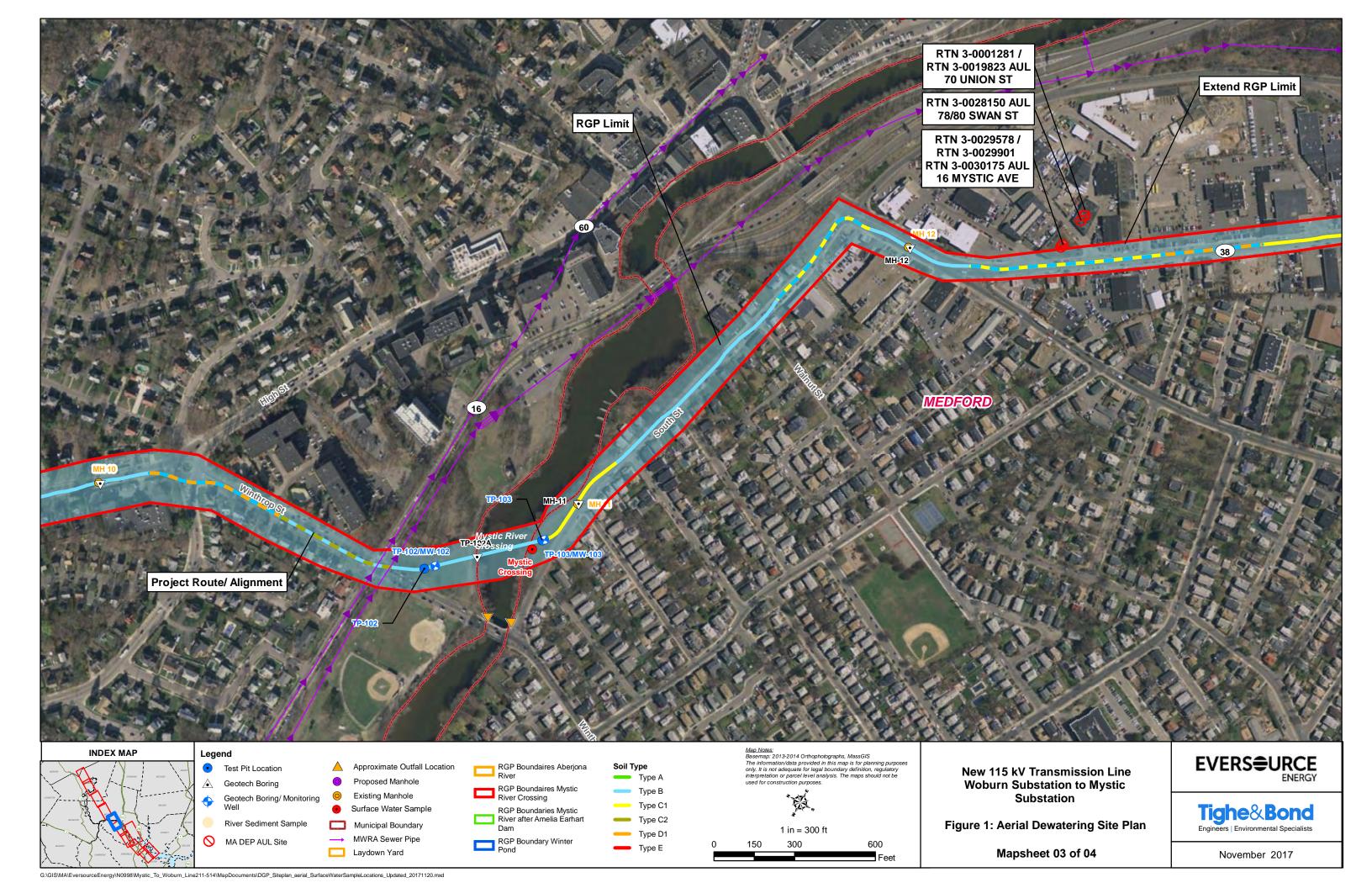
I certify under penalty of law that this document and all attachments were prepared under my direction or supervision in a that qualified personnel properly gathered and evaluated the information submitted. Based on my inquiry of the person or persons directly responsible for gathering the information, the information submitted is, to the best of my knowledge and b no personal knowledge that the information submitted is other than true, accurate, and complete. I am aware that there are information, including the possibility of fine and imprisonment for knowing violations.	persons who manage t elief, true, accurate, a	he system, or those nd complete. I have
$ \begin{array}{c} \text{A BMPP meeting the requirements of this general permit will 1} \\ \text{upon initiation of discharge.} \end{array} $	be developed an	d implemented
Notification provided to the appropriate State, including a copy of this NOI, if required.	Check one: Yes ■	No □
Notification provided to the municipality in which the discharge is located, including a copy of this NOI, if requested.	Check one: Yes ■	No □
Notification provided to the owner of a private or municipal storm sewer system, if such system is used for site	Check one: Yes ■	No □ NA □
discharges, including a copy of this NOI, if requested. Permission obtained from the owner of a private or municipal storm sewer system, if such system is used for site		
discharges. If yes, attach additional conditions. If no, attach explanation and timeframe for obtaining permission.	Check one: Yes ■	No □ NA □
Notification provided to the owner/operator of the area associated with activities covered by an additional discharge		
permit(s). Additional discharge permit is (check one): □ RGP □ DGP □ CGP □ MSGP □ Individual NPDES permit	Check one: Yes □	No □ NA □
□ Other; if so, specify:		
Signature: Dat	te: /0 -25-	-17
Print Name and Title: Rich Mckanas		

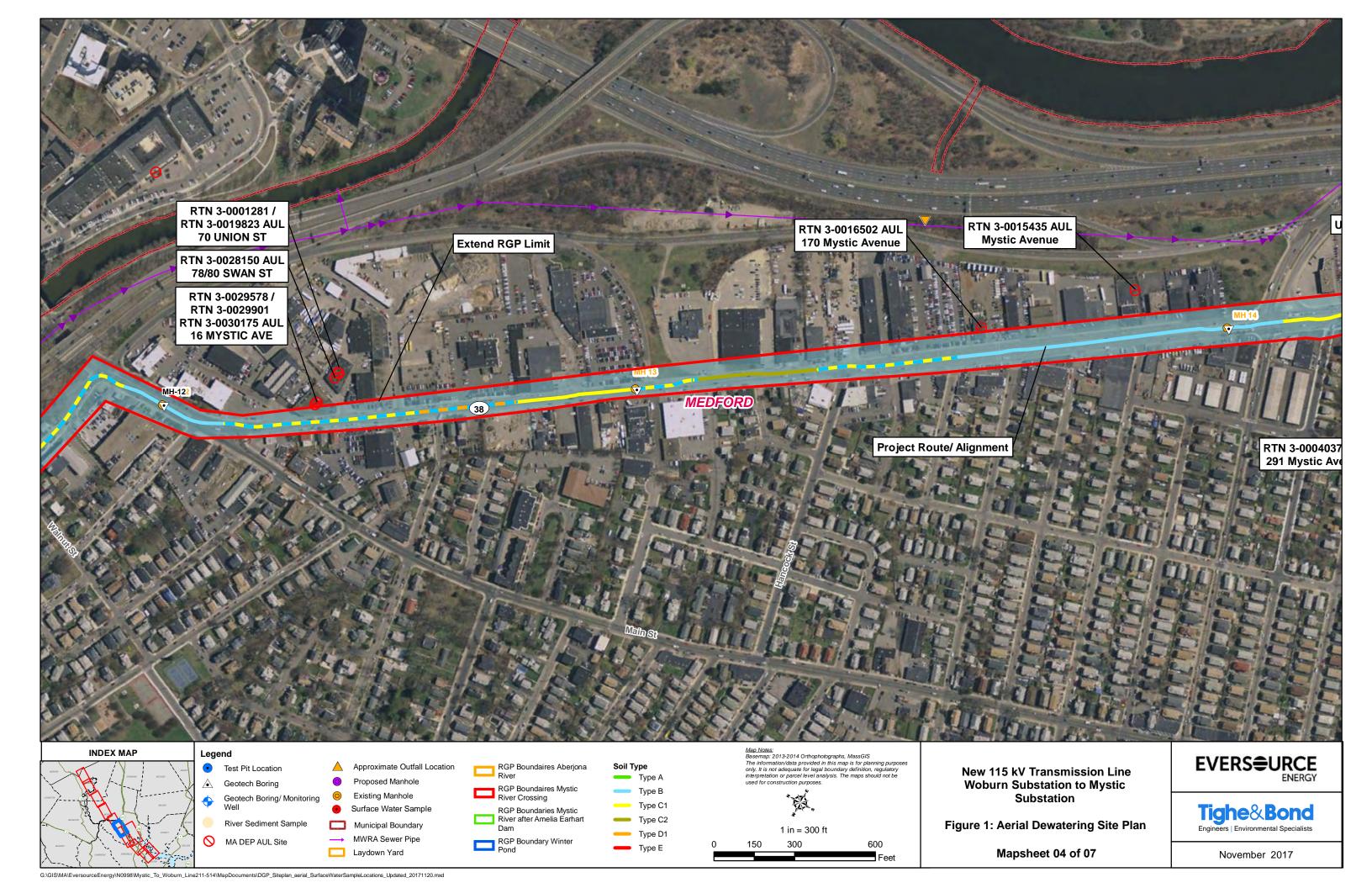
J. Certification requirement

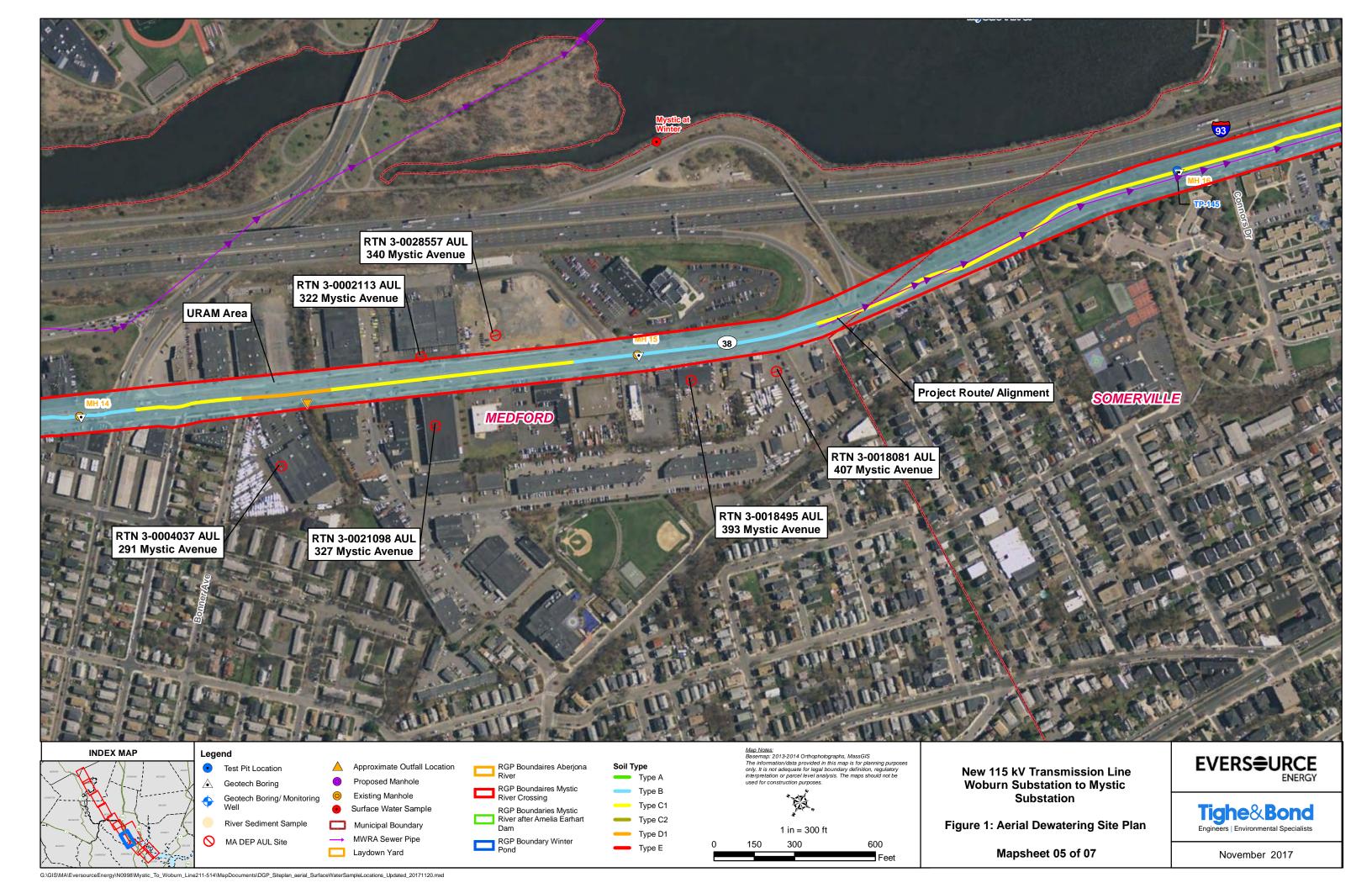
I certify under penalty of law that this document and all attachments were prepared under my direction or supervision in a that qualified personnel properly gathered and evaluated the information submitted. Based on my inquiry of the person or persons directly responsible for gathering the information, the information submitted is, to the best of my knowledge and be no personal knowledge that the information submitted is other than true, accurate, and complete. I am aware that there are information, including the possibility of fine and imprisonment for knowing violations.	persons who manage elief, true, accurate, a	the system, or those and complete. I have
A BMPP meeting the requirements of this general permit will be deve BMPP certification statement: initiation of discharge.	loped and imple	mented upon
Notification provided to the appropriate State, including a copy of this NOI, if required.	Check one: Yes ■	No □
Notification provided to the municipality in which the discharge is located, including a copy of this NOI, if requested.	Check one: Yes ■	No □
Notification provided to the owner of a private or municipal storm sewer system, if such system is used for site discharges, including a copy of this NOI, if requested. Permission obtained from the owner of a private or municipal storm sewer system, if such system is used for site	Check one: Yes ■	No □ NA □
discharges. If yes, attach additional conditions. If no, attach explanation and timeframe for obtaining permission.	Check one: Yes ■	No □ NA □
Notification provided to the owner/operator of the area associated with activities covered by an additional discharge		
$permit(s). \ Additional \ discharge \ permit \ is \ (check \ one): \ \square \ RGP \ \square \ DGP \ \square \ CGP \ \square \ MSGP \ \square \ Individual \ NPDES \ permit$	Check one: Yes □	No □ NA □
☐ Other; if so, specify:		
Signature: Date	te: 11/29/2017	

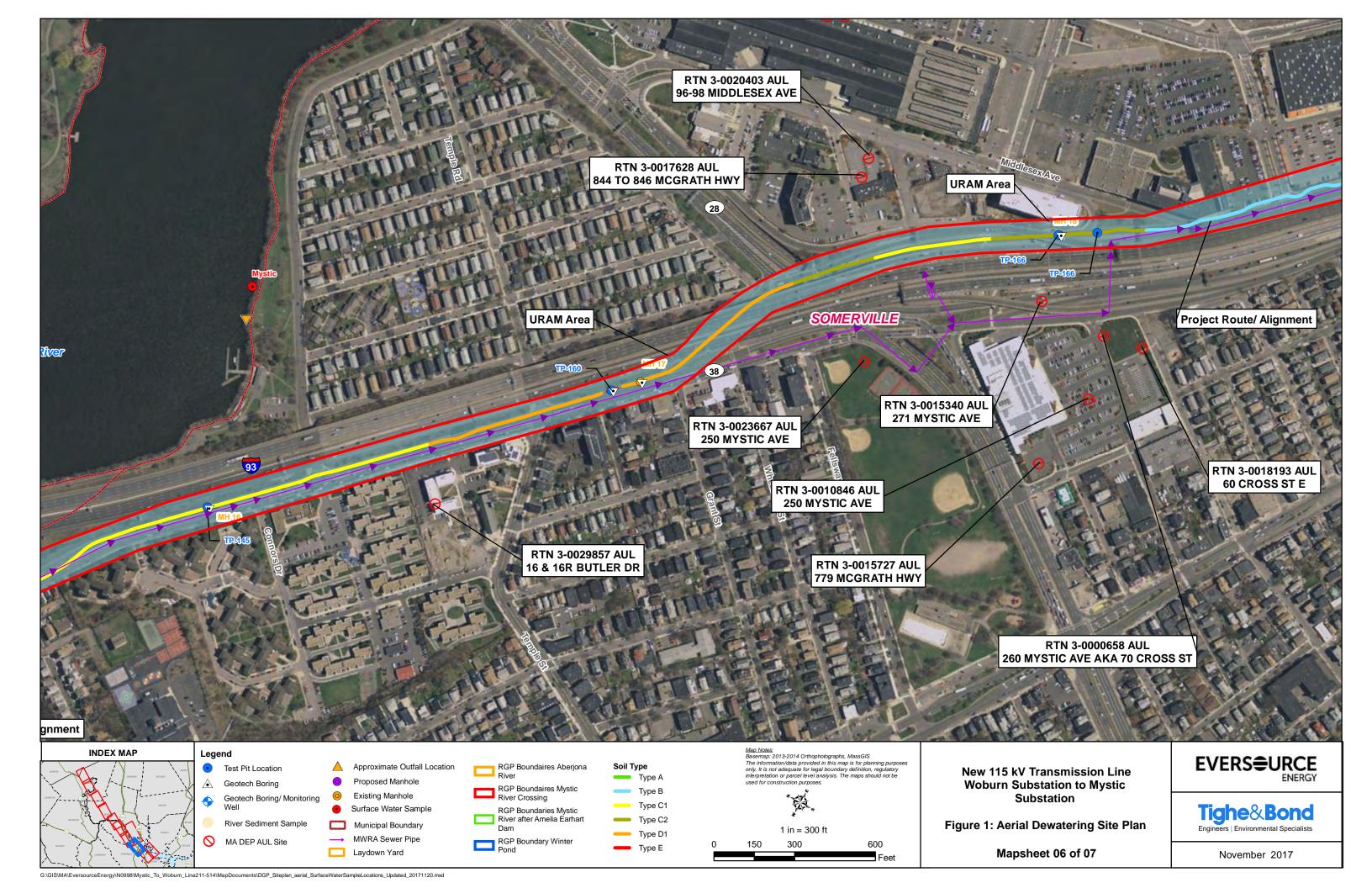

Print Name and Title: Michael Zylich, Senior Environmental Engineer

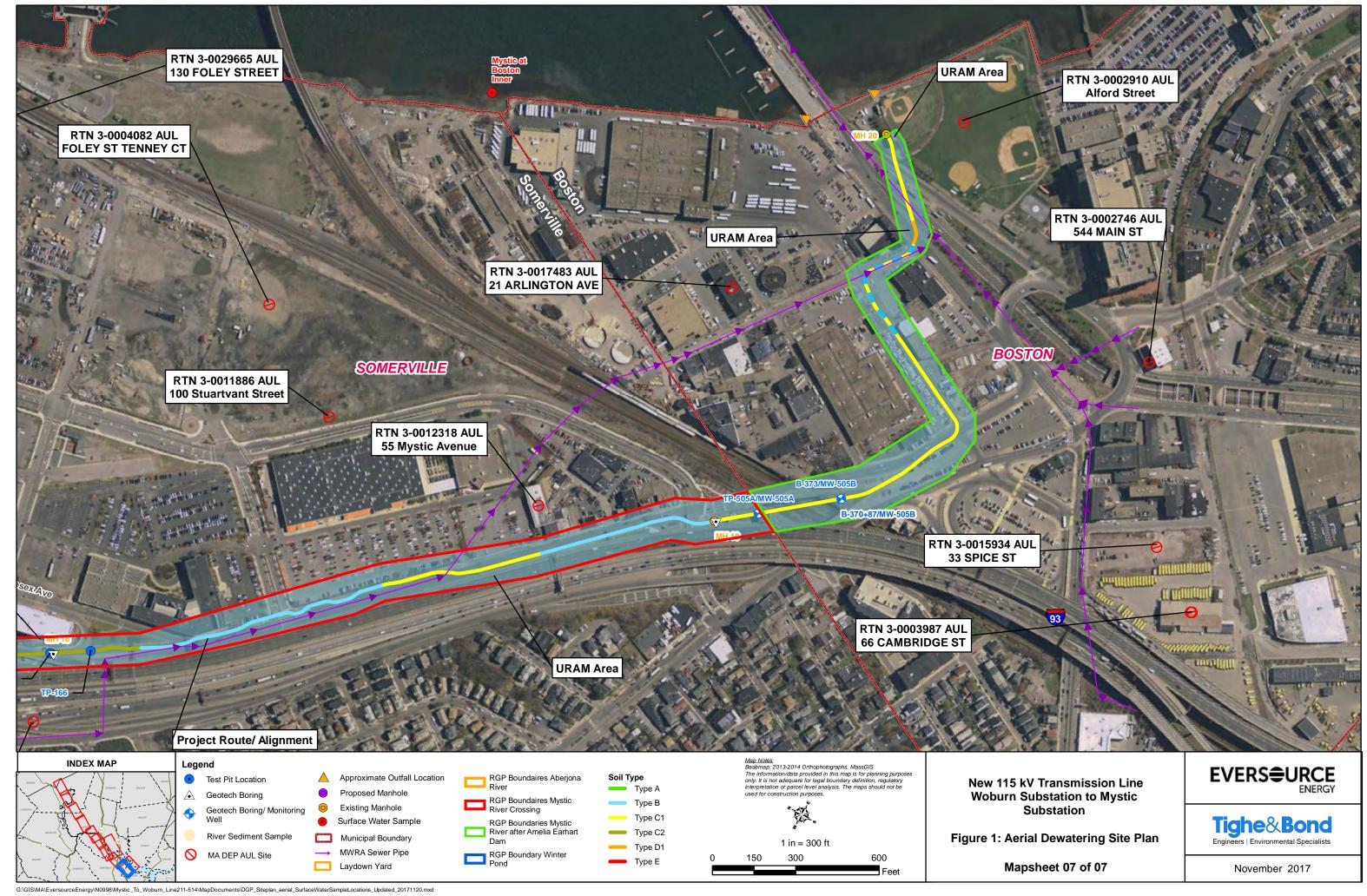


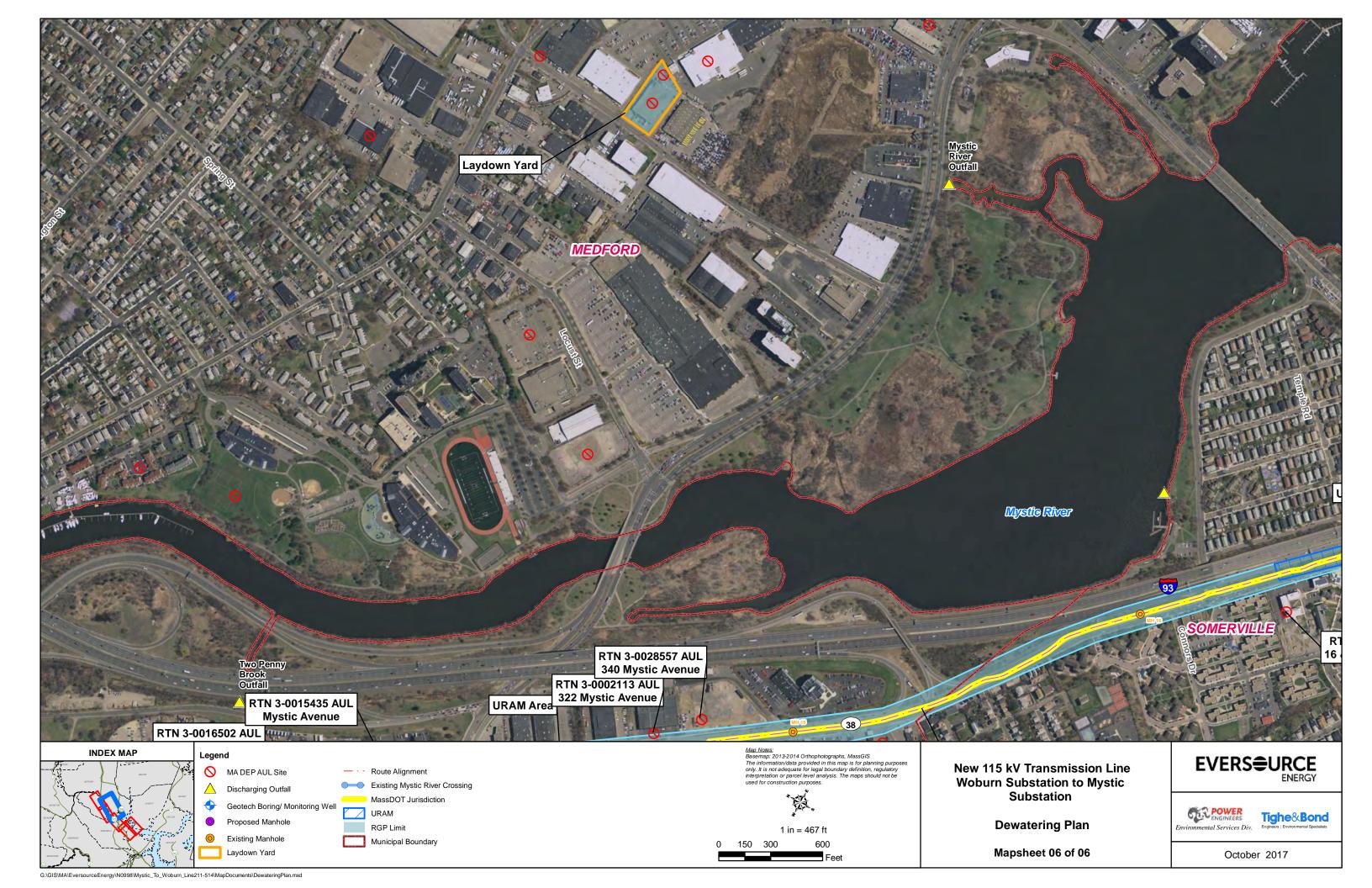

Eversource – Mystic to Woburn 115 kV Transmission Line Mystic River Outfall Summary Lower Mystic River to Amelia Earhart Dam					
Outfall Location	Latitude	Longitude	Municipality	Jurisdiction	
Mystic River at Winthrop Street	42.417885	-71.118161	Medford	Medford	
Mystic River at South Street	42.417607	-71.117774	Medford	Medford	
Mystic River at 4054 Mystic Valley Parkway	42.404058	-71.086283	Medford	Medford	
Two Penny Brook Outfall at 170 Mystic Avenue	42.410702	-71.103739	Medford	MassDOT	
Winter Brook Out at 291 Mystic Avenue	42.404810	-71.100970	Medford	MassDOT	
Mystic River at Mystic Valley Parkway	42.405623	-71.096701	Medford	MassDOT	
Mystic River at Shore Drive	42.398615	-71.08590	Somerville	Somerville	
Mystic River at Fellsway	42.398249	-71.083513	Somerville	Somerville	

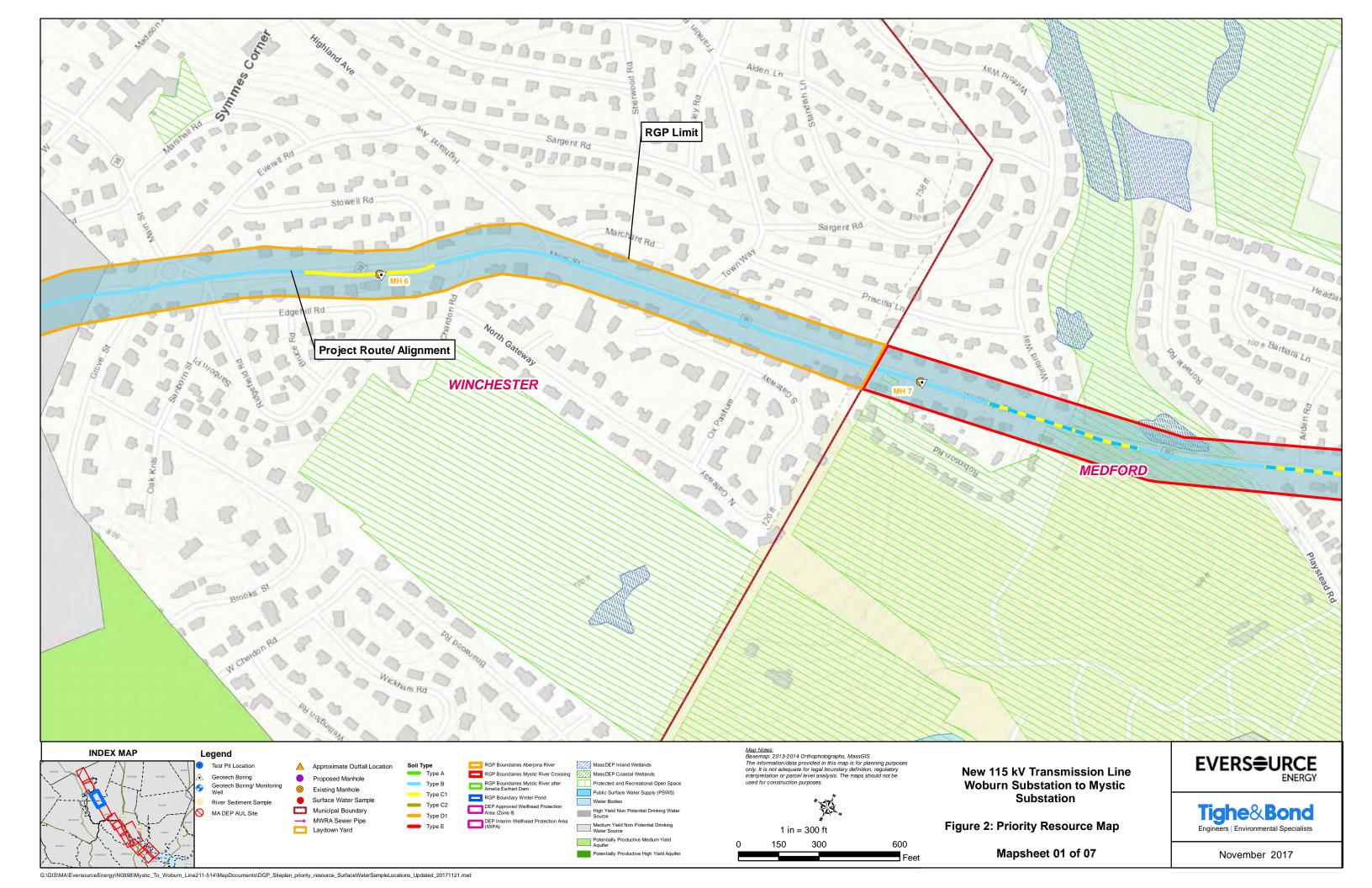

J:\N\N0998 NSTAR\Woburn to Mystic\Soil & GW Management\GW\RGP - DGP\NOI RGP\RGP Fillable NOI\Lower Mystic Dam to Amelia Earhart Dam\Outfall Summary.doc

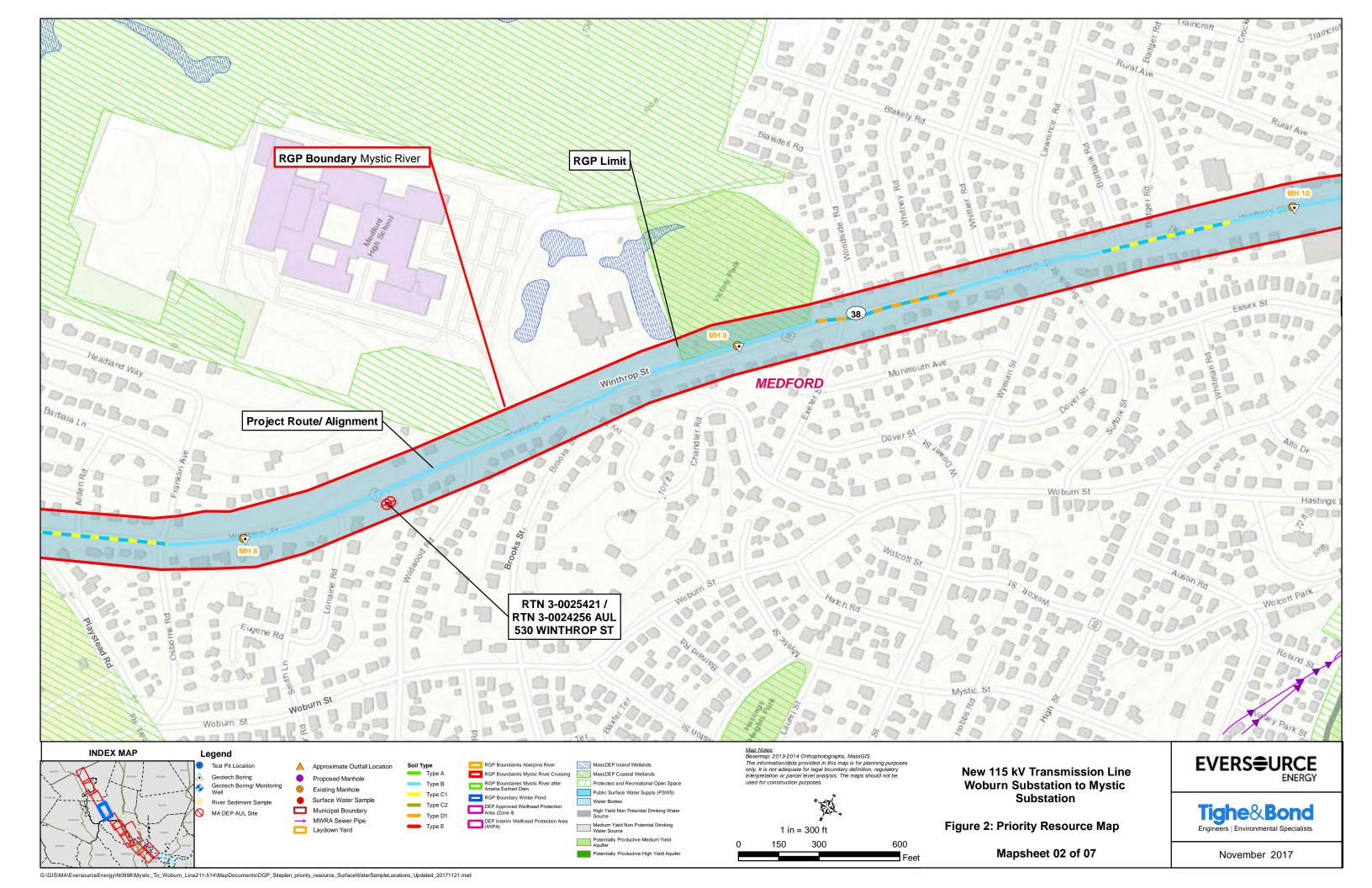

APPENDIX B

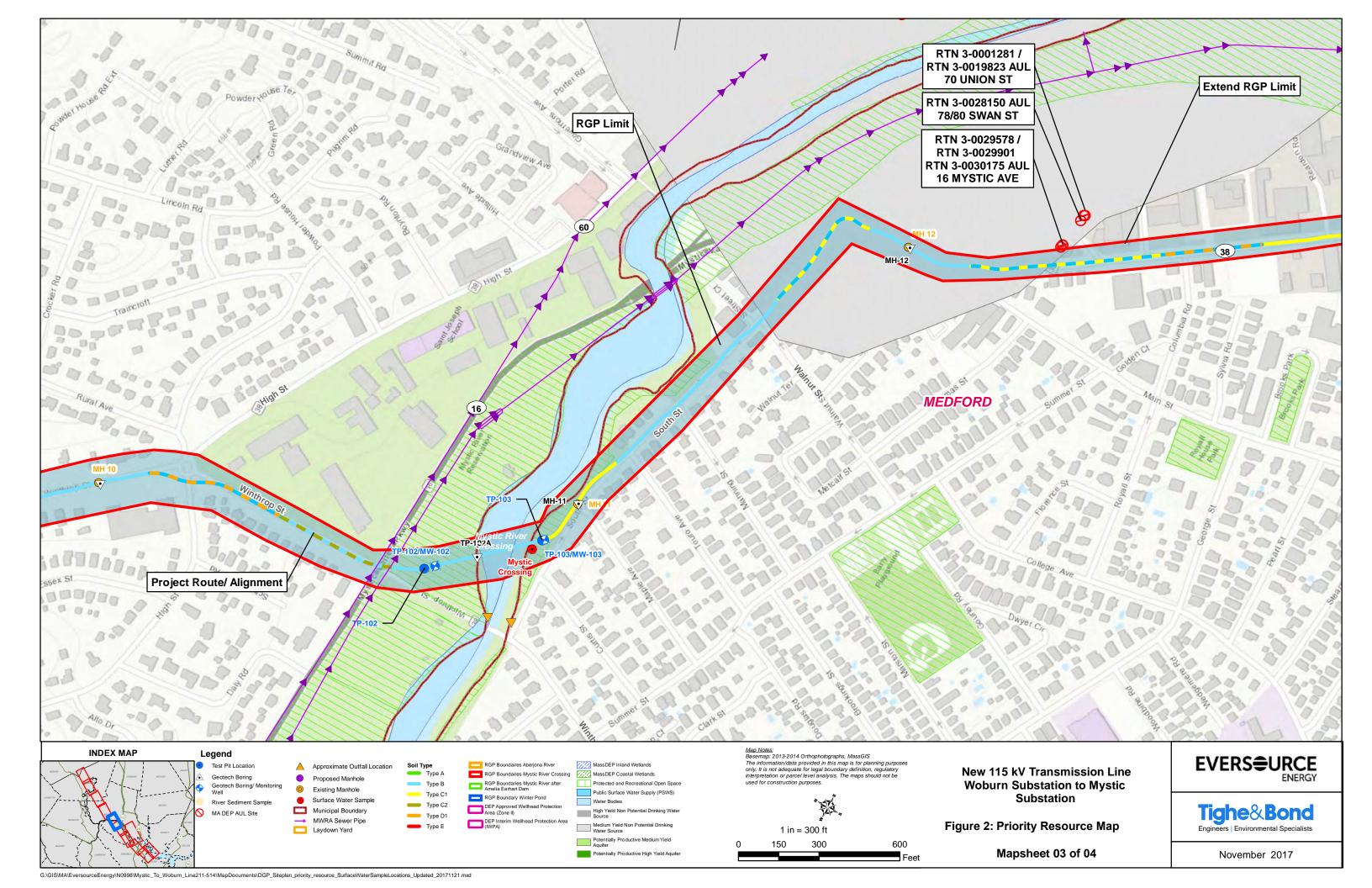


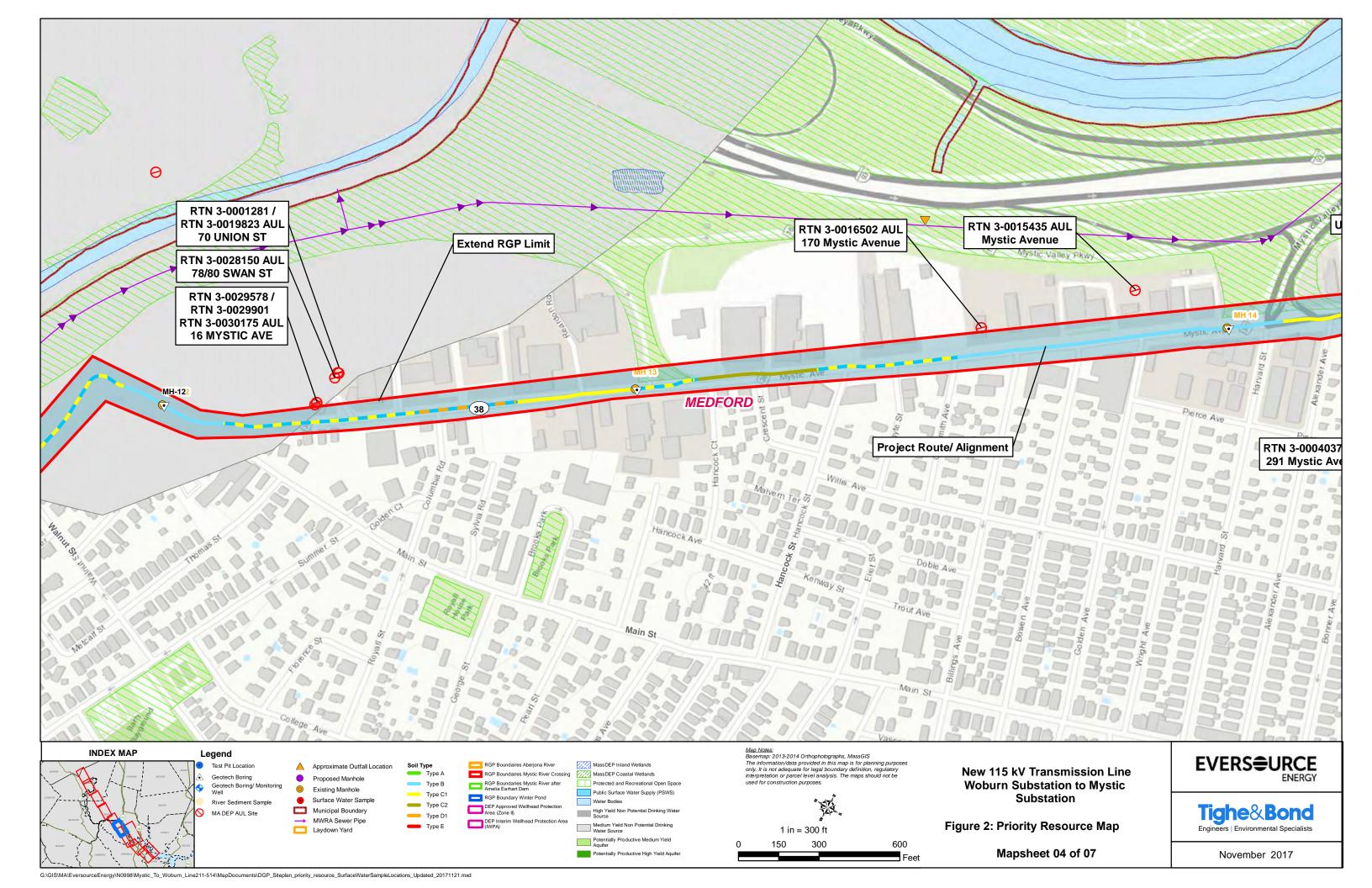


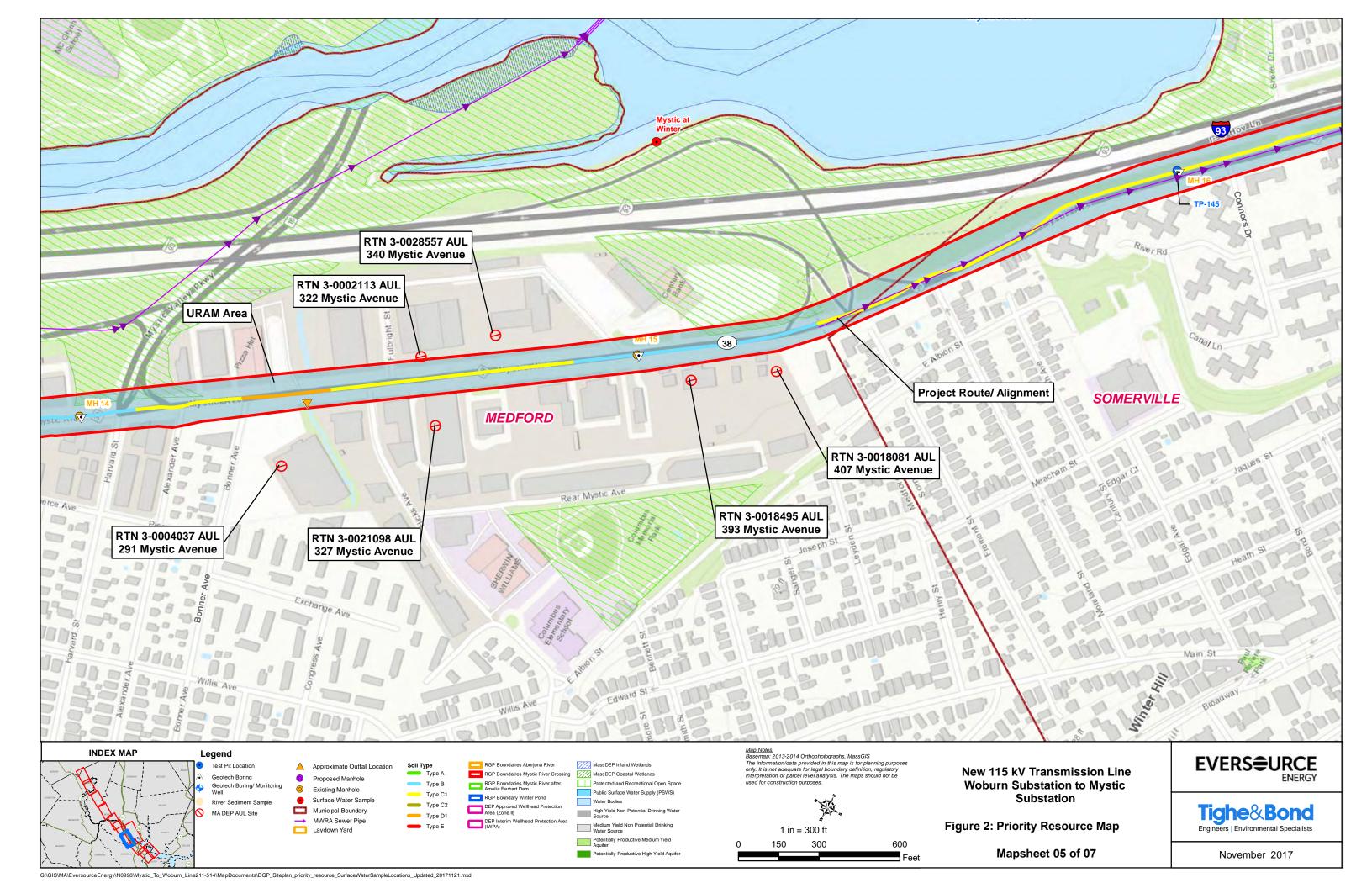


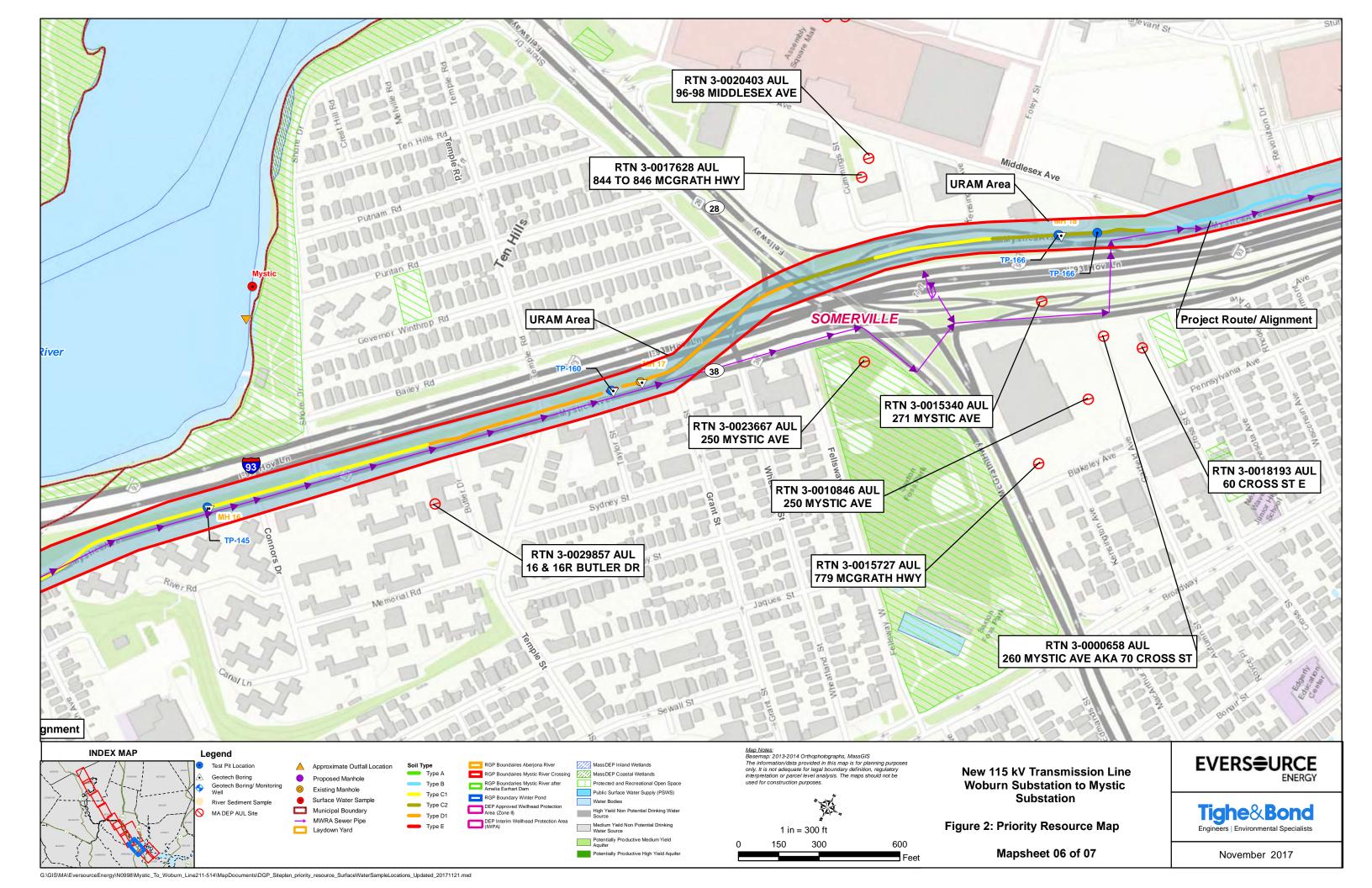


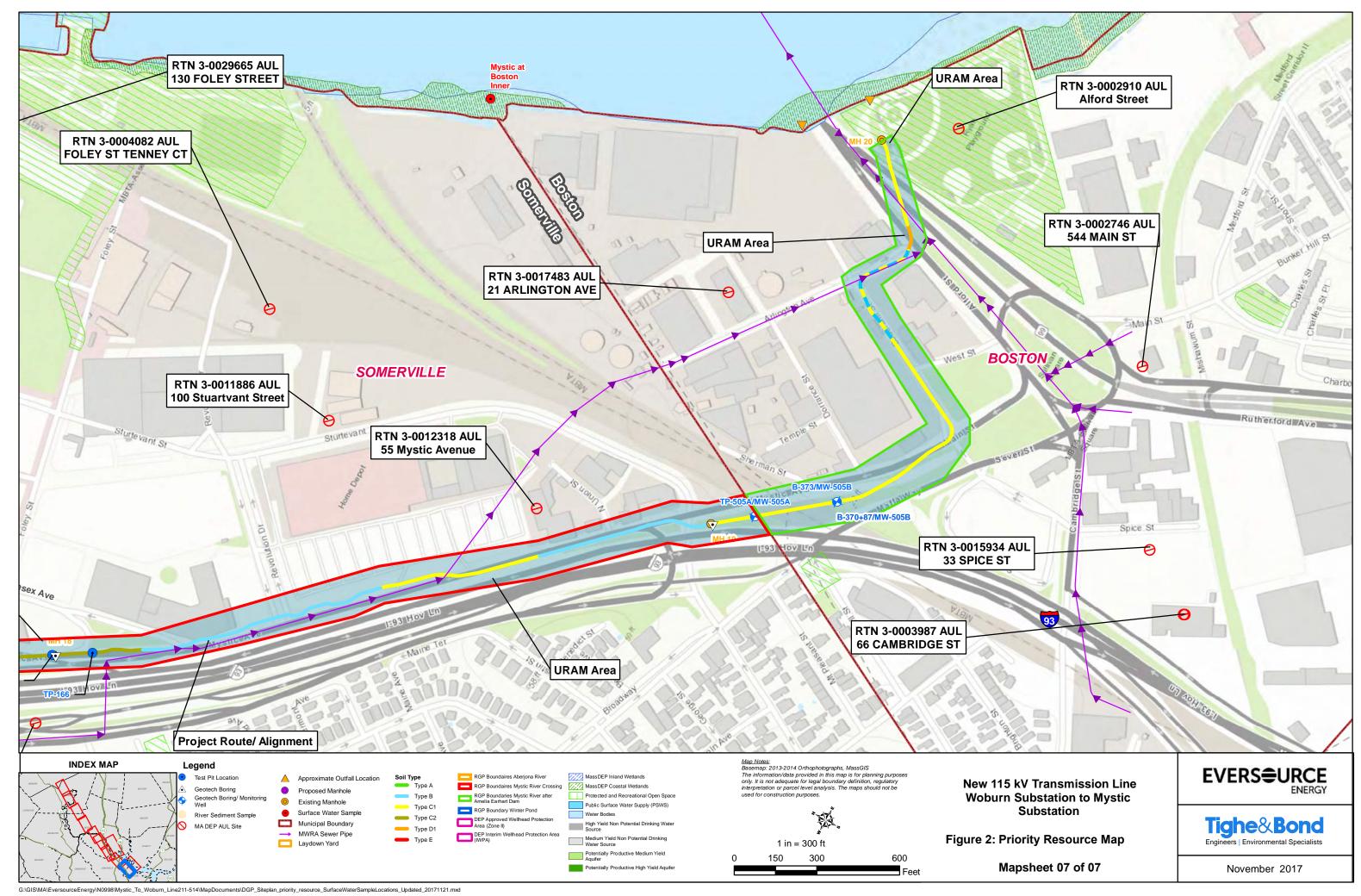


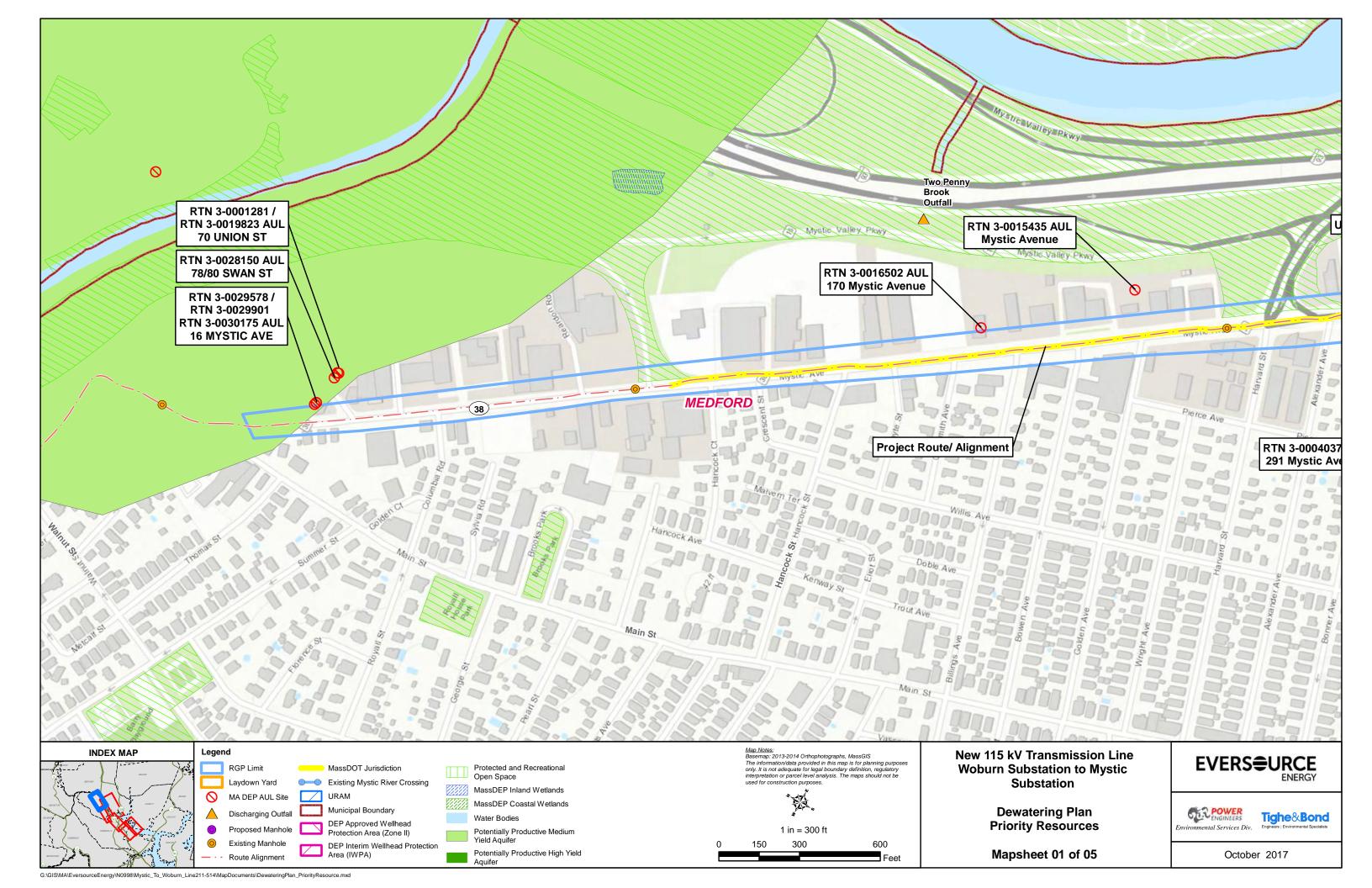


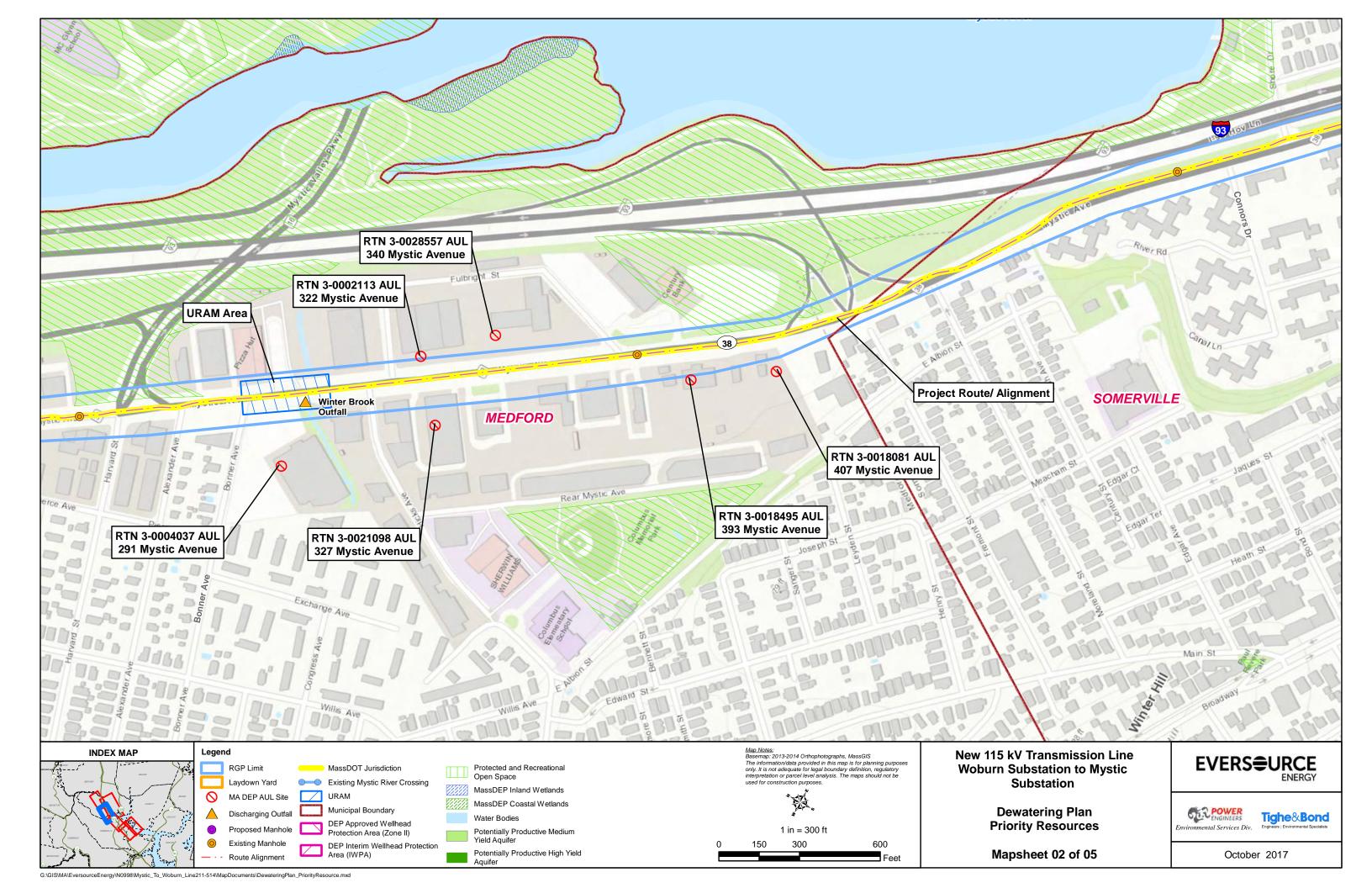


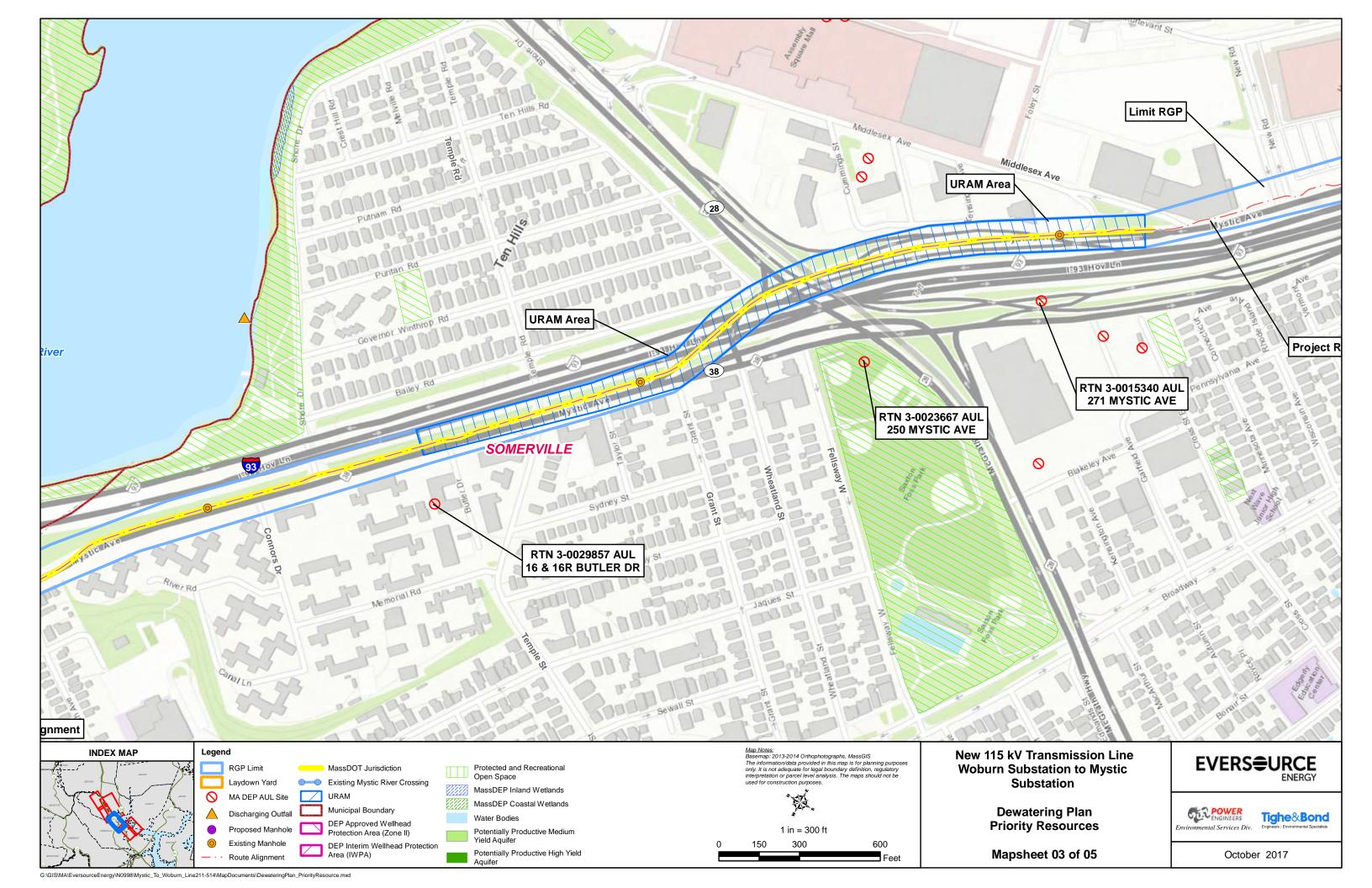


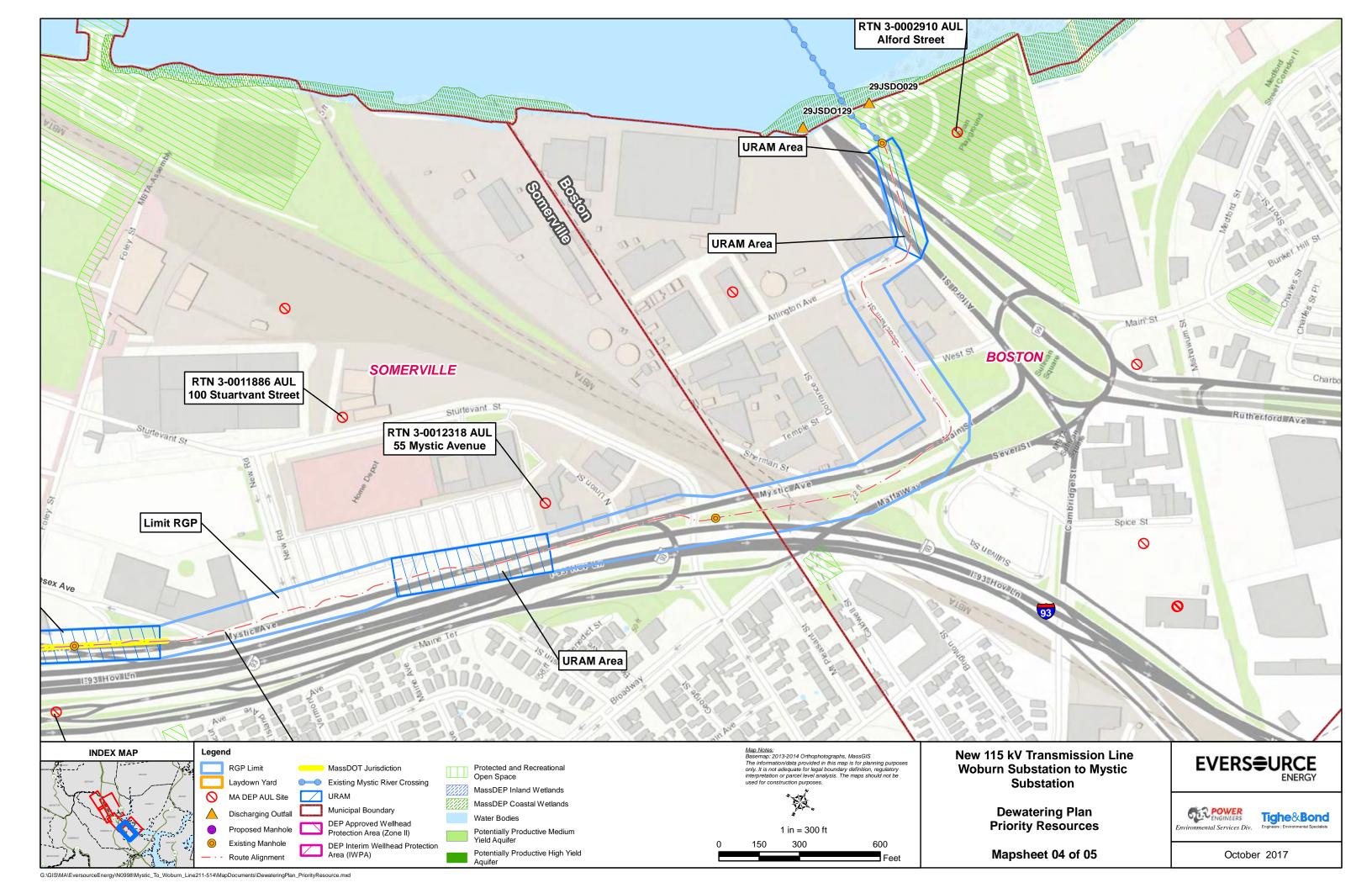


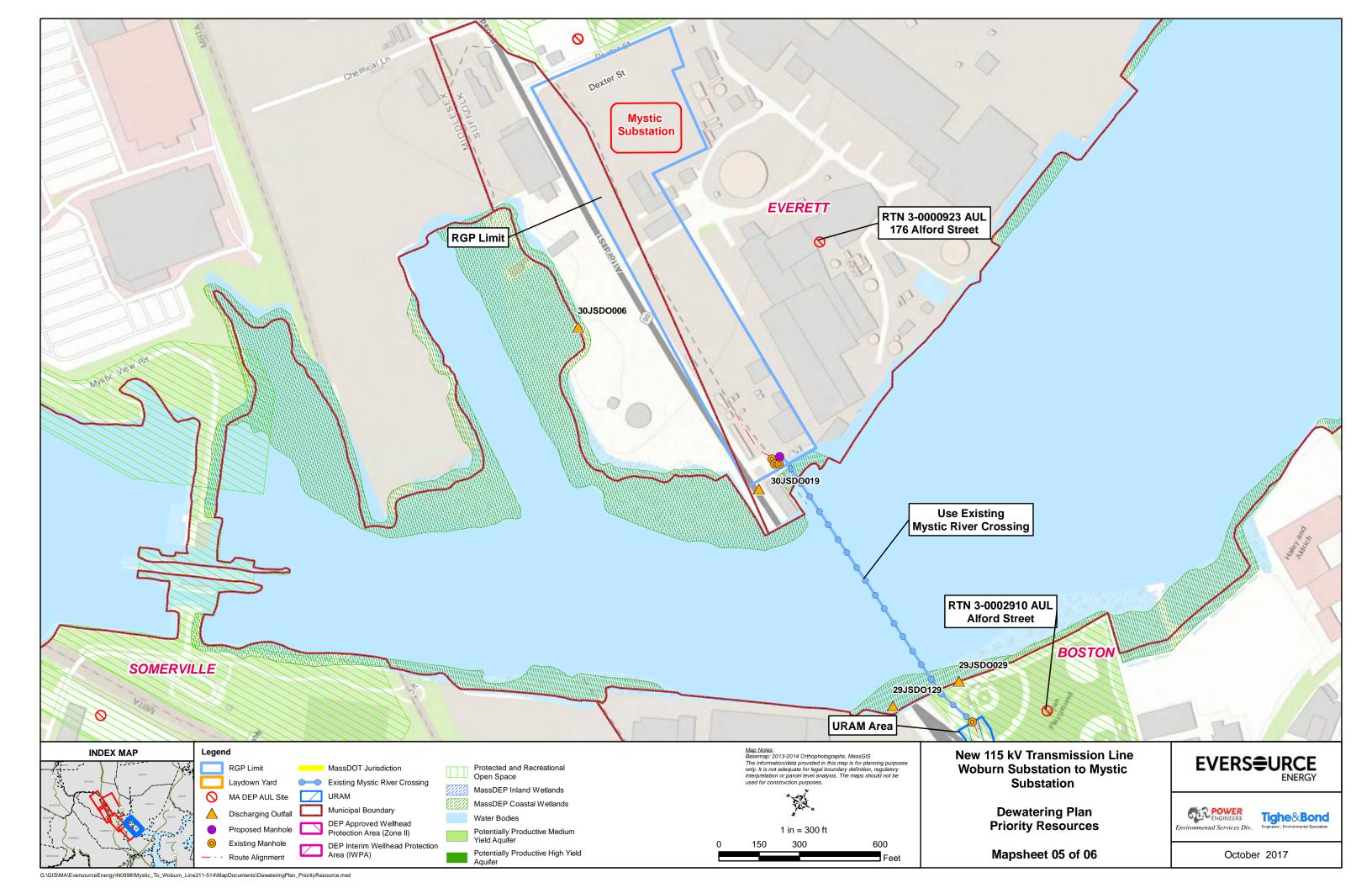


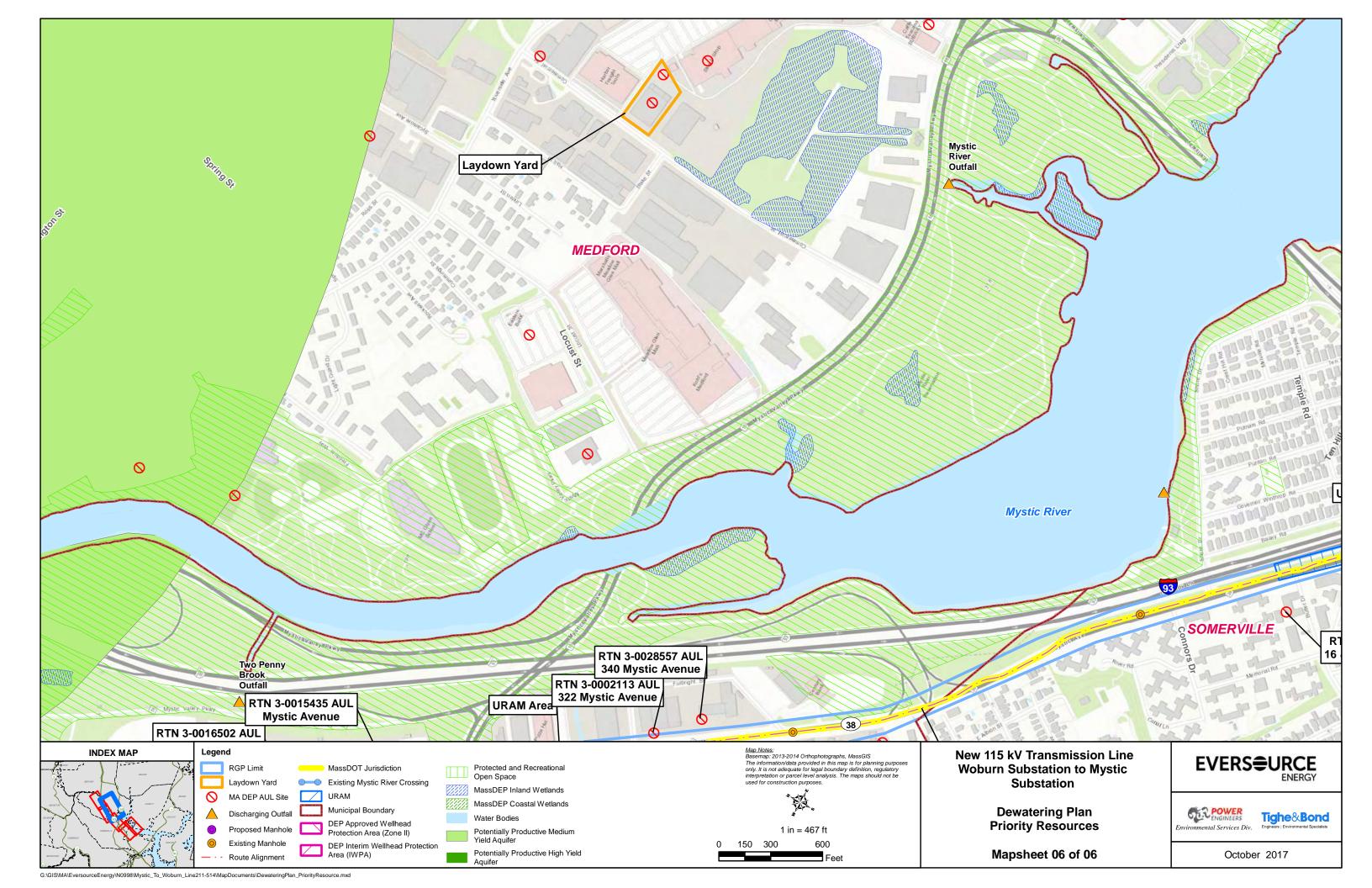


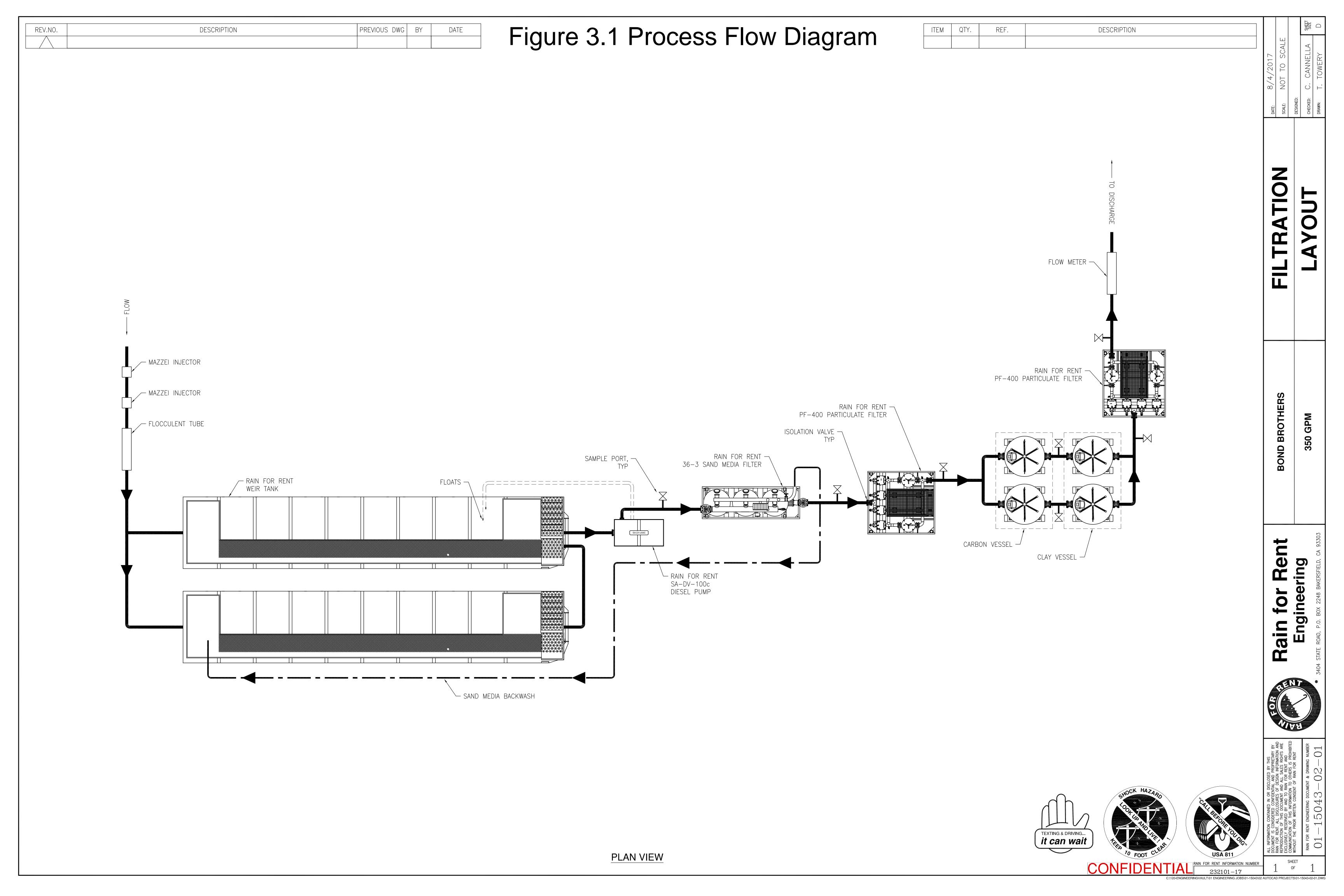


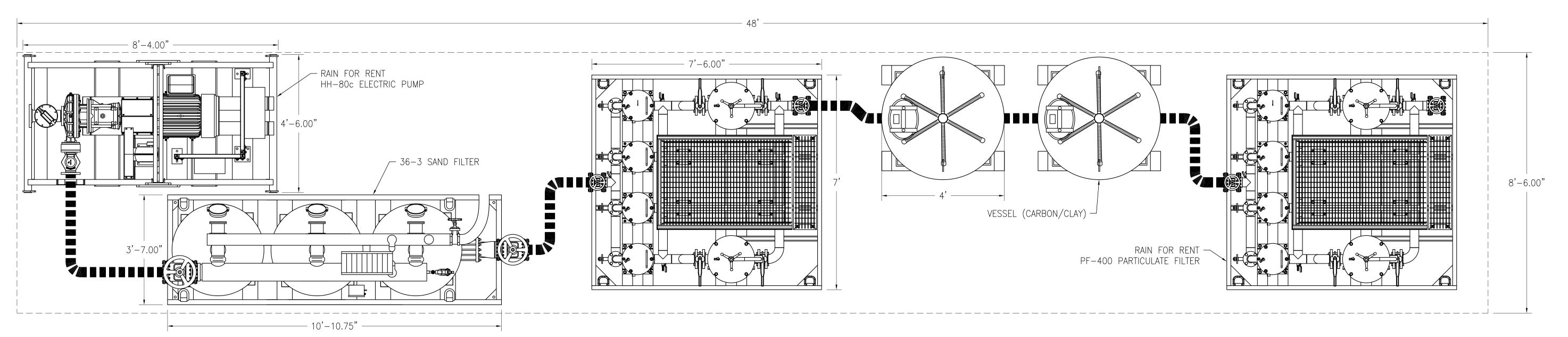












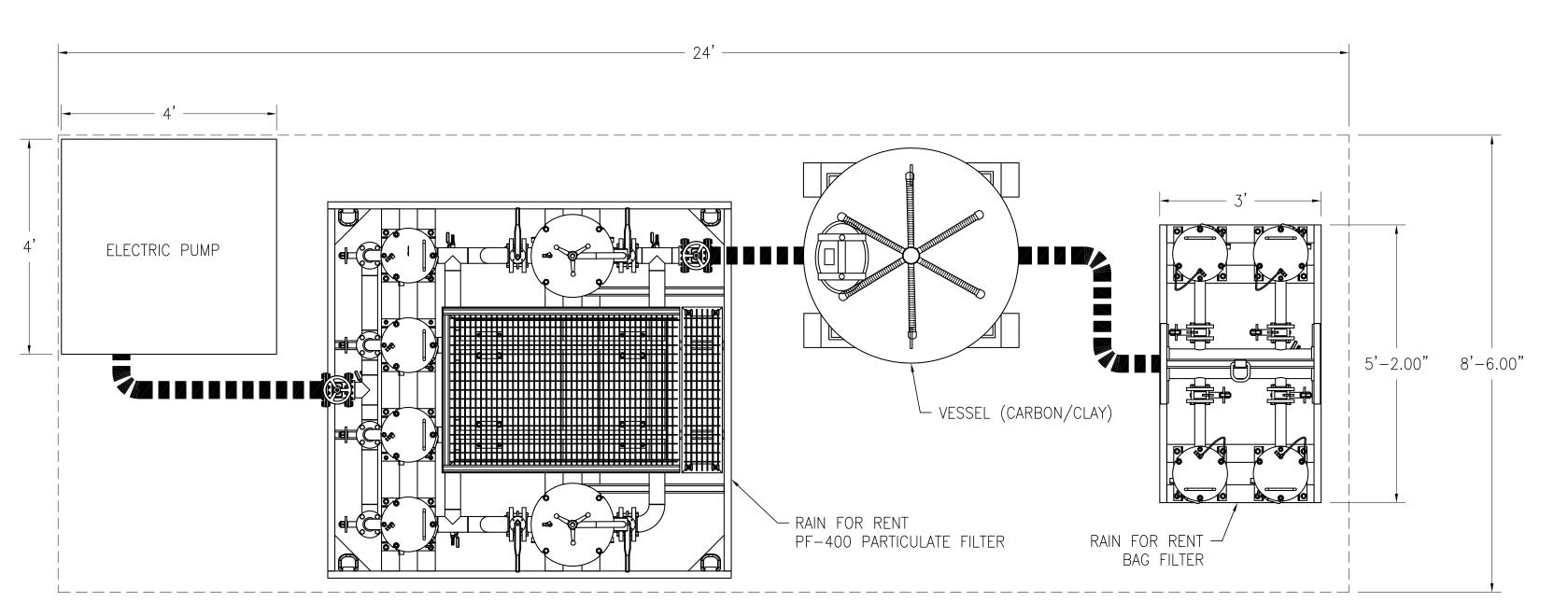

REV.NO. DESCRIPTION PREVIOUS DWG BY DATE

Figure 3.2 Process Flow Diagram

ITEM	QTY.	REF.	DESCRIPTION



48ft TRAILER CONCEPT

24ft TRAILER CONCEPT

ALL INFORMATION CONTAINED DOCUMENT IS CONSIDERED RAIN FOR RENT. ALL DISCLE REPRODUCTION OF THIS DO EXCLUSIVELY RESERVED BY COMMUNICATION OF THIS IN WITHOUT THE PRIOR WRITTERAIN FOR RENT ENGINEER

SCA CHI

CONCEPT

ND BROTHERS

Rain for Rent Engineering

APPENDIX C

FEDERALLY LISTED ENDANGERED AND THREATENED SPECIES IN MASSACHUSETTS

COUNTY	SPECIES	FEDERAL STATUS	GENERAL LOCATION/HABITAT	TOWNS
	Small whorled Pogonia	Threatened	Forests with somewhat poorly drained soils and/or a seasonally high water table	Gloucester, Essex and Manchester
Essex	Piping Plover	Threatened	Coastal Beaches	Gloucester, Essex, Ipswich, Rowley, Revere, Newbury, Newburyport and Salisbury
	Red Knot ¹	Threatened	Coastal Beaches and Rocky Shores, sand and mud flats	Coastal Towns
	Northern Long- eared Bat	Threatened Final 4(d) Rule	Winter- mines and caves, Summer – wide variety of forested habitats	Statewide
	Northeastern bulrush	Endangered	Wetlands	Montague, Warwick
Franklin	Dwarf wedgemussel	Endangered	Mill River	Whately
	Northern Long- eared Bat	Threatened Final 4(d) Rule	Winter- mines and caves, Summer – wide variety of forested habitats	Statewide
	Small whorled Pogonia	Threatened	Forests with somewhat poorly drained soils and/or a seasonally high water table	Hadley
	Puritan tiger beetle	Threatened	Sandy beaches along the Connecticut River	Northampton and Hadley
Hampshire	Dwarf wedgemussel	Endangered	Rivers and Streams.	Hatfield, Amherst and Northampton
	Northern Long- eared Bat	Threatened Final 4(d) Rule	Winter- mines and caves, Summer – wide variety of forested habitats	Statewide
	Small whorled Pogonia	Threatened	Forests with somewhat poorly drained soils and/or a seasonally high water table	Southwick
Hampden	Northern Long- eared Bat	Threatened Final 4(d) Rule	Winter- mines and caves, Summer – wide variety of forested habitats	Statewide
2611	Small whorled Pogonia	Threatened	Forests with somewhat poorly drained soils and/or a seasonally high water table	Groton
Middlesex	Northern Long- eared Bat	Threatened Final 4(d) Rule	Winter- mines and caves, Summer – wide variety of forested habitats	Statewide
	Piping Plover	Threatened	Coastal Beaches	Nantucket
	Roseate Tern	Endangered	Coastal beaches and the Atlantic Ocean	Nantucket
Nantucket	American burying beetle	Endangered	Upland grassy meadows	Nantucket
	Red Knot ¹	Threatened	Coastal Beaches and Rocky Shores, sand and mud flats	Coastal Towns
	Northern Long- eared Bat	Threatened Final 4(d) Rule	Winter- mines and caves, Summer – wide variety of forested habitats	Statewide

United States Department of the Interior

FISH AND WILDLIFE SERVICE

New England Ecological Services Field Office 70 Commercial Street, Suite 300 Concord, NH 03301-5094 Phone: (603) 223-2541 Fax: (603) 223-0104

http://www.fws.gov/newengland

October 17, 2017

In Reply Refer To:

Consultation Code: 05E1NE00-2018-SLI-0163

Event Code: 05E1NE00-2018-E-00412

Project Name: Mystic to Woburn - 115 kV UG Transmission Line

Subject: List of threatened and endangered species that may occur in your proposed project

location, and/or may be affected by your proposed project

To Whom It May Concern:

The enclosed species list identifies threatened, endangered, proposed and candidate species, as well as proposed and final designated critical habitat, that may occur within the boundary of your proposed project and/or may be affected by your proposed project. The species list fulfills the requirements of the U.S. Fish and Wildlife Service (Service) under section 7(c) of the Endangered Species Act (Act) of 1973, as amended (16 U.S.C. 1531 et seq.).

New information based on updated surveys, changes in the abundance and distribution of species, changed habitat conditions, or other factors could change this list. Please feel free to contact us if you need more current information or assistance regarding the potential impacts to federally proposed, listed, and candidate species and federally designated and proposed critical habitat. Please note that under 50 CFR 402.12(e) of the regulations implementing section 7 of the Act, the accuracy of this species list should be verified after 90 days. This verification can be completed formally or informally as desired. The Service recommends that verification be completed by visiting the ECOS-IPaC website at regular intervals during project planning and implementation for updates to species lists and information. An updated list may be requested through the ECOS-IPaC system by completing the same process used to receive the enclosed list.

The purpose of the Act is to provide a means whereby threatened and endangered species and the ecosystems upon which they depend may be conserved. Under sections 7(a)(1) and 7(a)(2) of the Act and its implementing regulations (50 CFR 402 et seq.), Federal agencies are required to utilize their authorities to carry out programs for the conservation of threatened and endangered species and to determine whether projects may affect threatened and endangered species and/or designated critical habitat.

A Biological Assessment is required for construction projects (or other undertakings having similar physical impacts) that are major Federal actions significantly affecting the quality of the

human environment as defined in the National Environmental Policy Act (42 U.S.C. 4332(2) (c)). For projects other than major construction activities, the Service suggests that a biological evaluation similar to a Biological Assessment be prepared to determine whether the project may affect listed or proposed species and/or designated or proposed critical habitat. Recommended contents of a Biological Assessment are described at 50 CFR 402.12.

If a Federal agency determines, based on the Biological Assessment or biological evaluation, that listed species and/or designated critical habitat may be affected by the proposed project, the agency is required to consult with the Service pursuant to 50 CFR 402. In addition, the Service recommends that candidate species, proposed species and proposed critical habitat be addressed within the consultation. More information on the regulations and procedures for section 7 consultation, including the role of permit or license applicants, can be found in the "Endangered Species Consultation Handbook" at:

http://www.fws.gov/endangered/esa-library/pdf/TOC-GLOS.PDF

Please be aware that bald and golden eagles are protected under the Bald and Golden Eagle Protection Act (16 U.S.C. 668 et seq.), and projects affecting these species may require development of an eagle conservation plan

(http://www.fws.gov/windenergy/eagle_guidance.html). Additionally, wind energy projects should follow the wind energy guidelines (http://www.fws.gov/windenergy/) for minimizing impacts to migratory birds and bats.

Guidance for minimizing impacts to migratory birds for projects including communications towers (e.g., cellular, digital television, radio, and emergency broadcast) can be found at: http://www.fws.gov/migratorybirds/CurrentBirdIssues/Hazards/towers/towers.htm; http://www.towerkill.com; and

http://www.fws.gov/migratorybirds/CurrentBirdIssues/Hazards/towers/comtow.html.

We appreciate your concern for threatened and endangered species. The Service encourages Federal agencies to include conservation of threatened and endangered species into their project planning to further the purposes of the Act. Please include the Consultation Tracking Number in the header of this letter with any request for consultation or correspondence about your project that you submit to our office.

Attachment(s):

Official Species List

Official Species List

This list is provided pursuant to Section 7 of the Endangered Species Act, and fulfills the requirement for Federal agencies to "request of the Secretary of the Interior information whether any species which is listed or proposed to be listed may be present in the area of a proposed action".

This species list is provided by:

New England Ecological Services Field Office 70 Commercial Street, Suite 300 Concord, NH 03301-5094 (603) 223-2541

Project Summary

Consultation Code: 05E1NE00-2018-SLI-0163

Event Code: 05E1NE00-2018-E-00412

Project Name: Mystic to Woburn - 115 kV UG Transmission Line

Project Type: ** OTHER **

Project Description: This project includes the management of excavation groundwater during

the installation of approximately 4.23 miles of a new underground 115 kV

electrical transmission line and manholes.

Project Location:

Approximate location of the project can be viewed in Google Maps: https://www.google.com/maps/place/42.43961099802177N71.13352130056799W

Counties: Middlesex, MA

Endangered Species Act Species

There is a total of 1 threatened, endangered, or candidate species on this species list. Species on this list should be considered in an effects analysis for your project and could include species that exist in another geographic area. For example, certain fish may appear on the species list because a project could affect downstream species. See the "Critical habitats" section below for those critical habitats that lie wholly or partially within your project area under this office's jurisdiction. Please contact the designated FWS office if you have questions.

Mammals

NAME STATUS

Northern Long-eared Bat *Myotis septentrionalis*No critical habitat has been designated for this species.

Threatened

Species profile: https://ecos.fws.gov/ecp/species/9045

Critical habitats

There are no critical habitats within your project area under this office's jurisdiction.

APPENDIX D

Massachusetts Cultural Resource Information System MACRIS

MACRIS Search Results

Search Criteria: Town(s): Medford, Somerville; Street Name: Mystic Ave; Resource Type(s): Area, Building, Burial Ground, Object, Structure;

Inv. No.	Property Name	Street	Town	Year
MDF.571		29 Mystic Ave	Medford	c 1965
MDF.34	Hall, Benjamin House	41 Mystic Ave	Medford	1752
MDF.578		45 Mystic Ave	Medford	c 1900
MDF.584		67 Mystic Ave	Medford	c 1958
MDF.585		71 Mystic Ave	Medford	c 1900
MDF.587		73 Mystic Ave	Medford	c 1945
MDF.588		81 Mystic Ave	Medford	c 1945
MDF.590		93 Mystic Ave	Medford	c 1955
MDF.591		101 Mystic Ave	Medford	c 1953
SMV.943	Foss Park	Fellsway West	Somerville	
SMV.1336		Mystic Ave	Somerville	c 1960
SMV.754	Williams Table and Lumber Company	356 Mystic Ave	Somerville	c 1888
SMV.1288		500 Mystic Ave	Somerville	c 2000
SMV.1289		500 Mystic Ave	Somerville	c 1999
SMV.1290		500 Mystic Ave	Somerville	c 1960
SMV.1291		500 Mystic Ave	Somerville	c 1900
SMV.1287		708 Mystic Ave	Somerville	c 1991
SMV.1286		712 Mystic Ave	Somerville	c 1900

Thursday, September 21, 2017 Page 1 of 1

20 Black Brook Road Aquinnah, MA 02535

Tribal Historic Preservation Office Wampanoag Tribe of Gay Head (Aquinnah)

Office (508)645-9265 Fax (508)645-3790

April 5, 2017

Daniel P. Rukakoski 53 South Hampton Road Westfield, MA, 01085-5308 DPRukakoski@tighebond.com

Re: Mystic-Woburn Transmission Line ProjectN-099811-04(5200)

Dear Daniel P. Rukakoski,

The Wampanoag Tribe of Gay Head (Aquinnah) (WTGHA) Tribal Historic Preservation Office (THPO) has received notification of your project form dated. Once reviewed we will notify you of further action which may include any of the following;

- No further comments on the project
- An initial site visit will be scheduled
- Monitoring will be required at a rate of \$55.00 per hour in addition to mileage at the current federal rate paid by the proponent (Third party consultants must provide proponent billing information)
- Any archeological surveying may be monitored and requires two weeks advance notice of said survey.

Should you have any questions or concerns please feel free to contact me at bettina@wampanoagtribe.net
The THPO department would like to thank you for adhering to the Section 106 regulations of the National Historic Preservation Act.

In the spirit of Preservation,

Bettina M. Washington

Bettina M. Washington Tribal Historic Preservation Officer

The COMMONWEALTH OF MASSACHUSETTS BOARD OF UNDERWATER ARCHAEOLOGICAL RESOURCES

EXECUTIVE OFFICE OF ENERGY AND ENVIRONMENTAL AFFAIRS 251 Causeway Street, Suite 800, Boston, MA 02114-2136

Tel. (617) 626-1141 Fax (617) 626-1240 Web Site: www.mass.gov/eea/agencies/czm/buar/

March 29, 2017

Mr. Daniel P. Rukakoski Tighe & Bond, Inc. 53 Southampton Road Westfield, MA 01085-5308

RE: Mystic-Woburn Transmission Line Project, Bacon Street, Aberjona River, Winchester, MA

Dear Mr.Rukakoski,

The staff of the Massachusetts Board of Underwater Archaeological Resources has reviewed the above referenced project's SHPO/THPO Notification Form and supporting materials submitted by Tighe & Bond, Inc., on behalf of Evesource Energy. We offer the following comments.

The Board has conducted a preliminary review of its files and secondary literature sources to identify known and potential submerged cultural resources in the proposed project area. No record of any underwater archaeological resources was found. The Board notes, however, the area may be generally archaeologically sensitive given its riparian landscape and associated features. topographical setting is strongly associated with the presence of prehistoric archaeological deposits. However, much of the Aberjona River has undergone extensive prior disturbance and land modification activities (dredging, channelization, landscaping, etc.) which have significantly reduced integrity and/or preservation for submerged cultural resources. The Board finds the project unlikely to adversely affect submerged cultural resources.

However, should heretofore-unknown submerged cultural resources be encountered during the course of the project, the Board expects that the project's sponsor will take steps to limit adverse affects and notify the Board and the Massachusetts Historical Commission, as well as other appropriate agencies, immediately in accordance with the Board's Policy Guidance for the Discovery of Unanticipated Archaeological Resources.

The Board appreciates the opportunity to provide these comments as part of the review process. Should you have any questions regarding this letter, please do not hesitate to contact me at the address above, by email at victor.mastone@state.ma.us, or by telephone at (617) 626-1141.

Sincerely,

Victor T. Mastone

the Mil

Director

/vtm

Cc: Brona Simon, MHC

Ramona Peters, MWT (via email attachment)

Bettina Washington, WTGH/A (via email attachment)

APPENDIX E

Sent: Wednesday, November 29, 2017 4:41 PM

To: Michael E. Martin < MEMartin@tigheBond.com>

Cc: Ruan, Xiaodan (DEP) < xiaodan.ruan@state.ma.us>

Subject: RE: Eversource - Mystic to Woburn RGP Dilution Factors

Hi Michael,

The 7Q10s and the dilution factor calculations that you provided are correct. The receiving waters (Mystic and Aberjona rivers) are not Outstanding Resource Waters so you are all set with MassDEP.

Eversource Project Mystic-Woburn Transmission Project US EPA RGP Dilution Factor Calculations

Receiving Water	Effluent Discharge Flow (MGD)	7Q10 Flow (MGD)	Dilution Factor
Mystic River	0.504	2.16	5,29
Aberjona River	0.504	0.968	2.92

$$DF = \frac{QD + QS}{QD}$$

Where:

DF = Dilution Factor

QD = Effluent Discharge Flow Rate (MGD)

QS = 7Q10 Stream Flow Rate (MGD)

MGD = Million Gallons per Day

Please let me know if you have any further questions. Cathy

Cathy Vakalopoulos, Massachusetts Department of Environmental Protection + Winter St., Boston, MA 02:08, 617-348-4026

Enter number values in green boxes below

Enter values in the units specified

2.16 Q_R = Enter upstream flow in MGD
0.504 Q_P = Enter discharge flow in MGD
2.16 Downstream 7Q10

Enter a dilution factor, if other than zero

Enter values in the units specified

426 C_d = Enter influent hardness in mg/L CaCO₃

221 C_s = Enter receiving water hardness in mg/L CaCO₃

Enter receiving water concentrations in the units specified

Enter receiving water concentrations		
\perp	_	
7.46	pH in Standard Units	
17.4	Temperature in °C	
0.45	Ammonia in mg/L	
221	Hardness in mg/L CaCO ₃	
0	Salinity in ppt	
0	Antimony in µg/L	
0	Arsenic in µg/L	
0	Cadmium in µg/L	
0	Chromium III in µg/L	
0	Chromium VI in µg/L	
0	Copper in µg/L	
274	Iron in μg/L	
0	Lead in µg/L	
0	Mercury in µg/L	
0	Nickel in μg/L	
0	Selenium in µg/L	
0	Silver in µg/L	
11.1	Zinc in µg/L	

Enter influent concentrations in the units specified

\downarrow	Ī
0	TRC in µg/L
9.09	Ammonia in mg/L
0	Antimony in µg/L
0	Arsenic in μg/L
0.26	Cadmium in µg/L
14	Chromium III in µg/L
0	Chromium VI in µg/L
41.9	Copper in µg/L
32000	Iron in µg/L
73.7	Lead in µg/L
0	Mercury in µg/L
16.3	Nickel in μg/L
0	Selenium in μg/L
0	Silver in µg/L
77.5	Zinc in µg/L
0	Cyanide in µg/L
0	Phenol in µg/L
0	Carbon Tetrachloride in µg/L
0	Tetrachloroethylene in µg/L
8.62	Total Phthalates in µg/L
8.12	Diethylhexylphthalate in µg/L
0.07	Benzo(a)anthracene in µg/L
0.08	Benzo(a)pyrene in µg/L
0.12	Benzo(b)fluoranthene in µg/L
0	Benzo(k)fluoranthene in µg/L
0.08	Chrysene in µg/L
0	Dibenzo(a,h)anthracene in µg/L
0.08	Indeno(1,2,3-cd)pyrene in µg/L
29.2	Methyl-tert butyl ether inµg/L

Notes:

Freshwater: Q_R equal to the 7Q10; enter alternate Q_R if approved by the State; enter 0 if no dilution factor approved Saltwater (estuarine and marine): enter Q_R if approved by the State; enter 0 if no entry Discharge flow is equal to the design flow or 1 MGD, whichever is less Only if approved by State as the entry for Q_R ; leave 0 if no entry

Saltwater (estuarine and marine): only if approved by the State Leave 0 if no entry

Freshwater only

pH, temperature, and ammonia required for all discharges Hardness required for freshwater $Salimity\ required\ for\ sallwater\ (estuarine\ and\ marine)$ Metals required for all discharges if present and if dilution factor is >1 Enter 0 if non-detect or testing not required

if >1 sample, enter maximum

if $> \! 10$ samples, may enter 95th percentile

Enter 0 if non-detect or testing not required

Dilution Factor 5.3

A. Inorganics	TBEL applies if	bolded	WQBEL applies if bolded		Compliance Level applies if shown	
Ammonia	D	Л			арриез и зножи	
	Report	mg/L				
Chloride	Report	μg/L		_		_
Total Residual Chlorine	0.2	mg/L	47	μg/L	50	μg/L
Total Suspended Solids	30	mg/L				
Antimony	206	μg/L	2743	μg/L		
Arsenic	104	$\mu g/L$	43	$\mu g/L$		
Cadmium	10.2	$\mu g/L$	2.7482	$\mu g/L$		
Chromium III	323	$\mu g/L$	958.5	$\mu g/L$		
Chromium VI	323	μg/L	49.0	$\mu g/L$		
Copper	242	μg/L	108.1	μg/L		
Iron	5000	μg/L	3111	μg/L		
Lead	160	μg/L	60.04	μg/L		
Mercury	0.739	μg/L	3.88	μg/L		
Nickel	1450	μg/L	598.7	μg/L μg/L		
Selenium			21.4			
Silver	235.8	μg/L		μg/L		
	35.1	μg/L	120.2	μg/L		
Zinc	420	μg/L	1329.7	μg/L		
Cyanide	178	mg/L	22.3	$\mu g/L$		μg/L
B. Non-Halogenated VOCs	100	ша/Т				
Total BTEX Benzene	100 5.0	μg/L μg/L				
1,4 Dioxane	200	μg/L μg/L				
Acetone	7970	μg/L				
Phenol	1,080	μg/L	1286	$\mu g/L$		
C. Halogenated VOCs						
Carbon Tetrachloride	4.4	μg/L	6.9	μg/L		
1,2 Dichlorobenzene 1,3 Dichlorobenzene	600 320	μg/L μg/L				
1,4 Dichlorobenzene	5.0	μg/L μg/L				
Total dichlorobenzene		μg/L				
1,1 Dichloroethane	70	μg/L				
1,2 Dichloroethane	5.0	$\mu g/L$				
1,1 Dichloroethylene	3.2	μg/L				
Ethylene Dibromide	0.05	μg/L				
Methylene Chloride 1,1,1 Trichloroethane	4.6 200	μg/L μg/L				
1,1,2 Trichloroethane	5.0	μg/L μg/L				
Trichloroethylene	5.0	μg/L				
Tetrachloroethylene	5.0	μg/L	14.1	$\mu g/L$		
cis-1,2 Dichloroethylene	70	μg/L				
Vinyl Chloride	2.0	μg/L				
D. Non-Halogenated SVOCs Total Phthalates	190	па/І		ца/Т		
Diethylhexyl phthalate	101	μg/L μg/L	9.4	μg/L μg/L		
Total Group I Polycyclic	101	F5/2	<i>,</i>	F6/2		
Aromatic Hydrocarbons	1.0	$\mu g/L$				
Benzo(a)anthracene	1.0	μg/L	0.0163	μg/L	0.1	μg/L
Benzo(a)pyrene	1.0	μg/L	0.0163	μg/L	0.1	μg/L
Benzo(b)fluoranthene Benzo(k)fluoranthene	1.0 1.0	μg/L	0.0163 0.0163	μg/L	0.1	μg/L μg/L
Chrysene	1.0	μg/L μg/L	0.0163 0.0163	μg/L μg/L	0.1	μg/L μg/L
Dibenzo(a,h)anthracene	1.0	μg/L	0.0163	μg/L		μg/L
Indeno(1,2,3-cd)pyrene	1.0	μg/L	0.0163	μg/L	0.1	μg/L
Total Group II Polycyclic						
Aromatic Hydrocarbons	100	μg/L				
Naphthalene	20	μg/L				
E. Halogenated SVOCs Total Polychlorinated Biphenyls	0.000064	μg/L			0.5	μg/L
Pentachlorophenol	1.0	μg/L μg/L			0.0	r5/L
F. Fuels Parameters						
Total Petroleum Hydrocarbons	5.0	mg/L				
Ethanol	Report	mg/L		_		
Methyl-tert-Butyl Ether	70	μg/L	86	μg/L		
tert-Butyl Alcohol tert-Amyl Methyl Ether	120 90	μg/L μg/L				
con rungi wieniyi Eulei	20	μg/L	-			

TABLE 1 Groundwater Results - Lower Mystic Dam to Amelia Earhart Dam

Groundwater Results - Lower Mystic Da Eversource: Woburn - Mystic	ım to Amelia Earhart Dam	Mystic River Crossing						
Analytical Test	Sample Identification Sample Date	Effluent Limitation	Average Concentration	MW-102A 1/10/2017	MW-102A FF 1/10/2017	MW-103 1/10/2017	MW-103 FF 1/10/2017	
TPH - mg/L	TPH	5	ND (5)	ND (5)	ND (5)	1/10/2017 ND (5)	ND (5)	
Total PAHs Group I - ug/L	Benzo(a)Anthracene Benzo(a)Pyrene	0.0163/0.1 ⁽¹⁾ 0.0163/0.1 ⁽¹⁾	0.05 0.05	ND (0.05) ND (0.05)	ND (0.05) ND (0.05)	0.04 0.03	ND (0.05) ND (0.05)	
	Benzo(b)Fluoranthene	0.0163/0.1(1)	0.06	ND (0.05)	ND (0.05)	0.05	ND (0.05)	
	Benzo(k)Fluoranthene	1.0/0.1(1)	ND (0.05)	ND (0.05)	ND (0.05)	ND (0.05)	ND (0.05)	
	Chrysene Dibenzo(a,h)Anthracene	0.0163/0.1 ⁽¹⁾ 1.0/0.1 ⁽¹⁾	0.05 ND (0.05)	ND (0.05) ND (0.05)	ND (0.05) ND (0.05)	0.04 ND (0.05)	ND (0.05) ND (0.05)	
	Indeno(1,2,3-cd)Pyrene	0.0163/0.1(1)	0.05	ND (0.05)	ND (0.05)	0.03	ND (0.05)	
	Total PAHs Group I	1.0	0.12	ND	ND	0.19	ND	
Total PAHs Group II - ug/L	Acenaphthene	NE	0.20	ND (0.19)	ND (0.19)	ND (0.19)	ND (0.19)	
	Acenaphthylene Anthracene	NE NE	ND (0.19) ND (0.19)	ND (0.19) ND (0.19)	ND (0.19) ND (0.19)	ND (0.19) ND (0.19)	ND (0.19) ND (0.19)	
	Benzo(ghi)Perylene	NE NE	0.17	ND (0.19)	ND (0.19)	0.03	ND (0.19)	
	Fluoranthene	NE NE	0.17	ND (0.19)	ND (0.19)	0.06	ND (0.19)	
	Fluorene Naphthalene	NE 20	ND (0.19) ND (0.19)	ND (0.19) ND (0.19)	ND (0.19) ND (0.19)	ND (0.19) ND (0.19)	ND (0.19) ND (0.19)	
	Phenanthrene	NE	ND (0.19)	ND (0.19)	ND (0.19)	0.04	ND (0.19)	
	Pyrene Total PAHs Group II	NE 100	ND (0.19) 0.195	ND (0.19) ND	ND (0.19) ND	0.06 0.19	ND (0.19) ND	
Phthalates - ug/L	Butylbenzylphthalate	NE	1.4	0.67	0.31	0.30	0.52	
Prittidiates - ug/L	Bis (2-Ethylhexyl) Phthalate	101	4.1	5.67	8.12	3.49	6.24	
	Diethylphthalate	NE NE	1.4	0.27	0.19	0.19	0.82	
	Di-n-butylphthalate Di-n-octylphthalate	NE NE	2.1 2.1	ND (2.34) 0.3	ND (2.34) ND (2.34)	ND (2.34) ND (2.34)	0.45 ND (2.34)	
	Total Phthalates	190	4.6	6.91	8.62	3.98	8.03	
SVOCs - ug/L	Pentachlorophenol	1.0	ND (0.84)	ND (0.84)	ND (0.84)	ND (0.84)	ND (0.84)	
	All Other SVOCs	NE	ND (c/s)	< c/s	< c/s	< c/s	< c/s	
Metals- ug/L	Antimony	206	ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)	
	Arsenic Barium	104 NE	11.725 77.85	20.6 126	17.9 81.1	22.1 48.8	21.2 55.5	
	Beryllium	NE	0.98	1.8	1.0	0.5	0.6	
	Cadmium Chromium	10.2 323	0.14 6.05	0.07 13.9	ND (0.2) 5.2	0.05 5.3	0.06 5.7	
	Chromium III	323	10.5	14.0	ND (10)	ND (10)	ND (10)	
	Lead	60.04 0.739	14.95	15.5	2.8	9.7 ND (0.20)	8.9 ND (0.30)	
	Mercury Nickel	1,450	ND (0.20) 6.01	ND (0.20) 16.3	ND (0.20) 5.3	ND (0.20) 4.7	ND (0.20) 5.8	
	Selenium	235.8	ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)	
	Silver Thallium	35.1 NE	ND (0.10) ND (1.2)	ND (0.10) ND (1.2)	ND (0.1) ND (1.2)	ND (0.1) ND (1.2)	ND (0.1) ND (1.2)	
	Vanadium	NE 120	12.5	23.6	9.4	7.8	9.1	
	Zinc Iron	420 3,111	38.1 13,289	56.9 21,300	25.3 12,300	36.7 5,460	33.6 6,630	
	Copper	242	14.5	41.9	10	12.7	18.2	
Ethanol - ug/L	Ethanol	Report	ND (10)	ND (10)	ND (10)	ND (10)	ND (10)	
1,2-Dibromothane - ug/L	1,2-Dibromothane (EDB)	0.05	ND (0.015)	ND (0.015)	ND (0.015)	ND (0.015)	ND (0.015)	
1,4-Dioxane - ug/L	1,4-Dioxane	200	0.323	ND (500)	ND (500)	ND (500)	ND (500)	
PCB - ug/L	Aroclor-1016	NE	ND (0.09)	ND (0.09)	ND (0.09)	ND (0.09)	ND (0.09)	
r CD - ug/ L	Aroclor-1221	NE	ND (0.09)	ND (0.09)	ND (0.09)	ND (0.09)	ND (0.09)	
	Aroclor-1232 Aroclor-1242	NE NE	ND (0.09) ND (0.09)	ND (0.09) ND (0.09)	ND (0.09) ND (0.09)	ND (0.09) ND (0.09)	ND (0.09) ND (0.09)	
	Aroclor-1248	NE NE	ND (0.09)	ND (0.09)	ND (0.09) ND (0.09)	ND (0.09)	ND (0.09)	
	Aroclor-1254	NE NE	ND (0.09)	ND (0.09)	ND (0.09)	ND (0.09)	ND (0.09)	
	Aroclor-1260 Aroclor-1262	NE NE	ND (0.09) ND (0.09)	ND (0.09) ND (0.09)	ND (0.09) ND (0.09)	ND (0.09) ND (0.09)	ND (0.09) ND (0.09)	
	Aroclor-1268	NE	ND (0.09)	ND (0.09)	ND (0.09)	ND (0.09)	ND (0.09)	
	Total PCBs	0.000064/0.5 ⁽¹⁾	ND	ND	ND	ND	ND	
VOCs - ug/L	tert-Butyl Alcohol (TBA)	120	30 ND (1.0)	ND (25.0)	ND (25.0)	ND (25.0)	ND (25.0)	
	tert-Amyl Methyl Ether (TAME) Napthalene	90 20	ND (1.0) 0.6	ND (1.0) 0.6	ND (1.0) 0.3	ND (1.0) ND (1.0)	ND (1.0) ND (1.0)	
	Carbon Tetrachloride	4.4	ND (1.0)	ND (1.0)	ND (1.0)	ND (1.0)	ND (1.0)	
	1,2 Dichlorobenzene (o-DCB) 1,3 Dichlorobenzene (m-DCB)	600 320	ND (1.0) ND (1.0)	ND (1.0) ND (1.0)	ND (1.0) ND (1.0)	ND (1.0) ND (1.0)	ND (1.0) ND (1.0)	
	1,4 Dicholorbenzene (p-DCB) 1,1 Dichloroethane (DCA)	5.0 70.0	ND (1.0) ND (1.0)	ND (1.0) ND (1.0)	ND (1.0) ND (1.0)	ND (1.0)	ND (1.0) ND (1.0)	
	1,1 Dichloroethane (DCA)	5.0	ND (1.0) ND (1.0)	ND (1.0) ND (1.0)	ND (1.0) ND (1.0)	ND (1.0) ND (1.0)	ND (1.0) ND (1.0)	
		3.2	ND (1.0)	ND (1.0)	ND (1.0)	ND (1.0)	ND (1.0)	
	1,1 Dichloroethene (DCE)				ND (1.0)	ND (1.0)	ND (1.0)	
	1,1 Dichloroethene (DCE) sec-Butylbenzene tert-Butyl Ethyl Ether (TBEE)	NE NE	ND (1.0) ND (1.0)	ND (1.0) ND (1.0)	ND (1.0)	ND (1.0)	ND (1.0)	
	sec-Butylbenzene tert-Butyl Ethyl Ether (TBEE) cis-1,2 Dichloroethene (DCE)	NE NE 70	ND (1.0) ND (1.0)	ND (1.0) ND (1.0)	ND (1.0)	ND (1.0)	ND (1.0)	
	sec-Butylbenzene tert-Butyl Ethyl Ether (TBEE)	NE NE	ND (1.0)	ND (1.0)				
	sec-Butylbenzene tert-Butyl Ethyl Ether (TBEE) cis-1,2 Dichloroethene (DCE) Methylene Chloride Tetrachloroethene (PCE) 1,1,1 Trichloro-ethane (TCA)	NE NE 70 4.6 5.0 200	ND (1.0) ND (1.0) ND (2.0) ND (1.0) ND (1.0)	ND (1.0) ND (1.0) ND (2.0) ND (1.0) ND (1.0)	ND (1.0) ND (2.0) ND (1.0) ND (1.0)	ND (1.0) ND (2.0) ND (1.0) ND (1.0)	ND (1.0) ND (2.0) ND (1.0) ND (1.0)	
	sec-Butylbenzene tert-Butyl Ethyl Ether (TBEE) cis-1,2 Dichloroethene (DCE) Methylene Chloride Tetrachloroethene (PCE)	NE NE 70 4.6 5.0	ND (1.0) ND (1.0) ND (2.0) ND (1.0)	ND (1.0) ND (1.0) ND (2.0) ND (1.0)	ND (1.0) ND (2.0) ND (1.0)	ND (1.0) ND (2.0) ND (1.0)	ND (1.0) ND (2.0) ND (1.0)	
	sec-Butylbenzene tert-Butyl Ethyl Ether (TBEE) cis-1,2 Dichloroethene (DCE) Methylene Chloride Tetrachloroethene (PCE) 1,1,1 Trichloro-ethane (TCA) 1,1,2 Trichloro-ethane (TCA) Trichloroethene (TCE) Methyl tert-Butyl Ether (MtBE)	NE NE 70 4.6 5.0 200 5.0 5.0	ND (1.0) ND (1.0) ND (2.0) ND (1.0) ND (1.0) ND (1.0) ND (1.0) 7.55	ND (1.0) ND (1.0) ND (2.0) ND (1.0) ND (1.0) ND (1.0) ND (1.0) ND (1.0)	ND (1.0) ND (2.0) ND (1.0) ND (1.0) ND (1.0) ND (1.0) ND (1.0) ND (1.0)	ND (1.0) ND (2.0) ND (1.0) ND (1.0) ND (1.0) ND (1.0) ND (1.0)	ND (1.0) ND (2.0) ND (1.0) ND (1.0) ND (1.0) ND (1.0) ND (1.0)	
	sec-Butylbenzene tert-Butyl Ethyl Ether (TBEE) cis-1,2 Dichloroethene (DCE) Methylene Chloride Tetrachloroethene (PCE) 1,1,1 Trichloro-ethane (TCA) 1,1,2 Trichloro-ethane (TCA) Trichloroethene (TCE)	NE NE 70 4.6 5.0 200 5.0 5.0	ND (1.0) ND (1.0) ND (2.0) ND (1.0) ND (1.0) ND (1.0) ND (1.0)	ND (1.0) ND (1.0) ND (2.0) ND (1.0) ND (1.0) ND (1.0) ND (1.0)	ND (1.0) ND (2.0) ND (1.0) ND (1.0) ND (1.0) ND (1.0)	ND (1.0) ND (2.0) ND (1.0) ND (1.0) ND (1.0) ND (1.0)	ND (1.0) ND (2.0) ND (1.0) ND (1.0) ND (1.0) ND (1.0)	
BTEX - ug/L	sec-Butylbenzene tert-Butyl Ethyl Ether (TBEE) cis-1,2 Dichloroethene (DCE) Methylene Chloride Tetrachloroethene (PCE) 1,1,1 Trichloro-ethane (TCA) 1,1,2 Trichloro-ethane (TCA) Trichloroethene (TCE) Methyl tert-Butyl Ether (MtBE) Acetone	NE NE 70 4.6 5.0 200 5.0 5.0 70	ND (1.0) ND (1.0) ND (2.0) ND (1.0) ND (1.0) ND (1.0) ND (1.0) 7.55 3.00	ND (1.0) ND (1.0) ND (2.0) ND (1.0) ND (1.0) ND (1.0) ND (1.0) ND (1.0) ND (1.0) 3.0	ND (1.0) ND (2.0) ND (1.0) ND (1.0) ND (1.0) ND (1.0) ND (1.0) ND (1.0) ND (1.0)	ND (1.0) ND (2.0) ND (1.0) ND (1.0) ND (1.0) ND (1.0) ND (1.0) ND (1.0)	ND (1.0) ND (2.0) ND (1.0) ND (1.0) ND (1.0) ND (1.0) ND (1.0) ND (1.0)	
BTEX - ug/L	sec-Butylbenzene tert-Butyl Ethyl Ether (TBEE) cis-1,2 Dichloroethene (DCE) Methylene Chloride Tetrachloroethene (PCE) 1,1,1 Trichloro-ethane (TCA) 1,1,2 Trichloro-ethane (TCA) Trichloroethene (TCE) Methyl tert-Butyl Ether (MtBE) Acetone Vinyl Chloride Benzene Toluene	NE NE 70 4.6 5.0 200 5.0 5.0 70 7,970 2.0 5.0 NE	ND (1.0) ND (1.0) ND (2.0) ND (2.0) ND (1.0) ND (1.0) ND (1.0) ND (1.0) 7.55 3.00 ND (1.0) ND (1.0) ND (1.0)	ND (1.0) ND (2.0) ND (2.0) ND (1.0)	ND (1.0) ND (2.0) ND (1.0)	ND (1.0) ND (2.0) ND (1.0)	ND (1.0) ND (2.0) ND (1.0)	
BTEX - ug/L	sec-Butylbenzene tert-Butyl Ethyl Ether (TBEE) cis-1,2 Dichloroethene (DCE) Methylene Chloride Tetrachloroethene (PCE) 1,1,1 Trichloro-ethane (TCA) 1,1,2 Trichloro-ethane (TCA) Trichloroethene (TCE) Methyl tert-Butyl Ether (MtBE) Acetone Vinyl Chloride Benzene	NE NE 70 4.6 5.0 200 5.0 70 7,970 2.0	ND (1.0) ND (1.0) ND (2.0) ND (1.0) ND (1.0) ND (1.0) ND (1.0) ND (1.0) 7.55 3.00 ND (1.0) ND (1.0)	ND (1.0) ND (1.0) ND (2.0) ND (1.0)	ND (1.0) ND (2.0) ND (1.0)	ND (1.0) ND (2.0) ND (1.0)	ND (1.0) ND (2.0) ND (1.0)	
BTEX - ug/L	sec-Butylbenzene tert-Butyl Ethyl Ether (TBEE) cis-1,2 Dichloroethene (DCE) Methylene Chloride Tetrachloroethene (PCE) 1,1,1 Trichloro-ethane (TCA) 1,1,2 Trichloro-ethane (TCA) Trichloroethene (TCE) Methyl tert-Butyl Ether (MtBE) Acetone Vinyl Chloride Benzene Toluene Ethylbenzene	NE NE 70 4.6 5.0 200 5.0 70 7,970 2.0 5.0 NE NE	ND (1.0) ND (1.0) ND (2.0) ND (2.0) ND (1.0) ND (1.0) ND (1.0) ND (1.0) 7.55 3.00 ND (1.0)	ND (1.0) ND (2.0) ND (2.0) ND (1.0)	ND (1.0) ND (2.0) ND (1.0)	ND (1.0) ND (2.0) ND (1.0)	ND (1.0) ND (2.0) ND (1.0)	
BTEX - ug/L Classical Chemistry	sec-Butylbenzene tert-Butyl Ethyl Ether (TBEE) cis-1,2 Dichloroethene (DCE) Methylene Chloride Tetrachloroethene (PCE) 1,1,1 Trichloro-ethane (TCA) 1,1,2 Trichloro-ethane (TCA) Trichloroethene (TCE) Methyl tert-Butyl Ether (MtBE) Acetone Vinyl Chloride Benzene Toluene Ethylbenzene Total Xylenes Total BTEX Chloride (mg/L)	NE NE 70 4.6 5.0 200 5.0 70 7,970 2.0 5.0 NE NE NE 100	ND (1.0) ND (1.0) ND (2.0) ND (2.0) ND (1.0)	ND (1.0) ND (2.0) ND (2.0) ND (1.0)	ND (1.0) ND (2.0) ND (1.0)	ND (1.0) ND (2.0) ND (1.0)	ND (1.0) ND (2.0) ND (2.0) ND (1.0)	
	sec-Butylbenzene tert-Butyl Ethyl Ether (TBEE) cis-1,2 Dichloroethene (DCE) Methylene Chloride Tetrachloroethene (PCE) 1,1,1 Trichloro-ethane (TCA) 1,1,2 Trichloro-ethane (TCA) Trichloroethene (TCE) Methyl tert-Butyl Ether (MtBE) Acetone Vinyl Chloride Benzene Toluene Ethylbenzene Total Xylenes Total BTEX	NE NE 70 4.6 5.0 200 5.0 70 7,970 2.0 5.0 NE NE NE NE	ND (1.0) ND (1.0) ND (2.0) ND (1.0)	ND (1.0) ND (1.0) ND (2.0) ND (1.0)	ND (1.0) ND (2.0) ND (1.0)	ND (1.0) ND (2.0) ND (1.0) ND (1.0) ND (1.0) ND (1.0) ND (1.0) ND (10) ND (10) ND (1.0)	ND (1.0) ND (2.0) ND (2.0) ND (1.0)	
BTEX - ug/L Classical Chemistry	sec-Butylbenzene tert-Butyl Ethyl Ether (TBEE) cis-1,2 Dichloroethene (DCE) Methylene Chloride Tetrachloroethene (PCE) 1,1,1 Trichloro-ethane (TCA) 1,1,2 Trichloro-ethane (TCA) Trichloroethene (TCE) Methyl tert-Butyl Ether (MtBE) Acetone Vinyl Chloride Benzene Toluene Ethylbenzene Total Xylenes Total BTEX Chloride (mg/L) Ammonia (mg/L) Hardness (ug/L) Hexavalent Chromium (ug/L)	NE NE 70 4.6 5.0 200 5.0 5.0 70 7,970 2.0 5.0 NE NE NE NE 100 Report Report Report - 323	ND (1.0) ND (1.0) ND (2.0) ND (2.0) ND (1.0)	ND (1.0) ND (2.0) ND (2.0) ND (1.0)	ND (1.0) ND (2.0) ND (1.0)	ND (1.0) ND (2.0) ND (1.0)	ND (1.0) ND (2.0) ND (2.0) ND (1.0) ND (2.0)	
	sec-Butylbenzene tert-Butyl Ethyl Ether (TBEE) cis-1,2 Dichloroethene (DCE) Methylene Chloride Tetrachloroethene (PCE) 1,1,1 Trichloro-ethane (TCA) 1,1,2 Trichloro-ethane (TCA) Trichloroethene (TCE) Methyl tert-Butyl Ether (MtBE) Acetone Vinyl Chloride Benzene Toluene Ethylbenzene Total Xylenes Total BTEX Chloride (mg/L) Ammonia (mg/L) Hardness (ug/L)	NE NE 70 4.6 5.0 200 5.0 70 7,970 2.0 5.0 NE NE NE 100 Report Report	ND (1.0) ND (1.0) ND (2.0) ND (2.0) ND (1.0)	ND (1.0) ND (2.0) ND (2.0) ND (1.0)	ND (1.0) ND (2.0) ND (1.0)	ND (1.0) ND (2.0) ND (1.0) ND	ND (1.0) ND (2.0) ND (1.0) ND	
	sec-Butylbenzene tert-Butyl Ethyl Ether (TBEE) cis-1,2 Dichloroethene (DCE) Methylene Chloride Tetrachloroethene (PCE) 1,1,1 Trichloro-ethane (TCA) 1,1,2 Trichloro-ethane (TCA) Trichloroethene (TCE) Methyl tert-Butyl Ether (MtBE) Acetone Vinyl Chloride Benzene Toluene Ethylbenzene Total Xylenes Total BTEX Chloride (mg/L) Ammonia (mg/L) Hardness (ug/L) Hexavalent Chromium (ug/L) Total Cyanide (ug/L)	NE NE 70 4.6 5.0 200 5.0 70 7,970 2.0 5.0 NE NE NE 100 Report Report Report - 323 178	ND (1.0) ND (1.0) ND (2.0) ND (1.0)	ND (1.0) ND (2.0) ND (2.0) ND (1.0)	ND (1.0) ND (2.0) ND (1.0)	ND (1.0) ND (2.0) ND (1.0)	ND (1.0) ND (2.0) ND (2.0) ND (1.0) ND (2.0)	

1: The second standard is the compliance level

VOCs = Volatile Organic Compounds

SVOCs = Semi-Volatile Organic Compounds
TPH = Total Petroleum Hydrocarbons
PCBs = Polychlorinated biphenyls
mg/L= milligrams per kilogram (ppm)

ug/L= micrograms per kilogram (ppb)
< xx = not detected above the indicated laboratory method detection limit

c/s = compound specific

NE = Not Established

NA = Not Analyzed
ND = Not Detected
* - Effluent limits calculated using the US EPA's Dilution Factor and Effluent Limitation Calculations for Massachusetts Form (Appendix V)

Red text = exceeds RGP limit

Italics = Reporting Limit Exceeds RGP Limit Red text = exceeds RGP limit

FW- Freshwater

TABLE 1
Groundwater Results - Lower Mystic Dam to Amelia Earhart Da

	C		Augraga	DANA/ 45		ic Ave	B404/ 47F
Analytical Test	Sample Identification Sample Date	Effluent Limitation	Average Concentration	MW-15 9/14/2017	MW-15F 9/14/2017	MW-17 9/15/2017	MW-17F 9/15/2017
ГРН - mg/L	TPH	5	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)
Total PAHs Group I - ug/L	Benzo(a)Anthracene	0.0163/0.1 ⁽¹⁾	0.05	ND(0.05)	ND(0.05)	0.07	ND(0.05)
	Benzo(a)Pyrene	0.0163/0.1(1)	0.05	ND(0.05)	ND(0.05)	0.08	ND(0.05)
	Benzo(b)Fluoranthene	0.0163/0.1(1)	0.06	ND(0.05)	ND(0.05)	0.12	ND(0.05)
	Benzo(k)Fluoranthene	1.0/0.1(1)	ND (0.05)	ND(0.05)	ND(0.05)	ND(0.05)	ND(0.05)
	Chrysene Dibenzo(a,h)Anthracene	0.0163/0.1 ⁽¹⁾ 1.0/0.1 ⁽¹⁾	0.05 ND (0.05)	ND(0.05) ND(0.05)	ND(0.05) ND(0.05)	0.08 ND(0.05)	ND(0.05) ND(0.05)
	Indeno(1,2,3-cd)Pyrene	0.0163/0.1(1)	0.05	ND(0.05)	ND(0.05)	0.08	ND(0.05)
	Total PAHs Group I	1.0	0.12	ND	ND	0.43	ND
otal PAHs Group II - ug/L	Acenaphthene	NE	0.20	ND(0.19)	ND(0.19)	0.23	ND(0.19)
	Acenaphthylene Anthracene	NE NE	ND (0.19) ND (0.19)	ND(0.19) ND(0.19)	ND(0.19) ND(0.19)	ND(0.19) ND(0.19)	ND(0.19) ND(0.19)
	Benzo(ghi)Perylene	NE	0.17	ND(0.19)	ND(0.19)	ND(0.19)	ND(0.19)
	Fluoranthene	NE	0.17	ND(0.19)	ND(0.19)	ND(0.19)	ND(0.19)
	Fluorene Naphthalene	NE 20	ND (0.19) ND (0.19)	ND(0.19) ND(0.19)	ND(0.19) ND(0.19)	ND(0.19) ND(0.19)	ND(0.19) ND(0.19)
	Phenanthrene	NE	ND (0.19)	ND(0.19)	ND(0.19)	ND(0.19)	ND(0.19)
	Pyrene Total PAHs Group II	NE 100	ND (0.19) 0.195	ND(0.19) ND	ND(0.19) ND	ND(0.19) 0.23	ND(0.19) ND
	·						
hthalates - ug/L	Butylbenzylphthalate Bis (2-Ethylhexyl) Phthalate	NE 101	1.4 4.1	ND(2.34) ND(1.87)	ND(2.34) ND(1.87)	ND(2.34) 2.27	ND(2.34) ND(1.87)
	Diethylphthalate	NE	1.4	ND(2.34)	ND(2.34)	ND(2.34)	ND(2.34)
	Di-n-butylphthalate	NE	2.1	ND(2.34)	ND(2.34)	ND(2.34)	ND(2.34)
	Di-n-octylphthalate Total Phthalates	NE 190	2.1 4.6	ND(2.34) ND	ND(2.34) ND	ND(2.34) 2.27	ND(2.34) ND
VOCs - ug/L	Pentachlorophenol	1.0	ND (0.84)	ND(0.84)	ND(0.84)	ND(0.84)	ND(0.84)
	All Other SVOCs	NE	ND (c/s)	<c s<="" td=""><td><c s<="" td=""><td><c s<="" td=""><td><c s<="" td=""></c></td></c></td></c></td></c>	<c s<="" td=""><td><c s<="" td=""><td><c s<="" td=""></c></td></c></td></c>	<c s<="" td=""><td><c s<="" td=""></c></td></c>	<c s<="" td=""></c>
Netals- ug/L	Antimony	206	ND (2.0)	ND (10.0)	ND (10.0)	ND (10.0)	ND (10.0)
	Arsenic	104	11.725	ND (3.0)	ND (3.0)	ND (3.0)	ND (3.0)
	Barium Beryllium	NE NE	77.85 0.98		-	-	-
	Cadmium	10.2	0.14	ND (0.15)	ND (0.15)	ND (0.15)	0.26
	Chromium	323	6.05	ND (4.0)	ND (4.0)	ND (4.0)	6.3
	Chromium III Lead	323 60.04	10.5 14.95	ND (10.0) ND (3.0)	ND (10.0) ND (3.0)	ND (10.0) ND (3.0)	ND (10.0) 73.7
	Mercury	0.739	ND (0.20)	ND (3.0) ND (0.200)	ND (0.200)	ND (0.200)	ND (0.200)
	Nickel	1,450	6.01	ND (4.0)	ND (4.0)	ND (4.0)	ND (4.0)
	Selenium Silver	235.8	ND (2.0)	ND (6.0)	ND (6.0)	ND (6.0)	ND (6.0)
	Thallium	35.1 NE	ND (0.10) ND (1.2)	ND (1.0)	ND (1.0) -	ND (1.0)	ND (1.0)
	Vanadium	NE	12.5	-	-	-	-
	Zinc	420	38.1	ND (10.0)	ND (10.0)	ND (10.0)	77.5
	Iron Copper	3,111 242	13,289 14.5	7,750 ND (2.0)	5,970 ND (2.0)	14,900 2.2	32,000 26.7
thanol - ug/L	Ethanol	Report	ND (10)	ND (10)	ND (10)	ND (10)	ND (10)
.,2-Dibromothane - ug/L	1,2-Dibromothane (EDB)	0.05	ND (0.015)	ND (0.015)	ND (0.015)	ND (0.015)	ND (0.015)
.,4-Dioxane - ug/L	1,4-Dioxane	200	0.323	0.396	0.397	ND (0.250)	ND (0.250)
CB - ug/L	Aroclor-1016	NE	ND (0.00)	ND (0.00)	ND (0.00)	ND (0.00)	
CB - ug/L	Aroclor-1016 Aroclor-1221	NE NE	ND (0.09) ND (0.09)	ND (0.09) ND (0.09)	ND (0.09) ND (0.09)	ND (0.09) ND (0.09)	ND (0.09) ND (0.09)
	Aroclor-1232	NE	ND (0.09)	ND (0.09)	ND (0.09)	ND (0.09)	ND (0.09)
	Aroclor-1242	NE	ND (0.09)	ND (0.09)	ND (0.09)	ND (0.09)	ND (0.09)
	Aroclor-1248 Aroclor-1254	NE NE	ND (0.09) ND (0.09)	ND (0.09) ND (0.09)	ND (0.09) ND (0.09)	ND (0.09) ND (0.09)	ND (0.09) ND (0.09)
	Aroclor-1260	NE	ND (0.09)	ND (0.09)	ND (0.09)	ND (0.09)	ND (0.09)
	Aroclor-1262	NE	ND (0.09)	ND (0.09)	ND (0.09)	ND (0.09)	ND (0.09)
	Aroclor-1268 Total PCBs	NE 0.000064/0.5 ⁽¹⁾	ND (0.09) ND	ND (0.09) ND	ND (0.09) ND	ND (0.09) ND	ND (0.09) ND
1000 110/1	tort Butul Alcohol (TDA)		30	45.7	40.9	ND (25.0)	ND (25.0)
OCs - ug/L	tert-Butyl Alcohol (TBA) tert-Amyl Methyl Ether (TAME)	120 90	ND (1.0)	45.7 ND (1.0)	40.9 ND (1.0)	ND (25.0) ND (1.0)	ND (25.0) ND (1.0)
	Napthalene	20	0.6	ND (0.5)	ND (0.5)	ND (0.5)	ND (0.5)
	Carbon Tetrachloride	4.4	ND (1.0)	ND (0.3) ND (0.5)	ND (0.3) ND (0.5)	ND (0.3) ND (0.5)	ND (0.3) ND (0.5)
	1.2 Dichlorobenzene (o-DCR)	600	NII) (1 (I)		ND (0.5)	ND (0.5)	ND (0.5)
	1,2 Dichlorobenzene (o-DCB) 1,3 Dichlorobenzene (m-DCB)	600 320	ND (1.0) ND (1.0)	ND (0.5)			140 (0.5)
	1,3 Dichlorobenzene (m-DCB) 1,4 Dicholorbenzene (p-DCB)	320 5.0	ND (1.0) ND (1.0)	ND (0.5)	ND (0.5)	ND (0.5)	ND (0.5)
	1,3 Dichlorobenzene (m-DCB) 1,4 Dicholorbenzene (p-DCB) 1,1 Dichloroethane (DCA)	320 5.0 70.0	ND (1.0) ND (1.0) ND (1.0)	ND (0.5) ND (0.5)	ND (0.5) ND (0.5)	ND (0.5) ND (0.5)	ND (0.5) ND (0.5)
	1,3 Dichlorobenzene (m-DCB) 1,4 Dicholorbenzene (p-DCB)	320 5.0	ND (1.0) ND (1.0)	ND (0.5)	ND (0.5)	ND (0.5)	ND (0.5)
	1,3 Dichlorobenzene (m-DCB) 1,4 Dicholorbenzene (p-DCB) 1,1 Dichloroethane (DCA) 1,2 Dichloroethane (DCA) 1,1 Dichloroethene (DCE) sec-Butylbenzene	320 5.0 70.0 5.0 3.2 NE	ND (1.0) ND (1.0) ND (1.0) ND (1.0) ND (1.0) ND (1.0)	ND (0.5) ND (0.5) ND (0.5)	ND (0.5) ND (0.5) ND (0.5) ND (0.5)	ND (0.5) ND (0.5) ND (0.5)	ND (0.5) ND (0.5) ND (0.5)
	1,3 Dichlorobenzene (m-DCB) 1,4 Dicholorbenzene (p-DCB) 1,1 Dichloroethane (DCA) 1,2 Dichloroethane (DCA) 1,1 Dichloroethene (DCE) sec-Butylbenzene tert-Butyl Ethyl Ether (TBEE)	320 5.0 70.0 5.0 3.2 NE	ND (1.0) ND (1.0) ND (1.0) ND (1.0) ND (1.0) ND (1.0) ND (1.0)	ND (0.5) ND (0.5) ND (0.5) ND (0.5) - -	ND (0.5) ND (0.5) ND (0.5) ND (0.5)	ND (0.5) ND (0.5) ND (0.5) ND (0.5) -	ND (0.5) ND (0.5) ND (0.5) ND (0.5)
	1,3 Dichlorobenzene (m-DCB) 1,4 Dicholorbenzene (p-DCB) 1,1 Dichloroethane (DCA) 1,2 Dichloroethane (DCA) 1,1 Dichloroethene (DCE) sec-Butylbenzene	320 5.0 70.0 5.0 3.2 NE	ND (1.0) ND (1.0) ND (1.0) ND (1.0) ND (1.0) ND (1.0)	ND (0.5) ND (0.5) ND (0.5)	ND (0.5) ND (0.5) ND (0.5) ND (0.5)	ND (0.5) ND (0.5) ND (0.5)	ND (0.5) ND (0.5) ND (0.5)
	1,3 Dichlorobenzene (m-DCB) 1,4 Dichloroethane (p-DCB) 1,1 Dichloroethane (DCA) 1,2 Dichloroethane (DCA) 1,1 Dichloroethane (DCE) sec-Butylbenzene tert-Butyl Ethyl Ether (TBEE) cis-1,2 Dichloroethene (DCE) Methylene Chloride Tetrachloroethene (PCE)	320 5.0 70.0 5.0 3.2 NE NE 70 4.6 5.0	ND (1.0) ND (2.0) ND (1.0)	ND (0.5) ND (0.5) ND (0.5) ND (0.5) - - ND (0.5) ND (0.5) ND (0.5)	ND (0.5) ND (0.5) ND (0.5) ND (0.5) - - ND (0.5) ND (0.5) ND (0.5)	ND (0.5)	ND (0.5) ND (0.5) ND (0.5) ND (0.5) - ND (0.5) ND (0.5) ND (0.5)
	1,3 Dichlorobenzene (m-DCB) 1,4 Dichloroethane (p-DCB) 1,1 Dichloroethane (DCA) 1,2 Dichloroethane (DCA) 1,1 Dichloroethene (DCE) sec-Butylbenzene tert-Butyl Ethyl Ether (TBEE) cis-1,2 Dichloroethene (DCE) Methylene Chloride Tetrachloroethene (PCE) 1,1,1 Trichloro-ethane (TCA)	320 5.0 70.0 5.0 3.2 NE NE 70 4.6 5.0	ND (1.0) ND (2.0) ND (1.0) ND (1.0)	ND (0.5) ND (0.5) ND (0.5) ND (0.5) - - ND (0.5) ND (0.5) ND (0.5) ND (0.5)	ND (0.5) ND (0.5) ND (0.5) ND (0.5) - ND (0.5) ND (0.5) ND (0.5) ND (0.5) ND (0.5)	ND (0.5) ND (0.5) ND (0.5) ND (0.5) - ND (0.5) ND (0.5) ND (0.5) ND (0.5)	ND (0.5) ND (0.5) ND (0.5) ND (0.5) - - ND (0.5) ND (0.5) ND (0.5) ND (0.5)
	1,3 Dichlorobenzene (m-DCB) 1,4 Dichloroethane (p-DCB) 1,1 Dichloroethane (DCA) 1,2 Dichloroethane (DCA) 1,1 Dichloroethane (DCE) sec-Butylbenzene tert-Butyl Ethyl Ether (TBEE) cis-1,2 Dichloroethene (DCE) Methylene Chloride Tetrachloroethene (PCE)	320 5.0 70.0 5.0 3.2 NE NE 70 4.6 5.0	ND (1.0) ND (2.0) ND (1.0)	ND (0.5) ND (0.5) ND (0.5) ND (0.5) - - ND (0.5) ND (0.5) ND (0.5)	ND (0.5) ND (0.5) ND (0.5) ND (0.5) - - ND (0.5) ND (0.5) ND (0.5)	ND (0.5)	ND (0.5) ND (0.5) ND (0.5) ND (0.5) - ND (0.5) ND (0.5) ND (0.5)
	1,3 Dichlorobenzene (m-DCB) 1,4 Dichlorobenzene (p-DCB) 1,1 Dichloroethane (DCA) 1,2 Dichloroethane (DCA) 1,1 Dichloroethane (DCE) sec-Butylbenzene tert-Butyl Ethyl Ether (TBEE) cis-1,2 Dichloroethene (DCE) Methylene Chloride Tetrachloroethene (PCE) 1,1,1 Trichloro-ethane (TCA) 1,1,2 Trichloro-ethane (TCA) Trichloroethene (TCE) Methyl tert-Butyl Ether (MtBE)	320 5.0 70.0 5.0 3.2 NE NE 70 4.6 5.0 200 5.0 70	ND (1.0) ND (2.0) ND (1.0)	ND (0.5) ND (0.5) ND (0.5) ND (0.5) - ND (0.5) ND (0.5) ND (0.5) ND (0.5) ND (0.5) ND (0.5) ND (0.5) ND (0.5)	ND (0.5) ND (0.5) ND (0.5) ND (0.5) - ND (0.5) ND (0.5) ND (0.5) ND (0.5) ND (0.5) ND (0.5) ND (0.5)	ND (0.5) ND (0.5) ND (0.5) ND (0.5) - - ND (0.5) ND (0.5) ND (0.5) ND (0.5) ND (0.5) ND (0.5) ND (0.5)	ND (0.5) ND (0.5) ND (0.5) ND (0.5) - ND (0.5) ND (0.5) ND (0.5) ND (0.5) ND (0.5) ND (0.5) ND (0.5)
	1,3 Dichlorobenzene (m-DCB) 1,4 Dichlorobenzene (p-DCB) 1,1 Dichloroethane (DCA) 1,2 Dichloroethane (DCA) 1,1 Dichloroethane (DCE) sec-Butylbenzene tert-Butyl Ethyl Ether (TBEE) cis-1,2 Dichloroethene (DCE) Methylene Chloride Tetrachloroethene (PCE) 1,1,1 Trichloro-ethane (TCA) 1,1,2 Trichloro-ethane (TCA) Trichloroethene (TCE)	320 5.0 70.0 5.0 3.2 NE NE 70 4.6 5.0 200 5.0	ND (1.0) ND (2.0) ND (1.0)	ND (0.5) ND (0.5) ND (0.5) ND (0.5) - - ND (0.5) ND (0.5) ND (0.5) ND (0.5) ND (0.5) ND (0.5)	ND (0.5)	ND (0.5) ND (0.5) ND (0.5) ND (0.5) ND (0.5) ND (0.5) ND (0.5) ND (0.5) ND (0.5) ND (0.5) ND (0.5) ND (0.5)	ND (0.5) ND (0.5) ND (0.5) ND (0.5) - ND (0.5) ND (0.5) ND (0.5) ND (0.5) ND (0.5) ND (0.5)
TEX - uz/L	1,3 Dichlorobenzene (m-DCB) 1,4 Dichloroethane (p-DCB) 1,1 Dichloroethane (DCA) 1,2 Dichloroethane (DCA) 1,1 Dichloroethane (DCE) sec-Butylbenzene tert-Butyl Ethyl Ether (TBEE) cis-1,2 Dichloroethene (DCE) Methylene Chloride Tetrachloroethene (PCE) 1,1,1 Trichloro-ethane (TCA) 1,1,2 Trichloro-ethane (TCA) Trichloroethene (TCE) Methyl tert-Butyl Ether (MtBE) Acetone Vinyl Chloride	320 5.0 70.0 5.0 3.2 NE NE 70 4.6 5.0 200 5.0 70 7,970 2.0	ND (1.0) ND (2.0) ND (1.0)	ND (0.5)	ND (0.5)	ND (0.5) ND (0.5) ND (0.5) ND (0.5) ND (0.5) ND (0.5) ND (0.5) ND (0.5) ND (0.5) ND (0.5) ND (0.5) ND (0.5) ND (0.5) ND (0.5) ND (0.5) ND (0.5) ND (0.5) ND (0.5)	ND (0.5) ND (0.5) ND (0.5) ND (0.5) - ND (0.5)
TEX - ug/L	1,3 Dichlorobenzene (m-DCB) 1,4 Dichlorobenzene (p-DCB) 1,1 Dichloroethane (DCA) 1,2 Dichloroethane (DCA) 1,1 Dichloroethane (DCE) sec-Butylbenzene tert-Butyl Ethyl Ether (TBEE) cis-1,2 Dichloroethene (DCE) Methylene Chloride Tetrachloroethene (PCE) 1,1,1 Trichloro-ethane (TCA) 1,1,2 Trichloro-ethane (TCA) Trichloroethene (TCE) Methyl tert-Butyl Ether (MtBE) Acetone Vinyl Chloride Benzene Toluene	320 5.0 70.0 5.0 3.2 NE NE 70 4.6 5.0 200 5.0 5.0 70 7,970 2.0	ND (1.0) ND (2.0) ND (2.0) ND (1.0)	ND (0.5) ND (0.5) ND (0.5) ND (0.5)	ND (0.5) ND (0.5) ND (0.5) ND (0.5) ND (0.5) ND (0.5) ND (0.5) ND (0.5) ND (0.5) ND (0.5) ND (0.5) ND (0.5) ND (0.5) ND (0.5) ND (0.5) ND (0.5) ND (0.5) ND (0.5)	ND (0.5) ND (0.5) ND (0.5) ND (0.5) - ND (0.5) ND (0.5) ND (0.5) ND (0.5) ND (0.5) ND (0.5) ND (0.5) ND (0.5) ND (0.5)	ND (0.5)
TEX - ug/L	1,3 Dichlorobenzene (m-DCB) 1,4 Dichlorobenzene (p-DCB) 1,1 Dichloroethane (DCA) 1,2 Dichloroethane (DCA) 1,1 Dichloroethane (DCE) sec-Butylbenzene tert-Butyl Ethyl Ether (TBEE) cis-1,2 Dichloroethene (DCE) Methylene Chloride Tetrachloroethene (PCE) 1,1,1 Trichloro-ethane (TCA) 1,1,2 Trichloro-ethane (TCA) Trichloroethene (TCE) Methyl tert-Butyl Ether (MtBE) Acetone Vinyl Chloride Benzene Toluene Ethylbenzene	320 5.0 70.0 5.0 3.2 NE NE 70 4.6 5.0 200 5.0 70 7,970 2.0	ND (1.0) ND (2.0) ND (1.0)	ND (0.5)	ND (0.5) ND (0.5) ND (0.5) ND (0.5) - ND (0.5)	ND (0.5) ND (0.5) ND (0.5) ND (0.5) ND (0.5) ND (0.5) ND (0.5) ND (0.5) ND (0.5) ND (0.5) ND (0.5) ND (0.5) ND (0.5) ND (0.5) ND (0.5) ND (0.5) ND (0.5) ND (0.5) ND (0.5) ND (0.5)	ND (0.5) ND (0.5) ND (0.5) ND (0.5) ND (0.5) ND (0.5) ND (0.5) ND (0.5) ND (0.5) ND (0.5) ND (0.5) ND (0.5) ND (0.5) ND (0.5) ND (0.5) ND (0.5) ND (0.5) ND (0.5) ND (0.5) ND (0.5)
TEX - ug/L	1,3 Dichlorobenzene (m-DCB) 1,4 Dichlorobenzene (p-DCB) 1,1 Dichloroethane (DCA) 1,2 Dichloroethane (DCA) 1,1 Dichloroethane (DCE) sec-Butylbenzene tert-Butyl Ethyl Ether (TBEE) cis-1,2 Dichloroethene (DCE) Methylene Chloride Tetrachloroethene (PCE) 1,1,1 Trichloro-ethane (TCA) 1,1,2 Trichloro-ethane (TCA) Trichloroethene (TCE) Methyl tert-Butyl Ether (MtBE) Acetone Vinyl Chloride Benzene Toluene	320 5.0 70.0 5.0 3.2 NE NE 70 4.6 5.0 200 5.0 5.0 70 7,970 2.0	ND (1.0) ND (2.0) ND (2.0) ND (1.0)	ND (0.5) ND (0.5) ND (0.5) ND (0.5)	ND (0.5) ND (0.5) ND (0.5) ND (0.5) ND (0.5) ND (0.5) ND (0.5) ND (0.5) ND (0.5) ND (0.5) ND (0.5) ND (0.5) ND (0.5) ND (0.5) ND (0.5) ND (0.5) ND (0.5) ND (0.5)	ND (0.5) ND (0.5) ND (0.5) ND (0.5) ND (0.5) ND (0.5) ND (0.5) ND (0.5) ND (0.5) ND (0.5) ND (0.5) ND (0.5) ND (0.5) ND (0.5) ND (0.5) ND (0.5) ND (0.5) ND (0.5)	ND (0.5) ND (0.5) ND (0.5) ND (0.5) ND (0.5) ND (0.5) ND (0.5) ND (0.5) ND (0.5) ND (0.5) ND (0.5) ND (0.5) ND (0.5) ND (0.5) ND (0.5) ND (0.5) ND (0.5) ND (0.5) ND (0.5) ND (0.5)
	1,3 Dichlorobenzene (m-DCB) 1,4 Dichloroethane (p-DCB) 1,1 Dichloroethane (DCA) 1,2 Dichloroethane (DCA) 1,2 Dichloroethane (DCA) 1,1 Dichloroethane (DCE) sec-Butylbenzene tert-Butyl Ethyl Ether (TBEE) cis-1,2 Dichloroethene (DCE) Methylene Chloride Tetrachloroethane (TCA) 1,1,1 Trichloro-ethane (TCA) 1,1,2 Trichloro-ethane (TCA) Trichloroethene (TCE) Methyl tert-Butyl Ether (MtBE) Acetone Vinyl Chloride Benzene Toluene Ethylbenzene Total Xylenes Total BTEX Chloride (mg/L)	320 5.0 70.0 5.0 3.2 NE NE 70 4.6 5.0 200 5.0 70 7,970 2.0 5.0 NE NE NE NE 100 Report	ND (1.0) ND (2.0) ND (1.0)	ND (0.5)	ND (0.5)	ND (0.5)	ND (0.5)
	1,3 Dichlorobenzene (m-DCB) 1,4 Dichlorobenzene (p-DCB) 1,1 Dichloroethane (DCA) 1,2 Dichloroethane (DCA) 1,1 Dichloroethane (DCE) sec-Butylbenzene tert-Butyl Ethyl Ether (TBEE) cis-1,2 Dichloroethene (DCE) Methylene Chloride Tetrachloroethene (PCE) 1,1,1 Trichloro-ethane (TCA) 1,1,2 Trichloro-ethane (TCA) Trichloroethene (TCE) Methyl tert-Butyl Ether (MtBE) Acetone Vinyl Chloride Benzene Toluene Ethylbenzene Total Xylenes Total BTEX Chloride (mg/L) Ammonia (mg/L)	320 5.0 70.0 5.0 3.2 NE NE 70 4.6 5.0 200 5.0 70 7,970 2.0 5.0 NE NE	ND (1.0) ND (2.0) ND (1.0)	ND (0.5)	ND (0.5)	ND (0.5)	ND (0.5)
STEX - ug/L Classical Chemistry	1,3 Dichlorobenzene (m-DCB) 1,4 Dichloroethane (p-DCB) 1,1 Dichloroethane (DCA) 1,2 Dichloroethane (DCA) 1,2 Dichloroethane (DCA) 1,1 Dichloroethane (DCE) sec-Butylbenzene tert-Butyl Ethyl Ether (TBEE) cis-1,2 Dichloroethene (DCE) Methylene Chloride Tetrachloroethane (TCA) 1,1,1 Trichloro-ethane (TCA) 1,1,2 Trichloro-ethane (TCA) Trichloroethene (TCE) Methyl tert-Butyl Ether (MtBE) Acetone Vinyl Chloride Benzene Toluene Ethylbenzene Total Xylenes Total BTEX Chloride (mg/L)	320 5.0 70.0 5.0 3.2 NE NE 70 4.6 5.0 200 5.0 70 7,970 2.0 5.0 NE NE NE NE 100 Report	ND (1.0) ND (2.0) ND (1.0)	ND (0.5)	ND (0.5)	ND (0.5)	ND (0.5)
	1,3 Dichlorobenzene (m-DCB) 1,4 Dichloroethane (DCA) 1,1 Dichloroethane (DCA) 1,2 Dichloroethane (DCA) 1,1 Dichloroethane (DCE) sec-Butylbenzene tert-Butyl Ethyl Ether (TBEE) cis-1,2 Dichloroethene (DCE) Methylene Chloride Tetrachloroethene (PCE) 1,1,1 Trichloro-ethane (TCA) 1,1,2 Trichloro-ethane (TCA) Trichloroethene (TCE) Methyl tert-Butyl Ether (MtBE) Acetone Vinyl Chloride Benzene Toluene Ethylbenzene Total Xylenes Total BTEX Chloride (mg/L) Ammonia (mg/L) Hardness (ug/L) Hexavalent Chromium (ug/L) Total Cyanide (ug/L)	320 5.0 70.0 5.0 3.2 NE NE 70 4.6 5.0 200 5.0 70 7,970 2.0 5.0 NE NE NE 100 Report Report Report - 323 178	ND (1.0) ND (2.0) ND (1.0)	ND (0.5)	ND (0.5)	ND (0.5)	ND (0.5)
	1,3 Dichlorobenzene (m-DCB) 1,4 Dichlorobenzene (p-DCB) 1,1 Dichloroethane (DCA) 1,2 Dichloroethane (DCA) 1,1 Dichloroethane (DCE) sec-Butylbenzene tert-Butyl Ethyl Ether (TBEE) cis-1,2 Dichloroethene (DCE) Methylene Chloride Tetrachloroethene (PCE) 1,1,1 Trichloro-ethane (TCA) 1,1,2 Trichloro-ethane (TCA) Trichloroethene (TCE) Methyl tert-Butyl Ether (MtBE) Acetone Vinyl Chloride Benzene Toluene Ethylbenzene Total Xylenes Total BTEX Chloride (mg/L) Ammonia (mg/L) Hardness (ug/L) Hexavalent Chromium (ug/L)	320 5.0 70.0 5.0 3.2 NE NE 70 4.6 5.0 200 5.0 70 7,970 2.0 5.0 NE NE NE NE 100 Report Report - 323	ND (1.0)	ND (0.5)	ND (0.5)	ND (0.5)	ND (0.5)

1: The second standard is the compliance level

VOCs = Volatile Organic Compounds

SVOCs = Semi-Volatile Organic Compounds TPH = Total Petroleum Hydrocarbons

PCBs = Polychlorinated biphenyls

mg/L= milligrams per kilogram (ppm)

ug/L= micrograms per kilogram (ppb) < xx = not detected above the indicated laboratory method detection limit

c/s = compound specific

NE = Not Established

NA = Not Analyzed

ND = Not Detected

* - Effluent limits calculated using the US EPA's Dilution Factor and Effluent Limitation Calculations for Massachusetts Form

Red text = exceeds RGP limit

Italics = Reporting Limit Exceeds RGP Limit Red text = exceeds RGP limit

FW- Freshwater

TABLE 2 **Surface Water Results** Eversource: Woburn - Mystic

Analytical Test	Sample Identification	Effluent Limitation	Mystic Crossing	Mystic at Winter	Mystic	Mystic at Laydown
	Sample Date		11/15/2017	11/15/2017	11/15/2017	11/15/2017
Metals (ug/L)	Arsenic	104	ND(2.5)	ND(2.5)	ND(2.5)	ND(5)
	Cadmium	10.2	ND(2)	ND(2)	ND(2)	ND(10)
	Chromium	NE	ND(4)	ND(4)	ND(4)	ND(20)
	Chromium III	323	ND(10)	ND(10)	ND(10)	ND(20)
	Copper	242	ND(2)	ND(2)	ND(2)	ND(10)
	Iron	3,111	134	251	121	274
	Lead	60.04	ND(4)	ND(4)	ND(4)	ND(2)
	Nickel	1,450	ND(4)	ND(4)	ND(4)	ND(20)
	Silver	35.1	NA	NA	NA	NA
	Zinc	420	11.1	10.9	10.2	ND(50)
Classical Chemistry	Ammonia as N (mg/L)	Report	0.35	0.45	0.27	0.28
	Hexavalent Chromium (ug/L)	323	ND(10)	ND(10)	ND(10)	ND(10)
	рН	NE	7.13	7.25	7.36	7.46
	Hardness (ug/L)	NE	147,000	184,000	181,000	221,000

Notes:

mg/L= milligrams per kilogram (ppm)

ug/L= micrograms per kilogram (ppb)

NE = Not Established

NA = Not Analyzed

ND = Not Detected *- EJJIUENT IIMITS FROM NYDES GENERAL PERMIT FOR REMEALATION ACTIVITY

Discharges DRAFT at

https://www2 ena anu/region1/nndes/remediation/2016DraftPermit ndf

APPENDIX F

The Microbiology Division of Thielsch Engineering, Inc.

CERTIFICATE OF ANALYSIS

Michael Martin Tighe & Bond 4 Barlows Landing Road, Unit 15 Pocasset, MA 02559

RE: Woburn to Mystic - RGP/MCP (N-0998) ESS Laboratory Work Order Number: 1701176

This signed Certificate of Analysis is our approved release of your analytical results. These results are only representative of sample aliquots received at the laboratory. ESS Laboratory expects its clients to follow all regulatory sampling guidelines. Beginning with this page, the entire report has been paginated. This report should not be copied except in full without the approval of the laboratory. Samples will be disposed of thirty days after the final report has been delivered. If you have any questions or concerns, please feel free to call our Customer Service Department.

Laurel Stoddard

Laboratory Director

REVIEWED

By ESS Laboratory at 4:59 pm, Jan 20, 2017

Analytical Summary

The project as described above has been analyzed in accordance with the ESS Quality Assurance Plan. This plan utilizes the following methodologies: US EPA SW-846, US EPA Methods for Chemical Analysis of Water and Wastes per 40 CFR Part 136, APHA Standard Methods for the Examination of Water and Wastewater, American Society for Testing and Materials (ASTM), and other recognized methodologies. The analyses with these noted observations are in conformance to the Quality Assurance Plan. In chromatographic analysis, manual integration is frequently used instead of automated integration because it produces more accurate results.

The test results present in this report are in compliance with TNI and relative state tandards, and/or client Quality Assurance Project Plans (QAPP). The laboratory has reviewed the following: Sample Preservations, Hold Times, Initial Calibrations, Continuing Calibrations, Method Blanks, Blank Spikes, Blank Spike Duplicates, Duplicates, Matrix Spikes, Matrix Spike Duplicates, Surrogates and Internal Standards. Any results which were found to be outside of the recommended ranges stated in our SOPs will be noted in the Project Narrative.

Subcontracted Analyses

RI Analytical Laboratories, Inc. - Warwick,

Chloride

RI

The Microbiology Division of Thielsch Engineering, Inc.

CERTIFICATE OF ANALYSIS

Client Name: Tighe & Bond

Client Project ID: Woburn to Mystic - RGP/MCP ESS Laboratory Work Order: 1701176

SAMPLE RECEIPT

The following samples were received on January 10, 2017 for the analyses specified on the enclosed Chain of Custody Record.

To achieve CAM compliance for MCP data, ESS Laboratory has reviewed all QA/QC Requirements and Performance Standards listed in each method. Holding times and preservation have also been reviewed. All CAM requirements have been performed and achieved unless noted in the project narrative.

Each method has been set-up in the laboratory to reach required MCP standards. The methods for aqueous VOA and Soil Methanol VOA have known limitations for certain analytes. The regulatory standards may not be achieved due to these In addition, for all methods, matrix interferences, dilutions, and %Solids may elevate method reporting limits above regulatory standards. ESS Laboratory can provide, upon request, a Data Checker (regulatory standard comparison spreadsheet) electronic deliverable which will highlight these exceedances.

Question I: All samples for VOA and SVOA were analyzed for a subset of the required MCP list per the client's request.

<u>Lab Number</u> 1701176-01	Sample Name MW-102A	<u>Matrix</u> Ground Water	Analysis §, 1664A, 2540D, 420.1, 4500 CN CE, 4500 NH3 G, 4500-Cl E, 6010C, 7010, 7196A, 7470A, 8011, 8015, 8082A, 8260B, 8270D SIM
1701176-02	MW-102A FF	Ground Water	§, 1664A, 2540D, 420.1, 4500 CN CE, 4500 NH3 G, 4500-Cl E, 6010C, 7010, 7196A, 7470A, 8011, 8015, 8082A, 8260B, 8270D SIM
1701176-03	MW-103	Ground Water	§, 1664A, 2540D, 420.1, 4500 CN CE, 4500 NH3 G, 4500-Cl E, 6010C, 7010, 7196A, 7470A, 8011, 8015, 8082A, 8260B, 8270D SIM
1701176-04	MW-103 FF	Ground Water	§, 1664A, 2540D, 420.1, 4500 CN CE, 4500 NH3 G, 4500-Cl E, 6010C, 7010, 7196A, 7470A, 8011, 8015, 8082A, 8260B, 8270D SIM

The Microbiology Division of Thielsch Engineering, Inc.

CERTIFICATE OF ANALYSIS

Client Name: Tighe & Bond

Client Project ID: Woburn to Mystic - RGP/MCP ESS Laboratory Work Order: 1701176

PROJECT NARRATIVE

8260B Volatile Organic Compounds

1701176-01 Present in Method Blank (B).

Naphthalene

1701176-02 **Present in Method Blank (B).**

Naphthalene

8270D(SIM) Semi-Volatile Organic Compounds

1701176-01 <u>Present in Method Blank (B).</u>

bis(2-Ethylhexyl)phthalate, Butylbenzylphthalate, Di-n-octylphthalate

1701176-02 Present in Method Blank (B).

bis(2-Ethylhexyl)phthalate, Butylbenzylphthalate

1701176-03 Present in Method Blank (B).

bis(2-Ethylhexyl)phthalate, Butylbenzylphthalate

1701176-04 **Present in Method Blank (B).**

bis(2-Ethylhexyl)phthalate, Butylbenzylphthalate

C7A0148-TUN1 Benzidine tailing factor >2.

CA71116-BS1 Blank Spike recovery is above upper control limit (B+).

bis(2-Ethylhexyl)phthalate (146% @ 40-140%)

CA71116-BSD1 Blank Spike recovery is above upper control limit (B+).

bis(2-Ethylhexyl)phthalate (143% @ 40-140%)

CA71116-BSD1 Relative percent difference for duplicate is outside of criteria (D+).

Naphthalene (21% @ 20%)

Total Metals

1701176-01 Present in Method Blank (B).

Zinc

1701176-02 **Present in Method Blank (B).**

Zinc

1701176-03 Present in Method Blank (B).

Zinc

1701176-04 **Present in Method Blank (B).**

Zinc

No other observations noted.

End of Project Narrative.

Service

The Microbiology Division of Thielsch Engineering, Inc.

CERTIFICATE OF ANALYSIS

Client Name: Tighe & Bond

Client Project ID: Woburn to Mystic - RGP/MCP ESS Laboratory Work Order: 1701176

DATA USABILITY LINKS

Definitions of Quality Control Parameters

Semivolatile Organics Internal Standard Information

Semivolatile Organics Surrogate Information

Volatile Organics Internal Standard Information

Volatile Organics Surrogate Information

EPH and VPH Alkane Lists

CURRENT SW-846 METHODOLOGY VERSIONS

Analytical Methods

1010A - Flashpoint

6010C - ICP

6020A - ICP MS

7010 - Graphite Furnace

7196A - Hexavalent Chromium

7470A - Aqueous Mercury

7471B - Solid Mercury

8011 - EDB/DBCP/TCP

8015C - GRO/DRO

8081B - Pesticides

8082A - PCB

8100M - TPH

8151A - Herbicides

8260B - VOA

8270D - SVOA

8270D SIM - SVOA Low Level

9014 - Cyanide

9038 - Sulfate

9040C - Aqueous pH

9045D - Solid pH (Corrosivity)

9050A - Specific Conductance

9056A - Anions (IC)

9060A - TOC

9095B - Paint Filter

MADEP 04-1.1 - EPH / VPH

Prep Methods

3005A - Aqueous ICP Digestion

3020A - Aqueous Graphite Furnace / ICP MS Digestion

3050B - Solid ICP / Graphite Furnace / ICP MS Digestion

3060A - Solid Hexavalent Chromium Digestion

3510C - Separatory Funnel Extraction

3520C - Liquid / Liquid Extraction

3540C - Manual Soxhlet Extraction

3541 - Automated Soxhlet Extraction

3546 - Microwave Extraction

3580A - Waste Dilution

5030B - Aqueous Purge and Trap

5030C - Aqueous Purge and Trap

5035 - Solid Purge and Trap

SW846 Reactivity Methods 7.3.3.2 (Reactive Cyanide) and 7.3.4.1 (Reactive Sulfide) have been withdrawn by EPA. These methods are reported per client request and are not NELAP accredited.

The Microbiology Division of Thielsch Engineering, Inc.

CERTIFICATE OF ANALYSIS

Client Name: Tighe & Bond

accurate and complete.

Client Project ID: Woburn to Mystic - RGP/MCP ESS Laboratory Work Order: 1701176

MassDEP Analytical Protocol Certification Form

	N	MADEP RT1	N: _				_					
This	form	provides cer	rtifica	tion for the follow	ving d	ata set: 1701176-01 th	roug	th 1701176-04				
Mat	rices:	(X) Ground	d Wat	er/Surface Water		() Soil/Sediment	() Drinking Water	() Air	() Other:		
CAI	M Pro	otocol (chec	k all 1	that apply below):							
(X)	8260 CAM		(X)	7470/7471 Hg CAM III B	()	MassDEP VPH CAM IV A	() 8081 Pesticides CAM V B	(X)	7196 Hex Cr CAM VI B	()	MassDEP APH CAM IX A
(X)	8270 CAM	SVOC II B	(X)	7010 Metals CAM III C	()	MassDEP EPH CAM IV B	() 8151 Herbicides CAM V C	()	8330 Explosives CAM VIII A	()	TO-15 VOC CAM IX B
(X)	6010 CAM	Metals III A	()	6020 Metals CAM III D	(X)	8082 PCB CAM V A	() 6860 Perchlorate CAM VIII B	(X)	9014 Total Cyani CAM VI A	de/P	AC
			A	ffirmative respo	nses to	o questions A throug	h F	are required for ''Pr	esumptiv	ve Certainty'' stat	us	
A		-						on the Chain-of-Custo		•		Yes (X) No ()
В	-	the analytica	_					/analyzed within meth ed in the selected CAN		-		Yes (X) No ()
C	Were	all required				_	_	fied in the selected CA	M proto	col(s)		Yes (X) No ()
D	-			•		ndard non-conforman		ecified in the CAM VI	I A. "Oua	llity		Yes (X) No ()
	Assur	ance and Qu	uality	Control Guidelin	es for	the Acquisition and R	eport	ing of Analytical Data t significant modificat	י"?	•		Yes () No ()
				* *	-	ant modifications).	. 1	C 1 (1 10				Yes () No ()
F	Were	all applicabl	le CA	M protocol QC a	nd per	aplete analyte list report formance standard no sponses to Questions	n-coi	nformances identified	and evalu	nated		Yes (X) No ()
				Responses to	Ouest	ions G. H and I belov	v are	required for '''Presui	mntive Ca	ertainty'' status		
G			_	ts at or below all	CAM	reporting limits speci	fied i	n the selected CAM processarily meet the de	rotocols(s	s)?		Yes (X) No ()*
						0 CMR 40. 1056 (2)(k)						v () v (v)*
H I				•		n the CAM protocol(s list specified in the se	-					Yes () No (X) * Yes () No (X) *
-				-	-	attached laboratory						103 () 110 (A)
		_		-	-			based upon my perso report is, to the best o	_			le

Signature: _____ Date: January 20, 2017
Printed Name: Laurel Stoddard Position: Laboratory Director

185 Frances Avenue, Cranston, RI 02910-2211 Tel: 401-461-7181 Fax: 401-461-4486 http://www.ESSLaboratory.com

The Microbiology Division of Thielsch Engineering, Inc.

CERTIFICATE OF ANALYSIS

Client Name: Tighe & Bond

Client Project ID: Woburn to Mystic - RGP/MCP

Client Sample ID: MW-102A Date Sampled: 01/10/17 12:30

Percent Solids: N/A

ESS Laboratory Work Order: 1701176 ESS Laboratory Sample ID: 1701176-01

Sample Matrix: Ground Water

Units: ug/L

Extraction Method: 3005A

Total Metals

<u>Analyte</u>	Results (MRL)	MDL	Method	<u>Limit</u>	<u>DF</u>	Analyst		<u>I/V</u>	F/V	Batch
Antimony	ND (2.0)	0.2	7010		1	KJK	01/13/17 6:54	50	10	CA71104
Arsenic	20.6 (6.0)	0.5	7010		3	KJK	01/13/17 4:53	50	10	CA71104
Barium	126 (10.0)	0.6	6010C		1	BJV	01/12/17 12:55	50	10	CA71104
Beryllium	1.8 (0.2)	0.04	6010C		1	BJV	01/12/17 12:55	50	10	CA71104
Cadmium	J 0.07 (0.2)	0.01	7010		1	KJK	01/13/17 16:32	50	10	CA71104
Chromium	13.9 (4.0)	0.6	6010C		1	BJV	01/12/17 12:55	50	10	CA71104
Chromium III	14 (10)		6010C		1	JLK	01/12/17 12:55	1	1	[CALC]
Copper	41.9 (2.0)	0.8	6010C		1	BJV	01/12/17 12:55	50	10	CA71104
Iron	21300 (20.0)	4.6	6010C		1	BJV	01/12/17 12:55	50	10	CA71104
Lead	15.5 (3.0)	0.6	7010		3	KJK	01/13/17 1:15	50	10	CA71104
Mercury	ND (0.20)	0.12	7470A		1	MJV	01/13/17 12:20	20	40	CA71110
Nickel	16.3 (4.0)	0.4	6010C		1	BJV	01/12/17 12:55	50	10	CA71104
Selenium	ND (2.0)	0.3	7010		1	KJK	01/12/17 17:15	50	10	CA71104
Silver	ND (0.1)	0.03	7010		1	KJK	01/13/17 20:07	50	10	CA71104
Thallium	ND (1.2)	0.7	7010		3	KJK	01/12/17 21:54	50	10	CA71104
Vanadium	23.6 (4.0)	0.4	6010C		1	BJV	01/12/17 12:55	50	10	CA71104
Zinc	B 56.9 (10.0)	1.8	6010C		1	BJV	01/12/17 12:55	50	10	CA71104

The Microbiology Division of Thielsch Engineering, Inc.

CERTIFICATE OF ANALYSIS

Client Name: Tighe & Bond

Client Project ID: Woburn to Mystic - RGP/MCP

Client Sample ID: MW-102A Date Sampled: 01/10/17 12:30

Percent Solids: N/A Initial Volume: 1070 Final Volume: 1

Extraction Method: 3510C

ESS Laboratory Work Order: 1701176 ESS Laboratory Sample ID: 1701176-01

Sample Matrix: Ground Water

Units: ug/L Analyst: SMR

Prepared: 1/12/17 12:18 Cleanup Method: 3665A

8082A Polychlorinated Biphenyls (PCB)

<u>Analyte</u>	Results (MRL)	MDL	Method	<u>Limit</u>	<u>DF</u>	Analyzed	Sequence	Batch
Aroclor 1016	ND (0.09)	0.03	8082A		1	01/13/17 1:49		CA71203
Aroclor 1221	ND (0.09)	0.03	8082A		1	01/13/17 1:49		CA71203
Aroclor 1232	ND (0.09)	0.03	8082A		1	01/13/17 1:49		CA71203
Aroclor 1242	ND (0.09)	0.03	8082A		1	01/13/17 1:49		CA71203
Aroclor 1248	ND (0.09)	0.03	8082A		1	01/13/17 1:49		CA71203
Aroclor 1254	ND (0.09)	0.03	8082A		1	01/13/17 1:49		CA71203
Aroclor 1260	ND (0.09)	0.03	8082A		1	01/13/17 1:49		CA71203
Aroclor 1262	ND (0.09)	0.03	8082A		1	01/13/17 1:49		CA71203
Aroclor 1268	ND (0.09)	0.03	8082A		1	01/13/17 1:49		CA71203
		%Recovery	Qualifier	Limits				
Surrogate: Decachlorobiphenyl		47 %		30-150				
Surrogate: Decachlorobiphenyl [2C]		47 %		30-150				
Surrogate: Tetrachloro-m-xylene		64 %		30-150				
Surrogate: Tetrachloro-m-xylene [2C]		74 %		30-150				

185 Frances Avenue, Cranston, RI 02910-2211

Tel: 401-461-7181

Fax: 401-461-4486

The Microbiology Division of Thielsch Engineering, Inc.

CERTIFICATE OF ANALYSIS

Client Name: Tighe & Bond

Client Project ID: Woburn to Mystic - RGP/MCP

Client Sample ID: MW-102A Date Sampled: 01/10/17 12:30

Percent Solids: N/A
Initial Volume: 5
Final Volume: 5

Extraction Method: 5030B

ESS Laboratory Work Order: 1701176 ESS Laboratory Sample ID: 1701176-01

Sample Matrix: Ground Water

Units: ug/L Analyst: MD

8260B Volatile Organic Compounds

Analyte 1,1,1-Trichloroethane	Results (MRL) ND (1.0)	$\frac{\mathbf{MDL}}{0.2}$	Method 8260B	<u>Limit</u>	<u>DF</u>	Analyzed 01/11/17 13:10	Sequence C7A0139	Batch CA71120
1,1,2-Trichloroethane	ND (1.0) ND (1.0)	0.2	8260B		1	01/11/17 13:10	C7A0139	CA71120
1,1-Dichloroethane	ND (1.0) ND (1.0)	0.2	8260B		1	01/11/17 13:10	C7A0139	CA71120
1,1-Dichloroethene	ND (1.0) ND (1.0)	0.3	8260B		1	01/11/17 13:10	C7A0139	CA71120
1,2-Dibromoethane	ND (1.0)	0.2	8260B		1	01/11/17 13:10	C7A0139	CA71120
1,2-Dichlorobenzene	ND (1.0) ND (1.0)	0.1	8260B		1	01/11/17 13:10	C7A0139	CA71120
1,2-Dichloroethane	ND (1.0) ND (1.0)	0.2	8260B		1	01/11/17 13:10	C7A0139	CA71120
1,3-Dichlorobenzene	ND (1.0) ND (1.0)	0.2	8260B		1	01/11/17 13:10	C7A0139	CA71120
1,4-Dichlorobenzene	` ′	0.1	8260B		1	01/11/17 13:10	C7A0139	CA71120 CA71120
1,4-Dioxane - Screen	ND (1.0)	190	8260B		1	01/11/17 13:10	C7A0139	CA71120 CA71120
•	ND (500)		8260B 8260B			01/11/17 13:10	C7A0139	CA71120 CA71120
Acetone	J 3.0 (10.0)	2.7			1			CA71120 CA71120
Benzene	ND (1.0)	0.1	8260B		1	01/11/17 13:10	C7A0139	
Carbon Tetrachloride	ND (1.0)	0.1	8260B		1	01/11/17 13:10	C7A0139	CA71120
cis-1,2-Dichloroethene	ND (1.0)	0.2	8260B		1	01/11/17 13:10	C7A0139	CA71120
Ethylbenzene	ND (1.0)	0.1	8260B		1	01/11/17 13:10	C7A0139	CA71120
Methyl tert-Butyl Ether	ND (1.0)	0.3	8260B		1	01/11/17 13:10	C7A0139	CA71120
Methylene Chloride	ND (2.0)	0.2	8260B		1	01/11/17 13:10	C7A0139	CA71120
Naphthalene	B, J 0.6 (1.0)	0.2	8260B		1	01/11/17 13:10	C7A0139	CA71120
Tertiary-amyl methyl ether	ND (1.0)	0.2	8260B		1	01/11/17 13:10	C7A0139	CA71120
Tertiary-butyl Alcohol	ND (25.0)	10.0	8260B		1	01/11/17 13:10	C7A0139	CA71120
Tetrachloroethene	ND (1.0)	0.2	8260B		1	01/11/17 13:10	C7A0139	CA71120
Toluene	ND (1.0)	0.1	8260B		1	01/11/17 13:10	C7A0139	CA71120
Trichloroethene	ND (1.0)	0.2	8260B		1	01/11/17 13:10	C7A0139	CA71120
Vinyl Chloride	ND (1.0)	0.2	8260B		1	01/11/17 13:10	C7A0139	CA71120
Xylene O	ND (1.0)	0.1	8260B		1	01/11/17 13:10	C7A0139	CA71120
Xylene P,M	ND (2.0)	0.2	8260B		1	01/11/17 13:10	C7A0139	CA71120
-		%Recovery	Qualifier	Limits				
Surrogate: 1,2-Dichloroethane-d4		91 %		70-130				

 Surrogate: 1,2-Dichloroethane-d4
 91 %
 70-130

 Surrogate: 4-Bromofluorobenzene
 92 %
 70-130

 Surrogate: Dibromofluoromethane
 96 %
 70-130

 Surrogate: Toluene-d8
 105 %
 70-130

185 Frances Avenue, Cranston, RI 02910-2211

Tel: 401-461-7181

Fax: 401-461-4486 • Service

The Microbiology Division of Thielsch Engineering, Inc.

CERTIFICATE OF ANALYSIS

Client Name: Tighe & Bond

Client Project ID: Woburn to Mystic - RGP/MCP

Client Sample ID: MW-102A Date Sampled: 01/10/17 12:30

Percent Solids: N/A Initial Volume: 1070 Final Volume: 0.25

Extraction Method: 3510C

ESS Laboratory Work Order: 1701176 ESS Laboratory Sample ID: 1701176-01

Sample Matrix: Ground Water

Units: ug/L Analyst: VSC

Prepared: 1/11/17 15:35

8270D(SIM) Semi-Volatile Organic Compounds

Analyte	Results (MRL)	MDL	Method	<u>Limit</u>	<u>DF</u>	Analyzed	Sequence	Batch
Acenaphthene	ND (0.19)	0.04	8270D SIM		1	01/12/17 7:21	C7A0148	CA71116
Acenaphthylene	ND (0.19)	0.03	8270D SIM		1	01/12/17 7:21	C7A0148	CA71116
Anthracene	ND (0.19)	0.03	8270D SIM		1	01/12/17 7:21	C7A0148	CA71116
Benzo(a)anthracene	ND (0.05)	0.01	8270D SIM		1	01/12/17 7:21	C7A0148	CA71116
Benzo(a)pyrene	ND (0.05)	0.01	8270D SIM		1	01/12/17 7:21	C7A0148	CA71116
Benzo(b)fluoranthene	ND (0.05)	0.02	8270D SIM		1	01/12/17 7:21	C7A0148	CA71116
Benzo(g,h,i)perylene	ND (0.19)	0.02	8270D SIM		1	01/12/17 7:21	C7A0148	CA71116
Benzo(k)fluoranthene	ND (0.05)	0.02	8270D SIM		1	01/12/17 7:21	C7A0148	CA71116
bis(2-Ethylhexyl)phthalate	B 5.67 (2.34)	0.19	8270D SIM		1	01/12/17 7:21	C7A0148	CA71116
Butylbenzylphthalate	B, J 0.67 (2.34)	0.19	8270D SIM		1	01/12/17 7:21	C7A0148	CA71116
Chrysene	ND (0.05)	0.01	8270D SIM		1	01/12/17 7:21	C7A0148	CA71116
Dibenzo(a,h)Anthracene	ND (0.05)	0.02	8270D SIM		1	01/12/17 7:21	C7A0148	CA71116
Diethylphthalate	J 0.27 (2.34)	0.19	8270D SIM		1	01/12/17 7:21	C7A0148	CA71116
Dimethylphthalate	ND (2.34)	0.19	8270D SIM		1	01/12/17 7:21	C7A0148	CA71116
Di-n-butylphthalate	ND (2.34)	0.19	8270D SIM		1	01/12/17 7:21	C7A0148	CA71116
Di-n-octylphthalate	B, J 0.30 (2.34)	0.19	8270D SIM		1	01/12/17 7:21	C7A0148	CA71116
Fluoranthene	ND (0.19)	0.02	8270D SIM		1	01/12/17 7:21	C7A0148	CA71116
Fluorene	ND (0.19)	0.03	8270D SIM		1	01/12/17 7:21	C7A0148	CA71116
Indeno(1,2,3-cd)Pyrene	ND (0.05)	0.02	8270D SIM		1	01/12/17 7:21	C7A0148	CA71116
Naphthalene	ND (0.19)	0.04	8270D SIM		1	01/12/17 7:21	C7A0148	CA71116
Pentachlorophenol	ND (0.84)	0.30	8270D SIM		1	01/18/17 20:12	C7A0148	CA71116
Phenanthrene	ND (0.19)	0.04	8270D SIM		1	01/12/17 7:21	C7A0148	CA71116
Pyrene	ND (0.19)	0.02	8270D SIM		1	01/12/17 7:21	C7A0148	CA71116
			2 1:5					

	%Recovery	Qualifier	Limits
Surrogate: 1,2-Dichlorobenzene-d4	41 %		30-130
Surrogate: 2,4,6-Tribromophenol	104 %		15-110
Surrogate: 2-Fluorobiphenyl	71 %		30-130
Surrogate: Nitrobenzene-d5	69 %		30-130
Surrogate: p-Terphenyl-d14	96 %		30-130

185 Frances Avenue, Cranston, RI 02910-2211

Tel: 401-461-7181

Fax: 401-461-4486

The Microbiology Division of Thielsch Engineering, Inc.

CERTIFICATE OF ANALYSIS

Client Name: Tighe & Bond

Client Project ID: Woburn to Mystic - RGP/MCP

Client Sample ID: MW-102A Date Sampled: 01/10/17 12:30

Percent Solids: N/A

ESS Laboratory Work Order: 1701176 ESS Laboratory Sample ID: 1701176-01

Sample Matrix: Ground Water

Classical Chemistry

Analyte Ammonia as N	Results (MRL) 3.17 (0.10)	<u>MDL</u>	Method 4500 NH3 G	<u>Limit</u>	<u>DF</u>	Analyst JLK	Analyzed 01/16/17 16:47	Units mg/L	Batch CA71301
Chloride	320 (10.0)		§		1	SUB	01/12/17 14:50	mg/L	CA71735
Hexavalent Chromium	ND (10)		7196A		1	JLK	01/10/17 21:30	ug/L	CA71051
Phenols	ND (100)	30	420.1		1	JLK	01/13/17 17:00	ug/L	CA71336
Total Cyanide (LL)	ND (5.00)	1.80	4500 CN CE		1	EEM	01/12/17 12:45	ug/L	CA71217
Total Petroleum Hydrocarbon	ND (5)		1664A		1	CRR	01/13/17 16:40	mg/L	CA71136
Total Residual Chlorine	ND (10)		4500-Cl E		1	JLK	01/10/17 20:58	ug/L	CA71052
Total Suspended Solids	120000 (10000)		2540D		1	MJV	01/12/17 16:22	ug/L	CA71227

The Microbiology Division of Thielsch Engineering, Inc.

CERTIFICATE OF ANALYSIS

Client Name: Tighe & Bond

Client Project ID: Woburn to Mystic - RGP/MCP

Client Sample ID: MW-102A Date Sampled: 01/10/17 12:30

Percent Solids: N/A Initial Volume: 35 Final Volume: 2

Extraction Method: 504/8011

ESS Laboratory Work Order: 1701176 ESS Laboratory Sample ID: 1701176-01

Sample Matrix: Ground Water

Units: ug/L Analyst: JXS

Prepared: 1/13/17 12:00

8011 1,2-Dibromoethane / 1,2-Dibromo-3-chloropropane

Analyte 1,2-Dibromoethane	Results (MRL) ND (0.015)	MDL 0.005	<u>Method</u> 8011	<u>Limit</u>	<u>DF</u>	Analyst JXS	Analyzed 01/13/17 15:45	Sequence	Batch CA71322
	%	Recovery	Qualifier	Limits					
Surrogate: Pentachloroethane		106 %		30-150					

185 Frances Avenue, Cranston, RI 02910-2211

2211 Tel: 401-461-7181

Dependability • Quality

Fax: 401-461-4486 ◆ Service

The Microbiology Division of Thielsch Engineering, Inc.

CERTIFICATE OF ANALYSIS

Client Name: Tighe & Bond

Client Project ID: Woburn to Mystic - RGP/MCP

Client Sample ID: MW-102A Date Sampled: 01/10/17 12:30

Percent Solids: N/A
Initial Volume: 1
Final Volume: 1

Extraction Method: No Prep

ESS Laboratory Work Order: 1701176 ESS Laboratory Sample ID: 1701176-01

Sample Matrix: Ground Water

Units: mg/L Analyst: DPS

Prepared: 1/12/17 14:30

Alcohol Scan by GC/FID

AnalyteResults (MRL)MDLMethodLimitDFAnalystAnalyzedSequenceBatchEthanolND (10)80151DPS01/12/17 21:15CA71246

185 Frances Avenue, Cranston, RI 02910-2211

Tel: 401-461-7181

Fax: 401-461-4486

The Microbiology Division of Thielsch Engineering, Inc.

CERTIFICATE OF ANALYSIS

Client Name: Tighe & Bond

Client Project ID: Woburn to Mystic - RGP/MCP

Client Sample ID: MW-102A FF Date Sampled: 01/10/17 12:50

Percent Solids: N/A

ESS Laboratory Work Order: 1701176 ESS Laboratory Sample ID: 1701176-02

Sample Matrix: Ground Water

Units: ug/L

Extraction Method: 3005A

Total Metals

Analyte	Results (MRL)	MDL	Method	<u>Limit</u>	<u>DF</u>	Analyst	Analyzed	I/V	F/V	Batch
Antimony	ND (2.0)	0.2	7010		1	KJK	01/13/17 7:00	50	10	CA71104
Arsenic	17.9 (6.0)	0.5	7010		3	KJK	01/13/17 4:59	50	10	CA71104
Barium	81.1 (10.0)	0.6	6010C		1	BJV	01/12/17 13:00	50	10	CA71104
Beryllium	1.0 (0.2)	0.04	6010C		1	BJV	01/12/17 13:00	50	10	CA71104
Cadmium	ND (0.2)	0.01	7010		1	KJK	01/13/17 16:38	50	10	CA71104
Chromium	5.2 (4.0)	0.6	6010C		1	BJV	01/12/17 13:00	50	10	CA71104
Chromium III	ND (10)		6010C		1	JLK	01/12/17 13:00	1	1	[CALC]
Copper	10.0 (2.0)	0.8	6010C		1	BJV	01/12/17 13:00	50	10	CA71104
Iron	12300 (20.0)	4.6	6010C		1	BJV	01/12/17 13:00	50	10	CA71104
Lead	J 2.8 (3.0)	0.6	7010		3	KJK	01/13/17 1:20	50	10	CA71104
Mercury	ND (0.20)	0.12	7470A		1	MJV	01/13/17 12:22	20	40	CA71110
Nickel	5.3 (4.0)	0.4	6010C		1	BJV	01/12/17 13:00	50	10	CA71104
Selenium	ND (2.0)	0.3	7010		1	KJK	01/12/17 17:21	50	10	CA71104
Silver	ND (0.1)	0.03	7010		1	KJK	01/13/17 20:12	50	10	CA71104
Thallium	ND (1.2)	0.7	7010		3	KJK	01/12/17 21:59	50	10	CA71104
Vanadium	9.4 (4.0)	0.4	6010C		1	BJV	01/12/17 13:00	50	10	CA71104
Zinc	B 25.3 (10.0)	1.8	6010C		1	BJV	01/12/17 13:00	50	10	CA71104

The Microbiology Division of Thielsch Engineering, Inc.

CERTIFICATE OF ANALYSIS

Client Name: Tighe & Bond

Client Project ID: Woburn to Mystic - RGP/MCP

Client Sample ID: MW-102A FF Date Sampled: 01/10/17 12:50

Percent Solids: N/A Initial Volume: 1070

Final Volume: 1

Extraction Method: 3510C

ESS Laboratory Work Order: 1701176 ESS Laboratory Sample ID: 1701176-02

Sample Matrix: Ground Water

Units: ug/L Analyst: SMR

Prepared: 1/12/17 12:18 Cleanup Method: 3665A

8082A Polychlorinated Biphenyls (PCB)

<u>Analyte</u>	Results (MRL)	MDL	Method	<u>Limit</u>	<u>DF</u>	<u>Analyzed</u>	Sequence	Batch
Aroclor 1016	ND (0.09)	0.03	8082A		1	01/13/17 2:08		CA71203
Aroclor 1221	ND (0.09)	0.03	8082A		1	01/13/17 2:08		CA71203
Aroclor 1232	ND (0.09)	0.03	8082A		1	01/13/17 2:08		CA71203
Aroclor 1242	ND (0.09)	0.03	8082A		1	01/13/17 2:08		CA71203
Aroclor 1248	ND (0.09)	0.03	8082A		1	01/13/17 2:08		CA71203
Aroclor 1254	ND (0.09)	0.03	8082A		1	01/13/17 2:08		CA71203
Aroclor 1260	ND (0.09)	0.03	8082A		1	01/13/17 2:08		CA71203
Aroclor 1262	ND (0.09)	0.03	8082A		1	01/13/17 2:08		CA71203
Aroclor 1268	ND (0.09)	0.03	8082A		1	01/13/17 2:08		CA71203
		%Recovery	Qualifier	Limits				
Surrogate: Decachlorobiphenyl		51 %		30-150				
Surrogate: Decachlorobiphenyl [2C]		49 %		30-150				
Surrogate: Tetrachloro-m-xylene		65 %		30-150				
Surrogate: Tetrachloro-m-xylene [2C]		79 %		30-150				

The Microbiology Division of Thielsch Engineering, Inc.

CERTIFICATE OF ANALYSIS

Client Name: Tighe & Bond

Client Project ID: Woburn to Mystic - RGP/MCP

Client Sample ID: MW-102A FF Date Sampled: 01/10/17 12:50

Percent Solids: N/A
Initial Volume: 5
Final Volume: 5

Extraction Method: 5030B

ESS Laboratory Work Order: 1701176 ESS Laboratory Sample ID: 1701176-02

Sample Matrix: Ground Water

Units: ug/L Analyst: MD

8260B Volatile Organic Compounds

Analyte 1,1,1-Trichloroethane	Results (MRL)	<u>MDL</u> 0.2	Method 8260B	<u>Limit</u>	$\frac{\mathbf{DF}}{1}$	<u>Analyzed</u> 01/11/17 13:36	Sequence C7A0139	Batch CA71120
, ,	ND (1.0)					01/11/17 13:36		
1,1,2-Trichloroethane	ND (1.0)	0.2	8260B		1		C7A0139	CA71120
1,1-Dichloroethane	ND (1.0)	0.2	8260B		1	01/11/17 13:36	C7A0139	CA71120
1,1-Dichloroethene	ND (1.0)	0.3	8260B		1	01/11/17 13:36	C7A0139	CA71120
1,2-Dibromoethane	ND (1.0)	0.2	8260B		1	01/11/17 13:36	C7A0139	CA71120
1,2-Dichlorobenzene	ND (1.0)	0.1	8260B		1	01/11/17 13:36	C7A0139	CA71120
1,2-Dichloroethane	ND (1.0)	0.2	8260B		1	01/11/17 13:36	C7A0139	CA71120
1,3-Dichlorobenzene	ND (1.0)	0.2	8260B		1	01/11/17 13:36	C7A0139	CA71120
1,4-Dichlorobenzene	ND (1.0)	0.1	8260B		1	01/11/17 13:36	C7A0139	CA71120
1,4-Dioxane - Screen	ND (500)	190	8260B		1	01/11/17 13:36	C7A0139	CA71120
Acetone	ND (10.0)	2.7	8260B		1	01/11/17 13:36	C7A0139	CA71120
Benzene	ND (1.0)	0.1	8260B		1	01/11/17 13:36	C7A0139	CA71120
Carbon Tetrachloride	ND (1.0)	0.1	8260B		1	01/11/17 13:36	C7A0139	CA71120
cis-1,2-Dichloroethene	ND (1.0)	0.2	8260B		1	01/11/17 13:36	C7A0139	CA71120
Ethylbenzene	ND (1.0)	0.1	8260B		1	01/11/17 13:36	C7A0139	CA71120
Methyl tert-Butyl Ether	ND (1.0)	0.3	8260B		1	01/11/17 13:36	C7A0139	CA71120
Methylene Chloride	ND (2.0)	0.2	8260B		1	01/11/17 13:36	C7A0139	CA71120
Naphthalene	B, J 0.3 (1.0)	0.2	8260B		1	01/11/17 13:36	C7A0139	CA71120
Tertiary-amyl methyl ether	ND (1.0)	0.2	8260B		1	01/11/17 13:36	C7A0139	CA71120
Tertiary-butyl Alcohol	ND (25.0)	10.0	8260B		1	01/11/17 13:36	C7A0139	CA71120
Tetrachloroethene	ND (1.0)	0.2	8260B		1	01/11/17 13:36	C7A0139	CA71120
Toluene	ND (1.0)	0.1	8260B		1	01/11/17 13:36	C7A0139	CA71120
Trichloroethene	ND (1.0)	0.2	8260B		1	01/11/17 13:36	C7A0139	CA71120
Vinyl Chloride	ND (1.0)	0.2	8260B		1	01/11/17 13:36	C7A0139	CA71120
Xylene O	ND (1.0)	0.1	8260B		1	01/11/17 13:36	C7A0139	CA71120
Xylene P,M	ND (2.0)	0.2	8260B		1	01/11/17 13:36	C7A0139	CA71120
		%Recovery	Qualifier	Limits				
Surrogate: 1,2-Dichloroethane-d4		91 %		70-130				
Surrogate: 4-Bromofluorobenzene		89 %		70-130				
Currogatas Dibramafluoramathana								

Surrogate: Dibromofluoromethane

Surrogate: Toluene-d8

105 %

70-130

70-130

The Microbiology Division of Thielsch Engineering, Inc.

CERTIFICATE OF ANALYSIS

Client Name: Tighe & Bond

Client Project ID: Woburn to Mystic - RGP/MCP

Client Sample ID: MW-102A FF Date Sampled: 01/10/17 12:50

Percent Solids: N/A Initial Volume: 1070 Final Volume: 0.25

Extraction Method: 3510C

ESS Laboratory Work Order: 1701176 ESS Laboratory Sample ID: 1701176-02

Sample Matrix: Ground Water

Units: ug/L Analyst: VSC

Prepared: 1/11/17 15:35

8270D(SIM) Semi-Volatile Organic Compounds

Analyte	Results (MRL)	MDL	Method	<u>Limit</u>	<u>DF</u>	Analyzed	Sequence 674 0140	Batch
Acenaphthene	ND (0.19)	0.04	8270D SIM		1	01/12/17 8:10	C7A0148	CA71116
Acenaphthylene	ND (0.19)	0.03	8270D SIM		1	01/12/17 8:10	C7A0148	CA71116
Anthracene	ND (0.19)	0.03	8270D SIM		1	01/12/17 8:10	C7A0148	CA71116
Benzo(a)anthracene	ND (0.05)	0.01	8270D SIM		1	01/12/17 8:10	C7A0148	CA71116
Benzo(a)pyrene	ND (0.05)	0.01	8270D SIM		1	01/12/17 8:10	C7A0148	CA71116
Benzo(b)fluoranthene	ND (0.05)	0.02	8270D SIM		1	01/12/17 8:10	C7A0148	CA71116
Benzo(g,h,i)perylene	ND (0.19)	0.02	8270D SIM		1	01/12/17 8:10	C7A0148	CA71116
Benzo(k)fluoranthene	ND (0.05)	0.02	8270D SIM		1	01/12/17 8:10	C7A0148	CA71116
bis(2-Ethylhexyl)phthalate	B 8.12 (2.34)	0.19	8270D SIM		1	01/12/17 8:10	C7A0148	CA71116
Butylbenzylphthalate	B, J 0.31 (2.34)	0.19	8270D SIM		1	01/12/17 8:10	C7A0148	CA71116
Chrysene	ND (0.05)	0.01	8270D SIM		1	01/12/17 8:10	C7A0148	CA71116
Dibenzo(a,h)Anthracene	ND (0.05)	0.02	8270D SIM		1	01/12/17 8:10	C7A0148	CA71116
Diethylphthalate	J 0.19 (2.34)	0.19	8270D SIM		1	01/12/17 8:10	C7A0148	CA71116
Dimethylphthalate	ND (2.34)	0.19	8270D SIM		1	01/12/17 8:10	C7A0148	CA71116
Di-n-butylphthalate	ND (2.34)	0.19	8270D SIM		1	01/12/17 8:10	C7A0148	CA71116
Di-n-octylphthalate	ND (2.34)	0.19	8270D SIM		1	01/12/17 8:10	C7A0148	CA71116
Fluoranthene	ND (0.19)	0.02	8270D SIM		1	01/12/17 8:10	C7A0148	CA71116
Fluorene	ND (0.19)	0.03	8270D SIM		1	01/12/17 8:10	C7A0148	CA71116
Indeno(1,2,3-cd)Pyrene	ND (0.05)	0.02	8270D SIM		1	01/12/17 8:10	C7A0148	CA71116
Naphthalene	ND (0.19)	0.04	8270D SIM		1	01/12/17 8:10	C7A0148	CA71116
Pentachlorophenol	ND (0.84)	0.30	8270D SIM		1	01/18/17 21:02	C7A0148	CA71116
Phenanthrene	ND (0.19)	0.04	8270D SIM		1	01/12/17 8:10	C7A0148	CA71116
Pyrene	ND (0.19)	0.02	8270D SIM		1	01/12/17 8:10	C7A0148	CA71116
		%Recovery	Qualifier	Limits				

		· ·	
Surrogate: 1,2-Dichlorobenzene-d4	35 %		30-130
Surrogate: 2,4,6-Tribromophenol	91 %		15-110
Surrogate: 2-Fluorobiphenyl	61 %		30-130
Surrogate: Nitrobenzene-d5	61 %		30-130
Surrogate: p-Terphenyl-d14	80 %		30-130

185 Frances Avenue, Cranston, RI 02910-2211

Tel: 401-461-7181

Fax: 401-461-4486

The Microbiology Division of Thielsch Engineering, Inc.

CERTIFICATE OF ANALYSIS

Client Name: Tighe & Bond

Client Project ID: Woburn to Mystic - RGP/MCP

Client Sample ID: MW-102A FF Date Sampled: 01/10/17 12:50

Percent Solids: N/A

ESS Laboratory Work Order: 1701176 ESS Laboratory Sample ID: 1701176-02

Sample Matrix: Ground Water

Classical Chemistry

Analyte Ammonia as N	Results (MRL) 3.18 (0.10)	MDL	Method 4500 NH3 G	<u>Limit</u>	<u>DF</u>	Analyst JLK	Analyzed 01/16/17 16:48	Units mg/L	Batch CA71301
Chloride	1300 (50.0)		§		1	SUB	01/12/17 14:50	mg/L	CA71735
Hexavalent Chromium	ND (10)		7196A		1	JLK	01/10/17 21:30	ug/L	CA71051
Phenols	ND (100)	30	420.1		1	JLK	01/13/17 17:00	ug/L	CA71336
Total Cyanide (LL)	ND (5.00)	1.80	4500 CN CE		1	EEM	01/12/17 12:45	ug/L	CA71217
Total Petroleum Hydrocarbon	ND (5)		1664A		1	CRR	01/16/17 14:42	mg/L	CA71306
Total Residual Chlorine	ND (10)		4500-Cl E		1	JLK	01/10/17 20:58	ug/L	CA71052
Total Suspended Solids	692000 (20000)		2540D		1	MJV	01/12/17 16:22	ug/L	CA71227

The Microbiology Division of Thielsch Engineering, Inc.

CERTIFICATE OF ANALYSIS

Client Name: Tighe & Bond

Client Project ID: Woburn to Mystic - RGP/MCP

Client Sample ID: MW-102A FF Date Sampled: 01/10/17 12:50

Percent Solids: N/A Initial Volume: 35

Final Volume: 2

Extraction Method: 504/8011

ESS Laboratory Work Order: 1701176 ESS Laboratory Sample ID: 1701176-02

Sample Matrix: Ground Water

Units: ug/L Analyst: JXS

Prepared: 1/13/17 12:00

8011 1,2-Dibromoethane / 1,2-Dibromo-3-chloropropane

Analyte 1,2-Dibromoethane	Results (MRL) ND (0.015)	MDL 0.005	Method 8011	<u>Limit</u>	<u>DF</u>	Analyst JXS	Analyzed 01/13/17 17:10	<u>Sequence</u>	Batch CA71322
	%	Recovery	Qualifier	Limits					
Surrogate: Pentachloroethane		110 %		30-150					

185 Frances Avenue, Cranston, RI 02910-2211

Tel: 401-461-7181 Dependability Quality

Fax: 401-461-4486

The Microbiology Division of Thielsch Engineering, Inc.

CERTIFICATE OF ANALYSIS

Client Name: Tighe & Bond

Client Project ID: Woburn to Mystic - RGP/MCP

Client Sample ID: MW-102A FF Date Sampled: 01/10/17 12:50

Percent Solids: N/A
Initial Volume: 1
Final Volume: 1

Extraction Method: No Prep

ESS Laboratory Work Order: 1701176 ESS Laboratory Sample ID: 1701176-02

Sample Matrix: Ground Water

Units: mg/L Analyst: DPS

Prepared: 1/12/17 14:30

Alcohol Scan by GC/FID

AnalyteResults (MRL)MDLMethodLimitDFAnalystAnalyzedSequenceBatchEthanolND (10)80151DPS01/13/17 15:53CA71246

185 Frances Avenue, Cranston, RI 02910-2211

Tel: 401-461-7181

Fax: 401-461-4486 ◆ Service

The Microbiology Division of Thielsch Engineering, Inc.

CERTIFICATE OF ANALYSIS

Client Name: Tighe & Bond

Client Project ID: Woburn to Mystic - RGP/MCP

Client Sample ID: MW-103 Date Sampled: 01/10/17 13:50

Percent Solids: N/A

ESS Laboratory Work Order: 1701176 ESS Laboratory Sample ID: 1701176-03

Sample Matrix: Ground Water

Units: ug/L

Extraction Method: 3005A

Total Metals

Analyte	Results (MRL)	MDL	Method	<u>Limit</u>	<u>DF</u>	Analyst	Analyzed	I/V	F/V	Batch
Antimony	ND (2.0)	0.2	7010		1	KJK	01/13/17 7:05	50	10	CA71104
Arsenic	22.1 (6.0)	0.5	7010		3	KJK	01/13/17 5:16	50	10	CA71104
Barium	48.8 (10.0)	0.6	6010C		1	BJV	01/12/17 13:06	50	10	CA71104
Beryllium	0.5 (0.2)	0.04	6010C		1	BJV	01/12/17 13:06	50	10	CA71104
Cadmium	J 0.05 (0.2)	0.01	7010		1	KJK	01/13/17 16:44	50	10	CA71104
Chromium	5.3 (4.0)	0.6	6010C		1	BJV	01/12/17 13:06	50	10	CA71104
Chromium III	ND (10)		6010C		1	JLK	01/12/17 13:06	1	1	[CALC]
Copper	12.7 (2.0)	0.8	6010C		1	BJV	01/12/17 13:06	50	10	CA71104
Iron	5460 (20.0)	4.6	6010C		1	BJV	01/12/17 13:06	50	10	CA71104
Lead	9.7 (3.0)	0.6	7010		3	KJK	01/13/17 1:26	50	10	CA71104
Mercury	ND (0.20)	0.12	7470A		1	MJV	01/13/17 12:24	20	40	CA71110
Nickel	4.7 (4.0)	0.4	6010C		1	BJV	01/12/17 13:06	50	10	CA71104
Selenium	ND (2.0)	0.3	7010		1	KJK	01/12/17 17:26	50	10	CA71104
Silver	ND (0.1)	0.03	7010		1	KJK	01/13/17 20:29	50	10	CA71104
Thallium	ND (1.2)	0.7	7010		3	KJK	01/12/17 22:05	50	10	CA71104
Vanadium	7.8 (4.0)	0.4	6010C		1	BJV	01/12/17 13:06	50	10	CA71104
Zinc	B 36.7 (10.0)	1.8	6010C		1	BJV	01/12/17 13:06	50	10	CA71104

Service

The Microbiology Division of Thielsch Engineering, Inc.

CERTIFICATE OF ANALYSIS

Client Name: Tighe & Bond

Client Project ID: Woburn to Mystic - RGP/MCP

Client Sample ID: MW-103 Date Sampled: 01/10/17 13:50

Percent Solids: N/A Initial Volume: 1070 Final Volume: 1

Extraction Method: 3510C

ESS Laboratory Work Order: 1701176 ESS Laboratory Sample ID: 1701176-03

Sample Matrix: Ground Water

Units: ug/L Analyst: SMR

Prepared: 1/12/17 12:18 Cleanup Method: 3665A

8082A Polychlorinated Biphenyls (PCB)

Analyte	Results (MRL)	MDL	Method	<u>Limit</u>	DF	<u>Analyzed</u>	Sequence	Batch
Aroclor 1016	ND (0.09)	0.03	8082A		1	01/13/17 2:28		CA71203
Aroclor 1221	ND (0.09)	0.03	8082A		1	01/13/17 2:28		CA71203
Aroclor 1232	ND (0.09)	0.03	8082A		1	01/13/17 2:28		CA71203
Aroclor 1242	ND (0.09)	0.03	8082A		1	01/13/17 2:28		CA71203
Aroclor 1248	ND (0.09)	0.03	8082A		1	01/13/17 2:28		CA71203
Aroclor 1254	ND (0.09)	0.03	8082A		1	01/13/17 2:28		CA71203
Aroclor 1260	ND (0.09)	0.03	8082A		1	01/13/17 2:28		CA71203
Aroclor 1262	ND (0.09)	0.03	8082A		1	01/13/17 2:28		CA71203
Aroclor 1268	ND (0.09)	0.03	8082A		1	01/13/17 2:28		CA71203
		%Recovery	Qualifier	Limits				
Surrogate: Decachlorobiphenyl		84 %		30-150				
Surrogate: Decachlorobiphenyl [2C]		82 %		30-150				
Surrogate: Tetrachloro-m-xylene		80 %		30-150				
Surrogate: Tetrachloro-m-xylene [2C]		98 %		30-150				

The Microbiology Division of Thielsch Engineering, Inc.

CERTIFICATE OF ANALYSIS

Client Name: Tighe & Bond

Client Project ID: Woburn to Mystic - RGP/MCP

Client Sample ID: MW-103 Date Sampled: 01/10/17 13:50

Percent Solids: N/A Initial Volume: 5 Final Volume: 5

Extraction Method: 5030B

ESS Laboratory Work Order: 1701176 ESS Laboratory Sample ID: 1701176-03

Sample Matrix: Ground Water

Units: ug/L Analyst: MD

8260B Volatile Organic Compounds

Analyte	Results (MRL)	MDL	Method	<u>Limit</u>	<u>DF</u>	Analyzed	Sequence 674,0120	Batch
1,1,1-Trichloroethane	ND (1.0)	0.2	8260B		1	01/11/17 14:02	C7A0139	CA71120
1,1,2-Trichloroethane	ND (1.0)	0.2	8260B		1	01/11/17 14:02	C7A0139	CA71120
1,1-Dichloroethane	ND (1.0)	0.2	8260B		1	01/11/17 14:02	C7A0139	CA71120
1,1-Dichloroethene	ND (1.0)	0.3	8260B		1	01/11/17 14:02	C7A0139	CA71120
1,2-Dibromoethane	ND (1.0)	0.2	8260B		1	01/11/17 14:02	C7A0139	CA71120
1,2-Dichlorobenzene	ND (1.0)	0.1	8260B		1	01/11/17 14:02	C7A0139	CA71120
1,2-Dichloroethane	ND (1.0)	0.2	8260B		1	01/11/17 14:02	C7A0139	CA71120
1,3-Dichlorobenzene	ND (1.0)	0.2	8260B		1	01/11/17 14:02	C7A0139	CA71120
1,4-Dichlorobenzene	ND (1.0)	0.1	8260B		1	01/11/17 14:02	C7A0139	CA71120
1,4-Dioxane - Screen	ND (500)	190	8260B		1	01/11/17 14:02	C7A0139	CA71120
Acetone	ND (10.0)	2.7	8260B		1	01/11/17 14:02	C7A0139	CA71120
Benzene	ND (1.0)	0.1	8260B		1	01/11/17 14:02	C7A0139	CA71120
Carbon Tetrachloride	ND (1.0)	0.1	8260B		1	01/11/17 14:02	C7A0139	CA71120
cis-1,2-Dichloroethene	ND (1.0)	0.2	8260B		1	01/11/17 14:02	C7A0139	CA71120
Ethylbenzene	ND (1.0)	0.1	8260B		1	01/11/17 14:02	C7A0139	CA71120
Methyl tert-Butyl Ether	ND (1.0)	0.3	8260B		1	01/11/17 14:02	C7A0139	CA71120
Methylene Chloride	ND (2.0)	0.2	8260B		1	01/11/17 14:02	C7A0139	CA71120
Naphthalene	ND (1.0)	0.2	8260B		1	01/11/17 14:02	C7A0139	CA71120
Tertiary-amyl methyl ether	ND (1.0)	0.2	8260B		1	01/11/17 14:02	C7A0139	CA71120
Tertiary-butyl Alcohol	ND (25.0)	10.0	8260B		1	01/11/17 14:02	C7A0139	CA71120
Tetrachloroethene	ND (1.0)	0.2	8260B		1	01/11/17 14:02	C7A0139	CA71120
Toluene	ND (1.0)	0.1	8260B		1	01/11/17 14:02	C7A0139	CA71120
Trichloroethene	ND (1.0)	0.2	8260B		1	01/11/17 14:02	C7A0139	CA71120
Vinyl Chloride	ND (1.0)	0.2	8260B		1	01/11/17 14:02	C7A0139	CA71120
Xylene O	ND (1.0)	0.1	8260B		1	01/11/17 14:02	C7A0139	CA71120
Xylene P,M	ND (2.0)	0.2	8260B		1	01/11/17 14:02	C7A0139	CA71120
-	9/	6Recovery	Qualifier	Limits				
Surrogate: 1,2-Dichloroethane-d4		91 %		70-130				

 Surrogate: 1,2-Dichloroethane-d4
 91 %
 70-130

 Surrogate: 4-Bromofluorobenzene
 90 %
 70-130

 Surrogate: Dibromofluoromethane
 97 %
 70-130

 Surrogate: Toluene-d8
 105 %
 70-130

185 Frances Avenue, Cranston, RI 02910-2211

Tel: 401-461-7181

Fax: 401-461-4486

The Microbiology Division of Thielsch Engineering, Inc.

CERTIFICATE OF ANALYSIS

Client Name: Tighe & Bond

Client Project ID: Woburn to Mystic - RGP/MCP

Client Sample ID: MW-103 Date Sampled: 01/10/17 13:50

Percent Solids: N/A Initial Volume: 1070 Final Volume: 0.25

Extraction Method: 3510C

ESS Laboratory Work Order: 1701176 ESS Laboratory Sample ID: 1701176-03

Sample Matrix: Ground Water

Units: ug/L Analyst: VSC

Prepared: 1/11/17 15:35

8270D(SIM) Semi-Volatile Organic Compounds

Analyte Acenaphthene	Results (MRL) ND (0.19)	MDL 0.04	Method 8270D SIM	<u>Limit</u>	<u>DF</u>	Analyzed 01/12/17 8:59	Sequence C7A0148	Batch CA71116
Acenaphthylene	ND (0.19)	0.03	8270D SIM		1	01/12/17 8:59	C7A0148	CA71116
Anthracene	ND (0.19)	0.03	8270D SIM		1	01/12/17 8:59	C7A0148	CA71116
Benzo(a)anthracene	J 0.04 (0.05)	0.01	8270D SIM		1	01/12/17 8:59	C7A0148	CA71116
Benzo(a)pyrene	J 0.03 (0.05)	0.01	8270D SIM		1	01/12/17 8:59	C7A0148	CA71116
Benzo(b)fluoranthene	0.05 (0.05)	0.02	8270D SIM		1	01/12/17 8:59	C7A0148	CA71116
Benzo(g,h,i)perylene	J 0.03 (0.19)	0.02	8270D SIM		1	01/12/17 8:59	C7A0148	CA71116
Benzo(k)fluoranthene	ND (0.05)	0.02	8270D SIM		1	01/12/17 8:59	C7A0148	CA71116
bis(2-Ethylhexyl)phthalate	B 3.49 (2.34)	0.19	8270D SIM		1	01/12/17 8:59	C7A0148	CA71116
Butylbenzylphthalate	B, J 0.30 (2.34)	0.19	8270D SIM		1	01/12/17 8:59	C7A0148	CA71116
Chrysene	J 0.04 (0.05)	0.01	8270D SIM		1	01/12/17 8:59	C7A0148	CA71116
Dibenzo(a,h)Anthracene	ND (0.05)	0.02	8270D SIM		1	01/12/17 8:59	C7A0148	CA71116
Diethylphthalate	J 0.19 (2.34)	0.19	8270D SIM		1	01/12/17 8:59	C7A0148	CA71116
Dimethylphthalate	ND (2.34)	0.19	8270D SIM		1	01/12/17 8:59	C7A0148	CA71116
Di-n-butylphthalate	ND (2.34)	0.19	8270D SIM		1	01/12/17 8:59	C7A0148	CA71116
Di-n-octylphthalate	ND (2.34)	0.19	8270D SIM		1	01/12/17 8:59	C7A0148	CA71116
Fluoranthene	J 0.06 (0.19)	0.02	8270D SIM		1	01/12/17 8:59	C7A0148	CA71116
Fluorene	ND (0.19)	0.03	8270D SIM		1	01/12/17 8:59	C7A0148	CA71116
Indeno(1,2,3-cd)Pyrene	J 0.03 (0.05)	0.02	8270D SIM		1	01/12/17 8:59	C7A0148	CA71116
Naphthalene	ND (0.19)	0.04	8270D SIM		1	01/12/17 8:59	C7A0148	CA71116
Pentachlorophenol	ND (0.84)	0.30	8270D SIM		1	01/18/17 21:52	C7A0148	CA71116
Phenanthrene	J 0.04 (0.19)	0.04	8270D SIM		1	01/12/17 8:59	C7A0148	CA71116
Pyrene	J 0.06 (0.19)	0.02	8270D SIM		1	01/12/17 8:59	C7A0148	CA71116

	%Recovery	Qualifier	Limits
Surrogate: 1,2-Dichlorobenzene-d4	47 %		30-130
Surrogate: 2,4,6-Tribromophenol	98 %		15-110
Surrogate: 2-Fluorobiphenyl	73 %		30-130
Surrogate: Nitrobenzene-d5	80 %		30-130
Surrogate: p-Terphenyl-d14	92 %		30-130

185 Frances Avenue, Cranston, RI 02910-2211

Tel: 401-461-7181

Fax: 401-461-4486

The Microbiology Division of Thielsch Engineering, Inc.

CERTIFICATE OF ANALYSIS

Client Name: Tighe & Bond

Client Project ID: Woburn to Mystic - RGP/MCP

Client Sample ID: MW-103 Date Sampled: 01/10/17 13:50

Percent Solids: N/A

ESS Laboratory Work Order: 1701176 ESS Laboratory Sample ID: 1701176-03

Sample Matrix: Ground Water

Classical Chemistry

Analyte Ammonia as N	Results (MRL) 0.24 (0.10)	<u>MDL</u>	Method 4500 NH3 G	<u>Limit</u>	<u>DF</u>	Analyst JLK	Analyzed 01/16/17 16:49	Units mg/L	Batch CA71301
Chloride	730 (20.0)		§		1	SUB	01/12/17 15:05	mg/L	CA71735
Hexavalent Chromium	ND (10)		7196A		1	JLK	01/10/17 21:30	ug/L	CA71051
Phenols	ND (100)	30	420.1		1	JLK	01/13/17 17:00	ug/L	CA71336
Total Cyanide (LL)	ND (5.00)	1.80	4500 CN CE		1	EEM	01/12/17 12:45	ug/L	CA71217
Total Petroleum Hydrocarbon	ND (5)		1664A		1	CRR	01/16/17 14:42	mg/L	CA71306
Total Residual Chlorine	ND (10)		4500-Cl E		1	JLK	01/10/17 20:58	ug/L	CA71052
Total Suspended Solids	952000 (20000)		2540D		1	MJV	01/12/17 16:22	ug/L	CA71227

The Microbiology Division of Thielsch Engineering, Inc.

CERTIFICATE OF ANALYSIS

Client Name: Tighe & Bond

Client Project ID: Woburn to Mystic - RGP/MCP

Client Sample ID: MW-103 Date Sampled: 01/10/17 13:50

Percent Solids: N/A Initial Volume: 35 Final Volume: 2

Extraction Method: 504/8011

ESS Laboratory Work Order: 1701176 ESS Laboratory Sample ID: 1701176-03

Sample Matrix: Ground Water

Units: ug/L Analyst: JXS

Prepared: 1/13/17 12:00

8011 1,2-Dibromoethane / 1,2-Dibromo-3-chloropropane

Analyte 1,2-Dibromoethane	Results (MRL) ND (0.015)	MDL 0.005	<u>Method</u> 8011	<u>Limit</u>	<u>DF</u>	Analyst JXS	Analyzed 01/13/17 17:39	<u>Sequence</u>	Batch CA71322
	96	Recovery	Qualifier	Limits					
Surrogate: Pentachloroethane		106 %		30-150					

185 Frances Avenue, Cranston, RI 02910-2211

Tel: 401-461-7181

Fax: 401-461-4486 Service

The Microbiology Division of Thielsch Engineering, Inc.

CERTIFICATE OF ANALYSIS

Client Name: Tighe & Bond

Client Project ID: Woburn to Mystic - RGP/MCP

Client Sample ID: MW-103 Date Sampled: 01/10/17 13:50

Percent Solids: N/A
Initial Volume: 1
Final Volume: 1

Extraction Method: No Prep

ESS Laboratory Work Order: 1701176 ESS Laboratory Sample ID: 1701176-03

Sample Matrix: Ground Water

Units: mg/L Analyst: DPS

Prepared: 1/12/17 14:30

Alcohol Scan by GC/FID

AnalyteResults (MRL)MDLMethodLimitDFAnalystAnalyzedSequenceBatchEthanolND (10)80151DPS01/13/17 16:11CA71246

185 Frances Avenue, Cranston, RI 02910-2211

Tel: 401-461-7181

Fax: 401-461-4486

The Microbiology Division of Thielsch Engineering, Inc.

CERTIFICATE OF ANALYSIS

Client Name: Tighe & Bond

Client Project ID: Woburn to Mystic - RGP/MCP

Client Sample ID: MW-103 FF Date Sampled: 01/10/17 14:15

Percent Solids: N/A

ESS Laboratory Work Order: 1701176 ESS Laboratory Sample ID: 1701176-04

Sample Matrix: Ground Water

Units: ug/L

Extraction Method: 3005A

Total Metals

Analyte	Results (MRL)	MDL	Method	<u>Limit</u>	<u>DF</u>	Analyst	Analyzed	I/V	F/V	Batch
Antimony	ND (2.0)	0.2	7010		1	KJK	01/13/17 7:34	50	10	CA71104
Arsenic	21.2 (6.0)	0.5	7010		3	KJK	01/13/17 5:22	50	10	CA71104
Barium	55.5 (10.0)	0.6	6010C		1	BJV	01/12/17 13:11	50	10	CA71104
Beryllium	0.6 (0.2)	0.04	6010C		1	BJV	01/12/17 13:11	50	10	CA71104
Cadmium	J 0.06 (0.2)	0.01	7010		1	KJK	01/13/17 16:50	50	10	CA71104
Chromium	5.7 (4.0)	0.6	6010C		1	BJV	01/12/17 13:11	50	10	CA71104
Chromium III	ND (10)		6010C		1	JLK	01/12/17 13:11	1	1	[CALC]
Copper	18.2 (2.0)	0.8	6010C		1	BJV	01/12/17 13:11	50	10	CA71104
Iron	6630 (20.0)	4.6	6010C		1	BJV	01/12/17 13:11	50	10	CA71104
Lead	8.9 (3.0)	0.6	7010		3	KJK	01/13/17 1:31	50	10	CA71104
Mercury	ND (0.20)	0.12	7470A		1	MJV	01/13/17 12:26	20	40	CA71110
Nickel	5.8 (4.0)	0.4	6010C		1	BJV	01/12/17 13:11	50	10	CA71104
Selenium	ND (2.0)	0.3	7010		1	KJK	01/12/17 17:32	50	10	CA71104
Silver	ND (0.1)	0.03	7010		1	KJK	01/13/17 20:35	50	10	CA71104
Thallium	ND (1.2)	0.7	7010		3	KJK	01/12/17 22:11	50	10	CA71104
Vanadium	9.1 (4.0)	0.4	6010C		1	BJV	01/12/17 13:11	50	10	CA71104
Zinc	B 33.6 (10.0)	1.8	6010C		1	BJV	01/12/17 13:11	50	10	CA71104

The Microbiology Division of Thielsch Engineering, Inc.

CERTIFICATE OF ANALYSIS

Client Name: Tighe & Bond

Client Project ID: Woburn to Mystic - RGP/MCP

Client Sample ID: MW-103 FF Date Sampled: 01/10/17 14:15

Percent Solids: N/A Initial Volume: 1070 Final Volume: 1

Extraction Method: 3510C

ESS Laboratory Work Order: 1701176 ESS Laboratory Sample ID: 1701176-04

Sample Matrix: Ground Water

Units: ug/L Analyst: SMR

Prepared: 1/12/17 12:18 Cleanup Method: 3665A

8082A Polychlorinated Biphenyls (PCB)

<u>Analyte</u>	Results (MRL)	MDL	Method	<u>Limit</u>	<u>DF</u>	Analyzed	Sequence	Batch
Aroclor 1016	ND (0.09)	0.03	8082A		1	01/13/17 2:46		CA71203
Aroclor 1221	ND (0.09)	0.03	8082A		1	01/13/17 2:46		CA71203
Aroclor 1232	ND (0.09)	0.03	8082A		1	01/13/17 2:46		CA71203
Aroclor 1242	ND (0.09)	0.03	8082A		1	01/13/17 2:46		CA71203
Aroclor 1248	ND (0.09)	0.03	8082A		1	01/13/17 2:46		CA71203
Aroclor 1254	ND (0.09)	0.03	8082A		1	01/13/17 2:46		CA71203
Aroclor 1260	ND (0.09)	0.03	8082A		1	01/13/17 2:46		CA71203
Aroclor 1262	ND (0.09)	0.03	8082A		1	01/13/17 2:46		CA71203
Aroclor 1268	ND (0.09)	0.03	8082A		1	01/13/17 2:46		CA71203
		%Recovery	Qualifier	Limits				
Surrogate: Decachlorobiphenyl		52 %		30-150				
Surrogate: Decachlorobiphenyl [2C]		50 %		30-150				
Surrogate: Tetrachloro-m-xylene		68 %		30-150				
Surrogate: Tetrachloro-m-xylene [2C]		83 %		30-150				

The Microbiology Division of Thielsch Engineering, Inc.

CERTIFICATE OF ANALYSIS

Client Name: Tighe & Bond

Client Project ID: Woburn to Mystic - RGP/MCP

Client Sample ID: MW-103 FF Date Sampled: 01/10/17 14:15

Percent Solids: N/A Initial Volume: 5 Final Volume: 5

Extraction Method: 5030B

ESS Laboratory Work Order: 1701176 ESS Laboratory Sample ID: 1701176-04

Sample Matrix: Ground Water

Units: ug/L Analyst: MD

8260B Volatile Organic Compounds

Analyte	Results (MRL)	MDL	Method	<u>Limit</u>	<u>DF</u>	Analyzed	Sequence	Batch
1,1,1-Trichloroethane	ND (1.0)	0.2	8260B		1	01/11/17 14:29	C7A0139	CA71120
1,1,2-Trichloroethane	ND (1.0)	0.2	8260B		1	01/11/17 14:29	C7A0139	CA71120
1,1-Dichloroethane	ND (1.0)	0.2	8260B		1	01/11/17 14:29	C7A0139	CA71120
1,1-Dichloroethene	ND (1.0)	0.3	8260B		1	01/11/17 14:29	C7A0139	CA71120
1,2-Dibromoethane	ND (1.0)	0.2	8260B		1	01/11/17 14:29	C7A0139	CA71120
1,2-Dichlorobenzene	ND (1.0)	0.1	8260B		1	01/11/17 14:29	C7A0139	CA71120
1,2-Dichloroethane	ND (1.0)	0.2	8260B		1	01/11/17 14:29	C7A0139	CA71120
1,3-Dichlorobenzene	ND (1.0)	0.2	8260B		1	01/11/17 14:29	C7A0139	CA71120
1,4-Dichlorobenzene	ND (1.0)	0.1	8260B		1	01/11/17 14:29	C7A0139	CA71120
1,4-Dioxane - Screen	ND (500)	190	8260B		1	01/11/17 14:29	C7A0139	CA71120
Acetone	ND (10.0)	2.7	8260B		1	01/11/17 14:29	C7A0139	CA71120
Benzene	ND (1.0)	0.1	8260B		1	01/11/17 14:29	C7A0139	CA71120
Carbon Tetrachloride	ND (1.0)	0.1	8260B		1	01/11/17 14:29	C7A0139	CA71120
cis-1,2-Dichloroethene	ND (1.0)	0.2	8260B		1	01/11/17 14:29	C7A0139	CA71120
Ethylbenzene	ND (1.0)	0.1	8260B		1	01/11/17 14:29	C7A0139	CA71120
Methyl tert-Butyl Ether	ND (1.0)	0.3	8260B		1	01/11/17 14:29	C7A0139	CA71120
Methylene Chloride	ND (2.0)	0.2	8260B		1	01/11/17 14:29	C7A0139	CA71120
Naphthalene	ND (1.0)	0.2	8260B		1	01/11/17 14:29	C7A0139	CA71120
Tertiary-amyl methyl ether	ND (1.0)	0.2	8260B		1	01/11/17 14:29	C7A0139	CA71120
Tertiary-butyl Alcohol	ND (25.0)	10.0	8260B		1	01/11/17 14:29	C7A0139	CA71120
Tetrachloroethene	ND (1.0)	0.2	8260B		1	01/11/17 14:29	C7A0139	CA71120
Toluene	ND (1.0)	0.1	8260B		1	01/11/17 14:29	C7A0139	CA71120
Trichloroethene	ND (1.0)	0.2	8260B		1	01/11/17 14:29	C7A0139	CA71120
Vinyl Chloride	ND (1.0)	0.2	8260B		1	01/11/17 14:29	C7A0139	CA71120
Xylene O	ND (1.0)	0.1	8260B		1	01/11/17 14:29	C7A0139	CA71120
Xylene P,M	ND (2.0)	0.2	8260B		1	01/11/17 14:29	C7A0139	CA71120
	9/	6Recovery	Qualifier	Limits				
Surrogate: 1,2-Dichloroethane-d4		92 %		70-130				

 Surrogate: 1,2-Dichloroethane-d4
 92 %
 70-130

 Surrogate: 4-Bromofluorobenzene
 89 %
 70-130

 Surrogate: Dibromofluoromethane
 98 %
 70-130

 Surrogate: Toluene-d8
 104 %
 70-130

185 Frances Avenue, Cranston, RI 02910-2211

Tel: 401-461-7181

Fax: 401-461-4486

The Microbiology Division of Thielsch Engineering, Inc.

CERTIFICATE OF ANALYSIS

Client Name: Tighe & Bond

Client Project ID: Woburn to Mystic - RGP/MCP

Client Sample ID: MW-103 FF Date Sampled: 01/10/17 14:15

Percent Solids: N/A Initial Volume: 1070 Final Volume: 0.25

Extraction Method: 3510C

ESS Laboratory Work Order: 1701176 ESS Laboratory Sample ID: 1701176-04

Sample Matrix: Ground Water

Units: ug/L Analyst: VSC

Prepared: 1/11/17 15:35

8270D(SIM) Semi-Volatile Organic Compounds

Analyte	Results (MRL)	MDL	Method	<u>Limit</u>	<u>DF</u>	Analyzed	Sequence	Batch
Acenaphthene	ND (0.19)	0.04	8270D SIM		1	01/12/17 9:49	C7A0148	CA71116
Acenaphthylene	ND (0.19)	0.03	8270D SIM		1	01/12/17 9:49	C7A0148	CA71116
Anthracene	ND (0.19)	0.03	8270D SIM		1	01/12/17 9:49	C7A0148	CA71116
Benzo(a)anthracene	ND (0.05)	0.01	8270D SIM		1	01/12/17 9:49	C7A0148	CA71116
Benzo(a)pyrene	ND (0.05)	0.01	8270D SIM		1	01/12/17 9:49	C7A0148	CA71116
Benzo(b)fluoranthene	ND (0.05)	0.02	8270D SIM		1	01/12/17 9:49	C7A0148	CA71116
Benzo(g,h,i)perylene	ND (0.19)	0.02	8270D SIM		1	01/12/17 9:49	C7A0148	CA71116
Benzo(k)fluoranthene	ND (0.05)	0.02	8270D SIM		1	01/12/17 9:49	C7A0148	CA71116
bis(2-Ethylhexyl)phthalate	B 6.24 (2.34)	0.19	8270D SIM		1	01/12/17 9:49	C7A0148	CA71116
Butylbenzylphthalate	B, J 0.52 (2.34)	0.19	8270D SIM		1	01/12/17 9:49	C7A0148	CA71116
Chrysene	ND (0.05)	0.01	8270D SIM		1	01/12/17 9:49	C7A0148	CA71116
Dibenzo(a,h)Anthracene	ND (0.05)	0.02	8270D SIM		1	01/12/17 9:49	C7A0148	CA71116
Diethylphthalate	J 0.82 (2.34)	0.19	8270D SIM		1	01/12/17 9:49	C7A0148	CA71116
Dimethylphthalate	ND (2.34)	0.19	8270D SIM		1	01/12/17 9:49	C7A0148	CA71116
Di-n-butylphthalate	J 0.45 (2.34)	0.19	8270D SIM		1	01/12/17 9:49	C7A0148	CA71116
Di-n-octylphthalate	ND (2.34)	0.19	8270D SIM		1	01/12/17 9:49	C7A0148	CA71116
Fluoranthene	ND (0.19)	0.02	8270D SIM		1	01/12/17 9:49	C7A0148	CA71116
Fluorene	ND (0.19)	0.03	8270D SIM		1	01/12/17 9:49	C7A0148	CA71116
Indeno(1,2,3-cd)Pyrene	ND (0.05)	0.02	8270D SIM		1	01/12/17 9:49	C7A0148	CA71116
Naphthalene	ND (0.19)	0.04	8270D SIM		1	01/12/17 9:49	C7A0148	CA71116
Pentachlorophenol	ND (0.84)	0.30	8270D SIM		1	01/18/17 22:41	C7A0148	CA71116
Phenanthrene	ND (0.19)	0.04	8270D SIM		1	01/12/17 9:49	C7A0148	CA71116
Pyrene	ND (0.19)	0.02	8270D SIM		1	01/12/17 9:49	C7A0148	CA71116
	ç	%Recovery	Qualifier	Limits				

 Surrogate: 1,2-Dichlorobenzene-d4
 43 %
 30-130

 Surrogate: 2,4,6-Tribromophenol
 91 %
 15-110

 Surrogate: 2-Fluorobiphenyl
 66 %
 30-130

 Surrogate: Nitrobenzene-d5
 67 %
 30-130

 Surrogate: p-Terphenyl-d14
 86 %
 30-130

185 Frances Avenue, Cranston, RI 02910-2211

Tel: 401-461-7181

Fax: 401-461-4486

The Microbiology Division of Thielsch Engineering, Inc.

CERTIFICATE OF ANALYSIS

Client Name: Tighe & Bond

Client Project ID: Woburn to Mystic - RGP/MCP

Client Sample ID: MW-103 FF Date Sampled: 01/10/17 14:15

Percent Solids: N/A

ESS Laboratory Work Order: 1701176 ESS Laboratory Sample ID: 1701176-04

Sample Matrix: Ground Water

Classical Chemistry

Analyte Ammonia as N	Results (MRL) 0.28 (0.10)	MDL	Method 4500 NH3 G	<u>Limit</u>	<u>DF</u>	Analys	<u>Analyzed</u> 01/16/17 17:17	Units mg/L	Batch CA71301
Chloride	740 (20.0)		§		1	SUB	01/12/17 15:19	mg/L	CA71735
Hexavalent Chromium	ND (10)		7196A		1	JLK	01/10/17 21:30	ug/L	CA71051
Phenols	ND (100)	30	420.1		1	JLK	01/13/17 17:00	ug/L	CA71336
Total Cyanide (LL)	ND (5.00)	1.80	4500 CN CE		1	EEM	01/12/17 12:45	ug/L	CA71217
Total Petroleum Hydrocarbon	ND (5)		1664A		1	CRR	01/16/17 14:42	mg/L	CA71306
Total Residual Chlorine	ND (10)		4500-Cl E		1	JLK	01/10/17 20:58	ug/L	CA71052
Total Suspended Solids	1560000 (20000)		2540D		1	MJV	01/12/17 16:22	ug/L	CA71227

The Microbiology Division of Thielsch Engineering, Inc.

CERTIFICATE OF ANALYSIS

Client Name: Tighe & Bond

Client Project ID: Woburn to Mystic - RGP/MCP

Client Sample ID: MW-103 FF Date Sampled: 01/10/17 14:15

Percent Solids: N/A Initial Volume: 35 Final Volume: 2

Extraction Method: 504/8011

ESS Laboratory Work Order: 1701176 ESS Laboratory Sample ID: 1701176-04

Sample Matrix: Ground Water

Units: ug/L Analyst: JXS

Prepared: 1/13/17 12:00

8011 1,2-Dibromoethane / 1,2-Dibromo-3-chloropropane

Analyte 1,2-Dibromoethane	Results (MRL) ND (0.015)	MDL 0.005	Method 8011	<u>Limit</u>	<u>DF</u>	Analyst JXS	Analyzed 01/13/17 18:07	<u>Sequence</u>	Batch CA71322
	%	Recovery	Qualifier	Limits					
Surrogate: Pentachloroethane		118 %		30-150					

185 Frances Avenue, Cranston, RI 02910-2211

Tel: 401-461-7181

Fax: 401-461-4486

The Microbiology Division of Thielsch Engineering, Inc.

CERTIFICATE OF ANALYSIS

Client Name: Tighe & Bond

Client Project ID: Woburn to Mystic - RGP/MCP

Client Sample ID: MW-103 FF Date Sampled: 01/10/17 14:15

Percent Solids: N/A Initial Volume: 1 Final Volume: 1

Extraction Method: No Prep

ESS Laboratory Work Order: 1701176 ESS Laboratory Sample ID: 1701176-04

Sample Matrix: Ground Water

Units: mg/L Analyst: DPS

Prepared: 1/12/17 14:30

Alcohol Scan by GC/FID

AnalyteResults (MRL)MDLMethodLimitDFAnalystAnalyzedSequenceBatchEthanolND (10)80151DPS01/13/17 16:34CA71246

185 Frances Avenue, Cranston, RI 02910-2211

Tel: 401-461-7181

Fax: 401-461-4486

185 Frances Avenue, Cranston, RI 02910-2211

BAL Laboratory

The Microbiology Division of Thielsch Engineering, Inc.

%REC

RPD

CERTIFICATE OF ANALYSIS

Client Name: Tighe & Bond

Client Project ID: Woburn to Mystic - RGP/MCP ESS Laboratory Work Order: 1701176

Quality Control Data

Spike

Source

Analyte	Result	MRL	Units	Level	Result	%REC	Limits	RPD	Limit	Qualifier
			Total Metal	S						
atch CA71051 - [CALC]										
lank										
hromium III	ND	10	ug/L							
CS										
hromium III	ND		ug/L							
CS Dup	·· ·		-5/-							
hromium III	ND		ug/L							
	no no		~ 9 , =							
atch CA71104 - 3005A										
lank										
arium 	ND	50.0	ug/L							
eryllium	ND	1.0	ug/L							
hromium	ND	20.0	ug/L							
opper	ND	10.0	ug/L							
ron ickel	ND ND	100 20.0	ug/L ug/L							
anadium	ND ND	20.0	ug/L ug/L							
inc	16.5	50.0	ug/L							J
	10.0		49, 2							
ntimony	ND	5.0	ug/L							
rsenic	ND	5.0	ug/L ug/L							
arium	ND	25.0	ug/L							
eryllium	ND	0.5	ug/L							
admium	ND	0.5	ug/L							
hromium	ND	10.0	ug/L							
hromium III	ND	10	ug/L							
opper	ND	5.0	ug/L							
ron	ND	50.0	ug/L							
ead	ND	2.5	ug/L							
ickel	ND	10.0	ug/L							
elenium	ND	5.0	ug/L							
ilver	ND	0.2	ug/L							
hallium	ND	1.0	ug/L							
anadium	ND	10.0	ug/L							
inc	ND	25.0	ug/L							
lank										
ntimony	ND	2.0	ug/L							
rsenic .	ND	2.0	ug/L							
arium	ND	10.0	ug/L							
eryllium	ND	0.2	ug/L							
admium	ND	0.2	ug/L							
hromium hromium III	ND ND	4.0	ug/L							
opper	ND ND	4 2.0	ug/L ug/L							
opper	6.0	20.0	ug/L ug/L							J
ead	ND	1.0	ug/L ug/L							J
195 Frances	Avanua Cranatan DI 020		ug/L Tal: 401 461 710	21 Ea	v: 401 461					

Tel: 401-461-7181

Quality

Dependability

Fax: 401-461-4486

Service

The Microbiology Division of Thielsch Engineering, Inc.

CERTIFICATE OF ANALYSIS

Client Name: Tighe & Bond

Client Project ID: Woburn to Mystic - RGP/MCP ESS Laboratory Work Order: 1701176

Analyte	Result	MRL	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Qualifie
			Total Meta	als						
atch CA71104 - 3005A										
lickel	ND	4.0	ug/L							
Selenium	ND	2.0	ug/L							
Silver	ND	0.1	ug/L							
'hallium	ND	0.4	ug/L							
'anadium	ND	4.0	ug/L							
inc	2.2	10.0	ug/L							J
CS										
arium	477	50.0	ug/L	500.0		95	80-120			
eryllium	46.8	1.0	ug/L	50.00		94	80-120			
hromium	476	20.0	ug/L	500.0		95	80-120			
opper	478	10.0	ug/L	500.0		96	80-120			
on	2680	100	ug/L	2500		107	80-120			
ickel	481	20.0	ug/L	500.0		96	80-120			
anadium	475	20.0	ug/L	500.0		95	80-120			
nc	463	50.0	ug/L	500.0		93	80-120			
	103	30.0	ug/L	300.0			00 120			
CS 		425		250.0		101	00.100			
ntimony	252	125	ug/L	250.0		101	80-120			
rsenic	256	125	ug/L	250.0		102	80-120			
arium	235	25.0	ug/L	250.0		94	80-120			
eryllium	23.2	0.5	ug/L	25.00		93	80-120			
admium	122	250	ug/L	125.0		98	80-120			J
hromium	234	10.0	ug/L	250.0		94	80-120			
hromium III	234	10	ug/L							
opper	232	5.0	ug/L	250.0		93	80-120			
ron	1140	50.0	ug/L	1250		91	80-120			
ead	272	62.5	ug/L	250.0		109	80-120			
ickel	237	10.0	ug/L	250.0		95	80-120			
elenium	546	125	ug/L	500.0		109	80-120			
ilver	116	2.5	ug/L	125.0		93	80-120			
ilver	117	25.0	ug/L	125.0		94	80-120			
hallium	275	25.0	ug/L	250.0		110	80-120			
'anadium	234	10.0	ug/L	250.0		93	80-120			
inc	227	25.0	ug/L	250.0		91	80-120			
cs										
ntimony	93.5	50.0	ug/L	100.0		94	80-120			
rsenic	108	50.0	ug/L	100.0		108	80-120			
arium	96.8	10.0	ug/L	100.0		97	80-120			
eryllium	9.5	0.2	ug/L	10.00		95	80-120			
admium	47.7	100	ug/L	50.00		95	80-120			J
nromium	96.6	4.0	ug/L	100.0		97	80-120			
nromium III	97.0	4	ug/L							
opper	97.1	2.0	ug/L	100.0		97	80-120			
on	483	20.0	ug/L	500.0		97	80-120			
ead	108	25.0	ug/L	100.0		108	80-120			
	96.3	4.0	ug/L	100.0		96	80-120			

The Microbiology Division of Thielsch Engineering, Inc.

CERTIFICATE OF ANALYSIS

Client Name: Tighe & Bond

Client Project ID: Woburn to Mystic - RGP/MCP ESS Laboratory Work Order: 1701176

Analyte	Result	MRL	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Qualifie
			Total Meta	als						
atch CA71104 - 3005A										
elenium	222	50.0	ug/L	200.0		111	80-120			
ilver	40.5	10.0	ug/L	50.00		81	80-120			
hallium	109	10.0	ug/L	100.0		109	80-120			
anadium	97.4	4.0	ug/L	100.0		97	80-120			
nc	96.1	10.0	ug/L	100.0		96	80-120			
S Dup										
arium	467	50.0	ug/L	500.0		93	80-120	2	20	
eryllium	45.6	1.0	ug/L	50.00		91	80-120	3	20	
ıromium	465	20.0	ug/L	500.0		93	80-120	2	20	
opper	472	10.0	ug/L	500.0		94	80-120	1	20	
on	2350	100	ug/L	2500		94	80-120	13	20	
ckel	476	20.0	ug/L	500.0		95	80-120	1	20	
nadium	466	20.0	ug/L	500.0		93	80-120	2	20	
nc	452	50.0	ug/L	500.0		90	80-120	2	20	
S Dup			<u></u>							
itimony	252	125	ug/L	250.0		101	80-120	0.03	20	
senic	260	125	ug/L	250.0		104	80-120	2	20	
rium	247	25.0	ug/L	250.0		99	80-120	5	20	
ryllium	24.2	0.5	ug/L	25.00		97	80-120	5	20	
dmium	120	250	ug/L	125.0		96	80-120	2	20	J
romium	247	10.0	ug/L	250.0		99	80-120	5	20	,
romium III	247	10	ug/L	250.0		33	00 120	3	20	
pper	244	5.0	ug/L	250.0		98	80-120	5	20	
on.	1190	50.0	ug/L	1250		95	80-120	4	20	
ad	270	62.5	ug/L	250.0		108	80-120	0.8	20	
ckel	246	10.0	ug/L	250.0		98	80-120	4	20	
lenium	541	125	ug/L	500.0		108	80-120	0.9	20	
ver	118	25.0	ug/L	125.0		95	80-120	0.8	20	
ver	122	2.5	ug/L	125.0		98	80-120	5	20	
allium	275	25.0		250.0		110	80-120	0.03	20	
ınadium	246	10.0	ug/L ug/L	250.0		98	80-120	5	20	
nc	239	25.0	ug/L	250.0		96	80-120	5	20	
	239	23.0	ug/L	250.0			00 120			
S Dup	20.0	50.0		100.0			00.120			
timony	99.0	50.0	ug/L	100.0		99	80-120	6	20	
senic	108	50.0	ug/L	100.0		108	80-120	0.3	20	
rium	93.7	10.0	ug/L	100.0		94	80-120	3	20	
ryllium	9.1	0.2	ug/L	10.00		91	80-120	4	20	
dmium	50.8	100	ug/L	50.00		102	80-120	6	20	J
romium	93.0	4.0	ug/L	100.0		93	80-120	4	20	
romium III	93.0	4	ug/L	100.0		62	00.430	,	20	
ppper	93.0	2.0	ug/L	100.0		93	80-120	4	20	
on	462	20.0	ug/L	500.0		92	80-120	4	20	
ad	108	25.0	ug/L	100.0		108	80-120	0.1	20	
ckel	92.0	4.0	ug/L	100.0		92	80-120	4	20	
lenium	225	50.0	ug/L	200.0		113	80-120	1	20	

The Microbiology Division of Thielsch Engineering, Inc.

CERTIFICATE OF ANALYSIS

Client Name: Tighe & Bond

Client Project ID: Woburn to Mystic - RGP/MCP ESS Laboratory Work Order: 1701176

				Spike	Source		%REC		RPD	
Analyte	Result	MRL	Units	Level	Result	%REC	Limits	RPD	Limit	Qualifier
			Total Met	als						
Batch CA71104 - 3005A										
Silver	40.7	10.0	ug/L	50.00		81	80-120	0.4	20	
Thallium	112	10.0	ug/L	100.0		112	80-120	3	20	
Vanadium	93.4	4.0	ug/L	100.0		93	80-120	4	20	
Zinc	92.1	10.0	ug/L	100.0		92	80-120	4	20	
Batch CA71110 - 245.1/7470A										
Blank										
Mercury	ND	0.20	ug/L							
LCS										
Mercury	6.33	0.20	ug/L	6.000		105	80-120			
LCS Dup										
Mercury	6.18	0.20	ug/L	6.000		103	80-120	2	20	
		8082A Polyc	chlorinated	Biphenyls	(PCB)					
Batch CA71203 - 3510C										
Blank										
Aroclor 1016	ND	0.05	ug/L							
Aroclor 1221	ND	0.05	ug/L							
Aroclor 1232	ND	0.05	ug/L							
Aroclor 1242	ND	0.05	ug/L							
Aroclor 1248	ND	0.05	ug/L							
Aroclor 1254	ND	0.05	ug/L							
Aroclor 1260	ND	0.05	ug/L							
Aroclor 1262	ND	0.05	ug/L							
Aroclor 1268	ND	0.05	ug/L							
Surrogate: Decachlorobiphenyl	0.0373		ug/L	0.05000		<i>75</i>	30-150			
Surrogate: Decachlorobiphenyl [2C]	0.0338		ug/L	0.05000		68	30-150			
Surrogate: Tetrachloro-m-xylene	0.0282		ug/L	0.05000		56	30-150			
Surrogate: Tetrachloro-m-xylene [2C]	0.0363		ug/L	0.05000		73	30-150			
LCS										
Aroclor 1016	0.92	0.05	ug/L	1.000		92	40-140			
Aroclor 1260	0.84	0.05	ug/L	1.000		84	40-140			
Surrogate: Decachlorobiphenyl	0.0407		ug/L	0.05000		81	30-150			
Surrogate: Decachlorobiphenyl [2C]	0.0384		ug/L	0.05000		<i>77</i>	30-150			
Surrogate: Tetrachloro-m-xylene	0.0345		ug/L	0.05000		69	30-150			
Surrogate: Tetrachloro-m-xylene [2C]	0.0394		ug/L	0.05000		79	30-150			
LCS Dup										
Aroclor 1016	0.98	0.05	ug/L	1.000		98	40-140	5	20	
Aroclor 1260	0.86	0.05	ug/L	1.000		86	40-140	3	20	
Surrogate: Decachlorobiphenyl	0.0477		ug/L	0.05000		95	30-150			
Surrogate: Decachlorobiphenyl [2C]	0.0448		ug/L	0.05000		90	30-150			
Surrogate: Tetrachloro-m-xylene	0.0388		ug/L	0.05000		78	30-150			

185 Frances Avenue, Cranston, RI 02910-2211

BAL Laboratory

The Microbiology Division of Thielsch Engineering, Inc.

CERTIFICATE OF ANALYSIS

Client Name: Tighe & Bond

Client Project ID: Woburn to Mystic - RGP/MCP ESS Laboratory Work Order: 1701176

Quality Control Data

Analyte	Result	MRL	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Qualifier
		8082A Polych	nlorinated	Biphenyls	(PCB)					
Batch CA71203 - 3510C										
Surrogate: Tetrachloro-m-xylene [2C]	0.0449		ug/L	0.05000		90	30-150			
		8260B Vola	atile Organ	ic Compou	unds					
Batch CA71120 - 5030B										
Blank										
,1,1-Trichloroethane	ND	1.0	ug/L							
1,1,2-Trichloroethane	ND	1.0	ug/L							
,1-Dichloroethane	ND	1.0	ug/L							
,1-Dichloroethene	ND	1.0	ug/L							
,2-Dibromoethane	ND	1.0	ug/L							
.,2-Dichlorobenzene	ND	1.0	ug/L							
,2-Dichloroethane	ND	1.0	ug/L							
,3-Dichlorobenzene	ND	1.0	ug/L							
,4-Dichlorobenzene	ND	1.0	ug/L							
,4-Dioxane - Screen	ND	500	ug/L							
cetone	ND	10.0	ug/L							
enzene	ND	1.0	ug/L							
Carbon Tetrachloride	ND	1.0	ug/L							
is-1,2-Dichloroethene	ND	1.0	ug/L							
thylbenzene	ND	1.0	ug/L							
Methyl tert-Butyl Ether	ND	1.0	ug/L							
1ethylene Chloride	ND	2.0	ug/L							
laphthalene	0.7	1.0	ug/L							J
ertiary-amyl methyl ether	ND	1.0	ug/L							
Fertiary-butyl Alcohol	ND	25.0	ug/L							
Tetrachloroethene	ND	1.0	ug/L							
oluene	ND	1.0	ug/L							
richloroethene	ND	1.0	ug/L							
/inyl Chloride	ND	1.0	ug/L							
(ylene O	ND	1.0	ug/L							
(ylene P,M	ND	2.0	ug/L							
Surrogate: 1,2-Dichloroethane-d4	22.8		ug/L	25.00		91	70-130			
Surrogate: 4-Bromofluorobenzene	22.4		ug/L	25.00		90	70-130			
Surrogate: Dibromofluoromethane	24.8		ug/L	25.00		99	70-130			
Surrogate: Toluene-d8	25.6		ug/L	25.00		102	70-130			
.cs										
.,1,1-Trichloroethane	9.4		ug/L	10.00		94	70-130			
,1,2-Trichloroethane	9.4		ug/L	10.00		94	70-130			
,1-Dichloroethane	9.5		ug/L	10.00		95	70-130			
.,1-Dichloroethene	10.5		ug/L	10.00		105	70-130			
,,2-Dibromoethane	10.1		ug/L	10.00		101	70-130			
,2-Dichlorobenzene	9.6		ug/L	10.00		96	70-130			
,2-Dichloroethane	9.2		ug/L	10.00		92	70-130			
.,3-Dichlorobenzene	9.7		ug/L	10.00		97	70-130			

Fax: 401-461-4486

Tel: 401-461-7181

The Microbiology Division of Thielsch Engineering, Inc.

CERTIFICATE OF ANALYSIS

Client Name: Tighe & Bond

Client Project ID: Woburn to Mystic - RGP/MCP ESS Laboratory Work Order: 1701176

Quality Control Data

Analyte	Result	MRL	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Qualifie
		8260B Vol	latile Organi	c Compo	unds					
atch CA71120 - 5030B										
,4-Dichlorobenzene	9.3		ug/L	10.00		93	70-130			
,4-Dioxane - Screen	0.0		ug/L	200.0			0-332			
cetone	45.2		ug/L	50.00		90	70-130			
enzene	9.8		ug/L	10.00		98	70-130			
arbon Tetrachloride	10.0		ug/L	10.00		100	70-130			
s-1,2-Dichloroethene	9.9		ug/L	10.00		99	70-130			
hylbenzene	8.3		ug/L	10.00		83	70-130			
ethyl tert-Butyl Ether	9.0		ug/L	10.00		90	70-130			
ethylene Chloride	9.9		ug/L	10.00		99	70-130			
aphthalene	11.6		ug/L	10.00		116	70-130			
ertiary-amyl methyl ether	8.6		ug/L	10.00		86	70-130			
ertiary-butyl Alcohol	48.2		ug/L	50.00		96	70-130			
etrachloroethene	7.7		ug/L	10.00		77	70-130			
oluene	9.2		ug/L	10.00		92	70-130			
richloroethene	9.6		ug/L	10.00		96	70-130			
nyl Chloride	10.3		ug/L	10.00		103	70-130			
rlene O	8.4		ug/L	10.00		84	70-130			
lene P,M	16.8		ug/L	20.00		84	70-130			
urrogate: 1,2-Dichloroethane-d4	23.0		ug/L	25.00		92	70-130			
urrogate: 4-Bromofluorobenzene	23.6		ug/L	25.00		94	70-130			
urrogate: Dibromofluoromethane	25.2		ug/L	25.00		101	70-130			
urrogate: Toluene-d8	26.4		ug/L	25.00		106	70-130			
CS Dup										
1,1-Trichloroethane	9.0		ug/L	10.00		90	70-130	5	25	
1,2-Trichloroethane	8.7		ug/L	10.00		87	70-130	7	25	
1-Dichloroethane	9.0		ug/L	10.00		90	70-130	5	25	
1-Dichloroethene	9.7		ug/L	10.00		97	70-130	8	25	
2-Dibromoethane	9.4		ug/L	10.00		94	70-130	7	25	
2-Dichlorobenzene	9.0		ug/L	10.00		90	70-130	6	25	
2-Dichloroethane	8.5		ug/L	10.00		85	70-130	8	25	
3-Dichlorobenzene	9.5		ug/L	10.00		95	70-130	3	25	
4-Dichlorobenzene	9.0		ug/L	10.00		90	70-130	4	25	
4-Dioxane - Screen	0.0		ug/L	200.0			0-332		200	
cetone	42.2		ug/L	50.00		84	70-130	7	25	
enzene	9.4		ug/L	10.00		94	70-130	4	25	
arbon Tetrachloride	9.5		ug/L	10.00		95	70-130	5	25	
s-1,2-Dichloroethene	9.3		ug/L	10.00		93	70-130	6	25	
hylbenzene	8.3		ug/L	10.00		83	70-130	0.5	25	
ethyl tert-Butyl Ether	8.6		ug/L	10.00		86	70-130	5	25	
ethylene Chloride	9.6		ug/L	10.00		96	70-130	4	25	
aphthalene	10.4		ug/L	10.00		104	70-130	11	25	
ertiary-amyl methyl ether	8.0		ug/L	10.00		80	70-130	8	25	
ertiary-butyl Alcohol	48.1		ug/L	50.00		96	70-130	0.2	25	
etrachloroethene	7.5		ug/L	10.00		75	70-130	3	25	
bluene	8.7		ug/L	10.00		87	70-130	6	25	

185 Frances Avenue, Cranston, RI 02910-2211

2211 Tel: 401-461-7181
Dependability ♦ Quality

Fax: 401-461-4486 ◆ Service

185 Frances Avenue, Cranston, RI 02910-2211

BAL Laboratory

The Microbiology Division of Thielsch Engineering, Inc.

CERTIFICATE OF ANALYSIS

Client Name: Tighe & Bond

Client Project ID: Woburn to Mystic - RGP/MCP ESS Laboratory Work Order: 1701176

Quality Control Data

Analyte	Result	MRL	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Qualifie
		8260B Vol	atile Organi	ic Compo	unds					
Batch CA71120 - 5030B										
Trichloroethene	9.0		ug/L	10.00		90	70-130	7	25	
/inyl Chloride	9.6		ug/L	10.00		96	70-130	7	25	
Kylene O	8.3		ug/L	10.00		83	70-130	2	25	
(ylene P,M	16.8		ug/L	20.00		84	70-130	0.6	25	
Surrogate: 1,2-Dichloroethane-d4	22.5		ug/L	25.00		90	70-130			
Surrogate: 4-Bromofluorobenzene	24.0		ug/L	25.00		96	70-130			
Surrogate: Dibromofluoromethane	24.4		ug/L	25.00		98	70-130			
- Surrogate: Toluene-d8	26.1		ug/L	25.00		104	70-130			
-	827	'0D(SIM) Ser	mi-Volatile (Organic C	ompound	S				
Batch CA71116 - 3510C										
Blank										
cenaphthene	ND	0.20	ug/L							
Acenaphthylene	ND	0.20	ug/L							
anthracene	ND	0.20	ug/L							
Benzo(a)anthracene	ND	0.05	ug/L							
Benzo(a)pyrene	ND	0.05	ug/L							
Benzo(b)fluoranthene	ND	0.05	ug/L							
Benzo(g,h,i)perylene	ND	0.20	ug/L							
Benzo(k)fluoranthene	ND	0.05	ug/L							
ois(2-Ethylhexyl)phthalate	2.37	2.50	ug/L							J
Butylbenzylphthalate	0.32	2.50	ug/L							J
Chrysene	ND	0.05	ug/L							
Dibenzo(a,h)Anthracene	ND	0.05	ug/L							
Diethylphthalate	ND	2.50	ug/L							
Dimethylphthalate	ND	2.50	ug/L							
Di-n-butylphthalate	ND	2.50	ug/L							
Di-n-octylphthalate	0.26	2.50	ug/L							J
Fluoranthene	ND	0.20	ug/L							
Fluorene	ND	0.20	ug/L							
Indeno(1,2,3-cd)Pyrene	ND	0.05	ug/L							
Naphthalene	ND	0.20	ug/L							
Pentachlorophenol	ND	0.90	ug/L							
Phenanthrene	ND	0.20	ug/L							
Pyrene	ND	0.20	ug/L							
	0.791		ug/L	2.500		32	30-130			
Surrogate: 1,2-Dichlorobenzene-d4	2.97		ug/L	3.750		<i>79</i>	<i>15-110</i>			
Surrogate: 2,4,6-Tribromophenol Surrogate: 2-Fluorobiphenyl	1.22		ug/L	2.500		49	30-130			
Surrogate: 2-riuorobiphenyi Surrogate: Nitrobenzene-d5	1.42		ug/L	2.500		.5 57	30-130			
	2.24		ug/L	2.500		90	30-130			
Surrogate: p-Terphenyl-d14 LCS			- 31 -			- -				
Acenaphthene	2.51	0.20	ug/L	4.000		63	40-140			
Acenaphthylene	2.18	0.20	ug/L	4.000		54	40-140			
Anthracene	2.90	0.20	ug/L	4.000		73	40-140			
Benzo(a)anthracene	3.23	0.25	ug/L	4.000		81	40-140			

Tel: 401-461-7181

Quality

Dependability

Fax: 401-461-4486

Service

The Microbiology Division of Thielsch Engineering, Inc.

CERTIFICATE OF ANALYSIS

Client Name: Tighe & Bond

Client Project ID: Woburn to Mystic - RGP/MCP ESS Laboratory Work Order: 1701176

Quality Control Data

				Spike	Source		%REC		RPD	
Analyte	Result	MRL	Units	Level	Result	%REC	Limits	RPD	Limit	Qualifier
	827	0D(SIM) Ser	mi-Volatile (Organic C	ompound	S				
Batch CA71116 - 3510C										
Benzo(a)pyrene	3.24	0.05	ug/L	4.000		81	40-140			
Benzo(b)fluoranthene	3.19	0.05	ug/L	4.000		80	40-140			
Benzo(g,h,i)perylene	3.23	0.20	ug/L	4.000		81	40-140			
Benzo(k)fluoranthene	3.07	0.05	ug/L	4.000		77	40-140			
bis(2-Ethylhexyl)phthalate	5.83	2.50	ug/L	4.000		146	40-140			B+
Butylbenzylphthalate	4.39	2.50	ug/L	4.000		110	40-140			
Chrysene	3.47	0.05	ug/L	4.000		87	40-140			
Dibenzo(a,h)Anthracene	3.03	0.05	ug/L	4.000		76	40-140			
Diethylphthalate	3.24	2.50	ug/L	4.000		81	40-140			
Dimethylphthalate	2.93	2.50	ug/L	4.000		73	40-140			
Di-n-butylphthalate	3.33	2.50	ug/L	4.000		83	40-140			
Di-n-octylphthalate	3.99	2.50	ug/L	4.000		100	40-140			
Fluoranthene	3.28	0.20	ug/L	4.000		82	40-140			
Fluorene	2.81	0.20	ug/L	4.000		70	40-140			
Indeno(1,2,3-cd)Pyrene	3.14	0.05	ug/L	4.000		78	40-140			
Naphthalene	1.61	0.20	ug/L	4.000		40	40-140			
Pentachlorophenol	3.98	0.90	ug/L	4.000		100	30-130			
Phenanthrene	2.88	0.20	ug/L	4.000		72	40-140			
Pyrene	3.64	0.20	ug/L	4.000		91	40-140			
Surrogate: 1,2-Dichlorobenzene-d4	0.754		ug/L	2.500		30	30-130			
Surrogate: 2,4,6-Tribromophenol	3.65		ug/L	3.750		97	<i>15-110</i>			
Surrogate: 2-Fluorobiphenyl	1.40		ug/L	2.500		56	30-130			
Surrogate: Nitrobenzene-d5	1.40		ug/L	2.500		56	30-130			
Surrogate: p-Terphenyl-d14	2.48		ug/L	2.500		99	30-130			
LCS Dup										
Acenaphthene	2.99	0.20	ug/L	4.000		75	40-140	17	20	
Acenaphthylene	2.57	0.20	ug/L	4.000		64	40-140	17	20	
Anthracene	3.10	0.20	ug/L	4.000		77	40-140	7	20	
Benzo(a)anthracene	3.32	0.05	ug/L	4.000		83	40-140	3	20	
Benzo(a)pyrene	3.40	0.05	ug/L	4.000		85	40-140	5	20	
Benzo(b)fluoranthene	3.48	0.05	ug/L	4.000		87	40-140	9	20	
Benzo(g,h,i)perylene	3.43	0.20	ug/L	4.000		86	40-140	6	20	
Benzo(k)fluoranthene	3.32	0.05	ug/L	4.000		83	40-140	8	20	
bis(2-Ethylhexyl)phthalate	5.73	2.50	ug/L	4.000		143	40-140	2	20	B+
Butylbenzylphthalate	4.62	2.50	ug/L	4.000		115	40-140	5	20	
Chrysene	3.63	0.05	ug/L	4.000		91	40-140	4	20	
Dibenzo(a,h)Anthracene	3.20	0.05	ug/L	4.000		80	40-140	6	20	
Diethylphthalate	3.59	2.50	ug/L	4.000		90	40-140	10	20	
Dimethylphthalate	3.31	2.50	ug/L	4.000		83	40-140	12	20	
Di-n-butylphthalate	3.49	2.50	ug/L	4.000		87	40-140	5	20	
Di-n-octylphthalate	4.22	2.50	ug/L	4.000		105	40-140	6	20	
Fluoranthene	3.40	0.20	ug/L	4.000		85	40-140	4	20	
Fluorene	3.20	0.20	ug/L	4.000		80	40-140	13	20	
Indeno(1,2,3-cd)Pyrene	3.35	0.05	ug/L	4.000		84	40-140	6	20	
Naphthalene	1.98	0.20	ug/L	4.000		49	40-140	21	20	D+

185 Frances Avenue, Cranston, RI 02910-2211

Tel: 401-461-7181

Fax: 401-461-4486

The Microbiology Division of Thielsch Engineering, Inc.

CERTIFICATE OF ANALYSIS

Client Name: Tighe & Bond

Client Project ID: Woburn to Mystic - RGP/MCP ESS Laboratory Work Order: 1701176

				Spike	Source		%REC		RPD	
nalyte	Result	MRL	Units	Level	Result	%REC	Limits	RPD	Limit	Qualifie
	827	'0D(SIM) Ser	ni-Volatile (Organic C	ompound	S				
atch CA71116 - 3510C										
entachlorophenol	4.13	0.90	ug/L	4.000		103	30-130	4	20	
henanthrene	3.03	0.20	ug/L	4.000		76	40-140	5	20	
yrene	3.76	0.20	ug/L	4.000		94	40-140	3	20	
Surrogate: 1,2-Dichlorobenzene-d4	0.979		ug/L	2.500		39	30-130			
Surrogate: 2,4,6-Tribromophenol	3.78		ug/L	3.750		101	15-110			
Surrogate: 2-Fluorobiphenyl	1.67		ug/L	2.500		67	30-130			
Surrogate: Nitrobenzene-d5	1.73		ug/L	2.500		69	30-130			
Gurrogate: p-Terphenyl-d14	2.55		ug/L	2.500		102	30-130			
		Cl	assical Che	mistry						
Batch CA71051 - General Preparation										
ilank										
Hexavalent Chromium	ND	10	ug/L							
.cs			-							
Hexavalent Chromium	0.5		mg/L	0.4998		98	90-110			
	0.5		1119/ =	0.1550			50 110			
.CS Dup				0.4000			00.110		20	
lexavalent Chromium	0.5		mg/L	0.4998		99	90-110	0.1	20	
Batch CA71052 - General Preparation										
Blank										
Total Residual Chlorine	ND	10	ug/L							
.cs										
otal Residual Chlorine	2		mg/L	1.800		100	85-115			
Batch CA71136 - General Preparation										
Blank										
Total Petroleum Hydrocarbon	ND	5	mg/L							
·										
LCS	14	5	ma/l	19.38		74	66-114			
Total Petroleum Hydrocarbon	14		mg/L	19.30		/4	00-114			
Batch CA71217 - TCN Prep										
Blank										
Fotal Cyanide (LL)	ND	5.00	ug/L							
.cs										
Total Cyanide (LL)	21.2	5.00	ug/L	20.06		106	90-110			
.cs										
Fotal Cyanide (LL)	150	5.00	ug/L	150.4		100	90-110			
.CS Dup			<u> </u>							
Total Cyanide (LL)	149	5.00	ug/L	150.4		99	90-110	0.4	20	
Batch CA71227 - General Preparation	<u> </u>	5.00	ug/L	130.7			JU 110	о.т		
Blank	*10	5000	n							
Fotal Suspended Solids	ND	5000	ug/L							
LCS										
Total Suspended Solids	66		mg/L	68.70		96	80-120			

The Microbiology Division of Thielsch Engineering, Inc.

CERTIFICATE OF ANALYSIS

Client Name: Tighe & Bond

Client Project ID: Woburn to Mystic - RGP/MCP ESS Laboratory Work Order: 1701176

Quality Control Data

Analyte	Result	MRL	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Qualifier
		Cl	assical Che	mistry						
Batch CA71301 - NH4 Prep										
Blank										
Ammonia as N	ND	0.10	mg/L							
LCS										
Ammonia as N	0.10	0.10	mg/L	0.09994		98	80-120			
LCS										
Ammonia as N	1.11	0.10	mg/L	0.9994		112	80-120			
Batch CA71306 - General Preparation										
Blank										
Total Petroleum Hydrocarbon	ND	5	mg/L							
LCS										
Total Petroleum Hydrocarbon	15	5	mg/L	19.38		78	66-114			
Batch CA71336 - General Preparation										
Blank										
Phenols	ND	100	ug/L							
LCS										
	116	100	ug/L	100.0		116	80-120			
Phenols										
LCS Phenols	997	100	ug/L	1000		100	80-120			
ıcs	997	100 2-Dibromoeth			-chloropr		80-120			
ıcs	997				-chloropro		80-120			
LCS Phenols	997				-chloropr		80-120			
LCS Phenois Batch CA71322 - 504/8011	997				-chloropr		80-120			
LCS Phenois Batch CA71322 - 504/8011 Blank	997 8011 1, 2	2-Dibromoeth	iane / 1,2-l		-chloropr		80-120			
Batch CA71322 - 504/8011 Blank 1,2-Dibromoethane 1,2-Dibromoethane [2C]	997 8011 1,2 ND ND	2-Dibromoeth	ug/L ug/L	Dibromo-3	-chloropr	opane				
Batch CA71322 - 504/8011 Blank 1,2-Dibromoethane 1,2-Dibromoethane [2C] Surrogate: Pentachloroethane	997 8011 1,2 ND ND	2-Dibromoeth	ug/L ug/L ug/L	0.2000	-chloropr	opane 81	30-150			
Batch CA71322 - 504/8011 Blank 1,2-Dibromoethane 1,2-Dibromoethane [2C] Surrogate: Pentachloroethane [2C]	997 8011 1,2 ND ND	2-Dibromoeth	ug/L ug/L	Dibromo-3	-chloropr	opane				
Batch CA71322 - 504/8011 Blank 1,2-Dibromoethane 1,2-Dibromoethane [2C] Surrogate: Pentachloroethane [2C] LCS	997 8011 1,2 ND ND 0.162 0.151	0.015 0.015	ug/L ug/L ug/L ug/L	0.2000 0.2000	-chloropr	81 76	30-150 30-150			
Batch CA71322 - 504/8011 Blank 1,2-Dibromoethane 1,2-Dibromoethane [2C] Surrogate: Pentachloroethane [2C]	997 8011 1,2 ND ND	2-Dibromoeth	ug/L ug/L ug/L ug/L	0.2000	-chloropr	opane 81	30-150			
Batch CA71322 - 504/8011 Blank 1,2-Dibromoethane 1,2-Dibromoethane [2C] Surrogate: Pentachloroethane Surrogate: Pentachloroethane [2C] LCS 1,2-Dibromoethane	997 8011 1,2 ND ND 0.162 0.151	0.015 0.015	ug/L ug/L ug/L ug/L ug/L	0.2000 0.2000 0.2000 0.2000	-chloropr	81 76	30-150 30-150 60-140 70-130			
Batch CA71322 - 504/8011 Blank 1,2-Dibromoethane 1,2-Dibromoethane [2C] Surrogate: Pentachloroethane [2C] LCS 1,2-Dibromoethane 1,2-Dibromoethane 1,2-Dibromoethane Surrogate: Pentachloroethane	997 8011 1,2 ND ND 0.162 0.151 0.200 0.190	0.015 0.015	ug/L ug/L ug/L ug/L ug/L ug/L ug/L ug/L	0.2000 0.2000 0.2000 0.2000 0.2000	-chloropr	81 76 100 95	30-150 30-150 60-140 70-130			
Batch CA71322 - 504/8011 Blank 1,2-Dibromoethane 1,2-Dibromoethane [2C] Surrogate: Pentachloroethane [2C] LCS 1,2-Dibromoethane 1,2-Dibromoethane 1,2-Dibromoethane Surrogate: Pentachloroethane Surrogate: Pentachloroethane	997 8011 1,2 ND ND 0.162 0.151	0.015 0.015	ug/L ug/L ug/L ug/L ug/L	0.2000 0.2000 0.2000 0.2000	-chloropr	81 76	30-150 30-150 60-140 70-130			
Batch CA71322 - 504/8011 Blank 1,2-Dibromoethane 1,2-Dibromoethane [2C] Surrogate: Pentachloroethane [2C] LCS 1,2-Dibromoethane 1,2-Dibromoethane 1,2-Dibromoethane Surrogate: Pentachloroethane Surrogate: Pentachloroethane	997 8011 1,2 ND ND 0.162 0.151 0.200 0.190 0.167 0.162	0.015 0.015 0.015	ug/L ug/L ug/L ug/L ug/L ug/L ug/L ug/L	0.2000 0.2000 0.2000 0.2000 0.2000 0.2000	-chloropr	81 76 100 95 83 81	30-150 30-150 60-140 70-130 30-150 30-150			
Batch CA71322 - 504/8011 Blank 1,2-Dibromoethane 1,2-Dibromoethane [2C] Surrogate: Pentachloroethane Surrogate: Pentachloroethane [2C] LCS 1,2-Dibromoethane 1,2-Dibromoethane Surrogate: Pentachloroethane Surrogate: Pentachloroethane 1,2-Dibromoethane 1,2-Dibromoethane Surrogate: Pentachloroethane Surrogate: Pentachloroethane [2C] LCS 1,2-Dibromoethane	997 8011 1,2 ND ND 0.162 0.151 0.200 0.190 0.167 0.162	0.015 0.015 0.015 0.015	ug/L ug/L ug/L ug/L ug/L ug/L ug/L ug/L	0.2000 0.2000 0.2000 0.2000 0.2000 0.2000	-chloropr	81 76 100 95 83 81	30-150 30-150 60-140 70-130 30-150 30-150			
Batch CA71322 - 504/8011 Blank 1,2-Dibromoethane 1,2-Dibromoethane [2C] Surrogate: Pentachloroethane [2C] LCS 1,2-Dibromoethane 1,2-Dibromoethane 1,2-Dibromoethane Surrogate: Pentachloroethane Surrogate: Pentachloroethane	997 8011 1,2 ND ND 0.162 0.151 0.200 0.190 0.167 0.162	0.015 0.015 0.015	ug/L ug/L ug/L ug/L ug/L ug/L ug/L ug/L	0.2000 0.2000 0.2000 0.2000 0.2000 0.2000	-chloropr	81 76 100 95 83 81	30-150 30-150 60-140 70-130 30-150 30-150			
Batch CA71322 - 504/8011 Blank 1,2-Dibromoethane 1,2-Dibromoethane [2C] Surrogate: Pentachloroethane Surrogate: Pentachloroethane [2C] LCS 1,2-Dibromoethane 1,2-Dibromoethane Surrogate: Pentachloroethane Surrogate: Pentachloroethane 1,2-Dibromoethane Surrogate: Pentachloroethane Surrogate: Pentachloroethane Surrogate: Pentachloroethane [2C] LCS 1,2-Dibromoethane 1,2-Dibromoethane	997 8011 1,2 ND ND 0.162 0.151 0.200 0.190 0.167 0.162	0.015 0.015 0.015 0.015	ug/L ug/L ug/L ug/L ug/L ug/L ug/L ug/L	0.2000 0.2000 0.2000 0.2000 0.2000 0.2000	-chloropr	81 76 100 95 83 81	30-150 30-150 60-140 70-130 30-150 30-150			
Batch CA71322 - 504/8011 Blank 1,2-Dibromoethane 1,2-Dibromoethane [2C] Surrogate: Pentachloroethane Surrogate: Pentachloroethane [2C] LCS 1,2-Dibromoethane 1,2-Dibromoethane Surrogate: Pentachloroethane Surrogate: Pentachloroethane 1,2-Dibromoethane 1,2-Dibromoethane Surrogate: Pentachloroethane Surrogate: Pentachloroethane [2C] LCS 1,2-Dibromoethane	997 8011 1,2 ND ND 0.162 0.151 0.200 0.190 0.167 0.162	0.015 0.015 0.015 0.015	ug/L ug/L ug/L ug/L ug/L ug/L ug/L ug/L	0.2000 0.2000 0.2000 0.2000 0.2000 0.2000 0.08000 0.08000	-chloropr	81 76 100 95 83 81 105 72	30-150 30-150 60-140 70-130 30-150 30-150 60-140 70-130			
Batch CA71322 - 504/8011 Blank 1,2-Dibromoethane 1,2-Dibromoethane [2C] Surrogate: Pentachloroethane [2C] LCS 1,2-Dibromoethane 1,2-Dibromoethane [2C] Surrogate: Pentachloroethane [2C] LCS 1,2-Dibromoethane 1,2-Dibromoethane [2C] LCS Surrogate: Pentachloroethane Surrogate: Pentachloroethane [2C] LCS 1,2-Dibromoethane 1,2-Dibromoethane 1,2-Dibromoethane 1,2-Dibromoethane 1,2-Dibromoethane 1,2-Dibromoethane	997 8011 1,2 ND ND 0.162 0.151 0.200 0.190 0.167 0.162	0.015 0.015 0.015 0.015 0.015	ug/L ug/L ug/L ug/L ug/L ug/L ug/L ug/L	0.2000 0.2000 0.2000 0.2000 0.2000 0.2000 0.08000 0.08000 0.08000	-chloropr	81 76 100 95 83 81 105 72	30-150 30-150 60-140 70-130 30-150 60-140 70-130			

185 Frances Avenue, Cranston, RI 02910-2211

Tel: 401-461-7181

Fax: 401-461-4486

The Microbiology Division of Thielsch Engineering, Inc.

60-140

10

CERTIFICATE OF ANALYSIS

Client Name: Tighe & Bond

Ethanol

Client Project ID: Woburn to Mystic - RGP/MCP ESS Laboratory Work Order: 1701176

Quality Control Data

Analyte	Result	MRL	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Qualifier
		Alco	hol Scan by	GC/FID						
Batch CA71246 - No Prep										
Blank										
Ethanol	ND	10	mg/L							
LCS										
Ethanol	948	10	mg/L	1000		95	60-140			
LCS Dup										

1000

The Microbiology Division of Thielsch Engineering, Inc.

CERTIFICATE OF ANALYSIS

Client Name: Tighe & Bond

Client Project ID: Woburn to Mystic - RGP/MCP ESS Laboratory Work Order: 1701176

	Notes and Definitions
U	Analyte included in the analysis, but not detected
J	Reported between MDL and MRL
D+	Relative percent difference for duplicate is outside of criteria (D+).
D	Diluted.
BT	Benzidine tailing factor >2.
B+	Blank Spike recovery is above upper control limit (B+).
В	Present in Method Blank (B).
ND	Analyte NOT DETECTED at or above the MRL (LOQ), LOD for DoD Reports, MDL for J-Flagged Analytes
dry	Sample results reported on a dry weight basis
RPD	Relative Percent Difference
MDL	Method Detection Limit
MRL	Method Reporting Limit
LOD	Limit of Detection
LOQ	Limit of Quantitation
DL	Detection Limit
I/V	Initial Volume
F/V	Final Volume
Ş	Subcontracted analysis; see attached report
1	Range result excludes concentrations of surrogates and/or internal standards eluting in that range.
2	Range result excludes concentrations of target analytes eluting in that range.
3	Range result excludes the concentration of the C9-C10 aromatic range.
Avg	Results reported as a mathematical average.

NR No Recovery

[CALC] Calculated Analyte

SUB Subcontracted analysis; see attached report

185 Frances Avenue, Cranston, RI 02910-2211

Tel: 401-461-7181

Fax: 401-461-4486

The Microbiology Division of Thielsch Engineering, Inc.

CERTIFICATE OF ANALYSIS

Client Name: Tighe & Bond

Client Project ID: Woburn to Mystic - RGP/MCP ESS Laboratory Work Order: 1701176

ESS LABORATORY CERTIFICATIONS AND ACCREDITATIONS

ENVIRONMENTAL

Rhode Island Potable and Non Potable Water: LAI00179 http://www.health.ri.gov/find/labs/analytical/ESS.pdf

Connecticut Potable and Non Potable Water, Solid and Hazardous Waste: PH-0750 http://www.ct.gov/dph/lib/dph/environmental_health/environmental_laboratories/pdf/OutofStateCommercialLaboratories.pdf

Maine Potable and Non Potable Water, and Solid and Hazardous Waste: RI00002 http://www.maine.gov/dhhs/mecdc/environmental-health/dwp/partners/labCert.shtml

Massachusetts Potable and Non Potable Water: M-RI002 http://public.dep.state.ma.us/Labcert/Labcert.aspx

New Hampshire (NELAP accredited) Potable and Non Potable Water, Solid and Hazardous Waste: 2424 http://des.nh.gov/organization/divisions/water/dwgb/nhelap/index.htm

New York (NELAP accredited) Non Potable Water, Solid and Hazardous Waste: 11313 http://www.wadsworth.org/labcert/elap/comm.html

New Jersey (NELAP accredited) Non Potable Water, Solid and Hazardous Waste: RI006 http://datamine2.state.nj.us/DEP_OPRA/OpraMain/pi_main?mode=pi_by_site&sort_order=PI_NAMEA&Select+a+Site:=58715

United States Department of Agriculture Soil Permit: P330-12-00139

Pennsylvania: 68-01752

http://www.dep.pa.gov/Business/OtherPrograms/Labs/Pages/Laboratory-Accreditation-Program.aspx

185 Frances Avenue, Cranston, RI 02910-2211

Tel: 401-461-7181

Fax: 401-461-4486

Service

LABORATORY REPORT

ESS Laboratory

Attn: Mr. Shawn Morrell 185 Frances Avenue Cranston, RI 02910-2211 **Date Received:** Date Reported: 1/11/2017 1/17/2017

P.O. Number

B02406

Work Order #: 1701-00774

Project Name: PROJECT #1701176

Enclosed are the analytical results and Chain of Custody for your project referenced above. The sample(s) were analyzed by our Warwick, RI laboratory unless noted otherwise. When applicable, indication of sample analysis at our Hudson, MA laboratory and/or subcontracted results are noted and subcontracted reports are enclosed in their entirety.

All samples were analyzed within the established guidelines of US EPA approved methods with all requirements met, unless otherwise noted at the end of a given sample's analytical results or in a case narrative.

The Detection Limit is defined as the lowest level that can be reliably achieved during routine laboratory conditions.

These results only pertain to the samples submitted for this Work Order # and this report shall not be reproduced except in its entirety.

We certify that the following results are true and accurate to the best of our knowledge. If you have questions or need further assistance, please contact our Customer Service Department.

Approved by:

Yihai Ding

Technical Director

Laboratory Certification Numbers (as applicable to sample's origin state): Warwick RI * RI LAI00033, MA M-RI015, CT PH-0508, ME RI00015, NH 2070, NY 11726 Hudson MA * M-MA1117, RI LAO00319

R.I. Analytical Laboratories, Inc.

Laboratory Report

ESS Laboratory

Work Order #: 1701-00774

Project Name: PROJECT #1701176

Sample Number:

001

Sample Description:

1701176-01

Sample Type:

GRAB

Sample Date / Time:

1/10/2017 @ 12:30

PARAMETER

SAMPLE DET.

UNITS LIMIT

METHOD

DATE/TIME

ANALYST ANALYZED

Chloride

320

RESULTS

10

EPA 300.0 mg/l

1/12/2017 14:36

TAS

Sample Number:

002

Sample Description: Sample Type:

1701176-02 **GRAB**

Sample Date / Time:

1/10/2017 @ 12:50

PARAMETER

SAMPLE DET.

DATE/TIME

ANALYZED

ANALYST

Chloride

LIMIT RESULTS

UNITS

METHOD EPA 300.0

1/12/2017

1300

50

mg/1

14:50

TAS

Sample Number:

Sample Description:

Sample Type:

1701176-03

GRAB

003

Sample Date / Time:

1/10/2017 @ 13:50

SAMPLE

DET. LIMIT

20

UNITS

METHOD

DATE/TIME **ANALYZED**

ANALYST

Chloride

RESULTS 730

mg/1

EPA 300.0

1/12/2017 15:05

TAS

Sample Number:

PARAMETER

004

Sample Description:

1701176-04

Sample Type:

GRAB

Sample Date / Time:

1/10/2017 @ 14:15

SAMPLE

DET. LIMIT

METHOD

DATE/TIME

ANALYZED

ANALYST

PARAMETER Chloride

RESULTS 740

20

mg/l

UNITS

EPA 300.0

1/12/2017 15:19

TAS

10.0

9.86

ESS Laboratory 1701-00774 1/17/17

Chloride

-Method Blanks Results-

Parameter	Units	Results	Date Analyzed
Chloride	mg/l	<1.0	1/11/2017

-LCS/LCS Duplicate Data Results-

Parameter	Spike Conc	LCS Conc	LCS % Rec	LCS Dup Conc	LCS DUP % Rec	% RPD	Date Analyzed

99

1/12/2017

ESS Laboratory	Ś	RIAL			CHAIN OF CUSTODY	CUS.	ГОДУ		ESS Lab#		1701176		#. Com/s	
Division of Thielsch Engineering, Inc.	ineering, Inc.		Turn Time	DUE1/17/17	17				·	e dimi painone	, aite			
185 Frances Avenue, Cranston RI 02910-2211	anston RI 029	10-2211	Regulatory State:		MA RICT NH NJ NY ME	Y ME O	Other	1	٠				e 	
Tel. (401)461-7181 Fax (401)461-4486	x (401)461-448	99	Is this project f	or any of the foll	Is this project for any of the following:(please circle)				i i	<u></u>	1	**************************************	L	
www.esslaboratory.com			9	Navy USAC	۵	Other R	RGP		T T	Electoric Deliverables Excel Access PDF	ables Exc	el Access	L L	
So. Name	ESS Laboratory		Project #		Project Name		1701176			,				
Contact Person	Shawn Morrell		Proj. Location						sisyl	· ·	***************************************			
Address		City, State			Zip	<u></u>	PO# B02406	99	snA	0-00				
el. ext 3083		email:	smorrell@thielsch.com	ielsch.com			,			qe 3				
ESS Lab ID Date	Collection Time	Grab -G Composite-C	Matrix	Samı	Sample ID	Pres Code	# of Containers	Type of Container	Vol of Container	Chlori				
1/10/17	1230		МĐ	17011	1701176-01	1	1	Д		×				
1/10/17	1250		ΒM	17011	1701176-02	-	1	a		×				
1110/17	1350		ВW	17011	1701176-03	-	l	۵		×				
1/10/17	1415		GW	17011	1701176-04	-	-	4		×				
ontainer Type: P-Poly G-Glass AG-Amber Glass S-Sterile V-VOA	mber Glass S-Sterile V	-VOA		Matrix: S-Soil S	Matrix S-Soil SD-Solid D-Sludge WW-Wastewater GW-Groundwater SW-Surface Water DW-Drinking Water O-Oil W-Wipes F-Filter	/-Wastewater	GW-Groundwa	iter SW-Surfa	≫ Water. DW-f	Drinking Water	O-Oil W-Wip	es F-Filter		
Sooler Present	Yes	₽,	Internal Use Only	Only	Preservation Code: 1-NP, 2-HCl, 3-H2SO4, 4-HNO3, 5-NaOH, 6-MeOH, 7-Asorbic Acid, 8-ZnAct, 9Na2S2O3	1-NP, 2-H(CI, 3-H2SO4, 4	4-HNO3, 5-N	аОН, 6-МеО	H, 7-Asorbic A	kcid, 8-ZnAc	t, 9Na2S20)3 -	***
Seals Intact Yes	No NA:		[] Pickup		Sampled by:									
Sooler Temperature:	2:1		[] Technician_	an	Comments:			Ā.	ovide ES	*Provide ESS Deliverables	rables			
elinquished by: (Signature, Date & Time)	(ә.	Received by: (Sign	Received by. (Signature, Date & Time)			Relinquished	Relinquished by. (Signature, Date & Time)	Date & Time)		Received by: (Signature, Date & Time)	ignature, Date	& Time)		
Flull Allella	K0;21	GLAN	my, i		17:02									
elinquished by: (Signature, Date & Time)	(ət	Received by: (Sign	Received by: (Signature, Date & Time)			Relinquished	Relinquished by. (Signature, Date & Time)	Date & Time)	_	Received by: (Signature, Date & Time)	ignature, Date	& Time)		
By circling MA-MCP, client acknowledges sampels were	ges sampels were	M troud	Pleas	Please fax to the	Please fax to the laboratory all changes to Chain of Custody	anges to C	hain of Custody	ody			757	1701-0011	978	~

collected in accordance with MADEP CAM VIIA

Report Method Blank & Laboratory Control Sample Results

Page 50 of 55

ESS Laboratory Sample and Cooler Receipt Checklist

Client: Tighe & Bond - KPB/TB/MM	ESS Project ID: 1701176 Date Received: 1/10/2017	
Shipped/Delivered Via:ESS Courier	Project Due Date: 1/17/2017	<u> </u>
	Days for Project: 5 Day	
1. Air bill manifest present? No No NA	6. Does COC match bottles?	Yes
Were custody seals present? No	7. Is COC complete and correct?	Yes
3. Is radiation count <100 CPM? Yes	8. Were samples received intact?	Yes
4. Is a Cooler Present? Yes	9. Were labs informed about short holds & rushes?	Yes/ No / NA
Temp: 1.1 loed with: loe	10. Were any analyses received outside of hold time?	Yes (No
5. Was COC signed and dated by client? Yes		
11. Any Subcontracting needed? ESS Sample IDs: 1 - 4 Analysis: TAT: S day	12. Were VOAs received?a. Air bubbles in aqueous VOAs?b. Does methanol cover soil completely?	Yes / No Yes / No / No
13. Are the samples properly preserved? a. If metals preserved upon receipt: b. Low Level VOA vials frozen: Output Date: Date:	Time: By:	
Sample Receiving Notes:		
14. Was there a need to contact Project Manager? a. Was there a need to contact the client? Who was contacted? Date:	Yes (No Yes / No Time: By:	

Sample Number	Container ID	Proper Container	Air Bubbles Present	Sufficient Volume	Container Type	Preservative		Record pH (Cyanide and sticides)	608
01	98108	Yes	No	Yes	VOA Vial - HCI	HCI				
01	98109	Yes	No	Yes	VOA Vial - HCI	HCI				
01	98110	Yes	No	Yes	VOA Vial - HCI	HCI				
01	98120	Yes	NA	Yes	VOA Vial - Unpres	NP				
01	98121	Yes	NA	Yes	VOA Vial - Unpres	NP				
01	98122	Yes	NA	Yes	VOA Vial - Unpres	NΡ				
01	98129	Yes	NA	Yes	1L Amber - Unpres	NP				
01	98130	Yes	NA	Yes	1L Amber - Unpres	NP				
01	98137	Yes	NA	Yes	1L Amber - H2SO4	H2SO4				
01	98138	Yes	NA	Yes	1L Amber - H2SO4	H2SO4				
01	98142	Yes	NA	Yes	1L Poly - Unpres	NP				
01	98146	Yes	NA	Yes	500 mL Poly - H2SO4	H2SO4				
01	98150	Yes	NA	Yes	250 mL Poly - HNO3	HNO3				
01	98154	Yes	NA	Yes	250 mL Poly - NaOH	NaOH	\$H >13	z QL	ソルカ	203
01	98158	Yes	NA	Yes	250 mL Poly - Unpres	NP			, ,	
01	98162	Yes	NA	Yes	250 mL Poly - Unpres	NP				
02	98105	Yes	No	Yes	VOA Vial - HCI	HCI				
02	98106	Yes	No	Yes	VOA Vial - HCI	HCI				
02	98107	Yes	No	Yes	VOA Vial - HCI	HCI				
02	98117	Yes	NA	Yes	VOA Vial - Unpres	NP				
02	98118	Yes	NA	Yes	VOA Vial - Unpres	NP				
02	98119	Yes	NA	Yes	VOA Vial - Unpres	NP				
02	98127	Yes	NA	Yes	1L Amber - Unpres	NP				
02	98128	Yes	NA	Yes	1L Amber - Unpres	NP	,			

ESS Laboratory Sample and Cooler Receipt Checklist

110	he & Bond	 KPB/TB/MM 		-	oject ID:	1701176			
					teceived:	1/10/2017			
98135	Yes	NA	Yes	1L Amber - H2SO4	H2SO4				
98136	Yes	NA	Yes						
98141	Yes	NA	Yes	1L Poly - Unpres					
98145	Yes			•	_				
98149	Yes					ah - 17	٥.	.11.	
98153						44 217	£1_	4017	20
98157				•				, ,	
				•					
		· ·							
				•					
				· ·					
				•					
				•					
				- -					
			_						
				· ·					
				•		aH >12	21.	dido	
						(*1)		1101.1	ZG:
				· ·					
	=			• •					
		=	-						
				•					
				•					
	-			•					
				•					
				•					
					NP				
			Yes	500 mL Poly - H2SO4	H2SO4				
		NA	Yes	250 mL Poly - HNO3	HNO3				
98151	Yes	NA	Yes	250 mL Poly - NaOH	NaOH	cif > 12	AL	1/16/17	2.0
98155	Yes	NA	Yes	250 mL Poly - Unpres	NP	•••		v_{a}	20
98159	Yes	NA	Yes	250 mL Poly - Unpres	NP				
	98136 98141 98145 98149 98153 98157 98161 98102 98103 98104 98114 98115 98125 98126 98133 98134 98140 98144 98152 98156 98160 98099 98100 98101 98111 98111 98111 98113 98123 98131 98132 98133 98143 98144	98136 Yes 98141 Yes 98145 Yes 98145 Yes 98149 Yes 98153 Yes 98157 Yes 98161 Yes 98102 Yes 98103 Yes 98104 Yes 98114 Yes 98115 Yes 98115 Yes 98116 Yes 98116 Yes 98115 Yes 98116 Yes 98125 Yes 98126 Yes 98133 Yes 98140 Yes 98144 Yes 98148 Yes 98152 Yes 98156 Yes 98156 Yes 98160 Yes 98160 Yes 98160 Yes 98111 Yes 98112 Yes 98113 Yes 98123 Yes 98124 Yes 98131 Yes 98131 Yes 98132 Yes 98132 Yes 98131 Yes 98132 Yes 98139 Yes 98139 Yes 98143 Yes	98136 Yes NA 98141 Yes NA 98145 Yes NA 98149 Yes NA 98153 Yes NA 98157 Yes NA 98161 Yes NA 98102 Yes No 98103 Yes No 98104 Yes NA 98115 Yes NA 98116 Yes NA 98125 Yes NA 98126 Yes NA 98133 Yes NA 98144 Yes NA 98148 Yes NA 98152 Yes NA 98154 Yes NA 98156 Yes NA 98100 Yes No 98101 Yes No 98101 Yes NA 98112 Yes NA 98113 Yes	98136 Yes NA Yes 98141 Yes NA Yes 98145 Yes NA Yes 98149 Yes NA Yes 98153 Yes NA Yes 98157 Yes NA Yes 98161 Yes NA Yes 98102 Yes No Yes 98103 Yes No Yes 98104 Yes No Yes 98114 Yes NA Yes 98115 Yes NA Yes 98116 Yes NA Yes 98115 Yes NA Yes 98126 Yes NA Yes 98133 Yes NA Yes 98144 Yes NA Yes 98148 Yes NA Yes 98152 Yes NA Yes 98160 Yes NA<	98136 Yes NA Yes 1L Amber - H2SO4 98141 Yes NA Yes 500 mL Poly - Unpres 98145 Yes NA Yes 500 mL Poly - H2SO4 98149 Yes NA Yes 250 mL Poly - HNO3 98153 Yes NA Yes 250 mL Poly - NAOH 98157 Yes NA Yes 250 mL Poly - Unpres 98161 Yes NA Yes 250 mL Poly - Unpres 98102 Yes NO Yes VOA Vial - HCI 98103 Yes NO Yes VOA Vial - HCI 98104 Yes NA Yes VOA Vial - Unpres 98115 Yes NA Yes VOA Vial - Unpres 98116 Yes NA Yes VOA Vial - Unpres 98116 Yes NA Yes VOA Vial - Unpres 98116 Yes NA Yes IL Amber - Unpres 98125 Yes NA Yes 1L Amber - H2SO4 98134 Yes NA Yes 1L Amber - H2SO4 98140 Yes NA Yes 1L Amber - H2SO4 98140 Yes NA Yes 1L Amber - H2SO4 98141 Yes NA Yes 250 mL Poly - HNO3 98152 Yes NA Yes 250 mL Poly - Unpres 98156 Yes NA Yes 250 mL Poly - Unpres 98160 Yes NA Yes 250 mL Poly - Unpres 98160 Yes NA Yes 250 mL Poly - Unpres 98160 Yes NA Yes 250 mL Poly - Unpres 98100 Yes NA Yes 250 mL Poly - Unpres 98100 Yes NA Yes 250 mL Poly - Unpres 98101 Yes NA Yes 250 mL Poly - Unpres 98101 Yes NA Yes 250 mL Poly - Unpres 98110 Yes NA Yes 250 mL Poly - Unpres 98111 Yes NA Yes 250 mL Poly - Unpres 98112 Yes NA Yes 250 mL Poly - Unpres 98113 Yes NA Yes VOA Vial - HCI 98111 Yes NA Yes VOA Vial - HCI 98111 Yes NA Yes VOA Vial - Unpres 98112 Yes NA Yes VOA Vial - Unpres 98113 Yes NA Yes 1L Amber - Unpres 98114 Yes NA Yes 1L Amber - Unpres 98115 Yes NA Yes 1L Amber - Unpres 98116 Yes NA Yes 1L Amber - Unpres 98117 Yes NA Yes 1L Amber - Unpres 98118 Yes NA Yes 1L Amber - Unpres 98119 Yes NA Yes 1L Amber - Unpres 98110 Yes NA Yes 1L Amber - Unpres 98111 Yes NA Yes 1L Amber - H2SO4 98131 Yes NA Yes 1L Amber - H2SO4	98136 Yes NA Yes 1L Amber - H2SO4 H2SO4 98141 Yes NA Yes 1L Poly - Unpres NP 98145 Yes NA Yes 500 mL Poly - H2SO4 H2SO4 98149 Yes NA Yes 250 mL Poly - HNO3 HNO3 98157 Yes NA Yes 250 mL Poly - Unpres NP 98161 Yes NA Yes 250 mL Poly - Unpres NP 98102 Yes NA Yes 250 mL Poly - Unpres NP 98102 Yes NA Yes 250 mL Poly - Unpres NP 98102 Yes NA Yes VOA Vial - HCI HCI 98102 Yes NO Yes VOA Vial - HCI HCI 98104 Yes NA Yes VOA Vial - Unpres NP 98114 Yes NA Yes VOA Vial - Unpres NP 98115 Yes NA Yes Yes	98136 Yes NA Yes 1L Amber - H2SO4 H2SO4 98141 Yes NA Yes 500 mL Poly - Unpres NP 98145 Yes NA Yes 250 mL Poly - H3SO4 H2SO4 98149 Yes NA Yes 250 mL Poly - H3SO4 H3SO4 98153 Yes NA Yes 250 mL Poly - NaOH NaOH NaOH Yes 250 mL Poly - Unpres NP 98161 Yes NA Yes 250 mL Poly - Unpres NP 98161 Yes NA Yes 250 mL Poly - Unpres NP 98102 Yes No Yes VOA Vial - HCI HCI 98103 Yes No Yes VOA Vial - HCI HCI 98114 Yes NA Yes VOA Vial - HCI HCI 98115 Yes NA Yes VOA Vial - Unpres NP 98115 Yes NA Yes VOA Vial - Unpres NP 98115 Yes NA Yes VOA Vial - Unpres NP 98125 Yes NA Yes VOA Vial - Unpres NP 98126 Yes NA Yes 1L Amber - Unpres NP 98133 Yes NA Yes 1L Amber - Unpres NP 98134 Yes NA Yes 1L Amber - H2SO4 H2SO4 98140 Yes NA Yes 1L Amber - H2SO4 H2SO4 98144 Yes NA Yes 250 mL Poly - NaOH NaOH PASH4 98152 Yes NA Yes 500 mL Poly - H0SO4 H2SO4 98144 Yes NA Yes 250 mL Poly - Unpres NP 98144 Yes NA Yes 250 mL Poly - Unpres NP 98156 Yes NA Yes 250 mL Poly - Unpres NP 98166 Yes NA Yes 250 mL Poly - H0SO4 H2SO4 98160 Yes NA Yes 250 mL Poly - Unpres NP 98160 Yes NA Yes 250 mL Poly - H0SO4 H2SO4 98160 Yes NA Yes 250 mL Poly - Unpres NP 98160 Yes NA Yes 250 mL Poly - Unpres NP 98160 Yes NA Yes 250 mL Poly - Unpres NP 98160 Yes NA Yes 250 mL Poly - Unpres NP 98160 Yes NA Yes 250 mL Poly - Unpres NP 98160 Yes NA Yes 250 mL Poly - Unpres NP 98160 Yes NA Yes 250 mL Poly - Unpres NP 98160 Yes NA Yes 250 mL Poly - Unpres NP 98161 Yes NA Yes VOA Vial - HCI HCI 98101 Yes NA Yes VOA Vial - HCI HCI 98101 Yes NA Yes VOA Vial - HCI HCI 98101 Yes NA Yes VOA Vial - HCI HCI 98101 Yes NA Yes VOA Vial - HCI HCI 98101 Yes NA Yes IL Amber - Unpres NP 98112 Yes NA Yes IL Amber - Unpres NP 98112 Yes NA Yes IL Amber - Unpres NP 98113 Yes NA Yes IL Amber - Unpres NP 98114 Yes NA Yes IL Amber - Unpres NP 98115 Yes NA Yes IL Amber - Unpres NP 98116 Yes NA Yes IL Amber - Unpres NP 98117 Yes NA Yes IL Amber - Unpres NP 98118 Yes NA Yes IL Amber - Unpres NP 98119 Yes NA Yes IL Amber - Unpres NP 98110 Yes NA Yes IL Amber - H2SO4 H2SO4 98130 Yes NA Yes IL Amber - H2SO4 H2SO4	98136 Yes NA Yes 1L Amber - H2SO4 H2SO4 98141 Yes NA Yes 500 mL Poly - Unpres NP 98145 Yes NA Yes 250 mL Poly - H2SO4 H2SO4 98149 Yes NA Yes 250 mL Poly - HNO3 HNO3 98153 Yes NA Yes 250 mL Poly - NaOH NaOH NaOH 98157 Yes NA Yes 250 mL Poly - Unpres NP 98161 Yes NA Yes 250 mL Poly - Unpres NP 98102 Yes No Yes VOA Vial - HCI HCI 98103 Yes No Yes VOA Vial - HCI HCI 98114 Yes NA Yes VOA Vial - HCI HCI 98115 Yes NA Yes VOA Vial - Unpres NP 98115 Yes NA Yes VOA Vial - Unpres NP 98125 Yes NA Yes VOA Vial - Unpres NP 98126 Yes NA Yes 1L Amber - Unpres NP 98133 Yes NA Yes 1L Amber - Unpres NP 98134 Yes NA Yes 1L Amber - H2SO4 H2SO4 98144 Yes NA Yes 1L Amber - H2SO4 H2SO4 98144 Yes NA Yes 250 mL Poly - NaOH NaOH QH >	98136 Yes NA Yes 1L Amber - H2SO4 98141 Yes NA Yes 1L Poly - Unpres NP 98145 Yes NA Yes 500 mL Poly - H2SO4 98149 Yes NA Yes 250 mL Poly - HNO3 HNO3 98153 Yes NA Yes 250 mL Poly - HNO3 HNO3 98153 Yes NA Yes 250 mL Poly - HNO3 HNO3 98153 Yes NA Yes 250 mL Poly - Unpres NP 98161 Yes NA Yes 250 mL Poly - Unpres NP 98161 Yes NA Yes 250 mL Poly - Unpres NP 98102 Yes No Yes VOA Vial - HCI HCI 98104 Yes NO Yes VOA Vial - HCI HCI 98104 Yes NA Yes VOA Vial - Unpres NP 98116 Yes NA Yes VOA Vial - Unpres NP 98116 Yes NA Yes VOA Vial - Unpres NP 98116 Yes NA Yes VOA Vial - Unpres NP 98116 Yes NA Yes VOA Vial - Unpres NP 98116 Yes NA Yes 1L Amber - Unpres NP 98125 Yes NA Yes 1L Amber - Unpres NP 98133 Yes NA Yes 1L Amber - H2SO4 H2SO4 98144 Yes NA Yes 1L Amber - H2SO4 H2SO4 98144 Yes NA Yes 250 mL Poly - HNO3 HNO3 98152 Yes NA Yes 250 mL Poly - NaOH NaOH QH > 12 VL VICIT NE 98166 Yes NA Yes 250 mL Poly - NaOH NaOH QH > 12 VL VICIT NE 98166 Yes NA Yes 250 mL Poly - Unpres NP 98166 Yes NA Yes 250 mL Poly - HDO3 HNO3 98160 Yes NA Yes 250 mL Poly - Unpres NP 98160 Yes NA Yes 250 mL Poly - Unpres NP 98160 Yes NA Yes 250 mL Poly - Unpres NP 98160 Yes NA Yes 250 mL Poly - Unpres NP 98161 Yes NA Yes YOA Vial - HCI HCI 98101 Yes NO Yes VOA Vial - HCI HCI 98101 Yes NO Yes VOA Vial - HCI HCI 98101 Yes NO Yes VOA Vial - HCI HCI 98101 Yes NO Yes VOA Vial - HCI HCI 98101 Yes NO Yes VOA Vial - HCI HCI 98101 Yes NO Yes VOA Vial - HCI HCI 98101 Yes NO Yes VOA Vial - HCI HCI 98101 Yes NO Yes VOA Vial - HCI HCI 98101 Yes NO Yes VOA Vial - HCI HCI 98101 Yes NO Yes VOA Vial - HCI HCI 98101 Yes NO Yes NOA Vial - HCI HCI 98101 Yes NO Yes VOA Vial - HCI HCI 98101 Yes NO Yes NOA Yes HORPES NP 98112 Yes NA Yes 1L Amber - H2SO4 H2SO4 98132 Yes NA Yes 1L Amber - H2SO4 H2SO4 98133 Yes NA Yes 1L Amber - H2SO4 H2SO4 98133 Yes NA Yes 1L Amber - H2SO4 H2SO4 98133 Yes NA Yes 1L Amber - H2SO4 H2SO4 98133 Yes NA Yes 1L Amber - H2SO4 H2SO4 98133 Yes NA Yes 1L Amber - H2SO4 H2SO4 98134 Yes NA Yes 500 mL Poly - HNO3 HNO3

04	98159	Yes	NA	Yes	250 mL Poly -		NP	
2nd Review Are barcode	labels on co	orrect contain	ners?		(Yes)/No			
Completed By:	\mathcal{Q}	(m)	ς		_ Date & Time:	11da	2037	
Reviewed By:	an	+	<u>>~</u>		_ Date & Time:	1/10/17	2043	
Delivered <	Jo.	ار سا		<u> </u>	<u> </u>	1/10/17	2043	

ESS Laboratory			CH	CHAIN OF CUSTODY	CUS	ropy		ESS Lab#		9611001	2			
Division of Thielsch Engineering, Inc.		Turn Time	\	Standard	Other			֓֡֜֜֜֓֓֓֓֓֓֓֓֓֓֓֓֓֓֜֓֓֓֓֓֜֓֜֓֓֡֓֜֓֓֓֓֡֓֜֜֓֡֓֡֓֡֓֡֓֜֡֓֡֓֡֡֡֓		, i	11/2	Q		
185 Frances Avenue, Cranston, RI 02910-2211	910-2211	Regulatory	Regulatory State (MA RI	A CT NH NJ NY ME		Other		-	Reporting Linna	- 51111112			1	
Tel. (401) 461-7181 Fax (401) 461-4486 www.esslaboratory.com		Lettis projective AMA-MCP	ect for any of the following:(please circle)	following:(plea	se circle) EP Other			ដ័	Electonic Deliverables		Excel Access PDF	cess (PI	Á	
CO. Name Ticke B Bon L		O-Mojoud		Project Name	Tille	12	12VA		оцәц	III P	5		3r	_
6614, MIle	MATA	Address	\mathcal{I}	m Stru	the	1		sisy	10 S	va va	?/ <i>*</i> †	DGE BCE	N'	
City World for SI	State $ar{\mathcal{L}}$	4	Z	2026 qiz		# Od	,	lsnA	yuor T	140	2/ K	EDB	1817 1817	100
Tel. 506. 471-7616 F	Fax >534150tigh	satish	bondan en	emaily Errorthe @ 119	ue tish	what.	14.6		νν 55	-1' X	א <i>א</i> ייניט	26	35	2027
Date Collection Time	Grab -G Composite-C	Matrix	! ≒ '	O) e	Pres Code	# of Containers	Type of . Container	Vol of Container	Y	12 7H	N 15	715 70/1	μ _η	17
1/10/17 12:30	V	RIO	MU-102A	22 A	Varlus 1	1 5 1	46.P.	Un/43	1/1	1/1	1/1	7	2	\ \ \ \
05:7/ 2	0	70	MW-101AFF	77 A10	/	1			7	7	7	7	2	
3 /3:50	6	30	MW-103)5					7	7	7		2	X
7 814:15	6	30	M-103	3 FF		Ž	7	->	7	7	7	2	2	
														1
							•					_		
						`								
														
	,											-		1
Container Type: P-Poly G-Glass AG-Amber Glass S-Sterite V-VOA	VOA		Matric S-Soil SD-Soild D-Siudge WW-Westewater GW-Groundwater SW-Surface Water DW-Drinking Water O-Oil W-Wipes F-Fitter	Solid D-Sludge W	W-Westewater	GW-Groundy	vater SW-Surf	ace Water DW	V-Drinking W	ater O-Oil 1	W-Wipes F-	Filter		1
Cooler Present Yes		Internal Us	se Only Pres	Preservation Code: 1-NP, 2-HCl, 3-H2SO4, 4-HNO3, 5-NaOH, 6-MeOH, 7-Asorbic Acid, 8-ZnAct, 9-	1-NP, 2-HCI,	3-H2SO4, 4	-HNO3, 5-Na	OH, 6-MeO	1, 7-Asorbl	c Acld, 8-Zr	NACL B			
Seals Intact Yes No NA:	·	[4 Pickup	Sa	Sampled by:	KCL	add	added analysis	sis per MEM		mkm 1/12/17	2/17			
Cooler Temperature: 144 + 0.6	C.6 ← 1.1 [] Technician_] Technic		Comments:	AGP	10,	One Se	1/ 1	111	41/4	sul (CFR		
Religions to the State State of 1/10/17 Recognition 1/10/17 Recogn	Socioed by: (Signature,	ure, Date & Time)	11/01	07:51	Relinguished by (Signature, Date &	(Signature, D	late 8, Time) 10/17 /	1. 12 R	Reference by:	Signature, D.	Date & Time)	0,000	0	
Relinquished by: (Signature, Date & Time)	Received by: (Signature, Date & Tim	ure, Date & Time)			Reiinquished by (Signature, Daté & Time)	(Signature, D	até & Time)	<u>&</u>	Received by: ((Signature, Date & Tinte)	ate & Time)			
* By circling MAMCP, client acknowledges samples were collected in scoordance with MADEP CAM VIIA		д,	Please fax to the laboratory all changes to Chain of Custody	laboratory all c	hanges to (Shain of Cu	rstody	1 2	1 (White) Lab Copy 2 (Yellow) Client Receipt	ab Copy Client Rec	æipt		:	

Page 53 of 55

ESS Laboratory	>			CHO	CHAIN OF CUSTODY	CUS	TOD		ESS Lab#		9C110C1	90			
Division of Thielsch Engineering, Inc.	ineering, Inc.		Turn Time	\	Standard	Other				Penorting	Penorting Limits .	100	015		
185 Frances Avenue, Cranston, RI 02910-2211	anston, RI 029°	10-2211	Regulator	Regulatory State (MA kl CT NH NJ NY ME	I CT NH NJ	111	Other			in odox					
Tel. (401) 461-7181 Fax www.esslaboratory.com	Fax (401) 461-4486	98	A this pride	Lettis project for any of the following: (please circle) (MA-MCP Navy USACE CT DEP Off	fthe following:(please circle) USACE CT DEP Other	ise circle) EP Othe	100	·	ii i	ectonic De	Electonic Deliverables $\prod\limits_{\Pi}$		Excel Access (PDF)	A01	
Co. Name Tiche B	Bond		O-Q	42.5	Project Name	Tital	115	12VA	,	оцәц	n		5	3M	
Contact Person Bubly	M1/4c	MATH	Address	Mr 1766	5	*			sisy	17/-	va	77	DGE	1977 147	
City World for	State	ate \nearrow	*	7	ろ0910 diz		# Od		lsnA	I wor	170	47 N	EDB	1.12 1.12	100
Tel. 506-471-7	7616 Fa	x7>5,3ch,	Far. >534150tight	booken en	emaily Emerth @ fo.	<i>uetin</i>	whomat.	1.1.		/// 55	-7' X-	ת מינית המיניתו לה	ر ادا	3E 70.	ny.
ESS Lab ID Date (Collection Time C	Grab -G Composite-C	Matrix	Sample ID	Q) e		# of Containers	Type of Container	Vol of Container	Y	72 7H	5	2/	MM NS	17
1/10/17	12:30	V	RIO	Mrel my	92 V	24-4	15	46,P	Un/43	1/1	1	7	7	7	7
7	05:7/	V	25	M-16	MW-102A FF	1	_			7	7	7	Z	7	_
2	13:50	7	20	MW-103	13					7	7	7	7	10	\overline{Z}
7	21.8.12	J	30	MV-103 F.	3 FF		4	->	-}	7	7	\overline{Z}	$\frac{2}{2}$	$\frac{2}{1}$	\geq
										-				-	
	•									_					
							`								
											_				
Container Type: P-Poty G-Glass AG-Amber Glass S-Sterife V-VOA	oer Glass & Sterile V-VC	Α.		Matrix S-Soil SD-	Matric S-Soil SD-Soild D-Sludge WW-Westewater GW-Groundwater SW-Surface Water DW-Drinking Water O-Oil W-Whos F-Fitter	W-Westewate	. GW-Ground	water SW-Sur	ace Water Di	M-Drinking	Water O-Oi	W-Wipes	F-Filter		
Cooler Present	Yes		Internal Use Only		Preservation Code: 1-NP, 2-HCl, 3-H2SO4, 4-HNO3, 5-NaOH, 6-MaOH, 7-Asorbic Acid, 8-ZnAct, 9-	1-NP, 2-HC	3-H2SO4,	HNO3, 5-N	зон, 6-Мво	H, 7-Asort	olc Acid, 8-	ZnAct 9-			
Seals Intact Yes	No NA:		[4 Pickup	S	Sampled by:	KCL	add	added analysis	sis per MEM		mkm 1/12/17	12/17			
Cooler Temperature: 144 + 4000	1	1-1-+	C.C ← /. [] Technician_		Comments:	AGP	,	One Se,	6 1	121	£1/4	Such	(F)	\Z\ _\	
Religious pur Signafure, Dalla & Lune)	1/10//	ayed by: (Signat		11/01	07:70	Relinguished by: (Signature, Date & X En. CVP) (10)	r (Signature, I	Jate 8, Time)	8 7:12 B	Repaired by.	(Signature, Date &	Date & Tim	ے ا	3007	
Relinquished by: (Signature, Date, & Time)		ived by: (Signat	Received by: (Signature, Date & Time	(0)	u.	Relinquished by: (Signature, Daté & Time)	r (Signature, I	até & Time)	œ	Received by	(Signature, Date & Tinte)	Date & Tim	(e)		
* By circling MA-MCP, client acknowledges samples were	s semples were		Д.	Please fax to the laboratory all changes to Chain of Custody	laboratory all c	changes to	Chain of C	ustody	1	(White) (Yellow)	1 (White) Lab Copy 2 (Yellow) Client Receipt	/ eceipt			
collected in accordance with MADEP CAM VIIA	M VIIA								•			-			

Page 54 of 55

ESS L	ESS Laboratory	ory			O	CHAIN OF CUSTODY	300 =	TOD	>	ESS Lab#	# 0	9011001	5				
Division o	f Thielsch E	Division of Thielsch Engineering, Inc.	G	Turn Time	ne 🗡	Standard	Other				Donorfin	Donorfina Limite	7	05			i .
185 Franc	es Avenue,	185 Frances Avenue, Cranston, RI 02910-2211	02910-2211	Regulato	ny State (MA	Regulatory State (MA RI CT NH NJ NY ME Other	J NY ME	Other_			in index	3		·			_
Tel. (401) www.essla	Tel. (401) 461-7181 Faww.esslaboratory.com	Fax (401) 461-4486 om	-4486	WA-MCP	FEG for any of	Ecotor any of the following: (please circle)	ng:(please circle) CT DEP Other	ē		Ш	lectonic D	Electonic Deliverables	s excel	Excel Access PDF			
Со. Мате	,hc	B Bond	, ,	Project#	0495	Project Name	1. Myste	13	/ZVA	s	7	n		S	H	3rt	
Contact Person		Beb14, MILL	_	Address	1 766	71M St	th			isų	ر تر <i>ل</i>	ره		1=+	11	y ./	
<u>\$</u>	would	757	State	X		20210 diz		# Od		IsnA	Ivor	77	1/2!	W/h	75	491 <u>1</u>	Ion
Tel. 500	C. 471.	2196-	Fax >534150+141	1,50 +197	whiten	emaily Emerthe eti.	140 tis	whomal	nn		νν 55	/ X	مومرا دام ر	<u> </u>	70	737 35	1.2
ESS Lab ID	Date	Collection Time	Grab -G Composite-C	Matrix		Sample ID	Pres Code	# of Containers	Type of . Container	Vol of Container	<u>~</u> -⊥	7/1	ク 12	201	<u>/\S</u>	1 _1 14 pr	7 - ÿ1
	1/10/17	12:30	V	25	Z	12-102A	14-145	51	15%	Uriles	1/2	1	11	11/1	1	7	, 1
7	_	05:71	10	25	アア	HANDI-NA				/	1/	1/1	1/	Иγ	Z	1/1	
1		13:50	1.	30	MW-103	103					11	1	MM	1/	7	7	7
7	1	214:15	0	3	75	MV-103 FF		Ž	1	À	7	7	7	7	Î	2	_
													•			-	- 1
																	- 1
								,	•								
														_		_	
Container Type: P.	Poly G-Glass AG	Container Type: P-Poty G-Glass AG-Amber Glass & Sterite V-VOA	V-VOA		Matrix S-Soi	Matric S-Soil SD-Solid D-Sludge WW-Westewater GW-Groundwater SW-Surfece Water DW-Drinking Water O-Oil W-Wipes F-Fitter	WW-Westewal	er GW-Groun	dwater SW-Su	face Water D	W-Drinking	Water O-C	Ji W-Wh	98 F-Filter			·
Cooler Present	sent	Yes	۶	Internal Use Only	Jse Only	Preservation Code: 1-NP, 2-HCl, 3-H2SO4, 4-HNO3, 5-NaOH, 6-MeOH, 7-Asorbic Add, 8-ZnAct, 9-	: 1-NP, 2-H(3, 3-H2SO4,	4-HNO3, 5-h	аон, 6-мес	H, 7-Asor	bic Acid, 8	8-ZnAct 8			Ì	
Seals Infact	tYes	No NA:		[4 Pickup		Sampled by:	Ka	. 1	-								:·
Cooler Ten	Cooler Temperature: 144 + 4000	1	C.6 ← /. [] Technician_	[] Techn	ician	Comments:	AGI	0 - 0	INC 80)	6 1	111		25	10	, ZZ,		 -
Religionship	Reipousht 7: (Signakue, Dale & Lime)	1/01/1 CE	Received by: (Sign	red by: (Signature, Date & Til	//a1/i	07:31	Relinguished	Relinguished by (Signatura, Data 8,	Date 8, Time) //0// 7	Mex: D	Repetived by	: (Signature, Date &	e, Date & T		2000		
Relinquished by. (Relinquished by: (Signature, Date & Time)	Ima)	Received by: (Signature, Date & Tit	ature, Date & Til	me)		Relinquished	Reiinquished by. (Signature, Date & Time)	Date & Time)		Received by	: (Sighature	(Signature, Date & Time)	_			
By circling MA-M collected in accor	By circling MA-MCP, client ecknowledges semp collected in accordance with MADEP CAM VIIA	By circling MA-MCP, client acknowledges semples were collected in accordance with MADEP CAM VIIA			Please fax to	Please fax to the laboratory all changes to Chain of Custody	changes to	Chain of C	Sustody		(White) (Yellow	1 (White) Lab Copy 2 (Yellow) Client Receipt	oy Receipt				

Page 55 of 55

The Microbiology Division of Thielsch Engineering, Inc.

CERTIFICATE OF ANALYSIS

Michael Martin Tighe & Bond 4 Barlows Landing Road, Unit 15 Pocasset, MA 02559

RE: Woburn to Mystic - RGP (N-0998-11-13) ESS Laboratory Work Order Number: 1709460

This signed Certificate of Analysis is our approved release of your analytical results. These results are only representative of sample aliquots received at the laboratory. ESS Laboratory expects its clients to follow all regulatory sampling guidelines. Beginning with this page, the entire report has been paginated. This report should not be copied except in full without the approval of the laboratory. Samples will be disposed of thirty days after the final report has been delivered. If you have any questions or concerns, please feel free to call our Customer Service Department.

Laurel Stoddard

Laboratory Director

REVIEWED

By ESS Laboratory at 5:37 pm, Sep 26, 2017

Analytical Summary

The project as described above has been analyzed in accordance with the ESS Quality Assurance Plan. This plan utilizes the following methodologies: US EPA SW-846, US EPA Methods for Chemical Analysis of Water and Wastes per 40 CFR Part 136, APHA Standard Methods for the Examination of Water and Wastewater, American Society for Testing and Materials (ASTM), and other recognized methodologies. The analyses with these noted observations are in conformance to the Quality Assurance In chromatographic analysis, manual integration is frequently used instead of integration because it produces more accurate results.

The test results present in this report are in compliance with TNI and relative state standards, and/or client Quality Assurance Project Plans (QAPP). The laboratory has reviewed the following: Sample Preservations, Hold Times, Initial Calibrations, Continuing Calibrations, Method Blanks, Blank Spikes, Blank Spike Duplicates, Duplicates, Matrix Spikes, Matrix Spike Duplicates, Surrogates and Internal Standards. Any results which were found to be outside of the recommended ranges stated in our SOPs will be noted in the Project Narrative.

The Microbiology Division of Thielsch Engineering, Inc.

CERTIFICATE OF ANALYSIS

Client Name: Tighe & Bond

Client Project ID: Woburn to Mystic - RGP ESS Laboratory Work Order: 1709460

SAMPLE RECEIPT

The following samples were received on September 15, 2017 for the analyses specified on the enclosed Chain of Custody Record.

The samples and analyses listed below were analyzed in accordance with the 2017 Remediation General Permit under the National Pollutant Discharge Elimination System (NPDES).

ESS Laboratory is unable to achieve the required detection limit of 0.4 mg/L for Ethanol for the RGP permit. We have also been unable to procure a subcontract laboratory that is able to achieve this limit. The data for Ethanol has been reported using our current method reporting limit.

Lab Number	Sample Name	<u>Matrix</u>	<u>Analysis</u>
1709460-01	MW-15	Ground Water	1664A, 200.7, 245.1, 2540D, 300.0, 3113B, 350.1,
			3500Cr B-2009, 420.1, 4500 CN CE, 4500Cl D,
			504.1, 524.2, 608, 625 SIM, 8270D SIM, ASTM
			D3695
1709460-02	MW-15F	Ground Water	1664A, 200.7, 245.1, 2540D, 300.0, 3113B, 350.1,
			3500Cr B-2009, 420.1, 4500 CN CE, 4500Cl D,
			504.1, 524.2, 608, 625 SIM, 8270D SIM, ASTM
			D3695
1709460-03	MW-17	Ground Water	1664A, 200.7, 245.1, 2540D, 300.0, 3113B, 350.1,
			3500Cr B-2009, 420.1, 4500 CN CE, 4500Cl D,
			504.1, 524.2, 608, 625 SIM, 8270D SIM, ASTM
			D3695
1709460-04	MW-17F	Ground Water	1664A, 200.7, 245.1, 2540D, 300.0, 3113B, 350.1,
			3500Cr B-2009, 420.1, 4500 CN CE, 4500Cl D,
			504.1, 524.2, 608, 625 SIM, 8270D SIM, ASTM
			D3695

The Microbiology Division of Thielsch Engineering, Inc.

CERTIFICATE OF ANALYSIS

Client Name: Tighe & Bond

Client Project ID: Woburn to Mystic - RGP ESS Laboratory Work Order: 1709460

PROJECT NARRATIVE

625(SIM) Semi-Volatile Organic Compounds

1709460-01 <u>Surrogate recovery(ies) above upper control limit (S+).</u>

2,4,6-Tribromophenol (244% @ 15-110%)

1709460-02 Surrogate recovery(ies) above upper control limit (S+).

2,4,6-Tribromophenol (245% @ 15-110%)

1709460-03 <u>Surrogate recovery(ies) above upper control limit (S+).</u>

2,4,6-Tribromophenol (189% @ 15-110%)

1709460-04 Surrogate recovery(ies) above upper control limit (S+).

2,4,6-Tribromophenol (180% @ 15-110%)

C7I0284-CCV1 Continuing Calibration %Diff/Drift is above control limit (CD+).

2,4,6-Tribromophenol (57% @ 20%), Di-n-octylphthalate (31% @ 20%)

C7I0284-TUN1 Benzidine tailing factor >2.

C7I0284-TUN1 <u>Pentachlorophenol tailing factor > 2.</u>

CI71812-BS2 Blank Spike recovery is above upper control limit (B+).

2,4,6-Tribromophenol (173% @ 15-110%)

CI71812-BSD2 Blank Spike recovery is above upper control limit (B+).

2,4,6-Tribromophenol (199% @ 15-110%)

8270D(SIM) Semi-Volatile Organic Compounds w/ Isotope Dilution

C7I0298-TUN1 Benzidine tailing factor >2.

Classical Chemistry

1709460-01 The maximum holding time listed in 40 CFR Part 136 Table II for pH, Dissolved Oxygen, Sulfite and

Residual Chlorine is fifteen minutes.

1709460-02 The maximum holding time listed in 40 CFR Part 136 Table II for pH, Dissolved Oxygen, Sulfite and

Residual Chlorine is fifteen minutes.

1709460-03 The maximum holding time listed in 40 CFR Part 136 Table II for pH, Dissolved Oxygen, Sulfite and

Residual Chlorine is fifteen minutes.

1709460-04 The maximum holding time listed in 40 CFR Part 136 Table II for pH, Dissolved Oxygen, Sulfite and

Residual Chlorine is fifteen minutes.

Total Metals

CI71971-BSD1 Blank Spike recovery is above upper control limit (B+).

Lead (116% @ 85-115%)

No other observations noted.

End of Project Narrative.

Page 3 of 53

The Microbiology Division of Thielsch Engineering, Inc.

CERTIFICATE OF ANALYSIS

Client Name: Tighe & Bond

Client Project ID: Woburn to Mystic - RGP ESS Laboratory Work Order: 1709460

DATA USABILITY LINKS

To ensure you are viewing the most current version of the documents below, please clear your internet cookies for www.ESSLaboratory.com. Consult your IT Support personnel for information on how to clear your internet cookies.

Definitions of Quality Control Parameters

Semivolatile Organics Internal Standard Information

Semivolatile Organics Surrogate Information

Volatile Organics Internal Standard Information

Volatile Organics Surrogate Information

EPH and VPH Alkane Lists

CURRENT SW-846 METHODOLOGY VERSIONS

Analytical Methods

1010A - Flashpoint

6010C - ICP

6020A - ICP MS

7010 - Graphite Furnace

7196A - Hexavalent Chromium

7470A - Aqueous Mercury

7471B - Solid Mercury

8011 - EDB/DBCP/TCP

8015C - GRO/DRO

8081B - Pesticides

8082A - PCB

8100M - TPH

8151A - Herbicides

8260B - VOA

8270D - SVOA

8270D SIM - SVOA Low Level

9014 - Cyanide

9038 - Sulfate

9040C - Aqueous pH

9045D - Solid pH (Corrosivity)

9050A - Specific Conductance

9056A - Anions (IC)

9060A - TOC

9095B - Paint Filter

MADEP 04-1.1 - EPH / VPH

Prep Methods

3005A - Aqueous ICP Digestion

3020A - Aqueous Graphite Furnace / ICP MS Digestion

3050B - Solid ICP / Graphite Furnace / ICP MS Digestion

3060A - Solid Hexavalent Chromium Digestion

3510C - Separatory Funnel Extraction

3520C - Liquid / Liquid Extraction

3540C - Manual Soxhlet Extraction

3541 - Automated Soxhlet Extraction

3546 - Microwave Extraction

3580A - Waste Dilution

5030B - Aqueous Purge and Trap

5030C - Aqueous Purge and Trap

5035 - Solid Purge and Trap

SW846 Reactivity Methods 7.3.3.2 (Reactive Cyanide) and 7.3.4.1 (Reactive Sulfide) have been withdrawn by EPA. These methods are reported per client request and are not NELAP accredited.

The Microbiology Division of Thielsch Engineering, Inc.

CERTIFICATE OF ANALYSIS

Client Name: Tighe & Bond

Client Project ID: Woburn to Mystic - RGP

Client Sample ID: MW-15 Date Sampled: 09/14/17 21:00

Percent Solids: N/A

ESS Laboratory Work Order: 1709460 ESS Laboratory Sample ID: 1709460-01

Sample Matrix: Ground Water

Units: ug/L

Extraction Method: 245.1/7470A

Total Metals

Analyte	Results (MRL)	MDL	Method	<u>Limit</u>	DF	Analyst	Analyzed	<u>I/V</u>	F/V	Batch
Antimony	ND (10.0)		200.7		1	KJK	09/20/17 21:42	50	10	CI71971
Arsenic	ND (3.0)		3113B		3	KJK	09/21/17 9:26	50	10	CI71971
Cadmium	ND (0.15)		3113B		3	KJK	09/21/17 23:35	50	10	CI71971
Chromium	ND (4.0)		200.7		1	KJK	09/20/17 21:42	50	10	CI71971
Chromium III	ND (10.0)		200.7		1	JLK	09/20/17 21:42	1	1	[CALC]
Copper	ND (2.0)		200.7		1	KJK	09/26/17 8:55	100	20	CI72503
Hardness	309000 (165)		200.7		1	KJK	09/20/17 21:42	1	1	[CALC]
Iron	7750 (20.0)		200.7		1	KJK	09/20/17 21:42	50	10	CI71971
Lead	ND (3.0)		3113B		3	KJK	09/21/17 17:53	50	10	CI71971
Mercury	ND (0.200)		245.1		1	MJV	09/19/17 0:15	20	40	CI71847
Nickel	ND (4.0)		200.7		1	KJK	09/20/17 21:42	50	10	CI71971
Selenium	ND (6.0)		3113B		3	KJK	09/21/17 12:37	50	10	CI71971
Silver	ND (1.0)		200.7		1	KJK	09/20/17 21:42	50	10	CI71971
Zinc	ND (10.0)		200.7		1	KJK	09/20/17 21:42	50	10	CI71971

The Microbiology Division of Thielsch Engineering, Inc.

CERTIFICATE OF ANALYSIS

Client Name: Tighe & Bond

Client Project ID: Woburn to Mystic - RGP

Client Sample ID: MW-15 Date Sampled: 09/14/17 21:00

Percent Solids: N/A Initial Volume: 25 Final Volume: 25

Extraction Method: 524.2

ESS Laboratory Work Order: 1709460 ESS Laboratory Sample ID: 1709460-01

Sample Matrix: Ground Water

Units: ug/L Analyst: DMC

524.2 Volatile Organic Compounds

<u>Analyte</u>	Results (MRL)	MDL	Method	Limit	<u>DF</u>	Analyzed	Sequence	Batch
1,1,1-Trichloroethane	ND (0.5)	<u> </u>	524.2		1	09/19/17 14:59	C7I0303	CI71930
1,1,2-Trichloroethane	ND (0.5)		524.2		1	09/19/17 14:59	C7I0303	CI71930
1,1-Dichloroethane	ND (0.5)		524.2		1	09/19/17 14:59	C7I0303	CI71930
1,1-Dichloroethene	ND (0.5)		524.2		1	09/19/17 14:59	C7I0303	CI71930
1,2-Dichlorobenzene	ND (0.5)		524.2		1	09/19/17 14:59	C7I0303	CI71930
1,2-Dichloroethane	ND (0.5)		524.2		1	09/19/17 14:59	C7I0303	CI71930
1,3-Dichlorobenzene	ND (0.5)		524.2		1	09/19/17 14:59	C7I0303	CI71930
1,4-Dichlorobenzene	ND (0.5)		524.2		1	09/19/17 14:59	C7I0303	CI71930
Acetone	ND (5.0)		524.2		1	09/19/17 14:59	C7I0303	CI71930
Benzene	ND (0.5)		524.2		1	09/19/17 14:59	C7I0303	CI71930
Carbon Tetrachloride	ND (0.3)		524.2		1	09/19/17 14:59	C7I0303	CI71930
cis-1,2-Dichloroethene	ND (0.5)		524.2		1	09/19/17 14:59	C7I0303	CI71930
Ethylbenzene	ND (0.5)		524.2		1	09/19/17 14:59	C7I0303	CI71930
Methyl tert-Butyl Ether	29.2 (0.5)		524.2		1	09/19/17 14:59	C7I0303	CI71930
Methylene Chloride	ND (0.5)		524.2		1	09/19/17 14:59	C7I0303	CI71930
Naphthalene	ND (0.5)		524.2		1	09/19/17 14:59	C7I0303	CI71930
Tertiary-amyl methyl ether	ND (1.0)		524.2		1	09/19/17 14:59	C7I0303	CI71930
Tertiary-butyl Alcohol	45.7 (25.0)		524.2		1	09/19/17 14:59	C7I0303	CI71930
Tetrachloroethene	ND (0.5)		524.2		1	09/19/17 14:59	C7I0303	CI71930
Toluene	ND (0.5)		524.2		1	09/19/17 14:59	C7I0303	CI71930
Trichloroethene	ND (0.5)		524.2		1	09/19/17 14:59	C7I0303	CI71930
Vinyl Chloride	ND (0.2)		524.2		1	09/19/17 14:59	C7I0303	CI71930
Xylene O	ND (0.5)		524.2		1	09/19/17 14:59	C7I0303	CI71930
Xylene P,M	ND (0.5)		524.2		1	09/19/17 14:59	C7I0303	CI71930

%Recovery Qualifier Limits
Surrogate: 1,2-Dichlorobenzene-d4 120 % 80-120

 Surrogate: 1,2-Dichlorobenzene-d4
 120 %
 80-120

 Surrogate: 4-Bromofluorobenzene
 99 %
 80-120

The Microbiology Division of Thielsch Engineering, Inc.

CERTIFICATE OF ANALYSIS

Client Name: Tighe & Bond

Client Project ID: Woburn to Mystic - RGP

Client Sample ID: MW-15 Date Sampled: 09/14/17 21:00

Percent Solids: N/A Initial Volume: 1070 Final Volume: 1

Extraction Method: 3510C

ESS Laboratory Work Order: 1709460 ESS Laboratory Sample ID: 1709460-01

Sample Matrix: Ground Water

Units: ug/L Analyst: CAD

Prepared: 9/19/17 10:08

608 Polychlorinated Biphenyls (PCB)

Analyte	Results (MRL)	MDL	Method	<u>Limit</u>	<u>DF</u>	Analyzed	Sequence	Batch
Aroclor 1016	ND (0.09)		608		1	09/19/17 11:36		CI71810
Aroclor 1221	ND (0.09)		608		1	09/19/17 11:36		CI71810
Aroclor 1232	ND (0.09)		608		1	09/19/17 11:36		CI71810
Aroclor 1242	ND (0.09)		608		1	09/19/17 11:36		CI71810
Aroclor 1248	ND (0.09)		608		1	09/19/17 11:36		CI71810
Aroclor 1254	ND (0.09)		608		1	09/19/17 11:36		CI71810
Aroclor 1260	ND (0.09)		608		1	09/19/17 11:36		CI71810
Aroclor 1262	ND (0.09)		608		1	09/19/17 11:36		CI71810
Aroclor 1268	ND (0.09)		608		1	09/19/17 11:36		CI71810
		%Recovery	Qualifier	Limits				
Surrogate: Decachlorobiphenyl		69 %		30-150				
Surrogate: Decachlorobiphenyl [2C]		77 %		30-150				
Surrogate: Tetrachloro-m-xylene		74 %		30-150				
Surrogate: Tetrachloro-m-xylene [2C]		77 %		30-150				

The Microbiology Division of Thielsch Engineering, Inc.

CERTIFICATE OF ANALYSIS

Client Name: Tighe & Bond

Client Project ID: Woburn to Mystic - RGP

Client Sample ID: MW-15 Date Sampled: 09/14/17 21:00

Percent Solids: N/A Initial Volume: 1070 Final Volume: 0.25

Extraction Method: 3510C

ESS Laboratory Work Order: 1709460 ESS Laboratory Sample ID: 1709460-01

Sample Matrix: Ground Water

Units: ug/L Analyst: IBM

Prepared: 9/18/17 15:21

625(SIM) Semi-Volatile Organic Compounds

Analyte	Results (MRL)	MDL	Method	<u>Limit</u>	<u>DF</u>	Analyzed	Sequence	Batch
Acenaphthene	ND (0.19)		625 SIM		1	09/19/17 0:35	C7I0284	CI71812
Acenaphthylene	ND (0.19)		625 SIM		1	09/19/17 0:35	C7I0284	CI71812
Anthracene	ND (0.19)		625 SIM		1	09/19/17 0:35	C7I0284	CI71812
Benzo(a)anthracene	ND (0.05)		625 SIM		1	09/19/17 0:35	C7I0284	CI71812
Benzo(a)pyrene	ND (0.05)		625 SIM		1	09/19/17 0:35	C7I0284	CI71812
Benzo(b)fluoranthene	ND (0.05)		625 SIM		1	09/19/17 0:35	C7I0284	CI71812
Benzo(g,h,i)perylene	ND (0.19)		625 SIM		1	09/19/17 0:35	C7I0284	CI71812
Benzo(k) fluoranthene	ND (0.05)		625 SIM		1	09/19/17 0:35	C7I0284	CI71812
bis(2-Ethylhexyl)phthalate	ND (1.87)		625 SIM		1	09/19/17 0:35	C7I0284	CI71812
Butylbenzylphthalate	ND (2.34)		625 SIM		1	09/19/17 0:35	C7I0284	CI71812
Chrysene	ND (0.05)		625 SIM		1	09/19/17 0:35	C7I0284	CI71812
Dibenzo(a,h)Anthracene	ND (0.05)		625 SIM		1	09/19/17 0:35	C7I0284	CI71812
Diethylphthalate	ND (2.34)		625 SIM		1	09/19/17 0:35	C7I0284	CI71812
Dimethylphthalate	ND (2.34)		625 SIM		1	09/19/17 0:35	C7I0284	CI71812
Di-n-butylphthalate	ND (2.34)		625 SIM		1	09/19/17 0:35	C7I0284	CI71812
Di-n-octylphthalate	ND (2.34)		625 SIM		1	09/19/17 0:35	C7I0284	CI71812
Fluoranthene	ND (0.19)		625 SIM		1	09/19/17 0:35	C7I0284	CI71812
Fluorene	ND (0.19)		625 SIM		1	09/19/17 0:35	C7I0284	CI71812
Indeno(1,2,3-cd)Pyrene	ND (0.05)		625 SIM		1	09/19/17 0:35	C7I0284	CI71812
Naphthalene	ND (0.19)		625 SIM		1	09/19/17 0:35	C7I0284	CI71812
Pentachlorophenol	ND (0.84)		625 SIM		1	09/19/17 0:35	C7I0284	CI71812
Phenanthrene	ND (0.19)		625 SIM		1	09/19/17 0:35	C7I0284	CI71812
Pyrene	ND (0.19)		625 SIM		1	09/19/17 0:35	C7I0284	CI71812
	•	%Recovery	Qualifier	Limits				

	70Kecovery	Qualifici	LIIIILS
Surrogate: 1,2-Dichlorobenzene-d4	62 %		30-130
Surrogate: 2,4,6-Tribromophenol	244 %	S+	15-110
Surrogate: 2-Fluorobiphenyl	84 %		30-130
Surrogate: Nitrobenzene-d5	93 %		30-130
Surrogate: p-Terphenyl-d14	79 %		30-130

The Microbiology Division of Thielsch Engineering, Inc.

CERTIFICATE OF ANALYSIS

Client Name: Tighe & Bond

Client Project ID: Woburn to Mystic - RGP

Client Sample ID: MW-15 Date Sampled: 09/14/17 21:00

Percent Solids: N/A Initial Volume: 500 Final Volume: 0.5

Extraction Method: 3535A

ESS Laboratory Work Order: 1709460 ESS Laboratory Sample ID: 1709460-01

Sample Matrix: Ground Water

Units: ug/L Analyst: VSC

Prepared: 9/18/17 18:00

8270D(SIM) Semi-Volatile Organic Compounds w/ Isotope Dilution

Analyte 1,4-Dioxane	Results (MRL) 0.396 (0.250)	<u>MDL</u>	Method 8270D SIM	<u>Limit</u>	<u>DF</u>	<u>Analyzed</u> 09/19/17 10:35	Sequence C7I0291	Batch CI71856
	%	Recovery	Qualifier	Limits				
Surrogate: 1,4-Dioxane-d8		39 %		15-115				

185 Frances Avenue, Cranston, RI 02910-2211

Tel: 401-461-7181

Fax: 401-461-4486

The Microbiology Division of Thielsch Engineering, Inc.

CERTIFICATE OF ANALYSIS

Client Name: Tighe & Bond

Client Project ID: Woburn to Mystic - RGP

Client Sample ID: MW-15 Date Sampled: 09/14/17 21:00

Percent Solids: N/A

ESS Laboratory Work Order: 1709460 ESS Laboratory Sample ID: 1709460-01

Sample Matrix: Ground Water

Classical Chemistry

Analyte Ammonia as N	Results (MRL) 9.09 (0.50)	MDL Method 350.1	<u>Limit</u>	<u>DF</u> 5	Analyst JLK	Analyzed 09/18/17 20:04	Units mg/L	Batch CI71804
Chloride	902 (250)	300.0		500	EEM	09/19/17 13:44	mg/L	CI71909
Hexavalent Chromium	ND (10.0)	3500Cr B-2009		1	JLK	09/15/17 20:49	ug/L	CI71551
Phenols	ND (100)	420.1		1	JLK	09/18/17 19:45	ug/L	CI71841
Total Cyanide (LL)	ND (5.00)	4500 CN CE		1	EEM	09/19/17 12:35	ug/L	CI71910
Total Petroleum Hydrocarbon	ND (5)	1664A		1	LAB	09/19/17 16:25	mg/L	CI71830
Total Residual Chlorine	ND (20.0)	4500Cl D		1	JLK	09/15/17 21:35	ug/L	CI71549
Total Suspended Solids	13 (5)	2540D		1	JLK	09/19/17 20:52	mg/L	CI71946

The Microbiology Division of Thielsch Engineering, Inc.

CERTIFICATE OF ANALYSIS

Client Name: Tighe & Bond

Client Project ID: Woburn to Mystic - RGP

Client Sample ID: MW-15 Date Sampled: 09/14/17 21:00

Percent Solids: N/A Initial Volume: 35 Final Volume: 2

Extraction Method: 504/8011

ESS Laboratory Work Order: 1709460 ESS Laboratory Sample ID: 1709460-01

Sample Matrix: Ground Water

Units: ug/L Analyst: IBM

Prepared: 9/20/17 10:10

504.1 1,2-Dibromoethane / 1,2-Dibromo-3-chloropropane

Analyte 1,2-Dibromoethane	Results (MRL) ND (0.015)	<u>MDL</u>	Method 504.1	<u>Limit</u>	<u>DF</u> 1	Analyzed 09/20/17 13:07	Sequence	Batch CI72021
-	9	%Recovery	Qualifier	Limits				
Surrogate: Pentachloroethane		83 %		30-150				
Surrogate: Pentachloroethane [2C]		67 %		30-150				

The Microbiology Division of Thielsch Engineering, Inc.

CERTIFICATE OF ANALYSIS

Client Name: Tighe & Bond

Client Project ID: Woburn to Mystic - RGP

Client Sample ID: MW-15 Date Sampled: 09/14/17 21:00

Percent Solids: N/A Initial Volume: 1 Final Volume: 1

Extraction Method: No Prep

ESS Laboratory Work Order: 1709460 ESS Laboratory Sample ID: 1709460-01

Sample Matrix: Ground Water

Units: mg/L Analyst: ZLC

Prepared: 9/19/17 9:18

Alcohol Scan by GC/FID

AnalyteResults (MRL)MDLMethodLimitDFAnalystAnalyzedSequenceBatchEthanolND (10)ASTM D36951ZLC09/19/17 13:29CI71906

185 Frances Avenue, Cranston, RI 02910-2211

Tel: 401-461-7181

Fax: 401-461-4486

◆ Service

The Microbiology Division of Thielsch Engineering, Inc.

CERTIFICATE OF ANALYSIS

Client Name: Tighe & Bond

Client Project ID: Woburn to Mystic - RGP

Client Sample ID: MW-15F Date Sampled: 09/14/17 22:00

Percent Solids: N/A

ESS Laboratory Work Order: 1709460 ESS Laboratory Sample ID: 1709460-02

Sample Matrix: Ground Water

Units: ug/L

Extraction Method: 245.1/7470A

Total Metals

<u>Analyte</u>	Results (MRL)	MDL Method	<u>Limit</u> <u>D</u>			<u>I/V</u>	F/V	Batch
Antimony	ND (10.0)	200.7	1	KJK	09/20/17 21:47	50	10	CI71971
Arsenic	ND (3.0)	3113B	3	KJK	09/21/17 9:32	50	10	CI71971
Cadmium	ND (0.15)	3113B	3	KJK	09/21/17 23:47	50	10	CI71971
Chromium	ND (4.0)	200.7	1	KJK	09/20/17 21:47	50	10	CI71971
Chromium III	ND (10.0)	200.7	1	JLK	09/20/17 21:47	1	1	[CALC]
Copper	ND (2.0)	200.7	1	KJK	09/26/17 9:01	100	20	CI72503
Hardness	322000 (165)	200.7	1	KJK	09/20/17 21:47	1	1	[CALC]
Iron	5970 (20.0)	200.7	1	KJK	09/20/17 21:47	50	10	CI71971
Lead	ND (3.0)	3113B	3	KJK	09/21/17 17:58	50	10	CI71971
Mercury	ND (0.200)	245.1	1	MJV	09/19/17 0:17	20	40	CI71847
Nickel	ND (4.0)	200.7	1	KJK	09/20/17 21:47	50	10	CI71971
Selenium	ND (6.0)	3113B	3	KJK	09/21/17 12:43	50	10	CI71971
Silver	ND (1.0)	200.7	1	KJK	09/20/17 21:47	50	10	CI71971
Zinc	ND (10.0)	200.7	1	KJK	09/20/17 21:47	50	10	CI71971

The Microbiology Division of Thielsch Engineering, Inc.

CERTIFICATE OF ANALYSIS

Client Name: Tighe & Bond

Client Project ID: Woburn to Mystic - RGP

Client Sample ID: MW-15F Date Sampled: 09/14/17 22:00

Percent Solids: N/A Initial Volume: 25 Final Volume: 25

Extraction Method: 524.2

ESS Laboratory Work Order: 1709460 ESS Laboratory Sample ID: 1709460-02

Sample Matrix: Ground Water

Units: ug/L Analyst: DMC

524.2 Volatile Organic Compounds

<u>Analyte</u>	Results (MRL)	MDL	Method	Limit	<u>DF</u>	Analyzed	Sequence	Batch
1,1,1-Trichloroethane	ND (0.5)		524.2		1	09/18/17 18:36	C7I0274	CI71838
1,1,2-Trichloroethane	ND (0.5)		524.2		1	09/18/17 18:36	C7I0274	CI71838
1,1-Dichloroethane	ND (0.5)		524.2		1	09/18/17 18:36	C7I0274	CI71838
1,1-Dichloroethene	ND (0.5)		524.2		1	09/18/17 18:36	C7I0274	CI71838
1,2-Dichlorobenzene	ND (0.5)		524.2		1	09/18/17 18:36	C7I0274	CI71838
1,2-Dichloroethane	ND (0.5)		524.2		1	09/18/17 18:36	C7I0274	CI71838
1,3-Dichlorobenzene	ND (0.5)		524.2		1	09/18/17 18:36	C7I0274	CI71838
1,4-Dichlorobenzene	ND (0.5)		524.2		1	09/18/17 18:36	C7I0274	CI71838
Acetone	ND (5.0)		524.2		1	09/18/17 18:36	C7I0274	CI71838
Benzene	ND (0.5)		524.2		1	09/18/17 18:36	C7I0274	CI71838
Carbon Tetrachloride	ND (0.3)		524.2		1	09/18/17 18:36	C7I0274	CI71838
cis-1,2-Dichloroethene	ND (0.5)		524.2		1	09/18/17 18:36	C7I0274	CI71838
Ethylbenzene	ND (0.5)		524.2		1	09/18/17 18:36	C7I0274	CI71838
Methyl tert-Butyl Ether	26.2 (0.5)		524.2		1	09/18/17 18:36	C7I0274	CI71838
Methylene Chloride	ND (0.5)		524.2		1	09/18/17 18:36	C7I0274	CI71838
Naphthalene	ND (0.5)		524.2		1	09/18/17 18:36	C7I0274	CI71838
Tertiary-amyl methyl ether	ND (1.0)		524.2		1	09/18/17 18:36	C7I0274	CI71838
Tertiary-butyl Alcohol	40.9 (25.0)		524.2		1	09/18/17 18:36	C7I0274	CI71838
Tetrachloroethene	ND (0.5)		524.2		1	09/18/17 18:36	C7I0274	CI71838
Toluene	ND (0.5)		524.2		1	09/18/17 18:36	C7I0274	CI71838
Trichloroethene	ND (0.5)		524.2		1	09/18/17 18:36	C7I0274	CI71838
Vinyl Chloride	ND (0.2)		524.2		1	09/18/17 18:36	C7I0274	CI71838
Xylene O	ND (0.5)		524.2		1	09/18/17 18:36	C7I0274	CI71838
Xylene P,M	ND (0.5)		524.2		1	09/18/17 18:36	C7I0274	CI71838

%Recovery Qualifier Limits
Surrogate: 1,2-Dichlorobenzene-d4 111 % 80-1

 Surrogate: 1,2-Dichlorobenzene-d4
 111 %
 80-120

 Surrogate: 4-Bromofluorobenzene
 101 %
 80-120

The Microbiology Division of Thielsch Engineering, Inc.

CERTIFICATE OF ANALYSIS

Client Name: Tighe & Bond

Client Project ID: Woburn to Mystic - RGP

Client Sample ID: MW-15F Date Sampled: 09/14/17 22:00

Percent Solids: N/A Initial Volume: 1070 Final Volume: 1

Extraction Method: 3510C

ESS Laboratory Work Order: 1709460 ESS Laboratory Sample ID: 1709460-02

Sample Matrix: Ground Water

Units: ug/L Analyst: CAD

Prepared: 9/19/17 10:08

608 Polychlorinated Biphenyls (PCB)

Analyte	Results (MRL)	MDL	Method	<u>Limit</u>	<u>DF</u>	Analyzed	Sequence	Batch
Aroclor 1016	ND (0.09)		608		1	09/19/17 11:54		CI71810
Aroclor 1221	ND (0.09)		608		1	09/19/17 11:54		CI71810
Aroclor 1232	ND (0.09)		608		1	09/19/17 11:54		CI71810
Aroclor 1242	ND (0.09)		608		1	09/19/17 11:54		CI71810
Aroclor 1248	ND (0.09)		608		1	09/19/17 11:54		CI71810
Aroclor 1254	ND (0.09)		608		1	09/19/17 11:54		CI71810
Aroclor 1260	ND (0.09)		608		1	09/19/17 11:54		CI71810
Aroclor 1262	ND (0.09)		608		1	09/19/17 11:54		CI71810
Aroclor 1268	ND (0.09)		608		1	09/19/17 11:54		CI71810
		%Recovery	Qualifier	Limits				
Surrogate: Decachlorobiphenyl		84 %		30-150				
Surrogate: Decachlorobiphenyl [2C]		94 %		30-150				
Surrogate: Tetrachloro-m-xylene		74 %		30-150				
Surrogate: Tetrachloro-m-xylene [2C]		76 %		30-150				

The Microbiology Division of Thielsch Engineering, Inc.

CERTIFICATE OF ANALYSIS

Client Name: Tighe & Bond

Client Project ID: Woburn to Mystic - RGP

Client Sample ID: MW-15F Date Sampled: 09/14/17 22:00

Percent Solids: N/A Initial Volume: 1070 Final Volume: 0.25

Extraction Method: 3510C

ESS Laboratory Work Order: 1709460 ESS Laboratory Sample ID: 1709460-02

Sample Matrix: Ground Water

Units: ug/L Analyst: IBM

Prepared: 9/18/17 15:21

625(SIM) Semi-Volatile Organic Compounds

Analyte	Results (MRL)	MDL	Method	<u>Limit</u>	<u>DF</u>	Analyzed	Sequence	Batch
Acenaphthene	ND (0.19)		625 SIM	<u> </u>	1	09/19/17 1:22	C7I0284	CI71812
Acenaphthylene	ND (0.19)		625 SIM		1	09/19/17 1:22	C7I0284	CI71812
Anthracene	ND (0.19)		625 SIM		1	09/19/17 1:22	C7I0284	CI71812
Benzo(a)anthracene	ND (0.05)		625 SIM		1	09/19/17 1:22	C7I0284	CI71812
Benzo(a)pyrene	ND (0.05)		625 SIM		1	09/19/17 1:22	C7I0284	CI71812
Benzo(b)fluoranthene	ND (0.05)		625 SIM		1	09/19/17 1:22	C7I0284	CI71812
Benzo(g,h,i)perylene	ND (0.19)		625 SIM		1	09/19/17 1:22	C7I0284	CI71812
Benzo(k)fluoranthene	ND (0.05)		625 SIM		1	09/19/17 1:22	C7I0284	CI71812
bis(2-Ethylhexyl)phthalate	ND (1.87)		625 SIM		1	09/19/17 1:22	C7I0284	CI71812
Butylbenzylphthalate	ND (2.34)		625 SIM		1	09/19/17 1:22	C7I0284	CI71812
Chrysene	ND (0.05)		625 SIM		1	09/19/17 1:22	C7I0284	CI71812
Dibenzo(a,h)Anthracene	ND (0.05)		625 SIM		1	09/19/17 1:22	C7I0284	CI71812
Diethylphthalate	ND (2.34)		625 SIM		1	09/19/17 1:22	C7I0284	CI71812
Dimethylphthalate	ND (2.34)		625 SIM		1	09/19/17 1:22	C7I0284	CI71812
Di-n-butylphthalate	ND (2.34)		625 SIM		1	09/19/17 1:22	C7I0284	CI71812
Di-n-octylphthalate	ND (2.34)		625 SIM		1	09/19/17 1:22	C7I0284	CI71812
Fluoranthene	ND (0.19)		625 SIM		1	09/19/17 1:22	C7I0284	CI71812
Fluorene	ND (0.19)		625 SIM		1	09/19/17 1:22	C7I0284	CI71812
Indeno(1,2,3-cd)Pyrene	ND (0.05)		625 SIM		1	09/19/17 1:22	C7I0284	CI71812
Naphthalene	ND (0.19)		625 SIM		1	09/19/17 1:22	C7I0284	CI71812
Pentachlorophenol	ND (0.84)		625 SIM		1	09/19/17 1:22	C7I0284	CI71812
Phenanthrene	ND (0.19)		625 SIM		1	09/19/17 1:22	C7I0284	CI71812
Pyrene	ND (0.19)		625 SIM		1	09/19/17 1:22	C7I0284	CI71812
-	9/	6Recovery	Qualifier	Limits				

	MECOVERY	Qualifici	LIIIILS
Surrogate: 1,2-Dichlorobenzene-d4	68 %		30-130
Surrogate: 2,4,6-Tribromophenol	245 %	<i>S+</i>	15-110
Surrogate: 2-Fluorobiphenyl	88 %		30-130
Surrogate: Nitrobenzene-d5	99 %		30-130
Surrogate: p-Terphenyl-d14	89 %		30-130

The Microbiology Division of Thielsch Engineering, Inc.

CERTIFICATE OF ANALYSIS

Client Name: Tighe & Bond

Client Project ID: Woburn to Mystic - RGP

Client Sample ID: MW-15F Date Sampled: 09/14/17 22:00

Percent Solids: N/A Initial Volume: 500 Final Volume: 0.5

Extraction Method: 3535A

ESS Laboratory Work Order: 1709460 ESS Laboratory Sample ID: 1709460-02

Sample Matrix: Ground Water

Units: ug/L Analyst: VSC

Prepared: 9/18/17 18:00

8270D(SIM) Semi-Volatile Organic Compounds w/ Isotope Dilution

Analyte 1,4-Dioxane	Results (MRL) 0.397 (0.250)	<u>MDL</u>	Method 8270D SIM	<u>Limit</u>	<u>DF</u> 1	<u>Analyzed</u> 09/19/17 11:09	Sequence C7I0291	Batch CI71856
	%	Recovery	Qualifier	Limits				
Surrogate: 1,4-Dioxane-d8		31 %		15-115				

185 Frances Avenue, Cranston, RI 02910-2211

Tel: 401-461-7181

Fax: 401-461-4486

The Microbiology Division of Thielsch Engineering, Inc.

CERTIFICATE OF ANALYSIS

Client Name: Tighe & Bond

Client Project ID: Woburn to Mystic - RGP

Client Sample ID: MW-15F Date Sampled: 09/14/17 22:00

Percent Solids: N/A

ESS Laboratory Work Order: 1709460 ESS Laboratory Sample ID: 1709460-02

Sample Matrix: Ground Water

Classical Chemistry

Analyte Ammonia as N	Results (MRL) 8.21 (0.50)	MDL <u>Method</u> 350.1	<u>Limit</u>	<u>DF</u> 5	Analyst JLK	Analyzed 09/18/17 20:04	Units mg/L	Batch CI71804
Chloride	536 (250)	300.0		500	EEM	09/19/17 14:01	mg/L	CI71909
Hexavalent Chromium	ND (10.0)	3500Cr B-2009		1	JLK	09/15/17 20:49	ug/L	CI71551
Phenols	ND (100)	420.1		1	JLK	09/18/17 19:45	ug/L	CI71841
Total Cyanide (LL)	ND (5.00)	4500 CN CE		1	EEM	09/19/17 12:35	ug/L	CI71910
Total Petroleum Hydrocarbon	ND (5)	1664A		1	LAB	09/19/17 16:25	mg/L	CI71830
Total Residual Chlorine	ND (20.0)	4500Cl D		1	JLK	09/15/17 21:35	ug/L	CI71549
Total Suspended Solids	8 (5)	2540D		1	JLK	09/19/17 20:52	mg/L	CI71946

The Microbiology Division of Thielsch Engineering, Inc.

CERTIFICATE OF ANALYSIS

Client Name: Tighe & Bond

Client Project ID: Woburn to Mystic - RGP

Client Sample ID: MW-15F Date Sampled: 09/14/17 22:00

Percent Solids: N/A Initial Volume: 35 Final Volume: 2

Extraction Method: 504/8011

ESS Laboratory Work Order: 1709460 ESS Laboratory Sample ID: 1709460-02

Sample Matrix: Ground Water

Units: ug/L Analyst: IBM

Prepared: 9/20/17 10:10

504.1 1,2-Dibromoethane / 1,2-Dibromo-3-chloropropane

Analyte 1,2-Dibromoethane	Results (MRL) ND (0.015)	<u>MDL</u>	Method 504.1	<u>Limit</u>	<u>DF</u> 1	Analyzed 09/20/17 13:34	<u>Sequence</u>	Batch CI72021
	%	Recovery	Qualifier	Limits				
Surrogate: Pentachloroethane		<i>75</i> %		30-150				
Surrogate: Pentachloroethane [2C]		60 %		30-150				

The Microbiology Division of Thielsch Engineering, Inc.

CERTIFICATE OF ANALYSIS

Client Name: Tighe & Bond

Client Project ID: Woburn to Mystic - RGP

Client Sample ID: MW-15F Date Sampled: 09/14/17 22:00

Percent Solids: N/A Initial Volume: 1 Final Volume: 1

Extraction Method: No Prep

ESS Laboratory Work Order: 1709460 ESS Laboratory Sample ID: 1709460-02

Sample Matrix: Ground Water

Units: mg/L Analyst: ZLC

Prepared: 9/19/17 9:18

Alcohol Scan by GC/FID

AnalyteResults (MRL)MDLMethodLimitDFAnalystAnalyzedSequenceBatchEthanolND (10)ASTM D36951ZLC09/19/17 14:15CI71906

185 Frances Avenue, Cranston, RI 02910-2211

Tel: 401-461-7181

Fax: 401-461-4486

The Microbiology Division of Thielsch Engineering, Inc.

CERTIFICATE OF ANALYSIS

Client Name: Tighe & Bond

Client Project ID: Woburn to Mystic - RGP

Client Sample ID: MW-17 Date Sampled: 09/15/17 00:00

Percent Solids: N/A

ESS Laboratory Work Order: 1709460 ESS Laboratory Sample ID: 1709460-03

Sample Matrix: Ground Water

Units: ug/L

Extraction Method: 245.1/7470A

Total Metals

Analyte	Results (MRL)	MDL	Method	<u>Limit</u>	DF	Analyst	Analyzed	<u>I/V</u>	F/V	Batch
Antimony	ND (10.0)		200.7		1	KJK	09/20/17 21:53	50	10	CI71971
Arsenic	ND (3.0)		3113B		3	KJK	09/21/17 9:37	50	10	CI71971
Cadmium	ND (0.15)		3113B		3	KJK	09/21/17 23:52	50	10	CI71971
Chromium	ND (4.0)		200.7		1	KJK	09/20/17 21:53	50	10	CI71971
Chromium III	ND (10.0)		200.7		1	JLK	09/20/17 21:53	1	1	[CALC]
Copper	2.2 (2.0)		200.7		1	KJK	09/26/17 9:06	100	20	CI72503
Hardness	277000 (499)		200.7		5	KJK	09/21/17 17:54	1	1	[CALC]
Iron	14900 (20.0)		200.7		1	KJK	09/20/17 21:53	50	10	CI71971
Lead	ND (3.0)		3113B		3	KJK	09/21/17 18:16	50	10	CI71971
Mercury	ND (0.200)		245.1		1	MJV	09/19/17 0:20	20	40	CI71847
Nickel	ND (4.0)		200.7		1	KJK	09/20/17 21:53	50	10	CI71971
Selenium	ND (6.0)		3113B		3	KJK	09/21/17 12:54	50	10	CI71971
Silver	ND (1.0)		200.7		1	KJK	09/20/17 21:53	50	10	CI71971
Zinc	ND (10.0)		200.7		1	KJK	09/20/17 21:53	50	10	CI71971

Fax: 401-461-4486

The Microbiology Division of Thielsch Engineering, Inc.

CERTIFICATE OF ANALYSIS

Client Name: Tighe & Bond

Client Project ID: Woburn to Mystic - RGP

Client Sample ID: MW-17 Date Sampled: 09/15/17 00:00

Percent Solids: N/A Initial Volume: 25 Final Volume: 25

Extraction Method: 524.2

ESS Laboratory Work Order: 1709460 ESS Laboratory Sample ID: 1709460-03

Sample Matrix: Ground Water

Units: ug/L Analyst: DMC

524.2 Volatile Organic Compounds

<u>Analyte</u>	Results (MRL)	MDL	Method	<u>Limit</u>	<u>DF</u>	Analyzed	Sequence	Batch
1,1,1-Trichloroethane	ND (0.5)		524.2		1	09/18/17 19:10	C7I0274	CI71838
1,1,2-Trichloroethane	ND (0.5)		524.2		1	09/18/17 19:10	C7I0274	CI71838
1,1-Dichloroethane	ND (0.5)		524.2		1	09/18/17 19:10	C7I0274	CI71838
1,1-Dichloroethene	ND (0.5)		524.2		1	09/18/17 19:10	C7I0274	CI71838
1,2-Dichlorobenzene	ND (0.5)		524.2		1	09/18/17 19:10	C7I0274	CI71838
1,2-Dichloroethane	ND (0.5)		524.2		1	09/18/17 19:10	C7I0274	CI71838
1,3-Dichlorobenzene	ND (0.5)		524.2		1	09/18/17 19:10	C7I0274	CI71838
1,4-Dichlorobenzene	ND (0.5)		524.2		1	09/18/17 19:10	C7I0274	CI71838
Acetone	ND (5.0)		524.2		1	09/18/17 19:10	C7I0274	CI71838
Benzene	ND (0.5)		524.2		1	09/18/17 19:10	C7I0274	CI71838
Carbon Tetrachloride	ND (0.3)		524.2		1	09/18/17 19:10	C7I0274	CI71838
cis-1,2-Dichloroethene	ND (0.5)		524.2		1	09/18/17 19:10	C7I0274	CI71838
Ethylbenzene	ND (0.5)		524.2		1	09/18/17 19:10	C7I0274	CI71838
Methyl tert-Butyl Ether	ND (0.5)		524.2		1	09/18/17 19:10	C7I0274	CI71838
Methylene Chloride	ND (0.5)		524.2		1	09/18/17 19:10	C7I0274	CI71838
Naphthalene	ND (0.5)		524.2		1	09/18/17 19:10	C7I0274	CI71838
Tertiary-amyl methyl ether	ND (1.0)		524.2		1	09/18/17 19:10	C7I0274	CI71838
Tertiary-butyl Alcohol	ND (25.0)		524.2		1	09/18/17 19:10	C7I0274	CI71838
Tetrachloroethene	ND (0.5)		524.2		1	09/18/17 19:10	C7I0274	CI71838
Toluene	ND (0.5)		524.2		1	09/18/17 19:10	C7I0274	CI71838
Trichloroethene	ND (0.5)		524.2		1	09/18/17 19:10	C7I0274	CI71838
Vinyl Chloride	ND (0.2)		524.2		1	09/18/17 19:10	C7I0274	CI71838
Xylene O	ND (0.5)		524.2		1	09/18/17 19:10	C7I0274	CI71838
Xylene P,M	ND (0.5)		524.2		1	09/18/17 19:10	C7I0274	CI71838

%Recovery Qualifier Limits

 Surrogate: 1,2-Dichlorobenzene-d4
 112 %
 80-120

 Surrogate: 4-Bromofluorobenzene
 104 %
 80-120

The Microbiology Division of Thielsch Engineering, Inc.

CERTIFICATE OF ANALYSIS

Client Name: Tighe & Bond

Client Project ID: Woburn to Mystic - RGP

Client Sample ID: MW-17 Date Sampled: 09/15/17 00:00

Percent Solids: N/A Initial Volume: 1070 Final Volume: 1

Extraction Method: 3510C

ESS Laboratory Work Order: 1709460 ESS Laboratory Sample ID: 1709460-03

Sample Matrix: Ground Water

Units: ug/L Analyst: CAD

Prepared: 9/19/17 10:08

608 Polychlorinated Biphenyls (PCB)

Analyte	Results (MRL)	MDL	Method	<u>Limit</u>	<u>DF</u>	Analyzed	Sequence	Batch
Aroclor 1016	ND (0.09)		608		1	09/19/17 12:13		CI71810
Aroclor 1221	ND (0.09)		608		1	09/19/17 12:13		CI71810
Aroclor 1232	ND (0.09)		608		1	09/19/17 12:13		CI71810
Aroclor 1242	ND (0.09)		608		1	09/19/17 12:13		CI71810
Aroclor 1248	ND (0.09)		608		1	09/19/17 12:13		CI71810
Aroclor 1254	ND (0.09)		608		1	09/19/17 12:13		CI71810
Aroclor 1260	ND (0.09)		608		1	09/19/17 12:13		CI71810
Aroclor 1262	ND (0.09)		608		1	09/19/17 12:13		CI71810
Aroclor 1268	ND (0.09)		608		1	09/19/17 12:13		CI71810
		%Recovery	Qualifier	Limits				
Surrogate: Decachlorobiphenyl		65 %		30-150				
Surrogate: Decachlorobiphenyl [2C]		70 %		30-150				
Surrogate: Tetrachloro-m-xylene		80 %		30-150				
Surrogate: Tetrachloro-m-xylene [2C]		85 %		30-150				

The Microbiology Division of Thielsch Engineering, Inc.

CERTIFICATE OF ANALYSIS

Client Name: Tighe & Bond

Client Project ID: Woburn to Mystic - RGP

Client Sample ID: MW-17 Date Sampled: 09/15/17 00:00

Percent Solids: N/A Initial Volume: 1070 Final Volume: 0.25

Extraction Method: 3510C

ESS Laboratory Work Order: 1709460 ESS Laboratory Sample ID: 1709460-03

Sample Matrix: Ground Water

Units: ug/L Analyst: IBM

Prepared: 9/18/17 15:21

625(SIM) Semi-Volatile Organic Compounds

Analyte	Results (MRL)	MDL M	<u>lethod</u>	<u>Limit</u>	<u>DF</u>	<u>Analyz</u>	zed Sequence	Batch
Acenaphthene	0.23 (0.19)	62	5 SIM		1	09/19/17	2:11 C7I0284	CI71812
Acenaphthylene	ND (0.19)	62	5 SIM		1	09/19/17	2:11 C7I0284	CI71812
Anthracene	ND (0.19)	62	5 SIM		1	09/19/17	2:11 C7I0284	CI71812
Benzo(a)anthracene	0.07 (0.05)	62	5 SIM		1	09/19/17	2:11 C7I0284	CI71812
Benzo(a)pyrene	0.08 (0.05)	62	5 SIM		1	09/19/17	2:11 C7I0284	CI71812
Benzo(b)fluoranthene	0.12 (0.05)	62	5 SIM		1	09/19/17	2:11 C7I0284	CI71812
Benzo(g,h,i)perylene	ND (0.19)	62	5 SIM		1	09/19/17	2:11 C7I0284	CI71812
Benzo(k)fluoranthene	ND (0.05)	62	5 SIM		1	09/19/17	2:11 C7I0284	CI71812
bis(2-Ethylhexyl)phthalate	2.27 (1.87)	62	5 SIM		1	09/19/17	2:11 C7I0284	CI71812
Butylbenzylphthalate	ND (2.34)	62	5 SIM		1	09/19/17	2:11 C7I0284	CI71812
Chrysene	0.08 (0.05)	62	5 SIM		1	09/19/17	2:11 C7I0284	CI71812
Dibenzo(a,h)Anthracene	ND (0.05)	62	5 SIM		1	09/19/17	2:11 C7I0284	CI71812
Diethylphthalate	ND (2.34)	62	5 SIM		1	09/19/17	2:11 C7I0284	CI71812
Dimethylphthalate	ND (2.34)	62	5 SIM		1	09/19/17	2:11 C7I0284	CI71812
Di-n-butylphthalate	ND (2.34)	62	5 SIM		1	09/19/17	2:11 C7I0284	CI71812
Di-n-octylphthalate	ND (2.34)	62	5 SIM		1	09/19/17	2:11 C7I0284	CI71812
Fluoranthene	ND (0.19)	62	5 SIM		1	09/19/17	2:11 C7I0284	CI71812
Fluorene	ND (0.19)	62	5 SIM		1	09/19/17	2:11 C7I0284	CI71812
Indeno(1,2,3-cd)Pyrene	0.08 (0.05)	62	5 SIM		1	09/19/17	2:11 C7I0284	CI71812
Naphthalene	ND (0.19)	62	5 SIM		1	09/19/17	2:11 C7I0284	CI71812
Pentachlorophenol	ND (0.84)	62	5 SIM		1	09/19/17	2:11 C7I0284	CI71812
Phenanthrene	ND (0.19)	62	5 SIM		1	09/19/17	2:11 C7I0284	CI71812
Pyrene	ND (0.19)	62	5 SIM		1	09/19/17	2:11 C7I0284	CI71812
	9/	Recovery (Qualifier	Limits				

	%Recovery	Qualifier	LIIIILS
Surrogate: 1,2-Dichlorobenzene-d4	62 %		30-130
Surrogate: 2,4,6-Tribromophenol	189 %	<i>S+</i>	15-110
Surrogate: 2-Fluorobiphenyl	82 %		30-130
Surrogate: Nitrobenzene-d5	89 %		30-130
Surrogate: p-Terphenyl-d14	76 %		30-130

The Microbiology Division of Thielsch Engineering, Inc.

CERTIFICATE OF ANALYSIS

Client Name: Tighe & Bond

Client Project ID: Woburn to Mystic - RGP

Client Sample ID: MW-17 Date Sampled: 09/15/17 00:00

Percent Solids: N/A Initial Volume: 500 Final Volume: 0.5

Extraction Method: 3535A

ESS Laboratory Work Order: 1709460 ESS Laboratory Sample ID: 1709460-03

Sample Matrix: Ground Water

Units: ug/L Analyst: IBM

Prepared: 9/19/17 15:30

8270D(SIM) Semi-Volatile Organic Compounds w/ Isotope Dilution

Analyte 1,4-Dioxane	Results (MRL) ND (0.250)	<u>MDL</u>	Method 8270D SIM	<u>Limit</u>	<u>DF</u>	Analyzed 09/20/17 1:12	Sequence C7I0298	<u>Batch</u> CI71953
	%	6Recovery	Qualifier	Limits				
Surrogate: 1,4-Dioxane-d8		41 %		15-115				

185 Frances Avenue, Cranston, RI 02910-2211

Tel: 401-461-7181

Dependability

Fax: 401-461-4486

The Microbiology Division of Thielsch Engineering, Inc.

CERTIFICATE OF ANALYSIS

Client Name: Tighe & Bond

Client Project ID: Woburn to Mystic - RGP

Client Sample ID: MW-17 Date Sampled: 09/15/17 00:00

Percent Solids: N/A

ESS Laboratory Work Order: 1709460 ESS Laboratory Sample ID: 1709460-03

Sample Matrix: Ground Water

Classical Chemistry

Analyte Ammonia as N	Results (MRL) 1.56 (0.10)	MDL Method 350.1	<u>Limit</u>	<u>DF</u>	Analyst JLK	Analyzed 09/18/17 18:57	Units mg/L	Batch CI71804
Chloride	1730 (500)	300.0		1000	EEM	09/19/17 14:17	mg/L	CI71909
Hexavalent Chromium	ND (10.0)	3500Cr B-2009		1	JLK	09/15/17 20:49	ug/L	CI71551
Phenols	ND (100)	420.1		1	JLK	09/18/17 19:45	ug/L	CI71841
Total Cyanide (LL)	ND (5.00)	4500 CN CE		1	EEM	09/19/17 12:35	ug/L	CI71910
Total Petroleum Hydrocarbon	ND (5)	1664A		1	LAB	09/19/17 16:25	mg/L	CI71830
Total Residual Chlorine	ND (20.0)	4500Cl D		1	JLK	09/15/17 21:35	ug/L	CI71549
Total Suspended Solids	65 (5)	2540D		1	JLK	09/19/17 20:52	mg/L	CI71946

The Microbiology Division of Thielsch Engineering, Inc.

CERTIFICATE OF ANALYSIS

Client Name: Tighe & Bond

Client Project ID: Woburn to Mystic - RGP

Client Sample ID: MW-17 Date Sampled: 09/15/17 00:00

Percent Solids: N/A Initial Volume: 35 Final Volume: 2

Extraction Method: 504/8011

ESS Laboratory Work Order: 1709460 ESS Laboratory Sample ID: 1709460-03

Sample Matrix: Ground Water

Units: ug/L Analyst: IBM

Prepared: 9/20/17 15:05

504.1 1,2-Dibromoethane / 1,2-Dibromo-3-chloropropane

Analyte 1.2-Dibromoethane	Results (MRL) ND (0.015)	MDL	Method 504.1	<u>Limit</u>	<u>DF</u>	<u>Analyzed</u> 09/20/17 15:32	Sequence	Batch CI72021
1,2-Dioromoctiane		6Recovery	Oualifier	Limits	1	09/20/17 13.32		
Surrogate: Pentachloroethane	7	58 %	Quaimer	30-150				
Surrogate: Pentachloroethane [2C]		64 %		30-150				

The Microbiology Division of Thielsch Engineering, Inc.

CERTIFICATE OF ANALYSIS

Client Name: Tighe & Bond

Client Project ID: Woburn to Mystic - RGP

Client Sample ID: MW-17 Date Sampled: 09/15/17 00:00

Percent Solids: N/A Initial Volume: 1 Final Volume: 1

Extraction Method: No Prep

ESS Laboratory Work Order: 1709460 ESS Laboratory Sample ID: 1709460-03

Sample Matrix: Ground Water

Units: mg/L Analyst: ZLC

Prepared: 9/19/17 9:18

Alcohol Scan by GC/FID

AnalyteResults (MRL)MDLMethodLimitDFAnalystAnalyzedSequenceBatchEthanolND (10)ASTM D36951ZLC09/19/17 15:23CI71906

The Microbiology Division of Thielsch Engineering, Inc.

CERTIFICATE OF ANALYSIS

Client Name: Tighe & Bond

Client Project ID: Woburn to Mystic - RGP

Client Sample ID: MW-17F Date Sampled: 09/15/17 01:00

Percent Solids: N/A

ESS Laboratory Work Order: 1709460 ESS Laboratory Sample ID: 1709460-04

Sample Matrix: Ground Water

Units: ug/L

Extraction Method: 245.1/7470A

Total Metals

Analyte	Results (MRL)	MDL Method	Limit D	F Analys	<u>Analyzed</u>	<u>I/V</u>	F/V	Batch
Antimony	ND (10.0)	200.7	1	KJK	09/20/17 22:08	50	10	CI71971
Arsenic	ND (3.0)	3113B	3	KJK	09/21/17 9:49	50	10	CI71971
Cadmium	0.26 (0.15)	3113B	3	KJK	09/21/17 23:58	50	10	CI71971
Chromium	6.3 (4.0)	200.7	1	KJK	09/20/17 22:08	50	10	CI71971
Chromium III	ND (10.0)	200.7	1	JLK	09/20/17 22:08	1	1	[CALC]
Copper	26.7 (4.0)	200.7	1	KJK	09/20/17 22:08	50	10	CI71971
Hardness	267000 (165)	200.7	1	KJK	09/20/17 22:08	1	1	[CALC]
Iron	32000 (20.0)	200.7	1	KJK	09/20/17 22:08	50	10	CI71971
Lead	73.7 (15.0)	3113B	1.	5 KJK	09/21/17 18:45	50	10	CI71971
Mercury	ND (0.200)	245.1	1	MJV	09/19/17 0:22	20	40	CI71847
Nickel	ND (4.0)	200.7	1	KJK	09/20/17 22:08	50	10	CI71971
Selenium	ND (6.0)	3113B	3	KJK	09/21/17 13:00	50	10	CI71971
Silver	ND (1.0)	200.7	1	KJK	09/20/17 22:08	50	10	CI71971
Zinc	77.5 (10.0)	200.7	1	KJK	09/20/17 22:08	50	10	CI71971

The Microbiology Division of Thielsch Engineering, Inc.

CERTIFICATE OF ANALYSIS

Client Name: Tighe & Bond

Client Project ID: Woburn to Mystic - RGP

Client Sample ID: MW-17F Date Sampled: 09/15/17 01:00

Percent Solids: N/A Initial Volume: 25 Final Volume: 25

Extraction Method: 524.2

ESS Laboratory Work Order: 1709460 ESS Laboratory Sample ID: 1709460-04

Sample Matrix: Ground Water

Units: ug/L Analyst: DMC

524.2 Volatile Organic Compounds

<u>Analyte</u>	Results (MRL)	MDL	Method	<u>Limit</u>	DF	Analyzed	Sequence	Batch
1,1,1-Trichloroethane	ND (0.5)	·	524.2		1	09/18/17 19:45	C7I0274	CI71838
1,1,2-Trichloroethane	ND (0.5)		524.2		1	09/18/17 19:45	C7I0274	CI71838
1,1-Dichloroethane	ND (0.5)		524.2		1	09/18/17 19:45	C7I0274	CI71838
1,1-Dichloroethene	ND (0.5)		524.2		1	09/18/17 19:45	C7I0274	CI71838
1,2-Dichlorobenzene	ND (0.5)		524.2		1	09/18/17 19:45	C7I0274	CI71838
1,2-Dichloroethane	ND (0.5)		524.2		1	09/18/17 19:45	C7I0274	CI71838
1,3-Dichlorobenzene	ND (0.5)		524.2		1	09/18/17 19:45	C7I0274	CI71838
1,4-Dichlorobenzene	ND (0.5)		524.2		1	09/18/17 19:45	C7I0274	CI71838
Acetone	ND (5.0)		524.2		1	09/18/17 19:45	C7I0274	CI71838
Benzene	ND (0.5)		524.2		1	09/18/17 19:45	C7I0274	CI71838
Carbon Tetrachloride	ND (0.3)		524.2		1	09/18/17 19:45	C7I0274	CI71838
cis-1,2-Dichloroethene	ND (0.5)		524.2		1	09/18/17 19:45	C7I0274	CI71838
Ethylbenzene	ND (0.5)		524.2		1	09/18/17 19:45	C7I0274	CI71838
Methyl tert-Butyl Ether	ND (0.5)		524.2		1	09/18/17 19:45	C7I0274	CI71838
Methylene Chloride	ND (0.5)		524.2		1	09/18/17 19:45	C7I0274	CI71838
Naphthalene	ND (0.5)		524.2		1	09/18/17 19:45	C7I0274	CI71838
Tertiary-amyl methyl ether	ND (1.0)		524.2		1	09/18/17 19:45	C7I0274	CI71838
Tertiary-butyl Alcohol	ND (25.0)		524.2		1	09/18/17 19:45	C7I0274	CI71838
Tetrachloroethene	ND (0.5)		524.2		1	09/18/17 19:45	C7I0274	CI71838
Toluene	ND (0.5)		524.2		1	09/18/17 19:45	C7I0274	CI71838
Trichloroethene	ND (0.5)		524.2		1	09/18/17 19:45	C7I0274	CI71838
Vinyl Chloride	ND (0.2)		524.2		1	09/18/17 19:45	C7I0274	CI71838
Xylene O	ND (0.5)		524.2		1	09/18/17 19:45	C7I0274	CI71838
Xylene P,M	ND (0.5)		524.2		1	09/18/17 19:45	C7I0274	CI71838

%Recovery Qualifier Limits
Surrogate: 1,2-Dichlorobenzene-d4 118 % 80-1.

 Surrogate: 1,2-Dichlorobenzene-d4
 118 %
 80-120

 Surrogate: 4-Bromofluorobenzene
 103 %
 80-120

The Microbiology Division of Thielsch Engineering, Inc.

CERTIFICATE OF ANALYSIS

Client Name: Tighe & Bond

Client Project ID: Woburn to Mystic - RGP

Client Sample ID: MW-17F Date Sampled: 09/15/17 01:00

Percent Solids: N/A Initial Volume: 1070 Final Volume: 1

Extraction Method: 3510C

ESS Laboratory Work Order: 1709460 ESS Laboratory Sample ID: 1709460-04

Sample Matrix: Ground Water

Units: ug/L Analyst: CAD

Prepared: 9/19/17 10:08

608 Polychlorinated Biphenyls (PCB)

Analyte	Results (MRL)	MDL	Method	<u>Limit</u>	<u>DF</u>	Analyzed	Sequence	Batch
Aroclor 1016	ND (0.09)		608		1	09/19/17 12:32		CI71810
Aroclor 1221	ND (0.09)		608		1	09/19/17 12:32		CI71810
Aroclor 1232	ND (0.09)		608		1	09/19/17 12:32		CI71810
Aroclor 1242	ND (0.09)		608		1	09/19/17 12:32		CI71810
Aroclor 1248	ND (0.09)		608		1	09/19/17 12:32		CI71810
Aroclor 1254	ND (0.09)		608		1	09/19/17 12:32		CI71810
Aroclor 1260	ND (0.09)		608		1	09/19/17 12:32		CI71810
Aroclor 1262	ND (0.09)		608		1	09/19/17 12:32		CI71810
Aroclor 1268	ND (0.09)		608		1	09/19/17 12:32		CI71810
		%Recovery	Qualifier	Limits				
Surrogate: Decachlorobiphenyl		98 %		30-150				
Surrogate: Decachlorobiphenyl [2C]		107 %		30-150				
Surrogate: Tetrachloro-m-xylene		81 %		30-150				
Surrogate: Tetrachloro-m-xylene [2C]		81 %		30-150				

The Microbiology Division of Thielsch Engineering, Inc.

ESS Laboratory Work Order: 1709460

CERTIFICATE OF ANALYSIS

Client Name: Tighe & Bond

Client Project ID: Woburn to Mystic - RGP

Client Sample ID: MW-17F Date Sampled: 09/15/17 01:00

Percent Solids: N/A Initial Volume: 1070 Final Volume: 0.25

Extraction Method: 3510C

ESS Laboratory Sample ID: 1709460-04 Sample Matrix: Ground Water

Units: ug/L Analyst: IBM

Prepared: 9/18/17 15:21

625(SIM) Semi-Volatile Organic Compounds

Analyte	Results (MRL)	MDL	Method	<u>Limit</u>	<u>DF</u>	Analyzed	Sequence	Batch
Acenaphthene	ND (0.19)		625 SIM		1	09/19/17 3:00	C7I0284	CI71812
Acenaphthylene	ND (0.19)		625 SIM		1	09/19/17 3:00	C7I0284	CI71812
Anthracene	ND (0.19)		625 SIM		1	09/19/17 3:00	C7I0284	CI71812
Benzo(a)anthracene	ND (0.05)		625 SIM		1	09/19/17 3:00	C7I0284	CI71812
Benzo(a)pyrene	ND (0.05)		625 SIM		1	09/19/17 3:00	C7I0284	CI71812
Benzo(b)fluoranthene	ND (0.05)		625 SIM		1	09/19/17 3:00	C7I0284	CI71812
Benzo(g,h,i)perylene	ND (0.19)		625 SIM		1	09/19/17 3:00	C7I0284	CI71812
Benzo(k)fluoranthene	ND (0.05)		625 SIM		1	09/19/17 3:00	C7I0284	CI71812
bis(2-Ethylhexyl)phthalate	ND (1.87)		625 SIM		1	09/19/17 3:00	C7I0284	CI71812
Butylbenzylphthalate	ND (2.34)		625 SIM		1	09/19/17 3:00	C7I0284	CI71812
Chrysene	ND (0.05)		625 SIM		1	09/19/17 3:00	C7I0284	CI71812
Dibenzo(a,h)Anthracene	ND (0.05)		625 SIM		1	09/19/17 3:00	C7I0284	CI71812
Diethylphthalate	ND (2.34)		625 SIM		1	09/19/17 3:00	C7I0284	CI71812
Dimethylphthalate	ND (2.34)		625 SIM		1	09/19/17 3:00	C7I0284	CI71812
Di-n-butylphthalate	ND (2.34)		625 SIM		1	09/19/17 3:00	C7I0284	CI71812
Di-n-octylphthalate	ND (2.34)		625 SIM		1	09/19/17 3:00	C7I0284	CI71812
Fluoranthene	ND (0.19)		625 SIM		1	09/19/17 3:00	C7I0284	CI71812
Fluorene	ND (0.19)		625 SIM		1	09/19/17 3:00	C7I0284	CI71812
Indeno(1,2,3-cd)Pyrene	ND (0.05)		625 SIM		1	09/19/17 3:00	C7I0284	CI71812
Naphthalene	ND (0.19)		625 SIM		1	09/19/17 3:00	C7I0284	CI71812
Pentachlorophenol	ND (0.84)		625 SIM		1	09/19/17 3:00	C7I0284	CI71812
Phenanthrene	ND (0.19)		625 SIM		1	09/19/17 3:00	C7I0284	CI71812
Pyrene	ND (0.19)		625 SIM		1	09/19/17 3:00	C7I0284	CI71812
-		%Recovery	Qualifier	Limits				
Surrogate: 1.2-Dichlorobenzene-d4		GE 0/.		20 120				

	MECOVERY	Qualifici	LIIIILS
Surrogate: 1,2-Dichlorobenzene-d4	65 %		30-130
Surrogate: 2,4,6-Tribromophenol	180 %	<i>S+</i>	15-110
Surrogate: 2-Fluorobiphenyl	75 %		30-130
Surrogate: Nitrobenzene-d5	91 %		30-130
Surrogate: p-Terphenyl-d14	77 %		30-130

The Microbiology Division of Thielsch Engineering, Inc.

CERTIFICATE OF ANALYSIS

Client Name: Tighe & Bond

Client Project ID: Woburn to Mystic - RGP

Client Sample ID: MW-17F Date Sampled: 09/15/17 01:00

Percent Solids: N/A Initial Volume: 500 Final Volume: 0.5

Extraction Method: 3535A

ESS Laboratory Work Order: 1709460 ESS Laboratory Sample ID: 1709460-04

Sample Matrix: Ground Water

Units: ug/L Analyst: VSC

Prepared: 9/18/17 18:00

8270D(SIM) Semi-Volatile Organic Compounds w/ Isotope Dilution

Analyte 1,4-Dioxane	Results (MRL) ND (0.250)	<u>MDL</u>	Method 8270D SIM	<u>Limit</u>	<u>DF</u> 1	<u>Analyzed</u> 09/19/17 12:18	Sequence C7I0291	<u>Batch</u> CI71856
	9/	6Recovery	Qualifier	Limits				
Surrogate: 1,4-Dioxane-d8		28 %		15-115				

185 Frances Avenue, Cranston, RI 02910-2211

Tel: 401-461-7181

Fax: 401-461-4486 ◆ Service

The Microbiology Division of Thielsch Engineering, Inc.

CERTIFICATE OF ANALYSIS

Client Name: Tighe & Bond

Client Project ID: Woburn to Mystic - RGP

Client Sample ID: MW-17F Date Sampled: 09/15/17 01:00

Percent Solids: N/A

ESS Laboratory Work Order: 1709460 ESS Laboratory Sample ID: 1709460-04

Sample Matrix: Ground Water

Classical Chemistry

Analyte Ammonia as N	Results (MRL) 1.76 (0.10)	MDL <u>Method</u> 350.1	<u>Limit</u>	<u>DF</u>	Analyst JLK	Analyzed 09/18/17 18:58	Units mg/L	Batch CI71804
Chloride	1770 (500)	300.0		1000	EEM	09/19/17 14:33	mg/L	CI71909
Hexavalent Chromium	ND (10.0)	3500Cr B-2009		1	JLK	09/15/17 20:49	ug/L	CI71551
Phenols	ND (100)	420.1		1	JLK	09/18/17 19:45	ug/L	CI71841
Total Cyanide (LL)	ND (5.00)	4500 CN CE		1	EEM	09/19/17 12:35	ug/L	CI71910
Total Petroleum Hydrocarbon	ND (5)	1664A		1	LAB	09/19/17 16:25	mg/L	CI71830
Total Residual Chlorine	ND (20.0)	4500Cl D		1	JLK	09/15/17 21:35	ug/L	CI71549
Total Suspended Solids	318 (10)	2540D		1	JLK	09/19/17 20:52	mg/L	CI71946

The Microbiology Division of Thielsch Engineering, Inc.

CERTIFICATE OF ANALYSIS

Client Name: Tighe & Bond

Client Project ID: Woburn to Mystic - RGP

Client Sample ID: MW-17F Date Sampled: 09/15/17 01:00

Percent Solids: N/A Initial Volume: 35 Final Volume: 2

Extraction Method: 504/8011

ESS Laboratory Work Order: 1709460 ESS Laboratory Sample ID: 1709460-04

Sample Matrix: Ground Water

Units: ug/L Analyst: IBM

Prepared: 9/20/17 10:10

504.1 1,2-Dibromoethane / 1,2-Dibromo-3-chloropropane

Analyte 1,2-Dibromoethane	Results (MRL) ND (0.015)	<u>MDL</u>	Method 504.1	<u>Limit</u>	<u>DF</u>	<u>Analyzed</u> 09/20/17 14:00	Sequence	Batch CI72021
		6Recovery	Qualifier	Limits				
Surrogate: Pentachloroethane		98 %		30-150				
Surrogate: Pentachloroethane [2C]		74 %		30-150				

The Microbiology Division of Thielsch Engineering, Inc.

CERTIFICATE OF ANALYSIS

Client Name: Tighe & Bond

Client Project ID: Woburn to Mystic - RGP

Client Sample ID: MW-17F Date Sampled: 09/15/17 01:00

Percent Solids: N/A Initial Volume: 1 Final Volume: 1

Extraction Method: No Prep

ESS Laboratory Work Order: 1709460 ESS Laboratory Sample ID: 1709460-04

Sample Matrix: Ground Water

Units: mg/L Analyst: ZLC

Prepared: 9/19/17 9:18

Alcohol Scan by GC/FID

AnalyteResults (MRL)MDLMethodLimitDFAnalystAnalyzedSequenceBatchEthanolND (10)ASTM D36951ZLC09/19/17 15:00CI71906

185 Frances Avenue, Cranston, RI 02910-2211

Tel: 401-461-7181

Fax: 401-461-4486

The Microbiology Division of Thielsch Engineering, Inc.

CERTIFICATE OF ANALYSIS

Client Name: Tighe & Bond

Client Project ID: Woburn to Mystic - RGP ESS Laboratory Work Order: 1709460

Analyte	Result	MRL	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Qualifier
			Total Meta	als						
Batch CI71551 - [CALC]										
Blank										
Chromium III	ND	10.0	ug/L							
LCS										
Chromium III	ND		ug/L							
LCS Dup										
Chromium III	ND		ug/L							
Parks 0171947 245 1 / 74704										
Batch CI71847 - 245.1/7470A Blank										
Mercury	ND	0.200	ug/L							
			-3/-							
LCS Mercury	6.13	0.200	ug/L	6.000		102	85-115			
	0.13	0.200	ug/L	0.000		102	05 115			
LCS Dup	6.02	0.200	110 B	6,000		100	0E 11F	2	20	
Mercury	6.02	0.200	ug/L	6.000		100	85-115	2	20	
Batch CI71971 - 245.1/7470A										
Blank										
Antimony	ND	10.0	ug/L							
Arsenic	ND	1.0	ug/L							
Cadmium	ND	0.05	ug/L							
Chromium	ND	4.0	ug/L							
Chromium III	ND	4.00	ug/L							
Copper	ND	4.0	ug/L							
Hardness -	ND	165	ug/L							
Iron	ND	20.0	ug/L							
Lead	ND	1.0	ug/L							
Nickel Selenium	ND ND	4.0 2.0	ug/L							
Silver	ND ND	1.0	ug/L ug/L							
Zinc	ND	10.0	ug/L							
		10.0	ug/L							
Antimony	95.2	10.0	ua/l	100.0		95	85-115			
Arsenic	93.2	25.0	ug/L ug/L	100.0		93	85-115			
Cadmium	52.5	25.0	ug/L	50.00		105	85-115			
Chromium	91.9	4.0	ug/L	100.0		92	85-115			
Chromium III	91.9	4.00	ug/L			- -				
Copper	93.2	4.0	ug/L	100.0		93	85-115			
Hardness	5980	165	ug/L							
Iron	442	20.0	ug/L	500.0		88	85-115			
Lead	110	25.0	ug/L	100.0		110	85-115			
Nickel	94.5	4.0	ug/L	100.0		94	85-115			
Selenium	177	50.0	ug/L	200.0		89	85-115			
Silver	44.8	1.0	ug/L	50.00		90	85-115			
Zinc	95.1	10.0	ug/L	100.0		95	85-115			
LCS Dup										

The Microbiology Division of Thielsch Engineering, Inc.

CERTIFICATE OF ANALYSIS

Client Name: Tighe & Bond

Client Project ID: Woburn to Mystic - RGP ESS Laboratory Work Order: 1709460

Quality Control Data

				Spike	Source		%REC		RPD	
Analyte	Result	MRL	Units	Level	Result	%REC	Limits	RPD	Limit	Qualifier
			Total Meta	als						
Batch CI71971 - 245.1/7470A										
Antimony	98.4	10.0	ug/L	100.0		98	85-115	3	20	
Arsenic	94.3	25.0	ug/L	100.0		94	85-115	1	20	
Cadmium	52.5	25.0	ug/L	50.00		105	85-115	0.01	20	
Chromium	95.0	4.0	ug/L	100.0		95	85-115	3	20	
Chromium III	95.0	4.00	ug/L							
Copper	96.2	4.0	ug/L	100.0		96	85-115	3	20	
Hardness	6300	165	ug/L							
Iron	459	20.0	ug/L	500.0		92	85-115	4	20	
Lead	116	25.0	ug/L	100.0		116	85-115	5	20	B+
Nickel	97.9	4.0	ug/L	100.0		98	85-115	4	20	
Selenium	169	50.0	ug/L	200.0		85	85-115	5	20	
Silver	46.9	1.0	ug/L	50.00		94	85-115	4	20	
Zinc	99.0	10.0	ug/L	100.0		99	85-115	4	20	
Batch CI72503 - 3005A/200.7										
Blank										
Copper	ND	2.0	ug/L							
LCS										
Copper	93.2	2.0	ug/L	100.0		93	85-115			
LCS Dup										
Copper	99.1	2.0	ug/L	100.0		99	85-115	6	20	

Batch CI71838 - 524.2					
Blank					
1,1,1-Trichloroethane	ND	0.5	ug/L		
1,1,2-Trichloroethane	ND	0.5	ug/L		
1,1-Dichloroethane	ND	0.5	ug/L		
1,1-Dichloroethene	ND	0.5	ug/L		
1,2-Dichlorobenzene	ND	0.5	ug/L		
1,2-Dichloroethane	ND	0.5	ug/L		
1,3-Dichlorobenzene	ND	0.5	ug/L		
1,4-Dichlorobenzene	ND	0.5	ug/L		
Acetone	ND	5.0	ug/L		
Benzene	ND	0.5	ug/L		
Carbon Tetrachloride	ND	0.3	ug/L		
cis-1,2-Dichloroethene	ND	0.5	ug/L		
Ethylbenzene	ND	0.5	ug/L		
Methyl tert-Butyl Ether	ND	0.5	ug/L		
Methylene Chloride	ND	0.5	ug/L		
laphthalene	ND	0.5	ug/L		
Fertiary-amyl methyl ether	ND	1.0	ug/L		
Fertiary-butyl Alcohol	ND	25.0	ug/L		
etrachloroethene	ND	0.5	ug/L		
Toluene	ND	0.5	ug/L		
185 Frances /	Avenue Cranston RI 029	10-2211	Tel: 401-461-7181	Fax: 401-461-4486	http://www.FSSI aboratory.com

185 Frances Avenue, Cranston, RI 02910-2211

Tel: 401-461-7181 Dependability Quality Fax: 401-461-4486 Service

The Microbiology Division of Thielsch Engineering, Inc.

CERTIFICATE OF ANALYSIS

Client Name: Tighe & Bond

Client Project ID: Woburn to Mystic - RGP

ESS Laboratory Work Order: 1709460

Analyte	Result	MRL	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Qualifier
		524.2 Vol	atile Organi	c Compou	unds					
Batch CI71838 - 524.2										
Trichloroethene	ND	0.5	ug/L							
Vinyl Chloride	ND	0.2	ug/L							
Xylene O	ND	0.5	ug/L							
Xylene P,M	ND	0.5	ug/L							
Surrogate: 1,2-Dichlorobenzene-d4	5.37		ug/L	5.000		107	80-120			
Surrogate: 4-Bromofluorobenzene	4.97		ug/L	5.000		99	80-120			
LCS										
1,1,1-Trichloroethane	10.5		ug/L	10.00		105	70-130			
1,1,2-Trichloroethane	10.2		ug/L	10.00		102	70-130			
1,1-Dichloroethane	9.9		ug/L	10.00		99	70-130			
1,1-Dichloroethene	10.7		ug/L	10.00		107	70-130			
1,2-Dichlorobenzene	10.0		ug/L	10.00		100	70-130			
1,2-Dichloroethane	10.2		ug/L	10.00		102	70-130			
1,3-Dichlorobenzene	10.0		ug/L	10.00		100	70-130			
1,4-Dichlorobenzene	10.1		ug/L	10.00		101	70-130			
Acetone	49.7		ug/L	50.00		99	70-130			
Benzene	9.9		ug/L	10.00		99	70-130			
Carbon Tetrachloride	10.6		ug/L	10.00		106	70-130			
cis-1,2-Dichloroethene	9.7		ug/L	10.00		97	70-130			
Ethylbenzene	9.8		ug/L	10.00		98	70-130			
Methyl tert-Butyl Ether	9.6		ug/L	10.00		96	70-130			
Methylene Chloride	9.9		ug/L	10.00		99	70-130			
Naphthalene	9.0		ug/L	10.00		90	70-130			
Tertiary-amyl methyl ether	9.8		ug/L ug/L	10.00		98	70-130			
				50.00		101	70-130			
Tertiary-butyl Alcohol Tetrachloroethene	50.6 10.3		ug/L	10.00		101	70-130			
			ug/L			98				
Toluene	9.8		ug/L	10.00			70-130			
Trichloroethene	10.3		ug/L	10.00		103	70-130			
Vinyl Chloride	8.9		ug/L	10.00		89	70-130			
Xylene O	9.9		ug/L	10.00		99	70-130			
Xylene P,M	18.7		ug/L	20.00		94	70-130			
Surrogate: 1,2-Dichlorobenzene-d4	5.42		ug/L	5.000		108	80-120			
Surrogate: 4-Bromofluorobenzene	5.26		ug/L	5.000		105	80-120			
LCS Dup										
1,1,1-Trichloroethane	10.3		ug/L	10.00		103	70-130	2	20	
1,1,2-Trichloroethane	10.6		ug/L	10.00		106	70-130	3	20	
1,1-Dichloroethane	9.9		ug/L	10.00		99	70-130	0.3	20	
1,1-Dichloroethene	10.4		ug/L	10.00		104	70-130	3	20	
1,2-Dichlorobenzene	10.4		ug/L	10.00		104	70-130	4	20	
1,2-Dichloroethane	10.7		ug/L	10.00		107	70-130	4	20	
1,3-Dichlorobenzene	10.5		ug/L	10.00		105	70-130	5	20	
1,4-Dichlorobenzene	10.5		ug/L	10.00		105	70-130	4	20	
Acetone	48.9		ug/L	50.00		98	70-130	2	20	
Benzene	10.0		ug/L	10.00		100	70-130	1	20	
Carbon Tetrachloride	10.1		ug/L	10.00		101	70-130	5	20	

The Microbiology Division of Thielsch Engineering, Inc.

CERTIFICATE OF ANALYSIS

Client Name: Tighe & Bond

Client Project ID: Woburn to Mystic - RGP ESS Laboratory Work Order: 1709460

Analyte	Result	MRL	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Qualifier
· ·			atile Organi					· ·		
Batch CI71838 - 524.2										
cis-1,2-Dichloroethene	10.1		ug/L	10.00		101	70-130	3	20	
Ethylbenzene	10.0		ug/L	10.00		100	70-130	2	20	
Methyl tert-Butyl Ether	10.2		ug/L	10.00		102	70-130	5	20	
Methylene Chloride	9.9		ug/L	10.00		99	70-130	0.4	20	
, Naphthalene	9.5		ug/L	10.00		95	70-130	5	20	
Tertiary-amyl methyl ether	10.0		ug/L	10.00		100	70-130	2	20	
Tertiary-butyl Alcohol	54.2		ug/L	50.00		108	70-130	7	25	
Tetrachloroethene	10.3		ug/L	10.00		103	70-130	0.4	20	
Toluene	10.0		ug/L	10.00		100	70-130	2	20	
Trichloroethene	10.2		ug/L	10.00		102	70-130	0.4	20	
Vinyl Chloride	8.4		ug/L	10.00		84	70-130	6	20	
Xylene O	10.1		ug/L	10.00		101	70-130	2	20	
Xylene P,M	19.1		ug/L	20.00		95	70-130	2	20	
Surrogate: 1,2-Dichlorobenzene-d4	5.49		ug/L	5.000		110	80-120			
Surrogate: 1,2-Dichiorobenzene-u4 Surrogate: 4-Bromofluorobenzene	5.50		ug/L	5.000		110	80-120			
Batch CI71930 - 524.2										
Blank										
1,1,1-Trichloroethane	ND	0.5	ug/L							
1,1,2-Trichloroethane	ND	0.5	ug/L							
1,1-Dichloroethane	ND	0.5	ug/L							
1,1-Dichloroethene	ND	0.5	ug/L							
1,2-Dichlorobenzene	ND	0.5	ug/L							
1,2-Dichloroethane	ND	0.5	ug/L							
1,3-Dichlorobenzene	ND	0.5	ug/L							
1,4-Dichlorobenzene	ND	0.5	ug/L							
Acetone	ND	5.0	ug/L							
Benzene	ND	0.5	ug/L							
Carbon Tetrachloride	ND	0.3	ug/L							
cis-1,2-Dichloroethene	ND	0.5	ug/L							
Ethylbenzene	ND	0.5	ug/L							
Methyl tert-Butyl Ether	ND	0.5	ug/L							
Methylene Chloride	ND	0.5	ug/L							
Naphthalene	ND	0.5	ug/L							
Tertiary-amyl methyl ether	ND	1.0	ug/L							
Tertiary-butyl Alcohol	ND	25.0	ug/L							
Tetrachloroethene	ND	0.5	ug/L							
Toluene	ND	0.5	ug/L							
Trichloroethene	ND	0.5	ug/L							
Vinyl Chloride	ND	0.2	ug/L							
Xylene O	ND	0.5	ug/L							
Xylene P,M	ND	0.5	ug/L							
Surrogate: 1,2-Dichlorobenzene-d4	5.45		ug/L	5.000		109	80-120			
Surrogate: 4-Bromofluorobenzene	5.13		ug/L	5.000		103	80-120			
LCS										
1,1,1-Trichloroethane	11.0		ug/L	10.00		110	70-130			

The Microbiology Division of Thielsch Engineering, Inc.

CERTIFICATE OF ANALYSIS

Client Name: Tighe & Bond

Batch CI71930 - 524.2

Client Project ID: Woburn to Mystic - RGP ESS Laboratory Work Order: 1709460

				Spike	Source		%REC		RPD	
Analyte	Result	MRL	Units	Level	Result	%REC	Limits	RPD	Limit	Qualifier

524.2 Volatile	Organic	Compounds
----------------	---------	-----------

Batch C1/1930 - 524.2								
1,1,2-Trichloroethane	10.7	ug/L	10.00	107	70-130			
1,1-Dichloroethane	10.5	ug/L	10.00	105	70-130			
1,1-Dichloroethene	10.6	ug/L	10.00	106	70-130			
1,2-Dichlorobenzene	10.5	ug/L	10.00	105	70-130			
1,2-Dichloroethane	11.1	ug/L	10.00	111	70-130			
1,3-Dichlorobenzene	10.3	ug/L	10.00	103	70-130			
1,4-Dichlorobenzene	10.5	ug/L	10.00	105	70-130			
Acetone	46.3	ug/L	50.00	93	70-130			
Benzene	10.1	ug/L	10.00	101	70-130			
Carbon Tetrachloride	10.6	ug/L	10.00	106	70-130			
cis-1,2-Dichloroethene	9.8	ug/L	10.00	98	70-130			
Ethylbenzene	9.7	ug/L	10.00	97	70-130			
/ Nethyl tert-Butyl Ether	10.4	ug/L	10.00	104	70-130			
Methylene Chloride	9.9	ug/L	10.00	99	70-130			
Naphthalene	8.0	ug/L	10.00	80	70-130			
Fertiary-amyl methyl ether	10.0	ug/L	10.00	100	70-130			
Tertiary-butyl Alcohol	57.2	ug/L	50.00	114	70-130			
Fetrachloroethene	10.5	ug/L	10.00	105	70-130			
Foluene	9.6	ug/L	10.00	96	70-130			
richloroethene	10.4	ug/L	10.00	104	70-130			
/inyl Chloride	8.7	ug/L	10.00	87	70-130			
ylene O	10.4	ug/L	10.00	104	70-130			
(ylene P,M	19.0	ug/L	20.00	95	70-130			
	5.54	ug/L	5.000	111	80-120			
Surrogate: 1,2-Dichlorobenzene-d4	5.33	ug/L	5.000	107	80-120			
Surrogate: 4-Bromofluorobenzene	3.33		3.000	107	00 120			
LCS Dup	40.6		10.00	100	70.120		20	
,1,1-Trichloroethane	10.6	ug/L	10.00	106	70-130	4	20	
,1,2-Trichloroethane	10.3	ug/L	10.00	103	70-130	4	20	
,1-Dichloroethane	9.9	ug/L	10.00	99	70-130	6	20	
,1-Dichloroethene	10.8	ug/L	10.00	108	70-130	2	20	
,2-Dichlorobenzene	10.5	ug/L	10.00	105	70-130	0.3	20	
,2-Dichloroethane	11.4	ug/L	10.00	114	70-130	3	20	
,3-Dichlorobenzene	10.7	ug/L	10.00	107	70-130	4	20	
,4-Dichlorobenzene	10.7	ug/L	10.00	107	70-130	2	20	
acetone	47.2	ug/L	50.00	94	70-130	2	20	
Benzene	10.1	ug/L	10.00	101	70-130	0.2	20	
Carbon Tetrachloride	10.5	ug/L	10.00	105	70-130	0.9	20	
is-1,2-Dichloroethene	9.9	ug/L	10.00	99	70-130	1	20	
Ethylbenzene	10.2	ug/L	10.00	102	70-130	4	20	
lethyl tert-Butyl Ether	10.5	ug/L	10.00	105	70-130	0.6	20	
lethylene Chloride	10.2	ug/L	10.00	102	70-130	3	20	
Naphthalene	8.5	ug/L	10.00	85	70-130	6	20	
Fertiary-amyl methyl ether	9.9	ug/L	10.00	99	70-130	2	20	
Fertiary-butyl Alcohol	54.8	ug/L	50.00	110	70-130	4	25	
Tetrachloroethene	10.2	ug/L	10.00	102	70-130	3	20	

The Microbiology Division of Thielsch Engineering, Inc.

CERTIFICATE OF ANALYSIS

Client Name: Tighe & Bond

Client Project ID: Woburn to Mystic - RGP

ESS Laboratory Work Order: 1709460

				Spike	Source		%REC		RPD	
Analyte	Result	MRL	Units	Level	Result	%REC	Limits	RPD	Limit	Qualifie
		524.2 Vol	atile Organi	c Compou	ınds					
Batch CI71930 - 524.2										
Toluene	10.1		ug/L	10.00		101	70-130	5	20	
Trichloroethene	10.1		ug/L	10.00		101	70-130	2	20	
Vinyl Chloride	8.5		ug/L	10.00		85	70-130	3	20	
Xylene O	10.3		ug/L	10.00		103	70-130	0.3	20	
Xylene P,M	19.0		ug/L	20.00		95	70-130	0.3	20	
Surrogate: 1,2-Dichlorobenzene-d4	5.41		ug/L	5.000		108	80-120			
Surrogate: 4-Bromofluorobenzene	5.50		ug/L	5.000		110	80-120			
		608 Polych	nlorinated B	iphenyls (PCB)					
Batch CI71810 - 3510C										

Batch CI71810 - 3510C			<u></u>				
Blank							
Aroclor 1016	ND	0.10	ug/L				
Aroclor 1016 [2C]	ND	0.10	ug/L				
Aroclor 1221	ND	0.10	ug/L				
Aroclor 1221 [2C]	ND	0.10	ug/L				
Aroclor 1232	ND	0.10	ug/L				
Aroclor 1232 [2C]	ND	0.10	ug/L				
Aroclor 1242	ND	0.10	ug/L				
Aroclor 1242 [2C]	ND	0.10	ug/L				
Aroclor 1248	ND	0.10	ug/L				
Aroclor 1248 [2C]	ND	0.10	ug/L				
Aroclor 1254	ND	0.10	ug/L				
Aroclor 1254 [2C]	ND	0.10	ug/L				
Aroclor 1260	ND	0.10	ug/L				
Aroclor 1260 [2C]	ND	0.10	ug/L				
Aroclor 1262	ND	0.10	ug/L				
Aroclor 1262 [2C]	ND	0.10	ug/L				
Aroclor 1268	ND	0.10	ug/L				
Aroclor 1268 [2C]	ND	0.10	ug/L				
Surrogate: Decachlorobiphenyl	0.0471		ug/L	0.05000	94	30-150	
Surrogate: Decachlorobiphenyl [2C]	0.0525		ug/L	0.05000	105	30-150	
Surrogate: Tetrachloro-m-xylene	0.0370		ug/L	0.05000	74	30-150	
Surrogate: Tetrachloro-m-xylene [2C]	0.0400		ug/L	0.05000	80	30-150	
LCS							
Aroclor 1016	0.92	0.10	ug/L	1.000	92	40-140	
Aroclor 1016 [2C]	1.14	0.10	ug/L	1.000	114	40-140	
Aroclor 1260	0.98	0.10	ug/L	1.000	98	40-140	
Aroclor 1260 [2C]	1.06	0.10	ug/L	1.000	106	40-140	
Surrogate: Decachlorobiphenyl	0.0505		ug/L	0.05000	101	30-150	
Surrogate: Decachlorobiphenyl [2C]	0.0567		ug/L	0.05000	113	30-150	
Surrogate: Tetrachloro-m-xylene	0.0414		ug/L	0.05000	83	30-150	
Surrogate: Tetrachloro-m-xylene [2C]	0.0447		ug/L	0.05000	89	30-150	
LCS Dup			=-				-

The Microbiology Division of Thielsch Engineering, Inc.

RPD

CERTIFICATE OF ANALYSIS

Client Name: Tighe & Bond

Client Project ID: Woburn to Mystic - RGP

ESS Laboratory Work Order: 1709460

%REC

Quality Control Data

Spike

Source

Analyte	Result	MRL	Units	Level	Result	%REC	Limits	RPD	Limit	Qualifier
		608 Polych	nlorinated B	Siphenyls (PCB)					
Batch CI71810 - 3510C										
Aroclor 1016	0.97	0.10	ug/L	1.000		97	40-140	4	20	
Aroclor 1016 [2C]	1.13	0.10	ug/L	1.000		113	40-140	1	20	
Aroclor 1260	1.06	0.10	ug/L	1.000		106	40-140	8	20	
Aroclor 1260 [2C]	1.13	0.10	ug/L	1.000		113	40-140	6	20	
Surrogate: Decachlorobiphenyl	0.0488		ug/L	0.05000		98	30-150			
Surrogate: Decachlorobiphenyl [2C]	0.0542		ug/L	0.05000		108	30-150			
Surrogate: Tetrachloro-m-xylene	0.0388		ug/L	0.05000		78	30-150			
Surrogate: Tetrachloro-m-xylene [2C]	0.0408		ug/L	0.05000		82	30-150			

625(SIM) Semi-Volatile Organic Compounds

Batch CI71812 - 3510C							
Blank							
Acenaphthene	ND	0.20	ug/L				
Acenaphthylene	ND	0.20	ug/L				
Anthracene	ND	0.20	ug/L				
Benzo(a)anthracene	ND	0.05	ug/L				
Benzo(a)pyrene	ND	0.05	ug/L				
Benzo(b)fluoranthene	ND	0.05	ug/L				
Benzo(g,h,i)perylene	ND	0.20	ug/L				
Benzo(k)fluoranthene	ND	0.05	ug/L				
bis(2-Ethylhexyl)phthalate	ND	2.00	ug/L				
Butylbenzylphthalate	ND	2.50	ug/L				
Chrysene	ND	0.05	ug/L				
Dibenzo(a,h)Anthracene	ND	0.05	ug/L				
Diethylphthalate	ND	2.50	ug/L				
Dimethylphthalate	ND	2.50	ug/L				
Di-n-butylphthalate	ND	2.50	ug/L				
Di-n-octylphthalate	ND	2.50	ug/L				
Fluoranthene	ND	0.20	ug/L				
Fluorene	ND	0.20	ug/L				
Indeno(1,2,3-cd)Pyrene	ND	0.05	ug/L				
Naphthalene	ND	0.20	ug/L				
Pentachlorophenol	ND	0.90	ug/L				
Phenanthrene	ND	0.20	ug/L				
Pyrene	ND	0.20	ug/L				
Surrogate: 1,2-Dichlorobenzene-d4	1.76		ug/L	2.500	70	30-130	
Surrogate: 2,4,6-Tribromophenol	4.00		ug/L	3.750	107	15-110	
Surrogate: 2-Fluorobiphenyl	1.95		ug/L	2.500	<i>78</i>	30-130	
Surrogate: Nitrobenzene-d5	2.32		ug/L	2.500	93	30-130	
Surrogate: p-Terphenyl-d14	2.39		ug/L	2.500	96	30-130	
LCS							
Acenaphthene	2.89	0.20	ug/L	4.000	72	40-140	
Acenaphthylene	3.18	0.20	ug/L	4.000	80	40-140	
Anthracene	3.23	0.20	ug/L	4.000	81	40-140	

185 Frances Avenue, Cranston, RI 02910-2211

2211 Tel: 401-461-7181
Dependability ◆ Quality

Fax: 401-461-4486

The Microbiology Division of Thielsch Engineering, Inc.

CERTIFICATE OF ANALYSIS

Client Name: Tighe & Bond

Client Project ID: Woburn to Mystic - RGP ESS Laboratory Work Order: 1709460

Quality Control Data

				Spike	Source		%REC		RPD	
Analyte	Result	MRL	Units	Level	Result	%REC	Limits	RPD	Limit	Qualifier

	62	25(SIM) Semi	i-Volatile O	ganic Compou	nds				
Satch CI71812 - 3510C									
enzo(a)anthracene	2.93	0.05	ug/L	4.000	73	40-140			
ienzo(a)pyrene	3.23	0.05	ug/L	4.000	81	40-140			
enzo(b)fluoranthene	3.02	0.05	ug/L	4.000	76	40-140			
enzo(g,h,i)perylene	2.74	0.20	ug/L	4.000	69	40-140			
enzo(k)fluoranthene	3.12	0.05	ug/L	4.000	78	40-140			
is(2-Ethylhexyl)phthalate	4.49	2.50	ug/L	4.000	112	40-140			
utylbenzylphthalate	4.33	2.50	ug/L	4.000	108	40-140			
hrysene	3.20	0.05	ug/L	4.000	80	40-140			
ibenzo(a,h)Anthracene	2.73	0.05	ug/L	4.000	68	40-140			
iethylphthalate	3.61	2.50	ug/L	4.000	90	40-140			
methylphthalate	3.66	2.50	ug/L	4.000	91	40-140			
i-n-butylphthalate	3.82	2.50	ug/L	4.000	95	40-140			
i-n-octylphthalate	4.36	2.50	ug/L	4.000	109	40-140			
luoranthene	3.28	0.20	ug/L	4.000	82	40-140			
uorene	2.99	0.20	ug/L	4.000	75	40-140			
ideno(1,2,3-cd)Pyrene	2.74	0.05	ug/L	4.000	68	40-140			
aphthalene	2.34	0.20	ug/L	4.000	59	40-140			
entachlorophenol	3.25	0.90	ug/L	4.000	81	30-130			
nenanthrene	3.14	0.20	ug/L	4.000	78	40-140			
rene	3.64	0.20	ug/L	4.000	91	40-140			
urrogate: 1,2-Dichlorobenzene-d4	1.58		ug/L	2.500	63	30-130			
urrogate: 2,4,6-Tribromophenol	6.49		ug/L	3.750	<i>173</i>	15-110			B+
urrogate: 2-Fluorobiphenyl	2.10		ug/L	2.500	84	30-130			
urrogate: Nitrobenzene-d5	2.11		ug/L	2.500	84	30-130			
urrogate: p-Terphenyl-d14	2.24		ug/L	2.500	89	30-130			
CS Dup									
enaphthene	2.79	0.20	ug/L	4.000	70	40-140	4	20	
cenaphthylene	3.03	0.20	ug/L	4.000	76	40-140	5	20	
nthracene	3.19	0.20	ug/L	4.000	80	40-140	1	20	
enzo(a)anthracene	2.63	0.05	ug/L	4.000	66	40-140	11	20	
enzo(a)pyrene	2.80	0.05	ug/L	4.000	70	40-140	14	20	
enzo(b)fluoranthene	2.88	0.05	ug/L	4.000	72	40-140	5	20	
enzo(g,h,i)perylene	2.58	0.20	ug/L	4.000	65	40-140	6	20	
enzo(k)fluoranthene	2.95	0.05	ug/L	4.000	74	40-140	5	20	
s(2-Ethylhexyl)phthalate	3.81	2.50	ug/L	4.000	95	40-140	16	20	
utylbenzylphthalate	3.78	2.50	ug/L	4.000	94	40-140	14	20	
nrysene	2.82	0.05	ug/L	4.000	70	40-140	13	20	
benzo(a,h)Anthracene	2.59	0.05	ug/L	4.000	65	40-140	5	20	
ethylphthalate	3.61	2.50	ug/L	4.000	90	40-140	0.07	20	
methylphthalate	3.54	2.50	ug/L	4.000	88	40-140	3	20	
-n-butylphthalate	3.84	2.50	ug/L	4.000	96	40-140	0.7	20	
-n-octylphthalate	4.00	2.50	ug/L	4.000	100	40-140	9	20	
uoranthene	3.18	0.20	ug/L	4.000	80	40-140	3	20	
uorene	2.95	0.20	ug/L	4.000	74	40-140	2	20	
deno(1,2,3-cd)Pyrene	2.58	0.05	ug/L	4.000	65	40-140	6	20	

185 Frances Avenue, Cranston, RI 02910-2211

2211 Tel: 401-461-7181
Dependability ◆ Quality

Fax: 401-461-4486 ◆ Service

The Microbiology Division of Thielsch Engineering, Inc.

CERTIFICATE OF ANALYSIS

Client Name: Tighe & Bond

Client Project ID: Woburn to Mystic - RGP

ESS Laboratory Work Order: 1709460

		Quant	Ly Conc							
Analyte	Result	MRL	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Qualifie
	62	25(SIM) Sem	i-Volatile O	rganic Co	mpounds					
Batch CI71812 - 3510C										
Naphthalene	2.35	0.20	ug/L	4.000		59	40-140	0.4	20	
Pentachlorophenol	3.44	0.90	ug/L	4.000		86	30-130	6	20	
Phenanthrene	3.16	0.20	ug/L	4.000		79	40-140	0.6	20	
Pyrene	3.02	0.20	ug/L	4.000		76	40-140	19	20	
Surrogate: 1,2-Dichlorobenzene-d4	1.60		ug/L	2.500		64	30-130			
Surrogate: 2,4,6-Tribromophenol	7.47		ug/L	3.750		199	15-110			B+
Surrogate: 2-Fluorobiphenyl	2.07		ug/L	2.500		83	30-130			
Surrogate: Nitrobenzene-d5	2.49		ug/L	2.500		100	30-130			
- Gurrogate: p-Terphenyl-d14	1.89		ug/L	2.500		<i>75</i>	30-130			
	8270D(SIM)	Semi-Volatile	Organic Co	ompounds	w/ Isoto	pe Diluti	on			
Batch CI71856 - 3535A										
Blank										
1,4-Dioxane	ND	0.250	ug/L							
Surrogate: 1,4-Dioxane-d8	ND		ug/L	5.000		35	<i>15-115</i>			
.cs										
L,4-Dioxane	10.9	0.250	ug/L	10.00		109	40-140			
Surrogate: 1,4-Dioxane-d8	1.77		ug/L	5.000		35	15-115			
LCS Dup										
1,4-Dioxane	10.5	0.250	ug/L	10.00		105	40-140	4	20	
Surrogate: 1,4-Dioxane-d8	2.03	0.230	ug/L	5.000		41	15-115	·	20	
			- 3,							
Batch CI71953 - 3535A										
Blank										
1,4-Dioxane	ND	0.250	ug/L							
Surrogate: 1,4-Dioxane-d8	ND		ug/L	5.000		40	15-115			
LCS										
1,4-Dioxane	10.5	0.250	ug/L	10.00		105	40-140			
Surrogate: 1,4-Dioxane-d8	2.56		ug/L	5.000		51	15-115			
LCS Dup										
1,4-Dioxane	11.3	0.250	ug/L	10.00		113	40-140	7	20	
Surrogate: 1,4-Dioxane-d8	3.53		ug/L	5.000		71	15-115			
		Cl	assical Che	mistry						
Batch CI71549 - General Preparation										
Blank										
otal Residual Chlorine	ND	20.0	ug/L							
.cs										
Fotal Residual Chlorine	1.80		mg/L	1.800		100	85-115			
Batch CI71551 - General Preparation			<u> </u>							
·										
Blank Hovavalent Chromium	ND	10.0	ua/I							
Hexavalent Chromium	ND	10.0	ug/L							
LCS										

The Microbiology Division of Thielsch Engineering, Inc.

CERTIFICATE OF ANALYSIS

Client Name: Tighe & Bond

Client Project ID: Woburn to Mystic - RGP ESS Laboratory Work Order: 1709460

				Spike	Source		%REC		RPD	
Analyte	Result	MRL	Units	Level	Result	%REC	Limits	RPD	Limit	Qualifier
		Cl	assical Che	mistry						
Batch CI71551 - General Preparation										
Hexavalent Chromium	0.490		mg/L	0.4998		98	90-110			
LCS Dup										
Hexavalent Chromium	0.489		mg/L	0.4998		98	90-110	0.2	20	
Batch CI71804 - NH4 Prep										
Blank										
Ammonia as N	ND	0.10	mg/L							
LCS										
Ammonia as N	0.11	0.10	mg/L	0.09994		112	80-120			
LCS										
Ammonia as N	1.12	0.10	mg/L	0.9994		112	80-120			
Batch CI71830 - General Preparation										
Blank										
Total Petroleum Hydrocarbon	ND	5	mg/L							
LCS										
Total Petroleum Hydrocarbon	14	5	mg/L	19.38		71	66-114			
Batch CI71841 - General Preparation										
Blank										
Phenols	ND	100	ug/L							
LCS										
Phenols	92	100	ug/L	100.0		92	80-120			
LCS										
Phenols	998	100	ug/L	1000		100	80-120			
Batch CI71909 - General Preparation										
Blank										
Chloride	ND	0.5	mg/L							
LCS										
Chloride	2.5		mg/L	2.500		99	90-110			
Batch CI71910 - TCN Prep										
Blank										
Total Cyanide (LL)	ND	5.00	ug/L							
LCS										
Total Cyanide (LL)	21.0	5.00	ug/L	20.06		105	90-110			
LCS										
Total Cyanide (LL)	149	5.00	ug/L	150.4		99	90-110			
LCS Dup										
Total Cyanide (LL)	148	5.00	ug/L	150.4		98	90-110	0.7	20	
Batch CI71946 - General Preparation										
Blank										
Total Suspended Solids	ND	5	mg/L							
LCS										
185 Frances Avenu	a Cranatan DI 020	10 2211 T	el· 401-461-7	191 Eo	v· 401-461-	1106	http://www	ECCI abox	entarri nom	

The Microbiology Division of Thielsch Engineering, Inc.

CERTIFICATE OF ANALYSIS

Client Name: Tighe & Bond

Client Project ID: Woburn to Mystic - RGP ESS Laboratory Work Order: 1709460

		~~~								
Analyte	Result	MRL	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Qualifier
		Cl	assical Che	emistry						
Batch CI71946 - General Preparation										
Total Suspended Solids	42		mg/L	43.50		97	80-120			
	504.1 1,2	2-Dibromoetl	nane / 1,2-	Dibromo-3	3-chloropr	ropane				
Batch CI72021 - 504/8011										
Blank										
1,2-Dibromoethane	ND	0.015	ug/L							
1,2-Dibromoethane [2C]	ND	0.015	ug/L							
Surrogate: Pentachloroethane	0.166		ug/L	0.2000		83	30-150			
Surrogate: Pentachloroethane [2C]	0.124		ug/L	0.2000		62	30-150			
ıcs										
1,2-Dibromoethane	0.087	0.015	ug/L	0.08000		108	70-130			
1,2-Dibromoethane [2C]	0.064	0.015	ug/L	0.08000		80	70-130			
Surrogate: Pentachloroethane	0.0992		ug/L	0.08000		124	30-150			
Surrogate: Pentachloroethane [2C]	0.0690		ug/L	0.08000		86	30-150			
ıcs										
1,2-Dibromoethane	0.253	0.015	ug/L	0.2000		127	70-130			
1,2-Dibromoethane [2C]	0.188	0.015	ug/L	0.2000		94	70-130			
Surrogate: Pentachloroethane	0.259		ug/L	0.2000		129	30-150			
Surrogate: Pentachloroethane [2C]	0.202		ug/L	0.2000		101	30-150			
		Alco	hol Scan by	y GC/FID						
Batch CI71906 - No Prep										
Blank										
Ethanol	ND	10	mg/L							
LCS										
Ethanol	1230	10	mg/L	1007		122	60-140			
LCS Dup										
Ethanol	1240	10	mg/L	1007		123	60-140	0.6	30	



The Microbiology Division of Thielsch Engineering, Inc.



#### CERTIFICATE OF ANALYSIS

Client Name: Tighe & Bond

Client Project ID: Woburn to Mystic - RGP ESS Laboratory Work Order: 1709460

#### **Notes and Definitions**

U	Analyte included in the analysis, but not detected
S+	Surrogate recovery(ies) above upper control limit (S+).
PT	Pentachlorophenol tailing factor > 2.
IIT	The manifest that it is a first time to the first time time to the first time time time time time time time tim

HT The maximum holding time listed in 40 CFR Part 136 Table II for pH, Dissolved Oxygen, Sulfite and Residual

Chlorine is fifteen minutes.

D Diluted.

CD+ Continuing Calibration %Diff/Drift is above control limit (CD+).

BT Benzidine tailing factor >2.

B+ Blank Spike recovery is above upper control limit (B+).

ND Analyte NOT DETECTED at or above the MRL (LOQ), LOD for DoD Reports, MDL for J-Flagged Analytes

dry Sample results reported on a dry weight basis

**RPD** Relative Percent Difference MDL Method Detection Limit MRL Method Reporting Limit Limit of Detection LOD LOQ Limit of Quantitation **Detection Limit** DLI/V Initial Volume F/V Final Volume

Subcontracted analysis; see attached report

1 Range result excludes concentrations of surrogates and/or internal standards eluting in that range.

2 Range result excludes concentrations of target analytes eluting in that range. 3 Range result excludes the concentration of the C9-C10 aromatic range.

Avg Results reported as a mathematical average.

NR No Recovery
[CALC] Calculated Analyte

SUB Subcontracted analysis; see attached report

RL Reporting Limit

EDL Estimated Detection Limit

185 Frances Avenue, Cranston, RI 02910-2211

Tel: 401-461-7181

Dependability

Fax: 401-461-4486



The Microbiology Division of Thielsch Engineering, Inc.



#### CERTIFICATE OF ANALYSIS

Client Name: Tighe & Bond

Client Project ID: Woburn to Mystic - RGP ESS Laboratory Work Order: 1709460

#### ESS LABORATORY CERTIFICATIONS AND ACCREDITATIONS

#### **ENVIRONMENTAL**

Rhode Island Potable and Non Potable Water: LAI00179 http://www.health.ri.gov/find/labs/analytical/ESS.pdf

Connecticut Potable and Non Potable Water, Solid and Hazardous Waste: PH-0750 <a href="http://www.ct.gov/dph/lib/dph/environmental_health/environmental_laboratories/pdf/OutofStateCommercialLaboratories.pdf">http://www.ct.gov/dph/lib/dph/environmental_health/environmental_laboratories/pdf/OutofStateCommercialLaboratories.pdf</a>

Maine Potable and Non Potable Water, and Solid and Hazardous Waste: RI00002 <a href="http://www.maine.gov/dhhs/mecdc/environmental-health/dwp/partners/labCert.shtml">http://www.maine.gov/dhhs/mecdc/environmental-health/dwp/partners/labCert.shtml</a>

Massachusetts Potable and Non Potable Water: M-RI002 http://public.dep.state.ma.us/Labcert/Labcert.aspx

New Hampshire (NELAP accredited) Potable and Non Potable Water, Solid and Hazardous Waste: 2424 <a href="http://des.nh.gov/organization/divisions/water/dwgb/nhelap/index.htm">http://des.nh.gov/organization/divisions/water/dwgb/nhelap/index.htm</a>

New York (NELAP accredited) Non Potable Water, Solid and Hazardous Waste: 11313 http://www.wadsworth.org/labcert/elap/comm.html

New Jersey (NELAP accredited) Non Potable Water, Solid and Hazardous Waste: RI006 <a href="http://datamine2.state.nj.us/DEP_OPRA/OpraMain/pi_main?mode=pi_by_site&sort_order=PI_NAMEA&Select+a+Site:=58715">http://datamine2.state.nj.us/DEP_OPRA/OpraMain/pi_main?mode=pi_by_site&sort_order=PI_NAMEA&Select+a+Site:=58715</a>

United States Department of Agriculture Soil Permit: P330-12-00139

Pennsylvania: 68-01752 http://www.dep.pa.gov/Business/OtherPrograms/Labs/Pages/Laboratory-Accreditation-Program.aspx

185 Frances Avenue, Cranston, RI 02910-2211

Tel: 401-461-7181

Fax: 401-461-4486

Service

### **ESS Laboratory Sample and Cooler Receipt Checklist**

Client:	Ti	ghe & Bond	- KPB/TB/Mf	<u> </u>			Project ID:	170946ú	
01			E00.0				Received:	9/15/2017	
Shipped/Di	elivered Via:		ESS Courler			•	Due Date: or Project:	9/19/2017 2 Day	<del></del>
			_				· · · · · · · · · · · · · · · · · · ·	<u> </u>	
	anifest prese			No ,		6. Does COC i	match bottles?		Yes
2. Were cu	stody seals p	oresent?		No		7. Is COC com	nplete and correct?		Yes
3. Is radiati	ion count <10	00 CPM?		Yes		8. Were samp	les received intact?		Yes
	ler Present? 5.8	Iced with:	lce	Yes		9. Were labs i	informed about <u>sho</u>	ort holds & rushes?	(Yes) No / NA
5. Was CO	C signed and	d dated by cl	ient?	Yes		10. Were any	analyses received o	outside of hold time?	Yes (No)
	ocontracting s Sample IDs: Analysis: TAT:		Yes	/No)			As received? s in aqueous VOAs? anol cover soil comp		Yes / No / NA
a. If metals	e samples pro s preserved u rel VOA vials	pon receipt:		Yes No Date: Date:		_ Time: _ Time:		By:	
Sample Re	ceiving Notes	s:							
	re a need to		oject Managel client?	Date:	Yes No Yes No	_ Time:		Ву:	_
Sample Number	Container ID	Proper Container	Air Bubbles Present	Sufficient Volume	Contain	er Type	Preservative		vanide and 608 cides)
01	163895	Yes	NA	Yes	VQA Vi	al - HCi	HCI		
01	163896	Yes	NA	Yes		al - HCI	HCI		
01 01	163915 163916	Yes Yes	NA NA	Yes Yes		r - Unpres r - Unpres	NP NP		
01	163917	Yes	NA	Yes		r - Unpres	NP		
01	163918	Yes	NA	Yes		r - Unpres	NP		
01	163919	Yes	NA	Yes		r - Unpres	NP		
01 01	163920 163927	Yes Yes	NA NA	Yes Yes		r - Unpres r - Unpres	NP NP		
01	163928	Yes	NA	Yes		r - Unpres	NP		
01	163935	Yes	NA	Yes		r - H2SO4	H2SO4		
01	163936	Yes	NA	Yes		r - H2SQ4	H2SO4		
01	163940	Yes	NA	Yes		- Unpres	NP		
01 01	163944 163948	Yes Yes	NA NA	Yes		Bottle	NP		
01	163948	Yes	NA NA	Yes Yes		ly - H2SQ4 bly - HNQ3	H2SO4 HNO3		
01	163956	Yes	NA	Yes		ly - HNO3	NP		
01	163960	Yes	NA	Yes		oly - HNO3	НИОЗ		
01	163964	Yes	NA	Yes		oly - NaOH	NaOH	ph>12 9/15/17 184	12 JA
01	163986	Yes	No	Yes		al - HCI	HCI	•	
01	163987	Yes	No	Yes		al - HCl	HCI		
01	163988	Yes	No	Yes		ai - HCi	HCI		
01	163989	Yes	No	Yes	VOA Vi	al - HCl	HCI		

### **ESS Laboratory Sample and Cooler Receipt Checklist**

Client:	Tig	he & Bond	- KPB/TB/MI	м	ESS Pr Date R	1709460 9/15/2017		
01	163990	Yes	No	Yes	VOA Vial - HCI	HCI		
01	163991	Yes	No	Yes	VOA Vial - HCI	HCI		
01	163992	Yes	No	Yes	VOA Vial - HCI	HCI		
01	164041	Yes	NA	Yes	500 mL Poly - Unpres	NP		
02	163893	Yes	NA	Yes	VOA Vial - HCI	HCI		
02	163894	Yes	NA	Yes	VOA Vial - HCl	HCI		
02	163909	Yes	NA	Yes	1L Amber - Unpres	NP		
02	163910	Yes	NA	Yes	1L Amber - Unpres	NP		
02	163911	Yes	NA	Yes	1L Amber - Unpres	NP		
02	163912	Yes	NA	Yes	1L Amber - Unpres	NP		
02	163913	Yes	NA	Yes	1L Amber - Unpres	NP		
02	163914	Yes	NA	Yes	1L Amber - Unpres	NP		
02	163925	Yes	NA	Yes	1L Amber - Unpres	NP		
02	163926	Yes	NA	Yes	1L Amber - Unpres	NP		
02	163933	Yes	NA	Yes	1L Amber - H2SO4	H2SO4		
02	163934	Yes	NA	Yes	1L Amber - H2SO4	H2SO4		
02	163939	Yes	NA	Yes	1L Poly - Unpres	NP		
02	163943	Yes	NA	Yes	BOD Bottle	NP		
02	163947	Yes	NA	Yes	500 mL Poly - H2SO4	H2SO4		
02	163951	Yes	NA	Yes	500 mL Poly - HNO3	HNO3		
02	163955	Yes	NA	Yes	250 mL Poly - Unpres	NP		
02	163959	Yes	NA	Yes	250 mL Poly - HNO3	HNO3		
02	163963	Yes	NA	Yes	250 mL Poly - NaOH	NaOH	ph>12 9/15/17 1842 JA	
02	163979	Yes	No	Yes	VOA Vial - HCl	HCI		
02	163980	Yes	No	Yes	VOA Vial - HCI	HCI		
02	163981	Yes	No	Yes	VOA Vial - HCI	HCI		
02	163982	Yes	No	Yes	VOA Vial - HCI	HCI		
02	163983	Yes	No	Yes	VOA Vial - HCl	HCI		
02	163984	Yes	No	Yes	VOA Vial - HCI	HCI		
02	163985	Yes	No	Yes	VOA Vial - HCI	HCI		
02	164040	Yes	NA	Yes	500 mL Poly - Unpres	NP		
03	163891	Yes	NA	Yes	VOA Vial - HCI	HCI		
03	163892	Yes	NA	Yes	VOA Vial - HCl	HCI		
03	163903	Yes	NA	Yes	1L Amber - Unpres	NP		
03	163904	Yes	NA	Yes	1L Amber - Unpres	NP		
03	163905	Yes	NA	Yes	1L Amber - Uпpres	NP		
03	163906	Yes	NA	Yes	1L Amber - Unpres	NP		
03	163907	Yes	NA	Yes	1L Amber - Unpres	NP		
03	163908	Yes	NA	Yes	1L Amber - Unpres	NP		
03	163923	Yes	NA	Yes	1L Amber - Unpres	NP		
03	163924	Yes	NA	Yes	1L Amber - Unpres	NP		
03	163931	Yes	NA	Yes	1L Amber - H2SO4	H2SO4		
03	163932	Yes	NA	Yes	1L Amber - H2SO4	H2SO4		
03	163938	Yes	NA	Yes	1L Poly - Unpres	NP ND		
03	163942	Yes	NA	Yes	BOD Bottle	NP H2SO4		
03	163946	Yes	NA	Yes	500 mL Poly - H2SO4	HNO3		
03	163950	Yes	NA NA	Yes	500 mL Poly - HNO3 250 mL Poly - Unpres	NP		
03	163954	Yes		Yes Yes	250 mL Poly - HNO3	HNO3		
03 03	163958 163962	Yes Yes	NA NA	Yes	250 mL Poly - NaOH	NaOH	ph>12 9/15/17 1842 JA	
03	163972	Yes	No	Yes	VOA Vial - HCl	HCI	pri 12 0/10/1/ 10 12 0/1	
03	163972	Yes	No	Yes	VOA Vial - HCI	HCI		
03	163974	Yes	No	Yes	VOA Vial - HCI	HCI		
03	163975	Yes	No	Yes	VOA Vial - HCI	HCI		
03	163976	Yes	No	Yes	VOA Vial - HCl	HCI		
03	163977	Yes	No	Yes	VOA Vial - HCI	HCI		
03	163978	Yes	No	Yes	VOA Vial - HCI	HCI		
03	164039	Yes	NA	Yes	500 mL Poly - Unpres	NP		
04	163889	Yes	NA	Yes	VOA Vial - HCI	HC1		
04	163890	Yes	NA	Yes	VOA Vial - HCI	HC1		
04	163897	Yes	NA	Yes	1L Amber - Unpres	NP		
04	163898	Yes	NA	Yes	1L Amber - Unpres	NP		
04	163899	Yes	NA	Yes	1L Amber - Unpres	NP		
04	163900	Yes	NA	Yes	1L Amber - Unpres	NP		
04	163901	Yes	NA	Yes	1L Amber - Unpres	NP		
04	163902	Yes	NA	Yes	1L Amber - Unpres	NP		
04	163921	Yes	NA	Yes	1L Amber - Unpres	NP		
04	163922	Yes	NA	Yes	1L Amber - Unpres	NP		
04	163929	Yes	NA	Yes	1L Amber - H2SO4	H2SO4		

### **ESS Laboratory Sample and Cooler Receipt Checklist**

Client:	Client: Tighe & Bond - KPB/TB/MM			ESS Pr	oject ID:	1709460	
					Date R	eceived:	9/15/2017
04	163930	Yes	NA	Yes	1L Amber - H2SO4	H2SO4	
04	163937	Yes	NA	Yes	1L Poly - Unpres	N₽	
04	163941	Yes	NA	Yes	BOD Bottle	NP	
04	163945	Yes	NA	Yes	500 mL Poly - H2SO4	H2SO4	
04	163949	Yes	NA	Yes	500 mL Poly - HNO3	HNO3	
04	163953	Yes	NA	Yes	250 mL Poly - Unpres	NP	
04	163957	Yes	NA	Yes	250 mL Poly - HNO3	HNO3	
04	163961	Yes	NA	Yes	250 mL Poly - NaOH	NaOH	ph>12 9/15/17 1842 JA
04	163965	Yes	Nο	Yes	VOA Vial - HCI	HCI	·
04	163966	Yes	Nο	Yes	VOA Vial - HCI	HCI	
04	163967	Yes	Nο	Yes	VOA Vial - HCI	HCI	
04	163968	Yes	Nο	Yes	VOA Vial - HCI	HCI	
04	163969	Yes	No	Yes	VOA Vial - HCI	HCI	
04	163970	Yes	No	Yes	VOA Vial - HCI	HCI	
04	163971	Yes	No	Yes	VOA Vial - HCI	HCI	•
04	164038	Yes	NA	Yes	500 mL Poly - Unpres	NP	
I Review barcode mpleted By:	labels on to	nect contair	ners?		Yes / No Date & Time:	() 18	·170
	<del> 1/24</del>	3			Date & Time:		<del></del>
eviewed By:	4.5	A-V			_ Date & Time:	_ 10	20
elivered	1-5-	<del>-1</del>			_ Date & Time	<del>'''                                  </del>	<i>4</i> 0
By:	Ι,	· 八、~	<del>}</del> -		9/18	م ما	20

ESS L	aborator	y		C	HAIN OF CUSTO	DY	ESS L	ab#			1	09	40	20							
Division of	Thielsch Eng	ineering, Inc.		Turn Time	5-Day Rush	48-hR	Repor	ting		RGP		-									
	Same and the same of the same	anston RI 0291		Regulatory State	Massachusetts		Limi	ts	·	KGP											
275 10		x (401) 461-44	86		s project for any of the follo		Electo			mit Ch					☑Star	ndard I	Excel				
www.essla	boratory.com			OCT RCP		RGP	Delivera	ables	10	ther (F	lease S	Specify	→)			E	verso	urce El	DD		
		npany Name		Project #	Project Na					1	ANAL	SIS R	EQUE	STED							
		Tighe and Bond N-0998-11-13 Woburn to Mystic  Contact Person Address   Output  Description:  Output  Descripti									ı I										
		ean Bebis		1 Univerity Ave		ysis	4 SIA	524	orid	e l	200	stals	표	11			اور	$\mathbb{S}$	7		
	City		S	tate	Zip Code	PO#	Analysis	SVOC 625	3	5	lori	8	o metals	ium,	1	8	20.1	thar	8 .		
	Westwood			MA	02090		₹	Mith &	18	ınia,	D C	B 3		rom	1	TSS, T	by 4	e,	5 9	8	
1	elephone Nu	mber	FAX	Number	Email Address dsbebis@tighebond.com				970	Ammonia, Chloride,	Total Residual Chlorine	ossia ,	7, mer oo	ent Ch	3	75, TS	Phenol by 420.1	1,4 Dioxane, Ethanol		100	
ESS Lab	Collection Date	Collection Time	Sample Type	Sample Matrix	Sar	mple ID		PCB 608	EDB,	Alteritates	Total	Cyanide, Dissol	nardness,	Crill Hexavalent Chromium, pH	Fotal Ordan			4.	11	110	
1	9-14-17	9:00pm	6	w	Mees								+					+	+		
2	9-14-17	10:000m	C _x	w	WW-15	5		1×	X	X	X	X	17	X	X	X	V	X	x 1	-	
. 3		12:00 to	G'	W	y mur			14	X	7	X	K	2 7	4	K	X	X	KS	4 2	2	
4	9-15-17	1:0019m	21	W	y my.			1	4	7	7	X	XY	54	12	X	+	X'	× 3	1	
					Nu-	-175		14	X	+	X	·C .	XY	C X	X	X	7	1	4 >	i i	$\perp$
								+				_		-	$\vdash$	_	_	_			_
_								+	-			_	+	+-	$\vdash$	$\dashv$	-	+	_	+	+
												_	_	_	$\vdash$		$\rightarrow$	+	+	+	+
															$\vdash$			$\top$		+	
			tte AG-Amber Gla			Other P-Poly S-Ste		-	2					- 1							
	iner Volume:		-2.5 gal 3-250 ml				11-Other														
Preser	vation Code:	1-Non Preserved	Z-HCI 3-H2SU4	4-HNU3 5-NaUH 6-Mi	ethanol 7-Na2S2O3 8-ZnAce, Na			. 0		0 1	a	20	\	_			_	-	-	-	-
			/2.			er of Containers per	Sample:	111	Y OK	50	11/14	- 3 -	101	9							
		Laborator	y Use Only	100lars	Sampled by: DSB									Ŭ							
Cooler	Present:			(000	Comments:	Please spe	ecify "Oth	er" p	reser	vativ	e an	d con	taine	rs typ	es in	this	spac	:e			
Seals	Intact:	1 A			San	mpres pr	U+ C	n	10	P	1	n.	FI	10							
11.576.50		NA TO	on Car	7 rem								km 9/				nnle d	late (	9/15/1	7		
			°C 5-8-5.		Pricing provided in Quote		es						1	//							
Re	linquished by:	(Signature, Da	1		Signature, Date & Time)	Relinquished By	: (Signatur	e, Da	te &	Time	)	/	R	glyed	By: (	Signa	ture,	Date	& Tin	ne)	
Gol	DOUEL	reollo	9-15-17 F-1000	9/11/1 11:07 -	94	15/-	7/-	0	<del>-</del>				Ш		7	15/	10	1	750	8	
Re	linquished by:	(Signature, Da	ite & Time)		Signature, Date & Time)	Relinquished By					)		Rec	eived	Ву: (	Signa	ture,	Date	& Tin	ne)	
													1								
				1																	



The Microbiology Division of Thielsch Engineering, Inc.



#### CERTIFICATE OF ANALYSIS

Michael Martin Tighe & Bond 4 Barlows Landing Road, Unit 15 Pocasset, MA 02559

**RE:** Woburn to Mystic - RGP/MCP (N-0998) ESS Laboratory Work Order Number: 1701175

This signed Certificate of Analysis is our approved release of your analytical results. These results are only representative of sample aliquots received at the laboratory. ESS Laboratory expects its clients to follow all regulatory sampling guidelines. Beginning with this page, the entire report has been paginated. This report should not be copied except in full without the approval of the laboratory. Samples will be disposed of thirty days after the final report has been delivered. If you have any questions or concerns, please feel free to call our Customer Service Department.

Laurel Stoddard Laboratory Director REVIEWED

By ESS Laboratory at 4:19 pm, Jan 20, 2017

#### **Analytical Summary**

The project as described above has been analyzed in accordance with the ESS Quality Assurance Plan. This plan utilizes the following methodologies: US EPA SW-846, US EPA Methods for Chemical Analysis of Water and Wastes per 40 CFR Part 136, APHA Standard Methods for the Examination of Water and Wastewater, American Society for Testing and Materials (ASTM), and other recognized methodologies. The analyses with these noted observations are in conformance to the Quality Assurance Plan. In chromatographic analysis, manual integration is frequently used instead of automated integration because it produces more accurate results.

The test results present in this report are in compliance with TNI and relative state tandards, and/or client Quality Assurance Project Plans (QAPP). The laboratory has reviewed the following: Sample Preservations, Hold Times, Initial Calibrations, Continuing Calibrations, Method Blanks, Blank Spikes, Blank Spike Duplicates, Duplicates, Matrix Spikes, Matrix Spike Duplicates, Surrogates and Internal Standards. Any results which were found to be outside of the recommended ranges stated in our SOPs will be noted in the Project Narrative.

**Subcontracted Analyses** 

RI Analytical Laboratories, Inc. - Warwick,

Chloride

RI

Page 1 of 56



The Microbiology Division of Thielsch Engineering, Inc.



#### CERTIFICATE OF ANALYSIS

Client Name: Tighe & Bond

Client Project ID: Woburn to Mystic - RGP/MCP ESS Laboratory Work Order: 1701175

#### SAMPLE RECEIPT

The following samples were received on January 10, 2017 for the analyses specified on the enclosed Chain of Custody Record.

To achieve CAM compliance for MCP data, ESS Laboratory has reviewed all QA/QC Requirements and Performance Standards listed in each method. Holding times and preservation have also been reviewed. All CAM requirements have been performed and achieved unless noted in the project narrative.

Each method has been set-up in the laboratory to reach required MCP standards. The methods for aqueous VOA and Soil Methanol VOA have known limitations for certain analytes. The regulatory standards may not be achieved due to these limitations. In addition, for all methods, matrix interferences, dilutions, and %Solids may elevate method reporting limits above regulatory standards. ESS Laboratory can provide, upon request, a Data Checker (regulatory standard comparison spreadsheet) electronic deliverable which will highlight these exceedances.

Question I: All samples for VOA and SVOA were analyzed for a subset of the required MCP list per the client's request.

Lab Number	Sample Name	Matrix	Analysis
1701175-01	MW-505A	Ground Water	§, 1664A, 2540D, 420.1, 4500 CN CE, 4500 NH3 G,
			4500-Cl E, 6010C, 7010, 7196A, 7470A, 8011,
			8015, 8082A, 8260B, 8270D SIM
1701175-02	MW-505B	Ground Water	§, 1664A, 2540D, 420.1, 4500 CN CE, 4500 NH3 G,
			4500-Cl E, 7196A, 8011, 8015, 8082A, 8260B,
			8270D SIM
1701175-03	MW-505A FF	Ground Water	§, 1664A, 2540D, 420.1, 4500 CN CE, 4500 NH3 G,
			4500-Cl E, 6010C, 7010, 7196A, 7470A, 8011,
			8015, 8082A, 8260B, 8270D SIM



The Microbiology Division of Thielsch Engineering, Inc.



#### CERTIFICATE OF ANALYSIS

Client Name: Tighe & Bond

Client Project ID: Woburn to Mystic - RGP/MCP ESS Laboratory Work Order: 1701175

#### PROJECT NARRATIVE

8260B Volatile Organic Compounds

1701175-01 Present in Method Blank (B).

Naphthalene

1701175-02 **Present in Method Blank (B).** 

Naphthalene

8270D(SIM) Semi-Volatile Organic Compounds

1701175-01 Present in Method Blank (B).

bis(2-Ethylhexyl)phthalate, Butylbenzylphthalate, Di-n-octylphthalate

1701175-02 Present in Method Blank (B).

Butylbenzylphthalate, Di-n-octylphthalate

1701175-03 Present in Method Blank (B).

bis(2-Ethylhexyl)phthalate, Butylbenzylphthalate

C7A0148-TUN1 Benzidine tailing factor >2.

C7A0164-CCV1 Continuing Calibration %Diff/Drift is above control limit (CD+).

Butylbenzylphthalate (22% @ %), Di-n-octylphthalate (28% @ %)

CA71116-BS1 Blank Spike recovery is above upper control limit (B+).

bis(2-Ethylhexyl)phthalate (146% @ 40-140%)

CA71116-BSD1 Blank Spike recovery is above upper control limit (B+).

bis(2-Ethylhexyl)phthalate (143% @ 40-140%)

CA71116-BSD1 Relative percent difference for duplicate is outside of criteria (D+).

Naphthalene (21% @ 20%)

**Classical Chemistry** 

1701175-01 The maximum holding time listed in 40 CFR Part 136 Table II for pH, Dissolved Oxygen, Sulfite and

Residual Chlorine is fifteen minutes.

Total Residual Chlorine

1701175-02 The maximum holding time listed in 40 CFR Part 136 Table II for pH, Dissolved Oxygen, Sulfite and

Residual Chlorine is fifteen minutes.

Total Residual Chlorine

1701175-03 The maximum holding time listed in 40 CFR Part 136 Table II for pH, Dissolved Oxygen, Sulfite and

Residual Chlorine is fifteen minutes.

Total Residual Chlorine

**Total Metals** 

1701175-03 Elevated Method Reporting Limits due to sample matrix (EL).

Thallium

1701175-03 **Present in Method Blank (B).** 

Iron

CA71302-BSD3 Blank Spike recovery is below lower control limit (B-).

Barium (73% @ 80-120%)

Quality

Service

Dependability



The Microbiology Division of Thielsch Engineering, Inc.



#### CERTIFICATE OF ANALYSIS

Client Name: Tighe & Bond

Client Project ID: Woburn to Mystic - RGP/MCP ESS Laboratory Work Order: 1701175

No other observations noted.

End of Project Narrative.

#### **DATA USABILITY LINKS**

**Definitions of Quality Control Parameters** 

Semivolatile Organics Internal Standard Information

Semivolatile Organics Surrogate Information

Volatile Organics Internal Standard Information

Volatile Organics Surrogate Information

EPH and VPH Alkane Lists

185 Frances Avenue, Cranston, RI 02910-2211

Tel: 401-461-7181

Fax: 401-461-4486



The Microbiology Division of Thielsch Engineering, Inc.



#### CERTIFICATE OF ANALYSIS

Client Name: Tighe & Bond

Client Project ID: Woburn to Mystic - RGP/MCP ESS Laboratory Work Order: 1701175

#### **CURRENT SW-846 METHODOLOGY VERSIONS**

#### **Analytical Methods**

1010A - Flashpoint

6010C - ICP

6020A - ICP MS

7010 - Graphite Furnace

7196A - Hexavalent Chromium

7470A - Aqueous Mercury

7471B - Solid Mercury

8011 - EDB/DBCP/TCP

8015C - GRO/DRO

8081B - Pesticides

8082A - PCB

8100M - TPH

8151A - Herbicides

8260B - VOA

8270D - SVOA

8270D SIM - SVOA Low Level

9014 - Cyanide

9038 - Sulfate

9040C - Aqueous pH

9045D - Solid pH (Corrosivity)

9050A - Specific Conductance

9056A - Anions (IC)

9060A - TOC

9095B - Paint Filter

MADEP 04-1.1 - EPH / VPH

#### **Prep Methods**

3005A - Aqueous ICP Digestion

3020A - Aqueous Graphite Furnace / ICP MS Digestion

3050B - Solid ICP / Graphite Furnace / ICP MS Digestion

3060A - Solid Hexavalent Chromium Digestion

3510C - Separatory Funnel Extraction

3520C - Liquid / Liquid Extraction

3540C - Manual Soxhlet Extraction

3541 - Automated Soxhlet Extraction

3546 - Microwave Extraction

3580A - Waste Dilution

5030B - Aqueous Purge and Trap

5030C - Aqueous Purge and Trap

5035 - Solid Purge and Trap

SW846 Reactivity Methods 7.3.3.2 (Reactive Cyanide) and 7.3.4.1 (Reactive Sulfide) have been withdrawn by EPA. These methods are reported per client request and are not NELAP accredited.



The Microbiology Division of Thielsch Engineering, Inc.



#### CERTIFICATE OF ANALYSIS

Client Name: Tighe & Bond

Client Project ID: Woburn to Mystic - RGP/MCP ESS Laboratory Work Order: 1701175

### **MassDEP Analytical Protocol Certification Form**

	1	MADEP RTI	N: _				_					
This	form	provides cer	rtifica	tion for the follow	ving da	nta set: 1701175-01 th	roug	gh 1701175-03				
Mat	rices:	(X) Ground	d Wate	er/Surface Water		( ) Soil/Sediment	(	) Drinking Water	( ) Air	( ) Other:		
CA]	M Pro	otocol (chec	k all 1	that apply below)	):							
	8260 CAM	VOC		7470/7471 Hg CAM III B		MassDEP VPH CAM IV A	(	) 8081 Pesticides CAM V B	(X)	7196 Hex Cr CAM VI B	` ′	MassDEP APH CAM IX A
(X)	8270 CAM	SVOC II B	(X)	7010 Metals CAM III C	( )	MassDEP EPH CAM IV B	(	) 8151 Herbicides CAM V C	( )	8330 Explosives CAM VIII A	. /	ΓΟ-15 VOC CAM IX B
(X)	6010 CAM	Metals III A	( )	6020 Metals CAM III D	(X)	8082 PCB CAM V A	(	) 6860 Perchlorate CAM VIII B	(X)	9014 Total Cyanic CAM VI A	de/PAC	C
			A	ffirmative respo	nses to	questions A throug	h F	are required for ''Pr	esumptiv	ve Certainty'' stati	us	
A			receiv	ved in a condition	consis	tent with those descri	bed	on the Chain-of-Custo	dy, prope	rly		Yes (X) No ( )
В	•	the analytica	-			* ' *		/analyzed within meth led in the selected CA		-	,	Yes (X) No ( )
C			corre	ctive actions and	analyti	cal response actions s	peci	fied in the selected CA	AM proto	col(s)	,	Yes (X) No ( )
D	-			•		ndard non-conforman		ecified in the CAM VI	II A. "One	1;4,	,	Yes (X) No ( )
D							•	ting of Analytical Data		inty	,	Yes ( ) No ( )
Е	a. VP	H, EPH, AP	H and	l TO-15 only: Wa	s each	method conducted w		nt significant modifica		Refer		168( ) NO( )
				* *	-	ant modifications).  uplete analyte list repo	rtod	for each mathed?			`	Yes ( ) No ( )
F	Were	all applicabl	le CA	M protocol QC ar	nd peri		n-coi	nformances identified	and evalu	ated	,	Yes (X) No ( )
				Responses to	Questi	ions G, H and I below	v are	required for '''Presu	mptive Ce	ertainty" status		
G	<u>Data</u>	<u>User Note:</u> D	o Data th	nat achieve ''Presu	mptive		y noi	in the selected CAM p t necessarily meet the d WSC-07-350.	,	*	•	Yes ( ) No (X)*
Н	_		_			n the CAM protocol(s						Yes ( ) No (X)*
I				•	-	list specified in the se						Yes ( ) No (X)*
*All	l nega	tive respons	ses m	ust be addressed	in an	attached laboratory	nar	rative.				
I, t	he un	dersigned, a	attest	under the pains	and p	enalties of perjury ti	hat,	based upon my perso	onal inqu	iry of those respo	nsible	

accurate and complete.

Signature:

Printed Name: Laurel Stoddard

Date: January 20, 2017

Position: Laboratory Director

for obtaining the information, the material contained in this analytical report is, to the best of my knowledge and belief,

185 Frances Avenue, Cranston, RI 02910-2211

Tel: 401-461-7181

Fax: 401-461-4486



The Microbiology Division of Thielsch Engineering, Inc.



#### CERTIFICATE OF ANALYSIS

Client Name: Tighe & Bond

Client Project ID: Woburn to Mystic - RGP/MCP

Client Sample ID: MW-505A Date Sampled: 01/10/17 11:00

Percent Solids: N/A

refeelit Bollas.

ESS Laboratory Work Order: 1701175 ESS Laboratory Sample ID: 1701175-01

Sample Matrix: Ground Water

Units: ug/L

Extraction Method: 3005A

#### **Total Metals**

<b>Analyte</b>	Results (MRL)	<b>MDL</b>	Method	<u>Limit</u>	DF	Analyst	<b>Analyzed</b>	I/V	F/V	<b>Batch</b>
Antimony	ND (5.0)	0.6	7010		1	KJK	01/13/17 6:49	50	25	CA71104
Arsenic	<b>J 2.7</b> (5.0)	0.4	7010		1	KJK	01/13/17 3:22	50	25	CA71104
Barium	<b>279</b> (25.0)	1.5	6010C		1	KJK	01/12/17 21:35	50	25	CA71104
Beryllium	<b>1.9</b> (0.5)	0.1	6010C		1	KJK	01/12/17 21:35	50	25	CA71104
Cadmium	<b>J 0.8</b> (1.5)	0.09	7010		3	KJK	01/13/17 15:14	50	25	CA71104
Chromium	<b>61.5</b> (10.0)	1.5	6010C		1	KJK	01/12/17 21:35	50	25	CA71104
Chromium III	<b>62</b> (10)		6010C		1	JLK	01/12/17 21:35	1	1	[CALC]
Copper	<b>206</b> (5.0)	2.0	6010C		1	KJK	01/12/17 21:35	50	25	CA71104
Iron	<b>24600</b> (50.0)	11.5	6010C		1	KJK	01/12/17 21:35	50	25	CA71104
Lead	<b>34.5</b> (7.5)	1.5	7010		3	KJK	01/13/17 1:09	50	25	CA71104
Mercury	ND (0.20)	0.12	7470A		1	MJV	01/13/17 12:12	20	40	CA71110
Nickel	<b>25.6</b> (10.0)	1.0	6010C		1	KJK	01/12/17 21:35	50	25	CA71104
Selenium	ND (5.0)	0.6	7010		1	KJK	01/12/17 17:10	50	25	CA71104
Silver	ND (0.2)	0.08	7010		1	KJK	01/13/17 19:39	50	25	CA71104
Thallium	ND (3.0)	1.6	7010		3	KJK	01/12/17 21:48	50	25	CA71104
Vanadium	<b>26.6</b> (10.0)	1.0	6010C		1	KJK	01/12/17 21:35	50	25	CA71104
Zinc	<b>203</b> (25.0)	4.5	6010C		1	KJK	01/12/17 21:35	50	25	CA71104



The Microbiology Division of Thielsch Engineering, Inc.



#### CERTIFICATE OF ANALYSIS

Client Name: Tighe & Bond

Client Project ID: Woburn to Mystic - RGP/MCP

Client Sample ID: MW-505A Date Sampled: 01/10/17 11:00

Percent Solids: N/A Initial Volume: 1070 Final Volume: 1

Extraction Method: 3510C

ESS Laboratory Work Order: 1701175 ESS Laboratory Sample ID: 1701175-01

Sample Matrix: Ground Water

Units: ug/L Analyst: SMR

Prepared: 1/12/17 10:30 Cleanup Method: 3665A

### 8082A Polychlorinated Biphenyls (PCB)

<u>Analyte</u>	Results (MRL)	<b>MDL</b>	Method	<u>Limit</u>	<u>DF</u>	<b>Analyzed</b>	<b>Sequence</b>	<b>Batch</b>
Aroclor 1016	ND (0.09)	0.03	8082A		1	01/13/17 0:33		CA71203
Aroclor 1221	ND (0.09)	0.03	8082A		1	01/13/17 0:33		CA71203
Aroclor 1232	ND (0.09)	0.03	8082A		1	01/13/17 0:33		CA71203
Aroclor 1242	ND (0.09)	0.03	8082A		1	01/13/17 0:33		CA71203
Aroclor 1248	ND (0.09)	0.03	8082A		1	01/13/17 0:33		CA71203
Aroclor 1254	ND (0.09)	0.03	8082A		1	01/13/17 0:33		CA71203
Aroclor 1260	ND (0.09)	0.03	8082A		1	01/13/17 0:33		CA71203
Aroclor 1262	ND (0.09)	0.03	8082A		1	01/13/17 0:33		CA71203
Aroclor 1268	ND (0.09)	0.03	8082A		1	01/13/17 0:33		CA71203
		%Recovery	Qualifier	Limits				
Surrogate: Decachlorobiphenyl		42 %		30-150				
Surrogate: Decachlorobiphenyl [2C]		35 %		30-150				
Surrogate: Tetrachloro-m-xylene		65 %		30-150				
Surrogate: Tetrachloro-m-xylene [2C]		80 %		30-150				



The Microbiology Division of Thielsch Engineering, Inc.



#### CERTIFICATE OF ANALYSIS

Client Name: Tighe & Bond

Client Project ID: Woburn to Mystic - RGP/MCP

Client Sample ID: MW-505A Date Sampled: 01/10/17 11:00

Percent Solids: N/A Initial Volume: 5 Final Volume: 5

Extraction Method: 5030B

ESS Laboratory Work Order: 1701175 ESS Laboratory Sample ID: 1701175-01

Sample Matrix: Ground Water

Units: ug/L Analyst: MD

### 8260B Volatile Organic Compounds

Analyte 1,1,1-Trichloroethane	Results (MRL) ND (1.0)	$\frac{\mathbf{MDL}}{0.2}$	Method 8260B	<u>Limit</u>	<u><b>DF</b></u>	<u>Analyzed</u> 01/11/17 12:17	Sequence C7A0139	Batch CA71120
1,1,2-Trichloroethane	ND (1.0)	0.2	8260B		1	01/11/17 12:17	C7A0139	CA71120
1,1-Dichloroethane	ND (1.0)	0.2	8260B		1	01/11/17 12:17	C7A0139	CA71120
1,1-Dichloroethene	ND (1.0)	0.3	8260B		1	01/11/17 12:17	C7A0139	CA71120
1,2-Dibromoethane	ND (1.0)	0.2	8260B		1	01/11/17 12:17	C7A0139	CA71120
1,2-Dichlorobenzene	ND (1.0)	0.1	8260B		1	01/11/17 12:17	C7A0139	CA71120
1,2-Dichloroethane	ND (1.0)	0.2	8260B		1	01/11/17 12:17	C7A0139	CA71120
1,3-Dichlorobenzene	ND (1.0)	0.2	8260B		1	01/11/17 12:17	C7A0139	CA71120
1,4-Dichlorobenzene	ND (1.0)	0.1	8260B		1	01/11/17 12:17	C7A0139	CA71120
1,4-Dioxane - Screen	ND (500)	190	8260B		1	01/11/17 12:17	C7A0139	CA71120
Acetone	J 3.6 (10.0)	2.7	8260B		1	01/11/17 12:17	C7A0139	CA71120
Benzene	ND (1.0)	0.1	8260B		1	01/11/17 12:17	C7A0139	CA71120
Carbon Tetrachloride	ND (1.0)	0.1	8260B		1	01/11/17 12:17	C7A0139	CA71120
cis-1,2-Dichloroethene	ND (1.0)	0.2	8260B		1	01/11/17 12:17	C7A0139	CA71120
Ethylbenzene	ND (1.0)	0.1	8260B		1	01/11/17 12:17	C7A0139	CA71120
Methyl tert-Butyl Ether	ND (1.0)	0.3	8260B		1	01/11/17 12:17	C7A0139	CA71120
Methylene Chloride	ND (2.0)	0.2	8260B		1	01/11/17 12:17	C7A0139	CA71120
Naphthalene	<b>B, J 0.3</b> (1.0)	0.2	8260B		1	01/11/17 12:17	C7A0139	CA71120
Tertiary-amyl methyl ether	ND (1.0)	0.2	8260B		1	01/11/17 12:17	C7A0139	CA71120
Tertiary-butyl Alcohol	ND (25.0)	10.0	8260B		1	01/11/17 12:17	C7A0139	CA71120
Tetrachloroethene	ND (1.0)	0.2	8260B		1	01/11/17 12:17	C7A0139	CA71120
Toluene	ND (1.0)	0.1	8260B		1	01/11/17 12:17	C7A0139	CA71120
Trichloroethene	ND (1.0)	0.2	8260B		1	01/11/17 12:17	C7A0139	CA71120
Vinyl Chloride	ND (1.0)	0.2	8260B		1	01/11/17 12:17	C7A0139	CA71120
Xylene O	ND (1.0)	0.1	8260B		1	01/11/17 12:17	C7A0139	CA71120
Xylene P,M	ND (2.0)	0.2	8260B		1	01/11/17 12:17	C7A0139	CA71120
		%Recovery	Qualifier	Limits				
Surrogate: 1,2-Dichloroethane-d4		93 %		70-130				
Surrogate: 4-Bromofluorobenzene		88 %		70-130				

185 Frances Avenue, Cranston, RI 02910-2211

Surrogate: Dibromofluoromethane

Surrogate: Toluene-d8

Tel: 401-461-7181

Fax: 401-461-4486

70-130

70-130

http://www.ESSLaboratory.com

106 %



The Microbiology Division of Thielsch Engineering, Inc.



#### CERTIFICATE OF ANALYSIS

Client Name: Tighe & Bond

Client Project ID: Woburn to Mystic - RGP/MCP

Client Sample ID: MW-505A Date Sampled: 01/10/17 11:00

Percent Solids: N/A Initial Volume: 1070 Final Volume: 0.25

Extraction Method: 3510C

ESS Laboratory Work Order: 1701175 ESS Laboratory Sample ID: 1701175-01

Sample Matrix: Ground Water

Units: ug/L Analyst: VSC

Prepared: 1/11/17 15:35

### 8270D(SIM) Semi-Volatile Organic Compounds

Analyte Acenaphthene	Results (MRL) J 0.04 (0.19)	MDL 0.04	Method 8270D SIM	<u>Limit</u>	<u><b>DF</b></u>	<u>Analyzed</u> 01/12/17 6:31	Sequence C7A0148	Batch CA71116
Acenaphthylene	ND (0.19)	0.03	8270D SIM		1	01/12/17 6:31	C7A0148	CA71116
Anthracene	<b>J 0.08</b> (0.19)	0.03	8270D SIM		1	01/12/17 6:31	C7A0148	CA71116
Benzo(a)anthracene	<b>0.11</b> (0.05)	0.01	8270D SIM		1	01/12/17 6:31	C7A0148	CA71116
Benzo(a)pyrene	<b>0.12</b> (0.05)	0.01	8270D SIM		1	01/12/17 6:31	C7A0148	CA71116
Benzo(b)fluoranthene	<b>0.15</b> (0.05)	0.02	8270D SIM		1	01/12/17 6:31	C7A0148	CA71116
Benzo(g,h,i)perylene	<b>J 0.10</b> (0.19)	0.02	8270D SIM		1	01/12/17 6:31	C7A0148	CA71116
Benzo(k)fluoranthene	<b>0.05</b> (0.05)	0.02	8270D SIM		1	01/12/17 6:31	C7A0148	CA71116
bis(2-Ethylhexyl)phthalate	<b>B 5.22</b> (2.34)	0.19	8270D SIM		1	01/12/17 6:31	C7A0148	CA71116
Butylbenzylphthalate	<b>B, J 0.61</b> (2.34)	0.19	8270D SIM		1	01/12/17 6:31	C7A0148	CA71116
Chrysene	<b>0.13</b> (0.05)	0.01	8270D SIM		1	01/12/17 6:31	C7A0148	CA71116
Dibenzo(a,h)Anthracene	<b>J 0.03</b> (0.05)	0.02	8270D SIM		1	01/12/17 6:31	C7A0148	CA71116
Diethylphthalate	J 0.54 (2.34)	0.19	8270D SIM		1	01/12/17 6:31	C7A0148	CA71116
Dimethylphthalate	ND (2.34)	0.19	8270D SIM		1	01/12/17 6:31	C7A0148	CA71116
Di-n-butylphthalate	ND (2.34)	0.19	8270D SIM		1	01/12/17 6:31	C7A0148	CA71116
Di-n-octylphthalate	<b>B, J 0.21</b> (2.34)	0.19	8270D SIM		1	01/12/17 6:31	C7A0148	CA71116
Fluoranthene	<b>0.21</b> (0.19)	0.02	8270D SIM		1	01/12/17 6:31	C7A0148	CA71116
Fluorene	<b>J 0.06</b> (0.19)	0.03	8270D SIM		1	01/12/17 6:31	C7A0148	CA71116
Indeno(1,2,3-cd)Pyrene	<b>0.10</b> (0.05)	0.02	8270D SIM		1	01/12/17 6:31	C7A0148	CA71116
Naphthalene	<b>J 0.05</b> (0.19)	0.04	8270D SIM		1	01/12/17 6:31	C7A0148	CA71116
Pentachlorophenol	ND (0.84)	0.30	8270D SIM		1	01/18/17 23:30	C7A0148	CA71116
Phenanthrene	<b>J 0.18</b> (0.19)	0.04	8270D SIM		1	01/12/17 6:31	C7A0148	CA71116
Pyrene	<b>0.25</b> (0.19)	0.02	8270D SIM		1	01/12/17 6:31	C7A0148	CA71116

	%Recovery	Qualifier	Limits
Surrogate: 1,2-Dichlorobenzene-d4	44 %		30-130
Surrogate: 2,4,6-Tribromophenol	106 %		15-110
Surrogate: 2-Fluorobiphenyl	75 %		30-130
Surrogate: Nitrobenzene-d5	71 %		30-130
Surrogate: p-Terphenyl-d14	80 %		30-130

185 Frances Avenue, Cranston, RI 02910-2211

Tel: 401-461-7181

Fax: 401-461-4486



The Microbiology Division of Thielsch Engineering, Inc.



#### CERTIFICATE OF ANALYSIS

Client Name: Tighe & Bond

Client Project ID: Woburn to Mystic - RGP/MCP

Client Sample ID: MW-505A Date Sampled: 01/10/17 11:00

Percent Solids: N/A

ESS Laboratory Work Order: 1701175 ESS Laboratory Sample ID: 1701175-01

Sample Matrix: Ground Water

### **Classical Chemistry**

Analyte Ammonia as N	Results (MRL) 0.20 (0.10)	<u>MDL</u>	Method 4500 NH3 G	<u>Limit</u>	<u><b>DF</b></u>	Analys	<u>Analyzed</u> 01/12/17 17:05	Units mg/L	Batch CA71107
Chloride	<b>4800</b> (1000)		§		1	SUB	01/12/17 14:22	mg/L	CA71735
Hexavalent Chromium	ND (10)		7196A		1	JLK	01/10/17 21:30	ug/L	CA71051
Phenols	ND (100)	30	420.1		1	JLK	01/13/17 17:00	ug/L	CA71336
Total Cyanide (LL)	ND (5.00)	1.80	4500 CN CE		1	EEM	01/12/17 12:45	ug/L	CA71217
Total Petroleum Hydrocarbon	ND (5)		1664A		1	CRR	01/13/17 16:40	mg/L	CA71136
Total Residual Chlorine	HT ND (10)		4500-Cl E		1	JLK	01/10/17 20:58	ug/L	CA71052
<b>Total Suspended Solids</b>	<b>1350000</b> (20000)		2540D		1	MJV	01/12/17 16:22	ug/L	CA71227



The Microbiology Division of Thielsch Engineering, Inc.



#### CERTIFICATE OF ANALYSIS

Client Name: Tighe & Bond

Client Project ID: Woburn to Mystic - RGP/MCP

Client Sample ID: MW-505A Date Sampled: 01/10/17 11:00

Percent Solids: N/A Initial Volume: 35 Final Volume: 2

Extraction Method: 504/8011

ESS Laboratory Work Order: 1701175 ESS Laboratory Sample ID: 1701175-01

Sample Matrix: Ground Water

Units: ug/L Analyst: JXS

Prepared: 1/13/17 12:00

### 8011 1,2-Dibromoethane / 1,2-Dibromo-3-chloropropane

Analyte 1,2-Dibromoethane	Results (MRL) ND (0.015)	MDL 0.005	<b>Method</b> 8011	<u>Limit</u>	<u><b>DF</b></u>	Analyst JXS	<b>Analyzed</b> 01/13/17 13:22	<u>Sequence</u>	Batch CA71322
	%	Recovery	Qualifier	Limits					
Surrogate: Pentachloroethane		105 %		30-150					

185 Frances Avenue, Cranston, RI 02910-2211

2211 Tel: 401-461-7181

Dependability • Quality

Fax: 401-461-4486 ◆ Service



The Microbiology Division of Thielsch Engineering, Inc.



#### CERTIFICATE OF ANALYSIS

Client Name: Tighe & Bond

Client Project ID: Woburn to Mystic - RGP/MCP

Client Sample ID: MW-505A Date Sampled: 01/10/17 11:00

Percent Solids: N/A Initial Volume: 1 Final Volume: 1

Extraction Method: No Prep

ESS Laboratory Work Order: 1701175 ESS Laboratory Sample ID: 1701175-01

Sample Matrix: Ground Water

Units: mg/L Analyst: DPS

Prepared: 1/12/17 14:30

### Alcohol Scan by GC/FID

AnalyteResults (MRL)MDLMethodLimitDFAnalystAnalyzedSequenceBatchEthanolND (10)80151DPS01/12/17 19:26CA71246

185 Frances Avenue, Cranston, RI 02910-2211

Tel: 401-461-7181

Fax: 401-461-4486



The Microbiology Division of Thielsch Engineering, Inc.



#### CERTIFICATE OF ANALYSIS

Client Name: Tighe & Bond

Client Project ID: Woburn to Mystic - RGP/MCP

Client Sample ID: MW-505A FF Date Sampled: 01/10/17 11:00

Percent Solids: N/A

ESS Laboratory Work Order: 1701175 ESS Laboratory Sample ID: 1701175-03

Sample Matrix: Ground Water

Units: ug/L

Extraction Method: 3005A

#### **Total Metals**

<u>Analyte</u>	Results (MRL)	<b>MDL</b>	Method	<u>Limit</u>	<u>DF</u>	Analyst	<u>Analyzed</u>	<u>I/V</u>	F/V	<b>Batch</b>
Antimony	ND (5.0)	0.6	7010		1	KJK	01/17/17 23:48	50	25	CA71302
Arsenic	ND (5.0)	0.4	7010		1	KJK	01/18/17 7:31	50	25	CA71302
Barium	<b>314</b> (75.0)	4.5	6010C		3	KJK	01/18/17 19:57	50	25	CA71302
Beryllium	<b>J 0.8</b> (1.5)	0.3	6010C		3	KJK	01/18/17 19:57	50	25	CA71302
Cadmium	ND (0.5)	0.03	7010		1	KJK	01/17/17 17:02	50	25	CA71302
Chromium	<b>J 2.1</b> (10.0)	1.5	6010C		1	KJK	01/13/17 17:32	50	25	CA71302
Chromium III	ND (10)		6010C		1	JLK	01/13/17 17:32	1	1	[CALC]
Copper	<b>J 2.6</b> (5.0)	2.0	6010C		1	KJK	01/13/17 17:32	50	25	CA71302
Iron	<b>B 1060</b> (150)	34.5	6010C		3	KJK	01/18/17 19:57	50	25	CA71302
Lead	ND (12.5)	2.5	7010		5	KJK	01/18/17 22:22	50	25	CA71302
Mercury	ND (0.20)	0.12	7470A		1	MJV	01/13/17 12:36	20	40	CA71110
Nickel	<b>J 3.8</b> (10.0)	1.0	6010C		1	KJK	01/13/17 17:32	50	25	CA71302
Selenium	ND (5.0)	0.6	7010		1	KJK	01/18/17 23:49	50	25	CA71302
Silver	ND (0.2)	0.08	7010		1	KJK	01/17/17 20:43	50	25	CA71302
Thallium	<b>EL</b> ND (10.0)	5.4	7010		10	KJK	01/19/17 12:03	50	25	CA71302
Vanadium	<b>J 2.4</b> (10.0)	1.0	6010C		1	KJK	01/13/17 17:32	50	25	CA71302
Zinc	<b>J 12.8</b> (25.0)	4.5	6010C		1	KJK	01/13/17 17:32	50	25	CA71302



The Microbiology Division of Thielsch Engineering, Inc.



#### CERTIFICATE OF ANALYSIS

Client Name: Tighe & Bond

Client Project ID: Woburn to Mystic - RGP/MCP

Client Sample ID: MW-505A FF Date Sampled: 01/10/17 11:00

Percent Solids: N/A Initial Volume: 990 Final Volume: 1

Extraction Method: 3510C

ESS Laboratory Work Order: 1701175 ESS Laboratory Sample ID: 1701175-03

Sample Matrix: Ground Water

Units: ug/L Analyst: SMR

Prepared: 1/12/17 10:30 Cleanup Method: 3665A

### 8082A Polychlorinated Biphenyls (PCB)

<u>Analyte</u>	Results (MRL)	<b>MDL</b>	Method	<u>Limit</u>	<u>DF</u>	<b>Analyzed</b>	<b>Sequence</b>	<b>Batch</b>
Aroclor 1016	ND (0.10)	0.03	8082A		1	01/13/17 1:11		CA71203
Aroclor 1221	ND (0.10)	0.03	8082A		1	01/13/17 1:11		CA71203
Aroclor 1232	ND (0.10)	0.03	8082A		1	01/13/17 1:11		CA71203
Aroclor 1242	ND (0.10)	0.03	8082A		1	01/13/17 1:11		CA71203
Aroclor 1248	ND (0.10)	0.03	8082A		1	01/13/17 1:11		CA71203
Aroclor 1254	ND (0.10)	0.03	8082A		1	01/13/17 1:11		CA71203
Aroclor 1260	ND (0.10)	0.03	8082A		1	01/13/17 1:11		CA71203
Aroclor 1262	ND (0.10)	0.03	8082A		1	01/13/17 1:11		CA71203
Aroclor 1268	ND (0.10)	0.03	8082A		1	01/13/17 1:11		CA71203
		%Recovery	Qualifier	Limits				
Surrogate: Decachlorobiphenyl		92 %		30-150				
Surrogate: Decachlorobiphenyl [2C]		88 %		30-150				
Surrogate: Tetrachloro-m-xylene		64 %		30-150				
Surrogate: Tetrachloro-m-xylene [2C]		80 %		30-150				



The Microbiology Division of Thielsch Engineering, Inc.



#### CERTIFICATE OF ANALYSIS

Client Name: Tighe & Bond

Client Project ID: Woburn to Mystic - RGP/MCP

Client Sample ID: MW-505A FF Date Sampled: 01/10/17 11:00

Percent Solids: N/A Initial Volume: 5 Final Volume: 5

Extraction Method: 5030B

ESS Laboratory Work Order: 1701175 ESS Laboratory Sample ID: 1701175-03

Sample Matrix: Ground Water

Units: ug/L Analyst: MD

### 8260B Volatile Organic Compounds

Analyte 1,1,1-Trichloroethane	Results (MRL) ND (1.0)	MDL 0.2	Method 8260B	<u>Limit</u>	<u><b>DF</b></u>	<b>Analyzed</b> 01/12/17 17:53	Sequence C7A0161	Batch CA71231
1,1,2-Trichloroethane	ND (1.0)	0.2	8260B		1	01/12/17 17:53	C7A0161	CA71231
1,1-Dichloroethane	ND (1.0)	0.2	8260B		1	01/12/17 17:53	C7A0161	CA71231
1,1-Dichloroethene	ND (1.0)	0.3	8260B		1	01/12/17 17:53	C7A0161	CA71231
1,2-Dibromoethane	ND (1.0)	0.2	8260B		1	01/12/17 17:53	C7A0161	CA71231
1,2-Dichlorobenzene	ND (1.0)	0.1	8260B		1	01/12/17 17:53	C7A0161	CA71231
1,2-Dichloroethane	ND (1.0)	0.2	8260B		1	01/12/17 17:53	C7A0161	CA71231
1,3-Dichlorobenzene	ND (1.0)	0.2	8260B		1	01/12/17 17:53	C7A0161	CA71231
1,4-Dichlorobenzene	ND (1.0)	0.1	8260B		1	01/12/17 17:53	C7A0161	CA71231
1,4-Dioxane - Screen	ND (500)	190	8260B		1	01/12/17 17:53	C7A0161	CA71231
Acetone	ND (10.0)	2.7	8260B		1	01/12/17 17:53	C7A0161	CA71231
Benzene	ND (1.0)	0.1	8260B		1	01/12/17 17:53	C7A0161	CA71231
Carbon Tetrachloride	ND (1.0)	0.1	8260B		1	01/12/17 17:53	C7A0161	CA71231
cis-1,2-Dichloroethene	ND (1.0)	0.2	8260B		1	01/12/17 17:53	C7A0161	CA71231
Ethylbenzene	ND (1.0)	0.1	8260B		1	01/12/17 17:53	C7A0161	CA71231
Methyl tert-Butyl Ether	ND (1.0)	0.3	8260B		1	01/12/17 17:53	C7A0161	CA71231
Methylene Chloride	ND (2.0)	0.2	8260B		1	01/12/17 17:53	C7A0161	CA71231
Naphthalene	ND (1.0)	0.2	8260B		1	01/12/17 17:53	C7A0161	CA71231
Tertiary-amyl methyl ether	ND (1.0)	0.2	8260B		1	01/12/17 17:53	C7A0161	CA71231
Tertiary-butyl Alcohol	ND (25.0)	10.0	8260B		1	01/12/17 17:53	C7A0161	CA71231
Tetrachloroethene	ND (1.0)	0.2	8260B		1	01/12/17 17:53	C7A0161	CA71231
Toluene	<b>J 0.2</b> (1.0)	0.1	8260B		1	01/12/17 17:53	C7A0161	CA71231
Trichloroethene	ND (1.0)	0.2	8260B		1	01/12/17 17:53	C7A0161	CA71231
Vinyl Chloride	ND (1.0)	0.2	8260B		1	01/12/17 17:53	C7A0161	CA71231
Xylene O	ND (1.0)	0.1	8260B		1	01/12/17 17:53	C7A0161	CA71231
Xylene P,M	ND (2.0)	0.2	8260B		1	01/12/17 17:53	C7A0161	CA71231
		%Recovery	Qualifier	Limits				
Surrogate: 1,2-Dichloroethane-d4		104 %		70-130				
Surrogate: 4-Bromofluorobenzene		94 %		70-130				
Surrogate: Dibromofluoromethane		100 %		70-130				
Surrogate: Toluene-d8		101 %		70-130				

185 Frances Avenue, Cranston, RI 02910-2211

Tel: 401-461-7181

Fax: 401-461-4486 ◆ Service



The Microbiology Division of Thielsch Engineering, Inc.



#### CERTIFICATE OF ANALYSIS

Client Name: Tighe & Bond

Client Project ID: Woburn to Mystic - RGP/MCP

Client Sample ID: MW-505A FF Date Sampled: 01/10/17 11:00

Percent Solids: N/A Initial Volume: 1070 Final Volume: 0.25

Extraction Method: 3510C

ESS Laboratory Work Order: 1701175 ESS Laboratory Sample ID: 1701175-03

Sample Matrix: Ground Water

Units: ug/L Analyst: VSC

Prepared: 1/12/17 10:15

### 8270D(SIM) Semi-Volatile Organic Compounds

Analyte Acenaphthene	Results (MRL) ND (0.19)	MDL 0.04	Method 8270D SIM	<u>Limit</u>	<u><b>DF</b></u>	<b>Analyzed</b> 01/12/17 19:35	Sequence C7A0164	Batch CA71116
Acenaphthylene	ND (0.19)	0.03	8270D SIM		1	01/12/17 19:35	C7A0164	CA71116
Anthracene	<b>J 0.03</b> (0.19)	0.03	8270D SIM		1	01/12/17 19:35	C7A0164	CA71116
Benzo(a)anthracene	ND (0.05)	0.01	8270D SIM		1	01/12/17 19:35	C7A0164	CA71116
Benzo(a)pyrene	ND (0.05)	0.01	8270D SIM		1	01/12/17 19:35	C7A0164	CA71116
Benzo(b)fluoranthene	ND (0.05)	0.02	8270D SIM		1	01/12/17 19:35	C7A0164	CA71116
Benzo(g,h,i)perylene	ND (0.19)	0.02	8270D SIM		1	01/12/17 19:35	C7A0164	CA71116
Benzo(k)fluoranthene	ND (0.05)	0.02	8270D SIM		1	01/12/17 19:35	C7A0164	CA71116
bis(2-Ethylhexyl)phthalate	<b>B 2.83</b> (2.34)	0.19	8270D SIM		1	01/12/17 19:35	C7A0164	CA71116
Butylbenzylphthalate	<b>B, J 0.31</b> (2.34)	0.19	8270D SIM		1	01/12/17 19:35	C7A0164	CA71116
Chrysene	ND (0.05)	0.01	8270D SIM		1	01/12/17 19:35	C7A0164	CA71116
Dibenzo(a,h)Anthracene	ND (0.05)	0.02	8270D SIM		1	01/12/17 19:35	C7A0164	CA71116
Diethylphthalate	<b>J 0.36</b> (2.34)	0.19	8270D SIM		1	01/12/17 19:35	C7A0164	CA71116
Dimethylphthalate	ND (2.34)	0.19	8270D SIM		1	01/12/17 19:35	C7A0164	CA71116
Di-n-butylphthalate	ND (2.34)	0.19	8270D SIM		1	01/12/17 19:35	C7A0164	CA71116
Di-n-octylphthalate	ND (2.34)	0.19	8270D SIM		1	01/12/17 19:35	C7A0164	CA71116
Fluoranthene	ND (0.19)	0.02	8270D SIM		1	01/12/17 19:35	C7A0164	CA71116
Fluorene	ND (0.19)	0.03	8270D SIM		1	01/12/17 19:35	C7A0164	CA71116
Indeno(1,2,3-cd)Pyrene	ND (0.05)	0.02	8270D SIM		1	01/12/17 19:35	C7A0164	CA71116
Naphthalene	<b>J 0.04</b> (0.19)	0.04	8270D SIM		1	01/12/17 19:35	C7A0164	CA71116
Pentachlorophenol	ND (0.84)	0.30	8270D SIM		1	01/19/17 13:11	C7A0164	CA71116
Phenanthrene	ND (0.19)	0.04	8270D SIM		1	01/12/17 19:35	C7A0164	CA71116
Pyrene	ND (0.19)	0.02	8270D SIM		1	01/12/17 19:35	C7A0164	CA71116
		%Recovery	Qualifier	Limits				
Surrogate: 1,2-Dichlorobenzene-d4		72 %		30-130				
Surrogate: 2,4,6-Tribromophenol		101 %		15-110				
Surrogate: 2-Fluorobiphenyl		98 %		30-130				

Surrogate: Nitrobenzene-d5 94 % 30-130 Surrogate: p-Terphenyl-d14 104 % 30-130

185 Frances Avenue, Cranston, RI 02910-2211

Tel: 401-461-7181

Fax: 401-461-4486



The Microbiology Division of Thielsch Engineering, Inc.



#### CERTIFICATE OF ANALYSIS

Client Name: Tighe & Bond

Client Project ID: Woburn to Mystic - RGP/MCP

Client Sample ID: MW-505A FF Date Sampled: 01/10/17 11:00

Percent Solids: N/A

ESS Laboratory Work Order: 1701175 ESS Laboratory Sample ID: 1701175-03

Sample Matrix: Ground Water

### **Classical Chemistry**

Analyte Ammonia as N	Results (MRL) 0.82 (0.10)	<u>MDL</u>	Method 4500 NH3 G	<u>Limit</u>	<u><b>DF</b></u>	Analys	<u>Analyzed</u> 01/16/17 16:46	Units mg/L	Batch CA71301
Chloride	<b>2600</b> (100)		§		1	SUB	01/18/17 8:26	mg/L	CA71801
Hexavalent Chromium	ND (10)		7196A		1	JLK	01/10/17 21:30	ug/L	CA71051
Phenols	ND (100)	30	420.1		1	JLK	01/13/17 17:00	ug/L	CA71336
Total Cyanide (LL)	ND (5.00)	1.80	4500 CN CE		1	EEM	01/12/17 12:45	ug/L	CA71217
Total Petroleum Hydrocarbon	ND (5)		1664A		1	CRR	01/16/17 14:42	mg/L	CA71306
Total Residual Chlorine	HT ND (10)		4500-Cl E		1	JLK	01/10/17 20:58	ug/L	CA71052
<b>Total Suspended Solids</b>	<b>8000</b> (5000)		2540D		1	MJV	01/12/17 16:22	ug/L	CA71227



The Microbiology Division of Thielsch Engineering, Inc.



#### CERTIFICATE OF ANALYSIS

Client Name: Tighe & Bond

Client Project ID: Woburn to Mystic - RGP/MCP

Client Sample ID: MW-505A FF Date Sampled: 01/10/17 11:00

Percent Solids: N/A
Initial Volume: 35

Final Volume: 2

Extraction Method: 504/8011

ESS Laboratory Work Order: 1701175 ESS Laboratory Sample ID: 1701175-03

Sample Matrix: Ground Water

Units: ug/L Analyst: JXS

Prepared: 1/13/17 12:00

### 8011 1,2-Dibromoethane / 1,2-Dibromo-3-chloropropane

Analyte 1,2-Dibromoethane	Results (MRL) ND (0.015)	MDL 0.005	<u>Method</u> 8011	<u>Limit</u>	<u><b>DF</b></u>	Analyst JXS	<b>Analyzed</b> 01/13/17 15:17	<u>Sequence</u>	Batch CA71322
	%	Recovery	Qualifier	Limits					
Surrogate: Pentachloroethane		115 %		30-150					

185 Frances Avenue, Cranston, RI 02910-2211

Tel: 401-461-7181

Fax: 401-461-4486 ◆ Service



The Microbiology Division of Thielsch Engineering, Inc.



#### CERTIFICATE OF ANALYSIS

Client Name: Tighe & Bond

Client Project ID: Woburn to Mystic - RGP/MCP

Client Sample ID: MW-505A FF Date Sampled: 01/10/17 11:00

Percent Solids: N/A
Initial Volume: 1
Final Volume: 1

Extraction Method: No Prep

ESS Laboratory Work Order: 1701175 ESS Laboratory Sample ID: 1701175-03

Sample Matrix: Ground Water

Units: mg/L Analyst: DPS

Prepared: 1/12/17 14:30

### Alcohol Scan by GC/FID

AnalyteResults (MRL)MDLMethodLimitDFAnalystAnalyzedSequenceBatchEthanolND (10)80151DPS01/12/17 20:52CA71246

185 Frances Avenue, Cranston, RI 02910-2211

211 Tel: 401-461-7181

Fax: 401-461-4486



The Microbiology Division of Thielsch Engineering, Inc.

%REC



RPD

#### CERTIFICATE OF ANALYSIS

Client Name: Tighe & Bond

Client Project ID: Woburn to Mystic - RGP/MCP ESS Laboratory Work Order: 1701175

### **Quality Control Data**

Spike

Source

LCS Chromium III  LCS Dup Chromium III  Batch CA71104 - 3005A  Blank  Barium  Beryllium  Chromium  Copper  Iron  Nickel  Vanadium  Zinc  Blank  Antimony  Arsenic  Barium  Beryllium  Cadmium  Chromium  Chrom	ID 10  ID 50.  ID 1.0  ID 1.0  ID 1.0  ID 20.  ID 100  ID 100  ID 100  ID 20.  ID 20.	ug/L  0 ug/L  0 ug/L  0 ug/L  0 ug/L  0 ug/L	letals			
chromium III Promium P	ID 50.1 ID 20.1 ID 10.1 ID 20.1 ID 10.1 ID 20.1 ID 20.1 ID 20.1 ID 10.1 ID 20.1 ID 20.	ug/L  0 ug/L  0 ug/L  0 ug/L  0 ug/L  0 ug/L				
arcmium III Process  Sarcmium III Process  Arch CA71104 - 3005A  Ank  Arium Propium Promium Propiper  Arch CA71104 - 3005A  Ank  Arium Propium Promium Propiper  Arch CA71104 - 3005A  Ank  Arium Propium Promium Propiper  Arium Propium Promium Propium Prop	ID 50.1 ID 20.1 ID 10.1 ID 20.1 ID 10.1 ID 20.1 ID 20.1 ID 20.1 ID 10.1 ID 20.1 ID 20.	ug/L  0 ug/L  0 ug/L  0 ug/L  0 ug/L  0 ug/L				
hromium III Promium III Promiu	ID 50.1 ID 20.1 ID 10.1 ID 20.1 ID 10.1 ID 20.1 ID 20.1 ID 20.1 ID 10.1 ID 20.1 ID 20.	ug/L  0 ug/L  0 ug/L  0 ug/L  0 ug/L  0 ug/L				
hromium III Promium III Promium Promium Promium III Promium Promium Promium III Promium III Promium Promium III Promiu	ID 50. ID 1.0 ID 20. ID 10. ID 20. ID 10. ID 20. ID 10. ID 20.	0 ug/L 0 ug/L 0 ug/L 0 ug/L 0 ug/L				
CS Dup  hromium III	ID 50. ID 1.0 ID 20. ID 10. ID 20. ID 10. ID 20. ID 10. ID 20.	0 ug/L 0 ug/L 0 ug/L 0 ug/L 0 ug/L				
hromium III  atch CA71104 - 3005A  lank arium eryllium hromium opper on ickel anadium inc lank ntimony rsenic arium eryllium hromium III	ID 50.1 ID 1.0 ID 20.1 ID 10.1 ID 10.1 ID 20.1 ID 20.1	0 ug/L 0 ug/L 0 ug/L 0 ug/L				
hromium III  atch CA71104 - 3005A  lank arium eryllium hromium opper on ickel anadium inc lank ntimony resenic arium eryllium hromium	ID 50.1 ID 1.0 ID 20.1 ID 10.1 ID 10.1 ID 20.1 ID 20.1	0 ug/L 0 ug/L 0 ug/L 0 ug/L				
lank arium eryllium hromium opper on ickel anadium inc lank ntimony rsenic arium eryllium hromium hrom	ID 1.C ID 20. ID 10. ID 100 ID 20.	ug/L ug/L ug/L				
arium  arium  aryllium  Ar	ID 1.C ID 20. ID 10. ID 100 ID 20.	ug/L ug/L ug/L				
eryllium hromium opper on ickel anadium inc 1  Iank  Intimony senic arium eryllium admium hromium hrom	ID 1.C ID 20. ID 10. ID 100 ID 20.	ug/L ug/L ug/L				
hromium  popper  popper  pon  pickel  panadium  pinc  plank  Intimony  presenic  parium  peryllium  peryllium  padmium  promium	ID 20. ID 10. ID 10. ID 20.	ug/L ug/L ug/L				
opper fron fickel finanadium finc filank  Intimony firsenic firarium fireryllium filandium firomium firomium firomium firomium III fiopper fron	ID 10. ID 100 ID 20.	0 ug/L				
ron Prickel Pr	ND 100					
ickel nadium nad	ID 20.	) ug/L				
anadium ninc 1.  Ilank Intimony Nince 1.  Intimony						
Inc 1  Iank  Intimony	ID 30	0 ug/L				
Ilank Intimony Intimo	ID 20.	0 ug/L				
ntimony rsenic arium Pryllium admium Promium Promium Promium Propper Promium Proport Promium P	5.5 50.	0 ug/L				J
rsenic Prium						
eryllium Pryllium III Pryllium	ID 5.0	ug/L				
eryllium Produium Promium Prom	ID 5.0	ug/L				
admium Promium Promium III Propper Pro	ID 25.	0 ug/L				
hromium hromium III hopper non N	ID 0.5	ug/L				
hromium III nopper non no	ID 0.5	ug/L				
opper N	ID 10.					
on N	ID 10					
	ID 5.0					
ead N	ID 50.					
	ID 2.5					
	ID 10.					
	ID 5.0					
	ID 0.2					
	ID 1.0					
	ID 10.1 ID 25.1					
	25.ا	, ug/L				
lank	ID	0				
	ID 2.0					
	ID 2.0					
	ID 10.1 ID 0.2					
	ID 0.2					
	ID 4.0					
	ID 4.0					
	ID 2.0					
	5.0 20.					J
ead N		ug/L ug/L				,



The Microbiology Division of Thielsch Engineering, Inc.



#### CERTIFICATE OF ANALYSIS

Client Name: Tighe & Bond

Client Project ID: Woburn to Mystic - RGP/MCP ESS Laboratory Work Order: 1701175

### **Quality Control Data**

Analyte	Result	MRL	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Qualifie
			Total Meta	als						
atch CA71104 - 3005A										
lickel	ND	4.0	ug/L							
Selenium	ND	2.0	ug/L							
Silver	ND	0.1	ug/L							
'hallium	ND	0.4	ug/L							
'anadium	ND	4.0	ug/L							
inc	2.2	10.0	ug/L							J
CS										
arium	477	50.0	ug/L	500.0		95	80-120			
eryllium	46.8	1.0	ug/L	50.00		94	80-120			
hromium	476	20.0	ug/L	500.0		95	80-120			
opper	478	10.0	ug/L	500.0		96	80-120			
on	2680	100	ug/L	2500		107	80-120			
ickel	481	20.0	ug/L	500.0		96	80-120			
anadium	475	20.0	ug/L	500.0		95	80-120			
nc	463	50.0	ug/L	500.0		93	80-120			
	103	30.0	ug/L	300.0			00 120			
CS 		425		250.0		101	00.100			
ntimony	252	125	ug/L	250.0		101	80-120			
rsenic	256	125	ug/L	250.0		102	80-120			
arium	235	25.0	ug/L	250.0		94	80-120			
eryllium	23.2	0.5	ug/L	25.00		93	80-120			
admium	122	250	ug/L	125.0		98	80-120			J
hromium	234	10.0	ug/L	250.0		94	80-120			
hromium III	234	10	ug/L							
opper	232	5.0	ug/L	250.0		93	80-120			
ron	1140	50.0	ug/L	1250		91	80-120			
ead	272	62.5	ug/L	250.0		109	80-120			
ickel	237	10.0	ug/L	250.0		95	80-120			
elenium	546	125	ug/L	500.0		109	80-120			
ilver	116	2.5	ug/L	125.0		93	80-120			
ilver	117	25.0	ug/L	125.0		94	80-120			
hallium	275	25.0	ug/L	250.0		110	80-120			
'anadium	234	10.0	ug/L	250.0		93	80-120			
inc	227	25.0	ug/L	250.0		91	80-120			
cs										
ntimony	93.5	50.0	ug/L	100.0		94	80-120			
rsenic	108	50.0	ug/L	100.0		108	80-120			
arium	96.8	10.0	ug/L	100.0		97	80-120			
eryllium	9.5	0.2	ug/L	10.00		95	80-120			
admium	47.7	100	ug/L	50.00		95	80-120			J
nromium	96.6	4.0	ug/L	100.0		97	80-120			
nromium III	97.0	4	ug/L							
opper	97.1	2.0	ug/L	100.0		97	80-120			
on	483	20.0	ug/L	500.0		97	80-120			
ead	108	25.0	ug/L	100.0		108	80-120			
	96.3	4.0	ug/L	100.0		96	80-120			

Service



The Microbiology Division of Thielsch Engineering, Inc.



#### CERTIFICATE OF ANALYSIS

Client Name: Tighe & Bond

Client Project ID: Woburn to Mystic - RGP/MCP ESS Laboratory Work Order: 1701175

				Spike	Source		%REC		RPD	
Analyte	Result	MRL	Units	Level	Result	%REC	Limits	RPD	Limit	Qualifie
			Total Meta	als						
atch CA71104 - 3005A										
elenium	222	50.0	ug/L	200.0		111	80-120			
ilver	40.5	10.0	ug/L	50.00		81	80-120			
hallium	109	10.0	ug/L	100.0		109	80-120			
anadium	97.4	4.0	ug/L	100.0		97	80-120			
inc	96.1	10.0	ug/L	100.0		96	80-120			
CS Dup										
arium	467	50.0	ug/L	500.0		93	80-120	2	20	
eryllium	45.6	1.0	ug/L	50.00		91	80-120	3	20	
hromium	465	20.0	ug/L	500.0		93	80-120	2	20	
opper	472	10.0	ug/L	500.0		94	80-120	1	20	
on	2350	100	ug/L	2500		94	80-120	13	20	
ckel	476	20.0	ug/L	500.0		95	80-120	1	20	
anadium	466	20.0	ug/L	500.0		93	80-120	2	20	
nc	452	50.0	ug/L	500.0		90	80-120	2	20	
CS Dup										
ntimony	252	125	ug/L	250.0		101	80-120	0.03	20	
rsenic	260	125	ug/L	250.0		104	80-120	2	20	
arium	247	25.0	ug/L	250.0		99	80-120	5	20	
eryllium	24.2	0.5	ug/L	25.00		97	80-120	5	20	
admium	120	250	ug/L	125.0		96	80-120	2	20	J
nromium	247	10.0	ug/L	250.0		99	80-120	5	20	
nromium III	247	10	ug/L							
ppper	244	5.0	ug/L	250.0		98	80-120	5	20	
on	1190	50.0	ug/L	1250		95	80-120	4	20	
ead	270	62.5	ug/L	250.0		108	80-120	0.8	20	
ckel	246	10.0	ug/L	250.0		98	80-120	4	20	
elenium	541	125	ug/L	500.0		108	80-120	0.9	20	
lver	118	25.0	ug/L	125.0		95	80-120	0.8	20	
lver	122	2.5	ug/L	125.0		98	80-120	5	20	
hallium	275	25.0	ug/L	250.0		110	80-120	0.03	20	
anadium	246	10.0	ug/L	250.0		98	80-120	5	20	
nc	239	25.0	ug/L	250.0		96	80-120	5	20	
CS Dup										
ntimony	99.0	50.0	ug/L	100.0		99	80-120	6	20	
rsenic	108	50.0	ug/L	100.0		108	80-120	0.3	20	
arium	93.7	10.0	ug/L	100.0		94	80-120	3	20	
eryllium	9.1	0.2	ug/L	10.00		91	80-120	4	20	
ndmium	50.8	100	ug/L	50.00		102	80-120	6	20	J
romium	93.0	4.0	ug/L	100.0		93	80-120	4	20	
nromium III	93.0	4	ug/L							
opper	93.0	2.0	ug/L	100.0		93	80-120	4	20	
on	462	20.0	ug/L	500.0		92	80-120	4	20	
ead	108	25.0	ug/L	100.0		108	80-120	0.1	20	
ckel	92.0	4.0	ug/L	100.0		92	80-120	4	20	
elenium	225	50.0	ug/L	200.0		113	80-120	1	20	



The Microbiology Division of Thielsch Engineering, Inc.



#### CERTIFICATE OF ANALYSIS

Client Name: Tighe & Bond

Client Project ID: Woburn to Mystic - RGP/MCP ESS Laboratory Work Order: 1701175

Analyte	Result	MRL	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Qualifier
,			Total Meta							
Batch CA71104 - 3005A										
Silver	40.7	10.0	ug/L	50.00		81	80-120	0.4	20	
Thallium	112	10.0	ug/L	100.0		112	80-120	3	20	
Vanadium	93.4	4.0	ug/L	100.0		93	80-120	4	20	
Zinc	92.1	10.0	ug/L	100.0		92	80-120	4	20	
Batch CA71110 - 245.1/7470A										
Blank										
Mercury	ND	0.20	ug/L							
LCS										
Mercury	6.33	0.20	ug/L	6.000		105	80-120			
LCS Dup										
Mercury	6.18	0.20	ug/L	6.000		103	80-120	2	20	
Batch CA71302 - 3005A										
Blank										
Antimony	ND	5.0	ug/L							
Arsenic	ND	5.0	ug/L							
Barium	ND	25.0	ug/L							
Beryllium	0.1	0.5	ug/L							J
Cadmium	ND	0.5	ug/L							
Chromium	ND	10.0	ug/L							
Chromium III	ND	10	ug/L							
Copper	ND	5.0	ug/L							
Iron	22.3	50.0	ug/L							J
Lead	ND	2.5	ug/L							
Nickel	ND	10.0	ug/L							
Selenium	ND	5.0	ug/L							
Silver	ND	0.2	ug/L							
Silver	ND	2.5	ug/L							
Thallium	ND	1.0	ug/L							
Vanadium	ND	10.0	ug/L							
Zinc	ND	25.0	ug/L							
Blank										
Barium	ND	5.0	ug/L							
LCS										
Antimony	246	125	ug/L	250.0		98	80-120			
Arsenic	227	125	ug/L	250.0		91	80-120			
Barium	247	25.0	ug/L	250.0		99	80-120			
Beryllium	24.3	0.5	ug/L	25.00		97	80-120			
Cadmium	124	250	ug/L	125.0		99	80-120			J
Chromium	245	10.0	ug/L	250.0		98	80-120			
Chromium III	245	10	ug/L							
Copper	232	5.0	ug/L	250.0		93	80-120			
Iron	1210	50.0	ug/L	1250		97	80-120			
Lead	295	62.5	ug/L	250.0		118	80-120			



The Microbiology Division of Thielsch Engineering, Inc.



#### CERTIFICATE OF ANALYSIS

Client Name: Tighe & Bond

Client Project ID: Woburn to Mystic - RGP/MCP ESS Laboratory Work Order: 1701175

Analyte	Result	MRL	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Qualifie
			Total Met	als						
Batch CA71302 - 3005A										
Nickel	235	10.0	ug/L	250.0		94	80-120			
Selenium	584	125	ug/L	500.0		117	80-120			
Silver	118	2.5	ug/L	125.0		95	80-120			
Silver	105	25.0	ug/L	125.0		84	80-120			
Thallium	277	25.0	ug/L	250.0		111	80-120			
Vanadium	248	10.0	ug/L	250.0		99	80-120			
Zinc	238	25.0	ug/L	250.0		95	80-120			
LCS										
Barium	43.4	5.0	ug/L	50.00		87	80-120			
LCS Dup										
Antimony	234	125	ug/L	250.0		93	80-120	5	20	
Arsenic	214	125	ug/L	250.0		86	80-120	6	20	
Barium	245	25.0	ug/L	250.0		98	80-120	1	20	
Beryllium	24.0	0.5	ug/L	25.00		96	80-120	2	20	
Cadmium	120	250	ug/L	125.0		96	80-120	4	20	J
Chromium	242	10.0	ug/L	250.0		97	80-120	1	20	
Chromium III	242	10	ug/L							
Copper	229	5.0	ug/L	250.0		91	80-120	2	20	
iron	1200	50.0	ug/L	1250		96	80-120	0.9	20	
Lead	279	62.5	ug/L	250.0		112	80-120	5	20	
Nickel	231	10.0	ug/L	250.0		92	80-120	2	20	
Selenium	567	125	ug/L	500.0		113	80-120	3	20	
Silver	107	25.0	ug/L	125.0		86	80-120	2	20	
Silver	116	2.5	ug/L	125.0		93	80-120	2	20	
Гhallium	273	25.0	ug/L	250.0		109	80-120	2	20	
Vanadium	243	10.0	ug/L	250.0		97	80-120	2	20	
Zinc	235	25.0	ug/L	250.0		94	80-120	1	20	
LCS Dup										
Barium	36.5	5.0	ug/L	50.00		73	80-120	17	20	B-
		8082A Polyo	chlorinated	Biphenyls	(PCB)					
Batch CA71203 - 3510C										
Blank										
Aroclor 1016	ND	0.05	ug/L							
Aroclor 1221	ND	0.05	ug/L							
Aroclor 1232	ND	0.05	ug/L							
Aroclor 1242	ND	0.05	ug/L							
Aroclor 1248	ND	0.05	ug/L							
Aroclor 1254	ND	0.05	ug/L							
Aroclor 1260	ND	0.05	ug/L							
Aroclor 1262	ND	0.05	ug/L							
Aroclor 1268	ND	0.05	ug/L							



The Microbiology Division of Thielsch Engineering, Inc.



#### CERTIFICATE OF ANALYSIS

Client Name: Tighe & Bond

Client Project ID: Woburn to Mystic - RGP/MCP ESS Laboratory Work Order: 1701175

### **Quality Control Data**

Analyte	Result	MRL	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Qualifier
, · ·										
		8082A Polyc	anomated	PIPITELIYIS	(FCD)					
Batch CA71203 - 3510C										
Surrogate: Decachlorobiphenyl [2C]	0.0338		ug/L	0.05000		68	30-150			
Surrogate: Tetrachloro-m-xylene	0.0282		ug/L	0.05000		56	30-150			
Surrogate: Tetrachloro-m-xylene [2C]	0.0363		ug/L	0.05000		73	30-150			
LCS						-				
Aroclor 1016	0.92	0.05	ug/L	1.000		92	40-140			
Aroclor 1260	0.84	0.05	ug/L	1.000		84	40-140			
Surrogate: Decachlorobiphenyl	0.0407		ug/L	0.05000		81	30-150			
Surrogate: Decachlorobiphenyl [2C]	0.0384		ug/L	0.05000		77	30-150			
Surrogate: Tetrachloro-m-xylene	0.0345		ug/L	0.05000		69	30-150			
Surrogate: Tetrachloro-m-xylene [2C]	0.0394		ug/L	0.05000		79	30-150			
LCS Dup										
Aroclor 1016	0.98	0.05	ug/L	1.000		98	40-140	5	20	
Aroclor 1260	0.86	0.05	ug/L	1.000		86	40-140	3	20	
Surrogate: Decachlorobiphenyl	0.0477		ug/L	0.05000		95	30-150			
Surrogate: Decachlorobiphenyl [2C]	0.0448		ug/L	0.05000		90	30-150			
Surrogate: Tetrachloro-m-xylene	0.0388		ug/L	0.05000		78	30-150			
Surrogate: Tetrachloro-m-xylene [2C]	0.0449		ug/L	0.05000		90	30-150			
		8260B Vola	atile Organ	ic Compou	ınds					

Batch CA71120 - 5030B			
Blank			
1,1,1-Trichloroethane	ND	1.0	ug/L
1,1,2-Trichloroethane	ND	1.0	ug/L
1,1-Dichloroethane	ND	1.0	ug/L
1,1-Dichloroethene	ND	1.0	ug/L
1,2-Dibromoethane	ND	1.0	ug/L
1,2-Dichlorobenzene	ND	1.0	ug/L
1,2-Dichloroethane	ND	1.0	ug/L
1,3-Dichlorobenzene	ND	1.0	ug/L
1,4-Dichlorobenzene	ND	1.0	ug/L
1,4-Dioxane - Screen	ND	500	ug/L
Acetone	ND	10.0	ug/L
Benzene	ND	1.0	ug/L
Carbon Tetrachloride	ND	1.0	ug/L
cis-1,2-Dichloroethene	ND	1.0	ug/L
Ethylbenzene	ND	1.0	ug/L
Methyl tert-Butyl Ether	ND	1.0	ug/L
Methylene Chloride	ND	2.0	ug/L
Naphthalene	0.7	1.0	ug/L
Tertiary-amyl methyl ether	ND	1.0	ug/L
Tertiary-butyl Alcohol	ND	25.0	ug/L
Tetrachloroethene	ND	1.0	ug/L

185 Frances Avenue, Cranston, RI 02910-2211

Tel: 401-461-7181

Fax: 401-461-4486



The Microbiology Division of Thielsch Engineering, Inc.



#### CERTIFICATE OF ANALYSIS

Client Name: Tighe & Bond

Client Project ID: Woburn to Mystic - RGP/MCP ESS Laboratory Work Order: 1701175

			Level	Result	%REC	Limits	RPD	Limit	Qualifie
	8260B Vol	atile Organ	ic Compo	unds					
ND	1.0	ug/L							
ND	1.0	ug/L							
ND	1.0	ug/L							
ND	1.0	ug/L							
ND	2.0	ug/L							
22.8		ug/L	25.00		91	70-130			
22.4		ug/L	25.00		90	70-130			
24.8		ug/L	25.00		99	70-130			
25.6		ug/L	25.00		102	70-130			
9.4		ug/L	10.00		94	70-130			
9.4		ug/L	10.00		94	70-130			
9.5		ug/L	10.00		95	70-130			
10.5		ug/L	10.00		105	70-130			
10.1		ug/L	10.00		101	70-130			
9.6		ug/L	10.00		96	70-130			
9.2		ug/L	10.00		92	70-130			
9.7		ug/L	10.00		97	70-130			
9.3		ug/L	10.00		93	70-130			
0.0		ug/L	200.0			0-332			
45.2		ug/L	50.00		90	70-130			
9.8		ug/L	10.00		98	70-130			
10.0		ug/L	10.00		100	70-130			
9.9		ug/L	10.00		99	70-130			
8.3		ug/L	10.00		83	70-130			
9.0		ug/L	10.00		90	70-130			
9.9		ug/L	10.00		99	70-130			
11.6		ug/L	10.00		116	70-130			
8.6		ug/L	10.00		86	70-130			
48.2		ug/L	50.00		96	70-130			
7.7		ug/L	10.00		77	70-130			
9.2		ug/L	10.00		92	70-130			
9.6		ug/L	10.00		96	70-130			
10.3		ug/L	10.00		103	70-130			
8.4		ug/L	10.00		84	70-130			
16.8		ug/L	20.00		84	70-130			
23.0		ug/L	25.00		92	70-130			
23.6		ug/L	25.00		94	70-130			
25.2		ug/L	25.00		101	70-130			
26.4		ug/L	25.00		106	70-130			
9.0		ug/L	10.00		90	70-130	5	25	
8.7		ug/L	10.00		87	70-130	7	25	
9.0		ug/L	10.00		90	70-130	5	25	
	ND ND ND 22.8 22.4 24.8 25.6  9.4 9.4 9.5 10.5 10.1 9.6 9.2 9.7 9.3 0.0 45.2 9.8 10.0 9.9 8.3 9.0 9.9 11.6 8.6 48.2 7.7 9.2 9.6 10.3 8.4 16.8 23.0 23.6 25.2 26.4	ND 1.0 ND 1.0 ND 1.0 ND 2.0 22.8 22.4 24.8 25.6  9.4 9.4 9.5 10.5 10.1 9.6 9.2 9.7 9.3 0.0 45.2 9.8 10.0 9.9 8.3 9.0 9.9 11.6 8.6 48.2 7.7 9.2 9.6 10.3 8.4 16.8 23.0 23.6 25.2 26.4	ND 1.0 ug/L ND 1.0 ug/L ND 1.0 ug/L ND 1.0 ug/L 22.8 ug/L 22.4 ug/L 24.8 ug/L 25.6 ug/L 9.4 ug/L 9.5 ug/L 10.5 ug/L 10.1 ug/L 9.6 ug/L 9.7 ug/L 9.3 ug/L 9.3 ug/L 9.4 ug/L 9.5 ug/L 9.7 ug/L 9.8 ug/L 10.0 ug/L 9.9 ug/L 9.9 ug/L 10.0 ug/L 9.9 ug/L 10.0 ug/L 9.9 ug/L 10.0 ug/L 9.9 ug/L 10.0 ug/L 9.9 ug/L 10.1 ug/L 9.9 ug/L 10.0 ug/L 9.9 ug/L 10.0 ug/L 9.9 ug/L 10.1 ug/L 9.9 ug/L 10.0 ug/L 9.9 ug/L 11.6 ug/L 8.6 ug/L 10.3 ug/L 10.3 ug/L 10.3 ug/L 23.6 ug/L 23.6 ug/L 23.6 ug/L 23.6 ug/L 25.2 ug/L 9.0 ug/L 9.0 ug/L 9.0 ug/L 23.6 ug/L 25.2 ug/L 9.0 ug/L	ND 1.0 ug/L ND 1.0 ug/L ND 1.0 ug/L ND 2.0 ug/L 22.8 ug/L 25.00 22.4 ug/L 25.00 22.4 ug/L 25.00 25.6 ug/L 25.00 25.6 ug/L 25.00  9.4 ug/L 10.00 9.5 ug/L 10.00 10.5 ug/L 10.00 9.6 ug/L 10.00 9.2 ug/L 10.00 9.3 ug/L 10.00 9.3 ug/L 10.00 9.3 ug/L 10.00 9.3 ug/L 10.00 9.4 ug/L 10.00 9.5 ug/L 10.00 9.7 ug/L 10.00 9.8 ug/L 10.00 9.9 ug/L 10.00 9.8 ug/L 10.00 9.9 ug/L 10.00 9.1 ug/L 10.00 9.2 ug/L 10.00 9.3 ug/L 10.00 9.4 ug/L 10.00 9.5 ug/L 10.00 9.6 ug/L 10.00 9.6 ug/L 10.00 9.7 ug/L 10.00 9.6 ug/L 10.00 9.7 ug/L 10.00 9.7 ug/L 10.00 9.7 ug/L 10.00 9.7 ug/L 25.00 23.6 ug/L 25.00 23.6 ug/L 25.00 23.6 ug/L 25.00 23.6 ug/L 25.00 24.5 ug/L 25.00 25.2 ug/L 25.00 25.2 ug/L 25.00 26.4 ug/L 25.00 9.0 ug/L 25.00	ND 1.0 ug/L ND 1.0 ug/L ND 1.0 ug/L ND 1.0 ug/L ND 2.0 ug/L 22.8 ug/L 25.00 22.4 ug/L 25.00 24.8 ug/L 25.00 25.6 ug/L 10.00 9.4 ug/L 10.00 9.5 ug/L 10.00 10.5 ug/L 10.00 9.6 ug/L 10.00 9.7 ug/L 10.00 9.7 ug/L 10.00 9.3 ug/L 10.00 9.3 ug/L 10.00 0.0 ug/L 200.0 45.2 ug/L 50.00 9.8 ug/L 10.00 9.9 ug/L 10.00 9.1 ug/L 10.00 9.2 ug/L 10.00 9.4 ug/L 10.00 9.5 ug/L 10.00 9.6 ug/L 10.00 9.6 ug/L 10.00 9.7 ug/L 25.00 23.6 ug/L 25.00 25.2 ug/L 25.00 26.4 ug/L 25.00 26.4 ug/L 25.00 9.0 ug/L 10.00	ND 1.0 ug/L ND 1.0 ug/L ND 1.0 ug/L ND 2.0 ug/L 22.8 ug/L 25.00 90 22.4 ug/L 25.00 99 24.8 ug/L 25.00 99 25.6 ug/L 25.00 102  9.4 ug/L 10.00 94 9.4 ug/L 10.00 94 9.5 ug/L 10.00 95 10.5 ug/L 10.00 95 10.1 ug/L 10.00 96 9.2 ug/L 10.00 97 9.3 ug/L 10.00 99 9.3 ug/L 10.00 99 9.8 ug/L 10.00 93 10.0 ug/L 50.00 90 9.8 ug/L 10.00 99 11.6 ug/L 10.00 99 9.8 ug/L 10.00 99 9.9 ug/L 10.00 99 11.6 ug/L 10.00 99 9.9 ug/L 10.00 99 11.6 ug/L 10.00 90 10.3 ug/L 10.00 90	ND 1.0 ug/L ND 1.0 ug/L ND 1.0 ug/L ND 2.0 ug/L 22.8 ug/L 25.00 91 70-130 22.4 ug/L 25.00 99 70-130 24.8 ug/L 25.00 99 70-130 25.6 ug/L 25.00 99 70-130 25.6 ug/L 25.00 99 70-130 25.6 ug/L 10.00 94 70-130 9.4 ug/L 10.00 94 70-130 9.5 ug/L 10.00 95 70-130 10.5 ug/L 10.00 95 70-130 10.1 ug/L 10.00 96 70-130 9.6 ug/L 10.00 96 70-130 9.7 ug/L 10.00 97 70-130 9.3 ug/L 10.00 97 70-130 9.3 ug/L 10.00 99 70-130 9.8 ug/L 10.00 99 70-130 9.8 ug/L 10.00 99 70-130 10.0 ug/L 10.00 99 70-130 9.9 ug/L 10.00 99 70-130 9.1 ug/L 10.00 99 70-130 9.2 ug/L 10.00 99 70-130 9.3 ug/L 10.00 99 70-130 9.4 ug/L 10.00 99 70-130 9.5 ug/L 10.00 99 70-130 9.6 ug/L 10.00 99 70-130 9.7 ug/L 10.00 99 70-130	ND 1.0 ug/L ND 1.0 ug/L ND 1.0 ug/L ND 1.0 ug/L ND 2.0 ug/L 22.8 ug/L 25.00 91 70-130 22.8 ug/L 25.00 99 70-130 22.6 ug/L 25.00 99 70-130 25.6 ug/L 25.00 99 70-130 25.6 ug/L 10.00 94 70-130 9.4 ug/L 10.00 94 70-130 9.5 ug/L 10.00 95 70-130 10.5 ug/L 10.00 105 70-130 10.1 ug/L 10.00 95 70-130 10.1 ug/L 10.00 96 70-130 9.6 ug/L 10.00 92 70-130 9.7 ug/L 10.00 97 70-130 9.7 ug/L 10.00 97 70-130 9.8 ug/L 10.00 99 70-130 10.0 ug/L 10.00 99 70-130 9.9 ug/L 10.00 99 70-130 9.8 ug/L 10.00 99 70-130 9.9 ug/L 10.00 99 70-130 11.6 ug/L 10.00 99 70-130 9.9 ug/L 10.00 99 70-130 9.0 ug/L 10.00 99 70-130 9.1 ug/L 10.00 99 70-130 9.2 ug/L 10.00 99 70-130 9.3 ug/L 10.00 99 70-130 9.4 ug/L 10.00 99 70-130 9.5 ug/L 10.00 99 70-130 9.6 ug/L 25.00 99 70-130 9.6 To-130 10.00 100 70-130 9.6 To-130 10.00 99 70-130 9.6 Ug/L 25.00 99 70-130 9.0 Ug/L 25.00 99 70-130 70-130 9.0 Ug/L 10.00 90 70-130 70-130	ND 1.0 ug/L ND 1.0 ug/L ND 2.0 ug/L 22.8 ug/L 25.00 91 70-130 22.4 ug/L 25.00 99 70-130 22.6 ug/L 25.00 99 70-130 25.6 ug/L 25.00 99 70-130 25.6 ug/L 10.00 94 70-130 9.4 ug/L 10.00 94 70-130 9.5 ug/L 10.00 95 70-130 10.5 ug/L 10.00 105 70-130 10.1 ug/L 10.00 96 70-130 9.6 ug/L 10.00 97 70-130 9.7 ug/L 10.00 97 70-130 9.9 ug/L 10.00 97 70-130 9.8 ug/L 10.00 97 70-130 9.9 ug/L 10.00 97 70-130 9.1 ug/L 10.00 97 70-130 9.2 ug/L 10.00 97 70-130 9.3 ug/L 10.00 97 70-130 9.1 ug/L 10.00 97 70-130 9.3 ug/L 10.00 97 70-130 9.1 ug/L 10.00 98 70-130 9.1 ug/L 10.00 99 70-130 9.1 ug/L 10.00 99 70-130 9.9 ug/L 10.00 99 70-130 9.1 ug/L 10.00 99 70-130 9.1 ug/L 10.00 99 70-130 9.2 ug/L 10.00 99 70-130 9.4 ug/L 10.00 99 70-130 9.5 ug/L 10.00 99 70-130 9.6 ug/L 25.00 99 70-130 9.6 ug/L 25.00 99 70-130 9.7 ug/L 10.00 90 70-130 5 25



The Microbiology Division of Thielsch Engineering, Inc.



#### CERTIFICATE OF ANALYSIS

Client Name: Tighe & Bond

Client Project ID: Woburn to Mystic - RGP/MCP ESS Laboratory Work Order: 1701175

### **Quality Control Data**

%REC Limits	RPD	Limit	Qualifier
70-130	7	25	
70-130	6	25	
70-130	8	25	
70-130	3	25	
70-130	4	25	
0-332		200	
70-130	7	25	
70-130	4	25	
70-130	5	25	
70-130	6	25	
70-130	0.5	25	
70-130	5	25	
70-130	4	25	
70-130	11	25	
70-130	8	25	
70-130	0.2	25	
70-130	3	25	
70-130	6	25	
70-130	7	25	
70-130	7	25	
70-130	2	25	
70-130	0.6	25	
70-130			
70-130			
70-130			
70-130			

185 Frances Avenue, Cranston, RI 02910-2211

Tel: 401-461-7181

Fax: 401-461-4486



The Microbiology Division of Thielsch Engineering, Inc.



#### CERTIFICATE OF ANALYSIS

Client Name: Tighe & Bond

Client Project ID: Woburn to Mystic - RGP/MCP ESS Laboratory Work Order: 1701175

### **Quality Control Data**

Analyte	Result	MRL	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Qualifier
		8260B Vol	atile Organ	ic Compo	unds					
Batch CA71231 - 5030B										
Naphthalene	0.4	1.0	ug/L							J
Tertiary-amyl methyl ether	ND	1.0	ug/L							
Tertiary-butyl Alcohol	ND	25.0	ug/L							
Fetrachloroethene	ND	1.0	ug/L							
Foluene	ND	1.0	ug/L							
Frichloroethene	ND	1.0	ug/L							
/inyl Chloride	ND	1.0	ug/L							
Xylene O	ND	1.0	ug/L							
Kylene P,M	ND	2.0	ug/L							
Surrogate: 1,2-Dichloroethane-d4	24.2		ug/L	25.00		97	70-130			
Surrogate: 4-Bromofluorobenzene	23.8		ug/L	25.00		95	70-130			
Surrogate: Pibromofluoromethane	24.5		ug/L	25.00		98	70-130			
Surrogate: Toluene-d8	25.7		ug/L	25.00		103	70-130			
LCS			-							
1,1,1-Trichloroethane	9.4		ug/L	10.00		94	70-130			
1,1,2-Trichloroethane	8.4		ug/L	10.00		84	70-130			
1,1-Dichloroethane	9.4		ug/L	10.00		94	70-130			
.,1-Dichloroethene	10.8		ug/L	10.00		108	70-130			
,2-Dibromoethane	9.0		ug/L	10.00		90	70-130			
1,2-Dichlorobenzene	8.2		ug/L	10.00		82	70-130			
,2-Dichloroethane	9.7		ug/L	10.00		97	70-130			
,3-Dichlorobenzene	8.6		ug/L	10.00		86	70-130			
,4-Dichlorobenzene	8.6		ug/L	10.00		86	70-130			
,4-Dioxane - Screen	0.0		ug/L	200.0		00	0-332			
acetone	48.2		ug/L	50.00		96	70-130			
Benzene	9.4			10.00		94	70-130			
Carbon Tetrachloride	8.8		ug/L	10.00		88	70-130			
			ug/L				70-130			
is-1,2-Dichloroethene	9.6 9.5		ug/L	10.00 10.00		96 95				
thylbenzene 1ethyl tert-Butyl Ether	10.1		ug/L	10.00		101	70-130 70-130			
	9.6		ug/L			96				
Methylene Chloride	9.5		ug/L	10.00		96 95	70-130			
laphthalene			ug/L	10.00		95 97	70-130			
ertiary-amyl methyl ether	9.7		ug/L	10.00			70-130			
ertiary-butyl Alcohol	50.1		ug/L	50.00		100	70-130			
etrachloroethene	8.6		ug/L	10.00		86	70-130			
oluene	9.5		ug/L	10.00		95	70-130			
richloroethene	9.1		ug/L	10.00		91	70-130			
/inyl Chloride	8.9		ug/L	10.00		89	70-130			
(ylene O	9.0		ug/L	10.00		90	70-130			
(ylene P,M	19.2		ug/L	20.00		96	70-130			
Surrogate: 1,2-Dichloroethane-d4	26.0		ug/L	25.00		104	70-130			
Surrogate: 4-Bromofluorobenzene	23.1		ug/L	<i>25.00</i>		93	70-130			
Surrogate: Dibromofluoromethane	24.8		ug/L	25.00		99	70-130			
Surrogate: Toluene-d8	25.1		ug/L	25.00		100	70-130			

185 Frances Avenue, Cranston, RI 02910-2211

Tel: 401-461-7181

Fax: 401-461-4486

Service



The Microbiology Division of Thielsch Engineering, Inc.



#### CERTIFICATE OF ANALYSIS

Client Name: Tighe & Bond

Client Project ID: Woburn to Mystic - RGP/MCP ESS Laboratory Work Order: 1701175

### **Quality Control Data**

Analyte	Result	MRL	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Qualifie
		8260B Volat	ile Organi	c Compo	unds					
Batch CA71231 - 5030B										
1,1,1-Trichloroethane	9.2		ug/L	10.00		92	70-130	2	25	
1,1,2-Trichloroethane	8.0		ug/L	10.00		80	70-130	6	25	
1,1-Dichloroethane	9.4		ug/L	10.00		94	70-130	0.3	25	
1,1-Dichloroethene	10.5		ug/L	10.00		105	70-130	3	25	
1,2-Dibromoethane	8.6		ug/L	10.00		86	70-130	4	25	
,2-Dichlorobenzene	8.0		ug/L	10.00		80	70-130	3	25	
,2-Dichloroethane	9.5		ug/L	10.00		95	70-130	2	25	
1,3-Dichlorobenzene	8.0		ug/L	10.00		80	70-130	8	25	
,4-Dichlorobenzene	8.4		ug/L	10.00		84	70-130	3	25	
,4-Dioxane - Screen	0.0		ug/L	200.0			0-332		200	
Acetone	49.6		ug/L	50.00		99	70-130	3	25	
Benzene	9.4		ug/L	10.00		94	70-130	0.1	25	
Carbon Tetrachloride	8.6		ug/L	10.00		86	70-130	2	25	
is-1,2-Dichloroethene	9.8		ug/L	10.00		98	70-130	2	25	
Ethylbenzene	9.6		ug/L	10.00		96	70-130	0.8	25	
1ethyl tert-Butyl Ether	10.5		ug/L	10.00		105	70-130	3	25	
1ethylene Chloride	9.7		ug/L	10.00		97	70-130	1	25	
laphthalene	9.2		ug/L	10.00		92	70-130	3	25	
ertiary-amyl methyl ether	9.5		ug/L	10.00		95	70-130	3	25	
ertiary-butyl Alcohol	44.2		ug/L	50.00		88	70-130	13	25	
etrachloroethene	8.6		ug/L	10.00		86	70-130	0.5	25	
oluene	9.2		ug/L	10.00		92	70-130	3	25	
richloroethene	9.0		ug/L	10.00		90	70-130	0.9	25	
/inyl Chloride	8.4		ug/L	10.00		84	70-130	5	25	
(ylene O	8.7		ug/L	10.00		87	70-130	4	25	
(ylene P,M	18.7		ug/L	20.00		93	70-130	3	25	
Surrogate: 1,2-Dichloroethane-d4	25.8		ug/L	25.00		103	70-130			
Surrogate: 4-Bromofluorobenzene	23.4		ug/L	25.00		94	70-130			
Surrogate: Dibromofluoromethane	25.3		ug/L	25.00		101	70-130			
Surrogate: Toluene-d8	25.1		ug/L	25.00		100	70-130			
<del>-</del>	827	70D(SIM) Semi	-Volatile (	Organic C	ompound	S				

Batch CA71116 - 3510C			
Blank			
Acenaphthene	ND	0.20	ug/L
Acenaphthylene	ND	0.20	ug/L
Anthracene	ND	0.20	ug/L
Benzo(a)anthracene	ND	0.05	ug/L
Benzo(a)pyrene	ND	0.05	ug/L
Benzo(b)fluoranthene	ND	0.05	ug/L
Benzo(g,h,i)perylene	ND	0.20	ug/L
Benzo(k)fluoranthene	ND	0.05	ug/L
bis(2-Ethylhexyl)phthalate	2.37	2.50	ug/L
Butylbenzylphthalate	0.32	2.50	ug/L
Chrysene	ND	0.05	ug/L

185 Frances Avenue, Cranston, RI 02910-2211

Tel: 401-461-7181

Fax: 401-461-4486



The Microbiology Division of Thielsch Engineering, Inc.



#### CERTIFICATE OF ANALYSIS

Client Name: Tighe & Bond

Client Project ID: Woburn to Mystic - RGP/MCP ESS Laboratory Work Order: 1701175

### **Quality Control Data**

				Spike	Source		%REC		RPD	
Analyte	Result	MRL	Units	Level	Result	%REC	Limits	RPD	Limit	Qualifier

8270D(SIM) Semi-Volatile (	Organic	Compounds
----------------------------	---------	-----------

Batch CA71116 - 3510C							
Dibenzo(a,h)Anthracene	ND	0.05	ug/L				
Diethylphthalate	ND	2.50	ug/L				
Dimethylphthalate	ND	2.50	ug/L				
Di-n-butylphthalate	ND	2.50	ug/L				
Di-n-octylphthalate	0.26	2.50	ug/L				J
Fluoranthene	ND	0.20	ug/L				
Fluorene	ND	0.20	ug/L				
Indeno(1,2,3-cd)Pyrene	ND	0.05	ug/L				
Naphthalene	ND	0.20	ug/L				
Pentachlorophenol	ND	0.90	ug/L				
Phenanthrene	ND	0.20	ug/L				
Pyrene	ND	0.20	ug/L				
Surrogate: 1,2-Dichlorobenzene-d4	0.791		ug/L	2.500	32	30-130	
Surrogate: 2,4,6-Tribromophenol	2.97		ug/L	3.750	<i>79</i>	15-110	
Surrogate: 2-Fluorobiphenyl	1.22		ug/L	2.500	49	30-130	
Surrogate: Nitrobenzene-d5	1.42		ug/L	2.500	57	30-130	
Surrogate: p-Terphenyl-d14	2.24		ug/L	2.500	90	30-130	 
LCS							
Acenaphthene	2.51	0.20	ug/L	4.000	63	40-140	
Acenaphthylene	2.18	0.20	ug/L	4.000	54	40-140	
Anthracene	2.90	0.20	ug/L	4.000	73	40-140	
Benzo(a)anthracene	3.23	0.05	ug/L	4.000	81	40-140	
Benzo(a)pyrene	3.24	0.05	ug/L	4.000	81	40-140	
Benzo(b)fluoranthene	3.19	0.05	ug/L	4.000	80	40-140	
Benzo(g,h,i)perylene	3.23	0.20	ug/L	4.000	81	40-140	
Benzo(k)fluoranthene	3.07	0.05	ug/L	4.000	77	40-140	
bis(2-Ethylhexyl)phthalate	5.83	2.50	ug/L	4.000	146	40-140	B+
Butylbenzylphthalate	4.39	2.50	ug/L	4.000	110	40-140	
Chrysene	3.47	0.05	ug/L	4.000	87	40-140	
Dibenzo(a,h)Anthracene	3.03	0.05	ug/L	4.000	76	40-140	
Diethylphthalate	3.24	2.50	ug/L	4.000	81	40-140	
Dimethylphthalate	2.93	2.50	ug/L	4.000	73	40-140	
Di-n-butylphthalate	3.33	2.50	ug/L	4.000	83	40-140	
Di-n-octylphthalate	3.99	2.50	ug/L	4.000	100	40-140	
Fluoranthene	3.28	0.20	ug/L	4.000	82	40-140	
Fluorene	2.81	0.20	ug/L	4.000	70	40-140	
Indeno(1,2,3-cd)Pyrene	3.14	0.05	ug/L	4.000	78	40-140	
Naphthalene	1.61	0.20	ug/L	4.000	40	40-140	
Pentachlorophenol	3.98	0.90	ug/L	4.000	100	30-130	
Phenanthrene	2.88	0.20	ug/L	4.000	72	40-140	
Pyrene	3.64	0.20	ug/L	4.000	91	40-140	
Surrogate: 1,2-Dichlorobenzene-d4	0.754		ug/L	2.500	30	30-130	
Surrogate: 2,4,6-Tribromophenol	3.65		ug/L	3.750	97	15-110	
Surrogate: 2-Fluorobiphenyl	1.40		ug/L	2.500	56	30-130	
Surrogate: Nitrobenzene-d5	1.40		ug/L	2.500	56	30-130	

185 Frances Avenue, Cranston, RI 02910-2211

Tel: 401-461-7181

Fax: 401-461-4486

Service



The Microbiology Division of Thielsch Engineering, Inc.



#### CERTIFICATE OF ANALYSIS

Client Name: Tighe & Bond

Client Project ID: Woburn to Mystic - RGP/MCP ESS Laboratory Work Order: 1701175

### **Quality Control Data**

				Spike	Source		%REC		RPD	
Analyte	Result	MRL	Units	Level	Result	%REC	Limits	RPD	Limit	Qualifier

#### 8270D(SIM) Semi-Volatile Organic Compounds

Batch CA71116 - 3510C									
Surrogate: p-Terphenyl-d14	2.48		ug/L	2.500	99	30-130			
LCS Dup									
Acenaphthene	2.99	0.20	ug/L	4.000	75	40-140	17	20	
Acenaphthylene	2.57	0.20	ug/L	4.000	64	40-140	17	20	
Anthracene	3.10	0.20	ug/L	4.000	77	40-140	7	20	
Benzo(a)anthracene	3.32	0.05	ug/L	4.000	83	40-140	3	20	
Benzo(a)pyrene	3.40	0.05	ug/L	4.000	85	40-140	5	20	
Benzo(b)fluoranthene	3.48	0.05	ug/L	4.000	87	40-140	9	20	
Benzo(g,h,i)perylene	3.43	0.20	ug/L	4.000	86	40-140	6	20	
Benzo(k)fluoranthene	3.32	0.05	ug/L	4.000	83	40-140	8	20	
bis(2-Ethylhexyl)phthalate	5.73	2.50	ug/L	4.000	143	40-140	2	20	B+
Butylbenzylphthalate	4.62	2.50	ug/L	4.000	115	40-140	5	20	
Chrysene	3.63	0.05	ug/L	4.000	91	40-140	4	20	
Dibenzo(a,h)Anthracene	3.20	0.05	ug/L	4.000	80	40-140	6	20	
Diethylphthalate	3.59	2.50	ug/L	4.000	90	40-140	10	20	
Dimethylphthalate	3.31	2.50	ug/L	4.000	83	40-140	12	20	
Di-n-butylphthalate	3.49	2.50	ug/L	4.000	87	40-140	5	20	
Di-n-octylphthalate	4.22	2.50	ug/L	4.000	105	40-140	6	20	
Fluoranthene	3.40	0.20	ug/L	4.000	85	40-140	4	20	
Fluorene	3.20	0.20	ug/L	4.000	80	40-140	13	20	
Indeno(1,2,3-cd)Pyrene	3.35	0.05	ug/L	4.000	84	40-140	6	20	
Naphthalene	1.98	0.20	ug/L	4.000	49	40-140	21	20	D+
Pentachlorophenol	4.13	0.90	ug/L	4.000	103	30-130	4	20	
Phenanthrene	3.03	0.20	ug/L	4.000	76	40-140	5	20	
Pyrene	3.76	0.20	ug/L	4.000	94	40-140	3	20	
Surrogate: 1,2-Dichlorobenzene-d4	0.979		ug/L	2.500	39	30-130			
Surrogate: 2,4,6-Tribromophenol	3.78		ug/L	3.750	101	15-110			
Surrogate: 2-Fluorobiphenyl	1.67		ug/L	2.500	67	30-130			
Surrogate: Nitrobenzene-d5	1.73		ug/L	2.500	69	30-130			
Surrogate: p-Terphenyl-d14	2.55		ug/L	2.500	102	30-130			

#### Classical Chemistry

Batch CA71051 - General Preparation									
Blank									
Hexavalent Chromium	ND	10	ug/L						
LCS									
Hexavalent Chromium	0.5		mg/L	0.4998	98	90-110			
LCS Dup									
Hexavalent Chromium	0.5		mg/L	0.4998	99	90-110	0.1	20	

#### **Batch CA71052 - General Preparation**

LCS

Blank			
Total Residual Chlorine	ND	10	ug/L

185 Frances Avenue, Cranston, RI 02910-2211

Tel: 401-461-7181

Fax: 401-461-4486

Service



The Microbiology Division of Thielsch Engineering, Inc.



#### CERTIFICATE OF ANALYSIS

Client Name: Tighe & Bond

Client Project ID: Woburn to Mystic - RGP/MCP ESS Laboratory Work Order: 1701175

### **Quality Control Data**

				Sniko	Source		%REC		RPD	
Analyte	Result	MRL	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	Limit	Qualifier
·			assical Che			-			-	
		Ci								
Batch CA71052 - General Preparation										
Total Residual Chlorine	2		mg/L	1.800		100	85-115			
Batch CA71107 - NH4 Prep										
Blank										
Ammonia as N	ND	0.10	mg/L							
LCS										
Ammonia as N	0.09	0.10	mg/L	0.09994		94	80-120			
LCS										
Ammonia as N	1.02	0.10	mg/L	0.9994		102	80-120			
Batch CA71136 - General Preparation										
Blank		<u> </u>	<u> </u>							
Total Petroleum Hydrocarbon	ND	5	mg/L							
LCS										
Total Petroleum Hydrocarbon	14	5	mg/L	19.38		74	66-114			
Batch CA71217 - TCN Prep										
Blank										
Total Cyanide (LL)	ND	5.00	ug/L							
LCS		F.00		20.00		107	00.412			
Total Cyanide (LL)	21.2	5.00	ug/L	20.06		106	90-110			
LCS Tatal Conside (LL)	150	F.00	11 = B	150.4		100	00.110			
Total Cyanide (LL)	150	5.00	ug/L	150.4		100	90-110			
LCS Dup Total Cyanide (LL)	149	5.00	ug/L	150.4		99	90-110	0.4	20	
	נדי	5.00	uy/L	130.4		<i></i>	20-110	U. <del>T</del>		
Batch CA71227 - General Preparation										
Blank Total Suspended Solids	NID	5000	ug/I							
Total Suspended Solids	ND	5000	ug/L							
LCS Total Suspended Solids	66		mg/L	68.70		96	80-120			
-			1119/ L							
Batch CA71301 - NH4 Prep										
Blank Ammonia as N	ND	0.10	mg/L							
	MD	0.10	iilg/L							
LCS Ammonia as N	0.10	0.10	mg/L	0.09994		98	80-120			
LCS	0.10	5.10	9/ -							
Ammonia as N	1.11	0.10	mg/L	0.9994		112	80-120			
Batch CA71306 - General Preparation			<u></u>							
Blank										
Total Petroleum Hydrocarbon	ND	5	mg/L							
LCS										
Total Petroleum Hydrocarbon	15	5	mg/L	19.38		78	66-114			

185 Frances Avenue, Cranston, RI 02910-2211

Tel: 401-461-7181

Quality

Dependability

Fax: 401-461-4486

Service



The Microbiology Division of Thielsch Engineering, Inc.



#### CERTIFICATE OF ANALYSIS

Client Name: Tighe & Bond

Client Project ID: Woburn to Mystic - RGP/MCP ESS Laboratory Work Order: 1701175

### **Quality Control Data**

		Quant	cy Com	0. 00	· CG					
				Spike	Source		%REC		RPD	
Analyte	Result	MRL	Units	Level	Result	%REC	Limits	RPD	Limit	Qualifier
		Cl	assical Che	mistry						
Batch CA71336 - General Preparation										
Blank										
Phenols	ND	100	ug/L							
LCS										
Phenols	116	100	ug/L	100.0		116	80-120			
LCS										
Phenols	997	100	ug/L	1000		100	80-120			
	8011 1,2	2-Dibromoeth	nane / 1,2-I	Dibromo-3	-chloropr	opane				
Potch CA71222 - E04/9011										
Batch CA71322 - 504/8011 Blank										
1,2-Dibromoethane	ND	0.015	ug/L							
1,2-Dibromoethane [2C]	ND	0.015	ug/L							
72 5.5.0		0.015								
Surrogate: Pentachloroethane	0.162		ug/L	0.2000		81	30-150			
Surrogate: Pentachloroethane [2C]	0.151		ug/L	0.2000		76	30-150			
LCS										
1,2-Dibromoethane	0.200	0.015	ug/L	0.2000		100	60-140			
1,2-Dibromoethane [2C]	0.190	0.015	ug/L	0.2000		95	70-130			
	0.167		/!	0.2000		83	30-150			
Surrogate: Pentachloroethane	0.162		ug/L	0.2000		83 81	30-150 30-150			
Surrogate: Pentachloroethane [2C]	0.102		ug/L	0.2000		81	30-130			
LCS										
1,2-Dibromoethane	0.084	0.015	ug/L	0.08000		105	60-140			
1,2-Dibromoethane [2C]	0.057	0.015	ug/L	0.08000		72	70-130			
Surrogate: Pentachloroethane	0.0704		ug/L	0.08000		88	30-150			
Surrogate: Pentachloroethane [2C]	0.0674		ug/L	0.08000		84	30-150			
ourregator remainiorecarane [20]		Alco	hol Scan by	GC/FID						
Batch CA71246 - No Prep										
Blank										
Ethanol	ND	10	mg/L							
LCS			·· 3/ =							
Ethanol	948	10	mg/L	1000		95	60-140			
	310		9/ -				00 1 10			
LCS Dup	054	10	pa = /1	1000		or.	60 140	10	30	
Ethanol	854	10	mg/L	1000		85	60-140	10	30	



The Microbiology Division of Thielsch Engineering, Inc.



#### CERTIFICATE OF ANALYSIS

Client Name: Tighe & Bond

NR

**SUB** 

[CALC]

No Recovery

Calculated Analyte

Subcontracted analysis; see attached report

Client Project ID: Woburn to Mystic - RGP/MCP ESS Laboratory Work Order: 1701175

	Notes and Definitions
U	Analyte included in the analysis, but not detected
J	Reported between MDL and MRL
HT	The maximum holding time listed in 40 CFR Part 136 Table II for pH, Dissolved Oxygen, Sulfite and Residual
	Chlorine is fifteen minutes.
EL	Elevated Method Reporting Limits due to sample matrix (EL).
D+	Relative percent difference for duplicate is outside of criteria (D+).
D	Diluted.
CD+	Continuing Calibration %Diff/Drift is above control limit (CD+).
BT	Benzidine tailing factor >2.
B+	Blank Spike recovery is above upper control limit (B+).
B-	Blank Spike recovery is below lower control limit (B-).
В	Present in Method Blank (B).
ND	Analyte NOT DETECTED at or above the MRL (LOQ), LOD for DoD Reports, MDL for J-Flagged Analytes
dry	Sample results reported on a dry weight basis
RPD	Relative Percent Difference
MDL	Method Detection Limit
_	
3	
Avg	Results reported as a mathematical average.
MRL LOD LOQ DL I/V F/V § 1 2 3	Method Reporting Limit Limit of Detection Limit of Quantitation Detection Limit Initial Volume Final Volume Subcontracted analysis; see attached report Range result excludes concentrations of surrogates and/or internal standards eluting in that range. Range result excludes concentrations of target analytes eluting in that range. Range result excludes the concentration of the C9-C10 aromatic range.

185 Frances Avenue, Cranston, RI 02910-2211

Tel: 401-461-7181

Fax: 401-461-4486



The Microbiology Division of Thielsch Engineering, Inc.



#### CERTIFICATE OF ANALYSIS

Client Name: Tighe & Bond

Client Project ID: Woburn to Mystic - RGP/MCP ESS Laboratory Work Order: 1701175

#### ESS LABORATORY CERTIFICATIONS AND ACCREDITATIONS

#### **ENVIRONMENTAL**

Rhode Island Potable and Non Potable Water: LAI00179 http://www.health.ri.gov/find/labs/analytical/ESS.pdf

Connecticut Potable and Non Potable Water, Solid and Hazardous Waste: PH-0750 <a href="http://www.ct.gov/dph/lib/dph/environmental">http://www.ct.gov/dph/lib/dph/environmental</a> health/environmental laboratories/pdf/OutofStateCommercialLaboratories.pdf

Maine Potable and Non Potable Water, and Solid and Hazardous Waste: RI00002 <a href="http://www.maine.gov/dhhs/mecdc/environmental-health/dwp/partners/labCert.shtml">http://www.maine.gov/dhhs/mecdc/environmental-health/dwp/partners/labCert.shtml</a>

Massachusetts Potable and Non Potable Water: M-RI002 <a href="http://public.dep.state.ma.us/Labcert/Labcert.aspx">http://public.dep.state.ma.us/Labcert/Labcert.aspx</a>

New Hampshire (NELAP accredited) Potable and Non Potable Water, Solid and Hazardous Waste: 2424 <a href="http://des.nh.gov/organization/divisions/water/dwgb/nhelap/index.htm">http://des.nh.gov/organization/divisions/water/dwgb/nhelap/index.htm</a>

New York (NELAP accredited) Non Potable Water, Solid and Hazardous Waste: 11313 http://www.wadsworth.org/labcert/elap/comm.html

New Jersey (NELAP accredited) Non Potable Water, Solid and Hazardous Waste: RI006 <a href="http://datamine2.state.nj.us/DEP_OPRA/OpraMain/pi_main?mode=pi_by_site&sort_order=PI_NAMEA&Select+a+Site:=58715">http://datamine2.state.nj.us/DEP_OPRA/OpraMain/pi_main?mode=pi_by_site&sort_order=PI_NAMEA&Select+a+Site:=58715</a>

United States Department of Agriculture Soil Permit: P330-12-00139

Pennsylvania: 68-01752

http://www.dep.pa.gov/Business/OtherPrograms/Labs/Pages/Laboratory-Accreditation-Program.aspx

185 Frances Avenue, Cranston, RI 02910-2211

Tel: 401-461-7181

Fax: 401-461-4486



### LABORATORY REPORT

ESS Laboratory Attn: Mr. Shawn Morrell 185 Frances Avenue Cranston, RI 02910-2211 Date Received: Date Reported: P.O. Number 1/11/2017 1/17/2017 B02406

Work Order #: 1701-00773

Project Name: PROJECT #1701175

Enclosed are the analytical results and Chain of Custody for your project referenced above. The sample(s) were analyzed by our Warwick, RI laboratory unless noted otherwise. When applicable, indication of sample analysis at our Hudson, MA laboratory and/or subcontracted results are noted and subcontracted reports are enclosed in their entirety.

All samples were analyzed within the established guidelines of US EPA approved methods with all requirements met, unless otherwise noted at the end of a given sample's analytical results or in a case narrative.

The Detection Limit is defined as the lowest level that can be reliably achieved during routine laboratory conditions.

These results only pertain to the samples submitted for this Work Order # and this report shall not be reproduced except in its entirety.

We certify that the following results are true and accurate to the best of our knowledge. If you have questions or need further assistance, please contact our Customer Service Department.

Approved by:

Yihai Ding

**Technical Director** 

Laboratory Certification Numbers (as applicable to sample's origin state):

Warwick RI * RI LAI00033, MA M-RI015, CT PH-0508, ME RI00015, NH 2070, NY 11726 Hudson MA * M-MA1117, RI LAO00319

41 Illinois Avenue, Warwick, RI 02888 Phone: 401.737.8500 Fax: 401.738.1970

www.rianalytical.com

131 Coolidge Street, Suite 105, Hudson, MA 01749 Phone: 978.568.0041 Fax: 978.568.0078

#### R.I. Analytical Laboratories, Inc.

#### **Laboratory Report**

**ESS Laboratory** 

Work Order #: 1701-00773

Project Name: PROJECT #1701175

Sample Number:

001

**Sample Description:** 

1701175-01

Sample Type:

**GRAB** 

Sample Date / Time:

1/10/2017 @ 11:00

**PARAMETER** 

**SAMPLE** 

DET.

**METHOD** 

DATE/TIME

1/12/2017 14:22

Chloride

**RESULTS** 

4800

**UNITS** LIMIT 1000

mg/l

EPA 300.0

**ANALYZED** 

**ANALYST** TAS

Sample Number:

002

Sample Description:

1701175-02

Sample Type:

**PARAMETER** 

**GRAB** 

Sample Date / Time:

1/10/2017 @ 14:00

**SAMPLE** DET.

**RESULTS** 

**UNITS** 

**METHOD** 

DATE/TIME

ANALYZED

ANALYST

Chloride

63

**LIMIT** 5.0

mg/l

EPA 300.0

1/12/2017 0:45 AEG



ESS Laboratory 1701-00773 1/17/17

#### -Method Blanks Results-

Parameter	Units	Results	Date Analyzed
Chloride	mg/l	<1.0	1/11/2017

#### -LCS/LCS Duplicate Data Results-

Parameter	Spike Conc	LCS Conc	LCS % Rec	LCS Dup Conc	LCS DUP % Rec	% RPD	Date Analyzed

Chloride

10.0

9.86

99

1/12/2017

ESS Laboratory	<u>&gt;</u>	RIAL		ਠ	CHAIN OF CUSTODY	CUS.	ТОДУ		ESS Lab#	# 1701175	175				
Division of Thielsch Engineering, Inc.	gineering, Inc.		Turn Time	DUE1/17/17	117										ſ
185 Frances Avenue, Cranston RI 02910-2211	ranston RI 029	10-2211	Regulatory State:	tate: MA RI	CT NH NJ NY ME	Y ME O	Other			Reporting Limits -	- SIII				. 9
Tel. (401)461-7181 Fax (401)461-4486	ax (401)461-448	92	Is this project f	or any of the fol	is this project for any of the following:(please circle)	1					ł				Ī
www.esslaboratory.com			9	Navy USAC	_	Other	RGP			Electonic Deliverables <b>Excel</b> * Access PDF	ples Exce	I Acces	s PDF		
Co. Name	ESS Laboratory		Project #		Project Name		1701175								
Contact Person	Shawn Morrell		Proj. Location						sisy					***************************************	
Address		City , State			diZ		РО# B02406	90	IsnA	0.00					
Tel. ext 3083		email:	smorrell@thielsch.com	ijelsch.com						c əb					1995 page 1
ESS Lab ID Date	Collection Time	Grab -G Composite-C	Matrix	Sam	Sample ID	Pres Code	# of Containers	Type of Container	Vol of Container	Chlori					
1/10/17	1100		СW	1701	1701175-01	-	1	4		×					
1/10/17	1400		GW	1701	1701175-02	-	-	4		×				╁-	1
														$\vdash$	T
															1
															<b>T</b>
														-	T
Container Type: P-Poly G-Glass AG-Amber Glass S-Sterile V-VOA	Amber Glass S-Sterile V	-VOA		Matrix: S-Soil §	Matrix. S-Soil SD-Solid D-Sludge WW-Wastewater GW-Groundwater SW-Surface Water DW-Drinking Water O-Oil W-Wipes F-Filter	/-Wastewater	. GW-Groundwa	ter SW-Surfac	e Water DW-I	Jrinking Water O-	Oil W-Wipes	s F-Filter			
Cooler Present	Yes	N ₋	Internal Use Onl	Only	Preservation Code: 1-NP, 2-HCl, 3-H2SO4, 4-HNO3, 5-NaOH, 6-MeOH, 7-Asorbic Acid, 8-ZnAct, 9_Na2S2O3	1-NP, 2-H	CI, 3-H2SO4, 4	1-HNO3, 5-N	аОН, 6-МеО	H, 7-Asorbic Aci	id, 8-ZnAct,	9Na2S2	03	i i	T
Seals Intact Yes	No NA:		[ ] Pickup		Sampled by:							<b>Management</b>			T
Cooler Temperature:	5:1		[ ] Technician_	Jue	Comments:			*Pr	ovide ES	*Provide ESS Deliverables	ples				
Relinquished by: (Signature, Date & Time)	Time) £0:71 /1</td <td>Received by (Signature, Date &amp; Time)</td> <td>ature, Date &amp; Time)</td> <td>thilit</td> <td>,00,01</td> <td>Relinquished</td> <td>Relinquished by: (Signature, Date &amp; Time)</td> <td>Date &amp; Time)</td> <td></td> <td>Received by. (Signature, Date &amp; Time)</td> <td>nature, Date &amp;</td> <td>. Time)</td> <td></td> <td></td> <td></td>	Received by (Signature, Date & Time)	ature, Date & Time)	thilit	,00,01	Relinquished	Relinquished by: (Signature, Date & Time)	Date & Time)		Received by. (Signature, Date & Time)	nature, Date &	. Time)			
, Date &	me)	Received by (Signature, Dage & Time)	iture, Dage & Time)			Relinquished	Relinquished by: (Signature, Date & Time)	Jate & Time)		Received by. (Signature, Date & Time)	rature, Date &	. Time)			1.
By circling MA-MCP, client acknowledges sampels were	dges sampels were			Please fax to the	Please fax to the laboratory all changes to Chain of Custody	nges to C	hain of Cust	Apo							

22100 - 1001

Report Method Blank & Laboratory Control Sample Results

Page 46 of 56

collected in accordance with MADEP CAM VIIA



### LABORATORY REPORT

ESS Laboratory Attn: Mr. Shawn Morrell 185 Frances Avenue Cranston, RI 02910-2211

Date Received: Date Reported: P.O. Number 1/12/2017 1/17/2017 B02406

Work Order #: 1701-00784

Project Name: PROJECT: 1701175

Enclosed are the analytical results and Chain of Custody for your project referenced above. The sample(s) were analyzed by our Warwick, RI laboratory unless noted otherwise. When applicable, indication of sample analysis at our Hudson, MA laboratory and/or subcontracted results are noted and subcontracted reports are enclosed in their entirety.

All samples were analyzed within the established guidelines of US EPA approved methods with all requirements met, unless otherwise noted at the end of a given sample's analytical results or in a case narrative.

The Detection Limit is defined as the lowest level that can be reliably achieved during routine laboratory conditions.

These results only pertain to the samples submitted for this Work Order # and this report shall not be reproduced except in its entirety.

We certify that the following results are true and accurate to the best of our knowledge. If you have questions or need further assistance, please contact our Customer Service Department.

Approved by:

Yihai Ding

**Technical Director** 

Laboratory Certification Numbers (as applicable to sample's origin state):
Warwick RI * RI LAI00033, MA M-RI015, CT PH-0508, ME RI00015, NH 2070, NY 11726
Hudson MA * M-MA1117, RI LAO00319

#### R.I. Analytical Laboratories, Inc.

#### **Laboratory Report**

**ESS Laboratory** 

Work Order #: 1701-00784

Project Name: PROJECT: 1701175

Sample Number:

001

Sample Description:

1701175-03

Sample Type:

GRAB

Sample Date / Time:

1/10/2017 @ 11:00

**PARAMETER** 

SAMPLE DET.

**RESULTS** 

LIMIT

UNITS METHOD

DATE/TIME

ANALYZED ANALYST

Chloride

2600

100

mg/l

EPA 300.0

1/17/2017 13:22

TAS



ESS Laboratory 1701-00784 1/17/17

#### -Method Blanks Results-

Parameter	Units	Results	Date Analyzed
Chloride	mg/l	<1.0	1/13/2017

#### -LCS/LCS Duplicate Data Results-

Parameter	Spike Conc	LCS Conc	LCS % Rec	LCS Dup Conc	LCS DUP % Rec	% RPD	Date Analyzed
Chloride	10.0	9.37	94				1/17/2017

ESS Laboratory	rator		RIAL		さ	CHAIN OF CUSTODY	CUS.	TODY		ESS Lab#	# 1701175	175		
Division of Thielsch Engineering, Inc.	sch Engii	neering, Inc.		Turn Time	DUE1	117					1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	-	o de la Companya de l	*
185 Frances Avenue, Cranston RI 02910-2211	enue,Cra	Inston RI 0291	10-2211	Regulatory State:		MA RICT NH NJ NY ME		Other		-	Keporting Limits -	IIIS -		
Tel. (401)461-7181 Fax (401)461-4486	181 Fax	: (401)461-448	92	Is this projec	# for any of the follow	ing:(please ci	į	RGP		Ĕ	Electonic Deliverables <b>Excel*</b> Access PDF	ibles Exce	i* Access P	DF
www.essiabolatoly.coll	UI y.colli			INIX-INIC	May OGA	בר הר						ļ		
co. Name		ESS Laboratory		Project #		Project Name		1701175						
Contact Person		Shawn Morrell	:	Proj. Location						sisyl				
Address			City, State			Zip		Ро# В02406	90	snA	0.008			
Tel. ex	ext 3083		email:	smorrell@	smorrell@thielsch.com						; əpi			
ESS Lab ID	Date	Collection Time	Grab -G Composite-C	Matrix	Sai	Sample ID	Pres Code	# of Containers	Type of Container	Vol of Container	СЫОГ			
	1/10/17	1100		ΜĐ	1701	1701175-03		1	۵		×			
		/												
Container Type: P-Poly G-Glass AG-Anfber Glass S-Sterile V-VOA	3-Glass AG-Ar	nber Glass S-Sterile ∿	V-VOA		Matrix: S-Soil	Matrix: S-Soil SD-Solid D-Sludge WW-Wastewater GW-Groundwater SW-Surface Water DW-Drinking Water O-Oil W-Wipes F-Filter	W-Wastewate	er GW-Groundwa	ater SW-Surfa	ce Water DW.	-Drinking Water C	O-Oil W-Wipe	s F-Filter	
Cooler Present	7	Yes	<b>₽</b>	Interpal Use Only	lse Only	Preservation Code: 1-NP, 2-HCl, 3-H2SO4, 4-HNO3, 5-NaOH, 6-MeOH, 7-Asorbic Acid, 8-ZnAct, 9Na2S2O3_	:: 1-NP, 2-ŀ	1CI, 3-H2SO4,	4-HNO3, 5-h	√aOH, 6-MeC	)H, 7-Asorbic Ac	cid, 8-ZnAct,	9Na2S203	ı
Seals Intact	_ Yes	No NA:		- Elickup	_	Sampled by :								
Cooler Temperature:	1	3,50	-	[ ] Technician_	ıician	Comments:			<u>4</u>	rovide E	*Provide ESS Deliverables	ables		
Rainquished by: (Signature, Date & Time)	ure, Date & Tim	ne)	Received by: (Sig	Received by: (Signature, Date & Time)	пе)		Relinquishe	Relinquished by: (Signature, Date & Time)	Date & Time)		Received by: (Signature, Date & Time)	gnature, Date	& Time)	
3	\   	9:07		(J 30)	) e	17 9:07								
Rel <del>inquis</del> hed by: (bignature, Date & Time)	ure, Date & Tin	ne)	Received by: (Sig	Received by: (Signature, Date & Time)	те)		Relinquishe	Reinquished by: (Signature, Date & Time)	, Date & Time)		Received by: (Signature, Date & Time)	gnature, Date a	ß Time)	
* By circling MA-MCP, client acknowledges sampels were collected in accordance with MADEP CAM VIIA	lient acknowlec s with MADEP (	dges sampels were CAM VIIA	Report	Plea Report Method Blank	0)	Please fax to the laboratory all changes to Chain of Custody ank & Laboratory Control Sample Results	nanges to ntrol S	Chain of Cus ample R	stody (esults		170	0-1	h3200-1021	_

Client:	Tighe & Bond - KPB/TB/MM	<u>.</u>		701175 10/2017	_
Shipped/Delivered	Via: ESS Courier		Project Due Date: 1/	17/2017 5 Day	_ _ _
Air bill manifest     Air No.;		No	6. Does COC match bottles?		Yes
2. Were custody s	eals present?	No	7. Is COC complete and correct?		Yes
3. Is radiation cou	nt <100 CPM?	Yes	8. Were samples received intact?		Yes_
4. Is a Cooler Pres		Yes	9. Were labs informed about short ho	ilds & rushes?	Yes) No / NA
	0   Iced with:   Ice	Yes	10. Were any analyses received outside	e of hold time?	Yes (No
5. Was COC sign	ed and dated by client?	163			
11. Any Subcontra ESS Sample Ana	icting needed? (es / EIDs: 1,2,3 llysis: Chlocicle TAT: 5 day		12. Were VOAs received? a. Air bubbles in aqueous VOAs? b. Does methanol cover soil completely	?	Yes / No Yes / No / NA
13. Are the sampl a. If metals present b. Low Level VOA	rved upon receipt:	Yes / No Date: Date:	Time: By:		<u>-</u>
Sample Receiving					
Split F	F samples from	unfiltered	for sample 3 per	client . u	-44
<u>Added</u>	Sample 3.		<del></del>		
14. Was there a r a. Was there a ne Who was contacted	need to contact Project Manager ed to contact the client? ed?	? Yes /(No Yes / No Date:			_

Sample Number	Container 1D	Proper Container	Air Bubbles Present	Sufficient Volume	Container Type	Preservative	R		H (Cyanide a Pesticides)	and 608
01	98059	Yes	No	Yes	VOA Vial - HCI	HCI				
01	98060	Yes	No	Yes	VOA Vial - HCI	HCI				
01	98061	Yes	No	Yes	VOA Vial - HCI	HCI				
01	98065	Yes	NA	Yes	VOA Vial - Unpres	NP				
01	98066	Yes	NA	Yes	VOA Vial - Unpres	NP				
01	98067	Yes	NA	Yes	VOA Vial - Unpres	NP				
01	98080	Yes	NA	Yes	1L Amber - Unpres	NP				
01	98081	Yes	NA	Yes	1L Amber - Unpres	NP				
01	98084	Yes	NA	Yes	1L Amber - H2SO4	H2SO4				
01	98085	Yes	NA	Yes	1L Amber - H2SO4	H2SO4				
01	98088	Yes	NA	Yes	1L Poly - Unpres	NP				
01	98091	Yes	NA	Yes	500 mL Poly - H2SO4	H2SO4				
01	98093	Yes	NA	Yes	250 mL Poly - HNO3	HNO3				
01	98094	Yes	NA	Yes	250 mL Poly - NaOH	NaOH	PH >12	eι	1/10/17	1955
01	98097	Yes	NA	Yes	250 mL Poly - Unpres	NP			4 1	
01	98098	Yes	NA	Yes	250 mL Poly - Unpres	NP				
02	98053	Yes	No	Yes	VOA Vial - HCI	HCI				
02	98054	Yes	No	Yes	VOA Vial - HCI	HCl				
02	98055	Yes	No	Yes	VOA Vial - HCl	HCI				
02	98056	Yes	No	Yes	VOA Vial - Unpres	NP				
02	98057	Yes	No	Yes	VOA Vial - Unpres	NP				
02	98058	Yes	No	Yes	VOA Vial - Unpres	NP				
02	98071	Yes	NA	Yes	1L Amber - Unpres	NP				
02	98072	Yes	NA	Yes	1L Amber - Unpres	NP				

Client:	Tig	he & Bond	- KPB/TB/MI	И	=	oject ID:		170117			
		_	_			eceived:	_	1/10/201	<u>7.                                    </u>		
02	98073	Yes	NA	Yes	1L Amber - H2SO4	H2SO4					
02	98074	Yes	NA	Yes	1L Amber - H2SO4	H2SO4					
02	98075	Yes	NA	Yes	1L Poly - Unpres	NP					
02	98076	Yes	NA	Yes	500 mL Poly - H2SO4	H2SO4	1	~.2	٠.	. 1/10/17	1985
02	98077	Yes	NA	Yes	250 mL Poly - NaOH	NaOH	64	712	-	. 11.01.	1183
02	98078	Yes	NA	Yes	250 mL Poly - Unpres	NP					
02	98079	Yes	NA	Yes	250 mL Poly - Unpres	NP					
03	98407	Yes	No	Yes	VOA Vial - HCl	HCI					
03	98408	Yes	No	Yes	VOA Vial - HCI	HCI					
03	98409	Yes	No	Yes	VOA Vial - HCI	HCI					
03	98410	Yes	No	Yes	VOA Vial - Unpres	NP					
03	98411	Yes	No	Yes	VOA Vial - Unpres	NP					
03	98412	Yes	No	Yes	VOA Vial - Unpres	NP					
03	98413	Yes	NA	Yes	1L Amber - H2SO4	H2SO4					
03	98414	Yes	NA	Yes	1L Amber - H2SO4	H2SO4					
03	98415	Yes	NA	Yes	1L Amber - Unpres	NP					
03	98416	Yes	NA	Yes	1L Amber - Unpres	NP					
03	98417	Yes	NA	Yes	1L Poly - Unpres	NP					
03	98418	Yes	NA	Yes	500 mL Poly - H2SO4	H2SO4					
03	98419	Yes	NA	Yes	250 mL Poly - HNO3	HNO3			_	.1 1	سمدها
03	98420	Yes	NA	Yes	250 mL Poly - NaOH	NaOH	<b>4</b> 4	712		1/10/17	1755
03	98421	Yes	NA	Yes	250 mL Poly - Unpres	NP					
03	98422	Yes	NA	Yes	250 mL Poly - Unpres	NP					
d Review					(Ve) / No						
e barcode	labels on co	orrect contai	ners?		Yes / No						
ompleted By:	Q	1 -	-		Date & Time:	10 1634	1				
eviewed		<del>}</del>			= <del>- , /  ,  </del>	7	45				
By: _	AL CO	<del></del>	)V		Date & Time://///	1 18	45		-		
elivered ' Bv:	" Dre	1	2-1	-	1/11(	17 16	45	-			

Client:	Tighe & Bond - KPB/TB/MM			ESS Project ID: _ Date Received:		
Shipped/Delivered	1 Via: ESS Courier			Project Due Date:  Days for Project:	1/17/2017	<del></del>
Air bill manifest     Air No.:	·	No		6. Does COC match bottle	es?	Yes
2. Were custody s	eals present?	No		7. Is COC complete and c	correct?	Yes
3. Is radiation cou	nt <100 CPM?	Yes		8. Were samples received	fintact?	Yes
4. Is a Cooler Pres		Yes		9. Were labs informed a	bout short holds & rushes?	Yes/No/NA
	0 lced with: lce ed and dated by client?	Yes		10. Were any analyses re	eceived outside of hold time?	Yes (No
Ana	icting needed? (es) / N e IDs: 1,2 llysis: Chlorode TAT: 5 day			<ul><li>12. Were VOAs received?</li><li>a. Air bubbles in aqueous</li><li>b. Does methanol cover s</li></ul>	s VOAs?	Yes / No Yes (No Yes / No / (NA)
13. Are the sample a. If metals preser b. Low Level VOA		s No Date: _ Date: _		Time:	By: By:	<u>_</u>
Sample Receiving	Notes:					
			-			
	need to contact Project Manager? sed to contact the client? sd?	Date: _	Yes / No Yes / No		Ву:	<del></del>
	<del>-</del> -					<del></del>

Sample Number	Container ID	Proper Container	Air Bubbles Present	Sufficient Volume	Container Type	Preservative	Record pH (Cyanide and 608 Pesticides)
01	98059	Yes	No	Yes	VOA Vial - HCI	HCI	
01	98060	Yes	No	Yes	VOA Vial - HCI	HCI	
01	98061	Yes	No	Yes	VOA Vial - HCI	HCI	
01	98062	Yes	No	Yes	VOA Vial - HCI	HCI	
01	98063	Yes	No	Yes	VOA Vial - HCI	HCI	
01	98064	Yes	No	Yes	VOA Vial - HCI	HCI	
01	98065	Yes	NA	Yes	VOA Vial - Unpres	NP	
01	98066	Yes	NA	Yes	VOA Vial - Unpres	NP	
01	98067	Yes	NA	Yes	VOA Vial - Unpres	NP	
01	98068	Yes	NA	Yes	VOA Vial - Unpres	NP	
01	98069	Yes	NA	Yes	VOA Vial - Unpres	NP	
01	98070	Yes	NA	Yes	VOA Vial - Unpres	NP	
01	98080	Yes	NA	Yes	1L Amber - Unpres	NP	
01	98081	Yes	NA	Yes	1L Amber - Unpres	NP	
01	98082	Yes	NA	Yes	1L Amber - Unpres	NP	
01	98083	Yes	NA	Yes	1L Amber - Unpres	NP	
01	98084	Yes	NA	Yes	1L Amber - H2SO4	H2SO4	
01	98085	Yes	NA	Yes	1L Amber - H2SO4	H2SO4	
01	98086	Yes	NA	Yes	1L Amber - H2SO4	H2SO4	
01	98087	Yes	NA	Yes	1L Amber - H2SO4	H2SO4	
01	98088	Yes	NA	Yes	1L Poly - Unpres	NP	
01	98089	Yes	NA	Yes	1L Poly - Unpres	NP	
01	98090	Yes	NA	Yes	500 mL Poly - H2SO4	H2SO4	
01	98091	Yes	NA	Yes	500 mL Poly - H2SO4	H2SO4	

Client: _	Tig	the & Bond	- KPB/TB/M	<u>M</u>	_	roject ID:		170117		
						Received:		1/10/20	<u> 17</u>	
01	98092	Yes	NA	Yes	250 mL Poly - HNO3	HNO3				
01	98093	Yes	NA	Yes	250 mL Poly - HNO3	HNO3			1 1	
01	98094	Yes	NA	Yes	250 mL Poly - NaOH	NaOH	64	>12	عد بانهار	11
01	98095	Yes	NA	Yes	250 mL Poly - NaOH	NaOH	614	> 12	ar iligin	11
01	98096	Yes	NA	Yes	250 mL Poly - Unpres	NP	•	_		17
01	98097	Yes	NA	Yes	250 mL Poly - Unpres	NP				
01	98098	Yes	NA	Yes	250 mL Poly - Unpres	NP				
02	98053	Yes	No	Yes	VOA Vial - HCI	HCI				
02	98054	Yes	No	Yes	VOA Vial - HCI	HCI				
02	98055	Yes	No	Yes	VOA Vial - HCI	HCI				
02	98056	Yes	No	Yes	VOA Vial - Unpres	NP				
02	98057	Yes	No	Yes	VOA Vial - Unpres	NP				
02	98058	Yes	No	Yes	VOA Vial - Unpres	NP				
02	98071	Yes	NA	Yes	1L Amber - Unpres	NP				
02	98072	Yes	NA	Yes	1L Amber - Unpres	NP				
02	98073	Yes	NA	Yes	1L Amber - H2SO4	H2SO4				
02	98074	Yes	NA	Yes	1L Amber - H2SO4	H2SO4				
02	98075	Yes	NA	Yes	1L Poly - Unpres	NP				
02	98076	Yes	NA	Yes	500 mL Poly - H2SO4	H2SO4				
02	98077	Yes	NA	Yes	250 mL Poly - NaOH	NaOH	6+1	712	ود بازوار	195
02	98078	Yes	NA	Yes	250 mL Poly - Unpres	NP			, իշնու	(12
02	98079	Yes	NA	Yes	250 mL Poly - Unpres	NP				
Review			•		© 11					
parcode	labels on co	rrect contail	ners?		(Ves) No					
npleted By:	$\mathcal{L}$	L =	<del>A-</del>		Date & Time:	1010	1958			
iewed _	22	7				1				
و By:	M	<u> </u>			_ Date & Time://0//	7 2009	۴			
ivered	100	冫 ̄ ̄	` -			7 2009				
). au	/ ////	₹	<u> </u>	-	را مرا ر	フー かいじして				

ESS Laboratory	๋	CHAIN OF CUSTODY		ESS Lab#	Ţ	ארו וערו						
Division of Thielsch Engineening, Inc.	Turn Time	Rush	ă.	Reporting								
185 Frances Avenue, Cranston RI 02910	Regulatory State	20 o by		Limits	Pulimit Charker	Packer		$\frac{g}{2}$	andard Exc	٦		
Tel. (401) 461-7181 Fax (401) 461-4486 www.esslaboratory.com	Is this Oct RCP	Is this project for any of the following?: IT RCP OMA MCP GIGP		Electonic Deliverables	- 1	Acther (Please Specify	ciŧy →	10. 10.	DF C:	, ,	2	
Company Name	V Project #	Wolcur to My fr.	ne VS ten			9+x <u>J</u>	7.47	e15: \	<u> </u>			
	745	Address /		sisy		D 6	7		3	101		51
City	ate	O L Zip Code	# Od	tenA 7		17 1 17 1	<u>}\</u>	つ( ! <u>)</u>	H.	v 9	ପ	<del>o</del> u
SIST DID	FAX Number	Email Address	155 C) ( 6/2 K-1	, <u>, , , , , , , , , , , , , , , , , , </u>	24_		d7	01	1.W d-1	7-3		100 V61
ESS Lab Collection Collection Sample Type	Sample Matrix		Sample ID	<u></u>	<u>L.</u>	H	$\omega$	) 1			3	) 17
1/10/13	()~)	170 - SESA	ナ	Ź	9	eee	عاعا	み	U U	<i>y</i>	X	×
2 1/2/12 11/2	()-/	202 - C111	2.8	٦	6	ecle	9	× N	9	<u>2</u>	$\hat{\mathbf{x}}$	$\times$
00)) 6101/1	300	mw- 505 A	上上	_×	×	ر لا لا	××××	,× ,×	X	Z	Ź	X
					_							
										_		_
ssette AG-A	B-BOD Bottle	bitainer G - Glass	ner P-Poly S-Sterile	V-Vial	$\downarrow$	.		_	-		+	+
Container Volume: 1-100 mL 2-2.5 gal 3-250 mL Preservation Code: 1-Non Preserved 2-HG 3-42504 4-1HK03	- 1	4-300 mL 5-500 mL 6-1L 7-VOA 8-2 oz 5-NaOH 6-Methanol 7-Na2S203 8-ZnAce, NaOH 9-NH4CI	9-4 oz 10-8 oz 10-DI H2O 11-Ascorbic Ac	11-Other			-					
		Numbe	Number of Containers per Sample:	ple:								$\dashv$
Laboratory Use Only		Sampled by: 7 A	Q							;		
Cooler Present: VC>		Comments:	Please specify "Other" preservative and containers types in this space	From Ut	ner" preservative U क्रिंग रिन्टिंग	ttive and	nd container	tainers types i	n this spa	_	بمناع	.;
Cooler Temperature: 1/2 + 0 % C 1.0 + 0 %	<u>۸</u>		perp				3	とううしつ	+ہ			
e, Date & Time)		Received By: (Signature, Date & Time)	Relinquished By: (Signature, Date & Time)	gnature, D	ate & Tir	le)	Rec	Received By: (Signature, Date & Time)	(Signatu	ıre, Date	& Time)	
14. Wetcom 1110/17/535	Sevenes ?	98 1/101/1 835	KERES 11	10/19	11:8/	)	()	+	مارد	Loli	r Sis	
Relinquished by: (Signature, Date & Time)		Received By: (Signature, Date & Time)	Relinquished By: (Signature, Date & Time)	gnåture, C	ate & Tir	ne)	e e	eceited By: (Signatule, Date & Time)	Signatu	Je, Date	& Time)	
5 <del>55 ol</del>							•	,				
									•			

ESS Laboratory  Division of Thielsch Engineering, Inc.  185 Frances Avenue, Cranston RI 02910  Tel. (401) 461-7181 Fax (401) 461-4486  www.esslaboratory.com  Tic. rtc.   Company Name  Tic. rtc.   Company Name  Contact Person  City  City  City  City  City  City  Date  FAX Number  FSS Lab  Collection  Collection  Date  Time  Sample Type  Sample  Time  Ti	Story S	HAIN OF CUST  Rus  J. 1. 15  S project for any of the fe  OMAMCP  Wolch for the fe  Address  C Agess  C Agess  L M. C  L M. C	115 kc.	SS Lab # Limits Limits Clectonic liverables		١ ١٠٠٠٠٠٠ ١ ١ ١ ١	11 170人 リター 170人 カイカン カー・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	HOT NON THOM THE STATE OF THE PERSON OF THE	3W4 L 2 2	
Container Type: AC-Air Cassette AG-Amber Glass Container Volume: 1-100 mL 2-2.5 gal 3-250 mL Preservation Code: 1-Mn Preserved 2-HG 3-H2504 4-HN03  Cooler Present: Y C Seals Intact: NA  Cooler Temperature: 1/2   C   C   C   C    Relinquished by: (Signature, Date & Time)  Relinquished by: (Signature, Date & Time)		ainer G-Glass 6-1L 7-VOA 203 6-Zhace, Nach mpled by: 7 omments: // 19/7/5	her P-Poly S-Steri 94 oz 10-8 oz 10-Di HZO 11-Asconbe Ae r of Containers per S Please spe	le V-Vial 11-Other" ample: cify "Other" pre	Servative & Time)	and contain	eceived By:	n this space (Signature	Iners types in this space  Received By: (Signature, Date & Time)  Received By: (Signature, Date & Time)	(9)



The Microbiology Division of Thielsch Engineering, Inc.



#### CERTIFICATE OF ANALYSIS

Michael Martin Tighe & Bond 4 Barlows Landing Road, Unit 15 Pocasset, MA 02559

**RE:** Woburn to Mystic - RGP (N-998-11)

ESS Laboratory Work Order Number: 1711482

This signed Certificate of Analysis is our approved release of your analytical results. These results are only representative of sample aliquots received at the laboratory. ESS Laboratory expects its clients to follow all regulatory sampling guidelines. Beginning with this page, the entire report has been paginated. This report should not be copied except in full without the approval of the laboratory. Samples will be disposed of thirty days after the final report has been delivered. If you have any questions or concerns, please feel free to call our Customer Service Department.

Laurel Stoddard

Laboratory Director

### REVIEWED

By ESS Laboratory at 2:25 pm, Nov 20, 2017

#### **Analytical Summary**

The project as described above has been analyzed in accordance with the ESS Quality Assurance Plan. This plan utilizes the following methodologies: US EPA SW-846, US EPA Methods for Chemical Analysis of Water and Wastes per 40 CFR Part 136, APHA Standard Methods for the Examination of Water and Wastewater, American Society for Testing and Materials (ASTM), and other recognized methodologies. The analyses with these noted observations are in conformance to the Quality Assurance Plan. In chromatographic analysis, manual integration is frequently used instead of automated integration because it produces more accurate results.

The test results present in this report are in compliance with TNI and relative state standards, and/or client Quality Assurance Project Plans (QAPP). The laboratory has reviewed the following: Sample Preservations, Hold Times, Initial Calibrations, Continuing Calibrations, Method Blanks, Blank Spikes, Blank Spike Duplicates, Duplicates, Matrix Spikes, Matrix Spike Duplicates, Surrogates and Internal Standards. Any results which were found to be outside of the recommended ranges stated in our SOPs will be noted in the Project Narrative.



The Microbiology Division of Thielsch Engineering, Inc.



#### CERTIFICATE OF ANALYSIS

Client Name: Tighe & Bond

Client Project ID: Woburn to Mystic - RGP ESS Laboratory Work Order: 1711482

#### SAMPLE RECEIPT

The following samples were received on November 15, 2017 for the analyses specified on the enclosed Chain of Custody Record.

The samples and analyses listed below were analyzed in accordance with the 2017 Remediation General Permit under the National Pollutant Discharge Elimination System (NPDES).

ESS Laboratory is unable to achieve the required detection limit of 0.4 mg/L for Ethanol for the RGP permit. We have also been unable to procure a subcontract laboratory that is able to achieve this limit. The data for Ethanol has been reported using our current method reporting limit.

Lab Number	Sample Name	<u>Matrix</u>	<u>Analysis</u>
1711482-01	Mystic at Winter	Surface Water	200.7, 3113B, 350.1, 3500Cr B-2009, 9040
1711482-02	Mystic	Surface Water	200.7, 3113B, 350.1, 3500Cr B-2009, 9040
1711482-03	Mystic Crossing	Surface Water	200.7, 3113B, 350.1, 3500Cr B-2009, 9040
1711482-04	Aberjona	Surface Water	200.7, 3113B, 350.1, 3500Cr B-2009, 9040
1711482-05	Winter Pond	Surface Water	200.7, 3113B, 350.1, 3500Cr B-2009, 9040
1711482-06	Mystic at Boston Inner	Surface Water	200.7, 2520B, 3113B, 350.1, 3500Cr B-2009, 9040
1711482-07	Mystic at Laydown	Surface Water	200.7, 3113B, 350.1, 3500Cr B-2009, 9040



The Microbiology Division of Thielsch Engineering, Inc.



#### CERTIFICATE OF ANALYSIS

Client Name: Tighe & Bond

Client Project ID: Woburn to Mystic - RGP ESS Laboratory Work Order: 1711482

#### **PROJECT NARRATIVE**

**Total Metals** 

1711482-06 <u>Elevated Method Reporting Limits due to sample matrix (EL).</u>

Cadmium, Copper, Nickel

1711482-07 <u>Elevated Method Reporting Limits due to sample matrix (EL).</u>

Cadmium, Copper, Nickel

No other observations noted.

**End of Project Narrative.** 

#### DATA USABILITY LINKS

To ensure you are viewing the most current version of the documents below, please clear your internet cookies for www.ESSLaboratory.com. Consult your IT Support personnel for information on how to clear your internet cookies.

**Definitions of Quality Control Parameters** 

Semivolatile Organics Internal Standard Information

Semivolatile Organics Surrogate Information

Volatile Organics Internal Standard Information

Volatile Organics Surrogate Information

EPH and VPH Alkane Lists

185 Frances Avenue, Cranston, RI 02910-2211

Tel: 401-461-7181

Fax: 401-461-4486



The Microbiology Division of Thielsch Engineering, Inc.



#### CERTIFICATE OF ANALYSIS

Client Name: Tighe & Bond

Client Project ID: Woburn to Mystic - RGP ESS Laboratory Work Order: 1711482

#### **CURRENT SW-846 METHODOLOGY VERSIONS**

#### Analytical Methods

1010A - Flashpoint

6010C - ICP

6020A - ICP MS

7010 - Graphite Furnace

7196A - Hexavalent Chromium

7470A - Aqueous Mercury

7471B - Solid Mercury

8011 - EDB/DBCP/TCP

8015C - GRO/DRO

8081B - Pesticides

8082A - PCB

8100M - TPH

8151A - Herbicides

8260B - VOA

8270D - SVOA

8270D SIM - SVOA Low Level

9014 - Cyanide

9038 - Sulfate

9040C - Aqueous pH

9045D - Solid pH (Corrosivity)

9050A - Specific Conductance

9056A - Anions (IC)

9060A - TOC

9095B - Paint Filter

MADEP 04-1.1 - EPH / VPH

#### **Prep Methods**

3005A - Aqueous ICP Digestion

3020A - Aqueous Graphite Furnace / ICP MS Digestion

3050B - Solid ICP / Graphite Furnace / ICP MS Digestion

3060A - Solid Hexavalent Chromium Digestion

3510C - Separatory Funnel Extraction

3520C - Liquid / Liquid Extraction

3540C - Manual Soxhlet Extraction

3541 - Automated Soxhlet Extraction

3546 - Microwave Extraction

3580A - Waste Dilution

5030B - Aqueous Purge and Trap

5030C - Aqueous Purge and Trap

5035 - Solid Purge and Trap

SW846 Reactivity Methods 7.3.3.2 (Reactive Cyanide) and 7.3.4.1 (Reactive Sulfide) have been withdrawn by EPA. These methods are reported per client request and are not NELAP accredited.



The Microbiology Division of Thielsch Engineering, Inc.



#### CERTIFICATE OF ANALYSIS

Client Name: Tighe & Bond

Client Project ID: Woburn to Mystic - RGP Client Sample ID: Mystic at Winter

Date Sampled: 11/15/17 10:00

Percent Solids: N/A

ESS Laboratory Work Order: 1711482 ESS Laboratory Sample ID: 1711482-01

Sample Matrix: Surface Water

Units: ug/L

Extraction Method: 3005A/200.7

#### **Total Metals**

<b>Analyte</b>	Results (MRL)	<b>MDL</b>	Method	<u>Limit</u>	<u>DF</u>	<b>Analyst</b>	<b>Analyzed</b>	<u>I/V</u>	F/V	<b>Batch</b>
Arsenic	ND (2.5)		3113B		5	KJK	11/18/17 6:38	100	10	CK71531
Cadmium	ND (2.00)		200.7		2	KJK	11/16/17 16:08	100	10	CK71531
Chromium	ND (4.0)		200.7		2	KJK	11/16/17 16:08	100	10	CK71531
Chromium III	ND (10.0)		200.7		2	JLK	11/16/17 16:08	1	1	[CALC]
Copper	ND (2.0)		200.7		2	KJK	11/16/17 16:08	100	10	CK71531
Hardness	<b>184000</b> (824)		200.7		10	KJK	11/16/17 15:04	1	1	[CALC]
Iron	<b>251</b> (100)		200.7		10	KJK	11/16/17 15:04	100	10	CK71531
Lead	ND (4.0)		200.7		2	KJK	11/16/17 16:08	100	10	CK71531
Nickel	ND (4.0)		200.7		2	KJK	11/16/17 16:08	100	10	CK71531
Zinc	<b>10.9</b> (10.0)		200.7		2	KJK	11/16/17 16:08	100	10	CK71531



The Microbiology Division of Thielsch Engineering, Inc.



#### CERTIFICATE OF ANALYSIS

Client Name: Tighe & Bond

Client Project ID: Woburn to Mystic - RGP Client Sample ID: Mystic at Winter

Date Sampled: 11/15/17 10:00

Percent Solids: N/A

ESS Laboratory Work Order: 1711482 ESS Laboratory Sample ID: 1711482-01

Sample Matrix: Surface Water

### **Classical Chemistry**

Analyte Ammonia as N	<b>Results (MRL) 0.45</b> (0.10)	<u>MDL</u>	<b>Method</b> 350.1	<u>Limit</u>	<u><b>DF</b></u>	Analyst EEM	<u>Analyzed</u> 11/17/17 14:44	Units mg/L	Batch CK71613
Hexavalent Chromium	ND (10.0)		3500Cr B-2009		1	JLK	11/15/17 20:47	ug/L	CK71546
рН	7.25 (N/A)		9040		1	BCA	11/15/17 21:40	S.U.	CK71549
pH Sample Temp	Aqueous pH measured	d in water	at 17.4 °C. (N/A)						

185 Frances Avenue, Cranston, RI 02910-2211

Tel: 401-461-7181

Fax: 401-461-4486



The Microbiology Division of Thielsch Engineering, Inc.



#### CERTIFICATE OF ANALYSIS

Client Name: Tighe & Bond

Client Project ID: Woburn to Mystic - RGP

Client Sample ID: Mystic Date Sampled: 11/15/17 10:30

Percent Solids: N/A

ESS Laboratory Work Order: 1711482 ESS Laboratory Sample ID: 1711482-02

Sample Matrix: Surface Water

Units: ug/L

Extraction Method: 3005A/200.7

#### **Total Metals**

<b>Analyte</b>	Results (MRL)	<b>MDL</b>	Method	<u>Limit</u>	<u>DF</u>	Analyst	<b>Analyzed</b>	<u>I/V</u>	F/V	<b>Batch</b>
Arsenic	ND (2.5)		3113B		5	KJK	11/18/17 6:44	100	10	CK71531
Cadmium	ND (2.00)		200.7		2	KJK	11/16/17 16:12	100	10	CK71531
Chromium	ND (4.0)		200.7		2	KJK	11/16/17 16:12	100	10	CK71531
Chromium III	ND (10.0)		200.7		2	JLK	11/16/17 16:12	1	1	[CALC]
Copper	ND (2.0)		200.7		2	KJK	11/16/17 16:12	100	10	CK71531
Hardness	<b>181000</b> (824)		200.7		10	KJK	11/16/17 15:08	1	1	[CALC]
Iron	<b>121</b> (100)		200.7		10	KJK	11/16/17 15:08	100	10	CK71531
Lead	ND (4.0)		200.7		2	KJK	11/16/17 16:12	100	10	CK71531
Nickel	ND (4.0)		200.7		2	KJK	11/16/17 16:12	100	10	CK71531
Zinc	<b>10.2</b> (10.0)		200.7		2	KJK	11/16/17 16:12	100	10	CK71531

Fax: 401-461-4486



The Microbiology Division of Thielsch Engineering, Inc.



#### CERTIFICATE OF ANALYSIS

Client Name: Tighe & Bond

Client Project ID: Woburn to Mystic - RGP

Client Sample ID: Mystic Date Sampled: 11/15/17 10:30

Percent Solids: N/A

ESS Laboratory Work Order: 1711482 ESS Laboratory Sample ID: 1711482-02

Sample Matrix: Surface Water

### **Classical Chemistry**

Analyte Ammonia as N	Results (MRL) 0.27 (0.10)	<u>MDL</u>	<b>Method</b> 350.1	<u>Limit</u>	<u><b>DF</b></u>	Analyst EEM	<b>Analyzed</b> 11/17/17 14:47	Units mg/L	Batch CK71613
Hexavalent Chromium	ND (10.0)		3500Cr B-2009		1	JLK	11/15/17 20:47	ug/L	CK71546
рН	7.36 (N/A)		9040		1	BCA	11/15/17 21:40	S.U.	CK71549
pH Sample Temp	Aqueous pH measure	d in water a	at 17.2 °C. (N/A)						

Fax: 401-461-4486



The Microbiology Division of Thielsch Engineering, Inc.



#### CERTIFICATE OF ANALYSIS

Client Name: Tighe & Bond

Client Project ID: Woburn to Mystic - RGP

Client Sample ID: Mystic Crossing Date Sampled: 11/15/17 09:30

Percent Solids: N/A

ESS Laboratory Work Order: 1711482 ESS Laboratory Sample ID: 1711482-03

Sample Matrix: Surface Water

Units: ug/L

Extraction Method: 3005A/200.7

#### **Total Metals**

<b>Analyte</b>	Results (MRL)	<b>MDL</b>	Method	<u>Limit</u>	<u>DF</u>	Analyst	<b>Analyzed</b>	I/V	F/V	<b>Batch</b>
Arsenic	ND (2.5)		3113B		5	KJK	11/18/17 6:55	100	10	CK71531
Cadmium	ND (2.00)		200.7		2	KJK	11/16/17 16:16	100	10	CK71531
Chromium	ND (4.0)		200.7		2	KJK	11/16/17 16:16	100	10	CK71531
Chromium III	ND (10.0)		200.7		2	JLK	11/16/17 16:16	1	1	[CALC]
Copper	ND (2.0)		200.7		2	KJK	11/16/17 16:16	100	10	CK71531
Hardness	<b>147000</b> (824)		200.7		10	KJK	11/16/17 15:12	1	1	[CALC]
Iron	<b>134</b> (100)		200.7		10	KJK	11/16/17 15:12	100	10	CK71531
Lead	ND (4.0)		200.7		2	KJK	11/16/17 16:16	100	10	CK71531
Nickel	ND (4.0)		200.7		2	KJK	11/16/17 16:16	100	10	CK71531
Zinc	<b>11.1</b> (10.0)		200.7		2	KJK	11/16/17 16:16	100	10	CK71531



The Microbiology Division of Thielsch Engineering, Inc.



#### CERTIFICATE OF ANALYSIS

Client Name: Tighe & Bond

Client Project ID: Woburn to Mystic - RGP

Client Sample ID: Mystic Crossing Date Sampled: 11/15/17 09:30

Percent Solids: N/A

ESS Laboratory Work Order: 1711482 ESS Laboratory Sample ID: 1711482-03

Sample Matrix: Surface Water

### **Classical Chemistry**

Analyte Ammonia as N	Results (MRL) 0.35 (0.10)	MDL <u>Method</u> 350.1	<u>Limit</u>	<u><b>DF</b></u>	Analys EEM	<u>Analyzed</u> 11/17/17 14:48	Units mg/L	Batch CK71613
Hexavalent Chromium	ND (10.0)	3500Cr B-2009		1	JLK	11/15/17 20:47	ug/L	CK71546
pН	7.13 (N/A)	9040		1	BCA	11/15/17 21:40	S.U.	CK71549
pH Sample Temp	Aqueous pH measure	d in water at 17.1 °C. (N/A)						

Dependability



The Microbiology Division of Thielsch Engineering, Inc.



#### CERTIFICATE OF ANALYSIS

Client Name: Tighe & Bond

Client Project ID: Woburn to Mystic - RGP Client Sample ID: Mystic at Laydown

Date Sampled: 11/15/17 11:00

Percent Solids: N/A

ESS Laboratory Work Order: 1711482 ESS Laboratory Sample ID: 1711482-07

Sample Matrix: Surface Water

Units: ug/L

Extraction Method: 3005A/200.7

#### **Total Metals**

<u>Analyte</u>	Results (MRL)	<b>MDL</b>	Method	<u>Limit</u>	<u>DF</u>	Analyst	<b>Analyzed</b>	<u>I/V</u>	F/V	<b>Batch</b>
Arsenic	ND (5.0)		3113B		10	KJK	11/19/17 5:04	100	10	CK71531
Cadmium	<b>EL</b> ND (10.0)		200.7		10	KJK	11/16/17 16:04	100	10	CK71531
Chromium	ND (20.0)		200.7		10	KJK	11/16/17 16:04	100	10	CK71531
Chromium III	ND (20.0)		200.7		10	JLK	11/16/17 16:04	1	1	[CALC]
Copper	<b>EL</b> ND (10.0)		200.7		10	KJK	11/16/17 16:04	100	10	CK71531
Hardness	<b>221000</b> (824)		200.7		10	KJK	11/17/17 11:22	1	1	[CALC]
Iron	<b>274</b> (100)		200.7		10	KJK	11/16/17 16:04	100	10	CK71531
Lead	ND (2.0)		3113B		10	KJK	11/17/17 21:48	100	10	CK71531
Nickel	<b>EL</b> ND (20.0)		200.7		10	KJK	11/16/17 16:04	100	10	CK71531
Zinc	ND (50.0)		200.7		10	KJK	11/16/17 16:04	100	10	CK71531



The Microbiology Division of Thielsch Engineering, Inc.



#### CERTIFICATE OF ANALYSIS

Client Name: Tighe & Bond

Client Project ID: Woburn to Mystic - RGP Client Sample ID: Mystic at Laydown

Date Sampled: 11/15/17 11:00

Percent Solids: N/A

ESS Laboratory Work Order: 1711482 ESS Laboratory Sample ID: 1711482-07

Sample Matrix: Surface Water

### **Classical Chemistry**

Analyte Ammonia as N	<b>Results (MRL) 0.28</b> (0.10)	MDL Method 350.1	Limit	<u><b>DF</b></u>	Analyst EEM	Analyzed 11/17/17 14:51	Units mg/L	Batch CK71613
Hexavalent Chromium	ND (10.0)	3500Cr B-2009		1	JLK	11/15/17 20:47	ug/L	CK71546
рН	7.46 (N/A)	9040		1	BCA	11/15/17 21:40	S.U.	CK71549
pH Sample Temp	Aqueous pH measure	d in water at 17.6 °C. (N/A)						

185 Frances Avenue, Cranston, RI 02910-2211

Tel: 401-461-7181

Fax: 401-461-4486



The Microbiology Division of Thielsch Engineering, Inc.



#### CERTIFICATE OF ANALYSIS

Client Name: Tighe & Bond

Client Project ID: Woburn to Mystic - RGP

ESS Laboratory Work Order: 1711482

### **Quality Control Data**

Analyte	Result	MRL	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Qualifie
- ,		/	Total Meta							
				-						
Batch CK71531 - 3005A/200.7										
Blank										
Arsenic	ND	0.5	ug/L							
Cadmium	ND	1.00	ug/L							
Chromium	ND	2.0	ug/L							
Chromium III	ND	2.00	ug/L							
opper	ND	1.0	ug/L							
lardness	ND	82.4	ug/L							
ron	ND	10.0	ug/L							
ead	ND	0.2	ug/L							
ead	ND	2.0	ug/L							
lickel	ND	2.0	ug/L							
ilver	ND	0.5	ug/L							
linc	ND	5.0	ug/L							
cs										
rsenic	44.8	12.5	ug/L	50.00		90	85-115			
admium	23.6	1.00	ug/L	25.00		94	85-115			
nromium	48.9	2.0	ug/L	50.00		98	85-115			
nromium III	48.9	2.00	ug/L							
opper	52.4	1.0	ug/L	50.00		105	85-115			
ardness	3260	82.4	ug/L							
ron	239	10.0	ug/L	250.0		96	85-115			
ead	45.3	5.0	ug/L	50.00		91	85-115			
ead	49.7	2.0	ug/L	50.00		99	85-115			
lickel	48.8	2.0	ug/L	50.00		98	85-115			
ilver	26.1	0.5	ug/L	25.00		104	85-115			
nc	51.7	5.0	ug/L	50.00		103	85-115			
CS Dup										
rsenic	48.5	12.5	ug/L	50.00		97	85-115	8	20	
admium	23.4	1.00	ug/L	25.00		94	85-115	0.7	20	
Chromium	48.7	2.0	ug/L	50.00		97	85-115	0.4	20	
hromium III	48.7	2.00	ug/L							
opper	52.0	1.0	ug/L	50.00		104	85-115	8.0	20	
lardness	3210	82.4	ug/L							
ron	237	10.0	ug/L	250.0		95	85-115	8.0	20	
ead	47.5	5.0	ug/L	50.00		95	85-115	5	20	
ead	49.8	2.0	ug/L	50.00		100	85-115	0.02	20	
ickel	48.2	2.0	ug/L	50.00		96	85-115	1	20	
ilver	26.0	0.5	ug/L	25.00		104	85-115	0.2	20	
inc	53.8	5.0	ug/L	50.00		108	85-115	4	20	
atch CK71546 - [CALC]										
lank										
hromium III	ND	10.0	ug/L							

ND

LCS Chromium III

ug/L



The Microbiology Division of Thielsch Engineering, Inc.



#### CERTIFICATE OF ANALYSIS

Client Name: Tighe & Bond

Salinity

Client Project ID: Woburn to Mystic - RGP ESS Laboratory Work Order: 1711482

### **Ouality Control Data**

			cy Cont							
				Spike	Source		%REC		RPD	•
Analyte	Result	MRL	Units	Level	Result	%REC	Limits	RPD	Limit	Qualifie
			Total Met	als						
Batch CK71546 - [CALC]										
LCS Dup										
Chromium III	ND		ug/L							
		C	lassical Che	mistry						
Batch CK71546 - General Preparation										
Blank										
Hexavalent Chromium	ND	10.0	ug/L							
LCS										
Hexavalent Chromium	0.503		mg/L	0.4998		101	90-110			
LCS Dup										
Hexavalent Chromium	0.516		mg/L	0.4998		103	90-110	3	20	
Batch CK71613 - NH4 Prep										
Blank										
Ammonia as N	ND	0.10	mg/L							
LCS										
Ammonia as N	0.08	0.10	mg/L	0.09994		81	80-120			
LCS										
Ammonia as N	1.02	0.10	mg/L	0.9994		102	80-120			
Batch CK71644 - General Preparation										
LCS										

ppt

1.0

1.000

85-115



The Microbiology Division of Thielsch Engineering, Inc.



#### CERTIFICATE OF ANALYSIS

Client Name: Tighe & Bond

Client Project ID: Woburn to Mystic - RGP ESS Laboratory Work Order: 1711482

#### Notes and Definitions

	Notes and Definitions
Z16d	Aqueous pH measured in water at 17.7 °C.
Z16c	Aqueous pH measured in water at 17.6 °C.
Z16b	Aqueous pH measured in water at 17.4 °C.
Z16a	Aqueous pH measured in water at 17.2 °C.
Z16	Aqueous pH measured in water at 17.1 °C.
U	Analyte included in the analysis, but not detected
EL	Elevated Method Reporting Limits due to sample matrix (EL).
D	Diluted.
ND	Analyte NOT DETECTED at or above the MRL (LOQ), LOD for DoD Reports, MDL for J-Flagged Analytes
dry	Sample results reported on a dry weight basis
RPD	Relative Percent Difference
MDL	Method Detection Limit
MRL	Method Reporting Limit
LOD LOQ	Limit of Detection Limit of Quantitation
DL	Detection Limit
I/V	Initial Volume
F/V	Final Volume
§	Subcontracted analysis; see attached report
ï	Range result excludes concentrations of surrogates and/or internal standards eluting in that range.
2	Range result excludes concentrations of target analytes eluting in that range.
3	Range result excludes the concentration of the C9-C10 aromatic range.
Avg	Results reported as a mathematical average.

NR No Recovery [CALC] Calculated Analyte

**SUB** Subcontracted analysis; see attached report

RLReporting Limit

**EDL Estimated Detection Limit** 

185 Frances Avenue, Cranston, RI 02910-2211

Tel: 401-461-7181

Fax: 401-461-4486



The Microbiology Division of Thielsch Engineering, Inc.



#### CERTIFICATE OF ANALYSIS

Client Name: Tighe & Bond

Client Project ID: Woburn to Mystic - RGP ESS Laboratory Work Order: 1711482

#### ESS LABORATORY CERTIFICATIONS AND ACCREDITATIONS

#### **ENVIRONMENTAL**

Rhode Island Potable and Non Potable Water: LAI00179 http://www.health.ri.gov/find/labs/analytical/ESS.pdf

Connecticut Potable and Non Potable Water, Solid and Hazardous Waste: PH-0750 <a href="http://www.ct.gov/dph/lib/dph/environmental_health/environmental_laboratories/pdf/OutofStateCommercialLaboratories.pdf">http://www.ct.gov/dph/lib/dph/environmental_health/environmental_laboratories/pdf/OutofStateCommercialLaboratories.pdf</a>

Maine Potable and Non Potable Water, and Solid and Hazardous Waste: RI00002 <a href="http://www.maine.gov/dhhs/mecdc/environmental-health/dwp/partners/labCert.shtml">http://www.maine.gov/dhhs/mecdc/environmental-health/dwp/partners/labCert.shtml</a>

Massachusetts Potable and Non Potable Water: M-RI002 http://public.dep.state.ma.us/Labcert/Labcert.aspx

New Hampshire (NELAP accredited) Potable and Non Potable Water, Solid and Hazardous Waste: 2424 <a href="http://des.nh.gov/organization/divisions/water/dwgb/nhelap/index.htm">http://des.nh.gov/organization/divisions/water/dwgb/nhelap/index.htm</a>

New York (NELAP accredited) Non Potable Water, Solid and Hazardous Waste: 11313 http://www.wadsworth.org/labcert/elap/comm.html

New Jersey (NELAP accredited) Non Potable Water, Solid and Hazardous Waste: RI006 <a href="http://datamine2.state.nj.us/DEP_OPRA/OpraMain/pi_main?mode=pi_by_site&sort_order=PI_NAMEA&Select+a+Site:=58715">http://datamine2.state.nj.us/DEP_OPRA/OpraMain/pi_main?mode=pi_by_site&sort_order=PI_NAMEA&Select+a+Site:=58715</a>

United States Department of Agriculture Soil Permit: P330-12-00139

Pennsylvania: 68-01752 <a href="http://www.dep.pa.gov/Business/OtherPrograms/Labs/Pages/Laboratory-Accreditation-Program.aspx">http://www.dep.pa.gov/Business/OtherPrograms/Labs/Pages/Laboratory-Accreditation-Program.aspx</a>

185 Frances Avenue, Cranston, RI 02910-2211

Tel: 401-461-7181

Fax: 401-461-4486

Client: Tighe & Bond - KPB/TB/MM	ESS Project ID: 1711482  Date Received: 11/15/2017	
Shipped/Delivered Via: ESS Courier	Project Due Date: 11/17/2017 Days for Project: 2 Day	<u></u>
Air bill manifest present?     No     NA     NA	6. Does COC match bottles?	Yes
Were custody seals present?     No	7. Is COC complete and correct?	Yes
3. Is radiation count <100 CPM? Yes	8. Were samples received intact?	Yes
4. Is a Cooler Present? Yes	9. Were labs informed about short holds & rushes?	Yes No / NA
Temp: 0.4 Iced with: Ice  5. Was COC signed and dated by client? Yes	10. Were any analyses received outside of hold time?	Yes (No)
11. Any Subcontracting needed?  ESS Sample IDs:  Analysis:  TAT:	<ul><li>12. Were VOAs received?</li><li>a. Air bubbles in aqueous VOAs?</li><li>b. Does methanol cover soil completely?</li></ul>	Yes / No Yes / No Yes / No / NA
13. Are the samples properly preserved?  a. If metals preserved upon receipt:  b. Low Level VOA vials frozen:  Date:  Date:	Time: By: Time: By:	<u> </u>
Sample Receiving Notes:		
11. 1740 thore a flood to contact i rejust manager.	es (No es / No Time: By:	

Sample Number	Container ID	Proper Container	Air Bubbles Present	Sufficient Volume	Container Type	Preservative	Record pH (Cyanide and 608 Pesticides)
01	182550	Yes	NA	Yes	500 mL Poly - H2SO4	H2SO4	
01	182557	Yes	NA	Yes	250 mL Poly - HNO3	HNO3	
01	182570	Yes	NA	Yes	250 mL Poly - Unpres	NP	
01	182571	Yes	NA	Yes	250 mL Poly - Unpres	NP	
01	182578	Yes	NA	Yes	250 mL Amber - Unpres	NP	
02	182549	Yes	NA	Yes	500 mL Poly - H2SO4	H2SO4	
02	182556	Yes	NA	Yes	250 mL Poly - HNO3	HNO3	
02	182568	Yes	ΝA	Yes	250 mL Poly - Unpres	NP	
02	182569	Yes	NA	Yes	250 mL Poly - Unpres	NP	
02	182577	Yes	NA	Yes	250 mL Amber - Unpres	NP	
03	182548	Yes	NA	Yes	500 mL Poly - H2SO4	H2SO4	
03	182555	Yes	NA	Yes	250 mL Poly - HNO3	HNO3	
03	182566	Yes	NA	Yes	250 mL Poly - Unpres	NP	
03	182567	Yes	NA	Yes	250 mL Poly - Unpres	NP	
03	182576	Yes	NA	Yes	250 mL Amber - Unpres	NP	
04	182547	Yes	NA	Yes	500 mL Poly - H2SO4	H2SO4	
04	182554	Yes	NA	Yes	250 mL Poly - HNO3	HNO3	
04	182564	Yes	NA	Yes	250 mL Poly - Unpres	NP	
04	182565	Yes	NA	Yes	250 mL Poly - Unpres	NP	
04	182575	Yes	NA	Yes	250 mL Amber - Unpres	NP	
05	182546	Yes	NA	Yes	500 mL Poly - H2SO4	H2SO4	
05	182553	Yes	NA	Yes	250 mL Poly - HNO3	HNO3	
05	182562	Yes	NA	Yes	250 mL Poly - Unpres	NP	
05	182563	Yes	NA	Yes	250 mL Poly - Unpres	NP	

## **ESS Laboratory Sample and Cooler Receipt Checklist**

Client:	Tig	he & Bond	<ul> <li>KPB/TB/MI</li> </ul>	VI	ESS Pr	oject ID:	1711482
					Date R	eceived:	11/15/2017
05	182574	Yes	NA	Yes	250 mL Amber - Unpres	NP	
06	182545	Yes	NA	Yes	500 mL Poly - H2SO4	H2SO4	
06	182552	Yes	NA	Yes	250 mL Poly - HNO3	HNO3	
06	182560	Yes	NA	Yes	250 mL Poly - Unpres	NΡ	
06	182561	Yes	NA	Yes	250 mL Poly - Unpres	NΡ	
06	182573	Yes	NA	Yes	250 mL Amber - Unpres	NP	
07	182544	Yes	NA	Yes	500 mL Poly - H2SO4	H2SO4	
07	182551	Yes	NA	Yes	250 mL Poly - HNO3	HNO3	
07	182558	Yes	NA	Yes	250 mL Poly - Unpres	NP	
07	182559	Yes	NA	Yes	250 mL Poly - Unpres	NP	
07	182572	Yes	NΑ	Yes	250 mL Amber - Unpres	NP	
		1					
nd Review		//			$\sim$		
	labels on so	rect contair	ners?		(Yes)/No		
Da. oodo		11.1			, ,		
ompleted	-	1 <i>///u // /</i>			1. 1	4	
By:		<i>   ¶    </i>			Date & Time: 1///5//	ו 190 ר	
Reviewed		<del>- 100 / -</del>			<del></del>		
By:	<i>\rangle</i> 1		4		Date & Time: 11/15	ودهد دا	•
Delivered	<del></del>	10	<u>,                                     </u>		<u> </u>	1	
By:		$\sqrt{\lambda}$	<del>*</del>		nd e	(17 3es	9
-,-		<del></del>		_		1	*****

ESS L	aborator	у		C	CHAIN OF C	ΟY	ESS Lab # 11482															
Division o	f Thielsch Eng	ineering, Inc.		Turn Time	5-Day	Rush	2-Day	Report	ina		<u>'</u>	/ [ (	100	7		24 24				-		
185 Franc	es Avenue, Ci	ranston RI 0291	10	Regulatory State				Limits GW-1														
		x (401) 461-44	86					Electo	Electonic													
www.essla	aboratory.com			OCT RCP	20,000		RGP	Delivera	bles	<b>J</b> Ot	ner (P	ease Sp	ecify -	) pdf								
		mpany Name ghe & Bond		Project # N-998-11	Project Name Mystic to Woburn																	
		ntact Person		14-550-11	Addres		buili	.0	1													
		Dean Bebis			1 University			lys														
	City Westwood	1	3	tate MA	Zip Cod 02090		PO#	Analysis							_							
1	elephone Nu			Number	Email Address			- '		10				_	=							
	(508) 654-04	T			dsbel	bis@tighebo	ond.com		1	ess		2	i i	in	niur	<u>D</u>			_			1
ESS Lab	Collection Date	Collection Time	Sample Type	Sample Matrix	Sample ID			Hd	Hardness	Cr+6	NH4 Salinity	Arsenic	Cadmium	Chromium III	Copper	Iron	Lead	Nickel	Silver	Zinc		
01	11-15-17	10:00	Grab	Surface Water		Mystic	at Winter		X	X	Х	X	X		X	X	Х	X	X		X	
02	11-15-17	10:30	Grab	Surface Water		M	ystic		×	Х	Х	X	X	X	X	X	Х	X	X		X	
03	11-15-17	9:30	Grab	Surface Water		Mystic	Crossing		X	Х	Х	X	X	X	X	X	Х	X	Х		X	
04	11-15-17	9:00	Grab	Surface Water		Abe	erjona		X	Х	Х	X	X	X	X	X	X	X	X	X	X	
05	11-15-17	8:30	Grab	Surface Water	Winter Pond			X	Х	Х	X	×	Х	X	Х	Х	X	Х	Х	X		
06	11-15-17	11:30	Grab	Surface Water		Mystic at f	Boston Inner		×		Х	X X	×	Х	X	X	Х	X	Х		X	
07	11-15-17	11:00	Grab	Surface Water		Mystic a	t Laydown		X	Х	Х	X	×	X	X	X	Х	X	Х		X	
												F										
															, i							
Co	ntainer Type:	AC-Air Casset	tte AG-Amber Gla	ss B-BOD Bottle (	C-Cubitainer G - G	Glass O-Ot	ther P-Poly S	-Sterile V-Vial														
			-2.5 gal 3-250 m					oz 11-Other*														
Prese	vation Code:	1-Non Preserved	2-HCI 3-H2SO4	4-HNO3 5-NaOH 6-M	ethanol 7-Na2S2O3	8-ZnAce, NaC	OH 9-NH4CI 10-E	DI H2O 11-Other*				3 11	i i									
						Number	r of Containers	per Sample:														
		Laboratory	y Use Only		Sampled by :	Colleen B	Brothers															
Coole	Present:	V	1/5		Comments:		Please	specify "Othe	r" pr	eser	ativ	e and	conta	iners	s type	es in	this	spa	се			
Seal	s Intact:		do		1.00																	
Cooler T	emperature:	0.47	°C Y	1	Eversource Pricing		1							1								
Re	linquished by:	(Signature, Da	ite & Time)	Received By:	(Signature, Date &	Time)	Relinquished	By: (Signature	e, Dat	e & 7	ime)	. 1		Rece	ived	By: (	Signa	ature	e, Da	te &	Time)	
Colle	WEB 10	thur	11-15-17	3 11/1	5/7/	6.00	NI C	15/2	1.	7:0	0	4		MI	W	1	ules	de	7	18	5	-
		(Signature, Da	te & Time)	Received By: (	(Signature, Date &			By: Signature	e, Dat	_				Rede	ived	By: (	Signa	ature	, Da	te &	Time)	
							1						1									



The Microbiology Division of Thielsch Engineering, Inc.



#### CERTIFICATE OF ANALYSIS

Michael Martin Tighe & Bond 4 Barlows Landing Road, Unit 15 Pocasset, MA 02559

**RE:** Woburn to Mystic (N-0998-11-13)

ESS Laboratory Work Order Number: 1711673

This signed Certificate of Analysis is our approved release of your analytical results. These results are only representative of sample aliquots received at the laboratory. ESS Laboratory expects its clients to follow all regulatory sampling guidelines. Beginning with this page, the entire report has been paginated. This report should not be copied except in full without the approval of the laboratory. Samples will be disposed of thirty days after the final report has been delivered. If you have any questions or concerns, please feel free to call our Customer Service Department.

REVIEWED

By ESS Laboratory at 2:35 pm, Nov 28, 2017

Laurel Stoddard Laboratory Director

#### **Analytical Summary**

The project as described above has been analyzed in accordance with the ESS Quality Assurance Plan. This plan utilizes the following methodologies: US EPA SW-846, US EPA Methods for Chemical Analysis of Water and Wastes per 40 CFR Part 136, APHA Standard Methods for the Examination of Water and Wastewater, American Society for Testing and Materials (ASTM), and other recognized methodologies. The analyses with these noted observations are in conformance to the Quality Assurance Plan. In chromatographic analysis, manual integration is frequently used instead of automated integration because it produces more accurate results.

The test results present in this report are in compliance with TNI and relative state standards, and/or client Quality Assurance Project Plans (QAPP). The laboratory has reviewed the following: Sample Preservations, Hold Times, Initial Calibrations, Continuing Calibrations, Method Blanks, Blank Spikes, Blank Spike Duplicates, Duplicates, Matrix Spikes, Matrix Spike Duplicates, Surrogates and Internal Standards. Any results which were found to be outside of the recommended ranges stated in our SOPs will be noted in the Project Narrative.



The Microbiology Division of Thielsch Engineering, Inc.



#### CERTIFICATE OF ANALYSIS

Client Name: Tighe & Bond

Client Project ID: Woburn to Mystic ESS Laboratory Work Order: 1711673

#### SAMPLE RECEIPT

The following samples were received on November 22, 2017 for the analyses specified on the enclosed Chain of Custody Record.

To achieve CAM compliance for MCP data, ESS Laboratory has reviewed all QA/QC Requirements and Performance Standards listed in each method. Holding times and preservation have also been reviewed. All CAM requirements have been performed and achieved unless noted in the project narrative.

Each method has been set-up in the laboratory to reach required MCP standards. The methods for aqueous VOA and Soil Methanol VOA have known limitations for certain analytes. The regulatory standards may not be achieved due to these limitations. In addition, for all methods, matrix interferences, dilutions, and %Solids may elevate method reporting limits above regulatory standards. ESS Laboratory can provide, upon request, a Limit Checker (regulatory standard comparison spreadsheet) electronic deliverable which will highlight these exceedances.

<u>Lab Number</u>	<u>Sample Name</u>	<u>Matrix</u>	<u>Analysis</u>
1711673-01	MW-36	Ground Water	6010C
1711673-02	MW-102	Ground Water	6010C

185 Frances Avenue, Cranston, RI 02910-2211

Tel: 401-461-7181

Fax: 401-461-4486

http://www.ESSLaboratory.com



The Microbiology Division of Thielsch Engineering, Inc.



CERTIFICATE OF ANALYSIS

Client Name: Tighe & Bond

Client Project ID: Woburn to Mystic ESS Laboratory Work Order: 1711673

#### **PROJECT NARRATIVE**

No unusual observations noted.

**End of Project Narrative.** 

#### DATA USABILITY LINKS

To ensure you are viewing the most current version of the documents below, please clear your internet cookies for www.ESSLaboratory.com. Consult your IT Support personnel for information on how to clear your internet cookies.

**Definitions of Quality Control Parameters** 

Semivolatile Organics Internal Standard Information

Semivolatile Organics Surrogate Information

Volatile Organics Internal Standard Information

Volatile Organics Surrogate Information

EPH and VPH Alkane Lists

185 Frances Avenue, Cranston, RI 02910-2211

Tel: 401-461-7181

Quality

Dependability

Fax: 401-461-4486

http://www.ESSLaboratory.com



The Microbiology Division of Thielsch Engineering, Inc.



#### CERTIFICATE OF ANALYSIS

Client Name: Tighe & Bond

Client Project ID: Woburn to Mystic ESS Laboratory Work Order: 1711673

#### **CURRENT SW-846 METHODOLOGY VERSIONS**

#### **Analytical Methods**

1010A - Flashpoint

6010C - ICP

6020A - ICP MS

7010 - Graphite Furnace

7196A - Hexavalent Chromium

7470A - Aqueous Mercury

7471B - Solid Mercury

8011 - EDB/DBCP/TCP

8015C - GRO/DRO

8081B - Pesticides

8082A - PCB

8100M - TPH

8151A - Herbicides

8260B - VOA

8270D - SVOA

8270D SIM - SVOA Low Level

9014 - Cyanide

9038 - Sulfate

9040C - Aqueous pH

9045D - Solid pH (Corrosivity)

9050A - Specific Conductance

9056A - Anions (IC)

9060A - TOC

9095B - Paint Filter

MADEP 04-1.1 - EPH / VPH

#### **Prep Methods**

3005A - Aqueous ICP Digestion

3020A - Aqueous Graphite Furnace / ICP MS Digestion

3050B - Solid ICP / Graphite Furnace / ICP MS Digestion

3060A - Solid Hexavalent Chromium Digestion

3510C - Separatory Funnel Extraction

3520C - Liquid / Liquid Extraction

3540C - Manual Soxhlet Extraction

3541 - Automated Soxhlet Extraction

3546 - Microwave Extraction

3580A - Waste Dilution

5030B - Aqueous Purge and Trap

5030C - Aqueous Purge and Trap

5035 - Solid Purge and Trap

SW846 Reactivity Methods 7.3.3.2 (Reactive Cyanide) and 7.3.4.1 (Reactive Sulfide) have been withdrawn by EPA. These methods are reported per client request and are not NELAP accredited.

Dependability



The Microbiology Division of Thielsch Engineering, Inc.



#### CERTIFICATE OF ANALYSIS

Client Name: Tighe & Bond

Client Project ID: Woburn to Mystic

Client Sample ID: MW-36 Date Sampled: 11/22/17 06:00

Percent Solids: N/A

ESS Laboratory Work Order: 1711673 ESS Laboratory Sample ID: 1711673-01

Sample Matrix: Ground Water

Units: ug/L

Extraction Method: [CALC]

#### **Total Metals**

 Analyte
 Results (MRL)
 MDL
 Method
 Limit
 DF
 Analyst
 Analyzed
 I/V
 F/V
 Batch

 Hardness
 142000 (412)
 6010C
 1
 KJK
 11/22/17 23:13
 1
 1
 I CALC]



The Microbiology Division of Thielsch Engineering, Inc.



#### CERTIFICATE OF ANALYSIS

Client Name: Tighe & Bond

Client Project ID: Woburn to Mystic

Client Sample ID: MW-102 Date Sampled: 11/22/17 06:30

Percent Solids: N/A

ESS Laboratory Work Order: 1711673 ESS Laboratory Sample ID: 1711673-02

Sample Matrix: Ground Water

Units: ug/L

Extraction Method: [CALC]

#### **Total Metals**

**MDL Analyte** Results (MRL) Method <u>DF</u> <u>Limit</u> Analyst Analyzed **Batch** 6010C [CALC] Hardness **426000** (412)

185 Frances Avenue, Cranston, RI 02910-2211

Tel: 401-461-7181

Fax: 401-461-4486

http://www.ESSLaboratory.com



The Microbiology Division of Thielsch Engineering, Inc.

80-120

20



#### CERTIFICATE OF ANALYSIS

Client Name: Tighe & Bond

Magnesium

Client Project ID: Woburn to Mystic ESS Laboratory Work Order: 1711673

## **Quality Control Data**

Analyte	Result	MRL	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Qualifier
		Т	otal Metals	6						
Batch CK72229 - 3005A/200.7										
Blank										
Calcium	ND	0.100	mg/L							
Hardness	ND	412	ug/L							
Magnesium	ND	0.100	mg/L							
LCS										
Calcium	2.38	0.100	mg/L	2.500		95	80-120			
Hardness	15400	412	ug/L							
Magnesium	2.30	0.100	mg/L	2.500		92	80-120			
LCS Dup										
Calcium	2.40	0.100	mg/L	2.500		96	80-120	0.6	20	
Hardness	15600	412	ug/L							

2.500

2.33

0.100



The Microbiology Division of Thielsch Engineering, Inc.



#### CERTIFICATE OF ANALYSIS

Client Name: Tighe & Bond

Client Project ID: Woburn to Mystic ESS Laboratory Work Order: 1711673

#### **Notes and Definitions**

U	Analyte included in the analysis, but not detected
ND	Analyte NOT DETECTED at or above the MRL (LOQ), LOD for DoD Reports, MDL for J-Flagged Analytes
dry	Sample results reported on a dry weight basis
RPD	Relative Percent Difference

MDL Method Detection Limit
MRL Method Reporting Limit
LOD Limit of Detection
LOQ Limit of Quantitation
DL Detection Limit
I/V Initial Volume
F/V Final Volume

Subcontracted analysis; see attached report

1 Range result excludes concentrations of surrogates and/or internal standards eluting in that range.

2 Range result excludes concentrations of target analytes eluting in that range.
3 Range result excludes the concentration of the C9-C10 aromatic range.

Avg Results reported as a mathematical average.

NR No Recovery
[CALC] Calculated Analyte

SUB Subcontracted analysis; see attached report

RL Reporting Limit

EDL Estimated Detection Limit

185 Frances Avenue, Cranston, RI 02910-2211

Tel: 401-461-7181

Dependability

Fax: 401-461-4486

http://www.ESSLaboratory.com



The Microbiology Division of Thielsch Engineering, Inc.



#### CERTIFICATE OF ANALYSIS

Client Name: Tighe & Bond

Client Project ID: Woburn to Mystic ESS Laboratory Work Order: 1711673

#### ESS LABORATORY CERTIFICATIONS AND ACCREDITATIONS

#### **ENVIRONMENTAL**

Rhode Island Potable and Non Potable Water: LAI00179 http://www.health.ri.gov/find/labs/analytical/ESS.pdf

Connecticut Potable and Non Potable Water, Solid and Hazardous Waste: PH-0750 <a href="http://www.ct.gov/dph/lib/dph/environmental_health/environmental_laboratories/pdf/OutofStateCommercialLaboratories.pdf">http://www.ct.gov/dph/lib/dph/environmental_health/environmental_laboratories/pdf/OutofStateCommercialLaboratories.pdf</a>

Maine Potable and Non Potable Water, and Solid and Hazardous Waste: RI00002 <a href="http://www.maine.gov/dhhs/mecdc/environmental-health/dwp/partners/labCert.shtml">http://www.maine.gov/dhhs/mecdc/environmental-health/dwp/partners/labCert.shtml</a>

Massachusetts Potable and Non Potable Water: M-RI002 http://public.dep.state.ma.us/Labcert/Labcert.aspx

New Hampshire (NELAP accredited) Potable and Non Potable Water, Solid and Hazardous Waste: 2424 <a href="http://des.nh.gov/organization/divisions/water/dwgb/nhelap/index.htm">http://des.nh.gov/organization/divisions/water/dwgb/nhelap/index.htm</a>

New York (NELAP accredited) Non Potable Water, Solid and Hazardous Waste: 11313 http://www.wadsworth.org/labcert/elap/comm.html

New Jersey (NELAP accredited) Non Potable Water, Solid and Hazardous Waste: RI006 <a href="http://datamine2.state.nj.us/DEP_OPRA/OpraMain/pi_main?mode=pi_by_site&sort_order=PI_NAMEA&Select+a+Site:=58715">http://datamine2.state.nj.us/DEP_OPRA/OpraMain/pi_main?mode=pi_by_site&sort_order=PI_NAMEA&Select+a+Site:=58715</a>

United States Department of Agriculture Soil Permit: P330-12-00139

Pennsylvania: 68-01752 http://www.dep.pa.gov/Business/OtherPrograms/Labs/Pages/Laboratory-Accreditation-Program.aspx

185 Frances Avenue, Cranston, RI 02910-2211

Tel: 401-461-7181

Fax: 401-461-4486

Service

http://www.ESSLaboratory.com

## **ESS Laboratory Sample and Cooler Receipt Checklist**

Client	t:	Tighe & Bon	d - KPB/TB	/MM		ESS	Project ID:		1711673	
Shinned/F	Onlinered \ 6		<b>5</b> 00.0		<del></del>	Date	e Received:	1	1/22/2017	<del></del>
Shipbent	Jenvered Vis	a:	ESS Cour	<u>'ier</u>			t Due Date: _	1	1/28/2017	<del></del>
						Days	for Project:		2 Day	<del></del>
<ol> <li>Air bill r Air No.</li> </ol>	manifest pre	sent? NA		No		6. Does CO	C match bottl	es?		Yes
2. Were co	ustody seals	present?		No	J	7. Is COC co	omplete and o	correct?		Yes
3. Is radiat	tion count <	100 CPM?		Yes		8. Were sam	ples received	f intact?		Yes
	oler Present		: (ce	Yes	]	9. Were labs	s informed a	bout <u>short he</u>	olds & rushes?	Yes) No / NA
5. Was CO	OC signed a	nd dated by	client?	Yes		10. Were any	y analyses re	eceived outside	of hold time?	Yes (No
				<u> </u>						
	bcontracting Sample IDs Analysis TAT	:	Yes		<b>-</b>	<ul><li>12. Were VO</li><li>a. Air bubble</li><li>b. Does meth</li></ul>	s in aqueous	VOAs? oil completely?	?	Yes / No Yes / No Yes / No / NA
<ul> <li>a. If metals</li> </ul>	preserved of preserved of preserved of preserved of preserved of the prese		rved?	Yes No Date:		Time: _ Time: _		By: _ By: _		<del></del>
14. Was the a. Was co	re a need to	o contact Proceedings of the	oject Manag client?	er? Date:	Yes (No Yes No	Time:		Ву:		
Sample Number	Container ID	Proper Container	Air Bubbles Present	Sufficient Volume	Containe	r Туре	Preserv	ative	Record pH (Cy	anide and 608
01 02	185126 185125	Yes Yes	NA NA	Yes Yes	250 mL Pol 250 mL Pol		HNO HNO			
2nd Review Are barcode	labels on co	лесt contain	ers?		Yes)/ No					
Completed By:		1/2		!	Data 8 7	1	1.	la :-		
Reviewed By:		WIN	1-1		Date & Time: _ Date & Time:	<u>\\ \</u>  3	2/17	<u>1845</u> 1900		_
Delivered By:		M	A	Wh	oate a filine; _	1100	<del>-/ /-</del> -	1944		
	_ <b>-</b>		Al.	<b>V</b>		<del>"[~~/`/</del>		<u> 4117</u>		_

ESS L	aborator	у		(	CHAIN OF C	USTO	DY	ESS L	ab#	1	711	67	3				
	f Thielsch Eng	A STATE OF THE STA		Turn Time	2 Day	Rush	Yes	Repor	ting			W 1		1.1			
185 Franc	es Avenue, Ci	ranston RI 029	10	Regulatory State Massachusetts					Limits GW-1								
Tel. (401)	461-7181 Fa	x (401) 461-44	86	Is th	is project for any	of the follo	wing?:	Electo	onic [	Limit Chec	ker		29	Standard E	xcel		
www.essla	aboratory.com			OCT RCP		0	RGP	Deliver	ables [	Other (Ple	ase Specify →) Eversource EDD						
		mpany Name		Project #		Project Na	ame		T		IALYSIS		TED				
		he and Bond		N-0998-11-13		Voburn to N	Mystic										
		ntact Person Dean Bebis			Addres 1 Univerity			Analysis	1 1								
	City		S	tate	Zip Code PO #		lal)	100									
	Westwood			MA	02090			Ā	ness								
T	elephone Nu	mber	FAX	Number		Email Add bis@tigheb			An								
ESS Lab	Collection Date	Collection Time	Sample Type	Sample Matrix		Sar	mple ID										
01	11/22/17	600	G	Groundwater	MW-36			×			_	+	++			+	
02	11/22/17	630	G	Groundwater	MW-102				x								
									1	+			+		+		
					/					$\rightarrow$	$\dashv$						
		7															
			tte AG-Amber Gla					erile V-Via	l p								
			2-2.5 gal 3-250 m														
Preser	vation Code:	1-Non Preserved	2-HCI 3-H2SO4	4-HNO3 5-NaOH 6-M	ethanol 7-Na2S2O3				4								
						Numbe	er of Containers pe	r Sample:	1								
		Laboratory	y Use Only		Sampled by :	DSB											
Cooler	Present:				Comments:		Places	pecify "Oth	or" pro	convativo	and co	ntainer	e typee	in this s	nace		-
		403					, ( I	Jechy Oth	ei pie	servative	and co	illanier	stypes	iii uiis s	pace		
Seals	Intact:	- hla			Eu	usour	a priking										
Cooler Te	emperature:	1401	oc ile temp	1:2.3			provide by Tim Byr	nae									
Re	linguished by:	(Signature, Da			(Signature, Date &		Relinquished B		o Data	9 Time)		Doco	ived Pur	(Signat	uro Do	to 0 Tim	201
1/	77	(olgitatore, ba	ille ()			17 30				182	4	Ti	iveu by.	(Signati	ure, Dai	le & Till	ie)
VL					Pez 11/22)	117	Jung A		11/22/	17	٧ ٧	1		11 22 1		34	
Re	linquished by:	(Signature, Da	ite & Time)	Received By:	(Signature, Date &	Time)	Relinquished B	y: (Signatur	e, Date	& Time)		Rece	ived By:	(Signat	ure, Dar	te & Tin	ne)

**APPENDIX G** 



#### UNITED STATES ENVIRONMENTAL PROTECTION AGENCY

#### Region 1 5 Post Office Square, Suite 100 BOSTON, MA 02109-3912

#### **VIA EMAIL**

December 21, 2017

Michael Zylich Eversource Energy 247 Station Drive, SE270 Westwood, MA 02090 michael.zylich@eversource.com

Re: Authorization to discharge under the Remediation General Permit (RGP) – Authorization #MAG910761, for the Eversource Electrical Transmission Line Project site located in Medford and Somerville, MA

Dear Mr. Zylich:

Based on the review of a Notice of Intent (NOI) dated November 29, 2017 submitted by Tighe & Bond, Inc. for the site referenced above, the U.S. Environmental Protection Agency, Region 1 (EPA) hereby authorizes NSTAR Electric Company d/b/a Eversource Energy, as the named owner, and as a named operator and co-permittee with Bond Brothers, to discharge in accordance with the provisions of the RGP from this site via the City of Medford, City of Somerville and/or the Massachusetts Department of Transportation (MassDOT) storm sewer systems to Mystic River (MA71-02). The authorization number is listed above. The effective date of coverage is the date of this authorization letter.

Enclosed with this RGP authorization to discharge is a summary of the applicable parameters and effluent limitations for your activity category III, contaminated site dewatering discharge. A dilution factor of 5.29, approved by the Massachusetts Department of Environmental Protection, was used in calculating effluent limits applicable to the proposed discharge from this site. Please note that this summary does not represent the complete requirements of the RGP. Operators must comply with all of the applicable requirements of the RGP, including influent and effluent monitoring, record keeping, and reporting requirements. For the complete general permit, see EPA's RGP website.² EPA notes that this site is authorized to use eight discharge locations associated with the City of Medford, City of Somerville and MassDOT storm sewer systems. To meet the requirements of the RGP, the effluent monitoring locations must be consistent with the discharge points from the stationary treatment system (Outfall 001) and the mobile treatment system (Outfall 002), prior to co-mingling with any other waste streams.

¹ The operator is responsible for obtaining permission to discharge to these systems, prior to initiating discharges. EPA's authorization to discharge does not convey any such permission.

² https://www.epa.gov/npdes-permits/remediation-general-permit-rgp-massachusetts-new-hampshire.

In accordance with Part 2.2.1 of the RGP and using the calculation methodology included in Appendix V, EPA corrected the calculated water quality-based effluent limitations (WQBELs) applicable to the proposed discharge. The cause of the calculation error was identified as the incorrect entry of the downstream flow and dilution factor in the fillable electronic format submitted with the NOI. This value was corrected according to the instructions in the fillable electronic format. The reason for these corrections is to determine the WQBELs that apply to the proposed discharge. Based on the revised calculations, your authorization to discharge includes revised WQBELs of 4,111 µg/L for total recoverable iron, 56.7 µg/L for total recoverable lead, and 0.0201 µg/L for benzo(a)anthracene, benzo(a)pyrene, benzo(b)fluoranthene, chrysene, and indeno(1,2,3-cd)pyrene. In addition, your authorization to discharge includes the following additional conditions:

- 1) Technology-based effluent limitations (TBELs) for benzene, 1,2 dichlorobenzene, methylene chloride, and tetrachloroethylene for Outfall 001 only. These additional TBELs are being required in accordance with Part 2.2.4 and Part 2.3.3.c of the RGP because you disclosed that these contaminants are present at the sites authorized under authorizations #MAG910758, #MAG910759 and/or #MAG910760, which will be discharged via Outfall 001 when influent is transferred from these sites to the stationary treatment system at this site.
- 2) WQBELs for diethylhexyl phthalate, benzo(k)fluoranthene, and dibenzo(a,h)anthracene for Outfall 001 only. These additional WQBELs are being required in accordance with Part 2.2.1 of the RGP based on the calculation methodology included in Appendix V because WQBELs apply when the influent concentrations of these parameters present at the sites authorized under authorization #MAG910758, #MAG910759 and/or #MAG910760 are discharged via Outfall 001 when influent is transferred from that site to the stationary treatment system at this site.
- 3) A TBEL for diethylhexyl phthalate for Outfall 002 only. This TBEL is being required in accordance with Part 2.1.1 of the RGP because this contaminant is present at this site.

This letter provides these additional conditions in writing. Monitoring for these parameters shall be conducted in conjunction with the monitoring required for the other parameters applicable in Part 2.1.1 of the RGP.

This EPA general permit and authorization to discharge will expire on **April 8, 2022**, or upon Notice of Termination (NOT), whichever occurs first. However, in accordance with Part 5.3 of the general permit, your permit coverage will be administratively continued until issuance of a new RGP. Please note that you must submit a NOT within thirty (30) days of the termination of the discharge. You have reported your discharges are expected to terminate December 2019. Because your discharge is expected to last twelve (12) months or more, you are subject to discharge monitoring requirements that begin **January 1, 2019**. See Part 4.6 and 5.2 of the RGP, and Appendix IV, Part 3 for more information regarding reporting requirements.

Please ensure that sufficiently sensitive test methods are used for all sample analyses conducted for this permit. To be considered sufficiently sensitive, test methods must achieve MLs for analysis for a given parameter that is no greater than the effluent limitation for that parameter, unless otherwise specified in the RGP for that parameter. Where no effluent limitation applies, EPA has provided the ML required with the enclosed summary. Where a compliance level applies, EPA has specified the compliance level and provided the ML required with the enclosed summary.

Thank you in advance for your cooperation in this matter. Please contact Shauna Little at (617) 918-1989 or <a href="mailto:little.shauna@epa.gov">little.shauna@epa.gov</a>, if you have any questions.

Sincerely,

Thelma Murphy, Chief

Storm Water and Construction Permits Section

Melna / Huphy

#### Enclosure

cc: Rick McKanas, Bond Brothers, via email

Gary W.T. Hedman, LSP, Tighe & Bond, Inc., via email

Michael E. Martin, Tighe & Bond, Inc., via email

Cathy Vakalopoulos, MassDEP, via email

City of Medford, Department of Public Works, via email City of Somerville, Department of Public Works, via email

Massachusetts Department of Transportation

#### GENERAL PERMIT FOR REMEDIATION ACTIVITY DISCHARGES

**Table 1: Authorization Information** 

Permit Number	MAG910761
Receiving Water	Mystic River
Outfall Number	Outfalls 001 and 002 to City of Medford, City
Outlan Number	of Somerville and/or MassDOT
Monitoring Frequency	See Part 4.1.2 of the RGP
Donouting Dogwinsment	See Part 4.6.1 of the RGP;
Reporting Requirement	NetDMR requirements begin Jan 1, 2019

Table 2: Chemical-Specific Effluent Limitations and Monitor-Only Requirements¹

Table 2: Chemical-Specific Effluent Limitations and Monitor-Only Requirements ¹								
Parameter	Effluent Limitation							
A. Inorganics								
Ammonia ²	Report mg/L							
Chloride ³	Report μg/L							
Total Suspended Solids	30 mg/L							
Antimony ⁴	206 μg/L							
Arsenic ⁴	104 μg/L							
Cadmium ⁴	10.2 μg/L							
Chromium III ⁴	323 µg/L							
Chromium VI ⁴	323 μg/L							
Copper ⁴	242 μg/L							
Iron ⁴	4,111 μg/L							
Lead ⁴	56.7 μg/L							
Mercury ⁴	0.739 μg/L							
Nickel ⁴	1,450 µg/L							
Selenium ⁴	235.8 μg/L							
Silver ⁴	35.1 μg/L							
Zinc ⁴	420 μg/L							
B. Non-Halogenated Volatile Organic Compounds								
Total BTEX	100 μg/L							
Benzene – Outfall 001 Only	5.0 μg/L							
1,4 Dioxane	200 μg/L							
Acetone	7.97 mg/L							
C. Halogenated Volatile Organic Compounds	•							
1,2 Dichlorobenzene – Outfall 001 Only	600 μg/L							
Methylene Chloride – Outfall 001 Only	4.6 μg/L							
Tetrachloroethylene – Outfall 001 Only	5.0 µg/L							
D. Non-Halogenated Semi-Volatile Organic Compounds								
Total Phthalates	190 μg/L							
Diethylhexyl Phthalate – Outfall 001 Only	11.6 μg/L							
Diethylhexyl Phthalate – Outfall 002 Only	101 μg/L							
Total Group I Polycyclic Aromatic Hydrocarbons ⁵	1.0 µg/L							
Benzo(a)anthracene ⁵	0.0201 μg/L							
Benzo(a)pyrene ⁵	0.0201 µg/L							
Benzo(b)fluoranthene ⁵	0.0201 μg/L							
· · ·	1 5							

Benzo(k)fluoranthene ⁵ – Outfall 001 Only	0.0201 μg/L
Benzo(k)fluoranthene ⁵ – Outfall 002 Only	Report µg/L
Chrysene ⁵	0.0201 μg/L
Dibenzo(a,h)anthracene ⁵ – Outfall 001 Only	0.0201 μg/L
Dibenzo(a,h)anthracene ⁵ – Outfall 001 Only	Report µg/L
Indeno(1,2,3-cd)pyrene ⁵	0.0201 μg/L
Total Group II Polycyclic Aromatic Hydrocarbons	100 μg/L
F. Fuels Parameters	
Methyl-tert-Butyl Ether	70 μg/L
tert-Butyl Alcohol	120 μg/L

#### **Table 2 Notes:**

**Table 3: Effluent Flow Limitation** 

Effluent Flow	Effluent Limitation
Elliuent Flow	0.504 MGD

#### **Table 3 Notes**

Table 4: pH Limitations for Discharges in Massachusetts

<b>Receiving Water Class</b>	Effluent Limitation
Freshwater	6.5 to 8.3 SU

#### **Table 4 Notes**

¹ The following abbreviations are used in Table 2, above:

^a mg/L = milligrams per liter

 $^{^{}b}$   $\mu$ g/L = micrograms per liter

² The minimum level (ML) for analysis of ammonia must be less than or equal to 0.1 mg/L.

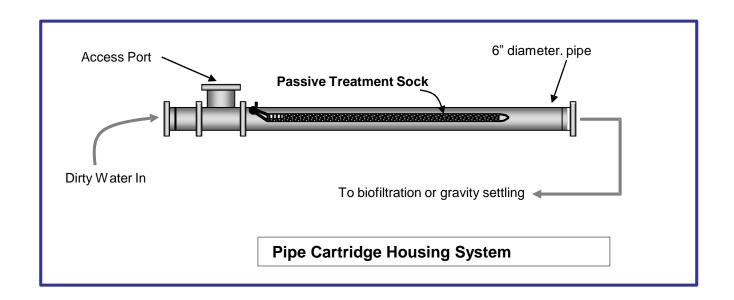
³ The ML for analysis of chloride must be less than or equal to 230 mg/L.

⁴ The limitation for this parameter is on the basis of total recoverable metal in the water column.

 $^{^5}$  The compliance level for group I polycyclic aromatic hydrocarbons (PAHs) is 0.1  $\mu g/L$ . The ML for analysis of group I PAHs must be less than or equal to 0.1  $\mu g/L$ .

¹ The following abbreviations are used in Table 3, above:

^a MGD = million gallons per day


¹ The following abbreviations are used in Table 4, above:

^a SU = standard units

**APPENDIX H** 



# How to Use the Passive Treatment Sock



#### Passive Treatment Sock 1-lb.

#### **Specifications:**

Length 36 Inches

Width: 5 in. diameter

Fabric: Woven polypropylene

Chitosan: 1.0 lb (dry weight)

Treatment: 100,000 gal. @ 1 mg/L

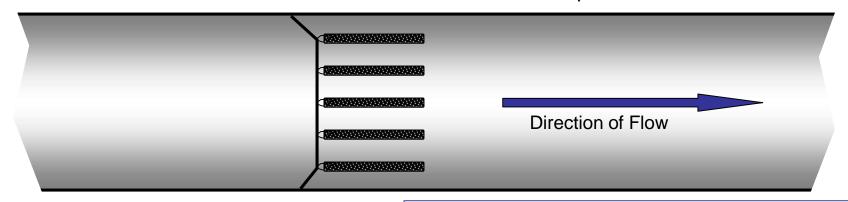
#### Passive Treatment Sock 2-lb.

## **Specifications:**

Length 72 Inches

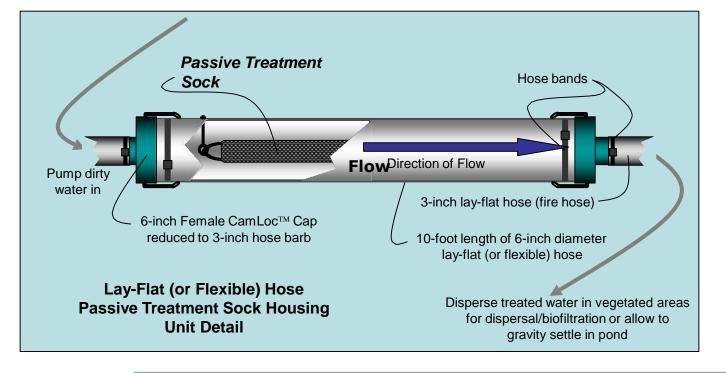
Width: 5 in. diameter

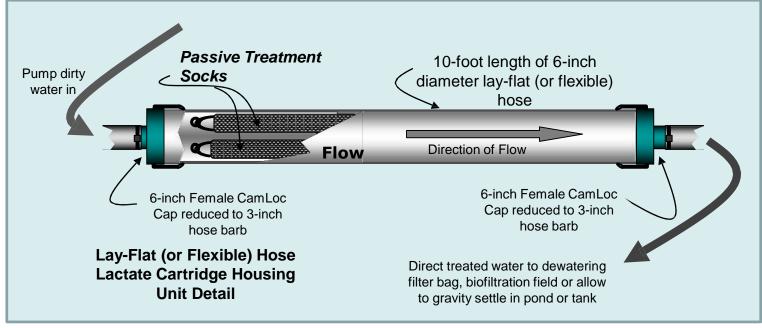
Fabric: Woven polypropylene

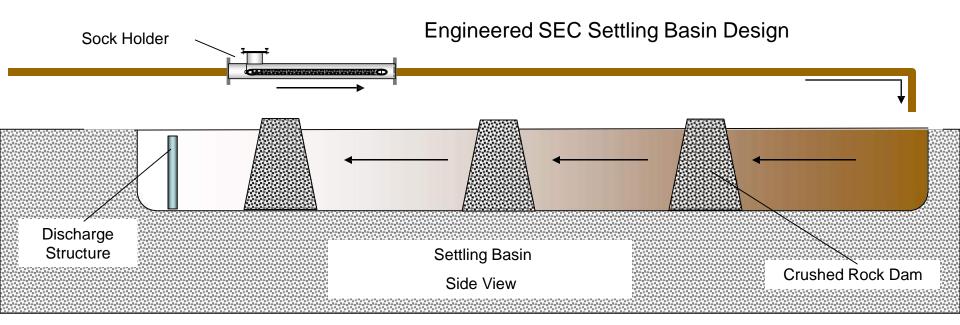

Chitosan: 2.0 lb (dry weight)

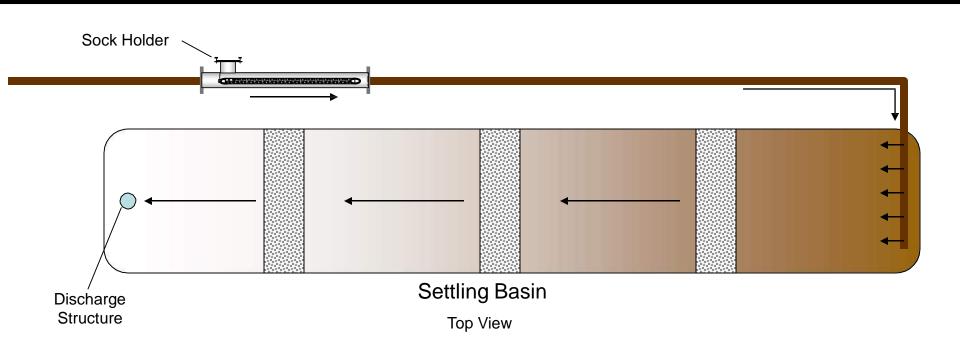
Treatment: 200,000 gal. @ 1 mg/L

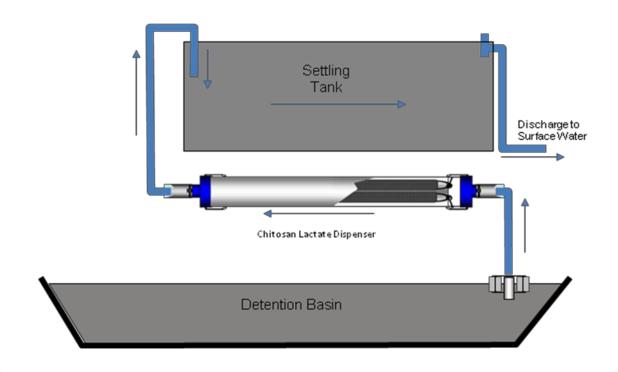
## Passive Treatment Socks Connected to a Common Rope Tether in Series

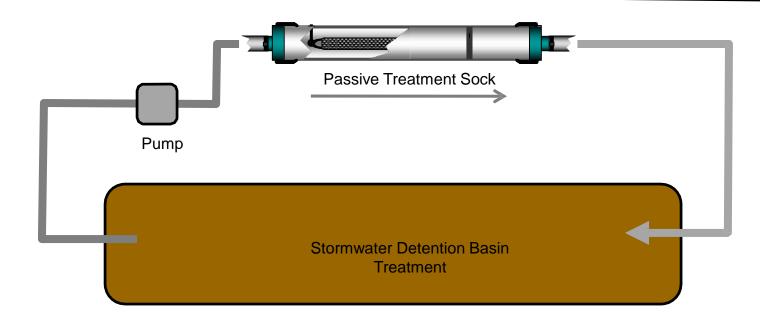


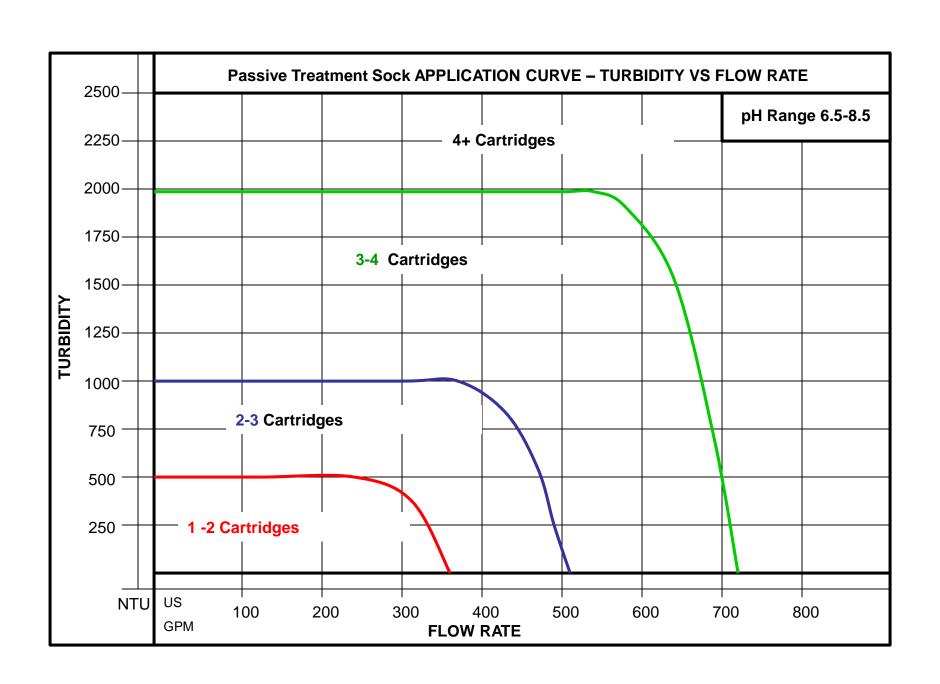


## Passive Treatment Socks Connected to a Common Rope Tether in Parallel





Trough, Conveyance Channel or Pipe


For wide channel installation simply connect Socks in parallel














# **HaloKlear**

# **PRODUCT FACTS**

**DUAL PRODUCT SYSTEM** 

# WE'VE NEVER KILLED A FISH!



Clean Water. Naturally.

## **Description**

HaloKlear's All-Natural Water Treatment System
The Dual Product System (DPS) is quickly gaining national and international recognition as the premier all-natural stormwater treatment solution, providing unparalleled performance and reliable results in an array of projects across the globe. HaloKlear DPS uses biodegradable, natural flocculants that perform on a wide array of soil types and pH ranges. In contrast to other products on the market, the HaloKlear Dual Product System creates dense flocs with great shear strength and a low water content that settle very quickly. Solids can be efficiently removed from the water column – increasing performance and productivity while keeping costs low. In addition, HaloKlear DPS is extremely flexible with a successful track record in active, passive, and semi-passive deployment.

## **GREEN FOR LESS**

Don't just clean the water, clean the environment Our chemistries are less toxic when water is returned to its natural environment. All of HaloKlear's products exhibit exceptionally low toxicity, and the **Dual Product System** has been proven to have zero toxicity.* No bioaccumulation concerns exist when and where HaloKlear products are used, and our products are 100% biodegradable through enzymatic activity.

* Third-party toxicity testing concluded that no fish were killed by the Dual Product System (DPS) when both parts were used in combination of following Best Management Practices.

#### **Product Benefits**

- · Biodegradable natural flocculants
- Effective on a wide range of pH conditions and soil types
- Functions in active, semi-passive and passive applications
- · Effective in fresh water and salt water
- Works with existing equipment of a part of a customized product
- Capable of trapping hydrocarbons, metals and nutrients
- Increases performance and productivity while keeping costs low

#### **Part One**

LBP-2101 = Liquid

DBP-2100 = Dry socks

DBP-2100 MB = Loose, dry

DPS DC-1 = Dry concentrate

for making down into liquid**

#### **Part Two**

LiquiFloc = Liquid

GelFloc = Dry socks

GelFloc MB = Loose, dry

DPS DC-2 = Dry concentrate

for making down into liquid**

For additional information contact Dober at:

(800) 323-4983

info@dober.com

www.dober.com/water treatment



^{**}Not available in the North American market



## **BakerCorp Water Treatment Technology**

#### **Product Description (Dual Polymer Passive Treatment System)**

**DBP-2100 FS (Green product, very low toxicity)** is a dry product most effective when used in conjunction with (**PTS**) chitosan lactate as part of a Dual Polymer System (DPS) to maximize floc size. This natural biopolymer is 100 percent biodegradable through simple natural enzymatic activity, leaving you no bioaccumulation concern. Currently being used in active, passive treatment systems. **(Dose & mix DBP-2100 first then add Chitosan lactate powder)** 

**Gel-Floc PTS** Our Passive Treatment Sock product is an organic water clarifier made from high quality chitosan lactate flake and placed within a permeable fabric. It slowly dissolves as the water flows over and through the cartridge. Once in solution, the chitosan flocculates suspended sediment particles which settle and can be filtered out. This natural biopolymer is 100 percent biodegradable through simple natural enzymatic activity, leaving no bioaccumulation concern. Currently being used in construction, industrial, municipal, and log yard water treatment systems.



#### acc. to OSHA HCS

#### 1 IDENTIFICATION

Product identifier

Product form : Substance

Product name : HaloKlear DBP-2100 Socks

Chemical name : Xanthan Gum
CAS No : 11138-66-2
Product code : 210014

· Relevant identified uses of the substance or mixture and uses advised against

Uses of the substance/mixture : Flocculant

· Manufacturer/Supplier:

**Sound Environmental Concepts** 

22726 102nd Ave SE, Woodinville, WA 98077

1 (206) 730 - 5376

ray@soundenvirocon.com

- · Information department: Product safety department
- · Telephone number:
  - + 1 (206) 730 5376
- · Information department: Product safety department
- · Emergency telephone number: +1 (800) 424-9300 (24 Hours)

During normal opening times: +1 (425) 881-6464

CHEMTREC (Domestic, North America) +1-703-527-3887 CHEMTREC (International, collect calls accepted)

#### 2 HAZARD(S) IDENTIFICATION

 Classification of the substance or mixture GHS-US Classification

Not classified

#### Trade Name: HaloKlear DBP-2100 Socks

#### 2 HAZARD(S) IDENTIFICATION CONTD.

Label Elements
 GHS-US Labelling
 No labeling applicable

· Other hazards

Other hazards not contributing to

the classification

: May form combustible dust concentrations in air. May cause eye irritation.

Unknown acute toxicity (GHS-US)

Not applicable

#### 3 COMPOSITION/INFORMATION ON INGREDIENTS

Substance

Substance type : Mono-constituent

Name : HaloKlear DBP-2100 Socks

CAS No : 11138-66-2

Fulltext of H-statements: see section 16

Mixture
Not applicable

#### **4 FIRST AID MEASURES**

· Description of first aid measures

First-aid measures general : Never give anything by mouth to an unconscious

person. If you feel unwell, seek medical advice (show

the label where possible).

First-aid measures after inhalation

First-aid measures after skin contact

: Allow breathing of fresh air. Allow the victim to rest.

 $: Removed \ affected \ clothing \ and \ wash \ all \ exposed \ skin$ 

area with mild soap and water, followed by warm

water rinse.

First-aid measures after eye contact : Rinse immediately with plenty of water. Obtain

medical attention if pain, blinking or redness

persist.

First-aid measures after ingestion

: Rinse mouth. Do NOT induce vomiting. Obtain

emergency medical attention.

Trade Name: HaloKlear DBP-2100 Socks

#### 4 FIRST AID MEASURES

· Most important symptoms and effects, both acute and delayed

Symptoms/Injuries after eye contact : Not expected to present a significant hazard under

anticipated conditions of normal use.

 $\cdot\,$  Indication of any immediate medical attention and special treatment needed

No additional information available

#### 5 FIRE-FIGHTING MEASURES

· Extinguishing media

Suitable extinguished media : Foam. Dry powder. Carbon dioxide. Water spray. Sand.

Unsuitable extinguishing media : Do not use a heavy water stream.

· Special hazards arising from the substance or mixture

Reactivity : The product is non-reactive under normal conditions

of use, storage and transport.

Advice for firefighters

Firefighting instructions : Exercise caution when fighting any chemical fire.

Eliminate all ignition sources if safe to do so.

Use water spray of fog for cooling exposed containers.

Protection during firefighting : Do not enter fire area without proper protective

equipment, including respiratory protection.

Other information : Spills produce extremely slippery surfaces. Avoid dust

formation.

#### **6 ACCIDENTAL RELEASE MEASURES**

· Personal precautions, protective equipment and emergency procedures

· For non-emergency personnel

Emergency procedures : Evacuate unnecessary personnel.

· For emergency responders

Protective equipment : Equip cleanup crew with proper protection.

Emergency procedures : Ventilate area

Environmental precautions

Prevent entry to sewers and public waters. Notify authorities if liquid enters sewers or public waters.

#### Trade Name: HaloKlear DBP-2100 Socks

#### **6 ACCIDENTAL RELEASE MEASURES**

· Personal precautions, protective equipment and emergency procedures

General measures : Use special care to avoid static electric charges.

For non-emergency personnel

Emergency procedures : Evacuate unnecessary personnel.

For emergency responders

Protective equipment : Equip cleanup crew with proper protection.

Emergency procedures : Ventilate area.

Environmental precautions

Prevent entry to sewers and public waters. Notify authorities if liquid enters sewers or public waters.

· Methods and material for containment and cleaning up

Methods of cleaning up : On land, sweep or shovel into suitable containers.

Minimize generation of dust. Store away from other

materials.

· Reference to other sections

See Section 8. Exposure controls and personal protection.

#### 7 HANDLING AND STORAGE

· Precautions for safe handling

Precautions for safe handling : Wash hands and other exposed areas with mild soap

and water before eating, drinking or smoking and leaving work. Provide good ventilation in process area

to prevent formation of vapor. No smoking.

· Conditions for safe storage, including and incompatibles

Storage conditions : Keep only in the original container in a cool, well-

ventilated place. Keep container closed when not in use.

Incompatible products : Oxidizing agent.
Incompatible materials : Sources of ignition.

Specific end use(s)

No additional information available

#### 8 EXPOSURE CONTROLS/PERSONAL PROTECTION

Control parameters

HaloKlear DBP-2100 Socks

ACGIH : Not applicable
OSHA : Not applicable

#### Trade Name: HaloKlear DBP-2100 Socks

#### 8 EXPOSURE CONTROLS/PERSONAL PROTECTION

Exposure controls

Personal protective equipment : Avoid all unnecessary exposure.

Hand protection : Wear protective gloves/protective clothing/eye

protection/face protection protective gloves.

Eye protection : Chemical goggles or safety glasses.

Respiratory protection : Use a property fitted, particulate filter respirator

complying with an approved standard if a risk

assessment indicates this necessary. Respirator selection must be based on known or anticipated exposure levels, the hazards of the product and the safe working limits

of the selected respirator.

Other information : Do not eat, drink or smoke during use.

#### 9 PHYSICAL AND CHEMICAL PROPERTIES

Information on basic physical and chemical properties

Physical state : Solid

Color : White to tan
Odor : odorless

Odour threshold : No data available

pH : approximately neutral (1% solution)

Relative evaporation rate : No data available Melting point : No data available Freezing point : No data available : No data available Boiling point : No data available Flash point Auto-ignition temperature : No data available Decomposition temperature : No data available Flammability (solid, gas) : No data available Vapor pressure : No data available Relative vapor density : No data available : No data available Relative density Solubility : Water: 100 % Log Pow : No data available Log Kow : No data available Viscosity, kinematic : No data available

Trade Name: HaloKlear DBP-2100 Socks

#### 9 PHYSICAL AND CHEMICAL PROPERTIES

Viscosity, dynamic : No data available
Explosive properties : No data available
Oxidizing properties : No data available
Explosive limits : No data available

· Other Information

No additional information available

#### 10 STABILITY AND REACTIVITY

· Reactivity

The product is non-reactive under normal conditions of use, storage and transport.

· Chemical stability

Stable under normal conditions.

· Possibility of hazardous reactions

No dangerous reactions known under normal conditions of use.

· Conditions to avoid

Avoid dust formation.

· Incompatible materials

Oxidizing agent.

· Hazardous decomposition products

Thermal decomposition generates: Carbon dioxide. Carbon monoxide. Fume.

#### 11 TOXICOLOGICAL INFORMATION

· Information on toxicological effects

Acute toxicity : Not classified Skin corrosion/irritation : Not classified

pH: approximately neutral (1% solution)

Serious eye damage/irritation : Not classified

pH: approximately neutral (1% solution)

Respiratory or skin sensitization : Not classified
Germ cell mutagenicity : Not classified
Carcinogenicity : Not classified
Reproductive toxicity : Not classified
Specific target organ toxicity : Not classified

(single exposure)

#### Trade Name: HaloKlear DBP-2100 Socks

#### 11 TOXICOLOGICAL INFORMATION

Specific target organ toxicity

: Not classified

(repeated exposure)

Aspiration hazard

: Not classified

Potential adverse human health

effects and symptoms : Based on available data, the classification criteria are

not met.

#### 12 ECOLOGICAL INFORMATION

Toxicity

HaloKlear DBP-2100 Socks (11138-66-2)

LC50 fish 1 491 mg/l Rainbow Trout; 96 hour

· Persistence and degradability

HaloKlear DBP-2100 Socks (11138-66-2)

Persistence and degradability The product is biodegradable

· Bioaccumulative potential

HaloKlear DBP-2100 Socks (11138-66-2)

Bioaccumulative potential Inherently biodegradable

· Mobility in soil

HaloKlear DBP-2100 Socks (11138-66-2)

Mobility in soil Not available

· Other adverse effects

Effect on Global warming : No known ecological damaged caused by this product.

Other information : No other effects known.

#### 13 DISPOSAL CONSIDERATIONS

· Waste treatment methods

Waste disposal recommendations : Dispose of contents/container in accordance with

Licensed collector's sorting instructions.

Ecology – waste materials : None known.

#### Trade Name: HaloKlear DBP-2100 Socks

#### 14 TRANSPORT INFORMATION

UN-No. (DOT):: Non RegulatedUN-No. (IMDG):: Non RegulatedUN-No. (IATA):: Non Regulated

· UN proper shipping name

Proper Shipping Name (DOT): : Not applicable
Proper Shipping Name (IMDG): : Not applicable
Proper Shipping Name (IATA): : Not applicable

Transport hazard class(es)

Transport hazard class(es) (DOT): : Not applicable
Transport hazard class(es) (IMDG): : Not applicable
Transport hazard class(es) (IATA): : Not applicable

Packing group

Packing group (DOT): : Not applicable
Packing group (IMDG): : Not applicable
Packing group (IATA): : Not applicable

· Environmental hazards

Marine pollutant(IMDG): : No Marine pollutant(IATA): : No

#### 15 REGULATORY INFORMATION

#### US Federal regulations

All components of this product are listed, or excluded from listing, on the United States Environmental Protection Agency ToxicSubstances Control Act (TSCA) inventory.

This product or mixture does not contain a toxic chemical or chemicals in excess of the applicable de minimis concentration as specified in 40 CFR §372.38(a) subject to the reporting requirements of section 313 of Title III of the Superfund Amendments and Reauthorization Act of 1986 and 40 CFR Part 372.

· International Regulations

Canada

Aluminum chloride hydroxide sulfate (39290-78-3)

No additional information available

#### Trade Name: HaloKlear DBP-2100 Socks

#### 15 REGULATORY INFORMATION

#### · US State regulations

California Proposition 65 - This product does not contain any substances known to the state of California to cause cancer, developmental and/or reproductive harm.

#### **16 OTHER INFORMATION**

Other information: : None

NFPA health hazard : 0 - Exposure under fire conditions would offer no

hazard beyond that of ordinary combustible

materials.

NFPA fire hazard : 0 - Materials that will not burn.

NFPA reactivity : 0 - Normally stable, even under fire exposure

conditions, and are not reactive with water.

NFPA specific hazard : NA - Not Applicable

HMIS III Rating

Health : 0 - No significant risk to health

Flammability : 0
Physical : 0
Personal Protection : B



#### acc. to OSHA HCS

#### 1 IDENTIFICATION

· Product identifier

Trade name: HaloKlear: Gel-Floc

- · Details of the supplier of the safety data sheet
- · Manufacturer/Supplier:

Sound Environmental Concepts 22726 102nd Ave SE, Woodinville, WA 98077 1 (206) 730 - 5376 ray@soundenvirocon.com

- · Information department: Product safety department
- · Telephone number:
  - + 1 (206) 730 5376
- · Information department: Product safety department
- · Emergency telephone number: +1 (800) 424-9300 (24 Hours)

During normal opening times: +1 (425) 881-6464

CHEMTREC (Domestic, North America) +1-703-527-3887 CHEMTREC (International, collect calls accepted)

#### 2 HAZARD(S) IDENTIFICATION

· Classification of the substance or mixture

The product is not classified according to the Globally Harmonized System (GHS).

------

Classification according to Directive 67/548/EEC or Directive 1999/45/EC *Not applicable*. Information concerning particular hazards for human and environment:

The product does not have to be labeled due to the calculation procedure of international guidelines Classification system:

The classification was made according to the latest editions of international substances lists, and expanded upon from company and literature data.

Trade Name: HaloKlear: Gel-Floc

#### 2 HAZARD(S) IDENTIFICATION CONTD.

- · Label elements
- · Labelling according to EU guidelines:

Observe the general safety regulations when handling chemicals. The product is not subject to identification regulations according to directives on hazardous materials.

- · Classification System
  - NFPA ratings (scale 0 4)
    - · Health = 0
    - · Fire = 0
    - · Reactivity = 0

- · HMIS-ratings (scale 0 4)
  - · Health = 0
  - · Fire = 0
  - · Reactivity = 0

_____

- Other hazards
- · Results of PBT and vPvB assessment
- · PBT: Not applicable
- · vPvB: Not applicable

#### 3 COMPOSITION/INFORMATION ON INGREDIENTS

· Chemical characterization: Mixtures

• **Description:** *Mixture of the substances listed below with nonhazardous additions.* 

· Dangerous components: Void

#### **4 FIRST-AID MEASURES**

- · Description of first aid measures
- · General information: No special measures required.
- · **After inhalation:** Supply fresh air; consult doctor in case of complaints.
- · **After skin contact:** Generally the product does not irritate the skin.
- · After eye contact: Rinse opened eye for several minutes under running water.
- · After swallowing: If symptoms persist consult doctor.

Trade Name: HaloKlear: Gel-Floc

#### 4 FIRST AID MEASURES CONTD.

- · Information for doctor:
- Most important symptoms and effects, both acute and delayed *No further relevant information available.*
- · Indication of any immediate medical attention and special treatment needed No further relevant information available

#### 5 FIRE-FIGHTING MEASURES

- · Extinguishing media
- **Suitable extinguishing agents:** *CO2, extinguishing powder or water spray. Fight larger fires with water spray or alcohol resistant foam.*
- · Special hazards arising from the substance or mixture *No further relevant information available.*
- · Advice for firefighters
- · Protective equipment: No special measures required.

#### 6 ACCIDENTAL RELEASE MEASURES

- · Personal precautions, protective equipment and emergency procedures Not required.
- · Environmental precautions: Do not allow to enter sewers/ surface or ground
- · Methods and material for containment and cleaning up: Pick up mechanically
- · Reference to other sections

See Section 7 for information on safe handling.

See Section 8 for information on personal protection equipment.

See Section 13 for disposal information.

#### 7 HANDLING AND STORAGE

- · Handling:
- Precautions for safe handling No special measures required.
- · Information about protection against explosions and fires: No special measures required.
- · Conditions for safe storage, including any incompatibilities
- Storage:
- · Requirements to be met by storerooms and receptacles: No special requirements.
- · Information about storage in one common storage facility: Not required.
- · Further information about storage conditions: None.
- Specific end use(s) Water flocculent

Trade Name: HaloKlear: Gel-Floc

#### 8 EXPOSURE CONTROLS/PERSONAL PROTECTION CONTD.

- · Additional information about design of technical systems: No further data; see item 7.
- · Control parameters
- Components with limit values that require monitoring at the workplace:
   The product does not contain any relevant quantities of materials with critical values that have to be monitored at the workplace.
- · Additional information: The lists that were valid during the creation were used a basis.
- · Exposure controls
- · Personal protective equipment:
- General protective and hygienic measures:

The usual precautionary measures for handling chemicals should be followed.

- · Breathing equipment: Not required.
- Protection of hands:

The glove material has to be impermeable and resistant to the product/ the substance/ the preparation. Due to missing tests no recommendation to the glove material can be given for the product/ the preparation/ the chemical mixture. Selection of the glove material on consideration of the penetration times, rates of diffusion and the degradation

Material of gloves

The selection of the suitable gloves does not only depend on the material, but also on further marks of quality and varies from manufacturer to manufacturer. As the product is a preparation of several substances, the resistance of the glove material can't be calculated in advance and has therefore to be checked prior to the application.

Penetration time of glove material

The exact break through time has to be found out by the manufacturer of the protective gloves and has to be observed.

• **Eye protection:** *Not required.* 

#### 9 PHYSICAL AND CHEMICAL PROPERTIES

- · Information on basic physical and chemical properties
- · General Information
- Appearance:

Form: PowderColor: Whitish

Odor: Product specificOdour threshold: Not determined

pH-value at 20 °C (68 °F):

Not applicable

Trade Name: HaloKlear: Gel-Floc

**Kinematic:** 

### 9 PHYSICAL AND CHEMICAL PROPERTIES CONTD. · Change in condition Melting point/Melting range: Undetermined Boiling point/Boiling range: > 999 °C (> 1830 °F) · Flash point: Not applicable · Flammability (solid, gaseous): Not determined · Ignition temperature: · Decomposition temperature: Not determined · Auto igniting: Product is not selfigniting · Danger of explosion: Product does not present an explosion hazard.\ · Explosion limits: Lower: Not determined **Upper:** Not determined · Vapor pressure at 20 °C (68 °F): Not applicable Density at 20 °C (68 °F): Not determined · Relative density Not determined · Vapour density Not applicable · Evaporation rate Not applicable · Solubility in / Miscibility with Insoluble Water: · Partition coefficient (n-octanol/water): Not determined · Viscosity: **Dynamic:** Not applicable

Not applicable

Trade Name: HaloKlear: Gel-Floc

#### 9 PHYSICAL AND CHEMICAL PROPERTIES CONTD.

· Solvent content:

Organic solvents: 0.0 % Solids content: 100.0%

• **Other information** No further relevant information available.

#### 10 STABILITY AND REACTIVITY

- Reactivity
- · Chemical stability
- Thermal decomposition / conditions to be avoided: No decomposition if used according to specifications.
- · Possibility of hazardous reactions *No dangerous reactions known.*
- · Conditions to avoid No further relevant information available.
- · Incompatible materials: No further relevant information available.
- · Hazardous decomposition products: No dangerous decomposition products known.

#### 11 TOXICOLOGICAL INFORMATION

- · Information on toxicological effects
- · Acute toxicity:
- · Primary irritant effect:
- · on the skin: No irritant effect.
- · on the eye: No irritating effect.
- · Sensitization: No sensitizing effects known.
- · Additional toxicological information:

The product is not subject to classification according to internally approved calculation methods for preparations:

When used and handled according to specifications, the product does not have any harmful effects according to our experience and the information provided to us.

Carcinogenic categories

• IARC (International Agency for Research on Cancer)

None of the ingredients is listed.

· NTP (National Toxicology Program)

None of the ingredients is listed.

Trade Name: HaloKlear: Gel-Floc

#### 11 TOXICOLOGICAL INFORMATION CONTD.

OSHA-Ca (Occupational Safety & Health Administration)
 None of the ingredients is listed.

#### 12 ECOLOGICAL INFORMATION

- · Toxicity
- · Aquatic toxicity: No further relevant information available.
- · Persistence and degradability No further relevant information available.
- · Behavior in environmental systems:
- · **Bioaccumulative potential** *No further relevant information available.*
- · Mobility in soil No further relevant information available.
- · Additional ecological information:
- General notes: Water hazard class 1 (self-assessment): Slightly hazardous for water.
   Do not allow undiluted product or large quantities of it to reach ground water, water course or sewage system.
- · Results of PBT and vPvB assessment
- · **PBT:** Not applicable.
- · **vPvB:** Not applicable.
- · Other adverse effects No further relevant information available.

#### 13 DISPOSAL CONSIDERATIONS

- · Waste treatment methods
- · **Recommendation:** *Smaller quantities can be disposed of with household waste.*
- · Uncleaned packaging:
- **Recommendation:** *Disposal must be made according to official regulations.*

#### 14 TRANSPORT INFORMATION

Not regulated

- · UN-Number
- · DOT, IMDG, IATA

· UN proper shipping name

· DOT, IMDG, IATA Not regulated

Trade Name: HaloKlear: Gel-Floc

Transport hazard class(es)	
DOT, IMDG, IATA	
Class	Not regulated
Packing group	
DOT, IMDG, IATA	Not regulated
Special precautions for user	Not applicable
Transport in bulk according to Annex II of	
MARPOL73/78 and the IBC Code	Not applicable
UN "Model Regulation":	-
Safety, health and environmental regulati	ons/legislation specific for the substance
Safety, health and environmental regulati Sara Section 355 (extremely hazardous substant None of the ingredients are listed.	ons/legislation specific for the substance
Safety, health and environmental regulati Sara Section 355 (extremely hazardous substan	ons/legislation specific for the substance
Safety, health and environmental regulati Sara  Section 355 (extremely hazardous substant None of the ingredients are listed.  Section 313 (Specific toxic chemical listing None of the ingredients are listed.	ons/legislation specific for the substance
Safety, health and environmental regulati Sara Section 355 (extremely hazardous substan None of the ingredients are listed. Section 313 (Specific toxic chemical listing	ons/legislation specific for the substance
Safety, health and environmental regulati Sara  Section 355 (extremely hazardous substant None of the ingredients are listed.  Section 313 (Specific toxic chemical listing None of the ingredients are listed.  TSCA (Toxic Substances Control Act):	ons/legislation specific for the substance
Safety, health and environmental regulati Sara  Section 355 (extremely hazardous substant None of the ingredients are listed.  Section 313 (Specific toxic chemical listing None of the ingredients are listed.  TSCA (Toxic Substances Control Act): All ingredients are listed.	ons/legislation specific for the substance
Safety, health and environmental regulati Sara  Section 355 (extremely hazardous substan None of the ingredients are listed.  Section 313 (Specific toxic chemical listing None of the ingredients are listed.  TSCA (Toxic Substances Control Act): All ingredients are listed.  Proposition 65	ons/legislation specific for the substance
Safety, health and environmental regulati Sara  Section 355 (extremely hazardous substant None of the ingredients are listed.  Section 313 (Specific toxic chemical listing None of the ingredients are listed.  TSCA (Toxic Substances Control Act): All ingredients are listed.  Proposition 65  Chemicals known to cause cancer:	ons/legislation specific for the substance ces):

Trade Name: HaloKlear: Gel-Floc

#### 15 REGULATORY INFORMATION CONTD.

· Chemicals known to cause developmental toxicity:

None of the ingredients are listed.

- · Carcinogenic categories
- EPA (Environmental Protection Agency)

  None of the ingredients are listed.
- TLV (Threshold Limit Value established by ACGIH)
   None of the ingredients are listed.
- NIOSH-Ca (National Institute for Occupational Safety and Health)

  None of the ingredients are listed.
- Product related hazard informations:

Observe the general safety regulations when handling chemicals. The product is not subject to identification regulations according to directives on hazardous materials.

· Chemical safety assessment: A Chemical Safety Assessment has not been carried out.

#### **16 OTHER INFORMATION**

This information is based on our present knowledge. However, this shall not constitute a guarantee for any specific product features and shall not establish a legally valid contractual relationship.

- **Department issuing SDS:** *Environment protection department.*
- · Contact: Mrs. Jackson

Date of preparation / last revision 02/09/2015 / - Present

· Abbreviations and acronyms:

ADR: Accord européen sur le transport des marchandises dangereuses par Route (European Agreement concerning the International

Carriage of Dangerous Goods by Road)

IMDG: International Maritime Code for Dangerous Goods

DOT: US Department of Transportation

IATA: International Air Transport Association

ACGIH: American Conference of Governmental Industrial Hygienists EINECS: European Inventory of Existing Commercial Chemical Substances

ELINCS: European List of Notified Chemical Substances

**Trade Name: HaloKlear: Gel-Floc** 

#### 16 OTHER INFORMATION CONTD.

CAS: Chemical Abstracts Service (division of the American Chemical Society)

NFPA: National Fire Protection Association (USA)

HMIS: Hazardous Materials Identification System (USA)