

SITE DEVELOPMENT · ENVIRONMENTAL REMEDIATION · SOIL MANAGEMENT

U.S. Environmental Protection Agency
Office of Ecosystem Protection
EPA/OEP RGP Applications Coordinator
5 Post Office Square, Suite 100 (OEP06-01)
Boston, MA 02109-3912

February 25, 2020 File No. 4325.04

Re: Notice of Intent for the Remediation General Permit

Temporary Construction Dewatering for Site Redevelopment

Madison Commons

Madison Street, Worcester, MA

Dear Sir/Madam:

On behalf of The Worcester Redevelopment Authority, W. L. French Excavating Corporation (WLF) has submitted this Notice of Intent (NOI) to the U.S. Environmental Protection Agency (U.S. EPA) for coverage under the National Pollutant Discharge Elimination System (NPDES) Remediation General Permit (RGP) MAG910000 for the Madison Commons (the Site) property. This letter and supporting documentation were prepared in accordance with the U.S. EPA guidance for construction dewatering under the RGP program. WLF is the earthwork contractor for the project and will have direct responsibility of the subcontractors performing the dewatering activities at the Site. Subcontractors working for WLF on the project will be required to meet the requirements of this NOI and the RGP. The location of the Site and the discharge location via a culvert are shown on Figure 1, and the extent of the Site area is shown on Figure 2.

The Site is located in the vicinity of Madison Street, Washington Street, and Lamartine Street in Worcester, Massachusetts as shown on Figure 1. Redevelopment activities at the Site include construction of a mixed-use development. Two primary Massachusetts Contingency Plan (310 CMR 40.0000) (MCP) sites are present on the Site, with Release Tracking Numbers (RTNs) 2-10256 and 2-10760. Four other RTNs were subsequently linked to the primary RTNs. Activity and Use Limitations (AULs) have been filed with partial Class A-3 Response Action Outcome (RAO) Statements for these releases. Two other MCP sites within the Site boundary, RTNs 2-14918 and 2-14921, have achieved regulatory closure with the filing of Class A-1 RAO Statements (i.e., Permanent Solutions without Conditions). Documented impacts to the Site include petroleum hydrocarbons, metals, volatile organic compounds (VOCs), and semi-volatile organic compounds (SVOCs) in soil and groundwater.

The Site is located between approximately Madison Street, Washington Street, and Lamartine Street in Worcester, Massachusetts. The Site is currently an active construction site. An existing building slab occupies the southern corner of the Site, which is intended to be repurposed as a parking area. Historically, the Site has been used for a variety of commercial, industrial, and residential purposes since its development dating to at least the early 1890s. The Site was formerly occupied by Stanley Tools, Inc.

SITE DEVELOPMENT · ENVIRONMENTAL REMEDIATION · SOIL MANAGEMENT

(Stanley) for manufacturing hand tools, followed more recently by the Kelley Square Flea Market. The remainder of the Site was formerly operated by Wyman Gordon for the manufacture of ferrous and nonferrous metal forgings for use in the aircraft and aerospace industries. Much of the manufacturing operations at the Site were ceased in the late 1990s and early 2000s, during which time the former buildings on the main Wyman Gordon Property were decommissioned and demolished.

Groundwater is anticipated to be encountered between approximately Elevation (El.) 438 feet to El. 442 feet. Elevations referenced herein are given in feet and refer to the North American Vertical Datum of 1988. It is anticipated that excavations below the groundwater table may be required to facilitate the removal of existing building foundation elements and construction of new buildings on the Site. Groundwater that flows into the excavations during construction activities will be treated prior to discharge to an existing storm drain such that the discharged effluent meets the effluent limitations established by NPDES Part 2.1 and Appendix V of the RGP Application. Figure 3 includes a schematic of the proposed dewatering treatment system. The completed NOI for the Remediation General Permit form is included as Appendix A.

The receiving surface water body for the treatment system will be Mill Brook, an underground culvert that daylights at its confluence with the Middle River. At the confluence, the combined water body becomes the Blackstone River. The Middle River was sampled as the receiving surface water body. Information regarding the receiving water was collected from the Massachusetts Year 2014 Integrated List of Waters which is included in Appendix B. Dilution calculation information including correspondence with DEP is included in Appendix C. Analytical laboratory data for on-Site and surface water sampling is summarized in Tables 1 and 2, respectively, and analytical data reports are included in Appendix D. Municipal correspondence in the form of a memorandum is provided in Appendix E, indicating a notification of discharge into the Middle River via a municipal storm sewer system has been provided to the Owner of the discharge system. City of Worcester maps and the 2014 Massachusetts Integrated List of Waters map showing the subsurface infrastructure that will be used to convey the discharge are included in Appendix E.

According to the Information for Planning and Conservation (IPaC), the excavation activities will not impact Areas of Critical Environmental Concern (ACEC) or Habitats of Rare Wetland

Wildlife. A review of the information on the U.S. Fish and Wildlife Service website led to the conclusion that the project will not impact federally-listed threatened or endangered species. A letter from that agency is included in Appendix F. An email requesting information regarding Oceanic Fisheries was sent to the National Oceanic and Atmospheric Administration (NOAA), and their response, included in Appendix F, states that no listed species are known to occur in the vicinity of Worcester, MA in the area of discharge. Additional supplemental information required by the RGP is included in Appendix G, and are referenced within the completed NOI (Appendix A).

Thank you for your consideration of this NOI/Permit. Please feel free to contact us if you wish to discuss the information contained in this application, or if any additional information is needed.

SITE DEVELOPMENT · ENVIRONMENTAL REMEDIATION · SOIL MANAGEMENT

Very truly yours,

W.L. French Excavating Corp., Operator of Permit

James Ganiatsos Project Manager W.L. French Excavating Corp.

Encl. Table 1 – Summary of Groundwater Quality

Table 2 – Summary of Surface Water Quality

Figure 1 – Locus Plan

Figure 2 – Location of Proposed Excavation and Dewatering

Figure 3 – Proposed Groundwater Treatment Schematic

Appendix A – Notice of Intent Form

Appendix B – Massachusetts Category 5 Waters "Waters requiring a TDML"

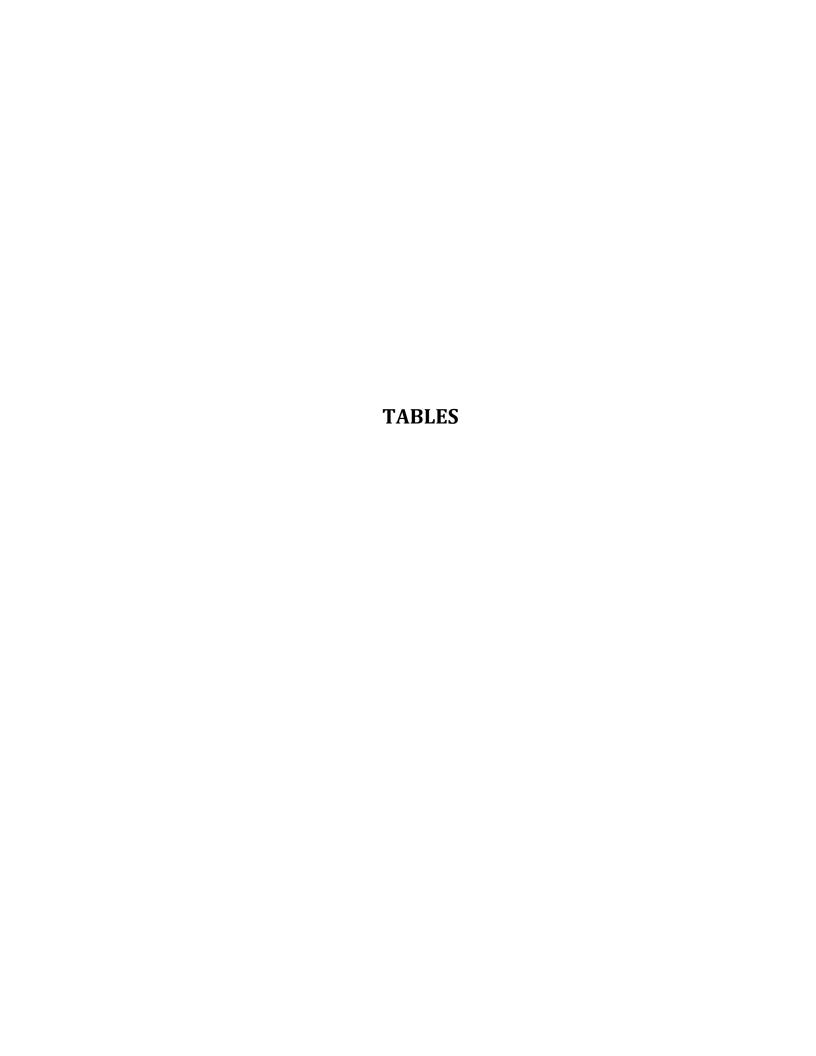
Appendix C – Middle River Dilution Calculations

Appendix D – Analytical Data Reports

Appendix E – Municipal Correspondence

Appendix F – Federal Correspondence

Appendix G – National Register of Historic Places, Worcester, Massachusetts


cc: City of Worcester

DEP Bureau of Water Resources

Mr. Greg Ormsby ~ City of Worcester

Mr. Paul Moosey ~ City of Worcester

Mr. Russ Adams ~ City of Worcester

Table 1Summary of Groundwater Quality Madison Commons Worcester, MA

		_						
LOCATION	DCCM/ 2	NPDES	TT . *4 .	MC-41 (OW)	GZ-813/GP70	MW-1	Maximum	Average
SAMPLING DATE SAMPLE TYPE	RCGW-2	TBEL	Units	8/8/2019 WATER	8/8/2019 WATER	8/8/2019 WATER	Detection	Detection
Anions by Ion Chromatogra	lanhv	<u> </u>		WAIEK	WAIER	WAIER	1	
Chloride	NS	NS	ug/l	4,760	2,440	154,000	154,000	53,733
Dissolved Metals	110	110	u ₈ /1	1,700	2,110	131,000	134,000	33,733
Arsenic, Dissolved	900	104	ug/l	1.8	33	6.5	33	13.8
Cadmium, Dissolved	4	10.2	ug/l	<0.2	<0.2	<0.2	BDL	BDL
Chromium, Dissolved	300	323	ug/l	<1	17.7	<1	17.7	6.2
Copper, Dissolved	100,000	242	ug/l	22.9	2.7	2.5	22.9	9.4
Iron, Dissolved	NS	5,000	ug/l	611	<50	128	611	255
Lead, Dissolved	10	160	ug/l	1.4	<1	<1	1.4	0.8
Mercury, Dissolved	20	0.739	ug/l	<0.2	<0.2	<0.2	BDL	BDL
Nickel, Dissolved	200	1,450	ug/l	4.1	32.1	39.7	39.7	25.3
Selenium, Dissolved	100	235.8	ug/l	<5	<5	<5	BDL	BDL
Silver, Dissolved	7	35.1	ug/l	<0.4	<0.4	<0.4	BDL	BDL
Zinc, Dissolved General Chemistry	900	420	ug/l	38.7	<10	<10	38.7	16.2
Chromium, Trivalent	600	323	ug/l	<10	219	<10	219	76
Solids, Total Suspended	NS	30	mg/l	320	10	130	320	153
Cyanide, Total	0.03	178	mg/l	0.361	0.006	<0.005	0.361	0.123
Chlorine, Total Residual	NS	0.2	mg/l	<0.02	<0.02	<0.003	BDL	BDL
pH (H)	NS	NS	SU	7.0	6.8	7.2	7.2	7.0
Nitrogen, Ammonia	NS	NS	mg/l	0.079	0.106	0.213	0.213	0.133
Sulfate	NS	NS	ug/l	17,000	<10,000	12,000	17,000	11,333
ТРН, SGT-НЕМ	5	5	mg/l	<4	38.3	<5.2	38.3	14
Phenolics, Total	NS	NS	ug/l	<30	<30	<30	BDL	BDL
Chromium, Hexavalent	300	323	ug/l	<10	<10	<10	BDL	BDL
Microextractables by GC								
1,2-Dibromoethane	2	0.05	ug/l	< 0.01	< 0.01	< 0.01	BDL	BDL
Polychlorinated Biphenyls	by GC							
Aroclor 1016	5	NS	ug/l	<0.25	< 0.25	<0.25	BDL	BDL
Aroclor 1221	5	NS	ug/l	<0.25	< 0.25	<0.25	BDL	BDL
Aroclor 1232	5	NS	ug/l	<0.25	<0.25	<0.25	BDL	BDL
Aroclor 1242	5	NS	ug/l	<0.25	<0.25	< 0.25	BDL	BDL
Aroclor 1248	5	NS	ug/l	<0.25	<0.25	<0.25	BDL	BDL
Aroclor 1254	5	NS	ug/l	<0.25	<0.25	<0.25	BDL	BDL
Aroclor 1260	5	NS	ug/l	<0.2	<0.2	<0.2	BDL	BDL
Semivolatile Organics by G	•	101						
Bis(2-ethylhexyl)phthalate	50,000	101	ug/l	<2.2	11	2.7	11	4.9
Butyl benzyl phthalate	10,000	NS	ug/l	<5 	<5	<5	BDL	BDL
Di-n-butylphthalate	5,000	NS	ug/l	<5 	<5	<5	BDL	BDL
Di-n-octylphthalate	100,000 9,000	NS NS	ug/l	<5 <5	<5 <5	<5 	BDL	BDL
Diethyl phthalate Dimethyl phthalate	50,000	NS NS	ug/l ug/l	<5 <5	<5 <5	<5 <5	BDL BDL	BDL BDL
Total Phthalates	NS	190	ug/l	<27.2	11	2.7	11	9.1
Semivolatile Organics by G		190	ug/1	\Z1. Z	11	2.7	11	7.1
Pentachlorophenol	200	1	ug/l	<1	<1	<1	BDL	BDL
Group I Polycyclic Aromatic			46/1	•1	11		DDL	ВВВ
Benzo(a)anthracene	1,000	NS	ug/l	0.22	1.0	0.19	1.0	0.47
Benzo(a)pyrene	500	NS	ug/l	0.17	1.2	0.20	1.2	0.52
Benzo(b)fluoranthene	400	NS	ug/l	0.22	2.2	0.30	2.2	0.91
Benzo(k)fluoranthene	100	NS	ug/l	<0.1	0.72	<0.1	0.72	0.27
Chrysene	70	NS	ug/l	0.15	1.4	0.19	1.4	0.58
Dibenzo(a,h)anthracene	40	NS	ug/l	<0.1	0.26	<0.1	0.26	0.12
Indeno(1,2,3-cd)pyrene	100	NS	ug/l	0.14	1.3	0.16	1.3	0.53
Total Group I PAHs	NS	1	ug/l	0.9	8.08	1.04	8.08	3.34
Group II Polycyclic Aromati	_							
Acenaphthene	10,000	NS	ug/l	<0.1	<0.1	<0.1	BDL	BDL
Acenaphthylene	40	NS	ug/l	<0.1	0.19	<0.1	0.19	0.10
Anthracene	30	NS	ug/l	<0.1	0.21	<0.1	0.21	0.10
Benzo(ghi)perylene	20	NS	ug/l	0.13	1.3	0.16	1.3	0.53
Fluoranthene	200	NS NC	ug/l	0.27	3.9	0.41	3.9	1.53
Fluorene	40	NS 20	ug/l	<0.1	0.10	<0.1	0.1	0.07
Naphthalene Dhananthrana	700	20 NC	ug/l	0.11	<0.1	0.15	0.15	0.10
Phenanthrene Pyrene	10,000	NS NS	ug/l	0.11 0.24	0.66	0.16 0.36	0.66	0.31
Pyrene Total Group II PAHs	NS NS	100	ug/l ug/l	0.24	2.4 8.76	1.24	2.4 8.76	1.00 3.62
Total Hardness by SM 2340		100	ug/I	0.00	0.70	1.44	0.70	3.04
Hardness	NS NS	NS	ug/l	122,000	204,000	124,000	204,000	150,000
Total Metals	1 110	1 1,0	∽ხ/ ¹	,		1,000	201,000	200,000
		104	ug/l	7.23	48.79	9.14	48.79	21.72
	900	1177	~o/ '			0.27	_	0.47
Arsenic, Total	900	1	ug/l	0.59	0.55	0.47	0.59	
Arsenic, Total Cadmium, Total	4	10.2	ug/l ug/l	0.59 2.06	0.55 219		0.59 219	
Arsenic, Total		1	ug/l	0.59 2.06 35.60	0.55 219 10.4	2.14 8.47	219 35.6	74.4 18.2
Arsenic, Total Cadmium, Total Chromium, Total	4 300	10.2 323		2.06	219	2.14	219	74.4
Arsenic, Total Cadmium, Total Chromium, Total Copper, Total	4 300 100,000	10.2 323 242	ug/l ug/l	2.06 35.60	219 10.4	2.14 8.47	219 35.6	74.4 18.2
Arsenic, Total Cadmium, Total Chromium, Total Copper, Total Iron, Total	4 300 100,000 NS	10.2 323 242 5,000	ug/l ug/l ug/l	2.06 35.60 5,340	219 10.4 4,230	2.14 8.47 1,080	219 35.6 5,340	74.4 18.2 3,550
Arsenic, Total Cadmium, Total Chromium, Total Copper, Total Iron, Total Lead, Total	4 300 100,000 NS 10	10.2 323 242 5,000 160	ug/l ug/l ug/l ug/l	2.06 35.60 5,340 16.56	219 10.4 4,230 6.46	2.14 8.47 1,080 6.41	219 35.6 5,340 16.56	74.4 18.2 3,550 9.81
Arsenic, Total Cadmium, Total Chromium, Total Copper, Total Iron, Total Lead, Total Mercury, Total	4 300 100,000 NS 10 20 200	10.2 323 242 5,000 160 0.739	ug/l ug/l ug/l ug/l ug/l	2.06 35.60 5,340 16.56 <0.2	219 10.4 4,230 6.46 <0.2	2.14 8.47 1,080 6.41 <0.2	219 35.6 5,340 16.56 BDL	74.4 18.2 3,550 9.81 BDL
Arsenic, Total Cadmium, Total Chromium, Total Copper, Total Iron, Total Lead, Total Mercury, Total Nickel, Total	4 300 100,000 NS 10 20 20	10.2 323 242 5,000 160 0.739 1,450	ug/l ug/l ug/l ug/l ug/l ug/l	2.06 35.60 5,340 16.56 <0.2 5.83	219 10.4 4,230 6.46 <0.2 15.37	2.14 8.47 1,080 6.41 <0.2 47.17	219 35.6 5,340 16.56 BDL 47.17	74.4 18.2 3,550 9.81 BDL 22.79

Table 1

Summary of Groundwater Quality Madison Commons Worcester, MA

LOCATION		NDDEC		MC-41 (OW)	GZ-813/GP70	MW-1	Manimum	A
SAMPLING DATE	RCGW-2	NPDES	Units	8/8/2019	8/8/2019	8/8/2019	Maximum	Average
SAMPLE TYPE		TBEL		WATER	WATER	WATER	Detection	Detection
Volatile Organics by GC/MS		•						
Methylene chloride	2,000	4.6	ug/l	<1	<1	<1	BDL	BDL
1,1-Dichloroethane	2,000	70	ug/l	<1.5	<1.5	<1.5	BDL	BDL
Carbon tetrachloride	2	4.4	ug/l	<1	<1	<1	BDL	BDL
1,1,2-Trichloroethane	900	5	ug/l	<1.5	<1.5	<1.5	BDL	BDL
Tetrachloroethene	50	5	ug/l	<1	3.1	<1	3.1	1.4
1,2-Dichloroethane	5	5	ug/l	<1.5	<1.5	<1.5	BDL	BDL
1,1,1-Trichloroethane	4,000	200	ug/l	<2	<2	<2	BDL	BDL
Benzene	1,000	5	ug/l	<1	<1	<1	BDL	BDL
Toluene	40,000	NS	ug/l	<1	<1	<1	BDL	BDL
Ethylbenzene	5,000	NS	ug/l	<1	<1	<1	BDL	BDL
Vinyl chloride	2	2	ug/l	<1	23	<1	23	8
1,1-Dichloroethene	80	3.2	ug/l	<1	<1	<1	BDL	BDL
cis-1,2-Dichloroethene	20	70	ug/l	<1	170	<1	170	57
Trichloroethene	5	5	ug/l	1.0	22	<1	22	8
1,2-Dichlorobenzene	2,000	600	ug/l	<5	<5	<5	BDL	BDL
1,3-Dichlorobenzene	6,000	320	ug/l	<5	<5	<5	BDL	BDL
1,4-Dichlorobenzene	60	5	ug/l	<5	<5	<5	BDL	BDL
p/m-Xylene	3,000	NS	ug/l	<2	<2	<2	BDL	BDL
o-xylene	3,000	NS	ug/l	<1	<1	<1	BDL	BDL
Xylenes, Total	3,000	NS	ug/l	<1	<1	<1	BDL	BDL
Acetone	50	7.97	mg/l	< 0.010	< 0.010	< 0.010	BDL	BDL
Methyl tert butyl ether	5,000	70	ug/l	<10	<10	<10	BDL	BDL
Tert-Butyl Alcohol	NS	120	ug/l	<100	<100	<100	BDL	BDL
Tertiary-Amyl Methyl Ether	NS	90	ug/l	<20	<20	<20	BDL	BDL
Volatile Organics by GC/MS	-SIM							
1,4-Dioxane	6,000	200	ug/l	<50	<50	<50	BDL	BDL

Notes:

- 1. The samples were collected by Sanborn, Head & Associates, Inc. (Sanborn Head) on the dates indicated and analyzed by Alpha Analytical Laboratories, Inc. of Westborough, Massachusetts.
- 2. Average concentrations for each analyte were calculated as an average of detected concentrations. Where analytes were not detected, half of the detection limit was used in the average calcuation.
- 3. Bolded values indicate detections of that analyte above laboratory reporting limits.
- 4. Italicized values indicate detections of that analyte above the applicable Massachusetts Contingency Plan (MCP) Reportable Concentrations for Groundwater (RCGW-2).
- 5. Highlighted values indicate detections of that analyte above the National Pollution Discharge Elimination System (NPDES) Technology-Based Effluent Limitation (TBEL) criteria.
- $6.\ Total\ metals\ are\ provided\ for\ informational\ purposes\ only\ and\ are\ not\ compared\ to\ RCGW-2\ or\ NPDES\ TBEL\ criteria.$
- 7. Abbreviations:
- "<" indicates the analyte was not detected above the laboratory reporting limit shown

BDL = below detection limit

NS = no standard

NT = not tested

ug/l = micrograms per liter

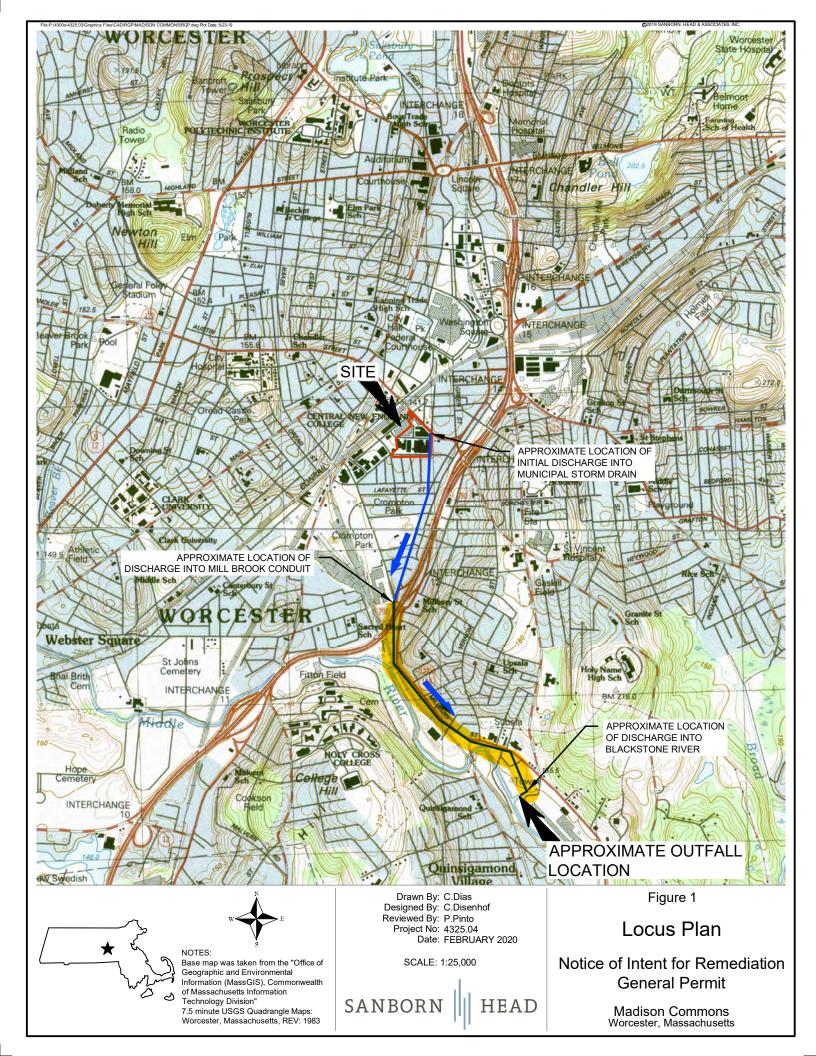
mg/l = milligrams per liter

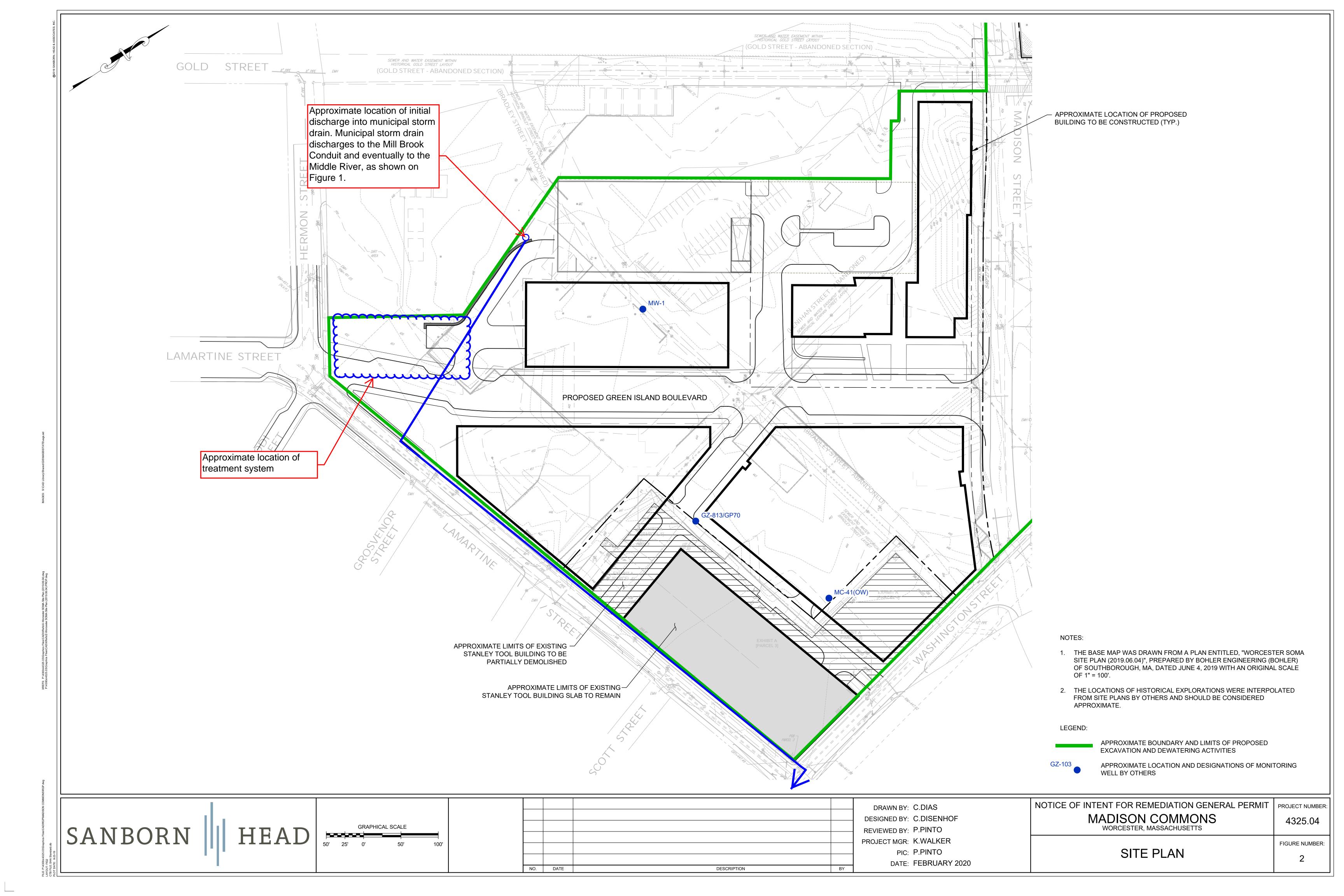
Table 2

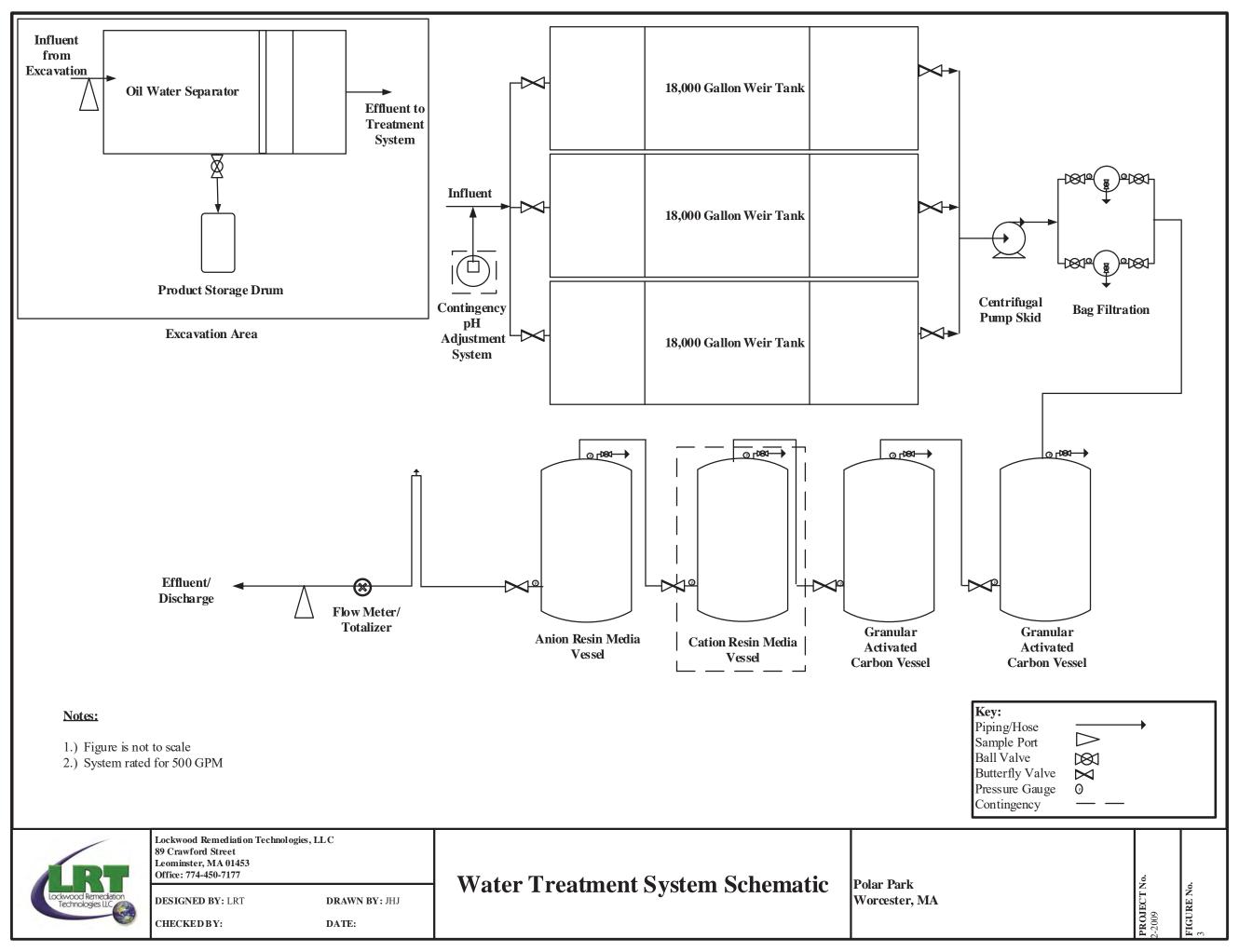
Summary of Surface Water Quality Madison Commons Worcester, MA

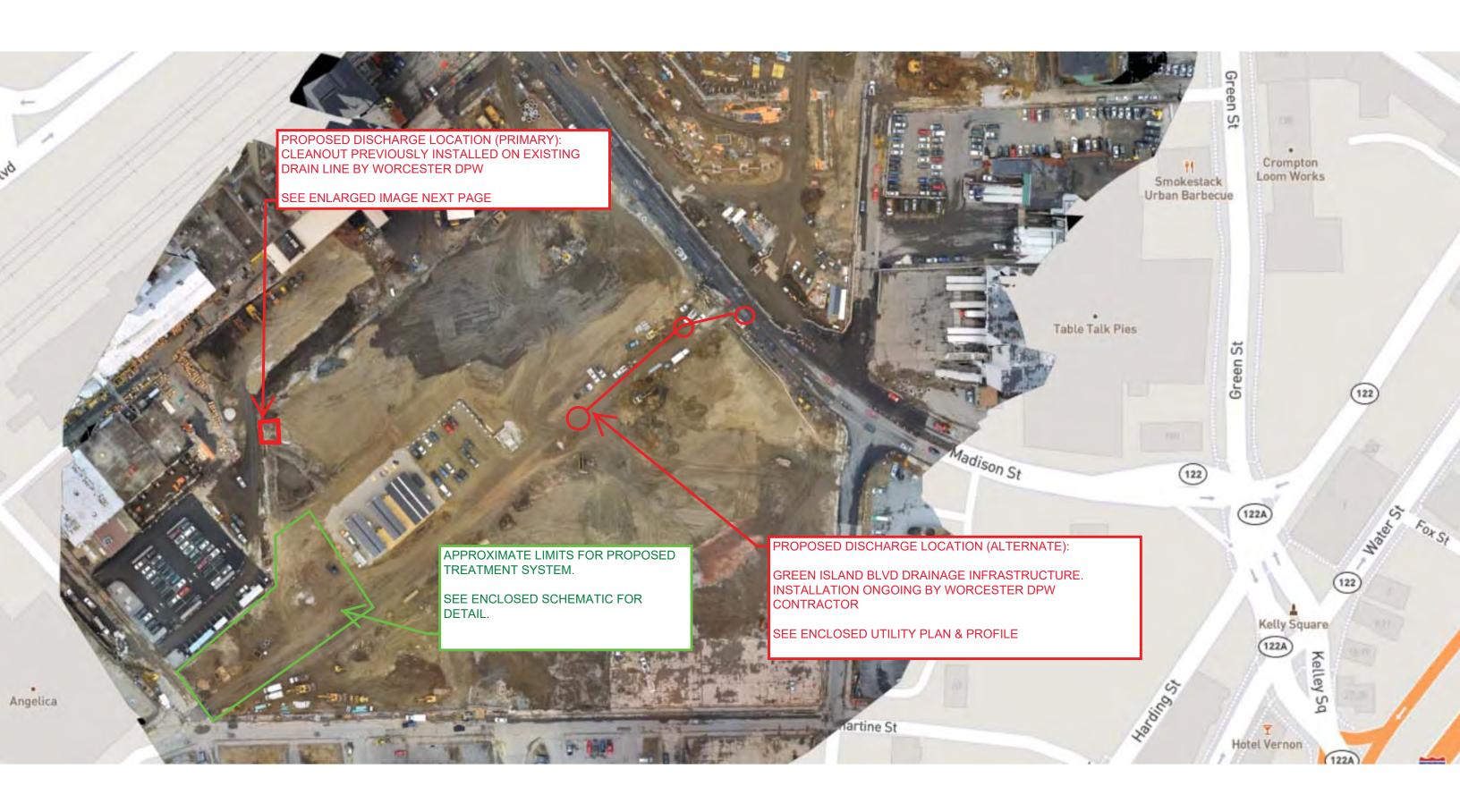
LOCATION		MIDDLE RIVER
SAMPLING DATE	Units	7/26/2019
SAMPLE TYPE		WATER
General Chemistry		
рН (Н)	SU	7.5
Nitrogen, Ammonia	mg/l	0.125
Total Hardness by SM 234	0B	
Hardness	ug/l	56,600
Total Metals		
Antimony, Total	ug/l	<4
Arsenic, Total	ug/l	17.16
Cadmium, Total	ug/l	0.66
Chromium, Total	ug/l	5.63
Copper, Total	ug/l	17.31
Iron, Total	ug/l	4,970
Lead, Total	ug/l	25.32
Mercury, Total	ug/l	<0.2
Nickel, Total	ug/l	4.38
Selenium, Total	ug/l	<5
Silver, Total	ug/l	<0.4
Zinc, Total	ug/l	57.55

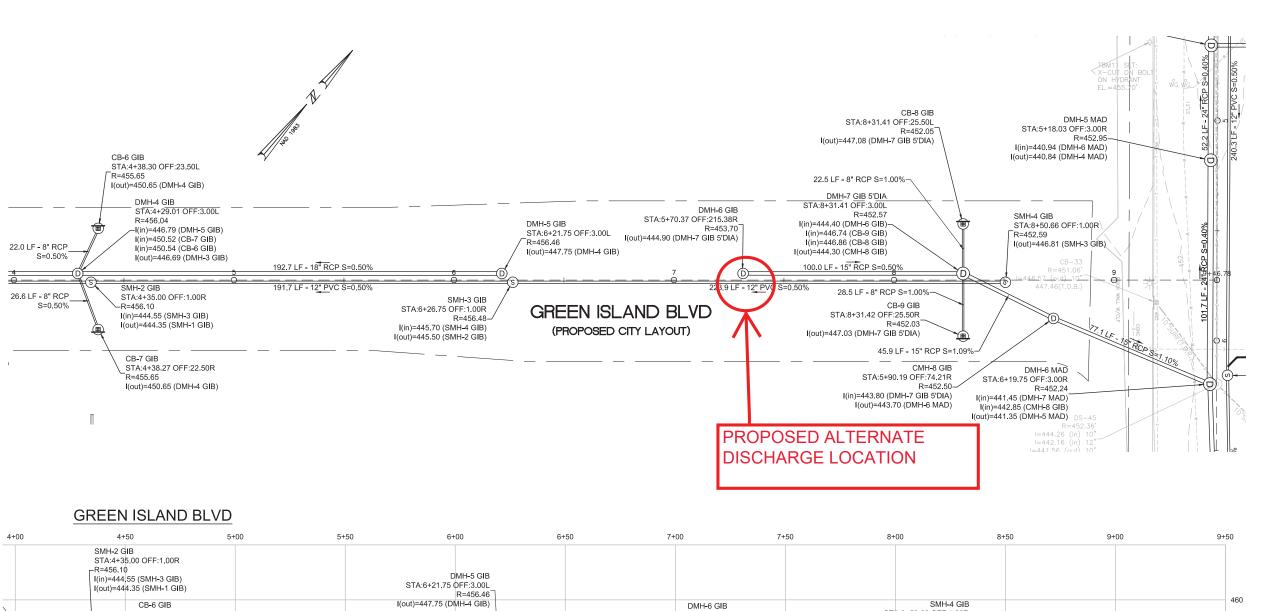
Notes:

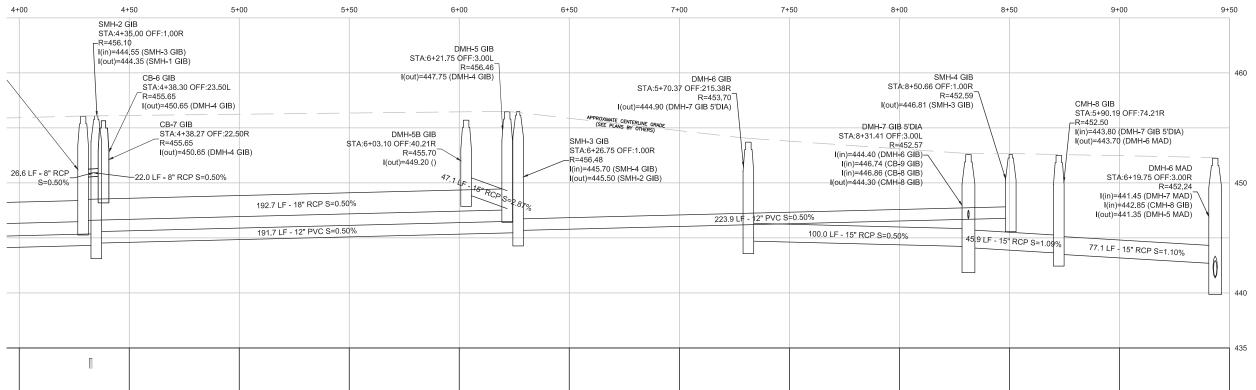

- 1. The samples were collected by Sanborn, Head & Associates, Inc. on the dates indicated and analyzed by Alpha Analytical Laboratories, Inc. of Westborough, Massachusetts.
- 2. Bolded values indicate detections of that analyte above laboratory reporting limits.
- 3. Abbreviations:
- "<" indicates the analyte was not detected above the laboratory reporting limit shown

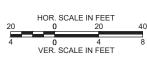

NS = no standard


ug/l = micrograms per liter


mg/l = milligrams per liter







PUBLIC WORKS AND PARKS Engineering Division 20 East Worcester St, Worcester MA 01604

CONTRACT S19-1
CONSTRUCTION &
RECONSTRUCTION OF
SANITARY & SURFACE
SEWERS & WATER WORK
WORCESTER, MA
TITLE:
GREEN ISLAND BLVD
PLAN & PROFILE

AD I.D.: CONTRACT S19-1_08.DWG

SHEET 12 OF 12

ΜΔΕ

1"=20'

DRAWN BY:

SCALE: (H)

SCALE: (V)

APPENDIX A NOTICE OF INTENT FORM

II. Suggested Format for the Remediation General Permit Notice of Intent (NOI)

A. General site information:

1. Name of site:	Site address: Madison Street						
Madison Commons	Street:						
	City: Worcester		State: MA	^{Zip:} 01610			
2. Site owner	Contact Person: Greg Ormsby						
Worcester Redevelopment Authority	Telephone: (508) 799-1400	Email: Orr	nsbyG@wd	orcesterma.gov			
	Mailing address: City Hall 4th Floor Street: 455 Main Street						
Owner is (check one): ☐ Federal ☐ State/Tribal ☐ Private ☐ Other; if so, specify: Local Municipality	City: Worcester	State: MA	^{Zip:} 01608				
3. Site operator, if different than owner	Contact Person: James Ganiatsos						
W.L. French Excavating Corporation	Telephone: 978-600-2134 Email: jganiatsos@wlfrench.com						
	Mailing address: 14 Sterling Road Street:						
	City: N. Billerica		State: MA	Zip: 01862			
4. NPDES permit number assigned by EPA: NA	5. Other regulatory program(s) that apply to the site (check all that apply):						
NA .	■ MA Chapter 21e; list RTN(s):	□ CERCI					
NPDES permit is (check all that apply: □ RGP □ DGP □ CGP	2-10256, 2-10760, 2-14918, 2-14921, 2-13510, NH Groundwater Management Permit or	□ UIC Pro	Č				
☐ MSGP ☐ Individual NPDES permit ☐ Other; if so, specify:	Groundwater Release Detection Permit:	□ POTW Pretreatment□ CWA Section 404					

 \square Other; if so, specify:

D	Receiving	water	infor	matian.
ь.	Receiving	water	ши	mauon.

Has the operator attached a summary of influent

in accordance with the instruction in Appendix

■ Yes □ No See Appendix D

VIII? (check one):

sampling results as required in Part 4.2 of the RGP

B. Receiving water information:			
1. Name of receiving water(s):	Waterbody identification of receiving water	(s): Classi	fication of receiving water(s):
Blackstone River	MA51-03	Class E	3
Receiving water is (check any that apply): □ Outstan	ding Resource Water □ Ocean Sanctuary □ territo	rial sea □ Wild and Scenic	River
2. Has the operator attached a location map in accord	ance with the instructions in B, above? (check one)	: ■ Yes □ No See Figure	21
Are sensitive receptors present near the site? (check of If yes, specify:	one): □ Yes ■ No		
3. Indicate if the receiving water(s) is listed in the State pollutants indicated. Also, indicate if a final TMDL is 4.6 of the RGP. See Appendix B			
4. Indicate the seven day-ten-year low flow (7Q10) o Appendix V for sites located in Massachusetts and A		n the instructions in	1.90 MGD See Appendix C
5. Indicate the requested dilution factor for the calculated accordance with the instructions in Appendix V for si	` `	~ /	3.6
6. Has the operator received confirmation from the ap If yes, indicate date confirmation received: February 2	• •	icated? (check one): ■ Yes	□ No
7. Has the operator attached a summary of receiving (check one): ■ Yes □ No See Table 1 and Appen	water sampling results as required in Part 4.2 of the	RGP in accordance with the	e instruction in Appendix VIII?
C. Source water information:			
1. Source water(s) is (check any that apply):			
■ Contaminated groundwater	☐ Contaminated surface water	☐ The receiving water	☐ Potable water; if so, indicate municipality or origin:

Has the operator attached a summary of influent

sampling results as required in Part 4.2 of the

RGP in accordance with the instruction in

Appendix VIII? (check one):

□ Yes □ No

☐ A surface water other

so, indicate waterbody:

than the receiving water; if

2. Source water contaminants: Chloride, Arsenic, Cadmium, Chromium, Copper, Iron, Le pyrene, Benzo(b)fluoranthene, Benzo(k)fluoranthene, Ch	ead, Mercury, Nickel, Selenium, Silver, Zinc, TSS, Ammonia, Sulfate, Benzo(a)anthracene, Benzo(a) rysene, Indeno(1,2,3-cd)pyrene, Benzo(ghi)perylene, Fluoranthene, Naphthalene, Phenanthrene, Pyrene						
a. For source waters that are contaminated groundwater or contaminated surface water, indicate are any contaminants present that are not included in	b. For a source water that is a surface water other than the receiving water, potable water or other, indicate any contaminants present at the maximum concentration in accordance						
the RGP? (check one): ☐ Yes ■ No If yes, indicate the contaminant(s) and the maximum concentration present in accordance with the instructions in Appendix VIII.	with the instructions in Appendix VIII? (check one): □ Yes □ No						
3. Has the source water been previously chlorinated or otherwise contains resid	ual chlorine? (check one): □ Yes ■ No						
D. Discharge information							
1. The discharge(s) is a(n) (check any that apply): ☐ Existing discharge ■ New	discharge □ New source J.G.						
Outfall(s):	Outfall location(s): (Latitude, Longitude)						
Via drain to an underground culvert, Unnamed Tributary "Mill Brook" (MA51-08), which discharges to Blackstone River	42.23402, -71.79342						
Discharges enter the receiving water(s) via (check any that apply): \Box Direct dis	scharge to the receiving water Indirect discharge, if so, specify:						
Effluent will enter an existing storm water drainage system that discharges into Mill Brook, an exist	ting below-grade conduit. Mill Brook discharges into the Blackstone River at the approximate Lat/Long specified.						
☐ A private storm sewer system ■ A municipal storm sewer system If the discharge enters the receiving water via a private or municipal storm sew	er system:						
Has notification been provided to the owner of this system? (check one): ■ Ye	s □ No See Appendix E						
Has the operator has received permission from the owner to use such system for discharges? (check one): ■ Yes □ No, if so, explain, with an estimated timeframe for obtaining permission: Prior to discharge, a copy of the NOI approval will be provided to the City of Worcester as requested Has the operator attached a summary of any additional requirements the owner of this system has specified? (check one): □ Yes ■ No							
Provide the expected start and end dates of discharge(s) (month/year): Februa	ry/2020 through August/2020						
Indicate if the discharge is expected to occur over a duration of: ■ less than 12	2 months □ 12 months or more □ is an emergency discharge						
Has the operator attached a site plan in accordance with the instructions in D, a	bove? (check one): ■ Yes □ No						

2. Activity Category: (check all that apply)	3. Contamination Type Category: (check all that apply)					
	a. If Activity Category I or II: (check all that apply)					
	 □ A. Inorganics □ B. Non-Halogenated Volatile Organic □ C. Halogenated Volatile Organic Cor □ D. Non-Halogenated Semi-Volatile Organic □ E. Halogenated Semi-Volatile Organic □ F. Fuels Parameters 	ompounds Organic Compounds				
 □ I – Petroleum-Related Site Remediation □ II – Non-Petroleum-Related Site Remediation 	b. If Activity Category III, IV	· III, IV, V, VI, VII or VIII: (check either G or H)				
■ III – Contaminated Site Dewatering□ IV – Dewatering of Pipelines and Tanks	■ G. Sites with Known Contamination	☐ H. Sites with Unknown Contamination				
 □ V – Aquifer Pump Testing □ VI – Well Development/Rehabilitation □ VII – Collection Structure Dewatering/Remediation 	c. If Category III-G, IV-G, V-G, VI-G, VII-G or VIII-G: (check all that apply)					
□ VIII – Dredge-Related Dewatering	 ■ A. Inorganics □ B. Non-Halogenated Volatile Organic Compounds ■ C. Halogenated Volatile Organic Compounds ■ D. Non-Halogenated Semi-Volatile Organic Compounds □ E. Halogenated Semi-Volatile Organic Compounds ■ F. Fuels Parameters 	d. If Category III-H, IV-H, V-H, VI-H, VII-H or VIII-H Contamination Type Categories A through F apply				

4. Influent and Effluent Characteristics

	Known	Known			.	Influent		Effluent Li	imitations
Parameter	or believed absent	or believed present	# of samples	Test method (#)	Detection limit (µg/l)	Daily maximum (µg/l)	Daily average (µg/l)	TBEL	WQBEL
A. Inorganics									
Ammonia		~	3	4500NH3-	0.075	0.213	0.133	Report mg/L	
Chloride		~	3	300.0	0.5	154,000	53,733	Report µg/l	
Total Residual Chlorine	~		3	4500CL-D	0.02	ND		0.2 mg/L	40
Total Suspended Solids		~	3	2540D	16	320	153	30 mg/L	
Antimony	~		3	200.8	40	ND		206 μg/L	
Arsenic		~	3	200.8	1	48.79	21.72	104 μg/L	10
Cadmium		~	3	200.8	0.2	0.59	0.47	10.2 μg/L	0.2648
Chromium III		~	3	200.8	1	219	74.4	323 μg/L	
Chromium VI	~		3	200.8	10	ND		323 μg/L	
Copper		~	3	200.8	1	35.6	18.2	242 μg/L	9.1
Iron		~	3	200.7	50	5,340	3,550	5,000 μg/L	1000
Lead		~	3	200.8	1	16.56	9.81	160 μg/L	3.06
Mercury	~		3	245.1	0.2	ND		0.739 μg/L	
Nickel		~	3	200.8	2	47.17	22.79	1,450 μg/L	
Selenium	~		3	200.8	5	ND		235.8 μg/L	
Silver	~		3	200.8	0.4	ND		35.1 μg/L	
Zinc		~	3	200.8	10	108.9	60.19	420 μg/L	
Cyanide		~	3	4500CN-C	0.005	0.361	0.123	178 mg/L	
B. Non-Halogenated VOC	s								
Total BTEX	~		3	624.1	1	ND		100 μg/L	
Benzene	~		3	624.1	1	ND		5.0 μg/L	
1,4 Dioxane	~		3	624.1-SIM		ND		200 μg/L	
Acetone	~		3	624.1	0.010	ND		7.97 mg/L	
Phenol	~		3	420.1	30	ND		1,080 µg/L	

	Known	Known		_		In	fluent	Effluent Li	mitations
Parameter	or believed absent	or believed present	# of samples	Test method (#)	Detection limit (µg/l)	Daily maximum (µg/l)	Daily average (µg/l)	TBEL	WQBEL
C. Halogenated VOCs									
Carbon Tetrachloride	~		3	624.1	1	ND		4.4 μg/L	
1,2 Dichlorobenzene	~		3	624.1	5	ND		600 μg/L	
1,3 Dichlorobenzene	~		3	624.1	5	ND		320 μg/L	
1,4 Dichlorobenzene	~		3	624.1	5	ND		5.0 μg/L	
Total dichlorobenzene	~		3	624.1	5	ND		763 μg/L in NH	
1,1 Dichloroethane	~		3	624.1	1.5	ND		70 μg/L	
1,2 Dichloroethane	~		3	624.1	1.5	ND		5.0 μg/L	
1,1 Dichloroethylene	v	_	3	624.1	1	ND		3.2 μg/L	
Ethylene Dibromide								0.05 μg/L	
Methylene Chloride	~		3	624.1	1	ND		4.6 μg/L	
1,1,1 Trichloroethane	~		3	624.1	2	ND		200 μg/L	
1,1,2 Trichloroethane	~		3	624.1	1.5	ND		5.0 μg/L	
Trichloroethylene		~	3	624.1	1	22	8	5.0 μg/L	
Tetrachloroethylene		~	3	624.1	1	3.1	1.4	5.0 μg/L	
cis-1,2 Dichloroethylene		~	3	624.1	1	170	57	70 μg/L	
Vinyl Chloride		V	3	624.1	1	23	8	2.0 μg/L	
D. Non-Halogenated SVO	Cs								
Total Phthalates		~	3	625.1	5	11	9.1	190 μg/L	
Diethylhexyl phthalate		~	3	625.1	2.2	11	4.9	101 μg/L	8
Total Group I PAHs		~	3	625.1-SIM	0.1	8.08	3.34	1.0 μg/L	
Benzo(a)anthracene		~	3	625.1-SIM	0.1	1.0	0.47		0.0138
Benzo(a)pyrene		~	3	625.1-SIM	0.1	1.2	0.52		0.0138
Benzo(b)fluoranthene		~	3	625.1-SIM	0.1	2.2	0.91	1	0.0138
Benzo(k)fluoranthene		~	3	625.1-SIM	0.1	0.72	0.27	As Total PAHs	0.0138
Chrysene		~	3	625.1-SIM	0.1	1.4	0.58		0.0138
Dibenzo(a,h)anthracene		~	3	625.1-SIM	0.1	0.26	0.12		0.0138
Indeno(1,2,3-cd)pyrene		~	3	625.1-SIM	0.1	1.3	0.53	1	0.0138

	Known	Known				Influent		Effluent Lin	nitations
Parameter	or believed absent	or believed present	# of samples	Test method (#)	Detection limit (µg/l)	Daily maximum (µg/l)	Daily average (µg/l)	TBEL	WQBEL
Total Group II PAHs		~	3	625.1-SIM	0.1	8.76	3.62	100 μg/L	
Naphthalene		~	3	625.1-SIM	0.1	0.15	0.1	20 μg/L	
E. Halogenated SVOCs									
Total PCBs	~		3	608.3	0.25	ND		0.000064 μg/L	
Pentachlorophenol	V		3	625.1-SIM	1	ND		1.0 μg/L	
F. Fuels Parameters									
Total Petroleum Hydrocarbons		~	3	1664A	4	38.3	14	5.0 mg/L	
Ethanol								Report mg/L	
Methyl-tert-Butyl Ether	~		3	624.1	10	ND		70 μg/L	
tert-Butyl Alcohol	~		3	624.1	100	ND		120 μg/L in MA 40 μg/L in NH	
tert-Amyl Methyl Ether	~		3	624.1	20	ND		90 μg/L in MA 140 μg/L in NH	
Other (i.e., pH, temperatu	re, hardness,	salinity, LC	C ₅₀ , addition	nal pollutan 4500H+-B		if so, specify:	7		
Hardness		~	3	200.7	660	204,000	150,000		
Sulfate		~	3	4500SO4-	10,000	17,000	11,333		

E. Treatment system information

1. Indicate the type(s) of treatment that will be applied to effluent prior to discharge: (check all that apply)	
□ Adsorption/Absorption □ Advanced Oxidation Processes □ Air Stripping ■ Granulated Activated Carbon ("GAC")/Liquid Phase Carbon Adsorption	
■ Ion Exchange □ Precipitation/Coagulation/Flocculation ■ Separation/Filtration □ Other; if so, specify:	
pH adjustment (if needed)	
2. Provide a written description of all treatment system(s) or processes that will be applied to the effluent prior to discharge.	
The first element of the treatment system will be a fractionalization tank where solids will settle out. The effluent will then pass through the following as necessary: a bag activated carbon vessel, and a cation resin vessel. The effluent will be discharged to an existing catch basin on-site with discharges to the existing storm drain system.	filter, a granular
Identify each major treatment component (check any that apply):	
■ Fractionation tanks□ Equalization tank □ Oil/water separator □ Mechanical filter □ Media filter	
☐ Chemical feed tank ☐ Air stripping unit ■ Bag filter ■ Other; if so, specify: Cation resin vessel and/or carbon vessels (if needed)	
Indicate if either of the following will occur (check any that apply):	
☐ Chlorination ☐ De-chlorination	Τ
3. Provide the design flow capacity in gallons per minute (gpm) of the most limiting component.	
Indicate the most limiting component: Fractionalization tank	500 GPM
Is use of a flow meter feasible? (check one): ■ Yes □ No, if so, provide justification:	
Provide the proposed maximum effluent flow in gpm.	500 GPM
Provide the average effluent flow in gpm.	350 GPM
If Activity Category IV applies, indicate the estimated total volume of water that will be discharged:	
4. Has the operator attached a schematic of flow in accordance with the instructions in E, above? (check one): ■ Yes □ No See Figure 3	

F. Chemical and additive information

1. Indicate the type(s) of chemical or additive that will be applied to effluent prior to discharge or that may otherwise be present in the discharge(s): (check all that apply)
□ Algaecides/biocides □ Antifoams □ Coagulants □ Corrosion/scale inhibitors □ Disinfectants □ Flocculants □ Neutralizing agents □ Oxidants □ Oxygen □
scavengers ■ pH conditioners □ Bioremedial agents, including microbes □ Chlorine or chemicals containing chlorine ■ Other; if so, specify:
2. Provide the following information for each chemical/additive, using attachments, if necessary: Sulfuric Acid (See Appendix F)
a. Product name, chemical formula, and manufacturer of the chemical/additive;
b. Purpose or use of the chemical/additive or remedial agent; c. Material Safety Data Sheet (MSDS) and Chemical Abstracts Service (CAS) Registry number for each chemical/additive;
d. The frequency (hourly, daily, etc.), duration (hours, days), quantity (maximum and average), and method of application for the chemical/additive;
e. Any material compatibility risks for storage and/or use including the control measures used to minimize such risks; and
f. If available, the vendor's reported aquatic toxicity (NOAEL and/or LC50 in percent for aquatic organism(s)).
3. Has the operator attached an explanation which demonstrates that the addition of such chemicals/additives may be authorized under this general permit in accordance
with the instructions in F, above? (check one): Yes No; if no, has the operator attached data that demonstrates each of the 126 priority pollutants in CWA Section 307(a) and 40 CFR Part 423.15(j)(1) are non-detect in discharges with the addition of the proposed chemical/additive?
(check one): □ Yes □ No
G. Endangered Species Act eligibility determination
1. Indicate under which criterion the discharge(s) is eligible for coverage under this general permit:
□ FWS Criterion A : No endangered or threatened species or critical habitat are in proximity to the discharges or related activities or come in contact with the "action area".
■ FWS Criterion B: Formal or informal consultation with the FWS under section 7 of the ESA resulted in either a no jeopardy opinion (formal consultation) or a written concurrence by FWS on a finding that the discharges and related activities are "not likely to adversely affect" listed species or critical habitat
(informal consultation). Has the operator completed consultation with FWS? (check one): ■ Yes □ No; if no, is consultation underway? (check one): □
$Yes \square No$ See Appendix G
□ FWS Criterion C : Using the best scientific and commercial data available, the effect of the discharges and related activities on listed species and critical habitat have been evaluated. Based on those evaluations, a determination is made by EPA, or by the operator and affirmed by EPA, that the discharges and related activities will have "no effect" on any federally threatened or endangered listed species or designated critical habitat under the jurisdiction of the
FWS. This determination was made by: (check one) □ the operator □ EPA □ Other; if so, specify:

■ NMFS Criterion: A determination made by EPA is affirmed by the operator that the discharges and related activities will have "no effect" or are "not likely to adversely affect" any federally threatened or endangered listed species or critical habitat under the jurisdiction of NMFS and will not result in any take of
listed species. Has the operator previously completed consultation with NMFS? (check one): ■ Yes □ No
2. Has the operator attached supporting documentation of ESA eligibility in accordance with the instructions in Appendix I, and G, above? (check one): ■ Yes □ No
Does the supporting documentation include any written concurrence or finding provided by the Services? (check one): ■ Yes □ No; if yes, attach.
H. National Historic Preservation Act eligibility determination
1. Indicate under which criterion the discharge(s) is eligible for coverage under this general permit:
■ Criterion A: No historic properties are present. The discharges and discharge-related activities (e.g., BMPs) do not have the potential to cause effects on historic properties.
☐ Criterion B: Historic properties are present. Discharges and discharge related activities do not have the potential to cause effects on historic properties.
□ Criterion C : Historic properties are present. The discharges and discharge-related activities have the potential to have an effect or will have an adverse effect on historic properties.
2. Has the operator attached supporting documentation of NHPA eligibility in accordance with the instructions in H, above? (check one): ■ Yes □ No
See Appendix H
Does the supporting documentation include any written agreement with the State Historic Preservation Officer (SHPO), Tribal Historic Preservation Officer (TPHO), or
other tribal representative that outlines measures the operator will carry out to mitigate or prevent any adverse effects on historic properties? (check one): Yes No
I. Supplemental information
Describe any supplemental information being provided with the NOI. Include attachments if required or otherwise necessary.
Appendix B includes the Massachusetts Category 5 Waters "Waters requiring a TMDL" and lists pollutants for the Middle River Appendix C includes calculations for the dilution factor Appendix D includes the analytical data collected by Sanborn, Head & Associates, Inc. Appendix E includes municipal correspondence Appendix F includes the proposed pH conditioner material safety data sheet Appendix G includes correspondence from the National Oceanic and Atmospheric Administration and the US Fish and Wildlife Service Appendix H includes a list of Historic Places in Worcester, Massachusetts
Has the operator attached data, including any laboratory case narrative and chain of custody used to support the application? (check one): ■ Yes □ No

I certify under penalty of law that this document and all attachments were prepared under my direction or supervision in a that qualified personnel properly gathered and evaluated the information submitted. Based on my inquiry of the person or persons directly responsible for gathering the information, the information submitted is, to the best of my knowledge and be no personal knowledge that the information submitted is other than true, accurate, and complete. I am aware that there are information, including the possibility of fine and imprisonment for knowing violations.	elief, true, accurate, a	nd complete. I have
A BMPP meeting the requirements of this general permit will be deveraged by the statement: initiation of discharge.	loped and impler	mented upon
Notification provided to the appropriate State, including a copy of this NOI, if required.	Check one: Yes ■	No □
Notification provided to the municipality in which the discharge is located, including a copy of this NOI, if requested.	Check one: Yes ■	No □
Notification provided to the owner of a private or municipal storm sewer system, if such system is used for site discharges, including a copy of this NOI, if requested. Permission obtained from the owner of a private or municipal storm sewer system, if such system is used for site	Check one: Yes ■	No □ NA □ See Appendix E No □ NA □
discharges. If yes, attach additional conditions. If no, attach explanation and timeframe for obtaining permission. Notification provided to the owner/operator of the area associated with activities covered by an additional discharge permit(s). Additional discharge permit is (check one): RGP DGP RGP RGP RGP RGP RGP RGP RGP R	Check one: Yes □	
	ate: 3/25/	20

APPENDIX B

MASSACHUSETTS CATEGORY 5 WATERS "WATERS REQUIRING A TMDL"

Massachusetts Category 5 Waters "Waters requiring a TMDL"

SEGMENT ID	DESCRIPTION	SIZE	UNITS	IMPAIRMENT CAUSE	EPA TMDL NO.
MA51002	Sutton	2	ACRES	(Non-Native Aquatic Plants*)	
				Aquatic Plants (Macrophytes)	
MA51003	Northbridge	20	ACRES	(Non-Native Aquatic Plants*)	
				Excess Algal Growth	
MA51-32	Perennial portion only, from outlet of unnamed pond at Whitehall Way, Bellingham to confluence with Peters River, Bellingham.	1.7	MILES	Escherichia coli	
MA51-07	Outlet of small unnamed impoundment north of	2.9	MILES	(Debris/Floatables/Trash*)	
				(Fish Kills*)	
				(Physical substrate habitat alterations*)	
	Worked The Control of			Bottom Deposits	
				Escherichia coli	
				Taste and Odor	
MA51-03	Confluence of Middle River and Mill Brook	10.4	MILES	(Debris/Floatables/Trash*)	
				(Other flow regime alterations*)	
				(Physical substrate habitat alterations*)	
	Fisherville Pond formerly segment MA51048)			Ambient Bioassays Chronic Aquatic Toxicity	
				Aquatic Macroinvertebrate Bioassessments	
				Escherichia coli	
				Excess Algal Growth	
				Fishes Bioassessments	
				Foam/Flocs/Scum/Oil Slicks	
				Lead	
				Nutrient/Eutrophication Biological Indicators	
				Other	
				Oxygen, Dissolved	
				Phosphorus (Total)	
				Sedimentation/Siltation	
				Taste and Odor	
				Turbidity	
	MA51003 MA51-32 MA51-07	MA51002 Sutton MA51003 Northbridge MA51-32 Perennial portion only, from outlet of unnamed pond at Whitehall Way, Bellingham to confluence with Peters River, Bellingham. Outlet of small unnamed impoundment north of Beth Israel School and Flag Street School, Worcester to confluence with Middle River, Worcester. (Includes underground portion) MA51-03 Confluence of Middle River and Mill Brook (downstream of the railroad spur bridge west of Tobias Boland Boulevard), Worcester to Fisherville Dam, Grafton. (through a portion of	MA51002 Sutton 2 MA51003 Northbridge 20 MA51-32 Perennial portion only, from outlet of unnamed pond at Whitehall Way, Bellingham to confluence with Peters River, Bellingham. MA51-07 Outlet of small unnamed impoundment north of Beth Israel School and Flag Street School, Worcester to confluence with Middle River, Worcester. (Includes underground portion) MA51-03 Confluence of Middle River and Mill Brook (downstream of the railroad spur bridge west of Tobias Boland Boulevard), Worcester to Fisherville Dam, Grafton. (through a portion of	MA51002 Sutton 2 ACRES MA51003 Northbridge 20 ACRES MA51-32 Perennial portion only, from outlet of unnamed pond at Whitehall Way, Bellingham to confluence with Peters River, Bellingham. MA51-07 Outlet of small unnamed impoundment north of Beth Israel School and Flag Street School, Worcester to confluence with Middle River, Worcester. (Includes underground portion) MA51-03 Confluence of Middle River and Mill Brook (downstream of the railroad spur bridge west of Tobias Boland Boulevard), Worcester to Fisherville Dam, Grafton. (through a portion of	MA51002 Sutton 2 ACRES (Non-Native Aquatic Plants*) Aquatic Plants (Macrophytes) (Non-Native Aquatic Plants (Macrophytes) (Non-Native Aquatic Plants) Excess Algal Growth MA51-32 Perennial portion only, from outlet of unnamed pond at Whitehall Way, Bellingham to confluence with Peters River, Bellingham. MA51-07 Outlet of small unnamed impoundment north of Beth Israel School and Flag Street School, Worcester to confluence with Middle River, Worcester. (Includes underground portion) MA51-03 Confluence of Middle River and Mill Brook (downstream of the railroad spur bridge west of Tobias Boland Boulevard), Worcester to Fisherville Dam, Grafton. (through a portion of Fisherville Pond formerly segment MA51048) MA51-03 (Confluence of Middle River and Mill Brook (downstream of the railroad spur bridge west of Tobias Boland Boulevard), Worcester to Fisherville Dam, Grafton. (through a portion of Fisherville Dam, Grafton. (through a portion of Fisherville Dam, Grafton.) MA51-03 (Confluence of Middle River and Mill Brook (downstream of the railroad spur bridge west of Tobias Boland Boulevard), Worcester to Fisherville Dam, Grafton. (through a portion of Fisherville Dam, Grafton.) MILES (Debris/Floatables/Trash*) (Cothris/Floatables/Trash*) (Cothri

Massachusetts Category 5 Waters "Waters requiring a TMDL"

NAME	SEGMENT ID	DESCRIPTION	SIZE	UNITS	IMPAIRMENT CAUSE	EPA TMDL NO.
Poor Farm Brook	MA51-17	Headwaters, West Boylston to the inlet of Shirley	3.6	MILES	(Low flow alterations*)	
		Street Pond, Shrewsbury (through City Farm			Aquatic Plants (Macrophytes)	
		Pond formerly segment MA51020).			Sedimentation/Siltation	
Riley Pond	MA51134	Northbridge	7	ACRES	Turbidity	
Singletary Brook	MA51-31	Headwaters, outlet Singletary Pond, Millbury to	1.5	MILES	(Non-Native Aquatic Plants*)	
		confluence with the Blackstone River, Millbury (excluding the approximately 0.4 miles through Brierly Pond segment MA51010).			Aquatic Plants (Macrophytes)	
Sutton Falls	MA51163	Sutton	10	ACRES	Turbidity	
Tatnuck Brook	MA51-15	Outlet Holden Reservoir #2, Holden to inlet of	3.3	3.3 MILES	(Debris/Floatables/Trash*)	
		Coes Reservoir, Worcester (through Cook Pond formerly segment MA51027 and Patch Reservoir			(Non-Native Aquatic Plants*)	
		formerly segment MA51027 and Patch Reservoir			(Other flow regime alterations*)	
		lemeny eegeeee.			Aquatic Macroinvertebrate Bioassessments	
					Sedimentation/Siltation	
					Turbidity	
Unnamed Tributary	MA51-08	(Also known as "Mill Brook") Outlet Indian Lake,	5.6	MILES	(Debris/Floatables/Trash*)	
		Worcester to confluence with Middle River (downstream of the railroad spur bridge west of			(Physical substrate habitat alterations*)	
		Tobias Boland Boulevard), Worcester (through)			Ammonia (Un-ionized)	
		Salisbury Pond formerly segment MA51142).			Aquatic Plants (Macrophytes)	2319
					Fecal Coliform	
					Foam/Flocs/Scum/Oil Slicks	
					Nutrient/Eutrophication Biological Indicators	
					Other	
					Sedimentation/Siltation	
					Taste and Odor	
					Turbidity	2319
Unnamed Tributary	MA51-20	From the outlet of Leesville Pond, Worcester to	1.4	MILES	(Debris/Floatables/Trash*)	
		the confluence with the Middle River, Worcester			(Low flow alterations*)	
		(through Curtis ponds formerly reported as segments MA51033 and MA51032).			(Non-Native Aquatic Plants*)	
					Aquatic Plants (Macrophytes)	360
			1		Aquatic Plants (Macrophytes)	361
					Fecal Coliform	
					Nutrient/Eutrophication Biological Indicators	
					Sedimentation/Siltation	

APPENDIX C MIDDLE RIVER DILUTION CALCULATIONS

StreamStats Report

Region ID: Workspace ID: Clicked Point (Latitude, Longitude): MA MA20190806202847788000 42.23465, -71.79388 2019-08-06 16:29:03 -0400

Basin Characteristics			
Parameter Code	Parameter Description	Value	Unit
DRNAREA	Area that drains to a point on a stream	63	square miles
BSLDEM250	Mean basin slope computed from 1:250K DEM	4.39	percent
DRFTPERSTR	Area of stratified drift per unit of stream length	0.0828	square mile per mile
MAREGION	Region of Massachusetts 0 for Eastern 1 for Western	0	dimensionless

Parameter Code	Parameter Name		Value	Units		Min Limit	Max Limit
RNAREA	Drainage Area		63	square miles		1.61	149
SSLDEM250	Mean Basin Slope from 250K DE	M	4.39	percent		0.32	24.6
RFTPERSTR	Stratified Drift per Stream Lengt	:h	0.0828	square mile per r	mile	0	1.29
MAREGION	Massachusetts Region		0	dimensionless		0	1
	Report[statewide Low Flow WRIR00 4135] ower, Plu: Prediction Interval-Upper, SEp:	Standard Erro		E: Standard Error (oth	ner see repo	ort)	
II: Prediction Interval-Lo	Report[Statewide Low Flow WRIR00 4135]	Standard Erro		E: Standard Error (oth PII	ner see repo Plu	ort) SE	SEp
II: Prediction Interval-Lo Statistic	Report[Statewide Low Flow WRIR00 4135] ower, Plu: Prediction Interval-Upper, SEp:		r of Prediction, S	,		,	SEp 49.5
	Report[Statewide Low Flow WRIR00 4135] ower, Plu: Prediction Interval-Upper, SEp:	Value	or of Prediction, SI	PII	Plu	SE	•

USGS Data Disclaimer: Unless otherwise stated, all data, metadata and related materials are considered to satisfy the quality standards relative to the purpose for which the data were collected. Although these data and associated metadata have been reviewed for accuracy and completeness and approved for release by the U.S. Geological Survey (USGS), no warranty expressed or implied is made regarding the display or utility of the data for other purposes, nor on all computer systems, nor shall the act of distribution constitute any such warranty.

File No. <u>4325.04</u>	Page 1 of 1
Project Madison Commons	
Location Worcester, Massachusetts	
Subject <u>Dilution Factor Calculations</u>	
Calculated By A. Sanatamaria	02/20/2020
Checked By	Date

 $P:\4300s\4325.04\Source\ Files\RGP\App\ C$ - Stream Calcs\20190812 Dilution Factor.docx

PURPOSE:

To calculate the dilution factor (DF) for metal concentrations in a potential discharge from on-site construction dewatering activities.

METHOD:

DF = (Qd + Qs)/Qd

Where: DF = Dilution Factor

Qd = Design flow rate of the discharge in million gallons per day (MGD)

Qs = Receiving water 7Q10 flow (MGD) where 7Q10 is the minimum flow for 7 consecutive days

with a recurrence interval of 10 years

GIVEN:

1.0 gpm = 0.00144 MGD 1.0 cfs = 0.64632 MGD Qd = 500 gpm = 0.72 MGD Qs = 2.94 cfs = 1.90 MGD of flow into the Middle River [Reference 1]

CALCULATION:

$$DF = (0.72 \text{ MGD} + 1.90 \text{ MGD}) / 0.72 \text{ MGD}$$

 $DF = 3.64$

RESULTS:

The resulting dilution factor to be used when discharging to the Middle River is 3.64.

REFERENCES:

[1] StreamStats Report. Accessed online: http://streamstatsags.cr.usgs.gov/streamstats/ (Refer to Attachment A)

www.sanbornhead.com Sanborn, Head & Associates, Inc.

Americo Santamaria

From: Vakalopoulos, Catherine (DEP) <catherine.vakalopoulos@state.ma.us>

Sent: Friday, February 21, 2020 3:59 PM

To: Americo Santamaria

Cc: Kent Walker

Subject: RE: Madison St, Worcester, MA RGP

Hi Americo,

It looks like the lat/long that you listed for the delineation point is on the Middle River, upstream of where Mill Brook comes in. However, the 7Q10, 2.94 cfs, is correct for location where the culverted Mill Brook daylights and Middle River turns into the Blackstone River.

Your dilution factor calculation of 3.6 for this 500 gpm proposed discharge to the culverted Mill Brook which discharges to the Blackstone River is correct. Though Mill Brook is a Water of the Commonwealth, it is entirely underground and can't be sampled, therefore, as you mentioned, we are calculating the DF at where the brook daylights at the Blackstone River.

To assist you with filling out the NOI for coverage under the RGP, this segment of the Blackstone River is identified as MA51-03, is classified as Class B, is not listed as an Outstanding Resource Water, and there are no approved TMDLs. To see the causes of impairments, go to: https://www.mass.gov/doc/final-massachusetts-year-2016-integrated-list-of-waters/download and search for "MA51-03".

Also, if this is not a *current* MCP site then you will also have to apply to MassDEP by following the instructions at: https://www.mass.gov/how-to/wm-15-npdes-general-permit-notice-of-intent. There is also a \$500 fee unless the applicant is fee-exempt (e.g. a municipality). Please send me a copy of the transmittal form (it's not in the online instructions because that form is used by many programs).

Please let me know if you have any questions and have a nice weekend!

Cathy

Cathy Vakalopoulos, Massachusetts Department of Environmental Protection 1 Winter St., Boston, MA 02108, 617-348-4026

A Please consider the environment before printing this e-mail

From: Americo Santamaria [mailto:asantamaria@sanbornhead.com]

Sent: Thursday, February 20, 2020 3:53 PM

To: Vakalopoulos, Catherine (DEP)

Cc: Kent Walker

Subject: Madison St, Worcester, MA RGP

Good afternoon Cathy,

I would like to confirm the following 7Q10 value for a RGP project located in Worcester, MA. This project is expected to discharge to the Mill Brook underground culvert, which discharges to the Blackstone River. Similar to a previous project in this vicinity, because Mill Brook is entirely underground and cannot be sampled, our sampling point is the Middle River, immediately upstream of the location at which Mill Brook daylights and the waterway subsequently becomes the Blackstone River.

Site Address: Madison Street, Worcester, MA

Type of Discharge: Via drain to the underground Mill Brook, discharging to the Blackstone River at the approximate latitude/longitude indicated below.

Approximate Discharge Lat/Long:

Lat: 42.23402 Long: -71.79342

Approximate Basin Delineation Point Selected:

Lat: 42.23465 Long: -71.79388

Upstream StreamStats generated 7Q10: 2.94 cfs = 1.90 MGD

Design Flow Rate: 500 gpm = 0.72 MGD

Dilution Factor: DF = 3.6

Please let me know if there is any other information that you need, and please either confirm these assumptions or provide guidance if there are revisions required.

Thank you.

-Rico

Americo J. Santamaria

Senior Project Engineer

SANBORN | HEAD & ASSOCIATES, INC.

D 978.577.1040 | M 603.520.5106 | 1 Technology Park Drive, Westford, MA 01886

Click here to follow us on LinkedIn | Twitter | Facebook | sanbornhead.com

This message and any attachments are intended for the individual or entity named above and may contain privileged or confidential information. If you are not the intended recipient, please do not forward, copy, print, use or disclose this communication to others; please notify the sender by replying to this message and then delete the message and any attachments.

Enter number values in green boxes below

Enter values in the units specified

\downarrow	
1.9	Q_R = Enter upstream flow in MGD
0.72	Q_P = Enter discharge flow in MGD
0	Downstream 7Q10

Enter a dilution factor, if other than zero

Enter values in the units specified

\downarrow	
204	C_d = Enter influent hardness in mg/L CaCO ₃
56.6	C_s = Enter receiving water hardness in mg/L CaCO ₃

Enter receiving water concentrations in the units specified

\downarrow	
7.5	pH in Standard Units
25	Temperature in °C
0.125	Ammonia in mg/L
56.6	Hardness in mg/L CaCO ₃
0	Salinity in ppt
0	Antimony in μg/L
17.16	Arsenic in μg/L
0.66	Cadmium in µg/L
5.63	Chromium III in µg/L
0	Chromium VI in µg/L
17.31	Copper in µg/L
4970	Iron in μg/L
25.32	Lead in μg/L
0	Mercury in µg/L
4.38	Nickel in μg/L
0	Selenium in µg/L
0	Silver in µg/L
57.55	Zinc in μg/L

Enter **influent** concentrations in the units specified

0 TRC in μg/L 0.213 Ammonia in mg/L 0 Antimony in μg/L 48.79 Arsenic in μg/L 0.59 Cadmium in μg/L Chromium III in μg/L 0 Chromium VI in μg/L 35.6 Copper in μg/L Iron in μg/L Lead in μg/L
Antimony in μg/L 48.79 Arsenic in μg/L 0.59 Cadmium in μg/L Chromium III in μg/L Chromium VI in μg/L Copper in μg/L Tron in μg/L
Arsenic in µg/L O.59 Cadmium in µg/L Chromium III in µg/L Chromium VI in µg/L Copper in µg/L Tron in µg/L
Cadmium in µg/L Chromium III in µg/L Chromium VI in µg/L Copper in µg/L Iron in µg/L
219 Chromium III in µg/L 0 Chromium VI in µg/L 35.6 Copper in µg/L 15340 Iron in µg/L
0 Chromium VI in μg/L 35.6 Copper in μg/L 5340 Iron in μg/L
35.6 Copper in μg/L 5340 Iron in μg/L
5340 Iron in μg/L
16.56 Lead in ug/L
10.50
0 Mercury in μg/L
47.17 Nickel in μg/L
0 Selenium in μg/L
0 Silver in μg/L
108.9 Zinc in μg/L
361 Cyanide in μg/L
0 Phenol in μg/L
Carbon Tetrachloride in μg/L
3.1 Tetrachloroethylene in μg/L
11 Total Phthalates in μg/L
11 Diethylhexylphthalate in μg/L
1 Benzo(a)anthracene in μg/L
1.2 Benzo(a)pyrene in μg/L
2.2 Benzo(b)fluoranthene in µg/L
0.72 Benzo(k)fluoranthene in µg/L
1.4 Chrysene in μg/L
0.26 Dibenzo(a,h)anthracene in μg/L
1.3 Indeno(1,2,3-cd)pyrene in μg/L
0 Methyl-tert butyl ether in μg/L

Notes:

Freshwater: critical low flow equal to the 7Q10; enter alternate low flow if approved by the State Saltwater (estuarine and marine): enter critical low flow if approved by the State; enter 0 if no entry Discharge flow is equal to the design flow or 1 MGD, whichever is less Optional entry for Q_r ; leave 0 if no entry

Saltwater (estuarine and marine): only if approved by the State Leave 0 if no entry

pH, temperature, and ammonia required for all discharges
Hardness required for freshwater
Salinity required for saltwater (estuarine and marine)
Metals required for all discharges if present and if dilution factor is > 1
Enter 0 if non-detect or testing not required

if >1 sample, enter maximum if >10 samples, may enter 95th percentile Enter 0 if non-detect or testing not required

I. Dilution Factor Calculation Method

A. 7Q10

Refer to Appendix V for determining critical low flow; must be approved by State before use in calculations.

B. Dilution Factor

Calculated as follows:

$$Df = Q_R + Q_P$$

 Q_{P}

 $Q_R = 7Q10$ in MGD

 Q_P = Discharge flow, in MGD

II. Effluent Limitation Calculation Method

A. Calculate Water Quality Criterion:

Step 1. Downstream hardness, calculated as follows:

$$C_r = \underline{Q_d C_d + Q_s C_s}$$

 $C_r = Downstream hardness in mg/L$

 Q_d = Discharge flow in MGD

 C_d = Discharge hardness in mg/L

 $Q_s = \text{Upstream flow (7Q10) in MGD}$

 C_s = Upstream (receiving water) hardness in mg/L

 Q_r = Downstream receiving water flow in MGD

Step 2. Total recoverable water quality criteria for hardness-dependent metals, calculated as follows:

Total Recoverable Criteria = $\exp\{m_c [ln(h)] + b_c\}$

 m_c = Pollutant-specific coefficient (m_a for silver)

 b_c = Pollutant-specific coefficient (b_a for silver)

ln = Natural logarithm

h = Hardness calculated in Step 1

Step 3. Total recoverable water quality criteria for non-hardness-dependent metals, calculated as follows:

WQC in
$$\mu$$
g/L = dissolved WQC in μ g/L dissolved to total recoverable factor

B. Calculate WQBEL:

Step 1. WQBEL calculated as follows for parameter sampled in and detected in the receiving water:

$$C_d = Q_r C_r - Q_s C_s$$

 $C_d = \frac{Q_r C_r - Q_s C_s}{Q_d}$ $C_r = \text{Water quality criterion in } \mu g/L$

 Q_d = Discharge flow in MGD

 $C_d = WQBEL \text{ in } \mu g/L$

 $Q_s = Upstream flow (7Q10) in MGD$

 C_s = Ustream (receiving water) concentration in μ g/L

 Q_r = Downstream receiving water flow in MGD

Step 2. WQBEL calculated as follows for parameter not sampled in or not detected in receiving water:

$$C_d = (Q_r/Q_d) \times C_r$$

 C_r = Water quality criterion in μ g/L

 Q_d = Discharge flow in MGD

 Q_r = Downstream receiving water flow in MGD

C. Determine if a WQBEL applies:

Step 1. For parameter sampled in and detected in receiving water, downstream concentrations calculated as follows:

$$C_r = \underline{Q_d C_d + Q_s C_s}$$

 $C_r = Downstream$ concentration in $\mu g/L$

 Q_d = Discharge flow in MGD

 C_d = Influent concentration in μ g/L

 $Q_s = Upstream flow (7Q10) in MGD$

 $C_s = Upstream$ (receiving water) concentration in $\mu g/L$

 Q_r = Downstream receiving water flow in MGD

The WQBEL applies if:

1) the projected downstream concentration calculated in accordance with Step 1, above, and the discharge concentration of a parameter are greater than the WQC calculated for that parameter in accordance with II.A, above

AND

2) the WQBEL determined for that parameter in accordance with II.B, above, is less than the TBEL in Part 2.1.1 of the RGP for that parameter. Otherwise, the TBEL in Part 2.1.1

of the RGP for that parameter applies.

Step 2. For a parameter not sampled in or not detected in receiving water, the WQBEL applies if:

1) the discharge concentration of a parameter is greater than the WQBEL determined for that parameter in accordance with II.A or II.B, above;

AND

2) the WQBEL determined for that parameter in accordance with II.A or II.B, above is less than the TBEL in Part 2.1.1 of the RGP for that parameter. Otherwise, the TBEL in

Part 2.1.1 of the RGP for that parameter applies.

Dilution Factor	3.0					
A. Inorganics	TBEL applies if	bolded	WQBEL applies i	f bolded	Compliance Level applies if shown	
Ammonia	Report	mg/L				
Chloride	Report	μg/L				
Total Residual Chlorine	0.2	mg/L	40	μg/L	50	μg/L
Total Suspended Solids	30	mg/L				. 0
Antimony	206	μg/L	2329	μg/L		
Arsenic	104	μg/L	10	μg/L		
Cadmium	10.2	μg/L	0.2648	μg/L		
Chromium III	323	μg/L μg/L	291.3	μg/L μg/L		
Chromium VI	323		41.6			
		μg/L	9.1	μg/L		
Copper	242	μg/L		μg/L		
Iron	5000	μg/L	1000	μg/L		
Lead	160	μg/L	3.06	μg/L		
Mercury	0.739	μg/L	3.30	μg/L		
Nickel	1450	$\mu g/L$	173.6	$\mu g/L$		
Selenium	235.8	$\mu g/L$	18.2	$\mu g/L$		
Silver	35.1	$\mu g/L$	13.1	μg/L		
Zinc	420	μg/L	273.4	μg/L		
Cyanide	178	mg/L	18.9	μg/L	5	μg/L
B. Non-Halogenated VOCs		Č				
Total BTEX	100	$\mu g/L$				
Benzene	5.0	$\mu g/L$				
1,4 Dioxane	200	$\mu g/L$				
Acetone	7970	μg/L				
Phenol	1,080	μg/L	1092	μg/L		
C. Halogenated VOCs Carbon Tetrachloride	4.4		5.8	~/I		
1,2 Dichlorobenzene	600	μg/L μg/L	5.6	μg/L		
1,3 Dichlorobenzene	320	μg/L μg/L				
1,4 Dichlorobenzene	5.0	μg/L				
Total dichlorobenzene		μg/L				
1,1 Dichloroethane	70	μg/L				
1,2 Dichloroethane	5.0	$\mu g/L$				
1,1 Dichloroethylene	3.2	$\mu g/L$				
Ethylene Dibromide	0.05	μg/L				
Methylene Chloride	4.6	μg/L				
1,1,1 Trichloroethane	200	μg/L				
1,1,2 Trichloroethane	5.0 5.0	μg/L				
Trichloroethylene Tetrachloroethylene	5.0 5.0	μg/L	12.0	/T		
Tetrachloroethylene cis-1,2 Dichloroethylene	5.0 70	μg/L μg/I	12.0	μg/L		
Vinyl Chloride	2.0	μg/L μg/L				
· mj i emeriae	4. 0	MB -				

D. Non-Halogenated SVOCs

Total Phthalates	190	$\mu g/L$		μg/L		
Diethylhexyl phthalate	101	μg/L	8.0	μg/L		
Total Group I Polycyclic						
Aromatic Hydrocarbons	1.0	μg/L				
Benzo(a)anthracene	1.0	μg/L	0.0138	μg/L	0.1	$\mu g/L$
Benzo(a)pyrene	1.0	μg/L	0.0138	μg/L	0.1	$\mu g/L$
Benzo(b)fluoranthene	1.0	μg/L	0.0138	μg/L	0.1	$\mu g/L$
Benzo(k)fluoranthene	1.0	μg/L	0.0138	μg/L	0.1	$\mu g/L$
Chrysene	1.0	μg/L	0.0138	μg/L	0.1	$\mu g/L$
Dibenzo(a,h)anthracene	1.0	μg/L	0.0138	μg/L	0.1	$\mu g/L$
Indeno(1,2,3-cd)pyrene	1.0	μg/L	0.0138	μg/L	0.1	$\mu g/L$
Total Group II Polycyclic						
Aromatic Hydrocarbons	100	μg/L				
Naphthalene	20	$\mu g/L$				
E. Halogenated SVOCs						
Total Polychlorinated Biphenyls	0.000064	~/I			0.5	/I
Pentachlorophenol	1.0	μg/L			0.3	μg/L
F. Fuels Parameters	1.0	μg/L				
r. rueis Parameters						
Total Petroleum Hydrocarbons	5.0	mg/L				
Ethanol	Report	mg/L				
Methyl-tert-Butyl Ether	70	μg/L	73	μg/L		
tert-Butyl Alcohol	120	μg/L				
tert-Amyl Methyl Ether	90	μg/L				
•						

APPENDIX D ANALYTICAL DATA REPORTS

ANALYTICAL REPORT

Lab Number: L1933226

Client: Sanborn, Head & Associates, Inc.

1 Technology Park Drive Westford, MA 01886

ATTN: Kent Walker
Phone: (978) 577-1003
Project Name: POLAR PARK

Project Number: 4325.03

Report Date: 08/06/19

The original project report/data package is held by Alpha Analytical. This report/data package is paginated and should be reproduced only in its entirety. Alpha Analytical holds no responsibility for results and/or data that are not consistent with the original.

Certifications & Approvals: MA (M-MA086), NH NELAP (2064), CT (PH-0574), IL (200077), ME (MA00086), MD (348), NJ (MA935), NY (11148), NC (25700/666), PA (68-03671), RI (LAO00065), TX (T104704476), VT (VT-0935), VA (460195), USDA (Permit #P330-17-00196).

Eight Walkup Drive, Westborough, MA 01581-1019 508-898-9220 (Fax) 508-898-9193 800-624-9220 - www.alphalab.com

Project Name: POLAR PARK

Project Number: 4325.03

Analytical laboratory report amended to remove those samples not included in this Remediation General Permit (RGP) Notice of Intent (NOI).

Lab Number: L1933226 Report Date: 08/06/19

Alpha Sample ID	Client ID	Matrix	Sample Location	Collection Date/Time	Receive Date
L1933226-01	HA19-2(OW)	WATER	WORCESTER, MA	07/26/19 10:00	07/26/19
L1933226-02	MIDDLE RIVER	WATER	WORCESTER, MA	07/26/19 11:20	07/26/19

Project Name:POLAR PARKLab Number:L1933226Project Number:4325.03Report Date:08/06/19

Case Narrative

The samples were received in accordance with the Chain of Custody and no significant deviations were encountered during the preparation or analysis unless otherwise noted. Sample Receipt, Container Information, and the Chain of Custody are located at the back of the report.

Results contained within this report relate only to the samples submitted under this Alpha Lab Number and meet NELAP requirements for all NELAP accredited parameters unless otherwise noted in the following narrative. The data presented in this report is organized by parameter (i.e. VOC, SVOC, etc.). Sample specific Quality Control data (i.e. Surrogate Spike Recovery) is reported at the end of the target analyte list for each individual sample, followed by the Laboratory Batch Quality Control at the end of each parameter. Tentatively Identified Compounds (TICs), if requested, are reported for compounds identified to be present and are not part of the method/program Target Compound List, even if only a subset of the TCL are being reported. If a sample was re-analyzed or re-extracted due to a required quality control corrective action and if both sets of data are reported, the Laboratory ID of the re-analysis or re-extraction is designated with an "R" or "RE", respectively.

When multiple Batch Quality Control elements are reported (e.g. more than one LCS), the associated samples for each element are noted in the grey shaded header line of each data table. Any Laboratory Batch, Sample Specific % recovery or RPD value that is outside the listed Acceptance Criteria is bolded in the report. In reference to questions H (CAM) or 4 (RCP) when "NO" is checked, the performance criteria for CAM and RCP methods allow for some quality control failures to occur and still be within method compliance. In these instances, the specific failure is not narrated but noted in the associated QC Outlier Summary Report, located directly after the Case Narrative. QC information is also incorporated in the Data Usability Assessment table (Format 11) of our Data Merger tool, where it can be reviewed in conjunction with the sample result, associated regulatory criteria and any associated data usability implications.

Soil/sediments, solids and tissues are reported on a dry weight basis unless otherwise noted. Definitions of all data qualifiers and acronyms used in this report are provided in the Glossary located at the back of the report.

HOLD POLICY - For samples submitted on hold, Alpha's policy is to hold samples (with the exception of Air canisters) free of charge for 21 calendar days from the date the project is completed. After 21 calendar days, we will dispose of all samples submitted including those put on hold unless you have contacted your Alpha Project Manager and made arrangements for Alpha to continue to hold the samples. Air canisters will be disposed after 3 business days from the date the project is completed.

Please contact Project Management at 800-624-9220 with any questions.	

Project Name:POLAR PARKLab Number:L1933226Project Number:4325.03Report Date:08/06/19

Case Narrative (continued)

Report Submission

August 06, 2019: This final report includes the results of all requested analyses.

August 02, 2019: This is a preliminary report.

I, the undersigned, attest under the pains and penalties of perjury that, to the best of my knowledge and belief and based upon my personal inquiry of those responsible for providing the information contained in this analytical report, such information is accurate and complete. This certificate of analysis is not complete unless this page accompanies any and all pages of this report.

Authorized Signature:

Title: Technical Director/Representative Date: 08/06/19

Civilin Walker Cristin Walker

ORGANICS

VOLATILES

L1933226

Project Name: Lab Number: POLAR PARK

Project Number: Report Date: 4325.03

08/06/19

SAMPLE RESULTS

Lab ID: L1933226-01 Date Collected: 07/26/19 10:00

Client ID: Date Received: 07/26/19 HA19-2(OW) Sample Location: Field Prep: WORCESTER, MA Refer to COC

Sample Depth:

Matrix: Water Analytical Method: 128,624.1 Analytical Date: 07/29/19 20:24

Analyst: NLK

Parameter	Result	Qualifier Units	RL	MDL	Dilution Factor
Volatile Organics by GC/MS - Wes	stborough Lab				
Methylene chloride	ND	ug/l	1.0		1
1,1-Dichloroethane	ND	ug/l	1.5		1
Carbon tetrachloride	ND	ug/l	1.0		1
1,1,2-Trichloroethane	ND	ug/l	1.5		1
Tetrachloroethene	ND	ug/l	1.0		1
1,2-Dichloroethane	ND	ug/l	1.5		1
1,1,1-Trichloroethane	ND	ug/l	2.0		1
Benzene	ND	ug/l	1.0		1
Toluene	ND	ug/l	1.0		1
Ethylbenzene	ND	ug/l	1.0		1
Vinyl chloride	ND	ug/l	1.0		1
1,1-Dichloroethene	ND	ug/l	1.0		1
cis-1,2-Dichloroethene	ND	ug/l	1.0		1
Trichloroethene	ND	ug/l	1.0		1
1,2-Dichlorobenzene	ND	ug/l	5.0		1
1,3-Dichlorobenzene	ND	ug/l	5.0		1
1,4-Dichlorobenzene	ND	ug/l	5.0		1
p/m-Xylene	ND	ug/l	2.0		1
o-xylene	ND	ug/l	1.0		1
Xylenes, Total	ND	ug/l	1.0		1
Acetone	ND	ug/l	10		1
Methyl tert butyl ether	ND	ug/l	10		1
Tert-Butyl Alcohol	ND	ug/l	100		1
Tertiary-Amyl Methyl Ether	ND	ug/l	20		1

Project Name: POLAR PARK Lab Number: L1933226

Project Number: 4325.03 Report Date: 08/06/19

SAMPLE RESULTS

Lab ID: L1933226-01 Date Collected: 07/26/19 10:00

Client ID: HA19-2(OW) Date Received: 07/26/19
Sample Location: WORCESTER, MA Field Prep: Refer to COC

Sample Depth:

Parameter Result Qualifier Units RL MDL Dilution Factor

Volatile Organics by GC/MS - Westborough Lab

Surrogate	% Recovery	Qualifier	Acceptance Criteria	
Pentafluorobenzene	96		60-140	
Fluorobenzene	94		60-140	
4-Bromofluorobenzene	100		60-140	

Project Name: POLAR PARK Lab Number: L1933226

Project Number: 4325.03 Report Date: 08/06/19

SAMPLE RESULTS

Lab ID: L1933226-01 Date Collected: 07/26/19 10:00

Client ID: HA19-2(OW) Date Received: 07/26/19
Sample Location: WORCESTER, MA Field Prep: Refer to COC

Sample Depth:

Matrix: Water

Analytical Method: 128,624.1-SIM Analytical Date: 07/29/19 20:24

Analyst: NLK

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	
Volatile Organics by GC/MS-SIM	- Westborough Lab						
1,4-Dioxane	ND		ug/l	50		1	
Surrogate			% Recovery	Qualifier		ptance iteria	
Fluorobenzene			98		6	60-140	
4-Bromofluorobenzene			95		6	60-140	

Project Name: POLAR PARK Lab Number: L1933226

Project Number: 4325.03 Report Date: 08/06/19

SAMPLE RESULTS

Lab ID: L1933226-01 Date Collected: 07/26/19 10:00

Client ID: HA19-2(OW) Date Received: 07/26/19
Sample Location: WORCESTER, MA Field Prep: Refer to COC

Sample Depth:

Analytical Date:

Matrix: Water Extraction Method: EPA 504.1
Analytical Method: 14,504.1 Extraction Date: 08/05/19 11:50

Analyst: AWS

08/05/19 23:03

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	Column
Microextractables by GC - Westborough Lab							
1,2-Dibromoethane	ND		ug/l	0.010		1	Α

Project Name: POLAR PARK Lab Number: L1933226

Project Number: 4325.03 Report Date: 08/06/19

Method Blank Analysis Batch Quality Control

Analytical Method: 128,624.1 Analytical Date: 07/29/19 17:29

Analyst: AD

Parameter	Result	Qualifier Unit	s RL	MDL
Volatile Organics by GC/MS	- Westborough Lab	for sample(s):	01 Batch:	WG1266317-4
Methylene chloride	ND	ug/	1.0	
1,1-Dichloroethane	ND	ug/	1.5	
Carbon tetrachloride	ND	ug/	1.0	
1,1,2-Trichloroethane	ND	ug/	l 1.5	
Tetrachloroethene	ND	ug/	1.0	
1,2-Dichloroethane	ND	ug/	l 1.5	
1,1,1-Trichloroethane	ND	ug/	1 2.0	
Benzene	ND	ug/	1.0	
Toluene	ND	ug/	1.0	
Ethylbenzene	ND	ug/	1.0	
Vinyl chloride	ND	ug/	1.0	
1,1-Dichloroethene	ND	ug/	1.0	
cis-1,2-Dichloroethene	ND	ug/	1.0	
Trichloroethene	ND	ug/	1.0	
1,2-Dichlorobenzene	ND	ug/	T 5.0	
1,3-Dichlorobenzene	ND	ug/	T 5.0	
1,4-Dichlorobenzene	ND	ug/	1 5.0	
p/m-Xylene	ND	ug/	1 2.0	
o-xylene	ND	ug/	1.0	
Xylenes, Total	ND	ug/	1.0	
Acetone	ND	ug/	T 10	
Methyl tert butyl ether	ND	ug/	T 10	
Tert-Butyl Alcohol	ND	ug/	T 100	
Tertiary-Amyl Methyl Ether	ND	ug/	1 20	

Project Name: POLAR PARK Lab Number: L1933226

Project Number: 4325.03 Report Date: 08/06/19

Method Blank Analysis
Batch Quality Control

Analytical Method: 128,624.1 Analytical Date: 07/29/19 17:29

Analyst: AD

ParameterResultQualifierUnitsRLMDLVolatile Organics by GC/MS - Westborough Lab for sample(s):01Batch:WG1266317-4

		Acceptance
Surrogate	%Recovery Qualifie	er Criteria
Pentafluorobenzene	87	60-140
Fluorobenzene	91	60-140
4-Bromofluorobenzene	99	60-140

Project Name: POLAR PARK Lab Number: L1933226

Project Number: 4325.03 Report Date: 08/06/19

Method Blank Analysis Batch Quality Control

Analytical Method: 128,624.1-SIM Analytical Date: 07/29/19 17:29

Analyst: AD

Parameter	Result	Qualifier	Units		RL	MDL	
Volatile Organics by GC/MS-SIM -	Westborough	n Lab for s	ample(s):	01	Batch:	WG1266333-4	
1,4-Dioxane	ND		ug/l		50		

		Acceptance			
Surrogate	%Recovery Qualific	er Criteria			
Fluenchennen	0.5	CO 440			
Fluorobenzene	95	60-140			
4-Bromofluorobenzene	96	60-140			

Project Name: POLAR PARK Lab Number: L1933226

Project Number: 4325.03 Report Date: 08/06/19

Method Blank Analysis Batch Quality Control

Analytical Method: 14,504.1 Extraction Method: EPA 504.1

Analytical Date: 08/05/19 22:47 Extraction Date: 08/05/19 11:50

Analyst: AWS

Parameter	Result	Qualifier	Units	RL	MDL	
Microextractables by GC - Westl	oorough Lab fo	r sample(s)	: 01	Batch: WG126	8692-1	
1,2-Dibromoethane	ND		ug/l	0.010		Α

Project Name: POLAR PARK

Project Number: 4325.03

Lab Number: L1933226

Report Date: 08/06/19

arameter	LCS %Recovery	Qual	LCSD %Recovery	Qual	%Recovery Limits	RPD	Qual	RPD Limits
olatile Organics by GC/MS - Westboroug	h Lab Associated	sample(s): 0	1 Batch: WG1	266317-3				
Methylene chloride	100		-		60-140	-		28
1,1-Dichloroethane	85		-		50-150	-		49
Carbon tetrachloride	85		-		70-130	-		41
1,1,2-Trichloroethane	95		-		70-130	-		45
Tetrachloroethene	95		-		70-130	-		39
1,2-Dichloroethane	80		-		70-130	-		49
1,1,1-Trichloroethane	105		-		70-130	-		36
Benzene	80		-		65-135	-		61
Toluene	105		-		70-130	-		41
Ethylbenzene	105		-		60-140	-		63
Vinyl chloride	90		-		5-195	-		66
1,1-Dichloroethene	105		-		50-150	-		32
cis-1,2-Dichloroethene	100		-		60-140	-		30
Trichloroethene	85		-		65-135	-		48
1,2-Dichlorobenzene	105		-		65-135	-		57
1,3-Dichlorobenzene	100		-		70-130	-		43
1,4-Dichlorobenzene	100		-		65-135	-		57
p/m-Xylene	102		-		60-140	-		30
o-xylene	95		-		60-140	-		30
Acetone	92		-		40-160	-		30
Methyl tert butyl ether	95		-		60-140	-		30
Tert-Butyl Alcohol	100		-		60-140	-		30
Tertiary-Amyl Methyl Ether	65		-		60-140	-		30

POLAR PARK

Batch Quality Cont

Lab Number: L1933226

Project Number: 4325.03 **Report Date:** 08/06/19

LCS LCSD %Recovery RPD Parameter %Recovery Qual %Recovery Qual Limits RPD Qual Limits

Volatile Organics by GC/MS - Westborough Lab Associated sample(s): 01 Batch: WG1266317-3

Surrogate	LCS %Recovery Qual	LCSD %Recovery Q	Acceptance Qual Criteria
Pentafluorobenzene	98		60-140
Fluorobenzene	84		60-140
4-Bromofluorobenzene	99		60-140

Project Name:

Lab Number: L1933226

Project Number: 4325.03

POLAR PARK

Project Name:

Report Date:

<u>Parameter</u>	LCS %Recovery	Qual	LCSD %Recovery	Qual	%Recovery Limits	RPD	Qual	RPD Limits	
Volatile Organics by GC/MS-SIM - Wes	stborough Lab Associate	ed sample(s):	01 Batch:	WG1266333	3-3				
1,4-Dioxane	110		-		60-140	-		20	

Surrogate	LCS %Recovery Qu	LCSD ual %Recovery	Qual	Acceptance Criteria
Fluorobenzene 4-Bromofluorobenzene	87 93			60-140 60-140

Project Name: POLAR PARK

Lab Number:

L1933226

Project Number: 4325.03

Report Date:

Parameter	LCS %Recovery	Qual	LCSD %Recovery	Qual	%Recovery Limits	RPD	Qual	RPD Limits	Column
Microextractables by GC - Westborough Lab	Associated sam	nple(s): 01	Batch: WG1268	3692-2					
1,2-Dibromoethane	114		-		80-120	-			Α

Matrix Spike Analysis Batch Quality Control

Project Name: POLAR PARK

Project Number: 4325.03

Lab Number:

L1933226

Report Date:

Parameter	Native Sample	MS Added	MS Found %	MS Recovery	Qual	MSD Found	MSD %Recovery		ecovery Limits	RPD	Qual	RPD Limits	<u>Colum</u> n
Microextractables by GC -	- Westborough Lab	Associat	ed sample(s): 01	QC Batch	ID: WG12	68692-3	QC Sample:	L1932588	-02 Clie	ent ID: N	/IS Samp	ole	
1,2-Dibromoethane	ND	0.252	0.202	80		-	-		80-120	-		20	Α
1,2-Dibromo-3-chloropropane	ND	0.252	0.288	114		-	-		80-120	-		20	Α
1,2,3-Trichloropropane	ND	0.252	0.250	99		-	-		80-120	-		20	Α

SEMIVOLATILES

Project Name: POLAR PARK Lab Number: L1933226

Project Number: 4325.03 Report Date: 08/06/19

SAMPLE RESULTS

Lab ID: L1933226-01 Date Collected: 07/26/19 10:00

Client ID: HA19-2(OW) Date Received: 07/26/19
Sample Location: WORCESTER, MA Field Prep: Refer to COC

Sample Depth:

Analytical Date:

Matrix: Water Extraction Method: EPA 625.1
Analytical Method: 129,625.1 Extraction Date: 08/01/19 07:41

Analyst: ALS

08/02/19 13:04

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	
Semivolatile Organics by GC/MS - West	oorough Lab						
Bis(2-ethylhexyl)phthalate	ND		ug/l	2.2		1	
Butyl benzyl phthalate	ND		ug/l	4.9		1	
Di-n-butylphthalate	ND		ug/l	4.9		1	
Di-n-octylphthalate	ND		ug/l	4.9		1	
Diethyl phthalate	ND		ug/l	4.9		1	
Dimethyl phthalate	ND		ug/l	4.9		1	

Surrogate	% Recovery	Acceptance Qualifier Criteria	
Nitrobenzene-d5	92	42-122	
2-Fluorobiphenyl	75	46-121	
4-Terphenyl-d14	96	47-138	

Project Name: Lab Number: POLAR PARK L1933226

Project Number: Report Date: 4325.03 08/06/19

SAMPLE RESULTS

Lab ID: L1933226-01 Date Collected: 07/26/19 10:00

Date Received: Client ID: HA19-2(OW) 07/26/19 Sample Location: WORCESTER, MA Field Prep: Refer to COC

Sample Depth:

Extraction Method: EPA 625.1 Matrix: Water

Extraction Date: 08/01/19 07:43 Analytical Method: 129,625.1-SIM Analytical Date:

Analyst: DV

08/01/19 23:47

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	
Semivolatile Organics by GC/MS-S	SIM - Westborough La	ab					
Acenaphthene	ND		ug/l	0.10		1	
Fluoranthene	ND		ug/l	0.10		1	
Naphthalene	ND		ug/l	0.10		1	
Benzo(a)anthracene	ND		ug/l	0.10		1	
Benzo(a)pyrene	ND		ug/l	0.10		1	
Benzo(b)fluoranthene	ND		ug/l	0.10		1	
Benzo(k)fluoranthene	ND		ug/l	0.10		1	
Chrysene	ND		ug/l	0.10		1	
Acenaphthylene	ND		ug/l	0.10		1	
Anthracene	ND		ug/l	0.10		1	
Benzo(ghi)perylene	ND		ug/l	0.10		1	
Fluorene	ND		ug/l	0.10		1	
Phenanthrene	ND		ug/l	0.10		1	
Dibenzo(a,h)anthracene	ND		ug/l	0.10		1	
Indeno(1,2,3-cd)pyrene	ND		ug/l	0.10		1	
Pyrene	ND		ug/l	0.10		1	
Pentachlorophenol	ND		ug/l	0.98		1	

Surrogate	% Recovery	Acceptance Qualifier Criteria	
2-Fluorophenol	47	25-87	
Phenol-d6	32	16-65	
Nitrobenzene-d5	90	42-122	
2-Fluorobiphenyl	87	46-121	
2,4,6-Tribromophenol	83	45-128	
4-Terphenyl-d14	84	47-138	

Project Name: POLAR PARK Lab Number: L1933226

Project Number: 4325.03 Report Date: 08/06/19

Method Blank Analysis Batch Quality Control

Analytical Method: 129,625.1 Analytical Date: 08/02/19 12:14

Analyst: CB

Extraction Method: EPA 625.1 Extraction Date: 07/31/19 15:40

Parameter	Result	Qualifier	Units	F	RL	MDL	
Semivolatile Organics by GC/MS - V	Vestborough	n Lab for s	ample(s):	01	Batch:	WG1266979-1	
Bis(2-ethylhexyl)phthalate	ND		ug/l	2	2.2		
Butyl benzyl phthalate	ND		ug/l	5	5.0		
Di-n-butylphthalate	ND		ug/l	5	5.0		
Di-n-octylphthalate	ND		ug/l	5	5.0		
Diethyl phthalate	ND		ug/l	5	5.0		
Dimethyl phthalate	ND		ug/l	5	5.0		

		Acceptance
Surrogate	%Recovery Q	ualifier Criteria
Nitrobenzene-d5	97	42-122
2-Fluorobiphenyl	81	46-121
4-Terphenyl-d14	97	47-138

L1933226

Project Name: POLAR PARK Lab Number:

Project Number: 4325.03 **Report Date:** 08/06/19

Method Blank Analysis Batch Quality Control

Analytical Method: 129,625.1-SIM Analytical Date: 08/01/19 22:24

Analyst: DV

Extraction Method: EPA 625.1
Extraction Date: 08/01/19 05:33

arameter	Result	Qualifier	Units	RL	MDL	
emivolatile Organics by GC/M	IS-SIM - Westbo	rough Lab	for sample	e(s): 01	Batch: WG126721	1-1
Acenaphthene	ND		ug/l	0.10		
Fluoranthene	ND		ug/l	0.10		
Naphthalene	ND		ug/l	0.10		
Benzo(a)anthracene	ND		ug/l	0.10		
Benzo(a)pyrene	ND		ug/l	0.10		
Benzo(b)fluoranthene	ND		ug/l	0.10		
Benzo(k)fluoranthene	ND		ug/l	0.10		
Chrysene	ND		ug/l	0.10		
Acenaphthylene	ND		ug/l	0.10		
Anthracene	ND		ug/l	0.10		
Benzo(ghi)perylene	ND		ug/l	0.10		
Fluorene	ND		ug/l	0.10		
Phenanthrene	ND		ug/l	0.10		
Dibenzo(a,h)anthracene	ND		ug/l	0.10		
Indeno(1,2,3-cd)pyrene	ND		ug/l	0.10		
Pyrene	ND		ug/l	0.10		
Pentachlorophenol	ND		ug/l	1.0		

%Recovery	Acceptance Qualifier Criteria
59	25-87
45	16-65
89	42-122
82	46-121
78	45-128
89	47-138
	59 45 89 82 78

Project Name: POLAR PARK

Project Number: 4325.03

Lab Number:

L1933226

Report Date:

Parameter	LCS %Recovery	Qual	LCSD %Recovery	Qual	%Recovery Limits	RPD	Qual	RPD Limits	
Semivolatile Organics by GC/MS - Westborou	ıgh Lab Associa	ated sample(s)	: 01 Batch:	WG1266979)-3				
Bis(2-ethylhexyl)phthalate	106		-		29-137	-		82	
Butyl benzyl phthalate	96		-		1-140	-		60	
Di-n-butylphthalate	99		-		8-120	-		47	
Di-n-octylphthalate	104		-		19-132	-		69	
Diethyl phthalate	90		-		1-120	-		100	
Dimethyl phthalate	81		-		1-120	-		183	

Surrogate	LCS %Recovery Qual	LCSD %Recovery Qual	Acceptance Criteria	_
Nitrobenzene-d5	92		42-122	
2-Fluorobiphenyl	76		46-121	
4-Terphenyl-d14	92		47-138	

Project Name: POLAR PARK

Project Number: 4325.03

Lab Number: L1933226

Report Date: 08/06/19

Parameter	LCS %Recovery (LCSD Qual %Recovery	%Recovery Qual Limits	RPD	RPD Qual Limits
Semivolatile Organics by GC/MS-SIM - W	estborough Lab Assoc	ciated sample(s): 01 Bate	ch: WG1267211-2		
Acenaphthene	81	-	60-132	-	30
Fluoranthene	94	-	43-121	-	30
Naphthalene	82	-	36-120	-	30
Benzo(a)anthracene	98	-	42-133	-	30
Benzo(a)pyrene	94	-	32-148	-	30
Benzo(b)fluoranthene	89	-	42-140	-	30
Benzo(k)fluoranthene	88	-	25-146	-	30
Chrysene	90	-	44-140	-	30
Acenaphthylene	86	-	54-126	-	30
Anthracene	99	-	43-120	-	30
Benzo(ghi)perylene	94	-	1-195	-	30
Fluorene	84	-	70-120	-	30
Phenanthrene	92	-	65-120	-	30
Dibenzo(a,h)anthracene	96	-	1-200	-	30
Indeno(1,2,3-cd)pyrene	93	-	1-151	-	30
Pyrene	93	-	70-120	-	30
Pentachlorophenol	75	-	38-152	-	30

Project Name: POLAR PARK

Lab Number:

L1933226

Project Number: 4325.03

Report Date:

08/06/19

LCS LCSD %Recovery RPD Parameter %Recovery Qual %Recovery Qual Limits RPD Qual Limits

Semivolatile Organics by GC/MS-SIM - Westborough Lab Associated sample(s): 01 Batch: WG1267211-2

Surrogate	LCS %Recovery Qual %F	LCSD Recovery Qu	Acceptance Ial Criteria
2-Fluorophenol	63		25-87
Phenol-d6	50		16-65
Nitrobenzene-d5	95		42-122
2-Fluorobiphenyl	86		46-121
2,4,6-Tribromophenol	82		45-128
4-Terphenyl-d14	86		47-138

PCBS

Project Name: POLAR PARK Lab Number: L1933226

Project Number: 4325.03 **Report Date:** 08/06/19

SAMPLE RESULTS

 Lab ID:
 L1933226-01
 Date Collected:
 07/26/19 10:00

 Client ID:
 HA19-2(OW)
 Date Received:
 07/26/19

Sample Location: WORCESTER, MA Field Prep: Refer to COC

Sample Depth:

Matrix: Water Extraction Method: EPA 608.3
Analytical Method: 127,608.3 Extraction Date: 08/01/19 08:07
Analytical Date: 08/04/19 15:57 Cleanup Method: EPA 3665A

Analytical Date: 08/04/19 15:57 Cleanup Method: EPA 3665
Analyst: WR Cleanup Date: 08/01/19

Cleanup Method: EPA 3660B Cleanup Date: 08/01/19

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	Column
Polychlorinated Biphenyls by	GC - Westborough Lab						
Aroclor 1016	ND		ug/l	0.250		1	Α
Aroclor 1221	ND		ug/l	0.250		1	Α
Aroclor 1232	ND		ug/l	0.250		1	Α
Aroclor 1242	ND		ug/l	0.250		1	Α
Aroclor 1248	ND		ug/l	0.250		1	Α
Aroclor 1254	ND		ug/l	0.250		1	Α
Aroclor 1260	ND		ug/l	0.200		1	Α

Surrogate	% Recovery	Qualifier	Criteria	Column
2,4,5,6-Tetrachloro-m-xylene	42		37-123	В
Decachlorobiphenyl	41		38-114	В
2,4,5,6-Tetrachloro-m-xylene	43		37-123	Α
Decachlorobiphenyl	40		38-114	Α

Project Name: POLAR PARK Lab Number: L1933226

Project Number: 4325.03 Report Date: 08/06/19

Method Blank Analysis Batch Quality Control

Analytical Method: 127,608.3 Analytical Date: 08/04/19 14:55

Analyst: WR

Extraction Method: EPA 608.3
Extraction Date: 08/01/19 02:56
Cleanup Method: EPA 3665A
Cleanup Date: 08/01/19
Cleanup Method: EPA 3660B
Cleanup Date: 08/01/19

Parameter	Result	Qualifier	Units	RL	MDL	Column
Polychlorinated Biphenyls by GC - \	Vestboroug	h Lab for s	ample(s):	01 Batch:	WG1267157	-1
Aroclor 1016	ND		ug/l	0.250		Α
Aroclor 1221	ND		ug/l	0.250		Α
Aroclor 1232	ND		ug/l	0.250		Α
Aroclor 1242	ND		ug/l	0.250		Α
Aroclor 1248	ND		ug/l	0.250		Α
Aroclor 1254	ND		ug/l	0.250		Α
Aroclor 1260	ND		ug/l	0.200		Α

		Acceptance			
Surrogate	%Recovery Qual	ifier Criteria	Column		
2,4,5,6-Tetrachloro-m-xylene	61	37-123	В		
Decachlorobiphenyl	83	38-114	В		
2,4,5,6-Tetrachloro-m-xylene	63	37-123	Α		
Decachlorobiphenyl	75	38-114	Α		

Project Name: POLAR PARK

Lab Number:

L1933226

Project Number: 4325.03

Report Date: 08/06/19

	LCS		LCSD		%Recovery			RPD	
Parameter	%Recovery	Qual	%Recovery	Qual	Limits	RPD	Qual	Limits	Column
Polychlorinated Biphenyls by GC - Westl	borough Lab Associa	ated sample(s)	: 01 Batch:	WG1267157	7-2				
Aroclor 1016	78		-		50-140	-		36	Α
Aroclor 1260	83		-		8-140	-		38	Α

Surrogate	LCS %Recovery Qual	LCSD %Recovery Qual	Acceptance Criteria Colum	n
2,4,5,6-Tetrachloro-m-xylene	75		37-123 B	_
Decachlorobiphenyl	89		38-114 B	
2,4,5,6-Tetrachloro-m-xylene	77		37-123 A	
Decachlorobiphenyl	84		38-114 A	

METALS

Project Name:POLAR PARKLab Number:L1933226Project Number:4325.03Report Date:08/06/19

SAMPLE RESULTS

Lab ID:L1933226-02Date Collected:07/26/19 11:20Client ID:MIDDLE RIVERDate Received:07/26/19Sample Location:WORCESTER, MAField Prep:Refer to COC

Sample Depth:

Matrix: Water

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	Date Prepared	Date Analyzed	Prep Method	Analytical Method	Analyst
Total Metals - Mans	sfield Lab										
Antimony, Total	ND		mg/l	0.00400		1	07/29/19 20:55	07/30/19 20:51	EPA 3005A	3,200.8	AM
Arsenic, Total	0.01716		mg/l	0.00100		1	07/29/19 20:55	07/30/19 20:51	EPA 3005A	3,200.8	AM
Cadmium, Total	0.00066		mg/l	0.00020		1	07/29/19 20:55	07/30/19 20:51	EPA 3005A	3,200.8	AM
Chromium, Total	0.00563		mg/l	0.00100		1	07/29/19 20:55	07/30/19 20:51	EPA 3005A	3,200.8	AM
Copper, Total	0.01731		mg/l	0.00100		1	07/29/19 20:55	07/30/19 20:51	EPA 3005A	3,200.8	AM
Iron, Total	4.97		mg/l	0.050		1	07/29/19 20:55	07/30/19 13:20	EPA 3005A	19,200.7	AB
Lead, Total	0.02532		mg/l	0.00100		1	07/29/19 20:55	07/30/19 20:51	EPA 3005A	3,200.8	AM
Mercury, Total	ND		mg/l	0.00020		1	07/30/19 15:22	07/30/19 20:05	EPA 245.1	3,245.1	EA
Nickel, Total	0.00438		mg/l	0.00200		1	07/29/19 20:55	07/30/19 20:51	EPA 3005A	3,200.8	AM
Selenium, Total	ND		mg/l	0.00500		1	07/29/19 20:55	07/30/19 20:51	EPA 3005A	3,200.8	AM
Silver, Total	ND		mg/l	0.00040		1	07/29/19 20:55	07/30/19 20:51	EPA 3005A	3,200.8	AM
Zinc, Total	0.05755		mg/l	0.01000		1	07/29/19 20:55	07/30/19 20:51	EPA 3005A	3,200.8	AM
Total Hardness by	SM 2340B	- Mansfiel	d Lab								
Hardness	56.6		mg/l	0.660	NA	1	07/29/19 20:55	07/30/19 13:20	EPA 3005A	19,200.7	AB

Project Name: POLAR PARK

Project Number: 4325.03

Lab Number:

L1933226

Report Date:

08/06/19

Method Blank Analysis Batch Quality Control

Parameter	Result Qualifier	Units	RL	MDL	Dilution Factor	Date Prepared		Analytical Method	
Total Metals - Mansfield	d Lab for sample(s):	01-02 E	Batch: Wo	G12659	72-1				
Iron, Total	ND	mg/l	0.050		1	07/29/19 20:55	07/30/19 10:58	19,200.7	AB

Prep Information

Digestion Method: EPA 3005A

Parameter	Result Qualifier	Units	RL	MDL	Dilution Factor	Date Prepared	Date Analyzed	Analytical Method	Analyst
Total Hardness by SM 2	340B - Mansfield Lal	b for sam	nple(s):	01-02 E	Batch: WG1	1265972-1			
Hardness	ND	mg/l	0.660	NA	1	07/29/19 20:55	07/30/19 10:58	19,200.7	AB

Prep Information

Digestion Method: EPA 3005A

Parameter	Result Qualifier	Units	RL	MDL	Dilution Factor	Date Prepared	Date Analyzed	Analytical Method	Analyst
Total Metals - Mans	field Lab for sample(s)	: 01-02 l	Batch: Wo	G12659	75-1				
Antimony, Total	ND	mg/l	0.00400		1	07/29/19 20:55	07/30/19 19:03	3,200.8	AM
Arsenic, Total	ND	mg/l	0.00100		1	07/29/19 20:55	07/30/19 19:03	3,200.8	AM
Cadmium, Total	ND	mg/l	0.00020		1	07/29/19 20:55	07/30/19 19:03	3,200.8	AM
Chromium, Total	ND	mg/l	0.00100		1	07/29/19 20:55	07/30/19 19:03	3,200.8	AM
Copper, Total	ND	mg/l	0.00100		1	07/29/19 20:55	07/30/19 19:03	3,200.8	AM
Lead, Total	ND	mg/l	0.00100		1	07/29/19 20:55	07/30/19 19:03	3,200.8	AM
Nickel, Total	ND	mg/l	0.00200		1	07/29/19 20:55	07/30/19 19:03	3,200.8	AM
Selenium, Total	ND	mg/l	0.00500		1	07/29/19 20:55	07/30/19 19:03	3,200.8	AM
Silver, Total	ND	mg/l	0.00040		1	07/29/19 20:55	07/30/19 19:03	3,200.8	AM
Zinc, Total	ND	mg/l	0.01000		1	07/29/19 20:55	07/30/19 19:03	3,200.8	AM

Prep Information

Digestion Method: EPA 3005A

Project Name: POLAR PARK

Project Number: 4325.03

Lab Number:

L1933226

Report Date:

08/06/19

Method Blank Analysis Batch Quality Control

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	Date Prepared		Analytical Method	
Dissolved Metals -	Mansfield Lab	for sample	e(s): 01	Batch:	WG1266	359-1				
Iron, Dissolved	ND		mg/l	0.050		1	07/30/19 15:30	07/30/19 20:49	19,200.7	AB

Prep Information

Digestion Method: EPA 3005A

Parameter	Result Qualifier	Units	RL	MDL	Dilution Factor	Date Prepared	Date Analyzed	Analytical Method	l Analyst
Dissolved Metals - Ma	ansfield Lab for samp	le(s): 01	Batch: V	VG1266	6361-1				
Antimony, Dissolved	ND	mg/l	0.0040		1	07/30/19 15:30	07/31/19 02:13	3,200.8	AM
Arsenic, Dissolved	ND	mg/l	0.0010		1	07/30/19 15:30	07/31/19 02:13	3,200.8	AM
Cadmium, Dissolved	ND	mg/l	0.0002		1	07/30/19 15:30	07/31/19 02:13	3,200.8	AM
Chromium, Dissolved	ND	mg/l	0.0010		1	07/30/19 15:30	07/31/19 02:13	3,200.8	AM
Copper, Dissolved	ND	mg/l	0.0010		1	07/30/19 15:30	07/31/19 02:13	3,200.8	AM
Lead, Dissolved	ND	mg/l	0.0010		1	07/30/19 15:30	07/31/19 02:13	3,200.8	AM
Nickel, Dissolved	ND	mg/l	0.0020		1	07/30/19 15:30	07/31/19 02:13	3,200.8	AM
Selenium, Dissolved	ND	mg/l	0.0050		1	07/30/19 15:30	07/31/19 02:13	3,200.8	AM
Silver, Dissolved	ND	mg/l	0.0004		1	07/30/19 15:30	07/31/19 02:13	3,200.8	AM
Zinc, Dissolved	ND	mg/l	0.0100		1	07/30/19 15:30	07/31/19 02:13	3,200.8	AM

Prep Information

Digestion Method: EPA 3005A

Parameter	Result Qualifier	Units	RL	MDL	Dilution Factor	Date Prepared	Date Analyzed	Analytical Method	
Total Metals - Mans	sfield Lab for sample(s):	01-02 I	Batch: W	G12663	882-1				
Mercury, Total	ND	mg/l	0.00020		1	07/30/19 15:22	07/30/19 19:30	3,245.1	EA

Prep Information

Digestion Method: EPA 245.1

Project Name: POLAR PARK

Project Number:

4325.03

Lab Number:

L1933226

Report Date:

08/06/19

Method Blank Analysis Batch Quality Control

Dilution Date Date Analytical Method Analyst **Parameter Result Qualifier Units** RLMDL **Factor Prepared** Analyzed Dissolved Metals - Mansfield Lab for sample(s): 01 Batch: WG1266803-1 Mercury, Dissolved ND mg/l 0.00020 07/31/19 11:07 07/31/19 19:38 3,245.1 EΑ 1

Prep Information

Digestion Method: EPA 245.1

Lab Control Sample Analysis Batch Quality Control

Project Name: POLAR PARK

Project Number: 4325.03

Lab Number: L1933226

Parameter	LCS %Recovery	LCSD Qual %Recovery		ecovery _imits RPI	O Qual	RPD Limits
Total Metals - Mansfield Lab Associated sample	e(s): 01-02 Batc	h: WG1265972-2				
Iron, Total	104	-		35-115 -		
Total Hardness by SM 2340B - Mansfield Lab A	ssociated sample	e(s): 01-02 Batch: WG126	5972-2			
Hardness	100	-	1	35-115 -		
Fotal Metals - Mansfield Lab Associated sample	e(s): 01-02 Batc	h: WG1265975-2				
Antimony, Total	92	-	1	35-115 -		
Arsenic, Total	102	-	8	35-115 -		
Cadmium, Total	106	-	8	35-115 -		
Chromium, Total	99	-		35-115 -		
Copper, Total	96	-		35-115 -		
Lead, Total	103	-		35-115 -		
Nickel, Total	103	-		35-115 -		
Selenium, Total	103	-		35-115 -		
Silver, Total	102	-		35-115 -		
Zinc, Total	101	-		35-115 -		
Dissolved Metals - Mansfield Lab Associated sa	mple(s): 01 Bat	tch: WG1266359-2				
Iron, Dissolved	105	-	:	35-115 -		

Lab Control Sample Analysis Batch Quality Control

Project Name: POLAR PARK

Project Number: 4325.03

Lab Number: L1933226

Parameter	LCS %Recovery	LCSD %Recovery	%Recovery Limits	RPD	RPD Limits
Dissolved Metals - Mansfield Lab Associated sa	mple(s): 01 Batch:	WG1266361-2			
Antimony, Dissolved	91	-	85-115	-	
Arsenic, Dissolved	98	-	85-115	-	
Cadmium, Dissolved	101	-	85-115	-	
Chromium, Dissolved	99	-	85-115	-	
Copper, Dissolved	95	-	85-115	-	
Lead, Dissolved	102	-	85-115	-	
Nickel, Dissolved	103	-	85-115	-	
Selenium, Dissolved	107	-	85-115	-	
Silver, Dissolved	98	-	85-115	-	
Zinc, Dissolved	102	-	85-115	-	
Total Metals - Mansfield Lab Associated sample	(s): 01-02 Batch: W	/G1266382-2			
Mercury, Total	99	-	85-115	-	
Dissolved Metals - Mansfield Lab Associated sa	mple(s): 01 Batch:	WG1266803-2			
Mercury, Dissolved	112	-	85-115	-	

Project Name: POLAR PARK

Project Number: 4325.03

Lab Number:

L1933226

arameter	Native Sample	MS Added	MS Found	MS %Recovery	Qual	MSD Found %	MSD %Recovery Qu	Recovery ual Limits	RPD Qual	RPD Limits
Total Metals - Mansfield Lab A	Associated sam	ple(s): 01-02	QC Bato	h ID: WG126	5972-3	QC Sample	: L1933079-01	Client ID: MS	Sample	
Iron, Total	1.59	1	2.48	89		-	-	75-125	-	20
Total Hardness by SM 2340B	- Mansfield La	b Associated	sample(s):	01-02 QC	Batch ID:	: WG1265972	2-3 QC Samp	ole: L1933079-01	Client ID:	MS Sample
Hardness	271	66.2	318	71	Q	-	-	75-125	-	20
Total Metals - Mansfield Lab A	Associated sam	nple(s): 01-02	QC Bato	h ID: WG126	5972-7	QC Sample	: L1932366-01	Client ID: MS	Sample	
Iron, Total	41.8	1	39.1	0	Q	-	-	75-125	-	20
Total Hardness by SM 2340B	- Mansfield La	b Associated	sample(s):	01-02 QC	Batch ID:	: WG1265972	2-7 QC Samp	ole: L1932366-01	Client ID:	MS Sample
Hardness	198	66.2	254	85		-	-	75-125	-	20
Total Metals - Mansfield Lab A	Associated sam	nple(s): 01-02	QC Bato	h ID: WG126	5975-3	QC Sample	: L1933079-01	Client ID: MS	Sample	
Antimony, Total	ND	0.5	0.4657	93		-	-	70-130	-	20
Arsenic, Total	0.01481	0.12	0.1272	94		-	-	70-130	-	20
Cadmium, Total	ND	0.051	0.05102	100		-	-	70-130	-	20
Chromium, Total	ND	0.2	0.1915	96		-	-	70-130	-	20
Copper, Total	0.3476	0.25	0.5670	88		-	-	70-130	-	20
Lead, Total	0.02179	0.51	0.5344	100		-	-	70-130	-	20
Nickel, Total	ND	0.5	0.4697	94		-	-	70-130	-	20
Selenium, Total	ND	0.12	0.1118	93		-	-	70-130	-	20
Silver, Total	ND	0.05	0.04714	94		-	-	70-130	-	20
Zinc, Total	0.6190	0.5	1.093	95		-	-	70-130	-	20

Project Name: POLAR PARK

Project Number: 4325.03

Lab Number: L1933226

arameter	Native Sample	MS Added	MS Found	MS %Recovery	MSD Found	MSD %Recovery	Recovery Limits	RPD	RPD Limits
otal Metals - Mansfield La	ab Associated sam	ple(s): 01-02	2 QC Batc	h ID: WG1265975	-5 QC Sam	ple: L1932366-01	Client ID: MS	S Sample	
Antimony, Total	ND	0.5	0.3547	71	-	-	70-130	-	20
Arsenic, Total	0.01943	0.12	0.1217	85	-	-	70-130	-	20
Cadmium, Total	0.00036	0.051	0.05106	99	-	-	70-130	-	20
Chromium, Total	0.03955	0.2	0.2198	90	-	-	70-130	-	20
Copper, Total	0.03196	0.25	0.2541	89	-	-	70-130	-	20
Lead, Total	0.04701	0.51	0.5381	96	-	-	70-130	-	20
Nickel, Total	0.0348	0.5	0.5006	93	-	-	70-130	-	20
Selenium, Total	ND	0.12	0.09829	82	-	-	70-130	-	20
Silver, Total	ND	0.05	0.04687	94	-	-	70-130	-	20
Zinc, Total	0.1324	0.5	0.5916	92	-	-	70-130	-	20
Dissolved Metals - Mansfie	eld Lab Associated	sample(s):	01 QC Bat	tch ID: WG126635	9-3 QC Sa	mple: L1932366-01	Client ID: N	IS Sample	
Iron, Dissolved	1.25	1	2.40	115	-	-	75-125	-	20

Project Name: POLAR PARK

Project Number: 4325.03

Lab Number: L1933226

arameter	Native Sample	MS Added	MS Found	MS %Recovery		MSD Found	MSD %Recovery	Recovery Limits	RPD	RPD Limits
Dissolved Metals - Mansfield	Lab Associated	sample(s): 01	QC Ba	atch ID: WG120	66361-3	QC Sa	mple: L1932366-01	Client ID: N	MS Sample	
Antimony, Dissolved	ND	0.5	0.6026	120		-	-	70-130	-	20
Arsenic, Dissolved	0.0033	0.12	0.1351	110		-	-	70-130	-	20
Cadmium, Dissolved	ND	0.051	0.0564	110		-	-	70-130	-	20
Chromium, Dissolved	ND	0.2	0.2132	107		-	-	70-130	-	20
Copper, Dissolved	ND	0.25	0.2603	104		-	-	70-130	-	20
Lead, Dissolved	ND	0.51	0.5630	110		-	-	70-130	-	20
Nickel, Dissolved	0.0033	0.5	0.5399	107		-	-	70-130	-	20
Selenium, Dissolved	ND	0.12	0.1413	118		-	-	70-130	-	20
Silver, Dissolved	ND	0.05	0.0519	104		-	-	70-130	-	20
Zinc, Dissolved	ND	0.5	0.5618	112		-	-	70-130	-	20
otal Metals - Mansfield Lab	Associated sam	ple(s): 01-02	QC Bat	ch ID: WG1266	6382-3	QC Sam	ple: L1933582-01	Client ID: MS	S Sample	
Mercury, Total	ND	0.005	0.00457	91		-	-	70-130	-	20
Total Metals - Mansfield Lab	Associated sam	ple(s): 01-02	QC Bat	ch ID: WG1266	6382-5	QC Sam	ple: L1933582-02	Client ID: MS	S Sample	
Mercury, Total	ND	0.005	0.00472	94		-	-	70-130	-	20
Dissolved Metals - Mansfield	Lab Associated	sample(s): 01	QC Ba	atch ID: WG120	66803-3	QC Sa	mple: L1932366-02	Client ID: N	MS Sample	
Mercury, Dissolved	ND	0.005	0.00344	69	Q	-	-	75-125	-	20

Project Name: POLAR PARK

Project Number: 4325.03

Lab Number:

L1933226

Report Date:

08/06/19

Parameter	Native Sample	Duplicate Sample	Units	RPD	Qual	RPD Limits
otal Metals - Mansfield Lab Associated sample(s): 01-02	QC Batch ID:	WG1265972-4 QC Sample:	L1933079-01	Client ID:	DUP Sa	mple
Iron, Total	1.59	1.55	mg/l	3		20
otal Metals - Mansfield Lab Associated sample(s): 01-02	QC Batch ID:	WG1265972-8 QC Sample:	L1932366-01	Client ID:	DUP Sa	mple
Iron, Total	41.8	39.1	mg/l	7		20
otal Hardness by SM 2340B - Mansfield Lab Associated Sample	sample(s): 01-02	2 QC Batch ID: WG1265972	-8 QC Samp	le: L1932	366-01 C	client ID: DUP
Hardness	198	194	mg/l	2		20
otal Metals - Mansfield Lab Associated sample(s): 01-02	QC Batch ID:	WG1265975-4 QC Sample:	L1933079-01	Client ID:	DUP Sa	mple
Antimony, Total	ND	ND	mg/l	NC		20
Arsenic, Total	0.01481	0.01555	mg/l	5		20
Cadmium, Total	ND	ND	mg/l	NC		20
Chromium, Total	ND	ND	mg/l	NC		20
Copper, Total	0.3476	0.3461	mg/l	0		20
Lead, Total	0.02179	0.02179	mg/l	0		20
Nickel, Total	ND	ND	mg/l	NC		20
Selenium, Total	ND	ND	mg/l	NC		20
Silver, Total	ND	ND	mg/l	NC		20
Zinc, Total	0.6190	0.6297	mg/l	2		20

Project Name: POLAR PARK

Project Number: 4325.03

Lab Number:

L1933226

Parameter N	Native Sample	Duplicate Sample	Units	RPD	RPE	Limits
Total Metals - Mansfield Lab Associated sample(s): 01-02	QC Batch ID:	WG1265975-6 QC Sample:	L1932366-01	Client ID:	DUP Sample	
Arsenic, Total	0.01943	0.01782	mg/l	9		20
Cadmium, Total	0.00036	0.00028	mg/l	26	Q	20
Chromium, Total	0.03955	0.03498	mg/l	12		20
Copper, Total	0.03196	0.02986	mg/l	7		20
Lead, Total	0.04701	0.04452	mg/l	5		20
Selenium, Total	ND	ND	mg/l	NC		20
Silver, Total	ND	ND	mg/l	NC		20
Zinc, Total	0.1324	0.1225	mg/l	8		20
Dissolved Metals - Mansfield Lab Associated sample(s): 0	1 QC Batch ID): WG1266359-4 QC Sample	e: L1932366-0	1 Client ID	: DUP Sample	
Iron, Dissolved	1.25	1.27	mg/l	2		20
Dissolved Metals - Mansfield Lab Associated sample(s): 0	1 QC Batch ID): WG1266361-4 QC Sample	e: L1932366-0	1 Client ID	: DUP Sample	
Arsenic, Dissolved	0.0033	0.0029	mg/l	11		20
Cadmium, Dissolved	ND	ND	mg/l	NC		20
Chromium, Dissolved	ND	ND	mg/l	NC		20
Copper, Dissolved	ND	ND	mg/l	NC		20
Lead, Dissolved	ND	ND	mg/l	NC		20
Selenium, Dissolved	ND	ND	mg/l	NC		20
Silver, Dissolved	ND	ND	mg/l	NC		20
Zinc, Dissolved	ND	ND	mg/l	NC		20

Project Name: POLAR PARK

Project Number: 4325.03

Lab Number:

L1933226

Report Date:

08/06/19

Parameter	Native Sample	Duplicate Sample	Units	RPD	RPD Limits
Total Metals - Mansfield Lab Associated sample(s): 01-0	02 QC Batch ID: \	WG1266382-4 QC Sample:	L1933582-01	Client ID:	DUP Sample
Mercury, Total	ND	ND	mg/l	NC	20
Total Metals - Mansfield Lab Associated sample(s): 01-0	02 QC Batch ID: \	WG1266382-6 QC Sample:	L1933582-02	Client ID:	DUP Sample
Mercury, Total	ND	0.00020	mg/l	NC	20
Dissolved Metals - Mansfield Lab Associated sample(s):	01 QC Batch ID:	WG1266803-4 QC Sample	e: L1932366-0	2 Client ID): DUP Sample
Mercury, Dissolved	ND	ND	mg/l	NC	20

INORGANICS & MISCELLANEOUS

Project Name: POLAR PARK

Project Number: 4325.03 Lab Number:

L1933226

Report Date: 08/06/19

SAMPLE RESULTS

Lab ID: L1933226-01 Client ID: HA19-2(OW)

Sample Location: WORCESTER, MA

Date Collected: 07/26/19 10:00 Date Received:

07/26/19

Field Prep:

Refer to COC

Sample Depth:

Matrix: Water

				RL	MDL	Factor	Prepared	Analyzed	Method	Analyst
General Chemistry - Westb	orough Lab)								
Solids, Total Suspended	140		mg/l	10	NA	2	-	07/29/19 13:50	121,2540D	DR
Cyanide, Total	ND		mg/l	0.005		1	07/29/19 16:45	07/30/19 11:43	121,4500CN-CE	LH
Chlorine, Total Residual	ND		mg/l	0.02		1	-	07/26/19 23:38	121,4500CL-D	AS
pH (H)	7.5		SU	-	NA	1	-	07/26/19 22:58	121,4500H+-B	AS
Nitrogen, Ammonia	0.089		mg/l	0.075		1	07/27/19 14:42	07/29/19 20:30	121,4500NH3-BH	H ML
Sulfate	100		mg/l	50		5	07/29/19 12:01	07/29/19 12:01	121,4500SO4-E	BR
TPH, SGT-HEM	ND		mg/l	4.00		1	07/30/19 16:00	07/30/19 21:25	74,1664A	ML
Phenolics, Total	ND		mg/l	0.030		1	07/30/19 05:52	07/30/19 10:45	4,420.1	BR
Chromium, Hexavalent	ND		mg/l	0.010		1	07/27/19 05:00	07/27/19 05:54	1,7196A	JW
Anions by Ion Chromatogra	phy - West	borough	Lab							
Chloride	191.		mg/l	5.00		10	-	07/30/19 05:23	44,300.0	AT

Project Name: POLAR PARK Lab Number: L1933226

Project Number: 4325.03 **Report Date:** 08/06/19

SAMPLE RESULTS

Lab ID:L1933226-02Date Collected:07/26/19 11:20Client ID:MIDDLE RIVERDate Received:07/26/19Sample Location:WORCESTER, MAField Prep:Refer to COC

Sample Depth:

Matrix: Water

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	Date Prepared	Date Analyzed	Analytical Method	Analyst
General Chemistry - W	estborough Lab									
pH (H)	7.5		SU	-	NA	1	-	07/26/19 22:58	121,4500H+-B	AS
Nitrogen, Ammonia	0.125		mg/l	0.075		1	07/27/19 14:42	07/29/19 20:31	121,4500NH3-BH	l ML

Project Name: POLAR PARK

Project Number: 4325.03

Lab Number:

L1933226

Report Date:

08/06/19

Method Blank Analysis Batch Quality Control

Parameter	Result Qu	ıalifier	Units	RL	MDL	Dilution Factor	Date Prepared	Date Analyzed	Analytical Method	Analyst
General Chemistry -	Westborough Lab	for sam	nple(s): 01	Batch:	WG12	265241-1				
Chlorine, Total Residual	ND		mg/l	0.02		1	-	07/26/19 23:38	121,4500CL-D	AS
General Chemistry -	Westborough Lab	for sam	nple(s): 01	Batch:	WG12	265285-1				
Chromium, Hexavalent	ND		mg/l	0.010		1	07/27/19 05:00	07/27/19 05:49	1,7196A	JW
General Chemistry -	Westborough Lab	for sam	nple(s): 01-	02 Bat	ch: W	G1265399-1				
Nitrogen, Ammonia	ND		mg/l	0.075		1	07/27/19 14:42	07/29/19 19:56	121,4500NH3-BI	H ML
General Chemistry -	Westborough Lab	for sam	nple(s): 01	Batch:	WG12	265722-1				
Sulfate	ND		mg/l	10		1	07/29/19 12:01	07/29/19 12:01	121,4500SO4-E	BR
General Chemistry -	Westborough Lab	for sam	nple(s): 01	Batch:	WG12	265749-1				
Solids, Total Suspended	ND		mg/l	5.0	NA	1	-	07/29/19 13:50	121,2540D	DR
General Chemistry -	Westborough Lab	for sam	nple(s): 01	Batch:	WG12	265787-1				
Cyanide, Total	ND		mg/l	0.005		1	07/29/19 16:45	07/30/19 11:18	121,4500CN-CE	LH
Anions by Ion Chrom	atography - Westb	orough	Lab for sar	mple(s):	01 B	atch: WG1	266101-1			
Chloride	ND		mg/l	0.500		1	-	07/30/19 02:46	44,300.0	AT
General Chemistry -	Westborough Lab	for sam	nple(s): 01	Batch:	WG12	266135-1				
Phenolics, Total	ND		mg/l	0.030		1	07/30/19 05:52	07/30/19 10:42	4,420.1	BR
General Chemistry -	Westborough Lab	for sam	nple(s): 01	Batch:	WG12	266423-1				
TPH, SGT-HEM	ND		mg/l	4.00		1	07/30/19 16:00	07/30/19 21:25	74,1664A	ML

Lab Control Sample Analysis Batch Quality Control

Project Name: POLAR PARK

Project Number: 4325.03

Lab Number:

L1933226

Report Date:

08/06/19

Parameter	LCS %Recovery	LCSD Qual %Recovery	%Recovery Qual Limits	RPD	Qual RPD Limits
General Chemistry - Westborough Lab A	ssociated sample(s):	01-02 Batch: WG126	65236-1		
рН	100	-	99-101	-	5
General Chemistry - Westborough Lab A	ssociated sample(s):	01 Batch: WG12652	41-2		
Chlorine, Total Residual	92	-	90-110	-	
General Chemistry - Westborough Lab A	ssociated sample(s):	01 Batch: WG12652	85-2		
Chromium, Hexavalent	102	-	85-115	-	20
General Chemistry - Westborough Lab A	ssociated sample(s):	01-02 Batch: WG126	65399-2		
Nitrogen, Ammonia	92	-	80-120	-	20
General Chemistry - Westborough Lab A	ssociated sample(s):	01 Batch: WG12657	22-2		
Sulfate	90	-	90-110	-	
General Chemistry - Westborough Lab A	ssociated sample(s):	01 Batch: WG12657	87-2		
Cyanide, Total	98	-	90-110	-	
Anions by Ion Chromatography - Westbor	ough Lab Associate	d sample(s): 01 Batcl	n: WG1266101-2		
Chloride	104	-	90-110	-	

Lab Control Sample Analysis Batch Quality Control

Project Name: POLAR PARK

Project Number: 4325.03

Lab Number:

L1933226

Report Date:

08/06/19

Parameter	LCS %Recovery	LCSD %Recovery	%Recovery Limits	RPD	RPD Limits
General Chemistry - Westborough Lab	Associated sample(s): 01	Batch: WG1266135-2			
Phenolics, Total	86	-	70-130	-	
General Chemistry - Westborough Lab	Associated sample(s): 01	Batch: WG1266423-2			
TPH	93	-	64-132	-	34

Project Name: POLAR PARK

Project Number: 4325.03

Lab Number:

L1933226

Parameter	Native Sample	MS Added	MS Found	MS %Recovery		/ISD ound	MSD %Recovery Qua	Recovery Il Limits	RPD Qu	RPD al Limits
General Chemistry - Westbord	ough Lab Asso	ciated samp	le(s): 01	QC Batch ID: V	WG126524	1-4	QC Sample: L193322	26-01 Client I	D: HA19-2	2(OW)
Chlorine, Total Residual	ND	0.25	0.26	104		-	-	80-120	-	20
General Chemistry - Westbord	ough Lab Asso	ciated samp	le(s): 01	QC Batch ID: V	WG126528	5-4	QC Sample: L193322	26-01 Client l	D: HA19-2	2(OW)
Chromium, Hexavalent	ND	0.1	0.099	99		-	-	85-115	-	20
General Chemistry - Westbord	ough Lab Asso	ciated samp	le(s): 01-0	2 QC Batch II	D: WG126	5399-4	QC Sample: L193	2925-02 Clie	ent ID: MS	Sample
Nitrogen, Ammonia	ND	4	3.56	89		-	-	80-120	-	20
General Chemistry - Westbord	ough Lab Asso	ciated samp	le(s): 01	QC Batch ID: V	NG126572	2-4	QC Sample: L193244	12-01 Client l	D: MS Sa	mple
Sulfate	32	50	81	98		-	-	55-147	-	14
General Chemistry - Westbord	ough Lab Asso	ciated samp	le(s): 01	QC Batch ID: V	WG126578	7-4	QC Sample: L193295	55-04 Client l	D: MS Sa	mple
Cyanide, Total	ND	0.2	0.179	90		-	-	90-110	-	30
Anions by Ion Chromatograph Sample	y - Westborou	gh Lab Asso	ciated san	nple(s): 01 Q0	C Batch ID:	WG1	266101-3 QC Sam	ple: L1933582	-01 Clien	t ID: MS
Chloride	1060	200	1210	74	Q	-	-	90-110	-	18
General Chemistry - Westbord	ough Lab Asso	ciated samp	le(s): 01	QC Batch ID: V	WG126613	5-4	QC Sample: L193322	26-01 Client l	D: HA19-2	2(OW)
Phenolics, Total	ND	0.4	0.34	84		-	-	70-130	-	20
General Chemistry - Westbord	ough Lab Asso	ciated samp	le(s): 01	QC Batch ID: V	WG126642	3-4	QC Sample: L193279	96-06 Client l	D: MS Sa	mple
TPH	ND	20	15.6	78		-	-	64-132	-	34

Project Name: POLAR PARK

Project Number: 4325.03

Lab Number:

L1933226

Report Date:

08/06/19

Parameter	Nat	ive Sample	Duplicate Samp	le Units	RPD	Qual	RPD Limits
General Chemistry - Westborough Lab	Associated sample(s):	01-02 QC Batch	ID: WG1265236-2	QC Sample: L19	931592-03	Client ID:	DUP Sample
рН		2.9	3.0	SU	3		5
General Chemistry - Westborough Lab	Associated sample(s):	01 QC Batch ID:	WG1265241-3 (QC Sample: L1933	226-01 C	lient ID: H	A19-2(OW)
Chlorine, Total Residual		ND	ND	mg/l	NC		20
General Chemistry - Westborough Lab	Associated sample(s):	01 QC Batch ID:	WG1265285-3 (QC Sample: L1933	226-01 C	lient ID: H	A19-2(OW)
Chromium, Hexavalent		ND	ND	mg/l	NC		20
General Chemistry - Westborough Lab	Associated sample(s):	01-02 QC Batch	ID: WG1265399-3	QC Sample: L19	932925-02	Client ID:	DUP Sample
Nitrogen, Ammonia		ND	ND	mg/l	NC		20
General Chemistry - Westborough Lab	Associated sample(s):	01 QC Batch ID:	WG1265722-3 (QC Sample: L1932	442-01 C	lient ID: D	JP Sample
Sulfate		32	31	mg/l	3		14
General Chemistry - Westborough Lab	Associated sample(s):	01 QC Batch ID:	WG1265749-2 (QC Sample: L1933	201-01 C	lient ID: D	UP Sample
Solids, Total Suspended		56	55	mg/l	2		29
General Chemistry - Westborough Lab	Associated sample(s):	01 QC Batch ID:	WG1265787-3 (QC Sample: L1932	955-02 C	lient ID: D	UP Sample
Cyanide, Total		ND	ND	mg/l	NC		30
Anions by Ion Chromatography - Westbo	orough Lab Associated	d sample(s): 01 G	C Batch ID: WG12	266101-4 QC Sar	nple: L19	33582-01	Client ID: DUP
Chloride		1060	1070	mg/l	1		18
General Chemistry - Westborough Lab	Associated sample(s):	01 QC Batch ID:	WG1266135-3 (QC Sample: L1933	226-01 C	lient ID: H	A19-2(OW)
Phenolics, Total		ND	ND	mg/l	NC		20

Lab Number: L1933226

Project Number: Report Date: 08/06/19 4325.03

Parameter	Native Sample	Duplicate Sam	ple Unit	s RPD	RPD Limits
General Chemistry - Westborough Lab	Associated sample(s): 01 QC Batch ID:	WG1266423-3	QC Sample:	L1933582-02	Client ID: DUP Sample
ТРН	ND	ND	mg/l	NC	34

Project Name:

POLAR PARK

Project Name: POLAR PARK
Project Number: 4325.03

Lab Number: L1933226 **Report Date:** 08/06/19

Sample Receipt and Container Information

Were project specific reporting limits specified?

YES

Cooler Information

Cooler Custody Seal

A Absent B Absent

Container Info	ormation		Initial	Final	Temp			Frozen	
Container ID	Container Type	Cooler	рН	pН	deg C	Pres	Seal	Date/Time	Analysis(*)
L1933226-01A	Vial Na2S2O3 preserved	Α	NA		2.6	Υ	Absent		504(14)
L1933226-01B	Vial Na2S2O3 preserved	Α	NA		2.6	Υ	Absent		504(14)
L1933226-01C	Vial Na2S2O3 preserved	Α	NA		2.6	Υ	Absent		504(14)
L1933226-01D	Vial Na2S2O3 preserved	Α	NA		2.6	Υ	Absent		504(14)
L1933226-01E	Vial Na2S2O3 preserved	Α	NA		2.6	Υ	Absent		624.1-RGP(7),624.1-SIM-RGP(7)
L1933226-01F	Vial Na2S2O3 preserved	Α	NA		2.6	Υ	Absent		624.1-RGP(7),624.1-SIM-RGP(7)
L1933226-01G	Vial Na2S2O3 preserved	Α	NA		2.6	Υ	Absent		624.1-RGP(7),624.1-SIM-RGP(7)
L1933226-01H	Vial Na2S2O3 preserved	Α	NA		2.6	Υ	Absent		624.1-RGP(7),624.1-SIM-RGP(7)
L1933226-01I	Vial HCI preserved	Α	NA		2.6	Υ	Absent		HOLD-SUB()
L1933226-01J	Vial HCI preserved	Α	NA		2.6	Υ	Absent		HOLD-SUB()
L1933226-01K	Vial HCI preserved	Α	NA		2.6	Υ	Absent		HOLD-SUB()
L1933226-01L	Plastic 250ml NaOH preserved	В	>12	>12	2.9	Υ	Absent		TCN-4500(14)
L1933226-01M	Plastic 250ml HNO3 preserved	В	<2	<2	2.9	Y	Absent		AG-2008S(180),CR-2008S(180),FE- RI(180),AS-2008S(180),PB-2008S(180),ZN- 2008S(180),NI-2008S(180),SE-2008S(180),CD- 2008S(180),CU-2008S(180),SB- 2008S(180),HG-R(28)
L1933226-01N	Plastic 250ml HNO3 preserved	В	<2	<2	2.9	Y	Absent		CD-2008T(180),NI-2008T(180),ZN- 2008T(180),CU-2008T(180),FE- UI(180),HARDU(180),AG-2008T(180),AS- 2008T(180),HG-U(28),SE-2008T(180),CR- 2008T(180),PB-2008T(180),SB-2008T(180)
L1933226-01O	Plastic 500ml H2SO4 preserved	В	<2	<2	2.9	Υ	Absent		NH3-4500(28)
L1933226-01P	Plastic 950ml unpreserved	В	7	7	2.9	Υ	Absent		SO4-4500(28),CL-300(28),HEXCR-7196(1),TRC-4500(1),PH-4500(.01)
L1933226-01Q	Plastic 950ml unpreserved	В	7	7	2.9	Υ	Absent		TSS-2540(7)
L1933226-01R	Amber 950ml H2SO4 preserved	В	<2	<2	2.9	Υ	Absent		TPHENOL-420(28)

Lab Number: L1933226

Report Date: 08/06/19

Project Name: POLAR PARK

Project Number: 4325.03

Container Info		Initial	Final	Temp			Frozen		
Container ID	Container Type	Cooler	pН	pН	deg C	Pres	Seal	Date/Time	Analysis(*)
L1933226-01S	Amber 1000ml HCl preserved	Α	NA		2.6	Υ	Absent		TPH-1664(28)
L1933226-01T	Amber 1000ml HCl preserved	Α	NA		2.6	Υ	Absent		TPH-1664(28)
L1933226-01U	Amber 1000ml Na2S2O3	Α	7	7	2.6	Υ	Absent		625.1-RGP(7),625.1-SIM-RGP(7)
L1933226-01V	Amber 1000ml Na2S2O3	Α	7	7	2.6	Υ	Absent		625.1-RGP(7),625.1-SIM-RGP(7)
L1933226-01W	Amber 1000ml Na2S2O3	Α	7	7	2.6	Υ	Absent		625.1-RGP(7),625.1-SIM-RGP(7)
L1933226-01X	Amber 1000ml Na2S2O3	Α	7	7	2.6	Υ	Absent		PCB-608.3(7)
L1933226-01Y	Amber 1000ml Na2S2O3	Α	7	7	2.6	Υ	Absent		PCB-608.3(7)
L1933226-01Z	Amber 1000ml Na2S2O3	Α	7	7	2.6	Υ	Absent		PCB-608.3(7)
L1933226-02A	Plastic 250ml HNO3 preserved	Α	<2	<2	2.6	Υ	Absent		CD-2008T(180),NI-2008T(180),ZN- 2008T(180),CU-2008T(180),FE- UI(180),HARDU(180),AG-2008T(180),AS- 2008T(180),HG-U(28),SE-2008T(180),CR- 2008T(180),PB-2008T(180),SB-2008T(180)
L1933226-02A1	Plastic 250ml HNO3 preserved	А	<2	<2	2.6	Y	Absent		CD-2008T(180),NI-2008T(180),ZN- 2008T(180),CU-2008T(180),FE- UI(180),HARDU(180),AG-2008T(180),AS- 2008T(180),HG-U(28),SE-2008T(180),CR- 2008T(180),PB-2008T(180),SB-2008T(180)
L1933226-02B	Plastic 500ml H2SO4 preserved	Α	<2	<2	2.6	Υ	Absent		NH3-4500(28)
L1933226-02B1	Plastic 500ml H2SO4 preserved	Α	<2	<2	2.6	Υ	Absent		NH3-4500(28)
L1933226-02C	Plastic 60ml unpreserved	Α	7	7	2.6	Υ	Absent		PH-4500(.01)
L1933226-02C1	Plastic 60ml unpreserved	Α	7	7	2.6	Υ	Absent		PH-4500(.01)

Project Name: Lab Number: POLAR PARK L1933226

Report Date: Project Number: 4325.03 08/06/19

GLOSSARY

Acronyms

LOD

LOQ

MS

RPD

DL - Detection Limit: This value represents the level to which target analyte concentrations are reported as estimated values, when those target analyte concentrations are quantified below the limit of quantitation (LOQ). The DL includes any adjustments

from dilutions, concentrations or moisture content, where applicable. (DoD report formats only.)

EDL - Estimated Detection Limit: This value represents the level to which target analyte concentrations are reported as estimated values, when those target analyte concentrations are quantified below the reporting limit (RL). The EDL includes any adjustments from dilutions, concentrations or moisture content, where applicable. The use of EDLs is specific to the analysis

of PAHs using Solid-Phase Microextraction (SPME).

EMPC - Estimated Maximum Possible Concentration: The concentration that results from the signal present at the retention time of an analyte when the ions meet all of the identification criteria except the ion abundance ratio criteria. An EMPC is a worst-case

estimate of the concentration. **EPA**

LCS - Laboratory Control Sample: A sample matrix, free from the analytes of interest, spiked with verified known amounts of

analytes or a material containing known and verified amounts of analytes.

LCSD Laboratory Control Sample Duplicate: Refer to LCS.

Environmental Protection Agency.

LFB - Laboratory Fortified Blank: A sample matrix, free from the analytes of interest, spiked with verified known amounts of analytes or a material containing known and verified amounts of analytes.

- Limit of Detection: This value represents the level to which a target analyte can reliably be detected for a specific analyte in a specific matrix by a specific method. The LOD includes any adjustments from dilutions, concentrations or moisture content,

where applicable. (DoD report formats only.)

- Limit of Quantitation: The value at which an instrument can accurately measure an analyte at a specific concentration. The LOQ includes any adjustments from dilutions, concentrations or moisture content, where applicable. (DoD report formats

Limit of Quantitation: The value at which an instrument can accurately measure an analyte at a specific concentration. The LOQ includes any adjustments from dilutions, concentrations or moisture content, where applicable. (DoD report formats

MDI - Method Detection Limit: This value represents the level to which target analyte concentrations are reported as estimated values, when those target analyte concentrations are quantified below the reporting limit (RL). The MDL includes any adjustments from dilutions, concentrations or moisture content, where applicable.

> - Matrix Spike Sample: A sample prepared by adding a known mass of target analyte to a specified amount of matrix sample for which an independent estimate of target analyte concentration is available. For Method 332.0, the spike recovery is calculated

using the native concentration, including estimated values.

MSD - Matrix Spike Sample Duplicate: Refer to MS.

NA - Not Applicable.

NC - Not Calculated: Term is utilized when one or more of the results utilized in the calculation are non-detect at the parameter's

reporting unit.

NDPA/DPA - N-Nitrosodiphenylamine/Diphenylamine.

NI - Not Ignitable.

NP - Non-Plastic: Term is utilized for the analysis of Atterberg Limits in soil.

RL- Reporting Limit: The value at which an instrument can accurately measure an analyte at a specific concentration. The RL

includes any adjustments from dilutions, concentrations or moisture content, where applicable.

- Relative Percent Difference: The results from matrix and/or matrix spike duplicates are primarily designed to assess the precision of analytical results in a given matrix and are expressed as relative percent difference (RPD). Values which are less than five times the reporting limit for any individual parameter are evaluated by utilizing the absolute difference between the

values; although the RPD value will be provided in the report.

SRM - Standard Reference Material: A reference sample of a known or certified value that is of the same or similar matrix as the

associated field samples.

STLP - Semi-dynamic Tank Leaching Procedure per EPA Method 1315.

- Toxic Equivalency Factors: The values assigned to each dioxin and furan to evaluate their toxicity relative to 2,3,7,8-TCDD.

TEO - Toxic Equivalent: The measure of a sample's toxicity derived by multiplying each dioxin and furan by its corresponding TEF

and then summing the resulting values.

TIC - Tentatively Identified Compound: A compound that has been identified to be present and is not part of the target compound

list (TCL) for the method and/or program. All TICs are qualitatively identified and reported as estimated concentrations.

Footnotes

Report Format: Data Usability Report

Project Name:POLAR PARKLab Number:L1933226Project Number:4325.03Report Date:08/06/19

 The reference for this analyte should be considered modified since this analyte is absent from the target analyte list of the original method.

Terms

Analytical Method: Both the document from which the method originates and the analytical reference method. (Example: EPA 8260B is shown as 1,8260B.) The codes for the reference method documents are provided in the References section of the Addendum.

Difference: With respect to Total Oxidizable Precursor (TOP) Assay analysis, the difference is defined as the Post-Treatment value minus the Pre-Treatment value.

Final pH: As it pertains to Sample Receipt & Container Information section of the report, Final pH reflects pH of container determined after adjustment at the laboratory, if applicable. If no adjustment required, value reflects Initial pH.

Frozen Date/Time: With respect to Volatile Organics in soil, Frozen Date/Time reflects the date/time at which associated Reagent Water-preserved vials were initially frozen. Note: If frozen date/time is beyond 48 hours from sample collection, value will be reflected in 'bold'.

Initial pH: As it pertains to Sample Receipt & Container Information section of the report, Initial pH reflects pH of container determined upon receipt, if applicable.

PFAS Total: With respect to PFAS analyses, the 'PFAS, Total (5)' result is defined as the summation of results for: PFHpA, PFHxS, PFOA, PFNA and PFOS. If a 'Total' result is requested, the results of its individual components will also be reported.

Total: With respect to Organic analyses, a 'Total' result is defined as the summation of results for individual isomers or Aroclors. If a "Total' result is requested, the results of its individual components will also be reported. This is applicable to 'Total' results for methods 8260, 8081 and 8082.

Data Qualifiers

- A Spectra identified as "Aldol Condensation Product".
- The analyte was detected above the reporting limit in the associated method blank. Flag only applies to associated field samples that have detectable concentrations of the analyte at less than ten times (10x) the concentration found in the blank. For MCP-related projects, flag only applies to associated field samples that have detectable concentrations of the analyte at less than ten times (10x) the concentrations of the analyte at less than ten times (10x) the concentrations of the analyte at less than ten times (10x) the concentration found in the blank AND the analyte was detected above one-half the reporting limit (or above the reporting limit for common lab contaminants) in the associated method blank. For NJ-Air-related projects, flag only applies to associated field samples that have detectable concentrations of the analyte above the reporting limit. For NJ-related projects (excluding Air), flag only applies to associated field samples that have detectable concentrations of the analyte, which was detected above the reporting limit in the associated method blank or above five times the reporting limit for common lab contaminants (Phthalates, Acetone, Methylene Chloride, 2-Butanone).
- Co-elution: The target analyte co-elutes with a known lab standard (i.e. surrogate, internal standards, etc.) for co-extracted analyses.
- Concentration of analyte was quantified from diluted analysis. Flag only applies to field samples that have detectable concentrations
 of the analyte.
- E Concentration of analyte exceeds the range of the calibration curve and/or linear range of the instrument.
- G The concentration may be biased high due to matrix interferences (i.e, co-elution) with non-target compound(s). The result should be considered estimated.
- H The analysis of pH was performed beyond the regulatory-required holding time of 15 minutes from the time of sample collection.
- The lower value for the two columns has been reported due to obvious interference.
- J Estimated value. This represents an estimated concentration for Tentatively Identified Compounds (TICs).
- M Reporting Limit (RL) exceeds the MCP CAM Reporting Limit for this analyte.
- **ND** Not detected at the reporting limit (RL) for the sample.
- NJ Presumptive evidence of compound. This represents an estimated concentration for Tentatively Identified Compounds (TICs), where the identification is based on a mass spectral library search.
- P The RPD between the results for the two columns exceeds the method-specified criteria.
- Q -The quality control sample exceeds the associated acceptance criteria. For DOD-related projects, LCS and/or Continuing Calibration Standard exceedences are also qualified on all associated sample results. Note: This flag is not applicable for matrix spike recoveries when the sample concentration is greater than 4x the spike added or for batch duplicate RPD when the sample concentrations are less than 5x the RL. (Metals only.)
- **R** Analytical results are from sample re-analysis.
- **RE** Analytical results are from sample re-extraction.
- S Analytical results are from modified screening analysis.

Report Format: Data Usability Report

Project Name:POLAR PARKLab Number:L1933226Project Number:4325.03Report Date:08/06/19

REFERENCES

- Test Methods for Evaluating Solid Waste: Physical/Chemical Methods. EPA SW-846. Third Edition. Updates I IV, 2007.
- Methods for the Determination of Metals in Environmental Samples, Supplement I. EPA/600/R-94/111. May 1994.
- 4 Methods for Chemical Analysis of Water and Wastes. EPA 600/4-79-020. Revised March 1983.
- Methods for the Determination of Organic Compounds in Finished Drinking Water and Raw Source Water. EPA/600/4-88/039, Revised July 1991.
- 19 Inductively Coupled Plasma Atomic Emission Spectrometric Method for Trace Element Analysis of Water and Wastes. Appendix C, Part 136, 40 CFR (Code of Federal Regulations). July 1, 1999 edition.
- Methods for the Determination of Inorganic Substances in Environmental Samples, EPA/600/R-93/100, August 1993.
- Method 1664,Revision A: N-Hexane Extractable Material (HEM; Oil & Grease) and Silica Gel Treated N-Hexane Extractable Material (SGT-HEM; Non-polar Material) by Extraction and Gravimetry, EPA-821-R-98-002, February 1999.
- 107 Alpha Analytical In-house calculation method.
- 121 Standard Methods for the Examination of Water and Wastewater. APHA-AWWA-WEF. Standard Methods Online.
- Method 608.3: Organochlorine Pesticides and PCBs by GC/HSD, EPA 821-R-16-009, December 2016.
- 128 Method 624.1: Purgeables by GC/MS, EPA 821-R-16-008, December 2016.
- Method 625.1: Base/Neutrals and Acids by GC/MS, EPA 821-R-16-007, December 2016.

LIMITATION OF LIABILITIES

Alpha Analytical performs services with reasonable care and diligence normal to the analytical testing laboratory industry. In the event of an error, the sole and exclusive responsibility of Alpha Analytical shall be to re-perform the work at it's own expense. In no event shall Alpha Analytical be held liable for any incidental, consequential or special damages, including but not limited to, damages in any way connected with the use of, interpretation of, information or analysis provided by Alpha Analytical.

We strongly urge our clients to comply with EPA protocol regarding sample volume, preservation, cooling, containers, sampling procedures, holding time and splitting of samples in the field.

Alpha Analytical, Inc. Facility: Company-wide

Department: Quality Assurance

Title: Certificate/Approval Program Summary

ID No.:17873 Revision 13

Page 1 of 1

Published Date: 7/30/2019 3:17:52 PM

Certification Information

The following analytes are not included in our Primary NELAP Scope of Accreditation:

Westborough Facility

EPA 624/624.1: m/p-xylene, o-xylene

EPA 8260C: NPW: 1,2,4,5-Tetramethylbenzene; 4-Ethyltoluene, Azobenzene; SCM: lodomethane (methyl iodide), 1,2,4,5-Tetramethylbenzene; 4-

Ethyltoluene

EPA 8270D: NPW: Dimethylnaphthalene,1,4-Diphenylhydrazine; SCM: Dimethylnaphthalene,1,4-Diphenylhydrazine.

SM4500: NPW: Amenable Cyanide; SCM: Total Phosphorus, TKN, NO2, NO3.

Mansfield Facility

SM 2540D: TSS

EPA 8082A: NPW: PCB: 1, 5, 31, 87,101, 110, 141, 151, 153, 180, 183, 187.

EPA TO-15: Halothane, 2,4,4-Trimethyl-2-pentene, 2,4,4-Trimethyl-1-pentene, Thiophene, 2-Methylthiophene,

3-Methylthiophene, 2-Ethylthiophene, 1,2,3-Trimethylbenzene, Indan, Indene, 1,2,4,5-Tetramethylbenzene, Benzothiophene, 1-Methylnaphthalene.

Biological Tissue Matrix: EPA 3050B

The following analytes are included in our Massachusetts DEP Scope of Accreditation

Westborough Facility:

Drinking Water

EPA 300.0: Chloride, Nitrate-N, Fluoride, Sulfate; EPA 353.2: Nitrate-N, Nitrite-N; SM4500NO3-F: Nitrate-N, Nitrite-N; SM4500F-C, SM4500CN-CE,

EPA 180.1, SM2130B, SM4500CI-D, SM2320B, SM2540C, SM4500H-B, SM4500NO2-B

EPA 332: Perchlorate; EPA 524.2: THMs and VOCs; EPA 504.1: EDB, DBCP.

Microbiology: SM9215B; SM9223-P/A, SM9223B-Colilert-QT,SM9222D.

Non-Potable Water

SM4500H,B, EPA 120.1, SM2510B, SM2540C, SM2320B, SM4500CL-E, SM4500F-BC, SM4500NH3-BH: Ammonia-N and Kieldahl-N, EPA 350.1: Ammonia-N, LACHAT 10-107-06-1-B: Ammonia-N, EPA 351.1, SM4500NO3-F, EPA 353.2: Nitrate-N, SM4500P-E, SM4500P-B, E, SM4500SO4-E, SM5220D, EPA 410.4, SM5210B, SM5310C, SM4500CL-D, EPA 1664, EPA 420.1, SM4500-CN-CE, SM2540D, EPA 300: Chloride, Sulfate, Nitrate. EPA 624.1: Volatile Halocarbons & Aromatics,

EPA 608.3: Chlordane, Toxaphene, Aldrin, alpha-BHC, beta-BHC, gamma-BHC, delta-BHC, Dieldrin, DDD, DDE, DDT, Endosulfan II, Endosulfan II, Endosulfan sulfate, Endrin, Endrin Aldehyde, Heptachlor, Heptachlor Epoxide, PCBs

EPA 625.1: SVOC (Acid/Base/Neutral Extractables), EPA 600/4-81-045: PCB-Oil.

Microbiology: SM9223B-Colilert-QT; Enterolert-QT, SM9221E, EPA 1600, EPA 1603.

Mansfield Facility:

Drinking Water

EPA 200.7: Al, Ba, Cd, Cr, Cu, Fe, Mn, Ni, Na, Ag, Ca, Zn. EPA 200.8: Al, Sb, As, Ba, Be, Cd, Cr, Cu, Pb, Mn, Ni, Se, Ag, TL, Zn. EPA 245.1 Hg. EPA 522.

Non-Potable Water

EPA 200.7: Al, Sb, As, Be, Cd, Ca, Cr, Co, Cu, Fe, Pb, Mg, Mn, Mo, Ni, K, Se, Ag, Na, Sr, TL, Ti, V, Zn.

EPA 200.8: Al, Sb, As, Be, Cd, Cr, Cu, Fe, Pb, Mn, Ni, K, Se, Ag, Na, TL, Zn.

EPA 245.1 Hg.

SM2340B

For a complete listing of analytes and methods, please contact your Alpha Project Manager.

Document Type: Form

Pre-Qualtrax Document ID: 08-113

Alpha	CHAIN C	F CU	STO	OY PA	GE_/	OF	Date Re	c'd in Lai	b: 7/	26/19			ALPH	A Joi	b#: [1193	3226
8 Walkup Drive Westboro, MA Tel: 508-898-1	01581 Meneffeld, MA 02046	The state of the s	Informati Name: Pol:		ę		Report	Section Sectio	ation - D	ata Delive	rable		-	7	rmatio ient info	-	
Phone: 978-5 Email: KWKIKE Additional F **RGP MEKE HexCr, Trice	nn Head hnology Park Dr MA 01886 577-1003 ar Osanbumhead, Com Project Information: s include As, As, Cd	Project I Project I ALPHA Turn- Stan Date	Ni, Ph,	1,03 Pent Wa ne RUSH 1001/2	He/	torured)	Yes & Yes & Yes & Other	No MAI No Matr No GW No NPE State /Fe	MCP Ana ix Spike I 1 Standa DES RGP d Progra	m Fidd July	ds this SC uired f	OG? (for Me	Require tals & E	es la (North William)	No CT MCP Inc. th Target is	RCP Analyorganics) ets)	MPLE INFO
ALPHA Lab ID (Lab Use Only)	RGP Minimum levels	> Must	-	ection Time	Sample Matrix	Sampler Initials	Voc. De	METALS: CMCP	EPH: CIRA	VPH: CRay	Alba		PALS	TOLINONA	THE ST	01	Lab to do
33226-01 - 02	HAI9-210W) Middle River		7/26/19 7/26/19	11:20		Z CMW					X	X	X	×	ED .		
Container Type P= Plassic A= Amber glass	Preservative A= None B= HCI					ainer Type					7/4	1	P P	P			
A-Amber glass V= Vial Q= Glass B= Bacteria cup C= Cubs 0= Other E= Encore D= BOD Bottle	E= HCI C= HNO ₃ D= H ₂ SO ₄ E= NaOH F= MeOH G= NaHSO ₄ H = Na ₂ S ₂ O ₃ I= Ascorbic Acid J = NH ₄ CI K= Zn Acotate O= Cither	Relinq	uished By:	1		eservative e/Time	Egg	Rece	aived By:	AM		Date/	O O	3 Alp	pha's Te e reven	erms and C	ed are subjec Conditions. Mar-2012)

ANALYTICAL REPORT

Lab Number: L1935658

Client: Sanborn, Head & Associates, Inc.

1 Technology Park Drive Westford, MA 01886

ATTN: Kent Walker
Phone: (978) 577-1003

Project Name: MADISON COMMONS

Project Number: 4325.02 Report Date: 08/16/19

The original project report/data package is held by Alpha Analytical. This report/data package is paginated and should be reproduced only in its entirety. Alpha Analytical holds no responsibility for results and/or data that are not consistent with the original.

Certifications & Approvals: MA (M-MA086), NH NELAP (2064), CT (PH-0574), IL (200077), ME (MA00086), MD (348), NJ (MA935), NY (11148), NC (25700/666), PA (68-03671), RI (LAO00065), TX (T104704476), VT (VT-0935), VA (460195), USDA (Permit #P330-17-00196).

Eight Walkup Drive, Westborough, MA 01581-1019 508-898-9220 (Fax) 508-898-9193 800-624-9220 - www.alphalab.com

Project Name: MADISON COMMONS

Project Number: 4325.02

Lab Number: L1935658 **Report Date:** 08/16/19

Alpha Sample ID	Client ID	Matrix	Sample Location	Collection Date/Time	Receive Date
L1935658-01	MC-41 (OW)	WATER	WORCESTER, MA	08/08/19 08:30	08/08/19
L1935658-02	GZ-813/GP70	WATER	WORCESTER, MA	08/08/19 10:15	08/08/19
L1935658-03	MW-1	WATER	WORCESTER, MA	08/08/19 12:30	08/08/19

L1935658

Lab Number:

Project Name: MADISON COMMONS

Project Number: 4325.02 **Report Date:** 08/16/19

Case Narrative

The samples were received in accordance with the Chain of Custody and no significant deviations were encountered during the preparation or analysis unless otherwise noted. Sample Receipt, Container Information, and the Chain of Custody are located at the back of the report.

Results contained within this report relate only to the samples submitted under this Alpha Lab Number and meet NELAP requirements for all NELAP accredited parameters unless otherwise noted in the following narrative. The data presented in this report is organized by parameter (i.e. VOC, SVOC, etc.). Sample specific Quality Control data (i.e. Surrogate Spike Recovery) is reported at the end of the target analyte list for each individual sample, followed by the Laboratory Batch Quality Control at the end of each parameter. Tentatively Identified Compounds (TICs), if requested, are reported for compounds identified to be present and are not part of the method/program Target Compound List, even if only a subset of the TCL are being reported. If a sample was re-analyzed or re-extracted due to a required quality control corrective action and if both sets of data are reported, the Laboratory ID of the re-analysis or re-extraction is designated with an "R" or "RE", respectively.

When multiple Batch Quality Control elements are reported (e.g. more than one LCS), the associated samples for each element are noted in the grey shaded header line of each data table. Any Laboratory Batch, Sample Specific % recovery or RPD value that is outside the listed Acceptance Criteria is bolded in the report. In reference to questions H (CAM) or 4 (RCP) when "NO" is checked, the performance criteria for CAM and RCP methods allow for some quality control failures to occur and still be within method compliance. In these instances, the specific failure is not narrated but noted in the associated QC Outlier Summary Report, located directly after the Case Narrative. QC information is also incorporated in the Data Usability Assessment table (Format 11) of our Data Merger tool, where it can be reviewed in conjunction with the sample result, associated regulatory criteria and any associated data usability implications.

Soil/sediments, solids and tissues are reported on a dry weight basis unless otherwise noted. Definitions of all data qualifiers and acronyms used in this report are provided in the Glossary located at the back of the report.

HOLD POLICY - For samples submitted on hold, Alpha's policy is to hold samples (with the exception of Air canisters) free of charge for 21 calendar days from the date the project is completed. After 21 calendar days, we will dispose of all samples submitted including those put on hold unless you have contacted your Alpha Project Manager and made arrangements for Alpha to continue to hold the samples. Air canisters will be disposed after 3 business days from the date the project is completed.

Please contact Project Management at 800-624-9220 with any questions.								

Serial_No:08161919:26

L1935658

Lab Number:

Project Name: MADISON COMMONS

Project Number: 4325.02 Report Date: 08/16/19

.

Case Narrative (continued)

Sample Receipt

The analyses performed were specified by the client.

Volatile Organics by Method 624

The WG1271705-3 LCS recovery, associated with L1935658-01 through -03, is above the acceptance criteria for tert-butyl alcohol (160%); however, the associated samples are non-detect to the RL for this target analyte. The results of the original analysis are reported.

Total Metals

The WG1270614-2 LCS recovery, associated with L1935658-01 through -03, is above the acceptance criteria for selenium (126%); however, the associated samples are non-detect to the RL for this target analyte. The results of the original analysis are reported.

Dissolved Metals

The WG1270623-2 LCS recovery, associated with L1935658-01 through -03, is above the acceptance criteria for selenium (124%); however, the associated samples are non-detect to the RL for this target analyte. The results of the original analysis are reported.

Chlorine, Total Residual

The WG1270412-4 MS recovery (64%), performed on L1935658-03, is outside the acceptance criteria; however, the associated LCS recovery is within criteria. No further action was taken.

I, the undersigned, attest under the pains and penalties of perjury that, to the best of my knowledge and belief and based upon my personal inquiry of those responsible for providing the information contained in this analytical report, such information is accurate and complete. This certificate of analysis is not complete unless this page accompanies any and all pages of this report.

Whole M. Morris

Authorized Signature:

Title: Technical Director/Representative

Date: 08/16/19

ORGANICS

VOLATILES

Serial_No:08161919:26

08/08/19 08:30

Project Name: MADISON COMMONS

Project Number: 4325.02

SAMPLE RESULTS

Lab Number: L1935658

Report Date: 08/16/19

Lab ID: L1935658-01

Client ID: MC-41 (OW) Sample Location: WORCESTER, MA Date Received: 08/08/19 Field Prep: Not Specified

Date Collected:

Sample Depth:

Matrix: Water Analytical Method: 128,624.1 Analytical Date: 08/12/19 13:52

Analyst: GT

Volatile Organics by GC/MS - Westborough I Methylene chloride 1,1-Dichloroethane	ND ND ND	ug/l	1.0	
1,1-Dichloroethane	ND	-	1.0	
				1
2 1 1 1 1 1	ND	ug/l	1.5	 1
Carbon tetrachloride		ug/l	1.0	 1
1,1,2-Trichloroethane	ND	ug/l	1.5	 1
Tetrachloroethene	ND	ug/l	1.0	 1
1,2-Dichloroethane	ND	ug/l	1.5	 1
1,1,1-Trichloroethane	ND	ug/l	2.0	 1
Benzene	ND	ug/l	1.0	 1
Toluene	ND	ug/l	1.0	 1
Ethylbenzene	ND	ug/l	1.0	 1
Vinyl chloride	ND	ug/l	1.0	 1
1,1-Dichloroethene	ND	ug/l	1.0	 1
cis-1,2-Dichloroethene	ND	ug/l	1.0	 1
Trichloroethene	1.0	ug/l	1.0	 1
1,2-Dichlorobenzene	ND	ug/l	5.0	 1
1,3-Dichlorobenzene	ND	ug/l	5.0	 1
1,4-Dichlorobenzene	ND	ug/l	5.0	 1
p/m-Xylene	ND	ug/l	2.0	 1
o-xylene	ND	ug/l	1.0	 1
Xylenes, Total	ND	ug/l	1.0	 1
Acetone	ND	ug/l	10	 1
Methyl tert butyl ether	ND	ug/l	10	 1
Tert-Butyl Alcohol	ND	ug/l	100	 1
Tertiary-Amyl Methyl Ether	ND	ug/l	20	 1

Serial_No:08161919:26

Project Name: MADISON COMMONS Lab Number: L1935658

Project Number: 4325.02 **Report Date:** 08/16/19

SAMPLE RESULTS

Lab ID: L1935658-01 Date Collected: 08/08/19 08:30

Client ID: MC-41 (OW) Date Received: 08/08/19
Sample Location: WORCESTER, MA Field Prep: Not Specified

Sample Depth:

Parameter Result Qualifier Units RL MDL Dilution Factor

Volatile Organics by GC/MS - Westborough Lab

Surrogate	% Recovery	Qualifier	Acceptance Criteria	
Pentafluorobenzene	110		60-140	
Fluorobenzene	116		60-140	
4-Bromofluorobenzene	101		60-140	

08/08/19 08:30

Project Name: MADISON COMMONS

Project Number: 4325.02

SAMPLE RESULTS

Lab Number: L1935658

45.4

Report Date: 08/16/19

Lab ID: L1935658-01

Client ID: MC-41 (OW)
Sample Location: WORCESTER, MA

Date Received: 08/08/19
Field Prep: Not Specified

Date Collected:

Sample Depth:

Matrix: Water

Analytical Method: 128,624.1-SIM Analytical Date: 08/12/19 13:52

Analyst: GT

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
Volatile Organics by GC/MS-SIM	· Westborough Lab					
1,4-Dioxane	ND		ug/l	50		1
Surrogate			% Recovery	Qualifier		eptance riteria
Fluorobenzene			113			60-140
4-Bromofluorobenzene			119			60-140

Project Name: MADISON COMMONS Lab Number: L1935658

Project Number: 4325.02 Report Date: 08/16/19

SAMPLE RESULTS

AWS

Lab ID: L1935658-01 Date Collected: 08/08/19 08:30

Client ID: MC-41 (OW) Date Received: 08/08/19
Sample Location: WORCESTER, MA Field Prep: Not Specified

Sample Depth:

Analyst:

Matrix: Water Extraction Method: EPA 504.1
Analytical Method: 14,504.1 Extraction Date: 08/15/19 11:00

Analytical Date: 08/15/19 15:39

Parameter Result Qualifier Units RL MDL Dilution Factor Column
Microextractables by GC - Westborough Lab

1,2-Dibromoethane ND ug/l 0.010 -- 1 A

08/08/19 10:15

Project Name: MADISON COMMONS

Project Number: 4325.02

SAMPLE RESULTS

Lab Number: L1935658

Report Date: 08/16/19

Date Collected:

Lab ID: L1935658-02

Client ID: GZ-813/GP70 Sample Location: WORCESTER, MA Date Received: 08/08/19 Field Prep: Not Specified

Sample Depth:

Matrix: Water Analytical Method: 128,624.1 Analytical Date: 08/12/19 14:27

Analyst: GT

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
Volatile Organics by GC/MS - We	estborough Lab					
Methylene chloride	ND		ug/l	1.0		1
1,1-Dichloroethane	ND		ug/l	1.5		1
Carbon tetrachloride	ND		ug/l	1.0		1
1,1,2-Trichloroethane	ND		ug/l	1.5		1
Tetrachloroethene	3.1		ug/l	1.0		1
1,2-Dichloroethane	ND		ug/l	1.5		1
1,1,1-Trichloroethane	ND		ug/l	2.0		1
Benzene	ND		ug/l	1.0		1
Toluene	ND		ug/l	1.0		1
Ethylbenzene	ND		ug/l	1.0		1
Vinyl chloride	23		ug/l	1.0		1
1,1-Dichloroethene	ND		ug/l	1.0		1
cis-1,2-Dichloroethene	170		ug/l	1.0		1
Trichloroethene	22		ug/l	1.0		1
1,2-Dichlorobenzene	ND		ug/l	5.0		1
1,3-Dichlorobenzene	ND		ug/l	5.0		1
1,4-Dichlorobenzene	ND		ug/l	5.0		1
p/m-Xylene	ND		ug/l	2.0		1
o-xylene	ND		ug/l	1.0		1
Xylenes, Total	ND		ug/l	1.0		1
Acetone	ND		ug/l	10		1
Methyl tert butyl ether	ND		ug/l	10		1
Tert-Butyl Alcohol	ND		ug/l	100		1
Tertiary-Amyl Methyl Ether	ND		ug/l	20		1

08/08/19 10:15

Project Name: MADISON COMMONS Lab Number: L1935658

Project Number: 4325.02 **Report Date:** 08/16/19

SAMPLE RESULTS

Lab ID: L1935658-02 Date Collected:

Client ID: GZ-813/GP70 Date Received: 08/08/19
Sample Location: WORCESTER, MA Field Prep: Not Specified

Sample Depth:

Parameter Result Qualifier Units RL MDL Dilution Factor

Volatile Organics by GC/MS - Westborough Lab

Surrogate	% Recovery	Qualifier	Acceptance Criteria	
Pentafluorobenzene	109		60-140	
Fluorobenzene	115		60-140	
4-Bromofluorobenzene	103		60-140	

Project Name: MADISON COMMONS

Project Number: 4325.02

SAMPLE RESULTS

Lab Number: L1935658

Report Date: 08/16/19

Lab ID: L1935658-02

Client ID: GZ-813/GP70 Sample Location: WORCESTER, MA Date Collected: 08/08/19 10:15 Date Received: 08/08/19 Field Prep: Not Specified

Sample Depth:

Matrix: Water

Analytical Method: 128,624.1-SIM Analytical Date: 08/12/19 14:27

Analyst: GT

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
Volatile Organics by GC/MS-S	IM - Westborough Lab					
1,4-Dioxane	ND		ug/l	50		1
Surrogate			% Recovery	Qualifier		eptance riteria
Fluorobenzene			111			60-140
4-Bromofluorobenzene			117			60-140

Project Name: MADISON COMMONS Lab Number: L1935658

Project Number: 4325.02 **Report Date:** 08/16/19

SAMPLE RESULTS

08/15/19 16:11

SAMPLE RESULTS

 Lab ID:
 L1935658-02
 Date Collected:
 08/08/19 10:15

 Client ID:
 GZ-813/GP70
 Date Received:
 08/08/19

 Sample Location:
 WORCESTER, MA
 Field Prep:
 Not Specified

Sample Depth:

Analytical Date:

Matrix: Water Extraction Method: EPA 504.1
Analytical Method: 14,504.1 Extraction Date: 08/15/19 11:00

Analyst: AWS

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	Column
Microextractables by GC - Westborough Lab							
1,2-Dibromoethane	ND		ug/l	0.010		1	Α

08/08/19 12:30

Not Specified

08/08/19

Project Name: MADISON COMMONS

Project Number: 4325.02

SAMPLE RESULTS

Lab Number: L1935658

Report Date: 08/16/19

Date Collected:

Date Received:

Field Prep:

Lab ID: L1935658-03

Client ID: MW-1

Sample Location: WORCESTER, MA

Sample Depth:

Matrix: Water Analytical Method: 128,624.1 Analytical Date: 08/12/19 15:01

Analyst: GT

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
Volatile Organics by GC/MS - Westboro	ugh Lab					
Methylene chloride	ND		ug/l	1.0		1
1,1-Dichloroethane	ND		ug/l	1.5		1
Carbon tetrachloride	ND		ug/l	1.0		1
1,1,2-Trichloroethane	ND		ug/l	1.5		1
Tetrachloroethene	ND		ug/l	1.0		1
1,2-Dichloroethane	ND		ug/l	1.5		1
1,1,1-Trichloroethane	ND		ug/l	2.0		1
Benzene	ND		ug/l	1.0		1
Toluene	ND		ug/l	1.0		1
Ethylbenzene	ND		ug/l	1.0		1
Vinyl chloride	ND		ug/l	1.0		1
1,1-Dichloroethene	ND		ug/l	1.0		1
cis-1,2-Dichloroethene	ND		ug/l	1.0		1
Trichloroethene	ND		ug/l	1.0		1
1,2-Dichlorobenzene	ND		ug/l	5.0		1
1,3-Dichlorobenzene	ND		ug/l	5.0		1
1,4-Dichlorobenzene	ND		ug/l	5.0		1
p/m-Xylene	ND		ug/l	2.0		1
o-xylene	ND		ug/l	1.0		1
Xylenes, Total	ND		ug/l	1.0		1
Acetone	ND		ug/l	10		1
Methyl tert butyl ether	ND		ug/l	10		1
Tert-Butyl Alcohol	ND		ug/l	100		1
Tertiary-Amyl Methyl Ether	ND		ug/l	20		1

Project Name: MADISON COMMONS Lab Number: L1935658

Project Number: 4325.02 **Report Date:** 08/16/19

SAMPLE RESULTS

Lab ID: L1935658-03 Date Collected: 08/08/19 12:30

Client ID: MW-1 Date Received: 08/08/19
Sample Location: WORCESTER, MA Field Prep: Not Specified

Sample Depth:

Parameter Result Qualifier Units RL MDL Dilution Factor

Volatile Organics by GC/MS - Westborough Lab

Surrogate	% Recovery	Qualifier	Acceptance Criteria	
Pentafluorobenzene	110		60-140	
Fluorobenzene	116		60-140	
4-Bromofluorobenzene	104		60-140	

Project Name: MADISON COMMONS

Project Number: 4325.02

SAMPLE RESULTS

Lab Number: L1935658

Report Date: 08/16/19

Lab ID: L1935658-03

Client ID: MW-1

Sample Location: WORCESTER, MA

Sample Depth:

Matrix: Water

Analytical Method: 128,624.1-SIM Analytical Date: 08/12/19 15:01

Analyst: GT

Date Collected:	08/08/19 12:30
Date Received:	08/08/19
Field Prep:	Not Specified

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
olatile Organics by GC/MS-SIM	- Westborough Lab					
,4-Dioxane	ND		ug/l	50		1
Surrogate			% Recovery	Qualifier		eptance riteria
Fluorobenzene			112			60-140
4-Bromofluorobenzene			118			60-140

Project Name: MADISON COMMONS Lab Number: L1935658

Project Number: 4325.02 **Report Date:** 08/16/19

SAMPLE RESULTS

Lab ID: L1935658-03 Date Collected: 08/08/19 12:30

Client ID: MW-1 Date Received: 08/08/19
Sample Location: WORCESTER, MA Field Prep: Not Specified

Sample Depth:

Matrix: Water Extraction Method: EPA 504.1
Analytical Method: 14,504.1 Extraction Date: 08/15/19 11:00

Analytical Date: 08/15/19 16:28

Analyst: AWS

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	Column
Microextractables by GC - Westborough Lab							
1,2-Dibromoethane	ND		ug/l	0.010		1	Α

Project Name: MADISON COMMONS Lab Number: L1935658

Project Number: 4325.02 Report Date: 08/16/19

Method Blank Analysis Batch Quality Control

Analytical Method: 128,624.1 Analytical Date: 08/12/19 11:07

Analyst: GT

Parameter	Result	Qualifier Units	RL	MDL
Volatile Organics by GC/MS - We	estborough Lab	for sample(s): 01-03	Batch:	WG1271705-4
Methylene chloride	ND	ug/l	1.0	
1,1-Dichloroethane	ND	ug/l	1.5	
Carbon tetrachloride	ND	ug/l	1.0	
1,1,2-Trichloroethane	ND	ug/l	1.5	
Tetrachloroethene	ND	ug/l	1.0	
1,2-Dichloroethane	ND	ug/l	1.5	
1,1,1-Trichloroethane	ND	ug/l	2.0	
Benzene	ND	ug/l	1.0	
Toluene	ND	ug/l	1.0	
Ethylbenzene	ND	ug/l	1.0	
Vinyl chloride	ND	ug/l	1.0	
1,1-Dichloroethene	ND	ug/l	1.0	
cis-1,2-Dichloroethene	ND	ug/l	1.0	
Trichloroethene	ND	ug/l	1.0	
1,2-Dichlorobenzene	ND	ug/l	5.0	
1,3-Dichlorobenzene	ND	ug/l	5.0	
1,4-Dichlorobenzene	ND	ug/l	5.0	
p/m-Xylene	ND	ug/l	2.0	
o-xylene	ND	ug/l	1.0	
Xylenes, Total	ND	ug/l	1.0	
Acetone	ND	ug/l	10	
Methyl tert butyl ether	ND	ug/l	10	
Tert-Butyl Alcohol	ND	ug/l	100	
Tertiary-Amyl Methyl Ether	ND	ug/l	20	

Project Name: MADISON COMMONS Lab Number: L1935658

Project Number: 4325.02 Report Date: 08/16/19

Method Blank Analysis
Batch Quality Control

Analytical Method: 128,624.1 Analytical Date: 08/12/19 11:07

Analyst: GT

 Parameter
 Result
 Qualifier
 Units
 RL
 MDL

 Volatile Organics by GC/MS - Westborough Lab for sample(s):
 01-03
 Batch:
 WG1271705-4

		Acceptance
Surrogate	%Recovery Qualifie	er Criteria
Pentafluorobenzene	113	60-140
Fluorobenzene	114	60-140
4-Bromofluorobenzene	101	60-140

Project Name: MADISON COMMONS Lab Number: L1935658

Project Number: 4325.02 Report Date: 08/16/19

Method Blank Analysis Batch Quality Control

Analytical Method: 128,624.1-SIM Analytical Date: 08/12/19 11:07

Analyst: GT

Parameter	Result	Qualifier	Units	RL		MDL
Volatile Organics by GC/MS-SIM -	Westboroug	h Lab for s	ample(s):	01-03	Batch:	WG1271730-4
1,4-Dioxane	ND		ug/l	50		

		Acceptance
Surrogate	%Recovery Qualifie	r Criteria
Floresharen	***	00.440
Fluorobenzene	111	60-140
4-Bromofluorobenzene	117	60-140

Project Name: MADISON COMMONS Lab Number: L1935658

Project Number: 4325.02 Report Date: 08/16/19

Method Blank Analysis Batch Quality Control

Analytical Method: 14,504.1 Extraction Method: EPA 504.1

Analytical Date: 08/15/19 14:33 Extraction Date: 08/15/19 11:00

Analyst: AWS

Parameter	Result	Qualifier	Units	RL	MDL	
Microextractables by GC -	Westborough Lab for	sample(s):	01-03	Batch:	WG1272861-1	
1,2-Dibromoethane	ND		ug/l	0.010		Α

Project Name: MADISON COMMONS

Project Number: 4325.02

Lab Number: L1935658

Report Date: 08/16/19

Parameter	LCS %Recovery	Qual	LCSD %Recovery	Qual	%Recovery Limits	RPD	RPD imits
Volatile Organics by GC/MS - Westborough	Lab Associated	sample(s):	01-03 Batch: W	/G1271705-	3		
Methylene chloride	100		-		60-140	-	28
1,1-Dichloroethane	90		-		50-150	-	49
Carbon tetrachloride	90		-		70-130	-	41
1,1,2-Trichloroethane	100		-		70-130	-	45
Tetrachloroethene	105		-		70-130	-	39
1,2-Dichloroethane	115		-		70-130	-	49
1,1,1-Trichloroethane	125		-		70-130	-	36
Benzene	120		-		65-135	-	61
Toluene	105		-		70-130	-	41
Ethylbenzene	105		-		60-140	-	63
Vinyl chloride	95		-		5-195	-	66
1,1-Dichloroethene	120		-		50-150	-	32
cis-1,2-Dichloroethene	120		-		60-140	-	30
Trichloroethene	120		-		65-135	-	48
1,2-Dichlorobenzene	105		-		65-135	-	57
1,3-Dichlorobenzene	100		-		70-130	-	43
1,4-Dichlorobenzene	100		-		65-135	-	57
p/m-Xylene	102		-		60-140	-	30
o-xylene	100		-		60-140	-	30
Acetone	114		-		40-160	-	30
Methyl tert butyl ether	125		-		60-140	-	30
Tert-Butyl Alcohol	160	Q	-		60-140	-	30
Tertiary-Amyl Methyl Ether	120		-		60-140	-	30

MADISON COMMONS

Batch Quality Contr

Lab Number: L1935658

Project Number: 4325.02 **Report Date:** 08/16/19

LCS LCSD %Recovery RPD Parameter %Recovery Qual %Recovery Qual Limits RPD Qual Limits

Volatile Organics by GC/MS - Westborough Lab Associated sample(s): 01-03 Batch: WG1271705-3

Surrogate	LCS %Recovery Qual	LCSD %Recovery	Qual	Acceptance Criteria
Pentafluorobenzene	114			60-140
Fluorobenzene	114			60-140
4-Bromofluorobenzene	99			60-140

Project Name:

Lab Number:

L1935658

Project Number: 4325.02

Project Name:

MADISON COMMONS

Report Date: 08/16/19

Parameter	LCS %Recovery	Qual	LCSD %Recovery	Qual	%Recovery Limits	RPD	Qual	RPD Limits	
Volatile Organics by GC/MS-SIM - Westboro	ugh Lab Associat	ed sample(s)	: 01-03 Batch:	WG1271	730-3				
1,4-Dioxane	100		-		60-140	-		20	

Surrogate	LCS %Recovery	Qual	LCSD %Recovery	Qual	Acceptance Criteria
Fluorobenzene 4-Bromofluorobenzene	111 102				60-140 60-140

Lab Number:

L1935658 08/16/19

Project Number:

Project Name:

MADISON COMMONS

4325.02

Report Date:

Parameter	LCS %Recovery	Qual	LCSD %Recovery	Qual	%Recovery Limits	RPD	Qual	RPD Limits	Column
Microextractables by GC - Westborough La	ab Associated sam	nple(s): 01-03	Batch: WG1	272861-2					
1,2-Dibromoethane	104		-		80-120	-			А

Matrix Spike Analysis Batch Quality Control

Project Name: MADISON COMMONS

Project Number: 4325.02

Lab Number:

L1935658

Report Date:

08/16/19

Parameter	Native Sample	MS Added	MS Found	MS %Recovery	Qual	MSD Found	MSD %Recovery	Recover Qual Limits	,	Qual	RPD Limits	Column
Microextractables by GC -	Westborough Lab	Associate	d sample(s):	01-03 QC Ba	atch ID: W	/G1272861-	-3 QC Samp	ole: L1935658-01	Client ID	D: MC-41	(OW)	
1,2-Dibromoethane	ND	0.249	0.266	107		-	-	80-120	-		20	А

SEMIVOLATILES

Project Name: MADISON COMMONS Lab Number: L1935658

Project Number: 4325.02 **Report Date:** 08/16/19

SAMPLE RESULTS

Lab ID: L1935658-01 Date Collected: 08/08/19 08:30

Client ID: MC-41 (OW) Date Received: 08/08/19
Sample Location: WORCESTER, MA Field Prep: Not Specified

Sample Depth:

Matrix: Water Extraction Method: EPA 625.1
Analytical Method: 129,625.1 Extraction Date: 08/11/19 07:54

Analytical Date: 08/14/19 14:47

Analyst: EK

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor			
Semivolatile Organics by GC/MS - Westborough Lab									
Bis(2-ethylhexyl)phthalate	ND		ug/l	2.2		1			
Butyl benzyl phthalate	ND		ug/l	5.0		1			
Di-n-butylphthalate	ND		ug/l	5.0		1			
Di-n-octylphthalate	ND		ug/l	5.0		1			
Diethyl phthalate	ND		ug/l	5.0		1			
Dimethyl phthalate	ND		ug/l	5.0		1			

Surrogate	% Recovery	Accep Qualifier Crit	
Nitrobenzene-d5	74	42	2-122
2-Fluorobiphenyl	64	46	S-121
4-Terphenyl-d14	81	47	'-138

Project Name: MADISON COMMONS Lab Number: L1935658

Project Number: 4325.02 **Report Date:** 08/16/19

SAMPLE RESULTS

Lab ID: L1935658-01 Date Collected: 08/08/19 08:30

Client ID: MC-41 (OW) Date Received: 08/08/19
Sample Location: WORCESTER, MA Field Prep: Not Specified

Sample Depth:

Analytical Date:

Matrix: Water Extraction Method: EPA 625.1

Analytical Method: 129,625.1-SIM Extraction Date: 08/11/19 07:55

Analyst: DV

08/12/19 11:07

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	
Semivolatile Organics by GC/MS-	SIM - Westborough La	b					
Acenaphthene	ND		ug/l	0.10		1	
Fluoranthene	0.27		ug/l	0.10		1	
Naphthalene	0.11		ug/l	0.10		1	
Benzo(a)anthracene	0.22		ug/l	0.10		1	
Benzo(a)pyrene	0.17		ug/l	0.10		1	
Benzo(b)fluoranthene	0.22		ug/l	0.10		1	
Benzo(k)fluoranthene	ND		ug/l	0.10		1	
Chrysene	0.15		ug/l	0.10		1	
Acenaphthylene	ND		ug/l	0.10		1	
Anthracene	ND		ug/l	0.10		1	
Benzo(ghi)perylene	0.13		ug/l	0.10		1	
Fluorene	ND		ug/l	0.10		1	
Phenanthrene	0.11		ug/l	0.10		1	
Dibenzo(a,h)anthracene	ND		ug/l	0.10		1	
Indeno(1,2,3-cd)pyrene	0.14		ug/l	0.10		1	
Pyrene	0.24		ug/l	0.10		1	
Pentachlorophenol	ND		ug/l	1.0		1	

Surrogate	% Recovery	Acceptance Qualifier Criteria	
2-Fluorophenol	39	25-87	
Phenol-d6	29	16-65	
Nitrobenzene-d5	76	42-122	
2-Fluorobiphenyl	75	46-121	
2,4,6-Tribromophenol	69	45-128	
4-Terphenyl-d14	70	47-138	

Project Name: MADISON COMMONS Lab Number: L1935658

Project Number: 4325.02 **Report Date:** 08/16/19

SAMPLE RESULTS

 Lab ID:
 L1935658-02
 Date Collected:
 08/08/19 10:15

 Client ID:
 GZ-813/GP70
 Date Received:
 08/08/19

Client ID: GZ-813/GP70 Date Received: 08/08/19
Sample Location: WORCESTER, MA Field Prep: Not Specified

Sample Depth:

Analytical Date:

Matrix: Water Extraction Method: EPA 625.1
Analytical Method: 129,625.1 Extraction Date: 08/11/19 07:54

Analyst: SZ

08/14/19 15:13

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	
Semivolatile Organics by GC/MS - West	borough Lab						
Bis(2-ethylhexyl)phthalate	11		ug/l	2.2		1	
Butyl benzyl phthalate	ND		ug/l	5.0		1	
Di-n-butylphthalate	ND		ug/l	5.0		1	
Di-n-octylphthalate	ND		ug/l	5.0		1	
Diethyl phthalate	ND		ug/l	5.0		1	
Dimethyl phthalate	ND		ug/l	5.0		1	

Surrogate	% Recovery	Qualifier	Acceptance Criteria
Nitrobenzene-d5	87		42-122
2-Fluorobiphenyl	76		46-121
4-Terphenyl-d14	94		47-138

L1935658

Project Name: Lab Number: MADISON COMMONS

Project Number: Report Date: 4325.02 08/16/19

SAMPLE RESULTS

08/12/19 11:24

Lab ID: Date Collected: 08/08/19 10:15 L1935658-02

Date Received: Client ID: 08/08/19 GZ-813/GP70 Sample Location: Field Prep: WORCESTER, MA Not Specified

Sample Depth:

Analytical Date:

Extraction Method: EPA 625.1 Matrix: Water

Extraction Date: 08/11/19 07:55 Analytical Method: 129,625.1-SIM

Analyst: DV

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	
Semivolatile Organics by GC/MS-	SIM - Westborough La	ab					
Acenaphthene	ND		ug/l	0.10		1	
Fluoranthene	3.9		ug/l	0.10		1	
Naphthalene	ND		ug/l	0.10		1	
Benzo(a)anthracene	1.0		ug/l	0.10		1	
Benzo(a)pyrene	1.2		ug/l	0.10		1	
Benzo(b)fluoranthene	2.2		ug/l	0.10		1	
Benzo(k)fluoranthene	0.72		ug/l	0.10		1	
Chrysene	1.4		ug/l	0.10		1	
Acenaphthylene	0.19		ug/l	0.10		1	
Anthracene	0.21		ug/l	0.10		1	
Benzo(ghi)perylene	1.3		ug/l	0.10		1	
Fluorene	0.10		ug/l	0.10		1	
Phenanthrene	0.66		ug/l	0.10		1	
Dibenzo(a,h)anthracene	0.26		ug/l	0.10		1	
Indeno(1,2,3-cd)pyrene	1.3		ug/l	0.10		1	
Pyrene	2.4		ug/l	0.10		1	
Pentachlorophenol	ND		ug/l	1.0		1	

Surrogate	% Recovery	Acceptance Qualifier Criteria	
2-Fluorophenol	47	25-87	
Phenol-d6	34	16-65	
Nitrobenzene-d5	94	42-122	
2-Fluorobiphenyl	88	46-121	
2,4,6-Tribromophenol	84	45-128	
4-Terphenyl-d14	82	47-138	

Project Name: Lab Number: MADISON COMMONS L1935658

Project Number: Report Date: 4325.02 08/16/19

SAMPLE RESULTS

Lab ID: Date Collected: 08/08/19 12:30 L1935658-03

MW-1 Date Received: Client ID: 08/08/19

Sample Location: Field Prep: WORCESTER, MA Not Specified

Sample Depth:

Extraction Method: EPA 625.1 Matrix: Water 08/11/19 07:54 **Extraction Date:** Analytical Method: 129,625.1

Analytical Date: 08/14/19 16:03 Analyst: SZ

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor		
Semivolatile Organics by GC/MS - Westborough Lab								
Bis(2-ethylhexyl)phthalate	2.7		ug/l	2.2		1		
Butyl benzyl phthalate	ND		ug/l	5.0		1		
Di-n-butylphthalate	ND		ug/l	5.0		1		
Di-n-octylphthalate	ND		ug/l	5.0		1		
Diethyl phthalate	ND		ug/l	5.0		1		
Dimethyl phthalate	ND		ug/l	5.0		1		

Surrogate	% Recovery	Qualifier	Acceptance Criteria	
Nitrobenzene-d5	92		42-122	
2-Fluorobiphenyl	81		46-121	
4-Terphenyl-d14	104		47-138	

Project Name: MADISON COMMONS Lab Number: L1935658

Project Number: 4325.02 **Report Date:** 08/16/19

SAMPLE RESULTS

Lab ID: L1935658-03 Date Collected: 08/08/19 12:30

Client ID: MW-1 Date Received: 08/08/19
Sample Location: WORCESTER, MA Field Prep: Not Specified

Sample Depth:

Matrix: Water Extraction Method: EPA 625.1
Analytical Method: 129,625.1-SIM Extraction Date: 08/11/19 07:55

Analytical Date: 08/12/19 11:41

Analyst: DV

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	
Semivolatile Organics by GC/MS	S-SIM - Westborough La	ıb					
Acenaphthene	ND		ug/l	0.10		1	
Fluoranthene	0.41		ug/l	0.10		1	
Naphthalene	0.15		ug/l	0.10		1	
Benzo(a)anthracene	0.19		ug/l	0.10		1	
Benzo(a)pyrene	0.20		ug/l	0.10		1	
Benzo(b)fluoranthene	0.30		ug/l	0.10		1	
Benzo(k)fluoranthene	ND		ug/l	0.10		1	
Chrysene	0.19		ug/l	0.10		1	
Acenaphthylene	ND		ug/l	0.10		1	
Anthracene	ND		ug/l	0.10		1	
Benzo(ghi)perylene	0.16		ug/l	0.10		1	
Fluorene	ND		ug/l	0.10		1	
Phenanthrene	0.16		ug/l	0.10		1	
Dibenzo(a,h)anthracene	ND		ug/l	0.10		1	
Indeno(1,2,3-cd)pyrene	0.16		ug/l	0.10		1	
Pyrene	0.36		ug/l	0.10		1	
Pentachlorophenol	ND		ug/l	1.0		1	

Surrogate	% Recovery	Acceptance Qualifier Criteria
2-Fluorophenol	49	25-87
Phenol-d6	36	16-65
Nitrobenzene-d5	89	42-122
2-Fluorobiphenyl	80	46-121
2,4,6-Tribromophenol	80	45-128
4-Terphenyl-d14	85	47-138

L1935658

Project Name: MADISON COMMONS

Project Number: Report Date: 4325.02

08/16/19

Lab Number:

Method Blank Analysis Batch Quality Control

Analytical Method: 129,625.1-SIM Analytical Date: 08/11/19 11:14

Analyst: DV Extraction Method: EPA 625.1 08/10/19 13:30 **Extraction Date:**

Parameter	Result	Qualifier Units	RL	MDL	
Semivolatile Organics by	GC/MS-SIM - Westbor	ough Lab for sample(s): 01-03	Batch:	WG1270981-1
Acenaphthene	ND	ug/l	0.10		
Fluoranthene	ND	ug/l	0.10		
Naphthalene	ND	ug/l	0.10		
Benzo(a)anthracene	ND	ug/l	0.10		
Benzo(a)pyrene	ND	ug/l	0.10		
Benzo(b)fluoranthene	ND	ug/l	0.10		
Benzo(k)fluoranthene	ND	ug/l	0.10		
Chrysene	ND	ug/l	0.10		
Acenaphthylene	ND	ug/l	0.10		
Anthracene	ND	ug/l	0.10		
Benzo(ghi)perylene	ND	ug/l	0.10		
Fluorene	ND	ug/l	0.10		
Phenanthrene	ND	ug/l	0.10		
Dibenzo(a,h)anthracene	ND	ug/l	0.10		
Indeno(1,2,3-cd)pyrene	ND	ug/l	0.10		
Pyrene	ND	ug/l	0.10		
Pentachlorophenol	ND	ug/l	1.0		

Surrogate	%Recovery	Acceptance Qualifier Criteria
2-Fluorophenol	41	25-87
Phenol-d6	28	16-65
Nitrobenzene-d5	69	42-122
2-Fluorobiphenyl	67	46-121
2,4,6-Tribromophenol	58	45-128
4-Terphenyl-d14	65	47-138

L1935658

Project Name: MADISON COMMONS Lab Number:

Project Number: 4325.02 Report Date: 08/16/19

Method Blank Analysis Batch Quality Control

Analytical Method: 129,625.1 Extraction Method: EPA 625.1

Analytical Date: 08/11/19 18:12 Extraction Date: 08/10/19 13:30

Analyst: SZ

Parameter	Result	Qualifier	Units	RL		MDL
Semivolatile Organics by GC/MS - V	Vestboroug	h Lab for s	ample(s):	01-03	Batch:	WG1271005-1
Bis(2-ethylhexyl)phthalate	ND		ug/l	2.2		
Butyl benzyl phthalate	ND		ug/l	5.0		
Di-n-butylphthalate	ND		ug/l	5.0		
Di-n-octylphthalate	ND		ug/l	5.0		
Diethyl phthalate	ND		ug/l	5.0		
Dimethyl phthalate	ND		ug/l	5.0		

		Acceptance
Surrogate	%Recovery Qu	ualifier Criteria
Nitrobenzene-d5	60	42-122
2-Fluorobiphenyl	49	46-121
4-Terphenyl-d14	60	47-138

Project Name: MADISON COMMONS

Project Number: 4325.02

Lab Number: L1935658

Report Date: 08/16/19

arameter	LCS %Recovery	Qual	LCSD %Recovery	Qual	%Recovery Limits	RPD	Qual	RPD Limits	
emivolatile Organics by GC/MS-SIM - Wes	stborough Lab As	ssociated san	nple(s): 01-03	Batch: V	VG1270981-2				
Acenaphthene	68		-		60-132	-		30	
Fluoranthene	82		-		43-121	-		30	
Naphthalene	68		-		36-120	-		30	
Benzo(a)anthracene	88		-		42-133	-		30	
Benzo(a)pyrene	75		-		32-148	-		30	
Benzo(b)fluoranthene	78		-		42-140	-		30	
Benzo(k)fluoranthene	75		-		25-146	-		30	
Chrysene	75		-		44-140	-		30	
Acenaphthylene	75		-		54-126	-		30	
Anthracene	84		-		43-120	-		30	
Benzo(ghi)perylene	79		-		1-195	-		30	
Fluorene	72		-		70-120	-		30	
Phenanthrene	79		-		65-120	-		30	
Dibenzo(a,h)anthracene	79		-		1-200	-		30	
Indeno(1,2,3-cd)pyrene	86		-		1-151	-		30	
Pyrene	81		-		70-120	-		30	
Pentachlorophenol	69		-		38-152	-		30	

Project Name: MADISON COMMONS

Lab Number:

L1935658

Project Number: 4325.02

ON COMMONS

Qual

Report Date:

08/16/19

Parameter

LCS %Recovery LCSD %Recovery

%Recovery Qual Limits

RPD

Qual Li

RPD Limits

Semivolatile Organics by GC/MS-SIM - Westborough Lab Associated sample(s): 01-03 Batch: WG1270981-2

Surrogate	LCS %Recovery Qual	LCSD %Recovery Qual	Acceptance Criteria
2-Fluorophenol	47		25-87
Phenol-d6	34		16-65
Nitrobenzene-d5	82		42-122
2-Fluorobiphenyl	73		46-121
2,4,6-Tribromophenol	75		45-128
4-Terphenyl-d14	79		47-138

Project Name: MADISON COMMONS

Project Number: 4325.02

Lab Number:

L1935658

Report Date:

08/16/19

Parameter	LCS %Recovery	Qual	LCSD %Recovery	Qual	%Recovery Limits	RPD	Qual	RPD Limits	
Semivolatile Organics by GC/MS - Westborou	ıgh Lab Associa	ated sample(s)	: 01-03 Batch:	WG12710	005-2				
Bis(2-ethylhexyl)phthalate	122		-		29-137	-		82	
Butyl benzyl phthalate	108		-		1-140	-		60	
Di-n-butylphthalate	109		-		8-120	-		47	
Di-n-octylphthalate	118		-		19-132	-		69	
Diethyl phthalate	96		-		1-120	-		100	
Dimethyl phthalate	80		-		1-120	-		183	

Surrogate	LCS %Recovery Qual	LCSD %Recovery Qual	Acceptance Criteria
Nitrobenzene-d5	82		42-122
2-Fluorobiphenyl	68		46-121
4-Terphenyl-d14	90		47-138

PCBS

Project Name: MADISON COMMONS Lab Number: L1935658

Project Number: 4325.02 Report Date: 08/16/19

SAMPLE RESULTS

 Lab ID:
 L1935658-01
 Date Collected:
 08/08/19 08:30

 Client ID:
 MC-41 (OW)
 Date Received:
 08/08/19

Sample Location: WORCESTER, MA Field Prep: Not Specified

Sample Depth:

Matrix: Water Extraction Method: EPA 608.3
Analytical Method: 127,608.3 Extraction Date: 08/13/19 05:04

Analytical Date: 08/16/19 00:24 Cleanup Method: EPA 3665A Analyst: AWS Cleanup Date: 08/14/19

Cleanup Method: EPA 3660B Cleanup Date: 08/15/19

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	Column
Polychlorinated Biphenyls by	GC - Westborough Lab						
Aroclor 1016	ND		ug/l	0.250		1	А
Aroclor 1221	ND		ug/l	0.250		1	Α
Aroclor 1232	ND		ug/l	0.250		1	Α
Aroclor 1242	ND		ug/l	0.250		1	Α
Aroclor 1248	ND		ug/l	0.250		1	Α
Aroclor 1254	ND		ug/l	0.250		1	Α
Aroclor 1260	ND		ug/l	0.200		1	Α

			Acceptance			
Surrogate	% Recovery	Qualifier	Criteria	Column		
2,4,5,6-Tetrachloro-m-xylene	78		37-123	В		
Decachlorobiphenyl	60		38-114	В		
2,4,5,6-Tetrachloro-m-xylene	77		37-123	Α		
Decachlorobiphenyl	68		38-114	Α		

Project Name: MADISON COMMONS Lab Number: L1935658

Project Number: 4325.02 **Report Date:** 08/16/19

SAMPLE RESULTS

 Lab ID:
 L1935658-02
 Date Collected:
 08/08/19 10:15

 Client ID:
 GZ-813/GP70
 Date Received:
 08/08/19

Sample Location: WORCESTER, MA Field Prep: Not Specified

Sample Depth:

Matrix: Water Extraction Method: EPA 608.3
Analytical Method: 127,608.3 Extraction Date: 08/13/19 05:04
Analytical Date: 08/16/19 03:06 Cleanup Method: EPA 3665A

Analyst: AWS Cleanup Date: 08/14/19

Cleanup Method: EPA 3660B Cleanup Date: 08/15/19

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	Column
Polychlorinated Biphenyls by GC	- Westborough Lab						
Aroclor 1016	ND		ug/l	0.250		1	Α
Aroclor 1221	ND		ug/l	0.250		1	Α
Aroclor 1232	ND		ug/l	0.250		1	Α
Aroclor 1242	ND		ug/l	0.250		1	Α
Aroclor 1248	ND		ug/l	0.250		1	Α
Aroclor 1254	ND		ug/l	0.250		1	Α
Aroclor 1260	ND		ug/l	0.200		1	Α

			Acceptance			
Surrogate	% Recovery	Qualifier	Criteria	Column		
2,4,5,6-Tetrachloro-m-xylene	64		37-123	В		
Decachlorobiphenyl	53		38-114	В		
2,4,5,6-Tetrachloro-m-xylene	64		37-123	Α		
Decachlorobiphenyl	49		38-114	Α		

Project Name: MADISON COMMONS Lab Number: L1935658

Project Number: 4325.02 **Report Date:** 08/16/19

SAMPLE RESULTS

Lab ID: L1935658-03 Date Collected: 08/08/19 12:30

Client ID: MW-1 Date Received: 08/08/19
Sample Location: WORCESTER, MA Field Prep: Not Specified

Sample Depth:

Matrix: Water Extraction Method: EPA 608.3
Analytical Method: 127.608.3 Extraction Date: 08/13/19 05:04

Analytical Method: 127,608.3 Extraction Date: 08/13/19 05:04
Analytical Date: 08/16/19 03:18 Cleanup Method: EPA 3665A
Analyst: AWS Cleanup Date: 08/14/19

Cleanup Method: EPA 3660B Cleanup Date: 08/15/19

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	Column
Polychlorinated Biphenyls by GC - W	estborough Lab						
Aroclor 1016	ND		ug/l	0.250		1	Α
Aroclor 1221	ND		ug/l	0.250		1	Α
Aroclor 1232	ND		ug/l	0.250		1	Α
Aroclor 1242	ND		ug/l	0.250		1	Α
Aroclor 1248	ND		ug/l	0.250		1	Α
Aroclor 1254	ND		ug/l	0.250		1	Α
Aroclor 1260	ND		ug/l	0.200		1	Α

			Acceptance			
Surrogate	% Recovery	Qualifier	Criteria	Column		
2,4,5,6-Tetrachloro-m-xylene	63		37-123	В		
Decachlorobiphenyl	65		38-114	В		
2,4,5,6-Tetrachloro-m-xylene	62		37-123	Α		
Decachlorobiphenyl	59		38-114	Α		

L1935658

Lab Number:

Project Name: MADISON COMMONS

Report Date: Project Number:

4325.02 08/16/19

> **Method Blank Analysis Batch Quality Control**

Analytical Method: 127,608.3 Analytical Date: 08/16/19 01:12

Analyst: AWS

Extraction Method: EPA 608.3 08/12/19 17:03 **Extraction Date:** Cleanup Method: EPA 3665A Cleanup Date: 08/14/19 Cleanup Method: EPA 3660B Cleanup Date: 08/15/19

Parameter	Result	Qualifier	Units	RL		MDL	Column
Polychlorinated Biphenyls by GC - V	Vestboroug	h Lab for s	ample(s):	01-03	Batch:	WG127	71458-1
Aroclor 1016	ND		ug/l	0.250			А
Aroclor 1221	ND		ug/l	0.250			А
Aroclor 1232	ND		ug/l	0.250			А
Aroclor 1242	ND		ug/l	0.250			А
Aroclor 1248	ND		ug/l	0.250			А
Aroclor 1254	ND		ug/l	0.250			А
Aroclor 1260	ND		ug/l	0.200			Α

Surrogate	Acceptance		
	%Recovery Qualifie	- Criteria	Column
2,4,5,6-Tetrachloro-m-xylene	82	37-123	В
Decachlorobiphenyl	85	38-114	В
2,4,5,6-Tetrachloro-m-xylene	79	37-123	Α
Decachlorobiphenyl	92	38-114	Α

Lab Control Sample Analysis Batch Quality Control

Project Name: MADISON COMMONS

Lab Number:

L1935658

Project Number: 4325.02

	LCS	LCSD %Red		%Recovery	Recovery		RPD		
Parameter	%Recovery	Qual	%Recovery	Qual	Limits	RPD	Qual	Limits	Column
Polychlorinated Biphenyls by GC - Westb	orough Lab Associa	ated sample(s)	: 01-03 Bat	ch: WG127	1458-2				
Aroclor 1016	82		-		50-140	-		36	Α
Aroclor 1260	74		-		8-140	-		38	Α

Surrogate	LCS %Recovery Qual	LCSD %Recovery Qual	Acceptance Criteria Colum	n
2,4,5,6-Tetrachloro-m-xylene	76		37-123 B	_
Decachlorobiphenyl	84		38-114 B	
2,4,5,6-Tetrachloro-m-xylene	79		37-123 A	
Decachlorobiphenyl	95		38-114 A	

METALS

Project Name: MADISON COMMONS

Project Number: 4325.02

Lab Number: Report Date:

L1935658 08/16/19

SAMPLE RESULTS

Date Collected:

08/08/19 08:30

Client ID: MC Sample Location: WC

L1935658-01 MC-41 (OW)

Date Received: Field Prep:

08/08/19 Not Specified

Lab ID:

WORCESTER, MA

Sample Depth:

Matrix: Water

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	Date Prepared	Date Analyzed	Prep Method	Analytical Method	Analyst
Total Metals - Mans	sfield Lab										
Arsenic, Total	0.00723		mg/l	0.00100		1	08/09/19 13:20	08/12/19 18:11	EPA 3005A	3,200.8	AM
Cadmium, Total	0.00059		mg/l	0.00020		1	08/09/19 13:20	08/12/19 18:11	EPA 3005A	3,200.8	AM
Chromium, Total	0.00206		mg/l	0.00100		1	08/09/19 13:20	08/12/19 18:11	EPA 3005A	3,200.8	AM
Copper, Total	0.03560		mg/l	0.00100		1	08/09/19 13:20	08/12/19 18:11	EPA 3005A	3,200.8	AM
Iron, Total	5.34		mg/l	0.050		1	08/09/19 13:20	08/13/19 16:13	EPA 3005A	19,200.7	LC
Lead, Total	0.01656		mg/l	0.00100		1	08/09/19 13:20	08/12/19 18:11	EPA 3005A	3,200.8	AM
Mercury, Total	ND		mg/l	0.00020		1	08/12/19 16:36	08/13/19 12:23	EPA 245.1	3,245.1	GD
Nickel, Total	0.00583		mg/l	0.00200		1	08/09/19 13:20	08/12/19 18:11	EPA 3005A	3,200.8	AM
Selenium, Total	ND		mg/l	0.00500		1	08/09/19 13:20	08/12/19 18:11	EPA 3005A	3,200.8	AM
Silver, Total	ND		mg/l	0.00040		1	08/09/19 13:20	08/12/19 18:11	EPA 3005A	3,200.8	AM
Zinc, Total	0.1089		mg/l	0.01000		1	08/09/19 13:20	08/12/19 18:11	EPA 3005A	3,200.8	AM
Total Hardness by	SM 2340E	3 - Mansfie	ld Lab								
Hardness	122		mg/l	0.660	NA	1	08/09/19 13:20	08/13/19 16:13	EPA 3005A	19,200.7	LC
General Chemistry	- Mansfie	ld Lab									
Chromium, Trivalent	ND		mg/l	0.010		1		08/12/19 18:11	NA	107,-	
Dissolved Metals -	Mansfield	Lab									
Arsenic, Dissolved	0.0018		mg/l	0.0010		1	08/09/19 12:16	08/12/19 18:19	EPA 3005A	3,200.8	AM
Cadmium, Dissolved	ND		mg/l	0.0002		1	08/09/19 12:16	08/12/19 18:19	EPA 3005A	3,200.8	AM
Chromium, Dissolved	ND		mg/l	0.0010		1	08/09/19 12:16	08/12/19 18:19	EPA 3005A	3,200.8	AM
Copper, Dissolved	0.0229		mg/l	0.0010		1	08/09/19 12:16	08/12/19 18:19	EPA 3005A	3,200.8	AM
Iron, Dissolved	0.611		mg/l	0.050		1	08/09/19 12:16	08/13/19 15:36	EPA 3005A	19,200.7	LC
Lead, Dissolved	0.0014		mg/l	0.0010		1	08/09/19 12:16	08/12/19 18:19	EPA 3005A	3,200.8	AM
Mercury, Dissolved	ND		mg/l	0.00020		1	08/13/19 15:50	08/13/19 21:37	EPA 245.1	3,245.1	MG
N: 1 1 5: 1 1						_				0.000.0	

3,200.8

3,200.8

 AM

ΑM

Nickel, Dissolved

Selenium, Dissolved

0.0041

ND

mg/l

mg/l

0.0020

0.0050

1

1

08/09/19 12:16 08/12/19 18:19 EPA 3005A

08/09/19 12:16 08/12/19 18:19 EPA 3005A

Project Name: MADISON COMMONS Lab Number: L1935658

Project Number: 4325.02 Report Date: 08/16/19

SAMPLE RESULTS

Lab ID:L1935658-01Date Collected:08/08/19 08:30Client ID:MC-41 (OW)Date Received:08/08/19Sample Location:WORCESTER, MAField Prep:Not Specified

Sample Depth:

Matrix: Water

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	Date Prepared	Date Analyzed	Prep Method	Analytical Method	Analyst
O'han B'arahad	ND		A	0.0004			00/00/40 40 4	0.00/40/40 40 40	- FDA 0005A	2 200 0	
Silver, Dissolved	ND		mg/l	0.0004		1	08/09/19 12:1	6 08/12/19 18:19	EPA 3005A	3,200.8	AM
Zinc, Dissolved	0.0387		mg/l	0.0100		1	08/09/19 12:1	6 08/12/19 18:19	EPA 3005A	3,200.8	AM

Project Name: MADISON COMMONS

Project Number: 4325.02 Lab Number: **Report Date:**

L1935658 08/16/19

SAMPLE RESULTS

Date Collected:

08/08/19 10:15

Client ID:

Lab ID:

L1935658-02 GZ-813/GP70

Date Received:

08/08/19

Sample Location:

WORCESTER, MA

Field Prep:

Not Specified

Sample Depth:

Matrix: Water

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	Date Prepared	Date Analyzed	Prep Method	Analytical Method	Analyst
Total Metals - Mans	sfield Lab										
Arsenic, Total	0.04879		mg/l	0.00100		1	08/09/19 13:20	08/12/19 18:15	EPA 3005A	3,200.8	AM
Cadmium, Total	0.00055		mg/l	0.00020		1	08/09/19 13:20	08/12/19 18:15	EPA 3005A	3,200.8	AM
Chromium, Total	0.2190		mg/l	0.00100		1	08/09/19 13:20	08/12/19 18:15	EPA 3005A	3,200.8	AM
Copper, Total	0.01040		mg/l	0.00100		1	08/09/19 13:20	08/12/19 18:15	EPA 3005A	3,200.8	AM
Iron, Total	4.23		mg/l	0.050		1	08/09/19 13:20	08/13/19 17:51	EPA 3005A	19,200.7	AB
Lead, Total	0.00646		mg/l	0.00100		1	08/09/19 13:20	08/12/19 18:15	EPA 3005A	3,200.8	AM
Mercury, Total	ND		mg/l	0.00020		1	08/12/19 16:36	08/13/19 12:25	EPA 245.1	3,245.1	GD
Nickel, Total	0.01537		mg/l	0.00200		1	08/09/19 13:20	08/12/19 18:15	EPA 3005A	3,200.8	AM
Selenium, Total	ND		mg/l	0.00500		1	08/09/19 13:20	08/12/19 18:15	EPA 3005A	3,200.8	AM
Silver, Total	ND		mg/l	0.00040		1	08/09/19 13:20	08/12/19 18:15	EPA 3005A	3,200.8	AM
Zinc, Total	0.04663		mg/l	0.01000		1	08/09/19 13:20	08/12/19 18:15	EPA 3005A	3,200.8	AM
Total Hardness by	SM 2340E	3 - Mansfiel	d Lab								
Hardness	204		mg/l	0.660	NA	1	08/09/19 13:20	08/13/19 17:51	EPA 3005A	19,200.7	AB
General Chemistry	- Mansfie	ld Lab									
Chromium, Trivalent	0.219		mg/l	0.010		1		08/12/19 18:15	NA	107,-	
Dissolved Metals -	Mansfield	Lab									
Arsenic, Dissolved	0.0330		mg/l	0.0010		1	08/09/19 12:16	08/12/19 18:24	EPA 3005A	3,200.8	AM
Cadmium, Dissolved	ND		mg/l	0.0002		1	08/09/19 12:16	08/12/19 18:24	EPA 3005A	3,200.8	AM
Chromium, Dissolved	0.0177		mg/l	0.0010		1	08/09/19 12:16	08/12/19 18:24	EPA 3005A	3,200.8	AM
Copper, Dissolved	0.0027		mg/l	0.0010		1	08/09/19 12:16	08/12/19 18:24	EPA 3005A	3,200.8	AM
Iron, Dissolved	ND		mg/l	0.050		1	08/09/19 12:16	08/13/19 15:40	EPA 3005A	19,200.7	AB

1

1

1

1

08/09/19 12:16 08/12/19 18:24 EPA 3005A

08/13/19 15:50 08/13/19 21:38 EPA 245.1

08/09/19 12:16 08/12/19 18:24 EPA 3005A

08/09/19 12:16 08/12/19 18:24 EPA 3005A

3,200.8

3,245.1

3,200.8

3,200.8

ΑM

MG

AM

ΑM

Lead, Dissolved

Mercury, Dissolved

Selenium, Dissolved

Nickel, Dissolved

ND

ND

ND

0.0321

mg/l

mg/l

mg/l

mg/l

0.0010

0.00020

0.0020

0.0050

--

--

Project Name: MADISON COMMONS Lab Number: L1935658

Project Number: 4325.02 Report Date: 08/16/19

SAMPLE RESULTS

 Lab ID:
 L1935658-02
 Date Collected:
 08/08/19 10:15

 Client ID:
 GZ-813/GP70
 Date Received:
 08/08/19

Sample Location: WORCESTER, MA Field Prep: Not Specified

Sample Depth:

Matrix: Water

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	Date Prepared	Date Analyzed	Prep Method	Analytical Method	Analyst
						,				0.000.0	
Silver, Dissolved	ND		mg/l	0.0004		1	08/09/19 12:1	6 08/12/19 18:24	EPA 3005A	3,200.8	AM
Zinc, Dissolved	ND		mg/l	0.0100		1	08/09/19 12:1	6 08/12/19 18:24	EPA 3005A	3,200.8	AM

L1935658

08/08/19 12:30

Project Name: MADISON COMMONS

Lab Number:

Date Collected:

Project Number: Report Date: 4325.02 08/16/19

SAMPLE RESULTS

Lab ID: L1935658-03

Client ID: MW-1

Date Received: 08/08/19 Sample Location: WORCESTER, MA Field Prep: Not Specified

Sample Depth:

Matrix: Water

Cadmium, Total 0.00027 mg/l 0.00020 1 08/09/19 13:20 08/12/19 20:02 EPA 3005A 3.200.8 AM Chromium, Total 0.00214 mg/l 0.00100 1 08/09/19 13:20 08/12/19 20:02 EPA 3005A 3.200.8 AM Copper, Total 0.00847 mg/l 0.00100 1 08/09/19 13:20 08/12/19 20:02 EPA 3005A 3.200.8 AM Iron, Total 1.08 mg/l 0.050 1 08/09/19 13:20 08/12/19 20:02 EPA 3005A 3.200.8 AM Iron, Total 0.00641 mg/l 0.00100 1 08/09/19 13:20 08/12/19 20:02 EPA 3005A 3.200.8 AM Mercury, Total ND mg/l 0.00020 1 08/12/19 16:36 08/13/19 12:20 EPA 3005A 3.200.8 AM Selenium, Total ND mg/l 0.00200 1 08/09/19 13:20 08/12/19 20:02 EPA 3005A 3.200.8 AM Selenium, Total ND mg/l 0.00500 1 08/09/19 13:20 08/12/19 20:02 EPA 3005A 3.200.8 AM Selenium, Total ND mg/l 0.00500 1 08/09/19 13:20 08/12/19 20:02 EPA 3005A 3.200.8 AM Silver, Total ND mg/l 0.00500 1 08/09/19 13:20 08/12/19 20:02 EPA 3005A 3.200.8 AM Zinc, Total 0.02503 mg/l 0.01000 1 08/09/19 13:20 08/12/19 20:02 EPA 3005A 3.200.8 AM Zinc, Total 0.02503 mg/l 0.01000 1 08/09/19 13:20 08/12/19 20:02 EPA 3005A 3.200.8 AM Total Hardness by SM 2340B - Mansfield Lab Hardness 124 mg/l 0.660 NA 1 08/09/19 13:20 08/12/19 20:02 EPA 3005A 3.200.8 AM Total Hardness ND M 2340B - Mansfield Lab Chromium, Trivalent ND mg/l 0.0010 1 08/09/19 13:20 08/12/19 20:02 EPA 3005A 3.200.8 AM Cadmium, Dissolved ND mg/l 0.0010 1 08/09/19 12:16 08/12/19 18:28 EPA 3005A 3.200.8 AM Copper, Dissolved ND mg/l 0.0010 1 08/09/19 12:16 08/12/19 18:28 EPA 3005A 3.200.8 AM Copper, Dissolved ND mg/l 0.0010 1 08/09/19 12:16 08/12/19 18:28 EPA 3005A 3.200.8 AM Copper, Dissolved ND mg/l 0.0010 1 08/09/19 12:16 08/12/19 18:28 EPA 3005A 3.200.8 AM Copper, Dissolved ND mg/l 0.0010 1 08/09/19 12:16 08/12/19 18:28 EPA 3005A 3.200.8 AM Copper, Dissolved ND mg/l 0.0010 1 08/09/19 12:16 08/12/19 18:28 EPA 3005A 3.200.8 AM Mercury, Dissolved ND mg/l 0.0010 1 08/09/19 12:16 08/12/19 18:28 EPA 3005A 3.200.8 AM Mercury, Dissolved ND mg/l 0.0010 1 08/09/19 12:16 08/12/19 18:28 EPA 3005A 3.200.8 AM	Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	Date Prepared	Date Analyzed	Prep Method	Analytical Method	Analyst
Cadmium, Total 0.00027 mg/l 0.00020 1 08/09/19 13:20 08/12/19 20:02 EPA 3005A 3.200.8 AM Chromium, Total 0.00214 mg/l 0.00100 1 08/09/19 13:20 08/12/19 20:02 EPA 3005A 3.200.8 AM Copper, Total 0.00847 mg/l 0.00100 1 08/09/19 13:20 08/12/19 20:02 EPA 3005A 3.200.8 AM Iron, Total 1.08 mg/l 0.050 1 08/09/19 13:20 08/12/19 20:02 EPA 3005A 3.200.8 AM Iron, Total 0.00641 mg/l 0.00100 1 08/09/19 13:20 08/12/19 20:02 EPA 3005A 3.200.8 AM Mercury, Total ND mg/l 0.00020 1 08/12/19 16:36 08/13/19 12:27 EPA 245.1 3.245.1 GD Nickel, Total ND mg/l 0.00200 1 08/09/19 13:20 08/12/19 20:02 EPA 3005A 3.200.8 AM Selenium, Total ND mg/l 0.00500 1 08/09/19 13:20 08/12/19 20:02 EPA 3005A 3.200.8 AM Silver, Total ND mg/l 0.00500 1 08/09/19 13:20 08/12/19 20:02 EPA 3005A 3.200.8 AM Silver, Total ND mg/l 0.00500 1 08/09/19 13:20 08/12/19 20:02 EPA 3005A 3.200.8 AM Zinc, Total 0.02503 mg/l 0.01000 1 08/09/19 13:20 08/12/19 20:02 EPA 3005A 3.200.8 AM Total Hardness by SM 2340B - Mansfield Lab Hardness 124 mg/l 0.660 NA 1 08/09/19 13:20 08/12/19 20:02 EPA 3005A 3.200.8 AM Total Hardness Mansfield Lab Chromium, Trivalent ND mg/l 0.0010 1 08/09/19 13:20 08/12/19 20:02 EPA 3005A 3.200.8 AM Total Hardness Mansfield Lab Chromium, Dissolved ND mg/l 0.0010 1 08/09/19 13:16 08/12/19 18:28 EPA 3005A 3.200.8 AM Copper, Dissolved ND mg/l 0.0010 1 08/09/19 12:16 08/12/19 18:28 EPA 3005A 3.200.8 AM Copper, Dissolved ND mg/l 0.0010 1 08/09/19 12:16 08/12/19 18:28 EPA 3005A 3.200.8 AM Copper, Dissolved ND mg/l 0.0010 1 08/09/19 12:16 08/12/19 18:28 EPA 3005A 3.200.8 AM Copper, Dissolved ND mg/l 0.0010 1 08/09/19 12:16 08/12/19 18:28 EPA 3005A 3.200.8 AM Copper, Dissolved ND mg/l 0.0010 1 08/09/19 12:16 08/12/19 18:28 EPA 3005A 3.200.8 AM Copper, Dissolved ND mg/l 0.0010 1 08/09/19 12:16 08/12/19 18:28 EPA 3005A 3.200.8 AM Mercury, Dissolved ND mg/l 0.0010 1 08/09/19 12:16 08/12/19 18:28 EPA 3005A 3.200.8 AM Mercury, Dissolved ND mg/l 0.0010 1 08/09/19 12:16 08/12/19 18:28 EPA 3005A 3.200.8	Total Metals - Mans	sfield Lab										
Chromium, Total 0.00214 mg/l 0.00100 1 08/09/19 13:20 08/12/19 20:02 EPA 3005A 3,200.8 AM Copper, Total 0.00847 mg/l 0.00100 1 08/09/19 13:20 08/12/19 20:02 EPA 3005A 3,200.8 AM Iron, Total 1.08 mg/l 0.050 1 08/09/19 13:20 08/13/19 17:55 EPA 3005A 3,200.8 AM Iron, Total 1.08 mg/l 0.0010 1 08/09/19 13:20 08/13/19 17:55 EPA 3005A 3,200.8 AM Mercury, Total ND mg/l 0.00100 1 08/09/19 13:20 08/13/19 17:55 EPA 3005A 3,200.8 AM Mercury, Total ND mg/l 0.00020 1 08/09/19 13:20 08/12/19 20:02 EPA 3005A 3,200.8 AM Selenium, Total ND mg/l 0.00200 1 08/09/19 13:20 08/12/19 20:02 EPA 3005A 3,200.8 AM Selenium, Total ND mg/l 0.00500 1 08/09/19 13:20 08/12/19 20:02 EPA 3005A 3,200.8 AM Zinc, Total ND mg/l 0.00040 1 08/09/19 13:20 08/12/19 20:02 EPA 3005A 3,200.8 AM Zinc, Total ND mg/l 0.00040 1 08/09/19 13:20 08/12/19 20:02 EPA 3005A 3,200.8 AM Zinc, Total 0.02503 mg/l 0.01000 1 08/09/19 13:20 08/12/19 20:02 EPA 3005A 3,200.8 AM Zinc, Total 0.02503 mg/l 0.01000 1 08/09/19 13:20 08/12/19 20:02 EPA 3005A 3,200.8 AM Zinc, Total 0.02503 mg/l 0.01000 1 08/09/19 13:20 08/12/19 20:02 EPA 3005A 3,200.8 AM Zinc, Total Marchess by SM 2340B - Mansfield Lab General Chemistry - Mansfield Lab General Chemistry - Mansfield Lab Dissolved Metals - Mansfield Lab Dissolved Metals - Mansfield Lab Chromium, Trivielent ND mg/l 0.0010 1 08/09/19 12:16 08/12/19 18:28 EPA 3005A 3,200.8 AM Copper, Dissolved ND mg/l 0.0010 1 08/09/19 12:16 08/12/19 18:28 EPA 3005A 3,200.8 AM Copper, Dissolved ND mg/l 0.0010 1 08/09/19 12:16 08/12/19 18:28 EPA 3005A 3,200.8 AM Copper, Dissolved ND mg/l 0.0010 1 08/09/19 12:16 08/12/19 18:28 EPA 3005A 3,200.8 AM Iron, Dissolved ND mg/l 0.0010 1 08/09/19 12:16 08/12/19 18:28 EPA 3005A 3,200.8 AM Iron, Dissolved ND mg/l 0.0010 1 08/09/19 12:16 08/12/19 18:28 EPA 3005A 3,200.8 AM Iron, Dissolved ND mg/l 0.0010 1 08/09/19 12:16 08/12/19 18:28 EPA 3005A 3,200.8 AM Iron, Dissolved ND mg/l 0.0010 1 08/09/19 12:16 08/12/19 18:28 EPA 3005A 3,200.8 AM Iron, Dissolv	Arsenic, Total	0.00914		mg/l	0.00100		1	08/09/19 13:20	08/12/19 20:02	EPA 3005A	3,200.8	AM
Copper, Total 0.00847 mg/l 0.00100 1 08/09/19 13:20 08/12/19 20:02 EPA 3005A 3,200.8 AM Iron, Total 1.08 mg/l 0.050 1 08/09/19 13:20 08/13/19 17:55 EPA 3005A 19,200.7 AB Lead, Total 0.00641 mg/l 0.00100 1 08/09/19 13:20 08/12/19 20:02 EPA 3005A 3,200.8 AM Mercury, Total ND mg/l 0.00200 1 08/09/19 13:20 08/12/19 20:02 EPA 3005A 3,200.8 AM Selenium, Total ND mg/l 0.00200 1 08/09/19 13:20 08/12/19 20:02 EPA 3005A 3,200.8 AM Silver, Total ND mg/l 0.00500 1 08/09/19 13:20 08/12/19 20:02 EPA 3005A 3,200.8 AM Silver, Total ND mg/l 0.00100 1 08/09/19 13:20 08/12/19 20:02 EPA 3005A 3,200.8 AM Zinc, Total ND mg/l 0.01000	Cadmium, Total	0.00027		mg/l	0.00020		1	08/09/19 13:20	08/12/19 20:02	EPA 3005A	3,200.8	AM
Iron, Total 1.08 mg/l 0.050 1 08/09/19 13:20 08/13/19 17:55 EPA 3005A 19,200.7 AB	Chromium, Total	0.00214		mg/l	0.00100		1	08/09/19 13:20	08/12/19 20:02	EPA 3005A	3,200.8	AM
Lead, Total 0.00641 mg/l 0.00100 1 08/09/19 13:20 08/12/19 20:02 EPA 3005A 3,200.8 AM Mercury, Total ND mg/l 0.0020 1 08/12/19 16:36 08/13/19 12:27 EPA 245.1 3,245.1 GD Nickel, Total 0.04717 mg/l 0.00200 1 08/09/19 13:20 08/12/19 20:02 EPA 3005A 3,200.8 AM Selenium, Total ND mg/l 0.00500 1 08/09/19 13:20 08/12/19 20:02 EPA 3005A 3,200.8 AM Silver, Total ND mg/l 0.0040 1 08/09/19 13:20 08/12/19 20:02 EPA 3005A 3,200.8 AM Zinc, Total 0.02503 mg/l 0.01000 1 08/09/19 13:20 08/12/19 20:02 EPA 3005A 3,200.8 AM Total Hardness by SM 2340B - Mansfield Lab Chromium, Trivalent ND mg/l 0.010 1 08/09/19 12:16 08/12/19 10:25 EPA 3005A 19,200.7 AB	Copper, Total	0.00847		mg/l	0.00100		1	08/09/19 13:20	08/12/19 20:02	EPA 3005A	3,200.8	AM
Mercury, Total ND mg/l 0.00020 1 08/12/19 (6:36 08/13/19 12:27 EPA 245.1 3.245.1 GD Nickel, Total 0.04717 mg/l 0.00200 1 08/09/19 13:20 08/12/19 20:02 EPA 3005A 3,200.8 AM Selenium, Total ND mg/l 0.00500 1 08/09/19 13:20 08/12/19 20:02 EPA 3005A 3,200.8 AM Silver, Total ND mg/l 0.0040 1 08/09/19 13:20 08/12/19 20:02 EPA 3005A 3,200.8 AM Zinc, Total 0.02503 mg/l 0.01000 1 08/09/19 13:20 08/12/19 20:02 EPA 3005A 3,200.8 AM Total Hardness by SM 2340B - Mansfield Lab Hardness 124 mg/l 0.660 NA 1 08/09/19 13:20 08/13/19 17:55 EPA 3005A 19,200.7 AB General Chemistry - Mansfield Lab Chromium, Trivalent ND mg/l 0.010 1 08/09/19 12:16 08/12/19 18:28	Iron, Total	1.08		mg/l	0.050		1	08/09/19 13:20	08/13/19 17:55	EPA 3005A	19,200.7	AB
Nickel, Total 0.04717 mg/l 0.00200 1 08/09/19 13:20 08/12/19 20:02 EPA 3005A 3.200.8 AM Selenium, Total ND mg/l 0.00500 1 08/09/19 13:20 08/12/19 20:02 EPA 3005A 3.200.8 AM Silver, Total ND mg/l 0.00040 1 08/09/19 13:20 08/12/19 20:02 EPA 3005A 3.200.8 AM Zinc, Total 0.02503 mg/l 0.01000 1 08/09/19 13:20 08/12/19 20:02 EPA 3005A 3.200.8 AM Zinc, Total 0.02503 mg/l 0.01000 1 08/09/19 13:20 08/12/19 20:02 EPA 3005A 3.200.8 AM Zinc, Total Tardness by SM 2340B - Mansfield Lab Hardness 124 mg/l 0.660 NA 1 08/09/19 13:20 08/13/19 17:55 EPA 3005A 19,200.7 AB General Chemistry - Mansfield Lab Chromium, Trivalent ND mg/l 0.010 1 08/09/19 12:16 08/12/19 18:28 EPA 3005A 3.200.8 AM Total Hardness of the mg/l 0.0002 1 08/09/19 12:16 08/12/19 18:28 EPA 3005A 3.200.8 AM Cadmium, Dissolved ND mg/l 0.0010 1 08/09/19 12:16 08/12/19 18:28 EPA 3005A 3.200.8 AM Copper, Dissolved 0.0025 mg/l 0.0010 1 08/09/19 12:16 08/12/19 18:28 EPA 3005A 3.200.8 AM Copper, Dissolved 0.0025 mg/l 0.0010 1 08/09/19 12:16 08/12/19 18:28 EPA 3005A 3.200.8 AM Iron, Dissolved ND mg/l 0.0010 1 08/09/19 12:16 08/12/19 18:28 EPA 3005A 3.200.8 AM Moron, Dissolved ND mg/l 0.0010 1 08/09/19 12:16 08/12/19 18:28 EPA 3005A 3.200.8 AM Moron, Dissolved ND mg/l 0.0010 1 08/09/19 12:16 08/12/19 18:28 EPA 3005A 3.200.8 AM Moron, Dissolved ND mg/l 0.0010 1 08/09/19 12:16 08/12/19 18:28 EPA 3005A 3.200.8 AM Moron, Dissolved ND mg/l 0.0010 1 08/09/19 12:16 08/13/19 15:45 EPA 3005A 3.200.8 AM Moroury, Dissolved ND mg/l 0.0010 1 08/09/19 12:16 08/13/19 15:45 EPA 3005A 3.200.8 AM Moroury, Dissolved ND mg/l 0.0010 1 08/09/19 12:16 08/13/19 15:45 EPA 3005A 3.200.8 AM Moroury, Dissolved ND mg/l 0.0010 1 08/09/19 12:16 08/13/19 15:45 EPA 3005A 3.200.8 AM Moroury, Dissolved ND mg/l 0.0010 1 08/09/19 12:16 08/13/19 15:45 EPA 3005A 3.200.8 AM Moroury, Dissolved ND mg/l 0.0010 1 08/09/19 12:16 08/13/19 15:45 EPA 3005A 3.200.8 AM	Lead, Total	0.00641		mg/l	0.00100		1	08/09/19 13:20	08/12/19 20:02	EPA 3005A	3,200.8	AM
Selenium, Total ND mg/l 0.00500 1 08/09/19 13:20 08/12/19 20:02 EPA 3005A 3,200.8 AM Silver, Total ND mg/l 0.00040 1 08/09/19 13:20 08/12/19 20:02 EPA 3005A 3,200.8 AM Zinc, Total 0.02503 mg/l 0.01000 1 08/09/19 13:20 08/12/19 20:02 EPA 3005A 3,200.8 AM Total Hardness by SM 2340B - Mansfield Lab Hardness 124 mg/l 0.660 NA 1 08/09/19 13:20 08/13/19 17:55 EPA 3005A 19,200.7 AB General Chemistry - Mansfield Lab Chromium, Trivalent ND mg/l 0.010 1 08/09/19 12:16 08/12/19 18:28 EPA 3005A 3,200.8 AM Dissolved Metals - Mansfield Lab Arsenic, Dissolved Metals - Mansfield Lab Arsenic, Dissolved Metals - Mansfield Lab Cadmium, Dissolved Metals - Mansfield Lab Cadmium, Dissolved ND mg/l 0.0010 <td< td=""><td>Mercury, Total</td><td>ND</td><td></td><td>mg/l</td><td>0.00020</td><td></td><td>1</td><td>08/12/19 16:36</td><td>08/13/19 12:27</td><td>EPA 245.1</td><td>3,245.1</td><td>GD</td></td<>	Mercury, Total	ND		mg/l	0.00020		1	08/12/19 16:36	08/13/19 12:27	EPA 245.1	3,245.1	GD
Silver, Total ND mg/l 0.00040 1 08/09/19 13:20 08/12/19 20:02 EPA 3005A 3,200.8 AM Zinc, Total 0.02503 mg/l 0.01000 1 08/09/19 13:20 08/12/19 20:02 EPA 3005A 3,200.8 AM Total Hardness by SM 2340B - Mansfield Lab Hardness 124 mg/l 0.660 NA 1 08/09/19 13:20 08/13/19 17:55 EPA 3005A 19,200.7 AB General Chemistry - Mansfield Lab Chromium, Trivalent ND mg/l 0.010 1 08/09/19 12:16 08/12/19 18:28 EPA 3005A 3,200.8 AM Total Hardness by SM 2340B - Mansfield Lab Chromium, Trivalent ND mg/l 0.0010 1 08/09/19 12:16 08/12/19 18:28 EPA 3005A 3,200.8 AM Cadmium, Dissolved ND mg/l 0.0002 1 08/09/19 12:16 08/12/19 18:28 EPA 3005A 3,200.8 AM Chromium, Dissolved ND mg/l 0.0010 1 08/09/19 12:16 08/12/19 18:28 EPA 3005A 3,200.8 AM Copper, Dissolved 0.0025 mg/l 0.0010 1 08/09/19 12:16 08/12/19 18:28 EPA 3005A 3,200.8 AM Copper, Dissolved 0.025 mg/l 0.0010 1 08/09/19 12:16 08/12/19 18:28 EPA 3005A 3,200.8 AM Iron, Dissolved ND mg/l 0.0000 1 08/09/19 12:16 08/12/19 18:28 EPA 3005A 3,200.8 AM Mercury, Dissolved ND mg/l 0.0000 1 08/09/19 12:16 08/12/19 18:28 EPA 3005A 3,200.8 AM Mercury, Dissolved ND mg/l 0.0000 1 08/09/19 12:16 08/12/19 18:28 EPA 3005A 3,200.8 AM Mercury, Dissolved ND mg/l 0.0000 1 08/09/19 12:16 08/12/19 18:28 EPA 3005A 3,200.8 AM Mercury, Dissolved ND mg/l 0.0000 1 08/09/19 12:16 08/12/19 18:28 EPA 3005A 3,200.8 AM Mercury, Dissolved ND mg/l 0.00000 1 08/09/19 12:16 08/12/19 18:28 EPA 3005A 3,200.8 AM Mercury, Dissolved ND mg/l 0.00000 1 08/09/19 12:16 08/12/19 18:28 EPA 3005A 3,200.8 AM Mercury, Dissolved ND mg/l 0.00000 1 08/09/19 12:16 08/12/19 18:28 EPA 3005A 3,200.8 AM	Nickel, Total	0.04717		mg/l	0.00200		1	08/09/19 13:20	08/12/19 20:02	EPA 3005A	3,200.8	AM
Zinc, Total 0.02503 mg/l 0.01000 1 08/09/19 13:20 08/12/19 20:02 EPA 3005A 3,200.8 AM	Selenium, Total	ND		mg/l	0.00500		1	08/09/19 13:20	08/12/19 20:02	EPA 3005A	3,200.8	AM
Total Hardness by SM 2340B - Mansfield Lab Hardness 124 mg/l 0.660 NA 1 08/09/19 13:20 08/13/19 17:55 EPA 3005A 19,200.7 AB General Chemistry - Mansfield Lab Chromium, Trivalent ND mg/l 0.010 1 08/09/19 12:16 08/12/19 18:28 EPA 3005A 3,200.8 AM Cadmium, Dissolved ND mg/l 0.0010 1 08/09/19 12:16 08/12/19 18:28 EPA 3005A 3,200.8 AM Chromium, Dissolved ND mg/l 0.0010 1 08/09/19 12:16 08/12/19 18:28 EPA 3005A 3,200.8 AM Chromium, Dissolved ND mg/l 0.0010 1 08/09/19 12:16 08/12/19 18:28 EPA 3005A 3,200.8 AM Copper, Dissolved 0.0025 mg/l 0.0010 1 08/09/19 12:16 08/12/19 18:28 EPA 3005A 3,200.8 AM Iron, Dissolved 0.128 mg/l 0.050 1 08/09/19 12:16 08/12/19 18:28 EPA 3005A 3,200.8 AM Mercury, Dissolved ND mg/l 0.0010 1 08/09/19 12:16 08/12/19 18:28 EPA 3005A 3,200.8 AM Mercury, Dissolved ND mg/l 0.0010 1 08/09/19 12:16 08/12/19 18:28 EPA 3005A 3,200.8 AM Mercury, Dissolved ND mg/l 0.00020 1 08/09/19 12:16 08/12/19 18:28 EPA 3005A 3,200.8 AM Mercury, Dissolved ND mg/l 0.00020 1 08/09/19 12:16 08/12/19 18:28 EPA 3005A 3,200.8 AM Mercury, Dissolved ND mg/l 0.00020 1 08/09/19 12:16 08/12/19 18:28 EPA 3005A 3,200.8 AM	Silver, Total	ND		mg/l	0.00040		1	08/09/19 13:20	08/12/19 20:02	EPA 3005A	3,200.8	AM
Hardness 124 mg/l 0.660 NA 1 08/09/19 13:20 08/13/19 17:55 EPA 3005A 19,200.7 AB	Zinc, Total	0.02503		mg/l	0.01000		1	08/09/19 13:20	08/12/19 20:02	EPA 3005A	3,200.8	AM
Chromium, Trivalent ND mg/l 0.010 1 08/12/19 20:02 NA 107,-	Total Hardness by	SM 2340E	3 - Mansfie	ld Lab								
Chromium, Trivalent ND mg/l 0.010 1 08/12/19 20:02 NA 107,- Dissolved Metals - Mansfield Lab Arsenic, Dissolved 0.0065 mg/l 0.0010 1 08/09/19 12:16 08/12/19 18:28 EPA 3005A 3,200.8 AM Cadmium, Dissolved ND mg/l 0.0002 1 08/09/19 12:16 08/12/19 18:28 EPA 3005A 3,200.8 AM Chromium, Dissolved ND mg/l 0.0010 1 08/09/19 12:16 08/12/19 18:28 EPA 3005A 3,200.8 AM Copper, Dissolved 0.0025 mg/l 0.0010 1 08/09/19 12:16 08/12/19 18:28 EPA 3005A 3,200.8 AM Iron, Dissolved 0.128 mg/l 0.050 1 08/09/19 12:16 08/12/19 18:28 EPA 3005A 3,200.8 AM Lead, Dissolved ND mg/l 0.0010 1 08/09/19 12:16 08/12/19 18:28 EPA 3005A 3,200.8 AM Mercury, Dissolved	Hardness	124		mg/l	0.660	NA	1	08/09/19 13:20	08/13/19 17:55	EPA 3005A	19,200.7	AB
Arsenic, Dissolved 0.0065 mg/l 0.0010 1 08/09/19 12:16 08/12/19 18:28 EPA 3005A 3,200.8 AM Cadmium, Dissolved ND mg/l 0.0002 1 08/09/19 12:16 08/12/19 18:28 EPA 3005A 3,200.8 AM Chromium, Dissolved ND mg/l 0.0010 1 08/09/19 12:16 08/12/19 18:28 EPA 3005A 3,200.8 AM Copper, Dissolved 0.0025 mg/l 0.0010 1 08/09/19 12:16 08/12/19 18:28 EPA 3005A 3,200.8 AM Iron, Dissolved 0.128 mg/l 0.050 1 08/09/19 12:16 08/13/19 15:45 EPA 3005A 19,200.7 AB Lead, Dissolved ND mg/l 0.0010 1 08/09/19 12:16 08/12/19 18:28 EPA 3005A 3,200.8 AM Mercury, Dissolved ND mg/l 0.00020 1 08/09/19 12:16 08/12/19 18:28 EPA 3005A 3,200.8 AM Mercury, Dissolved ND mg/l 0.00020 1 08/09/19 12:16 08/12/19 18:28 EPA 3005A 3,200.8 AM Mickel, Dissolved ND mg/l 0.00020 1 08/09/19 12:16 08/12/19 18:28 EPA 3005A 3,200.8 AM	General Chemistry Chromium, Trivalent		ld Lab	mg/l	0.010		1		08/12/19 20:02	NA	107,-	
Cadmium, Dissolved ND mg/l 0.0002 1 08/09/19 12:16 08/12/19 18:28 EPA 3005A 3,200.8 AM Chromium, Dissolved ND mg/l 0.0010 1 08/09/19 12:16 08/12/19 18:28 EPA 3005A 3,200.8 AM Copper, Dissolved 0.0025 mg/l 0.0010 1 08/09/19 12:16 08/12/19 18:28 EPA 3005A 3,200.8 AM Iron, Dissolved 0.128 mg/l 0.050 1 08/09/19 12:16 08/13/19 15:45 EPA 3005A 19,200.7 AB Lead, Dissolved ND mg/l 0.0010 1 08/09/19 12:16 08/12/19 18:28 EPA 3005A 3,200.8 AM Mercury, Dissolved ND mg/l 0.00020 1 08/13/19 15:50 08/13/19 21:40 EPA 245.1 3,245.1 MG Nickel, Dissolved 0.0397 mg/l 0.0020 1 08/09/19 12:16 08/12/19 18:28 EPA 3005A 3,200.8 AM	Dissolved Metals -	Mansfield	Lab									
Cadmium, Dissolved ND mg/l 0.0002 1 08/09/19 12:16 08/12/19 18:28 EPA 3005A 3,200.8 AM Chromium, Dissolved ND mg/l 0.0010 1 08/09/19 12:16 08/12/19 18:28 EPA 3005A 3,200.8 AM Copper, Dissolved 0.0025 mg/l 0.0010 1 08/09/19 12:16 08/12/19 18:28 EPA 3005A 3,200.8 AM Iron, Dissolved 0.128 mg/l 0.050 1 08/09/19 12:16 08/13/19 15:45 EPA 3005A 19,200.7 AB Lead, Dissolved ND mg/l 0.0010 1 08/09/19 12:16 08/12/19 18:28 EPA 3005A 3,200.8 AM Mercury, Dissolved ND mg/l 0.00020 1 08/13/19 15:50 08/13/19 21:40 EPA 245.1 3,245.1 MG Nickel, Dissolved 0.0397 mg/l 0.0020 1 08/09/19 12:16 08/12/19 18:28 EPA 3005A 3,200.8 AM	Arsenic, Dissolved	0.0065		mg/l	0.0010		1	08/09/19 12:16	08/12/19 18:28	EPA 3005A	3,200.8	AM
Chromium, Dissolved ND mg/l 0.0010 1 08/09/19 12:16 08/12/19 18:28 EPA 3005A 3,200.8 AM Copper, Dissolved 0.0025 mg/l 0.0010 1 08/09/19 12:16 08/12/19 18:28 EPA 3005A 3,200.8 AM Iron, Dissolved 0.128 mg/l 0.050 1 08/09/19 12:16 08/13/19 15:45 EPA 3005A 19,200.7 AB Lead, Dissolved ND mg/l 0.0010 1 08/09/19 12:16 08/12/19 18:28 EPA 3005A 3,200.8 AM Mercury, Dissolved ND mg/l 0.00020 1 08/13/19 15:50 08/13/19 21:40 EPA 245.1 3,245.1 MG Nickel, Dissolved 0.0397 mg/l 0.0020 1 08/09/19 12:16 08/12/19 18:28 EPA 3005A 3,200.8 AM							1				3,200.8	
Copper, Dissolved 0.0025 mg/l 0.0010 1 08/09/19 12:16 08/12/19 18:28 EPA 3005A 3,200.8 AM Iron, Dissolved 0.128 mg/l 0.050 1 08/09/19 12:16 08/13/19 15:45 EPA 3005A 19,200.7 AB Lead, Dissolved ND mg/l 0.0010 1 08/09/19 12:16 08/12/19 18:28 EPA 3005A 3,200.8 AM Mercury, Dissolved ND mg/l 0.00020 1 08/13/19 15:50 08/13/19 21:40 EPA 245.1 3,245.1 MG Nickel, Dissolved 0.0397 mg/l 0.0020 1 08/09/19 12:16 08/12/19 18:28 EPA 3005A 3,200.8 AM												
Iron, Dissolved 0.128 mg/l 0.050 1 08/09/19 12:16 08/13/19 15:45 EPA 3005A 19,200.7 AB Lead, Dissolved ND mg/l 0.0010 1 08/09/19 12:16 08/12/19 18:28 EPA 3005A 3,200.8 AM Mercury, Dissolved ND mg/l 0.00020 1 08/13/19 15:50 08/13/19 21:40 EPA 245.1 3,245.1 MG Nickel, Dissolved 0.0397 mg/l 0.0020 1 08/09/19 12:16 08/12/19 18:28 EPA 3005A 3,200.8 AM											3,200.8	
Lead, Dissolved ND mg/l 0.0010 1 08/09/19 12:16 08/12/19 18:28 EPA 3005A 3,200.8 AM Mercury, Dissolved ND mg/l 0.00020 1 08/13/19 15:50 08/13/19 21:40 EPA 245.1 3,245.1 MG Nickel, Dissolved 0.0397 mg/l 0.0020 1 08/09/19 12:16 08/12/19 18:28 EPA 3005A 3,200.8 AM		0.128			0.050		1				19,200.7	
Mercury, Dissolved ND mg/l 0.00020 1 08/13/19 15:50 08/13/19 21:40 EPA 245.1 3,245.1 MG Nickel, Dissolved 0.0397 mg/l 0.0020 1 08/09/19 12:16 08/12/19 18:28 EPA 3005A 3,200.8 AM	Lead, Dissolved											
Nickel, Dissolved 0.0397 mg/l 0.0020 1 08/09/19 12:16 08/12/19 18:28 EPA 3005A 3,200.8 AM												
	Selenium, Dissolved	ND		mg/l	0.0050		1				3,200.8	AM

08/08/19 12:30

Project Name: MADISON COMMONS Lab Number: L1935658

Project Number: 4325.02 Report Date: 08/16/19

SAMPLE RESULTS

Lab ID: L1935658-03 Date Collected:

Client ID: MW-1 Date Received: 08/08/19
Sample Location: WORCESTER, MA Field Prep: Not Specified

Sample Depth:

Matrix: Water

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	Date Prepared	Date Analyzed	Prep Method	Analytical Method	Analyst
Silver, Dissolved	ND		mg/l	0.0004		1	08/09/19 12:1	6 08/12/19 18:28	EPA 3005A	3,200.8	AM
Zinc, Dissolved	ND		mg/l	0.0100		1	08/09/19 12:1	6 08/12/19 18:28	EPA 3005A	3,200.8	AM

Project Name: MADISON COMMONS

Project Number: 4325.02

Lab Number:

L1935658

Report Date:

08/16/19

Method Blank Analysis Batch Quality Control

Parameter	Result Qualifier	Units	RL	MDL	Dilution Factor	Date Prepared		Analytical Method	
Total Metals - Mansfie	eld Lab for sample(s):	01-03 i	Batch: Wo	G12706	609-1				
Iron, Total	ND	mg/l	0.050		1	08/09/19 13:20	08/13/19 15:46	19,200.7	LC

Prep Information

Digestion Method: EPA 3005A

Parameter	Result Qualifier	Units	RL	MDL	Dilution Factor	Date Prepared	Date Analyzed	Analytical Method	Analyst
Total Hardness by SM 23	340B - Mansfield Lab	for samp	le(s):	01-03 E	Batch: WG1	270609-1			
Hardness	ND	mg/l	0.660	NA	1	08/09/19 13:20	08/13/19 15:46	19,200.7	LC

Prep Information

Digestion Method: EPA 3005A

Parameter	Result Qualifier	Units	RL	MDL	Dilution Factor	Date Prepared	Date Analyzed	Analytical Method	Analyst
Total Metals - Mans	field Lab for sample(s):	01-03 E	Batch: WO	G12706	514-1				
Arsenic, Total	ND	mg/l	0.00100		1	08/09/19 13:20	08/12/19 17:49	3,200.8	AM
Cadmium, Total	ND	mg/l	0.00020		1	08/09/19 13:20	08/12/19 17:49	3,200.8	AM
Chromium, Total	ND	mg/l	0.00100		1	08/09/19 13:20	08/12/19 17:49	3,200.8	AM
Copper, Total	ND	mg/l	0.00100		1	08/09/19 13:20	08/12/19 17:49	3,200.8	AM
Lead, Total	ND	mg/l	0.00100		1	08/09/19 13:20	08/12/19 17:49	3,200.8	AM
Nickel, Total	ND	mg/l	0.00200		1	08/09/19 13:20	08/12/19 17:49	3,200.8	AM
Selenium, Total	ND	mg/l	0.00500		1	08/09/19 13:20	08/12/19 17:49	3,200.8	AM
Silver, Total	ND	mg/l	0.00040		1	08/09/19 13:20	08/12/19 17:49	3,200.8	AM
Zinc, Total	ND	mg/l	0.01000		1	08/09/19 13:20	08/12/19 17:49	3,200.8	AM

Prep Information

Digestion Method: EPA 3005A

Project Name: MADISON COMMONS

WIN AD IOON OOWING

Lab Number:

Report Date:

L1935658

Project Number: 4325.02

08/16/19

Method Blank Analysis Batch Quality Control

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	Date Prepared	Date Analyzed	Analytica Method	
Dissolved Metals -	Mansfield Lab	for sample	e(s): 01-0	3 Batch	n: WG1	270616-1				
Iron, Dissolved	ND		mg/l	0.050		1	08/09/19 12:16	08/13/19 15:08	3 19,200.7	LC

Prep Information

Digestion Method: EPA 3005A

Parameter	Result Qualifier	Units	RL	MDL	Dilution Factor	Date Prepared	Date Analyzed	Analytical Method	Analyst
Dissolved Metals - Ma	nsfield Lab for samp	ole(s): 01-0	3 Batch	: WG1	270623-1				
Arsenic, Dissolved	ND	mg/l	0.0010		1	08/09/19 12:16	08/12/19 16:23	3,200.8	AM
Cadmium, Dissolved	ND	mg/l	0.0002		1	08/09/19 12:16	08/12/19 16:23	3,200.8	AM
Chromium, Dissolved	ND	mg/l	0.0010		1	08/09/19 12:16	08/12/19 16:23	3,200.8	AM
Copper, Dissolved	ND	mg/l	0.0010		1	08/09/19 12:16	08/12/19 16:23	3,200.8	AM
Lead, Dissolved	ND	mg/l	0.0010		1	08/09/19 12:16	08/12/19 16:23	3,200.8	AM
Nickel, Dissolved	ND	mg/l	0.0020		1	08/09/19 12:16	08/12/19 16:23	3,200.8	AM
Selenium, Dissolved	ND	mg/l	0.0050		1	08/09/19 12:16	08/12/19 16:23	3,200.8	AM
Silver, Dissolved	ND	mg/l	0.0004		1	08/09/19 12:16	08/12/19 16:23	3,200.8	AM
Zinc, Dissolved	ND	mg/l	0.0100		1	08/09/19 12:16	08/12/19 16:23	3,200.8	AM

Prep Information

Digestion Method: EPA 3005A

Parameter	Result Qualifier	Units	RL	MDL	Dilution Factor	Date Prepared	Date Analyzed	Analytical Method	
Total Metals - Mansfi	eld Lab for sample(s):	01-03 I	Batch: W0	G12714	41-1				
Mercury, Total	ND	mg/l	0.00020		1	08/12/19 16:36	08/13/19 11:44	3,245.1	GD

Prep Information

Digestion Method: EPA 245.1

Project Name: MADISON COMMONS

Project Number: 4325.02

Lab Number:

L1935658

Report Date:

08/16/19

Method Blank Analysis Batch Quality Control

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	Date Prepared	Date Analyzed	Analytica Method	
Dissolved Metals - N	/lansfield Lab	for sample	e(s): 01-0	3 Batch	: WG1	271862-1				
Mercury, Dissolved	ND		mg/l	0.00020		1	08/13/19 15:50	08/13/19 21:25	5 3,245.1	MG

Prep Information

Digestion Method: EPA 245.1

Lab Control Sample Analysis Batch Quality Control

Project Name: MADISON COMMONS

Project Number: 4325.02

Lab Number: L1935658

Parameter	LCS %Recovery	Qual	LCSD %Recovery	Qual	%Recovery Limits	RPD	Qual	RPD Limits
Total Metals - Mansfield Lab Associated sample	(s): 01-03 Bato	ch: WG12706	609-2					
Iron, Total	106		-		85-115	-		
Total Hardness by SM 2340B - Mansfield Lab As	ssociated sample	e(s): 01-03	Batch: WG127	0609-2				
Hardness	100		-		85-115	-		
Total Metals - Mansfield Lab Associated sample	(s): 01-03 Rate	ch: WG12706	314-2					
Total Metals - Mansheld Lab Associated sample	(3). 01-03 Baic	511. VVO 12700	71 1 -2					
Arsenic, Total	108		-		85-115	-		
Cadmium, Total	112		-		85-115	-		
Chromium, Total	107		-		85-115	-		
Copper, Total	98		-		85-115	-		
Lead, Total	114		-		85-115	-		
Nickel, Total	102		-		85-115	-		
Selenium, Total	126	Q	-		85-115	-		
Silver, Total	108		-		85-115	-		
Zinc, Total	110		-		85-115	-		
Dissolved Metals - Mansfield Lab Associated sar	mple(s): 01-03	Batch: WG1	270616-2					
Iron, Dissolved	110		-		85-115	-		

Lab Control Sample Analysis Batch Quality Control

Project Name: MADISON COMMONS

Project Number: 4325.02

Lab Number: L1935658

arameter	LCS %Recovery	LCSD %Recovery	%Recovery Limits	RPD	RPD Limits
Dissolved Metals - Mansfield Lab Asso	ociated sample(s): 01-03 Batc	h: WG1270623-2			
Arsenic, Dissolved	109	-	85-115	-	
Cadmium, Dissolved	105	-	85-115	-	
Chromium, Dissolved	107	-	85-115	-	
Copper, Dissolved	106	-	85-115	-	
Lead, Dissolved	103	-	85-115	-	
Nickel, Dissolved	104	-	85-115	-	
Selenium, Dissolved	124 Q	-	85-115	-	
Silver, Dissolved	110	-	85-115	-	
Zinc, Dissolved	112	-	85-115	-	
otal Metals - Mansfield Lab Associate	ed sample(s): 01-03 Batch: W	G1271441-2			
Mercury, Total	100	-	85-115	-	
issolved Metals - Mansfield Lab Asso	ociated sample(s): 01-03 Batc	h: WG1271862-2			
Mercury, Dissolved	94	-	85-115	-	

Matrix Spike Analysis Batch Quality Control

Project Name: MADISON COMMONS

Project Number: 4325.02

Lab Number:

L1935658

Parameter	Native Sample	MS Added	MS Found	MS %Recovery	Qual	MSD Found	MSD %Recovery Qu	Recovery ial Limits	RPD Qual	RPD Limits
Total Metals - Mansfield Lab	Associated sam	ple(s): 01-03	QC Bato	ch ID: WG127	0609-3	QC Samp	ole: L1935074-02	Client ID: MS	Sample	
Iron, Total	ND	1	1.07	107		-	-	75-125	-	20
Total Hardness by SM 2340B	s - Mansfield Lal	Associated	sample(s):	01-03 QC I	Batch ID	: WG12706	609-3 QC Samp	le: L1935074-02	Client ID:	MS Sample
Hardness	131	66.2	200	104		-	-	75-125	-	20
Total Metals - Mansfield Lab	Associated sam	ple(s): 01-03	QC Bato	ch ID: WG127	0609-7	QC Samp	ole: L1935658-01	Client ID: MC	-41 (OW)	
Iron, Total	5.34	1	6.28	94		-	-	75-125	-	20
Total Hardness by SM 2340B (OW)	s - Mansfield Lal	o Associated	sample(s):	01-03 QC I	Batch ID	: WG12706	609-7 QC Samp	le: L1935658-01	Client ID:	MC-41
Hardness	122	66.2	186	97		-	-	75-125	-	20
Total Metals - Mansfield Lab	Associated sam	ple(s): 01-03	QC Bato	ch ID: WG127	0614-3	QC Samp	ole: L1935658-01	Client ID: MC	-41 (OW)	
Arsenic, Total	0.00723	0.12	0.1398	110		-	-	70-130	-	20
Cadmium, Total	0.00059	0.051	0.06111	119		-	-	70-130	-	20
Chromium, Total	0.00206	0.2	0.2298	114		-	-	70-130	-	20
Copper, Total	0.03560	0.25	0.2903	102		-	-	70-130	-	20
Lead, Total	0.01656	0.51	0.6321	121		-	-	70-130	-	20
Nickel, Total	0.00583	0.5	0.5421	107		-	-	70-130	-	20
Selenium, Total	ND	0.12	0.1564	130		-	-	70-130	-	20
Silver, Total	ND	0.05	0.05606	112		-	-	70-130	-	20
Zinc, Total	0.1089	0.5	0.6877	116		-	-	70-130	-	20
Dissolved Metals - Mansfield	Lab Associated	sample(s): 0	1-03 QC	Batch ID: WO	G127061	6-3 QC	Sample: L193565	5-01 Client ID:	MS Sample	
Iron, Dissolved	0.599	1	1.67	107		-	-	75-125	-	20

Matrix Spike Analysis Batch Quality Control

Project Name: MADISON COMMONS

Project Number: 4325.02

Lab Number: L1935658

arameter	Native Sample	MS Added	MS Found	MS %Recovery	MSD Found		Recovery Limits	RPD	RPD Limits
Dissolved Metals - Mansfield	d Lab Associated	sample(s): (01-03 QC	Batch ID: WO	G1270623-3	QC Sample: L1935655	5-01 Client ID	: MS Sample	
Arsenic, Dissolved	0.0022	0.12	0.1396	114	-	-	70-130	-	20
Cadmium, Dissolved	ND	0.051	0.0587	115	-	-	70-130	-	20
Chromium, Dissolved	0.0014	0.2	0.2078	103	-	-	70-130	-	20
Copper, Dissolved	0.0018	0.25	0.2449	97	-	-	70-130	-	20
Lead, Dissolved	0.0013	0.51	0.6027	118	-	-	70-130	-	20
Nickel, Dissolved	0.0056	0.5	0.4989	99	-	-	70-130	-	20
Selenium, Dissolved	ND	0.12	0.1412	118	-	-	70-130	-	20
Silver, Dissolved	ND	0.05	0.0546	109	-	-	70-130	-	20
Zinc, Dissolved	ND	0.5	0.5424	108	-	-	70-130	-	20
Гotal Metals - Mansfield Lab	Associated sam	ple(s): 01-03	QC Bat	ch ID: WG127	1441-3 QC S	Sample: L1935359-01	Client ID: MS	Sample	
Mercury, Total	ND	0.005	0.00430	86	-	-	70-130	-	20
Total Metals - Mansfield Lab	Associated sam	ple(s): 01-03	QC Bat	ch ID: WG127	1441-5 QC S	Sample: L1935359-02	Client ID: MS	Sample	
Mercury, Total	ND	0.005	0.00406	81	-	-	70-130	-	20
Dissolved Metals - Mansfield	d Lab Associated	sample(s): (01-03 QC	Batch ID: WO	G1271862-3	QC Sample: L1935655	5-01 Client ID	: MS Sample	
Mercury, Dissolved	ND	0.005	0.00426	85	-	-	75-125	-	20

Lab Duplicate Analysis Batch Quality Control

Project Name: MADISON COMMONS

Project Number: 4325.02

Lab Number:

L1935658

Report Date:

08/16/19

Parameter	Native Sample	Duplicate Sample	Units	RPD	Qual RPD	Limits
Total Metals - Mansfield Lab Associated sample(s):	01-03 QC Batch ID: V	VG1270609-4 QC Sample:	L1935074-02	Client ID:	DUP Sample	
Iron, Total	ND	ND	mg/l	NC		20
Total Metals - Mansfield Lab Associated sample(s):	01-03 QC Batch ID: V	VG1270609-8 QC Sample:	L1935658-01	Client ID:	MC-41 (OW)	
Iron, Total	5.34	5.44	mg/l	2		20
Total Hardness by SM 2340B - Mansfield Lab Assoc (OW)	siated sample(s): 01-03	QC Batch ID: WG1270609	-8 QC Samp	le: L19356	658-01 Client ID:	MC-41
Hardness	122	123	mg/l	1		20
Total Metals - Mansfield Lab Associated sample(s):	01-03 QC Batch ID: V	VG1270614-4 QC Sample:	L1935658-01	Client ID:	MC-41 (OW)	
Arsenic, Total	0.00723	0.00742	mg/l	3		20
Cadmium, Total	0.00059	0.00062	mg/l	5		20
Chromium, Total	0.00206	0.00187	mg/l	10		20
Copper, Total	0.03560	0.03374	mg/l	5		20
Lead, Total	0.01656	0.01596	mg/l	4		20
Nickel, Total	0.00583	0.00542	mg/l	7		20
Selenium, Total	ND	ND	mg/l	NC		20
Silver, Total	ND	ND	mg/l	NC		20
Zinc, Total	0.1089	0.1033	mg/l	5		20
Dissolved Metals - Mansfield Lab Associated sample	e(s): 01-03 QC Batch I	D: WG1270616-4 QC San	nple: L193565	5-01 Clier	nt ID: DUP Sampl	е
Iron, Dissolved	0.599	1.06	mg/l	56	Q	20

Lab Duplicate Analysis Batch Quality Control

Project Name: MADISON COMMONS

Project Number: 4325.02

Lab Number:

L1935658 08/16/19

Report Date:

Parameter	Native Sample	Duplicate San	nple Units	RPD	RPD Limits
Dissolved Metals - Mansfield Lab Associated sample(s):	01-03 QC Batch	ID: WG1270623-4	QC Sample: L193565	5-01 Clier	nt ID: DUP Sample
Arsenic, Dissolved	0.0022	0.0026	mg/l	19	20
Cadmium, Dissolved	ND	ND	mg/l	NC	20
Chromium, Dissolved	0.0014	0.0023	mg/l	51	Q 20
Copper, Dissolved	0.0018	0.0022	mg/l	21	Q 20
Lead, Dissolved	0.0013	0.0014	mg/l	12	20
Nickel, Dissolved	0.0056	0.0057	mg/l	2	20
Selenium, Dissolved	ND	ND	mg/l	NC	20
Silver, Dissolved	ND	ND	mg/l	NC	20
Zinc, Dissolved	ND	ND	mg/l	NC	20
Total Metals - Mansfield Lab Associated sample(s): 01-0	03 QC Batch ID: \	WG1271441-4 QC S	Sample: L1935359-01	Client ID:	: DUP Sample
Mercury, Total	ND	ND	mg/l	NC	20
Total Metals - Mansfield Lab Associated sample(s): 01-0	03 QC Batch ID: \	WG1271441-6 QC S	Sample: L1935359-02	Client ID:	: DUP Sample
Mercury, Total	ND	ND	mg/l	NC	20
Dissolved Metals - Mansfield Lab Associated sample(s):	01-03 QC Batch	ID: WG1271862-4	QC Sample: L193565	5-01 Clier	nt ID: DUP Sample
Mercury, Dissolved	ND	ND	mg/l	NC	20

INORGANICS & MISCELLANEOUS

Project Name: MADISON COMMONS

Project Number: 4325.02 Lab Number:

L1935658

Report Date: 08/16/19

SAMPLE RESULTS

Lab ID: L1935658-01 Client ID: MC-41 (OW) Sample Location: WORCESTER, MA Date Collected: Date Received: 08/08/19

08/08/19 08:30

Field Prep:

Not Specified

Sample Depth:

Matrix:

Water

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	Date Prepared	Date Analyzed	Analytical Method	Analyst
General Chemistry - We	stborough Lat)								
Solids, Total Suspended	320		mg/l	16	NA	3.3	-	08/09/19 11:20	121,2540D	DR
Cyanide, Total	0.361		mg/l	0.005		1	08/09/19 11:10	08/09/19 14:38	121,4500CN-CE	LH
Chlorine, Total Residual	ND		mg/l	0.02		1	-	08/09/19 04:40	121,4500CL-D	MA
pH (H)	7.0		SU	-	NA	1	-	08/09/19 02:16	121,4500H+-B	DS
Nitrogen, Ammonia	0.079		mg/l	0.075		1	08/09/19 13:04	08/09/19 20:03	121,4500NH3-BH	H ML
Sulfate	17.		mg/l	10		1	08/09/19 16:07	08/09/19 16:07	121,4500SO4-E	BR
TPH, SGT-HEM	ND		mg/l	4.00		1	08/12/19 16:30	08/12/19 21:30	74,1664A	ML
Phenolics, Total	ND		mg/l	0.030		1	08/12/19 01:14	08/12/19 05:52	4,420.1	BR
Chromium, Hexavalent	ND		mg/l	0.010		1	08/09/19 06:30	08/09/19 06:59	1,7196A	MA
Anions by Ion Chromato	graphy - West	borough	Lab							
Chloride	4.76		mg/l	0.500		1	-	08/13/19 01:15	44,300.0	AT

Project Name: MADISON COMMONS

Project Number: 4325.02

Lab Number:

Field Prep:

L1935658

Report Date: 08/16/19

SAMPLE RESULTS

Lab ID: L1935658-02
Client ID: GZ-813/GP70
Sample Location: WORCESTER, MA

Date Collected: 08/08/19 10:15 Date Received: 08/08/19

d: 08/08/19 Not Specified

Sample Depth:

Matrix: Water

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	Date Prepared	Date Analyzed	Analytical Method	Analyst
General Chemistry - Wes	tborough La	b								
Solids, Total Suspended	10.		mg/l	5.0	NA	1	-	08/09/19 11:20	121,2540D	DR
Cyanide, Total	0.006		mg/l	0.005		1	08/09/19 11:10	08/09/19 14:41	121,4500CN-CE	LH
Chlorine, Total Residual	ND		mg/l	0.02		1	-	08/09/19 04:40	121,4500CL-D	MA
pH (H)	6.8		SU	-	NA	1	-	08/09/19 02:16	121,4500H+-B	DS
Nitrogen, Ammonia	0.106		mg/l	0.075		1	08/09/19 13:04	08/09/19 20:04	121,4500NH3-BH	H ML
Sulfate	ND		mg/l	10		1	08/09/19 16:07	08/09/19 16:07	121,4500SO4-E	BR
TPH, SGT-HEM	38.3		mg/l	4.00		1	08/12/19 16:30	08/12/19 21:30	74,1664A	ML
Phenolics, Total	ND		mg/l	0.030		1	08/12/19 01:14	08/12/19 05:53	4,420.1	BR
Chromium, Hexavalent	ND		mg/l	0.010		1	08/09/19 06:30	08/09/19 07:01	1,7196A	MA
Anions by Ion Chromatog	raphy - Wes	tborough	Lab							
Chloride	2.44		mg/l	0.500		1	-	08/13/19 01:24	44,300.0	AT

Project Name: MADISON COMMONS

Project Number: 4325.02 Lab Number:

Date Collected:

L1935658

Report Date: 08/16/19

SAMPLE RESULTS

Lab ID: L1935658-03

Client ID: MW-1

Sample Location: WORCESTER, MA

08/08/19 12:30 Date Received: 08/08/19

Not Specified Field Prep:

Sample Depth:

Matrix: Water

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	Date Prepared	Date Analyzed	Analytical Method	Analyst
General Chemistry - We	stborough Lal)								
Solids, Total Suspended	130		mg/l	5.0	NA	1	-	08/09/19 11:20	121,2540D	DR
Cyanide, Total	ND		mg/l	0.005		1	08/09/19 11:10	08/09/19 15:00	121,4500CN-CE	LH
Chlorine, Total Residual	ND		mg/l	0.02		1	-	08/09/19 04:40	121,4500CL-D	MA
pH (H)	7.2		SU	-	NA	1	-	08/09/19 02:16	121,4500H+-B	DS
Nitrogen, Ammonia	0.213		mg/l	0.075		1	08/09/19 13:04	08/09/19 20:05	121,4500NH3-BH	H ML
Sulfate	12.		mg/l	10		1	08/09/19 16:07	08/09/19 16:07	121,4500SO4-E	BR
TPH, SGT-HEM	ND		mg/l	5.20		1.3	08/12/19 16:30	08/12/19 21:30	74,1664A	ML
Phenolics, Total	ND		mg/l	0.030		1	08/12/19 01:14	08/12/19 05:54	4,420.1	BR
Chromium, Hexavalent	ND		mg/l	0.010		1	08/09/19 06:30	08/09/19 07:01	1,7196A	MA
Anions by Ion Chromato	graphy - Wes	tborough	Lab							
Chloride	154.		mg/l	12.5		25	-	08/12/19 19:11	44,300.0	AT

L1935658

Lab Number:

Project Name: MADISON COMMONS

Project Number: 4325.02 Report Date: 08/16/19

Method Blank Analysis Batch Quality Control

Parameter	Result Qu	ualifier	Units	R	L I	MDL	Dilution Factor	Date Prepared	Date Analyzed	Analytical Method	Analyst
General Chemistry - V	Westborough Lab	for sam	ple(s):	01-03	Batc	h: WC	G1270412-1				
Chlorine, Total Residual	ND		mg/l	C	.02		1	-	08/09/19 04:40	121,4500CL-D	MA
General Chemistry - V	Westborough Lab	for sam	ple(s):	01-03	Batc	h: WC	G1270458-1				
Chromium, Hexavalent	ND		mg/l	0.	.010		1	08/09/19 06:30	08/09/19 06:57	1,7196A	MA
General Chemistry - V	Westborough Lab	for sam	ple(s):	01-03	Batc	h: WC	G1270508-1				
Solids, Total Suspended	ND		mg/l	,	5.0	NA	1	-	08/09/19 11:20	121,2540D	DR
General Chemistry - V	Westborough Lab	for sam	ple(s):	01-03	Batc	h: WC	31270576-1				
Nitrogen, Ammonia	ND		mg/l	0.	.075		1	08/09/19 13:04	08/09/19 20:00	121,4500NH3-BI	H ML
General Chemistry - V	Westborough Lab	for sam	ple(s):	01-03	Batc	h: WC	31270580-1				
Cyanide, Total	ND		mg/l	0.	.005		1	08/09/19 11:10	08/09/19 14:27	121,4500CN-CE	LH
General Chemistry - V	Westborough Lab	for sam	ple(s):	01-03	Batc	h: WC	31270587-1				
Sulfate	ND		mg/l		10		1	08/09/19 16:07	08/09/19 16:07	121,4500SO4-E	BR
General Chemistry - V	Westborough Lab	for sam	ple(s):	01-03	Batc	h: WC	G1271199-1				
Phenolics, Total	ND		mg/l	0.	.030		1	08/12/19 01:14	08/12/19 05:39	4,420.1	BR
General Chemistry - V	Westborough Lab	for sam	ple(s):	01-03	Batc	h: WC	G1271447-1				
TPH, SGT-HEM	ND		mg/l	4	.00		1	08/12/19 16:30	08/12/19 21:30	74,1664A	ML
Anions by Ion Chroma	atography - Westb	orough	Lab for	sampl	e(s):	01-03	Batch: W	G1271890-1			
Chloride	ND		mg/l	0.	500		1	-	08/12/19 18:15	44,300.0	АТ

Lab Control Sample Analysis Batch Quality Control

Project Name: MADISON COMMONS

Project Number: 4325.02

Lab Number:

L1935658

Report Date:

08/16/19

<u>Parameter</u>	LCS %Recovery Qual	LCSD %Recovery Qual	%Recovery Limits	RPD	Qual	RPD Limits
General Chemistry - Westborough Lab	Associated sample(s): 01-03	Batch: WG1270386-1				
рН	100	-	99-101	-		5
General Chemistry - Westborough Lab	Associated sample(s): 01-03	Batch: WG1270412-2				
Chlorine, Total Residual	92	-	90-110	-		
General Chemistry - Westborough Lab	Associated sample(s): 01-03	Batch: WG1270458-2				
Chromium, Hexavalent	99	-	85-115	-		20
General Chemistry - Westborough Lab	Associated sample(s): 01-03	Batch: WG1270576-2				
Nitrogen, Ammonia	94	-	80-120	-		20
General Chemistry - Westborough Lab	Associated sample(s): 01-03	Batch: WG1270580-2				
Cyanide, Total	100	-	90-110	-		
General Chemistry - Westborough Lab	Associated sample(s): 01-03	Batch: WG1270587-2				
Sulfate	95	-	90-110	-		
General Chemistry - Westborough Lab	Associated sample(s): 01-03	Batch: WG1271199-2				
Phenolics, Total	90	-	70-130	-		

Lab Control Sample Analysis Batch Quality Control

Project Name: MADISON COMMONS

Project Number: 4325.02

Lab Number: L1935658

Parameter	LCS %Recovery	LCSD %Recovery	%Recovery Limits	RPD	RPD Limits
General Chemistry - Westborough Lab	Associated sample(s): 01-0	3 Batch: WG1271447-2			
ТРН	88	-	64-132	-	34
Anions by Ion Chromatography - Westbe	orough Lab Associated sar	mple(s): 01-03 Batch: WG	1271890-2		
Chloride	95	-	90-110	-	

Matrix Spike Analysis Batch Quality Control

Project Name: MADISON COMMONS

Project Number: 4325.02

Lab Number:

L1935658

Parameter	Native Sample	MS Added	MS Found	MS %Recovery	Qual	MSD Found	MSD %Recovery		Recove Limits	•	Qual	RPD Limits
General Chemistry - Westbor	rough Lab Asso	ciated samp	ole(s): 01-03	QC Batch II	D: WG1:	270412-4	QC Sample:	L193565	58-03	Client ID:	MW-1	
Chlorine, Total Residual	ND	0.25	0.16	64	Q	-	-		80-120	-		20
General Chemistry - Westbo	rough Lab Assoc	ciated samp	ole(s): 01-03	QC Batch II	D: WG1:	270458-4	QC Sample:	L193565	58-01	Client ID:	MC-41	(OW)
Chromium, Hexavalent	ND	0.1	0.092	92		-	-		85-115	-		20
General Chemistry - Westbo	rough Lab Assoc	ciated samp	ole(s): 01-03	QC Batch II	D: WG1:	270576-4	QC Sample:	L193571	13-01	Client ID:	MS Sai	mple
Nitrogen, Ammonia	0.241	4	3.91	92		-	-		80-120	-		20
General Chemistry - Westbo	rough Lab Asso	ciated samp	ole(s): 01-03	QC Batch II	D: WG1:	270580-4	QC Sample:	L193565	58-02	Client ID:	GZ-813	3/GP70
Cyanide, Total	0.006	0.2	0.205	99		-	-		90-110	-		30
General Chemistry - Westbo	rough Lab Assoc	ciated samp	ole(s): 01-03	QC Batch II	D: WG1:	270587-4	QC Sample:	L192944	11-132	Client ID	: MS Sa	ample
Sulfate	ND	20	24	120		-	-		55-147	-		14
General Chemistry - Westbo	rough Lab Assoc	ciated samp	ole(s): 01-03	QC Batch II	D: WG1:	271199-4	QC Sample:	L193541	12-01	Client ID:	MS Sai	mple
Phenolics, Total	ND	0.4	0.32	80		-	-		70-130	-		20
General Chemistry - Westbo	rough Lab Asso	ciated samp	ole(s): 01-03	QC Batch II	D: WG1:	271447-4	QC Sample:	L193466	60-02	Client ID:	MS Sai	mple
TPH	ND	20	18.2	91		-	-		64-132	-		34
Anions by Ion Chromatograp Sample	hy - Westboroug	gh Lab Asso	ociated samp	ole(s): 01-03	QC Ba	tch ID: WG	1271890-3	QC Sam	ple: L19	34319-16	Clien	t ID: MS
Chloride	4.29	4	8.02	93		-	-		90-110	-		18

Lab Duplicate Analysis Batch Quality Control

Project Name: MADISON COMMONS

Project Number: 4325.02

Lab Number:

L1935658

Report Date:

08/16/19

Parameter	Native Sample	Duplicate Sample	Units	RPD	Qual	RPD Limits
General Chemistry - Westborough Lab Associate	ed sample(s): 01-03 QC	Batch ID: WG1270386-2	QC Sample:	L1935658-01	Client ID:	MC-41 (OW)
рН (Н)	7.0	7.0	SU	0		5
General Chemistry - Westborough Lab Associate	ed sample(s): 01-03 QC	Batch ID: WG1270412-3	QC Sample:	L1935658-02	Client ID:	GZ-813/GP70
Chlorine, Total Residual	ND	ND	mg/l	NC		20
General Chemistry - Westborough Lab Associate	ed sample(s): 01-03 QC	Batch ID: WG1270458-3	QC Sample:	L1935658-01	Client ID:	MC-41 (OW)
Chromium, Hexavalent	ND	ND	mg/l	NC		20
General Chemistry - Westborough Lab Associate	ed sample(s): 01-03 QC	Batch ID: WG1270508-2	QC Sample:	L1935708-01	Client ID:	DUP Sample
Solids, Total Suspended	72	72	mg/l	0		29
General Chemistry - Westborough Lab Associate	ed sample(s): 01-03 QC	Batch ID: WG1270576-3	QC Sample:	L1935713-01	Client ID:	DUP Sample
Nitrogen, Ammonia	0.241	0.217	mg/l	10		20
General Chemistry - Westborough Lab Associate	ed sample(s): 01-03 QC	Batch ID: WG1270580-3	QC Sample:	L1935658-01	Client ID:	MC-41 (OW)
Cyanide, Total	0.361	0.366	mg/l	1		30
General Chemistry - Westborough Lab Associate	ed sample(s): 01-03 QC	Batch ID: WG1270587-3	QC Sample:	L1929441-132	2 Client ID	: DUP Sample
Sulfate	ND	ND	mg/l	NC		14
General Chemistry - Westborough Lab Associate	ed sample(s): 01-03 QC	Batch ID: WG1271199-3	QC Sample:	L1935412-01	Client ID:	DUP Sample
Phenolics, Total	ND	ND	mg/l	NC		20
General Chemistry - Westborough Lab Associate	ed sample(s): 01-03 QC	Batch ID: WG1271447-3	QC Sample:	L1934660-01	Client ID:	DUP Sample
TPH	ND	ND	mg/l	NC		34

Lab Duplicate Analysis

Batch Quality Control

Project Name: MADISON COMMONS

Project Number: 4325.02

Lab Number:

L1935658

Report Date:

08/16/19

Parameter	Native Sample	Duplicate Sample	Units	RPD	RPD Limits
Anions by Ion Chromatography - Westborough Lab Sample	Associated sample(s): 01-03	QC Batch ID: WG127	′1890-4	QC Sample: L19	934319-16 Client ID: DUP
Chloride	4.29	4.29	mg/l	0	18

Project Name: MADISON COMMONS

Project Number: 4325.02

Lab Number: L1935658 **Report Date:** 08/16/19

Sample Receipt and Container Information

Were project specific reporting limits specified?

YES

Cooler Information

Custody Seal Cooler Α Absent Absent В С Absent

Container Info	Container Information			Final	Temp			Frozen	
Container ID	Container Type	Cooler	Initial pH	рН	deg C	Pres	Seal	Date/Time	Analysis(*)
L1935658-01A	Vial HCl preserved	Α	NA		3.2	Υ	Absent		HOLD-SUB()
L1935658-01A1	Vial HCl preserved	Α	NA		3.2	Υ	Absent		HOLD-SUB()
L1935658-01A2	Vial HCl preserved	Α	NA		3.2	Υ	Absent		HOLD-SUB()
L1935658-01B	Vial Na2S2O3 preserved	Α	NA		3.2	Υ	Absent		624.1-RGP(7),624.1-SIM-RGP(7)
L1935658-01B1	Vial Na2S2O3 preserved	Α	NA		3.2	Υ	Absent		624.1-RGP(7),624.1-SIM-RGP(7)
L1935658-01C	Vial Na2S2O3 preserved	Α	NA		3.2	Υ	Absent		624.1-RGP(7),624.1-SIM-RGP(7)
L1935658-01C1	Vial Na2S2O3 preserved	Α	NA		3.2	Υ	Absent		624.1-RGP(7),624.1-SIM-RGP(7)
L1935658-01D	Vial Na2S2O3 preserved	Α	NA		3.2	Υ	Absent		624.1-RGP(7),624.1-SIM-RGP(7)
L1935658-01D1	Vial Na2S2O3 preserved	Α	NA		3.2	Υ	Absent		624.1-RGP(7),624.1-SIM-RGP(7)
L1935658-01E	Vial Na2S2O3 preserved	Α	NA		3.2	Υ	Absent		504(14)
L1935658-01E1	Vial Na2S2O3 preserved	Α	NA		3.2	Υ	Absent		504(14)
L1935658-01G	Plastic 250ml HNO3 preserved	А	<2	<2	3.2	Υ	Absent		AG-2008S(180),CR-2008S(180),FE- RI(180),AS-2008S(180),PB-2008S(180),ZN- 2008S(180),NI-2008S(180),SE-2008S(180),CD- 2008S(180),CU-2008S(180),HG-R(28)
L1935658-01H	Plastic 250ml HNO3 preserved	A	<2	<2	3.2	Y	Absent		CD-2008T(180),NI-2008T(180),ZN- 2008T(180),CU-2008T(180),FE- UI(180),HARDU(180),AG-2008T(180),AS- 2008T(180),HG-U(28),SE-2008T(180),CR- 2008T(180),PB-2008T(180)
L1935658-01J	Plastic 250ml NaOH preserved	Α	>12	>12	3.2	Υ	Absent		TCN-4500(14)
L1935658-01K	Plastic 950ml unpreserved	Α	7	7	3.2	Υ	Absent		SO4-4500(28),CL-300(28),HEXCR-7196(1),TRC-4500(1),PH-4500(.01)
L1935658-01L	Plastic 950ml unpreserved	Α	7	7	3.2	Υ	Absent		TSS-2540(7)
L1935658-01M	Plastic 500ml H2SO4 preserved	Α	<2	<2	3.2	Υ	Absent		NH3-4500(28)

Lab Number: L1935658

Report Date: 08/16/19

Project Name: MADISON COMMONS

Project Number: 4325.02

Container Info	ormation		Initial	Final	Temp			Frozen	
Container ID	Container Type	Cooler	рН	рН	deg C	Pres	Seal	Date/Time	Analysis(*)
L1935658-01N	Amber 1000ml HCl preserved	Α	NA		3.2	Υ	Absent		TPH-1664(28)
L1935658-01P	Amber 1000ml HCl preserved	Α	NA		3.2	Υ	Absent		TPH-1664(28)
L1935658-01Q	Amber 950ml H2SO4 preserved	Α	<2	<2	3.2	Υ	Absent		TPHENOL-420(28)
L1935658-01R	Amber 1000ml Na2S2O3	Α	7	7	3.2	Υ	Absent		PCB-608.3(7)
L1935658-01S	Amber 1000ml Na2S2O3	Α	7	7	3.2	Υ	Absent		PCB-608.3(7)
L1935658-01T	Amber 1000ml Na2S2O3	Α	7	7	3.2	Υ	Absent		PCB-608.3(7)
L1935658-01U	Amber 1000ml Na2S2O3	Α	7	7	3.2	Υ	Absent		625.1-RGP(7),625.1-SIM-RGP(7)
L1935658-01V	Amber 1000ml Na2S2O3	Α	7	7	3.2	Υ	Absent		625.1-RGP(7),625.1-SIM-RGP(7)
L1935658-01W	Amber 1000ml Na2S2O3	Α	7	7	3.2	Υ	Absent		625.1-RGP(7),625.1-SIM-RGP(7)
L1935658-02A	Vial HCl preserved	В	NA		3.7	Υ	Absent		HOLD-SUB()
L1935658-02A1	Vial HCl preserved	В	NA		3.7	Υ	Absent		HOLD-SUB()
L1935658-02A2	Vial HCl preserved	В	NA		3.7	Υ	Absent		HOLD-SUB()
L1935658-02B	Vial Na2S2O3 preserved	В	NA		3.7	Υ	Absent		624.1-RGP(7),624.1-SIM-RGP(7)
L1935658-02B1	Vial Na2S2O3 preserved	В	NA		3.7	Υ	Absent		624.1-RGP(7),624.1-SIM-RGP(7)
L1935658-02C	Vial Na2S2O3 preserved	В	NA		3.7	Υ	Absent		624.1-RGP(7),624.1-SIM-RGP(7)
L1935658-02C1	Vial Na2S2O3 preserved	В	NA		3.7	Υ	Absent		624.1-RGP(7),624.1-SIM-RGP(7)
L1935658-02D	Vial Na2S2O3 preserved	В	NA		3.7	Υ	Absent		624.1-RGP(7),624.1-SIM-RGP(7)
L1935658-02D1	Vial Na2S2O3 preserved	В	NA		3.7	Υ	Absent		624.1-RGP(7),624.1-SIM-RGP(7)
L1935658-02E	Vial Na2S2O3 preserved	В	NA		3.7	Υ	Absent		504(14)
L1935658-02E1	Vial Na2S2O3 preserved	В	NA		3.7	Υ	Absent		504(14)
L1935658-02G	Plastic 250ml HNO3 preserved	В	<2	<2	3.7	Y	Absent		AG-2008S(180),CR-2008S(180),FE- RI(180),AS-2008S(180),PB-2008S(180),ZN- 2008S(180),NI-2008S(180),SE-2008S(180),CD- 2008S(180),CU-2008S(180),HG-R(28)
L1935658-02H	Plastic 250ml HNO3 preserved	В	<2	<2	3.7	Y	Absent		CD-2008T(180),NI-2008T(180),ZN- 2008T(180),CU-2008T(180),FE- UI(180),HARDU(180),AG-2008T(180),AS- 2008T(180),HG-U(28),SE-2008T(180),CR- 2008T(180),PB-2008T(180)
L1935658-02J	Plastic 250ml NaOH preserved	В	>12	>12	3.7	Υ	Absent		TCN-4500(14)
L1935658-02K	Plastic 950ml unpreserved	В	7	7	3.7	Y	Absent		SO4-4500(28),CL-300(28),HEXCR-7196(1),TRC-4500(1),PH-4500(.01)
L1935658-02L	Plastic 950ml unpreserved	В	7	7	3.7	Υ	Absent		TSS-2540(7)

Lab Number: L1935658

Report Date: 08/16/19

Project Name: MADISON COMMONS

Project Number: 4325.02

Container Info	ormation		Initial	Final	Temp			Frozen	
Container ID	Container Type	Cooler	рН	рН	deg C	Pres	Seal	Date/Time	Analysis(*)
L1935658-02M	Plastic 500ml H2SO4 preserved	В	<2	<2	3.7	Υ	Absent		NH3-4500(28)
L1935658-02N	Amber 1000ml HCl preserved	В	NA		3.7	Υ	Absent		TPH-1664(28)
L1935658-02P	Amber 1000ml HCl preserved	В	NA		3.7	Υ	Absent		TPH-1664(28)
L1935658-02Q	Amber 950ml H2SO4 preserved	В	<2	<2	3.7	Υ	Absent		TPHENOL-420(28)
L1935658-02R	Amber 1000ml Na2S2O3	В	7	7	3.7	Υ	Absent		PCB-608.3(7)
L1935658-02S	Amber 1000ml Na2S2O3	В	7	7	3.7	Υ	Absent		PCB-608.3(7)
L1935658-02T	Amber 1000ml Na2S2O3	В	7	7	3.7	Υ	Absent		PCB-608.3(7)
L1935658-02U	Amber 1000ml Na2S2O3	В	7	7	3.7	Υ	Absent		625.1-RGP(7),625.1-SIM-RGP(7)
L1935658-02V	Amber 1000ml Na2S2O3	В	7	7	3.7	Υ	Absent		625.1-RGP(7),625.1-SIM-RGP(7)
L1935658-02W	Amber 1000ml Na2S2O3	В	7	7	3.7	Υ	Absent		625.1-RGP(7),625.1-SIM-RGP(7)
L1935658-03A	Vial HCl preserved	С	NA		4.2	Υ	Absent		HOLD-SUB()
L1935658-03A1	Vial HCl preserved	С	NA		4.2	Υ	Absent		HOLD-SUB()
L1935658-03A2	Vial HCl preserved	С	NA		4.2	Υ	Absent		HOLD-SUB()
L1935658-03B	Vial Na2S2O3 preserved	С	NA		4.2	Υ	Absent		624.1-RGP(7),624.1-SIM-RGP(7)
L1935658-03B1	Vial Na2S2O3 preserved	С	NA		4.2	Υ	Absent		624.1-RGP(7),624.1-SIM-RGP(7)
L1935658-03C	Vial Na2S2O3 preserved	С	NA		4.2	Υ	Absent		624.1-RGP(7),624.1-SIM-RGP(7)
L1935658-03C1	Vial Na2S2O3 preserved	С	NA		4.2	Υ	Absent		624.1-RGP(7),624.1-SIM-RGP(7)
L1935658-03D	Vial Na2S2O3 preserved	С	NA		4.2	Υ	Absent		624.1-RGP(7),624.1-SIM-RGP(7)
L1935658-03D1	Vial Na2S2O3 preserved	С	NA		4.2	Υ	Absent		624.1-RGP(7),624.1-SIM-RGP(7)
L1935658-03E	Vial Na2S2O3 preserved	С	NA		4.2	Υ	Absent		504(14)
L1935658-03E1	Vial Na2S2O3 preserved	С	NA		4.2	Υ	Absent		504(14)
L1935658-03G	Plastic 250ml HNO3 preserved	С	<2	<2	4.2	Υ	Absent		AG-2008S(180),CR-2008S(180),FE- RI(180),AS-2008S(180),PB-2008S(180),ZN- 2008S(180),NI-2008S(180),SE-2008S(180),CD- 2008S(180),CU-2008S(180),HG-R(28)
L1935658-03H	Plastic 250ml HNO3 preserved	С	<2	<2	4.2	Y	Absent		CD-2008T(180),NI-2008T(180),ZN- 2008T(180),CU-2008T(180),FE- UI(180),HARDU(180),AG-2008T(180),AS- 2008T(180),HG-U(28),SE-2008T(180),CR- 2008T(180),PB-2008T(180)
L1935658-03J	Plastic 250ml NaOH preserved	С	>12	>12	4.2	Υ	Absent		TCN-4500(14)
L1935658-03K	Plastic 950ml unpreserved	С	7	7	4.2	Y	Absent		SO4-4500(28),CL-300(28),HEXCR-7196(1),TRC-4500(1),PH-4500(.01)

Lab Number: L1935658

Report Date: 08/16/19

Project Name: MADISON COMMONS

Project Number: 4325.02

Container Info	ormation		Initial	Final	Temp			Frozen	
Container ID	Container Type	Cooler		рН	•	Pres	Seal	Date/Time	Analysis(*)
L1935658-03L	Plastic 950ml unpreserved	С	7	7	4.2	Υ	Absent		TSS-2540(7)
L1935658-03M	Plastic 500ml H2SO4 preserved	С	<2	<2	4.2	Υ	Absent		NH3-4500(28)
L1935658-03N	Amber 1000ml HCl preserved	С	NA		4.2	Υ	Absent		TPH-1664(28)
L1935658-03P	Amber 1000ml HCl preserved	С	NA		4.2	Υ	Absent		TPH-1664(28)
L1935658-03Q	Amber 950ml H2SO4 preserved	С	<2	<2	4.2	Υ	Absent		TPHENOL-420(28)
L1935658-03R	Amber 1000ml Na2S2O3	С	7	7	4.2	Υ	Absent		PCB-608.3(7)
L1935658-03S	Amber 1000ml Na2S2O3	С	7	7	4.2	Υ	Absent		PCB-608.3(7)
L1935658-03T	Amber 1000ml Na2S2O3	С	7	7	4.2	Υ	Absent		PCB-608.3(7)
L1935658-03U	Amber 1000ml Na2S2O3	С	7	7	4.2	Υ	Absent		625.1-RGP(7),625.1-SIM-RGP(7)
L1935658-03V	Amber 1000ml Na2S2O3	С	7	7	4.2	Υ	Absent		625.1-RGP(7),625.1-SIM-RGP(7)
L1935658-03W	Amber 1000ml Na2S2O3	С	7	7	4.2	Υ	Absent		625.1-RGP(7),625.1-SIM-RGP(7)

Project Name: MADISON COMMONS Lab Number: L1935658
Project Number: 4325.02 Report Date: 08/16/19

GLOSSARY

Acronyms

EDL

LOQ

MS

DL - Detection Limit: This value represents the level to which target analyte concentrations are reported as estimated values, when those target analyte concentrations are quantified below the limit of quantitation (LOQ). The DL includes any adjustments from dilutions, concentrations or moisture content, where applicable. (DoD report formats only.)

 Estimated Detection Limit: This value represents the level to which target analyte concentrations are reported as estimated values, when those target analyte concentrations are quantified below the reporting limit (RL). The EDL includes any adjustments from dilutions, concentrations or moisture content, where applicable. The use of EDLs is specific to the analysis of PAHs using Solid-Phase Microextraction (SPME).

EMPC - Estimated Maximum Possible Concentration: The concentration that results from the signal present at the retention time of an analyte when the ions meet all of the identification criteria except the ion abundance ratio criteria. An EMPC is a worst-case estimate of the concentration.

EPA - Environmental Protection Agency.

LCS - Laboratory Control Sample: A sample matrix, free from the analytes of interest, spiked with verified known amounts of analytes or a material containing known and verified amounts of analytes.

LCSD - Laboratory Control Sample Duplicate: Refer to LCS.

LFB - Laboratory Fortified Blank: A sample matrix, free from the analytes of interest, spiked with verified known amounts of analytes or a material containing known and verified amounts of analytes.

LOD - Limit of Detection: This value represents the level to which a target analyte can reliably be detected for a specific analyte in a specific matrix by a specific method. The LOD includes any adjustments from dilutions, concentrations or moisture content, where applicable. (DoD report formats only.)

 - Limit of Quantitation: The value at which an instrument can accurately measure an analyte at a specific concentration. The LOQ includes any adjustments from dilutions, concentrations or moisture content, where applicable. (DoD report formats only.)

Limit of Quantitation: The value at which an instrument can accurately measure an analyte at a specific concentration. The LOQ includes any adjustments from dilutions, concentrations or moisture content, where applicable. (DoD report formats only.)

MDL - Method Detection Limit: This value represents the level to which target analyte concentrations are reported as estimated values, when those target analyte concentrations are quantified below the reporting limit (RL). The MDL includes any adjustments from dilutions, concentrations or moisture content, where applicable.

 Matrix Spike Sample: A sample prepared by adding a known mass of target analyte to a specified amount of matrix sample for which an independent estimate of target analyte concentration is available. For Method 332.0, the spike recovery is calculated using the native concentration, including estimated values.

MSD - Matrix Spike Sample Duplicate: Refer to MS.

NA - Not Applicable.

NC - Not Calculated: Term is utilized when one or more of the results utilized in the calculation are non-detect at the parameter's reporting unit.

NDPA/DPA - N-Nitrosodiphenylamine/Diphenylamine.

NI - Not Ignitable.

NP - Non-Plastic: Term is utilized for the analysis of Atterberg Limits in soil.

RL - Reporting Limit: The value at which an instrument can accurately measure an analyte at a specific concentration. The RL

includes any adjustments from dilutions, concentrations or moisture content, where applicable.

RPD - Relative Percent Difference: The results from matrix and/or matrix spike duplicates are primarily designed to assess the precision of analytical results in a given matrix and are expressed as relative percent difference (RPD). Values which are less

than five times the reporting limit for any individual parameter are evaluated by utilizing the absolute difference between the values; although the RPD value will be provided in the report.

SRM - Standard Reference Material: A reference sample of a known or certified value that is of the same or similar matrix as the

associated field samples.

STLP - Semi-dynamic Tank Leaching Procedure per EPA Method 1315.

TEF - Toxic Equivalency Factors: The values assigned to each dioxin and furan to evaluate their toxicity relative to 2,3,7,8-TCDD.

TEQ - Toxic Equivalent: The measure of a sample's toxicity derived by multiplying each dioxin and furan by its corresponding TEF

and then summing the resulting values.

TIC - Tentatively Identified Compound: A compound that has been identified to be present and is not part of the target compound list (TCL) for the method and/or program. All TICs are qualitatively identified and reported as estimated concentrations.

Footnotes

Report Format: Data Usability Report

Project Name:MADISON COMMONSLab Number:L1935658Project Number:4325.02Report Date:08/16/19

1 - The reference for this analyte should be considered modified since this analyte is absent from the target analyte list of the original method.

Terms

Analytical Method: Both the document from which the method originates and the analytical reference method. (Example: EPA 8260B is shown as 1,8260B.) The codes for the reference method documents are provided in the References section of the Addendum.

Difference: With respect to Total Oxidizable Precursor (TOP) Assay analysis, the difference is defined as the Post-Treatment value minus the Pre-Treatment value.

Final pH: As it pertains to Sample Receipt & Container Information section of the report, Final pH reflects pH of container determined after adjustment at the laboratory, if applicable. If no adjustment required, value reflects Initial pH.

Frozen Date/Time: With respect to Volatile Organics in soil, Frozen Date/Time reflects the date/time at which associated Reagent Water-preserved vials were initially frozen. Note: If frozen date/time is beyond 48 hours from sample collection, value will be reflected in 'bold'.

Initial pH: As it pertains to Sample Receipt & Container Information section of the report, Initial pH reflects pH of container determined upon receipt, if applicable.

PFAS Total: With respect to PFAS analyses, the 'PFAS, Total (5)' result is defined as the summation of results for: PFHpA, PFHxS, PFOA, PFNA and PFOS. If a 'Total' result is requested, the results of its individual components will also be reported.

Total: With respect to Organic analyses, a 'Total' result is defined as the summation of results for individual isomers or Aroclors. If a "Total' result is requested, the results of its individual components will also be reported. This is applicable to 'Total' results for methods 8260, 8081 and 8082.

Data Qualifiers

- A Spectra identified as "Aldol Condensation Product".
- The analyte was detected above the reporting limit in the associated method blank. Flag only applies to associated field samples that have detectable concentrations of the analyte at less than ten times (10x) the concentration found in the blank. For MCP-related projects, flag only applies to associated field samples that have detectable concentrations of the analyte at less than ten times (10x) the concentrations of the analyte at less than ten times (10x) the concentrations of the analyte at less than ten times (10x) the concentration found in the blank AND the analyte was detected above one-half the reporting limit (or above the reporting limit for common lab contaminants) in the associated method blank. For NJ-Air-related projects, flag only applies to associated field samples that have detectable concentrations of the analyte above the reporting limit. For NJ-related projects (excluding Air), flag only applies to associated field samples that have detectable concentrations of the analyte, which was detected above the reporting limit in the associated method blank or above five times the reporting limit for common lab contaminants (Phthalates, Acetone, Methylene Chloride, 2-Butanone).
- Co-elution: The target analyte co-elutes with a known lab standard (i.e. surrogate, internal standards, etc.) for co-extracted analyses.
- Concentration of analyte was quantified from diluted analysis. Flag only applies to field samples that have detectable concentrations
 of the analyte.
- E Concentration of analyte exceeds the range of the calibration curve and/or linear range of the instrument.
- G The concentration may be biased high due to matrix interferences (i.e, co-elution) with non-target compound(s). The result should be considered estimated.
- H The analysis of pH was performed beyond the regulatory-required holding time of 15 minutes from the time of sample collection.
- I The lower value for the two columns has been reported due to obvious interference.
- J Estimated value. This represents an estimated concentration for Tentatively Identified Compounds (TICs).
- M Reporting Limit (RL) exceeds the MCP CAM Reporting Limit for this analyte.
- ND Not detected at the reporting limit (RL) for the sample.
- NJ Presumptive evidence of compound. This represents an estimated concentration for Tentatively Identified Compounds (TICs), where the identification is based on a mass spectral library search.
- P The RPD between the results for the two columns exceeds the method-specified criteria.
- Q The quality control sample exceeds the associated acceptance criteria. For DOD-related projects, LCS and/or Continuing Calibration Standard exceedences are also qualified on all associated sample results. Note: This flag is not applicable for matrix spike recoveries when the sample concentration is greater than 4x the spike added or for batch duplicate RPD when the sample concentrations are less than 5x the RL. (Metals only.)
- **R** Analytical results are from sample re-analysis.
- **RE** Analytical results are from sample re-extraction.
- S Analytical results are from modified screening analysis.

Report Format: Data Usability Report

Project Name:MADISON COMMONSLab Number:L1935658Project Number:4325.02Report Date:08/16/19

REFERENCES

- 1 Test Methods for Evaluating Solid Waste: Physical/Chemical Methods. EPA SW-846. Third Edition. Updates I IV, 2007.
- Methods for the Determination of Metals in Environmental Samples, Supplement I. EPA/600/R-94/111. May 1994.
- 4 Methods for Chemical Analysis of Water and Wastes. EPA 600/4-79-020. Revised March 1983.
- Methods for the Determination of Organic Compounds in Finished Drinking Water and Raw Source Water. EPA/600/4-88/039, Revised July 1991.
- 19 Inductively Coupled Plasma Atomic Emission Spectrometric Method for Trace Element Analysis of Water and Wastes. Appendix C, Part 136, 40 CFR (Code of Federal Regulations). July 1, 1999 edition.
- Methods for the Determination of Inorganic Substances in Environmental Samples, EPA/600/R-93/100, August 1993.
- Method 1664,Revision A: N-Hexane Extractable Material (HEM; Oil & Grease) and Silica Gel Treated N-Hexane Extractable Material (SGT-HEM; Non-polar Material) by Extraction and Gravimetry, EPA-821-R-98-002, February 1999.
- 107 Alpha Analytical In-house calculation method.
- 121 Standard Methods for the Examination of Water and Wastewater. APHA-AWWA-WEF. Standard Methods Online.
- Method 608.3: Organochlorine Pesticides and PCBs by GC/HSD, EPA 821-R-16-009, December 2016.
- 128 Method 624.1: Purgeables by GC/MS, EPA 821-R-16-008, December 2016.
- Method 625.1: Base/Neutrals and Acids by GC/MS, EPA 821-R-16-007, December 2016.

LIMITATION OF LIABILITIES

Alpha Analytical performs services with reasonable care and diligence normal to the analytical testing laboratory industry. In the event of an error, the sole and exclusive responsibility of Alpha Analytical shall be to re-perform the work at it's own expense. In no event shall Alpha Analytical be held liable for any incidental, consequential or special damages, including but not limited to, damages in any way connected with the use of, interpretation of, information or analysis provided by Alpha Analytical.

We strongly urge our clients to comply with EPA protocol regarding sample volume, preservation, cooling, containers, sampling procedures, holding time and splitting of samples in the field.

Alpha Analytical, Inc. Facility: Company-wide

Department: Quality Assurance

Title: Certificate/Approval Program Summary

Serial_No:08161919:26

ID No.:17873 Revision 15

Page 1 of 1

Published Date: 8/15/2019 9:53:42 AM

Certification Information

The following analytes are not included in our Primary NELAP Scope of Accreditation:

Westborough Facility

EPA 624/624.1: m/p-xylene, o-xylene

EPA 8260C: NPW: 1,2,4,5-Tetramethylbenzene; 4-Ethyltoluene, Azobenzene; SCM: lodomethane (methyl iodide), 1,2,4,5-Tetramethylbenzene; 4-

Ethyltoluene

EPA 8270D: NPW: Dimethylnaphthalene,1,4-Diphenylhydrazine; SCM: Dimethylnaphthalene,1,4-Diphenylhydrazine.

SM4500: NPW: Amenable Cyanide; SCM: Total Phosphorus, TKN, NO2, NO3.

Mansfield Facility

SM 2540D: TSS

EPA 8082A: NPW: PCB: 1, 5, 31, 87,101, 110, 141, 151, 153, 180, 183, 187.

EPA TO-15: Halothane, 2,4,4-Trimethyl-2-pentene, 2,4,4-Trimethyl-1-pentene, Thiophene, 2-Methylthiophene,

3-Methylthiophene, 2-Ethylthiophene, 1,2,3-Trimethylbenzene, Indan, Indene, 1,2,4,5-Tetramethylbenzene, Benzothiophene, 1-Methylnaphthalene.

Biological Tissue Matrix: EPA 3050B

The following analytes are included in our Massachusetts DEP Scope of Accreditation

Westborough Facility:

Drinking Water

EPA 300.0: Chloride, Nitrate-N, Fluoride, Sulfate; EPA 353.2: Nitrate-N, Nitrite-N; SM4500NO3-F: Nitrate-N, Nitrite-N; SM4500F-C, SM4500CN-CE,

EPA 180.1, SM2130B, SM4500CI-D, SM2320B, SM2540C, SM4500H-B, SM4500NO2-B

EPA 332: Perchlorate; EPA 524.2: THMs and VOCs; EPA 504.1: EDB, DBCP.

Microbiology: SM9215B; SM9223-P/A, SM9223B-Colilert-QT,SM9222D.

Non-Potable Water

SM4500H,B, EPA 120.1, SM2510B, SM2540C, SM2320B, SM4500CL-E, SM4500F-BC, SM4500NH3-BH: Ammonia-N and Kieldahl-N, EPA 350.1: Ammonia-N, LACHAT 10-107-06-1-B: Ammonia-N, EPA 351.1, SM4500NO3-F, EPA 353.2: Nitrate-N, SM4500P-E, SM4500P-B, E, SM4500SO4-E, SM5220D, EPA 410.4, SM5210B, SM5310C, SM4500CL-D, EPA 1664, EPA 420.1, SM4500-CN-CE, SM2540D, EPA 300: Chloride, Sulfate, Nitrate. EPA 624.1: Volatile Halocarbons & Aromatics,

EPA 608.3: Chlordane, Toxaphene, Aldrin, alpha-BHC, beta-BHC, gamma-BHC, delta-BHC, Dieldrin, DDD, DDE, DDT, Endosulfan II, Endosulfan II, Endosulfan sulfate, Endrin, Endrin Aldehyde, Heptachlor, Heptachlor Epoxide, PCBs

EPA 625.1: SVOC (Acid/Base/Neutral Extractables), EPA 600/4-81-045: PCB-Oil.

Microbiology: SM9223B-Colilert-QT; Enterolert-QT, SM9221E, EPA 1600, EPA 1603.

Mansfield Facility:

Drinking Water

EPA 200.7: Al, Ba, Cd, Cr, Cu, Fe, Mn, Ni, Na, Ag, Ca, Zn. EPA 200.8: Al, Sb, As, Ba, Be, Cd, Cr, Cu, Pb, Mn, Ni, Se, Ag, TL, Zn. EPA 245.1 Hg. EPA 522.

Non-Potable Water

EPA 200.7: Al, Sb, As, Be, Cd, Ca, Cr, Co, Cu, Fe, Pb, Mg, Mn, Mo, Ni, K, Se, Ag, Na, Sr, TL, Ti, V, Zn.

EPA 200.8: Al, Sb, As, Be, Cd, Cr, Cu, Fe, Pb, Mn, Ni, K, Se, Ag, Na, TL, Zn.

EPA 245.1 Hg.

SM2340B

For a complete listing of analytes and methods, please contact your Alpha Project Manager.

Document Type: Form

Дірна	CHA	IN OF CL	ISTO	DY ,	AGE 1	OF 1	Date R	ec'd in L	ab; 8/	19/1	9			AL	PHA	Job#	#: //	19358	38
8 Walkup Drive	320 Forbes Blvd	Projec	t Informat	tion	-		Repo	t Inforn	nation -	Data (Delive	rable	s	Bi	lling	Inform	ation		
Westboro, MA Tel: 508-898-	01581 Mansfield, MA 0		Name: M	adison	Com	mons	SEADI	Ex	DEN	IAIL				ps	ame a	as Clien	t info	PO #:	
Client Informati	on		Location:				Regul	atory R	equiren	ents	&	Proje	ct Ir	nform	natio	n Requ	uireme	nts	
Client: San	born Head		#: 432				☐ Yes	No MA					DGS					P Analytical	Methods
Address: 1 T	innology Pa		Manager:				☐ Yes.	No GV	/1 Stand	ards (Ir									
Westfurd	, MA		Quote #:	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,			-	No NF							C	riteria			
Phone: 998	392 0900	Turn-	Around Ti	me		-		11		1	1	. /	1	1	NA STATE	11	7	11	
Additional F *R&P / Sb,	Project Information Project Information Inc. St. Zn. Fe, Rop Minimu	ion: Date lude Ag, Ae Hg, Hexcr	Due: s. cd, c and 7		, Ni, P		38260	METALS: DAGN D PAH	METALS: DRCRAS DINCP 14 DRCP 15 EPH: DR.	VPH: DRanges & Targets D Range	D PCB DPEST Ranges ONLY	Alba Douant Only DE	ES RLO E PENING	9 0	to hord me	Dane John	//	Filtration Field Lab t	to do vation
ALPHA Lab ID (Lab Use Only)		nple ID		ection	Sample Matrix	Sampler	Noc.	METALS	METALS EPH: D	NPH: C	D PCB		S VEC	770			1	Lab to	
35618-01	mc-41 (ou	1)	8/8/19	8.30	GW	SPS					1	X	X	1	H				THE THE
or	6Z-813/	GP70	8/8/14	10:15	6W	SPS						1	1	1	B				
03	MW-1	4	8/8/19	12:30	6W	SPS				1	+	V	1	V	Ð		-		
Container Type P= Plastic A= Amber glass V= Vial G= Glass	Preservative A= None B= HCl C= HNCo D= H2SO			F		ainer Type reservative													
B= Bacteris cup C= Cube O= Other E= Encore D= BOO Bottle	E= NaOH F= MeOH G= NaHSO4 H = Na ₂ S ₂ O ₃ I= Ascorbic Acid J = NH ₂ CI K= Zn Acelate O= Other	Serma Sie	uished By:			16:05	6	Ros	eived By		-1-	-	Date 8/10	-	600	Alpha See n	's Terms everse s	ubmitted are s and Condi side, (rev. 12-Mar-2)	itions.

APPENDIX E MUNICIPAL CORRESPONDENCE

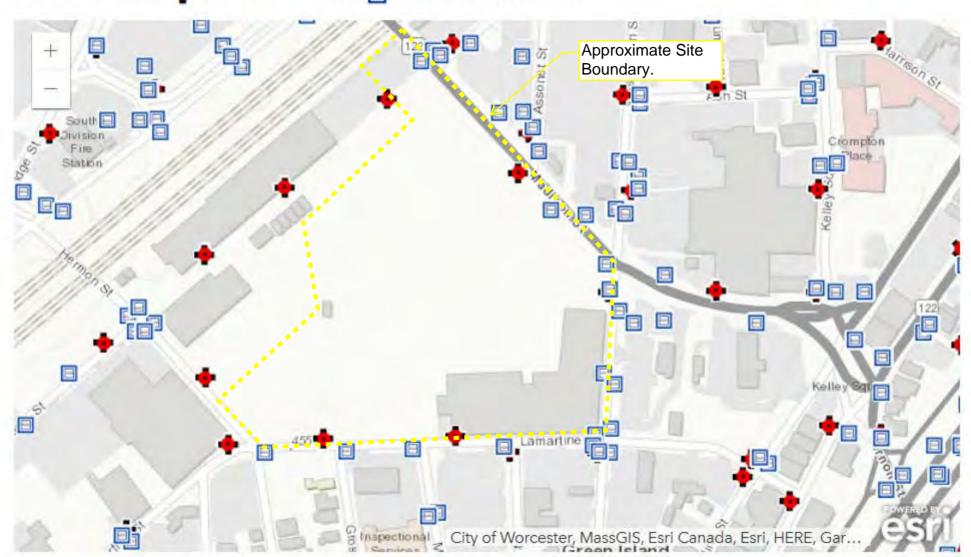
MEMORANDUM

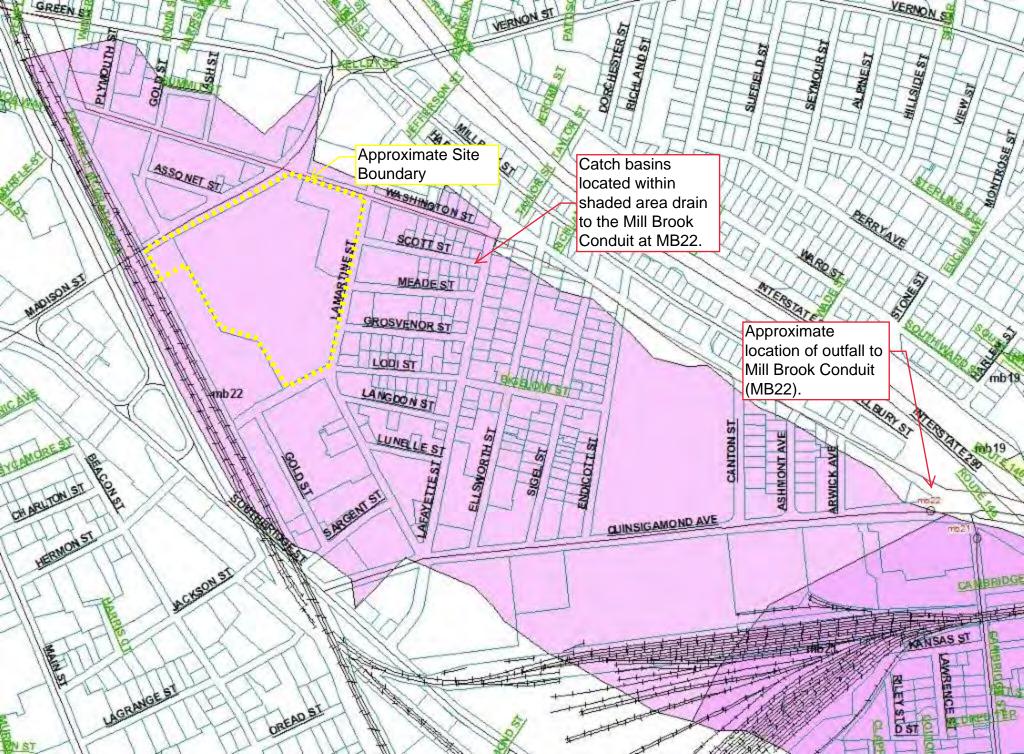
From: C. Disenhof & D. DeWolfe

File: 4325.04

Date: August 27, 2019

Re: Communication with the City of Worcester

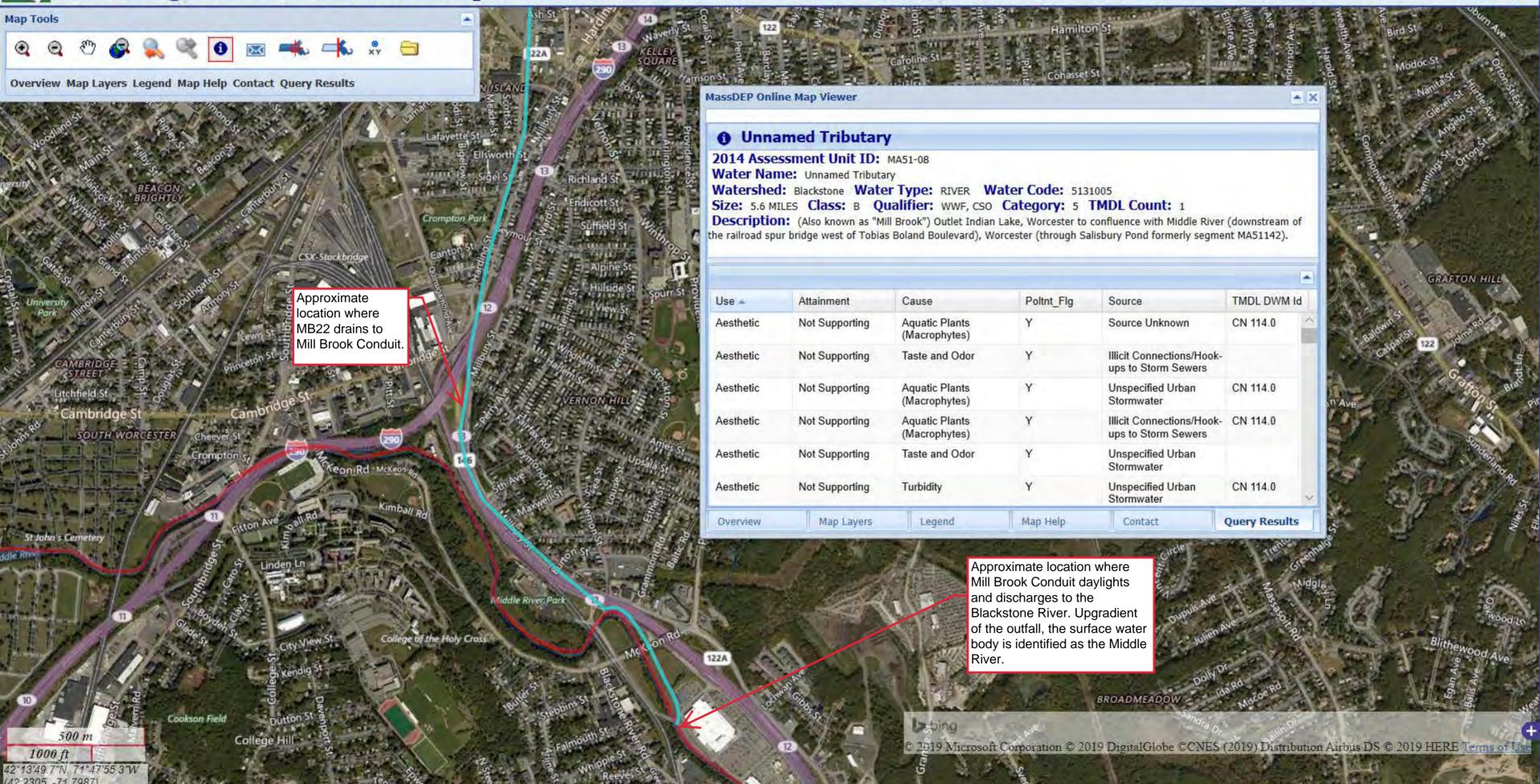

At approximately 10:00AM on August 27, 2019, I spoke to Deb Davis with the City of Worcester Department of Public Works & Parks (DPW) regarding requirements for notification to the City or permitting of construction dewatering projects that discharge to a stormwater system. This phone call and memorandum serve as our notification to the owner of the stormwater system to which treated groundwater from the Site may be discharged to under the National Pollution Discharge Elimination System (NPDES) Remediation General Permit (RGP).


Deb requested a copy of the NPDES permit approval once completed, including the flow rate, treatment system and duration of the project. A copy of the RGP approval letter will be provided to the City upon US Environmental Protection Agency (EPA) approval.

CRD: dmd

\wesserv2\shdata\4300s\4325.04\Source Files\RGP\App E - Municipal Correspondence\20190827 Memo - Municipal Stormwater Communication.docx

Locate Hydrants 🔥 and Catch Basins 📋 in your neighborhood:



MassDEP Online Map Viewer
2014 Integrated List of Waters Map

Helpful Links:

- · The Clean Water Act
- · MassDEP Total Maximum Daily Loads

APPENDIX F PH CONDITIONER MATERIAL SAFETY DATA SHEET

Americo Santamaria

From: Kim Gravelle <kgravelle@lrt-llc.net>
Sent: Wednesday, February 19, 2020 4:10 PM

To: Paul Lockwood Cc: Paul Lockwood

Subject: Polar Park Chemical additive language for RGP

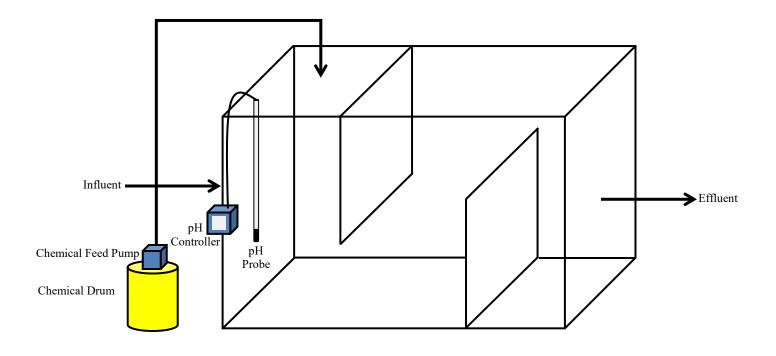
Attachments: LRT pH Adjustment System - Rev1.pdf; SULFURIC ACID 70-100 SDS 5-15-15 Fisher Scientific.pdf

Paul,

Please see language below. Thanks

A pH adjustment system that is capable of lowering pH will be implemented if required to meet the permit requirements. The pH system is designed to lower the pH with sulfuric acid and includes an automatic metered acid feed system with a mix tank, acid feed pumps and setpoint controls that maintain the pH approved by the permit, usually set between 6.5 and 8.3. The pH is continuously monitored and the sulfuric acid will only be added if the setpoints are exceeded. The sulfuric acid will be stored in 55-gallon drums with secondary containment systems in place (overpack drum). Please note that the realistic average use of sulfuric acid/day will be 0.5 gallons or less. The maximum application concentration for sulfuric acid would be 67 mg/L based on the calculations provided below.

Our calculations are as follows to obtain the max concentration of sulfuric acid.


Worst case scenario... pumping at 500 gpm and using 48 gallons of sulfuric acid/day (based on a 2 gal/hr metering rate) 500 gpm = 720,000 gal/day Sulfuric acid use (one day) = 48 gal/day 48 gal / 720,000 gal = 6.7×10^{-5} gal 6.7×10^{-5} gal * 100% = 0.006% 1% = 10,000 ppm, therefore; $0.006\% \times 10,000$ ppm = 67 ppm

The EC50 for fish is 500 mg/l (ppm) listed on the attached SDS. Even at a worst case scenario, the addition of sulfuric acid is less than the EC50.

Part F of the RGP NOI requires that chemical additives be identified if applied to the effluent prior to discharge. To satisfy the confirmation requirements of RGP Part 2.5.3.d.ii:

- 1. The addition of a pH conditioner will not add any pollutants in concentrations which exceed permit effluent limitations:
- 2. The addition of a pH conditioner will not result in the exceedance of any applicable water quality standard; and
- 3. The addition of a pH conditioner will not add any pollutants that would justify the application of permit conditions that are different from or absent in the permit."

The addition of sulfuric acid to control and adjust pH is a standard treatment technique for temporary construction dewatering; it is not expected to exceed applicable permit limitations and water quality standards or alter conditions in the receiving water. No additional testing is considered necessary for use of this product or to demonstrate that use of this product will not adversely affect the receiving water.

Notes:

- 1.) Figure is not to scale.
- 2.) System layout can vary with site conditions.

89 Crawford Street

Leominster, Massachusetts 01453

Tel: 774.450.7177 Fax: 888.835.0617 www.lrt-llc.net

One Controller for the Broadest Range of Sensors.

Choose from 30 digital and analog sensor families for up to 17 di:erent parameters.

Maximum Versatility

The sc200 controller allows the use of digital and analog sensors, either alone or in combination, to provide compatibility with Hach's broad range of sensors, eliminating the need for dedicated, parameter-specific controllers.

Ease of Use and Confidence in Results

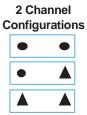
Large, high-resolution, transreflective display provides optimal viewing resolution in any lighting condition. Guided calibration procedures in 19 languages minimize complexity and reduce operator error. Password-protected SD card reader o:ers a simple solution for data download and transfer. Visual warning system provides critical alerts.

Wide Variety of Communication Options

Utilize two to five analog outputs to transmit primary and secondary values for each sensor, or integrate Hach sensors and analyzers into MODBUS RS232/RS485, Profibus® DP, and HART networks.

Password protected SD card reader offers a simple solution for data download and transfer, and sc200 and digital sensor configuration file duplication and backup.

Controller Comparison


Previous Models				
Features	sc100™ Controller	GLI53 Controller	sc200™ Controller	Benefits
Display	64 x 128 pixels 33 x 66 mm (1.3 x 2.6 in.)	64 x 128 pixels 33 x 66 mm (1.3 x 2.6 in.)	160 x 240 pixels 48 x 68 mm (1.89 x 2.67 in.) Transreflective	 Improved user interface— 50% bigger Easier to read in daylight and sunlight
Data Management	irDA Port/PDA Service Cable	N/A	SD Card Service Cable	Simplifies data transfer Standardized accessories/ max compatibility
Sensor Inputs	2 Max Direct Digital Analog via External Gateway	2 Max Analog Depending on Parameter	2 Max Digital and/or Analog with Sensor Card	Simplifies analog sensor connectionsWorks with analog and digital sensors
Analog Inputs	N/A	N/A	1 Analog Input Signal Analog 4-20mA Card	 Enables non-sc analyzer monitoring Accepts mA signals from other analyzers for local display Consolidates analog mA signals to a digital output
4-20 mA Outputs	2 Standard	2 Standard	2 Standard Optional 3 Additional	Total of five (5) 4-20 mA outputs allows multiple mA outputs per sensor input
Digital Communication	MODBUS RS232/RS485 Profibus DP V1.0	HART	MODBUS RS232/RS485 Profibus DP V1.0 HART7.2	Unprecedented combination of sensor breadth and digital communication options

sc200™ Universal Controller 3

Choose from Hach's Broad Range of Digital and Analog Sensors					
Parameter	Sensor	Digital or Analog			
Ammonia	AMTAX™ sc, NH4D sc, AISE sc, AN-ISE sc	•			
Chlorine	CLF10 sc, CLT10 sc, 9184 sc	•			
Chlorine Dioxide	9185 sc	•			
Conductivity	GLI 3400 Contacting, GLI 3700 Inductive	A			
Dissolved Oxygen	LDO® Model 2, 5740 sc	•			
Dissolved Oxygen	5500	A			
Flow	U53, F53 Sensors	A			
Nitrate	NITRATAX™ sc, NO3D sc, NISE sc, AN-ISE sc	•			
Oil in Water	FP360 sc	•			
Organics	UVAS sc	•			
Ozone	9187 sc	•			
pH/ORP	pHD	•			
pH/ORP	pHD, pH Combination, LCP	A			
Phosphate	PHOSPHAX™ sc	•			
Sludge Level	SONATAX™sc	•			
Suspended Solids	SOLITAX™ sc, TSS sc	•			
Turbidity	1720E, FT660 sc, SS7 sc, ULTRATURB sc, SOLITAX sc, TSS sc	•			
Ultra Pure Conductivity	8310, 8311, 8312, 8315, 8316, 8317 Contacting	A			
Ultra Pure pH/ORP	8362	A			

● = Digital ▲ = Analog

Connect up to two of any of the sensors listed above, in any combination, to meet your application needs. The diagrams below demonstrate the potential configurations. Operation of analog sensors requires the controller to be equipped with the appropriate sensor module. Contact Hach Technical Support for help with selecting the appropriate module.

1 Channel
Configurations

Specifications*

Dimensions (H x W x

D)

(144 mm x 144 mm x 181 mm) **Display** Graphic dot matrix LCD with LED

Display Size

backlighting, transreflective 1.9 x 2.7 in. (48 mm x 68 mm)

Display Resolution 240 x 160 pixels Weight 3.75 lbs. (1.70 kg)

Power Requirements

(Voltage)

100 - 240 V AC, 24 V DC

50/60 Hz

5.7 in x 5.7 in x 7.1 in

Power Requirements (Hz)

Operating

Temperature Range Analog Outputs

-20 to 60 °C, 0 to 95% RH non-condensing

Two (Five with optional expansion module) to isolated current outputs, max 550 Ω , Accuracy: ± 0.1% of FS (20mA) at 25 °C, ± 0.5% of FS over -20 °C to 60 °C

range

Operational Mode: measurement

or calculated value

Analog Output Functional Mode Linear, Logarithmic, Bi-linear, PID

Security Levels 2 password-protected levels Mounting **Configurations**

Wall, pole, and panel mounting

Enclosure Rating Conduit Openings Relay: Operational

Mode

1/2 in NPT Conduit Primaryorsecondary

NEMA 4X/IP66

measurement, calculated value (dual channel only) or timer

Relay Functions

Scheduler (Timer), Alarm, Feeder Control, Event Control, Pulse Width Modulation, Frequency Control,

and Warning

Relays

Four electromechanical SPDT (Form C) contacts, 1200 W, 5 A

Communication MODBUS RS232/RS485,

PROFIBUS DPV1, or HART 7.2

optional

Memory Backup

Electrical Certifications Flash memory

EMC

CE compliant for conducted and radiated emissions:

- CISPR 11 (Class A limits)

- EMC Immunity EN 61326-1 (Industrial limits)

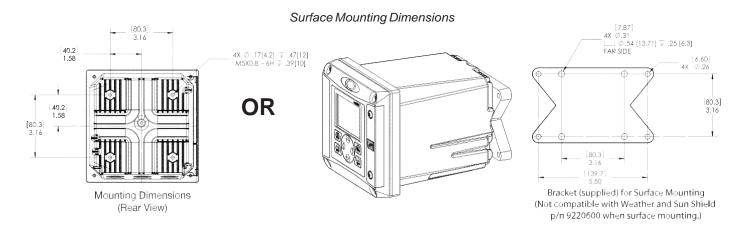
Safety

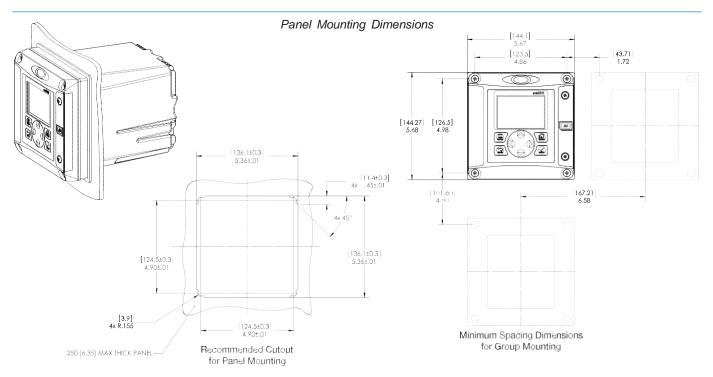
cETLus safety mark for:

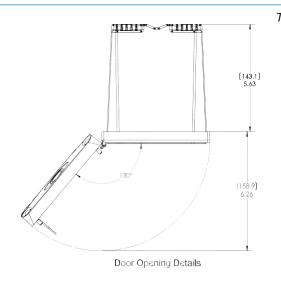
- General Locations per ANSI/UL 61010-1 & CAN/CSA C22.2. No.

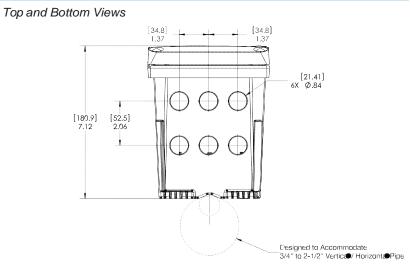
61010-1

- Hazardous Location Class I, Division 2, Groups A,B,C & D (Zone 2, Group IIC) per FM 3600 / FM 3611 & CSA C22.2 No. 213 M1987 with approved options and appropriately rated Class I, Division 2 or Zone 2 sensors


cULus safety mark


- General Locations per UL 61010-1 & CAN/CSA C22.2. No. 61010-1


*Subject to change without notice.


sc200™ Universal Controller

Dimensions

3/4-inch Combination pH and ORP Sensor Kits

Use the Digital Gateway to make any Hach analog combination pH or ORP sensor compatible with the Hach sc1000 Controller.

Digital combination pH and ORP sensors are available in convertible, insertion, and sanitary mounting styles. Choose from rugged dome electrodes or "easy-to-clean" flat glass electrodes.

Features and Benefits

Low Price—High Performance

These combination sensors are designed for specialty applications for immersion or in-line mounting. The reference cell features a double-junction design for extended service life, and a built-in solution ground. The body is molded from chemically-resistant Ryton® or PVDF, and the reference junction is coaxial porous Teflon®. All sensors are rated 0 to 105°C up to 100 psig, and have integral 4.5 m (15 ft.) cables with tinned leads. The PC-series (for pH) and RC-series (for ORP) combination sensors are ideal for measuring mild and aggressive media.

Special Electrode Configurations

Sensors with rugged dome electrodes, "easy-to-clean" flat glass electrodes, and even HF (hydrofluoric acid) resistant glass electrodes are available for a wide variety of process solutions.

Temperature Compensation Element Option

The PC-series combination pH sensors are available with or without a Pt 1000 ohm RTD temperature element. The RC-series combination ORP sensors are supplied without a temperature element.

Versatile Mounting Styles

Sensors are available in three mounting styles—convertible, insertion, and sanitary. Please turn to page 3 for more information.

Full-Featured "Plug and Play" Hach sc Digital Controllers

There are no complicated wiring or set up procedures with any Hach sc controller. Just plug in any combination of Hach digital sensors and it's ready to use—it's "plug and play."

One or multiple sensors—The sc controller family allows you to receive data from up to eight Hach digital sensors in any combination using a single controller.

Communications—Multiple alarm/control schemes are available using the relays and PID control outputs. Available communications include analog 4-20 mA, digital MODBUS® (RS485 and RS232) or Profibus DP protocols. (Other digital protocols are available. Contact your Hach representative for details.)

Data logger—A built-in data logger collects measurement data, calibration, verification points, and alarm history.

Specifications*

Most pH applications fall in the 2.5-12.5 pH range. General purpose pH glass electrodes perform well in this range. Some industrial applications require accurate measurements and control at pH values below 2 or above 12. Consult Hach Technical Support for details on these applications.

Combination pH Sensors

Measuring Range

0 to 14 pH

Accuracy

Less than 0.1 pH under reference conditions

Temperature Range

0 to 105°C (32 to 221°F)

Flow Rate

0 to 2 m/s (0 to 6.6 ft./s); non-abrasive

Pressure Range

0 to 6.9 bar at 100°C (0 to 100 psig at 212°F)

Signal Transmission Distance

100 m (328 ft.) when used with the Hach Digital Gateway and a Hach sc Digital Controller.

1000 m (3280 ft.) when used with the Hach Digital Gateway, Termination Box, and a Hach sc Digital Controller.

Sensor Cable

Integral coaxial cable (plus two conductors for temperature compensator option); 4.5 m (15 ft.) long

Wetted Materials

Convertible style: Ryton® body (glass filled)

Insertion style: PVDF body (Kynar®)

Sanitary style: 316 stainless steel sleeved PVDF body

Common materials for all sensor styles include PTFE Teflon double junction, glass process electrode, and Viton® O-rings

Warranty

90 days

Combination ORP Sensors

Measuring Range

-2000 to +2000 millivolts

Accuracy

Limited to calibration solution accuracy (± 20 mV)

Temperature Range

0 to 105°C (32 to 221°F)

Flow Rate

0 to 2 m/s (0 to 6.6 ft./s); non-abrasive

Pressure Range

0 to 6.9 bar at 100°C (0 to 100 psig at 212°F)

Signal Transmission Distance

100 m (328 ft.) when used with the Hach Digital Gateway and a Hach sc Digital Controller.

1000 m (3280 ft.) when used with the Hach Digital Gateway, Termination Box, and a Hach sc Digital Controller.

Sensor Cable

Integral coaxial cable; 4.5 m (15 ft.) long; terminated with stripped and tinned wires

Wetted Materials

Convertible style: Ryton® body (glass filled)

Insertion style: PVDF body (Kynar®)

Common materials for all sensor styles include PTFE Teflon double junction, glass with platinum process electrode, and Viton® O-rings

Warranty

90 days

*Specifications subject to change without notice.

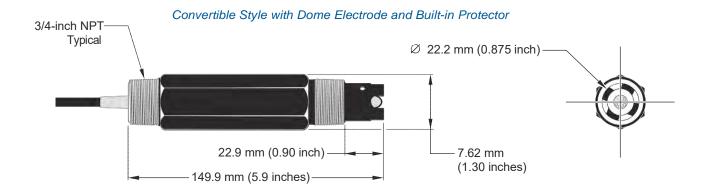
Ryton® is a registered trademark of Phillips 66 Co.; Viton® is a registered trademark of E.I. DuPont de Nemours + Co.; Kynar® is a registered trademark of Pennwalt Corp.

Engineering Specifications

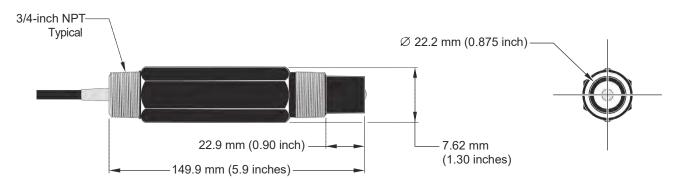
- The pH sensor shall be available in convertible, insertion or sanitary styles. The ORP sensor shall be available in only convertible or insertion styles.
- 2. The convertible style sensor shall have a Ryton[®] body. The insertion style sensor shall have a PVDF body. The sanitary style sensor shall have a 316 stainless steel sleeved PVDF body. Common materials for all sensor styles shall include a PTFE Teflon[®] double junction, and Viton[®] O-rings. The pH sensor shall have a glass pH electrode. The ORP sensor shall have a platinum ORP electrode.
- 3. The convertible style pH sensor shall be available with or without a built-in Pt 1000 ohm RTD temperature element. Insertion and sanitary style pH sensors shall have a built-in Pt 1000 ohm RTD temperature element. Convertible and insertion style ORP sensors shall not have a built-in temperature element.
- 4. The sensor shall communicate via MODBUS[®] RS-485 to a Hach sc Digital Controller.
- The sensor shall be Hach Company Model PC sc or PC-series for pH measurement or Model PC sc or RC-series for ORP measurement.

Dimensions

Convertible Style Sensor


The convertible style sensor has a Ryton[®] body that features 3/4-inch NPT threads on both ends. The sensor can be directly mounted into a standard 3/4-inch pipe tee for flow-through mounting or fastened onto the end of a pipe for immersion mounting. The convertible style sensor enables inventory consolidation, thereby reducing associated costs. Mounting tees and immersion mounting hardware are offered in a variety of materials to suit application requirements.

Insertion Style Sensor


Insertion style sensors feature a longer, non-threaded PVDF body with two Viton® O-rings, providing a seal when used with the optional Hach insertion mount hardware assembly. This ball valve hardware enables sensor insertion and retraction from a pipe or vessel without having to stop the process flow.

Sanitary Style Sensor

The sanitary style sensor, offered for pH measurement, has a 316 stainless steel-sleeved PVDF body with a 2-inch flange. The sensor mates to a standard 2-inch Tri-Clover fitting. The optional Hach sanitary mounting hardware includes a standard 2-inch sanitary tee, sanitary clamp, and Viton[®] sanitary gasket.

Convertible Style with Flat Electrode

The Pulsatron Series A Plus offers manual function controls over stroke length and stroke rate as standard with the option to select external pace for automatic control.

Ten distinct models are available, having pressure capabilities to 250 PSIG (17 BAR) @ 12 GPO (1.9 lph), and flow capacities to 58 GPO (9.1 lph) @ 100 PSIG (7.0 BAR), with a standard turndown ratio of 100:1, and optional ratio of 1000:1. Metering performance is reproducible to within \pm 3% of maximum capacity.

Features

- Manual Control by on-line adjustable stroke rate and stroke length.
- Highly Reliable timing circuit.
- Circuit Protection against voltage and current upsets.
- Solenoid Protection by thermal overload with autoreset
- Water Resistant, for outdoor and indoor applications.
- Internally Dampened To Reduce Noise.
- Guided Ball Check Valve Systems, to reduce back flow and enhance outstanding priming characteristics.
- Few Moving Parts and Wall Mountable.
- Safe & Easy Priming with durable leak-free bleed valve assembly (standard).
- Optional Control: External pace with auto/manual selection

Controls

Manual Stroke Rate

Manual Stroke Length

External Pacing-Optional

External Pace With StopOptional (125 SPM only)

Controls Options						
Feature	Standard	Optional				
reature	Configuration	Configuration ¹				
External Pacing		Auto / Manual Selection /				
External Pace w/ Stop		Auto / Manual Selection 2				
(125SPMonly)						
Manual Stroke Rate	10:1Ratio	100:1 Raio				
Manual Stroke Length	10:1Ratio	10:1 Ratio				
Total Turndown Ratio	1001 Ratio	1000:1 Ratio				

Note 1:On S2,S3 & S4 sizes only.

Note 2:Not available on 1000:1turndown pumps.

Operating Benefits

- Reliable metering performance.
- Rated "hot" for continuous duty.
- · High viscosity capability.
- Leak-free, sealless, liquid end.

Aftermarket

- KOPkits
- Gauges
- Dampeners
- Pressure Relief Valves
- Tanks
- Pre-Engineered Systems
- Process Controllers

(PULSAblue, MicroVision)

Series A Plus Electronic Metering Pumps

Series A Plus

Specifications and Model Selection

	MODEL		LBC2	LB02	LBC3	LB03	LB04	LB64	LBC4	LBS2	LBS3	LBS4
Capacity		GPH	0.25	025	0.42	0.50	1.00	125	2.00	0.50	1.38	2.42
nominal		GPO	6	6	10	12	24	30	48	12	33	58
(max.)		LPH	0.9	0.9	1.6	1.9	3.8	4.7	7.6	1.9	5.2	9.14
Pressure ³ (max.)	GFPP,PVDF,316SS orPVC <;Ncode) wTFE Seats) PVC (V code) Vton or CSPE Seats IDegas Liquid End	PSIG	250 (17) 150 (10)	150 (10)	250 (17)	150 (10)	100 (7)	100 (7)	50 (33)	250 (17) 150 (10)	150 (10)	100(7)
Connections:		Tubina			14'IDX	318' OD			318'DX 112'OD	114	'D X 318' O [)
		Pioina					1	14'FNPT				
Strokes/Minute		SPM		125				250				

Note 3: Pumps with rated pressure above 150 PSI will be de-rated to 150 PSI Max. when selecting certain valve options, see Price Book for details.

Engineering Data

Pump Head Materials Available: **GFPPL**

PVC PVDF 316 SS

PTFE-faced CSPE-backed Diaphragm:

Check Valves Materials Available:

Seats/0-Rings: **PTFE**

> **CSPE** Viton

Balls: Ceramic

PTFE 316 SS

Alloy C

GFPPL Fittings Materials Available:

PVC PVDF

Bleed Valve: Same as fitting and check valve

selected, except 316SS

hjection Valve & Foot Valve Assy: Same as fitting and check valve

selected

ClearPVC Tubing:

White PF

Important: Material Code - GFPPL=Glass-filled Polypropylene, PVC=Polyvinyl Chloride, PE=Polyethylene, PVDF=Polyvinylidene Fluoride, CSPE=Generic formulation of Hypalon, a registered trademark of E.I. DuPont Company. Viton is a registered trademark of E.I. DuPont Company. PVC wetted end recommended for sodium hypochlorite.

Engineering Data

Reproducibility: +/- 3% at maximum capacty

Viscosity Max CPS: 1000 CPS Stroke Frequency Max SPM: 125 / 250 by Model

Stroke Length Turn-Down Ratio:

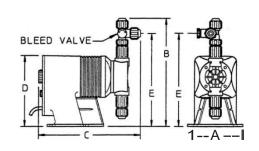
Stroke Frequency Turn-Down Ratio:

Power Input: 115 VAC/50-60 HZ/1 ph 230 VAC/50-60 HZ/1 ph

Average Current Draw:

@ 115 VAC; Amps: 0.6 Amps @ 230 VAC; Amps: 0.3 Amps 130 Watts Peak hout Power: 50 Watts Average Input Power @ Max SPM:

Custom Engineered Designs-Pre-Engineered Systems


Pre-Engineered Systems Pulsafeeder's Pre-Engineered Systems are designed to provide complete chemical feed solutions for all electronic metering applications. From stand alone simplex pH control applications to full-featured, redundant sodium hypochlorite disinfection metering, these rugged fabricated assemblies offer turnkey simplicity and industrial-grade durability. The UV-stabilized, high-grade HOPE frame offers maximum chemical compatibility and structural rigidity. Each system is factory assembled and hydrostatically tested prior to shipment.

10:1/100:1 by Model

Dimensions

Series A PLUS Dimensions (inches)							
						Shipping	
Model No.	Α	В	С	D	Е	Weight	
LB02 IS2	5.0	9.6	9.5	6.5	8.2	10	
LBC2	5.0	9.9	9.5	6.5	8.5	10	
LBC3	5.0	9.9	9.5	6.5	8.5	10	
LB03 IS3	5.0	9.9	9.5	6.5	8.5	10	
LB0 \$ 4	5.0	9.9	9.5	6.5	8.5	10	
LB64	5.0	9.9	9.5	6.5	8.5	10	
LBC4	5.0	9.9	9.5	6.5	8.5	10	

NOTE: hches X 2.54 cm

95-Gallon OverPack - 32" dia x 41.5", 1 each/package

Stock a SpillTech® OverPack with sorbents for emergency spill response, or use it as a salvage drum to ship damaged containers or hazardous waste.

- DOT-Approved for Salvage: All SpillTech® OverPacks are DOT-approved and X-rated for use as salvage drums. Helps companies conform to federal regulations when shipping damaged or leaking containers of hazardous materials, or absorbents contaminated with hazardous substances.
- Perfect for Spill Kits: Stores sorbent products (not included) for easy access as needed for spill control. Saves time when quick response is necessary.
- Sturdy Construction: 100% polyethylene OverPack resists chemicals, rust and corrosion for years of use. Integrated handles make them easy to lift, move or carry with standard material handling equipment. Twist-on, double-wall lid with closed-cell gasket provides sealed, secure closure to prevent leaks and protect contents from moisture, dirt and damage. Durable to withstand rough handling.
- Customized for You: We can customize a Spill Kit to your exact specifications, including the container, its contents and accessories, with no upcharge! Contact your local Distributor for details.

A950VER Specifications

Dimensions: ext. dia. 32" x 41.5" H

Shipping 31.75" W x 41.5" L x 31.75" H

Dimensions:

Sold as: 1 per package

Color: Yellow

Composition: Polyethylene

per Pallet: 3
Incinerable: No
Ship Class: 250

Metric Equivalent Specifications

Dimensions: ext. dia. 81.3cm x 105.4cm H

Shipping 80.6cm W x 105.4cm L x 80.6cm H

Dimensions:

A950VER Technical Information

Warnings & Restrictions:

There are no known warnings and restrictions for this product.

Regulations and Compliance:

49 CFR 173.3(c)(1) - If a container of hazardous waste is damaged or leaking, it can be placed in a compatible salvage drum that meets UN criteria for shipping

49 CFR 173.12(b)(2)(iv) - When labpacking, "Inner packagings...must be surrounded by a chemically compatible absorbent material in sufficient quantity to absorb the total liquid contents."

49 CFR 173.12(b) - A container used for labpacking must be "a UN 1A2 or UN 1B2 metal drum, a UN 1D plywood drum, a UN 1G fiber drum or a UN 1H2 plastic drum tested and marked at least for the Packing Group III performance level for liquids or solids."

Kim Gravelle, P.G. Senior Project Manager

Lockwood Remediation Technologies, LLC

89 Crawford Street Leominster, MA 01453 O: 774-450-7177 x109 F: 888-835-0617 C: 774.479.1048 kgravelle@lrt-llc.net

SAFETY DATA SHEET

Creation Date 12-Nov-2010 Revision Date 24-May-2017 Revision Number 5

1. Identification

Product Name Sulfuric Acid (Certified ACS Plus)

Cat No.: A300-212; A300-225LB; A300-500; A300-612GAL; A300-700LB;

A300C212; A300C212EA; A300P500; A300S212; A300S212EA;

A300S500; A300SI212

Synonyms Hydrogen sulfate; Vitriol brown oil; Oil of vitriol

Recommended UseLaboratory chemicals.

Uses advised against Not for food, drug, pesticide or biocidal product use

Details of the supplier of the safety data sheet

Company

Fisher Scientific One Reagent Lane Fair Lawn, NJ 07410 Tel: (201) 796-7100

Emergency Telephone Number

CHEMTREC®, Inside the USA: 800-424-9300 CHEMTREC®, Outside the USA: 001-703-527-3887

2. Hazard(s) identification

Classification

This chemical is considered hazardous by the 2012 OSHA Hazard Communication Standard (29 CFR 1910.1200)

Skin Corrosion/irritation Category 1 A
Serious Eye Damage/Eye Irritation Category 1
Specific target organ toxicity (single exposure) Category 3

Target Organs - Respiratory system.

Label Elements

Signal Word

Danger

Hazard Statements

Causes severe skin burns and eye damage May cause respiratory irritation

Precautionary Statements

Prevention

Do not breathe dust/fume/gas/mist/vapors/spray

Wear protective gloves/protective clothing/eye protection/face protection

Wash face, hands and any exposed skin thoroughly after handling

Use only outdoors or in a well-ventilated area

Response

Immediately call a POISON CENTER or doctor/physician

Inhalation

IF INHALED: Remove victim to fresh air and keep at rest in a position comfortable for breathing

Skin

IF ON SKIN (or hair): Take off immediately all contaminated clothing. Rinse skin with water/shower

Wash contaminated clothing before reuse

Eyes

IF IN EYES: Rinse cautiously with water for several minutes. Remove contact lenses, if present and easy to do. Continue rinsing **Ingestion**

IF SWALLOWED: Rinse mouth. DO NOT induce vomiting

Storage

Store locked up

Store in a well-ventilated place. Keep container tightly closed

Disposal

Dispose of contents/container to an approved waste disposal plant

Hazards not otherwise classified (HNOC)

WARNING! This product contains a chemical known in the State of California to cause cancer.

Unknown Acute Toxicity

3. Composition / information on ingredients

Component	CAS-No	Weight %
Sulfuric acid	7664-93-9	90 - 98
Water	7732-18-5	2 - 10

4. First-aid measures

General Advice Show this safety data sheet to the doctor in attendance. Immediate medical attention is

required.

Eye Contact Rinse immediately with plenty of water, also under the eyelids, for at least 15 minutes.

Immediate medical attention is required.

Skin Contact Wash off immediately with plenty of water for at least 15 minutes. Remove and wash

contaminated clothing before re-use. Call a physician immediately.

Inhalation If not breathing, give artificial respiration. Remove from exposure, lie down. Do not use

mouth-to-mouth method if victim ingested or inhaled the substance; give artificial respiration with the aid of a pocket mask equipped with a one-way valve or other proper respiratory

medical device. Call a physician immediately.

Ingestion Do not induce vomiting. Clean mouth with water. Never give anything by mouth to an

unconscious person. Call a physician immediately.

Most important symptoms/effects Causes burns by all exposure routes. Product is a corrosive material. Use of gastric

lavage or emesis is contraindicated. Possible perforation of stomach or esophagus should be investigated: Ingestion causes severe swelling, severe damage to the delicate tissue

and danger of perforation

Sulfuric Acid (Certified ACS Plus)

Notes to Physician Treat symptomatically

5. Fire-fighting measures

Suitable Extinguishing Media CO₂, dry chemical, dry sand, alcohol-resistant foam.

Unsuitable Extinguishing Media DO NOT USE WATER

Flash Point Not applicable

Method - No information available

Autoignition Temperature

Explosion Limits

No information available

Upper No data available
Lower No data available
Sensitivity to Mechanical Impact No information available
Sensitivity to Static Discharge No information available

Specific Hazards Arising from the Chemical

Thermal decomposition can lead to release of irritating gases and vapors. The product causes burns of eyes, skin and mucous membranes.

Hazardous Combustion Products

Sulfur oxides Hydrogen

Protective Equipment and Precautions for Firefighters

As in any fire, wear self-contained breathing apparatus pressure-demand, MSHA/NIOSH (approved or equivalent) and full protective gear. Thermal decomposition can lead to release of irritating gases and vapors.

NFPA

Health	Flammability	Instability	Physical hazards
3	0	2	W

Accidental release measures

Personal Precautions Ensure adequate ventilation. Use personal protective equipment. Evacuate personnel to

safe areas. Keep people away from and upwind of spill/leak.

Environmental Precautions Should not be released into the environment.

Methods for Containment and Clean Soak up with inert absorbent material. Keep in suitable, closed containers for disposal. **Up**

_			1.1		
/	Н	land	lina	and	storage

Handling Wear personal protective equipment. Do not get in eyes, on skin, or on clothing. Use only

under a chemical fume hood. Do not breathe vapors or spray mist. Do not ingest.

Storage Keep containers tightly closed in a dry, cool and well-ventilated place. Keep away from

water. Corrosives area.

8. Exposure controls / personal protection

Exposure Guidelines

Component	ACGIH TLV	OSHA PEL	NIOSH IDLH	Mexico OEL (TWA)
Sulfuric acid	TWA: 0.2 mg/m ³	(Vacated) TWA: 1 mg/m ³	IDLH: 15 mg/m ³	TWA: 1 mg/m ³
	_	TWA: 1 mg/m ³	TWA: 1 mg/m ³	_

Legend

ACGIH - American Conference of Governmental Industrial Hygienists

OSHA - Occupational Safety and Health Administration

NIOSH IDLH: The National Institute for Occupational Safety and Health Immediately Dangerous to Life or Health

Engineering Measures Use only under a chemical fume hood. Ensure adequate ventilation, especially in confined

areas. Ensure that eyewash stations and safety showers are close to the workstation

location.

Personal Protective Equipment

Eye/face Protection Wear appropriate protective eyeglasses or chemical safety goggles as described by

OSHA's eye and face protection regulations in 29 CFR 1910.133 or European Standard

EN166.

Skin and body protection Long sleeved clothing.

Respiratory Protection Follow the OSHA respirator regulations found in 29 CFR 1910.134 or European Standard

EN 149. Use a NIOSH/MSHA or European Standard EN 149 approved respirator if exposure limits are exceeded or if irritation or other symptoms are experienced.

Hygiene Measures Handle in accordance with good industrial hygiene and safety practice.

9. Physical and chemical properties

Physical State Liquid

Appearance Clear, Colorless to brown

Odor Odorless

Odor Threshold No information available

pH 0.3 (1N) **Melting Point/Range** 10 °C / 50 °F

Boiling Point/Range 290 - 338 °C / 554 - 640.4 °F

Flash Point Not applicable
Evaporation Rate Slower than ether
Flammability (solid,gas) Not applicable

Flammability or explosive limits

Upper No data available
Lower No data available

Vapor Pressure < 0.001 mmHg @ 20 °C

Vapor Density 3.38 (Air = 1.0)

Specific Gravity 1.84

Solubility

Partition coefficient; n-octanol/water

Autoignition Temperature

Soluble in water
No data available
No information available

Decomposition Temperature 340°C

Viscosity No information available

Molecular FormulaH2SO4Molecular Weight98.08

10. Stability and reactivity

Reactive Hazard Yes

Stability Reacts violently with water. Hygroscopic.

Conditions to Avoid Incompatible products. Excess heat. Exposure to moist air or water.

Incompatible Materials Water, Organic materials, Strong acids, Strong bases, Metals, Alcohols, Cyanides, Sulfides

Hazardous Decomposition Products Sulfur oxides, Hydrogen

Hazardous Polymerization Hazardous polymerization does not occur.

Hazardous Reactions

None under normal processing.

11. Toxicological information

Acute Toxicity

Product Information

Oral LD50 Based on ATE data, the classification criteria are not met. ATE > 2000 mg/kg. **Dermal LD50** Based on ATE data, the classification criteria are not met. ATE > 2000 mg/kg. Vapor LC50 Based on ATE data, the classification criteria are not met. ATE > 20 mg/l.

Component Information

Component	LD50 Oral	LD50 Dermal	LC50 Inhalation
Sulfuric acid	2140 mg/kg (Rat)	Not listed	LC50 = 510 mg/m ³ (Rat) 2 h
Water	-	Not listed	Not listed

Toxicologically Synergistic

Products

No information available

Delayed and immediate effects as well as chronic effects from short and long-term exposure

Irritation Causes severe burns by all exposure routes

Sensitization No information available

Carcinogenicity The table below indicates whether each agency has listed any ingredient as a carcinogen.

Exposure to strong inorganic mists containing sulfuric acid may cause cancer by inhalation.

Component	CAS-No	IARC	NTP	ACGIH	OSHA	Mexico
Sulfuric acid	7664-93-9	Group 1	Known	A2	X	A2
Water	7732-18-5	Not listed				

IARC: (International Agency for Research on Cancer)

IARC: (International Agency for Research on Cancer)

Group 1 - Carcinogenic to Humans

Group 2A - Probably Carcinogenic to Humans Group 2B - Possibly Carcinogenic to Humans

NTP: (National Toxicity Program) NTP: (National Toxicity Program)

Known - Known Carcinogen

Reasonably Anticipated - Reasonably Anticipated to be a Human

Carcinogen

ACGIH: (American Conference of Governmental Industrial

Mexico - Occupational Exposure Limits - Carcinogens

Hygienists)

A1 - Known Human Carcinogen

A2 - Suspected Human Carcinogen

A3 - Animal Carcinogen

ACGIH: (American Conference of Governmental Industrial Hygienists)

Mexico - Occupational Exposure Limits - Carcinogens

A1 - Confirmed Human Carcinogen A2 - Suspected Human Carcinogen

A3 - Confirmed Animal Carcinogen

A4 - Not Classifiable as a Human Carcinogen

A5 - Not Suspected as a Human Carcinogen

Mutagenic Effects No information available

Reproductive Effects No information available.

Developmental Effects No information available.

No information available. **Teratogenicity**

STOT - single exposure Respiratory system

STOT - repeated exposure None known

Aspiration hazard No information available

delayed

Symptoms / effects,both acute and Product is a corrosive material. Use of gastric lavage or emesis is contraindicated. Possible perforation of stomach or esophagus should be investigated: Ingestion causes

severe swelling, severe damage to the delicate tissue and danger of perforation

Endocrine Disruptor Information No information available

Other Adverse Effects The toxicological properties have not been fully investigated.

12. Ecological information

Ecotoxicity

This product contains the following substance(s) which are hazardous for the environment. .

Component	Freshwater Algae	Freshwater Fish	Microtox	Water Flea
Sulfuric acid	-	LC50: > 500 mg/L, 96h static	-	EC50: 29 mg/L/24h
		(Brachydanio rerio)		

Persistence and Degradability

No information available

Bioaccumulation/ AccumulationNo information available.

Mobility No information available.

13. Disposal considerations

Waste Disposal Methods

Chemical waste generators must determine whether a discarded chemical is classified as a hazardous waste. Chemical waste generators must also consult local, regional, and national hazardous waste regulations to ensure complete and accurate classification.

14. Transport information

DOT

UN-No UN1830
Proper Shipping Name Sulfuric acid

Hazard Class
Packing Group

TDG

UN-No UN1830

Proper Shipping Name SULFURIC ACID

Hazard Class 8
Packing Group

<u>IATA</u>

UN-No UN1830

Proper Shipping Name SULFURIC ACID

Hazard Class 8
Packing Group ||

IMDG/IMO

UN-No UN1830

Proper Shipping Name SULFURIC ACID

Hazard Class 8
Packing Group ||

Regulatory information

All of the components in the product are on the following Inventory lists: X = listed

International Inventories

Component	TSCA	DSL	NDSL	EINECS	ELINCS	NLP	PICCS	ENCS	AICS	IECSC	KECL
Sulfuric acid	Х	Χ	-	231-639-5	-		Х	Χ	Χ	Χ	Χ
Water	Х	Χ	-	231-791-2	-		Х	-	Χ	Х	Χ

Legend:

E - Indicates a substance that is the subject of a Section 5(e) Consent order under TSCA.

X - Listed

F - Indicates a substance that is the subject of a Section 5(f) Rule under TSCA.

- N Indicates a polymeric substance containing no free-radical initiator in its inventory name but is considered to cover the designated polymer made with any free-radical initiator regardless of the amount used.
- P Indicates a commenced PMN substance
- R Indicates a substance that is the subject of a Section 6 risk management rule under TSCA.
- S Indicates a substance that is identified in a proposed or final Significant New Use Rule
- T Indicates a substance that is the subject of a Section 4 test rule under TSCA.
- XU Indicates a substance exempt from reporting under the Inventory Update Rule, i.e. Partial Updating of the TSCA Inventory Data Base Production and Site Reports (40 CFR 710(B).
- Y1 Indicates an exempt polymer that has a number-average molecular weight of 1,000 or greater.
- Y2 Indicates an exempt polymer that is a polyester and is made only from reactants included in a specified list of low concern reactants that comprises one of the eligibility criteria for the exemption rule.

U.S. Federal Regulations

TSCA 12(b)

Not applicable

SARA 313

Component	CAS-No	Weight %	SARA 313 - Threshold Values %
Sulfuric acid	7664-93-9	90 - 98	1.0

SARA 311/312 Hazard Categories

Acute Health Hazard Yes
Chronic Health Hazard Yes
Fire Hazard No
Sudden Release of Pressure Hazard No
Reactive Hazard Yes

CWA (Clean Water Act)

	Component	CWA - Hazardous Substances	CWA - Reportable Quantities	CWA - Toxic Pollutants	CWA - Priority Pollutants
Ī	Sulfuric acid	X	1000 lb	-	-

Clean Air Act Not applicable

OSHA Occupational Safety and Health Administration

Not applicable

CERCLA

This material, as supplied, contains one or more substances regulated as a hazardous substance under the Comprehensive Environmental Response Compensation and Liability Act (CERCLA) (40 CFR 302)

Component	Hazardous Substances RQs	CERCLA EHS RQs
Sulfuric acid	1000 lb	1000 lb

California Proposition 65

This product contains the following proposition 65 chemicals

Component	CAS-No	California Prop. 65	Prop 65 NSRL	Category
Sulfuric acid	7664-93-9	Carcinogen	-	Carcinogen

U.S. State Right-to-Know

Regulations

Component	Massachusetts	New Jersey	Pennsylvania	Illinois	Rhode Island
Sulfuric acid	X	X	X	X	Х
Water	-	-	X	-	-

U.S. Department of Transportation

Reportable Quantity (RQ): Y
DOT Marine Pollutant N
DOT Severe Marine Pollutant N

U.S. Department of Homeland Security

This product does not contain any DHS chemicals.

Other International Regulations

Mexico - Grade No information available

16. Other information

Prepared By Regulatory Affairs

Thermo Fisher Scientific

Email: EMSDS.RA@thermofisher.com

 Creation Date
 12-Nov-2010

 Revision Date
 24-May-2017

 Print Date
 24-May-2017

Revision Summary SDS sections updated. 2.

Disclaimer

The information provided in this Safety Data Sheet is correct to the best of our knowledge, information and belief at the date of its publication. The information given is designed only as a guidance for safe handling, use, processing, storage, transportation, disposal and release and is not to be considered a warranty or quality specification. The information relates only to the specific material designated and may not be valid for such material used in combination with any other materials or in any process, unless specified in the text

End of SDS

Applied Polymer Systems, Inc.

Updated November 4, 2015 APS

1

Safety Data Sheet

1. IDENTIFICATION OF THE PRODUCT AND THE COMPANY

Product Name: APS 703d #3 Floc Log®

Supplied: Applied Polymer Systems, Inc.

519 Industrial Drive Woodstock, GA 30189 Tel. 678-494-5998 Fax. 678-494-5298 www.siltstop.com

2. HAZARD IDENTIFICATION

Placement of these materials on wet walking surface will create extreme slipping hazard.

3. COMPOSITION/INFORMAION ON INGREDIENTS

Identification of the preparation: Anionic water-soluble Co-polymer gel

4. FIRST AID MEASURES

Inhalation: None

Skin contact: Contact with wet skin could cause dryness and chapping. Wash with water and soap. Use of

gloves recommended.

Eye contact: Rinse thoroughly with plenty of water, also under the eyelids, seek medical attention in case of

persistent irritation.

Ingestion: Consult a physician

5. FIRE-FIGHTING MEASURES

Suitable extinguishing media: Water, water spray, foam, carbon dioxide, dry powder.

Special fire-fighting precautions: Floc Logs that become wet render surfaces extremely slippery.

Protective equipment for firefighters: No special equipment required.

6. ACCIDENTAL RELEASE MEASURES

Personal precautions: No special precautions required.

Methods for cleaning up: <u>Dry wipe as well as possible</u>, Keep in suitable and closed containers for disposal.

After cleaning, flush away traces with water.

7. HANDLING AND STORAGE

Handling: Avoid contact with skin and eyes. Wash hands after handling.

Storage: Keep in a cool, dry place.

8. EXPOSURE CONTROLS / PERSONAL PROTECTION

Engineering controls: Use dry handling areas only.

Personal protection equipment

Respiratory Protection: None

Hand protection: Dry cloth, leather or rubber gloves.

Eye Protection: Safety glasses with side shields. Do not wear contact lenses.

Skin protection: No special protective clothing required.

Hygiene measures: Wash hands before breaks and at end of work day.

9. PHYSICAL AND CHEMICAL PROPERTIES

Form: Granular semi-solid gel

Color: Blue
Odor: None
pH: 7.73
Melting point: N/A
Flash point: N/A
Vapor density: N/A

10. STABILITY AND REACTIVITY

Stability: Product is stable, no hazardous polymerization will occur.

Materials to avoid: Oxidizing agents may cause exothermic reactions.

Hazardous decomposition products: Thermal decomposition may produce nitrogen oxides (NOx), carbon oxides.

11. TOXICOLOGICAL INFORMATION

Acute toxicity (EPA-821-R-02-012)

LC 50 (Survival) / Ceriodaphnia dubia / 48h / 673 ppm NOAEC (Survival) / Ceriodaphnia dubia / 48h / 420 ppm LC 50 / Oncorhynchus mykiss / 96h / 2928 ppm

12. ECOLOGICAL INFORMATION

Chronic toxicity (EPA-821-R-02-013)

IC 25 (Survival) / *P. promelas* / 7 day / 77.8 ppm NOEC (Survival) / *P. promelas* / 7 day / 52.5 ppm
IC 25 (Survival) / *C. dubia* / 7 day / 78.7 ppm
NOEC (Survival) / *C. dubia* / 7 day / 52.7 ppm

IC 25 (Growth) / P. promelas / 7 day / 50.1 ppm NOEC (Growth) / P. promelas / 7 day / 52.5 ppm

IC 25 (Reproduction) / C. dubia / 7 day / 66.8 ppm
NOEC (Reproduction) / C. dubia / 7 day / 52.5 ppm

Bioaccumulation: The product is not expected to bioaccumulate.

Persistence / degradability: Not readily biodegradable: (~85% after 180 days).

13. DISPOSAL CONSIDERATIONS

Waste from residues/unused products.

Any disposal practice must be in compliance with local, state and federal laws and regulations (contact local or state environmental agency for specific rules).

14. TRANSPORT INFORMATION

Not regulated by DOT, RCRA status-Not a hazardous waste

15. REGULATORY INFORMATION

TSCA Chemical Substances Inventory: All components of this product are either listed on the inventory or are exempt from listing.

SARA Section 311 / 312 Hazard Class: RCRA Status:

Not concerned Not RCRA hazardous

16. OTHER INFORMATION

NFPA and HMIS ratings:

NFPA Health: Flammability: 0 Reactivity: 0

HMIS Health Flammability 0 Reactivity 0

DATE EDITED: Nov 4th 2015

APPENDIX G FEDERAL CORRESPONDENCE

MEMORANDUM

From: C. Disenhof

File: 4325.04

Date: August 12, 2019

Re: Northern Long-Eared Bat Endangered Species Determination

We determine that the Madison Commons dewatering project in the vicinity of Madison Street in Worcester, Massachusetts will have No Effect on the Northern Long-Eared Bat (NLEB) because:

- The Site has no suitable habitat for the NLEB, and therefore the NLEB is not present
- There are no maternity roost trees or hibernacula within ¼-mile of the Site (see attached Natural Heritage & Endangered Species Program (NHESP) map)
- Very few trees (<0.2 acres) will be removed from the Site, and no trees are known maternity roost trees, within 150 of a known maternity roost tree, or within 0.25 miles of a known hibernaculum

CRD: crd

Enclosures: NHESP No. Long-Eared Bat Locations

PHONE MEMORANDUM

From: C. Disenhof

File: 4325.04

Date: August 12, 2019

Re: Phone Call Regarding Endangered Species Determination

At approximately 8:25 AM on August 12, 2019, I received a call from Maria Tur with the United States Fish and Wildlife Service (US FWS), following up on my inquiry about endangered species determinations for a Notice of Intent (NOI) for a Remediation General Permit (RGP). I explained that we had used the Information for Planning and Consultation (IPaC) tool at the FWS website to determine potential effects on the Northern Long-Eared Bat, which had come to a "may affect" determination. I asked about the next step for reaching a "no affect" or "not likely to adversely affect" determination for the Polar Park project, as the project is composed of parking lots and several buildings.

Ms. Tur stated that the EPA has left this determination to the contractor, and that if there is no suitable habitat on the Site and no trees are being removed, no communication with FWS is needed. A statement of "no affect" because of "no suitable habitat" should be documented in the NOI, and no further information needs to be sent to or received from the FWS.

CRD: crd

 $\label{lem:conversation} $$\operatorname{Sol}(300)^4325.04\ \ Files\ \ Foleral\ \ \ Correspondence \ \ \ \ Phone\ \ Memo-Conversation\ \ with USFWS.docx $$USFWS.docx $$$

United States Department of the Interior

FISH AND WILDLIFE SERVICE

New England Ecological Services Field Office 70 Commercial Street, Suite 300 Concord, NH 03301-5094 Phone: (603) 223-2541 Fax: (603) 223-0104

http://www.fws.gov/newengland

In Reply Refer To: August 12, 2019

Consultation Code: 05E1NE00-2019-SLI-2552

Event Code: 05E1NE00-2019-E-06598 Project Name: Madison Commons

Subject: List of threatened and endangered species that may occur in your proposed project

location, and/or may be affected by your proposed project

To Whom It May Concern:

The enclosed species list identifies threatened, endangered, proposed and candidate species, as well as proposed and final designated critical habitat, that may occur within the boundary of your proposed project and/or may be affected by your proposed project. The species list fulfills the requirements of the U.S. Fish and Wildlife Service (Service) under section 7(c) of the Endangered Species Act (Act) of 1973, as amended (16 U.S.C. 1531 *et seq.*).

New information based on updated surveys, changes in the abundance and distribution of species, changed habitat conditions, or other factors could change this list. Please feel free to contact us if you need more current information or assistance regarding the potential impacts to federally proposed, listed, and candidate species and federally designated and proposed critical habitat. Please note that under 50 CFR 402.12(e) of the regulations implementing section 7 of the Act, the accuracy of this species list should be verified after 90 days. This verification can be completed formally or informally as desired. The Service recommends that verification be completed by visiting the ECOS-IPaC website at regular intervals during project planning and implementation for updates to species lists and information. An updated list may be requested through the ECOS-IPaC system by completing the same process used to receive the enclosed list.

The purpose of the Act is to provide a means whereby threatened and endangered species and the ecosystems upon which they depend may be conserved. Under sections 7(a)(1) and 7(a)(2) of the Act and its implementing regulations (50 CFR 402 et seq.), Federal agencies are required to utilize their authorities to carry out programs for the conservation of threatened and endangered species and to determine whether projects may affect threatened and endangered species and/or designated critical habitat.

A Biological Assessment is required for construction projects (or other undertakings having similar physical impacts) that are major Federal actions significantly affecting the quality of the human environment as defined in the National Environmental Policy Act (42 U.S.C. 4332(2) (c)). For projects other than major construction activities, the Service suggests that a biological evaluation similar to a Biological Assessment be prepared to determine whether the project may affect listed or proposed species and/or designated or proposed critical habitat. Recommended contents of a Biological Assessment are described at 50 CFR 402.12.

If a Federal agency determines, based on the Biological Assessment or biological evaluation, that listed species and/or designated critical habitat may be affected by the proposed project, the agency is required to consult with the Service pursuant to 50 CFR 402. In addition, the Service recommends that candidate species, proposed species and proposed critical habitat be addressed within the consultation. More information on the regulations and procedures for section 7 consultation, including the role of permit or license applicants, can be found in the "Endangered Species Consultation Handbook" at:

http://www.fws.gov/endangered/esa-library/pdf/TOC-GLOS.PDF

Please be aware that bald and golden eagles are protected under the Bald and Golden Eagle Protection Act (16 U.S.C. 668 *et seq.*), and projects affecting these species may require development of an eagle conservation plan (http://www.fws.gov/windenergy/eagle_guidance.html). Additionally, wind energy projects should follow the wind energy guidelines (http://www.fws.gov/windenergy/) for minimizing impacts to migratory birds and bats.

Guidance for minimizing impacts to migratory birds for projects including communications towers (e.g., cellular, digital television, radio, and emergency broadcast) can be found at: http://www.fws.gov/migratorybirds/CurrentBirdIssues/Hazards/towers/towers.htm; http://www.towerkill.com; and http://www.fws.gov/migratorybirds/CurrentBirdIssues/Hazards/towers/comtow.html.

We appreciate your concern for threatened and endangered species. The Service encourages Federal agencies to include conservation of threatened and endangered species into their project planning to further the purposes of the Act. Please include the Consultation Tracking Number in the header of this letter with any request for consultation or correspondence about your project that you submit to our office.

Attachment(s):

Official Species List

Official Species List

This list is provided pursuant to Section 7 of the Endangered Species Act, and fulfills the requirement for Federal agencies to "request of the Secretary of the Interior information whether any species which is listed or proposed to be listed may be present in the area of a proposed action".

This species list is provided by:

New England Ecological Services Field Office 70 Commercial Street, Suite 300 Concord, NH 03301-5094 (603) 223-2541

Project Summary

Consultation Code: 05E1NE00-2019-SLI-2552

Event Code: 05E1NE00-2019-E-06598

Project Name: Madison Commons

Project Type: Water Withdrawal / Depletion

Project Description: Construction dewatering in the vicinity of Madison Street and Washington

Street, Worcester, MA

Project Location:

Approximate location of the project can be viewed in Google Maps: https://www.google.com/maps/place/42.25565547975933N71.80128081731468W

Counties: Worcester, MA

Endangered Species Act Species

There is a total of 1 threatened, endangered, or candidate species on this species list.

Species on this list should be considered in an effects analysis for your project and could include species that exist in another geographic area. For example, certain fish may appear on the species list because a project could affect downstream species.

IPaC does not display listed species or critical habitats under the sole jurisdiction of NOAA Fisheries¹, as USFWS does not have the authority to speak on behalf of NOAA and the Department of Commerce.

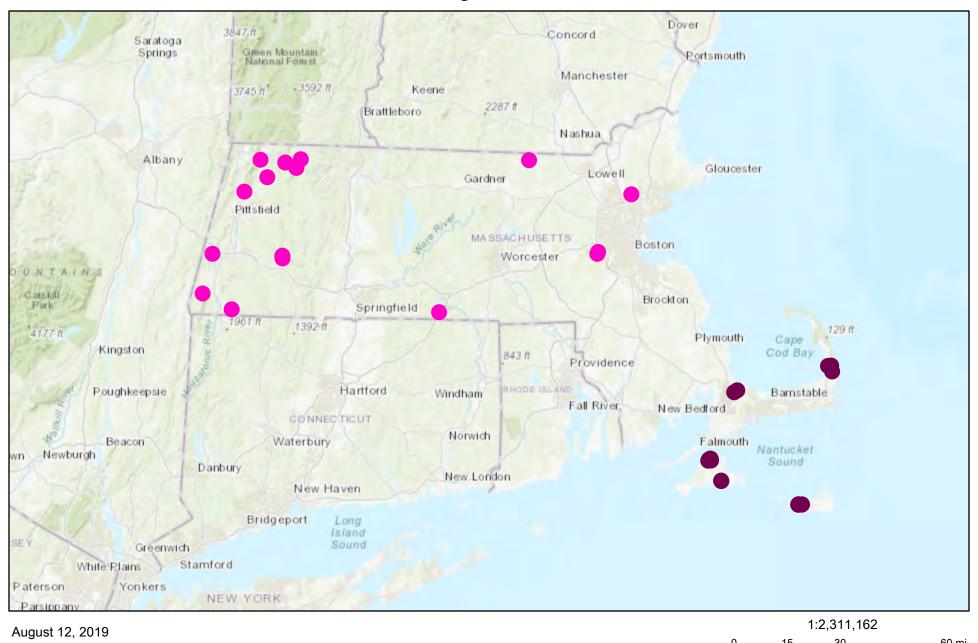
See the "Critical habitats" section below for those critical habitats that lie wholly or partially within your project area under this office's jurisdiction. Please contact the designated FWS office if you have questions.

1. <u>NOAA Fisheries</u>, also known as the National Marine Fisheries Service (NMFS), is an office of the National Oceanic and Atmospheric Administration within the Department of Commerce.

Mammals

NAME STATUS

Northern Long-eared Bat Myotis septentrionalis


Threatened

No critical habitat has been designated for this species. Species profile: https://ecos.fws.gov/ecp/species/9045

Critical habitats

THERE ARE NO CRITICAL HABITATS WITHIN YOUR PROJECT AREA UNDER THIS OFFICE'S JURISDICTION.

NHESP No. Long-eared Bat Locations

From: Zachary Jylkka - NOAA Federal

To: <u>Corinne Disenhof</u>
Subject: Re: Worcester, MA RGP

Date: Thursday, August 8, 2019 5:00:43 PM

Hi Corinne,

Thanks for the inquiry.

Please consult our ESA Section 7 Mapper to learn more about where we expect to find ESA-listed species or critical habitat under our office's jurisdiction: https://noaa.maps.arcgis.com/apps/webappviewer/index.html? id=1bc332edc5204e03b250ac11f9914a27

We do not have any listed species or critical habitat in the immediate vicinity of Worcester.

Thanks, Zach

On Thu, Aug 8, 2019 at 4:57 PM NMFS.GAR ESA.Section7 - NOAA Service Account nmfs.gar.esa.section7@noaa.gov> wrote:

----- Forwarded message -----

From: Corinne Disenhof < cdisenhof@sanbornhead.com>

Date: Thu, Aug 8, 2019 at 3:57 PM Subject: Worcester, MA RGP

To: Nmfs.gar.esa.section7@noaa.gov < Nmfs.gar.esa.section7@noaa.gov >

Good afternoon,

I am requesting information to be included as part of a Notice of Intent (NOI) for a Remediation General Permit (RGP). The NOI is for construction dewatering during excavation activities in the vicinity of 37-40 Gold Street in Worcester, Massachusetts. Effluent will be discharged to the Middle River via a drainage to an underground culvert ("Mill Brook") which confluences with the Middle River.

As part of the application to the USEPA for the RGP, we need to investigate whether this proposed temporary discharge has the potential to adversely affect any federally listed species in the reach of the Middle River located downstream of the discharge point.

The approximate discharge location is:

Latitude: 42.23402 Longitude: -71.79342

Thank you in advance for your assistance, and please let me know if you require further information.

Corinne Disenhof

--

Corinne Disenhof

Geotechnical Project Engineer

SANBORN | HEAD & ASSOCIATES, INC.

1 Technology Park Drive, Westford, MA 01886 T 978.392.0900 D 978.577.1037 C 603.498.2075 www.sanbornhead.com

Click here to follow us on <u>LinkedIn</u> / <u>Twitter</u> / <u>Facebook</u>

This message and any attachments are intended for the individual or entity named above and may contain privileged or confidential information. If you are not the intended recipient, please do not forward, copy, print, use or disclose this communication to others; please notify the sender by replying to this message and then delete the message and any attachments.

--

Zach Jylkka
Fisheries Biologist
Protected Resources Division
Greater Atlantic Regional Fisheries Office
NOAA Fisheries
Gloucester, MA 01930
zachary.jylkka@noaa.gov

office: (978) 282-8467 Pronouns: (he/him/his)

For additional ESA Section 7 information and Critical Habitat guidance, please see: www.greateratlantic.fisheries.noaa.gov/protected/section7

APPENDIX H

NATIONAL REGISTER OF HISTORICAL PLACES, WORCESTER, MASSACHUSETTS

	1			voicester, massachusetts			
Ref#	Property Name	Name of Multiple Property Listing	Listed Date	Street & Number	City	County	State
80000595	Abbott Street School	Worcester MRA		36 Abbott St.	•	•	MASSACHUSETTS
80000584	Adams, Elwood, Store	Worcester MRA		156 Main St.			MASSACHUSETTS
80000483	Adriatic Mills	Worcester MRA	, ,	3-35 Armory St.			MASSACHUSETTS
89002392	Ahern, Catherine, Three-Decker	Worcester Three-Deckers TR		215 Cambridge St.			MASSACHUSETTS
80000544	Alexander, Arad, House	Worcester MRA		53 Waverly St.			MASSACHUSETTS
80000579	Allen, Charles, House	Worcester MRA		65 Elm St.			MASSACHUSETTS
68000018	American Antiquarian Society	Workester Filds		185 Salisbury St.			MASSACHUSETTS
89002355	Anderson, Ludwig, Three-Decker	Worcester Three-Deckers TR		4 Fairbanks St.			MASSACHUSETTS
80000598	Armsby Block	Worcester MRA		144-148 Main St.			MASSACHUSETTS
80000542	Ash Street School	Worcester MRA	3/5/1980				MASSACHUSETTS
80000312	Ashworth and Jones Factory	Worcester MRA		1511 Main St.			MASSACHUSETTS
88000429	Aurora Hotel	Worcester MRA	, ,	652660 Main St.			MASSACHUSETTS
80000611	Babcock Block	Worcester MRA		600 Main St.			MASSACHUSETTS
	Baker, Peter, Three-Decker	Worcester Three-Deckers TR		90 Vernon St.			MASSACHUSETTS
	Bancroft Hotel	Worcester MRA		50 Franklin St.			MASSACHUSETTS
	Bancroft Tower	Worcester MRA		Bancroft Tower Rd.			MASSACHUSETTS
80000569	Bannister, Emory, House	Worcester MRA		3 Harvard St.			MASSACHUSETTS
80000592	Barker, Richard, Octagon House	Worcester MRA		312 Plantation St.			MASSACHUSETTS
89002429	Battelle, Marion, Three-Decker	Worcester Three-Deckers TR		13 Preston St.			MASSACHUSETTS
80000538	Beacon Street Firehouse	Worcester MRA		108 Beacon St.			MASSACHUSETTS
89002377	Beaver Street Historic District	Worcester Three-Deckers TR		3139 Beaver St.			MASSACHUSETTS
80000560	Bentley, George, House	Worcester MRA		9 Earle St.			MASSACHUSETTS
80000300	Bliss Building	Worcester MRA		26 Old Lincoln St.			MASSACHUSETTS
	Blodgett, Lydia, Three-Decker	Worcester Three-Deckers TR		167 Eastern Ave.			MASSACHUSETTS
	Bloomingdale Firehouse	Worcester MRA		676 Franklin St.			MASSACHUSETTS
80000562	Bloomingdale School	Worcester MRA		327 Plantation St.			MASSACHUSETTS
80000590	Borden-Pond House	Worcester MRA		40 Laurel St.			MASSACHUSETTS
89002414	Bostrom, Eric, Three-Decker	Worcester MrkA Worcester Three-Deckers TR		152 Eastern Ave.			MASSACHUSETTS
	Boulevard Diner	Diners of Massachusetts MPS		155 Shrewsbury St.			MASSACHUSETTS
89002360	Bousquet, Henry, Three-Decker	Worcester Three-Deckers TR		8/10 Fairmont Ave.			MASSACHUSETTS
80000540	Boynton and Windsor	Worcester MRA		718 and 720 Main St.			MASSACHUSETTS
	Brightside Apartments	Worcester MRA		2 King St.			MASSACHUSETTS
	Brooks, John, House	Worcester MRA		12 Nelson Pl.			MASSACHUSETTS
	Cambridge Street Firehouse	Worcester MRA		534 Cambridge St.			MASSACHUSETTS
	Cambridge Street School	Worcester MRA	, ,	510 Cambridge St.			MASSACHUSETTS
	Carlson, Eric, Three-Decker	Worcester Three-Deckers TR		154 Eastern Ave.			MASSACHUSETTS
L	Castle Street Row	Worcester MRA	, ,	4-18 Castle St.			MASSACHUSETTS
	Castle Street RowBoundary Increase	Worcester MRA		20-24 Castle St.			MASSACHUSETTS
	Cathedral of St. Paul	Worcester MRA		38 Chatham St.			MASSACHUSETTS
	Chadwick Square Diner	Diners of Massachusetts MPS		95 rear Prescott St.			MASSACHUSETTS
	Chadwick-Brittan House	Worcester MRA		309 Lincoln St.			MASSACHUSETTS
	Chamberlain, Charles, House	Worcester MRA		373 Pleasant St.			MASSACHUSETTS
	Chamberlain, Charles, House	Worcester MRA		2 Brookshire Dr.			MASSACHUSETTS
	Clark University	Worcester MRA	, ,	Clark University Campus			MASSACHUSETTS
	Cobb, George, House	Worcester MRA		24 William St.			MASSACHUSETTS
	Colton's Block	Worcester MRA		588 Main St.			MASSACHUSETTS
	Copeland, Samuel, House	Worcester MRA		31 Harvard St.			MASSACHUSETTS
	Corner Lunch	Diners of Massachusetts MPS		133 Lamartine St.			MASSACHUSETTS
00001200	GOTTICT BUILDI	ט וויונים טו ויומסטמנוועטכננט ויוו ט	11/13/2000	1100 Lamai une oc.	wortester	** 01 (63(61	INDUCATION IN

Ref#	Property Name	Name of Multiple Property Listing	Listed Date Street & Number	City	County	State
89002383	Crabtree, Thomas, Three-Decker	Worcester Three-Deckers TR	2/9/1990 22 Haynes St.			MASSACHUSETTS
80000552	Crawford, Elias, House	Worcester MRA	3/5/1980 3 Norwood St.	Worcester	Worcester	MASSACHUSETTS
80000541	Crompton Loom Works	Worcester MRA	3/5/1980 132-142 Green St.	Worcester	Worcester	MASSACHUSETTS
89002379	Crystal Street Historic District	Worcester Three-Deckers TR	2/9/1990 3034 Crystal St.	Worcester	Worcester	MASSACHUSETTS
80000526	Daniels, Frederick, House	Worcester MRA	3/5/1980 148 Lincoln St.	Worcester	Worcester	MASSACHUSETTS
80000546	Dartmouth Street School	Worcester MRA	3/5/1980 13 Dartmouth St.	Worcester	Worcester	MASSACHUSETTS
80000578	Davis, Isaac, House	Worcester MRA	3/5/1980 1 Oak St.	Worcester	Worcester	MASSACHUSETTS
80000574	Davis, Joseph, House	Worcester MRA	3/5/1980 41 Elm St.	Worcester	Worcester	MASSACHUSETTS
89002398	Davis, Rodney, Three-Decker	Worcester Three-Deckers TR	2/9/1990 62 Catharine St.	Worcester	Worcester	MASSACHUSETTS
	Davis, Wesley, Three-Decker	Worcester Three-Deckers TR	2/9/1990 7 Albert St.	Worcester	Worcester	MASSACHUSETTS
	Day Building		9/13/1978 300-310 Main St.			MASSACHUSETTS
	Dean, Frank L. and Mabel H., House		12/5/2002 10 Cedar St.			MASSACHUSETTS
	Dean, Mary, Three-Decker	Worcester Three-Deckers TR	2/9/1990 130 Belmont St.			MASSACHUSETTS
	Delsignore, Louis, Three-Decker	Worcester Three-Deckers TR	2/9/1990 12 Imperial Rd.			MASSACHUSETTS
	Dewey Francis, House	Worcester MRA	3/5/1980 71 Elm St.			MASSACHUSETTS
0000000	Dodge Block and Sawyer Building, Bancroft Trust	Wordester First	0/0/1900/11 Emil 60	Workester	W of cester	THIOTIGITO BETTO
02000155	Building	Worcester MRA	3/15/2002 60 Franklin St.	Worcester	Worcester	MASSACHUSETTS
	Dodge, Helen, Three-Decker	Worcester Three-Deckers TR	2/9/1990 570 Pleasant St.			MASSACHUSETTS
	Doran, Thomas F., Three-Decker	Worcester Three-Deckers TR	2/9/1990 27 John St.			MASSACHUSETTS
	Dowley-Taylor House	Worcester MRA	3/5/1980 770 Main St.			MASSACHUSETTS
	Downing Street School	Worcester MRA	3/5/1980 92 Downing St.			MASSACHUSETTS
	Drew, Elvira, Three-Decker	Worcester Three-Deckers TR	2/9/1990 42 Abbott St.			MASSACHUSETTS
	Duke, Philip, Three-Decker	Worcester Three-Deckers TR	2/9/1990 7 Maxwell St.			MASSACHUSETTS
	Dworman, David, Three-Decker	Worcester Three-Deckers TR	2/9/1990 159 Providence St.			MASSACHUSETTS
	East Worcester School-Norcross Factory	Worcester MRA	3/5/1980 10 E. Worcester St.			MASSACHUSETTS
	Elizabeth Street School	Worcester MRA Worcester MRA	3/5/1980 31 Elizabeth St.			MASSACHUSETTS
	Elm Park	Worcester MRA	7/1/1970 Elm Park			MASSACHUSETTS
	Elm Street Historic District	Worcester Three-Deckers TR	2/9/1990 132148 Elm St.			MASSACHUSETTS
	Emmanuel Baptist	Worcester MRA	3/5/1980 717 Main St.			MASSACHUSETTS
	English High School	Worcester MRA Worcester MRA	3/5/1980 20 Irving St.			MASSACHUSETTS
	Enterprise Building	Worcester MRA Worcester MRA	3/5/1980 540 Main St.			MASSACHUSETTS
	Erikson, Knut, Three-Decker		2/9/1990 19 Stanton St.			MASSACHUSETTS
	Euclid AvenueMontrose Street Historic District	Worcester Three-Deckers TR Worcester Three-Deckers TR	2/9/1990 Along Euclid Ave. and Montrose St., between Vernon St. and Perry Ave.			MASSACHUSETTS
	Fairlawn	Worcester MRA	3/5/1980 189 May St.			MASSACHUSETTS
	Fay Street Historic District	Worcester Three-Deckers TR Worcester MRA	2/9/1990 46 Fay St.			MASSACHUSETTS MASSACHUSETTS
	Fitch, C.H., House		3/5/1980 15 Oread St.			
	Flagg, Amos, House	Worcester MRA	3/5/1980 246 Burncoat St.			MASSACHUSETTS
	Flagg, Benjamin, House	Worcester MRA	3/5/1980 136 Plantation St.			MASSACHUSETTS
	Flagg, Levi, Three-Decker	Worcester Three-Deckers TR	2/9/1990 79 Florence St.			MASSACHUSETTS
	Fontaine, George, Three-Decker	Worcester Three-Deckers TR	2/9/1990 141 Vernon St.			MASSACHUSETTS
	Forbes, William Trowbridge, House	Worcester MRA	3/5/1980 23 Trowbridge Rd.			MASSACHUSETTS
	Forest Hill Cottage	Worcester MRA	3/5/1980 22 Windsor St.			MASSACHUSETTS
	Freeland Street School	Worcester MRA	3/5/1980 12 Freeland St.			MASSACHUSETTS
	Friberg, Andrew, Three-Decker	Worcester Three-Deckers TR	2/9/1990 26 Ames St.			MASSACHUSETTS
	G.A.R. Hall	I W	3/13/1975 55 Pearl St.			MASSACHUSETTS
	Gabriel, George, House	Worcester MRA	3/5/1980 31 Lenox St.			MASSACHUSETTS
	Gale, George, House	Worcester MRA	3/5/1980 15 Elizabeth St.			MASSACHUSETTS
89002356	Giguere, Thomas, Three-Decker	Worcester Three-Deckers TR	2/9/1990 18 Fairhaven Rd.	Worcester	worcester	MASSACHUSETTS

	<u> </u>		1	Nicester, Massachusetts			
Ref#	Property Name	Name of Multiple Property Listing	Listed Date	Street & Number	City	County	State
00001342	Gilman Block		11/20/2000	207-219 Main St.	•	•	MASSACHUSETTS
80000555	Goddard House	Worcester MRA		12 Catherine St.			MASSACHUSETTS
80000525	Goddard, Harry, House	Worcester MRA	, ,	190 Salisbury St.			MASSACHUSETTS
07001202	Goldberg Building	Worcester MRA		97-103 Water St.			MASSACHUSETTS
80000564	Goulding, Henry, House	Worcester MRA		26 Harvard St.			MASSACHUSETTS
80000566	Goulding, W.H., House	Worcester MRA	3/5/1980				MASSACHUSETTS
80000545	Grafton Street School	Worcester MRA		311 Grafton St.			MASSACHUSETTS
80000522	Green Hill Park Shelter	Worcester MRA		Green Hill Parkway			MASSACHUSETTS
80000511	Greendale Branch Library	Worcester MRA		470 W. Boylston St.			MASSACHUSETTS
76000949	Greendale Village Improvement Society Building	Worcester MRA		480 W. Boylston St.			MASSACHUSETTS
89002388	Gullberg, Evert, Three-Decker	Worcester Three-Deckers TR		18 Ashton St.			MASSACHUSETTS
11000068	Hadley Furniture Company Building			651-659 Main St			MASSACHUSETTS
89002433	Hadley, Gilbert, Three-Decker	Worcester Three-Deckers TR		31 Russell St.			MASSACHUSETTS
	Hall, Charles A., Three-Decker	Worcester Three-Deckers TR		68 Mason St.			MASSACHUSETTS
	Hammond Heights	Worcester MRA		Properties along Germain, Haviland, Highland, and Westland Sts. and Institute Rd.			MASSACHUSETTS
80000632	Hammond Organ Factory	Worcester MRA	3/5/1980				MASSACHUSETTS
80000543	Harding-Winter Street Manufacturing District	Worcester MRA		28-88 Winter St.			MASSACHUSETTS
80000602	Harris-Merrick House	Worcester MRA		41 Fruit St.			MASSACHUSETTS
80000572	Hastins, John, Cottage	Worcester MRA		31 William St.			MASSACHUSETTS
80000514	Higgins Armory Museum	Worcester MRA		100 Barber Ave.			MASSACHUSETTS
80000311	Higgins, Aldus Chapin, House	Worcester MRA		1 John Wing Rd.			MASSACHUSETTS
89002420	Hirst, Samuel, Three-Decker	Worcester Three-Deckers TR		90 Lovell St.			MASSACHUSETTS
	Hobbs, Marcus, House	Worcester MRA		16 William St.			MASSACHUSETTS
	Hogg, William, House	Worcester MRA		54 Elm St.			MASSACHUSETTS
	Holy Cross College	Worcester MRA		Holy Cross College Campus			MASSACHUSETTS
	Holy Name of Jesus Complex	Worcester MRA		Illinois St.			MASSACHUSETTS
	Hope Cemetery	Worcester Mildr		119 Webster St.			MASSACHUSETTS
89002371	Houghton Street Historic District	Worcester Three-Deckers TR		Houghton St. between Palm and Dorchester Sts.			MASSACHUSETTS
89002451	Hunt, Daniel, Three-Decker	Worcester Three-Deckers TR		9 Wyman St.			MASSACHUSETTS
89002412	Hunt, David, Three-Decker	Worcester Three-Deckers TR		26 Louise St.			MASSACHUSETTS
80000535	IOOF Building	Worcester MRA		674 Main St.			MASSACHUSETTS
00000333	Tool Building	Worcester Mildr	3/3/1700	or France	Worcester	Worcester	THISSITCH COLL TO
80000510	Indian Hill-North Village	Worcester MRA	3/5/1980	properties along Ararat St. and Delaval, Heroult, Marconi, Watt, and Westinghouse Rds.	Worcester	Worcester	MASSACHUSETTS
	Ingleside Avenue Historic District	Worcester Three-Deckers TR		218220 and 226228 Ingleside Ave.			MASSACHUSETTS
	Ingraham, Harry B., Three-Decker	Worcester Three-Deckers TR		19 Freeland St.			MASSACHUSETTS
80000554	Institutional District	Worcester MRA		Properties on Lincoln and Wheaton Squares and on Salisbury and Tuckerman Sts.			MASSACHUSETTS
89002389	Johnson, Edwin, Three-Decker	Worcester Three-Deckers TR	, ,	183 Austin St.			MASSACHUSETTS
89002416	Johnson, John and Edward, Three-Decker	Worcester Three-Deckers TR		31 Louise St.			MASSACHUSETTS
89002408	Johnson, John, Three-Decker	Worcester Three-Deckers TR		140 Eastern Ave.			MASSACHUSETTS
89002437	Johnson, Paul, Three-Decker	Worcester Three-Deckers TR	, ,	7 Stanton St.			MASSACHUSETTS
80000533	Junction Shop and Herman Street District	Worcester MRA		Properties on Jackson, Herman, and Beacon Sts.			MASSACHUSETTS
89002411	Kaller, Erick, Three-Decker	Worcester Three-Deckers TR		146 Eastern Ave.			MASSACHUSETTS
	Kaller, Erick, Three-Decker	Worcester Three-Deckers TR		148 Eastern Ave.			MASSACHUSETTS
	Katz and Leavitt Apartment House	Worcester MRA		53 Elm St.			MASSACHUSETTS
	Knollwood	Worcester MRA		425 Salisbury St.			MASSACHUSETTS
80000628	Knowles, Lucius, House	Worcester MRA		838 Main St.			MASSACHUSETTS
80000492	Larchmont	Worcester MRA		36 Butler St.			MASSACHUSETTS
89002443	Larson, Swan, Three-Decker	Worcester Three-Deckers TR		12 Summerhill Ave.			MASSACHUSETTS
07002443	Lai soii, swaii, i iii cc-Deckei	MOLCESTEL THIEE-DECKELS IV	4/ 2/ 1770	12 Juninet IIII Ave.	vv oi cestel	AN OI CESTEL	INDOOUGHOSE I 19

Ref#	Property Name	Name of Multiple Property Listing	Listed Date	Street & Number	City	County	State
80000623	Legg, John, House	Worcester MRA	3/5/1980	5 Claremont St.	Worcester	Worcester	MASSACHUSETTS
89002446	Levenson, Morris, Three-Decker	Worcester Three-Deckers TR		38 Plantation St.			MASSACHUSETTS
74002046	Liberty Farm	Worcester MRA		116 Mower St.			MASSACHUSETTS
80000570	Lincoln Estate-Elm Park Historic District	Worcester MRA		Properties along Cedar, Fruit, Oak, Sever, West, and William Sts.			MASSACHUSETTS
80000573	Lincoln, Gov. Levi, House	Worcester MRA		4 Avalon Pl.			MASSACHUSETTS
80000613	Lower Pleasant Street District	Worcester MRA		418-426 Main St. and 9-49 Pleasant St.			MASSACHUSETTS
89002403	Lumb, Thomas, Three-Decker	Worcester Three-Deckers TR		80 Dewey St.			MASSACHUSETTS
89002448	Lumb, Thomas, Three-Decker	Worcester Three-Deckers TR		44 Winfield St.			MASSACHUSETTS
89002399	Lundberg, Charles, Three-Decker	Worcester Three-Deckers TR		67 Catharine St.			MASSACHUSETTS
89002434	Magnuson, Charles, Three-Decker	Worcester Three-Deckers TR		56/58 Olga Ave.			MASSACHUSETTS
84000096	Malvern Road School	Worcester MRA		Malvern Rd. and Southbridge St.			MASSACHUSETTS
	Marble, Jerome, House	Worcester MRA		23 Harvard St.			MASSACHUSETTS
89002435	Mark, John, Three-Decker	Worcester Three-Deckers TR		24 Sigel St.			MASSACHUSETTS
	Marsh, Alexander, House	Worcester MRA		57 Elm St.			MASSACHUSETTS
	Masonic Temple	Worcester MRA	3/5/1980				MASSACHUSETTS
	Massachusetts Avenue Historic District	Worcester MRA		Between Salisbury St. and Drury Lane			MASSACHUSETTS
	Massad, Anthony, Three-Decker	Worcester Three-Deckers TR		14 Harlow St.			MASSACHUSETTS
	May Street Historic District	Worcester MRA		Properties from 29 to 46 May St.			MASSACHUSETTS
	McCafferty, Elizabeth, Three-Decker	Worcester Three-Deckers TR		45 Canterbury St.			MASSACHUSETTS
89002442	McCarron, Andrew, Three-Decker	Worcester Three-Deckers TR	2/9/1990	·			MASSACHUSETTS
89002366	McDermott, John B., Three-Decker	Worcester Three-Deckers TR		21 Freeland St.			MASSACHUSETTS
	McFarland, William, House	Worcester MRA		525 Salisbury St.			MASSACHUSETTS
89002407	McGrath, Patrick, Three-Decker	Worcester Three-Deckers TR		50 Dorchester St.			MASSACHUSETTS
89002439	McGuinness, Patrick, Three-Decker	Worcester Three-Deckers TR		25 Suffield St.	Worcester	Worcester	MASSACHUSETTS
89002436	McPartland, Frank, Three-Decker	Worcester Three-Deckers TR	2/9/1990	61 Paine St.	Worcester	Worcester	MASSACHUSETTS
89002428	McPartland, James, Three-Decker	Worcester Three-Deckers TR	2/9/1990	17 Pond St.	Worcester	Worcester	MASSACHUSETTS
72000152	Mechanics Hall		11/9/1972	321 Main St.	Worcester	Worcester	MASSACHUSETTS
80000577	Mechanics' Hall District	Worcester MRA	3/5/1980	Properties between 282 and 343 Main St.	Worcester	Worcester	MASSACHUSETTS
80000581	Merrill Double House	Worcester MRA	3/5/1980	18-20 West St.	Worcester	Worcester	MASSACHUSETTS
80000527	Miles, Charles, House	Worcester MRA	3/5/1980	131 Lincoln St.	Worcester	Worcester	MASSACHUSETTS
03001178	Miss Worcester Diner	Diners of Massachusetts MPS		302 Southbridge St.			MASSACHUSETTS
80000616	Mission Chapel	Worcester MRA	3/5/1980	205 Summer St.	Worcester	Worcester	MASSACHUSETTS
80000521		Worcester MRA		Properties along Monadnock, Sagamore, Waconah, and Whitman Rds., and Salisbury St.			MASSACHUSETTS
	Moore, Jesse, House	Worcester MRA		25 Catherine St.			MASSACHUSETTS
	Munroe, Sarah, Three-Decker	Worcester Three-Deckers TR		11 Rodney St.			MASSACHUSETTS
	Murphy, Patrick, Three-Decker			31 Jefferson St.			MASSACHUSETTS
89002391	Nelson, Christina, Three-Decker	Worcester Three-Deckers TR		45 Butler St.			MASSACHUSETTS
80000508	Newton, Charles, House	Worcester MRA		24 Brattle St.			MASSACHUSETTS
09000142	Newton, S.D., House	Worcester MRA		8 Sycamore St.			MASSACHUSETTS
80000624	Norcross Brothers Houses	Worcester MRA		16, 18 Claremont St.			MASSACHUSETTS
	North Worcester Aid Society	Worcester MRA	, ,	58 Holden St.			MASSACHUSETTS
	O'Brien, Richard, Three-Decker	Worcester Three-Deckers TR		43 Suffolk St.			MASSACHUSETTS
	O'Connor, James, Three-Decker	Worcester Three-Deckers TR		23 Endicott St.			MASSACHUSETTS
	O'Connor, JamesJohn Trybowski Three-Decker	Worcester Three-Deckers TR		21 Canton St.			MASSACHUSETTS
	Odd Fellows' Home	Worcester MRA		40 Randolph Rd.			MASSACHUSETTS
	Old State Mutual Building	Worcester MRA		240 Main St.			MASSACHUSETTS
100002161	Osgood Bradley Building		3/5/2018	18 Grafton St.	Worcester	Worcester	MASSACHUSETTS

		<u> </u>			Voicestei, massachusetts			
	Ref#	Property Name	Name of Multiple Property Listing	Listed Date	Street & Number	City	County	State
	80000605			3/5/1980	Properties along Ashland, Austin, Chatham, Congress, Crown, and Pleasant Sts.	_	•	
Maintained Marce More More More More More More Mass Anthony Marce More More Mass Anthony Mass Anth	76000954		Worcester MRA		, ,			
Wordstand Word								
Perry Avenue Bissoric District	80000607							
		-		_ , ,				
				_ , ,				
Peterson, Larr—James Reidy Three-Decker Worcester Three-Deckers TR 27/97990 Hardway S. Worcester Worcester MRA 37/57990 Plansant St. Worcester MRA Worcester MRA 37/57990 Plansant St. Worcester MRA								
Pligrian Congregational Church				, ,				
	80000551			_ , ,				
			Worcester MRA		ů.			
Providence Street Historic District								
Popular Provins Arthur, Three-Decker Worcester MA				, ,				
Worcester Warrester Warr								
Worcester MRA 3/5/1980 31 Millbury St. Worcester MRA 3/5/1980 37/5								
Worcester MRA 3/5/1980 37 Milbury St. Worcester Worcester MRA 3/5/1980 37 Milbury St. Worcester Wo								
390902422 Red-Fraik, Three-Decker Worcester MASACHUSE					·			
1900/2422 Red, Frank, Three-Decker Worcester MRA 3/5/1980 13.3 W. Blyston St. Worcester Worcester MASSACHUSE					·			
S0000507 Rice, Ezra, House		· ·						
S5002798 Richmond, Willard, Apartment Block Worcester MRA 11/7/1985 34 austin St. Worcester Worcester MasSACHIUSE 99002440 Ridyard, Albert, Three-Decker Worcester Three-Deckers TR 2/9/1990 25 Dewey St. Worcester Worcester Worcester MasSACHIUSE 99002407 Ridyard, B. E., Three-Decker Worcester Three-Deckers TR 2/9/1990 25 Dewey St. Worcester					,			
99002443 Ridyard, Albert, Three-Decker Worcester Three-Deckers TR 2/9/1990 5 Mount Pleasant St. Worcester Worcester Worcester R. 2/9/1990 8 Devey St. Worcester Worcester Worcester Worcester R. 2/9/1990 8 Dix St. Worcester Worcester Worcester Worcester Worcester R. 2/9/1990 8 Dix St. Worcester Worcester Worcester Worcester R. 2/9/1990 8 Dix St. Worcester Worcester Worcester Worcester R. 2/9/1990 8 Dix St. Worcester Worcester Worcester Worcester R. 2/9/1990 8 Dix St. Worcester Worcester Worcester Worcester Worcester Worcester R. 2/9/1990 8 Dix St. Worcester Worcester Worcester Worcester Worcester Worcester R. 2/9/1990 8 Dix St. Worcester Wo	85002783				·			
99002402 Ridyard, B. F., Three-Decker Worcester Three-Deckers TR 2/9/1990 8 Dix St. Worcester Worcester Worcester St. 2/9/1990 8 Dix St. Worcester Worcester St. 2/9/1990 8 Dix St. Worcester Worcester Worcester St. 2/9/1990 8 Dix St. Worcester Worcester Worcester Worcester Worcester St. 2/9/1990 8 Dix St. Worcester Worcester Worcester Worcester Worcester MASSACHUSE 90002397 Roynane, Catharine, Three-Decker Worcester MRA 3/5/1980 21 Catherine St. Worcester Worcester Worcester MRA Worcester Worcester MRA 3/5/1980 21 Catherine St. Worcester Worcester Worcester Worcester MRA 3/5/1980 25 Union St. Worcester Worcester Worcester Worcester MRA 3/5/1980 25 Union St. Worcester Worcester Worcester Worcester MRA 3/5/1980 25 Union St. Worcester Worcester Worcester Worcester MRA 3/5/1980 25 Union St. Worcester MRA 3/5/1980 49-51 Union St. Worcester								
939002455 Riordan, John, Three-Decker Worcester TR 2/9/1990 B Dix St. Worcester Worcester RS 2/9/1990 B Dix St. Worcester Worcester Worcester RS 2/9/1995 B Dix St. Worcester Worcester RS 2/9/1995 B Dix St. Worcester Worcester RS 2/9/1990 B Dix St. Worcester RS 2/9/1995 B Dix St. Worcester Worcester RS 2/9/1990 B Dix St. Worcester RS 2/9/1995 B Dix St. Worcester RS 2/9/1990 B Dix St. Worcester RS 2/9/1995 B Dix St. Worcester RS 2/9/1995 B Dix St. Worcester RS 2/9/1995 B Dix St. Worcester RS 2/9/1990 B Dix St. Worcester Worcester Worcester RS 2/9/1990 B Dix St. Worcester Worcester Worcester RS 2/9/1990 B Dix St. Worcester Worcester Worcester Worcester RS 2/9/1990 B Dix St. Worcester Worcester Worcester Worcester RS 2/9/1990 B Dix St. Worcester Worc				_ , ,				
39002397 Roynane, Catharine, Three-Decker Worcester MRA 3/5/1980 21 Catherine St. Worcester Morcester MASSACHUSE 85002782 Russell, The Worcester MRA 3/5/1980 22 Union St. Worcester MASSACHUSE 30000587 Salisbury Factory Building Worcester MRA 3/5/1980 25 Union St. Worcester MASSACHUSE 30000588 Salisbury Factory Building Worcester MRA 3/5/1980 25 Union St. Worcester MASSACHUSE 30000589 Salisbury Factory Building Worcester MRA 3/5/1980 25 Union St. Worcester MASSACHUSE 30000589 Salisbury Mansion and Store Worcester MRA 4 6/10/1975 61 Harvard St. Worcester MASSACHUSE 400000638 Salisbury Mansion and Store Worcester MRA 5/5/1980 30 Mr. Pleasant St. Worcester Worcester Worcester MASSACHUSE 300000638 Salisbury Mansion and Store Worcester MRA 5/5/1980 30 Mr. Pleasant St. Worcester Worcester Worcester MASSACHUSE 300000638 Salisbury Mansion and Store Worcester MRA 5/5/1980 30 Mr. Pleasant St. Worcester Worcester Worcester MASSACHUSE 300000638 Salisbury Mansion and Store Worcester MRA 5/5/1980 30 Mr. Pleasant St. Worcester Worcester Worcester MASSACHUSE 300000649 Salatuck, Moody, House Worcester MRA 5/5/1980 68 Main St. Worcester Worcester Worcester MASSACHUSE 300000640 Shea, Bridget, Three-Decker Worcester MassACHUSE 300000640 Shea, Bridget, Three-Decker Worcester MassACHUSE 300000669 Shatuck, Moody, House Worcester MassACHUSE 300000669 Shatuck, Moody, House Worcester MassACHUSE 300000669 Shatuck, Moody, House Worcester MassACHUSE 300000669 Shith, Ellion, House Worcester MassACHUSE 300000669 Shith, Ellion, House Worcester MassACHUSE 300000669 Shith, Ellion, House Worcester MRA 3/5/1980 39 Main St. Worcester Worcester Worcester MASSACHUSE 300000669 Shith, Ellion, House Worcester MRA 3/5/1980 189 Holden St. Worcester Worcester Worcester MASSACHUSE 300000540 South Unitarian Worcester MRA 3/5/1980 75 Southbridge St. Worcester Worcester WASSACHUSE 300000540 South Unitarian Worcester MRA 3/5/1980 75 Southbridge Sargent Manufacturing District Worcester MASSACHUSE 300000669 Southbridge-Sargent Manufacturing District Worcester MAS								
80000556 Ruggles, Draper, House Worcester MRA 3/5/1980 21 Catherine St. Worcester Worcester WassACHUSE 30000587 Salisbury Factory Building Worcester MRA 3/5/1980 25 Union St. Worcester MRA Worcester MRA 3/5/1980 49 Austin St. Worcester MRA Worcester MRA 3/5/1980 49 - St Union St. Worcester MRA Worcester MRA 3/5/1980 49 - St Union St. Worcester MRA Worcester MRA Worcester MRA 3/5/1980 49 - St Union St. Worcester MRA Worcester MRA Worcester MRA 3/5/1980 49 - St Union St. Worcester MRA SACHUSE St Worcester MRA Worcester MRA SACHUSE ST Worcester MRA Worcester	89002397							
Section Sect	80000556				<u> </u>			
30000587 Salisbury Factory Building Worcester MRA 3/5/1980 3 5 Union St. Worcester Worcester MASSACHUSE 3/5/1980 49-51 Union St. Worcester Worcester MASSACHUSE 5/5000837 Salisbury House Worcester MRA 6/10/1975 61 Harvard St. Worcester Worcester MASSACHUSE 5/5000838 Salisbury Mansion and Store Worcester MRA 5/5/1980 3 Mt. Pleasant St. Worcester MASSACHUSE 3/5/1980 3/5/1980 7/5/1991 3/5/1991 3								
Salisbury Factory Building Worcester MRA 3/5/1980 49-51 Union St. Worcester Worcester MASSACHUSE								
75000837 Salisbury House Worcester MRA 6/10/1975 61 Harvard St. Worcester MSSACHUSE 75000838 Salisbury Mansion and Store Worcester MRA 5/30/1975 30, 40 Highland St. Worcester Worcester MASSACHUSE 800006729 Shaarai Torah Synagogue Worcester MRA 5/7/1980 3 Mt. Pleasant St. Worcester Worcester Worcester MASSACHUSE 80000626 Shattuck, Moody, House Worcester MRA 3/5/1980 768 Main St. Worcester Worcester Worcester MASSACHUSE 80000626 Shattuck, Moody, House Worcester Three-Deckers TR 2/9/1990 21 Jefferson St. Worcester Worcester Worcester MASSACHUSE 80000609 Slater Building Worcester MrA 3/5/1980 390 Main St. Worcester Worcester Worcester Worcester MASSACHUSE 80000609 Slater Building Worcester MRA 3/5/1980 390 Main St. Worcester Worcester Worcester MASSACHUSE 80000609 Smith, Ellen M., Three-Decker Worcester MRA 3/5/1980 390 Main St. Worcester Worcester Worcester MASSACHUSE 80000609 Smith, Ellen M., Three-Decker Worcester MASSACHUSE 80000609 Smith, Ellen M., Three-Decker Worcester MASSACHUSE 80000609 Smith, Elliot, House Worcester MASSACHUSE 80000609 Smith, Elliot, House Worcester MRA 3/5/1980 390 Main St. Worcester Worcester MASSACHUSE 80000629 Smith, Elliot, House Worcester MRA 3/5/1980 158 Holden St. Worcester Worcester Worcester MASSACHUSE 80000629 Sonth Unitarian Worcester MRA 3/5/1980 88 Main St. Worcester Worcester Worcester MASSACHUSE 80000650 South Unitarian Worcester MRA 3/5/1980 88 Main St. Worcester Worcester Worcester MASSACHUSE 80000650 South Unitarian Worcester MRA 3/5/1980 715 Southbridge St. Worcester Worcester Worcester MASSACHUSE 80000669 St. John's Catholic Church Worcester MRA 3/5/1980 Southbridge, Sargent, and Gold Sts. Worcester Worcester Worcester MASSACHUSE 80000669 St. John's Catholic Church Worcester Worcester WASSACHUSE 80000669								
Salisbury Mansion and Store Worcester MRA 5/30/1975 30, 40 Highland St. Worcester MASSACHUSE Worcester Worcester MASSACHUSE Worcester Worceste				_ , ,				
Schoffield, James, House Worcester MRA 3/5/1980 3 Mt. Pleasant St. Worcester Worcester Worcester MASSACHUSE 5/7/1990 32 Providence St. Worcester Worcester Worcester Worcester MASSACHUSE 80000626 Shattuck, Moody, House Worcester MRA 3/5/1980 768 Main St. Worcester Worcester Worcester Worcester Worcester Three-Deckers TR 2/9/1990 21 Jefferson St. Worcester Worcester Worcester Worcester Three-Deckers TR 2/9/1990 69 Piedmont St. Worcester Worcester Worcester Worcester MASSACHUSE 80002400 Shate Building Worcester MRA 3/5/1980 390 Main St. Worcester Worcester Worcester Worcester MASSACHUSE 80000690 Slater Building Worcester MRA 3/5/1980 390 Main St. Worcester Worcester Worcester MASSACHUSE 80000690 Smith, Elliot, House Worcester MRA 3/5/1980 393 Main St. Worcester Worcester Worcester MASSACHUSE 80000500 Smith, Elliot, House Worcester MRA 3/5/1980 138 Holden St. Worcester Worcester Worcester Worcester Worcester MASSACHUSE 80000528 Soho Cottage Worcester MRA 3/5/1980 158 Holden St. Worcester Worcester Worcester MASSACHUSE 80000550 South Unitarian Worcester MRA 3/5/1980 888 Main St. Worcester Worcester Worcester Worcester MASSACHUSE 80000550 South Unitarian Worcester MRA 3/5/1980 Southbridge Sargent Manufacturing District Worcester MASSACHUSE 80000534 Southbridge-Sargent Manufacturing District Worcester MASSACHUSE 80000534 Southbridge-Sargent Manufacturing District Worcester MASSACHUSE 800000534 Southbridge-Sargent Manufacturing District Worcester MASSACHUSE 80000659 St. John's Catholic Church Worcester MASSACHUSE 80000659 St. John's Catholic Church Worcester MASSACHUSE 80000659 St. John's Catholic Church Worcester Worcester MASSACHUSE 80000659 St. John's Catholic Church Worcester Worcester MASSACHUSE 80000659 St. John's Catholic Church Worcester MASSACHUSE 80000659 St. John's Catholic Church Worcester Worcester MASSACHUSE 80000659 St. John's Catholic Church Worcester MASSACHUSE 80000659 St. John's Catholic Church Worcester MASSACHUSE 80000659 St. John's Catholic Church Worcester MASSACHUSE 80000659 St. John's Catholic								
Sharai Torah Synagogue Worcester MRA 5/7/1990 32 Providence St. Worcester MASSACHUSE								
80000626 Shattuck, Moody, House Worcester MRA 3/5/1980 768 Main St. Worcester Morcester Morcester Massachuse 39002400 Shea, Bridget, Three-Decker Worcester Three-Deckers TR 2/9/1990 21 Jefferson St. Worcester Worcester Morcester Morcest								
Segon Stater Building Worcester MRA 3/5/1980 39 Main St. Worcester Worcester Worcester MRSACHUSE Worcester MRA 3/5/1980 39 Main St. Worcester Worcester Worcester MRA 3/5/1980 39 Main St. Worcester Worcester Worcester MRSACHUSE Worcester MRA 3/5/1980 39 Main St. Worcester Worcester Worcester MASSACHUSE Worcester MRA 3/5/1980 39 Main St. Worcester Worcester Worcester MASSACHUSE Worcester MRA 3/5/1980 39 Main St. Worcester Worcester Worcester MASSACHUSE Worcester MRA 3/5/1980 39 Main St. Worcester Worcester Worcester MASSACHUSE Worcester MRA 3/5/1980 158 Holden St. Worcester MRA 3/5/1980 158 Holden St. Worcester Worcester Worcester MASSACHUSE Worcester MRA 3/5/1980 888 Main St. Worcester Worcester Worcester MASSACHUSE Worcester MRA 3/5/1980 888 Main St. Worcester Worcester Worcester MASSACHUSE Worcester MRA 3/5/1980 888 Main St. Worcester Worcester Worcester MASSACHUSE Worcester MRA 3/5/1980 888 Main St. Worcester Worcester Worcester MASSACHUSE Worcester MRA 3/5/1980 888 Main St. Worcester Worcester Worcester MASSACHUSE Worcester MRA 3/5/1980 705 Southbridge St. Worcester MassACHUSE Worcester MASSACHUSE Worcester MRA 3/5/1980 Southbridge St. Worcester MassACHUSE Worcester MASSACHUSE Worcester MRA 3/5/1980 For Southbridge St. Worcester Worcester MASSACHUSE Worcester MASSACHUSE Worcester MASSACHUSE Worcester MRA 3/5/1980 For Southbridge St. Worcester Worcester MASSACHUSE Worcester MASSACHUSE Worcester MRA 3/5/1980 For Southbridge St. Worcester Worcester MASSACHUSE Worcester MASSACHUSE Worcester MRA 3/5/1980 For Southbridge St. Worcester Worcester MASSACHUSE Worcester MASSACHUSE Worcester MRA 3/5/1980 For Southbridge St. Worcester Worcester MASSACHUSE Worcester MRA 3/5/1980 For Southbridge St. Worcester MASSACHUSE Worcester MASS								
Simpson, Clara, Three-Decker Worcester Three-Deckers TR 2/9/1990 69 Piedmont St. Worcester MASSACHUSE 30000609 Slater Building Worcester MRA 3/5/1980 390 Main St. Worcester MASSACHUSE 30002409 Smith, Ellen M., Three-Decker Worcester Three-Deckers TR 2/9/1990 22 Kilby St. Worcester MASSACHUSE 30000629 Smith, Elliot, House Worcester MRA 3/5/1980 839 Main St. Worcester MRA 3/5/1980 158 Holden St. Worcester MRA 3/5/1980 158 Holden St. Worcester MASSACHUSE 30000528 Soho Cottage Worcester MRA 3/5/1980 21 Windsor St. Worcester MASSACHUSE 30000550 South Unitarian Worcester MRA 3/5/1980 888 Main St. Worcester MASSACHUSE 30000540 South Worcester Branch Library Worcester MRA 3/5/1980 705 Southbridge St. Worcester Manufacturing District Worcester MRA 3/5/1980 Southbridge, Sargent, and Gold Sts. Worcester MASSACHUSE 30000619 St. John's Catholic Church Worcester MRA 3/5/1980 40 Temple St. Worcester MASSACHUSE 3/5/1980 Worcester MASSACHUSE 3/5/1980 Worcester MASSACHUSE 3/5/1980 Southbridge, Sargent, and Gold Sts. Worcester MASSACHUSE 3/5/1980 Worcester MASSACHUSE 3/5/1980 Southbridge, Sargent, and Gold Sts. Worcester MASSACHUSE 3/5/1980 Worcester MASSACHUSE 3/5/1980 Worcester MASSACHUSE 3/5/1980 Southbridge, Sargent, and Gold Sts. Worcester MASSACHUSE 3/5/1980		•		_ , ,				
Signologo Slater Building Worcester MRA 3/5/1980 390 Main St. Worcester MASSACHUSE 39002409 Smith, Ellen M., Three-Decker Worcester Three-Deckers TR 2/9/1990 22 Kilby St. Worcester MASSACHUSE 30000629 Smith, Elliot, House Worcester MRA 3/5/1980 839 Main St. Worcester Worcester Worcester MASSACHUSE 30000538 Soho Cottage Worcester MRA 3/5/1980 21 Windsor St. Worcester Worcester Worcester MASSACHUSE 30000550 South Unitarian Worcester MRA 3/5/1980 888 Main St. Worcester Worcester Worcester MASSACHUSE 30000486 South Worcester Branch Library Worcester MRA 3/5/1980 50uthbridge, Sargent, and Gold Sts. Worcester Worcester Worcester MASSACHUSE 30000619 St. John's Catholic Church Worcester MRA 3/5/1980 40 Temple St. Worcester MASSACHUSE 3/5/1980 Worcester Worcester MASSACHUSE 3/5/1980 40 Temple St. Worcester Worcester Worcester MASSACHUSE 3/5/1980 Worcester Worcester MASSACHUSE 3/5/1980 Worcester MASSACHUSE 3/5/1980 Worcester MASSACHUSE 3/5/1980 Worcester MASSACHUSE 3/5/1980 Southbridge, Sargent, and Gold Sts. Worcester Worcester MASSACHUSE 3/5/1980 Worcester MASSACHUSE 3/5/1980 Southbridge, Sargent, and Gold Sts. Worcester Worcester MASSACHUSE 3/5/1980 Worcester MASSA								
Smith, Ellen M., Three-Decker Worcester Three-Deckers TR 2/9/1990 22 Kilby St. Worcester MASSACHUSE 3000629 Smith, Elliot, House Worcester MRA 3/5/1980 839 Main St. Worcester MASSACHUSE 30000509 Smith-Thaxter-Merrifield House Worcester MRA 3/5/1980 158 Holden St. Worcester MASSACHUSE 30000528 Soho Cottage Worcester MRA 3/5/1980 21 Windsor St. Worcester Worcester MASSACHUSE 30000550 South Unitarian Worcester MRA 3/5/1980 888 Main St. Worcester Branch Library Worcester MRA 3/5/1980 705 Southbridge St. Worcester Manufacturing District Worcester MRA 3/5/1980 Southbridge, Sargent, and Gold Sts. Worcester Worcester MASSACHUSE 30000619 St. John's Catholic Church Worcester MRA 3/5/1980 40 Temple St. Worcester MASSACHUSE 3/5/1980 Worcester MASSACHUSE 3/5/1980 Southbridge, Sargent, and Gold Sts. Worcester Worcester MASSACHUSE 3/5/1980 Southbridge, Sargent, and Gold Sts. Worcester Worcester MASSACHUSE 3/5/1980 Southbridge, Sargent, and Gold Sts. Worcester MASSACHUSE 3/5/1980 Southbridge St. Worcester MASSACHUSE 3/5/1980 S		*						
Smith, Elliot, House Worcester MRA 3/5/1980 839 Main St. Worcester MRA 3/5/1980 158 Holden St. Worcester MRA 3/5/1980 21 Windsor St. Worcester MRA 3/5/1980 21 Windsor St. Worcester MRA 3/5/1980 888 Main St. Worcester Worcester MASSACHUSE Worcester MASSACHUSE Worcester MRA 3/5/1980 888 Main St. Worcester Branch Library Worcester MRA 3/5/1980 705 Southbridge St. Worcester Branch Library Worcester MRA 3/5/1980 Southbridge, Sargent, and Gold Sts. Worcester Worcester MASSACHUSE Worcester MASS								
8000509 Smith-Thaxter-Merrifield House Worcester MRA 3/5/1980 158 Holden St. Worcester Massachuse 8000528 Soho Cottage Worcester MRA 3/5/1980 21 Windsor St. Worcester Worcester Worcester Worcester Massachuse 80000550 South Unitarian Worcester MRA 3/5/1980 888 Main St. Worcester Branch Library Worcester MRA 3/5/1980 705 Southbridge St. Worcester Worcester Worcester Worcester Massachuse 80000534 Southbridge-Sargent Manufacturing District Worcester MRA 3/5/1980 Southbridge, Sargent, and Gold Sts. Worcester Worcester Worcester Worcester Massachuse 80000619 St. John's Catholic Church Worcester MRA 3/5/1980 40 Temple St. Worcester St. Worcester Worcester Worcester Massachuse 80000619 St. John's Catholic Church Worcester MRA 3/5/1980 40 Temple St.		· · · · · · · · · · · · · · · · · · ·			· ·			
Soho Cottage Worcester MRA 3/5/1980 21 Windsor St. Worcester MRA 3/5/1980 21 Windsor St. Worcester Worcest								
South Unitarian Worcester MRA 3/5/1980 888 Main St. Worcester Branch Library Worcester Worcester MRA 3/5/1980 705 Southbridge St. Worcester Branch Library Worcester MRA 3/5/1980 705 Southbridge St. Worcester Massachuse Worcester Worcester Massachuse Worcester Worcester Massachuse Worcester Worcester Massachuse Worcester Worce								
80000486 South Worcester Branch Library Worcester MRA 3/5/1980 705 Southbridge St. 80000534 Southbridge-Sargent Manufacturing District Worcester MRA 3/5/1980 Southbridge, Sargent, and Gold Sts. 80000619 St. John's Catholic Church Worcester MRA 3/5/1980 40 Temple St. 80000619 Worcester								
S0000534 Southbridge-Sargent Manufacturing District Worcester MRA 3/5/1980 Southbridge, Sargent, and Gold Sts. Worcester Worcester Worcester Wassachuse Worcester MRA 3/5/1980 40 Temple St. Worcester Worcester Worcester Wassachuse Worcester Wassachuse Worcester Worcester Wassachuse Worcester Worcester Wassachuse Worcester Wassachuse Worcester Worcester Wassachuse Worcester Wassachuse Worcester Wassachuse Worcester Wassachuse Worcester Worcester Worcester Wassachuse Worcester Worcester Wassachuse Worcester Worcester Worcester Wassachuse Worcester Worceste								
80000619 St. John's Catholic Church Worcester MRA 3/5/1980 40 Temple St. Worcester Worcester Worcester MASSACHUSE								

Ref#	Property Name	Name of Multiple Property Listing	Listed Date	Street & Number	City	County	State
80000485	St. Matthews	Worcester MRA	3/5/1980	693 Southbridge St.	Worcester	Worcester	MASSACHUSETTS
80000548	St. Peters Catholic Church	Worcester MRA	3/5/1980	935 Main St.	Worcester	Worcester	MASSACHUSETTS
80000633	Stark, Edward, House	Worcester MRA	3/5/1980	21 Oread St.	Worcester	Worcester	MASSACHUSETTS
80000479	Stearns Tavern	Worcester MRA	3/5/1980	651 Park Ave.	Worcester	Worcester	MASSACHUSETTS
80000615	Stevens' Building	Worcester MRA		24-44 Southbridge St.			MASSACHUSETTS
	Stevens, Daniel, House	Worcester MRA		7 Sycamore St.			MASSACHUSETTS
89002449	Stoliker, Edna, Three-Decker	Worcester Three-Deckers TR		41 Plantation St.	Worcester	Worcester	MASSACHUSETTS
89002450	Stone, Edward, Three-Decker	Worcester Three-Deckers TR		8 Wyman St.			MASSACHUSETTS
80000591	Sturtevant, Leonard, House	Worcester MRA		84 Mulberry St.			MASSACHUSETTS
	Swift, D. Wheeler, House	Worcester MRA		22 Oak Ave.			MASSACHUSETTS
11000019	ThulePlummer Buildings		2/18/2011	180 and 184 Main St	Worcester	Worcester	MASSACHUSETTS
80000600	Tower, Horatio, House	Worcester MRA		71 Pleasant St.	Worcester	Worcester	MASSACHUSETTS
	Troupes, John, Three-Decker	Worcester Three-Deckers TR		25 Canton St.			MASSACHUSETTS
11000161	U.S. Post Office and Courthouse			595 Main St	Worcester	Worcester	MASSACHUSETTS
	Union Congregational Church	Worcester MRA		5 Chestnut St.			MASSACHUSETTS
80000617	Union Station	Worcester MRA	3/5/1980	Washington Sq.			MASSACHUSETTS
80000493	Upsala Street School	Worcester MRA		36 Upsala St.	Worcester	Worcester	MASSACHUSETTS
89002331	Vendome, The, and the St. Ives	Worcester MRA	, ,	1719 and 2123 Chandler St.	Worcester	Worcester	MASSACHUSETTS
	View Street Historic District	Worcester Three-Deckers TR	, ,	717 and 816 View Street			MASSACHUSETTS
	Waldo Street Police Station	Worcester MRA		Waldo St.			MASSACHUSETTS
	Ward Street School-Millbury Street	Worcester MRA		389 Millbury St.			MASSACHUSETTS
	Washburn and Moen North Works District	Worcester MRA		Properties on Grove St.			MASSACHUSETTS
	WCIS Bank	Worcester MRA		365 Main St.			MASSACHUSETTS
	Webster Street Firehouse	Worcester MRA		40 Webster St.			MASSACHUSETTS
	Wellington Street Apartment House District	Worcester MRA		Properties along Jacques Ave., and Wellington and Irving Sts.			MASSACHUSETTS
	Wescott, John, Three-Decker	Worcester Three-Deckers TR		454 Pleasant St.			MASSACHUSETTS
	Wesson, Franklin, House	Worcester MRA		8 Claremont St.			MASSACHUSETTS
	Whitcomb House			51 Harvard St.			MASSACHUSETTS
	Whitcomb Mansion	Worcester MRA		51 Harvard St.			MASSACHUSETTS
	Whittall Mills	Worcester MRA		properties off Brussels St.			MASSACHUSETTS
	Woodford Street Historic District			3539 and 3840 Woodford St.			MASSACHUSETTS
	Woodland Street Firehouse	Worcester MRA		36 Woodland St.			MASSACHUSETTS
	Woodland Street Historic District	Worcester MRA		Properties along Hawthorne, Loudon, Norwood, and Woodland Sts.			MASSACHUSETTS
	Worcester Academy	Worcester MRA		Worcester Academy Campus			MASSACHUSETTS
	Worcester Asylum and related buildings	Worcester MRA		305 Belmont St.			MASSACHUSETTS
	Worcester Bleach and Dye Works			60 Fremont St.			MASSACHUSETTS
	Worcester City Hall and Common	Worcester MRA		455 Main St.			MASSACHUSETTS
	Worcester Corset Company Factory	Worcester MRA		30 Wyman St.			MASSACHUSETTS
	Worcester Five Cents Savings Bank			316 Main St.			MASSACHUSETTS
	Worcester Market Building	Worcester MRA		831 Main St.			MASSACHUSETTS
	Worcester State Hospital Farmhouse			361 Plantation St.			MASSACHUSETTS
89002401	Zemaitis, Anthony, Three-Decker	Worcester Three-Deckers TR	2/9/1990	35 Dartmouth St.	Worcester	Worcester	MASSACHUSETTS

Notes:

Sanborn, Head & Associates, Inc. (Sanborn Head) conducted a review of the National Register of Historic Places within Worcester, Massachusetts. The search returned 279 results within Worcester. The Site is not listed on the National Register of Historic Places.