

240 Barber Avenue, Suite 6 Worcester, MA 01606 Telephone 508-926-1315 Fax 508-926-1334 www.atcgroupservices.com

October 27, 2020 Project Number 030000046

Ms. Shauna Little
U.S. Environmental Protection Agency
Office of Ecosystem Processing
RGP Applications Coordinator (OEP06-1)
5 Post Office Square, Suite 100
Boston, MA 02109-3912

RE: Notice of Intent for Remediation General Permit

Fitchburg State University Foundation Supporting Organization

Site: 15 Central Street Fitchburg, MA 01420

MassDEP Release Tracking Number 2-18346

Dear Ms. Puleo:

ATC Group Services LLC (ATC), on behalf of Fitchburg State University Foundation Supporting Organization (FSUFSO), herein provides an application for a Notice of Intent (NOI)/ Remediation General Permit (RGP), as well as supporting documentation, for the proposed discharge of treated groundwater to surface water. The discharge of treated groundwater is proposed as part of remedial activities associated with the referenced Massachusetts Department of Environmental Protection (MassDEP) Disposal Site. A Site Locus is provided as **Figure 1**, a Site Plan is provided as **Figure 2**, and an Outfall Location Map as **Figure 3**. A copy of the NOI application form is provided as **Attachment I**.

Background & Release Description

During assessment activities associated with the closure of a 4,000 gallon single walled UST in December 2014, a release of fuel oil to soil and groundwater was discovered and reported to MassDEP. The UST had been in use at the property for approximately 40 years, having been installed within a portion of the 15 Central Street basement in the early 1970s. In September 2011, the UST was being prepared for in-place closure (residual liquids/sludge removal and tank cleaning) when the release conditions were observed. In December 2014 the UST was ultimately removed from its location. The Site is not located within a current or potential groundwater protection area.

Subsequent subsurface investigations revealed that a significant volume of #2 fuel oil Light Non-Aqueous Phase Liquid (LNAPL) was present on groundwater in the area of the former UST and immediate surrounding property to the east/southeast. A High Vacuum Multi Phase Extraction (MPE) system was operated within this area for 2 years (April 2013 - April 2015), which successfully reduced LNAPL thicknesses in the immediate area of 15 Central Street. In May 2015, additional monitoring wells installed at the adjacent down-gradient property known as 12 Brook Street which revealed elevated thicknesses of #2 fuel oil LNAPL which were associated with the subject release. In July 2019 and January 2020, the extent of LNAPL in this down-gradient area was defined. Detailed descriptions of the release, completed response actions and the extent of the LNAPL plume can be found within various report submittals on the MassDEP reportable release file viewer database under Release Tracking Number 2-18346.

Groundwater Recovery and Treatment

An LNAPL/groundwater recovery and treatment system has been designed to recover and remove LNAPL and treat groundwater at a flow rate of up to 150 gallons per minute (gpm). Following is a summary of the proposed recovery/treatment system.

Pretreatment

The un-treated groundwater/LNAPL will be pumped from the subsurface using a dewatering well point system and transferred to an 18,000 gallon weir tank for LNAPL separation and the primary settling of solids. The water within the weir tank will then be pumped through various bag filters for the removal of finer solids. The separated LNAPL will be pumped to a separate holding tank(s).

Product Skimmer to remove LNAPL

A product skimmer will be deployed in the first chamber of the weir tank and the LNAPL will be pumped into LNAPL holding tank(s). The LNAPL holding tank(s) will be stored within a secondary containment structure and the LNAPL will be transferred and disposed of off-property as required following proper protocols.

Vapor Mitigation Blower

A vapor mitigation blower will be connected to the weir tank to capture and treat petroleum vapors that accumulate in the covered weir tank. The blower will discharge vapors to two 500-pound vapor-phase carbon treatment vessels prior to discharge to the atmosphere.

Liquid Phase Granular Activated Carbon (LGAC) to remove dissolved petroleum contaminants

Two high pressure steel LGAC vessels, each filled with 3,000 pounds of reactivated LGAC, will be used to remove dissolved petroleum contaminants prior to discharge to the municipal storm drain.

Contingency Treatment

If required (due to inadequate solids removal via gravitational settling and bag filtration), a chemical aided settling system will be installed at the beginning of the water treatment system to enhance the settling and removal of total suspended solids (TSS). As part of the settling system, a coagulant (LRT E-50) and a nonionic dry polymer (both manufactured by Lockwood Remediation Technologies, LLC (LRT)) will be added to the water as a flocculant to promote the chemical removal of TSS. Once the system is installed, jar testing will be completed in the field to determine the appropriate chemical dosing necessary for efficient TSS settling. The flocculant material specifications and safety data sheet are included in **Attachment II**. If required, the flocculant material will be chemically mixed and pumped into the weir tank by use of a feed pump and used during dewatering activities, as may be required. The flocculant material is commonly used in pretreatment discharge applications and has previously been authorized in general permit activities. The flocculant additives will not add any pollutant in concentrations which will exceed permit effluent limitations, will not exceed any applicable water quality standard(s), and will not add any pollutants to the discharge stream that would justify the application of permit conditions which are different from or absent in the permit application.

An Ion Exchange vessel will be used if elevated metals are encountered in the system discharge sampling results. The ion exchange vessel will consist of a high pressure steel carbon vessel filled with 40 cubic feet of cation ion exchange resin.

A pH Adjustment System will be used to adjust pH if detected within the system influent water outside of the permissible discharge limit range. The system will include acid or base (sulfuric acid or sodium hydroxide) metered to the weir tank via chemical feed pump. A pH probe and controller will be utilized to automatically maintain the pH within permitted limits of 6.5 to 8.3.

Treatment System Discharge

The average flow rate of the treated groundwater discharge from the treatment system to the storm water drainage line is expected to be approximately 75 gpm. The maximum flow rate and design capacity specification of the groundwater treatment system is 150 gpm. This design flow is based on maximum expected groundwater withdrawal rates, the raw water analytical data collection and equipment operating specifications. This discharge has been approved by the City of Fitchburg.

The storm water catch basin, to which discharge to the municipal storm water conveyance system is proposed, is located in Brook Street as shown on the attached plan. This storm water catch basin ultimately discharges to the Nashua River via the Punch Brook outfall identified by the City of Fitchburg as Outfall # CSO-045 and as shown on **Figure 3**.

Please refer to **Figure 1** for a depiction of the site and surrounding area, **Figure 2** for the Site Plan, **Figure 3** for the Outfall Location Map depicting the outfall location, and **Figure 4** for the Treatment System Schematic.

Influent Sample Analysis

Groundwater was collected from the raw water/influent location (MW-34) on August 20, 2020 and was submitted to Contest Analytical, Inc. of Longmeadow, Massachusetts for laboratory analysis for the following required 2017 RGP parameters:

- Total Petroleum Hydrocarbons (TPH) by EPA method 1664B,
- Total Residual Chlorine by SM21-22 4500 CL G,
- Chloride by EPA Method 300.0,
- Total Suspended Solids by SM21-23 2540D,
- Non-Halogenated Volatile Organic Compounds (VOCs) by EPA Method 624.1,
- Non-Halogenated Semi-Volatile Organic Compounds (SVOCs) by EPA method 625.1,
- Total metals by EPA Methods 200.7, 200.8 and/or 245.1,
- Hardness by EPA Method 200.7,
- Chromium VII by SM21-22 3500 CrB,
- Chromium III by Tri chrome calc,
- Ammonia by EPA Method 350.1 and,
- Phenol by EPA Method 420.1

Also, a sample of the receiving water at the Punch Brook outfall surface water, where it daylights to the Nashua River, was collected on August 20, 2020 for laboratory analysis of Hardness, Ammonia, and Metals. A summary of the sampling data is provided on **Table 1** and a copy of the laboratory report is included in **Attachment VI**. In addition, pH was obtained at both locations via

field measurement¹. Based on the location of the discharge outfall to the receiving water and the proposed design discharge flow rate, the seven day-ten year low flow (7Q10) of the receiving water and a dilution factor were determined. The 7Q10 was determined to be 4.16 cubic feet per second (2.68 MGD) and the calculated dilution factor was determined to be 13.45. MassDEP approved the 7Q10 low flow determination and the calculated dilution factor (**Attachment III**). The groundwater raw water/ influent location analytical results were compared to the Appendix III effluent limitations (www.epa.gov/region1/npdes/rgp.html). These results indicate that the compound(s) below were detected at concentrations that exceed the applicable EPA Appendix III effluent limitations:

Naphthalene

This compound is expected to be reduced by pretreatment with settling, filtration, and carbon adsorption.

<u>Evaluation of Threatened or Endangered Species or Critical Habitat Located within Receiving Waters</u>

According to Massachusetts Geographic Information Systems (MassGIS) online maps for the Natural Heritage Endangered Species Program (NHESP) (2008), no Priority Habitat of Rare Species or Estimated Habitats of Rare Wildlife are located within the work area. No NHESP Estimated Habitats of Rare Wildlife in Wetland Areas Protected Open Spaces are located within 500 feet of the Site or the point of proposed discharge to the Nashua River. Based on this information, the potential discharge will not have an adverse effect on any NHESP Priority Habitats of Rare Species or Estimated Habitats of Rare Wildlife. Copies of the MassGIS Resource Priority and NHESP Maps of the Site area are included in **Attachment IV**.

Review of National Register of Historic Places

Listings of Historic Places within the City of Fitchburg were obtained from the Massachusetts Cultural Resources Information System (MACRIS) online database at http://mhc-macris.net/towns.aspx (accessed October 9, 2020). A copy of the MACRIS report is provided as **Attachment V**. The database indicated that there are no historic places located in close proximity to the Site or proposed discharge area. This project does not involve the demolition or rehabilitation of historic properties.

The proposed remediation project is expected to start on or about March 1, 2021 and last for approximately 3-4 months. Should you have any questions or concerns regarding the contents of this letter or the NOI for the RGP, please do not hesitate to contact the undersigned at (508) 926-1315.

Sincerely, ATC GROUP SERVICES LLC

¹ Field screening for pH was performed using a YSI Model 600 XL probe.

Matthew J. Lyne Senior Scientist

Mars n. me

Charles E. Klingler, LSP Worcester Branch Manager

CC:

FSUFSO, Leah Fernandes, 160 Pearl Street, Fitchburg, MA

Attachments

Figure 1: Site Locus Figure 2: Site Plan

Figure 3: Outfall Location Map

Figure 4: Treatment System Schematic

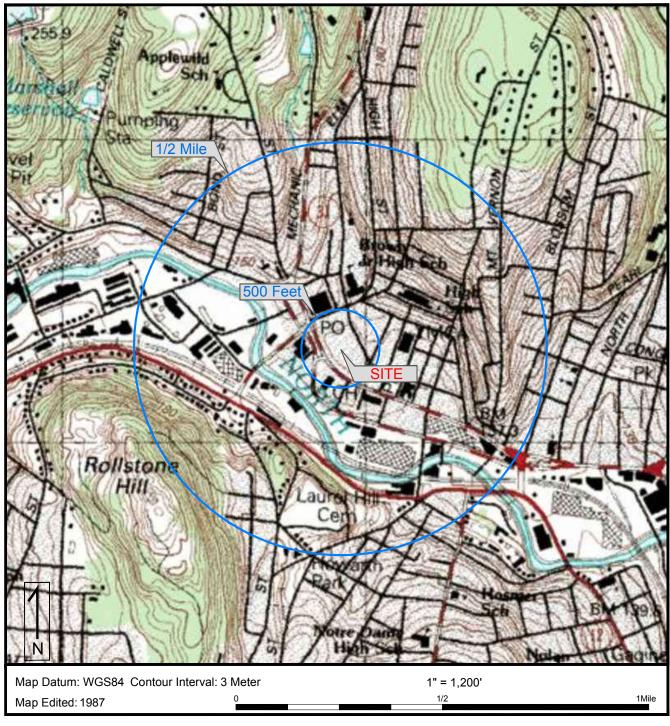
Table 1: Summary of Influent Sampling Data

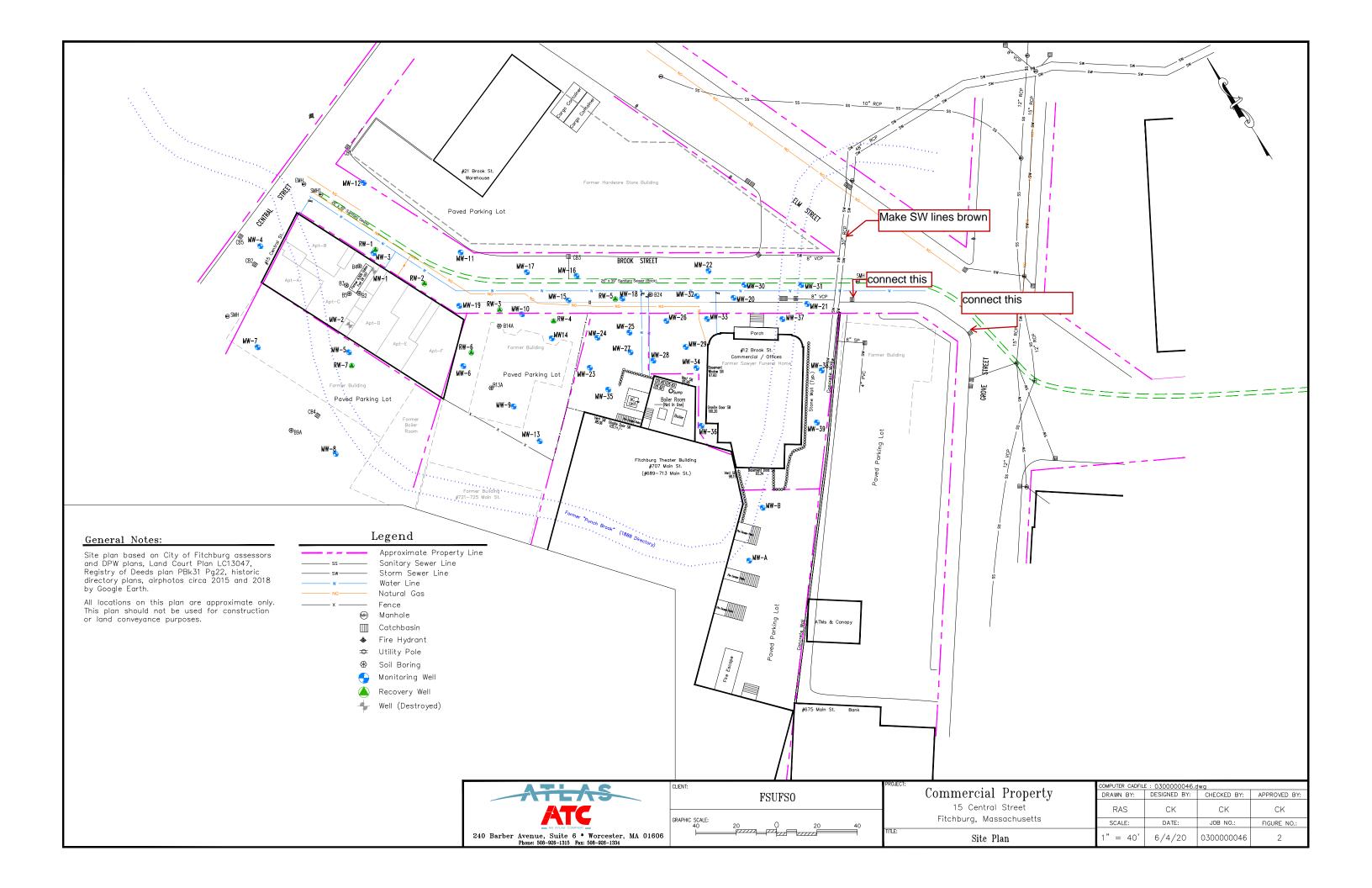
Attachment I: Notice of Intent Form

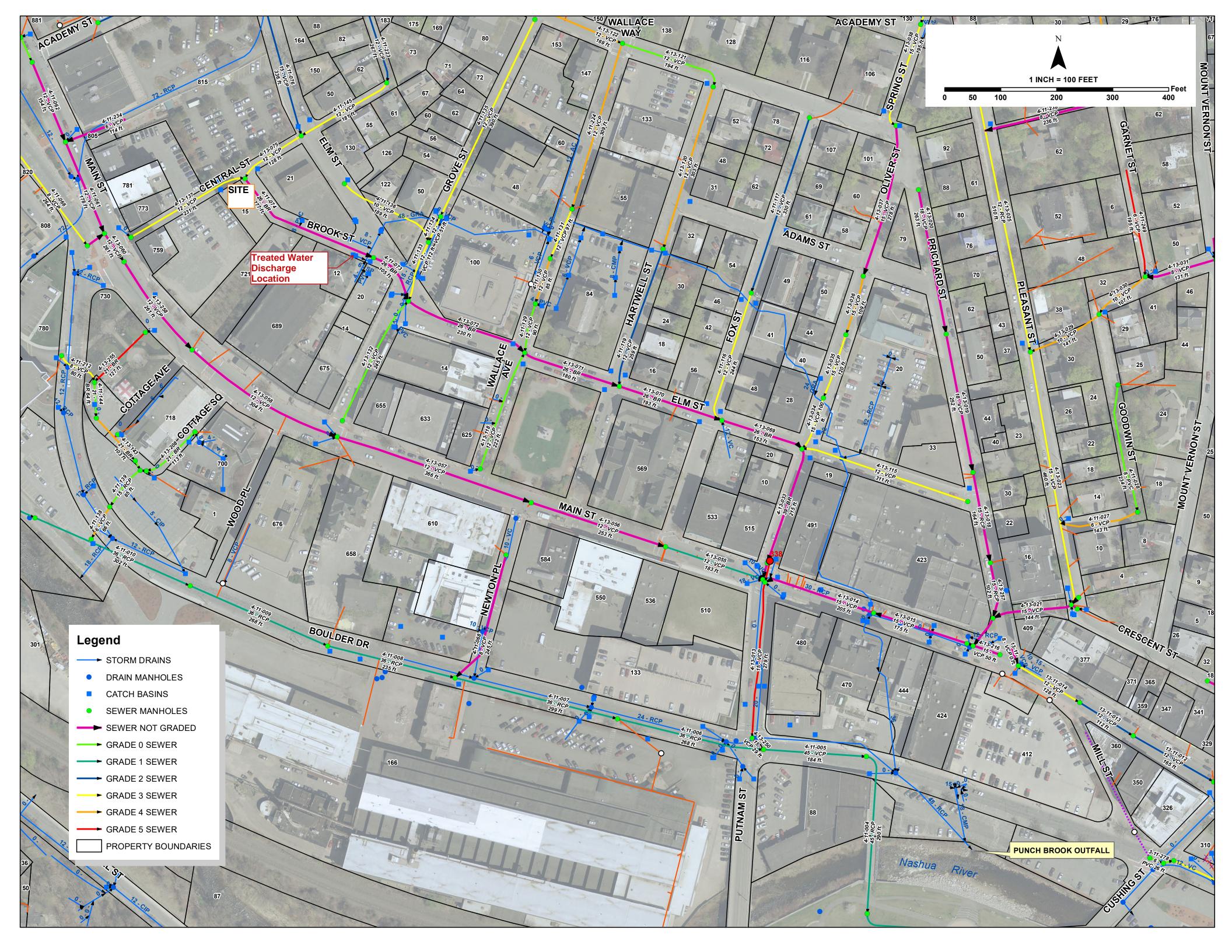
Attachment II: Manufacturers Material Specifications and Safety Data Sheets

Attachment III: MassDEP Approval of 7Q10 Low Flow Determination & Dilution Factor

Calculation, WQBEL Calculation


Attachment IV: MassGIS Resource Priority and NHESP Map Attachment V: MACRIS Database Search Results, PNF


Attachment VI: Laboratory Analytical Report



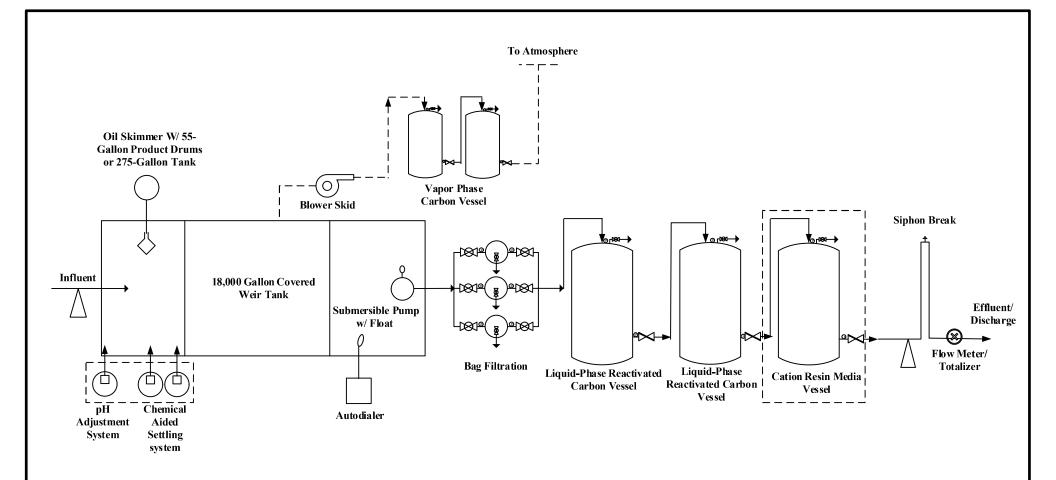

Commercial Property 15 Central Street Fitchburg, MA 01420 ATC Group Services, LLC 240 Barber Ave., Suite 6 Worcester, MA 01606 Phone 508 926 1315 Fax 508 926 1334 www.atcgroupservices.com

Figure 1: SITE LOCUS

Notes:

- 1.) Figure is not to scale
- 2.) System rated for 150 GPM

Key:		
Piping/Hose		
Sample Port	>	
Ball Valve	1801	
Butterfly Valve	\bowtie	
Pressure Gauge	Θ	
Contingency		
· · ·		

4	RT
	Lockwood Remediation Technologies LLC

Lockwood Remediation Technologies, LLC 89 Crawford Street Leominster, MA 01453

Office: 774-450-7177

CHECKED BY:

DESIGNED BY: LRT DRAWN BY: JHJ

DATE:

Water Treatment System Schematic

15 Central Street Fitchburg, MA PROJECT No. 2-2021 FIGURE No.

-			T	Г	
Con-Test Analytical Laboratory					
Analytical Testing Report					
Work Order: 20H1131					
Report Date: 8/28/2020 3:54:28 PM					
<u> </u>	1.0	<u> </u>			
labi	e 1: Summary of Water Sampling	g Data			
Considerational	A 1 - 1 -	11			
General Method	Analyte	Units	00111101 01	20111121 00	
LAB ID			20H1131-01	20H1131-02	TDEI
CLIENT ID			MW-34	Outfall #CSO-045	TBEL
DATE SAMPLED DATE RECEIVED			20-Aug-20 21-Aug-20	20-Aug-20	WQBEL
MATRIX			Water	21-Aug-20	
	Acatana	/1	<7.58	Water	7.070
Volatile Organic Compounds by GC/MS Volatile Organic Compounds by GC/MS	Acetone tert-Amyl Methyl Ether (TAME)	μg/L	<0.280		7,970 90
Volatile Organic Compounds by GC/MS	3 3 1	µg/L µg/L	2.16		<u>90</u> 5
Volatile Organic Compounds by GC/MS Volatile Organic Compounds by GC/MS	Benzene	+	<8.34		
Volatile Organic Compounds by GC/MS Volatile Organic Compounds by GC/MS	tert-Butyl Alcohol (TBA) Ethanol	μg/L	<21.1		120 NA
V ,	Ethylbenzene	µg/L	13.6		NA NA
Volatile Organic Compounds by GC/MS Volatile Organic Compounds by GC/MS	Methyl tert-Butyl Ether (MTBE)	µg/L µg/L	< 0.500		70
Volatile Organic Compounds by GC/MS Volatile Organic Compounds by GC/MS	Toluene	μg/L	<0.300		NA
Volatile Organic Compounds by GC/MS	Xylenes (total)	μg/L	37.6		NA NA
Volatile Organic Compounds by GC/MS	m+p Xylene	µg/L	34.5		NA
Volatile Organic Compounds by GC/MS	o-Xylene	µg/L	3.04		NA
Semivolatile Organic Compounds by GC/MS	Benzo(a)anthracene (SIM)	µg/L	< 0.015		1
Semivolatile Organic Compounds by GC/MS	Benzo(a)pyrene (SIM)	µg/L	<0.013		1
Semivolatile Organic Compounds by GC/MS Semivolatile Organic Compounds by GC/MS	Benzo(b)fluoranthene (SIM)	µg/L	<0.011		1
Semivolatile Organic Compounds by GC/MS	Benzo(k)fluoranthene (SIM)	µg/L	<0.014		1
Semivolatile Organic Compounds by GC/MS Semivolatile Organic Compounds by GC/MS	Bis(2-ethylhexyl)phthalate (SIM)	µg/L	<0.41		NA
Semivolatile Organic Compounds by GC/MS	Chrysene (SIM)	µg/L	<0.014		1
Semivolatile Organic Compounds by GC/MS	Dibenz(a,h)anthracene (SIM)	µg/L	<0.016		1
Semivolatile Organic Compounds by GC/MS	Indeno(1,2,3-cd)pyrene (SIM)	µg/L	<0.017		1
Semivolatile Organic Compounds by - GC/MS	Acenaphthene	µg/L	2.74		NA
Semivolatile Organic Compounds by - GC/MS	Acenaphthylene	µg/L	<0.221		NA
Semivolatile Organic Compounds by - GC/MS	Anthracene	µg/L	< 0.193		NA
Semivolatile Organic Compounds by - GC/MS	Benzidine	µg/L	<15.7		NA
Semivolatile Organic Compounds by - GC/MS	Benzo(g,h,i)perylene	µg/L	< 0.379		NA
Semivolatile Organic Compounds by - GC/MS	4-Bromophenylphenylether	µg/L	<0.283		NA
Semivolatile Organic Compounds by - GC/MS	4-Chloro-3-methylphenol	μg/L	< 0.460		NA
Semivolatile Organic Compounds by - GC/MS	Bis(2-chloroethyl)ether	μg/L	< 0.490		NA
Semivolatile Organic Compounds by - GC/MS	Bis(2-chloroisopropyl)ether	μg/L	< 0.698		NA
Semivolatile Organic Compounds by - GC/MS	2-Chloronaphthalene	μg/L	< 0.434		NA
Semivolatile Organic Compounds by - GC/MS	2-Chlorophenol	μg/L	< 0.360		NA
Semivolatile Organic Compounds by - GC/MS	4-Chlorophenylphenylether	μg/L	< 0.300		NA
Semivolatile Organic Compounds by - GC/MS	1,3-Dichlorobenzene	μg/L	< 0.443		320
Semivolatile Organic Compounds by - GC/MS	1,4-Dichlorobenzene	μg/L	< 0.367		5
Semivolatile Organic Compounds by - GC/MS	1,2-Dichlorobenzene	μg/L	< 0.439		600
Semivolatile Organic Compounds by - GC/MS	3,3-Dichlorobenzidine	μg/L	< 0.344		NA
Semivolatile Organic Compounds by - GC/MS	2,4-Dichlorophenol	μg/L	<0.287		NA
Semivolatile Organic Compounds by - GC/MS	2,4-Dimethylphenol	μg/L	<0.761		NA
Semivolatile Organic Compounds by - GC/MS	4,6-Dinitro-2-methylphenol	μg/L	<1.87		NA
Semivolatile Organic Compounds by - GC/MS	2,4-Dinitrophenol	μg/L	<1.56		NA
Semivolatile Organic Compounds by - GC/MS	2,4-Dinitrotoluene	μg/L	< 0.313		NA
Semivolatile Organic Compounds by - GC/MS	2,6-Dinitrotoluene	μg/L	< 0.331		NA
Semivolatile Organic Compounds by - GC/MS	1,2-Diphenylhydrazine/Azobenze		< 0.359		NA
Semivolatile Organic Compounds by - GC/MS	Fluoranthene	μg/L	<0.284		NA
Semivolatile Organic Compounds by - GC/MS	Fluorene	μg/L	5.12		NA
Semivolatile Organic Compounds by - GC/MS	Hexachlorobenzene	μg/L	< 0.414		NA
Semivolatile Organic Compounds by - GC/MS	Hexachlorobutadiene	μg/L	< 0.567		NA
Semivolatile Organic Compounds by - GC/MS	Hexachlorocyclopentadiene	μg/L	<4.59		NA
Semivolatile Organic Compounds by - GC/MS	Hexachloroethane	μg/L	< 0.506		NA
Semivolatile Organic Compounds by - GC/MS	Isophorone	μg/L	<0.287		NA

Semivolatile Organic Compounds by - GC/MS	Naphthalene	μg/L	36		20
Semivolatile Organic Compounds by - GC/MS	Nitrobenzene	µg/L	< 0.392		NA
Semivolatile Organic Compounds by - GC/MS	2-Nitrophenol	μg/L	< 0.397		NA
Semivolatile Organic Compounds by - GC/MS	4-Nitrophenol	μg/L	< 0.600		NA
Semivolatile Organic Compounds by - GC/MS	N-Nitrosodimethylamine	μg/L	<1.75		NA
Semivolatile Organic Compounds by - GC/MS	N-Nitrosodi-n-propylamine	μg/L	< 0.496		NA
Semivolatile Organic Compounds by - GC/MS	2-Methylnaphthalene	μg/L	37.8		NA
Semivolatile Organic Compounds by - GC/MS	Phenanthrene	μg/L	4.84		NA
Semivolatile Organic Compounds by - GC/MS	2-Methylphenol	μg/L	< 0.436		NA
Semivolatile Organic Compounds by - GC/MS	Phenol	μg/L	<0.189		1,080
Semivolatile Organic Compounds by - GC/MS	3/4-Methylphenol	μg/L	< 0.195		NA
Semivolatile Organic Compounds by - GC/MS	Pyrene	μg/L	< 0.244		NA
Semivolatile Organic Compounds by - GC/MS	1,2,4-Trichlorobenzene	μg/L	< 0.534		NA
Semivolatile Organic Compounds by - GC/MS	2,4,6-Trichlorophenol	μg/L	< 0.319		NA
Metals Analyses (Total)	Antimony	μg/L	< 0.35	< 0.35	206
Metals Analyses (Total)	Arsenic	μg/L	1.6	0.9	104
Metals Analyses (Total)	Cadmium	μg/L	<0.20	< 0.20	10.2
Metals Analyses (Total)	Chromium	μg/L	2	1.6	323
Metals Analyses (Total)	Copper	μg/L	7.8	24	242
Metals Analyses (Total)	Lead	μg/L	0.28	1.4	160
Metals Analyses (Total)	Nickel	μg/L	< 5.0	< 5.0	1,450
Metals Analyses (Total)	Selenium	μg/L	<1.6	<1.6	235.8
Metals Analyses (Total)	Silver	μg/L	<0.20	< 0.20	35.1
Metals Analyses (Total)	Zinc	μg/L	<10	19	420
Metals Analyses (Total)	Chromium, Trivalent	mg/L	0.002	0.0016	0.323
Metals Analyses (Total)	Iron	mg/L	0.47	0.47	5
Metals Analyses (Total)	Mercury	mg/L	<0.00010	< 0.00010	0.0007
Metals Analyses (Total)	Hardness	mg/L	320	75	NS
Conventional Chemistry Parameters by EPA/AF	Ammonia as N	mg/L	0.54	9.2	NS
Conventional Chemistry Parameters by EPA/AF	Chloride	mg/L	970		NS
Conventional Chemistry Parameters by EPA/AF	Chlorine, Residual	mg/L	<0.020		0.136
Conventional Chemistry Parameters by EPA/AF		mg/L	<0.0040	<0.0040	0.323
Conventional Chemistry Parameters by EPA/AF	Phenol	mg/L	< 0.050		1,080
Conventional Chemistry Parameters by EPA/AF		mg/L	6.5		30
Conventional Chemistry Parameters by EPA/AF	Silica Gel Treated HEM (SG1	Γ-HE mg/L	<1.8		5

ATTACHMENT I

II. Suggested Format for the Remediation General Permit Notice of Intent (NOI)

A. General site information:

1. Name of site:	Site address:						
	Street:						
	City:		State:	Zip:			
2. Site owner	Contact Person:						
	Telephone:	Email:					
	Mailing address:						
	Street:						
Owner is (check one): ☐ Federal ☐ State/Tribal ☐ Private ☐ Other; if so, specify:	City:	State:	Zip:				
3. Site operator, if different than owner	Contact Person:						
	Telephone:	Email:					
	Mailing address:						
	Street:						
	City:		State:	Zip:			
4. NPDES permit number assigned by EPA:	5. Other regulatory program(s) that apply to the site	(check all th	at apply):				
	☐ MA Chapter 21e; list RTN(s):	□ CERCL	.A				
NPDES permit is (check all that apply: \square RGP \square DGP \square CGP	☐ NH Groundwater Management Permit or	□ UIC Program					
☐ MSGP ☐ Individual NPDES permit ☐ Other; if so, specify:	Groundwater Release Detection Permit:	☐ POTW Pretreatment					
· · · · · · · · · · · · · · · · · · ·		□ CWA S	ection 404				

B	Receiving water information:
1	Name of receiving water(s).

1. Name of receiving water(s):	Waterbody identification of receiving water	(s): Classific	ation of receiving water(s):
Receiving water is (check any that apply): □ Outstar	nding Resource Water □ Ocean Sanctuary □ territo	rial sea □ Wild and Scenic Ri	ver
2. Has the operator attached a location map in accord	lance with the instructions in B, above? (check one)	: □ Yes □ No	
Are sensitive receptors present near the site? (check of the sensitive receptors) that is the sensitive receptors present near the site?	one): □ Yes □ No		
3. Indicate if the receiving water(s) is listed in the Stapollutants indicated. Also, indicate if a final TMDL i 4.6 of the RGP.			
4. Indicate the seven day-ten-year low flow (7Q10) of Appendix V for sites located in Massachusetts and A		n the instructions in	
5. Indicate the requested dilution factor for the calculaccordance with the instructions in Appendix V for s			
6. Has the operator received confirmation from the a If yes, indicate date confirmation received:7. Has the operator attached a summary of receiving	-		
(check one): ☐ Yes ☐ No			
C. Source water information:			
1. Source water(s) is (check any that apply):			
☐ Contaminated groundwater	☐ Contaminated surface water	☐ The receiving water	☐ Potable water; if so, indicate municipality or origin:
Has the operator attached a summary of influent sampling results as required in Part 4.2 of the RGP	Has the operator attached a summary of influent sampling results as required in Part 4.2 of the	☐ A surface water other	
in accordance with the instruction in Appendix VIII? (check one):	RGP in accordance with the instruction in Appendix VIII? (check one):	than the receiving water; if so, indicate waterbody:	☐ Other; if so, specify:
□ Yes □ No	□ Yes □ No		

2. Source water contaminants:	
a. For source waters that are contaminated groundwater or contaminated surface water, indicate are any contaminants present that are not included in	b. For a source water that is a surface water other than the receiving water, potable water or other, indicate any contaminants present at the maximum concentration in accordance
the RGP? (check one): ☐ Yes ☐ No If yes, indicate the contaminant(s) and the maximum concentration present in accordance with the instructions in Appendix VIII.	with the instructions in Appendix VIII? (check one): □ Yes □ No
3. Has the source water been previously chlorinated or otherwise contains resid	dual chlorine? (check one): ☐ Yes ☐ No
D. Discharge information	
1.The discharge(s) is a(n) (check any that apply): \Box Existing discharge \Box New	w discharge □ New source
Outfall(s):	Outfall location(s): (Latitude, Longitude)
Discharges enter the receiving water(s) via (check any that apply): □ Direct di	scharge to the receiving water \Box Indirect discharge, if so, specify:
☐ A private storm sewer system ☐ A municipal storm sewer system If the discharge enters the receiving water via a private or municipal storm sew	ver system:
Has notification been provided to the owner of this system? (check one): ☐ Ye	•
Has the operator has received permission from the owner to use such system for obtaining permission:	or discharges? (check one): \square Yes \square No, if so, explain, with an estimated timeframe for
Has the operator attached a summary of any additional requirements the owner	of this system has specified? (check one): \square Yes \square No
Provide the expected start and end dates of discharge(s) (month/year):	
Indicate if the discharge is expected to occur over a duration of: \Box less than 1	2 months □ 12 months or more □ is an emergency discharge
Has the operator attached a site plan in accordance with the instructions in D, a	above? (check one): Yes No

2. Activity Category: (check all that apply)	3. Contamination Type Category: (check all that apply)				
	a. If Activity Category I or II: (check all that apply)				
	 □ A. Inorganics □ B. Non-Halogenated Volatile Organic Compounds □ C. Halogenated Volatile Organic Compounds □ D. Non-Halogenated Semi-Volatile Organic Compounds □ E. Halogenated Semi-Volatile Organic Compounds □ F. Fuels Parameters 				
 □ I – Petroleum-Related Site Remediation □ II – Non-Petroleum-Related Site Remediation 	b. If Activity Category III, IV, V, VI, VII or VIII: (check either G or H)				
 □ III – Non-Petroleum-Related Site Remediation □ III – Contaminated Site Dewatering □ IV – Dewatering of Pipelines and Tanks □ V – Aquifer Pump Testing □ VI – Well Development/Rehabilitation □ VII – Collection Structure Dewatering/Remediation □ VIII – Dredge-Related Dewatering 	□ G. Sites with Known Contamination c. If Category III-G, IV-G, V-G, VI-G, VII-G or VIII-G: (check all that apply) □ A. Inorganics □ B. Non-Halogenated Volatile Organic Compounds □ C. Halogenated Volatile Organic Compounds □ D. Non-Halogenated Semi-Volatile Organic Compounds □ E. Halogenated Semi-Volatile Organic Compounds □ F. Fuels Parameters	□ H. Sites with Unknown Contamination d. If Category III-H, IV-H, V-H, VI-H, VII-H or VIII-H Contamination Type Categories A through F apply			

4. Influent and Effluent Characteristics

	Known	Known	n	# of samples Test method (#)		Influent		Effluent Limitations	
Parameter or believed		or believed present			Detection limit (µg/l)	Daily maximum (µg/l)	Daily average (µg/l)	TBEL	WQBEL
A. Inorganics									
Ammonia								Report mg/L	
Chloride								Report µg/l	
Total Residual Chlorine								0.2 mg/L	
Total Suspended Solids								30 mg/L	
Antimony								206 μg/L	
Arsenic								104 μg/L	
Cadmium								10.2 μg/L	
Chromium III								323 μg/L	
Chromium VI								323 μg/L	
Copper								242 μg/L	
Iron								5,000 μg/L	
Lead								160 μg/L	
Mercury								0.739 μg/L	
Nickel								1,450 μg/L	
Selenium								235.8 μg/L	
Silver								35.1 μg/L	
Zinc								420 μg/L	
Cyanide								178 mg/L	
B. Non-Halogenated VOCs	3								
Total BTEX								100 μg/L	
Benzene								5.0 μg/L	
1,4 Dioxane								200 μg/L	
Acetone								7.97 mg/L	
Phenol								1,080 µg/L	

	Known	Known		_	_	Influent Effluent I		Effluent Lin	imitations	
Parameter	or believed absent	or believed present	# of samples	Test method (#)	Detection limit (µg/l)	Daily maximum (µg/l)	Daily average (µg/l)	TBEL	WQBEL	
C. Halogenated VOCs										
Carbon Tetrachloride								4.4 μg/L		
1,2 Dichlorobenzene								600 μg/L		
1,3 Dichlorobenzene								320 μg/L		
1,4 Dichlorobenzene								5.0 μg/L		
Total dichlorobenzene								763 µg/L in NH		
1,1 Dichloroethane								70 μg/L		
1,2 Dichloroethane								5.0 μg/L		
1,1 Dichloroethylene								3.2 µg/L		
Ethylene Dibromide								0.05 μg/L		
Methylene Chloride								4.6 μg/L		
1,1,1 Trichloroethane								200 μg/L		
1,1,2 Trichloroethane								5.0 μg/L		
Trichloroethylene								5.0 μg/L		
Tetrachloroethylene								5.0 μg/L		
cis-1,2 Dichloroethylene								70 μg/L		
Vinyl Chloride								2.0 μg/L		
D. Non-Halogenated SVO	Cs									
Total Phthalates								190 μg/L		
Diethylhexyl phthalate								101 μg/L		
Total Group I PAHs								1.0 μg/L		
Benzo(a)anthracene								_		
Benzo(a)pyrene								_		
Benzo(b)fluoranthene								_		
Benzo(k)fluoranthene								As Total PAHs		
Chrysene								_		
Dibenzo(a,h)anthracene								_		
Indeno(1,2,3-cd)pyrene										

	Known	Known				Inf	luent	Effluent Lin	nitations
Parameter	or believed absent	or believed present	# of samples	Test method (#)	Detection limit (µg/l)	Daily maximum (µg/l)	Daily average (µg/l)	TBEL	WQBEL
Total Group II PAHs								100 μg/L	
Naphthalene								20 μg/L	
E. Halogenated SVOCs									
Total PCBs								0.000064 µg/L	
Pentachlorophenol								1.0 μg/L	
	1			•					
F. Fuels Parameters Total Petroleum		1	1	1		1 1			
Hydrocarbons								5.0 mg/L	
Ethanol								Report mg/L	
Methyl-tert-Butyl Ether								70 μg/L	
tert-Butyl Alcohol								120 μg/L in MA 40 μg/L in NH	
tert-Amyl Methyl Ether								90 μg/L in MA 140 μg/L in NH	
Other (i.e., pH, temperatur	re, hardness,	salinity, LC	50, addition	al pollutar	ats present);	if so, specify:			

E. Treatment system information

1. Indicate the type(s) of treatment that will be applied to effluent prior to discharge: (check all that apply)	
☐ Adsorption/Absorption ☐ Advanced Oxidation Processes ☐ Air Stripping ☐ Granulated Activated Carbon ("GAC")/Liquid Phase Carbon Adsorption	
☐ Ion Exchange ☐ Precipitation/Coagulation/Flocculation ☐ Separation/Filtration ☐ Other; if so, specify:	
2. Provide a written description of all treatment system(s) or processes that will be applied to the effluent prior to discharge.	
Identify each major treatment component (check any that apply):	
☐ Fractionation tanks☐ Equalization tank ☐ Oil/water separator ☐ Mechanical filter ☐ Media filter	
☐ Chemical feed tank ☐ Air stripping unit ☐ Bag filter ☐ Other; if so, specify:	
Indicate if either of the following will occur (check any that apply):	
□ Chlorination □ De-chlorination	
3. Provide the design flow capacity in gallons per minute (gpm) of the most limiting component.	
Indicate the most limiting component:	
Is use of a flow meter feasible? (check one): \square Yes \square No, if so, provide justification:	
Provide the proposed maximum effluent flow in gpm.	
Trovide the proposed maximum errident now in gpin.	
Provide the average effluent flow in gpm.	
If Activity Category IV applies, indicate the estimated total volume of water that will be discharged:	
4. Has the operator attached a schematic of flow in accordance with the instructions in E, above? (check one): ☐ Yes ☐ No	

F. Chemical and additive information

r. Chemical and additive information
1. Indicate the type(s) of chemical or additive that will be applied to effluent prior to discharge or that may otherwise be present in the discharge(s): (check all that apply)
□ Algaecides/biocides □ Antifoams □ Coagulants □ Corrosion/scale inhibitors □ Disinfectants □ Flocculants □ Neutralizing agents □ Oxidants □ Oxygen □
scavengers □ pH conditioners □ Bioremedial agents, including microbes □ Chlorine or chemicals containing chlorine □ Other; if so, specify:
2. Provide the following information for each chemical/additive, using attachments, if necessary:
a. Product name, chemical formula, and manufacturer of the chemical/additive; b. Purpose or use of the chemical/additive or remedial agent; c. Material Safety Data Sheet (MSDS) and Chemical Abstracts Service (CAS) Registry number for each chemical/additive; d. The frequency (hourly, daily, etc.), duration (hours, days), quantity (maximum and average), and method of application for the chemical/additive; e. Any material compatibility risks for storage and/or use including the control measures used to minimize such risks; and f. If available, the vendor's reported aquatic toxicity (NOAEL and/or LC50 in percent for aquatic organism(s)).
3. Has the operator attached an explanation which demonstrates that the addition of such chemicals/additives may be authorized under this general permit in accordance
with the instructions in F, above? (check one): \square Yes \square No; if no, has the operator attached data that demonstrates each of the 126 priority pollutants in CWA Section 307(a) and 40 CFR Part 423.15(j)(1) are non-detect in discharges with the addition of the proposed chemical/additive?
(check one): □ Yes □ No
G. Endangered Species Act eligibility determination
1. Indicate under which criterion the discharge(s) is eligible for coverage under this general permit:
□ FWS Criterion A : No endangered or threatened species or critical habitat are in proximity to the discharges or related activities or come in contact with the "action area".
□ FWS Criterion B : Formal or informal consultation with the FWS under section 7 of the ESA resulted in either a no jeopardy opinion (formal consultation) or a written concurrence by FWS on a finding that the discharges and related activities are "not likely to adversely affect" listed species or critical habitat
(informal consultation). Has the operator completed consultation with FWS? (check one): ☐ Yes ☐ No; if no, is consultation underway? (check one): ☐
Yes □ No
□ FWS Criterion C : Using the best scientific and commercial data available, the effect of the discharges and related activities on listed species and critical habitat have been evaluated. Based on those evaluations, a determination is made by EPA, or by the operator and affirmed by EPA, that the discharges and related activities will have "no effect" on any federally threatened or endangered listed species or designated critical habitat under the jurisdiction of the
FWS. This determination was made by: (check one) \square the operator \square EPA \square Other; if so, specify:

□ NMFS Criterion : A determination made by EPA is affirmed by the operator that the discharges and related activities will have "no effect" or are "not likely to adversely affect" any federally threatened or endangered listed species or critical habitat under the jurisdiction of NMFS and will not result in any take of
listed species. Has the operator previously completed consultation with NMFS? (check one): ☐ Yes ☐ No
2. Has the operator attached supporting documentation of ESA eligibility in accordance with the instructions in Appendix I, and G, above? (check one): \square Yes \square No
Does the supporting documentation include any written concurrence or finding provided by the Services? (check one): Yes No; if yes, attach.
H. National Historic Preservation Act eligibility determination
1. Indicate under which criterion the discharge(s) is eligible for coverage under this general permit:
□ Criterion A : No historic properties are present. The discharges and discharge-related activities (e.g., BMPs) do not have the potential to cause effects on historic properties.
☐ Criterion B: Historic properties are present. Discharges and discharge related activities do not have the potential to cause effects on historic properties.
□ Criterion C : Historic properties are present. The discharges and discharge-related activities have the potential to have an effect or will have an adverse effect on historic properties.
2. Has the operator attached supporting documentation of NHPA eligibility in accordance with the instructions in H, above? (check one): ☐ Yes ☐ No
Does the supporting documentation include any written agreement with the State Historic Preservation Officer (SHPO), Tribal Historic Preservation Officer (TPHO), or
other tribal representative that outlines measures the operator will carry out to mitigate or prevent any adverse effects on historic properties? (check one): \square Yes \square No
I. Supplemental information
Describe any supplemental information being provided with the NOI. Include attachments if required or otherwise necessary.
Has the operator attached data, including any laboratory case narrative and chain of custody used to support the application? (check one): \square Yes \square No
Has the operator attached the certification requirement for the Best Management Practices Plan (BMPP)? (check one): ☐ Yes ☐ No

J. Certification requirement

I certify under penalty of law that this document and all attachments were prepared under my direction or supervision in accordance with a system designed to assure that qualified personnel properly gathered and evaluated the information submitted. Based on my inquiry of the person or persons who manage the system, or those persons directly responsible for gathering the information, the information submitted is, to the best of my knowledge and belief, true, accurate, and complete. I have no personal knowledge that the information submitted is other than true, accurate, and complete. I am aware that there are significant penalties for submitting false information, including the possibility of fine and imprisonment for knowing violations. BMPP to be prepared and available onsite prior to discharge. BMPP certification statement: Notification provided to the appropriate State, including a copy of this NOI, if required. Check one: Yes ■ No □ Notification provided to the municipality in which the discharge is located, including a copy of this NOI, if requested. Check one: Yes ■ No □ Notification provided to the owner of a private or municipal storm sewer system, if such system is used for site Check one: Yes ■ No □ NA □ discharges, including a copy of this NOI, if requested. Permission obtained from the owner of a private or municipal storm sewer system, if such system is used for site discharges. If yes, attach additional conditions. If no, attach explanation and timeframe for obtaining permission. Check one: Yes ■ No □ NA □ Notification provided to the owner/operator of the area associated with activities covered by an additional discharge permit(s). Additional discharge permit is (check one):

RGP DGP CGP MSGP Individual NPDES permit Check one: Yes □ No □ NA ■ ☐ Other; if so, specify: 10/26/2020 Signature: Print Name and Title:

SAFETY DATA SHEET

Revision date 2018-06-11 Revision number 2

1. IDENTIFICATION OF THE SUBSTANCE/PREPARATION AND OF THE COMPANY/UNDERTAKING

Product identifier

Product name Redux E50

Other means of identification

Product code

Synonyms Water And Wastewater Treatment Coagulant/Flocculant

Recommended use of the chemical and restrictions on use

Recommended use [RU] No information available Uses advised against No information available

Details of the supplier of the safety data sheet

Supplier Lockwood Remediation Technologies, LLC

89 Crawford Street

Leominster, Massachusetts 01453

Tel: (774) 450-7177

Hours: Monday-Friday 9:00-5:00 EST

Emergency telephone number

24 Hour Emergency Phone Number CHEMTREC: (800) 424-9300

Outside USA - +1 (703) 527-3887 collect calls accepted

Contact Point info@reduxtech.com

2. HAZARDS IDENTIFICATION

Classification

OSHA Regulatory Status

This chemical is considered hazardous by the 2012 OSHA Hazard Communication Standard (29 CFR 1910.1200).

Skin corrosion/irritation	Category 2
Serious eye damage/eye irritation	Category 2
Corrosive to metals	Category 1

GHS Label elements, including precautionary statements

EMERGENCY OVERVIEW

Physical state	Color	Appearance	Odor
liquid	colorless to yellow	clear	no appreciable odor

WARNING

Hazard statements

Causes skin irritation Causes serious eye irritation May be corrosive to metals

Precautionary Statements - Prevention

Wash face, hands and any exposed skin thoroughly after handling Wear protective gloves/protective clothing/eye protection/face protection Keep only in original container

Precautionary Statements - Response

IF IN EYES: Rinse cautiously with water for several minutes. Remove contact lenses, if present and easy to do. Continue rinsing If eye irritation persists: Get medical advice/attention IF ON SKIN: Wash with plenty of soap and water If skin irritation occurs: Get medical advice/attention Take off contaminated clothing and wash before reuse Absorb spillage to prevent material damage

Precautionary Statements - Storage

Store in corrosive resistant container with a resistant inner liner

Other information

• May be harmful in contact with skin

3. COMPOSITION/INFORMATION ON INGREDIENTS

Component	CAS-No	weight-%	TRADE SECRET
Trade Secret Ingredient	PROPRIETARY	45 - 55%	*

^{*}The exact percentage (concentration) of composition has been withheld as a trade secret

4. FIRST AID MEASURES

First Aid Measures

Eve contact

Immediately flush with plenty of water for at least 20 minutes, holding eyelids apart to ensure flushing of the entire surface. Washing within one minute is essential to achieve maximum effectiveness. Seek immediate medical attention.

Skin contact

Immediately wash thoroughly with soap and water, remove contaminated clothing and footwear. Wash clothing before reuse. Get medical attention if irritation should develop.

Ingestion

Seek medical attention immediately. Give large amounts of water to drink. If vomiting should occur spontaneously, keep airway clear. Never give anything by mouth to an unconscious person.

Inhalation

Remove to fresh air.

Most important symptoms and effects, both acute and delayed

Acute effects

Possible eye, skin and respiratory tract irritation.

Chronic effects

May aggravate existing skin, eye, and lung conditions. Persons with kidney disorders have an increased risk from exposure based on general information found on aluminum salts.

Indication of any immediate medical attention and special treatment needed

Note to physicians

Aluminum soluble salts may cause gastroenteritis if ingested. Treatment includes the use of demulcents. Note: Consideration should be given to the possibility that overexposure to materials other than this product may have occurred.

5. FIRE-FIGHTING MEASURES

Extinguishing media

Suitable extinguishing media

Water Spray, Carbon Dioxide, Foam, Dry Chemical.

Extinguishing media which must not be used for safety reasons

No information available

Special hazards arising from the substance or mixture

Special Hazard

May produce hazardous fumes or hazardous decomposition products.

Advice for firefighters

Firefighting measures

Product is a water solution and nonflammable. In a fire, this product may build up pressure and rupture a sealed container; cool exposed containers with water spray. Use self-contained breathing apparatus in confined areas; avoid breathing mist or spray.

Special protective equipment for firefighters

Not determined

Explosion data

Sensitivity to Mechanical Impact

None.

Sensitivity to Static Discharge

None.

6. ACCIDENTAL RELEASE MEASURES

Personal precautions, protective equipment and emergency procedures

Personal precautions

Wear suitable protective clothing and gloves.

Environmental precautions

Environmental precautions

Do not permit run-off to get into sewers or surface waterways.

Methods and material for containment and cleaning up

Methods for containment

Prevent further leakage or spillage if safe to do so. Dike to collect large liquid spills.

Methods for cleaning up

Clear spills immediately. Contain large spill and remove using a vacuum truck. Soak up small spills with inert absorbent material and place in a labeled waste container for disposal. Ventilate area of leak or spill. Spills of solution are extremely slippery so all residue must be removed promptly.

7. HANDLING AND STORAGE

Precautions for safe handling

Advice on safe handling

Keep container closed when not in use

Keep away from heat and open flame.

Avoid contact with eyes, skin and clothing

Wash thoroughly after handling

Wear chemical splash goggles, gloves, and protective clothing when handling.

Avoid breathing vapor or mist

Use with adequate ventilation and employ respiratory protection where mist or spray may be generated.

FOR INDUSTRIAL USE ONLY.

Conditions for safe storage, including any incompatibilities

Technical measures and storage conditions

Do not store in unlined metal containers.

Product may slowly corrode iron, brass, copper, aluminum, mild steel, and stainless steel.

Store in a cool, dry place away from direct heat.

Keep in tightly closed container.

Incompatible products

Oxidizing agents.

8. EXPOSURE CONTROLS/PERSONAL PROTECTION

Control parameters

Exposure Guidelines

This product, as supplied, does not contain any hazardous materials with occupational exposure limits established by the region specific regulatory bodies

Appropriate engineering controls

Engineering controls

Local exhaust ventilation as necessary to maintain exposures to within applicable limits. Please refer to the ACGIH document, "Industrial Ventilation, A Manual of Recommended Practices", most recent edition, for details. If there are no applicable or established exposure limit requirements or guidelines, general ventilation should be sufficient.

Individual protection measures, such as personal protective equipment

Eye/face Protection

Wear chemical splash goggles and face shield (when eye and face contact is possible due to splashing or spraying of material).

Hand Protection

Appropriate chemical resistant gloves should be worn.

Skin and body protection

Standard work clothing and work shoes.

Respiratory protection

If exposures exceed the PEL or TLV, use NIOSH/MSHA approved respirator in accordance with OSHA Respiratory Protection Requirements under 29 CFR 1910.134.

Other personal protection data

Eyewash fountains and safety showers must be easily accessible.

Hygiene measures

Handle in accordance with good industrial hygiene and safety practice.

9. PHYSICAL AND CHEMICAL PROPERTIES

Information on basic physical and chemical properties

Physical state liquid

Color colorless to yellow

Appearance clear

Odor odor threshold no appreciable odor No information available

<u>Property</u>	<u>Values</u>	Remarks / Method
рН	3.5	as is
Melting / freezing point	-7 °C / 19 °F	No information available
Boiling point / boiling range	No information available	No information available
Flash point	Not applicable	No information available
Evaporation rate	No information available	No information available

Flammability (solid, gas) Not applicable No information available

Flammability Limit in Air

Upper flammability limitNot applicableNo information availableLower flammability limitNot applicableNo information available

Vapor pressure No information available No information available

Vapor density No information available No information available

Specific gravity 1.33 - 1.35 No information available

Solubility (water) Soluble No information available

Solubility in other solvents No information available No information available

Partition coefficient: n-octanol/water No information available No information available

Autoignition temperature Not applicable No information available

Decomposition temperatureNo information available
No information available

Kinematic viscosity No information available No information available

Dynamic viscosity < 100 cps @ 20 °C No information available

Other information

Density	11.0 - 11.3 lb/gal
Bulk Density	No information available
Explosive properties	No information available.
Oxidizing properties	No information available
Softening point	No information available
Molecular weight	No information available
Volatile organic compounds (VOCs) content	No information available
Percent Volatile, wt.%	40 - 50%

10. STABILITY AND REACTIVITY

Reactivity

Reactivity

No data available.

Chemical stability

Chemical stability

Stable.

Possibility of hazardous reactions

Possibility of hazardous reactions

None under normal processing.

Hazardous polymerization

No.

Conditions to avoid

Conditions to avoid

None

Incompatible materials

Materials to avoid

Oxidizing agents.

Hazardous decomposition products

Hazardous decomposition products

Thermal decomposition may release toxic and/or hazardous gases such as Cl₂ and HCl.

11. TOXICOLOGICAL INFORMATION

Information on likely routes of exposure

Eye contact

May cause moderate eye irritation that can become severe with prolonged contact. Prolonged exposure to Aluminum salts may cause conjunctivitis.

Skin contact

May be harmful in contact with skin. Prolonged and/or repeated contact may cause skin irritation.

Ingestion

May cause irritation of the mouth, throat and stomach. Ingestion may cause gastrointestinal irritation, nausea, vomiting and diarrhea.

Inhalation

Inhalation of mist or vapor may cause respiratory tract irritation.

Acute toxicity - Product Information

Oral LD50 No information available

Dermal LD50 No information available

Inhalation LC50 No information available

Acute toxicity - Component Information

Component	weight-%	Oral LD50	Dermal LD50	Inhalation LC50
Trade Secret Ingredient	45 - 55%	= 9187 mg/kg (Rat)	> 2000 mg/kg (Rat)	-

Information on toxicological effects

Symptoms

No information available.

Delayed and immediate effects as well as chronic effects from short and long-term exposure

Skin corrosion/irritation

Irritating to skin

Serious eye damage/eye irritation

Causes serious eye irritation

Sensitization

No information available

Germ cell mutagenicity

No information available

Carcinogenicity

This product does not contain any components in concentrations greater than or equal to 0.1% that are listed as known or suspected carcinogens by NTP, IARC, ACGIH, or OSHA.

Reproductive toxicity

No information available

Specific target organ toxicity - Single exposure

No information available.

Specific target organ toxicity - Repeated exposure

No information available

Aspiration hazard

No information available.

Numerical measures of toxicity - Product Information

The following values are calculated based on chapter 3.1 of the GHS document

 ATEmix (oral)
 18374 mg/kg

 ATEmix (dermal)
 4004 mg/kg

Other information

Conclusions are drawn from sources other than direct testing.

12. ECOLOGICAL INFORMATION

Ecotoxicity

Aquatic toxicity - Product Information

Fish LC 50 (96 hour, static) 776.4 mg/L Pimephales promelas (Fathead Minnow) 1

EC 50 (96 hour, static) 265.5 mg/L Pimephales promelas (Fathead Minnow) 1

Crustacea LC 50 (48 hour, static) 803.8 mg/L Ceriodaphnia dubia (Water Flea) ¹

NOEC (7 day chronic, static) 200 mg/L Ceriodaphnia dubia (Water Flea) 1

Algae/aquatic plants No information available

Acute aquatic toxicity - Component Information

Component	weight-%	Algae/aquatic plants	Fish	Toxicity to daphnia and other aquatic invertebrates
Trade Secret Ingredient	45 - 55%	-	LC50 (96 h static) 100 - 500 mg/L	
			(Brachydanio rerio)	

Persistence and degradability

Persistence and degradability

No information available

Bioaccumulative potential

Bioaccumulative potential

No information available.

Mobility

Mobility

No information available

Results of PBT and vPvB assessment

PBT and vPvB assessment

No information available

Other adverse effects

Other information

¹ Generated from tests conducted by ECT-Superior Laboratories May 2010

13. DISPOSAL CONSIDERATIONS

Waste treatment methods

Disposal of wastes

Do NOT mix with other chemical wastes. Do not put solutions containing this product into sewer systems. Dispose of product in an approved chemical waste landfill or incinerate in accordance with applicable Federal, state and local regulations. Do not re-use empty containers.

Contaminated packaging

Since empty containers retain product residue, follow label warnings even after container is emptied.

14. TRANSPORT INFORMATION

DOT NOT REGULATED FOR TRANSPORTATION

This product is excepted from DOT regulations under 49 CFR 173.154(d) when shipped by road or railway. The product exception is referenced in 49 CFR 172.101 Table. Packaging

material must not be aluminum, steel or be degraded by this product

<u>ICAO/IATA</u> Regulated

UN number UN3264

Proper shipping name Corrosive Liquid, Acidic, Inorganic, N.O.S. (Polyaluminum Chloride Solution)

Hazard class 8
Packing group III
ERG Code 8L

<u>IMDG</u> Regulated

UN number UN3264

Proper shipping name Corrosive Liquid, Acidic, Inorganic, N.O.S. (Polyaluminum Chloride Solution)

Hazard class 8
Packing group III
EmS F-A, S-B

Harmonized Tariff Number 2827.32

15. REGULATORY INFORMATION

International Inventories

TSCA (United States)

All ingredients are on the inventory or exempt from listing

Australia (AICS)

All ingredients are on the inventory or exempt from listing

Canada (DSL)

All ingredients are on the inventory or exempt from listing

Canada (NDSL)

None of the ingredients are on the inventory.

China (IECSC)

All ingredients are on the inventory or exempt from listing

EINECS (European Inventory of Existing Chemical Substances)

All ingredients are on the inventory or exempt from listing

ELINCS (European List of Notified Chemical Substances)

None of the ingredients are on the inventory.

ENCS (Japan)

All ingredients are on the inventory or exempt from listing

South Korea (KECL)

All ingredients are on the inventory or exempt from listing

Philippines (PICCS)

All ingredients are on the inventory or exempt from listing

Legend

TSCA - United States Toxic Substances Control Act Section 8(b) Inventory

AICS - Australian Inventory of Chemical Substances

DSL/NDSL - Canadian Domestic Substances List/Non-Domestic Substances List

IECSC - China Inventory of Existing Chemical Substances

EINECS/ELINCS - European Inventory of Existing Commercial Chemical Substances/EU List of Notified Chemical Substances

ENCS - Japan Existing and New Chemical Substances

KECL - Korean Existing and Evaluated Chemical Substances

PICCS - Philippines Inventory of Chemicals and Chemical Substances

U.S. Federal Regulations

CERCLA

This material, as supplied, does not contain any substances regulated as hazardous substances under the Comprehensive Environmental Response Compensation and Liability Act (CERCLA) (40 CFR 302) or the Superfund Amendments and Reauthorization Act (SARA) (40 CFR 355). There may be specific reporting requirements at the local, regional, or state level pertaining to releases of this material.

CWA (Clean Water Act)

This product does not contain any substances regulated as pollutants pursuant to the Clean Water Act (40 CFR 122.21 and 40 CFR 122.42).

SARA 311/312 Hazard Categories

Acute health hazard	Yes
Chronic health hazard	No
Fire hazard	No
Sudden release of pressure hazard	No
Reactive hazard	No

SARA 313

Section 313 of Title III of the Superfund Amendments and Reauthorization Act of 1986 (SARA). This product does not contain any chemicals which are subject to the reporting requirements of the Act and Title 40 of the Code of Federal Regulations, Part 372.

U.S. State Regulations

California Proposition 65

This product does not contain any Proposition 65 chemicals.

U.S. State Right-to-Know Regulations

This product does not contain any substances regulated under applicable state right-to-know regulations

16. OTHER INFORMATION

NFPA Rating Health - 1 Flammability - 0 Instability - 0 Special Hazard - HMIS Rating Health - 1 Flammability - 0 Physical hazard - 0 Personal protection - B

Product code

Revision date 2015-03-12

Revision number 1

Disclaimer

The information provided in this Safety Data Sheet is correct to the best of our knowledge, information and belief at the date of its publication. The information given is designed only as a guidance for safe handling, use, processing, storage, transportation, disposal and release and is not to be considered a warranty or quality specification. The information relates only to the specific material designated and may not be valid for such material used in combination with any other materials or in any process, unless specified in the text.

End of Safety Data Sheet

SAFETY DATA SHEET

I. Chemical Product and Company Identification

Product Name: Nonionic / Anionic Polymer Product #s: LRT- 800 Series Polymers

Distributor: Lockwood Remediation Technologies, LLC

89 Crawford Street

Leominster, Massachusetts 01453

Tel: 774-450-7177 Fax: 885-835-0617

Email: plockwood@Irt-Ilc.net

For Chemical Emergency - Spill, Leak, Fire, Exposure or Accident

Call **CHEMTEL** - Day or Night – 1800-255-3924

II. Composition and Ingredient Information

Components: CAS #:

Anionic Polyacrylamide 25085-02-3

Permissible Exposure Limit (PEL): No information available.

Threshold Limit Value (TLV): Information not available.

III. Hazard Identification

Primary Routes of Exposure: Skin Contact - Eye Contact - Inhalation

Skin Contact: May cause irritation, especially after prolonged or repeated contact.

Eye Contact: Dust contact and solution may cause irritation.

Ingestion: May cause discomfort or gastrointestinal disturbance. Low oral toxicity.

Inhalation: Dust contact and solution may cause irritation.

Unusual Chronic Toxicity: None Known.

IV. First Aid Measures

Skin Contact: Flush with plenty of soap and water for at least 15 minutes. If irritation

persists, get medical attention.

Eyes Contact: Immediately flush with water, continuing for 15 minutes. Immediately

contact a physician for additional treatment.

Ingestion: If conscious, immediately give 2 to 4 glasses of water, and induce

vomiting by touching finger to back of throat or giving syrup of Ipecac.

CAUTION: If unconscious, having breathing or in convulsions, do not

induce vomiting or give water.

Inhalation: Remove to fresh air.

V. Fire-Fighting Measures

Flammability Classification: NFPA - Minimal - Will not burn under normal conditions.

Flash Point: Not flammable.

Flammable and Explosive Limits: UEL: ND LEL: ND

Hazardous Combustion Byproducts:

Thermal decomposition expected to produce carbon monoxide, carbon dioxide, and various nitrous oxides and some HCl vapors.

Extinguishing Media: Foam - Carbon Dioxide - Dry Chemical

AVOID USING WATER - MAY CAUSE EXTREMELY SLIPPERY CONDITIONS.

Special Fire-Fighting Procedures: Wear self-contained breathing apparatus.

Solutions of product are extremely slippery.

Unusual Fire and Explosion Hazards: Material and its solutions are extremely slippery.

VI. Accidental Release Measures

Procedures: Sweep up or shovel into metal or plastic container. Do not use water to

clean area; product is very slippery when wet.

Waste Disposal: Incineration and/or disposal in a chemical landfill. Disposer must

comply with Federal, State, and Local disposal or discharge laws.

<u>VII. Handling and Storage</u> Avoid contact with skin, eyes, or clothing.

Do not inhale mist if formed.

Use normal personal hygiene and housekeeping.

Store in a cool dry place.

VIII. Exposure Controls and Personal Protection

Eye Protection: Safety glasses for normal handling conditions.

Splash-proof goggles when handling solutions.

Do not wear contact lens.

Hand Protection: Rubber gloves.

Ventilation: Local exhaust - if dusting occurs. Natural ventilation adequate in

absence of dust.

Respiratory Protection: If dusty conditions are encountered, wear NIOSH

approved respirator.

Other Protection: Eye wash recommended, full work clothing, add protective

rubber clothing if splashing or repeated contact with solution is

likely.

IX. Physical and Chemical Properties

Appearance White granular

State Solid
Specific Gravity (Water = 1) 0.8 - 1.0
Solubility in Water Complete

X. Stability and Reactivity

Stability: Product is stable as supplied.

Incompatibility: Oxidizing Agents may cause exothermic reaction.

Hazardous Decomposition or Byproducts:

Thermal decomposition expected to produce carbon oxides, and various nitrous oxides.

Hazardous Polymerization: Will not occur.

XI. Toxicological Information Not listed as a carcinogen by IARC, NTP, OSHA or ACGIH.

XII. Ecological Information

XIII. Disposal Considerations

Incineration and/or disposal in chemical landfill. Disposer must comply with federal, state, and local disposal or discharge laws.

RCRA Status of Unused Material if Discarded: Not a hazardous waste.

Hazardous Waste Number: N/A

XIV. Transport Information

Not DOT regulated. Not a RCRA hazardous waste.

Label Instructions: Signal Word: "Caution! Products are extremely slippery!"

XV. Regulatory Information

Reportable Quantity (EPA 40 CFR 302): N/A

Threshold Planning Quantity (EPA 40 CFR 355): N/A

Toxic Chemical Release Reporting (EPA 40 CFR 372): N/A

SARA TITLE 3: Section 311 Hazard Categorizations (40CFR 370): N/A

SARA TITLE 3: Section 313 Information (40CFR 372): N/A

Comprehensive Environmental Response, Compensation and Liability Act (CERCLA) Information (40CFR 302.4) N/A

US TSCA: Product is manufactured in compliance with all provisions of the Toxic Substances Control Act, 15 U.S.C.

XVI. Other Information

Health 0 4 = Severe
Flammability 1 3 = Serious
Reactivity 0 2 = Moderate
Personal Protection F 1 = Slight
0 = Insignificant

Personal Protective Equipment Guide

A = Safety Glasses, Gloves, and

Vapor Respirator

B = Safety Glasses, Gloves H = Splash Goggles, Gloves,

Apron, Vapor Respirator C =

Safety Glasses, Gloves, Apron I = Safety Glasses, Gloves, and

Dust & Vapor Respirator

D = Gloves, Apron, Face shield J = Splash Goggles, Gloves, Apron,

and Dust & Vapor Respirator

E = Safety Glasses, Gloves, and Dust K = Air Line Hood/Mask, Respirator Gloves, Full Suit, Boots

F = Safety Glasses, Gloves, Apron X = Ask supervisor for special and Dust Respirator handling instructions

ABBREVIATIONS:

ACGIH - American Conference of Governmental Industrial Hygienists

OSHA - Occupational Safety and Health Administration

TLV - Threshold Limit Value

PEL - Permissible Exposure Limit

TWA - Time Weighted Average

STEL - Short-Term Exposure Limit

ANSI - American National Standard Institute

MSHA - Mine Safety and Health Administration

NIOSH - National Institute for Occupational Safety & Health

NA - Not Applicable

NE - Not Established

NR - Not Required

PPE - Personal Protective Equipment

LEL - Lower Exposure Level

UEL - Upper Exposure Level

ATTACHMENT III

Matthew Lyne

From: Ruan, Xiaodan (DEP) <xiaodan.ruan@state.ma.us>

Sent: Friday, September 18, 2020 4:55 PM

To: Matthew Lyne

Cc: Vakalopoulos, Catherine (DEP)

Subject: [EXTERNAL] RE: DF approval needed-15 Central Street, Fitchburg, MA

[External Email] This email originated from outside of the Atlas mail system. Please use caution when opening attachments.

Hi Matthew,

I checked your calculation, and the DF of 13.45 for the proposed project at 15 Central Street, Fitchburg, with a design flow of 150 gpm is correct.

Here is water quality information in assisting you in filling out the NOI:

Waterbody and ID: Nashua River (MA81-02) within Nashua River Watershed

Classification: B

Outstanding Resource Water?: no

State's most recent Integrated List is located here: https://www.epa.gov/sites/production/files/2020-01/documents/2016-ma-303d-list-report.pdf, search for "MA81-02" to see the causes of impairments.

TMDLs: no final TMDL for this segment

Also, if this is not a *current* MCP site, then in addition to submitting the NOI to EPA, you need to apply with MassDEP and submit a \$500 fee (unless fee exempt, e.g., municipality). Please note that beginning on June 30, 2020, MassDEP has started using ePLACE, an online application submittal process where you will set up a user ID and be able to submit NOIs for various projects as well as pay by credit card. The instructions are located on this page: https://www.mass.gov/how-to/wm-15-npdes-general-permit-notice-of-intent. If this is your first time using ePLACE, technical assistant information is available on the ePLACE application webpage.

Please let me know if you have any questions.

From: Matthew Lyne <Matthew.Lyne@atcgs.com> Sent: Friday, September 18, 2020 12:55 PM

Sent. Friday, September 10, 2020 12.55 FW

To: Ruan, Xiaodan (DEP) <xiaodan.ruan@mass.gov>

Cc: Vakalopoulos, Catherine (DEP) <catherine.vakalopoulos@mass.gov>

Subject: DF approval needed-15 Central Street, Fitchburg, MA

CAUTION: This email originated from a sender outside of the Commonwealth of Massachusetts mail system. Do not click on links or open attachments unless you recognize the sender and know the content is safe.

Xiaodan, for the dilution factor approval, see below. I came up with DF = 13.45

Design flow Qd = 150 gpm=0.334 ft3/sec

7Q10 Flow = 4.16 ft3/sec (from StreamStats you had attached).

DF=(4.16 +0.334)/0.334 =13.45

Please let me know if this sounds right and then I'll input into WQBEL table. Thanks.

Matt

Matthew Lyne | SENIOR PROJECT MANAGER, P.E. | ATC Group Services LLC Office +1 508 926 1315 | Cell +1 508 641 0476

240 Barber Avenue, Suite 6 | Worcester, MA 01606 Fax +1 508 926 1334 | matthew.lyne@atcgs.com | www.atcgroupservices.com

This email and its attachments may contain confidential and/or privileged information for the sole use of the intended recipient(s). If you are not the intended recipient, any use, distribution or copying of the information contained in this email and its attachments is strictly prohibited. If you have received this email in error, please notify the sender by replying to this message and immediately delete and destroy any copies of this email and any attachments. The views or opinions expressed are the author's own and may not reflect the views or opinions of ATC.

From: Ruan, Xiaodan (DEP) < xiaodan.ruan@state.ma.us >

Sent: Thursday, September 17, 2020 12:39 PM

To: Matthew Lyne Matthew.Lyne@atcgs.com; Vakalopoulos, Catherine (DEP) Catherine.vakalopoulos@state.ma.us

Subject: RE: Need help with 7Q10

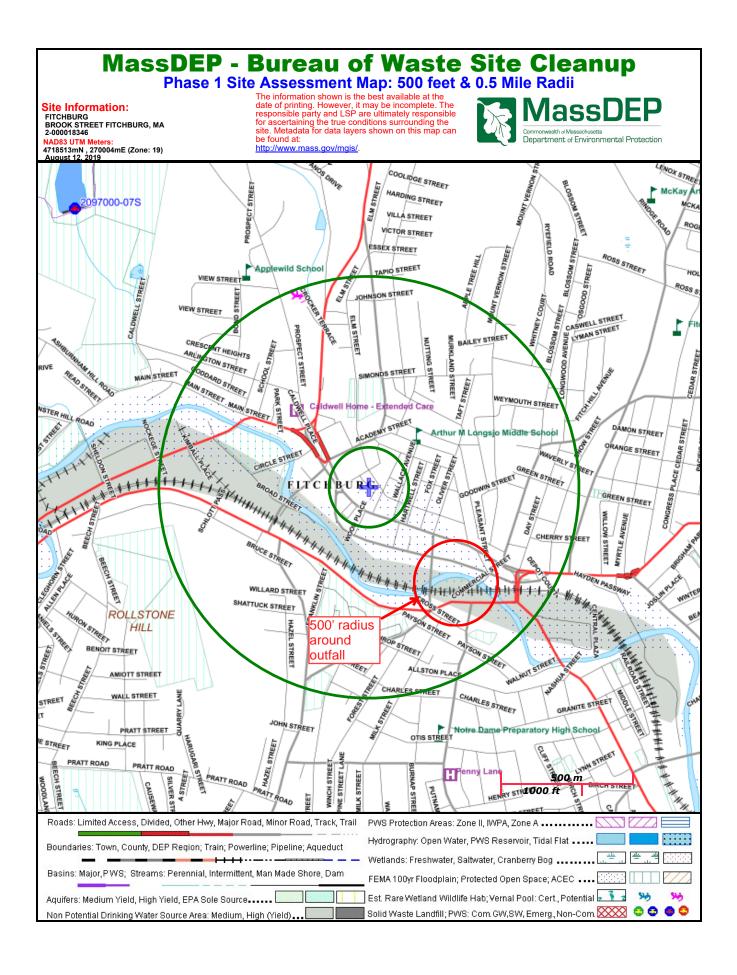
Hi Matthew,

Using the outfall location you provided in the word file, I was able to get a 7Q10 using the StreamStats. Please see the attached report.

Please let me know if you have any questions.

Thanks, Xiaodan

From: Matthew Lyne < Matthew.Lyne@atcgs.com Sent: Wednesday, September 16, 2020 4:30 PM

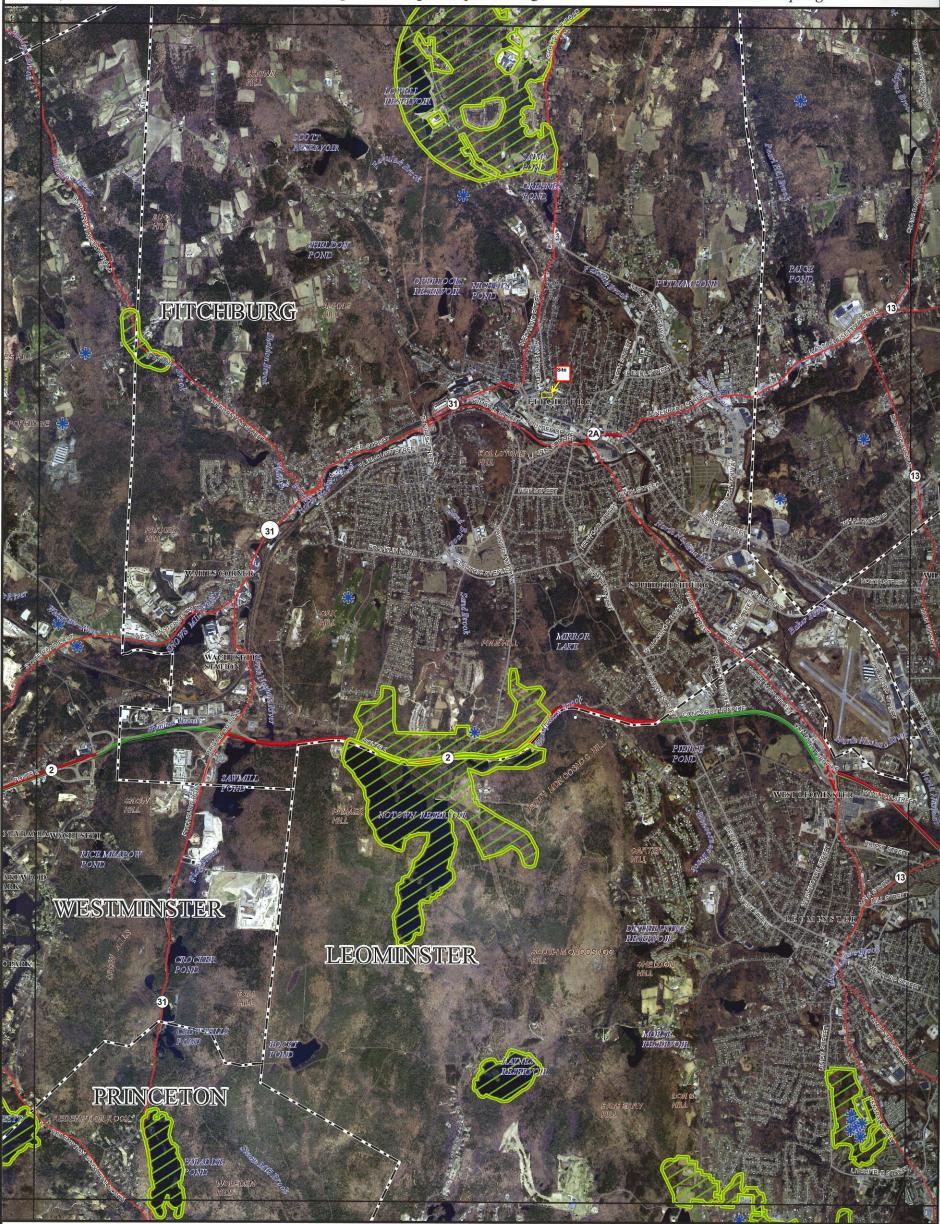

To: Vakalopoulos, Catherine (DEP) <catherine.vakalopoulos@mass.gov>

Cc: Ruan, Xiaodan (DEP) < xiaodan.ruan@mass.gov>

Subject: Need help with 7Q10

Dilution Factor	13.4					
	TBEL applies if	holdad	WQBEL applies i	fholdad	Compliance Level	
A. Inorganics	TBEL applies if	bolded	wQBEL applies i	1 bolded	applies if shown	
Ammonia	Report	mg/L				
Chloride	Report	μg/L				
Total Residual Chlorine	0.2	mg/L	136	μg/L		μg/L
Total Suspended Solids	30	mg/L				
Antimony	206	μg/L	7941	μg/L		
Arsenic	104	μg/L	113	μg/L		
Cadmium	10.2	μg/L	0.2722	μg/L		
Chromium III	323	μg/L	1076.2	μg/L		
Chromium VI	323	μg/L μg/L	122.0	μg/L μg/L		
Copper			9.4			
Iron	242	μg/L	12402	μg/L		
	5000	μg/L		μg/L		
Lead	160	μg/L	22.50	μg/L		
Mercury	0.739	μg/L	11.24	μg/L		
Nickel	1450	μg/L	651.5	μg/L		
Selenium	235.8	μg/L	62.0	μg/L		
Silver	35.1	μg/L	47.6	μg/L		
Zinc	420	μg/L	1260.8	μg/L		
Cyanide	178	mg/L	64.5	μg/L		μg/L
B. Non-Halogenated VOCs						
Total BTEX	100	μg/L				
Benzene	5.0	μg/L				
1,4 Dioxane	200	μg/L				
Acetone	7970	μg/L		/7		
Phenol C. Halanarata I VOCa	1,080	μg/L	3722	μg/L		
C. Halogenated VOCs Carbon Tetrachloride	4.4	μg/L	19.9	ug/I		
1,2 Dichlorobenzene	600	μg/L μg/L	19.9	μg/L		
1,3 Dichlorobenzene	320	μg/L μg/L				
1,4 Dichlorobenzene	5.0	μg/L μg/L				
Total dichlorobenzene		μg/L				
1,1 Dichloroethane	70	μg/L				
1,2 Dichloroethane	5.0	μg/L				
1,1 Dichloroethylene	3.2	μg/L				
Ethylene Dibromide	0.05	μg/L				
Methylene Chloride	4.6	μg/L				
1,1,1 Trichloroethane	200	μg/L				
1,1,2 Trichloroethane	5.0	μg/L				
Trichloroethylene	5.0	μg/L				
Tetrachloroethylene	5.0	μg/L	40.9	μg/L		
cis-1,2 Dichloroethylene	70	μg/L				
Vinyl Chloride	2.0	μg/L				

D. Non-Halogenated SVOCs						
Total Phthalates	190	μg/L		μg/L		
Diethylhexyl phthalate	101	μg/L	27.3	μg/L		
Total Group I Polycyclic						
Aromatic Hydrocarbons	1.0	μg/L				
Benzo(a)anthracene	1.0	μg/L	0.0471	μg/L		μg/L
Benzo(a)pyrene	1.0	μg/L	0.0471	μg/L		μg/L
Benzo(b)fluoranthene	1.0	μg/L	0.0471	μg/L		μg/L
Benzo(k)fluoranthene	1.0	μg/L	0.0471	μg/L		μg/L
Chrysene	1.0	μg/L	0.0471	μg/L		μg/L
Dibenzo(a,h)anthracene	1.0	μg/L	0.0471	μg/L		μg/L
Indeno(1,2,3-cd)pyrene	1.0	μg/L	0.0471	μg/L		μg/L
Total Group II Polycyclic						
Aromatic Hydrocarbons	100	μg/L				
Naphthalene	20	μg/L				
E. Halogenated SVOCs						
Total Polychlorinated Biphenyls	0.000064	μg/L			0.5	μg/L
Pentachlorophenol	1.0	μg/L				
F. Fuels Parameters						
Total Petroleum Hydrocarbons	5.0	mg/L				
Ethanol	Report	mg/L				
Methyl-tert-Butyl Ether	70	μg/L	248	μg/L		
tert-Butyl Alcohol	120	μg/L				
tert-Amyl Methyl Ether	90	μg/L				



Priority Habitats and Estimated Habitats - Effective October 1, 2008

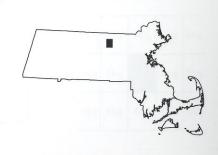
Priority Habitats for use with the MA Endangered Species Act Regulations (321 CMR 10) Estimated Habitats for use with the MA Wetlands Protection Act Regulations (310 CMR 10)

Produced by the Natural Heritage & Endangered Species Program


website: www.nhesp.org

Page Index

p.17	p.18	p.19	p.20	p.21
p.40	p.41		p.43	p.44
p.62	p.63	p.64	p.65	p.66


Priority Habitat of Rare Species

* Certified Vernal Pool (as of July 31, 2008)

0 0.5 1 2 Miles

Fitchburg Quad

Massachusetts Cultural Resource Information System MACRIS

MACRIS Search Results

Search Criteria: Town(s): Fitchburg; Place: Fitchburg; Street Name: Central; Resource Type(s): Building, Burial Ground;

Inv. No.	Property Name	Street	Town	Year
FIT.148		50 Central St	Fitchburg	r 1835
FIT.149		55 Central St	Fitchburg	r 1825
FIT.150	Reed House	61-63 Central St	Fitchburg	r 1820
FIT.151		62 Central St	Fitchburg	c 1830
FIT.152		67-69 Central St	Fitchburg	c 1830
FIT.153		71 Central St	Fitchburg	r 1845
FIT.154	Prentice, B. House	73-75 Central St	Fitchburg	r 1810
FIT.155		82 Central St	Fitchburg	r 1845
FIT.156		88 Central St	Fitchburg	r 1845
FIT.103	Ware, T. K. House	130-134 Elm St	Fitchburg	c 1810

Friday, October 9, 2020 Page 1 of 1

240 Barber Avenue, Suite 6 Worcester, MA 01606 Telephone 508-926-1315 Fax 508-926-1334 www.atcgroupservices.com

October 9, 2020

File No. 03-000000-46

Massachusetts Historical Commission 220 Morrissey Boulevard Boston, MA 02125

RE: Project Notification Form

Fitchburg State University 15 Central Street Fitchburg, Massachusetts

To whom it may concern:

On behalf of Fitchburg State University (FSU), ATC Group Services LLC (ATC), is submitting this Project Notification Form (PNF) for the above referenced facility (i.e., the "Site"). FSU is proposing to initiate cleanup activities as part a remedial plan for the release of fuel oil at the site. Approval for treatment and discharge of the groundwater is necessary through EPA and this PNF is required as part of the Notice of Intent process. A Site Locus map is included as Figure 1.

The subject property currently is a 12 unit apartment complex. The building is a two story brick building. Land use in the vicinity of the Site is mainly residential. A Site Plan depicting the current setting of the property and surrounding area is included as Figures 2.

If there are any questions regarding this submittal, please do not hesitate to contact the undersigned at (508) 926-1315.

Sincerely,

ATC Group Services LLC

Mand O. mi

Matthew Lyne

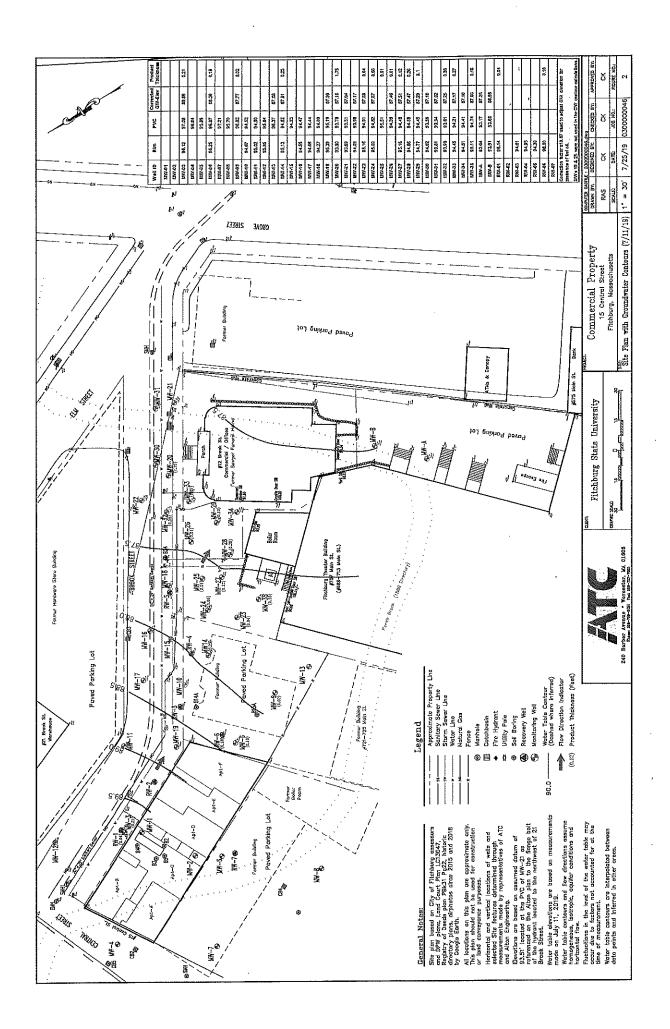
Senior Project Manager

CC:

Figure 1- Site Locus

Figure 2- Site Plan

Commercial Property 15 Central Street Fitchburg, MA 01420 ATC Group Services, LLC 240 Barber Ave., Suite 6 Worcester, MA 01606 Phone 508 926 1315 Fax 508 926 1334 www.atcgroupservices.com


Figure 1: SITE LOCUS

Base Map: U.S. Geological Survey; Quadrangle Location: Fitchburg, MA

Lat/Lon: 42.584942° NORTH, 71.803321° WEST | UTM Coordinates: 19 269966 EAST / 4718535 NORTH

Cad Generated By: Rick Starodoj

POREVER / USA

240 Baberthe, 50th 6 Worcester, MA 01606 Messachwetts Historial Conhibinion 220 Merriosey Belleveral Boston, MA 02125

August 28, 2020

Charles Klingler ATC Group Services, LLC - Worcester 240 Barber Avenue Worcester, MA 01606

Project Location: Fitchburg, MA

Client Job Number:

Project Number: 0300000046

Laboratory Work Order Number: 20H1131

Michelle Koch

Enclosed are results of analyses for samples received by the laboratory on August 21, 2020. If you have any questions concerning this report, please feel free to contact me.

Sincerely,

Michelle M. Koch Project Manager

Table of Contents

Sample Summary	4
Case Narrative	5
Sample Results	8
20H1131-01	8
20H1131-02	14
Sample Preparation Information	16
QC Data	18
Volatile Organic Compounds by GC/MS	18
B264970	18
Semivolatile Organic Compounds by GC/MS	19
B265212	19
Semivolatile Organic Compounds by - GC/MS	20
B265086	20
Metals Analyses (Total)	23
B264980	23
B264981	23
B264983	23
Conventional Chemistry Parameters by EPA/APHA/SW-846 Methods (Total)	25
B264914	25
B264915	25
B264921	25
B264957	26
B265112	26
B265114	26

Table of Contents (continued)

Flag/Qualifier Summary	28
Certifications	29
Chain of Custody/Sample Receipt	32

ATC Group Services, LLC - Worcester 240 Barber Avenue Worcester, MA 01606

ATTN: Charles Klingler

PURCHASE ORDER NUMBER:

REPORT DATE: 8/28/2020

PROJECT NUMBER: 0300000046

ANALYTICAL SUMMARY

20H1131 WORK ORDER NUMBER:

The results of analyses performed on the following samples submitted to the CON-TEST Analytical Laboratory are found in this report.

PROJECT LOCATION: Fitchburg, MA

FIELD SAMPLE #	LAB ID:	MATRIX	SAMPLE DESCRIPTION	TEST	SUB LAB
MW-34	20H1131-01	Ground Water		624.1	
				625.1	
				EPA 1664B	
				EPA 200.7	
				EPA 200.8	
				EPA 245.1	
				EPA 300.0	
				EPA 350.1	
				EPA 420.1	
				SM21-22 2540D	
				SM21-22 3500 Cr I	3
				SM21-22 4500 CL	G
				Tri Chrome Calc.	
Outfall #CSO-045	20H1131-02	Storm Water		EPA 200.7	
				EPA 200.8	
				EPA 245.1	
				EPA 350.1	
				SM21-22 3500 Cr I	3
				Tri Chrome Calc.	

CASE NARRATIVE SUMMARY

All reported results are within defined laboratory quality control objectives unless listed below or otherwise qualified in this report.

624.1

Qualifications:

DL-01

Elevated reporting limits for all volatile compounds due to foaming sample matrix.

Analyte & Samples(s) Qualified:

20H1131-01[MW-34]

625.1

Qualifications:

L-04

Laboratory fortified blank/laboratory control sample recovery and duplicate recovery are outside of control limits. Reported value for this compound is likely to be biased on the low side. Analyte & Samples(s) Qualified:

Benzidine

20H1131-01[MW-34], B265086-BLK1, B265086-BS1, B265086-BSD1

Hexachlorocyclopentadiene

20H1131-01[MW-34], B265086-BLK1, B265086-BS1, B265086-BSD1

V-04

Initial calibration did not meet method specifications. Compound was calibrated using a response factor where %RSD is outside of method specified criteria. Reported result is estimated. Analyte & Samples(s) Qualified:

2,4-Dinitrophenol

20H1131-01[MW-34]

Benzidine

20H1131-01[MW-34], B265086-BLK1, B265086-BS1, B265086-BSD1

V-05

Continuing calibration verification (CCV) did not meet method specifications and was biased on the low side for this compound.

Analyte & Samples(s) Qualified:

Benzidine

20H1131-01[MW-34], B265086-BLK1, B265086-BS1, B265086-BSD1

Hexachlorocyclopentadiene

B265086-BLK1, B265086-BS1, B265086-BSD1

V-34

Initial calibration verification (ICV) did not meet method specifications and was biased on the low side for this compound. Reported result is

Analyte & Samples(s) Qualified:

Benzidine

20H1131-01[MW-34]

EPA 200.8

Qualifications:

L-07

Either laboratory fortified blank/laboratory control sample or duplicate recovery is outside of control limits, but the other is within limits. RPD between the two LFB/LCS results is within method specified criteria.

Analyte & Samples(s) Qualified:

B264983-BSD1

SM21-22 3500 Cr B

Qualifications:

H-03

Sample received after recommended holding time was exceeded.

Analyte & Samples(s) Qualified:

Hexavalent Chromium

20H1131-02[Outfall #CSO-045], B264914-MS1, B264914-MSD1

H-09

Sample received by laboratory with insufficient time remaining to perform analysis within the recommended holding time.

Analyte & Samples(s) Qualified:

Hexavalent Chromium

20H1131-01[MW-34]

MS-07

Matrix spike recovery is outside of control limits. Analysis is in control based on laboratory fortified blank recovery. Possibility of sample matrix effects that lead to low bias for reported result or non-homogeneous sample aliquot cannot be eliminated.

Analyte & Samples(s) Qualified:

Hexavalent Chromium

20H1131-02[Outfall #CSO-045], B264914-MS1, B264914-MSD1

SM21-22 4500 CL G

Qualifications:

H-09

Sample received by laboratory with insufficient time remaining to perform analysis within the recommended holding time.

Analyte & Samples(s) Qualified:

Chlorine, Residual 20H1131-01[MW-34]

MS-07

Matrix spike recovery is outside of control limits. Analysis is in control based on laboratory fortified blank recovery. Possibility of sample matrix effects that lead to low bias for reported result or non-homogeneous sample aliquot cannot be eliminated.

Analyte & Samples(s) Qualified:

Chlorine, Residual

20H1131-01[MW-34], B264915-MS1

 $The \ results \ of \ analyses \ reported \ only \ relate \ to \ samples \ submitted \ to \ the \ Con-Test \ Analytical \ Laboratory \ for \ testing.$

Kappund

I certify that the analyses listed above, unless specifically listed as subcontracted, if any, were performed under my direction according to the approved methodologies listed in this document, and that based upon my inquiry of those individuals immediately responsible for obtaining the information, the material contained in this report is, to the best of my knowledge and belief, accurate and complete.

Tod E. Kopyscinski Laboratory Director

Project Location: Fitchburg, MA Sample Description: Work Order: 20H1131

Date Received: 8/21/2020 Field Sample #: MW-34 Sample ID: 20H1131-01

Sample Matrix: Ground Water

Start Date/Time: 8/20/2020 5:00:00PM Stop Date/Time: 8/20/2020 5:50:00PM

Sample Flags: DL-01

Volatile Organic Compounds by GC/MS

Analyte	Results	RL	DL	Units	Dilution	Flag/Qual	Method	Date Prepared	Date/Time Analyzed	Analyst
Acetone	<7.58	100	7.58	μg/L	2	riag/Quai	624.1	8/24/20	8/24/20 13:48	EEH
tert-Amyl Methyl Ether (TAME)	< 0.280	1.00	0.280	μg/L μg/L	2		624.1	8/24/20	8/24/20 13:48	EEH
Benzene	2.16	2.00	0.360	μg/L	2		624.1	8/24/20	8/24/20 13:48	EEH
tert-Butyl Alcohol (TBA)	<8.34	40.0	8.34	$\mu g/L$	2		624.1	8/24/20	8/24/20 13:48	EEH
Ethanol	<21.1	100	21.1	μg/L	2		624.1	8/24/20	8/24/20 13:48	EEH
Ethylbenzene	13.6	4.00	0.260	μg/L	2		624.1	8/24/20	8/24/20 13:48	EEH
Methyl tert-Butyl Ether (MTBE)	< 0.500	4.00	0.500	μg/L	2		624.1	8/24/20	8/24/20 13:48	EEH
Toluene	< 0.280	2.00	0.280	μg/L	2		624.1	8/24/20	8/24/20 13:48	EEH
Xylenes (total)	37.6	6.00		μg/L	2		624.1	8/24/20	8/24/20 13:48	EEH
m+p Xylene	34.5	4.00	0.600	μg/L	2		624.1	8/24/20	8/24/20 13:48	EEH
o-Xylene	3.04	2.00	0.340	$\mu g/L$	2		624.1	8/24/20	8/24/20 13:48	EEH
Surrogates		% Reco	very	Recovery Limit	s	Flag/Qual				
1,2-Dichloroethane-d4		105		70-130					8/24/20 13:48	
Toluene-d8		99.8		70-130					8/24/20 13:48	
4-Bromofluorobenzene		101		70-130					8/24/20 13:48	

Project Location: Fitchburg, MA Sample Description: Work Order: 20H1131

Date Received: 8/21/2020 Field Sample #: MW-34 Sample ID: 20H1131-01

Sample Matrix: Ground Water

Start Date/Time: 8/20/2020 5:00:00PM Stop Date/Time: 8/20/2020 5:50:00PM

Semivolatile Organic Compounds by GC/MS

Analyte	Results	RL	DL	Units	Dilution	Flag/Qual	Method	Date Prepared	Date/Time Analyzed	Analyst
Benzo(a)anthracene (SIM)	<0.015	0.048	0.015		1	riag/Quar	625.1	8/26/20	8/27/20 20:04	CLA
Belizo(a)antinacene (Shvi)	<0.013	0.048	0.013	μg/L	1		023.1	8/20/20	6/2//20/20.04	CLA
Benzo(a)pyrene (SIM)	< 0.011	0.096	0.011	μg/L	1		625.1	8/26/20	8/27/20 20:04	CLA
Benzo(b)fluoranthene (SIM)	< 0.014	0.048	0.014	$\mu g/L$	1		625.1	8/26/20	8/27/20 20:04	CLA
Benzo(k)fluoranthene (SIM)	< 0.011	0.19	0.011	μg/L	1		625.1	8/26/20	8/27/20 20:04	CLA
Bis(2-ethylhexyl)phthalate (SIM)	< 0.41	0.96	0.41	$\mu g/L$	1		625.1	8/26/20	8/27/20 20:04	CLA
Chrysene (SIM)	< 0.014	0.19	0.014	$\mu g/L$	1		625.1	8/26/20	8/27/20 20:04	CLA
Dibenz(a,h)anthracene (SIM)	< 0.016	0.096	0.016	$\mu g/L$	1		625.1	8/26/20	8/27/20 20:04	CLA
Indeno(1,2,3-cd)pyrene (SIM)	< 0.017	0.096	0.017	$\mu g/L$	1		625.1	8/26/20	8/27/20 20:04	CLA
Surrogates		% Reco	very	Recovery Limits	s	Flag/Qual				
Nitrobenzene-d5		61.6		30-130					8/27/20 20:04	
2-Fluorobiphenyl		47.8		30-130					8/27/20 20:04	
p-Terphenyl-d14		61.0		30-130					8/27/20 20:04	

Project Location: Fitchburg, MA Sample Description: Work Order: 20H1131

Date Received: 8/21/2020 Field Sample #: MW-34 Sample ID: 20H1131-01

Sample Matrix: Ground Water

Start Date/Time: 8/20/2020 5:00:00PM Stop Date/Time: 8/20/2020 5:50:00PM

Semivolatile Organic Compounds by - GC/MS

		Semivolatile Organic Compounds by - GC/MS								
Analyte	Results	RL	DL	Units	Dilution	Flag/Qual	Method	Date Prepared	Date/Time Analyzed	Analyst
Acenaphthene	2.74	4.78	0.221	μg/L	1	J	625.1	8/26/20	8/27/20 17:28	IMR
Acenaphthylene	<0.221	4.78	0.221	μg/L	1	-	625.1	8/26/20	8/27/20 17:28	IMR
Anthracene	<0.193	4.78	0.193	μg/L	1		625.1	8/26/20	8/27/20 17:28	IMR
Benzidine	<15.7	19.1	15.7	μg/L	1	V-04, V-05, L-04,	625.1	8/26/20	8/27/20 17:28	IMR
Benzo(g,h,i)perylene	< 0.379	4.78	0.379	μg/L	1	V-34	625.1	8/26/20	8/27/20 17:28	IMR
4-Bromophenylphenylether	< 0.283	9.57	0.283	μg/L	1		625.1	8/26/20	8/27/20 17:28	IMR
4-Chloro-3-methylphenol	< 0.460	9.57	0.460	μg/L	1		625.1	8/26/20	8/27/20 17:28	IMR
Bis(2-chloroethyl)ether	< 0.490	9.57	0.490	μg/L	1		625.1	8/26/20	8/27/20 17:28	IMR
Bis(2-chloroisopropyl)ether	< 0.698	9.57	0.698	μg/L	1		625.1	8/26/20	8/27/20 17:28	IMR
2-Chloronaphthalene	< 0.434	9.57	0.434	μg/L	1		625.1	8/26/20	8/27/20 17:28	IMR
2-Chlorophenol	< 0.360	9.57	0.360	μg/L	1		625.1	8/26/20	8/27/20 17:28	IMR
4-Chlorophenylphenylether	< 0.300	9.57	0.300	μg/L	1		625.1	8/26/20	8/27/20 17:28	IMR
1,3-Dichlorobenzene	< 0.443	4.78	0.443	μg/L	1		625.1	8/26/20	8/27/20 17:28	IMR
1,4-Dichlorobenzene	< 0.367	4.78	0.367	μg/L	1		625.1	8/26/20	8/27/20 17:28	IMR
1,2-Dichlorobenzene	< 0.439	4.78	0.439	μg/L	1		625.1	8/26/20	8/27/20 17:28	IMR
3,3-Dichlorobenzidine	< 0.344	9.57	0.344	μg/L	1		625.1	8/26/20	8/27/20 17:28	IMR
2,4-Dichlorophenol	< 0.287	9.57	0.287	μg/L	1		625.1	8/26/20	8/27/20 17:28	IMR
2,4-Dimethylphenol	< 0.761	9.57	0.761	μg/L	1		625.1	8/26/20	8/27/20 17:28	IMR
4,6-Dinitro-2-methylphenol	<1.87	9.57	1.87	μg/L	1		625.1	8/26/20	8/27/20 17:28	IMR
2,4-Dinitrophenol	<1.56	9.57	1.56	μg/L	1	V-04	625.1	8/26/20	8/27/20 17:28	IMR
2,4-Dinitrotoluene	< 0.313	9.57	0.313	μg/L	1		625.1	8/26/20	8/27/20 17:28	IMR
2,6-Dinitrotoluene	< 0.331	9.57	0.331	μg/L	1		625.1	8/26/20	8/27/20 17:28	IMR
1,2-Diphenylhydrazine/Azobenzene	< 0.359	9.57	0.359	μg/L	1		625.1	8/26/20	8/27/20 17:28	IMR
Fluoranthene	< 0.284	4.78	0.284	μg/L	1		625.1	8/26/20	8/27/20 17:28	IMR
Fluorene	5.12	4.78	0.234	μg/L	1		625.1	8/26/20	8/27/20 17:28	IMR
Hexachlorobenzene	< 0.414	9.57	0.414	μg/L	1		625.1	8/26/20	8/27/20 17:28	IMR
Hexachlorobutadiene	< 0.567	9.57	0.567	μg/L	1		625.1	8/26/20	8/27/20 17:28	IMR
Hexachlorocyclopentadiene	<4.59	9.57	4.59	μg/L	1	L-04	625.1	8/26/20	8/27/20 17:28	IMR
Hexachloroethane	< 0.506	9.57	0.506	μg/L	1		625.1	8/26/20	8/27/20 17:28	IMR
Isophorone	< 0.287	9.57	0.287	μg/L	1		625.1	8/26/20	8/27/20 17:28	IMR
Naphthalene	36.0	4.78	0.423	$\mu g/L$	1		625.1	8/26/20	8/27/20 17:28	IMR
Nitrobenzene	< 0.392	9.57	0.392	μg/L	1		625.1	8/26/20	8/27/20 17:28	IMR
2-Nitrophenol	< 0.397	9.57	0.397	μg/L	1		625.1	8/26/20	8/27/20 17:28	IMR
4-Nitrophenol	< 0.600	9.57	0.600	μg/L	1		625.1	8/26/20	8/27/20 17:28	IMR
N-Nitrosodimethylamine	<1.75	9.57	1.75	μg/L	1		625.1	8/26/20	8/27/20 17:28	IMR
N-Nitrosodi-n-propylamine	< 0.496	9.57	0.496	μg/L	1		625.1	8/26/20	8/27/20 17:28	IMR
2-Methylnaphthalene	37.8	4.78	0.255	μg/L	1		625.1	8/26/20	8/27/20 17:28	IMR
Phenanthrene	4.84	4.78	0.275	μg/L	1		625.1	8/26/20	8/27/20 17:28	IMR
2-Methylphenol	< 0.436	9.57	0.436	μg/L	1		625.1	8/26/20	8/27/20 17:28	IMR
Phenol	< 0.189	9.57	0.189	μg/L	1		625.1	8/26/20	8/27/20 17:28	IMR
3/4-Methylphenol	< 0.195	19.1	0.195	μg/L	1		625.1	8/26/20	8/27/20 17:28	IMR
Pyrene	< 0.244	4.78	0.244	μg/L	1		625.1	8/26/20	8/27/20 17:28	IMR
1,2,4-Trichlorobenzene	< 0.534	4.78	0.534	μg/L	1		625.1	8/26/20	8/27/20 17:28	IMR
					-					

Project Location: Fitchburg, MA Sample Description: Work Order: 20H1131

Date Received: 8/21/2020
Field Sample #: MW-34
Sample ID: 20H1131-01

Sample Matrix: Ground Water

Start Date/Time: 8/20/2020 5:00:00PM Stop Date/Time: 8/20/2020 5:50:00PM

Semivolatile Organic Compounds by - GC/MS

								Date	Date/Time	
Analyte	Results	RL	DL	Units	Dilution	Flag/Qual	Method	Prepared	Analyzed	Analyst
2,4,6-Trichlorophenol	< 0.319	9.57	0.319	μg/L	1		625.1	8/26/20	8/27/20 17:28	IMR
Surrogates		% Reco	very	Recovery Limit	s	Flag/Qual				
2-Fluorophenol		41.2		15-110					8/27/20 17:28	
Phenol-d6		30.3		15-110					8/27/20 17:28	
Nitrobenzene-d5		66.7		30-130					8/27/20 17:28	
2-Fluorobiphenyl		73.0		30-130					8/27/20 17:28	
2,4,6-Tribromophenol		88.8		15-110					8/27/20 17:28	
p-Terphenyl-d14		90.7		30-130					8/27/20 17:28	

Sample Description: Work Order: 20H1131

Date Received: 8/21/2020
Field Sample #: MW-34

Project Location: Fitchburg, MA

 Sample ID: 20H1131-01
 Start Date/Time: 8/20/2020
 5:00:00PM

 Sample Matrix: Ground Water
 Stop Date/Time: 8/20/2020
 5:50:00PM

Metals Analyses (Total)

								Date	Date/Time	
Analyte	Results	RL	DL	Units	Dilution	Flag/Qual	Method	Prepared	Analyzed	Analyst
Antimony	ND	1.0	0.35	μg/L	1		EPA 200.8	8/25/20	8/27/20 11:28	QNW
Arsenic	1.6	0.80		$\mu g/L$	1		EPA 200.8	8/25/20	8/27/20 11:28	QNW
Cadmium	ND	0.20		$\mu g/L$	1		EPA 200.8	8/25/20	8/27/20 11:28	QNW
Chromium	2.0	1.0		$\mu g/L$	1		EPA 200.8	8/25/20	8/27/20 11:28	QNW
Chromium, Trivalent	0.0020			mg/L	1		Tri Chrome Calc.	8/25/20	8/27/20 11:28	QNW
Copper	7.8	1.0		$\mu g/L$	1		EPA 200.8	8/25/20	8/27/20 11:28	QNW
Iron	0.47	0.050		mg/L	1		EPA 200.7	8/25/20	8/26/20 14:56	TBC
Lead	0.28	0.50	0.085	$\mu g/L$	1		EPA 200.8	8/25/20	8/27/20 11:28	QNW
Mercury	ND	0.00010		mg/L	1		EPA 245.1	8/24/20	8/25/20 10:27	CJV
Nickel	ND	5.0		$\mu g/L$	1		EPA 200.8	8/25/20	8/27/20 11:28	QNW
Selenium	ND	5.0	1.6	$\mu g/L$	1		EPA 200.8	8/25/20	8/27/20 11:28	QNW
Silver	ND	0.20		$\mu g/L$	1		EPA 200.8	8/25/20	8/27/20 11:28	QNW
Zinc	ND	10		$\mu g/L$	1		EPA 200.8	8/25/20	8/27/20 11:28	QNW
Hardness	320	1.4		mg/L	1		EPA 200.7	8/25/20	8/26/20 14:56	TBC

Sample Description: Work Order: 20H1131

Date Received: 8/21/2020
Field Sample #: MW-34

Project Location: Fitchburg, MA

 Sample ID: 20H1131-01
 Start Date/Time: 8/20/2020
 5:00:00PM

 Sample Matrix: Ground Water
 Stop Date/Time: 8/20/2020
 5:50:00PM

Conventional Chemistry Parameters by EPA/APHA/SW-846 Methods (Total)

							Date	Date/Time	
Analyte	Results	RL	Units	Dilution	Flag/Qual	Method	Prepared	Analyzed	Analyst
Ammonia as N	0.54	0.10	mg/L	1		EPA 350.1	8/22/20	8/24/20 10:16	MMH
Chloride	970	25	mg/L	25		EPA 300.0	8/27/20	8/27/20 18:09	MMH
Chlorine, Residual	ND	0.020	mg/L	1	MS-07, H-09	SM21-22 4500 CL G	8/21/20	8/21/20 22:30	DJM
Hexavalent Chromium	ND	0.0040	mg/L	1	H-09	SM21-22 3500 Cr B	8/21/20	8/21/20 21:45	CB2/DJM
Phenol	ND	0.050	mg/L	1		EPA 420.1	8/26/20	8/27/20 11:10	LL
Total Suspended Solids	6.5	0.83	mg/L	1		SM21-22 2540D	8/24/20	8/24/20 12:51	LL
Silica Gel Treated HEM (SGT-HEM)	ND	1.8	mg/L	1		EPA 1664B	8/26/20	8/26/20 9:01	LL

Work Order: 20H1131

39 Spruce Street * East Longmeadow, MA 01028 * FAX 413/525-6405 * TEL. 413/525-2332

Sample Description:

Date Received: 8/21/2020

Field Sample #: Outfall #CSO-045

Project Location: Fitchburg, MA

Sampled: 8/20/2020 14:30

Sample ID: 20H1131-02

Sample Matrix: Storm Water

Metals Analyses (Total)

					,					
Analyte	Results	RL	DL	Units	Dilution	Flag/Qual	Method	Date Prepared	Date/Time Analyzed	Analyst
Antimony	ND	1.0	0.35	μg/L	1	g	EPA 200.8	8/25/20	8/27/20 11:31	QNW
Arsenic	0.90	0.80		μg/L	1		EPA 200.8	8/25/20	8/27/20 11:31	QNW
Cadmium	ND	0.20		μg/L	1		EPA 200.8	8/25/20	8/27/20 11:31	QNW
Chromium	1.6	1.0		μg/L	1		EPA 200.8	8/25/20	8/27/20 11:31	QNW
Chromium, Trivalent	0.0016			mg/L	1		Tri Chrome Calc.	8/25/20	8/27/20 11:31	QNW
Copper	24	1.0		μg/L	1		EPA 200.8	8/25/20	8/27/20 11:31	QNW
Iron	0.47	0.050		mg/L	1		EPA 200.7	8/25/20	8/26/20 15:04	TBC
Lead	1.4	0.50	0.085	μg/L	1		EPA 200.8	8/25/20	8/27/20 11:31	QNW
Mercury	ND	0.00010		mg/L	1		EPA 245.1	8/24/20	8/25/20 10:29	CJV
Nickel	ND	5.0		$\mu g/L$	1		EPA 200.8	8/25/20	8/27/20 11:31	QNW
Selenium	ND	5.0	1.6	$\mu g/L$	1		EPA 200.8	8/25/20	8/27/20 11:31	QNW
Silver	ND	0.20		$\mu g/L$	1		EPA 200.8	8/25/20	8/27/20 11:31	QNW
Zinc	19	10		$\mu g/L$	1		EPA 200.8	8/25/20	8/27/20 11:31	QNW
Hardness	75	1.4		mg/L	1		EPA 200.7	8/25/20	8/26/20 15:04	TBC

Project Location: Fitchburg, MA Sample Description: Work Order: 20H1131

Date Received: 8/21/2020

Field Sample #: Outfall #CSO-045

Sample ID: 20H1131-02
Sample Matrix: Storm Water

Sampled: 8/20/2020 14:30

Conventional Chemistry Parameters by EPA/APHA/SW-846 Methods (Total)

							Date	Date/Time	
Analyte	Results	RL	Units	Dilution	Flag/Qual	Method	Prepared	Analyzed	Analyst
Ammonia as N	9.2	0.50	mg/L	5		EPA 350.1	8/22/20	8/24/20 10:29	MMH
Hexavalent Chromium	ND	0.0040	mg/L	1	H-03, MS-07	SM21-22 3500 Cr B	8/21/20	8/21/20 21:45	CB2/DJM

Sample Extraction Data

Prep Method: SW-846 5030B	Analytical Method: 624.1	

Lab Number [Field ID]	Batch	Initial [mL]	Final [mL]	Date
20H1131-01 [MW-34]	B264970	2.5	5.00	08/24/20

Prep Method: SW-846 3510C Analytical Method: 625.1

Lab Number [Field ID]	Batch	Initial [mL]	Final [mL]	Date
20H1131-01 [MW-34]	B265086	1040	1.00	08/26/20

Prep Method: SW-846 3510C Analytical Method: 625.1

Lab Number [Field ID]	Batch	Initial [mL]	Final [mL]	Date
20H1131-01 [MW-34]	B265212	1040	1.00	08/26/20

EPA 1664B

Lab Number [Field ID]	Batch	Initial [mL]	Date
20H1131-01 [MW-34]	B265114	770	08/26/20

Prep Method: EPA 200.7 Analytical Method: EPA 200.7

Lab Number [Field ID]	Batch	Initial [mL]	Final [mL]	Date
20H1131-01 [MW-34]	B264981	50.0	50.0	08/25/20
20H1131-01 [MW-34]	B264981	50.0		08/25/20
20H1131-02 [Outfall #CSO-045]	B264981	50.0	50.0	08/25/20
20H1131-02 [Outfall #CSO-045]	B264981	50.0		08/25/20

Prep Method: EPA 200.8 Analytical Method: EPA 200.8

Lab Number [Field ID]	Batch	Initial [mL]	Final [mL]	Date
20H1131-01 [MW-34]	B264983	50.0	50.0	08/25/20
20H1131-02 [Outfall #CSO-045]	B264983	50.0	50.0	08/25/20

Prep Method: EPA 245.1 Analytical Method: EPA 245.1

Lab Number [Field ID]	Batch	Initial [mL]	Final [mL]	Date
20H1131-01 [MW-34]	B264980	6.00	6.00	08/24/20
20H1131-02 [Outfall #CSO-045]	B264980	6.00	6.00	08/24/20

Prep Method: EPA 300.0 Analytical Method: EPA 300.0

Lab Number [Field ID]	Batch	Initial [mL]	Final [mL]	Date
20H1131-01 [MW-34]	B265256	10.0	10.0	08/27/20

EPA 350.1

Lab Number [Field ID]	Batch	Initial [mL]	Final [mL]	Date
Eur Tumber [Freid ID]	Dutten		[]	2

Sample Extraction Data

EPA 350.1

Lab Number [Field ID]	Batch	Initial [mL]	Final [mL]	Date
20H1131-01 [MW-34]	B264921	50.0	50.0	08/22/20
20H1131-02 [Outfall #CSO-045]	B264921	50.0	50.0	08/22/20

EPA 420.1

Lab Number [Field ID]	Batch	Initial [mL]	Final [mL]	Date
20H1131-01 [MW-34]	B265112	50.0	50.0	08/26/20

SM21-22 2540D

Lab Number [Field ID]	Batch	Initial [mL]	Date
20H1131-01 [MW-34]	B264957	600	08/24/20

SM21-22 3500 Cr B

Lab Number [Field ID]	Batch	Initial [mL]	Final [mL]	Date
20H1131-01 [MW-34]	B264914	50.0	50.0	08/21/20
20H1131-02 [Outfall #CSO-045]	B264914	50.0	50.0	08/21/20

SM21-22 4500 CL G

Lab Number [Field ID]	Batch	Initial [mL]	Final [mL]	Date
20H1131-01 [MW-34]	B264915	100	100	08/21/20

Prep Method: EPA 200.8 Analytical Method: Tri Chrome Calc.

Lab Number [Field ID]	Batch	Initial [mL]	Date
20H1131-01 [MW-34]	B264983	50.0	08/25/20
20H1131-02 [Outfall #CSO-045]	B264983	50.0	08/25/20

QUALITY CONTROL

Volatile Organic Compounds by GC/MS - Quality Control

Analyte	Result	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Notes
Batch B264970 - SW-846 5030B										
Blank (B264970-BLK1)				Prepared & A	Analyzed: 08	/24/20				
Acetone	ND	50.0	μg/L							
Benzene	ND	1.00	$\mu g/L$							
Ethylbenzene	ND	2.00	$\mu g/L$							
Methyl tert-Butyl Ether (MTBE)	ND	2.00	$\mu g/L$							
Toluene	ND	1.00	$\mu g/L$							
Xylenes (total)	ND	3.00	$\mu g/L$							
Vinyl Chloride	ND	2.00	$\mu g/L$							
m+p Xylene	ND	2.00	$\mu g/L$							
o-Xylene	ND	1.00	$\mu g/L$							
Surrogate: 1,2-Dichloroethane-d4	25.4		μg/L	25.0		102	70-130			
Surrogate: Toluene-d8	25.1		$\mu g/L$	25.0		100	70-130			
Surrogate: 4-Bromofluorobenzene	25.6		$\mu g/L$	25.0		103	70-130			
LCS (B264970-BS1)				Prepared & A	Analyzed: 08	/24/20				
Acetone	200	50.0	μg/L	200		102	70-160			
Benzene	19	1.00	$\mu g/L$	20.0		95.1	65-135			
Ethylbenzene	20	2.00	$\mu g/L$	20.0		99.2	60-140			
Methyl tert-Butyl Ether (MTBE)	20	2.00	$\mu g/L$	20.0		101	70-130			
Toluene	20	1.00	$\mu g/L$	20.0		97.8	70-130			
Vinyl Chloride	17	2.00	$\mu g/L$	20.0		84.1	5-195			
m+p Xylene	40	2.00	$\mu g/L$	40.0		101	70-130			
o-Xylene	21	1.00	$\mu g/L$	20.0		103	70-130			
Surrogate: 1,2-Dichloroethane-d4	24.8		μg/L	25.0		99.1	70-130			
Surrogate: Toluene-d8	25.3		$\mu g/L$	25.0		101	70-130			
Surrogate: 4-Bromofluorobenzene	25.4		μg/L	25.0		101	70-130			

QUALITY CONTROL

Semivolatile Organic Compounds by GC/MS - Quality Control

		Reporting		Spike	Source		%REC		RPD	
Analyte	Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Notes
Batch B265212 - SW-846 3510C										
Blank (B265212-BLK1)				Prepared &	Analyzed: 08	/27/20				
Benzo(a)anthracene (SIM)	ND	0.050	μg/L							
Benzo(a)pyrene (SIM)	ND	0.10	$\mu g\!/\!L$							
Benzo(b)fluoranthene (SIM)	ND	0.050	$\mu g\!/\!L$							
Benzo(k)fluoranthene (SIM)	ND	0.20	μg/L							
Bis(2-ethylhexyl)phthalate (SIM)	ND	1.0	μg/L							
Chrysene (SIM)	ND	0.20	μg/L							
Dibenz(a,h)anthracene (SIM)	ND	0.10	μg/L							
Indeno(1,2,3-cd)pyrene (SIM)	ND	0.10	$\mu g/L$							
Surrogate: Nitrobenzene-d5	81.9		μg/L	100		81.9	30-130			
Surrogate: 2-Fluorobiphenyl	83.1		$\mu g/L$	100		83.1	30-130			
Surrogate: p-Terphenyl-d14	80.7		$\mu g/L$	100		80.7	30-130			
LCS (B265212-BS1)				Prepared &	Analyzed: 08	/27/20				
Benzo(a)anthracene (SIM)	48.1	1.0	μg/L	50.0		96.2	33-143			
Benzo(a)pyrene (SIM)	48.3	2.0	μg/L	50.0		96.6	17-163			
Benzo(b)fluoranthene (SIM)	54.3	1.0	μg/L	50.0		109	24-159			
Benzo(k)fluoranthene (SIM)	49.7	4.0	$\mu g/L$	50.0		99.4	11-162			
Bis(2-ethylhexyl)phthalate (SIM)	49.0	20	μg/L	50.0		98.0	8-158			
Chrysene (SIM)	46.8	4.0	μg/L	50.0		93.6	17-168			
Dibenz(a,h)anthracene (SIM)	52.3	2.0	μg/L	50.0		105	10-227			
Indeno(1,2,3-cd)pyrene (SIM)	56.0	2.0	$\mu g/L$	50.0		112	10-171			
Surrogate: Nitrobenzene-d5	82.0		μg/L	100		82.0	30-130			
Surrogate: 2-Fluorobiphenyl	93.6		$\mu g/L$	100		93.6	30-130			
Surrogate: p-Terphenyl-d14	74.9		$\mu g/L$	100		74.9	30-130			
LCS Dup (B265212-BSD1)				Prepared &	Analyzed: 08	/27/20				
Benzo(a)anthracene (SIM)	48.9	1.0	μg/L	50.0		97.8	33-143	1.69	53	
Benzo(a)pyrene (SIM)	49.2	2.0	$\mu g \! / \! L$	50.0		98.3	17-163	1.76	72	
Benzo(b)fluoranthene (SIM)	55.5	1.0	$\mu g/L$	50.0		111	24-159	2.15	71	
Benzo(k)fluoranthene (SIM)	50.8	4.0	$\mu g/L$	50.0		102	11-162	2.23	63	
Bis(2-ethylhexyl)phthalate (SIM)	50.2	20	$\mu g/L$	50.0		100	8-158	2.38	82	
Chrysene (SIM)	47.7	4.0	$\mu g/L$	50.0		95.4	17-168	1.86	87	
Dibenz(a,h)anthracene (SIM)	52.3	2.0	μg/L	50.0		105	10-227	0.153	126	
Indeno(1,2,3-cd)pyrene (SIM)	57.2	2.0	$\mu g/L$	50.0		114	10-171	2.12	99	
Surrogate: Nitrobenzene-d5	85.8		μg/L	100		85.8	30-130			
Surrogate: 2-Fluorobiphenyl	90.0		$\mu g/L$	100		90.0	30-130			
Surrogate: p-Terphenyl-d14	77.8		$\mu g/L$	100		77.8	30-130			

39 Spruce Street * East Longmeadow, MA 01028 * FAX 413/525-6405 * TEL. 413/525-2332

QUALITY CONTROL

Semivolatile Organic Compounds by - GC/MS - Quality Control

Analyte	Result	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Notes
Batch B265086 - SW-846 3510C										
Blank (B265086-BLK1)				Prepared: 08	/26/20 Analy	vzed: 08/27/2	20			
Acenaphthene	ND	5.00	μg/L	Trepureu. 00	, 20, 20 111141	,20 u : 00/27/2				
Acenaphthylene	ND	5.00	μg/L							
Anthracene	ND	5.00	μg/L							
Benzidine	ND	20.0	μg/L							L-04, V-04, V-05
Benzo(g,h,i)perylene	ND	5.00	μg/L							
4-Bromophenylphenylether	ND	10.0	μg/L							
4-Chloro-3-methylphenol	ND	10.0	μg/L							
Bis(2-chloroethyl)ether	ND	10.0	μg/L							
Bis(2-chloroisopropyl)ether	ND	10.0	μg/L							
2-Chloronaphthalene	ND	10.0	μg/L							
2-Chlorophenol	ND	10.0	μg/L							
4-Chlorophenylphenylether	ND	10.0	μg/L							
1,3-Dichlorobenzene	ND	5.00	μg/L							
1,4-Dichlorobenzene	ND	5.00	μg/L							
1,2-Dichlorobenzene	ND	5.00	μg/L							
3,3-Dichlorobenzidine	ND	10.0	μg/L							
2,4-Dichlorophenol	ND	10.0	$\mu g/L$							
2,4-Dimethylphenol	ND	10.0	μg/L							
4,6-Dinitro-2-methylphenol	ND	10.0	μg/L							
2,4-Dinitrophenol	ND	10.0	μg/L							
2,4-Dinitrotoluene	ND	10.0	μg/L							
2,6-Dinitrotoluene	ND	10.0	$\mu g/L$							
1,2-Diphenylhydrazine/Azobenzene	ND	10.0	$\mu g/L$							
Fluoranthene	ND	5.00	$\mu g/L$							
Fluorene	ND	5.00	μg/L							
Hexachlorobenzene	ND	10.0	$\mu g/L$							
Hexachlorobutadiene	ND	10.0	μg/L							
Hexachlorocyclopentadiene	ND	10.0	$\mu g/L$							L-04, V-05
Hexachloroethane	ND	10.0	$\mu g/L$							
Isophorone	ND	10.0	$\mu g/L$							
Naphthalene	ND	5.00	$\mu g/L$							
Nitrobenzene	ND	10.0	$\mu g/L$							
2-Nitrophenol	ND	10.0	$\mu g/L$							
4-Nitrophenol	ND	10.0	μg/L							
N-Nitrosodimethylamine	ND	10.0	$\mu g/L$							
N-Nitrosodi-n-propylamine	ND	10.0	μg/L							
2-Methylnaphthalene	ND	5.00	$\mu \text{g/L}$							
Phenanthrene	ND	5.00	$\mu g/L$							
2-Methylphenol	ND	10.0	$\mu g/L$							
Phenol	ND	10.0	μg/L							
3/4-Methylphenol	ND	20.0	$\mu g \! / \! L$							
Pyrene	ND	5.00	$\mu g \! / \! L$							
1,2,4-Trichlorobenzene	ND	5.00	μg/L							
2,4,6-Trichlorophenol	ND	10.0	μg/L							
Surrogate: 2-Fluorophenol	118		μg/L	200		59.1	15-110			
Surrogate: Phenol-d6	86.3		$\mu g/L$	200		43.2	15-110			
Surrogate: Nitrobenzene-d5	88.4		$\mu g/L$	100		88.4	30-130			
Surrogate: 2-Fluorobiphenyl	94.6		$\mu g/L$	100		94.6	30-130			
Surrogate: 2,4,6-Tribromophenol	204		$\mu g/L$	200		102	15-110			
Surrogate: p-Terphenyl-d14	102		μg/L	100		102	30-130			

39 Spruce Street * East Longmeadow, MA 01028 * FAX 413/525-6405 * TEL. 413/525-2332

QUALITY CONTROL

Semivolatile Organic Compounds by - GC/MS - Quality Control

Analyte	Result	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Notes
Batch B265086 - SW-846 3510C										
LCS (B265086-BS1)				Prepared: 08	3/26/20 Analy	zed: 08/27/2	20			
Acenaphthene	38.2	5.00	μg/L	50.0		76.4	47-145			
Acenaphthylene	40.8	5.00	$\mu g/L$	50.0		81.5	33-145			
Anthracene	42.8	5.00	$\mu g/L$	50.0		85.7	27-133			
Benzidine	14.7	20.0	$\mu \text{g}/L$	50.0		29.4 *	40-140			J, V-04, V-05, L-04
Benzo(g,h,i)perylene	41.4	5.00	$\mu g/L$	50.0		82.7	10-219			L-04
-Bromophenylphenylether	43.5	10.0	$\mu g/L$	50.0		87.1	53-127			
-Chloro-3-methylphenol	39.3	10.0	$\mu g/L$	50.0		78.7	22-147			
Bis(2-chloroethyl)ether	36.3	10.0	$\mu g/L$	50.0		72.6	12-158			
Bis(2-chloroisopropyl)ether	41.2	10.0	$\mu g/L$	50.0		82.3	36-166			
-Chloronaphthalene	35.3	10.0	$\mu g/L$	50.0		70.6	60-120			
-Chlorophenol	36.7	10.0	$\mu g/L$	50.0		73.3	23-134			
-Chlorophenylphenylether	42.4	10.0	$\mu g/L$	50.0		84.7	25-158			
,3-Dichlorobenzene	34.1	5.00	$\mu g/L$	50.0		68.2	10-172			
,4-Dichlorobenzene	34.7	5.00	$\mu g/L$	50.0		69.5	20-124			
,2-Dichlorobenzene	35.3	5.00	$\mu g/L$	50.0		70.6	32-129			
,3-Dichlorobenzidine	46.5	10.0	$\mu g/L$	50.0		93.0	10-262			
,4-Dichlorophenol	40.7	10.0	$\mu g/L$	50.0		81.4	39-135			
,4-Dimethylphenol	35.8	10.0	$\mu g/L$	50.0		71.6	32-120			
,6-Dinitro-2-methylphenol	35.7	10.0	$\mu g/L$	50.0		71.3	10-181			
,4-Dinitrophenol	34.8	10.0	$\mu g/L$	50.0		69.6	10-191			
,4-Dinitrotoluene	40.4	10.0	$\mu g/L$	50.0		80.9	39-139			
,6-Dinitrotoluene	43.3	10.0	$\mu g/L$	50.0		86.7	50-158			
,2-Diphenylhydrazine/Azobenzene	37.6	10.0	$\mu g/L$	50.0		75.2	40-140			
luoranthene	44.8	5.00	μg/L	50.0		89.6	26-137			
luorene	42.2	5.00	μg/L	50.0		84.3	59-121			
Hexachlorobenzene	42.8	10.0	μg/L	50.0		85.5	10-152			
Iexachlorobutadiene	36.8	10.0	$\mu \text{g/L}$	50.0		73.6	24-120			
Hexachlorocyclopentadiene	17.8	10.0	μg/L	50.0		35.7 *	40-140			V-05, L-04
Hexachloroethane	33.0	10.0	μg/L	50.0		66.0	40-120			
sophorone	40.0	10.0	μg/L	50.0		79.9	21-196			
Naphthalene	38.8	5.00	μg/L	50.0		77.5	21-133			
Vitrobenzene	37.2	10.0	μg/L	50.0		74.4	35-180			
-Nitrophenol	41.1	10.0	μg/L	50.0		82.2	29-182			
-Nitrophenol	26.5	10.0	μg/L	50.0		53.0	10-132			
N-Nitrosodimethylamine	26.0	10.0	μg/L	50.0		52.0	40-140			
I-Nitrosodi-n-propylamine	40.3	10.0	μg/L	50.0		80.6	10-230			
-Methylnaphthalene	43.4	5.00	$\mu g\!/\!L$	50.0		86.8	40-140			
Phenanthrene	42.7	5.00	μg/L	50.0		85.4	54-120			
-Methylphenol	35.4	10.0	μg/L	50.0		70.9	40-140			
Phenol	20.4	10.0	μg/L	50.0		40.8	5-120			
/4-Methylphenol	34.7	20.0	μg/L	50.0		69.4	40-140			
yrene	40.6	5.00	μg/L	50.0		81.1	52-120			
,2,4-Trichlorobenzene	37.4	5.00	μg/L	50.0		74.8	44-142			
,4,6-Trichlorophenol	41.5	10.0	μg/L	50.0		82.9	37-144			
surrogate: 2-Fluorophenol	116		$\mu g/L$	200		57.9	15-110			
urrogate: Phenol-d6	85.4		$\mu g/L$	200		42.7	15-110			
urrogate: Nitrobenzene-d5	82.4		$\mu g/L$	100		82.4	30-130			
Surrogate: 2-Fluorobiphenyl	92.6		μg/L	100		92.6	30-130			
urrogate: 2,4,6-Tribromophenol	192		μg/L	200		95.8	15-110			
Surrogate: p-Terphenyl-d14	94.6		$\mu g/L$	100		94.6	30-130			

QUALITY CONTROL

Semivolatile Organic Compounds by - GC/MS - Quality Control

Analyte	Result	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Notes
Batch B265086 - SW-846 3510C										
.CS Dup (B265086-BSD1)				Prepared: 08	/26/20 Analy	yzed: 08/27/2	20			
Acenaphthene	37.1	5.00	μg/L	50.0		74.2	47-145	2.95	48	
Acenaphthylene	39.6	5.00	$\mu g/L$	50.0		79.1	33-145	2.94	74	
Inthracene	41.2	5.00	$\mu g/L$	50.0		82.4	27-133	3.93	66	
enzidine	13.3	20.0	$\mu g \! / \! L$	50.0		26.5 *	40-140	10.2	30	J, L-04, V-04, V-05
enzo(g,h,i)perylene	40.3	5.00	$\mu g \! / \! L$	50.0		80.6	10-219	2.57	97	* 03
-Bromophenylphenylether	41.5	10.0	$\mu g/L$	50.0		83.0	53-127	4.77	43	
-Chloro-3-methylphenol	39.5	10.0	μg/L	50.0		79.1	22-147	0.507	73	
is(2-chloroethyl)ether	36.6	10.0	μg/L	50.0		73.3	12-158	0.960	108	
is(2-chloroisopropyl)ether	42.6	10.0	μg/L	50.0		85.2	36-166	3.39	76	
Chloronaphthalene	35.1	10.0	μg/L	50.0		70.1	60-120	0.654	24	
Chlorophenol	36.8	10.0	μg/L	50.0		73.6	23-134	0.327	61	
-Chlorophenylphenylether	40.7	10.0	μg/L	50.0		81.4	25-158	4.05	61	
3-Dichlorobenzene	33.1	5.00	$\mu g/L$	50.0		66.2	10-172	2.95	30	
4-Dichlorobenzene	33.5	5.00	$\mu g/L$	50.0		67.0	20-124	3.60	30	
2-Dichlorobenzene	34.4	5.00	$\mu g/L$	50.0		68.7	32-129	2.67	30	
3-Dichlorobenzidine	45.1	10.0	μg/L	50.0		90.2	10-262	3.04	108	
4-Dichlorophenol	39.8	10.0	μg/L	50.0		79.7	39-135	2.09	50	
4-Dimethylphenol	38.5	10.0	μg/L	50.0		77.1	32-120	7.37	58	
6-Dinitro-2-methylphenol	35.8	10.0	$\mu g/L$	50.0		71.6	10-181	0.420	203	
4-Dinitrophenol	34.4	10.0	μg/L	50.0		68.9	10-191	1.10	132	
4-Dinitrotoluene	39.8	10.0	$\mu g/L$	50.0		79.5	39-139	1.67	42	
6-Dinitrotoluene	41.4	10.0	μg/L	50.0		82.8	50-158	4.56	48	
2-Diphenylhydrazine/Azobenzene	37.1	10.0	μg/L	50.0		74.2	40-140	1.34	30	
uoranthene	43.1	5.00	μg/L	50.0		86.2	26-137	3.94	66	
uorene	40.9	5.00	μg/L	50.0		81.7	59-121	3.13	38	
exachlorobenzene	41.0	10.0	μg/L	50.0		81.9	10-152	4.32	55	
exachlorobutadiene	35.1	10.0	μg/L	50.0		70.3	24-120	4.61	62	
exachlorocyclopentadiene	16.8	10.0	μg/L	50.0		33.7 *	40-140	5.71	30	L-04, V-05
exachloroethane	32.2	10.0	μg/L	50.0		64.5	40-120	2.39	52	
ophorone	40.2	10.0	μg/L	50.0		80.5	21-196	0.698	93	
aphthalene	38.1	5.00	μg/L	50.0		76.3	21-133	1.61	65	
itrobenzene	37.1	10.0	μg/L	50.0		74.2	35-180	0.296	62	
Nitrophenol	40.6	10.0	μg/L	50.0		81.2	29-182	1.15	55	
Nitrophenol	26.9	10.0	$\mu g/L$	50.0		53.7	10-132	1.31	131	
-Nitrosodimethylamine	26.5	10.0	μg/L	50.0		53.1	40-140	2.09	30	
-Nitrosodi-n-propylamine	41.4	10.0	μg/L	50.0		82.8	10-230	2.67	87	
Methylnaphthalene	43.3	5.00	μg/L	50.0		86.6	40-140	0.231	30	
henanthrene	41.2	5.00	μg/L	50.0		82.3	54-120	3.67	39	
Methylphenol	36.1	10.0	μg/L	50.0		72.2	40-140	1.87	30	
henol	21.4	10.0	μg/L	50.0		42.8	5-120	4.64	64	
4-Methylphenol	35.7	20.0	μg/L	50.0		71.3	40-140	2.79	30	
yrene	39.3	5.00	μg/L	50.0		78.6	52-120	3.13	49	
2,4-Trichlorobenzene	36.0	5.00	μg/L	50.0		72.0	44-142	3.79	50	
4,6-Trichlorophenol	40.2	10.0	μg/L	50.0		80.3	37-144	3.21	58	
urrogate: 2-Fluorophenol	115		μg/L	200		57.6	15-110			
urrogate: Phenol-d6	88.3		$\mu g/L$	200		44.1	15-110			
urrogate: Nitrobenzene-d5	81.8		$\mu g/L$	100		81.8	30-130			
urrogate: 2-Fluorobiphenyl	88.1		$\mu g/L$	100		88.1	30-130			
urrogate: 2,4,6-Tribromophenol	184		$\mu g/L$	200		92.0	15-110			
Surrogate: p-Terphenyl-d14	91.3		μg/L	100		91.3	30-130			

QUALITY CONTROL

Metals Analyses (Total) - Quality Control

Analyte	Result	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Notes
Batch B264980 - EPA 245.1										
Blank (B264980-BLK1)				Prepared: 08	/24/20 Anal	yzed: 08/25/	20			
Mercury	ND	0.00010	mg/L							
LCS (B264980-BS1)				Prepared: 08	/24/20 Anal	zed: 08/25/	20			
Mercury	0.00397	0.00010	mg/L	0.00400		99.3	85-115			
LCS Dup (B264980-BSD1)				Prepared: 08	/24/20 Anal	vzed: 08/25/	20			
Mercury	0.00396	0.00010	mg/L	0.00400		98.9	85-115	0.412	20	
Batch B264981 - EPA 200.7										
Blank (B264981-BLK1)				Prepared: 08	/25/20 Anal	zed: 08/26/	20			
Iron	ND	0.050	mg/L	p		,				
Hardness	ND	1.4	mg/L							
LCS (B264981-BS1)				Prepared: 08	/25/20 Anal	zed: 08/26/	20			
iron	4.05	0.050	mg/L	4.00		101	85-115			
Hardness	26	1.4	mg/L	26.4		99.8	85-115			
LCS Dup (B264981-BSD1)				Prepared: 08	/25/20 Anal	zed: 08/26/	20			
iron	4.08	0.050	mg/L	4.00		102	85-115	0.763	20	
Hardness	26	1.4	mg/L	26.4		100	85-115	0.209	20	
Batch B264983 - EPA 200.8										
Blank (B264983-BLK1)				Prepared: 08	/25/20 Anal	zed: 08/26/	20			
Antimony	ND	1.0	$\mu \text{g/L}$							
Arsenic	ND	0.80	μg/L							
Cadmium	3.775	0.20	μg/L							
	ND	0.20								
Chromium	ND	1.0	$\mu \text{g}/L$							
Chromium Copper	ND ND	1.0 1.0	μg/L μg/L							
Chromium Copper Lead	ND ND ND	1.0 1.0 0.50	μg/L μg/L μg/L							
Chromium Copper Lead Nickel	ND ND ND ND	1.0 1.0 0.50 5.0	μg/L μg/L μg/L μg/L							
Chromium Copper Lead Nickel Selenium	ND ND ND ND	1.0 1.0 0.50 5.0	μg/L μg/L μg/L μg/L μg/L							
Chromium Copper Lead Nickel Selenium Silver	ND ND ND ND ND	1.0 1.0 0.50 5.0	μg/L μg/L μg/L μg/L μg/L μg/L							
Chromium Copper Lead Nickel Selenium Silver Zinc	ND ND ND ND	1.0 1.0 0.50 5.0 5.0 0.20	μg/L μg/L μg/L μg/L μg/L	Prepared: Ωδ	:/25/20 Anal-	vzed [,] 08/26/	20			
Chromium Copper Lead Nickel Selenium Silver Zinc LCS (B264983-BS1)	ND ND ND ND ND ND ND	1.0 1.0 0.50 5.0 5.0 0.20	μg/L μg/L μg/L μg/L μg/L μg/L μg/L	•	5/25/20 Anal					
Chromium Copper Lead Nickel Selenium Silver Zinc LCS (B264983-BS1) Antimony	ND ND ND ND ND ND ND ND S15	1.0 1.0 0.50 5.0 5.0 0.20 10	μg/L μg/L μg/L μg/L μg/L μg/L μg/L	500	5/25/20 Anal	103	85-115			
Chromium Copper Lead Nickel Selenium Silver Zinc LCS (B264983-BS1) Antimony Arsenic	ND ND ND ND ND ND ND S15 540	1.0 1.0 0.50 5.0 5.0 0.20 10	μg/L μg/L μg/L μg/L μg/L μg/L μg/L μg/L	500 500	:/25/20 Anal	103 108	85-115 85-115			
Chromium Copper Lead Nickel Selenium Silver Zinc LCS (B264983-BS1) Antimony Arsenic Cadmium	ND ND ND ND ND ND ND S15 540 541	1.0 1.0 0.50 5.0 5.0 0.20 10	Hg/L Hg/L Hg/L Hg/L Hg/L Hg/L Hg/L Hg/L	500 500 500	:/25/20 Anal	103 108 108	85-115 85-115 85-115			
Chromium Copper Lead Nickel Selenium Silver Zinc LCS (B264983-BS1) Antimony Arsenic Cadmium Chromium	ND ND ND ND ND ND ND S15 540 541 499	1.0 1.0 0.50 5.0 5.0 0.20 10	Hg/L Hg/L Hg/L Hg/L Hg/L Hg/L Hg/L Hg/L	500 500 500 500	:/25/20 Anal	103 108 108 99.8	85-115 85-115 85-115 85-115			
Chromium Copper Lead Nickel Selenium Silver Zinc LCS (B264983-BS1) Antimony Arsenic Cadmium Chromium Copper	ND ND ND ND ND ND ND S15 540 541 499	1.0 1.0 0.50 5.0 5.0 0.20 10 10 8.0 2.0 10	Hg/L Hg/L Hg/L Hg/L Hg/L Hg/L Hg/L Hg/L	500 500 500 500 1000	5/25/20 Anal	103 108 108 99.8 101	85-115 85-115 85-115 85-115 85-115			
Chromium Copper Lead Nickel Selenium Silver Zinc LCS (B264983-BS1) Antimony Arsenic Cadmium Chromium Copper Lead	ND ND ND ND ND ND ND S15 540 541 499 1010 515	1.0 1.0 0.50 5.0 5.0 0.20 10 10 8.0 2.0 10 5.0	Hg/L Hg/L Hg/L Hg/L Hg/L Hg/L Hg/L Hg/L	500 500 500 500 1000 500	:/25/20 Anal	103 108 108 99.8 101 103	85-115 85-115 85-115 85-115 85-115			
Chromium Copper Lead Nickel Selenium Silver Zinc LCS (B264983-BS1) Antimony Arsenic Cadmium Chromium Copper Lead Nickel	ND ND ND ND ND ND ND ND 1010 515 506	1.0 1.0 0.50 5.0 5.0 0.20 10 10 8.0 2.0 10 5.0 5.0	Hg/L Hg/L Hg/L Hg/L Hg/L Hg/L Hg/L Hg/L	500 500 500 500 1000 500	5/25/20 Anal	103 108 108 99.8 101 103 101	85-115 85-115 85-115 85-115 85-115 85-115 85-115			
Chromium Copper Lead Nickel Selenium Silver Zinc LCS (B264983-BS1) Antimony Arsenic Cadmium Chromium Copper Lead	ND ND ND ND ND ND ND S15 540 541 499 1010 515	1.0 1.0 0.50 5.0 5.0 0.20 10 10 8.0 2.0 10 5.0	Hg/L Hg/L Hg/L Hg/L Hg/L Hg/L Hg/L Hg/L	500 500 500 500 1000 500	5/25/20 Anal	103 108 108 99.8 101 103	85-115 85-115 85-115 85-115 85-115			

QUALITY CONTROL

Metals Analyses (Total) - Quality Control

Analyte	Result	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Notes
Batch B264983 - EPA 200.8										
LCS Dup (B264983-BSD1)				Prepared: 08	/25/20 Analy	yzed: 08/26/2	20			
Antimony	519	10	μg/L	500		104	85-115	0.667	20	
Arsenic	536	8.0	$\mu g\!/\!L$	500		107	85-115	0.826	20	
Cadmium	542	2.0	$\mu g/L$	500		108	85-115	0.187	20	
Chromium	492	10	$\mu g\!/\!L$	500		98.4	85-115	1.40	20	
Copper	1010	10	$\mu g\!/\!L$	1000		101	85-115	0.101	20	
Lead	509	5.0	μg/L	500		102	85-115	1.14	20	
Nickel	505	50	$\mu g\!/\!L$	500		101	85-115	0.304	20	
Selenium	592	50	$\mu g/L$	500		118 *	85-115	10.5	20	
Silver	487	2.0	$\mu g/L$	500		97.5	85-115	0.859	20	
Zinc	1100	100	μg/L	1000		110	85-115	0.184	20	

QUALITY CONTROL

		Reporting		Spike	Source		%REC		RPD	
Analyte	Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Notes
Batch B264914 - SM21-22 3500 Cr B										
Blank (B264914-BLK1)				Prepared & Analyzed: 08/21/20						
Hexavalent Chromium	ND	0.0040	mg/L							
LCS (B264914-BS1)				Prepared &	Analyzed: 08	/21/20				
Hexavalent Chromium	0.10	0.0040	mg/L	0.100		103	90-115			
LCS Dup (B264914-BSD1)				Prepared &	Analyzed: 08	/21/20				
Hexavalent Chromium	0.10	0.0040	mg/L	0.100		100	90-115	2.53	11	
Matrix Spike (B264914-MS1)	Sour	ce: 20H1131-	02	Prepared &	Analyzed: 08	/21/20				
Hexavalent Chromium	0.040	0.0040	mg/L	0.100	NE	39.8	34.7-148			H-03, MS-07
Matrix Spike Dup (B264914-MSD1)	Sour	ce: 20H1131-	02	Prepared &	Analyzed: 08	/21/20				
Hexavalent Chromium	0.042	0.0040	mg/L	0.100	NE	42.4	34.7-148	6.25	13.2	H-03, MS-07
Batch B264915 - SM21-22 4500 CL G										
Blank (B264915-BLK1)				Prepared &	Analyzed: 08	/21/20				
Chlorine, Residual	ND	0.020	mg/L							
LCS (B264915-BS1)				Prepared &	Analyzed: 08	/21/20				
Chlorine, Residual	0.70	0.020	mg/L	0.614		114	85.3-130			
LCS Dup (B264915-BSD1)				Prepared &	Analyzed: 08	/21/20				
Chlorine, Residual	0.68	0.020	mg/L	0.614		110	85.3-130	3.32	13.6	
Duplicate (B264915-DUP1)	Sour	ce: 20H1131-	01	Prepared & Analyzed: 08/21/20						
Chlorine, Residual	ND	0.020	mg/L		NE)		NC	29.4	
Matrix Spike (B264915-MS1)	Sour	ce: 20H1131-	01	Prepared &	Analyzed: 08	/21/20				
Chlorine, Residual	ND	0.020	mg/L	0.300	NE) *	10-169			MS-07
Batch B264921 - EPA 350.1										
Blank (B264921-BLK1)				Prepared: 08	/22/20 Anal	yzed: 08/24/	20			
Ammonia as N	ND	0.10	mg/L							
LCS (B264921-BS1)				Prepared: 08	/22/20 Anal	yzed: 08/24/	/20			
Ammonia as N	2.1	0.10	mg/L	2.00		104	90-110			
LCS Dup (B264921-BSD1)				Prepared: 08	/22/20 Anal	yzed: 08/24/	/20			
Ammonia as N	2.0	0.10	mg/L	2.00		100	90-110	3.44	20	

QUALITY CONTROL

Analyte	Result	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Notes
Batch B264957 - SM21-22 2540D										
Blank (B264957-BLK1)				Prepared & Analyzed: 08/24/20						
Total Suspended Solids	ND	2.5	mg/L							
LCS (B264957-BS1)				Prepared &	Analyzed: 08	3/24/20				
Total Suspended Solids	186	10	mg/L	200		93.0	57.4-123			
Batch B265112 - EPA 420.1										
Blank (B265112-BLK1)				Prepared: 08	3/26/20 Anal	yzed: 08/27/	/20			
Phenol	ND	0.050	mg/L							
LCS (B265112-BS1)				Prepared: 08/26/20 Analyzed: 08/27/20						
Phenol	0.42	0.050	mg/L	0.500		84.5	75.6-130			
LCS Dup (B265112-BSD1)				Prepared: 08/26/20 Analyzed: 08/27/20						
Phenol	0.41	0.050	mg/L	0.500		81.4	75.6-130	3.72	10.3	
Duplicate (B265112-DUP1)	Sou	rce: 20H1131-	01	Prepared: 08/26/20 Analyzed: 08/27/20						
Phenol	ND	0.050	mg/L	ND				NC	37.2	
Matrix Spike (B265112-MS1)	Sou	rce: 20H1131-	01	Prepared: 08	3/26/20 Anal	yzed: 08/27/	/20			
Phenol	0.47	0.050	mg/L	0.500	NI	93.8	34.1-149			
Batch B265114 - EPA 1664B										
Blank (B265114-BLK1)				Prepared & Analyzed: 08/26/20						
Silica Gel Treated HEM (SGT-HEM)	ND	1.4	mg/L							
LCS (B265114-BS1)				Prepared &	Analyzed: 08	3/26/20				
Silica Gel Treated HEM (SGT-HEM)	9.7		mg/L	10.0		97.0	64-132			
Duplicate (B265114-DUP1)	Sou	rce: 20H1131-	01	Prepared &	Analyzed: 08	3/26/20				
Silica Gel Treated HEM (SGT-HEM)	ND	1.8	mg/L		NI)		NC	18	
Matrix Spike (B265114-MS1)	Sou	rce: 20H1131-	01	Prepared &	Analyzed: 08	3/26/20				
Silica Gel Treated HEM (SGT-HEM)	91	14	mg/L	100	NI	91.0	64-132			
Batch B265256 - EPA 300.0										
Blank (B265256-BLK1)			_	Prepared &	Analyzed: 08	3/27/20			_	
Chloride	ND	1.0	mg/L							

QUALITY CONTROL

Analyte	Result	Reporting Limit U	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Notes
Batch B265256 - EPA 300.0										
LCS (B265256-BS1)	Prepared & Analyzed: 08/27/20									
Chloride	10	1	mg/L	10.0		101	90-110			
LCS Dup (B265256-BSD1)	Prepared & Analyzed: 08/27/20									
Chloride	10	1	mg/L	10.0		101	90-110	0.0652	20	

FLAG/QUALIFIER SUMMARY

*	QC result is outside of established limits.
†	Wide recovery limits established for difficult compound.
‡	Wide RPD limits established for difficult compound.
#	Data exceeded client recommended or regulatory level
ND	Not Detected
RL	Reporting Limit is at the level of quantitation (LOQ)
DL	Detection Limit is the lower limit of detection determined by the MDL study
MCL	Maximum Contaminant Level
	Percent recoveries and relative percent differences (RPDs) are determined by the software using values in the calculation which have not been rounded.
	No results have been blank subtracted unless specified in the case narrative section.
DL-01	Elevated reporting limits for all volatile compounds due to foaming sample matrix.
H-03	Sample received after recommended holding time was exceeded.
H-09	Sample received by laboratory with insufficient time remaining to perform analysis within the recommended holding time.
J	Detected but below the Reporting Limit (lowest calibration standard); therefore, result is an estimated concentration (CLP J-Flag).
L-04	Laboratory fortified blank/laboratory control sample recovery and duplicate recovery are outside of control limits Reported value for this compound is likely to be biased on the low side.
L-07	Either laboratory fortified blank/laboratory control sample or duplicate recovery is outside of control limits, but the other is within limits. RPD between the two LFB/LCS results is within method specified criteria.
MS-07	Matrix spike recovery is outside of control limits. Analysis is in control based on laboratory fortified blank recovery. Possibility of sample matrix effects that lead to low bias for reported result or non-homogeneous sample aliquot cannot be eliminated.
V-04	Initial calibration did not meet method specifications. Compound was calibrated using a response factor where %RSD is outside of method specified criteria. Reported result is estimated.
V-05	Continuing calibration verification (CCV) did not meet method specifications and was biased on the low side for this compound.
V-34	Initial calibration verification (ICV) did not meet method specifications and was biased on the low side for this compound. Reported result is estimated.

CERTIFICATIONS

Hexachloroethane

Certified Analyses included in this Report	
Analyte	Certifications
624.1 in Water	
Acetone	CT,NY,MA,NH
tert-Amyl Methyl Ether (TAME)	MA
Benzene	CT,NY,MA,NH,RI,NC,ME,VA
tert-Butyl Alcohol (TBA)	NY,MA
1,2-Dichlorobenzene	CT,NY,MA,NH,RI,NC,ME,VA
1,3-Dichlorobenzene	CT,NY,MA,NH,RI,NC,ME,VA
1,4-Dichlorobenzene	CT,NY,MA,NH,RI,NC,ME,VA
Ethanol	NY,MA,NH
Ethylbenzene	CT,NY,MA,NH,RI,NC,ME,VA
Methyl tert-Butyl Ether (MTBE)	NY,MA,NH,NC
Naphthalene	NY,MA,NC
Toluene	CT,NY,MA,NH,RI,NC,ME,VA
1,2,4-Trichlorobenzene	MA,NC
Xylenes (total)	NY,MA,NH,VA
m+p Xylene	CT,NY,MA,NH,RI,NC
o-Xylene	CT,NY,MA,NH,RI,NC
625.1 in Water	
Acenaphthene	CT,MA,NH,NY,NC,RI,ME,VA
Acenaphthylene	CT,MA,NH,NY,NC,RI,ME,VA
Anthracene	CT,MA,NH,NY,NC,RI,ME,VA
Benzidine	CT,MA,NH,NY,NC,RI,ME,VA
Benzo(g,h,i)perylene	CT,MA,NH,NY,NC,RI,ME,VA
4-Bromophenylphenylether	CT,MA,NH,NY,NC,RI,ME,VA
4-Chloro-3-methylphenol	CT,MA,NH,NY,NC,RI,VA
Bis(2-chloroethyl)ether	CT,MA,NH,NY,NC,RI,ME,VA
Bis(2-chloroisopropyl)ether	CT,MA,NH,NY,NC,RI,ME,VA
2-Chloronaphthalene	CT,MA,NH,NY,NC,RI,ME,VA
2-Chlorophenol	CT,MA,NH,NY,NC,RI,ME,VA
4-Chlorophenylphenylether	CT,MA,NH,NY,NC,RI,ME,VA
1,3-Dichlorobenzene	MA,NC
1,4-Dichlorobenzene	MA,NC
1,2-Dichlorobenzene	MA,NC
3,3-Dichlorobenzidine	CT,MA,NH,NY,NC,RI,ME,VA
2,4-Dichlorophenol	CT,MA,NH,NY,NC,RI,ME,VA
2,4-Dimethylphenol	CT,MA,NH,NY,NC,RI,ME,VA
4,6-Dinitro-2-methylphenol	CT,MA,NH,NY,NC,RI,ME,VA
2,4-Dinitrophenol	CT,MA,NH,NY,NC,RI,ME,VA
2,4-Dinitrotoluene	CT,MA,NH,NY,NC,RI,ME,VA
2,6-Dinitrotoluene	CT,MA,NH,NY,NC,RI,ME,VA
1,2-Diphenylhydrazine/Azobenzene	NC
Fluoranthene	CT,MA,NH,NY,NC,RI,ME,VA
Fluorene	CT,MA,NH,NY,NC,RI,ME,VA
Hexachlorobenzene	CT,MA,NH,NY,NC,RI,ME,VA
Hexachlorobutadiene	CT,MA,NH,NY,NC,RI,ME,VA
Hexachlorocyclopentadiene	CT,MA,NH,NY,NC,RI,ME,VA

 $CT,\!MA,\!NH,\!NY,\!NC,\!RI,\!ME,\!VA$

CERTIFICATIONS

Certified Analyses included in this Report

Certified Analyses included in this Report Analyte	Certifications
625.1 in Water	
Isophorone	CT,MA,NH,NY,NC,RI,ME,VA
Naphthalene	CT,MA,NH,NY,NC,RI,ME,VA
Nitrobenzene	CT,MA,NH,NY,NC,RI,ME,VA
2-Nitrophenol	CT,MA,NH,NY,NC,RI,ME,VA
4-Nitrophenol	CT,MA,NH,NY,NC,RI,ME,VA
N-Nitrosodimethylamine	CT,MA,NH,NY,NC,RI,ME,VA
N-Nitrosodi-n-propylamine	CT,MA,NH,NY,NC,RI,ME,VA
2-Methylnaphthalene	NC
Phenanthrene	CT,MA,NH,NY,NC,RI,ME,VA
2-Methylphenol	NY,NC
Phenol	CT,MA,NH,NY,NC,RI,ME,VA
3/4-Methylphenol	NY,NC
Pyrene	CT,MA,NH,NY,NC,RI,ME,VA
1,2,4-Trichlorobenzene	CT,MA,NH,NY,NC,RI,ME,VA
2,4,6-Trichlorophenol	CT,MA,NH,NY,NC,RI,ME,VA
2-Fluorophenol	NC
2-Fluorophenol	NC,VA
Phenol-d6	VA
Nitrobenzene-d5	VA
EPA 200.7 in Water	
Chromium	CT,MA,NH,NY,RI,NC,ME,VA
Iron	CT,MA,NH,NY,RI,NC,ME,VA
Hardness	CT,MA,NH,NY,RI,VA
EPA 200.8 in Water	
Antimony	CT,MA,NH,NY,RI,NC,ME,VA
Arsenic	CT,MA,NH,NY,RI,NC,ME,VA
Cadmium	CT,MA,NH,NY,RI,NC,ME,VA
Chromium	CT,MA,NH,NY,RI,NC,ME,VA
Copper	CT,MA,NH,NY,RI,NC,ME,VA
Lead	CT,MA,NH,NY,RI,NC,ME,VA
Nickel	CT,MA,NH,NY,RI,NC,ME,VA
Selenium	CT,MA,NH,NY,RI,NC,ME,VA
Silver	CT,MA,NH,NY,RI,NC,ME,VA
Zinc	CT,MA,NH,NY,RI,NC,ME,VA
EPA 245.1 in Water	
Mercury	CT,MA,NH,RI,NY,NC,ME,VA
EPA 300.0 in Water	
Chloride	NC,NY,MA,VA,ME,NH,CT,RI
EPA 350.1 in Water	
Ammonia as N	NC,NY,MA,NH,RI,ME,VA
EPA 420.1 in Water	
Phenol	CT,MA,NH,NY,RI,NC,ME,VA
SM21-22 2540D in Water	~ 1911 191 1991 1991 1991 1991 1 S
	CT MA NIH NIV DI NIC ME VA
Total Suspended Solids	CT,MA,NH,NY,RI,NC,ME,VA

CERTIFICATIONS

Certified Analyses included in this Report

Analyte Certifications

SM21-22 3500 Cr B in Water

Hexavalent Chromium NY,CT,NH,RI,ME,VA,NC

SM21-22 4500 CL G in Water

Chlorine, Residual CT,MA,RI,ME

 $The \ CON-TEST \ Environmental \ Laboratory \ operates \ under \ the \ following \ certifications \ and \ accreditations:$

Code	Description	Number	Expires
AIHA	AIHA-LAP, LLC - ISO17025:2017	100033	03/1/2022
MA	Massachusetts DEP	M-MA100	06/30/2021
CT	Connecticut Department of Publile Health	PH-0567	09/30/2021
NY	New York State Department of Health	10899 NELAP	04/1/2021
NH-S	New Hampshire Environmental Lab	2516 NELAP	02/5/2021
RI	Rhode Island Department of Health	LAO00112	12/30/2020
NC	North Carolina Div. of Water Quality	652	12/31/2020
NJ	New Jersey DEP	MA007 NELAP	06/30/2021
FL	Florida Department of Health	E871027 NELAP	06/30/2021
VT	Vermont Department of Health Lead Laboratory	LL015036	07/30/2021
ME	State of Maine	2011028	06/9/2021
VA	Commonwealth of Virginia	460217	12/14/2020
NH-P	New Hampshire Environmental Lab	2557 NELAP	09/6/2020
VT-DW	Vermont Department of Health Drinking Water	VT-255716	06/12/2021
NC-DW	North Carolina Department of Health	25703	07/31/2021
PA	Commonwealth of Pennsylvania DEP	68-05812	06/30/2021
MI	Dept. of Env, Great Lakes, and Energy	9100	10/1/2020

CITE

http://www.contestlabs.com

Doc # 381 Rev 2_06262019

Prepackaged Cooler? Y / N Glassware in freezer? Y / N *Contest is not responsible for missing samples from prepacked Chain of Custody is a legal document that must be complete and accurate and is used to determine whi Disclaimer: Con-Test Labs is not responsible for any omitted information on the Chain of Custody. The analyses the laboratory will perform. Any missing information is not the laboratory's responsibility. Co Test values your partnership on each project and will try to assist with missing information, but will not Glassware in the fridge? ' Matrix Codes: GW = Ground Water WW = Waste Water DW = Drinking Water H = HCL.
M = Methanol
S = Nutric Acid
S = Sulfuric Acid
B = Sodium Bisulfate
X = Sodium Hydroxide
T = Sodium RGP. Mr See attacher Arrealix 2 Preservation Codes: S. Cotto Total Number Of: attech man t COUNTS OF Preservation Code 🕻 🤝 AZASTIC W To - Other (please Thiosulfate O = Other (please ENCORE Non Soxhlet BACTERIA . PCB ONE Soxhiet S = Soil SL = Studge SOL = Solid Page L of A = Air define) جي (ح) الج possible sample concentration within the Conc H - High; M - Medium; L - Low; C - Clean; U -Please use the following codes to indicate HELAC and AHA-LAP, LLC Accredited 127 ていつのかし ナバーろう Chromatogram AIHA-LAP, LLC 557V Hacd Code column above: 1729 Ø ANALYSIS REQUESTED held accountable. ¥ S S Other De Vet TEAT OF ロギャン MA MCP Required MCP Certification Form Required CT RCP Requires MA State DW Required RCP Certification Form Requir M M MOON PA 39 Spruce Street East Longmeadow, MA 01028 Thora ENCORE compensates, halogented VOC & Seni VO BACTERIA EXCEL to exclude EPA NPDRS NOT Field Filtered Field Filtered Lab to Filter Lab to Filter 0 VIALS GLASS PLASTIC School MBTA \mathcal{T} 3 Email To: Charles Klingle O ateg S. COM 到 CHAIN OF CUSTODY RECORD 0 0 0 0 Parameter Conc Code 뗭 Municipality Brownfield 1 Due Date: Matrix Code # OISMd 10-Day 3 3-Day 0 4-Day CLP Like Data Pkg Required COMP/GRAB Client Comments: Samples Pasa meteris -X 🗆 Ø O PFAS 10-Day (std) Outell #CSO-045 8/20/20 14:30 Government Ending Date/Time 8/20/20/25 ax To #; Federal ormat: Other: bay Se Ç Project Entity Beginning Date/Time Other Workester Email: info@contestlabs.com ろう 020 Client Sample ID / Description Phone: 413-525-2332 Fax: 413-525-6405 Date/Fime:)ate/Time: Jate/Time: Date/Time: Date/Time Jate/Time -22.12 FSUPSO 15-3M とする Company 46 ATC とって からら Ĺ A THE PERSON NAMED IN COLUMN TO PERSON NAMED (signature) Con-Test Quote Name/Number King んこ COD-RSK Refinquished by: (signature) elinquished by: (signature) Received by: (signature) Received by: (signature) Con-Test Work Order# Project Manager: nvoice Recipient: Project Location: Project Number: Comments sampled By: Phone:

Table of Contents

Page 32 of 38

Appendix VII Page 2 of 7

	Chemical Abstracts			Inorgan	ic Test Methods		
Parameter	Service (CAS)	ICP/AES ¹	ICP/MS ²	GFAA ³	Other	Notes	
	Number(s)	200.7	200.8	200.9	Other	Digestion	
a. Inorganics							
Ammonia					SM ⁴ 4500 B and D (0.1 mg/L)		
					350.1 (0.01 mg/L)		
Chloride [®]	16887006				300.0, SM ⁴ 4110 B (0.1 mg/L)		
Total Residual			***		SM ⁴ 4500-Cl D (200 μg/L)		
Chlorine	7782-50-5				SM ⁴ 4500-Cl G (50 μg/L)		
					SM ⁴ 4500-Cl E		
Total Suspended Solids					160.2 SM ⁴ 2540D (5 mg/L)		
Antimony	7440360	20 μg/L	0.5 μg/L	3 μg/L		200	
Arsenic	7440382	20 μg/L	1 μg/L	3 μg/L		206.5	
Cadmium	7440439	10 μg/L	0.2 μg/L	0.5 μg/L		200	
Chromium III	7440473	20 μg/L	l μg/L	l μg/L		200	
Chromium VI					7196 A (10 μg/L)		
Chromidit vi	18540299				218.6, 1636 (1 μg/L)		
Copper	7440508	20 μg/L	0.2 μg/L	3 μg/L		200	
Iron	7439896	40 μg/L	55 μg/L			200	
Lead	7439921	20 μg/L	0.2 μg/L	3 μg/L		200	
Mercury	7439976				245.1, 7470 A (0.2 μg/L) 245.7, 1631 (0.001 μg/L)	3112 B	
Nickel	7440020	20 μg/L	0.2 μg/L	5 μg/L		200	
Selenium	7782492	40 μg/L	1 μg/L	5 μg/L		200	
Silver	7440224	10 μg/L	0.2 μg/L	5 μg/L		200	
Zinc	7440666	15 μg/L	2 μg/L	·		200	
Cyanide (EE)	57125				335.4 (5 μg/L)	4500-CN ΟΙΑ-1677 (5 με	

Do not Cogurt

Appendix VII Page 3 of 7

***************************************	G.G.Y.		Orga	nic Test Metho	ds	
Parameter	CAS Number(s)	GC ⁵ GC/MS ⁶ HPLC		HPLC ⁷	State Methods ⁸	Other ⁹
b. Non-Halogenated Vo	latile Organic Compound	ls	1			
Total BTEX	71-43-2 + 108-88-3 + 100-41-4 + 106-42-3 + 95-47-6 + 1330-20-7	602 (0.5 μg/L)	624 (1-2 μg/L) 1624 (2-4 μg/L)		MA VPH (5 μg/L)	8260 (2 μg/L) 524.2 (0.5 μg/L)
Benzene	71-43-2	602 (0.5 μg/L)	624, 1624 (2 μg/L)		MA VPH (5 μg/L)	8260 (2 μg/L) 524.2 (0.5 μg/L)
1,4 Dioxane No	123-91-1		1624 (50 μg/L)			8260 (5 μg/L) 522 (0.1 μg/L)
Acetone	67-64-1		1624 (50 μg/L)			8260 (50 μg/L) 524.2 (10 μg/L)
Phenol	108-95-2		625 (2.5 μg/L)			8270 (5 μg/L) 420.1, 420.2 (2 μg/I 420.4 (50 μg/L)
c. Halogenated Volatile	Organic Compounds	NO EE			· • • • • • • • • • • • • • • • • • • •	1
Carbon Tetrachloride	56-23-5	601 (0.5 μg/L)	624 (1 μg/L)			8260 (5 μg/L) 524.2 (0.5 μg/L)
1,2 Dichlorobenzene	95-50-1	601, 602 (0.5 μg/L)	624 (2.5 μg/L)			8260 (5 μg/L) 524.2 (0.5 μg/L)
1,3 Dichlorobenzene	541-73-1	601, 602 (0.5 μg/L)	624 (2.5 μg/L)			8260 (5 μg/L) 524.2 (0.5 μg/L)
1,4 Dichlorobenzene	106-46-7	601, 602 (0.5 μg/L)	624 (2.5 μg/L)			8260 (5 μg/L) 524.2 (0.5 μg/L)
Total dichlorobenzene	95-50-1 + 541-73-1 + 106-46-7	601, 602 (0.5 μg/L)	624 (2.5 μg/L)			8260 (5 μg/L) 524.2 (0.5 μg/L)
1,1 Dichloroethane	75-34-3	601 (0.5 μg/L)	624 (1 μg/L)			8260 (5 µg/L) 524.2 (0.5 µg/L)

Appendix VII Page 4 of 7

	"	CAS Number(s)	Organic Test Methods									
)	Parameter		GC⁵	GC/MS ⁶	HPLC ⁷	State Methods ⁸	Other ⁹					
	1,2 Dichloroethane	107-06-2	601 (0.5 μg/L)	624 (1 μg/L)			8260 (5 μg/L) 524.2 (0.5 μg/L					
	1,1 Dichloroethylene	75-35-4	601 (0.5 μg/L)	624 (1 μg/L)			8260 (5 μg/L) 524.2 (0.5 μg/L)					
	Ethylene Dibromide ¹⁷	106-93-4	8011, 504.1 (0.01 μg/L) 618 (1 μg/L)	SIM ¹⁰ (0.1 μg/L)			524.2 (1 μg/L) 8260 (10 μg/L)					
	Methylene Chloride	75-09-2	601 (0.5 μg/L)	624 (1 μg/L)			8260 (5 μg/L) 524.2 (0.5 μg/L)					
	1,1,1 Trichloroethane	71-55-6	601 (0.5 μg/L)	624 (1 μg/L)			8260 (5 μg/L) 524.2 (0.5 μg/L)					
	1,1,2 Trichloroethane	79-00-5	601 (0.5 μg/L)	624 (1 μg/L)			8260 (5 μg/L) 524.2 (0.5 μg/L)					
	Trichloroethylene	79-01-6	601 (0.5 μg/L)	624 (1 μg/L)			8260 (5 μg/L) 524.2 (0.5 μg/L)					
	Tetrachloroethylene	127-18-4	601 (0.5 μg/L)	624 (1 μg/Ľ)			8260 (5 μg/L) 524.2 (0.5 μg/L)					
	cis-1,2 Dichloroethylene	156-59-2	601 (0.5 μg/L)	624 (1 µg/L)			8260 (5 μg/L) 524.2 (0.5 μg/L)					
	Vinyl Chloride	75-01-4	601 (0.5 μg/L)	624 (1 µg/L)			8260 (5 μg/L) 524.2 (0.5 μg/L)					
	d. Non-Halogenated Sem	i-Volatile Organic Cor	npounds			· · · · · · · · · · · · · · · · · · ·						
(Total Phihalates	85-68-7 + 84-742 + 117-84-0 + 84-66-2 + 131-11-3 + 117-81-7	606 (10 μg/L)	625 (2.5 μg/L) 1625 (5 μg/L)			8270 (5 μg/L) 525.2 (0.5 μg/L)					
	Diethylhexyl phthalate	117-81-7	606 (10 μg/L)	625 (2.5 μg/L) 1625 (5 μg/L)			8270 (5 μg/L) 525.2 (0.5 μg/L)					

Appendix VII Page 5 of 7

Parameter	CAS Number(s)	Organic Test Methods								
rarameter	CAO (Validoci (s)	GC ⁵	GC/MS ⁶	HPLC ⁷	State Methods ⁸	Other ⁹				
Total Group I Polycyclic Aromatic Hydrocarbons	56-55-3 + 50-32-8 + 205-99-2 + 207-08-9 + 218-01-9 + 53-70-3 + 193-39-5	610 (5 µg/L)	625 (0.5 μg/L) 1625 (10-20 μg/L)	610 (0.5-2 μg/L)	MA EPH (5 μg/L)	8270 (5 μg/L) SIM ¹⁰ (0.1 μg/L) 525.2 (0.5 μg/L)				
Benzo(a)anthracene	56-55-3	610 (5 μg/L)	625 (0.5 μg/L)	610 (2 μg/L)	MA EPH (5 μg/L)	8270 (5 μg/L) SIM ¹⁰ (0.1 μg/L) 525.2 (0.5 μg/L)				
Вепло(а)ругепе	50-32-8	610 (5 μg/L)	625 (0.5 μg/L)	610 (2 μg/L)	MA EPH (5 μg/L)	8270 (5 μg/L) SIM ¹⁰ (0.1 μg/L) 525.2 (0.5 μg/L)				
Benzo(b)fluoranthene	205-99-2	610 (5 μg/L)	625 (0.5 μg/L)	610 (2 μg/L)	MA EPH (5 μg/L)	8270 (5 μg/L) SIM ¹⁰ (0.1 μg/L) 525.2 (0.5 μg/L)				
Benzo(k)fluoranthene	207-08-9	610 (5 μg/L)	625 (0.5 μg/L)	610 (2 μg/L)	MA EPH (5 μg/L)	8270 (5 μg/L) SIM ¹⁰ (0.1 μg/L) 525.2 (0.5 μg/L)				
Chrysene	218-01-9	610 (5 μg/L)	625 (0.5 μg/L)	610 (2 μg/L)	MA EPH (5 μg/L)	8270 (5 μg/L) SIM ¹⁰ (0.1 μg/L) 525.2 (0.5 μg/L)				
Dibenzo(a,h)anthracene	53-70-3	610 (5 μg/L)	625 (0.5 μg/L)	610 (2 µg/L)	MA EPH (5 μg/L)	8270 (5 μg/L) SIM ¹⁰ (0.1 μg/L) 525.2 (0.5 μg/L)				
Indeno(1,2,3-cd)pyrene	193-39-5	610 (5 μg/L)	625 (0.5 μg/L)	610 (0.5 μg/L)	MA EPH (5 μg/L)	8270 (5 μg/L) SIM ¹⁰ (0.1 μg/L) 525.2 (0.5 μg/L)				

Appendix VII Page 6 of 7

Parameter	CAS Number(s)		Orga	nic Test Methods		
"		GC₂	GC/MS ⁶	HPLC ⁷	State Methods8	Other9
Total Group II Polycyclic Aromatic Hydrocarbons	83-32-9 + 208-96-8 + 120-12-7 + 191-24-2 + 206-44-0 + 86-73-7 + 91-20-3 + 85-01-8 + 129-00-0	610 (5 μg/L)	625 (0.5-2.5 μg/L)	610 (0.5-2 μg/L)	MA EPH (5 μg/L)	8270 (5 μg/L) SIM ¹⁰ (0.1 μg/L) 525.2 (0.5 μg/L)
Naphthalene	91-20-3	610 (5 μg/L)	625 (0.5 μg/L)	610 (2 μg/L)	MA VPH (5 μg/L) MA EPH (5 μg/L)	8270 (5 μg/L) SIM ¹⁰ (0.1 μg/L) 524.2 (0.5 μg/L) 8260 (2 μg/L)
e: Halogenated Semi-Vol	atile Organic Compounds	NO CEL	ク			
Total Polychlorinated Biphenyls	1336-36-3A	608 (0.5 μg/L)				8082 (0.5 μg/L) 1668Β (0.00005 μg/L)
Pentachlorophenol	87-86-5	604 (10 µg/L)	625 (5 μg/L)			8270 525 (5 μg/L)
f. Fuels Parameters						2-2 (2 48 2)
Total Petroleum Hydrocarbons					1664A (5 mg/L)	
Ethanol	64-17-5			·		1666/1671/D3695
Methyl-tert-Butyl Ether	1634-04-4		524.2 (10 μg/L)		MA VPH (5 μg/L)	8260 (10 μg/L)
tert-Butyl Alcohol	75-65-0		524.2 (10 μg/L)			624, 8260 (10 μg/L)
tert-Amyl Methyl Ether	994-05-08		524.2 (10 μg/L)			624, 8260 (10 μg/L)

I Have Not Confirmed Sample Container
Numbers With Lab Staff Before Relinquishing
Over Samples_____

Doc# 277 Rev 5 2017

Login Sample Receipt Checklist - (Rejection Criteria Listing - Using Acceptance Policy) Any False Statement will be brought to the attention of the Client - State True or False

Client	AT	<u> </u>							
Receive	ed By	RIF		Date	<u>861</u>	190	Time	1645	<u>></u>
How were th	e samples	In Cooler	て	No Cooler		On Ice		No Ice	
receiv	ed?	Direct from Samp	ling			Ambient		Melted Ice	
186	. La a cantala faa	•	By Gun #	4	•	Actual Terr	1p - 2 1 · S	·-	
Were samp Temperatur			By Blank #		_	Actual Tem			
•		eal Intact?	\ \		-	s Tampered		- LA	•
	COC Relin	·	<u>—————————————————————————————————————</u>	_	•	ree With Sa			•
		leaking/loose caps	on any sam		F		•	****	•
Is COC in inl		=				ved within h	olding time?	75	
Did COC ir		Client		Analysis	T		ler Name		_
pertinent Inf		Project		ID's		Collection	Dates/Times	s	
•		d out and legible?	T	-					
Are there Lal				-		s notified?			-
Are there Ru	shes?		F	_		s notified?		***	-
Are there Sh	ort Holds?		7	,	Who wa	s notified?	David		μ
Is there enou	•	•		-					
	•	ere applicable?	F	· polyporti	MS/MSD?		-	·	
Proper Media					, -	samples re	quired?	F	•
Were trip bla	100000000000000000000000000000000000000		<u> </u>	-	On COC?			V '/	
Do all sample	es have the	e proper pH?		Acid		-	Base	<u>M</u> A	
Vials	#	Containers:	#			#	40 -	A I-	#
Unp-		1 Liter Amb.	4		Plastic	 		oz Amb.	
HCL-	3	500 mL Amb.	\		L Plastic	 	1	mb/Clear mb/Clear	
Meoh-		250 mL Amb.			L Plastic Bacteria	10		.mb/Clear	
Bisulfate- DI-		Flashpoint Other Glass			Plastic			ncore	
Thiosulfate-	~	SOC Kit			tic Bag		Frozen:		<u> </u>
Sulfuric-		Perchlorate			olock		1		
OG., Car				Unused					
Vials	#	Containers:	#	Ulluseu	Meuia	#	I		#
Unp-	17	1 Liter Amb.		1 Liter	r Plastic		16 c	oz Amb.	
HCL-		500 mL Amb.			L Plastic			mb/Clear	
Meoh-		250 mL Amb.		250 ml	L Plastic			mb/Clear	
Bisulfate-		Col./Bacteria			hpoint			mb/Clear	
DI-		Other Plastic			r Glass	ļ		ncore	<u> </u>
Thiosulfate-		SOC Kit			tic Bag		Frozen:		
Sulfuric-		Perchlorate		Zip	olock				
Comments:									
i									

August 31, 2020

Charles Klingler ATC Group Services, LLC - Worcester 240 Barber Avenue Worcester, MA 01606

Project Location: Fitchburg, MA

Client Job Number:

Project Number: 0300000046

Laboratory Work Order Number: 20H1318

Michelle Koch

Enclosed are results of analyses for samples received by the laboratory on August 26, 2020. If you have any questions concerning this report, please feel free to contact me.

Sincerely,

Michelle M. Koch Project Manager

Table of Contents

Sample Summary	3
Case Narrative	4
Sample Results	5
20H1318-01	5
20H1318-02	6
Sample Preparation Information	7
QC Data	8
Conventional Chemistry Parameters by EPA/APHA/SW-846 Methods (Total)	8
B265190	8
Flag/Qualifier Summary	9
Certifications	10
Chain of Custody/Sample Receipt	11

ATC Group Services, LLC - Worcester

REPORT DATE: 8/31/2020

240 Barber Avenue Worcester, MA 01606

ATTN: Charles Klingler

PURCHASE ORDER NUMBER:

PROJECT NUMBER: 0300000046

ANALYTICAL SUMMARY

WORK ORDER NUMBER: 20H1318

The results of analyses performed on the following samples submitted to the CON-TEST Analytical Laboratory are found in this report.

PROJECT LOCATION: Fitchburg, MA

FIELD SAMPLE #	LAB ID:	MATRIX	SAMPLE DESCRIPTION	TEST	SUB LAB
MW-34	20H1318-01	Storm Water		SM21-22 3500 Cr B	
Outfall #CSO-045	20H1318-02	Storm Water		SM21-22 3500 Cr B	

CASE NARRATIVE SUMMARY

All reported results are within defined laboratory quality control objectives unless listed below or otherwise qualified in this report.

The results of analyses reported only relate to samples submitted to the Con-Test Analytical Laboratory for testing.

I certify that the analyses listed above, unless specifically listed as subcontracted, if any, were performed under my direction according to the approved methodologies listed in this document, and that based upon my inquiry of those individuals immediately responsible for obtaining the information, the material contained in this report is, to the

best of my knowledge and belief, accurate and complete.

Lisa A. Worthington
Technical Representative

Project Location: Fitchburg, MA Sample Description: Work Order: 20H1318

Date Received: 8/26/2020
Field Sample #: MW-34

Sampled: 8/26/2020 09:15

Sample ID: 20H1318-01

Sample Matrix: Storm Water

Conventional Chemistry Parameters by EPA/APHA/SW-846 Methods (Total)

							Date	Date/Time	
Analyte	Results	RL	Units	Dilution	Flag/Qual	Method	Prepared	Analyzed	Analyst
Hexavalent Chromium	ND	0.0040	mg/L	1		SM21-22 3500 Cr B	8/26/20	8/26/20 20:15	CB2

Project Location: Fitchburg, MA Sample Description: Work Order: 20H1318

Date Received: 8/26/2020

Field Sample #: Outfall #CSO-045

Sample ID: 20H1318-02
Sample Matrix: Storm Water

Sampled: 8/26/2020 09:45

Conventional Chemistry Parameters by EPA/APHA/SW-846 Methods (Total)

							Date	Date/Time	
Analyte	Results	RL	Units	Dilution	Flag/Qual	Method	Prepared	Analyzed	Analyst
Hexavalent Chromium	ND	0.0040	mg/L	1		SM21-22 3500 Cr B	8/26/20	8/26/20 20:15	CB2

Sample Extraction Data

SM21-22 3500 Cr B

Lab Number [Field ID] Batch	Initial [mL	L] Final [mL	.] Date	
20H1318-01 [MW-34] B26519 20H1318-02 [Outfall #CSO-045] B26519		50.0 50.0	08/26/20 08/26/20	

QUALITY CONTROL

Analyte	Result	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Notes
Batch B265190 - SM21-22 3500 Cr B										
Blank (B265190-BLK1)				Prepared & A	Analyzed: 08	/26/20				
Hexavalent Chromium	ND	0.0040	mg/L							
LCS (B265190-BS1)				Prepared & A	Analyzed: 08	/26/20				
Hexavalent Chromium	0.10	0.0040	mg/L	0.100		102	90-115			
LCS Dup (B265190-BSD1)				Prepared & A	Analyzed: 08	/26/20				
Hexavalent Chromium	0.10	0.0040	mg/L	0.100		103	90-115	1.23	11	

FLAG/QUALIFIER SUMMARY

 OC result is outside of established limit 		blished limit
---	--	---------------

† Wide recovery limits established for difficult compound.

‡ Wide RPD limits established for difficult compound.

Data exceeded client recommended or regulatory level

ND Not Detected

RL Reporting Limit is at the level of quantitation (LOQ)

DL Detection Limit is the lower limit of detection determined by the MDL study

MCL Maximum Contaminant Level

Percent recoveries and relative percent differences (RPDs) are determined by the software using values in the

calculation which have not been rounded.

No results have been blank subtracted unless specified in the case narrative section.

CERTIFICATIONS

Certified Analyses included in this Report

Analyte Certifications

SM21-22 3500 Cr B in Water

Hexavalent Chromium

NY,CT,NH,RI,ME,VA,NC

 $The \ CON\text{-}TEST \ Environmental \ Laboratory \ operates \ under \ the \ following \ certifications \ and \ accreditations:$

Code	Description	Number	Expires
AIHA	AIHA-LAP, LLC - ISO17025:2017	100033	03/1/2022
MA	Massachusetts DEP	M-MA100	06/30/2021
CT	Connecticut Department of Publile Health	PH-0567	09/30/2021
NY	New York State Department of Health	10899 NELAP	04/1/2021
NH-S	New Hampshire Environmental Lab	2516 NELAP	02/5/2021
RI	Rhode Island Department of Health	LAO00112	12/30/2020
NC	North Carolina Div. of Water Quality	652	12/31/2020
NJ	New Jersey DEP	MA007 NELAP	06/30/2021
FL	Florida Department of Health	E871027 NELAP	06/30/2021
VT	Vermont Department of Health Lead Laboratory	LL015036	07/30/2021
ME	State of Maine	2011028	06/9/2021
VA	Commonwealth of Virginia	460217	12/14/2020
NH-P	New Hampshire Environmental Lab	2557 NELAP	09/6/2020
VT-DW	Vermont Department of Health Drinking Water	VT-255716	06/12/2021
NC-DW	North Carolina Department of Health	25703	07/31/2021
PA	Commonwealth of Pennsylvania DEP	68-05812	06/30/2021
MI	Dept. of Env, Great Lakes, and Energy	9100	10/1/2020

30 H 1518

Table of Contents Glassware in freezer? Y / N Prepackaged Cooler? Y / N missing samples from prepacked *Contest is not responsible for analyses the laboratory will perform. Any missing information is not the laboratory's responsibility. Con Test values your partnership on each project and will try to assist with missing information, but will not b Glassware in the fridge? Chain of Custody is a legal document that must be complete and accurate and is used to determine what Disclaimer: Con-Test Labs is not responsible for any omitted information on the Chain of Custody. The 1 Matrix Codes: GW = Ground Water WW = Waste Water DW = Drinking Water S = Sulfuric Acid
B = Sodium Bisulfate
X = Sodium Hydroxide
T = Sodium Total Number Of: 2 Preservation Codes:
1 = Iced define) A = Air S = Soil SL = Siudge SOL = Solid O = Other (please O = Other (please define) PCB ONLY Soxhlet Non Soxhlet H = HCL M = Methanol N = Nitric Acid coolers Preservation Code BACTERIA GLASS PLASTIC ENCORE VIALS Phiosulfate possible sample concentration within the Conc H - High; M - Medium; L - Low; C - Clean; U -Please use the following codes to indicate NELAC and Alfla-LAP, LLC Accredited Chromatogram
AIHA-LAP, LLC AIMA-LAP, LLC Code column above: ANALYSIS REQUESTED held accountable. Doc # 381 Rev 2_06262019 40 CFR 5 136 MA MCP Required RCP Certification Furm Regule AA State OW Required MCP Certification Form Regu 7011 CY RCP Requ 39 Spruce Street East Longmeadow, MA 01028 ENCORE BACTERIA Field Filtered Field Fittered Lab to Filter Lab to Filter PLASTIC Schoot MBTA approvact GLASS CHAIN OF CUSTODY RECORD VIALS 0 0 0 0 Conc Code NPDES NOT http://www.contestlabs.com ΡĎξ Municipality Due Date: Brownfield Matrix 10-Day <u>ح</u> 3-Day 4-Day CLP Like Data Pkg Required COMP/GRAB ESP PFAS 10-Day (std) Ending Date/Time Government SAMENOGIS Email To: (50-045) 8124BIOSYS Fax To #: Format: Federal Other; -Day Day Client Comments: Ċ Project Entity Beginning Date/Time えなどなら A Fmall: info@contestlabs.com 7 Client Sample ID / Description Phone: 413-525-2332 Fax: 413-525-6405 Date/Time: 202 Date/Time: Date/Time: Date/Time: Date/Time: Duttell # CS 8 12 c/20 Marca B ながらなり 030000046 FIRMANT Con-Test Quote Name/Number: Invoice Recipient: TOP-TOP りかり Address J. W. Bashu (elinquished by: (signature) Received by: (signature) Received by: (signature) Sampled By: CEN Work Order# Con-Test Project Manager: Project Location: Project Number: Refinquished 15 ceived by: Phone: 11 of 12 Page

I Have Not Confirmed Sample Container
Numbers With Lab Staff Before Relinquishing
Over Samples_____

Doc# 277 Rev 5 2017

Received By	W		Date	4/26	5/80	Time	1750	
How were the samp	les In Cooler		No Cooler	- / , -	On Ice	\mathcal{T}	No Ice	
received?	Direct from Sam	pling			 Ambient		- Melted Ice	
Were samples with		By Gun#	4		Actual Ten	1p - 4.4		
Temperature? 2-6°	- Control of the Cont	By Blank #						
•	Seal Intact?	- Nr A		o Comple	Actual Tem		1 / D	
	elinguished?	11 T	•		s Tampered		1017	
	en/leaking/loose caps		nlae?	Chair Ay	ree With Sa	impies :		
ls COC in ink/ Legibl		s On any sam		rolos recei	- ivad within h	olding time?	4	
Did COC include a		- †	Analysis	hies level		er Name		
pertinent Information			. Allaiysis _ ID's			Dates/Times		
	lled out and legible?			- 7	- 00110011011	Datesmines		
re there Lab to Filte	•		,	Who wa	s notified?			
Are there Rushes?		-F	•		s notified?			
Are there Short Holds	s?	+ II FO	if a			40 - 4 /:		
We there offer I folds								
		17-	3/26/2C	wno wa	s notified?	Mandi		
s there enough Volu	me?	1				Manai		
s there enough Volu s there Headspace v	me? vhere applicable?			MS/MSD?	F	_	F	
s there enough Volu	me? vhere applicable? ners Used?	1 1 1	N Is	MS/MSD? s splitting	F samples rec	_	F	
s there enough Volu s there Headspace v Proper Media/Contain	me? vhere applicable? ners Used? sived?	T F VA	N Is	MS/MSD?	F samples rec	_	F	
s there enough Volu s there Headspace v Proper Media/Contain Vere trip blanks rece	me? vhere applicable? ners Used? sived?		M Is C	MS/MSD? s splitting	F samples rec	quired?	F	¥.
s there enough Volus there Headspace veroper Media/Contain Vere trip blanks receive all samples have finds #	me? vhere applicable? ners Used? sived? the proper pH?		M Is C	MS/MSD? s splitting On COC?	samples red	quired? Base	F	#
s there enough Volus there Headspace veroper Media/Contain Vere trip blanks receive all samples have vials #	me? where applicable? hers Used? elived? the proper pH? Containers: 1 Liter Amb. 500 mL Amb.		Model	MS/MSD? s splitting On COC?	samples red	puired? Base 16 oz	Amb.	#
s there enough Volus there Headspace veroper Media/Contain Vere trip blanks receive all samples have linp-lict-	where applicable? hers Used? the proper pH? Containers: 1 Liter Amb. 500 mL Amb. 250 mL Amb.	T	Acid1 Liter P	MS/MSD? s splitting On COC? Plastic	samples red	quired? Base	Amb. b/Clear	#
s there enough Volus there Headspace veroper Media/Contain Vere trip blanks receive all samples have filled. Filias # Jinp- Jick- Jick- Jick- Jick- Jissulfate-	me? vhere applicable? ners Used? the proper pH? Containers: 1 Liter Amb. 500 mL Amb. 250 mL Amb. Flashpoint		Acid 1 Liter P	MS/MSD? s splitting On COC? Plastic Plastic Plastic	samples red	Base 16 oz 8oz Am	Amb. b/Clear b/Clear	4
s there enough Volus there Headspace veroper Media/Contain Vere trip blanks receive all samples have vero all samples have verope with the verope all samples have verope all samples have verope vero	where applicable? hers Used? here proper pH? Containers: 1 Liter Amb. 500 mL Amb. 250 mL Amb. Flashpoint Other Glass	T F WA	Acid 1 Liter P 500 mL F 250 mL F	MS/MSD? s splitting On COC? Plastic Plastic Plastic Clastic cteria	samples red	Base 16 oz 8oz Am 4oz Am	Amb. b/Clear b/Clear b/Clear	#
s there enough Volus there Headspace veroper Media/Contain Vere trip blanks received all samples have vials # Unp- ICL- Icoh- Iisulfate- In- Iniosulfate- Iniosu	where applicable? hers Used? hers Used? the proper pH? Containers: 1 Liter Amb. 500 mL Amb. 250 mL Amb. Flashpoint Other Glass SOC Kit	T F NA #	Acid	MS/MSD? s splitting On COC? Plastic Plastic Plastic cteria lastic	samples red	Base 16 oz 8oz Am 4oz Am 2oz Am	Amb. b/Clear b/Clear b/Clear	*
s there enough Volus there Headspace veroper Media/Contain Vere trip blanks received all samples have vials # Unp- ICL- Icoh- Iisulfate- In- Iniosulfate- Iniosu	where applicable? hers Used? here proper pH? Containers: 1 Liter Amb. 500 mL Amb. 250 mL Amb. Flashpoint Other Glass	T F NA #	Acid	MS/MSD? s splitting On COC? Plastic Plastic Plastic Plastic cteria lastic Bag	samples red	Base 16 oz 8oz Am 4oz Am 2oz Am	Amb. b/Clear b/Clear b/Clear	#
s there enough Volus there Headspace veroper Media/Contain Vere trip blanks receive all samples have vials # Unp- ICL-Meoh- issulfate- Ul- hiosulfate- ulfuric-	where applicable? hers Used? hers Used? the proper pH? Containers: 1 Liter Amb. 500 mL Amb. 250 mL Amb. Flashpoint Other Glass SOC Kit	T F WA #	Acid 1 Liter P 500 mL F 250 mL F Col./Bac Other Pl Plastic	MS/MSD? s splitting On COC? Plastic Plastic Plastic cteria lastic Bag ck	samples red	Base 16 oz 8oz Am 4oz Am 2oz Am	Amb. b/Clear b/Clear b/Clear	#
s there enough Volus there Headspace veroper Media/Contain Vere trip blanks receive all samples have veroper Media/Contain Vere trip blanks receive all samples have verope all samples have verope all samples have verope all samples have verope all samples vero	where applicable? hers Used? hers Used? the proper pH? Containers: 1 Liter Amb. 500 mL Amb. 250 mL Amb. Flashpoint Other Glass SOC Kit	# #	Acid	MS/MSD? s splitting On COC? Plastic Plastic Plastic cteria lastic Bag ck	samples red	Base 16 oz 8oz Am 4oz Am 2oz Am	Amb. b/Clear b/Clear b/Clear core	
s there enough Volus there Headspace veroper Media/Contain Vere trip blanks receive all samples have veroper Media/Contain Vere trip blanks receive all samples have verope all samples have verope all samples have verope all samples have verope all samples verope all samples verope	where applicable? hers Used? the proper pH? Containers: 1 Liter Amb. 500 mL Amb. 250 mL Amb. Flashpoint Other Glass SOC Kit Perchlorate Containers: 1 Liter Amb.	# # # # # # # # # # # # # # # # # # #	Acid	MS/MSD? s splitting On COC? Plastic Plastic Plastic Cteria lastic Bag ck	samples red	Base 16 oz 8oz Am 4oz Am 2oz Am	Amb. b/Clear b/Clear b/Clear core	#
s there enough Volus there Headspace veroper Media/Contain Vere trip blanks receive all samples have light from the light from	where applicable? hers Used? the proper pH? Containers: 1 Liter Amb. 500 mL Amb. 250 mL Amb. Flashpoint Other Glass SOC Kit Perchlorate Containers: 1 Liter Amb.	# # #	Acid 1 Liter Pl 500 mL F 250 mL F Col./Bac Other Pl Plastic I Ziploc Unused Me 1 Liter Pl 500 mL P	MS/MSD? s splitting On COC? Plastic Plastic Plastic cteria lastic Bag ck edia lastic Plastic	samples red	Base 16 oz 8oz Am 4oz Am 2oz Am Enc	Amb. b/Clear b/Clear b/Clear core	
s there enough Volus there Headspace veroper Media/Contain Vere trip blanks receive all samples have light from the light from	where applicable? hers Used? the proper pH? Containers: 1 Liter Amb. 500 mL Amb. 250 mL Amb. Flashpoint Other Glass SOC Kit Perchlorate Containers: 1 Liter Amb. 500 mL Amb.	# #	Acid 1 Liter Pl 500 mL F 250 mL F Col./Bac Other Pl Plastic I Ziploc Unused Mc	MS/MSD? s splitting On COC? Plastic Plastic Plastic teria lastic Bag ck edia lastic Plastic	samples red	Base 16 oz 8oz Am 4oz Am 2oz Am Enc	Amb. b/Clear b/Clear core	
s there enough Volus there Headspace vertices there Headspace vertices the state of	where applicable? hers Used? hers Used? the proper pH? Containers: 1 Liter Amb. 500 mL Amb. Flashpoint Other Glass SOC Kit Perchlorate Containers: 1 Liter Amb. 500 mL Amb. Col./Bacteria	# #	Acid 1 Liter Pi 500 mL F 250 mL F Col./Bac Other Pi Plastic i Ziploc Unused Me 1 Liter Pi 500 mL P 250 mL P Flashpo	MS/MSD? s splitting On COC? Plastic Plastic Plastic Eteria lastic Bag ck edia lastic Plastic Plastic	samples red	Base 16 oz 8oz Am 4oz Am 2oz Am Enc Frozen:	Amb. b/Clear b/Clear core Amb. b/Clear b/Clear	
s there enough Volus there Headspace veroper Media/Contain Vere trip blanks receive all samples have veroper Media/Contain Vere trip blanks receive all samples have verope all samples verope all sa	where applicable? hers Used? hers Used? the proper pH? Containers: 1 Liter Amb. 500 mL Amb. 250 mL Amb. Flashpoint Other Glass SOC Kit Perchlorate Containers: 1 Liter Amb. 500 mL Amb. Col./Bacteria Other Plastic	# # # # # # # # # # # # # # # # # # #	Acid 1 Liter P 500 mL F 250 mL F Col./Bac Other Pl Plastic I Ziploc Unused Ma 1 Liter Pl 500 mL P 250 mL P Flashpo Other Gi	MS/MSD? s splitting On COC? Plastic Plastic Plastic Eteria lastic Bag ck edia lastic Plastic Plastic	samples red	Base 16 oz 8oz Am 4oz Am 2oz Am Enc Frozen: 16 oz 8oz Am 4oz Am	Amb. b/Clear b/Clear core Amb. b/Clear b/Clear core	
s there enough Volus there Headspace veroper Media/Contain Vere trip blanks receive all samples have vials # Unp- ICL-Meoh- issulfate- Ul- hiosulfate- ulfuric-	where applicable? hers Used? hers Used? the proper pH? Containers: 1 Liter Amb. 500 mL Amb. Flashpoint Other Glass SOC Kit Perchlorate Containers: 1 Liter Amb. 500 mL Amb. Col./Bacteria	# #	Acid 1 Liter Pi 500 mL F 250 mL F Col./Bac Other Pi Plastic i Ziploc Unused Me 1 Liter Pi 500 mL P 250 mL P Flashpo	MS/MSD? s splitting On COC? Plastic Plastic Plastic Eteria Plastic Bag Ck edia lastic Plastic Plastic Chastic Bag Ck edia	samples rec	Base 16 oz 8oz Am 2oz Am Enc Frozen: 16 oz 8oz Am 4oz Am 2oz Am	Amb. b/Clear b/Clear core Amb. b/Clear b/Clear core	