December 24, 2019 (Revised January 22, 2020)

Ms. Shauna Little
U.S. Environmental Protection Agency
Office of Ecosystem Protection
PA/OEP RGP Applications Coordinator
5 Post Office Square - Suite 100 (OEP06-01)
Boston, MA 02109-3912

Re: Notice of Intent for Application of a Remediation General Permit Former Alewife Automotive 395 Alewife Brook Parkway Somerville, MA

Dear Ms. Little:

Mark A. Germano, LSP (MAG), on behalf of 395 ABP, LLC, (ABP) has prepared the enclosed Notice of Intent (NOI) for application of Remediation General Permit (RGP) for remediation/construction activities at the above referenced site, a former gas station. The property has been a gas station since 1932. In March 1992 a release of gasoline was discovered based on a failed tank test. MADEP assigned RTN 3-2770 to the site. Over the course of the next five years Sunoco remediated the site through various techniques including excavation and pump and treat. The site was "closed" in September 1997 with a Notice of Activity and Use Limitation (AUL) implemented because of residual contaminated soil under the pump island and canopy. The AUL deed restricted residential use of the property.

In 2018 395 ABP bought the property with plans to demolish the gas station, to excavate the contaminated soil, to terminate the AUL and to construct a residential condominium complex. The depth to groundwater is approximately 4-7 bgs. In order to excavate the contaminated soil and construct a partial basement the site has to be dewatered. A granular activated carbon system is on-site and has already been used however the glacial soils are too dense for on-site discharge. Therefore, to remediate the site our best option is to discharge treated groundwater into the municipal drainage system which discharges into the Alewife Brook located across the street from the site. Removal of the contaminated soil will achieve a level of "No Significant Risk" for the Site in order to terminate the AUL.

Groundwater Characterization

In preparation for groundwater dewatering activities, a representative groundwater sample was collected from the Frac Tank on December 9, 2019. The sample was submitted to NET labs of Warwick, RI for analysis of volatile organic compounds (VOCs) via EPA Methods 624 and 8260, polynuclear aromatic hydrocarbons (PAHs) and phenols via EPA Method 625 SIM, total PCBs via EPA Method 8082, total metals via EPA Method 200.7, Oil and Grease via EPA Method 1664A,

chloride via EPA Method 4500, ammonia via EPA Method 350.1, cyanide via EPA Method 335.4, ethanol via EPA method 8015 and total suspended solids via Standard Method 2540D. Groundwater temperature (35 degrees F) was recorded in the field.

In addition, a groundwater sample from a monitoring well located in the excavation was obtained prior to initiating construction. Volatile Petroleum Hydrocarbon (VPH), Extractable Petroleum Hydrocarbon (EPH), dissolved RCRA 8 Metals and VOC analyses was conducted on the sample. The results are attached the monitoring well is labelled MW-1. Also, the treatment system is set up and has operated with discharge to an on-site into trench. However the trench filled up quickly and water was unable to filter into the ground because the soils were too dense. These results are also attached. The effluent sample demonstrates the treatment system works effectively.

Receiving Water Characterization

Treated effluent will be discharged via a catch basin on Gordon Street adjacent to the site. Discharge of the catch basin will occur through the existing municipal drainage system into the Alewife Brook located across the street from the site. The City of Somerville has been notified of the planned discharge. Permission has been granted

This brook was sampled on December 9, 2019, at the outfall where the drainage system discharges to the brook. The surface water sample was submitted to NET Labs of Warwick, RIA for analysis of total metals via EPA Method 200.7, ammonia via EPA Method 350.1 and hardness via EPA Method 130.1. Receiving water analytical results are included as Attachment C. Temperature (40 degrees F) were collected in the field.

Alewife Brook is listed on the Massachusetts 303(d) list under Category 5 Waters – "Impairment caused by a pollutant – TMDL required."

Proposed Treatment System

A Design Flow treatment system discharge rate of 25 gallons per minute (gpm) was used to evaluate the applicable RGP discharge standards. Extracted water from the excavation activities will be initially pumped into one 21,000-gallon fractionation tanks.

Following settling, extracted groundwater will be treated by passage through (at minimum) 50- micron particle filters, and through two 500-pound liquid-phase reactive carbon vessels. Flow will be measured using an in-line flowmeter and totalizer prior to the discharge into the catch basin.

MAG anticipates that the dewatering system will operate from approximately January 1, 2020 through March 2020. A Work Plan for the groundwater extraction and treatment systems satisfying the requirements of Section 2.5 of the RGP will be available at the Site prior to initiating dewatering activities. See Attachment B, Figure 4 for a Treatment System Schematic.

Notice of Intent

Preparation of this NOI has included a review of the literature pertaining to Areas of Critical Environmental Concern, (ACECs), the Endangered Species Act, and the National Historic Preservation Act:

- Review of the Massachusetts Geographic Information Systems MassDEP Priority Resources Map (Figure 5) in Attachment B shows the Site is not within an ACEC.
- A review of the NHESP Priority Habitat Map was reviewed at MassGIS was reviewed indicating that there are no threatened, endangered, candidate species, or critical habitats in the proposed construction area
- This work will not affect historical properties that are listed by the United States Park Service or Massachusetts Cultural Resources. The Massachusetts Historical Commission's Massachusetts Cultural Resource Information System (MACRIS) listed no results found. See attached MACRIS results page.
- A dilution factor was calculated to be 14.64 using Stream Stats to determine the 7Q10 mgd to be 0.759 ft3. using a maximum flow 25 gpm. This was confirmed by Catherine Vakalopoulos at MADEP. See Attachment E.

The proposed treatment system has been designed to reduce contaminants of concern below the applicable effluent limits. Effluent compliance monitoring will be conducted in compliance with the RGP. Additionally, the flow rate, pH, and temperature of the effluent will be monitoring in the field and recorded.

We appreciate your assistance in processing this Notice of Intent.

Should you have any questions regarding this correspondence, please do not hesitate to contact the undersigned at (339)793-3528. Sincerely,

Mark A. Germano, LSP

Mark Germano

President

Attachment A - RGP NOI Form

Attachment B – Figures

Figure 1 – Locus Plan

Figure 2 – Site Plan and Proposed Construction

Figure 3 – City of Somerville Drainage Layout

Figure 4 – Treatment System Schematic

Figure 5 – MassDEP Priority Resource Map

Attachment C – Laboratory Analytical Data

Attachment D – Massachusetts Cultural Resources in Vicinity of Site

Attachment E-Stream Characteristics, Dilution Factor Comfirmation

ATTACHMENT A NOI FORM

II. Suggested Format for the Remediation General Permit Notice of Intent (NOI)

A. General site information:

1. Name of site: Former Alewife Automotive	Site address: 395 Alewife Brook Parkway Street:					
	City: Somerville	State: MA	Zip:			
2. Site owner	Contact Person: Chris Cormier					
395 ABP, LLC	Telephone: 978-265-0444	Email: Co	ndenlpc	onstruction@yahoo.com		
	Mailing address: 324 Cmmonwelth Ave. Sui					
Owner is (check one): □ Federal □ State/Tribal □ Private	Street:		Г			
☐ Other; if so, specify:	City: Boston	State: MA	Zip: 02115			
3. Site operator, if different than owner	Contact Person: Mark Germano					
Mark A. Germano, LSP	Telephone: 339-793-3528	germano916@gmail.com				
	Mailing address: 15 Pinehurst Road					
	Street:					
	City: Marshfield		SMA:	Zip: 02050		
4. NPDES permit number assigned by EPA:	5. Other regulatory program(s) that apply to the site	(check all th	at apply):			
NA	☑ MA Chapter 21e; list RTN(s):3-2770	□ CERCL	LΑ			
NPDES permit is (check all that apply: \square RGP \square DGP \square CGP \square MSGP \square Individual NPDES permit \square Other; if so, specify:	☐ NH Groundwater Management Permit or Groundwater Release Detection Permit:	nt				

TMDL-5

В.	Receiving	water	info	rmation:
₽.	11000111115	" att	111101	IIII

1. Name of receiving water(s):	Waterbody identification of receiving water(s):	Classifica	ntion of receiving water(s):					
Alewife Brook	MA71-04 Class B							
Receiving water is (check any that apply): Outstanding Resource Water Ocean Sanctuary territorial sea Wild and Scenic River								
2. Has the operator attached a location map in accordance with the instructions in B, above? (check one): ✓ Yes ☐ No Are sensitive receptors present near the site? (check one): ☐ Yes ☑ No If yes, specify:								
3. Indicate if the receiving water(s) is listed in the State's Integrated List of Waters (i.e., CWA Section 303(d)). Include which designated uses are impaired, and any pollutants indicated. Also, indicate if a final TMDL is available for any of the indicated pollutants. For more information, contact the appropriate State as noted in Part 4.6 of the RGP. Debris, copper, escherichia coli, scum, oil slicks, lead, diss oxygen, PCB in fish tissue, phosphorous, taste and odol								
4. Indicate the seven day-ten-year low flow (7Q10) of the receiving water determined in accordance with the instructions in Appendix V for sites located in Massachusetts and Appendix VI for sites located in New Hampshire. 0.759 ft3/sec								
5. Indicate the requested dilution factor for the calculation of water quality-based effluent limitations (WQBELs) determined in accordance with the instructions in Appendix V for sites in Massachusetts and Appendix VI for sites in New Hampshire. 14.64								
6. Has the operator received confirmation from the approyes, indicate date confirmation received: 1/22/20	priate State for the 7Q10and dilution factor indicated?	check one): 🗹 Yes 🦎	Q If					
7. Has the operator attached a summary of receiving water (check one): ☑ Yes □ No	er sampling results as required in Part 4.2 of the RGP in	accordance with the in	astruction in Appendix VIII?					

C. Source water information:

1. Source water(s) is (check any that apply):			
☑ Contaminated groundwater	☐ Contaminated surface water	☐ The receiving water	☐ Potable water; if so, indicate municipality or origin:
Has the operator attached a summary of influent sampling results as required in Part 4.2 of the RGP	*		
in accordance with the instruction in Appendix VIII? (check one):	RGP in accordance with the instruction in Appendix VIII? (check one):	than the receiving water; if so, indicate waterbody:	☐ Other; if so, specify:
☑ Yes □ No	□ Yes □ No		

2. Source water contaminants:	
a. For source waters that are contaminated groundwater or contaminated	b. For a source water that is a surface water other than the receiving water, potable water
surface water, indicate are any contaminants present that are not included in	or other, indicate any contaminants present at the maximum concentration in accordance
the RGP? (check one): \square Yes \triangledown No If yes, indicate the contaminant(s) and	with the instructions in Appendix VIII? (check one): ✓ Yes □ No
the maximum concentration present in accordance with the instructions in Appendix VIII.	
3. Has the source water been previously chlorinated or otherwise contains resid	dual chlorine? (check one): ☐ Yes ☑ No
D. Discharge information	
1. The discharge(s) is a(n) (check any that apply): ★ Existing discharge ☑ New	w discharge □ New source
Outfall(s):	Outfall location(s): (Latitude, Longitude)
Outfall to Alewife Brook Serial # 001	42.413070 Latitude -71.132386 Longitude
Discharges enter the receiving water(s) via (check any that apply): ☑ Direct di	ischarge to the receiving water □ Indirect discharge, if so, specify:
☐ A private storm sewer system ☑ A municipal storm sewer system	
If the discharge enters the receiving water via a private or municipal storm sew	ver system:
Has notification been provided to the owner of this system? (check one): ☑ Ye	es □ No
Has the operator has received permission from the owner to use such system for obtaining permission:	or discharges? (check one): ☑ Yes □ No, if so, explain, with an estimated timeframe for
Has the operator attached a summary of any additional requirements the owner	r of this system has specified? (check one): ☐ Yes ☑ No
Provide the expected start and end dates of discharge(s) (month/year): 12/20	19-4/2020
Indicate if the discharge is expected to occur over a duration of: ☑ less than 1	2 months □ 12 months or more □ is an emergency discharge
Has the operator attached a site plan in accordance with the instructions in D	above? (check one): ✓ Yes □ No

2. Activity Category: (check all that apply)	3. Contamination Type Category: (check all that apply)				
	a. If Activity Category I or II: (check all that apply)				
	 ☑ A. Inorganics ☑ B. Non-Halogenated Volatile Organic Compounds □ C. Halogenated Volatile Organic Compounds ☑ D. Non-Halogenated Semi-Volatile Organic Compounds ☑ E. Halogenated Semi-Volatile Organic Compounds ☑ F. Fuels Parameters 				
✓ I – Petroleum-Related Site Remediation☐ II – Non-Petroleum-Related Site Remediation	b. If Activity Category III, IV, V, VI, VII or VIII: (check either G or H)				
 □ III – Non-Petroleum-Related Site Remediation □ III – Contaminated Site Dewatering □ IV – Dewatering of Pipelines and Tanks □ V – Aquifer Pump Testing □ VI – Well Development/Rehabilitation □ VII – Collection Structure Dewatering/Remediation □ VIII – Dredge-Related Dewatering 	□ G. Sites with Known Contamination c. If Category III-G, IV-G, V-G, VI-G, VII-G or VIII-G: (check all that apply) □ A. Inorganics □ B. Non-Halogenated Volatile Organic Compounds □ C. Halogenated Volatile Organic Compounds □ D. Non-Halogenated Semi-Volatile Organic Compounds □ D. Non-Halogenated Semi-Volatile Organic Compounds □ E. Halogenated Semi-Volatile Organic Compounds □ F. Fuels Parameters	d. If Category III-H, IV-H, V-H, VI-H, VII-H or VIII-H Contamination Type Categories A through F apply			

4. Influent and Effluent Characteristics

	Known	Known		TF. 4	T	Infl	uent	Effluent Li	mitations
Parameter	or believed absent	or believed present	# of samples	Test method (#)	Detection limit (µg/l)	Daily maximum (µg/l)	Daily average (µg/l)	TBEL	WQBEL
A. Inorganics									
Ammonia	х		2	E350.1	0.1			Report mg/L	
Chloride		Х	1	4500	25	324000		Report µg/l	
Total Residual Chlorine		Х	1	4500				0.2 mg/L	
Total Suspended Solids		Х	1	2540	2	8000		30 mg/L	
Antimony		Х	2	200.7	0.6	0.1		206 μg/L	
Arsenic		Х	2	200.7/601	0.1	16.4		104 μg/L	
Cadmium		Х	2	200.7/601	0.1	0.5		10.2 μg/L	
Chromium III		Х	2	200.7/601	0.1	0.5		323 μg/L	
Chromium VI		х	2	200.7	0.1	0.491		323 μg/L	
Copper		Х	2	200.7	1	5.0		242 μg/L	
Iron		X	1	200.7	0.1	3.0		5,000 μg/L	
Lead		Х	2	200.7	0.1	1.3		160 μg/L	
Mercury	х		1	200.7/601	0.2			0.739 μg/L	
Nickel		Х	1	200.7	1.0	3.0		1,450 µg/L	
Selenium	х		1	200.7	5.0			235.8 μg/L	
Silver	х		1	200.7	0.1			35.1 μg/L	
Zinc		Х	2	200.7	0.1	1.3		420 μg/L	
Cyanide	х		1	335.4	.01			178 mg/L	
B. Non-Halogenated VOC	's								
Total BTEX		Х	1	624	1/10/20	13152		100 μg/L	
Benzene		Х	1	624	10	671		5.0 μg/L	
1,4 Dioxane		Х	1	624	500			200 μg/L	
Acetone	Х		1	624	5			7.97 mg/L	
Phenol		Х	1	624	2	6	<u> </u>	1,080 µg/L	

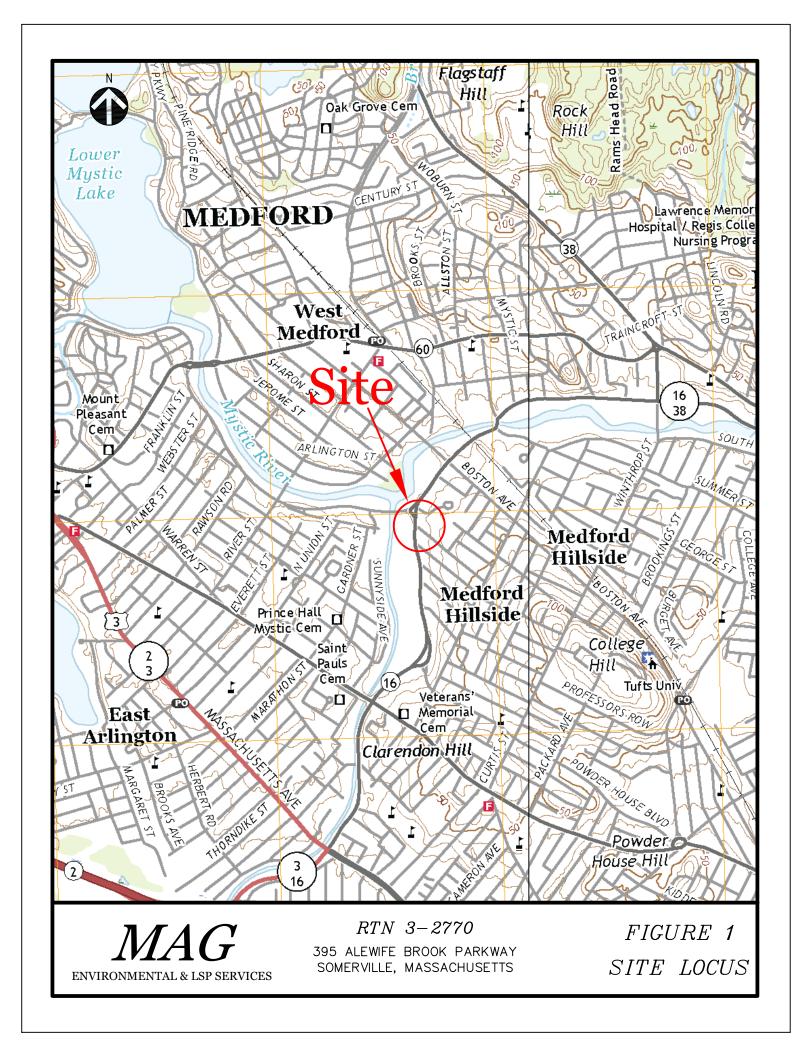
	Known	Known				Infl	uent	Effluent Lin	nitations
Parameter	or believed absent	or believed present	# of samples	Test method (#)	Detection limit (µg/l)	Daily maximum (µg/l)	Daily average (µg/l)	TBEL	WQBEL
C. Halogenated VOCs									
Carbon Tetrachloride	Х		1	624	10			4.4 μg/L	
1,2 Dichlorobenzene	Х		1	624	1			600 μg/L	
1,3 Dichlorobenzene	Х		1	624	1			320 μg/L	
1,4 Dichlorobenzene	Х		1	624	1			5.0 μg/L	
Total dichlorobenzene	Х		1	624	1			763 µg/L in NH	
1,1 Dichloroethane	X		1	624	1			70 μg/L	
1,2 Dichloroethane	Х		1	624	1			5.0 μg/L	
1,1 Dichloroethylene		Х	1	624				3.2 µg/L	
Ethylene Dibromide		X	1	624				0.05 μg/L	
Methylene Chloride	X		1	624	5			4.6 μg/L	
1,1,1 Trichloroethane	Х		1	624	1			200 μg/L	
1,1,2 Trichloroethane	X		1	624	1			5.0 μg/L	
Trichloroethylene	Х		1	624	1			5.0 μg/L	
Tetrachloroethylene	Х		1	624	1			5.0 μg/L	
cis-1,2 Dichloroethylene	X		1	624	1			70 μg/L	
Vinyl Chloride	Х		1	624	1			2.0 μg/L	
D. Non-Halogenated SVOC	s								
Total Phthalates		X	1	625	2	3		190 μg/L	
Diethylhexyl phthalate		Х	1	625	2			101 μg/L	
Total Group I PAHs		Х	1	625	2			1.0 μg/L	
Benzo(a)anthracene		Χ	1	625	2			_	
Benzo(a)pyrene		Х	1	625	2			_	
Benzo(b)fluoranthene		Χ	1	625	2			_	
Benzo(k)fluoranthene		Χ	1	625	2			As Total PAHs	
Chrysene		Х	1	625	1			<u> </u>	
Dibenzo(a,h)anthracene		X	1	625	2			_	
Indeno(1,2,3-cd)pyrene		Х	1	625	2				

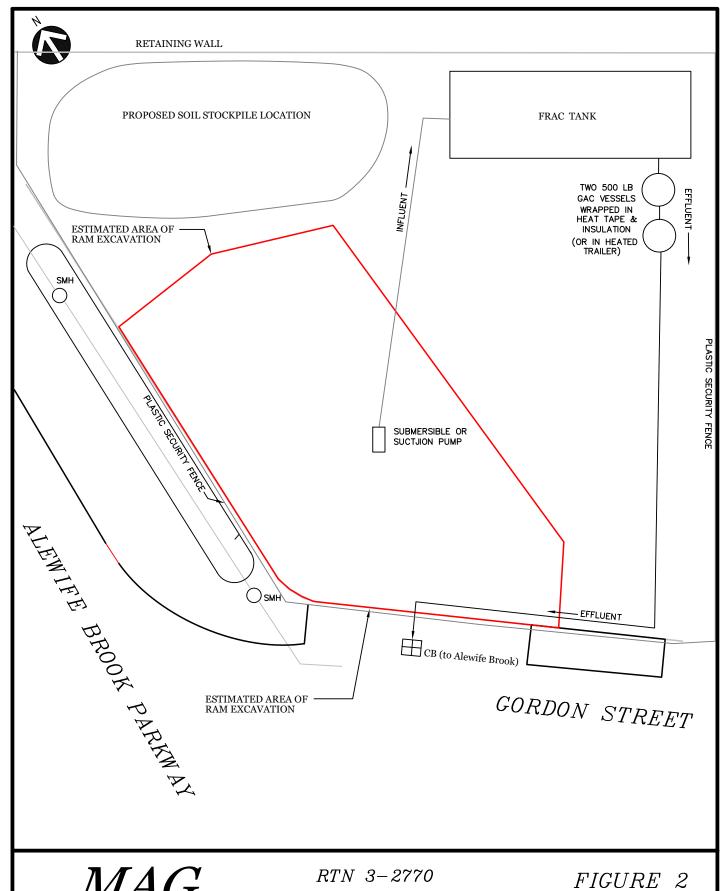
	Known	Known				Influ	uent	Effluent Lin	nitations
Parameter	or believed absent	or believed present	# of samples	es method limi (µg/l	Detection limit (µg/l)	Daily maximum (µg/l)	Daily average (µg/l)	TBEL	WQBEL
Total Group II PAHs		Χ	1	625	2			100 μg/L	
Naphthalene		Х	1	625/8270	2	71		20 μg/L	
E. Halogenated SVOCs									
Total PCBs	X		1	608	0.2			0.000064 µg/L	
Pentachlorophenol		Х	1	625	5			1.0 μg/L	
F. Fuels Parameters									
Total Petroleum Hydrocarbons		Х	1	8100	1000	3910		5.0 mg/L	
Ethanol	X		1	8260	10			Report mg/L	
Methyl-tert-Butyl Ether		Х	1	624	5			70 μg/L	
tert-Butyl Alcohol	X		1	624	5			120 μg/L in MA 40 μg/L in NH	
tert-Amyl Methyl Ether	Х		1	6924	1			90 μg/L in MA 140 μg/L in NH	
Other (i.e., pH, temperatu	re, hardness,	salinity, LC	C ₅₀ , addition	nal pollutar	ts present);	if so, specify:			
Temperature			1			35 degrees F			
Hardness			1	200.7	.125	29.8			
				<u> </u>		+			

E. Treatment system information

1. Indicate the type(s) of treatment that will be applied to effluent prior to discharge: (check all that apply)	
✓ Adsorption/Absorption □ Advanced Oxidation Processes □ Air Stripping ☑ Granulated Activated Carbon ("GAC")/Liquid Phase Carbon Adsorption □ Ion Exchange □ Precipitation/Coagulation/Flocculation □ Separation/Filtration □ Other; if so, specify:	
 Provide a written description of all treatment system(s) or processes that will be applied to the effluent prior to discharge. Water from excavation will be pumped into a Frac tank. The water in the Frac tank will be pumped through a bag filter and two 500 pound Granulated Accannisters in series before being dischrged into a catch basin which is connected to the City of Somerville's drainage system which discharges into the Allert Acceptable (and the City of Somerville). 	etivated Carbon ewife Brook.
Identify each major treatment component (check any that apply):	
☑ Fractionation tanks ☐ Equalization tank ☐ Oil/water separator ☐ Mechanical filter ☑ Media filter	
□ Chemical feed tank □ Air stripping unit □ Bag filter □ Other; if so, specify:	
Indicate if either of the following will occur (check any that apply): □ Chlorination □ De-chlorination	
3. Provide the design flow capacity in gallons per minute (gpm) of the most limiting component. Indicate the most limiting component: TBD/Pump Bag Filter, Size of Carbon Canisters Is use of a flow meter feasible? (check one): ✓ Yes □ No, if so, provide justification:	
Provide the proposed maximum effluent flow in gpm.	25 gpm
Provide the average effluent flow in gpm.	20 gpm
If Activity Category IV applies, indicate the estimated total volume of water that will be discharged:	
4. Has the operator attached a schematic of flow in accordance with the instructions in E, above? (check one): ☑ Yes □ No	

F. Chemical and additive information

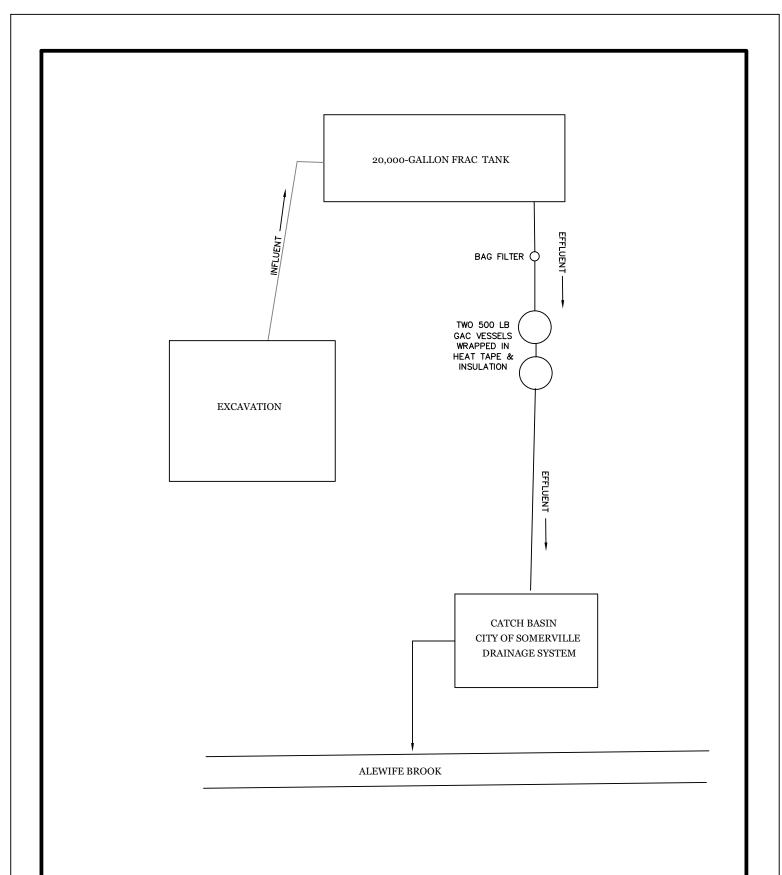

r. Chemical and additive information
1. Indicate the type(s) of chemical or additive that will be applied to effluent prior to discharge or that may otherwise be present in the discharge(s): (check all that apply)
□ Algaecides/biocides □ Antifoams □ Coagulants □ Corrosion/scale inhibitors □ Disinfectants □ Flocculants □ Neutralizing agents □ Oxidants □ Oxygen □
scavengers □ pH conditioners □ Bioremedial agents, including microbes □ Chlorine or chemicals containing chlorine □ Other; if so, specify:
2. Provide the following information for each chemical/additive, using attachments, if necessary:
a. Product name, chemical formula, and manufacturer of the chemical/additive; b. Purpose or use of the chemical/additive or remedial agent; c. Material Safety Data Sheet (MSDS) and Chemical Abstracts Service (CAS) Registry number for each chemical/additive; d. The frequency (hourly, daily, etc.), duration (hours, days), quantity (maximum and average), and method of application for the chemical/additive; e. Any material compatibility risks for storage and/or use including the control measures used to minimize such risks; and f. If available, the vendor's reported aquatic toxicity (NOAEL and/or LC50 in percent for aquatic organism(s)).
3. Has the operator attached an explanation which demonstrates that the addition of such chemicals/additives may be authorized under this general permit in accordance
with the instructions in F, above? (check one): \square Yes \square No; if no, has the operator attached data that demonstrates each of the 126 priority pollutants in CWA Section 307(a) and 40 CFR Part 423.15(j)(1) are non-detect in discharges with the addition of the proposed chemical/additive?
(check one): ☐ Yes ☐ No
G. Endangered Species Act eligibility determination
1. Indicate under which criterion the discharge(s) is eligible for coverage under this general permit:
☑ FWS Criterion A: No endangered or threatened species or critical habitat are in proximity to the discharges or related activities or come in contact with the "action area".
□ FWS Criterion B : Formal or informal consultation with the FWS under section 7 of the ESA resulted in either a no jeopardy opinion (formal consultation) or a written concurrence by FWS on a finding that the discharges and related activities are "not likely to adversely affect" listed species or critical habitat
(informal consultation). Has the operator completed consultation with FWS? (check one): ☐ Yes ☐ No; if no, is consultation underway? (check one): ☐
Yes □ No
□ FWS Criterion C: Using the best scientific and commercial data available, the effect of the discharges and related activities on listed species and critical habitat have been evaluated. Based on those evaluations, a determination is made by EPA, or by the operator and affirmed by EPA, that the discharges and related activities will have "no effect" on any federally threatened or endangered listed species or designated critical habitat under the jurisdiction of the
FWS. This determination was made by: (check one) \square the operator \square EPA \square Other; if so, specify:


□ NMFS Criterion: A determination made by EPA is affirmed by the operator that the discharges and related activities will have "no effect" or are "not likely to adversely affect" any federally threatened or endangered listed species or critical habitat under the jurisdiction of NMFS and will not result in any take of
listed species. Has the operator previously completed consultation with NMFS? (check one): ☐ Yes ☐ No
2. Has the operator attached supporting documentation of ESA eligibility in accordance with the instructions in Appendix I, and G, above? (check one): 🗹 Yes 🗆 No
per NHESP-2018
Does the supporting documentation include any written concurrence or finding provided by the Services? (check one): ☐ Yes ☑ No; if yes, attach.
H. National Historic Preservation Act eligibility determination
1. Indicate under which criterion the discharge(s) is eligible for coverage under this general permit:
☑ Criterion A: No historic properties are present. The discharges and discharge-related activities (e.g., BMPs) do not have the potential to cause effects on historic properties.
□ Criterion B: Historic properties are present. Discharges and discharge related activities do not have the potential to cause effects on historic properties.
□ Criterion C : Historic properties are present. The discharges and discharge-related activities have the potential to have an effect or will have an adverse effect on historic properties.
2. Has the operator attached supporting documentation of NHPA eligibility in accordance with the instructions in H, above? (check one): ☑ Yes □ No
Does the supporting documentation include any written agreement with the State Historic Preservation Officer (SHPO), Tribal Historic Preservation Officer (TPHO), or
other tribal representative that outlines measures the operator will carry out to mitigate or prevent any adverse effects on historic properties? (check one): Yes No
I. Supplemental information
Describe any supplemental information being provided with the NOI. Include attachments if required or otherwise necessary.
Has the operator attached data, including any laboratory case narrative and chain of custody used to support the application? (check one): ✓ Yes □ No
Has the operator attached the certification requirement for the Best Management Practices Plan (BMPP)? (check one): ☑ Yes □ No

J. Certification requirement

I certify under penalty of law that this document and all attachments were prepared under my direction or supervision in a that qualified personnel properly gathered and evaluated the information submitted. Based on my inquiry of the person or persons directly responsible for gathering the information, the information submitted is, to the best of my knowledge and be no personal knowledge that the information submitted is other than true, accurate, and complete. I am aware that there are information, including the possibility of fine and imprisonment for knowing violations.	persons who manage the system, or those velief, true, accurate, and complete. I have
I certify that a BMPP meeting the requirements of this general permit will be BMPP certification statement: upon initiation of discharge	e developed and implemented
Notification provided to the appropriate State, including a copy of this NOI, if required.	Check one: Yes ☑ No □
Notification provided to the municipality in which the discharge is located, including a copy of this NOI, if requested.	Check one: Yes ☑ No □
Notification provided to the owner of a private or municipal storm sewer system, if such system is used for site discharges, including a copy of this NOI, if requested.	Check one: Yes ☑ No □ NA □
Permission obtained from the owner of a private or municipal storm sewer system, if such system is used for site	
discharges. If yes, attach additional conditions. If no, attach explanation and timeframe for obtaining permission.	Check one: Yes ☑ No □ NA □
Notification provided to the owner/operator of the area associated with activities covered by an additional discharge	
$permit(s). \ Additional \ discharge \ permit \ is \ (check \ one): \ \Box \ RGP \ \Box \ DGP \ \Box \ CGP \ \Box \ MSGP \ \ \Box \ Individual \ NPDES \ permit$	Check one: Yes □ No ☑ NA □
☐ Other; if so, specify:	
Signature: Mult Leno	te: December 20, 2019
Print Name and Title: Mark A. Germano, LSP	

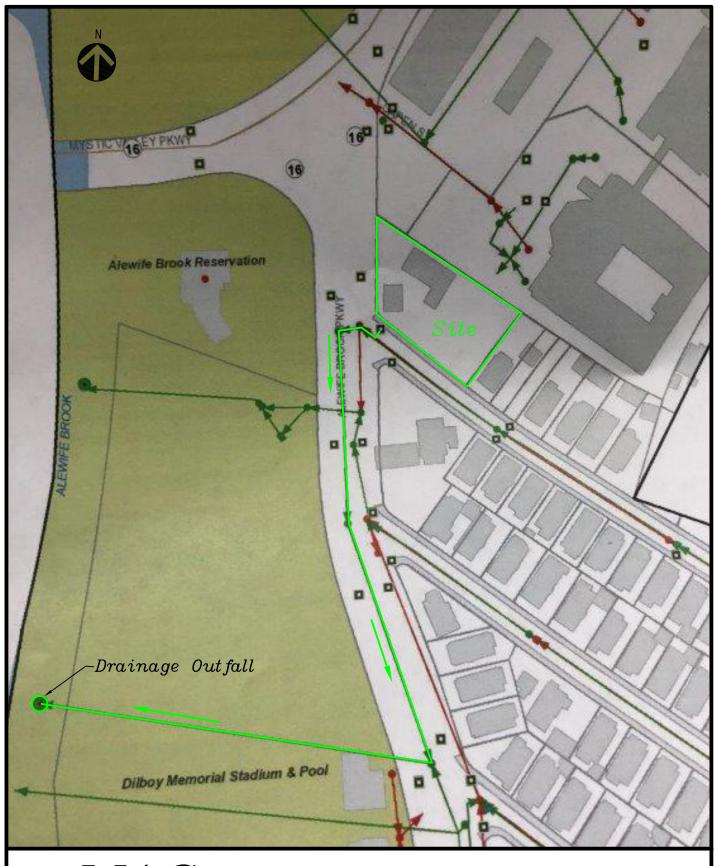
ATTACHMENT B FIGURES



MAG
ENVIRONMENTAL & LSP SERVICES

RTN 3-2770
395 ALEWIFE BROOK PARKWAY SOMERVILLE, MASSACHUSETTS

FIGURE 2 SITE PLAN

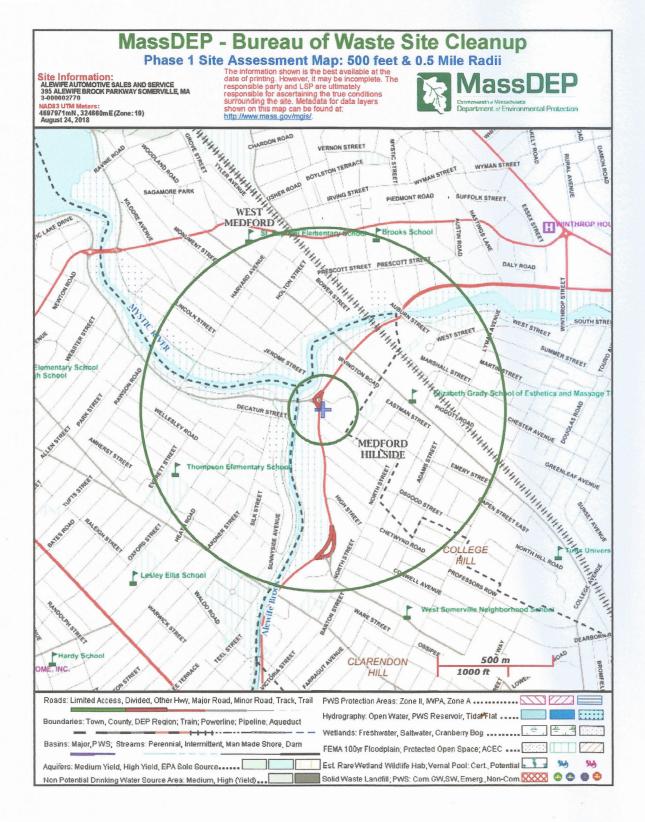


MAG environmental & LSP services

RTN 3-2770

395 ALEWIFE BROOK PARKWAY SOMERVILLE, MASSACHUSETTS

FIGURE 3
GROUNDWATER TREATMENT
SYSTEM FLOW CHART



MAG environmental & LSP services

RTN 3-2770

395 ALEWIFE BROOK PARKWAY SOMERVILLE, MASSACHUSETTS

FIGURE 4
DRAINAGE PLAN

ATTACHMENT C LABORATORY ANALYTICAL REPORTS

REPORT OF ANALYTICAL RESULTS

NETLAB Work Order Number: 9K08006 Client Project: 395 Alewife Brook Parkway

Report Date: 14-November-2019

Prepared for:

Mark A Germano Mark A. Germano, LSP 15 Pinehurst Rd Marshfield, MA 02050

> Richard Warila, Laboratory Director New England Testing Laboratory, Inc. 59 Greenhill Street West Warwick, RI 02893 rich.warila@newenglandtesting.com

NETLAB Case Number: 9K08006

Samples Submitted:

The samples listed below were submitted to New England Testing Laboratory on 11/08/19. The group of samples appearing in this report was assigned an internal identification number (case number) for laboratory information management purposes. The client's designations for the individual samples, along with our case numbers, are used to identify the samples in this report. This report of analytical results pertains only to the sample(s) provided to us by the client which are indicated on the custody record. The case number for this sample submission is 9K08006. Custody records are included in this report.

Lab ID	Sample	Matrix	Date Sampled	Date Received
01/00000 01	C1	Call	11/06/2010	11/00/2010
9K08006-01	S1	Soil	11/06/2019	11/08/2019
9K08006-02	S2	Soil	11/06/2019	11/08/2019
9K08006-03	S3	Soil	11/06/2019	11/08/2019
9K08006-04	S4	Soil	11/06/2019	11/08/2019
9K08006-05	S5	Soil	11/06/2019	11/08/2019
9K08006-06	S6	Soil	11/06/2019	11/08/2019
9K08006-07	MW-1	Water	11/06/2019	11/08/2019

Request for Analysis

At the client's request, the analyses presented in the following table were performed on the samples submitted.

MW-1 (Lab Number: 9K08006-07)

<u>Analysis</u>	<u>Method</u>
Dissolved Arsenic	EPA 6010C
Dissolved Barium	EPA 6010C
Dissolved Cadmium	EPA 6010C
Dissolved Chromium	EPA 6010C
Dissolved Lead	EPA 6010C
Dissolved Mercury	EPA 7470A
Dissolved Selenium	EPA 6010C
Dissolved Silver	EPA 6010C
MADEP EPH	MADEP EPH
MADEP VPH	MADEP VPH
Volatile Organic Compounds	EPA 8260C

S1 (Lab Number: 9K08006-01)

<u>Analysis</u>	<u>Method</u>
MADEP VPH	MADEP VPH

S2 (Lab Number: 9K08006-02)

<u>Analysis</u>	<u>Method</u>
MADEP VPH	MADEP VPH

S3 (Lab Number: 9K08006-03)

<u>Analysis</u>	<u>Method</u>
MADEP VPH	MADEP VPH

S4 (Lab Number: 9K08006-04)

<u>Analysis</u>	<u>Method</u>
MADEP VPH	MADEP VPH

S5 (Lab Number: 9K08006-05)

<u>Analysis</u>	<u>Method</u>
MADEP VPH	MADEP VPH

S6 (Lab Number: 9K08006-06)

<u>Analysis</u>	<u>Method</u>
MADEP VPH	MADEP VPH

Method References

Method for the Determination of Extractable Petroleum Hydrocarbons, Rev. 1.1, Massachusetts Department of Environmental Protection, 2004

Method for the Determination of Volatile Petroleum Hydrocarbons, Rev. 2.1, Massachusetts Department of Environmental Protection, 2018

Test Methods for Evaluating Solid Waste, Physical/Chemical Methods, SW846, USEPA

NETLAB Case Number: 9K08006

Case Narrative

Sample Receipt:

The samples associated with this work order were received in appropriately cooled and preserved containers. The chain of custody was adequately completed and corresponded to the samples submitted.

Exceptions: None

Analysis:

All samples were prepared and analyzed within method specified holding times and according to NETLAB's documented standard operating procedures. The results for the associated calibration, method blank and laboratory control sample (LCS) were within method specified quality control requirements and allowances.

VPH: Sample "S2" was reported with surrogate recoveries outside of the method recommended QC limits due to sample matrix interferences.

No non-preserved jars were provided for % solids correction. Per the client, the samples had similar field profiles. These field profiles were shared by samples submitted from the same site under work order 9K11019. The average of the % solids of samples 9K11019-05 through 9K11019-08 was applied to all soil samples in this work order at client request.

Results: Dissolved Metals

Sample: MW-1

Lab Number: 9K08006-07 (Water)

			Reporting			
Analyte	Result	Qual	Limit	Units	Date Prepared	Date Analyzed
Arsenic	ND		0.010	mg/L	11/13/19	11/13/19
Barium	0.045		0.005	mg/L	11/13/19	11/13/19
Cadmium	ND		0.005	mg/L	11/13/19	11/13/19
Chromium	ND		0.005	mg/L	11/13/19	11/13/19
Lead	ND		0.005	mg/L	11/13/19	11/13/19
Mercury	ND		0.0002	mg/L	11/12/19	11/12/19
Selenium	ND		0.010	mg/L	11/13/19	11/13/19
Silver	ND		0.005	mg/L	11/13/19	11/13/19

Results: Volatile Organic Compounds

Sample: MW-1

Lab Number: 9K08006-07 (Water)

Analyte	Result	Qual	Reporting Limit	Units	Date Prepared	Date Analyzed
Acetone	ND		5	ug/l	11/11/19	11/11/19
Benzene	20		1	ug/l	11/11/19	11/11/19
Bromobenzene	ND		1	ug/l	11/11/19	11/11/19
Bromochloromethane	ND		1	ug/l	11/11/19	11/11/19
Bromodichloromethane	ND		1	ug/l	11/11/19	11/11/19
Bromoform	ND		1	ug/l	11/11/19	11/11/19
Bromomethane	ND		1	ug/l	11/11/19	11/11/19
2-Butanone	ND		5	ug/l	11/11/19	11/11/19
tert-Butyl alcohol	ND		5	ug/l	11/11/19	11/11/19
sec-Butylbenzene	5		1	ug/l	11/11/19	11/11/19
n-Butylbenzene	6		1	ug/l	11/11/19	11/11/19
tert-Butylbenzene	ND		1			
Methyl t-butyl ether (MTBE)	ND ND		1	ug/l ug/l	11/11/19 11/11/19	11/11/19 11/11/19
Carbon Disulfide Carbon Tetrachloride	ND ND		1 1	ug/l ug/l	11/11/19 11/11/19	11/11/19 11/11/19
				_		
Chlorophraga	ND		1	ug/l	11/11/19	11/11/19
Chloroethane	ND		1	ug/l	11/11/19	11/11/19
Chloroform	ND		1	ug/l	11/11/19	11/11/19
Chloromethane	ND		1	ug/l	11/11/19	11/11/19
4-Chlorotoluene	ND		1	ug/l	11/11/19	11/11/19
2-Chlorotoluene	ND		1	ug/l	11/11/19	11/11/19
1,2-Dibromo-3-chloropropane (DBCP)	ND		1	ug/l	11/11/19	11/11/19
Dibromochloromethane	ND		1	ug/l	11/11/19	11/11/19
1,2-Dibromoethane (EDB)	ND		1	ug/l	11/11/19	11/11/19
Dibromomethane	ND		1	ug/l	11/11/19	11/11/19
1,2-Dichlorobenzene	ND		1	ug/l	11/11/19	11/11/19
1,3-Dichlorobenzene	ND		1	ug/l	11/11/19	11/11/19
1,4-Dichlorobenzene	ND		1	ug/l	11/11/19	11/11/19
1,1-Dichloroethane	ND		1	ug/l	11/11/19	11/11/19
1,2-Dichloroethane	ND		1	ug/l	11/11/19	11/11/19
trans-1,2-Dichloroethene	ND		1	ug/l	11/11/19	11/11/19
cis-1,2-Dichloroethene	ND		1	ug/l	11/11/19	11/11/19
1,1-Dichloroethene	ND		1	ug/l	11/11/19	11/11/19
1,2-Dichloropropane	ND		1	ug/l	11/11/19	11/11/19
2,2-Dichloropropane	ND		1	ug/l	11/11/19	11/11/19
cis-1,3-Dichloropropene	ND		1	ug/l	11/11/19	11/11/19
trans-1,3-Dichloropropene	ND		1	ug/l	11/11/19	11/11/19
1,1-Dichloropropene	ND		1	ug/l	11/11/19	11/11/19
1,3-Dichloropropene (cis + trans)	ND		2	ug/l	11/11/19	11/11/19
Diethyl ether	ND		5	ug/l	11/11/19	11/11/19
1,4-Dioxane	ND		500	ug/l	11/11/19	11/11/19
Ethylbenzene	127		1	ug/l	11/11/19	11/11/19
Hexachlorobutadiene	ND		1	ug/l	11/11/19	11/11/19
2-Hexanone	ND		5	ug/l	11/11/19	11/11/19
Isopropylbenzene	44		1	ug/l	11/11/19	11/11/19

Results: Volatile Organic Compounds (Continued)

Sample: MW-1 (Continued) Lab Number: 9K08006-07 (Water)

Analyte	Result Qual	Reporting Limit	Units	Date Prepared	Date Analyzed
p-Isopropyltoluene	ND	1	ug/l	11/11/19	11/11/19
Methylene Chloride	ND	1	ug/l	11/11/19	11/11/19
4-Methyl-2-pentanone	ND	5	ug/l	11/11/19	11/11/19
Naphthalene	27	1	ug/l	11/11/19	11/11/19
n-Propylbenzene	129	1	ug/l	11/11/19	11/11/19
Styrene	ND	1	ug/l	11/11/19	11/11/19
1,1,1,2-Tetrachloroethane	ND	1	ug/l	11/11/19	11/11/19
Tetrachloroethene	ND	1	ug/l	11/11/19	11/11/19
Tetrahydrofuran	ND	5	ug/l	11/11/19	11/11/19
Toluene	18	1	ug/l	11/11/19	11/11/19
1,2,4-Trichlorobenzene	ND	1	ug/l	11/11/19	11/11/19
1,2,3-Trichlorobenzene	ND	1	ug/l	11/11/19	11/11/19
1,1,2-Trichloroethane	ND	1	ug/l	11/11/19	11/11/19
1,1,1-Trichloroethane	ND	1	ug/l	11/11/19	11/11/19
Trichloroethene	ND	1	ug/l	11/11/19	11/11/19
1,2,3-Trichloropropane	ND	1	ug/l	11/11/19	11/11/19
1,3,5-Trimethylbenzene	11	1	ug/l	11/11/19	11/11/19
1,2,4-Trimethylbenzene	40	1	ug/l	11/11/19	11/11/19
Vinyl Chloride	ND	1	ug/l	11/11/19	11/11/19
o-Xylene	10	1	ug/l	11/11/19	11/11/19
m&p-Xylene	217	2	ug/l	11/11/19	11/11/19
Total xylenes	227	2	ug/l	11/11/19	11/11/19
1,1,2,2-Tetrachloroethane	ND	1	ug/l	11/11/19	11/11/19
tert-Amyl methyl ether	ND	1	ug/l	11/11/19	11/11/19
1,3-Dichloropropane	ND	1	ug/l	11/11/19	11/11/19
Ethyl tert-butyl ether	ND	1	ug/l	11/11/19	11/11/19
Diisopropyl ether	ND	1	ug/l	11/11/19	11/11/19
Trichlorofluoromethane	ND	1	ug/l	11/11/19	11/11/19
Dichlorodifluoromethane	ND	1	ug/l	11/11/19	11/11/19
Surrogate(s)	Recovery%	Limi	ts		
4-Bromofluorobenzene	100%	70-1.	30	11/11/19	11/11/19
1,2-Dichloroethane-d4	80.9%	70-1.	30	11/11/19	11/11/19
Toluene-d8	95.9%	70-1.	30	11/11/19	11/11/19

Volatile Petroleum Hydrocarbons Sample: S1 (9K08006-01)

SAMPLE INFORMATION

Matrix	Soil				
Containers	Satisfactory				
	Aqueous	NA	_		
Sample Preservation	Soil or	Preserved with methanol and/or in an air-tight container	ml methanol		
rieservation	Sediment	Methanol preserved (covering sample)	per gram soil: 1:1 +/- 25%		
		Received in air-tight container			
Temperature	Temperature Received on Ice Received at: 4+/-2 C°				

VPH ANALYTICAL RESULTS						
Method for Ranges: MADEP VPH-18-2.1	Client ID S			S1		
Method for Target Analytes: MADEP VPH-18-2.1	Lab ID 9			9K08006-01	9K08006-01	
VPH Surrogate Standards:			Date Col	lected	11/06/19	
PID: 2,5-Dibromotoluene			Date Re	ceived	11/08/19	
FID: 2,5-Dibromotoluene			% M	loisture	12.80	
RANGE/TARGET ANALYTE	Elution Range	Dilution	RL	Units	Result	Analyzed
Unadjusted C5-C8 Aliphatic Hydrocarbons [1]	NA	50X	6.4	mg/kg	<6.4	11/11/19 11:50
Unadjusted C9-C12 Aliphatic Hydrocarbons [1]	NA	50X	6.4	mg/kg	<6.4	11/11/19 11:50
Benzene	C5-C8	50X	0.3	mg/kg	<0.3	11/11/19 11:50
Ethylbenzene	C9-C12	50X	0.3	mg/kg	<0.3	11/11/19 11:50
Methyl t-butyl ether (MTBE)	C5-C8	50X	0.06	mg/kg	<0.06	11/11/19 11:50
Naphthalene	NA	50X	0.6	mg/kg	<0.6	11/11/19 11:50
Toluene	C5-C8	50X	0.3	mg/kg	<0.3	11/11/19 11:50
m&p-Xylene	C9-C12	50X	0.6	mg/kg	<0.6	11/11/19 11:50
o-Xylene	C9-C12	50X	0.6	mg/kg	<0.6	11/11/19 11:50
Total xylenes		50X	0.6	mg/kg	<0.6	11/11/19 11:50
C5-C8 Aliphatic Hydrocarbons [1,2]	NA	50X	6.4	mg/kg	<6.4	11/11/19 11:50
C9-C12 Aliphatic Hydrocarbons [1,3]	NA	50X	6.4	mg/kg	<6.4	11/11/19 11:50
C9-C10 Aromatic Hydrocarbons [1]	NA	50X	6.4	mg/kg	<6.4	11/11/19 11:50
2,5-Dibromotoluene-PID				%	93.5	11/11/19 11:50
2,5-Dibromotoluene-FID				%	112	11/11/19 11:50
Surrogate Acceptance Range				%	70-130	

^[1] Hydrocarbon Range data excludes concentrations of any surrogate(s) and/or internal standards eluting in that range

^[2] C5-C8 Aliphatic Hydrocarbons exclude the concentration of Target Analytes eluting in that range

^[3] C9-C12 Aliphatic Hydrocarbons exclude conc of Target Analytes eluting in that range AND concentration of C9-C10 Aromatic Hydrocarbons

Volatile Petroleum Hydrocarbons Sample: S2 (9K08006-02)

SAMPLE INFORMATION

Matrix	Soil				
Containers	Satisfactory				
	Aqueous	NA			
Sample Preservation	Soil or	Preserved with methanol and/or in an air-tight container	ml methanol		
Freservation	Sediment	Methanol preserved (covering sample)	per gram soil: 1:1 +/- 25%		
		Received in air-tight container			
Temperature	Received on Ice Received at: 4+/-2 C°				

VPH ANALYTICAL RESULTS						
Method for Ranges: MADEP VPH-18-2.1	Client ID S			S2		
Method for Target Analytes: MADEP VPH-18-2.1	Lab ID 9			9K08006-02	9K08006-02	
VPH Surrogate Standards:			Date Col	lected	11/06/19	
PID: 2,5-Dibromotoluene			Date Re	ceived	11/08/19	
FID: 2,5-Dibromotoluene			% M	loisture	12.80	
RANGE/TARGET ANALYTE	Elution Range	Dilution	RL	Units	Result	Analyzed
Unadjusted C5-C8 Aliphatic Hydrocarbons [1]	NA	500X	63.8	mg/kg	251	11/12/19 11:50
Unadjusted C9-C12 Aliphatic Hydrocarbons [1]	NA	500X	63.8	mg/kg	2710	11/12/19 11:50
Benzene	C5-C8	50X	0.3	mg/kg	<0.3	11/11/19 11:50
Ethylbenzene	C9-C12	50X	0.3	mg/kg	<0.3	11/11/19 11:50
Methyl t-butyl ether (MTBE)	C5-C8	50X	0.06	mg/kg	<0.06	11/11/19 11:50
Naphthalene	NA	50X	0.6	mg/kg	2.4	11/11/19 11:50
Toluene	C5-C8	50X	0.3	mg/kg	<0.3	11/11/19 11:50
m&p-Xylene	C9-C12	50X	0.6	mg/kg	<0.6	11/11/19 11:50
o-Xylene	C9-C12	50X	0.6	mg/kg	<0.6	11/11/19 11:50
Total xylenes		50X	0.6	mg/kg	<0.6	11/11/19 11:50
C5-C8 Aliphatic Hydrocarbons [1,2]	NA	500X	63.8	mg/kg	251	11/12/19 11:50
C9-C12 Aliphatic Hydrocarbons [1,3]	NA	500X	63.8	mg/kg	1410	11/12/19 11:50
C9-C10 Aromatic Hydrocarbons [1]	NA	500X	63.8	mg/kg	1300	11/12/19 11:50
2,5-Dibromotoluene-PID				%	186	11/11/19 11:50
2,5-Dibromotoluene-FID				%	441	11/11/19 11:50
Surrogate Acceptance Range				%	70-130	

^[1] Hydrocarbon Range data excludes concentrations of any surrogate(s) and/or internal standards eluting in that range

 $[\]hbox{\cite{theconcentration} of Target Analytes eluting in that range} \\$

^[3] C9-C12 Aliphatic Hydrocarbons exclude conc of Target Analytes eluting in that range AND concentration of C9-C10 Aromatic Hydrocarbons

Volatile Petroleum Hydrocarbons Sample: S3 (9K08006-03)

SAMPLE INFORMATION

Matrix	Soil				
Containers	Satisfactory				
	Aqueous	NA			
Sample Preservation	Soil or	Preserved with methanol and/or in an air-tight container	ml methanol		
Preservation	Sediment	Methanol preserved (covering sample)	per gram soil: 1:1 +/- 25%		
		Received in air-tight container			
Temperature	erature Received on Ice Received at: 4+/-2 C°				

VPH ANALYTICAL RESULTS					_	
Method for Ranges: MADEP VPH-18-2.1	Client ID S			S3	S3	
Method for Target Analytes: MADEP VPH-18-2.1	Lab ID 9			9K08006-03	9K08006-03	
VPH Surrogate Standards:			Date Col	lected	11/06/19	
PID: 2,5-Dibromotoluene			Date Re	ceived	11/08/19	
FID: 2,5-Dibromotoluene			% M	loisture	12.80	
RANGE/TARGET ANALYTE	Elution Range	Dilution	RL	Units	Result	Analyzed
Unadjusted C5-C8 Aliphatic Hydrocarbons [1]	NA	50X	6.4	mg/kg	<6.4	11/11/19 11:50
Unadjusted C9-C12 Aliphatic Hydrocarbons [1]	NA	50X	6.4	mg/kg	<6.4	11/11/19 11:50
Benzene	C5-C8	50X	0.3	mg/kg	<0.3	11/11/19 11:50
Ethylbenzene	C9-C12	50X	0.3	mg/kg	<0.3	11/11/19 11:50
Methyl t-butyl ether (MTBE)	C5-C8	50X	0.06	mg/kg	<0.06	11/11/19 11:50
Naphthalene	NA	50X	0.6	mg/kg	<0.6	11/11/19 11:50
Toluene	C5-C8	50X	0.3	mg/kg	<0.3	11/11/19 11:50
m&p-Xylene	C9-C12	50X	0.6	mg/kg	<0.6	11/11/19 11:50
o-Xylene	C9-C12	50X	0.6	mg/kg	<0.6	11/11/19 11:50
Total xylenes		50X	0.6	mg/kg	<0.6	11/11/19 11:50
C5-C8 Aliphatic Hydrocarbons [1,2]	NA	50X	6.4	mg/kg	<6.4	11/11/19 11:50
C9-C12 Aliphatic Hydrocarbons [1,3]	NA	50X	6.4	mg/kg	<6.4	11/11/19 11:50
C9-C10 Aromatic Hydrocarbons [1]	NA	50X	6.4	mg/kg	<6.4	11/11/19 11:50
2,5-Dibromotoluene-PID				%	93.1	11/11/19 11:50
2,5-Dibromotoluene-FID				%	111	11/11/19 11:50
Surrogate Acceptance Range				%	70-130	

 $[\]hbox{\footnotesize 1] Hydrocarbon Range data excludes concentrations of any surrogate (s) and/or internal standards eluting in that range}\\$

^[2] C5-C8 Aliphatic Hydrocarbons exclude the concentration of Target Analytes eluting in that range

^[3] C9-C12 Aliphatic Hydrocarbons exclude conc of Target Analytes eluting in that range AND concentration of C9-C10 Aromatic Hydrocarbons

Volatile Petroleum Hydrocarbons Sample: S4 (9K08006-04)

SAMPLE INFORMATION

Matrix	Soil				
Containers	Satisfactory				
	Aqueous	NA	_		
Sample Preservation	Soil or	Preserved with methanol and/or in an air-tight container	ml methanol		
Preservation	Sediment	Methanol preserved (covering sample)	per gram soil:		
	Received in air-tight container		1:1 +/- 25%		
Temperature	Received on Ice Received at: 4+/-2 C°				

VPH ANALYTICAL RESULTS						
Method for Ranges: MADEP VPH-18-2.1	Client ID S			S4	S4	
Method for Target Analytes: MADEP VPH-18-2.1	Lab ID 9			9K08006-04	9K08006-04	
VPH Surrogate Standards:			Date Col	lected	11/06/19	
PID: 2,5-Dibromotoluene			Date Re	ceived	11/08/19	
FID: 2,5-Dibromotoluene			% M	loisture	12.80	
RANGE/TARGET ANALYTE	Elution Range	Dilution	RL	Units	Result	Analyzed
Unadjusted C5-C8 Aliphatic Hydrocarbons [1]	NA	50X	5.6	mg/kg	<5.6	11/11/19 11:50
Unadjusted C9-C12 Aliphatic Hydrocarbons [1]	NA	50X	5.6	mg/kg	<5.6	11/11/19 11:50
Benzene	C5-C8	50X	0.3	mg/kg	<0.3	11/11/19 11:50
Ethylbenzene	C9-C12	50X	0.3	mg/kg	<0.3	11/11/19 11:50
Methyl t-butyl ether (MTBE)	C5-C8	50X	0.06	mg/kg	<0.06	11/11/19 11:50
Naphthalene	NA	50X	0.6	mg/kg	<0.6	11/11/19 11:50
Toluene	C5-C8	50X	0.3	mg/kg	<0.3	11/11/19 11:50
m&p-Xylene	C9-C12	50X	0.6	mg/kg	<0.6	11/11/19 11:50
o-Xylene	C9-C12	50X	0.6	mg/kg	<0.6	11/11/19 11:50
Total xylenes		50X	0.6	mg/kg	<0.6	11/11/19 11:50
C5-C8 Aliphatic Hydrocarbons [1,2]	NA	50X	5.6	mg/kg	<5.6	11/11/19 11:50
C9-C12 Aliphatic Hydrocarbons [1,3]	NA	50X	5.6	mg/kg	<5.6	11/11/19 11:50
C9-C10 Aromatic Hydrocarbons [1]	NA	50X	5.6	mg/kg	<5.6	11/11/19 11:50
2,5-Dibromotoluene-PID				%	92.7	11/11/19 11:50
2,5-Dibromotoluene-FID				%	105	11/11/19 11:50
Surrogate Acceptance Range				%	70-130	

^[1] Hydrocarbon Range data excludes concentrations of any surrogate(s) and/or internal standards eluting in that range

^[2] C5-C8 Aliphatic Hydrocarbons exclude the concentration of Target Analytes eluting in that range

^[3] C9-C12 Aliphatic Hydrocarbons exclude conc of Target Analytes eluting in that range AND concentration of C9-C10 Aromatic Hydrocarbons

Volatile Petroleum Hydrocarbons Sample: S5 (9K08006-05)

SAMPLE INFORMATION

Matrix	Soil				
Containers	Satisfactory				
	Aqueous	NA			
Sample Preservation	Soil or	Preserved with methanol and/or in an air-tight container	ml methanol		
Freservation	Sediment	Methanol preserved (covering sample)	per gram soil:		
	Received in air-tight container		1:1 +/- 25%		
Temperature	Temperature Received on Ice Received at: 4+/-2 C°				

VPH ANALYTICAL RESULTS						
Method for Ranges: MADEP VPH-18-2.1	Client ID S			S5		
Method for Target Analytes: MADEP VPH-18-2.1	Lab ID 9			9K08006-05	9K08006-05	
VPH Surrogate Standards:			Date Col	lected	11/06/19	
PID: 2,5-Dibromotoluene			Date Re	ceived	11/08/19	
FID: 2,5-Dibromotoluene			% M	loisture	12.80	
RANGE/TARGET ANALYTE	Elution Range	Dilution	RL	Units	Result	Analyzed
Unadjusted C5-C8 Aliphatic Hydrocarbons [1]	NA	50X	6.3	mg/kg	<6.3	11/11/19 11:50
Unadjusted C9-C12 Aliphatic Hydrocarbons [1]	NA	50X	6.3	mg/kg	<6.3	11/11/19 11:50
Benzene	C5-C8	50X	0.3	mg/kg	<0.3	11/11/19 11:50
Ethylbenzene	C9-C12	50X	0.3	mg/kg	<0.3	11/11/19 11:50
Methyl t-butyl ether (MTBE)	C5-C8	50X	0.06	mg/kg	<0.06	11/11/19 11:50
Naphthalene	NA	50X	0.6	mg/kg	<0.6	11/11/19 11:50
Toluene	C5-C8	50X	0.3	mg/kg	<0.3	11/11/19 11:50
m&p-Xylene	C9-C12	50X	0.6	mg/kg	<0.6	11/11/19 11:50
o-Xylene	C9-C12	50X	0.6	mg/kg	<0.6	11/11/19 11:50
Total xylenes		50X	0.6	mg/kg	<0.6	11/11/19 11:50
C5-C8 Aliphatic Hydrocarbons [1,2]	NA	50X	6.3	mg/kg	<6.3	11/11/19 11:50
C9-C12 Aliphatic Hydrocarbons [1,3]	NA	50X	6.3	mg/kg	<6.3	11/11/19 11:50
C9-C10 Aromatic Hydrocarbons [1]	NA	50X	6.3	mg/kg	<6.3	11/11/19 11:50
2,5-Dibromotoluene-PID				%	93.7	11/11/19 11:50
2,5-Dibromotoluene-FID				%	104	11/11/19 11:50
Surrogate Acceptance Range				%	70-130	

 $[\]hbox{\footnotesize 1] Hydrocarbon Range data excludes concentrations of any surrogate (s) and/or internal standards eluting in that range}\\$

^[2] C5-C8 Aliphatic Hydrocarbons exclude the concentration of Target Analytes eluting in that range

^[3] C9-C12 Aliphatic Hydrocarbons exclude conc of Target Analytes eluting in that range AND concentration of C9-C10 Aromatic Hydrocarbons

Volatile Petroleum Hydrocarbons Sample: S6 (9K08006-06)

SAMPLE INFORMATION

Matrix	Soil				
Containers	Satisfactory				
	Aqueous	NA			
Sample Preservation	Soil or	Preserved with methanol and/or in an air-tight container	ml methanol		
Preservation	Sediment	Methanol preserved (covering sample)	per gram soil: 1:1 +/- 25%		
		Received in air-tight container			
Temperature	erature Received on Ice Received at: 4+/-2 C°				

VPH ANALYTICAL RESULTS						
Method for Ranges: MADEP VPH-18-2.1	Client ID S			S6	S6	
Method for Target Analytes: MADEP VPH-18-2.1	Lab ID 9			9K08006-06		
VPH Surrogate Standards:			Date Col	lected	11/06/19	
PID: 2,5-Dibromotoluene			Date Re	ceived	11/08/19	
FID: 2,5-Dibromotoluene			% M	loisture	12.80	
RANGE/TARGET ANALYTE	Elution Range	Dilution	RL	Units	Result	Analyzed
Unadjusted C5-C8 Aliphatic Hydrocarbons [1]	NA	50X	6.2	mg/kg	23.8	11/11/19 11:50
Unadjusted C9-C12 Aliphatic Hydrocarbons [1]	NA	50X	6.2	mg/kg	22.3	11/11/19 11:50
Benzene	C5-C8	50X	0.3	mg/kg	<0.3	11/11/19 11:50
Ethylbenzene	C9-C12	50X	0.3	mg/kg	<0.3	11/11/19 11:50
Methyl t-butyl ether (MTBE)	C5-C8	50X	0.06	mg/kg	<0.06	11/11/19 11:50
Naphthalene	NA	50X	0.6	mg/kg	<0.6	11/11/19 11:50
Toluene	C5-C8	50X	0.3	mg/kg	<0.3	11/11/19 11:50
m&p-Xylene	C9-C12	50X	0.6	mg/kg	<0.6	11/11/19 11:50
o-Xylene	C9-C12	50X	0.6	mg/kg	<0.6	11/11/19 11:50
Total xylenes		50X	0.6	mg/kg	<0.6	11/11/19 11:50
C5-C8 Aliphatic Hydrocarbons [1,2]	NA	50X	6.2	mg/kg	23.8	11/11/19 11:50
C9-C12 Aliphatic Hydrocarbons [1,3]	NA	50X	6.2	mg/kg	22.3	11/11/19 11:50
C9-C10 Aromatic Hydrocarbons [1]	NA	50X	6.2	mg/kg	<6.2	11/11/19 11:50
2,5-Dibromotoluene-PID				%	98.4	11/11/19 11:50
2,5-Dibromotoluene-FID				%	111	11/11/19 11:50
Surrogate Acceptance Range				%	70-130	

^[1] Hydrocarbon Range data excludes concentrations of any surrogate(s) and/or internal standards eluting in that range

^[2] C5-C8 Aliphatic Hydrocarbons exclude the concentration of Target Analytes eluting in that range

^[3] C9-C12 Aliphatic Hydrocarbons exclude conc of Target Analytes eluting in that range AND concentration of C9-C10 Aromatic Hydrocarbons

Volatile Petroleum Hydrocarbons Sample: MW-1 (9K08006-07)

SAMPLE INFORMATION

Matrix	Water		
Containers	Satisfactory		
	Aqueous	pH<2	
Sample Preservation	Soil or	NA	
rieservation	Sediment	NA	
		Received in air-tight container	
Temperature	Received on Ice	Received at: 4+/-2 C°	

VPH ANALYTICAL RESULTS					т	
Method for Ranges: MADEP VPH-18-2.1			Clie	nt ID	MW-1	
Method for Target Analytes: EPA Method 8260C			L	ab ID	9K08006-07	
VPH Surrogate Standards:			Date Col	lected	11/06/19	
PID: 2,5-Dibromotoluene			Date Re	ceived	11/08/19	
FID: 2,5-Dibromotoluene			% M	loisture	NA	
RANGE/TARGET ANALYTE	Elution Range	Dilution	RL	Units	Result	Analyzed
Unadjusted C5-C8 Aliphatic Hydrocarbons [1]	NA	1X	100	ug/l	3540	11/12/19 07:47
Unadjusted C9-C12 Aliphatic Hydrocarbons [1]	NA	1X	100	ug/l	3400	11/12/19 07:47
Benzene	C5-C8	1X	5.0	ug/l	20.4	11/12/19 07:47
Ethylbenzene	C9-C12	1X	5.0	ug/l	127	11/12/19 07:47
Methyl t-butyl ether (MTBE)	C5-C8	1X	10.0	ug/l	<10.0	11/12/19 07:47
Naphthalene	NA	1X	10.0	ug/l	27.2	11/12/19 07:47
Toluene	C5-C8	1X	5.0	ug/l	18.4	11/12/19 07:47
m&p-Xylene	C9-C12	1X	10.0	ug/l	217	11/12/19 07:47
o-Xylene	C9-C12	1X	10.0	ug/l	<10.0	11/12/19 07:47
Total xylenes		1X	10.0	ug/l	217	11/12/19 07:47
C5-C8 Aliphatic Hydrocarbons [1,2]	NA	1X	100	ug/l	3500	11/12/19 07:47
C9-C12 Aliphatic Hydrocarbons [1,3]	NA	1X	100	ug/l	1390	11/12/19 07:47
C9-C10 Aromatic Hydrocarbons [1]	NA	1X	100	ug/l	1660	11/12/19 07:47
2,5-Dibromotoluene-PID				%	115	11/12/19 07:47
2,5-Dibromotoluene-FID				%	122	11/12/19 07:47
Surrogate Acceptance Range				%	70-130	

^[1] Hydrocarbon Range data excludes concentrations of any surrogate(s) and/or internal standards eluting in that range

^[2] C5-C8 Aliphatic Hydrocarbons exclude the concentration of Target Analytes eluting in that range

^[3] C9-C12 Aliphatic Hydrocarbons exclude conc of Target Analytes eluting in that range AND concentration of C9-C10 Aromatic Hydrocarbons

Extractable Petroleum Hydrocarbons Sample: MW-1 (9K08006-07)

SAMPLE INFORMATION

Matrix	Water
Containers	Satisfactory
Aqueous Preservatives	pH<2
Temperature	Received on Ice Received at: 4+/-2 C°
Extraction Method	EPA Method 3510C

Method for Ranges: MADEP E	PH 4-1 1			Client ID	MW-1	
Method for Target Analytes: I				Lab ID	9K08006-07	
EPH Surrogate Standards:			Da	te Collected	11/06/19	
Aliphatic: Chlorooctadecane			Da	te Received	11/08/19	
Aromatic: o-Terphenyl			D	ate Thawed	NA	
			Dat	e Extracted	11/11/19	
EPH Fractionation Surrogates	:		Perce	ent Moisture	NA	
(1) 2-Fluorobiphenyl(2) 2-Bromonaphthalene						
RANGE/TARGET ANALYTE		Dilution	RL	Units	Result	Analyzed
Unadjusted C11-C22 Arom		1X	100	ug/l	527	11/13/19 18:16
	Naphthalene	1X	1.0	ug/l	16.9	11/13/19 18:16
Diesel PAH	2-Methylnaphthalene	1X	1.0	ug/l	7.8	11/13/19 18:16
Analytes	Phenanthrene	1X	1.0	ug/l	<1.0	11/13/19 18:16
	Acenaphthene	1X	5.0	ug/l	<5.0	11/13/19 18:16
	Acenaphthylene	1X	1.0	ug/l	<1.0	11/13/19 18:16
	Fluorene	1X	5.0	ug/l	<5.0	11/13/19 18:16
	Anthracene	1X	5.0	ug/l	<5.0	11/13/19 18:16
	Fluoranthene	1X	5.0	ug/l	<5.0	11/13/19 18:16
	Pyrene	1X	5.0	ug/l	<5.0	11/13/19 18:16
	Benzo(a)anthracene	1X	1.0	ug/l	<1.0	11/13/19 18:16
Other	Chrysene	1X	2.0	ug/l	<2.0	11/13/19 18:16
Target PAH	Benzo(b)fluoranthene	1X	1.0	ug/l	<1.0	11/13/19 18:16
Analytes	Benzo(k)fluoranthene	1X	1.0	ug/l	<1.0	11/13/19 18:16
	Benzo(a)pyrene	1X	0.2	ug/l	<0.2	11/13/19 18:16
	Indeno(1,2,3-cd)pyrene	1X	0.5	ug/l	<0.5	11/13/19 18:16
	Dibenz(a,h)anthracene	1X	0.5	ug/l	<0.5	11/13/19 18:16
	Benzo(g,h,i)perylene	1X	5.0	ug/l	<5.0	11/13/19 18:16
C9-C18 Aliphatic Hydrocar	bons [1]	1X	200	ug/l	<200	11/14/19 05:39
C19-C36 Aliphatic Hydroca	arbons [1]	1X	200	ug/l	<200	11/14/19 05:39
C11-C22 Aromatic Hydroca	arbons [1,2]	1X	100	ug/l	502	11/13/19 18:16
Chlorooctadecane (Sample	Surrogate)		· ·	%	69.2	11/14/19 05:39
o-Terphenyl (Sample Surro	ogate)			%	79.4	11/13/19 18:16
2-Fluorobiphenyl (Fraction	ation Surrogate)			%	108	11/13/19 18:16
2-Bromonaphthalene (Frac	ctionation Surrogate)			%	96.4	11/13/19 18:16
Surrogate Acceptance Range [3]			%	40 - 140	

^[1] Hydrocarbon range data excludes area counts of any surrogate(s) and/or internal standards eluting in that range.

^[2] C11-C22 Aromatic Hydrocarbons excludes the concentration of Target PAH Analytes.

^[3] See the case narrative in cases where a dash (-) is entered in the surrogate recovery block.

Quality Control

Dissolved Metals

Analyte	Result	Qual	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit
Batch: B9K0530 - Dissolved Meta	ls									
Blank (B9K0530-BLK1)					Prepared 8	& Analyzed: 1	1/13/19			
Arsenic	ND		0.010	mg/L						
Selenium	ND		0.010	mg/L						
Lead	ND		0.005	mg/L						
Silver	ND		0.005	mg/L						
Chromium	ND		0.005	mg/L						
Cadmium	ND		0.005	mg/L						
Barium	ND		0.005	mg/L						
LCS (B9K0530-BS1)					Prepared 8	& Analyzed: 1	1/13/19			
Selenium	0.230		0.010	mg/L	0.200		115	85-115		
Arsenic	0.216		0.010	mg/L	0.200		108	85-115		
Barium	1.02		0.005	mg/L	1.00		102	85-115		
Cadmium	1.02		0.005	mg/L	1.00		102	85-115		
Chromium	1.02		0.005	mg/L	1.00		102	85-115		
Lead	1.01		0.005	mg/L	1.00		101	85-115		
Silver	0.403		0.005	mg/L	0.400		101	85-115		

Volatile Organic Compounds

Analyte	Result	Qual	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit
	. icourt		2	5.116			75.120			
Batch: B9K0419 - Purge-Trap Blank (B9K0419-BLK1)					Prepared 9	& Analyzed: 1	1/11/10			
	ND		E	/1	riepaieu (x Analyzeu. 1.	1/11/19			
Acetone	ND		5	ug/l						
Benzene	ND		1	ug/l						
Bromobenzene	ND		1	ug/l						
Bromochloromethane	ND		1	ug/l						
Bromodichloromethane	ND		1	ug/l						
Bromoform	ND		1	ug/l						
Bromomethane	ND		1	ug/l						
2-Butanone	ND		5	ug/l						
tert-Butyl alcohol	ND		5	ug/l						
sec-Butylbenzene	ND		1	ug/l						
n-Butylbenzene	ND		1	ug/l						
tert-Butylbenzene	ND		1	ug/l						
Methyl t-butyl ether (MTBE)	ND		1	ug/l						
Carbon Disulfide	ND		1	ug/l						
Carbon Tetrachloride	ND		1	ug/l						
Chlorobenzene	ND		1	ug/l						
Chloroethane	ND		1	ug/l						
Chloroform	ND		1	ug/l						
Chloromethane	ND		1	ug/l						
4-Chlorotoluene	ND		1	ug/l						
2-Chlorotoluene	ND		1	ug/l						
1,2-Dibromo-3-chloropropane (DBCP)	ND		1	ug/l						
Dibromochloromethane	ND		1	ug/l						
1,2-Dibromoethane (EDB)	ND		1	ug/l						
Dibromomethane	ND		1	ug/l						
1,2-Dichlorobenzene	ND		1	ug/l						
1,3-Dichlorobenzene	ND		1	ug/l						
1,4-Dichlorobenzene	ND		1	ug/l						
1,1-Dichloroethane	ND		1	ug/l						
1,2-Dichloroethane	ND		1	ug/l						
trans-1,2-Dichloroethene	ND		1	ug/l						
cis-1,2-Dichloroethene	ND		1	ug/l						
1,1-Dichloroethene	ND		1							
	ND ND		1	ug/l						
1,2-Dichloropropane 2,2-Dichloropropane	ND ND		1	ug/l						
cis-1,3-Dichloropropene	ND ND		1	ug/l						
				ug/l						
trans-1,3-Dichloropropene	ND		1	ug/l						
1,1-Dichloropropene	ND		1	ug/l						
1,3-Dichloropropene (cis + trans)	ND		2	ug/l						
Diethyl ether	ND		5	ug/l						
1,4-Dioxane	ND		500	ug/l						
Ethylbenzene	ND		1	ug/l						
Hexachlorobutadiene	ND		1	ug/l						
2-Hexanone	ND		5	ug/l						
Isopropylbenzene	ND		1	ug/l						
p-Isopropyltoluene	ND		1	ug/l						
Methylene Chloride	ND		1	ug/l						
4-Methyl-2-pentanone	ND		5	ug/l						
Naphthalene	ND		1	ug/l						
n-Propylbenzene	ND		1	ug/l						
Styrene	ND		1	ug/l						
1,1,1,2-Tetrachloroethane	ND		1	ug/l						
Tetrachloroethene	ND		1	ug/l						
Tetrahydrofuran	ND		5	ug/l						

Volatile Organic Compounds (Continued)

Analyte	Result	Re Qual	eporting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit
Batch: B9K0419 - Purge-Trap (-			-					
Blank (B9K0419-BLK1)	Continueu)				Prenared 8	& Analyzed: 1	1/11/19			
Toluene	ND		1	ua/l	i icparca c	x Analyzeu. 1.	1/11/17			
1,2,4-Trichlorobenzene	ND ND		1	ug/l ug/l						
1,2,3-Trichlorobenzene	ND ND		1	ug/l						
1,1,2-Trichloroethane	ND		1	ug/l ug/l						
1,1,1-Trichloroethane	ND		1	ug/l ug/l						
Trichloroethene	ND ND		1							
1,2,3-Trichloropropane	ND		1	ug/l						
	ND		1	ug/l						
1,3,5-Trimethylbenzene				ug/l						
1,2,4-Trimethylbenzene	ND ND		1	ug/l						
Vinyl Chloride	ND ND		1	ug/l						
o-Xylene			1	ug/l						
m&p-Xylene	ND		2	ug/l						
Total xylenes	ND		2	ug/l						
1,1,2,2-Tetrachloroethane	ND		1	ug/l						
tert-Amyl methyl ether	ND		1	ug/l						
1,3-Dichloropropane	ND		1	ug/l						
Ethyl tert-butyl ether	ND		1	ug/l						
Diisopropyl ether	ND		1	ug/l						
Trichlorofluoromethane	ND		1	ug/l						
Dichlorodifluoromethane	ND		1	ug/l						
Surrogate: 4-Bromofluorobenzene			43.5	ug/l	50.0		87.1	70-130		
Surrogate: 1,2-Dichloroethane-d4			44.8	ug/l	50.0		89.5	70-130		
Surrogate: Toluene-d8			47.6	ug/l	50.0		95.3	70-130		
LCS (B9K0419-BS1)					Prepared 8	& Analyzed: 1	1/11/19			
Acetone	43			ug/l	50.0		86.4	70-130		
Benzene	53			ug/l	50.0		105	70-130		
Bromobenzene	46			ug/l	50.0		91.4	70-130		
Bromochloromethane	51			ug/l	50.0		102	70-130		
Bromodichloromethane	51			ug/l	50.0		103	70-130		
Bromoform	47			ug/l	50.0		93.4	70-130		
Bromomethane	47			ug/l	50.0		93.9	70-130		
2-Butanone	43			ug/l	50.0		86.5	70-130		
tert-Butyl alcohol	54			ug/l	50.0		108	70-130		
sec-Butylbenzene	58			ug/l	50.0		115	70-130		
n-Butylbenzene	59			ug/l	50.0		119	70-130		
tert-Butylbenzene	50			ug/l	50.0		100	70-130		
Methyl t-butyl ether (MTBE)	39			ug/l ug/l	50.0		77.5	70-130 70-130		
Carbon Disulfide	53			ug/l ug/l	50.0		107	70-130 70-130		
Carbon Tetrachloride	46			ug/i ug/l	50.0		92.1	70-130		
Chlorobenzene	49			ug/i ug/l	50.0		98.2	70-130		
Chloroethane	52				50.0		104	70-130 70-130		
Chloroform	52 52			ug/l	50.0		104	70-130 70-130		
	52 59			ug/l						
Chloromethane 4-Chlorotoluene	59 56			ug/l	50.0 50.0		118	70-130 70-130		
	56 55			ug/l			112			
2-Chlorotoluene				ug/l	50.0		109	70-130		
1,2-Dibromo-3-chloropropane (DBCP)	35 46			ug/l	50.0		70.4	70-130		
Dibromochloromethane	46			ug/l	50.0		92.7	70-130		
1,2-Dibromoethane (EDB)	49			ug/l	50.0		97.4	70-130		
Dibromomethane	52			ug/l	50.0		103	70-130		
1,2-Dichlorobenzene	47			ug/l	50.0		93.7	70-130		
1,3-Dichlorobenzene	50			ug/l	50.0		100	70-130		
1,4-Dichlorobenzene	47			ug/l	50.0		94.1	70-130		
1,1-Dichloroethane	59			ug/l	50.0		118	70-130		

Volatile Organic Compounds (Continued)

Analyte	Result	Qual	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit
Batch: B9K0419 - Purge-Trap	(Continued)									
LCS (B9K0419-BS1)	(Continued)				Dropared S	& Analyzed: 1	1/11/10			
1,2-Dichloroethane	49			ug/l	50.0	x Analyzeu. 1	97.6	70-130		
trans-1,2-Dichloroethene	51			ug/l	50.0		102	70-130		
cis-1,2-Dichloroethene	50			ug/l	50.0		101	70-130		
1,1-Dichloroethene	53			ug/l	50.0		106	70-130		
1,2-Dichloropropane	60			ug/l	50.0		120	70-130		
2,2-Dichloropropane	53			ug/l ug/l	50.0		105	70-130		
cis-1,3-Dichloropropene	47			-	50.0		94.7	70-130		
trans-1,3-Dichloropropene	50			ug/l	50.0		99.3	70-130		
	53			ug/l	50.0		99.5 105	70-130 70-130		
1,1-Dichloropropene	47			ug/l	50.0		94.8	70-130 70-130		
Diethyl ether				ug/l						
Ethylbenzene Hovachlersbutadione	51 43			ug/l	50.0		103	70-130 70-130		
Hexachlorobutadiene 2-Hexanone	43 36			ug/l	50.0 50.0		86.9 71.6	70-130 70-130		
				ug/l				70-130 70-130		
Isopropylbenzene	50			ug/l	50.0		99.6			
p-Isopropyltoluene	50			ug/l	50.0		100	70-130		
Methylene Chloride	54			ug/l	50.0		108	70-130		
4-Methyl-2-pentanone	46			ug/l	50.0		91.7	70-130		
Naphthalene	35			ug/l	50.0		69.5	70-130		
n-Propylbenzene	57			ug/l	50.0		113	70-130		
Styrene	49			ug/l	50.0		98.3	70-130		
1,1,1,2-Tetrachloroethane	48			ug/l	50.0		96.5	70-130		
Tetrachloroethene	51			ug/l	50.0		102	70-130		
Tetrahydrofuran	52			ug/l	50.0		104	70-130		
Toluene	50			ug/l	50.0		100	70-130		
1,2,4-Trichlorobenzene	38			ug/l	50.0		76.5	70-130		
1,2,3-Trichlorobenzene	33			ug/l	50.0		65.5	70-130		
1,1,2-Trichloroethane	50			ug/l	50.0		99.2	70-130		
1,1,1-Trichloroethane	55			ug/l	50.0		111	70-130		
Trichloroethene	53			ug/l	50.0		105	70-130		
1,2,3-Trichloropropane	46			ug/l	50.0		91.9	70-130		
1,3,5-Trimethylbenzene	58			ug/l	50.0		116	70-130		
1,2,4-Trimethylbenzene	50			ug/l	50.0		99.8	70-130		
Vinyl Chloride	60			ug/l	50.0		120	70-130		
o-Xylene	47			ug/l	50.0		94.5	70-130		
m&p-Xylene	102			ug/l	100		102	70-130		
1,1,2,2-Tetrachloroethane	45			ug/l	50.0		89.7	70-130		
tert-Amyl methyl ether	47			ug/l	50.0		94.9	70-130		
1,3-Dichloropropane	49			ug/l	50.0		97.8	70-130		
Ethyl tert-butyl ether	53			ug/l	50.0		106	70-130		
Diisopropyl ether	53			ug/l	50.0		107	70-130		
Trichlorofluoromethane	56			ug/l	50.0		113	70-130		
Dichlorodifluoromethane	60			ug/l	50.0		120	70-130		
Surrogate: 4-Bromofluorobenzene			52.0	ug/l	50.0		104	70-130		
Surrogate: 1,2-Dichloroethane-d4			42.9	ug/l	50.0		85.8	70-130		
Surrogate: Toluene-d8			49.9	ug/l	50.0		99.9	70-130		

Volatile Petroleum Hydrocarbons (MADEP-VPH)

Analyte	Result	Qual	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit
Batch: B9K0372 - MADEP VPH										
Blank (B9K0372-BLK1)				Pr	repared: 11/1	1/19 Analyze	d: 11/12/19			
Unadjusted C5-C8 Aliphatic	ND		100	ug/l	,	-, :,	,,			
Hydrocarbons				ug/i						
Unadjusted C9-C12 Aliphatic	ND		100	ug/l						
Hydrocarbons				_						
Benzene	ND		5.0	ug/l						
Ethylbenzene	ND		5.0	ug/l						
Methyl t-butyl ether (MTBE)	ND		10.0	ug/l						
Naphthalene	ND		10.0	ug/l						
Toluene	ND		5.0	ug/l						
m&p-Xylene	ND		10.0	ug/l						
o-Xylene	ND		10.0	ug/l						
Total xylenes	ND		10.0	ug/l						
C5-C8 Aliphatic Hydrocarbons	ND		100	ug/l						
C9-C12 Aliphatic Hydrocarbons	ND		100	ug/l						
C9-C10 Aromatic Hydrocarbons	ND		100	ug/l						
Surrogate: 2,5- Dibromotoluene-PID			43.6	ug/l	50.0		87.2	70-130		
Surrogate: 2,5- Dibromotoluene-FID			<i>55.3</i>	ug/l	50.0		111	70-130		
LCS (B9K0372-BS1)				Pr	repared: 11/1	1/19 Analyze	ed: 11/12/19			
Unadjusted C5-C8 Aliphatic	176		100	ug/l	,	, , .	, ,	70-130		
Hydrocarbons				ug/i						
Unadjusted C9-C12 Aliphatic	ND		100	ug/l				70-130		
Hydrocarbons				-						
Benzene	59.4			ug/l	50.0		119	70-130		
Ethylbenzene	61.5			ug/l	50.0		123	70-130		
Methyl t-butyl ether (MTBE)	50.5			ug/l	50.0		101	70-130		
Naphthalene	39.9			ug/l	50.0		79.9	70-130		
Toluene	49.8			ug/l	50.0		99.5	70-130		
m&p-Xylene	116			ug/l	100		116	70-130		
o-Xylene	47.6			ug/l	50.0		95.1	70-130		
C9-C10 Aromatic Hydrocarbons	ND		100	ug/l				70-130		
Surrogate: 2,5- Dibromotoluene-PID			50.1	ug/l	50.0		100	70-130		
Surrogate: 2,5- Dibromotoluene-FID			<i>57.6</i>	ug/l	50.0		115	70-130		

Volatile Petroleum Hydrocarbons (MADEP-VPH) (Continued)

Analyte	Result	Qual	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit
Batch: B9K0372 - MADEP VPH	(Continued)									
LCS Dup (B9K0372-BSD1)				Pr	epared: 11/1	1/19 Analyze	ed: 11/12/19			
Unadjusted C5-C8 Aliphatic Hydrocarbons	177		100	ug/l				70-130	0.982	25
Unadjusted C9-C12 Aliphatic Hydrocarbons	ND		100	ug/l				70-130		25
Benzene	59.8			ug/l	50.0		120	70-130	0.586	25
Ethylbenzene	60.6			ug/l	50.0		121	70-130	1.45	25
Methyl t-butyl ether (MTBE)	51.4			ug/l	50.0		103	70-130	1.68	25
Naphthalene	41.9			ug/l	50.0		83.8	70-130	4.83	25
Toluene	51.0			ug/l	50.0		102	70-130	2.38	25
m&p-Xylene	115			ug/l	100		115	70-130	0.152	25
o-Xylene	48.9			ug/l	50.0		97.8	70-130	2.77	25
C9-C10 Aromatic Hydrocarbons	ND		100	ug/l				70-130		25
Surrogate: 2,5- Dibromotoluene-PID			45.4	ug/l	50.0		90.8	70-130		
Surrogate: 2,5- Dibromotoluene-FID			52.5	ug/l	50.0		105	70-130		
Blank (B9K0373-BLK1)					Prepared 8	& Analyzed: 1	1/11/19			
Unadjusted C5-C8 Aliphatic	ND		5.0	mg/kg						
Hydrocarbons										
Unadjusted C9-C12 Aliphatic	ND		5.0	mg/kg						
Hydrocarbons Benzene										
Delizerie	ND		0.2	ma/ka						
Ethylhonzono	ND ND		0.2	mg/kg						
Ethylbenzene Mothyl t-butyl other (MTRE)	ND		0.2	mg/kg						
Methyl t-butyl ether (MTBE)	ND ND		0.2 0.05	mg/kg mg/kg						
Methyl t-butyl ether (MTBE) Naphthalene	ND ND ND		0.2 0.05 0.5	mg/kg mg/kg mg/kg						
Methyl t-butyl ether (MTBE) Naphthalene Toluene	ND ND ND ND		0.2 0.05 0.5 0.2	mg/kg mg/kg mg/kg mg/kg						
Methyl t-butyl ether (MTBE) Naphthalene Toluene m&p-Xylene	ND ND ND ND ND		0.2 0.05 0.5 0.2 0.5	mg/kg mg/kg mg/kg mg/kg mg/kg						
Methyl t-butyl ether (MTBE) Naphthalene Toluene m&p-Xylene o-Xylene	ND ND ND ND ND		0.2 0.05 0.5 0.2 0.5	mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg						
Methyl t-butyl ether (MTBE) Naphthalene Toluene m&p-Xylene o-Xylene Total xylenes	ND ND ND ND ND ND		0.2 0.05 0.5 0.2 0.5 0.5	mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg						
Methyl t-butyl ether (MTBE) Naphthalene Toluene m&p-Xylene o-Xylene Total xylenes C5-C8 Aliphatic Hydrocarbons	ND ND ND ND ND ND ND		0.2 0.05 0.5 0.2 0.5 0.5 0.5	mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg						
Methyl t-butyl ether (MTBE) Naphthalene Toluene m&p-Xylene o-Xylene Total xylenes C5-C8 Aliphatic Hydrocarbons C9-C12 Aliphatic Hydrocarbons	ND ND ND ND ND ND ND		0.2 0.05 0.5 0.2 0.5 0.5 0.5 5.0	mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg						
Methyl t-butyl ether (MTBE) Naphthalene Toluene m&p-Xylene o-Xylene Total xylenes C5-C8 Aliphatic Hydrocarbons C9-C12 Aliphatic Hydrocarbons C9-C10 Aromatic Hydrocarbons	ND ND ND ND ND ND ND		0.2 0.05 0.5 0.2 0.5 0.5 0.5 5.0 5.0	mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg						
Methyl t-butyl ether (MTBE) Naphthalene Toluene m&p-Xylene o-Xylene Total xylenes C5-C8 Aliphatic Hydrocarbons C9-C12 Aliphatic Hydrocarbons	ND ND ND ND ND ND ND		0.2 0.05 0.5 0.2 0.5 0.5 0.5 5.0	mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg	50.0 50.0		84.3 102	70-130 70-130		

Volatile Petroleum Hydrocarbons (MADEP-VPH) (Continued)

Analyte	Result	Qual	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit
Batch: B9K0373 - MADEP VPH	(Continued)									
LCS (B9K0373-BS1)					Prepared 8	& Analyzed: 1	1/11/19			
Unadjusted C5-C8 Aliphatic Hydrocarbons	8.8		5.0	mg/kg				70-130		
Unadjusted C9-C12 Aliphatic Hydrocarbons	ND		5.0	mg/kg				70-130		
Benzene	59.4			ug/l	50.0		119	70-130		
Ethylbenzene	61.5			ug/l	50.0		123	70-130		
Methyl t-butyl ether (MTBE)	50.5			ug/l	50.0		101	70-130		
Naphthalene	39.9			ug/l	50.0		79.9	70-130		
Toluene	49.8			ug/l	50.0		99.5	70-130		
m&p-Xylene	116			ug/l	100		116	70-130		
o-Xylene	47.6			ug/l	50.0		95.1	70-130		
C9-C10 Aromatic Hydrocarbons	ND		5.0	mg/kg				70-130		
Surrogate: 2,5- Dibromotoluene-PID			50.1	ug/l	50.0		100	70-130		
Surrogate: 2,5- Dibromotoluene-FID			57.6	ug/l	50.0		115	70-130		
LCS Dup (B9K0373-BSD1)					Prepared 8	& Analyzed: 1	1/11/19			
Unadjusted C5-C8 Aliphatic Hydrocarbons	8.9		5.0	mg/kg				70-130	0.982	25
Unadjusted C9-C12 Aliphatic Hydrocarbons	ND		5.0	mg/kg				70-130		25
Benzene	59.8			ug/l	50.0		120	70-130	0.586	25
Ethylbenzene	60.6			ug/l	50.0		121	70-130	1.45	25
Methyl t-butyl ether (MTBE)	51.4			ug/l	50.0		103	70-130	1.68	25
Naphthalene	41.9			ug/l	50.0		83.8	70-130	4.83	25
Toluene	51.0			ug/l	50.0		102	70-130	2.38	25
m&p-Xylene	115			ug/l	100		115	70-130	0.152	25
o-Xylene	48.9			ug/l	50.0		97.8	70-130	2.77	25
C9-C10 Aromatic Hydrocarbons	ND		5.0	mg/kg				70-130		25
Surrogate: 2,5- Dibromotoluene-PID			45.4	ug/l	50.0		90.8	70-130		
Surrogate: 2,5- Dibromotoluene-FID			52.5	ug/l	50.0		105	70-130		

Extractable Petroleum Hydrocarbons (MADEP-EPH)

Analyte	Result	Qual	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit
Batch: B9K0370 - Sep-Funne	el-extraction									
Blank (B9K0370-BLK1)				Pr	repared: 11/1	1/19 Analyze	d: 11/13/19			
Unadjusted C11-C22 Aromatic	ND		100	ug/l	,	, , .	, , ,			
Hydrocarbons				S. g., .						
Naphthalene	ND		1.0	ug/l						
2-Methylnaphthalene	ND		1.0	ug/l						
Phenanthrene	ND		1.0	ug/l						
Acenaphthene	ND		5.0	ug/l						
Acenaphthylene	ND		1.0	ug/l						
Fluorene	ND		5.0	ug/l						
Anthracene	ND		5.0	ug/l						
Fluoranthene	ND		5.0	ug/l						
Pyrene	ND		5.0	ug/l						
Benzo(a)anthracene	ND		1.0	ug/l						
Chrysene	ND		2.0	ug/l						
Benzo(b)fluoranthene	ND		1.0	ug/l						
Benzo(k)fluoranthene	ND		1.0	ug/l						
Benzo(a)pyrene	ND		0.2	ug/l						
Indeno(1,2,3-cd)pyrene	ND		0.5	ug/l						
Dibenz(a,h)anthracene	ND		0.5	ug/l						
Benzo(g,h,i)perylene	ND		5.0	ug/l						
C9-C18 Aliphatic Hydrocarbons	ND		200	ug/l						
C19-C36 Aliphatic Hydrocarbons	ND		200	ug/l						
C11-C22 Aromatic Hydrocarbons	ND		100	ug/l						
Surrogate: Chlorooctadecane			62.1	ug/l	125		49.7	40-140		
Surrogate: o-Terphenyl			69.1	ug/l	125		<i>55.3</i>	40-140		
Surrogate: 2-Fluorobiphenyl			39.9	ug/l	50.0		79.8	40-140		
Surrogate: 2-Bromonaphthalene			36.8	ug/l	50.0		73.5	40-140		
LCS (B9K0370-BS1)				Dr	renared: 11/1	1/19 Analyze	d: 11/13/10			
Naphthalene	22.8		1.0		40.0	1/13 Allaly20	57.0	40-140		
2-Methylnaphthalene	21.5		1.0	ug/l	40.0		53.6	40-140		
Phenanthrene	26.1		1.0	ug/l	40.0		65.4	40-140		
	27.8		5.0	ug/l			69.4	40-140		
Acenaphthene Acenaphthylene	24.0		1.0	ug/l ug/l	40.0 40.0		60.0	40-140		
Fluorene	23.3		5.0	-	40.0		58.2	40-140		
Anthracene	33.6		5.0	ug/l	40.0		83.9	40-140		
	29.4		5.0	ug/l	40.0		73.6	40-140		
Fluoranthene	30.7			ug/l						
Pyrene			5.0	ug/l	40.0		76.8	40-140		
Benzo(a)anthracene	28.7		1.0	ug/l	40.0		71.8	40-140		
Chrysene	31.9		2.0	ug/l	40.0		79.8	40-140		
Benzo(k)fluoranthene	28.9		1.0	ug/l	40.0		72.3	40-140		
Benzo(k)fluoranthene	31.1		1.0	ug/l	40.0		77.8	40-140		
Benzo(a)pyrene	29.9		0.2	ug/l	40.0		74.8	40-140		
Indeno(1,2,3-cd)pyrene	31.0		0.5	ug/l	40.0		77.6	40-140		
Dibenz(a,h)anthracene	29.4		0.5	ug/l	40.0		73.6	40-140		
Benzo(g,h,i)perylene	30.4		5.0	ug/l	40.0		76.1	40-140		
Nonane	13.5		5.0	ug/l	40.0		33.8	30-140		
Decane	18.4		5.0	ug/l	40.0		46.1	40-140		
Dodecane	23.8		5.0	ug/l	40.0		59.4	40-140		
Tetradecane	22.0		5.0	ug/l	40.0		55.0	40-140		
Hexadecane	23.0		5.0	ug/l	40.0		57.4	40-140		
Octadecane	24.9		5.0	ug/l	40.0		62.2	40-140		
Nonadecane	24.2		5.0	ug/l	40.0		60.5	40-140		
Eicosane	26.1		5.0	ug/l	40.0		65.3	40-140		
Docosane	26.3		5.0	ug/l	40.0		65.8	40-140		

Extractable Petroleum Hydrocarbons (MADEP-EPH) (Continued)

Analyte	Result	Qual	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limi
Batch: B9K0370 - Sep-Funnel	-extraction (C	ontinu	ed)							
LCS (B9K0370-BS1)	•		,	Pi	repared: 11/1	.1/19 Analyze	d: 11/14/19			
Tetracosane	26.3		5.0	ug/l	40.0	. ,	65.8	40-140		
Hexacosane	26.0		5.0	ug/l	40.0		65.0	40-140		
Octacosane	25.2		5.0	ug/l	40.0		63.1	40-140		
Triacontane	25.3		5.0	ug/l	40.0		63.2	40-140		
Hexatriacontane	23.9		5.0	ug/l	40.0		59.8	40-140		
Surrogate: Chlorooctadecane			<i>75.2</i>	ug/l	125		60.2	40-140		
Surrogate: o-Terphenyl			<i>95.6</i>	ug/l	125		76.5	40-140		
Surrogate: 2-Fluorobiphenyl			42.1	ug/l	50.0		84.2	40-140		
Surrogate: 2-Bromonaphthalene			34.7	ug/l	50.0		69.4	40-140		
LCC D (DOVO270 DCD1)					roparod: 11/1	1/10 Applyzo	d: 11/12/10			
LCS Dup (B9K0370-BSD1)	22.0		1.0			.1/19 Analyze		40_140	2.44	25
Naphthalene	22.0		1.0	ug/l	40.0		55.0 E1.E	40-140	3.44	
2-Methylnaphthalene	20.6		1.0	ug/l	40.0		51.5	40-140	4.04	25
Phenanthrene Acenaphthene	24.4 27.1		1.0 5.0	ug/l	40.0 40.0		60.9 67.8	40-140 40-140	7.09 2.30	25 25
·	23.1			ug/l			57.8		3.86	25
Acenaphthylene Fluorene	22.4		1.0 5.0	ug/l	40.0 40.0		55.9	40-140 40-140	4.16	2!
Anthracene	29.4			ug/l	40.0		73.5	40-140	13.2	2:
Fluoranthene	27.6		5.0 5.0	ug/l	40.0		69.0	40-140	6.38	2:
				ug/l						
Pyrene Renze (a) anthur son a	29.3 26.8		5.0	ug/l	40.0		73.2 66.9	40-140	4.67	2.
Benzo(a)anthracene	30.1		1.0 2.0	ug/l	40.0		75.2	40-140	7.07 5.91	2: 2:
Chrysene Benzo(b)fluoranthene	26.5		1.0	ug/l	40.0 40.0		66.4	40-140 40-140	8.62	2!
Benzo(k)fluoranthene	29.6		1.0	ug/l	40.0		74.1	40-140	4.81	2!
	28.0		0.2	ug/l	40.0		74.1	40-140	6.42	2!
Benzo(a)pyrene	30.8		0.2	ug/l	40.0		70.1 77.1	40-140	0.582	25
Indeno(1,2,3-cd)pyrene	27.8			ug/l			69.5	40-140	5.73	
Dibenz(a,h)anthracene	28.7		0.5 5.0	ug/l	40.0		71.8		5.73 5.78	25
Benzo(g,h,i)perylene	28.7 14.2		5.0	ug/l	40.0 40.0		71.8 35.6	40-140	5.78	25 25
Nonane Decane	18.4		5.0	ug/l	40.0		46.1	30-140 40-140	0.0542	25
Dodecane	23.0		5.0	ug/l	40.0		57.4	40-140	3.42	25
Tetradecane	21.6		5.0	ug/l	40.0		54.1	40-140	1.70	25
Hexadecane	23.8		5.0	ug/l	40.0		59.4	40-140	3.34	25
Octadecane	25.6		5.0	ug/l	40.0		64.0	40-140	2.93	2.
				ug/l						
Nonadecane Eicosane	25.0 27.2		5.0 5.0	ug/l	40.0 40.0		62.5 68.1	40-140 40-140	3.25 4.16	25 25
Docosane	27.2		5.0 5.0	ug/l ug/l	40.0		69.2	40-140	5.07	2:
Tetracosane	28.0		5.0	ug/i ug/l	40.0		70.1	40-140	6.25	2!
Hexacosane	28.1		5.0	_	40.0		70.1	40-140	7.66	2:
Octacosane	27.7		5.0	ug/l	40.0		69.2	40-140	9.22	2:
Triacontane	26.6		5.0	ug/l ug/l	40.0		66.6	40-140	5.20	2!
Hexatriacontane	23.0		5.0	ug/l ug/l	40.0		57.4	40-140	3.97	25
Surrogate: Chlorooctadecane			72.9	ug/l	125		<i>58.3</i>	40-140		
Surrogate: o-Terphenyl			90.1	ug/l	125		72.1	40-140		
Surrogate: 2-Fluorobiphenyl			47.8	ug/l	50.0		95.5	40-140		
Surrogate: 2-Bromonaphthalene			39.0	ug/l	50.0		78.1	40-140		

Notes and Definitions

<u>Item</u>	Definition
Wet	Sample results reported on a wet weight basis.
ND	Analyte NOT DETECTED at or above the reporting limit.

(pan/essip)s/	as filter netals nemarks		Special Instructions: List Specific Detection Limit Requirements: Turnaround (Business Days)
N OF CUSTODY RECORD	OHIMA OONTAINERS OONTAINERS OONTAINERS OONTAINERS OONTAINERS OONTAINERS OONTAINERS	X X X X X Y	Date/Time Laboratory Remarks: 1/8/19 16/19 Cooled © Date/Time Date/Time
8006 a CHAI	PROJECT NAMELOCATION 3.95 Heavile Broole Factuary (MHG) (MHG)	26 MW-1	Date/Time Received by: (Signature) Date/Time Received by: (Signature) Date/Time Received to Laboratory by: (Signature)
0 X 6	PROJ. NO. PROJECT NAMELOCATION STATE OLIĘNT (P. M. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1.		Sampled by: (Signature) Relinquisher by: (Signature) Relinquished by: (Signature)

**Netlab subcontracfs the following tests: Radiologicals, Radon, Asbestos, UCMRs, Perchlorate, Bromate, Bromide, Sieve, Salmonella, Carbamates, CT ETPH

Page 27 of 28

MassDEP Analytical Protocol Certification Form										
Labo	ratory Na	ıme: New England	d Testing Laboratory	, Inc.	Project #:					
Proje	Project Location: 395 Alewife Brook Parkway RTN:									
	This Form provides certifications for the following data set: list Laboratory Sample ID Number(s): 9K08006									
Matrio	ces: 🗵 G	roundwater/Surfa	ce Water ⊠ Soil/Se	diment 🗆 Drinking	g Water □ Air □ Oth	er:				
CAM	Protoco	(check all that a	apply below):							
8260 CAM	VOC II A ⊠	7470/7471 Hg CAM III B ⊠	MassDEP VPH (GC/PID/FID) CAM IV A ⊠	8082 PCB CAM V A	9014 Total Cyanide/PAC CAM VI A □	6860 Perchlorate CAM VIII B □				
	SVOC II B 🗆	7010 Metals CAM III C □	MassDEP VPH (GC/MS) CAM IV C □	8081 Pesticides CAM V B	7196 Hex Cr CAM VI B □	MassDEP APH CAM IX A □				
	Metals Ⅲ A 区	6020 Metals CAM III D □	MassDEP EPH CAM IV B ⊠	8151 Herbicides CAM V C □	8330 Explosives CAM VIII A □	TO-15 VOC CAM IX B □				
A	Affirmativ	ve Responses to	Questions A throug	gh F are required t	or "Presumptive Ce	rtainty" status				
A	Custody,	properly preserv			cribed on the Chain-of ld or laboratory, and					
В		e analytical method tocol(s) followed?	d(s) and all associated	d QC requirements s	pecified in the selected	d ⊠ Yes □ No				
С			e actions and analytica ed for all identified perf		specified in the selected n-conformances?	d ⊠ Yes □ No				
D		Assurance and C			specified in CAM VII A ition and Reporting o					
F	a. VPH,		Methods only: Was		cted without significan	t ⊠ Yes □ No				
			e individual method(s) only: Was the complet			□ Yes □ No				
F					conformances identified Questions A through E)?					
Res				<u> </u>	mptive Certainty" st	atus				
G	Were the protocol(or below all CAM repor	ting limits specified in	the selected CAM	⊠ Yes □ No ¹				
<u>Data User Note</u> : Data that achieve "Presumptive Certainty" status may not necessarily meet the data usability and representativeness requirements described in 310 CMR 40. 1056 (2)(k) and WSC-07-350.										
Н	H Were all QC performance standards specified in the CAM protocol(s) achieved?									
I Were results reported for the complete analyte list specified in the selected CAM protocol(s)?										
¹ All r	negative re	esponses must be	addressed in an attac	ched laboratory narra	ative.					
I, the undersigned, attest under the pains and penalties of perjury that, based upon my personal inquiry of those responsible for obtaining the information, the material contained in this analytical report is, to the best of my knowledge and belief, is accurate and complete.										
Sign	ature: 💯	WW.		Positio	n: <u>Laboratory Director</u>					
Print	Printed Name: Richard Warila Date: 11/14/2019									

Page 28 of 28

REPORT OF ANALYTICAL RESULTS

NETLAB Work Order Number: 9K27055 Client Project: 395 Alewife Brook Parkway

Report Date: 05-December-2019

Prepared for:

Mark A Germano Mark A. Germano, LSP 15 Pinehurst Rd Marshfield, MA 02050

> Richard Warila, Laboratory Director New England Testing Laboratory, Inc. 59 Greenhill Street West Warwick, RI 02893 rich.warila@newenglandtesting.com

Samples Submitted:

The samples listed below were submitted to New England Testing Laboratory on 11/27/19. The group of samples appearing in this report was assigned an internal identification number (case number) for laboratory information management purposes. The client's designations for the individual samples, along with our case numbers, are used to identify the samples in this report. This report of analytical results pertains only to the sample(s) provided to us by the client which are indicated on the custody record. The case number for this sample submission is 9K27055. Custody records are included in this report.

Lab ID	Sample	Matrix	Date Sampled	Date Received
9K27055-01	PI-1	Soil	11/21/2019	11/27/2019
9K27055-02	PI-2	Soil	11/21/2019	11/27/2019
9K27055-03	IN	Water	11/26/2019	11/27/2019
9K27055-04	OUT	Water	11/26/2019	11/27/2019

Request for Analysis

At the client's request, the analyses presented in the following table were performed on the samples submitted.

IN (Lab Number: 9K27055-03)

AnalysisMethodMADEP VPHMADEP VPH

OUT (Lab Number: 9K27055-04)

AnalysisMethodMADEP VPHMADEP VPH

PI-1 (Lab Number: 9K27055-01)

AnalysisMethodMADEP VPHMADEP VPH

PI-2 (Lab Number: 9K27055-02)

AnalysisMethodMADEP VPHMADEP VPH

Method References

Method for the Determination of Volatile Petroleum Hydrocarbons, Rev. 2.1, Massachusetts Department of Environmental Protection, 2018

Test Methods for Evaluating Solid Waste, Physical/Chemical Methods, SW846, USEPA

Case Narrative

Sample Receipt:

The samples associated with this work order were received in appropriately cooled and preserved containers. The chain of custody was adequately completed and corresponded to the samples submitted.

Exceptions: None

Analysis:

All samples were prepared and analyzed within method specified holding times and according to NETLAB's documented standard operating procedures. The results for the associated calibration, method blank and laboratory control sample (LCS) were within method specified quality control requirements and allowances.

Exceptions: None

Volatile Petroleum Hydrocarbons Sample: PI-1 (9K27055-01)

SAMPLE INFORMATION

Matrix	Soil				
Containers	Satisfactory				
	Aqueous	NA	_		
Sample Preservation	Soil or	Preserved with methanol and/or in an air-tight container	ml methanol		
Freservation	Sediment	Methanol preserved (covering sample)	per gram soil:		
		Received in air-tight container	1:1 +/- 25%		
Temperature	Received on Ice Received at: 4+/-2 C°				

VPH ANALYTICAL RESULTS						
Method for Ranges: MADEP VPH-18-2.1	Client ID			PI-1		
Method for Target Analytes: MADEP VPH-18-2.1			L	_ab ID	9K27055-01	
VPH Surrogate Standards:			Date Col	lected	11/21/19	
PID: 2,5-Dibromotoluene			Date Re	ceived	11/27/19	
FID: 2,5-Dibromotoluene			% M	loisture	11.20	
RANGE/TARGET ANALYTE	Elution Range	Dilution	RL	Units	Result	Analyzed
Unadjusted C5-C8 Aliphatic Hydrocarbons [1]	NA	50X	6.2	mg/kg	<6.2	12/04/19 07:28
Unadjusted C9-C12 Aliphatic Hydrocarbons [1]	NA	50X	6.2	mg/kg	<6.2	12/04/19 07:28
Benzene	C5-C8	50X	0.3	mg/kg	<0.3	12/04/19 07:28
Ethylbenzene	C9-C12	50X	0.3	mg/kg	<0.3	12/04/19 07:28
Methyl t-butyl ether (MTBE)	C5-C8	50X	0.06	mg/kg	<0.06	12/04/19 07:28
Naphthalene	NA	50X	0.6	mg/kg	<0.6	12/04/19 07:28
Toluene	C5-C8	50X	0.3	mg/kg	<0.3	12/04/19 07:28
m&p-Xylene	C9-C12	50X	0.6	mg/kg	<0.6	12/04/19 07:28
o-Xylene	C9-C12	50X	0.6	mg/kg	<0.6	12/04/19 07:28
Total xylenes		50X	0.6	mg/kg	<0.6	12/04/19 07:28
C5-C8 Aliphatic Hydrocarbons [1,2]	NA	50X	6.2	mg/kg	<6.2	12/04/19 07:28
C9-C12 Aliphatic Hydrocarbons [1,3]	NA	50X	6.2	mg/kg	<6.2	12/04/19 07:28
C9-C10 Aromatic Hydrocarbons [1]	NA	50X	6.2	mg/kg	<6.2	12/04/19 07:28
2,5-Dibromotoluene-PID				%	80.6	12/04/19 07:28
2,5-Dibromotoluene-FID				%	87.8	12/04/19 07:28
Surrogate Acceptance Range				%	70-130	

 $[\]hbox{\footnotesize 1] Hydrocarbon Range data excludes concentrations of any surrogate (s) and/or internal standards eluting in that range}\\$

^[2] C5-C8 Aliphatic Hydrocarbons exclude the concentration of Target Analytes eluting in that range

^[3] C9-C12 Aliphatic Hydrocarbons exclude conc of Target Analytes eluting in that range AND concentration of C9-C10 Aromatic Hydrocarbons

Volatile Petroleum Hydrocarbons Sample: PI-2 (9K27055-02)

SAMPLE INFORMATION

Matrix	Soil				
Containers	Satisfactory				
	Aqueous	NA			
Sample Preservation	Soil or	Preserved with methanol and/or in an air-tight container	ml methanol		
Freservation	Sediment	Methanol preserved (covering sample)	per gram soil:		
	Received in air-tight container		1:1 +/- 25%		
Temperature	Received on Ice Received at: 4+/-2 C°				

VPH ANALYTICAL RESULTS						
Method for Ranges: MADEP VPH-18-2.1	Client ID			PI-2		
Method for Target Analytes: MADEP VPH-18-2.1			L	ab ID	9K27055-02	
VPH Surrogate Standards:			Date Col	lected	11/21/19	
PID: 2,5-Dibromotoluene			Date Re	ceived	11/27/19	
FID: 2,5-Dibromotoluene			% M	loisture	11.20	
RANGE/TARGET ANALYTE	Elution Range	Dilution	RL	Units	Result	Analyzed
Unadjusted C5-C8 Aliphatic Hydrocarbons [1]	NA	50X	6.2	mg/kg	<6.2	12/04/19 07:28
Unadjusted C9-C12 Aliphatic Hydrocarbons [1]	NA	50X	6.2	mg/kg	<6.2	12/04/19 07:28
Benzene	C5-C8	50X	0.3	mg/kg	<0.3	12/04/19 07:28
Ethylbenzene	C9-C12	50X	0.3	mg/kg	<0.3	12/04/19 07:28
Methyl t-butyl ether (MTBE)	C5-C8	50X	0.06	mg/kg	<0.06	12/04/19 07:28
Naphthalene	NA	50X	0.6	mg/kg	<0.6	12/04/19 07:28
Toluene	C5-C8	50X	0.3	mg/kg	<0.3	12/04/19 07:28
m&p-Xylene	C9-C12	50X	0.6	mg/kg	<0.6	12/04/19 07:28
o-Xylene	C9-C12	50X	0.6	mg/kg	<0.6	12/04/19 07:28
Total xylenes		50X	0.6	mg/kg	<0.6	12/04/19 07:28
C5-C8 Aliphatic Hydrocarbons [1,2]	NA	50X	6.2	mg/kg	<6.2	12/04/19 07:28
C9-C12 Aliphatic Hydrocarbons [1,3]	NA	50X	6.2	mg/kg	<6.2	12/04/19 07:28
C9-C10 Aromatic Hydrocarbons [1]	NA	50X	6.2	mg/kg	<6.2	12/04/19 07:28
2,5-Dibromotoluene-PID				%	80.2	12/04/19 07:28
2,5-Dibromotoluene-FID				%	85.1	12/04/19 07:28
Surrogate Acceptance Range				%	70-130	

^[1] Hydrocarbon Range data excludes concentrations of any surrogate(s) and/or internal standards eluting in that range

^[2] C5-C8 Aliphatic Hydrocarbons exclude the concentration of Target Analytes eluting in that range

^[3] C9-C12 Aliphatic Hydrocarbons exclude conc of Target Analytes eluting in that range AND concentration of C9-C10 Aromatic Hydrocarbons

Volatile Petroleum Hydrocarbons Sample: IN (9K27055-03)

SAMPLE INFORMATION

Matrix	Water			
Containers	Satisfactory			
	Aqueous	pH<2	_	
Sample Preservation	Soil or Sediment	NA		
Preservation		NA		
		Received in air-tight container		
Temperature	Received on Ice Received at: 4+/-2 C°			

Wethod for Ranges: MADEP VPH-18-2.1			Clia	nt ID	IN		
					 		
Method for Target Analytes: MADEP VPH-18-2.1				ab ID	1	9K27055-03	
VPH Surrogate Standards:			Date Col		11/26/19		
PID: 2,5-Dibromotoluene			Date Red	ceived	11/27/19		
FID: 2,5-Dibromotoluene		ı	% M	loisture	NA		
RANGE/TARGET ANALYTE	Elution Range	Dilution	RL	Units	Result	Analyzed	
Unadjusted C5-C8 Aliphatic Hydrocarbons [1]	NA	20X	2000	ug/l	9640	12/04/19 14:24	
Unadjusted C9-C12 Aliphatic Hydrocarbons [1]	NA	20X	2000	ug/l	12800	12/04/19 14:24	
Benzene	C5-C8	20X	100	ug/l	696	12/04/19 14:24	
Ethylbenzene	C9-C12	20X	100	ug/l	456	12/04/19 14:24	
Methyl t-butyl ether (MTBE)	C5-C8	1X	10.0	ug/l	20.9	12/04/19 14:24	
Naphthalene	NA	1X	10.0	ug/l	142	12/04/19 14:24	
Toluene	C5-C8	20X	100	ug/l	4910	12/04/19 14:24	
m&p-Xylene	C9-C12	20X	200	ug/l	1680	12/04/19 14:24	
o-Xylene	C9-C12	20X	200	ug/l	678	12/04/19 14:24	
Total xylenes		20X	200	ug/l	2350	12/04/19 14:24	
C5-C8 Aliphatic Hydrocarbons [1,2]	NA	20X	2000	ug/l	3620	12/04/19 14:24	
C9-C12 Aliphatic Hydrocarbons [1,3]	NA	20X	2000	ug/l	8000	12/04/19 14:24	
C9-C10 Aromatic Hydrocarbons [1]	NA	20X	1000	ug/l	1960	12/04/19 14:24	
2,5-Dibromotoluene-PID				%	81.5	12/04/19 14:24	
2,5-Dibromotoluene-FID				%	98.7	12/04/19 14:24	
Surrogate Acceptance Range				%	70-130		

^[1] Hydrocarbon Range data excludes concentrations of any surrogate(s) and/or internal standards eluting in that range

^[2] C5-C8 Aliphatic Hydrocarbons exclude the concentration of Target Analytes eluting in that range

^[3] C9-C12 Aliphatic Hydrocarbons exclude conc of Target Analytes eluting in that range AND concentration of C9-C10 Aromatic Hydrocarbons

Volatile Petroleum Hydrocarbons Sample: OUT (9K27055-04)

SAMPLE INFORMATION

Matrix	Water			
Containers	Satisfactory			
	Aqueous	pH<2	_	
Sample Preservation	Soil or Sediment	NA		
Preservation		NA		
		Received in air-tight container		
Temperature	Received on Ice Received at: 4+/-2 C°			

VPH ANALYTICAL RESULTS	<u> </u>					
Method for Ranges: MADEP VPH-18-2.1			Clie	nt ID	OUT	
Method for Target Analytes: MADEP VPH-18-2.1		9K27055-04				
VPH Surrogate Standards:			Date Col	lected	11/26/19	
PID: 2,5-Dibromotoluene			Date Re	ceived	11/27/19	
FID: 2,5-Dibromotoluene			% M	loisture	NA	
RANGE/TARGET ANALYTE	Elution Range	Dilution	RL	Units	Result	Analyzed
Unadjusted C5-C8 Aliphatic Hydrocarbons [1]	NA	1X	100	ug/l	<100	12/04/19 14:24
Unadjusted C9-C12 Aliphatic Hydrocarbons [1]	NA	1X	100	ug/l	<100	12/04/19 14:24
Benzene	C5-C8	1X	5.0	ug/l	<5.0	12/04/19 14:24
Ethylbenzene	C9-C12	1X	5.0	ug/l	<5.0	12/04/19 14:24
Methyl t-butyl ether (MTBE)	C5-C8	1X	10.0	ug/l	50.6	12/04/19 14:24
Naphthalene	NA	1X	10.0	ug/l	<10.0	12/04/19 14:24
Toluene	C5-C8	1X	5.0	ug/l	8.2	12/04/19 14:24
m&p-Xylene	C9-C12	1X	10.0	ug/l	<10.0	12/04/19 14:24
o-Xylene	C9-C12	1X	10.0	ug/l	<10.0	12/04/19 14:24
Total xylenes		1X	10.0	ug/l	<10.0	12/04/19 14:24
C5-C8 Aliphatic Hydrocarbons [1,2]	NA	1X	100	ug/l	<100	12/04/19 14:24
C9-C12 Aliphatic Hydrocarbons [1,3]	NA	1X	100	ug/l	<100	12/04/19 14:24
C9-C10 Aromatic Hydrocarbons [1]	NA	1X	100	ug/l	<100	12/04/19 14:24
2,5-Dibromotoluene-PID				%	79.3	12/04/19 14:24
2,5-Dibromotoluene-FID				%	86.1	12/04/19 14:24
Surrogate Acceptance Range				%	70-130	

^[1] Hydrocarbon Range data excludes concentrations of any surrogate(s) and/or internal standards eluting in that range

^[2] C5-C8 Aliphatic Hydrocarbons exclude the concentration of Target Analytes eluting in that range

^[3] C9-C12 Aliphatic Hydrocarbons exclude conc of Target Analytes eluting in that range AND concentration of C9-C10 Aromatic Hydrocarbons

Quality Control

Volatile Petroleum Hydrocarbons (MADEP-VPH)

Analyte	Result	Qual	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit
Batch: B9L0119 - MADEP VPH										
Blank (B9L0119-BLK1)					Prepared 8	& Analyzed: 1	2/04/19			
Unadjusted C5-C8 Aliphatic	ND		100	ug/l		,	, - , -			
Hydrocarbons				3,-						
Unadjusted C9-C12 Aliphatic	ND		100	ug/l						
Hydrocarbons										
Benzene	ND		5.0	ug/l						
Ethylbenzene	ND		5.0	ug/l						
Methyl t-butyl ether (MTBE)	ND		10.0	ug/l						
Naphthalene	ND		10.0	ug/l						
Toluene	ND		5.0	ug/l						
m&p-Xylene	ND		10.0	ug/l						
o-Xylene	ND		10.0	ug/l						
Total xylenes	ND		10.0	ug/l						
C5-C8 Aliphatic Hydrocarbons	ND		100	ug/l						
C9-C12 Aliphatic Hydrocarbons	ND		100	ug/l						
C9-C10 Aromatic Hydrocarbons	ND		100	ug/l						
Surrogate: 2,5- Dibromotoluene-PID			36.0	ug/l	50.0		72.0	70-130		
Surrogate: 2,5- Dibromotoluene-FID			39.0	ug/l	50.0		78.0	70-130		
LCS (B9L0119-BS1)					Prepared 8	& Analyzed: 1	2/04/19			
Benzene	58.3			ug/l	50.0	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	117	70-130		
Ethylbenzene	41.2			ug/l	50.0		82.5	70-130		
Methyl t-butyl ether (MTBE)	47.5			ug/l	50.0		95.0	70-130		
Naphthalene	42.3			ug/l	50.0		84.6	70-130		
Toluene	38.0			ug/l	50.0		75.9	70-130		
m&p-Xylene	85.0			ug/l	100		85.0	70-130		
o-Xylene	38.5			ug/l	50.0		77.1	70-130		
C5-C8 Aliphatic Hydrocarbons	147			ug/l	150		97.7	70-130		
C9-C12 Aliphatic Hydrocarbons	84.0			ug/l	100		84.0	70-130		
C9-C12 Aniphatic Hydrocarbons C9-C10 Aromatic Hydrocarbons	46.2			ug/l	50.0		92.3	70-130		
Surrogate: 2,5- Dibromotoluene-PID			35.5	ug/l	50.0		71.0	70-130		
Surrogate: 2,5- Dibromotoluene-FID			37.4	ug/l	50.0		74.7	<i>70-130</i>		

Volatile Petroleum Hydrocarbons (MADEP-VPH) (Continued)

Analyte	Result	Qual	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limi
Batch: B9L0119 - MADEP VPH	(Continued)									
LCS Dup (B9L0119-BSD1)					Prepared 8	& Analyzed: 1	2/04/19			
Benzene	58.4			ug/l	50.0	,	117	70-130	0.183	25
Ethylbenzene	41.7			ug/l	50.0		83.5	70-130	1.22	25
Methyl t-butyl ether (MTBE)	49.9			ug/l	50.0		99.9	70-130	5.03	25
Naphthalene	44.7			ug/l	50.0		89.5	70-130	5.60	25
Toluene	38.4			ug/l	50.0		76.8	70-130	1.18	25
m&p-Xylene	86.8			ug/l	100		86.8	70-130	2.12	25
o-Xylene	39.1			ug/l	50.0		78.3	70-130	1.51	25
C5-C8 Aliphatic Hydrocarbons	147			ug/l	150		97.7	70-130	0.0150	25
C9-C12 Aliphatic Hydrocarbons	78.3			ug/l	100		78.3	70-130	7.04	25
C9-C10 Aromatic Hydrocarbons	46.4			ug/l	50.0		92.8	70-130	0.572	25
Surrogate: 2,5- Dibromotoluene-PID			36.2	ug/l	50.0		72.3	70-130		
Surrogate: 2,5- Dibromotoluene-FID			38.2	ug/l	50.0		76.4	70-130		
Blank (B9L0120-BLK1)				,	Prepared 8	& Analyzed: 1	2/04/19			
Unadjusted C5-C8 Aliphatic	ND		5.0		Prepared (x Analyzed: 1	2/04/19			
Hydrocarbons	110		3.0	mg/kg						
Unadjusted C9-C12 Aliphatic	ND		5.0	mg/kg						
Hydrocarbons										
Benzene	ND		0.2	mg/kg						
Ethylbenzene										
•	ND		0.2	mg/kg						
Methyl t-butyl ether (MTBE)	ND ND		0.2 0.05	mg/kg						
·										
Methyl t-butyl ether (MTBE)	ND		0.05	mg/kg						
Methyl t-butyl ether (MTBE) Naphthalene	ND ND		0.05 0.5	mg/kg mg/kg mg/kg mg/kg						
Methyl t-butyl ether (MTBE) Naphthalene Toluene	ND ND ND		0.05 0.5 0.2	mg/kg mg/kg mg/kg						
Methyl t-butyl ether (MTBE) Naphthalene Toluene m&p-Xylene	ND ND ND ND		0.05 0.5 0.2 0.5	mg/kg mg/kg mg/kg mg/kg						
Methyl t-butyl ether (MTBE) Naphthalene Toluene m&p-Xylene o-Xylene	ND ND ND ND		0.05 0.5 0.2 0.5 0.5	mg/kg mg/kg mg/kg mg/kg mg/kg						
Methyl t-butyl ether (MTBE) Naphthalene Toluene m&p-Xylene o-Xylene Total xylenes	ND ND ND ND ND		0.05 0.5 0.2 0.5 0.5	mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg						
Methyl t-butyl ether (MTBE) Naphthalene Toluene m&p-Xylene o-Xylene Total xylenes C5-C8 Aliphatic Hydrocarbons	ND ND ND ND ND ND		0.05 0.5 0.2 0.5 0.5 0.5 5.0	mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg						
Methyl t-butyl ether (MTBE) Naphthalene Toluene m&p-Xylene o-Xylene Total xylenes C5-C8 Aliphatic Hydrocarbons C9-C12 Aliphatic Hydrocarbons	ND ND ND ND ND ND		0.05 0.5 0.2 0.5 0.5 0.5 5.0	mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg	50.0		71.1	70-130		

Volatile Petroleum Hydrocarbons (MADEP-VPH) (Continued)

Analyte	Result	Qual	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit
Batch: B9L0120 - MADEP VPH	(Continued)									
LCS (B9L0120-BS1)					Prepared 8	& Analyzed: 1	2/04/19			
Benzene	58.3			ug/l	50.0		117	70-130		
Ethylbenzene	41.2			ug/l	50.0		82.5	70-130		
Methyl t-butyl ether (MTBE)	47.5			ug/l	50.0		95.0	70-130		
Naphthalene	42.3			ug/l	50.0		84.6	70-130		
Toluene	38.0			ug/l	50.0		75.9	70-130		
m&p-Xylene	85.0			ug/l	100		85.0	70-130		
o-Xylene	38.5			ug/l	50.0		77.1	70-130		
C5-C8 Aliphatic Hydrocarbons	147			ug/l	150		97.7	70-130		
C9-C12 Aliphatic Hydrocarbons	84.0			ug/l	100		84.0	70-130		
C9-C10 Aromatic Hydrocarbons	46.2			ug/l	50.0		92.3	70-130		
Surrogate: 2,5- Dibromotoluene-PID			35.5	ug/l	50.0		71.0	70-130		
Surrogate: 2,5- Dibromotoluene-FID			37.4	ug/l	50.0		74.7	70-130		
LCS Dup (B9L0120-BSD1)					Prepared 8	& Analyzed: 1	2/04/19			
Benzene	58.4			ug/l	50.0		117	70-130	0.183	25
Ethylbenzene	41.7			ug/l	50.0		83.5	70-130	1.22	25
Methyl t-butyl ether (MTBE)	49.9			ug/l	50.0		99.9	70-130	5.03	25
Naphthalene	44.7			ug/l	50.0		89.5	70-130	5.60	25
Toluene	38.4			ug/l	50.0		76.8	70-130	1.18	25
m&p-Xylene	86.8			ug/l	100		86.8	70-130	2.12	25
o-Xylene	39.1			ug/l	50.0		78.3	70-130	1.51	25
C5-C8 Aliphatic Hydrocarbons	147			ug/l	150		97.7	70-130	0.0150	25
C9-C12 Aliphatic Hydrocarbons	78.3			ug/l	100		78.3	70-130	7.04	25
C9-C10 Aromatic Hydrocarbons	46.4			ug/l	50.0		92.8	70-130	0.572	25
Surrogate: 2,5- Dibromotoluene-PID			36.2	ug/l	50.0		72.3	70-130		
Surrogate: 2,5- Dibromotoluene-FID			38.2	ug/l	50.0		76.4	70-130		

Notes and Definitions

<u>Item</u>	Definition
Wet	Sample results reported on a wet weight basis.
ND	Analyte NOT DETECTED at or above the reporting limit.

Note Samples Jaken REMARKS Turnaround (Business Days Special Instructions: List Specific Detection Limit Requirements: **Netlab subcontracts the following tests: Radiologicals, Radon, Asbestos, UCMRs, Perchlorate, Bromate, Bromide, Sieve, Salmonella, Carbamates, CT ETPH Laboratory Remarks Temp. received: __ Cooled ☐ CHAIN OF CUSTODY RECORD σαπομα><+ 0501 Src CONTAINERS Š P онтшα wo--∢α⊃шо⊃ю Received for Laboratory by: (Signature) New, te Booole Parleway Received by: (Signature) SAMPLE 1.D. 1360 BHEAT SISI | b-zex1 Jemano PROJECT NAME/ ooŝ⊾ TIME Sampled by: (Signa INVOICE TO: DATE CLIENT Page 13 of 14

		Ma	assDEP Analytica	l Protocol Certifi	cation Form	
Labo	ratory Na	ıme: New England	d Testing Laboratory	, Inc.	Project #:	
Proje	ect Location	on: Alewife Brook	Parkway		RTN:	
	Form pro K27055	ovides certification	ons for the followin	g data set: list Lab	ooratory Sample ID N	lumber(s):
Matrio	ces: 🗵 G	roundwater/Surfa	ce Water ⊠ Soil/Se	ediment 🗆 Drinking	g Water □ Air □ Oth	ner:
CAM	Protoco	(check all that a	apply below):			
8260 CAM		7470/7471 Hg CAM III B □	MassDEP VPH (GC/PID/FID) CAM IV A ⊠	8082 PCB CAM V A □	9014 Total Cyanide/PAC CAM VI A □	6860 Perchlorate CAM VIII B
	SVOC II B □	7010 Metals CAM III C □	MassDEP VPH (GC/MS) CAM IV C □	8081 Pesticides CAM V B	7196 Hex Cr CAM VI B □	MassDEP APH CAM IX A □
	Metals III A □	6020 Metals CAM III D	MassDEP EPH CAM IV B □	8151 Herbicides CAM V C	8330 Explosives CAM VIII A	TO-15 VOC CAM IX B □
A	Affirmativ	ve Responses to	Questions A through	gh F are required t	for "Presumptive Ce	rtainty" status
Α	Custody,	properly preser			cribed on the Chain-of ld or laboratory, and	
В		e analytical method tocol(s) followed?	d(s) and all associated	d QC requirements s	specified in the selected	d ⊠ Yes □ No
С			e actions and analyticated for all identified perfe		specified in the selected n-conformances?	d ⊠ Yes □ No
D		Assurance and C			specified in CAM VII A ition and Reporting c	
E	a. VPH, modificat	tion(s)? (Refer to th		for a list of significant		t ⊠ Yes □ No
F					conformances identified	
Res	sponses	to Questions G,	H and I below are re	equired for "Presu	mptive Certainty" st	atus
G	Were the protocol(or below all CAM repor	ting limits specified in	the selected CAM	⊠ Yes □ No ¹
			ve "Presumptive Certails s described in 310 CMR		cessarily meet the data (SC-07-350.	usability and
Н			tandards specified in th			⊠ Yes □ No ¹
I	Were res	sults reported for the	e complete analyte list	specified in the select	ted CAM protocol(s)?	⊠ Yes □ No ¹
¹ All r	negative re	esponses must be	addressed in an attac	ched laboratory narra	ative.	
respoi	nsible for (nation, the material con		sed upon my personal al report is, to the best	
Sign	ature: 🚱			Positio	n: Laboratory Director	
Print	ted Name	Richard Warila		— Date:	12/5/2019	

Page 14 of 14

REPORT OF ANALYTICAL RESULTS

NETLAB Work Order Number: 9L09037 Client Project: 395 Alewife Brook Parkway RGP

Report Date: 17-December-2019

Prepared for:

Mark A Germano Mark A. Germano, LSP 15 Pinehurst Rd Marshfield, MA 02050

> Richard Warila, Laboratory Director New England Testing Laboratory, Inc. 59 Greenhill Street West Warwick, RI 02893 rich.warila@newenglandtesting.com

Samples Submitted:

The samples listed below were submitted to New England Testing Laboratory on 12/09/19. The group of samples appearing in this report was assigned an internal identification number (case number) for laboratory information management purposes. The client's designations for the individual samples, along with our case numbers, are used to identify the samples in this report. This report of analytical results pertains only to the sample(s) provided to us by the client which are indicated on the custody record. The case number for this sample submission is 9L09037. Custody records are included in this report.

Lab ID	Sample	Matrix	Date Sampled	Date Received
9L09037-01	Influent	Water	12/09/2019	12/09/2019
9L09037-02	Brook	Water	12/09/2019	12/09/2019

Request for Analysis

At the client's request, the analyses presented in the following table were performed on the samples submitted.

Brook (Lab Number: 9L09037-02)

<u>Analysis</u>	<u>Method</u>
Ammonia	SM4500-NH3-D (11)
Antimony	EPA 200.8
Arsenic	EPA 200.8
Cadmium	EPA 200.8
Calcium	SM3120-B (11)
Chromium	EPA 200.8
Copper	EPA 200.8
Hexavalent Chromium	SM3500-Cr-B (11)
Iron	EPA 200.8
Lead	EPA 200.8
Magnesium	SM3120-B (11)
Mercury	EPA 245.1
Nickel	EPA 200.8
Selenium	EPA 200.8
Silver	EPA 200.8
Trivalent Chromium	Calculation
Zinc	EPA 200.8

Influent (Lab Number: 9L09037-01)

<u>Analysis</u>	<u>Method</u>
Acid Base/Neutral Extractables	EPA 625.1
Ammonia	SM4500-NH3-D (11)
Antimony	EPA 200.8
Arsenic	EPA 200.8
Cadmium	EPA 200.8
Chloride	SM4500CI-B (11)
Chromium	EPA 200.8
Copper	EPA 200.8
Cyanide	SM4500-CN-E (11)
Hexavalent Chromium	SM3500-Cr-B (11)
Iron	EPA 200.8
Lead	EPA 200.8
Mercury	EPA 245.1
Methanol and Ethanol	EPA-8100-mod
Nickel	EPA 200.8
PCBs	EPA 8082A
рН	SM4500-H-B (11)
Selenium	EPA 200.8
Silver	EPA 200.8
Total Petroleum Hydrocarbons	EPA-8100-mod
Total Suspended Solids	SM2540-D (11)
Trivalent Chromium	Calculation
Volatile Organic Compounds	EPA 624.1
Zinc	EPA 200.8

Method References

40 CFR Part 136, Guidelines Establishing Test Procedures for the Analysis of Pollutants Under the Clean Water Act, Office of Federal Register National Archives and Records Administration

Methods for the Determination of Metals in Environmental Samples EPA-600/R-94/111, USEPA, 1994

Standard Methods for the Examination of Water and Wastewater, 20th Edition, APHA/ AWWA-WPCF, 1998

Test Methods for Evaluating Solid Waste, Physical/Chemical Methods, SW846, USEPA

Case Narrative

Sample Receipt:

The samples associated with this work order were received in appropriately cooled and preserved containers. The chain of custody was adequately completed and corresponded to the samples submitted.

Exceptions: None

Analysis:

All samples were prepared and analyzed within method specified holding times and according to NETLAB's documented standard operating procedures. The results for the associated calibration, method blank and laboratory control sample (LCS) were within method specified quality control requirements and allowances.

Exceptions:

<u>PCB:</u> Sample "Influent" was reported with surrogates outside method parameters due to matrix interference.

Results: Calculation

Sample: Influent

Lab Number: 9L09037-01 (Water)

Reporting						
Analyte	Result	Qual	Limit	Units	Date Prepared	Date Analyzed
Trivalent Chromium	0.000491		0.000100	mg/L	12/10/19 13:05	12/13/19 16:03

Results: Calculation

Sample: Brook

Lab Number: 9L09037-02 (Water)

Reporting							
Analyte	Result	Qual	Limit	Units	Date Prepared	Date Analyzed	
Trivalent Chromium	0.0181		0.00100	mg/L	12/10/19 13:05	12/13/19 16:08	

Results: General Chemistry

Sample: Influent

Lab Number: 9L09037-01 (Water)

			Reporting				
Analyte	Result	Qual	Limit	Units	Date Prepared	Date Analyzed	
Ammonia	ND		0.1	mg/L	12/11/19	12/11/19	
Chloride	324		25	mg/L	12/12/19	12/12/19	
Cyanide	ND		0.010	mg/L	12/11/19	12/11/19	
Hexavalent chromium	ND		0.01	mg/L	12/09/19 16:30	12/09/19 16:30	
pH	7.2		0.1	SU	12/09/19 17:15	12/09/19 17:15	
Total Suspended Solids	8		2	mg/L	12/11/19	12/11/19	

NETLAB Case Number: 9L09037

Results: General Chemistry

Sample: Brook

			Reporting			
Analyte	Result	Qual	Limit	Units	Date Prepared	Date Analyzed
Ammonia	0.5		0.1	mg/L	12/11/19	12/11/19
Hexavalent chromium	ND		0.01	mg/L	12/10/19 9:55	12/10/19 9:55

Results: Total Metals

Sample: Influent

			Reporting			
Analyte	Result	Qual	Limit	Units	Date Prepared	Date Analyzed
Antimony	0.0006		0.0001	mg/L	12/10/19	12/13/19
Arsenic	0.0164		0.0001	mg/L	12/10/19	12/13/19
Cadmium	ND		0.0001	mg/L	12/10/19	12/13/19
Chromium	0.0005		0.0001	mg/L	12/10/19	12/13/19
Copper	0.005		0.001	mg/l	12/10/19	12/13/19
Iron	0.258		0.001	mg/l	12/10/19	12/13/19
Mercury	ND		0.0002	mg/L	12/11/19	12/11/19
Nickel	0.003		0.001	mg/l	12/10/19	12/13/19
Selenium	ND		0.005	mg/L	12/10/19	12/13/19
Silver	ND		0.0001	mg/L	12/10/19	12/13/19
Zinc	0.007		0.001	mg/l	12/10/19	12/13/19
Lead	0.0013		0.0001	mg/L	12/10/19	12/13/19

Results: Total Metals

Sample: Brook

			Reporting			
Analyte	Result	Qual	Limit	Units	Date Prepared	Date Analyzed
Total Hardness	29.8		0.125	mg/L	12/10/19	12/11/19
Antimony	0.0049		0.0010	mg/L	12/10/19	12/13/19
Arsenic	0.0091		0.0010	mg/L	12/10/19	12/13/19
Cadmium	ND		0.0010	mg/L	12/10/19	12/13/19
Calcium	7.01		0.05	mg/L	12/10/19	12/11/19
Chromium	0.0181		0.0010	mg/L	12/10/19	12/13/19
Copper	0.050		0.010	mg/l	12/10/19	12/13/19
Iron	4.71		0.010	mg/l	12/10/19	12/13/19
Magnesium	2.99		0.05	mg/L	12/10/19	12/11/19
Mercury	ND		0.0002	mg/L	12/11/19	12/11/19
Nickel	ND		0.010	mg/l	12/10/19	12/13/19
Selenium	ND		0.050	mg/L	12/10/19	12/13/19
Silver	ND		0.0010	mg/L	12/10/19	12/13/19
Zinc	0.291		0.010	mg/l	12/10/19	12/13/19
Lead	0.0477		0.0010	mg/L	12/10/19	12/13/19

Results: Volatile Organic Compounds

Sample: Influent

Analyte	Result	Qual	Reporting Limit	Units	Date Prepared	Date Analyzed
Benzene	671		10	ug/l	12/12/19	12/12/19
Carbon tetrachloride	ND		1	ug/l	12/12/19	12/12/19
1,2-Dichlorobenzene	ND		1	ug/l	12/12/19	12/12/19
1,3-Dichlorobenzene	ND		1	ug/l	12/12/19	12/12/19
1,4-Dichlorobenzene	ND		1	ug/l	12/12/19	12/12/19
1,1-Dichloroethane	ND		1	ug/l	12/12/19	12/12/19
1,2-Dichloroethane	ND		1	ug/l	12/12/19	12/12/19
Methylene chloride	ND		5	ug/l	12/12/19	12/12/19
Tetrachloroethene	ND		1	ug/l	12/12/19	12/12/19
Toluene	7690		100	ug/l	12/12/19	12/12/19
1,1,2-Trichloroethane	ND		1	ug/l	12/12/19	12/12/19
1,1,1-Trichloroethane	ND		1	ug/l	12/12/19	12/12/19
Trichloroethene	ND		1	ug/l	12/12/19	12/12/19
Vinyl chloride	ND		1	ug/l	12/12/19	12/12/19
cis-1,2-Dichloroethene	ND		1	ug/l	12/12/19	12/12/19
Acetone	ND		5	ug/l	12/12/19	12/12/19
tert-Butyl alcohol	ND		5	ug/l	12/12/19	12/12/19
Methyl t-butyl ether (MTBE)	535		10	ug/l	12/12/19	12/12/19
1,2-Dibromoethane (EDB)	ND		1	ug/l	12/12/19	12/12/19
Total xylenes	ND		1	ug/l	12/12/19	12/12/19
1,4-Dioxane	ND		500	ug/l	12/12/19	12/12/19
o-Xylene	1190		10	ug/l	12/12/19	12/12/19
m&p-Xylene	2530		20	ug/l	12/12/19	12/12/19
tert-Amyl methyl ether	ND		1	ug/l	12/12/19	12/12/19
Ethylbenzene	71		1	ug/l	12/12/19	12/12/19
Surrogate(s)	Recovery%		Limi	ts		
4-Bromofluorobenzene	94.6%		70-1 <u>.</u>	30	12/12/19	12/12/19
1,2-Dichloroethane-d4	96.3%		70-13	30	12/12/19	12/12/19
Toluene-d8	99.6%		70-13	30	12/12/19	12/12/19

NETLAB Case Number: 9L09037

Results: Semivolatile organic compounds

Sample: Influent

Analyte	Result	Qual	Limit	Units	Date Prepared	Date Analyzed
Ethanol	ND		10	mg/L	12/16/19	12/16/19

Results: Base/Neutral & Acid Extractables

Sample: Influent

Analyte	Result	Qual	Reporting Limit	Units	Date Prepared	Date Analyzed
2,4,6-Trichlorophenol	ND		2	ug/l	12/12/19	12/13/19
2,4-Dichlorophenol	ND		2	ug/l	12/12/19	12/13/19
2,4-Dimethylphenol	ND		10	ug/l	12/12/19	12/13/19
2,4-Dinitrophenol	ND		5	ug/l	12/12/19	12/13/19
2-Chlorophenol	ND		2	ug/l	12/12/19	12/13/19
4,6-Dinitro-2-methylphenol	ND		5	ug/l	12/12/19	12/13/19
4-Chloro-3-methylphenol	ND		2	ug/l	12/12/19	12/13/19
4-Nitrophenol	ND		5	ug/l	12/12/19	12/13/19
Acenaphthene	ND		2	ug/l	12/12/19	12/13/19
Acenaphthylene	ND		2	ug/l	12/12/19	12/13/19
Anthracene	ND		2	ug/l	12/12/19	12/13/19
Benzo(a)anthracene	ND		2	ug/l	12/12/19	12/13/19
Benzo(a)pyrene	ND		2	ug/l	12/12/19	12/13/19
Benzo(b)fluoranthene	ND		2	ug/l	12/12/19	12/13/19
Benzo(g,h,i)perylene	ND		2	ug/l	12/12/19	12/13/19
Benzo(k)fluoranthene	ND		2	ug/l	12/12/19	12/13/19
Bis(2-ethylhexyl)phthalate	ND		6	ug/l	12/12/19	12/13/19
Butyl benzyl phthalate	ND		2	ug/l	12/12/19	12/13/19
Chrysene	ND		2	ug/l	12/12/19	12/13/19
Di(n)octyl phthalate	ND		3	ug/l	12/12/19	12/13/19
Dibenz(a,h)anthracene	ND		2	ug/l	12/12/19	12/13/19
Diethyl phthalate	ND		2	ug/l	12/12/19	12/13/19
Dimethyl phthalate	3		2	ug/l	12/12/19	12/13/19
Di-n-butylphthalate	ND		3	ug/l	12/12/19	12/13/19
Fluoranthene	ND		2	ug/l	12/12/19	12/13/19
Fluorene	ND		2	ug/l	12/12/19	12/13/19
Indeno(1,2,3-cd)pyrene	ND		2	ug/l	12/12/19	12/13/19
Naphthalene	71		2	ug/l	12/12/19	12/13/19
Pentachlorophenol	ND		5	ug/l	12/12/19	12/13/19
Phenanthrene	ND		2	ug/l	12/12/19	12/13/19
Pyrene	ND		2	ug/l	12/12/19	12/13/19
4-Methylphenol	ND		4	ug/l	12/12/19	12/13/19
2-Methylphenol	6		2	ug/l	12/12/19	12/13/19
m&p-Cresol	ND		4	ug/l	12/12/19	12/13/19
3-Methyl phenol	ND		4	ug/l	12/12/19	12/13/19
2,4,5-Trichlorophenol	ND		2	ug/l	12/12/19	12/13/19
2,6-Dichlorophenol	ND		2	ug/l	12/12/19	12/13/19
Surrogate(s)	Recovery%		Limits	5		
Nitrobenzene-d5	51.8%		30-11	8	12/12/19	12/13/19
p-Terphenyl-d14	77.8%		38-13	0	12/12/19	12/13/19
2-Fluorobiphenyl	58.4%		30-11:	9	12/12/19	12/13/19
Phenol-d6	16.9%		10-11.	5	12/12/19	12/13/19
2,4,6-Tribromophenol	75.6%		15-13	0	12/12/19	12/13/19

Results: Base/Neutral & Acid Extractables (Continued)

Sample: Influent (Continued) Lab Number: 9L09037-01 (Water)

			Reporting			
Analyte	Result	Qual	Limit	Units	Date Prepared	Date Analyzed
2-Fluorophenol	27.0%		10-11	!5	12/12/19	12/13/19

Results: Polychlorinated Biphenyls (PCBs)

Sample: Influent

			Reporting			
Analyte	Result	Qual	Limit	Units	Date Prepared	Date Analyzed
Aroclor-1016	ND		0.2	ug/l	12/11/19	12/12/19
Aroclor-1221	ND		0.4	ug/l	12/11/19	12/12/19
Aroclor-1232	ND		0.2	ug/l	12/11/19	12/12/19
Aroclor-1242	ND		0.2	ug/l	12/11/19	12/12/19
Aroclor-1248	ND		0.2	ug/l	12/11/19	12/12/19
Aroclor-1254	ND		0.2	ug/l	12/11/19	12/12/19
Aroclor-1260	ND		0.2	ug/l	12/11/19	12/12/19
Aroclor-1262	ND		0.2	ug/l	12/11/19	12/12/19
Aroclor-1268	ND		0.2	ug/l	12/11/19	12/12/19
PCBs (Total)	ND		0.2	ug/l	12/11/19	12/12/19
Surrogate(s)	Recovery%		Limi	ts		
2,4,5,6-Tetrachloro-m-xylene (TCMX)	24.0%		30-1	07	12/11/19	12/12/19
Decachlorobiphenyl (DCBP)	31.5%		30-1-	40	12/11/19	12/12/19

NETLAB Case Number: 9L09037

Results: Total Petroleum Hydrocarbons

Sample: Influent

			Reporting			
Analyte	Result	Qual	Limit	Units	Date Prepared	Date Analyzed
Total Petroleum Hydrocarbons	3910		1000	ug/l	12/16/19	12/16/19
Surrogate(s)	Recovery%		Limit	:s		
Chlorooctadecane	58.0%		47-11	5	12/16/19	12/16/19

Quality Control

General Chemistry

Analyte	Result	Qual	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit
Analyte	Result	Quai	LIIIIL	UIIILS	Levei	Result	70KEC	LIIIIIS	KFD	LIITIIL
Batch: B9L0362 - Hexavalent C	Chrome									
Blank (B9L0362-BLK1)					Prepared 8	k Analyzed: 1	2/09/19			
Hexavalent chromium	ND		0.01	mg/L						
Blank (B9L0362-BLK2)					Prepared 8	k Analyzed: 1	2/09/19			
Hexavalent chromium	ND		0.01	mg/L						
LCS (B9L0362-BS1)					Prepared 8	& Analyzed: 1	2/09/19			
Hexavalent chromium	0.51		0.01	mg/L	0.500		102	90-110		
LCS (B9L0362-BS2)					Prepared 8	k Analyzed: 1	2/09/19			
Hexavalent chromium	0.10		0.01	mg/L	0.100	·	105	90-110		
LCS (B9L0362-BS3)					Prepared 8	k Analyzed: 1	2/09/19			
Hexavalent chromium	0.51		0.01	mg/L	0.500	•	102	90-110		
Duplicate (B9L0362-DUP1)	9	Source: 9	L09034-01		Prepared & Analyzed: 12/09/19					
Hexavalent chromium	ND		0.50	mg/L	·	ND				20
Matrix Spike (B9L0362-MS1)	9	Source: 9	L09034-01		Prepared 8	k Analyzed: 1	2/09/19			
Hexavalent chromium	ND		0.50	mg/L	0.500	ND		80-120		
Batch: B9L0374 - pH										
LCS (B9L0374-BS1)					Prepared 8	& Analyzed: 1	2/09/19			
pH	7.1		0.1	SU	7.00	,	101	90-110		
LCS (B9L0374-BS2)					Prepared 8	k Analyzed: 1	2/09/19			
pH	7.0		0.1	SU	7.00	,	101	90-110		

				Control						
General Chemistry (Continued)										
Analyte	Result	Qual	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit
Batch: B9L0374 - pH (Continued)										
Duplicate (B9L0374-DUP1)	:	Source: 9	9L09005-01		Prepared 8	& Analyzed: 1	2/09/19			
рН	6.8		0.1	SU		6.8			0.00	20
Batch: B9L0412 - Cyanide										
Blank (B9L0412-BLK1)					Prepared 8	& Analyzed: 1	2/11/19			
Cyanide	ND		0.010	mg/L		,				
Blank (B9L0412-BLK2)					Prepared 8	& Analyzed: 1	2/11/19			
Cyanide	ND		0.010	mg/L						
LCS (B9L0412-BS1)					Prepared 8	& Analyzed: 1	2/11/19			
Cyanide	0.091		0.010	mg/L	0.100		91.0	90-110		
LCS (B9L0412-BS2)					Prepared 8	& Analyzed: 1	2/11/19			
Cyanide	0.091		0.010	mg/L	0.100		91.0	90-110		
LCS (B9L0412-BS3)					Prepared 8	& Analyzed: 1	2/11/19			
Cyanide	0.091		0.010	mg/L	0.100		91.0	90-110		
Duplicate (B9L0412-DUP1)	:	Source: 9	9L05050-01		Prepared 8	& Analyzed: 1	2/11/19			
Cyanide	ND		0.010	mg/L		ND				200
Matrix Spike (B9L0412-MS1)	Source: 9L05050-01			Prepared 8	& Analyzed: 1	2/11/19				
Cyanide	0.093		0.010	mg/L	0.100	ND	93.0	80-120		
Batch: B9L0425 - Hexavalent Chron										
Blank (B9L0425 - Hexavalent Chron Blank (B9L0425-BLK1)	iie				Prepared 8	& Analyzed: 1	2/10/19			
Hexavalent chromium	ND		0.01	mg/L	. repared (a. aldijizodi i	-, -0, 10			

				Control						
General Chemistry (Continued)										
Analyte	Result	Qual	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit
Batch: B9L0425 - Hexavalent C	Chrome (Con	tinued))							
Blank (B9L0425-BLK2)					Prepared 8	& Analyzed: 1	2/10/19			
Hexavalent chromium	ND		0.01	mg/L						
LCS (B9L0425-BS1)					Prepared 8	& Analyzed: 1	2/10/19			
Hexavalent chromium	0.53		0.01	mg/L	0.500		106	90-110		
LCS (B9L0425-BS2)					Prepared 8	& Analyzed: 1	2/10/19			
Hexavalent chromium	0.11		0.01	mg/L	0.100	,	108	90-110		
LCS (B9L0425-BS3)					Prepared 8	& Analyzed: 1	2/10/19			
Hexavalent chromium	0.53		0.01	mg/L	0.500	·	106	90-110		
Duplicate (B9L0425-DUP1)	9	Source: 9	L09037-02		Prepared 8	& Analyzed: 1	2/10/19			
Hexavalent chromium	ND		0.01	mg/L	•	ND				20
Matrix Spike (B9L0425-MS1)	9	Source: 9	L09037-02		Prepared 8	& Analyzed: 1	2/10/19			
Hexavalent chromium	0.46		0.01	mg/L	0.500	ND	93.0	80-120		
Batch: B9L0495 - Ammonia										
Blank (B9L0495-BLK1)			0.4	,,	Prepared 8	& Analyzed: 1	2/11/19			
Ammonia	ND		0.1	mg/L						
Blank (B9L0495-BLK2)					Prepared 8	& Analyzed: 1	2/11/19			
Ammonia	ND		0.1	mg/L						
LCS (B9L0495-BS1)					Prepared 8	& Analyzed: 1	2/11/19			
Ammonia	1.1		0.1	mg/L	1.00		107	90-110		

				Control						
General Chemistry (Continued)										
			Reporting		Spike	Source		%REC		RPD
Analyte	Result	Qual	Limit	Units	Level	Result	%REC	Limits	RPD	Limit
Batch: B9L0495 - Ammonia (Con	tinued)									
LCS (B9L0495-BS2)	,				Prepared	& Analyzed: 1	2/11/19			
Ammonia	1.0		0.1	mg/L	1.00		95.5	90-110		
Duplicate (B9L0495-DUP1)		Source: 9	L10011-02		Prepared	& Analyzed: 1	2/11/19			
Ammonia	0.1		0.1	mg/L		0.1			2.69	20
Matrix Spike (B9L0495-MS1)		Source: 9	L10011-02		Prepared	& Analyzed: 1	2/11/19			
Ammonia	1.3		0.1	mg/L	1.00	0.1	119	80-120		
Batch: B9L0525 - TSS										
Blank (B9L0525-BLK1)					Prepared	& Analyzed: 1	2/11/19			
Total Suspended Solids	ND		2	mg/L						
LCS (B9L0525-BS1)					Prepared	& Analyzed: 1	2/11/19			
Total Suspended Solids	950		10	mg/L	1000	•	95.0	90-110		
Duplicate (B9L0525-DUP1)		Source: 9	L09030-01		Prepared	& Analyzed: 1	2/11/19			
Total Suspended Solids	ND		2	mg/L		ND				20
Batch: B9L0566 - Chloride										
Blank (B9L0566-BLK1)					Prepared	& Analyzed: 1	2/12/19			
Chloride	ND		1	mg/L						
LCS (B9L0566-BS1)					Prepared	& Analyzed: 1	2/12/19			
Chloride	62		1	mg/L	60.6		102	90-110		

				Control						
General Chemistry (Continued)										
			Reporting		Spike	Source		%REC		RPD
Analyte	Result	Qual	Limit	Units	Level	Result	%REC	Limits	RPD	Limit
Batch: B9L0566 - Chloride (Col	ntinued)									
Duplicate (B9L0566-DUP1)	s	ource: 9	L09037-01		Prepared 8	k Analyzed: 1	2/12/19			
Chloride	301		25	mg/L		324			7.41	20
Matrix Spike (B9L0566-MS1)	S	ource: 9	L09037-01		Prepared 8	k Analyzed: 1	2/12/19			

			Quality (Conti							
Total Metals										
Analyte	Result	Qual	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit
Batch: B9L0402 - Metals D	igestion Waters									
Blank (B9L0402-BLK1)				Pı	repared: 12/1	.0/19 Analyze	ed: 12/13/19			
Arsenic	ND		0.0001	mg/L						
Zinc	ND		0.001	mg/l						
Selenium	ND		0.005	mg/L						
Antimony	ND		0.0001	mg/L						
Nickel	ND		0.001	mg/l						
Iron	ND		0.001	mg/l						
Copper	ND		0.001	mg/l						
Cadmium	ND		0.0001	mg/L						
Silver	ND		0.0001	mg/L						
Magnesium	ND		0.05	mg/L						
Calcium	ND		0.05	mg/L						
Chromium	ND		0.0001	mg/L						
Lead	ND		0.0001	mg/L						
LCS (B9L0402-BS1)				Pi	repared: 12/1	.0/19 Analyze	ed: 12/11/19			
Magnesium	9.65		0.05	mg/L	10.0		96.5	85-115		
Calcium	10.2		0.05	mg/L	10.0		102	85-115		
LCS (B9L0402-BS2)				Pı	repared: 12/1	.0/19 Analyze	ed: 12/13/19			
Chromium	0.0210		0.0001	mg/L	0.0200		105	85-115		
Nickel	0.201		0.001	mg/l	0.200		101	85-115		
Iron	0.187		0.001	mg/l	0.200		93.7	85-115		
Copper	0.171		0.001	mg/l	0.200		85.5	85-115		
Silver	0.0201		0.0001	mg/L	0.0200		100	85-115		
Zinc	0.193		0.001	mg/l	0.200		96.5	85-115		
Cadmium	0.0187		0.0001	mg/L	0.0200		93.7	85-115		
Selenium	0.020		0.005	mg/L	0.0200		100	85-115		
Arsenic	0.0177		0.0001	mg/L	0.0200		88.6	85-115		
Antimony	0.0206		0.0001	mg/L	0.0200		103	85-115		
Lead	0.0207		0.0001	mg/L	0.0200		103	85-115		

Volatile Organic Compounds

Analyte	Result	Qual	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit
Batch: B9L0515 - Purge-Trap										
Blank (B9L0515-BLK1)					Prepared 8	& Analyzed: 1	2/12/19			
Benzene	ND		1	ug/l						
Carbon tetrachloride	ND		1	ug/l						
1,2-Dichlorobenzene	ND		1	ug/l						
1,3-Dichlorobenzene	ND		1	ug/l						
1,4-Dichlorobenzene	ND		1	ug/l						
1,1-Dichloroethane	ND		1	ug/l						
1,2-Dichloroethane	ND		1	ug/l						
Methylene chloride	ND		5	ug/l						
Tetrachloroethene	ND		1	ug/l						
Toluene	ND		1	ug/l						
1,1,2-Trichloroethane	ND		1	ug/l						
1,1,1-Trichloroethane	ND		1	ug/l						
Trichloroethene	ND		1	ug/l						
Vinyl chloride	ND		1	ug/l						
cis-1,2-Dichloroethene	ND		1	ug/l						
Acetone	ND		5	ug/l						
tert-Butyl alcohol	ND		5	ug/l						
Methyl t-butyl ether (MTBE)	ND		1	ug/l						
1,2-Dibromoethane (EDB)	ND		1	ug/l						
Total xylenes	ND		1	ug/l						
1,4-Dioxane	ND		500	ug/l						
o-Xylene	ND		1	ug/l						
m&p-Xylene	ND		2	ug/l						
tert-Amyl methyl ether	ND		1	ug/l						
Ethylbenzene	ND		1	ug/l						
Surrogate: 4-Bromofluorobenzene			45.4	ug/l	50.0		90.8	70-130		
Surrogate: 1,2-Dichloroethane-d4			52.0	ug/l	50.0		104	70-130		
Surrogate: Toluene-d8			46.6	ug/l	50.0		93.2	70-130		

Volatile Organic Compounds (Continued)

Analyte	Result	Qual	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit
Batch: B9L0515 - Purge-Trap	(Continued)			<u> </u>					<u> </u>	
LCS (B9L0515-BS1)	_				Prepared 8	& Analyzed: 12/1	12/19			
Benzene	17			ug/l	20.0		82.8	65-135		
Carbon tetrachloride	15			ug/l	20.0		76.6	70-130		
1,2-Dichlorobenzene	21			ug/l	20.0		103	65-135		
1,3-Dichlorobenzene	20			ug/l	20.0		101	70-130		
1,4-Dichlorobenzene	20			ug/l	20.0		101	65-135		
1,1-Dichloroethane	17			ug/l	20.0		85.6	70-130		
1,2-Dichloroethane	18			ug/l	20.0		89.4	70-130		
Methylene chloride	15			ug/l	20.0		73.9	60-140		
Tetrachloroethene	16			ug/l	20.0		79.4	70-130		
Toluene	17			ug/l	20.0		85.0	70-130		
1,1,2-Trichloroethane	17			ug/l	20.0		85.2	70-130		
1,1,1-Trichloroethane	15			ug/l	20.0		76.0	70-130		
Trichloroethene	14			ug/l	20.0		67.9	65-135		
Vinyl chloride	14			ug/l	20.0		68.2	5-195		
cis-1,2-Dichloroethene	18			ug/l	20.0		91.2	70-130		
Acetone	10			ug/l	20.0		47.9	34-193		
tert-Butyl alcohol	13			ug/l	20.0		66.2	26-177		
Methyl t-butyl ether (MTBE)	17			ug/l	20.0		84.8	70-130		
1,2-Dibromoethane (EDB)	16			ug/l	20.0		82.4	70-130		
Total xylenes	ND		1	ug/l				70-130		
1,4-Dioxane	0			ug/l	20.0			70-130		
o-Xylene	17			ug/l	20.0		83.6	70-130		
m&p-Xylene	37			ug/l	40.0		91.7	70-130		
tert-Amyl methyl ether	16			ug/l	20.0		77.8	70-130		
Ethylbenzene	16			ug/l	20.0		80.0	60-140		
Surrogate: 4-Bromofluorobenzene			49.0	ug/l	50.0		97.9	70-130		
Surrogate: 1,2-Dichloroethane-d4			50.9	ug/l	50.0		102	70-130		
Surrogate: Toluene-d8			47.7	ug/l	50.0		95.4	70-130		

				Control						
Semivolatile organic compounds										
Analyte	Result	Qual	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit
Batch: B9L0674 - EPA 3580A Blank (B9L0674-BLK1)					Prepared 8	& Analyzed: 1	2/16/19			
Ethanol	ND		10	mg/L						

Base/Neutral & Acid Extractables

Analyte	Result	Qual	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit
Batch: B9L0531 - Sep-Funnel-	extraction									
Blank (B9L0531-BLK1)				Pr	epared: 12/1	.2/19 Analyze	ed: 12/13/19			
2,4,6-Trichlorophenol	ND		2	ug/l						
2,4-Dichlorophenol	ND		2	ug/l						
2,4-Dimethylphenol	ND		10	ug/l						
2,4-Dinitrophenol	ND		5	ug/l						
2-Chlorophenol	ND		2	ug/l						
4,6-Dinitro-2-methylphenol	ND		5	ug/l						
4-Chloro-3-methylphenol	ND		2	ug/l						
4-Nitrophenol	ND		5	ug/l						
Acenaphthene	ND		2	ug/l						
Acenaphthylene	ND		2	ug/l						
Anthracene	ND		2	ug/l						
Benzo(a)anthracene	ND		2	ug/l						
Benzo(a)pyrene	ND		2	ug/l						
Benzo(b)fluoranthene	ND		2	ug/l						
Benzo(g,h,i)perylene	ND		2	ug/l						
Benzo(k)fluoranthene	ND		2	ug/l						
Bis(2-ethylhexyl)phthalate	ND		6	ug/l						
Butyl benzyl phthalate	ND		2	ug/l						
Chrysene	ND		2	ug/l						
Di(n)octyl phthalate	ND		3	ug/l						
Dibenz(a,h)anthracene	ND		2	ug/l						
Diethyl phthalate	ND		2	ug/l						
Dimethyl phthalate	ND		2	ug/l						
Di-n-butylphthalate	ND		3	ug/l						
Fluoranthene	ND		2	ug/l						
Fluorene	ND		2	ug/l						
Indeno(1,2,3-cd)pyrene	ND		2	ug/l						
Naphthalene	ND		2	ug/l						
Pentachlorophenol	ND		5	ug/l						
Phenanthrene	ND		2	ug/l						
Pyrene	ND		2	ug/l						
4-Methylphenol	ND		4	ug/l						
2-Methylphenol	ND		2	ug/l						
m&p-Cresol	ND		4	ug/l						
3-Methyl phenol	ND		4	ug/l						
2,4,5-Trichlorophenol	ND		2	ug/l						
2,6-Dichlorophenol	ND		2	ug/l						
Surrogate: Nitrobenzene-d5			<i>23.3</i>	ug/l	50.0		46.6	<i>30-118</i>		
Surrogate: p-Terphenyl-d14			34.5	ug/l	<i>50.0</i>		69.0	<i>38-130</i>		
Surrogate: 2-Fluorobiphenyl			24.0	ug/l	50.0		48.0	<i>30-130</i>		
Surrogate: Phenol-d6			8.52	ug/l	<i>50.0</i>		17.0	10-115		
Surrogate: 2,4,6-Tribromophenol			29.6	ug/l	<i>50.0</i>		59.1	15-130		
Surrogate: 2-Fluorophenol			11.9	ug/l	50.0		23.8	10-115		

Base/Neutral & Acid Extractables (Continued)

			Reporting		Spike	Source		%REC		RPE
Analyte	Result	Qual	Limit	Units	Level	Result	%REC	Limits	RPD	Lim
Ratch: B9L0531 - Sep-Funnel	-extraction (C	ontinue	ed)							
LCS (B9L0531-BS1)				Pi	repared: 12/1	.2/19 Analyze	ed: 12/13/19			
2,4,6-Trichlorophenol	34		2	ug/l	50.0		68.3	52-129		
2,4-Dichlorophenol	33		2	ug/l	50.0		65.2	53-122		
2,4-Dimethylphenol	28		10	ug/l	50.0		57.0	42-120		
2,4-Dinitrophenol	30		5	ug/l	50.0		59.9	5-173		
2-Chlorophenol	30		2	ug/l	50.0		59.2	36-120		
4,6-Dinitro-2-methylphenol	38		5	ug/l	50.0		75.2	53-130		
4-Chloro-3-methylphenol	34		2	ug/l	50.0		67.8	41-128		
4-Nitrophenol	15		5	ug/l	50.0		29.7	13-129		
Acenaphthene	35		2	ug/l	50.0		70.2	60-132		
Acenaphthylene	35		2	ug/l	50.0		70.0	54-126		
Anthracene	38		2	ug/l	50.0		75.7	43-120		
Benzo(a)anthracene	40		2	ug/l	50.0		80.5	42-133		
Benzo(a)pyrene	44		2	ug/l	50.0		88.8	32-148		
Benzo(b)fluoranthene	42		2	ug/l	50.0		85.0	42-140		
Benzo(g,h,i)perylene	43		2	ug/l	50.0		85.9	5-195		
Benzo(k)fluoranthene	42		2	ug/l	50.0		83.7	25-146		
Bis(2-ethylhexyl)phthalate	42		6	ug/l	50.0		83.7	29-137		
Butyl benzyl phthalate	40		2	ug/l	50.0		80.4	5-152		
Chrysene	42		2	ug/l	50.0		85.0	44-140		
Di(n)octyl phthalate	42		3	ug/l	50.0		84.4	19-132		
Dibenz(a,h)anthracene	43		2	ug/l	50.0		85.8	5-200		
Diethyl phthalate	37		2	ug/l	50.0		74.1	5-120		
Dimethyl phthalate	35		2	ug/l	50.0		70.0	5-120		
Di-n-butylphthalate	40		3	ug/l	50.0		80.9	8-120		
Fluoranthene	41		2	ug/l	50.0		81.1	43-121		
Fluorene	37		2	ug/l	50.0		73.8	70-120		
Indeno(1,2,3-cd)pyrene	46		2	ug/l	50.0		91.3	5-151		
Naphthalene	34		2	ug/l	50.0		68.4	36-120		
Pentachlorophenol	46		5	ug/l	50.0		93.0	38-152		
Phenanthrene	38		2	ug/l	50.0		77.0	65-120		
Pyrene	40		2	ug/l	50.0		80.4	70-120		
Surrogate: Nitrobenzene-d5			31.2	ug/l	50.0		62.5	30-118		
Surrogate: p-Terphenyl-d14			37.9	ug/l	50.0		75.8	38-130		
Surrogate: 2-Fluorobiphenyl			30.1	ug/l	50.0		60.3	30-119		
Surrogate: Phenol-d6			11.4	ug/l	50.0		22.7	10-115		
Surrogate: 2,4,6-Tribromophenol			38.3	ug/l	50.0		76.5	<i>15-130</i>		
Surrogate: 2-Fluorophenol			16.0	ug/l	50.0		31.9	10-115		

Polychlorinated Biphenyls (PCBs)

			Reporting		Spike	Source		%REC		RPD
Analyte	Result	Qual	Limit	Units	Level	Result	%REC	Limits	RPD	Limi
Batch: B9L0474 - Sep-Funnel-ex	ctraction									
Blank (B9L0474-BLK1)				Pi	epared: 12/1	1/19 Analyze	d: 12/12/19			
Aroclor-1016	ND		0.2	ug/l						
Aroclor-1221	ND		0.4	ug/l						
Aroclor-1232	ND		0.2	ug/l						
Aroclor-1242	ND		0.2	ug/l						
Aroclor-1248	ND		0.2	ug/l						
Aroclor-1254	ND		0.2	ug/l						
Aroclor-1260	ND		0.2	ug/l						
Aroclor-1262	ND		0.2	ug/l						
Aroclor-1268	ND		0.2	ug/l						
PCBs (Total)	ND		0.2	ug/l						
Surrogate: 2,4,5,6-Tetrachloro-m-xylene (TCMX)			0.0334	ug/l	0.0800		41.7	30-107		
Surrogate: Decachlorobiphenyl (DCBP)			0.0378	ug/l	0.0800		47.2	30-140		
LCS (B9L0474-BS1)				Pi	repared: 12/1	1/19 Analyze	d: 12/12/19			
Aroclor-1016	0.6		0.2	ug/l	1.00		58.1	40-124		
Aroclor-1260	0.6		0.2	ug/l	1.00		58.0	48-123		
Surrogate: 2,4,5,6-Tetrachloro-m-xylene (TCMX)			0.0327	ug/l	0.0800		40.9	30-107		
Surrogate: Decachlorobiphenyl (DCBP)			0.0409	ug/l	0.0800		51.1	<i>30-140</i>		

				Control						
Total Petroleum Hydrocarbon	ıs									
Analyte	Result	Qual	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit
Batch: B9L0651 - Sep-Funne	l-extraction									
batcii. Byboosi sep i dillie	CALIBELION									
Blank (B9L0651-BLK1)	CALIGERION				Prepared 8	& Analyzed: 1	2/16/19			
	ND		200	ug/l	Prepared 8	& Analyzed: 1	2/16/19			
Blank (B9L0651-BLK1)			200 <i>96.1</i>	ug/l ug/l	Prepared 8	& Analyzed: 1	2/16/19 <i>76.9</i>	47-115		
Blank (B9L0651-BLK1) Total Petroleum Hydrocarbons					125	& Analyzed: 1	76.9	47-115		
Blank (B9L0651-BLK1) Total Petroleum Hydrocarbons Surrogate: Chloroctadecane					125	· 	76.9	<i>47-115</i> 32.6-113		

Notes and Definitions

<u>Item</u>	Definition
Wet	Sample results reported on a wet weight basis.
ND	Analyte NOT DETECTED at or above the reporting limit.

NEW ENGLAND TESTING LABORATORY, INC. 59 Greenhill Street West Warwick, RI 02893 1-888-863-8522

CHAIN OF CUSTODY RECORD

	•	- - - - - - - - - - - - - -		, , , , , , , , , , , , , , , , , , , 	*.	, , , , , , , , , , , , , , , , , , , 	-	-
				+	+			
REMARKS							7	3
. RE			*				octions: Detection ments:	3usiness Dav
	\$ A						Special Instructions: List Specific Detection Limit Requirements:	Turnaround (Business Davs)
The state of the s				T			9 1 1	
The Many							J. irks:	
· \$1833.	X	*					Laboratory Remarks;	
σαποπα><>π						1,	Laborator Cooled ©	1
NO. OF	or						Date/Time	Date/Time
0-1mt	,						3	. Date
Д «ОЭШОЭЮ		26]	nature)
3							spature) :	ratory by: (Sig
2c fa						, duth	Received by: (High ature)	Received for Laboratory by: (Signature)
SAMPLE LD.								
2 2 2	3-1						Date/Time	Date Time
Alex	Jest Jest						A	5
Mayk Hormano (SP TIME OF B	XX							9
AME COMP	22			-			gnature):: (Signature)	by: (Signature)
CLIENT MEPORT TO: *							Sampled by: (Signature)	Relinguisha by
jō æ ≚ 						1 1	Jö Zü	Page 32

ATTACHMENT D MASSACHUSETTS CULTURAL RESOURCES

Massachusetts Cultural Resource Information MACRIS

MHC Home | MACRIS Home

Results

Get Results in Report Format

Spreadsheet OPDF

Below are the results of your search, using the following search criteria:

Town(s): Somerville Street No: 395

Street Name: Alewife Brook Pkwy

Resource Type(s): Area, Building, Burial Ground, Object, Structure

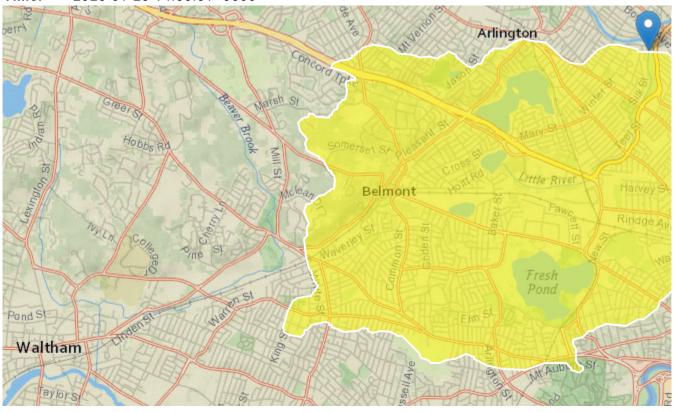
For more information about this page and how to use it, click here

No Results Found.

New Search — Same Town(s)

MHC Home | MACRIS Home

ATTACHMENT E STREAM STATISTICS/DILUTION FACTOR CONFIRMATION


StreamStats Report

Region ID: MA

Workspace ID: MA20200123195035632000

Clicked Point (Latitude, Longitude): 42.41383, -71.13255

Time: 2020-01-23 14:50:51 -0500

Parameter Code	Parameter Description	Value	Unit
DRNAREA	Area that drains to a point on a stream	8.84	square miles
BSLDEM250	Mean basin slope computed from 1:250K DEM	1.614	percent
DRFTPERSTR	Area of stratified drift per unit of stream length	0.53	square mile per mile
MAREGION	Region of Massachusetts 0 for Eastern 1 for Western	0	dimensionless

1 of 3

Low-Flow Statistics Parameters [Statewide Low Flow WRIR00 4135]

Parameter Code	Parameter Name	Value	Units	Min Limit	Max Limit
DRNAREA	Drainage Area	8.84	square miles	1.61	149
BSLDEM250	Mean Basin Slope from 250K DEM	1.614	percent	0.32	24.6
DRFTPERSTR	Stratified Drift per Stream Length	0.53	square mile per mile	0	1.29
MAREGION	Massachusetts Region	0	dimensionless	0	1

Low-Flow Statistics Flow Report[Statewide Low Flow WRIR00 4135]

PII: Prediction Interval-Lower, Plu: Prediction Interval-Upper, SEp: Standard Error of Prediction, SE: Standard Error (other -- see report)

Statistic	Value	Unit	PII	Plu	SE	SEp
7 Day 2 Year Low Flow	1.56	ft^3/s	0.449	5.19	49.5	49.5
7 Day 10 Year Low Flow	0.759	ft^3/s	0.176	3.06	70.8	70.8

Low-Flow Statistics Citations

Ries, K.G., III,2000, Methods for estimating low-flow statistics for Massachusetts streams: U.S. Geological Survey Water Resources Investigations Report 00-4135, 81 p. (http://pubs.usgs.gov/wri/wri004135/)

USGS Data Disclaimer: Unless otherwise stated, all data, metadata and related materials are considered to satisfy the quality standards relative to the purpose for which the data were collected. Although these data and associated metadata have been reviewed for accuracy and completeness and approved for release by the U.S. Geological Survey (USGS), no warranty expressed or implied is made regarding the display or utility of the data for other purposes, nor on all computer systems, nor shall the act of distribution constitute any such warranty.

USGS Software Disclaimer: This software has been approved for release by the U.S. Geological Survey (USGS). Although the software has been subjected to rigorous review, the USGS reserves the right to update the software as needed pursuant to further analysis and review. No warranty, expressed or implied, is made by the USGS or the U.S. Government as to the functionality of the software and related material nor shall the fact of release constitute any such warranty. Furthermore, the software is released on condition that neither the USGS nor the U.S. Government shall be held liable for any damages resulting from its authorized or unauthorized use.

USGS Product Names Disclaimer: Any use of trade, firm, or product names is for descriptive purposes only and does not imply endorsement by the U.S. Government.

2 of 3 1/23/2020, 2:52 PM

Application Version: 4.3.11

3 of 3

 From:
 Vakalopoulos, Catherine (DEP)

 To:
 "mgermano916@gmail.com"

 Subject:
 RE: RGP-Dilution Factor

Date: Thursday, January 23, 2020 4:36:26 PM

Hi Mark,

Yes, as we discussed over the phone today, I can confirm that the dilution factor (14.64) for the proposed dewatering discharge with a design flow of 25 gpm from 395 Alewife Brook Parkway in Somerville directly to Alewife Brook (southwest of the rotary) is correct. Please note that the 7Q10 is 0.759 cfs which equals 0.491 mgd.

To assist you with the NOI in case you have not filled this part out: this segment of Alewife Brook is identified as MA71-04, is classified as class B, is not an Outstanding Resource Water, and there are no approved TMDLs for this segment. As we also discussed, the \$500 MassDEP WM15 fee is not required because this is a current MCP site.

Please let me know if you have any additional questions.

Cathy

Cathy Vakalopoulos, Massachusetts Department of Environmental Protection 1 Winter St., Boston, MA 02108, 617-348-4026

🔥 Please consider the environment before printing this e-mail

From: mgermano916@gmail.com [mailto:mgermano916@gmail.com]

Sent: Thursday, January 23, 2020 3:38 PM

To: Vakalopoulos, Catherine (DEP) **Subject:** RGP-Dilution Factor

Hi Catherine.

Pursuant to our conversation today. I am preparing a NOI for a RGP for 395 Alewife Brook Parkway Somerville, MA RTN 3-2770. Using Stream Stats we determined

The 7Q10 to be 0.759 mgd. The treatment system maximum flow is 25 gpm. We calculated the Dilution Factor to be 14.64. Please confirm.

Mark

Mark A. Germano, LSP 781-837-1949 office 339-793-3528 cell