

Consulting Engineers and December 17, 2019 (Revised January 22, 2020)

Project 1703090

Scientists

Via E-mail: NPDES.Generalpermits@epa.gov

Ms. Shelly Puleo Environmental Protection Agency RGP NOI Processing 5 Post Office Square, Suite 100 Mail Code OEP06-4 Boston, MA 02109-3912

Dear Ms. Puleo:

Re: Notice of Intent

NPDES Remediation General Permit Proposed Downing Square Housing Development

19R Park Avenue

Arlington, Massachusetts

On behalf of the Housing Corporation of Arlington (HCA), GEI Consultants, Inc. has prepared this Notice of Intent (NOI) for coverage under the National Pollutant Discharge Elimination System (NPDES) Remediation General Permit (RGP), Massachusetts General Permit (MAG910000). This NOI was prepared in accordance with the general requirements of the NPDES RGP under Federal Register, Vol. 82, No. 12, dated January 19, 2017, and related guidance documentation provided by the U.S. Environmental Protection Agency (EPA). The completed NOI form is provided in Appendix A.

Site Information

This NOI has been prepared for the discharge of dewatering effluent during construction of the proposed Downing Square housing development located at the intersection of Park Avenue and Lowell Street in Arlington, Massachusetts (the Property; Fig. 1). The Property is an approximately one-acre undeveloped parcel owned by HCA. The Property was formerly occupied by, among other uses, a welding shop, an automotive shop, community vehicle storage garages, and a scrap yard (Fig. 2). HCA plans to redevelop the Property into a multi-family residential housing development (Fig. 3). The Property is a Massachusetts Department of Environmental Protection (MassDEP) disposal site (Release Tracking Number [RTN] 3-24864). As the Property is an open MassDEP disposal site, a MassDEP Bureau of Resource Protection fee is not required.

Redevelopment activities will include the excavation of PCB and other contaminated soils during construction. Because PCBs at concentration greater than or equal to 50 parts per million (ppm) have been detected in the soil, the removal and disposal of all PCB-impacted materials at the Property must be conducted in accordance with the requirements of the Toxic Substances Control Act (TSCA) regulations, along with the Massachusetts Contingency Plan (MCP) regulations.

Construction dewatering will be necessary during excavation of contaminated soils. The intent of the project is to recharge groundwater on site. However, if this is not possible, it will be discharged to nearby Town of Arlington catch basins, which discharge to No Name Brook along the Minuteman Bike Path via Outfall OF-56 and then ultimately to Mill Brook, in accordance with the RGP (Fig. 3 and 4).

Owner and Operator Information Owner

Owner

Housing Corporation of Arlington 252 Massachusetts Avenue Arlington, MA 02474 Contact: Pamela Hallett Executive Director (781) 859-5294 phallett@housingcorparlington.org

Operator

NRC East Environmental Services, Inc. 19 National Drive
Franklin, MA 02038
Contact: David Guirguess
Project Manager
(201) 341-9001
dguirguess@nrcc.com

As the owner, HCA has operational control over the construction plans and specifications, including the ability to make modifications to those plans and specifications. NRC East Environmental Services, Inc. of Franklin, Massachusetts, as the operator, will direct the personnel responsible for the implementation and day-to-day operations and activities that are necessary to ensure compliance with the NPDES RGP, including operation, inspection, monitoring, and reporting. The owner and operator are applying for coverage under the RGP as co-permittees.

Receiving Water Information

Receiving water quality data, collected by GEI on June 28, 2019 on behalf of HCA, was used to support this NOI. A sample from No Name Brook along the Minuteman Bike Path, the receiving water, was collected approximately 15 feet east of the Town of Arlington outfall. The sample was submitted to ESS Laboratory, Inc. (ESS) of Cranston, Rhode Island for analysis of metals, hardness and ammonia. The results are summarized in Table 1 and the associated laboratory data report is in Appendix B. Receiving water temperature was obtained in the field and is noted on the effluent limitations input calculation page in Appendix A.

The seven-day-ten-year flow 7Q10 of the ultimate receiving water (Mill Brook) was established using the U.S. Geological Survey (USGS) StreamStats program and confirmed by the MassDEP on August 1, 2019. The StreamStats report, Dilution Factor calculations, and MassDEP confirmation of the 7Q10 and Dilution Factor are included in Appendix A. The 7Q10 of Mill Brook is 0.126 ft³/s and the Dilution Factor is 1.56.

The effluent limits were generated using the NPDES RGP NOI Dilution Factor Calculation spreadsheet. Copies of the "EnterData" and "FreshwaterResults" tabs from the spreadsheet are provided in Appendix A. The resulting calculated effluent limits are in Table 2.

Source Water Information

We evaluated the proposed influent by collecting two groundwater samples from the Property. The groundwater samples were collected from monitoring wells B203(MW) and GZ-3B on June 12, 2019 (Fig. 2) and submitted to ESS for analysis of the parameters required under the NPDES RGP. In addition, the pH and temperature of the proposed influent was measured in the field to evaluate existing conditions. The results are in Table 2 and the associated laboratory data report for these samples are provided in Appendix C.

The analytical results indicated the presence of ammonia, chloride, metals (cadmium, copper, iron, lead and zinc), cis-1,2-dichloroethene and vinyl chloride (both VOCs), and the following PAHs: benzo(a)anthracene, benzo(a)pyrene, benzo(b)fluoranthene, benzo(k)fluoranthene, chrysene, dibenzo(a,h)anthracene, fluorene, and indeno(1,2,3-cd)pyrene. The measured pH range of the groundwater within the project site was approximately 6.2 standard units (s.u.). Although not detected in these groundwater samples, other contaminants in soil have included PCBs, arsenic, chromium, trichloroethylene, and tetrachloroethylene. These contaminants also have the potential to be present in the source water.

Treatment System Information

During construction, the collected water will be treated to remove suspended solids using a sedimentation tank and bag filters. The proposed conceptual treatment system is shown in the process flow diagram in Fig. 5. Additional treatment may include granulated activated carbon (GAC) and ion exchange, if necessary. If chemicals or other additives are necessary to meet effluent criteria (e.g., pH conditioners), we will request a Notice of Change under the permit.

Although final products for additional treatment will be determined by the operator or their designated contractor, example product information, including Safety Data Sheets (SDSs), associated hazards, operation recommendations, and product information for GAC and ion exchange systems adjustment are in Appendix A. These systems will be mobilized as necessary to achieve effluent limitations.

If required, chemical additives may include a metered sulfuric acid (70-100%) system. Similarly, oxidizers such as ferric sulfate may be used to treat for iron. If the addition of chemical additives is required to meet permit effluent limits, or applicable water quality standards, a Notice of Change (NOC) will be filled on behalf of the owner and operator with specific product information attached. Additives will be stored in 55-gallon drums with secondary containment systems. Procedures for proper handling and spill prevention are included in the site-specific Best Management Practices Plan (BMPP). The addition of ferric sulfate for iron treatment and sulfuric acid to reduce pH levels are established practices for temporary construction dewatering, and are not expected to exceed applicable effluent limits, water quality standards, or alter conditions in the receiving water. In addition, use of these additives will not add any pollutants that would justify application of additional permit conditions.

Discharge Information

We anticipate treated effluent discharge rates to be about 50 gallons per minute (gpm) or less, with occasional peak flows of approximately 100 gpm during significant precipitation events. The treated water will be discharged to one or two catch basins at the intersection of Park Avenue and Lowell Street. These catch basins are identified on Fig. 3 as Proposed Discharge Points 1 and 2. According to plans we reviewed from the Town of Arlington's Engineering Department on May 8, 2019, these catch basins are part of the Town storm water drainage system that discharges to an outfall (OF-56) at No Name Brook along the Minuteman Bike Path, approximately 200 feet from the Site. The discharge path and ultimate discharge outfall at No Name Brook is shown on Fig. 3. No Name Brook follows the Minuteman Bike Path for approximately 0.2 mile before entering an inlet control structure, which ultimately discharges to an outfall at Mill Brook.

Endangered Species Act Eligibility

We reviewed the U.S. Fish and Wildlife Service (FWS) Information, Planning, and Conservation (IPAC) online database for the site and receiving water ("project action area"). A copy of the database report is in Appendix D. Based on this report, the project action area meets FWS Criterion A (i.e., no listed species or critical habitats are within the project action area).

National Historic Preservation Requirements

We reviewed online records from the U.S. National Register of Historic Places database and the Massachusetts Cultural Resource Information System (MACRIS). Maps of the Property and surrounding areas obtained from both databases are included in Appendix E. Based on the review, the Property is not a listed as a National Historic Place.

The point where the discharge reaches the receiving water (i.e., Outfall 56 to No Name Brook) is not listed as a National Historic Place. The inventory listing from the MACRIS database is included in Appendix E. Files related to the district have not yet been digitized on the National Register of Historic Places database, but the National Register of Historic Places Inventory-Nomination Form is included in Appendix E.

Coverage Under NPDES RGP

It is our opinion that the proposed discharge is eligible for coverage under the NPDES RGP based on the requirements of the NPDES RGP and our evaluation of the available project-specific information. The current intent of project dewatering activities is to recharge groundwater on site. However, if this is not possible, it will be discharged to the nearby storm water drainage system after treatment. On behalf of HCA, we are requesting coverage under the NPDES RGP for the discharge of treated construction dewatering effluent to the surface waters of Mill Brook via No Name Brook and Town of Arlington storm water drainage system.

The enclosed NOI form and supporting documentation provides required information on the general site conditions, discharge, treatment system, receiving water, and consultation with federal services (Appendices A through E).

Discharge of treated water is scheduled to begin in January 2020, although recharge to on-site recharge pits is planned if possible.

Please contact me at 781.721.4012 or igladstone@geiconsultants.com or Ryan Hoffman at 781.721.4091 or rhoffman@geiconsultants.com if you have any questions.

Sincerely,

GEI CONSULTANTS, INC.

Heen S. Gladstone, P.E., LSP, LEED AP

Senior Vice President

Ryan Hoffman, P.G., LSP

Environmental Division Manger

MEG/CMM/RSH:jam

Enclosures

c: Pamela Hallett, Housing Corporation of Arlington David Guirguess, NRC

Tables		

Table 1. Chemical Testing Results - Receiving Water (No Name Brook along Minuteman Bike Path)
Downing Square
Housing Corporation of Arlington
Arlington, Massachusetts

	sw		
		Sample Date:	6/28/2019
Analyte	Method	Units	
Total Metals		ug/L	
Antimony	200.8		<5.0
Arsenic	3113B		<1.0
Cadmium	200.8		<0.2
Chromium, Total	200.7		<2.0
Chromium VI	3500Cr B-2009		<10.0
Copper	200.7		<2.0
Iron	200.7		687
Lead	200.8		<2.0
Mercury	245.1		<0.2
Nickel	200.7		<5.0
Selenium	3113B		<2.0
Silver	200.7		<0.5
Zinc	200.7		24.7
Other			
Hardness	6010C	ug/l	163000
Ammonia as Nitrogen	350.1	ug/l	<0.10
Temperature	Field	Deg C	18.9
pН	Field	S.U.	6.0-6.5

General Notes:

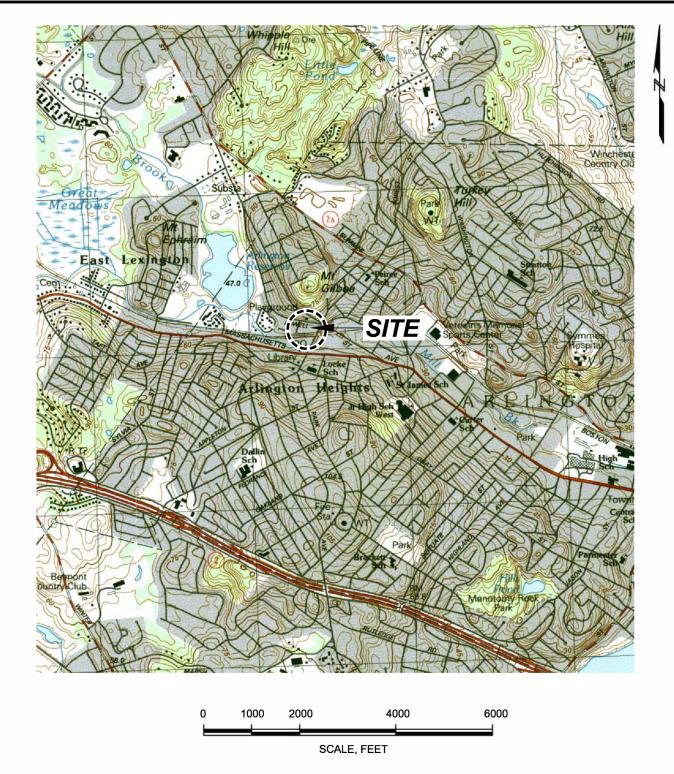
- Only analytes detected in at least one sample are reported here. For a complete list of analytes, see the laboratory data sheets.
- 2. "<" = Analyte not detected at a concentration above the laboratory reporting limit.
- 3. $\mu g/I = micrograms per liter$.
- 4. S.U. = standard units.
- 5. Temperature and pH were measured in the field.

Table 2. Chemical Testing Results - Groundwater Downing Square Housing Corporation of Arlington Arlington, Massachusetts

			Sam	ple Location:	B203(MW)	GZ-3B
				Sample Date:	6/11/2019 4-12	6/11/2019
	1		Sci	reen Interval:		Unknown
Analyte	Method	Units	MCP RCGW-2	Site Specific Effluent Limits		
Volatile Organic Compounds (VOCs)		ug/l				
Total BTEX	524.2		NS	100	ND	ND
1,4-Dioxane	8270D-SIM		6,000	200	<0.250	<0.250
Total Non-Halogenated VOCs cis-1,2-Dichloroethene	524.2		NS	NS 70	ND <0.5	ND 109
Vinyl Chloride				2	<0.5	9.1
Total Halogenated VOCs	524.2		NS	NS NS	ND	118.1
Semivolatile Organic Compounds (SVOCs)	625.1 SIM	ug/l	INO	140	ND	110.1
Total Phthalates	023.1 31W	ug/i	NS	100	ND	ND
			NS NS	190 1	ND 0.05	0.36
Total Group I PAHs						
Total Group II PAHs		"	NS	100	ND	0.67
Fuel Parameters	10011	ug/l	5.000	5.0	NE	
Total Petroleum Hydrocarbons	1664A		5,000	5.0	ND	ND
Methyl-tert-Butyl Ether	524.2		50,000	70	<0.5	<0.5
Ethanol	ASTM D3695		NS	Report	<10	<10
Total Metals		ug/L				
Antimony	200.8		8,000	206	<5.0	<5.0
Arsenic	3113B		900	104	<1.0	<1.0
Cadmium	200.8		4	10.2	0.5	<0.2
Chromium, Total	200.7		300	NS	<5.0	<5.0
Chromium III	200.7		600	323	<10.0	<10.0
Chromium VI	3500Cr B-2009		300	323	<10.0	<10.0
Copper	200.7		100,000	242	4.4	2.6
Iron	200.7		NS	1,039	5610	858
Lead	200.8		10	160	7.0	<0.5
Mercury	245.1		20	0.739	<0.2	<0.2
Nickel	200.7		200	1,450	<5.0	<5.0
Selenium	3113B		100	235.8	<2.0	<2.0
Silver	200.7		7	35.1	<0.5	<0.5
Zinc	200.7		900	420	54.5	17.0
Dissolved Metals		ug/L				
Antimony	200.8		8,000		<1.00	<1.00
Arsenic	3113B		900		<5.0	<5.0
Cadmium	200.8		4		0.3	<0.2
Chromium, Total	200.7		300		<5.0	<5.0
Copper	200.7		100,000		<2.0	<2.0
Iron	200.7		NS		1850	832
Lead	200.8		10		<1.0	<1.0
Mercury	245.1		20		<0.20	<0.20
Nickel	200.7		200	+	<5.0	<5.0
Selenium	3113B		100		<5.0	<5.0
Silver	200.7		7		<0.5	<0.5
Zinc	200.7		900		46.1	11.2
Polychlorinated Biphenlyls (PCBs)	608.3	ug/l	300		1 0. I	11.4
Total PCBs	200.0	3''	5	0.5	ND	ND

Table 2. Chemical Testing Results - Groundwater Downing Square Housing Corporation of Arlington Arlington, Massachusetts

Sample Location: Sample Date: Screen Interval:						GZ-3B 6/11/2019 Unknown	
Analyte	Site Specific MCP Effluent yte Method Units RCGW-2 Limits						
Other							
Ammonia as Nitrogen	350.1	mg/L	NS	Report	0.40	0.1	
Cyanide	4500 CN CE		30	178	<5.00	<5.00	
Chloride	300.0	mg/L	NS	Report	20.6	3.8	
Phenols	420.1	ug/l	NS	1,080	<100	<100	
Hardness	200.7	ug/l	NS	NS	147000	97200	
Total Residual Chloride	4500CL D	ug/l	NS	12	<20.0	<20.0	
Total Suspended Solids	2540D	mg/l	NS	30	108	<5	
Temperature	Field	Deg C	NS	NS	10.9	10.7	
рН	Field	S.U.	NS	6.5 to 8.3	6.2	6.2	


General Notes:

- 1. For a complete list of analytes, see the laboratory data sheets.
- 2. "<" = Analyte not detected at a concentration above the laboratory reporting limit.
- 3. MCP = 310 CMR 40.0000 Massachusetts Contingency Plan with revisions effective June 20, 2014.
- 4. RCGW-2 = Reportable Concentration for category GW-2 Groundwater.
- μg/l = micrograms per liter.
- 6. mg/l = milligram per liter.
- 7. deg C = Degrees Celsius.
- 8. S.U. = standard units.
- 9. Dilution Factor of 3.5 used to establish effluent limits.
- 10. Effluent limits calculated using NPDES RGP NOI Dilution Factor Spreadsheet.
- Temperature and pH were measured in the field.

Footnotes:

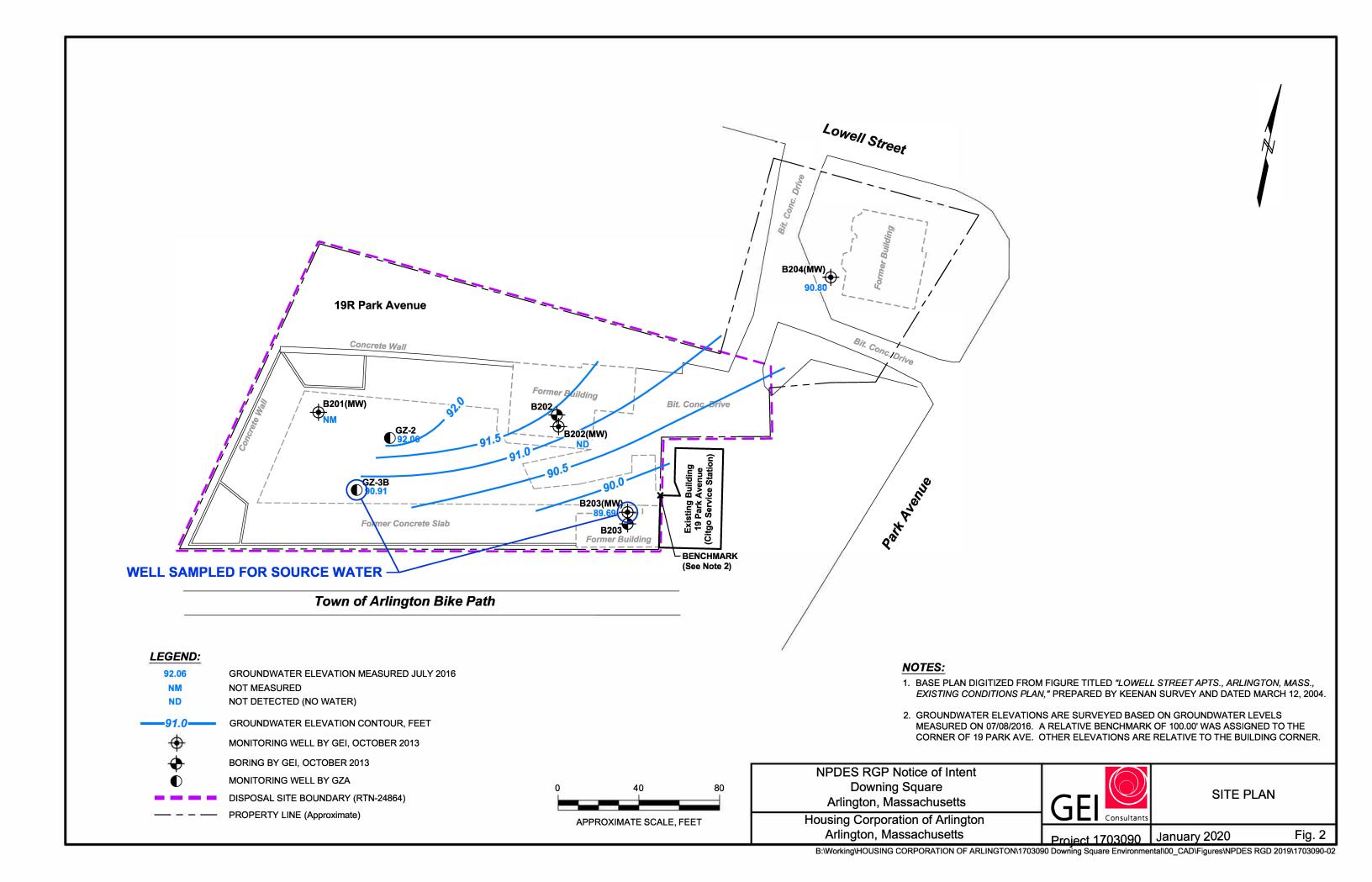
- 1. Total Non-Halogenated VOCs include benzene, ethylbenzene, toluene, and xylenes (BTEX), acetone, 1,4-dioxane, and phenols.
- 2. Total Halogenated VOCs include carbon tetrachloride, 1,2-dichlorobenzene, 1,3-dichlorobenzene, 1,4-dichlorobenzene, 1,1-dichlorethane, 1,2-dichlorethane, 1,2-dichloroethene, ethylene dibromide, methylene chloride, 1,1,1-trichloroethane, 1,1,2-
- 3. Group I PAHs include benzo(a)anthracene, benzo(a)pyrene, benzo(b)fluoranthene, benzo(k)fluoranthene, chrysene, dibenz(a,h)anthracene, and ideno(1,2,3-cd)pyrene.
- 4. Group II PAHs include: acenaphthene, acenaphthylene, anthracene, bezon(g,h,i)perylene, fluoranthene, fluorene, naphthalene, phenanthrene, and pyrene.

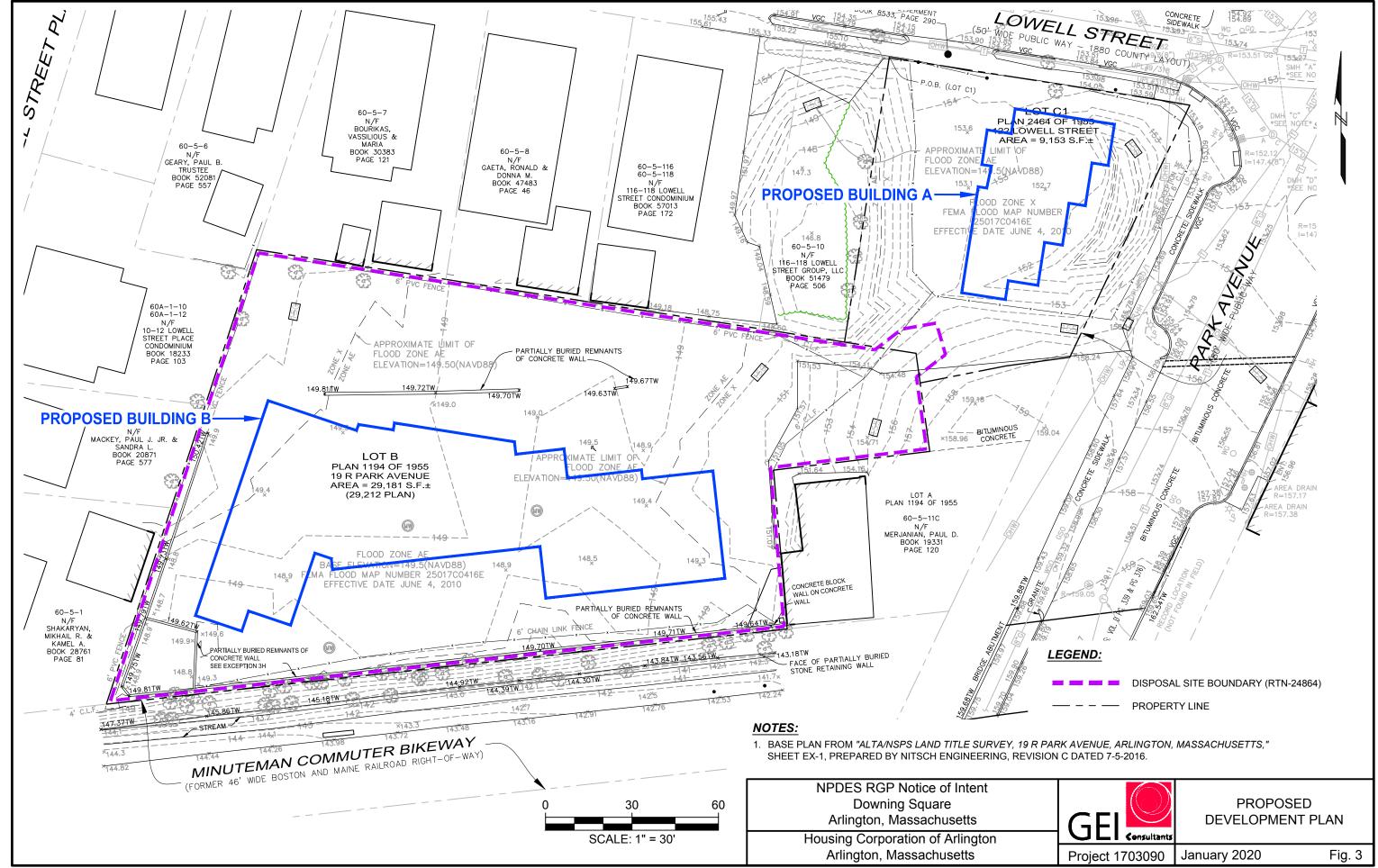
Figures		

This Image provided by MassGIS is from U.S.G.S.
Topographic 7.5 X 15 Minute Series
Boston North, MA Quadrangle, 1985.
Datum is National Geodetic Vertical Datum of 1929 (NGVD29).
Contour Interval is 3 Meters.

NPDES RGP Notice of Intent Downing Square Arlington, Massachusetts

Housing Corporation of Arlington Arlington, Massachusetts




PROPERTY LOCATION MAP

Project 1703090

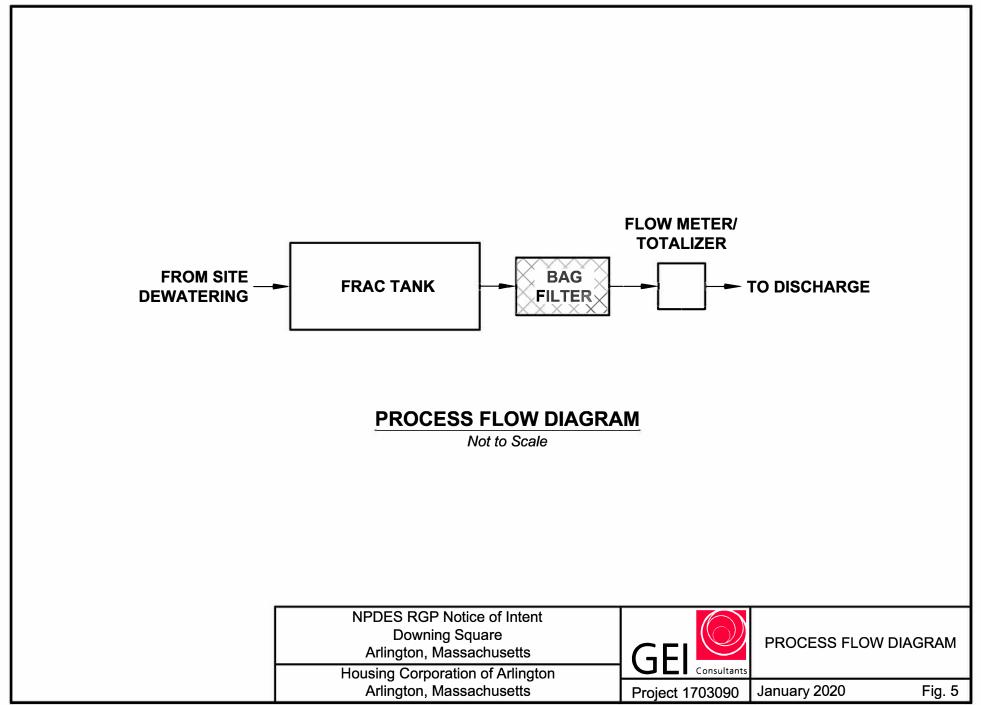

January 2020

Fig. 1

Appendix A

Rem	ediatio	n General	Permit

Notice of Intent

II. Suggested Format for the Remediation General Permit Notice of Intent (NOI)

A. General site information:

Site address: 19 R Park Avenue			
Street:			
City: Arlington		State: MA	Zip: 02476
Contact Person: Pamela Hallett			
Telephone: (781) 859-5294	Email: pha	allett@hous	ingcorparlington.or
Mailing address: 252 Massachusetts Avenue			
Street:			
City: Arlington		State: MA	Zip: 02474
Contact Person: David Guirguess			
Telephone: (201) 341-9001	Email: dgu	uirguess@n	rcc.com
Mailing address:			
Street: 19 National Drive		,	
City: Franklin		State: MA	Zip: 02038
5. Other regulatory program(s) that apply to the site	(check all th	at apply):	
■ MA Chapter 21e; list RTN(s):	□ CERCL	LΑ	
3-24864	□ UIC Pro	ogram	
Street: City: Arlington Contact Person: Pamela Hallett Telephone: (781) 859-5294 Mailing address: 252 Massachusetts Avenue Street: City: Arlington State: MA Zip: 02474 Zip: 02474 Zip: 02474 Zip: 02474 Contact Person: David Guirguess Telephone: (201) 341-9001 Mailing address: Street: 19 National Drive City: Franklin State: MA Zip: 02038 A: S. Other regulatory program(s) that apply to the site (check all that apply): MA Chapter 21e; list RTN(s):			
Groundwater Release Detection Permit:	□ CWA S	section 404	
	Street: City: Arlington Contact Person: Pamela Hallett Telephone: (781) 859-5294 Mailing address: 252 Massachusetts Avenue Street: City: Arlington Contact Person: David Guirguess Telephone: (201) 341-9001 Mailing address: 19 National Drive Street: City: Franklin 5. Other regulatory program(s) that apply to the site MA Chapter 21e; list RTN(s): 3-24864 □ NH Groundwater Management Permit or	Street: City: Arlington Contact Person: Pamela Hallett Telephone: (781) 859-5294 Email: pha Mailing address: 252 Massachusetts Avenue Street: City: Arlington Contact Person: David Guirguess Telephone: (201) 341-9001 Email: dgu Mailing address: 19 National Drive Street: City: Franklin 5. Other regulatory program(s) that apply to the site (check all the mail and the mail and the mail and the mail apply to the site (check all the mail and the mail and the mail apply to the site (check all the mail and the mail apply to the site (check all the mail and the mail apply to the site (check all the mail and the mail apply to the site (check all the mail and the mail apply to the site (check all the mail ap	Street: City: Arlington Contact Person: Pamela Hallett Telephone: (781) 859-5294 Email: phallett@hous Mailing address: 252 Massachusetts Avenue Street: City: Arlington State: MA Contact Person: David Guirguess Telephone: (201) 341-9001 Mailing address: Street: 19 National Drive Street: City: Franklin State: MA 5. Other regulatory program(s) that apply to the site (check all that apply): MA Chapter 21e; list RTN(s): 3-24864 NH Groundwater Management Permit or Groundwater Release Detection Permit:

B. Receiving water information:			
1. Name of receiving water(s):	Waterbody identification of receiving water(s):	Classi	ification of receiving water(s):
Mill Brook	MA71-07	В	
Receiving water is (check any that apply): \Box Outstanding l	Resource Water □ Ocean Sanctuary □ territorial sea □	Wild and Scenic	River
2. Has the operator attached a location map in accordance of Are sensitive receptors present near the site? (check one): If yes, specify:		□ No	
3. Indicate if the receiving water(s) is listed in the State's In pollutants indicated. Also, indicate if a final TMDL is avail 4.6 of the RGP. Impaired water body - see attached Table	lable for any of the indicated pollutants. For more infor		
4. Indicate the seven day-ten-year low flow (7Q10) of the r Appendix V for sites located in Massachusetts and Append		uctions in	0.126 cfs
5. Indicate the requested dilution factor for the calculation accordance with the instructions in Appendix V for sites in			1.56
6. Has the operator received confirmation from the appropriate yes, indicate date confirmation received: 08/01/2019 7. Has the operator attached a summary of receiving water (check one): ■ Yes □ No			
C. Source water information:1. Source water(s) is (check any that apply):			

1. Source water(s) is (check any that apply):			
■ Contaminated groundwater	☐ Contaminated surface water	☐ The receiving water	☐ Potable water; if so, indicate municipality or origin:
Has the operator attached a summary of influent sampling results as required in Part 4.2 of the RGP	Has the operator attached a summary of influent sampling results as required in Part 4.2 of the	☐ A surface water other	
in accordance with the instruction in Appendix VIII? (check one):	RGP in accordance with the instruction in Appendix VIII? (check one):	than the receiving water; if so, indicate waterbody:	☐ Other; if so, specify:
■ Yes □ No	□ Yes □ No		

2. Source water contaminants: Groundwater at current MassDEP disposal s	site for PCBs, metals, VOCs (RTN 3-24864)
a. For source waters that are contaminated groundwater or contaminated surface water, indicate are any contaminants present that are not included in	b. For a source water that is a surface water other than the receiving water, potable water or other, indicate any contaminants present at the maximum concentration in accordance
the RGP? (check one): ☐ Yes ■ No If yes, indicate the contaminant(s) and the maximum concentration present in accordance with the instructions in Appendix VIII.	with the instructions in Appendix VIII? (check one): ☐ Yes ☐ No
3. Has the source water been previously chlorinated or otherwise contains resid	lual chlorine? (check one): ☐ Yes ■ No
D. Discharge information	
1. The discharge(s) is a(n) (check any that apply): □ Existing discharge ■ New	v discharge □ New source
Outfall(s):	Outfall location(s): (Latitude, Longitude)
OF-56 (Town of Arlington	42.42546 degrees N 71.18216 degrees W
Discharges enter the receiving water(s) via (check any that apply): □ Direct dis	scharge to the receiving water ■ Indirect discharge, if so, specify:
☐ A private storm sewer system ■ A municipal storm sewer system If the discharge enters the receiving water via a private or municipal storm sewer.	er system:
Has notification been provided to the owner of this system? (check one): ■ Ye	es 🗆 No
Has the operator has received permission from the owner to use such system fo obtaining permission: When issued, the RGP Authorization will be submit	or discharges? (check one): ☐ Yes ■ No, if so, explain, with an estimated timeframe for tted to the Town of Alrington
Has the operator attached a summary of any additional requirements the owner	of this system has specified? (check one): ☐ Yes ■ No
Provide the expected start and end dates of discharge(s) (month/year): January	y 2020
Indicate if the discharge is expected to occur over a duration of: ■ less than 12	2 months □ 12 months or more □ is an emergency discharge
Has the operator attached a site plan in accordance with the instructions in D, a	bove? (check one): ■ Yes □ No

2. Activity Category: (check all that apply)	3. Contamination Type Category: (check	all that apply)
	a. If Activity Categ	ory I or II: (check all that apply)
	 □ A. Inorganics □ B. Non-Halogenated Volatile Organic □ C. Halogenated Volatile Organic Cor □ D. Non-Halogenated Semi-Volatile Organic □ E. Halogenated Semi-Volatile Organi □ F. Fuels Parameters 	mpounds Organic Compounds
☐ I – Petroleum-Related Site Remediation☐ II – Non-Petroleum-Related Site Remediation	b. If Activity Category III, IV	V, V, VI, VII or VIII: (check either G or H)
■ III – Contaminated Site Dewatering□ IV – Dewatering of Pipelines and Tanks	■ G. Sites with Known Contamination	☐ H. Sites with Unknown Contamination
 □ V – Aquifer Pump Testing □ VI – Well Development/Rehabilitation □ VII – Collection Structure Dewatering/Remediation 	c. If Category III-G, IV-G, V-G, VI-G, VII-G or VIII-G: (check all that apply)	
□ VIII – Dredge-Related Dewatering	 ■ A. Inorganics ■ B. Non-Halogenated Volatile Organic Compounds ■ C. Halogenated Volatile Organic Compounds □ D. Non-Halogenated Semi-Volatile Organic Compounds ■ E. Halogenated Semi-Volatile Organic Compounds □ F. Fuels Parameters 	d. If Category III-H, IV-H, V-H, VI-H, VII-H or VIII-H Contamination Type Categories A through F apply

4. Influent and Effluent Characteristics

Knov		Known Known		7 D 4	D 4 4	In	fluent	Effluent Li	Effluent Limitations	
Parameter	meter $ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	average	TBEL	WQBEL						
A. Inorganics										
Ammonia		~	2	350.1	100	400	250	Report mg/L		
Chloride		~	2	300.0	50000	20600	12200	Report µg/l		
Total Residual Chlorine	~		2	4500CLD	20.0	< 20.0	0	0.2 mg/L	12	
Total Suspended Solids		~	2	2540D	0.005	10800	10800	30 mg/L		
Antimony		V	2	200.8	5.0	<5.0	0	206 μg/L	721	
Arsenic		V	2	3113B	1.0	<1.0	0	104 μg/L	11	
Cadmium		~	2	200.8	0.20	0.5	0.5	10.2 μg/L	0.3631	
Chromium III		~	2	200.7	10.0	<10.0	0	323 µg/L	117.8	
Chromium VI	~		2	3500Cr	10.0	<10.0	0	323 µg/L	12.9	
Copper		~	2	200.7	2.0	4.4	3.5	242 μg/L	12.9	
Iron		~	2	200.7	50.0	5610	3234	5,000 µg/L	1039	
Lead		~	2	200.8	1.0	7.0	3.75	160 μg/L	4.84	
Mercury	V		2	245.1	0.2	< 0.2	0	0.739 μg/L	1.02	
Nickel	V		2	200.7	5.0	< 5.0	0	1,450 µg/L	71.7	
Selenium	~		2	3113B	2.0	< 2.0	0	235.8 μg/L	5.6	
Silver	~		2	200.7	0.5	< 0.5	0	35.1 μg/L	6.4	
Zinc		~	2	200.7	2.0	54.75	35.75	420 μg/L	161.7	
Cyanide	~		2	4500CNC	5.0	<5.0	0	178 mg/L	5.9	
B. Non-Halogenated VOC	s									
Total BTEX	V		2	524.2	0.5	< 0.5	0	100 μg/L		
Benzene	V		2	524.2	0.5	< 0.5	0	5.0 μg/L		
1,4 Dioxane		~	2	8270DSIM	0.250	< 0.250	0	200 μg/L		
Acetone	~		2	524.2	5.0	< 5.0	0	7.97 mg/L		
Phenol	V		2	420.1	100	< 100	0	1,080 µg/L	338	

	Known	Known				In	fluent	Effluent Li	mitations
Parameter	or believed absent	believed believed	# of m	Test method (#)	Detection limit (µg/l)	Daily maximum (µg/l)	Daily average (µg/l)	TBEL	WQBEL
C. Halogenated VOCs									
Carbon Tetrachloride	~		2	524.2	0.3	< 0.3	0	4.4 μg/L	1.8
1,2 Dichlorobenzene	V		2	524.2	0.5	< 0.5	0	600 μg/L	
1,3 Dichlorobenzene	~		2	524.2	0.5	< 0.5	0	320 μg/L	
1,4 Dichlorobenzene	~		2	524.2	0.5	< 0.5	0	5.0 μg/L	
Total dichlorobenzene	~		2	524.2	0.5	< 0.5	0	763 µg/L in NH	
1,1 Dichloroethane	~		2	524.2	0.5	< 0.5	0	70 μg/L	
1,2 Dichloroethane	~		2	524.2	0.5	< 0.5	0	5.0 μg/L	
1,1 Dichloroethylene	~		2	524.2	0.5	< 0.5	0	3.2 μg/L	
Ethylene Dibromide	~		2	504.1	0.015	< 0.015	0	0.05 μg/L	
Methylene Chloride	~		2	524.2	0.5	< 0.5	0	4.6 μg/L	
1,1,1 Trichloroethane	~		2	524.2	0.5	< 0.5	0	200 μg/L	
1,1,2 Trichloroethane	~		2	524.2	0.5	< 0.5	0	5.0 μg/L	
Trichloroethylene		~	2	524.2	0.5	< 0.5	0	5.0 μg/L	
Tetrachloroethylene		~	2	524.2	0.5	< 0.5	0	5.0 μg/L	3.7
cis-1,2 Dichloroethylene		~	2	524.2	5.0	109	54.75	70 μg/L	
Vinyl Chloride		V	2	524.2	0.2	9.1	9.1	2.0 µg/L	
D. Non-Halogenated SVOC	Cs								
Total Phthalates	V		2	625.1 SIM	2.45	< 2.45	0	190 μg/L	
Diethylhexyl phthalate	V		2	625.1 SIM	2.45	< 2.45	0	101 μg/L	2.5
Total Group I PAHs		~	2	625.1 SIM	0.05	0.36	0.205	1.0 μg/L	
Benzo(a)anthracene		~	2	625.1 SIM	0.05	0.06	0.06		0.0043
Benzo(a)pyrene		~	2	625.1 SIM	0.05	0.05	0.05		0.0043
Benzo(b)fluoranthene		~	2	625.1 SIM	0.05	0.06	0.06		0.0043
Benzo(k)fluoranthene		~	2	625.1 SIM	0.05	0.07	0.06	As Total PAHs	0.0043
Chrysene		~	2	625.1 SIM	0.05	0.07	0.06		0.0043
Dibenzo(a,h)anthracene		~	2	625.1 SIM	0.05	0.06	0.06		0.0043
Indeno(1,2,3-cd)pyrene		~	2	625.1 SIM	0.05	0.06	0.06	1	0.0043

	Known	n Known	Known or # of believed present samples	Test method (#)	Detection limit (µg/l)	Influent		Effluent Limitations	
Parameter	or believed absent	or believed				Daily maximum (µg/l)	Daily average (µg/l)	TBEL	WQBEL
Total Group II PAHs		~	2	625.1 SIM	0.20	0.67	0.67	100 μg/L	
Naphthalene		~	2	625.1 SIM	0.20	< 0.20	0	20 μg/L	
E. Halogenated SVOCs									
Total PCBs		V	2	608.3	0.10	< 0.10	0	0.000064 µg/L	
Pentachlorophenol	V		2	625.1 SIM	0.88	< 0.88	0	1.0 µg/L	
F. Fuels Parameters	·		•	•					
Total Petroleum Hydrocarbons	V		2	1664A	5000	<5000	0	5.0 mg/L	
Ethanol	V		2	D3695	10000	10000	0	Report mg/L	
Methyl-tert-Butyl Ether		~	2	524.2	0.5	< 0.5	0	70 μg/L	23
tert-Butyl Alcohol	~		2	524.2	25	<25.0	0	120 μg/L in MA 40 μg/L in NH	
tert-Amyl Methyl Ether	~		2	524.2	1.0	< 1.0	0	90 μg/L in MA 140 μg/L in NH	
Other (i.e., pH, temperatu	re, hardness,	salinity, LC	C ₅₀ , addition	nal pollutan	nts present);	if so, specify: 6.19 S.U	6.19 S.U.		
Temp		~	2	NA	NA	51.7 deg F	50.72 deg F		
Hardness		~	2	200.7	824	147000	122100		

E. Treatment system information

1. Indicate the type(s) of treatment that will be applied to effluent prior to discharge: (check all that apply)						
□ Adsorption/Absorption □ Advanced Oxidation Processes □ Air Stripping □ Granulated Activated Carbon ("GAC")/Liquid Phase Carbon Adsorption						
☐ Ion Exchange ☐ Precipitation/Coagulation/Flocculation ■ Separation/Filtration ■ Other; if so, specify:						
Granulated activated carbon, ion exchange, and other treatments as need to meet effluent limits.						
2. Provide a written description of all treatment system(s) or processes that will be applied to the effluent prior to discharge.						
Prior to discharge, dewatering effluent will be routed through a fractionation tank, bag filters, and other treatment as need to meet effluent requirements. See attached Figure 4.						
Identify each major treatment component (check any that apply):						
■ Fractionation tanks □ Equalization tank □ Oil/water separator □ Mechanical filter □ Media filter						
	□ Chemical feed tank □ Air stripping unit ■ Bag filter ■ Other; if so, specify: Granulated activated carbon, ion exchange, and other treatments as need to meet effluent limits.					
Indicate if either of the following will occur (check any that apply):						
☐ Chlorination ☐ De-chlorination						
3. Provide the design flow capacity in gallons per minute (gpm) of the most limiting component. Indicate the most limiting component: Flowmeter Is use of a flow meter feasible? (check one): ■ Yes □ No, if so, provide justification:	250					
is use of a now meter reasible: (eneck one). \cong res \cong roo, if so, provide justification.						
Provide the proposed maximum effluent flow in gpm.	100					
Provide the average effluent flow in gpm.	50					
If Activity Category IV applies, indicate the estimated total volume of water that will be discharged:	NA					
4. Has the operator attached a schematic of flow in accordance with the instructions in E, above? (check one): ■ Yes □ No						

F. Chemical and additive information

1. Indicate the type(s) of chemical or additive that will be applied to effluent prior to discharge or that may otherwise be present in the discharge(s): (check all that apply)
□ Algaecides/biocides □ Antifoams □ Coagulants □ Corrosion/scale inhibitors □ Disinfectants □ Flocculants □ Neutralizing agents □ Oxidants □ Oxygen □ scavengers □ pH conditioners □ Bioremedial agents, including microbes □ Chlorine or chemicals containing chlorine □ Other; if so, specify:
2. Provide the following information for each chemical/additive, using attachments, if necessary:
a. Product name, chemical formula, and manufacturer of the chemical/additive; b. Purpose or use of the chemical/additive or remedial agent; c. Material Safety Data Sheet (MSDS) and Chemical Abstracts Service (CAS) Registry number for each chemical/additive; d. The frequency (hourly, daily, etc.), duration (hours, days), quantity (maximum and average), and method of application for the chemical/additive; e. Any material compatibility risks for storage and/or use including the control measures used to minimize such risks; and f. If available, the vendor's reported aquatic toxicity (NOAEL and/or LC50 in percent for aquatic organism(s)).
3. Has the operator attached an explanation which demonstrates that the addition of such chemicals/additives may be authorized under this general permit in accordance
with the instructions in F, above? (check one): \square Yes \square No; if no, has the operator attached data that demonstrates each of the 126 priority pollutants in CWA Section 307(a) and 40 CFR Part 423.15(j)(1) are non-detect in discharges with the addition of the proposed chemical/additive?
(check one): ☐ Yes ☐ No
G. Endangered Species Act eligibility determination
1. Indicate under which criterion the discharge(s) is eligible for coverage under this general permit:
■ FWS Criterion A: No endangered or threatened species or critical habitat are in proximity to the discharges or related activities or come in contact with the "action area".
□ FWS Criterion B : Formal or informal consultation with the FWS under section 7 of the ESA resulted in either a no jeopardy opinion (formal consultation) or a written concurrence by FWS on a finding that the discharges and related activities are "not likely to adversely affect" listed species or critical habitat
(informal consultation). Has the operator completed consultation with FWS? (check one): ☐ Yes ☐ No; if no, is consultation underway? (check one): ☐
Yes □ No
□ FWS Criterion C : Using the best scientific and commercial data available, the effect of the discharges and related activities on listed species and critical habitat have been evaluated. Based on those evaluations, a determination is made by EPA, or by the operator and affirmed by EPA, that the discharges and related activities will have "no effect" on any federally threatened or endangered listed species or designated critical habitat under the jurisdiction of the
FWS. This determination was made by: (check one) \square the operator \square EPA \square Other; if so, specify:

□ NMFS Criterion: A determination made by EPA is affirmed by the operator that the discharges and related activities will have "no effect" or are "not likely to adversely affect" any federally threatened or endangered listed species or critical habitat under the jurisdiction of NMFS and will not result in any take of
listed species. Has the operator previously completed consultation with NMFS? (check one): ☐ Yes ☐ No
2. Has the operator attached supporting documentation of ESA eligibility in accordance with the instructions in Appendix I, and G, above? (check one): ■ Yes □ No
Does the supporting documentation include any written concurrence or finding provided by the Services? (check one): Yes No; if yes, attach.
TI Note that the Brown of the Anna Prof. 194 and the Control of th
 H. National Historic Preservation Act eligibility determination 1. Indicate under which criterion the discharge(s) is eligible for coverage under this general permit:
■ Criterion A: No historic properties are present. The discharges and discharge-related activities (e.g., BMPs) do not have the potential to cause effects on historic properties.
☐ Criterion B: Historic properties are present. Discharges and discharge related activities do not have the potential to cause effects on historic properties.
☐ Criterion C : Historic properties are present. The discharges and discharge-related activities have the potential to have an effect or will have an adverse effect on historic properties.
2. Has the operator attached supporting documentation of NHPA eligibility in accordance with the instructions in H, above? (check one): ■ Yes □ No
Does the supporting documentation include any written agreement with the State Historic Preservation Officer (SHPO), Tribal Historic Preservation Officer (TPHO), or
other tribal representative that outlines measures the operator will carry out to mitigate or prevent any adverse effects on historic properties? (check one): Yes No
I. Supplemental information
Describe any supplemental information being provided with the NOI. Include attachments if required or otherwise necessary.
See attached letter report prepared by GEI.
Has the operator attached data, including any laboratory case narrative and chain of custody used to support the application? (check one): ■ Yes □ No
Has the operator attached the certification requirement for the Best Management Practices Plan (BMPP)? (check one): ■ Yes □ No

J. Certification requirement

I certify under penalty of law that this document and all attachments were prepared under my direction or supervision in act that qualified personnel properly gathered and evaluated the information submitted. Based on my inquiry of the person or persons directly responsible for gathering the information, the information submitted is, to the best of my knowledge and be no personal knowledge that the information submitted is other than true, accurate, and complete. I am aware that there are information, including the possibility of fine and imprisonment for knowing violations.	persons who manage t clief, true, accurate, ar	the system, or those and complete. I have
A BMPP meeting the requirements of this general permit will be imple BMPP certification statement:	mented on the S	Site.
Notification provided to the appropriate State, including a copy of this NOI, if required.	Check one: Yes	No □
Notification provided to the municipality in which the discharge is located, including a copy of this NOI, if requested.	Check one: Yes ■	No □
Notification provided to the owner of a private or municipal storm sewer system, if such system is used for site discharges, including a copy of this NOI, if requested.	Check one: Yes	No □ NA □
Permission obtained from the owner of a private or municipal storm sewer system, if such system is used for site discharges. If yes, attach additional conditions. If no, attach explanation and timeframe for obtaining permission.	Check one: Yes □	No ■ NA □
Notification provided to the owner/operator of the area associated with activities covered by an additional discharge		
permit(s). Additional discharge permit is (check one): □ RGP □ DGP □ CGP □ MSGP □ Individual NPDES permit □ Other; if so, specify:	Check one: Yes □	No □ NA ■
	12-17-	-21 <i>(</i> 8
Print Name and Title: PAMEZA HALLETT EXECUTIVE	DIREC	ter

J. Certification requirement

I certify under penalty of law that this document and all attachments were prepared under my direction or supervision in a that qualified personnel properly gathered and evaluated the information submitted. Based on my inquiry of the person or persons directly responsible for gathering the information, the information submitted is, to the best of my knowledge and be no personal knowledge that the information submitted is other than true, accurate, and complete. I am aware that there are information, including the possibility of fine and imprisonment for knowing violations.	persons who manage the system, or those elief, true, accurate, and complete. I have
A BMPP meeting the requirements of this general permit will be imple BMPP certification statement:	emented on the Site.
Notification provided to the appropriate State, including a copy of this NOI, if required.	Check one: Yes ■ No □
Notification provided to the municipality in which the discharge is located, including a copy of this NOI, if requested.	Check one: Yes ■ No □
Notification provided to the owner of a private or municipal storm sewer system, if such system is used for site discharges, including a copy of this NOI, if requested.	Check one: Yes ■ No □ NA □
Permission obtained from the owner of a private or municipal storm sewer system, if such system is used for site discharges. If yes, attach additional conditions. If no, attach explanation and timeframe for obtaining permission.	Check one: Yes □ No ■ NA □
Notification provided to the owner/operator of the area associated with activities covered by an additional discharge permit(s). Additional discharge permit is (check one): \square RGP \square DGP \square CGP \square MSGP \square Individual NPDES permit \square Other; if so, specify:	Check one: Yes □ No □ NA ■
Signature: Date	te: 12/17/2019
Print Name and Title: David Guirguess, Project Manager	

Table 1. Water Quality Assessment Status for Reporting Year 2014 Mill Brook

Designated Use	Designated Use Group	Status
Aesthetic	Aesthetic Value	Good
Fish Consumption	Aquatic Life Harvesting	Not Assessed
Fish, Other Aquatic Life and Wildlife	Fish, Shellfish, And Wildlife Protection And Propagation	Impaired
Primary Contact Recreation	Recreation	Impaired
Secondary Contact Recreation	Recreation	Impaired

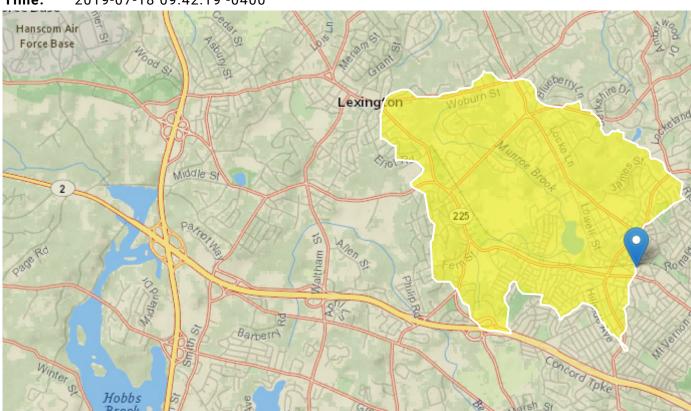
Causes of Impairment for Reporting Year 2014

Cause of Impairment	Cause of Impairment Group	Designated Use(s)	State TMDL Development Status
Escherichia Coli (E. Coli)	Pathogens	Primary Contact Recreation, Secondary Contact Recreation	TMDL needed
Physical Substrate Habitat Alterations	Habitat Alterations	Fish, Other Aquatic Life and Wildlife	Non-pollutant impairment

Sources:

- 1. Information obtained from EPA website: https://ofmpub.epa.gov/waters10/attains_index.home on July 24, 2019.
- 2. Massachusetts Year 2016 Integrated List of Waters, Massachusetts Division of Watershed Management Watershed Planning Program, June 2017.

7/18/2019 StreamStats


StreamStats Report

Region ID: MA

Workspace ID: MA20190718134204081000

Clicked Point (Latitude, Longitude): 42.42517, -71.17820

Time: 2019-07-18 09:42:19 -0400

Basin Characteristics							
Parameter Code	Parameter Description	Value	Unit				
DRNAREA	Area that drains to a point on a stream	3.72	square miles				
BSLDEM250	Mean basin slope computed from 1:250K DEM	2.466	percent				
DRFTPERSTR	Area of stratified drift per unit of stream length	0.17	square mile per mile				
MAREGION	Region of Massachusetts 0 for Eastern 1 for Western	0	dimensionless				

7/18/2019 StreamStats

Low-Flow Statistics Parameters[Statewide Low Flow WRIR00 4135]

Parameter Code	Parameter Name	Value	Units	Min Limit	Max Limit
DRNAREA	Drainage Area	3.72	square miles	1.61	149
BSLDEM250	Mean Basin Slope from 250K DEM	2.466	percent	0.32	24.6
DRFTPERSTR	Stratified Drift per Stream Length	0.17	square mile per mile	0	1.29
MAREGION	Massachusetts Region	0	dimensionless	0	1

Low-Flow Statistics Flow Report[Statewide Low Flow WRIR00 4135]

PII: Prediction Interval-Lower, PIu: Prediction Interval-Upper, SEp: Standard Error of Prediction, SE: Standard Error (other -- see report)

Statistic	Value	Unit	PII	Plu	SE	SEp
7 Day 2 Year Low Flow	0.317	ft^3/s	0.115	0.846	49.5	49.5
7 Day 10 Year Low Flow	0.126	ft^3/s	0.0356	0.417	70.8	70.8

Low-Flow Statistics Citations

Ries, K.G., III,2000, Methods for estimating low-flow statistics for Massachusetts streams: U.S. Geological Survey Water Resources Investigations Report 00-4135, 81 p. (http://pubs.usgs.gov/wri/wri004135/)

USGS Data Disclaimer: Unless otherwise stated, all data, metadata and related materials are considered to satisfy the quality standards relative to the purpose for which the data were collected. Although these data and associated metadata have been reviewed for accuracy and completeness and approved for release by the U.S. Geological Survey (USGS), no warranty expressed or implied is made regarding the display or utility of the data for other purposes, nor on all computer systems, nor shall the act of distribution constitute any such warranty.

USGS Software Disclaimer: This software has been approved for release by the U.S. Geological Survey (USGS). Although the software has been subjected to rigorous review, the USGS reserves the right to update the software as needed pursuant to further analysis and review. No warranty, expressed or implied, is made by the USGS or the U.S. Government as to the functionality of the software and related material nor shall the fact of release constitute any such warranty. Furthermore, the software is released on condition that neither the USGS nor the U.S. Government shall be held liable for any damages resulting from its authorized or unauthorized use.

USGS Product Names Disclaimer: Any use of trade, firm, or product names is for descriptive purposes only and does not imply endorsement by the U.S. Government.

Application Version: 4.3.8

7/18/2019 StreamStats

Remediation General Permit - Notice of Intent

Dilution Factor Calculation

Purpose and Approach:

Calculate the Dilution Factor (DF) for project based on 7 Day 10 Year (7Q10) Low Flow values and EPA formula:

DF = (Qd + Qs)/Qd where: Qd = Maximum flow rate of discharge in cubic feet per second (cfs)

Qs = Receiving water 7Q10 flow in cfs

Assumptions:

- 1. 7Q10 is 0.126 cfs (from StreamStats 4.3.8)
- 2. A conversion of 7.48 is used to convert cubic feet to gallons.
- 3. A design discharge flowrate of 100 gpm is assumed.

Calculations:

7Q10 Low Flow value (Qs):

$$Qs = \frac{0.126 ft3}{S} X \frac{7.48 gal}{ft3} X \frac{86,400 s}{day} X \frac{1 MG}{1,000,000 gallons}$$
$$Qs = 0.081 MGD$$

Discharge Flow Rate (Qd):

$$Qd = \frac{100 \ gallons}{min} X \ \frac{1,440 \ min}{day} \ X \ \frac{1MG}{1,000,000 \ gallons}$$

$$Qd = \ 0.144 \ MGD$$

Dilution Factor (DF):

$$DF = \frac{Qs + Qd}{Qd} = \frac{0.081 \, MGD + 0.144 \, MG}{0.144 \, MGD} = 1.56$$

Greer, Molly

From: Ruan, Xiaodan (DEP) < xiaodan.ruan@state.ma.us>

Sent: Thursday, August 01, 2019 9:30 AM

To: Malagrida, Catherine

Cc: Hoffman, Ryan; Greer, Molly; Vakalopoulos, Catherine (DEP)

Subject: [EXT] RE: NPDES RGP NOI - 7O10 and DF

Thanks Cat for the information.

I can confirm that the 7Q10 value of 0.126 cfs and a dilution factor of 1.56 for the proposed discharge from 19 Rear Park Avenue, Arlington to the Mill Brook are correct.

To assist you with filling out the NOI for coverage under the RGP, this segment of the Mill Brook, within Boston Harbor Watershed is identified as MA71-07, classified as Class B, and is not listed as an Outstanding Resource Water. There is one approved TMDL for pathogens (https://www.mass.gov/files/documents/2018/12/06/bharbor1.pdf). To see the 07".

Note that if this is not a current MCP site, you must apply to MassDEP alongside submittal of the NOI by following the instructions at: https://www.mass.gov/how-to/wm-15-npdes-general-permit-notice-of-intent. There is a \$500 fee unless the applicant is fee-exempt (e.g. a municipality).

Please let me know if you have any questions.

Thanks, Xiaodan

From: Malagrida, Catherine [mailto:CMalagrida@geiconsultants.com]

Sent: Wednesday, July 31, 2019 8:48 AM

To: Ruan, Xiaodan (DEP)

Cc: Hoffman, Ryan; Greer, Molly; Vakalopoulos, Catherine (DEP)

Subject: RE: NPDES RGP NOI - 7Q10 and DF

Hi Xiaodan

The address for the construction site is 19 Rear Park Avenue, Arlington, Mass. The design flow for the system is 100 gpm.

Thanks, Cat

CATHERINE M. MALAGRIDA, P.G.

Project Manager

781.721.4025 cell: 339.221.3521 fax: 781.721.4073 400 Unicorn Park Drive, Woburn, MA 01801

From: Ruan, Xiaodan (DEP) <xiaodan.ruan@state.ma.us>

Sent: Tuesday, July 30, 2019 11:19 AM

To: Malagrida, Catherine < CMalagrida@geiconsultants.com >

Cc: Hoffman, Ryan <RHoffman@geiconsultants.com>; Greer, Molly <mgreer@geiconsultants.com>; Vakalopoulos,

Catherine (DEP) <catherine.vakalopoulos@state.ma.us>

Subject: [EXT] RE: NPDES RGP NOI - 7Q10 and DF

Hi Catherine,

Could you please provide the address for the construction site and the design flow of the system? The design flow in the RGP is defined as flow though the component in the treatment system with the most restricted flow.

Thanks, Xiaodan

From: Malagrida, Catherine [mailto:CMalagrida@geiconsultants.com]

Sent: Monday, July 29, 2019 3:44 PM

To: Ruan, Xiaodan (DEP)

Cc: Hoffman, Ryan; Greer, Molly

Subject: NPDES RGP NOI - 7Q10 and DF

Hi Xiaodan,

I am preparing an RGP NOI for an upcoming construction project in Arlington, Mass. Dewatering effluent will be discharged to the Town of Arlington stormwater system which discharges to an unnamed brook adjacent to the Arlington Bike Path. This is the location where we collected our receiving water sample for our RGP.

However, no StreamStats information was available for the stormwater outfall location into the unnamed brook. According to the Town of Arlington, the unnamed brook ultimately drains to Mill Brook. I have attached a figure showing the location of intersection between the unnamed brook and Mill Brook. Mill Brook does have StreamStats data and this intersection is the location we used to generate our 7Q10 and dilution factor. From StreamStats, we have a 7Q10 of 0.126cfs and a dilution factor of 1.56.

Could you please confirm the 7Q10 and dilution factor and let me know if you need any additional information.

Thanks, Cat

CATHERINE M. MALAGRIDA. P.G. Project Manager

781.721.4025 cell: 339.221.3521 fax: 781.721.4073 400 Unicorn Park Drive, Woburn, MA 01801

Enter number values in green boxes below

Enter values in the units specified

Enter a dilution factor, if other than zero

Enter values in the units specified

\downarrow	
	C_d = Enter influent hardness in mg/L CaCO ₃
163	C = Enter receiving water hardness in mg/L CaCO

Enter receiving water concentrations in the units specified

\downarrow	_
6.5	pH in Standard Units
19	Temperature in °C
0	Ammonia in mg/L
163	Hardness in mg/L CaCo
	Salinity in ppt
0	Antimony in μg/L
0	Arsenic in μg/L
0	Cadmium in µg/L
0	Chromium III in µg/L
0	Chromium VI in µg/L
0	Copper in µg/L
687	Iron in μg/L
0	Lead in μg/L
0	Mercury in μg/L
0	Nickel in μg/L
0	Selenium in µg/L
0	Silver in μg/L
24.7	Zinc in μg/L

Enter influent concentrations in the units specified

$\mathbf{\Psi}$	
0	TRC in µg/L
0.25	Ammonia in mg/L
0	Antimony in μg/L
0	Arsenic in μg/L
0.35	Cadmium in µg/L
0	Chromium III in μg/L
0	Chromium VI in μg/L
3.5	Copper in µg/L
3234	Iron in μg/L
3.75	Lead in μg/L
0	Mercury in μg/L
0	Nickel in μg/L
0	Selenium in μg/L
0	Silver in μg/L
35.75	Zinc in μg/L
0	Cyanide in µg/L
0	Phenol in μg/L
0	Carbon Tetrachloride in µg/L
0	Tetrachloroethylene in μg/L
0	Total Phthalates in μg/L
0	Diethylhexylphthalate in μg/L
0.06	Benzo(a)anthracene in μg/L
0.05	Benzo(a)pyrene in μg/L
0.06	Benzo(b)fluoranthene in μg/L
0.06	Benzo(k)fluoranthene in μg/L
0.06	Chrysene in µg/L
0.06	Dibenzo(a,h)anthracene in μg/L
0.06	Indeno(1,2,3-cd)pyrene in μg/L
0	Methyl-tert butyl ether in μg/L

Notes:

Freshwater: Q_R equal to the 7Q10; enter alternate Q_R if approved by the State; enter 0 if no dilution factor approved Saltwater (estuarine and marine): enter Q_R if approved by the State; enter 0 if no entry Discharge flow is equal to the design flow or 1 MGD, whichever is less Only if approved by State as the entry for Q_R ; leave 0 if no entry

Saltwater (estuarine and marine): only if approved by the State Leave 0 if no entry

Freshwater only

if>1 sample, enter maximum if>10 samples, may enter 95th percentile Enter 0 if non-detect or testing not required **Dilution Factor** 1.1

A I	TBEL applies if bolded		WQBEL applies if bolded		Compliance Level	
A. Inorganics					applies if shown	
Ammonia	Report	mg/L				
Chloride	Report	μg/L				
Total Residual Chlorine	0.2	mg/L	12	μg/L	50	μg/L
Total Suspended Solids	30	mg/L				
Antimony	206	μg/L	721	$\mu g/L$		
Arsenic	104	μg/L	11	μg/L		
Cadmium	10.2	μg/L	0.3631	μg/L		
Chromium III	323	μg/L	117.8	μg/L		
Chromium VI	323	μg/L	12.9	μg/L		
Copper	242	μg/L	12.9	μg/L		
Iron	5000	μg/L	1039	μg/L		
Lead	160		4.84			
		μg/L	1.02	μg/L		
Mercury	0.739	μg/L		μg/L		
Nickel	1450	μg/L	71.7	μg/L		
Selenium	235.8	μg/L	5.6	μg/L		
Silver	35.1	μg/L	6.4	μg/L		
Zinc	420	μg/L	161.7	$\mu g/L$		
Cyanide	178	mg/L	5.9	$\mu g/L$		$\mu g/L$
B. Non-Halogenated VOCs						
Total BTEX	100	μg/L				
Benzene	5.0	μg/L				
1,4 Dioxane	200	μg/L				
Acetone Phenol	7970 1,080	μg/L μg/L	338	μg/L		
C. Halogenated VOCs	1,000	μg/L	330	μg/L		
Carbon Tetrachloride	4.4	μg/L	1.8	μg/L		
1,2 Dichlorobenzene	600	μg/L				
1,3 Dichlorobenzene	320	μg/L				
1,4 Dichlorobenzene	5.0	μg/L				
Total dichlorobenzene		μg/L				
1,1 Dichloroethane	70 5.0	μg/L				
1,2 Dichloroethane 1,1 Dichloroethylene	5.0 3.2	μg/L				
Ethylene Dibromide	0.05	μg/L μg/L				
Methylene Chloride	4.6	μg/L μg/L				
1,1,1 Trichloroethane	200	μg/L				
1,1,2 Trichloroethane	5.0	μg/L				
Trichloroethylene	5.0	μg/L				
Tetrachloroethylene	5.0	μg/L	3.7	μg/L		
cis-1,2 Dichloroethylene	70	μg/L				
Vinyl Chloride	2.0	μg/L				
D. Non-Halogenated SVOCs						
Total Phthalates	190	μg/L		μg/L		
Diethylhexyl phthalate	101	μg/L	2.5	μg/L		
Total Group I Polycyclic						
Aromatic Hydrocarbons	1.0	μg/L				
Benzo(a)anthracene	1.0	μg/L	0.0043	μg/L	0.1	μg/L
Benzo(a)pyrene	1.0	μg/L	0.0043	μg/L	0.1	μg/L
Benzo(b)fluoranthene Benzo(k)fluoranthene	1.0 1.0	μg/L μg/L	0.0043 0.0043	μg/L μg/L	0.1 0.1	μg/L μg/L
Chrysene	1.0	μg/L μg/L	0.0043	μg/L μg/L	0.1	μg/L μg/L
Dibenzo(a,h)anthracene	1.0	μg/L	0.0043	μg/L	0.1	μg/L
Indeno(1,2,3-cd)pyrene	1.0	μg/L	0.0043	μg/L	0.1	μg/L
Total Group II Polycyclic						
Aromatic Hydrocarbons	100	μg/L				
Naphthalene	20	μg/L				
E. Halogenated SVOCs						
Total Polychlorinated Biphenyls	0.000064	μg/L			0.5	μg/L
Pentachlorophenol	1.0	μg/L				
F. Fuels Parameters						
Total Petroleum Hydrocarbons	5.0	mg/L				
Ethanol Mathada and Dated Ethan	Report	mg/L		/*		
Methyl-tert-Butyl Ether tert-Butyl Alcohol	70 120	μg/L μg/L	23	μg/L		
tert-Amyl Methyl Ether	90	μg/L μg/L				
	74	Mg/L	-			

3/15/2018 Accugaf Filter Bags

Water & WasteWater Treatment Solutions (888) 326-2020 / (678) 514-2100

Click to Find Us On:

Home

Forms

Contact U

About Us

Calculators

Site Map

Search Site

Go

Online Store

- → Applications
- Automotive
- Biodiesel
- Dairy Industry
- Industrial Wastewater
- Food Processing Industry
- Iron Removal
- Latex Removal
- Metals Treatment
- Mining Industry
- Municipal Wastewater
- Odor Control
- Petrochemical Industry
- Poultry Industry
- → Products
- Activated Carbon
- Bag Filtration
- Bag Filter Housings
- Bag Filter Media
- Biological Treatment
- Chemicals (Specialty)
- Clarifiers
- Controls
- Dissolved Air Flotation
- Dewatering
- Evaporators
- Membrane Filtration
- Microbial Bacteria
- Oil/Water Separators
- Ozone
- Pressure Filtration
- Screens
- Separators/Strainers
- Tanks

Bag Filters / Accugaf Filter Bags

Accugaf filter bags are constructed from FDA compliant materials. They are ideal for food processing applications and will filter particulate from 1 micron to 25 microns with 99% efficiency..

Related Product Links

Accugaf Filter Bags | Duragaf Filter Bags | Hayflow Filter Element | Lofclear Filter Bags | Nylon & Polyester Mesh | Progaf Filter Bags | Sentinel® Filter Bags & Seal | Snap Ring Filtration Media Overview

ACCUGAF™, Filter Bags for Applications Demanding Efficiency >99%

The ACCUGAF filter bag pushes the boundaries of bag filtration technology far beyond traditional designs. With efficiencies >99%, each A model provides cost-effective filtration solutions for demanding applications. The five models assure users that particles from the range of can be removed effectively while delivering long service life.

			1					
Motorial	Filter Model	DNi	Particl	ΔP (psi) Size 02				
Material	AGF 51 AGF 53 AGF 55 AGF 57 AGF 59 AGF 51 AGFE 51 AGFE 55	>60%	>90%	>95%	>99%	>99.9%	@ 45 gpm	
	Ĭ	***		1	1		l .	
	AGF 51	80	0.2	0.6	0.8	1.5	5	1.30
	AGF 53	**	0.8	1	2	3	5	3.20
Polypropylene	AGF 55	**	1	2	3	5	15	0.73
	AGF 57	**	2	4	5	10	25	0.60
	AGF 59	**	10	25	30	25	35	0.44
	1		1		1	1	1	
	AGFE 51	86	0.2	0.6	0.8	1.5	5	1.30
Polyester	AGFE 55	**	1	2	3	5	15	0.73
	AGFE 57	**	2	4	5	10	25	0.60

High-Efficiency Performance

ACCUGAF filter bags feature:

- 100% welded seams
- · Patented SENTINEL® seal ring
- · Meltblown filtration media in polypropylene or polyester
- · No additives, such as resins, binders or surface treatments

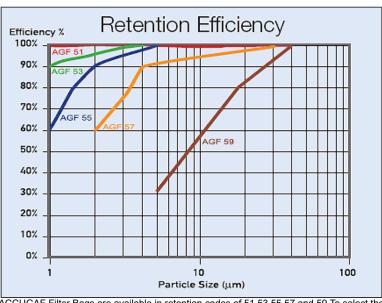
FDA Compliant Materials

ACCUGAF Polypropylene filter bags are constructed entirely of materials compliant to FDA requirements for materials in contact with food materials conform to US Code of Federal Regulations 21 CFR Part 177 and EU Directive 2002/72/EC.

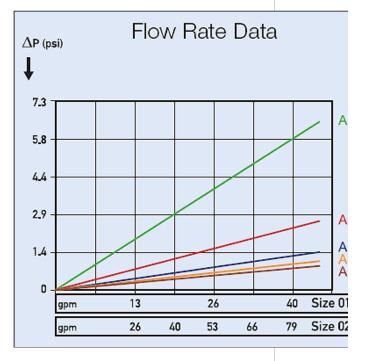
Applications

Although ideally suited for food and beverages, ACCUGAF filter bags will deliver equal performance in a wide range of demanding applica as:

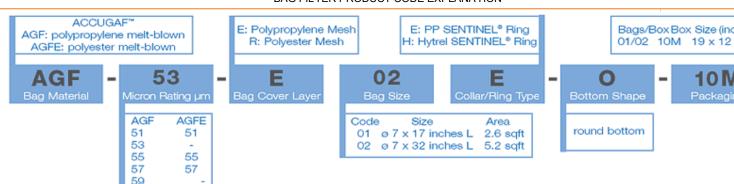
- Beer, wine, spirits and beverage filtration
- Fine particle removal in parts cleaning
- Final filtration of lacquers
- · Final filtration of vinegar
- · Activated carbon removal in process systems
- Final filtration of hydraulic oils and lubricants


OPERATIONAL CONSIDERATIONS

Bag Positioner


ACCUGAF filter bags must be used with the Eaton bagpositioner. This eases insertion and assures correct alignment of the filter bag inside the restrainer basket. In addition, the be protected against damage to inadvertent back-flow.

Pre-Wetting in Aqueous Solutions


ACCUGAF polypropylene filter bags are fabricated from microfiber filtration media. These materials are hydro-phobic, indicating that water will not wet the fiber surfaces. As will a polypropylene filters, a lower surface tension fluid (wetting agent) must be used to wet the media prior to introducing water. Prior to service, the filter bags must be immersed in a solution compatible with the process fluid. After wetting, an aqueous fluid will be drawn into the media through capillary action. Full details about installation and wetting are provevery box of ACCUGAF filter bags.

ACCUGAF Filter Bags are available in retention codes of 51,53,55,57, and 59.To select the perfect ACCUGAF Filter Bag for your application use the chart and choose the retention efficiency level you need on the left side (Y Axis) of the chart at the particle size in microns at the bottom (X Axis) .Next find which bag efficiency code (identified by the colored lines) is closest to that point.Thsi will assist you in finding the most cost effective filter bag for your critical filtration application.

BAG FILTER PRODUCT CODE EXPLANATION

Activated Carbon | Aeration | Air Treatment | Bag Filters & Housings | Chemicals | Dissolved Air Flotation | Dust Collection | Evaporators | Filter Presses | Flocculation | Inline Filter Vessels |

Membrane Filtration | Odor Control | Ozone | Oil Water Separators | Sewage Systems | Liquid and Vapor Phase Vessels | Wet Scrubbers | Careers

Water & WasteWater Treatment Solutions (888) 326-2020 / (678) 514-2100

Click to Find Us On:

Home

Forms

Contact Us

About Us

Calculators

Site Map

Search Site

Go

Online Store

→ Applications

- Automotive
- Biodiesel
- Dairy Industry
- Industrial Wastewater
- Food Processing Industry
- Iron Removal
- Latex Removal
- Metals Treatment
- Mining Industry
- Municipal Wastewater
- Odor Control
- Petrochemical Industry
- Poultry Industry
- → Products
- Activated Carbon
- Bag Filtration
- Bag Filter Housings
- Bag Filter Media
- Biological Treatment
- Chemicals (Specialty)
- Clarifiers
- Controls
- Dissolved Air Flotation
- Dewatering
- Evaporators
- Membrane Filtration
- Microbial Bacteria
- Oil/Water Separators
- Ozone
- Pressure Filtration

Bag Filter Media / Lofclear Absolute Rate Oil Removal Filter Bags

Accugaf filter bags are constructed from FDA compliant materials. They are ideal for food processing applications and will filter particulate from 1 micron to 25 microns with 99% efficiency..

Related Product Links

Accugaf Filter Bags | Duragaf Filter Bags | Hayflow Filter Element | Lofclear Filter Bags | Nylon & Polyester Mesh | Progaf Filter Bags | Sentinel® Filter Bags | Sentinel® Filter Bags | Filtration Media Overview

LOFCLEAR: Cost Effective Filter Bags for Absolute Filtration Applications

A pleated prefilter provides a very large surface (about 32 sq ft) to collect

LOFCLEAR filter bags now make absolute filtration viable in many applications where only standard bags could be used due to cost constraints. Made from 100% pure polypropylene materials compliant with food requirements, LOFCLEAR filter bags contain no leachables or lubricants such as silicone oils. In addition, their excellent oil adsorbancy makes LOFCLEAR filter bags ideally suited to the oil removal needs of the paint and coatings industries.

LOFCLEAR™Filter Bag Filtration Ratings

Filter	Particle Size	ncies	ΔP (psi) Size 02			
Model	Buy Now	>60%	>90%	>95%	>99%	@ 45 gpm
113/123	***	0.5	1	2	4	0.36
114/124	***	0.75	2	3	5	0.30
115/125	**	1.5	3.5	8	10	0.15
116/126	**	2	6	13	15	<0.15
118/128	**	25	35	37	40	<0.15
119/129	**	15	25	27	30	<0.15
130	**	6	14	15	20	0.72
135	**	1	6	8	10	0.29
522	**	0.5	1	1.5	2.6	1.45
525	**	1	2	3.5	6	0.26
527	**	2	5	9	13	0.15
529	**	10	20	23	32	<0.15

Two Series to Match Filters to Applications

- Screens
- Separators/Strainers
- Tanks

LOFCLEAR filter bags are available in two styles, Series100 and Series 500. These two styles make it possible to match the requirements of a wide range of applications, depending on the needs for efficiency and long life. The Series 100 filters use a multi-layer construction for applications where high efficiency is of prime importance. The Series 500 filters utilize a patent pending pleated construction to increase surface area for applications requiring high dirt capacities and long life.

Perfect for Removal of Gelatinous Materials

LOFCLEAR filter bags have proven to be highly effective in the removal of gelatinous contaminants. The combination of deep micro fiber filtration media breaks up gels and retains them within the media depth. These features prevent surface blockage and breakthrough typical of standard filter bag materials.

LOFCLEAR™Series 100 Filter Bags

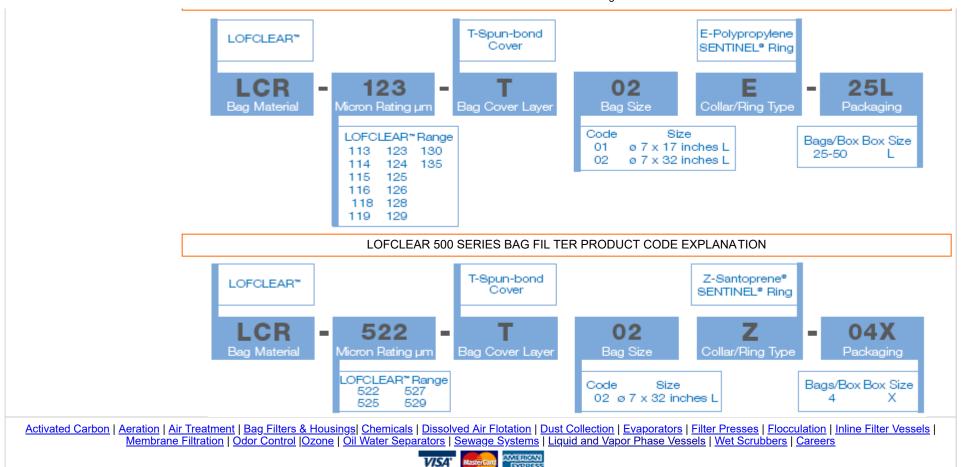
LOFCLEAR Series 100 Filter Bags feature a proven three layer construction with a sewn filter welded to the SENTINEL® seal. They feature efficiencies >99% over a wide range of particle sizes, with dirt capacities up to 1/2pound. The seven models feature:

- Polypropylene pre filter
- · Meltblown polypropylene microfiber final filter
- · Polypropylene outer migration barrier

LOFCLEAR Series 100 filter bags are an excellent choice for application such as high purity fluids with low particulate concentration, first pass guard filtration, oil adsorption and activated carbon removal.

The LOFCLEAR 128 and 129 were especially developed for the filtration of electro-coatings in the automotive industry. The filtration design allows pigments to pass through the filtration layers, while retaining impurities and removing silicones and other crater forming substances. The LOFCLEAR 130 filter bag adds extra adsorption capacity for retaining high amounts of oils or other crater forming substances. The LOFCLEAR 135 delivers high removal of particulate and oils for clear coat applications where pigment removal is not an issue.

LOFCLEAR™Series 500 Filter Bags


LOFCLEAR Series 500 Filter Bags have an all welded multi-pleated construction for high efficiency and long life. This series of bags has a pleated prefiltration layer and a complex design of final filtration layers, allowing the removal of difficult to filter gels and deformable particles with a high capacity of solids loading. The outer web covering eliminates any downstream fiber migration.

LOFCLEAR Series 500 Filter Bags are available in four different efficiency ratings so you can choose your exact required filtration efficiency. LOFCLEAR Filter Bags have filtration efficiencies from 95 to 99%, with a dirt holding capacity of over 2 pounds.

Among the many applications for LOFCLEAR Series 500 Filter Bags are oils, slurries, dilute oil removal, re-circulating batch systems, and systems with heavy contamination.

Operational Considerations

LOFCLEAR Series 500 Filter Bags must be used with a bag positioner. This eases insertion and assures correct alignment of the filter bag inside the restrainer basket. In addition, the positioner protects the filter bag from potential damage that could be caused by inadvertent back flow.

http://old.ecologixsystems.com/bag filters lofclear.php

Water & WasteWater Treatment Solutions (888) 326-2020 / (678) 514-2100

Click to Find Us On:

Home

Forms

Contact Us

About Us

Calculators

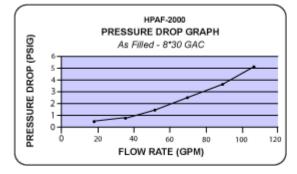
Site Map S

Search Site

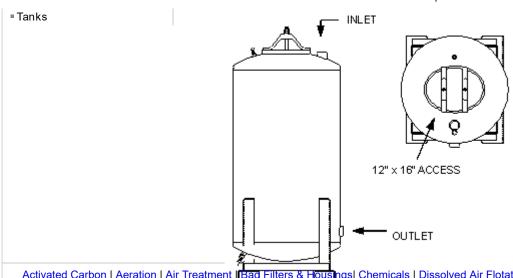
Go

Online Store

→ Applications


- Automotive
- Biodiesel
- Dairy Industry
- Industrial Wastewater
- Food Processing Industry
- Iron Removal
- Latex Removal
- Metals Treatment
- Mining Industry
- Municipal Wastewater
- Odor Control
- Petrochemical Industry
- Poultry Industry
- → Products
- Activated Carbon
- Bag Filtration
- Biological Treatment
- Chemicals (Specialty)
- Clarifiers
- Controls
- Dissolved Air Flotation
- Dewatering
- Evaporators
- Membrane Filtration
- Microbial Bacteria
- Oil/Water Separators
- Ozone
- Pressure Filtration
- Screens
- Separators/Strainers

<u>Liquid Phase V essels</u> > HPAF 2000


General Description

The HPAF-2000 filter is a media filter vessel designed to treat liquid streams. While the typical design application is a activated carbon adsorbtion unit, the filter can easily accommodate many medias. Some applications include:

- · Dissolved Organic Removal (Activated Carbon)
- Suspended Solids Removal (Sand Filter)
- Dissolved Minerals (Softener Resin)
- Oil and Grease Removal (Organo-Clays)
- Dissolved and Precipitated Metals Removal
- Special Organics (Resin/Carbon Blend)
- Catalytic Reactor (Chlorine and Peroxide Removal)
- Bio-Remediation Contactor Unit

Standard Specifications					
ŀ	HPAF-2000 S	SPECIFICATIONS			
Overall Height	8'6"	Vessel/Internal Piping Materials	CS(SA-36) / SCH 40 PVC		
Diameter	48"	Internal Coating	Polyamide Epoxy Resin		
Inlet / Outlet (FNPT)	3"	External Coating	Epoxy Mastic		
Drain / Vent (FNPT)	3/4" / 1/2"	Maximum Pressure / Temp	75PSIG / 140° F		
GAC Fill (lbs)	2,000	Cross Sectional Bed Area	12.5 FT ²		
Shipping / Operational Weight (lbs)	3,020/6,775	Bed Depth/Volume	5.5 FT / 68.7 FT ³		
Capacity in gallons	570	Flow rate based on 5-10 min. contact time	57 - 114 GPM		

Liquid Phase V essels, Filter Series						
AFD Series	AF Series	HPP Series				
<u>AFD 30</u>	<u>AF 250</u>	<u>HPAF 500</u>	<u>HPP 50</u>			
<u>AFD 55</u>	<u>AF 500</u>	<u>HPAF 1000</u>	<u>HPP 100</u>			
<u>AFD 85</u>	<u>AF 1000</u>	<u>HPAF 2000</u>	<u>HPP 200</u>			
<u>AFD 110</u>	<u>AF 2000</u>	<u>HPAF 3000</u>	<u>HPP 300</u>			
<u>AHP 55</u>	<u>AF 3000</u>	<u>HPAF 5000</u>	<u>HPP 500</u>			
N/A	<u>AF 5000</u>	<u>HPAF10000</u>	<u>HPP 1000</u>			
N/A	<u>AF10000</u>	<u>HPAF20000</u>	<u>HPP2000</u>			

Activated Carbon | Aeration | Air Treatment | Bag Filters & Housings | Chemicals | Dissolved Air Flotation | Dust Collection | Evaporators | Filter Presses | Flocculation | Inline Filter Vessels |

Membrane Filtration | Ottor Control | Ozone | Oil Water Separators | Sewage Systems | Liquid and Vapor Phase Vessels | Wet Scrubbers | Careers

"CLEANING THE WORLD WITH ACTIVATED CARBON"

SAFETY DATA SHEET

Section 1 - Identity

Identity (As Used on Label and List): GC Activated Carbon (Including, but not limited to GC C-40, GC 4 x 8B, GC 4 x 8S, GC 6 x 12, GC 6 x 12S, GC 8 x 30, GC 8 x 30AW, GC 8 x 30SAW, GC 12 x 40, GC 12 x 40AW, GC 12x40SAW, GC 20 x 50, GC 20 x 50S, GC Powdered, GC WDC activated carbons)

Manufacturers Name: General Carbon Corporation

33 Paterson Street Paterson, NJ 07501 Tel: (973)523-2223

www.generalcarbon.com

Date Prepared: February 16, 2017

Section 2 - Hazardous Identification

2.1 GHS-US Classification

Eye Irritation 2B H320 STOT SE 3 H335

Hazards not otherwise classified: Combustible dust. May form combustible dust concentrations in air. All powdered activated carbons are classified as weakly explosive (Dust explosion class St1): Given the necessary conditions of a strong ignition source, right concentrations of airborne carbon dust, adequate oxygen levels, and confinement, the potential for a deflagration event exists. A combustible dust hazard assessment and employee training should be carried out. See sections 7 and 9 for further information on combustible dust precautions.

2.2 Label Elements

Hazard Pictograms

Signal word (GHS-US) : Warning

Hazard Statements : H320- Causes eye irritation

: H335- May cause respiratory irritation

Precautionary statements (GHS-US) : P261- Avoid breathing dust

: P264- Wash thoroughly after handling : P271- Use in well-ventilated area

: P280- Wear protective gloves/clothing/eye & face protect

: P304&340: IF INHALED: Remove person to fresh air

: P305&351&P338: If in eyes, Rinse cautiously with water for several minutes. Remove contact lenses if present and

easy to do so. Continue rinsing.

: P312- Call Poison Control Center/Doctor if you feel sick

: P403& P233- Store in well-ventilated place. Keep container tightly closed

: P405- Store locked up

: P501- Dispose of container to appropriate receptacle

2.3 Other Hazards

No additional information available 2.4 Unknown acute toxicity (GHS-US)

No data available

Section 3: Composition/information on ingredients

3.1 Substances Not applicable 3.2 Mixture

Name CAS # % GHS US classification

Carbon 7440-44-0 100 Not classified

Section 4 - First Aid Measures

4.1 Description of first aid measures

First aid after inhalation Remove person to fresh air. If not breathing, administer CPR or artificial

respiration. Get immediate medical attention.

First aid after skin contact

If skin reddening or irritation develops, seek medical attention

First aid after eye contact

Immediately flush eyes with plenty of water for at least 15 minutes.

If irritation persists, get medical attention.

First aid after ingestion If the material is swallowed, get immediate medical attention or advice.

DO NOT induce vomiting unless directed to do so by medical personnel.

4.2 Most important symptoms and effects, both acute and delayed

Symptoms/injuries after inhalation
Symptoms/injuries after skin contact
Symptoms/injuries after eye contact
Symptoms/injuries after ingestion

May cause respiratory irritation
May cause skin irritation
Causes serious eye damage
May be harmful is swallowed

4.3 Indication of any immediate medical attention and special treatment needed

No additional information available.

Section 5: Firefighting measures

5.1 Extinguishing media

Unsuitable extinguishing media None

5.2 Special hazards arising from substance or mixture

Fire hazard None known Explosion hazard None known

Reactivity Contact with strong oxidizers such as ozone, liquid oxygen, chlorine, etc.

may result in fire.

5.3 Advice for firefighters

Protection during firefighting Firefighters should wear full protective gear

Section 6: Accidental release measures

6.1 Personal precautions, protective equipment and emergency procedures

General measures

Avoid contact with the skin and eyes

6.1.1 For non-emergency personnel

No additional information available

6.1.2 For emergency responders

No additional information available

6.2 Environmental precautions

None

6.3 Methods and material for containment and cleaning up

For containment If possible, stop flow of product

Methods for cleaning up

Shovel or sweep up and put in closed container for disposal

6.4 Reference to other sections

No additional information available

Section 7: Handling and storage

7.1 Precautions for safe handling

Precautions for safe handling

Avoid contact with eyes. Wet activated carbon removes oxygen from air causing severe hazard to workers inside carbon vessels or confined spaces

7.2 Conditions for safe storage, including any incompatibilities

Storage conditions

Protect containers from physical damage. Store in dry, cool, well-ventilated area. Store away from strong oxidizers, strong acids, ignition sources, combustible materials, and heat. An adequate air gap between packages is recommended to reduce propagation in the case of fire.

Handling: A hazard assessment should be carried out. As with all finely divided materials, ground all transfer, blending, and dust collecting equipment to prevent static discharge. Remove all strong ignition sources from material handling, transfer, and processing areas where dust may be present or accumulate. Practice good housekeeping. Excessive accumulations of dust or dusty conditions can create the potential of secondary explosions. Inspection of hidden surfaces for dust accumulation should be made routinely. If possible, eliminate the pathways for dust to accumulate in hidden areas. Fine carbon dust may penetrate electrical equipment and cause electrical shorts. Where dusting is unavoidable, dust-proof boxes and regular electrical line maintenance are recommended. Refer to NFPA standards 654 for guidance.

Caution employees-no smoking in carbon storage and handling areas. Carbon is difficult to ignite, however, cutting and welding operations should be carried out using hot work permit systems where precautions are taken not to ignite carbon, which may smolder undetected.

7.3 Specific end use(s)

No additional information available

Section 8: Exposure controls/ personal protection

8.1 Control parameters

No additional information available

8.2 Exposure controls

Appropriate engineering controls : Local exhaust and general ventilation must be adequate to meet exposure

standards

Hand Protection : None required under normal product handling conditions

Eye Protection : safety glasses

Skin and body protection : Wear suitable working clothes

Respiratory protection : If airborne concentrations are above the applicable exposure limits, use NIOSH

approved respiratory protection

Section 9: Physical and chemical properties

9.1 Information on basic physical and chemical properties

Physical state : Solid
Appearance : Particulate
Color : Black

Odor : No data available Odor threshold : No data available : No data available Relative evaporation rate : No data available Melting point : No data available Freezing point : No data available **Boiling point** : No data available Flash point : No data available : No data available Self ignition temperature : No data available Decomposition temperature Flammability (solid, gas) : No data available Vapor Pressure : No data available Relative Vapor density @ 20 deg C : No data available **Relative Density** : 28-33 lb/ cubic foot Solubility : No data available Log Pow : No data available Log Kow : No data available Viscosity, kinematic : No data available Viscosity, dynamic : No data available **Explosive properties** : No data available : No data available Oxidizing properties

Combustible dust- These products may contain combustible dusts. May form combustible dust concentrations in air. All powdered activated carbons are weakly explosive. No specific information on these carbons are available.

: No data available

Typical combustible dust data for a variety of activated carbons:

Kst values reported between 43-113 (various sources).

Explosive limits

Dust explosion class St1 (Kst values < 200 are Class St1-weakly explosive).

MEC (minimum explosible concentration) in air 50 and 60 g/m₃ (two reports)

Volatile content (by weight): < 8% ASTM D3175-11 (Watercarb)

MIT (minimum ignition temperature) values reported between 400-680°C (752-1256°F) (four reports)

Maximum Absolute Explosion pressure values reported between 6.0-8.6 bar (four reports)

9.2 Other information

No additional information available

Section 10: Stability and reactivity

10.1 Reactivity

Contact with strong oxidizers such as ozone, liquid oxygen, chlorine, etc. may result in fire

10.2 Chemical stability

Stable under normal conditions

10.3 Possibility of hazardous reactions

Will not occur

10.4 Conditions to avoid

None

10.5 Incompatible materials

Strong oxidizing and reducing agents such as ozone, liquid oxygen or chlorine.

10.6 Hazardous decomposition products

Carbon monoxide may be generated in the event of a fire.

Section 11: Toxicological information

11.1 Information on toxicological effects

Acute toxicity : Not classified

Carbon (7440-44-0)

LD50 oral rat : >10000 mg/kg Skin corrosion/irritation : Not classified

Serious eye damage/irritation : Causes eye irritation

Respiratory or skin sensitization : Not classified Germ cell mutagenicity : Not classified Carcinogenicity : Not classified Reproductive toxicity : Not classified

Specific target organ toxicity : May cause respiratory irritation (single exposure)

Specific target organ toxicity : Not classified (repeated exposure)

Aspiration hazard : Not classified

Section 12: Ecological Information

12.1 Toxicity

No additional information available

12.2 Persistence and degradability

No additional information available

12.3 Bioaccumulative potential

No additional information available

12.4 Mobility in soil

No additional information available

12.5 Other adverse effects

No additional information available

Section 13: Disposal concerns

13.1 Waste treatment methods

Waste Disposal recommendations

: Dispose of contents/container in accordance with local/ regional/ international regulations

Section 14: Transportation information

In accordance with DOT/ADR/RID/ADNR/IMDG/ICAO/IATA

14.1 UN Number

Not applicable. See Note 1 below.

14.2 UN proper shipping name

Not applicable

Note 1: Under the UN classification for activated carbon, all activated carbons have been identified as a class 4.2 product. However, This product has been tested according to the United Nations Transport of Dangerous Goods test protocol for a "self-heating substance" (United Nations Transportation of Dangerous Goods, Manual of Tests and Criteria, Part III, Section 33.3.1.6 - Test N.4 - Test Method for Self Heating Substances) and it has been specifically determined that this product does not meet the definition of a self heating substance (class 4.2) or any other hazard class, and therefore should not be listed as a hazardous material. This information is applicable only for the Activated Carbon Product identified in this document.

Section 15: Regulatory information

15.1 US Federal regulations

<u>Carbon (7440-44-0)</u>
Listed on the United States TSCA inventory

15.3 US State regulations

No additional information available

Section 16: Other information

Full text of H-phrases:

Eye Irrit. 2B Serious eye damage/eye irritation Category 2B

STOT SE 3 Specific target organ toxicity (single exposure) Category 3

H335 May cause respiratory irritation

NFPA®

NFPA health hazard NFPA fire hazard : 1-Exposure could cause irritation but only minor residual injury even if no treatment is given

: 1- Materials that require considerable preheating, under all ambient temperature

conditions, before ignition and combustion can occur (e.g. <u>mineral oil</u>). Includes some finely divided suspended solids that do not require heating before ignition can occur. Flash point at

or above 93.3 °C (200 °F)

NFPA reactivity

: 0- Normally stable, even under fire exposure conditions, and are not reactive with water

The information contained herein is accurate to the best of our knowledge. General Carbon Corporation makes no warranty with respect hereto said information and disclaims all liability from reliance there in.

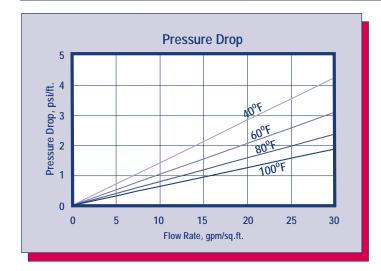
RESINTECH CGS is a high purity, light colored, high capacity, gel type sulfonated polystyrene cation resin supplied in the sodium form as moist, tough uniform spherical beads. *ResinTech CGS* specifically is intended for use in all water softening applications, including beverages, potable water and water used for food processing. It's high capacity and high DVB content provide long life and good chlorine resistance in all potable water applications. (It is also available as a dark colored product *ResinTech CGS-BL* with identical properties.)

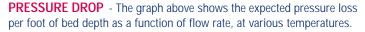
FEATURES & BENEFITS

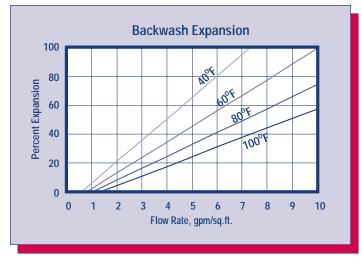
- COMPLIES WITH FDA REGULATIONS FOR POTABLE WATER APPLICATIONS
 Conforms to paragraph 21CFR173.25 of the Food Additives Regulations of the F.D.A.*
- EXCELLENT REGENERATION EFFICIENCY
 Virtually the same operating capacity as premium grade ResinTech CG8-BL
- NSF/ANSI-61 VALIDATED

UNIFORM PARTICLE SIZE

16 to plus 50 mesh range; gives a LOWER PRESSURE DROP while maintaining SUPERIOR KINETICS.


SUPERIOR PHYSICAL STABILITY


90% plus sphericity and high crush strengths together with a very uniform particle size provide greater resistance to bead breakage while maintaining low pressure drops.


LOW COLOR THROW

*For potable water applications, the resin must be properly pre-treated, usually by multiple exhaustion and regeneration cycles, to insure compliance with extractable levels.

HYDRAULIC PROPERTIES

BACKWASH - After each cycle the resin bed should be backwashed at a rate that expands the bed 50 to 75 percent. This will remove any foreign matter and reclassify the bed. The graph above shows the expansion characteristics of *RESINTECH CGS* in the sodium form.

RESINTECH® CGS

PHYSICAL PROPERTIES

Polymer Structure Styrene Crosslinked with DVB Functional Group R-(SO₃)⁻M⁺

Ionic Form, as shipped Sodium

Physical Form Tough, Spherical Beads

Screen Size Distribution 16 to 50
+16 mesh (U.S. Std) < 5 percent
-50 mesh (U.S. Std) < 1 percent

pH Range 0 to 14

Sphericity 90+ percent

Uniformity Coefficient Approx. 1.6
Water Retention

Sodium Form 48 to 54 percent Solubility Insoluble

Shipping Weight

Sodium Form 48 lbs./cu.ft. Total Capacity

Sodium Form 1.8 meg/ml min

SUGGESTED OPERATING CONDITIONS

Maximum Temperature
Sodium Form 250⁰ F

Minimum Bed Depth 24 inches
Backwash Rate 50 to 75% Bed Expansion

Regenerant (NaCl or KCl)

Service Flow Rate

Concentration 10 to 15 percent 0.5 to 1.5 gpm/cu.ft. Flow Rate Contact Time > 20 minutes Level 4 to 15 pounds/cu.ft. Displacement Rate Same as Regen Flow Rate Volume 10 to 15 gallons/cu.ft. Same as Service Flow Rate Fast Rinse Rate 35 to 60 gallons/cu.ft. Volume

2 to 10 gpm/cu.ft.

OPERATING CAPACITY

Sodium Chloride (NaCl) Regeneration

The sodium cycle operating capacity of $RESINTECH\ CGS$ for hardness removal at various regeneration levels with an influent calcium/magnesium ratio of 2/1 and a hardness level of 500 ppm, as $CaCO_3$, is shown in the following table:

Pounds NaOH/cu.ft.	Capacity Kilograins/cu.ft.
5	20.0
7.5	25.4
10	29.0
15	33.0

Potassium Chloride (KCI) Regeneration

The potassium cycle operating capacity of $RESINTECH\ CGS$ for hardness removal at various regeneration levels with an influent calcium/magnesium ratio of 2/1 and a hardness level of 500 ppm, as $CaCO_3$, is shown in the following table:

Pounds NaOH/cu.ft.	Capacity Kilograins/cu.ft.
5	16.6
7.5	21.8
10	26.6
15	31.2

APPLICATIONS

Softening

RESINTECH CGS is ideally suited for industrial, commercial, or residential softening applications where free chlorine is not present because of its high capacity, uniform particle size and good physical stability.

*CAUTION:DO NOT MIX ION EXCHANGE RESIN WITH STRONG OXIDIZING AGENTS. Nitric acid and other strong oxidizing agents can cause explosive reactions when mixed with organic materials, such as ion exchange resins.

Material Safety Data Sheets (MSDS) are available for all ResinTech Inc.products. To obtain a copy, contact your local ResinTech sales representative or our corporate headquarters. They contain important health and safety information. That information may be needed to protect your employees and customers from any known health and safety hazards associated with our products. We recommend that you secure and study the pertinent MSDS for our products and any other products being used These suggestions and data are based on information we believe to be reliable. They are offered in good faith. However we do not make any guarantee or warranty. We caution against using these products in an unsafe manner or in violation of any patents; further we assume no liability for the consequences of any such actions.

RESINTECH SBG1 is a high capacity, shock resistant, gelular, Type 1, strongly basic anion exchange resin supplied in the chloride or hydroxide form as moist, tough, uniform, spherical beads. *RESINTECH SBG1* is intended for use in all types of deionization systems and chemical processing applications. It is similar to *RESINTECH SBG1P* but has a higher volumetric capacity and exhibits lower TOC leach rates. This makes it the better performer in single use applications such as in cartridge deionization and when high levels of regeneration are used such as in polishing mixed beds. On the other hand, *RESINTECH SBG1P* is more resistant to organic fouling and gives higher operating capacities at low regeneration levels such as those used in make up demineralizers.

FEATURES & BENEFITS

COMPLIES WITH FDA REGULATIONS FOR POTABLE WATER APPLICATIONS.

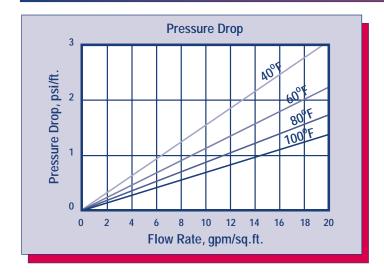
Conforms to paragraph 21CFR173.125 of the Food Additives Regulations of the F.D.A.*

HIGH TOTAL CAPACITY

Provides longer run lengths in single use applications or where high levels of regeneration are used such as in mixed bed polishers, cartridge demineralizers.

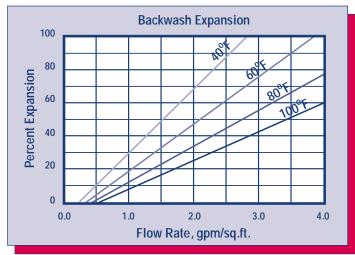
UNIFORM PARTICLE SIZE

16 to plus 50 mesh range; gives a LOWER PRESSURE DROP while maintaining SUPERIOR KINETICS.


SUPERIOR PHYSICAL STABILITY

LOWER TOC LEACH RATE

Makes it ideal for polishing mixed beds in wafer washing and other high purity water polishing applications.


*For potable water applications, the resin must be properly pre-treated, usually by multiple exhaustion and regeneration cycles, to ensure compliance with extractable levels.

HYDRAULIC PROPERTIES

The graph above shows the expected pressure loss per foot of bed depth as a function of flow rate, at various temperatures.

BACKWASH

After each cycle the resin bed should be backwashed at a rate that expands the bed 50 to 75 percent. This will remove any foreign matter and reclassify the bed. The graph above shows the expansion characteristics of *ResinTech SBG1* in the sodium form.

RESINTECH® SBG1

PHYSICAL PROPERTIES

Polymer Structure Styrene Crosslinked with DVB Functional Group $R-N-(CH_3)_3+CI-$ Ionic Form, as shipped Chloride or Hydroxide Physical Form Tough, Spherical Beads

Screen Size Distribution 16 to 50
+16 mesh (U.S. Std) < 5 percent
-50 mesh (U.S. Std) < 1 percent

PH Range 0 to 14

Sphericity > 93 percent

Uniformity Coefficient Approx. 1.6

Water Retention

Chloride Form 43 to 50 percent Hydroxide Form Approx. 53 to 60 percent

Solubility Insoluble

Approximate Shipping Weight

CI Form 44 lbs/cu.ft.

OH Form 41 lbs/cu.ft.

Swelling CI- to OH- 18 to 25 percent

Total Capacity

CI Form 1.45 meq/ml min OH Form 1.15 meq/ml min

SUGGESTED OPERATING CONDITIONS

Maximum Continuous Temperature

Hydroxide Form 140° F alt Form 170° F Minimum Bed Depth 24 inches

Backwash Rate 50 to 75 percent Bed Expansion

Regenerant Concentration* 2 to 6 percent
Regenerant Flow Rate 0.25 to 1.0 gpm/cu.ft.
Regenerant Contact Time At least 40 Minutes
Regenerant Level 4 to 10 pounds/cu.ft.

Displacement Rinse Rate Same as Regenerant Flow Rate

Displacement Rinse Volume 10 to 15 gals/cu.ft.
Fast Rinse Rate Same as Service Flow Rate

Fast Rinse Volume 35 to 60 gals/cu.ft.

Service Flow Rates

Polishing Mixed Beds 3 to 15 gpm/cu.ft. Non-Polishing Apps. 2 to 4 gpm/cu.ft.

OPERATING CAPACITY

The operating capacity of *RESINTECH SBG1* for a variety of acids at various regeneration levels when treating an influent with a concentration 500 ppm, expressed as $CaCO_3$ is shown in the following table:

Pounds	Capacity Kilograms per cubic foot						
NaOH/ft ³	HCI	H ₂ SO ₄	H ₂ SiO ₃	H_2CO_3			
4	11.3	14.0	14.7	18.6			
6	12.8	16.3	17.3	19.8			
8	14.3	13.3	19.5	21.6			
10	15.5	20.0	22.2	22.2			

APPLICATIONS

DEMINERALIZATION – RESINTECH SBG1 is highly recommended for use in mixed bed demineralizers, wherever complete ion removal; superior physical and osmotic stability and low TOC leachables are required such as in wafer fabrication and other ultrapure applications.

RESINTECH SBG1 has high total capacity and low swelling on regeneration and provides maximum operating capacity in cartridge deionization applications. It is ideal for single use applications such as precious metal recovery, radwaste disposal and purification of toxic waste streams.

Highly crosslinked Type 1, styrenic anion exchangers have greater thermal and oxidation resistance than other types of strong base resins. They can be operated and regenerated at higher temperatures. The combination of lower porosity, high total capacity and Type 1 functionality make *RESINTECH SBG1* the resin of choice when water temperatures exceed 85°DF and where the combination of carbon dioxide, borate and silica exceed 40% of the total anions.

RESINTECH SBG1P and RESINTECH SBG1 are quite similar; the difference between them is the degree of porosity. RESINTECH SBG1P has greater porosity that gives it faster kinetics, and greater ability to reversibly sorb slow moving ions such as Naturally occurring Organic Matter (NOM). At lower regeneration levels and where chlorides make up a substantial portion of the anion load, or where the removal and elution of naturally occurring organics is of concern RESINTECH SBG1P, SBACR or SBG2 should be considered. At the higher regeneration levels used in mixed bed polishers RESINTECH SBG1 provides higher capacity, and the lowest possible TOC leach rates.

*CAUTION:DO NOT MIX ION EXCHANGE RESIN WITH STRONG OXIDIZING AGENTS. Nitric acid and other strong oxidizing agents can cause explosive reactions when mixed with organic materials, such as ion exchange resins.

Material Safety Data Sheets (MSDS) are available for all ResinTech Inc.products. To obtain a copy, contact your local ResinTech sales representative or our corporate headquarters. They contain important health and safety information. That information may be needed to protect your employees and customers from any known health and safety hazards associated with our products. We recommend that you secure and study the pertinent MSDS for our products and any other products being used These suggestions and data are based on information we believe to be reliable. They are offered in good faith. However we do not make any guarantee or warranty. We caution against using these products in an unsafe manner or in violation of any patents; further we assume no liability for the consequences of any such actions.

Safety Data Sheet

Product Names: SBG1, SBG1-HP, SBG1-UPS, SBG1-C, SBG1-F, SBMP1, SBMP1-UPS, GP-SBA, SBG1P, SBG1P-UPS

(Type I Strong Base Anion Exchange Resin Chloride Form)
Effective date 31 March 2015

Section 1: Identification

10	Product Names	Design Teach CDC1	CDC1 UD C	SBG1-UPS, SBG1-C.
1a	Floudet Names	Resilitecti SBG I.	300 I-HF, 3	30G1-UP3, 30G1-C,

SBG1-F, SBMP1, SBMP1-UPS, GP-SBA, SBG1P,

SBG1P-UPS

1b Common Name Type I Strong base anion resin in the chloride form.

1c Intended use All general purpose anion exchanges for general use

including salt form and demineralization.

1d Manufacturer ResinTech, Inc.

Address 160 Cooper Road,

West Berlin, NJ 08091 USA

Phone 856-768-9600

Email ixresin@resintech.com

Section 2: Hazard Identification

2a Hazard classification Not hazardous or dangerous

Product Hazard Rating	Scale
Health = 0	0 = Negligible
Fire = 1	1 = Slight
Reactivity = 0	2 = Moderate
Special – N/A	3 = High
	4 = Extreme

2b Product description White, yellow, or orange colored solid beads

approximately 0.6 mm diameter with little or no odor.

2c Precautions for use Safety glasses and gloves recommended.

Slipping hazard if spilled.

2c Potential health effects Will cause eye irritation.

Will cause skin skin irritation.

Ingestion is not likely to pose a health risk.

2d Environmental effects This product may alter the pH of any water that

contacts it.

ION EXCHANGE RESINS

Product Name: CG10-H, CG10-H-ULTRA, CG10-H-LTOC, CG10-H-SC, CG10-H-NG,

CG10-H-C, CG10-H-F, CG10-H-UPS, CG8-H, CG8-H-ULTRA, CG8-H-LTOC, CG8-H-SC, CG8-H-NG, CG8-H-C, CG8-H-F, CG8-H-UPS, CGS-H, CGS-H-C,

CGS-H-F, CGS-H-UPS, CG6-H, GP-SAC-H

Cation Exchange Resin, Hydrogen Form

Effective Date: 11/1/07

1. Company Information:

Company Address: ResinTech, Inc.

1 ResinTech Plaza 160 Cooper Road

West Berlin, NJ 08091 USA

Information Numbers: Phone Number: 856-768-9600

Fax Number: 856-768-9601

Email: ixresin@resintech.com
Website: www.resintech.com

2. Composition/Ingredients:

Sulfonated copolymer of styrene and divinylbenzene

in the hydrogen form. CAS# 69011-20-7 (35 – 65%)

Water CAS# 7732-18-5 (35 – 65%)

This document is prepared pursuant to the OSHA Hazard Communication Standard (29CFR 1910.1200). In addition, other substances not 'Hazardous' per this OSHA Standard may be listed. Where proprietary ingredient shows, the identity may be made available as provided in this standard.

3. Physical/Chemical Data:

Boiling Point:

Vapor Pressure (MM HG):

Not Applicable

Not Applicable

Evaporation Rate (water = 1):

Appearance & Odor: Amber solid beads. No to low odor.

Specific Gravity:

Melting Point (deg. F)

Solubility in Water:

1.2 (water = 1)

Not applicable

Insoluble

Thermal: May yield oxides of carbon and nitrogen

Vapor Density: Not Applicable

Product Hazard Rating	Scale
Toxicity = 0	0 = Negligible
Fire = 0	1 = Slight
Reactivity = 0	2 = Moderate
Special – N/A	3 = High
	4 = Extreme

4. Fire & Explosion Hazard Data

Flammable Limits: 800 ° Deg. F

Unusual Fire & Explosion Hazards: Product is not combustible until moisture is removed, then resin starts to burn in flame at

Ion Exchange Resins

Combustion Products:

Extinguishing Media:

Special Fire Fighting Procedures:

5. Reactivity Data

Stability:

Conditions to Avoid: Hazardous by Products:

Materials to avoid contact with: Hazardous Polymerization:

Storage:

6. Health Hazards & Sara (Right to Know)

Emergency First Aid Procedures:

Skin Absorption:

Ingestion:

Inhalation:

Systemic & Other Effects:

Carcinogenicity:

Sara - title 3, sections 311 & 312:

7. First Aid

Eyes:

Skin:

Ingestion:

Inhalation:

8. Control Measures

Respiratory protection:

Eye protection: Ventilation: Protective Gloves:

9. Safe handling procedures

In Case of Spills:

230 C. Autoignition occurs above 500C.

Possible fire.

Hazardous combustion products may include and are not limited to: hydrocarbons, sulfur oxides, organic sulfonates, carbon monoxide, carbon dioxide, benzene compounds.

Water, CO₂, Talc, Dry Chemical

MSHA/NIOSH approved self-contained breathing

gear.

Stable

Temperatures above 400° F

See Section 3 above for possible combustion

products.

Strong oxidizing agents (i.e. nitric acid)

Material does not polymerize Store in a cool dry place

Contact with eyes can and skins can cause irritation. Skin absorption is unlikely due to physical properties. Single dose oral LD50 has not been determined.

Single does oral toxicity is believed to be low. No hazards anticipated from ingestion incidental to

industrial exposure.

Vapors are unlikely due to physical properties.

No specific data available, however, repeated exposures are not anticipated to cause any significant

adverse effects. Not Applicable

All ingredients are non-hazardous

Irrigate immediately with water for at least 5 minutes.

Mechanical irritation only.

No adverse effects anticipated by this route of

exposure.

No adverse effects anticipated by this route of exposure incidental to proper industrial handling.

No adverse effects anticipated by this route of

exposure.

Not required for normal uses if irritation occurs from

breathing-get fresh air!

Splash goggles

Normal

Not required.

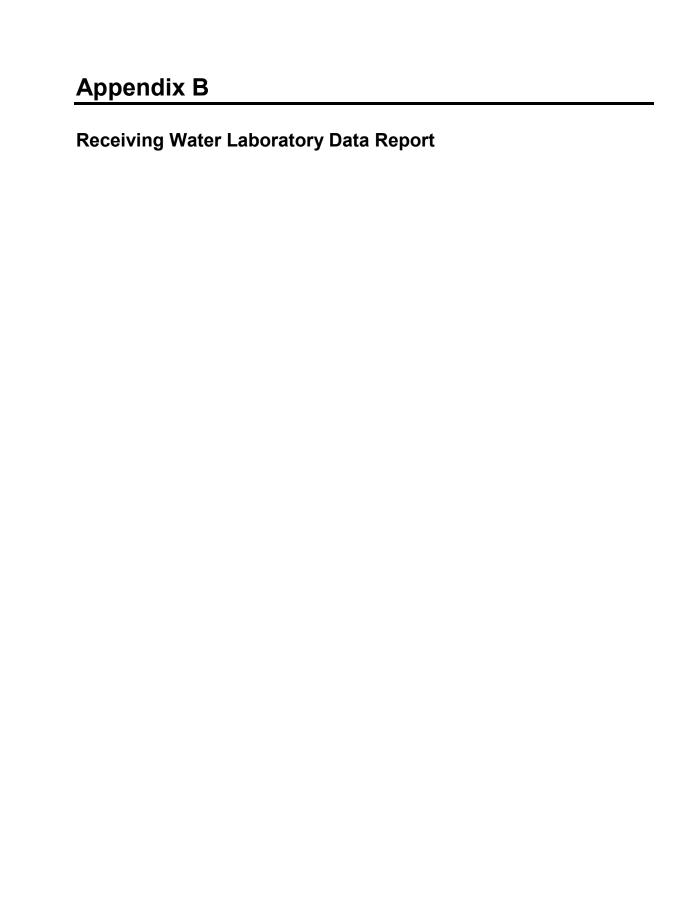
Sweep up material and transfer to containers. Use caution – the floor will be slippery!

Ion Exchange Resins

Disposal Method: Bury resin in licensed landfill or burn in approved Incinerator according to local, state, and federal regulations. For resin contaminated with hazardous material, dispose of mixture as hazardous material according to local, state and federal regulations. 10. Additional Information: Special precautions to be taken in handling and storage: Practice reasonable care and caution. Metal equipment with feed, regenerant, resin form, and effluent of that **TSCA Considerations:** Every different salt or ionic form of an ion-exchange resin is a separate chemical. If you use an ionexchange resin for ion-exchange purposes and then remove the by-product resin from its vessel or container prior to recovery of the original or another form of the resin or of another chemical, the byproduct resin must be listed on the TSCA Inventory (unless an exemption is applicable). It is the responsibility of the customer to ensure that such isolated, recycled by-product resins are in compliance Failure to comply could result in with TSCA. substantial civil or criminal penalties being assessed by the Environmental Production Agency. **MSDS Status:** Canadian regulatory information added. 11. Regulatory Information: (Not meant to be all-inclusive—selected regulations represented.) Notice: The information herein is presented in good faith and believed to be accurate as of the effective date shown above. However, no warranty, express or implied, is given. Regulatory requirements are subject to change and may differ from one location to another; it is the buyer's responsibility to ensure that its activities comply with federal, state or provincial, and local laws. The following specific information is made for the purpose of complying with numerous federal, state or provincial, and local laws and regulations. 12. Canadian Regulations: WHMIS Information: The Canadian Workplace Hazardous Materials

For guidance, the Transportation of Dangerous Good Classification for this product is: Not Regulated.

Information System (WHMIS) Classification for this


This product is not a "Controlled Product" under

While this information and recommendations set forth herein are believed to be accurate as of the date hereof, ResinTech, Inc. makes no warranty with respect hereto and disclaims all liability from reliance thereon.

Canadian TDG Information:

product is:

WHMIS.

The Microbiology Division of Thielsch Engineering, Inc.

CERTIFICATE OF ANALYSIS

Ryan Hoffman GEI Consultants, Inc. 400 Unicorn Park Drive Woburn, MA 01801

RE: Downing Square Environmental - RGP (1703090) ESS Laboratory Work Order Number: 19F0964

This signed Certificate of Analysis is our approved release of your analytical results. These results are only representative of sample aliquots received at the laboratory. ESS Laboratory expects its clients to follow all regulatory sampling guidelines. Beginning with this page, the entire report has been paginated. This report should not be copied except in full without the approval of the laboratory. Samples will be disposed of thirty days after the final report has been delivered. If you have any questions or concerns, please feel free to call our Customer Service Department.

Laurel Stoddard Laboratory Director REVIEWED

By ESS Laboratory at 5:27 pm, Jul 08, 2019

Analytical Summary

The project as described above has been analyzed in accordance with the ESS Quality Assurance Plan. This plan utilizes the following methodologies: US EPA SW-846, US EPA Methods for Chemical Analysis of Water and Wastes per 40 CFR Part 136, APHA Standard Methods for the Examination of Water and Wastewater, American Society for Testing and Materials (ASTM), and other recognized methodologies. The analyses with these noted observations are in conformance to the Quality Assurance Plan. In chromatographic analysis, manual integration is frequently used instead of automated integration because it produces more accurate results.

The test results present in this report are in compliance with TNI and relative state standards, and/or client Quality Assurance Project Plans (QAPP). The laboratory has reviewed the following: Sample Preservations, Hold Times, Initial Calibrations, Continuing Calibrations, Method Blanks, Blank Spikes, Blank Spike Duplicates, Duplicates, Matrix Spikes, Matrix Spike Duplicates, Surrogates and Internal Standards. Any results which were found to be outside of the recommended ranges stated in our SOPs will be noted in the Project Narrative.

The Microbiology Division of Thielsch Engineering, Inc.

CERTIFICATE OF ANALYSIS

Client Name: GEI Consultants, Inc.

Client Project ID: Downing Square Environmental - RGP ESS Laboratory Work Order: 19F0964

SAMPLE RECEIPT

The following samples were received on June 28, 2019 for the analyses specified on the enclosed Chain of Custody Record.

The samples and analyses listed below were analyzed in accordance with the 2017 Remediation General Permit under the National Pollutant Discharge Elimination System (NPDES).

ESS Laboratory is unable to achieve the required detection limit of 0.4 mg/L for Ethanol for the RGP permit. We have also been unable to procure a subcontract laboratory that is able to achieve this limit. The data for Ethanol has been reported using our current method reporting limit.

<u>Lab Number</u> 19F0964-01

Sample Name 1703090-SW Matrix Surface Water **Analysis**

200.7, 200.8, 245.1, 3113B, 350.1, 3500Cr B-2009

The Microbiology Division of Thielsch Engineering, Inc.

CERTIFICATE OF ANALYSIS

Client Name: GEI Consultants, Inc.

Client Project ID: Downing Square Environmental - RGP ESS Laboratory Work Order: 19F0964

PROJECT NARRATIVE

No unusual observations noted.

End of Project Narrative.

DATA USABILITY LINKS

To ensure you are viewing the most current version of the documents below, please clear your internet cookies for www.ESSLaboratory.com. Consult your IT Support personnel for information on how to clear your internet cookies.

Definitions of Quality Control Parameters

Semivolatile Organics Internal Standard Information

Semivolatile Organics Surrogate Information

Volatile Organics Internal Standard Information

Volatile Organics Surrogate Information

EPH and VPH Alkane Lists

185 Frances Avenue, Cranston, RI 02910-2211

Tel: 401-461-7181

Quality

Dependability

Fax: 401-461-4486

http://www.ESSLaboratory.com

The Microbiology Division of Thielsch Engineering, Inc.

CERTIFICATE OF ANALYSIS

Client Name: GEI Consultants, Inc.

Client Project ID: Downing Square Environmental - RGP ESS Laboratory Work Order: 19F0964

CURRENT SW-846 METHODOLOGY VERSIONS

Analytical Methods

1010A - Flashpoint

6010C - ICP

6020A - ICP MS

7010 - Graphite Furnace

7196A - Hexavalent Chromium

7470A - Aqueous Mercury

7471B - Solid Mercury

8011 - EDB/DBCP/TCP

8015C - GRO/DRO

8081B - Pesticides

8082A - PCB

8100M - TPH

8151A - Herbicides

8260B - VOA

8270D - SVOA

8270D SIM - SVOA Low Level

9014 - Cyanide

9038 - Sulfate

9040C - Aqueous pH

9045D - Solid pH (Corrosivity)

9050A - Specific Conductance

9056A - Anions (IC)

9060A - TOC

9095B - Paint Filter

MADEP 04-1.1 - EPH

MADEP 18-2.1 - VPH

Prep Methods

3005A - Aqueous ICP Digestion

3020A - Aqueous Graphite Furnace / ICP MS Digestion

3050B - Solid ICP / Graphite Furnace / ICP MS Digestion

3060A - Solid Hexavalent Chromium Digestion

3510C - Separatory Funnel Extraction

3520C - Liquid / Liquid Extraction

3540C - Manual Soxhlet Extraction

3541 - Automated Soxhlet Extraction

3546 - Microwave Extraction

3580A - Waste Dilution

5030B - Aqueous Purge and Trap

5030C - Aqueous Purge and Trap

5035A - Solid Purge and Trap

SW846 Reactivity Methods 7.3.3.2 (Reactive Cyanide) and 7.3.4.1 (Reactive Sulfide) have been withdrawn by EPA. These methods are reported per client request and are not NELAP accredited.

The Microbiology Division of Thielsch Engineering, Inc.

CERTIFICATE OF ANALYSIS

Client Name: GEI Consultants, Inc.

Client Project ID: Downing Square Environmental - RGP

Client Sample ID: 1703090-SW

Date Sampled: 06/28/19 08:00

Percent Solids: N/A

ESS Laboratory Work Order: 19F0964 ESS Laboratory Sample ID: 19F0964-01

Sample Matrix: Surface Water

Units: ug/L

Extraction Method: 3005A/200.7

Total Metals

<u>Analyte</u>	Results (MRL)	MDL	Method	<u>Limit</u>	DF	Analyst	Analyzed	I/V	F/V	Batch
Antimony	ND (5.0)		200.7		1	KJK	07/02/19 14:36	100	10	CG90144
Arsenic	ND (1.0)		3113B		2	KJK	07/02/19 18:56	100	10	CG90144
Cadmium	ND (0.2)		200.8		5	KJK	07/02/19 15:51	100	10	CG90144
Chromium	ND (2.0)		200.7		1	KJK	07/02/19 14:36	100	10	CG90144
Copper	ND (2.0)		200.7		1	KJK	07/02/19 14:36	100	10	CG90144
Hardness	163000 (824)		200.7		10	KJK	07/03/19 13:28	1	1	[CALC]
Iron	687 (100)		200.7		10	KJK	07/03/19 13:28	100	10	CG90144
Lead	ND (2.0)		200.7		1	KJK	07/02/19 14:36	100	10	CG90144
Mercury	ND (0.2)		245.1		1	MKS	07/05/19 9:48	20	40	CG90137
Nickel	ND (5.0)		200.7		1	KJK	07/02/19 14:36	100	10	CG90144
Selenium	ND (2.0)		3113B		2	KJK	07/02/19 21:05	100	10	CG90144
Silver	ND (0.5)		200.7		1	KJK	07/02/19 14:36	100	10	CG90144
Zinc	24.7 (5.0)		200.7		1	KJK	07/02/19 14:36	100	10	CG90144

Service

The Microbiology Division of Thielsch Engineering, Inc.

CERTIFICATE OF ANALYSIS

Client Name: GEI Consultants, Inc.

Client Project ID: Downing Square Environmental - RGP

Client Sample ID: 1703090-SW Date Sampled: 06/28/19 08:00

Percent Solids: N/A

ESS Laboratory Work Order: 19F0964 ESS Laboratory Sample ID: 19F0964-01

Sample Matrix: Surface Water

Classical Chemistry

Analyte	Results (MRL)	MDL Method	<u>Limit</u>	<u>DF</u>	Analys	t Analyzed	<u>Units</u>	Batch
Ammonia as N	ND (0.10)	350.1		1	JLK	07/02/19 20:35	mg/L	CG90234
Hexavalent Chromium	ND (10.0)	3500Cr B-2009		1	CCP	06/28/19 20:00	ug/L	CF92828

The Microbiology Division of Thielsch Engineering, Inc.

CERTIFICATE OF ANALYSIS

Client Name: GEI Consultants, Inc.

Client Project ID: Downing Square Environmental - RGP ESS Laboratory Work Order: 19F0964

Quality Control Data

Analyte	Result	MRL	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Qualifier
			Total Met	als						
Batch CG90137 - 245.1/7470A										
Blank										
Mercury (ND	0.2	ug/L							
.cs										
1ercury	6.0	0.2	ug/L	6.042		99	85-115			
CS Dup										
Mercury	5.7	0.2	ug/L	6.042		95	85-115	4	20	
Batch CG90144 - 3005A/200.7										
lank										
Antimony	ND	5.0	ug/L							
Arsenic	ND	0.5	ug/L							
Cadmium	ND	0.2	ug/L							
Chromium	ND	2.0	ug/L							
Copper	ND	2.0	ug/L							
ron	ND	50.0	ug/L							
ead	ND	2.0	ug/L							
lickel	ND	5.0	ug/L							
elenium	ND	1.0	ug/L							
ilver	ND	0.5	ug/L							
linc	ND	5.0	ug/L							
cs										
antimony	46.3	5.0	ug/L	50.00		93	85-115			
arsenic	47.0	12.5	ug/L	50.00		94	85-115			
Cadmium	23.3	1.0	ug/L	25.00		93	85-115			
Chromium	46.1	2.0	ug/L	50.00		92	85-115			
Copper	53.2	2.0	ug/L	50.00		106	85-115			
ron	269	50.0	ug/L	250.0		107	85-115			
ead	47.7	2.0	ug/L	50.00		95	85-115			
lickel	45.3	5.0	ug/L	50.00		91	85-115			
Selenium	98.9	25.0	ug/L	100.0		99	85-115			
Silver	25.3	0.5	ug/L	25.00		101	85-115			
linc	48.8	5.0	ug/L	50.00		98	85-115			
		Cl	assical Che	mistry						
Batch CF92828 - General Preparation										
Blank										
Hexavalent Chromium	ND	10.0	ug/L							
.cs										
Hexavalent Chromium	0.511		mg/L	0.4998		102	90-110			
.CS Dup										
lexavalent Chromium	0.510		mg/L	0.4998		102	90-110	0.1	20	

The Microbiology Division of Thielsch Engineering, Inc.

CERTIFICATE OF ANALYSIS

Client Name: GEI Consultants, Inc.

Client Project ID: Downing Square Environmental - RGP ESS Laboratory Work Order: 19F0964

Quality Control Data

Analyte	Result	MRL	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Qualifier
		С	lassical Che	mistry						
Batch CG90234 - NH4 Prep										
Ammonia as N	ND	0.10	mg/L							
LCS										
Ammonia as N	0.08	0.10	mg/L	0.09994		80	80-120			
LCS										
Ammonia as N	1.03	0.10	mg/L	0.9994		103	80-120			

The Microbiology Division of Thielsch Engineering, Inc.

CERTIFICATE OF ANALYSIS

Client Name: GEI Consultants, Inc.

Client Project ID: Downing Square Environmental - RGP ESS Laboratory Work Order: 19F0964

Notes and Definitions

U	Analyte included	in the analysis.	but not detected
U	I mary to moradou	III tile allai yolo.	out not detected

D Diluted.

F/V

ND Analyte NOT DETECTED at or above the MRL (LOQ), LOD for DoD Reports, MDL for J-Flagged Analytes

Sample results reported on a dry weight basis dry

RPD Relative Percent Difference **MDL** Method Detection Limit MRL Method Reporting Limit LOD Limit of Detection LOQ Limit of Quantitation **Detection Limit** DL Initial Volume I/V

Final Volume

Subcontracted analysis; see attached report

Range result excludes concentrations of surrogates and/or internal standards eluting in that range. 1

2 Range result excludes concentrations of target analytes eluting in that range. 3 Range result excludes the concentration of the C9-C10 aromatic range.

Avg

Results reported as a mathematical average.

NR No Recovery

[CALC] Calculated Analyte

Subcontracted analysis; see attached report **SUB**

RLReporting Limit

EDL Estimated Detection Limit MF Membrane Filtration MPN Most Probably Number **TNTC** Too numerous to Count **CFU** Colony Forming Units

185 Frances Avenue, Cranston, RI 02910-2211

Tel: 401-461-7181

Quality

Dependability

Fax: 401-461-4486

http://www.ESSLaboratory.com

The Microbiology Division of Thielsch Engineering, Inc.

CERTIFICATE OF ANALYSIS

Client Name: GEI Consultants, Inc.

Client Project ID: Downing Square Environmental - RGP ESS Laboratory Work Order: 19F0964

ESS LABORATORY CERTIFICATIONS AND ACCREDITATIONS

ENVIRONMENTAL

Rhode Island Potable and Non Potable Water: LAI00179 http://www.health.ri.gov/find/labs/analytical/ESS.pdf

Connecticut Potable and Non Potable Water, Solid and Hazardous Waste: PH-0750 http://www.ct.gov/dph/lib/dph/environmental_health/environmental_laboratories/pdf/OutofStateCommercialLaboratories.pdf

Maine Potable and Non Potable Water, and Solid and Hazardous Waste: RI00002 http://www.maine.gov/dhhs/mecdc/environmental-health/dwp/partners/labCert.shtml

Massachusetts Potable and Non Potable Water: M-RI002 http://public.dep.state.ma.us/Labcert/Labcert.aspx

New Hampshire (NELAP accredited) Potable and Non Potable Water, Solid and Hazardous Waste: 2424 http://des.nh.gov/organization/divisions/water/dwgb/nhelap/index.htm

New York (NELAP accredited) Non Potable Water, Solid and Hazardous Waste: 11313 http://www.wadsworth.org/labcert/elap/comm.html

New Jersey (NELAP accredited) Non Potable Water, Solid and Hazardous Waste: RI006 http://datamine2.state.nj.us/DEP_OPRA/OpraMain/pi_main?mode=pi_by_site&sort_order=PI_NAMEA&Select+a+Site:=58715

United States Department of Agriculture Soil Permit: P330-12-00139

Pennsylvania: 68-01752

http://www.dep.pa.gov/Business/OtherPrograms/Labs/Pages/Laboratory-Accreditation-Program.aspx

185 Frances Avenue, Cranston, RI 02910-2211

Tel: 401-461-7181

Fax: 401-461-4486

http://www.ESSLaboratory.com

ESS Laboratory Sample and Cooler Receipt Checklist

	GEI Consultant		<u> </u>		Date R	oject ID: eceived:	6/28/	2019	<u></u>
Shipped/Delivere	d Via:	ESS Courier				ue Date: Project:			
Air bill manifes Air No.:	•		No		6. Does COC m	natch bottles?			Yes
2. Were custody			No		7. Is COC comp 8. Were sample				Yes Yes
3. Is radiation cou	unt <100 CPM?		Yes		9. Were labs in	nformed abou	it short holds	& rushes?	(Yes) No / NA
4. Is a Cooler Pre Temp: 3	esent? 3.8 lced with:	Ice	Yes		10. Were any				Yes /(Vo)
5. Was COC sign	ned and dated by cl	ient?	Yes						
11. Any Subcontr ESS Samp An		Yes /(12. Were VOA: a. Air bubbles b. Does metha	in aqueous V		-	Yes / No Yes / No Yes / No / NA
	oles properly preser erved upon receipt: A vials frozen:		/ No Date: Date:		Time: Time:		By: By:		_
Sample Receiving	g Notes:								
	need to contact Property to contact the lead?			Yes / 🕅	Time:		Ву:		
				<u></u>			<u>.</u>		
	ntainer Proper ID Container	Air Bubbles Present	Sufficient Volume	Contai	ner Type	Preserva	tive		vanide and 608 cides)
01 36	0586 Yes 0587 Yes 0588 Yes	NA NA NA	Yes Yes Yes	250 mL P	oly - HNO3 oly - H2SO4 oly - Unpres	HNO3 H2SO NP			
Are barcode labe Are all Flashpoin Are all Hex Chro Are all QC sticke	ners scanned into els on correct conta it stickers attached/ me stickers attached ers attached? s attached if bubble	iners? container ID # c d?	circled?	Initials	Yes) No Yes / No / NA Yes / No / NA Yes / No / NA Yes / No / NA				
Completed By: Reviewed By: Delivered By:	A.		9	Date & Time		128/19 18/9 18/9	1834 1834		

Chain-of-Custody Record		Labora	aboratory: ESS Laboratory Job # (Lab use only) 19F0964						64	· ·								
<u>-</u>		1	1941		<u> </u>		Project In	formatic	n						· · · · · · · · · · · · · · · · · · ·			
		Project Nam	e: Downing \$	Sq Environ	mental			Project Location: Arlington, MA Project Manager: Ryan Hoffman										Page _1_ of _1_
G	Consultants	Project Num	ber: 170309	00														
				Molly Gree	er -							Preservative				1	Ì	Sample Handling
Woburn, MA 01801 PH: 781.721.4000 FX: 781.721.4073 Send EDD to: labdata@geiconsultan					HNO3 None H2SO4		НМОЗ				<u> </u>	<u></u>						
			s.com			A.								,	·	Samples Field Filtered		
MCP PRESUMPTIVE CERTAINTY REQUIRED - YES NO																YES NO NA		
If Yes, Are MCP Analytical Methods Required? YES If Yes, Are Drinking Water Samples Submitted? YES		YES	NO NA			€	0									Sampled Shipped With Ice		
		YES	NO	NA		tals	Chrome	;								YES NO		
If Yes, Have Y	ou Met Minimum Field Q				NO	NA_		₽	- 등	. ia	ssel						TES NO	
Lab Sample Number	GE! Sample I	,	Collec Date	tion Time	Matrix	No. of Bottles	Sampler(s)	Total Metals (1)	Hex.	Ammonia	Hardness							Sample Specific Remarks
Rember	1703090-SI		6/28/2019	8:00	sw	3	MEG	×	x_	×	x _							
									<u> </u>						ļ	<u> </u>	<u> </u>	
				ļ	ļ			ļ	ļ					ļ	 	├	ļ.—	·
				ļ	 			<u> </u>	 				<u> </u>	 	╁	 	 	
	<u> </u>				 -		 	╁	1	 			-	 			-	
	<u> </u>				 			1	<u> </u>	<u> </u>					T			
														ļ				
								<u> </u>	ļ	ļ			ļ	<u> </u>	<u> </u>		<u> </u>	
					ļ <u>-</u>		 	<u> </u>	 	 			<u> </u>		+	ļ	 	
MCP Level No whenever pos	eded: GEI requires the	most stringent I	Method 1 MCF	standard t	pe met for	all analyt	<u>l </u>		<u> </u>		l naround siness d	and the second		,				turnaround samples, poratory to confirm that
Retinquished by san	pler: (signature)	Date:	Time:	Received by: (s	signature)					Normal _		her					e achiev	
1. ///Will	y Men	428/19	830_	1 661	Fric	150		1	10	Day _	7	'-Day	_					
Relinquished by: (sig	nature)	Date :	Time:	Received by: (signature)		<u></u>	<u> </u>	5-1	Day)		3-Day		4 .	·C	anto/Do	marks:	
2. <u>しに</u> 」	Tridge.	424/17	1150	2. Dog Received by: (s	signatures			-		<u> </u>	Add	itional	Require	ments	/Colinu	entsire	inarks.	
a 777-76	4	6/28/19	1150	3 A	_//	4		(1) Metai	ls: Antimo	ny, arseni	c, cadmiun	n, chromiı	ım, coppe	r, iron, le	ad, mercu	y, nickel,	selenium,s	lver, zinc.
Relinquished by: (sig	nature)	Date;	Time:	Regeived by: (signature)	-		1 -										
4. 7	1 Lan	6/28/9	17.44	4.	人	Case	19 1755		_						.==:			

ice tenp: 3.8

The Microbiology Division of Thielsch Engineering, Inc.

CERTIFICATE OF ANALYSIS

Ryan Hoffman GEI Consultants, Inc. 400 Unicorn Park Drive Woburn, MA 01801

RE: Downing Square Environmental - RGP (1703090) ESS Laboratory Work Order Number: 19F0388

This signed Certificate of Analysis is our approved release of your analytical results. These results are only representative of sample aliquots received at the laboratory. ESS Laboratory expects its clients to follow all regulatory sampling guidelines. Beginning with this page, the entire report has been paginated. This report should not be copied except in full without the approval of the laboratory. Samples will be disposed of thirty days after the final report has been delivered. If you have any questions or concerns, please feel free to call our Customer Service Department.

Laurel Stoddard

Laboratory Director

REVIEWED

By ESS Laboratory at 6:09 pm, Jun 21, 2019

Analytical Summary

The project as described above has been analyzed in accordance with the ESS Quality Assurance Plan. This plan utilizes the following methodologies: US EPA SW-846, US EPA Methods for Chemical Analysis of Water and Wastes per 40 CFR Part 136, APHA Standard Methods for the Examination of Water and Wastewater, American Society for Testing and Materials (ASTM), and other recognized methodologies. The analyses with these noted observations are in conformance to the Quality Assurance Plan. In chromatographic analysis, manual integration is frequently used instead of automated integration because it produces more accurate results.

The test results present in this report are in compliance with TNI and relative state standards, and/or client Quality Assurance Project Plans (QAPP). The laboratory has reviewed the following: Sample Preservations, Hold Times, Initial Calibrations, Continuing Calibrations, Method Blanks, Blank Spikes, Blank Spike Duplicates, Duplicates, Matrix Spikes, Matrix Spike Duplicates, Surrogates and Internal Standards. Any results which were found to be outside of the recommended ranges stated in our SOPs will be noted in the Project Narrative.

The Microbiology Division of Thielsch Engineering, Inc.

CERTIFICATE OF ANALYSIS

Client Name: GEI Consultants, Inc.

ESS Laboratory Work Order: 19F0388 Client Project ID: Downing Square Environmental - RGP

SAMPLE RECEIPT

The following samples were received on June 12, 2019 for the analyses specified on the enclosed Chain of Custody Record.

The samples and analyses listed below were analyzed in accordance with the 2017 Remediation General Permit under the National Pollutant Discharge Elimination System (NPDES).

ESS Laboratory is unable to achieve the required detection limit of 0.4 mg/L for Ethanol for the RGP permit. We have also been unable to procure a subcontract laboatory that is able to achieve this limit. The data for Ethanol has been reported using our current method reporting limit.

<u>Lab Number</u>	Sample Name	<u>Matrix</u>	<u>Analysis</u>
19F0388-01	1703090-B203 MW	Ground Water	1664A, 200.7, 200.8, 245.1, 2540D, 300.0, 3113B,
			350.1, 3500Cr B-2009, 420.1, 4500 CN CE, 4500Cl
			D, 504.1, 524.2, 608.3, 625.1 SIM, 8270D SIM,
			ASTM D3695
19F0388-02	1703090-GZ-3B	Ground Water	1664A, 200.7, 200.8, 245.1, 2540D, 300.0, 3113B,
			350.1, 3500Cr B-2009, 420.1, 4500 CN CE, 4500Cl
			D, 504.1, 524.2, 608.3, 625.1 SIM, 8270D SIM,
			ASTM D3695

The Microbiology Division of Thielsch Engineering, Inc.

CERTIFICATE OF ANALYSIS

Client Name: GEI Consultants, Inc.

Client Project ID: Downing Square Environmental - RGP ESS Laboratory Work Order: 19F0388

PROJECT NARRATIVE

625.1(SIM) Semi-Volatile Organic Compounds

C9F0218-CCV1 <u>Calibration required quadratic regression (Q).</u>

2,4,6-Tribromophenol (97% @ 80-120%), Pentachlorophenol (94% @ 80-120%)

C9F0218-CCV1 Initial Calibration Verification recovery is above upper control limit (ICV+).

2,4,6-Tribromophenol

Classical Chemistry

19F0388-01 The maximum holding time listed in 40 CFR Part 136 Table II for pH, Dissolved Oxygen, Sulfite and

Residual Chlorine is fifteen minutes.

19F0388-02 The maximum holding time listed in 40 CFR Part 136 Table II for pH, Dissolved Oxygen, Sulfite and

Residual Chlorine is fifteen minutes.

Total Metals

CF91352-BSD1 Blank Spike recovery is below lower control limit (B-).

Calcium (84% @ 85-115%)

No other observations noted.

End of Project Narrative.

DATA USABILITY LINKS

To ensure you are viewing the most current version of the documents below, please clear your internet cookies for www.ESSLaboratory.com. Consult your IT Support personnel for information on how to clear your internet cookies.

Definitions of Quality Control Parameters

Semivolatile Organics Internal Standard Information

Semivolatile Organics Surrogate Information

Volatile Organics Internal Standard Information

Volatile Organics Surrogate Information

EPH and VPH Alkane Lists

185 Frances Avenue, Cranston, RI 02910-2211

Tel: 401-461-7181

Fax: 401-461-4486

The Microbiology Division of Thielsch Engineering, Inc.

CERTIFICATE OF ANALYSIS

Client Name: GEI Consultants, Inc.

Client Project ID: Downing Square Environmental - RGP ESS Laboratory Work Order: 19F0388

CURRENT SW-846 METHODOLOGY VERSIONS

Analytical Methods

1010A - Flashpoint

6010C - ICP

6020A - ICP MS

7010 - Graphite Furnace

7196A - Hexavalent Chromium

7470A - Aqueous Mercury

7471B - Solid Mercury

8011 - EDB/DBCP/TCP

8015C - GRO/DRO

8081B - Pesticides

8082A - PCB

8100M - TPH

8151A - Herbicides

8260B - VOA

8270D - SVOA

8270D SIM - SVOA Low Level

9014 - Cyanide

9038 - Sulfate

9040C - Aqueous pH

9045D - Solid pH (Corrosivity)

9050A - Specific Conductance

9056A - Anions (IC)

9060A - TOC

9095B - Paint Filter

MADEP 04-1.1 - EPH

MADEP 18-2.1 - VPH

Prep Methods

3005A - Aqueous ICP Digestion

3020A - Aqueous Graphite Furnace / ICP MS Digestion

3050B - Solid ICP / Graphite Furnace / ICP MS Digestion

3060A - Solid Hexavalent Chromium Digestion

3510C - Separatory Funnel Extraction

3520C - Liquid / Liquid Extraction

3540C - Manual Soxhlet Extraction

3541 - Automated Soxhlet Extraction

3546 - Microwave Extraction

3580A - Waste Dilution

5030B - Aqueous Purge and Trap

5030C - Aqueous Purge and Trap

5035A - Solid Purge and Trap

SW846 Reactivity Methods 7.3.3.2 (Reactive Cyanide) and 7.3.4.1 (Reactive Sulfide) have been withdrawn by EPA. These methods are reported per client request and are not NELAP accredited.

The Microbiology Division of Thielsch Engineering, Inc.

CERTIFICATE OF ANALYSIS

Client Name: GEI Consultants, Inc.

Client Project ID: Downing Square Environmental - RGP

Client Sample ID: 1703090-B203 MW

Date Sampled: 06/12/19 11:00

Percent Solids: N/A

ESS Laboratory Work Order: 19F0388 ESS Laboratory Sample ID: 19F0388-01

Sample Matrix: Ground Water

Units: ug/L

Extraction Method: 200.7/6010BNoDigest

Dissolved Metals

<u>Analyte</u>	Results (MRL)	MDL	Method	<u>Limit</u>	<u>DF</u>	Analyst	<u>Analyzed</u>	<u>I/V</u>	F/V	Batch
Antimony	ND (1.00)		200.8		1	NAR	06/13/19 12:20	10	10	CF91332
Arsenic	ND (5.0)		3113B		1	KJK	06/13/19 17:22	10	10	CF91332
Cadmium	0.3 (0.2)		200.8		1	NAR	06/20/19 16:38	10	10	CF91332
Chromium	ND (5.0)		200.8		1	NAR	06/20/19 16:38	10	10	CF91332
Copper	ND (2.0)		200.8		1	NAR	06/13/19 12:20	10	10	CF91332
Iron	1850 (50.0)		200.8		1	NAR	06/20/19 16:38	10	10	CF91332
Lead	ND (1.0)		200.8		1	NAR	06/13/19 12:20	10	10	CF91332
Mercury	ND (0.20)		245.1		1	MKS	06/17/19 12:28	20	40	CF91357
Nickel	ND (5.0)		200.8		1	NAR	06/20/19 16:38	10	10	CF91332
Selenium	ND (5.0)		200.8		1	NAR	06/13/19 12:20	10	10	CF91332
Silver	ND (0.5)		200.8		1	NAR	06/13/19 12:20	10	10	CF91332
Zinc	46.1 (2.0)		200.8		1	NAR	06/13/19 12:20	10	10	CF91332

The Microbiology Division of Thielsch Engineering, Inc.

CERTIFICATE OF ANALYSIS

Client Name: GEI Consultants, Inc.

Client Project ID: Downing Square Environmental - RGP

Client Sample ID: 1703090-B203 MW

Date Sampled: 06/12/19 11:00

Percent Solids: N/A

ESS Laboratory Work Order: 19F0388 ESS Laboratory Sample ID: 19F0388-01

Sample Matrix: Ground Water

Units: ug/L

Extraction Method: 3005A/200.7

Total Metals

Analyte	Results (MRL)	MDL	Method	<u>Limit</u>	<u>DF</u>	Analyst		_		Batch
Antimony	ND (5.0)		200.7		1	NAR	06/18/19 3:5	7 100	10	CF91352
Arsenic	ND (1.0)		3113B		2	KJK	06/14/19 17:0	2 100	10	CF91352
Cadmium	0.5 (0.2)		200.8		5	NAR	06/14/19 14:5	7 100	10	CF91352
Chromium	ND (5.0)		200.7		1	NAR	06/18/19 3:5	7 100	10	CF91352
Chromium III	ND (10.0)		200.7		1	JLK	06/18/19 3:5	7 1	1	[CALC]
Copper	4.4 (2.0)		200.7		1	NAR	06/18/19 3:5	7 100	10	CF91352
Hardness	147000 (8240)		200.7		100	NEXION	06/18/19 14:4	8 1	1	[CALC]
Iron	5610 (500)		200.8		100	NAR	06/18/19 14:4	8 100	10	CF91352
Lead	7.0 (0.5)	0.1	200.8		5	NAR	06/14/19 14:5	7 100	10	CF91352
Mercury	ND (0.2)		245.1		1	MKS	06/17/19 12:3	2 20	40	CF91357
Nickel	ND (5.0)		200.7		1	NAR	06/18/19 3:5	7 100	10	CF91352
Selenium	ND (2.0)		3113B		2	KJK	06/14/19 20:4	8 100	10	CF91352
Silver	ND (0.5)		200.7		1	NAR	06/18/19 3:5	7 100	10	CF91352
Zinc	54.5 (5.0)		200.7		1	NAR	06/18/19 3:5	7 100	10	CF91352

The Microbiology Division of Thielsch Engineering, Inc.

CERTIFICATE OF ANALYSIS

Client Name: GEI Consultants, Inc.

Client Project ID: Downing Square Environmental - RGP

Client Sample ID: 1703090-B203 MW

Date Sampled: 06/12/19 11:00

Percent Solids: N/A Initial Volume: 25 Final Volume: 25

Extraction Method: 524.2

ESS Laboratory Work Order: 19F0388 ESS Laboratory Sample ID: 19F0388-01

Sample Matrix: Ground Water

Units: ug/L Analyst: MD

524.2 Volatile Organic Compounds

<u>Analyte</u>	Results (MRL)	MDL	Method	<u>Limit</u>	<u>DF</u>	Analyzed	Sequence	Batch
1,1,1-Trichloroethane	ND (0.5)		524.2		1	06/18/19 21:10	C9F0292	CF91853
1,1,2-Trichloroethane	ND (0.5)		524.2		1	06/18/19 21:10	C9F0292	CF91853
1,1-Dichloroethane	ND (0.5)		524.2		1	06/18/19 21:10	C9F0292	CF91853
1,1-Dichloroethene	ND (0.5)		524.2		1	06/18/19 21:10	C9F0292	CF91853
1,2-Dichlorobenzene	ND (0.5)		524.2		1	06/18/19 21:10	C9F0292	CF91853
1,2-Dichloroethane	ND (0.5)		524.2		1	06/18/19 21:10	C9F0292	CF91853
1,3-Dichlorobenzene	ND (0.5)		524.2		1	06/18/19 21:10	C9F0292	CF91853
1,4-Dichlorobenzene	ND (0.5)		524.2		1	06/18/19 21:10	C9F0292	CF91853
Acetone	ND (5.0)		524.2		1	06/18/19 21:10	C9F0292	CF91853
Benzene	ND (0.5)		524.2		1	06/18/19 21:10	C9F0292	CF91853
Carbon Tetrachloride	ND (0.3)		524.2		1	06/18/19 21:10	C9F0292	CF91853
cis-1,2-Dichloroethene	ND (0.5)		524.2		1	06/18/19 21:10	C9F0292	CF91853
Ethylbenzene	ND (0.5)		524.2		1	06/18/19 21:10	C9F0292	CF91853
Methyl tert-Butyl Ether	ND (0.5)		524.2		1	06/18/19 21:10	C9F0292	CF91853
Methylene Chloride	ND (0.5)		524.2		1	06/18/19 21:10	C9F0292	CF91853
Naphthalene	ND (0.5)		524.2		1	06/18/19 21:10	C9F0292	CF91853
Tertiary-amyl methyl ether	ND (1.0)		524.2		1	06/18/19 21:10	C9F0292	CF91853
Tertiary-butyl Alcohol	ND (25.0)		524.2		1	06/18/19 21:10	C9F0292	CF91853
Tetrachloroethene	ND (0.5)		524.2		1	06/18/19 21:10	C9F0292	CF91853
Toluene	ND (0.5)		524.2		1	06/18/19 21:10	C9F0292	CF91853
Trichloroethene	ND (0.5)		524.2		1	06/18/19 21:10	C9F0292	CF91853
Vinyl Chloride	ND (0.2)		524.2		1	06/18/19 21:10	C9F0292	CF91853
Xylene O	ND (0.5)		524.2		1	06/18/19 21:10	C9F0292	CF91853
Xylene P,M	ND (0.5)		524.2		1	06/18/19 21:10	C9F0292	CF91853

%Recovery Qualifier Limits

 Surrogate: 1,2-Dichlorobenzene-d4
 85 %
 80-120

 Surrogate: 4-Bromofluorobenzene
 88 %
 80-120

185 Frances Avenue, Cranston, RI 02910-2211

Tel: 401-461-7181

Fax: 401-461-4486

The Microbiology Division of Thielsch Engineering, Inc.

CERTIFICATE OF ANALYSIS

Client Name: GEI Consultants, Inc.

Client Project ID: Downing Square Environmental - RGP

Client Sample ID: 1703090-B203 MW

Date Sampled: 06/12/19 11:00

Percent Solids: N/A Initial Volume: 1030 Final Volume: 1

Extraction Method: 3510C

ESS Laboratory Work Order: 19F0388 ESS Laboratory Sample ID: 19F0388-01

Sample Matrix: Ground Water

Units: ug/L Analyst: MJV

Prepared: 6/14/19 10:34

608.3 Polychlorinated Biphenyls (PCB)

Analyte Aroclor 1016	Results (MRL)	MDL	Method 608.3	<u>Limit</u>	<u>DF</u>	<u>Analyzed</u> <u>S</u>	Sequence	Batch CF91402
Aroclor 1221	ND (0.10)		608.3		1	06/14/19 17:32		CF91402
	ND (0.10)				1			
Aroclor 1232	ND (0.10)		608.3		1	06/14/19 17:32		CF91402
Aroclor 1242	ND (0.10)		608.3		1	06/14/19 17:32		CF91402
Aroclor 1248	ND (0.10)		608.3		1	06/14/19 17:32		CF91402
Aroclor 1254	ND (0.10)		608.3		1	06/14/19 17:32		CF91402
Aroclor 1260	ND (0.10)		608.3		1	06/14/19 17:32		CF91402
Aroclor 1262	ND (0.10)		608.3		1	06/14/19 17:32		CF91402
Aroclor 1268	ND (0.10)		608.3		1	06/14/19 17:32		CF91402
	9	%Recovery	Qualifier	Limits				
Surrogate: Decachlorobiphenyl		78 %		30-150				
Surrogate: Decachlorobiphenyl [2C]		84 %		30-150				
Surrogate: Tetrachloro-m-xylene		66 %		30-150				
Surrogate: Tetrachloro-m-xylene [2C]		72 %		30-150				

The Microbiology Division of Thielsch Engineering, Inc.

CERTIFICATE OF ANALYSIS

Client Name: GEI Consultants, Inc.

Client Project ID: Downing Square Environmental - RGP

Client Sample ID: 1703090-B203 MW

Date Sampled: 06/12/19 11:00

Percent Solids: N/A Initial Volume: 1020 Final Volume: 0.25

Surrogate: p-Terphenyl-d14

Extraction Method: 3510C

ESS Laboratory Work Order: 19F0388 ESS Laboratory Sample ID: 19F0388-01

Sample Matrix: Ground Water

Units: ug/L Analyst: IBM

Prepared: 6/13/19 13:08

625.1(SIM) Semi-Volatile Organic Compounds

Analyte Acenaphthene	Results (MRL) ND (0.20)	<u>MDL</u>	Method 625.1 SIM	<u>Limit</u>	<u>DF</u>	<u>Analyzed</u> 06/14/19 12:44	Sequence C9F0218	Batch CF91302
Acenaphthylene	ND (0.20)		625.1 SIM		1	06/14/19 12:44	C9F0218	CF91302
Anthracene	ND (0.20)		625.1 SIM		1	06/14/19 12:44	C9F0218	CF91302
Benzo(a)anthracene	ND (0.05)		625.1 SIM		1	06/14/19 12:44	C9F0218	CF91302
Benzo(a)pyrene	ND (0.05)		625.1 SIM		1	06/14/19 12:44	C9F0218	CF91302
Benzo(b)fluoranthene	0.05 (0.05)		625.1 SIM		1	06/14/19 12:44	C9F0218	CF91302
Benzo(g,h,i)perylene	ND (0.20)		625.1 SIM		1	06/14/19 12:44	C9F0218	CF91302
Benzo(k)fluoranthene	ND (0.05)		625.1 SIM		1	06/14/19 12:44	C9F0218	CF91302
bis(2-Ethylhexyl)phthalate	ND (2.45)		625.1 SIM		1	06/14/19 12:44	C9F0218	CF91302
Butylbenzylphthalate	ND (2.45)		625.1 SIM		1	06/14/19 12:44	C9F0218	CF91302
Chrysene	ND (0.05)		625.1 SIM		1	06/14/19 12:44	C9F0218	CF91302
Dibenzo(a,h)Anthracene	ND (0.05)		625.1 SIM		1	06/14/19 12:44	C9F0218	CF91302
Diethylphthalate	ND (2.45)		625.1 SIM		1	06/14/19 12:44	C9F0218	CF91302
Dimethylphthalate	ND (2.45)		625.1 SIM		1	06/14/19 12:44	C9F0218	CF91302
Di-n-butylphthalate	ND (2.45)		625.1 SIM		1	06/14/19 12:44	C9F0218	CF91302
Di-n-octylphthalate	ND (2.45)		625.1 SIM		1	06/14/19 12:44	C9F0218	CF91302
Fluoranthene	ND (0.20)		625.1 SIM		1	06/14/19 12:44	C9F0218	CF91302
Fluorene	ND (0.20)		625.1 SIM		1	06/14/19 12:44	C9F0218	CF91302
Indeno(1,2,3-cd)Pyrene	ND (0.05)		625.1 SIM		1	06/14/19 12:44	C9F0218	CF91302
Naphthalene	ND (0.20)		625.1 SIM		1	06/14/19 12:44	C9F0218	CF91302
Pentachlorophenol	ND (0.88)		625.1 SIM		1	06/14/19 12:44	C9F0218	CF91302
Phenanthrene	ND (0.20)		625.1 SIM		1	06/14/19 12:44	C9F0218	CF91302
Pyrene	ND (0.20)		625.1 SIM		1	06/14/19 12:44	C9F0218	CF91302
		%Recovery	Qualifier	Limits				
Surrogate: 1,2-Dichlorobenzene-d4		51 %		30-130				
Surrogate: 2,4,6-Tribromophenol		91 %		15-110				
Surrogate: 2-Fluorobiphenyl		65 %		30-130				
Surrogate: Nitrobenzene-d5		72 %		30-130				

98 %

30-130

The Microbiology Division of Thielsch Engineering, Inc.

CERTIFICATE OF ANALYSIS

Client Name: GEI Consultants, Inc.

Client Project ID: Downing Square Environmental - RGP

Client Sample ID: 1703090-B203 MW

Date Sampled: 06/12/19 11:00

Percent Solids: N/A Initial Volume: 500 Final Volume: 0.5

Extraction Method: 3535A

ESS Laboratory Work Order: 19F0388 ESS Laboratory Sample ID: 19F0388-01

Sample Matrix: Ground Water

Units: ug/L Analyst: IBM

Prepared: 6/13/19 15:15

8270D(SIM) Semi-Volatile Organic Compounds w/ Isotope Dilution

Analyte 1,4-Dioxane	Results (MRL) ND (0.250)	<u>MDL</u>	Method 8270D SIM	<u>Limit</u>	<u>DF</u> 1	Analyzed 06/17/19 21:39	Sequence C9F0264	Batch CF91244
	%	Recovery	Qualifier	Limits				
Surrogate: 1,4-Dioxane-d8		<i>56</i> %		15-115				

185 Frances Avenue, Cranston, RI 02910-2211

2211 Tel: 401-461-7181 Dependability • Quality Fax: 401-461-4486

◆ Service

The Microbiology Division of Thielsch Engineering, Inc.

CERTIFICATE OF ANALYSIS

Client Name: GEI Consultants, Inc.

Client Project ID: Downing Square Environmental - RGP

Client Sample ID: 1703090-B203 MW

Date Sampled: 06/12/19 11:00

Percent Solids: N/A

ESS Laboratory Work Order: 19F0388 ESS Laboratory Sample ID: 19F0388-01

Sample Matrix: Ground Water

Classical Chemistry

Analyte Ammonia as N	Results (MRL) 0.40 (0.10)	MDL Method 350.1	Limit	<u>DF</u>	Analyst JLK	Analyzed 06/18/19 16:38	Units mg/L	Batch CF91701
Chloride	20.6 (5.0)	300.0		10	EEM	06/14/19 17:44	mg/L	CF91418
Hexavalent Chromium	ND (10.0)	3500Cr B-2009		1	JLK	06/12/19 22:34	ug/L	CF91265
Phenols	ND (100)	420.1		1	EEM	06/14/19 11:00	ug/L	CF91422
Total Cyanide	ND (5.00)	4500 CN CE		1	EEM	06/13/19 12:15	ug/L	CF91329
Total Petroleum Hydrocarbon	ND (5)	1664A		1	LAB	06/17/19 15:15	mg/L	CF91704
Total Residual Chlorine	ND (20.0)	4500Cl D		1	CCP	06/12/19 21:33	ug/L	CF91262
Total Suspended Solids	108 (5)	2540D		1	JLK	06/14/19 20:26	mg/L	CF91443

The Microbiology Division of Thielsch Engineering, Inc.

CERTIFICATE OF ANALYSIS

Client Name: GEI Consultants, Inc.

Client Project ID: Downing Square Environmental - RGP

Client Sample ID: 1703090-B203 MW

Date Sampled: 06/12/19 11:00

Percent Solids: N/A Initial Volume: 35 Final Volume: 2

Extraction Method: 504/8011

ESS Laboratory Work Order: 19F0388 ESS Laboratory Sample ID: 19F0388-01

Sample Matrix: Ground Water

Units: ug/L Analyst: CAD

Prepared: 6/18/19 11:05

504.1 1,2-Dibromoethane / 1,2-Dibromo-3-chloropropane

Analyte 1,2-Dibromoethane	Results (MRL) ND (0.015)	<u>MDL</u>	Method 504.1	<u>Limit</u>	<u>DF</u>	<u>Analyzed</u> 06/18/19 13:32	<u>Sequence</u>	Batch CF91829
	96	Recovery	Qualifier	Limits				
Surrogate: Pentachloroethane		84 %		30-150				
Surrogate: Pentachloroethane [2C]		96 %		30-150				

The Microbiology Division of Thielsch Engineering, Inc.

CERTIFICATE OF ANALYSIS

Client Name: GEI Consultants, Inc.

Client Project ID: Downing Square Environmental - RGP

Client Sample ID: 1703090-B203 MW

Date Sampled: 06/12/19 11:00

Percent Solids: N/A Initial Volume: 1 Final Volume: 1

Extraction Method: No Prep

ESS Laboratory Work Order: 19F0388 ESS Laboratory Sample ID: 19F0388-01

Sample Matrix: Ground Water

Units: mg/L Analyst: ZLC

Prepared: 6/13/19 9:47

Alcohol Scan by GC/FID

Analyte Results (MRL) **MDL** Method **Limit** Analyst Analyzed **Sequence** Batch Ethanol ASTM D3695 ZLC 06/13/19 12:43 CF91316 ND (10)

185 Frances Avenue, Cranston, RI 02910-2211

Tel: 401-461-7181 Dependability Quality Fax: 401-461-4486

The Microbiology Division of Thielsch Engineering, Inc.

CERTIFICATE OF ANALYSIS

Client Name: GEI Consultants, Inc.

Client Project ID: Downing Square Environmental - RGP

Client Sample ID: 1703090-GZ-3B Date Sampled: 06/12/19 13:00

Percent Solids: N/A

ESS Laboratory Work Order: 19F0388 ESS Laboratory Sample ID: 19F0388-02

Sample Matrix: Ground Water

Units: ug/L

Extraction Method: 200.7/6010BNoDigest

Dissolved Metals

Analyte	Results (MRL)	MDL	Method	<u>Limit</u>	<u>DF</u>	Analyst		<u>I/V</u>	F/V	Batch
Antimony	ND (1.00)		200.8		1	NAR	06/13/19 12:26	10	10	CF91332
Arsenic	ND (5.0)		3113B		1	KJK	06/13/19 17:27	10	10	CF91332
Cadmium	ND (0.2)		200.8		1	NAR	06/13/19 12:26	10	10	CF91332
Chromium	ND (5.0)		200.8		1	NAR	06/13/19 12:26	10	10	CF91332
Copper	ND (2.0)		200.8		1	NAR	06/13/19 12:26	10	10	CF91332
Iron	832 (50.0)		200.8		1	NAR	06/13/19 12:26	10	10	CF91332
Lead	ND (1.0)		200.8		1	NAR	06/13/19 12:26	10	10	CF91332
Mercury	ND (0.20)		245.1		1	MKS	06/17/19 12:30	20	40	CF91357
Nickel	ND (5.0)		200.8		1	NAR	06/13/19 12:26	10	10	CF91332
Selenium	ND (5.0)		200.8		1	NAR	06/13/19 12:26	10	10	CF91332
Silver	ND (0.5)		200.8		1	NAR	06/13/19 12:26	10	10	CF91332
Zinc	11.2 (2.0)		200.8		1	NAR	06/13/19 12:26	10	10	CF91332

The Microbiology Division of Thielsch Engineering, Inc.

CERTIFICATE OF ANALYSIS

Client Name: GEI Consultants, Inc.

Client Project ID: Downing Square Environmental - RGP

Client Sample ID: 1703090-GZ-3B Date Sampled: 06/12/19 13:00

Percent Solids: N/A

ESS Laboratory Work Order: 19F0388 ESS Laboratory Sample ID: 19F0388-02

Sample Matrix: Ground Water

Units: ug/L

Extraction Method: 3005A/200.7

Total Metals

Analyte	Results (MRL)	MDL	Method	<u>Limit</u>	<u>DF</u>	Analyst		I/V	F/V	Batch
Antimony	ND (5.0)		200.7		1	NAR	06/18/19 4:01	100	10	CF91352
Arsenic	ND (1.0)		3113B		2	KJK	06/14/19 17:08	100	10	CF91352
Cadmium	ND (0.2)		200.8		5	NAR	06/14/19 15:02	100	10	CF91352
Chromium	ND (5.0)		200.7		1	NAR	06/18/19 4:01	100	10	CF91352
Chromium III	ND (10.0)		200.7		1	JLK	06/18/19 4:01	1	1	[CALC]
Copper	2.6 (2.0)		200.7		1	NAR	06/18/19 4:01	100	10	CF91352
Hardness	97200 (8240)		200.7		100	NEXION	06/18/19 14:53	1	1	[CALC]
Iron	858 (500)		200.8		100	NAR	06/18/19 14:53	100	10	CF91352
Lead	ND (0.5)	0.1	200.8		5	NAR	06/14/19 15:02	100	10	CF91352
Mercury	ND (0.2)		245.1		1	MKS	06/17/19 12:34	20	40	CF91357
Nickel	ND (5.0)		200.7		1	NAR	06/18/19 4:01	100	10	CF91352
Selenium	ND (2.0)		3113B		2	KJK	06/14/19 20:54	100	10	CF91352
Silver	ND (0.5)		200.7		1	NAR	06/18/19 4:01	100	10	CF91352
Zinc	17.0 (5.0)		200.7		1	NAR	06/18/19 4:01	100	10	CF91352

The Microbiology Division of Thielsch Engineering, Inc.

CERTIFICATE OF ANALYSIS

Client Name: GEI Consultants, Inc.

Client Project ID: Downing Square Environmental - RGP

Client Sample ID: 1703090-GZ-3B Date Sampled: 06/12/19 13:00

Percent Solids: N/A Initial Volume: 25 Final Volume: 25

Extraction Method: 524.2

ESS Laboratory Work Order: 19F0388 ESS Laboratory Sample ID: 19F0388-02

Sample Matrix: Ground Water

Units: ug/L Analyst: MD

524.2 Volatile Organic Compounds

Analyte	Results (MRL)	MDL	Method	<u>Limit</u>	<u>DF</u>	Analyzed	Sequence	Batch
1,1,1-Trichloroethane	ND (0.5)		524.2		1	06/18/19 21:40	C9F0292	CF91853
1,1,2-Trichloroethane	ND (0.5)		524.2		1	06/18/19 21:40	C9F0292	CF91853
1,1-Dichloroethane	ND (0.5)		524.2		1	06/18/19 21:40	C9F0292	CF91853
1,1-Dichloroethene	ND (0.5)		524.2		1	06/18/19 21:40	C9F0292	CF91853
1,2-Dichlorobenzene	ND (0.5)		524.2		1	06/18/19 21:40	C9F0292	CF91853
1,2-Dichloroethane	ND (0.5)		524.2		1	06/18/19 21:40	C9F0292	CF91853
1,3-Dichlorobenzene	ND (0.5)		524.2		1	06/18/19 21:40	C9F0292	CF91853
1,4-Dichlorobenzene	ND (0.5)		524.2		1	06/18/19 21:40	C9F0292	CF91853
Acetone	ND (5.0)		524.2		1	06/18/19 21:40	C9F0292	CF91853
Benzene	ND (0.5)		524.2		1	06/18/19 21:40	C9F0292	CF91853
Carbon Tetrachloride	ND (0.3)		524.2		1	06/18/19 21:40	C9F0292	CF91853
cis-1,2-Dichloroethene	109 (5.0)		524.2		10	06/19/19 12:38	C9F0292	CF91853
Ethylbenzene	ND (0.5)		524.2		1	06/18/19 21:40	C9F0292	CF91853
Methyl tert-Butyl Ether	ND (0.5)		524.2		1	06/18/19 21:40	C9F0292	CF91853
Methylene Chloride	ND (0.5)		524.2		1	06/18/19 21:40	C9F0292	CF91853
Naphthalene	ND (0.5)		524.2		1	06/18/19 21:40	C9F0292	CF91853
Tertiary-amyl methyl ether	ND (1.0)		524.2		1	06/18/19 21:40	C9F0292	CF91853
Tertiary-butyl Alcohol	ND (25.0)		524.2		1	06/18/19 21:40	C9F0292	CF91853
Tetrachloroethene	ND (0.5)		524.2		1	06/18/19 21:40	C9F0292	CF91853
Toluene	ND (0.5)		524.2		1	06/18/19 21:40	C9F0292	CF91853
Trichloroethene	ND (0.5)		524.2		1	06/18/19 21:40	C9F0292	CF91853
Vinyl Chloride	9.1 (0.2)		524.2		1	06/18/19 21:40	C9F0292	CF91853
Xylene O	ND (0.5)		524.2		1	06/18/19 21:40	C9F0292	CF91853
Xylene P,M	ND (0.5)		524.2		1	06/18/19 21:40	C9F0292	CF91853

%Recovery Qualifier Limits

 Surrogate: 1,2-Dichlorobenzene-d4
 96 %
 80-120

 Surrogate: 4-Bromofluorobenzene
 96 %
 80-120

185 Frances Avenue, Cranston, RI 02910-2211

Tel: 401-461-7181

Fax: 401-461-4486

The Microbiology Division of Thielsch Engineering, Inc.

CERTIFICATE OF ANALYSIS

Client Name: GEI Consultants, Inc.

Client Project ID: Downing Square Environmental - RGP

Client Sample ID: 1703090-GZ-3B

Date Sampled: 06/12/19 13:00

Percent Solids: N/A Initial Volume: 1070

Final Volume: 1070

Extraction Method: 3510C

ESS Laboratory Work Order: 19F0388 ESS Laboratory Sample ID: 19F0388-02

Sample Matrix: Ground Water

Units: ug/L Analyst: MJV

Prepared: 6/14/19 10:34

608.3 Polychlorinated Biphenyls (PCB)

Analyte	Results (MRL)	MDL	Method	<u>Limit</u>	<u>DF</u>	Analyzed	Sequence	Batch
Aroclor 1016	ND (0.09)		608.3		1	06/14/19 17:51		CF91402
Aroclor 1221	ND (0.09)		608.3		1	06/14/19 17:51		CF91402
Aroclor 1232	ND (0.09)		608.3		1	06/14/19 17:51		CF91402
Aroclor 1242	ND (0.09)		608.3		1	06/14/19 17:51		CF91402
Aroclor 1248	ND (0.09)		608.3		1	06/14/19 17:51		CF91402
Aroclor 1254	ND (0.09)		608.3		1	06/14/19 17:51		CF91402
Aroclor 1260	ND (0.09)		608.3		1	06/14/19 17:51		CF91402
Aroclor 1262	ND (0.09)		608.3		1	06/14/19 17:51		CF91402
Aroclor 1268	ND (0.09)		608.3		1	06/14/19 17:51		CF91402
-	ç	%Recovery	Qualifier	Limits				
Surrogate: Decachlorobiphenyl		76 %		30-150				
Surrogate: Decachlorobiphenyl [2C]		81 %		30-150				
Surrogate: Tetrachloro-m-xylene		55 %		30-150				
Surrogate: Tetrachloro-m-xylene [2C]		68 %		30-150				

The Microbiology Division of Thielsch Engineering, Inc.

CERTIFICATE OF ANALYSIS

Client Name: GEI Consultants, Inc.

Client Project ID: Downing Square Environmental - RGP

Client Sample ID: 1703090-GZ-3B Date Sampled: 06/12/19 13:00

Percent Solids: N/A Initial Volume: 1030

Final Volume: 0.25

Surrogate: p-Terphenyl-d14

Extraction Method: 3510C

ESS Laboratory Work Order: 19F0388 ESS Laboratory Sample ID: 19F0388-02

Sample Matrix: Ground Water

Units: ug/L Analyst: IBM

Prepared: 6/13/19 13:08

625.1(SIM) Semi-Volatile Organic Compounds

Analyte Acenaphthene	Results (MRL) ND (0.19)	MDL	Method 625.1 SIM	<u>Limit</u>	<u>DF</u>	<u>Analyzed</u> 06/14/19 13:33	Sequence C9F0218	Batch CF91302
Acenaphthylene	` '		625.1 SIM		1	06/14/19 13:33	C9F0218	CF91302
Anthracene	ND (0.19)		625.1 SIM		1	06/14/19 13:33	C9F0218	CF91302
Benzo(a)anthracene	ND (0.19)		625.1 SIM		1	06/14/19 13:33	C9F0218	CF91302
· /	0.06 (0.05)		625.1 SIM		1	06/14/19 13:33	C9F0218	CF91302
Benzo(a)pyrene	0.05 (0.05)							
Benzo(b)fluoranthene	0.06 (0.05)		625.1 SIM		1	06/14/19 13:33	C9F0218	CF91302
Benzo(g,h,i)perylene	ND (0.19)		625.1 SIM		1	06/14/19 13:33	C9F0218	CF91302
Benzo(k)fluoranthene	0.07 (0.05)		625.1 SIM		1	06/14/19 13:33	C9F0218	CF91302
bis(2-Ethylhexyl)phthalate	ND (2.43)		625.1 SIM		1	06/14/19 13:33	C9F0218	CF91302
Butylbenzylphthalate	ND (2.43)		625.1 SIM		1	06/14/19 13:33	C9F0218	CF91302
Chrysene	0.07 (0.05)		625.1 SIM		1	06/14/19 13:33	C9F0218	CF91302
Dibenzo(a,h)Anthracene	0.06 (0.05)		625.1 SIM		1	06/14/19 13:33	C9F0218	CF91302
Diethylphthalate	ND (2.43)		625.1 SIM		1	06/14/19 13:33	C9F0218	CF91302
Dimethylphthalate	ND (2.43)		625.1 SIM		1	06/14/19 13:33	C9F0218	CF91302
Di-n-butylphthalate	ND (2.43)		625.1 SIM		1	06/14/19 13:33	C9F0218	CF91302
Di-n-octylphthalate	ND (2.43)		625.1 SIM		1	06/14/19 13:33	C9F0218	CF91302
Fluoranthene	ND (0.19)		625.1 SIM		1	06/14/19 13:33	C9F0218	CF91302
Fluorene	0.67 (0.19)		625.1 SIM		1	06/14/19 13:33	C9F0218	CF91302
Indeno(1,2,3-cd)Pyrene	0.06 (0.05)		625.1 SIM		1	06/14/19 13:33	C9F0218	CF91302
Naphthalene	ND (0.19)		625.1 SIM		1	06/14/19 13:33	C9F0218	CF91302
Pentachlorophenol	ND (0.87)		625.1 SIM		1	06/14/19 13:33	C9F0218	CF91302
Phenanthrene	ND (0.19)		625.1 SIM		1	06/14/19 13:33	C9F0218	CF91302
Pyrene	ND (0.19)		625.1 SIM		1	06/14/19 13:33	C9F0218	CF91302
		%Recovery	Qualifier	Limits				
Surrogate: 1,2-Dichlorobenzene-d4		43 %		30-130				
Surrogate: 2,4,6-Tribromophenol		84 %		15-110				
Surrogate: 2-Fluorobiphenyl		61 %		30-130				
Surrogate: Nitrobenzene-d5		64 %		30-130				

93 %

30-130

The Microbiology Division of Thielsch Engineering, Inc.

CERTIFICATE OF ANALYSIS

Client Name: GEI Consultants, Inc.

Client Project ID: Downing Square Environmental - RGP

Client Sample ID: 1703090-GZ-3B Date Sampled: 06/12/19 13:00

Percent Solids: N/A Initial Volume: 500 Final Volume: 0.5

Extraction Method: 3535A

ESS Laboratory Work Order: 19F0388 ESS Laboratory Sample ID: 19F0388-02

Sample Matrix: Ground Water

Units: ug/L Analyst: IBM

Prepared: 6/13/19 15:15

8270D(SIM) Semi-Volatile Organic Compounds w/ Isotope Dilution

Analyte 1,4-Dioxane	Results (MRL) ND (0.250)	<u>MDL</u>	Method 8270D SIM	<u>Limit</u>	<u>DF</u>	Analyzed 06/17/19 22:12	Sequence C9F0264	Batch CF91244
	%:	Recovery	Qualifier	Limits				
Surrogate: 1,4-Dioxane-d8		51 %		15-115				

185 Frances Avenue, Cranston, RI 02910-2211

2211 Tel: 401-461-7181 Dependability • Quality Fax: 401-461-4486 ◆ Service

The Microbiology Division of Thielsch Engineering, Inc.

CERTIFICATE OF ANALYSIS

Client Name: GEI Consultants, Inc.

Client Project ID: Downing Square Environmental - RGP

Client Sample ID: 1703090-GZ-3B Date Sampled: 06/12/19 13:00

Percent Solids: N/A

ESS Laboratory Work Order: 19F0388 ESS Laboratory Sample ID: 19F0388-02

Sample Matrix: Ground Water

Classical Chemistry

Analyte Ammonia as N	Results (MRL) 0.10 (0.10)	MDL <u>Method</u> 350.1	<u>Limit</u>	<u>DF</u>	Analyst JLK	Analyzed 06/18/19 16:47	Units mg/L	Batch CF91701
Chloride	3.8 (0.5)	300.0		1	EEM	06/14/19 18:32	mg/L	CF91418
Hexavalent Chromium	ND (10.0)	3500Cr B-2009		1	JLK	06/12/19 22:34	ug/L	CF91265
Phenols	ND (100)	420.1		1	EEM	06/14/19 11:00	ug/L	CF91422
Total Cyanide	ND (5.00)	4500 CN CE		1	EEM	06/13/19 12:15	ug/L	CF91329
Total Petroleum Hydrocarbon	ND (5)	1664A		1	LAB	06/17/19 15:15	mg/L	CF91704
Total Residual Chlorine	ND (20.0)	4500Cl D		1	CCP	06/12/19 21:33	ug/L	CF91262
Total Suspended Solids	ND (5)	2540D		1	JLK	06/14/19 20:26	mg/L	CF91443

The Microbiology Division of Thielsch Engineering, Inc.

CERTIFICATE OF ANALYSIS

Client Name: GEI Consultants, Inc.

Client Project ID: Downing Square Environmental - RGP

Client Sample ID: 1703090-GZ-3B Date Sampled: 06/12/19 13:00

Percent Solids: N/A Initial Volume: 35

Final Volume: 2

Extraction Method: 504/8011

ESS Laboratory Work Order: 19F0388 ESS Laboratory Sample ID: 19F0388-02

Sample Matrix: Ground Water

Units: ug/L Analyst: CAD

Prepared: 6/18/19 11:05

504.1 1,2-Dibromoethane / 1,2-Dibromo-3-chloropropane

Analyte 1,2-Dibromoethane	Results (MRL) ND (0.015)	<u>MDL</u>	Method 504.1	<u>Limit</u>	<u>DF</u>	Analyzed 06/18/19 13:55	<u>Sequence</u>	Batch CF91829
	%	Recovery	Qualifier	Limits				
Surrogate: Pentachloroethane		95 %		30-150				
Surrogate: Pentachloroethane [2C]		100 %		30-150				

185 Frances Avenue, Cranston, RI 02910-2211

Tel: 401-461-7181

Fax: 401-461-4486 Service

The Microbiology Division of Thielsch Engineering, Inc.

CERTIFICATE OF ANALYSIS

Client Name: GEI Consultants, Inc.

Client Project ID: Downing Square Environmental - RGP

Client Sample ID: 1703090-GZ-3B Date Sampled: 06/12/19 13:00

Percent Solids: N/A
Initial Volume: 1
Final Volume: 1

Extraction Method: No Prep

ESS Laboratory Work Order: 19F0388 ESS Laboratory Sample ID: 19F0388-02

Sample Matrix: Ground Water

Units: mg/L Analyst: ZLC

Prepared: 6/13/19 9:47

Alcohol Scan by GC/FID

AnalyteResults (MRL)
ND (10)MDL
ASTM D3695Method
Limit
ASTM D3695Limit
1DF
IAnalyst
ZLCAnalyzed
O6/13/19 13:31Sequence
CF91316

185 Frances Avenue, Cranston, RI 02910-2211

2211 Tel: 401-461-7181 Dependability • Quality Fax: 401-461-4486

The Microbiology Division of Thielsch Engineering, Inc.

CERTIFICATE OF ANALYSIS

Client Name: GEI Consultants, Inc.

Client Project ID: Downing Square Environmental - RGP ESS Laboratory Work Order: 19F0388

Quality Control Data

				Spike	Source		%REC		RPD	
Analyte	Result	MRL	Units	Level	Result	%REC	Limits	RPD	Limit	Qualifier
		l	Dissolved M	etals						
Batch CF91332 - 200.7/6010BNoDigest										
Blank										
Antimony	ND	1.00	ug/L							
Arsenic	ND	5.0	ug/L							
Cadmium	ND	0.2	ug/L							
Chromium	ND	5.0	ug/L							
Copper	ND	2.0	ug/L							
Iron	ND	50.0	ug/L							
Lead	ND	0.2	ug/L							
Nickel	ND	5.0	ug/L							
Selenium	ND	5.0	ug/L							
Silver	ND	0.5	ug/L							
Zinc	ND	2.0	ug/L							
LCS										
Antimony	20.7		ug/L	20.04		104	85-115			
Cadmium	19.5		ug/L	20.10		97	85-115			
Chromium	20.2		ug/L	20.06		101	80-120			
Copper	20.2		ug/L	20.00		101	85-115			
Iron	1050		ug/L	1001		105	80-120			
Lead	20.2		ug/L	19.98		101	85-115			
Nickel	19.9		ug/L	20.04		99	85-115			
Selenium	20.0		ug/L	19.98		100	85-115			
Silver	20.7		ug/L	20.04		103	85-115			
Zinc	19.1		ug/L	20.06		95	80-120			
LCS										
Arsenic	26.0		ug/L	25.00		104	85-115			
Batch CF91357 - 245.1/7470A										
Blank										
Mercury	ND	0.20	ug/L							
LCS										
Mercury	6.80	0.20	ug/L	6.042		113	85-115			
LCS Dup			<u></u>							
Mercury Mercury	6.84	0.20	ug/L	6.042		113	85-115	0.6	20	
	0.01	5.20				113	05 115	0.0	20	
			Total Meta	สเร						
Batch CF91352 - 3005A/200.7										
Blank										
Antimony	ND	5.0	ug/L							
Arsenic	ND	0.5	ug/L							
Cadmium	ND	0.2	ug/L							
Calcium	ND	100	ug/L							
Chromium	ND	2.0	ug/L							
Copper	ND	2.0	ug/L							
Iron	ND	25.0	ug/L							
			5.							

http://www.ESSLaboratory.com

185 Frances Avenue, Cranston, RI 02910-2211

Tel: 401-461-7181

The Microbiology Division of Thielsch Engineering, Inc.

CERTIFICATE OF ANALYSIS

Client Name: GEI Consultants, Inc.

Client Project ID: Downing Square Environmental - RGP ESS Laboratory Work Order: 19F0388

Quality Control Data

Analyte	Result	MRL	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Qualifie
			Total Met	als						
Batch CF91352 - 3005A/200.7										
Lead	ND	0.5	ug/L							
Magnesium	ND	100	ug/L							
Nickel	ND	5.0	ug/L							
Selenium	ND	1.0	ug/L							
ilver	ND	0.5	ug/L							
linc	ND	5.0	ug/L							
cs										
ntimony	51.5	5.0	ug/L	50.00		103	85-115			
Arsenic	49.9	12.5	ug/L	50.00		100	85-115			
Cadmium	25.4	1.0	ug/L	25.00		102	85-115			
Calcium	433	500	ug/L	500.0		87	85-115			
Chromium	48.2	2.0	ug/L	50.00		96	85-115			
Copper	49.8	2.0	ug/L	50.00		100	85-115			
ron	228	125	ug/L	250.0		91	85-115			
ead	47.0	2.5	ug/L	50.00		94	85-115			
lagnesium (1997)	480	500	ug/L	500.0		96	85-115			
lickel	46.6	5.0	ug/L	50.00		93	85-115			
Selenium	99.3	25.0	ug/L	100.0		99	85-115			
Silver	23.9	0.5	ug/L	25.00		96	85-115			
linc	50.3	5.0	ug/L	50.00		101	85-115			
.CS Dup										
antimony	53.8	5.0	ug/L	50.00		108	85-115	4	20	
Cadmium	22.8	1.0	ug/L	25.00		91	85-115	11	20	
Calcium	422	500	ug/L	500.0		84	85-115	3	20	B-
Chromium	50.3	2.0	ug/L	50.00		101	85-115	4	20	
Copper	52.9	2.0	ug/L	50.00		106	85-115	6	20	
ron	227	125	ug/L	250.0		91	85-115	0.3	20	
ead	44.1	2.5	ug/L	50.00		88	85-115	7	20	
Magnesium	464	500	ug/L	500.0		93	85-115	3	20	
Nickel	48.7	5.0	ug/L	50.00		97	85-115	4	20	
Silver	25.1	0.5	ug/L	25.00		100	85-115	5	20	
linc	52.5	5.0	ug/L	50.00		105	85-115	4	20	
Batch CF91357 - 245.1/7470A										
Blank										
1ercury	ND	0.2	ug/L							
.cs										
Mercury	6.8	0.2	ug/L	6.042		113	85-115			
LCS Dup		<u> </u>	<u> </u>	·			·			
Mercury	6.8	0.2	ug/L	6.042		113	85-115	0.6	20	
		524.2 Vol	atile Organi	c Compo	unds					

185 Frances Avenue, Cranston, RI 02910-2211

Blank

Tel: 401-461-7181 Dependability

Quality

Fax: 401-461-4486 Service

The Microbiology Division of Thielsch Engineering, Inc.

CERTIFICATE OF ANALYSIS

Client Name: GEI Consultants, Inc.

Batch CF91853 - 524.2

Client Project ID: Downing Square Environmental - RGP ESS Laboratory Work Order: 19F0388

Quality Control Data

				Spike	Source		%REC		RPD	
Analyte	Result	MRL	Units	Level	Result	%REC	Limits	RPD	Limit	Qualifier

524.2 Volatile	Organic	Compound	S
----------------	---------	----------	---

Batch CF91853 - 524.2							
1,1,1-Trichloroethane	ND	0.5	ug/L				
1,1,2-Trichloroethane	ND	0.5	ug/L				
1,1-Dichloroethane	ND	0.5	ug/L				
1,1-Dichloroethene	ND	0.5	ug/L				
,2-Dichlorobenzene	ND	0.5	ug/L				
,2-Dichloroethane	ND	0.5	ug/L				
,3-Dichlorobenzene	ND	0.5	ug/L				
,4-Dichlorobenzene	ND	0.5	ug/L				
acetone	ND	5.0	ug/L				
enzene	ND	0.5	ug/L				
Carbon Tetrachloride	ND	0.3	ug/L				
is-1,2-Dichloroethene	ND	0.5	ug/L				
thylbenzene	ND	0.5	ug/L				
lethyl tert-Butyl Ether	ND	0.5	ug/L				
1ethylene Chloride	ND	0.5	ug/L				
Naphthalene	ND	0.5	ug/L				
· Fertiary-amyl methyl ether	ND	1.0	ug/L				
ertiary-butyl Alcohol	ND	25.0	ug/L				
etrachloroethene	ND	0.5	ug/L				
oluene	ND	0.5	ug/L				
richloroethene	ND	0.5	ug/L				
inyl Chloride	ND	0.2	ug/L				
ylene O	ND	0.5	ug/L				
(ylene P,M	ND	0.5	ug/L				
Surrogate: 1,2-Dichlorobenzene-d4	4.46		ug/L	5.000	89	80-120	
Surrogate: 4-Bromofluorobenzene	4.59		ug/L	5.000	92	80-120	
.cs							
,1,1-Trichloroethane	10.7		ug/L	10.00	107	70-130	
,1,2-Trichloroethane	10.4		ug/L	10.00	104	70-130	
,1-Dichloroethane	11.0		ug/L	10.00	110	70-130	
,1-Dichloroethene	11.5		ug/L	10.00	115	70-130	
,2-Dichlorobenzene	10.6		ug/L	10.00	106	70-130	
,2-Dichloroethane	10.1		ug/L	10.00	101	70-130	
,3-Dichlorobenzene	10.5		ug/L	10.00	105	70-130	
,4-Dichlorobenzene	11.0		ug/L	10.00	110	70-130	
cetone	48.1		ug/L	50.00	96	70-130	
enzene	10.5		ug/L	10.00	105	70-130	
Carbon Tetrachloride	10.6		ug/L	10.00	106	70-130	
is-1,2-Dichloroethene	10.9		ug/L	10.00	109	70-130	
thylbenzene	11.1		ug/L	10.00	111	70-130	
lethyl tert-Butyl Ether	10.3		ug/L	10.00	103	70-130	
1ethylene Chloride	11.7		ug/L	10.00	117	70-130	
Naphthalene	10.3		ug/L	10.00	103	70-130	
Fertiary-amyl methyl ether	10.4		ug/L	10.00	104	70-130	
Fertiary-butyl Alcohol	56.5		ug/L	50.00	113	70-130	

185 Frances Avenue, Cranston, RI 02910-2211

2211 Tel: 401-461-7181
Dependability ♦ Quality

Fax: 401-461-4486 ◆ Service

The Microbiology Division of Thielsch Engineering, Inc.

CERTIFICATE OF ANALYSIS

Client Name: GEI Consultants, Inc.

Client Project ID: Downing Square Environmental - RGP ESS Laboratory Work Order: 19F0388

Quality Control Data

				Spike	Source		%REC		RPD	
Analyte	Result	MRL	Units	Level	Result	%REC	Limits	RPD	Limit	Qualifier
		524.2 Vola	tile Organi	c Compou	ınds					
Batch CF91853 - 524.2										
Tetrachloroethene	10.5		ug/L	10.00		105	70-130			
Toluene	11.3		ug/L	10.00		113	70-130			
Trichloroethene	10.7		ug/L	10.00		107	70-130			
Vinyl Chloride	9.2		ug/L	10.00		92	70-130			
Xylene O	10.8		ug/L	10.00		108	70-130			
Xylene P,M	22.5		ug/L	20.00		112	70-130			
Surrogate: 1,2-Dichlorobenzene-d4	4.99		ug/L	5.000		100	80-120			
Surrogate: 4-Bromofluorobenzene	4.87		ug/L	5.000		97	80-120			
LCS Dup										
1,1,1-Trichloroethane	10.2		ug/L	10.00		102	70-130	5	20	
1,1,2-Trichloroethane	10.4		ug/L	10.00		104	70-130	0.3	20	
1,1-Dichloroethane	10.5		ug/L	10.00		105	70-130	5	20	
1,1-Dichloroethene	11.1		ug/L	10.00		111	70-130	3	20	
1,2-Dichlorobenzene	10.4		ug/L	10.00		104	70-130	2	20	
1,2-Dichloroethane	9.7		ug/L	10.00		97	70-130	5	20	
1,3-Dichlorobenzene	10.3		ug/L	10.00		103	70-130	2	20	
1,4-Dichlorobenzene	10.7		ug/L	10.00		107	70-130	2	20	
Acetone	46.6		ug/L	50.00		93	70-130	3	20	
Benzene	10.3		ug/L	10.00		103	70-130	2	20	
Carbon Tetrachloride	10.1		ug/L	10.00		101	70-130	6	20	
cis-1,2-Dichloroethene	10.6		ug/L	10.00		106	70-130	3	20	
Ethylbenzene	11.0		ug/L	10.00		110	70-130	0.9	20	
Methyl tert-Butyl Ether	10.2		ug/L	10.00		102	70-130	1	20	
Methylene Chloride	11.5		ug/L	10.00		115	70-130	2	20	
Naphthalene	10.2		ug/L	10.00		102	70-130	0.8	20	
Tertiary-amyl methyl ether	10.3		ug/L	10.00		103	70-130	0.6	20	
Tertiary-butyl Alcohol	56.7		ug/L	50.00		113	70-130	0.3	25	
Tetrachloroethene	10.2		ug/L	10.00		102	70-130	3	20	
Toluene	11.0		ug/L	10.00		110	70-130	2	20	
Trichloroethene	10.3		ug/L	10.00		103	70-130	4	20	
/inyl Chloride	8.8		ug/L	10.00		88	70-130	4	20	
Kylene O	10.8		ug/L	10.00		108	70-130	0.09	20	
Kylene P,M	21.7		ug/L	20.00		109	70-130	3	20	
Surrogate: 1,2-Dichlorobenzene-d4	4.70		ug/L	5.000		94	80-120			
Surrogate: 1,2-Dichiorobenzene Surrogate: 4-Bromofluorobenzene	4.73		ug/L	5.000		95	80-120			

608.3 Polychlorinated Biphenyls (PCB)

Batch CF91402 - 35	10C							
Blank								
Aroclor 1016		ND	0.10	ug/L				
Aroclor 1016 [2C]		ND	0.10	ug/L				
Aroclor 1221		ND	0.10	ug/L				
Aroclor 1221 [2C]		ND	0.10	ug/L				
Aroclor 1232		ND	0.10	ug/L				
Aroclor 1232 [2C]		ND	0.10	ug/L				
	105 E	G , DI 0201	0.0011	T. 1. 401. 461. 7101	E 401 461 4406	1 //	ECCT 1	

185 Frances Avenue, Cranston, RI 02910-2211

2211 Tel: 401-461-7181
Dependability ◆ Quality

Fax: 401-461-4486 ◆ Service

The Microbiology Division of Thielsch Engineering, Inc.

CERTIFICATE OF ANALYSIS

Client Name: GEI Consultants, Inc.

Client Project ID: Downing Square Environmental - RGP ESS Laboratory Work Order: 19F0388

Quality Control Data

Analyte	Result	MRL	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Qualifie
•		608.3 Polyc				. =3				Ţ. Z.M.C
Batch CF91402 - 3510C										
Aroclor 1242	ND	0.10	ug/L							
Aroclor 1242 [2C]	ND	0.10	ug/L							
Aroclor 1248	ND	0.10	ug/L							
Aroclor 1248 [2C]	ND	0.10	ug/L							
Aroclor 1254	ND	0.10	ug/L							
Aroclor 1254 [2C]	ND	0.10	ug/L							
Aroclor 1260	ND	0.10	ug/L							
Aroclor 1260 [2C]	ND	0.10	ug/L							
Aroclor 1262	ND	0.10	ug/L							
Aroclor 1262 [2C]	ND	0.10	ug/L							
Aroclor 1268	ND	0.10	ug/L							
Aroclor 1268 [2C]	ND	0.10	ug/L							
Surrogate: Decachlorobiphenyl	0.0402		ug/L	0.05000		80	30-150			
Surrogate: Decachlorobiphenyl [2C]	0.0440		ug/L	0.05000		88	30-150			
Surrogate: Tetrachloro-m-xylene	0.0244		ug/L	0.05000		49	30-150			
Surrogate: Tetrachloro-m-xylene [2C]	0.0291		ug/L	0.05000		58	30-150			
LCS										
Aroclor 1016	0.95	0.10	ug/L	1.000		95	50-140			
Aroclor 1016 [2C]	0.90	0.10	ug/L	1.000		90	50-140			
Aroclor 1260	0.91	0.10	ug/L	1.000		91	1-164			
Aroclor 1260 [2C]	0.89	0.10	ug/L	1.000		89	1-164			
Surrogate: Decachlorobiphenyl	0.0410		ug/L	0.05000		82	30-150			
Surrogate: Decachlorobiphenyl [2C]	0.0443		ug/L	0.05000		89	30-150			
Surrogate: Tetrachloro-m-xylene	0.0300		ug/L	0.05000		60	30-150			
Surrogate: Tetrachloro-m-xylene [2C]	0.0302		ug/L	0.05000		60	30-150			
LCS Dup										
Aroclor 1016	1.00	0.10	ug/L	1.000		100	50-140	5	36	
Aroclor 1016 [2C]	0.95	0.10	ug/L	1.000		95	50-140	6	36	
Aroclor 1260	0.98	0.10	ug/L	1.000		98	1-164	7	38	
Aroclor 1260 [2C]	0.94	0.10	ug/L	1.000		94	1-164	6	38	
Surrogate: Decachlorobiphenyl	0.0426		ug/L	0.05000		85	30-150			
Surrogate: Decachlorobiphenyl [2C]	0.0459		ug/L	0.05000		92	30-150			
Surrogate: Tetrachloro-m-xylene	0.0323		ug/L	0.05000		65	30-150			
Surrogate: Tetrachloro-m-xylene [2C]	0.0326		ug/L	0.05000		65	30-150			
	62!	5.1(SIM) Sen	ni-Volatile (Organic Co	mpounds	5				
Batch CF91302 - 3510C										
Blank										
Acenaphthene	ND	0.20	ug/L							
Acenaphthylene	ND	0.20	ug/L							
Anthracene	ND	0.20	ug/L							
Benzo(a)anthracene	ND	0.05	ug/L							

The Microbiology Division of Thielsch Engineering, Inc.

CERTIFICATE OF ANALYSIS

Client Name: GEI Consultants, Inc.

Client Project ID: Downing Square Environmental - RGP ESS Laboratory Work Order: 19F0388

Quality Control Data

				Spike	Source		%REC		RPD	
Analyte	Result	MRL	Units	Level	Result	%REC	Limits	RPD	Limit	Qualifier

	625.1(SIM)	Semi-Volatile	Organic	Compound	ds
--	------------	---------------	---------	----------	----

Benzo(a)pyrene ND Benzo(b)fluoranthene ND Benzo(g,h,i)perylene ND	0.05 0.05	ug/L				
	0.05					
Benzo(g,h,i)perylene ND	0.05	ug/L				
(3) / // /	0.20	ug/L				
Benzo(k)fluoranthene ND	0.05	ug/L				
bis(2-Ethylhexyl)phthalate ND	2.50	ug/L				
Butylbenzylphthalate ND	2.50	ug/L				
Chrysene ND	0.05	ug/L				
Dibenzo(a,h)Anthracene ND	0.05	ug/L				
Diethylphthalate ND	2.50	ug/L				
Dimethylphthalate ND	2.50	ug/L				
Di-n-butylphthalate ND	2.50	ug/L				
Di-n-octylphthalate ND	2.50	ug/L				
Fluoranthene ND	0.20	ug/L				
Fluorene ND	0.20	ug/L				
Indeno(1,2,3-cd)Pyrene ND	0.05	ug/L				
Naphthalene ND	0.20	ug/L				
Pentachlorophenol ND	0.90	ug/L				
Phenanthrene ND	0.20	ug/L				
Pyrene ND	0.20	ug/L				
Surrogate: 1,2-Dichlorobenzene-d4 1.38		ug/L	2.500	55	30-130	
Surrogate: 2,4,6-Tribromophenol 2.26		ug/L	3.750	60	15-110	
Surrogate: 2-Fluorobiphenyl 1.40		ug/L	2.500	56	30-130	
Surrogate: Nitrobenzene-d5 1.68		ug/L	2.500	67	30-130	
Surrogate: p-Terphenyl-d14 1.95		ug/L	2.500	78	30-130	
LCS						
Acenaphthene 2.61	0.20	ug/L	4.000	65	40-140	
Acenaphthylene 2.57	0.20	ug/L	4.000	64	40-140	
Anthracene 3.05	0.20	ug/L	4.000	76	40-140	
Benzo(a)anthracene 2.95	0.05	ug/L	4.000	74	40-140	
Benzo(a)pyrene 3.09	0.05	ug/L	4.000	77	40-140	
Benzo(b)fluoranthene 3.43	0.05	ug/L	4.000	86	40-140	
Benzo(g,h,i)perylene 2.90	0.20	ug/L	4.000	73	40-140	
Benzo(k)fluoranthene 3.16	0.05	ug/L	4.000	79	40-140	
bis(2-Ethylhexyl)phthalate 3.85	2.50	ug/L	4.000	96	40-140	
Butylbenzylphthalate 3.66	2.50	ug/L	4.000	91	40-140	
Chrysene 2.98	0.05	ug/L	4.000	75	40-140	
Dibenzo(a,h)Anthracene 3.12	0.05	ug/L	4.000	78	40-140	
Diethylphthalate 3.11	2.50	ug/L	4.000	78	40-140	
Dimethylphthalate 3.62	2.50	ug/L	4.000	90	40-140	
Di-n-butylphthalate 3.88	2.50	ug/L	4.000	97	40-140	
Di-n-octylphthalate 3.81	2.50	ug/L	4.000	95	40-140	
Fluoranthene 3.21	0.20	ug/L	4.000	80	40-140	
Fluorene 2.99	0.20	ug/L	4.000	75	40-140	
Indeno(1,2,3-cd)Pyrene 3.04	0.05	ug/L	4.000	76	40-140	
Naphthalene 2.28	0.20	ug/L	4.000	57	40-140	

185 Frances Avenue, Cranston, RI 02910-2211

Tel: 401-461-7181

Fax: 401-461-4486

The Microbiology Division of Thielsch Engineering, Inc.

CERTIFICATE OF ANALYSIS

Client Name: GEI Consultants, Inc.

Client Project ID: Downing Square Environmental - RGP ESS Laboratory Work Order: 19F0388

Quality Control Data

Analyte	Result	MRL	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Qualifier
	625	.1(SIM) Ser	ni-Volatile C	Organic Co	ompounds	5				
Batch CF91302 - 3510C										
Pentachlorophenol	1.63	0.90	ug/L	4.000		41	30-130			
Phenanthrene	3.12	0.20	ug/L	4.000		78	40-140			

Pentachlorophenol	1.63	0.90	ug/L	4.000	41	30-130			
Phenanthrene	3.12	0.20	ug/L	4.000	78	40-140			
Pyrene	3.23	0.20	ug/L	4.000	81	40-140			
Surrogate: 1,2-Dichlorobenzene-d4	1.49		ug/L	2.500	60	30-130			
Surrogate: 2,4,6-Tribromophenol	2.57		ug/L	3.750	69	<i>15-110</i>			
Surrogate: 2-Fluorobiphenyl	1.61		ug/L	2.500	64	30-130			
Surrogate: Nitrobenzene-d5	1.73		ug/L	2.500	69	30-130			
Surrogate: p-Terphenyl-d14	2.15		ug/L	2.500	86	30-130			
LCS Dup									
Acenaphthene	2.50	0.20	ug/L	4.000	62	40-140	4	20	
Acenaphthylene	2.43	0.20	ug/L	4.000	61	40-140	5	20	
Anthracene	3.00	0.20	ug/L	4.000	75	40-140	2	20	
Benzo(a)anthracene	3.01	0.05	ug/L	4.000	75	40-140	2	20	
Benzo(a)pyrene	3.15	0.05	ug/L	4.000	79	40-140	2	20	
Benzo(b)fluoranthene	3.58	0.05	ug/L	4.000	89	40-140	4	20	
Benzo(g,h,i)perylene	2.83	0.20	ug/L	4.000	71	40-140	3	20	
Benzo(k)fluoranthene	3.19	0.05	ug/L	4.000	80	40-140	0.9	20	
bis(2-Ethylhexyl)phthalate	3.77	2.50	ug/L	4.000	94	40-140	2	20	
Butylbenzylphthalate	3.68	2.50	ug/L	4.000	92	40-140	0.7	20	
Chrysene	3.04	0.05	ug/L	4.000	76	40-140	2	20	
Dibenzo(a,h)Anthracene	3.13	0.05	ug/L	4.000	78	40-140	0.3	20	
Diethylphthalate	2.94	2.50	ug/L	4.000	73	40-140	6	20	
Dimethylphthalate	3.45	2.50	ug/L	4.000	86	40-140	5	20	
Di-n-butylphthalate	4.02	2.50	ug/L	4.000	100	40-140	3	20	
Di-n-octylphthalate	3.88	2.50	ug/L	4.000	97	40-140	2	20	
Fluoranthene	3.42	0.20	ug/L	4.000	85	40-140	6	20	
Fluorene	2.83	0.20	ug/L	4.000	71	40-140	6	20	
Indeno(1,2,3-cd)Pyrene	3.06	0.05	ug/L	4.000	76	40-140	0.6	20	
Naphthalene	2.23	0.20	ug/L	4.000	56	40-140	2	20	
Pentachlorophenol	1.69	0.90	ug/L	4.000	42	30-130	4	20	
Phenanthrene	3.05	0.20	ug/L	4.000	76	40-140	2	20	
Pyrene	3.18	0.20	ug/L	4.000	80	40-140	1	20	
Surrogate: 1,2-Dichlorobenzene-d4	1.32		ug/L	2.500	53	30-130			
Surrogate: 2,4,6-Tribromophenol	2.22		ug/L	3.750	59	<i>15-110</i>			
Surrogate: 2-Fluorobiphenyl	1.45		ug/L	2.500	58	30-130			
Surrogate: Nitrobenzene-d5	1.63		ug/L	2.500	65	30-130			

ug/L 8270D(SIM) Semi-Volatile Organic Compounds w/ Isotope Dilution

2.500

Batch CF91244 - 3535A	Batch CF91244 - 3535A									
Blank										
1,4-Dioxane	ND	0.250	ug/L							
Surrogate: 1,4-Dioxane-d8	2.89		ug/L	5.000	58	15-115				
LCS										
1,4-Dioxane	9.25	0.250	ug/L	10.00	93	40-140				

Surrogate: p-Terphenyl-d14

2.11

30-130

The Microbiology Division of Thielsch Engineering, Inc.

CERTIFICATE OF ANALYSIS

Client Name: GEI Consultants, Inc.

Client Project ID: Downing Square Environmental - RGP ESS Laboratory Work Order: 19F0388

Quality Control Data

Analyte	Result	MRL	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Qualifier
.,	8270D(SIM) S									
Batch CF91244 - 3535A										
Surrogate: 1,4-Dioxane-d8	3.50		ug/L	5.000		70	15-115			
LCS Dup										
1,4-Dioxane	10.1	0.250	ug/L	10.00		101	40-140	9	20	
Surrogate: 1,4-Dioxane-d8	3.15		ug/L	5.000		63	<i>15-115</i>			
		Cl	assical Che	mistry						
Batch CF91262 - General Preparation										
Blank										
Total Residual Chlorine	ND	20.0	ug/L							
LCS										
Total Residual Chlorine	1.38		mg/L	1.390		99	85-115			
Batch CF91265 - General Preparation										
Blank		<u> </u>								
Hexavalent Chromium	ND	10.0	ug/L							
LCS										
Hexavalent Chromium	0.492		mg/L	0.4998		98	90-110			
LCS Dup										
Hexavalent Chromium	0.490		mg/L	0.4998		98	90-110	0.4	20	
Batch CF91329 - TCN Prep										
Blank										
Total Cyanide	ND	5.00	ug/L							
LCS										
Total Cyanide	20.6	5.00	ug/L	20.06		103	90-110			
LCS										
Total Cyanide	150	5.00	ug/L	150.4		99	90-110			
LCS Dup										
Total Cyanide	150	5.00	ug/L	150.4		100	90-110	0.5	20	
Batch CF91418 - General Preparation										
Blank										
Chloride	ND	0.5	mg/L							
LCS					·		·			
Chloride	2.3		mg/L	2.500		90	90-110			
Batch CF91422 - General Preparation										
Blank										
Phenols	ND	100	ug/L							
LCS										
Phenols	103	100	ug/L	100.0		103	80-120			
LCS										
Phenols	1020	100	ug/L	1000		102	80-120			

185 Frances Avenue, Cranston, RI 02910-2211

Tel: 401-461-7181

Fax: 401-461-4486

The Microbiology Division of Thielsch Engineering, Inc.

CERTIFICATE OF ANALYSIS

Client Name: GEI Consultants, Inc.

Client Project ID: Downing Square Environmental - RGP ESS Laboratory Work Order: 19F0388

Quality Control Data

Analyte	Result	MRL	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Qualifier
		Cl	assical Che	mistry						
Batch CF91443 - General Preparation										
Blank										
Total Suspended Solids	ND	5	mg/L							
LCS										
Total Suspended Solids	32		mg/L	36.40		88	80-120			
Batch CF91701 - NH4 Prep										
Blank										
Ammonia as N	ND	0.10	mg/L							
LCS										
Ammonia as N	0.11	0.10	mg/L	0.09994		112	80-120			
LCS										
Ammonia as N	1.20	0.10	mg/L	0.9994		120	80-120			
Batch CF91704 - General Preparation										
Blank										
Total Petroleum Hydrocarbon	ND	5	mg/L							
LCS										
Total Petroleum Hydrocarbon	15	5	mg/L	19.38		77	66-114			
	504.1 1.2	2-Dibromoeth	nane / 1.2-	Dibromo-3	3-chloropr	opane				
Batch CF91829 - 504/8011	504.1 1,2	2-Dibromoeth	nane / 1,2-	Dibromo-3	3-chloropr	opane				
Batch CF91829 - 504/8011	504.1 1,2	2-Dibromoeth	nane / 1,2-	Dibromo-3	3-chloropi	ropane				
Blank	504.1 1,2	2-Dibromoeth	nane / 1,2-	Dibromo-3	3-chloropi	ropane				
				Dibromo-3	3-chloropi	ropane				
Blank 1,2-Dibromoethane 1,2-Dibromoethane [2C]	ND ND	0.015	ug/L ug/L		3-chloropr		30-150			
Blank 1,2-Dibromoethane 1,2-Dibromoethane [2C] Surrogate: Pentachloroethane	ND	0.015	ug/L ug/L ug/L	0.2000 0.2000	3-chloropr	80 86	30-150 30-150			
Blank 1,2-Dibromoethane 1,2-Dibromoethane [2C] Surrogate: Pentachloroethane Surrogate: Pentachloroethane [2C]	ND ND <i>0.159</i>	0.015	ug/L ug/L	0.2000	3-chloropr	80				
Blank 1,2-Dibromoethane 1,2-Dibromoethane [2C] Surrogate: Pentachloroethane Surrogate: Pentachloroethane [2C] LCS	ND ND <i>0.159</i>	0.015	ug/L ug/L ug/L ug/L	0.2000	3-chloropr	80				
Blank 1,2-Dibromoethane 1,2-Dibromoethane [2C] Surrogate: Pentachloroethane Surrogate: Pentachloroethane [2C] LCS 1,2-Dibromoethane	ND ND 0.159 0.172	0.015 0.015	ug/L ug/L ug/L	0.2000 0.2000	3-chloropr	80 86	30-150			
Blank 1,2-Dibromoethane 1,2-Dibromoethane [2C] Surrogate: Pentachloroethane Surrogate: Pentachloroethane [2C] LCS 1,2-Dibromoethane 1,2-Dibromoethane [2C]	ND ND 0.159 0.172 0.072 0.067	0.015 0.015	ug/L ug/L ug/L ug/L ug/L	0.2000 0.2000 0.08000 0.08000	3-chloropr	80 86 90 84	70-130 70-130			
Blank 1,2-Dibromoethane 1,2-Dibromoethane [2C] Surrogate: Pentachloroethane Surrogate: Pentachloroethane [2C] LCS 1,2-Dibromoethane 1,2-Dibromoethane [2C] Surrogate: Pentachloroethane	ND ND 0.159 0.172 0.072 0.067	0.015 0.015	ug/L ug/L ug/L ug/L ug/L ug/L	0.2000 0.2000 0.08000 0.08000	3-chloropr	80 86 90 84	70-130 70-130 70-130			
Blank 1,2-Dibromoethane 1,2-Dibromoethane [2C] Surrogate: Pentachloroethane Surrogate: Pentachloroethane [2C] LCS 1,2-Dibromoethane 1,2-Dibromoethane [2C] Surrogate: Pentachloroethane Surrogate: Pentachloroethane [2C]	ND ND 0.159 0.172 0.072 0.067	0.015 0.015	ug/L ug/L ug/L ug/L ug/L	0.2000 0.2000 0.08000 0.08000	3-chloropr	80 86 90 84	70-130 70-130			
Blank 1,2-Dibromoethane 1,2-Dibromoethane [2C] Surrogate: Pentachloroethane Surrogate: Pentachloroethane [2C] LCS 1,2-Dibromoethane 1,2-Dibromoethane [2C] Surrogate: Pentachloroethane Surrogate: Pentachloroethane Surrogate: Pentachloroethane [2C] LCS	ND ND 0.159 0.172 0.072 0.067 0.0582 0.0679	0.015 0.015 0.015 0.015	ug/L ug/L ug/L ug/L ug/L ug/L ug/L ug/L	0.2000 0.2000 0.08000 0.08000 0.08000	3-chloropr	80 86 90 84 73 85	70-130 70-130 70-130 30-150 30-150			
Blank 1,2-Dibromoethane 1,2-Dibromoethane [2C] Surrogate: Pentachloroethane Surrogate: Pentachloroethane [2C] LCS 1,2-Dibromoethane 1,2-Dibromoethane [2C] Surrogate: Pentachloroethane Surrogate: Pentachloroethane Surrogate: Pentachloroethane [2C] LCS 1,2-Dibromoethane	ND ND 0.159 0.172 0.072 0.067 0.0582 0.0679	0.015 0.015 0.015 0.015	ug/L ug/L ug/L ug/L ug/L ug/L ug/L ug/L	0.2000 0.2000 0.08000 0.08000 0.08000 0.2000	3-chloropr	80 86 90 84 73 85	70-130 70-130 30-150 30-150 70-130			
Blank 1,2-Dibromoethane 1,2-Dibromoethane [2C] Surrogate: Pentachloroethane Surrogate: Pentachloroethane [2C] LCS 1,2-Dibromoethane 1,2-Dibromoethane [2C] Surrogate: Pentachloroethane Surrogate: Pentachloroethane Surrogate: Pentachloroethane [2C] LCS 1,2-Dibromoethane	ND ND 0.159 0.172 0.072 0.067 0.0582 0.0679	0.015 0.015 0.015 0.015	ug/L ug/L ug/L ug/L ug/L ug/L ug/L ug/L	0.2000 0.2000 0.08000 0.08000 0.08000	3-chloropr	80 86 90 84 73 85	70-130 70-130 70-130 30-150 30-150			
Blank 1,2-Dibromoethane 1,2-Dibromoethane [2C] Surrogate: Pentachloroethane Surrogate: Pentachloroethane [2C] LCS 1,2-Dibromoethane 1,2-Dibromoethane [2C] Surrogate: Pentachloroethane Surrogate: Pentachloroethane Surrogate: Pentachloroethane [2C] LCS 1,2-Dibromoethane 1,2-Dibromoethane	ND ND 0.159 0.172 0.072 0.067 0.0582 0.0679	0.015 0.015 0.015 0.015	ug/L ug/L ug/L ug/L ug/L ug/L ug/L ug/L	0.2000 0.2000 0.08000 0.08000 0.08000 0.2000 0.2000	3-chloropr	80 86 90 84 73 85 113 117	70-130 70-130 30-150 30-150 70-130 70-130			
Blank 1,2-Dibromoethane 1,2-Dibromoethane [2C] Surrogate: Pentachloroethane Surrogate: Pentachloroethane [2C] LCS 1,2-Dibromoethane 1,2-Dibromoethane [2C] Surrogate: Pentachloroethane Surrogate: Pentachloroethane [2C] LCS 1,2-Dibromoethane 1,2-Dibromoethane 1,2-Dibromoethane 1,2-Dibromoethane 1,2-Dibromoethane 1,2-Dibromoethane 1,2-Dibromoethane	ND ND 0.159 0.172 0.072 0.067 0.0582 0.0679	0.015 0.015 0.015 0.015 0.015	ug/L ug/L ug/L ug/L ug/L ug/L ug/L ug/L	0.2000 0.2000 0.08000 0.08000 0.08000 0.2000 0.2000 0.2000	3-chloropr	80 86 90 84 73 85	70-130 70-130 30-150 30-150 70-130 70-130			
Blank 1,2-Dibromoethane 1,2-Dibromoethane [2C] Surrogate: Pentachloroethane Surrogate: Pentachloroethane [2C] LCS 1,2-Dibromoethane 1,2-Dibromoethane [2C] Surrogate: Pentachloroethane Surrogate: Pentachloroethane Surrogate: Pentachloroethane [2C]	ND ND 0.159 0.172 0.072 0.067 0.0582 0.0679	0.015 0.015 0.015 0.015 0.015	ug/L ug/L ug/L ug/L ug/L ug/L ug/L ug/L	0.2000 0.2000 0.08000 0.08000 0.08000 0.2000 0.2000 0.2000	3-chloropr	80 86 90 84 73 85 113 117	70-130 70-130 30-150 30-150 70-130 70-130			
Blank 1,2-Dibromoethane 1,2-Dibromoethane [2C] Surrogate: Pentachloroethane Surrogate: Pentachloroethane [2C] LCS 1,2-Dibromoethane 1,2-Dibromoethane [2C] Surrogate: Pentachloroethane Surrogate: Pentachloroethane [2C] LCS 1,2-Dibromoethane 1,2-Dibromoethane 1,2-Dibromoethane 1,2-Dibromoethane 1,2-Dibromoethane 1,2-Dibromoethane 1,2-Dibromoethane	ND ND 0.159 0.172 0.072 0.067 0.0582 0.0679	0.015 0.015 0.015 0.015 0.015	ug/L ug/L ug/L ug/L ug/L ug/L ug/L ug/L	0.2000 0.2000 0.08000 0.08000 0.08000 0.2000 0.2000 0.2000	3-chloropr	80 86 90 84 73 85 113 117	70-130 70-130 30-150 30-150 70-130 70-130			
Blank 1,2-Dibromoethane 1,2-Dibromoethane [2C] Surrogate: Pentachloroethane [2C] LCS 1,2-Dibromoethane 1,2-Dibromoethane 1,2-Dibromoethane [2C] Surrogate: Pentachloroethane Surrogate: Pentachloroethane 1,2-Dibromoethane [2C] LCS 1,2-Dibromoethane 1,2-Dibromoethane 1,2-Dibromoethane 1,2-Dibromoethane 1,2-Dibromoethane 1,2-Dibromoethane 1,2-Dibromoethane [2C]	ND ND 0.159 0.172 0.072 0.067 0.0582 0.0679	0.015 0.015 0.015 0.015 0.015	ug/L ug/L ug/L ug/L ug/L ug/L ug/L ug/L	0.2000 0.2000 0.08000 0.08000 0.08000 0.2000 0.2000 0.2000	3-chloropr	80 86 90 84 73 85 113 117	70-130 70-130 30-150 30-150 70-130 70-130			

The Microbiology Division of Thielsch Engineering, Inc.

CERTIFICATE OF ANALYSIS

Client Name: GEI Consultants, Inc.

Client Project ID: Downing Square Environmental - RGP ESS Laboratory Work Order: 19F0388

Quality Control Data

Analyte	Result	MRL	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Qualifier
		Alco	hol Scan by	GC/FID						
Batch CF91316 - No Prep										
LCS										
Ethanol	739	10	mg/L	1134		65	60-140			
LCS Dup										
Ethanol	769	10	mg/L	1134		68	60-140	4	30	

The Microbiology Division of Thielsch Engineering, Inc.

CERTIFICATE OF ANALYSIS

Client Name: GEI Consultants, Inc.

Client Project ID: Downing Square Environmental - RGP ESS Laboratory Work Order: 19F0388

Notes and Definitions

U	Analyte included in the analysis, but not detected
Q	Calibration required quadratic regression (Q).

ICV+ Initial Calibration Verification recovery is above upper control limit (ICV+).

HT The maximum holding time listed in 40 CFR Part 136 Table II for pH, Dissolved Oxygen, Sulfite and Residual

Chlorine is fifteen minutes.

D Diluted.

B- Blank Spike recovery is below lower control limit (B-).

ND Analyte NOT DETECTED at or above the MRL (LOQ), LOD for DoD Reports, MDL for J-Flagged Analytes

dry Sample results reported on a dry weight basis

RPD Relative Percent Difference
MDL Method Detection Limit
MRL Method Reporting Limit
LOD Limit of Detection
LOQ Limit of Quantitation
DL Detection Limit
I/V Initial Volume

Final Volume

§ Subcontracted analysis; see attached report

1 Range result excludes concentrations of surrogates and/or internal standards eluting in that range.

2 Range result excludes concentrations of target analytes eluting in that range.
3 Range result excludes the concentration of the C9-C10 aromatic range.

Avg Results reported as a mathematical average.

NR No Recovery

F/V

[CALC] Calculated Analyte

SUB Subcontracted analysis; see attached report

RL Reporting Limit

EDL Estimated Detection Limit
MF Membrane Filtration
MPN Most Probably Number
TNTC Too numerous to Count
CFU Colony Forming Units

185 Frances Avenue, Cranston, RI 02910-2211

Tel: 401-461-7181

Fax: 401-461-4486

The Microbiology Division of Thielsch Engineering, Inc.

CERTIFICATE OF ANALYSIS

Client Name: GEI Consultants, Inc.

Client Project ID: Downing Square Environmental - RGP ESS Laboratory Work Order: 19F0388

ESS LABORATORY CERTIFICATIONS AND ACCREDITATIONS

ENVIRONMENTAL

Rhode Island Potable and Non Potable Water: LAI00179 http://www.health.ri.gov/find/labs/analytical/ESS.pdf

Connecticut Potable and Non Potable Water, Solid and Hazardous Waste: PH-0750 http://www.ct.gov/dph/lib/dph/environmental_health/environmental_laboratories/pdf/OutofStateCommercialLaboratories.pdf

Maine Potable and Non Potable Water, and Solid and Hazardous Waste: RI00002 http://www.maine.gov/dhhs/mecdc/environmental-health/dwp/partners/labCert.shtml

Massachusetts Potable and Non Potable Water: M-RI002 http://public.dep.state.ma.us/Labcert/Labcert.aspx

New Hampshire (NELAP accredited) Potable and Non Potable Water, Solid and Hazardous Waste: 2424 http://des.nh.gov/organization/divisions/water/dwgb/nhelap/index.htm

New York (NELAP accredited) Non Potable Water, Solid and Hazardous Waste: 11313 http://www.wadsworth.org/labcert/elap/comm.html

New Jersey (NELAP accredited) Non Potable Water, Solid and Hazardous Waste: RI006 http://datamine2.state.nj.us/DEP_OPRA/OpraMain/pi_main?mode=pi_by_site&sort_order=PI_NAMEA&Select+a+Site:=58715

United States Department of Agriculture Soil Permit: P330-12-00139

Pennsylvania: 68-01752

http://www.dep.pa.gov/Business/OtherPrograms/Labs/Pages/Laboratory-Accreditation-Program.aspx

185 Frances Avenue, Cranston, RI 02910-2211

Tel: 401-461-7181

Fax: 401-461-4486

Service

ESS Laboratory Sample and Cooler Receipt Checklist

Client	: <u> </u>	El Consultar	nts, Inc TB/N	л м	ESSI	Project ID:	19F0388	<u>.</u>
Chinnod/D	alivared Via		ECC Couries		Date	Received:	6/12/2019	
Snipped/L	elivered via:		ESS Courier			Due Date: or Project:	6/19/2019 5 Day	
					Days	or Froject		
	nanifest pres		[No	6. Does COC	match bottles?		Yes
2. Were cu	ustody seals	present?	[No		nplete and correct?		Yes
3. Is radiat	ion count <1	00 CPM?	[Yes		ples received intact?		Yes
	oler Present?		[Yes		informed about short is analyses received outs	_	(Yes)/ No / NA Yes (No)
5. Was CC	OC signed an	d dated by c	lient? [Yes				
•	bcontracting Sample IDs: Analysis: TAT:		Yes	/(Ño)		As received? s in aqueous VOAs? anol cover soil complete	ely?	Yes / No Yes / No Yes / No / NA
a. If metals	e samples pro s preserved u rel VOA vials	ipon receipt:		es/ No Date: Date:	Time: Time:	By	:	
Sample Re	ceiving Note	s:						
			<u> </u>					
	ere a need to		oject Manage client?		Yes / No Yes / No Time:	Ву	:	
Sample Number	Container ID	Proper Container	Air Bubbles Present	Sufficient Volume	Container Type	Preservative	Record pH (Cy Pestic	
	255200		N/a		VOA VI-1 - 1101	1101	·	
01 01	355380 355381	Yes Yes	No No	Yes Yes	VOA Vial - HCI VOA Vial - HCI	HCI HCI		
01	355382	Yes	No	Yes	VOA Vial - HCI	HCI		
01	355383	Yes	No	Yes	VOA Vial - HCI	HCI		
01	355384	Yes	No	Yes	VOA Vial - HCI	HCI		
01	355385	Yes	No No	Yes	VOA Vial - HCI	HCI		
01 01	355387 355396	Yes Yes	NA NA	Yes Yes	VOA Vial - Unpres 1L Amber - Unpres	NP NP		
01 01	355396 355397	yes Yes	NA NA	Yes Yes	1L Amber - Unpres 1L Amber - Unpres	NP NP		
01	355398	Yes	NA	Yes	1L Amber - Unpres	NP		
01	355399	Yes	NA	Yes	1L Amber - Unpres	NP		
01	355400	Yes	NA	Yes	1L Amber - Unpres	NP		
01	355401	Yes	NA	Yes	1L Amber - Unpres	NP		
01	355403	Yes	NA	Yes	1L Amber - H2SO4	H2SO4		
01	355405	Yes	NA	Yes	1L Amber - H2SO4	H2SO4		
01	355407	Yes	NA	Yes	1L Poly - Unpres	NP		
01	355409	Yes	NA	Yes	250 mL Poly - Unpres	NP		
01	355411	Yes	NA	Yes	500 mL Poly - H2SO4	H2SO4	11, 44	
01	355413	Yes	NA NA	Yes	250 mL Poly - NaOH	NaOH	pH > 12	
01 01	355416	Yes	NA NA	Yes	500 mL Poly - HNO3	HNO3		
. 01	355417 355534	Yes Yes	NA NA	Yes Yes	500 mL Poly - HNO3	HNO3 HNO3		
02	355374	Yes	No	Yes	250 mL Poly - HNO3 VOA Vial - HCl	HCI		

ESS Laboratory Sample and Cooler Receipt Checklist

Client:	GE	l Consultan	ts, Inc TB/	MM	ESSI	Project ID:	19F0388
_					Date	Received:	6/12/2019
02	355375	Yes	No	Yes	VOA Vial - HCl	HCI	
02	355376	Yes	No	Yes	VOA Vial - HCI	HCI	
02	355377	Yes	No	Yes	VOA Vial - HCI	HCI	
02	355378	Yes	No	Yes	VOA Vial - HCI	HCI	
02	355379	Yes	No	Yes	VOA Vial - HCI	HCI	
02	355386	Yes	NA	Yes	VOA Vial - Unpres	NP	
02	355388	Yes	NA	Yes	1L Amber - Unpres	NP	
02	355389	Yes	NA	Yes	1L Amber - Unpres	NP	
02	355390	Yes	NA	Yes	1L Amber - Unpres	NP	
02	355391	Yes	NA	Yes	1L Amber - Unpres	NP	
02	355392	Yes	NA	Yes	1L Amber - Unpres	NP	
02	355393	Yes	NA	Yes	1L Amber - Unpres	NP	
02	355395	Yes	NA	Yes	1L Amber - H2SO4	H2SO4	
02	355404	Yes	NA	Yes	1L Amber - H2SO4	H2SO4	
02	355406	Yes	NA	Yes	1L Poly - Unpres	NP	
02	355408	Yes	NA	Yes	250 mL Poly - Unpres	NP	
02	355410	Yes	NA	Yes	500 mL Poly - H2SO4	H2SO4	
02	355412	Yes	NA	Yes	250 mL Poly - NaOH	NaOH	pH > 12
02	355414	Yes	NA	Yes	500 mL Poly - HNO3	HNO3	•
02	355415	Yes	NA	Yes	500 mL Poly - HNQ3	HNO3	
02	355533	Yes	NA	Yes	250 mL Poly - HNO3	HNO3	

2nd Review

Were all containers scanned into storage/lab?

Are barcode labels on correct containers?

Are all Flashpoint stickers attached/container ID # circled?

Are all Hex Chrome stickers attached?

Are all QC stickers attached?

Are VOA stickers attached if bubbles noted?

Initials (Yes No

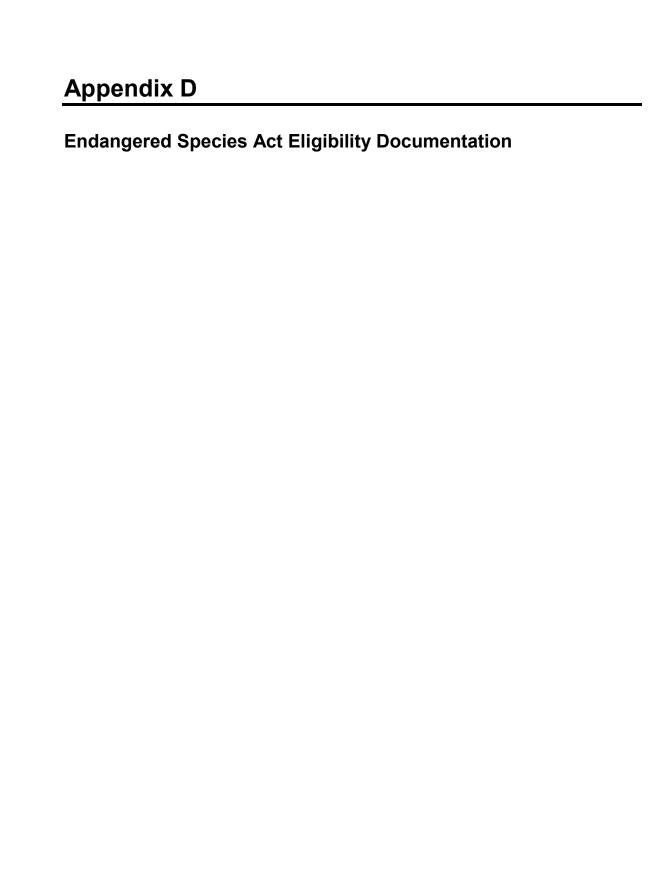
Yes / No / NA

Yes (No / N/

Yes/No/NA

Yes / No / N/

Completed By: Reviewed


Reviewed By: Delivered By: Date & Time:

Date & Time:

Page 36 of 37

ESS Laboratory Division of Thielsch Engineering, Inc. 185 Frances Avenue, Cranston, RI 02910-2211							CUSTODY							ESS			91	<u> </u>	T I 38	_				
				Turn Tim		Standard Ru		red By:						Rep		-					- ∕-			
•) 461-7181		461-4486			vere collected:(MA NH												h Wa	ter)	<u> </u>	Salt	Wate	r 🗆
www.ess	laboratory.c	om		Is this project for: RGP			Electonic Format:					cess				N ((o Othe	 er						
Project Manager: Ryan Hoff Company: GEI CONSULTANTS Address: 400 Unicorn Paric Dr Woburn MA 0(80)						Project # 170° Project Name: Downing Envir	30 q. 0 Square - onmental	Analysis	als Total	RGP Metals Dissolved	Hardness (Calculation)	Ethanol ASTM D3695	300,0*	Total Cyanide 4500 LL	***************************************	155 2540U* TBC 4506 CL D*	350.1	Tri Cr (Calc. MUST run T. Cr)	3500	Phenol 420.1	OC Long List 524	1,4-Dioxane 8270-SIM	OC Log List 625-SIM	PCB 608 Comment #
ESS Lab Sample ID	Date	Collection Time	Grab -G Composite-C	Matrix		Sample Identif	fication	# of Containers	RGP Me	RGP Mer	Hardne	Ethano	Chloride	Total C	1004	135 25	Ammonia 350.1	Tri Cr (C	Hex Cr 3500	Phenol .	RGP VC	1,4-Dioxan	RGP SV	PCB 60
Ì	6/12/19	100		GW	1703690	-B203(N	ιω)	22	_	-	X	Х	X	χ,	(X	()	K ×	_	X		X	_		χ 1,2
2	6/12/19	1300		GW	1703090	9-62-3B		22	X	K	X	X	٨	χ)	()	. y	<u> </u>	, K	K	۶	Х.	٤	k K	久
										ŀ												ı		
																				Ī				
															T						\dashv	T		
															T		1				\top	†	\top	
															T							1		
															1		T				1	\top		
		/													┪		T				十	T		
					OH, 7-Asorbic A	cid, 8-ZnAct, 9			4					5					1	3	2	1 2	2 1	1
	pe: P-Poly G-G				CIV CC	W. DW D ' 1	ing Water O-Oil W-Wi		Р	Р	Р	٧	Р	РΑ	G F	P F	P	-	Р	AG	V A	۱G ۱	/ AG	AG
	sent V					water Dw-Drink	ing Water O-Oil W-Wij	pes F-Filter									•							
Seals Intact Yes No NA: Comments: 1) RGP Metals include Sb, As, Cd, Cu, Fe, Pb, Ni, Se, Ag and Zn by 200.					00.1	7/31	13B	an	d H	g by	245	5.1												
	nperature: _7	2,1+2.3	•	* TSS, TI	RC and Cl ta		same container		VII 2	LA		nC,	(JUJUS)											
	(Signature)		6/12 1545		6/12/	19 1545	Relinquished by (Signature)	6/12/19 190				٥٥	Received by: (Signature)											
Relinquished by	y(signature)		Date/Time	Received by: (8	• • •		Relinquished by: (Signature)			, T	Date/	Time						Rec	eived	by: (S	Signati	ure)		
					Please E-ma	ail all changes	to Chain of Custoo	dy in writi	[Pa	age		(of	

Page ____of ___

IPaC

U.S. Fish & Wildlife Service

IPaC resource list

This report is an automatically generated list of species and other resources such as critical habitat (collectively referred to as *trust resources*) under the U.S. Fish and Wildlife Service's (USFWS) jurisdiction that are known or expected to be on or near the project area referenced below. The list may also include trust resources that occur outside of the project area, but that could potentially be directly or indirectly affected by activities in the project area. However, determining the likelihood and extent of effects a project may have on trust resources typically requires gathering additional site-specific (e.g., vegetation/species surveys) and project-specific (e.g., magnitude and timing of proposed activities) information.

Below is a summary of the project information you provided and contact information for the USFWS office(s) with jurisdiction in the defined project area. Please read the introduction to each section that follows (Endangered Species, Migratory Birds, USFWS Facilities, and NWI Wetlands) for additional information applicable to the trust resources addressed in that section.

Location

Middlesex County, Massachusetts

Local office

New England Ecological Services Field Office

(603) 223-2541

(603) 223-0104

70 Commercial Street, Suite 300 Concord, NH 03301-5094

http://www.fws.gov/newengland

Endangered species

This resource list is for informational purposes only and does not constitute an analysis of project level impacts.

The primary information used to generate this list is the known or expected range of each species. Additional areas of influence (AOI) for species are also considered. An AOI includes areas outside of the species range if the species could be indirectly affected by activities in that area (e.g., placing a dam upstream of a fish population, even if that fish does not occur at the dam site, may indirectly impact the species by reducing or eliminating water flow downstream). Because species can move, and site conditions can change, the species on this list are not guaranteed to be found on or near the project area. To fully determine any potential effects to species, additional site-specific and project-specific information is often required.

Section 7 of the Endangered Species Act **requires** Federal agencies to "request of the Secretary information whether any species which is listed or proposed to be listed may be present in the area of such proposed action" for any project that is conducted, permitted, funded, or licensed by any Federal agency. A letter from the local office and a species list which fulfills this requirement can **only** be obtained by requesting an official species list from either the Regulatory Review section in IPaC (see directions below) or from the local field office directly.

For project evaluations that require USFWS concurrence/review, please return to the IPaC website and request an official species list by doing the following:

- 1. Draw the project location and click CONTINUE.
- 2. Click DEFINE PROJECT.
- 3. Log in (if directed to do so).
- 4. Provide a name and description for your project.
- 5. Click REQUEST SPECIES LIST.

Listed species¹ and their critical habitats are managed by the <u>Ecological Services Program</u> of the U.S. Fish and Wildlife Service (USFWS) and the fisheries division of the National Oceanic and Atmospheric Administration (NOAA Fisheries²).

Species and critical habitats under the sole responsibility of NOAA Fisheries are **not** shown on this list. Please contact <u>NOAA Fisheries</u> for <u>species under their jurisdiction</u>.

- 1. Species listed under the <u>Endangered Species Act</u> are threatened or endangered; IPaC also shows species that are candidates, or proposed, for listing. See the <u>listing status page</u> for more information.
- 2. <u>NOAA Fisheries</u>, also known as the National Marine Fisheries Service (NMFS), is an office of the National Oceanic and Atmospheric Administration within the Department of Commerce.

The following species are potentially affected by activities in this location:

Mammals

NAME STATUS

Northern Long-eared Bat Myotis septentrionalis No critical habitat has been designated for this species. https://ecos.fws.gov/ecp/species/9045 **Threatened**

Critical habitats

Potential effects to critical habitat(s) in this location must be analyzed along with the endangered species themselves.

THERE ARE NO CRITICAL HABITATS AT THIS LOCATION.

Migratory birds

Certain birds are protected under the Migratory Bird Treaty Act^{1} and the Bald and Golden Eagle Protection Act^{2} .

Any person or organization who plans or conducts activities that may result in impacts to migratory birds, eagles, and their habitats should follow appropriate regulations and consider implementing appropriate conservation measures, as described <u>below</u>.

- 1. The Migratory Birds Treaty Act of 1918.
- 2. The Bald and Golden Eagle Protection Act of 1940.

Additional information can be found using the following links:

- Birds of Conservation Concern http://www.fws.gov/birds/management/managed-species/birds-of-conservation-concern.php
- Measures for avoiding and minimizing impacts to birds
 <u>http://www.fws.gov/birds/management/project-assessment-tools-and-guidance/conservation-measures.php</u>
- Nationwide conservation measures for birds http://www.fws.gov/migratorybirds/pdf/management/nationwidestandardconservationmeasures.pdf

The birds listed below are birds of particular concern either because they occur on the <u>USFWS Birds of Conservation Concern</u> (BCC) list or warrant special attention in your project location. To learn more about the levels of concern for birds on your list and how this list is generated, see the FAQ <u>below</u>. This is not a list of every bird you may find in this location, nor a guarantee that every bird on this list will be found in your project area. To see exact locations of where birders and the general public have sighted birds in and around your project area, visit the <u>E-bird data mapping tool</u> (Tip: enter your location, desired date range and a species on your list). For projects that occur off the Atlantic Coast, additional maps and models detailing the relative occurrence and abundance of bird species on your list are available. Links to additional information about Atlantic Coast birds, and other important information about your migratory bird list, including how to properly interpret and use your migratory bird report, can be found <u>below</u>.

7/18/2019 IPaC: Explore Location

For guidance on when to schedule activities or implement avoidance and minimization measures to reduce impacts to migratory birds on your list, click on the PROBABILITY OF PRESENCE SUMMARY at the top of your list to see when these birds are most likely to be present and breeding in your project area.

NAME

BREEDING SEASON (IF A
BREEDING SEASON IS INDICATED
FOR A BIRD ON YOUR LIST, THE
BIRD MAY BREED IN YOUR
PROJECT AREA SOMETIME WITHIN
THE TIMEFRAME SPECIFIED,
WHICH IS A VERY LIBERAL
ESTIMATE OF THE DATES INSIDE
WHICH THE BIRD BREEDS
ACROSS ITS ENTIRE RANGE.
"BREEDS ELSEWHERE" INDICATES
THAT THE BIRD DOES NOT LIKELY
BREED IN YOUR PROJECT AREA.)

Bald Eagle Haliaeetus leucocephalus

This is not a Bird of Conservation Concern (BCC) in this area, but warrants attention because of the Eagle Act or for potential susceptibilities in offshore areas from certain types of development or activities.

https://ecos.fws.gov/ecp/species/1626

Black-billed Cuckoo Coccyzus erythropthalmus

This is a Bird of Conservation Concern (BCC) throughout its range in the continental USA and Alaska.

https://ecos.fws.gov/ecp/species/9399

Bobolink Dolichonyx oryzivorus

This is a Bird of Conservation Concern (BCC) throughout its range in the continental USA and Alaska.

Canada Warbler Cardellina canadensis

This is a Bird of Conservation Concern (BCC) throughout its range in the continental USA and Alaska.

Cerulean Warbler Dendroica cerulea

This is a Bird of Conservation Concern (BCC) throughout its range in the continental USA and Alaska. https://ecos.fws.gov/ecp/species/2974

Dunlin Calidris alpina arcticola

This is a Bird of Conservation Concern (BCC) only in particular Bird Conservation Regions (BCRs) in the continental USA

Breeds Oct 15 to Aug 31

Breeds May 15 to Oct 10

Breeds May 20 to Jul 31

Breeds May 20 to Aug 10

Breeds Apr 29 to Jul 20

Breeds elsewhere

Evening Grosbeak Coccothraustes vespertinus

This is a Bird of Conservation Concern (BCC) throughout its range in the continental USA and Alaska.

Breeds elsewhere

Kentucky Warbler Oporornis formosus

This is a Bird of Conservation Concern (BCC) throughout its range in the continental USA and Alaska.

Breeds Apr 20 to Aug 20

Lesser Yellowlegs Tringa flavipes

This is a Bird of Conservation Concern (BCC) throughout its range in the continental USA and Alaska.

Breeds elsewhere

https://ecos.fws.gov/ecp/species/9679

Nelson's Sparrow Ammodramus nelsoni

This is a Bird of Conservation Concern (BCC) throughout its range in the continental USA and Alaska.

Breeds May 15 to Sep 5

Prairie Warbler Dendroica discolor

This is a Bird of Conservation Concern (BCC) throughout its range in the continental USA and Alaska.

Breeds May 1 to Jul 31

Prothonotary Warbler Protonotaria citrea

This is a Bird of Conservation Concern (BCC) throughout its range in the continental USA and Alaska.

Breeds Apr 1 to Jul 31

Red-headed Woodpecker Melanerpes erythrocephalus

This is a Bird of Conservation Concern (BCC) throughout its range in the continental USA and Alaska.

Breeds May 10 to Sep 10

Red-throated Loon Gavia stellata

This is a Bird of Conservation Concern (BCC) throughout its range in the continental USA and Alaska.

Breeds elsewhere

Rusty Blackbird Euphagus carolinus

This is a Bird of Conservation Concern (BCC) throughout its range in the continental USA and Alaska.

Breeds elsewhere

Semipalmated Sandpiper Calidris pusilla

This is a Bird of Conservation Concern (BCC) throughout its range in the continental USA and Alaska.

Breeds elsewhere

Snowy Owl Bubo scandiacus

This is a Bird of Conservation Concern (BCC) throughout its range in the continental USA and Alaska.

Breeds elsewhere

Wood Thrush Hylocichla mustelina

This is a Bird of Conservation Concern (BCC) throughout its range in the continental USA and Alaska.

Breeds May 10 to Aug 31

Probability of Presence Summary

The graphs below provide our best understanding of when birds of concern are most likely to be present in your project area. This information can be used to tailor and schedule your project activities to avoid or minimize impacts to birds. Please make sure you read and understand the FAQ "Proper Interpretation and Use of Your Migratory Bird Report" before using or attempting to interpret this report.

Probability of Presence (■)

Each green bar represents the bird's relative probability of presence in the 10km grid cell(s) your project overlaps during a particular week of the year. (A year is represented as 12 4-week months.) A taller bar indicates a higher probability of species presence. The survey effort (see below) can be used to establish a level of confidence in the presence score. One can have higher confidence in the presence score if the corresponding survey effort is also high.

How is the probability of presence score calculated? The calculation is done in three steps:

- 1. The probability of presence for each week is calculated as the number of survey events in the week where the species was detected divided by the total number of survey events for that week. For example, if in week 12 there were 20 survey events and the Spotted Towhee was found in 5 of them, the probability of presence of the Spotted Towhee in week 12 is 0.25.
- 2. To properly present the pattern of presence across the year, the relative probability of presence is calculated. This is the probability of presence divided by the maximum probability of presence across all weeks. For example, imagine the probability of presence in week 20 for the Spotted Towhee is 0.05, and that the probability of presence at week 12 (0.25) is the maximum of any week of the year. The relative probability of presence on week 12 is 0.25/0.25 = 1; at week 20 it is 0.05/0.25 = 0.2.
- 3. The relative probability of presence calculated in the previous step undergoes a statistical conversion so that all possible values fall between 0 and 10, inclusive. This is the probability of presence score.

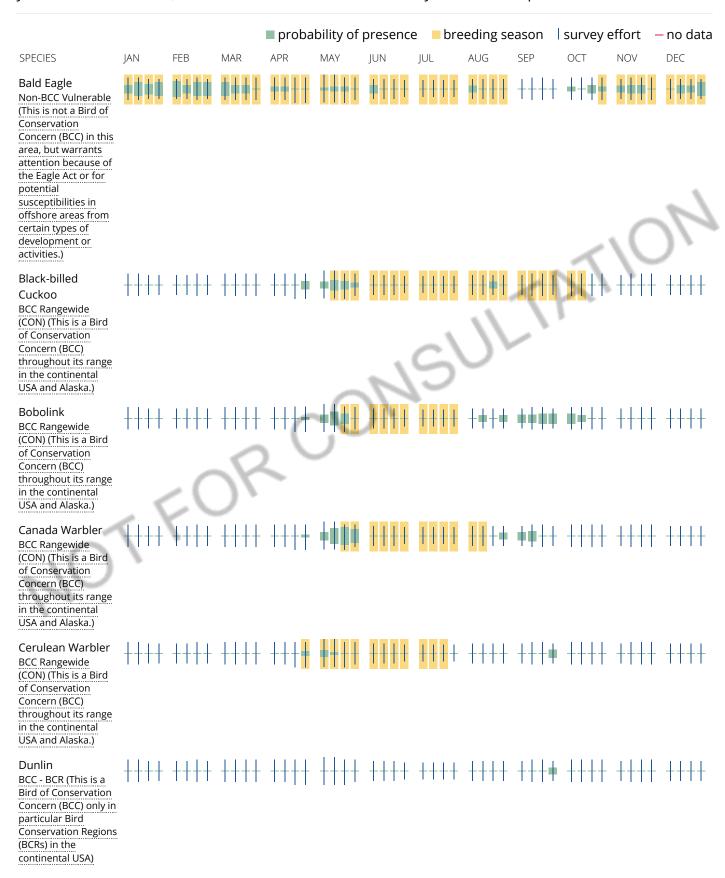
To see a bar's probability of presence score, simply hover your mouse cursor over the bar.

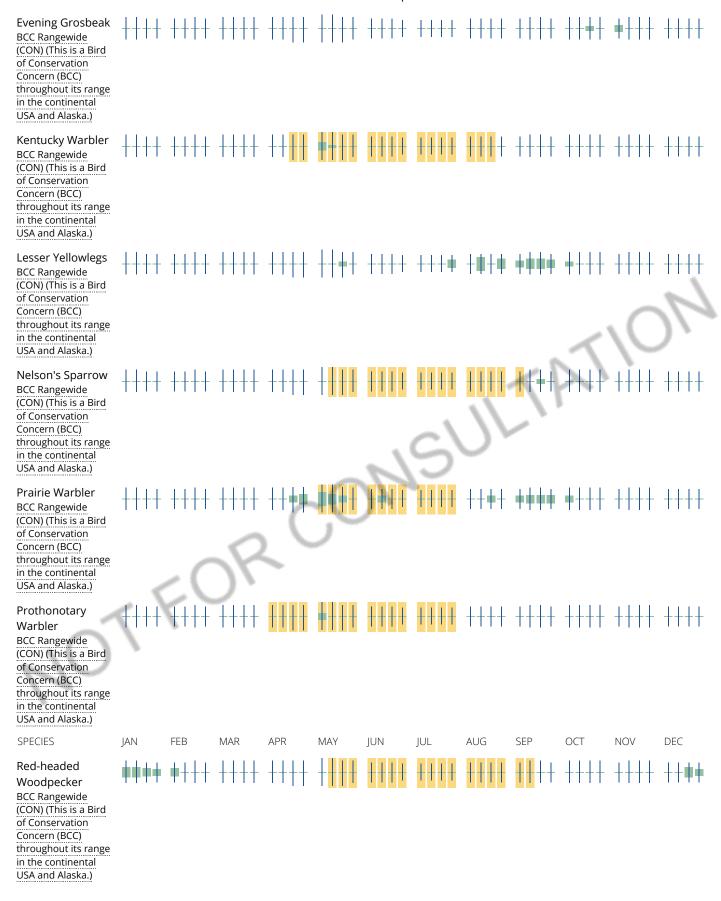
Breeding Season (

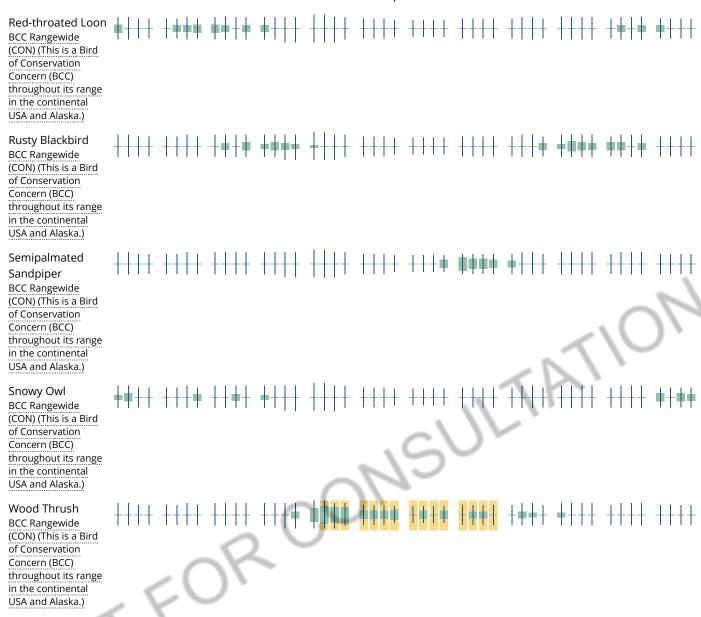
Yellow bars denote a very liberal estimate of the time-frame inside which the bird breeds across its entire range. If there are no yellow bars shown for a bird, it does not breed in your project area.

Survey Effort (1)

Vertical black lines superimposed on probability of presence bars indicate the number of surveys performed for that species in the 10km grid cell(s) your project area overlaps. The number of surveys is expressed as a range, for example, 33 to 64 surveys.


To see a bar's survey effort range, simply hover your mouse cursor over the bar.


No Data (-)


A week is marked as having no data if there were no survey events for that week.

Survey Timeframe

Surveys from only the last 10 years are used in order to ensure delivery of currently relevant information. The exception to this is areas off the Atlantic coast, where bird returns are based on all years of available data, since data in these areas is currently much more sparse.

Tell me more about conservation measures I can implement to avoid or minimize impacts to migratory birds.

Nationwide Conservation Measures describes measures that can help avoid and minimize impacts to all birds at any location year round. Implementation of these measures is particularly important when birds are most likely to occur in the project area. When birds may be breeding in the area, identifying the locations of any active nests and avoiding their destruction is a very helpful impact minimization measure. To see when birds are most likely to occur and be breeding in your project area, view the Probability of Presence Summary. Additional measures and/or permits may be advisable depending on the type of activity you are conducting and the type of infrastructure or bird species present on your project site.

What does IPaC use to generate the migratory birds potentially occurring in my specified location?

The Migratory Bird Resource List is comprised of USFWS <u>Birds of Conservation Concern (BCC)</u> and other species that may warrant special attention in your project location.

The migratory bird list generated for your project is derived from data provided by the <u>Avian Knowledge Network</u> (<u>AKN</u>). The AKN data is based on a growing collection of <u>survey</u>, <u>banding</u>, <u>and citizen science datasets</u> and is queried and filtered to return a list of those birds reported as occurring in the 10km grid cell(s) which your project

intersects, and that have been identified as warranting special attention because they are a BCC species in that area, an eagle (<u>Eagle Act</u> requirements may apply), or a species that has a particular vulnerability to offshore activities or development.

Again, the Migratory Bird Resource list includes only a subset of birds that may occur in your project area. It is not representative of all birds that may occur in your project area. To get a list of all birds potentially present in your project area, please visit the AKN Phenology Tool.

What does IPaC use to generate the probability of presence graphs for the migratory birds potentially occurring in my specified location?

The probability of presence graphs associated with your migratory bird list are based on data provided by the <u>Avian Knowledge Network (AKN)</u>. This data is derived from a growing collection of <u>survey</u>, <u>banding</u>, <u>and citizen science datasets</u>.

Probability of presence data is continuously being updated as new and better information becomes available. To learn more about how the probability of presence graphs are produced and how to interpret them, go the Probability of Presence Summary and then click on the "Tell me about these graphs" link.

How do I know if a bird is breeding, wintering, migrating or present year-round in my project area?

To see what part of a particular bird's range your project area falls within (i.e. breeding, wintering, migrating or year-round), you may refer to the following resources: The Cornell Lab of Ornithology All About Birds Bird Guide, or (if you are unsuccessful in locating the bird of interest there), the Cornell Lab of Ornithology Neotropical Birds guide. If a bird on your migratory bird species list has a breeding season associated with it, if that bird does occur in your project area, there may be nests present at some point within the timeframe specified. If "Breeds elsewhere" is indicated, then the bird likely does not breed in your project area.

What are the levels of concern for migratory birds?

Migratory birds delivered through IPaC fall into the following distinct categories of concern:

- 1. "BCC Rangewide" birds are <u>Birds of Conservation Concern</u> (BCC) that are of concern throughout their range anywhere within the USA (including Hawaii, the Pacific Islands, Puerto Rico, and the Virgin Islands);
- 2. "BCC BCR" birds are BCCs that are of concern only in particular Bird Conservation Regions (BCRs) in the continental USA; and
- 3. "Non-BCC Vulnerable" birds are not BCC species in your project area, but appear on your list either because of the <u>Eagle Act</u> requirements (for eagles) or (for non-eagles) potential susceptibilities in offshore areas from certain types of development or activities (e.g. offshore energy development or longline fishing).

Although it is important to try to avoid and minimize impacts to all birds, efforts should be made, in particular, to avoid and minimize impacts to the birds on this list, especially eagles and BCC species of rangewide concern. For more information on conservation measures you can implement to help avoid and minimize migratory bird impacts and requirements for eagles, please see the FAQs for these topics.

Details about birds that are potentially affected by offshore projects

For additional details about the relative occurrence and abundance of both individual bird species and groups of bird species within your project area off the Atlantic Coast, please visit the <u>Northeast Ocean Data Portal</u>. The Portal also offers data and information about other taxa besides birds that may be helpful to you in your project review. Alternately, you may download the bird model results files underlying the portal maps through the <u>NOAA NCCOS Integrative Statistical Modeling and Predictive Mapping of Marine Bird Distributions and Abundance on the Atlantic Outer Continental Shelf project webpage.</u>

Bird tracking data can also provide additional details about occurrence and habitat use throughout the year, including migration. Models relying on survey data may not include this information. For additional information on marine bird tracking data, see the <u>Diving Bird Study</u> and the <u>nanotag studies</u> or contact <u>Caleb Spiegel</u> or <u>Pam Loring</u>.

What if I have eagles on my list?

If your project has the potential to disturb or kill eagles, you may need to <u>obtain a permit</u> to avoid violating the Eagle Act should such impacts occur.

Proper Interpretation and Use of Your Migratory Bird Report

The migratory bird list generated is not a list of all birds in your project area, only a subset of birds of priority concern. To learn more about how your list is generated, and see options for identifying what other birds may be in your project area, please see the FAQ "What does IPaC use to generate the migratory birds potentially occurring in my specified location". Please be aware this report provides the "probability of presence" of birds within the 10 km grid cell(s) that overlap your project; not your exact project footprint. On the graphs provided, please also look carefully at the survey effort (indicated by the black vertical bar) and for the existence of the "no data" indicator (a red horizontal bar). A high survey effort is the key component. If the survey effort is high, then the probability of presence score can be viewed as more dependable. In contrast, a low survey effort bar or no data bar means a lack of data and, therefore, a lack of certainty about presence of the species. This list is not perfect; it is simply a starting point for identifying what birds of concern have the potential to be in your project area, when they might be there, and if they might be breeding (which means nests might be present). The list helps you know what to look for to confirm presence, and helps guide you in knowing when to implement conservation measures to avoid or minimize potential impacts from your project activities, should presence be confirmed. To learn more about conservation measures, visit the FAQ "Tell me about conservation measures I can implement to avoid or minimize impacts to migratory birds" at the bottom of your migratory bird trust resources page.

Facilities

National Wildlife Refuge lands

Any activity proposed on lands managed by the <u>National Wildlife Refuge</u> system must undergo a 'Compatibility Determination' conducted by the Refuge. Please contact the individual Refuges to discuss any questions or concerns.

THERE ARE NO REFUGE LANDS AT THIS LOCATION.

Fish hatcheries

THERE ARE NO FISH HATCHERIES AT THIS LOCATION.

Wetlands in the National Wetlands Inventory

Impacts to <u>NWI wetlands</u> and other aquatic habitats may be subject to regulation under Section 404 of the Clean Water Act, or other State/Federal statutes.

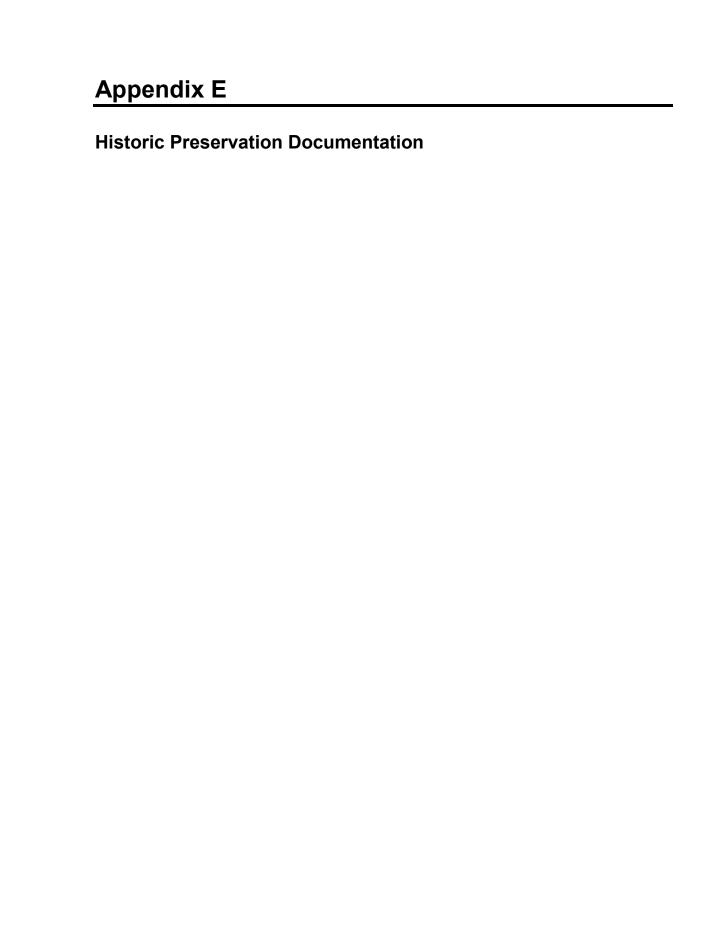
For more information please contact the Regulatory Program of the local <u>U.S. Army Corps of Engineers District</u>.

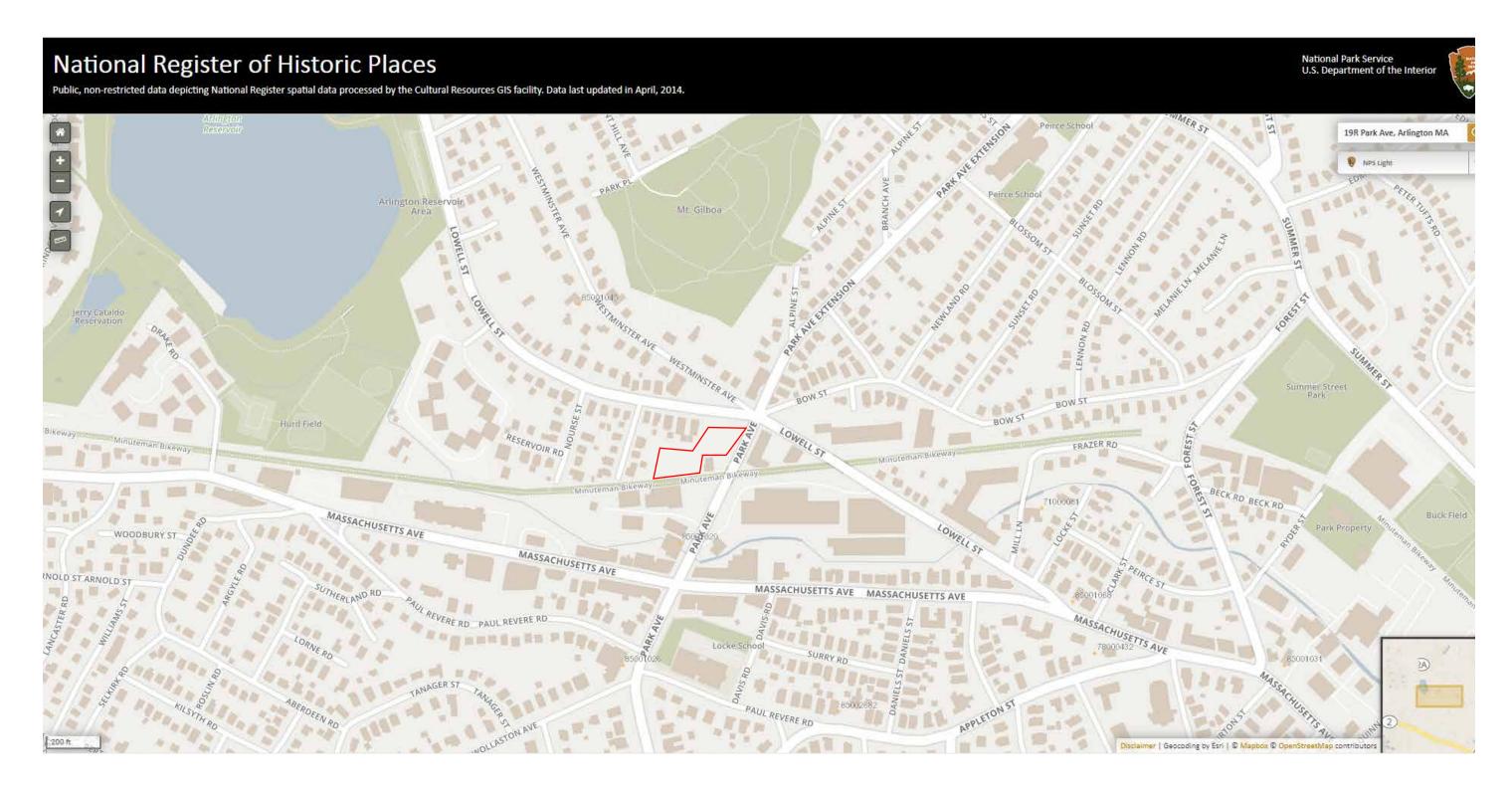
THERE ARE NO KNOWN WETLANDS AT THIS LOCATION.

Data limitations

The Service's objective of mapping wetlands and deepwater habitats is to produce reconnaissance level information on the location, type and size of these resources. The maps are prepared from the analysis of high altitude imagery. Wetlands are identified based on vegetation, visible hydrology and geography. A margin of error is inherent in the use of imagery; thus, detailed on-the-ground inspection of any particular site may result in revision of the wetland boundaries or classification established through image analysis.

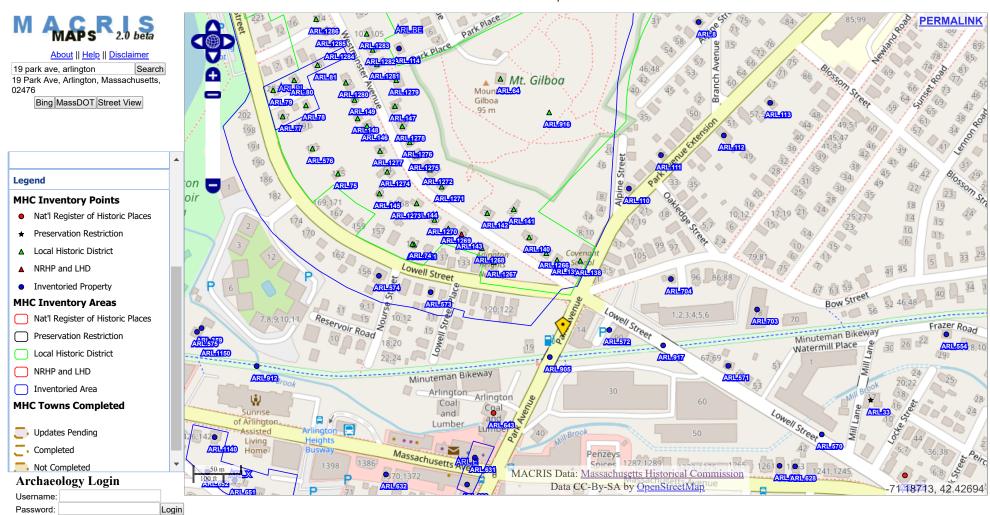
The accuracy of image interpretation depends on the quality of the imagery, the experience of the image analysts, the amount and quality of the collateral data and the amount of ground truth verification work conducted. Metadata should be consulted to determine the date of the source imagery used and any mapping problems.


Wetlands or other mapped features may have changed since the date of the imagery or field work. There may be occasional differences in polygon boundaries or classifications between the information depicted on the map and the actual conditions on site.


Data exclusions

Certain wetland habitats are excluded from the National mapping program because of the limitations of aerial imagery as the primary data source used to detect wetlands. These habitats include seagrasses or submerged aquatic vegetation that are found in the intertidal and subtidal zones of estuaries and nearshore coastal waters. Some deepwater reef communities (coral or tuberficid worm reefs) have also been excluded from the inventory. These habitats, because of their depth, go undetected by aerial imagery.

Data precautions


Federal, state, and local regulatory agencies with jurisdiction over wetlands may define and describe wetlands in a different manner than that used in this inventory. There is no attempt, in either the design or products of this inventory, to define the limits of proprietary jurisdiction of any Federal, state, or local government or to establish the geographical scope of the regulatory programs of government agencies. Persons intending to engage in activities involving modifications within or adjacent to wetland areas should seek the advice of appropriate federal, state, or local agencies concerning specified agency regulatory programs and proprietary jurisdictions that may affect such activities.

https://www.nps.gov/maps/full.html?mapId=7ad17cc9-b808-4ff8-a2f9-a99909164466

Accessed July 17, 2019

MACRIS Maps Last Updated 07/16/2019

maps.mhc-macris.net 1/1

Massachusetts Cultural Resource Information System MACRIS

MACRIS Search Results

Search Criteria: Town(s): Arlington; Place: Arlington Heights; Resource Type(s): Area, Building, Object, Structure;

Inv. No.	Property Name	Street	Town	Year
ARL.D	Peirce Farm Historic District		Arlington	
ARL.E	Arlington Heights Center		Arlington	
ARL.K	Crescent Hill		Arlington	
ARL.M	Forestdale		Arlington	
ARL.P	Arlington Multiple Resource Area		Arlington	
ARL.R	Grove Street and Massachusetts Avenue Area		Arlington	
ARL.U	Oakland and Claremount Avenues Area		Arlington	
ARL.X	Paul Revere Road Area		Arlington	
ARL.AU	Forest Streetscape		Arlington	
ARL.BC	Woodbury Street - Lancaster Road Area		Arlington	
ARL.BG	Saint James The Apostle Roman Catholic Church		Arlington	
ARL.BL	Elder Terrace		Arlington	
ARL.222	Walker, E. B. House	35 Aberdeen Rd	Arlington	c 1905
ARL.342	McCarthy, Denis A. House	7-9 Acton St	Arlington	
ARL.1388	Saint James The Apostle Roman Catholic School	20 Acton St	Arlington	1949
ARL.1		10 Aerial St	Arlington	r 1900
ARL.2		12 Aerial St	Arlington	r 1885
ARL.6		14 Aerial St	Arlington	r 1885
ARL.7		16 Aerial St	Arlington	r 1885
ARL.8		66 Alpine St	Arlington	c 1915
ARL.901	Milestone	Appleton St	Arlington	c 1790
ARL.1387	Saint James The Apostle Roman Catholic Church	4 Appleton St	Arlington	1929
ARL.493	Peirce, Walter - Cox House	11 Appleton St	Arlington	1890
ARL.235	Mason, Dr. House	15 Appleton St	Arlington	c 1870
ARL.494	Locke, Capt. Benjamin House	21 Appleton St	Arlington	c 1720

Thursday, July 18, 2019 Page 1 of 8

Inv. No.	Property Name	Street	Town	Year
ARL.1389	Marian Convent of Saint James The Apostle	22 Appleton St	Arlington	1955
ARL.495	Fay, Wilson W. House	32 Appleton St	Arlington	c 1860
ARL.496	Idahurst - Farmer, Eldridge House	53 Appleton St	Arlington	c 1894
ARL.497	Hill, Addison House	83 Appleton St	Arlington	r 1840
ARL.236	Tewksbury, Minna L. House	222 Appleton St	Arlington	c 1890
ARL.237	Rockwood, Wendall D. House	15 Ashland St	Arlington	c 1873
ARL.238	Barcomb, Hannah S. House	21 Ashland St	Arlington	c 1875
ARL.239	Gorham House	30 Ashland St	Arlington	c 1890
ARL.708	Bates, Esther A Blackinton House	8 Bacon St	Arlington	r 1880
ARL.703	Arlington Machine Works	78 Bow St	Arlington	1890
ARL.704	Sheean, Michael House	102 Bow St	Arlington	r 1860
ARL.903	Arlington Reservoir Standpipe	Cedar Ave	Arlington	1921
ARL.492	Chapel of Saint Anne	Claremont Ave	Arlington	1915
ARL.900	Guardian Angel Rock, The	Claremont Ave	Arlington	r 1920
ARL.913	Garden of The Guardian Angel Rock	Claremont Ave	Arlington	r 1920
ARL.271	Partridge, William O. House	9 Claremont Ave	Arlington	c 1898
ARL.272	Schnetzer House	17 Claremont Ave	Arlington	c 1873
ARL.273	Abendroth House	25 Claremont Ave	Arlington	c 1874
ARL.274		45 Claremont Ave	Arlington	c 1885
ARL.275		49 Claremont Ave	Arlington	r 1885
ARL.276	Hollis, F. House	51 Claremont Ave	Arlington	c 1895
ARL.277	MacKintosh, W. D. House	55 Claremont Ave	Arlington	c 1895
ARL.279		56 Claremont Ave	Arlington	c 1898
ARL.281		63 Claremont Ave	Arlington	r 1885
ARL.282	Haskell, B. C. House	71 Claremont Ave	Arlington	c 1875
ARL.283	Doul, George House	82 Claremont Ave	Arlington	c 1898
ARL.284	Hamblett, D. B. House	99 Claremont Ave	Arlington	1890
ARL.285	Potter, J. F. House	103 Claremont Ave	Arlington	1890
ARL.286	Wright, J. Roscoe House	111 Claremont Ave	Arlington	r 1885
ARL.287	Pierce, John A. P. House	122 Claremont Ave	Arlington	c 1835
ARL.288	Pierce, J. House	123 Claremont Ave	Arlington	c 1830
ARL.289		1 Claremont Ct	Arlington	r 1880
ARL.291	Wave, A. L. House	15 Cliff St	Arlington	c 1898
ARL.293	Coolidge, Walter S Piper House	16-18 Cliff St	Arlington	c 1898
ARL.296	Livingstone, Alexander Double House	29 Cliff St	Arlington	c 1898
ARL.25	Driver House	17 Crescent Hill Ave	Arlington	c 1880
ARL.26	Crescent Hill Improvement Association Clubhouse	41 Crescent Hill Ave	Arlington	c 1898

Thursday, July 18, 2019 Page 2 of 8

Inv. No.	Property Name	Street	Town	Year
ARL.1329		57 Crescent Hill Ave	Arlington	1988
ARL.1331	Thornrose, Otto House	61 Crescent Hill Ave	Arlington	1928
ARL.1330	McAllister, William J. House	62 Crescent Hill Ave	Arlington	1889
ARL.1332	Davidson, Abigail House	69 Crescent Hill Ave	Arlington	1882
ARL.27	Woodend, John F. House	72 Crescent Hill Ave	Arlington	c 1875
ARL.29	Davidson, A. C. House	75 Crescent Hill Ave	Arlington	c 1890
ARL.30	Kirschmayer, John House	79 Crescent Hill Ave	Arlington	r 1885
ARL.32	Engel, Bertie House	93 Crescent Hill Ave	Arlington	1913
ARL.1333	Whittier, Elwell House	102 Crescent Hill Ave	Arlington	1899
ARL.1335	Schumacher, Jacob House	105 Crescent Hill Ave	Arlington	1885
ARL.1334	Disston, George A. House	106 Crescent Hill Ave	Arlington	1896
ARL.34	Kirschmayer, John House	109 Crescent Hill Ave	Arlington	1911
ARL.1336	Burke, Paul H. House	110 Crescent Hill Ave	Arlington	1914
ARL.78	Schieb, James House	11 Elder Terr	Arlington	c 1880
ARL.80	Savage, James House	12 Elder Terr	Arlington	c 1880
ARL.81	Spencer, Eugene House	25 Elder Terr	Arlington	c 1880
ARL.300	Dronet, William G. House	56 Florence Ave	Arlington	1913
ARL.301	Winchester, Capt. J. O. House	102 Florence Ave	Arlington	c 1873
ARL.907	Lexington Railroad Bridge over Forest Street	Forest St	Arlington	1900
ARL.543	Sipple, C. House	23 Forest St	Arlington	1871
ARL.53		147 Forest St	Arlington	r 1875
ARL.54		155 Forest St	Arlington	r 1880
ARL.55		159 Forest St	Arlington	r 1875
ARL.56	Crosby House	163 Forest St	Arlington	r 1875
ARL.57		175 Forest St	Arlington	c 1900
ARL.58	Wilbur, J. W. House	185 Forest St	Arlington	c 1895
ARL.59	Dan, George House	187 Forest St	Arlington	c 1890
ARL.1084		193 Forest St	Arlington	
ARL.1085		197 Forest St	Arlington	
ARL.1086		201 Forest St	Arlington	
ARL.1087		205 Forest St	Arlington	
ARL.60		209 Forest St	Arlington	r 1875
ARL.61		211 Forest St	Arlington	r 1915
ARL.1088		215 Forest St	Arlington	
ARL.1089		219 Forest St	Arlington	
ARL.553		7 Frazer Rd	Arlington	r 1820
ARL.554	Gallagher, John House	18 Frazer Rd	Arlington	1869
ARL.64	Hayden, Lester House	1 Gilboa Rd	Arlington	c 1924
Thursday, July	·		Ŭ	Page 3 of 8

nv. No.	Property Name	Street	Town	Year
ARL.308	Eberhardt, Phillip House	248 Gray St	Arlington	c 1885
ARL.310	Prentiss, William House	252 Gray St	Arlington	r 1855
ARL.312	Bailey, J. A. House	2 Higgins St	Arlington	r 1865
ARL.315	Eaton, Cora A. House	55 Hillside Ave	Arlington	c 1895
ARL.316	Quimby, Carl N. House	60 Hillside Ave	Arlington	1906
ARL.317	Bixby, J. L. House	65 Hillside Ave	Arlington	c 1875
ARL.318	MacBride, Marion A. House	76 Hillside Ave	Arlington	r 1885
ARL.319	Bunker, Cora E. House	81 Hillside Ave	Arlington	c 1885
ARL.320	Kern, F. V. B. House	84 Hillside Ave	Arlington	c 1895
RL.321	Barnard House	106 Hillside Ave	Arlington	c 1875
ARL.322	Barnards Hotel - Lewis, Dr. Dio House	163 Hillside Ave	Arlington	c 1875
ARL.1127		9 Lancaster Rd	Arlington	1912
ARL.376	Ring, T. F. House	51 Lancaster Rd	Arlington	c 1895
ARL.377	O'Quinn House	65 Lancaster Rd	Arlington	c 1900
ARL.569	Locke, Lt. Benjamin Store	11-13 Lowell St	Arlington	1816
RL.570	Schwamb, Charles House	35 Lowell St	Arlington	c 1880
RL.571	Reardon, R. House	61 Lowell St	Arlington	r 1860
RL.572		90 Lowell St	Arlington	r 1890
RL.573	Nourse, S. M. House	140 Lowell St	Arlington	1894
RL.1311	Hadley, William House	147 Lowell St	Arlington	1896
RL.574	Nourse, S. M. House	152-154 Lowell St	Arlington	c 1890
RL.74	Nourse, Thomas House	157 Lowell St	Arlington	c 1880
RL.75	Watts, I. O. House	175 Lowell St	Arlington	c 1885
RL.575	Bolles, Sandy House	176 Lowell St	Arlington	r 1890
RL.359	Boles, Alexander House	178 Lowell St	Arlington	
RL.1150	Boles, Alexander Barn	178 Lowell St	Arlington	
RL.576	Butler, T Taylor, W. C. House	187 Lowell St	Arlington	1884
RL.77		197 Lowell St	Arlington	c 1880
RL.79	Richardson, Herbert House	203 Lowell St	Arlington	c 1880
RL.3	Cutter, Gershom House	1146 Massachusetts Ave	Arlington	c 1835
ARL.621	Schwamb, Theodore Piano Manufacturing Company	1165 Massachusetts Ave	Arlington	r 1905
RL.623	Schwamb, Theodore House	1171 Massachusetts Ave	Arlington	c 1845
RL.624	Schwamb, Charles House	1172-1180 Massachusetts Ave	Arlington	c 1845
RL.625	Farmer, Kimball House	1173 Massachusetts Ave	Arlington	1826
RL.626	Warner, C. D. House	1188 Massachusetts Ave	Arlington	1892
RL.627	Bean, Harlon House	1218 Massachusetts Ave	Arlington	1898
RL.628	Bustrick House	1253 Massachusetts Ave	Arlington	c 1895

Thursday, July 18, 2019 Page 4 of 8

ıv. No.	Property Name	Street	Town	Year
RL.629	Morris House	1257 Massachusetts Ave	Arlington	c 1895
RL.630		1334 Massachusetts Ave	Arlington	1901
RL.631		1339 Massachusetts Ave	Arlington	1901
RL.632		1378 Massachusetts Ave	Arlington	r 1860
RL.1140		1422 Massachusetts Ave	Arlington	
RL.912	Lexington Railroad Bridge over Mill Brook	Mill Brook	Arlington	1892
RL.33	Old Schwamb Mill	17 Mill Ln	Arlington	r 1860
RL.84	Evans Farm Greenhouse	Montague St	Arlington	c 1910
RL.1326	Nicoll, Edward House	10 Montague St	Arlington	1911
RL.82	Weiss, W. H. House	15 Montague St	Arlington	c 1880
RL.1327	Burke, Ulick House	16 Montague St	Arlington	1958
RL.1328	Chalmers, Edward House	20 Montague St	Arlington	1883
RL.83	Tucker, John House	21 Montague St	Arlington	c 1895
RL.916	Mount Gilboa Conservation Land	Mount Gilboa	Arlington	
RL.400	Sweet, Emma L. House	21-23 Oakland Ave	Arlington	c 1895
RL.401	Ober, John H. House	22 Oakland Ave	Arlington	c 1895
RL.402	Taylor, Jack - Dallin, Cyrus Edwin House	69 Oakland Ave	Arlington	c 1898
RL.403	Waterman, Nixon House	89 Oakland Ave	Arlington	c 1895
RL.405	Allyn, Phillip M. House	94 Oakland Ave	Arlington	c 1898
RL.407	Peirce, Thomas House	178 Oakland Ave	Arlington	c 1850
RL.643	Arlington Coal and Lumber Company Building	41 Park Ave	Arlington	c 1875
RL.644	Dallin, Vittoria C. Public Library	85 Park Ave	Arlington	1938
RL.645	Locke School	88 Park Ave	Arlington	c 1899
RL.646	Park Avenue Congregational Church	91 Park Ave	Arlington	1961
RL.409	Butler, Edward J. House	125 Park Ave	Arlington	c 1875
RL.410	White, John A. House	143 Park Ave	Arlington	1925
RL.411	Hesseltine House	154 Park Ave	Arlington	c 1875
RL.412	White, Flora V. House	163 Park Ave	Arlington	r 1885
RL.414	Sinclair, C. A. House	168 Park Ave	Arlington	c 1880
RL.422	Dupee, Theodore House	203 Park Ave	Arlington	r 1885
RL.413		216 Park Ave	Arlington	c 1925
RL.415	Hillard, J. O. House	223 Park Ave	Arlington	c 1875
RL.416	Braithwaite, William Stanley Beaumont House	243 Park Ave	Arlington	c 1880
RL.417	Holmes, Joseph C. House	246 Park Ave	Arlington	c 1874
RL.418		275 Park Ave	Arlington	c 1925
RL.110		26 Park Ave Extension	Arlington	c 1915
RL.111		36 Park Ave Extension	Arlington	c 1905
RL.112		47 Park Ave Extension	Arlington	c 1910

Thursday, July 18, 2019 Page 5 of 8

Inv. No.	Property Name	Street	Town	Year
ARL.113		63 Park Ave Extension	Arlington	
ARL.114		21 Park Pl	Arlington	r 1885
ARL.649	Weather, Mary A. House	17 Paul Revere Rd	Arlington	1903
ARL.650	Adams, Charles D. Jr. House	32 Paul Revere Rd	Arlington	c 1890
ARL.1139		85 Paul Revere Rd	Arlington	
ARL.651	Locke, Joseph House	95-97 Paul Revere Rd	Arlington	r 1810
ARL.652	Bolles, Florence House	101-103 Paul Revere Rd	Arlington	c 1890
ARL.653	Rowland, Henry C. House	11-13 Peirce St	Arlington	1919
ARL.426	Leary, T. J. House	1 Perth Rd	Arlington	c 1910
RL.461	Tremblay, Alfred House	40 Smith St	Arlington	c 1900
RL.134		455-457 Summer St	Arlington	c 1915
RL.673	Davis, J. House	8 Surry Rd	Arlington	r 1850
RL.463	Buskirk, Charles House	67 Sutherland Rd	Arlington	c 1912
RL.468	Gannett, F. W. House	7 Tanager St	Arlington	c 1895
RL.469	Harrison, W. H. House	20 Tanager St	Arlington	c 1890
RL.474	Kittor, J. T Miller, George House	66 Walnut St	Arlington	c 1875
RL.475	Cragin, I. L. House and Farm	71 Walnut St	Arlington	c 1860
RL.138	Arlington Heights Baptist Church	9 Westminster Ave	Arlington	1899
RL.139	Robinson, W. H. House	11 Westminster Ave	Arlington	c 1910
RL.1266	Rosengren, Adolph House	15 Westminster Ave	Arlington	1926
RL.1267	Arlington Heights United Methodist Church	20 Westminster Ave	Arlington	1946
RL.140	Van Gelder, Berta House	21 Westminster Ave	Arlington	1927
RL.141	Hinsley, B. House	33 Westminster Ave	Arlington	r 1865
RL.1268	Silverstein House	34 Westminster Ave	Arlington	1927
RL.142	Joslin, Grant R. House	37 Westminster Ave	Arlington	c 1915
RL.143	Robinson - Lewis - Fessenden House	40 Westminster Ave	Arlington	c 1850
RL.1269		44 Westminster Ave	Arlington	1977
RL.1270	Hadley, Eliza House	46 Westminster Ave	Arlington	1896
RL.1271	Hill, John House	51 Westminster Ave	Arlington	1929
RL.144	Nourse, Nathan House	52-54 Westminster Ave	Arlington	1848
RL.1272	Bell, John B. House	55 Westminster Ave	Arlington	1957
RL.1273		58-60 Westminster Ave	Arlington	1976
RL.145	Wright, W. R O'Keefe, John M. House	62 Westminster Ave	Arlington	r 1880
RL.1274		64 Westminster Ave	Arlington	1988
RL.1275	Salter, William House	65 Westminster Ave	Arlington	1926
RL.1276	Cheever, John House	69 Westminster Ave	Arlington	1925
RL.1277	Watts, Issac O. House	72 Westminster Ave	Arlington	1885
RL.1278	Elder, Amelia House	75 Westminster Ave	Arlington	1900
hursday, Ju	ly 18, 2019			Page 6 o

147	Inv. No.	Property Name	Street	Town	Year
Elder	ARL.146	Elder, Hugh Thomas House	80 Westminster Ave	Arlington	1882
1.149 Brandenburg, Clarence J. House 88 Westminster Ave Arlington c 1885 1.1279 Oilve, Edith House 91 Westminster Ave Arlington 1926 1.1280 Leveroni House 96 Westminster Ave Arlington 1987 1.1281 Call, Phenland E. House 97 Westminster Ave Arlington 1921 1.1282 Halte, James House 99 Westminster Ave Arlington 1981 1.1283 Deane, Harrison G. O. House 103-105 Westminster Ave Arlington 1883 1.150 Swett, Frank Isaac House 109 Westminster Ave Arlington 1882 1.1286 110 Westminster Ave Arlington 1926 1.1286 114 Westminster Ave Arlington 1926 1.1288 Smith, Alonzo R. House 115 Westminster Ave Arlington 1881 1.1289 Barliett, Charles H. House 123 Westminster Ave Arlington 1881 1.1290 MacNell, John House 134 Westminster Ave Arlington 1928 1.1291 Shattuck, Eugene House 139 Vestmin	ARL.147	Quinn, William J. House	81 Westminster Ave	Arlington	c 1885
1284 90 Westminster Ave	ARL.148	Elder, Hugh Thomas Carriage House	82 Westminster Ave	Arlington	c 1882
1914 1915 1914 1915	ARL.149	Brandenburg, Clarence J. House	88 Westminster Ave	Arlington	c 1885
1.280 Leveroni House 96 Westminster Ave Arlington 1987	ARL.1284		90 Westminster Ave	Arlington	1926
1.1281 Call, Phenland E. House 97 Westminster Ave Arlington 1923 1.1282 Hattle, James House 99 Westminster Ave Arlington 1911 1.283 Deane, Harrison G. O. House 103-105 Westminster Ave Arlington 1883 1.150 Swett, Frank Isaac House 109 Westminster Ave Arlington 1926 1.1286 110 Westminster Ave Arlington 1926 1.1286 Smith, Alonzo R. House 115 Westminster Ave Arlington 1881 1.1287 118 Westminster Ave Arlington 1881 1.1289 Bartlett, Charles H. House 123 Westminster Ave Arlington 1881 1.1280 MacNeil, John House 134 Westminster Ave Arlington 1928 1.1291 Woodend, John - Patriquin, Carleton House 137 Westminster Ave Arlington 1921 1.1292 Woodend, John - Patriquin, Carleton House 137 Westminster Ave Arlington 1922 1.1293 Disston, George Double House 138 Westminster Ave Arlington 1922 1.1294 S	ARL.1279	Olive, Edith House	91 Westminster Ave	Arlington	1914
1.1282 Hattlie, James House 99 Westminster Ave Arlington 1911 1.1283 Deane, Harrison G. O. House 103-105 Westminster Ave Arlington 1883 1.150 Swett, Frank Isaac House 109 Westminster Ave Arlington 1926 1.1285 110 Westminster Ave Arlington 1926 1.1286 114 Westminster Ave Arlington 1881 1.1287 115 Westminster Ave Arlington 1881 1.1289 Bartlett, Charles H. House 123 Westminster Ave Arlington 1881 1.1289 Bartlett, Charles H. House 123 Westminster Ave Arlington 1981 1.1290 MacNeil, John House 134 Westminster Ave Arlington 1918 1.1291 Shaltuck, Eugene House 138 Westminster Ave Arlington 1918 1.1292 Woodend, John - Patriquin, Carleton House 139 Halt Westminster Ave Arlington 1922 1.1293 Disston, George Double House 139 Halt Westminster Ave Arlington 1922 1.1294 Spinnale House 151 House <td>ARL.1280</td> <td>Leveroni House</td> <td>96 Westminster Ave</td> <td>Arlington</td> <td>1987</td>	ARL.1280	Leveroni House	96 Westminster Ave	Arlington	1987
1283 Deane, Harrison G. O. House 103-105 Westminster Ave Arlington 1883 150 Swett, Frank Isaac House 109 Westminster Ave Arlington 1882 1285 110 Westminster Ave Arlington 1926 1286 114 Westminster Ave Arlington 1926 1288 Smith, Alonzo R. House 115 Westminster Ave Arlington 1881 1287 118 Westminster Ave Arlington 1926 1289 Bartlett, Charles H. House 123 Westminster Ave Arlington 1881 1289 MacNeil, John House 134 Westminster Ave Arlington 1928 1290 Woodend, John - Patriquin, Carleton House 137 Westminster Ave Arlington 1928 1291 Shattuck, Eugene House 138 Westminster Ave Arlington 1928 1292 Woodend, John - Patriquin, Carleton House 139 Westminster Ave Arlington 1928 1293 Disston, George Double House 139 Hat Westminster Ave Arlington 1928 1294 139 Arlington 1928 1295 Spinnale House 149 Westminster Ave Arlington 1923 1295 Spinnale House 151-153 Westminster Ave Arlington 1925 1296 Snow, Albert House 151-153 Westminster Ave Arlington 1900 1297 Soderquist House 152 Westminster Ave Arlington 1900 1297 Soderquist House 156 Westminster Ave Arlington 1900 1298 Syadkins, A. B. House 166 Westminster Ave Arlington 1885 1299 Syadkins, Thomas House 161 Westminster Ave Arlington 1886 1299 Stilles Barn 161 R Westminster Ave Arlington 1880 1304 Gough, Isaac House 178 Westminster Ave Arlington 1881 1305 Drew, Dan G. Carriage House 189 Westminster Ave Arlington 1881 1306 Mellor, Joseph House 180 Westminster Ave Arlington 1881 1307 Drew, Dan G. Carriage House 180 Westminster Ave Arlington 1881 1308 Mellor, Joseph House 180 Westminster Ave Arlington 1881 1309 Drew, Dan G. Carriage House 1818 Westminster Ave Arlington 1881 1300 Nicoll, Florence Double House 185-187 Westminster Ave Arlington 1881 1300 Nicoll, Florence Double House 185-187 Westminster Ave Arling	ARL.1281	Call, Phenland E. House	97 Westminster Ave	Arlington	1923
1.150 Swett, Frank Isaac House 109 Westminster Ave Arlington 1882	\RL.1282	Hattie, James House	99 Westminster Ave	Arlington	1911
110 Westminster Ave	ARL.1283	Deane, Harrison G. O. House	103-105 Westminster Ave	Arlington	1883
1286 114 Westminster Ave Arlington 1926 1288 Smith, Alonzo R. House 115 Westminster Ave Arlington 1881 1287 118 Westminster Ave Arlington 1926 1289 Bartlett, Charles H. House 123 Westminster Ave Arlington 1881 1290 MacNeil, John House 134 Westminster Ave Arlington 1928 1291 Woodend, John - Patriquin, Carleton House 137 Westminster Ave Arlington 1921 1292 Woodend, John - Patriquin, Carleton House 138 Westminster Ave Arlington 1928 1293 Disston, George Double House 138 Westminster Ave Arlington 1928 1294 Joston, George Double House 139-141 Westminster Ave Arlington 1902 1294 Joston, George Double House 143-145 Westminster Ave Arlington 1902 1294 Spinnale House 149 Westminster Ave Arlington 1902 1295 Spinnale House 151-153 Westminster Ave Arlington 1902 1296	ARL.150	Swett, Frank Isaac House	109 Westminster Ave	Arlington	1882
1.1288 Smith, Alonzo R. House 115 Westminster Ave Arlington 1881 1.1287 118 Westminster Ave Arlington 1926 1.1289 Bartlett, Charles H. House 123 Westminster Ave Arlington 1881 1.1290 MacNeil, John House 134 Westminster Ave Arlington 1928 1.1292 Woodend, John - Patriquin, Carleton House 137 Westminster Ave Arlington 1911 1.1291 Shattuck, Eugene House 138 Westminster Ave Arlington 1928 1.1293 Disston, George Double House 139-141 Westminster Ave Arlington 1902 1.1294 House 149 Westminster Ave Arlington 1923 1.1295 Spinnale House 149 Westminster Ave Arlington 1923 1.1296 Snow, Albert House 151-153 Westminster Ave Arlington 1902 1.1297 Soderquist House 152 Westminster Ave Arlington 11805 1.151 Records, Francis E. House 155-157 Westminster Ave Arlington 11805 1.152 Swadk	ARL.1285		110 Westminster Ave	Arlington	1926
1287 118 Westminster Ave Arlington 1926 1289 Bartlett, Charles H. House 123 Westminster Ave Arlington 1881 1290 MacNeil, John House 134 Westminster Ave Arlington 1928 1292 Woodend, John - Patriquin, Carleton House 137 Westminster Ave Arlington 1911 1291 Shattuck, Eugene House 138 Westminster Ave Arlington 1928 1293 Disston, George Double House 139-141 Westminster Ave Arlington 1902 1294 143-145 Westminster Ave Arlington 1923 1295 Spinnale House 149 Westminster Ave Arlington 1952 1296 Snow, Albert House 151-153 Westminster Ave Arlington 1902 1297 Soderquist House 155-157 Westminster Ave Arlington 1900 151 Records, Francis E. House 155-167 Westminster Ave Arlington r 1895 152 Swadkins, A. B. House 166 Westminster Ave Arlington r 1885 153 Swadkins, Thomas Hou	RL.1286		114 Westminster Ave	Arlington	1926
1289 Bartlett, Charles H. House 123 Westminster Ave Arlington 1881 1290 MacNeil, John House 134 Westminster Ave Arlington 1928 1292 Woodend, John - Patriquin, Carleton House 137 Westminster Ave Arlington 1911 1291 Shattuck, Eugene House 138 Westminster Ave Arlington 1928 1293 Disston, George Double House 139-141 Westminster Ave Arlington 1922 1294 143-145 Westminster Ave Arlington 1923 1295 Spinnale House 149 Westminster Ave Arlington 1923 1296 Snow, Albert House 151-153 Westminster Ave Arlington 1902 1297 Soderquist House 152 Westminster Ave Arlington 1900 151 Records, Francis E. House 155-157 Westminster Ave Arlington r 1895 152 Swadkins, Thomas House 156 Westminster Ave Arlington c 1882 153 Swadkins, Thomas House 161 Westminster Ave Arlington r 1865	RL.1288	Smith, Alonzo R. House	115 Westminster Ave	Arlington	1881
1290 MacNeil, John House 134 Westminster Ave Arlington 1928 1292 Woodend, John - Patriquin, Carleton House 137 Westminster Ave Arlington 1911 1291 Shattuck, Eugene House 138 Westminster Ave Arlington 1928 1293 Disston, George Double House 139-141 Westminster Ave Arlington 1902 1294 143-145 Westminster Ave Arlington 1923 1295 Spinnale House 149 Westminster Ave Arlington 1952 1296 Snow, Albert House 151-153 Westminster Ave Arlington 1902 1297 Soderquist House 152 Westminster Ave Arlington 1900 151 Records, Francis E. House 155-157 Westminster Ave Arlington r 1895 152 Swadkins, A. B. House 156 Westminster Ave Arlington c 1898 153 Swadkins, Thomas House 160 Westminster Ave Arlington r 1865 154 Reed, J. H. House 161 Westminster Ave Arlington r 1865 1299	RL.1287		118 Westminster Ave	Arlington	1926
1992 Woodend, John - Patriquin, Carleton House 137 Westminster Ave Arlington 1911	RL.1289	Bartlett, Charles H. House	123 Westminster Ave	Arlington	1881
1291 Shattuck, Eugene House 138 Westminster Ave Arlington 1928 1293 Disston, George Double House 139-141 Westminster Ave Arlington 1902 1294 143-145 Westminster Ave Arlington 1923 1295 Spinnale House 149 Westminster Ave Arlington 1968 1296 Snow, Albert House 151-153 Westminster Ave Arlington 1902 1297 Soderquist House 152 Westminster Ave Arlington 1902 151 Records, Francis E. House 155-157 Westminster Ave Arlington r 1895 152 Swadkins, A. B. House 156 Westminster Ave Arlington c 1882 153 Swadkins, Thomas House 160 Westminster Ave Arlington c 1882 154 Reed, J. H. House 161 Westminster Ave Arlington r 1865 1299 Stiles Barn 161R Westminster Ave Arlington 1890 1304 Gough, Isaac House 174 Westminster Ave Arlington 1885 1301 Munroe, Col. Nelson	RL.1290	MacNeil, John House	134 Westminster Ave	Arlington	1928
1293 Disston, George Double House 139-141 Westminster Ave Arlington 1902 1294 143-145 Westminster Ave Arlington 1923 1295 Spinnale House 149 Westminster Ave Arlington 1958 1296 Snow, Albert House 151-153 Westminster Ave Arlington 1902 1297 Soderquist House 152 Westminster Ave Arlington 1900 151 Records, Francis E. House 155-157 Westminster Ave Arlington r 1895 152 Swadkins, A. B. House 156 Westminster Ave Arlington c 1898 153 Swadkins, Thomas House 160 Westminster Ave Arlington c 1882 154 Reed, J. H. House 161 Westminster Ave Arlington r 1865 159 Stiles Barn 161R Westminster Ave Arlington 1890 1304 Gough, Isaac House 174 Westminster Ave Arlington 1926 1301 Munroe, Col. Nelson House 178 Westminster Ave Arlington 1885 1302 Nicoll, Walter Hou	RL.1292	Woodend, John - Patriquin, Carleton House	137 Westminster Ave	Arlington	1911
1294 143-145 Westminster Ave Arlington 1923 1295 Spinnale House 149 Westminster Ave Arlington 1958 1296 Snow, Albert House 151-153 Westminster Ave Arlington 1902 1297 Soderquist House 152 Westminster Ave Arlington 1900 151 Records, Francis E. House 155-157 Westminster Ave Arlington r 1895 152 Swadkins, A. B. House 156 Westminster Ave Arlington c 1888 153 Swadkins, Thomas House 160 Westminster Ave Arlington c 1882 154 Reed, J. H. House 161 Westminster Ave Arlington r 1865 1299 Stiles Barn 161R Westminster Ave Arlington 1890 1304 Gough, Isaac House 174 Westminster Ave Arlington 1926 1301 Munroe, Col. Nelson House 178 Westminster Ave Arlington 1881 1302 Nicoll, Walter House 179 Westminster Ave Arlington 1881 1305 Drew, Dan G. Carriage House 182 Westminster Ave Arlington 1932 <td< td=""><td>RL.1291</td><td>Shattuck, Eugene House</td><td>138 Westminster Ave</td><td>Arlington</td><td>1928</td></td<>	RL.1291	Shattuck, Eugene House	138 Westminster Ave	Arlington	1928
2.1295 Spinnale House 149 Westminster Ave Arlington 1958 2.1296 Snow, Albert House 151-153 Westminster Ave Arlington 1902 2.1297 Soderquist House 152 Westminster Ave Arlington 1900 2.151 Records, Francis E. House 155-157 Westminster Ave Arlington r 1895 2.152 Swadkins, A. B. House 156 Westminster Ave Arlington c 1898 2.153 Swadkins, Thomas House 160 Westminster Ave Arlington c 1882 2.154 Reed, J. H. House 161 Westminster Ave Arlington r 1865 2.1299 Stiles Barn 161R Westminster Ave Arlington 1890 2.1304 Gough, Isaac House 174 Westminster Ave Arlington 1926 2.1301 Munroe, Col. Nelson House 178 Westminster Ave Arlington 1885 2.1302 Nicoll, Walter House 179 Westminster Ave Arlington 1881 2.155 Drew, Dan G. Carriage House 182 Westminster Ave Arlington 1830 2.1305	RL.1293	Disston, George Double House	139-141 Westminster Ave	Arlington	1902
1296 Snow, Albert House 151-153 Westminster Ave Arlington 1902 1297 Soderquist House 152 Westminster Ave Arlington 1900 151 Records, Francis E. House 155-157 Westminster Ave Arlington r 1895 152 Swadkins, A. B. House 156 Westminster Ave Arlington c 1898 153 Swadkins, Thomas House 160 Westminster Ave Arlington r 1865 154 Reed, J. H. House 161 Westminster Ave Arlington r 1865 1299 Stiles Barn 161R Westminster Ave Arlington 1890 1304 Gough, Isaac House 174 Westminster Ave Arlington 1926 1301 Munroe, Col. Nelson House 178 Westminster Ave Arlington 1885 1302 Nicoll, Walter House 179 Westminster Ave Arlington 1881 155 Drew, Dan G. Carriage House 182 Westminster Ave Arlington 1932 1306 Mellor, Joseph House 184 Westminster Ave Arlington 1883 1307<	RL.1294		143-145 Westminster Ave	Arlington	1923
1297 Soderquist House 152 Westminster Ave Arlington 1900 151 Records, Francis E. House 155-157 Westminster Ave Arlington r 1895 152 Swadkins, A. B. House 156 Westminster Ave Arlington c 1898 153 Swadkins, Thomas House 160 Westminster Ave Arlington c 1882 154 Reed, J. H. House 161 Westminster Ave Arlington r 1865 1299 Stiles Barn 161R Westminster Ave Arlington 1890 1304 Gough, Isaac House 174 Westminster Ave Arlington 1926 1301 Murroe, Col. Nelson House 178 Westminster Ave Arlington 1885 1302 Nicoll, Walter House 179 Westminster Ave Arlington 1881 155 Drew, Dan G. Carriage House 182 Westminster Ave Arlington c 1890 1305 Drew, Dan G. House 183 Westminster Ave Arlington 1932 1307 188-190 Westminster Ave Arlington 1921 150 Brandenberg, H. M. House 192-194 Westminster Ave Arlington c 1880	RL.1295	Spinnale House	149 Westminster Ave	Arlington	1958
151 Records, Francis E. House 155-157 Westminster Ave Arlington r 1895 152 Swadkins, A. B. House 156 Westminster Ave Arlington c 1898 153 Swadkins, Thomas House 160 Westminster Ave Arlington c 1882 154 Reed, J. H. House 161 Westminster Ave Arlington r 1865 1299 Stiles Barn 161R Westminster Ave Arlington 1890 1304 Gough, Isaac House 174 Westminster Ave Arlington 1926 1301 Munroe, Col. Nelson House 178 Westminster Ave Arlington 1885 1302 Nicoll, Walter House 179 Westminster Ave Arlington 1881 155 Drew, Dan G. Carriage House 182 Westminster Ave Arlington c 1890 1306 Mellor, Joseph House 183 Westminster Ave Arlington 1932 1305 Drew, Dan G. House 184 Westminster Ave Arlington 1921 1307 188-190 Westminster Ave Arlington 1921 157 Brandenberg, H. M. House 192-194 Westminster Ave Arlington c 1880	RL.1296	Snow, Albert House	151-153 Westminster Ave	Arlington	1902
Lif52 Swadkins, A. B. House 156 Westminster Ave Arlington c 1898 Lif53 Swadkins, Thomas House 160 Westminster Ave Arlington c 1882 Lif54 Reed, J. H. House 161 Westminster Ave Arlington r 1865 Lif59 Stiles Barn 161R Westminster Ave Arlington 1890 Lif50 Gough, Isaac House 174 Westminster Ave Arlington 1926 Lif50 Munroe, Col. Nelson House 178 Westminster Ave Arlington 1885 Lif50 Drew, Dan G. Carriage House 179 Westminster Ave Arlington 1881 Lif55 Drew, Dan G. Carriage House 182 Westminster Ave Arlington 1830 Lif50 Drew, Dan G. House 183 Westminster Ave Arlington 1932 Lif50 Drew, Dan G. House 184 Westminster Ave Arlington 1932 Lif50 Drew, Dan G. House 184 Westminster Ave Arlington 1932 Lif50 Drew, Dan G. House 185-187 Westminster Ave Arlington 1921 Lif50 Brandenberg, H. M. House 192-194 Westminster Ave Arlington 1972 Lif50 Brandenberg, H. M. House 192-194 Westminster Ave Arlington 1972 Lif50 Brandenberg, H. M. House 192-194 Westminster Ave Arlington 1972 Lif50 Brandenberg, H. M. House 192-194 Westminster Ave Arlington 1972 Lif50 Brandenberg, H. M. House 192-194 Westminster Ave Arlington 1972 Lif50 Brandenberg, H. M. House 192-194 Westminster Ave Arlington 1972 Lif50 Brandenberg, H. M. House 192-194 Westminster Ave Arlington 1972 Lif50 Brandenberg, H. M. House 192-194 Westminster Ave Arlington 1972 Lif50 Brandenberg, H. M. House 192-194 Westminster Ave Arlington 1972 Lif50 Brandenberg Lif50 Brandenberg	RL.1297	Soderquist House	152 Westminster Ave	Arlington	1900
Lif53 Swadkins, Thomas House 160 Westminster Ave Arlington c 1882 Lif54 Reed, J. H. House 161 Westminster Ave Arlington r 1865 Lif59 Stiles Barn 161R Westminster Ave Arlington 1890 Lif50 Gough, Isaac House 174 Westminster Ave Arlington 1926 Lif50 Munroe, Col. Nelson House 178 Westminster Ave Arlington 1885 Lif50 Drew, Dan G. Carriage House 182 Westminster Ave Arlington c 1890 Lif50 Drew, Dan G. Carriage House 183 Westminster Ave Arlington 1932 Lif50 Drew, Dan G. House 184 Westminster Ave Arlington 1932 Lif50 Drew, Dan G. House 184 Westminster Ave Arlington 1932 Lif50 Drew, Dan G. House 185-187 Westminster Ave Arlington 1931 Lif50 Drew, Dan G. House 185-187 Westminster Ave Arlington 1931 Lif50 Drew, Dan G. House 185-187 Westminster Ave Arlington 1931 Lif50 Brandenberg, H. M. House 192-194 Westminster Ave Arlington 1972 Lif50 Brandenberg, H. M. House 192-194 Westminster Ave Arlington c 1880	RL.151	Records, Francis E. House	155-157 Westminster Ave	Arlington	r 1895
Lift A Reed, J. H. House 161 Westminster Ave Arlington r 1865 Lift Barn 161R Westminster Ave Arlington 1890 Lift Gough, Isaac House 174 Westminster Ave Arlington 1926 Lift Munroe, Col. Nelson House 178 Westminster Ave Arlington 1885 Lift Drew, Dan G. Carriage House 182 Westminster Ave Arlington 1881 Lift Drew, Dan G. Carriage House 182 Westminster Ave Arlington 1830 Lift Mellor, Joseph House 183 Westminster Ave Arlington 1932 Lift Drew, Dan G. House 184 Westminster Ave Arlington 1883 Lift Drew, Dan G. House 185-187 Westminster Ave Arlington 1921 Lift Brandenberg, H. M. House 192-194 Westminster Ave Arlington 1972 Lift Brandenberg, H. M. House 192-194 Westminster Ave Arlington 1972	RL.152	Swadkins, A. B. House	156 Westminster Ave	Arlington	c 1898
Land Stiles Barn 161R Westminster Ave Arlington 1890 1926 1930 1930 1930 1930 1930 1930 1930 1930	RL.153	Swadkins, Thomas House	160 Westminster Ave	Arlington	c 1882
Gough, Isaac House 174 Westminster Ave Arlington 1926 1301 Munroe, Col. Nelson House 178 Westminster Ave Arlington 1885 1302 Nicoll, Walter House 179 Westminster Ave Arlington 1881 155 Drew, Dan G. Carriage House 182 Westminster Ave Arlington c 1890 1306 Mellor, Joseph House 183 Westminster Ave Arlington 1932 1305 Drew, Dan G. House 184 Westminster Ave Arlington 1883 1300 Nicoll, Florence Double House 185-187 Westminster Ave Arlington 1921 1307 188-190 Westminster Ave Arlington 1972 1308 Brandenberg, H. M. House 192-194 Westminster Ave Arlington c 1880	RL.154	Reed, J. H. House	161 Westminster Ave	Arlington	r 1865
L.1301 Munroe, Col. Nelson House 178 Westminster Ave Arlington 1885 L.1302 Nicoll, Walter House 179 Westminster Ave Arlington 1881 L.155 Drew, Dan G. Carriage House 182 Westminster Ave Arlington c 1890 L.1306 Mellor, Joseph House 183 Westminster Ave Arlington 1932 L.1305 Drew, Dan G. House 184 Westminster Ave Arlington 1883 L.1300 Nicoll, Florence Double House 185-187 Westminster Ave Arlington 1921 L.1307 188-190 Westminster Ave Arlington 1972 L.157 Brandenberg, H. M. House 192-194 Westminster Ave Arlington c 1880	RL.1299	Stiles Barn	161R Westminster Ave	Arlington	1890
Nicoll, Walter House 179 Westminster Ave Arlington 1881 179 Westminster Ave Arlington c 1890 180 Mellor, Joseph House 183 Westminster Ave Arlington 1932 181 Mestminster Ave Arlington 1932 182 Westminster Ave Arlington 1932 183 Westminster Ave Arlington 1883 184 Westminster Ave Arlington 1921 185-187 Westminster Ave Arlington 1921 186-190 Westminster Ave Arlington 1972 187 Brandenberg, H. M. House 192-194 Westminster Ave Arlington c 1880	RL.1304	Gough, Isaac House	174 Westminster Ave	Arlington	1926
Drew, Dan G. Carriage House 182 Westminster Ave Arlington 1932 183 Westminster Ave Arlington 1932 184 Westminster Ave Arlington 1883 1890 1800	RL.1301	Munroe, Col. Nelson House	178 Westminster Ave	Arlington	1885
Land Mellor, Joseph House 183 Westminster Ave Arlington 1932 Land Drew, Dan G. House 184 Westminster Ave Arlington 1883 Land Nicoll, Florence Double House 185-187 Westminster Ave Arlington 1921 Land Brandenberg, H. M. House 192-194 Westminster Ave Arlington c 1880	RL.1302	Nicoll, Walter House	179 Westminster Ave	Arlington	1881
Drew, Dan G. House 184 Westminster Ave Arlington 1883 180 Nicoll, Florence Double House 185-187 Westminster Ave Arlington 1921 180 Nicoll, Florence Double House 185-187 Westminster Ave Arlington 1972 180 Brandenberg, H. M. House 192-194 Westminster Ave Arlington c 1880	RL.155	Drew, Dan G. Carriage House	182 Westminster Ave	Arlington	c 1890
1300 Nicoll, Florence Double House 185-187 Westminster Ave Arlington 19211307 188-190 Westminster Ave Arlington 1972157 Brandenberg, H. M. House 192-194 Westminster Ave Arlington c 1880	RL.1306	Mellor, Joseph House	183 Westminster Ave	Arlington	1932
1300 Nicoll, Florence Double House 185-187 Westminster Ave Arlington 19211307 188-190 Westminster Ave Arlington 1972157 Brandenberg, H. M. House 192-194 Westminster Ave Arlington c 1880	RL.1305	Drew, Dan G. House	184 Westminster Ave	Arlington	1883
1307 188-190 Westminster Ave Arlington 1972 157 Brandenberg, H. M. House 192-194 Westminster Ave Arlington c 1880	RL.1300	Nicoll, Florence Double House	185-187 Westminster Ave	Arlington	1921
	RL.1307		188-190 Westminster Ave	_	1972
	RL.157	Brandenberg, H. M. House	192-194 Westminster Ave	Arlington	c 1880
raye 1	hursday, Ju	ly 18, 2019			Page 7 o

Inv. No.	Property Name	Street	Town	Year
ARL.1308	Weston, William House	193 Westminster Ave	Arlington	1902
ARL.1309	Lindburg, Frederick House	195 Westminster Ave	Arlington	1902
ARL.1310	Rouillard, E. House	196 Westminster Ave	Arlington	1881
ARL.156	Payne, A. House	197 Westminster Ave	Arlington	c 1870
ARL.1315	Goodwillie, Fred M. House	7 Westmoreland Ave	Arlington	1897
ARL.1316	Reed, Everett House	11 Westmoreland Ave	Arlington	1924
ARL.1317	Keating, George House	14 Westmoreland Ave	Arlington	1926
ARL.1318	Jones, Charles R. House	19 Westmoreland Ave	Arlington	1899
ARL.1319	Newall, Arthur E. House	39 Westmoreland Ave	Arlington	1928
ARL.1320	Barker, John J. House	45 Westmoreland Ave	Arlington	1900
ARL.1323	Brown, Robert K. Jr. House	46 Westmoreland Ave	Arlington	1924
ARL.1321	Anderson, Swen L. House	47 Westmoreland Ave	Arlington	1900
ARL.915		50R Westmoreland Ave	Arlington	
ARL.1324	Brown, Robert K. Jr. House	50 Westmoreland Ave	Arlington	1958
ARL.1325	Brown, Henry K. House	52 Westmoreland Ave	Arlington	1890
ARL.1322	Harling, Frederick J. House	53 Westmoreland Ave	Arlington	1900
ARL.1313	Lawson, Jennie House	3 Westmoreland St	Arlington	1897
ARL.1314	Hawes, Frank House	4 Westmoreland St	Arlington	1890
ARL.137		112 Westmoreland St	Arlington	1911
ARL.4	Cutter, Jefferson House	1 Whittemore Pk	Arlington	c 1830
ARL.482		18 Williams St	Arlington	c 1895
ARL.483	McDonald, R. N. House	22 Williams St	Arlington	c 1900
ARL.484		28 Williams St	Arlington	c 1895
ARL.485		23 Wollaston Ave	Arlington	c 1898
ARL.486	Hamblin, B. Harold House	27 Wollaston Ave	Arlington	c 1890
ARL.487	Spiller, M. W. House	57 Wollaston Ave	Arlington	c 1890
ARL.488	Abbott, A. House	69 Wollaston Ave	Arlington	c 1895
ARL.489	Brick - Birch House	74 Wollaston Ave	Arlington	1895
ARL.490	Everett, Theodore House	82 Wollaston Ave	Arlington	r 1900
ARL.1128		33 Woodbury St	Arlington	1912
ARL.1129		35 Woodbury St	Arlington	1912

Thursday, July 18, 2019 Page 8 of 8