

January 14, 2020 Project Number MA8499G

Ms. Shelley Puleo U.S. Environmental Protection Agency Office of Ecosystem Processing RGP Applications Coordinator (OEP06-1) 5 Post Office Square, Suite 100 Boston, MA 02109-3912

RE: Notice of Intent for Remediation General Permit Commercial Property Cumberland Farms Property #MA8499 227 Ashland Street North Adams, MA 01247

Dear Ms. Puleo:

ATC Group Services LLC (ATC) is pleased to provide supporting documentation for the Notice of Intent (NOI) for the Remediation General Permit (RGP) on behalf of Cumberland Farms, Inc. (CFI), for the above-referenced property (the "Site"). This NOI is being submitted in order to obtain approval for the discharge of treated groundwater at the Site. The discharge and dewatering is necessary to allow for the installation of underground storage tanks (USTs) and other subsurface structures at the Site. A Site Locus is provided as Figure 1 and a set of Site Plans are provided as Figures CFG 2.0 and CFG 5.0. A copy of the NOI form is provided as Attachment I.

Background

The Site is located at 227 Ashland Street, Berkshire County, Massachusetts and is comprised of 1.15 acres of land. At the present, the property at 227 Ashland Street is being cleared for development. The property was owned by the City of North Adams and was formerly utilized as the city Department of Public Works (DPW) Garage until Cumberland Farms, Inc. (CFI) acquired the property in June 2019 for purposes of erecting a new service station. The DPW has moved to a new location in North Adams. All four buildings have been recently demolished at the Site and subsurface clearance is in progress. All four buildings were used for storage of materials associated with DPW supplies. Historical uses of the property include a garage repair area with a lift area in the former southwestern building.

As part of the station building project, CFI will be installing USTs and associated piping, and erecting a new convenience store with dispenser islands and an associated canopy. The recent site layout and proposed site layout are shown on Figures CFG02.0 and CFG 05.0, respectively.

On November 12, 2019, ATC collected a groundwater sample from well MW-1 (prior to subsequent demolition) for the purposes of preparing this discharge permit. Analytical results indicated concentrations of chlorinated solvents 1,1,1-trichloroethane and 1,1-dichloroethane and metals nickel and copper below Reportable Concentrations (RCs). Due to the Site connection to the North Adams municipal storm-water catch basin system, this federal RGP is necessary and ATC is submitting this Notice of Intent to discharge in order to facilitate dewatering during springtime construction activities. As part of the RGP process, ATC also sampled the outfall for the storm-water system, a pipe located at the south branch of the Hoosic River. During the construction activities, scheduled for the Spring of 2020, the groundwater will be filtered through carbon filters prior to discharge.

Pretreatment

The excavation will be dewatered by installing temporary sump pumps. Pumps will be used so that collected groundwater from the excavation area will be pumped into a frac tank to allow sediment to settle out. The water will be pumped from the frac tank and sent through sediment filters and a carbon filtration system. and then discharged to a catch basin located at the center of the site. The catch basins on the property are connected to the North Adams municipal storm water drainage system, which is connected to an outfall located at the southern branch of the Hoosic River. ATC has secured a written approval from the North Adams Department of Public Works granting access to the municipal system during the dewatering events. Please refer to Figure 1 for a depiction of the site and outfall locations, Figure CFG 2.0 for the Site Plan depicting the catch basins and Figure 3 for a Discharge Flow Schematic.

Average flow rate of discharge of treated groundwater from the Site to the storm drainage line is expected to be approximately 50 gallons per minute (gpm).

Influent Sample Analysis

Groundwater samples were collected from the raw water/influent location (MW-1) on November 12, 2019 and were submitted to Spectrum/Eurofins Analytical, Inc. of Agawam, Massachusetts for laboratory analysis for the following parameters:

- Total Petroleum Hydrocarbons (TPH) by EPA method 1664,
- Volatile Organic Compounds (VOCs) by EPA Method 8260/624/524.2,
- Semi-Volatile Organic Compounds (SVOCs) by EPA method 625,
- Polychlorinated Biphenyls (PCBs) by EPA method 8082,
- Total metals by EPA Method 200.7,
- Cyanide,
- Ammonia,
- Flashpoint,
- pH,
- Salinity,
- Hardness, and,
- Total Suspended Solids (TSS).

Also, a sample of the receiving water (Hoosic River) was collected on this date for laboratory analysis of pH, hardness, ammonia, and metals. A summary of the sampling data is provided in Attachment I on the NOI form, Section D4, and a copy of the laboratory report is included in Attachment VI. Based on the location of the outfall and receiving waters and the proposed design discharge flow, the seven day-ten year low flow (7Q10) of the receiving waters was determined to be 6.59 MGD and the calculated dilution factor was determined to be 92.53. On January 8, 2020, the Massachusetts Department of Environmental Protection (MassDEP) reviewed and approved the 7Q10 low flow determination and the calculated dilution factor (Attachment III).

Groundwater analytical results were compared to the Appendix III effluent limitations (www.epa.gov/region1/npdes/rgp.html). These results indicate that the following parameters were detected in the samples: chloride, ammonia, copper, nickel, 1,1-dichloroethane, 1,1,1-trichloroethane, yet none were detected at concentrations that exceed the applicable EPA Appendix III effluent limitations. Total suspended solids and metals are expected to be reduced by pretreatment with settling and filtration.

Evaluation of Threatened or Endangered Species or Critical Habitat Located within Receiving Waters

The receiving waters have been categorized as a Category 5 body of water, indicating some impairment due to channelization and upstream discharge influence. A copy of the 2014 Integrated Waters List for the area is included as Attachment II. According to Massachusetts Geographic Information Systems (MassGIS) online maps for the Natural Heritage Endangered Species Program (NHESP) (2008), no Priority Habitat of Rare Species or Estimated Habitats of Rare Wildlife are located within the work area. No NHESP Estimated Habitats of Rare Wildlife in Wetland Areas or Protected Open Spaces are located within 500 feet of the Site. Based on this information, the potential discharge will not have an adverse affect on the NHESP Estimated Habitats of Rare Wildlife. A copy of the MassGIS Resource Priority and NHESP Maps of the Site area is included in Attachment IV.

Review of National Register of Historic Places

Listings of Historic Places within the Town of North Adams were obtained from the Massachusetts Cultural Resources Information System (MACRIS) online database at http://mhc- macris.net/towns.aspx (accessed January 14, 2020). A copy of the MACRIS report is provided as Attachment V. The database indicated that there are no historic places located in close proximity to the Site and proposed discharge area. This project does not involve the demolition or rehabilitation of historic properties.

The proposed redevelopment project is scheduled to start on March 1, 2020 and last for approximately 3-6 months. The duration of the dewatering aspect of the project is only expected to be for 1-3 weeks, at various intervals during the initial sub-surface development occurring within the first 2-3 months of the project. Should you have any questions or concerns regarding the contents of this letter or the NOI for the RGP, please do not hesitate to contact the undersigned at (413)781-0070.

Sincerely, ATC Group Services

lexandra N. Riddle

Alexandra Riddle Senior Project Manager

cc: Chris Johnson, Cumberland Farms, Inc., 165 Flanders Road, Westborough, MA ; Cathy

Vakalopoulus, MassDEP, Surface Water Discharge Permit Program, One Winter Street, 5th Floor, Boston, MA 02108; Town of North Adams Department of Public Works-10 Main Street, North Adams, MA 01247

AttachmentsFigure 1: Site Locus with Outfall LocationFigure CFG 2.0: Site Plan with Catch Basin LocationsFigure 3: Discharge Flow SchematicFigure CFG 5.0: Site Plan with Proposed BuildingAttachment I:NOI for the RGPAttachment II:2014 Integrated Waters List, Hoosic River-South Branch, North AdamsAttachment III:MassDEP Approval of 7Q10 Low Flow Determination & Dilution Factor CalculationAttachment IV:MassGIS Resource Priority and NHESP MapAttachment V:MACRIS Database Search ResultsAttachment VI:Laboratory Analytical Report

ATC Group Services LLC 73 William Franks Drive West Springfield, MA 01089 413-781-0070 413-781-3734

www.atcgroupservices.com

227 Ashland Street 227 Ashland Street North Adams, MA 02147

Figure 1: SITE LOCUS

Base Map: U.S. Geological Survey; Quadrangle Location: North Adams, MA

Lat/Lon: 42 41' 33.6" NORTH, 73 6' 28.2" WEST - UTM Coordinates: 18 654996.5 EAST / 4728423.9 NORTH Generated By: Rick Starodoj

ATTACHMENT I

II. Suggested Format for the Remediation General Permit Notice of Intent (NOI)

A. General site information:

1. Name of site: CFI North Adams	Site address: Former DPW			
	Street: 227 Ashland Street			
	City: North Adams		State: MA	Zip: 01247
2. Site owner	Contact Person: Chris Johnson			
Cumbenand Farms, Inc. (CFI)	Telephone: (508) 270-4495	ohnson@cun	nberlandfarms.com	
	Mailing address: Cumberland Farms			
	Street: 165 Flanders Road			
□ Other; if so, specify:	City: Westborough		State: MA	Zip: 01581
3. Site operator, if different than owner	Contact Person: Mr. Chris Johnson (See info above)			
	Telephone:	Email:		
	Mailing address:			
	Street:			
	City:		State:	Zip:
4. NPDES permit number assigned by EPA:	5. Other regulatory program(s) that apply to the site	(check all th	at apply):	
	□ MA Chapter 21e; list RTN(s):	□ CERCI	LA	
NPDES permit is (check all that apply: \square PGP \square DGP \square CGP	D NIL Crowndwater Management Demait or	□ UIC Program		
\square MSGP \square Individual NPDES permit \square Other: if so specify	Groundwater Release Detection Permit:	□ POTW Pretreatment		
		□ CWA S	Section 404	

٦

B. Receiving water information:

 Name of receiving water(s): Hoosic River South Branch (Below Dam) 	Waterbody identification of receiving water(s): ID: MA11-04, Water Code: 1100500	Classification of receiving water(s): Class B River, Category 5			
Receiving water is (check any that apply): Outstanding	Resource Water 🗆 Ocean Sanctuary 🗆 territorial sea 🗆	Wild and Scenic River			
2. Has the operator attached a location map in accordance w	with the instructions in B, above? (check one): \blacksquare Yes \Box N	io .			
Are sensitive receptors present near the site? (check one): □ Yes ■ No If yes, specify:					
3. Indicate if the receiving water(s) is listed in the State's Integrated List TMDL is available for any of the indicated pollutants. Yes, listed in 2 th impaired due to point source Fecal Coliform from Municip	of Waters (i.e., CWA Section 303(d)). Include which designated uses a 014, Fish/wildlife use is non-supporting to Aquatic Life of al Sewer System discharge and crop production. TMDL i	e impaired, and any pollutants indicated. Also, indicate if a final ue to Stream alteration. Primary Recreation contact is s considered 0.			
4. Indicate the seven day-ten-year low flow (7Q10) of the r Appendix V for sites located in Massachusetts and Append	eceiving water determined in accordance with the instruc ix VI for sites located in New Hampshire.	ions in (10.2 cfs) 6.59 mgd			
5. Indicate the requested dilution factor for the calculation of water quality-based effluent limitations (WQBELs) determined in accordance with the instructions in Appendix V for sites in Massachusetts and Appendix VI for sites in New Hampshire.92.53					
6. Has the operator received confirmation from the appropriate for the properties of the second seco	iate State for the 7Q10and dilution factor indicated? (che	ek one): ■ Yes □ No January 8, 2020			
7. Has the operator attached a summary of receiving water (check one): ■ Yes □ No	sampling results as required in Part 4.2 of the RGP in acc	ordance with the instruction in Appendix VIII?			

C. Source water information:

1. Source water(s) is (check any that apply):			
Contaminated groundwater	□ Contaminated surface water	□ The receiving water	□ Potable water; if so, indicate municipality or origin:
Has the operator attached a summary of influent sampling results as required in Part 4.2 of the RGP	Has the operator attached a summary of influent sampling results as required in Part 4.2 of the	\Box A surface water other	
in accordance with the instruction in Appendix VIII? (check one):	RGP in accordance with the instruction in Appendix VIII? (check one):	so, indicate waterbody:	□ Other; if so, specify:
■ Yes □ No	\Box Yes \Box No		

2. Source water contaminants: Chloride, Ammonia, Copper, Nickel, 1,1 Dichlo	roethane, 1,1,1 Trichloroethane
a. For source waters that are contaminated groundwater or contaminated surface water, indicate are any contaminants present that are not included in	b. For a source water that is a surface water other than the receiving water, potable water or other, indicate any contaminants present at the maximum concentration in accordance
the RGP? (check one): \Box Yes \blacksquare No If yes, indicate the contaminant(s) and the maximum concentration present in accordance with the instructions in Appendix VIII.	with the instructions in Appendix VIII? (check one): \Box Yes \Box No
3. Has the source water been previously chlorinated or otherwise contains resid	lual chlorine? (check one): □ Yes ■ No

D. Discharge information

1. The discharge(s) is $a(n)$ (check any that apply): \Box Existing discharge \blacksquare New disc	charge \square New source
Outfall(s): Hoosic River Channeled area (south of Dam), located on the east	Outfall location(s): (Latitude, Longitude)
side of the river, approximately 1,500 feet south of the Christopher Columbus	Latitude: 42° 41'39.65"N
Drive Bridge	Longitude: 73°6'45.55"W

Discharges enter the receiving water(s) via (check any that apply): Direct discharge to the receiving water Indirect discharge, if so, specify:

GW during excavation activities will be filtered and then discharged via municipal storm drainage system that runs into underground water lines and outflows into the Hoosic River

 \Box A private storm sewer system \blacksquare A municipal storm sewer system

If the discharge enters the receiving water via a private or municipal storm sewer system: Yes

Has notification been provided to the owner of this system? (check one): \blacksquare Yes \Box No

Has the operator has received permission from the owner to use such system for discharges? (check one): \blacksquare Yes \Box No, if so, explain, with an estimated timeframe for obtaining permission: ATC has received written permission via email correspondence from the North Adams DPW, Mr. Paul Markland.

Has the operator attached a summary of any additional requirements the owner of this system has specified? (check one): 🗆 Yes 🔳 No

Provide the expected start and end dates of discharge(s) (month/year):

-March 1, 2020 to June 31, 2020 (this is a time window wherein discharge anticipated to last approx. one-two weeks total during tank installation event)

Indicate if the discharge is expected to occur over a duration of: \blacksquare less than 12 months \Box 12 months or more \Box is an emergency discharge

Has the operator attached a site plan in accordance with the instructions in D, above? (check one): ■ Yes □ No

2. Activity Category: (check all that apply)	3. Contamination Type Category: (check all that apply)				
	a. If Activity Categ	ory I or II: (check all that apply)			
 I – Petroleum-Related Site Remediation II – Non-Petroleum-Related Site Remediation III – Contaminated Site Dewatering IV – Dewatering of Pipelines and Tanks V – Aquifer Pump Testing VI – Well Development/Rehabilitation VII – Collection Structure Dewatering/Remediation VIII – Dredge-Related Dewatering 	 A. Inorganics B. Non-Halogenated Volatile Organic Con C. Halogenated Volatile Organic Con D. Non-Halogenated Semi-Volatile O E. Halogenated Semi-Volatile Organic F. Fuels Parameters b. If Activity Category III, IV G. Sites with Known Contamination c. If Category III-G, IV-G, V-G, VI-G, VI-G, VII-G or VIII-G: (check all that apply) A. Inorganics B. Non-Halogenated Volatile Organic Compounds C. Halogenated Volatile Organic Compounds D. Non-Halogenated Semi-Volatile Organic Compounds E. Halogenated Semi-Volatile 	e Compounds mpounds rganic Compounds c Compounds V, V, VI, VII or VIII: (check either G or H) U H. Sites with Unknown Contamination d. If Category III-H, IV-H, V-H, VI-H, VII-H or VIII-H Contamination Type Categories A through F apply			

4. Influent and Effluent Characteristics

	Known	Known				In	fluent	Effluent Li	mitations
Parameter	or believed absent	or believed present	# of samples	Test method (#)	Detection limit (µg/l)	Daily maximum (µg/l)	Daily average (µg/l)	TBEL	WQBEL
A. Inorganics									
Ammonia		~	1	350.1	50	200	200	Report mg/L	
Chloride		~	1	300.0	75,000	840,000	840,000	Report µg/l	
Total Residual Chlorine	~		1	SM4500	20			0.2 mg/L	
Total Suspended Solids	~		1	2540	1,400			30 mg/L	
Antimony	~		1	200.8	1			206 µg/L	
Arsenic	~		1	200.8	1			104 µg/L	
Cadmium	~		1	200.8	0.50			10.2 µg/L	
Chromium III	~		1	200.8	1.5			323 µg/L	
Chromium VI	~		1	SM3500	10			323 µg/L	
Copper		~	1	200.8	1	4.2	4.2	242 µg/L	
Iron	v		1	200.7	50			5,000 µg/L	
Lead	~		1	200.8	1			160 µg/L	
Mercury	~		1	245.1	0.2			0.739 µg/L	
Nickel		~	1	200.8	1	6.5	6.5	1,450 µg/L	
Selenium	v		1	200.8	1			235.8 µg/L	
Silver	~		1	200.8	0.50			35.1 µg/L	
Zinc	v		1	200.8	10			420 µg/L	
Cyanide	~		1	9010C	10			178 mg/L	
B. Non-Halogenated VOCs	1				1				
Total BTEX	~		1	624.1	10			100 µg/L	
Benzene	~		1	624.1	5			5.0 μg/L	
1,4 Dioxane	~		1	624.1	200			200 µg/L	
Acetone	~		1	624.1	2.5			7.97 mg/L	
Phenol	~		1	625.1	4.7			1,080 µg/L	
									<u> </u>
									<u> </u>
			1	1			1	1	

	Known	Known				Influent		Effluent Limitations	
Parameter	or believed absent	or believed present	# of samples	Test method (#)	Detection limit (µg/l)	Daily maximum (µg/l)	Daily average (µg/l)	TBEL	WQBEL
C. Halogenated VOCs									
Carbon Tetrachloride	~		1	624	5.0			4.4 µg/L	
1,2 Dichlorobenzene	~		1	624	5.0			600 µg/L	
1,3 Dichlorobenzene	~		1	624	5.0			320 µg/L	
1,4 Dichlorobenzene	~		1	624	5.0			5.0 µg/L	
Total dichlorobenzene	~		1	624	5.0			763 µg/L in NH	
1,1 Dichloroethane		~	1	624	5.0	32		70 µg/L	
1,2 Dichloroethane	~		1	624	5.0			5.0 µg/L	
1,1 Dichloroethylene	~		1	624	5.0			3.2 µg/L	
Ethylene Dibromide	~		1	624	5.0			0.05 µg/L	
Methylene Chloride	~		1	624	5.0			4.6 µg/L	
1,1,1 Trichloroethane		~	1	624	5.0	68		200 µg/L	
1,1,2 Trichloroethane	~		1	624	5.0			5.0 µg/L	
Trichloroethylene	~		1	624	5.0			5.0 µg/L	
Tetrachloroethylene	~		1	624	5.0			5.0 µg/L	
cis-1,2 Dichloroethylene	~		1	624	5.0			70 µg/L	
Vinyl Chloride	~		1	624	5.0			2.0 µg/L	
D. Non-Halogenated SVOC	s	_							
Total Phthalates	~		1	625	4.7			190 µg/L	
Diethylhexyl phthalate	~		1	625	4.7			101 µg/L	
Total Group I PAHs	~		1	625	0.05			1.0 µg/L	
Benzo(a)anthracene	~		1	625	0.04				
Benzo(a)pyrene	~		1	625	0.05				
Benzo(b)fluoranthene	~		1	625	0.05				
Benzo(k)fluoranthene	~		1	625	0.05			As Total PAHs	
Chrysene	~		1	625	0.05				
Dibenzo(a,h)anthracene	~		1	625	0.02]	
Indeno(1,2,3-cd)pyrene	~		1	625	0.05				

	Known	Known				In	fluent	Effluent Lin	nitations
Parameter	or believed absent	or believed present	# of samples	Test method (#)	Detection limit (µg/l)	Daily maximum (µg/l)	Daily average (µg/l)	TBEL	WQBEL
Total Group II PAHs	~		1	625	4.7			100 µg/L	
Naphthalene	~		1	625	4.7			20 µg/L	
E. Halogenated SVOCs									
Total PCBs	~		1	608	0.060			0.000064 µg/L	
Pentachlorophenol	~		1	625	0.05			1.0 µg/L	
F. Fuels Parameters	T	1		T	I	1			
Total Petroleum Hydrocarbons	~		1	1664B	5.0			5.0 mg/L	
Ethanol	~		1	524.2	200			Report mg/L	
Methyl-tert-Butyl Ether	~		1	524.2	5.0			70 µg/L	
tert-Butyl Alcohol	~		1	524.2	50			120 μg/L in MA 40 μg/L in NH	
tert-Amyl Methyl Ether	~		1	524.2	1			90 μg/L in MA 140 μg/L in NH	
Other (i.e., pH, temperature	e, hardness,	salinity, LC	C50, addition	nal pollutar	nts present);	if so, specify:			
рН	 ✓ 		1	1293	NA	7.0	7.0		
Hardness	~		1	SM2340	0.50	120	120		
							1		

E. Treatment system information

1. Indicate the type(s) of treatment that will be applied to effluent prior to discharge: (check all that apply)	
□ Adsorption/Absorption □ Advanced Oxidation Processes □ Air Stripping ■ Granulated Activated Carbon ("GAC")/Liquid Phase Carbon Adsorption □ Ion Exchange □ Precipitation/Coagulation/Flocculation ■ Separation/Filtration □ Other; if so, specify:	1
2. Provide a written description of all treatment system(s) or processes that will be applied to the effluent prior to discharge. See cover letter supplied with this notice of intent.	
Identify each major treatment component (check any that apply):	
Fractionation tanks Equalization tank D Oil/water separator D Mechanical filter D Media filter	
□ Chemical feed tank □ Air stripping unit ■ Bag filter □ Other; if so, specify:	
Indicate if either of the following will occur (check any that apply):	
\Box Chlorination \Box De-chlorination	
 3. Provide the design flow capacity in gallons per minute (gpm) of the most limiting component. Indicate the most limiting component: Pump, limited to 50 gpm Is use of a flow meter feasible? (check one): ■ Yes □ No, if so, provide justification: 	50 GPM
Provide the proposed maximum effluent flow in gpm. 50 gpm	50 GPM
Provide the average effluent flow in gpm.	50 GPM
If Activity Category IV applies, indicate the estimated total volume of water that will be discharged:	
4. Has the operator attached a schematic of flow in accordance with the instructions in E, above? (check one): ■ Yes □ No	

F. Chemical and additive information

1. Indicate the type(s) of chemical or additive that will be applied to effluent prior to discharge or that may otherwise be present in the discharge(s): (check all that apply)

🗆 Algaecides/biocides 🗆 Antifoams 🗆 Coagulants 🗆 Corrosion/scale inhibitors 🗆 Disinfectants 🗖 Flocculants 🗆 Neutralizing agents 🗆 Oxidants 🗆 Oxygen 🗆

scavengers \Box pH conditioners \Box Bioremedial agents, including microbes \Box Chlorine or chemicals containing chlorine \Box Other; if so, specify:

2. Provide the following information for each chemical/additive, using attachments, if necessary:

See cover letter supplied with the notice of intent for this information.

a. Product name, chemical formula, and manufacturer of the chemical/additive;

b. Purpose or use of the chemical/additive or remedial agent;

c. Material Safety Data Sheet (MSDS) and Chemical Abstracts Service (CAS) Registry number for each chemical/additive;

d. The frequency (hourly, daily, etc.), duration (hours, days), quantity (maximum and average), and method of application for the chemical/additive;

e. Any material compatibility risks for storage and/or use including the control measures used to minimize such risks; and

f. If available, the vendor's reported aquatic toxicity (NOAEL and/or LC50 in percent for aquatic organism(s)).

3. Has the operator attached an explanation which demonstrates that the addition of such chemicals/additives may be authorized under this general permit in accordance

with the instructions in F, above? (check one): \Box Yes \blacksquare No; if no, has the operator attached data that demonstrates each of the 126 priority pollutants in CWA Section 307(a) and 40 CFR Part 423.15(j)(1) are non-detect in discharges with the addition of the proposed chemical/additive?

(check one): \Box Yes \Box No

G. Endangered Species Act eligibility determination

1. Indicate under which criterion the discharge(s) is eligible for coverage under this general permit:

- **FWS Criterion A:** No endangered or threatened species or critical habitat are in proximity to the discharges or related activities or come in contact with the "action area".
- **FWS Criterion B**: Formal or informal consultation with the FWS under section 7 of the ESA resulted in either a no jeopardy opinion (formal consultation) or a written concurrence by FWS on a finding that the discharges and related activities are "not likely to adversely affect" listed species or critical habitat

(informal consultation). Has the operator completed consultation with FWS? (check one): \Box Yes \Box No; if no, is consultation underway? (check one): \Box

 $Yes \ \square \ No$

□ **FWS Criterion C**: Using the best scientific and commercial data available, the effect of the discharges and related activities on listed species and critical habitat have been evaluated. Based on those evaluations, a determination is made by EPA, or by the operator and affirmed by EPA, that the discharges and related activities will have "no effect" on any federally threatened or endangered listed species or designated critical habitat under the jurisdiction of the

FWS. This determination was made by: (check one) \Box the operator \Box EPA \Box Other; if so, specify:

□ NMFS Criterion: A determination made by EPA is affirmed by the operator that the discharges and related activities will have "no effect" or are "not likely to adversely affect" any federally threatened or endangered listed species or critical habitat under the jurisdiction of NMFS and will not result in any take of listed species. Has the operator previously completed consultation with NMFS? (check one): □ Yes □ No

2. Has the operator attached supporting documentation of ESA eligibility in accordance with the instructions in Appendix I, and G, above? (check one): 🖪 Yes 🗆 No

Does the supporting documentation include any written concurrence or finding provided by the Services? (check one): 🗆 Yes 🗄 No; if yes, attach.

H. National Historic Preservation Act eligibility determination

1. Indicate under which criterion the discharge(s) is eligible for coverage under this general permit:

- **Criterion** A: No historic properties are present. The discharges and discharge-related activities (e.g., BMPs) do not have the potential to cause effects on historic properties.
- Criterion B: Historic properties are present. Discharges and discharge related activities do not have the potential to cause effects on historic properties.
- Criterion C: Historic properties are present. The discharges and discharge-related activities have the potential to have an effect or will have an adverse effect on historic properties.

2. Has the operator attached supporting documentation of NHPA eligibility in accordance with the instructions in H, above? (check one): 🔳 Yes 🗆 No

Does the supporting documentation include any written agreement with the State Historic Preservation Officer (SHPO), Tribal Historic Preservation Officer (TPHO), or other tribal representative that outlines measures the operator will carry out to mitigate or prevent any adverse effects on historic properties? (check one): \Box Yes \blacksquare No

I. Supplemental information

Describe any supplemental information being provided with the NOI. Include attachments if required or otherwise necessary.

Has the operator attached data, including any laboratory case narrative and chain of custody used to support the application? (check one): \blacksquare Yes \Box No Has the operator attached the certification requirement for the Best Management Practices Plan (BMPP)? (check one): \blacksquare Yes \Box No

J. Certification requirement

I certify under penalty of law that this document and all attachments were prepared under my direction or supervision in accordance with a system designed to assure that qualified personnel properly gathered and evaluated the information submitted. Based on my inquiry of the person or persons who manage the system, or those persons directly responsible for gathering the information, the information submitted is, to the best of my knowledge and belief, true, accurate, and complete. I have no personal knowledge that the information submitted is other than true, accurate, and complete. I am aware that there are significant penalties for submitting false information, including the possibility of fine and imprisonment for knowing violations.

BMPP certification statement:

I certify that a BMPP meeting the requirements of this general permit will be developed and implemented upon initiation of discharge.

Notification provided to the appropriate State, including a copy of this NOI, if required.	Check one: Yes	No 🗆
Notification provided to the municipality in which the discharge is located, including a copy of this NOI, if requested.	Check one: Yes	No 🗆
Notification provided to the owner of a private or municipal storm sewer system, if such system is used for site discharges, including a copy of this NOI, if requested.	Check one: Yes	No 🗆 NA 🗆
Permission obtained from the owner of a private or municipal storm sewer system, if such system is used for site discharges. If yes, attach additional conditions. If no, attach explanation and timeframe for obtaining permission.	Check one: Yes	
Notification provided to the owner/operator of the area associated with activities covered by an additional discharge permit(s). Additional discharge permit is (check one): \Box RGP \Box DGP \Box CGP \Box MSGP \Box Individual NPDES permit \Box Other, if so, specify:	Check one: Yes □	No 🗆 NA 🖬
Signature: Dat	te: 2/25/2020	
Print Name and Title: Christopher Johnson, Cumberland Farms Senior Project Ma	anager	· ·

ATTACHMENT II

2014 Assessment Unit ID: MA11-04 Water Name: Hoosic River Watershed: Hudson: Hoosic Water Type: RIVER Water Code: 1100500 Size: 5.387 MILES Class: B Qualifier: WWF Category: 5 TMDL Count: 0 Description: Adams WWTP discharge, Adams to confluence with North Branch Hoosic River, North Adams.

ATTACHMENT III

Katerina Korolov

From:	Vakalopoulos, Catherine (DEP) <catherine.vakalopoulos@state.ma.us></catherine.vakalopoulos@state.ma.us>
Sent:	Wednesday, January 8, 2020 10:50 AM
То:	Katerina Korolov
Subject:	[EXTERNAL] RE: Seeking information for an RGP permit in Mass

[External Email] This email originated from outside of the Atlas mail system. Please use caution when opening attachments.

Hi Katerina,

The dilution factor of 92.53 that you calculated for this proposed discharge from 227 Ashland St. in North Adams to the Hoosic River is correct. As you have previously noted, this segment is identified as MA11-04, is classified as Class B, and there are no final TMDLs for this segment. To see the causes of impairments, go to: <u>https://www.mass.gov/doc/final-massachusetts-year-2016-integrated-list-of-waters/download</u> and search for "MA11-04". In addition, this segment is not an Outstanding Resources Water (ORW). Discharges to ORWs are prohibited under the RGP unless MassDEP conducts an antidegradation review to determine if the discharge can be allowed.

If this is not a *current* MCP site then in addition to submitting the NOI to EPA and MassDEP, you will also have to apply to MassDEP by following the instructions at: <u>https://www.mass.gov/how-to/wm-15-npdes-general-permit-notice-of-intent</u>. There is also a \$500 fee unless the applicant is fee-exempt (e.g. a municipality).

Please let me know if you have any further questions.

Cathy

Cathy Vakalopoulos, Massachusetts Department of Environmental Protection 1 Winter St., Boston, MA 02108, 617-348-4026

A Please consider the environment before printing this e-mail

From: Katerina Korolov [mailto:Katerina.Korolov@atcgs.com]
Sent: Monday, January 06, 2020 9:49 AM
To: Vakalopoulos, Catherine (DEP)
Subject: RE: Seeking information for an RGP permit in Mass

Cathy,

For the Site at 227 Ashland Street, North Adams that we spoke about last week, attached is the 7Q10 report which calculates 7Q10 to be 10.2 cfs, which equals 6.59 MGD.

Our discharge flow is going to be 50 gpm, which converts to 0.072 MGD. DF = (6.59 + 0.072)/0.072 DF= 92.53 Could you please review and respond?

Thanks,

Katerina

Katerina Korolov | STAFF GEOLOGIST | ATC Group Services LLC Office +1 413 781 0070 | Cell +1 607 342 0610

73 William Franks Drive | West Springfield, MA 01089 katerina.korolov@atcgs.com | www.atcgroupservices.com

This email and its attachments may contain confidential and/or privileged information for the sole use of the intended recipient(s). If you are not the intended recipient, any use, distribution or copying of the information contained in this email and its attachments is strictly prohibited. If you have received this email in error, please notify the sender by replying to this message and immediately delete and destroy any copies of this email and any attachments. The views or opinions expressed are the author's own and may not reflect the views or opinions of ATC.

ATTACHMENT IV

NHESP Map

Site/Inflow Location: 227 Ashland St, North Adams, MA (indicated by blue box)

<u>Outfall Location</u>: Hoosic River, South of Dam (indicated by light blue box)

ATTACHMENT V

Massachusetts Cultural Resource Information System

MACRIS Search Results

Search Criteria: Town(s): North Adams; Place: North Adams; Street No: 227; Street Name: Ashland St; Resource Type(s): Area, Building, Burial Ground, Object, Structure;

Inv. No.	Property Name	Street	Town	Year
----------	---------------	--------	------	------

ATTACHMENT VI

🛟 eurofins

Spectrum Analytical

Final ReportRevised Report

Report Date: 02-Dec-19 10:17

Laboratory Report SC56741

ATC Group Services, LLC 73 William Franks Drive West Springfield, MA 01089 Attn: Alexandra Riddle

Project: CFI - 227 Ashland St - North Adams, MA Project #: MA8499G

I attest that the information contained within the report has been reviewed for accuracy and checked against the quality control requirements for each method. These results relate only to the sample(s) as received. All applicable NELAC requirements have been met.

New York # 11393 USDA # P330-15-00375

Authorized by:

Dawn Wojcik Laboratory Director Jawn & Wosc

Eurofins Spectrum Analytical holds primary NELAC certification in the State of New York for the analytes as indicated with an X in the "Cert." column within this report. Please note that the State of New York does not offer certification for all analytes. Please refer to our website for specific certification holdings in each state.

Please note that this report contains 26 pages of analytical data plus Chain of Custody document(s). When the Laboratory Report is indicated as revised, this report supersedes any previously dated reports for the laboratory ID(s) referenced above. Where this report identifies subcontracted analyses, copies of the subcontractor's test report are available upon request. This report may not be reproduced, except in full, without written approval from Eurofins Spectrum Analytical, Inc.

Eurofins Spectrum Analytical, Inc. is a NELAC accredited laboratory organization and meets NELAC testing standards. Use of the NELAC logo however does not insure that Eurofins Spectrum Analytical, Inc. is currently accredited for the specific method or analyte indicated. Please refer to our "Quality" web page at www.spectrum-analytical.com for a full listing of our current certifications and fields of accreditation. States in which Eurofins Spectrum Analytical, Inc. holds NELAC certification are New York, New Hampshire, New Jersey, Pennsylvania and Florida. All analytical work for Volatile Organic and Air analysis are transferred to and conducted at our 830 Silver Street location (PA-68-04426).

Please contact the Laboratory or Technical Director at 800-789-9115 with any questions regarding the data contained in this laboratory report.

Sample Summary

Work Order:SC56741Project:CFI - 227 Ashland St - North Adams, MA

Project Number: MA8499G

Laboratory ID	Client Sample ID	<u>Matrix</u>	Date Sampled	Date Received
SC56741-01	MW-1	Ground Water	12-Nov-19 11:11	12-Nov-19 14:43
SC56741-02	Outfall	Ground Water	12-Nov-19 12:30	12-Nov-19 14:43

CASE NARRATIVE:

Data has been reported to the RDL. This report excludes estimated concentrations detected below the RDL and above the MDL (J-Flag).

All non-detects and all results below the reporting limit are reported as "<" (less than) the reporting limit in this report.

The samples were received 3.8 degrees Celsius, please refer to the Chain of Custody for details specific to temperature upon receipt. An infrared thermometer with a tolerance of +/-1.0 degrees Celsius was used immediately upon receipt of the samples.

If a Matrix Spike (MS), Matrix Spike Duplicate (MSD) or Duplicate (DUP) was not requested on the Chain of Custody, method criteria may have been fulfilled with a source sample not of this Sample Delivery Group. If method or program required MS/MSD/Dup were not performed, sufficient sample was not provided to the laboratory.

Reactivity (40 CFR 261.23) Case Narrative:

These samples do not exhibit the characteristics of reactivity as defined in 40 CFR 261.23, sections (1), (2) and (4); however, Eurofins Spectrum Analytical, Inc. does not test for detonation, explosive reaction or potential, or forbidden explosives as defined in 40 CFR 261.23, sections (3), (6), (7) and (8).

Reactive sulfide and cyanide are tested at a pH of 2 and not tested at all conditions between pH 2 and 12.5 as stated in 40 CFR 261.23, section (5); thus reactive cyanide and sulfide results as reported in this document can not be used to support the nonreactive properties of these samples.

The responsibility falls on the generator to use knowledge of the waste to determine if the waste meets or does not meet the descriptive, prose definition of reactivity.

GC/MS VOA

Method 624.1: The laboratory control sample (LCS) for analytical batch 480-505133 recovered outside control limits for the following analytes: 2-Methyl-2-Propanol. These analytes were biased high in the LCS and were not detected in the associated samples; therefore

the data have been reported.SC56741-01 (480-162553-1)

Method 624.1: The continuing calibration verification (CCV) associated with batch 480-505133 recovered above the upper control limit for

2-Methyl-2-Propanol. The samples associated with this CCV were non-detects for the affected analytes; therefore, the data have been reported. The following sample is impacted: SC56741-01 (480-162553-1).

No additional analytical or quality issues were noted, other than those described above or in the Definitions/Glossary page. **GC Semi VOA**

Method 608.3: The following samples are associated with a continuing calibration verification (CCV 480-505081/31) that had recoveries for the surrogate Decachlorobiphenyl that were slightly above acceptance limits: SC56741-01 (480-162553-1). The secondary surrogate Tetrachloro-m-xylene is within limits. Therefore, the data has been reported.

Method 608.3: The continuing calibration verification (CCV) associated with batch 480-505081 recovered above the upper control limit for

PCB-1232. The samples associated with this CCV were non-detects for the affected analytes; therefore, the data have been reported. The following sample is impacted: SC56741-01 (480-162553-1).

No additional analytical or quality issues were noted, other than those described above or in the Definitions/Glossary page. **Metals**

Method 200.8: The laboratory control sample (LCS) for preparation batch 480-505265 and analytical batch 480-505759 recovered outside

control limits for the following analytes: Total Antimony. These analytes were biased high in the LCS and were not detected in the associated samples SC56741-01 (480-162553-1) and SC56741-02 (480-162553-2); therefore, the data have been reported.

No additional analytical or quality issues were noted, other than those described above or in the Definitions/Glossary page. **General Chemistry**

No analytical or quality issues were noted, other than those described in the Definitions/Glossary page.

Organic Prep

Method 3510C: Insufficient sample volume was available to perform a matrix spike/matrix spike duplicate/sample duplicate (MS/MSD/DUP) associated with preparation batch 480-504677

See below for any non-conformances and issues relating to quality control samples and/or sample analysis/matrix.

<u>200.8</u>

Laboratory Control Samples:

<u>200.8</u>

Laboratory Control Samples:

E625.1/E625.1SIM

Laboratory Control Samples:

506141A BSD

% 2-Fluorophenol RPD 20.7% (20%) is outside individual acceptance criteria.

% 2-Fluorophenol RPD 35.6% (20%) is outside individual acceptance criteria.

% Phenol-d5 RPD 23.3% (20%) is outside individual acceptance criteria.

1,2-Dichlorobenzene RPD 20.6% (20%) is outside individual acceptance criteria.

1,3-Dichlorobenzene RPD 21.0% (20%) is outside individual acceptance criteria.

1,4-Dichlorobenzene RPD 21.0% (20%) is outside individual acceptance criteria.

Hexachlorocyclopentadiene RPD 30.5% (20%) is outside individual acceptance criteria.

N-Nitrosodimethylamine RPD 32.1% (20%) is outside individual acceptance criteria.

E625.1/E625.1SIM

Laboratory Control Samples:

506141A BSD

Pyridine RPD 30.3% (20%) is outside individual acceptance criteria.

CE58977-LCS

This parameter is outside laboratory lcs/lcsd specified recovery limits.

Acenaphthene Acenaphthylene Hexachlorocyclopentadiene Nitrobenzene Phenanthrene Pyridine

This parameter is outside laboratory rpd specified recovery limits.

% 2-Fluorophenol Hexachlorocyclopentadiene N-Nitrosodimethylamine Pyridine

CE58977-LCSD

This parameter is outside laboratory lcs/lcsd specified recovery limits.

Phenanthrene

This parameter is outside laboratory rpd specified recovery limits.

% 2-Fluorophenol % Phenol-d5 Hexachlorocyclopentadiene N-Nitrosodimethylamine Pyridine

CF58977-LCS

This parameter is outside laboratory lcs/lcsd specified recovery limits.

Bis(2-chloroisopropyl)ether Hexachloroethane

This parameter is outside laboratory rpd specified recovery limits.

% 2-Fluorophenol % Phenol-d5 1,2-Dichlorobenzene 1,3-Dichlorobenzene 1,4-Dichlorobenzene

CF58977-LCSD

This parameter is outside laboratory lcs/lcsd specified recovery limits.

Bis(2-chloroisopropyl)ether

This parameter is outside laboratory rpd specified recovery limits.

- % 2-Fluorophenol
- 1,2-Dichlorobenzene
- 1,3-Dichlorobenzene
- 1,4-Dichlorobenzene

Samples:

E625.1/E625.1SIM

Samples:

SC56741-01 MW-1

Outside of specification

% Nitrobenzene-d5

Sample Acceptance Check Form

Client:	ATC Group Services, LLC - West Springfield, MA
Project:	CFI - 227 Ashland St - North Adams, MA / MA8499G
Work Order:	SC56741
Sample(s) received on:	11/12/2019

The following outlines the condition of samples for the attached Chain of Custody upon receipt.

Were custody seals present?
Were custody seals intact?
Were samples received at a temperature of $\leq 6^{\circ}$ C?
Were samples cooled on ice upon transfer to laboratory representative?
Were sample containers received intact?
Were samples properly labeled (labels affixed to sample containers and include sample ID, site location, and/or project number and the collection date)?
Were samples accompanied by a Chain of Custody document?
Does Chain of Custody document include proper, full, and complete documentation, which shall include sample ID, site location, and/or project number, date and time of collection, collector's name, preservation type, sample matrix and any special remarks concerning the sample?
Did sample container labels agree with Chain of Custody document?

Were samples received within method-specific holding times?

Yes	<u>No</u>	N/A
	\checkmark	
		\checkmark
\checkmark		
\checkmark		
	\checkmark	

Summary of Hits

Lab ID: SC56741-01			Client ID: MW-1		
Parameter	Result	Flag	Reporting Limit	Units	Analytical Method
Nickel	6.5		1.0	ug/l	200.8
1,1,1-Trichloroethane	68		5.0	ug/l	624.1
1,1-Dichloroethane	32		5.0	ug/l	624.1
Chloride	840		75.0	mg/l	E300.0
Ammonia as Nitrogen	0.20		0.05	mg/l	E350.1
Calcium hardness as calcium carbonate	94		0.50	mg/l	SM 2340B
Hardness as calcium carbonate	120		0.50	mg/l	SM 2340B
Magnesium hardness as calcium carbonate	25		0.50	mg/l	SM 2340B
Tot. Diss. Solids	2000		10	mg/l	SM2540C-11
Lab ID: SC56741-01RE1			Client ID: MW-1		
Parameter	Result	Flog	Poporting Limit	Unite	Analytical Method
1 urumeter	Kesult	Flag	Reporting Linit	Units	Analytical Method
Copper	4.2	B	1.0	ug/l	200.8
Copper Lab ID: SC56741-02	4.2	В	1.0 Client ID: Outfall	ug/l	200.8
Copper Lab ID: SC56741-02 Parameter	4.2 Result	Flag	1.0 Client ID: Outfall Reporting Limit	ug/l Units	200.8 Analytical Method
Copper Lab ID: SC56741-02 Parameter Ammonia as Nitrogen	4.2 Result	Flag	1.0 Client ID: Outfall Reporting Limit 0.05	ug/l Units mg/l	200.8 Analytical Method E350.1
Copper Lab ID: SC56741-02 Parameter Ammonia as Nitrogen Calcium hardness as calcium carbonate	4.2 Result 0.17 94	Flag	Reporting Limit 1.0 Client ID: Outfall Reporting Limit 0.05 0.50	ug/l Units mg/l mg/l	200.8 Analytical Method E350.1 SM 2340B
Copper Lab ID: SC56741-02 Parameter Ammonia as Nitrogen Calcium hardness as calcium carbonate Hardness as calcium carbonate	4.2 Result 0.17 94 120	Flag	Reporting Limit 1.0 Client ID: Outfall Reporting Limit 0.05 0.50	ug/l Units mg/l mg/l mg/l	200.8 Analytical Method E350.1 SM 2340B SM 2340B
Copper Lab ID: SC56741-02 Parameter Ammonia as Nitrogen Calcium hardness as calcium carbonate Hardness as calcium carbonate Magnesium hardness as calcium carbonate	Result 0.17 94 120 25	Flag	Reporting Limit 1.0 Client ID: Outfall Reporting Limit 0.05 0.50 0.50 0.50	ug/l Units mg/l mg/l mg/l mg/l	200.8 Analytical Method E350.1 SM 2340B SM 2340B SM 2340B SM 2340B
Copper Lab ID: SC56741-02 Parameter Ammonia as Nitrogen Calcium hardness as calcium carbonate Hardness as calcium carbonate Magnesium hardness as calcium carbonate Lab ID: SC56741-02RE1	4.2 Result 0.17 94 120 25	Flag	Reporting Limit 1.0 Client ID: Outfall Reporting Limit 0.05 0.50 0.50 0.50 0.50 0.50 0.50 Outfall	ug/l Units mg/l mg/l mg/l mg/l	200.8 Analytical Method E350.1 SM 2340B SM 2340B SM 2340B SM 2340B
Copper Lab ID: SC56741-02 Parameter Ammonia as Nitrogen Calcium hardness as calcium carbonate Hardness as calcium carbonate Magnesium hardness as calcium carbonate Lab ID: SC56741-02RE1 Parameter	4.2 Result 0.17 94 120 25 Result	Flag	Reporting Limit 1.0 Client ID: Outfall Reporting Limit 0.05 0.50 0.50 0.50 Client ID: Outfall Reporting Limit	ug/l Units mg/l mg/l mg/l Units	200.8 Analytical Method E350.1 SM 2340B SM 2340B SM 2340B SM 2340B

Please note that because there are no reporting limits associated with hazardous waste characterizations or micro analyses, this summary does not include hits from these analyses if included in this work order.

Sample Id	Sample Identification			Client Project #			Matrix Collec			/Time	Rec			
MW-1				MA8	499G	Ground Water		ater 12	12-Nov-19 11.11			12-Nov-19		
SC56741-	01			1017 10	DICE		Ground wa		-1101-17 11		12-1	00-17		
CAS No.	Analyte(s)	Result	Flag	Units	*RDL	MDL	Dilution	Method Ref.	Prepared	Analyzed	Analyst	Batch	Cert.	
Subcontra Prepared	cted Analyses by method E300.0													
Analysis pe	erformed by Phoenix Environ	mental Labs.	Inc. * - MACT	7007										
16887-00-6	Chloride	840		mg/l	75.0	75.0	25	E300.0	14-Nov-19	14-Nov-19	M-CT007	506339A	\	
Descent									03:30	03:30				
<u>Prepareo</u>	by method E350.1		* MAC7	500 7										
Analysis pe	Ammonia og Nitrogon	mental Labs, 1	inc. * - MACI	007 ma/l	0.05	0.05	1	E250 1	14 Nov 10	14 Nov 10		5061210		
7004-41-7	Ammonia as Nillogen	0.20		mg/i	0.05	0.05	1	E330.1	09:25	09:25	WI-C1007	5001517	ι.	
Subcontra	acted Analyses													
Analysis pe	erformed by Phoenix Environ	mental Labs, 1	Inc. * - MACT	7007										
108-20-3	Di-isopropyl ether	< 1.0		ug/l	1.0	1.0	1	E524.2 MOD	14-Nov-19 15:39	14-Nov-19 17:41	M-CT007	506512A	1	
64-17-5	Ethanol	< 200		ug/l	200	200	1	"	"	"		"		
637-92-3	Ethyl tert-butyl ether	< 1.0		ug/l	1.0	1.0	1	"	"	"		"		
75-85-4	tert-amyl alcohol	< 50		ug/l	50	50	1	"	"	"		"		
994-05-8	tert-amyl methyl ether	< 1.0		ug/l	1.0	1.0	1	"	"	"		"		
75-65-0	tert-butyl alcohol	< 50		ug/l	50	50	1	"	"	"		"		
Surrogate r	recoveries:													
460-00-4	% Bromofluorobenzene	100			70-13	0 %		"	"	"		"		
Subcontra	acted Analyses													
Analysis pe	erformed by Phoenix Environ	mental Labs, 1	Inc. * - MACT	7007										
83-32-9	Acenaphthene	< 0.05		ug/l	0.05	0.05	1	E625.1/E625.1S M	l 13-Nov-19	15-Nov-19 12:56	M-CT007	506141A		
208-96-8	Acenaphthylene	< 0.05		ug/l	0.05	0.05	1		"	"		"		
56-55-3	Benzo(a)anthracene	< 0.04		ug/l	0.04	0.04	1	"	"	"		"		
50-32-8	Benzo(a)pyrene	< 0.05		ug/l	0.05	0.05	1	"	"	"	"	"		
205-99-2	Benzo(b)fluoranthene	< 0.05		ug/l	0.05	0.05	1	"	"	"	"	"		
191-24-2	Benzo(g,h,i)perylene	< 0.09		ug/l	0.09	0.09	1	"	"	"	"	"		
207-08-9	Benzo(k)fluoranthene	< 0.05		ug/l	0.05	0.05	1	"	"	"	"	"		
218-01-9	Chrysene	< 0.05		ug/l	0.05	0.05	1	"	"	"		"		
53-70-3	Dibenz(a,h)anthracene	< 0.02		ug/l	0.02	0.02	1	"	"	"		"		
118-74-1	Hexachlorobenzene	< 0.06		ug/l	0.06	0.06	1	"	"	"		"		
87-68-3	Hexachlorobutadiene	< 0.09		ug/l	0.09	0.09	1	"	"	"		"		
77-47-4	Hexachlorocyclopentadien e	< 0.09		ug/l	0.09	0.09	1		"	"	"	"		
193-39-5	Indeno(1,2,3-c,d)pyrene	< 0.05		ug/l	0.05	0.05	1		"	"	"	"		
98-95-3	Nitrobenzene	< 0.09		ug/l	0.09	0.09	1		"	"	"	"		
62-75-9	N-Nitrosodimethylamine	< 0.05		ug/l	0.05	0.05	1	"	"	"		"		
87-86-5	Pentachlorophenol	< 0.05		ug/l	0.05	0.05	1	"	"	"	"	"		
85-01-8	Phenanthrene	< 0.05		ug/l	0.05	0.05	1	"	"	"		"		
110-86-1	Pyridine	< 0.47		ug/l	0.47	0.47	1	u	"	"	"	"		
Surrogate r	recoveries:												_	
118-79-6	% 2,4,6-Tribromophenol	63			15-11	0 %		"	"	"	"	"		
321-60-8	% 2-Fluorobiphenyl	45			40-14	0 %		"	"	"	"	"		
367-12-4	% 2-Fluorophenol	39			15-11	0 %		"	"	"		"		
4165-60-0	% Nitrobenzene-d5	31	*а		40-14	0 %		"	"	"		"		
4165-62-2	% Phenol-d5	38			15-11	0 %		"	"	"		"		
98904-43-9	% Terphenyl-d14	55			40-14	0 %		"	"	"		"		

Sample Ic	lentification			Cliant I	Project #		Moteria	Calla	ation Data	/Times	Dag	aired		
MW-1 SC56741-	MW-1 SC56741-01			MA8	499G		Ground W	ater 12-	12-Nov-19 11:11			12-Nov-19		
CAS No.	Analyte(s)	Result	Flag	Units	*RDL	MDL	Dilution	Method Ref.	Prepared	Analyzed	Analyst	Batch	Cert.	
Subcontra	cted Analyses													
Analysis p	erformed by Phoenix Environ	mental Labs, Ir	nc. * - MACT	007										
Re-analys	sis of Subcontracted Analys	ses												
120-82-1	1,2,4-Trichlorobenzene	< 4.7		ug/l	4.7	4.7	1	E625.1/E625.1SI M	13-Nov-19	15-Nov-19 14:33	M-CT007	506141/	ł	
95-50-1	1,2-Dichlorobenzene	< 4.7		ug/l	4.7	4.7	1		"	"	"	"		
122-66-7	1,2-Diphenylhydrazine	< 4.7		ug/l	4.7	4.7	1		"	"		"		
541-73-1	1,3-Dichlorobenzene	< 4.7		ug/l	4.7	4.7	1		"	"	"	"		
106-46-7	1,4-Dichlorobenzene	< 4.7		ug/l	4.7	4.7	1		"	"	"	"		
95-95-4	2,4,5-Trichlorophenol	< 4.7		ug/l	4.7	4.7	1		"	"		"		
88-06-2	2,4,6-Trichlorophenol	< 4.7		ug/l	4.7	4.7	1		"	"	"	"		
120-83-2	2,4-Dichlorophenol	< 4.7		ug/l	4.7	4.7	1		"	"	"	"		
105-67-9	2,4-Dimethylphenol	< 4.7		ug/l	4.7	4.7	1		"	"	"	"		
51-28-5	2,4-Dinitrophenol	< 4.7		ug/l	4.7	4.7	1		"	"		"		
121-14-2	2,4-Dinitrotoluene	< 4.7		ug/l	4.7	4.7	1		"	"		"		
87-65-0	2,6-Dichlorophenol	< 4.7		ug/l	4.7	4.7	1		"	"		"		
606-20-2	2,6-Dinitrotoluene	< 4.7		ug/l	4.7	4.7	1		"	"		"		
91-58-7	2-Chloronaphthalene	< 4.7		ug/l	4.7	4.7	1		"	"		"		
95-57-8	2-Chlorophenol	< 4.7		ug/l	4.7	4.7	1		"	"		"		
91-57-6	2-Methylnaphthalene	< 4.7		ug/l	4.7	4.7	1		"	"		"		
95-48-7	2-Methylphenol (o-cresol)	< 4.7		ug/l	4.7	4.7	1		"	"		"		
88-74-4	2-Nitroaniline	< 9.4		ug/l	9.4	9.4	1		"	"		"		
88-75-5	2-Nitrophenol	< 4.7		ug/l	4.7	4.7	1		"	"		"		
	3&4-Methylphenol (m&p-cresol)	< 4.7		ug/l	4.7	4.7	1	n	"	"	"	"		
91-94-1	3,3'-Dichlorobenzidine	< 4.7		ug/l	4.7	4.7	1		"	"		"		
99-09-2	3-Nitroaniline	< 4.7		ug/l	4.7	4.7	1		"	"		"		
534-52-1	4,6-Dinitro-2-methylphenol	< 4.7		ug/l	4.7	4.7	1	"	"	"	"	"		
101-55-3	4-Bromophenyl phenyl ether	< 4.7		ug/l	4.7	4.7	1	"	"	"		"		
59-50-7	4-Chloro-3-methylphenol	< 4.7		ug/l	4.7	4.7	1		"	"		"		
106-47-8	4-Chloroaniline	< 4.7		ug/l	4.7	4.7	1	"	"	"	"	"		
7005-72-3	4-Chlorophenyl phenyl ether	< 4.7		ug/l	4.7	4.7	1	n	"	"	"	"		
100-01-6	4-Nitroaniline	< 4.7		ug/l	4.7	4.7	1		"	"		"		
100-02-7	4-Nitrophenol	< 4.7		ug/l	4.7	4.7	1		"	"		"		
120-12-7	Anthracene	< 4.7		ug/l	4.7	4.7	1	"	"	"		"		
92-87-5	Benzidine	< 4.7		ug/l	4.7	4.7	1		"	"		"		
65-85-0	Benzoic acid	< 9.4		ug/l	9.4	9.4	1		"	"		"		
100-51-6	Benzyl alcohol	< 9.4		ug/l	9.4	9.4	1		"	"		"		
85-68-7	Benzyl butyl phthalate	< 4.7		ug/l	4.7	4.7	1	"	"	"		"		
111-91-1	Bis(2-chloroethoxy)metha ne	< 4.7		ug/l	4.7	4.7	1	"	"	"	"	"		
111-44-4	Bis(2-chloroethyl)ether	< 4.7		ug/l	4.7	4.7	1		"	"	"	"		
39638-32-9	Bis(2-chloroisopropyl)ethe r	< 4.7		ug/l	4.7	4.7	1	"	"	"	"	"		
117-81-7	Bis(2-ethylhexyl)phthalate	< 0.94		ug/l	0.94	0.94	1		"	"	"	"		
132-64-9	Dibenzofuran	< 0.94		ug/l	0.94	0.94	1	"	"	"	"	"		
84-66-2	Diethyl phthalate	< 4.7		ug/l	4.7	4.7	1	"	"	"	"	"		
131-11-3	Dimethylphthalate	< 4.7		ug/l	4.7	4.7	1	"	"	"	"	"		

Sample Identification			Client Project #		Matrix Colle		ection Date	Time	Received				
MW-1				MA84	199G		Ground W	ater 12	-Nov-19 11	1:11	12-N	Nov-19	
SC56741	-01												~
CAS No.	Analyte(s)	Result	Flag	Units	*RDL	MDL	Dilution	Method Ref.	Prepared	Analyzed	Analyst	Batch	Cert.
Subcontra	cted Analyses												
Analysis p	erformed by Phoenix Environ	nental Labs, Inc.	* - MACT0	07									
Re-analys	sis of Subcontracted Analys	ses											
84-74-2	Di-n-butylphthalate	< 4.7		ug/l	4.7	4.7	1	E625.1/E625.1SI M	13-Nov-19	15-Nov-19 14:33	M-CT007	506141A	۱.
117-84-0	Di-n-octylphthalate	< 4.7		ug/l	4.7	4.7	1	"	"	"	"	"	
206-44-0	Fluoranthene	< 4.7		ug/l	4.7	4.7	1	"	"	"	"	"	
86-73-7	Fluorene	< 4.7		ug/l	4.7	4.7	1	"	"	"	"	"	
67-72-1	Hexachloroethane	< 0.94		ug/l	0.94	0.94	1	"	"	"	"	"	
78-59-1	Isophorone	< 4.7		ug/l	4.7	4.7	1			"	"	"	
91-20-3	Naphthalene	< 4.7		ug/l	4.7	4.7	1			"	"	"	
621-64-7	N-Nitrosodi-n-propylamine	< 4.7		ug/l	4.7	4.7	1			"	"	"	
86-30-6	N-Nitrosodiphenylamine	< 4.7		ug/l	4.7	4.7	1			"	"	"	
108-95-2	Phenol	< 4.7		ug/l	4.7	4.7	1	"		"		"	
129-00-0	Pyrene	< 4.7		ug/l	4.7	4.7	1		"	"	"	"	
Surrogate	recoveries:												
118-79-6	% 2,4,6-Tribromophenol	67			15-13	80 %		"	"	"			
321-60-8	% 2-Fluorobiphenyl	70			30-13	80 %				"		"	
367-12-4	% 2-Fluorophenol	47			10-13	80 %		"		"			
4165-60-0	% Nitrobenzene-d5	65			15-13	80 %		"		"			
4165-62-2	% Phenol-d5	43			10-13	80 %		"	"	"	"		
98904-43-9 Prepared	% Terphenyl-d14 by method SM 2540D-11	68			30-13	80 %		"		"		"	
Analysis p	erformed by Phoenix Environ	nental Labs. Inc.	* - MACT0	07									
	Total Suspended Solids	< 1.4		mg/l	1.4	1.4	0.3	SM 2540D-11	13-Nov-19	13-Nov-19	M-CT007	506041A	\
Deserved				Ū					07:40	07:40			
Prepared		. 1 . 1 .	* 14.070	07									
Analysis pe	erformed by Phoenix Environi	nental Labs, Inc.	* - MAC10		10	10	4	SM2540C 11	14 Nov 10	14 Nov 10		EDGOEDA	
	TOL. DISS. SOIIUS	2,000		mg/i	10	10	I	511/25400-11	10:26	14-1007-19	M-C1007	000200P	۱.
Prepared	by method SM3500CRB												
Analysis p	erformed by Phoenix Environ	nental Labs, Inc.	* - MACT0	07									
18540-29-9	Chromium, Hexavalent	< 0.01		mg/l	0.01	0.01	1	SM3500CRB-11	12-Nov-19	12-Nov-19	M-CT007	505986A	N N
Prepared	by method SM4500CI-G									18:20			
Analysis p	erformed by Phoenix Environ	nental Labs. Inc.	* - MACT0	07									
7782-50-5	Chlorine Residual	< 0.02		mg/l	0.02	0.02	1	SM4500CI-G-00	"	12-Nov-19	M-CT007	505985A	\
				Ū						18:03			
Prepared	by method SVV-7.3		*	~ ~									
Analysis pe	erformed by Phoenix Environi	nental Labs, Inc.	* - MACI0		-	-	4	01417.0	15 Nov 10	45 Nov 40	M CTOO7	In a seal	
	Reactivity Sulfide	< 5		mg/I	5	5	1	SW-7.3	15-Nov-19 15:32	15-Nov-19 15:32	M-C1007	[none]	
Prepared	by method SW846-React												
Analysis p	erformed by Phoenix Environ	nental Labs, Inc.	* - MACT0	07									
	Reactivity	Negative	F	Pos/Neg			1	SW846-React	13-Nov-19 17:24	13-Nov-19 17:24	M-CT007	"	
Analysis p	erformed by Phoenix Environ	nental Labs, Inc.	* - MACT0	07									
~ T	Reactivity Cyanide	< 2.0		mg/l	2.0	2.0	1.96	SW846-React	13-Nov-19	13-Nov-19	M-CT007	506038A	`
Dronarad	hy method CN 4500 CN			-				cyanide		13:19			
-repared	by method SIVI 4500 CN												

Analysis performed by Phoenix Environmental Labs, Inc. * - MACT007

Sample Identification		Client I	Client Project #		Matrix Collec			Time	Received				
MW-1 SC56741-01		MA8	499G	(Ground W	ater 12	12-Nov-19 11:11			Nov-19			
CAS No.	Analyte(s)	Result	Flag	Units	*RDL	MDL	Dilution	Method Ref.	Prepared	Analyzed	Analyst	Batch	Cert.
Subcontra Prepared	cted Analyses by method SM 4500 C	N											
Analysis pe	erformed by Phoenix Envi	ronmental Labs, Ir	nc. * - MACT	007									
57-12-5	Total Cyanide	< 0.010		mg/l	0.010	0.010	1	SW9010C/SW90 12B	12-Nov-19	14-Nov-19 12:48	M-CT007	505994A	\
Subcontra Prepared	cted Analyses by method 8011												
Analysis pe	erformed by TestAmerica	Analytical Testing	Corp Buffa	lo - DSC									
106-93-4	Ethylene Dibromide	< 0.011		ug/l	0.011	0.0077	1	8011	19-Nov-19	19-Nov-19	DSC	505354	
Prepared	by method 1664B								11.50	21.57			
Analysis pe	erformed by TestAmerica	Analytical Testing	Corp Buffa	lo - CRK									
	TPH (1664A)	< 5.0		mg/l	5.0	2.0	1	1664B	21-Nov-19	21-Nov-19	CRK	505862	
Prepared	by method 245.1								08:32	15:25			
Analysis pe	erformed by TestAmerica	Analytical Testing	Corp Buffa	lo - BMB									
7439-97-6	Mercury	< 0.00020		mg/l	0.00020	0.00012	1	245.1	19-Nov-19	19-Nov-19	BMB	505356	
Prepared	by method 200.7								11:19	14:45			
Analysis pe	erformed by TestAmerica	Analytical Testing	Corp Buffa	lo - LMH									
7439-89-6	Iron	< 0.050	1 30	mg/l	0.050	0.019	1	200.7 Rev 4.4	19-Nov-19 09:25	19-Nov-19 17:10	LMH	505264	
Subcontra Prepared	acted Analyses by method 200.8												
Analysis pe	erformed by TestAmerica	Analytical Testing	Corp Buffa	lo - KMP									
7440-36-0	Antimony	< 1.0	*	ug/l	1.0	0.35	1	200.8	19-Nov-19 08:50	20-Nov-19 14:14	KMP	505265	
7440-38-2	Arsenic	< 1.0		ug/l	1.0	0.27	1		"	"	"	"	
7440-43-9	Cadmium	< 0.50		ug/l	0.50	0.071	1		"	"	"	"	
7440-47-3	Chromium	< 1.5		ug/l	1.5	0.36	1		"	"	"	"	
7439-92-1	Lead	< 1.0		ug/l	1.0	0.17	1		"	"	"	"	
7440-02-0	Nickel	6.5		ug/l	1.0	0.11	1		"	"	"	"	
7782-49-2	Selenium	< 1.0		ug/l	1.0	0.44	1		"	"	"	"	
7440-22-4	Silver	< 0.50		ug/l	0.50	0.036	1		"	"	"	"	
7440-28-0	Thallium	< 0.20		ug/l	0.20	0.019	1		"	"	"	"	
7440-66-6	Zinc	< 10		ug/l	10	2.6	1	"	"	"	"	"	
Re-analys Prepared	sis of Subcontracted Ar	<u>alyses</u>											
7440-41-7	Beryllium	< 0.70		ug/l	0.70	0.030	1	200.8	19-Nov-19 08:50	21-Nov-19 13:03	KMP	505265	
7440-50-8	Copper	4.2	В	ug/l	1.0	0.22	1	"	"	"	"	"	
Subcontra Prepared	acted Analyses by method 3510C												
Analysis pe	erformed by TestAmerica	Analytical Testing	Corp Buffa	lo - W1T									
12674-11-2	PCB-1016	< 0.060	1 00	ug/l	0.060	0.038	1	608.3	15-Nov-19 09:04	18-Nov-19 17:47	W1T	504677	
11104-28-2	PCB-1221	< 0.060		ug/l	0.060	0.038	1	"			"	"	
11141-16-5	PCB-1232	< 0.060		ug/l	0.060	0.038	1	"	"	"	"	"	
53469-21-9	PCB-1242	< 0.060		ug/l	0.060	0.038	1	"	"	"	"	"	
12672-29-6	PCB-1248	< 0.060		ug/l	0.060	0.038	1	"		"	"	"	
11097-69-1	PCB-1254	< 0.060		ug/l	0.060	0.031	1	"	"	"	"	"	
11096-82-5	PCB-1260	< 0.060		ug/l	0.060	0.031	1	"	"	"	"	"	

Sample Id	entification			Client P	roject #		Matrix Coll			/Time	Ree		
MW-1 SC56741-	MW-1 SC56741-01		MA8499G			Ground Wa	ter 12-Nov-19 11:11			12-1	vov-19		
CAS No.	Analyte(s)	Result	Flag	Units	*RDL	MDL	Dilution	Method Ref.	Prepared	Analyzed	Analyst	Batch	Cert.
Subcontra	cted Analyses												
Subcontra	cted Analyses												
Analysis pe	rformed by TestAmerica And	ulytical Testing	Corp Buffal	o - W1T									
37324-23-5	PCB-1262	< 0.060		ug/l	0.060	0.031	1	608.3	15-Nov-19 09:04	18-Nov-19 17:47	W1T	504677	
11100-14-4	PCB-1268	< 0.060		ug/l	0.060	0.031	1	"	"	"	"	"	
Surrogate r	ecoveries:												
2051-24-3	DCB Decachlorobiphenyl	75			36-12	21 %		"	"	"		"	
877-09-8	Tetrachloro-m-xylene (Surr)	71			42-13	85 %		"	"	"		"	
<u>Subcontra</u> Prepared	<u>icted Analyses</u> by method NA												
Analysis pe	rformed by TestAmerica And	alytical Testing	Corp Buffal	o - LMH									
	Calcium hardness as calcium carbonate	94		mg/l	0.50	0.10	1	SM 2340B	26-Nov-19 08:28	26-Nov-19 08:28	LMH	506759	
	Hardness as calcium carbonate	120		mg/l	0.50	0.10	1	"			"	"	
	Magnesium hardness as calcium carbonate	25		mg/l	0.50	0.10	1	"		"	"	"	
Subcontra Prepared	<u>cted Analyses</u> by method 624												
Analysis pe	rformed by TestAmerica And	alytical Testing	Corp Buffal	o - S1V									
71-55-6	1,1,1-Trichloroethane	68	1 00	ug/l	5.0	0.39	1	624.1	18-Nov-19 14:02	18-Nov-19 14:02	S1V	505133	
79-00-5	1,1,2-Trichloroethane	< 5.0		ug/l	5.0	0.48	1	"	"	"			
75-34-3	1,1-Dichloroethane	32		ug/l	5.0	0.59	1	"	"	"			
75-35-4	1,1-Dichloroethene	< 5.0		ug/l	5.0	0.85	1	"	"				
95-50-1	1,2-Dichlorobenzene	< 5.0		ug/l	5.0	0.44	1	"	"	"			
107-06-2	1,2-Dichloroethane	< 5.0		ug/l	5.0	0.60	1	"	"				
541-73-1	1,3-Dichlorobenzene	< 5.0		ug/l	5.0	0.54	1	"	"	"		"	
106-46-7	1,4-Dichlorobenzene	< 5.0		ug/l	5.0	0.51	1	"	"	"		"	
123-91-1	1,4-Dioxane	< 200		ug/l	200	15	1	"	"				
71-43-2	Benzene	< 5.0		ug/l	5.0	0.60	1	"	"	"		"	
56-23-5	Carbon tetrachloride	< 5.0		ug/l	5.0	0.51	1	"	"	"			
156-59-2	cis-1,2-Dichloroethene	< 5.0		ug/l	5.0	0.57	1		"	"			
100-41-4	Ethylbenzene	< 5.0		ug/l	5.0	0.46	1	"	"	"		"	
1634-04-4	Methyl tert-butyl ether	< 5.0		ug/l	5.0	0.35	1	"	"	"		"	
75-09-2	Methylene Chloride	< 5.0		ug/l	5.0	0.81	1	"	"				
179601-23-1	m-Xylene & p-Xylene	< 10		ug/l	10	1.1	1	"	"				
95-47-6	o-Xylene	< 5.0		ug/l	5.0	0.43	1	"	"				
127-18-4	Tetrachloroethene	< 5.0		ug/l	5.0	0.34	1	"	"	"			
108-88-3	Toluene	< 5.0		ug/l	5.0	0.45	1	"	"	"			
	Total BTEX	< 10		ua/l	10	1.1	1		"	"			
79-01-6	Trichloroethylene	< 5.0		ug/l	5.0	0.60	1	"	"	"			
75-01-4	Vinyl chloride	< 5.0		ug/l	5.0	0.75	1			"			
Surroaate r	ecoveries:												
17060-07-0	1,2-Dichloroethane-d4 (Surr)	107			68-13	80 %		"	"	•	"	"	
460-00-4	4-Bromofluorobenzene (Surr)	107			76-12	23 %		n	u	"		"	

Sample Identification MW-1 SC56741-01 CAS No Analyta(s)				<u>Client I</u> MA8	t <u>Project # Matrix</u> A8499G Ground Wate		ter 12	Received 12-Nov-19					
CAS No.	Analyte(s)	Result	Flag	Units	*RDL	MDL	Dilution	Method Ref.	Prepared	Analyzed	Analyst	Batch	Cert.
Subcontra	cted Analyses												
Subcontra	acted Analyses												
Analysis p	erformed by TestAmerica Ar	nalytical Testing	g Corp Buffd	ulo - SIV									
2037-26-5	Toluene-d8 (Surr)	101			77-12	20 %		624.1	18-Nov-19 14:02	-Nov-19 14:	S1V	505133	
Analysis p	erformed by TestAmerica Ar	nalytical Testing	g Corp Buffd	ulo - SIV									
67-64-1	Acetone	< 2.5		ug/l	2.5	2.0	1	n	"	"	"	"	
Sample Id	lentification												
Outfall				Client I	Project #		Matrix	Coll	ection Date	/Time	Red	ceived	
SC56741	-02			MA8	499G	(Ground Wa	iter 12	2-Nov-19 12	2:30	12-1	Nov-19	
CAS No.	Analyte(s)	Result	Flag	Units	*RDL	MDL	Dilution	Method Ref.	Prepared	Analyzed	Analyst	Batch	Cert.
Subcontra Prepared	cted Analyses by method E350.1												
Analysis p	erformed by Phoenix Enviro	onmental Labs, I	nc. * - MACI	1007									
7664-41-7	Ammonia as Nitrogen	0.17		mg/l	0.05	0.05	1	E350.1	14-Nov-19 09:26	14-Nov-19 09:26	M-CT007	506131A	
Subcontra Prepared	cted Analyses by method 245.1												
Analysis p	erformed by TestAmerica Ar	nalytical Testing	g Corp Buffd	ulo - BMB									
7439-97-6	Mercury	< 0.00020		mg/l	0.00020	0.00012	1	245.1	19-Nov-19 11:19	19-Nov-19 14:48	BMB	505356	
Subcontra Prepared	acted Analyses by method 200.8												
Analysis p	erformed by TestAmerica Ar	nalytical Testing	g Corp Buffd	ulo - KMP									
7440-36-0	Antimony	< 1.0	*	ug/l	1.0	0.35	1	200.8	19-Nov-19 08:50	20-Nov-19 14:16	KMP	505265	
7440-38-2	Arsenic	< 1.0		ug/l	1.0	0.27	1	"	"	"	"	"	
7440-43-9	Cadmium	< 0.50		ug/l	0.50	0.071	1	"	"	"	"	"	
7440-47-3	Chromium	< 1.5		ug/l	1.5	0.36	1	"	"	"	"	"	
7439-92-1	Lead	< 1.0		ug/l	1.0	0.17	1	"	"	"	"	"	
7440-02-0	Nickel	< 1.0		ug/l	1.0	0.11	1	"	"	"	"	"	
7782-49-2	Selenium	< 1.0		ug/l	1.0	0.44	1	"	"	"	"	"	
7440-22-4	Silver	< 0.50		ug/l	0.50	0.036	1		"	"	"	"	
7440-28-0	Thallium	< 0.20		ug/l	0.20	0.019	1		"	"	"	"	
7440-66-6	Zinc	< 10		ug/l	10	2.6	1	"	"	"	"	"	
Re-analys	sis of Subcontracted Anal	<u>lyses</u>											
Prepared	by method 200.8												
7440-41-7	Beryllium	< 0.70		ug/l	0.70	0.030	1	200.8	19-Nov-19 08:50	21-Nov-19 13:05	KMP	505265	
7440-50-8	Copper	1.8	В	ug/l	1.0	0.22	1	"	"		"	"	
Subcontra Prepared	acted Analyses by method NA												
Analysis p	erformed by TestAmerica Ar	nalytical Testing	g Corp Buffa	ulo - LMH									
	Calcium hardness as calcium carbonate	94		mg/l	0.50	0.10	1	SM 2340B	26-Nov-19 08:28	26-Nov-19 08:28	LMH	506759	
	Hardness as calcium carbonate	120		mg/l	0.50	0.10	1	n	"	n	"		
	Magnesium hardness as calcium carbonate	25		mg/l	0.50	0.10	1	"	"	"	"	"	

					~	~				
Analyte(s)	Result	Flag	Units	*RDL	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit
Patch 506320A E 200.0										
Black (CE50014 BLK)					Dr	parad 8 Ar	aaluzad: 12	Nov 10		
Blank (CE59614-BLK)	< 2.0		ma/l	2.0	<u>P16</u>	epareu & Ar		<u>-INOV-19</u>		
	< 3.0		mg/i	3.0	_		DRL	-		
LCS (CE59614-LCS)					<u>Pre</u>	epared & Ar	halyzed: 14	<u>-Nov-19</u>		00
Chioride	29.08		mg/i	3.0	103199174	4	96.9	90-110		20
<u>E350.1</u>										
Batch 506131A - E350.1										
Blank (CE57383-BLK)					Pre	epared: 13-	Nov-19 A	nalyzed: 14-N	lov-19	
Ammonia as Nitrogen	< 0.05		mg/l	0.05			BRL	-		
LCS (CE57383-LCS)					Pre	epared: 13-	Nov-19 A	nalyzed: 14-N	lov-19	
Ammonia as Nitrogen	6.390		mg/l	0.05	6.77		94.4	90-110		20
<u>E524.2 MOD</u>										
Batch 506512A - E524.2 MOD										
Blank (CE59290-BLK)					Pre	epared & Ar	nalvzed: 14	-Nov-19		
tert-amyl methyl ether	ND		ua/l	10	<u> </u>		ND			
tert-butyl alcohol	ND		ug/l	25			ND	-		
tert-amyl alcohol	ND		ua/l	25			ND	-		
Ethyl tert-butyl ether	ND		ua/l	1.0			ND	-		
Ethanol	ND		ua/l	200			ND	-		
Di-isopropyl ether	ND		ug/l	1.0			ND	-		
Surrogate: % Bromofluorobenzene	98		ua/l		50		98	70-130		
			ug.		Pre	enared & Ar	nalvzed: 14	L-Nov-19		
tert-butyl alcohol	270.6		ua/l	25	250		108	70-130		30
Di-isopropyl ether	9 768		ug/l	10	10		98	70-130		30
Ethanol	220.6		ug/l	200	250		88	70-130		30
Ethyl tert-butyl ether	10 12		ug/l	10	10		101	70-130		30
tert-amyl alcohol	281.2		ug/l	25	250		112	70-130		30
tert-amyl methyl ether	9.695		ug/l	_0 10	10		97	70-130		30
Surragete: % Promofluorobenzono	50.40		g		50		101	70 120		
	50.40		uy/i		50	anarad 9 Ar	101 aaburadi 14	70-750		
LCS Dup (CE59290-LCSD)	050.0		Source: CE	259290-LCS	250	epareu & Ar	104	70 120	74	20
	259.2 242 E		ug/i	25	250		07	70-130	1.4	20
tert any methyl other	242.5		ug/i	20	200		97	70-130	2.1	20
Ethonol	9.301		ug/i	200	250		94	70-130	3.1 1.1	20
	9 311		ug/l	1.0	10		09	70-130	5.2	30
Ethyl tert-butyl ether	9.876		ug/l	1.0	10		99	70-130	2.0	30
Surrogate: % Bromofluorobenzene	50.39		ug/l		50		101	70-130		
F625 1/F625 1SIM	00.00		ugn		00			10 100		
Batch 506141A - E625 1										
Blank (CE58977-BLK)					Pre	enared: 13-	Νον-19 Δι	nalvzed: 15-N	lov-19	
N-Nitrosodimethylamine	ND		ua/l	0.05	<u>1 10</u>			-	100-13	
Chrysene	ND		ug/l	0.00						
Dibenz(a h)anthracene	ND		ug/l	0.50			ND			
Hexachlorobenzene			ug/i	0.50			ND	-		
Hexachlorobutadiene	ND		un/l	0.50			ND	-		
Hexachlorocyclopentadiene			ug/I	0.50				-		
Nitrobenzene	ND		ug/l	0.50			ND	-		
Pentachlorophenol			ug/i	0.50			ND	-		
Pvridine	ND		un/l	0.50			ND	-		
Phenanthrene	ND		ua/l	0.50			ND	-		
			~3.1	0.00						

Analyte(s)	Result	Flag	Units	*RDL	Spike Level	Source Result	%REC	%REC C Limits	RPD	RPD Limit
E625.1/E625.1SIM										
Batch 506141A - E625.1										
Blank (CE58977-BLK)					Pre	epared: 13-l	Nov-19	Analvzed: 15-N	lov-19	
Benzo(k)fluoranthene	ND		ua/l	0.50			ND	_		
Indeno(1.2.3-c.d)pyrene	ND		ug/l	0.50			ND	-		
Benzo(b)fluoranthene	ND		ug/l	0.50			ND	-		
Benzo(a)pyrene	ND		ug/l	0.50			ND	-		
Benzo(a)anthracene	ND		ug/l	0.50			ND	-		
Acenaphthylene	ND		ug/l	0.50			ND	-		
Acenaphthene	ND		ug/l	0.50			ND	-		
Benzo(g,h,i)perylene	ND		ug/l	0.50			ND	-		
Surrogate: % 2,4,6-Tribromophenol	57		ug/l		7.5		57	15-130		
Surrogate: % 2-Fluorobiphenyl	44		ug/l		5		44	30-130		
Surrogate: % 2-Fluorophenol	43		ug/l		7.5		43	10-130		
Surrogate: % Nitrobenzene-d5	31		ug/l		5		31	15-130		
Surrogate: % Phenol-d5	43		ug/l		7.5		43	10-130		
Surrogate: % Terphenyl-d14	53		ug/l		5		53	30-130		
LCS (CE58977-LCS)					Pre	epared: 13-l	Nov-19	Analyzed: 15-N	lov-19	
Hexachlorobutadiene	2.048		ug/l	0.50	5		41	38-120		62
Benzo(k)fluoranthene	4.082		ug/l	0.50	5		82	25-146		63
Phenanthrene	2.957	I.	ug/l	0.50	5		59	65-120		39
Pentachlorophenol	4.135		ug/l	0.50	5		83	38-152		86
N-Nitrosodimethylamine	1.679	r	ug/l	0.05	5		34	30-130		20
Nitrobenzene	2.294	I.	ug/l	0.50	5		46	54-158		62
Hexachlorocyclopentadiene	1.254	l, r	ug/l	0.50	5		25	30-130		20
Hexachlorobenzene	3.109		ug/l	0.50	5		62	8-142		55
Dibenz(a,h)anthracene	3.764		ug/l	0.50	5		75	10-200		126
Chrysene	3.507		ug/l	0.50	5		70	44-140		87
Pyridine	1.377	l, r	ug/l	0.50	5		28	30-130		20
Benzo(b)fluoranthene	3.972		ug/l	0.50	5		79	42-140		71
Benzo(a)pyrene	3.188		ug/l	0.50	5		64	32-148		72
Benzo(a)anthracene	3.634		ug/l	0.50	5		73	42-133		53
Acenaphthylene	2.483	I.	ug/l	0.50	5		50	54-126		74
Acenaphthene	2.728	I.	ug/l	0.50	5		55	60-132		48
Indeno(1,2,3-c,d)pyrene	3.552		ug/l	0.50	5		71	10-151		99
Benzo(g,h,i)perylene	3.707		ug/l	0.50	5		74	10-195		97
Surrogate: % 2,4,6-Tribromophenol	5.202		ug/l		7.5		69	15-130		
Surrogate: % 2-Fluorophenol	2.264	r	ug/l		7.5		30	10-130		
Surrogate: % Phenol-d5	2.815		ug/l		7.5		38	10-130		
Surrogate: % 2-Fluorobiphenyl	2.240		ug/l		5		45	30-130		
Surrogate: % Terphenyl-d14	3.095		ug/l		5		62	30-130		
Surrogate: % Nitrobenzene-d5	2.649		ug/l		5		53	15-130		
LCS Dup (CE58977-LCSD)			Source: CE	<u> 58977-LCS</u>	Pre	epared: 13-l	Nov-19	Analyzed: 15-N	lov-19	
Dibenz(a,h)anthracene	3.785		ug/l	0.50	5		76	10-200	1.3	126
Hexachlorobenzene	3.412		ug/l	0.50	5		68	8-142	9.2	55
Hexachlorobutadiene	2.503		ug/l	0.50	5		50	38-120	19.8	62
Hexachlorocyclopentadiene	1.676	r	ug/l	0.50	5		34	30-130	30.5	20
Indeno(1,2,3-c,d)pyrene	3.646		ug/l	0.50	5		73	10-151	2.8	99
Nitrobenzene	2.869		ug/l	0.50	5		57	54-158	21.4	62
N-Nitrosodimethylamine	2.370	r	ug/l	0.05	5		47	30-130	32.1	20
Chrysene	3.582		ug/l	0.50	5		72	44-140	2.8	87
Phenanthrene	3.177	T	ug/l	0.50	5		64	65-120	8.1	39
Acenaphthene	3.126		ug/l	0.50	5		63	60-132	13.6	48

Analyte(s)	Result	Flag	Units	*RDL	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit
<u>E625.1/E625.1SIM</u>										
Batch 506141A - E625.1										
LCS Dup (CE58977-LCSD)			Source: CE	58977-LCS	Pre	epared: 13-	Nov-19 Ar	nalyzed: 15-N	lov-19	
Pentachlorophenol	4.511		ug/l	0.50	5		90	38-152	8.1	86
Benzo(k)fluoranthene	4.146		ug/l	0.50	5		83	25-146	1.2	63
Benzo(g,h,i)perylene	3.725		ug/l	0.50	5		75	10-195	1.3	97
Benzo(b)fluoranthene	3.966		ug/l	0.50	5		79	42-140	0.0	71
Benzo(a)pyrene	3.281		ug/l	0.50	5		66	32-148	3.1	72
Benzo(a)anthracene	3.743		ug/l	0.50	5		75	42-133	2.7	53
Acenaphthylene	2.894		ug/l	0.50	5		58	54-126	14.8	74
Pyridine	1.878	r	ug/l	0.50	5		38	30-130	30.3	20
Surrogate: % Terphenyl-d14	3 187		ug/l		5		64	30-130		
Surrogate: % 2-Eluorophenol	3 239	r	ug/l		7.5		43	10-130		
Surrogate: % 2-Fluorophenol	2.609		ug/l		5		52	30-130		
Surrogate: % 2 4 6-Tribromonhenol	5 834		ug/l		7.5		78	15-130		
Surrogate: % Phenol-d5	3 607	r	ug/l		7.5		48	10-130		
Surrogate: % Nitrobenzene-d5	3 159	·	ug/l		5		63	15-130		
Plank (CE59077 PLK)	0.700		ugn		Dr	anarod: 13	Nov 10 Ar	no 100	lov 10	
	ND		ug/l	25	<u>F18</u>	epareu. 13-	ND	lalyzeu. 13-h	100-19	
4 Chloro 3 methylphonol	ND		ug/l	1.0				-		
4-Chloroaniline			ug/l	3.5				-		
4 Chlorophenyl phenyl ether	ND		ug/l	1.0				-		
	ND		ug/l	5.0				-		
4 Nitrophonol	ND		ug/l	1.0				-		
Anthracene			ug/l	1.0				-		
Benzidine	ND		ug/l	1.5				-		
Ponzoio poid	ND		ug/l	4.5				-		
Benzyl alcohol	ND		ug/l	5.0				-		
Benzyl butyl obthalate	ND		ug/l	1.5				_		
Bis(2-chloroethoxy)methane	ND		ug/l	3.5				-		
Bis(2-chloroethyl)ether	ND		ug/l	1.0						
4-Bromonhenyl phenyl ether	ND		ug/l	3.5				-		
Bis(2-ethylbeyyl)nhthalate	ND		ug/l	1.5						
Hexachloroethane	ND		ug/l	3.5				_		
	ND		ug/l	1.5				-		
			ug/l	1.5				-		
	ND		ug/l	1.5				-		
	ND		ug/l	1.5						
Eluoranthene	ND		ug/l	1.5						
Fluorene	ND		ug/l	1.5						
Isonhorone	ND		ug/l	3.5				-		
N-Nitrosodi-n-propylamine	ND		ug/l	3.5						
N-Nitrosodinhenvlamine	ND		ug/l	3.5				-		
Phenol	ND		ug/l	1.0				_		
Pyrene	ND		ug/l	1.0				-		
Bis(2-chloroisonronyl)ether			ug/i	1.0			ND	_		
2 4-Dinitrotoluene			ug/i	3.5			ND	-		
4 6-Dinitro-2-methylphenol	טא		ug/i	1.0				-		
Nanhthalene			ug/I	1.0				-		
1 2 4.Trichlorohanzana			ug/i	1.0				-		
			ug/I	0.0 1 0				-		
			ug/I	1.0				-		
	ND		ug/I	1.0				-		
1,3-Dichlorobenzene	ND		ug/I	1.0			ND	-		

Analyte(s)	Result	Flag	Units	*RDL	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit
<u>E625.1/E625.1SIM</u>										
Batch 506141A - E625.1										
Blank (CF58977-BLK)					Pre	epared: 13-	Nov-19 Ar	alyzed: 15-N	<u>10v-19</u>	
1,4-Dichlorobenzene	ND		ug/l	1.0			ND	-		
2,4,5-Trichlorophenol	ND		ug/l	1.0			ND	-		
2,4,6-Trichlorophenol	ND		ug/l	1.0			ND	-		
2,4-Dichlorophenol	ND		ug/l	1.0			ND	-		
2,4-Dinitrophenol	ND		ug/l	1.0			ND	-		
2,6-Dichlorophenol	ND		ug/l	10			ND	-		
2,6-Dinitrotoluene	ND		ug/l	3.5			ND	-		
2-Chloronaphthalene	ND		ug/l	3.5			ND	-		
2-Chlorophenol	ND		ug/l	1.0			ND	-		
2-Methylnaphthalene	ND		ug/l	3.5			ND	-		
2-Methylphenol (o-cresol)	ND		ug/l	1.0			ND	-		
2-Nitroaniline	ND		ug/l	3.5			ND	-		
2-Nitrophenol	ND		ug/l	1.0			ND	-		
3&4-Methylphenol (m&p-cresol)	ND		ug/l	1.0			ND	-		
3,3'-Dichlorobenzidine	ND		ug/l	5.0			ND	-		
3-Nitroaniline	ND		ug/l	5.0			ND	-		
2,4-Dimethylphenol	ND		ug/l	1.0			ND	-		
Surrogate: % Phenol-d5	60		ug/l		7.5		60	10-130		
Surrogate: % 2-Fluorophenol	47		ug/l		7.5		47	10-130		
Surrogate: % 2-Fluorobiphenyl	63		ug/l		5		63	30-130		
Surrogate: % Nitrobenzene-d5	70		ug/l		5		70	15-130		
Surrogate: % 2,4,6-Tribromophenol	73		ug/l		7.5		73	15-130		
Surrogate: % Terphenyl-d14	72		ug/l		5		72	30-130		
LCS (CF58977-LCS)					Pre	epared: 13-	Nov-19 Ar	alyzed: 15-N	<u>lov-19</u>	
Isophorone	32.44		ug/l	3.5	50		65	47-180		93
4-Chloroaniline	38.47		ug/l	3.5	50		77	30-130		20
4-Chlorophenyl phenyl ether	38.82		ug/l	1.0	50		78	38-145		61
4-Nitroaniline	41.27		ug/l	5.0	50		83	30-130		20
4-Nitrophenol	46.70		ug/l	1.0	50		93	13-129		131
Anthracene	39.75		ug/l	1.5	50		80	43-120		66
Benzidine	47.30		ug/l	4.5	50		95	30-130		20
Benzoic acid	21.95		ug/l	10	50		44	30-130		20
Benzyl alcohol	32.51		ug/l	5.0	50		65	30-130		20
Benzyl butyl phthalate	44.59		ug/l	1.5	50		89	10-140		60
Bis(2-chloroethoxy)methane	33.16		ug/l	3.5	50		66	49-165		54
Hexachloroethane	23.83	I	ug/l	3.5	50		48	55-120		52
Bis(2-chloroisopropyl)ether	24.06	I	ug/l	1.0	50		48	63-139		76
4-Chloro-3-methylphenol	40.99		ug/l	1.0	50		82	41-128		73
Bis(2-ethylhexyl)phthalate	46.09		ug/l	1.5	50		92	29-137		82
Dibenzofuran	37.27		ug/l	3.5	50		75	30-130		20
Diethyl phthalate	42.54		ug/l	1.5	50		85	10-120		100
Dimethylphthalate	39.95		ug/l	1.5	50		80	10-120		183
Di-n-butylphthalate	45.19		ug/l	1.5	50		90	8-120		47
Di-n-octylphthalate	48.65		ug/l	1.5	50		97	19-132		69
Fluoranthene	41.68		ug/l	1.5	50		83	43-121		66
Fluorene	39.62		ug/l	1.5	50		79	70-120		38
Bis(2-chloroethyl)ether	26.29		ug/l	1.0	50		53	43-126		108
2,6-Dinitrotoluene	41.06		ug/l	3.5	50		82	68-137		48
2,4-Dinitrophenol	35.50		ug/l	1.0	50		71	10-173		132
Naphthalene	29.44		ug/l	1.5	50		59	36-120		65

Analyte(s)	Result	Flag	Units	*RDL	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit
E625.1/E625.1SIM										
Batch 506141A - E625.1										
LCS (CF58977-LCS)					Pre	epared: 13-	Nov-19 An	alyzed: 15-N	lov-19	
1,2,4-Trichlorobenzene	28.60		ug/l	3.5	50		57	57-130		50
1,2-Dichlorobenzene	24.02	r	ug/l	1.0	50		48	30-130		20
1,2-Diphenylhydrazine	37.72		ug/l	1.6	50		75	30-130		20
1,3-Dichlorobenzene	23.27	r	ug/l	1.0	50		47	46-154		20
1,4-Dichlorobenzene	23.41	r	ug/l	1.0	50		47	30-130		20
2,4,5-Trichlorophenol	39.94		ug/l	1.0	50		80	30-130		20
2,4,6-Trichlorophenol	40.02		ug/l	1.0	50		80	52-129		58
2,4-Dinitrotoluene	41.21		ug/l	3.5	50		82	48-127		42
2,6-Dichlorophenol	29.25		ug/l	10	50		59	30-130		20
4-Bromophenyl phenyl ether	39.07		ug/l	3.5	50		78	65-120		43
2-Chloronaphthalene	35.46		ug/l	3.5	50		71	65-120		24
2-Chlorophenol	25.85		ug/l	1.0	50		52	36-120		61
2-Methylnaphthalene	31.81		ug/l	3.5	50		64	30-130		20
2-Methylphenol (o-cresol)	30.91		ug/l	1.0	50		62	30-130		20
2-Nitroaniline	60.95		ug/l	3.5	50		122	30-130		20
2-Nitrophenol	32.89		ug/l	1.0	50		66	45-167		55
3&4-Methylphenol (m&p-cresol)	34.75		ug/l	1.0	50		70	30-130		20
3,3'-Dichlorobenzidine	39.10		ug/l	5.0	50		78	8-213		108
3-Nitroaniline	50.20		ug/l	5.0	50		100	30-130		20
4,6-Dinitro-2-methylphenol	41.14		ug/l	1.0	50		82	30-130		20
2,4-Dimethylphenol	38.46		ug/l	1.0	50		77	42-120		58
2,4-Dichlorophenol	34.28		ug/l	1.0	50		69	53-122		50
N-Nitrosodiphenylamine	37.45		ug/l	3.5	50		75	30-130		20
Phenol	26.56		ug/l	1.0	50		53	17-120		64
Pyrene	42.14		ug/l	1.5	50		84	70-120		49
N-Nitrosodi-n-propylamine	35.10		ug/l	3.5	50		70	14-198		87
Surrogate: % Terphenyl-d14	36.66		ug/l		50		73	30-130		
Surrogate: % 2-Fluorobiphenyl	31.92		ug/l		50		64	30-130		
Surrogate: % 2-Fluorophenol	28.88	r	ug/l		75		39	10-130		
Surrogate: % Nitrobenzene-d5	28.70		ug/l		50		57	15-130		
Surrogate: % Phenol-d5	37.24	r	ug/l		75		50	10-130		
Surrogate: % 2,4,6-Tribromophenol	60.38		ug/l		75		81	15-130		
LCS Dup (CF58977-LCSD)			Source: CE	58977-LCS	Pre	epared: 13-	Nov-19 An	alyzed: 15-N	lov-19	
2-Nitroaniline	60.57		ug/l	3.5	50		121	30-130	0.8	20
4-Bromophenyl phenyl ether	40.61		ug/l	3.5	50		81	65-120	3.8	43
4-Nitrophenol	47.34		ug/l	1.0	50		95	13-129	2.1	131
4-Chlorophenyl phenyl ether	41.16		ug/l	1.0	50		82	38-145	5.0	61
4-Chloroaniline	39.40		ug/l	3.5	50		79	30-130	2.6	20
4-Chloro-3-methylphenol	41.63		ug/l	1.0	50		83	41-128	1.2	73
4,6-Dinitro-2-methylphenol	42.89		ug/l	1.0	50		86	30-130	4.8	20
3-Nitroaniline	51.08		ug/l	5.0	50		102	30-130	2.0	20
3,3'-Dichlorobenzidine	37.74		ug/l	5.0	50		75	8-213	3.9	108
2-Nitrophenol	35.86		ug/l	1.0	50		72	45-167	8.7	55
Benzyl alcohol	35.50		ug/l	5.0	50		71	30-130	8.8	20
2-Methylphenol (o-cresol)	32.87		ug/l	1.0	50		66	30-130	6.3	20
2-Methylnaphthalene	34.10		ug/l	3.5	50		68	30-130	6.1	20
2-Chlorophenol	30.93		ug/l	1.0	50		62	36-120	17.5	61
3&4-Methylphenol (m&p-cresol)	35.87		ug/l	1.0	50		72	30-130	2.8	20
Di-n-butylphthalate	45.48		ug/l	1.5	50		91	8-120	1.1	47
Pyrene	41.21		ug/l	1.5	50		82	70-120	2.4	49

Subcontracted	Analyses	- Quality	Control
---------------	----------	-----------	---------

					Smiles	Course		0/DEC		
Analyte(s)	Result	Flag	Units	*RDL	Level	Result	%REC	Limits	RPD	Limit
F675 1/F675 18IM										
Batch 506141A E625.1										
Datcil 500141A - E025.1			Source: CE		Dr	onarod: 13	Nov 10 Ar	aluzed: 15 N	lov 10	
	30.44			1 0	50	epareu. 15-	61	17-120	14.0	64
N-Nitrosodinhenvlamine	39.67		ug/l	3.5	50		77	30-130	2.6	20
N-Nitrosodi-n-propylamine	37.95		ug/l	3.5	50		76	1/-108	8.2	87
Nanhthalene	32.09		ug/l	1.5	50		64	36-120	8.1	65
Isonhorone	35.05		ug/l	3.5	50		70	47-180	74	93
Hexachloroethane	28 75		ug/l	3.5	50		57	55-120	17.1	52
Fluorene	42 70		ug/l	1.5	50		85	70-120	7.3	38
Benzidine	52 71		ug/l	4.5	50		105	30-130	10.0	20
Di-n-octylphthalate	45 41		ug/l	1.5	50		91	19-132	64	-0 69
Benzoic acid	24 90		ug/l	10	50		50	30-130	12.8	20
Dimethylphthalate	42 79		ug/l	15	50		86	10-120	7.2	183
	44 40		ug/l	1.5	50		89	10-120	4.6	100
Dibenzofuran	39.46		ug/l	3.5	50		79	30-130	5.2	20
Bis(2-ethylbexyl)phthalate	43 18		ug/l	1.5	50		86	29-137	6.7	82
Bis(2-chloroisopropyl)ether	27 73	I.	ug/l	1.0	50		55	63-139	13.6	76
Bis(2-chloroethyl)ether	28.20	·	ug/l	1.0	50		56	43-126	5.5	108
Bis(2-chloroethoxy)methane	36 34		ug/l	3.5	50		73	49-165	10.1	54
Benzyl butyl obthalate	43 79		ug/l	1.5	50		88	10-140	1 1	60
4-Nitroaniline	45.22		ug/l	5.0	50		90	30-130	8.1	20
Fluoranthene	40.63		ug/l	1.5	50		81	43-121	24	-0 66
Anthracene	40.27		ug/l	1.5	50		81	43-120	12	66
1 2-Dichlorobenzene	29.52	r	ug/l	1.0	50		59	30-130	20.6	20
1 2-Diphenylhydrazine	40.27		ug/l	16	50		81	30-130	77	20
2 4 6-Trichlorophenol	42 70		ug/l	1.0	50		85	52-129	6.1	58
1.3-Dichlorobenzene	29.16	r	ug/l	1.0	50		58	46-154	21.0	20
1 4-Dichlorobenzene	28 85	r	ug/l	1.0	50		58	30-130	21.0	20
1 2 4-Trichlorobenzene	31.86		ug/l	3.5	50		64	57-130	11.6	_=° 50
2.4.5-Trichlorophenol	44.55		ug/l	1.0	50		89	30-130	10.7	20
2 4-Dichlorophenol	36.38		ug/l	1.0	50		73	53-122	56	_0 50
2 4-Dimethylphenol	42 60		ug/l	1.0	50		85	42-120	9.9	58
2 4-Dinitrophenol	38.55		ug/l	1.0	50		77	10-173	8.1	132
2 4-Dinitrotoluene	41 65		ug/l	3.5	50		83	48-127	12	42
2 6-Dichlorophenol	32.43		ug/l	10	50		65	30-130	97	20
2 6-Dinitrotoluene	44 58		ug/l	3.5	50		89	68-137	82	_0 48
2-Chloronaphthalene	38.33		ua/l	3.5	50		77	65-120	8.1	24
Surragata: 9/ 2 / 6 Tribramanhanal	64.00				75		95	15 120	-	
Surrogate: % Zernbenyl d14	35.04		ug/l		50		70	20 120		
Surrogate: % Phenol d5	<i>33.04</i>		ug/l		75		55	10 130		
Surrogate: % Nitrobenzene d5	41.01		ug/i		75 50		55	15 130		
Surrogate: % A Elucrobiohony	25.62		ug/i		50		71	20 120		
Surrogate: % 2 Elucrophenol	35.02	r	ug/i		75		18	10 130		
Sundyate. % 2-Fluorophenol	30.37	1	ugn		75		40	10-130		
<u>SM 2540D-11</u>										
Batch 506041A - SM 2540D-11										
Blank (CE58178-BLK)					Pre	epared & Ai	nalyzed: 13	-Nov-19		
Total Suspended Solids	< 2.5		mg/l	2.5	48		BRL	-		
LCS (CE58178-LCS)					Pr	epared & A	nalyzed: 13	-Nov-19		
Total Suspended Solids	44.00		mg/l	2.5	48		92	85-115		
<u>SM2540C-11</u>										
Batch 506258A - SM2540C-11										

				Spike	Source		%REC		RPD
Analyte(s)	Result	Flag Uni	ts *RDL	Level	Result	%REC	Limits	RPD	Limit
<u>SM2540C-11</u>									
Batch 506258A - SM2540C-11									
Blank (CE58264-BLK)				Pre	epared & A	nalyzed: 14	-Nov-19		
Tot. Diss. Solids	< 10	mg	ʻl 10	602		BRL	-		
LCS (CE58264-LCS)				Pre	epared & A	nalyzed: 14	-Nov-19		
Tot. Diss. Solids	595.0	mg	ʻl 10	602		99	85-115		20
<u>SM3500CRB-11</u>									
Batch 505986A - SM3500CRB									
Blank (CE58977-BLK)				Pre	epared & A	nalyzed: 12	-Nov-19		
Chromium, Hexavalent	< 0.01	mg	1 0.01			BRL	-		
Duplicate (CE58977-DUP)		Source	e: SC56741-01	Pre	epared & A	nalyzed: 12	-Nov-19		
Chromium, Hexavalent	< 0.01	mg	1 0.01		BRL		-		30
LCS (CE58977-LCS)				Pre	epared & A	nalyzed: 12	-Nov-19		
Chromium, Hexavalent	0.2552	mg	1 0.01	0.25		102	90-110		30
Matrix Spike (CE58977-MS)		Source	e: SC56741-01	Pre	epared & A	nalyzed: 12	-Nov-19		
Chromium, Hexavalent	0.5477	mg	1 0.01	0.5	BRL	110	85-115		30
<u>SM4500Cl-G-00</u>									
Batch 505985A - SM4500Cl-G									
Blank (CE58486-BLK)				Pre	epared & A	nalyzed: 12	-Nov-19		
Chlorine Residual	< 0.02	mg	0.02			BRL	-		
LCS (CE58486-LCS)				Pre	epared & A	nalyzed: 12	-Nov-19		
Chlorine Residual	0.3087	mg	0.02	0.2909		106	-		
SW846-React cyanide									
Batch 506038A - SW846-React									
Blank (CE58360-BLK)				Pre	epared & A	nalyzed: 13	-Nov-19		
Reactivity Cyanide	< 0.05	mg/ł	kg 0.05			BRL	-		
LCS (CE58360-LCS)				Pre	epared & A	nalyzed: 13	-Nov-19		
Reactivity Cyanide	0.4300	mg/l	kg 0.05	0.45		95.6	80-120		20
<u>SW9010C/SW9012B</u>									
Batch 505994A - SM 4500 CN									
Blank (CE56704-BLK)				Pre	epared: 12-	Nov-19 Ar	nalyzed: 14-Nov	<u>-19</u>	
Total Cyanide	< 0.010	mg	0.010			BRL	-		
LCS (CE56704-LCS)				Pre	epared: 12-	Nov-19 Ar	nalyzed: 14-Nov	<u>-19</u>	
Total Cyanide	0.4240	mg	0.010	0.429		98.8	90-110		30

Analyte(s)	Result	Flag	Units	*RDL	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit
1664B										
Batch 505862 - 1664B										
<u>Blank (506020-1)</u>					Pre	epared & Ai	nalyzed: 21	-Nov-19		
TPH (1664A)	< 5.0		mg/l	5.0				-		
LCS (506020-2)					Pre	epared & Ai	nalyzed: 21	-Nov-19		
TPH (1664A)	13.60		mg/l	5.0	20.0		68	64-132		
200.7 Rev 4.4										
Batch 505264 - 200 7										
Blank (505545-20)					Pre	epared & Ar	nalvzed [,] 19	-Nov-19		
Iron	< 0.050		ma/l	0.050	<u></u>		1017200.10	-		
LCS (505545-21)					Pre	epared & Ar	nalvzed [,] 19	-Nov-19		
Iron	9.97		ma/l	0.050	10.0		100	85-115		
200.8										
<u>200.0</u>										
Batch 505265 - 200.8					Dro	norodi 10		aluzadi 20 N	lov 10	
Blank (505759-13)	< 1.0			1.0	Pre	epared: 19-	NOV-19 Ar	lalyzed: 20-N	<u>10v-19</u>	
Arsenic	< 1.0		ug/l	1.0				-		
Cadmium	< 0.50		ug/l	0.50				_		
Zinc	< 10		ug/l	10				-		
Thallium	< 0.20		ua/l	0.20				-		
Silver	< 0.50		ua/l	0.50				-		
Selenium	< 1.0		ug/l	1.0				-		
Nickel	< 1.0		ug/l	1.0				-		
Lead	< 1.0		ug/l	1.0				-		
Chromium	< 1.5		ug/l	1.5				-		
LCS (505759-17)					Pre	epared: 19-	Nov-19 Ar	nalyzed: 20-N	lov-19	
Zinc	50.5		ug/l	10	50.0		101	85-115		
Thallium	19.6		ug/l	0.20	20.0		98	85-115		
Silver	19.9		ug/l	0.50	20.0		100	85-115		
Selenium	21.9		ug/l	1.0	20.0		110	85-115		
Nickel	19.5		ug/l	1.0	20.0		97	85-115		
Lead	19.8		ug/l	1.0	20.0		99	85-115		
Chromium	20.5		ug/l	1.5	20.0		102	85-115		
Arsenic	21.0		ug/l	1.0	20.0		105	85-115		
Antimony	24.3	*	ug/l	1.0	20.0		122	85-115		
Cadmium	19.7		ug/l	0.50	20.0		99	85-115		
<u>Blank (506105-13)</u>					<u>Pre</u>	epared: 19-	Nov-19 Ar	nalyzed: 21-N	<u>lov-19</u>	
Copper	< 1.0		ug/l	1.0				-		
Beryllium	< 0.70		ug/l	0.70				-		
LCS (506105-14)					<u>Pre</u>	epared: 19-	Nov-19 Ar	halyzed: 21-N	<u>lov-19</u>	
Copper	21.0		ug/l	1.0	20.0		105	85-115		
Beryllium	20.8		ug/I	0.70	20.0		104	85-115		
<u>245.1</u>										
Batch 505356 - 245.1										
<u>Blank (505492-42)</u>					Pre	epared & Ai	nalyzed: 19	-Nov-19		
Mercury	< 0.00020		mg/l	0.00020				-		
LCS (505492-43)					Pre	epared & Ai	nalyzed: 19	-Nov-19		
Mercury	0.00690		mg/l	0.00020	0.00667		103	85-115		
<u>608.3</u>										
Batch 504677 - 3510C										
Blank (505081-33)					Pre	epared: 15-	Nov-19 Ar	nalvzed: 18-N	lov-19	

Analyte(s)	Result	Flag	Units	*RDL	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit
<u>608.3</u>										
Batch 504677 - 3510C										
Blank (505081-33)					Pre	epared: 15-l	Nov-19 Ar	nalyzed: 18-N	lov-19	
PCB-1221	< 0.060		ug/l	0.060				-		
PCB-1254	< 0.060		ug/l	0.060				-		
PCB-1268	< 0.060		ug/l	0.060				-		
PCB-1260	< 0.060		ug/l	0.060				-		
PCB-1262	< 0.060		ug/l	0.060				-		
PCB-1016	< 0.060		ug/l	0.060				-		
PCB-1232	< 0.060		ug/l	0.060				-		
PCB-1242	< 0.060		ug/l	0.060				-		
PCB-1248	< 0.060		ug/l	0.060				-		
Surrogate: Tetrachloro-m-xylene (Surr)	0.0928	р	ug/l		0.200		46	42-135		
Surrogate: DCB Decachlorobiphenyl	0.167		ug/l		0.200		84	36-121		
LCS (505081-34)					Pre	epared: 15-	Nov-19 Ar	nalyzed: 18-N	lov-19	
PCB-1260	0.801		ug/l	0.060	1.00		80	69-120		
PCB-1016	0.910		ug/l	0.060	1.00		91	69-123		
Surrogate: Tetrachloro-m-xylene (Surr)	0.134		ug/l		0.200		67	42-135		
Surrogate: DCB Decachlorobiphenyl	0.163		ug/l		0.200		82	36-121		
LCS Dup (505081-35)					Pre	epared: 15-	Nov-19 Ar	nalyzed: 18-N	lov-19	
PCB-1016	0.982		ug/l	0.060	1.00		98	69-123	8	30
PCB-1260	0.881		ug/l	0.060	1.00		88	69-120	10	30
Surrogate: Tetrachloro-m-xylene (Surr)	0.150		ug/l		0.200		75	42-135		
Surrogate: DCB Decachlorobiphenyl	0.179		ug/l		0.200		90	36-121		
624.1										
Batch 505133 - 624										
L CS (505133-5)					Pro	anarod & Ar	nalvzed: 18	-Nov-19		
Ethylbenzene	18 9		ua/l	5.0	20.0		95	37-162		
1 1 2-Trichloroethane	19.5		ug/l	5.0	20.0		98	52-150		
1 1-Dichloroethane	19.5		ug/l	5.0	20.0		97	59-155		
1 1-Dichloroethene	18.3		ug/l	5.0	20.0		91	1-234		
1 2-Dichlorobenzene	19.4		ug/l	5.0	20.0		97	18-190		
1 2-Dichloroethane	20.0		ug/l	5.0	20.0		100	49-155		
1 3-Dichlorobenzene	19.4		ug/l	5.0	20.0		97	59-156		
1 4-Dichlorobenzene	19.3		ug/l	5.0	20.0		96	18-190		
1 4-Dioxane	492		ug/l	200	400		123	10-208		
Benzene	19.0		ug/l	5.0	20.0		95	37-151		
Tetrachloroethene	18.2		ug/l	5.0	20.0		91	64-148		
cis-1.2-Dichloroethene	20.5		ug/l	5.0	20.0		103	50-150		
1.1.1-Trichloroethane	20.3		ug/l	5.0	20.0		102	52-162		
Methyl tert-butyl ether	21.3		ug/l	5.0	20.0		107	78-118		
Methylene Chloride	20.8		ua/l	5.0	20.0		104	1-221		
m-Xylene & p-Xylene	18.3		ug/l	10	20.0		92	79-120		
Acetone	0.110		ug/l	2.5	0.100		110	21-161		
o-Xylene	18.7		ug/l	5.0	20.0		93	79-120		
Vinyl chloride	18.0		ug/l	5.0	20.0		90	1-251		
Trichloroethylene	19.0		ug/l	5.0	20.0		95	71-157		
Toluene	18.5		ug/l	5.0	20.0		93	47-150		
Carbon tetrachloride	20.3		ug/l	5.0	20.0		102	70-140		
Surrogate: 4-Bromofluorobenzene (Surr)	33.1		ug/l		30.0		110	76-123		
Surrogate: 1,2-Dichloroethane-d4 (Surr)	32.3		ug/l		30.0		108	68-130		
Surrogate: Toluene-d8 (Surr)	31.3		ug/l		30.0		104	77-120		

02-Dec-19 10:17

Analyte(s)	Result	Flag	Units	*RDL	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit
<u>624.1</u>										
Batch 505133 - 624										
Blank (505133-7)					Pre	epared & A	nalyzed: 18-	Nov-19		
1,3-Dichlorobenzene	< 5.0		ug/l	5.0				-		
Carbon tetrachloride	< 5.0		ug/l	5.0				-		
1,2-Dichlorobenzene	< 5.0		ug/l	5.0				-		
1,1-Dichloroethene	< 5.0		ug/l	5.0				-		
1,1-Dichloroethane	< 5.0		ug/l	5.0				-		
1,1,2-Trichloroethane	< 5.0		ug/l	5.0				-		
1,1,1-Trichloroethane	< 5.0		ug/l	5.0				-		
1,4-Dichlorobenzene	< 5.0		ug/l	5.0				-		
1,2-Dichloroethane	< 5.0		ug/l	5.0				-		
1,4-Dioxane	< 200		ug/l	200				-		
Benzene	< 5.0		ug/l	5.0				-		
Acetone	< 2.5		ug/l	2.5				-		
cis-1,2-Dichloroethene	< 5.0		ug/l	5.0				-		
Toluene	< 5.0		ug/l	5.0				-		
Vinyl chloride	< 5.0		ug/l	5.0				-		
Trichloroethylene	< 5.0		ug/l	5.0				-		
Total BTEX	< 10		ug/l	10				-		
Ethylbenzene	< 5.0		ug/l	5.0				-		
Tetrachloroethene	< 5.0		ug/l	5.0				-		
o-Xylene	< 5.0		ug/l	5.0				-		
m-Xylene & p-Xylene	< 10		ug/l	10				-		
Methylene Chloride	< 5.0		ug/l	5.0				-		
Methyl tert-butyl ether	< 5.0		ug/l	5.0				-		
Surrogate: 1,2-Dichloroethane-d4 (Surr)	32.1		ug/l		30.0		107	68-130		
Surrogate: 4-Bromofluorobenzene (Surr)	32.9		ug/l		30.0		110	76-123		
Surrogate: Toluene-d8 (Surr)	31.1		ug/l		30.0		104	77-120		
<u>8011</u>										
Batch 505354 - 8011										
Blank (505221-60)					Pre	epared & A	nalvzed: 19-	Nov-19		
Ethylene Dibromide	< 0.011		ug/l	0.011	<u></u>		,	-		
LCS (505221-61)			č		Pre	epared & A	nalvzed: 19	Nov-19		
Ethylene Dibromide	0.125		ug/l	0.011	0.112		111	46-150		
LCS Dup (505221-62)			-		Pre	epared & A	nalyzed: 19-	-Nov-19		

Ethylene Dibromide

ug/l

0.011

0.113

102

46-150

8

40

0.115

Notes and Definitions

*	LCS or LCSD	is outside acce	ptance limits.
	LCD OI LCDD	15 Outside dece	plance minus.

*a Outside of specification

- B Compound was found in the blank and sample.
- 1 This parameter is outside laboratory lcs/lcsd specified recovery limits.
- p The %RPD between the primary and confirmation column/detector is >40%. The lower value has been reported.
- r This parameter is outside laboratory rpd specified recovery limits.
- dry Sample results reported on a dry weight basis
- NR Not Reported
- RPD Relative Percent Difference
- [2C] Indicates concentration was reported from the secondary, confirmation column.
- ClHT The method for residual chlorine indicates that samples should be analyzed immediately. 40 CFR 136 specifies a holding time of 15 minutes from sampling to analysis. Therefore all aqueous residual chlorine samples not analyzed in the field are considered out of hold time at the time of sample receipt.

Interpretation of Total Petroleum Hydrocarbon Report

Petroleum identification is determined by comparing the GC fingerprint obtained from the sample with a library of GC fingerprints obtained from analyses of various petroleum products. Possible match categories are as follows:

Gasoline - includes regular, unleaded, premium, etc. Fuel Oil #2 - includes home heating oil, #2 fuel oil, and diesel Fuel Oil #4 - includes #4 fuel oil Fuel Oil #6 - includes #6 fuel oil and bunker "C" oil Motor Oil - includes virgin and waste automobile oil Ligroin - includes mineral spirits, petroleum naphtha, vm&p naphtha Aviation Fuel - includes kerosene, Jet A and JP-4 Other Oil - includes lubricating and cutting oil, and silicon oil

At times, the unidentified petroleum product is quantified using a calibration that most closely approximates the distribution of compounds in the sample. When this occurs, the result is qualified as Calculated as.

<u>Laboratory Control Sample (LCS)</u>: A known matrix spiked with compound(s) representative of the target analytes, which is used to document laboratory performance.

Matrix Duplicate: An intra-laboratory split sample which is used to document the precision of a method in a given sample matrix.

<u>Matrix Spike</u>: An aliquot of a sample spiked with a known concentration of target analyte(s). The spiking occurs prior to sample preparation and analysis. A matrix spike is used to document the bias of a method in a given sample matrix.

<u>Method Blank</u>: An analyte-free matrix to which all reagents are added in the same volumes or proportions as used in sample processing. The method blank should be carried through the complete sample preparation and analytical procedure. The method blank is used to document contamination resulting from the analytical process.

<u>Method Detection Limit (MDL)</u>: The minimum concentration of a substance that can be measured and reported with 99% confidence that the analyte concentration is greater than zero and is determined from analysis of a sample in a given matrix type containing the analyte.

<u>Reportable Detection Limit (RDL)</u>: The lowest concentration that can be reliably achieved within specified limits of precision and accuracy during routine laboratory operating conditions. For many analytes the RDL analyte concentration is selected as the lowest non-zero standard in the calibration curve. While the RDL is approximately 5 to 10 times the MDL, the RDL for each sample takes into account the sample volume/weight, extract/digestate volume, cleanup procedures and, if applicable, dry weight correction. Sample RDLs are highly matrix-dependent.

<u>Surrogate</u>: An organic compound which is similar to the target analyte(s) in chemical composition and behavior in the analytical process, but which is not normally found in environmental samples. These compounds are spiked into all blanks, standards, and samples prior to analysis. Percent recoveries are calculated for each surrogate.

<u>Continuing Calibration Verification</u>: The calibration relationship established during the initial calibration must be verified at periodic intervals. Concentrations, intervals, and criteria are method specific.

01 • 413-789-9018 • www.EurofinsUS.com/Spectrum Rev. Sep 2015	am, MA 010	n Drive • Agaw	ess: 11 Almgre	mple shipping addr	S	
Ambient Infred Refrigerated DI VOA Frozen Soil Jar Frozen		27 27 19 19 19 19 10 10 10	10 10 10			
3 3 Condition upon receipt: Custody Seals: Present Intact Broken	aelae 0. No rota i	terr terr MbTi	129 - 1 945 31 945 44 945 -			
· · · · · · · · · · · · · · · · · · ·						
4:43 33 DE-mail to: alexandra , rioldle Q atcass.		11/2/11		N	Levis Kondor	X
Time: Temp °C EDD format:	*	Date	d by:	Receive	Relinquished by:	
	1 11 3 10] (300)		1976 1976 1976		401 401 103 103 910 52 -	
			994 994 234			
	- 50 145					
				s Baris		
		1390 2 (390) 2 (2 (2 ()		• 1977		
	945) 928			10 10 10 10 10 10 10 10 10 10 10 10		
entry by S24	4449					
3XX CONTRACTAME		6 SE	12:50	61/21/1	Lev Wittall	
a possible	A St.		2		, , , ,	
6 XXXXXXXX ODLowest RLS	6	6 GW 10	11/10	11/12/19	1-MW 101469	8650
# of Award A	* # of) T Ma # of	Time:	Date:	Lab ID: Sample ID:	
Plastic NMdNi 13 Tit 13 Tit 13 Tit 13 Tit 10 C - 67 2 C - 77 2 C - 67 2 C - 77 2 C - 7	Ambe Clear	ype atrix VOA	- ič	C=Compsi	G=Grab	
A 1 2 2 4 1 2 2 4 4 7 CO ASP A* ASP B*	r Glas Glass	Vials		X3-	X1= X2=	
BIDE 13C8 13C9 13C9 13C0 13C0 13C0 13C0 13C0 13C0 13C0 13C0	SS .		oil Gas	mbient Air SG=Sc	Oil SO=Soil SL=Sludge A=Indoor/A	0=0
ners C Analysis MA DEP MCP CAM Report? Yes No	Contai		W=Waste Water	=Surface Water W	V=Dinking Water GW=Groundwater SW	DW
List Preservative Code below: QA/QC Reporting Notes: * additional charges may appply		Ascorbic Acid 12=	5=NaOH 6=	11=	Field Filtered 1=Na ₂ S2O ₃ 2=HCl 3=F CH3OH 8=NaHSO ₄ 9=Deionized Water 10=F	F=F
	Quote	903	P.O No.:	idelle	ject Mgr: <u>Hila and va K</u>	Proj
Location: 227 Ash I on of St State: MA Sampler(s): KK		e suq			ephone #: 413 781,0070	Tele
Site Name: CFI N. ADAMIS						
Project No: MA84996		CET	Invoice To:	relat	por to: ATC W. Song	Rej
- All TATs subject to laboratory approval Min. 24-hr notification needed for rushes Samples disposed after 60 days unless otherwise instructed.	of	Page		Analytical		
DY RECORD	USTO	N OF CI	CHAI		eurofins	3;
Special Handling:						10 32
11 99CC						

- Infhert Samples

NPDES Permit No. MAG910000 and NHG910000

1. Chemical-Specific Effluent Limitations in Massachusetts and New Hampshire During the period beginning on the effective date and lasting through the expiration date, EPA will authorize the discharges under Part 1.1 of this general permit to receiving waters in Massachusetts and New Hampshire. The effective date of authorization for each discharge covered under this general permit is the date indicated in EPA's written authorization to discharge, lasting through the expiration date of this general permit or written termination of coverage, whichever occurs first. Each discharge shall be limited and monitored as specified in Table 2, below. The applicability of effluent limitations for each Activity Category listed in Table 1 is included in footnote 2, below. Additional limitations and monitoring requirements are specified in Parts 2.2 through 2.5 and Part 4, below.

Demomentary /Method / BI	Effluent Limitation ^{3,4}	
Farameter / notified / RE	TBEL ⁵ ,	WQBEL ⁶
A. Inorganics -annexest ALL	and and a second se	
Ammonia ⁷ 350.1 / 0'.1 ug/L or 0.0001 mg/L	Report mg/L	
Chloride ⁸ 300.0 / 1000 ug/L or 1.0 mg/L	Report µg/L	
Total Residual Chlorine ⁹ SM4500-Cl-G (11) / 0.02 mg/L	0.2 mg/L	FW= 11 μg/L SW= 7.5 μg/L
Total Suspended Solids SM2540 D / 5 mg/L	3	0 mg/L
Antimony ¹⁰ 200.8 / 0.5 ug/L	206 µg/L	640 μg/L in MA 4.3 mg/L in NH
Arsenic ¹⁰ 200.8 / 0.5 ug/L	104 µg/L	FW= 10 μg/L SW= 36 μg/L
Cadmium ^{11,12} 200.8 / 0.5 ug/L	10.2 μg/L	FW= 0.25 μg/L SW= 8.8 μg/L in MA SW= 9.3 μg/L in NH
Chromium $III^{11,12}$ Calculation / 10 ug/L	323 μg/L	FW= 74 μg/L SW= 100 μg/L
Chromium VI ^{11,13} 7196 / 5 ug/L	323 μg/L	FW= 11 μg/L SW= 50 μg/L
Copper ^{11,12} 200.8 / 0.5 ug/L	242 μg/L	FW= 9 μg/L SW= 3.1 μg/L
Iron ¹⁰ 200.7' / 30 ug/L	5,000 μg/L	FW = 1,000 μg/L
Lead ^{11,12} 200.8 / 0.5 ug/L	160 µg/L	FW= 2.5 μg/L SW= 8.1 μg/L
Mercury ¹¹ 245.1 / 0.2 ug/L	0.739 μg/L	FW= 0.77 μg/L SW= 0.94 μg/L
Nickel ^{11,12} 200.8-/-0.5 ug/L	– — 1,450 µg/L —	FW= 52 μg/L SW= 8.2 μg/L
Selenium 200.8 / 0.5 ug/L	235.8 µg/L	FW= 5.0 μ g/L ¹⁰ SW= 71 μ g/L ¹¹
Silver ^{11,12} 200.8 / 0.5ug/L	35.1 μg/L	FW= 3.2 μg/L SW= 1.9 μg/L
Zinc ^{11,12} 200.8 / 0.5 ug/L	420 μg/L	FW= 120 µg/L SW= 81 µg/L

Table 2: Chemical-Specific Effluent Limitations and Monitor-Only Requirements¹

NPDES Permit No. MAG910000 and NHG910000

* Parameter ²	Effluent Limitation ^{3,4}		
	TBEL ⁵	WQBEL ⁶	
Cyanide ¹⁴ 335.4 / 5.0 ug/L	178 mg/L	$FW = 5.2 \ \mu g/L$ $SW = 1.0 \ \mu g/L$	
B. Non-Halogenated Volatile Organic Compounds - A	1 more ant	ΟΨ_1.0 μg/L ·	
Total BTEX ¹⁵ 624 / BTEX reported as ind. cmpds.	preserv 1	00 μσ/Ι.	
Benzene ¹⁵ 624 / 1 ug/L	1 1	50 μg/L	
1,4 Dioxane ¹⁶ 624 / 20 ug/L or 8260 SIM / 0.5 ug/L	2	<u>00 μσ/Γ</u>	
Acetone 624 / 10 ug/L	7	97 mg/L	
Phenol 625 / 5 ug/L	1.080 µg/L	300 µg/T	
C. Halogenated Volatile Organic Compounds -IFO	hespht	1 000 MB/L	
Carbon Tetrachloride 624 / 1 ug/L	4.4 µg/L	1.6 ug/L in MA	
1,2 Dichlorobenzene 624 / 1 ug/L	6	00 цд/Г.	
1,3 Dichlorobenzene 624 / 1 ug/L	.3	20 µg/L	
1,4 Dichlorobenzene 624 / 1 ug/L	5	.0 µg/L	
l'otal dichlorobenzene reported as individ. cmpds	763	ug/L in NH	
1,1 Dichloroethane 624 / 1 ug/L	1	/0 ug/L	
1,2 Dichloroethane 624 / 1 ug/L	5.0 μg/L		
I,I Dichloroethylene 624 / 1 ug/L	3.2 µg/L		
lylene Dibromide''8260 / 0.5 ug/L *need 8011 or 504 1 to achieve RD.05 µg/L			
Methylene Chloride 624 / 10 ug/L *2ug/L when requested 4.6 µg/L		.6 μg/L	
I,I,I Trichloroethane 624 / 1 ug/L	20	00 μg/L	
1,1,2 Trichloroethane 624 / 1 ug/L	5	.0 μg/L	
Irichloroethylene 624 / 1 ug/L	5	5.0 µg/L	
letrachloroethylene 624 / 1 ug/L	5.0 μg/L 3.3 μg/L in MA		
cis-1,2 Dichloroethylene 624 / 1 ug/L	70 ug/L m MA		
Vinyl Chloride 624 / 1 ug/L	2.0 µg/L		
D. Non-Halogenated Semi-Volatile Organic Compounds -	Annonesent		
Total Phthalates ¹⁸ 625 / Phthalates reported indivic	. 190 μg/L	$FW = 3.0 \ \mu g/L \text{ in NH}$ SW = 3.4 $\mu g/L$ in NH	
Diethylhexyl phthalate ¹⁸ 625 / 5 ug/L	101 µg/L	2.2 μg/L in MA 5.9 μg/L in NH	
Total Group I Polycyclic Aromatic Hydrocarbons ¹⁹ 625 SIM	1.0 μg/L	As Individual PAHs	
Benzo(a)anthracene ¹⁹ 625 / 0.05 ug/L		0.0038 µg/L	
Benzo(a)pyrene ¹⁹ 625 / 0.05 ug/L		0.0038 µg/L	
Benzo(b)fluoranthene ¹⁹ 625 / 0.05 ug/L	As Total Group I	0.0038 µg/L	
Benzo(k)fluoranthene ¹⁹ 625 / 0.05 ug/L		0.0038 µg/L	
Chrysene ¹⁹ 625 / 0.05 ug/L	PAHs 0.0038 µg/L 0.0038 µg/L 0.0038 µg/L		
Dibenzo(a,h)anthracene ¹⁹ 625 / 0.05 ug/L			
Indeno(1,2,3-cd)pyrene ¹⁹ 625 / 0.05 ug/L	e a solucione e	0.0038 µg/L	
Total Group II Polycyclic Aromatic Hydrocarbons ²⁰	100 цо/Т.		
Naphthalene ²⁰ 625 / 0.05 ug/L	20 µg/L		
E. Halogenated Semi-Volatile Organic Compounds -T	Forecent		
Total Polychlorinated Biphenyls ²¹ 608 / 0.2 ug/L reporter	lindivid. 0.000	064 μg/T	
Pentachlorophenol 625 / 1.0 ug/L	1.() µo/I	

NPDES Permit No. MAG910000 and NHG910000

n2	Effluent Limitation ^{3,4}		
Parameter-	TBEL ⁵	WQBEL ⁶	
F. Fuels Parameters -any present			
Total Petroleum Hydrocarbons ²² 1664 / 1.0 mg/L	- 5	- 5.0 mg/L	
Ethanol ²³ 8015 / 1 mg/L or 524 / 200 ug/L	✓ Report mg/L		
Methyl-tert-Butyl Ether ²⁴ 624 / 1.0 ug/L	70 µg/L	20 µg/L in MA	
tert-Butyl Alcohol 524 / 10 ug/L	і 120 µ 40 µ	120 μg/L in MA 40 μg/L in NH	
tert-Amyl Methyl Ether ²⁴ 524 / 0.5 ug/L	90 μg/L in MA 140 μg/L in NH		

Table 2 Footnotes:

¹ The following abbreviations are used in Table 2, above:

^a TBEL = technology-based effluent limitation

- ^b WQBEL = water quality-based effluent limitation
- ^c mg/L = milligrams per liter

^d avg = average

- $e \mu g/L = micrograms per liter$
- f FW = freshwater

^gSW = saltwater

² The sample type required for all parameters is grab. Grab samples must be analyzed individually and cannot be composited. See Appendix IX for additional definitions.

³ The effluent limitation and/or monitor-only requirement for any parameter listed applies to any site if the given parameter is present at that site. The effluent limitations and monitor-only requirements also apply to Activity Categories as follows:

^a Activity Category I:

all parameters in contamination type A. Inorganics; any present in contamination type B. non-halogenated VOCs; if present in contamination type C. halogenated VOCs; any present in contamination type D. non-halogenated SVOCs; if present in contamination type E. halogenated SVOCs; and any present in contamination type F. fuels parameters.

^b Activity Category II:

all parameters in contamination type A. Inorganics; any present in contamination type B. non-halogenated VOCs; any present in contamination type C. halogenated VOCs; any present in contamination type D. non-halogenated SVOCs; if present in contamination type E. halogenated SVOCs; and if present in contamination type F. fuels parameters.

Batch Summary

'[none]'

<u>Subcontracted Analyses</u> SC56741-01 (MW-1)

<u>504677</u>

<u>Subcontracted Analyses</u> 505081-33 505081-34 505081-35 SC56741-01 (MW-1)

<u>505133</u>

<u>Subcontracted Analyses</u> 505133-5 505133-7 SC56741-01 (MW-1)

<u>505264</u>

<u>Subcontracted Analyses</u> 505545-20 505545-21 SC56741-01 (MW-1)

<u>505265</u>

<u>Subcontracted Analyses</u> 505759-13 505759-17 506105-13 506105-14 SC56741-01 (MW-1) SC56741-01RE1 (MW-1) SC56741-02 (Outfall) SC56741-02RE1 (Outfall)

<u>505354</u>

<u>Subcontracted Analyses</u> 505221-60 505221-61 505221-62 SC56741-01 (MW-1)

<u>505356</u>

<u>Subcontracted Analyses</u> 505492-42 505492-43 SC56741-01 (MW-1) SC56741-02 (Outfall)

<u>505862</u>

<u>Subcontracted Analyses</u> 506020-1 506020-2 SC56741-01 (MW-1)

<u>505985A</u>

Subcontracted Analyses CE58486-BLK CE58486-LCS SC56741-01 (MW-1)

<u>505986A</u>

<u>Subcontracted Analyses</u> CE58977-BLK

CE58977-DUP CE58977-LCS CE58977-MS SC56741-01 (MW-1)

<u>505994A</u>

Subcontracted Analyses CE56704-BLK CE56704-LCS SC56741-01 (MW-1)

<u>506038A</u>

Subcontracted Analyses CE58360-BLK CE58360-LCS SC56741-01 (MW-1)

<u>506041A</u>

Subcontracted Analyses

CE58178-BLK CE58178-LCS SC56741-01 (MW-1)

<u>506131A</u>

<u>Subcontracted Analyses</u> CE57383-BLK CE57383-LCS SC56741-01 (MW-1) SC56741-02 (Outfall)

<u>506141A</u>

<u>Subcontracted Analyses</u> CE58977-BLK CE58977-LCS CE58977-BLK CF58977-BLK CF58977-LCS CF58977-LCS SC56741-01 (MW-1) SC56741-01RE1 (MW-1)

<u>506258A</u>

<u>Subcontracted Analyses</u> CE58264-BLK CE58264-LCS SC56741-01 (MW-1)

<u>506339A</u>

<u>Subcontracted Analyses</u> CE59614-BLK CE59614-LCS SC56741-01 (MW-1)

<u>506512A</u>

<u>Subcontracted Analyses</u> CE59290-BLK CE59290-LCS CE59290-LCSD SC56741-01 (MW-1)

<u>506759</u>

<u>Subcontracted Analyses</u> SC56741-01 (MW-1) SC56741-02 (Outfall)