

Environmental Strategy & Engineering

October 26, 2020

GeoInsight Project 9353-000

United States Environmental Protection Agency Office of Ecosystem Protection EPA/OEP RGP Applications Coordinator 5 Post Office Square - Suite 100 (OEP06-01) Boston, MA 02109-3912

RE: Notice of Intent – Remediation General Permit 549 Main Street and 8 Post Office Square Behind Acton, Massachusetts

To Whom It May Concern:

GeoInsight Inc. (GeoInsight) prepared the attached Notice of Intent (NOI) for the Remediation General Permit (RGP) at the request of the Water Supply District of Acton (the Acton Water District). A copy of the NOI is provided in Attachment A.

The purpose of this submittal is to obtain a permit to temporarily discharge water generated during an aquifer pumping test at 549 Main Street and 8 Post Office Square Behind in Acton, Massachusetts (herein referred to as the "Property"). Refer to Figure 1 for the location of the Property and Figure 2 for Property features.

BACKGROUND

In March 2019, bedrock water supply wells A, D, and E were installed at the Property. The locations of the wells are shown on Figure 2. During the initial pumping test on May 21, 2019, groundwater samples were collected from the wells and analyzed for volatile organic compounds (VOCs) along with other water quality parameters. On September 12, 2019, a supplemental pumping test was conducted and groundwater samples were collected at the beginning, end, and at three-hour intervals for nine hours (i.e., three interval samples) during the test. The samples were analyzed for VOCs and 1,4-dioxane, along with other water quality parameters.

Trichloroethene (TCE) and 1,4-dioxane were detected at concentrations above MADEP RCGW-1 reportable concentrations. Cis-1,2-dichloroethene (cis-1,2-DCE), dichlorodifluoromethane (Freon 12), toluene, Freon 113, and 1,2-dichlorotetrafluoroethane (Freon 114), were also detected in the groundwater samples at concentrations above laboratory reporting limits but below MADEP RCGW-1 reportable concentrations.

The detection of TCE and 1,4-dioxane above RCGW-1 reportable concentrations constituted a reportable release condition under the Massachusetts Contingency Plan (MCP), and a Release Notification Form (RNF) was filed with the MADEP on September 9, 2019. Release Tracking Number (RTN) 2-21031 was assigned by the MADEP to this release condition. Historical information suggested that the impacts detected in the bedrock water supply wells originated at one or more upgradient properties. A Downgradient Property Status (DPS) Submittal was filed for RTN 2-21031 on June 22, 2020.

REMEDIATION GENERAL PERMIT NOTICE OF INTENT

On September 25, 2020, groundwater samples were obtained from well Well-E. The groundwater samples were submitted to Alpha Analytical Laboratory (Alpha) of Westborough, Massachusetts for analysis of RGP permit parameters. The groundwater samples were analyzed for VOCs, semi-volatile organic compounds (SVOCs), total metals, total petroleum hydrocarbons (TPH), polychlorinated biphenyls (PCBs), total suspended solids (TSS), chloride, cyanide, ammonia, hardness, and total residual chlorine (TRC).

On September 25, 2020 samples were collected from the receiving water body, the Nashoba Brook (Segment MA82B-14) and field analyzed for temperature and pH. Samples from the receiving water body were also collected for laboratory analysis of ammonia, hardness, and total metals.

During the pumping test, groundwater will be pumped from the pumping test wells (Well-E and Well-A), through the treatment system, and discharged to Nashoba Brook via aboveground piping/hoses.

DILUTION FACTOR AND EFFLUENT LIMITATION CALCULATIONS

A Dilution Factor (DF) was calculated using the methods described in Appendix V of the RGP. In order to calculate a DF, the seven day-ten-year low flow (7Q10) of the receiving water was identified in accordance with the instructions in Appendix V of the RGP and verified with MADEP. A copy of the correspondence with MADEP is included in Attachment F. A copy of the USEPA provided spreadsheet to calculate the DF and water quality-based effluent limitations (WQBELs) is included in Attachment G.

SUMMARY AND CONCLUSIONS

The purpose of this report is to summarize environmental conditions and groundwater data collected to date to support a Notice of Intent to discharge under the Remediation General Permit for the proposed pumping test at the Property.

If you have any questions or comments regarding the contents of this letter or the enclosed materials, please contact either of us at (978) 679-1600.

Sincerely,

GEOINSIGHT, INC.

Robert C. Reynolds Senior Project Engineer Kevin D. Trainer, C.P.G., P.G., L.S.P. Senior Associate

Enclosures:

FIGURES

Figure 1 - Property Locus Figure 2 - Property Plan

Figure 3 - Proposed Discharge Route

ATTACHMENTS

Attachment A - Notice of Intent for the Remediation General Permit

Attachment B - Endangered Species Act Documentation

Attachment C - National Historic Preservation Act Documentation

Attachment D - Receiving Water Hydrologic Information

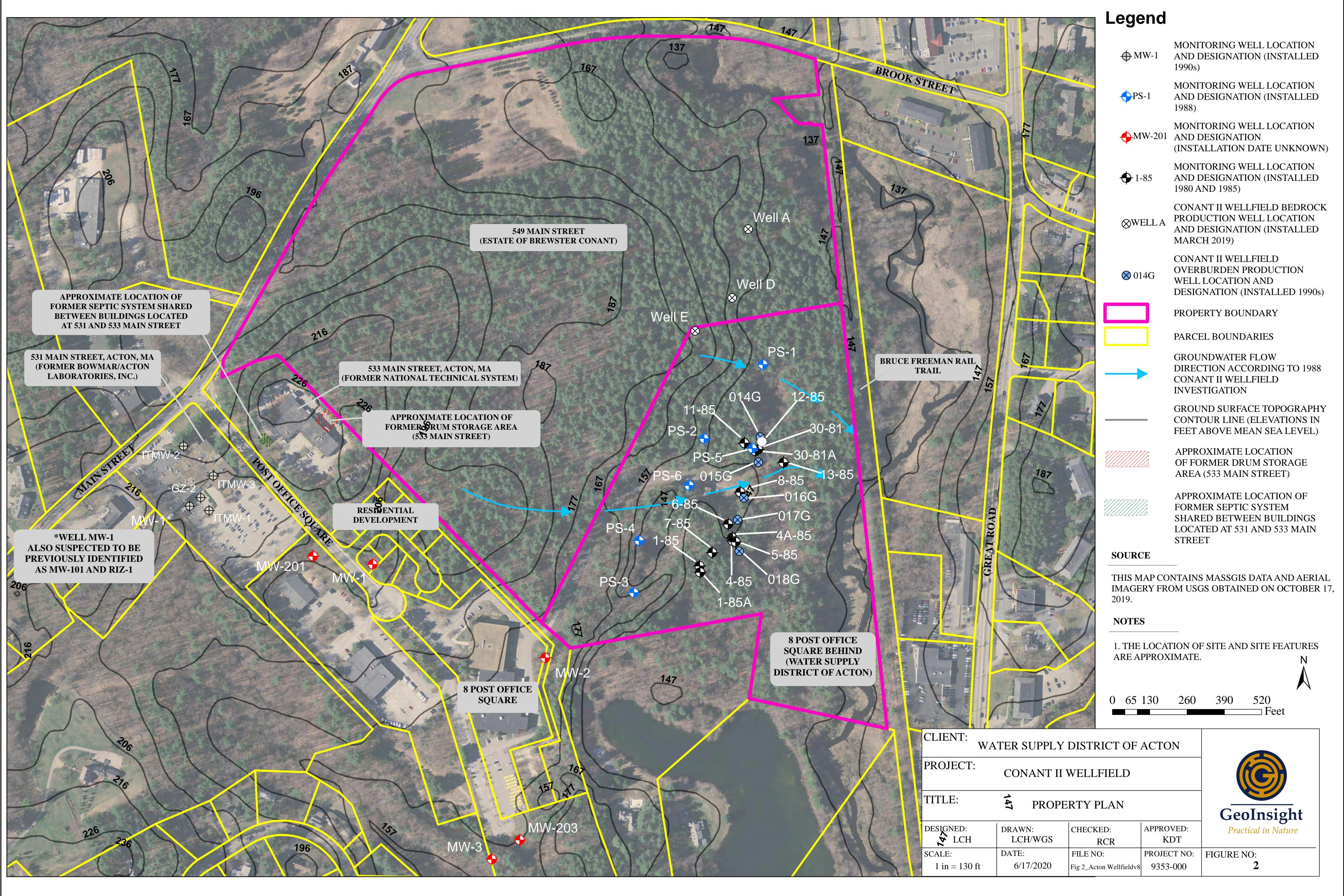
Attachment E - Laboratory Report

Attachment F - MADEP Correspondence

Attachment G - USEPA Appendix V Dilution Factor and WQBEL Spreadsheet

Attachment H - MADEP BWSC Phase I Site Assessment Map

FIGURES


SOURCE:

USGS WESTFORD, -ND M-YN-RD, M-TOPOGR-PHIC QU-DR-NGLES 2018 CONTOUR INTERV-L: 10 FEET


CLIENT:	WATER SUPPLY DISTRICT OF ACTON						
	0. 7.0.0						
TITLE:	LE: PROPERTY LOCUS						
DESIGNED:	DR- N:	CHECKED:	-PPROVED:				

	PROPER	GeoInsight ⁴					
DESIGNED: RCR	DR- N: WGS	CHECKED: WGS	-PPROVED: RCR	Practical in Nature			
SC-LE: 1" = 2000'		FILE NO.: 9353-LOCUS	PROJECT NO.: 9353-000	FIGURE NO.:			

6/18/2020 Google Maps

Imagery ©2020 MassGIS, Commonwealth of Massachusetts EOEA, Maxar Technologies, USDA Farm Service Agency, Map data ©2020 200 ft |

FIGURE 3 - PROPOSED DISCHARGE ROUTE

ATTACHMENTS

ATTACHMENT A NOTICE OF INTENT FOR THE REMEDIATION GENERAL PERMIT

II. Suggested Format for the Remediation General Permit Notice of Intent (NOI)

A. General site information:

1. Name of site:	Site address:						
	Street:						
	City:		State:	Zip:			
2. Site owner	Contact Person:						
	Telephone:	Email:					
	Mailing address:						
	Street:						
Owner is (check one): ☐ Federal ☐ State/Tribal ☐ Private ☐ Other; if so, specify:	City:		State:	Zip:			
3. Site operator, if different than owner	Contact Person:						
	Telephone:	Email:					
	Mailing address:						
	Street:						
	City:		State:	Zip:			
4. NPDES permit number assigned by EPA:	5. Other regulatory program(s) that apply to the site	(check all th	at apply):				
	☐ MA Chapter 21e; list RTN(s):	□ CERCL	CLA				
NPDES permit is (check all that apply: \square RGP \square DGP \square CGP	☐ NH Groundwater Management Permit or	☐ UIC Program					
☐ MSGP ☐ Individual NPDES permit ☐ Other; if so, specify:	Groundwater Release Detection Permit:	□ POTW Pretreatment□ CWA Section 404					
		⊔ CWAS	ection 404				

В.	Receiving water information:	:
1 N	lame of receiving water(s).	

1. Name of receiving water(s):	Name of receiving water(s): Waterbody identification of receiving water(s): Classificatio								
Receiving water is (check any that apply): \Box Outstar	nding Resource Water □ Ocean Sanctuary □ territor	rial sea □ Wild and Scenic R	iver						
2. Has the operator attached a location map in accord	lance with the instructions in B, above? (check one)	: □ Yes □ No							
Are sensitive receptors present near the site? (check of If yes, specify:	one): □ Yes □ No								
3. Indicate if the receiving water(s) is listed in the Stapollutants indicated. Also, indicate if a final TMDL it 4.6 of the RGP.									
4. Indicate the seven day-ten-year low flow (7Q10) of the receiving water determined in accordance with the instructions in Appendix V for sites located in Massachusetts and Appendix VI for sites located in New Hampshire.									
5. Indicate the requested dilution factor for the calculaccordance with the instructions in Appendix V for s									
6. Has the operator received confirmation from the a If yes, indicate date confirmation received:	ppropriate State for the 7Q10and dilution factor indi	cated? (check one): ☐ Yes ☐	l No						
7. Has the operator attached a summary of receiving	water sampling results as required in Part 4.2 of the	RGP in accordance with the	instruction in Appendix VIII?						
(check one): □ Yes □ No									
C. Source water information:									
1. Source water(s) is (check any that apply):									
☐ Contaminated groundwater	Contaminated groundwater Contaminated surface water Contaminated surface water The receiving water Dotable water; if so, indicate municipality or origin:								
Has the operator attached a summary of influent	Has the operator attached a summary of influent	☐ A surface water other							
sampling results as required in Part 4.2 of the RGP in accordance with the instruction in Appendix VIII? (check one):	sampling results as required in Part 4.2 of the RGP in accordance with the instruction in Appendix VIII? (check one):	than the receiving water; if so, indicate waterbody:	☐ Other; if so, specify:						
□ Yes □ No	□ Yes □ No								

2. Source water contaminants:	
a. For source waters that are contaminated groundwater or contaminated surface water, indicate are any contaminants present that are not included in	b. For a source water that is a surface water other than the receiving water, potable water or other, indicate any contaminants present at the maximum concentration in accordance
the RGP? (check one): ☐ Yes ☐ No If yes, indicate the contaminant(s) and	with the instructions in Appendix VIII? (check one): □ Yes □ No
the maximum concentration present in accordance with the instructions in	
Appendix VIII. Freon 12 (7.18 ug/L), Freon 113 (5.94 ug/L), and Freon 114 (3	,
3. Has the source water been previously chlorinated or otherwise contains resid	dual chlorine? (check one): ☐ Yes ☐ No
D. Discharge information	
1. The discharge(s) is a(n) (check any that apply): \Box Existing discharge \Box New	v discharge □ New source
Outfall(s):	Outfall location(s): (Latitude, Longitude)
Discharges enter the receiving water(s) via (check any that apply): ☐ Direct di	scharge to the receiving water □ Indirect discharge, if so, specify:
\Box A private storm sewer system \Box A municipal storm sewer system	
If the discharge enters the receiving water via a private or municipal storm sew	ver system:
Has notification been provided to the owner of this system? (check one): \Box Ye	es □ No
Has the operator has received permission from the owner to use such system for obtaining permission:	or discharges? (check one): \square Yes \square No, if so, explain, with an estimated timeframe for
Has the operator attached a summary of any additional requirements the owner	of this system has specified? (check one): ☐ Yes ☐ No
Provide the expected start and end dates of discharge(s) (month/year):	
Indicate if the discharge is expected to occur over a duration of: \Box less than 1	2 months □ 12 months or more □ is an emergency discharge
Has the operator attached a site plan in accordance with the instructions in D, a	above? (check one): ☐ Yes ☐ No

2. Activity Category: (check all that apply)	3. Contamination Type Category: (check all that apply)					
	a. If Activity Categ	ory I or II: (check all that apply)				
	 □ A. Inorganics □ B. Non-Halogenated Volatile Organic Compounds □ C. Halogenated Volatile Organic Compounds □ D. Non-Halogenated Semi-Volatile Organic Compounds □ E. Halogenated Semi-Volatile Organic Compounds □ F. Fuels Parameters 					
 □ I – Petroleum-Related Site Remediation □ II – Non-Petroleum-Related Site Remediation 	b. If Activity Category III, IV	V, V, VI, VII or VIII: (check either G or H)				
 □ III – Non-Petroleum-Related Site Remediation □ III – Contaminated Site Dewatering □ IV – Dewatering of Pipelines and Tanks □ V – Aquifer Pump Testing □ VI – Well Development/Rehabilitation □ VII – Collection Structure Dewatering/Remediation □ VIII – Dredge-Related Dewatering 	□ G. Sites with Known Contamination c. If Category III-G, IV-G, V-G, VI-G, VII-G or VIII-G: (check all that apply) □ A. Inorganics □ B. Non-Halogenated Volatile Organic Compounds □ C. Halogenated Volatile Organic Compounds □ D. Non-Halogenated Semi-Volatile Organic Compounds □ E. Halogenated Semi-Volatile Organic Compounds □ F. Fuels Parameters	□ H. Sites with Unknown Contamination d. If Category III-H, IV-H, V-H, VI-H, VII-H or VIII-H Contamination Type Categories A through F apply				

4. Influent and Effluent Characteristics

	Known	Known		75 5 4	5	Infl	Influent Effluent Lim		nitations
Parameter	or believed absent	or believed present	# of samples	Test method (#)	Detection limit (µg/l)	Daily maximum (µg/l)	Daily average (µg/l)	TBEL	WQBEL
A. Inorganics									
Ammonia								Report mg/L	
Chloride								Report µg/l	
Total Residual Chlorine								0.2 mg/L	
Total Suspended Solids								30 mg/L	
Antimony								206 μg/L	
Arsenic								104 μg/L	
Cadmium								10.2 μg/L	
Chromium III								323 μg/L	
Chromium VI								323 μg/L	
Copper								242 μg/L	
Iron								5,000 μg/L	
Lead								160 μg/L	
Mercury								0.739 μg/L	
Nickel								1,450 μg/L	
Selenium								235.8 μg/L	
Silver								35.1 μg/L	
Zinc								420 μg/L	
Cyanide								178 mg/L	
B. Non-Halogenated VOCs	3								
Total BTEX								100 μg/L	
Benzene								5.0 μg/L	
1,4 Dioxane								200 μg/L	
Acetone								7.97 mg/L	
Phenol								1,080 µg/L	

	Known	Known		_	_	Inf	luent	Effluent Lin	nitations
Parameter	or believed absent	or believed present	# of samples	Test method (#)	Detection limit (µg/l)	Daily maximum (µg/l)	Daily average (µg/l)	TBEL	WQBEL
C. Halogenated VOCs									
Carbon Tetrachloride								4.4 μg/L	
1,2 Dichlorobenzene								600 μg/L	
1,3 Dichlorobenzene								320 μg/L	
1,4 Dichlorobenzene								5.0 μg/L	
Total dichlorobenzene								763 µg/L in NH	
1,1 Dichloroethane								70 μg/L	
1,2 Dichloroethane								5.0 μg/L	
1,1 Dichloroethylene								3.2 µg/L	
Ethylene Dibromide								0.05 μg/L	
Methylene Chloride								4.6 μg/L	
1,1,1 Trichloroethane								200 μg/L	
1,1,2 Trichloroethane								5.0 μg/L	
Trichloroethylene								5.0 μg/L	
Tetrachloroethylene								5.0 μg/L	
cis-1,2 Dichloroethylene								70 μg/L	
Vinyl Chloride								2.0 μg/L	
D. Non-Halogenated SVO	Cs								
Total Phthalates								190 μg/L	
Diethylhexyl phthalate								101 μg/L	
Total Group I PAHs								1.0 μg/L	
Benzo(a)anthracene								_	
Benzo(a)pyrene								_	
Benzo(b)fluoranthene								_	
Benzo(k)fluoranthene								As Total PAHs	
Chrysene								_	
Dibenzo(a,h)anthracene								_	
Indeno(1,2,3-cd)pyrene									

	Known	Known				Inf	luent	Effluent Lin	nitations
Parameter	or believed absent	or believed present	# of samples	Test method (#)	Detection limit (µg/l)	Daily maximum (µg/l)	Daily average (µg/l)	TBEL	WQBEL
Total Group II PAHs								100 μg/L	
Naphthalene								20 μg/L	
E. Halogenated SVOCs									
Total PCBs								0.000064 µg/L	
Pentachlorophenol								1.0 μg/L	
	1			•					
F. Fuels Parameters Total Petroleum		1	1	1		1 1			
Hydrocarbons								5.0 mg/L	
Ethanol								Report mg/L	
Methyl-tert-Butyl Ether								70 μg/L	
tert-Butyl Alcohol								120 μg/L in MA 40 μg/L in NH	
tert-Amyl Methyl Ether								90 μg/L in MA 140 μg/L in NH	
Other (i.e., pH, temperatur	re, hardness,	salinity, LC	50, addition	al pollutar	ats present);	if so, specify:			

E. Treatment system information

1. Indicate the type(s) of treatment that will be applied to effluent prior to discharge: (check all that apply)	
☐ Adsorption/Absorption ☐ Advanced Oxidation Processes ☐ Air Stripping ☐ Granulated Activated Carbon ("GAC")/Liquid Phase Carbon Adsorption	
☐ Ion Exchange ☐ Precipitation/Coagulation/Flocculation ☐ Separation/Filtration ☐ Other; if so, specify:	
2. Provide a written description of all treatment system(s) or processes that will be applied to the effluent prior to discharge.	
Identify each major treatment component (check any that apply):	
☐ Fractionation tanks☐ Equalization tank ☐ Oil/water separator ☐ Mechanical filter ☐ Media filter	
☐ Chemical feed tank ☐ Air stripping unit ☐ Bag filter ☐ Other; if so, specify:	
Indicate if either of the following will occur (check any that apply):	
□ Chlorination □ De-chlorination	
3. Provide the design flow capacity in gallons per minute (gpm) of the most limiting component.	
Indicate the most limiting component:	
Is use of a flow meter feasible? (check one): \square Yes \square No, if so, provide justification:	
Provide the proposed maximum effluent flow in gpm.	
Trovide the proposed maximum errident now in gpin.	
Provide the average effluent flow in gpm.	
If Activity Category IV applies, indicate the estimated total volume of water that will be discharged:	
4. Has the operator attached a schematic of flow in accordance with the instructions in E, above? (check one): ☐ Yes ☐ No	

F. Chemical and additive information

1. Indicate the type(s) of chemical or additive that will be applied to effluent prior to discharge or that may otherwise be present in the discharge(s): (check all that apply)
□ Algaecides/biocides □ Antifoams □ Coagulants □ Corrosion/scale inhibitors □ Disinfectants □ Flocculants □ Neutralizing agents □ Oxidants □ Oxygen □
scavengers □ pH conditioners □ Bioremedial agents, including microbes □ Chlorine or chemicals containing chlorine □ Other; if so, specify:
2. Provide the following information for each chemical/additive, using attachments, if necessary:
a. Product name, chemical formula, and manufacturer of the chemical/additive; b. Purpose or use of the chemical/additive or remedial agent; c. Material Safety Data Sheet (MSDS) and Chemical Abstracts Service (CAS) Registry number for each chemical/additive; d. The frequency (hourly, daily, etc.), duration (hours, days), quantity (maximum and average), and method of application for the chemical/additive; e. Any material compatibility risks for storage and/or use including the control measures used to minimize such risks; and f. If available, the vendor's reported aquatic toxicity (NOAEL and/or LC50 in percent for aquatic organism(s)).
3. Has the operator attached an explanation which demonstrates that the addition of such chemicals/additives may be authorized under this general permit in accordance
with the instructions in F, above? (check one): \square Yes \square No; if no, has the operator attached data that demonstrates each of the 126 priority pollutants in CWA Section 307(a) and 40 CFR Part 423.15(j)(1) are non-detect in discharges with the addition of the proposed chemical/additive?
(check one): ☐ Yes ☐ No
G. Endangered Species Act eligibility determination
1. Indicate under which criterion the discharge(s) is eligible for coverage under this general permit:
□ FWS Criterion A : No endangered or threatened species or critical habitat are in proximity to the discharges or related activities or come in contact with the "action area".
□ FWS Criterion B : Formal or informal consultation with the FWS under section 7 of the ESA resulted in either a no jeopardy opinion (formal consultation) or a written concurrence by FWS on a finding that the discharges and related activities are "not likely to adversely affect" listed species or critical habitat
(informal consultation). Has the operator completed consultation with FWS? (check one): ☐ Yes ☐ No; if no, is consultation underway? (check one): ☐
Yes □ No
□ FWS Criterion C : Using the best scientific and commercial data available, the effect of the discharges and related activities on listed species and critical habitat have been evaluated. Based on those evaluations, a determination is made by EPA, or by the operator and affirmed by EPA, that the discharges and related activities will have "no effect" on any federally threatened or endangered listed species or designated critical habitat under the jurisdiction of the FWS. This determination was made by: (check one) □ the operator □ EPA □ Other; if so, specify:
1 11.5. This determination was made by, (effect one) in the operator in the A in Other, it so, specify.

□ NMFS Criterion: A determination made by EPA is affirmed by the operator that the discharges and related activities will have "no effect" or are "not likely to adversely affect" any federally threatened or endangered listed species or critical habitat under the jurisdiction of NMFS and will not result in any take of						
listed species. Has the operator previously completed consultation with NMFS? (check one): ☐ Yes ☐ No						
2. Has the operator attached supporting documentation of ESA eligibility in accordance with the instructions in Appendix I, and G, above? (check one): \Box Yes \Box No						
Does the supporting documentation include any written concurrence or finding provided by the Services? (check one): ☐ Yes ☐ No; if yes, attach.						
H. National Historic Preservation Act eligibility determination						
1. Indicate under which criterion the discharge(s) is eligible for coverage under this general permit:						
☐ Criterion A : No historic properties are present. The discharges and discharge-related activities (e.g., BMPs) do not have the potential to cause effects historic properties.						
☐ Criterion B: Historic properties are present. Discharges and discharge related activities do not have the potential to cause effects on historic properties.						
□ Criterion C : Historic properties are present. The discharges and discharge-related activities have the potential to have an effect or will have an adverse effect on historic properties.						
2. Has the operator attached supporting documentation of NHPA eligibility in accordance with the instructions in H, above? (check one): ☐ Yes ☐ No						
Does the supporting documentation include any written agreement with the State Historic Preservation Officer (SHPO), Tribal Historic Preservation Officer (TPHO), or						
other tribal representative that outlines measures the operator will carry out to mitigate or prevent any adverse effects on historic properties? (check one): \square Yes \square No						
I. Supplemental information						
Describe any supplemental information being provided with the NOI. Include attachments if required or otherwise necessary.						
Has the operator attached data, including any laboratory case narrative and chain of custody used to support the application? (check one): ☐ Yes ☐ No						
Has the operator attached the certification requirement for the Best Management Practices Plan (BMPP)? (check one): ☐ Yes ☐ No						

J. Certification requirement

I certify under penalty of law that this document and all attachments were prepared under my direction or supervision in accordance with a system designed to assure that qualified personnel properly gathered and evaluated the information submitted. Based on my inquiry of the person or persons who manage the system, or those persons directly responsible for gathering the information, the information submitted is, to the best of my knowledge and belief, true, accurate, and complete. I have no personal knowledge that the information submitted is other than true, accurate, and complete. I am aware that there are significant penalties for submitting false information, including the possibility of fine and imprisonment for knowing violations. A BMPP meeting the requirements of this general permit will be implemented BMPP certification statement: upon initiation of discharge. Notification provided to the appropriate State, including a copy of this NOI, if required. Check one: Yes ■ No □ Notification provided to the municipality in which the discharge is located, including a copy of this NOI, if requested. Check one: Yes Notification provided to the owner of a private or municipal storm sewer system, if such system is used for site Check one: Yes □ No □ NA ■ discharges, including a copy of this NOI, if requested. Permission obtained from the owner of a private or municipal storm sewer system, if such system is used for site discharges. If yes, attach additional conditions. If no, attach explanation and timeframe for obtaining permission. Check one: Yes □ No □ NA ■ Notification provided to the owner/operator of the area associated with activities covered by an additional discharge permit(s). Additional discharge permit is (check one): □ RGP □ DGP □ CGP □ MSGP □ Individual NPDES permit Check one: Yes □ No □ NA ■ ☐ Other; if so, specify: Date: 10/27/2020 Signature:

Print Name and Title: Matthew Mostoller, Environmental Manager

ATTACHMENT B ENDANGERED SPECIES ACT DOCUMENTATION

United States Department of the Interior

FISH AND WILDLIFE SERVICE

New England Ecological Services Field Office 70 Commercial Street, Suite 300 Concord, NH 03301-5094 Phone: (603) 223-2541 Fax: (603) 223-0104

http://www.fws.gov/newengland

June 23, 2020

In Reply Refer To:

Consultation Code: 05E1NE00-2020-SLI-3033

Event Code: 05E1NE00-2020-E-09247

Project Name: Conant II Wellfield Pump Test

Subject: List of threatened and endangered species that may occur in your proposed project

location, and/or may be affected by your proposed project

To Whom It May Concern:

The enclosed species list identifies threatened, endangered, proposed and candidate species, as well as proposed and final designated critical habitat, that may occur within the boundary of your proposed project and/or may be affected by your proposed project. The species list fulfills the requirements of the U.S. Fish and Wildlife Service (Service) under section 7(c) of the Endangered Species Act (Act) of 1973, as amended (16 U.S.C. 1531 *et seq.*).

New information based on updated surveys, changes in the abundance and distribution of species, changed habitat conditions, or other factors could change this list. Please feel free to contact us if you need more current information or assistance regarding the potential impacts to federally proposed, listed, and candidate species and federally designated and proposed critical habitat. Please note that under 50 CFR 402.12(e) of the regulations implementing section 7 of the Act, the accuracy of this species list should be verified after 90 days. This verification can be completed formally or informally as desired. The Service recommends that verification be completed by visiting the ECOS-IPaC website at regular intervals during project planning and implementation for updates to species lists and information. An updated list may be requested through the ECOS-IPaC system by completing the same process used to receive the enclosed list.

The purpose of the Act is to provide a means whereby threatened and endangered species and the ecosystems upon which they depend may be conserved. Under sections 7(a)(1) and 7(a)(2) of the Act and its implementing regulations (50 CFR 402 *et seq.*), Federal agencies are required to utilize their authorities to carry out programs for the conservation of threatened and endangered species and to determine whether projects may affect threatened and endangered species and/or designated critical habitat.

A Biological Assessment is required for construction projects (or other undertakings having similar physical impacts) that are major Federal actions significantly affecting the quality of the human environment as defined in the National Environmental Policy Act (42 U.S.C. 4332(2) (c)). For projects other than major construction activities, the Service suggests that a biological evaluation similar to a Biological Assessment be prepared to determine whether the project may affect listed or proposed species and/or designated or proposed critical habitat. Recommended contents of a Biological Assessment are described at 50 CFR 402.12.

If a Federal agency determines, based on the Biological Assessment or biological evaluation, that listed species and/or designated critical habitat may be affected by the proposed project, the agency is required to consult with the Service pursuant to 50 CFR 402. In addition, the Service recommends that candidate species, proposed species and proposed critical habitat be addressed within the consultation. More information on the regulations and procedures for section 7 consultation, including the role of permit or license applicants, can be found in the "Endangered Species Consultation Handbook" at:

http://www.fws.gov/endangered/esa-library/pdf/TOC-GLOS.PDF

Please be aware that bald and golden eagles are protected under the Bald and Golden Eagle Protection Act (16 U.S.C. 668 *et seq.*), and projects affecting these species may require development of an eagle conservation plan (http://www.fws.gov/windenergy/eagle_guidance.html). Additionally, wind energy projects should follow the wind energy guidelines (http://www.fws.gov/windenergy/) for minimizing impacts to migratory birds and bats.

Guidance for minimizing impacts to migratory birds for projects including communications towers (e.g., cellular, digital television, radio, and emergency broadcast) can be found at: http://www.fws.gov/migratorybirds/CurrentBirdIssues/Hazards/towers/towers.htm; http://www.towerkill.com; and http://www.fws.gov/migratorybirds/CurrentBirdIssues/Hazards/towers/comtow.html.

We appreciate your concern for threatened and endangered species. The Service encourages Federal agencies to include conservation of threatened and endangered species into their project planning to further the purposes of the Act. Please include the Consultation Tracking Number in the header of this letter with any request for consultation or correspondence about your project that you submit to our office.

Attachment(s):

Official Species List

Official Species List

This list is provided pursuant to Section 7 of the Endangered Species Act, and fulfills the requirement for Federal agencies to "request of the Secretary of the Interior information whether any species which is listed or proposed to be listed may be present in the area of a proposed action".

This species list is provided by:

New England Ecological Services Field Office 70 Commercial Street, Suite 300 Concord, NH 03301-5094 (603) 223-2541

Project Summary

Consultation Code: 05E1NE00-2020-SLI-3033

Event Code: 05E1NE00-2020-E-09247

Project Name: Conant II Wellfield Pump Test

Project Type: WATER SUPPLY / DELIVERY

Project Description: The project includes pumping water from up to three potential potable

drinking water wells and discharging the water under a Remediation

General Permit to the Nashoba Brook.

Project Location:

Approximate location of the project can be viewed in Google Maps: https://www.google.com/maps/place/42.488748188439544N71.41849849612385W

Counties: Middlesex, MA

Endangered Species Act Species

There is a total of 1 threatened, endangered, or candidate species on this species list.

Species on this list should be considered in an effects analysis for your project and could include species that exist in another geographic area. For example, certain fish may appear on the species list because a project could affect downstream species.

IPaC does not display listed species or critical habitats under the sole jurisdiction of NOAA Fisheries¹, as USFWS does not have the authority to speak on behalf of NOAA and the Department of Commerce.

See the "Critical habitats" section below for those critical habitats that lie wholly or partially within your project area under this office's jurisdiction. Please contact the designated FWS office if you have questions.

1. <u>NOAA Fisheries</u>, also known as the National Marine Fisheries Service (NMFS), is an office of the National Oceanic and Atmospheric Administration within the Department of Commerce.

Mammals

NAME STATUS

Northern Long-eared Bat *Myotis septentrionalis*

Threatened

No critical habitat has been designated for this species. Species profile: https://ecos.fws.gov/ecp/species/9045

Critical habitats

THERE ARE NO CRITICAL HABITATS WITHIN YOUR PROJECT AREA UNDER THIS OFFICE'S JURISDICTION.

United States Department of the Interior

FISH AND WILDLIFE SERVICE

New England Ecological Services Field Office 70 Commercial Street, Suite 300 Concord, NH 03301-5094 Phone: (603) 223-2541 Fax: (603) 223-0104

http://www.fws.gov/newengland

IPaC Record Locator: 807-22282710 June 23, 2020

Subject: Consistency letter for the 'Conant II Wellfield Pump Test' project indicating that any take of the northern long-eared bat that may occur as a result of the Action is not prohibited under the ESA Section 4(d) rule adopted for this species at 50 CFR

§17.40(o).

Dear Robert Reynolds:

The U.S. Fish and Wildlife Service (Service) received on June 23, 2020 your effects determination for the 'Conant II Wellfield Pump Test' (the Action) using the northern long-eared bat (*Myotis septentrionalis*) key within the Information for Planning and Consultation (IPaC) system. You indicated that no Federal agencies are involved in funding or authorizing this Action. This IPaC key assists users in determining whether a non-Federal action may cause "take" of the northern long-eared bat that is prohibited under the Endangered Species Act of 1973 (ESA) (87 Stat.884, as amended; 16 U.S.C. 1531 et seq.).

Based upon your IPaC submission, any take of the northern long-eared bat that may occur as a result of the Action is not prohibited under the ESA Section 4(d) rule adopted for this species at 50 CFR §17.40(o). Unless the Service advises you within 30 days of the date of this letter that your IPaC-assisted determination was incorrect, this letter verifies that the Action is not likely to result in unauthorized take of the northern long-eared bat.

Please report to our office any changes to the information about the Action that you entered into IPaC, the results of any bat surveys conducted in the Action area, and any dead, injured, or sick northern long-eared bats that are found during Action implementation.

If your Action proceeds as described and no additional information about the Action's effects on species protected under the ESA becomes available, no further coordination with the Service is required with respect to the northern long-eared bat.

[1] Take means to harass, harm, pursue, hunt, shoot, wound, kill, trap, capture, or collect, or to attempt to engage in any such conduct [ESA Section 3(19)].

Action Description

You provided to IPaC the following name and description for the subject Action.

1. Name

Conant II Wellfield Pump Test

2. Description

The following description was provided for the project 'Conant II Wellfield Pump Test':

The project includes pumping water from up to three potential potable drinking water wells and discharging the water under a Remediation General Permit to the Nashoba Brook.

Approximate location of the project can be viewed in Google Maps: https://www.google.com/maps/place/42.488748188439544N71.41849849612385W

Determination Key Result

This non-Federal Action may affect the northern long-eared bat; however, any take of this species that may occur incidental to this Action is not prohibited under the final 4(d) rule at 50 CFR §17.40(o).

Determination Key Description: Northern Long-eared Bat 4(d) Rule

This key was last updated in IPaC on **May 15, 2017**. Keys are subject to periodic revision.

This key is intended for actions that may affect the threatened northern long-eared bat.

The purpose of the key for non-Federal actions is to assist determinations as to whether proposed actions are excepted from take prohibitions under the northern long-eared bat 4(d) rule.

If a non-Federal action may cause prohibited take of northern long-eared bats or other ESA-listed animal species, we recommend that you coordinate with the Service.

Determination Key Result

Based upon your IPaC submission, any take of the northern long-eared bat that may occur as a result of the Action is not prohibited under the ESA Section 4(d) rule adopted for this species at 50 CFR §17.40(o).

Qualification Interview

- Is the action authorized, funded, or being carried out by a Federal agency?

 No
- 2. Will your activity purposefully **Take** northern long-eared bats? *No*
- 3. [Semantic] Is the project action area located wholly outside the White-nose Syndrome Zone?

Automatically answered

No

4. Have you contacted the appropriate agency to determine if your project is near a known hibernaculum or maternity roost tree?

Location information for northern long-eared bat hibernacula is generally kept in state Natural Heritage Inventory databases – the availability of this data varies state-by-state. Many states provide online access to their data, either directly by providing maps or by providing the opportunity to make a data request. In some cases, to protect those resources, access to the information may be limited. A web page with links to state Natural Heritage Inventory databases and other sources of information on the locations of northern long-eared bat roost trees and hibernacula is available at www.fws.gov/midwest/endangered/mammals/nleb/nhisites.html.

Yes

5. Will the action affect a cave or mine where northern long-eared bats are known to hibernate (i.e., hibernaculum) or could it alter the entrance or the environment (physical or other alteration) of a hibernaculum?

No

6. Will the action involve Tree Removal?

No

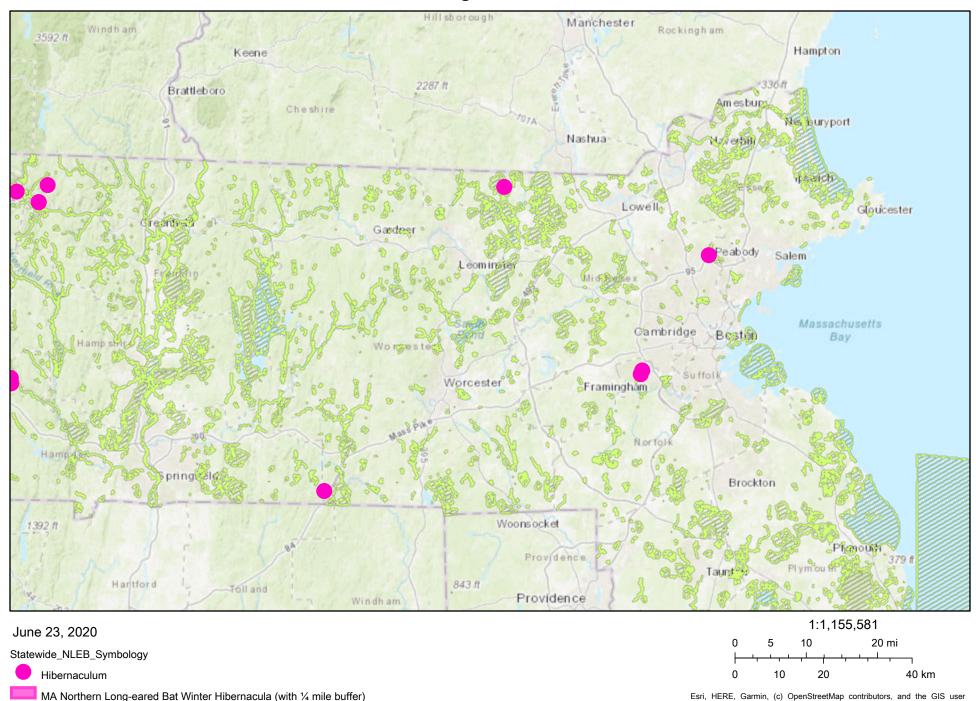
Project Questionnaire

If the project includes forest conversion, report the appropriate acreages below. Otherwise, type '0' in questions 1-3.

Estimated total acres of forest conversion:
 If known, estimated acres of forest conversion from April 1 to October 31
 If known, estimated acres of forest conversion from June 1 to July 31

If the project includes timber harvest, report the appropriate acreages below. Otherwise, type '0' in questions 4-6.

- 4. Estimated total acres of timber harvest *0*
- 5. If known, estimated acres of timber harvest from April 1 to October 31 $\it 0$
- 6. If known, estimated acres of timber harvest from June 1 to July 31 *0*


If the project includes prescribed fire, report the appropriate acreages below. Otherwise, type '0' in questions 7-9.

- 7. Estimated total acres of prescribed fire *0*
- 8. If known, estimated acres of prescribed fire from April 1 to October 31 $\it 0$
- 9. If known, estimated acres of prescribed fire from June 1 to July 31 σ

If the project includes new wind turbines, report the megawatts of wind capacity below. Otherwise, type '0' in question 10.

10. What is the estimated wind capacity (in megawatts) of the new turbine(s)? θ

NHESP No. Long-eared Bat Locations

ATTACHMENT C NATIONAL HISTORIC PRESERVATION ACT DOCUMENTATION

Massachusetts Cultural Resource Information System MACRIS

MACRIS Search Results

Search Criteria: Town(s): Acton; Place: Acton; Resource Type(s): Area;

	nv. No.	Property Name	Street	Town	Year
,	ACT.B	Acton Centre Historic District		Acton	
/	ACT.K	Acton Centre Historic District		Acton	

Sunday, October 25, 2020 Page 1 of 1

ATTACHMENT D RECEIVING WATER HYDROLOGIC INFORMATION

10/26/2020 StreamStats

StreamStats Report

Region ID: MΑ

MA20201026184442329000 Workspace ID:

42.48903, -71.41854 Clicked Point (Latitude, Longitude):

2020-10-26 14:44:59 -0400 Time:

Basin Characteristics			
Parameter Code	Parameter Description	Value	Unit
DRNAREA	Area that drains to a point on a stream	18.2	square miles
BSLDEM250	Mean basin slope computed from 1:250K DEM	2.398	percent
DRFTPERSTR	Area of stratified drift per unit of stream length	0.18	square mile per mile
MAREGION	Region of Massachusetts 0 for Eastern 1 for Western	0	dimensionless

Low-Flow Statistics Parameters [Statewide Low Flow WRIR00 4135]											
Parameter Code	Parameter Name	Value	Units	Min Limit	Max Limit						
DRNAREA	Drainage Area	18.2	square miles	1.61	149						
BSLDEM250	Mean Basin Slope from 250K DEM	2.398	percent	0.32	24.6						
DRFTPERSTR	Stratified Drift per Stream Length	0.18	square mile per mile	0	1.29						
MAREGION	Massachusetts Region	0	dimensionless	0	1						

Low-Flow Statistics Flow Report[Statewide Low Flow WRIR00 4135]

PII: Prediction Interval-Lower, PIu: Prediction Interval-Upper, SEp: Standard Error of Prediction, SE: Standard Error (other -- see report)

Statistic	Value	Unit	PII	Plu	SE	SEp
7 Day 2 Year Low Flow	1.95	ft^3/s	0.722	5.07	49.5	49.5
7 Day 10 Year Low Flow	0.832	ft^3/s	0.241	2.68	70.8	70.8

Low-Flow Statistics Citations

10/26/2020 StreamStats

Ries, K.G., III,2000, Methods for estimating low-flow statistics for Massachusetts streams: U.S. Geological Survey Water Resources Investigations Report 00-4135, 81 p. (http://pubs.usgs.gov/wri/wri004135/)

USGS Data Disclaimer: Unless otherwise stated, all data, metadata and related materials are considered to satisfy the quality standards relative to the purpose for which the data were collected. Although these data and associated metadata have been reviewed for accuracy and completeness and approved for release by the U.S. Geological Survey (USGS), no warranty expressed or implied is made regarding the display or utility of the data for other purposes, nor on all computer systems, nor shall the act of distribution constitute any such warranty.

USGS Software Disclaimer: This software has been approved for release by the U.S. Geological Survey (USGS). Although the software has been subjected to rigorous review, the USGS reserves the right to update the software as needed pursuant to further analysis and review. No warranty, expressed or implied, is made by the USGS or the U.S. Government as to the functionality of the software and related material nor shall the fact of release constitute any such warranty. Furthermore, the software is released on condition that neither the USGS nor the U.S. Government shall be held liable for any damages resulting from its authorized or unauthorized use.

USGS Product Names Disclaimer: Any use of trade, firm, or product names is for descriptive purposes only and does not imply endorsement by the U.S. Government.

Application Version: 4.4.0

StreamStats Output Report									
Streamstats Output Report									
State/Region ID	MA								
Workspace ID	MA20200618144340098000								
Latitude	42.48906								
Longitude	-71.41854								
Time	6/18/2020 10:43:55 AM								
Time	0/18/2020 10.43.33 AW								
Basin Characteristics									
Parameter Code	Parameter Description Value	Unit							
DRNAREA	'	square mil	es						
DRFTPERSTR	•	square mil							
MAREGION		dimension	-						
BSLDEM250	<u> </u>	percent							
PCTSNDGRV	·	percent							
FOREST		percent							
BSLDEM10M		percent							
ELEV		feet							
LC06STOR		percent							
Lesson	reformage of water boules	percent							
Flow-Duration Statistics Parameters	100 Percent Statewide Low Flow WRIR00 4135								
Parameter Code	Parameter Name Value	Units	Min Limit	Max Limit					
DRNAREA		square mil		+					
DRFTPERSTR		square mil	+	1.29					
MAREGION		dimension		1					
BSLDEM250		percent	0.32	24.6					
	·								
Flow-Duration Statistics Flow Report	100 Percent Statewide Low Flow WRIR00 4135								
PII: Prediction Interval- Lower, Plu: Prediction Interval- Upp	per, SEp: Standard Error of Prediction, SE: Standard Error (otl	ner see rep	ort)						
Statistic	Value Unit	PII	Plu	SE	SEp				
50 Percent Duration	18.4 ft^3/s	11.1	30.4	17.6	17.6				
60 Percent Duration	13.7 ft^3/s	7.38	25.4	19.8	19.8				
70 Percent Duration	8.59 ft^3/s	4.19	17.5	23.5	23.5				
75 Percent Duration	6.74 ft^3/s	3.28	13.7	25.8	25.8				
80 Percent Duration	5.37 ft^3/s	2.56	11.1	28.4	28.4				
85 Percent Duration	4.05 ft^3/s	1.84	8.76	31.9	31.9				
90 Percent Duration	3.05 ft^3/s	1.31	6.96	36.6	36.6				
95 Percent Duration	1.84 ft^3/s	0.701	4.69	45.6	45.6				
98 Percent Duration	1.19 ft^3/s	0.388	3.45	60.3	60.3				
99 Percent Duration	0.906 ft^3/s	0.278	2.77	65.1	65.1				

Low-Flow Statistics Parameters	100 Percent Statewide Low Flow WRIR00 4135										
Parameter Code	Parameter Name Value		Units	Min Limit	May Limit						
DRNAREA		10.7	-		149						
	Drainage Area		square mil								
BSLDEM250	Mean Basin Slope from 250		percent	0.32	24.6						
DRFTPERSTR	Stratified Drift per Stream L		square mil		1.29						
MAREGION	Massachusetts Region	0	dimension	0	1						
Low-Flow Statistics Flow Report	100 Percent Statewide Low Flow WRIR00 4135			<u> </u>							
PII: Prediction Interval- Lower, Plu: Prediction Interval- U		ird Error (otl	1								
Statistic	Value Unit		+			SEp					
7 Day 2 Year Low Flow	1.95 ft^3/s		0.723		49.5						
7 Day 10 Year Low Flow	0.832 ft^3/s		0.241	2.68	70.8	70.8					
August Flow-Duration Statistics Parameters	100 Percent Statewide Low Flow WRIR00 4135										
Parameter Code	Parameter Name Value		Units	Min Limit	Max Limit						
DRNAREA	Drainage Area	18.2	square mil	1.61	149						
BSLDEM250	Mean Basin Slope from 250	2.398	percent	0.32	24.6						
DRFTPERSTR	Stratified Drift per Stream L	0.18	square mil	0	1.29						
MAREGION	Massachusetts Region		dimension		1						
August Flow-Duration Statistics Flow Report	100 Percent Statewide Low Flow WRIR00 4135										
PII: Prediction Interval- Lower, Plu: Prediction Interval- U		rd Frror (otl	ier see rer	ort)							
Statistic	Value Unit		1	1	SE	SEp					
August 50 Percent Duration	4.33 ft^3/s		1.95		33.2	· ·					
August 30 Fercent Duration	4.55 11 3/3		1.55	3.40	33.2	33.2					
Drobability Statistics Parameters	100 Percent Perennial Flow Probability										
Probability Statistics Parameters	<u> </u>		Linita	Min Limit	May Limit						
Parameter Code	Parameter Name Value	10.3		Min Limit							
DRNAREA	Drainage Area		square mil	0.01			-				
PCTSNDGRV	Percent Underlain By Sand		percent	0	100						
FOREST	Percent Forest		percent	0	100						
MAREGION	Massachusetts Region	0	dimension	0	1						
*** Probability Statistics Disclaimers ***											
Warnings	One or more of the parameters is outside the s	uggested rar	nge. Estimat	es were exti	rapolated w	ith unknow	n errors				
Probability Statistics Flow Report	100 Percent Perennial Flow Probability										
Statistic	Value Unit										
Probability Stream Flowing Perennially	0.991 dim										
·			1					1			

Bankfull Statistics Parameters	100 Percent Bankfull Statewide SIR2013 5155							
Parameter Code	Parameter Name Value	Units	Min Limit	Max Limit				
DRNAREA	Drainage Area 18.2	square mil	0.6	329				
BSLDEM10M	Mean Basin Slope from 10n 5.259	percent	2.2	23.9				
Bankfull Statistics Flow Report	100 Percent Bankfull Statewide SIR2013 5155							
Statistic	Value Unit	SEp						
Bankfull Width	44.7 ft	21.3						
Bankfull Depth	2.1 ft	19.8						
Bankfull Area	93.5 ft^2	29						
Bankfull Streamflow	263 ft^3/s	55						
Peak-Flow Statistics Parameters	100 Percent Peak Statewide 2016 5156							
	Parameter Name Value	Units	Min Limit	Max Limit				
	Drainage Area 18.2	square mil	0.16	512				
ELEV	Mean Basin Elevation 231	feet	80.6	1948				
LC06STOR	Percent Storage from NLCD 13.74	percent	0	32.3				
<u>'</u>	100 Percent Peak Statewide 2016 5156							
	er, SEp: Standard Error of Prediction, SE: Standard Error (oth							
	Value Unit			SEp				
2 Year Peak Flood	335 ft^3/s	172		42.3				
5 Year Peak Flood	543 ft^3/s	275	1070	43.4				
10 Year Peak Flood	704 ft^3/s	349	1420	44.7				
25 Year Peak Flood	935 ft^3/s	448		47.1				
50 Year Peak Flood	1130 ft^3/s	522		49.4				
100 Year Peak Flood	1320 ft^3/s	596		51.8				
200 Year Peak Flood	1540 ft^3/s	674		54.1				
500 Year Peak Flood	1850 ft^3/s	772	4420	57.6				

ATTACHMENT E LABORATORY REPORT

ANALYTICAL REPORT

Lab Number: L2040729

Client: Acton Water District

693 Mass Ave

PoBox 953

Acton, MA 01720

ATTN: Rob Reynolds Phone: (978) 263-9107

Project Name: CONANT WELLFIELD-ACTON

Project Number: 9350 Report Date: 10/06/20

The original project report/data package is held by Alpha Analytical. This report/data package is paginated and should be reproduced only in its entirety. Alpha Analytical holds no responsibility for results and/or data that are not consistent with the original.

Certifications & Approvals: MA (M-MA086), NH NELAP (2064), CT (PH-0574), IL (200077), ME (MA00086), MD (348), NJ (MA935), NY (11148), NC (25700/666), PA (68-03671), RI (LAO00065), TX (T104704476), VT (VT-0935), VA (460195), USDA (Permit #P330-17-00196).

Eight Walkup Drive, Westborough, MA 01581-1019 508-898-9220 (Fax) 508-898-9193 800-624-9220 - www.alphalab.com

Project Name: CONANT WELLFIELD-ACTON

Project Number: 9350

Lab Number: L2040729 **Report Date:** 10/06/20

Alpha Sample ID	Client ID	Matrix	Sample Location	Collection Date/Time	Receive Date
L2040729-01	WELL-E	WATER	ACTON, MA	09/25/20 11:00	09/25/20
L2040729-02	SURFACE WATER	WATER	ACTON, MA	09/25/20 11:40	09/25/20

Project Name:CONANT WELLFIELD-ACTONLab Number:L2040729Project Number:9350Report Date:10/06/20

Case Narrative

The samples were received in accordance with the Chain of Custody and no significant deviations were encountered during the preparation or analysis unless otherwise noted. Sample Receipt, Container Information, and the Chain of Custody are located at the back of the report.

Results contained within this report relate only to the samples submitted under this Alpha Lab Number and meet NELAP requirements for all NELAP accredited parameters unless otherwise noted in the following narrative. The data presented in this report is organized by parameter (i.e. VOC, SVOC, etc.). Sample specific Quality Control data (i.e. Surrogate Spike Recovery) is reported at the end of the target analyte list for each individual sample, followed by the Laboratory Batch Quality Control at the end of each parameter. Tentatively Identified Compounds (TICs), if requested, are reported for compounds identified to be present and are not part of the method/program Target Compound List, even if only a subset of the TCL are being reported. If a sample was re-analyzed or re-extracted due to a required quality control corrective action and if both sets of data are reported, the Laboratory ID of the re-analysis or re-extraction is designated with an "R" or "RE", respectively.

When multiple Batch Quality Control elements are reported (e.g. more than one LCS), the associated samples for each element are noted in the grey shaded header line of each data table. Any Laboratory Batch, Sample Specific % recovery or RPD value that is outside the listed Acceptance Criteria is bolded in the report. In reference to questions H (CAM) or 4 (RCP) when "NO" is checked, the performance criteria for CAM and RCP methods allow for some quality control failures to occur and still be within method compliance. In these instances, the specific failure is not narrated but noted in the associated QC Outlier Summary Report, located directly after the Case Narrative. QC information is also incorporated in the Data Usability Assessment table (Format 11) of our Data Merger tool, where it can be reviewed in conjunction with the sample result, associated regulatory criteria and any associated data usability implications.

Soil/sediments, solids and tissues are reported on a dry weight basis unless otherwise noted. Definitions of all data qualifiers and acronyms used in this report are provided in the Glossary located at the back of the report.

HOLD POLICY - For samples submitted on hold, Alpha's policy is to hold samples (with the exception of Air canisters) free of charge for 21 calendar days from the date the project is completed. After 21 calendar days, we will dispose of all samples submitted including those put on hold unless you have contacted your Alpha Project Manager and made arrangements for Alpha to continue to hold the samples. Air canisters will be disposed after 3 business days from the date the project is completed.

Please contact Project Management at 800-624-9220 with any questions.	

Project Name: CONANT WELLFIELD-ACTON

Lab Number:

L2040729

Project Number:

9350

Report Date:

10/06/20

Case Narrative (continued)

Report Submission

The analysis of Ethanol was subcontracted. A copy of the laboratory report is included as an addendum.

Please note: This data is only available in PDF format and is not available on Data Merger.

Sample Receipt

L2040729-02: Sample containers identified as "SURFACE WATER" for Hexavalent Chromium and Tri Chromium were listed on the Chain of Custody, but not received. This was verified by the client.

Microextractables

The WG1416614-2 LCS recovery for 1,2-dibromo-3-chloropropane (126%), associated with L2040729-01, is outside Alpha's acceptance criteria, but within the acceptance criteria specified in the method.

Anions by Ion Chromatography

The WG1415649-3 MS recovery, performed on L2040729-01, is outside the acceptance criteria for chloride (88%); however, the associated LCS recovery is within criteria. No further action was taken.

I, the undersigned, attest under the pains and penalties of perjury that, to the best of my knowledge and belief and based upon my personal inquiry of those responsible for providing the information contained in this analytical report, such information is accurate and complete. This certificate of analysis is not complete unless this page accompanies any and all pages of this report.

Cattlin Wallet Caitlin Walukevich

Authorized Signature:

Title: Technical Director/Representative

Date: 10/06/20

ORGANICS

VOLATILES

L2040729

10/06/20

Not Specified

Project Name: CONANT WELLFIELD-ACTON

Project Number: 9350

SAMPLE RESULTS

Date Collected: 09/25/20 11:00

Date Received: 09/25/20

Lab Number:

Report Date:

Field Prep:

Lab ID: L2040729-01 Client ID: WELL-E Sample Location: ACTON, MA

Sample Depth:

Matrix: Water Analytical Method: 128,624.1 Analytical Date: 09/30/20 20:15

Analyst: GT

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
Volatile Organics by GC/MS - Westbord	ough Lab					
Methylene chloride	ND		ug/l	1.0		1
1,1-Dichloroethane	ND		ug/l	1.5		1
Carbon tetrachloride	ND		ug/l	1.0		1
1,1,2-Trichloroethane	ND		ug/l	1.5		1
Tetrachloroethene	ND		ug/l	1.0		1
1,2-Dichloroethane	ND		ug/l	1.5		1
1,1,1-Trichloroethane	ND		ug/l	2.0		1
Benzene	ND		ug/l	1.0		1
Toluene	ND		ug/l	1.0		1
Ethylbenzene	ND		ug/l	1.0		1
Vinyl chloride	ND		ug/l	1.0		1
1,1-Dichloroethene	ND		ug/l	1.0		1
cis-1,2-Dichloroethene	2.9		ug/l	1.0		1
Trichloroethene	11		ug/l	1.0		1
1,2-Dichlorobenzene	ND		ug/l	5.0		1
1,3-Dichlorobenzene	ND		ug/l	5.0		1
1,4-Dichlorobenzene	ND		ug/l	5.0		1
p/m-Xylene	ND		ug/l	2.0		1
o-xylene	ND		ug/l	1.0		1
Xylenes, Total	ND		ug/l	1.0		1
Acetone	ND		ug/l	10		1
Methyl tert butyl ether	ND		ug/l	10		1
Tert-Butyl Alcohol	ND		ug/l	100		1
Tertiary-Amyl Methyl Ether	ND		ug/l	20		1

Project Name: CONANT WELLFIELD-ACTON Lab Number: L2040729

Project Number: 9350 Report Date: 10/06/20

SAMPLE RESULTS

Lab ID: L2040729-01 Date Collected: 09/25/20 11:00

Client ID: WELL-E Date Received: 09/25/20 Sample Location: ACTON, MA Field Prep: Not Specified

Sample Depth:

Parameter Result Qualifier Units RL MDL Dilution Factor

Volatile Organics by GC/MS - Westborough Lab

Surrogate	% Recovery	Qualifier	Acceptance Criteria	
Pentafluorobenzene	99		60-140	
Fluorobenzene	99		60-140	
4-Bromofluorobenzene	97		60-140	

L2040729

Project Name: CONANT WELLFIELD-ACTON

Project Number: 9350

SAMPLE RESULTS

Report Date: 10/06/20

Lab Number:

Lab ID: L2040729-01

Client ID: WELL-E Sample Location: ACTON, MA Date Collected: 09/25/20 11:00 Date Received: 09/25/20 Field Prep: Not Specified

Sample Depth:

Matrix: Water

Analytical Method: 128,624.1-SIM Analytical Date: 09/30/20 20:15

Analyst: GT

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
Volatile Organics by GC/MS-SIM - Westb	orough Lab					
1,4-Dioxane	ND		ug/l	50		1
Surrogate			% Recovery	Qualifier		etance teria
Fluorobenzene			100		60)-140
4-Bromofluorobenzene			104		60)-140

Project Name: CONANT WELLFIELD-ACTON Lab Number: L2040729

Project Number: 9350 Report Date: 10/06/20

SAMPLE RESULTS

Lab ID: L2040729-01 Date Collected: 09/25/20 11:00

Client ID: WELL-E Date Received: 09/25/20 Sample Location: ACTON, MA Field Prep: Not Specified

Sample Depth:

Matrix: Water Extraction Method: EPA 504.1

Analytical Method: 14.504.1 Extraction Date: 09/30/20 19:44

Analytical Method: 14,504.1 Extraction Date: 09/30/20 19:44

Analytical Date: 09/30/20 22:35

Analyst: AMM

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	Column
Microextractables by GC - Westborough L	ab						
1,2-Dibromoethane	ND		ug/l	0.010		1	А
1,2-Dibromo-3-chloropropane	ND		ug/l	0.010		1	Α
1,2,3-Trichloropropane	ND		ug/l	0.030		1	А

Project Name: CONANT WELLFIELD-ACTON Lab Number: L2040729

Project Number: 9350 Report Date: 10/06/20

Method Blank Analysis Batch Quality Control

Analytical Method: 14,504.1 Extraction Method: EPA 504.1

Analytical Date: 09/30/20 21:25 Extraction Date: 09/30/20 19:44

Analyst: AJK

Parameter	Result	Qualifier	Units	RL	MDL	
Microextractables by GC - Westb	orough Lab fo	r sample(s)): 01	Batch: WG141	6614-1	
1,2-Dibromoethane	ND		ug/l	0.010		Α
1,2-Dibromo-3-chloropropane	ND		ug/l	0.010		Α
1,2,3-Trichloropropane	ND		ug/l	0.030		Α

Project Name: CONANT WELLFIELD-ACTON Lab Number: L2040729

Project Number: 9350 Report Date: 10/06/20

Method Blank Analysis Batch Quality Control

Analytical Method: 128,624.1 Analytical Date: 09/30/20 17:24

Analyst: GT

Parameter	Result	Qualifier Units	RL	MDL
Volatile Organics by GC/MS - Westl	oorough Lab	for sample(s): 01	Batch:	WG1416838-4
Methylene chloride	ND	ug/l	1.0	-
1,1-Dichloroethane	ND	ug/l	1.5	
Carbon tetrachloride	ND	ug/l	1.0	
1,1,2-Trichloroethane	ND	ug/l	1.5	
Tetrachloroethene	ND	ug/l	1.0	
1,2-Dichloroethane	ND	ug/l	1.5	
1,1,1-Trichloroethane	ND	ug/l	2.0	
Benzene	ND	ug/l	1.0	
Toluene	ND	ug/l	1.0	
Ethylbenzene	ND	ug/l	1.0	
Vinyl chloride	ND	ug/l	1.0	
1,1-Dichloroethene	ND	ug/l	1.0	
cis-1,2-Dichloroethene	ND	ug/l	1.0	
Trichloroethene	ND	ug/l	1.0	
1,2-Dichlorobenzene	ND	ug/l	5.0	
1,3-Dichlorobenzene	ND	ug/l	5.0	
1,4-Dichlorobenzene	ND	ug/l	5.0	
p/m-Xylene	ND	ug/l	2.0	
o-xylene	ND	ug/l	1.0	
Xylenes, Total	ND	ug/l	1.0	
Acetone	ND	ug/l	10	
Methyl tert butyl ether	ND	ug/l	10	
Tert-Butyl Alcohol	ND	ug/l	100	
Tertiary-Amyl Methyl Ether	ND	ug/l	20	

Project Name: CONANT WELLFIELD-ACTON Lab Number: L2040729

Project Number: 9350 Report Date: 10/06/20

Method Blank Analysis Batch Quality Control

Analytical Method: 128,624.1 Analytical Date: 09/30/20 17:24

Analyst: GT

Parameter Result Qualifier Units RL MDL

Volatile Organics by GC/MS - Westborough Lab for sample(s): 01 Batch: WG1416838-4

		Acceptance			
Surrogate	%Recovery Qu	ialifier Criteria			
Pentafluorobenzene	101	60.440			
Pentanuorobenzene	101	60-140			
Fluorobenzene	100	60-140			
4-Bromofluorobenzene	94	60-140			

Project Name: CONANT WELLFIELD-ACTON Lab Number: L2040729

Project Number: 9350 Report Date: 10/06/20

Method Blank Analysis Batch Quality Control

Analytical Method: 128,624.1-SIM Analytical Date: 09/30/20 17:24

Analyst: GT

Parameter	Result	Qualifier	Units		RL	MDL	
Volatile Organics by GC/MS-SIM -	Westborough	Lab for s	ample(s):	01	Batch:	WG1416851-4	
1,4-Dioxane	ND		ug/l		50		

		Acceptance		
Surrogate	%Recovery (Qualifier Criteria		
Fluorobenzene	101	60-140		
4-Bromofluorobenzene	109	60-140		

Project Name: CONANT WELLFIELD-ACTON

Project Number: 9350

Lab Number:

L2040729

Report Date:

10/06/20

Parameter	LCS %Recovery	Qual	LCSD %Recovery	Qual	%Recovery Limits	RPD	Qual	RPD Limits	Column
Microextractables by GC - Westborough Lab	Associated san	nple(s): 01	Batch: WG1416	614-2					
1,2-Dibromoethane	116		-		80-120	-			А
1,2-Dibromo-3-chloropropane	126	Q	-		80-120	-			А
1,2,3-Trichloropropane	115		-		80-120	-			А

Project Name: CONANT WELLFIELD-ACTON

Project Number: 9350

Lab Number: L2040729

Report Date: 10/06/20

Parameter	LCS %Recovery	LCSI Qual %Recov	,		RPD Qual Limits	
Volatile Organics by GC/MS - Westborough	Lab Associated	sample(s): 01 Batch:	WG1416838-3			
Methylene chloride	105	-	60-140	-	28	
1,1-Dichloroethane	105	-	50-150	-	49	
Carbon tetrachloride	110	-	70-130	-	41	
1,1,2-Trichloroethane	100	-	70-130	-	45	
Tetrachloroethene	105	-	70-130	-	39	
1,2-Dichloroethane	105	-	70-130	-	49	
1,1,1-Trichloroethane	110	-	70-130) -	36	
Benzene	110	-	65-13	5 -	61	
Toluene	110	-	70-130) -	41	
Ethylbenzene	105	-	60-140) -	63	
Vinyl chloride	100	-	5-195	-	66	
1,1-Dichloroethene	110	-	50-150) -	32	
cis-1,2-Dichloroethene	105	-	60-140) -	30	
Trichloroethene	105	-	65-13	5 -	48	
1,2-Dichlorobenzene	100	-	65-13	5 -	57	
1,3-Dichlorobenzene	90	-	70-130) -	43	
1,4-Dichlorobenzene	95	-	65-13	5 -	57	
p/m-Xylene	100	-	60-140) -	30	
o-xylene	95	-	60-140) -	30	
Acetone	104	-	40-160) -	30	
Methyl tert butyl ether	95	-	60-140) -	30	
Tert-Butyl Alcohol	120	-	60-140) -	30	
Tertiary-Amyl Methyl Ether	95	-	60-140) -	30	

CONANT WELLFIELD-ACTON

Lab Number:

L2040729

Project Number: 9350

Project Name:

Report Date:

10/06/20

LCSD LCS %Recovery RPD %Recovery %Recovery Limits Parameter Qual Qual Limits RPD Qual

Volatile Organics by GC/MS - Westborough Lab Associated sample(s): 01 Batch: WG1416838-3

Surrogate	LCS %Recovery Qual	LCSD %Recovery	Qual	Acceptance Criteria
Pentafluorobenzene	103			60-140
Fluorobenzene	103			60-140
4-Bromofluorobenzene	95			60-140

Lab Number: L2040729

10/06/20

Project Number: 9350

Project Name:

CONANT WELLFIELD-ACTON

Report Date:

Parameter	LCS %Recovery	Qual	LCSD %Recovery	Qual	%Recovery Limits	RPD	Qual	RPD Limits	
Volatile Organics by GC/MS-SIM - Westborough Lab Associated sample(s): 01 Batch: WG1416851-3									
1,4-Dioxane	100		-		60-140	-		20	

Surrogate	LCS %Recovery Qu	LCSD al %Recovery	Qual	Acceptance Criteria
Fluorobenzene 4-Bromofluorobenzene	101 112			60-140 60-140

Matrix Spike Analysis Batch Quality Control

Project Name: CONANT WELLFIELD-ACTON

Project Number: 9350

Lab Number:

L2040729

Report Date:

10/06/20

Parameter	Native Sample	MS Added	MS Found %	MS Recovery	Qual	MSD Found	MSD %Recovery	Recover Qual Limits	y RPD	RPD Qual Limits	<u>Colum</u> n
Microextractables by GC	- Westborough Lab	Associat	ed sample(s): 01	QC Batch	ID: WG1	416614-3	QC Sample: I	_2040363-01 C	lient ID: I	MS Sample	
1,2-Dibromoethane	ND	0.246	0.282	115		-	-	80-120	-	20	А
1,2-Dibromo-3-chloropropane	ND	0.246	0.320	130	Q	-	-	80-120	-	20	Α
1,2,3-Trichloropropane	ND	0.246	0.298	121	Q	-	-	80-120	-	20	Α

SEMIVOLATILES

Project Name: CONANT WELLFIELD-ACTON Lab Number: L2040729

Project Number: 9350 Report Date: 10/06/20

SAMPLE RESULTS

Lab ID: L2040729-01 Date Collected: 09/25/20 11:00

Client ID: WELL-E Date Received: 09/25/20 Sample Location: ACTON, MA Field Prep: Not Specified

Sample Depth:

Matrix: Water Extraction Method: EPA 625.1

Analytical Method: 129,625.1 Extraction Date: 09/30/20 02:55
Analytical Date: 10/02/20 09:01

Analyst: WR

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor			
Semivolatile Organics by GC/MS - Westborough Lab									
Bis(2-ethylhexyl)phthalate	ND		ug/l	2.20		1			
Butyl benzyl phthalate	ND		ug/l	5.00		1			
Di-n-butylphthalate	ND		ug/l	5.00		1			
Di-n-octylphthalate	ND		ug/l	5.00		1			
Diethyl phthalate	ND		ug/l	5.00		1			
Dimethyl phthalate	ND		ug/l	5.00		1			

Surrogate	% Recovery	Acceptance Qualifier Criteria
Nitrobenzene-d5	100	42-122
2-Fluorobiphenyl	80	46-121
4-Terphenyl-d14	77	47-138

Project Name: Lab Number: CONANT WELLFIELD-ACTON L2040729

Project Number: Report Date: 9350 10/06/20

SAMPLE RESULTS

Lab ID: L2040729-01 Date Collected: 09/25/20 11:00

Client ID: Date Received: WELL-E 09/25/20 Sample Location: Field Prep: ACTON, MA Not Specified

Sample Depth:

Extraction Method: EPA 625.1 Matrix: Water

Extraction Date: 09/30/20 02:59 Analytical Method: 129,625.1-SIM Analytical Date:

Analyst: JJW

10/01/20 12:47

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	
Semivolatile Organics by GC/MS-S	SIM - Westborough La	nb					
Acenaphthene	ND		ug/l	0.100		1	
Fluoranthene	ND		ug/l	0.100		1	
Naphthalene	ND		ug/l	0.100		1	
Benzo(a)anthracene	ND		ug/l	0.100		1	
Benzo(a)pyrene	ND		ug/l	0.100		1	
Benzo(b)fluoranthene	ND		ug/l	0.100		1	
Benzo(k)fluoranthene	ND		ug/l	0.100		1	
Chrysene	ND		ug/l	0.100		1	
Acenaphthylene	ND		ug/l	0.100		1	
Anthracene	ND		ug/l	0.100		1	
Benzo(ghi)perylene	ND		ug/l	0.100		1	
Fluorene	ND		ug/l	0.100		1	
Phenanthrene	ND		ug/l	0.100		1	
Dibenzo(a,h)anthracene	ND		ug/l	0.100		1	
Indeno(1,2,3-cd)pyrene	ND		ug/l	0.100		1	
Pyrene	ND		ug/l	0.100		1	
Pentachlorophenol	ND		ug/l	1.00		1	

Surrogate	% Recovery	Acceptance Qualifier Criteria	
2-Fluorophenol	45	25-87	
Phenol-d6	34	16-65	
Nitrobenzene-d5	78	42-122	
2-Fluorobiphenyl	79	46-121	
2,4,6-Tribromophenol	69	45-128	
4-Terphenyl-d14	78	47-138	

Project Name: CONANT WELLFIELD-ACTON Lab Number: L2040729

Project Number: 9350 Report Date: 10/06/20

Method Blank Analysis Batch Quality Control

 Analytical Method:
 129,625.1

 Analytical Date:
 10/01/20 11:15

 Extraction Method:
 EPA 625.1

 Extraction Date:
 09/30/20 02:55

Analyst: ALS

Parameter	Result (Qualifier Units	RL	MDL
Semivolatile Organics by GC/M	S - Westborough I	Lab for sample(s):	01 Batch:	WG1416157-1
Bis(2-ethylhexyl)phthalate	ND	ug/l	2.20	
Butyl benzyl phthalate	ND	ug/l	5.00	
Di-n-butylphthalate	ND	ug/l	5.00	
Di-n-octylphthalate	ND	ug/l	5.00	
Diethyl phthalate	ND	ug/l	5.00	
Dimethyl phthalate	ND	ug/l	5.00	

		Acceptance		
Surrogate	%Recovery	Qualifier Criteria		
Nitrobenzene-d5	103	42-122		
2-Fluorobiphenyl	77	46-121		
4-Terphenyl-d14	79	47-138		

L2040729

Lab Number:

Project Name: CONANT WELLFIELD-ACTON

Project Number: 9350 Report Date: 10/06/20

Method Blank Analysis Batch Quality Control

Analytical Method: 129,625.1-SIM Extraction Method: EPA 625.1
Analytical Date: 10/01/20 12:30 Extraction Date: 09/30/20 02:59

Analyst: JJW

Parameter	Result	Qualifier	Units	RL	MDL
Semivolatile Organics by GC/MS	S-SIM - Westbo	rough Lab	for sample	(s): 01	Batch: WG1416158-1
Acenaphthene	ND		ug/l	0.100	
Fluoranthene	ND		ug/l	0.100	
Naphthalene	ND		ug/l	0.100	
Benzo(a)anthracene	ND		ug/l	0.100	
Benzo(a)pyrene	ND		ug/l	0.100	
Benzo(b)fluoranthene	ND		ug/l	0.100	
Benzo(k)fluoranthene	ND		ug/l	0.100	
Chrysene	ND		ug/l	0.100	
Acenaphthylene	ND		ug/l	0.100	
Anthracene	ND		ug/l	0.100	
Benzo(ghi)perylene	ND		ug/l	0.100	
Fluorene	ND		ug/l	0.100	
Phenanthrene	ND		ug/l	0.100	
Dibenzo(a,h)anthracene	ND		ug/l	0.100	
Indeno(1,2,3-cd)pyrene	ND		ug/l	0.100	
Pyrene	ND		ug/l	0.100	
Pentachlorophenol	ND		ug/l	1.00	

Surrogate	%Recovery Quali	Acceptance fier Criteria
2-Fluorophenol	42	25-87
Phenol-d6	32	16-65
Nitrobenzene-d5	78	42-122
2-Fluorobiphenyl	74	46-121
2,4,6-Tribromophenol	63	45-128
4-Terphenyl-d14	75	47-138

Project Name: CONANT WELLFIELD-ACTON

Project Number: 9350

Lab Number:

L2040729

10/06/20

Report Date:

Parameter	LCS %Recovery	Qual	LCSD %Recovery	Qual	%Recovery Limits	RPD	Qual	RPD Limits	
Semivolatile Organics by GC/MS - Westboro	ugh Lab Associa	nted sample(s)	: 01 Batch:	WG141615	7-2				
Bis(2-ethylhexyl)phthalate	90		-		29-137	-		82	
Butyl benzyl phthalate	89		-		1-140	-		60	
Di-n-butylphthalate	79		-		8-120	-		47	
Di-n-octylphthalate	94		-		19-132	-		69	
Diethyl phthalate	79		-		1-120	-		100	
Dimethyl phthalate	73		-		1-120	-		183	

Surrogate	LCS %Recovery Qual	LCSD %Recovery Qual	Acceptance Criteria
Nitrobenzene-d5	111		42-122
2-Fluorobiphenyl	77		46-121
4-Terphenyl-d14	77		47-138

Project Name: CONANT WELLFIELD-ACTON

Project Number: 9350

Lab Number: L2040729

Report Date: 10/06/20

nrameter	LCS %Recovery Qua	LCSD al %Recovery (%Recovery Qual Limits	RPD	RPD Qual Limits
emivolatile Organics by GC/MS-SIM	l - Westborough Lab Associate	ed sample(s): 01 Batch:	WG1416158-3		
Acenaphthene	74	-	60-132	-	30
Fluoranthene	80	-	43-121	-	30
Naphthalene	73	-	36-120	-	30
Benzo(a)anthracene	80	-	42-133	-	30
Benzo(a)pyrene	80	-	32-148	-	30
Benzo(b)fluoranthene	75	-	42-140	-	30
Benzo(k)fluoranthene	82	-	25-146	-	30
Chrysene	82	-	44-140	-	30
Acenaphthylene	83	-	54-126	-	30
Anthracene	83	-	43-120	-	30
Benzo(ghi)perylene	80	-	1-195	-	30
Fluorene	76	-	70-120	-	30
Phenanthrene	76	-	65-120	-	30
Dibenzo(a,h)anthracene	81	-	1-200	-	30
Indeno(1,2,3-cd)pyrene	81	-	1-151	-	30
Pyrene	81	-	70-120	-	30
Pentachlorophenol	74	-	38-152	-	30

L2040729

Lab Control Sample Analysis Batch Quality Control

Project Name: CONANT WELLFIELD-ACTON

Lab Number:

Project Number: 9350 Report Date: 10/06/20

LCS LCSD %Recovery RPD
Parameter %Recovery Qual %Recovery Qual Limits RPD Qual Limits

Semivolatile Organics by GC/MS-SIM - Westborough Lab Associated sample(s): 01 Batch: WG1416158-3

Surrogate	LCS L %Recovery Qual %Rec	CSD overy Qual	Acceptance Criteria
2-Fluorophenol	50		25-87
Phenol-d6	38		16-65
Nitrobenzene-d5	82		42-122
2-Fluorobiphenyl	75		46-121
2,4,6-Tribromophenol	72		45-128
4-Terphenyl-d14	77		47-138

PCBS

Project Name: Lab Number: **CONANT WELLFIELD-ACTON** L2040729

Report Date: **Project Number:** 9350 10/06/20

SAMPLE RESULTS

Lab ID: L2040729-01 Date Collected: 09/25/20 11:00 Date Received: Client ID: WELL-E 09/25/20

Sample Location: Field Prep: ACTON, MA Not Specified

Sample Depth:

Extraction Method: EPA 608.3 Matrix: Water **Extraction Date:** 09/27/20 22:18 Analytical Method: 127,608.3 Cleanup Method: EPA 3665A Analytical Date: 09/28/20 16:25

Cleanup Date: 09/28/20 Analyst: ΑD Cleanup Method: EPA 3660B

Cleanup Date: 09/28/20

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	Column
Polychlorinated Biphenyls by	GC - Westborough Lab						
Aroclor 1016	ND		ug/l	0.250		1	А
Aroclor 1221	ND		ug/l	0.250		1	Α
Aroclor 1232	ND		ug/l	0.250		1	Α
Aroclor 1242	ND		ug/l	0.250		1	Α
Aroclor 1248	ND		ug/l	0.250		1	Α
Aroclor 1254	ND		ug/l	0.250		1	Α
Aroclor 1260	ND		ug/l	0.200		1	Α

Surrogate	Acceptance			
	% Recovery	Qualifier	Criteria	Column
2,4,5,6-Tetrachloro-m-xylene	71		37-123	В
Decachlorobiphenyl	81		38-114	В
2,4,5,6-Tetrachloro-m-xylene	76		37-123	Α
Decachlorobiphenyl	81		38-114	Α

Project Name: CONANT WELLFIELD-ACTON Lab Number: L2040729

Project Number: 9350 Report Date: 10/06/20

Method Blank Analysis Batch Quality Control

Analytical Method: 127,608.3 Analytical Date: 09/28/20 15:10

Analyst: AD

Extraction Method: EPA 608.3
Extraction Date: 09/27/20 22:18
Cleanup Method: EPA 3665A
Cleanup Date: 09/28/20
Cleanup Method: EPA 3660B
Cleanup Date: 09/28/20

Parameter	Result	Qualifier	Units	RL	MDL	Column
Polychlorinated Biphenyls by GC - V	Vestborough	Lab for s	ample(s):	01 Batch:	WG1415202-	-1
Aroclor 1016	ND		ug/l	0.250		Α
Aroclor 1221	ND		ug/l	0.250		Α
Aroclor 1232	ND		ug/l	0.250		Α
Aroclor 1242	ND		ug/l	0.250		Α
Aroclor 1248	ND		ug/l	0.250		Α
Aroclor 1254	ND		ug/l	0.250		Α
Aroclor 1260	ND		ug/l	0.200		Α

		Acceptano	ce
Surrogate	%Recovery Quali	fier Criteria	Column
2,4,5,6-Tetrachloro-m-xylene	80	37-123	В
Decachlorobiphenyl	74	38-114	В
2,4,5,6-Tetrachloro-m-xylene	79	37-123	Α
Decachlorobiphenyl	61	38-114	Α

Lab Control Sample Analysis Batch Quality Control

Project Name: CONANT WELLFIELD-ACTON

Lab Number:

L2040729

Project Number: 9350

Report Date: 10/06/20

Demonstra	LCS	0	LCSD		%Recovery		01	RPD Limite	0.1
<u>Parameter</u>	%Recovery	Qual	%Recovery	Qual	Limits	RPD	Qual	Limits	Column
Polychlorinated Biphenyls by GC - Westk	oorough Lab Associa	ted sample(s):	01 Batch:	WG1415202-2	2				
Aroclor 1016	107		-		50-140	-		36	Α
Aroclor 1260	87		-		8-140	-		38	А

	LCS	LCSD	Acceptance Criteria	0-1
Surrogate	%Recovery Qua	l %Recovery Qual	Criteria	Column
2,4,5,6-Tetrachloro-m-xylene	80		37-123	В
Decachlorobiphenyl	79		38-114	В
2,4,5,6-Tetrachloro-m-xylene	87		37-123	Α
Decachlorobiphenyl	73		38-114	Α

METALS

Project Name:CONANT WELLFIELD-ACTONLab Number:L2040729

Project Number: 9350 Report Date: 10/06/20

SAMPLE RESULTS

Lab ID:L2040729-01Date Collected:09/25/20 11:00Client ID:WELL-EDate Received:09/25/20Sample Location:ACTON, MAField Prep:Not Specified

Sample Depth:

Matrix: Water

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	Date Prepared	Date Analyzed	Prep Method	Analytical Method	Analyst
Total Metals - Mans	field Lab										
Antimony, Total	ND		mg/l	0.00400		1	10/01/20 04:00	10/01/20 11:07	EPA 3005A	3,200.8	AM
Arsenic, Total	0.00101		mg/l	0.00100		1	10/01/20 04:00	10/01/20 11:07	EPA 3005A	3,200.8	AM
Cadmium, Total	ND		mg/l	0.00020		1	10/01/20 04:00	10/01/20 11:07	EPA 3005A	3,200.8	AM
Chromium, Total	0.00204		mg/l	0.00100		1	10/01/20 04:00	10/01/20 11:07	EPA 3005A	3,200.8	AM
Copper, Total	0.00684		mg/l	0.00100		1	10/01/20 04:00	10/01/20 11:07	EPA 3005A	3,200.8	AM
Iron, Total	32.4		mg/l	0.050		1	10/01/20 04:00	10/01/20 22:02	EPA 3005A	19,200.7	BV
Lead, Total	ND		mg/l	0.00100		1	10/01/20 04:00	10/01/20 11:07	EPA 3005A	3,200.8	AM
Mercury, Total	ND		mg/l	0.00020		1	10/01/20 07:30	10/01/20 11:15	EPA 245.1	3,245.1	EW
Nickel, Total	ND		mg/l	0.00200		1	10/01/20 04:00	10/01/20 11:07	EPA 3005A	3,200.8	AM
Selenium, Total	ND		mg/l	0.00500		1	10/01/20 04:00	10/01/20 11:07	EPA 3005A	3,200.8	AM
Silver, Total	ND		mg/l	0.00040		1	10/01/20 04:00	10/01/20 11:07	EPA 3005A	3,200.8	AM
Zinc, Total	0.05016		mg/l	0.01000		1	10/01/20 04:00	10/01/20 11:07	EPA 3005A	3,200.8	AM
Total Hardness by	SM 2340B	- Mansfield	d Lab								
Hardness	37.6		mg/l	0.660	NA	1	10/01/20 04:00	10/02/20 11:21	FPA 3005A	19,200.7	GD
	3 .		.				. 2, 3 ., 2 3 1.00			•	
General Chemistry	- Mansfiel	d Lab									
Chromium, Trivalent	ND		mg/l	0.010		1		10/01/20 11:07	NA	107,-	

09/25/20 11:40

Date Collected:

Project Name:CONANT WELLFIELD-ACTONLab Number:L2040729

Project Number: 9350 Report Date: 10/06/20

SAMPLE RESULTS

Lab ID: L2040729-02

Client ID: SURFACE WATER Date Received: 09/25/20 Sample Location: ACTON, MA Field Prep: Not Specified

Sample Depth:

Matrix: Water

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	Date Prepared	Date Analyzed	Prep Method	Analytical Method	Analyst
Total Metals - Mans	sfield Lab										
Antimony, Total	ND		mg/l	0.00400		1	10/01/20 04:00	10/01/20 11:18	EPA 3005A	3,200.8	AM
Arsenic, Total	0.00102		mg/l	0.00100		1	10/01/20 04:00	10/01/20 11:18	EPA 3005A	3,200.8	AM
Cadmium, Total	ND		mg/l	0.00020		1	10/01/20 04:00	10/01/20 11:18	EPA 3005A	3,200.8	AM
Chromium, Total	ND		mg/l	0.00100		1	10/01/20 04:00	10/01/20 11:18	EPA 3005A	3,200.8	AM
Copper, Total	ND		mg/l	0.00100		1	10/01/20 04:00	10/01/20 11:18	EPA 3005A	3,200.8	AM
Iron, Total	0.286		mg/l	0.050		1	10/01/20 04:00	10/01/20 22:06	EPA 3005A	19,200.7	BV
Lead, Total	ND		mg/l	0.00100		1	10/01/20 04:00	10/01/20 11:18	EPA 3005A	3,200.8	AM
Mercury, Total	ND		mg/l	0.00020		1	10/01/20 07:30	10/01/20 11:17	EPA 245.1	3,245.1	EW
Nickel, Total	ND		mg/l	0.00200		1	10/01/20 04:00	10/01/20 11:18	EPA 3005A	3,200.8	AM
Selenium, Total	ND		mg/l	0.00500		1	10/01/20 04:00	10/01/20 11:18	EPA 3005A	3,200.8	AM
Silver, Total	ND		mg/l	0.00040		1	10/01/20 04:00	10/01/20 11:18	EPA 3005A	3,200.8	AM
Zinc, Total	ND		mg/l	0.01000		1	10/01/20 04:00	10/01/20 11:18	EPA 3005A	3,200.8	AM
Total Hardness by	SM 2340B	- Mansfiel	d Lab								
Hardness	48.7		mg/l	0.660	NA	1	10/01/20 04:00	10/02/20 11:26	EPA 3005A	19,200.7	GD
			J.							•	

Project Name: CONANT WELLFIELD-ACTON

Project Number: 9350

Lab Number:

L2040729

Report Date:

10/06/20

Method Blank Analysis Batch Quality Control

Parameter	Result Qualifier	Units	RL	MDL	Dilution Factor	Date Prepared		Analytical Method	
Total Metals - Mansfield	Lab for sample(s):	01-02 E	Batch: Wo	G14164	83-1				
Mercury, Total	ND	mg/l	0.00020		1	10/01/20 07:30	10/01/20 10:20	3,245.1	EW

Prep Information

Digestion Method: EPA 245.1

Parameter	Result Qualifier	Units	RL	MDL	Dilution Factor	Date Prepared	Date Analyzed	Analytical Method	Analyst
Total Metals - Mansfield	Lab for sample(s):	01-02 E	Batch: Wo	314166	57-1				
Iron, Total	ND	mg/l	0.050		1	10/01/20 04:00	10/01/20 20:01	19,200.7	BV

Prep Information

Digestion Method: EPA 3005A

Parameter	Result Qualifier	Units	RL	MDL	Dilution Factor	Date Prepared	Date Analyzed	Analytical Method	Analyst
Total Hardness by S	M 2340B - Mansfield L	ab for sam	ple(s):	01-02 E	Batch: WG1	416657-1			
Hardness	ND	mg/l	0.660	NA	1	10/01/20 04:00	10/01/20 20:01	19,200.7	BV

Prep Information

Digestion Method: EPA 3005A

Parameter	Result Qualifier	Units	RL	MDL	Dilution Factor	Date Prepared	Date Analyzed	Analytical Method	Analyst
Total Metals - Mansfie	ld Lab for sample(s):	01-02	Batch: Wo	G14166	59-1				
Antimony, Total	ND	mg/l	0.00400		1	10/01/20 04:00	10/01/20 10:05	3,200.8	AM
Arsenic, Total	ND	mg/l	0.00100		1	10/01/20 04:00	10/01/20 10:05	3,200.8	AM
Cadmium, Total	ND	mg/l	0.00020		1	10/01/20 04:00	10/01/20 10:05	3,200.8	AM
Chromium, Total	ND	mg/l	0.00100		1	10/01/20 04:00	10/01/20 10:05	3,200.8	AM
Copper, Total	ND	mg/l	0.00100		1	10/01/20 04:00	10/01/20 10:05	3,200.8	AM

Project Name: CONANT WELLFIELD-ACTON Lab Number: L2040729

Project Number: 9350 Report Date: 10/06/20

Method Blank Analysis Batch Quality Control

Lead, Total	ND	mg/l	0.00100	 1	10/01/20 04:00	10/01/20 10:05	3,200.8	AM
Nickel, Total	ND	mg/l	0.00200	 1	10/01/20 04:00	10/01/20 10:05	3,200.8	AM
Selenium, Total	ND	mg/l	0.00500	 1	10/01/20 04:00	10/01/20 10:05	3,200.8	AM
Silver, Total	ND	mg/l	0.00040	 1	10/01/20 04:00	10/01/20 10:05	3,200.8	AM
Zinc, Total	ND	mg/l	0.01000	 1	10/01/20 04:00	10/01/20 10:05	3,200.8	AM

Prep Information

Digestion Method: EPA 3005A

Lab Control Sample Analysis Batch Quality Control

Project Name: CONANT WELLFIELD-ACTON

Project Number: 9350

Lab Number:

L2040729

Report Date:

arameter	LCS %Recovery	LCSD Qual %Recovery	%Recove Qual Limits	ery RPD	Qual	RPD Limits
otal Metals - Mansfield Lab Associated sample	e(s): 01-02 Batcl	h: WG1416483-2				
Mercury, Total	112	-	85-115	-		
otal Metals - Mansfield Lab Associated sample	e(s): 01-02 Batcl	h: WG1416657-2				
Iron, Total	102	-	85-115	-		
otal Hardness by SM 2340B - Mansfield Lab A	ssociated sample	e(s): 01-02 Batch: WG1410	6657-2			
Hardness	106		85-115	-		
otal Metals - Mansfield Lab Associated sample	e(s): 01-02 Batcl	h: WG1416659-2				
otal Metals - Mansfield Lab Associated sample Antimony, Total	e(s): 01-02 Batcl	h: WG1416659-2 -	85-115			
		h: WG1416659-2 - -	85-115 85-115			
Antimony, Total	97			- -		
Antimony, Total Arsenic, Total	97 109		85-115	-		
Antimony, Total Arsenic, Total Cadmium, Total	97 109 111		85-115 85-115	-		
Antimony, Total Arsenic, Total Cadmium, Total Chromium, Total	97 109 111 98	- - -	85-115 85-115 85-115			
Arsenic, Total Cadmium, Total Chromium, Total Copper, Total	97 109 111 98 98	- - - -	85-115 85-115 85-115 85-115	- - -		
Antimony, Total Arsenic, Total Cadmium, Total Chromium, Total Copper, Total Lead, Total	97 109 111 98 98 104	- - - -	85-115 85-115 85-115 85-115 85-115	- - - -		
Antimony, Total Arsenic, Total Cadmium, Total Chromium, Total Copper, Total Lead, Total Nickel, Total	97 109 111 98 98 104 95	- - - -	85-115 85-115 85-115 85-115 85-115	- - - - -		

Matrix Spike Analysis Batch Quality Control

Project Name: CONANT WELLFIELD-ACTON

Project Number: 9350

Lab Number:

L2040729

Report Date: 10/06/20

Parameter	Native Sample	MS Added	MS Found	MS %Recovery	Qual	MSD Found	MSD %Recovery	Recovery Qual Limits	RPD Qual	RPD Limits
Total Metals - Mansfield Lab	Associated sam	ple(s): 01-02	QC Bat	ch ID: WG141	6483-3	QC Samp	ole: L2040505-0	01 Client ID: MS	Sample	
Mercury, Total	ND	0.005	0.00547	109		-	-	70-130	-	20
Total Metals - Mansfield Lab	Associated sam	ple(s): 01-02	QC Bat	ch ID: WG141	6483-5	QC Samp	ole: L2040505-0	02 Client ID: MS	Sample	
Mercury, Total	ND	0.005	0.0054	109		-	-	70-130	-	20
Total Metals - Mansfield Lab	Associated sam	ple(s): 01-02	QC Bat	ch ID: WG141	6657-3	QC Samp	ole: L2041203-0	01 Client ID: MS	Sample	
Iron, Total	4.38	1	5.34	96		-	-	75-125	-	20
Total Hardness by SM 2340E	3 - Mansfield Lab	Associated	sample(s)	: 01-02 QC	Batch ID	: WG14166	57-3 QC Sai	mple: L2041203-0	1 Client ID:	MS Sample
Hardness	273	66.2	334	92		-	-	75-125	-	20
Total Metals - Mansfield Lab	Associated sam	ple(s): 01-02	QC Bat	ch ID: WG141	6657-7	QC Samp	ole: L2041203-0	02 Client ID: MS	Sample	
Iron, Total	ND	1	1.03	103		-	-	75-125	-	20
Total Hardness by SM 2340E	3 - Mansfield Lab	Associated	sample(s)	: 01-02 QC	Batch ID	: WG14166	57-7 QC Sai	mple: L2041203-0	2 Client ID:	MS Sample
Hardness	270	66.2	329	89		-	-	75-125	-	20

Matrix Spike Analysis Batch Quality Control

Project Name: CONANT WELLFIELD-ACTON

Project Number: 9350

Lab Number: L2040729

Report Date: 10/06/20

arameter	Native Sample	MS Added	MS Found	MS %Recovery	MSD Found	MSD %Recovery	Recovery Limits	RPD	RPD Limits
otal Metals - Mansfield	Lab Associated sar	nple(s): 01-02	QC Ba	tch ID: WG1416659-	3 QC Sam	nple: L2041203-01	Client ID: MS	S Sample	
Antimony, Total	ND	0.5	0.5588	112	-	-	70-130	-	20
Arsenic, Total	ND	0.12	0.1292	108	-	-	70-130	-	20
Cadmium, Total	ND	0.051	0.05720	112	-	-	70-130	-	20
Chromium, Total	ND	0.2	0.1996	100	-	-	70-130	-	20
Copper, Total	0.00158	0.25	0.2519	100	-	-	70-130	-	20
Lead, Total	ND	0.51	0.5427	106	-	-	70-130	-	20
Nickel, Total	0.00222	0.5	0.4863	97	-	-	70-130	-	20
Selenium, Total	ND	0.12	0.1374	114	-	-	70-130	-	20
Silver, Total	ND	0.05	0.05205	104	-	-	70-130	-	20
Zinc, Total	0.01685	0.5	0.5462	106	-	-	70-130	-	20
otal Metals - Mansfield	Lab Associated sar	nple(s): 01-02	QC Ba	tch ID: WG1416659-	QC Sam	nple: L2041203-02	Client ID: MS	S Sample	
Antimony, Total	ND	0.5	0.5460	109	-	-	70-130	-	20
Arsenic, Total	ND	0.12	0.1302	108	-	-	70-130	-	20
Cadmium, Total	ND	0.051	0.05746	113	-	-	70-130	-	20
Chromium, Total	ND	0.2	0.2020	101	-	-	70-130	-	20
Copper, Total	ND	0.25	0.2452	98	-	-	70-130	-	20
Lead, Total	ND	0.51	0.5551	109	-	-	70-130	-	20
Nickel, Total	ND	0.5	0.4614	92	-	-	70-130	-	20
Selenium, Total	ND	0.12	0.1452	121	-	-	70-130	-	20
Silver, Total	ND	0.05	0.05292	106	-	-	70-130	-	20
Zinc, Total	0.01092	0.5	0.5497	108	_	-	70-130	-	20

Lab Duplicate Analysis Batch Quality Control

Project Name: CONANT WELLFIELD-ACTON

Project Number: 9350

Lab Number:

L2040729

Report Date:

Parameter	Native Samp	e Duplicate Sample	Units	RPD	Qual RF	D Limits
otal Metals - Mansfield Lab Associated sample(s):	01-02 QC Batch I	D: WG1416483-4 QC Sample	: L2040505-01	Client ID:	DUP Sample	
Mercury, Total	ND	ND	mg/l	NC		20
otal Metals - Mansfield Lab Associated sample(s):	01-02 QC Batch I	D: WG1416483-6 QC Sample	: L2040505-02	Client ID:	DUP Sample	
Mercury, Total	ND	ND	mg/l	NC		20
otal Metals - Mansfield Lab Associated sample(s):	01-02 QC Batch I	D: WG1416657-4 QC Sample	: L2041203-01	Client ID:	DUP Sample	
Iron, Total	4.38	4.41	mg/l	1		20
otal Metals - Mansfield Lab Associated sample(s):	01-02 QC Batch I	D: WG1416657-8 QC Sample	: L2041203-02	Client ID:	DUP Sample	
Iron, Total	ND	ND	mg/l	NC		20
otal Metals - Mansfield Lab Associated sample(s):	01-02 QC Batch I	D: WG1416659-4 QC Sample	: L2041203-01	Client ID:	DUP Sample	
Antimony, Total	ND	ND	mg/l	NC		20
Arsenic, Total	ND	ND	mg/l	NC		20
Cadmium, Total	ND	ND	mg/l	NC		20
Chromium, Total	ND	ND	mg/l	NC		20
Copper, Total	0.00158	0.00169	mg/l	7		20
Lead, Total	ND	ND	mg/l	NC		20
Nickel, Total	0.00222	0.00237	mg/l	7		20
Selenium, Total	ND	ND	mg/l	NC		20
Silver, Total	ND	ND	mg/l	NC		20
Zinc, Total	0.01685	0.01637	mg/l	3		20

Lab Duplicate Analysis Batch Quality Control

Project Name: CONANT WELLFIELD-ACTON

Project Number: 9350

Lab Number: L2040729

Report Date: 10/06/20

arameter	Native Sample	Duplicate Sample	Units	RPD	RPD Limits
otal Metals - Mansfield Lab Associated sample(s): 01-0	2 QC Batch ID:	WG1416659-6 QC Sample:	L2041203-02	Client ID:	DUP Sample
Antimony, Total	ND	ND	mg/l	NC	20
Arsenic, Total	ND	ND	mg/l	NC	20
Cadmium, Total	ND	ND	mg/l	NC	20
Chromium, Total	ND	ND	mg/l	NC	20
Copper, Total	ND	ND	mg/l	NC	20
Lead, Total	ND	ND	mg/l	NC	20
Nickel, Total	ND	ND	mg/l	NC	20
Selenium, Total	ND	ND	mg/l	NC	20
Silver, Total	ND	ND	mg/l	NC	20
Zinc, Total	0.01092	0.01091	mg/l	0	20

INORGANICS & MISCELLANEOUS

Project Name: CONANT WELLFIELD-ACTON Lab Number: L2040729

Project Number: 9350 Report Date: 10/06/20

SAMPLE RESULTS

Lab ID:L2040729-01Date Collected:09/25/20 11:00Client ID:WELL-EDate Received:09/25/20Sample Location:ACTON, MAField Prep:Not Specified

Sample Depth:

Matrix: Water

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	Date Prepared	Date Analyzed	Analytical Method	Analyst
General Chemistry - Wes	stborough La	b								
Solids, Total Suspended	55.		mg/l	10	NA	2	-	09/30/20 15:45	121,2540D	AC
Cyanide, Total	ND		mg/l	0.005		1	09/26/20 15:30	09/29/20 11:10	121,4500CN-CE	AG
Chlorine, Total Residual	ND		mg/l	0.02		1	-	09/26/20 08:10	121,4500CL-D	MA
Nitrogen, Ammonia	0.085		mg/l	0.075		1	09/29/20 13:25	09/29/20 19:48	121,4500NH3-BH	H AT
TPH, SGT-HEM	ND		mg/l	4.00		1	10/01/20 09:11	10/01/20 12:42	74,1664A	DR
Phenolics, Total	ND		mg/l	0.030		1	09/28/20 05:00	09/28/20 09:20	4,420.1	MV
Chromium, Hexavalent	ND		mg/l	0.010		1	09/26/20 06:15	09/26/20 06:53	1,7196A	MA
Anions by Ion Chromatog	graphy - Wes	tborough	Lab							
Chloride	11.9		mg/l	0.500		1	-	09/28/20 18:07	44,300.0	SH

Project Name: CONANT WELLFIELD-ACTON Lab Number: L2040729

Project Number: 9350 Report Date: 10/06/20

SAMPLE RESULTS

Lab ID: L2040729-02 Date Collected: 09/25/20 11:40

Client ID: SURFACE WATER Date Received: 09/25/20 Sample Location: ACTON, MA Field Prep: Not Specified

Sample Depth:

Matrix: Water

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	Date Prepared	Date Analyzed	Analytical Method	Analyst
General Chemistry - W	estborough Lab)								
Nitrogen, Ammonia	0.187		mg/l	0.075		1	09/29/20 13:25	09/29/20 19:49	121,4500NH3-B	H AT

L2040729

Lab Number:

Project Name: CONANT WELLFIELD-ACTON

Project Number: 9350 **Report Date:** 10/06/20

Method Blank Analysis Batch Quality Control

Parameter	Result Qu	ıalifier	Units	RL	MDL	Dilution Factor	Date Prepared	Date Analyzed	Analytical Method	Analyst
General Chemistry -	Westborough Lab	for sam	ple(s): 01	Batch:	WG14	14862-1				
Chromium, Hexavalent	ND		mg/l	0.010		1	09/26/20 06:15	09/26/20 06:52	1,7196A	MA
General Chemistry -	Westborough Lab	for sam	ple(s): 01	Batch:	WG14	14940-1				
Chlorine, Total Residual	ND		mg/l	0.02		1	-	09/26/20 08:10	121,4500CL-D	MA
General Chemistry -	Westborough Lab	for sam	ple(s): 01	Batch:	WG14	15007-1				
Cyanide, Total	ND		mg/l	0.005		1	09/26/20 15:30	09/29/20 10:48	121,4500CN-CE	E AG
General Chemistry -	Westborough Lab	for sam	ple(s): 01	Batch:	WG14	15233-1				
Phenolics, Total	ND		mg/l	0.030		1	09/28/20 05:00	09/28/20 08:24	4,420.1	MV
Anions by Ion Chron	natography - Westb	orough	Lab for sar	nple(s):	01 B	atch: WG1	415649-1			
Chloride	ND		mg/l	0.500		1	-	09/28/20 17:01	44,300.0	SH
General Chemistry -	Westborough Lab	for sam	ple(s): 01-	02 Bat	ch: WO	G1415767-1	ĺ			
Nitrogen, Ammonia	ND		mg/l	0.075		1	09/29/20 13:25	09/29/20 19:26	121,4500NH3-BI	H AT
General Chemistry -	Westborough Lab	for sam	ple(s): 01	Batch:	WG14	16296-1				
Solids, Total Suspended	ND		mg/l	5.0	NA	1	-	09/30/20 15:45	121,2540D	AC
General Chemistry -	Westborough Lab	for sam	ple(s): 01	Batch:	WG14	16792-1				
TPH, SGT-HEM	ND		mg/l	4.00		1	10/01/20 09:11	10/01/20 12:42	74,1664A	DR

Lab Control Sample Analysis Batch Quality Control

Project Name: CONANT WELLFIELD-ACTON

Project Number: 9350

90.0.00

Lab Number:

L2040729

Report Date:

Parameter	LCS %Recovery	Qual	LCSD %Recovery	Qual	%Recovery Limits	RPD	Qual	RPD Limits
General Chemistry - Westborough Lab As	ssociated sample(s)	: 01	Batch: WG1414862-	2				
Chromium, Hexavalent	102		-		85-115	-		20
General Chemistry - Westborough Lab As	ssociated sample(s)	: 01	Batch: WG1414940-	2				
Chlorine, Total Residual	96		-		90-110	-		
General Chemistry - Westborough Lab As	ssociated sample(s)	: 01	Batch: WG1415007-	2				
Cyanide, Total	92		-		90-110	-		
General Chemistry - Westborough Lab As	ssociated sample(s)	: 01	Batch: WG1415233-	2				
Phenolics, Total	110		-		70-130	-		
Anions by Ion Chromatography - Westboro	ough Lab Associate	ed sam	ple(s): 01 Batch: V	/G14156	49-2			
Chloride	106		-		90-110	-		
General Chemistry - Westborough Lab As	ssociated sample(s)	: 01-02	2 Batch: WG14157	67-2				
Nitrogen, Ammonia	92		-		80-120	-		20
General Chemistry - Westborough Lab As	ssociated sample(s)	: 01	Batch: WG1416296-	2				
Solids, Total Suspended	98		-		80-120	-		

Lab Control Sample Analysis Batch Quality Control

Project Name: CONANT WELLFIELD-ACTON

Project Number: 9350

Lab Number:

L2040729

Report Date:

Parameter	LCS %Recovery	LCSD %Recovery	%Recovery Limits	RPD	RPD Limits
General Chemistry - Westborough Lab	Associated sample(s): 01	Batch: WG1416792-2			
ТРН	82	-	64-132	-	34

Matrix Spike Analysis Batch Quality Control

Project Name: CONANT WELLFIELD-ACTON

Project Number: 9350

Lab Number:

L2040729

Report Date:

Parameter	Native Sample	MS Added	MS Found	MS %Recovery	MSD Qual Found	MSD %Recovery Qual	Recovery Limits RP	RPD D Qual Limits
General Chemistry - Westboroug	jh Lab Asso	ciated samp	le(s): 01	QC Batch ID: \	WG1414862-4	QC Sample: L2040729	9-01 Client ID:	WELL-E
Chromium, Hexavalent	ND	0.1	0.103	103	-	-	85-115 -	20
General Chemistry - Westboroug	jh Lab Asso	ciated samp	le(s): 01	QC Batch ID: \	WG1414940-4	QC Sample: L2040729	9-01 Client ID:	WELL-E
Chlorine, Total Residual	ND	0.25	0.20	80	-	-	80-120 -	20
General Chemistry - Westboroug	jh Lab Asso	ciated samp	le(s): 01	QC Batch ID: \	WG1415007-4	QC Sample: L2040305	5-02 Client ID:	MS Sample
Cyanide, Total	ND	0.2	0.170	85	Q -	-	90-110 -	30
General Chemistry - Westboroug	jh Lab Asso	ciated samp	le(s): 01	QC Batch ID: \	WG1415233-4	QC Sample: L2040582	2-02 Client ID:	MS Sample
Phenolics, Total	ND	0.4	0.47	116	-	-	70-130 -	20
Anions by Ion Chromatography -	Westborou	gh Lab Asso	ciated sar	nple(s): 01 Q0	C Batch ID: WG1	415649-3 QC Samp	le: L2040729-01	Client ID: WELL-E
Chloride	11.9	4	15.4	88	Q -	-	90-110 -	18
General Chemistry - Westboroug	jh Lab Asso	ciated samp	le(s): 01-0	2 QC Batch II	D: WG1415767-	4 QC Sample: L2040	0401-02 Client II	D: MS Sample
Nitrogen, Ammonia	ND	4	3.63	91		-	80-120 -	20
General Chemistry - Westboroug	jh Lab Asso	ciated samp	le(s): 01	QC Batch ID: \	WG1416792-4	QC Sample: L2040604	4-02 Client ID:	MS Sample
TPH	ND	19.4	17.0	88	-	-	64-132 -	34

Lab Duplicate Analysis Batch Quality Control

Project Name: CONANT WELLFIELD-ACTON

Project Number: 9350

Lab Number: Report Date:

L2040729

Parameter	Native Sa	mple	Duplicate Sam	ple Unit:	RPD	Qual	RPD Limits
General Chemistry - Westborough Lab A	ssociated sample(s): 01	QC Batch ID:	WG1414862-3	QC Sample:	L2040729-01	Client ID:	WELL-E
Chromium, Hexavalent	ND		ND	mg/l	NC		20
General Chemistry - Westborough Lab A	ssociated sample(s): 01	QC Batch ID:	WG1414940-3	QC Sample:	L2040729-01	Client ID:	WELL-E
Chlorine, Total Residual	ND		ND	mg/l	NC		20
General Chemistry - Westborough Lab A	ssociated sample(s): 01	QC Batch ID:	WG1415007-3	QC Sample:	L2040305-01	Client ID:	DUP Sample
Cyanide, Total	ND		ND	mg/l	NC		30
General Chemistry - Westborough Lab A	ssociated sample(s): 01	QC Batch ID:	WG1415233-3	QC Sample:	L2040582-02	Client ID:	DUP Sample
Phenolics, Total	ND		ND	mg/l	NC		20
Anions by Ion Chromatography - Westbor	ough Lab Associated samp	ole(s): 01 Q	C Batch ID: WG	1415649-4	C Sample: L2	2040729-01	Client ID: WELL-E
Chloride	11.9		11.8	mg/l	1		18
General Chemistry - Westborough Lab A	ssociated sample(s): 01-02	2 QC Batch I	D: WG1415767-	3 QC Samp	e: L2040401-	02 Client I	D: DUP Sample
Nitrogen, Ammonia	ND		ND	mg/l	NC		20
General Chemistry - Westborough Lab A	ssociated sample(s): 01	QC Batch ID:	WG1416296-3	QC Sample:	L2040510-02	Client ID:	DUP Sample
Solids, Total Suspended	ND		ND	mg/l	NC		29
General Chemistry - Westborough Lab A	ssociated sample(s): 01	QC Batch ID:	WG1416792-3	QC Sample:	L2040604-01	Client ID:	DUP Sample
TPH	ND		ND	mg/l	NC		34

Project Name: CONANT WELLFIELD-ACTON

Project Number: 9350

Lab Number: L2040729

Report Date: 10/06/20

Sample Receipt and Container Information

Were project specific reporting limits specified?

YES

Cooler Information

Cooler Custody Seal

A Absent

Container Info	ormation		Initial	Final	Temp			Frozen	
Container ID	Container Type	Cooler	рН	pН	•	Pres	Seal	Date/Time	Analysis(*)
L2040729-01A	Vial Na2S2O3 preserved	Α	NA		2.0	Υ	Absent		624.1-RGP(7)
L2040729-01B	Vial Na2S2O3 preserved	Α	NA		2.0	Υ	Absent		624.1-RGP(7)
L2040729-01C	Vial Na2S2O3 preserved	Α	NA		2.0	Υ	Absent		624.1-RGP(7)
L2040729-01D	Vial Na2S2O3 preserved	Α	NA		2.0	Υ	Absent		624.1-SIM-RGP(7)
L2040729-01E	Vial Na2S2O3 preserved	Α	NA		2.0	Υ	Absent		624.1-SIM-RGP(7)
L2040729-01F	Vial Na2S2O3 preserved	Α	NA		2.0	Υ	Absent		624.1-SIM-RGP(7)
L2040729-01G	Vial Na2S2O3 preserved	Α	NA		2.0	Υ	Absent		504(14)
L2040729-01H	Vial Na2S2O3 preserved	Α	NA		2.0	Υ	Absent		504(14)
L2040729-01I	Vial unpreserved	Α	NA		2.0	Υ	Absent		SUB-ETHANOL(14)
L2040729-01J	Vial unpreserved	Α	NA		2.0	Υ	Absent		SUB-ETHANOL(14)
L2040729-01J1	Vial unpreserved	Α	NA		2.0	Υ	Absent		SUB-ETHANOL(14)
L2040729-01K	Plastic 250ml NaOH preserved	Α	>12	>12	2.0	Υ	Absent		TCN-4500(14)
L2040729-01L	Plastic 250ml HNO3 preserved	Α	<2	<2	2.0	Y	Absent		CD-2008T(180),NI-2008T(180),ZN- 2008T(180),CU-2008T(180),FE- UI(180),HARDU(180),HG-U(28),AG- 2008T(180),AS-2008T(180),SE-2008T(180),PB- 2008T(180),CR-2008T(180),SB-2008T(180)
L2040729-01M	Plastic 500ml H2SO4 preserved	Α	<2	<2	2.0	Υ	Absent		NH3-4500(28)
L2040729-01N	Plastic 950ml unpreserved	Α	7	7	2.0	Υ	Absent		HEXCR-7196(1),CL-300(28),TRC-4500(1)
L2040729-01O	Plastic 950ml unpreserved	Α	7	7	2.0	Υ	Absent		TSS-2540(7)
L2040729-01P	Amber 950ml H2SO4 preserved	Α	<2	<2	2.0	Υ	Absent		TPHENOL-420(28)
L2040729-01Q	Amber 1000ml Na2S2O3	Α	7	7	2.0	Υ	Absent		625.1-RGP(7),625.1-SIM-RGP(7)
L2040729-01R	Amber 1000ml Na2S2O3	Α	7	7	2.0	Υ	Absent		625.1-RGP(7),625.1-SIM-RGP(7)
L2040729-01S	Amber 1000ml Na2S2O3	Α	7	7	2.0	Υ	Absent		PCB-608.3(365)
L2040729-01T	Amber 1000ml Na2S2O3	Α	7	7	2.0	Υ	Absent		PCB-608.3(365)

Lab Number: L2040729

Report Date: 10/06/20

Project Name: CONANT WELLFIELD-ACTON

Project Number: 9350

Container Info	ormation		Initial	Final	Temp			Frozen	
Container ID	Container Type	Cooler	рН	рН	deg C	Pres	Seal	Date/Time	Analysis(*)
L2040729-01U	Amber 1000ml Na2S2O3	Α	7	7	2.0	Υ	Absent		PCB-608.3(365)
L2040729-01V	Amber 1000ml Na2S2O3	Α	7	7	2.0	Υ	Absent		PCB-608.3(365)
L2040729-01W	Amber 1000ml HCl preserved	Α	NA		2.0	Υ	Absent		TPH-1664(28)
L2040729-01X	Amber 1000ml HCl preserved	Α	NA		2.0	Υ	Absent		TPH-1664(28)
L2040729-02A	Plastic 500ml HNO3 preserved	А	<2	<2	2.0	Y	Absent		CD-2008T(180),NI-2008T(180),ZN- 2008T(180),HARDU(180),CU-2008T(180),FE- UI(180),AS-2008T(180),HG-U(28),AG- 2008T(180),SE-2008T(180),CR-2008T(180),PB- 2008T(180),SB-2008T(180)
L2040729-02B	Plastic 500ml H2SO4 preserved	Α	<2	<2	2.0	Υ	Absent		NH3-4500(28)

Project Name: Lab Number: CONANT WELLFIELD-ACTON L2040729 **Report Date: Project Number:** 9350 10/06/20

GLOSSARY

Acronyms

EDL

LOQ

MS

DL - Detection Limit: This value represents the level to which target analyte concentrations are reported as estimated values, when those target analyte concentrations are quantified below the limit of quantitation (LOQ). The DL includes any adjustments from dilutions, concentrations or moisture content, where applicable. (DoD report formats only.)

- Estimated Detection Limit: This value represents the level to which target analyte concentrations are reported as estimated values, when those target analyte concentrations are quantified below the reporting limit (RL). The EDL includes any adjustments from dilutions, concentrations or moisture content, where applicable. The use of EDLs is specific to the analysis

of PAHs using Solid-Phase Microextraction (SPME).

EMPC - Estimated Maximum Possible Concentration: The concentration that results from the signal present at the retention time of an analyte when the ions meet all of the identification criteria except the ion abundance ratio criteria. An EMPC is a worst-case estimate of the concentration.

EPA Environmental Protection Agency.

LCS - Laboratory Control Sample: A sample matrix, free from the analytes of interest, spiked with verified known amounts of analytes or a material containing known and verified amounts of analytes.

LCSD Laboratory Control Sample Duplicate: Refer to LCS.

LFB - Laboratory Fortified Blank: A sample matrix, free from the analytes of interest, spiked with verified known amounts of analytes or a material containing known and verified amounts of analytes.

LOD - Limit of Detection: This value represents the level to which a target analyte can reliably be detected for a specific analyte in a specific matrix by a specific method. The LOD includes any adjustments from dilutions, concentrations or moisture content, where applicable. (DoD report formats only.)

> - Limit of Quantitation: The value at which an instrument can accurately measure an analyte at a specific concentration. The LOQ includes any adjustments from dilutions, concentrations or moisture content, where applicable. (DoD report formats

Limit of Quantitation: The value at which an instrument can accurately measure an analyte at a specific concentration. The LOQ includes any adjustments from dilutions, concentrations or moisture content, where applicable. (DoD report formats

MDI - Method Detection Limit: This value represents the level to which target analyte concentrations are reported as estimated values, when those target analyte concentrations are quantified below the reporting limit (RL). The MDL includes any adjustments from dilutions, concentrations or moisture content, where applicable.

- Matrix Spike Sample: A sample prepared by adding a known mass of target analyte to a specified amount of matrix sample for which an independent estimate of target analyte concentration is available. For Method 332.0, the spike recovery is calculated using the native concentration, including estimated values.

MSD - Matrix Spike Sample Duplicate: Refer to MS.

NA - Not Applicable.

NC - Not Calculated: Term is utilized when one or more of the results utilized in the calculation are non-detect at the parameter's

reporting unit.

NDPA/DPA - N-Nitrosodiphenylamine/Diphenylamine.

NI - Not Ignitable.

NP - Non-Plastic: Term is utilized for the analysis of Atterberg Limits in soil.

NR - No Results: Term is utilized when 'No Target Compounds Requested' is reported for the analysis of Volatile or Semivolatile

Organic TIC only requests.

RL - Reporting Limit: The value at which an instrument can accurately measure an analyte at a specific concentration. The RL

includes any adjustments from dilutions, concentrations or moisture content, where applicable.

RPD - Relative Percent Difference: The results from matrix and/or matrix spike duplicates are primarily designed to assess the precision of analytical results in a given matrix and are expressed as relative percent difference (RPD). Values which are less than five times the reporting limit for any individual parameter are evaluated by utilizing the absolute difference between the

values; although the RPD value will be provided in the report.

SRM - Standard Reference Material: A reference sample of a known or certified value that is of the same or similar matrix as the

associated field samples.

STLP - Semi-dynamic Tank Leaching Procedure per EPA Method 1315.

TEF - Toxic Equivalency Factors: The values assigned to each dioxin and furan to evaluate their toxicity relative to 2,3,7,8-TCDD.

TEO - Toxic Equivalent: The measure of a sample's toxicity derived by multiplying each dioxin and furan by its corresponding TEF and then summing the resulting values.

TIC - Tentatively Identified Compound: A compound that has been identified to be present and is not part of the target compound list (TCL) for the method and/or program. All TICs are qualitatively identified and reported as estimated concentrations.

Report Format: Data Usability Report

Project Name:CONANT WELLFIELD-ACTONLab Number:L2040729Project Number:9350Report Date:10/06/20

Footnotes

 The reference for this analyte should be considered modified since this analyte is absent from the target analyte list of the original method.

Terms

1

Analytical Method: Both the document from which the method originates and the analytical reference method. (Example: EPA 8260B is shown as 1,8260B.) The codes for the reference method documents are provided in the References section of the Addendum.

Difference: With respect to Total Oxidizable Precursor (TOP) Assay analysis, the difference is defined as the Post-Treatment value minus the Pre-Treatment value.

Final pH: As it pertains to Sample Receipt & Container Information section of the report, Final pH reflects pH of container determined after adjustment at the laboratory, if applicable. If no adjustment required, value reflects Initial pH.

Frozen Date/Time: With respect to Volatile Organics in soil, Frozen Date/Time reflects the date/time at which associated Reagent Water-preserved vials were initially frozen. Note: If frozen date/time is beyond 48 hours from sample collection, value will be reflected in 'bold'.

Initial pH: As it pertains to Sample Receipt & Container Information section of the report, Initial pH reflects pH of container determined upon receipt, if applicable.

PAH Total: With respect to Alkylated PAH analyses, the 'PAHs, Total' result is defined as the summation of results for all or a subset of the following compounds: Naphthalene, C1-C4 Naphthalenes, 2-Methylnaphthalene, 1-Methylnaphthalene, Biphenyl, Acenaphthylene, Acenaphthene, Fluorene, C1-C3 Fluorenes, Phenanthrene, C1-C4 Phenanthrenes/Anthracenes, Anthracene, Fluoranthene, Pyrene, C1-C4 Fluoranthenes/Pyrenes, Benza(a)anthracene, Chrysene, C1-C4 Chrysenes, Benzo(b)fluoranthene, Benzo(j)+(k)fluoranthene, Benzo(e)pyrene, Benzo(a)pyrene, Perylene, Indeno(1,2,3-cd)pyrene, Dibenz(ah)+(ac)anthracene, Benzo(g,h,i)perylene. If a 'Total' result is requested, the results of its individual components will also be reported.

PFAS Total: With respect to PFAS analyses, the 'PFAS, Total (5)' result is defined as the summation of results for: PFHpA, PFHxS, PFOA, PFNA and PFOS. If a 'Total' result is requested, the results of its individual components will also be reported.

The target compound Chlordane (CAS No. 57-74-9) is reported for GC ECD analyses. Per EPA, this compound "refers to a mixture of chlordane isomers, other chlorinated hydrocarbons and numerous other components." (Reference: USEPA Toxicological Review of Chlordane, In Support of Summary Information on the Integrated Risk Information System (IRIS), December 1997.)

Total: With respect to Organic analyses, a 'Total' result is defined as the summation of results for individual isomers or Aroclors. If a 'Total' result is requested, the results of its individual components will also be reported. This is applicable to 'Total' results for methods 8260, 8081 and 8082.

Data Qualifiers

- A Spectra identified as "Aldol Condensates" are byproducts of the extraction/concentration procedures when acetone is introduced in the process.
- The analyte was detected above the reporting limit in the associated method blank. Flag only applies to associated field samples that have detectable concentrations of the analyte at less than ten times (10x) the concentration found in the blank. For MCP-related projects, flag only applies to associated field samples that have detectable concentrations of the analyte at less than ten times (10x) the concentration found in the blank. For DOD-related projects, flag only applies to associated field samples that have detectable concentrations of the analyte at less than ten times (10x) the concentration found in the blank AND the analyte was detected above one-half the reporting limit (or above the reporting limit for common lab contaminants) in the associated method blank. For NJ-Air-related projects, flag only applies to associated field samples that have detectable concentrations of the analyte above the reporting limit. For NJ-related projects (excluding Air), flag only applies to associated field samples that have detectable concentrations of the analyte, which was detected above the reporting limit in the associated method blank or above five times the reporting limit for common lab contaminants (Phthalates, Acetone, Methylene Chloride, 2-Butanone).
- Co-elution: The target analyte co-elutes with a known lab standard (i.e. surrogate, internal standards, etc.) for co-extracted analyses.
- Concentration of analyte was quantified from diluted analysis. Flag only applies to field samples that have detectable concentrations of the analyte.
- E Concentration of analyte exceeds the range of the calibration curve and/or linear range of the instrument.
- F The ratio of quantifier ion response to qualifier ion response falls outside of the laboratory criteria. Results are considered to be an estimated maximum concentration.
- G The concentration may be biased high due to matrix interferences (i.e, co-elution) with non-target compound(s). The result should be considered estimated.
- H The analysis of pH was performed beyond the regulatory-required holding time of 15 minutes from the time of sample collection.
- I The lower value for the two columns has been reported due to obvious interference.
- J Estimated value. This represents an estimated concentration for Tentatively Identified Compounds (TICs).
- M Reporting Limit (RL) exceeds the MCP CAM Reporting Limit for this analyte.
- **ND** Not detected at the reporting limit (RL) for the sample.
- NJ Presumptive evidence of compound. This represents an estimated concentration for Tentatively Identified Compounds (TICs), where the identification is based on a mass spectral library search.
- **P** The RPD between the results for the two columns exceeds the method-specified criteria.

Report Format: Data Usability Report

Project Name:CONANT WELLFIELD-ACTONLab Number:L2040729Project Number:9350Report Date:10/06/20

Data Qualifiers

Q -The quality control sample exceeds the associated acceptance criteria. For DOD-related projects, LCS and/or Continuing Calibration Standard exceedences are also qualified on all associated sample results. Note: This flag is not applicable for matrix spike recoveries when the sample concentration is greater than 4x the spike added or for batch duplicate RPD when the sample concentrations are less than 5x the RL. (Metals only.)

- **R** Analytical results are from sample re-analysis.
- **RE** Analytical results are from sample re-extraction.
- S Analytical results are from modified screening analysis.

Report Format: Data Usability Report

Project Name:CONANT WELLFIELD-ACTONLab Number:L2040729Project Number:9350Report Date:10/06/20

REFERENCES

- Test Methods for Evaluating Solid Waste: Physical/Chemical Methods. EPA SW-846. Third Edition. Updates I VI, 2018.
- Methods for the Determination of Metals in Environmental Samples, Supplement I. EPA/600/R-94/111. May 1994.
- 4 Methods for Chemical Analysis of Water and Wastes. EPA 600/4-79-020. Revised March 1983.
- Methods for the Determination of Organic Compounds in Finished Drinking Water and Raw Source Water. EPA/600/4-88/039, Revised July 1991.
- 19 Inductively Coupled Plasma Atomic Emission Spectrometric Method for Trace Element Analysis of Water and Wastes. Appendix C, Part 136, 40 CFR (Code of Federal Regulations). July 1, 1999 edition.
- Methods for the Determination of Inorganic Substances in Environmental Samples, EPA/600/R-93/100, August 1993.
- Method 1664,Revision A: N-Hexane Extractable Material (HEM; Oil & Grease) and Silica Gel Treated N-Hexane Extractable Material (SGT-HEM; Non-polar Material) by Extraction and Gravimetry, EPA-821-R-98-002, February 1999.
- 107 Alpha Analytical In-house calculation method.
- 121 Standard Methods for the Examination of Water and Wastewater. APHA-AWWA-WEF. Standard Methods Online.
- 127 Method 608.3: Organochlorine Pesticides and PCBs by GC/HSD, EPA 821-R-16-009, December 2016.
- 128 Method 624.1: Purgeables by GC/MS, EPA 821-R-16-008, December 2016.
- Method 625.1: Base/Neutrals and Acids by GC/MS, EPA 821-R-16-007, December 2016.

LIMITATION OF LIABILITIES

Alpha Analytical performs services with reasonable care and diligence normal to the analytical testing laboratory industry. In the event of an error, the sole and exclusive responsibility of Alpha Analytical shall be to re-perform the work at it's own expense. In no event shall Alpha Analytical be held liable for any incidental, consequential or special damages, including but not limited to, damages in any way connected with the use of, interpretation of, information or analysis provided by Alpha Analytical.

We strongly urge our clients to comply with EPA protocol regarding sample volume, preservation, cooling, containers, sampling procedures, holding time and splitting of samples in the field.

Alpha Analytical, Inc. Facility: Company-wide

Department: Quality Assurance

Title: Certificate/Approval Program Summary

Serial_No:10062017:06

ID No.:17873 Revision 17

Published Date: 4/28/2020 9:42:21 AM

Page 1 of 1

Certification Information

The following analytes are not included in our Primary NELAP Scope of Accreditation:

Westborough Facility

EPA 624/624.1: m/p-xylene, o-xylene, Naphthalene

EPA 8260C: NPW: 1,2,4,5-Tetramethylbenzene; 4-Ethyltoluene, Azobenzene; SCM: lodomethane (methyl iodide), 1,2,4,5-Tetramethylbenzene; 4-Ethyltoluene

EPA 8270D: NPW: Dimethylnaphthalene,1,4-Diphenylhydrazine; SCM: Dimethylnaphthalene,1,4-Diphenylhydrazine.

SM4500: NPW: Amenable Cyanide; SCM: Total Phosphorus, TKN, NO2, NO3.

Mansfield Facility

SM 2540D: TSS

EPA 8082A: NPW: PCB: 1, 5, 31, 87,101, 110, 141, 151, 153, 180, 183, 187.

EPA TO-15: Halothane, 2,4,4-Trimethyl-2-pentene, 2,4,4-Trimethyl-1-pentene, Thiophene, 2-Methylthiophene,

3-Methylthiophene, 2-Ethylthiophene, 1,2,3-Trimethylbenzene, Indan, Indene, 1,2,4,5-Tetramethylbenzene, Benzothiophene, 1-Methylnaphthalene.

EPA TO-12 Non-methane organics

EPA 3C Fixed gases

Biological Tissue Matrix: EPA 3050B

The following analytes are included in our Massachusetts DEP Scope of Accreditation

Westborough Facility:

Drinking Water

EPA 300.0: Chloride, Nitrate-N, Fluoride, Sulfate; EPA 353.2: Nitrate-N, Nitrite-N; SM4500NO3-F: Nitrate-N, Nitrite-N; SM4500F-C, SM4500CN-CE,

EPA 180.1, SM2130B, SM4500CI-D, SM2320B, SM2540C, SM4500H-B, SM4500NO2-B

EPA 332: Perchlorate; EPA 524.2: THMs and VOCs; EPA 504.1: EDB, DBCP.

Microbiology: SM9215B; SM9223-P/A, SM9223B-Colilert-QT,SM9222D.

Non-Potable Water

SM4500H,B, EPA 120.1, SM2510B, SM2540C, SM2320B, SM4500CL-E, SM4500F-BC, SM4500NH3-BH: Ammonia-N and Kjeldahl-N, EPA 350.1: Ammonia-N, LACHAT 10-107-06-1-B: Ammonia-N, EPA 351.1, SM4500NO3-F, EPA 353.2: Nitrate-N, SM4500P-E, SM4500P-B, E, SM4500SO4-E, SM5220D, EPA 410.4, SM5210B, SM5310C, SM4500CL-D, EPA 1664, EPA 420.1, SM4500-CN-CE, SM2540D, EPA 300: Chloride, Sulfate, Nitrate. **EPA 624.1**: Volatile Halocarbons & Aromatics,

EPA 608.3: Chlordane, Toxaphene, Aldrin, alpha-BHC, beta-BHC, gamma-BHC, delta-BHC, Dieldrin, DDD, DDE, DDT, Endosulfan II, Endosulfan II, Endosulfan sulfate, Endrin, Endrin Aldehyde, Heptachlor, Heptachlor Epoxide, PCBs

EPA 625.1: SVOC (Acid/Base/Neutral Extractables), EPA 600/4-81-045: PCB-Oil.

Microbiology: SM9223B-Colilert-QT; Enterolert-QT, SM9221E, EPA 1600, EPA 1603.

Mansfield Facility:

Drinking Water

EPA 200.7: Al, Ba, Cd, Cr, Cu, Fe, Mn, Ni, Na, Ag, Ca, Zn. EPA 200.8: Al, Sb, As, Ba, Be, Cd, Cr, Cu, Pb, Mn, Ni, Se, Ag, TL, Zn. EPA 245.1 Hg. EPA 522.

Non-Potable Water

EPA 200.7: Al, Sb, As, Be, Cd, Ca, Cr, Co, Cu, Fe, Pb, Mg, Mn, Mo, Ni, K, Se, Ag, Na, Sr, TL, Ti, V, Zn.

EPA 200.8: Al, Sb, As, Be, Cd, Cr, Cu, Fe, Pb, Mn, Ni, K, Se, Ag, Na, TL, Zn.

EPA 245.1 Hg.

SM2340B

For a complete listing of analytes and methods, please contact your Alpha Project Manager.

Pre-Qualtrax Document ID: 08-113 Document Type: Form

# Williag Drie Substitution Project Information Project Location: A cut, MA Report Information Project Location: A cut, MA	Дірна	CHA	IN OF C	USTOI	DY ,	AGE	OF Z	Da	te Re	c'd in	Lab:	9/	25	5/2	20)	A	LPH	A Jo	b#:	L20	407	29
Client: Ack Wester 0/5tr, cf Project Location Ack MA Regulatory Requirements & Project Information Requirements Project Location: Ack MA Address: G43 Massachusetty Act Project Manager Matter September 1 Matter State Project Manager Matter September 1 Matter State Project Manager Matter September 1 Matter State Project Manager Matter State Project Matter Matter State Project Manager Matter Matter State Project Matter				3.1.4.1.3.4.2.1.4.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1				Re	epor	Info	rmat			Deliv	erab	les				o uner insu			
Cleant: New Water District Project 1930 Address: 693 Massachusetts Are Project Manager: 10 Leyny ds Address: 693 Massachusetts Are Project Manager: 10 Leyny ds Phone: 978 Massachusetts Are Project Massachus		581 Mansfield, MA 0 10 Tel: 508-822-93					itan	Þ	ADE	X	11150	™ EMA	IL		100			Same	as C	lient i	nfo Po) #:	
Address: G93 Hassalwisetts he Project Manager he levy not ds PD D2 953 Acho 0720 APHA Outside #: Dotto Time Dotto His State Fed Program Dotto His State Fed Program Other State Fed Program Othe	III See Section Control (Section 1)		Proje	ct Location:	Acton,	MA		_						_		ject	Infor						
Phone: 9.78 3 Acknow 01722 Phone: 9.78 3 Acknow 01722 Phone: 9.78 3 3 Acknow 01722 Additional Project Information: # MY4n 15 - Antimorn or Serie; (a.d.m.im, Chrom.um ///thinking) Container Type / Acknow 01722 ALPHA Lab ID ALPHA Lab ID ALPHA Lab ID Collection Date Time Matrix Initials Acknow 01723 Acknow 01723 ACKnow 01723 Container Type / Acknow 01723 Ack																SDG	? (R						ethods
PO BOY 95 3 ALVA CITED ALPHA Quote #: Container Type Preservative Container Type Pres				ct Manager:	ob Re	yould.	1	1000000					ds (In	fo Re	quire	d for	Meta	s & E	PH w	ith Ta	rgets)		
Container Type P= Plastic A A More dass B= Bacteria cup G= Bac			on 101720 ALP	HA Quote #:									m						Criter	ria			ei .
Container Type Perservative A None And None And None And None And None Bellicity and B		DOMESTIC CONTRACTOR CONTRACTOR	1000	n-Around Tir	ne					/	1-	15/	5/	4	4	1	1	.5	1	\prec	//		
Container Type Peservative A Mone A Mone B Bacteria cup G G G G Glass B Bacteria cup G G G G G G G G G G G G G G G G G G G	Email: rcreyn.	olds@gooin	c, com	andard F	I RUSH			1	60	/ /	5	DR.C.		0 /	00	/	/-		10	7	/ /_		
Container Type Perservative A None And None And None And None And None Bellicity and B					a recorriging	сопитео и рив-ар	oprovedy		100	24	% /	A 48	Rang	Rano	1	Y HE	13	7 1	7	0/	0/0	X	T O
Container Type Perservative A None And None And None And None And None Bellicity and B			ion:					Š	7/	2/2	5/5	RCR.	ds to	00	3	Finge	1.9	/-	3	70	2 3	SAMPLE	INFO A
Container Type Peservative A Mone A Mone B Bacteria cup G G G G Glass B Bacteria cup G G G G G G G G G G G G G G G G G G G	* Metals - A	ntimony ars	ieniz, eadm	im, ci	hrom.	m 1116	trivalent	T	18824	10	12	2	, age	Parge /		0/	Z.	/:	\$/~	13	D	Filtration Field	#
Container Type Peservative A Mona A-Anthorigans B-HCI G-G-Giss B-Bacteria cup G-G-Guste B-Bacteria cup G-Guste B-Bacteria cup	Chromium	VI, copp.	w, light, 1	nercus,	Nick	ali sele	nium,	1 /	200	NBI	MCP	RCR.	9 9	PEC	0 10	/c	37	10	13	/ /	7		В
Container Type Peservative A Mone A Mone B Bacteria cup G G G G Glass B Bacteria cup G G G G G G G G G G G G G G G G G G G	3110-11	1 and	ravi					1/	082	0/	6	Rang	Rang	10	Oua	60	F. F	8	3	2/-	7	Total In the second	
Container Type P = Please P = Please P = Blacteria cup G = Glass B = Bacteria cup G = HNO, G = Blacteria cup C = Relinguished By: G = Class B = Bacteria cup C = Relinguished By: G = Class B = Bacteria cup C = Relinguished By: G = Class B = Bacteria cup C = Relinguished By: G = Class B = Bacteria cup C = Relinguished By: G = Class B = Bacteria cup C = Relinguished By: G = Class B = Bacteria cup C = Relinguished By: G = Class B = Bacteria cup C = Relinguished By: G = Class B = Bacteria cup C = Relinguished By: G = Class B = Bacteria cup C = Relinguished By: G = Class B = Bacteria cup C = Relinguished By: G = Class B = Bacteria cup C = Relinguished By: G = Class B = Bacteria cup C = Relinguished By: G = Class B = Bacteria cup C = Relinguished By: G = Class B = Bacteria cup C = Relinguished By: G = Class B = Bacteria cup C = Relinguished By: G = Relinguished By	A PART OF THE PROPERTY OF THE PART OF THE	San	nple ID	1000000		- CONTROL OF THE PARTY OF THE P		, Vo	Shor	METAL	META	EPH:	VPH:C	A PCE	7 11	#	3/1	9	1/5	2/2	Sa	01171.WTM.307-04	E
Container Type P= Plastic A= None B= HCI Preservative B= Bacteria cup B= Bacte	40729-01	Well E		9/25/20	11:00	Ch	ARK	X.	X	X			X			100	1.7	χ.	X	7			20
P= Plastic A= Amber glass V= Vial G= Glass B= Bacteria cup C= Cube O= Other O= Other G= NaHSO4 E= Encore H = Na ₂ S ₂ O ₃ Relinguished By: Container Type V A P A V Y V A T A V Y Y A T	-02	Surface	water	1	11:40	L	1			X					Π,			X	1	×			2
P= Plastic A= None A= Amber glass B= HCl C= HNO ₃ G= Glass D= H ₃ SO ₄ B= Bacteria cup E= NaOH C= Cube C= NaHSO ₄ C= Relinguished By: Container Type C= Container T																							
P= Plastic A= None A= Amber glass B= HCl C= HNO ₃ G= Glass D= H ₃ SO ₄ B= Bacteria cup E= NaOH C= Cube C= NaHSO ₄ C= Relinguished By: Container Type C= Container T															T								
P= Plastic A= None A= Amber glass B= HCl C= HNO ₃ G= Glass D= H ₃ SO ₄ B= Bacteria cup E= NaOH C= Cube C= NaHSO ₄ C= Relinguished By: Container Type C= Container T														T	1	T	T	T					
P= Plastic A= None B= HCI C= HNO ₃ B= Bacterla cup C= Cube C=	EAST NOT								\vdash						+	+	\top	\vdash					
P= Plastic A= Amber glass V= Vial G= Glass B= Bacteria cup C= Cube O= Other O= Other G= NaHSO4 E= Encore H = Na ₂ S ₂ O ₃ Relinguished By: Container Type V A P A V Y V A T A V Y Y A T	No. of the second												+	+		+	+		1	\vdash			-8
P= Plastic A= Amber glass V= Vial G= Glass B= Bacteria cup C= Cube O= Other O= Other G= NaHSO4 E= Encore H = Na ₂ S ₂ O ₃ Relinguished By: Container Type V A P A V Y V A T A V Y Y A T													+			+	+						_
P= Plastic A= None A= Amber glass B= HCl C= HNO ₃ G= Glass D= H ₃ SO ₄ B= Bacteria cup E= NaOH C= Cube C= NaHSO ₄ C= Relinguished By: Container Type C= Container T					780			-							+	+	+						
P= Plastic A= None A= Amber glass B= HCl C= HNO ₃ G= Glass D= H ₃ SO ₄ B= Bacteria cup E= NaOH C= Cube C= NaHSO ₄ C= Relinguished By: Container Type C= Container T							-	+	-	-			+	+	+	+	+	-	+	\vdash	-		
P= Plastic A= None B= HcI C= HNO3 G= Glass B= Bacteria cup C= Cube C= NaOH C= NaOH C= NaHSO4 C= NaHSO5 C= NaHSO4 C= Na	Container Type	Preservative			Г	Cont	niner Tune	V	Λ	ô	*		A	I/A		0	Λ	0	()	0			
G= Glass B= Bacteria cup C= Cube C= Cube C= Cube G= NaHSO4 F= MeOH G= NaHSO4 G= NaHSO4 F= Encore H= Na ₂ S ₂ O ₃ F= Bacteria cup G= NaHSO4 G= NaH	P= Plastic A= Amber glass	B= HCI			-	8893/778		5	1+	1	野		1	-	\ \	7	10	1	F	0	\vdash		-
G= Other G= NaHSO4 H = Na ₂ S ₂ O5 All samples submitted are subject G= Encore H = Na ₂ S ₂ O5 Alpha's Terms and Conditions	G= Glass B= Bacteria cup	D= H₂SO₄ E= NaOH	C Rei	inquished Bv				U	111		inno!	and Pur	P	TE	1	T I	te/Tin	ne ne	-	-			
J = NH ₄ Cl See reverse side. Page 57 of 75 O= Other FORM NO: 01-01 (rev. 12-Mar-2012)	O= Other E= Encore D= BOD Bottle	G= NaHSO4 H = Na ₂ S ₂ O5 I= Ascorbic Acid J = NH ₄ CI	(4) C)	M	_			8 6	W	eli	ev-	Ma	rd			-		100	A	pha's	Terms a	nd Conditio	

ALPHA	СН	AIN OF	CUSTO	DY ,	AGE_2	or_2	Date R	tec'd in	Lab: C	1/2	5/2	20		ALPH	A Job	#: L	-201	1072	9
AND STORES	320 Forbes 8	P	roject Informat	ion	9/8	A SERVI	Repo	rt Info	mation	- Dat	Deliv	erable	es	Billin	g Infor	matio	n		
8 Walkup Drive Westboro, MA 01 Tel: 508-898-922	1581 Mansfield, M	A 02048 -9300	roject Name: ('Un	ant W	ellfick	1-Alten	MAD	Ex)≱/	EMAIL	5			□ Same	e as Clie	ent info	PO#	¢ .	
Client Information	n III		roject Location:				The second second	latory	Requir	ement	s &	Proje	ect Inf	ormat	ion Re	quire	ments	0236	
Client: Acton Wa	ter Distric	cr P	roject#: 9350)				□ No N					ng?	Pequir	es 🗆 N	o CT	RCP Ana	alytical Metho	ds
Address: (93)	rues dua	P	roject Manager: 7		rolds		☐ Yes	□ No G	W1 Sta	ndards									
Acton	Ma 0172	S /	ALPHA Quote #:				Othe	□ No Ner State	IPDES I /Fed Pr	RGP ogram_				_	Criterja	_			
Phone: Po (3× 953	100	Turn-Around Ti	ne	500	-		1	7 7	2 2	/_/	./	7	DE.	\$	2/	7	7	
Additional Pr All carely 13 tel d (25 v. ver	niect Inform:	ation:	Date Due:	Leve Esf Ma			7 8260	DABN DPAH	METALS: DRCP 13 DMCP 14 CP	VPH. CRanges & Targets CPP13	D PCB DPEST Ranges Only	T. Dowant Only Dr.	4 / CS d	TO THE PORT OF THE PROPERTY OF			Fi 0 0	AMPLE INFO	TOTAL # BOTT
ALPHA Lab ID (Lab Use Only)	s	ample ID	Coll	ection Time	Sample Matrix	Sampler Initials	\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \	METALS	METAL	Hal	0 8	# /L	\$ 3	7 /	1	/ /	C		LE
40729-01	We11-E	ž	9/25/20	11:00	CW	DRP				_		X	ff	+	1 1	+	Sampi	le Comments	25
-02		warr	1	11:40	L	T							釜		\Box				2
Container Type	Preservative											P	ρ						
P= Plastic A= Amber glass V= Vial	A= None B= HCl				250.000	eservative					-	100	0		+-	+			+
G= Glass B= Bacteria cup C= Cube O= Other E= Encore D= BOD Bottle Page 58 of 75	G= HNO ₃ D= H ₂ SO ₄ E= NaOH F= MeOH G= NaHSO ₄ H = Na ₂ S ₂ O ₃ I= Ascorbic Acid J = NH ₄ Cl K= Zn Acetate O= Other	Phte	Relinquished By:		_	e/Time	Wel		MOL			9,	Date/	Time	Alph See	na's Te revers		ted are subjected are subjecte	ct to

MAG910000 NHG910000 Appendix IV - Part 1 - NOI Page 18 of 24

	Known	Known		P3-1000000	424-76-76-76-76-76-76-76-76-76-76-76-76-76-	Infl	uent	Effluent Li	nitations
Parameter	or believed absent	or believed present	# of samples	Test method (#)	Detection limit (µg/l)	Daily maximum (µg/l)	Daily average (µg/l)	TBEL	WQBEL
A. Inorganics									
Ammonia								Report mg/L	***
Chloride							94	Report µg/l	
Total Residual Chlorine								0.2 mg/L	
Total Suspended Solids								30 mg/L	
Antimony								206 μg/L	
Arsenic								104 μg/L	
Cadmium								10.2 μg/L	
Chromium III								323 µg/L	
Chromium VI								323 µg/L	
Copper								242 μg/L	
Iron								5,000 μg/L.	
Lead								160 μg/L	
Mercury								0.739 μg/L	
Nickel								1,450 μg/L	
Selenium		10.25						235.8 μg/L	
Silver								35.1 μg/L	
Zinc								420 μg/L	
Cyanide								178 mg/L	
B. Non-Halogenated VOC	's							2 7 7	
Total BTEX								100 μg/L	
Benzene								5.0 μg/L	
1,4 Dioxane								200 μg/L	
Acetone								7.97 mg/L	
Phenol				V.=				1,080 µg/L	

MAG910000 NHG910000 Appendix IV - Part 1 - NOI Page 19 of 24

	Known	Known				Infl	uent	Effluent Limitations			
Parameter	or believed absent	or believed present	# of samples	Test method (#)	Detection limit (µg/l)	Daily maximum (µg/l)	Daily average (µg/l)	TBEL	WQBEL		
C. Halogenated VOCs											
Carbon Tetrachloride								4.4 μg/L			
1,2 Dichlorobenzene			77.15					600 μg/L			
1,3 Dichlorobenzene								320 μg/L			
1,4 Dichlorobenzene								5.0 μg/L			
Total dichlorobenzene								763 μg/L in NH	2.0		
1,1 Dichloroethane								70 μg/L			
1,2 Dichloroethane								5.0 μg/L			
1,1 Dichloroethylene								3.2 μg/L	***		
Ethylene Dibromide								0.05 μg/L	***		
Methylene Chloride								4.6 μg/L			
1,1,1 Trichloroethane								200 μg/L			
1,1,2 Trichloroethane								5.0 μg/L			
Trichloroethylene								5.0 µg/L			
Tetrachloroethylene								5.0 μg/L			
cis-1,2 Dichloroethylene								70 μg/L	120		
Vinyl Chloride								2.0 μg/L			
D. Non-Halogenated SVO	Cs							20			
Total Phthalates								190 μg/L			
Diethylhexyl phthalate					220			101 μg/L			
Total Group I PAHs								1.0 μg/L			
Benzo(a)anthracene											
Benzo(a)pyrene				Lec							
Benzo(b)fluoranthene				15 0 4							
Benzo(k)fluoranthene								As Total PAHs			
Chrysene											
Dibenzo(a,h)anthracene											
Indeno(1,2,3-cd)pyrene											

MAG910000 NHG910000 Appendix IV - Part 1 - NOI Page 20 of 24

	Known	Known		Test method (#)		Infl	uent	Effluent Limitations				
Parameter	or believed absent	or believed present	# of samples		Detection limit (µg/l)	Daily maximum (µg/l)	Daily average (µg/l)	TBEL	WQBEL			
Total Group II PAHs								100 μg/L	***			
Naphthalene								20 μg/L	***			
E. Halogenated SVOCs												
Total PCBs								0.000064 μg/L	200			
Pentachlorophenol								1.0 µg/L				
P Date D												
F. Fuels Parameters Total Petroleum								T o T				
Hydrocarbons								5.0 mg/L	***			
Ethanol								Report mg/L				
Methyl-tert-Butyl Ether								70 μg/L				
tert-Butyl Alcohol								120 μg/L in MA 40 μg/L in NH	(570)			
tert-Amyl Methyl Ether								90 μg/L in MA 140 μg/L in NH				
Other (i.e., pH, temperatu	re, hardness,	salinity, LC	50, addition	al pollutar	ts present);	if so, specify:						
		-	HEIR S									
	_											
	-							·				

Additional Resource for Selecting Sufficiently Sensitive Test Methods for RGP Notice of Intent (NOI) Sampling Requirements¹

Table 1: Parameters, Required Minimum Levels (MLs), and Common Test Methods²

Table 1. Farameters, Required Williams	Requirements								
Parameter	ML Must Be ≤	Commonly Used Test Method(s) from 40 C.F.R. Part 136 that Generally Achieves the ML Noted							
A. Inorganics									
Ammonia	0.1 mg/L	SM 4500 B and D; 350.1							
Chloride	230 mg/L	SM 4110 B; 300.0							
Total Residual Chlorine	50 μg/L	SM 4500-Cl G and E							
Total Suspended Solids	30 mg/L	SM 2540 D							
Antimony -	206 μg/L	200.8 and 200.9							
Arsenic	$FW=10 \mu g/L$ $SW=36 \mu g/L$	200.8 and 200.9 in FW 200.7, 200.8 and 200.9 in SW							
Cadmium	FW= $0.25 \mu g/L$ SW= $8.8 \mu g/L$ in MA SW= $9.3 \mu g/L$ in NH	200.8 in FW 200.8 and 200.9 in SW							
Chromium III	FW= 74 μg/L SW= 100 μg/L	200.7, 200.8 and 200.9							
Chromium VI	FW= 11 μg/L SW= 50 μg/L	218.6							
Copper	FW= 9 μ g/L SW= 3.1 μ g/L	200.8 and 200.9							
Iron	$FW = 1,000 \mu g/L$	200.7 and 200.8							
Lead	FW= 2.5 μg/L SW= 8.1 μg/L	200.8 and 200.9							
Mercury	FW= 0.77 μg/L SW= 0.739 μg/L	245.1, 245.7 and 1631E							
Nickel .	FW= 52 μg/L SW= 8.2 μg/L	200.8 and 200.9							
Selenium	FW= 5.0 μg/L SW= 71 μg/L	200.8 and 200.9 in FW 200.7, 200.8 and 200.9 in SW							
Silver	FW= 3.2 μg/L SW= 1.9 μg/L	200.8							
Zinc -	FW= 120 μg/L SW= 81 μg/L	200.7 and 200.8							
Cyanide	$FW = 5.2 \mu g/L$ $SW = 5.0 \mu g/L$	SM 4500-CN							
B. Non-Halogenated Volatile Organic Compounds									
Total BTEX ³	100 μg/L (sum of individual MLs)	624 and 1624B							
Benzene	5.0 μg/L	624 and 1624B							
1,4 Dioxane	50 μg/L	SIM							
Acetone	7.97 mg/L	524.2							
Phenol	300 μg/L	420.1 and 420.4							

NPDES Permit No. MAG910000 and NHG910000

Page 2 of 4

	Requirements Commonly Used To								
Parameter	ML Must Be ≤	Commonly Used Test Method(s) from 40 C.F.R. Part 136 that Generally Achieves the ML Noted							
C. Halogenated Volatile Organic Compounds									
Carbon Tetrachloride	1.6 μg/L in MA 4.4 μg/L in NH	624							
1,2 Dichlorobenzene	600 μg/L	624							
1,3 Dichlorobenzene	320 μg/L	624							
1,4 Dichlorobenzene	5.0 μg/L	624							
Total Dichlorobenzene ⁴	Not required in MA 763 μg/L in NH (sum of individual MLs)	624							
1,1 Dichloroethane	70 μg/L	624							
1,2 Dichloroethane	5.0 μg/L	624							
1,1 Dichloroethylene	3.2 μg/L	624							
Ethylene Dibromide	0.05 μg/L	SIM							
Methylene Chloride	4.6 μg/L	624							
1,1,1 Trichloroethane	200 μg/L	624							
1,1,2 Trichloroethane	5.0 μg/L	624							
Trichloroethylene	5.0 μg/L	624							
Tetrachloroethylene	3.3 μg/L in MA 5.0 μg/L in NH	624							
cis-1,2 Dichloroethylene	70 μg/L	624							
Vinyl Chloride	2.0 μg/L	624							
D. Non-Halogenated Semi-Volatile Organic Compounds									
Total Phthalates ⁵	190 μg/L in MA FW = 3.0 μg/L in NH SW = 3.4 μg/L in NH	625 and 1625B in MA 625 in NH							
Diethylhexyl Phthalate	2.2 μg/L in MA	625 in MA							
Dietityffickyr i fithalaic	5.9 μg/L in NH	625 and 1625B in NH							
Total Group I Polycyclic Aromatic Hydrocarbons ⁶	1.0 μg/L (sum of individual MLs)	SIM							
Benzo(a)anthracene	0.1 μg/L	SIM							
Benzo(a)pyrene	0.1 μg/L	SIM							
Benzo(b)fluoranthene	0.1 μg/L	SIM							
Benzo(k)fluoranthene	0.1 μg/L	SIM							
Chrysene	0.1 μg/L	SIM							
Dibenzo(a,h)anthracene	0.1 μg/L	SIM							
ndeno(1,2,3-cd)pyrene	0.1 μg/L	SIM							
Total Group II Polycyclic Aromatic Hydrocarbons ⁷	100 μg/L (sum of individual MLs)	625							
Naphthalene	20 μg/L	625							

NPDES Permit No. MAG910000 and NHG910000

Page 3 of 4

	Rec	quirements
Parameter	ML Must Be ≤	Commonly Used Test Method(s) from 40 C.F.R. Part 136 that Generally Achieves the ML Noted
E. Halogenated Semi-Volatile Organic Compounds		
Total Polychlorinated Biphenyls ⁸	0.5 μg/L	608
Pentachlorophenol ⁹	1.0 μg/L	625
F. Fuels Parameters		5
Total Petroleum Hydrocarbons	5.0 mg/L	1664A and B
Ethanol	0.4 mg/L	1666/1671/D3695
Methyl-tert-Butyl Ether	20 μg/L in MA 70 μg/L in NH	SIM
tert-Butyl Alcohol	120 μg/L in MA 40 μg/L in NH	1666
tert-Amyl Methyl Ether	90 μg/L in MA 140 μg/L in NH	624

Table 1 Footnotes:

¹ The minimum levels specified in this table will satisfy the sufficiently sensitive test method requirements for the purposes of sample analysis used to prepare a Notice of Intent (NOI) for coverage under the Remediation General Permit. Where less sensitive minimum levels (MLs) may be used upon authorization to discharge, these MLs will be noted in the written authorization to discharge for an individual site.

² The following abbreviations are used in Table 1, above:

a mg/L = milligrams per liter

b μg/L = micrograms per liter

c FW = freshwater

d SW = saltwater

c SM = standard method

^d SIM = selected ion monitoring

³ Total BTEX is the sum of: benzene (CAS No. 71432); toluene (CAS No. 108883); ethylbenzene (CAS No. 100-41-4); and (m,p,o) xylenes (CAS Nos. 108-88-3, 106-42-3, 95-47-6, and 1330-20-7).

⁴ Total dichlorobenzene is the sum of: 1,2 dichlorobenzene (CAS No. 95-50-1); 1,3 dichlorobenzene (CAS No. 541-73-1); and 1,4 dichlorobenzene (CAS No. 106-46-7).

⁵ Total Phthalates is the sum of: diethylhexyl phthalate (CAS No. 117-81-7); butyl benzyl phthalate (CAS No. 85-68-7); di-n-butyl phthalate (CAS No. 84-74-2); diethyl phthalate (CAS No. 84-66-2); dimethyl phthalate (CAS No. 131-11-3); di-n-octyl phthalate (CAS No. 117-84-0). For the diethylhexyl phthalate in NH, EPA anticipates that the applicable ML will be revised to 2.2 µg/L, once incorporated into the RGP for sites in New Hampshire.

⁶ Total Group I PAHs is the sum of: benzo(a)anthracene (CAS No. 56-55-3); benzo(a)pyrene (CAS No. 50-32-8); benzo(b)fluoranthene (CAS No. 205-99-2); benzo(k)fluoranthene (CAS No. 207-08-9; chrysene (CAS No. 218-01); dibenzo(a,h)anthracene (CAS No. 53-70-3); indeno(1,2,3-cd)pyrene (CAS No. 193-39-5).

⁷ Total Group II PAHs is the sum of: acenaphthene (CAS No. 83-32-9); acenaphthylene (CAS No. 208-96-8); anthracene (CAS No. 120-12-7); benzo(g,h,i)perylene (CAS No. 191-24-2); fluoranthene (CAS No. 206-44-0); fluorene (CAS No. 86-73-7); naphthalene (CAS No. 91-20-3); phenanthrene (CAS No. 85-01-8); pyrene (CAS No. 129-00-0).

⁸ Total PCBs is the sum of the following aroclors: PCB-1016, PCB-1221, PCB-1232, PCB-1242, PCB-1248, PCB-1254, and PCB-1260.

⁸ The ML for analysis of pentachlorophenol must be as close to 1.0 μ g/L as possible, not to exceed ≤ 5.0 μ g/L.

Subcontract Chain of Custody

ALPH		Tek 544 Col	Lab, Inc. 5 Horsehoe linsville, IL 62	Lake Road 2234-7425		Alpha Job Number L2040729
Cl	lient Information	No. 14 Sept.	Project In	formation	Regulatory Req	uirements/Report Limits
1000 NAVARONE	nalytical Labs alkup Drive rough, MA 01581-1019	1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 -	und & Deliv	ewis /erables Information	State/Federal Program: Regulatory Criteria:	
Phone: 508.439 Email: nlewis@	9.5170 galphalab.com	Due Date: Deliverables:				
		Project Specifi	c Requirem	ents and/or Report	Requirements	
	Reference following Alpha Job	Number on final report	/deliverables	: L2040729	Report to include Method Blar	nk, LCS/LCSD:
Additional Comm	ments: Send all results/reports t	o subreports@alphala	b.com			
Lab ID	Client ID	Collection Date/Time	Sample Matrix	A	nalysis	Batch QC
	WELL-E	09-25-20 11:00	WATER	Ethanol by EPA 1671 Rev	ision A	
	Relinquishe	дву:		Date/Time:	Received By:	Date/Time:
		1		9/09/00		
		U		1		
Form No: AL_sub	осос	-0				

October 06, 2020

Nathalie Lewis Alpha Analytical 145 Flanders Road Westborough, MA 01581 TEL: (508) 439-5170

FAX:

RE: L2040729 **WorkOrder:** 20091893

Dear Nathalie Lewis:

TEKLAB, INC received 1 sample on 9/30/2020 10:02:00 AM for the analysis presented in the following report.

Samples are analyzed on an as received basis unless otherwise requested and documented. The sample results contained in this report relate only to the requested analytes of interest as directed on the chain of custody. NELAP accredited fields of testing are indicated by the letters NELAP under the Certification column. Unless otherwise documented within this report, Teklab Inc. analyzes samples utilizing the most current methods in compliance with 40CFR. All tests are performed in the Collinsville, IL laboratory unless otherwise noted in the Case Narrative.

All quality control criteria applicable to the test methods employed for this project have been satisfactorily met and are in accordance with NELAP except where noted. The following report shall not be reproduced, except in full, without the written approval of Teklab, Inc.

If you have any questions regarding these tests results, please feel free to call.

Sincerely,

Marvin L. Darling Project Manager

(618)344-1004 ex 41

mdarling@teklabinc.com

Mowin L. Darling II

Report Contents

http://www.teklabinc.com/

Client: Alpha Analytical Work Order: 20091893
Client Project: L2040729 Report Date: 06-Oct-2020

This reporting package includes the following:

Cover Letter	1
Report Contents	2
Definitions	3
Case Narrative	4
Accreditations	5
Laboratory Results	6
Quality Control Results	7
Receiving Check List	8
Chain of Custody	Appended

Definitions

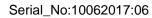
http://www.teklabinc.com/

Client: Alpha Analytical Work Order: 20091893

Client Project: L2040729 Report Date: 06-Oct-2020

Abbr Definition

- * Analytes on report marked with an asterisk are not NELAP accredited
- CCV Continuing calibration verification is a check of a standard to determine the state of calibration of an instrument between recalibration.
- CRQL A Client Requested Quantitation Limit is a reporting limit that varies according to customer request. The CRQL may not be less than the MDL.
 - DF Dilution factor is the dilution performed during analysis only and does not take into account any dilutions made during sample preparation. The reported result is final and includes all dilution factors.
 - DNI Did not ignite
- DUP Laboratory duplicate is a replicate aliquot prepared under the same laboratory conditions and independently analyzed to obtain a measure of precision.
- ICV Initial calibration verification is a check of a standard to determine the state of calibration of an instrument before sample analysis is initiated.
- IDPH IL Dept. of Public Health
- LCS Laboratory control sample is a sample matrix, free from the analytes of interest, spiked with verified known amounts of analytes and analyzed exactly like a sample to establish intra-laboratory or analyst specific precision and bias or to assess the performance of all or a portion of the measurement system.
- LCSD Laboratory control sample duplicate is a replicate laboratory control sample that is prepared and analyzed in order to determine the precision of the approved test method. The acceptable recovery range is listed in the QC Package (provided upon request).
- MBLK Method blank is a sample of a matrix similar to the batch of associated sample (when available) that is free from the analytes of interest and is processed simultaneously with and under the same conditions as samples through all steps of the analytical procedures, and in which no target analytes or interferences should present at concentrations that impact the analytical results for sample analyses.
- MDL "The method detection limit is defined as the minimum measured concentration of a substance that can be reported with 99% confidence that the measured concentration is distinguishable from method blank results."
- MS Matrix spike is an aliquot of matrix fortified (spiked) with known quantities of specific analytes that is subjected to the entire analytical procedures in order to determine the effect of the matrix on an approved test method's recovery system. The acceptable recovery range is listed in the QC Package (provided upon request).
- MSD Matrix spike duplicate means a replicate matrix spike that is prepared and analyzed in order to determine the precision of the approved test method. The acceptable recovery range is listed in the QC Package (provided upon request).
- MW Molecular weight
- ND Not Detected at the Reporting Limit


NELAP NELAP Accredited

- PQL Practical quantitation limit means the lowest level that can be reliably achieved within specified limits of precision and accuracy during routine laboratory operation conditions.
 - RL The reporting limit the lowest level that the data is displayed in the final report. The reporting limit may vary according to customer request or sample dilution. The reporting limit may not be less than the MDL.
- RPD Relative percent difference is a calculated difference between two recoveries (ie. MS/MSD). The acceptable recovery limit is listed in the QC Package (provided upon request).
- SPK The spike is a known mass of target analyte added to a blank sample or sub-sample; used to determine recovery deficiency or for other quality control purposes.
- Surr Surrogates are compounds which are similar to the analytes of interest in chemical composition and behavior in the analytical process, but which are not normally found in environmental samples.
- TIC Tentatively identified compound: Analytes tentatively identified in the sample by using a library search. Only results not in the calibration standard will be reported as tentatively identified compounds. Results for tentatively identified compounds that are not present in the calibration standard, but are assigned a specific chemical name based upon the library search, are calculated using total peak areas from reconstructed ion chromatograms and a response factor of one. The nearest Internal Standard is used for the calculation. The results of any TICs must be considered estimated, and are flagged with a "T". If the estimated result is above the calibration range it is flagged "ET"
- TNTC Too numerous to count (> 200 CFU)

Qualifiers

- # Unknown hydrocarbon
- C RL shown is a Client Requested Quantitation Limit
- H Holding times exceeded
- J Analyte detected below quantitation limits
- ND Not Detected at the Reporting Limit
- S Spike Recovery outside recovery limits
- X Value exceeds Maximum Contaminant Level

- B Analyte detected in associated Method Blank
- E Value above quantitation range
- I Associated internal standard was outside method criteria
- M Manual Integration used to determine area response
- R RPD outside accepted recovery limits
- T TIC(Tentatively identified compound)

Case Narrative

http://www.teklabinc.com/

Client: Alpha Analytical Work Order: 20091893

Client Project: L2040729 Report Date: 06-Oct-2020

Cooler Receipt Temp: 2.4 °C

Locations

	Collinsville		Springfield		Kansas City
Address	5445 Horseshoe Lake Road	Address	3920 Pintail Dr	Address	8421 Nieman Road
	Collinsville, IL 62234-7425		Springfield, IL 62711-9415		Lenexa, KS 66214
Phone	(618) 344-1004	Phone	(217) 698-1004	Phone	(913) 541-1998
Fax	(618) 344-1005	Fax	(217) 698-1005	Fax	(913) 541-1998
Email	jhriley@teklabinc.com	Email	KKlostermann@teklabinc.com	Email	jhriley@teklabinc.com
	Collinsville Air		Chicago		
Address	5445 Horseshoe Lake Road	Address	1319 Butterfield Rd.		
	Collinsville, IL 62234-7425		Downers Grove, IL 60515		
Phone	(618) 344-1004	Phone	(630) 324-6855		
Fax	(618) 344-1005	Fax			
Email	EHurley@teklabinc.com	Email	arenner@teklabinc.com		

Accreditations

http://www.teklabinc.com/

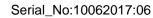
Client: Alpha Analytical Work Order: 20091893

Client Project: L2040729 Report Date: 06-Oct-2020

State	Dept	Cert #	NELAP	Exp Date	Lab
Illinois	IEPA	100226	NELAP	1/31/2021	Collinsville
Kansas	KDHE	E-10374	NELAP	4/30/2021	Collinsville
Louisiana	LDEQ	05002	NELAP	6/30/2021	Collinsville
Louisiana	LDEQ	05003	NELAP	6/30/2021	Collinsville
Oklahoma	ODEQ	9978	NELAP	8/31/2021	Collinsville
Arkansas	ADEQ	88-0966		3/14/2021	Collinsville
Illinois	IDPH	17584		5/31/2021	Collinsville
Kentucky	UST	0073		1/31/2021	Collinsville
Missouri	MDNR	00930		5/31/2021	Collinsville
Missouri	MDNR	930		1/31/2022	Collinsville

Laboratory Results

http://www.teklabinc.com/


Client: Alpha Analytical Work Order: 20091893

Client Project: L2040729 Report Date: 06-Oct-2020

Lab ID: 20091893-001 Client Sample ID: WELL-E

Matrix: AQUEOUS Collection Date: 09/25/2020 11:00

Analyses	Certification	MDL	RL (Qual	Result	Units	DF	Date Analyzed	Batch
EPA 600 1671A, PHA	RMACEUTICAL MANUF	ACTURI	NG INDUS	STRY I	NON-PURGEAE	BLE VOLAT	TILE ORGA	NICS	
Ethanol	*	7.1	20		ND	mg/L	1	10/05/2020 16:18	R282389
CCV and LCS recovered	d outside upper control limits	. Sample	results are	below to	he reporting limit.	Data is repo	rtable per the	TNI Standard.	

Quality Control Results

http://www.teklabinc.com/

Client: Alpha Analytical Work Order: 20091893

Client Project: L2040729 Report Date: 06-Oct-2020

EPA 600 1671A, Ph	HARMACEU	TICAL MA	NUFA	CTURING	NDUSTRY N	NON-PURG	EABLE VOL	ATILE O	RG		
Batch R282389	SampType:	MBLK		Units mg/L							
SampID: MBLK-1005	520										Date
·					5 1	a	CDK D-4 V-I	0/ DEC	1 1 ::	Litale Liesis	Analyzed
Analyses		Cert	RL	Qual	Result	Spike	SPK Ref Val	%REC	Low Limit	High Limit	, mary 200
Ethanol		*	20		ND						10/05/2020
Batch R282389	SampType:	LCS		Units mg/L							
SamplD: LCS-10052											
Campib. 200 10002	.0										Date
Analyses		Cert	RL	Qual	Result	Spike	SPK Ref Val	%REC	Low Limit	High Limit	Analyzed
Ethanol		*	20	S	130	100.0	0	133.4	70	132	10/05/2020
Batch R282389	SampType:	MS		Units mg/L							
SampID: 20100106-0				•							5 /
	3017										Date Analyzed
Analyses		Cert	RL	Qual	Result	Spike	SPK Ref Val	%REC	Low Limit	High Limit	Analyzeu
Ethanol		*	20		130	100.0	0	131.0	70	132	10/05/2020
Batch R282389	SampType:	MSD		Units mg/L					RPD Lin	nit 30	
SampID: 20100106-0				J							Date
							00K D () ()	0/ DEC	DDD D () (L 0/ DDD	Date Analyzed
Analyses		Cert	RL	Qual	Result	Spike	SPK Ref Val	%REC	RPD Ref Va	al %RPD	Allalyzeu
Ethanol		*	20	S	130	100.0	0	133.2	131.0	1.64	10/05/2020

Water - pH acceptable upon receipt?

NPDES/CWA TCN interferences checked/treated in the field?

Receiving Check List

http://www.teklabinc.com/

Work Order: 20091893 Client: Alpha Analytical Client Project: L2040729 Report Date: 06-Oct-2020 Carrier: UPS Received By: KMT Elizabeth a thurley (matter Reviewed by: Completed by: On: On: 30-Sep-2020 30-Sep-2020 Amanda R. Ham Elizabeth A. Hurley Extra pages included 0 Pages to follow: Chain of custody Shipping container/cooler in good condition? Yes 🗸 No Not Present Temp °C Type of thermal preservation? Ice 🗹 Blue Ice None Dry Ice Chain of custody present? **V** No 🗀 Yes **V** Chain of custody signed when relinquished and received? Yes No L **V** Chain of custody agrees with sample labels? No 🗔 Yes **V** Samples in proper container/bottle? Yes No 🗀 **V** Sample containers intact? Yes No Sufficient sample volume for indicated test? Yes **V** No **V** No 🗌 All samples received within holding time? Yes Lab NA 🗸 Field Reported field parameters measured: Yes 🗹 No 🗌 Container/Temp Blank temperature in compliance? When thermal preservation is required, samples are compliant with a temperature between 0.1°C - 6.0°C, or when samples are received on ice the same day as collected. Yes 🗸 No VOA vials Water – at least one vial per sample has zero headspace? No 🗀 No 🗌 No TOX containers Water - TOX containers have zero headspace? Yes

Any No responses must be detailed below or on the COC.

Yes 🗹

Yes

No 🗌

No 🗌

NA 🗸

Subcontract Chain of Custody

Tek Lab, Inc. 5445 Horsehoe Lake Road Collinsville, IL 62234-7425

Alpha Job Number L2040729

World Class Chemistry			•		- Anna anna anna anna anna anna anna ann		
<u> </u>	nformation	<u> </u>	Project Inf	ormation	Regulatory Requireme	ents/Report Lim	nits
Client: Alpha Analytic Address: Eight Walkup Westborough,		Project Location: N Project Manager: N	/IA Nathalie Lev	·	State/Federal Program: Regulatory Criteria:	and Report 2III	
Phone: 508.439.5170 Email: nlewis@alpha) alab.com	Due Date: Deliverables:					
`		Project Specific F	Requireme	ents and/or Report Require	ements		
Refere	ence following Alpha Job Nu	mber on final report/de	eliverables:	L2040729 Rep	ort to include Method Blank, LCS/	LCSD:	
Additional Comments:	: Send all results/reports to s	subreports@alphalab.o	com				
Lab ID	Client ID	Collection Date/Time	Sample Matrix	Analysis			Batch QC
2009/18913-001	WELL-E	09-25-20 11:00	WATER	Ethanol by EPA 1671 Revision A			
), 4° CL763 JUS Malsobr		
7.00	Relinquished	Ву:		Date/Time:	Received By:	Date/Time:	
		8		9)09/00	Jes 27/ UPS	9/30/20	1002
F N 61							Vhor -
Form No: AL_subcoc							0/2010 100/20
							$\sim l_{X_{\infty}}$

ATTACHMENT F MADEP CORRESPONDENCE

From: Ruan, Xiaodan (DEP)
To: Robert C. Reynolds

Cc: <u>Vakalopoulos, Catherine (DEP)</u>

Subject: RE: Acton RGP

Date: Monday, October 26, 2020 4:14:40 PM

CAUTION: This email originated from outside of the organization. Do not click links or open attachments unless you recognize the sender and know the content is safe.

Thanks, Rob, for confirming.

From: Robert C. Reynolds < rcreynolds@geoinc.com>

Sent: Monday, October 26, 2020 4:09 PM

To: Ruan, Xiaodan (DEP) < xiaodan.ruan@mass.gov>

Cc: Vakalopoulos, Catherine (DEP) < catherine.vakalopoulos@mass.gov>

Subject: RE: Acton RGP

CAUTION: This email originated from a sender outside of the Commonwealth of Massachusetts mail system. Do not click on links or open attachments unless you recognize the sender and know the content is safe.

Hi Xiaodan-

The site is a *current* MCP site (RTN 2-21031) and yes, the effluent outfall is to Nashoba Brook through aboveground piping.

Thanks, Rob

From: Ruan, Xiaodan (DEP) < xiaodan.ruan@state.ma.us>

Sent: Monday, October 26, 2020 2:59 PM

To: Robert C. Reynolds < rcreynolds@geoinc.com>

Cc: Vakalopoulos, Catherine (DEP) < <u>catherine.vakalopoulos@state.ma.us</u>>

Subject: RE: Acton RGP

CAUTION: This email originated from outside of the organization. Do not click links or open attachments unless you recognize the sender and know the content is safe.

Hi Robert,

I can confirm that the dilution factor of 2.07 for the updated maximum flow rate 350 gpm is correct. I have attached a complete StreamStats report.

I have a couple of questions to confirm:

- 1. Is the site for the project a *current* MCP site?
- 2. The effluent outfall is on the Nashoba Brook through aboveground piping.

Please let me know if you have any questions.

Thanks, Xiaodan

From: Robert C. Reynolds < rcreynolds@geoinc.com>

Sent: Sunday, October 25, 2020 1:36 PM

To: Vakalopoulos, Catherine (DEP) < <u>catherine.vakalopoulos@mass.gov</u>>; Ruan, Xiaodan (DEP)

<<u>xiaodan.ruan@mass.gov</u>> **Subject:** FW: Acton RGP

CAUTION: This email originated from a sender outside of the Commonwealth of Massachusetts mail system. Do not click on links or open attachments unless you recognize the sender and know the content is safe.

Hi Catherine and Xiaodan,

We previously requested a review of the 7Q10 and dilution calculations for an RGP NOI that we are preparing for our client that is associated with an upcoming pumping test. We received confirmation from you back in June that we had the calculations correct but the design flow of the pumping test has been changed from 0.432 MGD to 0.504 MGD.

Based upon Stream Stats, the 7Q10 (Qs) is 0.832 ft3/day or 0.538 MGPD The maximum proposed flow (Qd) is now expected to be 350 gpm or 0.504 MGPD

Therefore, the dilution factor [DF = (QS + QD)/QD] is calculated to be (0.538 + 0.504)/0.504 = 2.07

Attached is the supporting information.

Could you confirm at your earliest convenience.

If you have any questions or require any additional information, please do not hesitate to contact me.

Best, Rob

From: Ruan, Xiaodan (DEP) < xiaodan.ruan@state.ma.us>

Sent: Tuesday, June 23, 2020 2:36 PM

To: Robert C. Reynolds < rcreynolds@geoinc.com>

Cc: Vakalopoulos, Catherine (DEP) < catherine.vakalopoulos@state.ma.us>

Subject: Re: Acton RGP

CAUTION: This email originated from outside of the organization. Do not click links or open attachments unless you recognize the sender and know the content is safe.

Hi Robert

I can confirm that the 7Q10 of 0.538 MGD and the dilution factor of 2.24 using a design flow of 0.432 MGD for the proposed discharge are correct.

Here is some additional information to use in the NOI:

This segment is not an Outstanding Resource Water, and there is no TMDL listed for this segment. For impairments, please go to <u>Massachusetts 2016 303(d) List of Impaired Waters</u>, and search for "MA82B-14".

As this is a current MCP site, you do not need to apply with MassDEP.

Please let me know if you have any questions.

Thanks, Xiaodan

From: Vakalopoulos, Catherine (DEP) **Sent:** Monday, June 22, 2020 2:16 PM

To: Ruan, Xiaodan (DEP)
Cc: rcreynolds@geoinc.com
Subject: Fw: Acton RGP

Hi Xiaodan,

Do you have time to check this? Please let me know.

Thanks,

Cathy

Cathy Vakalopoulos, Massachusetts Department of Environmental Protection 1 Winter St., Boston, MA 02108, 617-348-4026 Please consider the environment before printing this e-mail

From: Robert C. Reynolds < rcreynolds@geoinc.com>

Sent: Friday, June 19, 2020 7:56 AM **To:** Vakalopoulos, Catherine (DEP)

Subject: Acton RGP

CAUTION: This email originated from a sender outside of the Commonwealth of Massachusetts mail system. Do not click on links or open attachments unless you recognize the sender and know the content is safe.

Hi Catherine,

We anticipate filing an NOI for an RGP to discharge water during a pump test for proposed drinking water wells at a site with an RTN in Acton, MA this summer so wanted to see if you could review the 7Q10 and dilution calculation information. The discharge is to Nashoba Brook (Segment MA82B-14). Attached is the Stream Stat Report (PDF and Excel) and an Aerial Photograph indicating the estimated area where the discharge will occur to Nashoba Brook.

Based upon Stream Stats, the 7Q10 (Qs) is 0.832 ft3/day or 0.538 MGPD The maximum proposed flow (Qd) is expected to be 300 gpm or 0.432 MGPD

Therefore, the dilution factor [DF = (QS + QD)/QD] is calculated to be (0.538 + 0.432)/0.432 = 2.24

If you have any questions or require any additional information, please do not hesitate to contact me.

Best regards,

PORERTO REVIOLOS

Scnior Project Engineer
O. 978.679.1600 | C. 781.726.2698
One Monarch Drive, Suite 201, Littleton, MA 01460

Geolnsight, Inc.

Environmental Strategy and Engineering

Environmental | GeoTechnical + Civil Engineering | Water Supply | EHS Compliance

Manchester, NH | Middletown, CT | Littleton, MA | York, ME

Blog | Facebook | LinkedIn | Twitter

Get The Latest: Gcolnsight News

ATTACHMENT G

USEPA APPENDIX V DILUTION FACTOR AND WQBEL SPREADSHEET

Enter nu	mber values in green boxes below	Notes:
Enter valu	ues in the units specified	
\downarrow		Freshwater: Q _R equal to the 7Q10; enter alternate Q _R if approved by the State; enter 0 if no dilution factor approved
0.538	Q_R = Enter upstream flow in MGD	Saltwater (estuarine and marine): enter Q _R if approved by the State; enter 0 if no entry
0.504	Q_P = Enter discharge flow in MGD	Discharge flow is equal to the design flow or 1 MGD, whichever is less
0	Downstream 7Q10	Only if approved by State as the entry for Q _R ; leave 0 if no entry
Enter a di	lution factor, if other than zero	Saltwater (estuarine and marine): only if approved by the State
\downarrow		Leave 0 if no entry
2.07		
Enter valu	ues in the units specified	
\downarrow		
37.6	C_d = Enter influent hardness in mg/L CaCO ₃	Freshwater only
48.7	C_s = Enter receiving water hardness in mg/L CaCO ₃	
Enter rece	eiving water concentrations in the units specified	pH, temperature, and ammonia required for all discharges
\downarrow		Hardness required for freshwater
7.5	pH in Standard Units	Salinity required for saltwater (estuarine and marine)
18.7	Temperature in °C	Metals required for all discharges if present and if dilution factor is > 1
0.187	Ammonia in mg/L	Enter 0 if non-detect or testing not required
200	Hardness in mg/L CaCO ₃	
0	Salinity in ppt	
0	Antimony in µg/L	
1.02	Arsenic in μg/L	
0	Cadmium in µg/L	
0	Chromium III in μg/L	
0	Chromium VI in µg/L	
0	Copper in µg/L	
286	Iron in µg/L	
0	Lead in µg/L	
0	Mercury in µg/L	
0	Nickel in µg/L	
0	Selenium in μg/L	
0	Silver in µg/L	
0	Zinc in µg/L	

Enter influ	uent concentrations in the units	specified it	f >1 sample, enter maximum
\downarrow			f >10 samples, may enter 95th percentile
0	TRC in µg/L		Enter 0 if non-detect or testing not required
85	Ammonia in mg/L		
0	Antimony in µg/L		
1.01	Arsenic in μg/L		
0	Cadmium in µg/L		
0	Chromium III in µg/L		
0	Chromium VI in µg/L		
6.84	Copper in µg/L		
32400	Iron in μg/L		
0	Lead in µg/L		
0	Mercury in μg/L		
0	Nickel in µg/L		
0	Selenium in µg/L		
0	Silver in µg/L		
0	Zinc in µg/L		
0	Cyanide in µg/L		
0	Phenol in µg/L		
0	Carbon Tetrachloride in µg/L		
0	Tetrachloroethylene in μg/L		
0	Total Phthalates in µg/L		
0	Diethylhexylphthalate in μg/L		
0	Benzo(a)anthracene in μg/L		
0	Benzo(a)pyrene in µg/L		
0	Benzo(b)fluoranthene in µg/L		
0	Benzo(k)fluoranthene in µg/L		
0	Chrysene in µg/L		
0	Dibenzo(a,h)anthracene in μg/l		
0	Indeno(1,2,3-cd)pyrene in μg/I		
0	Methyl-tert butyl ether in μg/L		

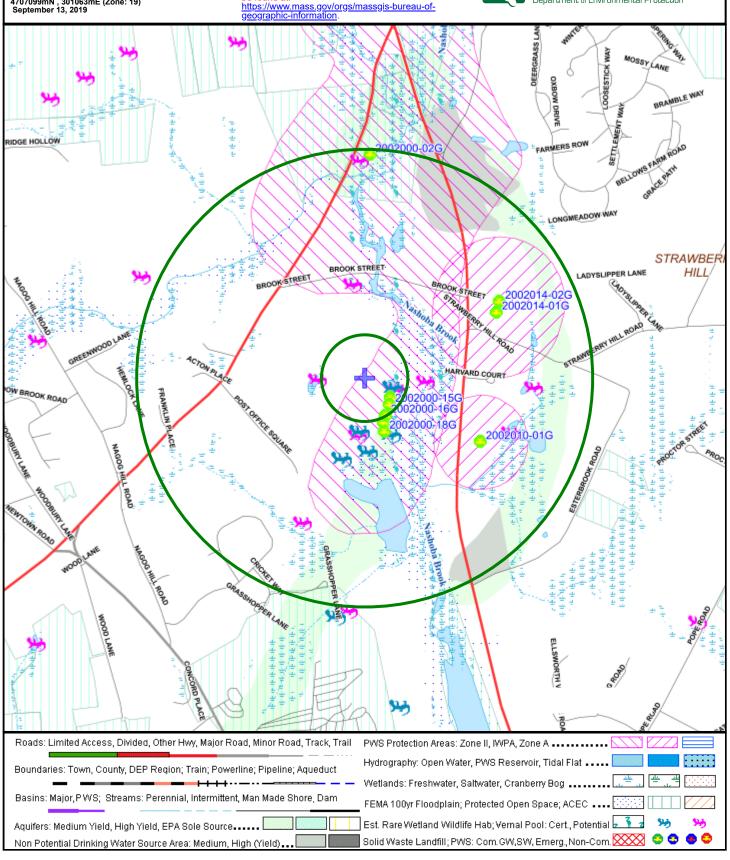
Dilution Factor	2.1					
A. Inorganics	TBEL applies if	bolded	WQBEL applies if bolded		Compliance Level applies if shown	
Ammonia	Report	mg/L				
Chloride	Report	μg/L				
Total Residual Chlorine	0.2	mg/L	23	μg/L	50	μg/L
Total Suspended Solids	30	mg/L				
Antimony	206	μg/L	1323	μg/L		
Arsenic	104	μg/L	20	μg/L		
Cadmium	10.2	μg/L	0.1456	μg/L		
Chromium III	323	μg/L	89.8	μg/L		
Chromium VI	323	μg/L	23.6	μg/L		
Copper	242	μg/L	9.4	μg/L		
Iron	5000	μg/L	1762	μg/L		
Lead	160	μg/L	2.27	μg/L		
Mercury	0.739	μg/L	1.87	μg/L		
Nickel	1450	μg/L	53.2	μg/L		
Selenium	235.8	μg/L	10.3	μg/L		
Silver	35.1	μg/L	1.9	μg/L		
Zinc	420	μg/L	122.0	μg/L		
Cyanide	178	mg/L	10.8	μg/L		μg/L
B. Non-Halogenated VOCs						1.2
Total BTEX	100	μg/L				
Benzene	5.0	μg/L				
1,4 Dioxane	200	μg/L				
Acetone	7970	μg/L				
Phenol	1,080	μg/L	620	μg/L		

C. Halogenated VOCs					
Carbon Tetrachloride	4.4	μg/L	3.3	μg/L	
1,2 Dichlorobenzene	600	μg/L		1.5	
1,3 Dichlorobenzene	320	μg/L			
1,4 Dichlorobenzene	5.0	μg/L			
Total dichlorobenzene		μg/L			
1,1 Dichloroethane	70	μg/L			
1,2 Dichloroethane	5.0	μg/L			
1,1 Dichloroethylene	3.2	μg/L			
Ethylene Dibromide	0.05	μg/L			
Methylene Chloride	4.6	μg/L			
1,1,1 Trichloroethane	200	μg/L			
1,1,2 Trichloroethane	5.0	μg/L			
Trichloroethylene	5.0	μg/L			
Tetrachloroethylene	5.0	μg/L	6.8	μg/L	
cis-1,2 Dichloroethylene	70	μg/L			
Vinyl Chloride	2.0	μg/L			
D. Non-Halogenated SVOCs					
Total Phthalates	190	μg/L		μg/L	
Diethylhexyl phthalate	101	μg/L	4.5	μg/L	
Total Group I Polycyclic					
Aromatic Hydrocarbons	1.0	μg/L			
Benzo(a)anthracene	1.0	μg/L	0.0079	μg/L	 μg/L
Benzo(a)pyrene	1.0	μg/L	0.0079	μg/L	 μg/L
Benzo(b)fluoranthene	1.0	μg/L	0.0079	μg/L	 μg/L
Benzo(k)fluoranthene	1.0	μg/L	0.0079	μg/L	 μg/L
Chrysene	1.0	μg/L	0.0079	μg/L	 μg/L
Dibenzo(a,h)anthracene	1.0	μg/L	0.0079	μg/L	 μg/L
Indeno(1,2,3-cd)pyrene	1.0	μg/L	0.0079	μg/L	 μg/L
Total Group II Polycyclic					
Aromatic Hydrocarbons	100	μg/L			
Naphthalene	20	μg/L			
E. Halogenated SVOCs					

Total Polychlorinated Biphenyls	0.000064	μg/L			0.5	μg/L
Pentachlorophenol	1.0	μg/L				
F. Fuels Parameters						
Total Petroleum Hydrocarbons	5.0	mg/L				
Ethanol	Report	mg/L				
Methyl-tert-Butyl Ether	70	μg/L	41	μg/L		
tert-Butyl Alcohol	120	μg/L				
tert-Amyl Methyl Ether	90	μg/L				

ATTACHMENT H MADEP BWSC PHASE I SITE ASSESSMENT MAP

MassDEP - Bureau of Waste Site Cleanup Phase 1 Site Assessment Map: 500 feet & 0.5 Mile Radii


Site Information:

ACTON, MA

NAD83 UTM Meters: 4707099mN , 301063mE (Zone: 19) September 13, 2019

The information shown is the best available at the date of printing. However, it may be incomplete. The responsible party and LSP are ultimately responsible for ascertaining the true conditions surrounding the site. Metadata for data layers shown on this map can be found at: be found at:

