

NOTICE OF INTENT FOR

MASSACHUSETTS REMEDIATION GENERAL PERMIT

COLBEA-SHELL GASOLINE STATION 1833 WILBUR AVENUE SOMERSET, MA RTN 4-16959

> Prepared for: COLBEA ENTERPRISES LLC 2050 PLAINFIELD PIKE CRANSTON, RI 02921

May 19, 2020

TABLE OF CONTENTS

1.0	INTRODUCTION	1
2.0	GENERAL FACILITY INFORMATION	1
2.1 2.2 2.3	Facility Description Sensitive Environmental Receptors National Pollutant Discharge Elimination System (NPDES) Status	1 2 2
3.0	DISCHARGE INFORMATION	3
3.1 3.2.	RECEIVING WATER INFORMATION	3 4
4.0	CONATAMINANT INFORMATION	4
5.0	DILUTION FACTOR	5
6.0	DETERMINATION OF ENDANGERED SPECIES ACT ELIGIBILITY (ESA)	5
7.0	DOCUMENTATION OF NATION HISTORIC PRESERVATION ACT (NHPA) REQUIREMENTS	5
8.0	SUPPLEMENTAL INFORMATION	5
9.0	REDEVELOPMENT CONSTRUCTION SCHEDULE	5

FIGURES

- Figure 1 Site Locus Map
- Figure 2 Site Plan
- Figure 2A Extended Site Plan
- Figure 3 Waterbody Assessment & TMDL Status
- Figure 4 Areas of Environmental Concern
- Figure 5 MassDEP Phase 1 Site Assessment Map
- Figure 6 Groundwater Dewatering Installation Diagram
- Figure 7 Extended Area Map with MARCIS Inventory

TABLES

Table 1Summary of Groundwater Analytical Data

ATTACHMENTS

Attachment A	Notice of Intent								
Attachment B	StreamStats 7Q10 Data & MassDEP Correspondence								
Attachment C	Laboratory Analytical Reports								
Attachment D	Fish and Wildlife Service - New England Services Field Office								
Correspondence									

1.0 INTRODUCTION

Tg2 Solutions, LLC (Tg2) prepared Notice of Intent (NOI) for a Massachusetts Remediation General Permit (RGP) for construction dewatering at the Shell-branded gasoline station located at 1833 Wilbur Avenue, in Somerset, Massachusetts on behalf of the site owner, Colbea Enterprises LLC (Colbea). This NOI is being submitted to the United State Environmental Protection Agency (USEPA) in accordance with the requirements of the Massachusetts General Permit No. MAG070000. This site was formerly identified by Massachusetts Department of Environmental Protection (MassDEP) as Release Tracking Number (RTN) 4-16959 and is regulated in accordance with Massachusetts Contingency Plan (MCP) 310 CMR 40.0000. The site is presently in Phase V Remedy Operation Status.

This NOI for a RGP is being submitted to account for site renovation activities being conducted at the facility. A portion of these activities include the dewatering of an excavation to allow for the removal and replacement of gasoline underground storage tanks (USTs). For the purpose of this NOI, the "facility" is defined as the area located within the property boundaries of 1833 Wilbur Avenue in Somerset, Massachusetts. A Site Locus Map is presented as **Figure 1**. A Site Plan is presented as **Figure 2**. A copy of the NOI is included as **Attachment A**.

2.0 GENERAL FACILITY INFORMATION

General site information for which this Phase I applies includes the following:

Property Owner/Facility Operator:	Angelo Ruo Operator Colbea Enterprises LLC 2050 Plainfield Pike Cranston, RI 02920 Tel: (401) 943-0005
Owner/Facility Operator Contact:	Eric D. Simpson, Environmental Program Director <u>Esimpson@eastsodeenterprise.com</u> Tel: (401) 943-0005
USGS Quadrangle:	Somerset, Massachusetts
Longitude, Latitude: (approximate)	71° 11' 23.33" W, 41° 43' 37.74" N
Site Zoning:	Business/Residential
County:	Bristol

2.1 Facility Description

The facility is a Shell-branded service station located at 1833 Wilbur Avenue in a residential/light commercial area of Somerset, Massachusetts. In 2008, Motiva Enterprises

LLC, the former owner/operator of the property and original responsible party for the RTN, sold the facility to Colbea. The property is improved with a single-story building, which includes a convenience store and two pump islands. Subsurface structures include three 10,000 gallon, double-walled, fiberglass gasoline USTs, located to the east of the station building. The facility is located on a 0.32-acre parcel. Refer to **Figure 2** - Site Plan, for the location of existing UST systems, dispensers, sampling locations, and pertinent facility features.

2.2 Sensitive Environmental Receptors

The nearest surface water body is Lee's River, located approximately 400 feet to the west (cross-gradient) of the facility. Depth to water at the site ranges from approximately 12 to 20 feet below ground surface (bgs), depending on measurement location. Groundwater does not intersect surface water or wetland areas within the boundaries of the facility. The nearest wetland area is located greater than 500 feet to the east and cross-gradient of the site. A waterbody assessment and TMDL status relative to the facility location is provided in **Figure 3**.

The facility is not located within a Zone II area, Interim Wellhead Protection Area (IWPA), or a Zone A or a Potentially Productive Aquifer. Areas of Critical Environmental Concern are not located within 500 feet of the site. Areas of Priority Habitats of Rare Species, Habitats of Rare Wildlife, or Certified Vernal Pools are not located within 500 feet of the facility. Areas of Concern in relation to the facility are located on **Figure 4**. **Figure 5** provides a Bureau of Waste Site Cleanup Receptor Map identifying potential environmental receptors within a 500 foot and ½ mile radius from the site.

2.3 National Pollutant Discharge Elimination System (NPDES) Status

A NPDES permit has not been previously applied for or granted for this discharge. Site redevelopment construction activities have not yet begun at the facility; however, they are planned for late summer 2018. The facility is not covered by an individual NPDES permit and there are no pending applications on file for any other permit with US EPA for this facility. As defined by 40 CFR Section 122.2, a new discharger means any building, structure, facility, or installation:

- A) From which there is or may be a "discharge of pollutants;"
- B) That did not commence the "discharge of pollutants" at a particular "site" prior to August 13, 1979;
- C) Which is not a "new source;" and,
- D) Which has never received a finally effected NPDES permit for discharges at that "site."

Based on groundwater samples collected at the facility, this site is not considered a new discharge.

3.0 DISCHARGE INFORMATION

This NOI for a RGP is being applied for groundwater discharge necessary during site redevelopment construction activities. These activities include the raze and rebuild of the facility building, and removal and replacement of the existing USTs and associated piping, and dispenser islands. The proposed discharge location for treated groundwater is a catch basin located adjacent to the property to the north off Wilbur Avenue, as depicted on **Figure 2A**. This catch basin discharges to the Lee River (freshwater) located approximately 400 feet to the west of the site. The latitude and longitude of the catch basin discharge and outfall point are:

Catch Basin Discharge Point:

Latitude: 41.727310 Longitude: -71.189836

Outfall (Lee River) Point:

Latitude: 41.728048 Longitude: -71.191448

The dewatering and treatment system anticipated for this work includes a 20,000-gallon baffled setting fractionation tank, sediment bag filters, a greensand filter vessel for iron removal, and two activated carbon filter vessels for remaining contaminant removal. This system is designed to meet the required effluent limits for this permit. A diagram of the treatment system is provided on **Figure 6**.

Only one discharge point, described above, will be necessary for dewatering activities. The estimated maximum daily flow is 40 gallons per minute (gpm), with a design flow of 60 gpm. These estimations are expected to decrease once the excavation has been dewatered, and do not include surface run-off following precipitation events. The pH of onsite groundwater was measured at 7.67 (s.u.) and site activities are not anticipated to alter this pH. Discharge activities will only occur during site redevelopment, which is expected to occur between June and July 2020. The discharge point for these dewatering activities is a catch basin located immediately adjacent to the facility to the north off Wilbur Avenue. Areas of Concern in relation to the facility are located on **Figure 4**. **Figure 5** provides a Bureau of Waste Site Cleanup Receptor Map identifying potential environmental receptors within a 500 foot and ½ mile radius from the site.

If needed, modifications to the system will be made. Modifications to the system will be submitted for approval via a Notice of Change (NOC).

3.1 Receiving Water Information

The receiving water for the indirect discharge of groundwater from the facility is Lee River. StreamStats 4.0 was consulted and it was determined based on a location on Lee River where the discharge outfall location is, that the 7Q10 is 0.0795 cubic feet per second

(cfs). The StreamStats Report is provided in **Attachment B**. Per the Waterbody Assessment and TMDL Status Map (**Figure 3**), Lee River was assigned a TMDL status of 5 – Impaired – TMDL required.

3.2.1 Receiving Water Classification

Based on the MassDEP Division of Water Pollution Control the discharge (outfall) point is Lee River. Lee River is classified as Class SA:

https://www.epa.gov/sites/production/files/2020-01/documents/2016-ma-303d-list-report.pdf,

The Lee River segment ID is MA61-02.

4.0 CONATAMINANT INFORMATION

On February 26, 2020, groundwater samples were collected from on-site monitoring well RGP Well MW-6 and the outfall discharge location at the Lee River outfall at Wilbur Avenue (Discharge). Groundwater samples collected from RGP Well MW-6 and the Discharge location during February 2002 were submitted to ESS Laboratory, Cranston, Rhode Island (ESS) for analysis of metals, hardness, ethanol, chloride, total cyanide, total petroleum hydrocarbons (TPH), total suspended solids (TSS), total residual chlorine (TRC), ammonia, hexavalent chromium, trivalent chromium, phenol, 1,4-dioxane, ethylene dibromide, volatile organic compounds (VOCs), semi-volatile organic compounds (SVOCs), polychlorinated biphenyls (PBCs), tert-butyl alcohol (TBA), and tert-amyl methyl ether (TAME). Surface water samples from the discharge location, Discharge, during February 2020 were submitted to ESS for analysis of ammonia, hexavalent chromium, metals, iron, pH, hardness, and salinity.

Results from the groundwater sampling of MW-6 demonstrated concentrations of copper, iron, zinc, toluene, ethylbenzene, xylenes, naphthalene, ammonia, chloride, and hardness above method detection limits but below the technology-based effluent limitations (TBELs). Additionally, no contaminants of concern were detected above Massachusetts Department of Environmental Protection (MassDEP) reportable concentrations for groundwater (RCGW-2). The facility has previously been, and is currently, a gasoline and service station, and does not use any pH neutralization or dechlorination chemicals. Based on the summarized groundwater sampling results there are potential water-quality issues in the vicinity of the discharge.

Results from the surface water sample (Receiving Water) did not demonstrate concentrations of potential contaminants of concern (pCOCs) exceeding TBELs. **Table 1** provides a summary of detected pCOCs from groundwater collected at the facility (influent) and the surface water sample. Groundwater and surface water laboratory analytical reports are provided in **Attachment C**.

5.0 DILUTION FACTOR

MassDEP was contacted on May 5, 2020 to confirm the 7Q10 flow and determine a dilution factor. Final correspondence received on May 8, 2020 confirmed a dilution factor of 1.59. The Dilution Factor and Effluent Limitation Calculations fillable electronic spreadsheet was subsequently completed. Copies of the Dilution Factor and Effluent Limitation Calculations fillable electronic spreadsheet, StreamStats Report, and MassDEP correspondence are provided in **Attachment B**.

6.0 DETERMINATION OF ENDANGERED SPECIES ACT ELIGIBILITY (ESA)

The United States Department of the Interior Fish and Wildlife Service – New England Ecological Services Field Office was contacted regarding the determination of endangered species act eligibility (ESA) on March 25, 2020. There are no endangered or candidate species and no critical habitats within the project area for this NOI. There is one threatened species, the Northern Long-eared Bat (*Myotis septentrionalis*), on the list for this facility. However, no critical habitat has been designated for this species. Per the U.S. Fish and Wildlife Services, the Northern Long-eared Bat hibernates in caves and mines, swarming in surrounded wooded areas in autumn, and foraging in upland forests in late spring and summer. Based on the location and scope of this work (i.e. 0.32-acre facility being redeveloped into another gasoline station), it is unlikely that dewatering activities associated with the redevelopment of this facility will adversely affect the Northern Long-eared Bat. Therefore, this ESA determination is FWS Criterion C. Fish and Wildlife Service – New England Service Field Office Correspondence is provided as **Attachment D**.

7.0 DOCUMENTATION OF NATION HISTORIC PRESERVATION ACT (NHPA) REQUIREMENTS

Listings of historic places within the Town of Somereset were obtained from the Massachusetts Cultural Resources Information System (MARCIS) online database:

http://mhc-macris.net/Towns.aspx?Page=towns.asp

A site vicinity map showing historic places within a quarter mile of the facility is provided on **Figure 7**. One historic places are located within 500 feet of the facility. Based on the scope of this work, it is unlikely that dewatering activities associated with the redevelopment of this facility will adversely affect any historic places.

8.0 SUPPLEMENTAL INFORMATION

At this time no additional supplemental information is necessary to meet the requirements of the NOI for the RGP.

9.0 **REDEVELOPMENT CONSTRUCTION SCHEDULE**

Redevelopment construction activities requiring dewatering are anticipated to begin in April/May 2020 and are anticipated to be complete by August 2020.

FIGURES

PROPERTY BOUNDARY (APPROXIMATE)

DATE: MARCH 24, 2020

Feet

BY: ROV

231 ELM STREET BLACKSTONE, MA 01504

1833 WILBUR AVENUE SOMERSET, MA

 MW-1 ✤ MW-101 0 Source: Esri, DigitalClobe, GeoEye, Earthstar Geographics, CNES/Airbus DS, USDA, USGS, AeroGRID, IGN, and the GIS User Community **FIGURE 2a** EXTENDED SITE PLAN SHELL-BRANDED STATION 1833 WILBUR AVENUE 231 ELM STREET SOMERSET, MA BLACKSTONE, MA 01504

PREPARED BY: TG2 SOLUTIONS LLC

231 ELM STREET

BLACKSTONE, MA 01504

3) ALL DATA LAYERS TAKEN FROM MASSGIS.

1833 WILBUR AVENUE SOMERSET, MA

NOTES: 1) NOT TO SCALE. 2) THE DISTANCE FROM THE CATCH BASIN/DISCHARGE LOCATION TO THE LEE RIVER OUTFALL IS APPROXIMATELY 482 FEET.

GROUNDWATER DEWATERING INSTALLATION DIAGRAM

SHELL-BRANDED SERVICE STATION LOCATED AT **1833 WILBUR AVENUE** SOMERSET, MA PREPARED FOR COLBEA ENTERPRISES LLC

TG2 SOLUTIONS, LLC 231 ELM STREET BLACKSTONE, MA 0154

DATE: JULY 22, 2018

REVISED:

TABLES

TABLE 1 SUMMARY OF GROUNDWATER ANALYTICAL DATA Colbea Shell-Branded Service Station 1833 Wilbur Avenue Somerset, Massachusetts

		Copper (µg/L)	lron (µg/L)	Zinc (µg/L)	Toluene (µg/L)	Ehtyl- benzene (µg/L)	Xylenes (µg/L)	Total BTEX* (μg/L)	Naphthalene (µg/L)	Ammonia (as N) (mg/L)	Chloride (mg/L)	Chlorine (mg/L)	Total Suspended Solids (mg/L)	Hardness (mg/L)	рН
MassDEP Reportable Concentrations (RCGW-2)		100,000	NA	900	40,000	5,000	3,000	NA	700	NA	NA	NA	NA	NA	NA
Effluent Lin	242	5,000	420	100*	100*	100*	NA	20	Report	Report	0.2	30	NA	NA	
Well ID	Sample Date														
Discharge (Lee River)	02/26/20	<20	<250	<5		-	-			0.15	12,000	<0.020	23	4,010	6.7
RGP Well MW-6	02/26/20	2.4	1,550	11.8	1.8	36.9	40.4	79.1	11.6	0.97	763	<0.020	<5	120	6.8

Notes: µg(J. - micrograms per liter mg/L - miligram per liter <5.0 - Not detected above method detection limit (MDL), MDL included. MassDEP - MassachuestB Department of Environmental Protection NA - not available TBL - Technology-Baadet Effluent Limitations ---- not sampled MTBE - Methy Inter-Buyl Ether * - total benzene, toluene, ethylbenzene, and xylenes.

Bold - above method detection limits Bold & Shaded - above RCGW-2 and/or TBEL Effluent Limitations

ATTACHMENT A

II. Suggested Format for the Remediation General Permit Notice of Intent (NOI)

A. General site information:

1. Name of site:	Site address:						
	Street:						
	City:		State:	Zip:			
2. Site owner	Contact Person:						
	Telephone:	Email:					
	Mailing address:						
	Street:						
Owner is (check one): Federal State/Tribal Private Other; if so, specify:	City:		State:	Zip:			
3. Site operator, if different than owner	Contact Person:						
	Telephone:	Email:					
	Mailing address:						
	Street:						
	City:		State:	Zip:			
4. NPDES permit number assigned by EPA:	5. Other regulatory program(s) that apply to the site	(check all th	at apply):				
	□ MA Chapter 21e; list RTN(s):	□ CERCL	LA				
NPDES permit is (check all that apply: \Box RGP \Box DGP \Box CGP	□ NH Groundwater Management Permit or	□ UIC Program					
\square MSGP \square Individual NPDES permit \square Other; if so, specify:	Groundwater Release Detection Permit:	POTW Pretreatment					
			Section 404				

B. Receiving water information:

1. Name of receiving water(s):	Waterbody identification of receiving water(s):	Classification of receiving water(s):							
Receiving water is (check any that apply): Outstanding Resource Water Ocean Sanctuary territorial sea Wild and Scenic River									
2. Has the operator attached a location map in accordance with the instructions in B, above? (check one): Yes No									
Are sensitive receptors present near the site? (check one): \Box Yes \Box No If yes, specify:									
3. Indicate if the receiving water(s) is listed in the State's Integrated List of Waters (i.e., CWA Section 303(d)). Include which designated uses are impaired, and any pollutants indicated. Also, indicate if a final TMDL is available for any of the indicated pollutants. For more information, contact the appropriate State as noted in Part 4.6 of the RGP.									
4. Indicate the seven day-ten-year low flow (7Q10) of the receiving water determined in accordance with the instructions in Appendix V for sites located in Massachusetts and Appendix VI for sites located in New Hampshire.									
5. Indicate the requested dilution factor for the calculation of water quality-based effluent limitations (WQBELs) determined in accordance with the instructions in Appendix V for sites in Massachusetts and Appendix VI for sites in New Hampshire.									
6. Has the operator received confirmation from the appropriate State for the 7Q10and dilution factor indicated? (check one): Yes No If yes, indicate date confirmation received:									
7. Has the operator attached a summary of receiving water sampling results as required in Part 4.2 of the RGP in accordance with the instruction in Appendix VIII?									
(check one): \Box Yes \Box No									

C. Source water information:

1. Source water(s) is (check any that apply):									
□ Contaminated groundwater	□ Contaminated surface water	□ The receiving water	□ Potable water; if so, indicate municipality or origin:						
Has the operator attached a summary of influent sampling results as required in Part 4.2 of the RGP	Has the operator attached a summary of influent sampling results as required in Part 4.2 of the	□ A surface water other							
in accordance with the instruction in Appendix VIII? (check one):	RGP in accordance with the instruction in Appendix VIII? (check one):	so, indicate waterbody:	□ Other; if so, specify:						
\Box Yes \Box No	\Box Yes \Box No								

2. Source water contaminants:							
a. For source waters that are contaminated groundwater or contaminated surface water, indicate are any contaminants present that are not included in	b. For a source water that is a surface water other than the receiving water, potable water or other, indicate any contaminants present at the maximum concentration in accordance						
the RGP? (check one): \Box Yes \Box No If yes, indicate the contaminant(s) and the maximum concentration present in accordance with the instructions in Appendix VIII.	with the instructions in Appendix VIII? (check one): \Box Yes \Box No						
3. Has the source water been previously chlorinated or otherwise contains residual chlorine? (check one): Yes No							

D. Discharge information

1. The discharge(s) is $a(n)$ (check any that apply): \Box Existing discharge \Box New discharge \Box New source							
Outfall(s):	Outfall location(s): (Latitude, Longitude)						
Discharges enter the receiving water(s) via (check any that $annly$): \Box Direct discharge	Let the receiving water □ Indirect discharge if so specify:						
Discharges enter the receiving water(s) via (check any that appry). \Box Direct discharge to the receiving water \Box indirect discharge, it so, specify.							
\Box A private storm sewer system \Box A municipal storm sewer system							
If the discharge enters the receiving water via a private or municipal storm sewer sys	stem:						
Has notification been provided to the owner of this system? (check one): \Box Yes \Box N	No						
Has the operator has received permission from the owner to use such system for discharges? (check one): \Box Yes \Box No, if so, explain, with an estimated timeframe for obtaining permission:							
Has the operator attached a summary of any additional requirements the owner of this system has specified? (check one): 🗆 Yes 🗆 No							
Provide the expected start and end dates of discharge(s) (month/year):							
Indicate if the discharge is expected to occur over a duration of: \Box less than 12 months \Box 12 months or more \Box is an emergency discharge							
Has the operator attached a site plan in accordance with the instructions in D, above? (check one): Ves No							

2. Activity Category: (check all that apply)	3. Contamination Type Category: (check all that apply)					
	a. If Activity Category I or II: (check all that apply)					
□ L_ Petroleum-Related Site Remediation	 A. Inorganics B. Non-Halogenated Volatile Organic Compounds C. Halogenated Volatile Organic Compounds D. Non-Halogenated Semi-Volatile Organic Compounds E. Halogenated Semi-Volatile Organic Compounds F. Fuels Parameters 					
\Box II – Non-Petroleum-Related Site Remediation	b. If Activity Category III, IV, V, VI, VII or VIII: (check either G or H)					
 III – Contaminated Site Dewatering IV – Dewatering of Pipelines and Tanks 	□ G. Sites with Known Contamination	□ H. Sites with Unknown Contamination				
 V – Aquifer Pump Testing VI – Well Development/Rehabilitation VII – Collection Structure Dewatering/Remediation 	c. If Category III-G, IV-G, V-G, VI-G, VII-G or VIII-G: (check all that apply)					
□ VIII – Dredge-Related Dewatering	 A. Inorganics B. Non-Halogenated Volatile Organic Compounds C. Halogenated Volatile Organic Compounds D. Non-Halogenated Semi-Volatile Organic Compounds E. Halogenated Semi-Volatile Organic Compounds F. Fuels Parameters 	d. If Category III-H, IV-H, V-H, VI-H, VII-H or VIII-H Contamination Type Categories A through F apply				

4. Influent and Effluent Characteristics

	Known	Known				Inf	luent	Effluent Limitations		
Parameter	or believed absent	or believed present	or # of believed samples present		Detection limit (µg/l)	Daily maximum (µg/l)	Daily average (µg/l)	TBEL	WQBEL	
A. Inorganics										
Ammonia								Report mg/L		
Chloride								Report µg/l		
Total Residual Chlorine								0.2 mg/L		
Total Suspended Solids								30 mg/L		
Antimony								206 µg/L		
Arsenic								104 µg/L		
Cadmium								10.2 µg/L		
Chromium III								323 µg/L		
Chromium VI								323 µg/L		
Copper								242 µg/L		
Iron								5,000 μg/L		
Lead								160 µg/L		
Mercury								0.739 µg/L		
Nickel								1,450 µg/L		
Selenium								235.8 μg/L		
Silver								35.1 μg/L		
Zinc								420 µg/L		
Cyanide								178 mg/L		
B. Non-Halogenated VOCs	5									
Total BTEX								100 µg/L		
Benzene								5.0 µg/L		
1,4 Dioxane								200 µg/L		
Acetone								7.97 mg/L		
Phenol								1,080 µg/L		

	Known	Known				Inf	luent	Effluent Limitations		
Parameter	or believed absent	or believed present	# of samples	Test method (#)	Detection limit (µg/l)	Daily maximum (µg/l)	Daily average (µg/l)	TBEL	WQBEL	
C. Halogenated VOCs										
Carbon Tetrachloride								4.4 μg/L		
1,2 Dichlorobenzene								600 μg/L		
1,3 Dichlorobenzene								320 μg/L		
1,4 Dichlorobenzene								5.0 µg/L		
Total dichlorobenzene								763 µg/L in NH		
1,1 Dichloroethane								70 µg/L		
1,2 Dichloroethane								5.0 µg/L		
1,1 Dichloroethylene								3.2 µg/L		
Ethylene Dibromide								0.05 µg/L		
Methylene Chloride								4.6 µg/L		
1,1,1 Trichloroethane								200 µg/L		
1,1,2 Trichloroethane								5.0 µg/L		
Trichloroethylene								5.0 µg/L		
Tetrachloroethylene								5.0 µg/L		
cis-1,2 Dichloroethylene								70 µg/L		
Vinyl Chloride								2.0 µg/L		
D. Non-Halogenated SVOC	s			1						
Total Phthalates								190 µg/L		
Diethylhexyl phthalate								101 µg/L		
Total Group I PAHs								1.0 µg/L		
Benzo(a)anthracene								_		
Benzo(a)pyrene								_		
Benzo(b)fluoranthene										
Benzo(k)fluoranthene								As Total PAHs		
Chrysene										
Dibenzo(a,h)anthracene										
Indeno(1,2,3-cd)pyrene										

	Known	Known				Influent		Effluent Limitations	
Parameter	ParameterInformationReferenceTestDetectionororor# ofmethodlimitbelievedbelievedsamples(#)(µg/l)	Detection limit (µg/l)	Daily maximum (µg/l)	Daily average (µg/l)	TBEL	WQBEL			
Total Group II PAHs								100 µg/L	
Naphthalene								20 µg/L	
E. Halogenated SVOCs									
Total PCBs								0.000064 µg/L	
Pentachlorophenol								1.0 µg/L	
F. Fuels Parameters									
Total Petroleum Hydrocarbons								5.0 mg/L	
Ethanol								Report mg/L	
Methyl-tert-Butyl Ether								70 µg/L	
tert-Butyl Alcohol								120 μg/L in MA 40 μg/L in NH	
tert-Amyl Methyl Ether								90 μg/L in MA 140 μg/L in NH	
Other (i.e., nH, temperature, hardness, salinity, LC 50, additional pollutants present): if so specify:									

E. Treatment system information

1. Indicate the type(s) of treatment that will be applied to effluent prior to discharge: (check all that apply)

 \Box Adsorption/Absorption \Box Advanced Oxidation Processes \Box Air Stripping \Box Granulated Activated Carbon ("GAC")/Liquid Phase Carbon Adsorption \Box Ion Exchange \Box Precipitation/Coagulation/Flocculation \Box Separation/Filtration \Box Other; if so, specify:

2. Provide a written description of all treatment system(s) or processes that will be applied to the effluent prior to discharge.

Identify each major treatment component (check any that apply):

 \Box Fractionation tanks \Box Equalization tank \Box Oil/water separator \Box Mechanical filter \Box Media filter

 \Box Chemical feed tank \Box Air stripping unit \Box Bag filter \Box Other; if so, specify:

Indicate if either of the following will occur (check any that apply):

 \Box Chlorination \Box De-chlorination

3. Provide the **design flow capacity** in gallons per minute (gpm) of the most limiting component.

Indicate the most limiting component:

Is use of a flow meter feasible? (check one): \Box Yes \Box No, if so, provide justification:

Provide the proposed maximum effluent flow in gpm.

Provide the average effluent flow in gpm.

If Activity Category IV applies, indicate the estimated total volume of water that will be discharged:

4. Has the operator attached a schematic of flow in accordance with the instructions in E, above? (check one): \Box Yes \Box No

F. Chemical and additive information

1. Indicate the type(s) of chemical or additive that will be applied to effluent prior to discharge or that may otherwise be present in the discharge(s): (check all that apply)

🗆 Algaecides/biocides 🗆 Antifoams 🗆 Coagulants 🗆 Corrosion/scale inhibitors 🗆 Disinfectants 🗆 Flocculants 🗆 Neutralizing agents 🗆 Oxidants 🗆 Oxygen 🗆

scavengers \Box pH conditioners \Box Bioremedial agents, including microbes \Box Chlorine or chemicals containing chlorine \Box Other; if so, specify:

2. Provide the following information for each chemical/additive, using attachments, if necessary:

a. Product name, chemical formula, and manufacturer of the chemical/additive;

b. Purpose or use of the chemical/additive or remedial agent;

c. Material Safety Data Sheet (MSDS) and Chemical Abstracts Service (CAS) Registry number for each chemical/additive;

d. The frequency (hourly, daily, etc.), duration (hours, days), quantity (maximum and average), and method of application for the chemical/additive;

e. Any material compatibility risks for storage and/or use including the control measures used to minimize such risks; and

f. If available, the vendor's reported aquatic toxicity (NOAEL and/or LC50 in percent for aquatic organism(s)).

3. Has the operator attached an explanation which demonstrates that the addition of such chemicals/additives may be authorized under this general permit in accordance with the instructions in F, above? (check one): \Box Yes \Box No; if no, has the operator attached data that demonstrates each of the 126 priority pollutants in CWA Section 307(a) and 40 CFR Part 423.15(j)(1) are non-detect in discharges with the addition of the proposed chemical/additive?

(check one): \Box Yes \Box No

G. Endangered Species Act eligibility determination

1. Indicate under which criterion the discharge(s) is eligible for coverage under this general permit:

- □ FWS Criterion A: No endangered or threatened species or critical habitat are in proximity to the discharges or related activities or come in contact with the "action area".
- □ FWS Criterion B: Formal or informal consultation with the FWS under section 7 of the ESA resulted in either a no jeopardy opinion (formal consultation) or a written concurrence by FWS on a finding that the discharges and related activities are "not likely to adversely affect" listed species or critical habitat (informal consultation). Has the operator completed consultation with FWS? (check one): □ Yes □ No; if no, is consultation underway? (check one): □ Yes □ No
- □ **FWS Criterion C**: Using the best scientific and commercial data available, the effect of the discharges and related activities on listed species and critical habitat have been evaluated. Based on those evaluations, a determination is made by EPA, or by the operator and affirmed by EPA, that the discharges and related activities will have "no effect" on any federally threatened or endangered listed species or designated critical habitat under the jurisdiction of the FWS. This determination was made by: (check one) □ the operator □ EPA □ Other; if so, specify:

□ NMFS Criterion: A determination made by EPA is affirmed by the operator that the discharges and related activities will have "no effect" or are "not likely to adversely affect" any federally threatened or endangered listed species or critical habitat under the jurisdiction of NMFS and will not result in any take of listed species. Has the operator previously completed consultation with NMFS? (check one): □ Yes □ No

2. Has the operator attached supporting documentation of ESA eligibility in accordance with the instructions in Appendix I, and G, above? (check one): 🗆 Yes 🗆 No

Does the supporting documentation include any written concurrence or finding provided by the Services? (check one): \Box Yes \Box No; if yes, attach.

H. National Historic Preservation Act eligibility determination

1. Indicate under which criterion the discharge(s) is eligible for coverage under this general permit:

- Criterion A: No historic properties are present. The discharges and discharge-related activities (e.g., BMPs) do not have the potential to cause effects on historic properties.
- Criterion B: Historic properties are present. Discharges and discharge related activities do not have the potential to cause effects on historic properties.
- Criterion C: Historic properties are present. The discharges and discharge-related activities have the potential to have an effect or will have an adverse effect on historic properties.

2. Has the operator attached supporting documentation of NHPA eligibility in accordance with the instructions in H, above? (check one): 🗆 Yes 🗆 No

Does the supporting documentation include any written agreement with the State Historic Preservation Officer (SHPO), Tribal Historic Preservation Officer (TPHO), or other tribal representative that outlines measures the operator will carry out to mitigate or prevent any adverse effects on historic properties? (check one): \Box Yes \Box No

I. Supplemental information

Describe any supplemental information being provided with the NOI. Include attachments if required or otherwise necessary.

Has the operator attached data, including any laboratory case narrative and chain of custody used to support the application? (check one): \Box Yes \Box No Has the operator attached the certification requirement for the Best Management Practices Plan (BMPP)? (check one): \Box Yes \Box No

J. Certification requirement

I certify under penalty of law that this document and all attachments were prepared under my direction or supervision in accordance with a system designed to assure that qualified personnel properly gathered and evaluated the information submitted. Based on my inquiry of the person or persons who manage the system, or those persons directly responsible for gathering the information, the information submitted is, to the best of my knowledge and belief, true, accurate, and complete. I have no personal knowledge that the information submitted is other than true, accurate, and complete. I am aware that there are significant penalties for submitting false information, including the possibility of fine and imprisonment for knowing violations.

A BMPP meeting the requirements of this general permit will be developed and implemented upon BMPP certification statement: initiation of discharge.

Notification provided to the appropriate State, including a copy of this NOI, if required.	Check one: Yes	No 🗆		
Notification provided to the municipality in which the discharge is located, including a copy of this NOI, if requested.	Check one: Yes	No 🗆		
Notification provided to the owner of a private or municipal storm sewer system, if such system is used for site discharges, including a copy of this NOI, if requested.	Check one: Yes	No 🗆 NA 🗆		
Permission obtained from the owner of a private or municipal storm sewer system, if such system is used for site discharges. If yes, attach additional conditions. If no, attach explanation and timeframe for obtaining permission. Check one: Yes No D NA D				
Notification provided to the owner/operator of the area associated with activities covered by an additional discharge $\operatorname{permit}(c)$. Additional discharge $\operatorname{permit}(c)$ additional discharge $\operatorname{permit}(c)$.				
\Box Other; if so, specify:				
Signature: Euco Date: 5/18/20				
Print Name and Title: Eric Simpson - Environmental Manager				

ATTACHMENT B

StreamStats Report

Region ID:

MA Workspace ID: MA20180808224444921000 Clicked Point (Latitude, Longitude): 41.72828, -71.19143

Time:

2018-08-08 18:45:00 -0400

Colbea Gasoline Station, 1833 Wilbur Ave, Somerset

Parameter Code	Parameter Description	Value	Unit
DRNAREA	Area that drains to a point on a stream	5.39	square miles
BSLDEM250	Mean basin slope computed from 1:250K DEM	1.217	percent
DRFTPERSTR	Area of stratified drift per unit of stream length	0.0718	square mile per mile
MAREGION	Region of Massachusetts 0 for Eastern 1 for Western	0	dimensionless

Low-Flow Statistics Parameters [Statewide Low Flow WRIR00 4135]

Parameter Code	Parameter Name	Value	Units	Min Limit	Max Limit
DRNAREA	Drainage Area	5.39	square miles	1.61	149
BSLDEM250	Mean Basin Slope from 250K DEM	1.217	percent	0.32	24.6
DRFTPERSTR	Stratified Drift per Stream Length	0.0718	square mile per mile	0	1.29
MAREGION	Massachusetts Region	0	dimensionless	0	1

Low-Flow Statistics Flow Report [Statewide Low Flow WRIR00 4135]

PII: Prediction Interval-Lower, PIu: Prediction Interval-Upper, SEp: Standard Error of Prediction, SE: Standard Error (other -- see report)

Statistic	Value	Unit	PII	Plu	SE	SEp
7 Day 2 Year Low Flow	0.27	ft^3/s	0.0748	0.939	49.5	49.5
7 Day 10 Year Low Flow	0.0795	ft^3/s	0.0171	0.345	70.8	70.8

Low-Flow Statistics Citations

Ries, K.G., III,2000, Methods for estimating low-flow statistics for Massachusetts streams: U.S. Geological Survey Water Resources Investigations Report 00-4135, 81 p. (http://pubs.usgs.gov/wri/wri004135/)

Subject: Re: 1833 Wilbur Ave - RGP NOI

Date: Friday, May 8, 2020 at 4:01:28 PM Eastern Daylight Time

From: Ruan, Xiaodan (DEP)

To: Jason Sherburne

CC: Leah Smith, Vakalopoulos, Catherine (DEP)

Hi Jason,

Thanks for providing the information. However, I did not find the dilution factor (DF) calculation. I can confirm the 7Q10 of 0.0795 cfs, which equals to 0.051 MGD, for the Lee River at the discharge for the project at 1833 Wilbur Ave in Somerset, MA is correct.

Using the provided design flow rate (maximum flow rate) of 60 gpm (0.0864 MGD), the DF I calculated would be: (0.051 +0.0864)/0.0864 = 1.59.

Here is some information to use in the NOI: Waterbody ID: MA61-02 (within Mount Hope Bay Watershed) Classification: SA Outstanding Resource Water?: no State's most recent Integrated List is located here: <u>https://www.epa.gov/sites/production/files/2020-01/documents/2016-ma-303d-list-report.pdf</u>, search for "MA61-02" to see the causes of impairments. TMDLs: there is one approved pathogen TMDL for this segment

As this is an *active* MCP site, you do not need to apply with MassDEP.

Please let me know if you have any questions.

Thanks, Xiaodan

From: Jason Sherburne <jsherburne@tg2solutions.com>
Sent: Tuesday, May 5, 2020 1:31:07 PM
To: Vakalopoulos, Catherine (DEP)
Cc: Leah Smith
Subject: 1833 Wilbur Ave - RGP NOI

CAUTION: This email originated from a sender outside of the Commonwealth of Massachusetts mail system. Do not click on links or open attachments unless you recognize the sender and know the content is safe.

Good afternoon,

I'm working on a RGP on behalf of a client to complete a NOI for a RGP for redevelopment activities at 1833 Wilbur Ave in Somerset, MA. This facility is an active gasoline station with an RTN (4-0016959) and is being redeveloped into an updated gasoline station facility with new tanks, etc.

Attached please find the dilution factor spreadsheet and effluent limit calculations, as well as the StreamStats output. The discharge location is an outfall that discharges to the Lee River west of the property – see Figure 2A. The discharge flow was calculated based on the design flow: (60 gpm x 60 mph x 24h) / 1 million = 0.0864 mgd. The latitude and longitude of the catch basin discharge and outfall point are:

Catch Basin Discharge Point:

Latitude:	41.727310
Longitude:	-71.189836

Outfall (Lee River) Point:

Latitude:	41.728048
Longitude:	-71.191448

I've also attached a table with the summary of contaminants detected in the influent sample (site groundwater) and the outfall surface water sample.

Could you verify the 7Q10 information and dilution factor? Please let me know if you require any additional information.

Thanks for your help and please let me know if you need anything else.

Jason
USGS Data Disclaimer: Unless otherwise stated, all data, metadata and related materials are considered to satisfy the quality standards relative to the purpose for which the data were collected. Although these data and associated metadata have been reviewed for accuracy and completeness and approved for release by the U.S. Geological Survey (USGS), no warranty expressed or implied is made regarding the display or utility of the data for other purposes, nor on all computer systems, nor shall the act of distribution constitute any such warranty.

USGS Software Disclaimer: This software has been approved for release by the U.S. Geological Survey (USGS). Although the software has been subjected to rigorous review, the USGS reserves the right to update the software as needed pursuant to further analysis and review. No warranty, expressed or implied, is made by the USGS or the U.S. Government as to the functionality of the software and related material nor shall the fact of release constitute any such warranty. Furthermore, the software is released on condition that neither the USGS nor the U.S. Government shall be held liable for any damages resulting from its authorized or unauthorized use.

USGS Product Names Disclaimer: Any use of trade, firm, or product names is for descriptive purposes only and does not imply endorsement by the U.S. Government.

Application Version: 4.2.1

ATTACHMENT C

The Microbiology Division of Thielsch Engineering, Inc.

CERTIFICATE OF ANALYSIS

Eric D. Simpson Tg2 Solutions 231 Elm Street Blackstone, MA 01504

RE: 1833 Wilbur Ave Somerset MA - RGP (N/A) ESS Laboratory Work Order Number: 20B0763

This signed Certificate of Analysis is our approved release of your analytical results. These results are only representative of sample aliquots received at the laboratory. ESS Laboratory expects its clients to follow all regulatory sampling guidelines. Beginning with this page, the entire report has been paginated. This report should not be copied except in full without the approval of the laboratory. Samples will be disposed of thirty days after the final report has been delivered. If you have any questions or concerns, please feel free to call our Customer Service Department.

Laurel Stoddard Laboratory Director

Analytical Summary

REVIEWED By ESS Laboratory at 1:14 pm, Mar 10, 2020

The project as described above has been analyzed in accordance with the ESS Quality Assurance Plan. This plan utilizes the following methodologies: US EPA SW-846, US EPA Methods for Chemical Analysis of Water and Wastes per 40 CFR Part 136, APHA Standard Methods for the Examination of Water and Wastewater, American Society for Testing and Materials (ASTM), and other recognized methodologies. The analyses with these noted observations are in conformance to the Quality Assurance Plan. In chromatographic analysis, manual integration is frequently used instead of automated integration because it produces more accurate results.

The test results present in this report are in compliance with TNI and relative state standards, and/or client Quality Assurance Project Plans (QAPP). The laboratory has reviewed the following: Sample Preservations, Hold Times, Initial Calibrations, Continuing Calibrations, Method Blanks, Blank Spikes, Blank Spike Duplicates, Duplicates, Matrix Spikes, Matrix Spike Duplicates, Surrogates and Internal Standards. Any results which were found to be outside of the recommended ranges stated in our SOPs will be noted in the Project Narrative.

The Microbiology Division of Thielsch Engineering, Inc.

CERTIFICATE OF ANALYSIS

Client Name: Tg2 Solutions Client Project ID: 1833 Wilbur Ave Somerset MA - RGP

ESS Laboratory Work Order: 20B0763

SAMPLE RECEIPT

The following samples were received on February 26, 2020 for the analyses specified on the enclosed Chain of Custody Record.

The samples and analyses listed below were analyzed in accordance with the 2017 Remediation General Permit under the National Pollutant Discharge Elimination System (NPDES).

ESS Laboratory is unable to achieve the required detection limit of 0.4 mg/L for Ethanol for the RGP permit. We have also been unable to procure a subcontract laboratory that is able to achieve this limit. The data for Ethanol has been reported using our current method reporting limit.

<u>Lab Number</u> 20B0763-01	<u>Sample Name</u> MW-6	<u>Matrix</u> Ground Water	<u>Analvsis</u> 1664A, 200.7, 245.1, 2540D, 300.0, 350.1, 3500Cr B-2009, 420.1, 4500 CN CE, 4500Cl D, 504.1, 524.2, 608.3, 625.1 SIM, 8270D SIM, ASTM D3695
20B0763-02	Discharge	Ground Water	1664A, 200.7, 200.8, 245.1, 2540D, 300.0, 350.1, 3500Cr B-2009, 420.1, 4500 CN CE, 4500Cl D, 504.1, 524.2, 608.3, 625.1 SIM, 8270D SIM, ASTM D3695

The Microbiology Division of Thielsch Engineering, Inc.

CERTIFICATE OF ANALYSIS

Client Name: Tg2 Solutions Client Project ID: 1833 Wilbur Ave Somerset MA - RGP

ESS Laboratory Work Order: 20B0763

PROJECT NARRATIVE

524.2 Volatile Org DB02728-BSD1	anic_Compounds
	1,1-Dichloroethane (21% @ 20%)
625.1(SIM) Semi-V	Volatile Organic Compounds
2080/03-01	2,4,6-Tribromophenol (140% @ 15-110%)
20B0763-02	
D0C0024-CCV1	2,4,6-1ribromophenol (115% @ 15-110%)
D0C0026 CCV1	2,4,6-Tribromophenol (149% @ 80-120%), Pentachlorophenol (90% @ 80-120%)
D0C0020-CC V1	2,4,6-Tribromophenol (122% @ 80-120%), Pentachlorophenol (88% @ 80-120%)
D0C0026-CCV1	2.4.6 Tribromonbanal (22% @ 20%)
DC00203-BLK1	2,4,0-1110romophenol (22% @ 20%)
DC00203-BS1	2,4,6-Tribromophenol (111% @ 15-110%)
	2,4,6-Tribromophenol (176% @ 15-110%)
DC00203-BSD1	2.4.6-Tribromophenol (167% @ 15-110%)
20B0763-01	
2080763 02	
2000/03-02	
Dissolved Metals	
20B0763-02	
	Copper
Total Metals 20B0763-02	

Arsenic, Copper

No other observations noted.

End of Project Narrative.

The Microbiology Division of Thielsch Engineering, Inc.

CERTIFICATE OF ANALYSIS

Client Name: Tg2 Solutions Client Project ID: 1833 Wilbur Ave Somerset MA - RGP

ESS Laboratory Work Order: 20B0763

DATA USABILITY LINKS

To ensure you are viewing the most current version of the documents below, please clear your internet cookies for www.ESSLaboratory.com. Consult your IT Support personnel for information on how to clear your internet cookies.

CURRENT SW-846 METHODOLOGY VERSIONS

Analytical Methods

1010A - Flashpoint 6010C - ICP 6020A - ICP MS 7010 - Graphite Furnace 7196A - Hexavalent Chromium 7470A - Aqueous Mercury 7471B - Solid Mercury 8011 - EDB/DBCP/TCP 8015C - GRO/DRO 8081B - Pesticides 8082A - PCB 8100M - TPH 8151A - Herbicides 8260B - VOA 8270D - SVOA 8270D SIM - SVOA Low Level 9014 - Cyanide 9038 - Sulfate 9040C - Aqueous pH 9045D - Solid pH (Corrosivity) 9050A - Specific Conductance 9056A - Anions (IC) 9060A - TOC 9095B - Paint Filter MADEP 04-1.1 - EPH MADEP 18-2.1 - VPH

Prep Methods

- 3005A Aqueous ICP Digestion
 3020A Aqueous Graphite Furnace / ICP MS Digestion
 3050B Solid ICP / Graphite Furnace / ICP MS Digestion
 3060A Solid Hexavalent Chromium Digestion
 3510C Separatory Funnel Extraction
 3520C Liquid / Liquid Extraction
 3540C Manual Soxhlet Extraction
 3541 Automated Soxhlet Extraction
 3546 Microwave Extraction
 3580A Waste Dilution
 5030B Aqueous Purge and Trap
 5030C Aqueous Purge and Trap
- 5035A Solid Purge and Trap

SW846 Reactivity Methods 7.3.3.2 (Reactive Cyanide) and 7.3.4.1 (Reactive Sulfide) have been withdrawn by EPA. These methods are reported per client request and are not NELAP accredited.

The Microbiology Division of Thielsch Engineering, Inc.

CERTIFICATE OF ANALYSIS

Client Name: Tg2 Solutions Client Project ID: 1833 Wilbur Ave Somerset MA - RGP Client Sample ID: MW-6 Date Sampled: 02/26/20 13:30 Percent Solids: N/A

ESS Laboratory Work Order: 20B0763 ESS Laboratory Sample ID: 20B0763-01 Sample Matrix: Ground Water Units: ug/L

Extraction Method: 3005A/200.7

Dissolved Metals

Analyte	Results (MRL)	MDL	Method	Limit	DF	Analyst	Analyzed	I/V	F/V	Batch
Antimony	ND (5.0)		200.7		1	KJK	02/27/20 12:44	100	10	DB02603
Arsenic	ND (5.00)		200.7		1	KJK	02/27/20 12:44	100	10	DB02603
Cadmium	ND (1.00)		200.7		1	KJK	02/27/20 12:44	100	10	DB02603
Chromium	ND (2.0)		200.7		1	KJK	02/27/20 12:44	100	10	DB02603
Copper	ND (2.0)		200.7		1	KJK	02/27/20 12:44	100	10	DB02603
Iron	945 (10.0)		200.7		1	KJK	02/27/20 12:44	100	10	DB02603
Lead	ND (2.0)		200.7		1	KJK	02/27/20 12:44	100	10	DB02603
Mercury	ND (0.20)		245.1		1	MKS	02/27/20 9:23	20	40	DB02653
Nickel	ND (5.0)		200.7		1	KJK	02/27/20 12:44	100	10	DB02603
Selenium	ND (5.0)		200.7		1	KJK	02/27/20 12:44	100	10	DB02603
Silver	ND (0.5)		200.7		1	KJK	02/27/20 12:44	100	10	DB02603
Zinc	10.9 (5.0)		200.7		1	KJK	02/27/20 12:44	100	10	DB02603

The Microbiology Division of Thielsch Engineering, Inc.

CERTIFICATE OF ANALYSIS

Client Name: Tg2 Solutions Client Project ID: 1833 Wilbur Ave Somerset MA - RGP Client Sample ID: MW-6 Date Sampled: 02/26/20 13:30 Percent Solids: N/A

ESS Laboratory Work Order: 20B0763 ESS Laboratory Sample ID: 20B0763-01 Sample Matrix: Ground Water Units: ug/L

Extraction Method: 3005A/200.7

Total Metals

<u>Analyte</u>	Results (MRL)	MDL	Method	<u>Limit</u>	DF	Analyst	Analyzed	I/V	F/V	Batch
Antimony	ND (5.0)		200.7		1	KJK	02/27/20 12:55	100	10	DB02603
Arsenic	ND (5.0)		200.7		1	KJK	02/27/20 12:55	100	10	DB02603
Cadmium	ND (1.00)		200.7		1	KJK	02/27/20 12:55	100	10	DB02603
Chromium	ND (2.0)		200.7		1	KJK	02/27/20 12:55	100	10	DB02603
Chromium III	ND (10.0)		200.7		1	CCP	02/27/20 12:55	1	1	[CALC]
Copper	2.4 (2.0)		200.7		1	KJK	02/27/20 12:55	100	10	DB02603
Hardness	120000 (82.4)		200.7		1	KJK	02/27/20 12:55	1	1	[CALC]
Iron	1550 (10.0)		200.7		1	KJK	02/27/20 12:55	100	10	DB02603
Lead	ND (2.0)		200.7		1	KJK	02/27/20 12:55	100	10	DB02603
Mercury	ND (0.2)		245.1		1	MKS	02/27/20 9:21	20	40	DB02653
Nickel	ND (5.0)		200.7		1	KJK	02/27/20 12:55	100	10	DB02603
Selenium	ND (5.0)		200.7		1	KJK	02/27/20 12:55	100	10	DB02603
Silver	ND (0.5)		200.7		1	KJK	02/27/20 12:55	100	10	DB02603
Zinc	11.8 (5.0)		200.7		1	KJK	02/27/20 12:55	100	10	DB02603

The Microbiology Division of Thielsch Engineering, Inc.

CERTIFICATE OF ANALYSIS

Client Name: Tg2 Solutions Client Project ID: 1833 Wilbur Ave Somerset MA - RGP Client Sample ID: MW-6 Date Sampled: 02/26/20 13:30 Percent Solids: N/A Initial Volume: 25 Final Volume: 25 Extraction Method: 524.2

ESS Laboratory Work Order: 20B0763 ESS Laboratory Sample ID: 20B0763-01 Sample Matrix: Ground Water Units: ug/L Analyst: MD

524.2 Volatile Organic Compounds

Analyte 1,1,1-Trichloroethane	Results (MRL) ND (0.5)	MDL	<u>Method</u> 524.2	<u>Limit</u>	<u>DF</u> 1	<u>Analyzed</u> 02/27/20 12:59	Sequence D0B0442	<u>Batch</u> DB02728
1,1,2-Trichloroethane	ND (0.5)		524.2		1	02/27/20 12:59	D0B0442	DB02728
1,1-Dichloroethane	ND (0.5)		524.2		1	02/27/20 12:59	D0B0442	DB02728
1,1-Dichloroethene	ND (0.5)		524.2		1	02/27/20 12:59	D0B0442	DB02728
1,2-Dichlorobenzene	ND (0.5)		524.2		1	02/27/20 12:59	D0B0442	DB02728
1,2-Dichloroethane	ND (0.5)		524.2		1	02/27/20 12:59	D0B0442	DB02728
1,3-Dichlorobenzene	ND (0.5)		524.2		1	02/27/20 12:59	D0B0442	DB02728
1,4-Dichlorobenzene	ND (0.5)		524.2		1	02/27/20 12:59	D0B0442	DB02728
Acetone	ND (5.0)		524.2		1	02/27/20 12:59	D0B0442	DB02728
Benzene	ND (0.5)		524.2		1	02/27/20 12:59	D0B0442	DB02728
Carbon Tetrachloride	ND (0.3)		524.2		1	02/27/20 12:59	D0B0442	DB02728
cis-1,2-Dichloroethene	ND (0.5)		524.2		1	02/27/20 12:59	D0B0442	DB02728
Ethylbenzene	39.6 (0.5)		524.2		1	02/27/20 12:59	D0B0442	DB02728
Methyl tert-Butyl Ether	ND (0.5)		524.2		1	02/27/20 12:59	D0B0442	DB02728
Methylene Chloride	ND (0.5)		524.2		1	02/27/20 12:59	D0B0442	DB02728
Naphthalene	11.6 (0.5)		524.2		1	02/27/20 12:59	D0B0442	DB02728
Tertiary-amyl methyl ether	ND (1.0)		524.2		1	02/27/20 12:59	D0B0442	DB02728
Tertiary-butyl Alcohol	ND (25.0)		524.2		1	02/27/20 12:59	D0B0442	DB02728
Tetrachloroethene	ND (0.5)		524.2		1	02/27/20 12:59	D0B0442	DB02728
Toluene	1.8 (0.5)		524.2		1	02/27/20 12:59	D0B0442	DB02728
Trichloroethene	ND (0.5)		524.2		1	02/27/20 12:59	D0B0442	DB02728
Vinyl Chloride	ND (0.2)		524.2		1	02/27/20 12:59	D0B0442	DB02728
Xylene O	12.2 (0.5)		524.2		1	02/27/20 12:59	D0B0442	DB02728
Xylene P,M	28.2 (0.5)		524.2		1	02/27/20 12:59	D0B0442	DB02728
	%	Recovery	Qualifier	Limits				
Surrogate: 1,2-Dichlorobenzene-d4		90 %		80-120				
Surrogate: 4-Bromofluorobenzene		105 %		80-120				

The Microbiology Division of Thielsch Engineering, Inc.

CERTIFICATE OF ANALYSIS

Client Name: Tg2 Solutions Client Project ID: 1833 Wilbur Ave Somerset MA - RGP Client Sample ID: MW-6 Date Sampled: 02/26/20 13:30 Percent Solids: N/A Initial Volume: 1070 Final Volume: 1 Extraction Method: 3510C

ESS Laboratory Work Order: 20B0763 ESS Laboratory Sample ID: 20B0763-01 Sample Matrix: Ground Water Units: ug/L Analyst: MJV Prepared: 2/28/20 11:54

608.3 Polychlorinated Biphenyls (PCB)

<u>Analyte</u>	Results (MRL)	MDL	Method	<u>Limit</u>	DF	Analyzed	Sequence	Batch
Aroclor 1016	ND (0.09)		608.3		1	02/28/20 14:53		DB02810
Aroclor 1221	ND (0.09)		608.3		1	02/28/20 14:53		DB02810
Aroclor 1232	ND (0.09)		608.3		1	02/28/20 14:53		DB02810
Aroclor 1242	ND (0.09)		608.3		1	02/28/20 14:53		DB02810
Aroclor 1248	ND (0.09)		608.3		1	02/28/20 14:53		DB02810
Aroclor 1254	ND (0.09)		608.3		1	02/28/20 14:53		DB02810
Aroclor 1260	ND (0.09)		608.3		1	02/28/20 14:53		DB02810
Aroclor 1262	ND (0.09)		608.3		1	02/28/20 14:53		DB02810
Aroclor 1268	ND (0.09)		608.3		1	02/28/20 14:53		DB02810
	9	%Recovery	Qualifier	Limits				
Surrogate: Decachlorobiphenyl		77 %		30-150				
Surrogate: Decachlorobiphenyl [2C]		79 %		30-150				
Surrogate: Tetrachloro-m-xylene		80 %		30-150				
Surrogate: Tetrachloro-m-xylene [2C]		93 %		30-150				

The Microbiology Division of Thielsch Engineering, Inc.

CERTIFICATE OF ANALYSIS

Client Name: Tg2 Solutions Client Project ID: 1833 Wilbur Ave Somerset MA - RGP Client Sample ID: MW-6 Date Sampled: 02/26/20 13:30 Percent Solids: N/A Initial Volume: 1060 Final Volume: 0.25 Extraction Method: 3510C

ESS Laboratory Work Order: 20B0763 ESS Laboratory Sample ID: 20B0763-01 Sample Matrix: Ground Water Units: ug/L Analyst: VSC Prepared: 3/2/20 15:03

625.1(SIM) Semi-Volatile Organic Compounds

Analyte Acenaphthene	<u>Results (MRL)</u> ND (0.19)	<u>MDL</u>	Method 625.1 SIM	<u>Limit</u>	<u>DF</u> 1	Analyzed 03/03/20 2:03	Sequence D0C0026	<u>Batch</u> DC00203
Acenaphthylene	ND (0.19)		625.1 SIM		1	03/03/20 2:03	D0C0026	DC00203
Anthracene	ND (0.19)		625.1 SIM		1	03/03/20 2:03	D0C0026	DC00203
Benzo(a)anthracene	ND (0.05)		625.1 SIM		1	03/03/20 2:03	D0C0026	DC00203
Benzo(a)pyrene	ND (0.05)		625.1 SIM		1	03/03/20 2:03	D0C0026	DC00203
Benzo(b)fluoranthene	ND (0.05)		625.1 SIM		1	03/03/20 2:03	D0C0026	DC00203
Benzo(g,h,i)perylene	ND (0.19)		625.1 SIM		1	03/03/20 2:03	D0C0026	DC00203
Benzo(k)fluoranthene	ND (0.05)		625.1 SIM		1	03/03/20 2:03	D0C0026	DC00203
bis(2-Ethylhexyl)phthalate	ND (2.36)		625.1 SIM		1	03/03/20 2:03	D0C0026	DC00203
Butylbenzylphthalate	ND (2.36)		625.1 SIM		1	03/03/20 2:03	D0C0026	DC00203
Chrysene	ND (0.05)		625.1 SIM		1	03/03/20 2:03	D0C0026	DC00203
Dibenzo(a,h)Anthracene	ND (0.05)		625.1 SIM		1	03/03/20 2:03	D0C0026	DC00203
Diethylphthalate	ND (2.36)		625.1 SIM		1	03/03/20 2:03	D0C0026	DC00203
Dimethylphthalate	ND (2.36)		625.1 SIM		1	03/03/20 2:03	D0C0026	DC00203
Di-n-butylphthalate	ND (2.36)		625.1 SIM		1	03/03/20 2:03	D0C0026	DC00203
Di-n-octylphthalate	ND (2.36)		625.1 SIM		1	03/03/20 2:03	D0C0026	DC00203
Fluoranthene	ND (0.19)		625.1 SIM		1	03/03/20 2:03	D0C0026	DC00203
Fluorene	ND (0.19)		625.1 SIM		1	03/03/20 2:03	D0C0026	DC00203
Indeno(1,2,3-cd)Pyrene	ND (0.05)		625.1 SIM		1	03/03/20 2:03	D0C0026	DC00203
Naphthalene	1.13 (0.19)		625.1 SIM		1	03/03/20 2:03	D0C0026	DC00203
Pentachlorophenol	ND (0.85)		625.1 SIM		1	03/03/20 2:03	D0C0026	DC00203
Phenanthrene	ND (0.19)		625.1 SIM		1	03/03/20 2:03	D0C0026	DC00203
Pyrene	ND (0.19)		625.1 SIM		1	03/03/20 2:03	D0C0026	DC00203
		%Recovery	Qualifier	Limits				
Surrogate: 1,2-Dichlorobenzene-d4		64 %		30-130				
Surrogate: 2,4,6-Tribromophenol		140 %	<i>S+</i>	15-110				
Surrogate: 2-Fluorobiphenyl		76 %		30-130				
Surrogate: Nitrobenzene-d5		<i>94 %</i>		30-130				
Surrogate: p-Terphenyl-d14		104 %		30-130				

The Microbiology Division of Thielsch Engineering, Inc.

CERTIFICATE OF ANALYSIS

Client Name: Tg2 Solutions Client Project ID: 1833 Wilbur Ave Somerset MA - RGP Client Sample ID: MW-6 Date Sampled: 02/26/20 13:30 Percent Solids: N/A Initial Volume: 500 Final Volume: 0.5 Extraction Method: 3535A

ESS Laboratory Work Order: 20B0763 ESS Laboratory Sample ID: 20B0763-01 Sample Matrix: Ground Water Units: ug/L Analyst: VSC Prepared: 2/27/20 15:30

8270D(SIM) Semi-Volatile Organic Compounds w/ Isotope Dilution

Analyte 1,4-Dioxane	<u>Results (MRL)</u> ND (0.250)	<u>MDL</u>	Method 8270D SIM	<u>Limit</u>	<u>DF</u> 1	<u>Analyzed</u> 02/29/20 9:04	Sequence D0B0460	<u>Batch</u> DB02750
	9	6Recovery	Qualifier	Limits				
Surrogate: 1,4-Dioxane-d8		61 %		15-115				

The Microbiology Division of Thielsch Engineering, Inc.

CERTIFICATE OF ANALYSIS

Client Name: Tg2 Solutions Client Project ID: 1833 Wilbur Ave Somerset MA - RGP Client Sample ID: MW-6 Date Sampled: 02/26/20 13:30 Percent Solids: N/A

ESS Laboratory Work Order: 20B0763 ESS Laboratory Sample ID: 20B0763-01 Sample Matrix: Ground Water

Classical Chemistry

<u>Analyte</u> Ammonia as N	<u>Results (MRL)</u> 0.97 (0.10)	<u>MDL</u> <u>Method</u> 350.1	<u>Limit</u>	<u>DF</u> 1	Analys JLK	t <u>Analyzed</u> 03/03/20 16:49	<u>Units</u> mg/L	<u>Batch</u> DC00218
Chloride	763 (50.0)	300.0		100	EEM	02/28/20 16:48	mg/L	DB02823
Hexavalent Chromium	ND (10.0)	3500Cr B-2009		1	CCP	02/26/20 16:45	ug/L	DB02639
Phenols	ND (50)	420.1		1	EEM	02/28/20 13:45	ug/L	DB02822
Total Cyanide	ND (5.00)	4500 CN CE		1	JLK	02/27/20 16:48	ug/L	DB02739
Total Petroleum Hydrocarbon	ND (5)	1664A		1	LAB	02/28/20 16:02	mg/L	DB02805
Total Residual Chlorine	ND (20.0)	4500Cl D		1	CCP	02/26/20 17:22	ug/L	DB02640
Total Suspended Solids	ND (5)	2540D		1	CCP	02/27/20 16:13	mg/L	DB02732

The Microbiology Division of Thielsch Engineering, Inc.

CERTIFICATE OF ANALYSIS

Client Name: Tg2 Solutions Client Project ID: 1833 Wilbur Ave Somerset MA - RGP Client Sample ID: MW-6 Date Sampled: 02/26/20 13:30 Percent Solids: N/A Initial Volume: 35 Final Volume: 2 Extraction Method: 504/8011

ESS Laboratory Work Order: 20B0763 ESS Laboratory Sample ID: 20B0763-01 Sample Matrix: Ground Water Units: ug/L Analyst: CAD Prepared: 2/27/20 9:15

504.1 1,2-Dibromoethane / 1,2-Dibromo-3-chloropropane

<u>Analyte</u> 1,2-Dibromo-3-Chloropropane	<u>Results (MRL)</u> ND (0.015)	<u>MDL</u>	<u>Method</u> 504.1	<u>Limit</u>	<u>DF</u> 1	<u>Analyzed</u> 02/27/20 11:13	<u>Sequence</u>	<u>Batch</u> DB02638
1,2-Dibromoethane	ND (0.015)	0/2	504.1		1	02/27/20 11:13		DB02638
		%Recovery	Qualifier	Limits				
Surrogate: Pentachloroethane		81 %		30-150				
Surrogate: Pentachloroethane [2C]		87 %		30-150				

The Microbiology Division of Thielsch Engineering, Inc.

CERTIFICATE OF ANALYSIS

Client Name: Tg2 Solutions Client Project ID: 1833 Wilbur Ave Somerset MA - RGP Client Sample ID: MW-6 Date Sampled: 02/26/20 13:30 Percent Solids: N/A Initial Volume: 1 Final Volume: 1 Extraction Method: No Prep

ESS Laboratory Work Order: 20B0763 ESS Laboratory Sample ID: 20B0763-01 Sample Matrix: Ground Water Units: mg/L Analyst: ZLC Prepared: 3/3/20 8:02

Alcohol Scan by GC/FID

<u>Results (MRL)</u>	MDL Method	<u>Limit</u>	DF	Analyst	Analyzed	Sequence	Batch
ND (10)	ASTM D3695		1	ZLC	03/03/20 9:54		DC00301

<u>Analyte</u> Ethanol

The Microbiology Division of Thielsch Engineering, Inc.

CERTIFICATE OF ANALYSIS

Client Name: Tg2 Solutions Client Project ID: 1833 Wilbur Ave Somerset MA - RGP Client Sample ID: Discharge Date Sampled: 02/26/20 14:30 Percent Solids: N/A

ESS Laboratory Work Order: 20B0763 ESS Laboratory Sample ID: 20B0763-02 Sample Matrix: Ground Water Units: ug/L

Extraction Method: 3005A/200.7

Dissolved Metals

Analyte	Results (MRL)	MDL	Method	<u>Limit</u>	DF	<u>Analyst</u>	Analyzed	I/V	F/V	Batch
Antimony	ND (25.0)		200.7		5	KJK	02/27/20 13:22	100	10	DB02603
Arsenic	ND (25.0)		200.7		5	KJK	02/27/20 13:22	100	10	DB02603
Cadmium	ND (1.00)		200.7		1	KJK	02/27/20 12:49	100	10	DB02603
Chromium	ND (2.0)		200.7		1	KJK	02/27/20 12:49	100	10	DB02603
Copper	EL ND (10.0)		200.7		5	KJK	02/27/20 13:22	100	10	DB02603
Iron	ND (250)		200.7		25	KJK	02/27/20 14:16	100	10	DB02603
Lead	ND (1.0)		200.8		50	KJK	02/28/20 11:39	100	10	DB02603
Mercury	ND (0.20)		245.1		1	MKS	02/27/20 9:42	20	40	DB02653
Nickel	ND (5.0)		200.7		1	KJK	02/27/20 12:49	100	10	DB02603
Selenium	ND (25.0)		200.7		5	KJK	02/27/20 13:22	100	10	DB02603
Silver	ND (0.5)		200.7		1	KJK	02/27/20 12:49	100	10	DB02603
Zinc	ND (5.0)		200.7		1	KJK	02/27/20 12:49	100	10	DB02603

The Microbiology Division of Thielsch Engineering, Inc.

CERTIFICATE OF ANALYSIS

Client Name: Tg2 Solutions Client Project ID: 1833 Wilbur Ave Somerset MA - RGP Client Sample ID: Discharge Date Sampled: 02/26/20 14:30 Percent Solids: N/A

ESS Laboratory Work Order: 20B0763 ESS Laboratory Sample ID: 20B0763-02 Sample Matrix: Ground Water Units: ug/L

Extraction Method: 3005A/200.7

Total Metals

Analyte	Results (MRL)	MDL	Method	<u>Limit</u>	DF	Analyst	Analyzed	<u>I/V</u>	<u>F/V</u>	Batch
Antimony	ND (50.0)		200.7		10	KJK	02/27/20 14:29	100	10	DB02603
Arsenic	EL ND (50.0)		200.7		10	KJK	02/27/20 14:29	100	10	DB02603
Cadmium	ND (1.00)		200.7		1	KJK	02/27/20 13:00	100	10	DB02603
Chromium	ND (2.0)		200.7		1	KJK	02/27/20 13:00	100	10	DB02603
Chromium III	ND (10.0)		200.7		1	CCP	02/27/20 13:00	1	1	[CALC]
Copper	EL ND (20.0)		200.7		10	KJK	02/27/20 14:29	100	10	DB02603
Hardness	4010000 (8240)		200.7		100	KJK	02/27/20 15:45	1	1	[CALC]
Iron	ND (250)		200.7		25	KJK	02/27/20 14:24	100	10	DB02603
Lead	ND (5.0)	1.0	200.8		50	KJK	02/28/20 11:34	100	10	DB02603
Mercury	ND (0.2)		245.1		1	MKS	02/27/20 9:26	20	40	DB02653
Nickel	ND (5.0)		200.7		1	KJK	02/27/20 13:00	100	10	DB02603
Selenium	ND (50.0)		200.7		10	KJK	02/27/20 14:29	100	10	DB02603
Silver	ND (0.5)		200.7		1	KJK	02/27/20 13:00	100	10	DB02603
Zinc	ND (5.0)		200.7		1	KJK	02/27/20 13:00	100	10	DB02603

The Microbiology Division of Thielsch Engineering, Inc.

CERTIFICATE OF ANALYSIS

Client Name: Tg2 Solutions Client Project ID: 1833 Wilbur Ave Somerset MA - RGP Client Sample ID: Discharge Date Sampled: 02/26/20 14:30 Percent Solids: N/A Initial Volume: 25 Final Volume: 25 Extraction Method: 524.2

ESS Laboratory Work Order: 20B0763 ESS Laboratory Sample ID: 20B0763-02 Sample Matrix: Ground Water Units: ug/L Analyst: MD

524.2 Volatile Organic Compounds

Analyte	<u>Results (MRL)</u>	MDL	Method	<u>Limit</u>	DF	Analyzed	Sequence	Batch
1,1,1-Trichloroethane	ND (0.5)		524.2		1	02/27/20 13:33	D0B0442	DB02728
1,1,2-Trichloroethane	ND (0.5)		524.2		1	02/27/20 13:33	D0B0442	DB02728
1,1-Dichloroethane	ND (0.5)		524.2		1	02/27/20 13:33	D0B0442	DB02728
1,1-Dichloroethene	ND (0.5)		524.2		1	02/27/20 13:33	D0B0442	DB02728
1,2-Dichlorobenzene	ND (0.5)		524.2		1	02/27/20 13:33	D0B0442	DB02728
1,2-Dichloroethane	ND (0.5)		524.2		1	02/27/20 13:33	D0B0442	DB02728
1,3-Dichlorobenzene	ND (0.5)		524.2		1	02/27/20 13:33	D0B0442	DB02728
1,4-Dichlorobenzene	ND (0.5)		524.2		1	02/27/20 13:33	D0B0442	DB02728
Acetone	ND (5.0)		524.2		1	02/27/20 13:33	D0B0442	DB02728
Benzene	ND (0.5)		524.2		1	02/27/20 13:33	D0B0442	DB02728
Carbon Tetrachloride	ND (0.3)		524.2		1	02/27/20 13:33	D0B0442	DB02728
cis-1,2-Dichloroethene	ND (0.5)		524.2		1	02/27/20 13:33	D0B0442	DB02728
Ethylbenzene	ND (0.5)		524.2		1	02/27/20 13:33	D0B0442	DB02728
Methyl tert-Butyl Ether	ND (0.5)		524.2		1	02/27/20 13:33	D0B0442	DB02728
Methylene Chloride	ND (0.5)		524.2		1	02/27/20 13:33	D0B0442	DB02728
Naphthalene	ND (0.5)		524.2		1	02/27/20 13:33	D0B0442	DB02728
Tertiary-amyl methyl ether	ND (1.0)		524.2		1	02/27/20 13:33	D0B0442	DB02728
Tertiary-butyl Alcohol	ND (25.0)		524.2		1	02/27/20 13:33	D0B0442	DB02728
Tetrachloroethene	ND (0.5)		524.2		1	02/27/20 13:33	D0B0442	DB02728
Toluene	ND (0.5)		524.2		1	02/27/20 13:33	D0B0442	DB02728
Trichloroethene	ND (0.5)		524.2		1	02/27/20 13:33	D0B0442	DB02728
Vinyl Chloride	ND (0.2)		524.2		1	02/27/20 13:33	D0B0442	DB02728
Xylene O	ND (0.5)		524.2		1	02/27/20 13:33	D0B0442	DB02728
Xylene P,M	ND (0.5)		524.2		1	02/27/20 13:33	D0B0442	DB02728
	9	6Recovery	Qualifier	Limits				
Surrogate: 1,2-Dichlorobenzene-d4		<i>95 %</i>		80-120				
Surrogate: 4-Bromofluorobenzene		115 %		80-120				

The Microbiology Division of Thielsch Engineering, Inc.

CERTIFICATE OF ANALYSIS

Client Name: Tg2 Solutions Client Project ID: 1833 Wilbur Ave Somerset MA - RGP Client Sample ID: Discharge Date Sampled: 02/26/20 14:30 Percent Solids: N/A Initial Volume: 1070 Final Volume: 1 Extraction Method: 3510C

ESS Laboratory Work Order: 20B0763 ESS Laboratory Sample ID: 20B0763-02 Sample Matrix: Ground Water Units: ug/L Analyst: MJV Prepared: 2/28/20 11:54

608.3 Polychlorinated Biphenyls (PCB)

Analyte Aroclor 1016	Results (MRL)	<u>MDL</u>	<u>Method</u> 608.3	<u>Limit</u>	<u>DF</u>	<u>Analyzed</u> 02/28/20_15:12	<u>Sequence</u>	<u>Batch</u> DB02810
Aroclor 1221	ND (0.09)		608.3		1	02/28/20 15:12		DB02810
Aroclor 1232	ND (0.09)		608.3		1	02/28/20 15:12		DB02810
Aroclor 1242	ND (0.09)		608.3		1	02/28/20 15:12		DB02810
Aroclor 1248	ND (0.09)		608.3		1	02/28/20 15:12		DB02810
Aroclor 1254	ND (0.09)		608.3		1	02/28/20 15:12		DB02810
Aroclor 1260	ND (0.09)		608.3		1	02/28/20 15:12		DB02810
Aroclor 1262	ND (0.09)		608.3		1	02/28/20 15:12		DB02810
Aroclor 1268	ND (0.09)		608.3		1	02/28/20 15:12		DB02810
		%Recovery	Qualifier	Limits				
Surrogate: Decachlorobiphenyl		80 %		30-150				
Surrogate: Decachlorobiphenyl [2C]		<i>79 %</i>		30-150				
Surrogate: Tetrachloro-m-xylene		73 %		30-150				
Surrogate: Tetrachloro-m-xylene [2C]		87 %		30-150				

The Microbiology Division of Thielsch Engineering, Inc.

CERTIFICATE OF ANALYSIS

Client Name: Tg2 Solutions Client Project ID: 1833 Wilbur Ave Somerset MA - RGP Client Sample ID: Discharge Date Sampled: 02/26/20 14:30 Percent Solids: N/A Initial Volume: 1050 Final Volume: 0.25 Extraction Method: 3510C

ESS Laboratory Work Order: 20B0763 ESS Laboratory Sample ID: 20B0763-02 Sample Matrix: Ground Water Units: ug/L Analyst: VSC Prepared: 3/2/20 15:03

625.1(SIM) Semi-Volatile Organic Compounds

Analyte Acenaphthene	<u>Results (MRL)</u> ND (0.19)	<u>MDL</u>	<u>Method</u> 625.1 SIM	<u>Limit</u>	<u>DF</u> 1	Analyzed 03/03/20 2:51	Sequence D0C0026	<u>Batch</u> DC00203
Acenaphthylene	ND (0.19)		625.1 SIM		1	03/03/20 2:51	D0C0026	DC00203
Anthracene	ND (0.19)		625.1 SIM		1	03/03/20 2:51	D0C0026	DC00203
Benzo(a)anthracene	ND (0.05)		625.1 SIM		1	03/03/20 2:51	D0C0026	DC00203
Benzo(a)pyrene	ND (0.05)		625.1 SIM		1	03/03/20 2:51	D0C0026	DC00203
Benzo(b)fluoranthene	ND (0.05)		625.1 SIM		1	03/03/20 2:51	D0C0026	DC00203
Benzo(g,h,i)perylene	ND (0.19)		625.1 SIM		1	03/03/20 2:51	D0C0026	DC00203
Benzo(k)fluoranthene	ND (0.05)		625.1 SIM		1	03/03/20 2:51	D0C0026	DC00203
bis(2-Ethylhexyl)phthalate	ND (2.38)		625.1 SIM		1	03/03/20 2:51	D0C0026	DC00203
Butylbenzylphthalate	ND (2.38)		625.1 SIM		1	03/03/20 2:51	D0C0026	DC00203
Chrysene	ND (0.05)		625.1 SIM		1	03/03/20 2:51	D0C0026	DC00203
Dibenzo(a,h)Anthracene	ND (0.05)		625.1 SIM		1	03/03/20 2:51	D0C0026	DC00203
Diethylphthalate	ND (2.38)		625.1 SIM		1	03/03/20 2:51	D0C0026	DC00203
Dimethylphthalate	ND (2.38)		625.1 SIM		1	03/03/20 2:51	D0C0026	DC00203
Di-n-butylphthalate	ND (2.38)		625.1 SIM		1	03/03/20 2:51	D0C0026	DC00203
Di-n-octylphthalate	ND (2.38)		625.1 SIM		1	03/03/20 2:51	D0C0026	DC00203
Fluoranthene	ND (0.19)		625.1 SIM		1	03/03/20 2:51	D0C0026	DC00203
Fluorene	ND (0.19)		625.1 SIM		1	03/03/20 2:51	D0C0026	DC00203
Indeno(1,2,3-cd)Pyrene	ND (0.05)		625.1 SIM		1	03/03/20 2:51	D0C0026	DC00203
Naphthalene	ND (0.19)		625.1 SIM		1	03/03/20 2:51	D0C0026	DC00203
Pentachlorophenol	ND (0.86)		625.1 SIM		1	03/03/20 2:51	D0C0026	DC00203
Phenanthrene	ND (0.19)		625.1 SIM		1	03/03/20 2:51	D0C0026	DC00203
Pyrene	ND (0.19)		625.1 SIM		1	03/03/20 2:51	D0C0026	DC00203
		%Recovery	Qualifier	Limits				
Surrogate: 1,2-Dichlorobenzene-d4		70 %		30-130				
Surrogate: 2,4,6-Tribromophenol		115 %	<i>S+</i>	15-110				
Surrogate: 2-Fluorobiphenyl		84 %		30-130				
Surrogate: Nitrobenzene-d5		<i>99 %</i>		30-130				
Surrogate: p-Terphenyl-d14		104 %		30-130				

The Microbiology Division of Thielsch Engineering, Inc.

CERTIFICATE OF ANALYSIS

Client Name: Tg2 Solutions Client Project ID: 1833 Wilbur Ave Somerset MA - RGP Client Sample ID: Discharge Date Sampled: 02/26/20 14:30 Percent Solids: N/A Initial Volume: 500 Final Volume: 0.5 Extraction Method: 3535A

ESS Laboratory Work Order: 20B0763 ESS Laboratory Sample ID: 20B0763-02 Sample Matrix: Ground Water Units: ug/L Analyst: VSC Prepared: 2/27/20 15:30

8270D(SIM) Semi-Volatile Organic Compounds w/ Isotope Dilution

Analyte 1,4-Dioxane	<u>Results (MRL)</u> ND (0.250)	<u>MDL</u>	Method 8270D SIM	<u>Limit</u>	<u>DF</u> 1	<u>Analyzed</u> 02/29/20 9:51	Sequence D0B0460	<u>Batch</u> DB02750
	9	6Recovery	Qualifier	Limits				
Surrogate: 1,4-Dioxane-d8		52 %		15-115				

The Microbiology Division of Thielsch Engineering, Inc.

CERTIFICATE OF ANALYSIS

Client Name: Tg2 Solutions Client Project ID: 1833 Wilbur Ave Somerset MA - RGP Client Sample ID: Discharge Date Sampled: 02/26/20 14:30 Percent Solids: N/A

ESS Laboratory Work Order: 20B0763 ESS Laboratory Sample ID: 20B0763-02 Sample Matrix: Ground Water

Classical Chemistry

<u>Analyte</u> Ammonia as N	<u>Results (MRL)</u> 0.15 (0.10)	<u>MDL</u> <u>Method</u> 350.1	<u>Limit</u>	<u>DF</u> 1	Analyst JLK	t <u>Analyzed</u> 03/03/20 16:52	<u>Units</u> mg/L	Batch DC00218
Chloride	12000 (5000)	300.0		10000	EEM	02/28/20 17:38	mg/L	DB02823
Hexavalent Chromium	ND (10.0)	3500Cr B-2009		1	CCP	02/26/20 16:45	ug/L	DB02639
Phenols	ND (50)	420.1		1	EEM	02/28/20 13:45	ug/L	DB02822
Total Cyanide	ND (5.00)	4500 CN CE		1	JLK	02/27/20 16:48	ug/L	DB02739
Total Petroleum Hydrocarbon	ND (5)	1664A		1	LAB	02/28/20 16:02	mg/L	DB02805
Total Residual Chlorine	ND (20.0)	4500C1 D		1	CCP	02/26/20 17:22	ug/L	DB02640
Total Suspended Solids	23 (5)	2540D		1	CCP	02/27/20 16:13	mg/L	DB02732

The Microbiology Division of Thielsch Engineering, Inc.

CERTIFICATE OF ANALYSIS

Client Name: Tg2 Solutions Client Project ID: 1833 Wilbur Ave Somerset MA - RGP Client Sample ID: Discharge Date Sampled: 02/26/20 14:30 Percent Solids: N/A Initial Volume: 35 Final Volume: 2 Extraction Method: 504/8011

ESS Laboratory Work Order: 20B0763 ESS Laboratory Sample ID: 20B0763-02 Sample Matrix: Ground Water Units: ug/L Analyst: CAD Prepared: 2/27/20 9:15

504.1 1,2-Dibromoethane / 1,2-Dibromo-3-chloropropane

<u>Analyte</u> 1,2-Dibromo-3-Chloropropane	Results (MRL) ND (0.015)	<u>MDL</u>	Method 504.1	<u>Limit</u>	<u>DF</u> 1	Analyzed 02/27/20 11:41	<u>Sequence</u>	<u>Batch</u> DB02638
	ND (0.015)	%Recovery	Qualifier	Limits	1	02/27/20 11:41		
Surrogate: Pentachloroethane		112 %		30-150				
Surrogate: Pentachloroethane [2C]		114 %		30-150				

The Microbiology Division of Thielsch Engineering, Inc.

CERTIFICATE OF ANALYSIS

Client Name: Tg2 Solutions Client Project ID: 1833 Wilbur Ave Somerset MA - RGP Client Sample ID: Discharge Date Sampled: 02/26/20 14:30 Percent Solids: N/A Initial Volume: 1 Final Volume: 1 Extraction Method: No Prep

ESS Laboratory Work Order: 20B0763 ESS Laboratory Sample ID: 20B0763-02 Sample Matrix: Ground Water Units: mg/L Analyst: ZLC Prepared: 3/3/20 8:02

Alcohol Scan by GC/FID

Results (MRL)	MDL	Method	<u>Limit</u>	DF	Analyst	Analyzed	Sequence	Batch
ND (10)		ASTM D3695		1	ZLC	03/03/20 10:39		DC00301

<u>Analyte</u> Ethanol

The Microbiology Division of Thielsch Engineering, Inc.

CERTIFICATE OF ANALYSIS

Client Name: Tg2 Solutions

Client Project ID: 1833 Wilbur Ave Somerset MA - RGP

ESS Laboratory Work Order: 20B0763

Appleto		Desult	MDI	r- ³ 4	Spike	Source	0/ 050	%REC	000	RPD	Qualifier
Analyte		Kesuit	MKL	Units	Level	Kesuit	%REC	LIMITS	KPD	Limit	Qualifier
			D	issolved M	etals						
Batch DB02603 - 30	005A/200.7										
Blank											
Antimony		ND	5.0	ug/L							
Arsenic		ND	5.00	ug/L							
Cadmium		ND	1.00	ug/L							
Chromium		ND	2.0	ug/L							
Copper		ND	2.0	ug/L							
Iron		ND	10.0	ug/L							
Lead		ND	2.0	ug/L							
Nickel		ND	5.0	ug/L							
Selenium		ND	5.0	ug/L							
Silver		ND	0.5	ug/L							
Zinc		ND	5.0	ug/L							
Blank											
Lead		ND	0.1	ug/L							
LCS											
Antimony		44.9	5.0	ug/L	50.00		90	85-115			
Arsenic		42.9	5.00	ug/L	50.00		86	85-115			
Cadmium		21.4	1.00	ug/L	25.00		86	85-115			
Chromium		44.2	2.0	ug/L	50.00		88	85-115			
Copper		45.6	2.0	ug/L	50.00		91	85-115			
Iron		218	10.0	ug/L	250.0		87	85-115			
Lead		44.5	2.0	ug/L	50.00		89	80-120			
Nickel		43.3	5.0	ug/L	50.00		87	85-115			
Selenium		87.4	5.0	ug/L	100.0		87	80-120			
Silver		22.4	0.5	ug/L	25.00		90	85-115			
Zinc		50.9	5.0	ug/L	50.00		102	85-115			
LCS											
Lead		43.6	0.5	ug/L	50.00		87	85-115			
Batch DB02653 - 24	45.1/7470A			5,							
Blank	- , -										
Mercury		ND	0.20	ug/L							
LCS											
Mercury		6.01	0.20	ug/L	6.042		99	85-115			
LCS Dup											
Mercury		6.13	0.20	ug/L	6.042		102	85-115	2	20	
· · · · /				Total Mat							
				TOLAI MEL	a15						
Batch DB02603 - 30	005A/200.7										
Blank											
Antimony		ND	5.0	ug/L							
Arsenic		ND	5.0	ug/L							
Cadmium		ND	1.00	ug/L							
Chromium		ND	2.0	ug/L							
	185 Frances Avenue Cro	nston DI A	2010_2211 To	1.401.461.7	181 Er	w· 401 461	4486	http://www.	ESSI abov	atory com	
	105 Frances Avenue, Cra	nsion, Ki U	Dependability	√1. 401-401-7 ♦ (Juality +	Service	- 	<u>mup.//www</u>		<u>ator y com</u>	

The Microbiology Division of Thielsch Engineering, Inc.

CERTIFICATE OF ANALYSIS

Client Name: Tg2 Solutions

Client Project ID: 1833 Wilbur Ave Somerset MA - RGP

ESS Laboratory Work Order: 20B0763

Quality Control Data

Analyte	Result	MRI	Units	Spike Level	Source Result	%RFC	%REC	RPD	RPD Limit	Qualifier
, and yee	Nesur	FILE	Total Mot		Nebult	JUNEC	Linito		Lillit	Quainer
				215						
Batch DB02603 - 3005A/200.7										
Copper	ND	2.0	ug/L							
Iron	ND	10.0	ug/L							
Lead	ND	2.0	ug/L							
Nickel	ND	5.0	ug/L							
Selenium	ND	5.0	ug/L							
Silver	ND	0.5	ug/L							
Zinc	ND	5.0	ug/L							
Blank										
Lead	ND	0.5	ug/L							
LCS										
Antimony	44.9	5.0	ug/L	50.00		90	85-115			
Arsenic	42.9	5.0	ug/L	50.00		86	85-115			
Cadmium	21.4	1.00	ug/L	25.00		86	85-115			
Chromium	44.2	2.0	ug/L	50.00		88	85-115			
Copper	45.6	2.0	ug/L	50.00		91	85-115			
Iron	218	10.0	ug/L	250.0		87	85-115			
Lead	44.5	2.0	ug/L	50.00		89	85-115			
Nickel	43.3	5.0	ug/L	50.00		87	85-115			
Selenium	87.4	5.0	ug/L	100.0		87	85-115			
Silver	22.4	0.5	ug/L	25.00		90	85-115			
Zinc	50.9	5.0	ug/L	50.00		102	85-115			
LCS										
Lead	43.6	2.5	ug/L	50.00		87	85-115			
Batch DB02653 - 245.1/7470A										
Blank										
Mercury	ND	0.2	ug/L							
LCS										
Mercury	6.0	0.2	ug/L	6.042		99	85-115			
LCS Dup										
Mercury	6.1	0.2	ug/L	6.042		102	85-115	2	20	
		524.2 Vo	latile Organi	c Compou	unds					
Batch DB02728 - 524.2										
Blank										
1,1,1-Trichloroethane	ND	0.5	ug/L				-			
1,1,2-Trichloroethane	ND	0.5	ug/L							
1,1-Dichloroethane	ND	0.5	ug/L							
1,1-Dichloroethene	ND	0.5	ug/L							
1,2-Dichlorobenzene	ND	0.5	ug/L							
1,2-Dichloroethane	ND	0.5	ug/L							
1,3-Dichlorobenzene	ND	0.5	ug/L							

ND

ND

1.4-Dichlorobenzene

Acetone

ug/L

ug/L

0.5

5.0

٠

The Microbiology Division of Thielsch Engineering, Inc.

CERTIFICATE OF ANALYSIS

Client Name: Tg2 Solutions

Client Project ID: 1833 Wilbur Ave Somerset MA - RGP

ESS Laboratory Work Order: 20B0763

	_			Spike	Source		%REC		RPD	
Analyte	Result	MRL	Units	Level	Result	%REC	Limits	RPD	Limit	Qualifier
		524.2 Vol	atile Organi	c Compou	unds					
Benzene	ND	0.5	ua/L							
Carbon Tetrachloride	ND	0.3	ug/L							
cis-1.2-Dichloroethene	ND	0.5	ua/L							
Ethylbenzene	ND	0.5	ug/L							
Methyl tert-Butyl Ether	ND	0.5	ug/L							
Methylene Chloride	ND	0.5	ug/L							
Naphthalene	ND	0.5	ug/L							
Tertiary-amyl methyl ether	ND	1.0	ug/L							
Tertiary-butyl Alcohol	ND	25.0	ug/L							
Tetrachloroethene	ND	0.5	ug/L							
Toluene	ND	0.5	ug/L							
Trichloroethene	ND	0.5	ug/L							
Vinyl Chloride	ND	0.2	ug/L							
Xylene O	ND	0.5	ug/L							
Xylene P,M	ND	0.5	ug/L							
Surragte: 1.2-Dichlorobenzene-da	4.48		ua/L	5.000		90	80-120			
Surrogate: 1,2-Dichiolobenzene	5.09		ug/L	5.000		102	80-120			
			5,							
1 1 1-Trichloroethane	9.7		ua/l	10.00		97	70-130			
1 1 2-Trichloroethane	10.4		ug/L	10.00		104	70-130			
1 1-Dichloroethane	96		ug/L	10.00		96	70-130			
1.1-Dichloroethene	9.4		ug/L	10.00		94	70-130			
1.2-Dichlorobenzene	8.3		ug/L	10.00		83	70-130			
1.2-Dichloroethane	11.3		ug/L	10.00		113	70-130			
1.3-Dichlorobenzene	8.4		ug/L	10.00		84	70-130			
1.4-Dichlorobenzene	8.3		ug/L	10.00		83	70-130			
Acetone	53 5		ug/L	50.00		107	70-130			
Benzene	9.7		ug/L	10.00		97	70-130			
Carbon Tetrachloride	88		ug/L	10.00		88	70-130			
cis-1 2-Dichloroethene	9.7		ug/L	10.00		97	70-130			
Ethylbenzene	9.2		ug/L	10.00		92	70-130			
Methyl tert-Butyl Ether	10.7		ug/L	10.00		107	70-130			
Methylene Chloride	10.3		- <u>9</u> , _	10.00		103	70-130			
Naphthalene	7.9		ug/L	10.00		79	70-130			
Tertiary-amyl methyl ether	10.6		ug/L	10.00		106	70-130			
Tertiary-butyl Alcohol	54.2		ug/L	50.00		108	70-130			
Tetrachloroethene	7.0		ug/L	10.00		70	70-130			
Toluene	8.9		- <u>9</u> , _	10.00		89	70-130			
Trichloroethene	9.4		ug/L	10.00		94	70-130			
Vinyl Chloride	8.8		ug/L	10.00		88	70-130			
Xvlene O	9.1		ua/L	10.00		91	70-130			
Xvlene P.M	18.0		ua/L	20.00		90	70-130			
Surragata: 1.2-Dichlarabanzana d4	4.16		ua/L	5,000		83	80-120			
Surrogate: 1,2-DICHIOTODENZENE-04	4.72		ua/L	5.000		94	80-120			
			·· <i>5/</i> –							

The Microbiology Division of Thielsch Engineering, Inc.

CERTIFICATE OF ANALYSIS

Client Name: Tg2 Solutions

Client Project ID: 1833 Wilbur Ave Somerset MA - RGP

ESS Laboratory Work Order: 20B0763

Quality Control Data

				Spike	Source		%REC		RPD	
Analyte	Result	MRL	Units	Level	Result	%REC	Limits	RPD	Limit	Qualifier
		524.2 Vola	atile Organi	c Compou	unds					
Batch DB02728 - 524.2										
1,1,1-Trichloroethane	10.7		ug/L	10.00		107	70-130	9	20	
1,1,2-Trichloroethane	11.8		ug/L	10.00		118	70-130	12	20	
1,1-Dichloroethane	11.8		ug/L	10.00		118	70-130	21	20	D+
1,1-Dichloroethene	10.2		ug/L	10.00		102	70-130	8	20	
1,2-Dichlorobenzene	9.3		ug/L	10.00		93	70-130	11	20	
1,2-Dichloroethane	12.5		ug/L	10.00		125	70-130	11	20	
1,3-Dichlorobenzene	9.1		ug/L	10.00		91	70-130	8	20	
1,4-Dichlorobenzene	9.7		ug/L	10.00		97	70-130	16	20	
Acetone	56.1		ug/L	50.00		112	70-130	5	20	
Benzene	11.7		ug/L	10.00		117	70-130	18	20	
Carbon Tetrachloride	10.8		ug/L	10.00		108	70-130	20	20	
cis-1,2-Dichloroethene	11.1		ug/L	10.00		111	70-130	13	20	
Ethylbenzene	10.7		ug/L	10.00		107	70-130	14	20	
Methyl tert-Butyl Ether	11.9		ug/L	10.00		119	70-130	11	20	
Methylene Chloride	11.1		ug/L	10.00		111	70-130	7	20	
Naphthalene	9.6		ug/L	10.00		96	70-130	19	20	
Tertiary-amyl methyl ether	11.5		ug/L	10.00		115	70-130	8	20	
Tertiary-butyl Alcohol	57.2		ug/L	50.00		114	70-130	5	25	
Tetrachloroethene	8.2		ug/L	10.00		82	70-130	15	20	
Toluene	10.8		ug/L	10.00		108	70-130	19	20	
Trichloroethene	10.8		ug/L	10.00		108	70-130	14	20	
Vinyl Chloride	9.9		ug/L	10.00		99	70-130	12	20	
Xylene O	10.0		ug/L	10.00		100	70-130	9	20	
Xylene P,M	19.1		ug/L	20.00		95	70-130	6	20	
Surrogate: 1,2-Dichlorobenzene-d4	4.26		ug/L	5.000		85	80-120			
Surrogate: 4-Bromofluorobenzene	5.04		ug/L	5.000		101	80-120			

608.3 Polychlorinated Biphenyls (PCB)

ND	0.10	ug/L
ND	0.10	ug/L
-	ND ND ND ND ND ND ND ND ND ND ND ND ND N	ND 0.10 ND 0.10

The Microbiology Division of Thielsch Engineering, Inc.

CERTIFICATE OF ANALYSIS

Client Name: Tg2 Solutions

Client Project ID: 1833 Wilbur Ave Somerset MA - RGP

ESS Laboratory Work Order: 20B0763

Quality Control Data

				Spike	Source		%REC		RPD	
Analyte	Result	MRL	Units	Level	Result	%REC	Limits	RPD	Limit	Qualifier
		608.3 Polyc	hlorinated	Biphenyls	(PCB)					
Batch DB02810 - 3510C										
Aroclor 1262 [2C]	ND	0.10	ug/L							
Aroclor 1268	ND	0.10	ug/L							
Aroclor 1268 [2C]	ND	0.10	ug/L							
Surrogate: Decachlorobiphenyl	0.0379		ug/L	0.05000		76	30-150			
Surrogate: Decachlorobiphenyl [2C]	0.0377		ug/L	0.05000		75	30-150			
Surrogate: Tetrachloro-m-xylene	0.0336		ug/L	0.05000		67	30-150			
Surrogate: Tetrachloro-m-xylene [2C]	0.0409		ug/L	0.05000		82	30-150			
LCS										
Aroclor 1016	0.83	0.10	ug/L	1.000		83	50-140			
Aroclor 1016 [2C]	0.84	0.10	ug/L	1.000		84	50-140			
Aroclor 1260	0.87	0.10	ug/L	1.000		87	1-164			
Aroclor 1260 [2C]	0.85	0.10	ug/L	1.000		85	1-164			
Surrogate: Decachlorobiphenyl	0.0420		ug/L	0.05000		84	30-150			
Surrogate: Decachlorobiphenyl [2C]	0.0421		ug/L	0.05000		84	30-150			
Surrogate: Tetrachloro-m-xylene	0.0335		ug/L	0.05000		67	30-150			
Surrogate: Tetrachloro-m-xylene [2C]	0.0375		ug/L	0.05000		75	30-150			
LCS Dup										
Aroclor 1016	0.93	0.10	ug/L	1.000		93	50-140	11	36	
Aroclor 1016 [2C]	0.95	0.10	ug/L	1.000		95	50-140	12	36	
Aroclor 1260	0.98	0.10	ug/L	1.000		98	1-164	12	38	
Aroclor 1260 [2C]	0.95	0.10	ug/L	1.000		95	1-164	11	38	
Surrogate: Decachlorobiphenyl	0.0418		ug/L	0.05000		84	30-150			
- · · · · · · · · · · · · · · · · · · ·	0.0422		ug/L	0.05000		84	30-150			
Surrogate: Tetrachloro-m-xylene	0.0362		ug/L	0.05000		72	30-150			
- Surrogate: Tetrachloro-m-xylene [2C]	0.0395		ug/L	0.05000		79	30-150			
-	625	5.1(SIM) Ser	ni-Volatile (Organic Co	ompounds	5				

Batch DC00203 - 3510C

Blank			
Acenaphthene	ND	0.20	ug/L
Acenaphthylene	ND	0.20	ug/L
Anthracene	ND	0.20	ug/L
Benzo(a)anthracene	ND	0.05	ug/L
Benzo(a)pyrene	ND	0.05	ug/L
Benzo(b)fluoranthene	ND	0.05	ug/L
Benzo(g,h,i)perylene	ND	0.20	ug/L
Benzo(k)fluoranthene	ND	0.05	ug/L
bis(2-Ethylhexyl)phthalate	ND	2.50	ug/L
Butylbenzylphthalate	ND	2.50	ug/L
Chrysene	ND	0.05	ug/L
Dibenzo(a,h)Anthracene	ND	0.05	ug/L
Diethylphthalate	ND	2.50	ug/L

2211 Tel: 401-461-7181 Dependability + Quality

The Microbiology Division of Thielsch Engineering, Inc.

CERTIFICATE OF ANALYSIS

Client Name: Tg2 Solutions

Client Project ID: 1833 Wilbur Ave Somerset MA - RGP

ESS Laboratory Work Order: 20B0763

				Spike	Source		%REC		RPD	
Analyte	Result	MRL	Units	Level	Result	%REC	Limits	RPD	Limit	Qualifier
	62	5.1(SIM) Sem	ni-Volatile C	rganic Co	ompounds	5				
					· · ·					
Batch DC00203 - 3510C										
Dimethylphthalate	ND	2.50	ug/L							
Di-n-butylphthalate	ND	2.50	ug/L							
Di-n-octylphthalate	ND	2.50	ug/L							
Fluoranthene	ND	0.20	ug/L							
Fluorene	ND	0.20	ug/L							
Indeno(1,2,3-cd)Pyrene	ND	0.05	ug/L							
Naphthalene	ND	0.20	ug/L							
Pentachlorophenol	ND	0.90	ug/L							
Phenanthrene	ND	0.20	ug/L							
Pyrene	ND	0.20	ug/L							
Surrogate: 1,2-Dichlorobenzene-d4	1.35		ug/L	2.500		54	30-130			
Surrogate: 2,4,6-Tribromophenol	4.16		ug/L	3.750		111	15-110			S+
Surrogate: 2-Fluorobiphenyl	1.75		ug/L	2.500		70	30-130			
Surrogate: Nitrobenzene-d5	2.08		ug/L	2.500		83	30-130			
Surrogate: p-Terphenyl-d14	2.17		ug/L	2.500		87	30-130			
LCS										
Acenaphthene	3.75	0.20	ug/L	4.000		94	40-140			
Acenaphthylene	3.53	0.20	ug/L	4.000		88	40-140			
Anthracene	3.93	0.20	ug/L	4.000		98	40-140			
Benzo(a)anthracene	3.86	0.05	ug/L	4.000		96	40-140			
Benzo(a)pyrene	4.28	0.05	ug/L	4.000		107	40-140			
Benzo(b)fluoranthene	4.30	0.05	ug/L	4.000		108	40-140			
Benzo(g,h,i)perylene	4.20	0.20	ug/L	4.000		105	40-140			
Benzo(k)fluoranthene	4.25	0.05	ug/L	4.000		106	40-140			
bis(2-Ethylhexyl)phthalate	5.15	2.50	ug/L	4.000		129	40-140			
Butylbenzylphthalate	5.00	2.50	ug/L	4.000		125	40-140			
Chrysene	4.00	0.05	ug/L	4.000		100	40-140			
Dibenzo(a,h)Anthracene	4.27	0.05	ug/L	4.000		107	40-140			
Diethylphthalate	4.43	2.50	ug/L	4.000		111	40-140			
Dimethylphthalate	4.28	2.50	uq/L	4.000		107	40-140			
Di-n-butylphthalate	4.44	2.50	ug/L	4.000		111	40-140			
Di-n-octylphthalate	4.84	2.50	ug/L	4.000		121	40-140			
Fluoranthene	4.42	0.20	ua/L	4.000		110	40-140			
Fluorene	4.09	0.20	ug/L	4.000		102	40-140			
Indeno(1,2,3-cd)Pyrene	4.52	0.05	ua/L	4.000		113	40-140			
Naphthalene	3.33	0.20	- <i>3,</i> - ua/L	4.000		83	40-140			
Pentachlorophenol	4.53	0.90	ug/L	4.000		113	30-130			
Phenanthrene	3.96	0.20	- <u>s</u> , - ua/l	4.000		99	40-140			
Pyrene	4.45	0.20	ua/L	4.000		111	40-140			
Surraata: 1 2-Dichlarahansana da	1.67		- <u>s</u> , - ua/l	2.500		67	30-130			
Sungate 14-Dichiologenzabase	6.60		ua/L	3.750		176	15-110			<i>S</i> +
Surrazte: 2, Fluerebinherul	2.21		- <i>3,</i> - ua/L	2.500		88	30-130			<u>.</u> .
sun gace, z-i luui uupi lettyi Surroqate: Nitrobenzene-d5	2.37		- <i>3,</i> - ua/L	2.500		95	30-130			
Surrogate: n-Ternhenvl-d14	2.62		ug/L	2.500		105	30-130			
			2.							

The Microbiology Division of Thielsch Engineering, Inc.

CERTIFICATE OF ANALYSIS

Client Name: Tg2 Solutions

Client Project ID: 1833 Wilbur Ave Somerset MA - RGP

ESS Laboratory Work Order: 20B0763

Quality Control Data

				Spike	Source		%REC		RPD	
Analyte	Result	MRL	Units	Level	Result	%REC	Limits	RPD	Limit	Qualifier
	625	5.1(SIM) Sen	ni-Volatile C	Organic Co	mpound	S				
Batch DC00203 - 3510C	2.02	0.20		4 000		00	40.140	4	20	
Acenaphthylone	3.92	0.20	ug/L	4.000		90	40-140	4	20	
Anthracono	3.72	0.20	ug/L	4.000		102	40-140	2	20	
Renze(a)apthracene	4.00	0.20	ug/L	4.000		102	40-140	0	20	
Benzo(a)pyrepe	3.33	0.05	ug/L	4.000		09	40-140	0	20	
Benzo(b)fluoranthene	3.94	0.05	ug/L	4 000		99	40-140	8	20	
Benzo(a h i)nervlene	3.84	0.05	ug/L	4 000		96	40-140	9	20	
Benzo(k)fluoranthene	3.77	0.05	ug/L	4 000		94	40-140	12	20	
his(2-Ethylbeyyl)nhthalate	4.83	2 50	ug/L	4 000		121	40-140	6	20	
Butylbenzylphthalate	4 71	2.50	ug/L	4.000		118	40-140	6	20	
Chrysene	3.83	0.05	ug/L	4.000		96	40-140	4	20	
Dibenzo(a, h)Anthracene	3.86	0.05	ug/L	4.000		97	40-140	10	20	
Diethylphthalate	4.59	2.50	ug/L	4.000		115	40-140	4	20	
Dimethylphthalate	4.45	2.50	ug/L	4.000		111	40-140	4	20	
Di-n-butylphthalate	4.57	2.50	ua/L	4.000		114	40-140	3	20	
Di-n-octylphthalate	4.51	2.50	ug/L	4.000		113	40-140	7	20	
Fluoranthene	4.41	0.20	ug/L	4.000		110	40-140	0.05	20	
Fluorene	4.19	0.20	ug/L	4.000		105	40-140	2	20	
Indeno(1,2,3-cd)Pyrene	4.10	0.05	ug/L	4.000		103	40-140	10	20	
Naphthalene	3.43	0.20	ug/L	4.000		86	40-140	3	20	
Pentachlorophenol	4.71	0.90	ug/L	4.000		118	30-130	4	20	
Phenanthrene	4.01	0.20	ug/L	4.000		100	40-140	1	20	
Pyrene	4.17	0.20	ug/L	4.000		104	40-140	6	20	
Surrogate: 1.2-Dichlorobenzene-d4	1.71		ug/L	2.500		68	30-130			
Surrogate: 2,4,6-Tribromophenol	6.27		ug/L	3.750		167	15-110			S+
Surrogate: 2-Fluorobiphenvl	2.26		ug/L	2.500		90	30-130			
Surrogate: Nitrobenzene-d5	2.48		ug/L	2.500		<i>99</i>	30-130			
Surrogate: p-Terphenyl-d14	2.47		ug/L	2.500		99	30-130			
	8270D(SIM) S	Semi-Volatile	Organic Co	mpounds	w/ Isoto	pe Diluti	on			
Batch DB02750 - 3535A										
Blank										
1,4-Dioxane	ND	0.250	ug/L							
Surrogate: 1,4-Dioxane-d8	3.23		ug/L	5.000		65	15-115			
LCS										
1,4-Dioxane	10.6	0.250	ug/L	10.00		106	40-140			
Surrogate: 1,4-Dioxane-d8	2.45		ug/L	5.000		49	15-115			
LCS Dup										
1,4-Dioxane	10.2	0.250	ug/L	10.00		102	40-140	5	20	
Surrogate: 1.4-Dioxane-d8	2.67		ug/L	5.000		53	15-115			
		Cl	assical Cher	mistry						

Batch DB02639 - General Preparation

Blank

The Microbiology Division of Thielsch Engineering, Inc.

CERTIFICATE OF ANALYSIS

Client Name: Tg2 Solutions

Client Project ID: 1833 Wilbur Ave Somerset MA - RGP

ESS Laboratory Work Order: 20B0763

				Spike	Source		%REC		RPD	
Analyte	Result	MRL	Units	Level	Result	%REC	Limits	RPD	Limit	Qualifier
L		Cl	assical Cher	nistry						
				,						
Batch DB02639 - General Preparation										
Hexavalent Chromium	ND	10.0	ug/L							
LCS										
Hexavalent Chromium	522	10.0	ug/L	499.8		105	90-110			
LCS Dup										
Hexavalent Chromium	518	10.0	ug/L	499.8		104	90-110	0.8	20	
Batch DB02640 - General Preparation										
Blank										
Total Residual Chlorine	ND	20.0	ug/L							
LCS										
Total Residual Chlorine	1.30		mg/L	1.300		100	85-115			
Batch DB02732 - General Preparation										
Blank										
Total Suspended Solids	ND	5	mg/L							
LCS										
Total Suspended Solids	88		mg/L	90.70		97	80-120			
Batch DB02739 - TCN Prep										
Blank										
Total Cyanide	ND	5.00	ug/L							
LCS										
Total Cyanide	20.7	5.00	ug/L	20.06		103	90-110			
LCS										
Total Cyanide	147	5.00	ug/L	150.4		97	90-110			
LCS Dup										
Total Cyanide	146	5.00	ug/L	150.4		97	90-110	0.7	20	
Batch DB02805 - General Preparation										
Blank										
Total Petroleum Hydrocarbon	ND	5	mg/L							
LCS										
Total Petroleum Hydrocarbon	16	5	mg/L	19.38		81	66-114			
Batch DB02822 - General Preparation										
Blank										
Phenols	ND	50	ug/L							
LCS										
Phenols	98	50	ug/L	100.0		98	80-120			
LCS										
Phenols	1070	50	ug/L	1000		107	80-120			
Batch DB02823 - General Preparation										
Blank										
Chloride	ND	0.5	mg/L							
LCS										

The Microbiology Division of Thielsch Engineering, Inc.

CERTIFICATE OF ANALYSIS

Client Name: Tg2 Solutions

Client Project ID: 1833 Wilbur Ave Somerset MA - RGP

ESS Laboratory Work Order: 20B0763

				Snike	Source		%RFC		RbD	
Analyte	Result	MRL	Units	Level	Result	%REC	Limits	RPD	Limit	Qualifier
		Cl	assical Che	mistry						
Batch DB02823 - General Preparation										
Chloride	9.6		mg/L	10.00		96	90-110			
Batch DC00218 - NH4 Prep										
Blank										
Ammonia as N	ND	0.10	mg/L							
LCS										
Ammonia as N	0.10	0.10	mg/L	0.09994		95	80-120			
LCS										
Ammonia as N	0.87	0.10	mg/L	0.9994		87	80-120			
	504.1 1,2	2-Dibromoetl	hane / 1,2-	Dibromo-3	-chloropi	ropane				
Batch DB02638 - 504/8011										
Blank										
1,2-Dibromo-3-Chloropropane	ND	0.015	ug/L							
1,2-Dibromo-3-Chloropropane [2C]	ND	0.015	ug/L							
1,2-Dibromoethane	ND	0.015	ug/L							
1,2-Dibromoethane [2C]	ND	0.015	ug/L							
Surrogate: Pentachloroethane	0.213		ug/L	0.2000		106	30-150			
Surrogate: Pentachloroethane [2C]	0.206		ug/L	0.2000		103	30-150			
LCS										
1,2-Dibromo-3-Chloropropane	0.070	0.015	ug/L	0.08000		87	70-130			
1,2-Dibromo-3-Chloropropane [2C]	0.072	0.015	ug/L	0.08000		90	70-130			
1,2-Dibromoethane	0.069	0.015	ug/L	0.08000		87	70-130			
1,2-Dibromoethane [2C]	0.066	0.015	ug/L	0.08000		82	70-130			
Surrogate: Pentachloroethane	0.0571		ug/L	0.08000		71	30-150			
Surrogate: Pentachloroethane [2C]	0.0560		ug/L	0.08000		70	30-150			
LCS										
1,2-Dibromo-3-Chloropropane	0.199	0.015	ug/L	0.2000		100	70-130			
1,2-Dibromo-3-Chloropropane [2C]	0.203	0.015	ug/L	0.2000		102	70-130			
1,2-Dibromoethane	0.206	0.015	ug/L	0.2000		103	70-130			
1,2-Dibromoethane [2C]	0.184	0.015	ug/L	0.2000		92	70-130			
Surrogate: Pentachloroethane	0.211		ug/L	0.2000		106	30-150			
Surrogate: Pentachloroethane [2C]	0.198		ug/L	0.2000		99	30-150			
		Alco	hol Scan by	/ GC/FID						
Batch DC00301 - No Prep										
Blank										
Ethanol	ND	10	mg/L							
LCS										
Ethanol	748	10	mg/L	952.8		78	60-140			
LCS Dup							-			

The Microbiology Division of Thielsch Engineering, Inc.

CERTIFICATE OF ANALYSIS

Client Name: Tg2 Solutions

Client Project ID: 1833 Wilbur Ave Somerset MA - RGP

ESS Laboratory Work Order: 20B0763

Analyte	Result	MRL	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Qualifier
		Alco	hol Scan by	GC/FID						
Batch DC00301 - No Prep										
Ethanol	716	10	mg/L	952.8		75	60-140	4	30	

The Microbiology Division of Thielsch Engineering, Inc.

CERTIFICATE OF ANALYSIS

Client Name: Tg2 Solutions Client Project ID: 1833 Wilbur Ave Somerset MA - RGP

ESS Laboratory Work Order: 20B0763

Notes and Definitions

- U Analyte included in the analysis, but not detected
- S+ Surrogate recovery(ies) above upper control limit (S+).
- Q Calibration required quadratic regression (Q).
- HT The maximum holding time listed in 40 CFR Part 136 Table II for pH, Dissolved Oxygen, Sulfite and Residual Chlorine is fifteen minutes.
- EL Elevated Method Reporting Limits due to sample matrix (EL).
- D+ Relative percent difference for duplicate is outside of criteria (D+).
- D Diluted.
- CD+ Continuing Calibration %Diff/Drift is above control limit (CD+).
- ND Analyte NOT DETECTED at or above the MRL (LOQ), LOD for DoD Reports, MDL for J-Flagged Analytes
- dry Sample results reported on a dry weight basis
- RPD Relative Percent Difference
- MDL Method Detection Limit
- MRL Method Reporting Limit
- LOD Limit of Detection
- LOQ Limit of Quantitation
- DL Detection Limit
- I/V Initial Volume
- F/V Final Volume
- § Subcontracted analysis; see attached report
- 1 Range result excludes concentrations of surrogates and/or internal standards eluting in that range.
- 2 Range result excludes concentrations of target analytes eluting in that range.
- 3 Range result excludes the concentration of the C9-C10 aromatic range.
- Avg Results reported as a mathematical average.
- NR No Recovery
- [CALC] Calculated Analyte
- SUB Subcontracted analysis; see attached report
- RL Reporting Limit
- EDL Estimated Detection Limit
- MF Membrane Filtration
- MPN Most Probably Number
- TNTC Too numerous to Count
- CFU Colony Forming Units

The Microbiology Division of Thielsch Engineering, Inc.

CERTIFICATE OF ANALYSIS

Client Name: Tg2 Solutions Client Project ID: 1833 Wilbur Ave Somerset MA - RGP

ESS Laboratory Work Order: 20B0763

ESS LABORATORY CERTIFICATIONS AND ACCREDITATIONS

ENVIRONMENTAL

Rhode Island Potable and Non Potable Water: LAI00179 http://www.health.ri.gov/find/labs/analytical/ESS.pdf

Connecticut Potable and Non Potable Water, Solid and Hazardous Waste: PH-0750 http://www.ct.gov/dph/lib/dph/environmental health/environmental laboratories/pdf/OutofStateCommercialLaboratories.pdf

Maine Potable and Non Potable Water, and Solid and Hazardous Waste: RI00002 http://www.maine.gov/dhhs/mecdc/environmental-health/dwp/partners/labCert.shtml

> Massachusetts Potable and Non Potable Water: M-RI002 http://public.dep.state.ma.us/Labcert/Labcert.aspx

New Hampshire (NELAP accredited) Potable and Non Potable Water, Solid and Hazardous Waste: 2424 http://des.nh.gov/organization/divisions/water/dwgb/nhelap/index.htm

New York (NELAP accredited) Non Potable Water, Solid and Hazardous Waste: 11313 http://www.wadsworth.org/labcert/elap/comm.html

New Jersey (NELAP accredited) Non Potable Water, Solid and Hazardous Waste: RI006 http://datamine2.state.nj.us/DEP_OPRA/OpraMain/pi_main?mode=pi_by_site&sort_order=PI_NAMEA&Select+a+Site:=58715

United States Department of Agriculture Soil Permit: P330-12-00139

Pennsylvania: 68-01752 http://www.dep.pa.gov/Business/OtherPrograms/Labs/Pages/Laboratory-Accreditation-Program.aspx
Client:		Tg2 Solu	tions - TB			ESS Project ID:	20B0763
						Date Received:	2/26/2020
1	17790	Yes	N/A	Yes	500 mL Poly	HNO3	
1	17791	Yes	N/A	Yes	500 mL Poly	HNO3	
1	17794	Yes	N/A	Yes	250 mL Poly	NP	
1	17796	Yes	N/A	Yes	250 mL Poly	HNO3	
1	17798	Yes	N/A	Yes	250 mL Poly	NaOH	pH > 12
2	17757	Yes	No	Yes	VOA Vial	HCI	
2	17758	Yes	No	Yes	VOA Vial	HCI	
2	17759	Yes	No	Yes	VOA Vial	HCI	
2	17760	Yes	No	Yes	VOA Vial	HCI	
2	17761	Yes	No	Yes	VOA Vial	HCI	
2	17762	Yes	No	Yes	VOA Vial	HCI	
2	17764	Yes	No	Yes	VOA Vial	NP	
2	17767	Yes	N/A	Yes	1L Amber	H2SO4	
2	17768	Yes	N/A	Yes	1L Amber	H2SO4	
2	17777	Yes	N/A	Yes	1L Amber	NP	
2	17778	Yes	N/A	Yes	1L Amber	NP	
2	17779	Yes	N/A	Yes	1L Amber	NP	
2	17780	Yes	N/A	Yes	1L Amber	NP	
2	17781	Yes	N/A	Yes	1L Amber	NP	
2	17782	Yes	N/A	Yes	1L Amber	NP	
2	17784	Yes	N/A	Yes	1L Poly	NP	
2	17789	Yes	N/A	Yes	500 mL Poly	H2SO4	
2	17792	Yes	N/A	Yes	500 mL Poly	HNO3	
2	17793	Yes	N/A	Yes	500 mL Poly	HNO3	
2	17795	Yes	N/A	Yes	250 mL Poly	NP	
2	17797	Yes	N/A	Yes	250 mL Poly	HNO3	
2	17799	Yes	N/A	Yes	250 mL Poly	NaOH	pH > 12

ESS Laboratory Sample and Cooler Receipt Checklist

2nd Review

Were all containers scanned into storage/lab?	Initials	m
Are barcode labels on correct containers?		COS / No
Are all Flashpoint stickers attached/container ID # circled?		Yes / No / NA
Are all Hex Chrome stickers attached?		Yes / No / NA
Are all QC stickers attached?		Yes / No / NA
Are VOA stickers attached if bubbles noted?		Yes / No / NA

Completed By:	AA	Date & Time:	obile	1605	
Reviewed By:	10A	Date & Time:	2/26/20	16:23	
Delivered By:			2/26/20	16:23	

ESS Laboratory Sample and Cooler Receipt Checklist

Client:Tg2 \$	Solutions - TB		ESS Project ID:	2080763	
Shipped/Delivered Via:	Client		Project Due Date:	3/4/2020	
 Air bill manifest present? Air No.: <u>NA</u> Were custody seals present? Is radiation count <100 CPM? Is a Cooler Present? Temp: <u>1.8</u> lood w Was COC signed and dated b 	No No Yes Yes	5 5 5 5	Days for Project: 6. Does COC match bottles 7. Is COC complete and co 8. Were samples received 9. Were labs informed ab 10. Were any analyses rec	5 Day s? intact? out <u>short holds & rushes</u> ? ceived outside of hold time?	Yes Yes Yes Yes / No / NA Yes /
11. Any Subcontracting needed? ESS Sample IDs: Analysis: TAT:	Yes /N		12. Were VOAs received? a. Air bubbles in aqueous b. Does methanol cover so	VOAs? oil completely?	Yes / No Yes / M Yes / No / NA
13. Are the samples properly pre-a. If metals preserved upon receb. Low Level VOA vials frozen:Sample Receiving Notes:	eserved? es /	' No Date: Date:	Time: Time:	Ву: Ву:	
14. Was there a need to contact a. Was there a need to contact Who was contacted?	t Project Manager? the client?	Yes / No Yes / No Date:	Time:	Ву:	

Sample Number	Container ID	Proper Container	Air Bubbles Present	Sufficient Volume	Container Type	Preservative	Record pH (Cyanide and 608 Pesticides)
1	17751	Yes	No	Yes	VOA Vial	HCI	
1	17752	Yes	No	Yes	VOA Vial	HCI	
1	17753	Yes	No	Yes	VOA Vial	HCI	
1	17754	Yes	No	Yes	VOA Vial	HCI	
1	17755	Yes	No	Yes	VOA Vial	HCI	
1	17756	Yes	No	Yes	VOA Vial	HCI	
1	17763	Yes	No	Yes	VOA Vial	NP	
1	17765	Yes	N/A	Yes	1L Amber	H2SO4	
1	17766	Yes	N/A	Yes	1L Amber	H2SO4	
1	17771	Yes	N/A	Yes	1L Amber	NP	
1	17772	Yes	N/A	Yes	1L Amber	NP	
1	17773	Yes	N/A	Yes	1L Amber	NP	
1	17774	Yes	N/A	Yes	1L Amber	NP	
1	17775	Yes	N/A	Yes	1L Amber	NP	
1	17776	Yes	N/A	Yes	1L Amber	NP	
1	17783	Yes	N/A	Yes	1L Poly	NP	
1	17788	Yes	N/A	Yes	500 mL Poly	H2SO4	

	- h - ma ta	2447			СЦ	AIN OF C	USTO	DV						ES	SL	AB	PRO			D	76	3			
ESS L	aporato	T y Engineering	r Inc	m m	Сп	Standard Rus	h	Approved	i By:					Re	port	ing	Lim	nits -				,			٦
Division of 185 Erances	Avenue. Cran	ston, RI 0291	0-2211	Turn Time							_			Di	schar	ge in	to:	Fres	sh Wa	ater		Salt V	Vater	X	·
Tel. (401)	461-7181 I	Fax (401) 4	61-4486	State wher	e samples	were conected.(I	<u>y 111</u>		Electonic	Del	iver	able	e	Yes X No											
www.essl	aboratory.co	om		is this proj	ect for:	RGP			Format: I	Exce	:1 <u>)</u>	<u> </u>	\cce:	ss	P	DF	<u>×</u>	Oth	er		-т		-T		┥
Y	Project Mona	ger Eric	Simp	5017	<u></u>	Project #												Ę	3				WIS-SIM		
Company: Told Solutions Address: <u>508-298-8686</u> ISBS Wilbur AVE. Somerset, MA							Analysis	otal	issolved	Calculation	5TM D3695	e 4500 LL			۲D.	50.1 MIST 410 T			Long List 524	e 8270-SIM	C Log List 62		omment#		
						PO #			Matals T Metals D dness (anol AS				Cvanic	1664	2540D'	4500-0	nonia 34	Cr 350	nol 420		Dioxan		3 608	Ŏ	
ESS Lab	Date	Collection	Grab -G	Matrix		Sample Identifi	cation		# of Containers	RGP N	RGP A	Haro	Etha	Total	ΗđΤ	TSS	<u>В</u>	Amn	E X	Phei		- - - -		БС У	<u> </u>
Sample ID	0/1/10	11me	Composite-C	land		MW-G			22	X	X	지	X	$\langle \rangle$	$\langle \chi \rangle$	Х	X	<u>X</u> ,	신/	$\left(X \right)$	X	1	XX		1,2
	2/26/20	1520	$\frac{0}{7}$	6	^	include a			22	X	X	\overline{X}	X	()	$\langle X \rangle$	X	X	X,	x))	<u>(X</u>	X	么.	XX	X	1,2
6	2/26/20	1430	6	62		Ischarge		······	0.0	ľ				T	1									L.	\square
. <u> </u>	<u> </u>								<u> </u>	1				T					Ţ						
	L	 	<u> </u>		<u> </u>			. <u></u>	┼	+			-+-	-											
				<u> </u>	<u> </u>	·				+	┢──			+	+									Τ	
	Ţ]			ļ				<u> </u>	┼─				┽			$\left - \right $		-+	+	┼╴			╎	
						·			<u> </u>	+				╋	╋	╞	\square			+-	+	╞╌┼	- -	┼─	┢──
	1								<u> </u>	_		_		4		┣			-+	┿	╧	┝┼	+	╂─	┝─┤
<u> </u>									 							Ļ						┝╌┼		╞	Ļ
			<u> </u>			<u></u>															1			+	\vdash
·			1 4-HNO3 5	NaOH, 6-Me	OH, 7-Asorb	ic Acid, 8-ZnAct, 9				4	4	4	1		5 3	1	1	3	-+	$\frac{1}{2}$			2 1		
Preservation Container T	vne: P-Polv G-	Glass AG-Amb	er Glass S-S	terile V-VOA	· · · · · · · · · · · · · · · · · · ·	······			D Dille	P	P	P	V	Р	P JAC	<u> </u>	<u>ب</u>	["]		r (A	<u>۹.*</u>	<u>179</u>	<u>. </u>	<u> </u>	ш.,
Matrix: S-S	oil SD-Solid D	-Sludge WW-V	Wastewater C	W-Groundwa	ater SW-Surf	ace Water DW-Drink	ting Water (D-Oil W-Wi	pes F-Filter								_								
Cooler Pr	esent X	Yes	No	Sampled	by :	1 Conta ta aluda S	h As Cd	Cu Fe P	h Ni Se.	Aga	and	Zn	by 2	00.7	/311	3B	and	Hg	by 2	245.	1				
Seals Inta	actYes	No N	IA: - 	Commen	ts: 1) RGP beters in B	OLD have Short l	io, As, Cu, iold-time	Cu, 10, 1	PER	MI	ТA	TT	ACI	HEI)										
Cooler T	emperature:	1.141	<u>.</u> 8	* TSS. 7	RC and C	<u>I taken from the</u>	same col	tainer	<u></u>	Т		Date	e/Time		Т	-			Recei	ved by	r: (Sigr	nature)			
	by: (gignatyfre)		Date/Time	Received by:	The another	2/20/20 51	Relinguished	by: (Signature)	╋		Date	e/Time		╋				Recei	ved by	/: (Sigr	nature)			
Relinquished	by (Signature)		Date/Time	Received by:	(agnature)					Ţ										Pa	ae		of		
L					Please E	-mail all change	s to Chair	of Custo	ay in writ	11										. u	3° -				-

an and the contract of advardances of the second

The Microbiology Division of Thielsch Engineering, Inc.

CERTIFICATE OF ANALYSIS

Eric D. Simpson Tg2 Solutions 231 Elm Street Blackstone, MA 01504

RE: Somerset - Analytical (N/A) ESS Laboratory Work Order Number: 20C0833

This signed Certificate of Analysis is our approved release of your analytical results. These results are only representative of sample aliquots received at the laboratory. ESS Laboratory expects its clients to follow all regulatory sampling guidelines. Beginning with this page, the entire report has been paginated. This report should not be copied except in full without the approval of the laboratory. Samples will be disposed of thirty days after the final report has been delivered. If you have any questions or concerns, please feel free to call our Customer Service Department.

Laurel Stoddard Laboratory Director

Analytical Summary

By ESS Laboratory at 2:28 pm, Apr 02, 2020

REVIEWED

The project as described above has been analyzed in accordance with the ESS Quality Assurance Plan. This plan utilizes the following methodologies: US EPA SW-846, US EPA Methods for Chemical Analysis of Water and Wastes per 40 CFR Part 136, APHA Standard Methods for the Examination of Water and Wastewater, American Society for Testing and Materials (ASTM), and other recognized methodologies. The analyses with these noted observations are in conformance to the Quality Assurance Plan. In chromatographic analysis, manual integration is frequently used instead of automated integration because it produces more accurate results.

The test results present in this report are in compliance with TNI and relative state standards, and/or client Quality Assurance Project Plans (QAPP). The laboratory has reviewed the following: Sample Preservations, Hold Times, Initial Calibrations, Continuing Calibrations, Method Blanks, Blank Spikes, Blank Spike Duplicates, Duplicates, Matrix Spikes, Matrix Spike Duplicates, Surrogates and Internal Standards. Any results which were found to be outside of the recommended ranges stated in our SOPs will be noted in the Project Narrative.

The Microbiology Division of Thielsch Engineering, Inc.

CERTIFICATE OF ANALYSIS

Client Name: Tg2 Solutions Client Project ID: Somerset - Analytical

ESS Laboratory Work Order: 20C0833

SAMPLE RECEIPT

The following samples were received on March 26, 2020 for the analyses specified on the enclosed Chain of Custody Record.

Lab Number 20C0833-01 <u>Sample Name</u> Outfall

<u>Matrix</u> Ground Water <u>Analysis</u> 2520B, 9040

The Microbiology Division of Thielsch Engineering, Inc.

CERTIFICATE OF ANALYSIS

Client Name: Tg2 Solutions Client Project ID: Somerset - Analytical

ESS Laboratory Work Order: 20C0833

PROJECT NARRATIVE

No unusual observations noted.

End of Project Narrative.

DATA USABILITY LINKS

To ensure you are viewing the most current version of the documents below, please clear your internet cookies for www.ESSLaboratory.com. Consult your IT Support personnel for information on how to clear your internet cookies.

The Microbiology Division of Thielsch Engineering, Inc.

CERTIFICATE OF ANALYSIS

Client Name: Tg2 Solutions Client Project ID: Somerset - Analytical

ESS Laboratory Work Order: 20C0833

CURRENT SW-846 METHODOLOGY VERSIONS

Analytical Methods

1010A - Flashpoint 6010C - ICP 6020A - ICP MS 7010 - Graphite Furnace 7196A - Hexavalent Chromium 7470A - Aqueous Mercury 7471B - Solid Mercury 8011 - EDB/DBCP/TCP 8015C - GRO/DRO 8081B - Pesticides 8082A - PCB 8100M - TPH 8151A - Herbicides 8260B - VOA 8270D - SVOA 8270D SIM - SVOA Low Level 9014 - Cyanide 9038 - Sulfate 9040C - Aqueous pH 9045D - Solid pH (Corrosivity) 9050A - Specific Conductance 9056A - Anions (IC) 9060A - TOC 9095B - Paint Filter MADEP 04-1.1 - EPH MADEP 18-2.1 - VPH

Prep Methods

3005A - Aqueous ICP Digestion
3020A - Aqueous Graphite Furnace / ICP MS Digestion
3050B - Solid ICP / Graphite Furnace / ICP MS Digestion
3060A - Solid Hexavalent Chromium Digestion
3510C - Separatory Funnel Extraction
3520C - Liquid / Liquid Extraction
3540C - Manual Soxhlet Extraction
3541 - Automated Soxhlet Extraction
3546 - Microwave Extraction
3580A - Waste Dilution
5030B - Aqueous Purge and Trap
5030C - Aqueous Purge and Trap
5035A - Solid Purge and Trap

SW846 Reactivity Methods 7.3.3.2 (Reactive Cyanide) and 7.3.4.1 (Reactive Sulfide) have been withdrawn by EPA. These methods are reported per client request and are not NELAP accredited.

The Microbiology Division of Thielsch Engineering, Inc.

CERTIFICATE OF ANALYSIS

Client Name: Tg2 Solutions Client Project ID: Somerset - Analytical Client Sample ID: Outfall Date Sampled: 03/26/20 11:10 Percent Solids: N/A

ESS Laboratory Work Order: 20C0833 ESS Laboratory Sample ID: 20C0833-01 Sample Matrix: Ground Water

Classical Chemistry

<u>Analyte</u> pH	<u>Results (MRL)</u> 8.08 (N/A)	MDL Metho 9040	<u>d Limit</u>	<u>DF</u> 1	Analyst CCP	<u>Analyzed</u> 03/26/20 18:33	<u>Units</u> S.U.	<u>Batch</u> DC02631
pH Sample Temp	Aqueous pH measure	d in water at 21.1 °C.	(N/A)					
Salinity	25.9 (0.1)	2520B		1	CCP	03/31/20 15:45	ppt	DC03132

The Microbiology Division of Thielsch Engineering, Inc.

CERTIFICATE OF ANALYSIS

Client Name: Tg2 Solutions

Client Project ID: Somerset - Analytical

ESS Laboratory Work Order: 20C0833

Quality Control Data

Analyte	Result	MRL	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Qualifier
		Cl	assical Che	mistry						
Batch DC03132 - General Preparation										
LCS										
Salinity	1.0		ppt	1.000		97	85-115			

The Microbiology Division of Thielsch Engineering, Inc.

CERTIFICATE OF ANALYSIS

Client Name: Tg2 Solutions Client Project ID: Somerset - Analytical

ESS Laboratory Work Order: 20C0833

Notes and Definitions

Z16 Aqueous pH measured in water at 21.1 °C. ND Analyte NOT DETECTED at or above the MRL (LOQ), LOD for DoD Reports, MDL for J-Flagged Analytes dry Sample results reported on a dry weight basis RPD **Relative Percent Difference** MDL Method Detection Limit MRL Method Reporting Limit Limit of Detection LOD Limit of Quantitation LOQ **Detection Limit** DL Initial Volume I/V F/V Final Volume Ş Subcontracted analysis; see attached report 1 Range result excludes concentrations of surrogates and/or internal standards eluting in that range. 2 Range result excludes concentrations of target analytes eluting in that range. 3 Range result excludes the concentration of the C9-C10 aromatic range. Avg Results reported as a mathematical average. NR No Recovery [CALC] Calculated Analyte SUB Subcontracted analysis; see attached report RL Reporting Limit EDL Estimated Detection Limit MF Membrane Filtration MPN Most Probably Number TNTC Too numerous to Count CFU **Colony Forming Units**

The Microbiology Division of Thielsch Engineering, Inc.

CERTIFICATE OF ANALYSIS

Client Name: Tg2 Solutions Client Project ID: Somerset - Analytical

ESS Laboratory Work Order: 20C0833

ESS LABORATORY CERTIFICATIONS AND ACCREDITATIONS

ENVIRONMENTAL

Rhode Island Potable and Non Potable Water: LAI00179 http://www.health.ri.gov/find/labs/analytical/ESS.pdf

Connecticut Potable and Non Potable Water, Solid and Hazardous Waste: PH-0750 http://www.ct.gov/dph/lib/dph/environmental_health/environmental_laboratories/pdf/OutofStateCommercialLaboratories.pdf

Maine Potable and Non Potable Water, and Solid and Hazardous Waste: RI00002 http://www.maine.gov/dhhs/mecdc/environmental-health/dwp/partners/labCert.shtml

> Massachusetts Potable and Non Potable Water: M-RI002 http://public.dep.state.ma.us/Labcert/Labcert.aspx

New Hampshire (NELAP accredited) Potable and Non Potable Water, Solid and Hazardous Waste: 2424 http://des.nh.gov/organization/divisions/water/dwgb/nhelap/index.htm

New York (NELAP accredited) Non Potable Water, Solid and Hazardous Waste: 11313 http://www.wadsworth.org/labcert/elap/comm.html

New Jersey (NELAP accredited) Non Potable Water, Solid and Hazardous Waste: RI006 http://datamine2.state.nj.us/DEP_OPRA/OpraMain/pi_main?mode=pi_by_site&sort_order=PI_NAMEA&Select+a+Site:=58715

United States Department of Agriculture Soil Permit: P330-12-00139

Pennsylvania: 68-01752 http://www.dep.pa.gov/Business/OtherPrograms/Labs/Pages/Laboratory-Accreditation-Program.aspx

ESS Laboratory Sample and Cooler Receipt Checklist

Client:		Tg2 Soluti	ons - TB			ESS Pr	oject ID:	200	0833	
Chinad/Do			Client			Date R Proiect D	eceived:	4/2/	2020	
Snipped/De	envered via:					Days for	Project:	51	Day	
1. Air bill ma	anifest preser	nt? NA		No		6. Does COC n	natch bottles?			Yes
2. Were cus	stody seals pr	resent?		No		7. Is COC com	plete and corr	ect?		Yes
3 Is radiatio	on count <10	CPM?	с- Г	Yes		8. Were sample	es received in	tact?		Yes
4 Is a Cool	er Present?			Yes		9. Were labs i	nformed abo	ut <u>short holds</u>	& rushes?	Yes/Nb/NA
Temp:	2.4	Iced with:				10. Were any	analyses rece	ived outside of	f hold time?	Yes
5. Was CO	C signed and	dated by cli	ent?	Yes						
11. Any Sub ESS	ocontracting n Sample IDs: Analysis: TAT:	eeded?	Yes (Ng		12, Were VOA a. Air bubbles b. Does metha	s received? in aqueous V anol cover soi	OAs? I completely?		Yes / No Yes / No Yes / No NA
13. Are the a. If metals b. Low Lev	samples pro preserved up el VOA vials :	perly presen oon receipt: frozen:	ved?	Yes Date. Date:		_ Time: _ Time:		Ву: Ву:		
Sample Red	ceiving Notes	:								
14. Was th a. Was the Who was c	ere a need to re a need to ontacted?	contact Pro contact the c	ject Manageri dient?	Date:	Yes No Yes No	Time:		Ву:		
 									Pecord nH	(Cvanide and 608
Sample Number	Container ID	Proper Container	Air Bubbles Present	Volume	Contair	ner Type	Preserva	ative	Pe	esticides)
1	27296	Yes	N/A	Yes	250 m	L Amber	NP			
1	27297	Yes	N/A	Yes	250 n	nL Poly	NP			
2nd Review Were all co Are barcod Are all Flas Are all Hex Are all QC Are VOA si	w ontainers sc le labels on co shpoint sticke c Chrome sticl stickers attach tickers attach	anned into s orrect contai rs attached/c kers attache hed? ed if bubbles	storage/lab? ners? container ID # d? s noted?	circled?	Initials	Yes/No Yes/No/NA Yes/No/NA Yes/No/NA Yes/No/NA				
Completed By: Reviewed By: Delivered	l	htere and the second se	<u> </u>		_ Date & Time _ Date & Time	- <u>276</u> 	120 120 123	13:56 13:56	/	
Uğ.		1								

					СНАТ	N OF CUS	TODY		ES	S La	b# Ə,	oCo	83)	}		Pa	ge	<u> </u>	of	
TIC		185 Fra	nces Avenue					Same Day		EI	ECTR	ONIC	DELI	VERA	BLES (Final	Repo	rts are	PDF)	2
		Cransto	on, RI 02921	Turn Time		<u>Criteria:</u>				Limi	t Check	er		State F	orms		EQuIS	;)
	· · · · · · · ·	Phone: 4	401-461-7181	Regulatory State:	Is this proj	ect for any of the	following?:		A	Exce	1			Hard C	ору		Enviro) Data		
TARK		Fax: 4	01-461-4486				D Permit	🗖 401 WQ	ľΠ	CLP	Like Pa	nckage		Other (Specify)→				
LADGRA		<u>www.essta</u>	anoratory.com		PROJE	CT INFORM	1ATION					REC	QUES	STED	ANA	LYSE	S			
0	CLIENT	INFORMA	MON	Project Name:	(an a	ript		Oliont											1	Tot
Client:	192 S	olution	<u>]</u> S	Project Ivanie:	10221	Vilbur	AVe.													
Address:	<u>231 E</u>	Inst.	······································	Project Location.	18 7.2		10	that sampling is	5											Ĩ
<u>Bla</u>	<u>ckston</u>	e <u>ma</u>	20 00	Project Number.	Eril (in alon		compliant with												ber
Phone:	508	- Juy -	8686	Project Manager:	<u> </u>	DT-) Calus	ion: 10m	all EPA / State												ef f
Email Distr	ribution List:				esmison	Wigo soluti	V. G. Co	regulatory		17	` 									off
				PO#:		<u></u>		programs		2										l es
				Quote#:			1. 115		Ha	ज										
ESS Lab	Collection	Collection Time	Sample Type	Sample Matrix					57) 						+		╡┦		1
	R/26.1		G	Gw	DUI	rfa11			ЦX	<u>ا</u> گا					┼╍╂╴		┝┈╋╴			
	1/20/7														<u> </u>	_				
								<u> </u>	+	+			1-1							
									+	╂╼╍╂					+ +		- -			
													┦┛┨					╶╂┈┥		
			· · · · · · · · · · · · · · · · · · ·																	
		·	· · · · ·				, <u>,,,</u> ,,,,,,,,,,,,,,,,,,,,,,,,,													
			[<u></u>			+						_				
								<u></u>		╉╌╉					╉╌╉╴					-
									1			ļ	_				┝─┝╸			
	<u> </u>								ł									_		
1	<u> </u>				ttle C-Cubitait	ner I-lar O-O	ther P-Poly	S-Sterile V-Vial	1P	5										
Cont	ainer Type	: AC-A	ir Cassette AG-An	iber Glass B-BOD BO	600 mI 6-11	7-VOA 8-20	z 9-4 oz 10)-8 oz 11-Other*	13	31										
Contain	ter Volume	: 1-100	mL 2-2.5 gal 3-	250 mL 4-300 mL 5	-300 IIIC 0-11	28203 8-ZnAce	NaOH 9-NH4C	10-DI H2O 11-Other*	Í											
Preserv	ation Code	: 1-Non Prese	rved 2-HCI 3-H2SC	04 4-HNO3 5-NaOH 0	-Methanol /-14		Chai	n needs to be fi	illed	lout	neat	ly an	d co	mple	tely fo	or on	tim	e del	ivery	Γ.
S	ampled by	:	<u> </u>						Τ	. 11		h	#6d 9	re ent	hiect to			1		
Com	ments:	* Please sp	ecify "Other" pr	eservative and conta	iners types in	this space				AII SA	mples aborat	SUDID OTV ^I S I	avm	ent ter	ms and	1	D1880	nved r	штан	
									l E	ר סטי	,4001 ai	condi	tions.			-		Ĩ.	ab Filte	er
		<u>M</u>																	Signo	turaĭ
	· · · · · · · · · · · · · · · · · · ·		Dute	Time	Received]	by (Signature)	Reling	ished by (Signature)		Dat	e		1 ii	me	1	Geven	at by t	ongina	
Relingu	nished by (s A			11115	7															
AI	IV.	lla	15126120		1 th				<u>.</u>					-774		r	loooir	ort be	Simo	ture)
1 m		V/V-	Date	Time	2. aceived	by (Signature)	Relinqu	ished by (Signature)	.	Dat	e		11	me		receiv	en by (nong III a	
Relandu 7	usaen by 6	ngnaturey	- Date																	
							Ì					· · · · · ·		<u></u>		_				

ATTACHMENT D

United States Department of the Interior

FISH AND WILDLIFE SERVICE New England Ecological Services Field Office 70 Commercial Street, Suite 300 Concord, NH 03301-5094 Phone: (603) 223-2541 Fax: (603) 223-0104 http://www.fws.gov/newengland

In Reply Refer To: Consultation Code: 05E1NE00-2020-SLI-1862 Event Code: 05E1NE00-2020-E-05551 Project Name: 1833 Wilbur Ave, Somerset March 25, 2020

Subject: List of threatened and endangered species that may occur in your proposed project location, and/or may be affected by your proposed project

To Whom It May Concern:

The enclosed species list identifies threatened, endangered, proposed and candidate species, as well as proposed and final designated critical habitat, that may occur within the boundary of your proposed project and/or may be affected by your proposed project. The species list fulfills the requirements of the U.S. Fish and Wildlife Service (Service) under section 7(c) of the Endangered Species Act (Act) of 1973, as amended (16 U.S.C. 1531 *et seq.*).

New information based on updated surveys, changes in the abundance and distribution of species, changed habitat conditions, or other factors could change this list. Please feel free to contact us if you need more current information or assistance regarding the potential impacts to federally proposed, listed, and candidate species and federally designated and proposed critical habitat. Please note that under 50 CFR 402.12(e) of the regulations implementing section 7 of the Act, the accuracy of this species list should be verified after 90 days. This verification can be completed formally or informally as desired. The Service recommends that verification be completed by visiting the ECOS-IPaC website at regular intervals during project planning and implementation for updates to species lists and information. An updated list may be requested through the ECOS-IPaC system by completing the same process used to receive the enclosed list.

The purpose of the Act is to provide a means whereby threatened and endangered species and the ecosystems upon which they depend may be conserved. Under sections 7(a)(1) and 7(a)(2) of the Act and its implementing regulations (50 CFR 402 *et seq.*), Federal agencies are required to utilize their authorities to carry out programs for the conservation of threatened and endangered species and to determine whether projects may affect threatened and endangered species and/or designated critical habitat.

A Biological Assessment is required for construction projects (or other undertakings having similar physical impacts) that are major Federal actions significantly affecting the quality of the human environment as defined in the National Environmental Policy Act (42 U.S.C. 4332(2) (c)). For projects other than major construction activities, the Service suggests that a biological evaluation similar to a Biological Assessment be prepared to determine whether the project may affect listed or proposed species and/or designated or proposed critical habitat. Recommended contents of a Biological Assessment are described at 50 CFR 402.12.

If a Federal agency determines, based on the Biological Assessment or biological evaluation, that listed species and/or designated critical habitat may be affected by the proposed project, the agency is required to consult with the Service pursuant to 50 CFR 402. In addition, the Service recommends that candidate species, proposed species and proposed critical habitat be addressed within the consultation. More information on the regulations and procedures for section 7 consultation, including the role of permit or license applicants, can be found in the "Endangered Species Consultation Handbook" at:

http://www.fws.gov/endangered/esa-library/pdf/TOC-GLOS.PDF

Please be aware that bald and golden eagles are protected under the Bald and Golden Eagle Protection Act (16 U.S.C. 668 *et seq.*), and projects affecting these species may require development of an eagle conservation plan (http://www.fws.gov/windenergy/ eagle_guidance.html). Additionally, wind energy projects should follow the wind energy guidelines (http://www.fws.gov/windenergy/) for minimizing impacts to migratory birds and bats.

Guidance for minimizing impacts to migratory birds for projects including communications towers (e.g., cellular, digital television, radio, and emergency broadcast) can be found at: http://www.fws.gov/migratorybirds/CurrentBirdIssues/Hazards/towers/towers.htm; http://www.towerkill.com; and http://www.fws.gov/migratorybirds/CurrentBirdIssues/Hazards/towers/correntBirdIssues/Hazards/towers/comtow.html.

We appreciate your concern for threatened and endangered species. The Service encourages Federal agencies to include conservation of threatened and endangered species into their project planning to further the purposes of the Act. Please include the Consultation Tracking Number in the header of this letter with any request for consultation or correspondence about your project that you submit to our office.

Attachment(s):

Official Species List

Official Species List

This list is provided pursuant to Section 7 of the Endangered Species Act, and fulfills the requirement for Federal agencies to "request of the Secretary of the Interior information whether any species which is listed or proposed to be listed may be present in the area of a proposed action".

This species list is provided by:

New England Ecological Services Field Office

70 Commercial Street, Suite 300 Concord, NH 03301-5094 (603) 223-2541

Project Summary

Consultation Code:	05E1NE00-2020-SLI-1862
Event Code:	05E1NE00-2020-E-05551
Project Name:	1833 Wilbur Ave, Somerset
Project Type:	DEVELOPMENT
Project Description:	This facility has historically been an active gasoline station with underground storage tanks (USTs) and dispenser islands. Plans to upgrade the facility, including the USTs and dispenser islands are anticipated under a National Pollutant Discharge Elimination System (NPDES). Therefore, a determination of endangered species act eligibility is required.

Project Location:

Approximate location of the project can be viewed in Google Maps: <u>https://www.google.com/maps/place/41.72713426474884N71.18980984349818W</u>

Counties: Bristol, MA

Endangered Species Act Species

There is a total of 1 threatened, endangered, or candidate species on this species list.

Species on this list should be considered in an effects analysis for your project and could include species that exist in another geographic area. For example, certain fish may appear on the species list because a project could affect downstream species.

IPaC does not display listed species or critical habitats under the sole jurisdiction of NOAA Fisheries¹, as USFWS does not have the authority to speak on behalf of NOAA and the Department of Commerce.

See the "Critical habitats" section below for those critical habitats that lie wholly or partially within your project area under this office's jurisdiction. Please contact the designated FWS office if you have questions.

1. <u>NOAA Fisheries</u>, also known as the National Marine Fisheries Service (NMFS), is an office of the National Oceanic and Atmospheric Administration within the Department of Commerce.

Mammals

NAME	STATUS
Northern Long-eared Bat Myotis septentrionalis	Threatened
No critical habitat has been designated for this species.	
Species profile: <u>https://ecos.fws.gov/ecp/species/9045</u>	

Critical habitats

THERE ARE NO CRITICAL HABITATS WITHIN YOUR PROJECT AREA UNDER THIS OFFICE'S JURISDICTION.