

## NOTICE OF INTENT FOR

## MASSACHUSETTS REMEDIATION GENERAL PERMIT

SHELL BRANDED SERVICE STATION
945 BELMONT STREET
BROCKTON, MA
FORMER RTN 4-1088

Prepared for: COLBEA ENTERPRISES LLC 2050 PLAINFIELD PIKE CRANSTON, RI 02921

February 2020

### **TABLE OF CONTENTS**

| 1.0 | INTRODUCTION                                                                                     | ERROR! BOOKMARK NOT DEFINED. |
|-----|--------------------------------------------------------------------------------------------------|------------------------------|
| 2.0 | GENERAL FACILITY INFORMATION                                                                     | ERROR! BOOKMARK NOT DEFINED  |
| 3.0 | DISCHARGE INFORMATION                                                                            | ERROR! BOOKMARK NOT DEFINED  |
|     | 3.1 Receiving Water 3.2 Dewatering Activity Description 3.3 Pre-Discharge Sampling               | Error! Bookmark not defined. |
| 4.0 | ENDANGERED SPECIES ACT, NATIONAL HISTORICAL PREERROR! BOOKMARK NOT DEFINED.                      | ESERVATION ACT REQUIREMENTS  |
|     | 4.1 Endangered Species Act Requirements<br>4.2 National Historical Preservation Act Requirements |                              |
| 5.0 | CONCLUSIONS                                                                                      | ERROR! BOOKMARK NOT DEFINED  |

## **FIGURES**

| Figure 1  | Site Locus Map                              |
|-----------|---------------------------------------------|
| Figure 2  | Site Plan                                   |
| Figure 2A | Extended Site Plan                          |
| Figure 3  | Waterbody Assessment & TMDL Status          |
| Figure 4  | Areas of Environmental Concern              |
| Figure 5  | MassDEP Phase 1 Site Assessment Map         |
| Figure 6  | Groundwater Dewatering Installation Diagram |

## **TABLES**

Table 1 Summary of Groundwater Analytical Data

## **ATTACHMENTS**

| Attachment A | Notice of Intent                                              |
|--------------|---------------------------------------------------------------|
| Attachment B | StreamStats 7Q10 Data & MassDEP Correspondence                |
| Attachment C | Laboratory Analytical Reports                                 |
| Attachment D | Fish and Wildlife Service - New England Services Field Office |
|              | Correspondence                                                |
| Attachment E | MARCIS Inventory Results                                      |



#### 1.0 INTRODUCTION

Tg2 Solutions, LLC (Tg2) prepared Notice of Intent (NOI) for a Massachusetts Remediation General Permit (RGP) for construction dewatering at the Shell-branded gasoline station located at 945 Belmont Street, in Brockton, Massachusetts on behalf of the site owner, Colbea Enterprises LLC (Colbea). This NOI is being submitted to the United State Environmental Protection Agency (USEPA) in accordance with the requirements of the Massachusetts General Permit No. MAG070000. This site has formerly been identified by Massachusetts Department of Environmental Protection (MassDEP) as Release Tracking Number (RTN) 4-1088.

This NOI for an RGP is being submitted to account for site renovation activities being conducted at the facility. A portion of these activities include the dewatering of an excavation to allow for the removal and replacement of gasoline underground storage tanks (USTs). For the purpose of this NOI, the "facility" is defined as the area located within the property boundaries of 945 Belmont Street, in Brockton, Massachusetts. Note, the property appraiser lists this facility as 955 Belmont Street. A Site Locus Map is presented as **Figure 1**. A Site Plan is presented as **Figure 2**. A copy of the NOI is included as **Attachment A**.

#### 2.0 GENERAL FACILITY INFORMATION

General site information for which this Phase I applies includes the following:

Property Owner/Facility Operator: Thomas Breckel

Operator Colbea Enterprises LLC

2050 Plainfield Pike Cranston, RI 02920 Tel: (401) 943-0005

Owner/Facility Operator Contact: Eric D. Simpson, Environmental

Program Director

Esimpson@eastsodeenterprise.com

Tel: (401) 943-0005

USGS Quadrangle: Brockton, Massachusetts

Longitude, Latitude: - 71° 03′ 20.76″ W, 42° 03′ 53.74″ N

(approximate)

Site Zoning: General Commercial



County: Plymouth

#### 2.1 Facility Description

The facility is a Shell-branded service station located at 945 Belmont Street in a commercial area of Brockton, Massachusetts. The property is improved with a single-story building, which includes a convenience store and gasoline dispensers. Subsurface structures include three 10,000-gallon USTs and one 10,000-gallon diesel UST. The facility is located on a 0.96-acre parcel. Refer to **Figure 2** - Site Plan, for the location of existing UST systems, dispensers, sampling locations, and pertinent facility features.

#### 2.2 Sensitive Environmental Receptors

The nearest surface water body is a drainage swale and its associated wetland, located approximately 100 feet to the west of the facility. Depth to water at the site has historically ranged from approximately six to nine feet below ground surface (bgs), depending on measurement location. Groundwater does not intersect surface water or wetland areas within the boundaries of the facility. A 100 year floodplain is collocated with the wetland. A waterbody assessment and TMDL status relative to the facility location is provided in **Figure 3**.

The facility is not located within a Zone II area, Interim Wellhead Protection Area (IWPA), or a Zone A or a Potentially Productive Aquifer. Areas of Critical Environmental Concern are not located within 500 feet of the site. Areas of Priority Habitats of Rare Species, Habitats of Rare Wildlife, or Certified Vernal Pools are not located within 500 feet of the facility. Areas of Concern in relation to the facility are located on **Figure 4**. **Figure 5** provides a Bureau of Waste Site Cleanup Receptor Map identifying potential environmental receptors within a 500 foot and ½ mile radius from the site.

## 2.3 National Pollutant Discharge Elimination System (NPDES) Status

Site redevelopment construction activities have not yet begun at the facility and are planned for mid to late spring 2020. The facility is not covered by an individual NPDES permit and there are no pending applications on file for any other permit with US EPA for this facility. As defined by 40 CFR Section 122.2, a new discharger means any building, structure, facility, or installation:

- A) From which there is or may be a "discharge of pollutants;"
- B) That did not commence the "discharge of pollutants" at a particular "site" prior to August 13, 1979;
- C) Which is not a "new source;" and,



D) Which has never received a finally effected NPDES permit for discharges at that "site."

Based on groundwater samples collected at the facility, this site is not considered a new discharge.

#### 3.0 DISCHARGE INFORMATION

This NOI for an RGP is being applied for groundwater discharge necessary during site redevelopment construction activities. These activities include the raze and rebuild of the facility building, and removal and replacement of the existing USTs and associated piping, and dispenser islands. The proposed discharge location for treated groundwater is a wetland located west of the property, as depicted on **Figure 2 and 2A**. This wetland discharges to an artificial pond that connects to the Coweeset Brook, an intermittent stream that becomes perennial after its confluence with the Dorchester Brook. The latitude and longitude of the catch basin discharge and outfall point are:

Wetland Discharge Point:

Latitude: 42.064844 Longitude: -71.056145

Outfall (Unnamed Pond) Point:

Latitude: 42.064787 Longitude: -71.058035

The dewatering and treatment system anticipated for this work includes a 20,000-gallon baffled setting fractionation tank, sediment bag filters, a greensand filter vessel for iron removal, and two activated carbon filter vessels for remaining contaminant removal. This system is designed to meet the required effluent limits for this permit. A diagram of the treatment system is provided on **Figure 6**.

Only one discharge point, described above, will be necessary for dewatering activities. The estimated maximum daily flow is 40 gallons per minute (gpm), with a design flow of 60 gpm. These estimations are expected to decrease once the excavation has been dewatered, and do not include surface run-off following precipitation events. The pH of onsite groundwater was measured at 6.53 (s.u.) and site activities are not anticipated to alter this pH. Discharge activities will only occur during site redevelopment, which is expected to occur in the late spring of 2020. The discharge point for these dewatering activities is a wetland west of the site. Areas of Concern in relation to the facility are located on **Figure 4**. **Figure 5** provides a Bureau of Waste Site Cleanup Receptor Map identifying potential environmental receptors within a 500 foot and ½ mile radius from the site.



If needed, modifications to the system will be made. Modifications to the system will be submitted for approval via a Notice of Change (NOC).

#### 3.1 Receiving Water Information

The receiving water for the indirect discharge of groundwater from the facility is Cowesset Brook, which merges with the Dorchester Brook. StreamStats was consulted and it was determined based on a location on Coweeset Brook, that the 7Q10 is 0.00386 cubic feet per second (cfs). The StreamStats Report is provided in **Attachment B**. Per the Waterbody Assessment and TMDL Status Map (**Figure 3**), Coweeset Brook does not have a TMDL assignment and has been assigned as Class B – no uses assessed.

### 3.2.1 Receiving Water Classification

The Coweeset Brook is classified as Class B and is not an Outstanding Resource Water. Based on the MassDEP Division of Water Pollution Control the downgradient discharge point is Coweeset Brook and does not appear classified:

https://www.mass.gov/doc/final-massachusetts-year-2016-integrated-list-of-waters/download

http://www.mass.gov/eea/docs/dep/water/laws/i-thru-z/tblfig.pdf

https://www.mass.gov/files/documents/2017/08/zu/16ilwplist.pdf

The Coweeset Brook is identified as segment ID MA62-22.

#### 4.0 CONATAMINANT INFORMATION

On January 28, 2020, groundwater samples were collected from on-site monitoring well MW-2 and the outfall discharge location at the wetlands west of the facility. Groundwater samples collected from MW-2 during January 2020 were submitted to ESS Laboratory, Cranston, Rhode Island (ESS) for analysis of metals, hardness, ethanol, chloride, total cyanide, total petroleum hydrocarbons (TPH), total suspended solids (TSS), total residual chlorine (TRC), ammonia, hexavalent chromium, trivalent chromium, phenol, 1,4-dioxane, ethylene dibromide, volatile organic compounds (VOCs), semi-volatile organic compounds (SVOCs), polychlorinated biphenyls (PBCs), tert-butyl alcohol (TBA), and tert-amyl methyl ether (TAME). Surface water samples from the discharge location, Discharge, during January 2020 were submitted to ESS for analysis of ammonia, hexavalent chromium, metals, iron, pH, hardness, and salinity.

Results from the groundwater sampling of MW-2 did not demonstrate concentrations of potential contaminants of concern (pCOCs) above detected above Massachusetts Department of Environmental Protection (MassDEP) reportable concentrations for groundwater (RCGW-2) or the technology-based effluent limitations (TBELs). The facility has previously been, and is currently, a gasoline and service station, and does not use



any pH neutralization or dechlorination chemicals. Based on the summarized groundwater sampling results there are potential water-quality issues in the vicinity of the discharge.

Results from the surface water sample (Discharge) did not demonstrate pCOCs exceeding TBELs or RCGW-2 standards. **Table 1** provides a summary of detected pCOCs from groundwater collected at the facility (influent) and the surface water sample. Groundwater and surface water laboratory analytical reports are provided in **Attachment C**.

#### 5.0 DILUTION FACTOR

MassDEP was contacted on February 13, 2020 to confirm the 7Q10 flow and determine a dilution factor. Final correspondence received on February 18, 2020 confirmed a dilution factor of one (1). The Dilution Factor and Effluent Limitation Calculations fillable electronic spreadsheet was subsequently completed. Copies of the Dilution Factor and Effluent Limitation Calculations fillable electronic spreadsheet, StreamStats Report, and MassDEP correspondence are provided in **Attachment B**.

#### 6.0 DETERMINATION OF ENDANGERED SPECIES ACT ELIGIBILITY (ESA)

The United States Department of the Interior Fish and Wildlife Service – New England Ecological Services Field Office was contacted regarding the determination of endangered species act eligibility (ESA). There are no endangered or candidate species and no critical habitats within the project area for this NOI. Therefore, this ESA determination is FWS Criterion C. Fish and Wildlife Service – New England Service Field Office Correspondence is provided as **Attachment D**.

# 7.0 DOCUMENTATION OF NATION HISTORIC PRESERVATION ACT (NHPA) REQUIREMENTS

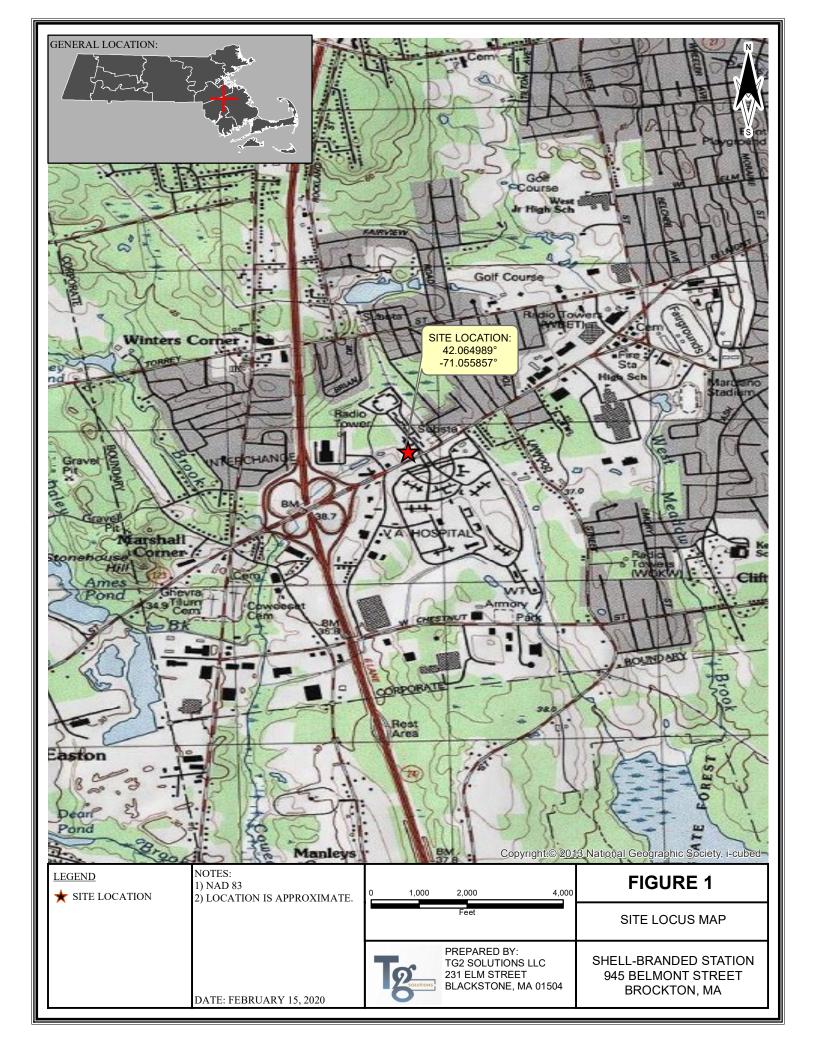
Listings of historic places within the City of Brockton were obtained from the Massachusetts Cultural Resources Information System (MARCIS) online database:

### http://mhc-macris.net/Towns.aspx?Page=towns.asp

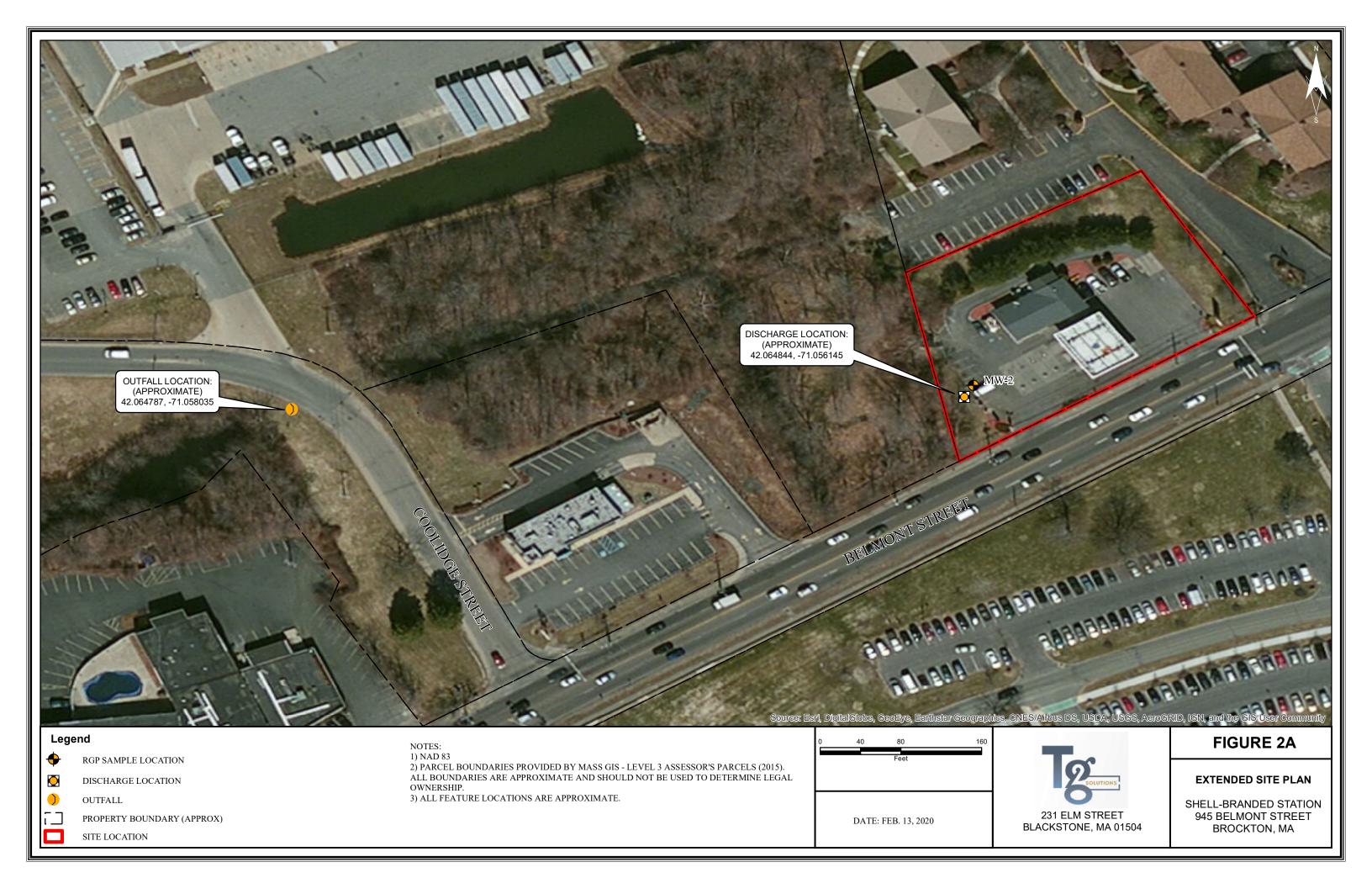
A site vicinity map showing historic places within a quarter mile of the facility and a table documenting the historic places is provided in **Attachment E**. No historic places are located within 500 feet of the facility. Based on the scope of this work, it is unlikely that dewatering activities associated with the redevelopment of this facility will adversely affect any historic places.

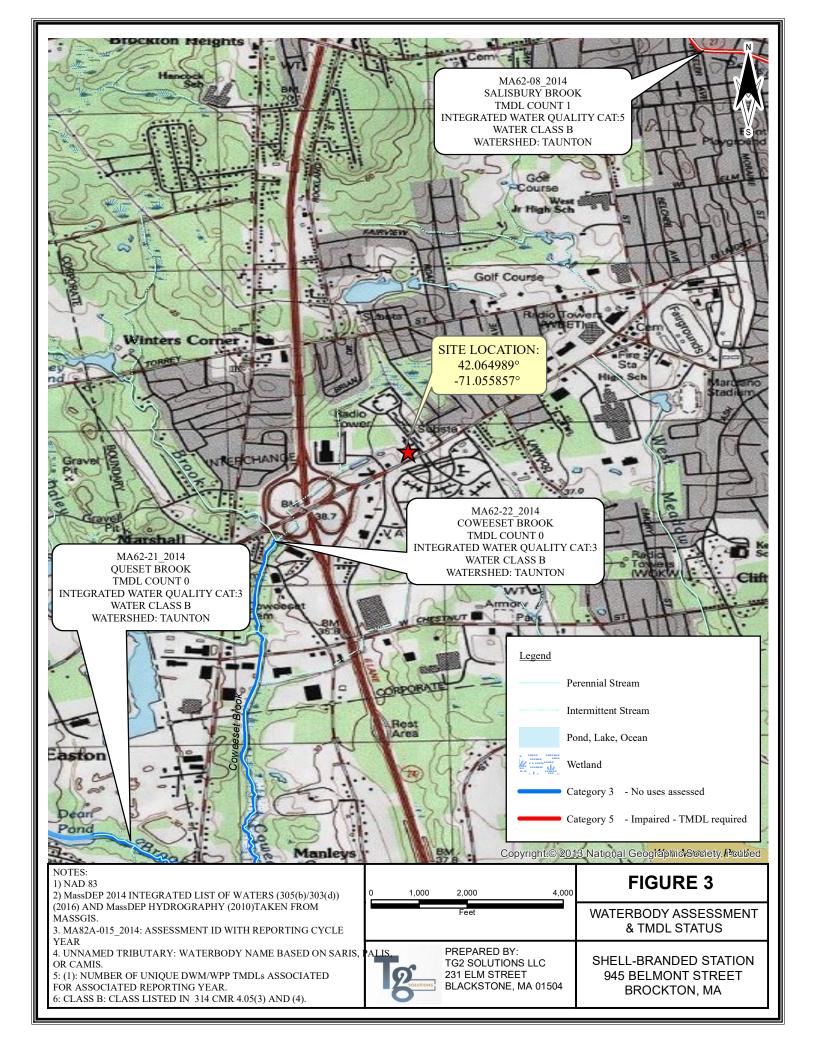


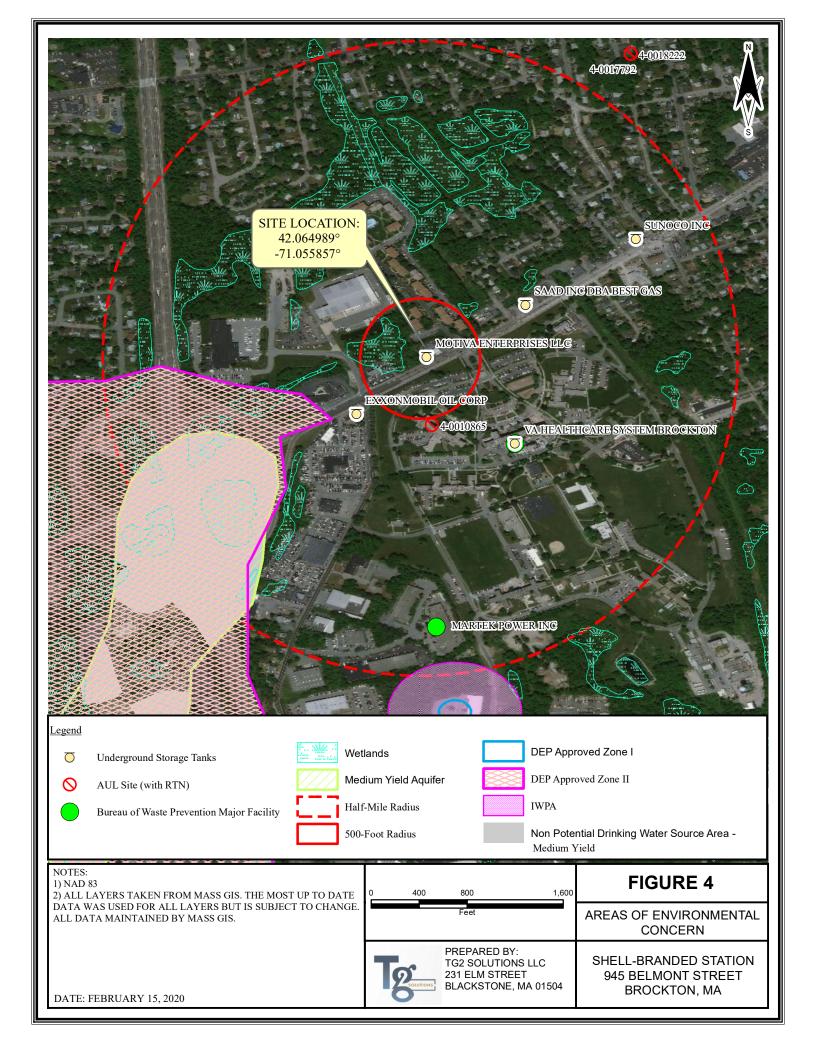
### 8.0 SUPPLEMENTAL INFORMATION


At this time no additional supplemental information is necessary to meet the requirements of the NOI for the RGP.

#### 9.0 REDEVELOPMENT CONSTRUCTION SCHEDULE


Redevelopment construction activities requiring dewatering are anticipated to begin in spring 2020 and are anticipated to be complete by mid-summer 2020.





## **FIGURES**



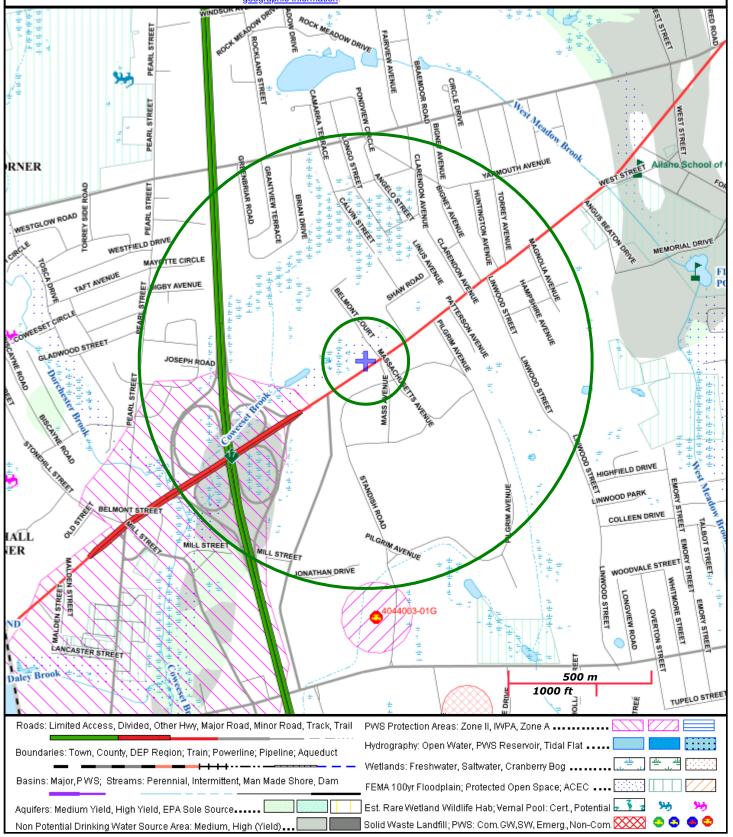


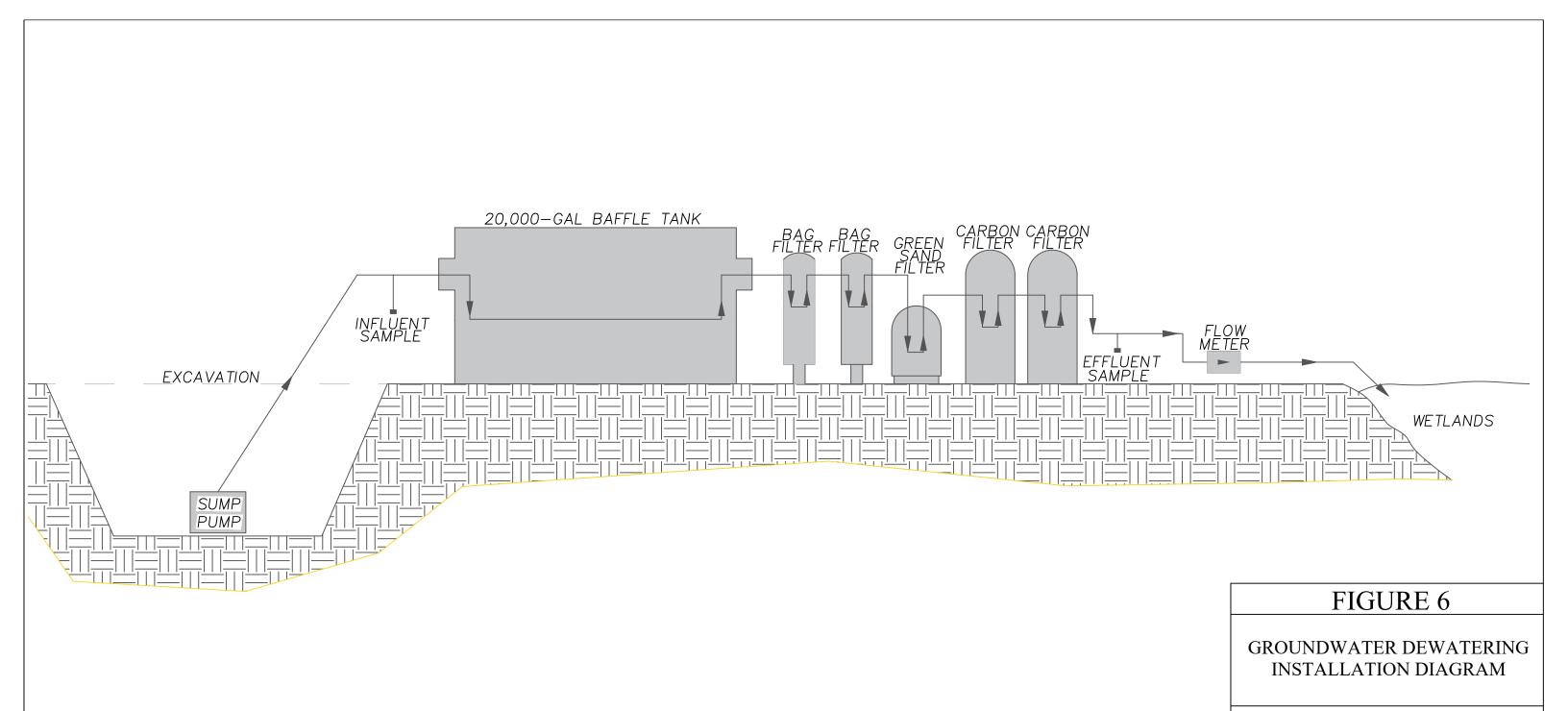






## **MassDEP - Bureau of Waste Site Cleanup**


FIGURE 5 Phase 1 Site Assessment Map: 500 feet & 0.5 Mile Radii


Site Information: SHELL-BRANDED SERVICE STATION 945 BELMONT STREET BROCKTON, MA

NAD83 UTM Meters: 4659035mN , 329912mE (Zone: 19) February 15, 2020 The information shown is the best available at the date of printing. However, it may be incomplete. The responsible party and LSP are ultimately responsible for ascertaining the true conditions surrounding the site. Metadata for data layers shown on this map can be found at:

https://www.mass.gov/orgs/massgis-bureau-of-geographic-information.







## SHELL-BRANDED SERVICE STATION

LOCATED AT

945 BELMONT STREET BROCKTON, MA

PREPARED FOR

COLBEA ENTERPRISES LLC



TG2 SOLUTIONS, LLC 231 ELM STREET BLACKSTONE, MA 0154

DATE: FEB. 13, 2020

REVISED:

NOTES:

1) NOT TO SCALE.

2) THE DISTANCE FROM THE WETLAND DISCHARGE LOCATION TO THE OUTFALL IS APPROXIMATELY 500 FEET.



## **TABLES**

#### TABLE 1

#### SUMMARY OF WATER MONITORING DATA

#### Shell-Branded Service Station 945 Belmont Street Brockton, Massachusetts

|                                            |          | Cadmium<br>(µg/L) | Copper<br>(µg/L) | lron<br>(μg/L) | Lead<br>(µg/L) | Zinc<br>(µg/L) | Ammonia<br>(as N)<br>(mg/L) | Chloride<br>(mg/L) | Hardness<br>(mg/L) | рН   |
|--------------------------------------------|----------|-------------------|------------------|----------------|----------------|----------------|-----------------------------|--------------------|--------------------|------|
| MassDEP Reportable Concentrations (RCGW-2) |          | 4                 | 100,000          | NA             | 1,000          | 900            | NA                          | NA                 | NA                 | NA   |
| Effluent Limitations - TBEL                |          | 10.2              | 242              | 5,000          | 160            | 420            | Report                      | Report             | NA                 | NA   |
| Well ID Sample Date                        |          |                   |                  |                |                |                |                             |                    |                    |      |
| Receiving Water -<br>Discharge             | 01/28/20 | 0.4               | 6.8              | 640            | 1.6            | 35.5           | 0.15                        |                    | 99.7               | 6.19 |
| MW-2                                       | 01/28/20 | 0.2               | ND               | 56.7           | ND             | 9.4            | 0.13                        | 376                | 85.0               | 6.53 |

#### Notes:

µg/L - micrograms per liter

mg/L - milligram per liter

MassDEP - Massachusetts Department of Envnironmental Protection

NA - not available

TBEL - Technology-Based Effluent Limitations

"--" - not sampled

MTBE - Methyl tert-Butyl Ether

**Bold** - above method detection limits

**Bold & Shaded** - above RCGW-2 and/or TBEL Effluent Limitations

<sup>&</sup>lt;sup>a</sup> - Total Group I PAHs is the sum of: benzo(a)anthracene, benzo(a)pyrene, benzo(b)fluoranthene, benzo(k)fluoranthene, chrysene, dibenzo(a,h)anthracene, and indeno(1,2,3-cd)pyrene. The compliance level for each individual PAH is 0.1 µg/L.

b - Total Group II PAHs is the sum of: acenaphthene, acenaphthylene, anthracene, benzo(g,h,i)perylene, fluoranthene, fluorene, naphthalene, phenanthrene, and pyrene. The total compliance level for Group II PAHs is 100 µg/L.



## **ATTACHMENT A**

## II. Suggested Format for the Remediation General Permit Notice of Intent (NOI)

## A. General site information:

| 1. Name of site:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Site address:                                                                  |                |             |                      |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------|----------------|-------------|----------------------|
| Colbea Shell-Branded Gasoline Station                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Street: 945 Belmont Street                                                     |                |             |                      |
| 945 Belmont Street, Brockton, MA ル                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | City: Brockton                                                                 |                | State:      | Zip: 02301           |
| 2. Site owner                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Contact Person: Eric Simpson                                                   |                |             |                      |
| Colbea Enterprises, LLC<br>2050 Plainfield Pike                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Telephone: 401-943-0005                                                        | Email: E       | simpson@ea  | stsodeenterprise.com |
| Cranston, RI 02921                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Mailing address: Street: 2050 Plainfield Pike                                  |                |             |                      |
| Owner is (check one): ☐ Federal ☐ State/Tribal ☑ Private ☐ Other; if so, specify:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | City: Cranston                                                                 |                | State: RI   | Zip: 02920           |
| 3. Site operator, if different than owner                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Contact Person: Same as above                                                  |                |             |                      |
| _                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Telephone:                                                                     | Email:         |             |                      |
| Same as owner                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Mailing address:                                                               |                |             |                      |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Street:                                                                        |                |             |                      |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | City:                                                                          |                | State:      | Zip:                 |
| 4. NPDES permit number assigned by EPA:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 5. Other regulatory program(s) that apply to the site                          | (check all th  | at apply):  |                      |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | ✓ MA Chapter 21e; list RTN(s): Former 4-1088                                   | □ CERCL        | _A          |                      |
| NEDEC STATE OF THE |                                                                                | □ UIC Pro      | ogram       |                      |
| NPDES permit is (check all that apply: ☑ RGP ☐ DGP ☐ CGP                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | ☐ NH Groundwater Management Permit or<br>Groundwater Release Detection Permit: | $\square$ POTW | Pretreatmen | t                    |
| ☐ MSGP ☐ Individual NPDES permit ☐ Other; if so, specify:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Groundwater Release Detection Fermit.                                          | □ CWA S        | Section 404 |                      |

| B. Receiving water information:                                                                                                                                      |                                                                         |                   |                               |  |  |  |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------|-------------------|-------------------------------|--|--|--|
| 1. Name of receiving water(s):                                                                                                                                       | Waterbody identification of receiving water(s):                         | Classific         | cation of receiving water(s): |  |  |  |
| Wetland to Coweeset Brook                                                                                                                                            | MA62-22                                                                 | Class             | В                             |  |  |  |
| Receiving water is (check any that apply): □ Outstanding                                                                                                             | Resource Water □ Ocean Sanctuary □ territorial sea □ V                  | Wild and Scenic R | iver                          |  |  |  |
| 2. Has the operator attached a location map in accordance                                                                                                            | with the instructions in B, above? (check one): $\square$ Yes $\square$ | No                |                               |  |  |  |
| Are sensitive receptors present near the site? (check one): If yes, specify:                                                                                         | □ Yes ☑ No                                                              |                   |                               |  |  |  |
| 3. Indicate if the receiving water(s) is listed in the State's I pollutants indicated. Also, indicate if a final TMDL is avail 4.6 of the RGP. Not listed/classified |                                                                         |                   |                               |  |  |  |
| 4. Indicate the seven day-ten-year low flow (7Q10) of the Appendix V for sites located in Massachusetts and Appendix                                                 |                                                                         | ctions in         | 0.00386 cfs                   |  |  |  |
| 5. Indicate the requested dilution factor for the calculation accordance with the instructions in Appendix V for sites in                                            |                                                                         |                   | 1.0                           |  |  |  |
| 6. Has the operator received confirmation from the appropriate State for the 7Q10and dilution factor indicated? (check one): ✓ Yes ☐ No February 18, 2020            |                                                                         |                   |                               |  |  |  |
| 7. Has the operator attached a summary of receiving water                                                                                                            | sampling results as required in Part 4.2 of the RGP in acc              | cordance with the | instruction in Appendix VIII? |  |  |  |
| (check one): ☑ Yes □ No                                                                                                                                              |                                                                         |                   |                               |  |  |  |
| C. Source water information:                                                                                                                                         |                                                                         |                   |                               |  |  |  |

| 1. Source water(s) is (check any that apply):                                                       |                                                                                                 |                                                      |                                                          |
|-----------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------|------------------------------------------------------|----------------------------------------------------------|
| ☑ Contaminated groundwater                                                                          | ☐ Contaminated surface water                                                                    | ☐ The receiving water                                | ☐ Potable water; if so, indicate municipality or origin: |
| Has the operator attached a summary of influent sampling results as required in Part 4.2 of the RGP | Has the operator attached a summary of influent sampling results as required in Part 4.2 of the | ☐ A surface water other                              |                                                          |
| in accordance with the instruction in Appendix VIII? (check one):                                   | RGP in accordance with the instruction in Appendix VIII? (check one):                           | than the receiving water; if so, indicate waterbody: | ☐ Other; if so, specify:                                 |
| ☑ Yes □ No                                                                                          | □ Yes □ No                                                                                      |                                                      |                                                          |

| 2. Source water contaminants:                                                                                                                                    |                                                                                                                                                                                    |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| a. For source waters that are contaminated groundwater or contaminated surface water, indicate are any contaminants present that are not included in             | b. For a source water that is a surface water other than the receiving water, potable water or other, indicate any contaminants present at the maximum concentration in accordance |
| the RGP? (check one): □ Yes ☑ No If yes, indicate the contaminant(s) and the maximum concentration present in accordance with the instructions in Appendix VIII. | with the instructions in Appendix VIII? (check one): □ Yes □ No                                                                                                                    |
| 3. Has the source water been previously chlorinated or otherwise contains resid                                                                                  | dual chlorine? (check one): □ Yes ☑ No                                                                                                                                             |
| D. Discharge information                                                                                                                                         |                                                                                                                                                                                    |
| 1. The discharge(s) is $a(n)$ (check any that apply): $\square$ Existing discharge $\square$ Nev                                                                 | v discharge □ New source                                                                                                                                                           |
| Outfall(s):                                                                                                                                                      | Outfall location(s): (Latitude, Longitude)                                                                                                                                         |
| The proposed discharge location for treated groundwater is a wetland located immediately west of the site, which discharges to Coweeset Brook.                   | Wetland Discharge Point: Latitude: 42.064844, Longitude:-71.056145 Outfall (Unnamed Pond) Point: Latitude: 42.064787, Longitude: -71.05803529                                      |
| Discharges enter the receiving water(s) via (check any that apply): □ Direct di                                                                                  | scharge to the receiving water  Indirect discharge, if so, specify:                                                                                                                |
| ☐ A private storm sewer system ☑ A municipal storm sewer system  If the discharge enters the receiving water via a private or municipal storm sew                | •                                                                                                                                                                                  |
| Has notification been provided to the owner of this system? (check one): \( \subseteq \) Ye                                                                      | es 🗆 No                                                                                                                                                                            |
| Has the operator has received permission from the owner to use such system for obtaining permission:                                                             | or discharges? (check one): ☑ Yes □ No, if so, explain, with an estimated timeframe for                                                                                            |
| Has the operator attached a summary of any additional requirements the owner                                                                                     | of this system has specified? (check one): ☐ Yes ☑ No                                                                                                                              |
| Provide the expected start and end dates of discharge(s) (month/year):                                                                                           |                                                                                                                                                                                    |
| April to June 2020 for construction, dewatering exp                                                                                                              |                                                                                                                                                                                    |
| Indicate if the discharge is expected to occur over a duration of: □ less than 1                                                                                 | 2 months □ 12 months or more □ is an emergency discharge                                                                                                                           |
| Has the operator attached a site plan in accordance with the instructions in D, a                                                                                | above? (check one): ☑ Yes □ No                                                                                                                                                     |

| 2. Activity Category: (check all that apply)                                                                                                                                                                        | 3. Contamination Type Category: (check                                                                                                                                                                                                                                                                                                       | c all that apply)                                                                                      |  |  |  |  |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------|--|--|--|--|
|                                                                                                                                                                                                                     | a. If Activity Category I or II: (check all that apply)                                                                                                                                                                                                                                                                                      |                                                                                                        |  |  |  |  |
| <ul> <li>☑ I – Petroleum-Related Site Remediation</li> <li>☐ II – Non-Petroleum-Related Site Remediation</li> <li>☐ III – Contaminated Site Dewatering</li> <li>☐ IV – Dewatering of Pipelines and Tanks</li> </ul> | <ul> <li>☑ A. Inorganics</li> <li>☑ B. Non-Halogenated Volatile Organic</li> <li>☑ C. Halogenated Volatile Organic Cor</li> <li>☑ D. Non-Halogenated Semi-Volatile Organic</li> <li>☑ E. Halogenated Semi-Volatile Organic</li> <li>☑ F. Fuels Parameters</li> </ul>                                                                         | ompounds Organic Compounds                                                                             |  |  |  |  |
|                                                                                                                                                                                                                     | b. If Activity Category III, IV, V, VI, VII or VIII: (check either G or H)                                                                                                                                                                                                                                                                   |                                                                                                        |  |  |  |  |
|                                                                                                                                                                                                                     | ☐ G. Sites with Known Contamination                                                                                                                                                                                                                                                                                                          | ☐ H. Sites with Unknown Contamination                                                                  |  |  |  |  |
| <ul> <li>□ V – Aquifer Pump Testing</li> <li>□ VI – Well Development/Rehabilitation</li> <li>□ VII – Collection Structure Dewatering/Remediation</li> </ul>                                                         | c. If Category III-G, IV-G, V-G, VI-G, VII-G or VIII-G: (check all that apply)                                                                                                                                                                                                                                                               |                                                                                                        |  |  |  |  |
| □ VIII – Dredge-Related Dewatering                                                                                                                                                                                  | <ul> <li>□ A. Inorganics</li> <li>□ B. Non-Halogenated Volatile</li> <li>Organic Compounds</li> <li>□ C. Halogenated Volatile Organic</li> <li>Compounds</li> <li>□ D. Non-Halogenated Semi-Volatile</li> <li>Organic Compounds</li> <li>□ E. Halogenated Semi-Volatile</li> <li>Organic Compounds</li> <li>□ F. Fuels Parameters</li> </ul> | d. If Category III-H, IV-H, V-H, VI-H, VII-H or VIII-H Contamination Type Categories A through F apply |  |  |  |  |

#### 4. Influent and Effluent Characteristics

|                         | Known                    | Known                     |                 | <b></b>               |                              | Infl                       | luent                      | Effluent Limitations |       |
|-------------------------|--------------------------|---------------------------|-----------------|-----------------------|------------------------------|----------------------------|----------------------------|----------------------|-------|
| Parameter               | or<br>believed<br>absent | or<br>believed<br>present | # of<br>samples | Test<br>method<br>(#) | Detection<br>limit<br>(µg/l) | Daily<br>maximum<br>(μg/l) | Daily<br>average<br>(µg/l) | TBEL                 | WQBEL |
| A. Inorganics           |                          |                           |                 |                       |                              |                            |                            |                      |       |
| Ammonia                 |                          | х                         | 1               | 350.1                 | 0.10                         | 0.13                       | 0.13                       | Report mg/L          |       |
| Chloride                |                          | х                         | 1               | 300.0                 | 50                           | 376,000                    | 376,000                    | Report μg/l          |       |
| Total Residual Chlorine | х                        |                           | 1               | 4500CID               | 0.02                         | <0.02                      | 0.0                        | 0.2 mg/L             | 11    |
| Total Suspended Solids  | x                        |                           | 1               | 2340D                 | 5                            | <5                         | 0.0                        | 30 mg/L              | _     |
| Antimony                | х                        |                           | 1               | 200.8                 | 5                            | <5                         | 0.0                        | 206 μg/L             | _     |
| Arsenic                 | х                        |                           | 1               | 3113B                 | 0.5                          | <0.5                       | 0.0                        | 104 μg/L             | _     |
| Cadmium                 |                          | х                         | 1               | 200.8                 | 0.1                          | 0.2                        | 0.2                        | 10.2 μg/L            | _     |
| Chromium III            | х                        |                           | 1               | 200.7                 | 2                            | <2                         | 0.0                        | 323 μg/L             | _     |
| Chromium VI             | х                        |                           | 1               | 3500Cr                | 10                           | <10                        | 0.0                        | 323 μg/L             | _     |
| Copper                  | х                        |                           | 1               | 200.7                 | 2.0                          | <2                         | 0.0                        | 242 μg/L             | _     |
| Iron                    |                          | х                         | 1               | 200.7                 | 10                           | 56.7                       | 56.7                       | 5,000 μg/L           | _     |
| Lead                    | x                        |                           | 1               | 200.7                 | 0.5                          | <0.5                       | 0.0                        | 160 μg/L             | _     |
| Mercury                 | х                        |                           | 1               | 245.1                 | 0.2                          | <0.2                       | 0.0                        | 0.739 μg/L           | _     |
| Nickel                  | х                        |                           | 1               | 200.7                 | 5.0                          | <5.0                       | 0.0                        | 1,450 μg/L           | _     |
| Selenium                | х                        |                           | 1               | 200.7                 | 1                            | <1                         | 0.0                        | 235.8 μg/L           | _     |
| Silver                  | х                        |                           | 1               | 200.7                 | 1                            | <1                         | 0.0                        | 35.1 μg/L            | _     |
| Zinc                    |                          | х                         | 1               | 200.7                 | 5                            | 9.4                        | 9.4                        | 420 μg/L             | _     |
| Cyanide                 | х                        |                           | 1               | 4500CN CE             | 5                            | <5                         | 0.0                        | 178 mg/L             | _     |
| B. Non-Halogenated VOCs |                          |                           | •               |                       |                              |                            |                            |                      |       |
| Total BTEX              | х                        |                           | 1               | 524.2                 | 0.5                          | <0.5                       | 0.0                        | 100 μg/L             |       |
| Benzene                 | х                        |                           | 1               | 524.2                 | 0.5                          | <0.5                       | 0.0                        | 5.0 μg/L             |       |
| 1,4 Dioxane             | Х                        |                           | 1               | 8270 D SIM            | 0.250                        | <0.250                     | 0.0                        | 200 μg/L             |       |
| Acetone                 | х                        |                           | 1               | 524.2                 | 5.0                          | <5.0                       | 0.0                        | 7.97 mg/L            |       |
| Phenol                  | х                        |                           | 1               | 420.1                 | 50                           | <50                        | 0.0                        | 1,080 μg/L           | _     |

|                          | Known                    | Known                     |                 |                       |                              | Inf                        | luent                      | Effluent Limitations |       |  |
|--------------------------|--------------------------|---------------------------|-----------------|-----------------------|------------------------------|----------------------------|----------------------------|----------------------|-------|--|
| Parameter                | or<br>believed<br>absent | or<br>believed<br>present | # of<br>samples | Test<br>method<br>(#) | Detection<br>limit<br>(µg/l) | Daily<br>maximum<br>(μg/l) | Daily<br>average<br>(µg/l) | TBEL                 | WQBEL |  |
| C. Halogenated VOCs      |                          |                           |                 |                       |                              |                            |                            |                      |       |  |
| Carbon Tetrachloride     | Х                        |                           | 1               | 524.2                 | 0.3                          | <0.3                       | 0.0                        | 4.4 μg/L             | _     |  |
| 1,2 Dichlorobenzene      | х                        |                           | 1               | 524.2                 | 0.5                          | <0.5                       | 0.0                        | 600 μg/L             |       |  |
| 1,3 Dichlorobenzene      | х                        |                           | 1               | 524.2                 | 0.5                          | <0.5                       | 0.0                        | 320 μg/L             |       |  |
| 1,4 Dichlorobenzene      | х                        |                           | 1               | 524.2                 | 0.5                          | <0.5                       | 0.0                        | 5.0 μg/L             |       |  |
| Total dichlorobenzene    | х                        |                           | 1               | 524.2                 | 0.5                          | <0.5                       | 0.0                        | 763 μg/L in NH       |       |  |
| 1,1 Dichloroethane       | х                        |                           | 1               | 524.2                 | 0.5                          | <0.5                       | 0.0                        | 70 μg/L              |       |  |
| 1,2 Dichloroethane       | x                        |                           | 1               | 524.2                 | 0.5                          | <0.5                       | 0.0                        | 5.0 μg/L             |       |  |
| 1,1 Dichloroethylene     | х                        |                           | 1               | 524.2                 | 0.5                          | <0.5                       | 0.0                        | 3.2 μg/L             |       |  |
| Ethylene Dibromide       | х                        |                           | 1               | 524.2                 | 0.5                          | <0.5                       | 0.0                        | $0.05~\mu g/L$       |       |  |
| Methylene Chloride       | х                        |                           | 1               | 524.2                 | 0.5                          | <0.5                       | 0.0                        | 4.6 μg/L             |       |  |
| 1,1,1 Trichloroethane    | х                        |                           | 1               | 524.2                 | 0.5                          | <0.5                       | 0.0                        | 200 μg/L             |       |  |
| 1,1,2 Trichloroethane    | х                        |                           | 1               | 524.2                 | 0.5                          | <0.5                       | 0.0                        | 5.0 μg/L             |       |  |
| Trichloroethylene        | x                        |                           | 1               | 524.2                 | 0.5                          | <0.5                       | 0.0                        | 5.0 μg/L             |       |  |
| Tetrachloroethylene      | х                        |                           | 1               | 524.2                 | 0.5                          | <0.5                       | 0.0                        | 5.0 μg/L             | _     |  |
| cis-1,2 Dichloroethylene | х                        |                           | 1               | 524.2                 | 0.5                          | <0.5                       | 0.0                        | 70 μg/L              |       |  |
| Vinyl Chloride           | х                        |                           | 1               | 524.2                 | 0.2                          | <0.2                       | 0.0                        | 2.0 μg/L             |       |  |
| D. Non-Halogenated SVOC  | Cs .                     |                           |                 |                       |                              |                            |                            |                      |       |  |
| Total Phthalates         | Х                        |                           | 1               | 625.1 SIM             | 2.34                         | <2.34                      | 0.0                        | 190 μg/L             | _     |  |
| Diethylhexyl phthalate   | ×                        |                           | 1               | 625.1 SIM             | 2.34                         | <2.34                      | 0.0                        | 101 μg/L             | _     |  |
| Total Group I PAHs       | x                        |                           | 1               | 625.1 SIM             | 0.05                         | <0.05                      | 0.0                        | 1.0 μg/L             |       |  |
| Benzo(a)anthracene       | х                        |                           | 1               | 625.1 SIM             | 0.05                         | <0.05                      | 0.0                        |                      | _     |  |
| Benzo(a)pyrene           | х                        |                           | 1               | 625.1 SIM             | 0.05                         | <0.05                      | 0.0                        |                      | _     |  |
| Benzo(b)fluoranthene     | х                        |                           | 1               | 625.1 SIM             | 0.05                         | <0.05                      | 0.0                        | ]                    | _     |  |
| Benzo(k)fluoranthene     | х                        |                           | 1               | 625.1 SIM             | 0.05                         | <0.05                      | 0.0                        | As Total PAHs        | _     |  |
| Chrysene                 | х                        |                           | 1               | 625.1 SIM             | 0.05                         | <0.05                      | 0.0                        | ]                    | _     |  |
| Dibenzo(a,h)anthracene   | х                        |                           | 1               | 625.1 SIM             | 0.05                         | <0.05                      | 0.0                        |                      | _     |  |
| Indeno(1,2,3-cd)pyrene   | х                        |                           | 1               | 625.1 SIM             | 0.05                         | <0.05                      | 0.0                        |                      | _     |  |

|                                 | Known                    | Known                     |                 |                       |                              | Inf                        | luent                      | Effluent Lin                    | nitations |
|---------------------------------|--------------------------|---------------------------|-----------------|-----------------------|------------------------------|----------------------------|----------------------------|---------------------------------|-----------|
| Parameter                       | or<br>believed<br>absent | or<br>believed<br>present | # of<br>samples | Test<br>method<br>(#) | Detection<br>limit<br>(µg/l) | Daily<br>maximum<br>(µg/l) | Daily<br>average<br>(µg/l) | TBEL                            | WQBEL     |
| Total Group II PAHs             | х                        |                           | 1               | 625.1 SIM             | 0.19                         | <0.19                      | 0.0                        | 100 μg/L                        |           |
| Naphthalene                     | х                        |                           | 1               | 625.1 SIM             | 0.19                         | <0.19                      | 0.0                        | 20 μg/L                         |           |
| E. Halogenated SVOCs            |                          |                           |                 |                       |                              |                            |                            |                                 |           |
| Total PCBs                      | x                        |                           | 1               | 608.3                 | 0.09                         | <0.09                      | 0.0                        | 0.000064 μg/L                   |           |
| Pentachlorophenol               | х                        |                           | 1               | 625.1 SIM             | 0.84                         | <0.84                      | 0.0                        | 1.0 μg/L                        |           |
| F. Fuels Parameters             |                          |                           |                 |                       |                              |                            |                            |                                 |           |
| Total Petroleum<br>Hydrocarbons | x                        |                           | 1               | 1664A                 | 5                            | <5.0                       | 0.0                        | 5.0 mg/L                        |           |
| Ethanol                         | х                        |                           | 1               | D3695                 | 10                           | <10                        | 0.0                        | Report mg/L                     |           |
| Methyl-tert-Butyl Ether         | х                        |                           | 1               | 524.2                 | 0.5                          | <0.5                       | 0.0                        | 70 μg/L                         |           |
| tert-Butyl Alcohol              | x                        |                           | 1               | 524.2                 | 25.0                         | <25                        | 0.0                        | 120 μg/L in MA<br>40 μg/L in NH |           |
| tert-Amyl Methyl Ether          | х                        |                           | 1               | 524.2                 | 1.0                          | <1.0                       | 0.0                        | 90 μg/L in MA<br>140 μg/L in NH |           |
| Other (i.e., pH, temperatu      | re, hardness,            | salinity, LC              | 50, addition    | al pollutan           | ts present);                 | if so, specify:            | 85,000                     | <u> </u>                        |           |
|                                 |                          |                           | 1               |                       |                              | 6.53                       | 65,000                     |                                 |           |
| pH                              |                          | Х                         |                 | 9040                  | _                            | 6.53                       |                            |                                 |           |
|                                 |                          |                           |                 |                       |                              |                            |                            |                                 |           |
|                                 |                          |                           |                 |                       |                              |                            |                            |                                 |           |
|                                 |                          |                           |                 |                       |                              |                            |                            |                                 |           |
|                                 |                          |                           |                 |                       |                              |                            |                            |                                 |           |
|                                 |                          |                           |                 |                       |                              |                            |                            |                                 |           |
|                                 |                          |                           |                 |                       |                              |                            | -                          |                                 |           |
|                                 |                          |                           |                 |                       |                              |                            |                            |                                 |           |
|                                 |                          |                           |                 |                       |                              |                            |                            |                                 |           |
|                                 |                          |                           |                 |                       |                              |                            |                            |                                 |           |
|                                 |                          |                           |                 |                       |                              |                            |                            |                                 |           |

## E. Treatment system information

| 1. Indicate the type(s) of treatment that will be applied to effluent prior to discharge: (check all that apply)                                                                                                                                     |          |  |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------|--|
| □ Adsorption/Absorption □ Advanced Oxidation Processes □ Air Stripping ☑ Granulated Activated Carbon ("GAC")/Liquid Phase Carbon Adsorption □ Ion Exchange □ Precipitation/Coagulation/Flocculation ☑ Separation/Filtration □ Other; if so, specify: |          |  |
| 2. Provide a written description of all treatment system(s) or processes that will be applied to the effluent prior to discharge.                                                                                                                    |          |  |
| See NOI RGP Report Section 3.0, and Figure 6                                                                                                                                                                                                         |          |  |
| Identify each major treatment component (check any that apply):                                                                                                                                                                                      |          |  |
| ☑ Fractionation tanks□ Equalization tank □ Oil/water separator ☑ Mechanical filter ☑ Media filter                                                                                                                                                    |          |  |
| □ Chemical feed tank □ Air stripping unit ☑ Bag filter □ Other; if so, specify:                                                                                                                                                                      |          |  |
| Indicate if either of the following will occur (check any that apply):                                                                                                                                                                               |          |  |
| □ Chlorination □ De-chlorination                                                                                                                                                                                                                     |          |  |
| 3. Provide the <b>design flow capacity</b> in gallons per minute (gpm) of the most limiting component.  Indicate the most limiting component:  Is use of a flow meter feasible? (check one): ☑ Yes □ No, if so, provide justification:               | 60 gpm   |  |
| Provide the proposed maximum effluent flow in gpm.                                                                                                                                                                                                   | 40 gpm   |  |
| Provide the average effluent flow in gpm.                                                                                                                                                                                                            | < 40 gpm |  |
| If Activity Category IV applies, indicate the estimated total volume of water that will be discharged:                                                                                                                                               |          |  |
| 4. Has the operator attached a schematic of flow in accordance with the instructions in E, above? (check one): □ Yes □ No                                                                                                                            |          |  |

## F. Chemical and additive information

| r. Chemical and additive information                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 1. Indicate the type(s) of chemical or additive that will be applied to effluent prior to discharge or that may otherwise be present in the discharge(s): (check all that apply)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| □ Algaecides/biocides □ Antifoams □ Coagulants □ Corrosion/scale inhibitors □ Disinfectants □ Flocculants □ Neutralizing agents □ Oxidants □ Oxygen □                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| scavengers □ pH conditioners □ Bioremedial agents, including microbes □ Chlorine or chemicals containing chlorine □ Other; if so, specify:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| 2. Provide the following information for each chemical/additive, using attachments, if necessary:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| a. Product name, chemical formula, and manufacturer of the chemical/additive; b. Purpose or use of the chemical/additive or remedial agent; c. Material Safety Data Sheet (MSDS) and Chemical Abstracts Service (CAS) Registry number for each chemical/additive; d. The frequency (hourly, daily, etc.), duration (hours, days), quantity (maximum and average), and method of application for the chemical/additive; e. Any material compatibility risks for storage and/or use including the control measures used to minimize such risks; and f. If available, the vendor's reported aquatic toxicity (NOAEL and/or LC50 in percent for aquatic organism(s)). |
| 3. Has the operator attached an explanation which demonstrates that the addition of such chemicals/additives may be authorized under this general permit in accordance                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| with the instructions in F, above? (check one): $\square$ Yes $\square$ No; if no, has the operator attached data that demonstrates each of the 126 priority pollutants in CWA Section 307(a) and 40 CFR Part 423.15(j)(1) are non-detect in discharges with the addition of the proposed chemical/additive?                                                                                                                                                                                                                                                                                                                                                      |
| (check one): □ Yes □ No                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| G. Endangered Species Act eligibility determination                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| 1. Indicate under which criterion the discharge(s) is eligible for coverage under this general permit:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| □ <b>FWS Criterion A</b> : No endangered or threatened species or critical habitat are in proximity to the discharges or related activities or come in contact with the "action area".                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| □ <b>FWS Criterion B</b> : Formal or informal consultation with the FWS under section 7 of the ESA resulted in either a no jeopardy opinion (formal consultation) or a written concurrence by FWS on a finding that the discharges and related activities are "not likely to adversely affect" listed species or critical habitat (informal consultation). Has the operator completed consultation with FWS? (check one): □ Yes □ No; if no, is consultation underway? (check one): □                                                                                                                                                                             |
| Yes □ No                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| FWS Criterion C: Using the best scientific and commercial data available, the effect of the discharges and related activities on listed species and critical habitat have been evaluated. Based on those evaluations, a determination is made by EPA, or by the operator and affirmed by EPA, that the discharges and related activities will have "no effect" on any federally threatened or endangered listed species or designated critical habitat under the jurisdiction of the                                                                                                                                                                              |
| FWS. This determination was made by: (check one) $\square$ the operator $\square$ EPA $\square$ Other; if so, specify:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |

| □ NMFS Criterion: A determination made by EPA is affirmed by the operator that the discharges and related activities will have "no effect" or are "not likely to adversely affect" any federally threatened or endangered listed species or critical habitat under the jurisdiction of NMFS and will not result in any take of                                                                  |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| listed species. Has the operator previously completed consultation with NMFS? (check one): ☐ Yes ☐ No                                                                                                                                                                                                                                                                                           |
| 2. Has the operator attached supporting documentation of ESA eligibility in accordance with the instructions in Appendix I, and G, above? (check one): ☑ Yes ☐ No                                                                                                                                                                                                                               |
|                                                                                                                                                                                                                                                                                                                                                                                                 |
| Does the supporting documentation include any written concurrence or finding provided by the Services? (check one):   Yes  No; if yes, attach.                                                                                                                                                                                                                                                  |
|                                                                                                                                                                                                                                                                                                                                                                                                 |
| H. National Historic Preservation Act eligibility determination                                                                                                                                                                                                                                                                                                                                 |
| 1. Indicate under which criterion the discharge(s) is eligible for coverage under this general permit:                                                                                                                                                                                                                                                                                          |
| ☑ <b>Criterion A</b> : No historic properties are present. The discharges and discharge-related activities (e.g., BMPs) do not have the potential to cause effects on historic properties.                                                                                                                                                                                                      |
| ☐ Criterion B: Historic properties are present. Discharges and discharge related activities do not have the potential to cause effects on historic properties.                                                                                                                                                                                                                                  |
| ☐ <b>Criterion C</b> : Historic properties are present. The discharges and discharge-related activities have the potential to have an effect or will have an adverse effect on historic properties.                                                                                                                                                                                             |
| 2. Has the operator attached supporting documentation of NHPA eligibility in accordance with the instructions in H, above? (check one): □ Yes □ No                                                                                                                                                                                                                                              |
| Does the supporting documentation include any written agreement with the State Historic Preservation Officer (SHPO), Tribal Historic Preservation Officer (TPHO), or other tribal representative that outlines measures the operator will carry out to mitigate or prevent any adverse effects on historic properties? (check one): □ Yes ☑ No                                                  |
| I. Supplemental information                                                                                                                                                                                                                                                                                                                                                                     |
| Describe any supplemental information being provided with the NOI. Include attachments if required or otherwise necessary.                                                                                                                                                                                                                                                                      |
| Please refer to the NOI RGP Report, attached. This report includes a site map with discharge and outfall locations, water classifications, potential environmental receptors, groundwater analytical tables and laboratory analytical reports, and supporting documentation for the ESA determination and historic sites within the vicinity of the facility this NOI RGP is being applied for. |
| Has the operator attached data, including any laboratory case narrative and chain of custody used to support the application? (check one): ☑ Yes ☐ No                                                                                                                                                                                                                                           |
| Has the operator attached the certification requirement for the Best Management Practices Plan (BMPP)? (check one): ☑ Yes □ No                                                                                                                                                                                                                                                                  |

## J. Certification requirement

| I certify under penalty of law that this document and all attachments were prepared under that qualified personnel properly gathered and evaluated the information submitted. Base persons directly responsible for gathering the information, the information submitted is, to no personal knowledge that the information submitted is other than true, accurate, and coinformation, including the possibility of fine and imprisonment for knowing violations. | d on my inquiry of the person or persons who manage<br>to the best of my knowledge and belief, true, accurate, a | the system, or those<br>and complete. I have |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------|----------------------------------------------|
| BMPP certification statement: A BMPP meeting the requirements of this general permit                                                                                                                                                                                                                                                                                                                                                                             | will be developed and implemented upon initiation of dis                                                         | charge.                                      |
| Notification provided to the appropriate State, including a copy of this NOI, if required.                                                                                                                                                                                                                                                                                                                                                                       | Check one: Yes ☑                                                                                                 | No □                                         |
| Notification provided to the municipality in which the discharge is located, including a co                                                                                                                                                                                                                                                                                                                                                                      | ppy of this NOI, if requested. Check one: Yes ☑                                                                  | No □                                         |
| Notification provided to the owner of a private or municipal storm sewer system, if such discharges, including a copy of this NOI, if requested.  Permission obtained from the owner of a private or municipal storm sewer system, if such                                                                                                                                                                                                                       | system is used for site                                                                                          | No□ NA□                                      |
| discharges. If yes, attach additional conditions. If no, attach explanation and timeframe for                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                  | No □ NA □                                    |
| Notification provided to the owner/operator of the area associated with activities covered permit(s). Additional discharge permit is (check one): $\square$ RGP $\square$ DGP $\square$ CGP $\square$ MSGP $\square$ Other; if so, specify:                                                                                                                                                                                                                      |                                                                                                                  | No □ NA ☑                                    |
| Signature: See S                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Date: a(14/1630                                                                                                  |                                              |
| Print Name and Title: Eric Simpson - Environmental Manager                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                  |                                              |



## **ATTACHMENT B**

Subject: RE: RGP NOI - 945 Belmont St, Brockton

Date: Tuesday, February 18, 2020 at 1:09:52 PM Eastern Standard Time

From: Ruan, Xiaodan (DEP)

To: 'Ismith@tg2solutions.com'
CC: Vakalopoulos, Catherine (DEP)

Hi Leah,

Based on the information you provided and I also checked the GIS, it looks like the discharge is going into a wetland and then an artificial pond that connects to the Coweeset Brook which is an intermittent stream at the beginning, but then become perennial after its confluence with the Dorchester Brook. Because of the nature of the receiving waters (wetland, artificial pond and intermittent stream), the dilution factor would be 1.

Here is some information that will help you fill out the NOI:

The segment ID for the perennial portion of the Coweeset Brook is MA62-22, is classified as Class B, is not an Outstanding Resource Water, and is listed as "No uses assessed" on the State's Integrated List of Waters: <a href="https://www.mass.gov/doc/final-massachusetts-year-2016-integrated-list-of-waters/download">https://www.mass.gov/doc/final-massachusetts-year-2016-integrated-list-of-waters/download</a>.

Also, if the site is not *currently* being regulated by the MCP then in addition to submitting the NOI, you also need to apply with MassDEP by submitting a transmittal form and a \$500 fee (unless fee exempt). The instructions are located here: <a href="https://www.mass.gov/how-to/wm-15-npdes-general-permit-notice-of-intent">https://www.mass.gov/how-to/wm-15-npdes-general-permit-notice-of-intent</a>. Please make sure to also send me a copy of the transmittal form (I'm mentioning this here because it's not in the online instructions yet).

Let me know if you have any questions.

Thanks, Xiaodan

From: Vakalopoulos, Catherine (DEP) <catherine.vakalopoulos@mass.gov>

Sent: Friday, February 14, 2020 6:11 PM

To: Ruan, Xiaodan (DEP) <xiaodan.ruan@mass.gov>

Cc: 'lsmith@tg2solutions.com' <lsmith@tg2solutions.com>

Subject: FW: RGP NOI - 945 Belmont St, Brockton

Hi Xiaodan,

I was not able to get to this today. Can you please check this when you get back into the office on Tuesday? If not, let me know.

Thanks, Cathy

Cathy Vakalopoulos, Massachusetts Department of Environmental Protection

1 Winter St., Boston, MA 02108, 617-348-4026

A Please consider the environment before printing this e-mail

From: Leah Smith [mailto:lsmith@tg2solutions.com]

Sent: Thursday, February 13, 2020 9:27 PM

**To:** Vakalopoulos, Catherine (DEP) **Cc:** Jason Sherburne; Eric Simpson

Subject: RGP NOI - 945 Belmont St, Brockton

Good evening,

I'm working on a RGP on behalf of a client to complete a NOI for a RGP for redevelopment activities at 945 Belmont Street, Brockton. This facility is an active gasoline station with a closed RTN (4-1088) and is being redeveloped into an updated gasoline station facility with new tanks, etc.

Attached please find the dilution factor spreadsheet and effluent limit calculations, as well as the StreamStats output. The discharge location is a wetland located west of the site property, which discharges to an unnamed pond that appears to connect with an unnamed intermittent stream located west of the site – see Figure 2A. The unnamed stream connects to Dorchester Brook southwest of the interchange. The discharge flow was calculated based on the design flow: (60 gpm x 60 mph x 24h) / 1 million = 0.0864 mgd. The latitude and longitude of the wetland discharge point and outfall point are:

Wetland Discharge Point:

Latitude: 42.064844 Longitude: -71.056145

**Outfall Point:** 

Latitude: 42.064787 Longitude: -71.058035

I've also attached a table with the summary of contaminants detected in the influent sample (site groundwater) and the outfall surface water sample.

Could you please verify the 7Q10 information and dilution factor? Please let me know if you require any additional information.

Thanks for your help.

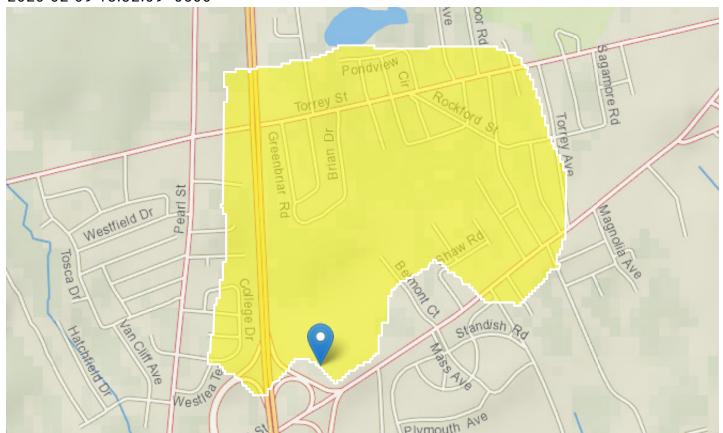
Leah

# **StreamStats Report**

Region ID:

MA

Workspace ID:


MA20200209233154654000

Clicked Point (Latitude, Longitude):

42.06390, -71.05978

Time:

2020-02-09 18:32:09 -0500



## **Basin Characteristics**

| Parameter<br>Code | Parameter Description                                                 | Value  | Unit                    |
|-------------------|-----------------------------------------------------------------------|--------|-------------------------|
| DRNAREA           | Area that drains to a point on a stream                               | 0.39   | square miles            |
| DRFTPERSTR        | Area of stratified drift per unit of stream length                    | 0.0874 | square mile<br>per mile |
| MAREGION          | Region of Massachusetts 0 for Eastern 1 for<br>Western                | 0      | dimensionless           |
| BSLDEM250         | Mean basin slope computed from 1:250K DEM                             | 1.095  | percent                 |
| ELEV              | Mean Basin Elevation                                                  | 132    | feet                    |
| LC06STOR          | Percentage of water bodies and wetlands determined from the NLCD 2006 | 2.06   | percent                 |

Flow-Duration Statistics Parameters[Statewide Low Flow WRIR00 4135]

| Parameter<br>Code | Parameter Name                        | Value  | Units                   | Min<br>Limit | Max<br>Limit |
|-------------------|---------------------------------------|--------|-------------------------|--------------|--------------|
| DRNAREA           | Drainage Area                         | 0.39   | square miles            | 1.61         | 149          |
| DRFTPERSTR        | Stratified Drift per Stream<br>Length | 0.0874 | square mile per<br>mile | 0            | 1.29         |
| MAREGION          | Massachusetts Region                  | 0      | dimensionless           | 0            | 1            |
| BSLDEM250         | Mean Basin Slope from 250K<br>DEM     | 1.095  | percent                 | 0.32         | 24.6         |

Flow-Duration Statistics Disclaimers[Statewide Low Flow WRIR00 4135]

One or more of the parameters is outside the suggested range. Estimates were extrapolated with unknown errors

Flow-Duration Statistics Flow Report[Statewide Low Flow WRIR00 4135]

| Statistic           | Value   | Unit   |
|---------------------|---------|--------|
| 50 Percent Duration | 0.366   | ft^3/s |
| 60 Percent Duration | 0.231   | ft^3/s |
| 70 Percent Duration | 0.122   | ft^3/s |
| 75 Percent Duration | 0.0893  | ft^3/s |
| 80 Percent Duration | 0.0596  | ft^3/s |
| 85 Percent Duration | 0.0387  | ft^3/s |
| 90 Percent Duration | 0.0237  | ft^3/s |
| 95 Percent Duration | 0.0117  | ft^3/s |
| 98 Percent Duration | 0.00741 | ft^3/s |
| 99 Percent Duration | 0.00493 | ft^3/s |

Flow-Duration Statistics Citations

Ries, K.G., III,2000, Methods for estimating low-flow statistics for Massachusetts streams: U.S. Geological Survey Water Resources Investigations Report 00-4135, 81 p. (http://pubs.usgs.gov/wri/wri004135/)

Low-Flow Statistics Parameters[Statewide Low Flow WRIR00 4135]

| Parameter<br>Code | Parameter Name                        | Value  | Units                   | Min<br>Limit | Max<br>Limit |
|-------------------|---------------------------------------|--------|-------------------------|--------------|--------------|
| DRNAREA           | Drainage Area                         | 0.39   | square miles            | 1.61         | 149          |
| BSLDEM250         | Mean Basin Slope from 250K<br>DEM     | 1.095  | percent                 | 0.32         | 24.6         |
| DRFTPERSTR        | Stratified Drift per Stream<br>Length | 0.0874 | square mile per<br>mile | 0            | 1.29         |
| MAREGION          | Massachusetts Region                  | 0      | dimensionless           | 0            | 1            |

Low-Flow Statistics Disclaimers[Statewide Low Flow WRIR00 4135]

One or more of the parameters is outside the suggested range. Estimates were extrapolated with unknown errors

Low-Flow Statistics Flow Report[Statewide Low Flow WRIR00 4135]

| Statistic              | Value   | Unit   |
|------------------------|---------|--------|
| 7 Day 2 Year Low Flow  | 0.0145  | ft^3/s |
| 7 Day 10 Year Low Flow | 0.00386 | ft^3/s |

Low-Flow Statistics Citations

Ries, K.G., III,2000, Methods for estimating low-flow statistics for Massachusetts streams: U.S. Geological Survey Water Resources Investigations Report 00-4135, 81 p. (http://pubs.usgs.gov/wri/wri004135/)

Peak-Flow Statistics Parameters[Peak Statewide 2016 5156]

| Parameter<br>Code | Parameter Name                | Value | Units           | Min<br>Limit | Max<br>Limit |
|-------------------|-------------------------------|-------|-----------------|--------------|--------------|
| DRNAREA           | Drainage Area                 | 0.39  | square<br>miles | 0.16         | 512          |
| ELEV              | Mean Basin Elevation          | 132   | feet            | 80.6         | 1948         |
| LC06STOR          | Percent Storage from NLCD2006 | 2.06  | percent         | 0            | 32.3         |

Peak-Flow Statistics Flow Report[Peak Statewide 2016 5156]

PII: Prediction Interval-Lower, PIu: Prediction Interval-Upper, SEp: Standard Error of Prediction, SE: Standard Error (other -- see report)

| Statistic           | Value | Unit   | PII  | Plu  | SEp  |
|---------------------|-------|--------|------|------|------|
| 2 Year Peak Flood   | 20.1  | ft^3/s | 10.1 | 40   | 42.3 |
| 5 Year Peak Flood   | 33.9  | ft^3/s | 16.8 | 68.6 | 43.4 |
| 10 Year Peak Flood  | 45    | ft^3/s | 21.7 | 93.3 | 44.7 |
| 25 Year Peak Flood  | 61.3  | ft^3/s | 28.5 | 132  | 47.1 |
| 50 Year Peak Flood  | 74.8  | ft^3/s | 33.7 | 166  | 49.4 |
| 100 Year Peak Flood | 89.3  | ft^3/s | 38.9 | 205  | 51.8 |
| 200 Year Peak Flood | 105   | ft^3/s | 44.4 | 249  | 54.1 |
| 500 Year Peak Flood | 128   | ft^3/s | 51.5 | 319  | 57.6 |

Peak-Flow Statistics Citations

Zarriello, P.J.,2017, Magnitude of flood flows at selected annual exceedance probabilities for streams in Massachusetts: U.S. Geological Survey Scientific Investigations Report 2016-5156, 99 p. (https://dx.doi.org/10.3133/sir20165156)

USGS Data Disclaimer: Unless otherwise stated, all data, metadata and related materials are considered to satisfy the quality standards relative to the purpose for which the data were collected. Although these data and associated metadata have been reviewed for accuracy and completeness and approved for release by the U.S. Geological Survey (USGS), no warranty expressed or implied is made regarding the display or utility of the data for other purposes, nor on all computer systems, nor shall the act of distribution constitute any such warranty.

USGS Software Disclaimer: This software has been approved for release by the U.S. Geological Survey (USGS). Although the software has been subjected to rigorous review, the USGS reserves the right to update the software as needed pursuant to further analysis and review. No warranty, expressed or implied, is made by the USGS or the U.S. Government as to the functionality of the software and related material nor shall the fact of release constitute any such warranty. Furthermore, the software is released on condition that neither the USGS nor the U.S. Government shall be held liable for any damages resulting from its authorized or unauthorized use.

USGS Product Names Disclaimer: Any use of trade, firm, or product names is for descriptive purposes only and does not imply endorsement by the U.S. Government.

Application Version: 4.3.11

#### Enter number values in green boxes below

Enter values in the units specified

| $\downarrow$ |                                     |
|--------------|-------------------------------------|
| 0.00386      | $Q_R$ = Enter upstream flow in MGD  |
| 0.0864       | $Q_P = Enter discharge flow in MGE$ |
| 0            | Downstream 7Q10                     |

Enter a dilution factor, if other than zero



Enter values in the units specified

| $\downarrow$ |                                                                          |
|--------------|--------------------------------------------------------------------------|
| 85           | $C_d$ = Enter influent hardness in mg/L CaCO <sub>3</sub>                |
| 99.7         | C <sub>c</sub> = Enter receiving water hardness inmg/L CaCO <sub>2</sub> |

Enter  $\boldsymbol{receiving\ water}$  concentrations in the units specified

| Line i ccc   | ring mater concentration.     |
|--------------|-------------------------------|
| $\downarrow$ | _                             |
| 6.19         | pH in Standard Units          |
| 17.8         | Temperature in <sup>o</sup> C |
| 0.15         | Ammonia in mg/L               |
| 99.7         | Hardness in mg/L CaCO         |
| 1.1          | Salinity in ppt               |
| 0            | Antimony in μg/L              |
| 0            | Arsenic in μg/L               |
| 0.4          | Cadmium in µg/L               |
| 0            | Chromium III in µg/L          |
| 0            | Chromium VI in μg/L           |
| 6.8          | Copper in µg/L                |
| 640          | Iron in μg/L                  |
| 1.6          | Lead in μg/L                  |
| 0            | Mercury in μg/L               |
| 0            | Nickel in μg/L                |
| 0            | Selenium in µg/L              |
| 0            | Silver in µg/L                |
| 35.5         | Zinc in μg/L                  |
|              | -                             |

Enter influent concentrations in the units specified

| ↓    |                                |
|------|--------------------------------|
| 0    | TRC in µg/L                    |
| 0.13 | Ammonia in mg/L                |
| 0    | Antimony in μg/L               |
| 0    | Arsenic in μg/L                |
| 0    | Cadmium in µg/L                |
| 0    | Chromium III in µg/L           |
| 0    | Chromium VI in µg/L            |
| 0    | Copper in µg/L                 |
| 56.7 | Iron in μg/L                   |
| 0    | Lead in μg/L                   |
| 0    | Mercury in μg/L                |
| 0    | Nickel in μg/L                 |
| 0    | Selenium in µg/L               |
| 0    | Silver in μg/L                 |
| 9.4  | Zinc in µg/L                   |
| 0    | Cyanide in µg/L                |
| 0    | Phenol in μg/L                 |
| 0    | Carbon Tetrachloride inµg/L    |
| 0    | Tetrachloroethylene inµg/L     |
| 0    | Total Phthalates inµg/L        |
| 0    | Diethylhexylphthalate inµg/L   |
| 0    | Benzo(a)anthracene inµg/L      |
| 0    | Benzo(a)pyrene in µg/L         |
| 0    | Benzo(b)fluoranthene inµg/L    |
| 0    | Benzo(k)fluoranthene inµg/L    |
| 0    | Chrysene in µg/L               |
| 0    | Dibenzo(a,h)anthracene inμg/L  |
| 0    | Indeno(1,2,3-cd)pyrene in μg/L |
| 0    | Methyl-tert butyl ether inµg/L |

#### Notes:

Freshwater:  $Q_R$  equal to the 7Q10; enter alternate Q if approved by the State; enter 0 if no dilution factor approved Saltwater (estuarine and marine): enter Q if approved by the State; enter 0 if no entry Discharge flow is equal to the design flow or 1 MGD, whichever is less Only if approved by State as the entry for  $Q_R$ ; leave 0 if no entry

Saltwater (estuarine and marine): only if approved by the State Leave 0 if no entry

Freshwater only

pH, temperature, and ammonia required for all discharges Hardness required for freshwater Salinity required for saltwater (estuarine and marine) Metals required for all discharges if present and if dilution factor is > 1 Enter 0 if non-detect or testing not required

if >1 sample, enter maximum if >10 samples, may enter 95th percentile Enter 0 if non-detect or testing not required

#### **I. Dilution Factor Calculation Method**

#### A. 7Q10

Refer to Appendix V for determining critical low flow; must be approved by State before use in calculations.

#### **B.** Dilution Factor

Calculated as follows:

 $Q_R = 7Q10$  in MGD

 $Q_p = Discharge flow, in MGD$ 

### **II. Effluent Limitation Calculation Method**

#### A. Calculate Water Quality Criterion:

Step 1. Downstream hardness, calculated as follows:

 $C_r = \frac{Q_d C_d + Q_s C_s}{Q_r}$ 

 $C_r$  = Downstream hardness in mg/L

Q<sub>d</sub> = Discharge flow in MGD

 $C_d$  = Discharge hardness in mg/L

 $Q_s = Upstream flow (7Q10) in MGD$ 

 $C_s = Upstream$  (receiving water) hardness in mg/L

 $Q_r$  = Downstream receiving water flow in MGD

Step 2. Total recoverable water quality criteria for hardness-dependent metals, calculated as follows:

Total Recoverable Criteria =  $\exp \{ m [ln(h)] + b_c \}$ 

 $m_c$  = Pollutant-specific coefficient (mg for silver)

 $b_c$  = Pollutant-specific coefficient (b for silver)

ln = Natural logarithm

h = Hardness calculated in Step 1

Step 3. Total recoverable water quality criteria for non-hardness-dependent metals, calculated as follows:

WQC in 
$$\mu$$
g/L = dissolved WQC in  $\mu$ g/L dissolved to total recoverable factor

### **B.** Calculate WQBEL:

Step 1. WQBEL calculated as follows for parameter sampled in and detected in the receiving water:

$$C_{d} = \underline{O_{r} C_{r} - O_{s} C_{s}}$$

 $C_r$  = Water quality criterion in  $\mu g/I$ 

Q<sub>d</sub> = Discharge flow in MGD

 $C_d = WQBEL \text{ in } \mu g/L$ 

 $Q_s = Upstream flow (7Q10) in MGD$ 

 $C_s$  = Ustream (receiving water) concentration in  $\mu$ g/L

 $Q_r$  = Downstream receiving water flow in MGD

Step 2. WQBEL calculated as follows for parameter not sampled in or not detected in receiving water:

$$C_d = (Q_r/Q_d) \times C_r$$

 $C_r$  = Water quality criterion in  $\mu$ g/I

 $Q_d$  = Discharge flow in MGD

 $Q_r$  = Downstream receiving water flow in MGD

#### C. Determine if a WQBEL applies:

Step 1. For parameter sampled in and detected in receiving water, downstream concentrations calculated as follows:

$$C_r = \frac{Q_d C_d + Q_s C_s}{Q_r}$$

 $C_r$  = Downstream concentration in  $\mu$ g/L

 $Q_d$  = Discharge flow in MGD

 $C_d$  = Influent concentration in  $\mu g/L$ 

 $Q_s = Upstream flow (7Q10) in MGD$ 

 $C_s$  = Upstream (receiving water) concentration in  $\mu$ g/L

 $Q_r$  = Downstream receiving water flow in MGD

The WQBEL applies if:

1) the projected downstream concentration calculated in accordance with Step 1, above, and the discharge concentration of a parameter are greater than the WQC calculated for that parameter in accordance with II.A, above

#### AND

2) the WQBEL determined for that parameter in accordance with II.B, above, is less than the TBEL in Part 2.1.1 of the RGP for that parameter. Otherwise, the TBEL in Part 2.1.1 of the RGP for that parameter applies.

Step 2. For a parameter not sampled in or not detected in receiving water, the WQBEL applies if:

1) the discharge concentration of a parameter is greater than the WQBEL determined for that parameter in accordance with II.A or II.B, above;

#### AND

2) the WQBEL determined for that parameter in accordance with II.A or II.B, above is less than the TBEL in Part 2.1.1 of the RGP for that parameter. Otherwise, the TBEL in

Part 2.1.1 of the RGP for that parameter applies.

| Dilution I actor                               | 1.0                                            |              |          |                                   | G 11 T 1 |      |
|------------------------------------------------|------------------------------------------------|--------------|----------|-----------------------------------|----------|------|
| A. Inorganics                                  | TBEL applies if bolded WQBEL applies if bolded |              | f bolded | Compliance Level applies if shown |          |      |
| Ammonia                                        | Report                                         | mg/L         |          |                                   |          |      |
| Chloride                                       | Report                                         | μg/L         |          |                                   |          |      |
| Total Residual Chlorine                        | 0.2                                            | mg/L         | 11       | μg/L                              | 50       | μg/L |
| Total Suspended Solids                         | 30                                             | mg/L         |          |                                   |          |      |
| Antimony                                       | 206                                            | μg/L         | 669      | μg/L                              |          |      |
| Arsenic                                        | 104                                            | μg/L         | 10       | μg/L                              |          |      |
| Cadmium                                        | 10.2                                           | μg/L         | 0.2520   | μg/L                              |          |      |
| Chromium III                                   | 323                                            | μg/L         | 79.3     | μg/L                              |          |      |
| Chromium VI                                    | 323                                            | μg/L         | 11.9     | μg/L                              |          |      |
| Copper                                         | 242                                            | μg/L         | 8.2      | μg/L                              |          |      |
| Iron                                           | 5000                                           | μg/L         | 1016     | μg/L                              |          |      |
| Lead                                           | 160                                            | μg/L<br>μg/L | 2.66     | μg/L<br>μg/L                      |          |      |
| Mercury                                        | 0.739                                          | μg/L<br>μg/L | 0.95     | μg/L<br>μg/L                      |          |      |
| Nickel                                         | 1450                                           | μg/L<br>μg/L | 47.8     |                                   |          |      |
| Selenium                                       | 235.8                                          |              | 5.2      | μg/L                              |          |      |
| Silver                                         |                                                | μg/L         |          | μg/L                              |          |      |
|                                                | 35.1                                           | μg/L         | 3.0      | μg/L                              |          |      |
| Zinc                                           | 420                                            | μg/L         | 108.2    | μg/L                              |          | · ·  |
| Cyanide                                        | 178                                            | mg/L         | 5.4      | $\mu g/L$                         |          | μg/L |
| B. Non-Halogenated VOCs                        | 100                                            | /T           |          |                                   |          |      |
| Total BTEX                                     | 5.0                                            | μg/L<br>μg/L |          |                                   |          |      |
| Benzene<br>1,4 Dioxane                         | 200                                            | μg/L<br>μg/L |          |                                   |          |      |
| Acetone                                        | 7970                                           | μg/L<br>μg/L |          |                                   |          |      |
| Phenol                                         | 1,080                                          | μg/L<br>μg/L | 313      | μg/L                              |          |      |
| C. Halogenated VOCs                            | ,                                              | 1.8          |          | 1.8                               |          |      |
| Carbon Tetrachloride                           | 4.4                                            | μg/L         | 1.7      | μg/L                              |          |      |
| 1,2 Dichlorobenzene                            | 600                                            | μg/L         |          |                                   |          |      |
| 1,3 Dichlorobenzene                            | 320                                            | $\mu g/L$    |          |                                   |          |      |
| 1,4 Dichlorobenzene                            | 5.0                                            | $\mu g/L$    |          |                                   |          |      |
| Total dichlorobenzene                          |                                                | $\mu g/L$    |          |                                   |          |      |
| 1,1 Dichloroethane                             | 70                                             | μg/L         |          |                                   |          |      |
| 1,2 Dichloroethane                             | 5.0                                            | μg/L         |          |                                   |          |      |
| 1,1 Dichloroethylene                           | 3.2                                            | μg/L         |          |                                   |          |      |
| Ethylene Dibromide                             | 0.05                                           | μg/L         |          |                                   |          |      |
| Methylene Chloride                             | 4.6<br>200                                     | μg/L         |          |                                   |          |      |
| 1,1,1 Trichloroethane<br>1,1,2 Trichloroethane | 5.0                                            | μg/L<br>μg/L |          |                                   |          |      |
| Trichloroethylene                              | 5.0                                            | μg/L<br>μg/L |          |                                   |          |      |
| Tetrachloroethylene                            | 5.0                                            | μg/L<br>μg/L | 3.4      | μg/L                              |          |      |
| cis-1,2 Dichloroethylene                       | 70                                             | μg/L<br>μg/L |          | MB/ L                             |          |      |
| Vinyl Chloride                                 | 2.0                                            | μg/L         |          |                                   |          |      |
|                                                |                                                |              |          |                                   |          |      |

| D. Non-Halogenated SVOCs        |          |           |        |           |     |           |
|---------------------------------|----------|-----------|--------|-----------|-----|-----------|
| Total Phthalates                | 190      | μg/L      |        | $\mu g/L$ |     |           |
| Diethylhexyl phthalate          | 101      | μg/L      | 2.3    | $\mu g/L$ |     |           |
| Total Group I Polycyclic        |          |           |        |           |     |           |
| Aromatic Hydrocarbons           | 1.0      | $\mu g/L$ |        |           |     |           |
| Benzo(a)anthracene              | 1.0      | $\mu g/L$ | 0.0040 | $\mu g/L$ |     | $\mu g/L$ |
| Benzo(a)pyrene                  | 1.0      | $\mu g/L$ | 0.0040 | $\mu g/L$ |     | $\mu g/L$ |
| Benzo(b)fluoranthene            | 1.0      | $\mu g/L$ | 0.0040 | $\mu g/L$ |     | $\mu g/L$ |
| Benzo(k)fluoranthene            | 1.0      | $\mu g/L$ | 0.0040 | $\mu g/L$ |     | $\mu g/L$ |
| Chrysene                        | 1.0      | $\mu g/L$ | 0.0040 | $\mu g/L$ |     | $\mu g/L$ |
| Dibenzo(a,h)anthracene          | 1.0      | $\mu g/L$ | 0.0040 | $\mu g/L$ |     | $\mu g/L$ |
| Indeno(1,2,3-cd)pyrene          | 1.0      | $\mu g/L$ | 0.0040 | $\mu g/L$ |     | $\mu g/L$ |
| Total Group II Polycyclic       |          |           |        |           |     |           |
| Aromatic Hydrocarbons           | 100      | $\mu g/L$ |        |           |     |           |
| Naphthalene                     | 20       | $\mu g/L$ |        |           |     |           |
| E. Halogenated SVOCs            |          |           |        |           |     |           |
| Total Polychlorinated Biphenyls | 0.000064 | $\mu g/L$ |        |           | 0.5 | $\mu g/L$ |
| Pentachlorophenol               | 1.0      | $\mu g/L$ |        |           |     |           |
| F. Fuels Parameters             |          |           |        |           |     |           |
| Total Petroleum Hydrocarbons    | 5.0      | mg/L      |        |           |     |           |
| Ethanol                         | Report   | mg/L      |        |           |     |           |
| Methyl-tert-Butyl Ether         | 70       | $\mu g/L$ | 21     | $\mu g/L$ |     |           |
| tert-Butyl Alcohol              | 120      | $\mu g/L$ |        |           |     |           |
| tert-Amyl Methyl Ether          | 90       | $\mu g/L$ |        |           |     |           |

#### **I. Dilution Factor Calculation Method**

### A. 7Q10

No flow assumed at critical low flow for saltwater unless otherwise approved by the State

#### **B.** Dilution Factor

No dilution assumed for saltwater, unless otherwise approved by the State

### **II. Effluent Limitation Calculation Method**

### A. Calculate Water Quality Criterion:

- Step 1. Not applicable to saltwater
- Step 2. Not applicable to saltwater
- Step 3. Total recoverable water quality criteria for dissolved metals, calculated as follows:

WQC in 
$$\mu$$
g/L = dissolved WQC in  $\mu$ g/L dissolved to total recoverable factor

### **B.** Calculate WQBEL:

Step 1. WQBEL calculated as follows for parameter sampled in and detected in the receiving water:

$$C_{d} = \frac{Q_{r} C_{r} - Q_{c} C_{c}}{Q_{d}}$$

 $C_r$  = Water quality criterion in  $\mu$ g/I

Q<sub>d</sub> = Discharge flow in MGD

 $C_d = WQBEL \text{ in } \mu g/L$ 

 $Q_s = Upstream flow (7Q10) in MGD$ 

 $C_s$  = Ustream (receiving water) concentration in  $\mu$ g/L

 $Q_r$  = Downstream receiving water flow in MGD

Step 2. WQBEL calculated as follows for parameter not sampled in or not detected in receiving water:

$$C_d = (Q_r/Q_d) \times C_r$$

 $C_r$  = Water quality criterion in  $\mu$ g/I

 $Q_d$  = Discharge flow in MGD

 $Q_r$  = Downstream receiving water flow in MGD

### C. Determine if a WQBEL applies:

Step 1. For parameter sampled in and detected in receiving water, downstream concentrations calculated as follows:

$$C_{r} = \frac{Q_{d}C_{d} + Q_{s}C_{s}}{Q_{r}}$$

 $C_r$  = Downstream concentration in  $\mu$ g/L

 $Q_d$  = Discharge flow in MGD

 $C_d$  = Influent concentration in  $\mu$ g/L

 $Q_s = \text{Upstream flow (7Q10) in MGD}$ 

 $C_s = Upstream$  (receiving water) concentration in  $\mu g/L$ 

 $Q_r$  = Downstream receiving water flow in MGD

The WQBEL applies if:

1) the projected downstream concentration calculated in accordance with Step 1, above, and the discharge concentration of a parameter is greater than the WQC calculated for that parameter in accordance with II.A, above

### AND

2) the WQBEL determined for that parameter in accordance with II.B, above, is less than the TBEL in Part 2.1.1 of the RGP for that parameter. Otherwise, the TBEL in Part 2.1.1 of the RGP for that parameter applies.

Step 2. For a parameter not detected in or not sampled in receiving water, the WQBEL applies if:

1) the discharge concentration of a parameter is greater than the WQBEL determined for that parameter in accordance with II.A or II.B, above;

#### AND

2) the WQBEL determined for that parameter in accordance with II.A or II.B, above is less than the TBEL in Part 2.1.1 of the RGP for that parameter. Otherwise, the TBEL in Part 2.1.1 of the RGP for that parameter applies.

| Dilution I actor                            | 1.0               |              |                             |              | G 11 T 1                          |      |
|---------------------------------------------|-------------------|--------------|-----------------------------|--------------|-----------------------------------|------|
| A. Inorganics                               | TBEL applies if b | oolded       | ded WQBEL applies if bolded |              | Compliance Level applies if shown |      |
| Ammonia                                     | Report            | mg/L         |                             |              |                                   |      |
| Chloride                                    | Report            | $\mu g/L$    |                             |              |                                   |      |
| Total Residual Chlorine                     | 0.2               | mg/L         | 7.8                         | μg/L         | 50                                | μg/L |
| Total Suspended Solids                      | 30                | mg/L         |                             | , -          |                                   |      |
| Antimony                                    | 206               | μg/L         | 669                         | μg/L         |                                   |      |
| Arsenic                                     | 104               | μg/L         | 38                          | μg/L         |                                   |      |
| Cadmium                                     | 10.2              | μg/L         | 9.2                         | μg/L         |                                   |      |
| Chromium III                                | 323               | μg/L         | 104.5                       | μg/L         |                                   |      |
| Chromium VI                                 | 323               | μg/L         | 53                          | μg/L         |                                   |      |
| Copper                                      | 242               | μg/L         | 3.7                         | μg/L         |                                   |      |
| Iron                                        | 5000              | μg/L<br>μg/L |                             | μg/L         |                                   |      |
| Lead                                        | 160               | μg/L<br>μg/L | 8.8                         | μg/L<br>μg/L |                                   |      |
| Mercury                                     | 0.739             | μg/L<br>μg/L | 1.16                        | μg/L<br>μg/L |                                   |      |
| Nickel                                      | 1450              | μg/L<br>μg/L | 8.7                         |              |                                   |      |
| Selenium                                    |                   |              |                             | μg/L         |                                   |      |
|                                             | 235.8             | μg/L         | 74                          | μg/L         |                                   |      |
| Silver                                      | 35.1              | μg/L         | 2.3                         | μg/L         |                                   |      |
| Zinc                                        | 420               | μg/L         | 88                          | μg/L         |                                   | ·~   |
| Cyanide                                     | 178               | mg/L         | 1.0                         | μg/L         |                                   | μg/L |
| B. Non-Halogenated VOCs                     | 100               | /T           |                             |              |                                   |      |
| Total BTEX                                  | 5.0               | μg/L<br>μg/L | <br>                        |              |                                   |      |
| Benzene<br>1,4 Dioxane                      | 200               | μg/L<br>μg/L |                             |              |                                   |      |
| Acetone                                     | 7.97              | μg/L<br>mg/L |                             |              |                                   |      |
| Phenol                                      | 1,080             | μg/L         | 313                         | μg/L         |                                   |      |
| C. Halogenated VOCs                         | ,                 | 1.6          |                             | 1.6          |                                   |      |
| Carbon Tetrachloride                        | 4.4               |              | 1.7                         | μg/L         |                                   |      |
| 1,2 Dichlorobenzene                         | 600               | $\mu g/L$    |                             |              |                                   |      |
| 1,3 Dichlorobenzene                         | 320               | $\mu g/L$    |                             |              |                                   |      |
| 1,4 Dichlorobenzene                         | 5.0               | $\mu g/L$    |                             |              |                                   |      |
| Total dichlorobenzene                       |                   | μg/L         |                             |              |                                   |      |
| 1,1 Dichloroethane                          | 70                | μg/L         |                             |              |                                   |      |
| 1,2 Dichloroethane                          | 5.0               | μg/L         |                             |              |                                   |      |
| 1,1 Dichloroethylene                        | 3.2               | μg/L         |                             |              |                                   |      |
| Ethylene Dibromide                          | 0.05<br>4.6       | μg/L         |                             |              |                                   |      |
| Methylene Chloride<br>1,1,1 Trichloroethane | 200               | μg/L<br>μg/L |                             |              |                                   |      |
| 1,1,2 Trichloroethane                       | 5.0               | μg/L<br>μg/L |                             |              |                                   |      |
| Trichloroethylene                           | 5.0               | μg/L<br>μg/L |                             |              |                                   |      |
| Tetrachloroethylene                         | 5.0               | μg/L<br>μg/L | 3.4                         | μg/L         |                                   |      |
| cis-1,2 Dichloroethylene                    | 70                | μg/L<br>μg/L |                             | r6 D         |                                   |      |
| Vinyl Chloride                              | 2.0               | μg/L         |                             |              |                                   |      |

| D. Non-Halogenated SVOCs        |          |           |        |           |     |           |
|---------------------------------|----------|-----------|--------|-----------|-----|-----------|
| Total Phthalates                | 190      | μg/L      |        | $\mu g/L$ |     |           |
| Diethylhexyl phthalate          | 101      | μg/L      | 2.3    | $\mu g/L$ |     |           |
| Total Group I Polycyclic        |          |           |        |           |     |           |
| Aromatic Hydrocarbons           | 1.0      | $\mu g/L$ |        |           |     |           |
| Benzo(a)anthracene              | 1.0      | $\mu g/L$ | 0.0040 | $\mu g/L$ |     | $\mu g/L$ |
| Benzo(a)pyrene                  | 1.0      | $\mu g/L$ | 0.0040 | $\mu g/L$ |     | $\mu g/L$ |
| Benzo(b)fluoranthene            | 1.0      | $\mu g/L$ | 0.0040 | $\mu g/L$ |     | $\mu g/L$ |
| Benzo(k)fluoranthene            | 1.0      | $\mu g/L$ | 0.0040 | $\mu g/L$ |     | $\mu g/L$ |
| Chrysene                        | 1.0      | $\mu g/L$ | 0.0040 | $\mu g/L$ |     | $\mu g/L$ |
| Dibenzo(a,h)anthracene          | 1.0      | $\mu g/L$ | 0.0040 | $\mu g/L$ |     | $\mu g/L$ |
| Indeno(1,2,3-cd)pyrene          | 1.0      | $\mu g/L$ | 0.0040 | $\mu g/L$ |     | $\mu g/L$ |
| Total Group II Polycyclic       |          |           |        |           |     |           |
| Aromatic Hydrocarbons           | 100      | $\mu g/L$ |        |           |     |           |
| Naphthalene                     | 20       | $\mu g/L$ |        |           |     |           |
| E. Halogenated SVOCs            |          |           |        |           |     |           |
| Total Polychlorinated Biphenyls | 0.000064 | $\mu g/L$ |        |           | 0.5 | $\mu g/L$ |
| Pentachlorophenol               | 1.0      | $\mu g/L$ |        |           |     |           |
| F. Fuels Parameters             |          |           |        |           |     |           |
| Total Petroleum Hydrocarbons    | 5.0      | mg/L      |        |           |     |           |
| Ethanol                         | Report   | mg/L      |        |           |     |           |
| Methyl-tert-Butyl Ether         | 70       | $\mu g/L$ | 21     | $\mu g/L$ |     |           |
| tert-Butyl Alcohol              | 120      | $\mu g/L$ |        |           |     |           |
| tert-Amyl Methyl Ether          | 90       | $\mu g/L$ |        |           |     |           |



### ATTACHMENT C



The Microbiology Division of Thielsch Engineering, Inc.



#### CERTIFICATE OF ANALYSIS

Eric D. Simpson Tg2 Solutions 231 Elm Street Blackstone, MA 01504

RE: 945 Belmont St Brockton MA - RGP (N/A) ESS Laboratory Work Order Number: 20A0778

This signed Certificate of Analysis is our approved release of your analytical results. These results are only representative of sample aliquots received at the laboratory. ESS Laboratory expects its clients to follow all regulatory sampling guidelines. Beginning with this page, the entire report has been paginated. This report should not be copied except in full without the approval of the laboratory. Samples will be disposed of thirty days after the final report has been delivered. If you have any questions or concerns, please feel free to call our Customer Service Department.

Laurel Stoddard
Laboratory Director

REVIEWED

By ESS Laboratory at 5:45 pm, Feb 05, 2020

#### **Analytical Summary**

The project as described above has been analyzed in accordance with the ESS Quality Assurance Plan. This plan utilizes the following methodologies: US EPA SW-846, US EPA Methods for Chemical Analysis of Water and Wastes per 40 CFR Part 136, APHA Standard Methods for the Examination of Water and Wastewater, American Society for Testing and Materials (ASTM), and other recognized methodologies. The analyses with these noted observations are in conformance to the Quality Assurance Plan. In chromatographic analysis, manual integration is frequently used instead of automated integration because it produces more accurate results.

The test results present in this report are in compliance with TNI and relative state standards, and/or client Quality Assurance Project Plans (QAPP). The laboratory has reviewed the following: Sample Preservations, Hold Times, Initial Calibrations, Continuing Calibrations, Method Blanks, Blank Spikes, Blank Spike Duplicates, Duplicates, Matrix Spikes, Matrix Spike Duplicates, Surrogates and Internal Standards. Any results which were found to be outside of the recommended ranges stated in our SOPs will be noted in the Project Narrative.

**Subcontracted Analyses** 

Analytical Balance - Middleboro, MA

Chloride



The Microbiology Division of Thielsch Engineering, Inc.



#### CERTIFICATE OF ANALYSIS

Client Name: Tg2 Solutions

Client Project ID: 945 Belmont St Brockton MA - RGP ESS Laboratory Work Order: 20A0778

### SAMPLE RECEIPT

The following samples were received on January 28, 2020 for the analyses specified on the enclosed Chain of Custody Record.

The samples and analyses listed below were analyzed in accordance with the 2017 Remediation General Permit under the National Pollutant Discharge Elimination System (NPDES).

ESS Laboratory is unable to achieve the required detection limit of 0.4 mg/L for Ethanol for the RGP permit. We have also been unable to procure a subcontract laboatory that is able to achieve this limit. The data for Ethanol has been reported using our current method reporting limit.

Lab Number 20A0778-01

Sample Name MW-2

Matrix Ground Water **Analysis** 

1664A, 200.7, 200.8, 245.1, 2540D, 3113B, 350.1, 3500Cr B-2009, 420.1, 4500 CN CE, 4500Cl D, 504.1, 524.2, 608.3, 625.1 SIM, 8270D SIM, ASTM D3695, SUB

185 Frances Avenue, Cranston, RI 02910-2211

Tel: 401-461-7181

Fax: 401-461-4486



The Microbiology Division of Thielsch Engineering, Inc.

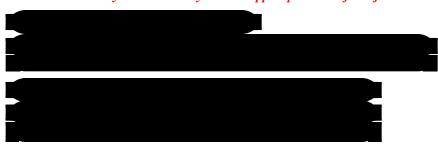


### CERTIFICATE OF ANALYSIS

Client Name: Tg2 Solutions

Client Project ID: 945 Belmont St Brockton MA - RGP ESS Laboratory Work Order: 20A0778

### **PROJECT NARRATIVE**


| 524.2 Volatile Organ |                                                                                        |
|----------------------|----------------------------------------------------------------------------------------|
| D0A0276-CCV1         |                                                                                        |
|                      | Tetrachloroethene (31% @ 30%)                                                          |
| DA03134-BS1          |                                                                                        |
|                      | Tetrachloroethene (67% @ 70-130%)                                                      |
| 625.1(SIM) Semi-Vo   | latile Organic Compounds                                                               |
| 20A0778-01           |                                                                                        |
|                      | 2,4,6-Tribromophenol (115% @ 15-110%)                                                  |
| D0A0273-CCV1         |                                                                                        |
|                      | 2,4,6-Tribromophenol (135% @ 80-120%), Pentachlorophenol (109% @ 80-120%)              |
| D0A0273-CCV1         |                                                                                        |
|                      | 2,4,6-Tribromophenol (35% @ 20%)                                                       |
| DA02802-BS2          |                                                                                        |
|                      | 2,4,6-Tribromophenol (115% @ 15-110%)                                                  |
| DA02802-BSD2         |                                                                                        |
|                      | Acenaphthene (28% @ 20%), Indeno(1,2,3-cd)Pyrene (22% @ 20%), Naphthalene (47% @ 20%), |
|                      | Pentachlorophenol (21% @ 20%)                                                          |
| DA02802-BSD2         |                                                                                        |
|                      | 2,4,6-Tribromophenol (139% @ 15-110%)                                                  |
| Classical Chemistry  |                                                                                        |
| 20A0778-01           |                                                                                        |
|                      |                                                                                        |

No other observations noted.

**End of Project Narrative.** 

### **DATA USABILITY LINKS**

To ensure you are viewing the most current version of the documents below, please clear your internet cookies for www.ESSLaboratory.com. Consult your IT Support personnel for information on how to clear your internet cookies.





The Microbiology Division of Thielsch Engineering, Inc.



#### CERTIFICATE OF ANALYSIS

Client Name: Tg2 Solutions

Client Project ID: 945 Belmont St Brockton MA - RGP ESS Laboratory Work Order: 20A0778

#### **CURRENT SW-846 METHODOLOGY VERSIONS**

#### **Analytical Methods**

1010A - Flashpoint

6010C - ICP

6020A - ICP MS

7010 - Graphite Furnace

7196A - Hexavalent Chromium

7470A - Aqueous Mercury

7471B - Solid Mercury

8011 - EDB/DBCP/TCP

8015C - GRO/DRO

8081B - Pesticides

8082A - PCB

8100M - TPH

8151A - Herbicides

8260B - VOA

8270D - SVOA

8270D SIM - SVOA Low Level

9014 - Cyanide

9038 - Sulfate

9040C - Aqueous pH

9045D - Solid pH (Corrosivity)

9050A - Specific Conductance

9056A - Anions (IC)

9060A - TOC

9095B - Paint Filter

MADEP 04-1.1 - EPH

MADEP 18-2.1 - VPH

#### **Prep Methods**

3005A - Aqueous ICP Digestion

3020A - Aqueous Graphite Furnace / ICP MS Digestion

3050B - Solid ICP / Graphite Furnace / ICP MS Digestion

3060A - Solid Hexavalent Chromium Digestion

3510C - Separatory Funnel Extraction

3520C - Liquid / Liquid Extraction

3540C - Manual Soxhlet Extraction

3541 - Automated Soxhlet Extraction

3546 - Microwave Extraction

3580A - Waste Dilution

5030B - Aqueous Purge and Trap

5030C - Aqueous Purge and Trap

5035A - Solid Purge and Trap

SW846 Reactivity Methods 7.3.3.2 (Reactive Cyanide) and 7.3.4.1 (Reactive Sulfide) have been withdrawn by EPA. These methods are reported per client request and are not NELAP accredited.

Dependability



The Microbiology Division of Thielsch Engineering, Inc.



### CERTIFICATE OF ANALYSIS

Client Name: Tg2 Solutions

Client Project ID: 945 Belmont St Brockton MA - RGP

Client Sample ID: MW-2 Date Sampled: 01/28/20 09:30

Percent Solids: N/A

ESS Laboratory Work Order: 20A0778 ESS Laboratory Sample ID: 20A0778-01

Sample Matrix: Ground Water

Units: ug/L

Extraction Method: 3005A/200.7

### **Dissolved Metals**

| Analyte<br>Antimony | Results (MRL) ND (5.0) | <u>MDL</u> | <b>Method</b> 200.7 | <u>Limit</u> | <u><b>DF</b></u> | Analyst<br>KJK | Analyzed<br>01/29/20 12:12 | <u>I/V</u><br>100 | <u><b>F/V</b></u> 10 | Batch<br>DA02838 |
|---------------------|------------------------|------------|---------------------|--------------|------------------|----------------|----------------------------|-------------------|----------------------|------------------|
| Arsenic             | ND (0.5)               |            | 3113B               |              | 1                | KJK            | 01/30/20 15:56             | 100               | 10                   | DA02838          |
| Cadmium             | <b>0.2</b> (0.1)       |            | 200.8               |              | 5                | KJK            | 01/29/20 12:20             | 100               | 10                   | DA02838          |
| Chromium            | ND (2.0)               |            | 200.7               |              | 1                | KJK            | 01/29/20 12:12             | 100               | 10                   | DA02838          |
| Copper              | ND (2.0)               |            | 200.7               |              | 1                | KJK            | 01/29/20 12:12             | 100               | 10                   | DA02838          |
| Iron                | ND (20.0)              |            | 200.7               |              | 2                | KJK            | 01/31/20 10:51             | 100               | 10                   | DA02838          |
| Lead                | ND (0.5)               |            | 200.8               |              | 5                | KJK            | 01/29/20 12:20             | 100               | 10                   | DA02838          |
| Mercury             | ND (0.20)              |            | 245.1               |              | 1                | MKS            | 01/29/20 13:21             | 20                | 40                   | DA02905          |
| Nickel              | ND (5.0)               |            | 200.7               |              | 1                | KJK            | 01/29/20 12:12             | 100               | 10                   | DA02838          |
| Selenium            | ND (1.0)               |            | 3113B               |              | 1                | KJK            | 01/30/20 18:35             | 100               | 10                   | DA02838          |
| Silver              | ND (1.0)               |            | 200.7               |              | 1                | KJK            | 01/29/20 12:12             | 100               | 10                   | DA02838          |
| Zinc                | <b>8.1</b> (5.0)       |            | 200.7               |              | 1                | KJK            | 01/29/20 12:12             | 100               | 10                   | DA02838          |

Service



The Microbiology Division of Thielsch Engineering, Inc.



### CERTIFICATE OF ANALYSIS

Client Name: Tg2 Solutions

Client Project ID: 945 Belmont St Brockton MA - RGP

Client Sample ID: MW-2 Date Sampled: 01/28/20 09:30

Percent Solids: N/A

ESS Laboratory Work Order: 20A0778 ESS Laboratory Sample ID: 20A0778-01

Sample Matrix: Ground Water

Units: ug/L

Extraction Method: 3005A/200.7

### **Total Metals**

| <u>Analyte</u> | Results (MRL)       | <b>MDL</b> | Method | <u>Limit</u> | <u>DF</u> | Analyst | <u>Analyzed</u> | I/V | F/V | Batch   |
|----------------|---------------------|------------|--------|--------------|-----------|---------|-----------------|-----|-----|---------|
| Antimony       | ND (5.0)            |            | 200.7  |              | 1         | KJK     | 01/29/20 11:55  | 100 | 10  | DA02838 |
| Arsenic        | ND (0.5)            |            | 3113B  |              | 1         | KJK     | 01/30/20 16:02  | 100 | 10  | DA02838 |
| Cadmium        | ND (0.1)            |            | 200.8  |              | 5         | KJK     | 01/29/20 12:06  | 100 | 10  | DA02838 |
| Chromium       | ND (2.0)            |            | 200.7  |              | 1         | KJK     | 01/29/20 11:55  | 100 | 10  | DA02838 |
| Copper         | ND (2.0)            |            | 200.7  |              | 1         | KJK     | 01/29/20 11:55  | 100 | 10  | DA02838 |
| Hardness       | <b>85000</b> (82.4) |            | 200.7  |              | 1         | KJK     | 01/29/20 11:55  | 1   | 1   | [CALC]  |
| Iron           | <b>56.7</b> (10.0)  |            | 200.7  |              | 1         | KJK     | 01/29/20 11:55  | 100 | 10  | DA02838 |
| Lead           | ND (0.5)            |            | 200.8  |              | 5         | KJK     | 01/29/20 12:06  | 100 | 10  | DA02838 |
| Mercury        | ND (0.2)            |            | 245.1  |              | 1         | MKS     | 01/29/20 13:18  | 20  | 40  | DA02905 |
| Nickel         | ND (5.0)            |            | 200.7  |              | 1         | KJK     | 01/29/20 11:55  | 100 | 10  | DA02838 |
| Selenium       | ND (1.0)            |            | 3113B  |              | 1         | KJK     | 01/30/20 18:41  | 100 | 10  | DA02838 |
| Silver         | ND (0.5)            |            | 200.7  |              | 1         | KJK     | 01/29/20 11:55  | 100 | 10  | DA02838 |
| Zinc           | <b>9.4</b> (5.0)    |            | 200.7  |              | 1         | KJK     | 01/29/20 11:55  | 100 | 10  | DA02838 |

Service



The Microbiology Division of Thielsch Engineering, Inc.



### CERTIFICATE OF ANALYSIS

Client Name: Tg2 Solutions

Client Project ID: 945 Belmont St Brockton MA - RGP

Client Sample ID: MW-2

Date Sampled: 01/28/20 09:30

Percent Solids: N/A Initial Volume: 25 Final Volume: 25

Extraction Method: 524.2

ESS Laboratory Work Order: 20A0778 ESS Laboratory Sample ID: 20A0778-01

Sample Matrix: Ground Water

Units: ug/L Analyst: MD

### **524.2 Volatile Organic Compounds**

| <b>Analyte</b>             | Results (MRL) | MDL Method | <u>Limit</u> <u>DF</u> | <b>Analyzed</b> | Sequence | <b>Batch</b> |
|----------------------------|---------------|------------|------------------------|-----------------|----------|--------------|
| 1,1,1-Trichloroethane      | ND (0.5)      | 524.2      | 1                      | 01/31/20 16:14  | D0A0276  | DA03134      |
| 1,1,2-Trichloroethane      | ND (0.5)      | 524.2      | 1                      | 01/31/20 16:14  | D0A0276  | DA03134      |
| 1,1-Dichloroethane         | ND (0.5)      | 524.2      | 1                      | 01/31/20 16:14  | D0A0276  | DA03134      |
| 1,1-Dichloroethene         | ND (0.5)      | 524.2      | 1                      | 01/31/20 16:14  | D0A0276  | DA03134      |
| 1,2-Dichlorobenzene        | ND (0.5)      | 524.2      | 1                      | 01/31/20 16:14  | D0A0276  | DA03134      |
| 1,2-Dichloroethane         | ND (0.5)      | 524.2      | 1                      | 01/31/20 16:14  | D0A0276  | DA03134      |
| 1,3-Dichlorobenzene        | ND (0.5)      | 524.2      | 1                      | 01/31/20 16:14  | D0A0276  | DA03134      |
| 1,4-Dichlorobenzene        | ND (0.5)      | 524.2      | 1                      | 01/31/20 16:14  | D0A0276  | DA03134      |
| Acetone                    | ND (5.0)      | 524.2      | 1                      | 01/31/20 16:14  | D0A0276  | DA03134      |
| Benzene                    | ND (0.5)      | 524.2      | 1                      | 01/31/20 16:14  | D0A0276  | DA03134      |
| Carbon Tetrachloride       | ND (0.3)      | 524.2      | 1                      | 01/31/20 16:14  | D0A0276  | DA03134      |
| cis-1,2-Dichloroethene     | ND (0.5)      | 524.2      | 1                      | 01/31/20 16:14  | D0A0276  | DA03134      |
| Ethylbenzene               | ND (0.5)      | 524.2      | 1                      | 01/31/20 16:14  | D0A0276  | DA03134      |
| Methyl tert-Butyl Ether    | ND (0.5)      | 524.2      | 1                      | 01/31/20 16:14  | D0A0276  | DA03134      |
| Methylene Chloride         | ND (0.5)      | 524.2      | 1                      | 01/31/20 16:14  | D0A0276  | DA03134      |
| Naphthalene                | ND (0.5)      | 524.2      | 1                      | 01/31/20 16:14  | D0A0276  | DA03134      |
| Tertiary-amyl methyl ether | ND (1.0)      | 524.2      | 1                      | 01/31/20 16:14  | D0A0276  | DA03134      |
| Tertiary-butyl Alcohol     | ND (25.0)     | 524.2      | 1                      | 01/31/20 16:14  | D0A0276  | DA03134      |
| Tetrachloroethene          | ND (0.5)      | 524.2      | 1                      | 01/31/20 16:14  | D0A0276  | DA03134      |
| Toluene                    | ND (0.5)      | 524.2      | 1                      | 01/31/20 16:14  | D0A0276  | DA03134      |
| Trichloroethene            | ND (0.5)      | 524.2      | 1                      | 01/31/20 16:14  | D0A0276  | DA03134      |
| Vinyl Chloride             | ND (0.2)      | 524.2      | 1                      | 01/31/20 16:14  | D0A0276  | DA03134      |
| Xylene O                   | ND (0.5)      | 524.2      | 1                      | 01/31/20 16:14  | D0A0276  | DA03134      |
| Xylene P,M                 | ND (0.5)      | 524.2      | 1                      | 01/31/20 16:14  | D0A0276  | DA03134      |
|                            |               |            |                        |                 |          |              |

%Recovery Qualifier Limits

Surrogate: 1,2-Dichlorobenzene-d4 97 % 80-120 Surrogate: 4-Bromofluorobenzene 98 % 80-120

185 Frances Avenue, Cranston, RI 02910-2211

Tel: 401-461-7181

Fax: 401-461-4486



The Microbiology Division of Thielsch Engineering, Inc.



### CERTIFICATE OF ANALYSIS

Client Name: Tg2 Solutions

Client Project ID: 945 Belmont St Brockton MA - RGP

Client Sample ID: MW-2 Date Sampled: 01/28/20 09:30

Percent Solids: N/A Initial Volume: 1070

Final Volume: 1

Extraction Method: 3510C

ESS Laboratory Work Order: 20A0778 ESS Laboratory Sample ID: 20A0778-01

Sample Matrix: Ground Water

Units: ug/L Analyst: MJV

Prepared: 1/29/20 11:05

### 608.3 Polychlorinated Biphenyls (PCB)

| Analyte Aroclor 1016                 | Results (MRL)          | <b>MDL</b>  | <b>Method</b> 608.3 | <u>Limit</u> | <u><b>DF</b></u> | <u>Analyzed</u> 01/30/20 15:10 | <b>Sequence</b> | Batch<br>DA02903 |
|--------------------------------------|------------------------|-------------|---------------------|--------------|------------------|--------------------------------|-----------------|------------------|
| Aroclor 1221                         | ND (0.09)<br>ND (0.09) |             | 608.3               |              | 1                | 01/30/20 15:10                 |                 | DA02903          |
| Aroclor 1232                         | ND (0.09)              |             | 608.3               |              | 1                | 01/30/20 15:10                 |                 | DA02903          |
| Aroclor 1242                         | ND (0.09)              |             | 608.3               |              | 1                | 01/30/20 15:10                 |                 | DA02903          |
| Aroclor 1248                         | ND (0.09)              |             | 608.3               |              | 1                | 01/30/20 15:10                 |                 | DA02903          |
| Aroclor 1254                         | ND (0.09)              |             | 608.3               |              | 1                | 01/30/20 15:10                 |                 | DA02903          |
| Aroclor 1260                         | ND (0.09)              |             | 608.3               |              | 1                | 01/30/20 15:10                 |                 | DA02903          |
| Aroclor 1262                         | ND (0.09)              |             | 608.3               |              | 1                | 01/30/20 15:10                 |                 | DA02903          |
| Aroclor 1268                         | ND (0.09)              |             | 608.3               |              | 1                | 01/30/20 15:10                 |                 | DA02903          |
|                                      | Ç                      | %Recovery   | Qualifier           | Limits       |                  |                                |                 |                  |
| Surrogate: Decachlorobiphenyl        |                        | 90 %        |                     | 30-150       |                  |                                |                 |                  |
| Surrogate: Decachlorobiphenyl [2C]   |                        | 96 %        |                     | 30-150       |                  |                                |                 |                  |
| Surrogate: Tetrachloro-m-xylene      |                        | 67 %        |                     | 30-150       |                  |                                |                 |                  |
| Surrogate: Tetrachloro-m-xylene [2C] |                        | <i>75 %</i> |                     | 30-150       |                  |                                |                 |                  |



The Microbiology Division of Thielsch Engineering, Inc.



### CERTIFICATE OF ANALYSIS

Client Name: Tg2 Solutions

Client Project ID: 945 Belmont St Brockton MA - RGP

Client Sample ID: MW-2 Date Sampled: 01/28/20 09:30

Percent Solids: N/A Initial Volume: 1070 Final Volume: 0.25

Surrogate: p-Terphenyl-d14

Extraction Method: 3510C

ESS Laboratory Work Order: 20A0778 ESS Laboratory Sample ID: 20A0778-01

Sample Matrix: Ground Water

Units: ug/L Analyst: VSC

Prepared: 1/29/20 10:10

### 625.1(SIM) Semi-Volatile Organic Compounds

| Analyte Acenaphthene              | Results (MRL) ND (0.19) | <b>MDL</b> | Method<br>625.1 SIM | <u>Limit</u> | <u><b>DF</b></u> | <u>Analyzed</u> 02/01/20 5:03 | Sequence<br>D0A0273 | Batch<br>DA02802 |
|-----------------------------------|-------------------------|------------|---------------------|--------------|------------------|-------------------------------|---------------------|------------------|
| Acenaphthylene                    | ND (0.19)               |            | 625.1 SIM           |              | 1                | 02/01/20 5:03                 | D0A0273             | DA02802          |
| Anthracene                        | ND (0.19)               |            | 625.1 SIM           |              | 1                | 02/01/20 5:03                 | D0A0273             | DA02802          |
| Benzo(a)anthracene                | ND (0.05)               |            | 625.1 SIM           |              | 1                | 02/01/20 5:03                 | D0A0273             | DA02802          |
| Benzo(a)pyrene                    | ND (0.05)               |            | 625.1 SIM           |              | 1                | 02/01/20 5:03                 | D0A0273             | DA02802          |
| Benzo(b)fluoranthene              | ND (0.05)               |            | 625.1 SIM           |              | 1                | 02/01/20 5:03                 | D0A0273             | DA02802          |
| Benzo(g,h,i)perylene              | ND (0.19)               |            | 625.1 SIM           |              | 1                | 02/01/20 5:03                 | D0A0273             | DA02802          |
| Benzo(k)fluoranthene              | ND (0.05)               |            | 625.1 SIM           |              | 1                | 02/01/20 5:03                 | D0A0273             | DA02802          |
| bis(2-Ethylhexyl)phthalate        | ND (2.34)               |            | 625.1 SIM           |              | 1                | 02/01/20 5:03                 | D0A0273             | DA02802          |
| Butylbenzylphthalate              | ND (2.34)               |            | 625.1 SIM           |              | 1                | 02/01/20 5:03                 | D0A0273             | DA02802          |
| Chrysene                          | ND (0.05)               |            | 625.1 SIM           |              | 1                | 02/01/20 5:03                 | D0A0273             | DA02802          |
| Dibenzo(a,h)Anthracene            | ND (0.05)               |            | 625.1 SIM           |              | 1                | 02/01/20 5:03                 | D0A0273             | DA02802          |
| Diethylphthalate                  | ND (2.34)               |            | 625.1 SIM           |              | 1                | 02/01/20 5:03                 | D0A0273             | DA02802          |
| Dimethylphthalate                 | ND (2.34)               |            | 625.1 SIM           |              | 1                | 02/01/20 5:03                 | D0A0273             | DA02802          |
| Di-n-butylphthalate               | ND (2.34)               |            | 625.1 SIM           |              | 1                | 02/01/20 5:03                 | D0A0273             | DA02802          |
| Di-n-octylphthalate               | ND (2.34)               |            | 625.1 SIM           |              | 1                | 02/01/20 5:03                 | D0A0273             | DA02802          |
| Fluoranthene                      | ND (0.19)               |            | 625.1 SIM           |              | 1                | 02/01/20 5:03                 | D0A0273             | DA02802          |
| Fluorene                          | ND (0.19)               |            | 625.1 SIM           |              | 1                | 02/01/20 5:03                 | D0A0273             | DA02802          |
| Indeno(1,2,3-cd)Pyrene            | ND (0.05)               |            | 625.1 SIM           |              | 1                | 02/01/20 5:03                 | D0A0273             | DA02802          |
| Naphthalene                       | ND (0.19)               |            | 625.1 SIM           |              | 1                | 02/01/20 5:03                 | D0A0273             | DA02802          |
| Pentachlorophenol                 | ND (0.84)               |            | 625.1 SIM           |              | 1                | 02/01/20 5:03                 | D0A0273             | DA02802          |
| Phenanthrene                      | ND (0.19)               |            | 625.1 SIM           |              | 1                | 02/01/20 5:03                 | D0A0273             | DA02802          |
| Pyrene                            | ND (0.19)               |            | 625.1 SIM           |              | 1                | 02/01/20 5:03                 | D0A0273             | DA02802          |
|                                   |                         | %Recovery  | Qualifier           | Limits       |                  |                               |                     | -                |
| Surrogate: 1,2-Dichlorobenzene-d4 |                         | 64 %       |                     | 30-130       |                  |                               |                     |                  |
| Surrogate: 2,4,6-Tribromophenol   |                         | 115 %      | S+                  | 15-110       |                  |                               |                     |                  |
| Surrogate: 2-Fluorobiphenyl       |                         | 70 %       |                     | 30-130       |                  |                               |                     |                  |
| Surrogate: Nitrobenzene-d5        |                         | 85 %       |                     | 30-130       |                  |                               |                     |                  |

30-130

88 %



The Microbiology Division of Thielsch Engineering, Inc.



### CERTIFICATE OF ANALYSIS

Client Name: Tg2 Solutions

Client Project ID: 945 Belmont St Brockton MA - RGP

Client Sample ID: MW-2 Date Sampled: 01/28/20 09:30

Percent Solids: N/A Initial Volume: 500 Final Volume: 0.5

Extraction Method: 3535A

ESS Laboratory Work Order: 20A0778 ESS Laboratory Sample ID: 20A0778-01

Sample Matrix: Ground Water

Units: ug/L Analyst: VSC

Prepared: 1/29/20 15:00

### 8270D(SIM) Semi-Volatile Organic Compounds w/ Isotope Dilution

| Analyte<br>1,4-Dioxane    | Results (MRL)<br>ND (0.250) | MDL       | Method<br>8270D SIM | <u>Limit</u> | <u><b>DF</b></u> | <u>Analyzed</u> 01/29/20 22:31 | Sequence<br>D0A0234 | Batch<br>DA02840 |
|---------------------------|-----------------------------|-----------|---------------------|--------------|------------------|--------------------------------|---------------------|------------------|
|                           | 9/                          | 6Recovery | Qualifier           | Limits       |                  |                                |                     |                  |
| Surrogate: 1,4-Dioxane-d8 |                             | 48 %      |                     | 15-115       |                  |                                |                     |                  |

185 Frances Avenue, Cranston, RI 02910-2211

Tel: 401-461-7181

Fax: 401-461-4486

Service



The Microbiology Division of Thielsch Engineering, Inc.



### CERTIFICATE OF ANALYSIS

Client Name: Tg2 Solutions

Client Project ID: 945 Belmont St Brockton MA - RGP

Client Sample ID: MW-2 Date Sampled: 01/28/20 09:30

Percent Solids: N/A

ESS Laboratory Work Order: 20A0778 ESS Laboratory Sample ID: 20A0778-01

Sample Matrix: Ground Water

### **Classical Chemistry**

| Analyte<br>Ammonia as N     | Results (MRL)<br>0.13 (0.10) | <b>MDL Method</b> 350.1 | <u>Limit</u> | <u><b>DF</b></u> | Analyst<br>EEM | Analyzed 01/30/20 15:53 | Units<br>mg/L | Batch<br>DA02927 |
|-----------------------------|------------------------------|-------------------------|--------------|------------------|----------------|-------------------------|---------------|------------------|
| Hexavalent Chromium         | ND (10.0)                    | 3500Cr B-2009           |              | 1                | EEM            | 01/29/20 9:20           | ug/L          | DA02913          |
| Phenols                     | ND (50)                      | 420.1                   |              | 1                | EEM            | 01/31/20 15:55          | ug/L          | DA03117          |
| Total Cyanide               | ND (5.00)                    | 4500 CN CE              |              | 1                | EEM            | 01/30/20 13:40          | ug/L          | DA03015          |
| Total Petroleum Hydrocarbon | ND (5)                       | 1664A                   |              | 1                | LAB            | 02/03/20 14:43          | mg/L          | DB00317          |
| Total Residual Chlorine     | ND (20.0)                    | 4500C1 D                |              | 1                | CCP            | 01/28/20 16:24          | ug/L          | DA02835          |
| Total Suspended Solids      | ND (5)                       | 2540D                   |              | 1                | CCP            | 01/29/20 15:02          | mg/L          | DA02931          |



The Microbiology Division of Thielsch Engineering, Inc.



### CERTIFICATE OF ANALYSIS

Client Name: Tg2 Solutions

Client Project ID: 945 Belmont St Brockton MA - RGP

Client Sample ID: MW-2

Date Sampled: 01/28/20 09:30

Percent Solids: N/A Initial Volume: 1

Final Volume: 1

Extraction Method: General Subbed Prep

ESS Laboratory Work Order: 20A0778 ESS Laboratory Sample ID: 20A0778-01

Sample Matrix: Ground Water

Analyst: SUB

Prepared: 1/29/20 0:00

### **Subcontracted Analysis**

 Analyte
 Results (MRL)
 MDL
 Method
 Limit
 DF
 Analyst
 Analyzed
 Units
 Batch

 Chloride
 376 (0.500)
 SUB
 1
 SUB
 01/29/20
 0:00
 mg/L
 DA03126

185 Frances Avenue, Cranston, RI 02910-2211

Tel: 401-461-7181

Fax: 401-461-4486 ◆ Service http://www.ESSLaboratory.com

Dependability • Quality • S



The Microbiology Division of Thielsch Engineering, Inc.



### CERTIFICATE OF ANALYSIS

Client Name: Tg2 Solutions

Client Project ID: 945 Belmont St Brockton MA - RGP

Client Sample ID: MW-2 Date Sampled: 01/28/20 09:30

Percent Solids: N/A Initial Volume: 35

Final Volume: 2

Extraction Method: 504/8011

ESS Laboratory Work Order: 20A0778 ESS Laboratory Sample ID: 20A0778-01

Sample Matrix: Ground Water

Units: ug/L Analyst: CAD

Prepared: 2/3/20 10:30

### 504.1 1,2-Dibromoethane / 1,2-Dibromo-3-chloropropane

| <u>Analyte</u>                    | Results (MRL) | <b>MDL</b> | Method    | <u>Limit</u> | <u>DF</u> | <b>Analyzed</b> | <b>Sequence</b> | <b>Batch</b> |
|-----------------------------------|---------------|------------|-----------|--------------|-----------|-----------------|-----------------|--------------|
| 1,2-Dibromo-3-Chloropropane       | ND (0.015)    |            | 504.1     |              | 1         | 02/03/20 18:02  |                 | DB00336      |
| 1,2-Dibromoethane                 | ND (0.015)    |            | 504.1     |              | 1         | 02/03/20 18:02  |                 | DB00336      |
|                                   |               |            |           |              |           |                 |                 |              |
|                                   | •             | %Recovery  | Qualifier | Limits       |           |                 |                 |              |
| Surrogate: Pentachloroethane      |               | 134 %      |           | 30-150       |           |                 |                 |              |
| Surrogate: Pentachloroethane [2C] |               | 128 %      |           | 30-150       |           |                 |                 |              |



The Microbiology Division of Thielsch Engineering, Inc.



### CERTIFICATE OF ANALYSIS

Client Name: Tg2 Solutions

Client Project ID: 945 Belmont St Brockton MA - RGP

Client Sample ID: MW-2 Date Sampled: 01/28/20 09:30

Percent Solids: N/A Initial Volume: 1 Final Volume: 1

Extraction Method: No Prep

ESS Laboratory Work Order: 20A0778 ESS Laboratory Sample ID: 20A0778-01

Sample Matrix: Ground Water

Units: mg/L Analyst: ZLC

Prepared: 1/31/20 7:47

### Alcohol Scan by GC/FID

**Analyte** Results (MRL) **MDL** Method **Limit** Analyst Analyzed **Sequence Batch** Ethanol ASTM D3695 ZLC 02/03/20 10:58 DA03101 ND (10)

185 Frances Avenue, Cranston, RI 02910-2211

Tel: 401-461-7181

Fax: 401-461-4486 Service



The Microbiology Division of Thielsch Engineering, Inc.



### CERTIFICATE OF ANALYSIS

Client Name: Tg2 Solutions

Client Project ID: 945 Belmont St Brockton MA - RGP ESS Laboratory Work Order: 20A0778

### **Quality Control Data**

|                             |        |      |             | Spike | Source |      | %REC   |     | RPD   |           |
|-----------------------------|--------|------|-------------|-------|--------|------|--------|-----|-------|-----------|
| Analyte                     | Result | MRL  | Units       | Level | Result | %REC | Limits | RPD | Limit | Qualifier |
|                             |        |      | Dissolved M | etals |        |      |        |     |       |           |
| Batch DA02838 - 3005A/200.7 |        |      |             |       |        |      |        |     |       |           |
| Blank                       |        |      |             |       |        |      |        |     |       |           |
| Antimony                    | ND     | 5.0  | ug/L        |       |        |      |        |     |       |           |
| Chromium                    | ND     | 2.0  | ug/L        |       |        |      |        |     |       |           |
| Copper                      | ND     | 2.0  | ug/L        |       |        |      |        |     |       |           |
| Iron                        | ND     | 10.0 | ug/L        |       |        |      |        |     |       |           |
| Nickel                      | ND     | 5.0  | ug/L        |       |        |      |        |     |       |           |
| Silver                      | ND     | 1.0  | ug/L        |       |        |      |        |     |       |           |
| Zinc                        | ND     | 5.0  | ug/L        |       |        |      |        |     |       |           |
| Blank                       |        |      |             |       |        |      |        |     |       |           |
| Cadmium                     | ND     | 0.1  | ug/L        |       |        |      |        |     |       |           |
| Lead                        | ND     | 0.5  | ug/L        |       |        |      |        |     |       |           |
| Blank                       |        |      |             |       |        |      |        |     |       |           |
| Arsenic                     | ND     | 0.5  | ug/L        |       |        |      |        |     |       |           |
| Selenium                    | ND     | 1.0  | ug/L        |       |        |      |        |     |       |           |
| LCS                         |        |      |             |       |        |      |        |     |       |           |
| Antimony                    | 49.7   | 5.0  | ug/L        | 50.00 |        | 99   | 85-115 |     |       |           |
| Chromium                    | 48.5   | 2.0  | ug/L        | 50.00 |        | 97   | 85-115 |     |       |           |
| Copper                      | 52.4   | 2.0  | ug/L        | 50.00 |        | 105  | 85-115 |     |       |           |
| Iron                        | 228    | 10.0 | ug/L        | 250.0 |        | 91   | 85-115 |     |       |           |
| Nickel                      | 50.3   | 5.0  | ug/L        | 50.00 |        | 101  | 85-115 |     |       |           |
| Silver                      | 25.4   | 1.0  | ug/L        | 25.00 |        | 102  | 85-115 |     |       |           |
| Zinc                        | 51.3   | 5.0  | ug/L        | 50.00 |        | 103  | 85-115 |     |       |           |
| LCS                         |        |      |             |       |        |      |        |     |       |           |
| Cadmium                     | 23.9   | 2.5  | ug/L        | 25.00 |        | 96   | 85-115 |     |       |           |
| Lead                        | 47.7   | 0.5  | ug/L        | 50.00 |        | 95   | 85-115 |     |       |           |
| LCS                         |        |      |             |       |        |      |        |     |       |           |
| Arsenic                     | 47.4   | 12.5 | ug/L        | 50.00 |        | 95   | 85-115 |     |       |           |
| Selenium                    | 104    | 25.0 | ug/L        | 100.0 |        | 104  | 85-115 |     |       |           |
| LCS Dup                     |        |      |             |       |        |      |        |     |       |           |
| Arsenic                     | 43.9   | 12.5 | ug/L        | 50.00 |        | 88   | 85-115 | 8   | 20    |           |
| Selenium                    | 95.7   | 25.0 | ug/L        | 100.0 |        | 96   | 85-115 | 8   | 20    |           |
| Batch DA02905 - 245.1/7470A |        |      |             |       |        |      |        |     |       |           |
| Blank                       |        | -    |             |       |        |      |        |     |       |           |
| Mercury                     | ND     | 0.20 | ug/L        |       |        |      |        |     |       |           |
| LCS                         |        |      |             |       |        |      |        |     |       |           |
| Mercury                     | 5.80   | 0.20 | ug/L        | 6.042 |        | 96   | 85-115 |     |       |           |
| LCS Dup                     |        |      |             |       |        |      |        |     |       |           |
| Mercury                     | 5.70   | 0.20 | ug/L        | 6.042 |        | 94   | 85-115 | 2   | 20    |           |
|                             |        |      | Total Meta  |       |        |      |        |     |       |           |

Batch DA02838 - 3005A/200.7

Blank

185 Frances Avenue, Cranston, RI 02910-2211

Tel: 401-461-7181

Fax: 401-461-4486



The Microbiology Division of Thielsch Engineering, Inc.



### CERTIFICATE OF ANALYSIS

Client Name: Tg2 Solutions

Client Project ID: 945 Belmont St Brockton MA - RGP ESS Laboratory Work Order: 20A0778

### **Quality Control Data**

| A                           | 5 !!   | MO        | 11.2         | Spike    | Source | 0/ 050 | %REC   | DDD | RPD   | 0. ""    |
|-----------------------------|--------|-----------|--------------|----------|--------|--------|--------|-----|-------|----------|
| Analyte                     | Result | MRL       | Units        | Level    | Result | %REC   | Limits | RPD | Limit | Qualifie |
|                             |        |           | Total Meta   | als      |        |        |        |     |       |          |
| Satch DA02838 - 3005A/200.7 |        |           |              |          |        |        |        |     |       |          |
| Antimony                    | ND     | 5.0       | ug/L         |          |        |        |        |     |       |          |
| Chromium                    | ND     | 2.0       | ug/L         |          |        |        |        |     |       |          |
| Copper                      | ND     | 2.0       | ug/L         |          |        |        |        |     |       |          |
| ron                         | ND     | 10.0      | ug/L         |          |        |        |        |     |       |          |
| lickel                      | ND     | 5.0       | ug/L         |          |        |        |        |     |       |          |
| ilver                       | ND     | 0.5       | ug/L         |          |        |        |        |     |       |          |
| linc                        | ND     | 5.0       | ug/L         |          |        |        |        |     |       |          |
| Blank                       |        |           |              |          |        |        |        |     |       |          |
| Cadmium                     | ND     | 0.1       | ug/L         |          |        |        |        |     |       |          |
| ead                         | ND     | 0.5       | ug/L         |          |        |        |        |     |       |          |
| Blank                       |        |           |              |          |        |        |        |     |       |          |
| Arsenic                     | ND     | 0.5       | ug/L         |          |        |        |        |     |       |          |
| Selenium                    | ND     | 1.0       | ug/L         |          |        |        |        |     |       |          |
| .cs                         |        |           |              |          |        |        |        |     |       |          |
| Antimony                    | 49.7   | 5.0       | ug/L         | 50.00    |        | 99     | 85-115 |     |       |          |
| Chromium                    | 48.5   | 2.0       | ug/L         | 50.00    |        | 97     | 85-115 |     |       |          |
| Copper                      | 52.4   | 2.0       | ug/L         | 50.00    |        | 105    | 85-115 |     |       |          |
| ron                         | 228    | 10.0      | ug/L         | 250.0    |        | 91     | 85-115 |     |       |          |
| lickel                      | 50.3   | 5.0       | ug/L         | 50.00    |        | 101    | 85-115 |     |       |          |
| Silver                      | 25.4   | 0.5       | ug/L         | 25.00    |        | 102    | 85-115 |     |       |          |
| linc                        | 51.3   | 5.0       | ug/L         | 50.00    |        | 103    | 85-115 |     |       |          |
| .cs                         |        |           |              |          |        |        |        |     |       |          |
| Cadmium                     | 23.9   | 2.5       | ug/L         | 25.00    |        | 96     | 85-115 |     |       |          |
| ead                         | 47.7   | 2.5       | ug/L         | 50.00    |        | 95     | 85-115 |     |       |          |
| .cs                         |        |           |              |          |        |        |        |     |       |          |
| Arsenic                     | 47.4   | 12.5      | ug/L         | 50.00    |        | 95     | 85-115 |     |       |          |
| Selenium                    | 104    | 25.0      | ug/L         | 100.0    |        | 104    | 85-115 |     |       |          |
| .CS Dup                     |        |           |              |          |        |        |        |     |       |          |
| Arsenic                     | 43.9   | 12.5      | ug/L         | 50.00    |        | 88     | 85-115 | 8   | 20    |          |
| Selenium                    | 95.7   | 25.0      | ug/L         | 100.0    |        | 96     | 85-115 | 8   | 20    |          |
| Batch DA02905 - 245.1/7470A |        |           |              |          |        |        |        |     |       |          |
|                             |        |           |              |          |        |        |        |     |       |          |
| Blank                       | ND.    | 0.2       | u = n        |          |        |        |        |     |       |          |
| Mercury                     | ND     | 0.2       | ug/L         |          |        |        |        |     |       |          |
| .cs                         |        |           |              | ***      |        |        |        |     |       |          |
| Mercury                     | 5.8    | 0.2       | ug/L         | 6.042    |        | 96     | 85-115 |     |       |          |
| .CS Dup                     |        |           |              |          |        |        |        |     |       |          |
| Mercury                     | 5.7    | 0.2       | ug/L         | 6.042    |        | 94     | 85-115 | 2   | 20    |          |
|                             |        | 524.2 Vol | atile Organi | c Compou | unds   |        |        |     |       |          |
| Batch DA03134 - 524.2       |        |           |              |          |        |        |        |     |       |          |
| Blank                       |        |           |              |          |        |        |        |     |       |          |
| I,1,1-Trichloroethane       | ND     | 0.5       | ug/L         |          |        |        |        |     |       |          |

185 Frances Avenue, Cranston, RI 02910-2211

2211 Tel: 401-461-7181

Dependability 

◆ Quality

Fax: 401-461-4486 ◆ Service



The Microbiology Division of Thielsch Engineering, Inc.



### CERTIFICATE OF ANALYSIS

Client Name: Tg2 Solutions

Client Project ID: 945 Belmont St Brockton MA - RGP ESS Laboratory Work Order: 20A0778

### **Quality Control Data**

|         |        |     |       | Spike | Source |      | %REC   |     | RPD   |           |
|---------|--------|-----|-------|-------|--------|------|--------|-----|-------|-----------|
| Analyte | Result | MRL | Units | Level | Result | %REC | Limits | RPD | Limit | Qualifier |

| 524.2 Volatil | e Organic | Compound | S |
|---------------|-----------|----------|---|
|---------------|-----------|----------|---|

| Batch DA03134 - 524.2             |      |      |      |       |     |        |    |
|-----------------------------------|------|------|------|-------|-----|--------|----|
| 1,1,2-Trichloroethane             | ND   | 0.5  | ug/L |       |     |        |    |
| 1,1-Dichloroethane                | ND   | 0.5  | ug/L |       |     |        |    |
| 1,1-Dichloroethene                | ND   | 0.5  | ug/L |       |     |        |    |
| 1,2-Dichlorobenzene               | ND   | 0.5  | ug/L |       |     |        |    |
| 1,2-Dichloroethane                | ND   | 0.5  | ug/L |       |     |        |    |
| 1,3-Dichlorobenzene               | ND   | 0.5  | ug/L |       |     |        |    |
| 1,4-Dichlorobenzene               | ND   | 0.5  | ug/L |       |     |        |    |
| Acetone                           | ND   | 5.0  | ug/L |       |     |        |    |
| Benzene                           | ND   | 0.5  | ug/L |       |     |        |    |
| Carbon Tetrachloride              | ND   | 0.3  | ug/L |       |     |        |    |
| cis-1,2-Dichloroethene            | ND   | 0.5  | ug/L |       |     |        |    |
| Ethylbenzene                      | ND   | 0.5  | ug/L |       |     |        |    |
| Methyl tert-Butyl Ether           | ND   | 0.5  | ug/L |       |     |        |    |
| Methylene Chloride                | ND   | 0.5  | ug/L |       |     |        |    |
| Naphthalene                       | ND   | 0.5  | ug/L |       |     |        |    |
| Tertiary-amyl methyl ether        | ND   | 1.0  | ug/L |       |     |        |    |
| Tertiary-butyl Alcohol            | ND   | 25.0 | ug/L |       |     |        |    |
| Tetrachloroethene                 | ND   | 0.5  | ug/L |       |     |        |    |
| Toluene                           | ND   | 0.5  | ug/L |       |     |        |    |
| Trichloroethene                   | ND   | 0.5  | ug/L |       |     |        |    |
| Vinyl Chloride                    | ND   | 0.2  | ug/L |       |     |        |    |
| Xylene O                          | ND   | 0.5  | ug/L |       |     |        |    |
| Xylene P,M                        | ND   | 0.5  | ug/L |       |     |        |    |
| Surrogate: 1,2-Dichlorobenzene-d4 | 5.00 |      | ug/L | 5.000 | 100 | 80-120 |    |
| Surrogate: 4-Bromofluorobenzene   | 4.86 |      | ug/L | 5.000 | 97  | 80-120 |    |
| LCS                               |      |      |      |       |     |        |    |
| 1,1,1-Trichloroethane             | 9.7  | 0.5  | ug/L | 10.00 | 97  | 70-130 |    |
| 1,1,2-Trichloroethane             | 10.0 | 0.5  | ug/L | 10.00 | 100 | 70-130 |    |
| 1,1-Dichloroethane                | 9.6  | 0.5  | ug/L | 10.00 | 96  | 70-130 |    |
| 1,1-Dichloroethene                | 10.1 | 0.5  | ug/L | 10.00 | 101 | 70-130 |    |
| 1,2-Dichlorobenzene               | 10.0 | 0.5  | ug/L | 10.00 | 100 | 70-130 |    |
| 1,2-Dichloroethane                | 10.1 | 0.5  | ug/L | 10.00 | 101 | 70-130 |    |
| 1,3-Dichlorobenzene               | 10.2 | 0.5  | ug/L | 10.00 | 102 | 70-130 |    |
| 1,4-Dichlorobenzene               | 10.4 | 0.5  | ug/L | 10.00 | 104 | 70-130 |    |
| Acetone                           | 43.3 | 5.0  | ug/L | 50.00 | 87  | 70-130 |    |
| Benzene                           | 9.5  | 0.5  | ug/L | 10.00 | 95  | 70-130 |    |
| Carbon Tetrachloride              | 9.4  | 0.3  | ug/L | 10.00 | 94  | 70-130 |    |
| cis-1,2-Dichloroethene            | 9.9  | 0.5  | ug/L | 10.00 | 99  | 70-130 |    |
| Ethylbenzene                      | 9.6  | 0.5  | ug/L | 10.00 | 96  | 70-130 |    |
| Methyl tert-Butyl Ether           | 9.9  | 0.5  | ug/L | 10.00 | 99  | 70-130 |    |
| Methylene Chloride                | 10.3 | 0.5  | ug/L | 10.00 | 103 | 70-130 |    |
| Naphthalene                       | 9.8  | 0.5  | ug/L | 10.00 | 98  | 70-130 |    |
| Tertiary-amyl methyl ether        | 10.0 | 1.0  | ug/L | 10.00 | 100 | 70-130 |    |
| Tertiary-butyl Alcohol            | 47.8 | 25.0 | ug/L | 50.00 | 96  | 70-130 |    |
| Tetrachloroethene                 | 6.7  | 0.5  | ug/L | 10.00 | 67  | 70-130 | B- |
|                                   |      |      |      |       |     |        |    |

185 Frances Avenue, Cranston, RI 02910-2211

2211 Tel: 401-461-7181

Dependability 

◆ Quality

Fax: 401-461-4486 ◆ Service



The Microbiology Division of Thielsch Engineering, Inc.



### CERTIFICATE OF ANALYSIS

Client Name: Tg2 Solutions

Client Project ID: 945 Belmont St Brockton MA - RGP ESS Laboratory Work Order: 20A0778

### **Quality Control Data**

| Analyte                           | Result | MRL       | Units        | Spike<br>Level | Source<br>Result | %REC | %REC<br>Limits | RPD | RPD<br>Limit | Qualifier |
|-----------------------------------|--------|-----------|--------------|----------------|------------------|------|----------------|-----|--------------|-----------|
|                                   |        | 524.2 Vol | atile Organi | c Compou       | ınds             |      |                |     |              |           |
| Satch DA03134 - 524.2             |        |           |              |                |                  |      |                |     |              |           |
| oluene                            | 9.3    | 0.5       | ug/L         | 10.00          |                  | 93   | 70-130         |     |              |           |
| richloroethene                    | 9.9    | 0.5       | ug/L         | 10.00          |                  | 99   | 70-130         |     |              |           |
| finyl Chloride                    | 8.3    | 0.2       | ug/L         | 10.00          |                  | 83   | 70-130         |     |              |           |
| (ylene O                          | 9.0    | 0.5       | ug/L         | 10.00          |                  | 90   | 70-130         |     |              |           |
| (ylene P,M                        | 19.6   | 0.5       | ug/L         | 20.00          |                  | 98   | 70-130         |     |              |           |
| Surrogate: 1,2-Dichlorobenzene-d4 | 5.07   |           | ug/L         | 5.000          |                  | 101  | 80-120         |     |              |           |
| Gurrogate: 4-Bromofluorobenzene   | 4.94   |           | ug/L         | 5.000          |                  | 99   | 80-120         |     |              |           |
| .CS Dup                           |        |           |              |                |                  |      |                |     |              |           |
| ,1,1-Trichloroethane              | 10.5   | 0.5       | ug/L         | 10.00          |                  | 105  | 70-130         | 9   | 20           |           |
| ,1,2-Trichloroethane              | 10.0   | 0.5       | ug/L         | 10.00          |                  | 100  | 70-130         | 0.3 | 20           |           |
| ,1-Dichloroethane                 | 10.6   | 0.5       | ug/L         | 10.00          |                  | 106  | 70-130         | 9   | 20           |           |
| ,1-Dichloroethene                 | 11.2   | 0.5       | ug/L         | 10.00          |                  | 112  | 70-130         | 10  | 20           |           |
| .2-Dichlorobenzene                | 10.9   | 0.5       | ug/L         | 10.00          |                  | 109  | 70-130         | 9   | 20           |           |
| ,2-Dichloroethane                 | 11.1   | 0.5       | ug/L         | 10.00          |                  | 111  | 70-130         | 10  | 20           |           |
| ,3-Dichlorobenzene                | 11.1   | 0.5       | ug/L         | 10.00          |                  | 111  | 70-130         | 8   | 20           |           |
| .4-Dichlorobenzene                | 11.4   | 0.5       | ug/L         | 10.00          |                  | 114  | 70-130         | 9   | 20           |           |
| cetone                            | 44.0   | 5.0       | ug/L         | 50.00          |                  | 88   | 70-130         | 2   | 20           |           |
| enzene                            | 10.7   | 0.5       | ug/L         | 10.00          |                  | 107  | 70-130         | 12  | 20           |           |
| arbon Tetrachloride               | 10.8   | 0.3       | ug/L         | 10.00          |                  | 108  | 70-130         | 14  | 20           |           |
| s-1,2-Dichloroethene              | 11.4   | 0.5       | ug/L         | 10.00          |                  | 114  | 70-130         | 14  | 20           |           |
| thylbenzene                       | 11.4   | 0.5       | ug/L         | 10.00          |                  | 114  | 70-130         | 17  | 20           |           |
| lethyl tert-Butyl Ether           | 10.9   | 0.5       | ug/L         | 10.00          |                  | 109  | 70-130         | 9   | 20           |           |
| lethylene Chloride                | 11.1   | 0.5       | ug/L         | 10.00          |                  | 111  | 70-130         | 7   | 20           |           |
| laphthalene                       | 10.5   | 0.5       | ug/L         | 10.00          |                  | 105  | 70-130         | 6   | 20           |           |
| ertiary-amyl methyl ether         | 10.6   | 1.0       | ug/L         | 10.00          |                  | 106  | 70-130         | 6   | 20           |           |
| ertiary-butyl Alcohol             | 49.6   | 25.0      | ug/L         | 50.00          |                  | 99   | 70-130         | 4   | 25           |           |
| etrachloroethene                  | 7.8    | 0.5       | ug/L         | 10.00          |                  | 78   | 70-130         | 15  | 20           |           |
| oluene                            | 11.2   | 0.5       | ug/L         | 10.00          |                  | 112  | 70-130         | 18  | 20           |           |
| richloroethene                    | 10.8   | 0.5       | ug/L         | 10.00          |                  | 108  | 70-130         | 9   | 20           |           |
| inyl Chloride                     | 9.2    | 0.2       | ug/L         | 10.00          |                  | 92   | 70-130         | 11  | 20           |           |
| ylene O                           | 10.4   | 0.5       | ug/L         | 10.00          |                  | 104  | 70-130         | 15  | 20           |           |
| ylene P,M                         | 22.6   | 0.5       | ug/L         | 20.00          |                  | 113  | 70-130         | 14  | 20           |           |
| Surrogate: 1,2-Dichlorobenzene-d4 | 5.02   |           | ug/L         | 5.000          |                  | 100  | 80-120         |     |              |           |
| Surrogate: 4-Bromofluorobenzene   | 4.78   |           | ug/L         | 5.000          |                  | 96   | 80-120         |     |              |           |

| atch | DA0 | 2903 | - 35 | 10C |
|------|-----|------|------|-----|

| Blank             |    |      |      |
|-------------------|----|------|------|
| Aroclor 1016      | ND | 0.10 | ug/L |
| Aroclor 1016 [2C] | ND | 0.10 | ug/L |
| Aroclor 1221      | ND | 0.10 | ug/L |
| Aroclor 1221 [2C] | ND | 0.10 | ug/L |
| Aroclor 1232      | ND | 0.10 | ug/L |
| Aroclor 1232 [2C] | ND | 0.10 | ug/L |
| Aroclor 1242      | ND | 0.10 | un/l |

185 Frances Avenue, Cranston, RI 02910-2211 Tel: 401-461-7181 Fax: 401-461-4486 <a href="http://www.ESSLaboratory.com">http://www.ESSLaboratory.com</a>



The Microbiology Division of Thielsch Engineering, Inc.



### CERTIFICATE OF ANALYSIS

Client Name: Tg2 Solutions

Client Project ID: 945 Belmont St Brockton MA - RGP ESS Laboratory Work Order: 20A0778

### **Quality Control Data**

| Analyte                              | Pocult- | мы               | Unito         | Spike<br>Level | Source   | 0/cDEC   | %REC             | DDL | RPD<br>Limit | Onalie:  |
|--------------------------------------|---------|------------------|---------------|----------------|----------|----------|------------------|-----|--------------|----------|
| Analyte                              | Result  | MRL COO 2 Dalace | Units         | Level          | Result   | %REC     | Limits           | RPD | Limit        | Qualifie |
|                                      |         | 608.3 Polyc      | niorinated E  | siphenyls      | (PCB)    |          |                  |     |              |          |
| Batch DA02903 - 3510C                |         |                  |               |                |          |          |                  |     |              |          |
| Aroclor 1242 [2C]                    | ND      | 0.10             | ug/L          |                |          |          |                  |     |              |          |
| Aroclor 1248                         | ND      | 0.10             | ug/L          |                |          |          |                  |     |              |          |
| Aroclor 1248 [2C]                    | ND      | 0.10             | ug/L          |                |          |          |                  |     |              |          |
| Aroclor 1254                         | ND      | 0.10             | ug/L          |                |          |          |                  |     |              |          |
| Aroclor 1254 [2C]                    | ND      | 0.10             | ug/L          |                |          |          |                  |     |              |          |
| Aroclor 1260                         | ND      | 0.10             | ug/L          |                |          |          |                  |     |              |          |
| Aroclor 1260 [2C]                    | ND      | 0.10             | ug/L          |                |          |          |                  |     |              |          |
| Aroclor 1262                         | ND      | 0.10             | ug/L          |                |          |          |                  |     |              |          |
| Aroclor 1262 [2C]                    | ND      | 0.10             | ug/L          |                |          |          |                  |     |              |          |
| Aroclor 1268                         | ND      | 0.10             | ug/L          |                |          |          |                  |     |              |          |
| Aroclor 1268 [2C]                    | ND      | 0.10             | ug/L          |                |          |          |                  |     |              |          |
| Surrogate: Decachlorobiphenyl        | 0.0502  |                  | ug/L          | 0.05000        |          | 100      | 30-150           |     |              |          |
| Surrogate: Decachlorobiphenyl [2C]   | 0.0479  |                  | ug/L          | 0.05000        |          | 96       | 30-150           |     |              |          |
| Surrogate: Tetrachloro-m-xylene      | 0.0267  |                  | ug/L          | 0.05000        |          | 53       | 30-150           |     |              |          |
| Surrogate: Tetrachloro-m-xylene [2C] | 0.0281  |                  | ug/L          | 0.05000        |          | 56       | 30-150           |     |              |          |
| LCS                                  |         |                  |               |                |          |          |                  |     |              |          |
| Aroclor 1016                         | 0.94    | 0.10             | ug/L          | 1.000          |          | 94       | 50-140           |     |              |          |
| Aroclor 1016 [2C]                    | 0.81    | 0.10             | ug/L          | 1.000          |          | 81       | 50-140           |     |              |          |
| Aroclor 1260                         | 0.99    | 0.10             | ug/L          | 1.000          |          | 99       | 1-164            |     |              |          |
| Aroclor 1260 [2C]                    | 0.92    | 0.10             | ug/L          | 1.000          |          | 92       | 1-164            |     |              |          |
|                                      | 0.0550  |                  | us/I          | 0.05000        |          | 117      | 20.150           |     |              |          |
| Surrogate: Decachlorobiphenyl        | 0.0559  |                  | ug/L          | 0.05000        |          | 112      | 30-150           |     |              |          |
| Surrogate: Decachlorobiphenyl [2C]   | 0.0547  |                  | ug/L          | 0.05000        |          | 109      | 30-150           |     |              |          |
| Surrogate: Tetrachloro-m-xylene      | 0.0351  |                  | ug/L          | 0.05000        |          | 70<br>71 | 30-150<br>30-150 |     |              |          |
| Surrogate: Tetrachloro-m-xylene [2C] | 0.0353  |                  | ug/L          | 0.05000        |          | 71       | 30-150           |     |              |          |
| LCS Dup                              |         |                  |               |                |          |          |                  |     |              |          |
| Aroclor 1016                         | 1.18    | 0.10             | ug/L          | 1.000          |          | 118      | 50-140           | 23  | 36           |          |
| Aroclor 1016 [2C]                    | 0.87    | 0.10             | ug/L          | 1.000          |          | 87       | 50-140           | 8   | 36           |          |
| Aroclor 1260                         | 1.02    | 0.10             | ug/L          | 1.000          |          | 102      | 1-164            | 3   | 38           |          |
| Aroclor 1260 [2C]                    | 0.94    | 0.10             | ug/L          | 1.000          |          | 94       | 1-164            | 3   | 38           |          |
| Surrogate: Decachlorobiphenyl        | 0.0538  |                  | ug/L          | 0.05000        |          | 108      | 30-150           |     |              |          |
| Surrogate: Decachlorobiphenyl [2C]   | 0.0524  |                  | ug/L          | 0.05000        |          | 105      | 30-150           |     |              |          |
| Surrogate: Tetrachloro-m-xylene      | 0.0327  |                  | ug/L          | 0.05000        |          | 65       | 30-150           |     |              |          |
| Surrogate: Tetrachloro-m-xylene [2C] | 0.0340  |                  | ug/L          | 0.05000        |          | 68       | 30-150           |     |              |          |
|                                      | 62!     | 5.1(SIM) Sen     | ni-Volatile C | Organic Co     | ompounds | 5        |                  |     |              |          |
| Batch DA02802 - 3510C                |         |                  |               |                |          |          |                  |     |              |          |
| Blank                                |         |                  |               |                |          |          |                  |     |              |          |
| Acenaphthene                         | ND      | 0.20             | ug/L          |                |          |          |                  |     |              |          |
| Acenaphthylene                       | ND      | 0.20             | ug/L          |                |          |          |                  |     |              |          |
| Anthracene                           | ND      | 0.20             | ug/L          |                |          |          |                  |     |              |          |
| Benzo(a)anthracene                   | ND      | 0.05             | ug/L          |                |          |          |                  |     |              |          |
| Benzo(a)pyrene                       | ND      | 0.05             | ug/L          |                |          |          |                  |     |              |          |



The Microbiology Division of Thielsch Engineering, Inc.



### CERTIFICATE OF ANALYSIS

Client Name: Tg2 Solutions

Client Project ID: 945 Belmont St Brockton MA - RGP ESS Laboratory Work Order: 20A0778

### **Quality Control Data**

|         |        |     |       | Spike | Source |      | %REC   |     | RPD   |           |
|---------|--------|-----|-------|-------|--------|------|--------|-----|-------|-----------|
| Analyte | Result | MRL | Units | Level | Result | %REC | Limits | RPD | Limit | Qualifier |

| 625.1(SIM) | Semi-Volatile | Organic | Compounds |
|------------|---------------|---------|-----------|
|------------|---------------|---------|-----------|

| Batch DA02802 - 3510C             |       |      |      |       |     |               |  |
|-----------------------------------|-------|------|------|-------|-----|---------------|--|
| Benzo(b)fluoranthene              | ND    | 0.05 | ug/L |       |     |               |  |
| Benzo(g,h,i)perylene              | ND    | 0.20 | ug/L |       |     |               |  |
| Benzo(k)fluoranthene              | ND    | 0.05 | ug/L |       |     |               |  |
| bis(2-Ethylhexyl)phthalate        | ND    | 2.50 | ug/L |       |     |               |  |
| Butylbenzylphthalate              | ND    | 2.50 | ug/L |       |     |               |  |
| Chrysene                          | ND    | 0.05 | ug/L |       |     |               |  |
| Dibenzo(a,h)Anthracene            | ND    | 0.05 | ug/L |       |     |               |  |
| Diethylphthalate                  | ND    | 2.50 | ug/L |       |     |               |  |
| Dimethylphthalate                 | ND    | 2.50 | ug/L |       |     |               |  |
| Di-n-butylphthalate               | ND    | 2.50 | ug/L |       |     |               |  |
| Di-n-octylphthalate               | ND    | 2.50 | ug/L |       |     |               |  |
| Fluoranthene                      | ND    | 0.20 | ug/L |       |     |               |  |
| Fluorene                          | ND    | 0.20 | ug/L |       |     |               |  |
| Indeno(1,2,3-cd)Pyrene            | ND    | 0.05 | ug/L |       |     |               |  |
| Naphthalene                       | ND    | 0.20 | ug/L |       |     |               |  |
| Pentachlorophenol                 | ND    | 0.90 | ug/L |       |     |               |  |
| Phenanthrene                      | ND    | 0.20 | ug/L |       |     |               |  |
| Pyrene                            | ND    | 0.20 | ug/L |       |     |               |  |
| Surrogate: 1,2-Dichlorobenzene-d4 | 0.874 |      | ug/L | 2.500 | 35  | 30-130        |  |
| Surrogate: 2,4,6-Tribromophenol   | 3.71  |      | ug/L | 3.750 | 99  | <i>15-110</i> |  |
| Surrogate: 2-Fluorobiphenyl       | 1.25  |      | ug/L | 2.500 | 50  | 30-130        |  |
| Surrogate: Nitrobenzene-d5        | 1.85  |      | ug/L | 2.500 | 74  | 30-130        |  |
| Surrogate: p-Terphenyl-d14        | 2.25  |      | ug/L | 2.500 | 90  | 30-130        |  |
| LCS                               |       |      |      |       |     |               |  |
| Acenaphthene                      | 3.32  | 0.20 | ug/L | 4.000 | 83  | 40-140        |  |
| Acenaphthylene                    | 3.22  | 0.20 | ug/L | 4.000 | 81  | 40-140        |  |
| Anthracene                        | 3.29  | 0.20 | ug/L | 4.000 | 82  | 40-140        |  |
| Benzo(a)anthracene                | 3.14  | 0.05 | ug/L | 4.000 | 79  | 40-140        |  |
| Benzo(a)pyrene                    | 3.34  | 0.05 | ug/L | 4.000 | 84  | 40-140        |  |
| Benzo(b)fluoranthene              | 3.24  | 0.05 | ug/L | 4.000 | 81  | 40-140        |  |
| Benzo(g,h,i)perylene              | 3.14  | 0.20 | ug/L | 4.000 | 79  | 40-140        |  |
| Benzo(k)fluoranthene              | 3.28  | 0.05 | ug/L | 4.000 | 82  | 40-140        |  |
| bis(2-Ethylhexyl)phthalate        | 4.49  | 2.50 | ug/L | 4.000 | 112 | 40-140        |  |
| Butylbenzylphthalate              | 4.41  | 2.50 | ug/L | 4.000 | 110 | 40-140        |  |
| Chrysene                          | 3.23  | 0.05 | ug/L | 4.000 | 81  | 40-140        |  |
| Dibenzo(a,h)Anthracene            | 3.29  | 0.05 | ug/L | 4.000 | 82  | 40-140        |  |
| Diethylphthalate                  | 3.81  | 2.50 | ug/L | 4.000 | 95  | 40-140        |  |
| Dimethylphthalate                 | 3.57  | 2.50 | ug/L | 4.000 | 89  | 40-140        |  |
| Di-n-butylphthalate               | 4.19  | 2.50 | ug/L | 4.000 | 105 | 40-140        |  |
| Di-n-octylphthalate               | 4.06  | 2.50 | ug/L | 4.000 | 102 | 40-140        |  |
| Fluoranthene                      | 3.39  | 0.20 | ug/L | 4.000 | 85  | 40-140        |  |
| Fluorene                          | 3.43  | 0.20 | ug/L | 4.000 | 86  | 40-140        |  |
| Indeno(1,2,3-cd)Pyrene            | 3.32  | 0.05 | ug/L | 4.000 | 83  | 40-140        |  |
| Naphthalene                       | 2.91  | 0.20 | ug/L | 4.000 | 73  | 40-140        |  |
| Pentachlorophenol                 | 3.89  | 0.90 | ug/L | 4.000 | 97  | 30-130        |  |
|                                   |       |      |      |       |     |               |  |

185 Frances Avenue, Cranston, RI 02910-2211

2211 Tel: 401-461-7181

Dependability 

◆ Quality

Fax: 401-461-4486 ◆ Service



The Microbiology Division of Thielsch Engineering, Inc.



### CERTIFICATE OF ANALYSIS

Client Name: Tg2 Solutions

Client Project ID: 945 Belmont St Brockton MA - RGP ESS Laboratory Work Order: 20A0778

### **Quality Control Data**

|         |        |     |       | Spike | Source |      | %REC   |     | RPD   |           |
|---------|--------|-----|-------|-------|--------|------|--------|-----|-------|-----------|
| Analyte | Result | MRL | Units | Level | Result | %REC | Limits | RPD | Limit | Qualifier |

### 625.1(SIM) Semi-Volatile Organic Compounds

| Batch DA02802 - 3510C             |       |      |      |       |     |               |    |    |    |
|-----------------------------------|-------|------|------|-------|-----|---------------|----|----|----|
| Phenanthrene                      | 3.21  | 0.20 | ug/L | 4.000 | 80  | 40-140        |    |    |    |
| Pyrene                            | 3.31  | 0.20 | ug/L | 4.000 | 83  | 40-140        |    |    |    |
| Surrogate: 1,2-Dichlorobenzene-d4 | 1.72  |      | ug/L | 2.500 | 69  | 30-130        |    |    |    |
| Surrogate: 2,4,6-Tribromophenol   | 4.30  |      | ug/L | 3.750 | 115 | <i>15-110</i> |    |    | 5+ |
| Surrogate: 2-Fluorobiphenyl       | 1.74  |      | ug/L | 2.500 | 70  | 30-130        |    |    |    |
| Surrogate: Nitrobenzene-d5        | 2.03  |      | ug/L | 2.500 | 81  | 30-130        |    |    |    |
| Surrogate: p-Terphenyl-d14        | 2.06  |      | ug/L | 2.500 | 83  | 30-130        |    |    |    |
| LCS Dup                           |       |      |      |       |     |               |    |    |    |
| Acenaphthene                      | 2.50  | 0.20 | ug/L | 4.000 | 63  | 40-140        | 28 | 20 | D+ |
| Acenaphthylene                    | 2.65  | 0.20 | ug/L | 4.000 | 66  | 40-140        | 19 | 20 |    |
| Anthracene                        | 3.34  | 0.20 | ug/L | 4.000 | 84  | 40-140        | 2  | 20 |    |
| Benzo(a)anthracene                | 3.48  | 0.05 | ug/L | 4.000 | 87  | 40-140        | 10 | 20 |    |
| Benzo(a)pyrene                    | 3.89  | 0.05 | ug/L | 4.000 | 97  | 40-140        | 15 | 20 |    |
| Benzo(b)fluoranthene              | 3.74  | 0.05 | ug/L | 4.000 | 93  | 40-140        | 14 | 20 |    |
| Benzo(g,h,i)perylene              | 3.79  | 0.20 | ug/L | 4.000 | 95  | 40-140        | 19 | 20 |    |
| Benzo(k)fluoranthene              | 3.79  | 0.05 | ug/L | 4.000 | 95  | 40-140        | 14 | 20 |    |
| ois(2-Ethylhexyl)phthalate        | 4.81  | 2.50 | ug/L | 4.000 | 120 | 40-140        | 7  | 20 |    |
| Butylbenzylphthalate              | 4.87  | 2.50 | ug/L | 4.000 | 122 | 40-140        | 10 | 20 |    |
| Chrysene                          | 3.56  | 0.05 | ug/L | 4.000 | 89  | 40-140        | 10 | 20 |    |
| Dibenzo(a,h)Anthracene            | 3.91  | 0.05 | ug/L | 4.000 | 98  | 40-140        | 17 | 20 |    |
| Diethylphthalate                  | 3.96  | 2.50 | ug/L | 4.000 | 99  | 40-140        | 4  | 20 |    |
| Dimethylphthalate                 | 3.71  | 2.50 | ug/L | 4.000 | 93  | 40-140        | 4  | 20 |    |
| Di-n-butylphthalate               | 4.28  | 2.50 | ug/L | 4.000 | 107 | 40-140        | 2  | 20 |    |
| Di-n-octylphthalate               | 4.69  | 2.50 | ug/L | 4.000 | 117 | 40-140        | 14 | 20 |    |
| Fluoranthene                      | 3.62  | 0.20 | ug/L | 4.000 | 91  | 40-140        | 7  | 20 |    |
| Fluorene                          | 3.10  | 0.20 | ug/L | 4.000 | 77  | 40-140        | 10 | 20 |    |
| indeno(1,2,3-cd)Pyrene            | 4.14  | 0.05 | ug/L | 4.000 | 104 | 40-140        | 22 | 20 | D+ |
| Naphthalene                       | 1.79  | 0.20 | ug/L | 4.000 | 45  | 40-140        | 47 | 20 | D+ |
| Pentachlorophenol                 | 4.81  | 0.90 | ug/L | 4.000 | 120 | 30-130        | 21 | 20 | D+ |
| Phenanthrene                      | 3.34  | 0.20 | ug/L | 4.000 | 84  | 40-140        | 4  | 20 |    |
| Pyrene                            | 3.75  | 0.20 | ug/L | 4.000 | 94  | 40-140        | 12 | 20 |    |
| Surrogate: 1,2-Dichlorobenzene-d4 | 0.930 |      | ug/L | 2.500 | 37  | 30-130        |    |    |    |
| Surrogate: 2,4,6-Tribromophenol   | 5.22  |      | ug/L | 3.750 | 139 | 15-110        |    |    | S+ |
| Surrogate: 2-Fluorobiphenyl       | 1.37  |      | ug/L | 2.500 | 55  | 30-130        |    |    |    |
| Surrogate: Nitrobenzene-d5        | 2.08  |      | ug/L | 2.500 | 83  | 30-130        |    |    |    |
| Surrogate: p-Terphenyl-d14        | 2.33  |      | ug/L | 2.500 | 93  | 30-130        |    |    |    |

8270D(SIM) Semi-Volatile Organic Compounds w/ Isotope Dilution

| Batch DA02840 - 3535A     |      |       |      |       |    |        |
|---------------------------|------|-------|------|-------|----|--------|
| Blank                     |      |       |      |       |    |        |
| 1,4-Dioxane               | ND   | 0.250 | ug/L |       |    |        |
| Surrogate: 1,4-Dioxane-d8 | 2.93 |       | ug/L | 5.000 | 59 | 15-115 |
| LCS                       |      |       |      |       |    |        |
| 1,4-Dioxane               | 9.74 | 0.250 | ug/L | 10.00 | 97 | 40-140 |
| Surrogate: 1,4-Dioxane-d8 | 3.10 |       | ug/L | 5.000 | 62 | 15-115 |



The Microbiology Division of Thielsch Engineering, Inc.



### CERTIFICATE OF ANALYSIS

Client Name: Tg2 Solutions

Client Project ID: 945 Belmont St Brockton MA - RGP ESS Laboratory Work Order: 20A0778

### **Quality Control Data**

|                                     |              |               |             | Spike   | Source   |            | %REC   |     | RPD   |           |
|-------------------------------------|--------------|---------------|-------------|---------|----------|------------|--------|-----|-------|-----------|
| Analyte                             | Result       | MRL           | Units       | Level   | Result   | %REC       | Limits | RPD | Limit | Qualifier |
|                                     | 8270D(SIM) S | Semi-Volatile | Organic Co  | mpounds | w/ Isoto | pe Dilutio | on     |     |       |           |
| Batch DA02840 - 3535A               |              |               |             |         |          |            |        |     |       |           |
| LCS Dup                             |              |               |             |         |          |            |        |     |       |           |
| 1,4-Dioxane                         | 10.3         | 0.250         | ug/L        | 10.00   |          | 103        | 40-140 | 6   | 20    |           |
| Surrogate: 1,4-Dioxane-d8           | 2.89         |               | ug/L        | 5.000   |          | 58         | 15-115 |     |       |           |
|                                     |              | Cl            | assical Che | mistry  |          |            |        |     |       |           |
| Batch DA02835 - General Preparation |              |               |             |         |          |            |        |     |       |           |
| Blank                               |              |               |             |         |          |            |        |     |       |           |
| Total Residual Chlorine             | ND           | 20.0          | ug/L        |         |          |            |        |     |       |           |
| LCS                                 |              |               |             |         |          |            |        |     |       |           |
| Total Residual Chlorine             | 2.20         |               | mg/L        | 2.210   |          | 100        | 85-115 |     |       |           |
| Batch DA02913 - General Preparation |              |               |             |         |          |            |        |     |       |           |
| Blank                               |              |               |             |         |          |            |        |     |       |           |
| Hexavalent Chromium                 | ND           | 10.0          | ug/L        |         |          |            |        |     |       |           |
| LCS                                 |              |               |             |         |          |            |        |     |       |           |
| Hexavalent Chromium                 | 526          | 10.0          | ug/L        | 499.8   |          | 105        | 90-110 |     |       |           |
| .CS Dup                             |              |               |             |         |          |            |        |     |       |           |
| Hexavalent Chromium                 | 528          | 10.0          | ug/L        | 499.8   |          | 106        | 90-110 | 0.4 | 20    |           |
| Batch DA02927 - NH4 Prep            |              |               |             |         |          |            |        |     |       |           |
| Blank                               |              |               |             |         |          |            |        |     |       |           |
| Ammonia as N                        | ND           | 0.10          | mg/L        |         |          |            |        |     |       |           |
| LCS                                 |              |               |             |         |          |            |        |     |       |           |
| Ammonia as N                        | 0.10         | 0.10          | mg/L        | 0.09994 |          | 102        | 80-120 |     |       |           |
| LCS                                 |              |               |             |         |          |            |        |     |       |           |
| Ammonia as N                        | 0.94         | 0.10          | mg/L        | 0.9994  |          | 94         | 80-120 |     |       |           |
| Batch DA02931 - General Preparation |              |               |             |         |          |            |        |     |       |           |
| Blank                               |              |               |             |         |          |            |        |     |       |           |
| Total Suspended Solids              | ND           | 5             | mg/L        |         |          |            |        |     |       |           |
| LCS                                 |              |               |             |         |          |            |        |     |       |           |
| Total Suspended Solids              | 90           |               | mg/L        | 90.70   |          | 99         | 80-120 |     |       |           |
| Batch DA03015 - TCN Prep            |              |               |             |         |          |            |        |     |       |           |
| Blank                               |              |               |             |         |          |            |        |     |       |           |
| Total Cyanide                       | ND           | 5.00          | ug/L        |         |          |            |        |     |       |           |
| LCS                                 |              |               |             |         |          |            |        |     |       |           |
| Total Cyanide                       | 19.4         | 5.00          | ug/L        | 20.06   |          | 97         | 90-110 |     |       |           |
| LCS                                 |              |               |             |         |          |            |        |     |       |           |
| Fotal Cyanide                       | 157          | 5.00          | ug/L        | 150.4   |          | 104        | 90-110 |     |       |           |
| LCS Dup                             |              |               |             |         |          |            |        |     |       |           |
| Fotal Cyanide                       | 155          | 5.00          | ug/L        | 150.4   |          | 103        | 90-110 | 2   | 20    |           |
| Batch DA03117 - General Preparation |              |               |             |         |          |            |        |     |       |           |
| Blank                               |              |               |             |         |          |            |        |     |       |           |



The Microbiology Division of Thielsch Engineering, Inc.



### CERTIFICATE OF ANALYSIS

Client Name: Tg2 Solutions

Client Project ID: 945 Belmont St Brockton MA - RGP ESS Laboratory Work Order: 20A0778

### **Quality Control Data**

| Analyte                                                        | Result    | MRL          | Units        | Spike<br>Level | Source<br>Result | %REC      | %REC<br>Limits | RPD | RPD<br>Limit | Qualifier |
|----------------------------------------------------------------|-----------|--------------|--------------|----------------|------------------|-----------|----------------|-----|--------------|-----------|
|                                                                | ixcodit   |              | assical Che  |                | result           | JUNEC     | LiiiiG         |     | Little       | Qualifier |
|                                                                |           | Ci           | معادما داك   | iiiisu y       |                  |           |                |     |              |           |
| Batch DA03117 - General Preparation                            |           |              |              |                |                  |           |                |     |              |           |
| Phenols                                                        | ND        | 50           | ug/L         |                |                  |           |                |     |              |           |
| LCS                                                            |           |              |              |                |                  |           |                |     |              |           |
| Phenols                                                        | 105       | 50           | ug/L         | 100.0          |                  | 105       | 80-120         |     |              |           |
| LCS                                                            |           |              |              |                |                  |           |                |     |              |           |
| Phenols                                                        | 946       | 50           | ug/L         | 1000           |                  | 95        | 80-120         |     |              |           |
| Batch DB00317 - General Preparation                            |           |              |              |                |                  |           |                |     |              |           |
| Blank                                                          |           |              |              |                |                  |           |                |     |              |           |
| Total Petroleum Hydrocarbon                                    | ND        | 5            | mg/L         |                |                  |           |                |     |              |           |
| LCS                                                            |           |              |              |                |                  |           |                |     |              |           |
| Total Petroleum Hydrocarbon                                    | 17        | 5            | mg/L         | 19.38          |                  | 86        | 66-114         |     |              |           |
|                                                                | 504.1 1,2 | 2-Dibromoetl | nane / 1,2-l | Dibromo-3      | 3-chloropi       | opane     |                |     |              |           |
|                                                                |           |              |              |                |                  |           |                |     |              |           |
| Batch DB00336 - 504/8011                                       |           |              |              |                |                  |           |                |     |              |           |
| Blank                                                          |           | 0.6:-        |              |                |                  |           |                |     |              |           |
| 1,2-Dibromo-3-Chloropropane                                    | ND        | 0.015        | ug/L         |                |                  |           |                |     |              |           |
| 1,2-Dibromo-3-Chloropropane [2C]                               | ND        | 0.015        | ug/L         |                |                  |           |                |     |              |           |
| 1,2-Dibromoethane                                              | ND        | 0.015        | ug/L         |                |                  |           |                |     |              |           |
| 1,2-Dibromoethane [2C]                                         | ND        | 0.015        | ug/L         |                |                  |           |                |     |              |           |
| Surrogate: Pentachloroethane                                   | 0.156     |              | ug/L         | 0.2000         |                  | <i>78</i> | 30-150         |     |              |           |
| Surrogate: Pentachloroethane [2C]                              | 0.154     |              | ug/L         | 0.2000         |                  | <i>77</i> | 30-150         |     |              |           |
| LCS                                                            |           |              |              |                |                  |           |                |     |              |           |
| 1,2-Dibromo-3-Chloropropane                                    | 0.101     | 0.015        | ug/L         | 0.08000        |                  | 126       | 70-130         |     |              |           |
| 1,2-Dibromo-3-Chloropropane [2C]                               | 0.089     | 0.015        | ug/L         | 0.08000        |                  | 111       | 70-130         |     |              |           |
| 1,2-Dibromoethane                                              | 0.091     | 0.015        | ug/L         | 0.08000        |                  | 114       | 70-130         |     |              |           |
| 1,2-Dibromoethane [2C]                                         | 0.082     | 0.015        | ug/L         | 0.08000        |                  | 103       | 70-130         |     |              |           |
| Surrogate: Pentachloroethane                                   | 0.0873    |              | ug/L         | 0.2000         |                  | 44        | 30-150         |     |              |           |
| Surrogate: Pentachloroethane [2C]                              | 0.0798    |              | ug/L         | 0.2000         |                  | 40        | 30-150         |     |              |           |
| LCS                                                            |           |              |              |                |                  |           |                |     |              |           |
| 1,2-Dibromo-3-Chloropropane                                    | 0.258     | 0.015        | ug/L         | 0.2000         |                  | 129       | 70-130         |     |              |           |
| 1,2-Dibromo-3-Chloropropane [2C]                               | 0.241     | 0.015        | ug/L         | 0.2000         |                  | 120       | 70-130         |     |              |           |
| 1,2-Dibromoethane                                              | 0.253     | 0.015        | ug/L         | 0.2000         |                  | 126       | 70-130         |     |              |           |
| 1,2-Dibromoethane [2C]                                         | 0.253     | 0.015        | ug/L         | 0.2000         |                  | 126       | 70-130         |     |              |           |
| Surrogate: Pentachloroethane                                   | 0.239     |              | ug/L         | 0.2000         |                  | 120       | 30-150         |     |              |           |
| Surrogate: Pentachloroethane Surrogate: Pentachloroethane [2C] | 0.228     |              | ug/L         | 0.2000         |                  | 114       | <i>30-150</i>  |     |              |           |
| Surroyace, rentacilioroetildile [2C]                           |           | Alco         | hol Scan by  |                |                  |           |                |     |              |           |
| Batch DA03101 - No Prep                                        |           |              |              |                |                  |           |                |     |              |           |
| Blank                                                          |           |              |              |                |                  |           |                |     |              |           |
| Ethanol                                                        | ND        | 10           | mg/L         |                |                  |           |                |     |              |           |
| LCS                                                            |           |              |              |                |                  |           |                |     |              |           |



The Microbiology Division of Thielsch Engineering, Inc.



### CERTIFICATE OF ANALYSIS

Client Name: Tg2 Solutions

Client Project ID: 945 Belmont St Brockton MA - RGP ESS Laboratory Work Order: 20A0778

## **Quality Control Data**

|                         |        |      |             | Spike  | Source |      | %REC   |     | RPD   |           |
|-------------------------|--------|------|-------------|--------|--------|------|--------|-----|-------|-----------|
| Analyte                 | Result | MRL  | Units       | Level  | Result | %REC | Limits | RPD | Limit | Qualifier |
|                         |        | Alco | hol Scan by | GC/FID |        |      |        |     |       |           |
| Batch DA03101 - No Prep |        |      |             |        |        |      |        |     |       |           |
| Ethanol                 | 1170   | 10   | mg/L        | 951.9  |        | 123  | 60-140 |     |       |           |
| LCS Dup                 |        |      |             |        |        |      |        |     |       |           |
| Ethanol                 | 1020   | 10   | ma/L        | 951.9  |        | 107  | 60-140 | 14  | 30    |           |



The Microbiology Division of Thielsch Engineering, Inc.



#### CERTIFICATE OF ANALYSIS

Client Name: Tg2 Solutions

Client Project ID: 945 Belmont St Brockton MA - RGP ESS Laboratory Work Order: 20A0778

#### **Notes and Definitions**

| U  | Analyte included in the analysis, but not detected                                                         |
|----|------------------------------------------------------------------------------------------------------------|
| S+ | Surrogate recovery(ies) above upper control limit (S+).                                                    |
| Q  | Calibration required quadratic regression (Q).                                                             |
| HT | The maximum holding time listed in 40 CFR Part 136 Table II for pH, Dissolved Oxygen, Sulfite and Residual |
|    | Chlorine is fifteen minutes.                                                                               |
| D+ | Relative percent difference for duplicate is outside of criteria (D+).                                     |
| D  | Diluted.                                                                                                   |

CD+ Continuing Calibration %Diff/Drift is above control limit (CD+). CD-Continuing Calibration %Diff/Drift is below control limit (CD-).

B-Blank Spike recovery is below lower control limit (B-).

ND Analyte NOT DETECTED at or above the MRL (LOQ), LOD for DoD Reports, MDL for J-Flagged Analytes

Sample results reported on a dry weight basis dry

**RPD** Relative Percent Difference **MDL** Method Detection Limit Method Reporting Limit **MRL** LOD Limit of Detection Limit of Quantitation LOQ **Detection Limit** DL I/V Initial Volume F/V Final Volume

Subcontracted analysis; see attached report

Range result excludes concentrations of surrogates and/or internal standards eluting in that range. 1

2 Range result excludes concentrations of target analytes eluting in that range. 3 Range result excludes the concentration of the C9-C10 aromatic range.

Avg Results reported as a mathematical average.

NR No Recovery

[CALC] Calculated Analyte

**SUB** Subcontracted analysis; see attached report

RL Reporting Limit

**EDL Estimated Detection Limit** MF Membrane Filtration MPN Most Probably Number **TNTC** Too numerous to Count **CFU** Colony Forming Units

185 Frances Avenue, Cranston, RI 02910-2211

Tel: 401-461-7181

Fax: 401-461-4486 Service



The Microbiology Division of Thielsch Engineering, Inc.



### CERTIFICATE OF ANALYSIS

Client Name: Tg2 Solutions

Client Project ID: 945 Belmont St Brockton MA - RGP ESS Laboratory Work Order: 20A0778

### ESS LABORATORY CERTIFICATIONS AND ACCREDITATIONS

#### **ENVIRONMENTAL**

Rhode Island Potable and Non Potable Water: LAI00179 http://www.health.ri.gov/find/labs/analytical/ESS.pdf

Connecticut Potable and Non Potable Water, Solid and Hazardous Waste: PH-0750 <a href="http://www.ct.gov/dph/lib/dph/environmental\_health/environmental\_laboratories/pdf/OutofStateCommercialLaboratories.pdf">http://www.ct.gov/dph/lib/dph/environmental\_health/environmental\_laboratories/pdf/OutofStateCommercialLaboratories.pdf</a>

Maine Potable and Non Potable Water, and Solid and Hazardous Waste: RI00002 <a href="http://www.maine.gov/dhhs/mecdc/environmental-health/dwp/partners/labCert.shtml">http://www.maine.gov/dhhs/mecdc/environmental-health/dwp/partners/labCert.shtml</a>

Massachusetts Potable and Non Potable Water: M-RI002 http://public.dep.state.ma.us/Labcert/Labcert.aspx

New Hampshire (NELAP accredited) Potable and Non Potable Water, Solid and Hazardous Waste: 2424 <a href="http://des.nh.gov/organization/divisions/water/dwgb/nhelap/index.htm">http://des.nh.gov/organization/divisions/water/dwgb/nhelap/index.htm</a>

New York (NELAP accredited) Non Potable Water, Solid and Hazardous Waste: 11313 http://www.wadsworth.org/labcert/elap/comm.html

New Jersey (NELAP accredited) Non Potable Water, Solid and Hazardous Waste: RI006 http://datamine2.state.nj.us/DEP\_OPRA/OpraMain/pi\_main?mode=pi\_by\_site&sort\_order=PI\_NAMEA&Select+a+Site:=58715

United States Department of Agriculture Soil Permit: P330-12-00139

Pennsylvania: 68-01752

http://www.dep.pa.gov/Business/OtherPrograms/Labs/Pages/Laboratory-Accreditation-Program.aspx

185 Frances Avenue, Cranston, RI 02910-2211

Tel: 401-461-7181

Fax: 401-461-4486

http://www.ESSLaboratory.com

**Environmental Chemistry** 

**Site Assessment** 

**Quality Assurance Services** 



**Environmental Services Site Sampling Data Auditing** 

Shawn Morrell

CERTIFICATE OF ANALYSIS

**ESS Laboratory** 

185 Frances Avenue

Cranston, RI 02910-2211

COLLECTED BY: Customer TIME: 9:30

LOCATION: 20A0778-01 REPORTED: 02/03/2020

ORDER #: G2044343

SAMPLE DATE: 1/28/2020

DATE RECEIVED: 1/29/2020

SAMPLE ID: Grab WATER

DESCRIPTION:

RESULTS OF ANALYSIS

| Parameter       | Analytical<br>Method | Date<br>Analyzed | Units | Det.<br>Limit*          | Result     |
|-----------------|----------------------|------------------|-------|-------------------------|------------|
| Test Parameters |                      |                  |       | LAB-ID#: <u>2044343</u> | <u>-01</u> |
| Chloride 4110B  | SM 4110 B            | 01/29/2020       | mg/L  | 0.5                     | 376        |

Unless otherwise noted, all analyses were conducted by Analytical Balance Corp. (M-MA022).

NA = Not Applicable

ND = Not Detected

'<' = Less Than

'\*' = Detection Limit

Timothy A.

Approved By: Begley

Lab Manager

Date

| ESS I                 | ESS Laboratory                                       | ory                                                             | Analytical Balance                    | <b>Salance</b>            | CHAIN OF CUSTODY                                                                                                        | F CUS                                                | STOD                                                                                                    | <b>&gt;</b>          | ESS Lab#              | # 0                                    |                    | 20A0778          | 778     |        |
|-----------------------|------------------------------------------------------|-----------------------------------------------------------------|---------------------------------------|---------------------------|-------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------|---------------------------------------------------------------------------------------------------------|----------------------|-----------------------|----------------------------------------|--------------------|------------------|---------|--------|
| Division c            | of Thielsch E                                        | Division of Thielsch Engineering, Inc.                          | ý                                     | Turn Time                 | DUE 2/4/20                                                                                                              |                                                      |                                                                                                         |                      |                       |                                        |                    | 1                |         |        |
| 185 Franc             | ces Avenue,                                          | 185 Frances Avenue, Cranston, RI 02910-2211                     | 02910-2211                            | Regulatory 5              | Regulatory State: MA RI CT NH NJ NY ME                                                                                  | J NY ME                                              | Other                                                                                                   |                      |                       | Reportin                               | Reporting Limits - |                  | MA KGP  |        |
| Tel. (401)<br>www.ess | Tel. (401) 461-7181   Fa<br>www.esslaboratory.com    | Tel. (401) 461-7181 Fax (401) 461-4486<br>www.esslaboratory.com | 1-4486                                | ls this project<br>MA-MCP | is this project for any of the following:(please circle) MA-MCP Navy USACE CT DEP Oth                                   | se circle)<br>P Other                                |                                                                                                         |                      | E                     | Electonic Deliverables                 |                    | Excel Access PDF | cess Pl | 님      |
| Co. Name              |                                                      | ESS LABORATORY                                                  | TORY                                  | Project#                  | Project Name                                                                                                            |                                                      | 20A0778                                                                                                 | ~                    |                       |                                        |                    |                  |         |        |
| Contact Person        |                                                      | Shawn Morrell / Heather Masse                                   | ather Masse                           | Address                   |                                                                                                                         |                                                      |                                                                                                         |                      | sis/                  |                                        |                    |                  |         |        |
| City                  |                                                      |                                                                 | State                                 |                           | Zip                                                                                                                     |                                                      | PO#<br>B03                                                                                              | B03042               | (IsnA                 |                                        |                    |                  | ·       |        |
| Tel.                  |                                                      |                                                                 | Email: Smorre                         | ₃ll@thielsch.             | Email: Smorrell@thielsch.com; Hmasse@thielsch.com                                                                       | h.com                                                |                                                                                                         | 2                    | ,                     | 0.0                                    |                    |                  |         |        |
| ESS Lab ID            | Date                                                 | Collection Time                                                 | Grab -G Composite<br>C                | Matrix                    | Sample ID                                                                                                               | Pres<br>Code                                         | # of<br>Containers                                                                                      | Type of<br>Container | Vol of<br>Container   | CI: 300                                | . · ·              |                  |         |        |
| :                     | 1/28/20                                              | 0830                                                            | 9                                     | GW                        | 20A0778-01                                                                                                              |                                                      |                                                                                                         |                      |                       | ×                                      |                    |                  |         |        |
|                       |                                                      |                                                                 |                                       |                           |                                                                                                                         |                                                      |                                                                                                         |                      |                       |                                        |                    |                  |         |        |
|                       |                                                      |                                                                 |                                       |                           |                                                                                                                         |                                                      |                                                                                                         |                      |                       |                                        |                    |                  |         |        |
|                       |                                                      |                                                                 |                                       |                           |                                                                                                                         |                                                      |                                                                                                         |                      |                       |                                        |                    |                  |         |        |
|                       |                                                      |                                                                 |                                       |                           |                                                                                                                         |                                                      |                                                                                                         |                      |                       |                                        |                    |                  |         |        |
|                       |                                                      |                                                                 |                                       |                           |                                                                                                                         |                                                      |                                                                                                         |                      |                       |                                        |                    |                  |         |        |
| <u>.</u>              |                                                      |                                                                 |                                       |                           |                                                                                                                         |                                                      |                                                                                                         |                      |                       |                                        |                    |                  |         |        |
|                       |                                                      |                                                                 |                                       |                           |                                                                                                                         |                                                      |                                                                                                         |                      |                       |                                        |                    |                  |         |        |
|                       |                                                      |                                                                 |                                       |                           |                                                                                                                         |                                                      |                                                                                                         |                      |                       |                                        |                    |                  |         |        |
|                       |                                                      |                                                                 |                                       |                           |                                                                                                                         |                                                      |                                                                                                         |                      |                       |                                        |                    |                  |         |        |
| Container Type:       | P-Poly G-Glass A(                                    | Container Type: P-Poly G-Glass AG-Amber Glass S-Stertle V-VOA   | te V-VOA                              |                           | Matrix: S-Soil SD-Soild D-Sludge WW-Wastewater GW-Groundwater SW-Surface Water DW-Drinking Water O-Oil W-Wipes F-Filter | W-Wastewater                                         | GW-Groundw                                                                                              | ater SW-Surfa        | ce Water DW-          | -Drinking Wa                           | ater O-Oil M       | V-Wipes F-       | Filter  |        |
| Cooler Present        | esent                                                | Yes                                                             | <b>8</b>                              | Internal Use              | USE Only Preservation Code: 1-NP, 2-HCl, 3-H2SO4, 4-HNO3, 5-NaOH, 6-MeOH, 7-Asorbic Acid, 8-ZnAct, 9-                   | te: 1-NP, 2-t                                        | 1CI, 3-H2SO4                                                                                            | 1, 4-HNO3, 5-        | -NaOH, 6-Me           | OH, 7-Asol                             | rbic Acid, 8       | 3-ZnAct, 9.      |         |        |
| Seals Intact          | ct Yes                                               | No NA:                                                          | 1                                     | [ ] Pickup                | Sampled by                                                                                                              |                                                      |                                                                                                         |                      |                       |                                        |                    |                  |         |        |
| Cogler Tel            | Cogler Temperature:                                  | 8                                                               |                                       | [ ] Technician            | Comments:                                                                                                               |                                                      | Please send Sample Confirmation after samples have been received to Heather Masse - hmasse@thielsch.com | nple Con<br>e - hmas | firmation<br>se@thiek | after sa<br>sch.con                    | amples I<br>n      | have b           | een rec | Seived |
| Reydquished by:       | quished by: (Signature, Date & Time)                 | Time)                                                           | Received by: (Signature, Date & Time) | a, Date & Time)           | 1.26                                                                                                                    | Refinquisher And | Relinquished by: (Signature, Date & Time)                                                               | 9, Date & Time)      | 1.545                 | Recalived by: (Signature; Date & Time) | : (Signature)      | Date & Tim       | 4       | 457    |
| Retineurished by:     | Elimentished by: (Signature, Date & Timp)            | Time) (28/10/12/1                                               | Received My. (Signature, Date & Time) | s, Dáte & Tirrie)         |                                                                                                                         | Relinquisby                                          | Relinquisped bly: (Signature, Date & Time)                                                              | s, Đate & Time)      |                       | Received by: (Signature, Date & Time)  | : (Signature,      | Date & Tim       | (e)     |        |
| S By circling MA-     | MCP, client acknow                                   | By circling MA-MCP, client acknowledges samples were            |                                       |                           | Please fax to the laboratory all changes to Chain of Custody                                                            | II changes                                           | to Chain of                                                                                             | Custody              |                       | 1 (White) Lab Copy                     | Lab Copy           |                  |         |        |
| collected in acc      | പ്പ collected in accordance with MADEP CAM VIIA<br>ധ | EP CAM VIIA                                                     |                                       |                           |                                                                                                                         |                                                      |                                                                                                         |                      | •                     | 2 (Yellow) Client Receipt              | Client R           | eceipt           |         |        |

Marting wil

| Client:                             | Tg2 Solutions - TB            |          |           | ESS Project ID                            | 20A0778                                 |               |
|-------------------------------------|-------------------------------|----------|-----------|-------------------------------------------|-----------------------------------------|---------------|
| Shinned/Delivered                   | Via: Client                   |          |           | Date Received<br>Project Due Date         | : <u>1/28/2020</u><br>: <u>2/4/2020</u> | <del>_</del>  |
| Shipped/Delivered                   | Via: Client                   |          |           | Days for Project                          | 5 Day                                   | _             |
|                                     |                               |          |           | Days for 1 Toject                         |                                         | <del></del>   |
| Air bill manifest     Air No.:      | •                             | No       |           | 6. Does COC match bo                      | ttles?                                  | Yes           |
|                                     |                               |          |           | 7. Is COC complete and                    | d correct?                              | Yes           |
| 2. Were custody se                  | eals present?                 | No       |           |                                           |                                         |               |
| •                                   | Ţ                             |          |           | 8. Were samples receive                   | ed intact?                              | Yes           |
| <ol><li>Is radiation cour</li></ol> | nt <100 CPM? [                | Yes      |           |                                           |                                         |               |
|                                     |                               |          |           | 9. Were labs informed                     | about short holds & rushes?             | Yes / No / MA |
| 4. Is a Cooler Pres                 | ent? [<br>I lced with: Ice    | Yes      |           | 10. Were any analyses                     | received outside of hold time?          | Yes Mo        |
| 5 Mae COC eigne                     | ed and dated by client?       | Yes      |           |                                           |                                         |               |
| J. Was COO signe                    | and dated by offert:          | 105      |           | <del></del>                               | <del>-</del>                            | <del> </del>  |
|                                     |                               |          |           |                                           | <del></del>                             |               |
|                                     | · -                           |          |           |                                           |                                         |               |
| 11. Any Subcontrac                  | cting needed? Yes             | / No     |           | 12. Were VOAs receive                     | ed?                                     | Yes / 200-    |
| ESS Sample                          | IDs:   ,                      |          |           | a. Air bubbles in aqueo                   |                                         | Yes / No      |
|                                     | lysis: <u> </u>               |          |           | <ul> <li>b. Does methanol cove</li> </ul> | er soil completely?                     | Yes / No / NA |
|                                     | TAT: <i>§fo</i>               |          |           |                                           |                                         |               |
|                                     |                               |          |           |                                           |                                         |               |
| 40 4                                |                               | Vac / Na |           |                                           |                                         |               |
| a. If metals preser                 | es properly preserved?        | Yes / No |           | Timo                                      | Dve.                                    |               |
| b. Low Level VOA                    | · ·                           | Date:    |           | _ Time:<br>Time:                          | _ By:<br>_ By:                          |               |
| D. LOW LEVEL VOA                    | vidio irozeri.                | Date.    |           |                                           |                                         |               |
| Sample Receiving                    | Notes:                        |          |           |                                           |                                         |               |
|                                     | for Sub                       |          |           |                                           |                                         |               |
|                                     |                               |          |           |                                           |                                         |               |
|                                     |                               |          |           |                                           |                                         | -             |
| 14 Was there a ne                   | eed to contact Project Manage | r?       | Yes / No  | /                                         |                                         |               |
|                                     | ed to contact the client?     |          | Yes / 140 |                                           |                                         |               |
| Who was contacted                   |                               | Date:    |           | Time:                                     | By:                                     | •             |
|                                     |                               | •        |           |                                           |                                         |               |
|                                     |                               |          |           |                                           |                                         |               |
|                                     |                               |          |           |                                           |                                         |               |

|                  |                 |                     |                        |                      |                |              | · · · · · · · · · · · · · · · · · · ·     |
|------------------|-----------------|---------------------|------------------------|----------------------|----------------|--------------|-------------------------------------------|
| Sample<br>Number | Container<br>ID | Proper<br>Container | Air Bubbles<br>Present | Sufficient<br>Volume | Container Type | Preservative | Record pH (Cyanide and 608<br>Pesticides) |
| 1                | 8861            | Yes                 | N/A                    | Yes                  | 1L Amber       | NP           |                                           |
| 1                | 8862            | Yes                 | N/A                    | Yes                  | 1L Amber       | NP           |                                           |
| 1                | 8863            | Yes                 | N/A                    | Yes                  | 1L Amber       | NP           |                                           |
| 1                | 8864            | Yes                 | N/A                    | Yes                  | 1L Amber       | NP           |                                           |
| 1                | 8865            | Yes                 | N/A                    | Yes                  | 1L Amber       | NP           |                                           |
| 1                | 8866            | Yes                 | N/A                    | Yes                  | 1L Amber       | NP           |                                           |
| 1                | 8867            | Yes                 | N/A                    | Yes                  | 1L Amber       | H2SO4        |                                           |
| 1                | 8868            | Yes                 | N/A                    | Yes                  | 1L Amber       | H2SO4        |                                           |
| 1                | 8869            | Yes                 | N/A                    | Yes                  | 1L Poly        | NP           |                                           |
| 1                | 8870            | Yes                 | N/A                    | Yes                  | 500 mL Poly    | HNO3         |                                           |
| 1                | 8871            | Yes                 | N/A                    | Yes                  | 500 mL Poly    | HNO3         |                                           |
| 1                | 8872            | Yes                 | N/A                    | Yes                  | 250 mL Poly    | NP           |                                           |
| 1                | 8873            | Yes                 | N/A                    | Yes                  | 250 mL Poly    | HNO3         |                                           |
| 1                | 8874            | Yes                 | N/A                    | Yes                  | 500 mL Poly    | H2SO4        |                                           |
| 1                | 8875            | Yes                 | N/A                    | Yes                  | 250 mL Poly    | NaOH         |                                           |
| 1                | 8876            | Yes                 | No                     | Yes                  | VOA Vial       | HCI          |                                           |
| 1                | 8877            | Yes                 | No                     | Yes                  | VOA Vial       | HCI          |                                           |
|                  |                 |                     |                        |                      |                |              |                                           |

| Client: Tg2 Solutions - TB |            | _                          | S Project ID:       | 20A0778  |                              |              |           |  |
|----------------------------|------------|----------------------------|---------------------|----------|------------------------------|--------------|-----------|--|
|                            |            |                            |                     |          | Dai                          | te Received: | 1/28/2020 |  |
| 1                          | 8878       | Yes                        | No                  | Yes      | VOA Vial                     | HCI          |           |  |
| 1                          | 8879       | Yes                        | No                  | Yes      | VOA Vial                     | HCI          |           |  |
| 1                          | 8880       | Yes                        | No                  | Yes      | VOA Vial                     | HCI          |           |  |
| 1                          | 8881       | Yes                        | No                  | Yes      | VOA Vial                     | HCI          |           |  |
| 1                          | 8882       | Yes                        | No                  | Yes      | VOA Vial                     | NP           |           |  |
| 1                          | 9125       | Yes                        | N/A                 | Yes      | 250 mL Poly                  | NP           |           |  |
|                            | rome stick | ers attached               | ontainer ID #<br>1? | r GIGGU! | Yes / No / N<br>Yes / No / N |              |           |  |
| all QC stick<br>VOA sticke |            | ned?<br>ed if bubbles<br>/ | noted?              |          | Yes / No / N<br>Yes / No / N |              |           |  |

Ву:

| Client:                        | Tg2 Solutions - TB             | -             | •        | ESS Draio           | -<br>               | 2040770                               |               |
|--------------------------------|--------------------------------|---------------|----------|---------------------|---------------------|---------------------------------------|---------------|
| Oliciti.                       | 1g2 Coldions - 1D              | <del></del>   |          | Data Pero           | ct ID:<br>ived:     | 20A0778<br>1/28/2020                  |               |
| Shipped/Delivered              | d Via: Client                  |               |          | Project Due I       | Date:               | 2/4/2020                              | <del></del>   |
|                                |                                |               |          | Days for Pro        | oiect:              | 5 Day                                 |               |
|                                |                                |               |          |                     |                     | <u> </u>                              |               |
| Air bill manifest     Air No.: |                                | No            |          | 6. Does COC matc    | h bottles?          |                                       | Yes           |
|                                |                                |               |          | 7. Is COC complete  | e and correct?      |                                       | Yes           |
| 2. Were custody s              | eals present?                  | No            |          | •                   |                     |                                       |               |
|                                | _                              |               |          | 8. Were samples re  | eceived intact?     |                                       | Yes           |
| 3. Is radiation cour           | nt <100 CPM?                   | Yes           |          |                     |                     |                                       | $\sim$        |
|                                |                                |               |          | 9. Were labs infor  | med about <u>sh</u> | ort holds & rushes?                   | Yes/No/NA     |
| 4. Is a Cooler Pres            |                                | Yes           |          |                     |                     |                                       |               |
| Temp: 2.                       | 1 lced with:lce                |               |          | 10. Were any anal   | yses received       | outside of hold time?                 | Yes(/No       |
| 5 Mae COC elana                | ed and dated by client?        | Yes           |          | <del></del>         |                     | <del></del>                           |               |
| 5. Was COC signe               | ed and dated by client?        | 168           |          | <del></del>         | <del>-</del>        | ····                                  | <u></u> -     |
|                                |                                |               |          | <u> </u>            |                     | <del></del>                           | <del></del> _ |
|                                |                                | $\sim$        |          |                     |                     |                                       | _             |
| 11. Any Subcontrac             | cting needed? Yes              | (No           |          | 12. Were VOAs red   | reived?             |                                       | Yel No.       |
| ESS Sample                     |                                |               |          | a. Air bubbles in a |                     | ,                                     | Yes (No)      |
|                                | llysis:                        |               |          | b. Does methanol    |                     |                                       | Yes / Ne / NA |
|                                | TAT:                           |               |          |                     |                     | , .                                   |               |
|                                |                                |               |          |                     |                     |                                       |               |
|                                | /                              | $\bigcirc$    |          |                     |                     |                                       |               |
|                                | es properly preserved?         | Yes No        |          |                     |                     |                                       |               |
| a. If metals presen            |                                | Date:_        |          | Time:<br>Time:      |                     | By:<br>By:                            |               |
| b. Low Level VOA               | vials frozen:                  | Date:_        |          | Time:               |                     | Ву:                                   |               |
| Orașile Dreside                | NI-S                           |               |          |                     |                     |                                       |               |
| Sample Receiving               | Notes:                         |               |          |                     |                     |                                       |               |
|                                |                                |               |          |                     |                     |                                       |               |
|                                | <del></del>                    | <del></del> - |          |                     | <del></del>         | <del></del>                           | <del></del>   |
|                                |                                |               |          |                     |                     |                                       |               |
|                                |                                | *             |          |                     |                     | · · · · · · · · · · · · · · · · · · · |               |
| 14. Was there a ne             | eed to contact Project Manager | ?             | Yes / No |                     |                     |                                       |               |
|                                | ed to contact the client?      |               | Yes / Wo |                     |                     |                                       |               |
| Who was contacted              | d?                             | Date: _       |          | Time:               |                     | Ву:                                   |               |
|                                |                                | _             |          |                     |                     |                                       |               |
|                                |                                |               |          |                     | _                   |                                       |               |
|                                |                                |               |          |                     |                     |                                       |               |
|                                |                                | <del> </del>  | •        | <del></del>         |                     |                                       |               |
|                                |                                |               |          |                     |                     |                                       |               |

| Sample<br>Number | Container<br>ID | Proper<br>Container | Air Bubbles<br>Present | Sufficient<br>Volume | Container Type | Preservative | Record pH (Cyanide and 608<br>Pesticides) |
|------------------|-----------------|---------------------|------------------------|----------------------|----------------|--------------|-------------------------------------------|
| 1                | 8861            | Yes                 | N/A                    | Yes                  | 1L Amber       | NP           | <u>.</u> .                                |
| 1                | 8862            | Yes                 | N/A                    | Yes                  | 1L Amber       | NP           |                                           |
| 1                | 8863            | Yes                 | N/A                    | Yes                  | 1L Amber       | NP           |                                           |
| 1                | 8864            | Yes                 | N/A                    | Yes                  | 1L Amber       | NP           |                                           |
| 1                | 8865            | Yes                 | N/A                    | Yes                  | 1L Amber       | NP           |                                           |
| 1                | 8866            | Yes                 | N/A                    | Yes                  | 1L Amber       | NP           |                                           |
| 1                | 8867            | Yes                 | N/A                    | Yes                  | 1L Amber       | H2SO4        |                                           |
| 1                | 8868            | Yes                 | N/A                    | Yes                  | 1L Amber       | H2SO4        |                                           |
| 1                | 8869            | Yes                 | N/A                    | Yes                  | 1L Poly        | NP           |                                           |
| 1                | 8870            | Yes                 | N/A                    | Yes                  | 500 mL Poly    | HNO3         |                                           |
| 1                | 8871            | Yes                 | N/A                    | Yes                  | 500 mL Poly    | HNO3         |                                           |
| 1                | 8872            | Yes                 | N/A                    | Yes                  | 250 mL Poly    | NP           |                                           |
| 1                | 8873            | Yes                 | N/A                    | Yes                  | 250 mL Poly    | HNO3         |                                           |
| 1                | 8874            | Yes                 | N/A                    | Yes                  | 500 mL Poly    | H2SO4        |                                           |
| 1                | 8875            | Yes                 | N/A                    | Yes                  | 250 mL Poly    | NaOH         | pH>12 1/28 JA                             |
| 1                | 8876            | Yes                 | No                     | Yes                  | VOA Vial       | HCI          |                                           |
| 1                | 8877            | Yes                 | No                     | Yes                  | VOA Vial       | HCI          |                                           |

| Client:                                            |                                                              | Tg2 Solu                                                 | tions - TB                    |     |                                                                              | Project ID: | 20A0778   |
|----------------------------------------------------|--------------------------------------------------------------|----------------------------------------------------------|-------------------------------|-----|------------------------------------------------------------------------------|-------------|-----------|
| _                                                  |                                                              |                                                          |                               |     | Date                                                                         | e Received: | 1/28/2020 |
| 1                                                  | 8878                                                         | Yes                                                      | No                            | Yes | VOA Vial                                                                     | HCI         |           |
| 1                                                  | 8879                                                         | Yes                                                      | No                            | Yes | VOA Vial                                                                     | HCI         |           |
| 1                                                  | 8880                                                         | Yes                                                      | No                            | Yes | VOA Vial                                                                     | HCI         |           |
| 1                                                  | 8881                                                         | Yes                                                      | No                            | Yes | VOA Vial                                                                     | HCI         |           |
| 1                                                  | 8882                                                         | Yes                                                      | No                            | Yes | VOA Vial                                                                     | NP          |           |
| barcode I<br>all Flashp<br>all Hex C<br>all QC sti | labels on co<br>point sticker<br>hrome stick<br>ickers attac | anned into sorrect contains attached/okers attached hed? | ners?<br>container ID :<br>d? |     | Initials (Yes) / No Yes / No / No Yes / No / N | A))         |           |
| npleted<br>By:                                     |                                                              | A)                                                       |                               |     | Date & Time:                                                                 | 78/20 1°    | 516       |

Date & Time:

,339

Reviewed

By: Delivered By:

| <b>T</b> 2                     |                 |           |          |            |            | CHA     | AIN         | OF      | CU      | STC    | DY       | RE     | CO    | RD      |          |        |         |         | 1,       |                        |              |            |              |         |         | 5        | lo,      | 40 7              | 778                         |
|--------------------------------|-----------------|-----------|----------|------------|------------|---------|-------------|---------|---------|--------|----------|--------|-------|---------|----------|--------|---------|---------|----------|------------------------|--------------|------------|--------------|---------|---------|----------|----------|-------------------|-----------------------------|
| 231 ELM STREET, BLACKSTONE,    | MA OTROX        |           |          |            |            |         |             |         |         |        |          |        |       |         |          |        |         |         |          |                        |              | Lab        | rato         | ry:     |         |          |          |                   | ESS, Cranston, RI           |
| 231 ELM STREET, BLACKSTONE,    | MA 01304        |           |          |            |            |         |             |         |         |        | MATRIX   | CODES  | :     |         |          |        |         |         |          |                        | •            |            |              |         |         |          |          |                   |                             |
| Project Mgr: Eric Simpson      | ı               | ai        |          |            |            |         |             |         | GW      |        | dwater   |        |       |         |          |        | ,       |         |          | ANALY                  | 8ES R        | EQUE       | TED          |         |         |          |          |                   | Lab to Invoice: Tg2, LLC    |
| Phone # 508-298-8686           |                 |           |          |            |            |         |             |         | SL      | Soll   |          |        |       |         |          |        |         |         |          |                        |              | ŀ          |              | -       |         |          |          | ļ                 | esimpson@tg2solutions.com.  |
|                                |                 |           |          |            |            |         |             | ·       | DW      | Drinki | ng Wate  | or     |       | ,       |          |        |         |         |          |                        |              |            |              |         |         |          |          | Field Filtered    |                             |
| Project Client                 |                 |           |          |            |            | Regu    | lated \$    | State   | sw      | Surfac | e Wate   | r      |       |         |          |        |         |         |          |                        |              |            |              |         |         |          | i        | E.                | Lab Report to:              |
| Project Name 945 Belmont       | Street, Brockte | on MA RGP |          |            |            |         |             |         | ww      | Waste  | Water    |        |       |         |          |        |         |         |          | ess                    |              |            |              |         |         |          |          | jela              | esimpson@tg2solutions.com   |
| Address 945 Belmont            | Street, Brockt  | on MA     |          |            |            |         | MA          |         | IA      | Indoo  | Air      |        |       |         |          |        |         |         |          | rgu                    |              |            |              |         |         |          |          |                   | jsherburne@ta2salutions.com |
| Sampler: Karl Jensen           |                 |           |          |            |            | <u></u> |             |         | sc      | Soil G | as/Vapo  | эг     |       |         | S        |        |         |         |          | s, H                   | 9            |            | SIM          |         |         |          |          | Meta              |                             |
|                                | Colle           | ection    | ]        | #          | of bottles |         | Ä           |         |         | Pı     | eservat  | ion    |       |         | C, TSS   |        | g       | nia     | 999      | Metal                  | охаи         |            | 625          | 8       | 24      | 8        | <u> </u> | )<br>Ned          |                             |
| Field ID / Point of Collection |                 | Time      | Matrix   | Glass      | Plastic    | VOA's   | TOT/SAMPLE  | ξţ      | VAOH    | ниоз   | 42So4    | меон   | Other | None    | CI, TRC, | g+/O   | Cyanide | Ammonia | TPH 1664 | Total Metals, Hardness | 1, 4 Dioxane | <i>803</i> | SVOC 625 SIM | PCB 608 | VOC 524 | Ethanol  | Phenol   | Dissolved Metals, | Comments:                   |
| MW-2                           | 1/28/20         | 0930      | GW       | 8          | ,          | ,       | 22          | 6       | 1       | 3      | 3        | _      |       | 9       | х        | x      | х       | x       | х        | x                      | x            | x          | x            | x       | x       | x        | x        | x                 |                             |
|                                |                 |           | <u> </u> |            | 1          | 1       |             |         |         |        |          |        |       |         |          |        |         |         |          |                        |              |            |              |         |         |          |          |                   |                             |
|                                |                 |           |          |            |            |         |             |         |         |        |          |        |       |         |          |        |         |         |          |                        |              |            |              |         |         |          |          |                   |                             |
|                                |                 |           |          | 1          |            |         |             |         |         |        |          |        |       |         |          |        |         |         |          |                        |              |            |              |         |         |          |          |                   |                             |
|                                |                 |           | T        |            |            |         |             |         |         |        |          |        |       |         |          |        |         |         |          |                        |              |            |              |         |         |          |          |                   |                             |
| -                              |                 |           |          |            |            |         |             |         |         |        |          |        |       |         |          |        |         |         |          |                        |              |            |              |         |         | L        |          |                   |                             |
|                                |                 | ļ         |          | T          |            |         |             |         |         |        |          |        |       |         |          |        |         |         |          |                        |              |            |              |         |         |          |          |                   |                             |
|                                |                 |           |          |            |            |         |             |         |         |        |          |        |       |         |          |        |         |         |          |                        |              |            |              |         |         |          |          |                   |                             |
|                                |                 |           |          |            |            |         |             |         |         |        |          |        |       |         |          |        |         |         |          |                        |              |            |              |         |         |          |          |                   |                             |
|                                |                 |           |          |            |            |         |             |         |         |        | <u> </u> |        |       |         |          |        |         |         |          |                        |              |            |              |         |         |          |          |                   |                             |
|                                |                 |           |          |            |            |         |             |         | Ì       |        |          |        |       |         |          |        |         |         |          |                        |              |            |              |         |         |          |          |                   |                             |
|                                |                 |           |          |            |            |         |             |         |         |        |          |        |       |         |          |        |         |         |          |                        |              |            |              |         |         |          |          |                   |                             |
| Turnaround Informa             | lion            |           |          |            |            |         |             | (       | 2A/QC   |        |          |        |       |         |          |        |         |         |          |                        |              |            |              | Ad      | dition  | al Infor | mation   | 1                 |                             |
| l — —                          | 5 DAY           |           |          | •          |            |         |             |         |         |        |          |        |       |         |          |        |         |         |          |                        |              |            |              |         |         |          |          |                   |                             |
| 3 DAY                          | Other           |           | }        |            |            |         |             |         |         |        |          |        |       |         |          |        |         |         |          |                        |              |            |              |         |         |          |          |                   |                             |
| RUSH                           |                 |           | 1        | <u>).\</u> | ce A       | 4       |             |         |         |        |          |        |       |         |          |        |         |         |          |                        |              |            |              | ,       |         |          |          |                   |                             |
|                                |                 |           |          |            |            | Sampl   | e Custo     | ody mus | t be do | cumen  |          |        | //    | ampies  | chang    | e poss | esion,  | includi | ng cou   | - 1                    |              |            |              |         |         |          |          |                   |                             |
| Relinquished by Sampler:       | 1               |           | Date:    | 18/20      | n          | Time:   | <u>ን</u> ለጎ |         |         |        | Receiv   | red By |       |         |          |        |         |         |          |                        | Date:        | 1          | ,            |         |         |          |          |                   | Time:                       |
| 1.) Opr //                     | /~              |           | 1/0      | +81+0      | )<br>      | 11.     | <b>グ</b> し  |         |         |        |          | 2.)    | 12    | <u></u> | <u></u>  |        |         |         |          |                        |              | 1/2        | 7/0          | )s<br>  |         |          |          |                   | 1120                        |
| Reliquished by:                | •               |           | Date:    |            |            | Time    |             |         |         |        | Receiv   | red By | :     |         |          |        |         |         |          |                        | Date:        |            |              |         |         |          |          |                   | Time:                       |
| 1 23                           |                 |           | - [      |            |            |         |             |         |         |        | l        | 4.1    |       |         |          |        |         |         |          |                        |              |            |              |         |         |          |          |                   |                             |



The Microbiology Division of Thielsch Engineering, Inc.



### CERTIFICATE OF ANALYSIS

Eric D. Simpson Tg2 Solutions 231 Elm Street Blackstone, MA 01504

RE: 945 Belmont St Brockton MA - RGP (N/A) ESS Laboratory Work Order Number: 20A0779

This signed Certificate of Analysis is our approved release of your analytical results. These results are only representative of sample aliquots received at the laboratory. ESS Laboratory expects its clients to follow all regulatory sampling guidelines. Beginning with this page, the entire report has been paginated. This report should not be copied except in full without the approval of the laboratory. Samples will be disposed of thirty days after the final report has been delivered. If you have any questions or concerns, please feel free to call our Customer Service Department.

Laurel Stoddard Laboratory Director REVIEWED

By ESS Laboratory at 5:43 pm, Feb 05, 2020

### **Analytical Summary**

The project as described above has been analyzed in accordance with the ESS Quality Assurance Plan. This plan utilizes the following methodologies: US EPA SW-846, US EPA Methods for Chemical Analysis of Water and Wastes per 40 CFR Part 136, APHA Standard Methods for the Examination of Water and Wastewater, American Society for Testing and Materials (ASTM), and other recognized methodologies. The analyses with these noted observations are in conformance to the Quality Assurance Plan. In chromatographic analysis, manual integration is frequently used instead of automated integration because it produces more accurate results.

The test results present in this report are in compliance with TNI and relative state standards, and/or client Quality Assurance Project Plans (QAPP). The laboratory has reviewed the following: Sample Preservations, Hold Times, Initial Calibrations, Continuing Calibrations, Method Blanks, Blank Spikes, Blank Spike Duplicates, Duplicates, Matrix Spikes, Matrix Spike Duplicates, Surrogates and Internal Standards. Any results which were found to be outside of the recommended ranges stated in our SOPs will be noted in the Project Narrative.



The Microbiology Division of Thielsch Engineering, Inc.



### CERTIFICATE OF ANALYSIS

Client Name: Tg2 Solutions

Client Project ID: 945 Belmont St Brockton MA - RGP ESS Laboratory Work Order: 20A0779

### SAMPLE RECEIPT

The following samples were received on January 28, 2020 for the analyses specified on the enclosed Chain of Custody Record.

The samples and analyses listed below were analyzed in accordance with the 2017 Remediation General Permit under the National Pollutant Discharge Elimination System (NPDES).

ESS Laboratory is unable to achieve the required detection limit of 0.4 mg/L for Ethanol for the RGP permit. We have also been unable to procure a subcontract laboatory that is able to achieve this limit. The data for Ethanol has been reported using our current method reporting limit.

Lab Number 20A0779-01

Sample Name Discharge

Matrix Ground Water **Analysis** 

200.7, 200.8, 245.1, 2520B, 3113B, 350.1, 3500Cr

B-2009, 4500 H+ B

185 Frances Avenue, Cranston, RI 02910-2211

Tel: 401-461-7181

Fax: 401-461-4486

http://www.ESSLaboratory.com



The Microbiology Division of Thielsch Engineering, Inc.



CERTIFICATE OF ANALYSIS

Client Name: Tg2 Solutions

Client Project ID: 945 Belmont St Brockton MA - RGP ESS Laboratory Work Order: 20A0779

### PROJECT NARRATIVE

Classical Chemistry 20A0779-01

No other observations noted.

**End of Project Narrative.** 

## **DATA USABILITY LINKS**

To ensure you are viewing the most current version of the documents below, please clear your internet cookies for www.ESSLaboratory.com. Consult your IT Support personnel for information on how to clear your internet cookies.





The Microbiology Division of Thielsch Engineering, Inc.



### CERTIFICATE OF ANALYSIS

Client Name: Tg2 Solutions

Client Project ID: 945 Belmont St Brockton MA - RGP ESS Laboratory Work Order: 20A0779

### **CURRENT SW-846 METHODOLOGY VERSIONS**

### **Analytical Methods**

1010A - Flashpoint

6010C - ICP

6020A - ICP MS

7010 - Graphite Furnace

7196A - Hexavalent Chromium

7470A - Aqueous Mercury

7471B - Solid Mercury

8011 - EDB/DBCP/TCP

8015C - GRO/DRO

8081B - Pesticides

8082A - PCB

8100M - TPH

8151A - Herbicides

8260B - VOA

8270D - SVOA

8270D SIM - SVOA Low Level

9014 - Cyanide

9038 - Sulfate

9040C - Aqueous pH

9045D - Solid pH (Corrosivity)

9050A - Specific Conductance

9056A - Anions (IC)

9060A - TOC

9095B - Paint Filter

MADEP 04-1.1 - EPH

MADEP 18-2.1 - VPH

### **Prep Methods**

3005A - Aqueous ICP Digestion

3020A - Aqueous Graphite Furnace / ICP MS Digestion

3050B - Solid ICP / Graphite Furnace / ICP MS Digestion

3060A - Solid Hexavalent Chromium Digestion

3510C - Separatory Funnel Extraction

3520C - Liquid / Liquid Extraction

3540C - Manual Soxhlet Extraction

3541 - Automated Soxhlet Extraction

3546 - Microwave Extraction

3580A - Waste Dilution

5030B - Aqueous Purge and Trap

5030C - Aqueous Purge and Trap

5035A - Solid Purge and Trap

SW846 Reactivity Methods 7.3.3.2 (Reactive Cyanide) and 7.3.4.1 (Reactive Sulfide) have been withdrawn by EPA. These methods are reported per client request and are not NELAP accredited.



The Microbiology Division of Thielsch Engineering, Inc.



### CERTIFICATE OF ANALYSIS

Client Name: Tg2 Solutions

Client Project ID: 945 Belmont St Brockton MA - RGP

Client Sample ID: Discharge Date Sampled: 01/28/20 10:00

Percent Solids: N/A

ESS Laboratory Work Order: 20A0779 ESS Laboratory Sample ID: 20A0779-01

Sample Matrix: Ground Water

Units: ug/L

Extraction Method: 3005A/200.7

### **Total Metals**

| <u>Analyte</u> | Results (MRL)       | <b>MDL</b> | Method | <u>Limit</u> | <u>DF</u> | Analyst | Analyzed       | <u>I/V</u> | F/V | Batch   |
|----------------|---------------------|------------|--------|--------------|-----------|---------|----------------|------------|-----|---------|
| Antimony       | ND (5.0)            |            | 200.7  |              | 1         | KJK     | 01/29/20 12:18 | 200        | 20  | DA02838 |
| Arsenic        | ND (0.5)            |            | 3113B  |              | 1         | KJK     | 01/30/20 16:54 | 200        | 20  | DA02838 |
| Cadmium        | <b>0.4</b> (0.1)    |            | 200.8  |              | 5         | KJK     | 01/29/20 12:25 | 200        | 20  | DA02838 |
| Chromium       | ND (2.0)            |            | 200.7  |              | 1         | KJK     | 01/29/20 12:18 | 200        | 20  | DA02838 |
| Copper         | <b>6.8</b> (2.0)    |            | 200.7  |              | 1         | KJK     | 01/29/20 12:18 | 200        | 20  | DA02838 |
| Hardness       | <b>99700</b> (82.4) |            | 200.7  |              | 1         | KJK     | 01/29/20 12:18 | 1          | 1   | [CALC]  |
| Iron           | <b>640</b> (10.0)   |            | 200.7  |              | 1         | KJK     | 01/29/20 12:18 | 200        | 20  | DA02838 |
| Lead           | <b>1.6</b> (0.5)    |            | 200.8  |              | 5         | KJK     | 01/29/20 12:25 | 200        | 20  | DA02838 |
| Mercury        | ND (0.2)            |            | 245.1  |              | 1         | MKS     | 01/29/20 13:23 | 20         | 40  | DA02905 |
| Nickel         | ND (5.0)            |            | 200.7  |              | 1         | KJK     | 01/29/20 12:18 | 200        | 20  | DA02838 |
| Selenium       | ND (1.0)            |            | 3113B  |              | 1         | KJK     | 01/30/20 19:27 | 200        | 20  | DA02838 |
| Silver         | ND (0.5)            |            | 200.7  |              | 1         | KJK     | 01/29/20 12:18 | 200        | 20  | DA02838 |
| Zinc           | <b>35.5</b> (5.0)   |            | 200.7  |              | 1         | KJK     | 01/29/20 12:18 | 200        | 20  | DA02838 |



The Microbiology Division of Thielsch Engineering, Inc.



### CERTIFICATE OF ANALYSIS

Client Name: Tg2 Solutions

Client Project ID: 945 Belmont St Brockton MA - RGP

Client Sample ID: Discharge Date Sampled: 01/28/20 10:00

Percent Solids: N/A

ESS Laboratory Work Order: 20A0779 ESS Laboratory Sample ID: 20A0779-01

Sample Matrix: Ground Water

## **Classical Chemistry**

| Analyte<br>Ammonia as N | Results (MRL)<br>0.15 (0.10) | <b>MDL Method</b> 350.1       | <u>Limit</u> | <u><b>DF</b></u> | Analyst<br>EEM | Analyzed 01/30/20 15:54 | Units<br>mg/L | Batch<br>DA02927 |
|-------------------------|------------------------------|-------------------------------|--------------|------------------|----------------|-------------------------|---------------|------------------|
| Hexavalent Chromium     | ND (10.0)                    | 3500Cr B-2009                 |              | 1                | EEM            | 01/29/20 9:20           | ug/L          | DA02913          |
| pН                      | 6.19 (N/A)                   | 4500 H+ B                     |              | 1                | CCP            | 01/28/20 21:13          | S.U.          | DA02831          |
| pH Sample Temp          | Aqueous pH measure           | ed in water at 17.8 °C. (N/A) |              |                  |                |                         |               |                  |
| Salinity                | <b>1.1</b> (0.1)             | 2520B                         |              | 1                | CCP            | 01/30/20 15:30          | ppt           | DA03034          |



The Microbiology Division of Thielsch Engineering, Inc.



### CERTIFICATE OF ANALYSIS

Client Name: Tg2 Solutions

Client Project ID: 945 Belmont St Brockton MA - RGP ESS Laboratory Work Order: 20A0779

## **Quality Control Data**

| Analyte                     | Result       | MRL  | Units        | Level  | Result | %REC       | Limits           | RPD | Limit | Qualifier |  |  |  |  |  |
|-----------------------------|--------------|------|--------------|--------|--------|------------|------------------|-----|-------|-----------|--|--|--|--|--|
|                             |              |      | T-+-1 M-+-   |        |        |            |                  |     |       |           |  |  |  |  |  |
|                             | Total Metals |      |              |        |        |            |                  |     |       |           |  |  |  |  |  |
| Batch DA02838 - 3005A/200.7 |              |      |              |        |        |            |                  |     |       |           |  |  |  |  |  |
| Blank                       |              |      |              |        |        |            |                  |     |       |           |  |  |  |  |  |
| Antimony                    | ND           | 5.0  | ug/L         |        |        |            |                  |     |       |           |  |  |  |  |  |
| Chromium                    | ND           | 2.0  | ug/L         |        |        |            |                  |     |       |           |  |  |  |  |  |
| Copper                      | ND           | 2.0  | ug/L         |        |        |            |                  |     |       |           |  |  |  |  |  |
| Iron                        | ND           | 10.0 | ug/L         |        |        |            |                  |     |       |           |  |  |  |  |  |
| Nickel                      | ND           | 5.0  | ug/L         |        |        |            |                  |     |       |           |  |  |  |  |  |
| Silver                      | ND           | 0.5  | ug/L         |        |        |            |                  |     |       |           |  |  |  |  |  |
| Zinc                        | ND           | 5.0  | ug/L         |        |        |            |                  |     |       |           |  |  |  |  |  |
| Blank                       |              |      |              |        |        |            |                  |     |       |           |  |  |  |  |  |
| Cadmium                     | ND           | 0.1  | ug/L         |        |        |            |                  |     |       |           |  |  |  |  |  |
| Lead                        | ND           | 0.5  | ug/L         |        |        |            |                  |     |       |           |  |  |  |  |  |
| Blank                       |              |      |              |        |        |            |                  |     |       |           |  |  |  |  |  |
| Arsenic                     | ND           | 0.5  | ug/L         |        |        |            |                  |     |       |           |  |  |  |  |  |
| Selenium                    | ND           | 1.0  | ug/L         |        |        |            |                  |     |       |           |  |  |  |  |  |
|                             |              |      | 39,2         |        |        |            |                  |     |       |           |  |  |  |  |  |
| Antimony                    | 49.7         | 5.0  | ug/L         | 50.00  |        | 99         | 85-115           |     |       |           |  |  |  |  |  |
| Chromium                    | 48.5         | 2.0  | ug/L<br>ug/L | 50.00  |        | 97         | 85-115<br>85-115 |     |       |           |  |  |  |  |  |
| Copper                      | 52.4         | 2.0  | ug/L         | 50.00  |        | 105        | 85-115           |     |       |           |  |  |  |  |  |
| Iron                        | 228          | 10.0 | ug/L         | 250.0  |        | 91         | 85-115           |     |       |           |  |  |  |  |  |
| Nickel                      | 50.3         | 5.0  | ug/L         | 50.00  |        | 101        | 85-115           |     |       |           |  |  |  |  |  |
| Silver                      | 25.4         | 0.5  | ug/L         | 25.00  |        | 102        | 85-115           |     |       |           |  |  |  |  |  |
| Zinc                        | 51.3         | 5.0  | ug/L         | 50.00  |        | 103        | 85-115           |     |       |           |  |  |  |  |  |
| LCS                         |              |      |              |        |        |            |                  |     |       |           |  |  |  |  |  |
| Cadmium                     | 23.9         | 2.5  | ug/L         | 25.00  |        | 96         | 85-115           |     |       |           |  |  |  |  |  |
| Lead                        | 47.7         | 2.5  | ug/L         | 50.00  |        | 95         | 85-115           |     |       |           |  |  |  |  |  |
|                             |              | -    | . 37         |        |        |            |                  |     |       |           |  |  |  |  |  |
| Arsenic                     | 47.4         | 12.5 | ug/L         | 50.00  |        | 95         | 85-115           |     |       |           |  |  |  |  |  |
| Selenium                    | 104          | 25.0 | ug/L         | 100.0  |        | 104        | 85-115           |     |       |           |  |  |  |  |  |
|                             |              | 23.0 | 49/2         | 100.0  |        |            |                  |     |       |           |  |  |  |  |  |
| Arsenic                     | 43.9         | 12.5 | ug/L         | 50.00  |        | 88         | 85-115           | 8   | 20    |           |  |  |  |  |  |
| Selenium                    | 95.7         | 25.0 | ug/L         | 100.0  |        | 96         | 85-115           | 8   | 20    |           |  |  |  |  |  |
| Batch DA02905 - 245.1/7470A | 33.7         | 25.0 |              | 100.0  |        |            | 03 113           |     |       |           |  |  |  |  |  |
| Blank                       |              |      |              |        |        |            |                  |     |       |           |  |  |  |  |  |
| Mercury                     | ND           | 0.2  | ug/L         |        |        |            |                  |     |       |           |  |  |  |  |  |
| LCS                         |              |      |              |        |        |            |                  |     |       |           |  |  |  |  |  |
| Mercury                     | 5.8          | 0.2  | ug/L         | 6.042  |        | 96         | 85-115           |     |       |           |  |  |  |  |  |
|                             | 3.0          |      | -31 -        |        |        |            |                  |     |       |           |  |  |  |  |  |
| LCS Dup Mercury             | 5.7          | 0.2  | ug/L         | 6.042  |        | 94         | 85-115           | 2   | 20    |           |  |  |  |  |  |
| rici cui y                  | 5.7          |      |              |        |        | <b>⊅</b> † | 00-110           | ۷   | ۷.    |           |  |  |  |  |  |
|                             |              | Cl   | assical Cher | nistry |        |            |                  |     |       |           |  |  |  |  |  |

**Batch DA02913 - General Preparation** 

Blank



The Microbiology Division of Thielsch Engineering, Inc.



### CERTIFICATE OF ANALYSIS

Client Name: Tg2 Solutions

Client Project ID: 945 Belmont St Brockton MA - RGP ESS Laboratory Work Order: 20A0779

## **Quality Control Data**

|                                     |        |      |             | Spike   | Source |      | %REC   |     | RPD   |           |
|-------------------------------------|--------|------|-------------|---------|--------|------|--------|-----|-------|-----------|
| Analyte                             | Result | MRL  | Units       | Level   | Result | %REC | Limits | RPD | Limit | Qualifier |
|                                     |        | Cl   | assical Che | mistry  |        |      |        |     |       |           |
|                                     |        |      |             |         |        |      |        |     |       |           |
| Batch DA02913 - General Preparation |        |      |             |         |        |      |        |     |       |           |
| Hexavalent Chromium                 | ND     | 10.0 | ug/L        |         |        |      |        |     |       |           |
| LCS                                 |        |      |             |         |        |      |        |     |       |           |
| Hexavalent Chromium                 | 526    | 10.0 | ug/L        | 499.8   |        | 105  | 90-110 |     |       |           |
| LCS Dup                             |        |      |             |         |        |      |        |     |       |           |
| Hexavalent Chromium                 | 528    | 10.0 | ug/L        | 499.8   |        | 106  | 90-110 | 0.4 | 20    |           |
| Batch DA02927 - NH4 Prep            |        |      |             |         |        |      |        |     |       |           |
| Blank                               |        |      |             |         |        |      |        |     |       |           |
| Ammonia as N                        | ND     | 0.10 | mg/L        |         |        |      |        |     |       |           |
| LCS                                 |        |      |             |         |        |      |        |     |       |           |
| Ammonia as N                        | 0.10   | 0.10 | mg/L        | 0.09994 |        | 102  | 80-120 |     |       |           |
| ıcs                                 |        |      |             |         |        |      |        |     |       |           |
| Ammonia as N                        | 0.94   | 0.10 | mg/L        | 0.9994  |        | 94   | 80-120 |     |       |           |
| Batch DA03034 - General Preparation |        |      |             |         |        |      |        |     |       |           |
| LCS                                 |        |      |             |         |        |      |        |     |       |           |
| Salinity                            | 1.0    |      | ppt         | 1.000   |        | 96   | 85-115 |     |       |           |

185 Frances Avenue, Cranston, RI 02910-2211

Tel: 401-461-7181

Fax: 401-461-4486

http://www.ESSLaboratory.com



The Microbiology Division of Thielsch Engineering, Inc.



#### CERTIFICATE OF ANALYSIS

Client Name: Tg2 Solutions

Client Project ID: 945 Belmont St Brockton MA - RGP ESS Laboratory Work Order: 20A0779

#### **Notes and Definitions**

| Z16 | Aqueous pH measured in water at 17.8 °C.           |
|-----|----------------------------------------------------|
| U   | Analyte included in the analysis, but not detected |

HTThe maximum holding time listed in 40 CFR Part 136 Table II for pH, Dissolved Oxygen, Sulfite and Residual

Chlorine is fifteen minutes.

D Diluted.

NDAnalyte NOT DETECTED at or above the MRL (LOQ), LOD for DoD Reports, MDL for J-Flagged Analytes

dry Sample results reported on a dry weight basis

**RPD** Relative Percent Difference MDL Method Detection Limit MRL Method Reporting Limit LOD Limit of Detection Limit of Quantitation LOQ **Detection Limit** DL Initial Volume I/V F/V Final Volume

Subcontracted analysis; see attached report

1 Range result excludes concentrations of surrogates and/or internal standards eluting in that range.

2 Range result excludes concentrations of target analytes eluting in that range. 3 Range result excludes the concentration of the C9-C10 aromatic range.

Avg Results reported as a mathematical average.

NR No Recovery [CALC] Calculated Analyte

**SUB** Subcontracted analysis; see attached report

RLReporting Limit

**EDL Estimated Detection Limit** MF Membrane Filtration MPN Most Probably Number **TNTC** Too numerous to Count **CFU** Colony Forming Units

185 Frances Avenue, Cranston, RI 02910-2211

Tel: 401-461-7181

Quality

Fax: 401-461-4486



The Microbiology Division of Thielsch Engineering, Inc.



### CERTIFICATE OF ANALYSIS

Client Name: Tg2 Solutions

Client Project ID: 945 Belmont St Brockton MA - RGP ESS Laboratory Work Order: 20A0779

### ESS LABORATORY CERTIFICATIONS AND ACCREDITATIONS

#### **ENVIRONMENTAL**

Rhode Island Potable and Non Potable Water: LAI00179 http://www.health.ri.gov/find/labs/analytical/ESS.pdf

Connecticut Potable and Non Potable Water, Solid and Hazardous Waste: PH-0750 <a href="http://www.ct.gov/dph/lib/dph/environmental\_health/environmental\_laboratories/pdf/OutofStateCommercialLaboratories.pdf">http://www.ct.gov/dph/lib/dph/environmental\_health/environmental\_laboratories/pdf/OutofStateCommercialLaboratories.pdf</a>

Maine Potable and Non Potable Water, and Solid and Hazardous Waste: RI00002 <a href="http://www.maine.gov/dhhs/mecdc/environmental-health/dwp/partners/labCert.shtml">http://www.maine.gov/dhhs/mecdc/environmental-health/dwp/partners/labCert.shtml</a>

Massachusetts Potable and Non Potable Water: M-RI002 http://public.dep.state.ma.us/Labcert/Labcert.aspx

New Hampshire (NELAP accredited) Potable and Non Potable Water, Solid and Hazardous Waste: 2424 <a href="http://des.nh.gov/organization/divisions/water/dwgb/nhelap/index.htm">http://des.nh.gov/organization/divisions/water/dwgb/nhelap/index.htm</a>

New York (NELAP accredited) Non Potable Water, Solid and Hazardous Waste: 11313 http://www.wadsworth.org/labcert/elap/comm.html

New Jersey (NELAP accredited) Non Potable Water, Solid and Hazardous Waste: RI006 <a href="http://datamine2.state.nj.us/DEP\_OPRA/OpraMain/pi\_main?mode=pi\_by\_site&sort\_order=PI\_NAMEA&Select+a+Site:=58715">http://datamine2.state.nj.us/DEP\_OPRA/OpraMain/pi\_main?mode=pi\_by\_site&sort\_order=PI\_NAMEA&Select+a+Site:=58715</a>

United States Department of Agriculture Soil Permit: P330-12-00139

Pennsylvania: 68-01752

http://www.dep.pa.gov/Business/OtherPrograms/Labs/Pages/Laboratory-Accreditation-Program.aspx

185 Frances Avenue, Cranston, RI 02910-2211

Tel: 401-461-7181

Fax: 401-461-4486

Service

http://www.ESSLaboratory.com

| Client                                                    | t:                                                | Tg2 Sol                                               | utions - TB                   |                          | _                | ESS F                                                                        | Project ID:                                        | 20          | A0779         |                                     |
|-----------------------------------------------------------|---------------------------------------------------|-------------------------------------------------------|-------------------------------|--------------------------|------------------|------------------------------------------------------------------------------|----------------------------------------------------|-------------|---------------|-------------------------------------|
| Shinnod/I                                                 | Delivered Via:                                    |                                                       | Oliona                        |                          | _                | Date I                                                                       | Received:                                          | 1/2         | 8/2020        |                                     |
| Omphedy                                                   | Jelivereu via.                                    |                                                       | Cilent                        |                          | -                | Project i<br>Davs fo                                                         | Due Date:<br>or Project:                           | 2/4         | 1/2020<br>Day | <del></del>                         |
|                                                           |                                                   |                                                       | ,                             |                          | <del>-</del>     |                                                                              |                                                    |             |               | <del></del>                         |
|                                                           | manifest prese<br>.:                              |                                                       |                               | No                       | J                |                                                                              | match bottles?                                     |             |               | Yes                                 |
| 2. Were c                                                 | ustody seals į                                    | present?                                              | 1                             | No                       |                  |                                                                              | nplete and corre                                   |             |               | Yes                                 |
| 3. Is radia                                               | tion count <16                                    | 00 CPM?                                               | I                             | Yes                      | ]                | •                                                                            | les received inta                                  |             |               | Yes                                 |
|                                                           | oler Present?                                     |                                                       | :lce                          | Yes                      | ]                |                                                                              | informed about<br>analyses receiv                  |             |               | Yes / No / NA                       |
| 5. Was Co                                                 | OC signed an                                      | d dated by d                                          | client?                       | Yes                      | ]                |                                                                              |                                                    |             |               |                                     |
|                                                           | ibcontracting<br>Sample IDs:<br>Analysis:<br>TAT: |                                                       | Yes                           | ( No                     | -<br>-           |                                                                              | as received?<br>in aqueous VO<br>anol cover soil o |             | _             | Yes / No<br>Yes / No<br>Yes / No NA |
| a. If metal                                               | e samples pro<br>s preserved u<br>vel VOA vials   | pon receipt                                           |                               | Yes No<br>Date:<br>Date: |                  | Time:                                                                        |                                                    | By:<br>By:  |               | <del></del>                         |
| Sample Re                                                 | eceiving Notes                                    | <b>s</b> :                                            |                               |                          |                  |                                                                              |                                                    |             |               |                                     |
|                                                           | ere a need to                                     |                                                       |                               |                          | Yes No<br>Yes No | /                                                                            |                                                    | Ву:         |               |                                     |
| Sample<br>Number                                          | Container<br>ID                                   | Proper<br>Container                                   | Air Bubbles<br>Present        | Sufficient<br>Volume     | Contain          | er Type                                                                      | Preservativ                                        | e           |               | Cyanide and 608<br>ticides)         |
| 1                                                         | 8883                                              | Yes                                                   | N/A                           | Yes                      | 1L f             | Poly                                                                         | NP                                                 |             | ·             |                                     |
| 1                                                         | 8884                                              | Yes                                                   | N/A                           | Yes                      | 500 m            | L Poly                                                                       | H2SO4                                              |             |               |                                     |
| 1                                                         | 8885                                              | Yes                                                   | N/A                           | Yes                      | 500 m            | L Poly                                                                       | HNO3                                               |             |               |                                     |
| 1                                                         | 8886                                              | Yes                                                   | N/A                           | Yes                      |                  | L Poly                                                                       | HNO3                                               |             |               |                                     |
| 1                                                         | 8887                                              | Yes                                                   | N/A                           | Yes                      | 250 m            | L Poly                                                                       | NP                                                 |             |               |                                     |
| Are barcode<br>Are all Flas<br>Are all Hex<br>Are all QC: | ontainers sca<br>e labels on co                   | rrect contains attached/or attached ers attached ned? | ners?<br>container ID #<br>d? | circled?                 |                  | Yes / No<br>Yes / No / NA<br>Yes / No / NA<br>Yes / No / NA<br>Yes / No / NA |                                                    |             |               |                                     |
| Completed<br>By:<br>Reviewed<br>By:                       |                                                   |                                                       |                               |                          | Date & Time:     | _ 100                                                                        | 120                                                | 1306<br>B79 |               |                                     |
| Delivered                                                 |                                                   |                                                       | *                             |                          | ,                |                                                                              | -                                                  |             |               | <del></del>                         |

| Client | Tg2 Solutions - TB | ESS Project ID:                                                                                           | 20A0779   |
|--------|--------------------|-----------------------------------------------------------------------------------------------------------|-----------|
| _      | 0-8                | Date Received:                                                                                            | 1/28/2020 |
| Ву:    |                    | المراكة ا | 1329      |

| To                     |                    | ,,,,           |             |                                                  |              |                                                  | CHA            | dN C      | F       | CUS   | это      | DY     | RE                                               | СО           | RD           |              |               |              |          |              |         |       |      |       |        |         | H                         | A 0777                      |
|------------------------|--------------------|----------------|-------------|--------------------------------------------------|--------------|--------------------------------------------------|----------------|-----------|---------|-------|----------|--------|--------------------------------------------------|--------------|--------------|--------------|---------------|--------------|----------|--------------|---------|-------|------|-------|--------|---------|---------------------------|-----------------------------|
| 231 ELM STREET, BI     | ∟i<br>LACKSTONE, I | MA 01504       |             |                                                  |              |                                                  |                |           |         |       |          |        |                                                  |              |              |              |               |              |          |              |         |       | Lab  | orato | ry:    |         |                           | ESS, Cranston, RI           |
| ,                      |                    |                |             |                                                  |              |                                                  |                |           |         |       |          | MATRI  | CODES                                            |              |              |              |               |              |          |              |         |       |      |       |        |         |                           |                             |
| Project Mgr:           | Eric Simpson       |                |             |                                                  |              |                                                  |                |           |         | GW    | Ground   | dwater |                                                  |              |              | <u> </u>     | <b>,</b>      |              |          | ANAL         | /SES_F  | REQUE | BTED |       |        |         |                           | Lab to Invoice: Tg2, LLC    |
| 1                      | 508-298-8686       |                |             | _                                                |              |                                                  |                |           |         | SL    | Soli     |        |                                                  |              |              |              |               |              |          |              |         | [     |      |       |        |         |                           | esimpson@tg2solutions.com.  |
| Priorie # 590-200 Good |                    |                |             |                                                  |              |                                                  |                |           | · ·     |       | Drinkir  | a Wat  | •                                                |              |              |              |               |              | <u> </u> |              |         |       |      |       |        |         |                           |                             |
| <u> </u>               |                    |                |             |                                                  |              |                                                  | Ι_             |           |         |       |          | -      |                                                  |              |              |              |               | 1            |          |              |         |       |      |       |        |         |                           | Lab Report to:              |
| Project Client         |                    |                |             |                                                  |              |                                                  | Regu           | lated St  | ate     |       | Surfac   |        | r                                                |              |              |              |               |              |          |              |         |       |      | ļ     |        |         |                           |                             |
| Project Name           | 945 Belmont S      | treet, Brockto | n MA RGP    | <u> </u>                                         |              |                                                  | 4              |           |         | ww    | Waste    | Water  |                                                  |              |              |              |               |              |          |              |         |       |      |       |        | \       | esimpson@tg2solutions.com |                             |
| Address                | 945 Belmont S      | treet, Brockto | n MA        |                                                  |              |                                                  | ļ              | MA        |         | IA    | Indoor   | Air    |                                                  |              |              |              |               |              |          |              |         |       |      |       |        |         |                           | jsherburne@tg2solutions.com |
| Sampler:               | Karl Jensen        |                |             |                                                  |              |                                                  |                |           |         | sa    | Soil Ga  | ss/Vap | or                                               |              |              | 1            |               | 100          | ļ        |              |         |       |      |       |        |         |                           |                             |
|                        |                    |                |             |                                                  | 1            |                                                  |                |           |         |       |          |        |                                                  |              |              | ł            | .00           | Total metals | 1 22     | oH, Salinity |         |       |      |       |        |         |                           |                             |
|                        |                    | Colle          | ction       | Matri×                                           |              | of bottles                                       | <del></del>    |           |         |       |          | eserva | <b>{</b>                                         | 1            |              | ١            | 6             | Ē            | Į,       | Safi         |         |       |      |       |        |         |                           |                             |
| #1-141D / Dalat        | . Calla atlan      |                |             |                                                  | C!           |                                                  | VOA's          | OT/SAMPLE | ţ       | HOB   | 4003     | H2So4  | MEOH                                             | She.         | You          | Cr+6         | Ammonia       | 100          | Hardness | Ĥ,           |         |       |      |       |        |         |                           | Comments:                   |
| Field ID / Point of    |                    |                | Time        | <del> </del>                                     | Glass        | Plastic                                          | VUA'S          | -         | I       |       |          |        | -                                                | · · · ·      | -            |              |               |              | ×        | x            |         |       |      |       |        | -       |                           |                             |
| Dischar                | ge                 | 1/28/20        | 1000        | SW                                               | 5            | <del> </del>                                     | <u> </u>       | 5         |         |       | 2        | _1_    |                                                  | -            | .2           | X            | <del>-x</del> | ×            | <u> </u> |              |         |       |      |       |        |         |                           |                             |
|                        | <del>-</del>       |                |             | <del> </del>                                     |              | <del> </del>                                     | <del> </del> - |           |         |       |          |        | 1                                                | ├            | <u> </u>     | $\vdash$     |               |              |          |              |         | -     |      |       | ļ      |         |                           |                             |
|                        |                    |                | <del></del> | <u> </u>                                         |              | -                                                |                |           |         |       |          |        | -                                                |              |              | <del> </del> |               | -            | -        |              |         |       |      |       |        |         | -                         |                             |
|                        |                    | ļ              | -           | <del> </del> _                                   |              | <del>                                     </del> | -              |           |         |       |          |        | <del> </del>                                     |              | ╁            |              |               | -            |          | $\vdash$     |         |       |      |       |        |         |                           |                             |
|                        | _                  |                |             | <del>                                     </del> | <del> </del> |                                                  |                | $\vdash$  |         |       | -        |        | <u> </u>                                         |              |              |              | ╁┈            |              |          |              |         |       |      |       |        |         | ├-                        |                             |
| <u></u>                | <del>~</del> .     |                |             | <u> </u>                                         | ┼            |                                                  | ┼─             |           |         |       |          |        | <del>                                     </del> |              |              |              | ╁             |              |          |              | _       |       |      |       |        |         | _                         |                             |
|                        |                    | _              |             | <del> </del>                                     |              | <del> </del>                                     |                |           |         |       |          |        | <del> </del>                                     | _            | <del> </del> | -            |               | <del> </del> |          |              |         |       |      |       |        |         | -                         |                             |
|                        |                    |                |             | +                                                | <del> </del> |                                                  | <del> </del>   | 1         |         |       |          |        | -                                                | <del> </del> |              |              |               |              |          |              |         | ··    | ,,,, |       |        |         |                           |                             |
|                        |                    |                |             | <del> </del>                                     | <del> </del> |                                                  | ┼~──           |           |         |       |          |        |                                                  |              |              |              |               |              |          |              |         |       |      |       |        |         |                           |                             |
|                        |                    |                |             | +                                                | <del> </del> |                                                  | †              |           |         |       | -        |        | <del>                                     </del> |              |              |              |               |              |          |              |         |       |      |       |        |         |                           |                             |
|                        | <del></del>        | _              |             |                                                  |              | 1                                                |                |           |         |       |          |        |                                                  |              |              |              |               |              |          |              |         |       |      |       |        |         |                           |                             |
| Turnor                 | ound Informati     | lon            | 1           | <u> </u>                                         | •            | <del>.!</del>                                    |                |           | c       | A/QC  |          |        | <del></del>                                      | ,            |              |              |               |              |          |              |         |       | •    | Ad    | dition | al Info | rmation                   | n                           |
| Tallia                 | ouno miormac       | 1              |             |                                                  |              |                                                  |                |           |         |       |          |        |                                                  |              |              |              | •             |              |          |              |         |       |      |       |        |         |                           |                             |
| STANDARD               | x                  | 5 DAY          |             |                                                  |              |                                                  |                |           |         |       |          |        |                                                  |              |              |              |               |              |          |              |         |       |      |       |        |         |                           |                             |
|                        |                    | 1              |             |                                                  |              |                                                  |                |           |         |       |          |        |                                                  |              |              |              |               |              |          |              |         |       |      |       |        |         |                           |                             |
| 3 DAY                  |                    | Other          |             |                                                  |              |                                                  |                |           |         |       |          |        |                                                  |              |              |              |               | 1            |          |              |         |       |      |       |        |         |                           |                             |
| [ ]                    |                    |                |             |                                                  | 1            |                                                  |                |           |         |       |          |        |                                                  |              | A            |              |               |              |          |              |         |       |      |       |        |         |                           |                             |
| RUSH                   |                    |                |             | 1                                                | 21           | _\(L                                             | W.             |           |         |       |          |        |                                                  |              | 4—           |              |               |              |          |              |         |       |      |       |        |         |                           |                             |
|                        |                    |                |             |                                                  |              | San                                              |                | tody musi | t be do | cumen | ted belo | 1      |                                                  | 1 /          | s chan       | ge poss      | esion,        | includ       | ing co   | urier de     | livery. |       |      |       |        |         |                           | <b>-</b>                    |
| Relinquished t         | y Sampler:         | ,              |             | Date                                             | - 01-        | -                                                | Time:          | 115       | Α       |       |          | Rece   | ived By                                          | 1/           |              |              |               |              |          |              |         | Date: | r    | /     |        |         |                           | Time:                       |
| 1) Ala                 | 1 1                |                |             | $- V_i $                                         | 28/20        | •                                                |                | 112       | 0       |       |          |        | 2.)                                              | 1            | _            |              |               |              |          |              |         | 1     | 1281 | 12.   |        |         |                           | 11:21                       |
| Reliquished by         | J                  | <i>V</i>       |             | Date                                             |              |                                                  | Time           |           |         |       |          | Rece   | lved By                                          | !            |              |              |               |              |          | •            |         | Date: |      |       |        |         |                           | Time:                       |
| 1                      |                    |                |             |                                                  |              |                                                  |                |           |         |       |          |        | 4.)                                              |              |              |              |               |              |          |              |         |       |      |       |        |         |                           |                             |



## **ATTACHMENT D**



## United States Department of the Interior

### FISH AND WILDLIFE SERVICE

New England Ecological Services Field Office 70 Commercial Street, Suite 300 Concord, NH 03301-5094 Phone: (603) 223-2541 Fax: (603) 223-0104

http://www.fws.gov/newengland



In Reply Refer To: February 09, 2020

Consultation Code: 05E1NE00-2020-SLI-1303

Event Code: 05E1NE00-2020-E-03719

Project Name: 945 Belmont, Brockton - Colbea Station

Subject: List of threatened and endangered species that may occur in your proposed project

location, and/or may be affected by your proposed project

### To Whom It May Concern:

The enclosed species list identifies threatened, endangered, proposed and candidate species, as well as proposed and final designated critical habitat, that may occur within the boundary of your proposed project and/or may be affected by your proposed project. The species list fulfills the requirements of the U.S. Fish and Wildlife Service (Service) under section 7(c) of the Endangered Species Act (Act) of 1973, as amended (16 U.S.C. 1531 *et seq.*).

New information based on updated surveys, changes in the abundance and distribution of species, changed habitat conditions, or other factors could change this list. Please feel free to contact us if you need more current information or assistance regarding the potential impacts to federally proposed, listed, and candidate species and federally designated and proposed critical habitat. Please note that under 50 CFR 402.12(e) of the regulations implementing section 7 of the Act, the accuracy of this species list should be verified after 90 days. This verification can be completed formally or informally as desired. The Service recommends that verification be completed by visiting the ECOS-IPaC website at regular intervals during project planning and implementation for updates to species lists and information. An updated list may be requested through the ECOS-IPaC system by completing the same process used to receive the enclosed list.

The purpose of the Act is to provide a means whereby threatened and endangered species and the ecosystems upon which they depend may be conserved. Under sections 7(a)(1) and 7(a)(2) of the Act and its implementing regulations (50 CFR 402 *et seq.*), Federal agencies are required to utilize their authorities to carry out programs for the conservation of threatened and endangered species and to determine whether projects may affect threatened and endangered species and/or designated critical habitat.

A Biological Assessment is required for construction projects (or other undertakings having similar physical impacts) that are major Federal actions significantly affecting the quality of the human environment as defined in the National Environmental Policy Act (42 U.S.C. 4332(2) (c)). For projects other than major construction activities, the Service suggests that a biological evaluation similar to a Biological Assessment be prepared to determine whether the project may affect listed or proposed species and/or designated or proposed critical habitat. Recommended contents of a Biological Assessment are described at 50 CFR 402.12.

If a Federal agency determines, based on the Biological Assessment or biological evaluation, that listed species and/or designated critical habitat may be affected by the proposed project, the agency is required to consult with the Service pursuant to 50 CFR 402. In addition, the Service recommends that candidate species, proposed species and proposed critical habitat be addressed within the consultation. More information on the regulations and procedures for section 7 consultation, including the role of permit or license applicants, can be found in the "Endangered Species Consultation Handbook" at:

http://www.fws.gov/endangered/esa-library/pdf/TOC-GLOS.PDF

Please be aware that bald and golden eagles are protected under the Bald and Golden Eagle Protection Act (16 U.S.C. 668 *et seq.*), and projects affecting these species may require development of an eagle conservation plan (http://www.fws.gov/windenergy/eagle\_guidance.html). Additionally, wind energy projects should follow the wind energy guidelines (http://www.fws.gov/windenergy/) for minimizing impacts to migratory birds and bats.

Guidance for minimizing impacts to migratory birds for projects including communications towers (e.g., cellular, digital television, radio, and emergency broadcast) can be found at: http://www.fws.gov/migratorybirds/CurrentBirdIssues/Hazards/towers/towers.htm; http://www.towerkill.com; and http://www.fws.gov/migratorybirds/CurrentBirdIssues/Hazards/towers/comtow.html.

We appreciate your concern for threatened and endangered species. The Service encourages Federal agencies to include conservation of threatened and endangered species into their project planning to further the purposes of the Act. Please include the Consultation Tracking Number in the header of this letter with any request for consultation or correspondence about your project that you submit to our office.

### Attachment(s):

Official Species List

# **Official Species List**

This list is provided pursuant to Section 7 of the Endangered Species Act, and fulfills the requirement for Federal agencies to "request of the Secretary of the Interior information whether any species which is listed or proposed to be listed may be present in the area of a proposed action".

This species list is provided by:

New England Ecological Services Field Office 70 Commercial Street, Suite 300 Concord, NH 03301-5094 (603) 223-2541

## **Project Summary**

Consultation Code: 05E1NE00-2020-SLI-1303

Event Code: 05E1NE00-2020-E-03719

Project Name: 945 Belmont, Brockton - Colbea Station

Project Type: DEVELOPMENT

Project Description: This facility has historically been an active gasoline station with

underground storage tanks (USTs) and dispenser islands. Plans to

redevelop the facility are anticipated under a National Pollutant Discharge Elimination System (NPDES). Therefore, a determination of endangered

species act eligibility is required.

### **Project Location:**

Approximate location of the project can be viewed in Google Maps: <a href="https://www.google.com/maps/place/42.0650283028075N71.05583233390257W">https://www.google.com/maps/place/42.0650283028075N71.05583233390257W</a>



Counties: Plymouth, MA

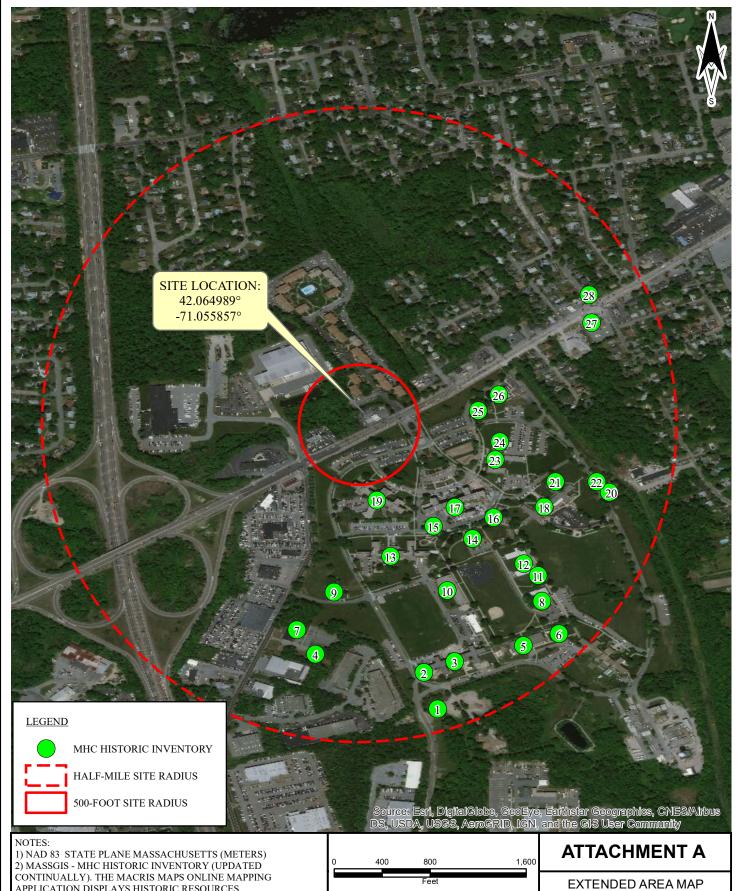
## **Endangered Species Act Species**

There is a total of 0 threatened, endangered, or candidate species on this species list.

Species on this list should be considered in an effects analysis for your project and could include species that exist in another geographic area. For example, certain fish may appear on the species list because a project could affect downstream species.

IPaC does not display listed species or critical habitats under the sole jurisdiction of NOAA Fisheries<sup>1</sup>, as USFWS does not have the authority to speak on behalf of NOAA and the Department of Commerce.

See the "Critical habitats" section below for those critical habitats that lie wholly or partially within your project area under this office's jurisdiction. Please contact the designated FWS office if you have questions.


1. <u>NOAA Fisheries</u>, also known as the National Marine Fisheries Service (NMFS), is an office of the National Oceanic and Atmospheric Administration within the Department of Commerce.

### **Critical habitats**

THERE ARE NO CRITICAL HABITATS WITHIN YOUR PROJECT AREA UNDER THIS OFFICE'S JURISDICTION.



## **ATTACHMENT E**



APPLICATION DISPLAYS HISTORIC RESOURCES

INCLUDED IN THE MASSACHUSETTS CULTURAL RESOURCE INFORMATION SYSTEM MAINTAINED BY THE MASSACHUSETTS HISTORICAL COMMISSION.

3) NUMBERS SHOWN ON MAP CORRESPOND TO "OBJECTID" IN TABLE. ALL NUMBERS MAY NOT BE SHOWN. PLEASE SEE TABLE FOR COMPLETE LIST.

PREPARED BY: TG2 SOLUTIONS LLC 231 ELM STREET BLACKSTONE, MA 01504 WITH MARCIS INVENTORY

SHELL-BRANDED STATION 945 BELMONT STREET BROCKTON, MA

| OBJECTID MHCN | DEMOLISHED | TYPE      | DESIGNATIO D | _DATE           | HISTORIC_N                                        | COMMON_NAM                             | ADDRESS        | TOWN_NAME | CONSTRUCTI | ARCHITECTU             | MAKER                                | USE_TYPE                                                                       | SIGNIFICAN                                                         |
|---------------|------------|-----------|--------------|-----------------|---------------------------------------------------|----------------------------------------|----------------|-----------|------------|------------------------|--------------------------------------|--------------------------------------------------------------------------------|--------------------------------------------------------------------|
| 1 BRO.620     |            | Building  |              |                 |                                                   | Brockton VA Hospital -<br>Building #50 | 940 Belmont St | Brockton  |            | 1953 No style;         |                                      |                                                                                | Architecture; Engineering; Health<br>Medicine; Military;           |
| 2 BRO.630     |            | Building  |              |                 | Emergency Generator                               | Brockton VA Hospital -<br>Building #70 | 940 Belmont St | Brockton  |            | 1979 No style;         |                                      | Power House;                                                                   | Architecture; Engineering; Health<br>Medicine; Military;           |
| 3 BRO.605     |            | Building  |              |                 |                                                   | Brockton VA Hospital -<br>Building #5  | 940 Belmont St | Brockton  |            | 1953 No style;         |                                      | Hospital;                                                                      | Architecture; Health Medicine;<br>Military;                        |
| 4 BRO.581     |            | Building  |              |                 | Brockton U. S. Army Reserve<br>Center Garage      |                                        | 124 Manley St  | Brockton  |            | 1964 No style;         | Bailey and Patton;                   | Maintenance Facility; Military Other;<br>Warehouse;                            | Architecture; Military; Transportation;                            |
| 5 BRO.611     |            | Building  |              |                 |                                                   | Brockton VA Hospital -<br>Building #23 | 940 Belmont St | Brockton  |            | 1953 No style;         |                                      | Athletic Field Or Court; Sports Facility;                                      | Architecture; Health Medicine;<br>Military; Recreation;            |
| 6 BRO.629     |            | Building  |              |                 | Brockton VA Hospital -                            | Brockton VA Hospital -<br>Building #69 | 940 Belmont St | Brockton  |            | 1979 No style;         |                                      |                                                                                | Architecture; Engineering; Health<br>Medicine; Military;           |
|               |            |           |              |                 | Brockton U. S. Army Reserve                       |                                        |                |           |            | 2012 110 21,10,        | Abel, Peter Inc.;<br>Urbahn, Brayton | Business Office; Military Other; Other                                         | Architecture; Education; Military;                                 |
| 7 BRO.580     |            | Building  |              |                 | Center                                            | December VA Heavited                   | 124 Manley St  | Brockton  |            | 1964 Contemporary;     | and Burrows;                         | Educational;                                                                   | Politics Government;                                               |
| 8 BRO.610     |            | Building  |              |                 | Brockton VA Hospital - Library - Recreation Bldg. | Building #22                           | 940 Belmont St | Brockton  |            | 1953 No style;         |                                      | Community Center; Library;                                                     | Architecture; Education; Health<br>Medicine; Military; Recreation; |
| 9 BRO.624     |            | Building  |              |                 |                                                   | Brockton VA Hospital -<br>Building #62 | 940 Belmont St | Brockton  |            | 1953 No style;         |                                      | Other Residential; Workers Housing;                                            | Architecture; Health Medicine;<br>Military;                        |
| 10 BRO.608    |            | Building  |              |                 | Kitchen - Dining Hall                             | Brockton VA Hospital -<br>Building #20 | 940 Belmont St | Brockton  |            | 1953 No style;         |                                      | Dining Hall; Warehouse;                                                        | Architecture; Health Medicine; Military;                           |
| 11 BRO.971    |            | Structure |              |                 | Brockton VA Hospital -<br>Connecting Corridors    |                                        | 940 Belmont St | Brockton  |            | 1953                   |                                      | Other Medical;                                                                 | Architecture; Engineering; Health<br>Medicine; Military;           |
| 12 BRO.613    |            | Building  |              |                 | •                                                 | Brockton VA Hospital -<br>Building #25 | 940 Belmont St | Brockton  |            | 1953 No style;         |                                      | Hospital; Warehouse;                                                           | Architecture; Health Medicine;<br>Military;                        |
| 13 BRO.604    |            | Building  |              |                 |                                                   | Brockton VA Hospital -<br>Building #4  | 940 Belmont St | Brockton  |            | 1953 No style;         |                                      | Hospital;                                                                      | Architecture; Health Medicine;<br>Military;                        |
| 14 BRO.609    |            | Building  |              |                 |                                                   | Brockton VA Hospital -<br>Building #21 | 940 Belmont St | Brockton  |            | 1953 No style;         |                                      | Abandoned or Vacant; Auditorium; Theater;                                      | Architecture; Health Medicine;<br>Military; Recreation;            |
| 15 BRO.627    |            | Building  |              |                 | Brockton VA Hospital -<br>Emergency Generator     | Brockton VA Hospital -<br>Building #67 | 940 Belmont St | Brockton  |            | 1975 No style;         |                                      | Power House;                                                                   | Architecture; Engineering; Health<br>Medicine; Military;           |
| 16 BRO.612    |            | Building  |              |                 | Brockton VA Hospital - Chapel                     | -                                      | 940 Belmont St | Brockton  |            | 1953 No style;         |                                      | Chapel;                                                                        | Architecture; Health Medicine;<br>Military; Religion;              |
| 17 BRO.603    |            | Building  |              |                 | • ,                                               | Brockton VA Hospital -<br>Building #3  | 940 Belmont St | Brockton  |            | 1953 No style;         |                                      | Hospital;                                                                      | Architecture; Health Medicine;<br>Military;                        |
| 18 BRO.607    |            | Building  |              |                 | Building                                          | Brockton VA Hospital -<br>Building #8  | 940 Belmont St | Brockton  |            | 1953 No style;         |                                      | Hospital;                                                                      | Architecture; Health Medicine;<br>Military;                        |
| 19 BRO.602    |            | Building  |              |                 |                                                   | Brockton VA Hospital -<br>Building #2  | 940 Belmont St | Brockton  |            | 1953 No style;         |                                      | Hospital;                                                                      | Architecture; Health Medicine;<br>Military;                        |
| 20 BRO.970    |            | Structure |              |                 | Brockton VA Hospital -<br>Reservoir               | Brockton VA Hospital -<br>Building #49 | 940 Belmont St | Brockton  |            | 1953                   |                                      | Utilities Other;                                                               | Architecture; Engineering; Health<br>Medicine; Military;           |
| 21 BRO.628    |            | Building  |              |                 | Brockton VA Hospital -<br>Emergency Generator     | Brockton VA Hospital -<br>Building #68 | 940 Belmont St | Brockton  |            | 1979 No style;         |                                      | Power House;                                                                   | Architecture; Engineering; Health<br>Medicine; Military;           |
| 22 BRO.619    |            | Building  |              |                 | Brockton VA Hospital - Water<br>Pump House        | Building #47                           | 940 Belmont St | Brockton  |            | 1953 No style;         |                                      | Pumping Station;                                                               | Architecture; Engineering; Health<br>Medicine; Military;           |
| 23 BRO.601    |            | Building  |              |                 |                                                   | Brockton VA Hospital -<br>Building #1  | 940 Belmont St | Brockton  |            | 1953 No style;         |                                      | Administration Office;                                                         | Architecture; Health Medicine;<br>Military;                        |
| 24 BRO.631    |            | Building  |              |                 | Switchgear Building                               | Brockton VA Hospital -<br>Building #71 | 940 Belmont St | Brockton  |            | 1979 No style;         |                                      | Power House;                                                                   | Architecture; Engineering; Health<br>Medicine; Military;           |
| 25 BRO.623    |            | Building  |              |                 | Brockton VA Hospital -<br>Apartment Building      | Brockton VA Hospital -<br>Building #61 | 940 Belmont St | Brockton  |            | 1953 No style;         |                                      | Apartment House; Other Medical;                                                | Architecture; Health Medicine;<br>Military;                        |
| 26 BRO.622    |            | Building  |              | 12/20/20<br>16; |                                                   | Brockton VA Hospital -<br>Building #60 | 940 Belmont St | Brockton  |            | 1924 Colonial Revival; | Jackson, Ralph<br>Prescott;          | Business Office; Dormitory; Nursing Home;<br>Other Educational; Other Medical; | Architecture; Health Medicine;<br>Military; Religion;              |
| 27 BRO.205    | У          | Building  |              |                 | Minor, Wesley Lyng House                          | Ames, Fiske - Francis, George -        | 826 Belmont St | Brockton  |            | 1870 Italianate;       |                                      | Single Family Dwelling House;                                                  | Architecture;                                                      |
| 28 BRO.159    |            | Building  |              |                 | Bryant, William Cullen House                      | Bryant, Mildred Copeland<br>House      | 815 Belmont St | Brockton  |            | 1810 Federal;          |                                      | Single Family Dwelling House;                                                  | Architecture; Literature;                                          |
|               |            |           |              |                 |                                                   |                                        |                |           |            |                        |                                      |                                                                                |                                                                    |